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Abstract—Chiral conformal blocks in a rational conformal field theory are a far-going extension of Gauss
hypergeometric functions. The associated monodromy representations of Artin’s braid group B,, capture
the essence of the modern view on the subject that originates in ideas of Riemann and Schwarz. Physically,
such monodromy representations correspond to a new type of braid group statistics which may manifest
itself in two-dimensional critical phenomena, e.g., in some exotic quantum Hall states. The associated
primary fields satisfy R-matrix exchange relations. The description of the internal symmetry of such
fields requires an extension of the concept of a group, thus giving room to quantum groups and their
generalizations. We review the appearance of braid group representations in the space of solutions of
the Knizhnik—Zamolodchikov equation with an emphasis on the role of a regular basis of solutions which
allows us to treat as well the case of indecomposable representations of B,,. The bulk of the paper, starting

with the end of Section 2, reflects a joint effort of the authors. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Let us begin with a reminiscence.

O’Raifeartaigh’s theorem of 1965 told us that what
many of us were trying to do: finding a “relativis-
tic SU(6)”—a large group containing Poincaré and
SU(6) and reproducing some nice mass formulas—
was, in fact, impossible. So our generation managed
to learn group theory for a wrong reason. (Most the-
oretical physicists had missed the previous—better—
opportunity when group-representation theory helped
understand atomic spectra.) The only noticeable
trace from our effort of that time—besides the no-go
theorem of Lochlain—was left by the current algebra
approach. But that was not a purely group theoretical
development: it incorporated ideas of QED and of the
V' — A theory of weak interactions. Hence, a moral:
beware of isolated ideas and methods (for good or
bad this lesson kept us later from drowning in the
supersymmetry temptation).

Artin’s braid group B,—with its monodromy
representations—is a good example of a focal point
for important developments in both mathematics and
physics.

In mathematics, it appears in the description of
topological invariants of algebraic functions [1] and
the related study of multiparametric integrals and
(generalized) hypergeometric functions [2—4] and in
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the theory of knot invariants and invariants of three-
dimensional manifolds [5—9]. The main physical ap-
plications go under the heading of generalized statis-
tics (anticipated by Arnold in[1], see Section 2). The
Knizhnik—Zamolodchikov (KZ) equation (Section 3)
is a common playground for physicists and mathe-
maticians.

We illustrate high-brow mathematical results of
[10, 11] on the relation between the monodromy rep-
resentations of B,, in the space of solutions of the
KZ equation for a semisimple Lie algebra G and the
universal R matrix for U, (G) by simple computations
for the special case of G = su(INV) step operators and
B3 (Section 4). In fact, we go into our explicit con-
struction beyond these general results by also treating
on equal footing the indecomposable representations

of B3 for q an even root of unity (¢" = —1).

2. PERMUTATION AND BRAID
GROUP STATISTICS

The symmetry of a one-component wave func-
tion ¥(x1,...,x,) is described by either of the one-
dimensional representations of the group S, of per-
mutations giving rise to Bose and/or Fermi statis-
tics. Multicomponent wave functions correspond-
ing to particles with internal quantum numbers may
transform under higher dimensional representations
of S, corresponding to parastatistics. If one allows
for multivalued wave functions, then the exchange of
two arguments x and y may depend on the (homotopy
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type of the) path along which z and y are exchanged,
thus giving rise to a representation of the braid group
B,, of n strands.

B, was defined by E. Artin in 1925 as a group
with n — 1 generators, b1, ..., b,_1 (b; “braiding” the
strands ¢ and i + 1), satisfying the following two rela-
tions:

bibj = bjb;, |i —j| > 2, (1)
bibi+1bi = biy1bibiy1, 1 =1,...,n—2.

Let o : B, — S, be the group homomorphism de-
fined by

ob) =04, 02 =1(€ S,), i=1,....,n—1, (2)

where o; are the basic transpositions exchanging i
and i + 1 that generate S,,. The kernel P, of this ho-
momorphism is called the monodromy (or pure braid)
group. Note that the element

= (b1ba..
generates the centre of B,,.

The braid group B,, and its invariant subgroup Py,
have a topological interpretation. Consider the n-
dimensional manifold

Y, = C"\ Diag = {z = (#,. ..,
i FJ = 2 # 2}

(Y,, is the analyticity domain of n-point conformal
blocks in chiral conformal field theory). The symmet-
ric group S, acts on Y;, by permutations of coordi-
nates. The factor space X,, =Y,,/S, is the configu-
ration space of n points (“identical particles”) in C".

Proposition 1 [1]. The braid group B, is iso-
morphic to the fundamental group m(X,,2z0) of
the configuration space (for, say, zo = (n,..., 1))
similarly, Py, ~ m1(Yn, 20).

Clearly, had we substituted the complex plane,
C ~ R?, by an s-dimensional space R® for s > 3, the
fundamental group 71 ((R*)®" \ Diag, z¢) would have
been trivial and no interesting relation with the braid
group could be expected. This simple topological fact
explains why the possibilities for generalized statistics
are richer in physics of low (one and two) dimensions.
One may wonder why it took more than half a century
after the appearance of Bose and Fermi statistics in
quantum mechanics before such a basic observation
found its way into the physics literature (first in the
work of Leinaas and Myrheim [12] in the framework
of quantum mechanics, later in [13] in the context
of local current algebras). Moreover, this pioneer
work did not attract much attention before it was
repeated by others (starting with [14]) when catch-
words like “anyons” were coined. For a discussion of
the ancestry of the anyon, see [15], where more early
references can be found.

o))" (3)

zp) € C" (4)
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A deeper understanding of particle statistics came
from the “algebraic” study of superselection sectors
in local quantum field theory (see [16, 17], where
earlier work of Doplicher, Haag, and Roberts is also
cited). We offer here an informal (physicist’s oriented)
formulation of the main result of this work.

The starting point of the algebraic (Haag—Kastler)
approach is the concept of an algebra A of local
observables. Ignoring technicalities, we shall think
of A as generated by conventional (Wightman) Bose
fields—such as the stress-energy tensor and con-
served U(1) currents (rather than of a net of C* alge-
bras corresponding to double cones and their causal
complements in Minkowski space). Committing an-
other sin against the purist algebraic view, we shall
identify from the outset A4 with its vacuum repre-
sentation in a Hilbert space H that carries a unitary
positive energy representation of the Poincaré group
with a unique translation-invariant vacuum state. It
is important that gauge-dependent charge carrying
(and/or multivalued) fields are excluded from A. They
reappear—as derived objects—in the role of inter-
twiners among inequivalent representations of A.

Superselection sectors are defined by irreducible
positive energy representations of A that can be ob-
tained from the vacuum sector by the action of local-
izable “charged fields”—i.e., of fields that commute at
spacelike separations with the observables (but need
not be local among themselves). Products of charged
fields acting on the vacuum give rise, typically, to
a finite sum of superselection sectors defining the
fusion rules of the theory. (To make this precise
one needs, in fact, more elaborate tools—such as
*-~endomorphisms of a completion of A that are local-
izable in spacelike cones; see [18] for an updated ex-
position and references; the shortcoming of a simple-
minded use of “charged fields” is the nonuniqueness
of their choice and, hence, of the multiplicities enter-
ing the above naive definition of fusion rules.) A fancy
way to express the fact that there is a well-defined
composition law for representations of A (analogous
to tensor product of group representations) is to say
thatsuperselection sectors give rise to a tensor cate-
gory. A memorable result of Doplicher and Roberts
[17] crowning two decades of imaginative work of
Haag’s school says that, for a local quantum theory
with no massless excitations in space—time dimen-
sions D > 4, this category is equivalent to the cate-
gory of irreducible representations (IR) of a compact
group G. In more down-to-earth terms, it means
that G’ acts—by automorphisms—on charged fields
as a gauge group of the first kind (recall that a gauge
group leaves invariant all observables, not only the
Hamiltonian). Superselection sectors are labeled by
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(equivalence classes of) IR p € G (borrowing the ter-
minology of representation theory of semisimple com-
pact Lie groups, we shall call the labels p weights).
The state space of the theory can thus be viewed as a
direct sum of tensor product spaces:

H=EPH,®F, dp):=dmF, <o, (5
peG

where F, are irreducible G modules. The statistics of
a sector p is characterized by a statistics parameter
Ap = £1/d(p). I G is Abelian (the common case
of commuting superselection sectors labeled by the
“spin parity” e?™», where s, is the spin, and by the
values of the electric, baryonic, and leptonic charge),
then d(p) =1 for all sectors and we are faced with
the familiar Bose—Fermi alternative. If G is non-
Abelian and d(p) = 2,3, ..., then the sector p and its
conjugate p (or, in physical language, the particles of
type p and their antiparticles p) obey parastatistics.
(Unfortunately, one has no such result for quantum
electrodynamics. It is, in fact, known that the electric
charge cannot be localized in a spacelike cone. Al-
though there is no indication that, say, electrons may
obey braid group statistics, presently we are unable to
rule it out.)

These results also extend to space—time dimen-
sion D = 3, provided the superselection charges can
be localized in finite regions. In more realistic (2 + 1)-
dimensional systems (like a “quantum Hall fluid” in
a strong magnetic field perpendicular to the plane of
the layer), charges can only be localized in infinite
spacelike cones and there is room for braid group
statistics. For D =2, braid group statistics may
appear even for (superselection) charges localized in
finite domains (see[18—20]). The notion of a statistics
parameter extends to this case, too, and is related to
the Jones index of inclusion of associated factors of
operator algebras [20]. It can be written as (see [18],
Definition 6.2)

1

)\p:we

727Ti9p17
9

dp)(= M7 >0, (6)

—im(sp+sp)

—2milp5
e PP — e R

where s, and sp are the (fractional) spins of the
conjugate sectors p and p. For d(p) =1, A, # £1,
we are dealing with a one-dimensional representation
of the braid group, corresponding to anyonic statis-
tics. For noninteger d(p), the “gauge symmetry”
of superselection sectors cannot be described by a
group. No fully conclusive attempts are made to
use instead weak quasi-quantum groups [21], weak
Hopf algebras (or quantum groupoids) [22, 23], or a
BRS approach with quantum group symmetry in an
extended state space [24, 25].
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To cite [18], “braid statistics in two-dimensional
systems is more than a theoretical curiosity.” In-
deed, anyons have made their way into the standard
interpretation of the fractional Hall effect. Non-
Abelian braid group statistics appears to be strongly
indicated for Hall plateaux at the second Landau
level with filling fractions v =24+ m/(m+2), m =
2,3,... (cf.[26, 27]).

3. THE KZ EQUATION

Let G be a compact Lie algebra, V' be a finite-
dimensional G module, and Cg, be the (polarized)
Casimir invariant acting nontrivially on the factors
a and b of the n-fold tensor product V®". For G =
su(N)and n = 3,

N
Z €ij @ €4 (7)

ij=1

_%Zeii(@Zejj ®1,
i=1 j=1

where e;; represent the Weyl generators of U(N) in V.

The KZ equation is a system of partial differential
equations which can be written compactly as

hav = N o, Loy (8)
Z,

1<a<b<n ab

Ci2 (=Cy1) =

Cab = Cba;

here, h is a (say, real) parameter, and ¥ = ¥(zy,...,
zp) is a (regular) map, ¥ : Y,, — V®" where Y, is C"
minus the diagonal [see (4)]. The system (8) has a
nice geometric interpretation: it defines a connection
V = d — T on the trivial bundle ¥;, x V®" where I is
the connection one-form

Zab = Za — 2, dZgp = dzg — dzy,

1 dzZap
= —ab
> Con (9)
a<b
Introducing the corresponding covariant derivative
d 1 C,
Vo= 3 (10)

B h A

we can interpret (8) by saying that W is covariantly
constant. This requires as a compatibility condition
the flatness of the KZ connection.

Proposition 2. The KZ connection V =d —T
has zero curvature:

VoV=TAT—-dl'=0 & [V,,Vy]=0. (1)
The proof (see, e.g.,[28]) uses

[Cap, Ceq] = 0 for different a, b, ¢, d, (12)

[Cabacac+0bc] =0 (13)

= [Cup + Clac, Cy) for different a, b, ¢,
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as well as the following Arnold’s lemma: let
d dzg —d
ttap = d(In z5) = =2 (z : Zb), (14)

Zab Za — %b

then
Ugh N Upe + Upe N Ueg + Ucag N Ugh = 0

fora # b # ¢ # a.

The flatness of the connection V is a necessary
and sufficient condition that the holonomy group P,
at a point p € Y,, (the transformation group in V'
obtained by parallel transport of vectors along closed
paths with beginning and end in p) gives rise to
a (monodromy) representation of the fundamental
group m1 (Yy, p).

The KZ equation appears in 2D CFT in the
context of the Wess—Zumino—Novikov—Witten
(WZNW) [29] model [30] and in a related study of
chiral current algebras [31]. The idea of the latter
approach is simple to summarize. A primary field ¢
of a conformal current algebra is covariant under two
infinite Lie algebras of infinitesimal transformations:
under local gauge transformations generated by the
currents J and under reparametrization generated by
the stress-energy tensor 7. On the other hand, T
is expressed quadratically in terms of J (by the so-
called Sugawara formula). The consistency between
the two covariances and this quadratic relation yields
the operator KZ equation:

hi—i =:p(2)tJ(2) :.

Here, Cyp = t, ® tp, the vector t spanning a basis
of the finite-dimensional representation of G such
that [Jo, ¢(2)] = ¢(2)t for Jg = ¢ J(2)dz/(2mi), and
the “height” h is an integer (h > N for G = su(NV)).
Using also the current-field Ward identity, we end up
with Eq. (8) for the “wave function”

U(p; 2155 20) = (Plep(21) © - © 9(20)[0), (17)

where p stands for the weight of the G module that
contains the bra (p|.

The notation of Eq. (17) is, in fact, ambiguous.
There are (for fixed n and p) several (linearly indepen-
dent) solutions of the KZ equation (called conformal
blocks). To distinguish among them, one introduces
the concept of a chiral vertex operator (CVO) [32]
(the counterpart of an intertwiner between different
superselection sectors in the algebraic approach to
local quantum field theory [17—19]). We shall use
instead a field ¢ belonging to the tensor product
V ®VofagandaU,(G) module, ¢ = (¢2); it arises
naturally in splitting the group valued field g in the
WZNW model into left and right movers, g5(z, %) =

A (2) (@~ 1)%(2) (see[33, 25] for an early and a recent
paper, the latter containing some 50 more references

(15)

(16)
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on the subject). By way of example, we consider the
case where G = su(N), n=3 and ¢ is an SU(N)
step operator (i.e., V.= C¥ carrying the defining
representation of su(N)). Then, if we take p to be the
highest weight of the IR associated with the Young
tableau A with respect to both su(N) and Uy (sin),
we can reduce (8) to a system of ordinary differential
equations for the invariant amplitude F'(n) defined by

-2 _N41
W (p; 21, 22,23) = 213" (n(1 —n))” 5+ F(n), (18)

293
n=;
213
we find (see Appendix A)
d Qg Qo
R ey =0,  (19)
L)
QIQZCIQ+N+1:P12+1’ (20)
N —2
Qo3 = N Ci2 — C13

(Pr2(x ®@y) =y ® x and F(n) is an invariant SU(N)
tensor, F(n) € Inv(V; @ V®3)). The subspace of
invariant tensors in V@ V&3 is two-dimensional.
We shall choose a basis 1o, 11 in Inv (Vs ® V%) such
that

QQgIO = O, Il = (P12 — 1)[0(:> 912[1 = O) (21)
Setting then

F(n)= A=)l +nf (), (22)
we reduce the KZ equation to a system that does not
depend on N:

0
h1 - n)% (- (23)
1
hn% — 2 n)f -

it implies a hypergeometric equation for each f*:

dzft 2 4
n(l—n)d—nQ—l— (1 + 0 — 7~ (3— E)n) (24)

dfé_ 1 3\ L B

4. DYNAMICAL R-MATRIX EXCHANGE
RELATIONS AMONG CVO

In order to derive the exchange properties of two
su(N) step operators, we shall consider the slightly
more general matrix element

\Ij(pﬂap/§ 21,22 23)
= ("|p(21) ® p(22) @ ¢y (23)[0)
= Dp”p/(zab)F(n)-

(25)
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Here, p’ and p” are the (shifted) weights of SU(N)
IR such that the dimension of the space Z,, =

v (V) @ V2 QVy) (3 F(n) is maximal,
dimIp//p/ = 2, and
A /! —A / —2A
Dp”p’(zab) = Zlg(p )—AP) (26)
"y _ / N2
XnA(p )2 A(p )_2Lh+22N]\;L (1 B 17)_]\1]\?;11,

In (26), p = p';; (=2) for p(z,), a=1,2 identified
with the CVO ¢;(z1) and ¢;(22), i < j, respectively
(for an explanation of the precise meaning of the
above notation see Appendix B). We proceed with a
summary of relevant results of [34].

The KZ equation for ¥ again reduces to the form
(19); only expression (20) and relation (A.9) for o3
assume a more general form:

29N AR —
ih (p)2

— C12 — Ci3, Q35 = pQas.
[We recover (20) and (A.9) for p’15 =2(=p), p'si 1=
1for 2 <4 < N —1, in which case A(p'), A(p”) =
Ag—see (A.2); another simple special case is N =
2, in which p’ = p”.] The relations (21) for the ba-

sis {Ip, I1 } of SU(N) invariants remain unchanged,
while the hypergeometric system (23) assumes the

form
af°
dn

A /
gy — )

(27)

=(h=2)f"+ (- Df",

fl ( —h 1 £0

Mgy = WM =T

A standard basis of (two) solutions is obtained by
singling out the possible analytic behavior of the
invariant amplitude F'(n) (22) for n — 0. This gives
the so-called s-channel basis corresponding, in
physical terms, to the operator product expansion
of ¢;(22)¢p (23)[0) (or of (0[¢y, (20)pi(21)—cl. Ap-
pendix A). In the case at hand, these two solutions,
so(n) and s1(n), are characterized by the property that

so(n) and 7™ s1(n) (29)

are (nonzero) analytic at n = 0 and s¢(0) = I. They
are expressed in terms of hypergeometric functions:

sdmzkb(ﬂ—mFO—%l Pl @)

p 1. p+l_ p
1waﬁf@ﬁk7”w@@v
1 1
s1(n)=Kin* ((1 n)F(l—E,H—;

h
1+ %;n)lo + %F(—l p—_1; %?77>Il>-

h(1 —n)— (28)
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We shall now compute the monodromy representa-
tion of the braid group generator B(By) correspond-
ing to the exchange of two “identical particles” 1 and
2. Note first that ¢ (25) is single-valued analytic in
the neighborhood of the real configuration of points
{z1 > 29 > 23 > —2z2}. We then choose any path in
the homotopy class of

1 .
1/5: 2172(t) = ad ;_ =2 52126717775’ (32)
Zg(t) = Z3, OStS 1,

which thus exchanges z; and z in a clockwise direc-
tion, and perform an analytic continuation of ¥ along
it, followed by a permutation of the SU () indices A;
and A,. This gives

219 — € T219, 213 < 213, (33)
1—77—>e_i7r—1_?7 (n—> l),
n n
_ N+l ptl
Dp”p’(zab) — q N n h Dp//p/(zab) (34)
for q% = 6711\’77;1,
1—
ﬂ—m%—“_;ﬂh+h% (35)

1
’I’]Il — ——Il.
n

Using known transformation properties (the “Kum-
mer identities”) for hypergeometric functions (or re-
deriving them from their integral representations—
see[35]), we end up with the braid relation

5 ¢ Bl ’
2 Dsi(m) 5 DsiymBY,  (36)
d
Bt ( ] be )
Kby Fv]
where
¢ - T(1+)r(})
[p] = —, by = - (37)
-1 I(1+ 2hrEH)
[p+1][p—1]) K
= bpb_p = , K= —
( P [p]? Ko
[t is remarkable that for a family of choices of the
normalization constant K = K (p), namely, for
P2 (-F)
= , 38
NEOR0) p(p) (38)

h
p(P)p(—p) = 1(= K(p)K(—p)),

(36) agrees with the (dynamical) R-matrix exchange

relations

~
A

of ()0 (21)= @i (1) (22)R(P)SE,  (39)

Vol.64 No. 12 2001



2064

linked in [25] with the properties of an intertwining
quantum matrix algebra generated by an N x N ma-
trix (a?,) with noncommuting entries and by N com-
muting unitary operators ¢? (], ¢” = 1), such
that

J_ 1
qP aJ —d qu"l'éi_ﬁ

(40)

R(p)araz = a1aaR,  ¢}(2) = ;' (2)al,.
Here, k= (R3'5?) and R(p) = (R(p)}\2
U,(sly) and the dynamical R matrices, respectively,

are the

multiplied by a permutation, R =RP, and we are
using Faddeev’s concise notation for tensor products.

R(p) obeys the Gervais—Neveu [36] “dynamical
Yang—Baxter equation” whose general solution sat-

isfying “the ice condition” (the condition that Ié(p)zjl
vanishes unless the unordered pairs (i, ;) and (k,)
coincide) was found by Isaev [37]. Its 2 x 2 block

( RG] RO ) "
R(p)}; R(p)};

indeed coincides with B for K given by (38).

The monodromy representations of the braid
group in the space of solutions of the KZ equa-
tion were first studied systematically in [32] The
Drinfeld—Kohno theorem [10, 11] (see also [28],
Chap. 19) says, essentially, that for generic ¢ this
monodromy representation is always given by (a
finite-dimensional representation of) Drinfeld’s uni-
versal R matrix. In the physically interesting case
where ¢ is an (even) root of unity (¢ = —1) the
situation is more complicated. A problem already
appears in Eq. (41): for p=~h, [h] =0 and the
right-hand side of (41) makes no sense. In fact, the
representation of the braid group is not unitarizable
for such values of p. The corresponding “unphysical”
solutions of the KZ equation cannot, on the other
hand, be thrown away by decree; otherwise, the chiral
field algebra will not be closed under multiplication.

[t turns out that a monodromy representation of
the braid group can, in fact, be defined on the en-
tire space of solutions of the KZ equation. It is, in
general, indecomposable. The above s-channel basis,
however, does not extend to p = h[as is manifested in
Eq. (30)].
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5. REGULAR BASIS OF SOLUTIONS
OF THE KZ EQUATION AND SCHWARZ
FINITE MONODROMY PROBLEM

[t follows from (39) and (40) that the chiral fields
(unlike the CVO @3»4) satisfy p-independent (and,
hence, nonsingular) exchange relations:

B (Yol ()= oA o) eB ()R, (42)
R=qv(ql - A), AN = g 0503 - 6367,
1, o>p,
S (43)
-1, o < p,
A=A 2l=q+a

The singularity in the conformal block (30) for
p = h is thus a consequence of the introduction of
CVO which pretend to diagonalize the (in general,
nondiagonalizable) monodromy matrix M defined
by ¢(z€?™) = oM. A regular basis of conformal
blocks is linked to a regular basis in U, (sl ) invariant
tensors (with respect to the indices o, 3,...). Such
a basis has been introduced for N =2 in [38] and
recently generalized to four-point blocks involving a
pair of Uq(slx) step operators [34]. Its counterpart in
the space of conformal blocks of the SU(N) WZNW
model was written down in[35](for N = 2)and in[34]
for arbitrary N. We shall display here a regular basis
of four-point conformal blocks f, only mentioning in
conclusion some properties of their quantum group
counterparts Z*.

Writing the Mébius invariant amplitude (22) in the
form

F(n) = Fo(n)I° + Fy(n)I",

Fx(n) = (L =) f\(m)1o +nfr(m1,
we define the regular basis by

5 (”—;1 3) i)

(44)

(45)

(46)
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U
~

1 p-1 P
><F<1 14 h,l {+ A ;1 €—|—h,77>

(B(p,v) =T ()'(v)/ (T'(p+v)). A direct compu-
tation using the integral representations for fﬁ(n)
yields the following form for the braid matrix B; ex-
changing the arguments 1 and 2 [the counterpart of B
(36) in the regular basis, B and Bj having the same
eigenvalues]|:

(47)

det(¢V By) = —1 = det(qV B),
tr(q¥ B1) = q — ¢ = tr(¢~ B).

By and B are thus related by a similarity transforma-
tion whenever both make sense:

B 1 0
Bi=SBS™, S=| . poy | (48)
—m PP

)
p(—p) p(—p)py

[p—
Similarly, the exchange matrix B (corresponding to

the braiding 5?3) is given by
- —q 0
By=Sq~ | 1 S (49)
0 ¢!

S
=4 P—2_gp _ ’
q 1iqpq qp 1

We observe that, unlike B, the matrices By and By
are defined for 0 < p < 2h. The singularity in S (48),
as well as the nonexistence of the s-channel basis for
p = h,isdue to the simple fact that the matrix By (49)
is nondiagonalizable in this case (while the s-channel
basis could be defined as “the basis in which By is
diagonal”). Note that forp =2 Bs becomes similar

to Bl,
—q 0
By =g~ ( ! ) = 01By01, (50)

I q
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o1 = 01 (fOl‘ p :2),
10

and B; and By generate a representation of the braid
group Bs with central element ¢3 = (B By)? = g 1.

Whenever the s-channel basis (30), (31), exists, it
is related to the regular basis (44 )—(46) by

Eo(mI° + Fi(nT" = s0(n)S° + s1(n)S*.  (51)

Here, Z° and S° are both proportional (and can be
chosen equal) to

(8% = 1% =)(p"al, ab, V')
for i < j then S' = <p”|azy1aiw p').

(52)

[If p' is the symmetric tensor representation—see
(A.14)—then we choose ¢ = 1, j = 2.] The invariant
tensor Z', on the other hand, is related to Z° by

Il — —IO A01 o2

1o, ...0109... Y (53)
where A is the quantum antisymmetrizer defined in
(43). The exchange relations (40) with the dynamical
R matrix (41) then allow us to relate S* with Z* and

conversely:

p(P)Sas = Tas + [p[‘i | fles:  (54)
Top = [p[;] 4 (p(#)Sas — Sas)

For p(=p';;) = h, 8" and S' are proportional, S =
p(h)SY, so that they do not form a basis; Z!, on the
other hand, is defined unambiguously by (53) and is
linearly independent of ZV.

The above regular basis also has a remarkable
number theoretic property: the matrix elements of

q% By (and of q% B5) belong to the cyclotomic field
Q(q) of polynomials in ¢ with rational coefficients for

q" = —1. This fact has been used in [39] to classify all
cases in which the monodromy representation of the
braid group Bs (B4, for N = 2)is a finite matrix group
or, equivalently, the cases in which the KZ equation
has an algebraic solution (a classical problem solved
for the hypergeometric equation by H.A. Schwarz in
the 1870s). The solution uses one of the oldest and
most beautiful concepts in group theory, the Galois
group, so it deserves to be summarized.

The space of Uy(sly) invariants admits a braid-
invariant Hermitian form (,). In the regular basis,
QM = (Z*,T") belong to the real subfield Q([2]) =
Q(g+ q) of Q(q). The special case of N = 2 is worked
out in Appendix C. In that case, the resulting Hermi-
tian form @ is positive semidefinite for ¢ = e*'% and
has a kernel of dimension 2p — h for 2p > h. For the
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case p = 2 of interest, this kernel is only nontrivial at
level 1, for h = 3, when it is one-dimensional.

We define a primitive root of the equation ¢" =
—1. Let Py(q) be an irreducible element of the ring
of polynomials with integer coefficients satisfying

Py(e*%) = 0. There is a unique such irreducible
polynomial with coefficient to the highest power of ¢
equal to 1. The Galois group Galy, for Py, the group
that permutes its roots, consists of all substitutions of
the form

Gal, = {¢ — ¢%, 0 < £ < 2h, (£,2h) =1} (55)
(in the last condition in the definition we use the fa-
miliar notation (¢, m) for the greatest common divisor
of £ and m).

A Hermitian form with entries in a cyclotomic
field Q(q) is called totally positive if all its Galois
transforms are positive. Our analysis is based on
the following theorem. The total positivity of a B,,-
invariant form @ is sufficient (and, if the invariant
form is unique, also necessary) for the monodromy
representation of B, in ¢-Inv(V®")/KerQ to be a
finite matrix group. For N =2 and h > 3, we find
[39] that the total positivity of @ is equivalent to
the total positivity of the quantum dimension [3] =
(@® -3 /(q—q) = ¢* +1+ g encountered in the
tensor product expansion of the tensor square of the
two-dimensional representation: [2]? = 1+ [3]. This
amounts to finding the values of A > 4 such that

1 + cos 277% >0 for (4,2h)=1. (56)

The only solutions are h = 4,6, 10. If we add to these
the case h = 3 in which the commutator subgroup of
By is trivial (BoB1By By =1= B1ByB;{'B; ' =
... ), we see that the four cases of “finite monodromy”
correspond to the four integral quadratic algebras of
dimension h — 2 =1,2,4, 8.
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APPENDIX A

Reduction of the KZ Equation for SU(N) Step
Operators to an N -Independent System
of Hypergeometric Equations

The “wave function” ¥(p; 21, 22, 23) can be viewed
as a zp — oo limit of a M6bius and SU (N )-invariant
four-point function

’U)(Z()7 214 %2, 23)

(A.1)
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= (0[¢"(20) @ p(21) ® p(22) © p(23)]0),
¢(0)|0) ~H.
The step operator ¢ and the field ¢ have su(N)
weights Ay and Ay + A (A, j=1,...,N — 1, being
the fundamental su(NN) weights). Their conformal

dimensions are
N2 -1

1
A=AA) = %02(1\1) = AN (A.2)
1
A¢ = A(Al + Ag) = %CQ(Al + Ag)
3
= _~ (N?2_

where Cy(A) stands for the eigenvalue of the second-
order Casimir invariant (normalized in such a way
that for the adjoint representation Ca2(A; + An—1) =
2N). Mébius (i.e., SL(2)) invariance implies that we
can write w in the form
w(zo; 21, 22, 23) = DN (2ap) F'(0),
_ 201223

(A.3)

202213
The prefactor Dy is a product of powers of the co-
ordinate differences z,;, determined from infinitesimal
Mobius invariance,

y 0
<Z0(Z08—zo + (v +1)Ay)

3
+ ch" (ZCE;Z

c=1

(A4)

+ (V + 1)A)>DN(Zab) = 0,

v=0,%1,

up to powers of  and (1 — n) which are fixed by re-
quiring that there exist a solution F'(n) of the resulting
ordinary differential equation that takes finite nonzero
values forbothn =0andn =1

N-—2
2N+4

Py 2Nh
Dy (zap) = <7z3]\1’i5zm> (A.5)
03

1

(N—4)(N+1) _ AT
X (1—m) 2Nm _ (3133(77(1 — 7)) N 1) s
N24N-3 N41 | _N2-1 N4—4 '
21 Nh ZQéVh 202 (201203)

Comparing the last expression with (18), we find the
relation

\IIP(Z17Z27Z3) (A6>

. 2A
= lim {z," “w(z0; 21, 22, 23)}
Z0—00

1
2 2 A\ VR
= (Z(]]\; 1(201203)N 4) e ’w(Zo; 215,22, ZS)'

Applying to the four-point function w (A.3) the co-
variant derivative AV; (10),

0 C
thzh——Fﬂ————,
0z1 Z01 Z12 213

(A7)
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and using the SU(N) invariance condition
(Co1 + Ci2 + Ci3 + Ca(A1))
x w(zo; 21, 22, 23) = 0,

(A.8)

we end up with (19) for Qg given by (20). The oper-
ators Q15 and 93 have an algebraic characterization
of Temperley—Lieb type {see[34], Eq. (2.14)}:
Q12023012 = 9,
Q230120023 = Qoz, 02, = 2Qp.

In particular, each Qg has eigenvalues 0 and 2. If we
regard ¢* as a mixed tensor of 2N — 3 indices, ¢* =
{(¢*)BrBn-1C1-On-21 " then the SU(N) invariant
tensors Iy and I7 of Eq. (21) can be presented in the

B ...B —_ A C ...C —_ A A
l — (E 1 N 1E 1 N—-2A42 3) ,

I = (P12 — 1)y,

where € is the totally antisymmetric Levi-Civita ten-
sor and P9 permutes the indices A; and As. In this
basis, the operators 15 and 3 have the following
matrix realization:

21 00
Qg = ;o Qo3 = , (A.11)
00 12

i.e., ngfo = 2]0 + Il, 92311 = Io + 2[1, etc. Re-
markably, the relations (A.9)and (A.11), are indepen-
dent of N. Inserting (22) into (19) and using (A.11),
we thus end up with the N-independent system (23)
of a hypergeometric type.

(A.9)

(A.10)

APPENDIX B

Shifted SU(N) Weights and CVO: Symmetric
Tensor Representations

[fA= Zf\gl Ail\i, N\i € Z 4, is an su(IN) highest
weight (\; being the number of columns of height i in
the associated Young tableau), then the correspond-
ing shifted weight is written in terms of barycentric
coordinates p = (p1, ..., pn) as follows:

N-1
p=A+p= Z piit1is  pij = pi —pj, (A.12)
i=1

N
piti=XA+1, > pi=0
i=1

(p= Zfi‘ll A; is the half sum of the positive roots).
The conformal dimension of a su(N) primary field of
weight p is expressed in terms of the second-order
Casimir operator Ca(p) :

2hA(p)=Ca(p) = % > (w50

i<j

—i)%)  (A.13)
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Ly N -1
N £=<"Y 12

1<)
The CVO goj(:gof(z)) is related to the U, (sln) co-
variant field o (= @2 (2)) by (40).

In the example of a symmetric tensor representa-
tion p’ and its counterpart p” defined by the require-
ment dim Z,y,» = 2, we have

Pio=p, Pup=1 2<i<N-1, (Al4)
Oolpl) = o - D+ N ),
Plio=p 1l =2, (A.15)
plupi=1, 3<i<N-1,
Co(p") = (p+1)N2+(p_2]z[N_ b+l

The dimensions of these representations are ex-
pressed in terms of binomial coefficients:

d(p') = (p }]i; 2>,

d(p") =p(p+N N 1)

p+1
In computing the prefactor (26), one needs
A(p") —A(p') - 24
(N=2)(N+p) N?-1
B Nh - Nh
_(p-2(V-2)-3
Nh ’
Ap")-AP) p  N?-2
2 ~2h 2Nh
N+p—1
~ Nh

(A.16)

(A.17)

(A.18)

APPENDIX C
Basis of Uy(sly) Invariants in V®*
forV = C2; Braid-Invariant Hermitian Form

The basic Uy(sly) invariant in V&Y for V = C¥
is the g-deformed Levi-Civita tensor

N 1
oo =D (=) \ T (A9

N ... 1

where £ is the length of the permutation ,
al ... an

i.e., the minimal number of transpositions of neigh-
boring indices; in particular, for N = 2,

(goqaz) = ( 0 1 ) s (AQO)
i 0

N

[
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=

ie, & = (.7%, E12 = —q7=.

The regular basis of U,(sly) invariants in V&4 =
(CH®4 s

(A.21)

0 _
A ]z goqazgagam

1
7 ajasazay — ga1a45a2a3-

Their inner products are given by traces,

(IA;IIL): Z I>\011012013014IH0¢10¢20130147 (A-QQ)

aq...04

(T =2, A =0,1, (I° 1" = —[2].

To verify braid invariance, note that
BT = 2T+ q2T", B T =—g>1', (A.23)

PN

10.
1.
12.

13.

14.
15.
16.

(B3, B, )1")
= 202" — (¢ +q)[2] = [2]* = (T°,1°), etc.
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Abstract—A new nonstandard deformation of all types of classical Lie algebras is constructed by means
of twisting based on a six-dimensional subalgebra. This is an extension of extended twists introduced
by Kulish ef al. It is also shown that the new nonstandard so(3,2) has a close connection with the
symmetry of a discrete analog of the Klein—Gordon equation in (1 + 2) spacetime. © 2001 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

[t is known that there exist two types of Hopf
algebras: quasitriangular and triangular [1]. The
g-deformed algebras by Drinfeld and Jimbo belong
to the first type. The algebras of second type are
called Jordanian quantum algebras or nonstandard
quantum algebras (NQA). The typical example of this
type is a deformation of si(2) introduced by Ohn [2].
In general, triangular quantum algebras are obtained
from Lie algebras by twisting [3].

In this article, we discuss a new nonstandard de-
formation of all types of classical Lie algebras based
on a six-dimensional subalgebra. The obtained de-
formation can be regarded as an extension of the one
by Kulish et al. [4]. As an application, it is shown
that a certain discrete analog of the Klein—Gordon
(KG) equation defined on a uniform lattice has a close
connection with deformed so(3,2). A part of these
results were already presented at another conference
[5]. Very recently, Kulish and Lyakhovsky derived the
same deformation independently [6].

Their result is more general than the one presented
here, since they use an eight-dimensional subalgebra
and our six-dimensional one is regarded as a special
case of it. In this article, however, more explicit exam-
ples are constructed and physical bases are used for
s0(3,2). The discussion on the discrete KG equation
in Section 4 is a new result.

The advantages of NQA are (i) their irreducible
representations are known because NQA has unde-
formed commutation relations, and (ii) an explicit
form of universal R matrix is obtained. Combining

*This article was submitted by the author in English.

YOn leave of absence from Department of Applied Mathemat-
ics, Osaka Women’s University, Sakai, Osaka, Japan.

“e-mail; ptaizawa@pt.tu-clausthal.de

(i) and (ii), we obtain matrix representations of the
universal R matrix; this gives us further advantages:
(iii) dual quantum groups are easily obtained, (iv)
covariant differential calculus are easily obtained, and
SO on.

Note that there exist some inequivalent possibili-
ties of twisting for a given Lie algebra. Recalling that
NQA have some physical applications and quantum
groups are a convenient tool to describe noncommu-
tative spacetime, one can say that it is important to
investigate possible twisting for Lie algebras.

In the next section, a brief survey of the recent
development of twisting is given. We shall show
new NQA in Section 3. In Section 4, symmetries
of a discrete analog of the KG equation in (1 + 2)
Minkowskian spacetime is analyzed. Section 5 is de-
voted to concluding remarks. Throughout this article,
we follow the notation and conventions used in [5].

2. BRIEF SURVEY OF TWISTING

Let g be a Lie algebra. We look for an invertible
element F € U(g) ® U(g), called twistor, satisfying

Fi2(Ag ®@1id)(F) = Faz(id @ Ao)(F), (1)
(e0 ®id)(F) = (id ® €)(F) = 1. (2)

[t is obvious that a twistor defined on a subalgebra
A C g can be regarded as a twistor for whole g. In
the study of twisting, possible subalgebras for a given
g are investigated.

Probably, the most well-known twistors are the
so-called Reshetikhin twist, [7] and Jordanian twist
[8, 9]. The Cartan subalgebra is chosen as A in
the Reshetikhin twist, so that any Lie algebras of
rank > 2 are twisted. On the other hand, the sub-
algebra for Jordanian twist is the Borel subalgebra:

1063-7788/01/6412-2069$21.00 © 2001 MAIK “Nauka/Interperiodica”
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{H,E | [H,E] = 2E}. The explicit form of twistor is
given by

fj—@Xp(—%H@O’), o=—In(l—-2z2E), (3)

where z is a deformation parameter. We denote a de-
formation parameter by z throughout this article, and
z = 0 corresponds to the undeformed limit. Recently,
nontrivial extensions of Jordanian twist have been
extensively studied. In[4], the Borel subalgebra is ex-
tended to a four-dimensional one that is a semidirect
sum of Borel subalgebra and two additional elements
Aand B. Let Ap = {H, E, A, B} be the subalgebra
subject to the relations

[H,E|=0E, [H,Al=«aA, [H,B]=pB, (4)
[A,B] =~E, [E,A]=[E,B]=0, a+p=0.
Then, one can check that
Fi = exp(A ® Be 7/ F; (5)

is a twistor. This twisting is called extended Jorda-
nian twist (ET). It is verified that all types of classical
Lie algebra have the subalgebra Ag. The extension
considered in [10] is certain limits of ET and called
peripheric extended twists. The ET have nontrivial
limits for &« — 0 or B — 0. One can verify that the
peripheric extended twists are applicable to inho-
mogeneous Lie algebras such as isu(n) and iso(n)
[11]. The subalgebra Ag is enlarged to an eight-
dimensional one in [6].

It is shown in [12] that regular injections A, C
Ap—1 C...C A1 C Ap of Lie algebras sl(n) and
so(n) can provide a carrier space of twisting; that is, a
product of ET twistors corresponding to each subset
Ay, produces a new twistor. The case of sp(n) is also
considered in[12], and further analysis is given in[13].
This construction of “chain” of twisting is developed
further in the case of so(n) [14, 15]. Furthermore,
the twisting based on quantum Borel subalgebra is
also considered and applied to hybrid (standard—
nonstandard) quantization for Lie and Kac—Moody
algebras [16].

3. NEW TWISTING
FOR CLASSICAL LIE ALGEBRAS

Let us consider an algebra A of six elements
H;,E;, A, B (i = 1,2) satisfying

[H;, E;] = 2E;, [H1,Hs| = [E1, E9]
= [H1,E9) = [Ho, E1] =0, [H1, Al =—A,
[H1,B] =B, [Hy,A]=A, [Hy,B]=B, (6)
[A, Eq] = 2B, [A, E»] =0,
[E;,B] =0, [A,B]=Es.
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The four elements {Hs, Eo, A, B} form the subal-
gebra Ag of ET (= =~ =1). The additional
elements Hy, Fy form a Borel subalgebra; thus, the
algebra A is a semidirect sum of Ag and an extra
Borel subalgebra. The following invertible element F
satisfies the definition of twistor

1
F =exp <—§H1®01) (7)

1
x exp(—zA @ Be®?/?) exp <—§H2 ® 02).

Here,

o1 = —In(1 — 2(E; + 2B%2)), (8)

o9 = —In(1 — zE»).
The two factors from the right are an ET, and the
leftmost factor does not commute with the remaining
part of F. Therefore, this is a nontrivial extension
of ET. The twistor (7) has similar properties as ET.
Namely, the twisted coproducts for o; are primitive:
Alo;)) =0, ®1+1®0; (i =1,2), and the F is fac-
torizable:
(Ao &® Zd) (f) = Fi3Fo3, (Zd ® A)(f) = flgfl;zg

These relations guarantee that the twistor (7) satisfies
the condition (1).

To prove the above statements, we first calculate
the twisted coproducts of the elements of A by the
twistor (7). They are given by

A(Hl) =H ®e'+1® Hy,
A(El) =k ® e +1® E;
—22B®@pe”C1192)/2 L 2F) @ pPeo2,
A(HQ) = HQ ®e’? +1® H2

+ 224 @ pel?1T92)/2 4 2H) @ pet,
A(Ey) = By ®e %2 +1® Es,
A(Ad)=A@et)/2 L1g A
+ 2H, ® (B + zE3p)e’t,

A(B) = Be (1192)/2 4 o=02 ¢ B,
where p = Be?2. With these coproducts, we can
verify that the o;’s are primitive. It follows that
the twistor (7) satisfies the factorizable relations (9).
Thus, we have proved that the F satisfies the condi-
tion (1). The condition (2)is easily verified by noticing
that €p(X) = 0 for all elements of any Lie algebras.

We next show that all types of classical Lie alge-
bras have the six-dimensional subalgebra .4; namely,
we obtain new NQA. For si(n), it is convenient to
work with the canonical basis

[Eabu E. ] = Eaddbc - Ecbdada

a,b,e,d=1,...,n.

(10)

(11)
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In this case, the six-dimensional subalgebra A is
found forn > 4

Hy = E (Bt — En—ks1,n—k+1),
n/2>k>2
Ei= > Brpkr1,
n/2>k>2

Hy = F — By, Bz = Eqp,
n/2>k>2

n—1>A>n/2

B= Y "By, +
n/2>k>2

(12)

—9 bn—>\+1,nE)\n’

D

n—1>A>n/2

V'AE,,

where the complex coefficients b%* have to satisfy
4 Z bl,n—k-l—lbk,n - 1. (13)
n/2>k>2

This condition on the coefficients stems from the
commutation relation [A, B] = E,. Other commuta-

tion relations hold for any values of b*?.
We also use the canonical basis for so(n)
[Yap, Yed]
= 1(Yaa0be + YoeOad — YacObd — YodOac),

where a,b,c,d =1,...,n and Yy, = —Y},. In this

case, the subalgebra A is found for n > 5:
Hy =Y, +Yin-1,

Ey=Yip-1— Yo, + Y12 + Y14,

Hy =Y, — Yin-1,

(14)

1 . .
E2 — 5(}/'17171 —+ }/271 — ’LYlQ + /LYnfln)a (15)

A= Z aF(Yo_15 — iYor),

The commutation relation [A, B] = F5 imposes a
condition on the coefficients a¥,

n—2
23 (a")? =1, decC (16)
k=3

For sp(2n), the subalgebra A is found for n > 2.
In terms of the canonical basis

[Zaba ch] = Sgn(bc)(zad(sbc + Zfbfc(sad
+ Za—céfbd + Zfbdéc—a)a

(17)
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wherea,b = =+1,...,+nand Z,, = —sgn(ab)Z_p _q,
the subalgebra A is given by

n n
Hy =Y Zw, Br=)Y Zp
k=2 k=2

Hy = Zq1,

n n
A=>"d"Zy, B=) d"Z._.
k=2 k=2

A condition on the coefficients a¥ is obtained in the
same way as sl(n) and so(n),

> (@) =1,

k=2

Ey =77 4, (18)

a* e C. (19)

We have seen that all types of classical Lie alge-
bras can be twisted by the six-dimensional subalge-
bra A. Other combinations of elements of Lie alge-
bras could realize the subalgebra A. An appropriate
choice could be found when physical applications of
twisted algebras are considered.

4. SYMMETRY OF KLEIN-GORDON
EQUATION ON LATTICE

In this section, we consider a discrete analog of the
KG equation in (1 + 2)-dimensional Minkowskian
spacetime. For the massless KG equation

(0 —0F —03)9 =0, (20)

it is known that its symmetry is given by so(3,2) [17].

By symmetry, we mean a set of transformations of

solutions back into other solutions; namely, if ¢ is a

solution of (20) and X generates a symmetry, then
X ¢ is also a solution of (20).

Let us consider the following discrete version

of (20):
_ o—2(00—01)
wef()

—2z(00+0
o (1—6 (Go+ 1)) _ez(aoaﬂa%}gﬁ:().
z

Note that e*#% is a shift operator: eizaogb(:co,:cl,
T9) = ¢(xo + 2,21, 22), ete. Thus, (1 — eF*%)/z is
a difference operator and Eq. (21) is a difference-
differential equation defined on a uniform lattice. The
constant zis a lattice spacing, and Eq. (21) is reduced
to (20) in the limit of 2 — 0. We now consider the
difference-differential operators

(21)

J=X1Py — AP, P,=7P,
K = XPo — XoPi;, D =—X'P,—1/2, (22)
1 1
O, =—-X,X"P, + 52(27@ = 5%
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where p,v =0,1,2, i = 1,2, and

1— 6*2(30+31)

Po+P1 = E - Ze—z(@g—&)@%’

1 o—#(00—)
Po-Pr=—,

z
Xo + X1 = (w0 + 31)e” P~ (23)
+ 22(3:0 — xl)eZ(aoJr@l)a% _ 223?262(80761)82’

Xo — Xy = (w9 — @)@,
2(80—81) Z(80+81)82.

Py = 2= 0)g,,

Xy = o€ — z(xg —x1)e

[t is straightforward to verify the commutation rela-
tions

[X,£] =0, forX e{P,,J K},
[D,L]=2L,  [Ch L] =2X,L.

[t follows that the operators (22) generate the sym-
metry of (21). It is also straightforward to verify the
relation

[Puapu] = [X/m XV] = 07 ['Pl“ Xu] = Guv, (25)

where g = diag(1, —1,—1) is the metric. It follows
that the operators (22) give a difference-differential
realization of so(3,2). Therefore, the Lie algebra
s0(3,2) is a symmetry algebra of the difference-
differential Eq. (21). Note that the operators (22) are
reduced to the realization of so(3,2) given in [17] in
the limit of z — 0. In this limit, each operator has the
following physical meaning: P, spacetime transla-
tions, J rotation, K Lorentz boosts, D dilatation, C,,
conformal transformations.

On the other hand, so(3,2) has a nonstandard
deformation discussed in Section 3. This deforma-
tion corresponds to the one in [18] (see [5, 6]). The
subalgebra A is given by

H =D+ Ky, Ei1=F+ 1,
Hy=D—- K, Ey=PFP-P,
A=Ky +J, B=DP.

Since the deformation is independent of realizations
and deformed so(3,2) has the same commutation
relations as the undeformed one, we can say that
the nonstandard deformation of so(3,2) is also a
symmetry algebra of Eq. (21). Other nonstandard
deformations of so(3,2) could also give symmetries
of Eq. (21). In this sense, the symmetries of the
equation are “degenerate.” However, one can find
a close relation between Eq. (21) and the particular
nonstandard so(3,2) given by (26). The primitive
elements of the deformed so(3,2) are given by

o1 =—In(1 —2(Py + P + zP2p)),
o9 = —1In(l — 2(Py — P1)),

(24)

(26)

(27)
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and letting p = P»e?2. In the undeformed limit, they
are reduced to

2_>P0_|_P1’ @—>P0—P1, p— Py, (28)
z z

These elements may be realized by
%ZaoJral, %230—31, p=20a, (29)

and by solving (29) with respect to P,, we obtain
the realization of P, given in (23). It is clear that
the deformation parameter is identified with the lattice
spacing. It follows that our deformation parameter
has a dimension of length. Such deformation of
Lie algebras with dimensional deformation param-
eters has been considered before, for instance, k-
deformation of Poincaré algebra [19] and D = 3,4
conformal algebras [20].

Before closing this section, we should men-
tion previous works. Relations between discrete
Schrodinger equations and NQA are discussed in[21]
(see also the references therein) from the viewpoint of
deformation map. Similar considerations for other
wave equations in (1 + 1) spacetime are made in [22].
Realizations of undeformed Lie algebras as symme-
tries of various difference equations are considered in
[23—26].

5. CONCLUDING REMARKS

In this article, we have shown a new twistor that is
an extension of ET applicable to all types of classical
Lie algebras. Consequently, new nonstandard defor-
mations of sl(n),so(n), and sp(2n) were obtained.
[t is natural to ask whether the peripheric extended
twists have a similar extension. Since the twists
discussed in Section 3 do not contain free parameters
(o, B8, and v of the extended twists), we cannot repeat
the same discussion as [10]. However, it turns out
that the peripheric extended twists have an extension
[11] where a five-dimensional subalgebra is used in-
stead of the six-dimensional one. This extension of
peripheric extended twists is appropriate to deform
inhomogeneous Lie algebras.

Symmetries of a discrete analog of the KG equa-
tion on a uniform lattice were also investigated.
We saw that the undeformed so(3,2) realized by
difference-differential operators were a symmetry
algebra and those operators had a close connection
with the twisting presented in Section 3. A system-
atic study of symmetries of difference equations is
possible, and it turns out that difference equations,
in many cases, have the same symmetry algebras
as their continuum limit [27]. This will be published
elsewhere.
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Abstract—Triple-sum formulas for 95 coefficients and multiple-sum expressions [with five or four separate
sums of the ,11F,(1) or ,+1¢, type, p = 2,3, 4] for the 125 coefficients of both kinds (with or without
braiding) of the SU(2) group and the quantum algebra u4(2) are derived, eliminating sums over the j type
parameters [¢ generalizations of the very well poised (Dougall’s type) hypergeometric 4 F5(—1), 5F4(1),
and ¢ F5(—1) series] from their expansions in terms of ¢-6;5 coefficients. The rearrangements of the derived
formulas for generic and stretched ¢-95 coefficients (related to the g versions of some Kampé de Fériet
series) are discussed, as well as the different versions of stretched and doubly stretched ¢-12j coefficients.

© 2001 MAIK “Nauka/Interperiodica” .

1. INTRODUCTION

The 3nj coefficients arise as the recoupling coef-
ficients of the several irreducible representations (ir-
reps) of the SU(2) group in the angular momentum
theory [1, 2]. Although many expressions for 9j
coefficients as multiple series exist, the most com-
pact triple-sum formula was derived originally by
Alisauskas and Jucys [3], in context of the coupling
problem [3] of the Sp(4) [SO(5)] group irreps (see
also [2]). Recently, Rosengren [4] proposed two new
proofs of related formula for 9; coefficients of SU(1,1),
in the second case rearranging the usual expansion
of 95 coefficients in terms of 65 coefficients, after
the appropriate expressions for the Racah coefficients
of SU(1,1) in terms of the balanced hypergeometric
4F3(1) series and Dougall’s summation formula [5] of
the very well poised 4 F3(—1) series were used.

For the quantum algebra u,(2), the expansion
of the 95 coefficients in terms of 65 coefficients was
generalized by Nomura [6, 7] and Smirnov ef al.
[8] and extended to g-3nj coefficients (including the
q-12j coefficients of the first and second kind [7]).
The corresponding summation formula of the twisted
g-factorial series (generalizing Dougall’s summation
formula for g-factorial sums of the very well poised
type, depending on three parameters) needed for our
purpose was proposed in [9] as a special case of the
twisted very well poised g-factorial series, resembling
7¢¢ series (depending on five parameters), which
also appear in a new approach [10] to the Clebsch—
Gordan (CG) coefficients of u4(2). The summation

*This article was submitted by the author in English.
“e-mail: sigal@itpa.lt

formula of the g-factorial series depending on four pa-
rameters, which correspond to Dougall’s summation
formula of 5 F4(1) or g¢5 series [11], was also used in
the u,(3) context [9].

In this paper, the derived new expressions with
the triple sums for the ¢-9j5 (and usual 9j5) coeffi-
cients are discussed, as well as the expressions for
the ¢-125 (and 12j) coefficients of both kinds, with
eliminated cumbersome factorial sums weighted with
factors [2j 4+ 1] or (2j + 1). We begin from an ex-
pression with five sums for 125 and ¢-12j coefficients
of the first kind (with braiding [7]) in terms of 6j
coefficients, whose specifications correspond to the
stretched and doubly stretched ¢-12j coefficients of
the first kind, and, particularly, turn to the known
expression [3] for 95 coefficients of SU(2). Some from
six new triple sum formulas for ¢-95 coefficients and
their mutual rearrangement possibilities by means of
the Chu—Vandermonde summation formulas are also
considered, as well as some double sum formulas for
the stretched 95 coefficients, enabling us to get new
relations and summation formulas for special Kampé
de Fériet functions [12] and their ¢ generalizations
(cf. [13]). The g-12j coefficients of the second kind
[1, 2] (i.e., without braiding [7]) are rearranged into
the fourfold (balanced) series, with specific stretched
and doubly stretched ¢-12j coefficients (for exhaus-
tive investigation see [14]).

Appropriate for our purpose, two expressions for
the 65 (Racah) coefficients of SU(2) were derived
originally by Bandzaitis ef al. [2], when Smirnov
et al. [15, 16] rederived them for the Racah coef-
ficients of uy(2). One of them (cf. (29.1b) of [2]) is

1063-7788/01/6412-2074$21.00 © 2001 MAIK “Nauka/Interperiodica”
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written as follows:

{a b e} B
dc f .
Z (—1)erbterdtz[ec 4 f g 4 2l
NNa+c—f—2b+d—f—z]
X[b+f—d+z]![a+d+6—f—z]!

e+ f—a—d+z]12f +z+1)! ’
where only asymmetric triangle coefficients

Viacf]V[dbf]

V[abe]V[dce] (1)

— e — ! 10 /2
Vlab] = l[a+b—c]lla—b+c]lla+b+c+1]
b+ c—a
appear. Here and in what follows, [z] = (¢* —

) /(q—q ") and [2]! = [z][x — 1]...[2][1] are, re-
spectively, the ¢ numbers and ¢ factorials ([1]! =
[0]! = 1), which are invariant under the substitution
q — ¢~ " and turn into usual integers z and factorials
x!forqg=1.

Each parameter b, ¢, or e appears only twice in the
factorial arguments under the summation sign in (1),

2075

as well as parameter f, after some change of summa-
tion parameters. Otherwise, in the most symmetric
(Racah) and other expressions for ¢-65 coefficients
[2, 15, 16] (including only symmetric triangle coeffi-
cients Alabc]), all the parameters [and a or d in (1)]
appear four times. Note, that only expressions of the
type (1) are correlated with the Racah polynomials
as introduced by Askey and Wilson (see [11]), which
may appear only after some Whipple (Bailey) or Sears
transform [11] of the balanced 4F5(1) or 4¢3 series is
used.

2. EXPRESSIONS FOR ¢-125 COEFFICIENTS
OF THE FIRST KIND

We begin the rearrangement of expressions for the
q-12j coefficients of the first kind [1, 2] (whose graph
is not planar), expanded [7] in terms of the factorized
four differently transposed ¢-67 coefficients,

-+
Ji J2 J3 Ja
l1 Iy l3 s = (23)
ki ko ks kg .
-+
= Z(2$ + 1)(—1)R4_$qx(x+1)+zjlj2f3f4+Z’f1k2k3k4
S i ) ok i )
Ji1 J2 4 2 T J2 J3 R3 T 1T J1 (2b)
ky k1 x Jz la ks ki ja I3 ky ly ja

_ (< 1)tttk ks kit ~lsta V17374l3)V [kaksl3]V [kaksla] V [k1 jals]
V0j132l1]V [kok111]V [j32l2] V [k4j114]
Xq(j1+k27l1+1)(12+k2*13+k4+1)*(l2+k2*j3+1)(j3+k4*l3+1)+zj1j2j3j4+Zk1k2k3k4

<D

21,%2,%23,24,U

(—1)Prestaatuly 4 gy — 1 + 21]!20 — 21!
[2’1]![22]![23]![16‘1 —ko+ 11 — 21]![l1 — 71+ J2 — Zl]!

q—22(j1—j3+k2—k4—l1+l3+23)[j2 + jg — Iy + 22]][2l2 _ 22]!
lo+ ko — k3 — 20|![jo — J3 + 1o — 22|![lo + ko + k3 — 20 + 1]!

X
[
RO R o — iy + s + 231 (s — s + 1 + 23]

[kg + :IC4 - l3 — Zg]![jg —|-j4 - l3 - 23]![2l3 + 23 + 1]'

[2l4 — Z4]![j1 +ka— 14+ Z4]![k‘2 + kg +1lo— 13— 29 — 2’3]!
[za)![Fy + 1y — ja — za]'J1 — k1 + ko + kg — 11 — Iy + 21 + 24]!
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q u(kotkatlo—l3—z2— Z3+1)[2j1—k1+k2—l1—u]!
[k:1+l4+j4—24+1] [u+ 21)'j1 — ka + 1y — 21 — 24 — u]!
o Uitk +hke—ks =1+ 1y — 24 — !
Ur+ds—l —lo+zo—ulllji —js+ ko —ka — i + I3 + 23 — u]!’
where

Ry =) (ji+ki+1;) and
i=1
Zdeh = —d(d + 1) - 6(6 + 1) - h(h + 1).
Inserting (1) with shifted or inverted summation pa-
rameters for g-6;5 coefficients with the parameter z in

and straightforwardly (1) in the remaining cases,
the z-depending asymmetric triangle coefficients
in expansion (2b) cancel, but with exception of
the factors V[j1ki1x]/Vkijiz] = [j1 — k1 + ]! /[k1 —
j1 + ]! Then, the sum over = may be rearranged into
the 3¢9 or 3Fy[q, x] type series using the following

the right lower or middle upper position, respectively, formula:
3 FUVR25 +1][j — p1 — 1J![j —p2 — 1![j —ps — 1]![j — ps — 1! 3)
1+ 7+ 1 p2+ 7+ 1ps +j + 1 psa — j)![psa + j + 1]![ps + 5 + 1]!

=4q

2

C(pat 1) (ps+1)—pa(patps+1) [ TPL

p3 — 2|![—p2 — p5 — 2]!
[p1 + pa + 1)![ps + ps + 1]!

YuquPtrst ) [y — pa — 1 —u)llpy — py — 1 — !

with parameters
pr=ki—j1i—1 pa=js—ks—22—-1,
ps=n—ki—2—-1, pi=j+k—l+z,
ps =13 —Jjs — ks + 23 — 1.

Equation (3) is derived as an analytical continuation
from (5.5) of [9], with the r.h.s. replaced using ex-
pression [2, 17] with minimal symmetry for the CG
coefficients of SU(2) and u,(2). Particularly, for p3 =
—p1 — 2, Eq.(3)turns into the ¢ version of Dougall’s
summation formula, with the r.h.s. including a single
term. Note, that formal summation limits of (3)
may exceed the interval determined by the triangular
conditions in (2b). Although separate ¢-65 coeffi-
cients with spoiled triangular conditions vanish, but
for the corresponding pure g-factorial sums of the
type (1), only Karlsson’s summation formula [11] is
helpful. Hence, after applying (3) to (2b), with change
u — u + z1, we obtained expression (2c), including
five sums, with four separate sums related to the finite
generic or balanced basic hypergeometric series 4¢3
and the fifth sum (over u 4 21 ) of the 3¢9 type.

When the location of the summarized angular mo-
mentum in a stretched triangle of the g-125 coefficient
of the first kind is along the Hamilton line of the
Mobius strip (2a) (e.g., for k4 = l4 + j1), we obtain
from (2c) a triple sum (with fixed z4 = u 4+ 2, = 0),
which does not simplify further for two couples of

PHYSICS OF ATOMIC NUCLEI

p4+p5+1—u] [p2 +pa+1—ull[—p1 —

p3s—2—u)l’

adjacent diverging stretched triangles (e.g., for Iy =
ky — g1 = k1 — jal), butfor Iy = 0, ky = j1, ja = k1
it corresponds (cf. (33.20) of [2]) to the general triple-
sum expression for the ¢-95 coefficient,

g1l go
(271 + 12k + 1) 2 by key 1y ¢ s

I3 ki j3 .

as a q generalization of the AliSauskas and Jucys [3]
formula (see (32.10) of [2]).

Another derived five sum expression [14] turns into
a triple sum, when the summarized angular momen-
tum in a stretched triangle corresponds to a crossbar
of the Mébius strip (2a), e.g., for Iy = k4 + j1. There
are four possible mutual positions of the couples of the
stretched triangles and a great diversity of mutual ori-
entations (22) of the couples of stretched triangles in
graph (2a). Corresponding triple-sum expressions do
not simplify for two couples of adjacent diverging or
merging stretched triangles (e.g., for Iy = k4 — j1 =
k1 — ja), but for adjacent consecutive stretched trian-
gles (Witl’l k‘g = k‘l + ll = k‘l —|-j1 —|-j2, Withjl = ll +
jg = ,IC4 — l4, or with ,IC4 = l4 —|-j1 = l3 — k‘g)the q—12j
coefficients may be expressed as the single or double
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sums, related to the ¢-65 or the stretched ¢-9;5 co-
efficients. Some doubly stretched g-12j coefficients
of the first kind turn into double sums equivalent to
compositions of two ,11F)|...; ¢, x| series, sometimes
related to the Kampé de Feériet functions [12], more
diverse as in the stretched ¢-9j case, discussed below.

a b e
cd f¢ =4

hkgq

2077

3. ON TRIPLE SUM EXPRESSIONS
FOR ¢-95 COEFFICIENTS

We present here only one of six alternatives [14] of
expression (2c¢) specified for the g-95 coefficients,

(b+-e—a)(e—f—h+k)—(a—et-f4+1)(a—et )+ Zaen Y L00E]V[feg]V[kbd]

Viach|V|fcd|Vkgh]

e=f= h+k+zl+z2[a+c—h+z1] lg— h+k+ ]!

« 3!

21,%2,23

e+h—a—2]g+h—Fk—2z]2]

[Qh—zl][b—ZQ] [b—6+f+k'—22]

X
b—d+k—2[b+d+k— 20+ 1)![23]![a + b — e — 23]!

]

b+c+f+k—zn+1lb+e—a+z)lle— f+ g+ 23]

[f+g—e—z]l2e+z3+1)lfe+k—f—h+2z + 2]
g (b+e—a—z2+23)+23(a+b+ f—h+k—zo+1)—22(e+k—f—h)

X
b+e—a—zm+zllla+b+f—h+k+z2 — 20+ 1]

(4a)

_ (_1)e—f—h+k Vlabe]V|[feg]V[kbd] (c+h—a)(b—c+f+k+1)

Viach]V

(b+e—a)(e—f—h+k)—

xq

[fed]V

(f+g—e)(g+h—k)

(_ 1)z1 +zzqu1 (a—c—g+k+1)—z2(b+c—f+k)+2z3(a+b+f+g) [Qh

[kgh]

—(a—et+f+1)(a—et+f)+Zaen

— Zl]

[A1[b —d+ k — 2]![b+ d + k — 22 + 1]![23]![2e + 23 + 1]!

(_1)51+52q—51(b+e—a—zz+2’3+1)—82(e—f—h+k+z1+2’3+1) [2[) _ 81] [29 _ 52]]

g sslatbfhtktz=242) 90 gilb — c+ f 4+ k — 29 + s3]!

[s1]![22 — s1]!fa + b — e — 23 — s1]![s2]![g + h — k — 21 — s2]!

[f+9g—e—z23—sal[ss)l[c+h—a—2z — s3]

as well as the extended version (4b) with six sumes,
derived after some three blocks (quintuplets) of facto-
rials under the summation sign were identified in (4a)
and expanded in (4b), using the Chu—Vandermonde
summation formulas (see [2, 11, 16]). All the terms in
the last sum of (4a) are of the same sign. The separate
sums correspond to the finite basic hypergeometric
series 4 F3[...; q, ],

a1, Q2,.., Qpi]

p+1Fp 34, T (5)

ﬁla"w ﬁp

PHYSICS OF ATOMIC NUCLEI

: (4b)

= (@1lg)r(a2|q)k - - - (ap+1]9) P
B zk: Bl -+ - Bplar(Llg)e —

with  (lg)n = [Tfple + k], =gt c=
St — > F_1 B, as defined by Alvarez-Nodarse
and Smirnov [10], instead of the standard basic hy-
pergeometric functions ,41¢, (see [11]). Parameters
¢ = —1 and z = 1 for the balanced basic hypergeo-
metric series and in expressions for ¢g-65 coefficients
[15, 16].

The summations of (4b) over si, s9, s3 give the
original expression (4a), when its summations over
21,29, z3 give a different expression for ¢-9;5 coeffi-
cients. The summation intervals for z; (i = 1,2,3)
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in (4b) and (2c) are mainly restricted by some tri-
angle linear combinations, and with their vanishing
we may write 23 different double-sum expressions for
the stretched 95 coefficients in terms of compositions
of 4 F3[...;q, z] and 3Fy]...; q, x] series. Otherwise, in
the case of (4b) (e.g., for k = g + h), some couples of
parameters z; and s; are fixed and summation over
z; and s; (where 4, 7,1 is some permutation of 1, 2,
3) is possible. Hence, we may derive 13 versions of
expressions for the stretched ¢-95 coefficients as dou-
ble sums—compositions of both generic 3F5|...; q, z]
series. Sometimes, a separate sum corresponds to the
CG coefficients of u,(2) [6, 17, 18] and may be re-
expressed by means of another formula, and different
expressions for the stretched ¢-9; coefficients may be
derived [14], including a ¢ generalization of standard
formula (32.13) of [2].

The expressions of both classes correspond to ¢
generalizations of the Kampé de Fériet [12] functions
F33 or (after reversing the order of summations) to
FP3 (cf. [13]) and FL2, which are defined as follows:

ALISAUSKAS

X Hil(bﬂQ)S(bHQ)t xisyi(l_%)tqiu\f@st
T2 (dla)s(dflq)e [s]2]
with special parameters
D

z=q¢"*, p= Zaj—l-Zb —ch Zd],

D
y=a"" p _Zaﬂ +Zb _ZCJ >4
j=1
andézéAcforA—l—B:C—i—D—i—land |A-C| <
1. Series (6) turns into usual Kampé de Fériet func-
tion FZAB[...;1,1] for ¢ =1. Upon comparison of
different expressions, the rearrangement and sum-
mation formulas of the double g-factorial series and
related Kampé de Fériet functions of these types were
derived [14].

4. EXPRESSIONS FOR ¢-125 COEFFICIENTS
OF THE SECOND KIND

+ pAiB (a) (b) (b’) 6) For rearrangement of the ¢g-125 coefficient of the
C:D : J Y4 second kind [1, 2] (whose planar graph is cube, i.e.,
(c) ( ) ( ) without braiding [7], in contrast with the 3nj coeffi-
] L(a5]q) st cients of the first k.ind, whose graphs are.possible only
= Z on the Mobius strip), we use the expansion
s,t H 1(¢510)s4¢
J1 J2 J3 Ja
i Ip I3 Iy = (_1)l17127l3+l4 (73)
k1 ko ks kg
ki j1 1 ks k k k
XZ[2x+1] 1J1 4 J3 T )i 3 R4 T 1 & R2 (7b)
x Js ke x k3 Iy ky Ja g2 la ‘ Ja I3 J2 .

= (- 1)]1 —J3—ki+tke—li—la— 13+l4

[jakals

(k352l4]V [k1J2l3]V [jakala]

x D

]
[k1]1l1]v[33k?2l1]
(—1)=2F#8 24 kg + 43 — Iy + 21)![k1 + 1 — b + 21]!

(k3j102]V [jakals]

21,%2,23,%4

(2] [z2] 23] [2a] {1 4 k2 — j3 — 21]' 1 + 11 — k1 — 21]!
[2l1 — Zl] [2l2 — 22] [

— o + k3 + 2!

[lz—l—jg—k‘4—2’2][1+l2—k3—22] [lg+j3+k4—2’2+1]!
L2 — k3 + Uy + 23]![ka + Iy — ja + 23]!

X — . -
[j4 +kyg— 1y — Z3]![j2 + kg —1ly — 23]![2l4 + 23 + 1]![1’61 —J2 + I3 — 24]!
203 — z4)![k2 — I3 + ja + 24]!

[k2—|-l3—]4—24] (k1 +j2 + 13 — 24 + 1![k1 + k3 — 11 — la + 21 + 22]!

PHYSICS OF ATOMIC NUCLEI
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3 +ja+ 1o — 1y — 20 — z3]![ky + k3 + 13 — Iy — 23 — 24]!

ki —ks+js—ja—bh+l+z+z)is+js—lh —ls+ 21+ 2]

iy a bk — kg Do+ Iy — 20 — 24!

[j3 — ja + k1 3+ 1o + I3 — 29 — 24] (7¢)

W+ 1lo+13— 1y — 21 — 29 — 23 — 24]!

[f we insert expression (1) for ¢g-65 coefficients
with the differently changed summation parameters
[by analogy with what was done in the (2b) case] into
(7b), the asymmetric triangle coefficients, depending
on the summation parameter z, cancel. Using the
summation formula (3.6) of [9] (cf. (2.4.2) of [11]), we
derive (7c), with each separate sum corresponding
to the finite balanced basic hypergeometric series
5F4]q, 1] (with the fixed sign of all the terms in the
first g-factorial sum).

For definite stretched triangles, some summation
parameters in (7c) are fixed, and one of three remain-
ing sums turns into balanced series 4F3[q, 1], whose
rearrangement [11] enables us to transform another
5Fuq, 1] into 4 F3[q, 1]-type series, with only the last
sum left of the 5Fy[q, 1] type. Particularly, the doubly
stretched ¢-127 coefficient with k1 = j1 + 11 = I3 — jo
[i.e., for adjacent consecutive stretched triangles in
graph (7a)] is proportional to some ¢-6; coefficient,
when, in the case of j1 = k1 — 11 =1y — k3 or k1 =
J1 + 11 = jo + I3 [with the diverging or merging ad-
jacent stretched triangles in graph (7a)], we obtain
the double-sum expressions, corresponding to the ¢-
generalizations of the Kampé de Fériet functions Filif.
For k1 = j1 + 11 and js = k4 + Iy, as well as for ky =
J1+ 11 and jq = kg + 14 [i.e., for antipode stretched
triangles in (7a)], we derive expressions with single
sums, related to the balanced basic hypergeometric
6F5[q, 1] series. For four different versions of the
doubly stretched ¢-12j coefficients of the second kind
with touching angular momenta in remote stretched
triangles (e.g., with k1 = j1 + 1y and I3 = ko + jy, or
with k1 = j1 + {1 and k3 = jo + l4) forming the 4-
cycles, expressions with the double sums correspond
to the Kampé de Fériet functions F5 (depending
on nine parameters, with by + b} = ¢1). The ¢-12j
coefficients of both kinds turn into single terms in the
virtually stretched cases [Eq. (7¢)forly =11 + 1o+ 13
or, after some effort, Eq. (2c) for js = j1 + k1 + k3]
with four dependent angular momenta, appearing as
disconnected on some Hamilton lines of graphs (7a)
or (2a).
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Abstract—We present the projection operator method in combination with the Wigner—Racah calculus of
the subalgebra U, (su(2)) for calculation of Clebsch—Gordan coefficients (CGCs) of the quantum algebra

Uy(su(3)).

The key formulas of the method are couplings of the tensor and projection operators and
also a tensor form for the projection operator of Uy, (su(3)).

We obtain a very compact general analytic

formula for the U, (su(3)) CGCs in terms of the U, (su(2)) Wigner 3nj symbols. © 2001 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

[t is well known that the Clebsch—Gordan coeffi-
cients (CGCs) of the unitary Lie algebra u(n) (su(n))
have numerous applications in various fields of theo-
retical and mathematical physics. For example, many
algebraic models of nuclear theory [interacting boson
model (IBM), Elliott su(3) model, su(4) supermul-
tiplet scheme of Wigner, the shell model, and so on]
demand the CGCs for su(6), su(5), su(3), su(4), and
su(n). Analogously, in quark models of hadrons, we
need the CGCs of su(3), su(4), etc. The theory of the
su(n) CGCs is connected with the theory of special
functions, combinatorial analysis, topology, etc.

There are several methods for the calculation of
CGCs of su(n) [u(n)] and other Lie algebras: recur-
sion method; method of employment of explicit bases
of irreducible representations; method of generating
invariants; method of tensor operators, where the
Wigner—Eckart theorem is used; projection operator
method; coherent state method; combined methods.

[t is well known that the method of projection
operators for usual (nonquantized) Lie algebras [1, 2]
and superalgebras [2] is a powerful and universal
method for a solution of many problems in the rep-
resentation theory. In particular, the method al-
lows one to develop the detailed theory of Clebsch—
Gordan coefficients and other elements of Wigner—
Racah calculus (including compact analytic formulas

*This article was submitted by the authors in English.

Dnstitute of Physics and Power Engineering, Obninsk, Rus-
sia.

Alnstituto de Ciencias Nucleares, Universidad Nacional
Autonoma de México, México.

“e-mail; tolstoy@nucl-th.sinp.msu.ru

of these elements and their symmetry properties) [3]
and so on. [t is evident that the projection operators
of quantum groups [4] play the same role in their
representation theory.

In this paper, we present the projection operator
method in combination with the Wigner—Racah cal-
culus of the subalgebra U, (su(2)) [5] for calculation
of CGCs of the quantum algebra Uy (su(3)). The key
formulas of the method are couplings of the tensor
and projection operators and also a tensor form for
the projection operator of U,(su(3)). It should be
noted that the first application of this method was
for the su(3) case in [3]. Some simple elements of
this approach were also used in [6] for the Uy (su(n))
case. Also, the coherent state method in combination
with the Wigner—Racah calculus was applied in [7]
for u(n).

2. GELFAND-TSETLIN BASIS

Let IT := {a1,2} be a system of simple roots
of the Lie algebra si(3) (=sl(3,C) ~ Ag), en-
dowed with the following scalar product: (aq, ;) =
(062,062) = 2, (041,042) = (062,061) =—1. The root
system Ay of sl(3) consists of the roots aj,a; +

ag,az.  The quantum Hopf algebra U,(sl(3)) is
generated by the Chevalley elements ¢™hei, e,
(1 = 1,2) with the relations

gheighei = g7 heighes = 1, (1)

qhai qha]- — qhaj qhai , qhai eajq_hai — q(aiva]')eaj’

[eai7 e—aj] = 5Z] [hai]7

[[eﬂ:aia e:l:a]-]qa ezl:aj]q =0 for ”L - J’ =1

1063-7788/01/6412-2080$21.00 © 2001 MAIK “Nauka/Interperiodica”
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Here and elsewhere, we use the standard notation

la] := (¢ —q~*)/(a —q") and [e,, eglq == eqeq —
q@ ﬁ)e e,. The Hopf structure of Uy, (sl(3)) is given
by
Ag(ha;) = ha; @1+ 1@ hq,, (2)
Sq(ha;) = —hay,
Aglern) =eiq, ® g2hei 4 g 3t @ €t
S‘](eﬂ:ai) = _qileﬂ:ai'

For construction of the composite root vectors
€+ (a1 +az)» We fix the normal ordering in Ay > o, a1 +
a2, aig. According to this ordering, we set

= [eapeag]q*l? (3)

€ 0y = €

ea1+012 :

(&

—Q) 7011](]’

Let us introduce another standard notation for the
Cartan—Weyl generators:

€19 ‘= €O¢17 €91 ‘= €_a1, €11 — €99 = th’ (4)
€93 1= €nyy €32 7= €_q,,  €op — €33 1= Ny,
€13 = eoq—i—az’ €31 = e—oq—ag?
€11 — 633 = hOél + ha2

The explicit formula for the extremal projector for
the quantum groups [4] specialized to the case of
U,(sl(3)) has the form

P(Uq(5l(3))) = DP12P13P23; (5)
where the elements p;; (1 <4 < j < 3) are given by
= (_1)71 n._n
pij = Z T@zgn ij€jis (6)
n=0
o n -1
Pijn = qf(]flfl)n{ H[eii —ej Ty -t 5]} :
s=1

The extremal projector p := p(U,(sl(3))) satisfies the
relations

’L]p pe]z - 0 ( .])7
The quantum algebra U, (su(3)
3

as the quantum algebra U 7 (sl(
additional Cartan invo utlon (*):

hzz = hai’ eiai - eiFOzl" (8)
¢ =qorq .

Let (Ap) be a finite-dimensional irreducible repre-
sentation (IR) of U,(su(3)) with the highest weight

p=p (7)
) can be considered
)) endowed with the

2081

(M) (A and p are nonnegative integers). The vector
of the highest weight, denoted by the symbol |(Au)h),
satisfies the relations

By | (M)R) = A (M), (9)

Labeling of other basis vectors in IR (Au) depends
upon choice of subalgebras of U, (su(3)) (or, in other
words, depends upon which reduction chain from
U,(su(3)) to subalgebras is chosen). Here, we use
the Gelfand—Tsetlin reduction chain:
Ug(su(3)) 2 Ug(uy (1)) @ Uyg(sur(2))
) UQ(UTo(l))7

where the subalgebra U, (su,(2)) is generated by the
elements

(10)

Ty i=ey, T- (11)

= 632,
€33);

the subalgebra Uy(ug, (1)) is generated by q™0, and

U,(uy (1)) is generated by ¢¥ [in the classical (non-
deformed) case in elementary particle theory, the sub-
algebra su,(2) is called the T-spin algebra and the
element Y is the hypercharge operator|, where

Y = —3(2h,, + hy,)- (12)

In the case of the reduction chain (10), the basis
vectors of IR (A\u) are denoted by

|(Aw)jtt.). (13)

Here, the set jtt, characterizes the hypercharge Y
and the 7" spin and its projection:

¢ |(Anjtt.) = o' |(An)jtt.),
¢ |(w)jtts) = ¢*| )t
T |(Aw)jttz) = VIt F L[t £tz + 1] (Aw)jtt. £ 1),
where the parameter j is connected with the eigen-

value y of the operator Y as follows: y = —%(2)\ +

,u) + 2j. It is not hard to show that the orthonormal-
ized vectors (13) can be represented in the form

\(M)jtt )
_N()\M)Pt ]+ p—t 3212H+t‘()\'u)h>’

where Ptz;t, is the general projection operator of the
quantum algebra U, (su,(2)) [5], and the normalizing
factor N](t)‘“) has the form

1
To := (e —

(14)

(15)

Jt
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The quantum numbers jt are all taken to be non-
negative integers and hali-integers such that the sum
1

SH + j + tis an integer and they are subjected to the

constraints

1 1
ghti—tz20, —gutij+t=0,

1 ) 1 ,
§M—g+t20, §u+j+t>)\+u.

(17)
For every fixed ¢, the projection ¢, runs the values ¢, =
—t,—t+1,...,t—1,t. Theseresults can be obtained
from the explicit form of the Gelfand—Tsetlin bases for

the case Ujy(su(n)) [4] specializing to the given case
Uy (su(3)).

3. COUPLINGS OF TENSOR
AND PROJECTION OPERATORS
Let {R] } be an irreducible tensor operator
(ITO) of the rank j; that is, (25 4+ 1) components
R;i‘” are transformed with respect to the U, (sur(2))
adjoint action as the Uy (sur(2)) basis vectors |jj.)
of the spin j:

T [>R](q)
= ((id ® Sg)Aq( z)) oR

(ad TR/ (18)

M) =gt dge ) R,
Jz

where (a ® b)ox=axb. The tensor operator of the

type {R;EQ)} will be also called the left irreducible

tensor operators (LITO) because the generators T;
(i ==, 0) act on the leit side of the components

R;:SI). (This notation for the ITOs is different from

one of the papers [5] by the replacement of ¢ by ¢~1.)
Following [3], we also introduce a right irreducible
tensor operator (RITO) denoted by the tilde symbol

{RJ } on which the U, (sur(2)) generators T; act
on the right side, namely,

T, <]RJ:( a) . (ad* )RJ(Q)
= RS (8, @id)A, (1))
= > (|1 g ) RA?,

Jt

(19)

where z o (a ®b) = axb, and Aq is the opposite co-
product (Aq = A,-1)and S’q is the corresponding an-
tipode (Sq = S3). Itis not hard to verify that any LITO

3@ - pi(a)y. pila) _ iz gz 123 (@)
{R; "} isthe RITO{R; '} RV = (=1)7¢’*R_}..
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The projection operator set {Pttz;t, }forafixed IR ¢t and

for various ¢, and ¢/, will be called the P* operator. It is
not hard to see that the subset of the left components
of this operator satisfies the relations for the LITO
R/(@) .= {Rj-iq)} if we understand the action “>” of
the generator 7; as the usual multiplication of the
operators T; and Pttz;t, and that the subset of the right
components of the P operator satisfies the relations
for the RITO R/ : {R](Q)} if we understand the
action “<” as the usual multlpllcatlon of the operators

Py, and Ty

T, Py =T, P, =Y (t!|T;|tt.) Pl (20)
t//
S T4, P (21)
Z
Using the U,(sur(2)) CGCs, we can couple the
LITO R/@ with the left components of the P* op-

erator and the RITO R7(9) with the right components
of the P? operator:

t ._ pt *
TPy =P T =

t/

., {Rj(q) ®p¢tz} (22)
q
=" (it RIYWP., |
jzt//
¢ aRi@)
P! GRIOV 93
{PLor@} (23)

= > (st t) Pl R

gzt

Here, the symbol ® means that we first take the usual
tensor product and then in a resulting expression
we replace the tensor product by the usual operator
product. Itis not hard to show that the couplings (22)
and (23) are connected as follows:

7))

v = VREHT] L{RI@ &P, }q (24)

’

t
_ (1t / t SRI@
(—1)! /[t +1]{Ptz7®R }qt;

Using (24) and a unitary relation of the U,(su(2))
CGCs [5], one can obtain the following useful per-
mutation relations between the components of the

tensors R7(9 R7(@) and P* operator:

RJ(‘I) Pty = Z(_l)t—t"

ey

(2t + 1]
[2t" + 1]

(25)

x (ji=tt=]t"t]), {P@@RJ@)}WZ,

Vol.64 No. 12 2001
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t  pile) _ e [ 12641
Ptz;t/ZRjz — 7;(—1) [2t// _|_ 1] (26)
t . . 1"
x (g7t t]) (RSP g,

We can show that the monomials €%, e} and eye'7s
are components of ITOs with respect to the adjoint
action of the subalgebra U, (sur(2)):

. 1l
OISy — - (27)
? []_]z]![] +]z]!
x @471 Hiz gl 0z gmihey —(=i)To,
Iz [] _]z]'[] +Jz]'
« q—2j2+je{;jze/{§‘qu—jhal—(j+jZ)TO7

where the generator €/ is defined according to the
inverse normal ordering: ag, a1 + a2, oy, i.e., €3 =
[e23, e12],-1. These ITOs have the remarkable prop-
erties: A result of the coupling of two ITOs of
the type (27) or (28) is nonzero only for an ir-
reducible component of the maximal rank, e.g.,

-1

o, j o,
{RJ(Q) QR (Q)}q o= 5j”,j+j’R;/J/r] ((1) (29)

The property is also useful in applications: For ITOs
of the type (29), the relation is valid

2t+1

RJ(‘I RJ "(9)
[2t" + 1

25t 2 :

t//t//

X (Gt U8 U (G055 + 578) R,

(30)

Here, U(...;.. .)q is a recoupling coefficient which
can be expressed via the stretched ¢-6j symbols of
Uq(sur(2)) [3]
U(jj/t”t/;j ‘|‘j/t>q _ (_1)j+j’+t’+t”
Ji'i+ j'}
te" ot q.

(31)

x /25 + 27"+ 1][2t + 1]{

Using (26) and (27), we can represent the basis vec-
tors (13) in the form

|(Aw)jtts) = FM(ite) (k) (32)

= NGB, L)),

The normalizing factor /\/'j(t W s given by
N = (—1)% (33)

w qUFsn=D0—5utO)+iM5u(i+ 5 u—t) =27 +i+t =5
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R Tl
250!k + 1]
1 11 N
i —p—ttt|=p=p | NOW.
With the help of (32), we easily find the action of the
ITO (27) on the Gelfand—Tsetlin basis:
R, | (Aw)jtt) (34)
Z ittt ‘t”t” ()\H)j//t//HRj'((I)H()\M)jt>q

t"t”

X |(Aw)j"t"t),

where
()" t" | R D) (Aw)it), (35)
(M)
2t + 1] Nj;
6 37 i+ m/\/’()\u U( t’/lu ] _|_jt) .

11411

4. TENSOR FORM
OF THE PROJECTION OPERATOR

[t is obvious that the extremal projector (5) can be
presented in the form

P(Uy(su(3))

= p(Uq(sur(2)) (p1op1s) p(Uy(sur(2)).
Now, we present the middle part of (36) in terms of the
U,(sup(2)) tensor operators (27) and (28). To this
end, we substitute the explicit expression (6) for the
factors p12 and pi3 and combine monomials e5; e}
and efyels.  After some summation manipulations,
we obtain the following expression for the extremal
projection operator p := p(U,(su(3))) in terms of the
tensor operators (27) and (28):

(36)

p = p(Uylsur(2)) (37)
< (30 A ORI )olUysur (2).
IE
Here,
A5 (38)

_ (=D)¥[pi]lers + 5 + 5z — leas)!
27112 + 24]!pas + 5 + 2!
x g +i+2iheq +2(i+32)To

where Plitl = €11 — €i+1i+1 T 1 (’L =1, 2) Below,
we assume that the Uj(su(3)) extremal projection
operator p acts in a weight space with the weight
(Aw) and in this case the symbol p is supplied with
the index (M), p*, and all the Cartan elements
ha, on the right side of (37) are replaced by the
corresponding weight components A and . Now, we
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multiply the projector p®#) from the left side by the
lowering operator FA (jtt,) and from the right side
by the rising operator (]:9“) (jtt.))", and by applying

(>\u Z B(Au RJ'H (Q)R/J +5'(q)

]ttz gt
//t//

where the coefficients B(,,t) are given by

(=1)2 543" g 1) [t 1] A pa+2]

ASHEROVA et al.

a relation of type (30) we finally find the tensor form of

the general U, (su(3)) projection operator:

tt t//t// t"t” t/t/

B()‘N)

JJ ity
J T Ik gk g 2 A kg =t 1257 ) 1

-1/ A /A -1/
-
} {] JJTJ } (40)
1
. t” t/ §H .

X ( Pt S gt DD+ g =t Dk g+ LIS g = 124257+ 1) (257425 4] ) 12
)

(27]![2
¢:90()‘7:u7j7t)+()0()‘7:U'7j/7t/) (41)
- 290()‘7 :U'vjﬂa t”) + J,/(4)‘ + 2M - 1)
4t — 2 — 3.
Here and elsewhere, we use the notation

1/1
Mo jt) = = = Pt
©(A, p, 4, t) 2(2u+3 )

1
X (§,u+j+t—3>+j()\—2j+1).

5. GENERAL FORM
OF CLEBSCH—GORDAN COEFFICIENTS

For convenience we introduce the short nota-
tion A := (Ap) and «y := jtt,, and therefore the basis
vector |(Ap)jtt.) will be denoted by |Ay). Let
{|[Aivi)} be bases of two IRs A; (i =1,2). Then,
let {|A171)|A27v2)} be a basis in the representation
A1 ® Ag of Uy(su(3)) @ Ug(su(3)). In this represen-
tation, there is another coupled basis |A1 Az : 5A373>q
with respect to Ay (Ug(su(3))), where the index s

classifies multiple representations As. We can expand
the coupled basis in terms of the uncoupled basis

{|A1V1>|A2’Y2>}3

‘AlAQ . 8A3’)/3>q (42)

<A1W’1 | <A2W’2 | A

)

51 [2¢41][2¢' +1]

>|A2V2> =

= Z (A1’71A2’Y2|8A373)q|/\1’71>|A2’V2>’

V1,72

where the matrix element (Al’ylAQ’yQ’SAg’)/g)q is the

Clebsch—Gordan coefficient of Uy (su(3)). In just the
same way as for the nonquantized Lie algebra su(3)
(see [3]), we can show that any CGC of Ug(su(3))
can be represented in terms of the linear combination
of the matrix elements of the projection operator (39)

(A171A2V2|5A3’Y3) (43)
= ZC ’yQ Al’)/1|<A2’)/2|A W3h |A1 >‘A2’Y§>

Y

Classification of multiple representations As in the
representation A; ® Ag is a special problem, and we
shall not touch it here. For the nondeformed algebra
su(3), this problem was considered in detail in [3].
Concerning the matrix elements on the right side of
(43), we give here an explicit expression for the more
general matrix element:

(Aryr|(Aorz| Ag(P 1)[A275).

Using (39) and the Wigner—Racah calculus for the
subalgebra U,(su(2)) [5] (analogously to the non-
quantized Lie algebra su(3) [3]), it is not hard to
obtain the following result:

(44)

’73’7

(titiatatas [tats.) (1t tath. [t525.) (45)

x s+ s +UNs +ps+204 D Cirgp
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Ji—J1 Je—J3 i+je—Jg1 — s J1—J1 Ja =733 Ji+dy—d1 — 3
x4 1 0o 1
t to ts t t ts .
Here,
A= < [2t1+1] [2t2+1][2j1+1]![2j2+1}![>\3+%u3—j3+t3+1}!P\3+%u3—j3—t3}! (46)
T\ a+ im0 A S —i =t et S pe—ja e 1] Ao+ S pa —ja—t2]![243]!
(264 +1)[2t)+ 1) (24 + 111125511 Dot L =g+t +1)! s+ L pa —f—t4]! )1/2
A1+ 21—+, 1 A+ Ly —5] —t) o+ L pa— b +th+ 1] Ao+ L o — b —t5]1[254]! ’
Commromr — (—1)201+92+35 =31 32) g [2(js 4o — 5 — ) F LI 20H} +5 g7 —34)+1]! (47)
Jriztitats T (2572551251257 1252~ 2551251 — 255 11275~ 255 12 (71 +i2— 3 —57 —35)]!
A1+ 5 pn =37+ A1 A+ 4 1 — 37—t [N+ 5 po— g5+ + 1] Ao+ 5 o — 55 — 5] (267 +1][2¢5 +1][2t4 +1]
[Na+3pa+iit+ia—ja—i7 —iy +t+21 [As+ 5 us+j1+i2—js—ji — 35 —t4 +1]!
=31 3 gl Jde—ds 35 g2\ Jis utie—ds—di —Jy J1+ie—ii —J5
1 " 1 " 1
5 t1 t 5 to t t 5
M1 L), 2 M2 2 t2), 3 M3 q
D I B S QR I el QR I S s el el Sl B o Bl 1
9
sty t] sua th th . ty ty SH3 .
where operation (CNRS grant PICS-608 and grant RFBR-
2 98-01-22033, V.N. Tolstoy).
¢ = ( Z 2@()‘“ :u’ivjz{lv t;/) - 80()‘@7 Miaj’ia tz)
i=1 REFERENCES

— (N, 4, Ji» 7)) — it + 1) — t;(t; + 1))
+4(j1 — 31) (G2 — J3) + 4 — 31) s — J2)
— (J2 + Jo — 242) (2A1 + p1 — 657) + 2p3
+ SO()‘37 /.Lg,jg, t3) + SO()‘E}’ :u?njé’ tZIS)

— 20(X3, 13,75, t3) + 75 (4A3 + 2u3 — 1)
—2t3(t5 — 1) — (js +73)(Js + J5 + 1)
— (g5 +J3) (5 + 75 + 1)

—t3(ts + 1) — t3(t5 — 1),

g . . .1 11
J3 =71+ J92—33—J1 — )2
o ./ -/ /4 -/
=1 +J2—J3—J1 —J2-
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Abstract—The classical Fourier—Gauss transforms of bilinear generating functions for the continuous g-
Hermite polynomials of Rogers are studied in detail. Our approach is essentially based on the fact that
the g-Hermite functions have simple behavior with respect to the Fourier integral transform with the ¢-
independent exponential kernel. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Bilinear generating functions (or Poisson kernels)
are important tools for studying various properties of
the corresponding families of orthogonal polynomials.
For example, Wiener has used the bilinear generating
function for the Hermite polynomials H,,(x) in prov-
ing that the Hermite functions H,(z)exp(—x2/2)
are complete in the space Ly over (—oo,00) and a
Fourier transform of any function from Ly belongs
to the same space [1]. Also, it turns out that a par-
ticular limit value of the Hermite bilinear generating
function reproduces the kernel exp(izy) of Fourier
transformation between two Ls spaces. This idea was
employed for finding an explicit form of the reproduc-
ing kernel for the Kravchuk and Charlier functions
in [2], whereas the case of the continuous ¢g-Hermite
functions was considered in [3].

[t is clear that an appropriate ¢ analog of the
Fourier transform will be an essential ingredient of
a completely developed theory of ¢ special functions.
But the point is that the classical Fourier transform
with the g-independent kernel turns out to be very
useful in revealing close relations between some fam-
ilies of orthogonal ¢ polynomials [4, 5], as well as
among various ¢ extensions of the exponential func-
tion e* [6, 7] and of the Bessel function J,(2) [8, 9].
One of the possible explanations of this remarkable
circumstance is the simple Fourier—Gauss transfor-

*This article was submitted by the authors in English.

DFacultad de Ciencias, UAEM, Morelos, México.

20n leave from the Institute of Physics, Azerbaijan Academy
of Sciences, Baku.

"e-mail: natig@matcuer.unam.mx

mation property
1 yi ; 2 2
irs—s?/2 ds = 1/4 —r?/2 1
\/ﬂ/e .CCq(S) $=4q xl/q(r)e (1)

enjoyed by the g-linear z4(s) = exp(ixs) and, conse-
quently, by the g-quadratic lattices z4(s) = sin ks or
z4(s) = cos ks as well, where ¢ = exp(—2x?). It re-
mains only to remind the reader that there exist a large
class of polynomial solutions to the hypergeometric-
type difference equation, which are defined in terms
of these nonuniform lattices (see [10] for a review).
Convinced of the power of classical Fourier transform,
we wish to apply it for studying some additional prop-
erties of bilinear generating functions for the contin-
uous g-Hermite polynomials of Rogers.

2. LINEAR GENERATING FUNCTIONS

The continuous g-Hermite polynomials H,(z|q),
lg| < 1, introduced by Rogers[11], are defined by their
Fourier expansion

Ho(elg) == 3 o] ez, 2)
k=0 1
x = cosf,

where [Z]q is the g-binomial coefficient,

ny (4;)n
[k]q (G OR(G DO (3)

and (a;q)o =1, (a;9)n = [[iZ(1 —ag®), n=1,
2,3, ..., is the g-shifted factorial. These polynomi-
als can be generated by the three-term recurrence
relation

20H,(z]q) = Hnpa1(zlq) + (1 — ¢")Hna(2]q), (4)

n >0,

1063-7788/01/6412-2086$21.00 © 2001 MAIK “Nauka/Interperiodica”
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with the initial condition Hy(x|q) = 1. They have
been found to enjoy many properties analogous to
those known for the classical Hermite polynomials
[11—15]. In particular, the Rogers generating func-
tion [11] for the g-Hermite polynomials has the form

S

= (@ )n

H,,(cosflq) = eq(tew)eq(te_w), (5)

t] <1,

where the g-exponential function e,(z) and its recip-
rocal E,(z) are defined by

eq(z) i= Z -

n

— (2 )}
(q’ Q)n - ( aQ)oo7 (6)

0 qn(n 1)/2
)L

[t is often more convenient (c¢f. [4—7]) to make
the change of variables x = cosf — z4(s) = sinks
in (5), which is equivalent to the substitution 6 =
/2 — ks. That is to say, one can represent (5) as

= (2 9)0

’

[e.o] n

g(s;tlq) := Z (t—

) H, (sin ks|q) (7)

= eq(itefms)eq( ite'™*),

Observe that it is easy to verify (7) directly, by
substituting the explicit form of

ini(_l)k [Z] ¢ih=m)ns gy
q

k=0
into it and interchanging the order of summations
with respect to the indices n and k.

The advantage of such a parametrization = =
cos = sinks is that it actually incorporates both
cases of the parameter ¢: 0 <|¢| <1 and |q| > 1.
Indeed, to consider the case when |¢| > 1, one may

introduce the continuous ¢~'-Hermite polynomials
hn(z|q) as [16]

ha(xlq) = i7" Hy(izlg ™). 9)

The corresponding linear generating function for

these polynomials [17] is

qn(nfl)/2

lt] < 1.

H,(sinksl|q) :=

t"hy, (sinh ks|q) (10)

= (@0
— B, (™) By(—te™),
where [cf. (8)]
hy(sinh ks|q)

— Z(_l)k [Z} qk(k—n)e(n—2k)fcs
q
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From the inversion identity
(g7 "5q ) = (=1)"g "I (g5 q)n,
n=0,1,2,...,

and the transformation property [18] of the g-expo-
nential functions (6)

(12)

e1/4(2) = Eq(qz), (13)
it follows that

g(sitla™) (14)

S q"(”+1 .
= Z —it)" hy,(sinh ks|q)
n=0
= Eq(iqte“S)Eq(—iqte_“S).
The generating function g(s;ig~'t|g~!) thus coin-

cides with the left-hand side of (10), so that (14)
reproduces (10).

Examination of Eqs. (7) and (14) reveals that the
transformation of ¢ — 1/¢ actually provides a recip-
rocal to the (7) function

g (sitlg) = g(—is;q~'tlg™). (15)
There is a second linear generating function
©  n?/4
q n :
f(s;tlq) == Z o) t"Hy, (sin ks|q) (16)

n=0
=Ep (qt*)&,(sin ws; t)
for the continuous g-Hermite polynomials [6, 19].

The g-exponential function &;(z;t) in (16) is defined
[19] by

Eq(sinks;t) == e, (qt?) Epe(t?) (17)
o0 Tl2/4 e )
i) gz e 1KS _q—ems Ons
= (g Q)n( A )
where (a1,...,a5;9)n = Hle(aj; q)n is the conven-

tional contracted notation for the multiple ¢-shifted
factorials [20]. It is also expressible as a sum of two
2¢1 basic hypergeometric series, i.e.,

Eq (sinks;t) =e z(qt2)E 2(1?) (18)
% |:2¢ (q€2ms qe 2ms’q’q t2)
2q/4 ,
+ 1Q_ ; T 2¢1(q262ms’q2€ 2ms’q q t2)

Introduced in [19] and further explored in [6, 7, 21],
this g-analog of the exponential function exp(st)
on the g-quadratic lattice z4(s) = sinxs enjoys the
property [19]

E1jq(w5t) = Eglw;—q' 1), (19)
Therefore, as follows from (9), (12), and (16),
f(sitlg™) (20)
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n2/4
(—ig"/?t)"hy, (sinh ks|q)

o q
-2

(@ Dn

= eq(qt®) f(is;—q"t]q).
Note that in the limit case when the parameter ¢ =
exp(—2k?) tends to 1 (and, consequently, K — 0), we
have

lim k™" H,(sinks|q) (21)

q—>17

= liI{l K~ "hy(sinh ks|q) = Hy(s),
q—1-
where H,(s) are the classical Hermite polynomials.
The generating functions (7) and (16) thus have the
same limit value, i.e.,

lim g(s;2kt|q) = lim f(s;2kt|q)
qg—1- q—1-

o0

" 42

= g EHTL(S) = 2t
n=0

To understand the group-theoretical origin of a
particular classical generating function, it is useful
to know an appropriate differential equation for this
function [22]. The continuous g-Hermite polynomi-
als (8) are solutions to the difference equation

D, (s)Hy(sin ks|q) = ¢"/% cos ks Hy,(sin rs|q) (23)
with an operator D,(s) defined by

(22)

1 . . . .
Dq(S) — 5 emsefmﬁs _'_efmsemas ’ (24)
d
as = E

To verify (23), apply the difference operator (24) to
both sides of the Rogers generating function (7) and
then equate coefficients of the equal powers of the
parameter .

The difference equation (23) coincides in the limit
of ¢ — 17 with the second-order differential equation

(0% — 2505 + 2n)H,(s) = 0 (25)
for the polynomials H,(s).

As a consequence of (23), the generating func-
tions (7) and (16) satisfy the same difference equation

Dy(s)g(sitlq) = cos ks g(siq”?tlq).  (26)

[t may be of interest to note that the operator D, (s)
is also well defined in the case of |g| > 1. The explicit
form of D /,(s) and its action on the generating func-
tions (14) and (20) is readily obtained from (24) and
(23), respectively, by the substitution ¢ — ¢~ !(k —
iK).

In closing this section, we emphasize that the lin-
ear generating functions g(s; t|q) and f(r;t|q) are in-
terrelated by a Fourier transformation with the stan-
dard exponential kernel exp(isr), not involving ¢. The
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reason is that the continuous g-Hermite and ¢~ '-

Hermite polynomials are related to each other by the
Fourier—Gauss transformation [cf. formula (1)]

1
V2T

= i"q"2/4hn(sinh m”|q)e42/2.

/ H,(sin /<a5|q)eir5732/2d5 (27)

This integral transform was derived in [4], and
it plays an important role in our study of bilinear
generating functions for the ¢g-Hermite polynomials.
The key point in deriving (27) was the finding that
one should use the parametrization z = sinks,q¢ =
exp(—2k2), for the argument of the g-Hermite poly-
nomials Hy(z|q). Once (27) is established, one can
readily verify it by employing only the explicit forms
(8)and (11) of the g-Hermite and ¢~!-Hermite poly-
nomials, respectively, and the well-known Fourier
integral transform

00
/ eir8732/2d8 _ \/%677“2/2
—o0

for the Gauss exponential function exp(—s2/2).

We return now to a relation between the linear
generating functions g(s;t|q) and f(r;t|q). Multiply
both sides of (27) by t"/(¢; ¢)» and sum over n from
zero to infinity. Taking into account (20), this gives

[o@)
1 . 2
— s;t|q)eF 12qds
T / 9(s;tlq)
—00

= eg(2) f(ir; tlg)e /2.

(28)

3. BILINEAR GENERATING FUNCTIONS

The g-Mehler formula (or the Poisson kernel) for
the g-Hermite polynomials

>

= (@ Dn
= B () (160 e (161050
X eq(tei(eJr‘p))eq(teﬂ'(eﬂp))

was originally derived by Rogers [11]; its simple
derivation is due to Bressoud [15]. As in the case
of linear generating functions, it is more convenient
to make the changes x = cosf — sinks = z4(s)
and y = cos p — sinkr = x4(r) in (29), which are
equivalent to substitutions 6 = 7/2 — ks and ¢ =
/2 — kr. In other words, one can represent (29) as

H,,(cos 8|q)H,(cos ¢|q) (29)

G(s,r;t|q) = Z WHn(sin ks|q)Hy(sin kr|q)
n=0 9 n
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= B, (t2) ey (te™57))e, (te™15)) (30a)
« eq(_tem(s-l-r))eq(_te—in(s—f—r))
= E,(t*)g(s;ite™""|q)g(s;—ite™"|q),  (30Db)

in accordance with the definition (7) of the linear
generating function g(s;t|q).

Notice that the bilinear generating functions (29)
and (30a) are closely connected with the Rogers lin-
earization formula

Hin(2]g)H,

)i (@ O
(@ @)m— k(q, Dn—1(G Dk

n(2]q) (31)

Mi

Hm+n72k ({lf ‘ Q)
k=0

and its inverse[11, 15]

Hpin(7|q) (32)

mAn
= (@ Qm(g@)n Y _ (—1)FgE=D/2

k=0

Hy i (z]q) Hy—r(z]q)
(a; Q)m—kz(Qa DT Dk’

where m A n := min{m,n}. For instance, to verify
(30a), one can substitute the explicit form (8) for any
one of the two g-Hermite polynomials in (30a) and
use (32) for the other one. Then, the sum over the
index n in (30a) factorizes into a product of two linear
generating functions of the type (7) (see (30b)), which
is multiplied by the g-exponential function E,(¢?).

Later on we shall need an inverse Rogers lineariza-
tion formula

e (2]q) (33)

mAn

= (G D@ Y (—1)FgEmm=m)

k=0

hin—k(x|q) hn—r(z]q)
(@ Dm—i(@ On—i (@ D

for the continuous ¢~ *-Hermite polynomials h,,(z|q),
which follows from (32) by replacing = with iz and ¢
with ¢~! and subsequently employing (9) and (12).
As follows from (9), (12), and (13),
G(s,ritlg™")
B i qn(n+1
n=0
= eq(qt )Eq(qte“(s’”)Eq(qte“(“s))
« Eq(_qten(err))Eq(_qtefn(err))
= eq(qt*)g(s;ite™ g~ )g(s; —ite™"|g ).

t”hn(sinh ks|q)hy (sinh kr|q)

7

(34a)
(34b)
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This coincides with the g-Mehler formula [17] for the
!_Hermite polynomials
o0 qn(n+1)/2
< (@ 0)n
= eq(qt®) By (qte* ") Eq(qte"™*)
X By(—qte™) By(—qte™"),
upon identifying ks = £ and kr = n. Similar to the
case of the bilinear generating function (30a), one
can directly verify (34a), or (35), by using the inverse
Rogers linearization formula (33). It is worth noting
that Ismail and Masson [17] have employed the Pois-
son kernel (35) to determine the large-n asymptotics
of the ¢~ t-Hermite polynomials h,,(z|q).
Observe also the relation
G7(s,riqtlq) = (1 — qt®)G(is,ir;tlg™h),  (36)
which follows from the g-Mehler formulas (31) and
(34a).
As a consequence of (9) and (27), the generating
functions (30a) and (34a) are related to each other by

the Fourier—Gauss transform in the variables s and
r, ie.,

t"hn(sinh¢|q)hy (sinhnlg) — (35)

n=

G(s,rytlg e TF)/2 (37)

1 T ;
:—/G(u,v;q%t|q)e’(su_”’)_(ug+”2)/2dudv.
7T

The Fourier—Gauss transform (37) is equivalent
toa particular case of Ramanujan’s integral

Y 2
\/7 / 2mac be 2mac)62wy T

= eq(ab)Eq(_aql/%%y)Eq(_bqlﬂ@
with a complex parameter [23—25]. Indeed, using
(30a) and substituting s+ = (s £7)/v/2 and uy =
(v & u)/+/2 leads to the separation of variables on the
right-hand side of (37) and gives a product of two
integrals with respect to uy and u_. Both of these
independent integrals are of the type (38) with the
equal parameters a = b = ¢'/2t. One thus recovers
the left-hand side of (37) with the generating function
G(s,r;tlg71), defined in (34a).

Two particular cases of the generating function
G(s,r;t|q) are of interest for purposes of its use
in the sequel. The first of them is G(s,0;t|q).
Since Hak(0lq) = (—=1)*(g;4°)x,  Har+1(0lq) =0,
and (¢;q)ox = (¢;¢*)r(q?; ¢*)g, this function repre-
sents the sum

(38)

—2f€y)€—y2

(e 9]

Z

n=0

nth

G(s,0;t|q) = Hgn (sinks|g). (39)
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By the g-Mehler formula (31), this sum is equal to
G(s,0;t|q) = Eq(t2)6q2 (th%“S)eqz (t2e7275) (40)
on account of eq(2)eq(—2) = e2(2%).
Similarly, since hoy,(0|q) = (—1)"¢™"
hon+1(0]g) = 0, from (34a) we have
G(s 0;tlg™1)
n q" (n+1)
~—?hy, (sinh ks|q)

*(¢;¢*)n and
(41)

n=0

= €q(qt2)Eq2 (q t262&s)Eq2 (q2t26_2ns).

As a consequence of (23), the generating function
G(s,r;t|lq) satisfies the following difference equa-
tions:

Dy(5)G(s,75tlq) = cos ksG(s,r5q7*t]a).
Dq(5)Dy(r)G(s,73t]q)

= cos ks cos krG(s, ;¢ t|q).

(42a)
(42b)

Observe that, if the independent variables s and r
are replaced by their linear combinations sy = (s +
7)/V/2, then the product of difference operators Dy(s)
and Dg(r) takes the form

Dy()Dy(r) = 5 [Dypls4) + Dyals )] (43)
The integral transform (27), relating the contin-
uous g-Hermite and ¢~'-Hermite polynomials, also
suggests the consideration of the “mixed” generating

function
F(s,r;tlq)

2/4

(44)
= Z

which is dlﬁerent from the known functions (30a) and
(34a). Unlike G(s,r;t|q), the generating function
F(s,r;t|q) is not symmetric in the variables s and r.
Instead, it has the following property

F(s,ritlg™") = F(r, s;¢"%t|q). (45)

Also, a relation between the “mixed” generating
function (44) and linear generating function (16) is
more complicated than (30b) or (34b). Indeed, sub-
stitute the explicit form of the g-Hermite polynomi-
als (8) into (44) and interchange the order of sum-
mations with respect to the indices n and k. The
subsequent use of the inverse Rogers linearization
formula (33) factors out the g-exponential function
eq(—t?) and gives the following relation:

F(s,r;tlq) = eq(—tQ)

0o
_ i _ n-1_ _; _
X falr g Pt g f(r,—q 2 te g,
n=0

t”H (sin ks|q)hy (sinh k7|q),

(46)
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where
Fulrstlg™) = T iy, (sinh rlg)
n(ritlg 7)== —it)"hy, (sinh krlq),
(¢ On
n=012...,

are the partial linear generating functions of the sec-

ond kind (20), i.
an T t|q

From the relation (27) between the g-Hermite and

!_Hermite polynomials and the definition (44), it
follows that the Fourier transform of F(s,r;t|q) x
X exp(—s 2/2) is equal to

(r; t|q (47)

s, 7 t|q)e v *12qs (48)

\/27‘(‘ /
= G(u,r3ig~?tlg™")e 2,

In a like manner, the inverse Fourier transformation
with respect to (27) yields

F(s,r;t iro—r?/2 1.
— / @)

—v /2.

(49)

= G(s,v;it|q)e

Since the explicit form of the bilinear generating
function G(u,v;t|q) is given by formulas (31) and
(34a) for the values 0 < |g| <1 and |g| > 1 of the
parameter g, respectively, relations (48) and (49) lead
to the two integral representations for F'(s,r;t|q) of

the form

—t2 )
F(S,T;t’q)6_82/2—eq\(/2_t) /e—zsu—u2/2 (508)
s

> Eq(iq1/2tef@(ufr))Eq(iql/Qten(rfu))
« Eq(_Z-ql/Qtef@(qur))Eq(_iql/Qtefn(qur))du’

(e 9]

F(s,ritlq)e ™/ = Ey(—) /e_i”’_”Q/2
V2
T —0o0

X eq(item(s_”))eq(item(”_s))
X eq(—itei“(erv))eq(—itefm(ﬁv))dv.
Also, combining (48) with (49) shows that the
Fourier—Gauss transform of F'(s, ;t|q) in both inde-

pendent variables s and r reproduces this generating
function, i.e.,

(50b)

F(v,ustlg)e (/2 (51)
1 7 .

=— [ F(s,r; t|q)e’(su_”’)_(52+T2)/2d8d7‘.
27

—00
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Similar to G(s,r;tlq), two particular cases of
F(s,r;t|q) are easily summed as products of g-expo-
nential functions. The first one is F(s,0;t|q), and
it coincides with G(s, 0;t|q), given by (39) and (40).
The second one is F(0,7;t|q) = G(r,0;q~?t|g "),
where the function G(r,0;t|¢g™!) is explicitly given
in(41).

From (23), it follows at once that the mixed gen-
erating function (44 ) satisfies the difference equations
in the variables s and r of the form

Dy(s)F(s,7;tlq) = cos ksF(s,r;q”/t|g), (52a)
Dl/q(r)F(s,r; t|q) = cosh krF(s,r; q1/2t|q). (52b)

In view of the property (45), these two equa-
tions are related to each other by the substitution
q — ¢~ '. Combining (52a) with (52b) gives the dif-
ference equation

Dy(5)D1q(r)F(s,75tlq)

= cos ks cosh kT F'(s,1;t|q).

(53)

We note in closing that Ismail and Stanton
derived in [26] a closed-form expression for a few
generating functions, containing the product of the
continuous g-ultraspherical polynomials C,,(z;5|q)
and Cyp(y;~y|q) with different parameters g and ~.
These generating functions are variations of two
typical forms

> ((f;.qq); Cul@: Bla)Ca (yY)"  (54)
n=0 v
and
> Cul; Blg)C(ys V@)™ (55)
n=0

Since the continuous g¢-ultraspherical polynomials
Cy(x; Blq) are defined (see, for example, [20] ) as

- (B Dk (Bs Dn—k i(n—2k)0
Ch(x; = e\ , (56
(:014) kzzo (4 k(¢ Dk (50)
T = cos ),
the g-Hermite H,(x|q) and the ¢ !-Hermite
H,(x|g~') polynomials can be regarded as the fol-

lowing particular and limiting cases of the continuous
g-ultraspherical polynomials (56):

Hy(x|q) = (¢;¢)nCn(z;0]q),
Hn(:c|q_1)

= (—=1)"g """ D2(g;q),, ghféo B"Cr(; Blq).

(57)

Consequently, by considering the particular case
of (54) with v = 0, appropriately rescaling the param-
eter t = 7/, and subsequently taking the limit as
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[ tends to infinity, one obtains the following mixed
generating function for the continuous g-Hermite
polynomials:

n(n—1)/2

[e%s) q . -
> T () Hulelg ) Ha(yla).  (58)

= (@9
In a similar manner, from (55) follows another gener-
ating function

o0 qn(n—l)/Q

> (—7)"Hy(z]q)Hn(ylg ).

(4;q) 9)

n=0

The mixed generating function (44), studied by us
in this paper, is different from both (58) and (59).
But it is not hard to show, exactly in the same way
as for (44), that (58) and (59) also have a simple
transformation property with respect to the classical
Fourier integral transform. Indeed, if one introduces
a mixed generating function [cf. (58)]

F>(s,7;tlq) (60)
o qn(n—l)/Q
= Z ——t" Hy(sin ks|q) hy, (sin kr|q),
= (G9)n
then from [26] it follows that
FIS(s,7;t|q) = eq(—e***) (61)

« Eq (Z-te—fc(r-i-is))Eq(_z-ten(r—is))

0,0,0,0
X 43 ‘ ‘ |9a
Z‘teffi(rJrzs)’ _,L'tefi(Tfls)’ _q672ms

+(s— —s,r — —r).

Now using the integral transform (27) with respect to
the variable s and its inverse transform with respect to
the variable r in (60), leads to [cf. (51)]

[e.o]

%/F%S(s,r;ﬂq)ei(svm)(52+T2)/2d5‘dr (62)
T

— 00

= F{3(u, v; t|g)e™ )/,

Similarly, if one considers a mixed generating
function of the form (cf. (59))

F33(s,75tlg)
o0 qn(nfl)/2

= thHn(sin £]q)hn (sinh krlq),
n=0 9 n

(63)

then by [26] it can be represented as a sum of two
basic hypergeometric series 2¢3, i.e.,

Vol.64 No. 12 2001
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FB(s,7;t|q) = eq(q)eq(—e* ) E,(ite ")) B, (—item(r=19)) (64)

0,0
X 203

ite—n(r—i—is)’ _,L'ten(r—is) ’ — e~ 2iks

Evidently, the mixed generating function
FIS(s,r;t|q) has the same transformation property
as FIS(s,r;t|q) in (62).
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SYMPOSIUM ON QUANTUM GROUPS

The su,(2) Algebra in the Off-Diagonal Basis
and Applications to Quantum Optics”
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Abstract—We consider a new exactly solvable nonlinear quantum model as a Hamiltonian defined in terms
of the generators of the su,(2) algebra. The corresponding matrix elements of finite rotations (the ¢-
deformed Wigner d functions) are introduced. It is shown that the quantum optical model of the three-
wave interaction has an approximate suy(2) dynamical symmetry given by this Hamiltonian. Such ¢
symmetry allows us to investigate the spectral and dynamical properties of the three wave model through
new perturbation techniques. © 2001 MAIK “Nauka/Interperiodica”.

1. AN EXACTLY SOLVABLE NONLINEAR
QUANTUM MODEL

Let us consider the following operator[1]

Hy = g™ 1*( 5 + J-)g™ "2, (1)
which is defined on the su,(2) quantum algebra
[2—4]:

(o Je] =+Js, I, J-]=[20:]¢ (2)

X x

p— q_
-1

4q

The g-number is, as usual, [z], := with

q
q = €. Hereafter, we shall assume that ¢ is not a root
of unity. The deformed tensor product representations
of sug(2) are given through the deformed coproduct

AJe)=Je®@q = +q" @ Jy, (3)
AML) =191 +16 J.. 4)

Note that the ¢ — 1 limit of Hy is just the 2., operator
in su(2).

The representation theory of su,(2) is a smooth
deformation of the su(2) one. Namely, in the “bare”
basis |l,m) of eigenvectors of J,, the (204 1)-
dimensional irreducible representations of su4(2) read

2J.|l,m) = 2ml|l, m), (5)
Jelt,m) = /[l F mlfl £ m + 1] [Lm 1), (6)

*This article was submitted by the authors in English.

l)Depar’[amen‘to de Fisica, Universidad de Guadalajara,
México.

"e-mail: angelb@ubu.es

As a consequence, H, is a tridiagonal matrix of di-
mension (21 + 1):

0 Alqg) 0 0
Ailq) 0 Aia(q) 0
0 A_149(q) 0 A_11(q)
0 e 0 A_H_l(Q) 0
(7)
where

An(q) = 4"Vl mlgf - m o+ 1. (8)

It can be proven [1] that the eigenvalues of H,
for a given [ are just the ¢ numbers [2m], with m =
—I,...,1 (see Fig. 1). Moreover, the eigenvector
|l,n)" associated to any eigenvalue [2n], can be also
deduced, namely,

o — (l,m|l,_n>’ (9)

[21],!

(l-n)(l—n—-2m) [ 1=%¢g-
—nlg[l+n),!

= Qmq

l—n
v {(_1)jq—j(l—m—2n)+j(j+1)/2
J

Il
=)

[2(l—n)] "
Ul RA—n—j)"

[[—m]g[l—m—1],... [l—m—j—l—l]q}
R1,21—1], ... 2—j+1], ’

X

1063-7788/01/6412-2093$21.00 © 2001 MAIK “Nauka/Interperiodica”
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—10
_30 L

Fig. 1. Spectrum of Hy in the [ = 8 representation as a
function of z =1Ing. Note that the spectrum is anhar-
monic for z # 0.

where [2n],!! := [2n], -
am

[2n — .. [2]4 and
1=

2 -
m|l, l>

_ m(i-1/2) 2] !
! V{ mll—mlg’

These eigenvectors can be easily normalized in terms
of ¢ numbers (see also [5], where the same eigen-
vectors are obtained in terms of g-Kravchuk polyno-
mials). In the same manner, formulas for Clebsch—
Gordan coefficients in the “dressed basis” |, m)’ can
be deduced.

(10)

2. ON ¢-DEFORMED WIGNER
d FUNCTIONS

A g-deformation of Wigner d functions can be in-
troduced by computing, in a suitable basis, the matrix
elements of the exponential of the H, operator of the
quantum algebra suq(2).

Let us recall that the usual definition of the Wigner
d matrix in the (21 + 1)-dimensional representation is

dO(p) = e, (11)

where, in general,
Jy = Jy T idy,. (12)

As a consequence,
Jy+J_=2J, (13)

and a /2 rotation around the z axis is needed in order
to define the d functions from the .J, generator:

dO(8) = i3 mig I s I (14
In this context, a natural ¢ deformation of the
d matrix is
4

d0(3) = ei57 e

iz g
q e="s ’

(15)

where H, is the g-deformed JJ(rl) + Y operator (1)
(see [6—9] for different constructions of ¢g-Wigner
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d functions, some of them on noncommutative vari-
ables).

Since the eigenvalues of H, in the dressed basis
are the ¢ numbers [2m],, the exponential of H, can be
easily computed. Afterwards, the eigenvectors of H,
provide the transformation that gives the g-deformed
d matrix in an explicit form.

In the I = 1 representation, the ¢-Wigner d func-
tions are the entries of the matrix (14)

dg) ()
q'+qcos(B2l¢/2) _ Vasin(B2le/2)  2sin®(B[2]¢/4)
(2]q v [2]q (2lq
_| v 82 sn2)
V24 2 Va/[2lq
2sin®(8[2]q/4) sin(8[2]4/2) a+q~" cos(B[2]4/2)
(2]q Vav/[2lq (2lq

As expected, the ¢ — 1 limit of this matrix is the

usual Wigner d") matrix. Arbitrary ¢-d¥) functions
will be given in terms of trigonometric functions with
g-harmonic arguments 3[2[],/2. This fact can be
illustrated in the [ = 3/2 case, for which the matrix

dél)(ﬁ) has the following g-Wigner d functions as
matrix elements:

(dél))i - % {[3]qcos§ +q4cos @}’
2\/—{Sln§+qs @}’

[4]g
(d((ll) ’ q\/— {cos 5 — cos @},

()= @qf Sasiny +sin 2500}
>2 = ﬁ {q Congr [S]qcos@}’

(dfll)ﬁ = [Z—]Z {s‘ng — [3]gsin ﬁ[;]q } ,

(d(1)>4 = %\{m {Cosg — CoSs @} ,
q 2 .
(dél))z _ % {q4 cosg + 3], cos ﬂ[;’]q } ’
—2
()" = T i )

(dé”)i = ﬁ {[3]qcos g +¢ ! cos @} .

A complete treatment of these ¢ functions—including
symmetry properties and recurrence relations induced
from the coproduct—will be given elsewhere [10].
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3. CONNECTION WITH THE DICKE MODEL
AND SECOND HARMONIC GENERATION
The trilinear boson Hamiltonian
H = weaa + wpbld + wecle

+ Ma'bTe + cTba)

(with a, b, and ¢ being boson operators for three dif-
ferent modes of the radiation field) describes nonlinear
quantum optical processes such as frequency conver-
sion and Raman and Brillouin scattering.

Through a Jordan—Schwinger transformation,
this model is algebraically equivalent to the resonant
interaction of a sample of two-level atoms with a
single mode of the quantized radiation field (Dicke
model [11]):

H = Hy+ gHp = wa'a + wyS,
+g(a'S_ +aSy).
Here, S; = Z]kvzl Si(k), where N is the number of

atoms in the sample and Si(k) are the pseudospin
operators of the kth atom.

[f the initial state of the system is a given eigen-
state of § = 1 + S, + N/2, a block-diagonal form of

(16)

(17)

the Dicke interaction Hamiltonian Hp =
(a’S_ + aS4) is obtained:
0 4 0 0
A 0 A, 0
HY = ... . (18)
0 Ao 00 A
0 ... 0 Ay 0

The dimension of the matrix (18)is (2/ 4 1), and
is related to the number of atoms through 2l = N. In

)

this basis, the matrix elements of HI()S read

Ap =1 +m)(l —m+1)(2s =1 —m+1), (19)
me=—l+1,—142,... 1

Here, 2s (with s > 1) is just the (constant) eigenvalue
of the excitation number operator in the chosen sub-
space.

Under certain dynamical conditions (essentially, in
either a strong or a weak field regime), the matrix
(18) can be written as the (2[ + 1)-dimensional ir-
reducible representation of the 2.J, = J; + J_ gen-
erator of su(2) plus some additional smaller terms.
In this way, a perturbative approach to the spectrum
and dynamical properties of the Dicke model can be
developed (see [12] and references therein).

The second-harmonic-generation (SHG) analog
of the Dicke Hamiltonian is obtained when s =1.
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800/

=200 0 200

Fig. 2. Matrix elements of the Dicke interaction Hamil-

tonian HS for 200 < s < 850 (I = 200). Note that, as
faras s/l = 2s/N increases, the Hamiltonian approaches
pure angular momentum features (symmetric curve). On

the other hand, the strongest nonlinearity is obtained in
the SHG regime (s = 1).

0
-200 0

200

Fig. 3. Matrix elements of the deformed Hamiltonian H’
for0 < z < —0.0035 (I = 200). We stress that the quan-
tum deformation (with parameter z = In ¢) introduces a
nonlinearity that fits with the one coming from the atom—
photon interaction. In the case of SHG with [ = 200, the
best approximation between both models is obtained for
z = —0.0018.

This is a strongly nonlinear regime of Hp for which
the su(2) description is no longer valid, as can be
appreciated in Fig. 2, where we have assumed A4,, to
be a continuous function of m. However, if we com-
pare this plot with the function A,,(q) corresponding
to the g-deformed Hamiltonian H, it becomes clear
that we could approach the SHG model by fitting an
appropriate deformation parameter (see Fig. 3).

Therefore, let us try to approximate analytically the
Dicke/SHG operator H](DS) through a Hamiltonian of
the type

T, = QH,, (20)
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where we shall have two free parameters to be fitted:

g and 2. In order to get the closest Tj to HI()S), we can

choose both parameters in such a way that the matrix
elements A,, of H](DS)

Am(q) = QA (q)
= qu_l/Q\/[l + m]y[l —m+1],
= Q(l,m|2J;|l,m — 1)

of the Hamiltonian Ty coincide in their maxima. This
choice gives rise (for s = 1) to the following relations
defining both ¢ and € in terms of V:

VE—1

and the matrix elements
(21)

a=Nlogq= glog 5 ~ —0.7218, (22)
3/2

0= M (23)
V27N + 1],

In this way, both the maxima of A,, and flm(q)
(considered as functions of m) occur at the point
mo=—(l—1)/3.

Now, we can find the approximation for the three-
wave Hamiltonian in the form

A ~ QAR (g)p(m),
¢(m) =14 p1A — oA + p3A?,
We thus restrict the expansion up to the third-order
polynomial ¢(m). We can find explicitly the coeffi-

cients ¢; by equating the corresponding Taylor ex-
pansions around the point mq:

(24)

A:m—'mo.

21 2a? A \?
HA)=1- (g a tanh2a> (N-|- 1) (25)
27 4a? AN .
+<§+tanh2a> (N-i—l) +O(N )

Now, we may substitute A =m —mg = J, + (I —
1)/3 and rewrite (24) in the matrix form
HE ~ Q[T ¢(J. — mo)

+ ¢(Jz - mO)J—] =2Q {Jaca f(Jz)} :

Here, Ji . are generators of suq(2) and {A, B} =
AB + BA.

(26)
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The new function f(J,) is also a polynomial
of degree three, whose coefficients can be easily
found. Now the ground-state energy is approximately
given as

(—LUHS|=1,1) (27)

3
~ Q1) il =L () =LY,
k=0

Therefore, we have reduced the problem to the cal-
culation of averages of the powers of the operators .J,,
(the moments) in the eigenstates of the operator J,

(see[1]).
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Abstract—In this paper, we construct the algebra of differential forms with exterior differential satisfying
d® = 0 on the two-dimensional quantum plane assuming that the homomorphism defining first-order
differential calculus is linear in variables. Assuming d? # 0, we introduce the second-order differentials
d?z’. The commutation relations between the generators z*, dx?, and d?x® of the algebra of differential
forms, among dz*, and among d?z*, as well as between noncommutative derivatives with generators, are
found. The consistency conditions are described. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The idea to generalize the classical exterior differ-
ential calculus with d2 = 0to the case d¥ =0, N > 2
has arisen in a recent series of papers [1—5], where
the different approaches to this idea have been devel-
oped, and these generalizations have been proposed
and studied. In the paper [5], such a generalization
is provided by the notions of a graded ¢-differential
algebra and a g-differential calculus. According to the
definition given in [3], a graded g-differential algebra
is an associative unital N-graded algebra endowed
with a linear endomorphism d (g differential) of degree
1 satisfying d = 0 and the graded ¢-Leibniz rule

d(wr) = d(w)T + ¢ “wd(7), (1)

where w, 7 are any elements of the algebra, gr(w) is
the grading of an element w, and ¢ is a primitive N'th
root of unity.

Following the paper [5], we construct the exte-
rior differential calculus with d® =0 on the quan-
tum plane. Assuming that d? # 0, we introduce the
second-order differentials d?zt. In order to define the
exterior differential calculus, we find the consistency
conditions and the commutation relations between
x', dz’, and d%x?, among dz’, and among d?z’, as
well as between noncommutative derivatives with
first- and second-order differentials. We consider the
case where the map & defined in Section 2 is linear in
variables. Our construction of the exterior differential
calculus with d® = 0 naturally includes the ordinary
exterior calculus on the quantum plane with d?> =0
obtained by Wess and Zumino in [6].

*This article was submitted by the author in English.
“e-mail: nadegda®ut .ee

2. COMMUTATION RELATIONS
AND CONSISTENCY CONDITIONS

Let A be an unital associative C algebra generated
by the variables z?, i = 1,...,n, satisfying the com-
mutative relations
or (88] — B)akat =0. (2)
We are going to construct an exterior calculus on the
algebra A with differential d satisfying the Leibniz rule

d(fg) = d(f)g+ fd(g), VfgeA  (3)

and the property d® = 0. In this section, we find all

commutation relations and all consistency conditions
necessary for constructing this exterior calculus.

Following [7], we use the coordinate differential
calculi on the algebra A given by the linear map

o di A= aMy, (4)

d(f) = dz'0;(f), VfeA,

where 4M 4 is the bimodule over A generated by

the first-order differentials of generators dz’, i =

1,...,n; the partial derivatives 0; are linear maps
A — A such that
0i(fg) = 8i(f)g + & (F)dn(9),
vaQEAa ik=1,...,n,
where £ : A — A,x, is a homomorphism to the
algebra of (n x n) matrices over A defining the left

module structure of the bimodule 4M 4 by means of
the right module structure.

As follows from the Leibniz rule (3) and the defini-
tion (4), the left and right structures of the bimodule
AM 4 are consistent by the commutation relations

fdat = daFel(f), Yfe A, ik=1,...,n. (5)
Further, we suppose that the homomorphism ¢ is
linear in the variables 2%, i = 1,...,n, thatis,

f’f‘(‘rj) :Cglkxlu i,j,k,l :1,...771,

riy) = B,Z]lxk:cl

1=1,...,n,
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are linear functions, and Cflk are numerical coeffi-
cients. Then the commutation relation (5) can be
rewritten in the form

zida? = C,i]lda:kxl, i, 5,k l=1,...,n. (6)

In order to construct a consistent differential cal-
culus with the property d* = 0, we use the Wess—
Zumino first-order differential calculus [6] extending
it into a higher order. Since d* =0, we have to
introduce the second-order differentials d?z* of the
generators *, i = 1,...,n[5].

Let Q¢ (A) be the free right unital associative
module over the algebra A generated by all monomi-
als composed from powers of do?,d?z%,i = 1,...,n. I
we introduce the grading zero to the elements of A
and the grading 1 and 2, respectively, to the differen-
tials do' and d?z?, then the module Q¢(A) becomes
an N-graded module .

Assume that the differential d satisfies the graded
q-Leibniz rule (1). Now we mind that ¢ is a third-
power primitive root of 1 € Q¢ (A).

The commutation relations between x? and da/ are
defined by (6). Let us find four sorts of commutation
relations: among the first-order differentials dx?; be-
tween 2? and d%x7; between dz* and d?27; among the
second-order differentials d?z’.

Differentiating (6), we get commutation relations
among the first-order differentials and between z* and
d?z7 at once. In fact,

d(z'da? — C’li]l'dxk:cl)
= dz'da’ + 2'd?a’ — C,i{dekxl — qC’,dekdxl = 0.
Here, we assume that the terms da’da’ and z'd?a’

must cancel separately. Therefore, we have two kinds
of commutation relations

da'da’ = qCyjdzdal, (7)
rd*) = C,Zd%kxl. (8)

Differentiating (8), we get the commutation rela-
tions between the first- and second-order differentials

dr'd*z’ = qQC,ingxkdxl. (9)

Finally, the commutation relations among second-

order differentials can be obtained by differentiat-
ing (9)
d?xid*a? = qC,igd2xkd2xl. (10)

Now, we have five sorts of commutation relations:
(6), (7), (8), (9), and (10), where the last four are
obtained from relations (6) by differentiating. If we
define a multiplication law on the Q¢ (A) by these
commutation relations, then the module Q¢ (.A) be-
comes an unital associative algebra generated by
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xt, dat, d?z', i =1,..., n. Obviously, the bimodule
AM 4 is embedded into the algebra Q¢ (A).

Consider the commutation relations (7). If we
suppose that relations (9) hold, then the differentia-
tion of (7) gives the following consistency condition
for the operator C"

d(dz'dz? — qC}da* dz')
= (048] — 4C) (056, + Cl)dPada' = 0,
or in tensor form
(E12 — qC12)(Er2 + Cr2) = 0. (11)

According to the paper[6], the differentiation of (2)
gives the linear consistency condition for the opera-
tors B and C' in tensor form

(Er2 — B12)(Eq2 + Ch2) = 0. (12)

[f we differentiate relations (2) twice, we obtain the
consistency condition

(E12 — B12)(E12 + C12)(—FE12 +qCr2) = 0. (13)

Now, we can see that the conditions (11) and (12)
imply the condition (13).

As follows from the paper [6], there exist two other

sorts of commutation relations: between the deriva-
tives and the variables

0ja" = &% + Ciral oy, (14)
and between the derivatives and the first-order differ-
entials ‘ ‘

0;da’ = (C~1)dal 0. (15)

The relations (14) follow from the Leibniz rule (3)
if we consider both 9; and z° as operators. The
relations (15) can be obtained from the assumption
0jdz’ — D;’;dxlak = 0, where the tensor D is to be
determined. Multiplying the last equation by =" from
the right side and using (6) and (15), we see that the
equality

(9;dx" — D;-]fd:):i@k)xr
= D Csta® (Ouds’ — Dl daPdy,) = 0

requires D = C~1.
For constructing the consistent differential calcu-

lus with @3 = 0, we add to the obtained commutation
relations the relations between the derivatives and the
second-order differentials

0;d*a’ = (C™)jid*a' oy,
These relations can be obtained if we assume that
0jd*z — K]’fd%l@k = 0. Then, we find the tensor K
multiplying this equation by 2" from the right side and

commuting z” through to the left by the commutation
relations (8) and (14). Then, we have

(0;d*x" — KﬁdQﬂclﬁk)xr
= (C™Hgd*a" + (C™N 5 Ca 0, d* !
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— Kjjd*as' — KGOSOt dato,
= (CTHGC " (Oud?a" — (CT1)fd*2°0y) = 0,
ifK=C"1
Finally, in the paper [6], the authors show that the
commutation relations among the derivatives

0;0; = F}F 0,0,
lead to the two conditions of consistency

(B + Ch2)(E12 — Fi2) =0, (16)
C12023F 12 = F53C12C03. (17)

Comparing (12) and (16), we can easily see that, if
Fis equal to B, then (16) holds.

The equation (17)is a Yang—Baxter equation. An-
other two Yang—Baxter equations appear if we mul-
tiply the commutation relations (2) and (7) from the
right side by dz” and d?z", respectively, and, using
the corresponding commutation relations, commute
dx" and d?z" through to the left

(5,’;;5{ - B,i%)xkxldxr
= (086] — BY)CUCOksdztaat = 0,
(5,’;.5{ - C,ig)dxkdxlder
= (0L8] — OOl Cks P atdat dxt = 0.

We rewrite these two consistency conditions in tensor
form

(B2 — B12)Ca3Cradz 2023 = 0, (18)

(B2 — C12)q*Ca3Crad’x1dxadzs = 0. (19)
[ the Yang—Baxter equations

B12C33C12 = C23C12 B33, (20)

C12023C 12 = C3C12C53 (21)

hold, then the tensors B and C satisfy the condi-
tions (18) and (19).

3. EXTERIOR CALCULUS
ON THE QUANTUM PLANE

Now, we consider all commutation relations and
conditions obtained above in the case of the quantum
plane, which is the free associative unital algebra

generated by the variables 2%, i = 1,. .., n, satisfying
the commutation relation zfx? = ga*a!, i < j.
As follows from the paper [6], these relations can
be rewritten by means of the R matrix
R T
x'r) = aRZlekxl or <5,Z€5l] - gRZ.]l) a*zl =0,
where

gy y . 1 -
R =616/ (1+ (¢ — 1)67) + (q - 5) 01,076(j —4),
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it >4
it j<i;

eu—z‘)—{é

i.e., wehave B =q7! R.In [6], the authors show that
the consistency condition (12) holds if one chooses

the values qR or g~ R~ for the tensor C, i.e.,
(E—q 'R)(E+¢R) =0
or (E—q 'R)(E+q¢ 'R =0,

1

respectively, where E is the unit matrix, and ¢7* and

q are the eigenvalues of the R matrix.

We show that the consistency condition (11) is

satisfied only for the value C' = ¢ R. Here, we make
use of the identities

RP=E+(q—q "R
and R'=R+ (¢ ' —q)E.
IfC = qﬁ, we have
(E - ¢’R)(E + qR)
=(1-@)E—-(*-q+¢" - PR

As q is the third-power primitive root of unity, the
coefficients are equal to zero.

However, if C = ¢~1 B!, then

(E—RYWE+¢ 'R Y= (-2¢'E-R)
x(q2E +q'R) = (¢ — 1)(E + qR).

Therefore, we can only choose C to be qf{.

Three Yang—Baxter equations (17), (20), and (21)
reduce to the single equation

Ri2Ro3 R12 = Ro3zR12Ra3,
as was shown in [6].

By means of the R matrix, we rewrite all commu-
tation relations obtained in Section 2. Now, we have

zida! = qRZJdekxl, o) = qRZ]ldek:cl,
detdr? = qQRZ]lda:kdxl, de'd*s? = RZJZdekdxl,

1~ ) ) Ny
8;0; = —R50p0,  d*a'd*a? = PRy a d*a!,

—_
LS
—_

8jd$i = g(ﬁ’l)élfdxlﬁk, 8jd2:):" = —(ﬁ’l)élfd%l@k.

Q
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4. ALGEBRA OF DIFFERENTIAL FORMS
ON TWO-DIMENSIONAL QUANTUM PLANE

In the case of the two-dimensional quantum
plane, we denote ' = x, 22 = y. Since in the two-

dimensional case the R matrix is equal to

¢ 0 00
0g—qt10
0o 1 ool
0 0 0g¢

we rewrite explicitly all commutation relations of Sec-
tion 2:

zdx = ¢dex, zd’z = ¢*d*zx,
wdy = qdyz + (¢° — 1)dxy,

zd’y = qd®yx + (¢* — 1)d*xy,

ydx = qdzy, yd2x = quxy,
ydy = ¢*dyy, yd’y = ¢*d*yy,
dedy = qdydz, d*xzd®y = qd*yd>z,

ded*z = qd?zdz,  dyd’y = qd?ydy,
dxd®y = d*ydx + (¢ — ¢ V) d*zdy,
dyd’z = d*zdy, 0,0y = qilﬁyﬁx,
(d)? = (dy)* = (d°x)* = (d°y)* =0,
Opdr = ¢ 2dxd,, O,d%x = ¢ *d*xz,
Opdy = q ' dydy, 0pd*y = q ' d*y,,
Oydy = q 2dyd,, 0,d*y = q *d*yd,,
Oydx = (q7% = 1)dyd, + qild:cay,
8yd2x = (¢7% - 1)d*yd, + q_1d2:1:8y.
The direct calculation of d®f shows that the re-
quirements (dz)® = 0 and (dy)® = 0 imply d®f = 0.

In fact, all the terms except (dz)? and (dy)? cancel by
use of appropriate commutation relations.

We add these two requirements to the obtained
commutation relations defining the multiplication law
on the graded algebra Q¢ (A). This algebra splits

into the direct sum Qc(A) = @5, Q& (A) of its
subspaces of homogeneous elements of grading k.

Let F}; be any monomial of grading 2k on second-
order differentials

Fly = (dP2)™ ()™,
where k > 1, m1 + mg = k, and p is the multi-index
entirely determined by (m1, me). Then, the even form
we € Q2F(A) can be written as
we = Fy. foo
+ Fyp,_qy(dada fi1 + dady fi2 + dydy fa2)
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+ FQ”(,%Q)

and the odd form w, € Q2 (A) as

wo = Fy (dzfio + dy fo1)
+ Fy 1) (dzdadyho + dxdydyhaz).

dxdxdydyhao,

Differentiating w, and w,, we get
d(we) = ¢** ), (w0, + dydy) foo
— "y (Pad + dedzdyd,) f1u
— (qd*xdy + d*yda) fra + (dPydy + qdadydyd,) f2)

- qQ(k*Q)Fg(k_Q) ((Pd*xdxdydy + d*ydrdrdy)hss,

d(w,) = q%FQ’Z((dQ:): + qdzdzd,) fio
+ ddy(gdy fro + 0z for) + (d°y + qdydy) for)
+?*VEy ) (—d*odwdy + gd®ydadz)hy
+ dxdxdydy(qOrhia + Oyhar)
+ (qd*zdydy — ¢>d*ydzdy)his),

respectively. Hence, one can easily see that the differ-
ential d is the linear endomorphism of degree 1.

The direct calculation gives d*(w) = 0,Vw € Qc(A).
Thus, we have proved the following.

Proposition. The algebra Qc(A) of differential
forms with the requirement (dz)? = (dy)® = 0is a
graded differential algebra with respect to the ex-
terior differential d satisfying the q-Leibniz rule,
ie,df =0,Yf €A, d*w=0,Yw € Qc(A).
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Abstract—For a quantum Lie algebra I, let I'® be its exterior extension (the algebra I' is canonically
defined). We introduce a differential on the exterior extension algebra I'* which provides the structure of a
complex on T, In the situation when T" is a usual Lie algebra, this complex coincides with the “standard

complex.”

The differential is realized as a commutator with a (BRST) operator @ in a larger algebra T[],

with extra generators canonically conjugated to the exterior generators of I'*. A recurrent relation which
uniquely defines the operator @ is given. © 2001 MAIK “Nauka/Interperiodica”.

1. A quantum Lie algebra [1—4] is defined by
two tensors Cf; and oj7* (indices belong to some
set NV, say, N ={1,...,N}). By definition, the
matrix o7} * has an elgenvalue 1; one demands that
(P(l))m’“ C" = 0, where Py is a projector on the
eigenspace of o corresponding to the eigenvalue 1.

By definition, a quantum Lie algebra T" is gener-
ated by elements x;, i = 1,..., N, subjected to rela-
tions

XiXi — o1 XmXk = Chix. (1)

Here, the structure constants Ck obey
cr.cl=optcy Ol +ChC] (2)

ni'pj = ij = np
& ool = oncfy ol + ool

[12) ~|13) |23) ~|13)°

k sj _pk (1 _ 3|
C, qu —quanka] C‘12>013 0230120‘23>,

3)
( pJj Cn +5ncj

k
9im“~ap m)On 87

- qz( nm~'jp

(
oPs Ck _|_5sz )
(4)
)

<~ (0'230‘<112|> + C|<235‘}>)O'13 = 0'12(0'230‘<12 ‘23
The matrix a”j’“ satisfies the Yang—Baxter equation

Jij2 noks kika __ _j2j3 _kina _koks
Tivio Jj2i3 lenz = Olyig 01132 Unzjs <5)

< 012023012 = 023012023.

*This article was submitted by the authors in English.
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On the right-hand side of (2)—(5), we use Faddeev—
Reshetikhin—Takhtajan (FRT) matrix notation [5];
{1,2,3,... } are the numbers of vector spaces; e.g.,
fii= f’i is a matrix which acts in the first vector
space. Additionally, we use incoming and outcoming
indices; e.g., Ql:= Q1 and Yj1y:= 5, denote a cov-
ector with one outcoming index and a vector with one
incoming index, respectively. Thus, in this notation,

the matrix f; can be written as f; = f|<1|

Remark. Quantum Lie algebras defined by
Egs. (1)—(5) generalize the usual Lie (super)algebras.
Indeed in the nondeformed case, when

mk _ (_1)(m)(k)5;7%5;?C

is a superpermutation matrix [here, 0® =1 and (5)
is fulfilled; (m)=0,1 is the parity of a genera-
tor xm], Egs. (1) and (2) coincide with the defin-
ing relations and the Jacobi identities for Lie (su-
per)algebras. Equation (3) is then equivalent to the
Zy-homogeneity condition C%, =0 for (i) # (j) +
(k). Equation (4) follows from (3).

2. The exterior extension ' of the quantum al-
gebra I" (1) is obtained by adding new generators ~;,
i=1,...,N. The generators ~; form a “generalized”
wedge algebra. The definition of the wedge product of
the elements ~; is

Yoy A2y -+ AVny = A1-nY) @ Y2y @ Yny- (6)
Here, the matrix operator A;_.,, is an analog of the
antisymmetrizer of n-spaces. This operator can be
defined inductively (see, e.g., [6]),

n—1

Al—m = <1 + Z(_l)n_ko—an>Al—>n—la (7)

k=1
where, forn > k,

Ok—n ‘= Okk+10k+1k+2 """ On—1n-

1063-7788/01/6412-2101$21.00 © 2001 MAIK “Nauka/Interperiodica”
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Using the Yang—Baxter equation (5), one can re-
write (7) in the following three equivalent forms:

n—1
Aip = A1ﬂn1<1 + Z(—l)k0k+1<—1>

k=1

n—1
= <1 + Z(—l)k0k+1<—1> Asp
k=1
n—1
= Ay, <1 + Z(—l)”—’“a,ﬁn> ,
k=1

where
Onek ‘= On—1n """ Ok+1k+20kk+1
forn > k.

If the sequence of operators A;_,, terminates at
thestepn=h+1(A1 #0and A1, =0forn >
h), then the number h is called the height of the
operator o.

The cross-commutation relations between the
generators 7; and x; are
YyXj2y = (F12X)1) + C\<122'>)’Y|2>~ (8)
The algebra T'" is graded by the degree in the gener-
ators of ;.

3. We further introduce a set of generators {Q°},
i=1,..., N, canonically conjugated to the genera-

tors ;. The generators € form a “wedge” algebra as
well, with the wedge product defined by

QA Q=1 A oA QU (9)
=g rlg...0004,_,.
Here, the operators A;_,,, are the same as in (7).
The commutation relations between €2* and ; are
7 = =P (0 + 6 (10)
= Q¥ = —Qlo5lyy + I

Finally, the commutation relations between Q¢ and
X; are

X\Q}QQ' — Q<1‘(012X|1) 4 C‘<12|>) (11)
We denote the algebra generated by {x;}, {v;}, and
{QF} by TN[Q]. The algebra T[] is graded by the
rule deg(y;) = 1 and deg(Q2}) = —1.

We shall need the following set of consequences of
Eq. (10):
Yy Ao Ay QU (12)

= (=1 Q% gy A Aoy

+ < (—1)T_k0rik> Yy A - AVr—1)s
k=1
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“1 gl gl 1
whereo ", =0, 0 and o

r—1r rer T 1.

4. The main result of the present paper is a recur-
sive formula for the BRST operator @ which satisfies
Q*=0.

Such an operator endows the algebra I'* with the
structure of the differential (chain) complex. To con-
struct the differential (starting with the operator @),
one needs, first, to define the action of the algebra
I'*[Q] on the algebra T'. The elements y; and v; act
on I'" by left multiplication. To define the action of
generators ¢ on I'", it suffices [due to relations (10)
and (11)] to know Q¢(1), where 1 is the unit element
of the algebra I'". We set Q2¢(1) = 0. The definition of
the differential d is given by its action on an element ¢
of the algebra T'",

dé = [Q, ¢l, (1),

where [, ], is the graded commutator.

(13)

Now, we are ready to formulate the main Proposi-
tion.

Proposition. The BRST operator Q) for the
quantum algebra (1) has the form

(14)

h-1
Q=% +> Qu)
r=1

where h is the height of the operator o12.
Here, the operators Q,y are given by

Qqry = QU HUQl L QUX [T gy (15)
(the wedge product is implied); X\<11.'.'.:J|r1) are ten-
sors which satisfy the recurrent relation

l..r
A X[ A (16)
= At () oo = DX A
with the initial condition A1z X|f = —C(0).

Proof. We have to verify the identity

h—1
Q> = (2% )* + |92%x 2, Y Quy (17)

r=1 +

h—1 2
+ (Z Q(,«)> =0.
r=1
Because of the lack of space, we shall check a part of
this identity which includes the terms linear in x only.

First of all, we find [see (11)]
(91x12))2 = QP (2 (1253 + C[})) Xy (18)
=0 g Q<1‘012C|<122‘>X\2>
+ 0@ g ol - 0)120|<122‘>X‘2>
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_ @
=0 g Q<1\C|12>X‘2>.

Consider then the anticommutator [Q2®x|a), Q]+

in which we commute all y; to the right and extract
only the terms which are linear in the generators x;:

Qi Q"] = QN 1y Qpy  (19)

n Q(T)Q<T|X\r> — Q1
00+ () D) XL o )

V=1 X r) + Q<T+1‘

. Q<1X|<11_'_'_:+1>(Z(_l)r_karik>71)
k=1
W= Xy e
(ellipses denote the terms independent of x;). Here,
Egs. (8),(11), and (12) have been used.

Equations (18) and (19) give the whole contribu-
tion to the y-linear terms in Q2 since (31—} Qr)?
independent of ;.

The substitution of (18) and (19) produces the

is

initial data Ang‘%‘> = —C"<102‘> and recurrent relations
l..r r—k _—
A1Hr+1X|<1___TJ‘F1> (Z(—l) kUrik) A
k=1
= —Aipp1 (Orp1o + (1)) (20)
2.1 —
X X\<2...T|+1>Uri1‘41—>r—1v
where the matrix operator A;_,,. is defined in (7).
These relations express coefficients X|<11"'"ﬂr1> via
(1..r—1|
X|1...r> :

Using an identity ar’ilAlﬂr,l = Agﬂmil and
inductive relations (7) for the projectors A;_,,, one
can rewrite (20) in the form (16).

5. Comments.

(i) For general o} and Cy, it is rather difficult
to solve Egs. (16) explicitly. However, for the case
0% = 1, the main Eq. (16) becomes simpler and the

general solution for @ can be found. Indeed, the
relation (16) for r = 2 gives

A1_>3X\<11223l> (1 —012) = A1 (023012 — 1) X|<22?1>'

For 02 =1, we have A;_.3(093012 —1) =0 and
therefore Q) = 0 for r > 2. Thus, the BRST op-
erator (14) has the familiar form

In the case when the matrix o is the (super)permuta-
tion matrix, the algebra I'* with the differential (13)
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becomes the standard complex for the Lie (su-
per)algebra I' (see, e.g.,[7]).

In general, for 02 # 1, the sum in (14) will be
limited only by the height h of the operator o.

Below, we present an explicit form for @ for the
standard quantum deformation I" = U, (gl(IN)) of the
universal enveloping algebra of the Lie algebra gi(V)
(02 # 1in this case).

(ii) When the algebra (1) is a Hopf algebra, the
algebraic structure (6), (8)—(11) is related to the
differential calculus on quantum groups (see [2, 8—
10]). The BRST operator @ given by (14) generates
the differential d (introduced in [2]) on the algebra
dual to T

6. Example. The BRST operator @ for the quan-
tum algebra I' = U, (gl(N)).

The quantum algebra Uy(gl(N)) is defined (as a
Hopf algebra) by the relations [5]

RLFLY = LT LR, RL{LT = Ly LR,
ALF)=L* o L* L% =1,
S(L*) = (L7,
where elements of the N x N matrices (Li)é are

generators of U,(gl(N)); the matrices L™ and L~
are, respectively, upper and lower triangular; and their
diagonal elements are related by (L7){(L7)! = 1 for
all i. The matrix R is defined as R := Rjs = PiaRio

(Pyg is the permutation matrix); the matrix Ry is the
standard Drinfeld—Jimbo R matrix for GL4(N),

Riy = RV = §1152(1 4 (g — 1)6%)

(21)
(22)

J1, J2 J1J2
+ (q - qil)(s;;(S;?@nZQ’
where
o _ 41 ifi>]
i =
’ 0 ifi<j.

This R matrix satisfies the Hecke condition R? =
AR+ 1, where A = (¢ — ¢~1) and ¢ is a parameter of
deformation.

The generators of the algebra I" are defined by the
formula [9—11]
1

= 3Dk = (DA,
Here, f,?] = (L‘)ZS((L”L)é-) and the numerical ma-
trix D can be found by means of relations
try R19Wag = Pi3 = tra W1aRos,
D i =tro Vg = trl(Dflfi_l) = 1o,

where tr; and tre denote the traces over first and
second spaces.

(23)
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[t is convenient to write down the complete set of
commutation relations for the exterior algebra I'*[]
in terms of generators

Ly = (LY)pS((L7)f) = & = AS™H(x¢) D},
Jy= =T IPADL = 0
The indices now are pairs of indices; the roles of the
elements x;, ~;, and QOF are played by the generators
XG> V5o and Qz-, respectively.
The commutation relations are [10—12]

WQRiluJQR = —RiluJQRil(AJQ, (24)
C()QRLQR = RLQRCUQ,

WQRJQR + RJQRWQ = —R, (25)
LoRLyR = RLyRLs,

JoRLyR = RLyRJs, (26)

JQRJQR = —RilngJQ.

Now, the construction of the BRST operator @
is in order. To begin, we find the first term in the
sum (14):

m 1
Qb = 5 try (w(L = 1)),
where we have introduced the quantum trace
try(X) :=tr(D7'X). Then, one can resolve the
chain of the recurrent relations (16), where we have to
substitute the expressions for the structure constants

i

(27)

oty = BRI (D) R DR,
ol sagigm _ 0@"
jmy = B30T T Pimy

and find the set of coefficients X|<11_'_'_':J‘r1>. After

straightforward but tiresome calculations, one can
obtain the following result:

Q =trg(w(L —1)/A —wL(wJ)
+ AwL(wJ)? = NwL(wJ)® +...)
= trq (w(L — 1)/A = wL(wJ)(1 + AwJ) 1)

(28)

1 1
= — 5 () + 3 trg (1),

where W = wL(1 + AwJ)~! and the sum in the first
lines of (28) is limited since monomials of w’s of the
order N2 + 1 are equal to zero.

One can check directly that the operator @) given
by (28) satisfies

1
QQZOu [Q7L] :07 [Qﬂ‘]]+ = X(l_L)
To obtain these relations, one has to use identities
trq(X)lg = trql(RilXQR:Fl)
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and relations
RWQR_IWQ = _WQR_IWQR,
RWoR™ Wy = —WoRTWoR™Y,
RW,yRLy = LyRWoR ™1,
JQRWQR_I + R_IWQRJQ
= —Ly(1 4 MwJ); 'R 4 dw)o,

which follow from (24)—(26).

Remark. The operator @) given by (28) has the
correct classical limit forq — 1(A — 0, L — 1 + Ay,
w—w,J— =)

Q — Qu = tr(Ox + &*7) = tr(®X — V),
where X := ¥ + &% + A& and the classical algebra is
(W2, 7]+ = Pr2, [©2,01]+ = 0 = [¥2, 7]+,

(X2, Xi] = Pia(X2 — X1), [Xo,@1] =0 = [Xo,%1].
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1. INTRODUCTION

Quantum kinematical algebras and groups are
used for the study of g-deformed symmetries of the
q-deformed spacetime, which can be considered as a
noncommutative homogeneous space of the quantum
kinematical groups[1].

[t is well known in nondeformed Lie group theory
that, given a Lie group G and a closed Lie subgroup
K of it, the space of functions defined in the homo-
geneous space (~G/K) carries a representation of
G induced by a representation of K. Hence, sym-
metries and homogeneous spaces are closely related
to induced representations. On the other hand, the
physical interest of the induced representations is
without doubt [2, 3]. Thus, the study of the induced
representations of quantum kinematical groups can
be useful for determining the behavior of physical
systems endowed with deformed symmetries.

In this work, we present the induced represen-
tations of the quantum &K-Galilei algebra, and the
null-plane quantum Poincaré algebra, both in (1 4 1)
dimensions.

The induction procedure used by us has an al-
gebraic character since it makes use of the theory
of modules, which is, from our point of view, the
appropriate tool to deal with the algebraic structures
displayed by quantum groups and algebras [4—7]. A
similar method has been developed by Dobrev in 8, 9]
and in references therein. Both procedures deal with
the dual case, closer to the classical one, constructing
representations in the algebra sector. Also, one can
find other papers extending the induction technique to
the quantum case but constructing corepresentations

*This article was submitted by the authors in English.
YDepartamento de Matematica Aplicada a la Ingenieria, Uni-
versidad de Valladolid, Spain.

o .
e-mail: olmo@fta.uva.es

of quantum groups, i.e., representations of the coal-
gebra sector, from a mathematical perspective [10,
11] as well as physical one [12—14].

2. INDUCED REPRESENTATIONS
OF QUANTUM GROUPS

Let H be a Hopf algebra and V' a linear vector
space over a field K (R or C). The triplet (V,>, H) is
said to be a left H module if « is a left action of H on
V,ie,alinearmapa: H®V -V (a: (h®@v)+—
a(h ® v) = h>v)such that

hl > (hg > 7}) = (hlhg) >,
Vhi,he € H, Yv € V.

Right H modules can be defined in a similar way.
There are two canonical modules associated to any
pair of Hopf algebras, H, H' related by a nondegener-
ate pairing (-, -) (under these conditions (H, H', {-,-))
will be called a nondegenerate triplet):
(1) The left regular module (H, >, H) with action

hi1 > hy = h1h2, Vhl,hg € H.

(2) The right coregular module (H’, <, H) with
action defined by

<h2,h/ < h1> = <h1 - hg,h/>,
Vhi,hy € H, VH € I,
which using the coproduct in H' (A(K) = h/(1) ®

h’(z))takes the form b < h = (h, h’(1)>h’(2).

The induction and coinduction algorithms of al-
gebra representations are adapted to the Hopf alge-
bras as follows. Let (H,H’,(-,-)) be a nondegen-

erate triplet and (V,>, K) a left K module with K
a subalgebra of H. The carrier space, K', of the

coinduced representation is the subspace of H' @ V
with elements f such that

(fikh) = k> (fh),

lgpoov=nuv,

Vke K,Vhe H. (1)
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The pairing used in expression (1) is V-valued and is
defined by (' @ v, h) = (h', h)v, where h € H, h' €
H', v € V. Theaction h > f on the coinduced module
is determined by

(b1 f,ho) = (f, hah1),

Let (K,>, K) be a one-dimensional coinducing
module. The carrier space of the coinduced repre-
sentation is the subspace of H' ® K ~ H’ composed
by elements ¢ verifying the equivariance condition
¢ < k= (14k)p, Vk € K. The action of H on K'
induced by the action of K on K is given by

(hg> @, h1) = (@, h1hy), Yhi,hy € H, Yo eKI,

or explicitly by h> o = h = ¢ = (h, 0(2))¢(1)-

[t is worthy to note that, to describe the induced
module the right, (H', <, H), and left, (H', >, H),
coregular modules are both pertinent, the former to
determine the carrier space and the last to obtain the
induced action.

Let us consider a nondegenerate triplet (H, H’,
(-,-)) with two finite sets of generators, {h1,...,h,}
and {p!',... "}, such that the families {h; =
By bl hiewe and {g™= ("™ (") bmenrn
(I=(l,...,l,), m=(my,...,my)) are bases of H
and H', respectively. The action on the coregular
module (H',>, H) is obtained after computing the
action of the generators

hi =@l =Y oot
keNm

Vhe € H.

i,j€{1,2,...,n},

and extending it to the ordered polynomial ¢/ =
(@)t -+ (™) by using of the compatibility relation
between the action and the algebra structure in H'
h = () = (hay = ©)(h@) = ), (2)
hs>1g = G(h)lH/.
In order to write explicitly the expression of the action

on a general ordered polynomial, we take into account
the following:

(1) There is a natural representation p, associated
to(H,<,H),of H

[p(h2)](h1) = h1 < ha.

(2) The action on (H',>, H) can be expressed
in terms of p using the adjoint with respect to
() (ff: H — H' is the adjoint of f: H — H if
(h, fT(1))) = (f(R),h')) defined by

h= = [p(h)](¢). (3)

If the bases {h; }1enn and {¢™ }enn are dual, i.e.,
(hy, ™) =116, Vi,m e N* (where I! =[], l!,
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ot = [Iiz, 6,"), we define “multiplication” operators
h;, @’ and formal derivatives &/0h;, /9@ by
hi(hft - bl ploy = Rl plit gl

i (@)™ (@)™ ("))
= ()™ - (YTt ()
;;Li(hlll hﬁl co by = ;R "-hﬁ"_1~--h£;‘,
O e
gt (D™ (@)™ ("))
= mi(")™ - ()T ()

The adjoint operators are given by Al = 8/8¢" and
(/_DH = 0/0h,.

3. NULL-PLANE QUANTUM
POINCARE ALGEBRA

The null-plane quantum deformation of the (14 1)
Poincaré algebra, U,(p(1,1)), is a g-deformed Hopf
algebra that in a null-plane basis, {P;, P_, K}, has
the form [15]

[K7 P+] = __1(672ZP+ - 1)7

z
[K,P_]=—2P_, [Py,P_]=0;

AP, =P, ®1+1® Py,
AX=X®l+e 29X, Xe{P_ K}
e(X)=0, Xe{Py, K}

S(Py) = —Py, S(X) = —¢*Pex,

X € {P_, K}

[t has also the structure of bicrossproduct
U.(p(1,1)) = Kr4L, where K is a commutative
and cocommutative algebra generated by K, and £

is the commutative Hopf subalgebra of U.(p(1,1))
generated by Py and P_.

The dual Hopf algebra F,(P(1,1)) = K< L¥,

where K* is generated by ¢ and £* by a4 and a_,
has the following structure:

[ay,a_] = —2za_,
[aJra 90] = 22(6750 - 1)7 [CL,, QD] = Oa
Aar=ar®@e™ +1®ay, Ap=p1+1®y;
e(f)=0, fe{ax,ph

S(ay) = —are™®, S(p) = —p.

The duality between U, (p(1,1)) and F,(P(1,1)) is
explicitly given by the pairing

(K™P"PP, g% a) = minlpldi s sP.
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3.1. Coregular Modules

As we mentioned in the previous section, we
need to know the left and the right coregular mod-
UIeSv (FZ(P(L 1))7 et UZ (p(lv 1))) and (FZ(P(L 1))7
=<,U;(p(1,1))), respectively, in order to construct the
induced representations of U, (p(1,1)).

The structure of (F,(P(1,1)),>,U,(p(1,1))) is
given by

K%(gpaa)—qgoq 1araj_ (4)
1
+2rgtalal + S pla ay[(ay — 22)° — al,
z
r—1_s

az,
rsl
+

P_ > (¢%a”a%) = r¢la”
P = (¢%a” a’) = spla’a

The following equalities are basic in the demonstra-
tion of the above result (4)

P'K = KP" + 2nP",
1
P'K = KP? —n—(1—e 2P )pp1,
z
Vn € N.

The structure of (FL(P(1,1)),=<,U.(p(1,1))) is
given by

(plaa%) < K = qp?"al a3, (5)

2 r—1 as

(p?a” a) < P_ =re*¢la’"af,

(pfala%) < Py
L d . o )
i k=0’ \k

The proof of (5) starts characterizing the module
(Ux(p(1,1)),>,U.(p(1,1))). For that we take into
account the following

P_K" = (K +2)"P_,
LK — 21— e
2z ‘]
Vn € N,
which allow us to obtain easily the explicit expression

of (U(p(1,1)), =, U=(p(1,1)))
K = K™P"P{ = K™ PPt
P_ = K™P"PY = (K +2)" PPy,
Py = K™P"PY

22P+ )]’

1 1

: 22P1\j

= E(K—Z])mPf(l—e )P
1

2z =
The corresponding endomorphisms of U, (p(1,1)) are
given by

MK) =K,

e}

AP_) = P_e*ar,
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1ol 50 22P1\j
_ﬂzje I3 (1 — e22 ).
J=1
The computation of the adjoints gives
0 5 0
M) = = MP N =22
( ) 8@’ ( ) € aa_7
1 1 gl -
AP = — S L - iy
2z &~ j
7j=1
! —In [1—(3_2“’ 1—6 8‘“r }
T2

Hence, the action on (F,(P(1,1)),<,U,(p(1,1))) is
given by

0
K=—

1 _ 20
=Py = gln [1 —e (1 - ¢ )] I

The explicit action over the basis elements ¢%a” af
(5) is obtained using the series expansions of the
above expressions.

3.2. Induced Representations

Let us consider the representation of £
14 (P'PY)=a"d!, n,peN, a_,a; €C.
(7)
The carrier space, C!, of the representation of

U.(p(1,1)), induced by the character (7), is consti-
tuted by the elements of F,(P(1,1)) having the form

Blg)er0 e

The induced representation can be translated to
C[[¢]], where the action of the generators is

$p) 1K ='(0),  d(p) 4 P- = g(p)a_e*,
B(p) 4 Py = B(p) nlll - 724 (1 = ¢250)].

A sketch of the construction of the representations
induced by the character of £ (7) is as follows [5].
The carrier space of the induced representation is
characterized by the equivariance condition which,
when is described in terms of the left regular mod-
ule (F,(P(1,1)),>,U.(p(1,1))), is reduced to the
equations

0 0
&Tf_a*fa Mf_OLFfa

which are not really differential equations, except at
the limit z — 0. However, their general solution is

f=o(p)etetrt,

which is the same as that obtained working formally
with the derivatives.
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The right regular action (6) over f gives the ex-
pression of the induced representation

[p(p)e™ 2= e*+9+] < K = ¢f(p)e = e,
[p(p)e®=T=e2++] < P_ = p(p)e?Par_e™= 0=+
[p(p)e*——e ] < Py

1

- ¢(90)2_ In [1 - 67290(1 _ g2ray )] Q=0 04Oy
z

Note that in reality we have two kinds of repre-
sentations labeled by the pairs (a4,0) and (a4,1),
respectively, since we can perform the rescaling
P.— P Ja_anda- — a_a_.

Let us consider now the character of I

K'k1=c", neN, ceC. (8)

We can construct a representation of U,(p(1,1))

whose carrier space, C', is formed by the elements
of F,(P(1,1))

€C‘P¢(a_’ CL+).

The action on CT can be carried to the subalgebra £*
of F,(P(1,1)), obtaining

K+ f(a—aa-l-)
_ 8 1_ —2, 0
= |ct20-5—+ ;a+(e %ot —1)| fla—, ay),

0
Pyt fla-,aq) = Mf(a—a%)-

Effectively, the representation induced by the char-
acter of KC (8) presents an equivariance condition
described in terms of the left regular module by the
equation 9f /0¢ = cf, whose general solution is

f= €CW¢(G—7 a+)‘

The restriction of the right regular action (4) over
these elements gives the representation

K = [*¢(a_,az)

c _ 0 1_ PO -
= e C—QG—K‘F;G#@ %t —1)| ¢(a—,a4),
cp _cp 0
Py - [e%¢(a—,aq)] =€ a—¢(a—7a+)~
as

This representation is called “local type” representa-
tion because when the deformation parameter goes to
zero we recover the called local representations [3].
Note that the coefficient ¢ vanishes after the “gauge
transformation” K — K — c.

PHYSICS OF ATOMIC NUCLEI
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4. QUANTUM KAPPA-GALILEI ALGEBRA

The quantum algebra Ugz(g(1,1)), obtained by
contraction of the k-Poincaré [16], is characterized
by the following algebraic structure [17]:

[H K] =-P, [P,K]= %PQ, [H, P] = 0;
AH=H®1+1® H,
AX=X@l+er@X, Xe{PK
e«(X)=0, X e€{H PK};

S(H)=—-H, S(X)=—esf X, Xe{PK},
where & = ke, k being the deformation parameter of
the above-mentioned xk-Poincaré algebra.

The dual algebra F;(G(1,1)) is generated by z, ¢,
and v, and its Hopf structure is

[t,x] = —%x, [z,v] = 2 [t,v] = —=wv;

—
At=t®1+1®t, A:c:2,<;®1+1®x—t®v,
Av=v1+1®v;
e(f)=0, fe{vtal;

S(w)=—-v, S(z)=-z—tv, S(t)=—t.
The pairing between both Hopf algebras is given by
(K™P"HP v12"t*) = mlnlplé,"6; 6L

The action of Uz(g(1,1)) on the left coregular
module (Fz(G(1,1)), =, Uy j2z(8(1,1))) is
0 192 _0

K-T= 5t 2=2%02 oz |

0 0
P>—f:%fa H>—fzaf7

where f is an arbitrary element of F;z(G(1,1)).

The action on the right coregular module
(FF@(G(L 1))7 < Uk(g(la 1))) is given by

0 0/0x
fax="y pap=0
T 2k 0x

Now, we can obtain a family of representations of
Uz (g(1,1)) coinduced by the character

1+ P"HP = a™b?, n,p €N, a,beC,

of the Abelian subalgebra of Uz (g(1, 1)) generated by

H and P, whose carrier space C! is the set of elements
of Fz(G(1,1)) of the form [4, 6]

¢(,U)ea:v€bt.
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The action on C! can be translated to the space of
formal power series

o) K =¢/(v),  ¢v) 4P = ¢<v>ﬁ,
2K
o(v) 4 H = ¢(v) [b—i— 2/%111(1 - %av)}

The gauge transformation H — H — b allows the
“gauge equivalence” of the representations labeled
by the pair (a, b) and those parameterized by (a,0).
The “local” representation of Ui(g(1,1)) coin-
duced by the character of the Abelian subalgebra of
Uk (g(1,1)) generated by K
K"-1=,

has as support the subspace of Fz(G(1,
ments

meN, ceC,
1)) of ele-

e p(x,1).
The action of Uz (g(1,1)) carried to the subalgebra of
formal power series C[[t x]] is

o 1 _0?
Kl—gi)(sc,t):(c—ta——i— 82>¢)( 1),

0 0
= %¢(m7t)7 §¢($,t)

Also here, the label ¢ can be reduced to zero.

Note that in the limit when the deformation pa-
rameter goes to zero we recover the well-known in-
duced representations of the corresponding nonde-
formed Lie groups.

PF ¢(x,t) H & ¢(z,t) =
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Abstract—We give solutions of the quantum conformal deformations of the Maxwell and potential
equations in terms of deformations of the plane wave. Compatibility of the equations leads to an asymmetry
between the ¢ deformations of the fixed helicity constituents F* = E £ iH of the Maxwell field. Namely,
only one of F* can be written in terms of the g-plane wave, while the other can be expressed only
through the components of the g-plane wave. This asymmetry and possible alternatives are discussed.

© 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

One of the purposes of quantum deformations is to
provide an alternative of the regularization procedures
of quantum field theory. Applied to Minkowski space-
time the quantum deformations approach is also an
alternative to Connes’ noncommutative geometry [1].
The first problem to tackle in a noncommutative de-
formed setting is to analyze the behavior of the wave
equation analogs. Here, we continue the study of hi-
erarchies of deformed equations derived in [2—4] with
the use of quantum conformal symmetry. Actually, we
study the ¢ deformation of Maxwell equations and of
the potential equations. We give solutions of the ¢-
Maxwell equations using a deformation of the plane
wave [5] which is a formal power series in the non-
commutative coordinates of g-Minkowski spacetime
and four-momenta. (For the latter deformations, we
use the one from [2] since, unlike the other known
examples [6—8], it is related to a deformation of the
conformal group.) Then, we check compatibility of
these solutions with the deformation of the potential
equations. The restrictions are as in the classical
case, except that only one of the fixed helicity con-
stituents of the Maxwell field (the ¢ deformation of the
—1 helicity constituent F)~ = Ej — iF}, in the chosen
basis) can be written in terms of the g-plane wave,
while the other (the ¢ deformation of the +1 helicity
constituent I+ = E), + iF}, in the chosen basis) can

*This article was submitted by the authors in English.

YPermanent address: Institute of Nuclear Research and Nu-
clear Energy, Bulgarian Academy of Sciences, Sofia, Bul-
garia.

DInstitute of Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Sofia, Bulgaria.

" e-mail: vladimir.dobrev@unn.ac . uk;

dobrev@inrne.bas.bg

be expressed through the g-plane wave only compo-
nentwise. This asymmetry and possible alternatives
are discussed at the end of the paper.

2. PRELIMINARIES

First, we introduce new Minkowski variables,
U =T + 129,
(1)
which (unlike the x,,) have definite group-theoretical
interpretation as part of a six-dimensional coset of the
conformal group SU(2,2) (as explained in [2]). In
terms of these variables, e.g., the d’Alembert equa-
tion is

T+ =x90*tx3, V=21 — 1T,

In the g-deformed case we use the noncommu-
tative g-Minkowski spacetime of [2] which is given
by the following commutation relations (with A\ =
qa—q7 ')

wiv =g wry, 20 = ¢ O, (3)
T4To —T_Ty = AUV, DV = 0V,
with the deformation parameter being a phase: |¢| =
1. Relations (3) are preserved by the antilinear anti-
involution w:

w(rs) =zs, w(v) =07, (4)
w@)=a=q"" WA)=-N).
The solution spaces consist of formal power series

in the g-Minkowski coordinates (which we give in
two conjugate bases):

D

JmlmeZy

Y= Hintm Pjintm (5)

Pjntm = @jnému @jnému

1063-7788/01/6412-2110$21.00 © 2001 MAIK “Nauka/Interperiodica”
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(/Sjném = ,ijn xﬁ-'l_)m (6)

@jnfm =7 xf €T_ U] - w(@]nﬁm) (7)

The solution spaces (5) are representation spaces of

the quantum algebra U, (si(4)). For the latter, we use

the rational basis of Jimbo [9]. The action of U,(si(4))

on Pjnem was given in [10], and on @jpem, in [11].

Further, we suppose that ¢ is not a nontrivial root of

unity.

In order to write our g-deformed equations in com-

pact form, it is necessary to introduce some additional
operators. We first define the operators

~ g 3
MjanMn Pintm, K = +,v,7,
JjmnlmeZ (8)

>

jn,lmeZy
and Mf, M*, MJ—L, M,—f, respectively, act on @jnem
by changing by +1 the value of j, n, £, m, respectively,
while T, TE, TF, T, respectively, act on ¢jnm

by multlpllcatlon by ¢, ¢, ¢, g™, respectively.
Now, we can define the ¢-difference operators:

Hinem Tnigojnfwm K= i?”ullju (9)

. 1 .-
Do =—M"
¥ Nk
Note that when ¢ — 1, then D,, — 8,.. Using (8) and
(10), the g-d’Alembert equation may be written as
[4, 11], respectively,

(T = T e (10)

<q15,25+Tva, - 251,15@) T,T T, Typ =0, (11)

(ﬁ,m - qﬁvﬁﬁTvTﬁ) T T,¢g=0  (12)

Note that, when ¢ — 1, both Egs. (11), (12) go to (2).
Note that the operators in (8), (10)—(12) for different
variables commute, i.e., we have passed to commut-
ing variables. However, keeping the normal ordering,
it is straightforward to pass back to noncommuting
variables.

3. SOLUTIONS
OF THE ¢-MAXWELL EQUATIONS

We consider the quantum conformal deformation
of Maxwell’s equations introduced in [2], as part of
Maxwell’s hierarchy of equations. The equations of
the hierarchy are

quszqFr;L = qJnv qu:an_ = qJnv

where in the basis (6) the operators are [2]

(13)

1 . NN _
=5 ((qm + LD 1)) (14)

PHYSICS OF ATOMIC NUCLEI

2111
X T_[n+2-NyJ,—q ™ 2(15

T
VLD — AMNLD_D. T, )

X T:lfaz> T.T,T. T,

1y N B
7= 5(@,7 + MDD, TT-T;Y (15)

- q)\Mvﬁfﬁ+ T{;)T{) [n + 2 — Ng]q
1 . A~ A .
5™ (D_ n qMZDUT_)Dg T Ty,
and where, in the basis (7), the operators are

Voo
= Qq(DU 4 NLDLT. T lTv> (16)

1
X Tyln+2 = NoJ — 54" (D + NLDT-

Y AN NED_Dy T )f)zT_Tv,

1y N
oy =3 <(D,;T,;T_ Y MLDLT, (1)

g IAML,D_ 25+T_) [n+2— Ni,
_ g2 (15_ n MZﬁUTZI)ﬁg T5> T, T.T71

Note that, for ¢ = 1, (14) and (15) coincide with (16)
and (17), respectively. Maxwell’s equations 0" F),, =
Juy €uupa Ot FP? = 0 are obtained from (13) for n = 0,
g = 1, substituting the fixed helicity constituents
FEby Ft = 22(FfF +iFy) — 22F — (FfF —iFy))),
F~ =22(F[ —iFy)—22F; — (Fy +iFy), Ff =
Fro + tepemFom = Ey £ iHy, J° =z2(Jo+ J3) +
z(J1 +iJ2) + 2(J1 — iJ2) + (Jo — J3), and then com-
paring the coefficients of the resulting first-order
polynomials in z and Z.

Further, we consider the free equations, i.e., J* =
0. We shall use the fact that Maxwell’s equations
also belong to another hierarchy (introduced in [4]) for

which we know solutions in terms of deformations of
the plane wave. Let us first recall these deformations

from [12]. The first deformation is given in the ba-
sis (6):
o 1 R
equ(k,x) = Z th, (18)
s=0 q
[slg! = [slgls — g -+ [g, [0]g! =1,
_q"—q"
[n]q = q— q,l )
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qPS (a,b)

a,bneZy Fq(a —nt 1)F

¢qb—n+1)Ty(s—a—b+n+1)n],!

(19)

st a— b+nkb nka nkn n 0= nxljr nps—a— b+n’

(8°)

where the momentum components (ky,k—, k4, ks)
are supposed to be noncommutative between them-
selves (obeying the same rules (3) as the ¢-Min-
kowski coordinates) and commutative with the co-
ordinates. Further, I'y is the ¢ deformation of the
I function, of which here we use only the properties
Ly(p) =[p—1]4! forpe N, 1/Ty(p )—OforpEZ,'

P.(a,b) is a polynomial in a,b. Note that (h)|,=1 =
(k- x)* and thus (exp,(k, x))\q,l = exp(k - z). This
g-plane wave has some properties analogous to the
classical one but is not an exponent or ¢ exponent,
(cf. [13]). This is enabled also by the fact (true also
for ¢ = 1) that solving the equations may be done in

terms of the components h,. This deformation of the
plane wave generalizes the original one from [5] to

S

p=0

q(s p)(p—1)+p

[Plg!ls — plg!’

obtain which one sets Ps(a,b) = 0, in which case we
shall use the notation f5 for the components from [5]

since
(hs>Ps(a,b):0 =Js

Each h, satisfies the g-d’Alembert equation (11) on
the momentum ¢ cone:

5'27 = k7k+ — q_lkvk{) = ,I{j+,l{j7 — quk{) =0.

(20)

(21)

The second deformation is given in the basis (7):

where Qs(a,b) are arbitrary polynomials. If the lat-
ter are zero, then exp,(k,z) becomes the g-plane

__ - 1 -
exp,(k,x) = ——hs, (22)
otk ) = 2 7
s—a—b n(2a+2b 2n—s)+ a(a—s—1)+b(s—a—b+1) ,Qs(a,b)
I‘ a—n—l—l) gb—n+1)Ty(s—a—-b+n+1)nl,!
Xk‘nka nkb nks a—b+n F5—a— b+n b 0= nvn’
( ) Zq(p s)(p— 1)+
8 —
where A} is hg with

The hg have the Py(a,b) = P}t (a,b) = Rs(a) + Bsb,  (26)

wave deformation found in [11].

same properties as the hg, but the conjugated basis

is used; in particular, they satisfy the ¢-d’Alembert

equation (12) on the momentum ¢ cone (21).
Further, we shall restrict ourselves to the basis (6).
The solutions of the first equation from (13) are

1 -
o =) = E (24)
s=0 [s]q'
2 —m+1
Ef =) an ( (ky — qz+BS+S+4kaZ)> (25)
m=0 =0

1
% H (ky—qj+BS+S+4k_z) ﬁj,
j=—m+42

PHYSICS OF ATOMIC NUCLEI

45+ and By are arbitrary constants, and Rg(a) is
an arbitrary polynomial in a. Note that the factors
preceding hf depend on B, but not on Py(b). The
check that (24) is a solution is done for commu-
tative Minkowski coordinates and noncommutative
momenta on the ¢ cone. In order to be able to write
the above solution in terms of the deformed plane
wave, we have to suppose that the 45", Bs + s for
different s coincide: 45t = 4;F | e.g.; we can make the
choice B, = B’ — s — 4. Then we have

—m+1
( IT (ks -

1=0

qi+B,kgz)> (27)

Vol.64 No. 12 2001
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1
< | I o — k%) | &7 (k).
j=—m+2
where &B;(k, ) is exp,(k, z) with the choice (26).

The solutions of the second equation from (13) are
(cf. [12])

o) 1 .
Fy = —F, (28)
o =0 [s]q!
2 -m
Br=3 50 (H (ks — g~k z)) (20)
m=0 i=—1
0
x| I - k2| by,
j=—m+1
where A7 is hy with
Ps(a,b) = P, (a,b) = Csa+ Qs(b),  (30)

A&~ and Cj are arbitrary constants, and Q(b) is an
arbitrary polynomial. For Q4(b) = 0 = Cy, we recover
the solutions given in [14] in terms of the ¢-plane
wave from [5]. In order to be able to write this so-
lution in terms of the deformed plane wave, we have
to suppose that the 4;~, C; for different s coincide:
Y5~ =m, Cs = C. Then, we have

2 -m
o ( I = - qf—%a) (31)

m=0 i=—1

qFo_ =

0
x| I (ks—d Ck-z) | &, (k,2),
j=—m+1
where exp,, (k, x) is exp,(k, x) with the choice (30).
We shall consider also the potential g-Maxwell
hierarchy [3]:
oln_14A" =4 Frja qITJerlqAn =q £y (32)
From this for n = 0 and ¢ = 1, one obtains 8[/“4,4 =
FNV USil’lgAO = ZZ(A() + Ag) + Z(Al =+ ZAQ) =+ E(Al —
iAg) + (Ag — Asz).
We start with solving the second equation in (32)
for ,A® with ,F;~ given by (29). We write

2113

Substituting, we take into account that the action
of (I, converts h_,, into hg, but this requires
Pry(a,b) = Pr(a,b) = P(a,b) = Ca+ Q(b) =
Ca + Bb (in the last step, we use the fact that Q(b)

has to be linear in b and any constant term would be
absorbed in the constants 4). Then, comparing the

coefficients of 1, Z, 22, we obtain, respectively,
(q*P2A% (k)ky + ¢ P A3 (k)ky )y
= —2d(35 KL + A7 kako + 457 RDAL,
(q8+2+BAi (k)k‘_ _ qurlJrBJrCALEk,T7
— AL (R)ky + gAY (R) kB
= —2d,[2)4q 35 koks + 37 koko + 35 k-ka)hy
(TP A (k) + g 2 A% (K)ky)hy
= 2dsq 2T HASTRS + AT Rk + 457 k2 )hy,

ds = B°/B"+.
Note, however, that only two of these three equations
are independent when they are compatible (see be-
low). Furthermore, we see that A? (k) should be linear
in k and in fact should be given as follows:
AL (k) = Noky +vik_ A% (k) = Nky + 07 kg,
(36)
A (k) = Noky + vyks, AS(k) = Aok + vpky,
where for the constants we have
)\f) = _2d8q1+B’3/8_7 >\s - _2d8q7872’3/‘29_7

(35)

(37)

Vg — _qs+4+Byi _ 2d5q2+B’7f_,
A =2dyq' TPORT, MG = 2deq 2O
Vfr — _qs+4+BVg + 2d8q2720;y(19—’
C=-B,

where the last condition arises from compatibility be-
tween Eqgs. (35).

Now, we substitute this result for ;A" into the first
equation in (32). It turns out that we obtain a result
compatible with the general solution (25) only when
B = C =0. Thus, in fact ;A is given in terms of the
original components fs11 [cf. (20)]. Furthermore, the
action of ;1= converts f,1 into h with Py (a,b) =
B,b = —2b. The result is

qAO =ZzA4 + zA, + ZA5 + A (33) . o i)
© 1 07— Fs :qlflqu = —q T (38)

= Wquherl’ 5 R

s=0 I’ X (ky — ¢ T2 2ky) (ky — ¢* 32k AT,
1 . which is a special case of the general solution (25)
Ap = Ag(k,z) =D WAZ(k)hs_—i—lv (34)  with 45T =45t =0, AT = —¢tH(us + v5)/2d,.
s=0 q_ Thus, the resulting ,Fy is not given in terms of the
K=+,0,0 g-plane wave (only componentwise).
PHYSICS OF ATOMIC NUCLEI Vol.64 No.12 2001
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Let us now repeat the calculations in the other
order; namely, we solve the first equation in (32) for
4AY with Fi" given by (24), (25), but, since we want
this to be compatible with what we obtained above,
we take P (a,b) = —2b. We use again the decompo-

sition (33) but with f,41 instead of ﬁs+1. Substituting
and comparing the coefficients of 1, z, 22, we obtain,
respectively,

(T A% (k)ky + ¢ P2 AS (k) Ky )R
= — 2 (TR + AT kot + 45T KA
(¢® A% (k)k— + ¢*TT A3 (k)ks
— q AL (k)ky — q P AS (K)ky)hT
= —2d, (204 (35 kuk— + 45 ok + 45Tk k)BT
(a2 A% (k) ks + q A5 (k) k)b
= 2d, (35K + 45Tk ks + 45T k2R

(39)

Now, instead of (36), we have
Ai(k) = Mi—kﬁ + l/j_k‘_’ As—(k) - Ms—kv + l/ik-i—v
(40)
Ay (k) = k- + vpky, AG(K) = pgky + viko,
where from the constants p®, v only six can be de-
termined (due to the gauge freedom). Making some

choice, we find

pt o= —2dyq TIAST, ps = —2dq AT,

v = —v° —2d,q "5,
py = 2435, = 2dsq*As T,

vi = —vi + 2ds*4; T

(41)

Now, we can substitute this result for ,A° into the
second equation in (32). The action of /T, converts
fs+1 into fs, and we obtain for the components

e mat+viet?)
s 2d

x (ky — q 'kp2) (ks — k_2) fs,
which is consistent with the solution (29) with 45~ =
45T =0, 45 = —(viqg 2+ v ¢*t?)/2d,. Thus, in
general, the resulting ,F;” is not given in terms of the
q-plane wave (only componentwise).

(42)

Finally, we impose that we use the same ,A° for
Ft and F~. Then, instead of (36) and (40), we have
AL (k) =vik_, A’ (k)=1vky, (43)
Ay (k) = vk, AZ(K) = vk,
where from the four constants in (43) only three can
be determined since their sum is zero,

vi+vi vy 4y =0, (44)

PHYSICS OF ATOMIC NUCLEI
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and using (37) and (41) we have
vi = —¢* " — 2d,q%55, (45)
v =-v’ — 2d5q7572’7‘f+,

vi= ¢t 24, A7),
The disappearance of the constants A%, u* is consis-
tent with 45F = 45% = 0. Substituting (41)into (38),
(42) we obtain, respectively,

Ef =470 g (ky — ¢° 2k (46)
x (ky — ¢* 32k )R,
Fo =47 (ky — q Yk2) (ks — k_2)fo.  (47)

We stress that for each s there are only three in-
dependent constants: fyfi, v?, the latter entering
only the expressions for the ¢ potentials and being a
manifestation of the gauge freedom. We can eliminate
the A_ components by setting v* = 0 and/or the A
components by setting 457 = —45~ — ¢**2v% /2d;.

Finally, we note that we can write ,F{;” in terms of
exp,(k,x) but not (F; because of the s dependence
in the prefactors. If we use the basis (7), the roles of
.Fy and ,F” would be exchanged.

If we want ,Fi© on an equal footing, one should
consider ,F; in the basis (6) and ,F," in the basis
(7). However, then one should use two different ¢
potentials and furthermore should ensure that the two
are not mixed because of Egs. (32); i.e., the g poten-
tial obtained from solving from one of the Egs. (32)
should give zero contribution after substitution into
the other. This is easy to ensure through the gauge-
freedom constants in the ¢ potentials; e.g., setting

Vs + 5 =0, we find that F7 = 0in (38). Thus, the
fields ,F, and ,F;” may be seen as living on different
copies of g-Minkowski spacetime, similarly to the two

four-dimensional sheets in the Connes—Lott model
[15]. We shall investigate this possibility elsewhere.
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Abstract—We briefly report on our result that the braided tensor product algebra of two module algebras
A1, As of a quasitriangular Hopf algebra H is equal to the ordinary tensor product algebra of A4; with a
subalgebraisomorphic to Az and commuting with A, provided there exists a realization of H within A;. As
applications of the theorem, we consider the braided tensor product algebras of two or more quantum group
covariant quantum spaces or deformed Heisenberg algebras. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION AND MAIN THEOREM

As is well known, given two associative unital
algebras Aj, Ay (over the field C, say), there is an
obvious way to build a new algebra A which is as
a vector space the tensor product A = A; ®c Ay of
the two vector spaces (over the same field) and has
a product law such that A; ® 1 and 1 ® Ay are sub-
algebras isomorphic to .A; and Ajg, respectively: one
just completes the product law by postulating the
trivial commutation relations

(1®a2)(a1®1) = (a1 ® 1)(1 ®az) (1)

for any a1 € A4, ao € As. The resulting algebra is
the ordinary tensor product algebra. With a standard
abuse of notation, we shall denote in the sequel a; ®
as by ajas for any a1 € A, ao € As; consequently,
(1)becomes

G201 = a10a3. (2)

If Ay, Ao are module algebras of a Lie algebra g,
and we require A to be too, then (2) has no alternative,
because any g € g acts as a derivation on the (algebra
as well as tensor) product of any two elements, or,
in Hopf algebra language, because the coproduct
A(g) = gy ® g2y (at therhs we have used Sweedler
notation) of the Hopf algebra H = Ug is cocom-
mutative. In this paper, we shall work with right-
module algebras (instead of left ones) and denote by
q: (a,g9) € A; x H— a;<dg € A; the right action;
the reason is that they are equivalent to left comodule

*This article was submitted by the authors in English.

DAlso at INFN, Sezione di Napoli, Italy.

DSektion Physik, Ludwig-Maximilian Universitat Miinchen,
Germany.

$Sektion Physik, Ludwig-Maximilian Universitat Miinchen,
Germany, also at Max-Planck-Institut ftir Physik,
Miinchen, Germany.
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algebras which are used in much of the literature. In
[1], we give also the corresponding formulas for the
left-module algebras. We recall that a right action
<a:(a,g9) € Ax H— a<g € Aby definition fulfills

a<(gg) = (a<g)ag, (3)
(ad’) ag = (a<gay) (@' <g@e). (4)

If we take as Hopf algebra H a quasitriangular
noncocommutative one like the quantum group U,g,
as A; some H-module algebras, and we require 4
to be a H-module algebra too, then (2) has to be
replaced by one of the formulas

asa1 = (a1 < R(l)) (a2 < R(2)), (5)
asa1 = (a1 < R_1(2)) (a2 < R_l(l)). (6)

This yields instead of A two different braided tensor
product algebras [2, 3], which we shall call AT =
A1@1TAs and A™ = A1®@7 Ay, respectively. Here,
R=RM @R® e Ht @ H~ denotes the so-called
universal R matrix of H [4], R™! its inverse, and H*
denote the Hopf positive and negative Borel subal-
gebras of H. If, in particular, H is triangular, then
R~ = Ra1, At = A~ and one has just one braided
tensor product algebra. In any case, both A" and
A~ go to the ordinary tensor product algebra A in the
limit ¢ — 1, because in this limit R — 1 ® 1.

The braided tensor product is a particular example
of a more general notion, that of a crossed (or twisted)
tensor product [5] of two unital associative algebras.

In view of (5) or (6), studying representations
of A* is a more difficult task than just studying
the representations of Ay, A5 and taking their tensor
products. The degrees of freedom of A;, .49 are, so
to say, “coupled.” One might ask whether one can
“decouple” them by a transformation of generators.

1063-7788/01/6412-2116$21.00 © 2001 MAIK “Nauka/Interperiodica”



DECOUPLING BRAIDED TENSOR FACTORS

As shown in [1], the answer is positive if there re-
spectively exists an algebra homomorphism o} or an
algebra homomorphism ¢

goit:.AlﬂHi—).Al, (7)
acting as the identity on A1, namely, for any a; € A3
¢i(a1) = ar. (8)

(Here, A;xH?* denotes the cross product between
A and Hi.) In other words, this amounts to assum-
ing that @] (H") [respectively, p] (H™)] provides a
realization of HT (respectively, H~) within A;. In
this report, we summarize the main results of [1]. The
basic one is the following theorem:

Theorem 1[1]. Let {H, R} be a quasitriangular
Hop[ algebra and HY,H~ be Hop[ subalgebras
of H such that R € HT @ H~. Let Ay, Ay be re-
spectively an H™- and an H~-module algebra,
so that we can define AT as in (5), and pf be a
homomorphism of the type (7),(8), so that we can
define the map x* : Ay — AT by

xT(az) == ¢ (RW) (a2 «RP). (9)

Alternatively, let A1, Ay be, respectively, an H™ -
and an HT-module algebra, so that we can define
A~ as in (6), and p; be a homomorphism of the
type (7), (8), so that we can define the map x:
Ay — A by

X (ag) := o] (R71@) (ay « R, (10)

In either case, x* are then injective algebra ho-
momorphisms and

[xF(as), A1) = 0; (11)

namely, the subalgebras Af := x*(As) ~ Ay
commute with Ay. Moreover, A* = A; @ AF.

The last equality means that A* are, respectively,
equal to the ordinary tensor product algebra of A
with the subalgebras fl;t c A%, which are isomor-
phic to As!; x™ and chi~ will be called “unbraiding”
maps.

We recall the content of the hypotheses stated in
the theorem. The algebra A; x H* as a vector space
is the tensor product A; ®c HT; as an algebra it has

subalgebras A; ® 1, 1 ® H and has cross commuta-

tion relations
a1g = g(1y (a1 9 g(2)) (12)

for any a; € A; and g € H*. goli being an algebra
homomorphism means that for any &, & € AyxH®*
1 (E€) = 91 (€) @i (€)). Applying ¢y to both sides
of (12) we find ap™* (9) = ™ (g(1))(a 2 g(z)).
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Of course, we can use the above theorem itera-
tively to completely unbraid the braided tensor prod-
uct algebra of an arbitrary number M of copies of Aj;.
We end up with the following corollary:

Corollary 1. /[ Ay isa (right-) module algebra
of the Hopf algebra H and there exists an algebra
homomorphism o} of the type (7), (8), then there
is an algebra isomorphism

A1@+"'@+A1%~Al®“'®fll-
M times

(13)

M times
An analogous claim holds for the second braided
tensor product if there exists a map ¢y .

2. THE UNBRAIDING
UNDER THE x-STRUCTURES
A* (as well as A7) is a x-algebra if H is a Hopf
x-algebra, A1, Ay are H-module x-algebras (we shall

use the same symbol * for the x-structure on all
algebras H, A1, etc.), and

R* =R} (14)
(here, R* means RMW* @ RZ*). In the quantum
group case, (14) requires |¢| = 1. Under the same
assumptions, also A;xH is a x-algebra. If goit ex-
ist, setting <p’1i 1= %0 <p1i o *, we realize that also
@) are algebra homomorphisms of the type (7),
(8). If such homomorphisms are uniquely deter-
mined, we conclude that @I—L are x-homomorphisms.
More generally, one may be able to choose gpli as
x-homomorphisms. How do the corresponding x*
behave under x?

Proposition 1 [1]. Assume that the conditions
of Theorem I for defining x+ (respectively, x~) are
fulfilled. ITR* = Rt and ¢ (respectively, @7 ) is
a x-homomorphism, then x™ (respectively, x™) is
too. Consequently, Ay, ftQi are closed under .

3. APPLICATIONS

In this section, we illustrate the application of
Theorem 1| and Corollary 1 to some algebras H, A;
for which homomorphisms @f are known. H will
be the quantum group Uysl(N) or Ugso(N), and A,
is the Uysl(N)- or Ugso(N)-covariant Heisenberg
algebra (Section 3.1), the Uyso(N)-covariant quan-
tum space/sphere (Section 3.2). In [1], we have
treated also the U;so(3)-covariant g-fuzzy sphere. As
generators of H, it will be convenient in either case
to use the Faddeev—Reshetikhin—Takhtajan (FRT)
generators [6] LT¢ € HT and £L~¢ € H~. They are
related to R by

£y =RWpHRD), (15)
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L7 = pt(RTIO)RC),

where pf'(g) denote the matrix elements of g € U,g in
the fundamental N-dimensional representation p of
U,g. In fact they provide, together with the square
roots of the elements Eiﬁ, a (overcomplete) set of
generators of U, g.

3.1. Unbraiding “Chains”
of Braided Heisenberg Algebras

In this subsection, we consider the braided tensor
product of M > 2 copies of the U,g-covariant de-
formed Heisenberg algebras D, g, g = sl(N), so(N).
Such algebras have been introduced in [7—9]. They
are unital associative algebras generated by z‘,9;
fulfilling the relations

Paﬁjka-a- =0, (16)

wherey = ¢'/V 1, respectively, forg = sl(N), so(N),
and the exponent e can take either value e =1, —1.
R denotes the braid matrix of U,g [given in formu-
las (A.1)], and the matrix P, is the deformed antisym-
metric projector appearing in the decomposition (A.2)
of the latter. The coordinates ¢ transform according
to the fundamental N-dimensional representation p
of U,g, whereas the “partial derivatives” transform
according to the contragredient representation,

2 ag=pi(g)a’, Bi<ag=0hpl(S"g). (17)
In our conventions, the indices will take the values

Pahkx ¥ =0,
8200] = (5;

i=1,...,N if g = sl(N), whereas if g = so(NN) they
will take [10] the values i = —n,...,—1,0,1,...n
for N odd, and i = —n,...,—1,1,...n for N even;

here, n := [N/2] denotes the rank of so(N). We shall
enumerate the different copies of D, ¢ by attaching to
them an additional Greek index, e.g., a =1,2,..., M.
The prescription (6) gives the following “cross” com-

mutation relations between their respective genera-
tors (o < B):

i .87 _ DU hask __ pkh
xa’zxﬁj = R}kaﬁ % y 8a,i8ﬁ7j = Rjz‘ 8@}18@7]“

(18)
8a,z‘xﬁ’j = Rilf}??ﬁﬁ’k@a,h, 5ﬁ,i9€a’j = Rggxa’kaﬂ,h'

Algebra homomorphisms ¢y : Ay xH — Ay for
H = U,g and A, equal to (a suitable completion of)
D, g have been constructed in [11, 12]. This is the
q analog of the well-known fact that the elements of
g can be realized as “vector fields” (first-order differ-
ential operators) on the corresponding g-covariant
(undeformed) space, e.g., p1(E}) = 205 — 58} in
the g = sI(N) case. The maps ¢ needed to apply
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Theorem 1 are simply the restrictions to A; xH7 of
p1of[11, 12].

The unbraiding procedure is recursive. We just
describe the first step, which consists in using the
homomorphism goli to unbraid the first copy from the
others. According to the main theorem, if we set

yh' =l Oy1,a = 01,4, (19)
Y =X (e (20)
= LRI RTID)a = oy (L)a,
then
Jy,0a =X (Oaa) (21)

= p1(SRT)pd (RN, 4 = 01(SL™ )00

with & > 1. By Theorem 1, y' = 2! and 9,1, =
o1 will commute with 2%, ...,y™" and 9,24, ...,
Oy, Mi- As we see, the FRT generators are special be-
cause they appear in the redefinitions (20), (21). The
explicit expression of ¢y (£L7%) in terms of ', 9 , for
U,sl(2),Ugso(3) has been given in [1]. For different
values of N, it can be found from the results of [11,
12] by passing from the generators adopted there to
the FRT generators.

By completely analogous arguments, one de-
termines the alternative unbraiding procedure for
the braided tensor product stemming from prescrip-
tion (5).

AyxH is a x-algebra and the map ¢ is a
s-homomorphism for both ¢ real and |¢| = 1. But i
are x-homomorphisms only for |¢| = 1. In the latter
case, the x-structure of A; is

(@) =a', ()" = 9kiOh.  (22)
Applying Proposition 1 in the latter case, we find
that « maps A; as well as each of the commuting
subalgebras Aj-t into itself.

:I:N kh

3.2. Unbraiding “Chains” of Braided Quantum
Euclidean Spaces or Spheres

In this subsection, we consider the braided ten-
sor product of M > 2 copies of the quantum Eu-

clidean space Rflv [6] (the Uyso(N)-covariant quan-
tum space), i.e., of the unital associative algebra gen-
erated by x* fulﬁllmg the relations (16)q, or of the quo-
tient space of RN obtained by setting 2
1 [the quantum ( — 1)-dimensional sphere SN™'].
(Thus, these will be subalgebras of the Heisenberg
algebras D g(ny, Dy so(n) considered in the previ-
ous subsection.) Again, the multiplet (z%) carries
the fundamental N-dimensional representation p of
Ugys0(N). As before, we shall enumerate the different

_x;pz_
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copies of the quantum Euclidean space or sphere by
attaching an additional Greek index to them, e.g.,
a=1,2,...., M. The prescription (6) gives the cross
commutation relations (18);.

According to [13], to define @I—L (for ¢ # 1), one
actually needs a slightly enlarged version of Rév (or
Sé\H). One has to introduce some new generators
V/Ta, With 0 < a < N/2, together with their inverses

(\/Ta) ™1, requiring that
= Z xhxh = Z 9hk$h$k (23)
h=—a h=—a
(note that, having set m:=[N/2], 72 coincides
with 72, whereas for odd N 7% = (2°)2, so we

are adding also (z)~! as a new generator). In
fact, the commutation relations involving these new
generators can be fixed consistently and turn out
to be simply g-commutation relations. = plays
the role of “deformed Euchdean distance” of the
generic “point” (z°) of R from the “origin”; r,

is the “projection” of r on the “subspace” x? =0,
|i| > a. In the previous equation, gnr denotes the
“metric matrix” of SO,(N), gi; = g% = qi6; _;,
which is a SO4(IN)-isotropic tensor and a defor-

mation of the ordinary Euclidean metric.  Here,
(pi):::(rz—— 1/2,...,1/2,0,—-1/2,...,1/2 —n) for
N odd and (p;) := (n—1,...,0,0,. l—n)forN

even. g;; is related to the trace prOJector appearing in

(A.2) by Ptkl = (¢°™gsm) 19" gr;. The extension of
the action of H to these extra generators is uniquely
determined by the constraints the latter fulfil. In the
case of even N, one needs to include also the FRT
generators £*1, £~} (which are generators of H)
among the generators of A;. In the Appendix, we
recall the explicit form of @I—L in the present case. Note
that the maps of have no analog in the “undeformed”
case (¢ =1), because A; is Abelian, whereas H
is not.

The unbraiding procedure is recursive. The first
step consists of using the homomorphism <p1 found in
[13] to unbraid the first copy from the others. Follow-
ing Theorem 1, we perform the change of generators
(19)1, (20) in A~. In view of formula (A.3), we thus
find

= " b g1y 2, (24)

a>1.
The suffix 1 in . means that the special elements j,
defined in (A.4), must be taken as elements of the first
copy. In view of (A.4) we see that g"*[u}, z5¥],gx;
are rather simple polynomials in z* and r; !, homoge-
neous of total degree 1 in the coordinates ¢ and r,,.
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Using the results given in the Appendix, we give now
the explicit expression of (24), for N = 3:

«

_ (A

Yy = —qh%—owa’ ,
1

y*0 = /q(q + )—x x T~
-

Yot = Vialg+1) —

~ hyra®
qil +1 +,.a,0 1 0,.0,+
e+ ahyr "

forany o = 2,..., M. Here, we have set 2 = 2 h =

V@ — 1/,/q; replaced for simplicity the values —1,0, 1

of the indices by the ones —,0,+; and denoted by

71 € C a free parameter. By Theorem 1, y = 2
commutes with y?7, ...,y

The alternative unbraiding procedure for the

braided tensor product algebra stemming from pre-

scription (5) arises by iterating the change of genera-
tors

(25)
+ xa,O’

)Qxa,—

y/Mz . xMZ y/a,i . QOM(£+§-)$QJ
= g, 2™ gy 27, o< M.

The special elements fi, are defined in (A.4), and the
suffix M means that we must take fi, as an element
of the Mth copy of RY (or SN=1). yMi =M
M—1,i

(26)

commutes with ™%, ..., y
When |g| = 1, by a suitable choice (A.6) of 71, 71,
as well as of the other free parameters ~,,%, appear-
ing in the definitions of & for N > 3, one can make
©* into x-homomorphisms. Applying Proposition 1
in the latter case, we find that * maps A; as well as
each of the commuting subalgebras .,[l;t into itself.

APPENDIX

The braid matrix R is related to R by Rﬁfk =
RY, = (p), @ pi)R. With the indices” convention
described in Sections 3.2 and 3.1, R is given by

R:q_l/N[qZ€§®6§
i
+Zef®e§-+k2€§®eﬂ,

(A.1)

i#] i<j
heiYded+ Y dod
i#0 i),
ort=j= 0
+q ') elwe,
70

pz+P]€ ® Cj )
—1

+k> (e

1<j
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for g = sl(N), so(N), respectively. Here, e;'- is the
N x N matrix with all elements equal to zero except
fora1intheith column and jth row. The braid matrix
of so(N') admits the orthogonal projector decomposi-
tion

R=qPs—q 'Patq P (A2)
Pa, P, and Ps are the g-deformed antisymmetric,
trace, and trace-free symmetric projectors. There are
just two projectors P,,Ps in decomposition of the
braid matrix of si(V); the latter is obtained from (A.2)
just by deleting the third term.

We now recall the explicit form of maps ¥ for the
quantum Euclidean spaces or spheres. We introduce
the short-hand notation [A, B], = AB —zBA. In
[13], we have found algebra homomorphisms o= :
R xUFso(N) — RY. The images of ¢~ (respec-
tively, ™) on the negative (respectively, positive)
FRT generators read

e (L75) = g™ [un, 2% qgn5,
§0+(£+;) - gZh[/jha xk]qflgkjv

(A.3)

where
Mo = ’Yo(fvo)fl, o = %(:co)’1 for V odd;
p1 =y (@) LT, iy = A (@) 7L
for NV even; (A4)

~1 -1 —
Ha = YaT|q T|q)—1T ‘4

fla = ’%7“[1‘17“[1‘1_190_& otherwise,

and 7,,7, € C are normalization constants fulfilling

the conditions

Yo =—q Y27, 5y =¢"Y?h" for N odd;

—1p—2
—q~h for N odd
MY-1 = (A.5)
k=2 for N even;
o —qgh™2 for N odd
MY-1=
k=2 for N even;
YaV—a = _q_lk_2wawa717 YaV—a = _qk_2wawa71
fora > 1.

Here, k :== ¢ — 1/q, w, := (¢”* + g~ P*). Incidentally,
for odd N one can choose the free parameters v,, 7,
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in such a way that o+, ¢~ can be “glued” into an al-
gebra homomorphism ¢ : RY xUgso(N) — R [13].
When |g| = 1, the *-structure is given by (z*)* = 2*
[see (22)]. It turns out that T are x-homomorphisms
if, in addition,

Vi = —v41 il N even; (A.6)
1 if <0
Yo =" hoa otherwise.
g 2if a>0
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Abstract—Possible contractions of quantum orthogonal groups which correspond to different choices of
primitive elements of Hopf algebra are considered and all allowed contractions in Cayley—Klein scheme
are obtained. Quantum deformations of kinematical groups have been investigated and have shown that
quantum analogs of (complex) Galilei group G(1,3) do not exist in our scheme. © 2001 MAIK “Nau-

ka/Interperiodica”.

1. INTRODUCTION

Contraction of Lie groups (algebras)is a method of
obtaining new Lie groups (algebras) from some initial
ones with the help of passage to the limit [1]. One
may define contraction of algebraic structure (M, *)
as the map ¢, : (M, *) — (N, «’), where (N, ) is an
algebraic structure of the same type, isomorphic to
(M, ) for € # 0 and nonisomorphic to the initial one
fore = 0. Except for Lie group (algebra) contractions,
graded contractions [2, 3] are known, which preserve
the grading of Lie algebra. Under contractions of
bialgebra [4], Lie algebra structure and cocommuta-
tor are conserved. Hopf algebra (or quantum group)
contractions are introduced in such a way [5, 6] that
in the limit e — 0 new expressions for coproduct,
counit, and antipode are consistent with Hopf algebra
axioms.

Contractions as a passage to limit correspond with
physical intuition. At the same time, it is desirable to
investigate contractions of algebraic structures with
the help of pure algebraic tools. It is possible for
classical and quantum groups and algebras if one
takes into consideration Pimenov algebra D(¢) with
nilpotent commutative generators [7].

In the present paper, contractions of quantum or-
thogonal groups are studied and the groups under
consideration are regarded according to [8] as an
algebra of noncommutative functions but with nilpo-
tent generators. From the contraction viewpoint, the
Hopf algebra structure of quantum orthogonal group
is more rigid as compared with the group one. Possi-
ble contractions essentially depend on the choice of
primitive elements of Hopf algebra. We have con-
sidered all variants of such choice for the quantum
orthogonal group SO, (V) and for each variant have

*This article was submitted by the authors in English.

o . .
e-mail: gromov@dm.komisc.ru

found all admissible contractions in Cayley—Klein
scheme.

2. ORTHOGONAL CAYLEY—KLEIN GROUPS

Let us define Pimenov algebra D,,(¢; C) as an as-
sociative algebra with unit over complex number field
and with nilpotent commutative generators tg, 12 =
0, ity = tmtp 0, k#m, k,m=1,... ,n. The
general element of D,,(¢; C) is in the form

d=do+> > dikylhy -tk (1)

p=1k1<...<kp
do, dkl...kp e C.

[t is possible to define the division of nilpotent gen-
erator ¢ by itself, namely, (/1 =1, k=1,...,n.
Let us stress that the division of different nilpotent
generators t;/t,, k # p, as well as the division of
complex number by nilpotent generators a/vx, a € C,
is not defined.

Let SO(N;C) be an orthogonal matrix group.
Its elements are matrices A = (ayp) € Mn(C), A" =
A~ and under the action v/ = Ay on vectors y of
complex vector space Oy the quadratic form y'y =
Zévzl y2 is preserved, where y;, are Cartesian compo-
nents of y. Sometimes, it is convenient to consider an
orthogonal group in a so-called “symplectic” basis.
Transformation from Cartesian to symplectic basis
x = Dy is made by matrix D, which is a solution of
the equation

D'CyD = 1I, (2)

where Cy € My, (CO)zk = d;;, and K'=N-+1-k.
Equation (2) has many solutions; take one of them,
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namely,
I 0 —iCy
1
D = — 5 N = 2n + 1, 3
Cyo O il

where n x n matrix Cy is similar to Cy. For N =
2n, the matrix D is given by (3) but without the
middle column and row. Matrices B of SO(N;C)
in the symplectic basis are obtained from A by simi-
larity transformation B = DAD™! and are subject to
orthogonality relations B'CyB = Cy. The quadratic
form 2!Cyx is invariant under the action 2’ = Bz.
Complex orthogonal  Cayley—Klein  group
SO(N;7;C) is defined as the group of transfor-
mations &'(j) = A(j)&(j) of complex vector space
On(j) with Cartesian coordinates £'(j) = (&1,
(1,2)&, ..., (1, N)én)E, which preserve the quadratic

form inv(j) =& (4)§(j) =€2 + Ypl,(1, k)22, where

j=01,---,jN-1); each parameter j. takes fwo
values j, = 1,¢., 7 =1,...,N — 1; and
max(p,v)—1
(:uv V) = H Jis (Hnu’) =1 (4)
l=min(u,v)

Let us stress that Cartesian coordinates of On(y)
are special elements of Pimenov algebra Dy _1(j; C).
Cayley—Klein group SO(N’; 7; C) in turn may be real-
ized as a matrix group whose elements are taken from
algebra Dy_1(j;C) and consist of the N x N ma-
trices (A(J))kp = (k,p)akp, arp € C. Matrices A(j)
are subject to the additional j-orthogonality relations
A(§)AN(j) = A'(HA() = L.

The passage to the symplectic description is made
by matrices which are solutions of Eq. (2). Let
us regard the matrix D, = DV,, where V, € My,
(Va)ik = 60,5, and o € S(N) is a permutation of
the Nth order. It is easy to verify that D, is
again a solution to Eq. (2). Then, in the sym-
plectic basis, the orthogonal Cayley—Klein group
SO(N;7;C) is described by the matrices B,(j) =
D, A(j) D, * with the additional relations of j orthog-
onality B, (j)CoBL(j) = BL(7)CoBs(j) = Co.

[t should be noted that for orthogonal groups (5 =
1) the use of different matrices D, makes no sense
because all Cartesian coordinates of Oy are equiva-
lent up to a choice of its enumerations. A different
situation is for Cayley—Klein groups (j # 1). Carte-
sian coordinates (1, k)&, kK =1,..., N, for nilpotent
values of some or all parameters jj are different ele-
ments of the algebra D y_1 (j; C); therefore, the same
group SO(N;j;C) may be realized by matrices B,
with a different disposition of nilpotent generators
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among their elements. Matrix elements of B,(j) are
as follows:

(Bo)nt+1mn+1 = bat1nt1,
(Bo)ik = bk + ibgr(oh, o),

(Bo)wi = bik — bk (0, onr),

(Bo )ik = birr, — ibgri (o, onr),

(Bo )ik = byrg, + ibgrr(on, 01,
(Bo)knt1 = bkt 1(0k, 0ng1) — ibg g1 (0nst, onr),
(Bo)k 1 = bkpt1(0k, Ons) + bkt 1 (0ns1, onr),
(Bo)nt1,k = bpy1,k(0k; ong1) + i5n+1,kz(0n+1a ox),

(Bo)n+1k' = bng1,k(0k, 0ng1)

— b1, (Ons1, 0w) (5)
(Bo)kp = brp(on, 0p) + b?cp(akr’v Up’)
+ibip(ok, o) = bl (1, ),
(Bo)kp' = bip(0k, 0p) — Uiy (0, o)
— il;kp(ak, o) — i%p(ak/, Tp)s
(Bo)wp = bip(on, 0p) — b;cp(ak/7 op)
+ il;kp(ak, op)+ i%p(ak/, op),
(Bo)krpt = brp(0k, 0p) + Uiy (0nr, o)
— igkp(ak, op) + igzp(ak/, op), k # p.

Here, b,¥',b,b € C may be easily expressed by matrix
elements of A.

3. CONTRACTIONS OF QUANTUM
ORTHOGONAL GROUPS

3.1. Formal Definition of the Quantum Group
SOy (N3 j; o)

The starting point of the definition of quantum
groups [8] is an algebra C(T;;) of noncommutative
polynomials of N? variables. We start with an al-
gebra D((Ty);x) of noncommutative polynomials of
N? variables, which are elements of the direct prod-
uct Dy—1(j) ® C(Tjx). More precisely, the elements
(T )ik are obtained from the elements (Bs(4)),; of
Eq. (5) by the replacement of commutative vari-
ables b,b,b, 1/ with the noncommutative variables
t,t', 7,7, respectively. One introduces additionally
the transformation of the deformation parameters ¢ =
e* as follows: z = Jv, where v is a new deformation
parameter and J is some product of parameters j, for
the present unknown. Let R,(j),C(j) be matrices
which are obtained from the corresponding matrices
of [8] by the replacement of deformation parameter z
with Jo :

Ru(j) = Ryl — Jv),  C(j) = C(z = Jv). (6)
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The commutation relations of the generators T, (5)
are defined by

Ry()Th(5)T2() = Toa(H T () Ru(G),  (7)

where T (j) = T5(j) ® I, Ta(j) = I ® T,(j) and the
additional relations of (v, j) orthogonality

T,(5)C(H T, () = T,()CHT- () = C5)  (8)
are imposed.

One defines the quantum orthogonal Cayley—
Klein group SO,(N;j;0) as the quotient alge-
bra of D((T});x) by relations (7), (8). Formally,
SO,(N;j;0) is a Hopf algebra with the following
coproduct A, counit ¢, and antipode S :

AT, (j) = To(NOT,(5), e(To(5) =1, (9)
S(To(j)) = CHTH(HC™()-

As far as only second diagonal elements of the matrix

C are different from zero and for ¢ = 1 this matrix

is equal to Cj, we have the symplectic description of
SOy(N; j;0).

3.2. Allowed Contractions of SO,(N; j; o)

The formal definition of SO,(N;j;0) should be
a real definition of quantum group if the proposed
construction is a consistent Hopf algebra structure
under nilpotent values of some or all parameters
J. Counit €(tn+17n+1) =1, G(tkk) =1, k=1,...,n,
and €(t) = e(r) = 0 for the remaining generators do
not restrict the values of j. Parameters j are arranged
in the expressions for coproduct A exactly as in
matrix product of B,(j), and as far as the last ones
form the group SO(N;j;C) for any values of j, no
restrictions follow from the coproduct. A different
situation is with the antipode S. Really, for elements
(Tg)k/k =tp + iTk/k(Jk, Uk/), k=1,...,n,thean-
tipode is obtained as

S(To)ww) = (Ty)wrne’ P+ (10)

and depends both on py and for the present undeter-
mined factor J. An antipode is an antihomomorphism
of Hopf algebra and therefore has to transform 7, (5)
to a matrix with the same distribution of the nilpotent
parameters j in its elements; i.e., the right and the
left parts of Eq. (10) must be identical elements of
Dy-1(j) ® C(T}). For J =1, this condition holds
for any values of the parameters j. The case J # 1
requires additional discussion.

The next condition which must be taken into ac-
count is the (v, j)-orthogonality relations (8). We
require that the number of equations in (8) not be
changed as compared with the initial quantum group.
[t is possible when nilpotent generators appear in
Eq. (8) either with powers greater than or equal two
(and then the corresponding terms are equal to zero)
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or as homogeneous multipliers. Taking into account
all these arguments and using the explicit expressions
for antipode and (v,j) orthogonality, we can find
possible contractions of quantum orthogonal groups,
which are described by the following theorems.
Theorem 1. [f the deformation parameter is
not transformed J =1, then the following max-
imal n-dimensional contraction of the orthogo-

nal quantum group SO,(N;j;0), N=2n+1is
allowed:
Jos = tas, S = 1,...,m, Jorp1 = t2rg1,

r=m,...,n—1,0<m<n,
for example, for permutation o,
Opnt1=2m+1, 0, =25s—1, oy = 2s,
s=1,....,m,
op=2r,0p =2r+1, r=m+1,...,n.
Theorem 2. [f the deformation parameter
is not transformed J =1, then the [ollowing
maximal n-dimensional contraction of the quan-
tum orthogonal group SO,(N;j;o), N =2n is
allowed:

Jos = t2s, s=1,....m—1, jop 1 = top—1,
PD=m,..., U,
Jor =tlop, r=1u,...,n—1, 1 <m < u<n,

for example, for permutation o,
op =2m —1, o, = 2u,
os=2s—1, 09 =25, s=1,...,m—1,
op=2p, oy =2p+1, p=m,...,u—1,
or=2r+1, 00 =2r, r=mu,...,n— 1.

Remark 1. It should be noted that any permu-
tation with the properties (o, 01) =1, k=1,...,n
(orn — 1) may be taken as o .

Remark 2. Admissible contractions for number
of parameters jj less than n are obtained from The-
orems 1 and 2 by setting part of jos, jop—1, Jor, Jor+1
equal to one.

We return to the antipode (10) for J # 1. As far
as ppty1 =0 for N=2n+1, and p, = p,y =0 for
N = 2n, we shall regard these two cases separately.

Theorem 3. [f the deformation parameter is
transformed (J # 1), then the [ollowing con-
tractions of the quantum orthogonal group
SOy(N;j;0), N =2n+1are allowed:

1. For J = jp+1,

(a) Jny1 = tnp1if 1 < opyr <n+1;
() Jnt+1 = tny1 1 = L1, if o1 = 1.

2. For J = j,,

(@) o =tnifn+1< 001 <2n+1;
(b) JTL =ln j27’l - 17L2n7 lf On+1 = 2n =+ 1.
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3. For J = janH_l,

Jn =1 tn, jny1 = Litns1 if Opp1 =n+ 1.
Theorem 4. [f the deformation parameter is
transformed (J # 1), then the f[ollowing con-
tractions of the quantum orthogonal group
SOy(N;j;0), N =2n are allowed:
1. For J = jn,
(@) jn=tnifop > 1,0, < 2n;
(0) jn=tn, j1 =1L 01if o =1, 00y < 2m;
(C) Jn = tn, Jon—1 = 1 t2n—1 lf on > 1, o =
2n;
(d) gn=1tn, J1=110, jJon—1=1,t2n-1 if
on =1,0, =2n.
2. For J = jn—1,
(a) jn-1=tn—1 if o < 2m;
(b) Jn—1=tn-1, Jon—1=1,t2n—1 if on <
2n — 1, o = 2n;
(¢) Jn—1=tn—-1, Jon—2 = L,ton—2, jon—1 =1,
Lop—1 lf Op = 2n — 1, Op! = 2n.

3. For J = jn+1,
(@) Jns1 = tnt1 if o > 1
(0) jny1 = tny1, J1 = L if o = 1, 000 > 2
(¢) Jnt+1 = tnt1, 1 = L0, jo =100 if oy =
1,0, =2

4. For J = Jn—1Jn»
(@) Jn—1=tn-1,Jn = tn if o < 2n;
(b) Jn—1=tn—1, Jn = ln, Jon-1 = L,ton_1 if
Onr = 2n.

5. ForJ = janH_l,
(Cl) Jn = lns Jn+1 = ln+1 lf on > 1;
(b) 1 =101, 4n = tns Jnt1 = tng1 if o = 1.

6. For J = Jn—1JnJn+1,

(a) jn—1=1tn-1, Jn = Litn, jn+1 = Ltns1
ifo,=mn,0p =n+1.

Hopf algebra SO4(N;j;0), N=2n+1 has n
primitive elements which correspond to n diag-
onal 2 x 2 submatrices: diag((By )ik, (Bo)pk') =
diag(bik + ibk (ok, oxr), bk — bk (ok, 007)), k=
1,...,n [see (5)]. If the deformation parameter z
is fixed (J = 1) under contractions, then all primi-
tive elements of the contracted quantum orthogonal
group correspond to Euclidean rotation SO(2). If the
deformation parameter is transformed z = (v, then all
primitive elements correspond to Galilei transforma-
tion SO(2;5 =) = G(1,1). The same is true for the
contracted quantum groups SO4(N;j;0), N = 2n.
Let us note that contractions of quantum orthogonal
algebras with different sets of primitive elements have
been discussed in [4, 9].

Quantum orthogonal groups have contractions
with the same nilpotent parameters j both with a
fixed deformation parameter and with a transformed
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one. For example, the quantum group SO4(2n +
1;7;0) forevenn = 2pat 0,41 = 1 according to The-
orem 1 has contraction j, = tp, jnt1 = tn+1, J =
1 and according to 3 of Theorem 3 has the same
two-dimensional contraction, but J = t,t5,41. Let us
stress that the cases J =1 and J ~ ¢ are realized for
different sets of primitive elements in Hopf algebra.
Let permutation o be identical, i.e., o = k, o =
k', opy1 =mn+ 1. It follows from Theorems 1 and
2 that there are no contractions of SO4(N;j) with
fixed deformation parameter (J =1). For N = 2n +
1 from Theorem 3, we obtain three possible con-
tractions: j, = 1,tp, jne1 = 1,tne1 (both parame-
ters j, and j,41 independently take nilpotent val-
ues); and the deformation parameter is transformed
with J = j,jne1. For N = 2n from Theorem 4, we
obtain seven admissible contractions: j,_1 = 1,¢,_1,
Jn =1, tn, jn+1 = 1, tna1, Where the deformation pa-
rameter is multiplied by J = j,—1jnjn+1. Just these
allowed contractions should be considered in [10].

From the contraction viewpoint, the Hopf algebra
structure of quantum orthogonal group is more rigid
as compared with a group one. Cayley—Klein groups
are obtained from SO(N;j) for all nilpotent values
of parameters ji, k=1,...,N — 1, whereas their
quantum deformations exist only for some of them
(< [N/2]). It should be noted that, among quan-
tum orthogonal groups contracted for equal number
of parameters j, there may be isomorphic, as Hopf
algebras, quantum groups. Quantum-group isomor-
phism is not considered in this paper.

4. QUANTUM COMPLEX
KINEMATIC GROUPS

Kinematic groups are motion groups of the max-
imal homogeneous four-dimensional (one time and
three space coordinates) spacetime models [11]. All
these groups may be obtained from the real group
SO(5;R) by contractions and analytic continua-
tions [7]. There are three types of kinematics:
nonrelativistic—@Galilei G(1,3) = SO(5;t1,12,1,1)
with zero curvature and Newton N¥(1,3)=
SO(5;71 = 1,4;19,1,1) with positive and negative
curvature,  respectively; relativistic—Poincaré
P(1,3) = SO(5;t1,1,1,1) with zero curvature and
(anti) de Sitter S*(1,3) = SO(5;5; = 1,4;4,1,1)
with (positive) negative curvature; exotic—Carroll
C9%(1,3) = SO(5;11,1,1,14) with zero curvature and
C*(1,3) = SO(5; 41 = 1,i;1,1,14) with positive and
negative curvature.

The groups N*(1,3) are the real forms of the
complex Newton group N(4), the Poincaré group
P(1,3) is the real form of the complex Euclid group
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E(4), and the groups C*(1,3) are the real forms
of the complex Carroll group C(4). In this paper,
the quantum deformations of the complex orthogonal
groups are considered; therefore, with the help of con-
tractions quantum analogs of the complex kinematic
groups may be obtained. Possible contractions of
the complex quantum groups SOg4(5;j;0) are de-
scribed by Theorems | and 3 for N = 5. If deforma-
tion parameter remains unchanged (J = 1), then we
have the quantum analogs of Euclidean group E,(4),
Newton group N,4(4), and Carroll group Cy(4). If
the deformation parameter is transformed under con-
traction z = v, then we have one more quantum
deformation of Newton group N,(4), which is not
isomorphic to the previous one. Two primitive ele-
ments of N,(4) correspond to the elliptic translation
along the time axis ¢ and to the rotation in the space
plane {ra, 73} (both are isomorphic to SO(2)), while
primitive elements of NN, (4) correspond to the flat
translation along the spatial axis ro and to Galilei
boost in the spacetime plane {¢,71} (both are iso-
morphic to Galilei group SO(2; 72 = 12) = G(1,1)).
We did not obtain the quantum deformations of the
complex Galilei G(4) and Carroll C°(4) groups.
According to the correspondence principle, a new
physical theory must include an old one as a particular
case. For spacetime theory, this principle is realized
as the chain of limit transitions: general relativity
passes to special relativity when spacetime curvature
tends to zero, and special relativity passes to classical
physics when light velocity tends to infinity. For
kinematical groups, this corresponds to the chain of

contractions

K—0

S§*(1,3) == P(1,3) =X G(1,3). (1)
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As was mentioned above, there is no quantum de-
formation of the complex Galilei group; therefore, it
is not possible to construct the standard quantum
analog of the full chain of contractions (11), even
at the level of complex groups. This means that
(at least standard) quantum deformation of the flat
nonrelativistic spacetime does not exist.
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classical r matrices classified by Belavin and Drinfeld for all simple Lie algebras. The R matrices are

obtained by twisting the standard universal R matrix. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

Classical quasitriangular r matrices for semisim-
ple Lie algebras are classified by Belavin—Drinfeld
triples [1]. The Belavin—Drinfeld triple (I'y, 'y, 7)
for a simple Lie algebra g = g™ @ h @ g~ consists of
the following data: 'y, 'y are subsets of the set T" of
simple roots of the algebra g, and 7 is a one-to-one
mapping: I';1 — I's such that (r(«), 7(5)) = (o, B)
and 7F(a) # a for any a, 3 € Ty and any natural k.
The corresponding quantum R matrices should have
the form

Ris = FyyRioFt, (1)

where R is the standard universal Drinfeld—Jimbo
R matrix for the Lie algebra g. The twisting operator
satisfies the cocycle equation

Fio(A ® id)F = Fy3(id @ A)F. (2)

Therefore, the problem of quantization is reduced to
the problem of finding the twisting operator Fis for
each Belavin—Drinfeld triple. In the present paper, we
suggest a formula for the twisting operator Fjo. We
present the twisting operator in a factorized form

Fo=Fy) Fy V. F3 Fy K (3)

where the factors F(*) are special canonical elements
defined by the powers of the one-to-one map 7, and
the operator K belongs to ¢"®". A different formula
for the operator Fj5 was given in [2]. We shall say
several words about the differences at the end of the
present paper.

Our approach heavily uses the modified Cartan—
Weyl basis for U,(g), and the plan of our paper is

*This article was submitted by the authors in English.
DCenter of Theoretical Physics, Luminy, Marseille, France,
and Theoretical Department, Lebedev Institute of Physics,
Moscow, Russia.
"e-mail: isaevap@thsuni.jinr.ru
""e-mail: oleg@cpt.univ-mrs.fr

as follows. The definition of the modified simple root
generators is contained in Section 2. In Section 3,
we give an interpretation of Belavin—Drinfeld triples
in terms of the modified basis. In Section 4, a mod-
ified Cartan—Weyl basis is introduced. The twisting
operator Fyo is constructed in Section 5. Finally, in
Section 6, several examples are presented.

Everywhere below, we assume the deformation
parameter ¢ to be generic (not a root of unity).

2. MODIFIED BASIS FOR QUANTUM
UNIVERSAL ENVELOPING ALGEBRAS

Consider a quantum universal enveloping algebra
U,(g) with relations (see, e.g., [3])

[hi hj] = 0, [hise5] = agjej,  [hi, f] = —ai;fj,
K, —K;!
lei, f5] = 5z‘jma (4)
and Serre relations
1—a;; _1 ]
—a;; i
STEDETT ] (e)beilent TR =0, (5)
k=0 k] ol
1—a;; [ T
g | 1—aij k 1—a;;—k
> (=1 (f)F 5 (f) %7k =0, (6)
k=0 k d.
L - q 1
where
| k _ ,—k
" = [n]q 5 [k]q = 1 q_l 5
k [klg![n — Klg! q—dq

q

aij is the Cartan matrix for g, K; = ¢%", and d; are

the smallest positive integers (from the set 1,2,3)
(s)

such that d;a;; = a;;’ is the symmetric matrix. The
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algebra Uy,(g) is a Hopf algebra with the comultipli-
cation

Ahi) =h;i®@1+1® hy,
Ale;)) =, @ Ki +1® e, (7)
Alf) = i1+ K '@ fi
The antipode and the counit are

S(hi) = —hi, S(e;) = —e;K; ",
S(fi) = —Kifi, e(hi) =e(e;) = €(fi) = 0.
Any operator K € ¢"®h,
K = (i biahi®hs) (8)

for arbitrary numerical matrix b;;, obviously satisfies
the cocycle Eq. (2),

Kio(A ®id)K = Kys(id @ A)K. (9)
Therefore, one can twist the comultiplication by K:

Aa) = KA(a) K. (10)

We change the basis in the algebra U, (g) by intro-

ducing new generators

Ei = Xie;, Fi = fiY, (11)

where X; = exp(zj zijhj), Y = exp(zj yijhj), and

xij, ¥ij are some numerical matrices. We require that

the comultiplication (10) for the new generators (11)
have the following form:

A(E) = KA(E)K' = E;@ Rf +1© E;, (12)
A(F) = KA(F)K™' = F;© 1+ Ry ® F;.
Equations (12) relate operators X;, Y;, and K.

A comparison of (7) and (12) gives
Xi = qizmn hmbmn ani = q*(hba)i

Vi = gEmn hmbrmani = o (hba);
and )
R;t _ XiKZ'ilYi _ Kz;thf(h(bfb)a)i’
R = KiR;,
where by, = by, is the transposed matrix.

The relations (4) and Serre relations (5), (6) for the
quantum algebra U,(g) in terms of the new genera-
tors (11) take the form

(13)
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% q—k‘Ai]' (EZ)kE] (Ei)l_aij_k _ 0’
1—a;;
1— Qg4
> (=1F ! (17)
k=0 k o

x q" 4 (F) (R =07 =0,
with a skewsymmetric matrix 4;; = (a(b — b)a);;.

In the sequel, we shall use ¢ commutators:
[A,B], := AB — uBA. Relations (16), (17) can
be conveniently rewritten in terms of ¢ commu-
tators.  For example, for a;; =0, the relations
lei,e5] = 0 = [fs, f;] are rewritten as [E;, Ej]inj =0,
[Fi, Fj] —a,; =0, while for a;; = —1 we have

q
[[Ei, Ejlu, Eily = 0= [Ej, [Ey, Ej]ulu,
[[E)F}]Ihﬂ]u =0= [Eyu [Ea Fj]ll]ua
di+A di—Aij

(18)

where p = ¢ iy =q
Remark. The modified basis for multiparametric
twistings of U,(g) has been considered by Hodges [4].

3. MODIFIED BASIS
AND BELAVIN-DRINFELD TRIPLES

All the data from the Belavin—Drinfeld triple can
be conveniently interpreted in terms of the modified
basis for a suitable matrix b;;:

Proposition. Let I" be the set of simple roots
of g, T'1, and T'y subsets of I and 7 a one-to-one
mapping: Ty — Ta. Then the following equations
for the matrix b;

Jr _ —

Ra, = RT(Oti)’

where Ri, = Rii, admit a solution if and only

if the triple (I'1,T's,7) is the Belavin—Drinfeld
triple.

Proof. Assume that a solution of Eq. (19) exists.
We then need to prove that the mapping 7 satisfies the
following conditions:

(1) Forany a € I'y there is a natural k

for which 7%(a) ¢ Ty.

(2)Forany o, B € T'y, (7(a), 7(8)) = (o, B). (21)

The condition (20) means that 7 has no cycles:
*(a) # aforalla € Ty and k > 0.

Va; € Ty, (19)

(20)

R — R
[Ei, Fj] = Oij —3 g (14) Indeed, assume that 7 has a cycle, 7%(a) = « for
q 4 some o € I'y and a natural k. Take a minimal k with
RZ:-EEJ' _ qiaE;)JrAij EJRZ?'E, (15) this property.
- Then Rjk(a) = R} and Egs. (13) imply
RiF] _ q:':“ij —AijF}Ri’ L+ B PN
' ' Ry = RT(a) = KT(a) RT(a) (22)
Py 1 k k
A4
> (- ’ (16) —(TI&2, B = (TTE2, ) BY
k=0 k N " L1 ri(a) | 77k (o) L1755 ri(a) | 7
q~ Z—l ’Lfl
PHYSICS OF ATOMIC NUCLEI Vol.64 No. 12 2001
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Therefore,

k
—9 .
( Kﬂ,(a)> .
i=1

which contradicts the independence of generators in
the Cartan subalgebra of U,(g). Thus, 7%(a) never
equals «, which proves the condition (20).

To prove the condition (21), note that Eq. (19) is
equivalent to the following condition on the skew-

symmetric matrix A, = (@b — b)a)mn:

Aim + AmT(l) + aES) + a(S) =0,

D+l (23)
where the subscript m runs over all simple roots,
while ¢ numerates only roots from I'y. Equation (23)
is obtained by commuting both sides of Eq. (19) with
em (or fi,). Here, it is important that ¢ is not a root of
unity.

For indices i,m corresponding to roots «;, a,, €
I'1, Eq. (23) can be rewritten in the following three
equivalent forms:

(s) (s)

A”(m) + AT(W)T(i) + Lir(m) - aTS(i)T(m) =0, (24)
Apmi + Aif(m) + ai,ig + ais(zn)l. =0, (25)

(s) (s) o
AmT(i) + AT(i)T(m) + oz (i) + Ar(myr(i) = 0. (26)

The combinations (23)+(25) and (24)+ (26) of the
equations are, respectively,

(s) _ (s) (s)
2aim - _aT(m)i - aT(i)m - AmT(z) - AiT(m)7 (27)
(s) _ (s) (s)
2a7(i)7’(m) = Trm) T Ymr(d) (28)
- AmT(z) - AzT(m) .

Therefore, a§2 = a(TS(z)T(m), which is equivalent to the

second condition (7(e;), 7(aum)) = (a4, apy,) for the
Belavin—Drinfeld triple.

Remark 1. The difference of Eqgs. (24) and (25)
gives the following relation on the matrix A;;:

_ ) (s)
Aim — AT(Z)T(m) = Q,; + aT(m)i (29)
(s) (s)

aiT(m) —a; 1)7(m) =0.

This shows that the map 7 does not change the mod-
ified basis.

Remark 2. Consider two sequences of sets
r=r">r >
LoTM oD — g,
Ty =T >51d 51 51,
defined by
) P ard ) L)

(30)

PHYSICS OF ATOMIC NUCLEI

[SAEV, OGIEVETSKY

We assume that the set FgN) is not empty. The

number N is called the degree of the triple (I'y, 'z, 7).

Introduce a set T = +=#=1T ) e ;. Then,
the mapping 7*: 1:51%1) Kl ngil) # () also defines
a Belavin—Drinfeld triple

([T rlY ok, (31)

4. MODIFIED CARTAN—WEYL BASIS
AND NORMAL ORDER OF ROOTS

Let Ay be the system of all positive roots of g
with respect to I'. A construction of Cartan—Weyl
basis in terms of the modified generators F; and Fj is
analogous to the usual procedure for U,(g) (see [5]).

Recall the notion of a normal (convex) orderin A :
the set A is ordered normally if any root v which is a
sum of roots « and 3 is placed between o and .

We write a < ( if the root « is located to the left
of the root 8. For a < §3, the interval between roots «
and 3 is denoted by {«, 5}.

Given a normal order in A, the modified Cartan—
Weyl basis is constructed by the following inductive
procedure. The generators for the simple roots are al-
ready defined. For a composite root v, take a minimal
interval {«, 8}, a <, with v = a+ 8 (“minimal”
means that there is no subinterval {a, 5} C {«, 5}
for which v = &+ (3). Assume that generators E,,
Eg, Fy, and Fg were defined at previous steps. Then,
generators £, and F, are defined by

E, = [Ea, Egly = EoEg — nEgE,, (32)

Fy = [Fa, Fgl, = FoF — vF3F,,

where

(@,B)+(a,AB)

H = qi s <a718>7<a7Aﬂ>

v=q ;
and A is the operator with the matrix A;;:
<Oéi,AOéj> = Azg

If there are several possible minimal intervals {«, 5}
for which v = a + 3, the definitions (32) give propor-
tional results.

Note. For the case A;; = 0, the definition (32) of
composite roots does not coincide with the definition
in [5] since we use the comultiplication (7), which is
different from the comultiplication in [5].
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5. TWISTING OPERATORS Fys
FOR BELAVIN-DRINFELD TRIPLES

For a given simple Lie algebra g, fix a normal order
in A+.

We need the expression for the inverse of the uni-
versal R matrix for the algebra U, (g):

R =[] expy,(—rasles® fa)) - KO, (33)
BEAL

where g, = ¢/*®, A =g —¢ !, and KO g ¢h®h,
The product in Eq. (33) is the ordered product cor-
responding to the chosen normal order of roots. For
precise values of the constants ag (see [5, 6]). The
function exp,, is the standard g exponent,

e8] 00 k
_ u
expy(u) = [J(+ (g = Dug™) ™" =3 . (34)
n=0 k=07
k
-1
k=L
q—1

Let (I'1,T'y, 7) be a Belavin—Drinfeld triple of de-
gree N. Define elements F*) by

Fiy = ] expg,(~ras(Es ® Frg)),  (35)
pea

where in the ordered product we keep terms corre-

sponding to only those roots 3 for which 7%(p) is
defined [that is, the element eg belongs to the sub-

algebra with generators from the subset fgk) defined
in (31)]. This is reflected in the notation g € Agf).
The expression (35) can be given the form
Py = Qe TH(ER(EO) KT, (36)
where the operator 7" on the elements Fj is defined by
T(Fg) = Fygy wherever 7(f3) is defined; T'(Fjg) = 0

otherwise. The operator K corresponds to the solu-
tion of Eq. (19) for the given Belavin—Drinfeld triple.

Theorem. For the quantum algebra U,(g) and
the Belavin—Drinfeld triple (I'y,T'2,7) of degree
N, the universal twisting element Fys is

Fo=F FY V.. . FP.FY . K=F, K
(37)
with the [actors F1(§) defined in (35).

We sketch the proof shortly. It is based on explicit

formulas for the coproduct of elements F1(§)3

~ k k E)\—1 (k) - (k

(A®Zd)F1(2) :F2(3)(K§3)) 1F1(3)K§3),
. <\ (k k E)\—1 (k) - (k
(Zd@A)F1(2) :F1(2)(K£2)) 1F1(3)K£2)

(38)
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for some elements K(®) € ¢"®h The comultiplication
A is twisted as in (10).
Next, one can verify the following identities:
By By Ry = R R E . (39)
where F®) = p() . ((R))=1,
With the help of (38) and (39), it is straightforward
to check the cocycle condition (2).

Remark 1. Another expression for the twisting
element F' was suggested in [2]. The expression
in [2] has a factorized form as well. However, the

factors F(® are different; one of the differences is that
each factor in [2] contains terms from ¢"®". In our

expression (37), all terms from ¢"®M are collected; the

price is the appearance of the modified basis.
Remark 2. The element F' in (37) satisfies the

following analog of the linear ABRR equation [7]:

(1@ T)(FiaR™HEO) K™Y = FiaK~1. (40)

6. EXAMPLES
(i) Uq(sl(3)) case (see [4]). Here, we have only
one nontrivial Belavin—Drinfeld triple:
1 2

o—eo
This Cremmer—Gervais-type triple has degree 1
and the basic relations (19) which define this triple are
reduced to one equation R = R, . The antisymmet-
ric matrix A;; is
(41)
with 1 <4, 5 < 2. The corresponding universal twist-
ing element (37) has the form

Fio=FY) - K = expa(—AE @ F) - K.

Aij = dij+1 — 41,

(42)

(ii) Cremmer—Gervais Ug(sl(4)) case. For
this case, the triple is given by the following diagram:

1 2 3

[t has degree 2. The basic relations (19) which
define this triple are R{ = R, , R = R;. The matrix
A;; is given by (41), now with 1 <4,5 <3. The
corresponding universal twisting element (37) has the
form

Fio=F3 - Fy K, (43)
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where

Fy) = expp(-AEL @ F), (44)

Fly) = expga(—AE; © Fy) (45)
X €Xpg2 (q_l)\[Elg] & [Fgg]qz) equz(—)\EQ & Fg)
Here, [Elg] = E1E2 — E2E1 and [Fgg]qQ = F2F3 —
q2F3F2.

Remark. One can directly check that the universal
twisting element in (42) and (43) obeys the cocycle
conditions (2). For (42), this check requires only the
basic equation for the g exponent, exp,(y) exp,(z) =
exp, (v +y) il zy = qyx. For (43), one needs two
more quantum identities. The first one is the fa-
mous pentagon identity (see, e.g., [8] and references
therein)

expg(u) expy (v) = expy(v) expy ([u, v]) exp,(u),

(46)
where the operators u and v satisfy the commu-
tation (Serre) relations wu[u,v] = q[u,v]u, v[u,v] =
q [u, v]v. The second identity is

expy2(E) exp(—R™) exp2 (F)

= expg2(F) exp2(—R7) exp,2(E),

(47)

where E, I, and R* generate the algebra
[E.F|=(R"—R7), [R",R7]=0,
R*FE = ¢™?ER*, R*F = ¢T’FR™*.
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1. INTRODUCTION

In the classical analysis, harmonic polynomials
are defined by the equation Ap = 0, where A is the
Laplace operator and p is a polynomial on the Eu-
clidean space E,, ~ R"™. The space H of all harmonic
polynomials decomposes as a direct sum of the sub-
spaces H,, of homogeneous harmonic polynomials of
degree m: H = @, _, Hm. The Laplace operator A
on E, commutes with the natural action of the rota-
tion group SO(n) on this space. This means that the
subspaces H,, are invariant with respect to SO(n).
The irreducible representation T, of the group SO(n)
with highest weight (m,0,...,0) is realized on H,,.
The Laplace operator A permits separations of vari-
ables on the spaces H,,. They correspond to different
coordinate systems (spherical, polyspherical, etc.) on
E,. To different coordinate systems, there correspond
different separations of variables and they are deter-
mined by chains of subgroups of the group SO(n)
(see[1], Chap. 10, for details of this correspondence).
The basis of the space 'H,,, in separated variables con-
sists of products of certain orthogonal polynomials
multiplied by "™, where r is the radius. These polyno-
mials (considered only on the sphere S™~1) are matrix
elements of the class-1 irreducible representations of
SO(n) belonging to the zero column.

In this paper, we give a g deformation of the clas-
sical theory described above. Instead of the Euclidean
space, we take the quantum vector space.

The g-Laplace operator A, on the algebra of func-
tions A on the quantum vector space is defined in
terms of ¢ derivatives. In our case, the nonstandard
q deformation Uy (so,) of the universal enveloping
algebra U(so,,), described in [2], plays the role of the
rotation group SO(n).

*This article was submitted by the authors in English.
“e-mail: aklimyk@bitp.kiev.ua

g-Harmonic polynomials on the quantum vec-
tor space are defined as elements p of A for which
A,p=0. By using the algebra U;(so,), we con-
struct for g-harmonic polynomials the theory similar
to the theory for classical harmonic polynomials. Our
constructions use essentially the results of paper [3],
where the operator A, was defined.

Everywhere below, we suppose that ¢ is a positive
number.

2. ¢-HARMONIC POLYNOMIALS
ON THE QUANTUM VECTOR SPACE

We denote by A= Clzy,x2,...,z,] the asso-
ciative algebra (with unity) generated by elements
r1,%2,...,T, satislying the defining relations x;x; =
qrjx;, @ < j. It is the algebra of functions on the n-
dimensional quantum vector space. We define on
A the ¢ differentiations 0; and 0] which are linear
operators acting as 9;p = d/p = 0 on monomials p
not containing x; and as

. _ A1
o= i g
qa—4q
on monomials containing x;, where #; and %; are
the operators of left and right multiplication by x;,
respectively. We also define the operators v and y~!
acting as
'yiilp(xl, ceeyTy)
=p(T1, o T, @ T, Tig1, - T
The above operators in general do not commute.
We have 8@3» = ijﬁi, ) 7& 7, 8183 = qilajai, 8Z~:)Z°j =
qEi0i,0 < §,vid; = ¢* &%, %05 = ¢ 9 i
We introduce a scalar product on A defined by the

formula
(p1,p2) = Pl(aia e 78;1)P§|x=0, (1)
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where p% is the polynomial py in which numerical
coefficients are replaced by complex conjugate ones;
p1(0],...,0,) means the g-differential operator ob-
tained from a polynomial p by replacement of z; by
0, i=1,2,...,n; and the symbol p|,—p means a
constant term of the polynomial p (see [3]).

The space A can be decomposed as the orthogonal
sum of the subspaces 4,,, of homogeneous polynomi-
als of homogeneity degree m: A= @,,_, Am. The
formula

Q=ot+qg a3+ .. +qg " a2 c Ay (2)

defines the squared ¢ radius on the quantum vector
space. We consider on A the operator

Ay=A= LR TP 4+ 87217 (3)

which is the g-Laplace operator on the quantum vec-
tor space.

A polynomial p € A is called g-harmonic if
Ap =0. The linear subspace of A consisting of
all g-harmonic polynomials is denoted by H. Let
Hpm = An NH. Then, H =, _Hm. As in the
classical case, A, can be represented in the form of
the direct sum A, = H,,, © QA2 (see [3]). This
decomposition has the following consequence:

An= P QM (4)
0<2j<m
(the summation here is over j =0,1,2,...,|m/2],

where |m /2] is the integral part of m/2).
The g-harmonic polynomials have the following
properties:

(a) 1T hp(x) € Hon, then 3,10,k (%) € Hino1
and

Q7 ' Onhim (%)
hm(x)xn [TL +o2m — 2] € Hm-i—l-
m(X) € H,, an x) € H,, then
b)Ifh d hl, th
(Q"him, Q) (5)
n 2k +n 4+ 2s — 2!
= dg R R )

where [s]!l = [s][s — 2][s — 4] - - -
o = 1.

[2] (or [1]) and

Remark. In an analogy with the classical case, we
may consider the scalar product (1) as an integral of
the function pyp3. Then, formula (5) means a fulfill-
ment of “integration” with respect to the g-radial part.
As in the classical case, the scalar product (h,,, h.)
can be treated as “integration” over g-spherical coor-
dinates for g-harmonic polynomials.

The decomposition A, = H;, ® QA;,—2 is or-
thogonal with respect to the scalar product (1).
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We can construct the projector H,, : A, = Hp, @
QA;,—2 — Hy,. This projector has the form
lm/2)
Hyp= Y axQ"AFp, ap €C, pe Ay,
k=0

where |m/2] means the integral part of m/2, Q =
2%+ q 123+ ...+ ¢ 122 is an operator on A, and
(=1)*[n + 2m — 2k — 4)!! (6)

2k [n + 2m — 4!
The coefficients «ay are determined uniquely up to

a constant. In (6), we have chosen this constant in
such a way that H,,p = p for p € H,,,. This means

that H2, = H,,. The operator H,, is self-adjoint with
respect to the scalar product (1).

A =

3. REPRESENTATIONS ON THE QUANTUM
VECTOR SPACE

The quantum algebra U, (sl,,) acts on the space A.
This algebra is generated by the elements k; = ¢/,
kl._l =q M e, fi,i=1,2,...,n — 1, satisfying the
relations k;k; ' =k 'k = 1, kikj = kjki, [ei,ej] =
[fi, fj] = 0and

kiejk; ' = q"e;,  kifiki ' =q " fj,

ki — k!
ei, fil = eifj — fiei = 05—,
lei, fil = eifi = [ ——

ereir1 — (q+ ¢ Heieirie; + eixre] =0,

[ fier — (q+ ) fifizr fi + fizr f7 =0,
where Qi; = 2, ;541 = -1, and A5 = 0 for ”L —
jl > 1 (see, for example, [4], Chap. 6). The for-
mula p(I;414) = f; — qg""e; determines the em-
bedding ¢ : Uj(son) — Ug(sly) of the nonstandard
q-deformed algebra U, (so,) generated by the ele-

ments I;;_1, © = 2,3,...,n, satislying the defining
relations

Ii,i*1]i2—1,i—2 —(q+q Dic1i—alii1li—1i—2
+ Iz’Qfl,i—QIi,ifl =—1Ii;-1,
IZi—IIi—l,i—Q —(q+q Dlhiiclic1i—aliia
L1 ol} = L1,
Liialjj-1—1jj-11lii—1 =0,
(For the properties of the algebra U; (soy,), see|[5, 6].)

li — g > 1.

The quantum algebra U, (sl,,) acts on the space A
by the formulas

p(ki) = vivihs  ple) = 27i0iva,
p(fi) = &is17; ' 0;,

Vol.64 No. 12 2001



ON ¢-LAPLACE OPERATOR AND ¢-HARMONIC POLYNOMIALS

determining the representation p of Ug,(sl,) on A.
The subspaces A,, are invariant with respect to this
action of Uy(sl,). We denote the corresponding
subrepresentations of Ug(sly,) by pm. These sub-
representations are irreducible with highest weights
(m,0,...,0).

We denote the restriction of the representation p of
Uy(sly) to the subalgebra U (so,,) by T. It is easy to
calculate that

T(Ij+1,5) = Fj417; 05 — #vj+10j41, (7
1=1,2,...,n—1
(see also [3]). The main property of the representation
T is given by the following assertion: The q-Laplace
operator A commutes with all operators of the
representation T of Uy(son,).
Let T(™ be the restriction of the representation

T to the subspace A,,. The representation 70"
is reducible. The g-squared radius (2) is invari-

ant with respect to the representation 7 (and
hence with respect to the representation 7'), that is,

T (I x-1)Q = 0fork =2,3,...,n.

The main property of the representation 70" is
given by the following proposition: The operator
H,, commutes with the operators T™ (I;11 ) of
the representation T™ of Uy(s0,). We denote the
restriction of the representation 7™ onto the invari-
ant subspace H,, by T,,. Since @ is invariant with
respect to U, (soy), it follows from (4) that Tm) =

®O§2j§m Tip—2;-

L(m—s)/2] (=1)kq=2k[m — s]1[2m + n — 2k — 4]!

2133

4. ¢-ANALOG OF SEPARATION
OF VARIABLES

It is well known (see [1], Chaps. 9, 10) that in
the space of classical homogeneous harmonic poly-
nomials there exist different orthonormal bases. They
correspond to different separations of variables. Each
separation of variables corresponds to a certain chain
of subgroups of SO(n). We show below that a similar
picture takes place for g-harmonic polynomials.

In the classical case, the tree method distinguishes
different separations of variables or, equivalently, dif-
ferent chains of subgroups of SO(n). The same tree
method can be used for g-harmonic polynomials, but
instead of chains of subgroups of SO(n) we have to
take the corresponding chains of subalgebras of the
algebra U, (soy,).

Let us construct an orthonormal basis of the space
‘H.,, corresponding to the chain

Ug(son) D Uy(s0p—1) D -+ D U,(so3) D U, (s02),

where Uy (s02) is the commutative subalgebra gener-
ated by the element I5;. This basis is a g-analog of
the well-known set of associated spherical harmonics

which are products of certain Gegenbauer polynomi-
als (see[1], Chap. 9).

We denote by £5"™(Q, z,,) the expression

Ltsn,m(Q’ xn) -

D

k=0

The following proposition is proved: Let hs(x') be

a homogeneous q-harmonic polynomial of degree

sinx' = (x1,29,...,2n_1). Then, for " 3hy(x') €
A, we have

Hyp (2" hs(x')) = £1™(Q, wn)hs (X)) (10)

In order to construct an orthonormal basis of H,,,,
we have to normalize expression (10). Let 7. denote
the expression (10). We calculate that

(T ) = (™ hs(x), 1)

Lm=s)/2) (- a(m—s)

q

[m — s — 2k]![2k]11[2m + n — 4]!!

;q)k(q ;) q

QRayy— T, (9)

= N~ ho(X), 2 " hs (X))

= g™ I (s () T hs (X))

= a0 m = ]l s (x), s (X)),

where ¢ is the coefficient at "% in the expres-

sion (9) for £8"™(Q, x,,). We find from (9) that

—2(m—s)+2. k(—2n—4s+6)

(o) =

m (q—2n—4m+8; q4)k

k=0
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(s—m) 2(5—m)+2;

=201(¢° .q

where 991 means a basic hypergeometric function
(see [7], Chap. ). This basic hypergeometric series
can be summed by means of formula (1.5.2) in[7] and
we obtain

(q2(7nimis+3+a) ) q4) (m—s—0)/2

o) =

m 9

(q2(—n—2m+4); q4)(mfsfa)/2
where 0 =0 if m — s is even and o =1 if m — s is
odd. Thus, along with t5""(Q, z,,), we have also the

normalized expression

o qs(mfs)/2
t57 (qun) (s)

Cm

(11)

£8(Q, wn).-

[m — s]!

Now, we use the expression t5"™(Q, z,,) instead
of £5""(Q, ). In order to construct an orthonormal
basis of the space H,,, in an explicit form, we take into
account that

(t5™(Q, xn)hs(x), t5™(Q, 2 ) hs (X))
(o), by ().

We apply the above reasoning of this section to homo-
geneous g-harmonic polynomials of z1, x9, ..., z,—1.

As a result, we obtain g-harmonic polynomials of the
form
t™(Q, wn )ty ™ (@, Tty (x7),
s=0,1,2,...,m; r=0,1,2,...,s,
where Q-1 =22 + ¢ 123 +... +¢ "2 | X' =
(x1,x9,...,2n—2), and h,.(x") are elements of the
space of homogeneous g-harmonic polynomials of
degree rinxy,x9,...,Typ_9. Here, t:}_l’s(Qn_l, xn_l)
is defined by (9) and (11).
Continuing this procedure, we obtain the normal-
ized polynomials of H,, of the form

Em(x)

—_

= Sm,mp_1,Mn—2,...,m2 (X) - t?ﬂﬁl(Qv xn)
(12)
X L (Q, Tpm) - T (Qs, 23)

X tQ’mQ (.21?1, .21?2),

m > Mpy_1 > My_g > ... > m3 > |mal,

(13)
where the polynomials t>™2(z1,29) are given by
272 (11, 29) = (cM2))=1/25(m2) where

»(0) 1,

28 = (iz1 + @2)(iz1 + qw2) - - - (iwg + qS_IxQ)v
s> 0,
208 — (ixy — x9)(ix1 — qxa) - - (ixg — q75+1x2),

s <0,

PHYSICS OF ATOMIC NUCLEI
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8—2n—4m 4

q i q ’q6—2n—4s)

9

are linearly independent g-harmonic polynomials in
x1 and zg and ¢0®) = (=) = 2¢5(=1)/2[5][25 — 2!l for
s> 0.

To every set of integers m,_1,mp_2,...,ms, mo
satisfying the condition (13), there corresponds a
polynomial (12). (For fixed mg, the number ms takes
the values —mg, —ms +1,...,m3.) The number of
these polynomials is equal to the dimension of the
space H,, given in Corollary 3.1.4 of [3]. On the other
hand, the polynomials (12) are pairwise orthogonal.
This means thatthe set of all polynomials (12) consti-
tute an orthonormal basis of the space H,,. This basis
corresponds to the chain of subalgebras (8).

Representation of the basis of the space H,,, of so-
lutions of the equation Ap,, = 0inthe form (12) gives
us a g analog of the classical separation of variables,
which corresponds to the chain of subalgebras (8).
There are ¢ analogs of other types of separations of
variables, which are given below.

By direct calculation we can prove the following
assertion: The representation operators Ty, (Ij —1),
k=2,3,...,n, given by (7) act upon the basis
elements =y = |m) from (12) as T,,(I21)|m)
i[ms]lm) and

T (I g—1)|m) = —([my + mp—1 + k — 2]

x [y — my_1])"* A(mp_y)|my_))
+ ([mi + mp—1 + k — 3][my, — my_y + 1])V/2
k # 2,

where m,, = m, mf_l denote the set of the num-
bers m with my_q replaced by my_1 £ 1, respec-
tively, and

.

Let us construct orthonormal bases of the space
H,,, corresponding to the reductions

U, (son) D Uy(s0,) x Uy(50—p). (14)

As in the classical case (see [1], Chap. 10), further
reductions can be made as in (8) or as in (14). In par-
ticular, the usual tree method (see [1], Section 10.2)
can be used to describe different chains of subalgebras
corresponding to different orthonormal bases of H,,.

X A(my—1 = 1)jmy_,),

A(mk_l)

1/2
[mk_1 +mp_o+k — 3] [mk—l —mk_g-i-l]
2mg_1 + k — 3|[2mg_1 + k — 1] ’

We represent the set x = (x1,z9,...,2,) as x =
(y,t), where y=(z1,22,...,2p) and t=
(Zp+1, Tpt2,-..,2,). Then the g-Laplace operator

A can be written as A = ¢""PA(y) + Ay, where
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A(y) and A are the g-Laplace operators for y and
t, respectively.

In order to find bases of H,,, corresponding to the
reduction (14), we take nonnegative numbers s; and
sy such that m and s; + sy are of the same evenness
and m — s; — so > 0. We denote by £75,™ (Qy, Qy)
the expression

tE (Qr, Qy) =

ZT: (—1)Fg22*[2r]t
P [n+ 2m — 4]!!
" 2r +n —p+ 251 — 2\!![n 4+ 2m — 2k — 4]!!
[2r — 2EN[2r +n — p+ 251 — 2k — 2]N1[2K]!!
x QR QT
- 51 — s9)/2. It is proved that
Hp, (Qths, (£)hs, (y))

where r = (m

= 157" (Qe, Qy)hs, () s, (y).
(55" (Qe; Qy ) sy (8) sy (v), 157 (Qt, Qy )

Therefore, for construction of such a basis, we have

to take orthonormal bases hﬁ? (t) and hg) (y) of the

spaces Hgl) and H(‘Y) of homogeneous g-harmonic

polynomials in t and y, respectively, and to construct
the products

tn7p=
51,52

(Qt, Q) (£)hY) (y), (15)

where the indices s; and so run over integral values
such that

s1 4 s2 =m(mod 2), s1+s2 <m,
i=1,2,...,dimH®,
j=1,2,...,dimHY.

[t is easy to calculate that the number of elements (15)
is equal to dim H,,. On the other hand, it is proved
that the elements (15) are orthogonal to each other.
Therefore, the polynomials (15) constitute an or-
thonormal basis of the space H,,. In particular,
we can take the elements Zg, (t), s1 = (s1,8},...),
and Zs,(y), s2 = (s2,5,...), of the type (12) as

orthonormal bases of the spaces Hg) and ’Hg), re-
spectively. Then, the elements

E7 Qs Qy) s, (£)Esy (v)

51,52
form an orthonormal basis of H,, corresponding to
the chain

U (son) D Uy(s0p)v X Ug(son—p) D Uy(s0p—1)

X Ug(s0n—p-1) D - ...
As is mentioned above, in order to construct different

orthonormal bases of H,,, the tree method from Sec-
tion 10.2 in [1] can be used. To different trees, there

PHYSICS OF ATOMIC NUCLEI
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The normalized expression for tsl’%’ (Qt, Qy) has
the form

tere" (Qe, Qy)
[n + 251 — p — 2lg(n—p=Drt2sortsis: 1/2
= ( [2r]11[2s1 +n +2r —p — 2]”0(81’52) ) )
X EE(Qt, Q).

where

4—4 4
6(81752) _ (q So—2p— r’q )

m ((]7271747)1+87 q4)7‘

In order to construct an orthonormal basis of the
space M, corresponding to the reduction Uy (son) D

Ug(s0p) x Ug(s0n—p) in an explicit form, we note that

(hsy (£), sy (€)) (Psy ()5 Pusy (¥))-

correspond different chains of subalgebras of U (son,)

and orthonormal bases corresponding to them. In this
way, we obtain ¢ analogs of different separations of
variables.
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Abstract—We study properties of a family of algebraic star products defined on coadjoint orbits of
semisimple Lie groups. We connect this description with the point of view of differentiable deformations

and geometric quantization. © 2001 MAIK “Nauka/Interperiodica”.

1. FAMILY OF DEFORMATIONS
OF THE POLYNOMIALS ON THE ORBIT

Let G be a Lie group of dimension n and G its Lie
algebra. The Kirillov—Poisson structure on the dual
space G* is given by

{f1, f23(A) = ([(df1)x, (df2)r], A)s (1)
f1, f2€ C™(G"), Xeg"

The symplectic leaves of this Poisson structure coin-
cide with the orbits of the coadjoint action of G in G,

(Ad*(g)A, Y) = (A, Ad(g7")Y),
Vge G, NeG", Yeg.

Let G be a compact semisimple group of rank

n. Then, the coadjoint orbits are algebraic varieties.

Let {p;};~, be a set of generators of the algebra of

G-invariant polynomials on G*. The coadjoint orbits

are determined by the values of these polynomials,
that is, by the equations

Di = ¢, i=1,...,m. (2)

The regular orbits are those for which the differentials
dp; are independent [1]. They are algebraic symplectic
manifolds of dimension n — m. The ideal of polyno-
mials vanishing on a regular orbit © is a prime ideal
generated by the relations (2), and we will denote it by
Zp. The algebra of polynomials on ©,
Pol(©) = Pol(G*) /Ty,

is a Poisson algebra.

A formal deformation of a Poisson algebra A over
C is a C[[h]] module A, which is isomorphic as a
module to A[[h]], the isomorphism ¥ : A[[h]] — Ay,
satisfying the conditions

(a) ¢~ (F1F2) = fif2 mod(h), where F; € Ap,
are such that = 1(F;) = fi mod(h), f; € A;
(b)Y (F1Fy — FoFy) = h{f1, f2} mod(h?).

*This article was submitted by the author in English.
“e-mail: 11edo@athena.polito.it

In this definition, one can substitute C[[A]] with
C[h]. We will say then that we have a C[h] deformati-
on. Itis clear that a C[h] deformation can be extended
to a formal deformation, while the opposite is not in
general true.

Given a deformation Aj, one can make the pull-
back of the product in Ay, to A[[R]] by the isomor-
phism W. The product defined in this way is called a
star product and is in general given by a formal series

frg=T""(W())¥(9) = fg+ Y _ h"Bu(f9),

n>1

where B, are bilinear operators. If A is some space of
functions and B,, are bidifferential operators, we say
that the star product is differential. It follows that
the star product can be extended to the whole space
of C'* functions, but only as a formal deformation
[2]. By choosing another isomorphism ¥, one could
obtain a star product that is not differential. So a star
product that is not differential can be isomorphic to a
star product that is differential. We will see examples
of this situation later.

A formal (and C[h]) deformation of Pol(G*) is
given by the enveloping algebra Uy, of the Lie algebra
with the bracket hl-, -], where [-,-] is the bracket on
G. (The tensor algebra needs to be taken over C[[A]].)
One choice for ¥ is the Weyl map or symmetrizer. If
x1,...,x, are coordinates on G* and X4, ..., X,, are
the corresponding generators of Uj,, the Weyl map is

1
W@ - ay,) = Z Kigy Xy
P s€Sp
The star product
frsg=W=HW(H)W(g)

can be expressed in terms of bidifferential operators,
so it can be extended to the whole C*°(G*).

*g is not tangential to the orbits, so it cannot be
restricted to one of them. Nevertheless, the formal
deformation Uy, can be used to induce a deformation

1063-7788/01/6412-2136$21.00 © 2001 MAIK “Nauka/Interperiodica”
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of Pol(©). This was developed in [3]. The idea is to
find an ideal Z;, such that the diagram

Pol(G*) —  Up

! !

commutes. The vertical arrows are the natural pro-
jections, and the horizontal ones indicate deforma-
tions. The ideal Z}, is generated by
W(pi) — ci(h) = P — ci(h),
¢i(0) :c?, i=1,...,n

The ideal is Adg-invariant since P; are Casimirs of
Ulp), so there is a natural action of G on Uy, /Zyp,). The
same construction works with C[h]. We will consider
only ¢!(h) such that its degree in h is not bigger than
the degree of p;. In this context, one can show that
T, is a prime ideal [4]. Also, the algebras can be
specialized to a value of h, say hg, by quotienting with
the proper ideal generated by A — hg. Analyzing the
representations of the specialized algebras, one can

see that, in general, they are not isomorphic for ideals
with ¢;(h) # ci(h).

2

2. STAR PRODUCTS
ON THE POLYNOMIALS ON THE ORBIT

We consider the example of S? for clarity, although
the argument can be extended to all other compact
orbits [3, 4]. G = su(2) has dimension 3 with basis
{X,Y, 7},

X,Y]=2, [V,Z]=X, [ZX]=Y.
The unique invariant polynomial is p(z,y, z) = 2% +

y? + 22, and the Casimir element is P = X2 + Y2 +
Z2. The regular orbits are given by

R S B
for ¢ > 0. A basis of Pol(S?) is {[z™y"2"], m,n €
]

N, v = 0,1}. An isomorphism Pol(S?)[h] ~ U /T,
is given by
U(fa™y"2"]) = (XY 2Y),
since {[X™Y"Z"], m,n € N, v =0, 1} is a basis of
U/}, Define theisomorphism ¥ : Pol(su(2)*)[h] —
Un
U(zMy"2") = X"Y"ZY, m,n € N,
T(x™y"2"(p — ) = XY Z"(P — c(h)),
m,n €N,

which sends the ideal Zy into the ideal Zj, so it passes
to the quotient, where it gives the isomorphism W.

PHYSICS OF ATOMIC NUCLEI
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The corresponding star product on Pol(su(2)*)[h] is
restricted to Pol(S?).

This star product is not differential, as is shown in
[4], but it is isomorphic to xg. In addition, for an orbit
in a neighborhood of this one, p —® — Ac® =0, ¥
does not preserve the ideal.

Another way of giving a basis is using the decom-
position

Pol(G*) ~ I ® H,

where I is the algebra of invariant polynomials and H
is the space of harmonic polynomials, H ~ Pol(©).
We define the isomorphism @ : Pol(su(2)*)[h] — Uy,

O((p— )™ @ 1) = (P — ()" ® (1),
Mm € H,

where ® is any isomorphism @ : Pol(S?)[h] — Uy, /Zp,.
A star product of this kind was first written down in
[5], where ® was chosen in terms of the Weyl map,

®([n]) = Wn),

and ¢(h) = ¢. We will denote this product by xp. It
has the nice properties that it is restricted to all the
orbits in a neighborhood of the regular orbit and that
it is “covariant,”

9fi*gf2 = g(f1 fa).
Nevertheless, it is not differential, as was shown in[5].
Finally, it was proven in [3] that Up/Zp, with

c(h) = I(l + h), corresponds to the algebra of geo-
metric quantization in the formalism of [6].

3. DIFFERENTIAL AND TANGENTIAL
STAR PRODUCTS

In this section, we want to consider differential star
products on G* and on ©, and to see the relation with
the algebraic approach of the previous section. In
[7], the differential deformations of a Poisson manifold
X modulo gauge equivalence are shown to be in
one-to-one correspondence with the formal Poisson
structures

o =haoy +hPag + ..., [a,a] =0

(a; are bivector fields, and [-,-] is the Schouten—
Nijenhuis bracket), modulo the action of formal paths
in the diffeomorphism group. For each Poisson struc-
ture B3, one can therefore associate canonically an
equivalence class of star products, the one corre-
sponding to hf3. If there are formal structures starting
with hB which are not equivalent to hf through a
diffeomorphism path, then one has star products not
equivalent to the canonical one such that

fxg—gxf=hB(f, g)mod(h).

In the case of symplectic manifolds, these struc-
tures are classified by H?(X)[[h]]. Since the compact
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coadjoint orbits have a nontrivial second cohomology
group, we have more than one equivalence class of
differential star products with a term of first order the
same Poisson bracket.

In the case of G* with the Kirillov—Poisson struc-
ture, it depends on the Lie algebra cohomology of G.
So, for a semisimple Lie algebra, there is only one
equivalence class [4]. *g is a representative of this
equivalence class. It is not tangential to the orbits,
and, in fact, it was shown in [8] that no tangential star
product could be extended over 0 for a semisimple Lie
algebra.

Nevertheless, a regular orbit has always a neigh-
borhood that is regularly foliated, Ng ~ © x R™.
Since the Poisson structure is tangential, the coor-
dinates on R™ can be considered as parameters, so
one has in fact a family of Poisson structures on ©
smoothly varying with the parameters p;, By, p,.-
Kontsevich’s construction of the canonical star prod-
uct gives a star product smoothly varying with the
parameters p;, or, interpreting it in the other way, a
tangential star product canonically associated to 3. It
follows that xg, when restricted to Mg, is equivalent
to a tangential star product. We denote it by *7.

We have three different products:

*g. It is differential, not tangential, and defined
on G*.

*p. It is not differential, tangential, and defined on
G*. (The ideal has been chosen so that ¢;(h) = ¢).)

*p. It is differential, tangential, and defined only
on N@.

*g restricted to the polynomials is isomorphic to
*p. There is then an algebra homomorphism

¢ 2 (Pol(G)[[l], +p) — (C(GT)[[M]], *s)-
We have that
p(pi — ) =pi — ¢,
so Zp C Pol(G*)[[h]] is sent by ¢ into Zy C
C(G)[[A]l-
Restricting xg to Mg, we have an algebra homo-
morphism

p: (CFNe)[[h]], %s) = (CZMN)[A]], #7).

PHYSICS OF ATOMIC NUCLEI
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[t is not difficult to see that, although in general p does
not send polynomials into polynomials, the algebra
homomorphism structure implies that [4]

p(pi — &) =p;i — ).

By composing p o ¢, one obtains an homomor-
phism from a nondifferential star product to a differ-
ential one, such that both star products are tangential
and the ideal Zy is mapped into the ideal Zy. The
homomorphism passes to the quotient, so the alge-
braic star product described in Section 2 is shown
to be homomorphic to the differentiable star product
associated by Kontsevich’s map.

We note that we have chosen an algebraic star
product with ¢;(h) = ¢;. This star product is not
the one obtained from geometric quantization. The
differential approach to quantization and geometric
quantization, although they have similar features in

the case of R?" [9], seem not to give for compact
coadjoint orbits homomorphic algebras.
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Abstract—The star product technique translates the framework of local fields on noncommutative
spacetime into nonlocal fields on standard spacetime. We consider the example of fields on x-deformed
Minkowski space, transforming under k-deformed Poincaré group, with noncommutative parameters. By
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symmetries by functions on classical Poincaré group. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

[t has been recognized recently (see, e.g., [I—
3]) that, at very short distances, comparable with
Planck length A ~ 10733 c¢m, the notion of classical
spacetime manifold should be modified. The sub-
microscopic quantum structure of spacetime implies
noncommutativity; i.e., one should replace the clas-
sical Minkowski coordinates x,, by the generators z,,
of noncommutative algebra. Assuming the formula

(see, e.g.,[4, 5])")

[?B\uvf/fV] = HW/(?E\) (1)
=00 +00)rz, + 022,30, + ...

with 6,,,,(Z) restricted by Jacobi identities, one arrives
at different models of noncommutative spacetime ge-
ometry. The simplest case is obtained if 6, (x) is a

constant (0., (z) = HLOV)). Such a deformation, first
advocated by Dopplicher, Fredenhagen, and Roberts
[1], has been recently extensively studied in string
theory as describing world volume coordinates of D
branes (see, e.g., [7—9]). In such a deformation, the
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relativistic symmetries remain classical, which sim-
plifies greatly the formalism of corresponding non-
commutative theory. Indeed, if we set 0,,,(z) = (9,(?”),
the relations (1) remain invariant under the shifts
T, = 2, +a,, where a, are classical commutative
transformations. If the right-hand side of (1) de-
pends on 7, the translations preserving the algebraic
structure of spacetime become noncommutative. The
simplest framework is provided if the rhs of (1) is
linear, i.e.,

=00)1%,. (2)

[ZEIU /x\V] g

In such a case, the translations 55; =2, + U, com-
mute with spacetime algebra

%, 0] = 0 (3)
and form themselves a second copy of the algebra (2)
(s D) = 013)75,. (4)

In the general case, the translations form another
copy of algebra (1), but the invariance under transla-
tions implies nontrivial braiding relations between the
noncommutative algebra of spacetime coordinates
(1) and the translations algebra (we use property

0, = —0,,):
[T, 0] = % 0w (@ +0) —0,,(x)—0,,()}. (5)

The noncommutativity of spacetime translations
implies necessarily the modification of spacetime
symmetries. In particular, one can pose the question
for which functions 6,,,,(z) in (1) the noncommutative
translations v, can be extended to the quantum
Poincaré group, describing the Hopf algebra of
deformed relativistic symmetries. The classification
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of noncommutative translations which can be ex-
tended to standard (nonbraided) quantum Poincaré
group was given by Podle§ and Woronowicz [10].
In particular, if we wish to maintain the classical
nonrelativistic O(3) symmetries, the choice of the
deformation is unique—one obtains the standard
form of k deformation of relativistic symmetries [11—
13].

The aim of this talk is to describe the x-deformed
field theory in the commutative framework of classical
fields, with the noncommutative parameters of the
r-deformed Poincaré group described by commuta-
tive parametrization. For that purpose, the star prod-
uct on k-deformed Minkowski space [14], identical
to the star product on the subalgebra of noncom-
mutative translations, is extended to ten generators

(Vps 7\2) of k-deformed Poincaré group.
[t appears that, due to the fact that the cross re-

lations between Lorentz generators K/w and transla-
tions v, are quadratic, our extended star product goes
beyond the Baker—Campbell-Hausdorff formula de-
scribing star products for Lie algebraic or Lie super-
algebraic structures.

The plan of our presentation is the following.

In Section 2, we describe the k-deformed Poincaré
group and recall the star product for the fields defined
on k-deformed Minkowski spacetime. In Section 3,
we introduce the star product for functions on k-
deformed Poincaré group. In Section 4, we present
final remarks and outlook.

2. k-DEFORMED POINCARE GROUP
AND FIELDS ON x-DEFORMED
MINKOWSKI SPACE

The k-deformed Poincaré group is described by
the deformed noncommutative group parameters
(v, AY) satisfying the algebraic relations [15, 16]

B8] = = (05, —805,),  (6a)
BAA (6b)

— = { (A%~ ) R+ (Row o) 34}
[Kfj,m =0 (6¢)

with the constraints AAT = ATA =1or
Aﬁ AZ = AZAZ = "7’” = Nur> (7)
where diagn = (1,1,1, —1).

The relations (6) were first obtained [15] by the
quantization of Poisson—Lie bracket for the functions
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on Poincaré group with the following classical » ma-
trix:

1
r=_NAP, (8)
K

where P; are three-momenta and N; = M;y are
Lorentz boost generators. Another way to obtain
the relations (6a)—(6¢) was to construct the dual
Hopf algebra to the k-deformed Poincaré algebra
U,;(P4) written in a bicrossproduct basis[13, 16]. The

coproduct for v, A, remains undeformed

A(T,) =0, @ AL +1® 7, (9a)
A(A) = A* @ Ap; (9b)

i.e., the composition of two quantum Poincaré group
transformations is described by standard classical
formulae.

The k-deformed Minkowski space described in
formula (9a) by = v, ® 1 satisfies the relations (6a),
or, more explicitly,

B0, = &, [@E]=0. (10)
The k-deformed field theory is described by the op-
erator functions ®4(Z). Following the arguments
given in [14, 17], we shall use for the fields ® 4(Z) the

k-deformed Fourier transform

7 1 & ipT
84(3) = gz [ B (1)
where
: ePT . = e P0T0gIPX (12)
and
~ 3 ~
Sulp) == B (Fpip).  (13)
We have
T L. T eiA(Q)(p’pl)i :, (14)

where AEE) = (A(()2) = po + Db, AZ@) = piepTO + pl).
The algebraic relation (14) is translated into the
star-product framework by the replacement z,, — z,,,
where z,, are classical spacetime coordinates and the
ordering in Eq. (12) is reflected in explicit choice of

the star multiplication:

P 4 T — eiA(Q)(p’p/)x; (15)
i.e., after replacement ®(z) — ¢(x), one gets
¢(x) * x(x) (16)
_ 1 4. 4 17 ~ (N iA® (pp)z
= @) /d pd"p'on(p)Xk(p)e :

In the following section, we shall extend the star
product (15), (16), valid for the noncommutative
translations, to the whole quantum k-deformed
Poincaré group.
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3. THE STAR PRODUCT FOR x-DEFORMED  possible. They are described by the following set of

POINCARE GROUP relations:
In order to extend the action of Poincaré group on 0_ k
. . , Ag—1Y 2 Ag 0
Minkowski space to the noncommutative case, we 5 | ¢ — —C+Ag
have to replace the classical Poincaré group by its ~ g—iCa" \0ica® 2 ’i . (22a)
k~-deformed counterpart (A —1) 2 A_’éc 41
~ 2
(ap A) = (@, AL ) (17) " "
The noncommutativity of the symmetry group pa-
rameters raises the question of the physical interpre- — (A9 —1) S LAk
tation of deformed symmetries. In this chapter, we o6k Ak gica® _ 0 K 0 (22b)
0 0 __ k ’
shall show how one can replace the operator algebra (A —1) , Ak
of functions on x-deformed Poincaré group (6a)—(6c¢) 242 " - ?C +1
by the functions on classical Poincaré group, with
suitably chosen star product multiplication.
We shall consider the algebra of the following or- ST Al
dered exponentials: e WAL = A1) 0 v . (22¢)
- - 0 4) 2 0
il 0 AL) . —iaodo g b AL (18) 52 ¢ = ?C +1
The product of two ordered exponentials (18) is given
by the formula b 0 ica"
:eiauﬁ”-l—isz\ﬁ . eiaLﬁ”-l—ibﬂ’/A\,‘f . (19) e Ake (22d)
L (2) I . WP ~u 0 Ai (A8_1)+A2Ag
s oD () i A (5 (Rad)c)+bEAL) A9 + - ¢
where A6—1) 2 A§ 1 ’
o~ o ~ 2kK2 ¢ K ¢+
P Rpee’ = (R0), (20a)
e reRpete = gr (RA). (20D) ida* g eica" (22¢)
The functions f} and ¢/ can be calculated explicitly. B (Aﬁ (A1) + AgAlg) 2 AQ¢ LAR
The functions defined by (20a) read _ 2k2 K k
R A —1 Ak ’
R A l—i—cothéAg %CQ—?OC‘Fl
AN = tanh = | ——E— | (21)
1+ tanh =AJ
K
- e~ \Ogica® (221)
~ AN AY '
AN = (cosh —) —t, o (AS—1) + AF 4+ AFA?
%) 14 tanh 249 Aj + - ¢
K - )
Mﬁ — A_ISC +1
~ A\ ! Ak 2k2 K
f(I)C(Aa)\) = (COSh —) —0)\A7
" 1+ tanh =AJ
K
N A feons i e—ica” Ak iah (22g)
R = A}, + tanh P (AOAk - AOAk) A A—?C N (A3 —1) + AF + AFA? 5
9 - . ? 2
1 + tanh i A8 = u 0 2{: 5
K (Ao_l)cﬂ_ﬂc_’_l
The calculation of (20b) is more complicated, but also 2k2 K
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fori £k
| AR (A1) + AQAE A
¢ A |- k(o%g kOMQ_?kM_’_AI]z
—i¢a® \i iCa® _ pi 1 22h
e ke =AMy dp . - 3 ; (22h)
2k2 K
fori# k,j #k
(A= 1) AR+ ABAD A0
¢ Ay |- >3 Lp? = = A
—ia¥ pi giCab _ pi 1 k k .
e se =Aj - - dup ; . 5 (22i)
2k2 K
In order to represent the relation (19) in star-product REFERENCES

framework, we reproduce the multiplication (19) by

a new star product of the basic functions on the

classical Poincaré group parameters:
ei(a,{v'ﬁerZAﬁ) ® ei(a;v'ﬁerZ/A‘;) (23)

(A lena Yoty £ (95 (1,0¢),00)+b AL).

As is seen from (22a)—(22i), the functions g5 are not

linear in A, due to the quadratic commutator (6b).
On the other hand, due to the commutativity (6¢), the
formulae for f} and g/ can be obtained in an explicit
form.

4. FINAL REMARKS

We would like to make the following comments.

(i) It should be observed that the nice coproduct
formula (15) for noncommutative translations cannot
be extended to the Lorentz sector. One can pose the
question whether by a suitable choice of noncommu-
tative bY such extension can be achieved.

(ii) The relations (6a)—(6¢c) describe a quadratic
algebra, which implies that in the exponential on
the rhs of (23) there are arbitrary powers of A%. It
should be observed, however, that the multiplication
formula (23) has an explicit form.

(iii) Using the star product (23), one can discuss
the covariance of k-deformed local field theory un-
der the x-deformed relativistic transformations. At
present, it is only clear how to show in the star-
product framework the covariance under the sub-
group of noncommutative translations (see also [14]).
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Abstract—A realization of Poincaré—Lie algebra in terms of noncommutative differential calculus was

constructed. Corresponding relativistic quantum mechanics was considered.

ka/Interperiodica”.

In this contribution, we apply the noncommuta-
tive differential calculus to construct the realizations
of the Poincaré group Lie algebra in the relativis-
tic configurational space [1] and related aspects of
the relativistic quantum mechanics (RQM) [1=7] in
this space. It is sufficient for our purposes to limit
ourselves to the simplest case of the commutative
algebra of functions. The transfer to the generalized
calculus [8—13] can be described by the following
vocabulary, in which the first two columns are taken
from the book [11] and the third column corresponds
to our commutative case.

Classical Quantum  Present consideration

Function
of real variable

P (2) = ¥(z7)

Complex variable Operator in H

Real variable Self-adjoint

operatorin H

Infinitesimal Compact Compact

operatorin’H  operatorin H
Differential of real — dy = [F,¢] = dy = [F, ]
or complex variable  Fqp — ¢ F

The passage from the classical formula to the op-
erator one is similar to the substitution of the Pois-
son brackets {v, x} with commutators [, x] in the
process of quantization. The standard Leibniz rule is
valid in the noncommutative differential calculus

d(¥x) = [F, ¢x]
= [F Yl x + ¢ [Fox] =d () x +¢d (x) -

This calculus is introduced [8—13] using the the-
ory of differential forms as its deformation.

(1)
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We refer the reader to [7], where the one-dimen-
sional case was considered, and concentrate here on a
case of a particle moving in the space with two spatial
dimensions. The mass shell of the particle

Pou=1
modells the two-dimensional Lobachevsky space.

We are working in the unit system & = ¢ = m. The
momentum

(2)

P = "0 = (0" p) (3)
can also be parametrized by hyperpolar coordinates
(4)

p’ =coshy, p'=sinhycosd,

p? = sinh y sin ¢.

The Fourier expansion in the relativistic plane
waves
|~ o\ —jp—L
(plp) = (° —pi) =2 (5)
= (cosh x — sinh x cos(¢ — w))_ip_%

or the Gelfand—Graev transformation brings us into
the relativistic configurational p space
p=pn, 0<p<oo,

7 = (n',n?) = (cos 1, sin ).

(6)

The question arises: How are the three-dimensional
Poincaré group P(3) transformations realized in two-
dimensional p space? To define the generators,
we formulate the evident properties of translation
(momentum) operators p* in the p space:

1. The correspondence principle with the nonre-
lativistic two-dimensional QM must be fulfilled. In
particular, the spatial components of p# must transfer
into the standard first-order differential momentum
operators, and the 0-component must transfer into a
free nonrelativistic Hamiltonian operator.

2. To realize three components of the relativistic

momentum p* in terms of two variables p and 1, the
generalized calculus must be unavoidably complex.
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Aswe shall see below, this can be achieved in the con-
text of noncommutative differential calculus in which
the differentials do not commute with independent
variables in contradistinction to the usual calculus.

3. As the inclusion O(2) C O(2,1) takes place,
the angular part of the momentum operators p* con-
tains a standard differentiation 9/9% in respect to 1.
This means that only radial differentiations are mod-
ified. According to item 1, components p"? contain
the first order of 9/9% , but p° contains an angular
derivative of the second order.

4. The momentum operators must reproduce the
composition law for p* in the Lobachevsky space (2),

p-k
=p-k(Vitp-—2 =)
< 14 /1 +p2>
(p(=)k)o = p'ky,
through the addition theorem for the plane waves (5),

which has the nonlocal form
27

[l

0

—~—

(p(=)k)

21
k))dip = / GREHA.  (7)
0

Trying to derive the calculus which satisfies the
requirements listed above, we introduce two triples of
differentials, corresponding to +i shifts

d = (a2, - eia%,@) , (8)

1" = (JB,&?,O),

where
1 i 1 0% ;e
40 = — )= L L 9
G = S
~ —i/2 ;0  ~ i ;0 0
dOZM ' dy=—— " 'op |
-T gy O T TR Ty

The algebra of differentials d/! and variables p and
1 is not closed in respect to commutators. But
if we consider instead the weak commutators, i.e.,
averages of commutators over the O(2) subgroup, or
integrals over di, then the algebra becomes closed
and we have a consistent noncommutative differential
calculus. To define the translations of quantum p
space, we consider differentials d* = df: +d*. Then,
the generators of translations or momentum opera-
tors are defined as the right derivatives corresponding

to d*. They are expressed as

o 1 i 1 0? i
= (o+3) ~rrmae) ) 00

+ _ 1 38/1 = coshz2 —|— . SlnhZ2
P35 p dp
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1 0? 2
- e o,
2p(p +i/2) 0Y?
o 0 Zai isin Zagi
p COS/IJZ}(p € p)—|— p+7//2 a,l)z)
o 0_ i 1cos i 0
P = sin(p — ') — e

The plane wave (5) is the common eigenfunction
for p#:
p*(plp) = p*(plp)- (11)

The remaining generators of Poincaré group in p
space are

M12——2‘%, (12)
MO = — L coslb—i-ismzbi
2 o’
M2 = — p—z siny — 1 cosP— 0
2 o’

The operators (10) are consistent in a weak sense
with the addition theorem (7):

[ (@) av (13)
0

2

~ [ {5y av

= [{@ @180 (1) + (615 " F17) .
0

By the sense of the Gelfand—Graev transforma-
tion, the integration is carried along any contour I"
which crosses all the generatrices of the light cone
in the three-dimensional Minkowskian p space. In
the case considered above, contour I' emerges as the
intersection of the hyperplane p® = const; i.e., it is a
circle, which is a particular choice. In fact, we can
write a more general equation than (13) (we write
it for the 0-component) with integration along the

contour I
/ (p"AB*) dT

r

() - o)) Y

where A(p) and B(p) are arbitrary functions of p.

In real three-dimensional space (or for higher di-
mensions in field theory), the integration in similar

(14)
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relations is carried over the closed hypersurfaces in
p-like configurational space. The important conclu-
sion from this is that field equations appear in the
integral form.

REFERENCES

I. V. G. Kadyshevsky, R. M. Mir-Kasimov, and

N. B. Skachkov, Nuovo Cimento A 55, 233 (1968).

V. G. Kadyshevsky and D. V. Fursaev, Theor. Math.

Phys. 83, 197 (1990).

. R. M. Mir-Kasimov, J. Phys. A 24, 4283 (1991).

. R. M. Mir-Kasimov, Phys. Lett. B 378, 181 (1996).

. R. M. Mir-Kasimov, Int. J. Mod. Phys. 12, 24 (1997).

. R. M. Mir-Kasimoyv, Yad. Fiz. 61, 1951 (1998) [Phys.
At. Nucl. 61, 1837 (1998)].

N

O Ol W

7.
8.

9.

10.

11.

12.

13.

PHYSICS OF ATOMIC NUCLEI Vol.64 No. 12 2001

R. M. Mir-Kasimov, Phys. Part. Nucl. 31, 44 (2000).
S. L. Woronowicz, Commun. Math. Phys. 122, 125
(1989).

J. Wess and B. Zumino, Nucl. Phys. B (Proc. Suppl.)
18, 302 (1990).

M. Dubois-Violette, R. Kerner, and J. Madore,
J. Math. Phys. 31, 323 (1990).

A. Connes, Noncommutative Geometry (Acad.
Press, New York, 1994).

J. Madore, An Introduction to Noncommutative
Geometry and its Physical Applications (Cam-
bridge Univ. Press, Cambridge, 1995).

A. Dimakis and F. Miiller-Hoissen, J. Math. Phys. 40,
1518 (1999).



Physics of Atomic Nuclei, Vol. 64, No. 12, 2001, pp. 2146-2150. From Yadernaya Fizika, Vol. 64, No. 12, 2001, pp. 2236-2240.

Original English Text Copyright (© 2001 by Parashar.

SYMPOSIUM ON QUANTUM GROUPS

Colored Extension of GL,(2) and Its Dual Algebra”

D. Parashar™

Max-Planck-Institut [ir Mathematik in der Naturwissenschaften,
Inselstrasse 22-26, D-04103 Leipzig, Germany

Received February 23, 2001
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colored generalization of the geometric approach to quantum group duality given by Sudbery and Dobrev.
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1. INTRODUCTION

The quantum group GL,(2) is known to admit a
colored extension by introducing some continuously
varying color parameters associated to the genera-
tors. In such an extension, the associated algebra
and the coalgebra are defined in a way that all Hopf
algebraic properties remain preserved. Such exten-
sions have been introduced in [1—3] and studied by
various authors [4—7] in recent years. However, some
of the basic algebro-geometric structure underlying
these colored extensions still need to be established.
As such, we shall focus on the colored extension of
the most intuitive quantum group GL4(2). While
some aspects of this example have already been stud-
ied from both the standard ¢ deformations and the
Jordanian (nonstandard) ~ deformations [6, 7], it has
only recently been shown [8] that the contraction
procedure could be used to obtain the colored Jorda-
nian quantum groups from their colored ¢-deformed
counterparts. In particular, the colored extension of
GL4(2) was treated in detail in [8] to obtain a new
colored extension of Jordanian G Lp(2).

In the present paper, we investigate the algebra
dual to the colored extension of GL,(2) by general-
izing two well-known approaches to the problem: the
(algebraic) R-matrix approach [9] and the geometric
approach[10, 11]due to Sudbery and Dobrev. We first
clarify the notion of duality between a colored quan-
tum group and its dual, i.e., the colored quantized
universal enveloping algebra. We then generalize the
R-matrix approach to establish duality for the colored
extension of GL4(2), and we obtain a new colored

*This article was submitted by the author in English.
“e-mail; Deepak.Parashar@mis.mpg.de

quantum algebra corresponding to gl(2) and exhibit
its Hopf algebra structure. The colored R-matrix pro-
cedure naturally leads us to formulate a constructive
differential calculus [12] on the colored extension of
GL4(2).

Furthermore, we propose a colored generaliza-
tion of the geometric notion of duality for quantum
groups, i.e., regarding the dual algebra as the alge-
bra of tangent vectors at the identity of the group.
This generalization could also be of significance in
establishing the duality for the colored extension of
Jordanian quantum groups.

2. COLORED EXTENSION OF GL,(2)

The colored extension of the quantum group
GL4(2) is governed by the colored R matrix [4],

== o 0 0
R 0 G 0 0
! 0 g—q g™ 0

0 0 0 gt t—m

(1)

which is nonadditive, i.e., RN # R(\ — p). It sat-

isfies the so-called colored quantum Yang—Baxter
equation

Al DAY DY VAV DAL

R12N313 RSS = RSS Ri3 RIQI ) (2)

which is, in general, multicomponent, and A, u, v are

considered as “color” variables. The RT'T relations

are also extended to incorporate the colored exten-
sion as

Ry Ty = To TiaR)™ (3)
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(where Th)y = T\ ® 1 and Ty, = 1 ® T},) in which the
entries of the 7" matrices carry color dependence,

ax by ) T, = (““ by ) The coproduct

ie., Ty = (CA dx e dy
and counit for the coalgebra structure are given by
A(T)) = Th\®Ty, e(Ty) = 1. The quantum determi-
nant Dy = axdy — ¢~ F2Neyby, is grouplike but not
central. The antipode is given by

d —q' by

S(TA) - D)Tl —1-2X\
C

(4)
—-q
and depends on one color variable at a time. The
full Hopf algebraic structure can be constructed re-
sulting in a colored extension of GL4(2) within the
framework of the FRT formalism. Since A\ and p are
continuous variables, this implies the colored exten-
sion of GL4(2) has an infinite number of generators.
The colorless limit A = p = 0 gives back the ordinary
single-parameter deformed quantum group GL,(2),

A ax

2147

and the monochromatic limit A = u # 0 gives rise
to the uncolored two-parameter deformed quantum

group G'L;, 4(2).

3. DUALITY (R-MATRIX APPROACH)

In this section, we investigate in detail the dual
structure for the colored extension of GL,(2) employ-
ing the R-matrix approach. In doing so, let us denote
the generators of the yet unknown dual algebra by
{A)\, B)\, C)\, D)\} and {Al“ Bl“ CN’ DN}' The follow-
ing pairings hold:

<A)\|;ma)\|u> = <B>\\uab>\\u> - <C)\|;uc>\\u>

= <D>\\u7d)\|u> =1
All other pairings give zeros and the notation A|u in
the subscript in the above relations means either A

or . The RT and R~ matrices corresponding to the
colored extension of GL4(2) are

(5)

q71/2q17)\+u 0 0 0
R _ ol 0 g V2qm A g2 (g — ¢ 0 (6)
O 0 q—l/Qq)\‘f'N 0 ’
q1/2q—(1—>\+u) 0 0 0
0 1/2,—(A+p) 0 0
R =cq 2 4 , (7)
0 —q'(q—q7") g2 0
0 0 0 g1 /2q~(1HA=m)
where RT = ¢t Ry and R~ = c*Rl}1 by definition. The colored L* functionals can be expressed as
Hy (—AH!, _ _
Lo g [P g = (8)
AW 0 g~ a2 g HAH ) ’
_ NH (0 —pH!
Ly = g (1 ’ (9)
) (g~ )Brgy g2

where H, = Ay — D,, H;\:A)\—i-D)\ and HN:
A, =Dy, H,=A,+D,.

the subscript means A (respectively, u). So, L;\F(M)

The notation A(u) in

means Lj\L (respectively, L/J[). Each one of Lf\t and Lff

depends on both A and p. The notation Lf implies
that the generators of the dual carry A dependence,

PHYSICS OF ATOMIC NUCLEI

and similarly Lff implies that the generators of the
dual carry p dependence. The duality pairings are
then given by the action of the functionals Lf and L:f
on the T"matrices Ty and T},

(L, )BT = (RS,
(L, B (TG = (RS
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Again, according to the notation introduced, T},
implies Ty or T}, and L)i\m implies Ly or L. For
vanishing color variables, the colored L* functionals
reduce to the ordinary L* functionals for GL,(2). The
commutation relations of the algebra dual to a colored

quantum group can be obtained from the modified or
the colored RLL relations

RiaLy, Ly, = Ly, Ly, R, (12)
RisL} Ly, = L7, uL Rz, (13)
using the colored L* functlonals where Li = Lf ®

1 and LQiA =1® Lf\t. Using the above formulae, we
obtain the commutation relations between the gen-
erating elements of the algebra dual to the colored
extension of GL4(2)

[AkuB,Ul] = B,UJ [D)UB ] = B (14)
[A)\,Cu] - _C}u [D>\7 ] C )
[AMDM] =0, [HMHM] =0, [H)\v ]
¢ MWC\B, — ¢*HB,C) (15)
_ q)\H,u‘HJ«H/\ |:q—%(H)\+Hu)q>\Hf\—NHL
q—q!
_ qé(HwHu)q—AHwH;] 7
A)\AN = ANA)\, (16)

ByB, = ¢*»NB,B,,
C\Cy = A M 0,0,
D)\D, = D, Dy,
where Hy and H are as before. The relations satisfy

the A <> p exchange symmetry. The associated co-
product of the elements of the dual algebra is given by

A(Ay, ))—AM)®1+1®AM) (17)
A(By(y) = By ® ¢ P20 +1® By, (18)
A(Cyy) = Coguy ® ¢ P30 410 Cypy, (19)

A(‘DA(M)) = ( ) ®1+1®D>\( )- (20)

The coumt E(Y)\m) = 0, where Y},
Cx(u)» Da(p) } and the antipode is

S(Axw) = —Axw)> (21)
S(Bxg) = —Bagyq M Praw) - (22)
(23)
)

= {4\ B

S(Crpy) = _CA(H)Q*(AW)*DA(#)), 23
= —Dy)- (24
Thus, we have defined a new single-parameter col-
ored quantum algebra corresponding to gl(2), which

in the monochromatic limit defines the standard un-
colored two-parameter quantum algebra for gl(2).
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4. CONSTRUCTIVE CALCULUS

We now proceed towards a colored generalization
of the constructive differential calculus [12, 13] for
the colored extension of GL4(2). Analogous to the
standard uncolored quantum group, a bimodule T’
(space of quantum one-forms w) is characterized by
the commutation relations between w and ay(,) € A,

the colored quantum group corresponding to GL4(2)

waygy = (1@ fa ) Alaxp)w, (25)
and the linear functional f , is defined in terms of the
colored L* matrices

Faw = S(LY )Ly, (26)
Thus, we have
war) = [(1® S(Ly )Ly )Aar)w.  (27)
In terms of components, this can be written as
Wij A\ () (28)
=[1®S( (A\N)lﬂ) (Mu)ﬂ)A(ak(u))]wkl

using the expressions LT = liij and w = w;j, where

1,7 = 1,2. From these relations, one can obtain the
commutation relations of all the left-invariant one-
forms with the elements of the colored extension of
GL4(2). The left-invariant vector fields x;; on A are
given by the expression

Xij = S(lz:\\u)ik)l(/\\u)kj — 0yje. (29)
The vector fields act on the elements ay(,) of the
colored quantum group as

XijOx(p) = (S(lz;|ﬂ)ik)l()\\u)kj (51']'5)@)\(”). (30)
Furthermore, using the formula day,) = >_;(xi *

*a,\(u))wi, we obtain the action of the exterior deriva-
tive on the generating elements

day) = (sq*2+2()‘*“) — l)a)\(u)wl (31)
+s(g7" = Q) oy yw + (s — Dayyw?,
dby,y = (s(¢7' —¢)* +s— Dbyyw'  (32)

+s(g7" = 9)g MMayyw™
T (sg 22N — 1)y 0,

dc)\(u) = (sq72+2()‘7“) — 1)0)\(M)w1 (33)

+s(g " — @) dywT + (s — 1)CA(u) w?,
ddy) = (s(¢7" —q)* +s — 1)dyyw (34)

+s(g7" = q)g MMeyw
+ (sq 22N — 1)dy 0,
where w! = Wiy, wt = wi9, W™ = wor, W? = w9, and

s = (c")7te™. dA generates I as a left A module.
This defines a first-order differential calculus (T', d) on
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the colored extension of GL4(2). Since the color vari-
ables X\ and y are continuously varying, the differential
calculus obtained is infinite-dimensional. The dif-
ferential calculus on the uncolored single-parameter
quantum group GL4(2) is easily recovered in the col-
orless limit, and that of the uncolored two-parameter
quantum group G Ly, 4(2) in the monochromatic limit.

5. DUAL BASIS (GEOMETRIC APPROACH)

[t is well known that two bialgebras ¢/ and A are in
duality if there exists a doubly nondegenerate bilinear
form

(Y URA—C; () (u,a) = (u,a);  (3D)
Yu elU,a € A,
such that, foru,v € U and a,b € A, we have
(u,ab) = (Ay(u),a @ b), (36)
(uwv,a) = (u®v,Axla)),
<1U7a> = 5,4(@)7 (37)

<u’ ]-.A> = EU(U)'
For the two bialgebras to be in duality as Hopf alge-
bras, U and A further satisfy

(Su(u), a) = (u, Sa(a)). (38)

[t is enough to define the pairing between the generat-
ing elements of the two algebras. Pairing for any other
elements of & and A follows from these relations and
the bilinear form inherited by the tensor product. The
geometric approach for duality for quantum groups
was motivated by the fact that, at the classical level,
an element of the Lie algebra corresponding to a Lie
group is a tangent vector at the identity of the Lie
group. Let H be a given Hopf algebra generated by
noncommuting elements a, b, ¢, d. The ¢ analog
of the tangent vector at the identity would then be
obtained by, first, differentiating the elements of the
given Hopf algebra H (polynomials in a, b, ¢, d) and
then setting (¢4) = ($9) later on (i.e, taking the
counit operation analogous to the unit element at the
group level). The elements thus obtained would be-
long to the dual Hopf algebra H*. The approach is due
to Sudbery [10] and Dobrev [11] and has proved to be
quite a powerful tool in understanding the quantum
group duality from a geometric point of view. In what
follows in this section, we propose to give a colored
generalization of such a geometric picture of duality

using the example of GL,(2). Let Ay* denote the
colored extension of GL4(2). Then, as a Hopf algebra

Ag"“ is generated by elements yy = {ayx, bx,cx,dr}
and y, = {ay,b,,cu,d,}. The basis is given by all
monomials of the form

9r = Gackimn = akd\ bR, (39)

PHYSICS OF ATOMIC NUCLEI
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9u = Gu;klmn = aﬁdiLbTCZ,
where k,I,m,n € Z,, and Jgpgo is the unit of the

algebra 1 4. We use a normal ordering as follows:
first, put the diagonal elements from the T,y matrix;

then, use the lexicographic order for the others. Let
L{(;"“ be the algebra generated by tangent vectors at
the identity of A)*. Then, Uy* is dually paired with

Ag"“. The pairing is defined through the colored ¢-
tangent vectors as follows:

(YA79A>=g—zi b :5(%>, (40)
()= I

<Yu,gx>=g—zi (o bx):(é?):e(g—zﬁ, (41)
<YA,gu>—% (?ZZZ)#%?)E@—ZZ)’ (42)
<Ymgu>—gZ: (“;‘Z‘;) (59)_5(2)52)’ (43)

where Y)\ = {A)\,B)\,C)\,D)\} and YN = {AIUBN’
C,,D,} are the sets of generating elements of the
dual algebra (which has unit 1;/). More compactly,
one can write

Yo 9agny) =€ (2%;3) : (44)

Explicitly, we obtain
(AN 9apy) =€ <gzi: ;) = k0modno,  (45)
(B 90} = € (gzigg) = dmiduo,  (46)
(Cxjps Grp)) = € (gii:;) = Omodn1,  (47)
(Dl Gr(u)) = € (g%:i) = 10mo0no,  (48)

where differentiation is from the right. As a conse-
quence of the above pairings, the following relations
hold:

(Ao Ta) = (6.9) s (49)

(B Toju) = (86) 5 (50)

(Coj Top) = (99 (51)

<D/\\uvT>\|u> = (8 (1)) ) (52)

where T = (‘éi Zi) and T, = (ZZ Z‘;) as before.
Furthermore,

(Y La) = 0; (93)
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<1U7 g)\|u> = EA(g)\m) = 0m00no-

The action of the monomials in L{(;"“ on gy and g, then
leads to the colored g-commutation relations between
the generators of the dual algebra.

6. CONCLUDING REMARKS

We have investigated the structure of the col-
ored extension of the quantum group GL4(2) and
its dual algebra. After establishing the notion of
duality, the dual algebra has been derived explicitly
using the R-matrix approach. We not only obtain a
new colored quantum algebra corresponding to gi(2)
but also show that such a colored generalization of
the R-matrix approach leads to the formulation of a
constructive differential calculus for the colored case.
The colorless and the monochromatic limits of both
the dual algebra and the differential calculus are in
agreement with already known results for GL,(2) and
GLy4(2).

In the preceding section of the paper, we have
proposed a generalization of the geometric picture of
duality to incorporate the colored extensions of quan-
tum groups. It would be interesting to investigate
in detail this setting in the context of the colored

PHYSICS OF ATOMIC NUCLEI
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Jordanian quantum groups. The results easily extend
to the higher dimensional and multiparametric cases.
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Abstract—This paper completes series of articles devoted to classification of the representations of the
nonstandard deformation Uy (so3) providing examples of such representations in low dimensions. The

classification differs substantially when the deformation parameter ¢ is/is not root of unity (¢™ = 1).
When it is a root of unity, the situation differs for odd and even n. The examples presented here cover
the first nontrivial case when n is even (namely, n = 4), from which the general case follows easily.

© 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

This paper is a continuation of the paper[1], which
gave a classification of the representations of the non-
standard deformation Uy, (so(3,C)) (for convenience,
we write U (s03)). Ug(s03) is defined as the complex

associative algebra with unit element generated by
the elements I, Io, I3 satisfying the defining relations
(q € C—{0,£1} is the deformation parameter):

(11, ], := ¢PLIL - ¢ VPRI = 15,
(12, I3], := Ll - PRI =1,
I3, 11y = ¢ I3 — ¢ VNI = .

This algebra was studied in[2, 3]. This article sup-
plies examples of representations which were classi-

Iy = —i

*This article was submitted by the authors in English.
Dlnstitute for Theoretical Physics, Kiev, Ukraine.
"e-mail: havlicek@brain.fjfi.cvut.cz
"e-mail: aklimyk@gluk.org

o 0 0
1
——] 0 0
2], 1 |
0 H 0
"3
0 0 H
q

fied in [2]. Therefore, extensive use of the paper [2] is
assumed throughout this article.

2. REPRESENTATIONS WHEN ¢
IS NOT ROOT OF UNITY

Finite-dimensional representations when ¢ is not
root of unity are studied in [2], Section IV. These
are divided into two main groups: representations of
classical and nonclassical types.

Representations of classical type admit the limit
q — 1. An example in dimension r =4 is given by
following formulas:

1063-7788/01/6412-2151$21.00 © 2001 MAIK “Nauka/Interperiodica”
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_q71/2
0 q1/2 + qfl/Q 0 0
_ql/Q[_l]q[?)]q 0 _qil/Q 0
I — q3/2_|_q—3/2 q1/2_|_q—1/2
1= — )
Y 1 PR B
q1/2 _|_q—1/2 s q3/2 _|_q—3/2
—3|4|1
g2+ g7t

e==f3] [3,

where [z], = (¢ — ¢ *)/(¢ — ¢~ ') and the second
relation determines value of Casimir element C' =
I + 12+ ¢*12 — (¢°/? — ¢*/?) 1 I,I5. There is one
representation of classical type per each dimension

Representations of nonclassical type do not admit

the limit ¢ — 1. An example in dimension r = 4 is

r € N. given by following formulas:
{z} 0 0 0
2 q -
0 {5} 0 0
I3 =& a 3 s
0 0 {5} 0
! 1
0 0 0 {5}
q
:1/2
iq " [1q[7]g
0 P2 — g5/ 0 0
iq”'/? iq"/*[2],[6], 0
T2 _ g—7/2 3/2 _ ;—3/2
I —c| 4*—a . 2 —q 4 ’
' . ig /2 0 iq"2[3]y[5],
P2 — q-5/2 g2 — ¢-1/2
0 0 iq_1/2 o [4]<1
Pl _q32 " 2 _ g1
7 9
o=of3), {3,
q q
where {2}, = (¢ +q¢®)/(g—q!) and e, € provedin[2]. We present a special version suitable for

{—1,1} (all four combinations). There are precisely ~dimension 4:

four representations of nonclassical type per each

: b Theorem 1. Any four-dimensional irreducible
dimension r € N.

representation of U,(so03), when q is not root of
unity, is equivalent to one of five nonequivalent
The following important classification theorem is  irreducible representations described abouve.
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3. REPRESENTATIONS WHEN ¢
IS A ROOT OF UNITY

When ¢™ = 1, the situation differs when n is even
or odd. Let us consider the first nontrivial exam-
ple, when n is even, in closer detail, namely, n =
4. According to theorems from [2], Section V, all
representations of Uy (so3) in the case when ¢ is a root
of unity can be divided into two groups: nonsingular
and singular.

A. Nonsingular representations. A represen-
tation is called nonsingular if there exists a vec-

2153

tor xg # 0 from representation space and v € C
such that Izzg = —i[v],z0 and ¢¥ ¢ {ieq */?|k =
0,...,n—1;e = £1}. Otherwise it is called singu
lar.

Nonsingular representations cover in particular
one (generic) three-parameter family of representa-
tions and some exceptional representations.

At three-parameter family of representations has
dimension n (here, n = 4) and is given by the follow-
ing formulas:

v, O 0 0
1
I — i 0 [v+1] 0 0 ’
0 0 v+ 2], 0
0 0 0 v+ 3],
o (aBtat2)g 0 aq”'/?
ql/+1 _|_q—y—1 qy+3 + q—l/—3
q_1/2 0 (—aB +q[2]4[2v + 1]q)q71/2 0
_[1 _ qy + q—V Dy ql/+2 + q—y—2 »
0 g 0 (—aB + q[3]q[2v + 2]¢)g "/
qVJrl + qfufl qu+3 + q71/73
Bq1/2 g2
Ry — 0 Y E— 0
qy + q v qu—f— _|_q v
1 14 —ZV
C=—af—qllglv =1y = 7(¢™ = ¢7™) — ap,
1 - (@B =D)((¢* — ¢~ = 2ap)* — 4a)
(4) I.) — — v 20\2 (4) I) =
c ( 3) 64 (q q ) ) ¢ ( 1) 16(qu — q_QV)Q )
where o, 8,v € C, ¢ & {z’sq_k/2|k: =0,1,2,3; ¢ = C(4)([1) — 0(4)([2) — _i7
+1}, and the last two equations determine values of . 16
]. 14 —ZV
Casimir elements C¥ (z) = Z(:LA + 2?). CW(13) = 6_4(q2 —q ),

In dimension n/2 (i.e., 2) arises a family of repre-
sentations which depends on one complex parameter:

where v € C, ¢” & {ieq */?|k =0,1,2,3;e = £1}.

Exceptional representations arise in dimensions
<n/2. For dimension 1, we get a trivial zero repre-
sentation.

Iy = — Vg 0 The following classification theorem is proved in
0 [v+1], [2]. Again, we present special version valid for ¢* = 1:
1/2 Theorem 2. Any irreducible nonsingular repre-

q/"[1]q[2v]g ; ' 4 ; ;
T B sentation of Uy(so3) when ¢* = 1 is equivalent to

L = 12 ¢t a ; one of the representations described above.
P 0 B. Singular representations. Singular rep-
T4 resentations form families which depend on less
1, 5, o, continuous parameters than nonsingular represen-
¢= Z(Q "), tations, but they are, together with exceptional
PHYSICS OF ATOMIC NUCLEI Vol.64 No. 12 2001
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representations, harder to describe. We say that a
singular representation has a weight vector if there
exists a vector zg # 0 from representation space
and v, € C such that Izxg = —i[v],zo and (ily +
g VY21 3o = po.

A family of singular representations which does
not have a weight vector arises in dimension n, and an
example in dimension n = 4 is given by the following
formulas:

—q 0 0 0
0 0 ig* % 0
I3 - " 5
00 0 0
0 0 0 egq
= 1
0 —¢'?C, —= 0
SR
I = 0 0 0 —ieqg '/2(2C1y — 1)
1 0 0 -
1€ 19
0 2 q ot 0
C= Cla
1
O (h) = oty 1)
1
CO(D) = 75 (4CE(1 +9)* = 1),
0(4)(13) = 07

where Cy,v € C,e € {—1,1}.

Now, we describe singular representations hav-
ing a weight vector. [t is convenient to divide
them into two main groups according to eigenvalue

HAVLICEK ef al.

write  {ieg */?|k =0
M/

{ieg= > ™|m =0,1,..

yoooy,n—lie =41} = M, U
where M, =
Ln/2—1le ==+1}, M) =

{ieg7™"|m =0,1,...,n/2 — 1;&e = +1}.

Let us first describe the representations which
have eigenvectors from M,,. They arise in dimen-
sions 1, 2, and 4:

= () e ()

CW(1) = CcW(I1,) = cW(I3) = _%7 C = Q’
where e, e’ € {—1,1};
€q
— 0
I V2
3 — )
.
V2
ee” [C1 + gql/2
_ 2 isq1/2
V2

q
V2

e = %(402(1 — e’y —1-£¢"),

sjs

0(4)(]2) — %(402(1 _|_€/€//) -1 -|-€/5”),
1

CO(I3) = 1,

C:Ch

—i[v]y of the vector z of the operator Is. We wheree,e’,e” € {-1,1}, C; € C;
4 5 o0 o —ieq'? B —ieq'/? 0 .
2 V2 V2
- 1)2 2 . 1/2
£q ieq'? (q + 3?) ieq
0O — O 0 _ - 0 0
; v T v Vs
3 = € ) 1— - 1/2 92 - 1/2 ’
0 0 £ 0 0 ieq /7 B 0 q
V2 V2 V2
0 0 0 —5% —ieq'/? a 0 —ieq"? (q+ 3%) ieq'/? B
: V2 V2 V2
1 1
CO(n) = 020 +q(1+a—28"), CW(h) = —7-a(-26" +g(-1 + o +25),
1
(4) - _ _ 9 2
C (-[3) 167 C 2 ﬂ )

wheree € {—1,1}, o, 8 € C.

PHYSICS OF ATOMIC NUCLEI
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Representations which have eigenvectors from

M, arise in dimensions 2, 3, and 4:

00
I3 = )
0 eq
0 —isq3/2
L= 2 1/2 0 ’
91
1
CW(1) = cW(Ly) = T cW(I3)=C =0,
wheree € {—1,1};
eqg 0 0
Is=100 0 |
0 0 —eq
0 %sql/Q 0
Il = —i€q3/2 0 1 ’
1
0 —3 0

() =cW(1) =0cW(n) =C=0,
wheree € {—1,1};
eg 00 O
Lo|o00 o
000 0

0 00 —eq

0 zz-:ql/2 1 0

2 2
0 0 o
Il— 7 ’
10 01
0 0 —+o0
>
CO(1y) = 0W (1) = ZE4*Y
1) — 2) — 16 )

CW(I3) =C =0,
wheree € {—1,1},v € C.
The following classification theorem which is
proved in [2] is presented here for the case ¢* = 1:
Theorem 3. Any irreducible singular represen-
tation of Uy(so3) when q* = 1is equivalent to one
of the representations described abouve.
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Abstract—SL-type zero-graded solutions of the dynamical Yang—Baxter equation in dimension 3 are
classified. In addition to the well-known Drinfeld—Jimbo-type dynamical R matrices, the classification
of so-called “regular” cases includes a quantization of the classical dynamical r matrix found by O. Schifi-
mann and a dynamical partner of the constant Cremmer—Gervais R matrix. Nonperturbative effects are

exhibited. © 2001 MAIK “Nauka/Interperiodica” .

The dynamical R matrix is an operator R(p) acting
on a tensor square of an N-dimensional vector space
V' and depending on a set of integer parameters p; €
Z,i=1,2,...,N. The operator R(p) satisfies the
dynamical Yang—Baxter equation (DYBE)[1]

R12X1R23X1_11%12 = X1R23X1_1R12X1R23X1_1(-1)
Here, X is a diagonal matrix with operator entries,

X := diag{z",...,2"}. (2)

The operators 27 act on the dynamical variables p; by

pir? =l (p; + 7). (3)

In the present paper, we shall address a question of
classification of solutions of the DYBE in dimension
N = 3 which additionally satisfy three more condi-
tions:

~

R(p) has degree zero.

R(p) is of the GL type.

R(p) admits a dynamical SL reduction.

The “zero-degree” condition means that all com-
ponents R} of the matrix R(p) are zeros unless
i+ j =k +1. Therefore, the zero-graded R matrix
f{fl takes the block-diagonal form each block corre-
sponds to a fixed value of 0 :=i+j =k + 1. Let us
place the (only possible) nonzero components of such
an R matrix with the same number ¢ into matrices
A =2 ...,2N (N = 3in the present text). The
size of the matrix A() is equal to the least of the
numbers (o — 1) and (2N — o + 1). The components

*This article was submitted by the authors in English.
DCenter of Theoretical Physics, Luminy, Marseille, France,
on leave of absence from Theoretical Department, Lebedev
Institute of Physics, Moscow, Russia.
"e-mail: oleg@cpt.univ-mrs.fr
"e-mail: pyatov@thsuni. jinr.ru

Ri(a—i)

k(o—k)
their first-space indices ¢ and k increase rightwards
and downwards in A(@),

The matrix R(p) possesses the GL-type property
if, by definition, it has two different eigenvalues g and
—q~! (¢ € C*)and, more precisely, for the spectrums
of the blocks A®) one has

A® = A6) — ¢
Spec(A®) = Spec(A®) = {g,—¢"1},  (4)
Spec(AW) = {g,q,—¢7'}.

This means that the eigenvalues ¢ and —¢~! of the

R(p) are distributed in the same way as the eigenva-
lues 1 and —1 in the permutation matrix.

Finally, imposing the dynamical SL-reduction
condition, one demands the operator [[Y, 2’ to
commute with the operator R(p). This implies that
the entries of the R(p) depend on the differences
pij := pi — pj only.

Our notation for the components of the blocks
A®) | A® "and A®) is the following:

are arranged in such a way that the values of

A(3) _ a b+ A(5) _ A — a/ b/_
b= A—a vt ood ) (5)
c et f+
AD == g o |. (6)
f- e/-l— J

Here, A := ¢ — ¢~ ! and the elements of the matrices

A®) are supposed to be functions of py3 and pas.

Substituting the ansatz (5), (6) into the DYBE,
we get a list of equations for the matrix elements.

1063-7788/01/6412-2156$21.00 © 2001 MAIK “Nauka/Interperiodica”
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The SL property implies that 576~ £ 0, &6/~ #£ 0.
However, the product f*f~ might vanish. A so-
lution will be called regular if f*f~ # 0. We shall
first describe regular cases. The independent set of
equations contained in the DYBE is (for any function
F := F(p), the function shifted in the ith argument is
denoted as F;) := 2'F(p)(«")~")

—1 -1/
a(l)zj_‘;, a’(g):j_‘; (7)
and
(¢—dmy)(g—a)=(g—d) (g " +a@) (8
=1-(q—agp)(d" +a),
(¢ —cy)a—e) = (g —ap)ld " +a),
(¢ —d)(g—d) = (g—d)(q~" +aly)
—1— (g diy)a + ),
(4= @)l —¢) = (a—ag)(¢g " +d),
gl d)a—aw)
g~ a)
(e o —dy)
q-aq) ’
(a— alyy)(a— a)
q—dig) = 1+a
_ (g—a@)(d —afy)
gt +d ’
(¢ —c)(ag) — a/(l)) = (g —c())(a — a’)
=1—(¢—a)(g" +afy),
(¢ =) = ¥ dw)la o) (¢ =)

(¢t +d)(g—a)
These are equations for the diagonal entries. The
evalution of the off-diagonal terms is nontrivial only
for the A® block. The corresponding equations are

b~ b,

+o_ (2) +
O aea O
et
o = _ b b(2)
W (g-a)g—c)
I—p—
et — _ b b(2) o+
R e
b

e — (2) o~
®) (g—a)(g—c) ~
, _bwle—a)

— !/
o el aw)
@ b gt +a)

‘@~ bt (g1 —i—a)€ ’

PHYSICS OF ATOMIC NUCLEI
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bpla—as) _ _ byla- W) -

‘O (T +a) T @7 (g T+a)
The lists (7), (8), and (9) give the full set of equa-

tions imposed by the DYBE. The solutions fall into
three essentially different cases.

Case l.etT=e =¢e't =¢e'~ =0. Here,

d=q, d=)—c (10)
and
o
o= A=) (11)
a—a
The dynamics of a and o’ is given by
qa
W)= T T (12)
r qa’ ro_
YT g T

Equations (11)and (12)imply the following dynamics
forc:

e e €
g—c BT i
The only restrictions on the off-diagonal components
bE, 't and f* of the matrices (5), (6) are given by
the G L-eigenvalue conditions

00" = (¢ —a)(q" +a),
lerb/* _ (q_ a/)(q—l +a/),
i =a—ola-7).
Equations (7) and (12) were solved in [2] in arbitrary

dimension N. This solution is a dynamical analog of
the multiparametric Drinfeld—Jimbo R matrix.

The general solution for N = 3 reads

cay = c)=c (13)

(14)

5q*p12
a = a(pi2) a2 — Blpraly’ (15)
r . ﬂ/qus
a = a'(ps) =

qP2= + ('pas]y’
where [n], := (¢" —¢™™)/\is a ¢ number, and 3 and
(' are arbitrary parameters.

It follows that

ﬂ’/q—pm
gPs — B"[p13q
with 8”(8 — 5') = (A = ).

Case 2. e =¢€e/~=0,et #0, et #0or
et =eT=0e #0,e’~ #0. These two subcases
are related by the transposition symmetry of the R
matrix, and we will consider the case where e™ and
¢’ are different from zero.

The dynamics of a, a’, and ¢ is given by the same
formulas (15) and (16).

c(p13) = (16)

Vol.64 No. 12 2001
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For the off-diagonal elements, one obtains
N . et B e/-l—
ff=—(¢ + C)e,—+, fr=-la-o9x (7
and
et =aA—d)ep, €T =aA—d)en, (18)
b =q¢ v, bV =g,
where u, v, p, T are given by
p= p(p13) + @(P13)CP= + ap13)¢P=,  (19)
v =v(p13) + 7(p13)¢P? + U(p13) P>,
and
p:_ﬂ’ T:&_ (20)
vr(2) HV(3)

Here, u, 11, i, v, 7, U are arbitrary functions, and ¢ is
a primitive cubic root of unity, 1 +¢ +¢~! = 0. The
appearance of cubic roots of unity in the SL-reduced
dynamical R matrix is a purely “nonperturbative” ef-
fect which can not be recognized at the quasiclassical
level.

The R matrix appearing in the considered case
is a dynamical partner of the (multiparametric)
Cremmer—QGervais R matrix [3].

Case 3. e, e/t # 0. In this case, the dynamics
for a is given by

5q*p13
qP13 — Bp13lq

where (3 is an arbitrary constant.

All the other diagonal elements can be expressed
in terms of a:

a(p13) = , (21)

OGIEVETSKY, PYATOV

o T e~ 2
{1=(g7t+a)?}Hg ! +a)
For the off-diagonal elements, one has

et e/Jr
fr=-la-dgg f=-la-0 5. (26)

(25)

o la— cgiq —d) -l cgiq —9 97
and
et =p, T =(g=d)g—d, (28

bm=(¢—a)q " +a), V"
where p, u, v, and 7 are given by formulas (19) and
(20).

The dependence of this R matrix on the second
variable pog is discrete. In the absence of nonper-
turbative effects (when the functions 7z, &, 7, and ¥
vanish), the R matrix admits a quasiclassical limit in
which it can be identified with the classical » matrix
constructed in [4].

The description of regular cases is complete.
Irregular case. fTf~ =0. In this case, the
block A™ is fixed to be diagonal and constant:

AW = diag{q, —¢"", q}. (29)
In addition, the diagonal elements a and a’ of the
blocks A®) and A®) are frozen as well, a = o’ = 0 or

A. The remaining off-diagonal elements b+ and &'*
are constrained by the conditions (14) only.

:T’

q—l +al — (q—l _’_a)—I’ (22) DISCUSSION
1~ (g —a)( -1 a) From our point of view, the most important issue
g—d= 4 - q , (23) of this work is the construction of the dynamical
g ta analog of the Cremmer—Gervais R matrix (case 2).
()2 Explicitly, for this dynamical R matrix, the 2 x 2 and
—c= — 1-(g—a) (¢! +a) (24) 3 x 3 blocks are
1 1— (g7t +a)? 7 ’
, Wa—a)lg +a) A—d %
AB) — v S AB) = B (3) ’ 30
v N— g (q—a) gt +d)pre) o (30)
q qp(2)
. Ca(A=depy (a7 + g
Vr(2) KV (2)
AW = 0 q 0
(4 = e a(A—a)ep A—c
F(1)

Here, the expressions for a, a’, and ¢ are given by
Egs. (15)and (16), and for  and v, by Egs. (19).

PHYSICS OF ATOMIC NUCLEI

The corresponding classical dynamical r matrix is
absent in the classification given in [4]. The reason
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is that the DYBE (1) does not coincide with the
quantum analog of equations considered in [4]. The
difference is in the range of the dynamical variables p;.
In [4], for the Cremmer—Gervais case, the dynamics
is allowed only in the direction pi3. There is indeed
a particular solution (30) depending exclusively on
pi3 (B=0"= X\ B =0inEgs. (15) and (16)). The
dynamics of the diagonal elements a, d’, and ¢ freezes,
and one can show then that the R matrix is gauge-
equivalent to the nondynamical one.
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Abstract—We present a connection between W algebras and Yangians, in the case of gl(IV) algebras, as
well as for twisted Yangians and super-Yangians. This connection allows to construct an R matrix for the
W algebras and to classify their finite-dimensional irreducible representations. We illustrate it in the frame-

work of the nonlinear Schrédinger equation in 1 + 1 dimension. © 2001 MAIK “Nauka/Interperiodica” .

1. INTRODUCTION

W algebras have been introduced in the 2d-
conformal models as a tool for the study of these
theories.  Then, these algebras and their finite-
dimensional versions appeared to be relevant in
several physical backgrounds. However, a full under-
standing of their algebraic structure (and of their ge-
ometrical interpretation) is lacking. The connection
of some of these W algebras with Yangians appears
to be a solution at least for the algebraic structure:
it allows the construction of an R matrix for W al-
gebras, the classification of their irreducible finite-
dimensional representations, and the determination
of their center.

The paper is structured as follows: In Section 2
(Section 3), we recall some basic definitions for Yan-
gians (for W algebras). Then, the connection be-
tween these two objects is presented in Section 4
for the case of gl(N). Section 5 is devoted to a
physical example where the connection explicitly ap-
pears, namely, the nonlinear Schrédinger equation
in 1 + 1 dimension. The two following sections
present various generalizations: the case of so(M)
and sp(2M ) algebras is studied in Section 6, and the
case of superalgebras in Section 7. We conclude in
Section 8.

To be reasonably short, we have chosen to detail,
as an illustrative case, the study of Y/(IV) = Y (gi(V))
and W, (N) = W[gl(Np), N.sl(p)], while being less
precise on the generalizations, sending the interested
reader back to the original papers.

“This article was submitted by the authors in English.
"e-mail: briot@lapp.in2p3.fr
“e-mail: ragoucy@lapp.in2p3.fr

2. YANGIAN Y (G)

Yangians Y (G), associated to each simple Lie al-
gebra G, have been introduced by Drinfel’d as defor-
mation of (half) a loop algebra based on G [1]. They
have generators

Y(G) =U(Qy,a=1,...,dm(G); (1)
n=20,1,..

n is the loop index and a labels the G-adjoint rep-
resentation. In other words, we have an infinite set

of adjoint representations (labeled by n), the first one
being G itself. This is gathered in the relations

.,00);

[Q5, Q0] = . Q5 (2)
The deformation appears in the remaining relations
[ gnaQ?z] :fabc fn+n+P1$7bn(Q)7 (3)

where P2 is a polynomial in the Q’s.
Yangians are Hopf algebras, their coproduct being
given by

AQ}) = Qi@ T+1e Qf (4)
A@D =@ OT+T8Q1+ 4 f%Qhe Q. (5)

which also shows the deformation with respect to the
loop algebra coproduct.

There is a consistency relation, which takes the
form of a Jacobi-like identity. When G # sl(2), this
Jacobi-like identity takes the form

F4lQF, QT + £ealQ}, QF + F*4lQ5, Q1 (6)
= [ paf g Py IV 53(Q5, QF, QD)
and when G = sl(2), it takes the form
FQT Q1. Q51 + £ 105, @11, Q) (7)
= (e gl S

1063-7788/01/6412-2160$21.00 © 2001 MAIK “Nauka/Interperiodica”
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+ fcpequxfabyfyrzfng> 776‘9 83(@67 an Qg)a

where s3 is the symmetrized product.

In the case of G =gl(N), Yangians admit an
R-matrix presentation [2, 3]: gathering the gener-
ators into an N x N matrix and using a spectral
parameter u, one defines

N oo
=Y > u"TiE; (8)
2,j=1n=0
_ Z TJ

u)Ey; with T = 617,

ij=1
Then, the defining relations of Y'(¢i(N)) = Y (V) be-
come
Riz(u — v)T1(u)Ta(v) 9)
Tg(v)Tl(u)ng(u —v),
AT(u) = T(u) @ T(u), (10)
S(T(u)) = T(u)™", e(T(u) =1,
where
Ri(r) =Iy ®@In — éPw,
N
Py = Z E;; ® Ej;,
z‘jﬂ
T1(u) = ®]IN_ZT” u) B @Iy, (11)
i,j=1
N
Tp(u) =Ty @ T(u) = Y T(u)Iy ® Ej;.
ij=1

R is a rational solution to the Yang—Baxter equation,
and Py is the permutation operator of the two auxil-
iary spaces (spanned by the N x N matrices).

2.1. Classical Yangians

In the following, we will be interested mainly in a
classical version of the Yangians, where the commu-
tators are replaced by Poisson brackets.

For the first presentation, the relations are the
same, except for the Poisson bracket, which now
replaces the commutator. For instance, relation (6)
becomes

QL QT + e {Qh, QF (12)
+ P HQ5, Q1Y = Fpaf quf ry U QEQEQ%.
In the case of Y'(V), the Poisson bracket appears
as a classical version of the commutator:

R(x) =1- hr(x),
['v ] = h{'v '}7 T(u) = L(u)v

PHYSICS OF ATOMIC NUCLEI
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{L1(u), La(v)}
= [ri2(u —v), L1 (u) L2 (v)],

3. W(G, ) ALGEBRAS

W algebras were first introduced in the context
of 2d-conformal theories by Zamolodchikov [4] as a
tool for classifying the irreducible unitary representa-
tions of these theories. Later, they were shown to be
symmetries of Toda field theories [5, 6]. In this con-
text, W algebras are constructed as a Hamiltonian
reduction of affine (Kac—Moody) algebras. Later on,
a simpler version of these algebras, called finite W al-
gebras, was introduced by De Boer and Tjin[7]. They
are constructed as a Hamiltonian reduction of finite-
dimensional Lie algebras: the resulting algebra is a
polynomial algebra with a finite number of generators.

More precisely, starting from a Poisson—Lie al-
gebra G, one constrains some of the generators of G.
The constraints are second class, and one considers
the Dirac brackets deduced from these constraints:
the W algebra is defined as the set of unconstrained
generators provided with the Dirac brackets. The
system of constraints is given by a subalgebra H of
G, hence the denomination W(G, H) (see [5, 6, 8] for
more details).

Here, we will be concerned with a class of finite
W algebras: W[gl(Np), N.sl(p)] algebras. We will
denote these algebras W, (N). The generators of
W, (V) are finite in number:

Wo(N)=U (WE, a=1,2,...,N% (15)
n=12...,p).
They obey
{Wg, Wy = fo.wy (16)

and {Wgw Wg} = fab rfz—f—n + Pr(zlrbn(W)v

where P2 (W) are polynomials in the W generators.

[ts similarity with the Yangian presentation is
quite appealing and has motivated the studies in this
direction.

4. Y(N) AND W,(N)

From the previous presentations, it is natural to
seek a relation between W, (NN) algebras and Yan-
gians Y (V). Indeed, such a relation exists, and it has
been proven in [9]:

Theorem 1.  There is an algebra homomor-
phism between W,(N) algebras and Yangians
Y(N). More precisely, there is a one-to-one
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connection between the first pN? generators of
Y (N) and the generators of the W,(N) algebra:

Qn — By Wi + Ry(W) with 57 € R\ {0}. (17)

R&(W) are polynomials in the WP, with m < n.
The remaining generators of Y (N) are polynomi-
alsin the W generators.

[t has been proven that the generators of the W al-
gebra obey the Jacobi-like relations that define the
Yangian.

The R-matrix approach is an easier way to tackle
this relation [10]:

Theorem 2. The W,(N) algebra is isomor-
phic to the truncated Yangian Y,(N), defined by
Y,(N) =Y (N)/J, with J, ideal generated by
7;: {T",é]7 /1/7.] = 17”’7N; n>p}'

Thanks to this theorem, one gets an R-matrix
formulation of the W), (V) algebras:

{Wi(u), Wa(v)} = [riz(u —v), Wi(u)Wa(v)]
with

N P 1

W(u) = W:ljuinEZ" and T(CC) = —P12.

Remark. The Hopf structure of Y (V) does not
survive the coset, so that the algebra isomorphism of
Theorem 2 is in this sense a no-go theorem about the
existence of a natural Hopf structure for W algebras.

One can also determine the center of the Wy (V)
algebra:

Theorem 3. The center of the Wy(N) has di-
mension Np and is canonically associated to the
center of the underlying gl(Np) algebra.

Moreover, since the irreducible finite-dimensional
representations of the Yangian have been classified,
one can prove the following:

Theorem 4. The finite-dimensional irreducible
representations of Wy(N) are all highest weight
representations and are in one-to-one correspon-
dence with the families { Py (u), ..., Pn_1(u), p(u)},
where P;(u) are polynomials of the form

d;
Pu) = [J(w =)

k=1
with Zdi <p and fyf eC

(18)

7
and p(u) =1+ ZnNi’l cpu”" codes the values cy, of
the Casimir operators in the representation.

All these representations are highest weight, the
highest weight being reconstructed from the polyno-
mials P; through

p (w)
pit (u)

P
g Z(u—i_l)’i:l’...
PBi(u)

N, (19)

PHYSICS OF ATOMIC NUCLEI
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with the highest weight vector £ defined by
Whw)E = p'(u)g, 1 <i <N,
and W9 (u)¢ =0, 1<i<j<N.

(20)

Finally, let us remark that a detailed analysis of the
decomposition of W(G,H) algebras with respect to
their Lie subalgebras (using the technique developed
in [8]) shows that such a connection cannot exist with
Yangians Y (G) when G = so(IN) or sp(2N). Indeed,
when G is not a gl(NV) algebra, there is no W(G, H)
algebra such that all its generators are in adjoint
representations of the Lie subalgebra of W(G, H). We
will see below that the connection applies to objects
different from the Y (G) Yangians.

5. NONLINEAR SCHRODINGER EQUATION
IN TWO DIMENSIONS

The nonlinear Schrodinger equation (NLS) in two

dimensions is a nice framework where the connection
between Y (V) and W, (V) can be visualized.

We start with
i0,® = 2P + g |D*®
with @ = (¢, ..

The (quantum) solution to this equation has been
known for a long time [11]. It takes the form

=Y g"D);
n=0

n
Q= qor — gt + Z ((Qi —pi)r — (qf - p?ﬂ) )
i=1

(21)
.,n) and g < 0.

D, = /d"+1q d"pal(py)...al(pn)

exp(i€dy)

X an(qn) - - - ao(QO)H?:l(pi —qi—1)(pi — @)’

where the a’s and a'’s obey a Zamolodchikov—
Faddeev (ZZF) algebra [12]:

a1 (k1) az(ke) = Ria(ko — k1) az(ka) a1(k1), (22)

af (k1) a}(ka) = al(ky) al (k1) Raa(ks — k1), (23)

ay (k1) a}(ky) = ab(ko) Ris(ky — ko) ay (k1) (24)
+ d12(k1 — k2),

where R is the matrix of the Yangian Y (V). We use
the notation

Ris(z) = R} (2) Bij ® By, Ejjvg = 0,

ol By = 5ik7};,
al(k) = CLZ(,IC) v; ® 1, ag(k‘) = ai(k)l®vi,
UZ'U;L» = 5@']’7
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al (k) = a;(k)v] @1, al(k) = a;(k) T 0],
’UZ]-LU]' = Eij'

The apparition of the Yangian’s R matrix is not sur-
prising in this context, since the Yangian is a sym-
metry of NLS. Indeed, in [13] the generators of this
algebra have been expressed in terms of the ZZF
algebra. They take the form

(e 9]

_1)n
Q=31 n,) Q7 withs=0,1,  (25)
n=0 :
Qs n) = /dnkai(/ﬁ)--'aﬁ(kn) (26)

X J;(n) an(kn) e al(kl),

where J¢ . belongs to M(N,C)®"™(ky, ..., ky),

M (N, C) being the space of N x N matrices (see[13]
for the exact expression). The Yangian is a symmetry
of the whole hierarchy associated with NLS, as can
be seen from the expression of the Hamiltonians H,,
in terms of the ZZF algebra:

H,, = /dk E™al(k)a(k) = [Hm, QY = 0. (27)

In fact, the generators af(k) correspond to the
asymptotic states of the NLS hierarchy, and it is
natural to look at the Fock space F spanned by the
a'’s.  This Fock space naturally decomposes into
eigenspaces of the particle number Hy: F = @©,F),.

Now, on each subspace F,,, the sums (25) truncate
at level n = p, in the same way one defines W,(N)
from Y ().

Thus, on each subspace F,, the action of Y (N)
reduces to the Wy(N) algebra.

6. ORTHOGONAL AND SYMPLECTIC CASES
6.1. Folding W, (N)

It has been known for a long time that so(M)
and sp(2M) algebras can be obtained from gl(V)
ones using their outer automorphism. If 7 is such an
automorphism, the so(M) and sp(2M) algebras are
obtained as Ker(I — 7), i.e., the algebra of 7-invariant
generators of gl(NV).

[t is the same technique that is used for W alge-
bras. Indeed, it has already been shown that W alge-
bras based on so(M ) and sp(2M) can be constructed
from the ones based on gl(N) [14]. The Hamiltonian
reduction (i.e., the constraints) must be compatible
with the folding (i.e., the automorphism), so that not
allthe W(gl(N), H) algebras can be folded. However,
it is enough to produce all the W algebras based on
so(M) and sp(2M).
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Here, we will consider only the folding of W, (N),
which can indeed be folded. The automorphism we
consider has been defined in [15]. It takes the form

T:I:(Wrzl]) _ (_1)n+1 010] WéVJrlfj,NJrlfi (28)

> 01 =1 for T+
' = sgn(&H — i) for 7_ and N = 2n.

The folded W algebra is then defined as follows.

Definition 1. The folded W,(N)* algebra is
defined by the coset W,(N)/J, where J is the
ideal generated by Wi — Ti(Wﬁj).

Note that J is an ideal for the product law, and
one can show that the coset can be provided with
the bracket of the W,(V) algebra (see [15] for more
detail). One then proves [14, 15] the following.

Theorem 5. W, (2n)* (resp. W,(2n)~, resp.
W, (2n + 1)t and p=2k + 1) is W[so(2np), n.sl(p)]
(resp. W(sp(2np),n.sl(p)], resp. W[so((2n + 1)p),
n.sl(p) ® so(k)]).

6.2. Twisted Yangians

In the same way U[gl(Np)] and W,(IN) have been
folded into U(G) and W(G, H) with G = so(M) and
sp(2M), one naturally considers the case of Y(N).
However, although Yangians based on so(M) and
sp(2M) exist, it is not these Hopf algebras that are
obtained through this procedure, but another type of
algebras, named twisted Yangians [16]. More pre-
cisely, the automorphism (28) takes here the form

H(T(w) = TH(—u) with Tw)  (29)
=Y TY(wE}; and Efj; = 007 Ex 1 jni1-i.
2

[t can be shown that 7 is an automorphism of Y/ (V).
From this automorphism, one defines

S(u) = T(u)r (T (uw)- (30)

Essentially, two classes of automorphisms appear,
labeled by a parameter 6y = +1:

for YT(N): 60" =1, Vi (6 = 1),

N +1

(31)
—i>, Vi (6 = —1).

This defines a subalgebra Y*(N) of Y (IV), whose
commutation relations are coded in

forY = (2n): 6" = sgn(

Rio(u — v) S1(u) Rj5(u + v) Se(v) (32)
= So(v) Ri5(u +v) S1(u) Ria(u — v),
where R(z) is givenin (11)and
R(z) = (1 @ I)(R(z)) (33)
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1
=I®7)(R(z)) =1- ;Qm
with
N . .
Q12 = Z 00’ Eij @ ENt1-i,N+1—j-
ij=1

The finite-dimensional irreducible representations
and the center of Y*(N) have been determined
in[17].

At the classical level, S(u) generates a Poisson
subalgebra Y(N), the Poisson brackets being de-
fined by

{S1(u), S2(v)} = [r12(u — v), S1(u)S2(v)]  (34)
+ So(v)riy(u + v)S1(u) — S1(u)riy(u + v)S2(v),
where
ria(2) = 1@ T)ra(x) = (1 @ Driz().

The level-one generators of this subalgebra form the
Lie algebra so(M) or sp(2M ), but the total subalge-
bra is not the Yangian based on so(M) or sp(2M) (see
[18] for more details). However, it is these algebras
that are involved in the comparison with W algebras:

Theorem 6. The truncated classical Yangians
Y;}(N) are W algebras. More precisely,

Y,(2n)” = Wisp(2np),n.sl(p)],
Y,(2n)t = Wiso(2np),n.sl(p)],
Y,(2n 4+ 1)t = Wlso((2n + 1)p),

n.sl(p) ® so(k)] with p=2k+1,

where = denotes algebra isomorphisms. The trun-
cation is defined as in Theorem 2.

Let us remark that, as in the case of Y,(V), the
isomorphism cannot be extended to a Hopf algebra
isomorphism, the (untruncated) twisted Yangians
Y (N) not even being Hopf algebras (only left coideals
inY(N)).

As for the Yangian Y (), this isomorphism pro-
vides a simple way of quantizing the W algebras.
One can also use it to determine the center and
the finite-dimensional irreducible representations of
these W algebras (see [15] for more details).

(35)

7. GENERALIZATION TO SUPERALGEBRAS

Once again, one can apply the same technique to
the case of super-Yangians and W superalgebras. As
for Y(N) and gl(N), the case of gl(M|N) is singled
out.
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7.1. Super-YangianY (M|N)

They are based on the superalgebra gl(M|N) in
the same way Y (V) is based on gl(/N). They have
been defined in [19], and their representations are
studied in [20]. One defines a Zs grading

T3] = i) + ] (36)
= <1 <
with [i]=0forl<i< M
[i(]=1forM+1<i<M+N,
and introduces as usual
M+N -
i,j=1 n>0
= Z TZ](U)EZ‘]' and P12:Z(_1)[Z”]}Eij ®Ejz
i,j=1 ij
The super-Yangian is then defined by
R12 (’LL - U)Tl (’LL)TQ(U) (38)
1

= TQ(U)Tl (u)ng(u - 7}) with ng(u) =I- Eplg,
where we have introduced graded tensor products:

Tiw) = 3 () T )5, (39)
,7,k,l

X Ez‘j ® By and Tg(u) = ZTZ](’U,) I® Eij-
Z'7j

[t is a graded Hopf algebra, and its R matrix obeys a
graded Yang—Baxter algebra. Their classical version
is defined as in Section 2.1.We refer to [19—21] for
more details.

7.2 W(M|N) Superalgebras

Starting from the superalgebra gl{(M|N) and us-
ing sl(2) embeddings, one can construct W super-
algebras. The sl(2) generators being bosonic, they
belong to the gi(M) @ gl(N) subalgebra, and the
procedure is the same as in Section 3. The only
difference comes with the fermionic generators which
have to be constrained to the Grassmann constant for
consistency (see [8] for details).

As for the gl(N) case, one selects a special class
of W superalgebras: the finite W superalgebras
Wy(MIN) = Wigl(pM|pN), (M + N).l(p)], where
(M + N).sl(p) denotes the direct sum of (M + N)
algebras si(p), M of them being included in the
gl(M) subalgebra of gl(M|N) and the N remaining
in its gl(IN) subalgebra. Then, one can prove the
following.
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Theorem 7. The W, (M|N) superalgebras are
isomorphic to the truncation at level p of the clas-
sical super-Yangian Y (M|N).

This isomorphism allows us to classify the ir-

reducible finite-dimensional representations of the
W, (M|N) superalgebras [21].

7.3. Twisted Super-Yangians

Similarly to the twisted Yangians, one can de-
fine the twisting of super-Yangians [22]. This leads
to subalgebras of Y (M|N) which contain the or-
thosymplectic superalgebras. Mimicking the case of
twisted Yangian, one introduces an automorphism of
Y (M|N):

(T (u)) = (_1)[i}([ﬂ+1)9i9jTj_t(_u)
with 0; = £1;  (—1)1716,6; = 6y = +1;
I=M+1—4, forl<i<M,
1=2M+N+1—4i, for M+1<i<M+N.
However, the presence of fermionic generators forces
one to have (up to the Hopf algebra isomorphism
Y(M|N) < Y (N|M) which identifies M = 2m and
fp = —1 with N =2n and 6y = 1—see [22]) N =

2n and 6y = +1. Thus, one is led to the following
definition:

Definition 2. The twisted Yangian Y (M|2n)*
is the subalgebra of Y (M|2n) generated by S(u) =
T(u)T(T'(u)), where T is defined in (40) with

0;=1for1 <i< M,

<2M+2n+1 >
0; = sgn #—z

for M +1<i< M+ 2n.

(40)

(41)

From this definition, one proves that S(u) obeys
the rules

Rio(u — v)S1(u) Ry (u + v)S2(v) (42)
= SQ(’U) R/12 (u + ’U) Sl (’LL) ng(u — U),
r(S() = S(-u) + o (S(w) ~ S(-w).  (43)

The irreducible finite-dimensional representations of
Y (M|2n)* are studied in [22].

As far as W superalgebras are concerned, their
folding has been introduced in [14] and shown to lead
to W superalgebras based on osp(M|N) superalge-
bras. Considering a special class of folded W super-
algebras, one gets again the following:

Theorem 8. Let W,(M|2n)* be the
Wlosp(Mp|2np), ([2] + n)si(p) @ err so(k)]  su-
peralgebra, where epy = M [mod 2] and p is chosen
odd (p=2k+1) when M is odd. W,(M|2n)"
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is isomorphic to the truncation at level p of the
twisted super-Yangian'Y (M|2n)™.

[t allows one to classify the finite-dimensional rep-
resentations of the W, (M |2n)* algebras [22].

8. CONCLUSION

A wide class of W (super)algebras are shown to
be isomorphic to the truncation of (super)(twisted)
Yangians. This isomorphism allows one to classify
all the irreducible finite-dimensional representations
of these W algebras.

Moreover, since there are many more WV algebras,
the connection lets us hope that a generalization of
Yangians (as Hopf algebras) is available. The same is
valid for affine W algebras, which should lead to two-
parameter generalization of Yangians.

Finally, the application to physical models, such as
NLS, has to be studied.
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Abstract—The discrete series of unitary irreducible representations of the noncompact quantum algebra
U,4(2,1) are studied. For the negative discrete series, two bases of these irreps are considered. One of them
corresponds to the reduction Uy(2,1) — U,(2) x U(1). The second basis is connected with the reduction
Uqy(2,1) — U(1) x Uy(1,1). The matrix elements of the Uy(2,1) generators in both bases are calculated.
For the intermediate discrete series, only first type of basis is considered and the ¢ analogs of the Gelfand—
Graev formulas are obtained. Also, the transformation brackets connecting the two bases are found for the
negative discrete series. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The quantum algebras and groups, discovered
more than 15 years ago [1], continue to generate a
deep interest among both theoreticians and mathe-
maticians. The investigations of this type were real-
ized also by our group at Moscow State University.
They were concentrated on the development of the
Wigner—Racah formalism for the compact quantum
algebras SU,(2) [2] and SU,(3) [3—5]. In this talk,
we want to extend these studies on the noncompact
quantum algebra U,(2,1). Namely, our aim is to
consider discrete series (DS) of unitary irreducible
representations (UIR) of this algebra and to obtain
the ¢ analog of the formulas given by Gelfand and
Graev [6] for the standard U(n,m) algebras many
years ago. The work is organized as follows. In
Section 2, the DS of UIR with the highest weight are
considered in the so-called U basis corresponding to
the reduction

Uy(2,1) — SU,(2) x U(1). (1)

In Section 3, the same irreps are analyzed in a T'
basis, corresponding to the reduction

Uqy(2,1) = U(1) x SU,(1,1). (2)

The transformation brackets between these bases
(Weyl coefficients) are described in Section 4. In
Section 5, the Gelfand—Graev formulas for the in-
termediate discrete series are derived. Below, the

*This article was submitted by the authors in English.

DPermanent address: Institute of Nuclear Physics, Moscow
State University, Moscow, Russia.

2St. Petersburg Nuclear Physics Institute, Gatchina, Russia.

“e-mail: smirnove@nuclecu.unam.mx

deformation parameter ¢ is assumed to be real. The

standard notation
" —q"
nj=-——
[n] pE—
is used for ¢ numbers and ¢ factorials.

(]! = [n]ln —1]--- 1]

2. U BASIS AND GELFAND—-GRAEV
FORMULAS FOR THE DS OF UIR
WITH A HIGHEST WEIGHT

The highest weight vector |[H) of the UIR {f} =
{f1faf3} satisfies the relations

Ai|H) =0, i<k,
Ay |H) = filH) | (3)
(H|H) = 1.

Here, A, (i,k =1,2,3) are the Uy(2,1) generators
for which the same commutation relations are valid
as for the U,(3) generators:

[Aiis Air] = Aiks [Akk, Aik] = — Akg,
[Aiiy Agr] = 0, [Aig, Api] = [Aii — Agrl,  (4)
[A12, Aza] = [Aa1, A2s] = 0,
Az = A9 As3 — qA23A12, etc.
(see, for example, [3]). Their properties with respect
to an Hermitian conjugation are of the form
A=Ay, Af,=Ay, A =—Asx, (5)
Af = — A3 = —(AppAgg — ¢ T Az Ara).
The general basis vector |msU M), corresponding to
the reduction (1), can be written as follows:
imsU M) (6)
1
~ N(UMy)N (k)

U-M,
Ay MV PY AL A |H),

1063-7788/01/6412-2167$21.00 © 2001 MAIK “Nauka/Interperiodica”
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where 0 < k< fi—fo, 1(=0,1,2,...,00, mg=
fa+k+L,U=(fi—fo—k+1)/2,and —U < My <
U. The projection operator PV for the SU,(2) algebra
was obtained in [2]:

(7)

~
cd
I

WE
L

s [r]!
i 1 T s
Xgpm—@ﬂm+uﬂ1?

The calculation of the normalization factors N (U M)
and N (kl) gives the results

20U — My)!
[U—|- MU]' ’
N?(k, 1) (8)

N%UM@%:[

SMIRNOV, KHARITONOV

ENNfs = fr+k=2)fs = fo+1—1]!

[fs = fo—1]1[f3 = f1 = 2]![f1 — fo — K]!

[f1i—folllfi—fo—k+1+1]
[fi— fo+1+1] '

X

The requirement of the positiveness of N2(kl) applies
to the following restrictions on the highest weight
components:

fs>fo+1l, f3>fi+2, fi>foo  (9)

Using the explicit form (6)—(9) of the U-basis vectors
and the permutation relations for powers of genera-
tors found in [3—5], it is possible to find the matrix el-
ements of the U, (2, 1) generators. In such a manner,
the following results are obtained:

1 1
(m3 + 1U — EMU + §‘A32‘m3UMU> = {

U~ Myllk+ /s — fo— K]lfs = fr+k—1] }/ (10)

20U + 1]]2U]

1 1
<m3 + 1U + EMU + §‘A32‘m3UMU> = {

1

1 1
(m3 +1U + §M — §\A31\m3UMU>

[U+MrHW+Mﬁ—ﬁ+Mﬁ—h+Hm}W 0

20 + 1][2U + 2]

U+ Myllk + 1[f1 — fa — kl[fs — fr + k — 1] M/

1 _
My — §’A31’m3UMU> =qY MU{[

20][2U + 1] ’

_ _q—(U+MU+1){ [U— My +1]Il +

Mﬁ—ﬁ+HmM—ﬁ+nF”
[2U + 1][2U + 2] ’

_ _ o 1/2
<m3—1U—%MU—%’A23’m3UMU>——{[U+MU][Z][f1 f2+l+1”f3 f2+l 1]} ’ (14)

20120 + 1]

1 1
(mg — 1U + EMU — §\A23!m3UMU> = —{

1 1
(m3 — 1U — EMU + §‘A13‘m3UM> = qU+MU+1{

[U—Mb+mmﬁ—ﬁ—k+Mh_ﬁ+k_mym(w)

20 + 1][2U + 2]

U — M)[[fy = fo+ 1+ 1[fs — fa+1— 1] 2

U120 + 1] ’
(16)
(m3 —1U + %MU + %‘Alg‘m3UMU> (17)
__.UM@FU+MU+mmh—ﬁ—k+Mﬁ—ﬁ+k—ﬂFﬂ
1 20 + 12U + 2] '
(m5U" My £+ 1|Uy|msU My) (18)

As for the U-spin generators Uy = Ayo, U_ = Ao,
their matrix elements are given by the standard for-

mulas for the SU,(2) generators

PHYSICS OF ATOMIC NUCLEI
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[t is easy to verify that Egs. (10)—(17) coincide in a
limit ¢ = 1 with the Gelfand—Graev formulas [6] if we

use their notation
Ji=me3—1, fa=mg3—1,
2U = miz — ma2,

f3=mi3 +2,
U — My =mi2 —mii,
U+MU = mi1 — M9yy.

3. REDUCTION
U,(2,1) — U(1) x SU,(1,1) (T BASIS)

The generators of the T-spin subalgebra SU,(1,1)
are of the form

T, = Az, T_ = Az,
To = (Aga — Asz)/2.
The vectors of the T basis can be written in the form

1
[ TMr) = N(TMz)N(sp) (20)

(19)

2169
X A52T_M_1PTA§1A§1’H>7
where
miy = f1—p—s,
1 1 1
T=— — fy — —2)=—,0,-,1,...
2(f3 f2 p+s ) 27 727 ) )
Myp=-T-1,-T-2,...,
N*(TMy) = [-T — My — 1\[T — M7]!/[2T + 1]!.

In contrast to (7), the projection operator P for the
noncompact 7" spin has a form of a finite sum:

2T
PT=%" %A&Agg. (21)
2 [rIRT)!

The calculation of the normalization factor N (s, p)
gives

1 1
<m1 + 17T + EMT - §!A12!m1TMT> = {

1 1
<m1 =+ 1T — §MT — §|A12|m1TMT> = {

orn oSN = folllfs —fots—1fs—fi+ts—2! [fs—fo—p—2]
Nep) = [fi = fo=plMfs — fr = 20![fs — fo — 1]! (fs—fa—p+s—2 (22)
0§p§f1—f2, 8:0,1,2,...,00.
The matrix elements of the U, (2, 1) generators in the T" basis are of the form
2T + 1][2T + 2] ’
[8][f3—f1+8—2Hf3—f2+8—1][—T—MT]}1/2 (04)
[2T)[2T + 1] ’
1 1
<'m1 +1T + §MT + §]A13\m1TMT> (25)
_ T—MT+1{[—T—MT—1][P+1][f1—f2—p+1][f3—f2—p—1]}1/2
— 1 27 + 1][2T + 2] ’
1 1
<m1 + 17T — —MT + §|A13|m1TMT> (26)

2

- —qTMT{ [T — Myp][s]lfs — fo+s—1[fs — fr+s—2] }1/2,

27)[2T + 1]

1 1

[T — Mr][p+ 1][f1—f2—p][f3—f2—P—2]}1/27 (27)

2T][2T + 1]

2

1/2
<m1 17T+ lMT + %|A21|m1TMT> = —{ [T — My —Uls+1lfs = fi+s—1]lfs = fo +3]} ’

PHYSICS OF ATOMIC NUCLEI
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1 1
<m1 —17T — §MT — §]A31]m1TMT> =q

SMIRNOV, KHARITONOV

D { =T — Mellp+ 1l — fo—pllfs— fo—p—2) }/

[2T[2T + 1]
(29)
1 1
<m1 —1T + §MT — §]A31\m1TMT> (30)
_ T+M{[T—MT+ Uls + 1[fs — fr+ 5 — 1[fs — fo +s1}”2
— 1 2T + 1][2T + 2] ’
(m)T' My & 1T [y TMr) = F0, 0 7 {[£T — Mr)[FT — My F 1]}7/2. (31)

[t should be noted that the reduction (2) was not considered in [6].

4. WEYL COEFFICIENTS FOR THE NEGATIVE DS OF THE U,(2,1) ALGEBRA

The Weyl coefficient (U|T') is a transformation bracket between two bases described in Sections 2 and 3.
The direct calculation, similar to one done for the Uy (3) in [7], gives the result

(U|T)q = (miTMp|msUMy) = (—1)*V/[2U + 1][2T + 1]{[

KU — My)l[~T — My — 1)[T — My)!
[!s]!p]U + My]!

(32)

KA~ L s — it s =2l — fo—p - 2]!}1/2
[fs = fi+k—=20fzs— fo+1—-1]![f3 = fa+s = 1]!1[f1 — fo — p]!

2T +14+p+1—s+2)[U+ My + 2]l + 2]!

X ZZ:(_l)Z[z]![QU +o+1lk—2l—s+ 22T +1+1—s+2]!"

[t can be expressed in terms of the basic hypergeo-
metric function 4¢3. Therefore it can be reduced to
a definite g-Racah polynomial and coincides with the
SU,4(2) Racah coefficient except for a phase factor.

5. INTERMEDIATE DISCRETE SERIES

The UIRs of the intermediate DS are character-
ized by the existence of the extremal vector |G) of the
weight {f} = {f1f2f3} which satisfies the relations

A2|G) =0, Z.1|G) = Z3|G) =0, (33)
Ai|lG) = fi|G), (G|G) =1.

(The expressions for Z; operators are given below.)
The general vector of U basis for this UIR can be
denoted as |m3U M), where mg is a third component
of the weight (m) = (mymems) which is inherent in
this vector. It is sufficient to consider only the first-
rank vectors with My = U. The general expression

of such a vector is of the form

1
= |ab) =

|msUU) = |ab) N (ab)
a,b=0,1,2,...,00.

Step-up and step-down operators Z; are given by
the expressions

Zy = PAi3P = A3P,

ZfZg2|G>7

(34)
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Z_1= PA31P = (A31

+ Agy Agpq~ (A —A22tl)

1
P,
[A1g — Ao + 1])
Zy = PAgsP

1
= [ Agg — A9 A P
( 23 21 13[A11—A22+1]> )
Z_9=PA3P = AP,

where P is determined by (7).

The operator Z; transforms the first-rank vec-
tor (34) into the neighbor first-rank vector |mg F

WUy withU' = U F 3(-1)%
They form the so-called Mickelsson—Zhelobenko

algebra [8, 9] and satisfy the permutation relations
(see[10]forthe case g =1)

Nl _9=124 971, L 1Zy= 227 g,

[A11 — Agg + 2]
17y = Zo7 ,
122 21[A11—A22+1]
[A11 — Agg + 2]
L od 1 =7_17_
274 1 2[A11—A22+1]’
[A11 — Age +1]2

ZolZi_og = Z_oZo

[A11 — Ago + 2][A11 — Ao
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[A11 — Az + 1] [a]'[o]'[f3 — fo + a]'[f1 — f3 + b]![f1 — fo + b]!

+ Z17_ 35 =
VA Ay Ay - A D) Fs— Fllfs — falllFr — fa]
[A11 — Ago + 1][Agp — As3 — 1] [f1 = fo +a]!
P — 1.
" [A11 — A2 + 2] X[fl—f2+a+b+1]![f1 f2 41l
P A [A1q — Ao + 1]? The positiveness of this expression dictates the re-
7 .7 [All_A22+1] lef?)ZfQ; 2U:f1—f2—|—a+b. (37)
+ 424 [A11 — Ago + 2][A11 — Ao Writing the general vector of the U basis as follows,
n [A11 — Ago + 1][A33 — Ay1 — 1]P im3U My) (38)
[All — A + 2] [U + MU]' U—My
In addition, = [2U]|[U — MU]!A21 ‘m3UU>7

(Z)T =—-2Z_;. ,

) . o we can calculate the matrix elements of generators.
Using these relations, we can find the normalization  They are listed below in the Gelfand—Graev notation
factor mig = f1—1, meg = f3, mg3 = fo+1, U+ My =

N*(a,b) (36)  mi1 — mao:

miz — mi1][miz — miz — 1][mia — ms3 + 1][mi2 — mag] }1/2

1 1 [
ms + 1U — =My + =|Ass|msUMy ) =
< 3 oY 2’ a2l U> { [m12 — mag][m12 — ma2 + 1]

(39)
1 1
mg + 1U + EMU + §\A32\m3UMU (40)
_ { [m13 — mag + 2][mag — mag + 1]|[ms3 — maa][mi1 — mag + 1] }1/2
[mlg — mM92 + 2] [m12 — M92 + 1] ’
1 1
m3+1U—|—§MU — §\A31\m3UMU (41)
- —q(m11m22+1){ [ma2 — may + 1[mass — mao|[mas — maoy + 2|[mas — maop + 1] }1/2
[m12 — Moo + 1] [m12 — mM92 + 2] ’
1 1
mg+1U — §MU— §]A31\m3UMU (42)
_ gmemn { [m11 — maa][mi2 — mas|[mis — mas + 1][maz — myz — 1] }1/2
[m12 — maa][miz — mag + 1] ’
1 1
ms — 1U—|—§MU — §]A23]m3UMU (43)
_ { [m12 — may + 1][mig — mag][mi2 — ma3 + 2][miz — mog + 1] }1/2
[mlg — mM92 + 1] [m12 — M92 + 2] ’
1 1
ms — 1U — EMU — §]A23]m3UMU = (44)

_ { [m11 — mag][maz — mag — 1][m13 — mag + 1][mag — mas)] }1/2
[m12 — maa][miz — mag + 1] ’
PHYSICS OF ATOMIC NUCLEI Vol.64 No.12 2001
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1 1
<m3— 1U—|—§MU+ §’A13’m3UMU> (45)

_ q—(mlz—mu){ [m11 — mag + 1[mas — mag|[miz — mog + 1][m1z — mss + 2] }1/2
[m12 — mag + 1][m12 — mag + 2 ’

1 1
<m3 —1U — 5 My + §’A13’m3UMU> (46)

— —qm11m22+1{ [mi2 — maa][mgs — maa — 1][mag — maa + 1][mag — moy)] }1/2
[m12 — maa][mi2 — Mmoo + 1]

As for the generators Ay = U_ and A9 = Uy, their 3. Yu. . Smirnov, V. N. Tolstoy, and Yu. I. Kharitonov,

matrix elements are given by the same formulas (18). (Ylagé lF)i]Z. 54,721 (1991) [Sov. J. Nucl. Phys. 54, 437
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Abstract—We find certain functional identities for the Gauss g-power function of a sum of g-commuting
variables. Then we use these identities to obtain two-parameter twists of the quantum affine algebra
Uy(sl2) and of the Yangian Y (sl2). We determine the corresponding deformed trigonometric and rational
quantum R matrices, which then are used in the computation of deformed X X X and X X Z Hamiltonians.

© 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

The most famous R matrices, found by Yang,
Baxter, and Zamolodchikov, satisfy the Yang—Baxter
(YB) equation due to addition laws for basic rational,
trigonometric, and elliptic functions. This note is
an attempt to answer the following question: Which
elementary functions and which of their properties
could be employed to produce other solutions of the
YB equation?

There is a general opinion that all the solutions of
the YB equation, as well as the corresponding Hopf
algebras, can be obtained from the Drinfeld—Jimbo
solutions by suitable twists. Recently, all finite-
dimensional bialgebras from the Belavin—Drinfeld list
[1] were quantized in this way [2]. The first nontrivial
infinite-dimensional examples, which cannot be re-
duced to the finite-dimensional case, are a classical
rational and a trigonometric » matrix with values
in sly, found in [1, 3]. They can be obtained from
the classical Yang and Drinfeld—Jimbo r matrices by
adding, respectively, a certain (but the same!) poly-
nomial of the first degree in the spectral parameters.
We found the corresponding twist for the Yangian
Y (sly) and extended it to a two-parameter twist of the

quantum affine algebra Uq(;\lg).

Surprisingly, it has the simple form of a ¢g-power
function, but with g-commuting arguments, its Yan-
gian degeneration becomes the usual power func-
tion whose arguments belong to an additive variant
of the Manin ¢ plane. In this setting the g-power

*This article was submitted by the authors in English.

Dlnstitute for Theoretical and Experimental Physics, Moscow,
Russia.

Dlnstitute of Nuclear Physics, Moscow State University,
Moscow, Russia.

“E-mail: astolin@math.chalmers.se

functions satisfy nontrivial generalizations of their
standard properties [see below Egs. (9)—(11)], which
guarantee the cocycle identity for the twists.

We calculate the corresponding deformations of
the traditional trigonometric and rational R matrices,
putting them into a single family, and compute the
related Hamiltonians of the periodic chains. It gives
two-parameter integrable deformations of the X X7
and X X X Heisenberg chains. As a particular case,
we get the deformed X X X chain treated in [4].

2. ¢-POWER FUNCTION
OVER ¢-COMMUTING VARIABLES

Denote by (1 — u)((la) the following g-binomial se-
ries [5]:
Fa(uw) = (1 —0){® =1
(—a)g(—a+1)g---(-a+k—1)
+ Z (k)q] u”.
k>0
Here, (a)q = (¢* —1)/(¢ —1). This unital formal
power series over u satisfies the following additive
properties:

(1= w1 =g~ )y = (1=, (1)
(1- u)g“)(l - v)ga) =1-u—v+ q_auv)éa), (2)
(1 —v)ga)(l —u)ga) =(1 —u—v—i—uv)ga), (3)

where the variables v and w in (2) and in (3) g-com-
mute, vu = quv, and each of these is uniquely char-
acterized by the difference equation

1—q %

T Falqu), (4)

which follows directly from the definition. The rela-
tion (1) can be checked directly on the level of formal

Fy(u) =

1063-7788/01/6412-2173$21.00 © 2001 MAIK “Nauka/Interperiodica”
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power series. All the other properties can be deduced
from the presentation of the g-power function as a
ratio of g-exponential functions and from the corre-
sponding properties of ¢ exponents:
exp, —— 0 Q) oo
(1 _u)ga) _ q1—q _ (q Uu; q) ) (5)

exp, 4 (45 @)oo

Here,

1+Z

n>0
(U; @)oo = (1 —u)(1 —qu)....

To prove the relation (5), one can note that both
sides satisfy the same difference Eq. (4) under the
assumption |g| < 1. Clearly, under this assumption,
the solution Fy(u) of (4) is unique if F,(0) = 1. Thus
both sides of the first equality in (5) coincide as formal
power series. Then, relation (1) is a direct corollary
of (5), while (2) and (3) follow from the addition law
[6] for the g exponents given below and the Faddeev—
Volkov [6, 7] identity, where again vu = quv:

exp, (u) exp,(v) = exp,(u + v), (6)
exp, (v) exp,(u) = exp,(u + v + (¢ — Vvu). (7)
We refer to (2) and (3) also as to Faddeev—Volkov

identities. Below, we will give a different proof of
a more general relation and get (2) and (3) as its
consequences.

Let us consider now the g-power series as a func-

tion of a sum of two g-commuting variables u and v,
VU = qUU:

exp,(u

Fo(u+v) = (l—u—v)((la). (8)

We claim that this formal power series has, in addition
to (1)—(3), the following properties:

1-g¢v—wP1—v—qguw® (9

=(1—-u-— v)((f"'b),
(I-wl—¢ " —q 'u)™ )i (10)
—u—v)g‘l) = (1—u—v—w)((1“),
1-u—v)( (11)
—(1—qtv— q_au)_lw)éa) =1l-u—v-— w)éa),

Where vu = quv everywhere, vw = quwv and uw =
g 'wu in (10), (11). Setting u = 0 or v = 0, we get
(1)—(3) as particular cases. The proof of (9)—(11) is
based on the following observation:

(1= g% —u)(1 =" — g "u) (12)

=(1—¢v—u)(l— g —q 'u)
for g-commuting variables v and u. Consider first
(9). Note that it is sufficient to prove this identity
for positive integers a and b only, because in this case
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both sides are finite power series, and if they are equal
for any g-commuting w, v, then their coefficients at
ordered monomials are equal. But these coefficients

are rational functions of ¢* and ¢°, so if they are equal
for all positive integers a and b, then they are equal
identically.

From (1), we know that for any positive integer n
(1—w)f =1-q¢ u)(l—q%u)(1-q ")
(13)
Then, we can reorder the factors of the product
(1—u-— v)é”) =(1-—qlu—q o)

e 1

(1—=q¢ "u—q "v),

using (12) and get another presentation:

(1—u-— v)é") =(1—q¢ " —q tu)

x (1=¢~ " Vo—q7%u)--- (1= 'v—g "u).

From this presentation, relation (9) is obvious. Sim-
ilarly, we prove (10) for an integer positive a. De-
note the left-hand side by Fj,(u,v,w) and the right-
hand side of (10) by G4(u,v,w). We check first
that Fi(u,v,w) = Gi(u,v,w). Next, we see from (9)
that the function F,(u,v,w) satisfies the recurrence
relation

Fn+1(U,U,’U)) = (1 —w(l—gq

—q ') Fy(u, ¢ o, ¢ tw)(1—g o —q " ).
So, it remains to prove the same recurrence relation
for Gy, (u,v,w). For this, we note that we can, analo-
gously to (14), prove the following identities:

—q ")

x(1—q %u—q ) -

(14)

—(n+1),U

1—qgrv—u—qg w1 - q”v

=(1-q¢ " w—qglu—q?w)

x(1—q " 2—q 2u—q )

(=g =g "u—qg ")
X (1—q tv—q " ),

using the identity similar to (12)
(1—-q" - w)(1— ¢ o —¢"'u)
= (1—-q"v— )1 - ¢""v—¢"u—w).
Then we get
1=qgv—u—qg w)(1—-q v
=(1-q¢ " v—qu)

x (1 —q " %0 —q%u—q 2w

¢"u —

o q—n—lu)

n—1 n—1

(=g =g " u— g7 W),
The remaining part is straightforward.
We can get a rational degeneration of the identities
above by the following procedure [8]: Set

U v, Yy=v, 2z=w. (15)

x:u—i—q*l—l
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Then, the ¢g-commutativity relation vu = quv trans-
forms into

zy —q lyzr = —ny?, (16)

and we can rewrite the equalities (9)—(11) in the
variables x, y, and z:

(1 =2 = n(c)gy)y™™
=(1—-z—nlc+ b)qy)((za)

X (1—q "¢ — g "n(c— a)gy)P

x (1 - 2(1— gz —nile +a—1)gy) )"
x (L—z —n(e)gy)y” = (1 —a —n(e)qy — 2)§,

(1 =z —n(e)qy)y”

1-(1-q %
— g "(c —a+1)gy) '2)l
)
—1

— (-2 —n(e)gy — 2.

Here, ¢ = ¢! and xzy — ¢ 'yx = —ny?; as before,
yz = qzy, and xz — ¢ tzz = —n(2)zyz. All the re-
lations make sense for the Yangian limit ¢ = 1. In this
case, the g-power series becomes the usual geometric
series for the power function (1 — z)%, which is con-
sidered now as a function of linear combinations of the
Yangian variables z and y, [z,y] = —ny?. The basic
properties (9)—(11) can be rewritten as

(1— 2 —ney)*™ (17)
=(L—z—nlc+by)*1-z-nlc-ay),

1

(1—z2(1—z—n(c+a—1y)H1 (18)
—z—ney)* =1 -z —ncy—2)",
(1—2—ncy)*(1—-(1-2-n( (19)

a1y

where [z, y] =
—2nyz.

(1 =z —ney — 2)%,
—ny?; as before, [y, z] = 0, and [z, 2] =

3. TWISTING COCYCLES
Let €xa, €4 (5-a): ¢"** = ¢*" be the generators of

the quantum affine algebra Uq(;lg) with zero central
charge, satisfying the relations

¢"eraq™" = ¢ Pesa, qhei(a_a)q_ = q:F2e:|:(5—a)a
h —h —h h

[€O¢7 e—a] = %7 [667047 676+a] = %7
q—q q—4q

[exa,ex@—a)] =0

plus g-Serre relations, which we do not use here. The
comultiplication is given by the following formulas:

Aleg) =ea @1+ ¢ "® e, (20)
Aes-a) = €50 1+ ¢" © es_a,
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A(e—a) =e_4® qh +1® €—a;
Ae—sra) =e€-51a®q "+ 1® e_sia.

We claim that the element

F= (1 —(2),2 (a-l ® es5—a

(-"§4)
¢ "® qhea>>
q2

satisfies the cocycle identity for any constants a and b.

+b-

Let us prove this statement. Set u = (2),2ae5_q,
v = (2),2bqg "e_q . Then, vu = g*uv. We can rewrite
the cocycle equation
Fio(A ®id)F = Foz(id @ A)F,

using the tensor notation a; =a®1® 1, as =1®
a®1l,a3=1® 1R a, as follows:

(=h1/2)
(1-a"v—u) | (1)
q
(—=(h1+h2)/2)
—h1—h
X (1 —q """ —u3>q2
(=h2/2)
_ —h
= (1 —(q 2’1)3 — ’U,3>q2

(—h1/2)

2

—h —hi—h h
X(l—q tvg —q ™ 2U3—U2—q2U3>
q

Using (9), we see that we have to prove the following
equality:

(h2/2) (=h1/2)
(1 —v3 — q}’Qu:a)q2 (1 —q My — UQ)q2
(22)
(=(h1+h2)/2)
X (1 — q_hl—h2v3 — u3) e ' ’

(=h1/2)

= (1 —q My — g3 —uy — qh2u3) ,

q

Let us present the second factor of the left-hand
side of (22) as a series and permute the first factor with
each term of this series. Then, we get on the left-hand

side of (22)
> Cul
n>0
X (1 — U3 — qhQ*Qnug)
(—(h1+h2)/2)

X (1 — q_hl_h%g — ’LL3> ) ,
q

UQ +U2) (23)

(h2/2—n)

q2

where
(=h1/2)p2(—=h1/2+1)2

(n)g2!

o o (—hy/24n—1),
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Then, again using (9), we rewrite the left-hand side of

(22) as
Z Ch (qihlvg + u2>n

n>0

X (1 —q vy — qh272"u3)
q

(h2/2)

2

(24)

(=n)

2
X (1 —vg — qh2u;),)
q
(—=(h1+h2)/2)
X (1 — q_hl_h%g — U3> e .
q

Repeating the factorization procedure for negative
powers, we can present the product of the first two
factors in (24) as a total (usual) power:

n (=n)
(qthUQ + u2> (1 —q "y — qh272nu3)

q2
n
= (g™ 02 +u2)(1 = g7 "2us — g 2ug) )

Therefore, the left-hand side of (22) is equal to

—h1/2

(1 - (q_hlv2+u2)(1 —q_h2v3 _qh2_2u3)_1>( 1/2)
(=h1/2)

q2

2

q2

One can see that the desired equality (22) is now pre-
cisely the generalized Faddeev—Volkov identity (10).

Further, as in the previous section, we can make a
change of variables (see [9]):

n - —
fi :eéfa‘i'q_Q_lq he—om Jfo=4q he—a- (25)

The elements f1, fo, and h generate a Hopf subalge-

bra of Uq(;\lg), considered now [9] as an algebra over
Clnll(q) -

(h, f1] = =2f1, [h, fo] = —2fo, (26)
fifo—a 2 fofi = —nfg,
Alfo)=fo®1+q"® fo, (27)

A(f1)=H@1+¢"® fi+nq" (h), > ® fo.

Then, the twisting element F after a proper nor-
malization of the constants a and b, a=§&,b=
&n/(q=2 — 1), has the form

F = (1—(2)q2§(1®f1 (28)
R ')
21—29
— — b
RF(Zl,ZQ) _ jl 22 (azg +b)
g 121 — gz ¢tz + gb

KHOROSHKIN et al.

-191)

#1012 1)

q2

Again, it makes sense in the Yangian limit ¢ =1,
where F has the following form:
_he1

F=(1-200n 0y 0 0m) (29)

4. TWISTED R MATRICES
AND DEFORMED HAMILTONIANS
Let 7y /2(z) be the two-dimensional vector repre-

sentation of the algebra Uq(sAlg). In this representa-
tion, the generator e_,, acts as a matrix unit esq, e5_4
as zeap, and h as ey — eg2. The R matrix in the tensor
product 7y /2(21) ® 71 /2(22) of Uq(sAlg) is well known.
For the comultiplication (20), it is

Ro(z1,22) = e11 ® €11 + €22 ® €92

21 — 29
+—F—— (11 ®exn +en®en)
q "z1 — (4z2
¢ '—q
+ — (2’2612 ® e91 + 21691 @ €12) 5
q "z1 —(gz2
1 0 0 0
0 21—29 (g 1=q)z 0
Ro(zr.z) = | 7o o e | (30)
(¢ =gz 21—z
q lz1—qz2 g lz1—qzo
0 0 0 1

The image of the element F has the form

h
-1

qq — (az:2 + bq_h+1> ® ea1

=1+ ((az2 +b)enr — (¢~

F=1+

Laze + qb)622) ® e9q.

Hence, the twisted R matrix R¥ = F2'RF~1 can
be written as
RY (21, 23) = Ro(21, 22)
Z1 — k9
gtz —qz
+ (¢ raz1 + gb)ea; ® (e11 — e22)
+ (b+ az)(q 'az1 + gb)eas ® e21),

(31)

((b+ az)(ez2 — €11) @ en1

0 0 0
1 (gt —q)20 0
21—22

(azg +b) (g tazy +qb) — (¢ taz; +qb) az +b 9 z1—gz
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It satisfies the basic property R¥(z, z) = Py3, where
Pyo is a permutation of the tensor factors. Let
t(z) = TroRgN(z, ZQ)Rg:Nil(Z,ZQ) e Rgl(z, z9) be
a family of commuting transfer matrices for the corre-
sponding homogeneous periodic chain, [t(z), t(2")] =
0 (where we treat zo as a parameter of the theory and
z = z1 is considered as a spectral parameter). Then,
the Hamiltonian

_ d _
Ha,b,ZQ = (q T q)z_t('z)’ZiZQt 1(Z2)

dz
can be computed by a standard procedure,

_ d
Hapzy = (¢ = Q)Z Pk,k+1Z£Rk,k+1(Z,22)!2:,32,
K

and is equal to
Hopz = Hxxz (32)

+ Z (C(0f0psy + 04 0f41) + Dogog )
%

Here, C = ((q —1)/2)(b—azeq™ '), D = (azz +b) x

(g razg + qb); 0T =e12, 07 = €1, 07 = €11 — e,
and
Hxxz = Z(a,ja,;ﬂ (33)
e

_ q+q!
+op ot + TUEJ,?H).
We see that by a suitable choice of the parameters
a,b, zo we can add to the X X Z Hamiltonian an ar-
bitrary linear combination of the terms };, ofo,_ | +

¢ tui—qua—qn

Ul —uU2
Uy — U2 —&ug
1

R (u1,ug) = —
¢ = qu2 = dn (g uy — qn

Euz(q uy — qn) —&(g  ug — qn)

In particular, for ¢ = 1, we get a deformation of the
Yang R matrix:

Uy —u
B o) = (1

—&ugc* @0~ +&(up —n)o” ®o”

Pro
Uy — U

(35)

+ Eun(ug — n)o* ® O'Z>.

Again, the R matrix R (uy, uo) satisfies the prop-
erty RF (u,u) = P9, and the Hamiltonian

= (47— @ — ) )yt )

H
du

77767’“’2
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0, 074y and Yoy o 0, and the model will remain
integrable.
In order to get the corresponding XXX de-

generation and, moreover, to have a unified de-
scription of both models, we use again the re-

alization (25) of Uq(;\lg) and the evaluation ho-

momorphism 7y /9(u)(f1) = (u +1n (h/2)q2> q" fo,
71 /2(u)(fo) = qo~, which effectively corresponds to
a shift of spectral parameter z = u —n/(¢72 — 1). In
this notation the nontwisted R matrix Ro(u1,u2) has
the form

Ro(ui,u2) = =(1+ 0% @ 0%)

NN

i Ul — U
2(q7tuy — qua — qn
N (' —qua—an . -
g luy — qua — qn
-1 o o
N (gl Qui —qn 9o+,
q “u1 —quz —qn
and the twisted R matrix R¥ (uy, up) is equal to
R (u1,us) = Ro(uq,us)
Ul — U2
g tuy — qua —qn
+ &g ur — qn)o” ® 0*
+ Eus(q uy — qn)o” ® o),

)(1—O'Z®O'Z)

(34)

( —&ugo* ®o~

0 0 0
(' —q)uz—
1 q mqﬂﬁ qn 0
(¢ '—qui—qn 1 0
Ul —u2

¢ ‘ur—qua—qn
Ulr—u2

for t(u)=Tro R}y (u, ug)joNfl(u, ug) - - - RE (u, ug)
is given by the same formula (32), where C =

(gt = 1)/2)uz — (¢7'€n) /2, D = *us(q ug —
qn), and now also makes sense in the X X X limit
q=1,

Hy ¢, = Hxxx (36)

+ Z (C(0f0)s1 + 01 Ofr1) + Doy 014) 5
k
where C = —£n/2, D = 2uy(ug — ).

5. DISCUSSIONS
1. One can see that the R matrix (31) is a
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quantization of the following solution of the classical
YB equation:
Tab(21,22) = 1DI(21, 22) (37)
+a(z10” ®0° — 20" ®0")
+bc" ®o*—0*®0),

where

1 Z1+ 22
rpi(z1,22) =35 p——

is the Drinfeld—Jimbo solution of the classical YB
equation. Here, t15 is the splitted Casimir operator,
tr=0 ot +ot®@o + %O‘Z ® o®. The r matrix
(37) is gauge-equivalent to

Tap(21,22) = rpy(21, 22)

+a(z10” ®0° — 20" @0 ")

+4ab(z1 — z2)(c” ®0o7).
The gauge equivalence is given by Ad(1 +2bo~) ®
Ad(1+2bo™). It can be shown that for generic a
and b the r matrix (38) is gauge-equivalent to the

following solution of the YB equation found in [1] (see
[10] for the quantum version):

78D (21, 22) =7py(21, 22) +(21—22) (0~ ®07). (39)

Therefore, in the case of sly, we have a description
of the quantization of all the trigonometric solutions
of the YB equation, described in [1], in the universal
form. Moreover, the rational degeneration (35) is a
quantization of the rational » matrix found in [3],

t12
.

2512—0'Jr Ro +o ®O‘+>

(38)

rSt(ul,ug):u +&(uo” ® o —u0” ®o7),
1

and thus we answer the similar question of a quanti-
zation of the rational sly solutions of the classical YB
equation (see also[11]).

2. It will be interesting to study the spectra and
the eigenstates of the Hamiltonians (32), (36). The
particular case of (36) with C' = 0 was studied in [4].
The study was based on a quantization of a simpler
rational r matrix suggested in [11]. It was shown
that in this case the spectrum of the Hamiltonian
remains unchanged after the deformation. However,

the deformed Hamiltonian has Jordanian blocks and
thus it is not diagonalizable. Therefore we can expect

that at least the deformed X X X chains (36) are not
equivalent to the undeformed one.

PHYSICS OF ATOMIC NUCLEI
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3. We see that it turned out to be very important
to obtain a two-parameter deformation of the algebra

Uy(sl2) and of its fundamental R matrix. Only in
such a way did we manage to get the deformation
of the Yangian Y (sly), the corresponding rational
R matrix (35), and the related Hamiltonian (36). On
the classical level, the generic r matrices of this fam-
ily are gauge-equivalent. It is interesting to under-
stand whether these equivalences can be extended to
the quantum level and to develop the representation
theory of the corresponding deformed two-parameter
Hopf algebra.
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type A(n|m)(=sl(n + 1jm + 1)) is given in terms of the Chevalley basis. Construction of a ¢ analog
of Cartan—Weyl generators and their permutation relations for the quantum superalgebra U, (sl(n +
1lm + 1)), which is a subalgebra of the super-Drinfeldian Dy, (sl(n + 1|m + 1)), are also presented.
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1. INTRODUCTION

[t is well known that Yangians [1] and quantum
(q-deformed) affine algebras play a very important
role in the theory of integrable systems and quantum
field theory. One can hope that super-Yangians and
quantum affine superalgebras will play the same role.

We recall that the Yangian Y, (g) is a rational de-
formation of the universal enveloping algebra U (g[u])
and the quantum affine algebra U, (§) is a trigonomet-
ric deformation of U(g[u, u™1]), where g is any finite-
dimensional simple Lie algebra. In the supercase, we
have the same picture: the super-Yangian Y, (g) is
a rational deformation of U(g[u]), and the quantum
affine superalgebra U, (g[u,u™']) is a trigonometric
deformation of U(g[u,u™!]), where g is any finite-
dimensional contragredient simple Lie superalgebra.

From the point of view of applications, it is use-
ful to know various realizations (in term of various
bases) of Yangians, quantum affine algebras, and their
superanalogs. In the case of Yangians, there are
the following well-known realizations introduced by
Drinfeld [1]: in the terms of the Cartesian basis, in
the terms of an infinite basis and generating functions
(currents), in the terms of L operators (mainly, for
the case Y, (gl(n))). There are many papers con-
cerned with the Yangian realizations (see references
in [2]). In the case of super-Yangians, the situation
is very poor. There are only two papers devoted to
the super-Yangians, for the superalgebras sl(n|m) [3]
and g(m|n) [4].

Recently, it was shown in [5] that the Yangians
can be obtained from the quantum affine algebras by

*This article was submitted by the author in English.
“e-mail; tolstoy@nucl-th.sinp.msu.ru

means of a singular transformation (at ¢ = 1) and by
subsequent passage to the limit ¢ — 1. It was also
shown that this singular transformation results in a
new two-parameter deformation called Drinfeldian.
Analogous results were obtained for the supercase in
paper [2]. Namely, it was shown that, starting from
the defining relations of the quantum affine superal-
gebra Uy (g[u]) in terms of the Chevalley basis, where
g is any finite-dimensional contragredient simple Lie
superalgebra, by means of singular transformation of
an affine generator we can obtain a two-parameter
deformation called super-Drinfeldian. The super-
Drinfeldian Dy, (g) is a Hopf superalgebra, and more-
over, if ¢ — 1, we have

quln(g) = Yn(g), (1)
and if n = 0, then
an:O(g) = Uq(g[u]) (2)

The relations between the super-Drinfeldian Dgy(g)
and the superalgebras Uy (g[u]), Y, (g), U(g[u]) (and
also their subalgebras) are shown in Fig. 1. The
general defining relations given in [2] for the super-
Drinfeldians and super-Yangians contain an implicit
part. They have the singular factor n/(¢ — ¢~ 1), and,
moreover, they depend on the choice of a U, (g) vector
é_g of aminimal weight —f. We can choose the vector
€_g so as to obtain simpler defining relations.

In this paper, we find the explicit form of the defin-
ing relations in terms of the Chevalley basis for super-
Drinfeldian and super-Yangian of Lie superalgebras
of the type A(n|m). Moreover, we explicitly describe
the Cartan—Weyl basis for the quantum superalgebra
Uq(sl(n+ 1jm + 1)), which is a subalgebra of the
super-Drinfeldian Dgy,(sl(n + 1jm + 1)).

1063-7788/01/6412-2179$21.00 © 2001 MAIK “Nauka/Interperiodica”
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u,9)0D
qﬁl

U(g) 0 Yy(g) —

U,(9lul) OU,9)
q -1

= U(glu)) O U(g)

Fig. 1. A diagram of the limit Hopf superalgebras of the
super-Drinfeldian Dg,(g) and their subalgebras. The
arrows show passages to the limits.

o—o0o—--
ap 0y

O Ol Ot Omtn Omtn+1

Fig. 2. Dynkin diagram of the Lie superalgebra A(m|n).

2. QUANTUM SUPERALGEBRA U, (A(m|n))

In this section, we construct the Cartan—Weyl
generators of the quantum superalgebra U, (A(m|n))
A(m|n) = sl(m+1|n+1))") and describe their per-
mutation relations which will be used in the next
section for calculation of the explicit defining relations
of the super-Drinfeldian Dy, (sl(m+1|n+1)) and the
super-Yangian Yy, (sl(m+1n+1)).

Let IT:= {a,...,@ntm+1} be a system of sim-
ple roots of A(m|n) endowed with the following
scalar product: (o, ;) = (aj,04), (a4, 04) =2,
(ai,aiJrl) =—1 for 1= 1,2, e ,Mm, and (Clerl,
Oém+1) = 0, and (Oéi—f—laai-i-l) = —2, (Oéiaoéi—f—l) =1
fori=m+1,m+2,...,m+n, and (a;, ;) = 0 for
li—j] >1(,7=1,2,...,m+n+1). Theroot a1
is called an odd gray root.?) The corresponding
Dynkin diagram of A(m|n) is presented on Fig. 2.
Since Uy(sl(m+1|n+1)) ~ Uy(sl(n+1|m+1)) (see
[7]), we fixm > n.

The quantum algebra U, (A(m|n)) is generated by
the Chevalley elements ¢, eqq, (i = 1,2,...,m+
n+1) with the defining relations

greiqen = g Mgl = 1, (3)
¢"iq"i = g ghe,
"iesa;q 7 = O ey,
[eass €—a;] = 0ij [has);

(li =34l =2), (4)

DGenerally speaking, in the standard notation, the su-
peralgebra sl(m+1|m+1) differs from A(m|m) by the
one-dimensional center Algm2: A(m|m) = sl(m+1|m+
1)/{A12m+2}, but here we set A(m|m) := sl(m+1|m+1).

DFor the sake of simplicity, we choose here such system of
simple roots II, which has only one odd root. The same
superalgebra can admit a different number of simple odd
roots (e.g., see [6]).

[eia” eiaj]q =0
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[[e:taiae:taj]qaezl:aj]q =0 (‘Z _]‘ = 1)7 (5)

[[eiam+1veiam]q7 [eiam+176iam+2]q]q =0. (6)
Here and elsewhere, we use the standard notation
[a] == (¢® — ¢ %) /(¢ —q~'), and the brackets [-,]
and the g-brackets [-, -], mean the commutator and
the ¢ commutator, respectively:

legreq] = egeg — (—1)0Bla)dBCe 00 (7)
e, eqlq = egey ®)
. (_1)deg(6,3) deg(eﬂl)q(ﬁﬁ/)eﬁ,eﬁ,

The parity deg(+) of the Chevalley elements are deter-
mined as follows:

deg(h,,) =0 (1<i<m+n+1), (9)
deg(ezl:a ) 0 ( 7£ m + )
deg(eiam_H) 1.

Relations (3)—(6) are invariant with respect to the
replacement of ¢ by ¢~!. Relations (5) for j = m + 1,
i = m,m + 2 are equivalent to

2 =0.

eiam+1

(10)

The outer ¢ supercommutator in relations (6) is
really the usual supercommutator since (oun+1 +
Qmy W41 + Qo) = 0. The relations of the type
(5) are ordinarily called the Serre relations; therefore,
relations (6) may be called the triple Serre relations
because they connect tree root vectors e,,,,
and eq,,, -

eam+1’

The Hopf structure on Uy (A(m|n)) is given by the
following formulas for the comultiplication A, and the
antipode Sy:

Ag(qHhes) = ghoi @ g*hes,
Sq (qihai ) = q:Fha’
AQ(eai) =€y @ lL+gq ~hei @ €a;>

(11)

Sq(eai) = _qhaz’eai,
AQ(e—ai) = e—ai ® qhai + 1 b2y eaﬂ
Sq(e—ai) = _efaiqihai'

[t is not hard to see that the quantum superalgebra
Uy(A(m|n)) has the following simple nongraded an-
tilinear anti-involution (or the conjugation) “*”:

efl:ai = Cxay> (qihai)* = q:':haia (12)

() =g¢
((zy)* =y z* forVu,y € Uy(A(m|n))).

Now we introduce another basis in the Cartan
subalgebra of Uj(A(m|n)), which is natural for

glim+1n+1) and sl(m + 1jn+1). Let 9; be a

F1
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parity function defined on the set 7 :=1,2,...
n + 2 as follows:

¥, =0 for 1<i<m+1,
¥, =1 for m+2<i<N.

Here and elsewhere, we also use the short nota-
tion N :=m + n + 2. The natural basis in the Car-
tan subalgebra of the superalgebra gi(m + 1|n + 1)
(sl(m 4+ 1|n + 1)) consists of the elements e;; (i € I)
which are connected with the Cartan elements h, by
the formulas

;M +

(13)

hag = (=1)% e — (=1)" e (14)
(i=1,2,...,N —1).
The element
N
=S e (15)
i=1

is central in gl(m + 1|n + 1) (Uy(gl(m + 1jn + 1))).
In the case m =mn, the element (15) belongs to
sl(m+1lm + 1) (Uy(sl(m + 1jm + 1))) and

2m—+1
}:km%+ > @m+2-k)ha,. (16)
k=m+1
In the case n # m, we can find the formulas inverse
to (14):
ncq+§:@%—n—kmw (17)
k=1
N-1 i—1
_ 2:(m+n+2—km%>—§:mw
k=m+1 k=1

A dual basis to the elements e;; will be denoted by
Ei (Z = 1, 2, N ,N)Z 5i(€jj) = 5ij» (5i753) = 5z]€z
6Z-j(—1)9i. In terms of €;, the positive root system A
of A(m|n) is presented as follows:

A+:{Ei—5j|1§i<j§N}, (18)
where €; — ;41 are the simple roots: a; = ¢; — €41
(1=1,2,...,N—1). The root §#:=¢; —ey is a
maximal root: 6 = a1 +as+ ... +ay_1. For the

root vectors e, ¢, (i # j), the standard notation is
also used:
(1<i<j<N).
(19)

In particular, e;;11, e;+1; are the Chevalley elements:
€ii+1 = Cays Citli = C—q;-

For construction of the composite root vectors e;;
(j # i+ 1), wefix the following normal ordering of the
positive root system A (see[8, 9]):

(61 —€2),(e1 —€3,62 — €3),

'7(51 — &y &1 _Ei)v

€ij = Cgi—gjy  €Eji = Ceji—gy

(20)
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.,(61 —ENy.--yEN-1 —EN).
According to this ordering, we set
€ij = [eikaekj]q—lv (21)
€ji = [ejkaeki] (1<’i<k<j§N).
Itis obvious that ej; = e;; and deg(e;;) = ¥i; = Vi +

¥;. Using this explicit construction and the defining
relations (3)—(6), it is not hard to calculate all permu-
tation relations of the Cartan—Weyl generators (21).
They are

qeqm M =g e, (1< 4,4,k < N), (22)
[eij,eji] = [z-:?eii — z-:?ejj] (1<i<j<N), (23)
[eij,ekl]q_l =0jpey; (1<i<j<k<I<N),
(

(

24)
0 €2 &2
(€3 €jilg—1 = —(—1)%3%+ (g7 — ¢ 7) ejpeq (25)
(1<i<j<k<l<N),
[ekl,eﬂ]zo 1<i<j<k<I<N), (27)
leipep;] =0 (1<i<j<k<I<N), (28)
2
)

lejis €al = €jq75" —etess (I1<i<j<I<N),
(29)

lexs €4 = e R (1 <i<k<I<N),
(30)
[ej1: €xi] (31)

6]6” €kekk

= (-1 — gD egesig
wherel <i < j < k << Ninthelast relat10n(31).
All the relations (22)—(31) together with the ones
obtained from them by the conjugation “*” describe
a complete list of the permutation relations of the
Cartan—Weyl basis corresponding to the normal
ordering (20). It should be noted that formulas (22)—
(31) are valid not only for the diagram of the form in
Fig. 2 but for all allowed Dynkin diagrams of the given
superalgebra A(m|n) with a different number of odd
gray roots [6, 10].

3. SUPER-DRINFELDIAN
AND SUPER-YANGIAN OF si(m + 1jn + 1)

First, we give a general definition of the super-
Drinfeldian (see [2]). Let g be a finite-dimensional
complex contragredient simple Lie superalgebra of
rank r with a symmetric Cartan matrix A = (a;;); ;4
and with a system of simple roots IT := {ay,...,a,}
((cvi, @) = a;j). Moreover, we choose such system of
simple roots IT which has only one odd root [10].%) Let

3Such system II always exists, and, moreover, the same
superalgebra can have a different number of odd simple roots
(see 6, 10]).
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5-06
ay as Oy Ope1 0,40 Oen Omrn+1

Fig. 3. Dynkin diagram of the affine superalgebra sAl(m +
1ln +1).

0 be a maximal positive root of g. The root 6 can be
even or odd. Let U,(g) be a ¢ analog of U(g) with a
Chevalley basis ¢, exq, (i = 1,2,...,7) and with
the standard defining relations which are not written
here (relations (3)—(6) for the case g = A(m|n)).
The super-Drinfeldian Dy, (g) is generated by the
quantum superalgebra U,(g) and the elements &;_,,

qihé with the relations

[qih“,everything] =0, (32)
g 5579(]_}“” = q_(ai’a)&sfea
e o850l = g [e_ayr €0l (33)

(adqeai)"iofaie = # (adqeai)"ioéfg,
where nio =1 if (ai,ai) = (ai,H) =0; nig=2 if
(Oéz‘, Oéi) =0and (Ozi, 0) = 0; and np= 1—}-2(0@-, (9)/(0&1,
a;) if (e, ;) # 0. Moreover,

[[eaiafé_e]q7§5_9]q

2 ~ ~
C (= D? [leq,; s €_plgs €_plq

it ([feay 2ol &s-ola + lfea: &0l 2ola)

if (o, 0) # 0, (6,0) # 0; and

& o= # [€_0,85-0] — (61_2771)2 &%y
if (0,0)=0

Furthermore, the triple additional Serre relations
can be

(34)

+

(35)

[[5579760%-]% [55797eaj]q]q (36)

2 ~ ~
—((1_27—1)2[[6797 €a,)as [€-0) €a;lal

+ qu_l ([[é—ﬁveai]qv [55—676%](1](1

+ [[£5-0> €as)ar [0, eaj]q]q)
if (60,0) = (4, a5) =0, (,0) = —(j,0) # 0; and
[[eaiafa—e]qv [eaia ea]-]q]q (37)
# [[eaiﬂ é—@]qv [eaiaeaj]q]q

if (ai,ai) == (ozj,@) == 0, (ai,ﬁ) == —(ai,aj) 75 0.
The Hopf structure of Dy, (g) is defined by the for-
mulas Ag, () = Ag(z), Sqn(z) = Sg(z) for any = €
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Uq(g)v and Aqn(qihé) = qihé & qih‘sv Sqn(qih‘s) =
qThs. The comultiplication and the antipode of the
element ;_, are given by

Ap(&_g) =& g@1+q 06 9  (38)
+ o (Aq(é—e) —E 4®1—qg M é-e);

q—q~1
Sen(€s_g) = —q"=9¢5_¢
+ =T (Sq(é—a) + qh5’95_9> :

Here, in (33)—(39), n is some deformation parameter,
(adgeg)e, = [eg, e, ]q, and the vector é_ is any Uy(g)
element of the weight —6, such that limé_4 is a

q—1
nonzero root vector of g with minimal weight — 6.
Although the right-hand sides of relations (33)—(39)
include the singular factor n/(q — ¢=1), we can show
that entirely the right-hand sides of these relations are
regularat ¢ = 1.

(39)

The super-Drinfeldian Dy, (g) is a two-parameter
quantization of U(g[u]) in the direction of a classi-
cal » matrix which is a sum of the simplest rational
and trigonometric r matrices over the superalgebra g.
The Hopf superalgebra Dy—; ,(g) is isomorphic to
the super-Yangian Y,(g). Moreover, Dg,—o(g) =
Uq(glul).

The right-hand sides of relations (33)—(39) for
the super-Drinfeldian Dy, (g) and the super-Yangian
Y, (g) depend on choice of the vector é_g, but the
relations with the different such vectors define the
same super-Drinfeldian and the super-Yangian. We
can choose the vector é_y so as to obtain simpler
right-hand sides of the defining relations.

Now, we give an explicit description of the right-
hand sides of relations (33)—(39) for the super-
Drinfeldian Dy, (sl(m + 1jn + 1)) and the super-
Yangian Y, (sl(m + 1|n + 1)).

Since the defining relations of the super-Drinfeld-
ians and the super-Yangians can be obtained from the
defining relations of the quantum nontwisted affine
superalgebras (see [2]), therefore the Dynkin dia-
grams of these affine superalgebras can also be used
for classification of the super-Drinfeldians and the
super-Yangians. In our case, the Dynkin diagram of
the affine superalgebra si(m + 1|n + 1) is presented
in Fig. 3.

We specialize the general defining relations (32)—
(39) of the super-Drinfeldian Dg,(g) to the case g =

sl(m 4+ 1jn + 1), and in this case we set
é_p= q5%511+5?\76NN€N1'

(40)

Using formulas (22)—(31), after some calculations,
we obtain the following result.
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The super-Drinfeldian Dgy(si(m + 1jn + 1)) is
generated (as a unital associative algebra over
C[[log g, n]]) by the quantum superalgebra Uy (sl(m +
1n +1)) and the elements &5_g, ¢t with the
relations
41

42

[qih“,everything] =0, (41)

s g =q &g, (42)

qNNEs_g = a&5_gq NN, (43)
qs_p=E5_pqt fori=23,...,N—1, (44)
[E5s_gs€it1i) =0 fori=1,2,...,N—1, (45)
leiin1:65—9) =0 fori=23,....N -2, (46)
[e12, [€12: &5-plqlq = 0, (47)
[[€5-6-en—1n]gr en—1n]g =0, (48)

(49)

(50)

€2 g = —nled] ClgTientenenne, ey,
[[€5—9> €12]g> [€5—0 eN—1n]dlq
=l ()70

2 2
X q2ORTENACNINSLES e

+ (_1)192N19N—1N q€%€11+8?\,6NN

X [[€5—0: en—1n]g: €12]geN1
+ (_1)191]\]192]\]_1 (1 _ q728%)q*8?\,_1

2 2
€1e11+tey_1EN—1N—1
X gt N-L 612557961\1—11)-

In the case of the super-Drinfeldian Dgy(sl(m +
1]1)), we also have the following analog of relation
(37):

[[em+1m+27 56—6’](17 [em+1m+27 6mm+1]q]q = 0. (51)
The Hopf structure of Dy, (sl(m + 1jn + 1)) is de-
fined by the formulas (11) for Ug(sl(m + 1jn +
1)) (ie., Agy(x) = Ay(z), Sgn(x) = Sq(x) for any
z € Uy(sl(m+1n+1))) and Ay (gt")=¢* ®
g, Sun(gthe) = ¢Ths. The comultiplication and
the antipode of §;_, are given by

Agn(€s_0) = &g @ 1+ g even—hs g oo
(52)

+ n<q€%e11 ® q€%611)(q€?\’61\71\’6]\71 ® [6%611]

hs

h
+ [ aut 5?V6NN:| qg 2 Q® QE?VENNGM

San(€s_g) = —gho—etentenenne, o (53)

hs

5+ e2e1) +eXenn + e%}

g
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Xq%—eﬁen-i-e?\,eNN—a%eNl . n —
q—dq
N-1 ) 0o
S
k=1 N—=1>i>i_1>...>11>2
—25%611'

—2¢2
: (q = 1) €nt1is Cigin_q ~ €ir19
It is not hard to check that the substitution §_, =

gFientelenne o s = 0 satisfies the relations (41)—
(51);i.e., there is a simple homomorphism Dg,, (sl(m +
1ln 4 1)) — Uy(sl(m + 1|n 4+ 1)). Moreover, both
sides of relations (45)—(51) are equal to zero inde-
pendently. Therefore, we can construct the “evalua-
tion representation” pey of Dy (sl(m + 1lm + 1)) in
Uy(sl(m + 1jn + 1)) @ Clu] as follows:

2 2
pev(qhé) = 17 pev(&é—@) = uq51611+5N6NN€N17 (54)

pev(q — qzl:eii’ pev(eij) =€)

(1<i,j <N).

By setting ¢ = 1in(41)—(53), we obtain the defin-
ing relations of the super-Yangian Y, (sl(m + 1|n +
1)) and its Hopf structure in the Chevalley basis. This
result is formulated as follows.

The super-Yangian Y;,(sl(m + 1|n + 1)) is gener-
ated (as an unital associative algebra over C[n]) by the
superalgebra U(sl(m + 1|n + 1)) and the elements
&s_g, hs with the relations

ieii)

[hs, everything] = 0,
€115 &5—6] = —&5—05
lenns &5—0] = &0,

[€iis Es—g] =0 fori=2,3,...,N —1,
[5_6, €ip1) =0 fori=1,2,... N —1,
[€iit1s &) =0 fori=2,3,...,N -2,

[e12, [e12, &5—p]] = 0,
[[€5—0: en—1n]sen—1n] =0,

2 2
Es—0 = —MENEs—0ENT,

>
—_—

[[§5—0>€12]; [€5-0-en—1N]]

= —775?\7 ((‘Uﬂm*lﬂmfé—e@]\f—m

+ (—1)2NININ (g5 o en 1]y 612]61\71)'

In the case of the super-Yangian Y,,(si(m + 1]1)), we
also have the following relation:

[[6m+1m+27 55—6]7 [6m+1m+27 emerlH =0. (65)

The Hopf structure of the super-Yangian
Y, (sl(m+1jn+1)) is trivial for U(sl(m + 1jm +
1)@ Chs(ie, Ap(z) =21+1®z, S,(x) = —x
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for z € sl(m+1|n+ 1) @ C hy), and it is not trivial
for the element &;_,:

Ap(&5—p) = &g @1 +1®@ &g (66)
) N
1 (Shs @ e+ eleni @eq )
i=1
) N
Sn(€s—0) = =&+ U(§h5€N1 +> E?GM%)-
=1
(67)

Thus, we obtain the very simple minimal realiza-
tion of Dy, (sl(m + 1|n + 1)) and Y, (sl(m + 1|n +
1)), that is, the realization in terms of the Chevalley
basis. Analogous results can be also obtained for
the super-Drinfeldian and the super-Yangian of the
classical superalgebras of series osp(M|N). This
work is in progress.
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SYMPOSIUM ON GROUP THEORY AND PATH INTEGRALS

Propagator for the Chebyshev g Object”
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Department of Physics, State University of New York at Albany, USA
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Abstract—We propose an alternative role of the harmonic oscillator algebra.

Observing that the ¢-

deformed harmonic oscillator algebra defines the Chebyshev g object, we show that the g-free particle and
the pulsed oscillator are special cases of the Chebyshev ¢ object, characterized by a common deformation
parameter ¢ and reduced to a usual free particle as ¢ tends to unity. For the deformed iree particle, ¢ is
a real number, whereas for the pulsed oscillator it belongs to S'. Then, we derive the propagator for the
Chebyshev g object, from which we obtain the propagators for the deformed free particle and the pulsed

oscillator. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION
As is well known, the g-deformed commutator,
aal —qafa = ¢, (1)
proposed by Macfarlane [1] and by Biedenharn [2],
has been used to obtain the energy spectrum for the
g-deformed harmonic oscillator. For the deformed
oscillator, the operators &' and @ are assumed to take
the usual role of raising and lowering energy levels
labeled by the eigenvalues of the number operator N,
respectively; and the energy spectrum of the oscillator
consists of the eigenvalues of the structure function,
u(N) = ata, of the deformed algebra (1). However,
the physical significance of the deformed energy spec-
trum is not clear.
In this paper, we propose an alternative interpre-

tation by noticing that the eigenvalues of u(N') obey
the Chebyshev recursion relation,

un+1)—(g+ ¢ Hun)+un-1)=0 (2)
(n € No),

which is obeyed by the Chebyshev polynomials of
type I and type II (see, e.g., [3]) given, respectively, by

T [cos o] = cos(ng), (3)
Up[cos ] = —Sin[(gn—;l)(p]

when ¢ = ™% (¢ € R). Evidently, U,,_1[cos ¢] can

be the eigenvalues of the structure function u(N)
obeying the algebra (1) [4]. A general process based

*This article was submitted by the authors in English.

DFachbereich Physik, Martin-Luther Universitat Halle-
Wittenberg, Germany.

“e-mail: inomata@albany.edu

on the Chebyshev relation (2), which will be referred
to as a Chebyshev process, defines a generic g object.
We call the ¢ object subjected to the condition, ¢ +
¢~ ! € R, a Chebyshev ¢ object. We show that the
time evolution of the g-deformed free particle (g-free
particle) and the pulsed oscillator (p oscillator) is a
Chebyshev process and that the two systems are both
the Chebyshev ¢ objects.

The g¢-free particle (Section 2) is a g-deformed
object whose motion is governed by the g counterpart
of Newton’s force-free equation,

DZgy(s) =0 (4)
or equivalently the g-difference equation,

¢ 'y(@*s) — (a+ a7 y(s) +aylgs) =0, (5)
where s is a time parameter. The p oscillator (Sec-
tion 3) is a free particle subjected to the periodic
pulses of Hooke’s force, obeying the difference equa-
tion,

c(t4+T)— (2—*T?) z(t) + 2t —T)=0, (6)
where T is the period of pulses. As is shown in
Section 4, both the ¢-free particle and the p oscilla-
tor can be characterized by a common deformation
parameter gq. The g-free particle is characterized by
q € R, whereas the p oscillator is characterized by
qge St

For the p oscillator, the eigenvalue n of the num-
ber operator N corresponds to the number of pulses.
Now, af raises the number of pulses, whereas @ lowers
it. In this manner, we interpret the deformed har-
monic oscillator algebra (1) as an algebra generating
the time progression of a g object rather than an
algebra generating the energy spectrum.

In Section 5, to calculate the propagator for the
Chebyshev process, we exploit the usual harmonic

1063-7788/01/6412-2185$21.00 © 2001 MAIK “Nauka/Interperiodica”
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analysis technique applied for the p oscillator with an
arbitrary ¢ parameter. We also obtain the propagator
for the g-free particle as a special case of the propa-
gator for the g object.

2. THE ¢-DEFORMED FREE PARTICLE

To describe what we are referring to as the
q-deformed free (g-free) particle, let us begin with
the ¢ derivative (or the symmetric Jackson derivative)
of a function f(s) defined for fixed ¢ by

flas) — fla™'s)

Ds.qf(s) = 7
a(If( ) (q _ q_l)s ( )
where s and ¢ may be complex in general. If f(s)
is differentiable at s, then D, f(s) — df(s)/ds as

qg — 1. The ¢ counterpart of Newton’s equation is
written as

DZqy(s) = F(y), (8)
where F'(y) is a force exerted on the system.

The deformed free particle is the system satisfying
the force-free equation (F'(y) = 0) that can be put
into the form of (4). A general solution of (4) is the
usual free-particle solution,

y(s)=as+b (a,b:const € R). (9)

Insofar as the time parameter s changes translation-
ally and uniformly, the g-free particle is nothing more
than the ordinary free particle. Yet, the ¢-free particle
equation (5) differs from the difference equation corre-
sponding to the usual force-free Newtonian equation,

x(t+T)—2x(t)+z(t—T)=0, (10)
which is a special case of the difference equation
for the p oscillator (6) with w =0 (where T" is no
longer the pulsing period but any finite time interval).
The solution of (10), x(t) = at + b, is the same as
(9) in form, but not in content. The g-free particle
equation (4) reduces to the Newtonian form (10) only
in the limit ¢ — 1. The difference equation (10) dic-
tates the time evolution of the particle under the time
translationt — T — t — t + T, whereas the deformed
difference equation stipulates the progression of the
particle under the time scaling ¢=2s — s — ¢?s. The
time transformation [5]

s(t) = soq®/T  (sg : const € R) (11)

with ¢ € C and ¢ # 0 relates the time translation to
the time scaling as

s(t+T/2) = PUHTIAIT — gs(2). (12)

Therefore the trajectory of a g-free particle evolving
with the Newtonian time scale is given by

y(s(t)) = a50q2t/T + b. (13)

If we demand that the time parameter s(¢) be real
for any value of ¢, then ¢ must be a positive real
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number; i.e., ¢ € RT. In this case, the trajectory
(13) is also real and continuous. However, if the
g-free particle is allowed to take a real discrete se-
quential trajectory {y(s(mT))} associated with dis-
crete periodic time translation t = mT (m € N), then
g € R~ may be included since s(mT) = sg|q|*™ €
R. Even in the case when ¢ = |q|e’™?#+1)/2 with
k € Z, we can have a real sequence {y(s(mT))}
with s(mT) = so(—|q|?)™ € R, but the s sequence
{s(mT)} is acausal (or periodically time-reversed)
because of the factor (—1)™. Therefore, taking only
account of causal trajectories, whether continuous
or discrete, we classify the g-free particle into two:
(i) continuous type ¢ € R™ and (ii) hopping type
geR™.

Next, we focus our attention on the ¢ progres-
sion of the g-free particle. Considering m times
of the ¢ progression s(mT) = soq®™, we substitute
ym(q) = y(s0¢®™) into (4) to obtain the recursion
relation,

¢ Yma1(0) — (@ + ¢ )ym(@) + qym-1(q) = 0.
(14)

Obviously, ym(q) = asoq®™ + b satisfies (14). If we
let

um(q) = Yam(q)/q™,

then the recursion relation (14) is reduced to the
Chebyshev form,

Um41(0) = (@ + ¢ ") um(q) + um—-1(q) = 0. (15)

Thus, we see that the deformed oscillator algebra (1)
may be linked to the g progression of the g-free parti-
cleifg € R (¢ #0).

3. THE PULSED OSCILLATOR

The pulsed oscillator (p oscillator) is a free particle
which undergoes periodic pulses of Hooke’s force
F(t) = —Mw?26(t/T — m), where Mw? is Hooke’s
constant, 7" is the period of pulses, and m € Z. This
differs from the so-called kicked oscillator that is a
harmonic oscillator subjected to periodic kicks. The
Lagrangian is given by

1 1
L= §M9b2 — ; 5J\m?Tg;?a(t —tm),  (16)
where t,,, = mT. Hooke’s force is exerted not contin-
uously but periodically and instantaneously at t = t,,.

During the period between two consecutive pulses,
the system is a free particle.

The action integral for a time interval 7 = ¢ — ¢/ is
S",t) (17)
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t”

1 -2 1 2 2
:/lng — 5 Mw'Ta ;6(t—tm) dt.

tl

For a short time interval 7j = t; —t;_1 < T = t,, —

tm—1, We choose the action symmetric with respect to
T, and -1

M 2

Sj = 2—Tj($j — xj-1)

(18)

1
- ZMWQT{QC%% 5(m, §) + ap, 1 6(m —1,4)},

where zj, = x(t;) and §(k,j) =1il t;_1 < kT <,
and d(k, j) = 0 otherwise. Naturally, the action eval-
uated along the classical path in the time interval from

t=tn—1+etot =1, —ebetween two pulses yields
that of the free particle:

SO(tma tm—l)

= lim S(ty, — €, tm—1 + €)

e—0

(19)
M 2

= ﬁ(:ﬁm — Tp—1)”.

The action over one period, involving pulses, resulting

from (19) is

M

2T
1

- ZM2T(‘T%’L + x%’b—l)u

S(tm,tm—1) = (20)

(-rm - xm71)2

which is symmetric with respect to x,, and x,,—1.
Calculating the canonical momenta from the sym-
metrized action (20) by
Pm = 0S/0x,
= (M/T) (2, — Tm-1) — (Mw?T/2)z,
Pm—-1 = _aS/axmfl
= (M/T)(xp — Tpp1) + (Mw?T/2) 21,
we find the area-preserving linear map in phase space:
(21)

Tm = Tm—1
1 2m2\—1
T2 = 22T ()

Dm = Pm_1 — (Mw2/2)T(:cm + Tip—1)-

The evolution of the classical trajectory in phase
space obeying the linear map (21) is not chaotic and
may not be interesting for the chaos study. What is
interesting is that both x,, and p,, in (21) obey the
Chebyshev recursion relation,

Umt1(2) — 22 U (2) + Um—1(2) =0, (22)
when the following identification is made: z =1 —
w?T?/2. Apparently (22), if 2z = g + ¢!, is iden-
tical in form with (2) and (15). With z = cos ¢ (or
q = e~ %), the solutions of the recursion relation (22)
are given in terms of the Chebyshev polynomials
of (3). If 0 < w?T? < 4, then ¢ € R. Hence, the
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classical discrete solutions for z(t) and p(t) oscillate
sinusoidally, which are indeed physical solutions for
the proper p oscillator. Thus, we realize that the p
oscillator, obeying the Chebyshev process, is indeed
a g-deformed object with ¢ = ™% € S, where ¢ =
cos1(1 —w?T?/2) € R.

If w2T? < 0 or 4 < w?T?, then ¢ has to be com-
plex; so the solutions of (22) are not oscillatory. Nev-
ertheless, we may treat the physically proper solutions
and the physically improper solutions together as so-
lutions of the p oscillator in a generalized sense.

4. ¢ OBJECTS

As we have seen above, the time evolution of
both the ¢-free particle and the p oscillator is the
Chebyshev process. Furthermore, the two systems
approach the free particle in the limit ¢ — 1. There-
fore, by using a common deformation parameter ¢, we
should be able to treat both the g-iree particle and the
p oscillator in a unified manner. In other words, we
may consider the two systems as special cases of a
generic g object.

The generic g object may be defined with a non-
zero complex-valued q. However, we restrict our-
selves to the case where z = cosp = (¢ +¢~1)/2 is
real. Under this condition, ¢ € R or ¢ € S*. In fact,
such a q object is equivalent to the generalized p os-
cillator possessing the proper and improper solutions.
Therefore, it is convenient to utilize the oscillator’s
frequency w as a parameter even for the ¢ object. We
then put solutions of the g object into three classes as
follows:

(i) 0<w?T? < 4
o =cos (1 —-w?T?/2) €R; g€ S
(i) w?T? < 0;
ip = cosh ™} (1 + |w[*T?/2) € R; ¢ € RT;
(iii) 4 < w?T?

ip =im + cosh H(w?T?/2 - 1) €R; g€ R™.

Evidently, case (i) corresponds to the proper p oscilla-
tor. As has been mentioned earlier, for the real trajec-
tory (13) of the g-free particle, ¢ must be real. How-
ever, for a continuous evolution with the Newtonian
time ¢, y(t) can be real only when ¢ is positive. Hence,
the (proper) evolution of the g¢-iree particle should
belong to case (ii). As each discrete translation of
time by T causes the scaling of s by ¢?, y,, remains
real even if ¢ is a negative real number, provided s
is real. For a continuous evolution with a negative g,
y(t) takes complex values in general. Thus, case (iii)
corresponds to the discrete evolution of the hopping
g-free particle. In this manner, the ¢-iree particle may
be viewed as a form of the improper p oscillator.
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5. THE PROPAGATOR
FOR THE CHEBYSHEV PROCESS

In what follows, we calculate the propagator for
the p oscillator and see how it depends on the de-
formation parameter q. Then, we interpret it more
generally as the propagator (in the T" evolution) for
the generic g object obeying the Chebyshev process.

The propagator for the system with the La-
grangian (16) can be calculated from Feynman’s path
integral,

" =z(tn) N _
z'=z(to) i=1
N 1/2 N—1
M
. H [Qﬂith] H 4,

where 7 =1tx5 —ty is a fixed total time interval.
This propagator can be easily calculated with the
action (18). The propagator evaluated from t,,—1 + €
to t,, — €, involving no pulse, is in fact the free-
particle propagator:

Kfree (xmp Tm—1; T)
M Y2 i
- |:27th:| exXp [ﬁSO(tmatm—l):| )

where Sy is the free action (19).
propagator takes a simple form,

K(.Im, Tm—1; T)

— [ M ]1/2 exp FS(tm,tm_l)] ;

(24)

The one-period

(25)

2mihT h
where S(t,, tm—1) is the one-period action (20).
For convenience, we rewrite the symmetric one-
period (20) as

S(-Tmuxmfl) (26)
M

M 1 22 2 2
=57 (1 — 5w T > (2, + 1) — ?(xmxm_l).
If we let cosp = 1 — w?T?/2 or sin(p/2) = wT/2,

and & =ax with a=./(M/hT)siny, the one-

period action (26) may further be rewritten as
S(-Tma xmfl)

1
= Sheot o (&, +&n1) — hescpEmbm1.

At this point, we relate ¢ to the deformation parame-
tergby ¢ = iln ¢ as has been mentioned at the end of
the previous section. Then, we may express the one-
period propagator for the action (27) as

K(xma Tm—1; T)

1/2 1
| e @)

(27)

(28)

[ M
| 2mikT
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1—¢q?
The propagator for a double period 27" can be

found by convolution,
K(merlp Tm—1; 2T)

= /K(:);’m+1,xm;T)K(xm,xm_l;T)d:rm.

In finding the two-period propagator via (29), we
exploit the idea of harmonic analysis to expand the
one-period propagator in a series of orthogonal poly-
nomials and carry out the convolution with the aid of
the orthogonality property of the polynomials.

Now, we use Mehler’s formula for the Hermite
polynomials H,,(z) (see, e.g., [6]),

_ 2zyq — (22 + y*)¢?
2 1/2
(1 —q ) / €Xp |: 1— q2

|:2§m§m—1q - (572n + fg%l)QQ
X exp

(29)

| oo

B i ¢"Hy,(z)Hi,(y)
N 2k ’
k=0

to put the propagator (28) in the series form

K(zpm, zm—1;T) (31)

(07

= [;] 2 exp [—%(ﬁfn + 53,1_1)}

0o 1 N
<Y g Hi ) i)
k=0

Substituting this into the integrand of (29) and per-
forming the integration with the help of the orthogo-

nality relation for the Hermite polynomials,

[ e E B e © ds = PRvFap. (32

we can easily arrive at the double-period propagator.
Repeating similar processes, the n-period propagator
can be found in the form

al/2 1
K(enaon?) = [2] P e |52+ )| 9

0 2

0 1 . s
x> SIK (+2) Hy (6) Hi(€0).-
k=0
Now, it is important to note that the n-period propa-
gator is characterized by the nth power of the defor-
mation parameter gq.
Again, using the expansion formula (30) and
noticing that
o = [(M/hT)sing]'/? = [M(q — ¢~")/(2ihT)]'/?,

we put the series solution (33) back to a closed-form
expression:
M(g—q") 17

K (@n, o3nT) = 2mihT (g™ — q¢~™)

(34)
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iM(qg—q')
4hT (¢" — q7™)

x {(a +a3)(q" +q7") — dwnzo} |-

X exp

This n-period propagator is the ¢ representation of
the propagator for the generalized p oscillator or the
Chebyshev ¢ object.

In the following, we consider the propagators for
the T evolution of the proper p oscillator and the ¢-
free particle as special cases of the propagator for the
q object.

Pulsed harmonic oscillator.  The n-period
propagator for the proper p oscillator follows immedi-
ately from the propagator (34) with ¢ = e=%; namely,

M 1/2
2mihTUp—1[cos p(T)] }
(39)

K (e, w05 nT) — {

» iM
P 207U, [cos o(T)]

« {(@2 + 22Ty os o(T)] — zosnxo}}.

In this case, the angle ¢ must inevitably be related
to the period T by ¢(T) = cos™}(1 —w?T?/2) € R
under the condition 0 < w?T? < 4. The correspond-
ing deformation parameter is ¢ = e € S'. It is
straightforward to show that the propagator (35) re-
duces to the standard result for the harmonic oscil-
lator in the limit where 7" — 0 and n — oo with a
finite time interval 7 = nT, that is, in the limit ¢" —
e~ £ 1. 1fqg — e 7T — 1,(35) becomes the usual
free-particle propagator. The zeros of U,,_1(cos ¢) in
the prefactor lead the propagator (35) to diverge. The
zeros occur only when ny = kn (k= 0,+1,£2,...),
that is, only for the real p oscillator with frequency
w meeting the restriction 0 < w?7T? < 4. In other
words, ¢" = e~ with k € Z corresponding to the
caustics of the propagator for the proper p oscillator
(35).

g-Free particle. To extract the n-period propa-
gator for the T evolution of the g-free particle from
(34), we first remind ourselves that the coordinate
variable y,, of the g-free particle is related to the
variable x,, satisfying the Chebyshev recursion rela-
tion (2) by x,, = ¢ "y,,. Thus, converting z,, into y,,
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1/2
36
)} (36)

we obtain
M(g—q)
iM(g—q71)
e {4ﬁT (" —q™)
< {(¢ " yr + o) (" + a7 ") — 4q"ynyo}}

with ¢ € R. Here, y, = y(¢*"s¢) with the initial

value of the time parameter sy = ¢/ Since we are
dealing the time evolution by ¢t = nT" (which corre-
sponds to ¢ progression by ¢?"), the propagator (36)
is valid for the two types of the g-free particle with
geRTandge R™.

6. CONCLUSION

We have suggested that the eigenvalue of the

number operator N in the g-deformed oscillator al-
gebra (1) may be interpreted as the number of pulses
for the pulsed harmonic oscillator (p oscillator). We
have then observed that both the g-deformed free
particle and the pulsed oscillator obey the Chebyshev
recursion relation. By using this interesting nature,
we have treated the two systems as special cases of
a generic g-deformed system (q object) and evaluated
the propagator for the Chebyshev process. From this
unified treatment, we have been able to derive the n-
period propagator for the T evolution of the g-free
particle as well as that of the p oscillator. The boson
limit ¢ = 1 gives the ordinary free-particle propaga-
tor. While ¢ € R for the g-iree particle, ¢ € S* for the
p oscillator.
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1. INTRODUCTION

The problem of string representation of gauge
theories is unambiguously related to the problem of
confinement in these theories. Its essence is the
quest of a string theory, which is mostly adequate
for the description of strings between color objects,
which appear in the confining phase of QCD. (Other,
Abelian-type gauge theories possessing the confin-
ing phase then serve for probing various approaches
to the construction of the string representation of
QCD.) Quantitatively, the QCD string can be seen
by virtue of the Wilson picture of confinement [1]. It
states that the criterion of confinement in QCD is the
area-law behavior of the Wilson loop

1

W=+

(1)

x <tr7> exp | ig ]{ AT, > €190 —01Smin(O)]

C

Here, o is the so-called string tension, i.e., the energy
density of the QCD string. The latter one is nothing
else but a tube formed by the lines of chromoelectric
flux, which appears between two color objects propa-
gating along the contour C. When these objects try to
move apart from each other, the QCD string stretches
and prevents that, thus ensuring their confinement.
According to Eq. (1), during its propagation, such a
string sweeps out the surface of the minimal area for
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a given contour C, ¥, (C). Due to the dimensional
reasons,

1672

INy) g2 (a72)
(2)

with @ — 0 standing for the distance ultraviolet cutoff

(e.g., the lattice spacing). Clearly, all the coefficients

in the expansion of o in powers of g? vanish, which

means that the QCD string is an essentially nonper-
turbative object.

Owing to this observation, it is nowadays com-
monly argued that the area law is well saturated by
the strong background fields in QCD. Around those,
there additionaly exist perturbative fluctuations of the
QCD vacuum [2], which excite the string. This
means that these fluctuations enable the string to
sweep out with a nonvanishing probability not only
Ymin(C), but also an arbitrary surface 3(C') bounded
by C. Therefore, the final aim in constructing the
string representation of QCD is a derivation of the
formula (W(C)) = Xs e eSO Here, >n(0)
and §[3(C)] stand for a certain sum over string world
sheets and a string effective action, both of which are
yet unknown in QCD. Clearly, this formula is just a
2D analog of the well-known representation for the
propagator of a pointlike particle, which is subject to
external forces and/or propagates in external fields. In
particular, the role of the classical trajectory of such
a particle is played within this analogy by ¥.,in(C).
However, it unfortunately turns out to be difficult to
proceed from the 1D case, where the sum over paths
is universal (i.e., depends only on the dimension of
the spacetime), and the world-line action is known
for a wide class of potentials and external fields, to
the 2D case under study. In the next section, we
shall discuss various fleld-theoretical models, where
the string effective action and/or the measure in the

1
oo Ayop = — exp | —
Q a? (%Nc_
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sum over world sheets are either already postulated
a priori or can be derived.

2. FIELD-THEORETICAL MODELS
AND THEIR STRING REPRESENTATIONS

2.1. String Representation of QCD
within the Stochastic Vacuum Model

As a natural origin for the QCD-string effective
action serves the stochastic vacuum model (SVM)
of QCD [3] (for a review, see [2, 4]). Within the so-
called bilocal or Gaussian approximation in SVM,
well confirmed by the existing lattice data [5—7], this
model is fully described by the irreducible bilocal
gauge-invariant field strength correlator (cumulant),
((Fuv (2)®(z, 2" ) Fyp(2)® (2!, z))).  Here, F,, =
OuAy, — 0, A, —ig[A,, A)] stands for the Yang—Mills
field strength tensor,

O(x,y) = NLCP exp (ig/Au(u)duu)

)

is a parallel transporter factor along the straight-
line path, and ((00")) = (O0O’) — (0){O’) with the
average defined with respect to the Euclidean Yang—
Mills action. It is further convenient to parametrize
the bilocal cumulant by the following two coefficient
functions [3]:

L (Fu(@)®(@,2)) Py (@)@ @) (3)

= iNc><NC {(5u)\51/p - 5”/)51/)\)1) (22/Tg2)

1
+ 5 [6u(z)\5yp - zpd,,,\)

+ 3,/(Zp(su)\ — Z)\(Sup)] D1 (22/Tg2)} .

Here, ichNc is the color unity matrix, z =z — 2/,
and Ty is the so-called correlation length of the QCD
vacuum, i.e., the distance at which the nonpertur-
bative parts of the functions D and D; decrease as
e~ 1l/Ts  According to the existing lattice data [5],
T, ~ 0.13 fm for the SU(2) case and T, ~ 0.22 fm
for the SU(3) case (see also [6] for related investiga-
tions and [7] for reviews). Equation (3) means that
the function D plays the role of the propagator of a
nonperturbative gluon which propagates between the
points z and 2’ lying on the string world sheet 3(C).
Indeed, the respective nonlocal string effective action
can be shown to have the form

S[E(C)]z?/daw(x) /dow,(:c’)D(ZQ/TQQ). (4)
$(C) £(C)
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Upon the expansion of this expression in powers of
the derivatives with respect to the world-sheet coor-

dinates & = (¢!, €2), we get [8]
SI2C)) =0 [ deys (5)

+é/d2§\/§gab(5atuu)(abtw)
+ 0 (TPas(Fp,(0))/R?) .

pv
Here, R~ 1.0 fm is the size of the contour C at
which the area law holds [9], and one can see that the
parameter of the expansion is (Ty/R)? ~ 0.04, i.e.,
it is really much less than unity. Next, in Eq. (5),
g% = (0%2,,)(0%x,,) is the induced metric tensor cor-
responding to the world sheet (C') parametrized by
the vector z,(&), g is the determinant of this tensor,
and t,,, = e%(0,2,,)(Opz,)/+/g is the extrinsic cur-
vature tensor corresponding to the same world sheet.
The first term on the right-hand side of Eq. (5) is the
celebrated Nambu—Goto term with the string tension
o =4T; [ d*zD (2*), whereas the second term is the
so-called rigidity term [10] with the coupling constant
1/a = —(T,/4) [ d*22*D (2?). Note that the nega-
tive sign of « is important for the stability of string
configurations under study [11].

Further developments and applications of the
string representation of QCD within the SVM can
be found in [12]. However, despite some progress
achieved in that direction, an important principal
problem cannot be solved by use of the SVM. Namely,
this model does not allow one to get the sum over
string world sheets, and the string effective action (4)
[and, consequently, (5)] is rigorously defined only
at ¥min(C). This problem turns out to be soluble
in Abelian-type effective theories, which we will
consider in the next subsections.

2.2. String Representation
of the Wilson Loop in 3D Compact QED

In this model, confinement of an external quark
is caused by stochastic magnetic fluxes penetrating
through the contour C' which are generated by mag-
netic monopoles. Those form a dilute gas, whose den-
sity appears on the right-hand side of the respectively
modified Bianchi identity:

N
1
§€W>\8HF£\OH = 2MPgas = 2 Z Gad (X — 24). (6)
a=1
Here, FJ3°" is a certain field strength tensor of the
monopole gas, z, is the position of the ath monopole,
and q, is its charge (in the units of magnetic coupling

constant g). Since the energy of a single monopole
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can be shown to be the quadratic function of its flux,
it is energetically more favorable for the vacuum to
support the configuration of two monopoles of a unit
magnetic charge than one monopole of the double
charge. Thus, surviving monopoles with |g,| =1
interact with each other by the Coulomb potential.
By assigning to each monopole a certain Boltzmann
factor ¢ oc exp (—const g?), one can sum up over the
grand canonical ensemble of those as follows [13]:

[e%e) <'.]\[ N
Zon =1+ I [¢2 X @
N=1 """a=1 qa=%1

92 3 3 1
X exp e d’x [ d ypgas(x)r
1

We see that the dual (disorder) scalar field x ac-
quires a nonvanishing (magnetic) mass m = gv/2¢
due to the Debye screening in the Coulomb gas of
monopoles. Owing to the Dirac quantization condi-
tion eg = 27 with e standing for the electric coupling
constant, one has m o exp (—const/e?), which is
nonanalytic in e. This means that similarly to QCD,
the nature of confinement in the model under study is
essentially nonperturbative.

In the case of the large enough plane contour C,
the area law for the respective Wilson loop describing
an external electrically charged particle in the the-
ory (7) has been proved in [13]. However, one can
derive the full string representation for an arbitrarily
shaped C, which has the form [14]

W(C) (8)
E<exp % / dauu (FHV—’_F}ILI;OH) >
=(C)
B e2 1 Zon [1]
= exp (&rfdx“jdy“x ) z [0]

Here, F},, is the usual field strength tensor of pho-
tons, the standard Gaussian average over which was
factored out as the first exponential factor. Next, in
Eq. (8), Zmon [0] coincides with the partition func-
tion (7), whereas Z,0, [17] is given by the following
integral over monopole densities:

9)

ANTONOV, EBERT

Here, n[x,%(C)] = 9] [s0y dou(y)lx — y| =t is the
solid angle under which the surface ¥ shows up to

an observer located at the point x, and V' [p] is the
following multivalued potential of monopole densities:

- £ f s
; H(%y) o] - ()}

[t is the sum over branches of this potential, which
restores the 3 independence of the right-hand side of
Eq. (8), which seems to be violated by the last term
in Eq. (9). This is the essence of the string represen-
tation of the Wilson loop in 3D compact QED. Note
that upon the change of the integration variables p —
uAOuhuar/(4m) [cl. Eq. (6)], [ Dp — [ Dhyyy, where
hy is the antisymmetric tensor field (the so-called
Kalb—Ramond field [15]), one can get from Egs. (8)—
(10) the so-called theory of confining strings [16].

(10)

2.3. String Representation of the Effective
Abelian-Projected SU (2) Theory

Other Abelian-type theories where confinement
takes place are the so-called Abelian-projected the-
ories [17]. There, within the so-called Abelian dom-
inance hypothesis [18], one gets as an effective in-
frared theory corresponding to the SU(N,) gluody-
namics the [U(1)]Ve~! magnetically gauge-invariant
dual theory with monopoles. Next, demanding the
condensation of monopole Cooper pairs, one arrives
at the dual Abelian Higgs-type theory. There, con-
finement can be described as the dual Meissner ef-
fect [19]; i.e., it is due to the formation of the dual
Nielsen—Olesen strings [20]. Below, we shall con-
sider these theories in the London limit, i.e., the limit
when the mass of the dual Higgs fields is much larger
than the mass of the dual vector bosons.?)

In our analysis, we shall restrict ourselves to the
simplest SU(2) case, referring the reader for the gen-
eralization to the case of effective SU(3) Abelian-
projected theory [21] to [22, 23]. The partition func-
tion of the effective Abelian-projected theory describ-
ing SU(2) QCD reads

Z = /DBMDHSingDHreg exp{—/d4:c

< [3 B+ )" + 00~ 20,8, |

(11)

— / Dpexp{ [ m]“d3 / dByp(x) y’
p(y) + VIl = 3 /dgfvpn} }

PHYSICS OF ATOMIC NUCLEI

$Note that the size of the core of the string (vortex in 3D)
is equal to the inverse mass of the dual Higgs fields, which
means that the London limit corresponds to infinitely thin
strings.
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Correspondence between various field-theoretical models and approaches to their string representation

Model

QCD within SVM

Abelian-projected theories

3D compact QED

Mechanism of the string
representation

No integral over string
world sheets. String
effective action is
rigorously defined only
with respect to i,

Summation over world
sheets stems from the
integration over the
multi-valued part of the
phase of the dual Higgs
field(s)

Y independence of (W (C))
is realized by the

summation over branches
of Vp]

Mechanism of the mass
generation

Due to stochastic
background fields

Higgs mechanism

Debye screening in the
monopole gas

Type of propagator
between the elements of
the world sheet(s)

Nonperturbative gluon
propagator (D function)

Propagators of the
Kalb—Ramond fields

Propagator of the
Kalb—Ramond field

Parameter of the expansion
of the resulting nonlocal

Correlation length of the
QCD vacuum, T,

Inverse mass of the dual
vector bosons

Inverse Debye mass of the
dual boson

interaction between the
elements of the world
sheet(s)

Here, § = 65" 4 §™8 is the phase of the dual Higgs
field describing the condensate of monopole Cooper
pairs, 7 is the vacuum expectation value of this field,
and 2g,, is its magnetic charge with g,, being the
magnetic coupling constant related to the electric
one, g, as gmg = 4m. Next, in Eq. (11), B, stands
for the gauge field dual to the diagonal gluonic field
Az, and F7, is a field strength tensor of an exter-
nal electrically charged particle (quark) obeying the
equation 9,F¢,(z) = g $. dw, (7)0(x — x(7)), where
@W = %%w\p(’))\p' The multivalued field 658 de-
scribes dual closed strings according to the formula

ELrpOr0, 0% 18 (12)
— 9% (2) = 2 / 40,0 (2(€))3(z — 2(€)),

by

where the vector z,,(§) parametrizes the world sheet
>} of a closed string. Equation (12), which is actually
nothing else but the local form of the Stokes theorem
for the gradient of the field #%"8 enables one to pass
from the integration over 65" to the integration over
z,(£).Y) On the other hand, the field #7°¢ describes
single-valued fluctuations around a given string con-
figuration described by 658 Integration over #°8 can
be shown to be reformulated via some field-theoretical
constraints as the integration over the Kalb—Ramond
field, which is the essence of the so-called path-
integral duality transformation [25].

DThe Jacobian appearing during this change of variables in the
functional integral has been evaluated in [24].

PHYSICS OF ATOMIC NUCLEI

Bringing together the above considerations, we

get
Z= /Dxu(ﬁ)DhW exp{—/d4:c

X [121?H3A + oo, + mhwiw] } .
Here, H,,» = 0,hyx + Ozhy + Oy hyy, is the kinetic
term of the Kalb—Ramond field, and f]w =4%7, —
Y. In the last formula, ¥, is defined in the same
way as X, with the replacement ¥ — X¢, where X¢
stands for an arbitrary open surface bounded by the
quark trajectory C'. Thus, we see that the path-
integral duality transformation is an elegant way of

getting a coupling of the massive dual vector boson
(described by the Kalb—Ramond field) to the string

world sheet. Finally, integration over the Kalb—
Ramond field yields [26]
9
Z =exp -5 %d:):ufdyuD%)(:): —v) (13)
C C

X / Dz, (€) exp [—(m)2 / d'z
< [ @@ e - 5.

Here, DY () = mK1 (m|z|)/(4n2|z|) is the propa-
gator of the dual vector boson of the mass m = 2¢,,n
with K standing for the modified Bessel function.
Clearly, the first exponential factor on the right-hand
side of Eq. (13) describes the Yukawa interaction of
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quarks, whereas the integral over world sheets de-
scribes the (self-)interaction of both closed and open
dual strings. In particular, the derivative expansion of
35, x X5, ~interaction performed along with the lines
of Section 2.1 yields the linear confinement part of the
quark—antiquark potential described by the Nambu—
Goto term. Finally, the reader is referred to [22, 26] for
an extended discussion of the above ideas, as well as
their application to the SVM.

3. SUMMARY

As a summary of the present talk serves the ta-
ble, which summarizes the most important aspects
of various approaches to the string representations of
gauge theories discussed above.
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Abstract—It is argued that a purely geometric derivation of the long-range action for the 1D antiferro-
magnet is available in terms of a Kahler potential. The derivation allows for a natural extension to the
t — J model. In particular, it follows that a relevant long-wavelength action of the ¢ — J model exhibits at
least at the SUSY (J = 2¢) point the su(2|1) invariance rather than the so(5) one. © 2001 MAIK “Nau-
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Coherent states associated with the su(2) algebra
in the spin-s representation are given by

2) = (1+ [af2) 6" |52 = +5),

where operators S stand for the su(2) genera-
tors in the spin-s representation and the coherent
states are parametrized by the local coordinates z €
SU(2)/U(1) = CP'. CP! appears as a complex
symplectic manifold, which amounts to saying that
it is a Kahler manifold, the Kéhler structure being
defined by the potential F'(z, z), so that the SU(2)-
invariant metric and symplectic structure are given by

O*F
2 = A—a_ — FEZa
g 0z0z
respectively. Symplectic one-form A that enters the
su(2) path-integral action reads

w® = —iF;,dz A dz,

A= Adz+ Adz, A, = %aZF = %F
i i _
Ag = ——65F = ——Fg, AZ = Ag.
2 2

An important point (originally due to Berezin and
Onofri [1]) is that the potential F' can directly be
related to the coherent states:

(2ilz))

F(%i,2) = log — 02l
(Z Z]) og <ZZ‘0><0’ZJ> 8:1/2

=log(1 + Z;2;).

Based on these preliminary remarks, consider the
1D Heisenberg model

H:JZ(SZ"S]'—S2),

(7)

*This article was submitted by the author in English.
“e-mail: kochetov@thsunl. jinr.ru

where summation over nn sites is implied. Let
H .= (CS|H|CS),|CS) =1, |2:) denote a respec-
tive classical Hamiltonian. Let us further make a

change J — J/2s and consider H = 25H§1:1/2. As

a consequence, a total classical action turns out to be
~2s. It is then easily seen that

. J
H51:1/2 D) Z (‘(zz’szQ - 1) :
(i5)
From now on, only the s = 1/2 values of |z), F, etc.,
are considered.
The identity proves helpful for the following:
\(Zi’ZjHQ = exp O(Z;, 2|Zj, ;) = exp ¥j5,
Dij = Dy,
@(Zi, Zi|§ja Zj) = F(EZ', Zj)
+ F(Ej, Zi) - F(Zi, Zi) - F(Ej, Zj) <0.

Assuming the ferromagnetic (FM) interaction (J <
0), one gets

J
1 @y
H{_ )= 5 ;(e i —1)
ij

J
~ g Z(I)ij = JZ(I)Z',H—L
(i5) i

Qi1 = F(Zi, zi41)
+ F(Ziy1,2i) — F(Zi,2i) — F(Zi41, zi11)
1 0z 0z ,
BT
where we have denoted z; = z(x;), zi+1 = 2(x; + a),
with a being a lattice spacing. As a result,

J 0z 0z
cl _ 2
HLp=-5) F

5o a
iz 8951 8901 ’

+0(a®),

a— 0,

)
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which engenders a manifestly SU(2)-invariant clas-
sical action (note that, under the SU(2) transfor-
mations, A — A + dv, which results from a trans-
formation law for F: F(gz,9z) = F(Z,z) + ¢(2) +
$(2), ¥ = 5(¢—9))

We turn now to the most interesting antiferromag-
netic (AF) (J > 0) case. Let us introduce two AF
sublattices, A and B, and denote formally zp = z,

ke A and zp, = wy if k€ B. In order to obtain the
Néel ground state, we should choose w’s in such

a way that S (w) = —S(z). (Note, that S =
11— _y z o z )
TR TR T T UtE

clear that the choice wy = w,io) = —1/z does the

job. This transformation amounts to a SU(2) rotation
followed by a complex conjugation, which preserves
the SU(2) path measure up to a sign. It is also
very important that, under such a transformation,
A — —A. This seems to be the C'P! analog (in the
inhomogeneous, free of constraints, coordinates) of
the famous Haldane map [2]. To be more accurate, a
full image of the Haldane map in the inhomogeneous
CP! coordinates can be taken to be

zi — 2z + &, 1€ A4
wi — wi(§) = —1/(z — &)
:—1/§i—§_i/§?+0(§_i2), i € B,
where &;, & stand for a set of auxiliary fields ~ a.
To proceed, we consider

Z‘ (2i]25)| _QZ’ ZZ‘Zz+1
= 22| (zilwir)P + 2 [(wilzig1)?

i€A i€B
=23 |(zlwir)[P + 2 [(zig1 Jwi)
i€A i€B
Let us evaluate
¢(2i72i|wkawk) = F(zhwk‘)
+ F(wszz) - F(Z’HZZ) - F(’le,’LUk)
atthepointwk = w,(go) = —I/Zk,u_)k. = u_}](go) = —1/Zki

(2, 2| Wk, W) | ) = F(Zi, —1/2k)
+ F(—1/2,2) — F(Zi,zi) — F(=1/z,—1/Z)
=log(1 — z;/zx) + log(1 — z;/z)
—log(1 + |z|*) — log(1 + |24|*) + log |2 ?
=log(zr — z;)(zk — 2i) — F(Zi, 2zi) — F(Zk, 2)-
One may identically rewrite

(e — 2) (zk — 20) = (L+ |z*) (1 + |2/
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(1 + Zizk)(l + Zkzi)
x (1-— 5 R
(T+ ) T+ )
from this, it follows that
log(ék — Zi)(zk — Zi)
= F(zi, 2i) + F'(Zk, 21) + log(1
Consequently, one gets

|<Zl|wk>|2 |w=w(0)

and therefore on a sublattice A one has

2 0z 0z
2%—‘1’ 3| %3 :a—ng— .
’ (Z ’Z +1) 92 i zaxi 8561

The same equation holds fori € B so that

2 (2l wit1) ] y—w

i€A

|(zi|wiy1)

0z 0z
23 e omuor= 3 Prn g 5
7

i€B

In the case when a full mapping that includes
w(€), w(€) rather than merely w(®, @(® is involved,
one easily obtains

2> [(zilwita (6))

icA
Fmally, for the classical Hamlltoman, we get

‘QIZF 0z 0z 2y 2JZFZZZZ£Z§Z

2+2) " [zig|wi(€)[?

1€EB

0z 0
- = 2+4ZFZ1ZZ£Z@+O< )

ZZ
ST i 0x;

cl
H =1/2 — Zizza zaxz

We now address the kinetic term that takes the

form
z’/A - %/(dez ~ Fudz).

For the A sublattice, one gets

F.dz — F.dz — Fx(z + €)(dZ + df)
— (2 +&)(dz + df)
= Fydz — Fodz 4 26F5.dz — 26F;.dz + O(a?),

whereas, on the B sublattice, one has
(Fodw — Fydw) 1 /5 ¢/525——1/2—¢/22
= —(Fydz — F.dz) + 26F5,dZ — 26 Fz,dz + O(a?).

As a result, the total action becomes

SAF - /dtZngzz

J 0z 0z .2
2 02, 92 }—f—SB,

X {fiéi — &3 — 2068 —
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where Sp is a Berry phase which will turn into the
topological term shortly. The auxiliary fields & and
&; can be eliminated to yield

SAF = /dtZinzi

z 1.
{ J 0z 6za2——§ié’i}+SB.

_5 321?1 890@ 2J
Restoring an explicit s dependence and going over to
the continuum (a — 0) limit finally yields
1

SAF = ——
7

X /dmdt gz (c@xéaxz + ciléé) + 5B,

where ¢ = 2.Jsa is the spin wave velocity, g? = 1/s is
the coupling of the sigma model, and use has been
made of the fact that gz, = F3,. We are free to choose
units so that ¢ = 1 and the action becomes Lorentz
invariant:

1
SAF = —? /d:):dt (92:0,20,2)

_ 1/&;&% =

g L+ 2%

Let us turn now to the Berry phase term, Sg. First,
we rewrite

/Aj _ %dt (As 25+ Az %) = 7{ ao(j)dt,

where a, = A0,z + A:0,Zis apullback of Aby z, z.
(Note that z(z,t), z(x,t) map S — CP! ~ S2.) We
may also rewrite

exp Z%ao(j)dt :Hexp %aud.’r“ ,
J J

Lj

0, 1.

where T'; denotes a closed path on S2.  As was

mentioned above, a one-form a has opposite signs on
the A and B sublattices, so that

?{audaz“-i- }1{ a,drt = }[audaz“ = /da,

Ly Pj+1 9% X

where ; stands for the area of the ribbon enclosed
between the adjacent closed loops. The sum of these
ribbons is one-half the area of the sphere, which

results in .
i
S = 3 /da.
2
Note that
/da—N /dA,
52 CcP!

PHYSICS OF ATOMIC NUCLEI Vol.64 No. 12
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where N is an integer, a degree of the map S? —
CP' ~ S2. Since

dz N\ dz
dA = 2si7 — =4
/ / T+ 22 =

o) CcP1
one obtains
S = i(2ns)N =N
and out comes the § = 27s sigma model.

[t is interesting to note that the only ingredient
which essentially enters the above derivation is a
purely geometric one, Kahler potential F(z, z). This
seems to provide a natural framework to generalize
this approach to a more general setting. As an in-
structive example, consider the ¢ — J model. Since
the relevant Hamiltonian appears as a bilinear form
built out of the su(2|1) generators, it first seems
necessary to define coherent states associated with
the su(2|1) superalgebra. These are given in the ¢
representation with dim = 4¢ 4 1 by

2,Q) = (1+ [2* + Q)%+ |¢,q,q),
where V_ and Q_ are the su(2|1) lowering gener-
ators with respect to the Cartan—Weyl basis and
vector |q,q,q) stands for the highest weight state.
Odd- and even-valued Grassmann variables ¢ and

z parametrize the superprojective space C'P'I' =
SU(2|1)/U(1|1), the N =1 superextension of the
CP'. Kihler superpotential now becomes
= . _ <Z7 C‘Za C>
P20 =108 ) 0.0
Note that C P! symplectic and geometric structures
can as well be directly related to F'.
Consider

Hyy=-t>» X7°X¥ +he.

1
+JY <Qi Q- an‘nj)
(i)
where Q; is the electron spin operator. A classical
counterpart of Hy_ ; takes a form
HiL; = —t(2q)°
X pipilGG (1 + Zizg) + GG(1 + Z2)]
(i)
+2J¢° ) pipjlziz + Zjzi — |al” — |5,
(i)
where p; = (1+ |22+ (;¢;) L. Let us make a change
J — J/2q, t — t/2q and set HY = 2¢ H;lzl Jo- Be-
sides that, we consider the ¢ — J model at the super-
symmetric point, J = 2¢, which results in
H josusy =t pipilziz + 2z — |l
(i)

2001
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— |2 * = GG (L + Zizg) — GG(L + Z524)].
After a little algebra, this can be brought into the form

H((l:1=1/2;SUSY = tz (1€, Gl G)I* = 1)
(ig)
+ const - (Ne, Na),

which stands as quite a suggestive result: at least at
the SUSY point an effective action of the t — J model
can be derived in terms of the manifestly su(2|1) co-
variant quantity, Kihler superpotential F(z,(; z, ().
This in turn implies that a relevant long-wavelength
action seems to maintain the SU(2|1) invariance
rather than the SO(5) one. Unlike the FM case,
where explicit calculations are straightforward, the
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AF case for the t — J model will require due to a
presence of the § term more elaborate consideration.
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Abstract—A new method for the factorization of the path-integral measure in path integrals for a particle
motion on a compact Riemannian manifold with a free isometric unimodular group action is proposed. It is
shown that path-integral measure is not invariant under the factorization. An integral relation between the
path integral given on the total space of the principal fiber bundle and the path integral on the base space of

this bundle (the orbit space of the group action) is obtained. © 2001 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

In path-integral quantization of gauge theories,
one of the main problems is to find a rigorous foun-
dation of a path-integral transformation that relates
the path integrals defined over the orbit space of the
gauge group action and the path integrals over the
whole space of the gauge potentials.

Recently, it has become clear that solving a similar
problem for some finite-dimensional system is help-
ful. For this reason, many investigations have been
carried out in this field of path integration [1].

The mechanical system describing the particle
motion on a manifold on which the action of a group
is given (we will consider the free isometric action
of a semisimple unimodular compact Lie group on
a smooth compact Riemannian manifold) has many
common properties that can be found in gauge theo-
ries.

Due to the symmetry, the system under consid-
eration can be reduced to some mechanical system
defined on the orbit space of the group action. Path-
integral quantization of this system should lead to
the relationship between the corresponding path in-
tegrals. The path-integral transformation, when the
initial space is changed for the reduced one, may be
called the path-integral reduction procedure.

We will consider the path-integral reduction pro-
cedure for the Wiener-like path integrals in which the
integrations are performed over the measures that are
generated by stochastic processes. The processes will
be defined by the solution of the stochastic differential
equations that are also given on the manifold. For

*This article was submitted by the author in English.
“e-mail: storchak@mx.ihep.su

these definitions, we will follow the papers by Belopol-
skaya and Dalecky [2]. It allows us to use mainly
a local approach in the investigation of path-integral
transformations.

The original manifold in our system, as is well
known [3], can be regarded as the total space of the
principal fiber bundle over the orbit space.

We will use the Bogolyubov coordinate transfor-
mation method [4]in order to introduce the local coor-
dinates that are adapted to a fiber bundle structure. In
this method, we suppose that an arbitrary gauge sur-
face, is given. With this gauge surface, it is possible to

introduce invariant coordinates—the coordinates on
the base of the fiber bundle (on the orbit space) and
variable coordinates—the fiber coordinates.

In path integrals, we separate these coordinates by
using the solution of the nonlinear filtering equation
from the theory of stochastic processes.

The symmetry of our problem helps us to trans-
form this complicated nonlinear equation into a linear
matrix equation. Such an approach to the separation
of coordinates in path integrals was proposed in an
earlier paper [5].

In the second part of this talk, we will consider
the path-integral reduction procedure by using the
dependent coordinates, i.e., the coordinates that sat-
isfy some constraint equations. These coordinates
together with the group coordinates are also used for
the principal fiber bundle coordinatization.

In this talk, we present the results of our investiga-
tions of the path-integral reduction problem obtained
in[5=7].

1063-7788/01/6412-2199$21.00 © 2001 MAIK “Nauka/Interperiodica”
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2. DEFINITION

Suppose a particle moves on a smooth compact
Riemannian manifold P (without boundaries) on
which a smooth isometric action of a semisimple
unimodular compact Lie group G is given.

We assume that the action of a group G on P is
free, i.e., for every p € P theisotropy group G, = {g €
Glgp = p} at p consists of only the identity element of
G. Therefore, this action is effective; i.e., the homo-
morphism from G to the group of the transformation
of a manifold P is an isomorphism.

Our starting equation is the backward Kol-
mogorov equation

{ (%"F%MQ/QAP(pa)"i'mV(pa))wtb (pm ta) =0,

Vi, (o, ty) = do(pe)  (tp > ta)

(1)
with the potential invariant under the action of the
group G: V(pg) = V(p). In this equation u? = h/m,
and « is a real positive parameter. Here, the Laplace—

Beltrami operator is given in local coordinates @ =
©(p) of the chart (U, ¢) as
0 0
A _ 12 AB 1/2
where G = det(Gap) is the determinant of the ini-
tial Riemannian metric G4p for the coordinate basis

(o0

run from 1 to Np = dimP.

According to[2], the solution to Eq. (1) in the case
of the proper coefficients and the initial function of
Eq. (1) can be presented in the following form:

Ui, (Pas ta) = E|0(1(ts)) ()

ty

« exp{'u2im / V(n(u))du}]

ta

= [ dur@)onntts)) exl...),

Q_

. The indices denoted by the capital letters

where 7(t) is a stochastic process on a manifold P
and p" is generated by this process measure given in
the path space Q_ = {w(t) : w(ty) =0, n(t) = ps +
w(t)}.

The local components n*(t) of the stochastic pro-
cess 7)(t) satisfy the following stochastic differential
equation:

L o

1y 0
dn(t) = SHRG 1/2862—3(01/2(;”)@

+ /R () dw™ (2),
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where Xﬁ is defined locally by

np

AyvB AB

K=1
(The barred indices are the Euclidean indices.) The
semigroup determined by the path integral (2) acts in
the space of the smooth and bounded functions on P.
[t is obtained as a result of going to the limit in the
superposition of the local semigroups:
Q,Z)tb (paa ta) = U(tba ta)¢0(pa)

= hqun(taa tl) te Un(tn—la tb)¢0(pa)a
where each local semigroup is defined by the equality

Uy(s,6)(p) = Espd(n(t)), s <t,n(s) =p.

In the chart (V,,¢") with the mapping "
(" (n(t)) = 77"07)(75) = {n4(t)}), it is given as

Uy(5,1)0(p) = Eq or(md((07) (07" (1)),
P
(

1#" (s) = " ().

Thus, we see that many properties of the global
semigroup can be derived by analyzing the local
semigroups U,. But the local semigroups are com-
pletely determined by the stochastic differential equa-
tions, whose solutions—the stochastic processes—
generate the corresponding path-integral measures.

Therefore, the study of the transformation of the
local stochastic differential equations enables us to
get information concerning the transformation of the
path integrals and the semigroups acting in the space
of functions on a manifold.

3. THE BUNDLE COORDINATES

In our case, the right action of the group G given
in the charts by Q4 = FA(QP,a%), a=1,...,Ng,
leads to the fiber structure of the manifold and the
principal bundle 7 : P — P/G = M, where M is an
orbit space [3].

[t implies that the manifold P can be locally pre-
sented as 77 1(U,) ~ U, x G (z = 7(p) belongs to a
chart (U, p,) of the fiber bundle). For an arbitrary
point p of the manifold P with the coordinates Q4,
we should find the local coordinates (z*(Q), a%(Q)),
1= 1,...,NM = dimM.

To introduce the bundle coordinates, we use the
Bogolyubov coordinate transformation method [4]. In
this method, we suppose that, in each sufficiently
small neighborhood of an arbitrary point p, there is
the set of functions {x*(Q),a =1,..., Ng}, which
by the equation x*(Q) = 0 determines the local sub-
manifold.
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REDUCTION IN PATH INTEGRALS ON A RIEMANNIAN MANIFOLD

From the equation
Xa(FA(Qva_l)) =0,

one searches for the group element a®(Q). The group

element a1 carries the point p to the submanifold
{x*(Q) = 0} along the orbit pgG.

The invariant coordinates z*(Q) are defined by the
following equation:

Q*(z") = FH(Q,a™).

[t is supposed that the submanifold {x“(Q) = 0} has
the parametric form representation Q4 = Q*4(x?)
({x*(Q*(x")) = 0}) and =* are identified with the co-
ordinates of the base of the fiber bundle.

Changing the coordinates Q4 for (z%,a®), Q4 =

FA(Q*(x"),a®), makes it possible to rewrite the met-
ric Gap(Q) in the following Kaluza—Klein form:

(hw) + A (2) A (2)7,
AL @) (@) T (@) @)k (a) T (@)

where 4 is an inverse matrix to the matrix v3(a) =
09%(b,a)

ab,@ ‘b:e
the group multiplication in the space of group param-
eters).

(® is a group function which defines

The projection of the mechanical connection onto
the base of the fiber bundle is given by

A (z)
vo * * * a B x
=7 (Q" () G (@ () K2 (@ () 2L,
where K are the components of the Killing vector
feld KB(Q) = 2 Q9 _

The metric h;; on the orbit space can be de-
fined with the help of the projectors 114 = &4 —
K&“fyaﬁKgB (v*8 is inverse to the metric YoB =
KAGAB B defined along the orbit) and the horizon-
tal metric GAB =G GepllE. 1tis equal to

2201

4. PATH-INTEGRAL TRANSFORMATION

Changing the coordinates Q@4 for (2%, a®) leads to
the transformation of the components n(t) of the

stochastic process n‘PP (t):

(1) = FAQ"(2'(1)), a® (t)).
We can regard (2*(t), a®(t)) as the components ¢4(t)
of the local stochastic process ¢#" (t). This phase-

space transformation of the stochastic process n‘PP (t)
does not change the probabilities and transition prob-
abilities.

With the help of the [t6 differentiation formula, it is
possible to find the stochastic differential equation for
the local components ¢4 (t) of the stochastic process

¢ (t):

') = 0k [ =g Rt )
/R (1)) du (1),
da®(t) :;LQ&[ ;\/1_8 - (\/7hkmA”>

X o3 (alt) + 5 (7 + W AN (alt)

0 _ _
X e (O (a(t)))] dt + /K5 (a(t)) Y2 dw (1)
— w/EXAYT (alt))dw” ().
Thus, due to the phase-space transformation of
the stochastic process 7, the local semigroups U,, are

replaced by the semigroups, Ung After going to the

limit in the superposition of these new semigroups we
get the global semigroup. It can be presented in the
following symbolic form:

wtb(paata) =E &0(5(%)7 a(tb)) (4)

Lt
X exp{uQ&m/V(f(u))du}]a

where €(ty) = 4, a(ty) = 04, and o7 (pa) = (24, 0.).
The differential generator of the semigroup asso-
ciated with the process ((t) in (z¢,a®) coordinates

B will be
hij(z) = Q1 GHpQ* P, 1, 1 /04
! A + B —
A Pl w(x) + f( oz’ )8:03
where Q*# = 8527. y . 0 W OAY
+hIAY AT LG Lg — 2h AS Lo — W2 L,
The determinant of the metric Gap is Ox Ox
_ _ 2 " 8\/7 hzn 1 a\/_AaL
det Gap = (det hjj(z))(det Yaps(x))(det ul(a))”. N A La /5 o
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B 8hi”
ox’
where Ajp is the Laplace—Beltrami operator on
M and L, is the right-invariant vector field L, =
3 0
U5, (a) 5oz -

AL+ wﬂfiaiﬁ},

5. FACTORIZATION

We should separate two sorts of variables (the
invariant variables and the group variables) in the
measure of our path integral (4).

Having in mind our definition of the path integral
from [2], it will be done for the local semigroups.

The separation of the variables is based on the
method shown in our earlier papers [5, 6]. It was found
there that the local stochastic differential equations
of the stochastic process given on the principal fiber
bundle coincide with the stochastic differential equa-
tions that are used in the nonlinear filtering theory.

In the theory, the main problem is to estimate the
existing difference between the observation process
and the signal process that cannot be directly ob-
served by experiment. The solution of this problem
is related to the solution of the nonlinear filtering
equation for the conditional expectation of the signal
process given by the sub-o-field associated with the
observation process [8, 9]. It is this equation that en-
ables us to perform the path-integral transformation
that separates the path-integral variables.

We note that in our case the stochastic process
a®(t) is the signal process and z*(t) is the observation
process. Using the conditional expectation properties
(¢(t) is the Markov process), we can transform the
local semigroup (the local path integral) as follows:

Uor (5,6)0(w0, 60) = B[E[d(x(t), a(t)) | (F2)t]].

For the conditional expectation

O(x(t) = E[8w(t),a)) | (F2)L],
we will have the following nonlinear filtering equation:
oY 2 11 9 —1km
do(z(t)) = p H[—§ﬁw (\/h—’Yh A%)] (5)
x B[L,¢(x(t), a(t)) | (Fo)ldt
+ %MQH(’_)/MV + hijAZ”A;’)
x B[L, L (x(t), alt)) | (Fu)ldt
— nV/RALXEE[L,¢(x(t), a(t)) | (Fo)tdw™(¢).

The function ¢(x,a) can be expanded with the
Peter—Weyl theorem in a series over the matrix

irreducible representation of a group G, é(z,a) =
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> apq Gq(®)Dpy(a). Under the conditional expec-

tation, it will be
E[p(x(t),a(t)) | (Fo)l]
3" @ )E[D)(a(t)) | (Fo)L].

Apq
Then, from Eq. (5), we find that D) (z(t)) =
E[D,, (a(t))|(F)%]" is described by the linear matrix

equation. Dueto[10, 1], its solution is given in terms
of the multiplicative stochastic integral:
AA A
qu(x(t)) - (exp)pn(x(t)v ta 8)
x E[D),(a(s)) | (Fz)],

where

In the above, (Ju);‘n are the generators of the repre-
sentation D*(a), and h and 7 are functions of z(u).
Taking into account that initially

E[Dp,(a(s)) | (F2)i] = Dpyla(s)) = Dy, (6o),
we obtain
Jeor (8,1)9(0, 60)

= 3 Bl e(t) &)y ((t),t,5)] DY, (60).
Apq,q’

Taking the partition of the time interval, we get
the superposition of the local semigroups. And after
going to the limit, as in [2], in this superposition,
we obtain the global semigroup, which is given in a
symbolic form,

¢tb(paata) <6)
= D B[ (E)(ED)py (€(t), 1, ta) DY o (0a),

Ap,q,q

where £(t,) = 7o p, and the process £(t) is a global
process on a manifold M =P/G. The stochastic
equation of the local representatives of the process
&(t) is defined by the first equation of (3).

VD), (x(t)) depends as well on zf), = z(s) and 6§ = a®(s).
But, for brevity, this dependence was not explicitly shown in
the notation of D}, (z(t)).
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[t is possible to invert formula (6). Performing this
for the corresponding semigroup kernels, we get the
integral relation between the path integrals:

Gi\nn(w(pb)v ty; W(pa)a ta)
—/Gp(pbé’,tb;pa,ta)D{)m(H)du(e).

The path integral for the Green’s function Gp is
analogous in form to the path integral of Eq. (2), but
the paths in its domain of integration have fixed values
atthe timet =t, andt = t.

The path integral for the Green’s function Gy,
can be written as follows:

szn(ﬂ-(pb)utb;ﬂ-(pa)pta) (7)

= B t(ta)=n(va) [(%)ﬁm(ﬁ(t),tb,ta)

&(tp)=m(pp)

L F
xexp{u%m/wg(u))du}]

ta

_ / dufexp{ﬁjff(f(u))du}

&(ta)=m(pa)
&(tp)=m(pp)

ty
1 1 1
X éﬁ)/{ﬂ /‘6[5 T (T (T ) — NI
ta

—ummm&m}.

7 (\/h—’_thTAﬁf) (

The semigroup with the kernel given by Eq. (7)
acts in the space of the sections I'(M, V*) of the as-
sociated covector bundle £* = P xg V' (we consider
the backward equations), where the scalar product is
given by the following form:

(s o) = / Y e V@ UM (@
M

~deNm in 2t coordi-

\/—dx

The differential generator of this semigroup is

1 2 ng 1 a\/_ 0
QHK{[A +h /7 0z dzi ()pg
x 0
p(Iaxi

where dvag(z
nates.

— 2™ A%(J,)
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Vi 8:0"(‘ TR A )
—av ij A AV A A

+ (5 + hi A Aj)(Ja)pq,(J,,)q/q}.

Here, (1), is a unit matrix.

Due to the isomorphism between the space of the
sections of the associated vector bundle and the space
of the equivariant functions given on the total space of
the principal fiber bundle, we can say that our semi-
groups act as well in the space of the functions 1, (p)
on P for which the following relation holds: v, (pg) =
Zm D). (9)%m (p). The isomorphism is given locally

by ¢n (F(Q*(x), €)) = Yn(2).

The path-integral reduction for the case A =0
corresponds to the reduction onto the zero-momentum
level in the constrained dynamical systems.

In this case, both ng and the multiplicative
stochastic integral become unity. Now the resultant
semigroup will act in the space of the invariant scalar
functions on the total space of the principal fiber
bundle.

Then, in order to obtain the diffusion on the base
manifold M with the Laplace—Beltrami operator as
the differential generator of the stochastic process, we
change the stochastic process ¢ for the process £ and
apply the Girsanov transformation to the measure of
the path integral for the case of A = 0.

As a result, we get the following integral relation:
H(ay) 5 (@a) TG M (0, 13 Ta s ta)

_ / Gop (9o, ty: Pas ta)du(6),

[

GM (xba th; Tas ta) =

Ei(ta)=xa
E(ty)=ay
1 ty ty
y exp{u%m / V(E(w))du + / J(é(u))du},
ta ta

where z = 7(p) and J is the Jacobian depending on
the orbit volume ~(x), given by

Oln¥y 0ln fy}
ox™  Oxt
This Jacobian can be given in terms of the differential
expression [12] which involves the mean curvature of
the group orbit at the point z.

The semigroup with the kernel G4 acts in the
space of the scalar functions on M (or in the space
of the invariant scalar functions on P) with the scalar

product: (¢1,9) = [ 41 (x)ha()dvpm (2).

J(x) = —— [AMln’y + - hm
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Notice that the differential operator of the forward
Kolmogorov for the Green’s function G4 will be
- hk
H,=—A
K m M
h[A1+(V1)]+1V
—_ n n — V.
S (oM Y Miny Tire

The Hamilton operator H of the corresponding
Schrddinger equation is obtained by

H———H

=i

6. REDUCTION
IN DEPENDENT COORDINATES

Here, we consider the case when the point p of the
manifold P is locally defined by the group coordinates
a® and the dependent coordinates Q*4: {x®(Q*4) =
0}. Q*4 are the coordinates of the local submanifold
{x*(®) = 0} in the original manifold P. We assume
that these local submanifolds are the parts of some
global submanifold 3. Therefore, in this case, our
principal fiber bundle P(M, G) is trivial.

Moreover, in our case we have a principal fiber
bundle ¥ x G — X, which is isomorphic (locally) to
the principal bundle P(M, G) [13, 14].

As for the coordinate transformations, they have
the same form, Q4 = FA(Q*4, a®), but now the con-
dition {x*(Q*) = 0} should be fulfilled.

Cas@".a) = ( con(@r

where the projectors P, onto the tangent space to the

submanifold (given by the gauge) are defined by
(P =05 — xB0xx ) Ta (x5,

which depend on Q*.

following properties:

(PENS = (PL)G, NA(PL)S = NE.
InEq. (9), Gep(Q*) = Gep(F(Q*,¢)) and
Gep(QY) = FG (Q",a)F) (Q7,a)Gun (F(Q", a)).

These projectors have the

In a manner similar to the previous procedure,
we can change the stochastic process n(t) and find
the transformation of the corresponding path-integral
measure. As a result, the local stochastic differential
equations of a new stochastic process are given by

N 1
1) = ew (- yGPINENE T (10)
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)G (PL)B
Gop(Q*)(PL)SKPuy

STORCHAK

Under this replacement of the coordinates, the
vector fields transform as follows:

0 c 1 0

agF — FBFQ 0, aINe@) 532 ()
FEE(R(Q" ), 0~ (@)@ Q) (@)

X"
8QB (Q7 ) X% = aé;E‘(Q)Y and

(@—1)5@) is the inverse of the Faddeev—Popov ma-
. N’ (Q)
trix: (®)1(Q) = KAQ) oL In
the projector onto the subspace which is orthogonal
to the Killing vector field. This projector is defined by

where F§(Q,a) =

Eq. (8), Né“ is

NE(Q) =06 — KZ(@Q)(@ ) (Q)x4(Q)

and is given on the submanifold {x* = 0} as N(Q*) =
N(F(Q*,e)), so that

NH(QY)
— FE(Q",a)NAF(Q".a))FY (F(Q",a),a™").

In the new coordinates, the metric G4p takes the
form

Gop(Q*)(PLRKS ub(a) 9)
(@) Y (Q%)ua(a)us(a)
+ i + jﬁ‘)dt + /RN XS duw™
and
da® = _%M%[GRngS(Q*)Aﬁng (11)

RP Ao AB CA M 9 B\ ~a
+ G ARA vaﬁ G““N¢g 8Q*M(AA)%
— GMBAS, Ao 88 (g)]dt+uﬁﬁgA%Xﬁde

In Eq. (10), ji! is the mean curvature of the orbit
space as a submanifold of the Riemannian manifold
(P,GH) and the Christoffel coefficients T4 are

obtained from the degenerate metric G .

The additional drift coefficient ji} of Eq. (10), the
projection of the mean curvature of the orbit onto the
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gauge submanifold, is equal to x det'2Gap(Q*)dQ* A -+ A dQ*NP.

. 1 ~ In closing, we remark that in [14] it was shown
Arx\ _ - ~EUNAND |8 c g,

Q) = 2G NeNg |7 Gop(Vi.Kp) ] ’ how to use the local measures for the trivial princi-
where pal bundles in defining the path-integral measure in

. nontrivial cases.
(Vi J60)° = K@) 555K5@Q)
+ K3 (Q)KF (Q)T55(QY).
AISO, in Eq. (1 1), A% = ((b_l)ﬁX%- REFERENCES
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Abstract—We present a detailed field-theoretical description of those collective degrees of freedom (CDF)
which are relevant to study macroscopic quantum dynamics of a quasi-one-dimensional ferromagnetic
domain wall. We apply the spin-coherent-state path integral in the proper discrete time formalism (a) to
extract the relevant CDFs, namely, the center position and the chirality of the domain wall, which originate
from the translation and the rotation invariances of the system in question, and (b) to derive an effective
action for the CDFs by elimination of environmental zero modes with the help of the Faddeev—Popov
technique. The resulting effective action turns out to be such that both the center position and the chirality
can be formally described by a boson-coherent-state path integral. However, this is only formal; there is a

subtle departure from the latter. © 2001 MAIK “Nauka/Interperiodica” .

1. INTRODUCTION

Recent so-called nanostructure technology en-
ables us to study low-dimensional magnetism in
mesoscopic magnets from the quantum-mechanical
point of view [1=3]. Among others, a magnetic
domain wall has attracted much attention, both the-
oretically and experimentally, because it is expected
to exhibit macroscopic quantum phenomena [4—11].
As a theoretical technique to evaluate the quantum
dynamics of the domain wall, the spin-coherent-state
path integral in the continuous-time formalism[12] is
frequently used. However, as noted by some workers
[13, 14], it has some fundamental difficulties, which
have been recently discussed in detail [15]. Further-
more, it is liable to lead to confusion concerning the
interpretation of the collective degrees of freedom, as
has been pointed out in [16]. Hence, as yet there
is no microscopic theory of the quantum dynamics
of the domain wall. In order to pave the way for
such a theory, this paper presents a field-theoretical
description of collective degrees of freedom by use of
the spin-coherent-state path integral in the proper
discrete-time formalism.

2. MODEL

We consider a ferromagnet consisting of a spin
S of magnitude S at each site in a quasi-one-
dimensional cubic crystal (a linear chain) of lattice

*This article was submitted by the authors in English.

YFuji Tokoha University, Japan. Present address: Depart-
ment of Physics, Osaka University, Japan.

“e-mail; shibata@acty.phys.sci.osaka-u.ac. jp

constant a. The magnet is assumed to have an easy
axis in the z directions. Accordingly, we adopt the

Hamiltonian
Np,
H=-J)"S; 8 ——Z 2 (1)
(i,3)

where the index 7 or j represents a lattlce point, (7, 7)
denotes a nearest neighbor pair, Ny, is the total num-
ber of lattice points, J is the exchange coupling con-
stant, and K is the longitudinal anisotropy constant;
and J and K are all positive.

Since we are interested in those transition am-
plitudes which are appropriate to describe quantum-
mechanical motion of a domain wall, we introduce a
spin-coherent state [17] at each site, which is suited
for a vector picture of spin. We denote a state of the
system as

’£> = ’517527' .

Np,
) =RlG), (@)
J
where |£;) is a spin-coherent state at the site j.
The transition amplitude between the initial state |£7)
and the final state |{r) can be expressed as a spin-
coherent-state path integral in the real discrete-time
formalism by the standard procedure of the repeated
use of the resolution of unity (see, e.g., [15]; on which
the present notation is based):

(Erle TP\ p) (3)

() esp (551€".6]).

N-1 Ny,

— tim_ [ T] [ dntsstn

n=1 j
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where N =T'/e, e is an infinitesimal time interval,
n represents discrete time, and the integration mea-
sure is
. 25 +1 deder
dﬂ(faf ):: (1+ ‘5’2)2 o (4)
dédg*  dREAIE
omi . w
The action S[€*, £] consists of two parts, S¢[¢*, ¢] and

S4[¢*, €], which are to be called the canonical term
and the dynamical term, respectively. We shall be
interested in those spin configurations whose scale of
spatial variation is much larger than the lattice con-
stant a. Accordingly, we take the spatial continuum
limit in the action:

Sl €= S €+ SUen e, (Ba)
) N L/2 p
plea=sy [T e
n=l_1/0
% In (1 + 5*(x7n)§(xvn — 1))2
A+ €@ mP)(1 + € n - 1P)’
=57 (5¢)
N b
_ _% 3 e / %H(f*(m,n),é(x,n ~ 1)),
=l L2
H(E (@), () (5d)
s :
= T 250 @0

-5 {(s-3) a-e@mer+ 1]

where L is the length of the linear chain and J = Ja?2.

3. METHOD OF COLLECTIVE DEGREES
OF FREEDOM

3.1. Kink Configuration

We begin by finding a domain-wall configura-
tion. It is determined by one of the static solutions

{&°(x),&° ()} of the action S[€*,€]. They satisfy the
following equations:

2 ) 92¢5(2) — 258(;,;)(39558(95))2
lotew-RET ) o
1 E@)e

TTre@ew” D=0
2 (@) (0 (@)
AQ{@%& &) - T e e } (60)
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‘4),
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P

CTTTVYT

Domain walls with three chiralities (quoted from [10]):
(a) right-handed wall (¢o = 7/2), (b) left-handed wall
(¢o = —m/2), and (c) wall with no chirality (¢o = 0).
Circles in (a) and (b) drawn to guide the eye lie in
the yz plane, while the spins lie in the zz plane in (c).
The quasi-one-dimensional direction of the crystal is here
aligned with the spin hard axis for ease of visualization.
A different alignment, which may be the case for a real
magnet, does not affect the content of the text; for in-
stance, one could rotate all the spins by 7/2 around
the y axis if the dominant anisotropy originates from the
demagnetizing field.

1-&%(2)&%(x) =
L E@E@
1+ & (@)¢(a)
where A\ = JS/K(S —1/2). An obvious solution
is the “vacuum” solution representing the uniform
configuration in which the spins are either all parallel
or all antiparallel to the z direction. The other so-
lution is the “kink” solution representing a domain-
wall configuration in which the spins at z ~ 400 are
parallel to the z direction, the spins at x ~ —oc are
antiparallel to the z direction, and there is a transition
region (i.e., a domain wall) of width A:

R s )

& (z) = exp (-@ - i¢0> ;

where @ and ¢ are arbitrary real constants. @ is
the center position of the domain wall, and ¢ is a
quantitative measure of the chirality of the domain
wall with respect to the z axis (the figure); the wall
is maximally right-handed if ¢g = 7 /2 and maximally
left-handed if ¢g = —x /2, while it has no chirality if
¢o = 0. The range of ¢ is chosen as —7m < ¢o < m,
with ¢g = 7 and ¢y = —= representing the same sit-
uation. {&°(—z),&%(—x)} is also a solution repre-
senting a domain-wall configuration. However, this
as well as the vacuum solution belongs to a sector
different from that of (7). Since a transition between
different sectors is forbidden [18], it is sufficient to
consider only sector (7) for the purpose of studying
the dynamics of a domain wall.

3.2. Collective Degrees of Freedom and Environment

Study of the domain-wall dynamics is facilitated
by introducing relevant collective degrees of freedom.
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We note two kinds of invariance possessed by (6).
One is the translation invariance in the x direction.
The other is the rotation invariance around the z axis.
These invariances are embodied by the arbitrariness
in the choice of @ and ¢y, respectively, in (7). Hence,
we elevate them to dynamical variables Q(n) and
¢o(n) [8, 10, 18]. To deal with these two dynamical
variables (collective degrees of freedom), it is conve-
nient to define

z(n) == q(n) +igo(n), z*(n) = q(n) —ipg(n),
gn)=Qn)/A, n=12..,N—-1. (8)
By use of these variables, original integration vari-
ables {(z,n) and £*(z,n) may be decomposed into

the domain-wall configuration and the deviation
from it:

§(z,n) = & (w;2(n) + 0z, n;{z}n),  (9a)
¢ (w,n) =& (z;2"(n) + 7" (z,n: {="}),  (9b)
where
§(w;2(n)) = exp(—z/A + z(n)), (10
€ (232" (n)) = exp(—z/A + 2"(n)),
and we use the notation {z}7} = {z*}" := (2*(n),
z(m)). At both ends of the discrete time (n =0 or

n = N), we define

2(0) = zr :==qr +i¢r, 2(N)=zp:=qr + igb{wl,l

(@05 {z}0) = n*(z, N; {z}§) =0,  (12)
where z; represents the center position ¢; and the

chirality ¢y of the domain wall in the initial state, and
zr those in the final state.

The variable 77, which is to be called the environ-
ment around the domain wall, could be expanded by a
set of some mode function. The expansion is expected
to contain the zero modes, which originate from the
translation and the rotation invariances and should be
eventually eliminated in order to avoid overcounting
the degrees of freedom. For this reason, we expand
the environment with respect to a set of mode func-

tions {4y} as

iz, n;{z},) = no(n)ho(x; 2(n)) (13a)
+n(z,n;{z}n),

i (@, {z"},) = mo(n)g(a; 2% (n))  (13b)
+ 1 (@, n; {Z*}")

n(x,n;{z}n) = Z ne(n)Yr(z; {z}5),  (13c)

(2, n; {z" ) = Z e () (x; {z"}7),  (13d)

where Y} denotes summation over the modes ex-
cluding the zero modes. The zero-modes function is
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proportional to the first derivative of £%(x; z(n)) with

respect to x
(s () = —AnE ),

where A is a real normalization constant. To con-
firm this relation, one may consider the sum of the
domain-wall configuration and the zero-mode part:

€@ =) + mlnpo(zzz(n)  (15)
= (a3 2(n)) — Ao () 2 E )

dx
~ & (x — Adno(n); z(n))

= exp —; +q(n) + ARno(n)

+i(¢o(n) + ASmo(n))

Hence, it is clear that Eq. (14) gives the zero-mode
eigenfunction and that the real and the imaginary
parts of 9(n) are the zero modes corresponding to the
translation and the rotation modes, respectively. We
choose {¢} so that {9, 1} forms a orthonormal
set:
L/2
dx n
Fl@i{z}n)vo (@5 2 (n)Yo(x; 2(n) = 1,
—L/2 (16a)
L/2

/ % o (s s 2 ) =) = 0,
i (16b)

(14)

L/2
/ Y e i () (6o
—L/2
X Y (x; {z}5) = Ok,
f(x;{Z}Z){wo(x;Z(n))wS(x;z*(n)) (164)

# St G | =0 ().

where f(z; {z}7) is a real weight function to be fixed
later. This weight function neglects a nonlinear char-
acter of the coherent-state path integral.

3.3. Faddeev—Popov Type Identity

In order to introduce the collective degrees of free-
dom and eliminate the zero modes, we adopt the
Faddeev—Popov method to the spin-coherent-state
path integral. To do so, we invoke the following
Faddeev—Popov type identity:

1= [angarg oo hatrgE <) (17
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[ dz(n)dz"(n) (e n
_/TAK&]({Z}”)
x 8(Ray {2y (Igl 1 ({23m)),

where

dz()dz"(n) _ 0oy (17b)

5; n)dgo(n)
and A€ ({z}7) is the Faddeev—Popov type deter-
minant

A[&f*]({z}z) ( (éf}( )) (n(){)Z*}Z))
with Rgl*1({z}7) and Igf $1({217) being the real

and the imaginary parts of g0 ({z}n) defined as
L/2

HOHE Y e (et (19)

—L/2
— (3 2(n) }45 (5 2% (),
gl = e =y

(18)

(19b)

3.4. Transition Amplitude

Hereafter, we consider transition amplitudes be-
tween domain- Wall states. Namely, we take

®!£ jai zp))

in Eq. (3). Insertmg the identity (17a) into the right-
hand side of (3) at each discrete time, we get

< ’efiI:IT/h‘Zﬁ

H/dexn;ij (xz,n)

[€8) = |25) : B=1,F, (20)

(21)

= lim
N—o0

{f (=

2209
y 25 + 1
(1 +§*(rr n)é’(-’fc n))?

e
f*}<{z}z>>6<fgéf’f*]<{z}z>>}

<o (55167.4)

At this stage, we substitute (9) with (16) for £ and £*.
Then, (19) may be replaced by

EAZ) At (2y)

X <5(Rg[E

Gy = mo(n), oL = ().

Thus,
Rg[fs-l—fhfs-i-ﬁ*]({ }n) _
I [§S+77§ +n* ]({ }n) _ "70(”)7

which are zero-mode degrees of freedom. The inte-
gration measure can be rewritten as

211
X

o 25 +1 ‘

_ H WQS (1 4 %) H [z,n;2,7],

k=0

where

e

Elz,n; 2,1 ==

{1+ (€ (@;2%(n)) +

Thus, the transition amplitude (21) is reduced to

(zp|e HT/A|5p) = Jim /H [dz dz (n)

(26)
I O (1 L)

27 25
k=0

x [1Elwnz ] - AR (230)

xT
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r (= R @

(25)

z2(n)) + (s {230)) 1>

< 5o (n))3 (S0 (n)) exp( SIE + 77,6 + m)

With the help of the delta function, we can immedi-
ately integrate out the zero modes at each discrete
time. Furthermore, in the case of large spin S > 1,
the factors contributing to the integration measure
take the simple form [19]

Elz,n;z 77] =1+0(S7?),
Al e ([ = <1+O(S*1/2)>. (27b)

(27a)
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In this way, we find
<ZF’efiHT/h‘ZI>

N-1
' g @k () dig. (1)
28 —————=
[ty

dz(n)d -
 Nows O o (L5164 7,6 41

(28)

= lim
N—oo

This formula determines the quantum dynamics of the
domain wall in the path integral.

3.5. Effective Action

The next step is to expand the action S[¢*+
n*,&° +n] with respect to the environment. The
expanded action consists of three parts. The first
part, Sc[z*, z], contains only the collective degrees of
freedom. This part was estimated in detail in[16]. The
second part, S¢[n*, n], contains only the environment,
and the third part, S.—.[z*,z,n*,n], represents the
interaction between the collective degrees of freedom
and the environment:

SIE°+ 0", +n] :=8.[z", 7]
+ 86[77*777] + Sc—e[Z*a 27"7*777]-

Now, we proceed to find an equation to determine
the environmental mode functions {#}. Such an
equation may be obtained from the dynamical term
whose collective part gave the static (6). Accordingly,
we examine the dynamical term of S¢[n*, n], which we

denote by S4[n*, n]:

(29)

San*,n] == —2K S <s — %) (30a)
L/2
S e [ By s )
n=1 ~L)2
2
x [ N~ g (=) exp(-20) 2
- {Sexp<—2fz_1> - 1}g<x; {z}m]
xn(z,n—1L{z}5_1),
where
R () ‘; 2m) (30D)
i {2} = ——

Terms proportional to n*n* or nn vanish due to the
static equation (6). Note that this cancellation is not
a generally guaranteed theorem. It turns out to be
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convenient to write {44, }} in (13c) and (13d) as
follows:

Ui (w; {2}) == 2e /220 cosh (20) ¢, (21), (3la)

(s {z730) = {dw (s {z}1)}" (31b)
Putting (13c¢), (13d), and (31a) into (31b), we find

1
St ) = ~2\2KS <s - 5) (32)
XZ an/ n)nk(n — 1)
n=1 k' k
L)2
dr 0? 1
X —gﬁk/(.’ﬂ) - W ﬁ 1
~L)2
_ 2 (L
2sech (A)} oK),
where we replace /X — (2*(n) + z(n))/2 by /X be-

cause L/A > 1. Thus, we are led to demand ¢ () to
obey the eigenvalue equation

[ a2 + {1—286Ch2()\>}]¢k(:c) (33)

= WEPk (x)v
where wy is the eigenvalue. This solution to this
equation is well known in the literature:

or(z) = Nj, (—ikX + tanh(z/))) ™% (34a)
where
I ~1/2
Ny, = (—(k2A2 + 1)) s wp =k 4+ 272
a
(34b)
These eigenfunctions diagonalize S¢[n*, 7] as
Sn*, n)= —252 Z heQun; (n)nk(n—1), (35a)
n=1 k
where
Q= Jhs (k% +2172). (35b)

The last equation is the dispersion relation of the
environmental eigenmode. Note that wy, is not zero
in the limit of & — 0.
What remains is to decide the weight function
f(z; {z}). With (31), the condition (16¢) takes the
form

L/2
| Lt st @) 26)
—L/2
< i (Yo 0 121) = e
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This is satisfied if we choose
1

f(xv {Z}n) = (1 + e—2x/)\+z*(n)+7$(n))2 '

[t is easy to check that (16b) is also satisfied by this
choice. Accordingly, the normalization constant A of
the zero-mode function ¢y (x; z(n)) as given by (14)
may be determined by use of (37) and (16a):

(37)

e —2n/A b2 ()2 (n)

| = A2 / dr__c : (38)

a (1 + e—2x/ -z (n)+z(n))2

—L/2
A2\ —nniL/2—00 A2\
= E [tanh (xn)]—L/2—>—oo = %
Thus,
2a

A=/ R (39)

The closure (16d) can also be shown to hold with
these choices.

The remainder of the action can be calculated in
the same manner [19], and we obtain the effective
action in the following form:

i Y71
ﬁSS[z*, z] = NDWS; [— 5{2*(71)2(71) (40a)

+2*(n—1)z(n — 1)}+z*(n)z(n -1)— %EDWT} ,

1 al ! 1
psilro =253 5 | = g amn) - caon)
n=1 k

(= D - 1)} o mn(n — 1)

~ e (= 1),

(40c)

(At 1>>nk<n>) +o<sl>],

where Az(n) = z(n) — z(n — 1), and

L/2) )
A sinh z /2
= — —— — 4
Ji(2) 2a / xcosh (x+2/2) #r(@), (40d)
—L/2X
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which is a function of the collective degrees of
freedom, represents a nonlinear interaction with the
environment. [t is seen that the above form of the
effective action is formally the same as that obtained
in a boson-coherent-state path integral. Hence, it is
concluded that the quantum dynamics of the domain
wall is formally represented by that of a “boson” z
interacting with environmental bosons {n}. However,
it is to be remembered that the imaginary part of the
“boson” z is an angular variable. This circumstance
can cause a subtle departure from the case of a boson.
Details of these subtleties, as well as a concrete
evaluation of transition amplitudes, are left for a future
work.
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Abstract—The Bogolyubov [Hartree—Fock—Bogolyubov (HFB)] method performs the one-particle
(mean-field) approximation in the theory of Bose—Einstein condensation (BEC). Various generalizations of
this method are possible. Apart from a nonlinear theory, taking the correlation effects into consideration, the
HFB approximation for translationally noninvariant systems describes an instructive phenomenon. This
paper is devoted to the treatment of two cases: superfluid He in porous media and atomic BEC in traps
subjected to the gravitational field. Both these systems show the dependence of a critical BEC temperature

T. on their nonuniform properties in space. © 2001 MAIK “Nauka/Interperiodica”.

1. TRANSLATIONALLY NONINVARIANT
BOSE CONDENSATE

The action for bosons with the interaction G(r —
r’) in an external field U looks like

B
0.
s= [at| [arvogo oo - ).
0
H=Hy+h,

Ho= [ dr |5 (T OTO00) ()
FUE),

1 / / * * /
h = i/drdr G(r —r)y*(r, )™ (r',t)  (2)

x (r', )e(r,t).
The C shift [1] of the Bose operator amplitudes
vt(r,t) = By + BY(rt),

[(r), v ()] = o(r — 1)

leads to the Bogolyubov model [2], which is of the
square form in the “fast” variables, B and BT, and
the square form in the “slow” C'-number variables, By
and Bj. The components By and B can be considered
as the variables of two subsystems in the adiabatic
approach [3]

wo

BE,>1> — ~0,
Ey

wp ~ dBo/dt, 0 < Er < 2meV,

*This article was submitted by the author in English.

“e-mail: yarunin@thsuni. jinr.ru

where Ej, is the Bogolyubov spectrum of nonconden-
sate excitation. The trace for a partition function of
the Bogolyubov model may be evaluated exactly over
the noncondensate variables. In the path-integral
method, this average results in the effective action
Se(p) for the condensate density p = | Bo|?. The par-
tition function has the form

Q = trexp(—fH) = / 2By D?B 50),

3
S(0,3) —/LdT, L=1L1%—-B*KqoB + Lp, 5,
0

d k2
i o=
dt i 2m

The average over the variables B, B* leads to the
effective action Seg(By)

Q:/d2 BoeSett | et :/DQBGS(O”@, (3)

Ser = S — ln(DetKQ).

Kq =

With boson-pair correlations, B% — b,b_, peculiar
for Hartree—Fock—Bogolyubov (HFB), we choose a
bilinear form

B
1 b
Se= [ b2 )
5 b,
0

Ko —gBo
—gB; —K_q

M:

9

so that the path-integral adiabatic approach gives the
effective action (3) for a “slow” condensate variable p.

1063-7788/01/6412-2212$21.00 © 2001 MAIK “Nauka/Interperiodica”
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Here, p and p are found from the equations §Seg = 0,

D
R=p+r, i—21”:,0[1—7('0#)},
Go 90
c BE},
D = - [ K?coth —k qk
2/ < 4 )Ek >0,
r—f/k%pdk;
= ,
and
@_“’“_“coth<@>—1, N,V — oo,
) 4
GE, > 1,

where R is the total *He density, 7 is the nonconden-
sate density, and p = |By|?/V. The heat capacity
O*F 1
CU = —Tw, F = —B
has been calculated with the help of the above equa-
tions in [4, 5].
In the general case, the C' shift of the Bose operator
amplitudes may also be Written in the form

Seﬂa

vt (r,t) bt (t)un(r

o)
Zb+ un(r) + bouo(r) | ,
n#0

bO - Noezau n = {nx7ny7nz}7

/d’r Up Uy = Op -

Here, the three-dimensional one-particle eigenfunc-
tions u,, are the solutions of the equation for a boson
wave function

{v2+2h—7§‘[En—U(r)]}un =0 (4)

with energy levels F,,.

In terms of Fourier decomposition with a basis
u, — exp(ikr), the contributions to the Bogolyubov
energy may be classified as follows:

(a) ordinary terms (k1 + ko = ks + k4)
G(r — r")B; Bo B Bo,
G(r —r")[B*(r)B(r)B} By
+ B*(r")B(r'")B§ By + h.c.],
(b) broken gauge symmetry terms (k1 + ko =
ks + k4)
G(r — ") [B*(r)B*(r")BoBo + B(r)B(r")B{ Bg],
(c) broken gauge and translation symmetries
G(r,r")[B*(r)B{ByBo + B(r')* By BoBy + h.c.]
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B {(k:,O|G|0,0>, ki + ko # ks + ka, G = G(r,7"),
0,k1 + ko =ks+ k4, G = G(’F—T’).
The -interaction approximation for G is valid for
a dilute gas:
Gir—r")—=G-6(r—1").
Taking into account the broken translation symmetry

terms of type (k,0|G|0,0), we get (1) and (2) in the
initial action as

N,V = o0, by, — VVby, b;%ﬁbz,
Hy = pwgo + \/EZ(bne_m + b% e wop
n#0
+ Z b:;bn/wnn/a
n,n'#0

h=p"70+ P2 (bne™™ + b5 )Y0n

n#O
+2p Z

|:b b 4+ (b*b* 21a+b b ‘e 2104):| Vo
n,n'#£0

G G
Yo = 5 /d’rué, Yon = 5 /druguna
G
TYnn/ = 5 /dT ugunun’u

where p is the Bose condensate density.
particle energy wy,, in the basis (4)

1
Whpy = —/VunVun/dr—l—/ U(r)upupy dr
2m

The one-

contains both the kinetic energy term ~V? and the
external field energy term ~U (7).

In the above, Hy is the Hamiltonian of the ideal
Bose gas, and h is a generalization of the Bogolyubov
pair-correlated interaction Hamiltonian in the § ap-
proximation. The coefficients ~y,, and wy,, are respon-
sible for broken translation symmetry.

2. SUPERFLUID “He IN POROUS MEDIA

The external stochastic U*-field theory [6] was
suggested as an origin of a translation noninvariant
state of bosons, so a field U* gives a contribution
to the one-particle part of the Hamiltonian. Con-
trary to this approach, we use the aforementioned
translation-symmetry-breaking term h’ [7] in H =
Ho+Hp+ N,

G
W=3" ‘I;O(berobo + brbobl?), (5)
k0
Gk70 = <k‘,0|G|0,0>, h:HB—i-h/,

so that h’ gives a contribution to the interaction be-
tween atoms. It is clear that the Hamiltonian H
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represents broken translation and gauge symmetries
of a system. Still, the Hamiltonian (5) conserves the
“quasiclassical” number of particles

D bgbk] =0.

m= {H,|bo|2}+z’[H
k0

Therefore, we can consider the partition function with
“quasiclassical” constraint

Q= tr (e—ﬂH(st _ / ] / Dbt Dby,
k0

™

X /dyexp [z’y(|b0|2 —-N)-p

—T

390 4 }
= 1b d|.
V|O| +

The Gaussian integral over noncondensate variables
by, by, is calculated exactly following the rules as given
in[8],

exp(Ak)
o = g () DbiD () 7
k40
; bo\ G
. _ 0\ Gk,0
/f 1 T p(bg)—2 ;
0
v

In these formulas, the “fast” variables by, b; and the
“slow” variables p are separated as in the previous
section, so that now the effective action S.g for “slow”
condensate bosons in

Q- / dpdpi exp Ser, Set = So+ S + S}, (6)

contains Sy, as the term breaking translation
symmetry,

G 2
Sy = ﬁvp?’% / plGrol” gy

=22 h3.
B T

We suppose the nonhomogeneous factor \G07k|2 <
G?% to be weak (that means Fy < Fp):

2 BEy k
Fy = 2/k th(4) dk,

|Gk ol
F=— dk, Fy| < 3F;.
1= 2 B, ) 1 0
After calculations, we get
o Ty 2GF)
—~l-a~_= = .
wo T TR

The ratio Fy/Fp is the measure of the pores’ influ-
ence on the Bose condensate. Taking into account
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the experimental value T |, 0(Th|p=0) ™' = 2.168 x
217271 ~ 0.998, we find « as
2Go\> I R a)
~002~—) —, — ~01, — ~0.01.
@ <F0> 2Go” Go " R

We can consider F; as the deformation factor for
atomic interaction near the walls of pores. There-
fore, the last ratio gives the boson number with the
deformed interaction near the walls of pores relative
to the number of bosons with the nondeformed inter-
action in the middle part of pores.

3. ATOMIC TRAP DEFORMED
BY THE GRAVITATIONAL FIELD

Another system that displays broken translation
symmetry is a trap for atomic gases. Strictly speak-
ing, a trap is a mesoscopic system, the properties
of which depend on its size h and potential barrier
Uy. The levels of a trap depend on the form of the
potential. In the case of the parabolic trap for the
alkali atoms, we have the trap frequency w with the
values of parameters [9]

Up~10"%¢eV, w~10"13eV.

Such a trap contains some thousands of atoms and
some thousands of levels.

The energy of an atom in the gravitational field
mgh is of the same order as the barrier difference
Uy — U_, caused by this field. Therefore, the com-
plete picture of the atomic motion in a trap needs to
include the gravitational fields into consideration [10].
The complete potential of a parabolic trap looks like

U(z)|:>0
outside of the trap,

h ~ 2 mm,

_ {Uo + mgz,

smw?(r — r9)? + mgz, inside of the trap,

where m is the mass of an atom and zg is the center
of the trap in the z-direction. Using a new variable
Z =z — 2y, we get

U(Z) (7)
Uy +mgz, Z<-h/2, Z>h/2,
Uy + (mw?/2) (Z+A)?, —h/2 < Z < h)2.

[t means that the shifts of initial U(Z) are A = g/w?
(to the left) and U, = —mg?/2w? (down). The differ-
ence between U (right) and U_ (left) in (7) is

mw? R\ 2

The phenomenon of a trap deformation is (a) meso-
scopic and (b) nonperturbative:

1/2 1/2
@(i) ~ 100, @(i) ~1,R:§.

Uy —U_ =mgh,

Aw \ mw GR
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These relations show that the gravitational field may
be considered as a factor more important than the
interaction G. Therefore, estimates within the frame-
work of ideal gas theory may have to be done. The
radical reconstruction of the system in terms of HFB
in the quasiclassical approximation

hwi <1

is needed. For a 2D finite trap with an ideal gas of N
bosons [11],

kmax
N=No+Ni, Ni=)> fi
n#0
_)ed, 9=0,
gL — I
Ek; y g # 07
with
1
fk: k= {kxakz}a

exp[B(ex — p)] — 1’
where we make replacements:

energies 62 — Uy, energies ef —U_ ~ 10780, <
U, Uy — U_ = mgh with the corresponding upper
cutoff limit kpax.

Here, T, for a finite-size trap is determined by
the equations N1(7.) = N and Ny = 0. In order to
simplify the calculations, we have made the following
substitution: parabolic trap in the gravitational

field — rectangular trap with the same potentials
U_,U; and the size h.

The Bose—Einstein condensation (BEC) T, shift
of a trapped ideal gas, induced by gravitation, is deter-
mined by a series of equations. At a starting point I,

10
No=0, Mi=N= Y flT5 ] (8)
ko k270
=4 x 108,
(TF)* =2.02 x 107% K for the initial asymmetrical
trap. Then, in position II, the same N atoms in a
nondeformed trap show T = 5.05 x 1077 K,
kmax
No=0, N= > Ff(T° ) =4x10° (9)
ko, k=70
In the end, after including the initial gravitational

field once more, N_ = N — NljE atoms become non-
trapped. The number of trapped atoms is

10
Nf= > (T2, 1) =096 x10° < N,
ko, k2 70
which has the temperature 7% = 5.03 x 1077 K due
to equations

10
+ + 0

No=0, Ny = Z IS €,n,)-
-
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These transition temperatures
(TE)* =2.02 x107° K
—T0=505%x10""K - TF =503 x 107K,

determined by Egs. (8)—(10), may be associated with
the assumed motion of the trap in space: start on the
Earth (1) — in space (Il) — finish on the Earth
().

For the parabolic trap, the largest shiit of T, is
expected to occur just before its destruction (w?h —
2g) — +0.

4. CONCLUSIONS

1. Translationally noninvariant Bose systems do
not obey periodic boundary conditions in space.

2. Extra energy terms via selection rules for mo-
mentum appear due to broken translation symmetry.

3. The BEC shift of T, is an observable effect in
porous media and may be expected as a mesoscopic
effect in traps for atoms.

Tunneling of atoms out of a trap seems to be a
reason for decreasing the number of atoms, if T > T..
Still, if T < T, a major portion of atoms belongs to
the Bose condensate, so they are nearly motionless
and have no time to reach the walls of the trap during
the experiment (~1 min).
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