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1. INTRODUCTION

We would like to present a part of the program
which is aimed at the calculation of Casimir energies
for new nontrivial geometries [1, 2]. For most of the
cases, one needs the Green’s functions for the given
boundaries. If the geometry permits, it is convenient
to employ the method of images in the construction
of the Green’s function. The well-known example is
the original parallel plate geometry [3]. Thinking that
the extension of the image method to other geome-
tries would be of obvious convenience, we present a
calculation for a class of triangular geometries.

We first study the group generated by the reflec-
tions from the boundaries of the triangle and then
construct theDirichletGreen’s function for themass-
less scalar field. The next important thing to do is the
regularization of the Green’s function, which is nec-
essary for the renormalization of the vacuum energy.
The nice observation we have is that the terms to be
subtracted from the Green’s function can be classified
as the terms belonging to the stability subgroups.

2. GROUP OF REFLECTIONS
IN A CLASS OF TRIANGLES

For N = 3, 4, 5, . . . and k = 1, 2, . . . N − 2, con-
sider the triangles �N

k in the x1x2 plane formed by
the lines

L1 = {x ∈ R2 : x2 = 0}, (1)

L2 = {x ∈ R2 : x2 = x1 tan υ}, (2)

L3 = {x ∈ R2 : x2 = (b− x1) tan(kυ)}, (3)
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where b is the length of the side lying on the line L1

and υ = π/N is the angle between L1 and L2.

The actions of the reflections Qj with respect to
the lines Lj , j = 1, 2, 3, on the vector

x =


x1

x2


 (4)

are given by

Q1x = px, Q2x = rpx, (5)

Q3x = prkx + x0,

where

r =


cos 2υ − sin 2υ

sin 2υ cos 2υ


 , (6)

p =


1 0

0 −1


 , x0 = (1 − prk)


b

0


 .

Denote byGN the group generated by these reflec-
tions. GN is one free group with relations. Relations
between the elementsQ1,Q2, andQ3 can be obtained
from (5) and from the properties of the rotation r and
reflection p operators:

rN = 1, p2 = 1, pr = rN−1p, (7)

rkx0 = −px0.

Some of the obvious relations are

Q2
j = 1, (Q1Q2)N = 1, (8)

from which we conclude that the reflections Q1 and
Q2 generate the finite subgroup

DN = {rs, prs, s = 0, 1, . . . , N − 1} (9)
c© 2005 Pleiades Publishing, Inc.



1622 AHMEDOV, DURU
which is the dihedral group of dimension 2N . Con-
sider the linear space VN which consists of the vectors

ξ =
N−1∑
s=0

nsxs, (10)

where ns are integers and
xs = rsx0. (11)

The equalities
rxs = xs+1, pxs = xN−s+k (12)

imply that DN is the automorphism group of the
linear space VN . The action of DN is given in the
natural way:

π(q)ξ = qξ; q ∈ DN . (13)

Since VN is a vector space over integer numbers, un-
like the spaces over real numbers, the dimension |VN |
is not necessarily equal to the dimension of the vectors
xs. It may be larger—that is, in our case, it may be
greater than two. For example, the dimensions of V5

and V8 are four, while the dimensions of V3, V6, and
V4 are two. (For a detailed discussion of this problem,
see [2].)

The group GN is the subgroup of the semidirect
product group DN ∗ VN . In fact, for any element g ∈
GN , one can find the pair of elements q ∈ DN and
ξ ∈ VN as

gx = qx + ξ ≡ (q, ξ)x; x ∈ R2. (14)

In particular,

Q1 = (p, 0), Q2 = (rp, 0), Q3 = (prk,x0).
(15)

GN contains two subgroups: DN and the one gen-
erated by Q3. Since VN does not contain invariant
subspaces with respect to (13), we conclude that
there is no subgroup in the semidirect product group
which contains DN and the group generated by Q3

simultaneously.

3. CONSTRUCTION OF THE GREEN’S
FUNCTION IN THE TRIANGLES WITHOUT

OBTUSE ANGLES
Consider the representation of the groupGN in the

space of functions on the four-dimensionalMinkows-
ki space

T (g)f(x) = f(gx). (16)

Here, the action of the group GN is given by the
substitution x → x, ξ → ξ, p→ P , r→ R, where

R =




1 0 0

0 r 0

0 0 1


 , P =




1 0 0

0 p 0

0 0 1


 (17)
PH
are 4 × 4 matrices, and

ξ =




0

ξ

0


 , x =



x0

x

x3


 (18)

are four-dimensional column vectors.
Using (15), one can verify that the operator

O =
∑
n∈Z

N−1∑
s=0

(T ((Rs, ξ)) − T ((PRs, ξ))) (19)

satisfies the following property:
T (Qj)O = −O. (20)

In (19), n = (n0, n1, . . . , n|VN |−1) is multi-index and

ξ =
|VN |−1∑
t=0

ntxt, (21)

where

xs =



x0

xs

x3


 (22)

and xs are the base vectors described in the previous
section.

It is obvious, that if we define a function Of(x),
it must vanish on the lines Lj of reflections Qj , a
fact that we make use of in the construction of the
Green’s function inside the triangle �N

k , satisfying
the Dirichlet boundary conditions. Since the operator
O commutes with the Klein–Gordon operator (which
is invariant under translations, rotations and reflec-
tions), the function

K(x, x′) ≡ OG(x, x′) (23)

=
∑
n∈Z

N−1∑
s=0

(G(Rsx+ ξ, x′) −G(PRsx+ ξ, x′))

satisfies the equation

ηµν
∂2

∂xµ∂xν
K(x, x′) = Oδ(x− x′) (24)

for any x, x′ ∈M2 ×�N
k , M

2 = {(x0, x3)}; i.e., the
two-dimensional Minkowski space, and the boundary
condition

K(x, x′)|x∈M2×∂�N
k

= 0, (25)

where ∂�N
k is the boundary of the triangle �N

k . G is
the Green’s function in theMinkowski space with the
metric η = diag(1,−1,−1,−1):

G(x, x′) = − 1
4π2

1
|x− x′|2 . (26)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005



REGULARIZED GREEN’S FUNCTION 1623
The function K(x, x′) is the Green’s function if the
right-hand side of (24) is a delta function

Oδ(x− x′) = δ(x − x′) (27)

for any x, x′ ∈M2 ×�N
k . The above condition im-

plies that for any (q, ξ) 
= (1, 0) and for any x,x′ ∈
�N
k ,

δ(qx + ξ − x′) = 0 (28)

must be satisfied. In other words, any points inside the
triangle should be representative of different orbits of
the coset space R2/GN . The orbits of the coset space
R2/DN are

[x] = {rsx, prsx : s = 0, . . . , N − 1}. (29)

It is clear that we can identify this coset space with
region X between two lines L1 and L2 including the
boundaries. For any orbit in R2/DN , there exists a
unique representative in X. Since the group GN is
generated by the elements ofDN andQ3, the problem
of constructing the coset space R2/GN reduces to
finding the subspaces Y ofX such that the reflection
Q3 maps Y into X. Consider the area between three
lines Lj , which is the triangle under consideration.
The previous condition implies that the two angles kυ
and sυ of the triangle between the linesL1,L3 andL2,
L3 must be less than or equal to π/2. The restrictions

kυ ≤ π

2
, sυ ≡ π − (k + 1)υ ≤ π

2
(30)

with solutions

k =



N

2
, for even N,

N − 1
2

, for odd N
(31)

imply that, for triangles without an obtuse angle, the
function K(x, x′) in (23) is indeed the Green’s func-
tion. Note that Eqs. (30) have also been solved with
k = (N − 2)/2 for even N . In this case, s = N/2.
For k = N/2, we have s = (N − 2)/2. Therefore, this
solution is congruent to the previous one; that is,
∆N
N/2 goes to ∆N

(N−2)/2 when the length b goes to
b cos υ.

4. REGULARIZATION OF THE GREEN’S
FUNCTION

In polygonal regions, there are three types of sin-
gular terms that have to be subtracted to obtain the
regularizedGreen’s function: free space term and sur-
face and vertex terms.

Inspecting (23) we observe that the term

T (g)G(x, x′) = G(gx, x′) (32)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
leads singularity whenever gx = x; that is, the singu-
larities arise at the elements of the group GN which
leave the points fixed. The regularization problem is
then reduced to the classification of the points of the
region and their stability subgroups:

(i) The identity element (which is the trivial
subgroup) leaves all points fixed. The term
T ((1, 0))G(x, x′) in (23) therefore gives the volume
singularity and is the free Green’s function.

(ii) The points on the line Lj are left fixed by the
reflection Qj . The group generated by Qj is then the
stability subgroup for the line Lj . Since the identity
element of the two-dimensional reflection group is
already employed in the volume regularization, the
surface singularity terms in (23) are

KS(x, x′) =
3∑
j=1

T (Qj)G(x, x′). (33)

(iii) To discuss the vertex singularities, let us first
consider the vertex at the intersection point of the
lines L1 and L2. The N-dimensional subgroup gen-
erated by the element Q1Q2 is the stability subgroup
of this vertex. The divergence term at the vertex we
consider is

KL1L2(x, x
′) =

N−1∑
j=1

T ((Q1Q2)j)G(x, x′). (34)

The elementQ1Q3 generates the stability subgroup of
the vertex at the intersection point of the lines L1 and
L3. Due to restriction (31) and Q1Q3 = (rk,−rkx0),
we conclude that the dimension of this group is two
for evenN andN for oddN . Therefore, we have

KL1L3(x, x
′) =

L−1∑
j=1

T ((Q1Q3)j)G(x, x′), (35)

where L is the dimension of the stability group, that
is, L = 2 ifN is even and L = N ifN is odd.

Finally, let us consider the third vertex which is the
intersection point of the lines L2 and L3. The stability
group of this point is generated by the element Q2Q3.
One can verify that the dimension of this group is

D =



N, for even N/2,

N/2, for odd N/2,

N, for odd N


 (36)

and the corresponding singular line terms are

KL2L3(x, x
′) =

D−1∑
j=1

T ((Q2Q3)j)G(x, x′). (37)
05



1624 AHMEDOV, DURU
Collecting all the above terms, we arrive at

KL(x, x′) =
N−1∑
j=1

(T ((Q1Q2)j) (38)

+ T ((Q1Q3)j) + T ((Q2Q3)j))G(x, x′)

for oddN ;

KL(x, x′) =

(
T (Q1Q3) (39)

+
N−1∑
j=1

(T ((Q1Q2)j) + T ((Q2Q3)j))

)
G(x, x′)

for evenN/2; and

KL(x, x′) =

(
T (Q1Q3) (40)

+
N−1∑
j=1

T ((Q1Q2)j) +
N/2−1∑
j=1

T ((Q2Q3)j)

)
G(x, x′)

for odd N/2. Subtracting all divergences from (23),
we obtain the regularized Green’s function

Kr(x, x′) = K(x, x′) −G(x, x′) (41)

−KS(x, x′) −KL(x, x′).

At this point, we would like to emphasize that, if
the method of images is applicable to a geometry,
PHY
the stability group classification is a quite reliable
approach to the regularization.

5. CONCLUSION

The regularized Green’s function obtained in the
previous section is employed in the well-known coin-
cidence limit formula in deriving the Casimir energy
for the massless scalar field [2].

We hope that the technique we presented can be
generalized to other polygonal regions, and then even
to smooth boundaries in some suitable limits.
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Abstract—A simple model extending Lie algebraic techniques is applied to the analysis of thermodynamic
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1. INTRODUCTION

The algebraic approach has been used success-
fully in molecular physics and has led to new insights
into the nature of complex many-body systems [1–
3]. In the framework of the algebraic method, the
Hamiltonian of a given system is written as an alge-
braic operator using the generators of the appropriate
Lie algebra. All other operations in the model are
algebraic operators, unlike the differential operators
in the standard wave mechanics. The technical ad-
vantage of the algebraic approach is the comparative
ease of the algebraic operations. Equally important,
however, is the conclusion derived from compari-
son with experiment that there are generic forms of
symmetry-adapted algebraic Hamiltonians and that
entire classes of molecules can be described by these
Hamiltonians, where the parameters vary in a sys-
tematic fashion for different molecules. In its initial
stage of development [4–13], the algebraic approach
sought to show why and how it provides a frame-
work for the understanding of large-amplitude anhar-
monic motion. The anharmonicities are introduced by
means of dynamical groups that correspond to anhar-
monic potentials constraining the total number of lev-
els to a finite value. Later on, the SU(2) models [14–
20] combined Lie algebraic techniques, describing
the interatomic interactions, with discrete symmetry
techniques associated with the local symmetry of the
molecules. Recently, a clear-cut connection could be
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established between theMorse–SU(2) approach and
the traditional potential energy surface methods [11–
13].

The algebraic anharmonic model has been de-
veloped to analyze molecular vibrational spectra [2–
20]. It provides a systematic procedure for studying
vibrational excitations in a simple form by describing
the stretching and bending modes in a unified scheme
based on SU(2) algebras, which incorporate the an-
harmonicity at the local level.

The deformation of the harmonic oscillator alge-
bra, associated with the Morse potential, has been
derived using a quantum analog for the anharmonic
oscillator [21]. We have described the anharmonic
vibrations as anharmonic q bosons using a first-order
expansion of the quantum deformation. We have thus
proposed a physical interpretation of quantum defor-
mation in the framework of the algebraic model.

The aim of this paper is to apply the algebraic
approach to the vibrational high-temperature ther-
modynamics of diatomic molecules and to obtain the
basic thermodynamic functions in terms of the pa-
rameters of the algebraic model. This paper can be
considered as a first step in the direction of incorpo-
rating anharmonicity and the finite number of bound
vibrational states into the thermodynamic descrip-
tion of molecular systems. The rest of the paper is
organized as follows. In Section 2, we review the
theory of an algebraic anharmonic model based on the
Morse potential and calculate the maximal number
of bosons per electronic state for a large number of
diatomic molecules. In Section 3, we derive a Morse-
like vibrational partition function for high temperature
and study its properties. In Section 4, the vibrational
c© 2005 Pleiades Publishing, Inc.



1626 ANGELOVA, FRANK
partition function is used to derive the basic thermo-
dynamic functions, such as the mean vibrational en-
ergy, specific heat, and free energy. The idea of critical
temperature is introduced in relation to the specific
heat. In Section 5, the mean number of anharmonic
bosons is obtained. The concept of maximal temper-
ature of the anharmonic vibrations is discussed. The
q-bosonic deformation of first order is considered. It
is shown that this quantum deformation is related to
the shape of the anharmonic potential well and the
fixed number of anharmonic bosons. The results are
applied to the ground electronic state of the diatomic
molecule 1H35Cl. These results must be combined
with the translational and rotational thermodynamic
functions in order to compare with experiment, as
discussed in [22].

2. ALGEBRAIC MORSE HAMILTONIAN

The algebraic model [1, 2] exploits the isomor-
phism between the SU(2) algebra and the one-
dimensional Morse oscillator:

H = − �
2

2µ
d2

dx2
+D(1 − e−x/d)2, (1)

where D is the depth of the potential well, d is its
width, x is the displacement from the equilibrium,
and µ is the reduced mass of the oscillator. The one-
dimensional Morse Hamiltonian can be written in
terms of the generators of SU(2):

HM =
A

4

(
N̂2 − 4Ĵ2

Z

)
=
A

2
(Ĵ+Ĵ− + Ĵ−Ĵ+ − N̂),

(2)

whereA is a constant dependent on the parameters of
the Morse potential. An essential difference between
the Morse potential and the harmonic potential is
that the eigenstates in the Morse potential well are
bound and the total number of bosons, N , is fixed by
the potential shape. The eigenstates |[N ], v〉 corre-
spond to theU(2) ⊃ SU(2) symmetry-adapted basis,
where v is the number of quanta in the oscillator, v =
1, 2, . . . , [N/2]. The maximal number of quanta per
oscillator is N0 = [N/2], where [N/2] is the largest
integer less than or equal to (N/2).

The anharmonic effects can be described by an-
harmonic boson operators [2],

b̂ =
Ĵ+√
N
, b̂† =

Ĵ−√
N
, v̂ =

N̂

2
− Ĵz, (3)

where v̂ is the Morse phonon operator with an eigen-
value v. The operators satisfy the commutation rela-
tions[

b̂, v̂
]

= b̂,
[
b̂
†
, v̂
]

= −b̂† ,
[
b̂, b̂

†
]

= 1 − 2v̂
N
.

(4)
PH
The harmonic limit is obtained when N → ∞, in

which case
[
b̂, b̂

†
]
→ 1, giving the usual boson com-

mutation relations.
The Morse Hamiltonian can be written in terms of

the operators b̂ and b̂
†
:

HM ∼ 1
2

(
b̂b̂

†
+ b̂

†
b̂
)
, (5)

which corresponds to vibrational energies

εv = �ω0

(
v +

1
2
− v2

N

)
, (6)

v = 1, 2, . . . ,
[
N

2

]
,

where ω0 is the harmonic oscillator frequency.
The spectrum of the Morse potential leads to a

deformation of the harmonic oscillator algebra. A
more detailed relationship between the Morse co-
ordinates and momenta and the SU(2) generators
can be derived through a comparison of their matrix
elements [11] and through the derivation of raising
and lowering operators for the Morse potential [12].
Note that, for an infinite potential depth, N → ∞,
the Morse potential cannot be distinguished from the
harmonic potential.

The value of N depends on the depth D and the
width d of the Morse potential well [1, 2, 14]:

N =
(

8µDd2

�2

)1/2

− 1. (7)

By comparing the eigenvalues (6) with the phe-
nomenological Dunham expansion for the vibrational
energy cut to the quadratic term, relations between
the parameters A and N and the usual harmonic
constant, ωe, and anharmonic constant, xeωe, used
in spectroscopy [22] are obtained [4, 5]:

ωe = A(N + 1) = �

(
2D
µd2

)1/2

, (8)

xeωe = A =
�

2

2d2D
. (9)

Thus, the total number of bosons N in the algebraic
anharmonic model is obtained in terms of the experi-
mental anharmonic constants:

N =
1
xe

− 1, (10)

where xe = ωexe/ωe. This result is equivalent to (7).
In the model, N is an integer, and in what follows, its
values are determined by [1/xe − 1].

We have determined the values of N and N0 for
oscillators corresponding to the ground electronic
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005



ALGEBRAIC APPROACH TO THERMODYNAMIC PROPERTIES 1627
Maximal number of anharmonic bosons for electronic states of diatomic molecules

Molecule State xe = ωexe/ωe N = [1/xe − 1] N0 = [N/2]
27Al1H X1Σ+ 1.73217× 10−2 56 28
9Be16O A1Π 7.3538× 10−3 134 67

X1Σ+ 7.95369× 10−3 124 62
209Bi35Cl X 3.11688× 10−3 319 159
11B16O A2Πi 8.84985× 10−3 111 55

X2Σ+ 6.24204× 10−3 159 79

Ca35Cl A2Π 3.17895× 10−3 313 156
12C16O X1Σ+ 6.17701× 10−3 160 80
1H2 d3Πu 2.79434× 10−2 34 17

a3Σ+
u 2.68873× 10−2 36 18

X1Σ+
g 2.68452× 10−2 36 18

1H3H d3Πu 2.24267× 10−2 43.0 21

a3Σ+
g 2.19751× 10−2 44.0 22

X1Σ+
g 2.42718× 10−2 40 20

1H35Cl X1Σ+ 1.74095× 10−2 56 28
1H19F X1Σ+ 2.1764× 10−2 44 22

Hg2H X2Σ 5.01733× 10−2 18 9
39K2 X1Σ+

g 3.82124× 10−3 260 130

KBr X1Σ+ 3.0303× 10−3 329 164

KCl X1Σ+ 3.21429× 10−3 310 155

K127I X1Σ+ 3.30189× 10−3 301 150
7Li2 X1Σ+

g 7.37558× 10−3 134 67

Li127I X1Σ+ 3.33333× 10−3 299 149
14N2 X1Σ+

g 6.12644× 10−3 162 81
23NaBr X1Σ+ 3.65079× 10−3 272 136
23Na127I X1Σ+ 2.62238× 10−3 380 190
16O2 X3Σ−

g 7.63939× 10−3 129 64
28Si16O X1Σ+ 4.86864× 10−3 204 102

Sr19F A2Π 4.4673× 10−3 222 111

X2Σ+ 1.40938× 10−2 69 34

Zn1H X2Σ+ 0.0343 28 14
state or excited electronic state of a large number of

diatomic molecules, using the experimental values of

ωe and xeωe published in [22]. Some of the results for

selected molecules are displayed in the table.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
3. VIBRATIONAL PARTITION FUNCTION
The vibrational partition function of a diatomic

anharmonic molecule is

ZN =
[N/2]∑
v=0

e−βεv , (11)
05



1628 ANGELOVA, FRANK
where β = 1/(kBT ), the vibrational energies εv are
given by Eq. (6),N is the fixed total number of anhar-
monic bosons, and we use the notation N0 = [N/2]
for the maximal number of quanta per oscillator as
explained in the previous section. Introducing new
parameters, α = β�ω0/2 and l = N0 − v, the exact
value of the vibrational partition function can be writ-
ten as

ZN = e−α
N0∑
l=0

e
− α

N0
(N2

0−l2). (12)

When T → ∞, α→ 0, the partition function is
ZN (α→ 0) → N0 + 1. (13)

At high, but finite, temperatures T , for large N0 and
α ≤ 1, the sum can be replaced by the integral

ZN =

√
N0

α
e−α(N0+1)

√
αN0∫
0

es
2
ds, (14)

where s =
√
αl/N0. This integral can be evaluated

exactly in terms of the error function, erf i
(√
αN0

)
(as

defined in [23]):

ZN =
1
2

√
N0π

α
e−α(N0+1)erf i

(√
αN0

)
. (15)

Equation (15) represents the high-temperature
value of the vibrational partition function in the
Morse-like spectrum [24–26]. The partition func-
tion is expressed in terms of the parameters of the
algebraic model N0 and α. The dependence on the
temperature is given by α,

α =
�ω0

2kBT
=

Θ
2T
, (16)

where Θ = �ω0/kB is the usual characteristic vibra-
tional temperature of the molecule. The contributions
of the anharmonic vibrations are essential in the high-
temperature region for T ≥ Θ, where T = Θ corre-
sponds to α = 0.5.

WhenN0 → ∞, the harmonic limit of the model is
obtained:

Z∞ ∼ N0e
−α

2αN0 − 1
∼ e−α

2α
=
T

Θ
e−

Θ
2T , (17)

which coincides with the harmonic vibrational parti-
tion function of a diatomic molecule at high temper-
atures. The expression for the partition function (15)
can be generalized for polyatomic molecules by com-
bining the present results with the use of a local-
mode model where each interatomic potential is of the
Morse form [13].

We take the diatomic molecule 1H35Cl as an ex-
ample. The total number of anharmonic bosons for
PH
the oscillator corresponding to the ground electronic
stateX1Σ+, described with aMorse potential, isN =
56, and the total number of quanta in the oscillator
is N0 = 28. The depth of the Morse potential is D =
5.32 eV, and the width is d = 0.57 × 10−10 m. The
characteristic vibrational temperature of the molecule
(as described, for example, in [27]) is Θ = 4300 K.

Substituting the value of N0 = 28 into Eq. (15),
we can calculate the partition function, Z56, for the
ground electronic state of the molecule 1H35Cl as
a function of the parameter α. The graph in Fig. 1
represents the partition functionZ56 given by Eq. (15)
for the values of the parameter α between 0 and 1
(solid curve). The essential contributions of anhar-
monic vibrations to the partition function are at high
temperatures T ≥ Θ, which corresponds to α ≤ 0.5.
The exact partition function from Eq. (12) is given
for comparison (dash-dotted curve). It is clear that,
in the region 0 ≤ α ≤ 1, the integral approximation
is in excellent agreement with the exact result and
does not change the value and appearance of the
partition function. The comparison between the func-
tion Z56 (solid curve) and the harmonic limit Z∞
(dashed curve) is given in Fig. 2. The finiteness of
Z56 in the high-T limit is linked, of course, with the
finite number of states in the Morse potential. A more
realistic description in the high-T region requires the
introduction of the continuum states of the Morse
potential.

An algebraic approach has been used in [28] to
study the thermodynamic properties of molecules.
However, the partition function in [28] uses an ap-
proximation of the classical density of states, while
we have derived an explicit function in terms of the
parameters of the algebraic model.

4. THERMODYNAMIC VIBRATIONAL
FUNCTIONS

Having the partition function ZN in terms of the
parameters of the algebraic model, we are now in a
position to derive the corresponding thermodynamic
functions.

4.1. Mean Vibrational Energy

The mean vibrational energy is given by

UN = − ∂

∂β
lnZN = − �ω0

2ZN
∂ZN
∂α

. (18)

Taking into account that

∂ZN
∂α

= −ZN
2α

− (N0 + 1)ZN +
N0e

−α

2α
, (19)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Fig. 1. Vibrational partition function Z56 of 1H35Cl as a function of α. The dash-dotted curve represents the exact
representation.
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Fig. 2. Vibrational partition function Z56 (solid curve)
of 1H35Cl and the harmonic limit Z∞ (dashed curve) as
functions of α.

we obtain the following expression for themean vibra-
tional energy in terms of the partition function ZN :

UN =
�ω0

2

(
1 +N0 +

1
2α

− N0e
−α

2αZN

)
. (20)

Substituting ZN (15) gives the following expression
for the mean energy UN in terms of the parameter α:

UN =
�ω0

2
(21)

×
(

1 +N0 +
1
2α

−
√
N0

απ

eαN0

erf i
(√
αN0

)
)
.

The harmonic limit is obtained from Eq. (20), when
N0 → ∞ and ZN is given by (17):

U∞ ∼ �ω0

2

(
1 +

1
α

)
=

�ω0

2
+ kBT. (22)
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Fig. 3. Mean vibrational energy U56/�ω0 of 1H35Cl as a
function of α. The dashed curve represents the harmonic
limit U∞/�ω0.

This is the classical mean energy of a diatomic
molecule at high temperatures. When T → ∞,
α→ 0,

UN (α→ 0) → �ω0
N0 + 1

2
. (23)

The graph in Fig. 3 represents the mean vibrational
energy, U56/�ω0, of the ground electronic state of
the molecule 1H35Cl for values of α, 0 < α ≤ 1. The
high-temperature region corresponds to α ≤ 0.5. For
comparison, the graph of the harmonic limit U∞
(dashed curve) for N0 → ∞ is also given. As already
mentioned in the previous section, the finiteness of
UN in the high-temperature limit is a result of the
finite number of states in the Morse potential.
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Fig. 4. Vibrational specific heat C56/kB (solid curve) of
1H35Cl as a function of α. For comparison, Charm/kB
(dash-dotted curve) and C∞/kB (dashed line) are also
given.
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Fig. 5. Vibrational specific heat CN/kB as a function of
αN0.

4.2. Specific Heat

The vibrational part of the specific heat is

CN =
∂UN
∂T

= − �ω0

2kBT 2

∂UN
∂α

. (24)

Substituting UN (20) and using Eq. (19), we obtain

CN =
kB
2

+
kBN0e

−α

2ZN

(
αN0 −

1
2
− N0e

−α

2ZN

)
.

(25)

This equation represents the vibrational specific heat
in the algebraic model in terms of the partition func-
tion ZN . Substituting ZN (15) into Eq. (25), we
obtain the dependence of the specific heat CN on the
PH
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Fig. 6. Mean number of anharmonic bosons 〈ν56〉 of
1H35Cl as a function of α. The dashed curve represents
the harmonic limit 〈ν∞〉.

parameter α:

CN =
kB
2

+ kB

√
αN0

π

eαN0

erf i
(√
αN0

) (26)

×
(
αN0 −

1
2
−
√
αN0

π

eαN0

erf i
(√
αN0

)
)
.

It is clear from relation (26) that all anharmonic con-
tributions to the vibrational part of the specific heat
depend on the parameter α and hence on the temper-
ature T . When N0 → ∞, the harmonic limit of the
model gives the vibrational specific heat of a diatomic
molecule at high temperatures,C∞ ∼ kB.When T →
∞, α→ 0, CN (α→ 0) → 0.

Figure 4 represents the dependence of the vibra-
tional specific heat, C56/kB, on the parameter α, 0 <
α ≤ 1, for the molecule 1H35Cl (solid curve). The
graph of the harmonic vibrational specific heat of a
diatomic molecule, Charm/kB, is also given (dash-
dotted line), as well as the harmonic limit, C∞/kB
(dashed line), where

Charm = 4kBα2 e2α

(e2α − 1)2
. (27)

The effects of the anharmonicity are strongest for
values of α ≤ 0.5, where α = 0.5 corresponds to the
characteristic vibrational temperatureΘ (Θ = 4300K
for 1H35Cl).

The graph shows an anomaly in the dependence
of the vibrational specific heat on the parameter α
(temperature T ). The specific heat has a maximum
for a value of α = αC , which corresponds to tem-
perature T = TC . We shall call this temperature the
critical temperature and the corresponding parameter
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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αC the critical parameter. The anomaly of the specific
heat is again a result of the finite number of states
in the system. The specific heat increases with the
temperature as more anharmonic bosons are excited.
The maximum is reached when the latter occupy the
energy state with v = N0 = 28. (Note that the shape
of the curve is similar to the shape associated with the
Schottky anomaly of the specific heat of a two-level
system [27].)

The maximal vibrational energy is given by Eq. (6)
by replacing v with its maximal valueN0,

εmax = �ω0

(
N0

2
+

1
2

)
, (28)

while the minimum energy is

ε0 =
1
2

�ω0. (29)

Thus,

∆ε = εmax − ε0 =
1
2

�ω0N0. (30)

This gives ∆ε = 14�ω0 = 5.1877 eV for the molecule
1H35Cl. Comparing ∆ε with the dissociation energy
of the molecule DE = 4.4703 eV [29], we can con-
clude that, at the temperature T = TC ,∆ε ≥ DE, and
some of the molecules might have started to disso-
ciate, while others may still be in stable molecular
states. Our model, in its present form, does not ac-
count for the effects of the dissociation. The shape of
the specific-heat curve (Fig. 4) suggests the presence
of a second-order phase transition at TC , which is
possibly related to the dissociation process. In ad-
dition, this simple version of the model does not yet
include the contributions of the translational and ro-
tational degrees of freedom, which at temperatures
close to TC may be substantial. The critical temper-
ature TC can be considered as a temperature above
which the model is no longer valid in its current form
and other effects take place, for example, dissociation.

We have studied the behavior of the specific heat
with respect to the combined parameter αN0. The
graph of CN/kB as a function of αN0 shows a similar
anomaly (Fig. 5).

Solving numerically the equation ∂CN/∂(αN0) =
0 with respect to the combined parameter αN0, we
have found a root, αCN0 = 6.133. Thus, the critical
value αC decreases as the number of fixed anhar-
monic bosons increases:

αC =
6.133
N0

. (31)

When N0 → ∞, αC → 0 and the anomaly of the
specific heat disappears, which is in agreement with
the harmonic limit of the model.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
For the ground electronic state X1Σ+ of the
molecule 1H35Cl, N0 = 28, which gives a value for
αC = 0.219. Thus, the value of the critical tempera-
ture for this molecule is TC = 9815 K.

4.3. Free Energy
The free vibrational energy in terms of the partition

function ZN is given by

FN = − 1
β
lnZN . (32)

Substituting ZN (15) gives the free vibrational energy
in the algebraic model at high temperatures,

FN =
�ω0

2

[
1
α
ln2 +

1
2α

ln
(

α

πN0

)
(33)

+ (N0 + 1) − 1
α
ln (erf i (αN0))

]
.

When N0 → ∞, using expression (17) in Eq. (32),
we obtain the classical harmonic result for the free
vibrational energy at very high temperatures, F∞ ∼
kBT ln2.

5. ANHARMONIC BOSONS
5.1. Mean Number of Anharmonic Bosons

The mean vibrational energy in the anharmonic
model can be written in terms of mean number 〈νN 〉
of anharmonic quanta, each with energy �ω0:

UN = �ω0

(
〈νN 〉 +

1
2

)
. (34)

Substituting UN (20), we obtain 〈νN 〉 in terms of the
partition function ZN :

〈νN 〉 =
N0

2
+

1
4α

− N0e
−α

4αZN
. (35)

Using expression (15) in Eq. (35), we obtain the high-
temperature value

〈νN 〉 =
N0

2
+

1
4α

−
√
N0

4πα
eαN0

erf i
(√
αN0

) . (36)

The harmonic limit is obtained from Eq. (36) when
N0 → ∞ and ZN is given by the expression (17),

〈ν∞〉 ∼ kBT

�ω0
. (37)

When T → ∞, α→ 0, the mean number of anhar-
monic bosons is

〈νN 〉(α→ 0) → N0

2
. (38)

The graph of the function 〈ν56〉 for the ground elec-
tronic state of the molecule 1H35Cl is given in Fig. 6.
The dashed curve represents the harmonic limit 〈ν∞〉.
The same reasons apply to the finiteness of 〈ν56〉 as
those discussed for the partition function in Section 3.
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5.2. Maximal Temperature

The maximal vibrational energy (28) is obtained
when v = N0. The maximal mean vibrational energy
is given by Eq. (34) when νN = 〈νN 〉max:

Umax = �ω0

(
〈νN 〉max +

1
2

)
. (39)

Comparing Eqs. (28) and (30) gives the maximal
mean number of anharmonic bosons

〈νN 〉max =
N0

2
, (40)

which, as shown above, is for a value α→ 0. Substi-
tuting 〈νN 〉 (36) and simplifying gives

2

√
αN0

π
eαN0 = erf i

(√
αN0

)
. (41)

The numerical solution of the above equation has a
root αN0 → 0. As N0 is a fixed number, this solution
leads to α→ 0, giving Tmax → ∞. This result shows
that, in practice, the system does not reach amaximal
temperature, which shows the need of incorporating
the continuum into the partition function (11).

5.3. Quantum Anharmonic Bosons

In [21] we have shown that the anharmonic bosons
b, b† in (4) can be obtained as an approximation of
q bosons [30–32]. The q bosons are defined by the
following commutation relations:

[a, a†] = qn̂, [n̂, a] = −a, [n̂, a†] = a†, (42)

where the deformation parameter q is in general a
complex number [31]. As shown in [21], the anhar-
monic commutation relations (4) can be recovered
for real values of the deformation q close to 1, q < 1,
and a linear expansion of q in terms of a parameter p,
p ≡ 1/(1 − q),

qn̂ = 1 − n̂

p
. (43)

If we now substitute the approximation for qn̂ (43)
into the commutation relations (42) and identify the
parameter p with N/2, n̂ with v̂, and the creation and
annihilation operators a, a† with b, b†, respectively, we
recover the SU(2) anharmonic relations (4).

The form (4) of the SU(2) commutation rela-
tions can be considered as a deformation of the usual
(harmonic oscillator) commutation relations with a
deformation parameter p = N/2. This gives a possi-
ble physical realization for the quantum deformation
obtained in [21]: the quantum deformation param-
eter p is the fixed number N0 of the anharmonic
bosons in the oscillator. Using the relation between
the fixed number of anharmonic bosons N and the
PH
characteristics of the Morse potential (7), we arrive
at the conclusion that the quantum deformation is
also determined by the depth, the width, and in gen-
eral the shape of the Morse potential well. For the
ground electronic state of the molecule 1H35Cl, p =
28, which gives q = 27/28.

Now, substituting N0 = p into the expressions for
the partition function (15), mean energy (21), specific
heat (26), free energy (33), and mean number of an-
harmonic bosons (35), we obtain the thermodynamic
properties of diatomic molecules in terms of the defor-
mation parameter p. Equation (31) gives the relation
between the quantum deformation parameter and the
critical parameter αC (critical temperature TC). For
large values of p (q → 1), the classic harmonic case is
restored.

6. CONCLUSIONS
We have used the vibrational energies obtained in

the algebraic Morse model to study the thermody-
namic properties of diatomic molecules. Using the
experimental data in [22], we have calculated the
number of bosons per oscillator (electronic state) for a
large number of diatomic molecules. We have derived
the vibrational partition function, which incorporates
the effects of the anharmonicity and depends on the
algebraic parameters. As the anharmonic effects are
essential at high temperatures, we have obtained a
high-temperature expression for the partition func-
tion, which is used to derive the important ther-
modynamic functions, such as mean vibrational en-
ergy, specific heat, and mean number of anharmonic
bosons in terms of the parameters of the model. We
have analyzed the behavior of the specific heat and
introduced a critical temperature related to the limi-
tations of the model.

We have shown that it is possible to interpret
these results in terms of a quantum deformation re-
lated to the shape of the Morse potential and which
is associated with the fixed total number of anhar-
monic bosons, so that the thermodynamic properties
of diatomic molecules depend on the corresponding
quantum deformation parameter. We believe that this
paper constitutes a first step in the description of ther-
modynamical properties of diatomic molecules, which
in principle can be simply generalized to polyatomic
molecules. We are currently studying the introduction
of the continuum into the description in order to take
into consideration the transition to dissociation.
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Abstract—With the non-Abelian hyper-Kähler quotient by U(M) and SU(M) gauge groups, we give
the massive hyper-Kähler sigma models that are not toric in the N = 1 superfield formalism. The U(M)
quotient givesN !/[M !(N −M)!] (N is the number of flavors) discrete vacua that may allow various types of
domain walls, whereas the SU(M) quotient gives no discrete vacua.We derive a BPS domain-wall solution
in the case ofN = 2 andM = 1 in the U(M) quotient model. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is well known that topological solutions are
of importance in various areas of particle physics.
Recently, there was renewed interest in such so-
lutions because of their crucial role in the brane-
world scenario [1, 2]. In this brane-world scenario,
our four-dimensional world is to be realized on topo-
logical objects like domain walls or brane-junctions.
Supersymmetry (SUSY) can be implemented in
these models, and it is actually a powerful device for
constructing their topological solutions. Viewing the
four-dimensional world as a domain wall, we are led
to deal with SUSY theories with eight supercharges
in five dimensions.
SUSY with eight supercharges is very restric-

tive. In theories involving only massless scalar mul-
tiplets (hypermultiplets), nontrivial interactions can
only arise from nonlinearities in the kinetic term, say
nonlinear sigma models (NLSMs). Prior to study-
ing the genuine five-dimensional theories with hy-
permultiplets, it is instructive to start with similar
SUSY theories in four dimensions, i.e.,N = 2, d = 4
theories. The analysis of the four-dimensional theory
could then be of help in studying the brane-world
scenario based on SUSY theories in higher dimen-
sions [3].
With regard to rigid N = 2 SUSY, the target

manifold of the hypermultiplet d = 4 NLSMs must
be Hyper-Kähler (HK) [4]. In these theories, the
scalar potential can be obtained only if the hyper-
multiplets acquire masses by the Scherk–Schwarz

∗The text was submitted by the authors in English.
1)Institute of Physics, AS CR, Praha, Czech Republic; e-mail:
arai@fzu.cz

2)Department of Physics, Purdue University, West Lafayette,
USA, and Tokyo Institute of Technology, Tokyo, Japan;
e-mail: nitta@physics.purdue.edu

3)Department of Physics, Tokyo Institute of Technology,
Tokyo, Japan; e-mail: nsakai@th.phys.titech.ac.jp
1063-7788/05/6810-1634$26.00
mechanism [5] because of the appearance of central
charges in the N = 2 Poincaré superalgebra [6]. The
NLSMs with the scalar potential in N = 2 theories
are called massive HK NLSMs.
A large class of HK manifold is given by toric

HK manifolds that are defined as HK manifolds of
real dimension 4n admitting mutually commuting n
Abelian tri-holomorphic isometries. In the massive
HK NLSMs on toric HK manifolds, many interest-
ing BPS solitons were constructed in the component
formalism [7–10] as well as off-shell formulation [11–
13]. The potential term of the massive T ∗CPN−1

model which is toric comes from themass terms of the
hypermultiplets when the NLSM is constructed as
the quotient by theU(1) gauge group [11, 12]. We call
this formulation of massive HKNLSMs “the massive
HK quotient method,” since the massless case is just
an HK quotient found in [14, 15]. One of the advan-
tages of our massive HK quotient is that the off-shell
formulation of the SUSY NLSMs is possible [12].
Off-shell formulation is powerful to extend the models
to those with other isometries and/or gauge symme-
tries and to those coupled with gravity, since (part of)
SUSY is manifest. Any toric HK manifolds can be
constructed using an Abelian HK quotient [16, 17].
Therefore, an off-shell formulation of general massive
toric HK NLSMs [8] can be obtained using the mas-
sive HK quotient with the Abelian gauge theories. On
the other hand, a massless HK NLSM other than
the toric HK target manifolds has been obtained as
a quotient using the non-Abelian gauge group by
Lindström and Roček [14] for the massless case only
(without potential terms).

In this paper, we discuss massive NLSMs in
N = 2, d = 4 theories and their BPS domain-wall
solutions. With the HK quotient method, massive
NLSMs on cotangent bundles over the Grassmann
manifolds, T ∗GN,M , which are not toric, are obtained
along with their generalization. These models are
c© 2005 Pleiades Publishing, Inc.
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constructed inN = 1 superfield formalism. The BPS
domain-wall solution is given in the simplest case,
the Eguchi–Hanson target manifold [18] (N = 2 and
M = 1). This work is based on our papers [12, 19] in
which analysis by a fully off-shell N = 2 superspace
(the harmonic superspace [20]) formalism is also
discussed in detail.

2. MASSIVE HK QUOTIENT BY U(M)
GAUGE GROUP

We consider N = 2 SUSY QCD with N flavors
and a U(M) gauge group. In terms of N = 1 su-
perfields, N = 2, NM hypermultiplets can be de-
composed into (N ×M)- and (M ×N)-matrix chiral
superfields Φ(x, θ, θ̄) and Ψ(x, θ, θ̄), and N = 2 vec-
tor multiplets for the U(M) gauge symmetry can be
decomposed into M ×M matrices of N = 1 vector
superfields V = V A(x, θ, θ̄)TA and chiral superfields
Σ = ΣA(x, θ, θ̄)TA, with M ×M matrices TA (A =
1, . . . ,M) of the fundamental representation of the
generators of the U(M) gauge group. In order that
the vector multiplets are treated as Lagrange mul-
tipliers, we take the strong coupling limit g → ∞
and drop the kinetic term. The gauge-invariant La-
grangian is given by

L =
∫
d4θ
[
tr(Φ†ΦeV ) + tr(ΨΨ†e−V ) (1)

− c trV
]

+

[∫
d2θ

(
tr {Σ(ΨΦ − b1M )}

+
N−1∑
a=1

ma tr(ΨHaΦ)

)
+ c.c.

]
,

where we have absorbed a common mass of hy-
permultiplets into the field Σ and denoted ma (a =
1, . . . , N − 1) as complex mass parameters, and Ha

are diagonal traceless matrices, interpreted as the
Cartan generators of SU(N) below. The electric and
magnetic Fayet–Iliopoulos (FI) parameters are de-
noted as c ∈ R and b ∈ C, respectively. Note that
U(M) gauge symmetry is complexified.
Next, we eliminate the auxiliary superfields V and

Σ in the superfield formalism. Their equations of mo-
tion read from Eq. (1)

∂L
∂V

= Φ†ΦeV − e−V ΨΨ† − c1M = 0, (2)

∂L
∂Σ

= ΨΦ − b1M = 0. (3)

From the first equation, V can be solved,

eV =
c

2
(Φ†Φ)−1

(
1M ±

√
1M +

4
c2

Φ†ΦΨΨ†

)
.

(4)
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Substituting this back into (1), we obtain the Kähler
potential for the Lindström–Roček metric [14]

K = c tr

√
1M +

4
c2

Φ†ΦΨΨ† (5)

− c tr log

(
1M +

√
1M +

4
c2

Φ†ΦΨΨ†

)

+ c tr log Φ†Φ.

Fixing the complexified U(M) gauge symmetry
and solving constraint (3), we obtain the Lagrangian
of the NLSM in terms of independent superfields. To
this end, we should consider two cases (i) b = 0 and
(ii) b �= 0 separately.
Case (i) b = 0. A gauge can be fixed as

Φ =


1M

ϕ


 , Ψ = (−ψϕ,ψ), (6)

with ϕ and ψ being [(N −M)×M ]- and [M × (N −
M)]-matrix chiral superfields, respectively. The su-
perpotential becomes

W =
∑
a

ma tr


(−ψϕ,ψ)Ha


1M

ϕ




 (7)

=
∑
a

ma tr


Ha


 −ψϕ ψ

−ϕψϕ ϕψ




 .

Case (ii) b �= 0. We can take a gauge as [14]

Φ =


1M

ϕ


Q, Ψ = Q(1M , ψ), (8)

Q =
√
b(1M + ψϕ)−1/2,

with ϕ and ψ being again [(N −M)×M ]- and [M ×
(N −M)]-matrix chiral superfields, respectively. In
this case, the superpotential is given by

W = b
∑
a

ma tr


Ha


1M

ϕ


 (1M+ ψϕ)−1(1M , ψ)


.
(9)

These two cases are not holomorphically trans-
formed to each other, because they make different
complex structures manifest.
We can find the bundle structure of the manifold as

follows:
(i) b = 0. Setting ψ = 0, the Kähler potential be-

comes

K|ψ=0 = c tr log(1 + ϕ†ϕ), (10)
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which is the one of the Grassmann manifold. There-
fore, ϕ parametrizes the base Grassmann manifold,
whereas ψ parametrizes the cotangent space as the
fiber, with the total space being the cotangent bundle
over the Grassmann manifold T ∗GN,M .

(ii) b �= 0. In the case of T ∗CPN−1 ofM = 1, the
base manifold is embedded by ϕ = ψ† [21] 4).
There exists the manifest duality between two the-

ories with U(M) gauge and U(N −M) gauge sym-
metries and the same flavor SU(N) symmetry. This
comes directly from the duality in the base Grass-
mann manifold GN,M � GN,N−M .

For M = 1 (M = N − 1), namely, for the U(1)
[U(N − 1)] gauge symmetry, this model reduces to
T ∗CPN−1 � T ∗GN,1(� T ∗GN,N−1) [22], which we
discussed in detail in [12]. Moreover, if N = 2, the
manifold T ∗CP 1 is the Eguchi–Hanson space. A
nontrivial model in the lowest dimensions other than
T ∗CPN−1 is the case ofN = 4,M = 2. Themanifold
is T ∗G4,2 = T ∗[SU(4)/SU(2) × SU(2) × U(1)] =
T ∗[SO(6)/SO(4) × U(1)] ≡ T ∗Q4, in which the
base manifoldQ4 is called the Klein quadric space.

3. VACUUM STRUCTURE

3.1. Vacua in the Massive T ∗CPN−1 Model

In this subsection, we discuss T ∗CPN−1 =
T ∗GN,1 of M = 1. Without loss of generality, we
consider the case of b = 0 and c �= 0. The dynamical
matrix fields are column and row vectors like ϕT =
(ϕ1, . . . , ϕN−1) and ψ = (ψ1, . . . , ψN−1).
The superpotential given in (7) becomes

W =
∑
a

ma tr


Ha


 −ψ · ϕ ψ

−ϕ(ψ · ϕ) ϕ⊗ ψ




 . (11)

We takeHa (a = 1, . . . , N − 1) as

Ha =
1√

a(a+ 1)
diag(1, . . . , 1,−a, 0, . . . , 0), (12)

where−a is the (a+ 1)th component, with a normal-
ization given by the trace tr(HaHb) = δab. Then the
superpotential can be calculated as

W = −
∑
a

Maψ
aϕa, (13)

Ma ≡
√

a

a+ 1
ma +

a∑
b=1

mb√
b(b+ 1)

.

4)This embedding ϕ = ψ† should hold for a matrix of general
M , although we have not proved it yet.
PH
Therefore, the derivatives of W with respect to fields
are
∂ϕaW = −Maψ

a, ∂ψaW = −Maϕ
a (no sum).

(14)

These vanish only at the origin ϕ = ψT = 0, which
is the only vacuum in the regular region of these
coordinates because the metric is regular there.
This model, however, contains more vacua, be-

cause the whole manifold is covered by several co-
ordinate patches and the vacuum exists at the ori-
gin of each coordinate patch. To see this, we con-
centrate on the base CPN−1 for a while. We con-
sider the fields before the gauge fixing, Φ ≡ φA =
(φ1, . . . , φN )T (A = 1, . . . , N ), called the homoge-
neous coordinates, in which we need an identifica-
tion by the gauge transformation φA ∼ eiΛφA. In the
region φ1 �= 0, we can take a patch ϕi = φi+1/φ1

(i = 1, . . . , N − 1), which was used in Eq. (6). Here,
let us write these coordinates as ϕi(1) = φi+1/φ1. In

the same way, in the region of φA �= 0, we can take
the Ath patch defined by

ϕi(A) =

{
φi/φA (1 ≤ i ≤ A− 1),
φi+1/φA (A ≤ i ≤ N − 1).

(15)

We thus have N sets of patches {ϕi(A)} enough to
cover the whole base manifold. Corresponding to
each patch for the base space, we manifestly have an
associated patch for the fiber tangent space {ψi(A)}
from Eq. (6). These sets of coordinates {ϕi(A), ψ

i
(A)}

are enough to cover the whole T ∗CPN−1. For each
patch, the origin ϕi(A) = ψi(A) = 0 is a vacuum.
Therefore, the number of discrete vacua for the
massive T ∗CPN−1 model isN , which was first found
in [9].
To discuss solitons like BPS walls, their junction,

and lumps, it may be better to consider the problem in
one coordinate patch. The other vacua appear in one
patch as the coordinate singularities of the metric in
infinities of the coordinates rather than the stationary
points of the superpotential [23]. To see this, we con-
sider only the base CPN−1 once again. We discuss
how the Ath vacuum (A �= 1) in the origin of the Ath
coordinate patch is mapped in the first patch. The
Ath vacuum is represented by ϕi(A) = 0 or φB/φA =
0 for all B(�= A). In the first coordinate patch, this
point is mapped to an infinite point represented by
ϕi(A) = 0 or φB/φA = 0 for all B(�= A). In the first
coordinate patch, this point is mapped to an infinite
point represented by

ϕA−1
(1) → ∞, ϕi(1)/ϕ

A−1
(1) → 0 (i �= A− 1), (16)
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which looks like a runaway vacuum in this patch.
Hence, the origin and N − 1 infinities are vacua in
each coordinate patch [23]. As a summary, if we in-
clude runaway vacua, one patch is enough to describe
soliton solutions. However, note that the terminology
“runaway” is just a coordinate-dependent concept,
because a runaway vacuum in one coordinate patch
is a true vacuum in the other coordinate patch.

We can also discuss the vacua without referring
to the local coordinate patches. We concentrate on
the base CPN−1 once again. A point in the CPN−1

corresponds to a complex line through the origin in
CN with homogeneous coordinates φA, because of
the gauge transformation φA ∼ eiΛφA as an equiv-
alence relation. The first vacuum is expressed in re-
gion φ1 �= 0 by ϕi(1) = φi+1/φ1 = 0 (i = 1, . . . , N −
1), namely, φi+1 = 0. Therefore, the first vacuum cor-
responds to the φ1 axis. In the same way, the Ath
vacuum corresponds to the φA axis. Each vacuum
is simply expressed by each orthogonal axis in CN .
Note that each axis is invariant underU(1)N−1 trans-
formation of Ha, so that it is a fixed point of this
transformation.
If we takeN orthogonal normalized basis eA [with

(eA)∗ · eB = δAB ] whose components are given by

(eA)B = δBA , (17)

a complex line in CN can be spanned by a unit vec-
tor e′ =

∑N
A=1 a

AeA = Ue1, where aA is a complex
number with

∑
A |aA|2 = 1 andU is an unitarymatrix

U ∈ U(N). Each of the N vacua found above corre-
sponds to each eA (A = 1, . . . , N ) (with zero value of
the cotangent space ψ = 0).

Example: the Eguchi–Hanson space [18]. The
simplest model is the Eguchi–Hanson space, T ∗CP 1

(N = 2 and M = 1). This model has two discrete
vacua and admits a typical domain-wall solution [7,
12]. The vacua are located on the North and South
Poles of the base CP 1 � S2 (see figure). Corre-

sponding to two gauge fixing conditions Φ =


1

z




and Φ =


w

1


, we have two coordinate patches

z ≡ ϕ1
(1) = φ2/φ1 and w ≡ ϕ1

(2) = φ1/φ2, which are

related by z = 1/w. Two vacua are given by z = 0
and w = 0. The second (first) vacuum w = 0 (z = 0)
is mapped to z = ∞ (w = ∞) in the first (second)
patch, which looks like a runaway vacuum. In ho-
mogeneous coordinates, these correspond to 〈Φ〉 =
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Domain wall

The base manifold of T ∗CP 1 and vacua. Corresponding
to two gauge-fixing conditions, we have two coordinates
z and w, covering S2 except for South (S) and North
(N) Poles, respectively. The origins of z and w (N and
S, respectively) are both vacua. The domain-wall solu-
tion, approaching these two vacua in spatial infinities, is
mapped to a trajectory connecting N and S in S2.


1

0


 ≡ e1 and 〈Φ〉 =


0

1


 ≡ e2, respectively, with

〈Ψ〉 = (0, 0). Also, in a coordinate-independent way,
these two vacua correspond to the φ1 and φ2 axes
spanned by e1 and e2, respectively.
Before closing this subsection, we discuss the case

of b �= 0. The superpotential (9) can be calculated to
give

W =
b

1 + ψ · ϕ

(
L+

N−1∑
a=1

Naψ
aϕa

)
, (18)

L ≡
N−1∑
a=1

ma√
a(a+ 1)

,

Na ≡ −
√

a

a+ 1
ma +

N−1∑
b=a+1

mb√
b(b+ 1)

= L−Ma,

withMa defined in (13). The derivatives ofW are

∂ϕaW = − bψa

(1 + ψ · ϕ)2
(19)

×
[
Ma −

N−1∑
b=1

(Mb −Ma)ψbϕb
]
,

∂ψaW = (ψa ↔ ϕa),

where an arrow in the second equation represents
the exchange of quantities in the first equation. The
origin ϕa = ψa = 0 in each patch is a vacuum. There
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is no other vacuum than these N vacua. The number
of vacua should coincide with the case of b = 0 and
c �= 0, because they are connected by theR symmetry
and the physics does not depend on the difference.

3.2. Vacua in the Massive T ∗GN,M Model

To look for vacua of the T ∗GN,M model, we con-
sider the case b = 0 and c �= 0 again without loss
of generality. We label the indices for the matrices
as ϕ = (ϕiα) and ψ = (ψαi) in which i = 1, . . . , N −
M and α = 1, . . . ,M . The superpotential given in
Eq. (7) can be calculated as

W = −
M∑
α=1

N−M∑
i=1

Mαiϕiαψαi, (20)

Mαi ≡
√
i+M − 1
i+M

mi+M−1 −
√
α− 1
α

mα−1

+
i+M−1∑
a=α

ma√
a(a+ 1)

,

where we have set m0 ≡ 0. For the case of M = 1
(α = 1), this reduces to Eq. (13) for T ∗CPN−1. From
the superpotential (20), its derivatives with respect to
the fields are

∂ϕiαW = −Mαiψαi, ∂ψαi
W = −Mαiϕiα (21)

(no sum).

Therefore the origin of these coordinates, ϕ = ψT =
0, is a vacuum, and this is the only vacuum in the
finite region of these coordinates, where the metric
is regular. This model contains as many vacua as
the coordinate patches, like the T ∗CPN−1 case. In
the first coordinate patch, we have chosen the first
M row vectors in Φ the unit matrix as in Eqs. (6)
or (8). The other coordinate patches are given by
the other choices of gauge-fixing conditions mak-
ing the other sets of M row vectors in Φ the unit
matrix. The number of such coordinate systems is
NCM = N !/[M !(N −M)!]. They are independent
and enough to cover the whole manifold, so this
model has N !/[M !(N −M)!] vacua. This number
is invariant under the duality between U(M) and
U(N −M) gauge groups. It also reduces correctly
to N for T ∗CPN−1 whenM = 1 orM = N − 1.
As in the T ∗CPN−1 case, we can understand the

vacua of T ∗GN,M without local coordinates. A point
in the base GN,M corresponds to anM-dimensional
complex plane through the origin in CN . The vacua
found above correspond to mutually orthogonal M
planes spanned by arbitrary M sets of axes chosen
from theN axes. Therefore, the total number of vacua
is NCM = N !/[M !(N −M)!]. Since theM planes of
PH
vacua are invariant under U(1)N−1 generated by Ha,
the vacua are fixed points.
Taking basis (17) in CN , a point in GN,M ex-

pressed by anM plane in CN can be spanned byM
set of unit vectors

(ei)′ = Uei, (22)

where i = 1, . . . , N −M and U is an unitary ma-
trix, U ∈ U(N). The vacua of mutually orthogonal
M planes are spanned by arbitrary M sets of basis
among orthogonalN basis.
The duality becomes manifest in this framework.

We can represent a point in GN,M by an (N −M)
plane complement to anM plane.

Example: the cotangent bundle over the Klein
quadric. An example is given for the Klein quadric
T ∗G4,2 = T ∗Q4 (N = 4 andM = 2). There exist six
coordinate systems ϕ(A)

iα (A = 1, . . . , 6) for the base
manifold corresponding to six choices of gauge fixing,
given by

Φ =




1 0

0 1

ϕ
(1)
11 ϕ

(1)
12

ϕ
(1)
21 ϕ

(1)
22



,




1 0

ϕ
(2)
11 ϕ

(2)
12

0 1

ϕ
(2)
21 ϕ

(2)
22



, (23)




1 0

ϕ
(3)
11 ϕ

(3)
12

ϕ
(3)
21 ϕ

(3)
22

0 1



,




ϕ
(4)
11 ϕ

(4)
12

1 0

0 1

ϕ
(4)
21 ϕ

(4)
22



,




ϕ
(5)
11 ϕ

(5)
12

1 0

ϕ
(5)
21 ϕ

(5)
22

0 1



,




ϕ
(6)
11 ϕ

(6)
12

ϕ
(6)
21 ϕ

(6)
22

1 0

0 1



.

Together with corresponding coordinates ψ(A)
αi for the

cotangent space in Eq. (6), these six sets of coordi-
nate systems are enough to cover the whole manifold.
Therefore, this model has the six vacua given by

〈Φ〉 =




1 0

0 1

0 0

0 0



,




1 0

0 0

0 1

0 0



,




1 0

0 0

0 0

0 1



, (24)
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


0 0

1 0

0 1

0 0



,




0 0

1 0

0 0

0 1



,




0 0

0 0

1 0

0 1



,

which are the origins of (23), respectively, with 〈Ψ〉 =
0. A set of two column vectors in each matrix in
Eq. (24) is a set of orthogonal basis ei chosen from
the four basis.
In the case of b �= 0, the superpotential (9) is

W = b

N−1∑
a=1

∞∑
n=0

(−1)nma (25)

× tr


Ha


 (ψϕ)n (ψϕ)nψ

ϕ(ψϕ)n (ϕψ)n+1






= b
N−1∑
a=1

∞∑
n=0

(−1)nma

× tr


Ha


(ψϕ)n 0

0 (ϕψ)n+1




 ,

where the last equality holds becauseHa are diagonal.
Similarly to the T ∗CPN−1 case, the originϕ = ψT =
0 of each patch is a vacuum and we cannot have any
other vacua.

4. MASSIVE HK QUOTIENT BY SU(M)
GAUGE GROUP

In this section, we construct the massive HK
NLSM with the SU(M) gauge group. We eliminate
the vector multiplets in the superfield formalism and
find that this model does not have discrete vacua.

4.1. Massive HK NLSM by SU Gauge Group

In this subsection, we consider N = 2 SUSY
QCD with N flavors and the SU(M) gauge group.
We take the same matter field contents with T ∗GN,M
but gauge multiplets take values in the Lie algebra
of SU(M): V = V ATA and Σ = ΣATA with TA
generators of SU(M). Then the Lagrangian is given
by

L =
∫
d4θ

[
tr(Φ†ΦeV ) + tr(ΨΨ†e−V )

]
(26)

+

[∫
d2θ

(
tr(ΣΨΦ) +

N−1∑
a=1

ma tr(ΨHaΦ)

)
+ c.c.

]
.
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We do not have any FI parameters because of the
absence of any U(1) gauge symmetry. The SU(M)
gauge transformation is given in the same way as in
the U(M) case and it is complexified to SU(M)C =
SL(M,C). This model has an additionalU(1)D flavor
symmetry,

Φ → Φ′ = eiλΦ, Ψ → Ψ′ = e−iλΨ, (27)

which was gauged in the U(M) case.
We eliminate all auxiliary superfields in the super-

field formalism. Equations of motion for V , Σ imply

Φ†ΦeV − e−V ΨΨ† = C1M , (28)

ΨΦ = B1M , (29)

respectively, with C(x, θ, θ̄) and B(x, θ, θ̄) being vec-
tor and chiral superfields in the N = 1 superfield for-
malism.
The gauge field V can be solved in terms of the

dynamical fields from Eq. (28) as

eV =
1
2
(Φ†Φ)−1

(
C1M ±

√
C21M + 4Φ†ΦΨΨ†

)
.

(30)

Since the equation det eV = 1 holds, we get the equa-
tion

det
(
C1M ±

√
C21M + 4Φ†ΦΨΨ†

)
(31)

= 2M det(Φ†Φ),

which enables us to express C in terms of dynamical
fields implicitly: C = C(Φ,Φ†; Ψ,Ψ†). On the other
hand, Eq. (29) implies

B =
1
M
tr(ΦΨ). (32)

Substituting the solution (30) back into the La-
grangian (26), we obtain the Kähler potential

K = ±tr
√
C2(Φ,Φ†; Ψ,Ψ†)1M + 4Φ†ΦΨΨ†, (33)

with C satisfying the constraint (31). We should
choose the plus sign for the positivity of the metric.
Let us fix the complex gauge symmetry

SU(M)C = SL(M,C) to express the Lagrangian in
terms of independent superfields. We can take the
similar gauge as the b �= 0 case in T ∗GN,M :

Φ = σ


1M

ϕ


P, Ψ = P (1M , ψ)ρ, (34)

P = (1M + ψϕ)−1/2,

with ϕ and ψ being [(N −M)×M ]- and [M × (N −
M)]-matrix chiral superfields, respectively. Here, σ
and ρ are chiral superfields satisfying σρ = B from
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Eq. (32). We can consider σ and ρ independent fields
among these three fields σ, ρ, and B.
Substituting Eq. (34) into the Kähler poten-

tial (33), we obtain the Kähler potential in terms of
independent fields ϕ, ψ, ρ, σ and their conjugates.
The superpotential also can be calculated as

W =
∑
a

maσρ (35)

× tr


Ha


1M

ϕ


 (1M + ψϕ)−1(1M , ψ)


 .

This target manifold has the isometry of U(N) =
SU(N) × U(1)D, in which the SU(N) part is the
same with T ∗GN,M . The Kähler potential does not
receive the Kähler transformation. As for the symme-
try of the Lagrangian, the superpotential is invariant
under the U(1) fiber symmetry originated from (27)

σ → σ′ = eiλσ, ρ → ρ′ = e−iλρ, (36)

besides the U(1)N−1 symmetry of the massive
T ∗GN,M model. Gauging this U(1)D symmetry, we
obtain the T ∗GN,M model. Gauging U(1)D symme-
try implies putting B and C in the constraints (28)
and (29) as constants and the constraints then
become T ∗GN,M ones (2) and (3), respectively. This
clarifies the bundle structure: the set of σ and ρ is a
fiber of quaternion with the total manifold being the
(quaternionic) line bundle over T ∗GN,M .

4.2. Vacua of SU Gauge Theories

We look for the vacua of the HK NLSM by the SU
gauge group. The superpotential (35) of this model
can be rewritten as

W = σρ

N−1∑
a=1

∞∑
n=0

(−1)nma (37)

× tr


Ha


(ψϕ)n 0

0 (ϕψ)n+1




 ≡ σρWU ,

where WU (times b) denotes the superpotential (9)
or (25) of the U(M) gauge group with b �= 0. The
derivatives of the superpotential with respect to fields
are given by ∂ψW = σρ∂ψWU , ∂ϕW = σρ∂ϕWU ,
∂ρW = σWU , and ∂σW = ρWU . The vacuum con-
dition is given by σ = ρ = 0, since ∂WU = 0 holds
only at ϕ = ψT = 0 from the discussion in the last
section, butWU �= 0 there. Therefore, this model has
no discrete vacua, and so we cannot expect any wall
solutions.
PH
5. BPS EQUATION AND ITS SOLUTION

In this section, we construct the BPS domain
wall in the N = 2 and M = 1 case of T ∗GN,M , i.e.,
T ∗CP 1. In what follows, we consider the b �= 0 and
c = 0 case. We assume that there exists a domain-
wall solution perpendicular to the y = x2 direction.
The BPS domain-wall solution is derived from van-
ishing of the SUSY transformation for fermions

0 = i
√

2σµε̄∂µΦi +
√

2εF i (38)

with half SUSY condition eiασ2ε̄ = iε, where eiα is a
phase factor, and Φi and F i are scalar and auxiliary
fields, respectively. In the case we consider now, the
scalar field is given by

Φi =

√
b

1 + ϕψ


1

ϕ




from Eq. (8). Eliminating the auxiliary fields, the BPS
equations are given by

∂2ϕ
i = −eiαgij∗∂j∗W ∗, (39)

where gij
∗
is inverse of the metric gij∗ = ∂i∂j∗K and

K is given by (5) with (8). Substituting themetric and
the superpotential (9), these BPS equations reduce to

∂2ϕ = eiα
m∗

4b
K(1 + ϕψ)2 (40)

×
[
|1 + ϕψ|2 + (1 + |ϕ|2)(1 + |ψ|2)

|1 + ϕψ|2(1 + |ψ|2)2 ψ∗

+
(ϕ− ψ∗)2ϕ∗

|1 + ϕψ|2(1 + |ϕ|2)(1 + |ψ|2)

]
,

∂2ψ = eiα
m∗

4b
K(1 + ϕψ)2

×
[
|1 + ϕψ|2 + (1 + |ϕ|2)(1 + |ψ|2)

|1 + ϕ|2(1 + |ϕ|2)2 ϕ∗

+
(ψ − ϕ∗)2ψ∗

|1 + ϕψ|2(1 + |ϕ|2)(1 + |ψ|2)

]
,

where m is a mass parameter. Now we must choose
the phase eiα to absorb the phase of the parameter 5)

m∗/b:

eiα
m∗

b
=
∣∣∣m
b

∣∣∣ . (41)

By subtracting the complex conjugate of the second
equation from the first one in Eq. (40), we obtain

∂(ϕ− ψ∗)
∂y

=
∣∣∣∣mb
∣∣∣∣K4

[{(
1 + ϕψ

|1 + ϕψ|

)2

ϕ∗ (42)

5)For simplicity, we choosem to be real positive in the follow-
ing.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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−
(

1 + ϕ∗ψ∗

|1 + ϕψ|

)2

ψ

}
(ϕ− ψ∗)2

(1 + |ϕ|2)(1 + |ψ|2)

+
{(

1 + ϕψ

|1 + ϕψ|

)2 ψ∗

(1 + |ψ|2)2

−
(

1 + ϕ∗ψ∗

|1 + ϕψ|

)2 ϕ

(1 + |ϕ|2)2
}{

|1 + ϕψ|2

+ (1 + |ϕ|2)(1 + |ψ|2)
}]

,

whose right-hand side vanishes for ϕ = ψ∗. The BPS
equation (42) dictates that ϕ = ψ∗ is valid for arbi-
trary y if an initial condition ϕ = ψ∗ is chosen at some
y. Since we can choose the initial condition ϕ = ψ∗

at y = −∞, we find the BPS equations (40) simply
reduce to

∂2ϕ = |m|ϕ, (43)

which is the BPS equation on the submanifold CP 1

defined by ϕ = ψ∗ [12]. Therefore, we obtain a BPS
wall configuration connecting two vacua ϕ = ψ∗ = 0
at y = −∞ to ϕ = ψ∗ = ∞ at y = ∞ along ϕ = ψ∗

with a constant phase eiφ0

ϕ = ψ∗ = e|m|(y+y0)eiφ0 , (44)

where y0 is also a constant representing the posi-
tion of the wall. Thus, we find two collective coor-
dinates (zero modes) corresponding to the sponta-
neously broken translation (y0) and U(1) symmetry
(φ0).
We can show that BPS solution (44) coincides

with that derived in component formalism [8] through
the following field redefinition ϕ → X,φ:

ϕ ≡ eu+iφ, X = |b| tanh u, (45)

where u, φ, and X are real scalar fields. After the field
redefinition, the theory of the massive CP 1 model is
described by X and φ, and the wall solution (44) is
mapped to

X = |b| tanh |m|(y + y0), φ = φ0. (46)

This solution coincides with that derived in [8].

6. CONCLUSION

We have constructed massive NLSMs on a cotan-
gent bundle over the Grassmann manifold T ∗GN,M
and its generalization, the line bundle over the
T ∗GN,M manifold in the N = 1 superfield formalism
with the quotient method. It was found that the former
contains N !/[M !(N −M)!] vacua, while the latter
has no discrete vacua.
The BPS wall solution was given in the N = 2

and M = 1 case of the T ∗GN,M model, which cor-
responds to the Eguchi–Hanson manifold. A more
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
interesting case is the N = 4 and M = 2 case since
it is the simplest manifold other than T ∗CPN−1. The
theory has six discrete vacua and it is expected that
the theory has various interesting wall solutions, their
junction, and lump.
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Abstract—We show that our construction of realizations for algebras and quantum algebras can be
generalized to quantum superalgebras too. We study an example of quantum superalgebra Uq(osp(1/2))
and give the boson–fermion realization with respect to one pair of q-boson operators and one pair of
fermions. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The quantum superalgebra Uq(osp(1/2)) is a de-
formation of the universal enveloping algebra of the
Lie superalgebra osp(1/2). This superalgebra can be
applied to physical problems such as the trigono-
metric osp(1/2) Gaudien model [1, 2]. The universal
R matrix of the quantum superalgebra Uq(osp(1/2))
was developed and studied in [3, 4].

Boson–fermion realizations of a given set of op-
erators via Bose–Fermion creation and annihilation
operators are among the main tools for solving vari-
ous quantum problems. The origin is linked with the
Schwinger [5], Dyson [6], and Holstein–Primakoff [7]
realizations, which are different boson realizations of
the algebra sl(2).

Generalizations of the Dyson realization to the Lie
algebra sl(n) were derived in [8]. In our paper [9],
we formulated the method starting from the Verma
modules for obtaining boson realizations, and in [10],
we obtained explicitly a braid class of realizations
which generalized the results from [11, 12].

Later the idea was extended to the Lie superalge-
bra, and the Dyson-type boson–fermion realizations
were explicitly given in [13], generalizing the results
to sl(2/1) ([14, 15]).

Today these boson–fermion realizations have be-
come a standard technique in quantum many-body
physics and we can also find several other applications
in all fields of quantum physics.

Quantum groups and quantum supergroups or q-
deformed Lie algebras and superalgebras imply some

∗The text was submitted by the authors in English.
1)Department ofMathematics and Doppler Institute, FNSPE,
Czech Technical University, Prague, Czech Republic;
e-mail: burdik@kmalpha.fjfi.cvut.cz

2)Department ofMathematics, FTS, Czech Technical Univer-
sity, Prague, Czech Republic.
1063-7788/05/6810-1643$26.00
specific deformations of the classical Lie algebras and
superalgebras. From a mathematical point of view,
those are noncommutative associative Hopf algebras
and superalgebras. The structure and representation
theory of quantum groups were extensively developed
by Jimbo [16] and Drinfeld [17]. The first “quan-
tum” version of Holstein–Primakoff was worked
out for Uq(sl(2)) [18] and then for Uq((sl(3)) [19].
The Schwinger-type realization was written in [20]
and [21]. These realizations found immediate appli-
cations [22–27].

In our papers [28–30], we studied the Dyson re-
alizations of the series algebras Uq(sl(2)), Uq(gl(n)),
Uq(Bn), Uq(Cn), and Uq(Dn). There is some special
case [29] for which the realization of the subalgebra
Uq(gl(n− 1)) in the recurrence is trivial. Such spe-
cial realizations of the quantum algebra Uq(sl(n)) of
Dyson type were studied in [31, 32].

The aim of the present paper is to show that
there is a possibility of generalizing our method [9]
for deriving the boson–fermion realization too. This
will be exemplified by the quantum superalgebra
Uq(osp(1/2)).

2. PRELIMINARIES

In this article, we will use the definition of a quan-
tum superalgebra Uq(osp(1/2)) which can be found
in [3, 4].

Let q be an independent variable, A = C[q, q−1],
and C(q) be a division field of A. The superalge-
bra Uq(osp(1/2)) is the associative superalgebra over
C(q) generated by even generators K, K−1 and odd
generators E, F which satisfy the following relations:

KK−1 = K−1K = 1, (1)

KE = qEK, KF = q−1FK,
c© 2005 Pleiades Publishing, Inc.



1644 BURDÍK, NAVRÁTIL
K−1E = q−1EK−1, K−1F = qFK−1,

EF + FE =
K −K−1

q − q−1
.

We do not use the Hopf structure of this algebra for
our construction of realizations; therefore, we do not
give it explicitly here.

The method of construction used is the same as
in the case of the Lie algebras [9] or quantum alge-
bra [30] and is based on using the induced represen-
tation. The difference from quantum algebra is that,
together with q-deformed boson operators [20, 21],
we also use fermion operators.

The algebra H of the q-deformed boson operators
is the associative algebra over the field C(q) generated
by the elements of a+, a− = a, qx, and q−x, satisfying
the commutation relations

qxq−x = q−xqx = 1, qxa+q−x = qa+, (2)

qxaq−x = q−1a,

aa+ − q−1a+a = qx, aa+ − qa+a = q−x.

The algebra H has a faithful representation on the
vector space with basic elements {|n〉, where n =
0, 1, . . . } of the form

qx|n〉 = qn|n〉, a+|n〉 = |n+ 1〉, (3)

a|n〉 = [n]|n− 1〉,

where [n] =
qn − q−n

q − q−1
.

Because of odd generators E and F , we construct
the realization by means of the algebraH for even ele-
ments and by fermion elements b+ and b for odd ones.
These fermion elements commute with the elements
ofH and together fulfill the relations

bb = b+b+ = 0, bb+ + b+b = 1. (4)

The realization of the quantum superalgebra
Uq(osp(1/2)) is called the homomorphism ρ of the
Uq(osp(1/2)) to associative superalgebra W gener-
ated byH and b±.

3. CONSTRUCTION OF THE REALIZATION
OF Uq(osp(1/2))

First, for construction of the realization, we find
the induced representation of Uq(osp(1/2)). As sub-
algebra A0 of Uq(osp(1/2)), we choose a quantum
superalgebra generated by F ,K, andK−1. Let ϕ be a
representation of A0 on vector space V . Let λ be the
left regular representation on Uq(osp(1/2)) ⊗ V ; i.e.,
for x, y ∈ Uq(osp(1/2)) and v ∈ V , the representation
λ is defined by

λ(x)(y ⊗ v) = xy ⊗ v. (5)
PH
Let I be subspace of Uq(osp(1/2)) ⊗ V generated by
the relations

xy ⊗ v = x⊗ ϕ(y)v

for all x ∈ Uq(osp(1/2)), y ∈ A0, and v ∈ V . It is easy
to see that the subspace I is λ-invariant. Therefore,
(5) gives the representation on the factor spaceW =
[Uq(osp(1/2)) ⊗ V ]/I .

Let X = E2 and XNEM = |N,M〉. Due to the
Poincaré–Birkhoff–Witt theorem, the space W of
the induced representation is generated by the ele-
ments |N,M 〉 ⊗ v, where N = 0, 1, 2, . . . ; M = 0, 1;
and v ∈ V .

To obtain the explicit form of the induced represen-
tation, we give some relations. They can be proved by
mathematical induction from relations (1).
Lemma 1. For any n = 0, 1, 2, . . . , the following

formulas hold:

FXN = XNF +
qN

q + 1
[N ]XN−1EK

+
q−N

q−1 + 1
[N ]XN−1EK−1,

FEM = (−1)MEMF +
qM − (−1)M

(q + 1)(q − q−1)

× EM−1K − q−M − (−1)M

(q−1 + 1)(q − q−1)
EM−1K−1.

We omit the details of the calculations and write
the result for the action of the induced representation
on the basis elements |N,M 〉 ⊗ v.
Theorem 1. The formulas

E|N,M 〉 ⊗ v =
1 + (−1)M

2
|N,M + 1〉 ⊗ v

+
1 − (−1)M

2
|N + 1,M − 1〉 ⊗ v,

K|N,M〉 ⊗ v = q2N+M |N,M 〉 ⊗ ϕ(K)v,

F |N,M〉 ⊗ v =
1 + (−1)M

2
[N ]

×
(
qN+M

q + 1
|N − 1,M + 1〉 ⊗ ϕ(K)v

+
q−N−M

q−1 + 1
|N − 1,M + 1〉 ⊗ ϕ(K−1)v

)

+
1 − (−1)M

2
[N ]
(
qN+M

q + 1
|N,M − 1〉 ⊗ ϕ(K)v

+
q−N−M

q−1 + 1
|N,M − 1〉 ⊗ ϕ(K−1)v

)

+
1 − (−1)M

2
1

(q − q−1)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005



THE q-BOSON–FERMION REALIZATIONS 1645
× |N,M − 1〉 ⊗ ϕ(K −K−1)v

+ (−1)M |N,M〉 ⊗ ϕ(F )v

give the induced representation of the quantum
superalgebra Uq(osp(1/2)).

We construct the realization of quantum superal-
gebra Uq(osp(1/2)) from the induced representation
given in Theorem 1 as follows:

We choose the representationϕ for whichϕ(F )v =
0 and ϕ(K)v = qλv, and substitute

|N + 1〉 → a+, [N ]|N − 1〉 → a, qN → qx,

1 + (−1)M

2
|M + 1〉 → b+,

1 − (−1)M

2
|M − 1〉 → b,

q±M → bb+ + q±1b+b,

ϕ(F ) → 0, ϕ(K) → qλ, ϕ(K−1) → q−λ.

This substitution leads to the realization of the quan-
tum superalgebra Uq(osp(1/2)).
Theorem 2. The mapping ρ : Uq(osp(1/2)) →

W defined by the formulas

ρ(E) = b+ + a+b,

ρ(K) = q2x+λ(bb+ + qb+b),

ρ(F ) =
(b+ + qa+b)a

q + 1
qx+λ

+
(b+ + q−1a+b)a

q−1 + 1
q−x−λ + [λ]b

is the realization of the quantum superalgebra
Uq(osp(1/2)).

This theorem can be proved by a direct calculation.
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A Modified Schwarzian Korteweg–de Vries Equation
in 2 +++ 1 Dimensions with Lots of Isochronous Solutions*
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Abstract—A modified version of the integrable Schwarzian Korteweg de Vries equation in 2 + 1
dimensions is introduced, and it is pointed out that it possesses lots of isochronous solutions.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION AND MAIN RESULTS

Recently, via the symmetry approach, several so-
lutions were exhibited [1] to the following integrable
Schwarzian Korteweg–de Vries (SKdV) equation in
2 + 1 dimensions [2]:

wτ +
1
4
wξξη −

wξwξη
2w

− wξξwη
4w

(1a)

+
w2
ξwη

2w2
− wξw̃η

8
= 0,

w̃ξ =
(wξ

w

)2
. (1b)

Here, ξ, η, and τ are the independent variables; w ≡
w(ξ, η, τ) is the main dependent variable; and w̃ ≡
w̃(ξ, η, τ) is an auxiliary-dependent variable. Note
that, throughout this paper, subscripted variables de-
note partial derivatives and that we prefer to write this
PDE in local form rather than in the nonlocal form
mainly used in [1] [where a different local form of this
PDE is also mentioned, which is related to the one we
prefer to use (see above) by a differential substitution].

In this paper, we introduce the following modified
version of this evolution PDE:

ut − iλωu− iµωxux + i(2µ− 1)ωyuy (2a)

+
1
4
uxxy −

uxuxy
2u

− uxxuy
4u

+
u2
xuy
2u2

− uxũy
8

= 0,

ũx =
(ux

u

)2
. (2b)
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Here, x, y, and t are the independent variables; u ≡
u(x, y, t) is the main dependent variable; and ũ ≡
ũ(x, y, t) is an auxiliary-dependent variable; λ and µ
are two arbitrary rational numbers,

λ =
p1

q1
, µ =

p2

q2
, (3)

with p1 and q1 coprime integers and q1 > 0, and like-
wise p2 and q2 coprime integers and q2 > 0; ω is an
arbitrary real number (without loss of generality non-
negative, ω ≥ 0); and the rest of the notation is, we
trust, self-evident. Clearly, for ω = 0, this PDE coin-
cides with the SKdV equation (1), up to trivial nota-
tional changes. For ω > 0, this modified Schwarzian
Korteweg de Vries (mSKdV) equation (2) features a
lot of periodic, indeed isochronous, solutions

u(x, y, t + T ) = u(x, y, t) (4a)

with period

T ≡ T (q) =
2πq
ω

(4b)

(or possibly with a period which is a rational multiple
of T ). Here, q is the minimum common multiple of
q1 and q2 [see (3)]. Indeed, as we shall detail in Sec-
tion 3, this mSKdV equation (2) has been obtained
from the SKdV equation (1) via a trick—amounting
essentially to a change of dependent and independent
variables—whose efficacy in yielding evolution equa-
tions possessing lots of periodic, indeed isochronous,
solutions is obvious (see Section 3), as recently ad-
vertised (see [3–5], as well as several other publica-
tions where this trick has been used in the context of
ODEs rather than PDEs [6–18]).

Note that our claim that the solution to the
mSKdV equation (2) be periodic only refers to the
main dependent variable u(x, y, t). The correspond-
ing auxiliary dependent variable ũ(x, y, t) need not
always be periodic, but it might instead satisfy a
c© 2005 Pleiades Publishing, Inc.
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shifted periodicity property of the form

ũ(x, y, t + T ) = ũ(x, y, t) + v(x, y). (4c)

We leave to the interested reader a discussion of
this issue, including in each case the identification of
conditions on the arbitrary functions contained in the
solutions reported below sufficient to guarantee that
the shift v(x, y) vanishes.

Finally, let us emphasize that, although the
mSKdV equation (2) is just as integrable as the
SKdV equation (1) since it is related to it via a change
of (dependent and independent) variables, in this pa-
per we do not exploit this fact, limiting our treatment
merely to the explicit display, and the analysis of
the isochronous character, of several solutions, all
of which were obtained via an appropriate ansatz
based on symmetry considerations, without taking
full advantage of the integrable character of these
nonlinear PDEs.

2. SOME EXPLICIT SOLUTIONS

Wenow give some explicit solutions to themSKdV
equation (2) which confirm the claim made in the title
of this paper. Clearly, the auxiliary function ũ(x, y, t)
is defined by (2b) up to an additive arbitrary function
of the time t, which has no relevance on the time
evolution of u(x, y, t) and which itself has to be
periodic [with a period that is an appropriate rational
multiple of T—see (4b)], in order that ũ(x, y, t) may
be periodic in the variable t.

Hereafter, f(t), g(z), h(z), and F (z, t) denote var-
ious a priori arbitrary functions of their arguments,
and Fz(z, t) and Ft(z, t) denote the derivatives of
F (z, t) with respect to its first and second argu-
ment. Of course, we use an appended prime to denote
differentiation, so, for instance, f ′(t) ≡ df(t)/dt. We
generally assume f(t) and F (z, t) to be periodic in t
with period T ≡ T (q) [see (4b)],

f(t + T ) = f(t), F (z, t + T ) = F (z, t), (5)

although in some cases it will be convenient to as-
sume it is periodic with a period which is an integer
multiple or a fraction of T . We assume the functions
g(z), h(z), and F (z, t) to be analytic in z; additional
restrictions on these functions shall be detailed below,
on a case by case basis, as well as on the values of
the “space”-independent variables x and y, which are
hereafter assumed to be real (although this restriction
could be forsaken in most cases). These restrictions
shall be introduced to guarantee periodicity (as func-
tions of the real time variable t), indeed isochronic-
ity [see (4)], of the solutions exhibited below to the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
mSKdV equation (2).We also use hereafter the short-
hand notation

ρ ≡ ρ(t) = exp(iωt), (6)

and we employ the notation α, β, γ, δ to denote vari-
ous a priori arbitrary (possibly complex) constants, up
to restrictions that shall be specified below on a case
by case basis.

The first solution to the mSKdV equation (2) that
we exhibit reads

u(x, y, t) = ρλg(yρ1−2µ)h[xρµ − f(t)], (7a)

ũ(x, y, t) = −8yρ−µf ′(t) (7b)

+ ρµ
xρµ−f(t)∫
α

[
h′(z)
h(z)

]2

dz.

This solution is well defined (nonsingular) if the inte-
gral in (7b) is.

Sufficient conditions to guarantee that (7a) be
periodic as a function of the real independent variable
t [for fixed x and y—see (4)] are as follows:

Condition 1. The analytic function g(z) of the
complex variable z is meromorphic in the open disc
|z| < |y| and has no poles (for fixed y) on the circle
|z| = |y|; the first of these two requirements is, of
course, automatically satisfied if the analytic function
g(z) of the complex variable z is meromorphic in the
open disc |z| < Y , where Y is some positive number,
and the independent variable y is then restricted to
satisfy the inequality

|y| < Y (8)

(of course, if g(z) is meromorphic in the entire com-
plex z plane, one can set Y = ∞, entailing that this
restriction on the independent variable y disappears);
the second of these two requirements is, of course,
automatically satisfied if g(z) is holomorphic rather
than just meromorphic.

Condition 2. The analytic function h(z) of the
complex variable z is meromorphic inside the domain
in the complex z plane enclosed by the (closed!) curve
z(t) = x exp(iµωt) − f(t) and has no poles on this
curve; the first of these two requirements is, of course,
automatically satisfied if the analytic function h(z) of
the complex variable z is meromorphic in the open
disc |z| < X + M , where M is a positive constant
such that |f(t)| ≤ M for all real values of t [note that
M generally exists, since f(t) is periodic—see (5)]
and X is some positive number, and the independent
variable x is then restricted to satisfy the inequality

|x| < X (9)
05
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(of course, if h(z) is meromorphic in the entire com-
plex z plane, one can set X = ∞, entailing that this
restriction on the independent variable x disappears);
the second of these two requirements is, of course,
automatically satisfied if g(z) is holomorphic rather
than just meromorphic.

The second solution to the mSKdV equation (2)
that we exhibit reads

u(x, y, t) (10a)

=
ρλg(yρ1−2µ)

[xρµ + f(t) + h(γyρ1−2µ − ρ)]2
,

ũ(x, y, t) (10b)

=
8
γ

[γyρ−µf ′(t) − iωρµh(γyρ1−2µ − ρ)]

− 4ρµ

xρµ + f(t) + h(γyρ1−2µ − ρ)
.

To write this solution, we assumed γ �= 0.
Sufficient conditions to guarantee that solu-

tion (10) be nonsingular and periodic as a function
of the real independent variable t [for fixed x and y,
see (4)] are, in addition to condition 1 (see above), the
following:

Condition 3. The analytic function h(z) of the
complex variable z is meromorphic inside the domain
in the complex z plane enclosed by the (closed!)
curve z(t) = γy exp[i(1 − 2µ)ωt] − exp(iωt) and has
no poles on this curve; the first of these two require-
ments is, of course, automatically satisfied if the ana-
lytic function h(z) of the complex variable z is mero-
morphic in the open disc |z| < 1 + |γ|Y , where Y is
some positive number, and the independent variable
y is then restricted to satisfy the inequality |y| < Y
(of course, if h(z) is meromorphic in the entire com-
plex z plane, one can set Y = ∞, entailing that this
restriction on the independent variable y disappears);
the second of these two requirements is, of course,
automatically satisfied if g(z) is holomorphic rather
than just meromorphic.

Condition 4. The following inequality holds for all
real values of t:

xρµ + f(t) + h(γyρ1−2µ − ρ) �= 0; (11)

since f(t) [see (5)] and the function h(γyρ1−2µ − ρ)
[thanks to condition 3—see (6)] are periodic functions
of the real variable t, it is possible that conditions of
type (9) and (8) exist, with an appropriate assignment
of the two positive constants X and Y (depending, of
course, on the two functions f(t) and h(z)), which are
sufficient to guarantee validity of inequality (11).
PH
The third solution to the mSKdV equation (2) that
we exhibit reads

u(x, y, t) (12a)

=
ρλg(yρ1−2µ)

cosh2[βxρµ + f(t) + h(γyρ1−2µ − ρ)]
,

ũ(x, y, t) =
8
βγ

(12b)

× [γyρ−µf ′(t) − iωρµh(γyρ1−2µ − ρ)] + 4βρµ

× (βxρµ − tanh[βxρµ + f(t) + h(γyρ1−2µ − ρ)]).

To write this solution, we assumed βγ �= 0.
Sufficient conditions to guarantee that solu-

tion (12) be nonsingular and periodic as a function
of the real independent variable t [for fixed x and y,
see (4)] are, in addition to conditions 1 and 3 (see
above), the following:

Condition 5. The following inequality holds for all
real values of t and integer values of k:

βxρµ + f(t) + h(γyρ1−2µ − ρ) �= i(1 + 2k)
π

2
; (13)

since f(t) [see (5)] and the function h(γyρ1−2µ − ρ)
[thanks to condition 3—see (6)] are periodic functions
of the real variable t, it is possible that conditions of
type (9) and (8) exist, with an appropriate assignment
of the two positive constants X and Y (depending, of
course, on the two functions f(t) and h(z)), which are
sufficient to guarantee validity of inequality (13).

The fourth solution to the mSKdV equation (2)
that we exhibit reads

u(x, y, t) (14a)

=
ρλg(yρ1−2µ)

1 + sin[βxρµ + f(t) + h(γyρ1−2µ − ρ)]
,

ũ(x, y, t) =
8yρ−µ

β
f ′(t) (14b)

+
(
β − 8iω

βγ

)
ρµh(γyρ1−2µ − ρ)

+
4βρµ

1 + cot{1
2 [βxρµ + f(t) + h(γyρ1−2µ − ρ)]}

− βρµ[βxρµ + f(t) + h(γyρ1−2µ − ρ)].

To write this solution, we again assumed βγ �= 0.
Sufficient conditions to guarantee that solu-

tion (14) be nonsingular and periodic as a function
of the real independent variable t [for fixed x and y,
see (4)] are, in addition to conditions 1 and 3 (see
above), the following:
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005



A MODIFIED SCHWARZIAN KORTEWEG–DE VRIES EQUATION 1649
Condition 6. The following inequalities hold for
all real values of t and integer values of k:

βxρµ + f(t) + h(γyρ1−2µ − ρ) �= (1 + 2k)
π

2
,

(15a)

βxρµ + f(t) + h(γyρ1−2µ − ρ) �= kπ; (15b)

since f(t) [see (5)] and the function h(γyρ1−2µ − ρ)
[thanks to condition 3—see (6)] are periodic functions
of the real variable t, it is possible that conditions of
type (9) and (8) exist, with an appropriate assignment
of the two positive constants X and Y (depending, of
course, on the two functions f(t) and h(z)), which are
sufficient to guarantee validity of inequalities (15).

The fifth solution to the mSKdV equation (2) that
we exhibit reads

u(x, y, t) =
ρλ+µ(2α−1)g(yρ1−2µ)[x− f(t)]2α−1

{yαρα[x− f(t)]2α + β}2
,

(16a)

ũ(x, y, t) = −8y[iωµf(t) + f ′(t)] (16b)

− β(2α − 1)2 + (2α + 1)2yαρα[x− f(t)]2α

{yαρα[x− f(t)]2α + β}[x− f(t)]
.

Sufficient conditions to guarantee that solu-
tion (16) be nonsingular and periodic as a function
of the real independent variable t [for fixed x and y,
see (4)] are, in addition to condition 1 (see above), the
following:

Condition 7. α is integer, or perhaps it is a ratio-
nal number, in which case solution (16) would still be
periodic but might feature a period which is an integer
multiple of T [see (4b)].

Condition 8. The following inequality holds for all
real values of t:

x− f(t) �= 0; (17)

this requirement is, of course, satisfied if the indepen-
dent variable x is restricted to satisfy one of the two
inequalities

|x| < m (18a)

or

|x| > M, (18b)

wherem andM are constants such thatm ≤ |f(t)| ≤
M [note that m and M generally exist, since f(t) is
periodic—see (5)].

Condition 9. The following inequality holds for all
real values of t:

yαρα[x− f(t)]2α + β �= 0; (19a)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
this requirement is, of course, satisfied if

|y|α|x− f(t)|2α �= |β|; (19b)

and, since there exist two constants m and M such
that m ≤ |f(t)| ≤ M [as f(t) is periodic—see (5)],
this condition can be reduced to conditions of type (9)
and (8), with an appropriate assignment of the two
positive constantsX and Y (depending, of course, on
the values of the constants α,m, andM ).

The sixth solution to the mSKdV equation (2) that
we exhibit reads

u(x, y, t) (20a)

=
ρλ−µg(yρ1−2µ)

[x− f(t)][ln{yρ[x− f(t)]2} + β]2
,

ũ(x, y, t) = −8y[iωµf(t) + f ′(t)] (20b)

− 8 + β + ln{yρ[x− f(t)]2}
[xf(t)][ln{yρ[x− f(t)]2} + β]

.

Sufficient conditions to guarantee that solu-
tion (20) be nonsingular and periodic as a function
of the real independent variable t [for fixed x and y,
see (4)] are, in addition to conditions 1 and 8 (see
above), the following:

Condition 10. The independent variable x and
the arbitrary (periodic) function f(t) are such that
the (closed) curve in the complex z plane z ≡ z(t) =
exp(iωt)[x− f(t)]2 does not contain the origin z = 0.
A simple example is f(t) = X exp(iωt/2) (with X
an arbitrary positive constant) and |x| < X, which
entails that f(t) is periodic with period T (2) [see (4b)]
and that solution (20) is periodic with period T (r),
where r is the minimum common multiple of q and
2 [see (3) and (4)]. Of course, many other examples
could be given.

Condition 11. The following inequality holds:

y �= 0. (21)

Condition 12. The following inequality holds for
all real values of t:

ln{yρ[x− f(t)]2} + β �= 0; (22a)

this requirement is, of course, satisfied if

|y||x− f(t)|2 �= | exp(−β)| ≡ exp(−Re(β)); (22b)

and, since there exist two constants m and M such
that m ≤ |f(t)| ≤ M [as f(t) is periodic—see (5)],
this condition can be reduced to conditions of type (9)
and (8), with an appropriate assignment of the two
positive constantsX and Y (depending, of course, on
the values of the constants m andM ).
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The seventh solution to the mSKdV equation (2)
that we exhibit reads

u(x, y, t) (23a)

=
ρλ−µg(yρ1−2µ)[x− f(t)]−1

−1 + sin[α ln{yρ[x− f(t)]2} + β]
,

ũ(x, y, t) (23b)

= −8y[iωµf(t) + f ′(t)] + [x− f(t)]−1

×


4α2 − 1 + 4α

cos
[
2β−π

4 + α
2 ln{yρ[x− f(t)]2}

]
cos
[
2β+π

4 + α
2 ln{yρ[x− f(t)]2}

]

.

Sufficient conditions to guarantee that solu-
tion (23) be nonsingular and periodic as a function
of the real independent variable t [for fixed x and y,
see (4)] are, in addition to conditions 1, 8, 10, and 11
(see above), the following:
Condition 13. The following inequality holds for

all real values of t and integer values of k:

α ln{yρ[x− f(t)]2} + β �= k
π

2
; (24a)

this requirement is, of course, satisfied if

|y|α|x− f(t)|2α �=
∣∣∣exp

(
k
π

2
− β

)∣∣∣ (24b)

≡ exp
(
k
π

2
− Re(β)

)
;

and, since there exist two constants m and M such
that m ≤ |f(t)| ≤ M [as f(t) is periodic—see (5)],
this condition can be reduced to conditions of type (9)
and (8), with an appropriate assignment of the two
positive constantsX and Y (depending, of course, on
the values of the constants α,m, andM ).

The eighth solution to the mSKdV equation (2)
that we exhibit reads

u(x, y, t) = ρλg(yρ1−2µ) (25a)

× snc1[αxρµ + F (y, t)|β]

× cnc2[αxρµ + F (y, t)|β]dnc3[αxρµ + F (y, t)|β],

ũ(x, y, t) =
8ρ−µ

α

y∫
δ

[Ft(z, t) (25b)

− iω(1 − 2µ)yFz(z, t)]dz + α
[
(β + 1)c21

+ (1 − 2β)c22 + (β − 2)c23 + 2(2 − β)c1c2

+ 2(2β − 1)c1c3 − 2(β + 1)c2c3
]

× ρµF (y, t) + αρµ
PH
×
αxρµ+F (y,t)∫

γ

[
c2
sn(z|β)dn(z|β)

cn(z|β)

− c1
cn(z|β)dn(z|β)

sn(z|β)
+ c3β

sn(z|β)cn(z|β)
dn(z|β)

]2

dz.

Here, sn(z|β), cn(z|β), dn(z|β) denote Jacobian el-
liptic functions and c1, c2, c3 are constants such that
each ci and the sum c1 + c2 + c3 take one of the three
values 2, 0, −2.

To write this solution, we assumed αγ �= 0.
Sufficient conditions to guarantee that (25a) be

nonsingular and periodic as a function of the real
independent variable t [for fixed x and y, see (4)] are,
in addition to condition 1 (see above), the following:
Condition 14. The arbitrary function F (y, t) is

periodic, as a function of the real variable t, with pe-
riod T [see (4b)]. Of course, F (y, t) could be periodic
with a period which is a rational multiple of T , in
which case solution (25) would still be periodic, but
might feature a period that is an integer multiple of T .
Condition 15. The following inequality holds for

all real values of t:

αxρµ + F (y, t) �= 0. (26)

This condition is imposed to avoid the divergence of
the second term in the integral in (25b) at z = 0.
Since F (y, t) is periodic in the real variable t, there
generally exist two functions m̄(y) and M̄(y) such
that, for all real values of t, m̄(y) ≤ |F (y, t)| ≤ M̄(y);
and, of course, the requirement (26) is satisfied if the
variables x and y are restricted to domains such that
one of the following two inequalities holds:

|α||x| < m̄(y) (27a)

or

|α||x| > M̄(y). (27b)

The ninth solution to themSKdV equation (2) that
we exhibit reads

u(x, y, t) = exp(αxρµ)F (y, t), (28a)

ũ(x, y, t) = α2xρ2µ +
8ρ−µ

α
(28b)

×


−iωλy +

y∫
γ

Ft(z, t) − iω(1 − 2µ)zFz(z, t)
F (z, t)

dz


 .
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005



A MODIFIED SCHWARZIAN KORTEWEG–DE VRIES EQUATION 1651
To write this solution, we assumed that α �= 0 and
that y is restricted in a domain such that the integral
in (28b) is well defined (nonsingular).

A sufficient condition to guarantee that (28a) be
periodic as a function of the real independent variable
t [for fixed x and y, see (4)] is condition 14 (see above).

The tenth solution to themSKdV equation (2) that
we exhibit reads

u(x, y, t) = exp

(
±2xρµ

√
α + iωyρ1−2µ

√
β − ρ

)
F (y, t),

(29a)

ũ(x, y, t) =
4x(iωyρ + αρ2µ)

β − ρ
± 4ρ−µ

√
(β − ρ)

(29b)
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×
y∫
γ

Ft(z, t) − iω(1 − 2µ)zFz(z, t) − iωλF (z, t)√
α + iωzρ1−2µF (z, t)

dz.

To write this solution, we assumed |β| �= 1; it is well
defined (nonsingular) if the integral in (29b) is.

A sufficient condition to guarantee that (29a) be
periodic as a function of the real independent variable
t [for fixed x and y, see (4)] is condition 14 (see above).

The eleventh solution to the mSKdV equation (2)
that we exhibit reads

u(x, y, t) = exp
[
± xρµ

{
αρ + β (30a)

±
[
(αρ + β)2 + 8iωαyρ1−2µ

]1/2 }1/2
]
F (y, t),
ũ(x, y, t) = xρ2µ{αρ + β ± [(αρ + β)2 + 8iωαyρ1−2µ]1/2} ± 8ρ−µ (30b)

×
y∫
γ

Ft(z, t) − iωλF (z, t) − iω(1 − 2µ)zFz(z, t){
αρ + β ± [(αρ + β)2 + 8iωαyρ1−2µ]1/2

}1/2
F (z, t)

dz.
This solution is defined if the integral in (30b) is.
A sufficient condition to guarantee that (30a) be

periodic as a function of the real independent variable
t [for fixed x and y, see (4)] is condition 14 (see above).

The first eight of these solutions, (7), (10), (12),
(14), (16), (20), (23), and (25), have been obtained,
via the technique described in the following section,
from solutions to the SKdV equation (1a) given in [1]
and [19] (trivial notational changes have also been in-
troduced: arbitrary functions have been conveniently
redefined).

The other three solutions, (28), (29), and (30),
have been obtained, via the technique described in
the following section, from solutions to the SKdV
equation (1) obtained via the following ansatz:

w(ξ, η, τ) = exp[ξA(η, τ)]B(η, τ). (31)

Here, A(η, τ) and B(η, τ) are a priori arbitrary, but
analytic, functions. It is indeed easy to verify that
ansatz (31) yields a solution to (1) (with a suitable
choice of w̃(ξ, η, τ)) provided

4Aτ (η, τ) = A2(η, τ)Aη(η, τ). (32a)

This first-order PDE (32a) can be solved in im-
plicit form: indeed, for any arbitrary (differentiable and
with nonvanishing gradient) function H(z1, z2), it is
equivalent to the nondifferential equation

H

[
A(η, τ), τ +

4η
A2(η, τ)

]
= 0. (32b)

Using the substitution described in the next section,
we thereby get solutions to the mSKdV equation (2):
indeed, if A[η, τ ] satisfies (32b), we find that

u(x, y, t) = exp[xG(y, t)]F (y, t), (33a)
ũ(x, y, t) = xG2(y, t) − 8

y∫
0

iωλF (z, t) − Ft(z, t) + 8iω(1 − 2µ)zFz(z, t)
F (z, t)G(z, t)

dz (33b)
05
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is a solution to the mSKdV equation (2) with

G(y, t) = ρµA

(
yρ1−2µ,

ρ− 1
iω

)
(34)

and F (y, t) = ρλB

(
yρ1−2µ,

ρ− 1
iω

)
being an arbi-

trary function. On the other hand, it is easy to find
some particular solutions to (32), and we got some
simple examples by choosing H(z1, z2) to be a poly-
nomial (of degree < 3) in the complex variables z1,
z2. After some simplifications, we thus obtained for
G(y, t) the following possibilities:

G(y, t) = αρµ, (35a)

G(y, t) = ±2ρµ
√

α + iωyρ1−2µ

√
β − ρ

, (35b)

G(y, t) = ±ρµ
{
αρ + β ±

[
(αρ + β)2 (35c)

+ 8iωαyρ1−2µ
]1/2}1/2

,

which correspond to the last three solutions, (28),
(29), and (30), reported above. Of course, many ad-
ditional examples could be given.

3. DERIVATION OF THE MODIFIED
SCHWARZIAN KORTEWEG–DE VRIES

EQUATION

In this section, we indicate how the mSKdV
equation (2) is related to the SKdV equation (1),
and we thereby justify the expectation that this
evolution PDE (2) possesses lots of periodic, indeed
isochronous, solutions [see (4)]—as already men-
tioned in the introductory Section 1 and confirmed
by the examples reported in Section 2.

Let us introduce [see (6)] the following change of
(independent and dependent) variables (“the trick”):

u(x, y, t) = ρλw(ξ, η, τ), (36a)

ũ(x, y, t) = ρµw̃(ξ, η, τ), (36b)

ξ ≡ ξ(x, t) = xρµ, (36c)

η ≡ η(y, t) = yρν , (36d)

τ ≡ τ(t) =
ρ− 1
iω

. (36e)

Note that this change of variables entails no change
at the “initial” time, t = 0:

u(x, y, 0) = w(x, y, 0), (37)

ũ(x, y, 0) = w̃(x, y, 0);
PH
and it is plain that this change of variables (36) entails
the following relations:

ut(x, y, t) − iλωu(x, y, t) − iµωxux(x, y, t) (38a)

− iνωyuy(x, y, t) = ρλ+1wτ (ξ, η, τ),

ux(x, y, t) = ρλ+µwξ(ξ, η, τ), (38b)

uy(x, y, t) = ρλ+νwη(ξ, η, τ), (38c)

uxx(x, y, t) = ρλ+2µwξξ(ξ, η, τ), (38d)

uxy(x, y, t) = ρλ+µ+νwξη(ξ, η, τ), (38e)

uxxy(x, y, t) = ρλ+2µ+νwξξη(ξ, η, τ), (38f)

ũx(x, y, t) = ρ2µw̃ξ(ξ, η, τ), (38g)

ũy(x, y, t) = ρµ+νw̃η(ξ, η, τ). (38h)

Therefore, via this change of dependent and inde-
pendent variables (36), the SKdV equation (1) gets
transformed into the following PDE:

{ut − iλωu− iµωxux − iνωyuy}ρν+2µ−1 (39a)

+
1
4
uxxy −

uxuxy
2u

− uxxuy
4u

+
u2
xuy
2u2

− uxũy
8

= 0,

ũx =
(ux

u

)2
; (39b)

and the assignment

ν = 1 − 2µ (40)

immediately yields the autonomous equation (2).
Hence, to every solution to the SKdV equation (1)
there corresponds, via the change of (independent and
dependent) variables (36) with (40), a corresponding
solution to the mSKdV equation (2), which often
turns out to be periodic in t with period T [see (4)],
since the rational character of λ and µ [see (3)], hence
of ν as well [see (40) and (3)], clearly entails a periodic
dependence on the (real) “time” variable t with period
T [see (4b)], of ξ(x, t), η(y, t), and τ(t) [see (36c),
(36d), and (36e)], hence as well of the solutions
u(x, y, t), ũ(x, y, t) to the mSKdV equation (2)—at
least whenever these solutions u(x, y, t), ũ(x, y, t)
to the mSKdV equation (2) correspond to solutions
w(ξ, η, τ), w̃(ξ, η, τ) to the SKdV equation (1) which
are meromorphic in the variables ξ, η, and τ , for τ
in the circular disk [see (36e)] |1 + iωτ | ≤ 1 (with
no poles on the boundary of this disk) and for the
values of ξ and η yielded by (36c) and (36d) (with
t real but otherwise unrestricted, and with x and y
possibly restricted to appropriate domains).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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1. INTRODUCTION

In recent years, fractional supersymmetry has
been the subject of numerous works. Indeed, k-
fractional supersymmetry is closely connected to
the notion of quantum algebra (deformation theory)
and to the concept of intermediate statistics (of
anyon [1] and k fermions [2, 3]) interpolating between
Bose–Einstein statistics and Fermi–Dirac statistics.
Therefore, fractional supersymmetry constitutes a
useful tool for dealing with anyonic statistics.

Fractional supersymmetric quantummechanics of
order k can be considered as an extension of or-
dinary supersymmetric quantum mechanics which
corresponds to k = 2. An ordinary supersymmetric
quantum-mechanical system may be generated from
a doublet (H,Q)2 of operators satisfying [4, 5]

Q2 = 0,

QQ† +Q†Q = H.

The self-adjoint operatorH and the operatorQ act on
a separable Hilbert space. The operator H is referred
to as the Hamiltonian and the operator Q as the su-
persymmetry operator of the ordinary supersymmetric
quantum-mechanical system. The operator Q gives
rise to N = 2 dependent supercharges Q− = Q and
Q+ = Q† connected via Hermitian conjugation. They
are nilpotent operators of order k = 2 and commute
with the HamiltonianH .

The ordinary supersymmetric quantum-mechani-
cal system (H,Q)2 can be extended to a fractional su-
persymmetric quantum-mechanical system (H,Q)k

∗The text was submitted by the authors in English.
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Université Claude Bernard, Villeurbanne Cedex, France;
e-mail: kibler@ipnl.in2p3.fr
1063-7788/05/6810-1654$26.00
with k ∈ N \ {0, 1, 2} as follows. The system (H,Q)k
may be defined by [6, 7]

Q− = Q, Q+ = Q† (⇒ Q+ = Q†
−), (1a)

Qk± = 0,

Qk−1
− Q+ +Qk−2

− Q+Q− + . . . (1b)

+Q+Q
k−1
− = Qk−2

− H,

[H,Q±] = 0, H = H†, (1c)

where the self-adjoint operator H , the Hamiltonian
of the system, and the N = 2 supercharges Q− and
Q+ act on a separable Hilbert space. Of course, the
case k = 2 corresponds to an ordinary supersymmet-
ric quantum-mechanical system.

In the present work, we study how it is possible
to connect ordinary and k-fractional supersymmetric
quantum-mechanical systems.

2. THE ALGEBRA Wk

As an interesting question, we may ask: How
to construct a fractional supersymmetric quantum-
mechanical system of order k and, thus, fractional
supersymmetric quantum mechanics of order k? This
question can be answered through the definition of a
generalized Weyl–Heisenberg algebra Wk. We now
define the generic algebraWk and shall see in the next
section how a fractional supersymmetric quantum-
mechanical system of order k may be associated with
a given algebraWk.

For k given, with k ∈ N \ {0, 1}, the algebraWk is
generated by four linear operatorsX−,X+,N , andK.
The operators X− and X+ = X†

− are shift operators
connected via Hermitian conjugation. The operator
N , called number operator, is self-adjoint. Finally,
c© 2005 Pleiades Publishing, Inc.
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the operator K is a Zk-grading unitary operator. The
generators X−,X+,N , andK satisfy [8]

[X−,X+] =
k−1∑
s=0

fs(N)Πs,

[N,X−] = −X− (+ h.c.),

[K,X−]q = 0 (+ h.c.),

[K,N ] = 0, Kk = 1.

The functions fs : N 	→ fs(N) are such that
fs(N)† = fs(N), [A,B]q stands for AB − qBA, and
the operators Πs are defined by

Πs =
1
k

k−1∑
t=0

q−stKt,

where

q = exp
(

2πi
k

)

is a root of unity. To a given set {fs : s = 0, 1, . . . , k −
1} corresponds one algebraWk.

The generalized Weyl–Heisenberg algebra Wk

covers numerous algebras describing exactly solvable
one-dimensional systems. The particular system
corresponding to a given set {fs : s = 0, 1, . . . , k− 1}
yields, in a Schrödinger picture, a particular dynam-
ical system with a specific potential. Let us mention
two interesting cases. The case

∀s ∈ {0, 1, . . . , k − 1} : fs(N)
= fs independent of N

corresponds to systems with cyclic shape-invariant
potentials (in the sense of [9]), and the case

∀s ∈ {0, 1, . . . , k − 1} : fs(N)

= aN + b, (a, b) ∈ R2

corresponds to systems with translational shape-
invariant potentials (in the sense of [10]). For in-
stance, the case (a = 0, b > 0) corresponds to the
harmonic oscillator potential, the case (a < 0, b > 0)
to the Morse potential, and the case (a > 0, b > 0)
to the Pöschl–Teller potential. For these various
potentials, the part ofWk spanned byX−,X+, andN
can be identified with the ordinary Weyl–Heisenberg
algebra for (a = 0, b �= 0), with the su(2) Lie algebra
for (a < 0, b > 0) and with the su(1, 1) Lie algebra for
(a > 0, b > 0).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 200
3. A k-FRACTIONAL SYSTEM ASSOCIATED
WITH Wk

In order to associate a k-fractional supersym-
metric quantum-mechanical system associated with
a given generalized Weyl–Heisenberg algebra Wk,
we must define a supersymmetry operator Q and a
Hamiltonian H . The supersymmetry operator Q is
defined by

Q ≡ Q− = X−(1 − Π1) ⇔ Q† ≡ Q+

= X+(1 − Π0).

Then, the Hamiltonian H associated withWk can be
deduced from Eq. (1b). This yields

H = (k − 1)X+X−

−
k∑
s=3

s−1∑
t=2

(t− 1)ft(N − s+ t)Πs

−
k−1∑
s=1

k−1∑
t=s

(t− k)ft(N − s+ t)Πs.

(Note that the summation from s = k − 2 to s = k
appearing in some previous works by the authors [8]
should be replaced by a summation from s = 3 to
s = k.) It can be checked that H is self-adjoint and
commutes with Q− and Q+. As a conclusion, the
doublet (H,Q)k associated toWk satisfies Eq. (1) and
thus defines a k-fractional supersymmetric quantum-
mechanical system.

4. CONNECTION BETWEEN FRACTIONAL
SUPERSYMMETRY AND ORDINARY

SUPERSYMMETRY

In order to establish a connection between frac-
tional supersymmetric quantum mechanics of order
k and ordinary supersymmetric quantum mechanics
(corresponding to k = 2), it is necessary to construct
subsystems from the doublet (H,Q)k that correspond
to ordinary supersymmetric quantum-mechanical
systems. This may be achieved in the following
way [11]. The general HamiltonianH can be rewritten
as

H =
k∑
s=1

HsΠs,

where
Hs ≡ Hs(N) = (k − 1)X+X−

−
k−1∑
t=2

(t− 1)ft(N − s+ t)

+ (k − 1)
k−1∑
t=s

ft(N − s+ t).
5
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It can be shown that the operators Hk ≡ H0,
Hk−1, . . . ,H1 turn out to be isospectral operators. It
is possible to factorizeHs as [11]

Hs = X(s)+X(s)−.

Let us now define (i) the two (supercharge) operators

q(s)− = X(s)−Πs, q(s)+ = X(s)+Πs−1

and (ii) the (Hamiltonian) operator

h(s) = X(s)−X(s)+Πs−1 +X(s)+X(s)−Πs.

It is then a simple matter of calculation to prove that
h(s) is self-adjoint and that

q(s)+ = q(s)†−, q(s)2± = 0,
h(s) = {q(s)−, q(s)+}, [h(s), q(s)±] = 0.

Consequently, the doublet (h(s), q(s))2, with q(s) ≡
q(s)−, satisfies Eq. (1) with k = 2 and thus defines an
ordinary supersymmetric quantum-mechanical sys-
tem (corresponding to k = 2).
The Hamiltonian h(s) is amenable to a form more

appropriate for discussing the link between ordinary
supersymmetry and fractional supersymmetry. In-
deed, we can show that

X(s)−X(s)+ = Hs(N + 1).

Then, we can obtain the important relation

h(s) = Hs−1Πs−1 +HsΠs

to be compared with the expansion of H in terms of
supersymmetric partnersHs.
As a result, the system (H,Q)k , corresponding

to k-fractional supersymmetry, can be described in
terms of k − 1 subsystems (h(s), q(s))2, correspond-
ing to ordinary supersymmetry. TheHamiltonian h(s)
is given as a sum involving the supersymmetric part-
ners Hs−1 and Hs. Since the supercharges q(s)±
commute with the Hamiltonian h(s), it follows that

Hs−1X(s)− = X(s)−Hs,

HsX(s)+ = X(s)+Hs−1.

As a consequence, the operators X(s)+ and X(s)−
make it possible to pass from the spectrum of Hs−1

and Hs to the one of Hs and Hs−1, respectively. This
result is quite familiar for ordinary supersymmetric
quantum mechanics (corresponding to s = 2).
For k = 2, the operator h(1) is nothing but the to-

tal Hamiltonian H corresponding to ordinary super-
symmetric quantum mechanics. For arbitrary k, the
other operators h(s) are simple replicas (except for the
ground state of h(s)) of h(1). In this sense, fractional
PHY
supersymmetric quantum mechanics of order k can
be considered as a set of k − 1 replicas of ordinary
supersymmetric quantum mechanics corresponding
to k = 2 and typically described by (h(s), q(s))2. As
a further argument, it is to be emphasized that

H = q(2)−q(2)+ +
k∑
s=2

q(s)+q(s)−,

which can be identified with h(2) for k = 2.

5. CONCLUSIONS

Starting from a Zk-graded algebra Wk charac-
terized by a set {fs : s = 0, 1, . . . , k − 1} of struc-
ture functions, it was shown how to associate a
k-fractional supersymmetric quantum-mechanical
system (H,Q)k characterized by an Hamiltonian H
and a supercharge Q.
The Hamiltonian H for the system (H,Q)k was

developed as a superposition of k isospectral super-
symmetric partners Hk,Hk−1, . . . ,H1. It was proved
that the system (H,Q)k can be described in terms
of k − 1 subsystems (h(s), q(s))2 which are ordinary
supersymmetric quantum-mechanical systems.
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The problem of the verification of the asymptotic
Bethe ansatz method [1] still remains unsolved more
than 30 years after its first presentation. The method
consists in using only scattering data for the descrip-
tion of integrable many-body systems in the thermo-
dynamic limit. It is well known, that if the system
is integrable in the Yang–Baxter sense, the many-
body scattering matrix is expressed via only a two-
particle phase shift, but the real structure of the wave
functions might be rather complicated if the inter-
action is nonlocal. In particular, when the two-body
potential is of the form sin−2(πx/L), where L is the
size of the system, or 1/ sinh2(x), the wave functions
differ drastically from the linear combinations of the
plane waves inherent for the Bethe ansatz. Despite
the fact that the exact results in the thermodynamic
limit available for sin−2(πx/L) case are in complete
coincidence with the asymptotic Bethe ansatz, the
reason for this coincidence is still quite mysterious
and it cannot be used as an argument to validate
the method for the case of 1/ sinh2 x pair potential,
which is more complicated from the mathematical
viewpoint.

Due to the lack of a general approach to the
problem, any particular exact results confirming the
asymptotic Bethe ansatz are of interest. Some years
ago, Sutherland [2] proposed one example of a very
good numerical coincidence of the asymptotic results
with exact ones. It concerns the densities of the
distribution of the eigenvalues of the L matrix from
the Lax pair [3] for the systems of particles interacting
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via 1/ sinh2(x) potential,
Ljk = pjδjk + (1 − δjk)iλ coth(xj − xk),

where pj = −i∂/∂xj obey the canonical commu-
tation relations [xj , pk] = iδjk. The corresponding
Hamilton operator reads

H =
1
2

N∑
j=1

p2
j + λ2

∑
j<k

1
sinh2(xj − xk)

.

Asymptotically, if x1 � x2 � · · · � xN , the particles
have the momenta k1 < k2 < · · · < kN and the ele-
ments of the Lax matrix become c numbers:

(Las)jk = kjδjk + iλsgn(j − k). (1)

The asymptotic Bethe ansatz gives the asymptotic
momenta as solutions to the equations

Lkj = 2πIj +
N∑
l �= j

τ(kj − kl), (2)

where τ(k) is the two-body phase shift, L is the total
size of a system, and {Ij} are quantum numbers. In
the classical limit λ → ∞, for the ground state, (2)
becomes an integral equation for largeN and L [4]:

2a =

A∫
−A

dx′γ(x− x′)ρ(x′), (3)

where
γ(x) = ln(1 + x−2),

ρ(x) is the density of the momentum distribution
in the ground state, and a = L/N is the average
nearest-neighbor spacing (or the lattice constant).
The kernel of this integral equation is symmetric and
positive definite. Thus, it has unique solution at given
A [5]. The normalization condition

A∫
−A

ρ(x′)dx′ = 1 (4)
c© 2005 Pleiades Publishing, Inc.
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defines A as a function of a. The distribution of the
eigenvalues of the Lax matrix can be connected with
the distribution of the momenta [2]. Indeed, it follows
from (1) that the equation for the eigenvalues

det(Las − Iz)

=
1
2


 N∏
j=1

(kj − z + iλ) +
N∏
j=1

(kj − z − iλ)




=
N∏
s=1

(ωs − z) = 0

can be written as

(s+ 1/2)π =
1
2i

N∑
j=1

ln
[
kj − ωs + iλ

kj − ωs − iλ

]

=
N∑
j=1

arctan
[

λ

kj − ωs

]
.

A discontinuous branch of arctan with values in [0, π]
is used here. In the thermodynamic limit, the eigen-
values {ω} are distributed with the density σ(ω):
Nσ(ω)dω gives the number of {ω} in the interval
(ω, ω + dω). Hence,

ds

dω
= Nσ(ω).

Differentiating the above relation with respect to ω
and taking classical limit gives

σ(ω) =
1
2π

A∫
−A

dxρ(x)
(x− ω)2 + 1/4

(5)

after recalling of variables [2]. One can see that, in the
classical limit, the density σ(ω) can be calculated via
the solution of the integral equation of the asymptotic
Bethe ansatz method (3).

On the other hand, in this limit, the particles take
their equilibrium positions at xj = ja in the ground
state with kj = 0. The form of the Lax matrix be-
comes simpler,

Ljk = (1 − δjk)iλcoth[a(j − k)], (6)

and the distribution of its eigenvalues can be cal-
culated directly since (6) is of the Toeplitz form. Its
eigenvectors are plane waves, and after imposing a
periodic boundary condition (i.e., regularization of
the determinant) and taking thermodynamic limit
N → ∞, one could introduce the variable φ = 2πs/N
defining the continuous distribution

ω(φ) = ωs = ωNφ/2π.
PH
The result can be written upon rescaling ω → 2λω in
the form [2]

ω(φ) = − θ′1(φ/2)
2θ1(φ/2)

, (7)

where θ1(x) is the standard theta function

θ1(x) = 2
∞∑
n=0

(−1)nq(n+1/2)2 sin(2n + 1)x

with the nome q = e−a. The density of the eigenvalues
is given now by the formula

σ(ω) =
1
2π

dφ

dω
, (8)

where the derivative is calculated through the relation

dω

dφ
= −1

4

[
θ′1(φ/2)
θ1(φ/2)

]′
(9)

= −K2

π2

[
K − E

K
− 1

sn2(Kφ/π)

]
.

Thus, one gets two representations for the density of
the eigenvalues of the classical Lax matrix, one exact
[formulas (7)–(9)] and one obtained by using the
asymptotic Bethe ansatz method [formulas (3)–(5)].
If it is true, they should coincide. The main difficulty
in verifying this fact is that there is no chance to
find an analytic solution to the integral equation (3).
In [2], Sutherland found good coincidence of both
expressions by solving this equation numerically with
high accuracy. However, an analytic solution of the
problem has not been found.

In what follows, we propose a construction which
uses analytic properties of the elliptic functions and
provides the desired proof. Let us introduce the no-
tation χr = Reχ, χi = Imχ for any complex χ. Con-
sider at first the problem of explicit construction of the
inverse function φ(ω) such that

φ(ω(λ)) ≡ λ.

It is clear that it is no longer holomorphic in the
ω plane. Indeed, on the lines φ = φr ± ia one finds
ω(φ) = ωr ± i/2 due to the quasiperiodicity property

ω(φ+ 2ia) = ω(φ) + i, ω(φ+ 2π) = ω(φ).

One has also

ωr(±ia) = ωr(2π ± ia) = 0.

The derivative dω/dφ is double periodic with periods
(2π, 2ia) and has a double pole in the fundamental
domain

0 ≤ Reφ < 2π, −a ≤ Imφ < a.

Therefore, it must have just two zeros giving two
extremal points of ω(φ): one minimum of ωr located
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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at φmin + ia and onemaximum located at 2π− φmin +
ia. Both of these extrema are considered with respect
to line Imφ = a, and φmin ∈ (0, 2π). Let us denote
Ω0 = ωr(2π − φmin + ia). Then it is evident that the
function φ(ω) should have two cuts in the ω plane
represented by the segments −Ω0 ≤ ωr ≤ Ω0, ωi =
1/2 and−Ω0 ≤ ωr ≤ Ω0, ωi = −1/2. Following Hal-
dane [6], let us express φ as a Cauchy integral over
the contour along the image of the boundary of the
fundamental domain and use the symmetry properties
of ω(φ). We skip these rather long but in fact simple
considerations. Only the integral over the finite inter-
val remains, and after integrating by parts, we obtain

φ(ω) =

Ω0∫
−Ω0

dxρ0(x)
1
i

ln
ω − x− i/2
ω − x+ i/2

. (10)

The still unknown function ρ0(x) is normalized due
to the properties of the function φ, ω(φ+ 2π) = ω(φ),
and the integral representation (10),

Ω0∫
−Ω0

ρ0(x)dx = 1. (11)

On the other hand, we know that φi(ω ± i/2) = ±ia
for all real ω in the interval−Ω0 ≤ ω ≤ Ω0. This gives
an integral equation for the function ρ0(x) entering
(10) of the form quite similar to (3):

Imφ(ω + i/2) = a (12)

=
1
2

Ω0∫
−Ω0

dxρ0(x) ln(1 + (ω − x)−2).

Note also that the same equation can be obtained with
the use of the quasiperiodicity property ω(φ+ 2ia) =
ω(φ) + i and the representation (10).
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
Equations (3) and (12) become completely iden-
tical if one sets A = Ω0; i.e., the meaning of the
parameter A is that it defines the maximal value of
ωr(φ) on the segment 0 ≤ φr ≤ 2π, φi = ia due to
the uniqueness of the solution to (3) mentioned above.

It is straightforward now to verify by differentiating
(10) with respect to ω that the derivative dω/dφ has
the integral representation

(
dω

dφ

)−1

=

Ω0∫
−Ω0

dxρ0(x)
(ω − x)2 + 1/4

. (13)

Comparing both sets of formulas (3)–(5) and (11)–
(13), one can easily see that the expressions for the
spectral density of the Lax matrix in the classical
limit coincide after identification ρ(x) = ρ0(x). This
completes the proof.
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1. INTRODUCTION

Recently, superconformal field theories in various
dimensions have been attracting more interest, in
particular, due to their duality to AdS supergravities
(cf. [1–58] and references therein). Until recently,
only those for D ≤ 6 were studied since in these cases
the relevant superconformal algebras satisfy [59] the
Haag–Lopuszanski–Sohnius theorem [60]. Thus,
such a classification was known only for the D = 4
superconformal algebras su(2, 2/N) [61] (for N =
1), [62–65] (for arbitrary N ). More recently, the
classification for D = 3 (for even N ), D = 5, and D =
6 (for N = 1, 2) was given in [66] (some results are
conjectural), and then the D = 6 case (for arbitrary
N ) was finalized in [67].

On the other hand, the applications in string the-
ory require the knowledge of the unitary irreducible
representations (UIRs) of the conformal superalge-
bras for D > 6. The most prominent role is played
by the superalgebras osp(1|2n) (cf. their applications
in, e.g., [68–77]). Initially, the superalgebra osp(1|32)
was put forward for D = 10 [68]. Later, it was real-
ized that osp(1|2n) would fit any dimension, though
they are minimal only for D = 3, 9, 10, 11 (for n =
2, 16, 16, 32, respectively) [74]. In all cases, we need
to find first the UIRs of osp(1|2n,R). This can be
done for general n. Thus, in this paper, we treat the
UIRs of osp(1|2n,R) only, while the implications for
conformal supersymmetry for D = 9, 10, 11 shall be
treated in a follow-up paper.

∗The text was submitted by the authors in English.
1)School of Informatics, University of Northumbria,

Newcastle-upon-Tyne, UK; permanent address: Institute of
Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, Sofia, Bulgaria; e-mail: dobrev@inrne.bas.bg
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2. REPRESENTATIONS
OF THE SUPERALGEBRAS osp(1|2n)

AND osp(1|2n,R)

2.1. The Setting

Our basic references for Lie superalgebras are [78,
79]. The conformal superalgebras in D = 9, 10, 11
are G = osp(1|2n,R), n = 16, 16, 32, respectively
(cf. [68, 74]). The even subalgebra of osp(1|2n,R)
is the algebra sp(2n,R) with maximal compact
subalgebra K = u(n) ∼= su(n) ⊕ u(1). The alge-
bra sp(2n,R) contains the conformal algebra C =
so(D, 2), while K contains the maximal compact
subalgebra so(D) ⊕ so(2) of C, so(2) being identified
with the u(1) factor of K.

We label the relevant representations of G by the
signature

χ = [d; a1, . . . , an−1], (1)

where d is the conformal weight, and a1, . . . , an−1 are
nonnegative integers which are Dynkin labels of the
finite-dimensional UIRs of the subalgebra su(n) (the
simple part of K).

Our aim is to classify the UIRs of G following
the methods used for the D = 4, 6 conformal super-
algebras (cf. [62–65], [67], respectively). The main
tool is an adaptation of the Shapovalov form on the
Verma modules V χ over the complexification GC =
osp(1|2n) of G.

2.2. Verma Modules

To introduce Verma modules, we use the standard
triangular decomposition:

GC = G+ ⊕H⊕ G−, (2)

where G+ and G− are the subalgebras corresponding
to the positive and negative roots, and H denotes the
Cartan subalgebra.
c© 2005 Pleiades Publishing, Inc.



POSITIVE ENERGY UNITARY IRREDUCIBLE REPRESENTATIONS 1661
We consider lowest weight Verma modules, so
that V Λ ∼= U(G+)⊗ v0, where U(G+) is the universal
enveloping algebra of G+, and v0 is a lowest weight
vector v0 such that

Zv0 = 0, Z ∈ G−, (3)

Hv0 = Λ(H)v0, H ∈ H.

Further, for simplicity, we omit the sign ⊗; i.e., we
write pv0 ∈ V Λ with p ∈ U(G+).

The lowest weight Λ is characterized by its values
on the simple roots of the superalgebra. In the next
subsection, we describe the root system.

2.3. Root Systems

We recall some facts about GC = osp(1|2n) (de-
noted B(0, n) in [78]). Their root systems are given in
terms of δ1, . . . , δn, (δi, δj) = δij , i, j = 1, . . . , n. The
even and odd roots systems are [78]

∆0̄ = {±δi ± δj , 1 ≤ i < j ≤ n,±2δi, 1 ≤ i ≤ n},
(4)

∆1̄ = {±δi, 1 ≤ i ≤ n}
(we recall that the signs ± are not correlated). We
shall use the following distinguished simple root sys-
tem [78]:

Π = {δ1 − δ2, . . . , δn−1 − δn, δn}, (5)

or introducing standard notation for the simple roots:

Π = {α1, . . . , αn}, (6)

αj = δj − δj+1, j = 1, . . . , n− 1, αn = δn.

The root αn = δn is odd, the other simple roots are
even. The Dynkin diagram is as follows:

◦
1
—— · · ·—— ◦

n−1
=⇒ •

n
(7)

The black dot is used to signify that the simple odd
root is not nilpotent, otherwise a gray dot would
be used [78]. In fact, the superalgebras B(0, n) =
osp(1|2n) have no nilpotent generators, unlike all
other types of basic classical Lie superalgebras [78].

The positive root system corresponding to Π is

∆+
0̄

= {δi ± δj , 1 ≤ i < j ≤ n, 2δi, 1 ≤ i ≤ n}, (8)

∆+
1̄

= {δi, 1 ≤ i ≤ n}.
We record how the elementary functionals are ex-
pressed through the simple roots:

δk = αk + . . . + αn. (9)

The even root system ∆0̄ is the root system of the
rank-n complex simple Lie algebra sp(2n), with ∆+

0̄
being its positive roots. The simple roots are

Π0 = {δ1 − δ2, . . . , δn−1 − δn, 2δn} (10)
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= {α0
1, . . . , α

0
n},

α0
j = δj − δj+1, j = 1, . . . , n− 1, α0

n = 2δn.

The Dynkin diagram is as follows:

◦
1
—— · · ·—— ◦

n−1
⇐= ◦

n
(11)

The superalgebra G = osp(1|2n,R) is a split real
form of osp(1|2n) and has the same root system.

2.4. Lowest Weight through the Signature

Since we use a Dynkin labeling, we have the fol-
lowing relation with the signature χ from (1):

(Λ, α∨
k ) =

{
−ak, k < n,

d̃, k = n,
(12)

where α∨
k ≡ 2αk/(αk, αk), and d̃ differs from the con-

formal weight d as explained below. The minus signs
in the first row are related to the fact that we work
with lowest weight Verma modules (instead of the
highest weight modules used in [79]) and to Verma
module reducibility with respect to the roots αk (this
is explained in detail in [64]). The value of d̃ is a matter
of normalization so as to correspond to some known
cases. Thus, our choice is

d̃ = 2d + a1 + . . . + an−1. (13)

Having in hand the values of Λ on the basis, we
can recover them for any element of H∗. In particular,
for the values on the elementary functionals, we have
using (9), (12), and (13)

(Λ, δj) = d +
1
2
(a1 + . . . + aj−1 (14)

− aj − . . . − an−1).

Using (12) and (13), one can easily write Λ = Λ(χ)
as a linear combination of the simple roots or of the
elementary functionals δj , but this is not necessary
in what follows. We shall need only (Λ, β∨) for all
positive roots β and from (14) we have

(Λ, (δi − δj)∨) = (Λ, δi − δj) (15)

= −ai − . . . − aj−1,

(Λ, (δi + δj)∨) = (Λ, δi + δj) = 2d
+ a1 + . . . + ai−1 − aj − . . .− an−1,

(Λ, δ∨i ) = (Λ, 2δi) = 2d
+ a1 + . . . + ai−1 − ai − . . . − an−1,

(Λ, (2δi)∨) = (Λ, δi) = d

+
1
2
(a1 + . . . + ai−1 − ai − . . .− an−1).
05
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2.5. Reducibility of Verma Modules

Having established the relation between χ and Λ,
we turn our attention to the question of reducibility.
A Verma module V Λ is reducible with respect to the
positive root β if the following holds [79]:

(ρ− Λ, β∨) = mβ, β ∈ ∆+, mβ ∈ N, (16)

where ρ ∈ H∗ is the very important element in repre-
sentation theory given by the difference of the half-
sums ρ0̄ and ρ1̄ of the even and odd, respectively,
positive roots [cf. (8)]:

ρ = ρ0̄ − ρ1̄ =
(
n− 1

2

)
δ1 (17)

+
(
n− 3

2

)
δ2 + . . . +

3
2
δn−1 +

1
2
δn,

ρ0̄ = nδ1 + (n− 1)δ2 + . . . + 2δn−1 + δn,

ρ1̄ =
1
2
(δ1 + . . . + δn).

To make (16) explicit, we need first the values of ρ
on the positive odd roots:

(ρ, δi) = n− i +
1
2
. (18)

Then for (ρ, β∨) we have

(ρ, (δi − δj)∨) = j − i, (19)

(ρ, (δi + δj)∨) = 2n − i− j + 1,

(ρ, δ∨i ) = 2n− 2i + 1,

(ρ, (2δi)∨) = n− i +
1
2
.

Naturally, the value of ρ on the simple roots is 1:
(ρ, α∨

i ) = 1, i = 1, . . . , n.
Consecutively, we find that the Verma module

V Λ(χ) is reducible if one of the following relations
holds [following the order of (15) and (19)]:

N � m−
ij = j − i + ai + . . . + aj−1, (20a)

N � m+
ij = 2n− i− j + 1 + aj + . . . (20b)

+ an−1 − a1 − . . .− ai−1 − 2d,
N � mi = 2n − 2i + 1 + ai + . . . (20c)

+ an−1 − a1 + . . .− ai−1 − 2d,

N � mii = n− i +
1
2
(1 + ai + . . . (20d)

+ an−1 − a1 + . . .− ai−1) − d.

Note that mi = 2mii; thus, whenever (20d) is fulfilled,
(20c) is also fulfilled.

If a condition from (20) is fulfilled, then V Λ con-
tains a submodule which is a Verma module V Λ′

with
shifted weight given by the pair m,β: Λ′ = Λ + mβ.
PH
The embedding of V Λ′
in V Λ is provided by mapping

the lowest weight vector v′0 of V Λ′
to the singular

vector vm,βs in V Λ which is completely determined by
the conditions

Xvm,βs = 0, X ∈ G−, (21)

Hvm,βs = Λ′(H)v0, H ∈ H, Λ′ = Λ + mβ.

Explicitly, vm,βs is given by a polynomial in the positive
root generators:

vm,βs = Pm,βv0, Pm,β ∈ U(G+). (22)

Thus, the submodule of V Λ which is isomorphic to
V Λ′

is given by U(G+)Pm,βv0.
Here, we should note that we may eliminate the

reducibilities and embeddings related to the roots
2δi. Indeed, let (20d) hold; then, the corresponding
singular vector vmii,2δi

s has the properties prescribed
by (21) with Λ′ = Λ+mii× 2δi. But as we mentioned
above, in this situation, (20c) also holds and the cor-
responding singular vector vmi,δi

s has the properties
prescribed by (21) with Λ′′ = Λ +miδi. But due to the
fact that mi = 2mii, it is clear that Λ′′ = Λ′, which
means that the singular vectors vmii,2δi

s and vmi,δi
s

coincide (up to a nonzero multiplicative constant).
On the other hand, if (20c) holds with mi being an odd
number, then (20d) does not hold (since mii = mi/2
is not integer).

Further, we notice that all reducibility conditions
in (20a) are fulfilled. In particular, for the simple roots
from those conditions, (20a) is fulfilled with β → αi =
δi − δi+1, i = 1, . . . , n − 1, and m−

i ≡ m−
i,i+1 = 1 +

ai. The corresponding submodules IΛ
i = U(G+)vis,

where Λi = Λ + m−
i αi and vis = (X+

i )1+aiv0, where
X+
i are the root vectors of these simple roots. These

submodules generate an invariant submodule which
we denote by IΛ

c . Since these submodules are non-
trivial for all our signatures, instead of V Λ we shall
consider the factor-modules:

FΛ = V Λ/IΛ
c . (23)

We shall denote the lowest weight vector of FΛ by

|̃Λ〉 and the singular vectors above become null con-
ditions in FΛ :

(X+
i )1+ai |̃Λ〉 = 0, i = 1, . . . , n− 1. (24)

If the Verma module V Λ is not reducible with
respect to the other roots, i.e., (20b), (20c), and (20d)
are not fulfilled, then FΛ is irreducible and is isomor-
phic to the irrep LΛ with this weight.

Other situations shall be discussed below in the
context of unitarity.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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2.6. Realization of osp(1|2n) and osp(1|2n,R)

The superalgebras osp(m|2n) = osp(m|2n)0̄ +
osp(m|2n)1̄ are defined as follows [78]:

osp(m|2n)s = {X ∈ gl(m/2n; C)s : XW

+ is W tX = 0}, s = 0̄, 1̄,

where W is a matrix of order m + 2n:

W =




iIm 0 0

0 0 In

0 −In 0


 .

The even part osp(m|2n)0̄ consists of matrices X
such that

X =




S 0 0

0 B C

0 D −tB


 , (25)

tS = −S, tC = C, tD = D.

In our case, m = 1 and S = 0. The Cartan subalgebra
H consists of diagonal matrices H such that

H =




0 0 0

0 B 0

0 0 −B


 .

We take the following basis for the Cartan subalge-
bra:

Hi =




0 0 0

0 Bi 0

0 0 −Bi


 , i < n, (26)

Hn =




0 0 0

0 In 0

0 0 −In


 ,

where

Bi = diag(0, . . . , 0, 1,−1, 0, . . . , 0)

is the first nonzero entry being on the ith place. This
basis shall be used also for the real form osp(1|2n,R)
and is chosen to be consistent with the fact that the
even subalgebra sp(2n,R) of the latter has as maxi-
mal noncompact subalgebra the algebra sl(n,R)⊕R.
Via the Weyl unitary trick, this related to the structure
of sp(2n,R) as a Hermitian symmetric space with
maximal compact subalgebra u(n) ∼= su(n) ⊕ u(1).
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The root vectors of the roots δi − δj (i �= j), δi + δj
(i ≤ j), −(δi + δj) (i ≤ j), respectively, are denoted
Xij , X+

ij , X−
ij , respectively. The latter are given by

matrices of the type (25) with S = 0, given (up to
multiplicative normalization) by B = Eij , C = Eij +
Eji, D = Eij + Eji, respectively, where Eij is n× n
matrix which has only one nonzero entry equal to 1
on the intersection of the ith row and jth column.
Explicitly including some choice of normalization,
this is

Xij =




0 0 0

0 Eij 0

0 0 −Eji


 , i �= j, (27)

X+
ij =




0 0 0

0 0 −Eij − Eji

0 0 0


 , i < j,

X+
ii =




0 0 0

0 0 −Eii

0 0 0


 ,

X−
ij =




0 0 0

0 0 0

0 Eij + Eji 0


 , i < j,

X−
ii =




0 0 0

0 0 0

0 Eii 0


 .

The odd part osp(m|2n)1̄ consists of matrices X
such that

X =




0 ξ −η

tη 0 0
tξ 0 0


 .

The root vectors Y +
i , Y −

i of the roots δi,−δi corre-
spond to η, ξ, respectively, with only a nonzero ith
entry. Explicitly, this is

Y +
i =




0 0 −E1i

Ei1 0 0

0 0 0


 , (28)
05
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Y −
i =




0 E1i 0

0 0 0

Ei1 0 0


 .

In the calculations, we need all commutators of the
kind [Xβ,X−β ] = Hβ, β ∈ ∆+

0̄
. Explicitly, we have

[Xij ,Xji] = Hij = Hi + Hi+1 + . . . + Hj−1, (29a)

1 ≤ i < j ≤ n,

[Y +
i , Y −

i ]+ = H ′
i ≡




0 0 0

0 Eii 0

0 0 −Eii


 , (29b)

1 ≤ i ≤ n,

[X+
ij ,X

−
ij ] = H ′

ij = −H ′
i −H ′

j, (29c)

1 ≤ i < j ≤ n,

[X+
ii ,X

−
ii ] = −H ′

i, 1 ≤ i ≤ n. (29d)

The minus sign in (29d) is consistent with the rela-
tions

1
2
[Y ±
i , Y ±

i ]+ = (Y ±
i )2 = X±

ii . (30)

We note also the following relations:

[Y +
i , Y −

j ]
+

= Xij, i �= j, (31)

[Y ±
i , Y ±

j ]
+

= X±
ij , i �= j,

Hn = H ′
1 + . . . + H ′

n.

We shall also use the abstract defining relations of
osp(1|2n) through the Chevalley basis. Let Ĥi, i =
1, . . . , n, be the basis of the Cartan subalgebra H as-
sociated with the simple roots, and X±

i , i = 1, . . . , n,
be the simple root vectors (the Chevalley generators).
The connection with the basis above is

Ĥi = Hi, i < n, Ĥn = H ′
n, (32)

X+
i = X+

i,i+1, i < n, X+
n = Y +

n .

Let A = (aij) be the Cartan matrix [78]:

A = (aij) (33)

=




2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 2 −1 0

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −2 2




.

PH
We shall also use the decomposition A = AdAs,
where Ad = diag (1, . . . , 1, 2) and As is a symmetric
matrix:

As =
(
asij
)

(34)

=




2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 2 −1 0

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −1 1




.

Then the defining relations of osp(1|2n) are

[Ĥi, Ĥj ] = 0, [Ĥi,X
±
j ] = ±asijX

±
j , (35)

[X+
i ,X−

j ] = δijĤi,

(AdX±
j )nj,k(X±

k ) = 0, j �= k, nj,k = 1 − ajk,

where in (35) one uses the supercommutator

(AdX±
j )(X±

k ) = [X±
j ,X±

k ] (36)

≡ X±
j X±

k − (−1)degX±
j degX±

k X±
k X±

j .

2.7. Shapovalov Form and Unitarity

The Shapovalov form is a bilinear C–valued form
on U(G+) [80], which we extend in the obvious way
to Verma modules (cf., e.g., [65]). We also need the
involutive antiautomorphism ω of U(G) which will
provide the real form we are interested in. Since this
is the split real form osp(1|2n,R), we use

ω(Xβ) = X−β, ω(H) = H, (37)

where Xβ is the root vector corresponding to the root
β, H ∈ H.

Thus, an adaptation of the Shapovalov form suit-
able for our purposes is defined as follows:

(u, u′) = (pv0, p
′v0) (38)

≡ (v0, ω(p)p′v0) = (ω(p′)pv0, v0),

u = pv0, u′ = p′v0, p, p′ ∈ U(G+), u, u′ ∈ V Λ,

supplemented by the normalization condition
(v0, v0) = 1. The norms squared of the states will be
denoted by

||u||2 ≡ (u, u). (39)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Now, we need to introduce a PBW basis of U(G+).
We use the so-called normal ordering; namely, if we
have the relation

β = β′ + β′′, β, β′, β′′ ∈ ∆+,

then the corresponding root vectors are ordered in the
PBW basis as follows:

. . . (X+
β′)k

′
. . . (X+

β )k . . . (X+
β′′)k

′′
. . . , (40)

k, k′, k′′ ∈ Z+.

We also have to take into account relation (30)
between the root vectors corresponding to the roots
δi and 2δi. Because of this relation and consistently
with (40), the generators X+

ii , i = 1, . . . , n, are not
present in the PBW basis. On the other hand, the
PBW basis of the even subalgebra of U(G+) will differ
from the above only in the fact that the powers of X+

i ,
i = 1, . . . , n, are only even representing powers of the
even generators X+

ii , i = 1, . . . , n.

3. UNITARITY

3.1. Calculation of Some Norms

In this subsection, we show how to use the
form (38) to calculate the norms of the states. We
shall use the isomorphism between the Cartan subal-
gebra H and its dualH∗. This is given by the following
correspondence: to every element β ∈ H∗, there is
unique element Hβ ∈ H such that

µ(Hβ) = (µ, β∨) (41)

for every µ ∈ H∗, µ �= 0. Applying this to the positive
roots, we have the following: to β = δi− δj , δi, δi + δj ,
respectively, correspond Hβ = Hij,H

′
i,H

′
i + H ′

j .

We give now explicitly the norms of the one-
particle states, introducing also notation for future
use:

x−
ij ≡ ||Xijv0||2 = (Xijv0,Xijv0) (42)

= (v0,XjiXijv0) = (v0, (XijXji −Hij)v0)

= −Λ(Hij) = −(Λ, (δi − δj)∨) = ai + . . . + aj−1,

i < j,

x+
ij ≡ ||X+

ij v0||2 = (X+
ij v0,X

+
ij v0)

= (v0,X
−
ijX

+
ij v0) = (v0, (X+

ijX
−
ji −H ′

ij)v0)

= −Λ(H ′
ij) = Λ(H ′

i + H ′
j) = (Λ, (δi + δj)∨)

= 2d + a1 + . . . + ai−1 − aj − . . .− an−1,

xi ≡ ||X+
i v0||2 = (X+

i v0,X
+
i v0)

= (v0,X
−
i X+

i v0) = (v0, (−X+
i X−

i + H ′
i)v0)

= Λ(H ′
i) = (Λ, δ∨i ) = 2d + a1 + . . . + ai−1

− ai − . . .− an−1.
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Positivity of all these norms gives the following
necessary conditions for unitarity:

ai ≥ 0, i = 1, . . . , n− 1, (43)

d ≥ 1
2
(a1 + . . . + an−1).

In fact, the boundary values are possible due to factor-
ing out of the corresponding null states when passing
from the Verma module to the unitary irreducible
factor module.

Further, we shall discuss only norms which involve
the conformal weight since the others are related to
unitarity of the irrep restricted to the maximal simple
compact subalgebra su(n). The norms that we are
going to consider can be written in terms of factors
(d− . . .), and the leading term in d has a positive
coefficient. Thus, for d large enough, all norms will be
positive. When d is decreasing, there is a critical point
at which one (or more) norm(s) will become zero. This
critical point (called the “first reduction point” in [61])
can be read off from the reducibility conditions, since
at that point the Verma module is reducible (and it
is the corresponding submodule that has zero norm
states).

The maximal d coming from the different possibil-
ities in (20b) are obtained for m+

ij = 1 and they also
denote the corresponding root:

di,j ≡ n +
1
2
(aj + . . . + an−1 − a1 − . . . (44)

− ai−1 − i− j),

the corresponding root being δi + δj . The maximal d
coming from the different possibilities in (20c) and
(20d), respectively, are obtained for mi = 1 and mii =
1, respectively, and they are

di ≡ n− i +
1
2
(ai + . . . + an−1 (45)

− a1 − . . .− ai−1),

di,i = di −
1
2
,

the corresponding roots being δi and 2δj , respectively.
These are some orderings between these maximal
reduction points:

d1 > d2 > . . . > dn, (46)

di,i+1 > di,i+2 > . . . > di,n,

d1,j > d2,j > . . . > dj−1,j,

di > dj,k > d�, i ≤ j < k ≤ 0.

Obviously, the first reduction point is

d1 = n− 1 +
1
2
(a1 + . . . + an−1). (47)
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3.2. Main Result

Theorem. All positive energy unitary irre-
ducible representations of the superalgebras
osp(1|2n,R) characterized by the signature χ in
(1) are obtained for real d and are given in the
following list:

d ≥ d1 = n− 1 +
1
2
(a1 + . . . + an−1), (48)

no restrictions on aj ;

d = d1,2 = n− 2 +
1
2
(a2 + . . . + an−1 + 1),

a1 = 0;

. . .

d = dj−1,j = n− j +
1
2
(aj + . . . + an−1 + 1),

a1 = . . . = aj−1 = 0;

. . .

d = dn−1,n =
1
2
, a1 = . . . = an−1 = 0.

Proof.
Necessity.
We give examples of states with negative norm in

the excluded intervals d < d1 (cf. [81]).
Sufficiency.
The statement of the theorem for d > d1 is clear

from the general considerations above. For d = d1, we
have the first zero-norm state which is naturally given
by the corresponding singular vector v1,δ1 = P1,δ1v0.
In fact, all states of the embedded submodule V Λ+δ1
PH
built on v1,δ1 have zero norms. Due to the above
singular vector, we have the following additional null
condition in FΛ:

P1,δ1 |Λ̃〉 = 0. (49)

The above conditions factorize the submodule built
on v1,δ1 . There are no other vectors with zero norm
at d = d1 since, by a general result [79], the elemen-
tary embeddings between Verma modules are one-
dimensional. Thus, FΛ is the UIR LΛ = FΛ.

Further, we consider the remaining discrete points
of unitarity for d < d1, i.e., d = di,i+1, i = 1, . . . , n −
1. The corresponding roots are δi + δi+1 = αi +
2αi+1 + . . . + 2αn. The corresponding singular vec-
tors v1,δi+δi+1 = P1,δi+δi+1v0.

Now, fix i, where i ∈ {1, . . . , n − 1}. All states
of the embedded submodule V Λ+δi+δi+1 built on
v1,δi+δi+1 have zero norms for d = di,i+1. Due to
the above singular vector, we have the following
additional null condition in FΛ:

P1,δi+δi+1 |Λ̃〉 = 0, d = di,i+1. (50)
At this point, the states built on the vector v1,δ1 and
on the vectors v1,δk+δk+1 for k < i (all of these are not
singular vectors at d = di,i+1) have a negative norm
except when a1 = . . . = ai = 0. For this statement,
we may use the explicit form of these vectors. This
explicit form is the same as the singular vectors of the
same weight for the Lie algebra Bn = so(2n+ 1). For
v1,δ1 , this can be read off from [82] (in fact, there it is
for the more general situation of the quantum group
Uq(Bn)):
v1,δ1 =
1∑

k1=0

. . .

1∑
kn−1=0

bk1...kn−1(X
+
1 )1−k1 . . . (X+

n−1)
1−kn−1X+

n (X+
n−1)

kn−1 . . . (X+
1 )k1v0 ≡ P1,δ1v0, (51a)

bk1...kn−1 = (−1)k1+...+kn−1b0
(ρ− Λ)(H1)

(ρ− Λ)(H1) − k1
. . .

(ρ− Λ)(Hn−1)
(ρ− Λ)(Hn−1) − kn−1

(51b)

= (−1)k1+...+kn−1b0
1 + a1

1 + a1 − k1
. . .

n− 1 + a1 + . . . + an−1

n− 1 + a1 + . . . + an−1 − kn−1
(51c)

= (−1)k1+...+kn−1(a1 + k)
2 + a1 + a2

2 + a1 + a2 − k2
. . .

n− 1 + a1 + . . . + an−1

n− 1 + a1 + . . . + an−1 − kn−1
, (51d)
where Hs = Ĥ1 + Ĥ2 + . . . + Ĥs {cf. (13) from [82]

with q = 1, t = n− 1, m = 1, l → −Λ; the last

change due to the fact that, in [82], the highest weight

modules are considered}; in (51c), we have inserted
our signatures

(ρ− Λ)(Hs) = (ρ− Λ, (α1 + . . . + αs)∨)

= (ρ− Λ, δ1 − δs+1) = m−
1,s+1 = s + a1 + . . . + as

and in (51d), we have made the choice of constant
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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b0 = a1 in order to make the expression valid also for
a1 = 0. It is easy to see that, for a1 = 0, the vector
v1,δ1 is not independent, but is a descendant of the
singular vector v1

s = X+
1 v0:

v1,δ1 =
1∑

k2=0

. . .

1∑
kn−1=0

b1,k2...kn−1 (52)

× (X+
2 )1−k2 . . . (X+

n−1)
1−kn−1

×X+
n (X+

n−1)
kn−1 . . . (X+

2 )k2X+
1 v0.

Thus, v1,δ1 is not present in FΛ for any d and a1 = 0
since the null condition (49) follows from case i = 1
of the null conditions (24). Analogously, if i > 1 and
fixing now k < i, the vector v1,δk+δk+1 has a nega-
tive norm at d = di,i+1 except if ak+1 = 0, when it is
not independent, but is a descendant of the singular
vector vk+1

s = X+
k+1v0, and, hence, is not present

in FΛ (this will be given more explicitly in [81]).
Thus, for d = di,i+1 together with a1 = . . . = ai = 0,
the condition (50) factorizing the submodule built on
v1,δi+δi+1 is the only condition—in addition to (24)—
needed to obtain the UIR LΛ = FΛ at d = di,i+1, i =
1, . . . , n− 1.
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Abstract—An attempt to formulate a precise program of classification of a large family of quantum groups
is presented. This family includes the familiar quantum groups and quantum supergroups, but much
more, all unified in a very simple structure. The emphasis is on the logic of the classification scheme.
Recent results are reported without much explanation and proofs are described only in a general way.
c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Among famous achievements in classification
must be included the classification of the simple Lie
algebras by Killing and Cartan, the simple super-
algebras by Kac, and the simple Lie bialgebras by
Belavin and Drinfel’d. Each case embraces a natural
category, not too small and not too large, including
large, natural families of algebras but not so large
as to defy classification. If one desires to classify the
quantum groups, then one had better be prepared to
reign in too large an ambition; half the battle is to
discover a family of quantum groups that is at once
natural (easily defined) and amenable to analysis.
This paper deals with a family dubbed q-algebras.

It is indeed easy to define. What is more, it contains
a subfamily that stands in a very direct relationship
to quantized Kac-Moody algebras, so that the clas-
sification of these latter algebras is a corollary of the
classification of q-algebras. But let us go back a bit.

Serre Presentation of su(3)

The familiar basis for the real Lie algebra su(3)
includes three “step-up operators” e1, e2, e3 (a basis
for the space of upper triangular 3× 3matrices), their
conjugates f1, f2, f3, and Cartan generators H1, H2,
H3 (diagonal matrices withH1 + H2 +H3 = 0). The
relations include [Hi, ej ] ∝ ej , [Hi, fj] ∝ fj , and the
ones that concern us the most right now, namely,

[e1, e2] = e3, [e1, e3] = 0 = [e2, e3],

and similar commutation relations among fi.
The nine generators (actually only eight are lin-

early independent) are “generators” in the linear
sense; su(3) consists of all real linear combinations.

∗The text was submitted by the author in English.
1)University of California, Los Angeles, USA; e-mail:
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But in another sense, the elements e1, e2 generate e3;
we may take the first relation as the definition of e3.
This requires that we express the second and the third
relation in terms of e1 and e2:

[e1, [e1, e2]] = 0 = [e2, [e2, e1]].

This suggestion was made by Chevalley; later, the
formulation was completed, for all simple Lie alge-
bras, by Serre. The generators e1, e2 are called Serre
generators and the double commutation relations are
called Serre relations.
To summarize, the relations of su(3) take the form

[H1, e1] = 2e1, [H1, e2] = −e2, [H2, e1] = −e1,

[H2, e2] = 2e2,

[e1, f1] = H1, [e1, f2] = 0 = [e2, f1],
[e2, f2] = H2,

[e1, [e1, e2]] = 0 = [e2, [e2e1]].

Drinfel’d defined his quantum groups in this idiom,
and it seems quite essential to do so, especially if one
aims at a discussion of simple Lie algebras and the
associated quantum groups in general. Of the three
sets of relations, the first remains unchanged, while
the others are replaced by

[e1, f1] =
sinhH1

h
, [e1, f2] = 0 = [e2, f1],

[e2, f2] =
sinhH2

h
,

[e1, [e1, e2]h]h = 0 = [e1, [e1, e2]h]h.

The Lie algebra su(3) is recovered in the limit, as the
parameter h tends to zero.
Let us pass to the general case of a simple Lie

algebra and to Drinfel’d’s quantization. Then we shall
once again specialize to the simplest case.
c© 2005 Pleiades Publishing, Inc.



A PROBLEM OF CLASSIFICATION 1671
Serre Presentation of a Simple Lie Algebra

In Serre’s presentation, a simple Lie algebra is
“generated” by three sets of elements, in direct gen-
eralization of the case of su(3), denoted ei, fi, andHi,
i = 1, . . . , n. The relations are

[Hi,Hj ] = 0,
[Hi, ej ] = Hi(j)ej , [Hi, fj] = −Hi(j)fj ,

[ei, fj ] = δijH
∨
i .

The elements H∨ are certain linear combinations of
Hi. In addition, there are Serre relations of the type

[e1, [e1, [. . . [e1, e2] . . . ] = 0.

Details are omitted, for what interests us is Drinfel’d’s
quantization of these algebras, and for this we prefer
a better notation.
Drinfel’d’s quantum group is defined by the same

generators and slightly modified relations. Here is a
complete definition.

Definition. Let M, N be two countable sets,
and φ,ψ two maps,

φ : M×M → C, a, b �→ φab,

ψ : M×N → C, a, i �→ Ha(i).

Let

φ(i, ·) =
∑
a,b∈M

φabHa(i)Hb, φ(·, i)

=
∑
a,b∈M

φabHaHb(i),

and suppose that eφ(i,·)+φ(·,i) 
= 1, i ∈ N .
Let A = A(φ,ψ) be the universal, associative,

unital C-algebra with generators {ei, fi}i∈N and
{Ha}a∈M and relations

[Ha,Hb] = 0, a, b ∈ M,

[Ha, ei] = Ha(i)ei, [Ha, fi] = −Ha(i)fi,

[ei, fj ] = δij

(
eφ(i,·) − e−φ(·,i)

)
.

Then the generalized quantum group A′ =
A′(φ,ψ) is the quotient A′ = A/I(A), where I(A)
is the Serre ideal.
There is a set of parameters, some of which are

less significant in that they are basis dependent. What
really matters are the numbers

qij = φabHa(i)Hb(j).

Our concern is, above all, with the Serre ideal, that is,
the ideal generated by the Serre relations.
The Serre relations, here exactly as in the original

setting, are polynomials C(e1, . . . , en) with the prop-
erty that

[fi, C] = 0, i = 1, . . . , n. (1)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
This property allows one to define a quotient algebra,
defined by replacing all such polynomials by zero. And
this quotient algebra is the object that is called a
quantum group.
So what are these relations? Drinfel’d is concerned

with direct deformations of simple Lie algebras ob-
tainable by passing to the limit when all the parame-
ters qij tend to one. In that narrow context, there are
powerful restrictions, on the parameters qij , and in
consequence of these restrictions, one finds that the
polynomials that satisfy Eq. (1) take the form

[ei, [ei, . . . [ei, ej ] . . . ].

Here, the bracket stands for a q-commutator, for
example, [ei, ej ] = eiej − qjiejei; otherwise, these are
the same Serre relations as characterize the underly-
ing or limiting Lie algebra.
But in general, before any special conditions are

imposed on qij , there are no Serre relations at all, no
polynomials that satisfy Eq. (1).
Now we can state the project at hand, though still

somewhat loosely: for every choice of the parameters,
to determine the Serre ideal, and by a classification of
the ideals, to arrive at a classification of a very large
class of quantum groups.
Let us put away all these complicated formulas

to consider a much simpler family of algebras, called
here q-algebras, with natural and straightforward re-
lations. These algebras have generators ei and differ-
ential operators ∂i. It turns out that the determination
of the “constants” of these algebras are precisely
the Serre relations of the above generalized quantum
groups, through the identification of the generators ei
that appear in both. I shall not present the proof of
this assertion for lack of time and also because I hope
to convince you that the q-algebras would be worthy
of study even without the connection to quantum
groups.

q-ALGEBRAS

Let B = C[e1, . . . , eN ] be the complex, unital al-
gebra freely generated by letters e1, . . . , en and a
unit written 1. Multiplication is just the formation
of words, it is associative but not commutative, and
there are no relations. Introduce differential operators
∂1, . . . , ∂N with the action defined by ∂iej = δij and

∂i(ejx) = δijx + qijej∂ix, x ∈ C[e1, . . . , eN ].

Let Bq be the same algebra B with this differential
structure.
This differential structure is a curious one. For

example, the following set of equations,

∂if = Ai, i = 1, . . . , n,
05
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where A1, . . . , AN , can always be solved for f , what-
ever the polynomials (= words) A1, . . . , AN . To illus-
trate, consider

∂1f = e2, ∂2f = 0. (2)

Evidently, the first relation is solved by some f =
ae1e2 + be2e1, a, b ∈ C, and we find

∂1f = (a + q12b)e2, ∂2f = (aq21 + b)e1.

If q12q21 = 1, then the vanishing of one implies the
vanishing of the other, and our system (2) has no
solution. But a solution exists in general for all pa-
rameters such that q12q21 
= 1.
On the other hand, we may consider the system

∂1f = 0, ∂2f = 0, (3)

which is solvable only if q12q21 = 1.

Definition. A “constant” in Bq is a polynomial
C ∈ B, having no term of order 0, such that ∂iC =
0, i = 1, . . . , N . Let Iq denote the ideal in Bq that
is generated by the constants.

A connection between these algebras and quan-
tum groups is assured by the following.

Theorem. The ideal Iq of B, via the identifica-
tion of B with the subalgebra B+ ⊂ A, is precisely
the component I+ of the Serre ideal of A.

Examples. There are no constants of order 1.
Constants of order 2 are

e1e1, constant if q11 = −1,

[e1, e2]q21 := e1e2 − q21e2e1, constant if

σ12 := q12q21 = 1.

Some constants of order 3:

[e1, [e1, e2]q21 ]q11q21 , constant if q11σ12 = 1,

(
q13 −

1
q31

)
(e1e2e3 + q21q31q32e3e2e1) + cyclic,

(4)

if σ123 = 1.

The existence of constants depends on algebraic
relations between the parameters; in general, there
are no constants. In the special case that constants
exist, they generate an ideal Iq, and we can define a
new algebra by passing to the quotient,

B′
q := Bq/Iq.

Thus, if qii = 1, we get a Grassmann algebra; if
qijqji = 1, the quantum plane, characterized by
eiej = qjiejei.
PH
The Matrix S

Two algebras Bq and Bq′ have similar Serre ideals
if qii = q′ii for all i = 1, . . . , N , and if for all pairs i, j,
qijqji = q′ijq

′
ji. If a change of parameters does not

change the dimension of the Serre ideal, or if, more
precisely, the family of constants remains essentially
the same, then we shall say that the two algebras
are of the same type. By classification, we shall mean
classification by distinct types. We proceed to give a
precise meaning to this idea.

We use multi-index notation, i := i1 . . . in, i′ =
in . . . i1 and

∂i′ = ∂in . . . ∂i1 , ej = ej1 . . . ejn .

A matrix S = (Sij) is defined by

Sij = ∂j′ei|0,

where x|0 is the term of total order 0 in the polynomial
x ∈ B. This matrix is actually a direct sum of finite
matrices.

A polynomial x ∈ B is homogeneous if it is a lin-
ear combination of monomials that differ only by the
order of factors. For any homogeneous polynomial
x, we define the degree G(x) as the collection of
indices (including repetitions) of the factors. Thus,
e1e2e3 and e2e3e1 both have degree {1, 2, 3}. The
degrees form an Abelian semigroup under the set
union, and a partial ordering is defined by inclusion.
Thus, {1, 3} < {1, 2, 3}. This partial order gives sense
to the term “lower degree” that will be used often.

The matrix S commutes with the grading,

S = ⊕GSG, (SG)ij = ∂j′ei,

where i, j run over the orderings of the unordered
set G.

The matrix S is singular if and only if there is a
constant in Bq, and SG is singular if and only if there
is a constant of degree G. The existence of constants
can thus be decided by inspection of the determinants.
For example, if σ12 := q12q21 = 1, then there is a con-
stant of degree G = {1, 2}, namely, e1e2 − q21e2e1,
and

SG =


 1 q12

q21 1


 , detSG = 1 − σ12 = 0.

Important Theorem. The projection S′ of S on
B′
q is nonsingular; there are no constants in B′

q.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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The Determinant

The family {Bq} of algebras is parametrized by q =
{qij}i,j=1,...,N ∈ V := C

N2
. There is an open subset

Vgen of V such that for q ∈ Vgen there are no constants
in Bq, namely, the subspace defined by detS 
= 0.
We shall say that parameters in this open set are in
general position. Until further notice, suppose that
the parameters are in general position.
Let BG be the subspace of Bq that consists of all

polymials of degreeG. From now on,G = {1, . . . , n},
n fixed. Set

wn,k = un,kvk,

where
un,k = (n + 1 − k)! (5)

and

vk = (k − 2)! (6)

Then it is a result of Varchenko that

detSG =
∏
k

∏
i1,...,ik

(1 − σi1...ik)wn,k .

The inner product is over all subsets of cardinality k ≥
2 of the set {1, . . . , n}. The numbers (5) and (6) have
the following interpretation. Fix the integer k ≤ n and
let Gk = {1, . . . , k}. Let the parameters approach a
portion of the boundary of Vgen, where σ1...k = 1 but
σi 
= 1 for all i 
= 1 . . . k (as unordered sets). Then
constants appear in BGk

; vk is the dimension of the
space of (primitive) constants in BGk

and un,k is the
dimension of the ideal in BG generated by a constant
in BGk

.
Example. Let G = {1, 2, 3} and suppose that

there are no constants of lower degree; then,

detSG = (1 − σ12)2(1 − σ23)2(1 − σ13)2(1 − σ123).

The surface on which SG is singular has four com-
ponents, and, in particular, SG is singular on the
surface σ123 = 1. On an open subset of this surface,
the algebra Bq is characterized by the existence of a
constant of degree G = {123}.

Cell Decomposition of Parameter Space

The space of parameters is the space V = C
N2

in which the N2 parameters qij take their values,
with the natural analytic structure defined by these
parameters. This space is the disjoint union of its G-
cells (G fixed), defined as follows.

Definition. A G-cell in V is a connected subset
of V on which the rank of eachmatrix SG′ ,G′ ≤ G,
is constant. A regular function on a G-cell is the
restriction to theG-cell of a polynomial on V .
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
This concept of a regular function may be used
to give a precise sense to regular fields of constants
(being a family of constants, the coefficients of which
are regular functions of the parameters) and regular
fields of algebras.
Fix aG-cell C. The constants in Bq, for q ∈ C, are

polynomials with coefficients that are regular func-
tions on C; we have a space of regular fields of con-
stants and regular fields B and B′ on each cell. The
subspaces BG and B′

G are regular fields defined by re-
striction to degree G. The matrix field S′

G and detS′
G

are also regular fields, with detS′
G 
= 0 on C.

A “cell” in V is a connected subset of V on which
all the matrices SG have constant rank; it is an inter-
section of determinantal varieties. Each cell carries a
regular field of q-algebras and the “type” of an algebra
is synonymous with the cell to which it belongs. The
program of classification is thus concretely identified
with the enumeration of the cells.
The classification proceeds inductively. I shall limit

the discussion to the case of polynomials that contain
at most one factor of each generator.

Classification to order 2. In degree G = {1, 2},
we have

SG =


 1 q12

q21 1


 , detSG = 1 − σ12 = 0.

TheG-cells are

C1 : σ12 
= 1, C2 = dC1 : σ12 = 1.

Classification to order 3. In degreeG = {1, 2, 3},
we find, for parameters in general position,

detSG = (1 − σ12)2(1 − σ23)2(1 − σ13)2(1 − σ123).

To fix the rank we must first decide on theG′-type for
each of the three lower degrees.
(a) All σij 
= 1. Then the formula for the deter-

minant tells us that there are just two cells, where
σ1233 
= 1, σ1233 = 1, respectively. The submatrices
have rank 2 and the matrix S{123} has rank 6 or 5,
respectively. [The constant that appears when σ123 =
1 was given above, Eq. (4).]
(b) One or more of the parameters σ12, σ13, σ23 is

equal to 1. Then there are constants of order 2 that
generate an ideal I .Wemust project thematrix S{123}
on the quotient algebra and calculate the determi-
nant. We find in each case that the rank is constant;
there is only one cell.
The nature of the problem may become clear if we

go just one step further.
Classification to order 4. A number of different

cases must be considered, for we must first fix the
G′-cells for allG′ < {1, 2, 3, 4}.
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(a) If there are no lower order constraints, we find

detSG =
∏
i<j

(1 − σij)6
∏
i<j<k

(1 − σijk)2(1 − σ1234)2.

The only factor that is not different from zero by as-
sumption is the last one; it may vanish or not, giving
rise to two cells.

(b) In three cases (and others related to these three
by renaming the generators), namely:
(i) σ12 = 1,
(ii) σ12 = σ34 = 1,
(iii) σ123 = 1,

it is found that the determinant of the projection of SG
has a factor 1 − σ1234. In each of these cases, there
are two cells distinguished by σ1234 = 1 or 
= 1.

(c) In all other cases, there is only one cell, that
is, no bifurcation of algebraic types at this order. For
more details, see my paper [1].

The essential point of each step of the induction is
thus to calculate the determinant of SG after projec-
tion on a quotient algebra determined by constraints
PH
of lower orders. Some general results have been ob-
tained; among them must be included the rather spe-
cial case that is the quantum Gabber–Kac theorem.
Here is the most recent result.
Suppose that σ1n is not constrained. There is a

basis for B′
{1...n} that consists of monomials of the

type xe1ye2z. Filter the polynomials by the order of
y. A basic word of the type e1ye2 is called a “long”
word. Then we have the following theorem.

Theorem. The exponent of 1 − σ1...n in
detS{1...n} is equal to the number of long basic
words in B′

G.
Example. If σ12 = σ13 = 1, then e1 commutes

with e2 and with e3 and there are no long words of
degree {1234}. If σ12 = σ34 = 1, then e1 commutes
with e2 and e3 commutes with e4; there is one long
word e1e3e2e4. For details and proofs, see my pa-
per [1].
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Abstract—We discuss various infinite-dimensional configuration spaces that carry measures quasi-
invariant under compactly supported diffeomorphisms of a manifoldM corresponding to a physical space.
Such measures allow the construction of unitary representations of the diffeomorphism group, which are
important to nonrelativistic quantum statistical physics and to the quantum theory of extended objects in
M = R

d. Special attention is given to measurable structure and topology underlying measures on gener-
alized configuration spaces obtained from self-similar random processes (both for d = 1 and d > 1), which
describe infinite point configurations having accumulation points. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Let M be the manifold of physical space, usually
taken to be d-dimensional Euclidean space R

d.
Let Diffc(M) be the (infinite-dimensional) group of
compactly supported diffeomorphisms of M , under
composition. The local current algebra approach to
nonrelativistic quantum mechanics led to the un-
derstanding that a wide variety of quantum systems
could be described by constructing the continuous
unitary representations (CURs) of Diffc(M), the
group of compactly supported diffeomorphisms ofM
(under composition) [1–7].
To say that the diffeomorphism φ of M has com-

pact support means that for all points x ∈M that
are outside some compact (and therefore bounded)
region of M , the diffeomorphism acts as the identity
operator: φ(x) ≡ x. Our convention here will be to
define the group product φ1φ2 = φ2 ◦ φ1, where ◦
denotes the composition of φ1, φ2 ∈Diffc(M), so that
[φ1φ2](x) = φ2(φ1(x)) for x ∈M . Thus, we have a
“right action” of the diffeomorphism group on the
manifold.
In a very general framework, the Hilbert space

where the unitary representation of Diffc(M) can be
realized is the space of square-integrable functions,
H = L2

µ(∆,W), where∆ is some configuration space
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on which the diffeomorphism group naturally acts
(with a right action), µ is a measure on ∆ satisfying
appropriate technical conditions,W is an inner prod-
uct space, and the elements of H are µ-measurable
functions Ψ(γ) on ∆ taking values in W . The inner
product of two such functions inH is given by

(Ψ1,Ψ2) =
∫
∆

〈Ψ1(γ),Ψ2(γ)〉Wdµ(γ) <∞, (1)

where 〈Ψ1(γ),Ψ2(γ)〉W denotes the inner product in
W . Then the operators V (φ) defining a CUR are
given by

[V (φ)Ψ](γ) = χφ(γ)Ψ(φγ)

√
dµφ
dµ

(γ), (2)

where φγ refers to the action of the diffeomorphism
φ on γ ∈ ∆ and where χφ : W →W is a family of
unitary operators acting in W satisfying a certain
cocycle equation (see below).
In this article, we shall consider various candidates

for a “large” configuration space, within which dif-
ferent choices of the space ∆ may be situated, that
permit the construction of measures having the nec-
essary property of quasi-invariance under diffeomor-
phisms. We then focus on the generalized configura-
tion space ΣM whose elements are finite or countably
infinite subsets ofM and discuss ways of endowing it
with a σ algebra and a topology. The results underlie
the construction of measures on generalized con-
figuration spaces obtained from self-similar random
processes in R

d (both for d = 1 and d > 1), which
describe infinite point configurations having accumu-
lation points.
In Section 2, we briefly discuss the meaning of

Eq. (2), reviewing the necessary concepts. Section 3
c© 2005 Pleiades Publishing, Inc.
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surveys some aspects of several possible choices of
“large” configuration spaces, while Section 4 focuses
on topology and measurable structure inΣM . In Sec-
tion 5, we give a rapid overview of the construction
of certain families of quasi-invariant measures inΣRd

making use of self-similar random processes.

2. MEASURES AND COCYCLES

The measure µ that appears in Eq. (2) and in the
definition ofH is, as usual, a countably additive, pos-
itive real-valued function defined on a σ algebraM of
subsets of∆. It is required to have the key property of
quasi-invariance under the action of diffeomorphisms
on∆.
In general, letG be a group of transformations of a

measurable space (X,M), whereM is aG-invariant
σ algebra of subsets ofX. A measure µ onM is said
to be invariant underG if and only if for allE ∈M and
for all g ∈ G, µ(gE) = µ(E). It is said to be quasi-
invariant under G if and only if for all E ∈M such
that µ(E) > 0 and for all g ∈ G, µ(g(E)) > 0. That
is, g ∈ G acts on X in such a way as to preserve the
class of sets that have µ-measure zero.
Quasi-invariance is a fortiori a consequence of

invariance, but not conversely. For example, the
Lebesgue measure dx on X = R

d is invariant under
the group of rigid motions (translations and rota-
tions). It is quasi-invariant, but not invariant, under
the group of compactly supported diffeomorphisms
of Rd.
For φ ∈ G = Diffc(M) acting on X = ∆, define

the transformed measure µφ by setting µφ(E) =
µ(φ(E)) for any E ∈M. Because of the group struc-
ture and the G invariance ofM, the quasi-invariance
of µ under G is equivalent to the absolute continuity
of µφ1 with respect to µφ2 for any φ1, φ2 ∈ G. In
particular, the quasi-invariance of µ is necessary and
sufficient for the existence of the Radon–Nikodym
(RN) derivative (dµφ/dµ)(γ) appearing in Eq. (2), for
all elements φ ∈ Diffc(M). For example, with M =
R
d, ∆ = R

d, and dµ = dx, we have (dµφ/dµ)(x) =
Jφ(x), the Jacobian of φ at x. Since φ has compact
support, we have Jφ(x) ≡ 1 outside some bounded
region of Rd.
The square root of the RN derivative in Eq. (2) is

precisely the factor necessary to make the operators
V (φ) unitary inH, sinceχφ(γ) is to be taken as acting
unitarily in W (see below). That is, the diffeomor-
phism φmoves the argument of the wave function Ψ,
and the square-root factor corrects it so that, whenwe
calculate the inner product (V (φ)Ψ1, V (φ)Ψ2) using
Eq. (1), we find that we have merely made the change
of variable γ′ = φγ under the integral sign.
PH
Let D(M) be the space of real-valued, compactly
supported C∞ functions f on M . We have then the
natural semidirect product group D(M)× Diffc(M),
with the group law given by

(f1, φ1)(f2, φ2) = (f1 + f2 ◦ φ1, φ1φ2). (3)

Now it may sometimes be the case that V (φ) is a sub-
representation of a CUR ofD(M)× Diffc(M), which
we write U(f)V (φ). Then the operators U(f), f ∈
D(M), typically act in H as multiplication operators,
consistently with Eq. (2):

[U(f)Ψ](γ) = exp[i〈γ, f〉]Ψ(γ), (4)

where 〈γ, f〉 denotes an action of γ ∈ ∆ on f ∈
D(M) as a continuous linear functional. That is, the
configuration γ is here identified with a distribution,
and ∆ is identified with a subset of the dual space
D′(M). This is one of the possibilities discussed in
Section 3.
In Eq. (2), χφ :W →W is a family of unitary

operators inW satisfying the cocycle equation

χφ1(γ)χφ2(φ1γ) = χφ1φ2(γ), (5)

which holds almost everywhere (a.e.) in ∆ for each
pair of diffeomorphisms φ1, φ2. That is, Eq. (5) holds
outside a µ-measure zero set that, in general, may
depend on φ1 and φ2.
The cocycle equation follows directly from

the condition that V respect the group law,
V (φ1)V (φ2) = V (φ1φ2). The trivial cocycle χφ(γ) ≡
I is always permitted, and in the case of a CUR de-
scribingN identical particles, this choice corresponds
to Bose–Einstein statistics. Inequivalent choices
of χφ (noncohomologous cocycles) are associated
with Fermi–Dirac statistics, nontrivial phase effects,
and anion statistics in two space dimensions [8–
12], as well as with certain nonlinear variations of
quantum mechanics [13–15]. In the simplest cases,
W is just the one-dimensional space of complex
numbers C, so that we have complex-valued wave
functions on ∆. Then the χφ act through multipli-
cation by complex numbers of modulus 1. Higher
dimensional choices forW are associated with para-
particles in R

3 and plektons in R
2 [16–18].

3. GENERAL CONFIGURATION SPACES

Up to this point, no universal configuration space
for the representation theory of Diffc(M) has been
agreed upon. Consequently, we have no one universal
configuration space for the physics of systems with
infinitely many degrees of freedom inR

d, within which
specific choices of configuration spaces for particular
systems are situated. This very likely reflects a gap
in our present level of understanding. Let us describe
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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here some choices that have been made, choices that
allow the convenient description and interpretation of
certain classes of unitary representations.

3.1. Locally Finite Point Configurations

The standard configuration space for statistical

physics is the space Γ(∞)
M of countably infinite but

locally finite subsets of M , where usually M = R
d.

Frequently, one considers the disjoint union of this
space with the spaces of N-point subsets; thus,

ΓM =
⊔∞
N=1 Γ(N)

M

⊔
Γ(∞)
M is the space of all locally

finite subsets of M . Measures on the configuration
space Γ(∞)

Rd describe equilibrium states in R
d in sta-

tistical mechanics, while Γ(∞)

Rd also enters quantum
theory in the description of infinite gases of quantum
particles in R

d.
Let |γ| denote the cardinality of the set γ. A config-

uration γ ⊂ R
d in Γ(∞)

Rd has the properties that |γ| =
ℵ0, while for any compact setK ⊂ R

d, |γ ∩K| <∞.
Then the diffeomorphism φ ∈ Diffc(Rd) acts natu-
rally on any configuration γ ∈ ΓRd by its action on
the individual elements of γ. This clearly respects the
property of being finite or locally finite. Measures on
Γ(∞)

Rd that are quasi-invariant under diffeomorphisms
have been extensively studied, and include Poisson
measures and Gibbsian measures [3, 5–7, 19].
In particular, the choice of a Poisson measure

dµσ on Γ(∞)

Rd , with intensity σ > 0, together with the
trivial cocycle χφ ≡ 1, gives a CUR of Diffc(Rd) via
Eq. (2). This representation describe the infinite, free
quantum Bose gas having σ as its average particle
number density [3]. Here, we have, for any choice of σ,

dµσφ
dµσ

(γ) =
∏
x∈γ

Jφ(x). (6)

Since φ has compact support and γ is locally finite, it
is evident that all but a finite number of terms in the
infinite product of Jacobians in Eq. (6) are equal to 1.
Thus, this product gives a finite, nonzero result for the
value of the RN derivative—expressing the fact that

Poisson measures on Γ(∞)

Rd are quasi-invariant under
compactly supported diffeomorphisms of Rd.

3.2. Configuration Spaces of Closed Subsets

A much larger configuration space, introduced in
early work by Ismagilov [20–23], is the space ΩM

of all (nonempty) closed subsets of the manifold M .
For any closed set C ∈ ΩM , define the natural action
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
of a diffeomorphism φ ∈ Diffc(M) on ΩM by φC =
{φ(x)|x ∈ C}. Evidently, φC also belongs toΩM , and
we have a (right) group action.
A σ algebra for ΩM is generated by the family

of sets in ΩM consisting of all closed subsets of a
given closed set. Thus, for C ∈ ΩM (i.e., for C ⊆M
closed), let ΩC = {C ′ ∈ ΩM |C ′ ⊆ C}. Then let BΩM

be the smallest σ algebra containing the family of sets
{ΩC}C⊆Mclosed. This σ algebra can also be obtained
as the algebra of Borel sets with respect to a topology
on ΩM , for which a subbase is the family of sets
{C|C ∩O �= Ø}O⊆Mopen; i.e., the family of subsets of
ΩM whose elements meet a given open setO ⊆M .
Evidently, any locally finite configuration γ ∈ ΓM

is also a closed subset of M , so that in general we
have ΓM ⊂ ΩM .

3.3. Configuration Spaces of Generalized Functions

Another possibility is to work with the dual space
D′(M), as suggested by the CURs of the semidirect
product group mentioned in Section 1. That is, a
configuration γ ∈ D′(M) is a continuous, linear, real-
valued functional on D(M)—a distribution or gen-
eralized function onM . This is especially convenient
for representing Eq. (4), as we can immediately write
〈γ, f〉 for the value taken by γ on the function f ∈
D(M).
Diffeomorphisms act onD′(M) by the dual to their

action on D(M); i.e., φγ is defined for γ ∈ D′(M) by
〈φγ, f〉 = 〈γ, f ◦ φ〉 for all f ∈ D(M). [With this def-
inition and our earlier convention, we have (φ1φ2)γ =
φ2(φ1γ), so that the group action is a right action
as desired.] A σ algebra in D′(M) may be built up
directly from cylinder sets with Borel base [24], or
D′(M) can be endowed with the weak dual topol-
ogy and measures constructed on the corresponding
Borel σ algebra.
Evidently ΓM , or more specifically ΓRd , may be

identified naturally with a subset ofD′(M), orD′(Rd),
by the correspondence

γ →
∑
x∈γ

δx, (7)

where δx ∈ D′(M) is the evaluation functional (i.e.,
the Dirac δ function) defined by 〈δx, f〉 = f(x),
x ∈ M .
The so-called “vague topology” inΓM is in fact the

topology that ΓM inherits from the weak dual topol-
ogy in D′(M). While ΓM is not a linear space, the
larger space D′(M) is. In addition to linear combina-
tions of evaluation functionals (with possibly distinct
real coefficients), D′(M) contains other kinds of con-
figurations of physical importance that do not belong
05
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to ΓM and in some cases are not easily identified with
elements of ΩM . For example, configurations may in-
clude terms that are derivatives of δ functions, as well
as generalized functions with support on embedded
submanifolds ofM .

3.4. Configuration Spaces of Embeddings
and Immersions

Still another characterization of a “large” space of
configurations inM begins with some other manifold
(or manifold with boundary) L, together with a set of
maps α : L→M that obey some specified regularity
and continuity properties (for which there are numer-
ous possible choices). Then we call L the parameter
space for the corresponding class of configurations
andM the target space. When α is injective (so that
self-intersection of the image of L in the target space
is not permitted), we have a configuration space of
embeddings, while without any such restriction we
have a larger space of immersions.
We have at the outset the choice of considering

parametrized or unparametrized maps. A space of
parametrized Ck immersions consists of mappings
α(θ), θ ∈ L, that are Ck for some fixed integer k ≥
0. For φ ∈ Diffc(M), the formula [φα](θ) = φ(α(θ))
(i.e., φα = φ ◦ α) defines the desired (right) group
action on the space of parametrized immersions. In
addition, the group Diff(L) acts on the space of im-
mersions (as a left action) by reparametrization, so
that, for ψ ∈ Diff(L), ψ : α→ α ◦ ψ.
Then an unparametrized immersion is just the

image set K = α(L) ⊂M , where the parametriza-
tion of K has been disregarded. Alternatively, we
can think of the unparametrized immersion as an
equivalence class of parametrized immersions modulo
reparametrization. Note that the action of Diffc(M)
on the space of (parametrized or unparametrized) im-
mersions leaves the corresponding space of embed-
dings invariant as a subset and preserves the conti-
nuity properties of configurations in the space.
If L is the circle S1, for instance, configurations

are Ck loops in M . The embeddings are the non-
selfintersecting loops. The action of the diffeomor-
phism group also respects the knot class of the loop.
If L is the closed interval [0, 2π], configurations are
finite arcs inM . Further possibilities include ribbons,
tubes, or higher dimensional submanifolds ofM .
The configuration space of unparametrized im-

mersions of L in M is a subset of the configuration
space ΩM , invariant (as a set) under the action of
Diffc(M). This description thus allows us to refine
ΩM as sensitively as desired, according to the topo-
logical and continuity properties of extended configu-
rations.
PH
For example, quantized vortex configurations
in ideal, incompressible fluids are obtained from
representations of groups of (area- and volume-
preserving) diffeomorphisms ofR2 and R

3. For planar
fluids, pure point vortices are not permitted quantum-
mechanically, but one-dimensional filaments of vor-
ticity are allowed. Similarly, in R

3, pure filaments
are kinematically forbidden, while two-dimensional
vortex surfaces, e.g., ribbons or tubes, can occur [25–
28]. But a major gap is the construction of measures,
quasi-invariant under diffeomorphisms, directly on
spaces of filaments or tubes. One approach to the fil-
ament case has been suggested by Shavgulidze [29].
Naturally, a nonrelativistic quantum theory of

strings, with R
d as the target space, also depends on

quasi-invariant measures on the space of loops.
In addition, we remark that diffeomorphism-

invariant measures are important to the long-
standing problem of finding consistent theories for
quantized gravity; for instance, Ashtekar and Lewan-
dowski have constructed a faithful, diffeomorphism-
invariant measure on a compactification of the space
of gauge-equivalent connections [30, 31].
Reparametrization invariance has nice conse-

quences for quantum mechanics, when expressed in
terms of diffeomorphism group representations. Note
in particular that we can consider the N-particle

configuration space Γ(N)
M as a special case of em-

beddings modulo reparametrization, with the discrete
manifold L = {1, . . . , N}. The group Diff(L) in this
case is the symmetric group SN . The corresponding
configuration space of parametrized embeddings is
the space of orderedN tuples (x1, . . . ,xN ) of distinct
points, xj �= xk for j �= k. The space of parametrized
immersions of L in M includes the N tuples with
coincident points.

3.5. The Configuration Space
of Countable Subsets of R

d

The idea pursued in the balance of this article is the
construction of measures, quasi-invariant under dif-

feomorphisms of Rd, on the space Σ(∞)

Rd of countably
infinite subsets of the physical space R

d that are not
necessarily locally finite. Alternatively, we may work
on the space ΣRd whose elements are subsets γ ⊂ R

d

that are finite or countably infinite, with

ΣRd =
∞⊔
N=1

Γ(N)

Rd

⊔
Σ(∞)

Rd . (8)

We call this the space of generalized configurations.
Our main mathematical motivation for working

with this space is that measures on it can be con-
structed by means of random point processes on
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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spaces of infinite sequences of points in R
d. We shall

project themeasure µ on [Rd]∞ that results from such
a point process to define the corresponding measure µ̂
on ΣRd , thus obtaining a measure on the space Σ(∞)

Rd .

A physical motivation for this direction of work
is the goal of constructing quasi-invariant measures
for spatially extended systems, which is in general an
unsolved problem. Since R

d is separable, any closed
set in R

d can be obtained as the closure of an element
of ΣRd , so that the closure map γ → γ̄ from ΣRd to
ΩRd is surjective. Thus, our present approach—which
puts us into a still larger configuration space than that
of Ismagilov—may permit pointlike approximations
to embedded manifold configurations.
Apart from this general consideration, the specific

measures we can construct appear to have a direct
interpretation as descriptive of idealized quantum or
statistical configurations forming “particle clouds”
about a locus of condensation. These allow for a
kind of “phase transition” from a rarefied to a con-
densed phase, as the self-similarity parameter passes
through a critical value.

Let uswriteω = (xj) ∈ [Rd]∞ to denote an infinite
sequence, with j = 1, 2, 3, . . . .
Now, generalized configurations, like infinite se-

quences, can have accumulation points. A point
x ∈ R

d is an accumulation point of a set γ ⊂ R
d—

or, respectively, of an infinite sequence ω = (xj) ∈
[Rd](∞)—if, for any neighborhood U of x, the set U −
{x} contains infinitely many points of γ (respectively,
ω). An accumulation point of γ may or may not itself
be an element of γ. Evidently, diffeomorphisms of Rd

act naturally on generalized configurations, respect-
ing accumulation points: ifx ∈ R

d is an accumulation

point of γ ∈ Σ(∞)

Rd , then φ(x) is an accumulation point

of φγ. The points belonging to configurations inΣ(∞)

Rd

can cluster in such a manner as to yield fractals or
even more complicated objects.
The set of sequences containing coincident points

is called the “diagonal” D in [Rd]∞; that is, D =
{(xj) ∈ [Rd]∞|xk = x� (for some k �= $)}. Typically,
D is of measure zero for the point processes of in-
terest, and for technical reasons, it will often be con-
venient to exclude it. We have the natural projection
from the sequence space to the configuration space,
p : [Rd]∞ → ΣRd , given by p[(xj)] = {xj}. The im-
age of [Rd]∞ under p is all ofΣRd , since the possibility
of repeated entries in elements of [Rd]∞ permits the
corresponding configurations to be finite as well as
infinite. Then [Rd]∞ can also be thought of as a fiber
space over ΣRd . It is natural to consider also the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
restriction of p to sequences without repeated entries,

p : [Rd]∞ −D → Σ(∞)

Rd (which is surjective).

Note that the space Σ(∞)

Rd may also be regarded
as a special case of the space of unparametrized em-
beddings discussed in the preceding subsection. The
target space M is R

d; the parameter space L is N

(the set of natural numbers); andDiff(L) is the group
S∞ of bijections of N. Of course, [Rd]∞ −D is then
seen as the space of parametrized embeddings of L
intoM , while [Rd]∞ itself is the space of parametrized
immersions.
For any diffeomorphism φ of R

d, we have
φp[(xj)] = {φ(xj)} = p[(φ(xj))]. Thus, we can
project a probability measure on the sequence space
[Rd]∞ or [Rd]∞ −D, constructed as is usual from an
infinite sequence of conditional probability densities
on R

d, to a probability measure on the configuration
space Σ(∞)

Rd , consistent with the action ofDiffc(Rd).
In earlier work, it was shown how for the one-

dimensional manifolds R
1 or S1, self-similar point

processes in the manifold lead quite generally through
such a construction to quasi-invariant measures on
the configuration space of countably infinite sub-
sets [32–36]. The quasi-invariance is intimately re-
lated to the self-similarity. In Section 4, we shall
discuss further the relevant σ algebra on this config-
uration space, which lays the foundation for complet-
ing the rigorous proofs of earlier conjectures. Then
we shall indicate how the generalization to d > 1 is
carried out [37].

4. TOPOLOGY AND MEASURABLE
STRUCTURE ON ΣRd

There are at least two possible approaches to
defining a σ algebra on the generalized configuration
space Σ(∞)

Rd .

4.1. Indirect Approach through [Rd]∞

The indirect approach makes use of the sequence
space [Rd]∞, which is endowed with the well-known
weak product topology τw. Let us write xj(ω) for
the jth entry of ω ∈ [Rd]∞. The weak topology is
then the coarsest topology for which all the natural
projections πj : [Rd]∞ → R

d given by ω → xj(ω) are
continuous. This topology is inherited by [Rd]∞ −D.

Let B([Rd]∞) denote the σ algebra of Borel sets in
[Rd]∞ with respect to τw. This naturally induces a σ
algebra in ΣRd—namely, the largest σ algebra with
the property that the projection p : [Rd]∞ → ΣRd is
05
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measurable [33, 34]. More precisely, we introduce in
ΣRd the σ algebra

Pw(ΣRd) := {A ⊆ ΣRd | p−1(A) ∈ B([Rd]∞)}, (9)

to which each of the subsets Γ(N)

Rd ,N = 1, 2, 3, . . . , as

well as Σ(∞)

Rd , belongs.

Evidently, the set of accumulation points of an
infinite sequence inR

d orRd −Dmay be empty, finite
and nonempty, countably infinite, or uncountably infi-
nite. Since accumulation points in R

d depend only on
the set γ = {xj}, and not specifically on the sequence
(xj), all the distinct elements of p−1(γ) have precisely
the same accumulation points.
Now it is straightforward to demonstrate that var-

ious sets of interest inΣ(∞)

Rd belong to Pw, by showing
that the corresponding sets of sequences belong to
B([Rd]∞ −D). A series of lemmas in earlier work [38,
39] shows that the set [Rd]∞ −D itself belongs to
B([Rd]∞) and that the following subsets of [Rd]∞−D
are likewise Borel: the set of all nonrepeating se-
quences having precisely n elements in a given com-
pact set K ⊂ R

d, the set of all locally finite nonre-
peating sequences, and the set of all nonrepeating
sequences having preciselyN accumulation points in
K. Each of these sets is the inverse image in [Rd]∞ −
D (under the projection p) of a set inΣ(∞)

Rd ; hence, the

corresponding sets in Σ(∞)

Rd are measurable.

In fact, Pw(Σ(∞)

Rd ) is sufficiently rich to permit us
to count the numbers of accumulation points of con-
figurations that are located in arbitrary Borel sets of
R
d (not just compact sets). In particular, the subsets

Σ(∞)

Rd,N
⊂ Σ(∞)

Rd consisting of generalized configura-

tions having exactlyN accumulation points inR
d are

measurable. The inverse image p−1(Σ(∞)

Rd,N
) is the set

of infinite sequences having precisely N accumula-
tion points, which we denote by [Rd]∞N ⊂ [Rd]∞ (for
N = 0, 1, 2, . . . ).
Suppose that we have a probability measure µ on

[Rd]∞ or [Rd]∞ −D. Then we obtain a probability
measure µ̂ on ΣRd by defining, for all A ∈ Pw(ΣRd),
µ̂(A) = µ(p−1(A)). The most straightforward way to
construct a countably additive measure µ on [Rd]∞

[with the σ algebra B([Rd]∞)] is to specify a com-
patible family of measures on the finite-dimensional
spaces from which [Rd]∞ is constructed as the pro-
jective limit. The existence of the corresponding mea-
sure µ is then assured by Kolmogorov’s theorem. If
µ is quasi-invariant under diffeomorphisms of R

d,
PH
then our construction ensures that µ̂ is also quasi-
invariant as desired.

4.2. Direct Approach

The more direct approach to constructing a σ al-

gebra on Σ(∞)

Rd is simply to specify a generating set

of subsets of ΣRd or Σ(∞)

Rd for the σ algebra or else to

introduce a topology inΣRd orΣ(∞)

Rd and to take as our
σ algebra the Borel sets with respect to that topology.
For instance, we may begin with Ismagilov’s σ

algebra on ΩRd described above and lift it to a σ al-
gebra I(ΣRd) using the closure map. The generating
family for I(ΣRd) becomes all sets of the form {γ ∈
ΣRd |γ ⊆ F}, where F ∈ ΩRd is closed. Because F is
closed, γ ⊆ F if and only if γ̄ ⊆ F . The complement
of a set in this generating family is the setOU = {γ ∈
ΣRd | γ ∩ U �= ∅}, the set of all configurations that
meet the open set U ⊆ R

d, where U is R
d − F . The

collection of sets {OU |U ⊆ R
dopen} likewise serves

as a generating family for I(ΣRd) [37]. The subsets
Γ(N)

Rd and Σ(∞)

Rd of ΣRd belong to I(ΣRd).

We can make use of these families of sets to
introduce a natural topology onΣRd . Define a subbase
of open sets for a topology τo in ΣRd to be {OU |U ⊆
R
d open}. Note that, for any index set I, ∪α∈IOUα =
O[∪α∈IUα], while ∩j=1,...,nOUj ⊃ O[∩j=1,...,nUj ]. The
finite intersections of sets in the subbase form a base
for τo.

In the topology τo, the subsets Γ(n)

Rd ⊂ ΣRd (for

n > 1) and Σ(∞)

Rd ⊂ ΣRd are neither open nor closed.

However, for each N ≥ 0, {γ| |γ| ≤ N} =
⊔N
n=1 Γ(n)

Rd

is closed. Of course, we may also consider separately

the topology induced in Σ(∞)

Rd by τo.

Now, the σ algebra I(ΣRd), that we obtained by
lifting Ismagilov’s σ algebra to ΣRd by the inverse
image of the closure map is precisely the Borel σ
algebra Bo(ΣRd) with respect to the topology τo. In-
deed, we noted already that the complement of OU
in ΣRd is just {γ ∈ ΣRd |γ ⊆ R

d − U}. Thus, we have
immediately that Bo(ΣRd) contains I(ΣRd), and the
closure map is τo-Borel measurable with respect to
Ismagilov’s σ algebra onΩRd . Conversely, let {Uj |j =
1, 2, 3, . . . } be a countable base for the topology in
R
d. Then {OUj} is a countable subbase for τo, and

the finite intersections of such sets form a countable
base for τo whose elements are obtained directly from
the generating family for I(ΣRd). Hence, Bo(ΣRd) =
I(ΣRd).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Sakuraba constructs and discusses a related
topology τs on ΣM (here, M = R

d), obtained as
a quotient of the product topology on the disjoint
union ofMn, n = 1, 2, 3, . . . , andM∞ with respect to
the symmetric groups Sn and the infinite symmetric
group [37]. In this construction, the topology on ΣM

is the sum of topologies on the components Γ(n)
M and

Σ(∞)
M , and each of the subsets Γ(n)

M is both closed
and open. Restricted to each component, τs coincides
with the topology induced by τo. Thus, the family of
Borel sets of τs coincides with the family of Borel sets
of τo.
The fact is that I(ΣRd) ⊂ Pw(ΣRd) is straightfor-

ward: since

p−1 (OU ) =
∞⋃
j=1

{ω ∈ [Rd]∞ | xj(ω) ∈ U}, (10)

the inverse image of OU is open in the weak topology
of [Rd]∞, and therefore OU belongs to Pw(ΣRd). But
I(ΣRd) is in fact smaller than Pw(ΣRd), and too small
for certain purposes. Indeed, by our previous result,
any τo-Borel set B is the inverse image under the
closure map of a set in the σ algebra onΩRd generated
by the setsΩF ; thus, it has the property that, if γ ∈ B,
γ̄ ∈ B.
But it is easy to construct sets in Pw(ΣRd) that

do not have this property. For example, define the set
OV of all configurations γ ∈ ΣRd that are subsets of
a given open set V . Evidently, there exist countably
infinite subsets of V whose closures are no longer
subsets of V , so OV does not belong to I(ΣRd).
However, OV does belong to Pw(ΣRd), which follows
from the fact that

p−1(OV ) = p−1({γ ∈ ΣRd |γ ⊂ V }) (11)

=
∞⋂
j=1

{ω | xj(ω) ∈ V }.

Thus, I(Σ(∞)

Rd ) �= Pw(Σ(∞)

Rd ). The σ algebra I(ΣRd) is
just not large enough for us to be able to count the
number of points in a configuration that belong to a
given open set in R

d.
This example suggests consideration of the Vi-

etoris topology on subsets of R
d, restricted to ΣRd

or to Σ(∞)

Rd . Let us call this topology τv. A subbase
for τv is given by sets of the form OV ∩OU , where
U and V are open, so that OV is itself open in τv.
The Vietoris topology has many nice properties [40–
42]. Considering then the σ algebra Bv(ΣRd) of Borel
sets with respect to τv, we have I(ΣRd) ⊂ Bv(ΣRd),
but I(ΣRd) �= Bv(ΣRd). Furthermore, Bv(ΣRd) ⊂
Pw(ΣRd). To show this, consider again a countable
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
base {Uj , j = 1, 2, 3, . . . } for the topology in R
d. A

countable subbase for τv is then {OUj ∩OUk
, j, k =

1, 2, 3, . . . }, and a countable base for τv consists of
finite intersections of such sets. Since p−1(OUj ) and
p−1(OUk

) are both Borel in [Rd]∞, the inverse image
of any open set in τv is Borel in [Rd]∞, which suffices
for the result.
We have not, however, determined whether

Bv(ΣRd) is or is not strictly smaller than Pw(ΣRd).

5. SELF-SIMILAR RANDOM POINT
PROCESSES IN R

d AND QUASI-INVARIANT
MEASURES

Now we are prepared to construct measures on
the σ algebra B([Rd]∞) by means of random point
processes, using sequences of conditional probability
densities. When we do so, it turns out that the RN
derivatives under transformations by diffeomorphisms
take the form of an infinite product,

dµφ
dµ

(ω) =
∞∏
j=1

uj,φ(ω). (12)

Here, ω ∈ [Rd]∞, and the uj,φ(ω) are measurable
functions that depend only on the first j entries of ω.
Quasi-invariance of µ then requires that (12) con-

verge to a nonzero, noninfinite limit almost every-
where in µ for each φ. This means that the individual
terms uj,φ(ω) must approach 1 sufficiently rapidly as
j →∞. Under conditions that in fact hold for the
measures discussed here, these convergence prop-
erties have also been proven sufficient to ensure the
quasi-invariance of µ [37] and, as a direct conse-
quence, the quasi-invariance of the projected mea-

sure µ̂ on Σ(∞)

Rd .

Let f(xj |x1, . . . ,xj−1) be a nonsingular probabil-
ity density on R

d for selection of the point xj , condi-
tioned on the previously selected points x1, . . . ,xj−1

in some random sequence. Then dµj(xj) =
f(xj |x1, . . . ,xj−1)dxj defines a conditional (Borel)
probability measure µj on R

d that depends measur-
ably on the j − 1 real parameters x1, . . . ,xj−1 (the
positions of the first j − 1 particle coordinates) and is
absolutely continuous with respect to the Lebesgue
measure dxj . We can interpret the joint probability
measure for the first k points, specified by dµ(k) =∏k
j=1 dµj , as a measure on [Rd]∞; and the sequence

(µ(k)), k = 1, 2, 3, . . . , is then a compatible family of
probability measures.
By Kolmogorov’s theorem, there is a unique

measure µ on [Rd]∞ determined by the sequence
05
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(µ(k)). Under transformation by φ ∈ Diffc(Rd), the
RN derivative for µ(k) (when it exists) is given by the
finite product

dµ
(k)
φ

dµ(k)
(ω) =

k∏
j=1

dµj,φ
dµj

(ω), (13)

where
dµj,φ
dµj

(ω) =
f(φ(xj)|φ(x1), . . . , φ(xj−1))

f(xj |x1, . . . ,xj−1)
Jφ(xj).

(14)

The quasi-invariance of µ(k) is assured as long as
the RN derivative in Eq. (13) is almost everywhere
positive and finite. Now, as anticipated, in the infinite-
dimensional case, quasi-invariance of the measure
µ under diffeomorphisms turns out to depend on
the behavior of the infinite product in Eq. (12), with
uj,φ(ω) = [dµj,φ/dµj ](ω).
Of course, not every measure so constructed will

be quasi-invariant. The idea that leads to an interest-
ing class of quasi-invariant measures is to scale the
probability distribution of the jth particle’s position
according to the outcomes for the previously cho-
sen particle positions. This establishes a self-similar
random process, where in the vicinity of accumula-
tion points the ratio of probability density functions
in Eq. (14) approaches the inverse of the Jacobian
as j →∞. The resulting physical systems behave
like an interacting gas of particles with one or more
loci of condensation. However, our approach differs
from the usual one in that our probability measures
are constructed directly, rather than by means of an
interaction Hamiltonian.
In general, if the positions of the particle co-

ordinates xj(ω), or the successive difference coor-
dinates yj+1(ω) = xj+1(ω)− xj(ω), distribute in-
dependently but nonidentically—so that points can
accumulate with nonzero probability—the result-
ing measure will not be quasi-invariant. However,
Ismagilov did demonstrate quasi-invariance under
diffeomorphisms of the measures resulting from a
particular class of processes of this type, in one space
dimension [20].
Sakuraba [37] showed that the quasi-invariant

measures constructed by Goldin and Moschella
from self-similar random processes and the quasi-
invariant measures of Ismagilov are mutually
singular.

5.1. Example for d = 1

Let us illustrate with the examples based onGaus-
sian probability densities. Working first with d = 1,
choose an initial point x0 from a nowhere vanishing
PH
probability density f0 on R. For j = 1, 2, 3, . . . , let
xj = xj−1 + yj , where yj are a sequence of deviation
values. Choose the value y1 from a unit normal dis-
tribution g1 with mean 0. Given the values y1, . . . , yj ,
choose yj+1 from a normal distribution with mean 0
and standard deviation σj = κ|yj |, where κ > 0 is a
fixed correlation parameter independent of j. Small
values of κ correspond tomore tightly bound systems.
Thus, we have the conditional probability densities
for yj ,

gκj+1(yj+1|yj) (15)

=
(2π)−1/2

κ|yj |
exp

[
− 1

2κ2

(
yj+1

yj

)2
]
.

For sufficiently small values of κ, (yj) converges to 0
(with probability one), while

∑∞
j=1 |yj| <∞.

Let Diffc0(R) denote the stability subgroup of
Diffc(R) consisting of the compactly supported dif-
feomorphisms of R that leave the origin fixed. The
measure on the space of sequences (yj) resulting
from the densities in Eq. (15) is then quasi-invariant
under the action of elements of Diffc0(R). We thus
obtain the random sequence ω = (xk), with xk =
x0 +

∑k
j=1 yj , and the corresponding random con-

figuration γ = {xk}.
Defining the terms uj,φ in Eq. (12) accordingly,

we obtain uj → 1 sufficiently rapidly to ensure con-
vergence of the infinite product. More precisely, there
exists a critical value κ0 such that if 0 < κ < κ0, se-
quences (xj) converge to an accumulation point with
probability one, while if κ0 < κ, sequences diverge
geometrically with probability one. In both cases, the
associated measures on Σ∞

R
are quasi-invariant un-

der compactly supported diffeomorphism of R [32–
34, 37]. The proofs make use of the strong law of large
numbers.
The above is not tied essentially to the use of

normal distributions; all that is really necessary is the
scaling property. Thus, for a whole class of models,
there exists a critical value κ0 of the scaling param-
eter κ. For 0 < κ < κ0, the generalized configuration
{xj} has an accumulation point with probability one;
we call this the condensed phase. For κ0 < κ, {xj}
has zero average density; we call this the rarefied
phase. For each value of κ (except for the critical value
itself), we have a bona fide unitary representation of
Diffc(R), describing the associated quantum system.

5.2. Generalization to d > 1

It was suggested earlier that a procedure similar
to that suggested by Eq. (15) would work in d space
dimensions, d > 1, to yield measures on the space
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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of generalized configurations quasi-invariant under
Diffc(Rd), with the conditional probability density
for yj+1 dependent on the preceding d outcomes
(yj−d+1, . . . ,yj) through the covariance matrix of a
multivariate normal distribution [33, 34]. The gener-
alization obtained by Sakuraba [37] achieves this, but
also involves some new aspects.
Consider a random process where, at each stage,

d vectors in R
d are to be selected. Thus, at each

stage, we choose a d× d random matrix V , and it is
appropriate to think of ω ∈ [Rd]∞ as the sequence of
square matrices ([x1, . . . ,xd], [xd+1, . . . ,x2d], . . . ).
For the square matrix Y = [yij], define the norm

||Y || =
[∑d

i,j=1 y
2
ij

]1/2
. Note that ||Y || is a vector

norm, not the operator norm of the matrix. For Y ∈
GL(d,R), define the condition number k(Y ) = ||Y || ·
||Y −1||. We may write Y = P |Y |, where P is an or-
thogonal matrix and where |Y | =

√
Y tY is positive.

Let τ1, . . . , τd be eigenvalues of the matrix |Y |. Then
||Y || = |||Y |||, and

||Y || =
[

d∑
i=1

τ2
i

]1/2

, ||Y −1|| =


 d∑
j=1

τ−2
j




1/2

,

(16)

k(Y ) =


 d∑
i,j=1

(τi/τj)2




1/2

.

Evidently k(Y ) characterizes the amount of defor-
mation under linear transformation by Y . If Y is not
invertible, then k(Y ) is undefined (or infinite). Such
matrices belong to measure zero sets in the construc-
tions that follow.
We next construct a measure on [GL(d,R)]∞ and

thus on [Rd]∞ quasi-invariant under Diffc0(R
d). De-

fine the probability density function

f(Y ) = C exp
{
− 1

2κ2
[||Y ||k(Y )]2

}
(17)

on the set of d× d matrices, where C is a normal-
ization constant chosen so that

∫
f(Y )dY = 1; here

dY = dy1 · · · dyd. Let µ(k) be the probabilitymeasure
defined by

dµ(k) = f(Y1)
f(Y −1

1 Y2)
|detY1|d

· · ·
f(Y −1

k−1Yk)
|detYk−1|d

dY1 · · · dYk,
(18)

where dµ(k) = dµ(k)(Y1, . . . , Yk). Then µ(k) is con-
centrated on [GL(d,R)]k ; i.e., the set of sequences
with one or more noninvertible matrices is of measure
zero.
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Thenwe again have a critical value κ0. For κ < κ0,
the sequence (Yj) of matrices—and thus the se-
quence of component vectors (yi)—converges to 0
with probability one, while for κ0 < κ, it diverges
with probability one. Furthermore, the projective limit
measure µ on [GL(d,R)]∞ has the desired property
of quasi-invariance under Diffc0(R

d). The presence of
the condition number k(Y ) in Eq. (17) is essential for
the estimates required in demonstrating convergence
of the infinite product in the resulting expression for
the RN derivative. The proof here again uses the
strong law of large numbers.

Equation (17) can be generalized, replacing k(Y )
by k(Y )α (α ≥ 1) and replacing the Gaussian density
by a more general probability density function.

Finally, we may begin with a matrix of positions
X0 = [x1, . . . ,xd] chosen from a nowhere vanishing
probability density. Let x̄0 be the center of position
of the d vectors comprising X0. Now, we may treat
each new matrix Yj as a set of deviations from the
center of position of the preceding set of vectorsXj−1,
so that, with obvious notation, Xj = x̄j−1 + Yj . In
this manner, we obtain a measure on [Rd]∞ quasi-
invariant under Diffc(Rd) that projects to a quasi-
invariant measure on the space Σ∞

Rd of generalized
configurations.

More details about the preceding results may be
found in the thesis of Sakuraba [37] and in forthcom-
ing publications.

6. CONCLUSION

We believe the work summarized here strengthens
the case for basing a theory of statistical physics in
the manifold M on the configuration space ΣM of
countable subsets of M endowed with the Vietoris
topology. Measures obtained from random point pro-
cesses in M project to measures on ΣM , and when
we consider self-similar random processes, we obtain
measures quasi-invariant under the group of com-
pactly supported diffeomorphisms ofM . The problem
of relating these measures to Hamiltonians on a clas-
sical phase space remains open.
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Abstract—The order–disorder (helix-coil) transition in circular closed DNA (ccDNA) is described on the
basis of the open chain DNA (ocDNA) model, proposed earlier, which considers the transition as loop
formation. The Hamiltonian of the ccDNA model is constructed on the basis of the open chain model
taking into account topological restrictions. These restrictions are taken into account through hydrogen
bond reduced energy dependence on the fraction of broken hydrogen bonds in the macromolecule. The
invariance of the order parameter (helicity degree) has been shown for ocDNA and ccDNA. This invariance
results in the interdependence between temperatures of ocDNA and ccDNAwith the same value of helicity
degree. The dependence can be obtained with the help of the derivative of reduced energy of hydrogen
bonding dependence on instantaneous denaturation degree. Thus, it has been shown that the melting curve
of ccDNA can be obtained from the consequent curve of ocDNA through the redefinition of temperature
scale. The calculated and experimentally measured melting curves have been compared under inversion
conditions and qualitative agreement between them is found. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In 1963, R. Dulbecco andM. Vogt and R.Weil and
J. Vinograd discovered that double-stranded DNA of
the polyoma virus exists in a closed circular form. At
present, it is generally acknowledged that this form
is typical of bacterial DNA and of cytoplasmic DNA
in animals. Furthermore, giant DNA molecules in
higher organisms form loop structures held together
by protein fasteners in which each loop is largely
analogous to circular closed DNA (ccDNA). The
distinctive feature of circular closed molecules is that
its topological state cannot be altered by any con-
formational rearrangement short of breaking DNA
strands. This topological constraint is the basis for
the characteristic properties of ccDNA, which have
fascinated biologists, physicists, and mathematicians
for the past 35 years. The first melting experiment of
ccDNA was carried out by Vinograd et al. [1]. They
revealed essential differences in the processes of de-
naturation of ccDNA and open chain DNA (ocDNA).
First of all, it is striking that there is considerable
widening of melting interval. Apart from that, the
melting temperature of ccDNA exceeds the one ob-
tained for ocDNA by about 30◦. Taking into ac-
count the above mentioned, we can conclude that
the process of melting of ccDNA needs theoretical

∗The text was submitted by the authors in English.
1)Yerevan State University, Department of Molecular Physics,
Armenia.

**e-mail: arsenvg@ysu.am
1063-7788/05/6810-1685$26.00
substantiation. The first attempt was made by the
group of Frank-Kamenetskii [2]. The model which
was considered by M.D. Frank-Kamenetskii’s group
was in good agreement with the above-mentioned
experimental data [1, 3]. But then experimental data
contradicting the model of this group were obtained.
Experiments on ccDNA denaturation in so-called
“inverted conditions” were carried out [4, 5]. Under
these conditions, the melting interval of ocDNA was
found to be very narrow, while the melting interval
of ccDNA remained unchanged, that is, very wide.
These experimental results were at variance with the
theoretical model of Frank-Kamenetskii’s group. The
following theoretical investigations of ccDNA were
based on the mean field theory [6–11]. In our last
works [12, 13], we solved the melting of heteroge-
neous ccDNA in the presence of a competing solvent
on the basis of the microscopic model. The goal of the
present work is the analysis of experimental data [4,
5] on the basis of the obtained model [12, 13].

2. THE MODEL FOR THE OPEN CHAIN
AND CLOSED CIRCULAR DNA

We construct the model based on the following
Hamiltonian [14]:

−βH = J

N∑
i=1

δ
(i)
1 , (1)

where β = T−1 is inverse temperature,N is the num-
ber of repeated units, and J = U/(kT ) is the reduced
c© 2005 Pleiades Publishing, Inc.
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energy of internal hydrogen bonding. The notation

δ
(i)
1 = δ

(∑i
k=1 �γk, 0

)
is introduced, with δ (x, 0) be-

ing the Kronecker symbol. �γl = �γ1, �γ2, . . . , �γQ is the
vector which describes the conformation of the lth
repeated unit, and Q is the number of possible values
of this vector. We can explain Eq. (1) as

−βH = J0 (2)

×
N∑
i=1




1, if there is a loop between 0

and ith repeated units,

0, otherwise.

Due to flexibility of the chain, the statistical weight
of conformation with hydrogen bonds connecting any
of the base pairs between the first and lth one strictly
depends on the bonded base pair position along the
chain. Thus, the cooperativity (the interdependence
of conformations) of the system is implicitly included
through real geometrical restrictions on loop forma-
tion. So we construct the Hamiltonian for ccDNA
as the Hamiltonian of ocDNA (1), but the reduced
energy of the hydrogen bonds is a function of the
instantaneous fraction of broken hydrogen bonds in
the molecule: J = J(P ), where

P = 1 − 1
N

N∑
i=1

δ
(i)
1 .

This means that the denaturation rate at each
repeated unit of the macromolecule will depend on the
conformation of the whole chain. Let us expand J over
P (following [12, 13]):

J = J0 +
M∑
k=0

akP
k. (3)

The conformational partition function has the form

Z =
∑
{γk}

exp

[
J0

N∑
i=1

δ
(i)
1 +N

M∑
k=0

bkP
k

]
, (4)

where bk = ak − ak−1. The first term of this relation
is the ocDNA term. The second term is related to
ccDNA and depends on the expansion of J(P ) over
P . Here,M reflects the precision of expansion, bk are
coefficients independent of repeated unit number, and
the remaining notation is as above. We can linearize
the last term of Eq. (4) using the Dirac delta function
as follows:

exp
[
NblP

l
]

=

+∞∫
−∞

dylδ (yl − P ) exp
(
Nbly

l
l

)
. (5)

Substituting Eq. (5) into Eq. (4) and using the in-
tegral representation of the Dirac delta function and
PH
saddle-point method, one can rewrite the partition
function for ccDNA in the case of largeN as [13]

Z ∝ exp

[
N

(
M∑
k=0

(1 − k) bkαk + lnλ1

)]
, (6)

where α = 〈P 〉 is the thermal average denaturation
degree of the basic (open chain) model. Here, λ1 is
the reduced free energy for the ocDNA model, which
for ccDNA becomes the function of energy expansion
over the averaged denaturation degree α of the open
chain model as

λ1 = λ1

(
M∑
k=0

kbkα
k−1 + J0

)
.

We think it is necessary to repeat that, for ocDNA, λ1

is a function dependent only on hydrogen bond energy
J0, as λ1 = λ1 (J0). So we can write the partition
function and describe the problem of ccDNA melting
using ocDNA parameters.

Using expression (6), it is possible to calculate
αcc, which is the denaturation degree for ccDNA,
and to show that it is equal to αoc, which is the
denaturation degree for ocDNA. Because of the fact
that the denaturation degree has the same arguments
as λ1, we can write

αcc

(
M∑
k=0

kbkα
k−1 + J0

)
T=Tcc

(7)

= 〈P 〉 = − ∂ lnZ
NJ0∂b1

= αoc (J0)T=Toc
.

Because of monotonic dependence of the denatura-
tion degree on the temperature parameter, the equal-
ity of denaturation degrees leads to the equality of
arguments, so(

J0 +
M∑
k=0

kbkα
k−1

)
T=Tcc

= (J0)T=Toc
. (8)

It is necessary to note that the left- and right-hand
sides of Eq. (8) are written at different Toc and Tcc
temperatures.

3. MELTING CURVES
FOR ccDNA AND ocDNA

From Eq. (8), we obtain the relationship between
the temperatures corresponding to equal values of
denaturation degrees for ocDNA and ccDNA:

Tcc = Toc

[
1 +

M∑
k=0

k
bk
J0
αk−1

]
. (9)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Fig. 1. The derivative melting curve (DMC) of ϕX174 phages under inverted conditions (Experimental curve) [4, 5] and its
description according to (9).
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Fig. 2. The experimentalDMC of native ocDNAof Calf Thymus in 10−3 NaCl (“I”) andDMCof hypotheticalDMC of ccDNA
under the same conditions.
Equation (9) allows one to calculate the denaturation
curve for ccDNA from the melting curves of corre-
sponding ocDNA, and, what is more, we have found
in [12, 13] that expression (9) is right in the case of
heterogeneous ccDNA in the presence of a competing
solvent.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
4. THE EXPERIMENTAL DATA ANALYSIS
OF HELIX-COIL TRANSITION OF ccDNA
ON THE BASIS OF STATISTICAL MODEL
In Fig. 1, we present the comparison of the experi-

mental data with the calculated data of obtained poly-
nomials with different terms (the cases A−F ). Then,
05
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on the basis of the experimental derivative melting
curve (DMC) of native ocDNA, we have obtained
the DMC of ccDNA using the A−F transformations
which were used in Fig. 1. They are presented in
Fig. 2. As we can see from Fig. 2, the melting of
all ccDNA begins earlier and the transition intervals
are very large. In addition, the DMC of ccDNA ap-
peared to have fine structure when using the A−F
transformation. In contrast, in the case when we use
the temperature transformation formula with expan-
sion up to lower terms, the DMC of ccDNA do not
have fine structure. For quantitative comparison of
the model and the experiment, it is necessary to have
experimental data of melting of a single topoisomeri-
cal fraction.

There is also the possibility of describing the melt-
ing experiment of several topoisomer mixtures. We
think that it can be done by presenting the experi-
mental curve in Fig. 1 as a sum of curves which cor-
respond to the different transformation temperature
formulas. We plan to do this in our next paper.
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Abstract—Spaces of constant curvature and their motion groups are described most naturally in the
Cartesian basis. All these motion groups, also known as CK groups, are obtained from an orthogonal group
by contractions and analytical continuations. On the other hand, quantum deformation of orthogonal group
SO(N) is most easily performed in the so-called symplectic basis. We reformulate its standard quantum
deformation to the Cartesian basis and obtain all possible contractions of quantum orthogonal group
SOq(N) for both untouched and transformed deformation parameters. It turned out that, similar to the
undeformed case, all CK contractions of SOq(N) are realized. An algorithm for obtaining nonequivalent (as
Hopf algebra) contracted quantum groups is suggested. Contractions of SOq(N), N = 3, 4, 5, are regarded
as examples. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Systematic definitions of quantum deformations
of classical simple Lie groups and algebras, as well
as a description of their properties, were given in [1].
Simple Lie groups and algebras are transformed by
the contraction operation first introduced by Wigner
and Inönü [2] to nonsemisimple ones. Quantum
analogs of the nonsemisimple low-dimension Lie
algebras were obtained by contractions of quan-
tum algebras soq(3), suq(2) [3–7] and contractions
of low-dimension quantum groups were discussed
in [8–10]. Two types of contractions were discovered:
with untouched deformation parameter (in [3, 6] for
quantum algebras and in [9, 10] for quantum groups)
and with transformed deformation parameter [4, 5, 7,
8]. For the latter case, the quantum deformations of
the algebras of themaximal symmetric motion groups
of the N-dimensional flat spaces were constructed
in [11]. The γ-Poincare quantum group was obtained
by contractions of the orthogonal quantum group
SOq(N) [12]. The quantum Euclid group Eκ(2) was
described both by contraction of SUq(2) [13] and by
direct quantization of the Lie–Poisson structure [14].
A separate line of investigation is presented by theR-
matrix approach to the quantum analogs of Euclid,
Heisenberg, and inhomogeneous groups [15–18].

It is well known [19] that the motion groups of
all 3N−1 (N − 1)-dimensional constant curvature

∗The text was submitted by the authors in English.
1)Department of Mathematics, Komi Science Center, Ural
Division, Russian Academy of Sciences, Syktyvkar, 167982
Russia.

**e-mail: gromov@dm.komisc.ru
1063-7788/05/6810-1689$26.00
spaces may be obtained by contractions and ana-
lytic continuations of the classical orthogonal group
SO(N). Cayley–Klein groups is the short name
for this set of groups. The fundamental orthogonal
AtA = I matrixA ∈ SO(N) is replaced by the matrix
A(j) whose elements (A(j))kp = (k, p)akp, (k, p) =∏max{k,p}−1
l=min{k,p} jl, k, p = 1, . . . , N are subject to ad-

ditional j-orthogonality relations A(j)tA(j) = 1,
where the parameters jk take three values each
jk = 1, ιk, i. The commutative ιkιp = ιpιk �= 0, k �= p

nilpotent ι2k = 0 units ιk correspond to contractions
and the imaginary unit i2 = −1 to analytic continua-
tions.

In the case of the quantum orthogonal group
SOq(N), additionally the deformation parameter q =
exp z is transformed as follows [20]: z = Jv, J =
(1, N), where v is the new deformation parameter.
At the same time, the quantum group contractions
with an untransformed deformation parameter are
known [9, 10]. For unification of both such cases
in one approach, the concept of different couplings
of Cayley–Klein and Hopf structures was sug-
gested [21, 22]. It is well known that quantum groups
are Hopf algebras and the Cayley–Klein structure
is defined by the distribution of the contraction
parameters j among the elements of the generating
matrix. For the quantum orthogonal group in the
so-called “symplectic” basis (where the invariant
quadratic form for q = 1 is defined by the matrix C0

with all null elements except units on the secondary
diagonal), this concept was realized in [23–25] by the
substitution, in the standard machinery of quantum
group, of the generating matrixTσ(j) = DσA(j)D−1

σ ,
Dσ = DVσ, where the matrix D is the solution to the
c© 2005 Pleiades Publishing, Inc.
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equation DtC0D = I and describes transformation
from the Cartesian basis to the symplectic one.
The matrix Vσ, (Vσ)ik = δσi,k, where σ ∈ S(N) is a
N-order permutation, defines the distribution of the
contraction parameters in Tσ(j). In this case, the
transformation of the deformation parameter depends
on permutation σ. All permutations which lead to an
untouched (J = 1) deformation parameter and some
permutations which correspond to transformed ones
are enumerated in [23–25]. The contracted quantum
groups SOv(N ; j;σ) in these papers were regarded as
a Hopf algebra over Pimenov algebra D(ι) generated
by nilpotent commutative generators. It turned out
that not all Cayley–Klein contractions are admissible
for quantum groups in this assumption, which there-
fore is too restrictive.

The main statement of the algebraic structure
contraction method is to take into account in all rela-
tions only principal parts with respect to contraction
parameter tending to zero and to neglect all others.
Therefore, in this paper, in all relations of quantum
group theory, only principal (complex) terms are
taken into account and all other terms with nilpotent
multipliers are neglected. In addition, contractions
of orthogonal quantum groups SOv(N ; j;σ) are
regarded in the more usual Cartesian basis. For an
untouched deformation parameter, the results are
the same as in [23–25], and for all other permu-
tations, the deformation parameter is multiplied by
J =

⋃n
k=1(σk, σk′), where n is integral part of N/2.

The unification of multipliers (σk, σp) ∪ (σm, σr) is
understood as the first-power product of all pa-
rameters jk which appear in at least one multiplier
(σk, σp) or (σm, σr). For example, (j1j2) ∪ (j2j3) =
j1j2j3. It turned out that the full scheme of Cayley–
Klein contractions is realized for the quantum group
SOq(N). Not all identically contracted quantum
groups corresponding to different permutations σ
are nonisomorphic. Quantum group isomorphism is
connected with the notion of equivalent distributions
of nilpotent parameters in the generating matrix.
Nonisomorphic contracted quantum groups corre-
spond in the first place to generating matrices with
nonequivalent distributions of nilpotent parameters
and secondly to equivalent generating matrices but
with different transformations of the deformation pa-
rameter (J1 �= J2). As an example, quantum groups
SOv(3; j;σ) are considered in detail and noniso-
PH
morphic contractions are given for quantum groups
SOv(N ; j;σ), N = 4, 5.

2. DEFINITION OF QUANTUM GROUP
SOv(N ; j;σ)

Let us start with an algebra D〈(U(j;σ))ik〉 of
noncommutative polynomials of N2 variables, which
are elements of the generating matrix (U(j;σ))ik =
(σi, σk)uσiσk

. Let us introduce the transformation of
the deformation parameter q = ez as follows: z = Jv,
where v is a new deformation parameter and J is some
product of parameters j for the present unknown. Let
R̃v(j), C̃v(j) be matrices which are obtained from
R̃q , C̃, respectively, by the replacement of deformation
parameter z with Jv. The commutation relations of
the generators U(j;σ) are defined by

R̃v(j)U1(j;σ)U2(j;σ) (1)

= U2(j;σ)U1(j;σ)R̃v(j),

where

U1(j;σ) = U(j;σ) ⊗ I, U2(j;σ) = I ⊗ U(j;σ),

U(j;σ) = VσU(j)V −1
σ , (Vσ)ik = δσik,

R̃v(j) = (D ⊗D)−1Rv(j)(D ⊗D),
Rv(j) = Rq(z → Jv),

D−1 =
1√
2




I 0 C̃0

0
√

2 0

iC̃0 0 −iI


 , N = 2n + 1,

C̃0 is the n× n matrix with all null elements except
units on the secondary diagonal, and the explicit form
of the matrix R̃q in the Cartesian basis is given in the
Appendix. The following additional relations of (v, j)
orthogonality hold:

U(j;σ)C̃v(j)U t(j;σ) = C̃v(j), (2)

U t(j;σ)C̃−1
v (j)U(j;σ) = C̃−1

v (j),

whereC = C0q
ρ, and ρ = diag(ρ1, . . . , ρN ), (C0)ik =

δi′k, i, k = 1, . . . , N , i′ = N + 1 − i, that is,
(C)ik = qρi′δi′k and (C−1)ik = q−ρiδi′k, C̃v(j) =
D−1Cv(j)(Dt)−1,
(ρ1, . . . , ρN ) =



(
n− 1

2
, n − 3

2
, . . . ,

1
2
, 0,−1

2
, . . . ,−n +

1
2

)
, N = 2n + 1,

(n − 1, n− 2, . . . , 1, 0, 0,−1, . . . ,−n + 1), N = 2n.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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The quantum orthogonal Cayley–Klein group
SOv(N ; j;σ) is defined as the quotient algebra of
D〈(U(j;σ))ik〉 by relations (1), (2).

Formally, SOv(N ; j;σ) is a Hopf algebra with the
following coproduct ∆, counit ε, and antipode S:

ε(U(j;σ)) = I, (3)

∆U(j;σ) = U(j;σ)⊗̇U(j;σ),

S(U(j;σ)) = C̃v(j)U t(j;σ)C̃−1
v (j),

where (A⊗̇B)ik =
∑

pAip ⊗Bpk.

Remark. All relations for the quantum group
SOv(N ; j;σ) may be obtained from the correspond-
ing relations for SOq(N) in the Cartesian basis [20]
by the replacement z → Jv and uik → (σi, σk)uσiσk

.

3. THE BASIC THEOREM

According to the algebraic structure contraction
method, in all relations of the previous section for
nilpotent values of j, only principal (complex) terms
are taken into account and all other terms with
nilpotent multipliers are neglected. The relation is
called admissible if it is possible to select principal
terms. Otherwise, the relation is called inadmis-
sible. For example, the equation a + ι1b + ι2c =
a1 + ι1d is an admissible equation and is equivalent
to a = a1, whereas the equation ι1b + ι2c = ι1ι2d is
inadmissible.

The formal definition of the quantum group
SOv(N ; j;σ) should be a real definition of the con-
tracted quantum group if the proposed construction
is a consistent Hopf algebra structure for the principal
terms of all relations under nilpotent values of some
or all parameters j, in other words, if all relations of
the previous section are admissible. The following
theorem holds.

Theorem. If commutation relations (1) of
SOv(N ; j;σ) are defined for nilpotent values of
some or all parameters j and J =

⋃n
k=1(σk, σk′),

then the contracted quantum group is Hopf alge-
bra.

Proof. Let us prove the consistency of
our construction for the most singular case
when all parameters j are nilpotent. Counit
ε(uσiσk

) = 0, i �= k, ε(uσkσk
) = 1, k = 1, . . . , n do

not restrict the values of j. Multiplier Cikr =
(σi, σr)(σr, σk)(σi, σk)−1 in coproduct ∆(uσiσk

) =∑N
r=1 Cikruσiσr ⊗ uσrσk

is equal to 1 if σi < σr < σk,
is equal to (σk, σr)2 if σi < σk < σr, and is equal to
(σr, σk)2 if σr < σk < σi; therefore, all expressions
for the coproduct are admissible for nilpotent values
of all j. Because of symmetry (σi, σk) = (σk, σi), it is
sufficient to examine the case σk < σi.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
From the analysis of explicit expressions
of antipode S(U(j;σ)) and (v, j)-orthogonality
relations [26, 27], it follows that all expressions are
admissible for any permutations and for nilpotent
values of any parameters; therefore, they do not
restrict contractions of the quantum group.

Remark 1. To examine the existence of the com-
mutation relations (1) of SOv(N ; j;σ) under con-
traction for arbitrary σ, it is necessary to have their
explicit form at least for identical permutation σ0. The
system (1) is overdetermined and cumbersome, so we
obtain its solution only forN = 3.

Remark 2. For identical permutation σ0 all
Cayley–Klein contractions of quantum group
SOv(N ; j;σ0) are allowed. Indeed, commutation
relations for j1 = ι1 are given in [12] and they do not
restrict all other contractions jr = ιr, r = 2, 3, . . . ,
N − 1.

4. NONISOMORPHIC CONTRACTED
QUANTUM GROUPS

If all parameters jk = 1, then the map uik →
(σi, σk)uσiσk

is invertible and all quantum groups
SOv(N ; j;σ) for any σ ∈ SN are isomorphic as Hopf
algebras. Nonisomorphic quantum groups may ap-
pear under contractions when all or some parameters
j take nilpotent values. It is clear that nonisomorphic
quantum groups appear under contractions with
different numbers of parameters. Contractions on
the same parameters, but with different transfor-
mations of deformation parameter (with different
J) naturally give in result nonisomorphic quantum
groups. Isomorphic quantum groups may appear
under contractions of SOv(N ; j;σ) with different σ
by equal numbers of parameters, when multiplier J
includes equal numbers of parameters (but not nec-
essarily the same) or when J = 1. In our approach,
contractions of quantum groups (even on equal
numbers of parameters) are distinguished by the
distributions of nilpotent parameters j in generating
matrix U(j;σ). Really, all relations of quantum group
theory (commutators, (v, j) orthogonality, antipode,
coproduct, and counit) depend on permutation σ
by means of a generating matrix, while matrices
Rv(j), Cv(j) depend on σ via transformations of a
deformation parameter, that is, via J . Isomorphism of
contracted quantum orthogonal groups is described
by the following theorem.

Theorem. Quantum groups SOv(N ; j;σ1) and
SOw(N ; j;σ2) are isomorphic if the following re-
lations for their generators hold:

U(j;σ1) = VσU(j;σ2)V −1
σ , (4)
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where matrix Vσ, σ ∈ SN satisfies

(Vσ ⊗ Vσ)R̃w(j)(Vσ ⊗ Vσ)−1 = R̃v(j), (5)

VσC̃w(j)V t
σ = C̃v(j)

for w = ±v and J1 = J2 with possible replacement
of jk on jN−k, k = 1, . . . , N − 1.

Proof.Commutation relations (1) ofSOv(N ; j;σ1)
after transformation (4) take the form

R̃v(j)(Vσ ⊗ Vσ)U1(j;σ2)U2(j;σ2)(Vσ ⊗ Vσ)−1

= (Vσ ⊗ Vσ)U2(j;σ2)U1(j;σ2)(Vσ ⊗ Vσ)−1R̃v(j)

or after left multiplying on (Vσ ⊗ Vσ)−1 and right
multiplying on Vσ ⊗ Vσ, in the form

(Vσ ⊗ Vσ)−1R̃v(j)(Vσ ⊗ Vσ)U1(j;σ2)U2(j;σ2)

= U2(j;σ2)U1(j;σ2)(Vσ ⊗ Vσ)−1R̃v(j)(Vσ ⊗ Vσ),

which give the first equation in (5). Antipode (3) after
transformation (4) takes the form

VσS(U(j;σ2))V −1
σ

= C̃v(j)
(
V −1
σ

)t
U t(j;σ2)V t

σC̃
−1
v (j)

or
S(U(j;σ2))

= V −1
σ C̃v(j)

(
V −1
σ

)t
U t(j;σ2)V t

σC̃
−1
v (j)Vσ .

The last equation is just the antipode ofSOv(N ; j;σ2)
if one takes into account the second equation in (5).
Finally, (v, j)-orthogonality relations (2) after (4)
take the form

VσU(j;σ2)V −1
σ C̃v(j)

(
V −1
σ

)t
U t(j;σ2)V t

σ = C̃v(j)

or

U(j;σ2)V −1
σ C̃v(j)

(
V −1
σ

)t
U t(j;σ2)

= V −1
σ C̃v(j)

(
V t
σ

)−1
,

which evidently is condition (5) for matrix C̃v(j).
As a consequence of the theorem is the following

algorithm of obtaining of nonisomorphic contracted
quantum groups. One calls two distributions of nilpo-
tent parameters among elements of generating ma-
trices U(j;σ1), U(j;σ2) equivalent if they are con-
nected by two operations: (i) they pass in each other
by the permutations of the same columns and rows
of generating matrices, that is, by (4); (ii) matrices
pass in each other by reflection relative to the sec-
ondary diagonal with possible simultaneous replace-
ment of jk with jN−k, k = 1, . . . , N − 1. Nonisomor-
phic contracted quantum groups correspond, in the
first place, to the nonequivalent generating matrices
and, secondly, to equivalent generating matrices, but
with different transformations of deformation param-
eters (J1 �= J2). For illustration of the algorithm,
PH
all nonequivalent contractions of quantum groups
SOv(N ; j;σ), N = 3, 4, 5 shall be considered in the
following sections.

5. QUANTUM GROUPS SOv(3; j;σ)

Quantum group SOq(3) has four nonisomor-
phic contracted groups: two Euclid groups E0

v (2) =
SOv(3; ι1, j2;σ0), J = ι1, Ez(2) = SOz(3; ι1, 1;σ),
J = 1, where σ0 = (1, 2, 3), σ = (2, 1, 3), and two
Galilei groups G0

v(2) = SOv(3; ι1, ι2;σ0), J = ι1ι2,
Gv(2) = SOv(3; ι1, ι2;σ), J = ι2. For comparison,
nondeformed complex rotation group SO(3) has
two nonisomorphic Cayley–Klein contracted groups:
Euclid groupE(2) and Galilei groupG(2).

5.1. Quantum Groups SOv(3; j;σ0), σ0 = (1,2,3)

Let C1 = cosh Jv, S1 = sinh Jv, J = j1j2. The
generating matrix

U(j) =




u11 j1u12 j1j2u13

j1u21 u22 j2u23

j1j2u31 j2u32 u33


 (6)

satisfies (v, j)-orthogonality relations: (i) U(j) ×
Cv(j)U t(j) = Cv(j), i.e.,

iJS1[u13, u11] = C1(u2
11 + J2u2

13 − 1) + j2
1u

2
12, (7)

iJS1[u23, u21] = C1(j2
1u

2
21 + j2

2u
2
23) + u2

22 − 1,

iJS1[u33, u31] = C1(J2u2
31 + u2

33 − 1) + j2
2u

2
32,

u11u21j1C1 − iu13u21j1JS1 + j1u12u22

+ u13u23j2JC1 + iu11u23j2S1 = 0,

u11u31JC1 − iu13u31J
2S1 + Ju12u32

+ u13u33JC1 + iu11u33S1 = iS1,

u21u31j1JC1 − iu23u31j2JS1 + j2u22u32

+ j2u23u33C1 + iu21u33j1S1 = 0,
u21u11j1C1 − iu23u11j2S1 + j1u22u12

+ u23u13j2JC1 + iu21u13j1JS1 = 0,
u31u11JC1 − iu33u11S1 + Ju32u12

+ u33u13JC1 + iu31u13J
2S1 = −iS1,

u31u21j1JC1 − iu33u21j1S1 + j2u32u22

+ u33u23j2C1 + iu31u23j2JS1 = 0,

and (ii) U(j)tC−1
v (j)U(j) = C−1

v (j), i.e.,

iJS1[u11, u31] = C1(u2
11 + J2u2

31 − 1) + j2
1u

2
21, (8)

iJS1[u12, u32] = C1(j2
1u

2
12 + j2

2u
2
32) + u2

22 − 1,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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iJS1[u13, u33] = C1(u2
33 + J2u2

13 − 1) + j2
2u

2
23,

j1u11u12C1 + iu31u12j1JS1 + j1u21u22

+ Ju31u33C1 − iu11u33S1 = 0,

Ju11u13C1 + iu31u13J
2S1 + Ju21u23

+ Ju13u33C1 − iu11u33S1 = −iS1,

j1Ju12u13C1 + iu32u13j2JS1 + j2u22u23

+ j2u32u33C1 − iu12u33j1S1 = 0,
j1u12u11C1 + iu32u11j2S1 + j1u22u21

+ j2Ju32u31C1 − iu12u31j1JS1 = 0,
Ju13u11C1 + iu33u11S1 + Ju23u21

+ Ju33u31C1 − iu13u31J
2S1 = iS1,

j1Ju13u12C1 + iu33u12j1S1 + j2u23u22

+ j2u33u32C1 − iu13u32j2JS1 = 0.

There are three independent generators, for example,
u12, u13, u23, which are situated above the diagonal.
Their commutators are obtained from RUU relations
R̃v(j)U1(j)U2(j) = U2(j)U1(j)R̃v(j) and are in the
form

[u12, u23] = i
sinh Jv

J
u22(u11 − u33), (9)

[u13, u23] = u23

{
(cosh Jv − 1)u13 − i

sinh Jv

J
u33

}
,

[u12, u13] =
{

(cosh Jv − 1)u13 + i
sinh Jv

J
u11

}
u12.

An associative algebra SOv(3; j;σ0) is a Hopf
algebra with counit ε(U(j)) = I, i.e., ε(uik) = 0,
ε(ukk) = 1, coproduct ∆U(j) = U(j)⊗̇U(j) in the
form

∆u12 = u11 ⊗ u12 + u12 ⊗ u22 + j2
2u13 ⊗ u32, (10)

∆u21 = u21 ⊗ u11 + u22 ⊗ u21 + j2
2u23 ⊗ u31,

∆u23 = u22 ⊗ u23 + u23 ⊗ u33 + j2
1u21 ⊗ u13,

∆u32 = u32 ⊗ u22 + u33 ⊗ u32 + j2
1u31 ⊗ u12,

∆u13 = u11 ⊗ u13 + u12 ⊗ u23 + u13 ⊗ u33,

∆u31 = u31 ⊗ u11 + u32 ⊗ u21 + u33 ⊗ u31,

∆u11 = u11 ⊗ u11 + j2
1u12 ⊗ u21 + J2u13 ⊗ u31,

∆u22 = u22 ⊗ u22 + j2
1u21 ⊗ u12 + j2

2u23 ⊗ u32,

∆u33 = u33 ⊗ u33 + j2
2u32 ⊗ u23 + J2u31 ⊗ u13,

and antipode S(u(j)) = Cv(j)U t(j)C−1
v (j), where

S(u12) = u21cosh
(
Jv

2

)
+ ij2

2u23
1
J
sinh

(
Jv

2

)
,

(11)
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S(u21) = u12cosh
(
Jv

2

)
+ ij2

2u32
1
J
sinh

(
Jv

2

)
,

S(u23) = u32cosh
(
Jv

2

)
− ij2

1u12
1
J
sinh

(
Jv

2

)
,

S(u32) = u23cosh
(
Jv

2

)
− ij2

1u21
1
J
sinh

(
Jv

2

)
,

S(u13) = u31cosh2

(
Jv

2

)
+ u13sinh2

(
Jv

2

)

+ i
1
2
(u33 − u11)

1
J
sinh(Jv),

S(u31) = u13cosh2

(
Jv

2

)
+ u31sinh2

(
Jv

2

)

+ i
1
2
(u33 − u11)

1
J
sinh(Jv),

S(u11) = u11cosh2

(
Jv

2

)
− u33sinh2

(
Jv

2

)

+ i
1
2
(u13 + u31)Jsinh (Jv),

S(u33) = u33cosh2

(
Jv

2

)
− u11sinh2

(
Jv

2

)

− i
1
2
(u13 + u31)Jsinh (Jv), S(u22) = u22.

Remark.Coproduct and counit of SOv(3; j;σ) are
the same for any permutation σ. Only antipode, com-
mutation, and (v; j)-orthogonality relations depend
on σ.

For j1 = ι1 quantum Euclid group E0
v (2) =

SOv(3; ι1, j2;σ0), J = ι1 is obtained. From (v; j)-
orthogonality relations, it follows that u11 = 1, u22 =
u33, u23 = −u32, and fromRUU equations, it follows
that all these generators commute and generate
rotation group SO(2). Therefore, it is natural to intro-
duce new notation u22 = u33 = cosϕ, u23 = sinϕ =
−u32, and rewrite the generating matrix as

U(ι1;σ0) =




1 ι1u12 ι1u13

ι1u21 cosϕ sinϕ

ι1u31 − sinϕ cosϕ


 ∼



· ◦ ◦

· ·
·


 ,

(12)

where from (v; j)-orthogonality relations it follows
that

u21 = −
(
u12 cosϕ + u13 sinϕ + i

v

2
sinϕ

)
, (13)

u31 = u12 sinϕ− u13 cosϕ + i
v

2
(1 − cosϕ).

Here and later, the distribution of nilpotent param-
eters among elements of the generating matrix is
shown with the help of some notation: ◦ = ι1, • = ι2,
05
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× = ι1ι2. (Let us recall that this distribution is sym-
metric relatively diagonal.) Dots denote complex ele-
ments. Commutation relations of independent gener-
ators are as follows:

[u12, sinϕ] = iv cosϕ(1 − cosϕ), (14)

[sinϕ, u13] = iv sinϕ cosϕ, [u12, u13] = ivu12.

The coproduct of quantum Euclid group is given by

∆u12 = 1 ⊗ u12 + u12 ⊗ cosϕ− j2
2u13 ⊗ sinϕ,

(15)

∆u13 = 1 ⊗ u13 + u12 ⊗ sinϕ + u13 ⊗ cosϕ,
∆ sinϕ = cosϕ⊗ sinϕ + sinϕ⊗ cosϕ,

∆ϕ = 1 ⊗ ϕ + ϕ⊗ 1;

the antipode is as follows:

S(u12) = −u12 cosϕ− u13 sinϕ, (16)

S(u13) = −u13 cosϕ + u12 sinϕ, S(ϕ) = −ϕ;

and the counit of independent generators is equal to
zero: ε(u12) = ε(u13) = ε(ϕ) = 0.

If u21, u31, ϕ are taken as independent generators,
then Eqs. (13)–(16) are rewritten in the following
way: from (v; j)-orthogonality relations

u12 = −u21 cosϕ + u31 sinϕ− i
v

2
sinϕ, (17)

u13 = −u21 sinϕ− u31 cosϕ− i
v

2
(1 − cosϕ),

commutation relations

[u21, sinϕ] = iv cosϕ(1 − cosϕ), (18)

[sinϕ, u31] = −iv sinϕ cosϕ, [u31, u21] = ivu21;

coproduct

∆u21 = u21 ⊗ 1 + cosϕ⊗ u21 + sinϕ⊗ u31; (19)

∆u31 = u31 ⊗ 1 − sinϕ⊗ u21 + cosϕ⊗ u31,

∆ϕ = 1 ⊗ ϕ + ϕ⊗ 1;

antipode

S(u21) = −u21 cosϕ + u31 sinϕ− iv sinϕ, (20)

S(u31) = −u31 cosϕ− u21 sinϕ + iv(cosϕ− 1),
S(ϕ) = −ϕ;

and counit ε(u21) = ε(ϕ) = ε(u31) = 0.

Under contraction j2 = ι2 quantum analog
N0
v (2) = SOv(3; j1, ι2;σ0), J = ι2 of cylindrical

group or Newton group N(2) is obtained. Similarly
to previous case, with the help of (v, j)-orthogonality
PH
relations, the generating matrix may be written in the
form

U(ι2;σ0) =




cosψ sinψ ι2u13

− sinψ cosψ ι2u23

ι2u31 ι2u32 1


 ∼



· · •
· •

·


 ,

(21)

where

u31 = u23 sinψ − u13 cosψ + i
v

2
(1 − cosψ), (22)

u32 = −u23 cosψ − u13 sinψ − i
v

2
sinψ,

and independent generators are subject to commuta-
tion relations

[sinψ, u23] = iv cosψ(cosψ − 1), (23)

[u23, u13] = ivu23, [sinψ, u13] = iv sinψ cosψ.

The Hopf algebra is defined by coproduct

∆(sinψ) = cosψ ⊗ sinψ + sinψ ⊗ cosψ, (24)

∆(ψ) = 1 ⊗ ψ + ψ ⊗ 1,

∆u13 = u13 ⊗ 1 + cosψ ⊗ u13 + sinψ ⊗ u23,

∆u23 = u23 ⊗ 1 + cosψ ⊗ u23 − j2
1 sinψ ⊗ u13;

by antipode

S(u13) = u31 + i
v

2
(u33 − u11) (25)

= u23 sinψ − u13 cosψ + iv(1 − cosψ),

S(u23) = u32 − i
v

2
j2
1u12 = −u23 cosψ

− u13 sinψ − iv sinψ, S(ψ) = −ψ;

and by counit ε(ψ) = ε(u13) = ε(u23) = 0.

The distribution of ι1 in matrix (12) is passed
to the distribution of ι2 in matrix (21) under re-
flection on secondary diagonal and simultaneous
substitution J = ι1 by J = ι2. This means that the
quantum Euclid group E0

v (2) = SOv(3; ι1, 1;σ0) is
isomorphic to the quantum Newton group N0

v (2) =
SOv(3; 1, ι2;σ0) as well as in the nondeformed case.
Under substitution u31 on u13, u21 on u23, ϕ on
−ψ, and v on −v, commutation relations (18) are
transformed in (23), coproduct (19) is transformed
in (24), and antipode (20) is transformed in (25).

Two-dimensional contraction j1 = ι1, j2 = ι2
gives quantum Galilei group G0

v(2) = SOv(3; ι1, ι2;
σ0), J = ι1ι2. With the help of (v; j)-orthogonality
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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relations, the generating matrix may be written in the
form

U(ι;σ0) (26)

=




1 ι1u12 ι1ι2u13

−ι1u12 1 ι2u23

ι1ι2u31 −ι2u23 1


 ∼



· ◦ ×
· •

·


 ,

where u31 = −u13 + u12u23, and independent gener-
ators satisfy commutation relations

[u12, u23] = 0, [u23, u13] = ivu23, (27)

[u12, u13] = ivu12.

The Hopf algebra structure is given by coproduct

∆u12 = 1 ⊗ u12 + u12 ⊗ 1, (28)

∆u23 = 1 ⊗ u23 + u23 ⊗ 1,
∆u13 = 1 ⊗ u13 + u13 ⊗ 1 + u12 ⊗ u23;

antipode

S(u12) = −u12, S(u13) = −u13 + u12u23, (29)

S(u23) = −u23;

and standard counit ε(u12) = ε(u13) = ε(u23) = 0.

5.2. Quantum Groups SOv(3; j;σ), σ = (2,1,3)

The deformation parameter is transformed by
multiplication on J = (σ1, σ3) = (2, 3) = j2. Com-
mutators, (v, j)-orthogonality relations, and antipode
are easily obtained from corresponding formulas of
SOz(3) = SOv(3; j = 1;σ0) by interchange of in-
dices 1 and 2 and then by standard reconstruction
of contraction parameters j. In particular, the gener-
ating matrix is as follows:

U(j;σ) =




u22 j1u21 j2u23

j1u12 u11 j1j2u13

j2u32 j1j2u31 u33


 . (30)

The commutation relations of independent generators
are

j2
1 [u21, u13] = i

1
j2
sinh(j2v)u11(u22 − u33), (31)

[u23, u13] = u13

{
1
j2

(cosh j2v − 1)u23

− i
1
j2
sinh(j2v)u33

}
,

[u21, u23] =
{

1
j2

(cosh j2v − 1)u23
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+ i
1
j2
sinh(j2v)u22

}
u21.

The antipode is easily obtained by the transformations
of (11)

S(u21) = u12cosh
(
j2
v

2

)
+ ij2

2u13
1
j2
sinh

(
j2
v

2

)
,

(32)

S(u12) = u21cosh
(
j2
v

2

)
+ ij2

2u31
1
j2
sinh

(
j2
v

2

)
,

S(u13) = u31cosh
(
j2
v

2

)
− iu21

1
j2
sinh

(
j2
v

2

)
,

S(u31) = u13cosh
(
j2
v

2

)
− iu12

1
j2
sinh

(
j2
v

2

)
,

S(u23) = u32cosh2
(
j2
v

2

)
+ u23sinh2

(
j2
v

2

)
+ i

1
2
(u33 − u22)

1
j2
sinh(j2v),

S(u32) = u23cosh2
(
j2
v

2

)
+ u32sinh2

(
j2
v

2

)
+ i

1
2
(u33 − u22)

1
j2
sinh(j2v),

S(u22) = u22cosh2
(
j2
v

2

)
− u33sinh2

(
j2
v

2

)
+

i

2
(u23 + u32)j2sinh(j2v),

S(u33) = u33cosh2
(
j2
v

2

)
− u22sinh2

(
j2
v

2

)
− i

2
(u23 + u32)j2sinh(j2v), S(u11) = u11.

The coproduct and counit are not changed and are
given by (10), which correspond to identical permu-
tation σ0.

Contraction j1 = ι1 leaves the deformation pa-
rameter fixed since J = j2 = 1 and gives new quan-
tum Euclid group Ez(2) = SOz(3; ι1, 1;σ) with the
matrix

U(ι1;σ) =




cosϕ ι1u21 sinϕ

ι1u12 1 ι1u13

− sinϕ ι1u31 cosϕ


 ∼



· ◦ ·

· ◦
·


 ,

(33)

where the generators are

u11 = 1, u22 = u33 = cosϕ, (34)

u23 = −u32 = sinϕ,

u12 cos
(
ϕ− i

v

2

)
= −

(
u21 + u13 sin

(
ϕ− i

v

2

))
,

05
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u31 cos
(
ϕ− i

v

2

)
= −

(
u13 + u21 sin

(
ϕ− i

v

2

))
,

and the commutation relations

[u21, u13] = 0, (35)

[u13, sinϕ] = 2isinh
z

2
u13 cos

(
ϕ− i

z

2

)
,

[u21, sinϕ] = 2isinh
z

2
cos
(
ϕ + i

z

2

)
u21

hold. The antipode is given by

S(u21) = u12cosh
z

2
+ iu13sinh

z

2
, (36)

S(u13) = u31cosh
z

2
− iu21sinh

z

2
,

S(ϕ) = −ϕ,

and the coproduct is in the form

∆u13 = 1 ⊗ u13 + u13 ⊗ cosϕ + u12 ⊗ sinϕ, (37)

∆u21 = cosϕ⊗ u21 + u21 ⊗ 1 + sinϕ⊗ u31,

∆ϕ = 1 ⊗ ϕ + ϕ⊗ 1.

Quantum Newton group Nv(2) = SOv(3; 1, ι2;
σ), J = ι2 is described by relations u33 = 1, u11 =
u22 = cosψ, u21 = sinψ = −u12; i.e., the generating
matrix is in the form

U(ι2;σ) =




cosψ sinψ ι2u23

− sinψ cosψ ι2u13

ι2u32 ι2u31 1


 ∼



· · •
· •

·


 ,

(38)

where

u31 = −u13 cosψ − u23 sinψ − i
v

2
sinψ, (39)

u32 = −u23 cosψ + u13 sinψ + i
v

2
(1 − cosψ),

and the commutation relations

[sinψ, u13] = iv cosψ(cosψ − 1), (40)

[sinψ, u23] = iv cosψ sinψ, [u23, u13] = −ivu13

hold for independent generators. The antipode is
given by

S(u13) = −u13 cosψ − u23 sinψ − iv sinψ, (41)

S(ψ) = −ψ,

S(u23) = −u23 cosψ + u13 sinψ + iv(1 − cosψ),

and the coproduct is

∆ψ = 1 ⊗ ψ + ψ ⊗ 1, (42)

∆u23 = u23 ⊗ 1 + cosψ ⊗ u23 + sinψ ⊗ u13,

∆u13 = u13 ⊗ 1 + cosψ ⊗ u13 − sinψ ⊗ u23.
PH
Generating matrices (38) and (21) are equal from
the viewpoint of nilpotent unit distribution, while for-
mulas (39)–(42) pass to (22)–(25) under substitu-
tion u13 on u23 and u23 on u13. Thus, both quantum
groups are isomorphicNv(2) � N0

v (2) � E0
v (2).

For quantum Galilei group Gv(2) = SOv(3; ι1,
ι2; σ), J = ι2, it follows from (v, j)-orthogonality re-
lations that u11 = u22 = u33 = 1 and the generating
matrix takes the form

U(ι;σ) =




1 ι1u21 ι2u23

−ι1u12 1 ι1ι2u13

−ι2u23 ι1ι2u31 1


 ∼



· ◦ •
· ×

·


 ,

(43)

where u31 = −u13 − u21u23 + i
v

2
u21; the commuta-

tion relations are
[u21, u13] = 0, [u23, u13] = −ivu13, (44)

[u21, u23] = ivu21;

the antipode may be written as
S(u21) = −u21, S(u23) = −u23, (45)

S(u13) = −u13 − u21u23;

and the coproduct is
∆u21 = 1 ⊗ u21 + u21 ⊗ 1, (46)

∆u23 = 1 ⊗ u23 + u23 ⊗ 1,
∆u13 = 1 ⊗ u13 + u13 ⊗ 1 + u21 ⊗ u23.

Let us stress that Gv(2) is not isomorphic to
G0
v(2), in spite of the fact that both matrices (43), (26)

are equivalent from the viewpoint of nilpotent unit
distribution, but deformation parameters are trans-
formed in a different way, namely, with multipliers J =
ι2 and J = ι1ι2, respectively. Therefore commutation
relations (27), (44), antipodes (29), (45), and counits
pass in each other under substitution u13 on u23 and
vice versa, but in coproduct (28), ∆(u13) does not
pass in ∆(u23) from (46).

5.3. Quantum Groups SOv(3; j;σ), σ = (1,3,2)
The deformation parameter is multiplied by J =

(σ1, σ3) = (1, 2) = j1. Commutators, (v, j)-ortho-
gonality relations and antipode are easily obtained
from corresponding formulas of SOz(3) = SOv(3; 1,
1; σ0) by interchange of indices 2 and 3 and then by
standard reconstruction of contraction parameters j.
In particular, the generating matrix is as follows:

U(j;σ) =




u11 j1j2u13 j1u12

j1j2u31 u33 j2u32

j1u21 j2u23 u22


 . (47)
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For j1 = ι1, quantum Euclid group Ẽv(2) = SOv(3;
ι1, 1;σ) is obtained with generators

U(ι1;σ) =




1 ι1u13 ι1u12

ι1u31 cosϕ sinϕ

ι1u21 − sinϕ cosϕ


 ∼



· ◦ ◦
· ·

·


 .

(48)

As far as the generating matrix (48) is equal to (12),
then Ẽv(2) is isomorphic with E0

v(2) and therefore
does not represent a new quantum group.

Quantum Newton group Ñz(2) = SOz(3; 1, ι2;σ)
is described by untouched deformation parameter z
and generators u33 = 1, u11 = u22 = cosψ, u12 =
sinψ = −u21, which are arranged in matrix form

U(ι2;σ) =




cosψ ι2u13 sinψ

ι2u31 1 ι2u32

− sinψ ι2u23 cosψ


 ∼



· • ·
· •

·


 .

(49)

This quantum group as a Hopf algebra is isomor-
phic to quantum Euclid group Ez(2) with untouched
deformation parameter (J = 1), since the generat-
ing matrix (49) is equal to (33), if we put ι1 in-
stead of ι2. Finally, quantum Galilei group G̃v(2) =
SOv(3; ι1, ι2;σ) is characterized by J = ι1; the diag-
onal generators are equal to one, u11 = u22 = u33 =
1; and the generating matrix is as follows:

U(ι;σ) =




1 ι1ι2u13 ι1u12

ι1ι2u31 1 ι2u32

−ι1u12 −ι2u32 1


 ∼



· × ◦

· •
·


 .

(50)

The nilpotent parameter distribution of (50) passes
in (43) under exchange ι1 and ι2 and simultane-
ous reflection with respect to the secondary diagonal.
Therefore, G̃v(2) is isomorphic to Gv(2). Thus, the
permutation σ = (1, 3, 2) does not lead to new con-
tracted quantum groups.

6. QUANTUM GROUPS SOv(4; j;σ)

In this section, all nonisomorphic contractions of
SOq(4) are enumerated. The deformation parameter
is multiplied by J = (σ1, σ4) ∪ (σ2, σ3), which is
equal to J = j1j2j3 for permutation σ0 = (1, 2, 3, 4)
and J = j1j3 for σ′ = (1, 3, 4, 2). There are no other
values of J . The above-mentioned values of J cor-
respond to nonisomorphic on the equal parameter
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
number contracted quantum groups which have
nonequivalent generating matrices for permutations
σ0 and σ′.

One-dimensional contractions. For j1 = ι1,
J = ι1 quantumEuclid groupEv(3) = SOv(4; ι1;σ0)
is obtained. For j2 = ι2, there are two nonisomorphic
quantum Newton groups: Nv(3) = SOv(4; ι2;σ0),
J = ι2, andNz(3) = SOz(4; ι2;σ′) with J = 1.

Two-dimensional contractions. For j1 = ι1,
j2 = ι2 two nonisomorphic quantum Galilei groups
Gv(3) = SOv(4; ι1, ι2;σ0), J = ι1ι2 and Gw(3) =
SOw(4; ι1, ι2; σ′), J = ι1 are obtained. Contractions
j1 = ι1, j3 = ι3 give in result quantum groupsSOv(4;
ι1, ι3; σ0), J = ι1ι3, which has no special name.

Under maximal three-dimensional contrac-
tions j1 = ι1, j2 = ι2, j3 = ι3, two nonisomorphic
quantum flag groups Fv(4) = SOv(4; ι;σ0), J =
ι1ι2ι3 and Fw(4) = SOw(4; ι;σ′), J = ι1ι3 are ob-
tained.

Ev(3) ∼




· ◦ ◦ ◦

· · ·
· ·

·




, Nv(3) ∼




· · • •

· • •
· ·

·




,

Nz(3) ∼




· • • ·

· · •
· •

·




, Gv(3) ∼




· ◦ × ×

· • •
· ·

·




,

Gw(3) ∼




· × × ◦
· · •

· •
·




, Fv(4) ∼




· ◦ × ⊗
· • ♦

· 0

·




,

SOv(4; ι1, ι3;σ0) ∼




· ◦ ◦ �
· · 0

· 0

·




,

Fw(4) ∼




· × ⊗ ◦
· 0 •

· ♦
·




,

where� = ι3, 0 = ι1ι3, ♦ = ι2ι3, and ⊗ = ι1ι2ι3.
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Thus, for the quantum case, there are eight dif-
ferent contracted groups, while for classical group
SO(4) there are only five nonisomorphic contracted
Cayley–Klein groups.

7. QUANTUM GROUPS SOv(5; j;σ)

The deformation parameter is multiplied by J =
(σ1, σ5) ∪ (σ2, σ4), which is equal to J = j1j2j3j4 for
permutation σ0 = (1, 2, 3, 4, 5), equal to J = j1j2j3
for permutation σ1 = (1, 2, 5, 3, 4), equal to J =
j1j2j4 for permutation σ2 = (1, 4, 2, 5, 3), equal to
J = j1j3 for permutation σ3 = (1, 3, 5, 4, 2), equal to
J = j1j4 for permutation σ4 = (1, 4, 3, 5, 2), equal to
J = j2j4 for permutation σ5 = (2, 4, 1, 5, 3), equal to
J = j1j3j4 for permutation σ6 = (1, 3, 4, 5, 2), and
equal to J = j2j3j4 for permutation σ7 = (2, 3, 1, 4, 5).

If contractions only on parameters j1, j2 are
considered, then there are two quantum Euclid
groups Ev(4) = SOv(4; ι1;σ0), J = ι1 and Ez(4) =
SOz(4; ι1;σ5), J = 1 with distribution of nilpotent
parameters in the form

Ev(4) ∼




· ◦ ◦ ◦ ◦

· · · ·
· · ·

· ·

·




, Ez(4) ∼




· ◦ · · ·

· ◦ ◦ ◦
· · ·

· ·

·




,

two quantum Newton groups: Nv(4) = SOv(4; ι2;
σ0), J = ι2 and Nz(4) = SOz(4; ι2;σ3), J = 1 with
generating matrices

Nv(4) ∼




· · • • •

· • • •

· · ·

· ·

·




, Nz(4) ∼




· • · • •

· • · ·

· • •

· ·

·




,

and two quantum Galilei groups: Gv(4) = SOv(4;
ι1ι2;σ0), J = ι1ι2 andGz(4) = SOv(4; ι1ι2;σ3), J =
PH
ι1 with generating matrices

Gv(4) ∼




· ◦ × × ×

· • • •

· · ·

· ·

·




,

Gz(4) ∼




· × ◦ × ×

· • · ·

· • •

· ·

·




.

As compared with the case N = 3 two quantum
Newton groups are added.

In all discussed examples forN = 3, 4, 5 the num-
ber of nonisomorphic quantum analogs of the corre-
sponding classical groups equals two. One may think
that this number for any contractions does not exceed
two. But this is not so. The number of nonisomor-
phic quantum analogs of the classical Cayley–Klein
groups is increased when the number of nilpotent val-
ued contraction parameters is increased. For exam-
ple, under maximal contraction jk = ιk, k = 1, . . . , 4
five quantum analogs of the flag group F (5) =
SO(5; ι) are obtained, namely, Fv(5) = SOv(5; ι;σ0),
J = ι1ι2ι3ι4; Fv1(5) = SOv1(5; ι;σ

1), J = ι1ι2ι3;
Fv2(5) = SOv2(5; ι;σ

2), J = ι1ι2ι4; Fv3(5) =
SOv3(5; ι; σ3), J = ι1ι3; Fv4(5) = SOv4(5; ι;σ

4),
J = ι1ι4. They all have generating matrices with
nonequivalent distributions of nilpotent parameters.
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Appendix

R MATRIX OF QUANTUM GROUP SOq(N)
IN CARTESIAN BASIS

R̃q = (D ⊗D)R(D ⊗D)−1 = I +
1
2
(q − 1)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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× (1 − q−1)
N∑

k=1
k �= k′

(ekk ⊗ ekk + ekk ⊗ ek′k′)

+
λ

2

N∑
k=1

k �= k′

(ek′k ⊗ ekk′ − ek′k ⊗ ek′k)

+
λ

2

n∑
k=1

(ek′,n+1 ⊗ en+1,k′ − iek′,n+1 ⊗ en+1,k

+ iek,n+1 ⊗ en+1,k′ + ek,n+1 ⊗ en+1,k

+ en+1,k ⊗ ek,n+1 + ien+1,k ⊗ ek′,n+1

− ien+1,k′ ⊗ ek,n+1 + en+1,k′ ⊗ ek′,n+1)

− λ

2

n∑
k=1

q−ρk(−iek′,n+1 ⊗ ek,n+1

+ ek′,n+1 ⊗ ek′,n+1 + ek,n+1 ⊗ ek,n+1

+ iek,n+1 ⊗ ek′,n+1 + ien+1,k ⊗ en+1,k′

+ en+1,k ⊗ en+1,k + en+1,k′ ⊗ en+1,k′

− ien+1,k′ ⊗ en+1,k) +
λ

4

N∑
k,p=1

k>p, k,p �= n+1

(ekp ⊗ epk

+ ekp ⊗ ep′k′ + iekp ⊗ ep′k − iekp ⊗ epk′

+ ek′p′ ⊗ epk + ek′p′ ⊗ ep′k′ + iek′p′ ⊗ ep′k

− iek′p′ ⊗ epk′ + iek′p ⊗ epk + iek′p ⊗ ep′k′

− ek′p ⊗ ep′k + ek′p ⊗ epk′ − iekp′ ⊗ epk

− iekp′ ⊗ ep′k′ + ekp′ ⊗ ep′k − ekp′ ⊗ epk′)

− λ

4

N∑
k,p=1

k>p, k,p �= n+1

qρk−ρp(ekp ⊗ ek′p′ + ekp ⊗ ekp

+ iekp ⊗ ekp′ − iekp ⊗ ek′p + ek′p′ ⊗ ek′p′

+ ek′p′ ⊗ ekp + iek′p′ ⊗ ekp′ − iek′p′ ⊗ ek′p

+ iek′p ⊗ ek′p′ + iek′p ⊗ ekp − ek′p ⊗ ekp′

+ ek′p ⊗ ek′p − iekp′ ⊗ ek′p′ − iekp′ ⊗ ekp

+ ekp′ ⊗ ekp′ − ekp′ ⊗ ek′p), λ = q − q−1.

REFERENCES
1. N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Fad-

deev, Algebra Anal. 1, 178 (1989).
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Abstract—We construct spectrum generating algebras of SO(2, 1) ∼ SU(1, 1) in arbitrary dimension for
the isotropic harmonic oscillator and the Sturm–Coulomb problem in radial coordinates. Using these
algebras, we construct the associated radial Barut–Girardello coherent states for the isotropic harmonic
oscillator (in arbitrary dimension). We map these states into the Sturm–Coulomb radial coherent states
and show that they evolve in a fictitious time parameter without dispersing. c© 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

Since their introduction by Schrödinger in 1926
[1], coherent states have become a tool to discuss
the classical limit of a quantum system. The states
which Schrödinger constructed were associated with
the one-dimensional harmonic oscillator (HO) and
regarded as themost classical ones. TheHOcoherent
states evolve according to the classical equations of
motion and the states do not disperse as they evolve
with time. As the subject developed, new methods
to construct coherent states were suggested. The
common definitions are minimum uncertainty states,
eigenstates of the lowering operator, and states con-
structed with a displacement operator acting on a
system’s fiducial state. For the one-dimensional HO,
these three definitions result in the same set of states.
They minimize the uncertainty relation in position
and momentum (which equals the uncertainty re-
lation of the position and momentum in the HO
ground state). As for other systems, Schrödinger
suggested looking for coherent states of the hydro-
gen atom as well. Since then, there have been many
attempts to construct classical states for the hydro-
gen atom. Many of these attempts, as found in [2–
5], involve mapping of the Coulomb problem into
the four-dimensional harmonic oscillator using the
Kustaanheimo–Stiefel (KS) transformation [6]. This
transformation involves the introduction of a new time
parameter. This time parameter is proportional to the
eccentric anomaly [7]. Therefore, all the states ob-
tained this way evolve with the new time parameter
rather than in ordinary time. Other attempts consider

∗The text was submitted by the authors in English.
1)Tel-Aviv University, Israel.
**e-mail: yanivg@post.tan.ac.il
***e-mail: ady@physics.technion.ac.il
1063-7788/05/6810-1700$26.00
temporally stable coherent states and their time evo-
lution [8–11].
In 1994, Zlatev, Zhang, and Feng [12] constructed

the most general coherent states for the hydrogen
atom using SO(4, 2), which is the maximal group
for this case. They showed that these states can-
not be localized and cannot follow the classical or-
bits. However, they suggested that coherent states of
SU(1, 1), which is a subgroup of SO(4, 2), and the
spectrum generating algebra for this atom may have
a classical limit for large l, where l is the angular
momentum. A few years earlier, Gerry and Kiefer [13]
presented a work on radial coherent states for the
Coulomb problem, where they used the SO(2, 1) ∼
SU(1, 1) algebra. Their states are composed of su-
perposition of Sturm functions, all scaled by the same
factor. Themethod they used to construct their coher-
ent states is Perelomov’s method. They showed that
the wave packets constructed this way evolve with
their new time parameter and do not disperse as they
evolve with that parameter. However, they change
their shape periodically as they move from the apogee
to the perigee. Radial coherent states for the Coulomb
problem and other central potentials were obtained as
well by Nieto and collaborators (e.g., [14]). They used
the minimum uncertainty states method. The states
obtained that way lose their coherence as they evolve
with time [15].
In this work, we extend the discussion on ra-

dial coherent states to Barut–Girardello (BG) states,
based on the SO(2, 1) ∼ SU(1, 1) approach. To our
knowledge, these states have never been discussed in
the literature in this context. Our discussion is a little
more general since the calculations are in arbitrary
dimensions.
The plan of the paper is as follows. In Sections 2

and 3, we construct the SO(2, 1) algebra for the
c© 2005 Pleiades Publishing, Inc.
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isotropic harmonic oscillator (IHO) and the hy-
drogen atom (in arbitrary dimensions), respectively.
In Section 4, we present the mapping between
the HO radial functions and the Coulomb radial
functions. BG radial coherent states for the HO in
arbitrary dimensions are calculated in Section 5. In
Section 6, we map the BG coherent states of the
four-dimensional IHO into the BG coherent states
of the three-dimensional hydrogen atom. The time
evolution and the classical limit of these states is
discussed in Section 7. Final conclusions are drawn
in Section 8.

2. THE d-DIMENSIONAL ISOTROPIC
HARMONIC OSCILLATOR

The dynamical group for the d-dimensional IHO
is the real, symplectic noncompact group Sp(2d,R)
(e.g., [16]). A subgroup of Sp(2d,R) is the direct
product group SO(2, 1) × SO(d) which corresponds
to separation of variables of the HO wave functions
into the d-dimensional radial functions Rdnrl

(r) and
the d-dimensional spherical harmonics functions
Yl,m1,...,md−2

(θ1, θ2, . . . , θd−1). These are basis func-
tions for the SO(2, 1) and SO(d) representations,
respectively.
Since we are dealing with radial coherent states,

we concentrate only on the group SO(2, 1) and its
representations. SO(2, 1) is known as the radial
group and its algebra is known as the spectrum gen-
erating algebra (SGA) of the IHO. It is a semisimple,
noncompact Lie group and is locally isomorphic to
SU(1, 1) and Sp(2, R).
These groups have three generators, which we

denote as k0, k1, and k2. They obey the following
commutations relations [17]:

[k0, k1] = ik2, (1)

[k1, k2] = −ik0, (2)

[k2, k0] = ik1. (3)

Alternatively, we can define raising and lowering op-
erators as

k± = k1 ± ik2, (4)

where together with k0 the commutations relations
are

[k0, k±] = ±k±, (5)

[k−, k+] = 2k0. (6)

The generators act on the general group basis |m,k〉
as follows (e.g., [18]):

k0|m,k〉 = (m+ k)|m,k〉, (7)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
k−|m,k〉 =
√
m(m+ 2k − 1)|m− 1, k〉, (8)

k+|m,k〉 =
√

(m+ 1)(m+ 2k)|m+ 1, k〉, (9)

where k is the Bargmann index [19].

In order to obtain the relevant operators for the
radial symmetry, we use the d-dimensional radial
functions Rdnrl

(r) which are given by [20]

Rdnrl(r) (10)

=

[
2Γ(nr + 1)

Γ(nr + l + d
2)

]1/2

rle−r
2/2Ll+(d−2)/2

nr
(r2),

where the Ll+(d−2)/2
nr (r2) are the associated Laguerre

functions [21].

These functions are orthonormal with respect to
the measure rd−1:

∞∫
0

drRdnrl(r)R
d
n′

rl
(r)rd−1 = δnr ,n′

r
. (11)

Using the recursion relation and the differential equa-
tion for the Laguerre functions [21] (since the La-
guerre functions in our case are functions of r2, we
performed a change of variables on the original equa-
tions)

(p+ 1)Lqp+1(r
2) + (r2 − q − 2p− 1)Lqp(r

2) (12)

+ (p+ q)Lqp−1(r
2) = 0, p = 1, 2, 3, . . . ,

1
2
r
d

dr
Lqp(r

2) = pLqp(r
2) − (p+ q)Lqp−1(r

2), (13)

p ≥ 1,

and using the relation for arbitrary operators A and B

eBAe−B = A+ [B,A] +
1
2
[B, [B,A]] + · · · , (14)

we obtain raising and lowering operators for the
quantum number nr

K± =
1
2

(
±r∂r − r2 +H ± d

2

)
, (15)

where H is the d-dimensional IHO radial Hamilto-
nian [20]:

H =
1
2

(
− 1
rd−1

∂r(rd−1∂r) +
l(l + d− 2)

r2
+ r2

)
.

(16)

Defining K0 = 1
2H , we find that K+, K−, and K0

obey the SO(2, 1) algebra commutations relations
presented in Eqs. (5), (6).
05
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The raising, lowering, and eigenvalue relations for
the normalized functions Rdnrl

are given by

K+R
d
nrl =

√
(nr + 1)

(
nr + l +

d

2

)
Rdnr+1l, (17)

K−R
d
nrl =

√
nr

(
nr + l +

d

2
− 1
)
Rdnr−1l, (18)

K0R
d
nrl =

(
nr +

l

2
+
d

4

)
Rdnrl. (19)

By comparing Eqs. (7), (9) with Eqs. (17)–(19) we
find that k = l/2 + d/4 andm is actually the quantum
number nr. In order to obtain k in a rigorous way,
rather than comparing equations, we use the Casimir
operator.
The Casimir operator for this group is [17]

Ĉ = K2
0 −K2

1 −K2
2 (20)

= K2
0 − 1

2
(K+K− +K−K+)

and its eigenvalues are k(k − 1).
Calculating the Casimir eigenvalue in our case we

obtain

ĈRdnrl(r) =
(
l

2
+
d

4

)(
l

2
+
d

4
− 1
)
Rdnrl(r). (21)

Hence, we have two possible solutions k = l/2 +
d/4 or k = − (l/2 + d/4 − 1). We are interested only
in the positive discrete representations of SO(2, 1),
D+(k); hence,

k =
l

2
+
d

4
. (22)

3. RADIAL GROUP FOR THE HYDROGEN
ATOM

Unlike the case of the IHO, the Coulomb prob-
lem Hamiltonian cannot be expressed in terms of
the SO(2, 1) group generators. The group SO(2, 1)
is related to the radial group or spectrum generat-
ing group for the Coulomb problem, when its basis
functions are taken as the Sturmian functions which
are related to the three-dimensional radial Coulomb
functions RNrL(r) by a tilting (squeezing) transfor-
mation [16, 20, 22]. In order to generalize this relation
for theD-dimensional case, we begin by generalizing
the Sturm basis given in [13] toD dimensions,

SDNrL(ρ) = 2

√
Γ(Nr + 1)

Γ(Nr + 2L+D − 1)
(23)

× (2ρ)le−ρL2L+D−2
Nr

(2ρ).
PH
These functions satisfy the orthonormality condition
(note the measure ρD−2)

∞∫
0

dρSDNrL(ρ)SDN ′
rL

(ρ)ρD−2 = δNr ,N ′
r
. (24)

As in the IHO case, we would like to construct for
this basis the relevant realization of raising and low-
ering operators. We use again the Laguerre recursion
relations and Eq. (14) to obtain

KC
± = ±ρ∂ρ − ρ+KC

0 ± D − 1
2

, (25)

where the superscript “C” stands for “Coulomb” and
where

KC
0 = −1

2
ρ

(
∂2
ρ +

D − 1
ρ

∂ρ −
L(L+D − 2)

ρ2
− 1
)
,

(26)

satisfying the eigenvalue equation

KC
0 S

D
NrL =

[
Nr + L+

1
2
(D − 1)

]
SDNrL. (27)

KC
+ andK

C
− act on the group basis as follows:

KC
+S

D
NrL =

√
(Nr + 1) (Nr + 2L+D − 1)SDNr+1L,

(28)

KC
−S

D
NrL =

√
Nr (Nr + 2L+D − 2)SDNr−1L. (29)

FromKC
± = KC

1 ± iKC
2 , we obtain

KC
1 = KC

0 − ρ, (30)

KC
2 = −i

(
ρ∂ρ +

D − 1
2

)
, (31)

where KC
2 is the D-dimensional tilting, squeezing,

or dilatation generator. Taking D = 3, we obtain the
realization of [13, 20].

The operators KC
+ and K

C
− are adjoint operators

with respect to the SDNrL
basis, with a measure ρD−2

(note the difference from K+ and K− of Section 2,
which are adjoint with respect to Rdnrl

with measure

rd−1). Therefore, under this condition, KC
1 and K

C
2

are Hermitian operators.
In order to make the connection between the Stur-

mian functions and the radial Coulomb functions
in D dimensions, we write the D-dimensional ra-
dial Schrödinger equation for the hydrogen atom (in
atomic units) :

(HC − E)RDNrL(ρ) = 0, (32)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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where

HC = −1
2

(
∂2
ρ +

D − 1
ρ

∂ρ −
l(l +D − 2)

ρ2
+

2Z
ρ

)
.

(33)

Upon left-multiplying Eq. (32) by ρ, the equation
becomes a pseudoeigenvalue equation for Z,

(H̃C − Z)RDNrL(ρ) = 0, (34)

where H̃C is the pseudo-Hamiltonian which can be
expressed in terms of the group generators,

H̃C =
(

1
2
−E

)
KC

0 +
(

1
2

+ E

)
KC

1 . (35)

Since neither KC
0 nor K

C
1 is diagonal in the R

D
NrL

(ρ)
basis, we use instead the SDNrL

(ρ) basis, related to the
RDNrL

(ρ) by the tilting transformation [16, 22]

RDNrL(ρ) = CeiθK
C
2 SDNrL(ρ), (36)

where C is the normalization constant.

Multiplying Eq. (34) from the left by e−iθK
C
2 , we

obtain

(H− Z)SDNrL(ρ) = 0, (37)

where

H ≡ e−iθK
C
2 H̃CeiθK

C
2 (38)

=
[(

1
2

+ E

)
cosh θ +

(
1
2
− E

)
sinh θ

]
KC

1

+
[(

1
2

+ E

)
sinh θ +

(
1
2
− E

)
cosh θ

]
KC

0 .

The right-hand side of this equation was obtained by
performing the similarity transformation on both the
compact generatorKC

0 and the noncompact oneK
C
1 .

Obviously, by a proper choice of θ, it is possible to
eliminate eitherKC

0 orK
C
1 . However, eliminatingK

C
0

will yield the continuous part of the spectrum [16, 22].
In order to obtain the discrete part of the spectrum, we
would like to eliminate KC

1 . Taking θ = 1
2 ln(−2E),

we obtain

H =
√
−2EKC

0 . (39)

Remembering Eq. (27), we obtain theD-dimensional
bound-state energy spectrum

E = EN = − Z2

2 [N + (D − 3)/2]2
, (40)

where N is the principal quantum number N =
Nr + L+ 1. Thus, the expression for θ is actually
N-dependent.
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To obtain the normalization constant C and the
radial functions, we use the fact that, while the Stur-
mians are orthonormal with respect to ρD−2, the ra-
dial functions are orthonormal with respect to ρD−1.
Since ρ = KC

0 −KC
1 , we require the following con-

dition (the bracket represents the Sturmian measure
ρD−2):

∞∫
0

dρρD−1|RDNrL|
2 (41)

≡ 〈RDNrL|K
C
0 −KC

1 |RDNrL〉 = 1

= C2e−θ〈SDNrL|K
C
0 −KC

1 |SDNrL〉,
where we used Eq. (36). Using Eqs. (27)–(29),
we obtain C = CN =

√
Z/M2, where M = N +

(D − 3)/2.
In Eq. (36), we made the connection between the

Sturmians and the physical radial functions, so now
we are able to write the expression for RDNrL

(ρ):

RDNL(ρ) =

√
ZD

MD+1
SDNL

(
2Zρ
M

)
(42)

= 2

√
ZD

MD+1

√
Γ(N − L)

Γ(N + L+D − 2)

(
2Zρ
M

)l

× e−Zρ/ML2L+D−2
N−L−1

(
2Zρ
M

)
,

where we have used the property of the dilatation
operator

exp [ln θρ∂ρ] f(ρ) = f(θρ). (43)

In a similar way to Section 2, we obtain the Casimir
eigenvalue with respect to the Sturm functions basis

k = L+
D − 1

2
. (44)

4. RADIAL FUNCTION MAPPING

Since the IHO radial functions and the Sturm
functions are two different representations ofSO(2, 1)
basis functions, there are certain mapping conditions
which transform the IHO radial functions into the
Sturm functions.
By comparing the Casimir eigenvalues, Eqs. (22)

and (44), we obtain the most general relation between
those two representations:

d = 2D − 2 − 2λ, (45)

λ = l − 2L.

This map implies that there is a relation between the
D-dimensional Coulomb radial states (42) and even-
dimensional IHO radial states (10).
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To be more specific, D and λ are integers and
therefore d ≥ 2. This implies the condition λ ≤ D− 2.
The fact that the eigenvalues in Eqs. (19) and (27)
should coincide and using Eq. (45), yields another
condition

n = 2N − 2 + λ, (46)

where n and N are the principal quantum num-
bers for the IHO and the hydrogen atom, respec-
tively. Recalling that N = Nr + L+ 1 ≥ 1 and that
n = 2nr + l ≥ 0 implies that, if we wish to map the
hydrogenic states into the IHO states starting from
the ground state, then λ ≥ 0. Taking, for example, the
case λ = 0 with L = 0 and l = 0, we see that there
is a mapping between the hydrogenic ground state
N = 1 and the oscillator ground state n = 0. The next
states which map are N = 2 and n = 2, etc. Taking
λ = −1, the minimum allowed angular-momentum
values are L = 1 and l = 1 (recall that L ≥ 0 and
l ≥ 0) and therefore the lower states which map are
the N = 2 state of the hydrogen atom and n = 1 of
the oscillator. The ground states are excluded. As λ
is more negative, more states are excluded. Since we
wish to map all the hydrogenic states including the
ground state, we take the lower bound of λ to be zero.
Therefore,

0 ≤ λ ≤ D − 2. (47)

Considering the three-dimensional Coulomb prob-
lem, D = 3, the valid values for λ are either λ = 0 or
λ = 1. Taking first λ = 1 we obtain l = 2L+ 1 and
d = 2. Therefore, in this case, the two-dimensional
IHO states with odd principal quantum number are
mapped into the three-dimensional Coulomb radial
states. Taking λ = 0, we obtain d = 4 and l = 2L;
therefore, the four-dimensional IHO states with even
principal quantum number aremapped into the three-
dimensional hydrogenic states.

In order to find the coordinate mapping [for any D
and d related by Eq. (45)], we compare Eq. (25) with
Eq. (15) to obtain

ρ =
1
2
r2. (48)

Mapping the IHO radial states into the Coulomb
states, we should take care of the normalization con-
stant. This is done by multiplying the IHO states
by the factor 2

√
ZD/MD+1. This factor comes from

the fact that the IHO radial states and the Sturm
functions are normalized with respect to a different
measure [cf. Eq. (41)], and from the tilting opera-
tion (36) which takes the Sturm functions into the
physical Coulomb radial functions.

The relations between these two systems were
discussed by many other authors (e.g., [23–27]).
PH
5. SO(2, 1) BARUT–GIRARDELLO RADIAL
COHERENT STATES FOR THE IHO

To calculate this set of radial states for the IHO,we
use the BG formalism for noncompact Lie groups [28].
These states are the eigenfunctions of the lowering
operatorK− with complex eigenvalues α:

K−|α, k〉BG = α|α, k〉BG. (49)

Expanding |α, k〉 in terms of the Rdnrl
(r) and using

Eqs. (18) and (49), we obtain

〈r|α, k〉BG =
αk−1/2√
I2k−1(2|α|)

(50)

×
∞∑

nr=0

αnr√
Γ(nr + 1)Γ(nr + 2k)

Rdnrl(r)

=

√
2

I2k−1(2|α|)
eαr1−d/2e−r

2/2J2k−1(2
√
αr2),

where Jl is the Bessel function of the first kind, Il is
the modified Bessel function of the first kind [21], and
k = l/2 + d/4. The sum was calculated with the help
of the Laguerre generating function [29]

∞∑
n=0

αn

Γ(n+ z + 1)
Lzn(r) (51)

= Jz(2
√
rα)eα(rα)−z/2.

For d = 1, we obtain the result of Agarwal and
Chaturvedi [30] for the Calogero–Sutherland oscil-
lator.
For any value of k, these states are nonorthogonal,

satisfying

〈α1, k|α2, k〉 =
I2k−1(2

√
ᾱ1α2)√

I2k−1(2|ᾱ1|)I2k−1(2|α2|)
. (52)

Also, they satisfy the completeness relation∫
dµ(α, k)|α, k〉〈α, k| = I, (53)

where

dµ(α, k) =
2
π
K2k−1(2|α|)I2k−1(2|α|)d2α (54)

is the measure which enables the resolution of the
identity (Kν is the modified Bessel function of the
second kind [21]).
Useful expectation values with respect to the BG

coherent states are given by

〈K1〉BG = Reα, (55)

〈K2〉BG = Imα, (56)

where we used the fact that 〈K−〉BG = α and
〈K+〉BG = ᾱ.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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6. BARUT–GIRARDELLO STATES
FOR THE HYDROGEN ATOM

Here, we discuss only the three-dimensional case.
Hence, all the operators in this section are the three-
dimensional forms of the operators in Section 3. We
follow the same notation. The generalization to any
D is easy using the formalism developed in previous
sections.
Following the mapping from Section 4, we take

Eq. (50) with d = 4 and l = 2L, consistent with the
case λ = 0, to obtain

〈ρ|α,L〉BG =

√
2

I2L+1(2|α|)
(57)

× eα
1
√
ρ
e−ρJ2L+1(2

√
2ρα),

where we mapped the coordinates according to (48)
and multiplied the solution by the factor

√
2 to ad-

just the normalization. Themeasure for normalization
here is ρ.
Obviously, Eq. (57) is a generating function for

the three-dimensional Sturm functions (SD=3
NrL

) and
an eigenfunction ofKC

− with eigenvalue α.
Recalling Eq. (37), the expectation value of the

pseudo-Hamiltonian with respect to the Sturm func-
tions is

〈SDNrL|H|SDNrL〉 = Z. (58)

We require the same expectation value for H with
respect to the BG coherent states basis,

〈α,L|H|α,L〉BG (59)

=
√
−2E〈α,L|KC

0 |α,L〉BG = Z.

Using the expectation value of KC
0 in the |α,L〉BG

basis

〈KC
0 〉 = |α|I2L+2(2|α|)

I2L+1(2|α|)
+ L+ 1, (60)

we easily determine E

E = − Z2

2〈KC
0 〉2

(61)

= − Z2I2L+1(2|α|)2

2 [|α|I2L+2(2|α|) + (L+ 1)I2L+1(2|α|)]2
.

Similarly to [13, 31], we define a tilted coherent state
as

|α̃, L〉BG = C̃eiθK
C
2 |α,L〉BG, (62)

where θ = ln
√
−2E and E is given by Eq. (61). The

tilted state obeys the following energy relation:

〈α̃, L|HC|α̃, L〉BG/〈α̃, L|α̃, L〉BG = Z (63)
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= 〈α,L|H|α,L〉BG.
The normalizationmeasure for the tilted states should
be ρ2; therefore, in order to determine C̃, we use the
normalization requirement 〈α̃, L|ρ|α̃, L〉BG = 1 (the
bracket denotes the measure ρ),

1 = 〈α̃, L|KC
0 −KC

1 |α̃, L〉BG (64)

= C̃2e−θ〈α,L|KC
0 −KC

1 |α,L〉BG.
Thus,

C̃ =
(−2E)1/4√

〈KC
0 −KC

1 〉BG
, (65)

and using Eqs. (55) and (60), we obtain

〈α,L|KC
0 −KC

1 |α,L〉BG (66)

= |α|I2L+2(2|α|)
I2L+1(2|α|)

+ L+ 1 − Re(α).

Finally, we get the expression for the radial BG coher-
ent states for the hydrogen atom

〈ρ|α̃, L〉BG =
(−2E)1/2√
〈KC

0 −KC
1 〉BG

√
2

I2L+1(2|α|)
eαρ−1/2

(67)

× exp−
√
−2Eρ J2L+1

(
2
√

2
√
−2Eρα

)
.

This set of coherent states is different from the solu-
tion obtained in [13] using Perelomov’s method.

7. TIME EVOLUTION

We consider the resolvent operator for the
Coulomb problem using the pseudo-Hamiltonian
H =

√
−2EKC

0 [E is given by (61)]

G(Z) =
i

Z −H =

∞∫
0

eiZτU(τ)dτ, (68)

where U(τ) is the corresponding evolution operator
U(τ) = exp(−iτH) (69)

with respect to the new parameter τ which can be
treated as a fictitious time and was discussed exten-
sively in [7, 13, 32].
Acting with the evolution operator on the state

|α̃, L〉BG, we obtain

e−2iωKC
0 τ |α̃, L〉BG = e−2iω(L+1)τ |α̃(τ), L〉BG, (70)

where

α(τ) = α0e
−2iωτ , α0 = α(0), (71)

and ω =
√

−E/2.
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Fig. 1. Time evolution of BG coherent states for the Coulomb problem for L = 1 and |α| = 5 (see discussion in the text).
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Fig. 2. Time evolution of BG coherent states for the Coulomb problem. ∆r as function of τ for L = 5 and |α| = 5 [∆r =√
〈r2〉 − 〈r〉2, where the expectation values are calculated with respect to the BG coherent-state functions (67)].
Therefore, the explicit expression for the fictitious
time dependence of the BG coherent states (67) is

〈ρ|α̃, L, τ 〉BG = e−iω(L+1)τ

√
−2E

〈KC
0 −KC

1 〉BG
(72)
PH
×
√

2
I2L+1(2|α|)

eα(τ)ρ−1/2

× exp−
√
−2Eρ J2L+1

(
2
√

2
√
−2Eρα(τ)

)
.

Clearly, this function is periodic in τ .
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Relation (63) is satisfied also by the time-
dependent coherent states

〈α̃, L, τ |H̃C|α̃, L, τ 〉BG/〈α̃, L, τ |α̃, L, τ 〉BG (73)

= Z = 〈α,L, τ |H|α,L, τ〉BG .

In order to explore the fictitious time-dependence
behavior of this function, we consider the radial prob-
ability distribution P (ρ, α, τ) = |〈ρ ˜|α,L, τ〉BG|2ρ2.
As shown in Fig. 1, the distribution oscillates be-

tween two turning points, rp, which corresponds to
the perigee, where at that point the function becomes
narrow (at its minimum width), and ra, which corre-
sponds to the apogee, where at that point the function
is at its maximum width. Although the distribution
changes its width, it is not dispersing, so in this
manner this wave packet behaves classically. Similar
behavior was observed before for the Perelomov co-
herent states [13, 33]. This motion of the wave packet
between two turning points is actually analogous to a
bounded motion of a classical particle in the effective
Coulomb potential.
By comparing the width of the distribution ∆rBG

to that of the hydrogen-atom ground state, we ob-
serve that, although the distribution becomes narrow
at the perigee, we always have ∆rBG > ∆rg.s, where
∆rg.s corresponds to the hydrogen atomground state.
This is true for any value ofL; in Fig. 2, it is shown for
L = 5.
As shown in the table, keeping the same value of

|α| and taking larger values of L, we find that, as L
increases, the orbit becomes more circular (less el-
liptic). As the orbit becomes more circular, the width
of the distribution increases, and the perigee and the
apogee become more distant from the center (we get
higher values of rp and ra). In the limit L� 1, the
motion is circular, the distribution does not change
its shape as it evolves with fictitious time, and it is
located at one value of r which is the radius of the
circular motion.
Performing the calculations with different values

of |α| and the same value of L shows that |α| changes
the eccentricity (ε) of the orbit: for larger values of |α|,
the orbit is more elliptic, while being more circular for
small values of |α|.

8. SUMMARY

In this paper, we constructed arbitrary dimen-
sion realizations of SO(2, 1) algebra for the harmonic
oscillator and the hydrogen atom. We constructed
Barut–Girardello radial coherent states for the IHO
associated with this algebra and mapped them into
the Coulomb problem coherent states. We showed
that these states evolve periodically in the fictitious
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
The orbit of the Coulomb BG coherent states as function
of L, for |α| = 5 [∆rp and ∆ra correspond to the width of
the distribution at the perigee and the apogee, respectively;
rp (ra) corresponds to the maximum of the distribution
at the perigee (apogee); ε is the eccentricity of the orbit,
ε = 1 − 2rp/(ra + rp)]

L 1 2 5 10

rp 0.36 0.79 2.68 6.82

∆rp 2.82 3.05 5.75 17.69

ra 9.73 10.14 12.1 16.42

∆ra 17.89 19.23 26 53.43

ε 0.93 0.86 0.64 0.41

time parameter and change their shape as they move
between the two turning points of an elliptic orbit. Al-
though they change their shape, they do not disperse.
In the limit of high angular momentum or |α| � 1,
the orbit of the BG coherent states becomes circular.
It was shown before [34, 35] that, considering the
Coulomb radial distributions, classical circular orbits
occur for the maximum value of L (L = N − 1) and
large principal quantum number. It was shown also
that the width of the distribution diverges in these
limits. Thus, the BG coherent states behave similarly
in the classical limit L� 1. However, it is interesting
to explore whether the second set of coherent states
which corresponds to SO(2, 1) ∼ SU(1, 1), Perelo-
mov coherent states, possesses the same behavior.
It is interesting also to explore how these behaviors
agree with the suggestion by Zlatev, Zhang, and
Feng [12] mentioned earlier.
Radial Coulomb states (Rydberg states) have

been investigated both theoretically and experimen-
tally for a long time (e.g., [36, 37]). However, these
states disperse and show wave packet revivals, which
is a quantum phenomenon [38–42]. A question which
should be asked is whether it is possible to produce in
the laboratory radial coherent states with classical
properties or whether one should consider the BG
coherent states we constructed as only a tool to
discuss quantum-classical correspondence.
Finally, we mention that this method of using

spectrum generating algebras to construct coherent
states can be extended to other models (e.g., the
Morse potential whose SGA is SO(2, 1) ∼
SU(1, 1) [43]).
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Abstract—It is shown that, in one spatial dimension, the quantum oscillator is dual to the charged particle
situated in the field described by the superposition of Coulomb and Calogero–Sutherland potentials.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In one spatial dimension, a particle moving in
the Calogero–Sutherland potential VCS = −�

2ν(1 −
ν)/2µx2 has a very unusual property. Unlike the po-
tential VCS, the wave function is not invariant under
the replacement ν → (1− ν). It describes a boson for
even ν and a fermion for odd ν. Statistics correspond-
ing to the other values of ν is called fractional statis-
tics [1], and the system influenced along with VCS by
a potential binding the particle to the center is called
the 1D anyon [2–4]. Nobody has observed a 1D anyon
yet, but nevertheless it is of both theoretical [5] and
experimental [6] interest. The purpose of the present
note is to prove that such an extraordinary object can
be constructed from a 1D quantum oscillator.

2. ANYON–OSCILLATOR DUALITY

Consider the Schrödinger equation

∂2
uΨ +

2µ
�2

(
E − µω2u2

2

)
Ψ = 0, (1)

which describes the 1D quantum oscillator. Intro-
duce the quantum number s = 0, 1/2 and write N =
2n + 2s, with N numerating the energy levels E =
�ω(N + 1/2) and n being integer and nonnegative.
Without loss of information we can assume u to
belong to the region 0 ≤ u < ∞. We interpret s as
a spin of the reduced oscillator. The corresponding

wave function is denoted byΨ(s)
n .

∗The text was submitted by the authors in English.
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1)Department of Physics, Cornell University, Ithaca, USA;
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Let us look for the function Ψ(s)
n in the form

Ψ(s)
n (u) = Cu2sΨ̄n, (2)

where Ψ̄n is subordinate to the condition Ψ̄n(0) �= 0,
and C is a normalization constant. Equation (1) is
easily seen to take the form

∂2
uΨ̄n +

4s
u

∂

∂u
Ψ̄n +

2µ
�2

(
E − µω2u2

2

)
Ψ̄n = 0.

(3)

After change of the variable x = u2, we arrive at the
equation (2ν = 2s + 1/2)

∂2
xΨ̄n +

2ν
x

∂

∂x
Ψ̄n +

2µ
�2

(
−µω2

8
+

E

4x

)
Ψ̄n = 0.

(4)

Now we set

Ψ̄n = x−νΦ(ν)
n , (5)

then cancel the undesirable term with first derivative
in (4) and obtain

∂2
xΦ

(ν)
n +

2µ
�2

(ε− Vc − VCS) Φ(ν)
n = 0, (6)

where Vc = −α/x, VCS is the Calogero–Sutherland
potential with ν = 1/4 or 3/4 and

ε = −µω2

8
, α =

E

4
. (7)

Equation (6) describes a system which we call the 1D
Coulomb anyon.

This equation realizes a special case of a more
general equation that has a relation to (2 + 1)-
dimensional anyons [7].

Comparing Eq. (1) with Eqs. (6) and (7), we sum-
marize that there are two alternative possibilities con-
nected with Eq. (1)—explicit and hidden. In the first
case, the parameter ω is fixed (ω = fix. > 0) and plays
a role of a coupling constant, the parameter E is
c© 2005 Pleiades Publishing, Inc.
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quantized and has a meaning of energy, and the sys-
tem is a 1D quantum oscillator. For the hidden pos-
sibility, the parameter E is fixed (E = fix. > 0), the
coupling constant is equal toE/4, ω is quantized, the
value of energy takes the quantity ε = −µω2/8, and
the system is the 1D Coulomb anyon. In the above-
mentioned sense, the 1D quantum oscillator is dual to
the 1D Coulomb anyon.

3. ENERGY LEVELS AND WAVE
FUNCTIONS

Let us return to Eq. (6) and make the substitution

Φ(ν)
n = yνe−y/2Q(y), (8)

where y = x(−8µε/�
2)1/2 and Q(0) �= 0 and is finite.

The function Q(y) can diverge at infinity but not
higher than a finite power of y. Using (8) and (6), we
come to the equation

y∂2
yQ + (2ν − y)

∂

∂y
Q− (ν − λ)Q = 0, (9)

with λ = (−µα2/2�
2ε)1/2. Equation (9) is the equa-

tion for a confluent hypergeometric function, it has a
general solution [8]

Q(y) = C1F (ν − λ, 2ν, y) (10)

+ C2y
1−2νF (1 − λ− ν, 2 − 2ν, y)

convergent for all finite y. For large y, the asymptotic
formula [8] is valid,

F (a, b, y) ∼ Γ(b)
Γ(b− a)

(−y)−a +
Γ(b)
Γ(a)

ey(y)a−b.

(11)

The second term in (10) for ν = 3/4 is singular at y =
0, and henceC2 has to be taken equal to zero. The first
term in (10), as is evident from (11), is “well-behaved”
at infinity under the condition 3/4 − λ = −n, where
n is an integer number greater than or equal to zero.
For ν = 1/4, both terms in (10) are regular at y =
0, but the satisfactory behavior at infinity needs the
simultaneous requirements 1/4−λ = −n, 3/4−λ =
−m, or n−m = 1/2, which is impossible. Hence,
either C1 = 0 or C2 = 0. But for C1 = 0, the function
Q(y) will become zero at y = 0. This contradicts the
condition Q(0) �= 0 and, therefore, we set C2 = 0 and
1/4 − λ = −n. Thus, we conclude that ν − λ = −n,
i.e.,

ε(ν)
n = − µα2

2�2(n + ν)2
, n = 0, 1, 2, . . . . (12)

Returning to the corresponding eigenfunctions, we
set

Φ(ν)
n = C(ν)

n yνe−y/2F (−n, 2ν, y). (13)
PH
It is known [9] that

F (−n, 2ν, y) =
n!Γ(2ν)

[Γ(n + 2ν)]2
L2ν−1
n (y)

where L2ν−1
n (y) is an associated Laguerre polyno-

mial. Using the integration properties of Laguerre
polynomials and taking into account the relation(

−8µε
�2

)1/4

=
1
�

(
2µα
n + ν

)1/2

,

we find the normalization constant C(ν) and summa-
rize that

Φ(ν)
n =

√
µα

�

1
n + ν

1
Γ(2ν)

(14)

×
√

Γ(n + 2ν)
n!

yνe−y/2F (−n, 2ν, y).

Thus, we have two types of 1D Coulomb anyons
with ν = 1/4 and ν = 3/4. They are dual to reduced
oscillators with s = 0 and s = 1/2, respectively.

4. DUALITY FOR SOLUTIONS

Now we will calculate the energy levels εn and

wave functionsΦ(ν)
n in another, more straightforward,

way. For energy levels, we have

ε = −µω2

8
= −µ

8

[
E

2�(n + ν)

]2

= −µ

8

[
2α

�(n + ν)

]2

= − µα2

2�2(n + ν)2
.

It follows from Eqs. (2) and (5) that

Φ(ν)
n =

1
C
x1/4Ψ(ν)

n

and, therefore,

1 =

∞∫
0

|Φ(ν)
n |2dx =

1
|C|2

∞∫
0

x1/2|Ψ(s)
n |2dx,

where Ψn is the normalized wave function of a 1D
quantum oscillator. Thus,

Φ(ν)
n =

(−1)n

2

√
µω

�(n + ν)
x1/4Ψ(s)

n . (15)

Recall that, according to the theory of quantum oscil-
lator [9],

Ψ(s)
n =

√
2
(µω
π�

)1/4 1
2NN !

e−µωu
2/2HN

(
u

√
µω

�

)
.

(16)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Further, it is known [10] that Hermite polynomials
could be expressed in terms of confluent hypergeo-
metric functions. For our case,

H2n+2s(
√
y) = (−1)n

(2n + 2s)!
n!

(17)

× (2
√
y)2sF (−n, 2s + 1/2, y).

Using the identification y = xµω/� and the relations
2s + 1/2 = 2ν and µω/� = 2µα/�

2(n + ν) and tak-
ing into account Eqs. (15)–(17), we get

Φ(ν)
n = C̃(ν)

n yνe−y/2F (−n, 2ν, y), (18)

where

C̃(ν)
n =

√
µα

�2

1
2n−ν+1/4

√
Γ(2n + 2ν + 1/2)
π1/4n!(n + ν)

. (19)

From the duplication formula for a gamma function

Γ(2z) = 22z−1π−1/2Γ(z)Γ(z + 1/2)

and taking into account that Γ(1/2) = π1/2 and

Γ(3/2) = π1/2/2, we conclude that C̃(ν)
n = C

(ν)
n for

ν = 1/4, 3/4 and, consequently, Eqs. (18) and (14)
are identical.

5. CONCLUSIONS

(a) The 1D oscillator has only a discrete energy
spectrum and, therefore, is a model provided by the
property which is known in QCD as confinement. A
particle situated in the confinement potential cannot
be removed from the center and transferred to infin-
ity. On the other hand, the 1D Coulomb anyon is a
system possessing both a discrete and a continuous
part in the energy spectrum. At the same time, it
includes 1/x2 interaction and, therefore, pretends to
be a magnetic monopole in one spatial dimension. All
these ideas confirm that our result can be interpreted
in the spirit of the Seiberg–Witten duality [11]: the
theories with strong coupling (i.e., including con-
finement) are equivalent to the theories with weak
coupling (i.e., without confinement) accompanied by
magnetic monopoles. We conclude that the Seiberg–
Witten duality has its prototype in 1D quantum me-
chanics.

(b) The anyon–oscillator duality is a simple ex-
ample of a more complicated dyon–oscillator dual-
ity [12–21]. The latter connects the isotropic oscil-
lator with a charge–dyon bound system (a dyon is
a hypothetical object which has both electric and
magnetic charge [22]). The passage from an oscillator
to a charge–dyon system is realized by nonbijective
bilinear transformations [23] (for the mapping of the
1D Coulomb system into the oscillator, refer to [24]).

(c) The wave function (13) of a 1D Coulomb
anyon can formally be extended to the region −∞ <
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
y < 0. Such a continuation is an arbitrary-rule opera-
tion and we choose the following one. First, still being
in the region 0 < y < ∞, we change y in the expo-
nent and confluent hypergeometric function by |y| and
leave unchanged the factor yν . Then, we extend the
expression to the region −∞ < y < 0. These steps
allow us to get rid of divergence in the exponent for
large negative values of y and conserve the normal-
ization condition in −∞ < y < ∞ by multiplying the

function Φ(ν)
n by the factor 1/

√
2. The obtained wave

function Φ̄(ν)
n (y) satisfies Eq. (6) in the region −∞ <

y < ∞ and has the parity (−1)ν , i.e., describes the 1D
anyon [4].

(d) Equation (6) for −∞ < x < ∞ and ν = 0
corresponds to the so-called 1D hydrogen atom [25]
(for later references, see [26]), which has somemyste-
rious properties. For example, the ground state corre-
sponds to an infinite negative value of the energy and
the excited levels are doubly degenerate. The reason is
that the potential (−1/|x|) is singular in 1D space and
the system is provided by hidden symmetry [27–29]
and supersymmetry [30, 31]. As follows from (6) and
(12), the Calogero–Sutherland potential transforms
the 1D hydrogen atom into two modified atoms with
the statistical parameter ν = 1/4 and ν = 3/4. This
transformation leads to the formation of the ground
states with a finite energy level and removes the prob-
lem of degeneracy (replacement n → n + ν).

(e) It is easy to be convinced that Eq. (4) is identi-
cal to the Schrödinger equation with the Hamiltonian

Ĥ =
1
2µ

(
−i�∂x −

e

c
A
)2

− α

x
(20)

− �
2

2µ
ν(1 − ν)

x2
,

where α = e2, A = g/x, and g = iν�c/e. So, we deal
with a charged particle moving in the field created by
the 1D Coulomb dyon of the electric charge e and
purely imaginary magnetic charge g. The Calogero–
Sutherland potential acquires the meaning of the
Goldhaber term typical of the theory of magnetic
monopoles [32, 33].
Note that the Hamiltonian in (20) is not Hermi-

tian, but it could be transformed into a Hermitian
one if we do the following: (i) consider, instead of the
semiaxis x ∈ (0,∞), the axis x ∈ (−∞,∞); (ii) re-
place α/x with α/|x|; (iii) introduce the Yang–Dunkl
operator [36] D̂ = −i�∂x − eAR̂/c for the Calogero
model, where R̂ is the reflection operator.
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Abstract—It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the
AdSd+1 superbackgrounds can be systematically derived fromnonlinear realizations of the appropriate AdS
supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of
the bosonic dimension d. Examples include theN = 1 AdS4 supermembrane, which is associated with the
1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincaré supersymmetry,
and the T-duality related L3-brane on AdS5 and scalar 3-brane on AdS5 × S1, which are associated with
two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic
is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one
AdSd+1 (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the
dimension d. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A view of superbranes as theories explicitly ex-
hibiting the phenomenon of partial spontaneous
breaking of global supersymmetry (PBGS) [1, 2]
has received considerable attention (see, e.g, [3–
5] and references therein). In the approach with
PBGS as the guiding principle, the manifestly world-
volume supersymmetric superbrane actions (in a
static gauge) emerge as the Goldstone superfield
actions associated with nonlinear realizations of some
global spacetime supersymmetry groups sponta-
neously broken down to smaller supersymmetries.

Until now, the PBGS approach was applied to
spontaneously broken Poincaré supersymmetries in
diverse dimensions, in general, properly extended
by some central-charge generators. All systems of
this kind amount to p or Dp superbranes on flat
Minkowski backgrounds. It is tempting to generalize
the PBGS approach to the case of branes on curved
backgrounds. In view of the famous AdS/CFT cor-
respondence [6–8], the natural first step is to look
at the AdSn ×Sm-type backgrounds. The Green–
Schwarz-type world-volume actions for superbranes
on such backgrounds were intensively discussed in
the literature (see, e.g., [9–12]). However, explicit
examples of world-volume superfield actions were
given quite recently. Such actions were constructed
for the N = 1 supermembrane in AdS4 [13] (and
some of its dimensional reductions [14–15]), as well

∗The text was submitted by the author in English.
1)Bogolyubov Laboratory of Theoretical Physics, Joint Insti-
tute for Nuclear Research, Dubna, Moscow oblast, 141980
Russia; e-mail: eivanov@thsun1.jinr.ru
1063-7788/05/6810-1713$26.00
as for the L3 superbrane on AdS5 and a scalarN = 1
superbrane on AdS5 × S1, which are related to each
other via T duality [16]. In all these cases, the partially
broken supersymmetries are the N = 1 superconfor-
mal symmetries of the relevant superworld-volumes,
namely, OSp(1|4) in the former case and SU(2, 2|1)
in the latter two. The PBGS actions of the AdS
superbranes were derived from the special nonlinear
realizations of these superconformal groups, such
that the only unbroken symmetries are the N = 1
Poincaré supersymmetries of the superworld-volume
(and, generically, some of the original R symmetries).
The nonlinearly realized half of the superconformal
symmetries act as AdS superisometries mixing the
superworld-volume coordinates with the brane trans-
verse coordinates. One of the aims of the present talk
is to review this recent progress in generalizing the
PBGS ideas to AdS superbranes.

The PBGS approach to AdS (super)branes al-
lows one to reveal a new aspect of the AdS/CFT
duality, the existence of the so-called AdS/CFT
transform [15, 17, 18]. It relates conventional su-
perconformal theories containing a Goldstone field
of a dilaton among their fields and living in the
standard Minkowski (super)space to the superbranes
of the bosonic codimension 1 evolving on AdS
supermanifolds for which the given superconfor-
mal group defines superisometries. The AdS/CFT
transform maps the Minkowski superspace onto the
AdS brane superworld-volume and the dilaton onto
the brane transverse coordinate. The second half of
the present talk is devoted to explaining the origin
of this AdS/CFT transform and reviewing some
implications of it.
c© 2005 Pleiades Publishing, Inc.
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2. AdS4 MEMBRANE FROM THE COSET
APPROACH

We start with the case of the bosonic AdS4
membrane. Whereas it was known how to derive the
static-gauge Nambu–Goto action for the branes in
the d-dimensional flat Minkowski background from
the nonlinear realizations (coset) approach applied
to the relevant Poincaré group [5, 19], no such self-
contained derivation existed for AdS branes. The
algebra of the AdS4 group SO(2, 3) in the d = 3
spinor notation reads

[Mab,Mcd] = εacMbd + εadMbc + εbcMad (1)

+ εbdMac ≡ (M)ab,cd,
[Kab,Kcd] = −(M)ab,cd, [Mab,Kcd] = (K)ab,cd,

[Mab, Pcd] = (P )ab,cd,
[Kab,D] = −2Pab + 2mKab, [Pab,D] = −2mPab,

[Pab, Pcd] = 0,
[Kab, Pcd] = −2(εacεbd + εbcεad)D −m(M)ab,cd,

a, b, c, d = 1, 2.

The contraction parameter m is proportional to the
inverse AdS4 radius, and

P †
ab = Pab, M †

ab = −Mab, (2)

K†
ab = −Kab, D† = D, m† = −m.

The SO(1, 2) generatorsMab together withKab form
the algebra of SO(1, 3). As m → 0, (1) becomes the
d + 1 = 4 Poincaré algebra. Another basis may be
defined as

K̃ab =
1
m

Kab −
1

2m2
Pab, D̃ =

1
m

D, (3)

which are the standard d = 3 special conformal and
dilatation generators:

[K̃ab, K̃cd] = 0, (4)

[Mab, K̃cd] = (K̃)ab,cd, [K̃ab, D̃] = 2K̃ab,

[Pab, D̃] = −2Pab,

[K̃ab, Pcd] = −2(εacεbd + εbcεad)D̃ − (M)ab,cd.

In the basis (1), the d = 3 Poincaré subalgebra
∝(Pab,Mab) is manifest (together with the mani-
fest so(1, 3)). The generators (Pab,D) form the max-
imal solvable subalgebra of so(2, 3). Any AdSd+1

algebra so(2, d) can be written in the basis where
the d-dimensional Poincaré algebra is manifest, the
d-dimensional translation operator together with the
dilatation generator forms a solvable subalgebra, and
the (d + 1)-dimensional Lorentz algebra so(1, d) is
manifest [20]. This basis, the particular case of which
is (1), is very advantageous for treating AdS branes in
the nonlinear realization approach.
PH
Now we consider the coset SO(2, 3)/SO(1, 2)
parametrized by

g = ex
abPabeq(x)DeΛab(x)Kab . (5)

The parameters xab = −(xab)† and q(x) = −q†(x)
provide a specific parametrization of the coset
SO(2, 3)/SO(1, 3) ∼ AdS4, just adapted to the above
solvable-subgroup basis of so(2, 3). The vector field
Λab(x) = (Λab(x))† parametrizes the coset
SO(1, 3)/SO(1, 2). Its inclusion is necessary for
deducing the AdS4 membrane action from the coset
approach. Taking into account that the parameters
associated with Pab are the d = 3 spacetime coor-
dinates, the resulting nonlinear realization actually
describes the spontaneous breaking ofSO(2, 3) down
to its d = 3 Poincaré subgroup as the only linearly
realized one.
The full set of the SO(2, 3) transformations of the

coset parameters in (5) can be found by acting on
(5) from the left by various SO(2, 3)-group elements.
The d = 3 conformal transformations of the AdS4

coordinates (xab, q(x)) are generated by g0 = eb
abK̃ab :

δxab = 4(x2bab − 2xcdbcdxab) −
1

2m2
e4mqbab, (6)

δq = − 4
m

xabbab.

These transformations provide a specific nonlinear
realization of the d = 3 conformal group algebra, such
that the Goldstone field q(x) is present in the con-
formal transformation of xab. Just this realization un-
derlies the AdS4 membrane. The building blocks in
constructing the action are left-invariant Cartan one-
forms:

g−1dg = ωPP + ωDD + ωKK + ωMM. (7)

For our purposes, it suffices to know the expressions
for ωabP and ωD:

ωabP = e−2mq

(
dxab +

4λabλcddxcd

1 − 2λ2

)
(8)

+
2λabdq
1 − 2λ2

≡ Eab
cd(q, λ)dxcd,

ωD =
1 + 2λ2

1 − 2λ2

(
dq +

4e−2mqλabdx
ab

1 + 2λ2

)
, (9)

λab ≡ tanh
√

2Λ2

√
2Λ2

Λab, λ2 = λabλab.

The field λab can be traded for q(x) by the covariant
constraint [21]

ωD = 0 ⇒ λab = −1
2
e2mq ∂abq

1 +
√

1 − 1
2e

4mq(∂q)2
,

(10)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Eab
cd (q) = e−2mqδ

(a
(c δ

b)
d) (11)

− 1
2
e2mq 1

1 +
√

1 − 1
2e

4mq(∂q)2
∂abq∂cdq.

The simplest invariant is the covariant volume of the
d = 3 space,

∫
d3xdetE(q), and the correct invariant

action vanishing for a constant q reads (up to a nor-
malization factor)

S =
∫

d3x[e−6mq − detE(q)] (12)

=
∫

d3xe−6mq

(
1 −

√
1 − e4mq

2
∂abq∂abq

)
.

By construction, it possesses all symmetries of the
AdS4 space and, in the limit m = 0, goes into the
static-gauge Nambu–Goto action for a membrane
in d = 4Minkowski space. The term ∼

∫
d3xe−6mq is

SO(2, 3) invariant in its own right.
To see that the action (12) indeed describes a

membrane embedded into the AdS4 background, let
us look at the induced distance defined as the square
of ωabP = Eab

cd(q)dx
cd:

ds2 = ωabP ωPab = e−4mq(dxabdxab) −
1
2
dqdq. (13)

Introducing U = e−2mq and rescaling

xab =
1

2
√

2m
x̃ab,

one can rewrite (13) and (12), up to some overall
constant factors, as

ds2 = U2(dx̃abdx̃ab) −
(
dU

U

)2

, (14)

S =
∫

d3x̃U3


1 −

√
1 − (∂̃U∂̃U)

U4


 .

Thus, ds2 is recognized as the standard invariant
interval on AdS4, while S is recognized as the d = 3
analog of the Maldacena scale-invariant brane action
on AdS5 [6] (actually, of the scalar fields piece of the
D3-brane action). The derivation of this AdS4 inter-
val from the coset SO(2, 3)/SO(1, 3) parametrized
by coordinates associated with the solvable subgroup
generators (and a generalization to the generic case
of AdSd+1), as well as deducing the field-dependent
conformal transformations (6), was given in [20] (see
also [22]). A novel point is the explicit derivation of
the AdS4 membrane action from the coset approach.
It can be straightforwardly extended to the case of the
(d− 1) brane in AdSd+1 [9, 12] (see Section 5).
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3. AdS4 SUPERMEMBRANE

Our starting point will be the N = 1 AdS4 super-
algebra osp(1|4) in the following basis:

{Qa, Qb} = 2Pab, (15)

{Sa, Sb} = 2Pab − 4mKab,

{Qa, Sb} = 2εabD − 2mMab,

[Mab, Qc] = εacQb + εbcQa ≡ (Q)ab,c,
[Mab, Sc] = (S)ab,c, [Kab, Qc] = (S)ab,c,

[Kab, Sc] = −(Q)ab,c, [Pab, Qc] = 0,
[Pab, Sc] = −2m(Q)ab,c, [D,Qa] = mQa,

[D,Sa] = −mSa.

The generators Qa, Pab,Mab form the N = 1, d = 3
super-Poincaré algebra. The passing to the confor-
mal basis, besides the redefinitions (3), implies the
rescaling Sa = mS̃a such that S̃a is the d = 3 con-
formal supersymmetry generator. The advantage of
the basis (15) is that it manifests the N = 1, d = 3
super-Poincaré subalgebra of osp(1|4) and still yields
the N = 1, d = 4 super-Poincaré algebra in the con-
traction limitm = 0. TheN = 1, d = 3 Poincaré su-
pertranslations ∝(Qa, Pab) together with D form the
maximal solvable supersubalgebra of osp(1|4).
Wewish to construct anOSp(1|4) extension of the

AdS4 membrane action (12) such that it possesses
a manifest N = 1, d = 3 supersymmetry extending
the manifest d = 3 Poincaré world-volume invariance
of (12) and reproduces the action of the flat N = 1,
d = 4 supermembrane [23] in the limitm = 0.
The construction of the AdS4 supermembrane

action as a Goldstone superfield action is not so
straightforward as in the bosonic case. The only
known way of constructing such actions proceeds
from a linear realization of the partially broken super-
symmetry in some appropriate superspace. The non-
linear realization is recovered by imposing proper co-
variant constraints on the corresponding superfields
(see, e.g., [24, 25]). The correct Goldstone superfield
actions then arise from some simple invariants of the
initial linear realization. There is a systematic way
of searching for such covariant constraints [4, 26–
28]. We shall apply these techniques to construct the
PBGS action of the AdS4 supermembrane.
As a first step, we need to define the appropri-

ate analog of the aforementioned linear realization. It
turns out that, in the AdS case, it is already a sort of
nonlinear realization, but with weaker nonlinearities
as compared to the final nonlinear realization. As
a natural superextension of the bosonic coset ele-
ment (5), we choose

g = ex
abPabeθ

aQaeψ
aSaeu(z)DeΛab(z)Kab . (16)
05
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Here, the parameters z ≡ (xab, θa, ψa) are N = 2,
d = 3 superspace coordinates, while u = u(z) and
Λab(z) are Goldstone superfields given on this su-
perspace. The subspace spanned by the coordinate
set ζ ≡ (xab, θa) is the flat N = 1, d = 3 superspace
in which N = 1, d = 3 Poincaré supertranslations
∝(Qa, Pab) are realized in a standard way:

δxab = aab − 1
2
(εaθb + εbθa), (17)

δθa = εa.

These transformations correspond to the left shift of
(16) by g0 = ea

abPabeε
aQa . The rest of the OSp(1|4)

transformations except for the SO(1, 2) rotations are
nonlinearly realized on the coset coordinates, mixing
the N = 2 superspace coordinates with the Gold-
stone superfield u(z). Acting on (16) from the left by
the element g0 = eη

aSa , we find the explicit form of the
broken supersymmetry transformations

δxab = 2m(θaxbc + θbxac)ηc +
1
2
e4mu (18)

× (ψaηb + ψbηa) +
3
2
me4muψ2(θaηb + θbηa),

δθa = 4mxacηc + mθ2ηa − 3me4muψ2ηa,

δu = 2θaηa,

δψa = ηa − 2m(ηbθbψa − ηaθbψb − ηbθaψb).

As follows from (15), all bosonic transformations are
actually contained in the closure of the supersymme-
try transformations.
What we have at this stage is a nonlinear realiza-

tion of the N = 1 AdS4 supergroup on the N = 2,
d = 3Goldstone superfield u(x, θ, ψ):

δ∗u(x, θ, ψ) = −(δxab∂ab + δθa∂θa + δψa∂ψa ) (19)

× u(x, θ, ψ) + 2θaηa.

The first component in the θ, ψ expansion of u can
be regarded as the Goldstone dilaton field discussed
in the previous section. The spinor derivative Dau,
where

Da =
∂

∂θa
+ θb∂ab, {Da,Db} = 2∂ab, (20)

is shifted by ηa under the S supersymmetry. This
suggests that we actually face the 1/2 spontaneous
breaking of the AdS4 supersymmetry, with Dau|ψ=0

as the corresponding Goldstone fermionicN = 1 su-
perfield. However, u contains extra component fields
having no Goldstone interpretation. To construct the
minimal Goldstone multiplet, we resort to the method
which was applied in [28] to d = 2 PBGS systems
and, in [4], to the flat-space N = 1, d = 4 superme-
mbrane. Following the reasonings of [4] and keeping
PH
in mind that the scalar multiplets of the N = 1 AdS4

supergroup are represented by chiralN = 1, d = 4 (or
N = 2, d = 3) superfields, we regard the Goldstone
superfield u(z) to be complex and subject it to the
covariant chirality constraint

(∇Q
a − i∇S

a )u = 0, (21)

where ∇Q
a u and ∇S

au are the OSp(1|4) covariant
spinor derivatives of u(z) with respect to θa and ψa.
For our purpose, there is no need to know their precise
structure; what actually matters is that all the coef-
ficients in the ψ expansion of u(z) can be expressed
by (21) in terms of u(z)|ψa=0 and derivatives thereof.
For example, theψa = 0 component of (21) expresses
the first coefficient as

∂u

∂ψa

∣∣∣∣
ψ=0

= −ie2muDau

∣∣∣∣
ψ=0

. (22)

Thus the complexN = 1, d = 3 superfield

u0(x, θ) ≡ q(x, θ) + iΦ(x, θ), (23)

q† = −q, Φ† = −Φ,

incorporates the full irreducible field content of the
N = 2, d = 3 Goldstone chiral superfield u(x, θ, ψ).
Its S-supersymmetry transformation reads

δq = Lq − e2mqηa[sin(2mΦ)Daq (24)

+ cos(2mΦ)DaΦ] + 2ηaθa,

δΦ = LΦ + e2mqηa[cos(2mΦ)Daq

− sin(2mΦ)DaΦ],

where Lq and LΦ denote the variations caused by the
corresponding coordinate shifts.
The nonlinear realization that we have at this

step is still nonminimal. Besides the N = 1 su-
perfield q(x, θ) which contains all Goldstone fields
required by the 1/2 breaking of OSp(1|4) down to
its N = 1, d = 3 Poincaré subgroup (q|θ=0 for the
dilatations, (Daq)|θ=0 for the broken S transforma-
tions and ∂abq|θ=0 for the broken SO(1, 3)/SO(1, 2)
transformations), there is an extra non-Goldstone
N = 1, d = 3 superfield Φ(x, θ). The last step is to
eliminate the latter in terms of q and its derivatives
by imposing some nonlinear covariant constraint on
u0(x, θ), analogous to the constraints imposed in the
flat case [23]. It reads

Φ =
e2mqDaqDaq

4 + e2mqD2Φ
⇐⇒ Φ (25)

=
e2mqDaqDaq

2 +
√

4 + e4mqD2(DbqDbq)
.

It can be directly checked to be covariant with respect
to the transformations (24). From our superfield u0,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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we can construct the invariant

S2 = − 1
2im

∫
d3xd2θ(e−4mu0 − e4mu†0) (26)

=
1
m

∫
d3xd2θe−4mq sin(4mΦ).

In view of the nilpotency of Φ defined by Eq. (25), the
final action takes the form

S2 ∼
∫

d3xd2θ
e−2mqDaqDaq

2 +
√

4 + e4mqD2(DbqDbq)
. (27)

The action S2 contains the kinetic term of q(ζ) and, in
the limitm → 0, reduces to the flat N = 1, d = 4 su-
permembrane PBGS action of [23]. After eliminating
the auxiliary fieldB = D2q|θ=0, the bosonic part of S2

coincides with (12).
We come to the conclusion that the Goldstone

superfield action (27) is the natural superextension
of the conformally invariant AdS4 membrane ac-
tion (12). Besides being manifestly invariant under
N = 1, d = 3 Poincaré supersymmetry, it is invari-
ant under the nonlinearly realized part of N = 1
AdS4 supersymmetry OSp(1|4) which acts on the
N = 1, d = 3 superworld-volume as the Goldstone
superfield-modified d = 3 superconformal transfor-
mations. Thus, it is a PBGS superfield form of the
world-volume action of the N = 1 AdS4 supermem-
brane.

4. 3-BRANES IN SUPER AdS5

AND AdS5 × S1 BACKGROUNDS

We start with recalling how the PBGS N = 1
L3-brane action and (related to it via T duality)N = 1
scalar 3-brane action in the flat Minkowski back-
grounds can be deduced as the Goldstone superfield
actions describing the one-half partial breaking of
globalN = 2 Poincaré supersymmetry in d = 4.
The first option corresponds to the N = 1 tensor

multiplet as the Goldstone one [24, 25, 29]. The start-
ing point is the N = 2, d = 4 Poincaré superalgebra
with a real central chargeD

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = 2Pαα̇, (28)

{Qα, Sβ} = −εαβD, {Q̄α̇, S̄β̇} = −εα̇β̇D.

Here, Qα, Q̄α̇ and Sα, S̄α̇ are generators of the un-
broken and broken N = 1 supersymmetries, respec-
tively. These generators and the 4-translation gener-
ator Pαα̇ possess the standard commutation relations
with the Lorentz so(1, 3) generators (Mαβ , M̄α̇β̇):

i[Mαβ ,Mρσ ] = εαρMβσ + εασMβρ (29)

+ εβρMασ + εβσMαρ ≡ (M)αβ,ρσ,

i[M̄α̇β̇, M̄ρ̇σ̇] = (M̄)α̇β̇,ρ̇σ̇,
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i[Mαβ , Pρρ̇] = εαρPβρ̇ + εβρPαρ̇,

i[M̄α̇β̇, Pρρ̇] = εα̇ρ̇Pρβ̇ + εβ̇ρ̇Pρα̇,

i[Mαβ , Qγ ] = εαγQβ + εβγQα ≡ (Q)αβ,γ ,

i[Mαβ , Sγ ] = (S)αβ,γ , i[M̄α̇β̇, Q̄γ̇ ] = (Q̄)α̇β̇,γ̇ ,

i[M̄α̇β̇, S̄γ̇ ] = (S̄)α̇β̇,γ̇ .

Then one introduces twoN = 1 superfields: a real one
L(x, θ) subjected to the constraint

D2L = D̄2L = 0 (30)

and so describing a tensorN = 1 supermultiplet, and
a complex chiral superfield F , F̄ ,

DαF = D̄α̇F̄ = 0. (31)

Here,

Dα =
∂

∂θα
+ iθ̄α̇∂αα̇, (32)

D̄α̇ = − ∂

∂θ̄α̇
− iθα∂αα̇, D2 = DαDα,

D̄2 = D̄α̇D̄
α̇.

On these N = 1 superfields, one implements [24] the
following off-shell representation of the full N = 2
supersymmetry (28):

δL = −i(ηαθα − η̄α̇θ̄
α̇) + ηαDαF̄ − η̄α̇D̄α̇F, (33)

δF = −ηαDαL, δF̄ = η̄α̇D̄α̇L,

where ηα, η̄α̇ are the infinitesimal transformation pa-
rameters associated with the generators Sα, S̄α̇. It is
a modification of the transformation law of theN = 2
tensor multiplet [30] written in terms of its N = 1
superfield components.
One can construct the simplest invariant “action”

as follows:

S =
1
4

∫
d4xd2θ̄F +

1
4

∫
d4xd2θF̄ . (34)

To make it meaningful, one should express the chiral
supermultiplet F, F̄ in terms of the Goldstone ten-
sor multiplet L by imposing proper covariant con-
straints [24, 25]:

F = −DαLDαL

2 −D2F̄
, F̄ = −D̄α̇LD̄

α̇L

2 − D̄2F
⇒ (35)

F = −ψ2 +
1
2
D2 (36)

×


 ψ2ψ̄2

1 + 1
2A+ +

√
1 + A+ + 1

4 (A−)2


 ,

ψα ≡ DαL, ψ̄α̇ ≡ D̄α̇L, (37)

A± =
1
2
(D2ψ̄2 ± D̄2ψ2).
5
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Finally, the action (34) becomes

S = −1
4

∫
d4xd2θψ̄2 − 1

4

∫
d4xd2θ̄ψ2 (38)

+
1
4

∫
d4xd4θ

ψ2ψ̄2

1 + 1
2A+ +

√
1 + A+ + 1

4(A−)2
.

It is a nonlinear extension of the standard N = 1
tensor multiplet action. In the bosonic sector, it gives
rise to the static-gauge Nambu–Goto action for the
L3-brane in d = 5 Minkowski space, with one phys-
ical scalar of L being the transverse brane coordi-
nate and another one represented by the notoph field
strength. After dualizing L into a pair of conjugated
chiral and antichiral N = 1 superfields (the notoph
strength is dualized into a scalar field), the PBGS
form of the world-volume action of the super 3-brane
in d = 6 is reproduced [31].
Let us point out that the constraints (35), which

play the central role in deriving the action (38), are
intimately related to the five-dimensional nature of
the brane under consideration. They guarantee five-
dimensional Lorentz covariance [16].
Now we wish to generalize this flat superspace

construction to the case of partial spontaneous
breaking of the simplest AdS5 supersymmetry
SU(2, 2|1), that is, the N = 1 superconformal group
in d = 4.
The superalgebra su(2, 2|1) contains the

so(2, 4) ⊕ u(1) bosonic subalgebra with the gener-
ators {Pαα̇, Mαβ , M̄α̇β̇ , Kαα̇, D} and {J} and eight
supercharges {Qα, Q̄α̇, Sα, S̄α̇}. We choose the basis
in such a way that the generators Kαα̇ form the
so(1, 4) subalgebra together with the d = 4 Lorentz
generators {Mαβ , M̄α̇β̇}. The rest of the nontrivial
(anti)commutators reads

i[D,Pαα̇] = mPαα̇, (39)

i[D,Kαα̇] = 2Pαα̇ −mKαα̇,

i[Pαα̇,Kββ̇ ] = εαβεα̇β̇D − m

2
(εαβM̄α̇β̇ + εα̇β̇Mαβ),

{Qα, Sβ} = −εαβ(D + imJ) + mMαβ ,

{Qα, Q̄α̇} = 2Pαα̇, {Sα, S̄α̇} = 2Pαα̇ − 2mKαα̇,

i[D,Qα] =
m

2
Qα, i[D,Sα] = −m

2
Sα,

[J,Qα] =
3
2
Qα, [J, Sα] = −3

2
Sα,

i[Kαα̇, Qβ] = −εαβ S̄α̇, i[Kαα̇, Sβ ] = εαβQ̄α̇,

i[Pαα̇, Sβ] = mεαβQ̄α̇.

This basis is another example of the “AdS basis” of
conformal superalgebras [13, 17, 20, 32]. The param-
eter m has the meaning of the inverse AdS5 radius,
PH
m = R−1. In the limit m = 0 (R = ∞), one recovers
from (39) the N = 1, d = 5 Poincaré superalgebra,
with D becoming the fifth component of momenta.
The generators J and Kαα̇,Mαβ , M̄α̇β̇ decouple and
generate outer u(1) ⊕ so(1, 4) automorphisms.
Our goal is to construct an AdS5 version of the

nonlinear realization (33), (35). The main hints which
allowed us to do this are as follows. First, we as-
sert that this realization involves some modification
of N = 1 tensor multiplet L and, as before, a pair
of mutually conjugated N = 1 chiral and antichiral
superfields F , F̄ subjected to some generalization
of (35). Second, in a close analogy with the flat case,
we require that the following “action”

S ∼
∫

d4xd2θ̄F +
∫

d4xd2θF̄ (40)

be an invariant of the AdS5 supersymmetry. Third, in
the limit m = 0, our construction should reproduce
the flat case outlined above. Finally, it is sufficient
to find the realization of conformal S supersymme-
try, since the rest of the SU(2, 2|1) transformations
appear in the closure of S transformations with them-
selves and withN = 1 Poincaré supersymmetry.
It turns out that this reasoning almost uniquely

fixes the sought transformation laws and constraints
(more details of the derivation are given in [16]). These
are

δ∗F̄ = 6imθαηαF̄ − ∆xαα̇∂αα̇F̄ (41)

+ ∆θαDαF̄ + ie−2mLη̄α̇D̄α̇L,

δ∗F = −6imθ̄α̇η̄
α̇F − ∆xαα̇∂αα̇F

− ∆θ̄α̇D̄α̇F + ie−2mLηαDαL,

δ∗L = −i(θαηα − θ̄α̇η̄
α̇) − ∆xαα̇∂αα̇L

+ ∆θαDαL− ∆θ̄α̇D̄α̇L− ie2mL[ηαDα(e2mLF̄ )

+ η̄α̇D̄α̇(e2mLF )],
1
m

D2e−2mL =
1
m

D̄2e−2mL = 0, (42)

DαF = D̄α̇F̄ = 0,

F = −e−2mLDαLDαL

2 − e4mLD2F̄
, (43)

F̄ = −e−2mLD̄α̇LD̄
α̇L

2 − e4mLD̄2F
.

Here,

∆xαα̇ = 2im(ηβxβα̇θα + η̄β̇x
αβ̇ θ̄α̇) (44)

−m(θ2ηαθ̄α̇ − θ̄2η̄α̇θα),

∆θα = mη̄α̇x
αα̇ + im(θ2ηα − θ̄α̇η̄

α̇θα),

∆θ̄α̇ = mηαx
αα̇ − im(θ̄2η̄α̇ − θαηαθ̄

α̇)
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are the standard transformations of the N = 1 su-
perspace coordinates with respect to the conformal
supersymmetry.
In the limit m = 0, Eqs. (41), (42), and (43) go,

respectively, into (33), (30), (31), and (35). It can be
checked that, on the surface of the nonlinear con-
straints (43), the off-shell transformations (41) are,
first, compatible with the differential constraints (42)
and, second, produce the whole SU(2, 2|1) symmetry
when commuted among themselves and with N = 1
Poincaré supersymmetry. It is just due to the presence
of the nonlinear mixed terms that the transforma-
tions (41) constitute a realization of SU(2, 2|1) as
the superisometry group of super AdS5 background
and correctly generalize the flat superspace realiza-
tion (33). A striking difference between Eqs. (33)
and (41) lies in the fact that Eqs. (33) close on the
N = 2 Poincaré superalgebra before imposing the
constraints (35), while Eqs. (41) define a closed su-
pergroup structure only provided the constraints (43)
are imposed from the very beginning. It is easy to
check that Eqs. (43) are covariant under (41).
Inspecting (41), one can be convinced that this

realization corresponds to a half-breaking of the
SU(2, 2|1) supersymmetry: the spinor derivatives
of L are shifted by spinor parameters under the
action of S supersymmetry, thus signaling that the
latter is spontaneously broken. Broken also are D
transformations (with L| as the Goldstone field) and
the SO(1, 4)/SO(1, 3) transformations (with ∂αα̇L|
as the relevant “Goldstone field”).
Like their flat counterparts, the constraints (43)

can be easily solved:

F = −e−2mLψ2 +
1
2
D2 (45)
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×


 ψ2ψ̄2

1 + 1
2A+ +

√
1 + A+ + 1

4 (A−)2


 ,

ψα ≡ DαL, ψ̄α̇ ≡ D̄α̇L, (46)

A± =
1
2
e2mL(D2ψ̄2 ± D̄2ψ2).

Finally, the action (40) can be written in the form

S = −1
4

∫
d4xd2θe−2mLψ̄2 (47)

− 1
4

∫
d4xd2θ̄e−2mLψ2 +

1
4

∫
d4xd4θ

× ψ2ψ̄2

1 + 1
2A+ +

√
1 + A+ + 1

4(A−)2
.

The first two terms in (47) are recognized as the
action of the improved tensorN = 1 superfield [33]. In
the limitm = 0, (47) converts into the flat superspace
action (38).

With the bosonic components defined as

φ = L|θ=0, (48)

[Dα, D̄α̇]e−2mL|θ=0 = −2mVαα̇,

where in virtue of (43)

∂αα̇V
αα̇ = 0, (49)

the bosonic part of (47) proves to be
SB =
∫

d4xe−4mφ

[
1 −

√
1 +

1
2
e6mφV 2 − 2e2mφ(∂φ)2 − e8mφ(V αα̇∂αα̇φ)2

]
. (50)
It is a conformally invariant extension of the static-
gauge Nambu–Goto action for the L3 brane in d = 5:
the dilaton φ can be interpreted as a radial brane co-
ordinate, while V αα̇ is the field strength of the notoph
which contributes one more scalar degree of freedom
on shell. As is well known, V αα̇ can be dualized into
an off-shell scalar by introducing the constraint (49)
into the action with a Lagrange scalar multiplier and
then eliminating V αα̇ by its algebraic equation of
motion. Extending (50) as

SB ⇒ SdualB = SB +
∫

d4xλ∂αα̇V
αα̇ (51)
and eliminating V αα̇, after some algebra, we get

SdualB =
∫

d4x|Z|4 (52)

×
[
1 −

√
−det

(
ηµν −

2
m2

∂µZn∂νZn

|Z|4
)]

,

where

Z1 = r cos ϑ, Z2 = r sinϑ, r ≡ e−mφ, (53)

ϑ ≡ mλ, ηµν = diag(+ −−−).

The action (52) is recognized as the S5 → S1 re-
duction of the scalar part of the D3-brane action
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on AdS5 × S5 [6], that is, the static-gauge Nambu–
Goto action of the scalar 3 brane on AdS5 × S1. The
field ϑ can be shown to undergo a shift under the
action of the U(1) generator J , which justifies its
interpretation as the S1 angular variable.
The above duality transformation can be per-

formed at the full superfield level. This results in
SU(2, 2|1) invariant action of the Goldstone chiral
N = 1 superfield which generalizes the action of [25,
29, 31] and describes a super 3 brane on AdS5 × S1

superbackground. In its basic steps, this dualization
procedure is similar to the flat superspace one of [29].
We start with the superfield action (47) and relax

the constraints for L in (42) by adding a Lagrange
PH
multiplier term to the superfield Lagrangian,

Sdual =
1
4

∫
d4xd2θd2θ̄

[
− 1

2m2
Y (lnY − 1) (54)

+
Y −4

(2m)4
(DY )2(D̄Y )2f +

Y

2m
(ϕ + ϕ̄)

]
,

Y ≡ e−2mL, D̄α̇ϕ = Dαϕ̄ = 0, (55)

f =
1

1 + 1
2A+ +

√
1 + A+ + 1

4(A−)2
.

Next, we vary the action (54) with respect to Y in
order to obtain an algebraic equation that trades Y for
ϕ, ϕ̄. Skipping the details, we obtain the dual action
Sdual =
1
8

∫
d4xd4θ

(
em(ϕ+ϕ̄)

m2
(56)

+

1
8
(Dϕ)2(D̄ϕ̄)2

1 − e−m(ϕ+ϕ̄)∂ϕ∂ϕ̄ +
√

(1 − e−m(ϕ+ϕ̄)∂ϕ∂ϕ̄)2 − e−2m(ϕ+ϕ̄)(∂ϕ)2(∂ϕ̄)2

)
.

This action goes into the flatN = 2 → N = 1 chi-
ral Goldstone superfield action of [25, 29, 31] in the
limit m = 0 and is obviously SU(2, 2|1) invariant as
it was obtained by dualizing the SU(2, 2|1) invariant
action (47). It is noteworthy that the standard U(1)
isometry associated with the duality transformation,
viz. δϕ = iα, δϕ̄ = −iα, now appears in the closure
of the Q and S transformations on these Goldstone
superfields, with the imaginary part of ϕ| being the
related extra Goldstone field. It is just the J (or γ5)
symmetry of SU(2, 2|1). The bosonic core of the ac-
tion (56) coincides with (52) after the identification

φ = −1
2
(ϕ + ϕ̄), λ =

i

2
(ϕ− ϕ̄). (57)

Thus, we conclude that the Goldstone superfield
action (56) describes the option when the internal
U(1) R symmetry with the generator J is also broken
in addition to the (super)symmetries broken in the ac-
tion (47). The bosonic coset is basically AdS5 × S1 ∝
{xαα̇, φ}× {λ} and the bosonic part of the action (56)
is just the static-gauge Nambu–Goto action of a 3
brane on this manifold. This solves the problem of
constructing an invariant Goldstone superfield action
for such a PBGS option, as was posed in [34].
5. AdS/CFT EQUIVALENCE
TRANSFORMATION

The group-theoretical origin of the AdS/CFTmap
to be discussed lies in the existence of two different
nonlinear realizations of the conformal group in d
dimensions.
The algebra of conformal group SO(2, d) of d =

p + 1-dimensional Minkowski space reads

[Mµν ,M
ρσ ] = 2δ[ρ

[µM
σ]
ν] , (58)

[Pµ,Mνρ] = −ηµ[νPρ], [Kµ,Mνρ] = −ηµ[νKρ],

[Pµ,Kν ] = 2(−ηµνD + 2Mµν), [D,Pµ] = Pµ,

[D,Kµ] = −Kµ.

Its standard nonlinear realization [35] is defined in the
coset SO(2, d)/SO(1, d − 1):

g = ey
µPµeϕDeΩµKµ . (59)

The left shifts with the parameters aµ, bµ, and c related
to the generators Pµ, Kµ, and D induce the familiar
conformal transformations of the coset coordinates

δyµ = aµ + cyµ + 2(yb)yµ − y2bµ, (60)

δϕ = c + 2yb.

The left-covariant Cartan 1-forms are defined as fol-
lows:

g−1dg = ωµPPµ + ωDD + ωµνMMµν (61)
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+ ωµKKµ = e−ϕdyµPµ + (dϕ− 2e−ϕΩµdy
µ)D

− 4e−ϕΩµdyνMµν + [dΩµ − Ωµdϕ

+ e−ϕ(2Ωνdy
νΩµ − Ω2dyµ)]Kµ.

The vector Goldstone field Ωµ(x) can be covariantly
expressed through the dilaton ϕ(x) [21]

ωD = 0 ⇒ Ωµ =
1
2
eϕ∂µϕ, ωµP = e−ϕdyµ, (62)

ωµK = dΩµ − e−ϕΩ2dyµ.

The covariant derivative of Ωµ is defined by the rela-
tion

ωµK = ωνPDνΩµ ⇒ DνΩµ (63)

=
1
2
e2ϕ

[
∂ν∂

µϕ + ∂νϕ∂
µϕ− 1

2
(∂ϕ∂ϕ)δµν

]
.

The conformally invariant measure of integration over
{yµ} is defined as

S1 =
∫

µ(y) =
∫

d(p+1)ye−(p+1)ϕ (64)

and the covariant kinetic term of ϕ reads

Skinϕ =
∫

d(p+1)ye−(p+1)ϕDµΩµ (65)

=
1
4
(p− 1)

∫
d(p+1)ye(1−p)ϕ∂ϕ∂ϕ.

In any field theory with spontaneously broken con-
formal symmetry, it is always possible to make a field
redefinition which splits the full set of scalar fields of
the theory into the dilaton ϕ with the transformation
law (60) and the subset of fields which are scalars
of zero conformal weight. In this sense, the above
nonlinear realization is universal.
There is another nonlinear realization of the same

group [13] which is relevant to the description of
codimension-one branes on AdSd+1. In this realiza-
tion, SO(2, d) acts as the group of motion of AdSd+1.
It is related to the existence of the AdS basis in (58).
In the AdS basis, we introduce the following gen-

erators:

K̂µ = mKµ −
1

2m
Pµ, D̂ = mD, (66)

where m is the inverse AdS radius. The basic rela-
tions of the SO(2, d) algebra become

[K̂µ, K̂ν ] = 4Mνµ, (67)

[Pµ, K̂ν ] = 4mMµν − 2ηµνD̂,

[D̂, Pµ] = mPµ, [K̂µ, D̂] = Pµ + mK̂µ.

The main difference between (67) and (58) is that the
generators (K̂µ,Mρν) generate the semi-simple sub-
group SO(1, d) ⊂ SO(2, d), while the subgroup with
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(Kµ,Mρν) has the structure of a semidirect product.
As a result, in the coset element (59) in the new basis

g = ex
µPµeqD̂eΛµK̂µ , (68)

xµ and q(x) parametrize SO(2, d)/SO(1, d) ∼
AdSd+1 [20]. Equation (62) now yields

ωD̂ = 0 ⇒ λµ = emq
∂µq

1 +
√

1 − 1
2e

2mq(∂q∂q)
, (69)

λµ ≡ Λµ
tanh

√
Λ2/2√

Λ2/2
.

The Cartan form ωµP is then given by the expression

ωµP = e−mq
(
δµν − λµλν

1 + λ2/2

)
dxν (70)

≡ Eµ
ν dx

ν = e−mqÊµ
ν dx

ν .

The transformation laws of xµ, q(x) under the left
shifts of (68) are as follows:

δxµ = aµ + cxµ + 2(xb)xµ − x2bµ (71)

+
1

2m2
e2mqbµ, δq =

1
m

(c + 2xb).

After a field redefinition, they are recognized as the
field-dependent conformal transformations [6, 9, 12,
36] representing AdS isometries in the solvable-
subgroup parametrization.
The simplest invariant of the nonlinear realization

considered is again the covariant volume of x space
obtained as an integral of wedge product of (p + 1)
1-forms ωµP . It is basically the static-gauge Nambu–
Goto action for the p-brane in AdSp+2

SNG =
∫

d(p+1)x[e−(p+1)mq − detE] (72)

=
∫

d(p+1)xe−(p+1)mq

[
1 −

√
1 − 1

2
e2mq(∂q∂q)

]
,

where we have subtracted 1 to obey the standard
requirement of absence of vacuum energy [6]. The
subtracted term is also invariant under (71). The
action (72) is universal; it describes the radial (pure
AdS) part of any (n− 2)-brane action on AdSn ×
Sm.
In both nonlinear realizations described above, we

deal with the same coset manifold SO(2, d)/SO(1,
d− 1), the parameters of which are separated into
the spacetime coordinates and Goldstone fields in two
different ways. Hence, there should exist a relation
between these two parametrizations. It can be read
off by comparing (59) and (68):

yµ = xµ − emq

2m
λµ, (73)
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ϕ = mq + ln
(

1 − λ2

2

)
, Ωµ = mλµ.

It is invertible at any finite and nonzero m = 1/R
and maps the Minkowski space conformal trans-
formations (60) onto the field-dependent ones (71).
This AdS/CFT transform can be defined only in the
framework of extended coset manifolds {yµ, ϕ,Ωµ}
and {xµ, q, λµ}. In [18], (73) is interpreted in a setting
where all coset parameters are independent.
Using (73), any Minkowski space conformal field

theory with a dilaton among its basic fields can be
projected onto the variables of the AdS brane and vice
versa. Making, e.g., in (72) the change of variables
inverse to (73), we find

SNG =
1

4m2

∫
d(p+1)ye(1−p)ϕ (74)

× (∂ϕ∂ϕ)
1 − 1

8m2 e2ϕ(∂ϕ∂ϕ)
det
(
I +

1
2m2

DΩ
)
.

It is an equivalent form of the static-gauge action (72)
of the p-brane in AdSp+2 as a nonlinear extension
of the conformally invariant dilaton action in Mp+1.
In [17], the conformal field theory image of the full
bosonic part of D3-brane action on AdS5 × S5 was
found.

6. SUPERCONFORMAL MECHANICS
REVISITED

Conformal mechanics (CM) [37] and its super-
conformal extensions (SCM) [38, 39] are the sim-
plest models of (super)conformal field theory. Re-
cently, it was suggested [36] that the so-called “rel-
ativistic” generalizations of these d = 1 models are
candidates for the conformal field theory dual to AdS2

(super)gravity in the AdS2/CFT1 framework. The
simplest model of this kind is a charged particle evolv-
ing on the AdS2 × S2 background (the Bertotti–
Robinson (BR) metric). It describes a near-horizon
geometry of the extreme d = 4 Reissner–Nordström
black hole.
Since the “old” and “new” (super)conformal me-

chanics models respect the same (super)conformal
symmetry, these models can be expected to be equiv-
alent to each other. The d = 1 version of the map (73)
allows one to explicitly prove this conjecture [15].
Here, we illustrate this by the example of N = 2 su-
perconformal mechanics.
The N = 2, d = 1 superconformal algebra su(1,

1|1) includes as a subalgebra the d = 1 conformal
algebra so(2, 1)

[P,D] = −P, [K,D] = K, [P,K] = −2D, (75)
PH
in parallel with the generators of Poincaré {Q, Q̄}
and conformal {S, S̄} supersymmetries and the U(1)
generator U . The nonvanishing (anti)commutators of
the latter read

{Q, Q̄} = 2iP, {Q, S̄} = 2iD − 2iU, (76)

{S, S̄} = 2iK, {S, Q̄} = 2iD + 2iU,
P,


S

S̄




 = −


Q

Q̄


 ,


K,


Q

Q̄




 =


S

S̄


 ,


D,


Q

Q̄




 =

1
2


Q

Q̄


 ,


D,


S

S̄




 = −1

2


S

S̄


 ,


U,


Q

Q̄




 =

1
2


 Q

−Q̄


 ,


U,


S

S̄




 =

1
2


 S

−S̄


 .

The standard nonlinear realization ofSU(1, 1|1) as
the d = 1, N = 2 superconformal group is set up as
left multiplications of the coset

g = etP eθQ+θ̄Q̄eqDeλKeψS+ψ̄S̄ , (77)

where (t, θ, θ̄) ≡ z are coordinates of the N = 2, d =
1 superspace and the remaining coset parameters are
superfields given on this superspace. The transforma-
tion rules of the supercoset parameters and the struc-
ture of the related left-covariant Cartan superforms
can be found in [39]. We only note that, on theN = 2,
d = 1 superspace coordinates, one recovers the stan-
dardN = 2 superconformal transformations, while all
the superfield coset parameters are expressed through
q(z) by the appropriate inverse Higgs constraints:

λ =
1
2
eq q̇, ψ̄ = − i

2
eq/2Dq, (78)

ψ = − i

2
eq/2D̄q,

D =
∂

∂θ
+ iθ̄∂t, D̄ =

∂

∂θ̄
+ iθ∂t,

{D, D̄} = 2i∂t.

The invariant action ofN = 2 SCM reads

SN=2 =
∫

dtd2θ

[
µ

2
DY D̄Y (79)
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+
√
µγ lnY

]
, Y = eq/2.

Its bosonic core coincides with the action of the stan-
dard “old” conformal mechanics [37]

S =
1
2

∫
dt

(
1
4
µeuu̇2 − γe−u

)
(80)

=
1
2

∫
dt(µẋ2 − γ

x2
),

upon the identifications q|θ=0 = u(t), x(t) = e(1/2)u(t)

and eliminating the auxiliary field [D, D̄]q|θ=0 by its
equation of motion.

Now we pass in (75), (76) to the AdS basis

K̂ = mK − 1
m

P, D̂ = mD, (81)

Ŝ = mS, ˆ̄S = mS̄.

We define the realization of SU(1, 1|1) in the AdS
basis by its left action on the coset SU(1, 1|1)/U(1)
in the following parametrization:

g = eyP eθQ+θ̄Q̄eΦD̂eΩK̂eξŜ+ξ̄ ˆ̄S. (82)

As in the case of a standard nonlinear realization, one
can directly find the transformation rules of the su-
perspace coordinates and Goldstone superfields. As
distinct from the standard case, the transformation
laws of coordinates now essentially includeGoldstone
superfields; i.e., we face a field-dependent realization
of the N = 2 superconformal group. The only essen-
tial Goldstone superfield is Φ; the remaining ones are
eliminated by the inverse Higgs constraints:

Λ = emΦ∂yΦ
1

1 +
√

1 − e2mΦ(∂yΦ)2
, (83)

ξ = − i

2
1 + Λ2

√
1 − Λ2

e(m/2)ΦD̄yΦ.

By comparing two different parametrizations of
the same coset SU(1, 1|1)/U(1), Eqs. (77) and (82),
one finds the N = 2 extension of the d = 1 version of
the map (73)

t = y − 1
m

emΦΛ, q = mΦ + ln(1 − Λ2), (84)

λ = mΛ, ψ = mξ, ψ̄ = mξ̄.

Now we are prepared to obtain the invariant su-
perfield action which is pertinent to the above AdS
realization of theN = 2, d = 1 superconformal group
and so is expected to describe theN = 2 superexten-
sion of the bosonic BR particle action. One should
perform the transformation (84) in the “old” N = 2
SCM action (79). For simplicity, we choose γ = 0,
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
which amounts to requiring zero vacuum energy. We
obtain

S =
µm2

8

∫
dyd2θemΦ (85)

×
(

1 − Λ2

1 + Λ2
− 1

m
emΦ∂yΛ

)
(1 + Λ2)2

1 − Λ2
DyΦD̄yΦ,

where Λ is expressed through Φ according to (83).
It is straightforward to pass to the component

fields in (85) and to show that, when all fermions
are discarded, F = 0 on shell. After substituting this
into the pure bosonic part of the component action,
the latter, up to a total derivative in the Lagrangian,
becomes

Sbos =
µm2

4

∫
dye−mφ

(
1 −

√
1 − e2mφ(∂yφ)2

)
,

(86)

which is just the bosonic worldline action of BR par-
ticle in a static gauge, with the angular S2 variables
being “frozen.”
Thus, (85) provides amanifestlyN = 2 supersym-

metric off-shell form of theN = 2 superconformal ex-
tension of the “new” CM action (86) which describes
the radial (AdS2) motion of the charged particle in
the BRAdS2 × S2 background. By construction, it is
related by the equivalence transformation (84) to the
γ = 0 case of the “old” N = 2 SCM action (79).
The classical equivalence between the “old” and

“new” (S)CM models can hopefully be extended to
the quantum case and used to solve the quantum
mechanics of the charged AdS2 (super)particles in
terms of (super)conformal quantum mechanics. In
the classical Hamiltonian approach, this equivalence,
both for the radial motion and with the angular S2

variables taken into account, was proved in a recent
paper [40].

7. CONCLUSIONS

In this paper, I reviewed the recent progress in
generalizing the PBGS approach to the case of su-
perbranes on the super AdS backgrounds. The off-
shell world-volume actions of superbranes on su-
permanifolds with the AdS4, AdS5, and AdS5 × S1

even parts were derived from the appropriate nonlin-
ear realizations of N = 1, d = 3 and N = 1, d = 4
superconformal symmetries associated with the su-
pergroups OSp(1|4) and SU(2, 2|1) [13, 14, 16]. The
nonlinear realizations constructed describe the partial
one-half breaking of these superconformal symme-
tries, and the superbrane actions are the correspond-
ing Goldstone superfield actions. I also described
a new aspect of the AdS/CFT correspondence. It
05



1724 IVANOV
consists in existence of the coordinate transforma-
tion which relates the standard realizations of (su-
per)conformal groups in field theories with sponta-
neously broken scale invariance and their realizations
in superbranes as groups of (super)isometries of AdS
(super)backgrounds [15, 17, 18]. One of the corollar-
ies of this map is an equivalence of various “old” and
“new” (super)conformal mechanics models, which
could be helpful in solving the second type of models
in terms of the simpler first type, both at the classical
and at the quantum level [15, 40].
Among problems for further study, let me mention

generalizing the PBGS approach to more compli-
cated superconformal groups and superbackgrounds,
such as N ≥ 2, d = 4 supergroups SU(2, 2|N), and
the related super AdS5 × Sm-type backgrounds. In
this way, one can hope to construct manifestly world-
volume supersymmetric actions for AdS D3 branes
which should amount to superconformal extensions
of supersymmetric Born–Infeld actions. The corre-
sponding versions of the AdS/CFT map (73), (84)
could be of help in establishing these equivalences.
Another interesting related problem is to generalize
the manifestly world-volume supersymmetric PBGS
approach to branes on PP-wave type backgrounds.
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25. M. Roček and A. A. Tseytlin, Phys. Rev. D 59, 106001
(1999).

26. E. A. Ivanov and A. A. Kapustnikov, J. Phys. A 11,
2375 (1978); J. Phys. G 8, 167 (1982).

27. F. Delduc, E. Ivanov, and S. Krivonos, Nucl. Phys. B
576, 196 (2000).

28. E. Ivanov, S. Krivonos, O. Lechtenfeld, and B. Zup-
nik, Nucl. Phys. B 600, 235 (2001).

29. F. Gonzalez-Rey, I. Y. Park, and M. Roček, Nucl.
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Abstract—Direct optical absorption of light is theoretically investigated in a spherical quantum dot from
GaAs. The confinement potential of the dot is approximated as parabolic. Three regimes of size quantization
are discussed: weak, strong, and intermediate. The corresponding threshold frequencies of absorption
are determined. A comparison with the case of a spherical quantum dot with rectangular infinitely high
confinement potential is performed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The investigation of spectra of optical absorption
of different semiconductor structures still remains one
of the most powerful tools to determine their band
structure. From the viewpoint of theoretical inves-
tigation of absorption processes in semiconductors,
the most convenient is the study of the absorption
threshold of the considered sample. The theory of
both direct and indirect (with third body) optical tran-
sitions is evolved for such absorption [1]. A lot of
articles are devoted to theoretical and experimental
investigation of optical absorption in both massive
and size-quantized semiconductors (see, e.g., [2–5]).

The presence of size quantization essentially af-
fects the nature of absorption. Indeed, the formation of
size-quantization levels near extrema of bands makes
possible the appearance of new interband transitions.
The influence of size quantization on the optical tran-
sitions in semiconductor films and wires is considered
in detail in [6]. At the same time, zero-dimensional
structures or quantum dots (QDs), in which the par-
ticle spectrum is completely quantized, are the most
interesting objects from the viewpoint of effects of size
quantization. Such objects in many respects are like
real atoms; therefore, not occasionally, they are also
called “artificial atoms” [6].

Optical transitions in QDs were discussed by dif-
ferent authors. The article [7] is one of the first articles
devoted to these problems. In this article, light ab-
sorption in semiconductor spheres disseminated into
a dielectric matrix was considered. In the scope of the
model of an infinitely high spherical dot, interband
transitions at different regimes of size quantization

∗The text was submitted by the authors in English.
1)Yerevan State University, Department of Solid State

Physics, Yerevan, 375025 Armenia.
**e-mail: shayk@www.physdep.r.am
1063-7788/05/6810-1726$26.00
were considered. Further, the authors of [8] inves-
tigated the influence of anisotropy of band struc-
ture on the nature of optical transitions in spherical
QDs (with the same confinement potential) made of
lead sulfide and selenide of lead. It was shown that
the strong anisotropy of the band structure of PbS
and PbSe results in appearance of optical transi-
tions, forbidden in an isotropic approximation. On
the other hand, beginning from 1990s, in connec-
tion with the interpretation of some magneto-optical
experiments on QDs [9–11], the attention towards
QDs with parabolic confinement potential sharply
increased. The question is in the fact that the shape
of a potential well is determined by the variation of
composition of isovalent components. As a result of
some mixing of components during the growth of QD,
smoothing of the shape of the sample confinement
potential takes place. Therefore, as the first approx-
imation, the usage of the parabolic dot approximation
is quite reasonable [12, 13]. In this connection, the
consideration of optical transitions in QDs with a
parabolic confinement potential is interesting.

In the article, direct optical transitions in spherical
QD with a parabolic confinement potential are inves-
tigated.

2. THEORY

Let us consider a spherical symmetrical QD with
confinement potential of the form

Vconf(r) =
µω2r2

2
,

where ω is the frequency of the QD confinement
potential (ω ∼ �/(µr2

0), r0 is QD radius), and µ is
electron effective mass (or of the hole, moreover, µe �
µh). By analogy with [7], direct optical transitions
in the considered system will be discussed for three
cases of size quantization.
c© 2005 Pleiades Publishing, Inc.
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(a) Regime of strong size quantization aeB, ahB �
r0 (aeB, a

h
B are effective Bohr radii of electron and hole);

(b) Regime of weak size quantization aeB, ahB � r0;

(c) Regime of intermediate size quantization ahB �
r0 � aeB.

2.1. Regime of Strong Size Quantization

In this case the Coulomb interaction between
electron and hole can be neglected and, accordingly,
the wave function of these particles in QD can be
written as [14]

Ψe(h)
nr,l,m

(r, θ, ϕ) = Ce(h)
n rle

−λe(h)r
2/2

1 (1)

×1F1[−nr, l + 3/2;λe(h)r
2]Ylm(θ, ϕ),

where Ce(h)
n is the normalizing constant, n = 2nr + l

is the principal quantum number, {nr, l,m} are quan-
tum numbers, λe(h) are oscillator length of electron
and hole, 1F1[a, b;x] is a confluent hypergeometrical
function of the first kind, and Ylm(θ, ϕ) are spher-
ical functions. The energy levels corresponding to
these wave functions are determined in the following
way [14]:

Ee(h)
n = �ωe(h)

(
n+

3
2

)
, ωe(h) ∼

�

µe(h)r
2
0

.

According to [7], the absorption coefficient may be
written as

K = A
∑

nr,n′
r,l,l

′,m,m′

∣∣∣∣∣
∫

Ψe
nr,l,m(r, θ, ϕ)

× Ψh
n′

r,l
′,m′(r, θ, ϕ)dV

∣∣∣∣∣
2

δ(�ω̃ − εg − Ee
n − Eh

n′),

where A is the quantity, proportional to the square
of the modulus of dipole matrix element, taken on
Bloch functions; εg is the width of the forbidden band;
and ω̃ is the frequency of incident light. After the
integration (using selection rules m = −m′, l = l′),
one can obtain the expression

K = A
∑
nr ,n′

r,l

Bnr,n′
r,l|Inr,n′

r,l|
2

× δ(�ω̃ − εg − Ee
n −Eh

n′),

where Bnr ,n′
r,l is some new constant, and

Inr ,n′
r,l =

1
2
Γ
(
l +

3
2

)(
λe + λh

2

)−(nr+n′
r+l+3/2)

×
(
λe − λh

2

)nr
(
λe − λh

2

)n′
r
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× 2F1

[
−nr,−n′r, l +

3
2
;− 4λeλh

(λh − λe)2

]
,

where Γ(x) is the Euler gamma function, and
2F1[a, b, c;x] is a hypergeometrical function.

2.2. Regime of Weak Size Quantization

At weak size quantization, system energy is
mainly conditioned by Coulomb interaction between
the electron and the hole. Therefore, the wave func-
tion of the system may be written in the form

f(re, rh) = ϕ(r)Ψnr ,l,m(R),

where r = re − rh, R =
µere + µhrh
µe + µh

, ϕ(r) is the

wave function of relative motion, and Ψnr ,l,m(R)
is the wave function of exciton center of mass de-
termined by Eq. (1), where µ = µe + µh is inserted
instead of µe(h). The system energy will be written as

E = �Ω
(
n+

3
2

)
− Eex,

where Ω ∼ �

(µe + µh)r2
0

, and Eex is exciton energy.

Due to the electron localization in a quite close
neighborhood of the QD center, for K one can write

K = A
∑
nr ,l,m

|ϕ(0)|2
∣∣∣∣
∫

Ψnr ,l,m(R)dR
∣∣∣∣
2

(2)

× δ(�ω̃ − εg + Eex − �Ω(n+ 3/2)).

Taking into account that ϕ(0) 
= 0 only for the ground
state (l = m = 0), after integration, one can obtain

K =
32

(λaex)3
Γ
(

3
2

)∑
nr

2F
2
1

[
nr,

3
2
,
3
2
; 2
]

(3)

×Dnrδ

(
�ω̃ − εg + Eex − �Ω

(
n+

3
2

))
,

where Dnr is some constant, and λ = (µe + µh)Ω/�,
aex is exciton radius. In (3), the circumstance is taken
into account that, in integral in (2), only the states
l = m = 0 are nonzero, as follows from the properties
of spherical functions Ylm(θ, ϕ).

2.3. Regime of Intermediate Size Quantization

Taking into account that, in this case, an electron
moves much faster than a heavy hole, the adiabatic
approximation can be used [7]. Then the motion of the
hole will take place under the influence of the spherical
symmetrical potential of the form

Vnr,l,m(r) = −e
2

χ

∫ |Ψnr ,l,m(r, θ, ϕ)|2
|r − r′| dr′, (4)
05
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Fig. 1. The dependences of absorption threshold frequen-
cies on QD radius in units for the regime of strong size
quantization. Curve 1 corresponds to the case of parabolic
confinement potential, and curve 2 corresponds to the
rectangular infinitely high potential well.
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Fig. 2. The same as in Fig. 1, but for the regime of
intermediate size quantization.

where χ is the dielectric constant of the QD. After
integration, for the potential, one can obtain

V0(r) = − e2
√
λe

4π3/2χ
+
µhω

2
0r

2

2
,

where

µhω
2
0

2
=

2e2λ3/2
e

3π3/2χ
.

Due to the spherical symmetry of potential (4), the
quantum numbers of the new problem are orbital l′,
azimuthal m′, and radial n′r numbers. Therefore, the
hole energy levels can be written as

E
n′

r ,l
′

0 = − e2
√
λe

4π3/2χ
+ �ω0

(
2n′r + l′ +

3
2

)
.

PH
 

–0.7

1.4

 
w

R

 

1.3 1.5 1.6 1.7

–0.5

–0.3

 

1

2

 

–0.6

–0.4

Fig. 3. The same as in Fig. 1, but for the case of weak size
quantization.

In this case, for the transition connected with the
electron level n = 1,m = 0 at different n′r(l′ = 0,
m′ = 0), the expression for the quantity K is ob-
tained:

K =
AC2

1

4π1/2

(
�

µhω0

)3/2∑
n′

r

(2n′r)!
22n′

r(n′r!)2

× δ

(
�ω̃ − εg − �ωe

5
2

+
e2
√
λe

4π3/2χ
�ω0

(
2n′r +

3
2

))
.

3. CONCLUSION

The expressions for QD light absorption coeffi-
cients at different regimes of size quantization ob-
tained above allow one to determine the correspond-
ing threshold frequencies of incident light beginning
from which this quantization takes place. Thus, in
the case of strong size quantization, the following
expression holds for absorption threshold frequency:

�ω̃1
0 = εg +

3�

2
(ωe + ωh). (5)

At weak size quantization, this frequency is deter-
mined from the equality

�ω̃2
0 = εg − Eex +

3�Ω
2
. (6)

Finally, in the case of intermediate size quantiza-
tion, this frequency looks like

�ω̃3
0 = εg +

3�

2
(ωe + ω0) −

e2
√
λe

4π3/2χ
. (7)

Let us also mention that, with the help of Eqs. (5)–
(7), one can easily determine the dependences of
absorption threshold frequencies on QD sizes. There-
fore, one needs to express ωe, ωh,Ω frequencies
through the QD radius. For the case of strong size
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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quantization, this dependence is presented in Fig. 1
(in w = (�ω̃0 − εg)/ER, R = r0/aB units). Curve 1
corresponds to the case of parabolic confinement
potential, and curve 2 corresponds to the rectangular
infinitely high potential well. In calculations, we
took into account the equality ω = ζ�/(µr2

0), where
ζ is some constant for the value of the parameter
ζ = 1 which corresponds to the frequency of the
confinement potential, e.g., for an electron in QD of
GaAs, ω = 1.6 × 1013 cm−1. As follows from Fig. 1,
at this value of ζ , the curve of the w(R) dependence
for the parabolic case is lower than the curve for the
rectangular case. Along with increasing r0, when the
role of size quantization decreases, curves 1 and 2
decrease and come close to each other. Vice versa,
at small r0, the role of size quantization sharply
increases and, therefore, the effective width of the
forbidden band increases. This fact conditions the
growth of values of absorption threshold frequencies.
The analogous dependences corresponding to two
other regimes of size quantization are presented in
Figs. 2 and 3 (Fig. 2 corresponds to the regime of in-
termediate size quantization, and Fig. 3 corresponds
to the regime of weak size quantization). In these
figures, one can see that the curve corresponding to
QD parabolic confinement is lower than the curve
corresponding to the case of the rectangular infinitely
high well. At this, the qualitative behavior of w(R)
dependence curves does not change. Negative values
in the graph of Fig. 3 are conditioned by the fact that,
in case of weak size quantization, the input into the
energy of the system is mainly due to the Coulomb
interaction. In conclusion, let us mention that, in the
case of strong size quantization, the selection rules
change. In contrast to the case considered by the
authors of [7], in our case the transitions may take
place between levels with different nr and n′r.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
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Abstract—A new generalization of nonlinear Born–Infeld electrodynamics is proposed. It is inspired by the
noncommutative geometry and a new interpretation of gauge theories. The variational principle introduced
here leads to quite complicated nonlinear equations, which can be solved numerically in certain cases.
The spherically symmetric ansatz is analyzed, and static finite-energy solutions are obtained via numerical
integration. Then a pure Higgs sector Lagrangian is introduced by analogy with the non-Abelian Born–
Infeld generalization. A spherically symmetric configuration and a time-dependent homogeneous field are
investigated and qualitative behavior of solutions are discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

After Coulomb’s law had been formulated in the
18th century, it was clear that the electric forces be-
come infinite for pointlike particles. Later on, when
Maxwell found his final and elegant mathematical
formulation of electrodynamics, with the introduc-
tion of the energy–momentum tensor of electromag-
netic field, the energy remained infinite for pointlike
charges. After the discovery of the electron, physicists
started to look for models able to represent it as an
extended, finite-dimensional particle, endowed with
finite distribution of charge and energy densities. The
model proposed by Mie [1] could be considered as the
most successful one at the time it was published. It
was based on the idea that Maxwell’s electrodynam-
ics should be considered as a linear approximation
of a certain nonlinear theory; as long as the field
strength is not too high, the linear theory describes
almost perfectly its behavior far away from the source,
which can be considered pointlike as seen from great
distance; the nonlinear effects should become domi-
nant at small distances, where the extended nature of
elementary charges must be taken into account.

To this end, Mie [1] introduced the notion of max-
imal field strength E0, and in order to make it impos-
sible for any electric field to go beyond this value, he
modified Maxwell’s theory by introducing the follow-
ing nonlinear Lagrangian density for a pure electric
field:

L =
√
1− E2

E2
0

. (1)

∗The text was submitted by the authors in English.
1)LPTL, Université Paris-VI, Paris, France; e-mail:
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2)LPTHE, Universitè Paris-Sud, Orsay, France.
1063-7788/05/6810-1730$26.00
Although the nonlinear theory derived from this La-
grangian enabled Mie to obtain a nonsingular, finite-
energy solution, it was clear that such a Lagrangian
cannot represent a Lorentz-invariant theory, espe-
cially since the magnetic field contribution was ab-
sent. This is why Born and Infeld (BI) [2] have in-
troduced a Lorentz-invariant Lagrangian density, de-
fined as follows:

LBI(g, F ) (2)

= LBI(g, F )
√

|g| = β2

(√
|det(gµν)|

−
√

|det(gµν + β−1Fµν)|
)

=β2

(
1−

√
1 +

1
β2
(B2 − E2)− 1

β4
(E ·B)2

)√
|g|.

The constant β appears for dimensional reasons
and plays the same role here as the limiting value of
the electric field in Mie’s nonlinear electrodynamics.
Defining

P =
1
4
FµνF

µν and S =
1
4
Fµν F̃

µν ,

with F̃µν =
1
2
εµνλρFλρ,

we can write

LBI = β2
[
1−

√
1 + 2P − S2

]
. (3)

Since Dirac introduced his equation for the elec-
tron, the interest in classical models of charged par-
ticles has considerably faded. Only in 1970 did Boil-
lat [3] consider BI electrodynamics in order to study
its propagation properties. Investigating general non-
linear theories derived from a Lagrangian depending
on two Lorentz invariants L(P, S), he discovered that
c© 2005 Pleiades Publishing, Inc.
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the BI electrodynamics is the only one ensuring the
absence of birefringence, i.e., propagation along a
single light cone, and the absence of shock waves.
In this respect, the BI theory is unique (except for
another singular Lagrangian L = P/S). A beauti-
ful discussion of these properties can be found in
Bialynicki-Birula’s paper [4]; see also [5].

An unexpected new impulse for the revival of in-
terest in BI electrodynamics and in its non-Abelian
generalizations came from string theories, in which
BI-type Lagrangians appear in effective action for
D branes.

Another motivation for studying BI-type theo-
ries is the possibility of existence of solitonic solu-
tions in nonlinear field theories. In a pure Yang–Mills
theory in flat spacetime, with the usual Lagrangian

density LYM = −1
4
gABFA

µνF
Bµν , there are no finite-

energy static nonsingular solutions. This fact can be
explained qualitatively by the conformal invariance
of the theory and the tracelessness of the energy–
momentum tensor,

T µ
µ = −T00 +

3∑
i=1

Tii = 0. (4)

Given the positivity of energy, T00 > 0, this means
that the sum of principal pressures is positive,∑

Tii > 0, leading to the conclusion that Yang–Mills
“matter” is naturally subjected to repulsive forces
only.

In the presence of a Higgs field, the conformal
invariance is broken, and this leads to the existence
of solitonic solutions like ’t Hooft’s [6] and Prasad–
Sommerfield’s [7] magnetic monopoles. In what fol-
lows, we are looking for soliton-like solutions arising
in other nonlinear theories, including non-Abelian
versions of BI theory, which are not conformally in-
variant, as well as the pure Higgs field model with a
generalized BI-type Lagrangian.

2. NON-ABELIAN GENERALIZATIONS
OF BORN–INFELD THEORY

2.1. Basic Properties of Abelian Born–Infeld Theory

In their original paper [2], Born and Infeld consid-
ered the now famous least action principle:

SBI[g, F ] =
∫
R4

β2

(√
|det(gµν)|

−
√

|det(gµν + β−1Fµν)|
)

d4x.

This action can be defined not only on the Minkows-
kian spacetime but also on any locally Lorentzian
curved manifold.
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It is useful to recall here the three basic properties
of this Lagrangian which we want to maintain in the
case of a non-Abelian generalization:

(i) Maxwell’s theory (respectively, usual gauge
theory with quadratic Lagrangian density) is found
in the limit β → ∞:

SBI = −
∫
R4

1
2
(B2 − E2)

√
|g|d4x+ o

(
1
β2

)
. (5)

(ii) There exists an upper limit for the electric field
intensity, equal to β when the magnetic components
of the field vanish:

LBI|B=0 = β2
(
1−

√
1− β−2E2

)
. (6)

Due to this fact, the energy of a pointlike charge is
finite, and the field remains finite even at the ori-
gin. This was the main goal pursued by Mie [1] in
suggesting the choice of nonlinear generalization of
Maxwell’s theory. Indeed, for a point charge e, one has

E =
en√

e2 + r4
(n = r/r), (7)

mass =

∞∫
0

(
√

e2 + r4 − r2)dr.

(iii) The BI action principle is invariant under the
diffeomorphisms of R4 and gauge transformations. In
this respect, this theory can be viewed as a covariant
generalization (in the sense of General Relativity) of
Mie’s theory, as well as an extension of the usual
volume element

√
|g|d4x.

It is also well known that the BI electromagnetism
has good causality properties as well as interesting
dual symmetries (electric–magnetic duality, Legen-
dre duality). Here, we shall not consider these prop-
erties, our main interest being focused on static solu-
tions.

2.2. First Non-Abelian Generalizations
of Born–Infeld Theory

The idea of non-Abelian generalization of the BI
theory Lagrangian has been in the air since the end
of the 1970s. Hagiwara discussed various possibil-
ities in [8]; however, he did not try to find soliton-
like solutions. In 1997, Tseytlin [9] argued in favor
of the symmetrized trace prescription which repro-
duced in the first four orders the string effective ac-
tion for gauge potential. Finally, Park [10] introduced
yet another non-Abelian generalization and investi-
gated qualitative behavior of instanton-like solutions.
Also supersymmetric generalization was proposed for
Abelian and non-Abelian versions [11, 12].
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Only instanton-like solutions were discussed
in the aforementioned papers. The first solitons in
Minkowskian spacetime were found in [13], which
we briefly recall in this section.

A straightforward generalization of BI theory in
four dimensions can be achieved by replacing the
quadratic invariants of U(1) theory by the non-
Abelian ones:

FµνF
µν → F a

µνF
µν
a and FλρF̃

λρ → F a
λρF̃

λρ
a .

(8)

The corresponding action is

S =
β2

4π

∫
(1−R)d4x, (9)

R =
√
1 +

1
2β2

F a
µνF

µν
a − 1

16β4
(F a

µν F̃
µν
a )2.

It is easy to see that the BI nonlinearity breaks the
conformal symmetry ensuring the nonzero trace of
the stress–energy tensor

T µ
µ = R−1

[
4β2(1−R)− F a

µνF
µν
a

]

= 0. (10)

This quantity vanishes in the limit β → ∞, when
the theory reduces to the standard one. For the Yang–
Mills field, we assume the usual monopole ansatz:

Aa
0 = 0, Aa

i = εaik
nk

r
(1− w(r)), (11)

where nk = xk/r, r = (x2 + y2 + z2)1/2, and w(r)
is a real-valued function. After integration over the
sphere in (9), one obtains a two-dimensional ac-
tion from which β can be eliminated by the coor-
dinate rescaling

√
βt → t,

√
βr → r. The following

static action results then:

S =
∫

Ldr, L = r2(1−R) (12)

with R =

√
1 + 2

w′2

r2
+
(1− w2)2

r4
,

where the prime denotes the derivative with respect to
r. The corresponding equation of motion reads(

w′

R

)′
=

w(w2 − 1)
r2R . (13)

A trivial solution w ≡ 0 corresponds to the point-
like magnetic BI monopole with unit magnetic charge
(embedded U(1) solution). In the BI theory, it has
a finite self-energy. For time-independent configura-
tions, the energy density is equal to minus the La-
grangian, so the total energy (mass) is

M =

∞∫
0

(R− 1)r2dr. (14)
PH
For w ≡ 0, one finds the usual BI monopole mass [see
Eq. (7)]

M =
∫ (√

r4 + 1− r2
)

dr (15)

=
π3/2

3Γ(3/4)2
≈ 1.23604978.

Looking now for the essentially non-Abelian solu-
tions of finite mass, we observe that, in order to assure
the convergence of the integral (14), the quantity
R− 1 must fall faster than r−3 as r → ∞. Thus,
far from the core, the BI corrections have to vanish
and Eq. (13) should reduce to the ordinary Yang–
Mills equation, equivalent to the following two-
dimensional autonomous system:

ẇ = u, u̇ = u+ (w2 − 1)w, (16)

where a dot denotes the derivative with respect to
τ = ln r. This dynamical system has three nonde-
generate stationary points (u = 0, w = 0,−1), from
which u = w = 0 is a focus, while two others u =
0, w = −1 are saddle points with eigenvalues λ =
−1 and λ = 2. The separatrices along the directions
λ = −1 start at infinity and, after passing through
the saddle points, go to the focus with the eigenval-
ues λ = (1− i

√
3)/2. It has been proved in [13] that

the only finite-energy configurations with nonva-
nishing magnetic charge are the embedded U(1)
BI monopoles. Indeed, such solutions should have
asymptotically w = 0, which does not correspond to
bounded solutions unless w ≡ 0. The remaining pos-
sibility is w = −1, ẇ = 0 asymptotically, which cor-
responds to zero magnetic charge. Coming back to
variable r, one finds from (13)

w = −1 + c

r
+O(r−2), (17)

where c is a free parameter. This gives a conver-
gent integral (14) as r → ∞. The two values w = −1
correspond to two neighboring topologically distinct
Yang–Mills vacua. Now consider local solutions near
the origin r = 0. For convergence of the total en-
ergy (14), w should tend to a finite limit as r → 0.
Then, using Eq. (13), one finds that the only allowed
limiting values are w = −1 again. In view of the sym-
metry of (16) under reflection w → −w, one can take
without loss of generality w(0) = 1. The following
Taylor expansion satisfies Eq. (16):

w = 1− br2 +
b2(44b2 + 3)
10(4b2 + 1)

r4 +O(r6), (18)

with b being a unique free parameter. As r → 0, the
function R tends to

R = R0 +O(r2), R0 = 1 + 12b2. (19)
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Therefore, it is not a solution to the initial system (14).
What remains to be done is to find appropriate values
of constant b leading to smooth finite-energy solu-
tions by gluing together the two asymptotic solutions
between 0 and ∞.

It has been proved in [13] that any regular so-
lution to Eq. (13) belongs to the one-parameter
family of local solutions (18) near the origin. It
follows that the global finite-energy solution starting
with (18) should meet some solution from the fam-
ily (17) at infinity. Since both of these local solutions
are nongeneric, one can at best match them for some
discrete values of parameters. This idea was used first
in [14].

For some precisely tuned value of b, the solu-
tion will remain a monotonic function of τ reach-
ing the value −1 at infinity. This happens for b1 =
12.7463. By a similar reasoning, one shows that, for
another fine-tuned value b2 > b1, the integral curve
w(τ) which has a minimum in the lower part of the
strip will be stabilized by the friction term in the upper
half of the strip [−1, 1] and tend to w = 1. This solu-
tion will have two nodes. Continuing this process, we
obtain an increasing sequence of parameter values bn
for which the solutions remain entirely within the strip
[−1, 1] tending asymptotically to (−1)n. The lower
values bn converge very rapidly to the limit value given
by (15).

Some analogous solutions have been found in the
symmetrized trace prescription in [15, 16].

2.3. A New Non-Abelian Generalization

In [17], we introduced a new non-Abelian gen-
eralization of the BI Lagrangian and found a family
of nonsingular soliton-like solutions using ’t Hooft’s
ansatz for the SU(2) gauge potential. As in the case
discussed in [13], and in contrast to the usual Yang–
Mills case, soliton and magnetic monopole solutions
were possible without the presence of a Higgs field or
other scalar multiplets.

Our starting point is the gauge-field tensor asso-
ciated with a compact and semisimple gauge group
G, defined as a connection 1-form in the principal
fiber bundle over Minkowskian spacetime, with its
values inAG, the Lie algebra of G. We choose the rep-
resentation of the connection in the tensorial product
of a matrix representation of the Lie algebra AG and
the Grassman algebra of forms over M4:

A = Aa
µdx

µ ⊗ Ta, (20)
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where Ta, a, b = 1, 2, . . . , N = dim(G), is the anti-
Hermitian basis of the particular representation R of
dimension dR of AG.

By analogy with the Abelian case, we want the
Lagrangian to satisfy the following properties:

(i) One should find the usual Yang–Mills theory in
the limit β → ∞.

(ii) The (non-Abelian) analog of the electric field
strength should be bounded from above when the
magnetic components vanish. (To satisfy this partic-
ular constraint, we must ensure that the polynomial
expression under the root sign should start with terms
1− β−2(Ea)2 + . . . when Ba = 0.)

(iii) The action should be invariant under diffeo-
morphisms of R4 and gauge transformations.

The idea is to compute a determinant in the tensor
product of endomorphisms of R

4 and R(AG). This
enables us to introduce the following generalization
of the BI Lagrangian density for a non-Abelian gauge
field:

L =
√

|g| −
∣∣∣∣ det

C2⊗R4⊗R
(1l2 ⊗ gµν ⊗ 1ldR

(21)

+ β−1J ⊗ F a
µν ⊗ Ta)

∣∣∣∣
1/(4dR)

.

In the expression above, J denotes an SL(2, C) ma-
trix satisfying J2 = −1l2, thus introducing a quasi-
complex structure. This extra doubling of tensor
space is necessary in order to ensure that the resulting
Lagrangian is real. In the SU(2) case, it is possible to
compute the Lagrangian and we obtain

L = 1− 4
√
(1 + 2P − Q2)2 + (2K3)2, (22)

where


2P =
1
2
F a
µνF

µν
a ,

Q2 =
1
16

F a
µν F̃

bµνF c
αβF̃

dαβKacbd,

K3 =
1
6
εabcF

aµ
ν F bν

α F cα
µ

(23)

with Kabcd = δabδbc − δacδbd + δadδbc. We then study
spherically symmetric static configurations by con-
sidering the well-known ’t Hooft ansatz:

A = (1− k(r))(Tθ sin θdϕ − Tϕdθ). (24)

Then the action becomes
S =
∫ 1− 4

√√√√√
(
1 +

(
1− k2

r2

)2
)

(
1 +

2k̇2

r4

)2

+
(
1− k2

r2

)2



 e3τdτ (25)
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with τ = ln(r).
The equations of motion can be written in the standard form:{

k̇ = u,

u̇ = γ(k, u, τ)u + k(k2 − 1)
(26)

with

γ(k, u, τ) = 1− 2u
2 + 2uk(1 − k2) + (1− k2)2

r4 + (1− k2)2
(27)

+
6u(1− k2)

[
ku2 + 2u(1− k2) + k(1− k2)2

] [
r4 + 2u2 + (1− k2)2

]
[r4 + (1− k2)2] [(r4 + 2u2)2 + (1− k2)2(r4 + 6u2)]

.

Although the equations display asymptotic ex-
pansions analogous to those found in [13, 18, 19],
careful analysis shows that solutions of the Bartnik–
McKinnon type [20] are excluded here.

Near the origin, there are two types of asymptotic
development which satisfy the equations of motion:

k = k0 + ar − k0

(
5a2

6g
+

g

12a2

)
r2 (28)

+
a8(52− 70g) − 9a4g3 + (g − 1)g4

108a5g2
r3 +O(r4),

where g = 1− k2
0, a 
= 0 and g 
= 0, are two free

parameters.

A second development depends on only one free
parameter b and starts as follows:

k = −
(
1− br2 +

3b2 + 92b4 + 608b6

10 + 200b2 + 1600b4
r4 +O(r6)

)
,

(29)

which corresponds to solutions along the separatrix
with λ = 2 discussed in the previous section.
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Fig. 1. Energy as function of the parameter τc.
PH
At infinity, the Taylor expansion can be made with
respect to r−1. It depends on one free parameter,
denoted by c:

k = −
(
1− c

r
+
3c2

4r2
+O

(
1
r3

))
, (30)

which corresponds to solutions along the separatrix
with λ = −1 discussed in the previous section.

Taking these expansions as the first approximation
either at r = 0 or at r =∞, we then use standard
numerical techniques in order to generate solutions
valid everywhere. It was interesting to note that, when
we started from infinity, no fine-tuning was necessary,
and an arbitrarily fixed constant c would lead to a
solution which, when extrapolated to r = 0, would
define a particular pair of values of constants k0 and
a. On the contrary, starting from r = 0, arbitrarily
chosen values of k0 and a would not necessarily
lead to good extrapolation at r =∞. Therefore, the
three parameters occurring in the asymptotic expan-
sions must be interrelated by two constraint equal-
ities. Then the solutions can be labeled by only one
real parameter, and then the two parameters k0 and a
of (28) are functions of the parameter τc = log(c).

We have evaluated the energy E of the solutions
found and the values of the parameter k0 for τc varying
from −10 to 20. The energy E is represented as a
function of the parameter τc in Fig. 1. The energies
converge to the limit Eτc=∞ = En=∞ = 1.23605. . .,
which coincides with the energy of the BI monopole.

Our solutions do not interpolate between the two
singular points at k = 1 and k = −1, but between
the singular point at k = 1 for r =∞ and a certain
value k0 (related to τc) which is always lower than
1 and bigger than −1 (as a matter of fact, k0 = 0 is
a solution, which corresponds to the monopole solu-
tion). This is radically different from the sphaleron-
like solutions or solutions of Bartnik–McKinnon type
found in [13, 20].

As in the Bartnik–McKinnon case, we can assign
to each solution an integer n, with n − 1 denoting
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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the number of zeros of the function u or the winding
number of the corresponding trajectory in the phase
plane (k, u), as seen in Fig. 2, where a few solutions
are plotted. When the parameter τc goes from −∞ to
+∞, we observe that this integer n grows from 1 to
∞. At certain special values of the parameter τc, this
integer increases by 1. Here are the first critical values
of τc:

τc = 1.658, 4.781, 7.510, 10.092, 13.218,
16.530, 19.813.

3. BORN–INFELD-TYPE LAGRANGIAN
FOR HIGGS FIELDS

FROM NONCOMMUTATIVE GEOMETRY

In this section, we study the Higgs-like fields
which naturally appear in the version of the standard
model based on noncommutative geometry [21]. We
show that soliton-like solutions with finite energy
cannot be obtained with pure Higgs fields obeying
this version of generalized BI dynamics in the case
when the Higgs multiplet reduces to a single scalar.
This situation corresponds to the particular choice
of matrix-valued generalized Higgs field when the
corresponding matrix is proportional to the identity.
This does not exclude the possibility of soliton-like
solutions in more complicated cases, with a many-
component Higgs field.

3.1. Gauge Fields in Noncommutative Geometry

We shall generalize now the “noncommutative
Maxwell theory” developed in [21] in order to obtain
a BI-like theory. Let us resume the notation and
language of the theory. We consider the algebra A =
C∞(V )⊗ Mn(C) with the vector fields spanned by
the derivations of C∞(V ) and inner derivations of
Mn(C). The differential algebra is generated by the
basis of linear 1-forms acting on the derivations. We
can consider A as a bimodule over itself. Then one
defines a gauge by the choice of a unitary element
e of A, satisfying h(e, e) = 1, with h a Hermitian
structure on A. Then any element of A can be written
in the form em with m ∈ A and a connection on A is
a map:

∇ : A → Ω1(A), em → (∇e)m+ edm. (31)

In the gauge e, the connection can be completely
characterized by an element ω of Ω1(A):

∇e = eω.

One can also decompose ω in vertical and horizontal
parts:

ω = ωh + ωv (32)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
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Fig. 2. Plots of solutions for the values of τc =
−3, 1.2, 4, 7, 10.

with

ωh = A, ωv = θ + φ.

Here, A is like the Yang–Mills connection, whereas
θ is the canonical 1-form of the matrix algebra, and
plays the role of a preferred origin in the affine space
of vertical connections. It satisfies the equation

dθ + θ2 = 0.

Then φ is a tensorial form and can be identified with
scalar-field multiplet.

We choose a local basis of derivations of A:
{eµ, ea}, where for convenience eµ are outer deriva-
tions of C∞(V ), and ea = ad(λa), with {λa} a basis of
anti-Hermitian matrices of Mn(C), are inner deriva-
tions.

The dual basis will be denoted by {θµ, θa}. In this
particular basis, we have

A = Aµθ
µ, θ = −λaθ

a, φ = φaθ
a.

If we choose the connection to be anti-Hermitian, we
can write φ = φbaλbθ

a. The curvature tensor associ-
ated with ω is

Ω = dω + ω2,
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Fig. 3. Characteristic curves and points in the phase
space.

we can also define the field strength

F = dA+A2.

Then one can identify

Ωµν = Fµν , Ωµa = Dµφa

Ωaµ = −Dµφa, Ωab = [φa, φb]− Cc
abφc,

where Cc
ab are the constant structure in the {λa}

basis.
A gauge transformation is performed by the

choice of a unitary element U of Mn(C), satisfying
h(eU, eU) = 1. Then, in the gauge e′ = eU

ω′ = U−1ωU + U−1dU,

θ is invariant under gauge transformations; then,

A′ = U−1AU + U−1dU, φ′ = U−1φU.

3.2. Noncommutative Born–Infeld Lagrangian

The generalization proposed in our previous article
can be adapted to the noncommutative gauge theory.
The Lagrangian which we consider is√

det |g| − {|det(1l⊗ g + J ⊗ Ω̂)|}1/4n

and Ω̂ = ΩαβL̂αβ with L̂αβ the generators of the
fundamental representation of SO(4 + n2 − 1). Ωαβ
are the components of the curvature defined in previ-
ous section and then are anti-Hermitian elements of
Mn(C). J is an element of SL(2, C) of square −1l.

The above Lagrangian contains the contribution
of two types of fields: the classical Yang–Mills po-
tential, A = Aµθ

µ, corresponding to the usual space-
time components of the connection 1-form, and the
scalar multiplet coming from its matrix components
φ = φaθ

a = φbaλbθ
a. In the case when φ = 0, this

Lagrangian coincides with the one studied in [17]
and exposed in the previous section. The complete
PH
analysis of general solutions seems too tedious for the
time being. This is why we shall restrict ourselves to
a qualitative analysis of the case when the spacetime
components of Ω do vanish Fµν = 0, leaving only the
contribution of scalar-multiplet degrees of freedom.

3.3. The Reduced Lagrangian for Scalar Fields
in the Case n = 2

Let us recall the notation which will be used in the
subsequent calculations. The basis of matrix repre-
sentation of the su(2) algebra is chosen as follows:

λa = −iσa λaλb = −δab +
∑
c

εabcλc, (33)

[λa, λb] = Cc
ab = 2εabcλc

with σa denoting the Pauli matrices. Now we have to
evaluate the determinant of the following matrix:∣∣∣∣∣∣

1 iDφ̂

−iDφ̂ 1 + iĤ

∣∣∣∣∣∣ , (34)

where

Ĥ = {Ωab}a,b=1,2,3 , (35)

Dφ̂ =
{
Dµφ̂a

}
a=1,2,3 µ=0,1,2,3

.

From now on, we choose the simplest ansatz with one
scalar field ϕ only:

φ = ϕθ.

After some algebra, we get the following result:

L = 1− {1 + 6(Dϕ)2 + 9(Dϕ)4

+ 16ϕ2(ϕ − 1)2} 1
4

√
1 + 4ϕ2(ϕ − 1)2.

3.4. The Absence of Static Configurations of ϕ

In this subsection, we show that there is no non-
trivial static configurations in the present system. We
generalize Derrick’s theorem [22] to our Lagrangian.
The idea of the proof is to use spatial dilatations of
the field ϕ(r)→ ϕλ(r) = ϕ(λr) to generate a one-
parameter curve in the space of fields around such
a solution. Thus, the variational principle along this
curve gives ∂S[ϕλ]/∂λ = 0 at λ = 1, i.e.,∫

4πr2dr

(
∂L
∂ϕ′ϕ

′ − 3L
)
= 0. (36)

We can show, by algebraic manipulations, that the
quantity under the integral is always nonnegative and
satisfies (36) if and only if it is zero. The solutions
are just the trivial ones ϕ′ = 0 and ϕ = 0 or 1 which
exclude other nontrivial solutions.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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3.5. The Time-Dependent Scalar Field

We have performed a numerical analysis of the
time-dependent configurations of the scalar field re-
sulting from the simplest ansatz ϕ = ϕ(t). It gives
an interesting phase-space portrait and confirms the
idea that BI-like theories set an upper bound on ve-
locities (i.e., time derivatives of ϕ) and on the field
strength as well. Such an ansatz could be of use in
cosmology, when coupled with the scale factor a(t)
of the Robertson–Friedmann metric. Their investiga-
tion will be the subject of our forthcoming paper [23].

The equations of motion in this case take on the
following form:

ϕ̇ = u,

(1 + 4X)g(X,Y )u̇+ 4ss′h(X,Y ) = 0,

where

s = ϕ(ϕ − 1), s′ = 2ϕ − 1,
X = s2, Y = u2,

g(X,Y ) = 16X(1 − 9Y ) + (1− 3Y )2,
h(X,Y ) = ((1 − 3Y )2 + 16X)(1 − Y + 8X)

− 6(1 + 4X)(1 − 3Y )Y.

At some points of the phase space, u̇ is not well
defined. These are the points at which the polynomial
g vanishes (four curves in Fig. 3). Nevertheless, in
most of the cases, singular behavior is only apparent,
because the undetermined ratios 0/0 prove to have a
finite limit. The total number of singular points in the
phase space is 16, but only 2 of them display a genuine
singularity. In the 14 remaining cases, the function
4ss′h(X,Y ) vanishes at the same time as the function
g(X,Y ), but their ratio remains finite. In Fig. 3, one
can observe the 16 aforementioned points. The only
two (Fig. 3) points with genuine singularity are the
ones without any vector attached to them, found on
OMIC NUCLEI Vol. 68 No. 10 20
the central vertical line ϕ = 0.5 on both sides of the
horizontal line and close to it.

The phase-space portrait is symmetric by reflec-
tion around the vertical line ϕ = 0.5. Cyclic trajecto-
ries are contained inside the two pentagon-like areas
circumscribed by separatrices. These areas are dis-
posed symmetrically with respect to the vertical line
ϕ = 0.5. One of these areas is represented in more
detailed manner in Fig. 4 below.

One can note that, in a certain region of the phase
space, the trajectories are periodic and defined for all
values of time t. If one chooses the initial conditions
outside this region, the integration ends up after some
finite time. This means that the solutions ϕ(t) ob-
tained with these initial conditions have their second
derivative divergent after finite time when they hit one
of the curves on which g = 0.

Nevertheless, some of these curves, with fined-
tuned initial conditions, can go beyond the singular
curve g = 0 at points at which the infinite expressions
become finite again. These particular trajectories form
a special set; they can be extended beyond the limits of
the region shown in Fig. 4 and be defined for all values
of time t ∈ R.

4. CONCLUSION AND PERSPECTIVES

Certain generalizations of the Born–Infeld-type
Lagrangian for scalar fields have been proposed by
several authors [24]. However, in these papers, only
a formal analogy was used, usually by inserting a
classical scalar field Lagrangian under the square root
sign.

The highly nonlinear behavior of the field Φ in
this model suggests that, when coupled to gravi-
tation in a standard way, i.e., via minimal coupling
resulting from the replacement of ordinary deriva-
tives by their covariant counterparts, and adding the
Einstein–Hilbert Lagrangian for gravitational field, it
may lead to unusual behavior of cosmological models.
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The investigation of cosmological models using this
scalar field will be the subject of our forthcoming
paper [23].
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Abstract—Affine quantum gravity involves (i) affine commutation relations to ensuremetric positivity, (ii) a
regularized projection operator procedure to accommodate first- and second-class quantum constraints,
and (iii) a hard-core interpretation of nonlinear interactions to understand and potentially overcome
nonrenormalizability. In this program, some of the less traditional mathematical methods employed are
(i) coherent-state representations, (ii) reproducing kernel Hilbert spaces, and (iii) functional-integral rep-
resentations involving a continuous-time regularization. Of special importance is the profoundly different
integration measure used for the Lagrange multiplier (shift and lapse) functions. These various concepts
are first introduced on elementary systems to help motivate their application to affine quantum gravity.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The unification of gravity and quantum theory of-
fers a major challenge to theoretical physics. The
favored approaches of string theory and loop-plus-
spin foam gravity use formulations that are in some
sense rather far from the original classical theory of
Einstein. Most workers feel this is necessary because
of the usual difficulties encountered in quantizing
gravity, namely, nonrenormalizability and anomalies,
to mention just two. The program of affine quan-
tum gravity, which is relatively new [1], attempts to
stay closer to the standard classical theory, so as
to provide suitable touchstones along the way. As a
consequence, it becomes necessary to deal directly
with some of the major problems, such as the two
mentioned above. How one deals with such difficult
issues, and especially the role played by coherent
states in this effort, is part of the story told in this
article.

As a pedagogical device, we illustrate our basic
methodology on simple quantum-mechanical sys-
tems before we discuss the case of quantum gravity.

1.1. Coherent State Basics

It is well known that coherent states provide a
useful bridge between a classical theory and the cor-
responding quantum theory. Let us briefly recall how
that bridge works with a simple example. Let Q and
P denote standard Heisenberg self-adjoint operators

∗The text was submitted by the author in English.
1)Departments of Physics and Mathematics, University of
Florida, Gainesville, USA; e-mail: klauder@phys.ufl.edu
1063-7788/05/6810-1739$26.00
satisfying the usual commutation relation [Q,P ] = i1l
with � = 1. Then we define canonical coherent states
by the relation

|p, q〉 ≡ e−iqP eipQ|η〉, (1)

where |η〉 denotes a normalized vector called the fidu-
cial vector, which, in terms of the abbreviation 〈(·)〉 ≡
〈η|(·)|η〉, is subject to the modest requirements that
〈Q〉 = 0 and 〈P 〉 = 0. This condition on |η〉 has been
referred to as “physically centered.” Here, we add the
additional requirement that

lim
�→0

〈(P 2 +Q2)〉 = 0, (2)

a relation we refer to as “physically attractive.” Given
appropriate domain conditions, it follows from (2) that

lim
�→0

〈(P 2 +Q2)m〉 = 0 (3)

for arbitrary m > 0. It is clear that the ground state
of a harmonic oscillator satisfies these conditions, but
so do many other vectors as well.

If G denotes a quantum “generator” in a wide
sense, then we assert that

G(p, q) ≡ 〈p, q|G|p, q〉 (4)

defines the (� augmented) classical generator G(p, q)
associated with G. Of course, this connection is not
strictly what we usually mean by the classical gen-
erator since � has not been set equal to zero—which
explains the “� augmented” phrase. In addition, we
can also consider the expression

Gc(p, q) ≡ lim
�→0

〈p, q|G|p, q〉, (5)

which corresponds to the complete classical limit.
The association between a quantum and classical
c© 2005 Pleiades Publishing, Inc.
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generator illustrated by (4) and (5) is known as the
“weak correspondence principle” [2].

To illustrate this situation, let us discuss a few
examples. For example, it follows that

〈p, q|Q|p, q〉 = q, 〈p, q|P |p, q〉 = p, (6)

while
〈p, q|Q2|p, q〉 = q2 + 〈Q2〉, (7)

〈p, q|P 2|p, q〉 = p2 + 〈P 2〉.
More generally, ifW(P,Q) denotes an arbitrary poly-
nomial, and subject to suitable domain conditions,
then

W (p, q) ≡ 〈p, q|W(P,Q)|p, q〉 (8)

= W(p, q) + O(�; p, q),

where, under the condition (3), it follows that
O(�; p, q) → 0 as � → 0.

A complete characterization of an operator is given
in terms of its matrix elements. In particular, it is clear
that

〈p, q|W(P,Q)|p′, q′〉 (9)

fully determines the operator in question.

1.2. Reproducing Kernel Hilbert Space

By assumption, the coherent states span the
Hilbert space. Therefore, a dense set of vectors may
be written in the form

|ψ〉 =
J∑
j=1

αj|pj , qj〉, (10)

where (pj, qj) ∈ R
2, αj ∈ C, and J <∞. Another

such vector may be taken as

|φ〉 =
K∑
k=1

βk|p(k), q(k)〉, K <∞. (11)

As functional representatives of these abstract vec-
tors, let us choose their inner product with arbitrary
coherent states which leads to

ψ(p, q) ≡ 〈p, q|ψ〉 =
J∑
j=1

αj〈p, q|pj , qj〉, (12)

φ(p, q) ≡ 〈p, q|φ〉 =
K∑
k=1

βk〈p, q|p(k), q(k)〉. (13)

As the inner product between two such functional
representatives, we take

(ψ, φ) ≡ 〈ψ|φ〉 =
J,K∑
j,k=1

α∗jβk〈pj , qj|p(k), q(k)〉, (14)
PH
as follows from (10) and (11). We now have functional
representatives, ψ(p, q), φ(p, q), etc., and an inner
product between them; all that remains to make a
Hilbert space is to complete the space by including
the limits of all Cauchy sequences in the norm ||ψ|| ≡
+
√

(ψ,ψ). The result is the so-called (separable)
reproducing kernel Hilbert space in which the con-
tinuous function given by the coherent state overlap
function serves as the reproducing kernel. For addi-
tional information about such Hilbert spaces, see [3].

2. AFFINE FIELD OPERATORS

In a 3 + 1 split of space and time, a subset of the
basic kinematical operators chosen for affine quan-
tum field theory involves the self-adjoint spatial met-
ric ĝab(x), where a, b = 1, 2, 3. Moreover, we insist
that the spectrum of the spatial metric is restricted
so that uaĝab(x)ub > 0 for any set {ua} for which∑
a(u

a)2 > 0, a requirement that we call “metric pos-
itivity.” To complete the set of basic kinematical op-
erators we employ the “momentric” field π̂bd(x). The
latter field is the self-adjoint operator associated with
the classical momentric field πbd(x) ≡ πbc(x)gcd(x),
which involves both the ADM classical momentum
πbc(x) and spatial metric gcd(x). Promoting the Pois-
son brackets satisfied by the fields πcd and gab to com-
mutators leads us directly to the affine commutation
relations (for � = 1) given by

[π̂ab (x), π̂
c
d(y)] (15)

=
1
2
i[δcb π̂

a
d(x) − δad π̂cb(x)]δ(x, y),

[ĝab(x), π̂cd(y)]

=
1
2
i[δcaĝbd(x) + δcb ĝad(x)]δ(x, y),

[ĝab(x), ĝcd(y)] = 0.

Observe that these relations define an infinite dimen-
sional Lie algebra. The reason for choosing these
particular kinematical commutators follows directly
from the fact that

ei
∫
γa

b (y)π̂b
a(y)d3yĝrs(x)e−i

∫
γa

b (y)π̂b
a(y)d3y (16)

= (eγ(x)/2)tr ĝtu(x)(e
γ(x)/2)us .

Themeaning of this relation is clear: Unitary transfor-
mations generated by the self-adjoint momentric field
manifestly preserve the desired spectral domain of the
spatial metric tensor ensuring that uaĝab(x)ub > 0 for
any set {ua} that is not identically zero.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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2.1. Affine Coherent States

A representation of the basic affine operators is
determined by a state on the algebra they generate—
or, equivalently, by the set of coherent states

|π, γ〉 ≡ ei
∫
πab(x)ĝab(x)d

3xe−i
∫
γa

b (x)π̂b
a(x)d3x|η〉 (17)

for all smooth functions πab and γab of compact sup-
port. Here, |η〉 is a suitable fiducial vector which, in
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
effect, determines the field operator representation.
The appropriate (physical) restriction on this operator
representation arises from fully enforcing the gravi-
tational constraints. However, according to Dirac [4],
quantization should be carried out first, while the in-
troduction of constraints should come second. Thus,
we are obliged to choose an initial—and temporary—
field operator representation just to get started. To
this end, it proves convenient to choose |η〉 so that
〈π′′, γ′′|π′, γ′〉 ≡ 〈π′′, g′′|π′, g′〉 (18)

= exp

[
−
∫
b(x)d3x ln

(
det
{

1
2 [g′′ab(x) + g′ab(x)] + ib(x)−1[π′′ab(x) − π′ab(x)]

}
{det[g′′ab(x)] det[g′ab(x)]}1/2

)]
.

Here, the symmetry of |η〉 is such that, instead of all
nine components of γ, the coherent states depend on
only the six components of g, which are defined by

gab(x) ≡ (eγ(x)/2)cag̃cd(x)(e
γ(x)/2)db , (19)

where

g̃ab(x) ≡ 〈η|ĝab(x)|η〉 (20)

arises as a property of |η〉. The scalar density b(x),
0 < b(x) <∞, arises as a property of |η〉 as well.
As usual, gab(x) is the inverse metric defined by
gab(x)gbc(x) = δac for each x.

Observe that the coherent state overlap (18) is a
jointly continuous function of its arguments, e.g., in
the topology of the test function space D.

2.2. Reproducing Kernel Hilbert Space

Just as in the elementary example, we can use the
coherent state overlap function (18) as a reproduc-
ing kernel to construct a reproducing kernel Hilbert
space. In particular, functional representatives in a
dense set of the Hilbert space may be given by

ψ(π, g) ≡
J∑
j=1

αj〈π, g|πj , gj〉, J <∞, (21)

φ(π, g) ≡
K∑
k=1

βj〈π, g|π(k), g(k)〉, K <∞, (22)

etc. As an inner product between two such vectors,
we choose

(ψ, φ) ≡
J,K∑
j,k=1

α∗jβk〈πj , gj |π(k), g(k)〉. (23)
We may complete this Hilbert space by introduc-
ing all limit elements of Cauchy sequences in the
norm ||ψ|| ≡ +

√
(ψ,ψ), in complete analogy to what

we did in the elementary example. The result is the
separable reproducing kernel Hilbert space with (18)
serving as the reproducing kernel.

3. IMPOSITION OF CONSTRAINTS

To explain our procedure for the imposition of
constraints, we return to an N degree-of-freedom
model, N <∞. Let us suppose there are classi-
cal constraints for this model given by the condi-
tions φα(p, q) = 0 for 1 ≤ α ≤ A, where p = (p1,
p2, . . ., pN ) and q = (q1, q2, . . . , qN ). Upon quantiza-
tion, these constraints become self-adjoint operators
Φα(P,Q), 1 ≤ α ≤ A. Ideally, there should be a
nonvanishing subspace Hphys of the original Hilbert
space H for which Φα|ψ〉phys = 0 for all |ψ〉phys ∈
Hphys [4]. Unfortunately, this ideal situation does not
always occur. As a replacement for this criterion, we
introduce a projection operator

E = E

(∑
Φ2
α ≤ δ(�)2

)
, (24)

i.e., a projection operator such that

0 ≤ E

(∑
Φ2
α

)
E ≤ δ(�)21l, (25)

where δ(�) is a regularization parameter. We define
Hphys = EH as the regularized physical Hilbert space.
The general idea is to reduce the regularization pa-
rameter δ(�) to an appropriate value for each sit-
uation. For example, if

∑
Φ2
a = J2

1 + J2
2 + J2

3 , the

Casimir operator for SU(2), then δ(�)2 =
1
2

�
2 (or
05
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any δ(�), 0 ≤ δ(�)2 < (3/4)�2) is sufficient to ensure
that

∑
J2
k = 0. If

∑
Φ2
a = P 2 +Q2, then δ(�)2 = �

(or any δ(�), � ≤ δ(�)2 < 3�) ensures that E projects
unto vectors |ψ〉phys for which (Q+ iP )|ψ〉phys = 0.
This procedure enables a consideration of first- and
second-class constraints within the same formulation
without any need either to eliminate the second-class
constraints before quantization or to introduce Dirac
brackets for them. Other constraint situations can
also be treated; see [5].

It is noteworthy that for any set of constraint oper-
ators, there exists a universal integral representation
to construct the projection operator [6]. In particular,
it follows that

E

(∑
Φ2
a ≤ δ(�)2

)
(26)

≡
∫

Te−i
∫ t2
t1
λα(t)ΦαdtDR(λ),

where T denotes time ordering, R(λ) is a formal
measure on c-number functions {λα(t)}, and t2 − t1
corresponds to any positive time interval. The integral
in (26) is constructed in a two-step procedure. First,
a Gaussian functional integral leads to

eiγ(t2−t1)
∑

Φ2
α (27)

= N
∫

Te−i
∫
λα(t)Φαdt−(i/4γ)

∫ ∑
λα(t)2dt

∏
Dλα.

Second, we integrate over γ as follows:

lim
ζ→0+

∫
sin[γ(t2 − t1)(δ(�)2 + ζ)]

πγ
(28)

× eiγ(t2−t1)
∑

Φ2
αdγ = E

(∑
Φ2
α ≤ δ(�)2

)
.

The integral representation (26) may be used
within a coherent state path integral representation
of the propagator. We focus on [5]

〈p′′, q′′|Ee−i(EHE)T
E|p′, q′〉 (29)

= lim
ε→0

〈p′′, q′′|e−iHεEe−iHεE · · · e−iHεE|p′, q′〉,

where there are (L+ 1) short-time evolution opera-
tors e−iHε, and (L+ 1)ε = T . Insertion of L coherent
state resolutions of unity leads to

lim
ε→0

∫
· · ·
∫ L∏

l=0

〈pl+1, ql+1|e−iHεE|pl, ql〉 (30)

×
L∏
l=1

dNpld
Nql/(2π)N ,
PH
where pL+1, qL+1 = p′′, q′′ and p0, q0 = p′, q′. In turn,
it follows that

〈p′′, q′′|Ee−i(EHE)T
E|p′, q′〉 (31)

= lim
ε→0

∫
· · ·
∫ L∏

l=0

〈pl+1, ql+1|e−iε(H+λα
l Φα)|pl, ql〉

×
L∏
l=1

dNpld
Nql/(2π)NDR(λl)

= M
∫
ei
∫
[p·q̇−H(p,q)−λα(t)φα(p,q)]dtDpDqDR(λ),

where H(p, q) ≡ 〈p, q|H|p, q〉, φα(p, q) ≡
〈p, q|Φα|p, q〉.

In this fashion, we see how repeated insertions
of the projection operator lead to temporal evolution
entirely within the physical Hilbert space. Moreover,
we see how this evolution can be realized by a suitably
interpreted path integral which does not involve the
usual flat measure on the Lagrange multipliers but,
instead, uses the measure R(λ) that is designed to
enforce the quantum constraints rather than the clas-
sical constraints.

Although this is not the only way the integral
representation for the projection operator (26) can be
used to formulate a path integral, it is probably the
most straightforward construction and readily illus-
trates the basic principles involved.

3.1. Constraints in Quantum Gravity

For quantum gravity, there are four constraint
fields, which, from a classical point of view, comprise
an open first-class system. The quantum constraints,
however, exhibit an anomaly, and thus they are
partially second class in nature. In particular, the
diffeomorphism (Ha, a = 1, 2, 3) and Hamiltonian
(H) constraint operator fields fulfill the commutation
relations

[Ha(x),Hb(y)] (32)

= i[δ,a(x, y)Hb(x) − δ,b(x, y)Ha(x)],
[Ha(x),H(y)] = iδ,a(x, y)H(x), (33)

[H(x),H(y)] (34)

= i
1
2
δ,a(x, y)[ĝab(x)Hb(x) + Hb(x)ĝab(x)].

Ideally, one asks that Ha(x)|ψ〉phys = 0 as well as
H(x)|ψ〉phys = 0 for all a and x and for all |ψ〉phys ∈
Hphys. However, this ideal situation is not possible
because it is almost surely the case that
ĝab(x)|ψ〉phys �∈ Hphys, and therefore it does not
follow that [H(x),H(y)]|ψ〉phys = 0 as would be
required. This inconsistency of Eq. (34) gives rise
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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to the gravitational anomaly—a partially second-
class behavior—that makes conventional treatments
of quantum gravity especially difficult. However, as
noted above, the projection operator method treats
first- and second-class constraints in the very same
manner, the only difference being how small the
regularization parameter δ(�)2 can be made.

By introducing a cutoff to regularize the quantum
constraints, we can imagine constructing a projec-
tion operator E onto a regularized physical Hilbert
space in which the regularized quantum constraints
are fulfilled to a certain degree. Such a cutoff can
be introduced in a variety of ways, and for simplicity
we will leave this necessary cutoff implicit. At a later
point in the calculation, it would be necessary to
remove this cutoff as well, but we will not examine
this important issue either. Instead, we go straight
to the heart of the matter and note that there is a
functional integral representation [1] for the coherent-
state matrix elements of the projection operator onto
the regularized physical Hilbert space given by

〈π′′, g′′|E|π′, g′〉 (35)

=
∫

〈π′′, g′′|Te−i
∫
[NaHa+NH]d3xdt|π′, g′〉

× DR(Na, N) = lim
ν→∞

N̄ν

×
∫
e−i

∫
[gabπ̇

ab+NaHa+NH]d3xdt

× exp
{
− (1/2ν)

∫
[b(x)−1gabgcdπ̇

bcπ̇da

+ b(x)gabgcdġbcġda]d3xdt
}

×
[∏
x,t

∏
a≤b

dπab(x, t)dgab(x, t)
]
DR(Na, N).

Implicit in these expressions are cutoffs in the con-
straint operators Ha and H, and correspondingly in
the c-number symbols Ha and H that arise from the
constraint operators and which appear in the func-
tional integral as their representatives.

Note the appearance of the measure DR(Na, N)
on the Lagrange multiplier fields, Na (the shift) and
N (the lapse). It is this measure, in contrast to the
usual flat measure on these fields, which leads to the
projection operatorE that projects the original Hilbert
space H onto the regularized physical Hilbert space
Hphys.

Note also the appearance of a limit as ν → ∞ as
well as a ν-dependent factor in the integrand. This
factor and the limit are connected with a different
kind of regularization of the functional integral that
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
may be used instead of the usual lattice regulariza-
tion. The indicated form represents a continuous-
time regularization which involves a Wiener-like
measure that controls the nature of the paths. The
result of interest arises in the ultradiffusive limit in
which the diffusion constant ν diverges. Continuous-
time regularization procedures have been well studied
for phase-space path integrals appropriate to canon-
ical, spin, and affine variables [7], and they have the
virtue that they automatically lead to a quantum-
mechanical representation of the corresponding ex-
pression in terms of coherent states with a fiducial
vector given by an extremal weight vector. Recently,
additional studies of such path integral representa-
tions have been made in the case of weak coherent
states for the affine group when a traditional resolu-
tion of unity as a local integral fails to exist [8].

Let us add that the quantity 〈π′′, g′′|E|π′, g′〉 may
also be used as a reproducing kernel to build the
reproducing kernel Hilbert space associated with the
regularized physical Hilbert space Hphys in exactly
the same way that the original coherent state overlap
〈π′′, g′′|π′, g′〉 may be used to build the reproduc-
ing kernel Hilbert space associated with the original
Hilbert space H.

Equation (35) represents as far as we can presently
go in our formal development. Despite the canonical
appearance of (35), we emphasize that this functional
integral representation has been based on the affine
commutation relations (15) and not on any canonical
commutation relations.

4. HARD-CORE INTERACTIONS
IN QUANTUM MECHANICS

Let us again return to the world of quantum me-
chanics to motivate the next issue of concern. Con-
sider an imaginary-time path integral for a single
degree-of-freedom problem formally given by

I(λ) ≡ N
∫

exp
{
− 1

2

∫
[ẋ(t)2 +m2x(t)2]dt (36)

− λ
∫
x(t)−4dt

}
Dx,

where the path integral runs over continuous paths for
which x(0) = x′ and x(T ) = x′′, namely, all paths are
pinned at the initial and final times, t = 0 and t = T ,
respectively. This example clearly pertains to an oscil-
lator with a singular potential and a coupling constant
λ that we require to be nonnegative, λ ≥ 0. To help
interpret (36), it proves useful to first regularize the
singularity of the inverse quartic interaction. How-
ever, no matter how one attempts to regularize the
singularity of the inverse quartic interaction, so as to
give unambiguous meaning to the path integral, and
05
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subsequently proceeds to remove that regularization,
it is known that the result leads to a discontinuous
perturbation of the oscillator [9]. A discontinuous
perturbation has the property that it leaves an indeli-
ble imprint on the original system such that, once the
interaction is introduced, it cannot be completely
removed as the coupling constant λ→ 0. In other
words,

lim
λ→0

I(λ) = I ′(0) �= I(0). (37)

Singular interactions with this property are called
hard-core interactions. What happens is the follow-
ing. Whenever λ > 0, those paths allowed by the free
action that reach or cross the point of singularity,
x = 0, lead to a divergent value for the interaction
term, with the property that the paths in question
are all projected out of the integration for any pos-
itive value of λ, however small. Thus, those paths
make no contribution to the path integral I(λ) for
any λ > 0, and, as a consequence, as λ→ 0, those
paths never reappear, and the result I ′(0) is based on
the oscillator but has a contribution from only those
continuous paths x(t) for which x(t) �= 0 for all t such
that 0 ≤ t ≤ T . The evaluation of the resultant path
integral with the restricted set of paths defines the
expression I ′(0) and it clearly gives rise to a different
result than if the interaction had never been present in
the first place, namely, I(0), which corresponds to the
free theory, i.e., the usual imaginary-time oscillator.
The theory implicitly defined by I ′(0) is called the
“pseudofree theory.”

4.1. Hard-Core Interactions in Field Theory

The kind of behavior illustrated above is not lim-
ited to the inverse quartic interaction but arises for
any interaction of the form |x|−α whenever α > 2.
There are good reasons to make the analogy of such
discontinuous perturbations with nonrenormalizable
interactions as they are known in quantum field the-
ory. The full story of this analogy is presented in
Chapter 8 in [9]. In other words, it is reasonable to
suppose that what are regarded as nonrenormalizable
interactions in quantum field theory behave as they do
because they are in fact discontinuous perturbations
that act as hard cores within appropriate functional
integral formulations. Moreover, certain specialized
nonrenormalizable models exhibit exactly the stated
behavior; see, e.g., Chapters 9, 10 in [2]. These mod-
els possess enough symmetry so that solutions can
be constructed outside of perturbation theory on the
basis of generally accepted principles. Based on the
experience gained with such models, it is our strong
conviction that all nonrenormalizable quantum field
PH
theories can be understood as discontinuous per-
turbations that act as hard cores within functional
integrals.

Of course, there is an important difference in the
nature of the excluded paths between what happens
in the quantum mechanical case and the field-theory
case. For quantum mechanics, the interactions ex-
hibit singularities at finite positions (e.g., x = 0, as is
the case for the interaction x−4), while for the field
case, the interactions exhibit singularities for fields
that themselves have singular behavior at some point
in Euclidean spacetime, e.g., a field having the distri-
butional behavior |x|−γ near x = 0, where γ is chosen
such that this local behavior is acceptable for the free
term but unacceptable for the interaction term; see
Chapter 8 in [9].

For quantum-mechanical cases, it is quite
straightforward to identify which paths should be
excluded and which paths are to be retained. On the
other hand, in the case of quantum fields, the situation
is far more difficult. In addition, it is one thing to say
that functions with certain singular behavior are to be
excluded, but it is a far more difficult thing to say how,
in fact, operationally to accomplish that exclusion.
For covariant, nonrenormalizable scalar fields, a pro-
posal has recently been put forward [10] that identifies
a novel, nonclassical (∝ �

2) counterterm, which,
it is conjectured, captures the effect of the hard-
core character of the interaction, a counterterm that
remains behind—as any hard-core portion of an
interaction must certainly do—even after the strength
of the interaction is reduced to zero. The proposal
offered is at a stage where Monte Carlo computer
studies could illuminate this proposal to a consid-
erable degree; unfortunately, such computer studies
have yet to be made. If such computer studies were
made, however, and they confirmed that the hard-core
picture makes good sense and also led to nontrivial
results for such nonrenormalizable models as φ4

n, for
spacetime dimensions n ≥ 5, then we would have
greater confidence in their possible utility in the study
of quantum gravity. Since we do not yet have this
additional degree of support, we are obliged to rely
on the conjecture that the nonrenormalizable aspect
of traditional quantum gravity can be understood—
and eventually dealt with—by invoking the hard-core
hypothesis, even if at this stage we do not fully know
how to actually realize this proposal.

At any rate, we can make a few reasonable con-
jectures as to how the appearance of the hard-core
terms may enter. Just as with covariant scalar fields,
we expect the counterterm(s) to be atypical and not
what would be predicted on the basis of perturbation
theory. After all, perturbation theory is based on the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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assumption that the interacting theory is continu-
ously connected to the noninteracting theory, indeed,
explicitly in such a way that, as the coupling con-
stant goes to zero, one passes continuously from the
interacting theory to the noninteracting one. But, for
hard-core interactions, that is exactly what cannot
happen. Thus, we are led to expect modifications of
the constraint operators Ha and H, which will then
lead toO(�) modifications to their c-number symbols
Ha and H that enter into the functional integral (35).
Since these all-important modifications are unknown
at present, we are not yet in a position to try to
use (35) in order to evaluate, even approximately,
the coherent-state matrix element of the projection
operator, 〈π′′, g′′|E|π′, g′〉.

In conclusion, we expect the next level of under-
standing in this program to arise from the study of
(i) φ4

n, n ≥ 5, models and (ii) simple models with
anomalous constraint behavior. However, predicting
the future is known to be fairly risky!
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Abstract—This paper deals with the dynamical system that generalizes the MIC–Kepler system. It
is shown that the Schrödinger equation for this generalized MIC–Kepler system can be separated in
prolate spheroidal coordinates. The coefficients of the interbasis expansions between three bases (spherical,
parabolic, and spheroidal) are studied in detail. It is found that the coefficients for this expansion of the
parabolic basis in terms of the spherical basis, and vice versa, can be expressed through the Clebsch–
Gordan coefficients for the group SU(2) analytically continued to real values of their arguments. The
coefficients for the expansions of the prolate spheroidal basis in terms of the spherical and parabolic bases
are proved to satisfy three-term recursion relations. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The generalized MIC–Kepler system is described
by the equation [1]

1
2

(−i∇− sA)2 ψ +
[
s2

2r2
− 1

r
(1)

+
c1

r(r + z)
+

c2
r(r − z)

]
ψ = Eψ,

where c1 and c2 are nonnegative constants, and

A =
1

r(r − z)
(y,−x, 0) and curlA =

r
r3
.

(We use the system of units for which � = m = e =
c = 1.) The monopole number s satisfies the Dirac
rule of charge quantization s = 0,±1/2,±1, . . ..
Each value of s describes its particular general-
ized MIC–Kepler system. The Schrödinger equa-
tion (1) for ci = 0 (i = 1, 2) and s �= 0 reduces to the
Schrödinger equation of the MIC–Kepler system [2,
3]. The MIC–Kepler system could be constructed
by the reduction of the four-dimensional isotropic
oscillator by the use of the so-called Kustaanheimo–
Stiefel transformation, both on classical and quantum
mechanical levels [4]. In a similar way, reducing
the two- and eight-dimensional isotropic oscillator,
one can obtain the two- [5] and five-dimensional [6]
analogs of the MIC–Kepler system. An infinitely
thin solenoid providing the system with the spin 1/2
plays the role of monopole in the two-dimensional
case, whereas in the five-dimensional case this role is

∗The text was submitted by the author in English.
1)International Center for Advanced Studies, Yerevan
State University, Yerevan, Armenia; e-mail:
mardoyan@icas.ysu.am
1063-7788/05/6810-1746$26.00
performed by theSU(2)Yangmonopole [7], endowing
the system with the isospin. All the above-mentioned
systems have Coulomb symmetries and are solved in
spherical and parabolic coordinates, both in discrete
and continuous parts of energy spectra [8, 9]. There
are generalizations of MIC–Kepler systems on a
three-dimensional sphere [10] and hyperboloid [11]
as well. The MIC–Kepler system has been worked
out from different points of view in [12–16].

At s = 0, Eq. (1) is reduced to the Schrödinger
equation for the generalized Kepler–Coulomb sys-
tem [17]. In the case when s = 0 and c1 = c2 �= 0,
Eq. (1) reduces to the Hartmann system that has
been used for describing axially symmetric systems
like ring-shaped molecules [18].

The system described by the Schrödinger equa-
tion (1) is one of the superintegrable potentials inves-
tigated in [19–21].

In [1], it is shown that the variables in the
Schrödinger equation (1) are separated in spherical
and parabolic coordinates. In this article, it is shown
that the variables in Eq. (1) can be separated in
prolate spheroidal coordinates also. The system of
spheroidal coordinates is a natural system for in-
vestigating many problems in mathematical physics
(see [22] and references therein). In quantum me-
chanics, the spheroidal coordinates play an impor-
tant role because they are appropriate in describing
the behavior of a charged particle in the field of
two Coulomb centers. The distance R between the
centers is a dimensional parameter characterizing
the spheroidal coordinates. These coordinates are
changed into spherical and parabolic coordinates as
R → 0 and R → ∞, respectively, if the positions of
one Coulomb center and the charged particle are fixed
when taking the limits. In this sense, the spheroidal
c© 2005 Pleiades Publishing, Inc.
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coordinates are more general than the spherical and
parabolic coordinates.

2. SPHERICAL AND PARABOLIC BASES

For completeness, we here present the solutions
of the Schrödinger equation (1) found in [1]. Equa-
tion (1) in the spherical coordinates becomes{

∆rθ +
1

4r2 cos2(θ/2)

(
∂2

∂ϕ2
− 4c1

)
+

1
4r2 sin2(θ/2)

(2)

×
[(

∂

∂ϕ
+ 2is

)2

− 4c2

]
+ 2

(
E +

1
r

)}
ψ = 0,

where

∆rθ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
.

The solution to Eq. (2) has the form

ψ
(s)
njm (r, θ, ϕ; δ1, δ2) (3)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
= R
(s)
nj (r; δ1, δ2)Z

(s)
jm (θ, ϕ; δ1, δ2) .

The functionsZ(s)
jm (θ, ϕ; δ1, δ2) andR

(s)
nj (r; δ1, δ2) are

given by the formulas

Z
(s)
jm(θ, ϕ; δ1, δ2) = Njm(δ1, δ2)

(
cos

θ

2

)m1

(4)

×
(

sin
θ

2

)m2

P
(m2,m1)
j−m+

(cos θ)ei(m−s)ϕ,

R
(s)
nj (r; δ1, δ2) = Cnj(δ1, δ2)(2εr)j+(δ1+δ2)/2e−εr

× F (−n + j + 1; 2j + δ1 + δ2 + 2; 2εr) ,

whereP (α,β)
n (x) are the Jacobi polynomials,F (a; c;x)

is the confluent hypergeometric function, and
Njm(δ1, δ2) and Cnj(δ1, δ2) are normalization con-
stants:
Njm(δ1, δ2) =

√
(2j + δ1 + δ2 + 1)(j −m+)!Γ(j + m+ + δ1 + δ2 + 1)

4πΓ(j −m− + δ1 + 1)Γ(j + m− + δ2 + 1)
,

Cnj(δ1, δ2) =
2ε2

Γ (2j + δ1 + δ2 + 2)

√
Γ (n + j + δ1 + δ2 + 1)

(n− j − 1)!
.

We assume that

π∫
0

2π∫
0

sin θZ(s)∗
j′m′ (θ, ϕ; δ1, δ2)

× Z
(s)
jm (θ, ϕ; δ1, δ2) dθdϕ = δjj′δmm′ ,

∞∫
0

r2R
(s)
n′j (r; δ1, δ2)R

(s)
nj (r; δ1, δ2) dr = δnn′ (5)

and denote by ε the following expression:

ε =
√
−2E =

1
n + (δ1 + δ2)/2

.

The energy spectrum has the form

E ≡ E(s)
n = −1

2

(
n +

δ1 + δ2
2

)−2

(6)
and the quantum numbers m and j run through the
values:m = −j,−j + 1, . . . , j − 1, j and

j =
|m + s| + |m− s|

2
,
|m + s| + |m− s|

2
+ 1, . . . .

We make the following notation also: m± = (|m +
s| ± |m− s|)/2 and

m1 = |m− s| + δ1 =
√

(m− s)2 + 4c1,

m2 = |m + s| + δ2 =
√

(m + s)2 + 4c2.

Thewave functions (3) are the eigenfunctions of com-
muting operators M̂ and Ĵz and

M̂ψ
(s)
njm(r, θ, ϕ; δ1, δ2) =

(
j +

δ1 + δ2
2

)
(7)

×
(
j +

δ1 + δ2
2

+ 1
)
ψ

(s)
njm(r, θ, ϕ; δ1, δ2),

where

M̂ = Ĵ2 +
2c1

1 + cos θ
+

2c2
1 − cos θ

.
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Here, Ĵ2 is the square of the angular momentum [2]

Ĵ = r× (−i∇− sA) − s
r
r
,

Ĵz = s− i∂/∂ϕ is its z component, and Ĵzψ = mψ.
The operator M̂ is written in Cartesian coordinates
as

M̂ = −r2∆ + xixj
∂2

∂xi∂xj
+ 2xi

∂

∂xi
(8)

+
2isr
r − z

(
x
∂

∂y
− y

∂

∂x
− is− i

c2
s

)
+

2c1r
r + z

.

Let us consider the generalized MIC–Kepler
system in the parabolic coordinates ξ, η ∈ [0,∞),
ϕ ∈ [0, 2π), defined by the formulas

x =
√
ξη cosϕ, y =

√
ξη sinϕ, z =

1
2
(ξ − η).

In these coordinates, the differential elements of
length and volume read

dl2 =
ξ + η

4

(
dξ2

ξ
+

dη2

η

)
+ ξηdϕ2,

dV =
1
4
(ξ + η)dξdηdϕ,

while the Laplace operator looks like

∆ =
4

ξ + η

[
∂

∂ξ

(
ξ
∂

∂ξ

)
+

∂

∂η

(
η
∂

∂η

)]
+

1
ξη

∂2

∂ϕ2
.

The substitution

ψ(ξ, η, ϕ) = Φ1(ξ)Φ2(η)
ei(m−s)ϕ
√

2π

separates the variables in the Schrödinger equation
and we arrive at the following system of equations:

d

dξ

(
ξ
dΦ1

dξ

)
+
[
E

2
ξ − m2

1

4ξ
+

1
2
β +

1
2

]
Φ1 = 0, (9)

d

dη

(
η
dΦ2

dη

)
+
[
E

2
η − m2

2

4η
− 1

2
β +

1
2

]
Φ2 = 0, (10)

where β is the separation constant.
These equations are analogs to the equations of

the hydrogen atom in the parabolic coordinates [23].
Thus, we get

ψ(s)
n1n2m(ξ, η, ϕ; δ1, δ2) (11)

=
√

2ε2Φn1m1(ξ)Φn2m2(η)
ei(m−s)ϕ
√

2π
,

where

Φnimi(x) =
1

Γ(mi + 1)

√
Γ(ni + mi + 1)

(ni)!
PH
× e−εx/2(εx)mi/2F (−ni;mi + 1; εx).

Here, n1 and n2 are nonnegative integers:

n1 = −|m− s| + δ1 + 1
2

+
β + 1

2ε
,

n2 = −|m + s| + δ2 + 1
2

− β − 1
2ε

.

From the last relations, taking into account (6), we
find that the parabolic quantum numbers n1 and n2

are connected with the principal quantum number n
as follows:

n = n1 + n2 +
|m− s| + |m + s|

2
+ 1.

Excluding the energy E from Eqs. (9) and (10), we
obtain the additional integral of motion

X̂ =
2

ξ + η

[
ξ
∂

∂η

(
η
∂

∂η

)
− η

∂

∂ξ

(
ξ
∂

∂ξ

)]

+
ξ − η

2ξη
∂2

∂ϕ2
− is

ξ2 + η2

ξη(ξ + η)
∂

∂ϕ
− s2 ξ − η

2ξη

+
2c1η

ξ(ξ + η)
− 2c2ξ

η(ξ + η)
+

ξ − η

ξ + η

with the eigenvalues

β = ε

(
n1 − n2 +

|m− s| − |m + s| + δ1 − δ2
2

)

and eigenfunctions ψ(s)
n1n2m(ξ, η, ϕ; δ1, δ2), i.e.,

X̂ψ(s)
n1n2m(ξ, η, ϕ; δ1 , δ2) = βψ(s)

n1n2m(ξ, η, ϕ; δ1 , δ2).
(12)

In Cartesian coordinates, the operator X̂ can be
rewritten as

X̂ = z

(
∂2

∂x2
+

∂2

∂y2

)
− x

∂2

∂x∂z
(13)

− y
∂2

∂y∂z
− is

r + z

r(r − z)

(
x
∂

∂y
− y

∂

∂x

)
− ∂

∂z

− s2 r + z

r(r − z)
+ c1

r − z

r(r + z)
− c2

r + z

r(r − z)
+

z

r
,

so that it immediately follows that X̂ is connected to
the z component Îz of the analog of the Runge–Lenz
vector

Î =
1
2

[
(−i∇− sA) × Ĵ− Ĵ × (−i∇− sA)

]
+

r
r

via

X̂ = Îz + c1
r − z

r(r + z)
− c2

r + z

r(r − z)

and coincides with Îz when c1 = c2 = 0.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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3. BIORTHOGONALITY OF THE RADIAL
WAVE FUNCTIONS

We shall prove that, along with condition (5) the

radial wave functionsR(s)
nj (r; δ1, δ2) satisfy the follow-

ing additional orthogonality condition:

Ijj′ =

∞∫
0

R
(s)
nj′ (r; δ1, δ2)R

(s)
nj (r; δ1, δ2) dr (14)

=
2

(n + (δ1 + δ2)/2)3

δjj′

2j + δ1 + δ2 + 1
.

This new relation is used in the next section to derive
interbasis expansions. It can be proved as follows.
In the integral appearing in (14), we substi-

tute explicit expressions (4) for R
(s)
nj (r; δ1, δ2) and

R
(s)
nj′(r; δ1, δ2). Then, we take the confluent hyperge-

ometric function in (4) as a finite sum,

F (−n + j + 1; 2j + δ1 + δ2 + 2; 2εr)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
=
n−j−1∑
p=0

(−n + j + 1)p
p!(2j + δ1 + δ2 + 1)p

(2εr)p,

and perform the integration term by termwith the help
of the formula [23]

∞∫
0

e−λxxνF (α, γ; kx)dx (15)

=
Γ(ν + 1)
λν+1 2F 1

(
α, ν + 1, γ;

k

λ

)
.

Applying the formula

2F 1 (a, b; c; 1) =
Γ(c)Γ(c − a− b)
Γ(c− a)Γ(c− b)

(16)

for the hypergeometric function, we obtain
Ijj′ =
Γ(j + j′ + δ1 + δ2 + 1)

Γ(2j + δ1 + δ2 + 2)

[
Γ(n + j + δ1 + δ2 + 1))

(n− j − 1)!(n − j′ − 1)!Γ(n + j′ + δ1 + δ2 + 1)

]1/2 2
(n + (δ1 + δ2)/2)

3

(17)

×
n−j−1∑
p=0

(−n + j + 1)p(j + j′ + δ1 + δ2 + 1)p
p!(2j + δ1 + δ2 + 2)p

Γ(n− j − p)
Γ(j′ − j − p + 1)

.

By introducing the formula [24]

Γ(z)
Γ(z − n)

= (−1)n
Γ(−z + n + 1)

Γ(−z + 1)

into (17), the sum over p can be expressed in terms
of the 2F1 Gauss hypergeometric function of argu-
ment 1. We thus obtain

Ijj′ =
1

j + j′ + δ1 + δ2 + 1
(18)

×
[

(n− j − 1)!Γ(n + j + δ1 + δ2 + 1))
(n− j′ − 1)!Γ(n + j′ + δ1 + δ2 + 1)

]1/2

× 2
(n + (δ1 + δ2)/2)

3

1
Γ(j − j′ + 1)Γ(j′ − j + 1)

.

Equation (14) then easily follows from (18) since
[Γ(j − j′ + 1)Γ(j′ − j + 1)]−1 = δjj′ .

The result provided by Eq. (14) generalizes the
one for the hydrogen atom [25]. Indeed, orthogo-
nality properties similar to (14) hold for the Kepler–
Coulomb system and harmonic oscillator in f-dimen-
sional spaces (f ≥ 2) [25].
4. INTERBASIS EXPANSION BETWEEN
PARABOLIC AND SPHERICAL BASES

The connection between spherical (r, θ, ϕ) and
parabolic (ξ, η, ϕ) coordinates is

ξ = r(1 + cos θ), η = r(1 + cos θ), (19)

ϕ(parabolic) = ϕ(spherical).

Now, we can write, for fixed value energy E(s)
n , the

parabolic bound states (11) as a coherent quantum
mixture of the spherical bound states (3):

ψ(s)
n1n2m(ξ, η, ϕ; δ1, δ2) (20)

=
n−1∑
j=m+

W j
n1n2ms (δ1, δ2)ψ

(s)
njm (r, θ, ϕ; δ1, δ2) .

By virtue of Eq. (19), the left-hand side of (20) can
be rewritten in spherical coordinates. Then, by sub-
stituting θ = 0 into the so-obtained equation and by
taking into account that

P (α,β)
n (1) =

(α + 1)n
n!

,
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we get an equation that depends only on the variable
r. Thus, we can use the orthogonality relation (14) on
the quantum number j. This yields

W j
n1n2ms (δ1, δ2) (21)
PH
=

√
(2j + δ1 + δ2 + 1) (j −m+)!

Γ(m1 + 1)Γ(2j + δ1 + δ2 + 2)
Ejms
n1n2

Knn1
jms,

where
Ejms
n1n2

=
[
Γ (j −m− + δ1 + 1) Γ(n1 + m1 + 1)Γ(n2 + m2 + 1)Γ (n + j + δ1 + δ2 + 1)

(n1)!(n2)!(n− j − 1)!Γ (j + m− + δ2 + 1) Γ (j + m+ + δ1 + δ2 + 1)

]1/2

, (22)

and

Knn1
jms =

∞∫
0

e−xxj+m1+δ1+δ2F (−n1;m1 + 1;x) × F (−n + j + 1; 2j + δ1 + δ2 + 2;x) dx.

To calculate the integralKnn1
jms, it is sufficient to write the confluent hypergeometric functionF (−n1;m1 + 1;x)

as a series, integrate according to (15), and use formula (16) for the summation of the hypergeometric function
2F1. We thus obtain

Knn1
jms =

(n−m+ − 1)!Γ(2j + δ1 + δ2 + 2)Γ (j + m+ + δ1 + δ2 + 1)
(j −m+)!Γ (n + j + δ1 + δ2 + 1)

(23)

× 3F 2


−n1,−j + m+, j + m+ + δ1 + δ2 + 1

m1 + 1,−n + m+ + 1

∣∣∣∣1

 .

The introduction of (22) and (23) into (21) gives

W j
n1n2ms (δ1, δ2) =

√
(2j + δ1 + δ2 + 1) Γ(n1 + m1 + 1)Γ(n2 + m2 + 1)

(n1)!(n2)!(n − j − 1)!(j −m+)!Γ (j + m− + δ2 + 1)
(n−m+ − 1)!

Γ(m1 + 1)
(24)

×
√

Γ (j −m− + δ1 + 1) Γ (j + m+ + δ1 + δ2 + 1)
Γ (n + j + δ1 + δ2 + 1) 3F 2


−n1,−j + m+, j + m+ + δ1 + δ2 + 1

m1 + 1,−n + m+ + 1

∣∣∣∣1

 .

The next step is to show that the interbasis coefficients (24) are, indeed, a continuation on the real line of the
Clebsch–Gordan coefficients for the group SU(2). It is known that the Clebsch–Gordan coefficient Cc,γ

a,α;b,β

can be written as [26]

Ccγ
aα;bβ =

[
(2c + 1)(a + α)!(c + γ)!

(a− α)!(c − γ)!(a + b + c + 1)!(a + b− c)!(a − b + c)!(b− a + c)!

]1/2

(25)

× (−1)a−αδγ,α+β
(a + b− γ)!(b + c− α)!√

(b− β)!(b + β)!
3F 2


−a− b− c− 1,−a + α,−c + γ

−a− b + γ,−b− c + α

∣∣∣∣1

 .

By using the formula [27]

3F 2


 s, s′,−N

t′, 1 −N − t

∣∣∣∣1

 =

(t + s)N
(t)N

3F 2


s, t′ − s′,−N

t′, t + s

∣∣∣∣1

 ,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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Eq. (25) can be rewritten in the form

Ccγ
aα;bβ =

[
(2c + 1)(b − a + c)!(a + α)!(b + β)!(c + γ)!

(b− β)!(c− γ)!(a + b− c)!(a− b + c)!(a + b + c + 1)!

]1/2

(26)

× δγ,α+β
(−1)a−α√
(a− α)!

(a + b− γ)!
(b− a + γ)!3

F 2


−a + α, c + γ + 1,−c + γ

γ − a− b, b− a + γ + 1

∣∣∣∣1

 .
Finally, comparing (26) and (24), we obtain the rep-
resentation

W j
n1n2ms (δ1, δ1) = (−1)n1 (27)

× C
j+

δ1+δ2
2

,
m1+m2

2
n+m−+δ2−1

2
,
m2+n2−n1

2
;
n−m−+δ1−1

2
,
m1+n1−n2

2

.

Equation (27) proves that the coefficients for the ex-
pansion of the parabolic basis in terms of the spherical
basis are nothing but the analytical continuation, for
real values of their arguments, of theSU(2)Clebsch–
Gordan coefficients.
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The inverse of Eq. (20), namely,

ψ
(s)
njm (r, θ, ϕ; δ1, δ2) (28)

=
n−m+−1∑
n1=0

W̃ n1
njms (δ1, δ2)ψ(s)

n1n2m(ξ, η, ϕ; δ1, δ2),

is an immediate consequence of the orthonormality
property of the SU(2) Clebsch–Gordan coefficients.
The expansion coefficients in (28) are thus given by
W̃ n1
njms (δ1, δ2) = (−1)n1C

j+
δ1+δ2

2
,
m1+m2

2
n+m−+δ2−1

2
,
n+m−+δ2−1

2
−n1;

n−m−+δ1−1

2
,n1+|m−s|−n−m−−δ1−1

2

(29)
and may be expressed in terms of the 3F2 function
through (25) or (26).

5. PROLATE SPHEROIDAL BASIS
We now pass to the prolate spheroidal coordinates

x =
R

2

√
(µ2 − 1)(1 − ν2) cosϕ,

y =
R

2

√
(µ2 − 1)(1 − ν2) sinϕ, z =

R

2
(µν + 1),

where µ ∈ [0;∞), ν ∈ [−1; 1], ϕ ∈ [0, 2π), and R ∈
[0;∞). The parameter R is the interfocus distance,
and in the limits where R → 0 and R → ∞, the pro-
late spheroidal coordinates give back the spherical
coordinates and the parabolic coordinates, respec-
tively [22, 28].
The Laplace operator in these coordinates has the

form

∆ =
4

R2(µ2 − ν2)

[
∂

∂µ

(
µ2 − 1

) ∂

∂µ

+
∂

∂ν

(
1 − ν2

) ∂

∂ν

]
+

4
R2 (µ2 − 1) (1 − ν2)

∂2

∂ϕ2
.

After the substitution

ψ(µ, ν, ϕ) = ψ1(µ)ψ2(ν)
ei(m−s)ϕ
√

2π
,

the variables in the Schrödinger equation (1) are sep-
arated[

d

dµ

(
µ2 − 1

) d

dµ
+

m2
1

2(µ + 1)
− m2

2

2(µ− 1)
(30)

+ Rµ +
ER2

2
(
µ2 − 1

)]
ψ1 = λ(R)ψ1,[

d

dν

(
1 − ν2

) d

dν
− m2

1

2(1 + ν)
− m2

2

2(1 − ν)
(31)

−Rν +
ER2

2
(
1 − ν2

)]
ψ2 = −λ(R)ψ2,

where λ(R) is a separation constant in prolate
spheroidal coordinates. By eliminating the energy E
from Eqs. (30) and (31), we produce the operator

Λ̂ =
1

µ2 − ν2
(32)

×
[(

1 − ν2
) ∂

∂µ

(
µ2 − 1

) ∂

∂µ
−
(
µ2 − 1

)
× ∂

∂ν

(
1 − ν2

) ∂

∂ν

]
+

2 − µ2 − ν2

(µ2 − 1) (1 − ν2)
∂2

∂ϕ2

+ 2s
(µ + ν)2 − (µ + 1) (1 + ν)

(µ + ν) (µ− 1) (1 − ν)

(
s+ i

∂

∂ϕ

)
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+ 2c1
(µ + ν)2 + (µ− 1) (1 − ν)

(µ + ν) (µ + 1) (1 + ν)

+ 2c2
(µ + ν)2 − (µ + 1) (1 + ν)

(µ + ν) (µ− 1) (1 − ν)
+ R

µν + 1
µ + ν

,

the eigenvalues of which are λ(R) and the eigenfunc-
tions of which are ψ(µ, ν, ϕ). The significance of the
self-adjoint operator Λ̂ can be found by switching to
Cartesian coordinates. Passing to Cartesian coordi-
nates in (32) and taking (8) and (13) into account, we
obtain

Λ̂ = M̂ +RX̂. (33)

Therefore,

Λ̂ψ(s)
nqm(µ, ν, ϕ;R, δ1, δ2) (34)

= λq(R)ψ(s)
nqm(µ, ν, ϕ;R, δ1, δ2),

where index q labels the eigenvalues of the operator Λ̂
and varies in the range 0 ≤ q ≤ n−m+ − 1.
We are now ready to deal with the interbasis ex-

pansions

ψ(s)
nqm(µ, ν, ϕ;R, δ1, δ2) (35)

=
n−1∑
j=m+

U j
nqms (R; δ1, δ2)ψ

(s)
njm (r, θ, ϕ; δ1, δ2) ,

ψ(s)
nqm(µ, ν, ϕ;R, δ1, δ2) (36)

=
n−m+−1∑
n1=0

V n1
nqms (R; δ1, δ2)ψ(s)

n1n2m(ξ, η, ϕ; δ1, δ2)

for the prolate spheroidal basis in terms of the spheri-
cal and parabolic bases. {Equation (35) was first con-
PH
sidered by Coulson and Joseph [29] in the particular
case s = δ1 = δ2 = 0.}

First, we consider Eq. (35). Let the operator Λ̂ act
on both sides of (35). Then, by using Eqs. (33), (34),
and (7) as well as the orthonormality property of the
spherical basis, we find that[

λq(R) −
(
j +

δ1 + δ2
2

)
(37)

×
(
j +

δ1 + δ2
2

+ 1
)]

U j
nqms

= R

n−1∑
j′=m+

U j′
nqms(X̂)jj′ ,

where

(X̂)jj′ =
∫

ψ
(s)∗
njm (r, θ, ϕ; δ1, δ2) (38)

× X̂ψ
(s)
njm (r, θ, ϕ; δ1, δ2) dV.

The calculation of the matrix element (X̂)jj′ can
be done by expanding the basis in (38) in terms of
parabolic wave functions [see Eq. (28)] and bymaking
use of the eigenvalue equation for X̂ [see Eq. (12)].
This leads to

(X̂)jj′ =
2

2n + δ1 + δ2

n−m+−1∑
n1=0

(
2n1 − n

+ |m− s| + δ1 + δ2
2

+ 1
)
W̃ n1
njmW̃

n1
nj′m.

Then, by using Eq. (29) together with the recursion
relation [26]
Ccγ
aα;bβ = −

[
4c2(2c + 1)(2c − 1)

(c + γ)(c− γ)(b− a + c)(a − b + c)(a + b− c + 1)(a + b + c + 1)

]1/2

×
{[

(c− γ − 1)(c + γ − 1)(b − a + c− 1)(a − b + c− 1)(a + b− c + 2)(a + b + c)
4(c − 1)2(2c− 3)(2c − 1)

]1/2

× Cc−2,γ
aα;bβ − (α− β)c(c − 1) − γa(a + 1) + γb(b + 1)

2c(c − 1)
Cc−1,γ
aα;bβ

}

and the orthonormality condition

∑
α+β=γ

Ccγ
aα;bβC

c′γ′

aα;bβ = δc′cδγ′γ ,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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we find that (X̂)jj′ is given by

(X̂)jj′ =
(m1 + m2)(m1 −m2)

(2j + δ1 + δ2)(2j + δ1 + δ2 + 2)
δj′,j −

2
2n + δ1 + δ2

(
Aj+1
nm δj′,j+1 + Ajnmδj′,j−1

)
, (39)

where

Ajnm =
[
(j −m+)(j +m+ + δ1 + δ2)(j −m− + δ1)(j + m− + δ2)(n− j)(n + j + δ1 + δ2)

(j + (δ1 + δ2)/2)
2 (2j + δ1 + δ2 − 1)(2j + δ1 + δ2 + 1)

]1/2

.

Now, by introducing (39) into (37), we get the
following three-term recursion relation for the coef-
ficient U j

nqms:[
λq(R) −

(
j +

δ1 + δ2
2

)(
j +

δ1 + δ2
2

+ 1
)

(40)

− R(m1 + m2)(m1 −m2)
(2j + δ1 + δ2)(2j + δ1 + δ2 + 2)

]
U j
nqms

+
2R

2n + δ1 + δ2

[
Aj+1
nm U j+1

nqms + AjnmU
j−1
nqms

]
= 0.

The recursion relation (40) provides us with a system
of n−m+ linear homogeneous equations which can
be solved by taking into account the normalization
condition

n−1∑
j−m+

∣∣U j
nqms(R; δ1, δ2)

∣∣2 = 1.

The eigenvalues λq(R) of the operator Λ̂ then follow
from the vanishing of the determinant for the latter
system.
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Second, let us concentrate on the expansion (36)
of the prolate spheroidal basis in terms of the parabolic
basis. By employing a technique similar to the one
used for deriving Eq. (37), we get[

λq(R) − 2R
2n + δ1 + δ2

(
n1 − n2 (41)

+
m1 −m2

2

)]
V n1
nqms =

n−m+−1∑
n′

1=0

V
n′

1
nqms(M̂ )n1n′

1
,

where

(M̂ )n1n′
1

=
∫

ψ(s)∗
n1n2m (ξ, η, ϕ; δ1, δ2)

× M̂ψ
(s)
n′

1n
′
2m

(ξ, η, ϕ; δ1, δ2) dV.

Thematrix elements (M̂ )n1n′
1
can be calculated in the

same way as (X̂)jj′ except that now we must use the
relation [30]
[c(c + 1) − a(a + 1) − b(b + 1) − 2αβ]Cc,γ
a,α;b,β =

√
(a + α)(a− α + 1)(b− β)(b + β + 1)Cc,γ

a,α−1;b,β+1

+
√

(a− α)(a + α + 1)(b + β)(b− β + 1)Cc,γ
a,α+1;b,β−1

and the orthonormality condition

a+b∑
c=|γ|

Ccγ
aα;bβC

cγ
aα′;bβ′ = δαα′δββ′

permits deriving the formula for the matrix element (M̂)n1n′
1
:

(M̂ )n1n′
1

=
[
(n1 + 1)(n2 + m−) + (n− n1 + δ2)(n1 + |m− s| + δ2) + m−(m+ + δ2) (42)

+
1
4
(δ1 − δ2)(δ1 − δ2 − 2)

]
δn′

1n1
−
√
n2(n1 + 1)(n1 + |m− s| + δ1 + 1)(n2 + |m− s| + δ2)δn′

1,n1+1

−
√
n1(n2 + 1)(n1 + |m− s| + δ1 + 1)(n2 + |m− s| + δ2 + 1)δn′

1,n1−1.
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Finally, the introduction of (42) into (41) leads to the three-term recursion relation

[
(n1 + 1)(n2 + m−) + (n− n1 + δ2)(n1 + |m− s| + δ2) +

1
4
(δ1 − δ2)(δ1 − δ2 − 2) + m−(m+ + δ2) (43)

+
2R

2n + δ1 + δ2

(
n1 − n2 +

m1 −m2

2

)
− λq(R)

]
V n1
nqms(R; δ1, δ2)

=
√
n2(n1 + 1)(n1 + |m− s| + δ1 + 1)(n2 + |m− s| + δ2)V n1+1

nqms (R; δ1, δ2)

+
√
n1(n2 + 1)(n1 + |m− s| + δ1 + 1)(n2 + |m− s| + δ2 + 1)V n1−1

nqms (R; δ1, δ2)
for the expansion coefficients V n1
nqms(R; δ1, δ2). This

relation can be iterated by taking account of the nor-
malization condition

n−m+−1∑
n1=0

∣∣V n1
nqms(R; δ1, δ2)

∣∣2 = 1.

Here again, the eigenvalues λq(R) may be obtained
by solving a system of n−m+ linear homogeneous
equations.

It should be mentioned that formulas (27) and
(29) and three-term recursion relations (40) and (43)
generalize the analogous results for the following sys-
tems:

hydrogen atom [28, 29, 31–34], when s = δ1 =
δ2 = 0;

generalized Kepler–Coulomb system [17], when
s = 0, δ1 �= δ2 �= 0;

Hartmann system [35], when s = 0, δ1 = δ2 �= 0;

charge–dyon system [8], when s �= 0, δ1 = δ2 = 0.

Finally, it should be noted that the following four
limits

lim
R→0

U j
jnqms(R; δ1, δ2) = δjq,

lim
R→∞

U j
nqms(R; δ1, δ2) = W j

n1n2ms(δ1, δ2),

lim
R→∞

V n1
nqms(R; δ1, δ2) = δn1q,

lim
R→0

V n1
nqms(R; δ1, δ2) = W̃ n1

njms(δ1, δ2)

furnish a useful means for checking the calculations
presented in Sections 4 and 5.
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Abstract—We develop a calculus to describe the (in general) infinite-order differential operator symmetries
of a nonrelativistic Schrödinger eigenvalue equation that admits an orthogonal separation of variables
in Riemannian n space. The infinite-order calculus exhibits structure not apparent when one studies
only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of
looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among
the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the
space. Similarly, we can develop a calculus for conformal symmetries of the time-dependent Schrödinger
equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The main point we want to get across in this
paper is that, if a Schrödinger equation on a pseudo-
Riemannian manifold (real or complex),

(∆n + V (x))Ψ = EΨ or (∆n + V (x))Θ = Θt,

admits an orthogonal separation (or R separation) of
variables, then the differential symmetry operators for
the system, including those of infinite order, can be
obtained by solving a strictly finite system of PDEs
with parameters. The finite-order symmetry (or con-
formal symmetry) operators correspond to solutions
that are polynomial in the parameters. This point of
view exhibits a structure in the space of symme-
tries that is not apparent when one looks for finite-
order symmetries alone. Understanding this structure
is of particular importance for superintegrable sys-
tems [1–7], where there exist differential symmetries
that are not obvious from the separation of the sys-
tems in a single-coordinate system.

We will describe the basic ideas by first re-
viewing the simplest example, the time-dependent
Schrödinger equation (with potential) in two-dimen-
sional spacetime [8]. There, we can easily produce

∗The text was submitted by the authors in English.
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infinite-order conformal symmetries and show their
relevance to finding energy shifting operators for the
time-independent Schrödinger equation. However,
the system is so simple that one might not appreciate
the vital role of variable separation in the results. This
is clarified when we take up the study of the time-
independent Schrödinger equation (with potential) on
a two-dimensional pseudo-Riemannian space. The
approach extends to any number of space variables.

2. INFINITE-ORDER CONFORMAL
SYMMETRIES FOR THE TIME-DEPENDENT

SCHRÖDINGER EQUATION IN ONE
SPATIAL DIMENSION

The basic equation is the heat or time-dependent
Schrödinger equation

(∂t − ∂xx − V (x))Ψ(x, t) = 0. (1)

Here, V and Ψ are complex analytic functions of the
complex variables x, t. Recall that an operator L,
acting on the solution space of (1), is a (conformal)
symmetry if

[∂t −H,L] ≡ ∂tL− [H,L] = R(∂t −H)

for some linear operator R. Here,H = ∂xx + V (x).
We have separation of variables for (1), in the

coordinates {x, t}. Indeed, the potential V (x, t) =
V1(x) + V2(t) also permits separation, but a gauge
transformation Ψ(x, t) = eT (t)Θ(x, t) with T ′(t) =
V2(x) leads to Eq. (1) again forΘ.
It should not be thought that (1) refers only

to Cartesian coordinates. Indeed, there are three
R-separable coordinate systems for this equation:
(i) Cartesian coordinates (x, t), Ψxx +

V (x)Ψ = Ψt.
c© 2005 Pleiades Publishing, Inc.
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(ii) Heat coordinates (u, τ), u = x/
√
t, τ = ln t. If

we set Ψ = e−u
2/4Θ(u, τ), then (1) becomes

Θuu +
(
−u

2

4
− 1

2
+ eτV

)
Θ = Θτ ,

separable if eτV = Ṽ (u).
(iii) Airy coordinates (u, τ), u = x− t2/2, τ = t. If

we set Ψ = e−τ
3/12−uτ/2Θ(u, τ), then (1) becomes

Θuu +
(
1
2
u+ V

)
Θ = Θτ ,

separable if V = Ṽ (u).
This means that the symmetry analysis below ap-

plies to potentials of the form

V = f(x), V =
f(x/

√
t)

t
,

or V = f
(
x− t2

2

)
.

We will only consider the action of L(t) on the
solution space of (1). Then each term ∂2

x in the formal
expansion of the (possibly infinite-order) conformal
symmetry

L(t) =
∞∑

n,m=0

�(x, t)n,m∂nx∂
m
t

can be replaced successively by ∂t − V (x), if at each
stage the terms in the expansion are reordered so that
the derivative terms act directly on the solution space.
Thus L(t) can be placed in the canonical form:

L(t) = a(x, t, λ)∂x + b(x, t, λ). (2)

Here, we consider

a(x, t, λ) =
∞∑
m=0

am(x, t)∂mt , λ = ∂t,

with a similar interpretation for b. (We could also
expand a in a power series in λ− λ0, so it is only
necessary for a to be analytic in λ about some com-
plex number λ0. We have chosen λ0 = 0 for clarity
of exposition.) The action of L(t) on constant energy
solutions

Ψ(x, t) = eEtφ(x), Hφ = Eφ,

can be made rigorous, even if a and b are not analytic:

LΨ = eEt{a(x, t, E)∂x + b(x, t, E)}φ(x).

Now let us determine the conditions on a and b so
that L(t) is a symmetry. The conditions are

bx =
1
2
at −

1
2
axx,
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bt =
1
2
atx −

1
2
axxx + 2axλ− 2axV − aVx.

The integrability condition for these equations is

att − 2axxt + axxxx + 4axx(V − λ) (3)

+ 6axVx + 2aVxx = 0.

Theorem. Condition (3) is necessary and suffi-
cient for L(t) = a(x, t, λ)∂x + b(x, t, λ) to be a sym-
metry.
It is not difficult to find all solutions of (3) which

are of the form
a = exp(tκ(λ))f(x, λ).

We obtain the fourth-order ordinary differential equa-
tion

fxxxx + (4V − 4λ− 2κ)fxx + 6Vxfx (4)

+ (2Vxx + κ2)f = 0.

It is easy to show that these solutions occur in
raising-operator/lowering-operator pairs [8].
To solve Eq. (4), we make use of Whittaker’s the-

orem: Let u(x) and v(x) be solutions of the differen-
tial equations u′′ − p(x)u = 0, v′′ − q(x)v = 0. Then
y(x) = u(x)v(x) satisfies

(p − q)y′′′′ − (p′ − q′)y′′′ − 2(p2 − q2)y′′

+ (−pp′ + qq′ + 5p′q − 5pq′)y′ + (p′2 − q′2

− (p− q)(p′′ + q′′) + (p − q)3)y = 0.

Now consider the equations

(i) u′′ + V u = (λ+ κ)u, (ii) v′′ + V v = λv,

i.e., p = λ+ κ− V , q = λ− V . Then we get (4) with
f = uv. Similarly, we can find structure results for the
basic Eq. (3).
Although our theorems exhibit clearly the struc-

ture of the generalized symmetries, other methods for
computing the recurrences may be simpler.

Example (pseudo-Coulomb potential). We com-
pute the possible solutions to (4) of the form f(x, λ) =
x. We find the pseudo-Coulomb potential

V (v) =
a2

x2
− b2x2, κ = ±4b.

Here, the raising and lowering operators are of finite
order, and they raise and lower by a fixed energy. The
raising and lowering operators andH generate the Lie
algebra s�(2) and a standard weight vector argument
yields the bound-state energy levels for the hydrogen
atom.

Example (Morse potential). We compute the so-
lutions to (4) of the form f(x, λ) = exp(µ(λ)x). We
find that µ is independent of λ and

V (x) = D[2 exp(−µx)− exp(−2µx)],
05
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where D and µ are positive parameters. The
Schrödinger equation admits the generalized
(infinite-order) symmetries

L± = etκ
±
[
eµx∂x +

(
κ±

2µ
− µ

2

)
eµx − 2µD

κ±

]
,

where κ±(λ) = µ2 ± 2µ
√
λ. Since κ+(λ) + κ−(λ+

κ+(λ)) = 0 for
√
λ+ µ ≥ 0 and κ−(λ) + κ+(λ+

κ−(λ)) = 0 for
√
λ− µ ≥ 0, we can easily verify that

L+L− ∼ D − 4D2

(µ− 2
√
λ)2

,

L−L+ ∼ D − 4D2

(µ+ 2
√
λ)2

,

where equality is meant in the sense that the two sides
agree when applied to a solution to (1). Thus, we have
the commutation relations

[L+, L−] ∼ −32D2µ
√
λ

(µ2 − 4λ)2
,

[λ,L+] ∼ (µ2 + 2µ
√
λ)L+,

[λ,L−] ∼ (µ2 − 2µ
√
λ)L−,

an analog of the commutation relations for the Lie
algebra s�(2).
Even though L+, L−, λ do not generate a finite-

dimensional Lie algebra, one can easily mimic the
(weight vector) approach to the representation theory
of s�(2) to determine the irreducible representations
of the associative algebra generated by these three
operators. Note the “Casimir operator” C acting on
the solution space of (1):

C = L+L− +
4D2

(µ− 2
√
λ)2

∼ L−L+

+
4D2

(µ+ 2
√
λ)2

∼ D.

We look for a “lowest weight vector” Ψ0 for λ, i.e., a
nonzero solution to the equations

(λ−H)Ψ0 = 0, λΨ0 = E0Ψ0, L−Ψ0 = 0.

EvaluatingCΨ0 = DΨ0 we find 4D2/(µ− 2
√
E0)2 =

D or

E0 = µ2

(√
D

µ
− 1

2

)2

,

assuming µ− 2
√
E0 ≥ 0. Recursively applying L+

to get Ψn = (L+)nΨ0 with eigenvalues En satisfying
the recurrence En+1 = En + κ+(En) = (µ+

√
En)2,

we find the spectrum

En = µ2

[√
D

µ
−
(
n+

1
2

)]2

, n = 0, 1, 2, . . . .
PH
As an application of the determining equations

att − 2axxt + axxxx + 4axx(V − λ) (5)

+ 6axVx + 2aVxx = 0,

let us consider the problem of finding those potentials
that admit third-order invariants,

L(t) = a(x, tλ)∂x + b(x, t, λ),

where we consider λ as a second-order invariant.
Thus, we look for solutions to (5) of the form

a(x, t, λ) = A(x, t)λ +B(x, t),

where A(x, t) 
= 0. Substituting this expression
into (5) and equating powers of λ, we find

Axx = 0 =⇒ A = α(t) + β(t)x, (6)

Att − 4Bxx + 6AxVx + 2AVxx = 0, (7)

Btt − 2Bxxt +Bxxxx + 4BxxV + 6BxVxx = 0. (8)

Substituting (6) into (7) and integrating, we find

B(x, t) = α̈(t)
x2

8
+ β̈(t)

x3

24
+ β(t)W (x)

+
1
2
(α(t) + β(t)x)W ′(x) + γ(t)x+ δ(t),

where V (x) =W ′(x).
Substituting this result into (8), we find the func-

tional equation for the potential:

α(4)(t)
[
x2

8

]
+ α(3)(t)

[
−1
2

]
(9)

+ α̈(t)
[
3
2
W ′ +

3x
2
W ′′ +

x2

4
W ′′′

]
+ α̇(t)[−W ′′′]

+ α(t)
[
3W ′W ′′′ +

1
2
W ′′′′′ + 3(W ′′)2

]

+ β(4)(t)
[
x3

24

]
+ β(3)(t)

[
−x
2

]
+ β̈(t)

[
x3

12
W ′′′

+
3x2

4
W ′′ +

3x
2
W ′ +

1
2
W

]
+ β̇(t)[−3W ′′

−W ′′′x] + β(t)
[
x

2
W ′′′′′ + 3xW ′W ′′′ +WW ′′′

+ 3(W ′′)2x+ 12W ′W ′′ +
5
2
W ′′′′

]
+ γ̈(t)[x]

+ γ(t)[6W ′′ + 2W ′′′x] + δ̈(t) + δ(t)[2W ′′′] = 0.

To find all solutions W , we would need to study
this functional equation in detail. However, many so-
lutions are obvious. Indeed, if we choose

α(t) ≡ α0, β(t) ≡ β0, γ(t) ≡ γ0, δ(t) ≡ δ0,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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i.e., constants, then (9) becomes a nonlinear ODE for
the potentialW (x), and every solution yields a poten-
tial with a third-order differential symmetry operator.
Another very important case is obtained by setting

α(t) = α0e
κt, β(t) = β0e

κt, γ(t) = γ0e
κt,

δ(t) = δ0eκt,

where κ is a constant. Then we factor out eκt from (9)
and the result is an ODE for W again. For these
potentials, L(t) becomes a third-order energy raising
operator, increasing the energy from H to H + κ.
Every third-order raising operator is associated with
a third-order lowering operator, so all these cases
permit ladders of bound-state energy levels, subject
to normalization requirements.

3. TWO-DIMENSIONAL SEPARABLE
SYSTEMS FOR THE TIME-INDEPENDENT
SCHRÖDINGER EQUATION (∆2 + V )Ψ = EΨ

If {x, y} is an orthogonal separable coordinate
system in a general Riemannian space, the corre-
sponding Schrödinger operator has the form [9]

H = L1 =
1

f1(x) + f2(y)
(∂2
x + ∂

2
y + v1(x) + v2(y))

and, due to the separability, there is the second-order
symmetry operator

L2 =
f2(y)

f1(x) + f2(y)
(
∂2
x + v1(x)

)
− f1(x)
f1(x) + f2(y)

(
∂2
y + v2(y)

)
,

i.e., [L2,H] = 0, and the operator identities

f1(x)H + L2 = ∂2
x + v1(x), (10)

f2(y)H − L2 = ∂2
y + v2(y).

We look for a partial differential operator L̃(H,L2,
x, y) that satisfies

[H, L̃] = 0. (11)

We require that the symmetry operator take the stan-
dard form

L̃ =
∑
j,k

(Aj,k(x, y)∂xy +Bj,k(x, y)∂x (12)

+ Cj,k(x, y)∂y +Dj,k(x, y))HjLk2.

(Again, only for convenience do we expand about
(H0, L0) = (0, 0). We only require analyticity about
some point (H0, L0).) Note that, if the formal oper-
ators (12) contained partial derivatives in x and y of
orders≥2, we could use the identities (10) recursively
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 200
and rearrange terms to achieve the unique standard
form (12).
Using operator identities

[∂x,H] = − f ′1
f1 + f2

H +
v′1

f1 + f2
,

[∂y,H] = − f ′2
f1 + f2

H +
v′2

f1 + f2
,

[∂x, L2] = − f ′1f2
f1 + f2

H +
f2v

′
1

f1 + f2
,

[∂y, L2] =
f1f

′
2

f1 + f2
H − f1v

′
2

f1 + f2
we see that

(f1(x) + f2(y))[H,A(x, y)∂xy +B(x, y)∂x
+ C(x, y)∂y +D(x, y)] = (Axx +Ayy + 2By
+ 2Cx)∂xy + (Bxx +Byy − 2Ayv2 + 2Dx

−Av′2)∂x + (2Ayf2 +Af ′2)∂xH − 2Ay∂xL2

+ (Cxx + Cyy − 2Axv1 + 2Dy −Av′1)∂y
+ (2Axf1 +Af ′1)∂yH + 2Ax∂yL2 + (Dxx +Dyy

− 2Bxv1 − 2Cyv2 −Bv′1 − Cv′2) + (2Bxf1
+ 2Cyf2 +Bf ′1 + Cf

′
2)H + (2Bx − 2Cy)L2.

The symmetry condition (11) is equivalent to the
system of equations

∂xxAj,k + ∂yyAj,k + 2∂yBj,k + 2∂xCj,k = 0, (13)

∂xxBj,k + ∂yyBj,k − 2∂yAj,kv2 + 2∂xDj,k (14)

−Aj,kv′2 + (2∂yAj−1,kf2 +Aj−1,kf
′
2)

− 2∂yAj,k−1 = 0,

∂xxCj,k + ∂yyCj,k − 2∂xAj,kv1 + 2∂yDj,k (15)

−Aj,kv′1 + (2∂xAj−1,kf1 +Aj−1,kf
′
1)

+ 2∂xAj,k−1 = 0,

∂xxDj,k + ∂yyDj,k − 2∂xBj,kv1 (16)

− 2∂yCj,kv2 −Bj,kv′1 − Cj,kv′2 + (2∂xBj−1,kf1

+ 2∂yCj−1,kf2 +Bj−1,kf
′
1 + Cj−1,kf

′
2)

+ (2∂xBj,k−1 − 2∂yCj,k−1) = 0.

Note that condition (12) makes sense, at least for-
mally, for infinite-order differential equations. Indeed,
one can consider H and L2 as parameters in these
equations. Then, once L̃ is expanded as a power series
in these parameters, the terms are reordered so that
the powers of the parameters are on the right, before
they are replaced by explicit differential operators.
Alternatively, one can consider the operator L̃ as act-
ing on a simultaneous eigenbasis of the commuting
5
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operatorsH and L2, in which case the parameters are
the eigenvalues.
In this view, we can write

L̃(H,L2, x, y) = A(x, y,H,L2)∂xy (17)

+B(x, y,H,L2)∂x + C(x, y,H,L2)∂y
+D(x, y,H,L2)

and consider L̃ as an at most second-order order
differential operator in x, y that is analytic in the pa-
rameters H,L2. Then the above system of equations
can be written in the more compact form

Axx +Ayy + 2By + 2Cx = 0, (18)

Bxx +Byy − 2Ayv2 + 2Dx −Av′2 (19)

+ (2Ayf2 +Af ′2)H − 2AyL2 = 0,

Cxx + Cyy − 2Axv1 + 2Dy −Av′1 (20)

+ (2Axf1 +Af ′1)H + 2AxL2 = 0,

Dxx +Dyy − 2Bxv1 − 2Cyv2 −Bv′1 (21)

− Cv′2 + (2Bxf1 + 2Cyf2 +Bf ′1 + Cf
′
2)H

+ (2Bx − 2Cy)L2 = 0.

and this system has many solutions.
We start with a very special case

A ≡ 0, B = X(x,H,L2), (22)

C = Y (y,H,L2),

D = X̃(x,H,L2) + Ỹ (y,H,L2).

Then the above PDEs uncouple into ODEs forX and
Y , whose structure we can easily analyze. We write

L̃ =M(H,L2, x, ∂x) +N(H,L2, y, ∂y),

where
M(H,L2, x, ∂x) (23)

=
∑
j,k

(
Xj,k(x)∂x + X̃j,k(x)

)
HjLk2 ,

with a similar equation for N . We immediate obtain
the system of equations

X ′′
j,k + 2X̃ ′

j,k = 0, (24)

X̃ ′′
j,k − v′1Xj,k − 2v1X ′

j,k + 2f1X ′
j−1,k

+ f ′1Xj−1,k + 2X ′
j,k−1 = αj,k

with a similar system for Yj,k.
Equations (24) can be written in themore compact

form
X ′′′ + 4(v1 − f1H − L2)X ′ (25)

+ 2(v′1 − f ′1H)X = −2P (H,L2), X̃ = −1
2
X ′,
PH
where the arbitrary function P (H,L2) (a separation
parameter that we frequently choose to be a polyno-
mial) is common to the equations forX and for Y . The
first of Eqs. (25) always has solutions for any f1, v1,
say continuously differentiable. Thus, we can always
constructM and it will be analytic in the parameters
H ,L2. (Of course, a basic question is for what choices
of f1, v1, P do solutionsX exist that are polynomials
in the parametersH , L2?)
Similarly, the equation for Y (H,L2, y) is

Y ′′′ + 4(v2 − f2H + L2)Y ′ (26)

+ 2(v′2 − f ′2H)Y = 2P (H,L2), Ỹ = −1
2
Y ′.

Once we have obtainedM andN , then we see that
the operator L3 =M +N commutes withH :

[H,L3] =
1

f1 + f2
P (H,L2)−

1
f1 + f2

P (H,L2) = 0.

Thus, we can view L3 as an infinite-order differential
symmetry operator forH . (In special cases this will be
a finite-order operator.)

Theorem. For any v1, v2, f1, f2, all solutions
to Eqs. (25), (26) determine a separated symmetry
operator of the form L3 =M(x) +N(y) = (X∂x +
X̃) + (Y ∂y + Ỹ ).
A straightforward computation yields

[L2,M ] =
f2

f1 + f2
P (H,L2),

[L2, N ] =
f1

f1 + f2
P (H,L2),

so [L2, L3] = P (H,L2) 
= 0. Thus, L3 is not a func-
tion ofH and L2.
An exactly analogous construction using the

commutators

[H, M̃ ] =
f1

f1 + f2
P (H,L2),

[H, Ñ ] =
f2

f1 + f2
P (H,L2)

yields the operator L4 = M̃ + Ñ , not a symmetry,
such that H = L1, L2, L3, L4 satisfy the commuta-
tion relations

[L1, L2] = [L1, L3] = [L2, L4] = [L3, L4] = 0,

[L1, L4] = [L2, L3] = P.

If we choose P (H,L2) = I, the identity operator,
these are just the canonical commutation relations.

Example. Let us consider the quantum Hamilto-
nian

H = ∂2
x + ∂

2
y + x.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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It is known to be associated with several symmetries,
such as

�0 = ∂y, �1 = {∂y, x∂y − y∂x}+ − 1
2
y2,

�2 = ∂x∂y +
1
2
y,

where {A,B}+ = (AB +BA) is the anticommutator
of two operators. The occurrence of �0 is obvious, be-
cause y is an ignorable variable for the Hamiltonian.
How can we obtain �1 and �2, which are associated
with the separation of the Schrödinger equation in
parabolic and shifted parabolic coordinates, from our
Cartesian coordinate construction? The obvious sep-
aration in Cartesian coordinates yields the additional
second-order symmetry

L2 =
1
2
(∂2
x − ∂2

y + x).

Let us now consider the defining equations for a sym-
metry in the following form:

X ′′′ + 4
(
x− 1

2
H − L2

)
X ′ + 2X =

(
1
2
H − L2

)
,

Y ′′′ − 4
(
1
2
H − L2

)
Y ′ = −

(
1
2
H − L2

)
.

These equations have the solutions

X =
1
2

(
1
2
H − L2

)
, Y =

y

4
− 1

8
.

The corresponding symmetry is thus finite and given
by

L3 =
1
2

(
∂2
y∂x +

1
2
y∂y

)
− 1

4
∂2
y

= {�2, ∂y}+ − 1
4
∂2
y −

1
2
.

We see that our construction yields reasonably easily
the existence of �2 and thereby �1. Note also that
[∂y, �1] = 2�2.

4. THE GENERAL CASE IN TWO
DIMENSIONS

Up to now we have only considered the special
case A = 0, B = X(x), C = Y (y), D = X̃(x) +
Ỹ (y) of conditions (18)–(21). Let us now consider
the case such thatA ≡ 0, but otherwise,B,C, andD
are arbitrary. Then there is a function G(x, y,H,L2)
such that B = −∂xG, C = ∂yG, and the determining
conditions simplify to

(i) Gxxxy +Gxyyy = 0,

(ii)
1
2
Gxxxx + 2Gxxv1 +Gxv′1
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− (2Gxxf1 +Gxf ′1)H − 2GxxL2 =
1
2
Gyyyy

+ 2Gyyv2 +Gyv′2 − (2Gyyf2 +Gyf ′2)H + 2GyyL2.

The first determining equation means that

G(x, y) = K(x, y) + F (x) + J(y),

where F and J are arbitrary and K is harmonic:
Kxx +Kyy = 0. This representation is unique in K,
F , J , up to the addition of the harmonic separable
function K̃(x, y) = a

2 (x
2 − y2) + bx+ cy + d. Alter-

natively, we can write

G(x, y) = z1(x+ iy) + z2(x− iy) + F (x) + J(y),
where z1 and z2 are arbitrary analytic functions. Then
only condition (ii) remains to be satisfied. Specific
examples are readily apparent.

Example. If we make the ansatz G = X(x,H ,
L2)Y (y,H,L2), then, in addition to the well-known
angular momentum invariant given earlier, we find the
following polynomial invariants:

X =
(
1
4
+ L2

)
cos x+ s(1 + βH), (27)

Y =
(
1
4
+ L2

)
cosh y + t(1 + ξH),

v1(x) = 2s
sinx
cos2 x

+
a1

cos2 x
,

f1(x) = −2sβ
sinx
cos2 x

+
a2

cos2 x
,

v2(y) = 2t
sinh y
cosh2 y

+
b1

cosh2 y
,

f2(y) = −2tξ
sinh y
cosh2 y

+
b2

cosh2 y
,

D = −1
2

(
1
4
+ L2

)
(t cos x(1 + ξH) (28)

+ s cosh y(1 + βH)),

L̃ = −2x(y2 + 4L2)∂x + 2y(x2 − 4L2)∂y + x2 − y2,

v1(x) =
1
8
x2 +

a1

x2
, f1(x) =

a2

x2
,

v2(y) =
1
8
y2 +

b1
y2
, f2(y) =

b2
y2
.

Example. Again, we consider the special case of
conditions (18)–(21) such thatA ≡ 0, where now we
require

G(x, y) = −2 log(X(x) + Y (y)) + F(x) + J (y)
= K(x, y) + F (x) + J(y),
05
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where F and J are arbitrary andK is harmonic. Then
the harmonic requirement onK implies that

K = −2 log(X + Y ) + F̃ (x) + J̃(y),

where

(X ′)2 =
α

12
X4 +

β

3
X3 + γX2 + 2δX + φ,

(Y ′)2 = − α
12
Y 4 +

β

3
Y 3 − γY 2 + 2δY − φ,

X ′′ =
α

6
X3 +

β

2
X2 + γX + δ,

Y ′′ = −α
6
Y 3 +

β

2
Y 2 − γY + δ.

Further,

F̃ (x) =
1
3
X ′′′

X ′ , J̃(y) =
1
3
Y ′′′

Y ′ ,

and the metric and potential terms have the solution

v1 − f1H =
− a

12X
4 − b

3X
3 + b1

2 X
2 + η1X + η2

24(X ′)2
,

v2 − f2H =
a
12Y

4 − b
3Y

3 − b1
2 Y

2 + η1Y − η2
24(Y ′)2

.

Here, α, β, γ, δ, φ and

a = a(1) + a(2)H, b = b(1) + b(2)H,

b1 = b(1)1 + b(2)1 H,

η1 = η(1)
1 + η(2)

1 H, η2 = η(1)
2 + η(2)

2 H

are parameters.
The remaining condition is

1
2
F ′′′′ + 2F ′′(v1 − f1H − L2) + F ′(v1 − f ′1H)

− 1
2
J ′′′′ − 2J ′′(v2 − f2H − L2)− J ′(v′2 − f ′2H)

=
1
36

(a
2
X2 + bX − a

2
Y 2 + bY

)
+

2
3

(
X ′′′

X ′ (v1 − f1H)− Y ′′′

Y ′ (v2 − f2H)
)

+ F̃ ′(v′1 − f ′1H)− J̃ ′(v′2 − f ′2H).

The simplest family of solutions is obtained by setting
F ≡ F̃ , J ≡ J̃ , and α = β = a = b = 0.
Now we consider the general case of

conditions (18)–(21). Then there are two functions
F (x, y,H,L2) and G(x, y,H,L2) such that

A = ∂xyF, B = −1
2
∂xyyF − ∂xG,
PH
C = −1
2
∂xxyF + ∂yG,

and the determining conditions simplify to

(i) 2Gxyyy +
1
2
Fxyyyyy

+ 2Fxyyy(v2 − f2H + L2) + 3Fxyy(v′2 − f2H)

+ Fxy(v′′2 − f ′′2H) = −2Gxxxy +
1
2
Fxxxxxy

+ 2Fxxxy(v1 − f1H − L2)

+ 3Fxxy(v′1 − f ′1H) + Fxy(v′′1 − f ′′1H),

(ii)
1
2
Fxxxxyy + 2Fxxyy(v1 − f1H)

+ Fxxy(v′2 − f ′2H) +
1
2
Gxxxx

+ 2Gxx(v1 − f1H − L2) +Gx(v′1 − f ′1H)

= −1
2
Fxxyyyy − 2Fxxyy(v2 − f2H)

− Fxyy(v′1 − f ′1H) +
1
2
Gyyyy

+ 2Gyy(v2 − f2H + L2) +Gy(v′2 − f ′2H).

Theorem. For any v1, v2, f1, f2, there
are always solutions for the above equations
in which A 
≡ 0, G ≡ 0, and F factors as F =
X (x,H,L2)Y(y,H,L2), where X ′Y ′ 
= 0.
Indeed, with X = X ′, Y = Y ′, we have a solution

to Eqs. (18)–(21) whenever X ′Y ′ 
= 0 and X and Y
satisfy the ordinary differential equations

X ′′′ + 4X ′(v1 − f1H − L2) (29)

+ 2X(v′1 − f ′1H) = 0,

Y ′′′ + 4Y ′(v2 − f2H + L2) (30)

+ 2Y (v′2 − f ′2H) = 0.

5. FINAL REMARKS

The underlying structure of the solutions to the
general equations (18)–(21) is fairly simple. Let
u1(x,L2) = u1[L2], u2(x,L2) = u2[L2] be a basis of
solutions of the separated equation(

d2

dx2
+ v1(x)− f1(x)H − L2

)
u = 0, (31)

and let w1(y, L2), w2(y, L2) be a basis of solutions of
the separated equation(

d2

dy2
+ v2(y)− f2(y)H − L2

)
w = 0. (32)

Then, for any parameter L̂2, the operator

S(L̂2) = w2[L̂2]u2[L̂2](w1[L2]u1[L2]∂xy
YSICS OF ATOMIC NUCLEI Vol. 68 No. 10 2005
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− w′
1[L2]u1[L2]∂x − w1[L2]u′1[L2]∂y + w′

1[L2]u′1[L2]

is a symmetry operator of L1 that maps any eigen-
space of L2 into another (generally different) eigen-
space. The point is that the Wronskian of any two
solutions to (31) or to (32) is constant. It is not
hard to characterize the space spanned by all linear
combinations of functions w2[L̂2]u2[L̂2]w1[L2]u1[L2]
and this gives the equations for A. Similarly, we can
characterize B, C, and D. The details can be compli-
cated, but the principle is simple.
All of these methods in this paper extend to n

dimensions. If any of the equations
n∑

i,j=1

gijp1pj + V (x) = E, n ≥ 2,

(∆n + V (x))Ψ(x) = EΨ(x), n ≥ 2,
(∆n + V (x))Ψ(x) = ∂tΨ(x), n ≥ 1,

(∆n + V (x))Ψ(x) = 0, n ≥ 3

on a pseudo-Riemannian manifold admits an orthog-
onal (in the space variables) separable orR-separable
coordinate system, then we can develop a similar
calculus to describe all differential symmetries and
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 10 20
conformal symmetries of the system, even those of
infinite order. In the lowest dimensional cases, we
have verified the same statements for nonorthogonal
separable systems. We will provide all these details in
forthcoming papers.
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