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Abstract—For a certain class of triangles (with angles proportional to 7/N, N > 3) we formulate the
image method by making use of the group G generated by reflections with respect to three lines which
form the triangle under consideration. A regularized Green’s function (which is employed in Casimir energy
calculations)is obtained by classification of subgroups of Gy and corresponding fixed points in the triangle.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

We would like to present a part of the program
which is aimed at the calculation of Casimir energies
for new nontrivial geometries [1, 2]. For most of the
cases, one needs the Green'’s functions for the given
boundaries. If the geometry permits, it is convenient
to employ the method of images in the construction
of the Green’s function. The well-known example is
the original parallel plate geometry [3]. Thinking that
the extension of the image method to other geome-
tries would be of obvious convenience, we present a
calculation for a class of triangular geometries.

We first study the group generated by the reflec-
tions from the boundaries of the triangle and then
construct the Dirichlet Green’s function for the mass-
less scalar field. The next important thing to do is the
regularization of the Green’s function, which is nec-
essary for the renormalization of the vacuum energy.
The nice observation we have is that the terms to be
subtracted from the Green’s function can be classified
as the terms belonging to the stability subgroups.

2. GROUP OF REFLECTIONS
IN A CLASS OF TRIANGLES

For N =3,4,5,... and k=1,2,... N — 2, con-
sider the triangles ALY in the z'z? plane formed by
the lines

Ly = {x € R?: 2% =0}, (1)
Ly = {x € R?: 2> = z' tan v}, (2)
Ly={x€ R?: 2% = (b—z)tan(kv)}, (3)
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where b is the length of the side lying on the line L,
and v = 7 /N is the angle between L; and L.

The actions of the reflections @; with respect to
the lines L;, j = 1,2, 3, on the vector

x= " (4)
2
are given by
le = PX, QQX = I'pX, (5)
Qsx = prix + xq,
where
. cos2v —sin2v ’ 6)
sin2v  cos2v
10
p= . xo=(1-pr"
0 —1 0

Denote by Gy the group generated by these reflec-
tions. G is one free group with relations. Relations
between the elements @1, )2, and Q3 can be obtained
from (5) and from the properties of the rotation r and
reflection p operators:

TN = ]-7 p2 = 17 pr = TN?lP? (7)

TkXO = —DpPXp.

Some of the obvious relations are
Qi =1, ()N =1, (8)
from which we conclude that the reflections @)1 and
Q2 generate the finite subgroup

Dy ={r®,prf,s=0,1,...,N — 1} (9)

1063-7788/05/6810-1621$26.00 © 2005 Pleiades Publishing, Inc.



1622

which is the dihedral group of dimension 2N. Con-
sider the linear space Vi which consists of the vectors

N-1
§= Z NsXs, (10)
s=0
where n4 are integers and
X5 = r°Xg. (11)
The equalities
T'Xs = X541, PXs = XN—s+k (12)

imply that Dy is the automorphism group of the
linear space V. The action of Dy is given in the
natural way:

m(q)§ = q¢; (13)
Since Vv is a vector space over integer numbers, un-
like the spaces over real numbers, the dimension |Vy|
is not necessarily equal to the dimension of the vectors
xs. It may be larger—that is, in our case, it may be
greater than two. For example, the dimensions of Vj
and Vg are four, while the dimensions of V3, Vg, and
V4 are two. (For a detailed discussion of this problem,
see [2].)

The group Gy is the subgroup of the semidirect
product group Dy * V. In fact, for any element g €
Gy, one can find the pair of elements ¢ € Dy and
£ eVyas

q € Dpy.

gx=qx+§=(q,§)x; xeR.  (14)
In particular,
Ql = (pu 0)7 QQ = (Tpa 0)7 QS = (prku)(O)'
(15)

G contains two subgroups: Dy and the one gen-
erated by Q3. Since Vi does not contain invariant
subspaces with respect to (13), we conclude that
there is no subgroup in the semidirect product group
which contains Dy and the group generated by Q3
simultaneously.

3. CONSTRUCTION OF THE GREEN’S
FUNCTION IN THE TRIANGLES WITHOUT
OBTUSE ANGLES

Consider the representation of the group Gy in the
space of functions on the four-dimensional Minkows-
ki space

T(g9)f(z) = f(gz). (16)

Here, the action of the group Gy is given by the
substitutionx — z, £ — &, p — P,r — R, where

100 100
R=[(oro0]|-P=|l0poO (17)
001 001
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are 4 x 4 matrices, and

0 x9
E=|¢l, z=]x (18)
0 a3

are four-dimensional column vectors.
Using (15), one can verify that the operator

N—-1
0=> > (T((R,§))-T((PR*E)) (19)

neZ s=0
satisfies the following property:
T(Q;)0 = —O.

In(19), n = (ng, n1,..

(20)

-y My |—1) is multi-index and

[Vn|-1
£= Z 4T, (21)
t=0
where
20
zs = | x, (22)
23

and x4 are the base vectors described in the previous
section.

[t is obvious, that if we define a function O f(x),
it must vanish on the lines L; of reflections @;, a
fact that we make use of in the construction of the
Green’s function inside the triangle AY, satisfying
the Dirichlet boundary conditions. Since the operator
O commutes with the Klein—Gordon operator (which
is invariant under translations, rotations and reflec-

tions), the function
K(z,2') = OG(x,2") (23)

N—-1
=3 S (@R +¢,2) — GPRx +£,2'))

neZ s=0
satisfies the equation
2
oxHorxY
for any @, 2’ € M? x AY, M? = {(xo,x3)}; i.e., the

two-dimensional Minkowski space, and the boundary
condition

nt K(z,2') = Od(x — ') (24)

K(xvx,)‘xeMQXBA]k\’ =0, (25)

where AN is the boundary of the triangle AY. G is
the Green’s function in the Minkowski space with the
metric n = diag(1, —1, -1, —1):

1 1
/
Gl w) = —ran e

(26)
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REGULARIZED GREEN’S FUNCTION

The function K(x,2’) is the Green’s function if the
right-hand side of (24) is a delta function

O(z — ') = §(x — 2') (27)

for any x,2’ € M? x AY. The above condition im-
plies that for any (q,€&) # (1,0) and for any x,x’ €
AN

Sgx+&-X)=0 (28)

must be satisfied. In other words, any points inside the
triangle should be representative of different orbits of
the coset space R? /G y. The orbits of the coset space
R%/Dy are

x] = {r’x,pr’x: s=0,...,N

-1}

[t is clear that we can identify this coset space with
region X between two lines Ly and Lo including the
boundaries. For any orbit in R?/Dy, there exists a
unique representative in X. Since the group Gy is
generated by the elements of Dy and @3, the problem
of constructing the coset space R%/Gy reduces to
finding the subspaces Y of X such that the reflection
Q@3 maps Y into X. Consider the area between three
lines Lj, which is the triangle under consideration.
The previous condition implies that the two angles kv
and sv of the triangle between the lines Ly, Ls and Lo,
L3 must be less than or equal to 7 /2. The restrictions

(29)

kv < g SUEW—(k—Fl)Ugg (30)
with solutions
N
—, foreven N,
k=1 2 (31)

%, forodd NV

imply that, for triangles without an obtuse angle, the
function K (x, ') in (23) is indeed the Green’s func-
tion. Note that Egs. (30) have also been solved with
k= (N —2)/2 for even N. In this case, s = N/2.
For k = N/2, we have s = (N — 2)/2. Therefore, this
solution is congruent to the previous one; that is,
A%/Q goes to Agv—2)/2 when the length b goes to

bcosw.

4. REGULARIZATION OF THE GREEN’S
FUNCTION

In polygonal regions, there are three types of sin-
gular terms that have to be subtracted to obtain the
regularized Green’s function: free space term and sur-
face and vertex terms.

Inspecting (23) we observe that the term

T(9)G(x,2") = G(gz,x") (32)
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leads singularity whenever gx = x; that is, the singu-
larities arise at the elements of the group G which
leave the points fixed. The regularization problem is
then reduced to the classification of the points of the
region and their stability subgroups:

(i) The identity element (which is the trivial
subgroup) leaves all points fixed. The term
T((1,0))G(x,2") in (23) therefore gives the volume
singularity and is the free Green’s function.

(ii) The points on the line L; are leit fixed by the
reflection @;. The group generated by Q; is then the
stability subgroup for the line L;. Since the identity
element of the two-dimensional reflection group is
already employed in the volume regularization, the
surface singularity terms in (23) are

3

Kg(z,2') =Y T(Q))G(x,').

j=1

(33)

(iii) To discuss the vertex singularities, let us first
consider the vertex at the intersection point of the
lines Ly and Ly. The N-dimensional subgroup gen-
erated by the element Q1Q) is the stability subgroup
of this vertex. The divergence term at the vertex we
consider is

N-1
Kpyp,(z,2') =) T(@Q1Q2))G(z,2').  (34)
7j=1

The element Q1 Q3 generates the stability subgroup of
the vertex at the intersection point of the lines L1 and
L3. Due to restriction (31) and Q1Q3 = (r*, —rFxy),
we conclude that the dimension of this group is two
foreven N and N for odd V. Therefore, we have

ZT QIQ?) ) (xvx/)v (35)

KL1L3 xZ, .CI?

where L is the dimension of the stability group, that
is, L=2if Nisevenand L = N if N is odd.

Finally, let us consider the third vertex which is the
intersection point of the lines Ly and Ls. The stability
group of this point is generated by the element Q2Q)3.
One can verify that the dimension of this group is

N, foreven N/2,
N/2, forodd N/2,
N, forodd N

D= (36)

and the corresponding singular line terms are
—1

Kr,r(z,2)) Z T(( Q2Q3 VG (z,2").  (37)
7j=1
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Collecting all the above terms, we arrive at

N-1
Kp(z,2') =) (T(Q1Q2)) (38)
j=1
+T((Q1Q3)) + T((Q2Q3)”))G(z, ')
for odd N;
Kp(z,2') = <T(Q1Q3) (39)
N-1 ‘ ‘
+ > (T((@1Q2)) + T((QQQS)]))> G(z, ")
j=1
for even N/2; and
Kp(x,2') = <T(Q1Q3) (40)
N-1 N/2—1
+ Y T(@1Q2)) + Y T((QQQS)j)> G(z,2)
=1 j=1

for odd N/2. Subtracting all divergences from (23),
we obtain the regularized Green’s function

K. (z,2') = K(z,2') — G(z,2)
— Kg(x,2") — Kp(z,2).

At this point, we would like to emphasize that, if
the method of images is applicable to a geometry,

(41)
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the stability group classification is a quite reliable
approach to the regularization.

5. CONCLUSION

The regularized Green’s function obtained in the
previous section is employed in the well-known coin-
cidence limit formula in deriving the Casimir energy
for the massless scalar field [2].

We hope that the technique we presented can be
generalized to other polygonal regions, and then even
to smooth boundaries in some suitable limits.
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Abstract—A simple model extending Lie algebraic techniques is applied to the analysis of thermodynamic
vibrational properties of diatomic molecules. Local anharmonic effects are described by means of a Morse-
like potential and the corresponding anharmonic bosons are associated with the SU(2) algebra. The total
number of anharmonic bosons, fixed by the potential shape, is determined for a large number of diatomic
molecules. A vibrational high-temperature partition function and the related thermodynamic functions are
derived and studied in terms of the parameters of the model. The idea of a critical temperature is introduced
in relation to the specific heat. A physical interpretation in terms of a quantum deformation associated with
the model is given. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The algebraic approach has been used success-
fully in molecular physics and has led to new insights
into the nature of complex many-body systems [1—
3]. In the framework of the algebraic method, the
Hamiltonian of a given system is written as an alge-
braic operator using the generators of the appropriate
Lie algebra. All other operations in the model are
algebraic operators, unlike the differential operators
in the standard wave mechanics. The technical ad-
vantage of the algebraic approach is the comparative
ease of the algebraic operations. Equally important,
however, is the conclusion derived from compari-
son with experiment that there are generic forms of
symmetry-adapted algebraic Hamiltonians and that
entire classes of molecules can be described by these
Hamiltonians, where the parameters vary in a sys-
tematic fashion for different molecules. In its initial
stage of development [4—13], the algebraic approach
sought to show why and how it provides a frame-
work for the understanding of large-amplitude anhar-
monic motion. The anharmonicities are introduced by
means of dynamical groups that correspond to anhar-
monic potentials constraining the total number of lev-
els to a finite value. Later on, the SU(2) models [14—
20] combined Lie algebraic techniques, describing
the interatomic interactions, with discrete symmetry
techniques associated with the local symmetry of the
molecules. Recently, a clear-cut connection could be

*The text was submitted by the authors in English.
DSchool of Informatics, Northumbria University, Newcastle
upon Tyne, UK; e-mail: maia.angelova®@unn.ac.uk

2)Instituto de Ciencias Nucleares and Centro de Ciencias
Fisicas, UNAM, Mexico City, Mexico.

established between the Morse—SU (2) approach and
the traditional potential energy surface methods [11—
13].

The algebraic anharmonic model has been de-
veloped to analyze molecular vibrational spectra [2—
20]. It provides a systematic procedure for studying
vibrational excitations in a simple form by describing
the stretching and bending modes in a unified scheme
based on SU(2) algebras, which incorporate the an-
harmonicity at the local level.

The deformation of the harmonic oscillator alge-
bra, associated with the Morse potential, has been
derived using a quantum analog for the anharmonic
oscillator [21]. We have described the anharmonic
vibrations as anharmonic ¢ bosons using a first-order
expansion of the quantum deformation. We have thus
proposed a physical interpretation of quantum defor-
mation in the framework of the algebraic model.

The aim of this paper is to apply the algebraic
approach to the vibrational high-temperature ther-
modynamics of diatomic molecules and to obtain the
basic thermodynamic functions in terms of the pa-
rameters of the algebraic model. This paper can be
considered as a first step in the direction of incorpo-
rating anharmonicity and the finite number of bound
vibrational states into the thermodynamic descrip-
tion of molecular systems. The rest of the paper is
organized as follows. In Section 2, we review the
theory of an algebraic anharmonic model based on the
Morse potential and calculate the maximal number
of bosons per electronic state for a large number of
diatomic molecules. In Section 3, we derive a Morse-
like vibrational partition function for high temperature
and study its properties. In Section 4, the vibrational
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partition function is used to derive the basic thermo-
dynamic functions, such as the mean vibrational en-
ergy, specific heat, and free energy. The idea of critical
temperature is introduced in relation to the specific
heat. In Section 5, the mean number of anharmonic
bosons is obtained. The concept of maximal temper-
ature of the anharmonic vibrations is discussed. The
g-bosonic deformation of first order is considered. It
is shown that this quantum deformation is related to
the shape of the anharmonic potential well and the
fixed number of anharmonic bosons. The results are
applied to the ground electronic state of the diatomic
molecule 'H33Cl. These results must be combined
with the translational and rotational thermodynamic
functions in order to compare with experiment, as
discussed in [22].

2. ALGEBRAIC MORSE HAMILTONIAN

The algebraic model [1, 2] exploits the isomor-
phism between the SU(2) algebra and the one-
dimensional Morse oscillator:

Ho 2L p = ey 1

3, T D=L

where D is the depth of the potential well, d is its

width, x is the displacement from the equilibrium,

and y is the reduced mass of the oscillator. The one-

dimensional Morse Hamiltonian can be written in
terms of the generators of SU(2):

A 72 72 _A 77 77 \
- (N —4JZ) = S0 do 4 Ty - N(),Q)

where A is a constant dependent on the parameters of
the Morse potential. An essential difference between
the Morse potential and the harmonic potential is
that the eigenstates in the Morse potential well are
bound and the total number of bosons, N, is fixed by
the potential shape. The eigenstates |[N],v) corre-
spond tothe U(2) D SU(2) symmetry-adapted basis,
where v is the number of quanta in the oscillator, v =
1,2,...,[N/2]. The maximal number of quanta per
oscillator is Ny = [IN/2], where [N/2] is the largest
integer less than or equal to (N/2).
The anharmonic effects can be described by an-
harmonic boson operators [2],
bt g N
VN VN 2
where ¥ is the Morse phonon operator with an eigen-
value v. The operators satisfy the commutation rela-

tions
pqza[a4:4t[mqﬁf%.
(4)

Hm =

)
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The harmonic limit is obtained when N — oo, in
which case [13, IBT} — 1, giving the usual boson com-

mutation relations.
The Morse Hamiltonian can be written in terms of
the operators b and b':

Lot ain
HM~§<bb +bb), (5)
which corresponds to vibrational energies
1 02
Ev—muo(v+§—ﬁ>, (6)
=1,2 N
V=1,4,..., B N

where wy is the harmonic oscillator frequency.

The spectrum of the Morse potential leads to a
deformation of the harmonic oscillator algebra. A
more detailed relationship between the Morse co-
ordinates and momenta and the SU(2) generators
can be derived through a comparison of their matrix
elements [11] and through the derivation of raising
and lowering operators for the Morse potential [12].
Note that, for an infinite potential depth, N — oo,
the Morse potential cannot be distinguished from the
harmonic potential.

The value of N depends on the depth D and the
width d of the Morse potential well [1, 2, 14]:

8uDd?\
N_(L% > 1 (7)

By comparing the eigenvalues (6) with the phe-
nomenological Dunham expansion for the vibrational
energy cut to the quadratic term, relations between
the parameters A and N and the usual harmonic
constant, w,, and anharmonic constant, x.w., used
in spectroscopy [22] are obtained [4, 5]:

2D 1/2
We = A(N + ].) = h <W> , (8)
hQ
LTeWe — A= MTD (9)

Thus, the total number of bosons N in the algebraic
anharmonic model is obtained in terms of the experi-
mental anharmonic constants:

1
N=——1,

Le

(10)

where z, = wex,/we. This result is equivalent to (7).
In the model, N is an integer, and in what follows, its
values are determined by [1/z, — 1].

We have determined the values of N and Ny for
oscillators corresponding to the ground electronic
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ALGEBRAIC APPROACH TO THERMODYNAMIC PROPERTIES 1627
Maximal number of anharmonic bosons for electronic states of diatomic molecules
Molecule State Te = Wele/We N =[1/z. — 1] No =[N/2]
2TAI'H Xzt 1.73217 x 102 56 28
9Be’60O AT 7.3538 x 1073 134 67
Xty 7.95369 x 1073 124 62
209B;35C| X 3.11688 x 1073 319 159
HBL6O A?TI, 8.84985 x 1073 111 55
X2yt 6.24204 x 1073 159 79
Ca®Cl A0 3.17895 x 1073 313 156
12¢160 Xzt 6.17701 x 1073 160 80
1H, d*11, 2.79434 x 1072 34 17
a®yt 2.68873 x 1072 36 18
X'sf 2.68452 x 1072 36 18
TH3H 4311, 2.24267 x 1072 43.0 21
adsf 2.19751 x 1072 44.0 22
X'sf 2.42718 x 1072 40 20
TH35Cl Xzt 1.74095 x 102 56 28
IHYF Xty 2.1764 x 1072 44 22
Hg?H X2y 5.01733 x 10~2 18 9
39K, X'sh 3.82124 x 1073 260 130
KBr Xyt 3.0303 x 1073 329 164
KCI Xzt 3.21429 x 1073 310 155
K127 Xyt 3.30189 x 1073 301 150
7Liy X'sf 7.37558 x 1073 134 67
Lit27] Xyt 3.33333 x 1073 299 149
1Ny X'sr 6.12644 x 1073 162 81
23NaBr Xyt 3.65079 x 1073 272 136
BNal?’] Xyt 2.62238 x 1073 380 190
160, X35, 7.63939 x 1073 129 64
285160 X1yt 4.86864 x 1073 204 102
Sri9F AT 4.4673 x 1073 222 111
X2yt 1.40938 x 102 69 34
Zn'H X2yt 0.0343 28 14

state or excited electronic state of a large number of

diatomic molecules, using the experimental values of

we and x.w, published in [22]. Some of the results for

selected molecules are displayed in the table.

PHYSICS OF ATOMIC NUCLEI

3. VIBRATIONAL PARTITION FUNCTION
The vibrational partition function of a diatomic

anharmonic molecule is

N/2]

[
ZnN = Z 6_’68”,
v=0
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where 3 = 1/(kgT), the vibrational energies ¢, are
given by Eq. (6), IV is the fixed total number of anhar-
monic bosons, and we use the notation Ny = [IN/2]
for the maximal number of quanta per oscillator as
explained in the previous section. Introducing new
parameters, a = fwgy/2 and | = Ny — v, the exact
value of the vibrational partition function can be writ-
ten as
No

Zy =Y e M (), (12)
1=0
When T — oo, @ — 0, the partition function is
Zn(a—0) — Nog+ 1. (13)

At high, but finite, temperatures T', for large Ny and
a < 1, the sum can be replaced by the integral

7N = 1 /%G—Q(Noﬂ)
o
0

where s = y/al/Ny. This integral can be evaluated
exactly in terms of the error function, erfi (vaNp) (as
defined in [23]):

Iy = %,/%eﬂ%“)em (x/aN()) . (15)

Equation (15) represents the high-temperature
value of the vibrational partition function in the
Morse-like spectrum [24—26]. The partition func-
tion is expressed in terms of the parameters of the
algebraic model Ny and «. The dependence on the
temperature is given by a,

huwo )

T okeT 2T (16)
where © = hwy/kg is the usual characteristic vibra-
tional temperature of the molecule. The contributions
of the anharmonic vibrations are essential in the high-
temperature region for 7" > ©, where T'= © corre-
sponds to a = 0.5.

When Ny — oo, the harmonic limit of the model is
obtained:

aNg

2
e’ ds,

(14)

Noe™ @ e @ T _e
~N—— ~ —— — —¢ 2T
2aNy — 1 200 © ’
which coincides with the harmonic vibrational parti-
tion function of a diatomic molecule at high temper-
atures. The expression for the partition function (15)
can be generalized for polyatomic molecules by com-
bining the present results with the use of a local-
mode model where each interatomic potential is of the
Morse form [13].

We take the diatomic molecule 'H3°Cl as an ex-
ample. The total number of anharmonic bosons for

Zoo (17)
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the oscillator corresponding to the ground electronic
state X' T, described with a Morse potential, is N =
56, and the total number of quanta in the oscillator
is Ny = 28. The depth of the Morse potential is D =
5.32 eV, and the width is d = 0.57 x 10712 m. The
characteristic vibrational temperature of the molecule
(as described, for example, in [27]) is © = 4300 K.

Substituting the value of Ny = 28 into Eq. (15),
we can calculate the partition function, Zsg, for the
ground electronic state of the molecule *H33CI as
a function of the parameter o. The graph in Fig. 1
represents the partition function Zsg given by Eq. (15)
for the values of the parameter a between 0 and 1
(solid curve). The essential contributions of anhar-
monic vibrations to the partition function are at high
temperatures 7' > O, which corresponds to o < 0.5.
The exact partition function from Eq. (12) is given
for comparison (dash-dotted curve). It is clear that,
in the region 0 < a < 1, the integral approximation
is in excellent agreement with the exact result and
does not change the value and appearance of the
partition function. The comparison between the func-
tion Zsg (solid curve) and the harmonic limit Z.,
(dashed curve) is given in Fig. 2. The finiteness of
Z56 in the high-T limit is linked, of course, with the
finite number of states in the Morse potential. A more
realistic description in the high-T region requires the
introduction of the continuum states of the Morse
potential.

An algebraic approach has been used in [28] to
study the thermodynamic properties of molecules.
However, the partition function in [28] uses an ap-
proximation of the classical density of states, while
we have derived an explicit function in terms of the
parameters of the algebraic model.

4. THERMODYNAMIC VIBRATIONAL
FUNCTIONS

Having the partition function Zy in terms of the
parameters of the algebraic model, we are now in a
position to derive the corresponding thermodynamic
functions.

4.1. Mean Vibrational Energy

The mean vibrational energy is given by
0 hwgy 0Z N

=—-——InZy = ——5——7—. 18
Un = =95~ = "37, a (18)
Taking into account that
8ZN N Noeia
—=—-(No+1)Z 19
90 5~ No+1) 2y +———, (19
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Fig. 1. Vibrational partition function Zss of *H3°Cl as a function of a. The dash-dotted curve represents the exact

representation.

Z
100

80

[ITIIJIo-==FLCE

60

40

= Y RS S SR B S S S |

04 0.6 0.8 1.0
a

Fig. 2. Vibrational partition function Zse (solid curve)

of *H33Cl and the harmonic limit Zo. (dashed curve) as
functions of a.

we obtain the following expression for the mean vibra-
tional energy in terms of the partition function Z:

huwg 1 Noge™ @
= 20 (L Nyg+ — — . 2
Un == <+ 0+ 5 2aZN> (20)

Substituting Zn (15) gives the following expression
for the mean energy Uy in terms of the parameter a:
T2

1 NO eaNO
X|1+No+——\| ————— | -
( +Not 20 omerfi(\/ozNo)>
The harmonic limit is obtained from Eq. (20), when
Ny — oo and Zy is given by (17):

hew 1\ w
Um~70(1+—>——0+kBT.

Un (21)

- 5 (22)

PHYSICS OF ATOMIC NUCLEI

0.2 0.4 0.6 0.8 1.0

Fig. 3. Mean vibrational energy Usg /fiwo of *H3*Cl as a
function of . The dashed curve represents the harmonic
limit Uoo/ﬁwo.

This is the classical mean energy of a diatomic

molecule at high temperatures. When T — oo,
a— 0,

N()—I—l

UN(Oé—>0)—>th 5

(23)

The graph in Fig. 3 represents the mean vibrational
energy, Usg/hwy, of the ground electronic state of
the molecule TH3?Cl for values of o, 0 < o < 1. The
high-temperature region corresponds to o < 0.5. For
comparison, the graph of the harmonic limit Uy
(dashed curve) for Ny — oo is also given. As already
mentioned in the previous section, the finiteness of
Un in the high-temperature limit is a result of the
finite number of states in the Morse potential.
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Fig. 4. Vibrational specific heat Cs¢/kg (solid curve) of
'H35C] as a function of a. For comparison, Cham/ks
(dash-dotted curve) and Coo/kp (dashed line) are also
given.

25EF

2.0
1.5F

1OF

0.5

Il Il 1
10
aN,

Fig. 5. Vibrational specific heat C/kg as a function of
OéNo.

4.2. Specific Heat

The vibrational part of the specific heat is

oo Uy _ hwy 0Uy
NTUOT T 2kgT? Oa

Substituting Un (20) and using Eq. (19), we obtain

. k‘_B kgNpe™ @ < 1 B N0€a>

2 27y \ 0T 9T 9z

(24)

Cn

(25)

This equation represents the vibrational specific heat
in the algebraic model in terms of the partition func-
tion Zy. Substituting Zyx (15) into Eq. (25), we
obtain the dependence of the specific heat C'y on the

PHYSICS OF ATOMIC NUCLEI

ANGELOVA, FRANK

NO

0.6 0.8 1.0

Fig. 6. Mean number of anharmonic bosons (vse) of
'H35C] as a function of a.. The dashed curve represents
the harmonic limit (veo).

parameter a:

k‘B OéN() eaNO
Cyn=—+k 26
N 2 + kB m erf4 ( aNo) (26)
aNg
X CENO — 1 — OéN() - .
2 m erfq ( aNo)

[t is clear from relation (26) that all anharmonic con-
tributions to the vibrational part of the specific heat
depend on the parameter o and hence on the temper-
ature T. When Ny — oo, the harmonic limit of the
model gives the vibrational specific heat of a diatomic
molecule at high temperatures, Co ~ kg. WhenT' —
00, — 0, Cy(a — 0) — 0.

Figure 4 represents the dependence of the vibra-
tional specific heat, Cs6/kp, on the parameter «, 0 <
a < 1, for the molecule 'H3*Cl (solid curve). The
graph of the harmonic vibrational specific heat of a
diatomic molecule, Ch,m/kg, is also given (dash-
dotted line), as well as the harmonic limit, Cs/kp
(dashed line), where

6201

(=1

The effects of the anharmonicity are strongest for
values of a < 0.5, where o = 0.5 corresponds to the
characteristic vibrational temperature © (© = 4300 K
for TH33Cl).

The graph shows an anomaly in the dependence
of the vibrational specific heat on the parameter «
(temperature T'). The specific heat has a maximum
for a value of a = a¢, which corresponds to tem-
perature T' = T. We shall call this temperature the
critical temperature and the corresponding parameter

Charm = 4ijO‘2 (27)
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ac the critical parameter. The anomaly of the specific
heat is again a result of the finite number of states
in the system. The specific heat increases with the
temperature as more anharmonic bosons are excited.
The maximum is reached when the latter occupy the
energy state with v = Ny = 28. (Note that the shape
of the curve is similar to the shape associated with the
Schottky anomaly of the specific heat of a two-level
system [27].)

The maximal vibrational energy is given by Eq. (6)
by replacing v with its maximal value N,

Emax = Fwo (]\2[0 + ;) (28)
while the minimum energy is
g0 = %hwo. (29)
Thus,
Ae = gmax — €0 = 1hwoNo. (30)

2

This gives Ae = 14hwy = 5.1877 eV for the molecule
'H35Cl. Comparing Ae with the dissociation energy
of the molecule DE = 4.4703 eV [29], we can con-
clude that, at the temperature T' = T, Ae > DE, and
some of the molecules might have started to disso-
ciate, while others may still be in stable molecular
states. Our model, in its present form, does not ac-
count for the effects of the dissociation. The shape of
the specific-heat curve (Fig. 4) suggests the presence
of a second-order phase transition at T, which is
possibly related to the dissociation process. In ad-
dition, this simple version of the model does not yet
include the contributions of the translational and ro-
tational degrees of freedom, which at temperatures
close to T may be substantial. The critical temper-
ature T can be considered as a temperature above
which the model is no longer valid in its current form
and other effects take place, for example, dissociation.

We have studied the behavior of the specific heat
with respect to the combined parameter a/Ny. The
graph of Cn/kp as a function of /Ny shows a similar
anomaly (Fig. 5).

Solving numerically the equation Cx /0(aNy) =
0 with respect to the combined parameter aNp, we
have found a root, oo Ny = 6.133. Thus, the critical
value a¢ decreases as the number of fixed anhar-
monic bosons increases:
6.133
Ny
When Ny — oo, a¢c — 0 and the anomaly of the
specific heat disappears, which is in agreement with
the harmonic limit of the model.

(31)

ac =
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For the ground electronic state X!'XF of the

molecule 'H3*Cl, Ny = 28, which gives a value for
ac = 0.219. Thus, the value of the critical tempera-
ture for this molecule is T = 9815 K.

4.3. Free Energy

The free vibrational energy in terms of the partition
function Z is given by
1
FN = —BIHZN. (32)

Substituting Zn (15) gives the free vibrational energy
in the algebraic model at high temperatures

th «
T |:—1 n2 + _ln <7‘(‘N0>

+(No+1) — Eln (erfi (aNp)) ]

Fy = (33)

When Ny — oo, using expression (17) in Eq. (32),
we obtain the classical harmonic result for the free
vibrational energy at very high temperatures, Fi, ~
k‘BTIHQ.

5. ANHARMONIC BOSONS
5.1. Mean Number of Anharmonic Bosons

The mean vibrational energy in the anharmonic
model can be written in terms of mean number (vy)
of anharmonic quanta, each with energy fuwy:

1
Un = hwy (<1/N> + §> .

Substituting Uy (20), we obtain (vy) in terms of the
partition function Zy:

NO i B Noe™@

2 ' da  daZy
Using expression (15)in Eq. (35), we obtain the high-
temperature value

(34)

(35)

(vn) =

No 1 NO eaNO
= —+-——1/ . 36
() 2 + 4o dracerfsq ( aNo) (36)

The harmonic limit is obtained from Eq. (36) when
Ny — oo and Zy is given by the expression (17),
kgT
<Z/OO> hwo
When T — oo, a — 0, the mean number of anhar-
monic bosons is

(37)

(x)a = 0) = =0
The graph of the function (v36) for the ground elec-
tronic state of the molecule 'H33Cl is given in Fig. 6.
The dashed curve represents the harmonic limit (Vo).
The same reasons apply to the finiteness of (vs6) as
those discussed for the partition function in Section 3.

(38)
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5.2. Maximal Temperature

The maximal vibrational energy (28) is obtained
when v = Ny. The maximal mean vibrational energy
is given by Eq. (34) when vy = (UnN)max:

1
Umax = hwo <<VN>max + §> .
Comparing Eqgs. (28) and (30) gives the maximal
mean number of anharmonic bosons
No
2 b
which, as shown above, is for a value o« — 0. Substi-
tuting (vn) (36) and simplifying gives

2\/a—NOeaN0 =erfq (\/aNO) .
T

The numerical solution of the above equation has a
root alNg — 0. As Ny is a fixed number, this solution
leads to a — 0, giving Tiax — oo. This result shows
that, in practice, the system does not reach a maximal
temperature, which shows the need of incorporating
the continuum into the partition function (11).

(39)

(UN)max = (40)

(41)

5.3. Quantum Anharmonic Bosons

In[21] we have shown that the anharmonic bosons
b,b' in (4) can be obtained as an approximation of
q bosons [30—32]. The ¢ bosons are defined by the
following commutation relations:

7, aT] = aT,

(42)

where the deformation parameter ¢ is in general a
complex number [31]. As shown in [21], the anhar-
monic commutation relations (4) can be recovered
for real values of the deformation ¢ closeto 1, ¢ < 1,
and a linear expansion of ¢ in terms of a parameter p,

p=1/(1-q),

[a7aT] = qﬁ7 [ﬁua] = —a,

=1—-—. (43)
p

If we now substitute the approximation for ¢ (43)

into the commutation relations (42) and identify the

parameter p with N/2, n with 0, and the creation and

annihilation operators a, af with b, b, respectively, we
recover the SU(2) anharmonic relations (4).

The form (4) of the SU(2) commutation rela-
tions can be considered as a deformation of the usual
(harmonic oscillator) commutation relations with a
deformation parameter p = N/2. This gives a possi-
ble physical realization for the quantum deformation
obtained in [21]: the quantum deformation param-
eter p is the fixed number Ny of the anharmonic
bosons in the oscillator. Using the relation between
the fixed number of anharmonic bosons N and the
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characteristics of the Morse potential (7), we arrive
at the conclusion that the quantum deformation is
also determined by the depth, the width, and in gen-
eral the shape of the Morse potential well. For the
ground electronic state of the molecule 'H3Cl, p =
28, which gives g = 27/28.

Now, substituting Ny = p into the expressions for
the partition function (15), mean energy (21), specific
heat (26), free energy (33), and mean number of an-
harmonic bosons (35), we obtain the thermodynamic
properties of diatomic molecules in terms of the defor-
mation parameter p. Equation (31) gives the relation
between the quantum deformation parameter and the
critical parameter a¢ (critical temperature T). For
large values of p (¢ — 1), the classic harmonic case is
restored.

6. CONCLUSIONS

We have used the vibrational energies obtained in
the algebraic Morse model to study the thermody-
namic properties of diatomic molecules. Using the
experimental data in [22], we have calculated the
number of bosons per oscillator (electronic state) for a
large number of diatomic molecules. We have derived
the vibrational partition function, which incorporates
the effects of the anharmonicity and depends on the
algebraic parameters. As the anharmonic effects are
essential at high temperatures, we have obtained a
high-temperature expression for the partition func-
tion, which is used to derive the important ther-
modynamic functions, such as mean vibrational en-
ergy, specific heat, and mean number of anharmonic
bosons in terms of the parameters of the model. We
have analyzed the behavior of the specific heat and
introduced a critical temperature related to the limi-
tations of the model.

We have shown that it is possible to interpret
these results in terms of a quantum deformation re-
lated to the shape of the Morse potential and which
is associated with the fixed total number of anhar-
monic bosons, so that the thermodynamic properties
of diatomic molecules depend on the corresponding
quantum deformation parameter. We believe that this
paper constitutes a first step in the description of ther-
modynamical properties of diatomic molecules, which
in principle can be simply generalized to polyatomic
molecules. We are currently studying the introduction
of the continuum into the description in order to take
into consideration the transition to dissociation.
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Massive Hyper-Kihler Sigma Models and BPS Domain Walls”

M. Arai’, M. Nitta®), and N. Sakai®
Received October 29, 2004

Abstract—With the non-Abelian hyper-Kahler quotient by U (M) and SU(M) gauge groups, we give
the massive hyper-Kéhler sigma models that are not toric in the N” = 1 superfield formalism. The U (M)
quotient gives N1/[M!(N — M)!] (N is the number of flavors) discrete vacua that may allow various types of
domain walls, whereas the SU (M) quotient gives no discrete vacua. We derive a BPS domain-wall solution
in the case of N = 2 and M = 1 in the U(M) quotient model. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

[t is well known that topological solutions are
of importance in various areas of particle physics.
Recently, there was renewed interest in such so-
lutions because of their crucial role in the brane-
world scenario [1, 2]. In this brane-world scenario,
our four-dimensional world is to be realized on topo-
logical objects like domain walls or brane-junctions.
Supersymmetry (SUSY) can be implemented in
these models, and it is actually a powerful device for
constructing their topological solutions. Viewing the
four-dimensional world as a domain wall, we are led
to deal with SUSY theories with eight supercharges
in five dimensions.

SUSY with eight supercharges is very restric-
tive. In theories involving only massless scalar mul-
tiplets (hypermultiplets), nontrivial interactions can
only arise from nonlinearities in the kinetic term, say
nonlinear sigma models (NLSMs). Prior to study-
ing the genuine five-dimensional theories with hy-
permultiplets, it is instructive to start with similar
SUSY theories in four dimensions, i.e., N =2,d = 4
theories. The analysis of the four-dimensional theory
could then be of help in studying the brane-world
scenario based on SUSY theories in higher dimen-
sions [3].

With regard to rigid A'=2 SUSY, the target
manifold of the hypermultiplet d = 4 NLSMs must
be Hyper-Kéhler (HK) [4]. In these theories, the
scalar potential can be obtained only if the hyper-
multiplets acquire masses by the Scherk—Schwarz

*The text was submitted by the authors in English.

Dlnstitute of Physics, AS CR, Praha, Czech Republic; e-mail:
arai@fzu.cz

2)Departmen‘[ of Physics, Purdue University, West Lafayette,
USA, and Tokyo Institute of Technology, Tokyo, Japan;
e-mail: nitta@physics.purdue.edu

Department of Physics, Tokyo Institute of Technology,
Tokyo, Japan; e-mail: nsakai@th.phys.titech.ac. jp

mechanism [5] because of the appearance of central
charges in the AV = 2 Poincaré superalgebra [6]. The
NLSMs with the scalar potential in NV = 2 theories
are called massive HK NLSMs.

A large class of HK manifold is given by toric
HK manifolds that are defined as HK manifolds of
real dimension 4n admitting mutually commuting n
Abelian tri-holomorphic isometries. In the massive
HK NLSMs on toric HK manifolds, many interest-
ing BPS solitons were constructed in the component
formalism [7—10] as well as off-shell formulation[11—
13]. The potential term of the massive T*CPN~!
model which is toric comes from the mass terms of the
hypermultiplets when the NLSM is constructed as
the quotient by the U (1) gauge group[11, 12]. We call
this formulation of massive HK NLSMs “the massive
HK quotient method,” since the massless case is just
an HK quotient found in [14, 15]. One of the advan-
tages of our massive HK quotient is that the off-shell
formulation of the SUSY NLSMs is possible [12].
Off-shell formulation is powerful to extend the models
to those with other isometries and/or gauge symme-
tries and to those coupled with gravity, since (part of)
SUSY is manifest. Any foric HK manifolds can be
constructed using an Abelian HK quotient [16, 17].
Therefore, an off-shell formulation of general massive
toric HK NLSMs [8] can be obtained using the mas-
sive HK quotient with the Abelian gauge theories. On
the other hand, a massless HK NLSM other than
the toric HK target manifolds has been obtained as
a quotient using the non-Abelian gauge group by
Lindstrom and Rocek [14] for the massless case only
(without potential terms).

In this paper, we discuss massive NLSMs in
N =2, d =4 theories and their BPS domain-wall
solutions. With the HK quotient method, massive
NLSMs on cotangent bundles over the Grassmann
manifolds, 7% G n,a, which are not toric, are obtained
along with their generalization. These models are

1063-7788/05/6810-1634$26.00 © 2005 Pleiades Publishing, Inc.
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constructed in N' = 1 superfield formalism. The BPS
domain-wall solution is given in the simplest case,
the Eguchi—Hanson target manifold [18] (N = 2 and
M = 1). This work is based on our papers [12, 19] in
which analysis by a fully off-shell N' = 2 superspace
(the harmonic superspace [20]) formalism is also
discussed in detail.

2. MASSIVE HK QUOTIENT BY U (M)
GAUGE GROUP

We consider N' =2 SUSY QCD with N flavors
and a U(M) gauge group. In terms of N =1 su-
perfields, N =2, NM hypermultiplets can be de-
composed into (N x M)-and (M x N)-matrix chiral
superfields ®(z,6,0) and ¥(z,0,0), and N' = 2 vec-
tor multiplets for the U(M) gauge symmetry can be
decomposed into M x M matrices of N/ =1 vector
superfields V' = V4(x,60,0)T4 and chiral superfields
Y = %4(2,0,0)T4, with M x M matrices Ty (A =
1,..., M) of the fundamental representation of the
generators of the U(M) gauge group. In order that
the vector multiplets are treated as Lagrange mul-
tipliers, we take the strong coupling limit g — oo
and drop the kinetic term. The gauge-invariant La-
grangian is given by

L= / d49[tr(q>*<1>ev)+tr(we*v) (1)

- ctrV} + /d29 <tr{2(\1!<1> ~ b))
N-1
+ Y mg tr(\I/Ha<I>)> +ec|,
a=1

where we have absorbed a common mass of hy-
permultiplets into the field ¥ and denoted m, (a =
1,..., N — 1) as complex mass parameters, and H,
are diagonal traceless matrices, interpreted as the
Cartan generators of SU(N) below. The electric and
magnetic Fayet—Iliopoulos (FI) parameters are de-
noted as ¢ € R and b € C, respectively. Note that
U(M) gauge symmetry is complexified.

Next, we eliminate the auxiliary superfields V" and
3} in the superfield formalism. Their equations of mo-
tion read from Eq. (1)

oL _

o = dfpe” — e VOUT — 1), =0,  (2)
oL
o5 = YO — by =0. (3)

From the first equation, V' can be solved,

1
e’ = g(@@)_l <1M + \/1M + —2<I>T<I>\I/\I/T> :
(&

(4)
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Substituting this back into (1), we obtain the Kahler
potential for the Lindstrém—Rocek metric [14]

4
K= ctr\/1M + — diowwt (5)
C

4
—ctrlog (1M + \/1M + —2<I>T<I>\II\I/T>
c

+ ctrlog ®1®.

Fixing the complexified U(M) gauge symmetry
and solving constraint (3), we obtain the Lagrangian
of the NLSM in terms of independent superfields. To
this end, we should consider two cases (i) b = 0 and
(ii) b # 0 separately.

Case (i) b = 0. A gauge can be fixed as

o = (1”’) L U= (wpd),  (6)

¥

with ¢ and ¢ being [(N — M) x M]-and [M x (N —
M)]-matrix chiral superfields, respectively. The su-
perpotential becomes

we Sl cosm (V)| @

¥

—thp P
a —pp

Case (ii) b # 0. We can take a gauge as [14]

¥
Q = V(1 + )2,

with ¢ and ¢ being again [(N — M) x M]- and [M x
(N — M)]-matrix chiral superfields, respectively. In
this case, the superpotential is given by

H, (1M) (Lar+90) " (L, ¢)] :

W:bzmatr
a @

(9)

These two cases are not holomorphically trans-
formed to each other, because they make different
complex structures manifest.

We can find the bundle structure of the manifold as
follows:

(i) b= 0. Setting ¢» = 0, the Kéhler potential be-
comes

Kly—o = ctrlog(1 + ¢Top), (10)
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which is the one of the Grassmann manifold. There-
fore, ¢ parametrizes the base Grassmann manifold,
whereas 1 parametrizes the cotangent space as the
fiber, with the total space being the cotangent bundle
over the Grassmann manifold 7*G .

(ii) b # 0. In the case of T*CPN~1 of M = 1, the
base manifold is embedded by ¢ = T [21]*)

There exists the manifest duality between two the-
ories with U(M) gauge and U(N — M) gauge sym-
metries and the same flavor SU(N) symmetry. This
comes directly from the duality in the base Grass-
mann manifold Gy ar ~ Gn N—r-

For M =1 (M = N — 1), namely, for the U(1)
[U(N — 1)] gauge symmetry, this model reduces to
T*CPN=1 =~ T*Gn(~ T*Gn n-1) [22], which we
discussed in detail in [12]. Moreover, if N =2, the
manifold T*CP! is the Eguchi—Hanson space. A
nontrivial model in the lowest dimensions other than
T*CPN~listhe case of N = 4, M = 2. The manifold
is T*Guo=T*[SU4)/SU(2) x SU(2) xU(1)] =
T*[SO(6)/SO(4) x U(1)] = T*Q*, in which the
base manifold Q* is called the Klein quadric space.

3. VACUUM STRUCTURE
3.1. Vacua in the Massive T*CPN~1 Model

In this subsection, we discuss T*CPN-1! =
T*Gn, of M =1. Without loss of generality, we
consider the case of b = 0 and ¢ # 0. The dynamical
matrix fields are column and row vectors like ! =
(ot ., oV Dand y = (¢t ... N,

The superpotential given in (7) becomes

—-p (G
W= mgtr | H, . (11)
; [ (@(wwp) w®¢)}

We take Hy, (a =1,...,N —1) as

H, = diag(1,...,1,~a,0,...,0), (12)

a(a+1)

where —a is the (a + 1)th component, with a normal-
ization given by the trace tr(HyH}p) = 04p5. Then the
superpotential can be calculated as

W:—ZMaw“ ‘ (13)

M,

RS m”Zm

YThis embedding ¢ = ¢ should hold for a matrix of general
M, although we have not proved it yet.
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Therefore, the derivatives of W with respect to fields
are

Ope W = =Moy)®,  OypaW = —Mye® (no sum).

(14)

These vanish only at the origin ¢ = 7 = 0, which
is the only vacuum in the regular region of these
coordinates because the metric is regular there.

This model, however, contains more vacua, be-
cause the whole manifold is covered by several co-
ordinate patches and the vacuum exists at the ori-
gin of each coordinate patch. To see this, we con-
centrate on the base CPN~! for a while. We con-
sider the fields before the gauge fixing, ® = ¢4 =
(¢',...,6M)T (A=1,...,N), called the homoge-
neous coordinates, in which we need an identifica-
tion by the gauge transformation ¢4 ~ e**¢4. In the
region ¢! # 0, we can take a patch ¢’ = ¢! /p!
(¢=1,...,N —1), which was used in Eq. (6). Here,
let us wrlte these coordinates as ¢, = ¢t /ot In

the same way, in the region of ¢* ;é 0, we can take

the Ath patch defined by
¢/t (1<i<A-1),
ol =

(A<i<N-1). (15)

¢z+1/¢A
We thus have N sets of patches {<p§A)} enough to
cover the whole base manifold. Corresponding to

each patch for the base space, we manifestly have an
associated patch for the fiber tangent space {wEA)}
7¢2A }
are enough to cover the whole T*CPN~1. For each
patch, the origin <p( )= ¢EA) =0 is a vacuum.
Therefore, the number of discrete vacua for the
massive T*CPN~1 model is N, which was first found
in[9].

To discuss solitons like BPS walls, their junction,
and lumps, it may be better to consider the problem in
one coordinate patch. The other vacua appear in one
patch as the coordinate singularities of the metric in
infinities of the coordinates rather than the stationary
points of the superpotential [23]. To see this, we con-

sider only the base CPV~! once again. We discuss
how the Ath vacuum (A # 1) in the origin of the Ath
coordinate patch is mapped in the first patch. The

Ath vacuum is represented by @éA) =0or ¢B/¢A =

0 for all B(# A). In the first coordinate patch, this
pomt is mapped to an infinite point represented by

Ylay=0or P /¢ = 0 for all B(# A). In the first

coordinate patch, this point is mapped to an infinite
point represented by

oly/ely =0

from Eq. (6). These sets of coordinates {cpi
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which looks like a runaway vacuum in this patch.
Hence, the origin and N — 1 infinities are vacua in
each coordinate patch [23]. As a summary, if we in-
clude runaway vacua, one patch is enough to describe
soliton solutions. However, note that the terminology
“runaway” is just a coordinate-dependent concept,
because a runaway vacuum in one coordinate patch
is a true vacuum in the other coordinate patch.

We can also discuss the vacua without referring
to the local coordinate patches. We concentrate on

the base CPN~1 once again. A point in the CPVN~!
corresponds to a complex line through the origin in

C" with homogeneous coordinates ¢*, because of
the gauge transformation ¢4 ~ e ¢4 as an equiv-
alence relation. The first vacuum is expressed in re-
gion ¢! # 0 by %) =¢t/pt =0(i=1,...,N —
1), namely, ¢**1 = 0. Therefore, the first vacuum cor-
responds to the ¢! axis. In the same way, the Ath
vacuum corresponds to the ¢4 axis. Each vacuum
is simply expressed by each orthogonal axis in CV.
Note that each axis is invariant under U (1)V ! trans-
formation of H,, so that it is a fixed point of this
transformation.

[f we take N orthogonal normalized basis e 4 [with
(ea)* - ep = dap] Whose components are given by
(ea)” (17)

a complex line in CV can be spanned by a unit vec-
A

B
:5147

tor e = Z%zl a‘ey = Uey, where a? is a complex
number with 3~ , [a|? = 1 and U is an unitary matrix
U € U(N). Each of the N vacua found above corre-
sponds to each ey (A =1,..., N)(with zero value of
the cotangent space ) = 0).

Example: the Eguchi—Hanson space [18]. The
simplest model is the Eguchi—Hanson space, T*C P!
(N =2 and M =1). This model has two discrete
vacua and admits a typical domain-wall solution [7,
12]. The vacua are located on the North and South
Poles of the base CP! ~ S? (see figure). Corre-

sponding to two gauge fixing conditions & =

and ® = , we have two coordinate patches

1

/¢! and w = 90%2) = ¢! /¢, which are
related by z = 1/w. Two vacua are given by z =0
and w = 0. The second (first) vacuum w = 0 (z = 0)
is mapped to z = 0o (w = o) in the first (second)
patch, which looks like a runaway vacuum. In ho-
mogeneous coordinates, these correspond to (®) =

2=9h) =
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z=0(w=1/z= )

1_/—1:1} = 00)

w=0(z-_=

The base manifold of 7*CP* and vacua. Corresponding
to two gauge-fixing conditions, we have two coordinates
z and w, covering S? except for South (S) and North
(N) Poles, respectively. The origins of z and w (N and
S, respectively) are both vacua. The domain-wall solu-
tion, approaching these two vacua in spatial infinities, is
mapped to a trajectory connecting N and S in S2.

1 0
=e; and (®) = = eq, respectively, with

0 1
(¥) = (0,0). Also, in a coordinate-independent way,

these two vacua correspond to the ¢' and ¢? axes
spanned by e; and ey, respectively.

Before closing this subsection, we discuss the case
of b # 0. The superpotential (9) can be calculated to
give

b N—-1
w=—"_1|r Nyt | | 18
1+¢_@<+; ¢90> (18)

N-1 m
L= a ,
= a(a-|—1)
N, = — =L — M,

with M, defined in (13). The derivatives of W are

b a
8@"“W“<1+z-s@>2 .
N-1
X [Ma Z ¢b b
=1
a?l)“ _(sz) P )7

where an arrow in the second equation represents
the exchange of quantities in the first equation. The
origin ¢p® = ¢® = 0 in each patch is a vacuum. There
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is no other vacuum than these N vacua. The number
of vacua should coincide with the case of b = 0 and
¢ # 0, because they are connected by the R symmetry
and the physics does not depend on the difference.

3.2. Vacua in the Massive T* G ar Model

To look for vacua of the T*G y )y model, we con-
sider the case b =0 and ¢ # 0 again without loss
of generality. We label the indices for the matrices

as ¢ = (@ia) and ¥ = (1) in whichi =1,..., N —
M and o =1,...,M. The superpotential given in
Eq. (7) can be calculated as
M N-M
W=— Z Z MaiviaYai, (20)
a=1 i=1
fi+M-—1 a—1
My = WWHMA - Ma—1
i+M—1

Zm

where we have set mg = 0. For the case of M =1
(o = 1), this reduces to Eq. (13) for T*CPN~!. From
the superpotential (20), its derivatives with respect to
the fields are
g W = =Moithai, Oy, W = —

(no sum).

(21)

aiPic

Therefore the origin of these coordinates, ¢ = ¢T =
0, is a vacuum, and this is the only vacuum in the
finite region of these coordinates, where the metric
is regular. This model contains as many vacua as
the coordinate patches, like the T*CPN~! case. In
the first coordinate patch, we have chosen the first
M row vectors in ® the unit matrix as in Eqgs. (6)
or (8). The other coordinate patches are given by
the other choices of gauge-fixing conditions mak-
ing the other sets of M row vectors in ® the unit
matrix. The number of such coordinate systems is
NCy = NU/[MY(N — M)!]. They are independent
and enough to cover the whole manifold, so this
model has N!/[MV(N — M)!] vacua. This number
is invariant under the duality between U(M) and
U(N — M) gauge groups. It also reduces correctly
to N for T*CPN~'when M =1orM = N — 1.

As in the T*CPN—1 case, we can understand the
vacua of T*G y,» without local coordinates. A point
in the base G\n,ys corresponds to an M -dimensional

complex plane through the origin in C¥. The vacua
found above correspond to mutually orthogonal M
planes spanned by arbitrary M sets of axes chosen
from the IV axes. Therefore, the total number of vacua
is nCyr = NU/[M!(N — M)!]. Since the M planes of

PHYSICS OF ATOMIC NUCLEI

ARAI et al.

vacua are invariant under U(1)V~! generated by H,,

the vacua are fixed points.

Taking basis (17) in C¥, a point in Gy s ex-
pressed by an M plane in C" can be spanned by M
set of unit vectors

(e:) = Ue;, (22)
where i =1,...,N — M and U is an unitary ma-
trix, U € U(N). The vacua of mutually orthogonal

M planes are spanned by arbitrary M sets of basis
among orthogonal N basis.

The duality becomes manifest in this framework.
We can represent a point in Gy by an (N — M)
plane complement to an M plane.

Example: the cotangent bundle over the Klein
quadric. An example is given for the Klein quadric
T*Gyo = T*Q* (N = 4 and M = 2). There exist six

coordinate systems (p(-A) (A=1,...,6) for the base

manifold correspondinlg to six choices of gauge fixing,

given by

1 0 1 0
2 2
0 1
b — (1) (1) ’ ()011 (1012 , (23)
P11 P12 0 1
2 2
@gl) ¢§2) @gl) 80§2)
10 BRECY
o) oty 1o
@gl) ¢§2) 0 1
4 4
0 1 @gl) 80§2)
5 5 6 6
‘Pgl) @52) ‘Pgl) 9052)
10 o8 o5
057 o5 L0
0 1 0 1

Together with corresponding coordinates wé‘?) for the
cotangent space in Eq. (6), these six sets of coordi-
nate systems are enough to cover the whole manifold.
Therefore, this model has the six vacua given by

10 10 10
01 00 00

(@) = : ; o (24)
00 01 00
00 00 01
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00 00 00
10 10 00
o1 foo| |10l
00 01 01

which are the origins of (23), respectively, with (V) =
0. A set of two column vectors in each matrix in
Eq. (24) is a set of orthogonal basis e; chosen from
the four basis.

In the case of b # 0, the superpotential (9) is
N—-1 oo

W=b> Y (-1)"mq

a=1 n=0

- [H ( ()" (W)”w)]
pp)™ (py)*!

. ((W)” 0 )]
0 (puyt

where the last equality holds because H,, are diagonal.
Similarly to the T*C PN~ case, the origin p = 9T =
0 of each patch is a vacuum and we cannot have any
other vacua.

(25)

x tr

4. MASSIVE HK QUOTIENT BY SU(M)
GAUGE GROUP

In this section, we construct the massive HK
NLSM with the SU(M) gauge group. We eliminate
the vector multiplets in the superfield formalism and
find that this model does not have discrete vacua.

4.1. Massive HK NLSM by SU Gauge Group

In this subsection, we consider N'=2 SUSY
QCD with N flavors and the SU(M) gauge group.
We take the same matter field contents with TGy ar
but gauge multiplets take values in the Lie algebra
of SUM): V=VAT, and ¥ =¥4Ty with Ta
generators of SU(M). Then the Lagrangian is given
by

L= / d*e [tr(qﬂ@ev) +tr(we—v)] (26)

N-1
+
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We do not have any FI parameters because of the
absence of any U(1) gauge symmetry. The SU(M)
gauge transformation is given in the same way as in
the U(M) case and it is complexified to SU(M)C =
SL(M,C). This model has an additional U (1) p flavor
symmetry,

PP =, VTV = N, (27)

which was gauged in the U (M) case.

We eliminate all auxiliary superfields in the super-
field formalism. Equations of motion for V', ¥ imply

dTdeY — e VWU = C1y, (28)

Ud = Blyy, (29)

respectively, with C(z, 6,0) and B(z, 0, 0) being vec-

tor and chiral superfields in the N' = 1 superfield for-
malism.

The gauge field V' can be solved in terms of the
dynamical fields from Eq. (28) as

eV = %(qﬂ@)*l (C1M +/C21, + 4<1>T<1>wf) .
(30)

Since the equation det e = 1 holds, we get the equa-
tion

det (C1M +/C21y + 4<1>Tq>wT) (31)

= 2M det (DT D),

which enables us to express C' in terms of dynamical
fields implicitly: C' = C(®, ®'; ¥, ¥t). On the other
hand, Eq. (29) implies

B= %tr((lﬂll). (32)

Substituting the solution (30) back into the La-
grangian (26), we obtain the Kahler potential

K = i/ C2(®, 01 0, W)Ly + 46100, (33)

with C satisfying the constraint (31). We should
choose the plus sign for the positivity of the metric.

Let us fix the complex gauge symmetry
SU(M)C = SL(M, C) to express the Lagrangian in
terms of independent superfields. We can take the
similar gauge as the b # 0 case in T*G n -

P =1y +vp)~12

with ¢ and ¢ being [(N — M) x M]-and [M x (N —
M)]-matrix chiral superfields, respectively. Here, o
and p are chiral superfields satisfying op = B from

Vol. 68 No. 10 2005



1640

Eq. (32). We can consider ¢ and p independent fields
among these three fields o, p, and B.

Substituting Eq. (34) into the Kahler poten-
tial (33), we obtain the Kéhler potential in terms of
independent fields ¢, 9, p, o and their conjugates.
The superpotential also can be calculated as

W =Y maop (35)
1 .
xtr | H, (Lar +99)" (1ar,7)
¥
This target manifold has the isometry of U(N) =

SU(N) x U(1)p, in which the SU(N) part is the
same with T*Gn ar. The Kahler potential does not
receive the Kéhler transformation. As for the symme-
try of the Lagrangian, the superpotential is invariant
under the U(1) fiber symmetry originated from (27)

c—o =eto, pop=e"p,  (36)
besides the U(1)V~! symmetry of the massive
T*Gn v model. Gauging this U(1)p symmetry, we
obtain the T*G y ) model. Gauging U(1)p symme-
try implies putting B and C' in the constraints (28)
and (29) as constants and the constraints then
become TG n,pr ones (2) and (3), respectively. This
clarifies the bundle structure: the set of ¢ and p is a
fiber of quaternion with the total manifold being the
(quaternionic) line bundle over T*G n, .

4.2. Vacua of SU Gauge Theories

We look for the vacua of the HK NLSM by the SU
gauge group. The superpotential (35) of this model
can be rewritten as

N—-1 oo

W =op Z Z(_l)nma

a=1 n=0

. ((ww" 0 )IJPWU’
0 (py)t

where Wy (times b) denotes the superpotential (9)
or (25) of the U(M) gauge group with b # 0. The
derivatives of the superpotential with respect to fields
are given by OyW = opdyWy, 0,W = op0, Wy,
0,W = oWy, and 0,W = pWy. The vacuum con-
dition is given by o = p = 0, since Wy = 0 holds
only at ¢ =T = 0 from the discussion in the last
section, but Wy # 0 there. Therefore, this model has
no discrete vacua, and so we cannot expect any wall
solutions.

(37)

x tr
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5. BPS EQUATION AND ITS SOLUTION

In this section, we construct the BPS domain
wall in the N =2 and M =1 case of TGy v, i.e.,

T*CP'. In what follows, we consider the b # 0 and
¢ = 0 case. We assume that there exists a domain-
wall solution perpendicular to the y = 22 direction.
The BPS domain-wall solution is derived from van-
ishing of the SUSY transformation for fermions

0 = iV20"€9,®" + V/2eF" (38)

with half SUSY condition e*®o2€ = ie, where €' is a
phase factor, and ® and F*? are scalar and auxiliary
fields, respectively. In the case we consider now, the
scalar field is given by

o — b 1
VTN o

from Eq. (8). Eliminating the auxiliary fields, the BPS
equations are given by

Dot = —eiagij*aj*W*,

(39)

where g% is inverse of the metric g;;+ = 9;0;+ K and
K is given by (5) with (8). Substituting the metric and
the superpotential (9), these BPS equations reduce to

*

m 2
o K+ ed)

[Il +op? + (1+ o)A + [¥)
114+ v (1 + [¢]?)?
(o —¥*)%* ]
11+ P (1 + [@l?) (1 + ) ]
Otp = €T K (1 + pv))?
{u+wwﬁu1+wmu+ww>*
11+ @ (1 +[e]?)?
(¥ — ¢*)y* ]
114+ v (1 + [@l*) (1 + [¢*) ]
where m is a mass parameter. Now we must choose

the phase ¢’ to absorb the phase of the parameter ®
m* /b:

Dap = € (40)

w*

5 -[3
b lbl

By subtracting the complex conjugate of the second
equation from the first one in Eq. (40), we obtain

e —v*) |m|K[f(1+¢p\° ,
7y “?‘ZHQHW)@ (42)

9 For simplicity, we choose m to be real positive in the follow-
ing.

(41)
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(1t (¢ — v*)?
<|1+901/)|> ¢}<1+|¢|2><1+|w|2>

()

Treul) 0T oP?

B 1+90¢*> @ }{1 2
(I1+s0¢| e Al

(1 o)+ W)}],

whose right-hand side vanishes for ¢ = ¢*. The BPS
equation (42) dictates that ¢ = 4* is valid for arbi-
trary y if an initial condition ¢ = ¢* is chosen at some
y. Since we can choose the initial condition ¢ = ¢*
at y = —oo, we find the BPS equations (40) simply
reduce to

Dot = [mlep, (43)

which is the BPS equation on the submanifold CP?
defined by ¢ = 9* [12]. Therefore, we obtain a BPS
wall configuration connecting two vacua ¢ = ¢¥* =0
at y = —o0 to p = ¢¥* = 0 at y = oo along ¢ = ¢Y*
with a constant phase €0

o = 1p* = elmlytvo)gido (44)

where g is also a constant representing the posi-
tion of the wall. Thus, we find two collective coor-
dinates (zero modes) corresponding to the sponta-
neously broken translation (yo) and U(1) symmetry
(¢o)-

We can show that BPS solution (44) coincides
with that derived in component formalism [8] through
the following field redefinition p — X, ¢:

o = et X = |b| tanh u, (45)

where u, ¢, and X are real scalar fields. After the field
redefinition, the theory of the massive CP! model is
described by X and ¢, and the wall solution (44) is

mapped to
= [b[ tanh |m|(y + yo), ¢ = 0.

This solution coincides with that derived in [8].

(46)

6. CONCLUSION

We have constructed massive NLSMs on a cotan-
gent bundle over the Grassmann manifold TGy ar
and its generalization, the line bundle over the
T*G n,p manifold in the N' = 1 superfield formalism
with the quotient method. It was found that the former
contains N!/[M!(N — M)!] vacua, while the latter
has no discrete vacua.

The BPS wall solution was given in the N =2
and M =1 case of the T*Gy, » model, which cor-
responds to the Eguchi—Hanson manifold. A more
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interesting case is the N =4 and M = 2 case since
it is the simplest manifold other than T*C PN~ The
theory has six discrete vacua and it is expected that
the theory has various interesting wall solutions, their
junction, and lump.
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Abstract—We show that our construction of realizations for algebras and quantum algebras can be
generalized to quantum superalgebras too. We study an example of quantum superalgebra U, (osp(1/2))
and give the boson—fermion realization with respect to one pair of g-boson operators and one pair of

fermions. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The quantum superalgebra U, (0sp(1/2)) is a de-
formation of the universal enveloping algebra of the
Lie superalgebra osp(1/2). This superalgebra can be
applied to physical problems such as the trigono-
metric osp(1/2) Gaudien model [1, 2]. The universal
R matrix of the quantum superalgebra U,(osp(1/2))
was developed and studied in [3, 4].

Boson—fermion realizations of a given set of op-
erators via Bose—Fermion creation and annihilation
operators are among the main tools for solving vari-
ous quantum problems. The origin is linked with the
Schwinger [5], Dyson [6], and Holstein—Primakoff [7]
realizations, which are different boson realizations of
the algebra s/(2).

Generalizations of the Dyson realization to the Lie
algebra sl(n) were derived in [8]. In our paper [9],
we formulated the method starting from the Verma
modules for obtaining boson realizations, and in [10],
we obtained explicitly a braid class of realizations
which generalized the results from [11, 12].

Later the idea was extended to the Lie superalge-
bra, and the Dyson-type boson—fermion realizations
were explicitly given in [13], generalizing the results
tosl(2/1) ([14, 15]).

Today these boson—fermion realizations have be-
come a standard technique in quantum many-body
physics and we can also find several other applications
in all fields of quantum physics.

Quantum groups and quantum supergroups or g-
deformed Lie algebras and superalgebras imply some

*The text was submitted by the authors in English.

YDepartment of Mathematics and Doppler Institute, FNSPE,
Czech Technical University, Prague, Czech Republic;
e-mail: burdik@kmalpha.fjfi.cvut.cz

2)Department of Mathematics, FTS, Czech Technical Univer-
sity, Prague, Czech Republic.

specific deformations of the classical Lie algebras and
superalgebras. From a mathematical point of view,
those are noncommutative associative Hopf algebras
and superalgebras. The structure and representation
theory of quantum groups were extensively developed
by Jimbo [16] and Drinfeld [17]. The first “quan-
tum” version of Holstein—Primakoff was worked
out for Uy(sl(2)) [18] and then for Uy((sl(3)) [19].
The Schwinger-type realization was written in [20]
and [21]. These realizations found immediate appli-
cations [22—27].

In our papers [28—30], we studied the Dyson re-
alizations of the series algebras U, (sl(2)), Uy(gl(n)),
Uqy(Br), Uy(Cy), and Uy(Dy,). There is some special
case [29] for which the realization of the subalgebra
Uq(gl(n — 1)) in the recurrence is trivial. Such spe-
cial realizations of the quantum algebra U, (si(n)) of
Dyson type were studied in [31, 32].

The aim of the present paper is to show that
there is a possibility of generalizing our method [9]
for deriving the boson—fermion realization too. This
will be exemplified by the quantum superalgebra

Uq(osp(1/2)).

2. PRELIMINARIES

In this article, we will use the definition of a quan-
tum superalgebra U, (osp(1/2)) which can be found
in[3, 4]

Let ¢ be an independent variable, A = Clq, ¢ 1],
and C(g) be a division field of A. The superalge-
bra Uy (0sp(1/2)) is the associative superalgebra over
C(q) generated by even generators K, K~! and odd
generators F, F’ which satisfy the following relations:

KK '=K'K =1, (1)
KE =qFEK, KF=q 'FK,

1063-7788/05/6810-1643$26.00 © 2005 Pleiades Publishing, Inc.
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K 'F=¢qFK™!,
K-K!

q—q!
We do not use the Hopf structure of this algebra for
our construction of realizations; therefore, we do not
give it explicitly here.

The method of construction used is the same as
in the case of the Lie algebras [9] or quantum alge-
bra [30] and is based on using the induced represen-
tation. The difference from quantum algebra is that,
together with ¢-deformed boson operators [20, 21],
we also use fermion operators.

The algebra H of the g-deformed boson operators
is the associative algebra over the field C(q) generated

K'E=¢'EK!,

EF 4+ FE =

by the elements of a™, a~ = a, ¢%, and ¢~%, satisiying
the commutation relations
Cet=q"" =1, ¢aqg"=q", (2
q“aq™" =q 'a,
aat — q_1a+a =q¢*, aat —qgata=q".

The algebra H has a faithful representation on the
vector space with basic elements {|n), where n =
0,1,...} of the form

q"[n) =q"n), aln) = |n+1), (3)
aln) = [n]ln = 1),
where [n] = %

Because of odd generators F and F', we construct
the realization by means of the algebra H for even ele-
ments and by fermion elements b and b for odd ones.

These fermion elements commute with the elements
of H and together fulfill the relations

bb=b"bt =0, bbT+bth=1. (4)

The realization of the quantum superalgebra
Uq(0sp(1/2)) is called the homomorphism p of the
Uq(0sp(1/2)) to associative superalgebra )V gener-
ated by H and b™.

3. CONSTRUCTION OF THE REALIZATION
OF U, (osp(1/2))

First, for construction of the realization, we find
the induced representation of Uy(osp(1/2)). As sub-
algebra Ag of U,(osp(1/2)), we choose a quantum
superalgebra generated by I/, K, and K~!. Let pbe a
representation of Ag on vector space V. Let A be the
left regular representation on U,(0sp(1/2)) @ V; i.e.,
forz,y € Uy(osp(1/2)) and v € V, the representation
A is defined by

ANz)(y @v) =2y @ . (5)
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Let Z be subspace of Uy (0sp(1/2)) ® V generated by
the relations

Yy @v =12 p(y)v

forallz € Uy(osp(1/2)),y € Ag,andv € V. Itis easy
to see that the subspace Z is A-invariant. Therefore,
(5) gives the representation on the factor space W =
[Ug(0sp(1/2)) © V]/T.

Let X = E? and XNEM = |N, M). Due to the
Poincaré—Birkhofi—Witt theorem, the space W of
the induced representation is generated by the ele-
ments [N, M) ® v, where N =0,1,2,...; M =0,1;
andv e V.

To obtain the explicit form of the induced represen-
tation, we give some relations. They can be proved by
mathematical induction from relations (1).

Lemma 1. Foranyn =0,1,2,..., the Jollowing
formulas hold:

N
FxN=xVp4+ L INxN1EK
g+1

q—N

g t+1

+ INJXN-1ERL,

M _ ( {\MpM qM—(—l)M
FES = () B Oy — gD
M (—M

q
(¢t +Dlg—qt)
We omit the details of the calculations and write

the result for the action of the induced representation
on the basis elements | N, M) ® v.

Theorem 1. The formulas

14+ (-1)M
LYy e

x EM=1 — EM-1g—1

E|N,M)®v
1—(—nM
2
KIN,M)®v=¢"N"M|N,M)® o(K)v,
14+ (M
- 2

IN+1,M —-1)®w,

FIN,M)®v [N]

q+1
-N-M

qN+M
x( IN =1, M +1) ® o(K)v

+ |N—1,M+1>®90(K1)v>

g t+1
L= (=DM (Y
———|N N,M -1 K
W (T v - ) e e
g N M 1
—IN,M -1 K~
IV M = 8 (o)

1— (=M™ 1
2 (g—q")
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X |N,M —1)® o(K — K
+(=DMN, M) @ p(F)v
give the induced representation of the quantum
superalgebra Ug(osp(1/2)).
We construct the realization of quantum superal-

gebra Uy (osp(1/2)) from the induced representation
given in Theorem | as follows:

We choose the representation ¢ for which ¢(F)v =
0 and (K )v = ¢*v, and substitute

IN+1) - a*, [N]IN-1)—a, ¢~ -,
14+ (-)M
%UW +1) — bt
L N\M
L (21) |M — 1) — b,
qiM N bb+ 4 qilerb’
P(F) =0, oK)—q", oK ")—qg™

This substitution leads to the realization of the quan-
tum superalgebra U, (0sp(1/2)).

Theorem 2. The mapping p: Ug(osp(1/2)) —
W defined by the formulas
p(E) =bt +a™h,
p(K) = " (bb" + gb*b),
(bt +qgatb)a .
F) = T
p(F) P
(b+ + q_1a+b)a —z—A
g '+1
is the realization of the quantum superalgebra
Uq(osp(1/2)).
This theorem can be proved by a direct calculation.

+

+ b
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A Modified Schwarzian Korteweg—de Vries Equation
in 2 + 1 Dimensions with Lots of Isochronous Solutions”
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Abstract—A modified version of the integrable Schwarzian Korteweg de Vries equation in 241
dimensions is introduced, and it is pointed out that it possesses lots of isochronous solutions.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION AND MAIN RESULTS

Recently, via the symmetry approach, several so-
lutions were exhibited [1] to the following integrable
Schwarzian Korteweg—de Vries (SKdV) equation in
2 + 1 dimensions [2]:

WeWen — WeeWy

wT-l-nggn— 9w A (la)
2 _
w2w
£¥n  Wely
ST
+ 2w? 8 ’
2
e = (%) . (1b)
w

Here, &, n, and 7 are the independent variables; w =
w(&,n,7) is the main dependent variable; and w =
w(&,n,7) is an auxiliary-dependent variable. Note
that, throughout this paper, subscripted variables de-
note partial derivatives and that we prefer to write this
PDE in local form rather than in the nonlocal form
mainly used in [1][where a different local form of this
PDE is also mentioned, which is related to the one we
prefer to use (see above) by a differential substitution].

In this paper, we introduce the following modified
version of this evolution PDE:

U — IAWU — WU, + 12 — 1)wyu, (2a)
1 Uplpy — Uggly uguy Uty
Z _ — — =0
gt T gy da 2@ R ’
2
iy = (%) . (2b)
u

“The text was submitted by the authors in English.
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2Dottorato in Matematica, Universita di Roma La Sapienza,
[taly; e-mail: mariani@mat .uniromal.it

Here, z, y, and ¢ are the independent variables; u
u(zx,y,t) is the main dependent variable; and o =
a(x,y,t) is an auxiliary-dependent variable; A and
are two arbitrary rational numbers,

=2 =22 (3)
a1 q2

with p; and ¢; coprime integers and ¢; > 0, and like-
wise po and go coprime integers and g2 > 0; w is an
arbitrary real number (without loss of generality non-
negative, w > 0); and the rest of the notation is, we
trust, self-evident. Clearly, for w = 0, this PDE coin-
cides with the SKdV equation (1), up to trivial nota-
tional changes. For w > 0, this modified Schwarzian
Korteweg de Vries (mSKdV) equation (2) features a
lot of periodic, indeed isochronous, solutions

u(@,y,t+T) = u(z,y,t) (4a)
with period
27
T=T(q) = TQ (4b)

(or possibly with a period which is a rational multiple
of T'). Here, ¢ is the minimum common multiple of
g1 and gs [see (3)]. Indeed, as we shall detail in Sec-
tion 3, this mSKdV equation (2) has been obtained
from the SKdV equation (1) via a trick—amounting
essentially to a change of dependent and independent
variables—whose efficacy in yielding evolution equa-
tions possessing lots of periodic, indeed isochronous,
solutions is obvious (see Section 3), as recently ad-
vertised (see [3—5], as well as several other publica-

tions where this trick has been used in the context of
ODEs rather than PDEs [6—18]).

Note that our claim that the solution to the
mSKdV equation (2) be periodic only refers to the
main dependent variable u(x,y,t). The correspond-
ing auxiliary dependent variable @(z,y,t) need not
always be periodic, but it might instead satisfy a

1063-7788/05/6810-1646$26.00 © 2005 Pleiades Publishing, Inc.
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shifted periodicity property of the form

W(z,y, t +7T) =u(x,y,t) +v(z,y). (4c)

We leave to the interested reader a discussion of
this issue, including in each case the identification of
conditions on the arbitrary functions contained in the
solutions reported below sufficient to guarantee that
the shift v(z, y) vanishes.

Finally, let us emphasize that, although the
mSKdV equation (2) is just as integrable as the
SKdV equation (1)since it is related to it via a change
of (dependent and independent) variables, in this pa-
per we do not exploit this fact, limiting our treatment
merely to the explicit display, and the analysis of
the isochronous character, of several solutions, all
of which were obtained via an appropriate ansatz
based on symmetry considerations, without taking
full advantage of the integrable character of these
nonlinear PDEs.

2. SOME EXPLICIT SOLUTIONS

We now give some explicit solutions to the mSKdV
equation (2) which confirm the claim made in the title
of this paper. Clearly, the auxiliary function a(x,y,t)
is defined by (2b) up to an additive arbitrary function
of the time ¢, which has no relevance on the time
evolution of wu(z,y,t) and which itself has to be
periodic [with a period that is an appropriate rational
multiple of T—see (4b)], in order that a(x,y,t) may
be periodic in the variable ¢.

Hereafter, f(t), g(z), h(2), and F'(z,t) denote var-
ious a priori arbitrary functions of their arguments,
and F(z,t) and Fy(z,t) denote the derivatives of
F(z,t) with respect to its first and second argu-
ment. Of course, we use an appended prime to denote
differentiation, so, for instance, f'(t) = df(t)/dt. We
generally assume f(t) and F'(z,t) to be periodic in ¢
with period T' = T'(q) [see (4b)],

f&+T)=f(t), F(zt+T)=F(zt), (5

although in some cases it will be convenient to as-
sume it is periodic with a period which is an integer
multiple or a fraction of T. We assume the functions
g(z), h(z), and F(z,t) to be analytic in z; additional
restrictions on these functions shall be detailed below,
on a case by case basis, as well as on the values of
the “space”-independent variables x and y, which are
hereafter assumed to be real (although this restriction
could be forsaken in most cases). These restrictions
shall be introduced to guarantee periodicity (as func-
tions of the real time variable t), indeed isochronic-
ity [see (4)], of the solutions exhibited below to the
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mSKdV equation (2). We also use hereafter the short-
hand notation

p = p(t) = exp(iwt), (6)

and we employ the notation «, 3, v, ¢ to denote vari-
ous a priori arbitrary (possibly complex) constants, up
to restrictions that shall be specified below on a case
by case basis.

The first solution to the mSKdV equation (2) that
we exhibit reads

u(z,y,t) = p g(yp' " )hlzp" — f(t)],

u(x,y,t) = —8yp " f'(t)

xph—f(t)

o | i) e

«

(7a)

(7b)

This solution is well defined (nonsingular) if the inte-
gral in (7b) is.

Sufficient conditions to guarantee that (7a) be
periodic as a function of the real independent variable
t [for fixed x and y—see (4)] are as follows:

Condition 1. The analytic function g(z) of the
complex variable z is meromorphic in the open disc
|z| < |y| and has no poles (for fixed y) on the circle
|z| = |y|; the first of these two requirements is, of
course, automatically satisfied if the analytic function
g(z) of the complex variable z is meromorphic in the
open disc |z| < Y, where Y is some positive number,
and the independent variable y is then restricted to
satisfy the inequality

lyl <Y (8)

(of course, if g(z) is meromorphic in the entire com-
plex z plane, one can set Y = oo, entailing that this
restriction on the independent variable y disappears);
the second of these two requirements is, of course,
automatically satisfied if g(z) is holomorphic rather
than just meromorphic.

Condition 2. The analytic function h(z) of the
complex variable z is meromorphic inside the domain
in the complex z plane enclosed by the (closed!) curve
z(t) = zexp(ipwt) — f(t) and has no poles on this
curve; the first of these two requirements is, of course,
automatically satisfied if the analytic function h(z) of
the complex variable z is meromorphic in the open
disc |z| < X + M, where M is a positive constant
such that |f(¢)| < M for all real values of ¢ [note that
M generally exists, since f(t) is periodic—see (5)]
and X is some positive number, and the independent
variable x is then restricted to satisfy the inequality

2] < X (9)
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(of course, if h(z) is meromorphic in the entire com-
plex z plane, one can set X = oo, entailing that this
restriction on the independent variable = disappears);
the second of these two requirements is, of course,
automatically satisfied if g(z) is holomorphic rather
than just meromorphic.

The second solution to the mSKdV equation (2)
that we exhibit reads

u(zx,y,t) (10a)

_ Pralyp' )
[zpt + f(t) + h(yyp' 2

—p)*’

u(x,y,t) (10b)

yyp " f'(t) — iwpth(yyp = — p)]
_ 4p"
zpt + f(t) + h(yyp! =2+ — p)

To write this solution, we assumed ~ # 0.

_8
v

Sufficient conditions to guarantee that solu-
tion (10) be nonsingular and periodic as a function
of the real independent variable ¢ [for fixed = and y,
see (4)] are, in addition to condition 1 (see above), the
following:

Condition 3. The analytic function h(z) of the
complex variable z is meromorphic inside the domain
in the complex z plane enclosed by the (closed!)
curve z(t) = yyexpli(l — 2u)wt] — exp(iwt) and has
no poles on this curve; the first of these two require-
ments is, of course, automatically satisfied if the ana-
lytic function h(z) of the complex variable z is mero-
morphic in the open disc |z| < 1+ |y]Y, where Y is
some positive number, and the independent variable
y is then restricted to satisfy the inequality |y| <Y
(of course, if h(z) is meromorphic in the entire com-
plex z plane, one can set Y = oo, entailing that this
restriction on the independent variable y disappears);
the second of these two requirements is, of course,
automatically satisfied if g(z) is holomorphic rather
than just meromorphic.

Condition 4. The following inequality holds for all
real values of ¢:

zpl + f(t) + h(yyp' ™ —p) #0; (1)

since f(t) [see (5)] and the function h(yyp!=2* — p)

[thanks to condition 3—see (6)] are periodic functions
of the real variable ¢, it is possible that conditions of
type (9) and (8) exist, with an appropriate assignment
of the two positive constants X and Y (depending, of
course, on the two functions f(¢) and h(z)), which are
sufficient to guarantee validity of inequality (11).
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The third solution to the mSKdV equation (2) that
we exhibit reads

u(z,y,t) (12a)
N P glyp' =)
cosh®[Bxp + f(t) + h(yyp' =2 — p)]’
iy, t) = — (12b)
7y7 - ﬂ’)/

x [yyp " (1) — iwph(yyp' = — p)] + 40"
X (Bap" — tanh[Bzp! + f(t) + h(yyp' = — p)]).
To write this solution, we assumed v # 0.

Sufficient conditions to guarantee that solu-
tion (12) be nonsingular and periodic as a function
of the real independent variable ¢ [for fixed = and y,
see (4)] are, in addition to conditions 1 and 3 (see
above), the following:

Condition 5. The following inequality holds for all
real values of ¢ and integer values of k:

Brp + F(t) + hlyyp' ™ = p) #i(1+2K) 5 (13)

since f(t) [see (5)] and the function h(yyp!=2* — p)
[thanks to condition 3—see (6)] are periodic functions
of the real variable ¢, it is possible that conditions of
type (9) and (8) exist, with an appropriate assignment
of the two positive constants X and Y (depending, of
course, on the two functions f(¢) and h(z)), which are
sufficient to guarantee validity of inequality (13).

The fourth solution to the mSKdV equation (2)
that we exhibit reads

u(zx,y,t) (14a)

_ Pralyp' )
1 +sin[Brpt + f(t) + h(yyp' =2 — p)]’

e t) = 2o—pw) (1)

+ <ﬁ - 8%) Ph(vyp ™ — p)
n 48p"
14 cot{5[Bazpt + f(t) + h(yyp' =2 — p)]}
— Bp![Bxp! + f(t) + h(yyp' ™ = p)].

To write this solution, we again assumed v # 0.

Sufficient conditions to guarantee that solu-
tion (14) be nonsingular and periodic as a function
of the real independent variable ¢ [for fixed z and y,
see (4)] are, in addition to conditions 1 and 3 (see
above), the following:
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Condition 6. The following inequalities hold for
all real values of t and integer values of k:

Bap" + f(t) + h(yyp' " — p) # (1 + 214?)%,
(15a)

Brp + f(t) + h(yyp' = — p) # km;

since f(t) [see (5)] and the function h(vyyp p)
[thanks to condition 3—see (6)] are periodic functions
of the real variable ¢, it is possible that conditions of
type (9) and (8) exist, with an appropriate assignment
of the two positive constants X and Y (depending, of
course, on the two functions f(¢) and h(z)), which are
sufficient to guarantee validity of inequalities (15).

The fifth solution to the mSKdV equation (2) that
we exhibit reads
PR Dg(yp! ) — ()2

{yepfw — f(B)]2> + B}2 ’
(16a)

(15b)

1-2p

u(x, Y, t) =

U(w,y,t) = —8yliwuf(t) + f'(t)] (16b)
Ba —1)? + (20 + 1)%y*p° [z — f(1)]**
{yeple — f()]2> + B}z — f(1)]

Sufficient conditions to guarantee that solu-
tion (16) be nonsingular and periodic as a function
of the real independent variable ¢ [for fixed = and y,
see (4)] are, in addition to condition 1 (see above), the
following:

Condition 7. « is integer, or perhaps it is a ratio-
nal number, in which case solution (16) would still be
periodic but might feature a period which is an integer
multiple of T [see (4b)].

Condition 8. The following inequality holds for all
real values of ¢:

v~ F(t) £ 0; (17)

this requirement is, of course, satisfied if the indepen-
dent variable x is restricted to satisfy one of the two
inequalities

lz] <m (18a)
or

|z| > M, (18b)
where m and M are constants such that m < |f(¢)| <
M [note that m and M generally exist, since f(t) is

periodic—see (5)].

Condition 9. The following inequality holds for all
real values of ¢:

Yy ple = fO)* + B #0; (19a)
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this requirement is, of course, satisfied if

ly|* | — f)* # 18]; (19b)

and, since there exist two constants m and M such
that m < |f(¢)] < M [as f(t) is periodic—see (5)],
this condition can be reduced to conditions of type (9)
and (8), with an appropriate assignment of the two
positive constants X and Y (depending, of course, on
the values of the constants «, m, and M).

The sixth solution to the mSKdV equation (2) that
we exhibit reads

u(z,y,t) (20a)
_ p*rg(yp' )
[z — f®)]In{yplz — f(1)]*} + 8]
iz, y,t) = —8yliwpf(t) + f'(t)] (20D)

8+ B+ In{yplz — f(1)]*}
[z f ()]In{yple — f(£)]*} + 6]

Sufficient conditions to guarantee that solu-
tion (20) be nonsingular and periodic as a function
of the real independent variable ¢ [for fixed z and y,
see (4)] are, in addition to conditions 1 and 8 (see
above), the following:

Condition 10. The independent variable x and
the arbitrary (periodic) function f(¢) are such that
the (closed) curve in the complex z plane z = z(t) =
exp(iwt)[z — £(t)]? does not contain the origin z = 0.
A simple example is f(t) = X exp(iwt/2) (with X
an arbitrary positive constant) and |z| < X, which
entails that f(¢) is periodic with period 7'(2) [see (4b)]
and that solution (20) is periodic with period T'(r),
where 7 is the minimum common multiple of ¢ and
2 [see (3) and (4)]. Of course, many other examples
could be given.

Condition 11. The following inequality holds:
y # 0. (21)

Condition 12. The following inequality holds for
all real values of ¢:

In{yplz — f(t)]*} + B #0;

this requirement is, of course, satisfied if

lyllz — f(t)]* # | exp(—B)| = exp(—Re(B)); (22b)

and, since there exist two constants m and M such
that m < |f(t)| < M [as f(t) is periodic—see (5)],
this condition can be reduced to conditions of type (9)
and (8), with an appropriate assignment of the two
positive constants X and Y (depending, of course, on
the values of the constants m and M).

(22a)

Vol. 68 No. 10 2005



1650

The seventh solution to the mSKdV equation (2)
that we exhibit reads

u(z,y,t) (23a)
_ Mgy ) - f@)]
—1 + sin[aIn{yplz — f(1)]2} + 3]’
w(z,y,t) (23b)

= —Syliwpf(t) + f' (1) + [z — F(£)]
) {4@2 . 4aCOS Eﬁgﬂ + 5 In{yplx — f(t)]Q}]}
cos 227 + § Infyplz — £(1)]2)]

Sufficient conditions to guarantee that solu-
tion (23) be nonsingular and periodic as a function
of the real independent variable ¢ [for fixed = and y,
see (4)] are, in addition to conditions 1, 8, 10, and 11
(see above), the following:

Condition 13. The following inequality holds for
all real values of t and integer values of k:

alnf{yple — FOP} +B kg (24a)
this requirement is, of course, satisfied if
« o 2 E o
ylole = O £ [exp (k5 - 8)|  (24b)

s
= exp (k5 —Re(d)) ;
and, since there exist two constants m and M such
that m < |f(t)| < M [as f(t) is periodic—see (5)],
this condition can be reduced to conditions of type (9)
and (8), with an appropriate assignment of the two

positive constants X and Y (depending, of course, on
the values of the constants «, m, and M).

The eighth solution to the mSKdV equation (2)
that we exhibit reads

u(z,y,t) = p g(yp' )
« s oz + F(y,0)|8
x enlazxp! + F(y,t)|8ldn® [axp” + F(y,t)|5],

(25a)

8p“
«@

y
w(z,y,t) /Ft z,t) (25b)
1

—iw(l = 2u)yFy(2,t)]dz + a[(B + 1)ct
+(1-28)c3 + (8 —2)c3 +2(2— feicy
+2(28 — 1)cies — 2(B + 1)cocs)

x p"F(y,t) + ap”
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azph+F(y,t)

sn(z|B)dn(z|3)
< [l
)
. en(EB)dn(z|8)  sn(z|B)en(2])]7
RETE T R T R e

Here, sn(z|3), cn(z|3), dn(z|3) denote Jacobian el-
liptic functions and ¢, ¢9, c3 are constants such that
each ¢; and the sum ¢ + ¢ + ¢3 take one of the three
values 2,0, —2
To write this solution, we assumed oy # 0.
Sufficient conditions to guarantee that (25a) be
nonsingular and periodic as a function of the real
independent variable ¢ [for fixed = and y, see (4)] are,
in addition to condition 1 (see above), the following:
Condition 14. The arbitrary function F(y,t) is
periodic, as a function of the real variable ¢, with pe-
riod T [see (4b)]. Of course, F(y,t) could be periodic
with a period which is a rational multiple of T, in
which case solution (25) would still be periodic, but
might feature a period that is an integer multiple of T'.
Condition 15. The following inequality holds for
all real values of ¢:

azp! + F(y,t) #0. (26)

This condition is imposed to avoid the divergence of
the second term in the integral in (25b) at z = 0.
Since F(y,t) is periodic in the real variable ¢, there
generally exist two functions m(y) and M (y) such
that, for all real values of ¢, m(y) < |F(y,t)| < M(y);
and, of course, the requirement (26) is satisfied if the
variables x and y are restricted to domains such that
one of the following two inequalities holds:

lallz] < m(y) (27a)

or

laf ] > M (y). (27b)

The ninth solution to the mSKdV equation (2) that
we exhibit reads

u(x,y,t) = exp(axp")F(y,1), (28a)
—H
a(z,y,t) = oPxp? + st (28b)
(6%
yF t) 1 2)2F, (2,
|:zw/\y—|—/ tzt) = il = 20)2F (2, )dz
(z,1)
v
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To write this solution, we assumed that o % 0 and
that y is restricted in a domain such that the integral
in (28b) is well defined (nonsingular).

A sufficient condition to guarantee that (28a) be
periodic as a function of the real independent variable
t [forfixed z and y, see (4)]is condition 14 (see above).

The tenth solution to the mSKdV equation (2) that
we exhibit reads

/o ¥ iwyp 2
u(z, y,t) = exp (i A T )F<y,t>,

VB—p
(29a)
) <SR e

i(x,y,t) = 2p™{ap + B+ [(ap + B)° + Siwayp' ~H]'/?} £ 8p7H

Fy(z,t) — iwAF(z,t) —
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y
/Ft (z,t) —iw(l —2u)zF,(z,t) — iwAF(z,t)

o+ iwzpt 21 F (2, t)

dz.

v

To write this solution, we assumed |3| # 1; it is well
defined (nonsingular) if the integral in (29b) is.

A sufficient condition to guarantee that (29a) be
periodic as a function of the real independent variable
t [forfixed z and y, see (4)]is condition 14 (see above).

The eleventh solution to the mSKdV equation (2)
that we exhibit reads
waJ)—@m[ixd%ap+ﬁ (30a)

+ Kap—+/%2-+8uuayplmﬂl/Q}hQ]FYy,ﬂ,

(30D)

iw(l —2u)zF,(z,t) &

Yy
X/
)

This solution is defined if the integral in (30b) is.

A sufficient condition to guarantee that (30a) be
periodic as a function of the real independent variable
t [forfixed z and y, see (4)] is condition 14 (see above).

The first eight of these solutions, (7), (10), (12),
(14), (16), (20), (23), and (25), have been obtained,
via the technique described in the following section,
from solutions to the SKdV equation (1a) given in[1]
and [19] (trivial notational changes have also been in-
troduced: arbitrary functions have been conveniently
redefined).

The other three solutions, (28), (29), and (30),
have been obtained, via the technique described in
the following section, from solutions to the SKdV
equation (1) obtained via the following ansatz:

w(éanﬂ—) = eXp[fA(T],T)]B(’I],T). (31)

Here, A(n,7) and B(n,T) are a priori arbitrary, but
analytic, functions. It is indeed easy to verify that

. 2\ /2
ap + 6+ [(ap + B)? + Siwayp'—2H] } F(z,t)

ansatz (31) yields a solution to (1) (with a suitable
choice of w(&,n, 7)) provided

= A%(n, 7)Ay(n, 7).

This first-order PDE (32a) can be solved in im-

plicit form: indeed, for any arbitrary (differentiable and
with nonvanishing gradient) function H(z1, z9), it is

equivalent to the nondifferential equation

4A:(n,T) (32a)

4n

o]~

H |A(n,7), 7+ (32b)

Using the substitution described in the next section,
we thereby get solutions to the mSKdV equation (2):
indeed, if A[n, 7] satisfies (32b), we find that

U(.’E,y,t) = exp[xG(y,t)]F(y,t), (333)

Fi(z,t) + 8iw(1l — 2u)zF,(z,t)

y .
iy, ) = 2G2(y,1) — 8 / AR (2,8) =

0
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is a solution to the mSKdV equation (2) with

G(y,t) = p'A (ypH“, %) (34)

-1
and F(y,t) = p*B (ypH“, % being an arbi-

trary function. On the other hand, it is easy to find
some particular solutions to (32), and we got some
simple examples by choosing H(z1, z2) to be a poly-
nomial (of degree <3) in the complex variables z,
z9. After some simplifications, we thus obtained for
G(y, t) the following possibilities:

G(y,t) = ap, (35a)
i . 1—2u
Glnt) = + LTI (35h)
—p

Gly,1) = ipﬂ{ap 1 [ap+B?  (350)

L) V2
—I—8iwayp1_2“] /} ,

which correspond to the last three solutions, (28),
(29), and (30), reported above. Of course, many ad-
ditional examples could be given.

3. DERIVATION OF THE MODIFIED
SCHWARZIAN KORTEWEG-DE VRIES
EQUATION

In this section, we indicate how the mSKdV
equation (2) is related to the SKdV equation (1),
and we thereby justify the expectation that this
evolution PDE (2) possesses lots of periodic, indeed
isochronous, solutions [see (4)]—as already men-
tioned in the introductory Section 1 and confirmed
by the examples reported in Section 2.

Let us introduce [see (6)] the following change of
(independent and dependent) variables (“the trick”):

u(x,y,t) - P)‘w(fa"?aT)a (363)

ﬂ(x,y,t) - pﬂw(gvnﬂ—)v (36b)

§=¢&(x,t) = xph, (36¢)

n=n(y,t) =yp’ (36d)
_p—1

T=171(t) = — (36e)

Note that this change of variables entails no change
at the “initial” time, t = 0:

U(Q?, Y, 0) = w(xv Y, 0)7
u(z,y,0) = w(z,y,0);

(37)

PHYSICS OF ATOMIC NUCLEI

CALOGERO, MARIANI

and it is plain that this change of variables (36) entails
the following relations:

(@, 1) — dwu(@, g, t) — ipwrug(z,y,t) (38a)
— ivwyuy(z,y,t) = p* M w.(§n,7),

ug(,y,t) = P Mwe(€,m,7),  (38b)

uy (@, y,t) = P wy (€7, 7), (38¢)

Uga(2,y, 1) = p* T wee (§,m, 7), (38d)

Uy (Y, 1) = PP gy (€1, 7), (38e)

Ugay (2, Y1) = P weey (E,m,7),  (38)

Uy (2, y,t) = p*e(€,m,7), (38g)

Uy(x,y,t) = p oy (&, n, 7). (38h)

Therefore, via this change of dependent and inde-
pendent variables (36), the SKdV equation (1) gets
transformed into the following PDE:

{ur — iIdwu — ipwru, — ivwyu,}p” 1 (39a)
2 ~
Upllpy — Ugglly — Uplly  Uglly
- _ — — =0
Tt T Ty lu 2@ 8 !
2
= (=) (39b)
u
and the assignment

v=1-2u (40)

immediately yields the autonomous equation (2).
Hence, to every solution to the SKdV equation (1)
there corresponds, via the change of (independent and
dependent) variables (36) with (40), a corresponding
solution to the mSKdV equation (2), which often
turns out to be periodic in ¢ with period T" [see (4)],
since the rational character of X and u [see (3)], hence
of v as well [see (40) and (3)], clearly entails a periodic
dependence on the (real) “time” variable ¢ with period
T [see (4b)], of &(x,t), n(y,t), and 7(t) [see (36¢),
(36d), and (36e)], hence as well of the solutions
u(zx,y,t), u(z,y,t) to the mSKdV equation (2)—at
least whenever these solutions u(zx,y,t), a(x,y,t)
to the mSKdV equation (2) correspond to solutions
w(&,n, 1), w(&,n,7) to the SKAV equation (1) which
are meromorphic in the variables &, n, and 7, for 7
in the circular disk [see (36e)] |1 4 iwt| <1 (with
no poles on the boundary of this disk) and for the
values of £ and 7 yielded by (36¢) and (36d) (with
t real but otherwise unrestricted, and with x and y
possibly restricted to appropriate domains).
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Fractional Supersymmetry as a Superposition
of Ordinary Supersymmetry”

M. Daoud" and M. Kibler?
Received October 29, 2004

Abstract—It is shown how to derive fractional supersymmetric quantum mechanics of order k£ as a
superposition of k — 1 copies of ordinary supersymmetric quantum mechanics. (© 2005 Pleiades Pub-

lishing, Inc.

1. INTRODUCTION

In recent years, fractional supersymmetry has
been the subject of numerous works. Indeed, k-
fractional supersymmetry is closely connected to
the notion of quantum algebra (deformation theory)
and to the concept of intermediate statistics (of
anyon [1] and k fermions [2, 3]) interpolating between
Bose—Einstein statistics and Fermi—Dirac statistics.
Therefore, fractional supersymmetry constitutes a
useful tool for dealing with anyonic statistics.

Fractional supersymmetric quantum mechanics of
order k can be considered as an extension of or-
dinary supersymmetric quantum mechanics which
corresponds to k = 2. An ordinary supersymmetric
quantum-mechanical system may be generated from
a doublet (H, Q)2 of operators satisfying [4, 5]

Q2:07

QQ'+QlQ = H.

The self-adjoint operator H and the operator @) act on
a separable Hilbert space. The operator H is referred
to as the Hamiltonian and the operator Q) as the su-
persymmetry operator of the ordinary supersymmetric
quantum-mechanical system. The operator @ gives
rise to N’ = 2 dependent supercharges Q_ = @ and
Q-+ = Q' connected via Hermitian conjugation. They
are nilpotent operators of order £k = 2 and commute
with the Hamiltonian H.

The ordinary supersymmetric quantum-mechani-
cal system (H, Q) can be extended to a fractional su-
persymmetric quantum-mechanical system (H, Q)

*The text was submitted by the authors in English.

DLaboratoire de Physique de la Matiére Condensée, Faculté
des Sciences, Université Ibn Zohr, Agadir, Morocco.

Hnstitut de Physique Nucléaire de Lyon, IN2P3—CNRS et
Universite Claude Bernard, Villeurbanne Cedex, France;
e-mail: kibler@ipnl.in2p3.fr

with k € N\ {0, 1,2} as follows. The system (H, Q)
may be defined by [6, 7]

Q-=Q, Q+=Q"(=0:+=Q"), (la)
Qk =0,
Q"' + QM2 Q- + ... (1b)
+ QL Q= 2H,
[H,Q+] =0, H=H (1c)

where the seli-adjoint operator H, the Hamiltonian
of the system, and the N' = 2 supercharges Q_ and
Q@+ act on a separable Hilbert space. Of course, the
case k = 2 corresponds to an ordinary supersymmet-
ric quantum-mechanical system.

In the present work, we study how it is possible
to connect ordinary and k-fractional supersymmetric
quantum-mechanical systems.

9. THE ALGEBRA W,

As an interesting question, we may ask: How
to construct a fractional supersymmetric quantum-
mechanical system of order k£ and, thus, fractional
supersymmetric quantum mechanics of order k? This
question can be answered through the definition of a
generalized Weyl—Heisenberg algebra Wj. We now
define the generic algebra W}, and shall see in the next
section how a fractional supersymmetric quantum-
mechanical system of order & may be associated with
a given algebra W.

For k given, with k € N\ {0, 1}, the algebra W}, is
generated by four linear operators X_, X, N, and K.
The operators X_ and X4 = X7 are shift operators

connected via Hermitian conjugation. The operator
N, called number operator, is self-adjoint. Finally,

1063-7788/05/6810-1654$26.00 © 2005 Pleiades Publishing, Inc.
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the operator K is a Zj-grading unitary operator. The
generators X_, Xy, N, and K satisfy 8]

X—7X+ Zfs
[N,X_]=—-X_ (+h.c.),
[K,X_],=0(+hc),
[K,N]=0, K'=1.

The functions fs: N+ fs(IN) are such that
fs(N)T = fs(N), [A, B], stands for AB — ¢BA, and
the operators Il are defined by
k—1

qfsth’
t=0

. 2mi
= X _—
q p 2

is a root of unity. To a given set { fs : s =0, 1,...
1} corresponds one algebra W.

II; =

ol

where

7k_

The generalized Weyl—Heisenberg algebra Wj
covers numerous algebras describing exactly solvable
one-dimensional systems. The particular system
corresponding toa givenset {fs : s =0,1,...,k—1}
yields, in a Schrédinger picture, a particular dynam-
ical system with a specific potential. Let us mention
two interesting cases. The case

Vs € {0,1,...,k— 1} : fo(NN)
= fs independent of N

corresponds to systems with cyclic shape-invariant
potentials (in the sense of [9]), and the case

Vs € {0,1,...,k—1}: fo(N)
=aN +b,(a,b) € R?

corresponds to systems with translational shape-
invariant potentials (in the sense of [10]). For in-
stance, the case (a =0,b > 0) corresponds to the
harmonic oscillator potential, the case (a < 0,6 >0)
to the Morse potential, and the case (a > 0,6 > 0)
to the Poschl—Teller potential. For these various
potentials, the part of W}, spanned by X_, X, and N
can be identified with the ordinary Weyl—Heisenberg
algebra for (a = 0,b # 0), with the su(2) Lie algebra
for (a < 0,b > 0) and with the su(1,1) Lie algebra for
(a>0,b>0).
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3. A kE-FRACTIONAL SYSTEM ASSOCIATED
WITH Wy

In order to associate a k-fractional supersym-
metric quantum-mechanical system associated with
a given generalized Weyl—Heisenberg algebra W,
we must define a supersymmetry operator @ and a
Hamiltonian H. The supersymmetry operator @ is
defined by

Q=Q-=X_(1-h)=Q' =
= X4 (1 —1lp).
Then, the Hamiltonian H associated with W}, can be
deduced from Eq. (1b). This yields

H=(k-1)X,X_

Q+

k s—1
ZZt—lft — s+ )11,
=2
e
ZZ N — s+ t)I1;.
s=1 t=s

(Note that the summation from s=%k -2 to s =%
appearing in some previous works by the authors [8]
should be replaced by a summation from s =3 to
s = k.) It can be checked that H is self-adjoint and
commutes with @Q_ and Q.. As a conclusion, the
doublet (H, Q) associated to W, satisfies Eq. (1) and
thus defines a k-fractional supersymmetric quantum-
mechanical system.

4. CONNECTION BETWEEN FRACTIONAL
SUPERSYMMETRY AND ORDINARY
SUPERSYMMETRY

In order to establish a connection between frac-
tional supersymmetric quantum mechanics of order
k and ordinary supersymmetric quantum mechanics
(corresponding to k = 2), it is necessary to construct
subsystems from the doublet (H, Q) that correspond
to ordinary supersymmetric quantum-mechanical
systems. This may be achieved in the following
way [11]. The general Hamiltonian H can be rewritten
as

k
H =) H,I,
s=1

where
Hy=H,N)=(k-1)X X_

t—=1)fe(N —s+1)

—s+t.

k—1) th

Vol. 68 No. 10 2005



1656

[t can be shown that the operators Hjy = Hy,
Hy_1,...,H; turn out to be isospectral operators. It
is possible to factorize Hg as[11]

Hy, = X(s5)+X(s)-.
Let us now define (i) the two (supercharge) operators
a(s)- = X(s) T, g(s)5 = X(5)4T, 4
and (ii) the (Hamiltonian) operator
h(s) = X(s)-X(s)4+IIs—1 + X (s)+ X (s)_IL,.

[t is then a simple matter of calculation to prove that
h(s) is self-adjoint and that

a(s)r =a(s)t, a(s)i =0,
h(s) = {a(s)—.a(s)+}, [h(s),a(s)+] = 0.

Consequently, the doublet (h(s), q(s))2, with ¢(s) =
q(s)—, satisfies Eq. (1) with £ = 2 and thus defines an
ordinary supersymmetric quantum-mechanical sys-
tem (corresponding to k = 2).

The Hamiltonian h(s) is amenable to a form more
appropriate for discussing the link between ordinary
supersymmetry and fractional supersymmetry. In-
deed, we can show that

X(s)-X(s)y = Hs(N +1).
Then, we can obtain the important relation
h(S) = H, II,_1 + H,II,

to be compared with the expansion of H in terms of
supersymmetric partners Hj.

As a result, the system (H,Q)g, corresponding
to k-fractional supersymmetry, can be described in
terms of k — 1 subsystems (h(s), ¢(s))2, correspond-
ing to ordinary supersymmetry. The Hamiltonian A(s)
is given as a sum involving the supersymmetric part-
ners Hgs_; and H,. Since the supercharges ¢(s)+
commute with the Hamiltonian h(s), it follows that

Hs 1X(s)- = X(s)_Hs,
HX(s)+ = X(s)4+Hs—1.

As a consequence, the operators X (s); and X (s)—
make it possible to pass from the spectrum of H,_q
and H, to the one of H; and H;_1, respectively. This
result is quite familiar for ordinary supersymmetric
quantum mechanics (corresponding to s = 2).

For k = 2, the operator h(1) is nothing but the to-
tal Hamiltonian H corresponding to ordinary super-
symmetric quantum mechanics. For arbitrary k, the
other operators h(s) are simple replicas (except for the
ground state of h(s)) of A(1). In this sense, fractional
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supersymmetric quantum mechanics of order k can
be considered as a set of k — 1 replicas of ordinary
supersymmetric quantum mechanics corresponding
to k = 2 and typically described by (h(s),q(s))2. As
a further argument, it is to be emphasized that

k
H=4q(2)-q2)+ +Y_q(s)1q(s)-,
s=2

which can be identified with A(2) for k = 2.

5. CONCLUSIONS

Starting from a Zj-graded algebra W} charac-
terized by a set {fs:s=0,1,...,k— 1} of struc-
ture functions, it was shown how to associate a
k-fractional supersymmetric quantum-mechanical
system (H, Q) characterized by an Hamiltonian H
and a supercharge Q.

The Hamiltonian H for the system (H,Q); was
developed as a superposition of k isospectral super-
symmetric partners Hy, Hx_1, ..., Hy. It was proved
that the system (H,Q)x can be described in terms
of k — 1 subsystems (h(s), q(s))2 which are ordinary
supersymmetric quantum-mechanical systems.
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Abstract—Using the integral representation of the inverse of the logarithmic derivative of the elliptic
theta function, the spectrum of the Lax matrix for the 1D system of particles interacting via an inverse
sinh-squared potential is shown to be given by the asymptotic Bethe ansatz in the thermodynamic limit.
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The problem of the verification of the asymptotic
Bethe ansatz method [1] still remains unsolved more
than 30 years after its first presentation. The method
consists in using only scattering data for the descrip-
tion of integrable many-body systems in the thermo-
dynamic limit. It is well known, that if the system
is integrable in the Yang—Baxter sense, the many-
body scattering matrix is expressed via only a two-
particle phase shift, but the real structure of the wave
functions might be rather complicated if the inter-
action is nonlocal. In particular, when the two-body
potential is of the form sin=2(7wx/L), where L is the

size of the system, or 1/sinh?(z), the wave functions
differ drastically from the linear combinations of the
plane waves inherent for the Bethe ansatz. Despite
the fact that the exact results in the thermodynamic
limit available for sin=2(72/L) case are in complete
coincidence with the asymptotic Bethe ansatz, the
reason for this coincidence is still quite mysterious
and it cannot be used as an argument to validate
the method for the case of 1/sinh?z pair potential,
which is more complicated from the mathematical
viewpoint.

Due to the lack of a general approach to the
problem, any particular exact results confirming the
asymptotic Bethe ansatz are of interest. Some years
ago, Sutherland [2] proposed one example of a very
good numerical coincidence of the asymptotic results
with exact ones. It concerns the densities of the
distribution of the eigenvalues of the L matrix from
the Lax pair[3] for the systems of particles interacting

*The text was submitted by the authors in English.
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also a member of the Doppler Institute for Mathematical
Physics, Faculty of Nuclear Sciences and Physical Engi-
neering, Czech Technical University, Prague.

2Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia; e-mail: inozv@thsunl. jinr.ru

via 1/sinh?(z) potential,
ij = pjéjk + (1 — (5]k)Z>\ coth(xj — ack.),
where p; = —i0/0x; obey the canonical commu-

tation relations [x;,pr] = i0;x. The corresponding
Hamilton operator reads

N
1 1
p=lypiey L
2 JZI J % sinh?(z; — x)
Asymptotically, if r1 < z9 < --- < 2, the particles
have the momenta k1 < ko < --- < ky and the ele-
ments of the Lax matrix become ¢ numbers:
(Las)jk = kjdjk + i)\sgn(j — k) (1)
The asymptotic Bethe ansatz gives the asymptotic
momenta as solutions to the equations
N
Lkj=2nlj+ Y 7(k; — k), (2)
Y
where 7(k) is the two-body phase shift, L is the total
size of a system, and {I;} are quantum numbers. In
the classical limit A — oo, for the ground state, (2)
becomes an integral equation for large N and L [4]:

A
2a= [ da'y(z —a)p(a'), (3)
/

where
() = (1 +27%),
p(z) is the density of the momentum distribution
in the ground state, and a = L/N is the average
nearest-neighbor spacing (or the lattice constant).
The kernel of this integral equation is symmetric and
positive definite. Thus, it has unique solution at given
A [5]. The normalization condition
A

[ otanyis’ =1 (4)

—A

1063-7788/05/6810-1657$26.00 © 2005 Pleiades Publishing, Inc.
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defines A as a function of a. The distribution of the
eigenvalues of the Lax matrix can be connected with
the distribution of the momenta [2]. Indeed, it follows
from (1) that the equation for the eigenvalues

det(Lys — 12)
L x N
2|:H( —z+1iN\) + szz)\]
it -
: N
:H(ws—z) 0
s=1

can be written as

N
1 wWs + tA
1/2)n = — o ws T A
(s +1/2) 22 [k —ws—z)\]

= g arctan .
— kj — Ws
7j=1

A discontinuous branch of arctan with values in [0, 7]
is used here. In the thermodynamic limit, the eigen-
values {w} are distributed with the density o(w):
No(w)dw gives the number of {w} in the interval
(w,w + dw). Hence,

d

i = No(w).
Differentiating the above relation with respect to w
and taking classical limit gives

L/A dzp(z)
27T7A (

(5)

") | Goep i

after recalling of variables [2]. One can see that, in the
classical limit, the density o(w) can be calculated via
the solution of the integral equation of the asymptotic
Bethe ansatz method (3).

On the other hand, in this limit, the particles take
their equilibrium positions at x; = ja in the ground
state with k; = 0. The form of the Lax matrix be-
comes simpler,

Ly = (1 - 8p)ideothla( — k), (6)

and the distribution of its eigenvalues can be cal-
culated directly since (6) is of the Toeplitz form. Its
eigenvectors are plane waves, and after imposing a
periodic boundary condition (i.e., regularization of
the determinant) and taking thermodynamic limit
N — o0, one could introduce the variable ¢ = 27s/N
defining the continuous distribution

w(p) = ws = Wne/2r-
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The result can be written upon rescaling w — 2w in
the form [2]

g
0= 29,002y

where 60 (z) is the standard theta function

_QZ

with the nome ¢ = e™*. The density of the eigenvalues
is given now by the formula
1 do

o(w) = I A (8)

where the derivative is calculated through the relation

(7)

g2 in(2n + 1)x

do _ 1701(6/2)7

%=1 o) )
 K*[K-E 1

N ?{ K ‘srﬂ(m/w)}

Thus, one gets two representations for the density of
the eigenvalues of the classical Lax matrix, one exact
[formulas (7)—(9)] and one obtained by using the
asymptotic Bethe ansatz method [formulas (3)—(5)].
If it is true, they should coincide. The main difficulty
in verifying this fact is that there is no chance to
find an analytic solution to the integral equation (3).
In [2], Sutherland found good coincidence of both
expressions by solving this equation numerically with
high accuracy. However, an analytic solution of the
problem has not been found.

In what follows, we propose a construction which
uses analytic properties of the elliptic functions and
provides the desired proof. Let us introduce the no-
tation x, = Rex, x; = Imy for any complex x. Con-
sider at first the problem of explicit construction of the
inverse function ¢(w) such that

PwA) = A

[t is clear that it is no longer holomorphic in the
w plane. Indeed, on the lines ¢ = ¢, + ia one finds
w(¢) = w, £ /2 due to the quasiperiodicity property

w(p + 2ia) =w(P) +1i, w(P+2m) = w(e).
One has also
wr(tia) = w, (27 £ da) = 0.
The derivative dw/d¢ is double periodic with periods

(2m,2ia) and has a double pole in the fundamental

domain
0 <Re¢p <2m, —a<Im¢<a.

Therefore, it must have just two zeros giving two
extremal points of w(¢): one minimum of w, located
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at ¢min + ia and one maximum located at 27 — i +
ia. Both of these extrema are considered with respect
to line Im¢ = a, and ¢min € (0,27). Let us denote
Qo = wp (27 — Pmin + ia). Then it is evident that the
function ¢(w) should have two cuts in the w plane
represented by the segments —Qy < w, < Qp, w; =
1/2 and —Qp < w, < Qp, w; = —1/2. Following Hal-
dane [6], let us express ¢ as a Cauchy integral over
the contour along the image of the boundary of the
fundamental domain and use the symmetry properties
of w(¢). We skip these rather long but in fact simple
considerations. Only the integral over the finite inter-
val remains, and after integrating by parts, we obtain

Qo
1, w—z—1i/2

b(w) = / dpo() > Tn

_. 1
i w—x+1i/2 (10)
—Qo

The still unknown function pg(x) is normalized due
to the properties of the function ¢, w(¢ + 27) = w(¢),
and the integral representation (10),

Qo

/ po(x)dx = 1.
—Qo
On the other hand, we know that ¢;(w +i/2) = +ia
for all real w in the interval —Qy < w < Q. This gives

an integral equation for the function pg(z) entering
(10) of the form quite similar to (3):

(11)

Imp(w +1i/2) = a (12)
Qo
- % / dzpo(w) In(1 + (w —2)7%).
—Qo

Note also that the same equation can be obtained with
the use of the quasiperiodicity property w(¢ + 2ia) =
w(¢) + 4 and the representation (10).
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Equations (3) and (12) become completely iden-
tical if one sets A = {p; i.e., the meaning of the
parameter A is that it defines the maximal value of
wr(¢) on the segment 0 < ¢, < 2w, ¢; = ia due to
the uniqueness of the solution to (3) mentioned above.

[t is straightiorward now to verify by differentiating
(10) with respect to w that the derivative dw/d¢ has
the integral representation

_ Qo
(&) - [ ="

S840

(13)

Comparing both sets of formulas (3)—(5) and (11)—
(13), one can easily see that the expressions for the
spectral density of the Lax matrix in the classical
limit coincide after identification p(z) = po(x). This
completes the proof.
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1. INTRODUCTION

Recently, superconformal field theories in various
dimensions have been attracting more interest, in
particular, due to their duality to AdS supergravities
(cf. [1-58] and references therein). Until recently,
only those for D < 6 were studied since in these cases
the relevant superconformal algebras satisfy [59] the
Haag—Lopuszanski—Sohnius theorem [60]. Thus,
such a classification was known only for the D =4
superconformal algebras su(2,2/N) [61] (for N =
1), [62—65] (for arbitrary N). More recently, the
classification for D = 3 (foreven N), D = 5,and D =
6 (for N = 1,2) was given in [66] (some results are
conjectural), and then the D = 6 case (for arbitrary
N)was finalized in [67].

On the other hand, the applications in string the-
ory require the knowledge of the unitary irreducible
representations (UIRs) of the conformal superalge-
bras for D > 6. The most prominent role is played
by the superalgebras osp(1]2n) (cf. their applications
in, e.g.,[68—77]). Initially, the superalgebra osp(1|32)
was put forward for D = 10 [68]. Later, it was real-
ized that osp(1|2n) would fit any dimension, though
they are minimal only for D = 3,9,10,11 (for n =
2,16, 16, 32, respectively) [74]. In all cases, we need
to find first the UIRs of osp(1|2n,R). This can be
done for general n. Thus, in this paper, we treat the
UIRs of osp(1|2n,R) only, while the implications for

conformal supersymmetry for D = 9,10, 11 shall be
treated in a follow-up paper.

*The text was submitted by the authors in English.

DSchool of Informatics, University of Northumbria,
Newcastle-upon-Tyne, UK; permanent address: Institute of
Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, Sofia, Bulgaria; e-mail: dobrev@inrne.bas.bg
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2. REPRESENTATIONS
OF THE SUPERALGEBRAS osp(1|2n)
AND osp(1|2n,R)

2.1. The Setting

Our basic references for Lie superalgebras are [78,
79]. The conformal superalgebras in D =9,10,11
are G = osp(1|2n,R), n =16,16,32, respectively
(cf. [68, 74]). The even subalgebra of osp(1|2n,R)
is the algebra sp(2n,R) with maximal compact
subalgebra K = u(n) = su(n) @ u(1l). The alge-
bra sp(2n,R) contains the conformal algebra C =
so(D,2), while K contains the maximal compact
subalgebra so(D) & so(2) of C, so(2) being identified
with the u(1) factor of K.

We label the relevant representations of G by the
signature

.,an,l], (1)

where d is the conformal weight, and a4, ..., a,—_; are
nonnegative integers which are Dynkin labels of the
finite-dimensional UIRs of the subalgebra su(n) (the
simple part of ).

X = [d;aq,..

Our aim is to classify the UIRs of G following
the methods used for the D = 4,6 conformal super-
algebras (cf. [62—65], [67], respectively). The main
tool is an adaptation of the Shapovalov form on the
Verma modules VX over the complexification G€ =
osp(1]2n) of G.

2.2 Verma Modules

To introduce Verma modules, we use the standard
triangular decomposition:

GC=¢teHaG, (2)

where Gt and G~ are the subalgebras corresponding
to the positive and negative roots, and H denotes the
Cartan subalgebra.

1063-7788/05/6810-1660$26.00 © 2005 Pleiades Publishing, Inc.
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We consider lowest weight Verma modules, so
that VA = U(G) ® vg, where U(G*) is the universal
enveloping algebra of G, and vg is a lowest weight
vector vg such that

Zvy=0, ZegG, (3)
Hvg = A(H)vy, H €H.

Further, for simplicity, we omit the sign ®; i.e., we
write pvg € V2 withp € U(GT).

The lowest weight A is characterized by its values
on the simple roots of the superalgebra. In the next
subsection, we describe the root system.

2.3. Root Systems

We recall some facts about G& = osp(1]2n) (de-
noted B(0,n) in[78]). Their root systems are given in
terms of (51, - ,(571, ((5“ (53) = 5ija ’i,j = 1, e, n. The
even and odd roots systems are [78]

A(] = {idiiéj,l <i<j<n,£2,1 SZS’I?,},
(4)
A; ={£d;,1 <i<n}
(we recall that the signs + are not correlated). We

shall use the following distinguished simple root sys-
tem [78]:

H:{51_527---7671—1_5717571}7 (5)
or introducing standard notation for the simple roots:
II={a,...,an}, (6)

Oéj:(sj_(sj-f—lv jzlv"'vn_L Oén:(sn-

The root a,,, = d,, is odd, the other simple roots are
even. The Dynkin diagram is as follows:

At (@)

The black dot is used to signify that the simple odd
root is not nilpotent, otherwise a gray dot would
be used [78]. In fact, the superalgebras B(0,n) =
osp(1]2n) have no nilpotent generators, unlike all
other types of basic classical Lie superalgebras [78].
The positive root system corresponding to I is

AT ={6;+0;,1 <i<j<n,26,1<i<n}, (8)
Jr _ .
A7 ={d;,1 <i<n}.
We record how the elementary functionals are ex-
pressed through the simple roots:
O = + ...+ ay. (9)
The even root system Ay is the root system of the

rank-n complex simple Lie algebra sp(2n), with A(E)L
being its positive roots. The simple roots are

My = {01 — 69y, 0n1—6n,26,}  (10)
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= {04(1),...,042},

0— j=1,...,n—1, al =26,.

Oé] (5j — (5j+1,
The Dynkin diagram is as follows:

O—+++—— 0O <—oO
1 n—1 n

(11)

The superalgebra G = osp(1|2n,R) is a split real
form of osp(1]|2n) and has the same root system.

2.4. Lowest Weight through the Signature

Since we use a Dynkin labeling, we have the fol-
lowing relation with the signature y from (1):

Aay) =4 W k< 12
( ’ k) {d, b= n, ( )
where o) = 2ay/ (o, ), and d differs from the con-
formal weight d as explained below. The minus signs
in the first row are related to the fact that we work
with lowest weight Verma modules (instead of the
highest weight modules used in [79]) and to Verma
module reducibility with respect to the roots «y (this
is explained in detail in [64]). The value of d is a matter
of normalization so as to correspond to some known
cases. Thus, our choice is

d=2d+ a1+ ...+ an_1. (13)

Having in hand the values of A on the basis, we
can recover them for any element of H*. In particular,
for the values on the elementary functionals, we have
using (9), (12), and (13)

1
(A,(Sj):d—i- §(a1+...—|—aj_1 (14)

—aj—...—an,l).

Using (12) and (13), one can easily write A = A(x)
as a linear combination of the simple roots or of the
elementary functionals §;, but this is not necessary
in what follows. We shall need only (A,3Y) for all
positive roots 3 and from (14) we have
(Av (5i_5j)v) = (Av(si _5j) (15)
= —a; — ... —aj,l,

(Aa (51 + 5j)v) - (Aaél + 5]) =2d
-l-al-l—...-l-ai,l—aj—...—an,l,
(A,8)) = (A, 25) =2d
+a1+...+a;—1—a; —...— Qp_1,

(A, (26:)Y) = (A, 6) = d

(al—i—...-l-al-,l—ai—...—an,l).

N | —

+
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2.5. Reducibility of Verma Modules

Having established the relation between y and A,
we turn our attention to the question of reducibility.

A Verma module VA is reducible with respect to the
positive root (3 if the following holds [79]:

(p_Aaﬁv):m,Bv /BEA+7 (16)

where p € H* is the very important element in repre-
sentation theory given by the difference of the half-
sums pg and py of the even and odd, respectively,
positive roots [cf. (8)]:

1
pP=pPp—p1= <n—§)61

3 3 1
+<n—§)(5g++§5n1+§5n,

pg =n01+ (n—1)0 + ...+ 20,-1 + 0Op,

ngN,

(17)

1
pr =501+ +dn).

To make (16) explicit, we need first the values of p
on the positive odd roots:

1
(.6 =n—i+ 3. (18)
Then for (p, 3") we have
(p, (0 = 0;)") =5 —4, (19)

(ps (6 +0;)Y)=2n—i—j+1,
(p,0)) =2n —2i + 1,

VY . 1
(p,(26)") =n—i+ 5.

Naturally, the value of p on the simple roots is I:
(p,af)=1,i=1,...,n.
Consecutively, we find that the Verma module

VAN s reducible if one of the following relations
holds [following the order of (15) and (19)]:

Nom;=j—i+a+...+a5, (20a)

Nomf=2n—i—j+14a;+... (20Db)
+ap_1—ay —...—aj_1 — 2d,

Nom;=2n—-2i+14a;+ ... (20c¢)
+ap_1—a1+...—a;_1 — 2d,

+ ap—1 —a1+...—ai,1)—d.
Note that m; = 2my;; thus, whenever (20d) is fulfilled,
(20c) is also fulfilled.

If a condition from (20) is fulfilled, then V4 con-

tains a submodule which is a Verma module VA" with
shifted weight given by the pair m,3: A’ = A + mg.
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The embedding of VA" in VA is provided by mapping
the lowest weight vector vf of VA to the singular

vector v in VA which is completely determined by
the conditions

Xv;n’ﬂ =0,
Hv?’ﬁ = A (H)vy,

Xeg, (21)
HeH, N=A+mp

Explicitly, v is given by a polynomial in the positive
root generators:

P = pmBy, PP e UG, (22)

Thus, the submodule of VA which is isomorphic to
VA is given by U(G1) P™ .

Here, we should note that we may eliminate the
reducibilities and embeddings related to the roots
20;. Indeed, let (20d) hold; then, the corresponding
singular vector o2 has the properties prescribed
by (21)with A" = A 4+ my; x 24;. But as we mentioned
above, in this situation, (20c) also holds and the cor-

responding singular vector v™% has the properties
prescribed by (21) with A” = A +m;d;. But due to the
fact that m; = 2my;, it is clear that A” = A/, which
means that the singular vectors P20 and oM
coincide (up to a nonzero multiplicative constant).
On the other hand, if (20c) holds with m; being an odd
number, then (20d) does not hold (since m;; = m;/2
is not integer).

Further, we notice that all reducibility conditions
in (20a) are fulfilled. In particular, for the simple roots
from those conditions, (20a) is fulfilled with 8 — «; =
(51‘—51‘4_1, ’i:1,...,n—1, and mz_ Em;i+1 =1+
a;. The corresponding submodules I} = U(G1)vi,
where A; = A+ m; a; and v¢ = (X;7)1F %0, where
X" are the root vectors of these simple roots. These
submodules generate an invariant submodule which
we denote by I, Since these submodules are non-
trivial for all our signatures, instead of VA we shall
consider the factor-modules:

FA=vAIA, (23)

We shall denote the lowest weight vector of FA by

|A) and the singular vectors above become null con-
ditions in FA :

(XA =0, i=1,....,n—1.  (24)
If the Verma module VA is not reducible with

respect to the other roots, i.e., (20b), (20c), and (20d)

are not fulfilled, then F2 is irreducible and is isomor-
phic to the irrep L with this weight.

Other situations shall be discussed below in the
context of unitarity.
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2.6. Realization of osp(1|2n) and osp(1|2n,R)

The superalgebras osp(m|2n) = osp(m|2n)5 +
osp(m|2n) are defined as follows [78]:

osp(m|2n)s = {X € gl(m/2n;C)s : XW
+is WX =0}, s=0,1,

where W is a matrix of order m + 2n:

il,, 0 0
W=10 o0 I,
0 —I, 0

The even part osp(m|2n)g consists of matrices X
such that

S0 0
X=10B C |, (25)
0 D —'B
'S=-5, '‘C=C, 'D=D.

In ourcase, m = 1and S = 0. The Cartan subalgebra
‘H consists of diagonal matrices H such that

00 0
H=10B 0
00 —B

We take the following basis for the Cartan subalge-
bra:

00 O
Hi=10B, 0 , 1<, (26)
0 0 —B;
00 O
Hy,=101, 0 |,
00 -1,

where
B; = diag(0,...,0,1,—1,0,...,0)

is the first nonzero entry being on the ith place. This
basis shall be used also for the real form osp(1|2n,R)
and is chosen to be consistent with the fact that the
even subalgebra sp(2n,R) of the latter has as maxi-
mal noncompact subalgebra the algebra si(n,R) ® R.
Via the Weyl unitary trick, this related to the structure
of sp(2n,R) as a Hermitian symmetric space with
maximal compact subalgebra u(n) = su(n) ® u(1).
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The root vectors of the roots §; — d; (i # j), 6; + 0,
(1 <j), —(0; + ;) (i < j), respectively, are denoted
Xij, X;jf, X, respectively. The latter are given by
matrices of the type (25) with § =0, given (up to
multiplicative normalization) by B = E;;, C' = E;; +
Eji, D = E;; + Ej;, respectively, where E;; is n xn
matrix which has only one nonzero entry equal to 1
on the intersection of the i¢th row and jth column.
Explicitly including some choice of normalization,
this is

00 0
Xij =10 Eij 0 ) 275,]7 (27)
00 —Ej
00 0
+7 . .
Xij =100 —-E;jj —FE; | <7
00 0
00 0
Xt=100-E;:|>
00 0
0 0 0
Xi;i=1o0 0 0], <7
0 0 0
Xi;=100 0
0 E; 0

The odd part osp(m|2n); consists of matrices X
such that

0 & —n
X = t?’]OO
e 0

The root vectors Yi+, Y,” of the roots §;, —d; corre-

spond to n, £, respectively, with only a nonzero ith
entry. Explicitly, this is

0 0 —Ey
Yi=|E,0 o | (28)
00 0
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0 Ey; 0
Y"=[0 0 o0
Eq 0 0

In the calculations, we need all commutators of the
kind [X3, X_3] = Hpg, 3 € AL Explicitly, we have

[Xijani] = Hij =H, + Hi—i—l + ...+ Hj—la (298)
1<i< g <n,
0 0 0
[}/i+’§/ii]+ =Hi=|oE; 0 |, (29b)
0 0 —FE;
1<1<n,
[X;;’Xi;] :Hzfj :—H{—Hj’», (29¢)
1 <<y <n,
(X, X;]=-H], 1<i<n, (29d)

The minus sign in (29d) is consistent with the rela-
tions

1
E[Yiiayiih = (V) = X1 (30)
We note also the following relations:
D/er?YVji]Jr:leu 17&]7 (31)

+ + + . .
[Y; 7}/} ]+:Xij7 27&]7
H,=H +...+H,.

We shall also use the abstract defining relations of
0sp(1|2n) through the Chevalley basis. Let H;, i =
1,...,n, be the basis of the Cartan subalgebra H as-
sociated with the simple roots, and Xii, i=1,...,n,

be the simple root vectors (the Chevalley generators).
The connection with the basis above is

Hi=H;, i<n, H,=H, (32)
XF=X75,, i<n, XF=YF
Let A = (a;;) be the Cartan matrix [78]:
A = (aij) (33)
2 -1 0 0 0 O
-1 2 -1 0 0 O
0 -1 2 0 0 O
0 0 O 2 -1 0
0 0 O -1 2 -1
0 0 O 0 -2 2
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We shall also use the decomposition A = AYAS®,
where A? = diag (1,...,1,2) and A® is a symmetric

matrix:

A® = (af) (34)

2 -1 0 0 0 0

-1 2 -1 0 0 0

0 -1 2 0 0 0

0 0 O 2 -1 0

0 0 O -1 2 -1

0 0 0 0 -1 1

Then the defining relations of osp(1|2n) are

[H;, H;] =0, [H;, X]]=+a};X;, (35)

[Xi7, X;) = 65 Hi,
(AAXF)R(XE) =0, j#k njp=1-a,
where in (35) one uses the supercommutator

(AdXF)(XE) = [XF, X}] (36)

+ +
= XFXE — (1) i xE X

2.7. Shapovalov Form and Unitarity

The Shapovalov form is a bilinear C—valued form
on U(G™") [80], which we extend in the obvious way
to Verma modules (cf., e.g., [65]). We also need the
involutive antiautomorphism w of U(G) which will
provide the real form we are interested in. Since this
is the split real form osp(1|2n,R), we use

w(Xpg)=X_p, w(H)=H, (37)

where Xz is the root vector corresponding to the root
B, H e H.

Thus, an adaptation of the Shapovalov form suit-
able for our purposes is defined as follows:

(u,u") = (puo, p'vo) (38)

= (vo,w(p)p'vo) = (w(p")pvo, vo),
o =plug, pp €UGT),uu € VA,

supplemented by the normalization condition
(vo,v9) = 1. The norms squared of the states will be
denoted by

U = po,

(39)

[lull” = (u, u).
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Now, we need to introduce a PBW basis of U(G™).
We use the so-called normal ordering; namely, if we
have the relation

/8 = /8/ + /8//7 /87/6/7/8// € AJr’

then the corresponding root vectors are ordered in the
PBW basis as follows:

(X (X (X

kKK €T,

o (40)

We also have to take into account relation (30)
between the root vectors corresponding to the roots
0; and 26;. Because of this relation and consistently
with (40), the generators X, i =1,...,n, are not
present in the PBW basis. On the other hand, the
PBW basis of the even subalgebra of U(G™) will differ
from the above only in the fact that the powers of X",
i =1,...,n,are only even representing powers of the

even generators X;f,i=1,...,n.

3. UNITARITY
3.1. Calculation of Some Norms

In this subsection, we show how to use the
form (38) to calculate the norms of the states. We
shall use the isomorphism between the Cartan subal-
gebra H and its dual H*. This is given by the following
correspondence: to every element 5 € H*, there is
unique element Hg € H such that

p(Hg) = (1, 87) (41)
for every u € H*, u # 0. Applying this to the positive
roots, we have the following: to 8 = 6; — d;, 6;, 6; + 05,
respectively, correspond Hg = H;j, Hj, H] + Hj.

We give now explicitly the norms of the one-

particle states, introducing also notation for future
use:

T = |1 X5v0]1* = (Xijv0, Xijv0) (42)
= (vo, X;i Xijv0) = (vo, (Xi5 Xji — Hij)vo)
= —A(Hy)=—(A (6 = 0;)") =ai+ ... +aj-1,
i < J,

:c:; = ||X;]fv0||2 = (X;;»vo,X;;-vo)
= (w0, Xj; X;5v0) = (vo, (X5 X5; — Hij)vo)
= —A(Hj;) = A(H; + Hj) = (A, (5 +6;)")
=2d+a1+...+a;—1 —aj —...—ap_1,
i = || vol[* = (X v0, X[ vo)
= (v, X; X; o) = (vo, (= X;" X, + H})vo)
=AH) =(N6)=2d+ar1+ ... +a;1

—Q; — ... — Qp-1.
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Positivity of all these norms gives the following
necessary conditions for unitarity:

a; 20, (43)

i=1,...,n—1,
1
dZ §(a1+...—i—an_1).

In fact, the boundary values are possible due to factor-
ing out of the corresponding null states when passing
from the Verma module to the unitary irreducible
factor module.

Further, we shall discuss only norms which involve
the conformal weight since the others are related to
unitarity of the irrep restricted to the maximal simple
compact subalgebra su(n). The norms that we are
going to consider can be written in terms of factors
(d—...), and the leading term in d has a positive
coefficient. Thus, for d large enough, all norms will be
positive. When d is decreasing, there is a critical point
at which one (or more) norm(s) will become zero. This
critical point (called the “first reduction point” in [61])
can be read off from the reducibility conditions, since
at that point the Verma module is reducible (and it
is the corresponding submodule that has zero norm
states).

The maximal d coming from the different possibil-
ities in (20b) are obtained for m;rj =1 and they also
denote the corresponding root:

1
d; j En—l—g(aj—l—...—i—an,l—al—...
— i1 —1—j),

(44)

the corresponding root being ¢; + ;. The maximal d
coming from the different possibilities in (20c) and
(20d), respectively, are obtained for m; = 1 and m;; =
1, respectively, and they are

1
dizn—i—|—§(ai—|—...+an,1 (45)
—al—...—ai_l),
1
dii = di — 3,
’ 2

the corresponding roots being ¢; and 24, respectively.
These are some orderings between these maximal
reduction points:

di >do > ...>d,,
dijy1 > digyo > ... > dip,
dij>doj>...>dj 1,

di >djp>dpy, 1<j<k<L

(46)

Obviously, the first reduction point is

1
dq :n—1—|—§(a1—|—...+an,1). (47)
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3.2. Main Result

Theorem. All positive energy unitary irre-
ducible representations of the superalgebras
osp(1]2n,R) characterized by the signature x in
(1) are obtained for real d and are given in the
following list:

1
dZdlzn—l—l-E(cu—l—...—i-an—l), (48)

no restrictions on ay;
1
d=dipo=n—-2+-(as+... +a,—1+1),

2
a1:O;

o1
d:dj_lyj:n—j—l——(aj—i—...—i—an_l—i—l),

2
ar =...=0a5-1 :0;
1
d:dn_Ln:i, a1:...:an_1:O.
Proof.
Necessity.

We give examples of states with negative norm in
the excluded intervals d < d; (cf. [81]).

Sufficiency.

The statement of the theorem for d > d; is clear
from the general considerations above. Ford = d;, we
have the first zero-norm state which is naturally given
by the corresponding singular vector v = P11y,
In fact, all states of the embedded submodule VA9

DOBREYV, ZHANG

built on v have zero norms. Due to the above
singular vector, we have the following additional null

condition in FA:

PLOAY = 0. (49)

The above conditions factorize the submodule built
on v1%1 . There are no other vectors with zero norm
at d = d; since, by a general result [79], the elemen-
tary embeddings between Verma modules are one-

dimensional. Thus, FA is the UIR L, = FA.

Further, we consider the remaining discrete points
of unitarity ford < dy,i.e, d=d; ;41,1 =1,...,n —
1. The corresponding roots are &; + d;41 = a; +
2041 + ... + 2a,. The corresponding singular vec-
tors p10itdit1 = PLoitdiciy,

Now, fix ¢, where i € {1,...,n —1}. All states
of the embedded submodule VA+9i+dit1 built on
p19i+%it1 have zero norms for d = d;;+1. Due to
the above singular vector, we have the following
additional null condition in FA:

PLOFIA) =0, d=diiy1.  (50)
At this point, the states built on the vector % and
on the vectors v1%+9%+1 for k < 4 (all of these are not
singular vectors at d = d; ;41) have a negative norm
except when a1 = ... =a; = 0. For this statement,
we may use the explicit form of these vectors. This
explicit form is the same as the singular vectors of the
same weight for the Lie algebra B,, = so(2n + 1). For
o191 this can be read off from [82] (in fact, there it is
for the more general situation of the quantum group
Uqg(By)):

1 1
V=T by, ()R (X)) T X (X ) (X = PO, (Bla)

k1=0 kn—1=0
— A)(H") (p—AN)(H"T)
b (ot (P 51b
bt = 21 oD~k (o M)~ by o1b)
1+ aq n—14+a1+...+an-1
= (—1)krtthn1y n 51

( ) 01+a1—k1 n—14+a1+...4+apn-1— kn_1 ( C)

2 -1 _
_ <1yttt (g 4 k) +ay+az n tar+...+ap1 (51d)

where H® = Hy + Hy + ... + H, {cf. (13) from [82]
with ¢=1, t=n—1, m=1, | —» —A; the last
change due to the fact that, in [82], the highest weight

modules are considered}; in (51c), we have inserted
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2+a1—|—a2—k2“'n—l—l—al—l—...—l—an_l—kn_l’

our signatures
(p—M(H*) = (p— A, (a1 + ... + ay)Y)
=(p—A,01 —s41) =My =8+ta1+...+as

and in (51d), we have made the choice of constant
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byp = ay in order to make the expression valid also for
a1 = 0. It is easy to see that, for a; = 0, the vector

vh91 is not independent, but is a descendant of the
singular vector v} = X vy:

1 1
1,01 __ 2 : § :
(% = L bl,kz...kn_l

k2=0  kn_1=0
x (X)) e

x X, DX )k (X)R X

(52)

Thus, v™9 is not present in FA for any d and a; = 0
since the null condition (49) follows from case ¢ = 1
of the null conditions (24). Analogously, if ¢ > 1 and
fixing now k < i, the vector v1%*%+1 has a nega-
tive norm at d = d; ;41 except if ap1 = 0, when it is
not independent, but is a descendant of the singular
vector v5*t = X;"  vg, and, hence, is not present
in FA (this will be given more explicitly in [81]).
Thus, for d = d; ;41 together with ay = ... = a; =0,
the condition (50) factorizing the submodule built on
vh9+9it1 js the only condition—in addition to (24 )—
needed to obtain the UIR Ly = FA atd = diiy1,1=
1,....,n—1.
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Abstract—An attempt to formulate a precise program of classification of a large family of quantum groups
is presented. This family includes the familiar quantum groups and quantum supergroups, but much
more, all unified in a very simple structure. The emphasis is on the logic of the classification scheme.
Recent results are reported without much explanation and proofs are described only in a general way.

© 2005 Pleiades Publishing, Inc.

INTRODUCTION

Among famous achievements in classification
must be included the classification of the simple Lie
algebras by Killing and Cartan, the simple super-
algebras by Kac, and the simple Lie bialgebras by
Belavin and Drinfel'd. Each case embraces a natural
category, not too small and not too large, including
large, natural families of algebras but not so large
as to defy classification. If one desires to classify the
quantum groups, then one had better be prepared to
reign in too large an ambition; half the battle is to
discover a family of quantum groups that is at once
natural (easily defined) and amenable to analysis.

This paper deals with a family dubbed ¢-algebras.
[t is indeed easy to define. What is more, it contains
a subfamily that stands in a very direct relationship
to quantized Kac-Moody algebras, so that the clas-
sification of these latter algebras is a corollary of the
classification of g-algebras. But let us go back a bit.

Serre Presentation of su(3)

The familiar basis for the real Lie algebra su(3)
includes three “step-up operators” ey, es, e3 (a basis
for the space of upper triangular 3 x 3 matrices), their
conjugates f1, fa, f3, and Cartan generators Hy, Ho,
Hj (diagonal matrices with Hy + Hy + H3 = 0). The
relations include [Hj, e;] o< e;, [H;, fj] o< f;, and the
ones that concern us the most right now, namely,

[61762] = €3, [61763] =0= [62763]7

and similar commutation relations among f;.

The nine generators (actually only eight are lin-
early independent) are “generators” in the linear
sense; su(3) consists of all real linear combinations.

*The text was submitted by the author in English.
DUniversity of California, Los Angeles, USA; e-mail:

fronsdal@physics.ucla.edu

But in another sense, the elements ey, es generate eg;
we may take the first relation as the definition of es.
This requires that we express the second and the third
relation in terms of e; and es:

le1, [e1, e2]] = 0 = [ea, [e2, e1]].

This suggestion was made by Chevalley; later, the
formulation was completed, for all simple Lie alge-
bras, by Serre. The generators eq, ey are called Serre
generators and the double commutation relations are
called Serre relations.

To summarize, the relations of su(3) take the form

[Hi,e1] =2e1, [Hi,ea] = —ea, [Ha,e1] = —ey,
[Hy, €3] = 2ey,
le1, fi] = Hi, [e1, f2] =0 = [e2, fi),
e2, fo] = Ha,

le1, [e1, e2]] = 0 = [ea, [eze1]].

Drinfel’d defined his quantum groups in this idiom,
and it seems quite essential to do so, especially if one
aims at a discussion of simple Lie algebras and the
associated quantum groups in general. Of the three
sets of relations, the first remains unchanged, while
the others are replaced by

le1, f1] = Sinzﬂl, le1, fo] =0 = e, fi],
[627f2] = SinZH27

le1, [e1, e2]nln = 0 = [e1, [e1, e2]n]n-

The Lie algebra su(3) is recovered in the limit, as the
parameter h tends to zero.
Let us pass to the general case of a simple Lie

algebra and to Drinfel’d’s quantization. Then we shall
once again specialize to the simplest case.

1063-7788/05/6810-1670$26.00 © 2005 Pleiades Publishing, Inc.
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Serre Presentation of a Simple Lie Algebra

In Serre’s presentation, a simple Lie algebra is
“generated” by three sets of elements, in direct gen-
eralization of the case of su(3), denoted e;, f;, and H;,
i =1,...,n. The relations are

[H;, Hj] = 0,
(Hi,ej] = Hi(j)ej, [Hi, f;] = —Hi(j)fj,
lei, f] = 6i H'.
The elements HY are certain linear combinations of
H;. In addition, there are Serre relations of the type
[61, [61, [ .. [61, 62] .. ] = 0.

Details are omitted, for what interests us is Drinfel’d’s
quantization of these algebras, and for this we prefer
a better notation.

Drinfel’d’s quantum group is defined by the same
generators and slightly modified relations. Here is a
complete definition.

Definition. Let M, N be two countable sets,
and ¢, two maps,

¢p: MxM—C,
P: MxN —C,

a,b— ¢™,
a,i— Hy(7).
Let
¢i,) = > ¢"H,(i)Hy, ¢(-,1)
a,be M
= Y ¢ H,Hy(i),
a,be M
and suppose that e?(:)T6(:1) £1 e N.
Let A= A(p,v) be the universal, associative,

unital C-algebra with generators {e;, fi}ien and
{H,}aem and relations

[Ho, Hy =0, a,be M,
[Haa ei] = Ha(i)eia [Haa fz] = _Ha(i)fia
fes, fj] = 815 (€20 — =900

Then the generalized quantum group A’ =
A'(¢,) is the quotient A" = AJI(A), where T(A)
is the Serre ideal.

There is a set of parameters, some of which are
less significant in that they are basis dependent. What
really matters are the numbers

gij = 6" Ha (i) Hy ()
Our concern is, above all, with the Serre ideal, that is,
the ideal generated by the Serre relations.
The Serre relations, here exactly as in the original
setting, are polynomials C'(ey, ..., e,) with the prop-
erty that

(f;,C] =0, i=1,...,n (1)

PHYSICS OF ATOMIC NUCLEI

1671

This property allows one to define a quotient algebra,
defined by replacing all such polynomials by zero. And
this quotient algebra is the object that is called a
quantum group.

So what are these relations? Drinfel’d is concerned
with direct deformations of simple Lie algebras ob-
tainable by passing to the limit when all the parame-
ters g;; tend to one. In that narrow context, there are
powerful restrictions, on the parameters ¢;;, and in
consequence of these restrictions, one finds that the
polynomials that satisfy Eq. (1) take the form

[€i, [€i, ce [ei,ej] .o ]

Here, the bracket stands for a g-commutator, for
example, [e;, e;] = e;ej — gjieje;; otherwise, these are
the same Serre relations as characterize the underly-
ing or limiting Lie algebra.

But in general, before any special conditions are
imposed on g;;, there are no Serre relations at all, no
polynomials that satisfy Eq. (1).

Now we can state the project at hand, though still
somewhat loosely: for every choice of the parameters,
to determine the Serre ideal, and by a classification of
the ideals, to arrive at a classification of a very large
class of quantum groups.

Let us put away all these complicated formulas
to consider a much simpler family of algebras, called
here g-algebras, with natural and straightforward re-
lations. These algebras have generators e; and differ-
ential operators 0;. It turns out that the determination
of the “constants” of these algebras are precisely
the Serre relations of the above generalized quantum
groups, through the identification of the generators e;
that appear in both. I shall not present the proof of
this assertion for lack of time and also because I hope
to convince you that the g-algebras would be worthy
of study even without the connection to quantum
groups.

g-ALGEBRAS

Let B =Cley,...,en] be the complex, unital al-
gebra freely generated by letters eq,...,e, and a
unit written 1. Multiplication is just the formation
of words, it is associative but not commutative, and
there are no relations. Introduce differential operators
01, ...,0n with the action defined by d;e; = d;; and

WS C[el,...,eN].
Let B, be the same algebra B with this differential

structure.

This differential structure is a curious one. For
example, the following set of equations,

6Zf = Ai7

81-(6]-95) = 5@'56 + ql-jejﬁi:c,

1=1,...,n,
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where Aq,..., Ay, can always be solved for f, what-
ever the polynomials (= words) Ay, ..., Ayx. Toillus-
trate, consider

Onf=e, Of =0 (2)

Evidently, the first relation is solved by some f =
aeyes + beger, a,b € C, and we find

o f = (a+ quab)ea, Oaof = (ago1 + b)ey.

If g12g21 = 1, then the vanishing of one implies the
vanishing of the other, and our system (2) has no
solution. But a solution exists in general for all pa-
rameters such that q12g91 # 1.

On the other hand, we may consider the system
nf=0, Of =0, (3)
which is solvable only if g12g21 = 1.

Definition. A “constant” in B, is a polynomial
C € B, having no term of order 0, such that 0;C =
0,i=1,...,N. Let 7, denote the ideal in B, that
is generated by the constants.

A connection between these algebras and quan-
tum groups is assured by the following.

Theorem. The ideal 7, of B, via the identifica-
tion of B with the subalgebra By C A, is precisely
the component I, of the Serre ideal of A.

Examples. There are no constants of order 1.
Constants of order 2 are

ere1, constantif g7 = —1,

[61, 62](121 = e1e2 — (@21€32€1, constant if
012 := qi2qo1 = 1.
Some constants of order 3:

[61, [61, 62]q21]q11q21, constant if q11012 = 1,

1 .
<Q13 — qE) (e1e2e3 + g21q31932€3€2€1 ) + Cyclic,
(4)

lf 0123 = 1.

The existence of constants depends on algebraic
relations between the parameters; in general, there
are no constants. In the special case that constants
exist, they generate an ideal Z;, and we can define a
new algebra by passing to the quotient,

B, := B,/1,.
Thus, if g;; =1, we get a Grassmann algebra; if

¢ijqj; = 1, the quantum plane, characterized by
eiej = qjiejei.
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The Matrix S

Two algebras B, and By have similar Serre ideals
if ¢y = ¢q}; foralli=1,..., N, and if for all pairs ¢, 7,
Gijqji = q;;4;; 1 a change of parameters does not
change the dimension of the Serre ideal, or if, more
precisely, the family of constants remains essentially
the same, then we shall say that the two algebras
are of the same type. By classification, we shall mean
classification by distinct types. We proceed to give a
precise meaning to this idea.

We use multi-index notation, ¢ := 41 ...4,, i =
Ty ... 11 and

6@/:(% ...8Z~1, €l‘:€j1...€j

n*

A matrix S = (Sy;) is defined by

Sg = 31/62’0,

where z|g is the term of total order 0 in the polynomial
x € B. This matrix is actually a direct sum of finite
matrices.

A polynomial z € B is homogeneous if it is a lin-
ear combination of monomials that differ only by the
order of factors. For any homogeneous polynomial
x, we define the degree G(z) as the collection of
indices (including repetitions) of the factors. Thus,
ereges and egese; both have degree {1,2,3}. The
degrees form an Abelian semigroup under the set
union, and a partial ordering is defined by inclusion.
Thus, {1,3} < {1,2,3}. This partial order gives sense
to the term “lower degree” that will be used often.

The matrix S commutes with the grading,

S=®6Sa,  (Sq)iy = 0yei,

where i, j run over the orderings of the unordered
set G.

The matrix S is singular if and only if there is a
constant in By, and S¢ is singular if and only if there
is a constant of degree GG. The existence of constants
can thus be decided by inspection of the determinants.
Forexample, if 012 := q12¢g21 = 1, then there is a con-
stant of degree G = {1,2}, namely, ejes — go1€2€1,
and

1
Sg = q12 ’

g1 1

detSGzl—O'u:O.

Important Theorem. The projection S’ of S on
B; is nonsingular; there are no constants in B;.
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The Determinant

The family {B,} of algebras is parametrized by ¢ =
{@ij}ij=1, . .NEV = CN?. There is an open subset
Vgen 0f V' such that for ¢ € Ve, there are no constants
in By, namely, the subspace defined by det.S # 0.
We shall say that parameters in this open set are in
general position. Until further notice, suppose that
the parameters are in general position.

Let B be the subspace of B, that consists of all

polymials of degree G. From nowon, G = {1,...,n},
n fixed. Set

Wn, k= Un LUk,
where
U= (n+1—k)! (5)
and
v = (k —2)! (6)

Then it is a result of Varchenko that

det SG = H H (1 — O'il...ik)wn’k'

k 1,0k

The inner product is over all subsets of cardinality & >
2 of the set {1,...,n}. The numbers (5) and (6) have
the following interpretation. Fix the integer £ < n and
let G, ={1,...,k}. Let the parameters approach a
portion of the boundary of Vgen, where o, = 1 but
o;# 1forall i # 1...k (as unordered sets). Then
constants appear in Bg,; v is the dimension of the
space of (primitive) constants in Bg, and u, is the
dimension of the ideal in B generated by a constant
in BGk.

Example. Let G = {1,2,3} and suppose that
there are no constants of lower degree; then,

det SG = (1 — 012)2(1 — 0’23)2(1 — 0’13)2(1 — 0123).

The surface on which Sg is singular has four com-
ponents, and, in particular, S is singular on the
surface o123 = 1. On an open subset of this surface,
the algebra B, is characterized by the existence of a
constant of degree G = {123}.

Cell Decomposition of Parameter Space

The space of parameters is the space V = cN?
in which the N? parameters qi; take their values,
with the natural analytic structure defined by these
parameters. This space is the disjoint union of its G-
cells (G fixed), defined as follows.

Definition. A G-cell in V is a connected subset
of Von which the rank of each matrix S, G' < G,
is constant. A regular function on a G-cell is the
restriction to the G-cell of a polynomial on'V.
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This concept of a regular function may be used
to give a precise sense to regular fields of constants
(being a family of constants, the coefficients of which
are regular functions of the parameters) and regular
fields of algebras.

Fix a G-cell C. The constants in By, forq € C, are
polynomials with coefficients that are regular func-
tions on C; we have a space of regular fields of con-
stants and regular fields B and B’ on each cell. The
subspaces Bg and By, are regular fields defined by re-
striction to degree G. The matrix field S{; and det Sy,
are also regular fields, with det Sg, # 0 on C.

A “cell” in V is a connected subset of V' on which
all the matrices S¢ have constant rank; it is an inter-
section of determinantal varieties. Each cell carries a
regular field of g-algebras and the “type” of an algebra
is synonymous with the cell to which it belongs. The
program of classification is thus concretely identified
with the enumeration of the cells.

The classification proceeds inductively. [ shall limit
the discussion to the case of polynomials that contain
at most one factor of each generator.

Classification to order 2. In degree G = {1, 2},
we have

1
Sa = n2 , detSg=1-—012=0.
g1 1
The G-cells are
0110127&1, ngdCl:am:l.

Classification to order 3. In degree G = {1, 2, 3},
we find, for parameters in general position,

det SG = (1 - 0'12)2(1 - 0'23)2(1 - 0'13)2(1 — 0'123).

To fix the rank we must first decide on the G’-type for
each of the three lower degrees.

(a) All 035 # 1. Then the formula for the deter-
minant tells us that there are just two cells, where
01233 # 1, 01233 = 1, respectively. The submatrices
have rank 2 and the matrix Syi93) has rank 6 or 5,
respectively. [The constant that appears when o193 =
1 was given above, Eq. (4).]

(b) One or more of the parameters o1, 013, 023 is
equal to 1. Then there are constants of order 2 that
generate an ideal Z. We must project the matrix Syy23y
on the quotient algebra and calculate the determi-
nant. We find in each case that the rank is constant;
there is only one cell.

The nature of the problem may become clear if we
go just one step further.

Classification to order 4. A number of different
cases must be considered, for we must first fix the
G'-cellsforall G’ < {1,2,3,4}.
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(a) If there are no lower order constraints, we find

det Sg = H(l — ;)" H (1= 05k)* (1 — o1234)°.
i<j i<j<k
The only factor that is not different from zero by as-

sumption is the last one; it may vanish or not, giving
rise to two cells.

(b) In three cases (and others related to these three
by renaming the generators), namely:

(i)o1z =1,
(i) o12 = 034 = 1,
(iii) o123 = 1,
it is found that the determinant of the projection of S¢

has a factor 1 — o1934. In each of these cases, there
are two cells distinguished by g1234 = 1 or # 1.

(c) In all other cases, there is only one cell, that
is, no bifurcation of algebraic types at this order. For
more details, see my paper[1].

The essential point of each step of the induction is
thus to calculate the determinant of Sg after projec-
tion on a quotient algebra determined by constraints
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of lower orders. Some general results have been ob-
tained; among them must be included the rather spe-
cial case that is the quantum Gabber—Kac theorem.
Here is the most recent result.

Suppose that oy, is not constrained. There is a
basis for B/{L.n} that consists of monomials of the

type zejyesz. Filter the polynomials by the order of
y. A basic word of the type ejyes is called a “long”
word. Then we have the following theorem.

Theorem. The exponent of 1—o1. ., in
det Sq1.. .,y is equal to the number of long basic
words in By,.

Example. If 019 = 013 =1, then e; commutes
with es and with e3 and there are no long words of
degree {1234}. If 012 = 034 = 1, then e; commutes
with eo and eg commutes with ey; there is one long
word ejesezes. For details and proofs, see my pa-

per[1].
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Abstract—We discuss various infinite-dimensional configuration spaces that carry measures quasi-
invariant under compactly supported diffeomorphisms of a manifold M corresponding to a physical space.
Such measures allow the construction of unitary representations of the diffeomorphism group, which are
important to nonrelativistic quantum statistical physics and to the quantum theory of extended objects in
M = R?. Special attention is given to measurable structure and topology underlying measures on gener-
alized configuration spaces obtained from self-similar random processes (both for d = 1 and d > 1), which
describe infinite point configurations having accumulation points. (©) 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Let M be the manifold of physical space, usually
taken to be d-dimensional Euclidean space R€.
Let Diff¢(M) be the (infinite-dimensional) group of
compactly supported diffeomorphisms of M, under
composition. The local current algebra approach to
nonrelativistic quantum mechanics led to the un-
derstanding that a wide variety of quantum systems
could be described by constructing the continuous
unitary representations (CURs) of Diff¢(M), the
group of compactly supported diffeomorphisms of M
(under composition) [1=7].

To say that the diffeomorphism ¢ of M has com-
pact support means that for all points x € M that
are outside some compact (and therefore bounded)
region of M, the diffeomorphism acts as the identity
operator: ¢(x) = x. Our convention here will be to
define the group product ¢1¢2 = ¢ 0 1, wWhere o
denotes the composition of ¢1, @2 € Diff¢(M), so that
[p12](x) = P2(¢p1(x)) for x € M. Thus, we have a
“right action” of the diffeomorphism group on the
manifold.

In a very general framework, the Hilbert space
where the unitary representation of Diff¢(M) can be
realized is the space of square-integrable functions,
H= Li(A, W), where A is some configuration space

*The text was submitted by the authors in English.
DDepartments of Mathematics and
Rutgers University, Piscataway, NJ, USA;
gagoldin@dimacs.rutgers.edu

2)Dipar‘[imento di Scienze Chimiche, Fisiche e Mate-
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Department of Mathematics, Rutgers University, Piscat-
away, NJ, USA; e-mail: tsakuraba@optonline.net

Physics,
e-mail:

on which the diffeomorphism group naturally acts
(with a right action), u is a measure on A satisfying
appropriate technical conditions, W is an inner prod-
uct space, and the elements of H are p-measurable
functions ¥(y) on A taking values in W. The inner
product of two such functions in H is given by

(0, 0y) = / (01 (3), o)) < 00, (1)
A

where (U1 (), U2(7v))w denotes the inner product in
W. Then the operators V(¢) defining a CUR are
given by

dpg
GG
where ¢y refers to the action of the diffeomorphism
¢ on v € A and where x4 : W — W is a family of
unitary operators acting in W satisfying a certain
cocycle equation (see below).

In this article, we shall consider various candidates
for a “large” configuration space, within which dif-
ferent choices of the space A may be situated, that
permit the construction of measures having the nec-
essary property of quasi-invariance under diffeomor-
phisms. We then focus on the generalized configura-
tion space 3 whose elements are finite or countably
infinite subsets of M and discuss ways of endowing it
with a o algebra and a topology. The results underlie
the construction of measures on generalized con-
figuration spaces obtained from self-similar random
processes in R? (both for d = 1 and d > 1), which
describe infinite point configurations having accumu-
lation points.

In Section 2, we briefly discuss the meaning of
Eq. (2), reviewing the necessary concepts. Section 3

[V(@)¥](7) = xg(7)¥(¢7)

1063-7788/05/6810-1675$26.00 © 2005 Pleiades Publishing, Inc.
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surveys some aspects of several possible choices of
“large” configuration spaces, while Section 4 focuses
on topology and measurable structure in X ;7. In Sec-
tion 5, we give a rapid overview of the construction
of certain families of quasi-invariant measures in Xpa
making use of self-similar random processes.

2. MEASURES AND COCYCLES

The measure p that appears in Eq. (2) and in the
definition of H is, as usual, a countably additive, pos-
itive real-valued function defined on a ¢ algebra M of
subsets of A. It is required to have the key property of
quasi-invariance under the action of diffeomorphisms
on A.

In general, let G be a group of transformations of a
measurable space (X, M), where M is a G-invariant
o algebra of subsets of X. A measure y on M is said
to be invariant under G if and only if for all E € M and
forall g € G, u(gF) = p(E). 1t is said to be quasi-
invariant under G if and only if for all £ € M such
that u(F) > 0 and for all g € G, p(g(E)) > 0. That
is, g € G acts on X in such a way as to preserve the
class of sets that have y-measure zero.

Quasi-invariance is a fortiori a consequence of
invariance, but not conversely. For example, the
Lebesgue measure dx on X = R is invariant under
the group of rigid motions (translations and rota-
tions). It is quasi-invariant, but not invariant, under
the group of compactly supported diffeomorphisms
of R,

For ¢ € G = Diff¢(M) acting on X = A, define
the transformed measure pg by setting py(E) =
w(p(E)) forany E € M. Because of the group struc-
ture and the G invariance of M, the quasi-invariance
of u under G is equivalent to the absolute continuity
of pg, with respect to pg, for any ¢1,¢2 € G. In
particular, the quasi-invariance of u is necessary and
sufficient for the existence of the Radon—Nikodym
(RN) derivative (dug/dp)(y) appearing in Eq. (2), for
all elements ¢ € Diff¢(M). For example, with M =
RY A =R% and du = dx, we have (dugs/du)(x) =
Js(x), the Jacobian of ¢ at x. Since ¢ has compact
support, we have J4(x) =1 outside some bounded
region of RY,

The square root of the RN derivative in Eq. (2) is
precisely the factor necessary to make the operators
V (¢) unitary in H, since x4(7) is to be taken as acting
unitarily in W (see below). That is, the diffeomor-
phism ¢ moves the argument of the wave function ¥,
and the square-root factor corrects it so that, when we
calculate the inner product (V(¢)¥1, V(¢)¥2) using
Eq. (1), we find that we have merely made the change
of variable v/ = ¢~ under the integral sign.
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Let D(M) be the space of real-valued, compactly
supported C* functions f on M. We have then the
natural semidirect product group D(M)x Diff¢(M),
with the group law given by

(f1,01)(f2, #2) = (f1 + fao p1,0102).  (3)

Now it may sometimes be the case that V'(¢) is a sub-
representation of a CUR of D(M)x Diff¢(M), which
we write U(f)V(¢). Then the operators U(f), f €
D(M), typically act in H as multiplication operators,
consistently with Eq. (2):

[U(f)¥](7) = exp[i(y, /)]¥(7), (4)

where (v, f) denotes an action of y€ A on f €
D(M) as a continuous linear functional. That is, the
configuration +y is here identified with a distribution,
and A is identified with a subset of the dual space
D'(M). This is one of the possibilities discussed in
Section 3.

In Eq. (2), x¢ : W — W is a family of unitary
operators in W satisfying the cocycle equation

X1 (7)X¢2 (¢17) = Xo¢1¢2 (7)7 (5)

which holds almost everywhere (a.e.) in A for each
pair of diffeomorphisms ¢1, ¢o. That is, Eq. (5) holds
outside a u-measure zero set that, in general, may
depend on ¢ and ¢s.

The cocycle equation follows directly from
the condition that V respect the group law,
V(91)V(¢2) = V(¢1¢2). The trivial cocycle x4(v) =
I is always permitted, and in the case of a CUR de-
scribing IV identical particles, this choice corresponds
to Bose—Einstein statistics. Inequivalent choices
of x¢ (noncohomologous cocycles) are associated
with Fermi—Dirac statistics, nontrivial phase effects,
and anion statistics in two space dimensions [8—
12], as well as with certain nonlinear variations of
quantum mechanics [13—15]. In the simplest cases,
W is just the one-dimensional space of complex
numbers C, so that we have complex-valued wave
functions on A. Then the x4 act through multipli-
cation by complex numbers of modulus 1. Higher
dimensional choices for W are associated with para-
particles in R? and plektons in R? [16—18].

3. GENERAL CONFIGURATION SPACES

Up to this point, no universal configuration space
for the representation theory of Diff¢(M) has been
agreed upon. Consequently, we have no one universal
configuration space for the physics of systems with
infinitely many degrees of freedom in R?, within which
specific choices of configuration spaces for particular
systems are situated. This very likely reflects a gap
in our present level of understanding. Let us describe
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here some choices that have been made, choices that
allow the convenient description and interpretation of
certain classes of unitary representations.

3.1. Locally Finite Point Configurations

The standard configuration space for statistical

physics is the space FE@O) of countably infinite but

locally finite subsets of M, where usually M = R?.
Frequently, one considers the disjoint union of this
space with the spaces of N-point subsets; thus,

Ty = Uﬁzll“%jv) |_|I‘§\Z°) is the space of all locally
finite subsets of M. Measures on the configuration

]gf) describe equilibrium states in R? in sta-

tistical mechanics, while FI(RO;) also enters quantum

theory in the description of infinite gases of quantum
particles in R?.

Let || denote the cardinality of the set . A config-
o
R, while for any compact set K ¢ R, |y N K| < 0.
Then the diffeomorphism ¢ € Diff*(RY) acts natu-
rally on any configuration v € I'pa by its action on
the individual elements of ~. This clearly respects the
property of being finite or locally finite. Measures on

space I'

uration v € RY in T has the properties that || =

ng) that are quasi-invariant under diffeomorphisms

have been extensively studied, and include Poisson
measures and Gibbsian measures [3, 5—7, 19].

In particular, the choice of a Poisson measure

du’ on I‘](RO:),

trivial cocycle x, = 1, gives a CUR of Diff¢(R%) via
Eq. (2). This representation describe the infinite, free
quantum Bose gas having o as its average particle
number density [3]. Here, we have, for any choice of o,

d,ug
— = X). (§)
g 0) = 160 (6)

with intensity o > 0, together with the

Since ¢ has compact support and - is locally finite, it
is evident that all but a finite number of terms in the
infinite product of Jacobians in Eq. (6) are equal to 1.
Thus, this product gives a finite, nonzero result for the
value of the RN derivative—expressing the fact that

=
compactly supported diffeomorphisms of R,

Poisson measures on '}, are quasi-invariant under

3.2. Configuration Spaces of Closed Subsets

A much larger configuration space, introduced in
early work by Ismagilov [20—23], is the space Qjy
of all (nonempty) closed subsets of the manifold M.
For any closed set C' € Qyy, define the natural action
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of a diffeomorphism ¢ € Diff*(M) on Qs by ¢C =
{¢(x)|x € C}. Evidently, ¢C also belongs to £,,, and
we have a (right) group action.

A o algebra for ), is generated by the family
of sets in Qs consisting of all closed subsets of a
given closed set. Thus, for C' € Q) (i.e., for C C M
closed), let Qo = {C" € Qp|C’ C C}. Then let Bg,,
be the smallest o algebra containing the family of sets
{Qc}ecmciosed- This o algebra can also be obtained
as the algebra of Borel sets with respect to a topology
on Qyy, for which a subbase is the family of sets
{C|ICNO # O}ocmopen; i-€., the family of subsets of
Qs whose elements meet a given open set O C M.

Evidently, any locally finite configuration v € I'ys
is also a closed subset of M, so that in general we
haveI'y; C Q.

3.3. Configuration Spaces of Generalized Functions

Another possibility is to work with the dual space
D'(M), as suggested by the CURs of the semidirect
product group mentioned in Section 1. That is, a
configuration v € D'(M) is a continuous, linear, real-
valued functional on D(M)—a distribution or gen-
eralized function on M. This is especially convenient
for representing Eq. (4), as we can immediately write
(~, f) for the value taken by « on the function f €
D(M).

Diffeomorphisms act on D’(M) by the dual to their
action on D(M); i.e., ¢y is defined for v € D'(M) by
(¢, f) = (v, f o) forall f € D(M).[With this def-
inition and our earlier convention, we have (¢1¢2)y =
¢2(b17y), so that the group action is a right action
as desired.] A ¢ algebra in D'(M) may be built up
directly from cylinder sets with Borel base [24], or
D'(M) can be endowed with the weak dual topol-
ogy and measures constructed on the corresponding
Borel o algebra.

Evidently I'ps, or more specifically I'ra, may be
identified naturally with a subset of D’ (M), or D' (R%),
by the correspondence

v =3 6, (7)

xey

where dx € D'(M) is the evaluation functional (i.e.,
the Dirac ¢ function) defined by (dx, f) = f(x),
x € M.

The so-called “vague topology” in ' is in fact the
topology that I'y; inherits from the weak dual topol-
ogy in D'(M). While Ty is not a linear space, the
larger space D'(M) is. In addition to linear combina-
tions of evaluation functionals (with possibly distinct
real coefficients), D'(M) contains other kinds of con-
figurations of physical importance that do not belong
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to I'ps and in some cases are not easily identified with
elements of ;7. For example, configurations may in-
clude terms that are derivatives of § functions, as well
as generalized functions with support on embedded
submanifolds of M.

3.4. Configuration Spaces of Embeddings
and Immersions

Still another characterization of a “large” space of
configurations in M begins with some other manifold
(or manifold with boundary) L, together with a set of
maps « : L. — M that obey some specified regularity
and continuity properties (for which there are numer-
ous possible choices). Then we call L the parameter
space for the corresponding class of configurations
and M the target space. When « is injective (so that
self-intersection of the image of L in the target space
is not permitted), we have a configuration space of
embeddings, while without any such restriction we
have a larger space of immersions.

We have at the outset the choice of considering
parametrized or unparametrized maps. A space of
parametrized C* immersions consists of mappings
a(0),0 € L, that are C* for some fixed integer k >
0. For ¢ € Diff¢(M), the formula [pa](0) = ¢(a(0))
(i.e., pa = ¢ o ) defines the desired (right) group
action on the space of parametrized immersions. In
addition, the group Diff(L) acts on the space of im-
mersions (as a left action) by reparametrization, so
that, for ¢» € Diff(L), v : « — a0 1.

Then an unparametrized immersion is just the
image set K = a(L) C M, where the parametriza-
tion of K has been disregarded. Alternatively, we
can think of the unparametrized immersion as an
equivalence class of parametrized immersions modulo
reparametrization. Note that the action of Diff¢(M)
on the space of (parametrized or unparametrized) im-
mersions leaves the corresponding space of embed-
dings invariant as a subset and preserves the conti-
nuity properties of configurations in the space.

If L is the circle S!, for instance, configurations
are C* loops in M. The embeddings are the non-
selfintersecting loops. The action of the diffeomor-
phism group also respects the knot class of the loop.
If L is the closed interval [0, 2], configurations are
finite arcs in M. Further possibilities include ribbons,
tubes, or higher dimensional submanifolds of M.

The configuration space of unparametrized im-
mersions of L in M is a subset of the configuration
space s, invariant (as a set) under the action of
Diff¢(M). This description thus allows us to refine
Qs as sensitively as desired, according to the topo-
logical and continuity properties of extended configu-
rations.
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For example, quantized vortex configurations
in ideal, incompressible fluids are obtained from
representations of groups of (area- and volume-
preserving) diffeomorphisms of R? and R3. For planar
fluids, pure point vortices are not permitted quantum-
mechanically, but one-dimensional filaments of vor-
ticity are allowed. Similarly, in R3, pure filaments
are kinematically forbidden, while two-dimensional
vortex surfaces, e.g., ribbons or tubes, can occur[25—
28]. But a major gap is the construction of measures,
quasi-invariant under diffeomorphisms, directly on
spaces of filaments or tubes. One approach to the fil-
ament case has been suggested by Shavgulidze [29].

Naturally, a nonrelativistic quantum theory of
strings, with R? as the target space, also depends on
quasi-invariant measures on the space of loops.

In addition, we remark that diffeomorphism-
invariant measures are important to the long-
standing problem of finding consistent theories for
quantized gravity; for instance, Ashtekar and Lewan-
dowski have constructed a faithful, diffeomorphism-
invariant measure on a compactification of the space
of gauge-equivalent connections [30, 31].

Reparametrization invariance has nice conse-
quences for quantum mechanics, when expressed in
terms of diffeomorphism group representations. Note
in particular that we can consider the N-particle

configuration space I‘g\y) as a special case of em-
beddings modulo reparametrization, with the discrete
manifold L = {1,..., N}. The group Diff(L) in this
case is the symmetric group Sy. The corresponding
configuration space of parametrized embeddings is
the space of ordered N tuples (xq,...,xy) of distinct
points, x; # x, for j # k. The space of parametrized
immersions of L in M includes the N tuples with
coincident points.

3.5. The Configuration Space
of Countable Subsets of R?

Theidea pursued in the balance of this article is the
construction of measures, quasi-invariant under dif-

)

feomorphisms of R%, on the space Egj of countably

infinite subsets of the physical space R? that are not
necessarily locally finite. Alternatively, we may work

on the space Ypa whose elements are subsets vy € R?
that are finite or countably infinite, with

Sea= | | IO 280 (8)
N=1

We call this the space of generalized configurations.
Our main mathematical motivation for working

with this space is that measures on it can be con-

structed by means of random point processes on
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spaces of infinite sequences of points in R%. We shall

project the measure p on [R%]> that results from such
a point process to define the corresponding measure
5

A physical motivation for this direction of work
is the goal of constructing quasi-invariant measures
for spatially extended systems, which is in general an
unsolved problem. Since R? is separable, any closed
set in R can be obtained as the closure of an element
of Xpa, so that the closure map v — 7 from Xpa to
Qpa is surjective. Thus, our present approach—which
puts us into a still larger configuration space than that
of Ismagilov—may permit pointlike approximations
to embedded manifold configurations.

Apart from this general consideration, the specific
measures we can construct appear to have a direct
interpretation as descriptive of idealized quantum or
statistical configurations forming “particle clouds”
about a locus of condensation. These allow for a
kind of “phase transition” from a rarefied to a con-
densed phase, as the self-similarity parameter passes
through a critical value.

on Xpa, thus obtaining a measure on the space ¥

Let us write w = (x;) € [R?* to denote an infinite
sequence, with j =1,2,3,....

Now, generalized configurations, like infinite se-
quences, can have accumulation points. A point
x € R? is an accumulation point of a set y ¢ R%—
or, respectively, of an infinite sequence w = (x;) €
[R%](>)—if, for any neighborhood U of x, the set ¢ —
{x} contains infinitely many points of 7 (respectively,
w). An accumulation point of ¥ may or may not itself
be an element of 4. Evidently, diffeomorphisms of R¢
act naturally on generalized configurations, respect-
ing accumulation points: if x € R?%is an accumulation
pointof vy € 2 then ¢(x) is an accumulation point

R
of ¢ry. The points belonging to configurations in Egj)

can cluster in such a manner as to yield fractals or
even more complicated objects.

The set of sequences containing coincident points
is called the “diagonal” D in [R%]*; that is, D =
{(%) € [RY>®|xx = x, (for some k # £)}. Typically,
D is of measure zero for the point processes of in-
terest, and for technical reasons, it will often be con-
venient to exclude it. We have the natural projection
from the sequence space to the configuration space,

p: [RY® — g, given by p[(x;)] = {x;}. The im-
age of [R%]> under p s all of ¥ga, since the possibility
of repeated entries in elements of [R%]* permits the
corresponding configurations to be finite as well as

infinite. Then [R?|° can also be thought of as a fiber
space over Ypa. It is natural to consider also the

PHYSICS OF ATOMIC NUCLEI

1679

restriction of p to sequences without repeated entries,
p:[RY® -D — EI(RO;) (which is surjective).

Note that the space Egj) may also be regarded
as a special case of the space of unparametrized em-
beddings discussed in the preceding subsection. The
target space M is R?; the parameter space L is N
(the set of natural numbers); and Diff(L) is the group
S of bijections of N. Of course, [RY]> — D is then
seen as the space of parametrized embeddings of L
into M, while [R9]* itself is the space of parametrized
immersions.

For any diffeomorphism ¢ of RY we have
opl(x;)] = {8(x;)} = pl(6(x;))]. Thus, we can
project a probability measure on the sequence space
[R4> or [RY]*° — D, constructed as is usual from an
infinite sequence of conditional probability densities
on R% to a probability measure on the configuration

space EI(RO;), consistent with the action of Diff¢(R%).

In earlier work, it was shown how for the one-
dimensional manifolds R or S, self-similar point
processes in the manifold lead quite generally through
such a construction to quasi-invariant measures on
the configuration space of countably infinite sub-
sets [32—36]. The quasi-invariance is intimately re-
lated to the self-similarity. In Section 4, we shall
discuss further the relevant o algebra on this config-
uration space, which lays the foundation for complet-
ing the rigorous proofs of earlier conjectures. Then
we shall indicate how the generalization to d > 1 is
carried out [37].

4. TOPOLOGY AND MEASURABLE
STRUCTURE ON Xga

There are at least two possible approaches to
defining a o algebra on the generalized configuration

(c0)

space Xip, .

4.1. Indirect Approach through [R%]>

The indirect approach makes use of the sequence
space [R9]>°, which is endowed with the well-known
weak product topology 7. Let us write x;(w) for
the jth entry of w € [R%>. The weak topology is
then the coarsest topology for which all the natural
projections 7; : [R4]> — R? given by w — x;(w) are
continuous. This topology is inherited by [RY]> — D.

Let B([R9]>) denote the o algebra of Borel sets in

[R4]> with respect to 7,,. This naturally induces a o
algebra in Yza—namely, the largest o algebra with

the property that the projection p : [RY>® — Yga is
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measurable [33, 34]. More precisely, we introduce in
Yra the o algebra

Pu(Sra) = {A C Zga | p~(4) € B(RT®)}, (9)

to which each of the subsets Fé{d), N=123,...,as
(c0)

Rd >

Evidently, the set of accumulation points of an
infinite sequence in R? or RY — D may be empty, finite
and nonempty, countably infinite, or uncountably infi-
nite. Since accumulation points in R? depend only on
the set v = {x;}, and not specifically on the sequence
(x;), all the distinct elements of p~ () have precisely
the same accumulation points.

Now it is straightforward to demonstrate that var-
ious sets of interest in EI(RO;) belong to P,,, by showing
that the corresponding sets of sequences belong to
B([RY]> — D). A series of lemmas in earlier work [38,
39] shows that the set [R%> — D itself belongs to
B([R9]>°) and that the following subsets of [R%]>*® — D
are likewise Borel: the set of all nonrepeating se-
quences having precisely n elements in a given com-
pact set K C RY, the set of all locally finite nonre-
peating sequences, and the set of all nonrepeating
sequences having precisely IV accumulation points in
K. Each of these sets is the inverse image in [R9]>

S

are measurable.

well as X belongs.

D (under the projection p) of a set in hence, the

corresponding sets in E]gf)

In fact, Py, (X5 e ) is sufficiently rich to permit us
to count the numbers of accumulation points of con-
figurations that are located in arbitrary Borel sets of

R? (not just compact sets). In particular, the subsets

E](RO:)N C E](Rodo) consisting of generalized configura-

tions having exactly N accumulation points in R? are

EEQO;)N) is the set
of infinite sequences having precisely N accumula-
tion points, which we denote by [RY% C [R9]> (for
N=0,1,2...).

Suppose that we have a probability measure p on
[R4> or [R4]* — D. Then we obtain a probability
measure [ on Yga by defining, for all A € Py, (Xga),
f(A) = p(p~t(A)). The most straightforward way to
construct a countably additive measure g on [R9]>
[with the o algebra B([RY]>)] is to specify a com-
patible family of measures on the finite-dimensional
spaces from which [R?]* is constructed as the pro-
jective limit. The existence of the corresponding mea-
sure p is then assured by Kolmogorov’s theorem. If

p is quasi-invariant under diffeomorphisms of RY,

measurable. The inverse image p~!(
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then our construction ensures that f is also quasi-
invariant as desired.

4.2. Direct Approach

The more direct approach to constructing a o al-

(c0)

gebra on X7 is simply to specily a generating set

(c0)

of subsets of ¥pa or X, for the o algebra or else to

introduce a topology in ¥4 or EI(RO;) and to take as our
o algebra the Borel sets with respect to that topology.

For instance, we may begin with Ismagilov’s o
algebra on Qpa described above and liit it to a o al-
gebra Z(Xga) using the closure map. The generating
family for Z(Xga) becomes all sets of the form {y €
Ypra|y € F}, where F' € Qpa is closed. Because F' is
closed, v C F'if and only if ¥ C F. The complement
of a set in this generating family is the set Oy = {y €
Ypa| yNU # 0}, the set of all configurations that
meet the open set U C RY, where U is R — F. The
collection of sets {Oy|U C Rpen} likewise serves
as a generating family for Z(Xga) [37]. The subsets

(N) and ¥ d) of Xpa belong to Z(Xga).

We can make use of these families of sets to
introduce a natural topology on ¥pa. Define a subbase
of open sets for a topology 7, in Xga to be {Oy|U C
R4 open}. Note that, for any index set I, Uac1Op, =
O[Uaean]’ while mj:l,...,nOU]- D O[ﬂj:l """" wUj]- The
finite intersections of sets in the subbase form a base
for 7.

)

In the topology 7,, the subsets FI(RZ C Xga (for

n > 1) and E( %) - Ypa are neither open nor closed.

However, for each N >0, {y] |y| < N} = )", Ty ()

is closed. Of course, we may also consider separatel

the topology induced in E]gf)

Now, the o algebra Z(Xga), that we obtained by
lifting Ismagilov’s o algebra to ¥ra by the inverse
image of the closure map is precisely the Borel o
algebra B,(Xra) with respect to the topology 7,. In-
deed, we noted already that the complement of Oy
in Ypa is just {y € Ypa|y € R — U}. Thus, we have
immediately that B,(Xga) contains Z(Xga), and the
closure map is 7,-Borel measurable with respect to
Ismagilov’s o algebra on Qga. Conversely, let {U;|j =
1,2,3,...} be a countable base for the topology in
R?. Then {Ouy, } is a countable subbase for 7,, and
the finite intersections of such sets form a countable
base for 7, whose elements are obtained directly from
the generating family for Z(Xga). Hence, By(Xga) =
I(ERd).

by 7.
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Sakuraba constructs and discusses a related
topology 7, on Xy (here, M =R?), obtained as
a quotient of the product topology on the disjoint
unionof M™ n=1,2,3,...,and M with respect to
the symmetric groups S, and the infinite symmetric
group [37]. In this construction, the topology on ¥,

is the sum of topologies on the components FE\Z) and

Z( ), and each of the subsets I‘g\}) is both closed
and open. Restricted to each component, 75 coincides
with the topology induced by 7,. Thus, the family of
Borel sets of 7, coincides with the family of Borel sets
of 7.

The fact is that Z(Xga) C Py (Xga) is straightior-
ward: since

7 (Ov) = Jfw € [RY® | x;(0) € U},

j=1

(10)

the inverse image of Oy is open in the weak topology
of [R9]>°, and therefore Oy belongs to Py, (Xga). But
Z(XRa) isinfact smaller than Py, (Xga), and too small
for certain purposes. Indeed, by our previous result,
any 7,-Borel set B is the inverse image under the
closure map of a set in the o algebra on QR+ generated
by the sets Qp; thus, it has the property that, if v € B,
5 € B.

But it is easy to construct sets in Py, (3ga) that
do not have this property. For example, define the set
OV of all configurations y € Ypa that are subsets of
a given open set V. Evidently, there exist countably
infinite subsets of V' whose closures are no longer
subsets of V, so OV does not belong to Z(Xga).
However, OV does belong to Py, (Xga), which follows
from the fact that

pH(OY) =p ' ({y € Spaly C V})

—ﬂ{w\xj

Thus I( ) # Py ( ) The o algebra Z(Xpa) is

just not large enough for us to be able to count the
number of points in a configuration that belong to a

given open set in R
This example suggests consideration of the Vi-
etoris topology on subsets of RY, restricted to Xpa

(11)

)e V]

or to Zgj). Let us call this topology 7,. A subbase

for 7, is given by sets of the form OV N Oy, where
U and V are open, so that OV is itself open in 7,,.
The Vietoris topology has many nice properties [40—
42]. Considering then the o algebra B, (Xga) of Borel
sets with respect to 7, we have Z(Xga) C By (Zga),
but Z(Xga) # By(Xga). Furthermore, B,(Xga) C
Pu(Xga). To show this, consider again a countable
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base {Uj,j =1,2,3,...} for the topology in R%. A
countable subbase for 7, is then {OYi N Ou,,j,k =
1,2,3,...}, and a countable base for 7, consists of
finite intersections of such sets. Since p~*(OY) and
p~1(Oy,) are both Borel in [R4]>, the inverse image
of any open set in 7, is Borel in [R?]°°, which suffices
for the result.

We have not, however, determined whether
B, (XRa) is or is not strictly smaller than Py, (Xga).

5. SELF-SIMILAR RANDOM POINT
PROCESSES IN R? AND QUASI-INVARIANT
MEASURES

Now we are prepared to construct measures on
the o algebra B([R?>) by means of random point
processes, using sequences of conditional probability
densities. When we do so, it turns out that the RN
derivatives under transformations by diffeomorphisms
take the form of an infinite product,

HJ¢>

Here, w € [RY>, and the wu;4(w) are measurable
functions that depend only on the first j entries of w.

Quasi-invariance of p then requires that (12) con-
verge to a nonzero, noninfinite limit almost every-
where in s for each ¢. This means that the individual
terms w; 4(w) must approach 1 sufficiently rapidly as
j — oo. Under conditions that in fact hold for the
measures discussed here, these convergence prop-
erties have also been proven sufficient to ensure the
quasi-invariance of u [37] and, as a direct conse-
quence, the quasi-invariance of the projected mea-

sure [ on E( ),
Let f(x; \xl, ...,X;j_1) be a nonsingular probabil-
ity density on R? for selection of the point x;, condi-

du¢> (12)

tioned on the previously selected points xy,...,x;_1
in some random sequence. Then dpu;(x;)=
f(xj|x1,...,xj-1)dx; defines a conditional (Borel)

probability measure p; on R? that depends measur-
ably on the j — 1 real parameters x1,...,x;_1 (the
positions of the first j — 1 particle coordinates) and is
absolutely continuous with respect to the Lebesgue
measure dx;. We can interpret the joint probability
measure for the first k points, specified by du*®) =
Hle duj, as a measure on [R%]>®
(¥, k=1,2,3,...,
probability measures.

By Kolmogorov’s theorem, there is a unique
measure p on [RY> determined by the sequence

; and the sequence
is then a compatible family of
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(u®)). Under transformation by ¢ € Diff*(R%), the

RN derivative for u(*) (when it exists) is given by the
finite product

d“fﬁk) e
du(k)w)—j]l an @) (13)
where
dpj ¢ o) — flo(x))]|p(x1), ..., 0(xj-1)) .
d:u’J ( )_ f(xj‘xlv"'vxj—l) j¢( ])'
(14)

The quasi-invariance of p*) is assured as long as
the RN derivative in Eq. (13) is almost everywhere
positive and finite. Now, as anticipated, in the infinite-
dimensional case, quasi-invariance of the measure
w under diffeomorphisms turns out to depend on
the behavior of the infinite product in Eq. (12), with
)W) = [dpj,p/dps](w).

Of course, not every measure so constructed will
be quasi-invariant. The idea that leads to an interest-
ing class of quasi-invariant measures is to scale the
probability distribution of the jth particle’s position
according to the outcomes for the previously cho-
sen particle positions. This establishes a self-similar
random process, where in the vicinity of accumula-
tion points the ratio of probability density functions
in Eq. (14) approaches the inverse of the Jacobian
as j — oo. The resulting physical systems behave
like an interacting gas of particles with one or more
loci of condensation. However, our approach differs
from the usual one in that our probability measures
are constructed directly, rather than by means of an
interaction Hamiltonian.

In general, if the positions of the particle co-
ordinates x;(w), or the successive difference coor-
dinates yj41(w) = xj41(w) — x;(w), distribute in-
dependently but nonidentically—so that points can
accumulate with nonzero probability—the result-
ing measure will not be quasi-invariant. However,
[smagilov did demonstrate quasi-invariance under
diffeomorphisms of the measures resulting from a
particular class of processes of this type, in one space
dimension [20].

Sakuraba [37] showed that the quasi-invariant
measures constructed by Goldin and Moschella
from self-similar random processes and the quasi-
invariant measures of Ismagilov are mutually
singular.

5.1. Example ford = 1

Let usillustrate with the examples based on Gaus-
sian probability densities. Working first with d =1,
choose an initial point zp from a nowhere vanishing
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probability density fo on R. For j =1,2,3,..., let
xj = xj_1 + y;, where y; are a sequence of deviation
values. Choose the value y; from a unit normal dis-
tribution g; with mean 0. Given the values y,...,y;,
choose y;j4+1 from a normal distribution with mean 0
and standard deviation o; = kl|y;|, where K > 0 is a
fixed correlation parameter independent of j. Small
values of k correspond to more tightly bound systems.
Thus, we have the conditional probability densities
for Yy,

951 Wi+1ly;) (15)

_ (2m)712 1 <yj+1>2
=——exp |55~ .
K|y;] 262\ y;

For sufficiently small values of &, (y;) converges to 0
(with probability one), while 3722 [y;| < oo.

Let Diffg(R) denote the stability subgroup of
Diff¢(R) consisting of the compactly supported dif-
feomorphisms of R that leave the origin fixed. The
measure on the space of sequences (y;) resulting
from the densities in Eq. (15) is then quasi-invariant
under the action of elements of Diff§(R). We thus
obtain the random sequence w = (xy), with z; =
o + Z?Zl yj, and the corresponding random con-
figuration v = {zy}.

Defining the terms w; 4 in Eq. (12) accordingly,
we obtain u; — 1 sufficiently rapidly to ensure con-
vergence of the infinite product. More precisely, there
exists a critical value xq such that if 0 < k < ko, se-
quences (x;) converge to an accumulation point with
probability one, while if kg < &, sequences diverge
geometrically with probability one. In both cases, the
associated measures on Xg° are quasi-invariant un-
der compactly supported diffeomorphism of R [32—
34, 37]. The proofs make use of the strong law of large
numbers.

The above is not tied essentially to the use of
normal distributions; all that is really necessary is the
scaling property. Thus, for a whole class of models,
there exists a critical value k¢ of the scaling param-
eter k. For 0 < Kk < Ko, the generalized configuration
{x;} has an accumulation point with probability one;
we call this the condensed phase. For kg < &, {z;}
has zero average density; we call this the rarefied
phase. For each value of x (except for the critical value
itself), we have a bona fide unitary representation of
Diff¢(R), describing the associated quantum system.

5.2, Generalization tod > 1

It was suggested earlier that a procedure similar
to that suggested by Eq. (15) would work in d space
dimensions, d > 1, to yield measures on the space
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of generalized configurations quasi-invariant under
Diff¢(R9), with the conditional probability density
for y;4+1 dependent on the preceding d outcomes
(Yj—d+1,---,y;) through the covariance matrix of a
multivariate normal distribution [33, 34]. The gener-
alization obtained by Sakuraba [37] achieves this, but
also involves some new aspects.

Consider a random process where, at each stage,

d vectors in R? are to be selected. Thus, at each
stage, we choose a d x d random matrix V, and it is

appropriate to think of w € [RY]> as the sequence of
square matrices ([X1, ..., X4, [Xd+1s- - X2d],---)-
For the square matrix Y = [y;;], define the norm

1/2
Y]] = [Zijzly?j] . Note that ||Y]| is a vector

norm, not the operator norm of the matrix. For Y €
GL(d,R), define the condition number k(Y") = ||Y]| -
[[Y~1||. We may write Y = P|Y|, where P is an or-

thogonal matrix and where |Y| = VY'Y is positive.

Let 7,..., 74 be eigenvalues of the matrix |Y|. Then
Y= IIY]]], and
d 1/2 d 1/2
Y1l = ZTE] Y=o
i=1 j=1
(16)
4 1/2
KY)=| > (n/m)?
ij=1

Evidently k(Y') characterizes the amount of defor-
mation under linear transformation by Y. If Y is not
invertible, then £(Y") is undefined (or infinite). Such
matrices belong to measure zero sets in the construc-
tions that follow.

We next construct a measure on [GL(d, R)]* and
thus on [R%]> quasi-invariant under Diff§(R?). De-
fine the probability density function

00) = Cexp { =Ly I}

on the set of d x d matrices, where C is a normal-
ization constant chosen so that [ f(Y)dY = 1; here

dY = dy; - - - dyg. Let u®) be the probability measure
defined by

(17)

) S0
| det 1|4 |det Yy _1|?

du® = F(v7) dYy - dYy,
(18)

where du® = du® (Y1,...,Y;). Then u® is con-
centrated on [GL(d,R)]*; i.e., the set of sequences

with one or more noninvertible matrices is of measure
Zero.
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Then we again have a critical value k. For k < &y,
the sequence (Yj;) of matrices—and thus the se-
quence of component vectors (y;)—converges to 0
with probability one, while for ko < k, it diverges
with probability one. Furthermore, the projective limit
measure p on [GL(d,R)]* has the desired property
of quasi-invariance under Diff§(R?). The presence of
the condition number £(Y") in Eq. (17) is essential for
the estimates required in demonstrating convergence
of the infinite product in the resulting expression for
the RN derivative. The proof here again uses the
strong law of large numbers.

Equation (17) can be generalized, replacing k(Y")
by k(Y)* (a > 1) and replacing the Gaussian density
by a more general probability density function.

Finally, we may begin with a matrix of positions
Xo = [x1,...,%4] chosen from a nowhere vanishing
probability density. Let Xy be the center of position
of the d vectors comprising Xy. Now, we may treat
each new matrix Y as a set of deviations from the
center of position of the preceding set of vectors X;_1,
so that, with obvious notation, X; = x;_1 +Yj. In
this manner, we obtain a measure on [R%]* quasi-
invariant under Diff¢(R%) that projects to a quasi-
invariant measure on the space X2 of generalized
configurations.

More details about the preceding results may be
found in the thesis of Sakuraba [37] and in forthcom-
ing publications.

6. CONCLUSION

We believe the work summarized here strengthens
the case for basing a theory of statistical physics in
the manifold M on the configuration space X of
countable subsets of M endowed with the Vietoris
topology. Measures obtained from random point pro-
cesses in M project to measures on X, and when
we consider self-similar random processes, we obtain
measures quasi-invariant under the group of com-
pactly supported diffeomorphisms of M. The problem
of relating these measures to Hamiltonians on a clas-
sical phase space remains open.
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The Invariance of Order Parameter and Temperature Redefinition
in Helix-Coil Transition Theory of Circular Closed DNA"
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Abstract—The order—disorder (helix-coil ) transition in circular closed DNA (ccDNA) is described on the
basis of the open chain DNA (ocDNA) model, proposed earlier, which considers the transition as loop
formation. The Hamiltonian of the ccDNA model is constructed on the basis of the open chain model
taking into account topological restrictions. These restrictions are taken into account through hydrogen
bond reduced energy dependence on the fraction of broken hydrogen bonds in the macromolecule. The
invariance of the order parameter (helicity degree) has been shown for ocDNA and ccDNA. This invariance
results in the interdependence between temperatures of ocDNA and ccDNA with the same value of helicity
degree. The dependence can be obtained with the help of the derivative of reduced energy of hydrogen
bonding dependence on instantaneous denaturation degree. Thus, it has been shown that the melting curve
of ccDNA can be obtained from the consequent curve of ocDNA through the redefinition of temperature
scale. The calculated and experimentally measured melting curves have been compared under inversion

conditions and qualitative agreement between them is found. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In 1963, R. Dulbecco and M. Vogt and R. Weil and
J. Vinograd discovered that double-stranded DNA of
the polyoma virus exists in a closed circular form. At
present, it is generally acknowledged that this form
is typical of bacterial DNA and of cytoplasmic DNA
in animals. Furthermore, giant DNA molecules in
higher organisms form loop structures held together
by protein fasteners in which each loop is largely
analogous to circular closed DNA (ccDNA). The
distinctive feature of circular closed molecules is that
its topological state cannot be altered by any con-
formational rearrangement short of breaking DNA
strands. This topological constraint is the basis for
the characteristic properties of ccDNA, which have
fascinated biologists, physicists, and mathematicians
for the past 35 years. The first melting experiment of
ccDNA was carried out by Vinograd ef al. [1]. They
revealed essential differences in the processes of de-
naturation of ccDNA and open chain DNA (ocDNA).
First of all, it is striking that there is considerable
widening of melting interval. Apart from that, the
melting temperature of ccDNA exceeds the one ob-
tained for ocDNA by about 30°. Taking into ac-
count the above mentioned, we can conclude that
the process of melting of ccDNA needs theoretical

“The text was submitted by the authors in English.
DYerevan State University, Department of Molecular Physics,
Armenia.

o .
e-mail: arsenvg@ysu.am

substantiation. The first attempt was made by the
group of Frank-Kamenetskii [2]. The model which
was considered by M.D. Frank-Kamenetskii’s group
was in good agreement with the above-mentioned
experimental data [1, 3]. But then experimental data
contradicting the model of this group were obtained.
Experiments on ccDNA denaturation in so-called
“inverted conditions” were carried out [4, 5]. Under
these conditions, the melting interval of ocDNA was
found to be very narrow, while the melting interval
of ccDNA remained unchanged, that is, very wide.
These experimental results were at variance with the
theoretical model of Frank-Kamenetskii's group. The
following theoretical investigations of ccDNA were
based on the mean field theory [6—11]. In our last
works [12, 13], we solved the melting of heteroge-
neous ccDNA in the presence of a competing solvent
on the basis of the microscopic model. The goal of the
present work is the analysis of experimental data [4,
5] on the basis of the obtained model [12, 13].

2. THE MODEL FOR THE OPEN CHAIN
AND CLOSED CIRCULAR DNA

We construct the model based on the following
Hamiltonian [14]:

N
—BH =76, (1
=1

where 3 = T~ !isinverse temperature, N is the num-
ber of repeated units, and J = U/(kT) is the reduced

1063-7788/05/6810-1685$26.00 © 2005 Pleiades Publishing, Inc.
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energy of internal hydrogen bonding. The notation
59 =4 (ZZ:1 Vs 0) is introduced, with 6 (z,0) be-

ing the Kronecker symbol. 4, = %, 42,...,79 is the
vector which describes the conformation of the /th
repeated unit, and @ is the number of possible values
of this vector. We can explain Eq. (1) as

—BH = Jo (2)

1, ifthereis aloop between 0
and ith repeated units,

N
>
1=1

Due to flexibility of the chain, the statistical weight
of conformation with hydrogen bonds connecting any
of the base pairs between the first and /th one strictly
depends on the bonded base pair position along the
chain. Thus, the cooperativity (the interdependence
of conformations) of the system is implicitly included
through real geometrical restrictions on loop forma-
tion. So we construct the Hamiltonian for ccDNA
as the Hamiltonian of ocDNA (1), but the reduced
energy of the hydrogen bonds is a function of the
instantaneous fraction of broken hydrogen bonds in
the molecule: J = J(P), where

0, otherwise.

N

1 i
P:1—N25§>.

=1

This means that the denaturation rate at each
repeated unit of the macromolecule will depend on the
conformation of the whole chain. Let us expand J over
P (following [12, 13]):

M
J=Jo+ Y aP. (3)
k=0

The conformational partition function has the form

N M

Z=>exp|hY 08 + N b P
1 k=0

o} i=

where by, = ay, — ar_1. The first term of this relation
is the ocDNA term. The second term is related to
ccDNA and depends on the expansion of J(P) over
P. Here, M reflects the precision of expansion, by, are
coefficients independent of repeated unit number, and
the remaining notation is as above. We can linearize
the last term of Eq. (4) using the Dirac delta function
as follows:

;o (4)

+oo
exp [Nblpl] - / dyi5 (y; — P) exp (Nblyf>. (5)

Substituting Eq. (5) into Eq. (4) and using the in-
tegral representation of the Dirac delta function and

PHYSICS OF ATOMIC NUCLEI

GRIGORYAN et al.

saddle-point method, one can rewrite the partition
function for ccDNA in the case of large N as[13]

M
N (Z (1 — k) bya —Hn)\l)] . (6)

k=0

Z X exp

where o = (P) is the thermal average denaturation
degree of the basic (open chain) model. Here, A; is
the reduced free energy for the ocDNA model, which
for ccDNA becomes the function of energy expansion
over the averaged denaturation degree « of the open
chain model as

M
A=\ (Z kbpab ! 4 J0> .

k=0

We think it is necessary to repeat that, for ocDNA, Ay
is a function dependent only on hydrogen bond energy
Jo, as A1 = A1 (Jo). So we can write the partition
function and describe the problem of ccDNA melting
using ocDNA parameters.

Using expression (6), it is possible to calculate
e, Which is the denaturation degree for ccDNA,
and to show that it is equal to «aqc, which is the
denaturation degree for ocDNA. Because of the fact
that the denaturation degree has the same arguments
as A1, we can write

M
e <Z kbrok =1 4 J0> (7)
k=0

T:ch

olnZz
=(P) = TN Jodb, e (Jo)p—m, -

Because of monotonic dependence of the denatura-
tion degree on the temperature parameter, the equal-
ity of denaturation degrees leads to the equality of
arguments, so

M
<J0 +) kbka’“1> = (Jo)r_rp, - (8)
T:ch

k=0

[t is necessary to note that the left- and right-hand
sides of Eq. (8) are written at different T, and T,
temperatures.

3. MELTING CURVES
FOR ccDNA AND ocDNA

From Eq. (8), we obtain the relationship between
the temperatures corresponding to equal values of
denaturation degrees for ocDNA and ccDNA:

Mo
1+ k—ght
20

ch = Loc (9)
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da/dT,°C™!

0.25

0.20

0.15

0.10

0.05

50

Experimental curve

1
60 70 80 90 100
T,°C

Fig. 1. The derivative melting curve (DMC) of ¢ X174 phages under inverted conditions (Experimental curve) [4, 5] and its
description according to (9).

da/dT, °C-!
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0.03 ﬂ
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T.°C

Fig. 2. The experimental DMC of native ocDNA of Calf Thymus in 10™* NaCl (“I”)and DMC of hypothetical DMC of ccDNA

under the same conditions.

Equation (9) allows one to calculate the denaturation 4. THE EXPERIMENTAL DATA ANALYSIS
curve for ccDNA from the melting curves of corre- OF HELIX-COIL TRANSITION OF ccDNA
sponding ocDNA, and, what is more, we have found ON THE BASIS OF STATISTICAL MODEL

in [12, 13] that expression (9) is right in the case of In Fig. 1, we present the comparison of the experi-
heterogeneous ccDNA in the presence of acompeting  mental data with the calculated data of obtained poly-

solvent.

nomials with different terms (the cases A—F'). Then,

PHYSICS OF ATOMIC NUCLEI Vol.68 No. 10 2005
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on the basis of the experimental derivative melting
curve (DMC) of native ocDNA, we have obtained
the DMC of ccDNA using the A—F transformations
which were used in Fig. 1. They are presented in
Fig. 2. As we can see from Fig. 2, the melting of
all ccDNA begins earlier and the transition intervals
are very large. In addition, the DMC of ccDNA ap-
peared to have fine structure when using the A—F
transformation. In contrast, in the case when we use
the temperature transformation formula with expan-
sion up to lower terms, the DMC of ccDNA do not
have fine structure. For quantitative comparison of
the model and the experiment, it is necessary to have
experimental data of melting of a single topoisomeri-
cal fraction.

There is also the possibility of describing the melt-
ing experiment of several topoisomer mixtures. We
think that it can be done by presenting the experi-
mental curve in Fig. 1 as a sum of curves which cor-
respond to the different transformation temperature
formulas. We plan to do this in our next paper.
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All Possible Cayley—Klein Contractions of Quantum Orthogonal Groups”
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Abstract—Spaces of constant curvature and their motion groups are described most naturally in the
Cartesian basis. All these motion groups, also known as CK groups, are obtained from an orthogonal group
by contractions and analytical continuations. On the other hand, quantum deformation of orthogonal group
SO(N) is most easily performed in the so-called symplectic basis. We reformulate its standard quantum
deformation to the Cartesian basis and obtain all possible contractions of quantum orthogonal group
SO4(N) for both untouched and transformed deformation parameters. It turned out that, similar to the
undeformed case, all CK contractions of SO, (V) are realized. An algorithm for obtaining nonequivalent (as
Hopf algebra) contracted quantum groups is suggested. Contractions of SO,(N), N = 3,4, 5, are regarded

as examples. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Systematic definitions of quantum deformations
of classical simple Lie groups and algebras, as well
as a description of their properties, were given in [1].
Simple Lie groups and algebras are transformed by
the contraction operation first introduced by Wigner
and Inoénd [2] to nonsemisimple ones. Quantum
analogs of the nonsemisimple low-dimension Lie
algebras were obtained by contractions of quan-
tum algebras so,(3), suy(2) [3—7] and contractions
of low-dimension quantum groups were discussed
in [8—10]. Two types of contractions were discovered:
with untouched deformation parameter (in [3, 6] for
quantum algebras and in [9, 10] for quantum groups)
and with transformed deformation parameter [4, 5, 7,
8]. For the latter case, the quantum deformations of
the algebras of the maximal symmetric motion groups
of the N-dimensional flat spaces were constructed
in[11]. The y-Poincare quantum group was obtained
by contractions of the orthogonal quantum group
SO4(N) [12]. The quantum Euclid group E,(2) was
described both by contraction of SU,(2) [13] and by
direct quantization of the Lie—Poisson structure [ 14].
A separate line of investigation is presented by the R-
matrix approach to the quantum analogs of Euclid,
Heisenberg, and inhomogeneous groups [15—18].

[t is well known [19] that the motion groups of
all 3¥=1 (N — 1)-dimensional constant curvature

*The text was submitted by the authors in English.

1)Department of Mathematics, Komi Science Center, Ural
Division, Russian Academy of Sciences, Syktyvkar, 167982
Russia.

" e-mail: gromovedm. komisc . ru

spaces may be obtained by contractions and ana-
lytic continuations of the classical orthogonal group
SO(N). Cayley—Klein groups is the short name
for this set of groups. The fundamental orthogonal
A'A = I matrix A € SO(N) is replaced by the matrix
A(j) whose elements (A(j))kp = (k,p)akp, (k,p) =

max{k,p}—1 .
Hl:min{k,p} Jis

ditional j-orthogonality relations A(j)'A(j) = 1,
where the parameters jj, take three values each
Jr = 1,1, 1. The commutative ¢t = ¢yt # 0,k # p
nilpotent ¢ = 0 units ¢, correspond to contractions
and the imaginary unit 2 = —1 to analytic continua-
tions.

k,p=1,...,N are subject to ad-

In the case of the quantum orthogonal group
SO,4(N), additionally the deformation parameter ¢ =
exp z is transformed as follows [20]: z = Jv, J =
(1, N), where v is the new deformation parameter.
At the same time, the quantum group contractions
with an untransformed deformation parameter are
known [9, 10]. For unification of both such cases
in one approach, the concept of different couplings
of Cayley—Klein and Hopf structures was sug-
gested [21, 22]. It is well known that quantum groups
are Hopf algebras and the Cayley—Klein structure
is defined by the distribution of the contraction
parameters j among the elements of the generating
matrix. For the quantum orthogonal group in the
so-called “symplectic” basis (where the invariant
quadratic form for ¢ = 1 is defined by the matrix Cy
with all null elements except units on the secondary
diagonal), this concept was realized in [23—25] by the
substitution, in the standard machinery of quantum
group, of the generating matrix T,,(j) = D, A(j)D; !,
D, = DV, where the matrix D is the solution to the

1063-7788/05/6810-1689$26.00 © 2005 Pleiades Publishing, Inc.



1690

equation D!*CyD = I and describes transformation
from the Cartesian basis to the symplectic one.
The matrix V,, (V5)ik = o, 1, Where o € S(N) is a
N-order permutation, defines the distribution of the
contraction parameters in T,(j). In this case, the
transformation of the deformation parameter depends
on permutation o. All permutations which lead to an
untouched (J = 1) deformation parameter and some
permutations which correspond to transformed ones
are enumerated in [23—25]. The contracted quantum
groups SO, (N; j; o) in these papers were regarded as
a Hopf algebra over Pimenov algebra D(¢) generated
by nilpotent commutative generators. It turned out
that not all Cayley—Klein contractions are admissible
for quantum groups in this assumption, which there-
fore is too restrictive.

The main statement of the algebraic structure
contraction method is to take into account in all rela-
tions only principal parts with respect to contraction
parameter tending to zero and to neglect all others.
Therefore, in this paper, in all relations of quantum
group theory, only principal (complex) terms are
taken into account and all other terms with nilpotent
multipliers are neglected. In addition, contractions
of orthogonal quantum groups SO, (N;j;o) are
regarded in the more usual Cartesian basis. For an
untouched deformation parameter, the results are
the same as in [23—25], and for all other permu-
tations, the deformation parameter is multiplied by
J = Uj_1(ok, 0%), where n is integral part of N/2.
The unification of multipliers (o, 0p) U (o, 0r) is
understood as the first-power product of all pa-
rameters jr which appear in at least one multiplier
(ok,0p) or (om,0r). For example, (jij2) U (j2js) =
j1j2js. It turned out that the full scheme of Cayley—
Klein contractions is realized for the quantum group
SO4(N). Not all identically contracted quantum
groups corresponding to different permutations o
are nonisomorphic. Quantum group isomorphism is
connected with the notion of equivalent distributions
of nilpotent parameters in the generating matrix.
Nonisomorphic contracted quantum groups corre-
spond in the first place to generating matrices with
nonequivalent distributions of nilpotent parameters
and secondly to equivalent generating matrices but
with different transformations of the deformation pa-
rameter (J; # Jo2). As an example, quantum groups
SO, (3;j;0) are considered in detail and noniso-
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morphic contractions are given for quantum groups
SO,(N;j;o), N =4,5.

2. DEFINITION OF QUANTUM GROUP
SOy(N; j;0)

Let us start with an algebra D((U(j;0))) of
noncommutative polynomials of N2 variables, which
are elements of the generating matrix (U(j;0))ir =
(04, 0% )Uo,0, - Let us introduce the transformation of
the deformation parameter ¢ = e* as follows: z = Jv,
where v is a new deformation parameter and J is some
product of parameters j for the present unknown. Let
R,(j), Cy(j) be matrices which are obtained from
Rq, C, respectively, by the replacement of deformation
parameter z with Jv. The commutation relations of
the generators U(j; o) are defined by

Ry (j)U1(j; 0)U2(j; 0) (1)
= Us(j; 0)UL(j; 0) Ro (5),
where
Ui(j;0) =U(G;0) @ 1, Us(j;o) = 1@ U(j;0),
U(jio) = VoUWV (Va)ik = boyks
Ry(j) = (D ® D)™ Ry(j)(D ® D),
Ry(j) = Rq(z — Jv),

I 0 C
1
D*lzﬁ 0 v2 0 |, N=2n+1,
iCy 0 —il

Cy is the n x n matrix with all null elements except
units on the secondary diagonal, and the explicit form
of the matrix R, in the Cartesian basis is given in the
Appendix. The following additional relations of (v, j)
orthogonality hold:

U(j;0)Co (1)U (s 0) = Co(j), (2)
U'(j;0)C (DU (G 0) = C (),

where C' = Cyq”, and p = diag(p1, ..., pn), (Co)ik =

5’i’kv i,kzl,...7N, Z/:N+].—’L, th~at iS,

(C)ik = ¢ 6, and (C™V)ip = ¢ Pidyy, Cu(j) =
D=1C,(j)(DY)

1 3 1 1 1
<n—§,n—5,...75,0,—5,...,—714—5), N:27’L+1,
(Pt pN) =
n—1,n-2,...,1,0,0,—-1,...,—m+1), N =2n.
PHYSICS OF ATOMIC NUCLEI Vol.68 No. 10 2005
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The quantum orthogonal Cayley—Klein group
SO, (N, j;o) is defined as the quotient algebra of
D{((U(j;0))) by relations (1), (2).

Formally, SO,(N;j;0) is a Hopf algebra with the
following coproduct A, counit ¢, and antipode S:

e(U(j;0)) =1, (3)
AU(j;0) = U(j; 0)®U (5 0),
S(U(j;0)) = Co()U(5;0)C (4),

where (A®B)y = >, Aip @ By,

Remark. All relations for the quantum group
SO, (N; j;o) may be obtained from the correspond-
ing relations for SO4(N) in the Cartesian basis [20]

by the replacement z — Jv and u;, — (04, 0% )Ug;0, -

3. THE BASIC THEOREM

According to the algebraic structure contraction
method, in all relations of the previous section for
nilpotent values of j, only principal (complex) terms
are taken into account and all other terms with
nilpotent multipliers are neglected. The relation is
called admissible if it is possible to select principal
terms. Otherwise, the relation is called inadmis-
sible. For example, the equation a+ 116+ tac =
a1 + v1d is an admissible equation and is equivalent
to a = a;, whereas the equation ¢t1b + ta¢ = t110d is
inadmissible.

The formal definition of the quantum group
SO, (N; j; o) should be a real definition of the con-
tracted quantum group if the proposed construction
is a consistent Hopf algebra structure for the principal
terms of all relations under nilpotent values of some
or all parameters j, in other words, if all relations of
the previous section are admissible. The following
theorem holds.

Theorem. [/f commutation relations (1) of
SOy(N;j;0) are defined for nilpotent values of
some or all parameters j and J =\J;_,(ok,on'),
then the contracted quantum group is Hopf alge-
bra.

Proof. Llet us prove the
our construction for the most singular case
when all parameters j are nilpotent. Counit
e(Ugyo,) =0, P # k, e(tg0,) =1, k=1,...,n do
not restrict the values of j. Multiplier Ci, =
(O—iao_r)(o_rao—k)(o_iao—k)il in COprOdUCt A(uO'iO'k) =
Zf,vzl CikrUo,o, @ Ug,q, 1S equalto 1 il oy < 0p < oy,
is equal to (o, 0,)? if 0; < 0}, < 0, and is equal to
(or,0%)% il 0, < 0} < 0y; therefore, all expressions
for the coproduct are admissible for nilpotent values
of all j. Because of symmetry (o, 0x) = (0%, 0y), it is
sufficient to examine the case o, < 0.

consistency  of
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From the analysis of explicit expressions
of antipode S(U(j;0)) and (v,j)-orthogonality
relations [26, 27], it follows that all expressions are
admissible for any permutations and for nilpotent
values of any parameters; therefore, they do not
restrict contractions of the quantum group.

Remark 1. To examine the existence of the com-
mutation relations (1) of SO,(N;j;0) under con-
traction for arbitrary o, it is necessary to have their
explicit form at least for identical permutation og. The
system (1) is overdetermined and cumbersome, so we
obtain its solution only for N = 3.

Remark 2. For identical permutation o¢ all
Cayley—Klein contractions of quantum group
SOy(N;j;00) are allowed. Indeed, commutation
relations for j; = 17 are given in [12] and they do not

restrict all other contractions j, =¢.,r =2,3,...,
N — 1.

4. NONISOMORPHIC CONTRACTED
QUANTUM GROUPS

If all parameters ji, =1, then the map wu; —
(04, 0k )Uo,0, is invertible and all quantum groups
SOy(N;j;0) forany o € Sy are isomorphic as Hopf
algebras. Nonisomorphic quantum groups may ap-
pear under contractions when all or some parameters
j take nilpotent values. It is clear that nonisomorphic
quantum groups appear under contractions with
different numbers of parameters. Contractions on
the same parameters, but with different transfor-
mations of deformation parameter (with different
J) naturally give in result nonisomorphic quantum
groups. Isomorphic quantum groups may appear
under contractions of SO,(N;j;0) with different o
by equal numbers of parameters, when multiplier J
includes equal numbers of parameters (but not nec-
essarily the same) or when J = 1. In our approach,
contractions of quantum groups (even on equal
numbers of parameters) are distinguished by the
distributions of nilpotent parameters j in generating
matrix U (j; o). Really, all relations of quantum group
theory (commutators, (v, j) orthogonality, antipode,
coproduct, and counit) depend on permutation o
by means of a generating matrix, while matrices
R,(j),Cy(j) depend on o via transformations of a
deformation parameter, that is, via J. Isomorphism of
contracted quantum orthogonal groups is described
by the following theorem.

Theorem. Quantum groups SO,(N;j;01) and
SOw(N;j;09) are isomorphic if the following re-
lations for their generators hold:

U(j;01) = VoU(j;02)Vy L, (4)
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where matrix V,,0 € Sy satisfies
(Va ® VU)Rw(j)(VU ® VJ)_l = Rv(ﬂ)a (5)
Van(j)Vat = CU(J)

forw =+vand J, = Jy with possible replacement
of jronjn_i, k=1,...,N — 1.

Proof. Commutation relations (1) of SO, (N; j; 01)
after transformation (4) take the form

Rv(j)(va ® VO’)Ul(j; UQ)UQ(j§ 02)(VU ® Va)il
= (Vo @ Vo)Ua(j; 02) U1 (45 02) (Vo © Vi) ™ Ry ()

or after left multiplying on (V, ® V,;)~! and right
multiplying on V, ® V,, in the form

(VU b2y Va)ilév(j)(va & Va)Ul(jS UQ)UQ(jS 02)
= Us(j; 02) U1 (j; 02) (Vo @ Vo) T Ry () (Vi ® V),

which give the first equation in (5). Antipode (3) after
transformation (4) takes the form

VUS(U(j; 02))VU_1
Co(5) (V) UL o) VECT A ()

or
S(U(j; 09))
=V, 10,(5) (V) U (53 02)VEC, 1 (5) Ve

The last equation is just the antipode of SO, (N; j; 02)
if one takes into account the second equation in (5).
Finally, (v,j)-orthogonality relations (2) after (4)
take the form

VU (s 02) VL Cu(h) (VoY) Ut (G5 02)VE = Colh)
or
U(j; 02) V1 Cu(5) (VoY) U3 02)
= VLG () (V)

which evidently is condition (5) for matrix C,(5).

As a consequence of the theorem is the following
algorithm of obtaining of nonisomorphic contracted
quantum groups. One calls two distributions of nilpo-
tent parameters among elements of generating ma-
trices U(j;01),U(j;02) equivalent if they are con-
nected by two operations: (i) they pass in each other
by the permutations of the same columns and rows
of generating matrices, that is, by (4); (ii) matrices
pass in each other by reflection relative to the sec-
ondary diagonal with possible simultaneous replace-
ment of jp with jy_r, k=1,..., N — 1. Nonisomor-
phic contracted quantum groups correspond, in the
first place, to the nonequivalent generating matrices
and, secondly, to equivalent generating matrices, but
with different transformations of deformation param-
eters (J1 # Jo). For illustration of the algorithm,
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all nonequivalent contractions of quantum groups
SOy(N;j;0), N =3,4,5 shall be considered in the
following sections.

5. QUANTUM GROUPS S0,(3; j;0)

Quantum group SO,4(3) has four nonisomor-
phic contracted groups: two Euclid groups E?(2) =
SOy(3;11,72;00), J =11, E;(2) =50.(3;u1,1;0),
J =1, where 09 =(1,2,3), 0 =(2,1,3), and two
Galilei groups GY(2) = SO,(3;11,12;00), J = t112,
Gy(2) = SOy(3;t1,t9;0), J =12. For comparison,
nondeformed complex rotation group SO(3) has
two nonisomorphic Cayley—Klein contracted groups:
Euclid group E(2) and Galilei group G(2).

5.1. Quantum Groups SO, (3;j;00), 09 = (1,2,3)

Let Cy = cosh Jv, S =sinh Jv,J = ji1js. The
generating matrix

Ul Jiuie Jijauis
UG) = jrusr  uge  jouss (6)
J1jou3l jouzz  u33

satisfies (v, j)-orthogonality relations: (i) U(j) x
Co(NUH(F) = Cu(j), ie.,
iJ S1lurz, un] = Ci(ufy + JPuiz — 1) + jruis, (7)

iJ S1[ugs, ug1] = C1(jiuzy + jaudy) + ude — 1,
iJSl[u;),g,’U,gl] = Cl(JQ’U,%l + ugg — 1) —i—j§u§2,
upu2171C1 — tu3uz151J51 + jruiauge
+ u13u23jaJ C1 + iugiugsjeS1 = 0,
unuz JC1 — durgugy J2S1 + Jurauszs
+ u13uzzJC1 + iuguzzS1 = iS1,
ug1u31J1J C1 — iugzuz1 Jj2J S1 + jaugouss
+ JougsugsCh + iugiussji S = 0,
ug1u11J1C1 — fug3u117251 + Jrusuie
+ ug3u13J2J C1 + fugiu13j1JS1 = 0,
uz1u11JC1 — dugzuin St + Jusauig
+ uzsu13JC1 + iu31u13J251 = —1951,
ugz1u21J1JC1 — iugzug1j1.51 + jougauze
+ u33u23J2C1 + tuziuz3jaJS1 = 0,
and (i) U(j)'C, (7)U () = C ' (5), i.e.,
iJS1[urn, uzt] = Ci(ufy + J2udy — 1) + jiud;, (8)

iJ S1[u12, uss] = C1(j7uly + jauds) + ujy — 1,
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i.JS1[ur3, uzs) = Ci(uis + Juiy — 1) + jJuds,
J1un1u12C0 + duziuinji JS1 + jruziugg
+ JuziuzzCy — iugugzSy = 0,
JuiiusCh + iugiui3 J2 St + Jugiuag
+ JuizuzzCy — iugiusz Sy = —iSi,
J1dJui2u13Cy + iugauizjeJ S1 + jausauss
+ JougauszCr — du2usszj1S1 = 0,
Jrur2u11 C1 + dugaui1j2S1 + jrugugy
+ JaJuzouz1 C1 — tug2uz1j1JS1 = 0,
Juzu11Cy + tuzzu1n St + Juggugr
+ Jugzuz1 C — iurguz1 J2S1 = iS5y,
J1Ju13u12C1 + duzzui2j1S1 + jauszuzr
+ JoussuzeCl — iuizusajoJS1 = 0.
There are three independent generators, for example,
u12, U13, Uog, Which are situated above the diagonal.
Their commutators are obtained from RUU relations

R,(j)U1(7)U2(j) = Ua(3)Ur(j)Ry(j) and are in the
form

inh
[u127u23] _ Z,sm Jv
J

uge(u11 — uss), (9)

inh J
[u13, ’LL23] = U923 {(COSh Juv — 1)’LL13 — iSan UU33} s

sinh J
[ulg,ulg] = {(COSh Ju — 1)U13 +1 7 vun} u19.

An associative algebra SO,(3;7;00) is a Hopf
algebra with counit €(U(y)) =1, i.e., e(uy) =0,
e(urr) = 1, coproduct AU(j) = U(5)®@U(j) in the
form

Aujs = ujp @ ur2 + uja ® uge +j§u13 ® uz2, (10)

2
Augy = ug @ u11 + uge ® U + Jaus @ ugy,

2
Augz = Uz ® ugz + U3z ® uzz + jiu @ uis,

Augy = uzy ® ugo + uzz ® uzz + jruzs ® ui,
Auyz = u11 @ ug3 + u12 ® ug3 + u13 ® uss,
Auzy = uz1 ® uy1 + uzz2 ® ug1 + uzz @ uz1,

Augy = u1y ® ugy + jiue ® ugy + J u13 ® ugi,
Augy = uss ® ugo + jius ® ura + jauss ® uss,
Augg = ugg ® ugs + jousy ® ugg + J ug; ® s,
and antipode S(u(j)) = Co(j)U(5)C; 1 (j), where

Jv . 1. Jv
S(ui2) = u21cosh<7> + ZJQQUngsmh <7> ,
(11)
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1
S(ug1) = uizcosh ( + ij%u;»,gjsinh

Jv

7) (
S(ug3) = usacosh (ﬂ) — ijfulglsinh <

2 J

Jv

7) (

1
S(uz2) = ugzcosh ( —ijuy, jsinh

S(uy3) = usycosh? <% + uy3sinh? (?)

—i%(uw +U31)J8i1’1h (JU), S(UQQ) = U29.

Remark. Coproduct and counit of SO, (3; j; o) are
the same for any permutation ¢. Only antipode, com-
mutation, and (v; j)-orthogonality relations depend
ono.

For j; = quantum Euclid group E9(2) =
SOy (3;511,j2;00), J =11 is obtained. From (v;j)-
orthogonality relations, it follows that uy; = 1, uge =
us3, U3 = —usz, and from RUU equations, it follows
that all these generators commute and generate
rotation group SO(2). Therefore, it is natural to intro-
duce new notation ugs = usgz = cos Y, U9z = sinp =
—usg, and rewrite the generating matrix as

1 L1u12  L1U13 0o

U(t1;00) = | yugr cosg sing | ~ -

Lt1u3] —sing cos

(12)

where from (v;j)-orthogonality relations it follows
that

. .U
U9l = — (u12 cos i + u13 s1ng0+z§ smgo), (13)

U31 = U12 Sin @ — U3 COS Y + zg(l —cos ).

Here and later, the distribution of nilpotent param-
eters among elements of the generating matrix is
shown with the help of some notation: o = 11, @ = 1o,
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X = 11t9. (Let us recall that this distribution is sym-
metric relatively diagonal.) Dots denote complex ele-
ments. Commutation relations of independent gener-
ators are as follows:

[u12,sin ] = v cos p(1 — cos ¢), (14)

[sin p, uis] = wsinpcos, [uiz,uis] = ivuis.

The coproduct of quantum Euclid group is given by

Aupy =1 ® uig + uj2 ® cos ¢ — j§u13 ® sin ¢,
(15)

Auig = 1@ ui3z + u12 ® sing + u13 ® cos @,
Asin ¢ = cos ¢ ® sin ¢ + sin ¢ ® cos p,
Ap=10¢p+p®1;

the antipode is as follows:

S(u12) = —u12 cos ¢ — uizsin g, (16)
S(p) = —¢;
and the counit of independent generators is equal to
zero: €(u12) = e(u13) = €(p) = 0.

[f uo1, usy, o are taken as independent generators,
then Egs. (13)—(16) are rewritten in the following
way: from (v; j)-orthogonality relations

S(u13) = —u13 €os @ + urasin g,

. .U
U1 = —U21 COS © + U3] s1ngo—z§ sin ¢, (17)
U13 = —U21 SIN Y — U3] COS Y — zg(l — cos p),
commutation relations
[ua1, sin @] = v cos p(1 — cos @), (18)

[sin p, usg1] = —ivsingpcos ¢, [us1,u21] = ivugr;
coproduct

Augy =u9 ®1 + cos ¢ ® ug +Sing0®’LL31; (19)

Auz; = uz; ® 1 — sin o @ ug; + cos ¢ @ uzy,
Ap=10¢+ p®1;

antipode
S(ug1) = —ug1 cos ¢ + ugy sinp — wsing, (20)
S(us1) = —ug1 cos @ — ugy sin ¢ + iv(cos p — 1),
S(p) = —;
and counit e(ug21) = €(¢) = €(us1) = 0.
Under contraction js =19 quantum analog

N2(2) = SO, (3;71,t2;00), J =12 of cylindrical
group or Newton group N(2) is obtained. Similarly
to previous case, with the help of (v, j)-orthogonality
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relations, the generating matrix may be written in the
form

cosy siny tougs )
Ul(t2;00) = —siny cosy tougsy | YR
tpugl touzy 1
where

U3] = U3 Sin Y — uizcosy + 2%(1 —cos?), (22)

. .U
U0 = —U93 COSY — uqz Sin Yy — 25 sin 1,
and independent generators are subject to commuta-

tion relations

[sin ¢, ugs] = iv cos(cosp — 1), (23)

[UQg, ulg] = iUUQg, [Sin ¢, ulg] = jvsin 1/) COS 1/)
The Hopf algebra is defined by coproduct
A(siny) = cos ¢ ® sin + siny ® cos 1,

A) =19 +y®1,

(24)

Auiz =u13 @ 1+ cosyp @ uis + siny ® ueg,

Aoy = ugg ® 1+ coS Y ® U9y — j% sin ¥ ® uys;
by antipode
v
S(uig) = uz1 + Z§(U33 —uqy) (25)

= ugg sin ) — uyz cosy + iv(1l — cos ),

S(ugg) = uzp — igﬁuu = —U3 COS Y
S) = =1
and by counit €(¢)) = e(u13) = €(ug3) = 0.

— w13 siny — swsiny,

The distribution of ¢; in matrix (12) is passed
to the distribution of to in matrix (21) under re-
flection on secondary diagonal and simultaneous
substitution J = ¢1 by J = 1. This means that the
quantum Euclid group EY(2) = SO, (3;t1,1;00) is
isomorphic to the quantum Newton group N2(2) =
S0, (3;1,19;00) as well as in the nondeformed case.
Under substitution wug; on wuq3, w1 on wuag, on
—1, and v on —v, commutation relations (18) are
transformed in (23), coproduct (19) is transformed
in (24), and antipode (20) is transformed in (25).

Two-dimensional contraction 71 =1, Jjo =2
gives quantum Galilei group G9(2) = SO, (3; 1, t2;
00), J = t1t2. With the help of (v;j)-orthogonality
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relations, the generating matrix may be written in the
form

U(e; 00) (26)
1 L1U12  L1la2U13 - 0 X
—L1U12 1 LoU93 ~ - e |

titgugr —tougy 1
where ug; = —u13 + u1ouss, and independent gener-
ators satisfy commutation relations

[u12,u23] =0, [ugs, u13] = dvugz,  (27)
[u12, u13] = ivuis.

The Hopf algebra structure is given by coproduct

Auyp =1 ®@uip +up2 ® 1, (28)
Augz = 1@ ugs + ugz @ 1,
Aupz =1 ®@uiz +u13 ® 1 + 112 @ ugs;
antipode
S(ui2) = —u12, S(u1z) = —u13 + uipus3, (29)
S(ug3) = —uas;

and standard counit e(u12) = €(u13) = €(ugz) = 0.

5.2. Quantum Groups SO, (3;j;0),0 = (2,1,3)

The deformation parameter is transformed by
multiplication on J = (01,03) = (2,3) = j2. Com-
mutators, (v, j)-orthogonality relations, and antipode
are easily obtained from corresponding formulas of
S0,(3) = SO,(3;j = 1;00) by interchange of in-
dices 1 and 2 and then by standard reconstruction
of contraction parameters j. In particular, the gener-
ating matrix is as follows:

1695
1 .

—I—Zj—Sll’lh(jQU)UQQ Uo7 .
2

The antipode is easily obtained by the transformations
of (11)

.U .. 1 . v
S(u21) = uiacosh (325) + 2]§u13j—25mh (]25),
(32)

S(u12) = ugicosh (j2%) + 232u31%51nh ( 2)’

2)

3):

S(ug3) = ugacosh? (jz%) + uggsinh? <j2§>
1

] 1 . .
+ Z§(u33 — ugg)—sinh(jav),
J2

S(u13) = ugicosh (jg%) - zu21—51nh (

)

S(us1) = uygcosh (jgg) — w12—smh (

) . .U
S(U32) = U23005h2 (]25) + U3281ﬂh2<j2—>
1 L.
=+ Z§(U33 — UQQ),—Sll’lh(jQ’U),
J2

S(UQQ) = U22005h2 (323) - U33$iﬂh2 (‘722)

{
+ 5

5(16.33) = ugzcosh? (j23> — ugssinh? <j2§>

U923 + Ugg)jgsinh (jgv),

7 .. )
— —(u23 + usg)josinh (jov), S(uir) = u11.

2

The coproduct and counit are not changed and are
given by (10), which correspond to identical permu-
tation oy.

Contraction j; = 11 leaves the deformation pa-

Y2z Jiu; J2tzs rameter fixed since J = jo = 1 and gives new quan-
U(;0) = | jiure w1 jijouns (30)  tum Euclid group E.(2) = SO.(3;t1,1;0) with the
. . matrix
J2U32 J1j2u31l  U33
cos L1ug1 sin - o -
The commutation relations of independent generators v oaum 4
are U(Ll; U) = L1U12 1 tiurs | ~ ol
: N .
j%[um, u13] = i—sinh(jov)uiy (uge — uss), (31) —siny tus; cosp
1 .
[uns, u13] = ulg{,—(cosh v — 1)uas where the generators are
J2 uin =1, w2 =ugs =cosp, (34)
1 .
— i,—sinh(jgv)ugg}, U3 = —U32 = SN Y,
J2
1 . v . Y
[ug1, ua3] = j—(cosh Jou — 1)ugs U9 COS <<p — 2§> = — w9y + uizsin ((p — z§> ,
2
PHYSICS OF ATOMIC NUCLEI Vol.68 No. 10 2005
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uU31 COS <<p — 2%) = — (u13 + uo1 Sin ((p — z%) ),

and the commutation relations

[ug1, u13] = 0, (39)
[u13, sin @] = 2isinh o U13 €08 ((p — 25) ,
[ug1, sin ] = 2isinh 5 cos (gp + z§> U9
hold. The antipode is given by
S(uz1) = ugscosh g + iupgsinh g (36)

S(ulg) = U31COSh % — ’iUleiHh g,

S(p) = =,
and the coproduct is in the form
Auz =1 ® uiz + uiz ® cos ¢ + uje @ sinp, (37)
Augl = cosp ® usy + ug1 ® 1+ sinp ® usgy,
Ap=10¢p+¢p®1.

Quantum Newton group N, (2) = S0,(3;1,2;
o), J =1y is described by relations uss =1, uj; =

Ugg = COS Y, U9y = siny = —wuy9; i.e., the generating
matrix is in the form
cosy sinY touss )
Uliz;0) = —siny cosy touiz | - e
Laugy tauzy 1
where
. .U .
U3l = —U13 COS Y — Ugg sinyh — i sin v, (39)

U3z = —Uz3 cos Y + ujzsiny + zg(l —cos 1),

and the commutation relations
[sin ), uy3] = iv cosp(cosp — 1), (40)
[Sin ’l,[), UQg] = 7V COS ¢ sin ¢, [UQg, ulg] = —ivulg

hold for independent generators. The antipode is
given by
S(u13) = —u13cosp — uggsinyy — wsin, (41)
S() = =,
S(ug3) = —ugg costh + uigsiny + (1 — cos ),
and the coproduct is
Ay =19+ 1, (42)
Auog = U3 ® 1 4+ cos Y ® ugs + sin ) @ uqs,
Auis = u13 ® 1 4+ cos Y ® uisz — sin ) & uos.

GROMOV, KURATOV

Generating matrices (38) and (21) are equal from
the viewpoint of nilpotent unit distribution, while for-
mulas (39)—(42) pass to (22)—(25) under substitu-
tion w13 on weg and wuses on wy3. Thus, both quantum
groups are isomorphic N,(2) ~ N2(2) ~ E(2).

For quantum Galilei group G,(2) = SO,(3; t1,
ta; 0), J = 19, it follows from (v, j)-orthogonality re-
lations that w11 = wge = ugg = 1 and the generating
matrix takes the form

1 L1U21  LoU3 -0 e

U(LS U) = | —t1u12 1 Ltitourg | - X

—loU23 L1l2U31 1 :
(43)

v
where u3; = —u13 — uggu93 + ’L§’U,21; the commuta-
tion relations are

[ug1,u13] =0, [u23,u13] = —ivuys, (44)

[ug1, ugg) = ivuas;

the antipode may be written as

S(u21) = —uo1, S(u2z) = —uas, (45)
S(u13) = —u13 — u21u23;
and the coproduct is
Augr = 1@ ugy +u9 ® 1, (46)

Augz = 1 ® ugz + u23 ® 1,
Aupz =1 ®@uiz + uiz ® 1 4 ug1 ® ugs.

Let us stress that G,(2) is not isomorphic to
GY(2), in spite of the fact that both matrices (43), (26)
are equivalent from the viewpoint of nilpotent unit
distribution, but deformation parameters are trans-
formed in a different way, namely, with multipliers J =
to and J = 1119, respectively. Therefore commutation
relations (27), (44), antipodes (29), (45), and counits
pass in each other under substitution uq3 on uog and
vice versa, but in coproduct (28), A(u;3) does not
pass in A(ugg) from (46).

5.3. Quantum Groups SO, (3;j;0),0 = (1,3,2)

The deformation parameter is multiplied by J =
(01, 03) = (1,2) = j;. Commutators, (v, j)-ortho-
gonality relations and antipode are easily obtained
from corresponding formulas of SO, (3) = SO,(3; 1,
1; 09) by interchange of indices 2 and 3 and then by
standard reconstruction of contraction parameters j.
In particular, the generating matrix is as follows:

Uil Jijeu1z Jiui2

U(G;0) = | jijous1  uzz  jouse (47)
Jiug1  JoU23 U2
PHYSICS OF ATOMIC NUCLEI Vol.68 No. 10 2005
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For j; = ¢1, quantum Euclid group E,(2) = SO,(3;
11, 1;0) is obtained with generators

1 L1u13  L1u12 -+ O O

Uus0) = tjuzy cose sine | ™~

L1ug] —sing cos

As far as the generating matrix (48) is equal to (12),
then E,(2) is isomorphic with E%(2) and therefore
does not represent a new quantum group.

Quantum Newton group N, (2) = SO.(3;1,19;0)
is described by untouched deformation parameter z
and generators wugs =1, u11 = U9y = cosY, Uiz =

sin 1) = —uo1, which are arranged in matrix form
cosy Louiz Siny - e -
U(’Q; J) = LoU31 1 Lousgo | ™ - e

—sinY toug3 cosy

(49)

This quantum group as a Hopf algebra is isomor-
phic to quantum Euclid group E,(2) with untouched
deformation parameter (J = 1), since the generat-
ing matrix (49) is equal to (33), if we put ¢ in-
stead of ¢5. Finally, quantum Galilei group G(2) =
SO, (3;t1,12;0) is characterized by J = ¢;; the diag-
onal generators are equal to one, w11 = ugo = usgg =
1; and the generating matrix is as follows:

1 L1l2U13 L1U12 - X O
U(,;0) =

L1L2u31 1 touga | ~ <.

—t1u12 —touzz 1 :

(50)

The nilpotent parameter distribution of (50) passes
in (43) under exchange ¢; and ¢ and simultane-
ous reflection with respect to the secondary diagonal.
Therefore, G, (2) is isomorphic to G,(2). Thus, the
permutation o = (1, 3,2) does not lead to new con-
tracted quantum groups.

6. QUANTUM GROUPS SO, (4; j; o)

In this section, all nonisomorphic contractions of
S0,(4) are enumerated. The deformation parameter
is multiplied by J = (01,04) U (092,03), which is
equal to J = j1jo73 for permutation oo = (1,2,3,4)
and J = jyjs for o/ = (1,3,4,2). There are no other
values of J. The above-mentioned values of J cor-
respond to nonisomorphic on the equal parameter

PHYSICS OF ATOMIC NUCLEI
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number contracted quantum groups which have
nonequivalent generating matrices for permutations
op and o’

One-dimensional contractions. For j; = ¢,
J = 11 quantum Euclid group E,(3) = SO, (4; t1;00)
is obtained. For jo = 19, there are two nonisomorphic
quantum Newton groups: N, (3) = SO, (4; t2;00),
J =19,and N,(3) = SO,(4;12;0") with J = 1.

Two-dimensional contractions. For j; =y,
j2 = 19 two nonisomorphic quantum Galilei groups
GU(?)) = SOv(4; L1,62;00), J = L1l and Gw(3) =
SO (4; 11, t2; 0'), J = 11 are obtained. Contractions
J1 = t1,J3 = t3 give in result quantum groups SO, (4;
L1, t3; 09), J = t1t3, which has no special name.

Under maximal three-dimensional contrac-
tions j; = t1, jo = 12, j3 = t3, two nonisomorphic
quantum flag groups F,(4) = SO,(4;1500), J =
t1taty and Fy(4) = SOy (4;150"), J = 1113 are ob-
tained.

o oo o 0
. )
Ev(S) ~ ’ Nv(?’) ~ ’
o o o X X
NZ(S) ~ * 9 GU(?))N *° )
.
X X o o X ®
Gul3) ~ RO R
) *
oo A
. . *
SOU(47 617L3;0—0) ~ )
R

where A = 13, % = 1113, & = 193, and @ = tq19t3.
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Thus, for the quantum case, there are eight dif-
ferent contracted groups, while for classical group
SO(4) there are only five nonisomorphic contracted
Cayley—Klein groups.

7. QUANTUM GROUPS S0O,(5; j;0)

The deformation parameter is multiplied by J =
(01,05) U (092,04), which is equal to J = j1j27374 for
permutation o9 = (1,2,3,4,5), equal to J = j1j2J3
for permutation o' = (1,2,5,3,4), equal to J =
j1j2ja for permutation o2 = (1,4,2,5,3), equal to
J = j1j3 for permutation o2 = (1,3,5,4,2), equal to
J = j1ja for permutation 0% = (1,4, 3,5,2), equal to
J = jaja for permutation o = (2,4,1,5,3), equal to
J = j1j3ja for permutation o5 = (1,3,4,5,2), and

equal to J = jajsjs for permutation o™ = (2,3, 1,4, 5).

[f contractions only on parameters j;, jo are
considered, then there are two quantum Euclid
groups E,(4) = SO,(4;11;00), J =11 and E,(4) =
SO, (4;11;0%), J =1 with distribution of nilpotent
parameters in the form

+ O O O O « O -

two quantum Newton groups: N,(4) = SO, (4; to;
00), J =12 and N,(4) = SO.(4;12;0%), J =1 with
generating matrices

and two quantum QGalilei groups: G,(4) = SO, (4;
L1L9; Jo), J = L1l and Gz(4) = SOv(4; L1L9; 03), J =

PHYSICS OF ATOMIC NUCLEI
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t1 with generating matrices

S0 X X X
¢ o o

Gy(4) ~ ;
X 0 X X
.

G.(4) ~ o o

As compared with the case N =3 two quantum
Newton groups are added.

In all discussed examples for N = 3,4, 5 the num-
ber of nonisomorphic quantum analogs of the corre-
sponding classical groups equals two. One may think
that this number for any contractions does not exceed
two. But this is not so. The number of nonisomor-
phic quantum analogs of the classical Cayley—Klein
groups is increased when the number of nilpotent val-
ued contraction parameters is increased. For exam-
ple, under maximal contraction j = ¢4, k=1,...,4
five quantum analogs of the flag group F(5) =
SO(5;1) are obtained, namely, F,,(5) = SO,(5;¢; 00),
J = 119t3ts; Fo (5) = SOy, (5;1501), J = 111913;
Fy,(5) = SO, (5;1;0%),  J=1112t4; Fy,(5) =
SOy, (5; 1; ), J =1113; Fy,(5) = SOy, (5;1;0%),
J =114. They all have generating matrices with
nonequivalent distributions of nilpotent parameters.
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Appendix

R MATRIX OF QUANTUM GROUP S0O4(N)
IN CARTESIAN BASIS

Ry= (Do D)RD@ D)™ =1+ (g 1)
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N
X (1=q7") > (err ® erk + exr @ )

k=1
k#£K

N
A
+t3 D (ewn ® erw — ern @ exk)

+

DO | >

(ek’,n—l—l ® Ent+1,k — iek/,n—i—l ® €n+1,k
k=1

+iCknt1 @ €pp1k + €ontl @ €ng1k
+ €n+1,k b2y €kn+1 + ien-‘,—l,k ® €k n+1

- ienJrl,k/ b2y €kn+1 + En+1,k ® ek/,nJrl)

)\ n
) Z q " (—ie nt1 @ et
k=1
+ e nt1 @ er nt1 T ekntl ® €k nt1
+ ik nt1 @ er pa1 + 1pp1k @ eng1 k/
+ent1,k @ent1k+ent1p @ ent1k
N

. A
— n41,k! b2y en-l—l,k:) + Z §
k,p=1
k>p, k,p#n+1

+ ekp @ ey + iekp & ey — ’iekp & epk

(erp ® epk

+ epry @ epp + ey Q eprgy + iek/p/ ® epg
— ey @ eplr + ey @ Epp + 1egry  eprgs
— €epp @ eprk + eprp @ epiy — iekp' @ epk
— iekp/ Q epk + ey Q ey — Egpr @ €pk/)

N

2.

k,p=1
k>p, k,p#n+1

qpk—pp(ekp @ ey + ekp & Ekyp

NP

+ iekp & egpr — iekp  egrp + eyt @ egry
+ gy @ egp t+iepry @ ey — ey @ eprp
+ iek/p & egrpr + iek/p @ egp — ekrp Q ey
+ eprp @ eprp — ilgy @ epry — ey R ey

)\:q—qfl.

+ ey @ eyt — Epyr ek/p),
REFERENCES

N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Fad-
deev, Algebra Anal. 1, 178 (1989).

. E.Inonii and E. P. Wigner, Proc. Nat. Acad. Sci. USA

39,510 (1953).

L. L. Vaskman and L. I. Korogodskij, Dokl. Akad.
Nauk SSSR 304, 1036 (1989)[Sov. Phys. Dokl. 304,
1036 (1989)].

PHYSICS OF ATOMIC NUCLEI

4.
5.

6.

10.
11.

12.
13.

14.
15.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

Vol. 68 No. 10 2005

1699

E. Celeghini, R. Giachetti, E. Sorace, and M. Tarlini,
J. Math. Phys. (N.Y.) 31, 2548 (1990).

E. Celeghini, R. Giachetti, E. Sorace, and M. Tarlini,
J. Math. Phys. 32, 1155 (1991).

P. Schupp, P. Watts, and B. Zumino, Lett. Math.
Phys. 25, 141 (1992).

A. Ballesteros, F. J. Herranz, M. A. del Olmo, and
M. Santander, J. Phys. A 26, 5801 (1993).

E. Celeghini, R. Giachetti, E. Sorace, and M. Tarlini,
J. Math. Phys. (N.Y.) 32, 1159 (1991).

N. A. Gromov, in Proceedings of the XIX Inter-
national Colloquium on Group Theoretical Meth-
ods in Physics, Salamanca, Spain, 1992, Anales de
Fisica, Monografias, Ed. by M. A. del Olmo, M. San-
tander, and J. Mateos Guilarte (CIEMAT/RSEF,
Madrid, 1993), p. 111.

N. A. Gromov, J. Phys. A 26, L5 (1993).

A. Ballesteros, F. J. Herranz, M. A. del Olmo, and
M. Santander, Lett. Math. Phys. 33, 273 (1995).

P. Zaugg, J. Phys. A 28, 2589 (1995).

J. Sobczyk, Czech. J. Phys. 46, 265 (1996); q-
alg/9603008.

P. Maslanka, J. Math. Phys. (N.Y.) 35, 1976 (1994).
M. Schlieker, W. Weich, and R. Weixler, Lett. Math.
Phys. 27,217 (1993).

. A. Ballesteros, E. Celeghini, R. Giachetti, et al.,

J. Phys. A 26, 7495 (1993).

V. Hussin, A. Lauzon, and G. Ridean, Lett. Math.
Phys. 31, 159 (1994).

P. Aschieri and L. Castellani, Lett. Math. Phys. 36,
197 (1996).

. N. A. Gromov, Contractions and Analytical Con-

tinuations of Classical Groups. Unified Approach
(Komi SC, Syktyvkar, 1990) [in Russian].

N. A. Gromov, I. V. Kostyakov, and V. V. Kuratov,
in Algebra, Differential Equations and Probability
Theory (Komi SC, Syktyvkar, 1997), p. 3 [in Rus-
sian].

A. Ballesteros, N. A. Gromov, F. J. Herranz,
et al., J. Math. Phys. (N.Y.) 36, 5916 (1995); hep-
th/9412083.

N. A. Gromov, Turk. J. Phys. 21, 377 (1997),
q-alg/9602003.

N. A. Gromov, I. V. Kostyakov, and V. V. Kuratov,
in Algebra, Differential Equations and Probability
Theory (Komi SC, Syktyvkar, 2000), p. 3 [in Rus-
sian].

N. A. Gromov, I. V. Kostyakov, and V. V. Kuratov,
Yad. Fiz. 64, 2211 (2001) [Phys. At. Nucl. 64, 2121
(2001)].

N. A. Gromov, I. V. Kostyakov, and V. V. Kuratoy,
math.QA/0209158.

N. A. Gromov and V. V. Kuratov, in Algebra, Geom-
etry and Differential Equations (Komi SC, Syk-
tyvkar, 2003), p. 4 [in Russian].

N. A. Gromov and V. V. Kuratov, math.QA/0401088.



Physics of Atomic Nuclei, Vol. 68, No. 10, 2005, pp. 1700-1708. From Yadernaya Fizika, Vol. 68, No. 10, 2005, pp. 1763-1771.

Original English Text Copyright © 2005 by Gur, Mann.

Radial Coherent States—From the Harmonic Oscillator
to the Hydrogen Atom”
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Abstract—We construct spectrum generating algebras of SO(2,1) ~ SU(1, 1) in arbitrary dimension for
the isotropic harmonic oscillator and the Sturm—Coulomb problem in radial coordinates. Using these
algebras, we construct the associated radial Barut—Girardello coherent states for the isotropic harmonic
oscillator (in arbitrary dimension). We map these states into the Sturm—Coulomb radial coherent states
and show that they evolve in a fictitious time parameter without dispersing. (© 2005 Pleiades Publish-

ing, Inc.

1. INTRODUCTION

Since their introduction by Schrodinger in 1926
[1], coherent states have become a tool to discuss
the classical limit of a quantum system. The states
which Schrédinger constructed were associated with
the one-dimensional harmonic oscillator (HO) and
regarded as the most classical ones. The HO coherent
states evolve according to the classical equations of
motion and the states do not disperse as they evolve
with time. As the subject developed, new methods
to construct coherent states were suggested. The
common definitions are minimum uncertainty states,
eigenstates of the lowering operator, and states con-
structed with a displacement operator acting on a
system’s fiducial state. For the one-dimensional HO,
these three definitions result in the same set of states.
They minimize the uncertainty relation in position
and momentum (which equals the uncertainty re-
lation of the position and momentum in the HO
ground state). As for other systems, Schrodinger
suggested looking for coherent states of the hydro-
gen atom as well. Since then, there have been many
attempts to construct classical states for the hydro-
gen atom. Many of these attempts, as found in [2—
5], involve mapping of the Coulomb problem into
the four-dimensional harmonic oscillator using the
Kustaanheimo—Stiefel (KS) transformation [6]. This
transformation involves the introduction of a new time
parameter. This time parameter is proportional to the
eccentric anomaly [7]. Therefore, all the states ob-
tained this way evolve with the new time parameter
rather than in ordinary time. Other attempts consider

*The text was submitted by the authors in English.
DTel-Aviv University, Israel.

“e-mail: yanivg@post.tan.ac.il

e-mail: ady@physics.technion.ac.il

temporally stable coherent states and their time evo-
lution [8—11].

In 1994, Zlatev, Zhang, and Feng[12] constructed
the most general coherent states for the hydrogen
atom using SO(4,2), which is the maximal group
for this case. They showed that these states can-
not be localized and cannot follow the classical or-
bits. However, they suggested that coherent states of
SU(1,1), which is a subgroup of SO(4,2), and the
spectrum generating algebra for this atom may have
a classical limit for large [, where [ is the angular
momentum. A few years earlier, Gerry and Kiefer [13]
presented a work on radial coherent states for the
Coulomb problem, where they used the SO(2,1) ~
SU(1,1) algebra. Their states are composed of su-
perposition of Sturm functions, all scaled by the same
factor. The method they used to construct their coher-
ent states is Perelomov’s method. They showed that
the wave packets constructed this way evolve with
their new time parameter and do not disperse as they
evolve with that parameter. However, they change
their shape periodically as they move from the apogee
to the perigee. Radial coherent states for the Coulomb
problem and other central potentials were obtained as
well by Nieto and collaborators (e.g., [14]). They used
the minimum uncertainty states method. The states
obtained that way lose their coherence as they evolve
with time [15].

In this work, we extend the discussion on ra-
dial coherent states to Barut—Girardello (BG) states,
based on the SO(2,1) ~ SU(1,1) approach. To our
knowledge, these states have never been discussed in
the literature in this context. Our discussion is a little
more general since the calculations are in arbitrary
dimensions.

The plan of the paper is as follows. In Sections 2
and 3, we construct the SO(2,1) algebra for the

1063-7788/05/6810-1700$26.00 © 2005 Pleiades Publishing, Inc.
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isotropic harmonic oscillator (IHO) and the hy-
drogen atom (in arbitrary dimensions), respectively.
In Section 4, we present the mapping between
the HO radial functions and the Coulomb radial
functions. BG radial coherent states for the HO in
arbitrary dimensions are calculated in Section 5. In
Section 6, we map the BG coherent states of the
four-dimensional IHO into the BG coherent states
of the three-dimensional hydrogen atom. The time
evolution and the classical limit of these states is
discussed in Section 7. Final conclusions are drawn
in Section 8.

2. THE d-DIMENSIONAL ISOTROPIC
HARMONIC OSCILLATOR

The dynamical group for the d-dimensional IHO
is the real, symplectic noncompact group Sp(2d, R)
(e.g., [16]). A subgroup of Sp(2d, R) is the direct
product group SO(2,1) x SO(d) which corresponds
to separation of variables of the HO wave functions
into the d-dimensional radial functions Rgrl(r) and
the d-dimensional spherical harmonics functions
Yimn,.omg_o (01,02, ...,04_1). These are basis func-
tions for the SO(2,1) and SO(d) representations,
respectively.

Since we are dealing with radial coherent states,
we concentrate only on the group SO(2,1) and its
representations. SO(2,1) is known as the radial
group and its algebra is known as the spectrum gen-
erating algebra (SGA) of the IHO. It is a semisimple,
noncompact Lie group and is locally isomorphic to
SU(1,1) and Sp(2, R).

These groups have three generators, which we
denote as kg, ki1, and ko. They obey the following
commutations relations [17]:

(ko, k1] = ika, (1)
k1, ko] = —iko, (2)
(ka, ko] = k1. (3)

Alternatively, we can define raising and lowering op-
erators as

ki =k £ ks, (4)

where together with kg the commutations relations
are

ko, k+] = £k, (5)
[k—, kt] = 2ko. (6)

The generators act on the general group basis |m, k)
as follows (e.g., [18]):

kO‘m7k> - (m+k)’mvk>7 (7)
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k_|m,k) = \/m(m + 2k —1)jm —1,k), (8)

ki lm, k) = /(m +1)(m + 2k)|m + 1,&),  (9)

where k is the Bargmann index [19].

In order to obtain the relevant operators for the
radial symmetry, we use the d-dimensional radial

functions Rﬁrl(r) which are given by [20]

Rirz(r)

1/2
Tle_r2/2L£.::(d_2)/2 (?”2),

(10)

| 2@(n,+1)
B L(n, +1+ %)

where the szt(d_2)/2(r2) are the associated Laguerre
functions [21].

These functions are orthonormal with respect to
the measure r?=1:

/ drRy (r)RE, (r)r®™t =6 . (11)
0

Using the recursion relation and the differential equa-
tion for the Laguerre functions [21] (since the La-
guerre functions in our case are functions of r2, we
performed a change of variables on the original equa-
tions)

(p+ DL, (%) + (r® — ¢ —2p — 1)LI(r?)  (12)

++ @)Ly () =0, p=123,...,
1 d

5" Lo = pLY(r) — (P + @) Ly (), (13)

p =1,

and using the relation for arbitrary operators A and B
1
eBAeiB =A+ [BvA] + 5[37 [BvAH o (14)

we obtain raising and lowering operators for the
quantum number n,.
1 9 d
Ki:§ :l:Tar—T +HZ|:§ : (15)

where H is the d-dimensional IHO radial Hamilto-
nian [20]:

1 1 _ (l+d—-2
H= 3 (——rdl&«(rd L9,) + +d=2) 2 ) +r2> :
(16)

Defining Ko = $H, we find that K, K_, and Ky
obey the SO(2,1) algebra commutations relations
presented in Egs. (5), (6).
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The raising, lowering, and eigenvalue relations for
the normalized functions Rirl are given by

d
K. R} = \/(nr +1) <n +1+ §>Rgr+u, (17)
d d d
K_R! = \/n (n +itg - 1>Rnru, (18)
d ! d d
KORTLrl = ny + 5 + Z Rnrl’ (19)

By comparing Eqgs. (7), (9) with Egs. (17)—(19) we
find that k = 1/2 + d/4 and m is actually the quantum
number n,.. In order to obtain k in a rigorous way,
rather than comparing equations, we use the Casimir
operator.

The Casimir operator for this group is[17]

C=K:—K! - K3 (20)

1
— Kg - §(K+K7 + K7K+)

and its eigenvalues are k(k — 1).

Calculating the Casimir eigenvalue in our case we
obtain

et = (5+5) (5+5-1) B0 @

Hence, we have two possible solutions k =1/2 +
d/4ork=—(1/2+d/4—1). We are interested only
in the positive discrete representations of SO(2,1),
DT (k); hence,

(22)

3. RADIAL GROUP FOR THE HYDROGEN
ATOM

Unlike the case of the IHO, the Coulomb prob-
lem Hamiltonian cannot be expressed in terms of
the SO(2,1) group generators. The group SO(2,1)
is related to the radial group or spectrum generat-
ing group for the Coulomb problem, when its basis
functions are taken as the Sturmian functions which
are related to the three-dimensional radial Coulomb
functions Ry, 1(r) by a tilting (squeezing) transfor-
mation [16, 20, 22]. In order to generalize this relation
for the D-dimensional case, we begin by generalizing
the Sturm basis given in [13] to D dimensions,

T(N, +1)
D =9 T
SN, () \/F(Nr +20L+D—1)

X (2p)lepr?\,Lr+D_2(2p).

(23)
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These functions satisfy the orthonormality condition
(note the measure p”—2)

o0

/ dpSN, 1.(p)SNrL(P)p" ™% = SN, 1
0

(24)

As in the IHO case, we would like to construct for
this basis the relevant realization of raising and low-
ering operators. We use again the Laguerre recursion
relations and Eq. (14) to obtain

1

D —
Kg:ipap—erKgiT, (25)

where the superscript “C” stands for “Coulomb” and
where

1 D-1 L(L+D -2
K§_——p<8§+ p D — ( e )—1>,

(26)

satisfying the eigenvalue equation
1
Ky SR, = [Nr +L+5(D- 1)] Sk (27)

K$ and K€ act on the group basis as follows:

K$SR = VN, +1) (N, + 2L+ D —1)SR ;.
(28)

K¢SE = /N, (N, + 2L+ D —2)S§ _,,. (29)
From K§ = K{ £iK$, we obtain
ch = Kg - P

. D—-1
K$ = —i (pap—i-T),

(30)

(31)

where K§ is the D-dimensional tilting, squeezing,
or dilatation generator. Taking D = 3, we obtain the
realization of [13, 20].

The operators K¢ and K¢ are adjoint operators
with respect to the S§  basis, with a measure p~2
(note the difference from K, and K_ of Section 2,
which are adjoint with respect to Rirl with measure
r4=1). Therefore, under this condition, ch and KQC
are Hermitian operators.

In order to make the connection between the Stur-
mian functions and the radial Coulomb functions
in D dimensions, we write the D-dimensional ra-

dial Schrédinger equation for the hydrogen atom (in
atomic units):

(H® — E)RR,1(p) =0, (32)

Vol. 68 No. 10 2005



RADIAL COHERENT STATES

where

1 D—-1 I(l+D—2 27
ne =} (34 Dy, D=2 27,

p p
(33)

Upon left-multiplying Eq. (32) by p, the equation
becomes a pseudoeigenvalue equation for Z,

(HC — Z)RR ,(p) =0,

where HC is the pseudo-Hamiltonian which can be
expressed in terms of the group generators,

~ 1 1
HC = <§—E>K§+<§+E>K1C.

Since neither K§ nor K is diagonal in the RY | (p)

(34)

(35)

basis, we use instead the S | (p) basis, related to the
RJI\),TL(,O) by the tilting transformation [16, 22]

- C
RY 1 (p) = Cef2 80 | (p),

where C is the normalization constant.

(36)

Multiplying Eq. (34) from the left by e~z we
obtain

(H—Z)SN..(p) =0, (37)

where

H = e 0K JCKY (38)

= [(% —|—E) cosh 6 + (% — E) sinh@} ch
1 . 1 C
+ §—|-E sinh 8 + §—E cosh @ KO'

The right-hand side of this equation was obtained by
performing the similarity transformation on both the

compact generator K§ and the noncompact one K.

Obviously, by a proper choice of 8, it is possible to
eliminate either K§ or K. However, eliminating K§

will yield the continuous part of the spectrum[16, 22].
In order to obtain the discrete part of the spectrum, we

would like to eliminate K. Taking 6 = 1 In(—2E),
we obtain

= V—2EK. (39)

Remembering Eq. (27), we obtain the D-dimensional
bound-state energy spectrum

Z2
2[N + (D - 3)/2]*’
where N is the principal quantum number N =

N, + L+ 1. Thus, the expression for # is actually
N -dependent.

E=F

(40)

N =—
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To obtain the normalization constant C' and the
radial functions, we use the fact that, while the Stur-

mians are orthonormal with respect to p” =2, the ra-
dial functions are orthonormal with respect to p?~1.
Since p = KOC — KV, we require the following con-
dition (the bracket represents the Sturmian measure

pPR):
[ oo iR P (41)
0
= <R1?7TL|KOC - K1C|R£,«L> =1

= C%(SN, LIK§ — KTISR, 1),
where we used Eq. (36). Using Egs. (27)—(29),
we obtain C =Cxy =+/Z/M?, where M = N +
(D —3)/2.
In Eq. (36), we made the connection between the
Sturmians and the physical radial functions, so now

we are able to write the expression for RY ; (p):

| ZD 27 p
D _ D
Ryp(p) = MDD+ SNi ( Vi )

2Zp !
MD+1 N+L+D—2) M

27
—Zp/M 12L+D—2 14
<o (5F).

where we have used the property of the dilatation
operator

(42)

exp [In0pd,] f(p) = f(6p). (43)

In a similar way to Section 2, we obtain the Casimir
eigenvalue with respect to the Sturm functions basis
D-1

k=L+——.

5 (44)

4. RADIAL FUNCTION MAPPING

Since the IHO radial functions and the Sturm
functions are two different representations of SO(2, 1)
basis functions, there are certain mapping conditions
which transform the IHO radial functions into the
Sturm functions.

By comparing the Casimir eigenvalues, Egs. (22)
and (44), we obtain the most general relation between
those two representations:

d=2D —2—2),
A=1-2L.

(45)

This map implies that there is a relation between the
D-dimensional Coulomb radial states (42) and even-
dimensional IHO radial states (10).
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To be more specific, D and A are integers and
therefore d > 2. This implies the condition A < D — 2.
The fact that the eigenvalues in Egs. (19) and (27)
should coincide and using Eq. (45), yields another
condition

n=2N -2+ (46)

where n and N are the principal quantum num-
bers for the IHO and the hydrogen atom, respec-
tively. Recalling that N =N, + L 4+ 1> 1 and that
n = 2n, + [ > 0 implies that, if we wish to map the
hydrogenic states into the IHO states starting from
the ground state, then A > 0. Taking, for example, the
case A =0 with L =0 and [ = 0, we see that there
is a mapping between the hydrogenic ground state
N = 1and the oscillator ground state n = 0. The next
states which map are N = 2 and n = 2, etc. Taking
A = —1, the minimum allowed angular-momentum
values are L =1 and [ =1 (recall that L > 0 and
[ > 0) and therefore the lower states which map are
the N = 2 state of the hydrogen atom and n =1 of
the oscillator. The ground states are excluded. As A
is more negative, more states are excluded. Since we
wish to map all the hydrogenic states including the
ground state, we take the lower bound of A to be zero.
Therefore,

0<A<D-2. (47)

Considering the three-dimensional Coulomb prob-
lem, D = 3, the valid values for A are either A = 0 or
A = 1. Taking first A =1 we obtain [ = 2L + 1 and
d = 2. Therefore, in this case, the two-dimensional
[HO states with odd principal quantum number are
mapped into the three-dimensional Coulomb radial
states. Taking A =0, we obtain d =4 and [ = 2L;
therefore, the four-dimensional IHO states with even
principal quantum number are mapped into the three-
dimensional hydrogenic states.

In order to find the coordinate mapping [for any D
and d related by Eq. (45)], we compare Eq. (25) with
Eq. (15) to obtain

p=gr (48)
Mapping the IHO radial states into the Coulomb
states, we should take care of the normalization con-
stant. This is done by multiplying the IHO states

by the factor 24/ZP /MP+1, This factor comes from
the fact that the IHO radial states and the Sturm
functions are normalized with respect to a different
measure [cf. Eq. (41)], and from the tilting opera-
tion (36) which takes the Sturm functions into the
physical Coulomb radial functions.

The relations between these two systems were
discussed by many other authors (e.g., [23—27]).
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5. 50(2,1) BARUT-GIRARDELLO RADIAL
COHERENT STATES FOR THE IHO
To calculate this set of radial states for the IHO, we
use the BG formalism for noncompact Lie groups [28].
These states are the eigenfunctions of the lowering
operator K_ with complex eigenvalues a:

(49)

Expanding |o, k) in terms of the Rflrl(r) and using
Egs. (18) and (49), we obtain
of—1/2

Lo —1(2]al)

a™r d

nr=0 \/F(nr + 1) (n, + 2k) Rnrl(r)

2 1-d/2 —r?/2
= ———e%r e " P o1 (2V ar?),
\/ T2k-1(2]e) -1 )

where J; is the Bessel function of the first kind, I; is
the modified Bessel function of the first kind [21], and
k =1/2+ d/4. The sum was calculated with the help
of the Laguerre generating function [29]

K_’Oé, k>BG = Oé’Oé, k>BG-

(rlos, k)pg = (50)

[e.o]

X

n

;%rm+z+nLﬂ”

= L (2Vra)e® (ra) /2.
For d =1, we obtain the result of Agarwal and
Chaturvedi [30] for the Calogero—Sutherland oscil-
lator.
For any value of k, these states are nonorthogonal,
satisfying

(51)

Dp—1(2v/a1a2)

B vt e M
Also, they satisfy the completeness relation
j/du(a,kﬂagk>ﬁuk]—-l, (53)
where
Al K) = 2 Ko 1 (2lo]) o1 (2lal)dPa (54)

is the measure which enables the resolution of the
identity (K, is the modified Bessel function of the
second kind [21]).

Useful expectation values with respect to the BG
coherent states are given by

(K1) = Rea, (55)

(K2)pg = Ima, (56)

where we used the fact that (K_)gg =« and
(K+)pg = a.
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6. BARUT—GIRARDELLO STATES
FOR THE HYDROGEN ATOM

Here, we discuss only the three-dimensional case.
Hence, all the operators in this section are the three-
dimensional forms of the operators in Section 3. We
follow the same notation. The generalization to any
D is easy using the formalism developed in previous
sections.

Following the mapping from Section 4, we take
Eq. (50) with d = 4 and [ = 2L, consistent with the
case A = 0, to obtain

2
Irp+1(2af)

1
X €a\/—ﬁ€_pJ2L+1(2v 2par),

where we mapped the coordinates according to (48)

and multiplied the solution by the factor v/2 to ad-
just the normalization. The measure for normalization
here is p.

Obviously, Eq. (57) is a generating function for
the three-dimensional Sturm functions (SﬁfLS) and

{pla, L)pa (57)

an eigenfunction of K¢ with eigenvalue a.

Recalling Eq. (37), the expectation value of the
pseudo-Hamiltonian with respect to the Sturm func-
tions is

(SN.LIHISK.L) = Z. (58)

We require the same expectation value for H with
respect to the BG coherent states basis,

(o, L|H|ev, L) g
= V—2E(a, L|K§|a, L)pg = Z.

(59)

Using the expectation value of Kg' in the |a, L)pg
basis

(§) = o 2220

+L+1, 60
L1 (2lo]) )
we easily determine E
Z2
FE=—— 61
2K o

Z* I 41(2]al)?
2[|af L2 (2lal) + (L + 1) Tor41(2]a])]”

Similarly to [13, 31], we define a tilted coherent state
as

o, L)gg = Ce®%|a, L)gg, (62)

where # = In+/—2F and E is given by Eq. (61). The
tilted state obeys the following energy relation:
(o, LIHC |, L) /(o Ll Lygg = 2 (63)
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— (o, Lo, g

The normahzatlon measure for the tilted states should
be p2; therefore, in order to determine C, we use the

normalization requirement (a,L|p|a,L> g = 1 (the
bracket denotes the measure p),

L= (a,LIK§ — Kf'|a, L)ng
= (2% %, LIK§ — K¥|a, L)pg.

(64)

Thus,

- —9F\1/4
b (—2F) ’
(K§ — Kf)BG

and using Egs. (55) and (60), we obtain
(o, LIKG — Ktlo, L)sa

oleala)
Iry1(2|al)

Finally, we get the expression for the radial BG coher-
ent states for the hydrogen atom

2E 12 e —1/2
/Kc KC)s I2L+1 (2]a)

x exp” V7 2EP Jor+1 (2\/ 2\/—2Epa) .

This set of coherent states is different from the solu-
tion obtained in [13] using Perelomov’s method.

(66)

+ L+ 1 — Re(a).

(plo, L)g

7. TIME EVOLUTION

We consider the resolvent operator for the
Coulomb problem using the pseudo-Hamiltonian

=V —2EK§ | E is given by (61)]
= /eiZTU(T)dT, (68)

0

?
Z—"H

G(Z) =

where U () is the corresponding evolution operator
U(r) = exp(—iTH) (69)

with respect to the new parameter 7 which can be
treated as a fictitious time and was discussed exten-

sively in[7, 13, 32].
Acting with the evolution operator on the state
|, L), we obtain
efinKgT‘&’\f»BG

where

— 20T o (1) Lpg, (70)

a(r) = ape” 2T

andw = /—E/2.

ap = «a(0), (71)
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Fig. 1. Time evolution of BG coherent states for the Coulomb problem for L = 1 and |«| = 5 (see discussion in the text).

Ar(T)

5r Perigee

Apogee

Ar (hydrogen-atom ground state)

0 0.5 1.0

1.5

2.0 2.5
T

Fig. 2. Time evolution of BG coherent states for the Coulomb problem. Ar as function of 7 for L =5 and |a] =5 [Ar =

Therefore, the explicit expression for the fictitious
time dependence of the BG coherent states (67) is

<p|aa La T>BG =e€

—2F

—iw(L+1)T
(K§ — K{)sa

(72
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2

(r2?) — (r)?, where the expectation values are calculated with respect to the BG coherent-state functions (67)].

> ea(T)p—l/Q

Irry1(2|al)

——2F

P Jari1 <2 2@;@(7)) .

Clearly, this function is periodic in 7.
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Relation (63) is satisfied also by the time-
dependent coherent states

(L, 7| HC |, L, 7Vpa / (e, L 7|ty L, )8
=7 = (o, L, 7/H|o, L, T)pg.

(73)

In order to explore the fictitious time-dependence
behavior of this function, we consider the radial prob-
ability distribution P(p, o, 7) = |(p|ev, L, T) g5 |*0*.

As shown in Fig. 1, the distribution oscillates be-
tween two turning points, r,, which corresponds to
the perigee, where at that point the function becomes
narrow (at its minimum width), and r,, which corre-
sponds to the apogee, where at that point the function
is at its maximum width. Although the distribution
changes its width, it is not dispersing, so in this
manner this wave packet behaves classically. Similar
behavior was observed before for the Perelomov co-
herent states [13, 33]. This motion of the wave packet
between two turning points is actually analogous to a
bounded motion of a classical particle in the effective
Coulomb potential.

By comparing the width of the distribution Argg
to that of the hydrogen-atom ground state, we ob-
serve that, although the distribution becomes narrow
at the perigee, we always have Argg > Args, where
Args corresponds to the hydrogen atom ground state.
This is true for any value of L; in Fig. 2, it is shown for
L=5.

As shown in the table, keeping the same value of
|| and taking larger values of L, we find that, as L
increases, the orbit becomes more circular (less el-
liptic). As the orbit becomes more circular, the width
of the distribution increases, and the perigee and the
apogee become more distant from the center (we get
higher values of r, and r,). In the limit L > 1, the
motion is circular, the distribution does not change
its shape as it evolves with fictitious time, and it is
located at one value of = which is the radius of the
circular motion.

Performing the calculations with different values
of |a| and the same value of L shows that |a| changes
the eccentricity (¢) of the orbit: for larger values of |«|,
the orbit is more elliptic, while being more circular for
small values of |a.

8. SUMMARY

In this paper, we constructed arbitrary dimen-
sion realizations of SO(2, 1) algebra for the harmonic
oscillator and the hydrogen atom. We constructed
Barut—Girardello radial coherent states for the [HO
associated with this algebra and mapped them into
the Coulomb problem coherent states. We showed
that these states evolve periodically in the fictitious
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1707

The orbit of the Coulomb BG coherent states as function
of L, for |a| = 5 [Ar, and Ar, correspond to the width of
the distribution at the perigee and the apogee, respectively;
rp (rg) corresponds to the maximum of the distribution
at the perigee (apogee); € is the eccentricity of the orbit,
e=1-2ry/(ra+rp)]

L 1 2 5 10

Tp 0.36 0.79 2.68 6.82
Ary, 2.82 3.05 5.75 17.69
Tq 9.73 10.14 12.1 16.42
Ar, 17.89 19.23 26 53.43
€ 0.93 0.86 0.64 0.41

time parameter and change their shape as they move
between the two turning points of an elliptic orbit. Al-
though they change their shape, they do not disperse.
In the limit of high angular momentum or |a| < 1,
the orbit of the BG coherent states becomes circular.
It was shown before [34, 35] that, considering the
Coulomb radial distributions, classical circular orbits
occur for the maximum value of L (L = N — 1) and
large principal quantum number. It was shown also
that the width of the distribution diverges in these
limits. Thus, the BG coherent states behave similarly
in the classical limit L > 1. However, it is interesting
to explore whether the second set of coherent states
which corresponds to SO(2,1) ~ SU(1,1), Perelo-
mov coherent states, possesses the same behavior.
It is interesting also to explore how these behaviors
agree with the suggestion by Zlatev, Zhang, and
Feng [12] mentioned earlier.

Radial Coulomb states (Rydberg states) have
been investigated both theoretically and experimen-
tally for a long time (e.g., [36, 37]). However, these
states disperse and show wave packet revivals, which
is a quantum phenomenon [38—42]. A question which
should be asked is whether it is possible to produce in
the laboratory radial coherent states with classical
properties or whether one should consider the BG
coherent states we constructed as only a tool to
discuss quantum-classical correspondence.

Finally, we mention that this method of using
spectrum generating algebras to construct coherent
states can be extended to other models (e.g., the

Morse potential whose SGA is SO(2,1) ~
SU(1,1) [43]).
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Abstract—It is shown that, in one spatial dimension, the quantum oscillator is dual to the charged particle
situated in the field described by the superposition of Coulomb and Calogero—Sutherland potentials.
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1. INTRODUCTION

In one spatial dimension, a particle moving in
the Calogero—Sutherland potential Veg = —R%v(1 —
v)/2ux? has a very unusual property. Unlike the po-
tential Vg, the wave function is not invariant under
the replacement v — (1 — v). [t describes a boson for
even v and a fermion for odd v. Statistics correspond-
ing to the other values of v is called fractional statis-
tics [1], and the system influenced along with V-5 by
a potential binding the particle to the center is called
the 1D anyon [2—4]. Nobody has observed a 1D anyon
yet, but nevertheless it is of both theoretical [5] and
experimental [6] interest. The purpose of the present
note is to prove that such an extraordinary object can
be constructed from a 1D quantum oscillator.

2. ANYON—OSCILLATOR DUALITY

Consider the Schrodinger equation

pw?u B
2 >\IJ—O, (1)

which describes the 1D quantum oscillator. Intro-
duce the quantum number s = 0, 1/2 and write N =
2n + 2s, with N numerating the energy levels E =
hw(N +1/2) and n being integer and nonnegative.
Without loss of information we can assume u to
belong to the region 0 < u < co. We interpret s as
a spin of the reduced oscillator. The corresponding
(s)

21
2
g+ % (5

wave function is denoted by Wy,

*The text was submitted by the authors in English.
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(s)

Let us look for the function W,,” in the form
U (u) = Cu® T, (2)

where ¥, is subordinate to the condition ¥,,(0) # 0,
and C is a normalization constant. Equation (1) is
easily seen to take the form
2,2
pw > Iy

2
(3)

, we arrive at the

9 4s 0 2
o2y, +—6‘I/ +h2(E

After change of the variable » = u?

equation (2v = 2s + 1/2)

2v 0 2 w2 BN -
RVt — =Ty + h’; (—% + E) T, = 0.
(4)
Now we set
U, =270, (5)

then cancel the undesirable term with first derivative
in (4) and obtain

200 4 2

Sz (e—Ve—Ves) @) =0, (6)

where V., = —a/z, Vg is the Calogero—Sutherland
potential with v = 1/4 or 3/4 and
2
pw E
= - = —. 7
e=-E2, a=2 (7)

Equation (6) describes a system which we call the 1D
Coulomb anyon.

This equation realizes a special case of a more
general equation that has a relation to (24 1)-
dimensional anyons [7].

Comparing Eq. (1) with Egs. (6) and (7), we sum-
marize that there are two alternative possibilities con-
nected with Eq. (1)—explicit and hidden. In the first
case, the parameter w is fixed (w = fix. > 0) and plays
a role of a coupling constant, the parameter E is

1063-7788/05/6810-1709$26.00 © 2005 Pleiades Publishing, Inc.
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quantized and has a meaning of energy, and the sys-
tem is a 1D quantum oscillator. For the hidden pos-
sibility, the parameter F is fixed (E = fix. > 0), the
coupling constant is equal to E'/4, w is quantized, the
value of energy takes the quantity ¢ = —uw?/8, and
the system is the 1D Coulomb anyon. In the above-
mentioned sense, the 1D quantum oscillator is dual to
the 1D Coulomb anyon.

3. ENERGY LEVELS AND WAVE

FUNCTIONS
Let us return to Eq. (6) and make the substitution
) = y'e Q). (8)

where y = x(—8ue/h?)'/? and Q(0) # 0 and is finite.
The function Q(y) can diverge at infinity but not
higher than a finite power of y. Using (8) and (6), we
come to the equation

y2Q + (20 y)a%cy w-NQ=0, (9)

with A = (—pua?/2h%e)/2. Equation (9) is the equa-
tion for a confluent hypergeometric function, it has a
general solution [8]

Q(y) = ClF(V = A 2V7y)
+ Coy " F(1 = X — 1,2 — 21,9)

convergent for all finite y. For large y, the asymptotic
formula [8] is valid,

(10)

I
I'(a)

F(a,b,y) ~ (—y) "+ Y(y) .

(11)

The second term in (10) for v = 3/4 is singular at y =
0, and hence C5 has to be taken equal to zero. The first
term in (10), as is evident from (11), is “well-behaved”
at infinity under the condition 3/4 — A = —n, where
n is an integer number greater than or equal to zero.
For v = 1/4, both terms in (10) are regular at y =
0, but the satisfactory behavior at infinity needs the
simultaneous requirements 1/4 — A = —n,3/4 -\ =
—m, or n —m = 1/2, which is impossible. Hence,
either C7 = 0 or Cy = 0. But for C1 = 0, the function
Q(y) will become zero at y = 0. This contradicts the
condition @Q(0) # 0 and, therefore, we set Cy = 0 and
1/4 — X = —n. Thus, we conclude that v — X\ = —n,
ie.,

2
5(”) — ,LLCE

nT 2R2(n4 )2
Returning to the corresponding eigenfunctions, we
set

n=01,2.... (12)

@51”) = Cr(l”)y”e_y/QF(—n, 2v,y). (13)
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[t is known [9] that
B n!l'(2v) 91
F(—n,2v,y) = T(n + 20)P " (v)

where L2*~1(y) is an associated Laguerre polyno-
mial. Using the integration properties of Laguerre
polynomials and taking into account the relation

s\ 1 2\
h2 A \n+v ’

we find the normalization constant C*) and summa-

rize that
1 1
o) — VA2 14
" h n+vI(2v) (14
D(n +2v)

n! yye_y/QF(_n72l/7 y)

Thus, we have two types of 1D Coulomb anyons
with v = 1/4 and v = 3/4. They are dual to reduced
oscillators with s = 0 and s = 1/2, respectively.

4. DUALITY FOR SOLUTIONS

Now we will calculate the energy levels &, and

wave functions @51”) in another, more straightforward,

way. For energy levels, we have

fiw T

5= Sl

2 2
B 2a _ i1’
-8 [h(n—i—y)} 2R (n+ )%’
[t follows from Egs. (2) and (5) that

e _ 1

G Cx1/4\1/7(1y)

and, therefore,

o0

o0 1
_ v)|2 _ 1/2 s) |2
1_/|@;>| dz = oF /:c/ W) 2da,
0 0

where W, is the normalized wave function of a 1D
quantum oscillator. Thus,

o - 1" PW1/ag(s).
" 2 h(n+v) "

Recall that, according to the theory of quantum oscil-

(15)

lator [9],
() _ 3 (PN L ey pow
v =v2 () e v ()

(16)
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Further, it is known [10] that Hermite polynomials

could be expressed in terms of confluent hypergeo-
metric functions. For our case,

n (21 4 25)!

Hon () = (-1 222 20

x (2y/4)* F(—n,2s +1/2,y).
Using the identification y = zuw/h and the relations
25 +1/2 = 2v and pw/h = 2pa/h?(n + v) and tak-
ing into account Egs. (15)—(17), we get

(17)

W) = CWy e V2 F(—n,2v,y), (18)
where
ow_ [re 1 yTCn+2w+1/2) o

From the duplication formula for a gamma function
['(22) = 2% 17 V20 (2)0(z + 1/2)

and taking into account that I'(1/2) = 7'/ and
I'(3/2) = n/2/2, we conclude that W — W) jor
v =1/4, 3/4 and, consequently, Eqs. (18) and (14)
are identical.

5. CONCLUSIONS

(a) The ID oscillator has only a discrete energy
spectrum and, therefore, is a model provided by the
property which is known in QCD as confinement. A
particle situated in the confinement potential cannot
be removed from the center and transferred to infin-
ity. On the other hand, the 1D Coulomb anyon is a
system possessing both a discrete and a continuous
part in the energy spectrum. At the same time, it
includes 1/a? interaction and, therefore, pretends to
be a magnetic monopole in one spatial dimension. All
these ideas confirm that our result can be interpreted
in the spirit of the Seiberg—Witten duality [11]: the
theories with strong coupling (i.e., including con-
finement) are equivalent to the theories with weak
coupling (i.e., without confinement) accompanied by
magnetic monopoles. We conclude that the Seiberg—
Witten duality has its prototype in 1D quantum me-
chanics.

(b) The anyon—oscillator duality is a simple ex-
ample of a more complicated dyon—oscillator dual-
ity [12—21]. The latter connects the isotropic oscil-
lator with a charge—dyon bound system (a dyon is
a hypothetical object which has both electric and
magnetic charge [22]). The passage from an oscillator
to a charge—dyon system is realized by nonbijective
bilinear transformations [23] (for the mapping of the
1D Coulomb system into the oscillator, refer to [24]).

(c) The wave function (13) of a 1D Coulomb
anyon can formally be extended to the region —oco <

PHYSICS OF ATOMIC NUCLEI
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y < 0. Such a continuation is an arbitrary-rule opera-
tion and we choose the following one. First, still being
in the region 0 < y < oo, we change y in the expo-
nent and confluent hypergeometric function by |y| and
leave unchanged the factor y”. Then, we extend the
expression to the region —oo < y < 0. These steps
allow us to get rid of divergence in the exponent for
large negative values of y and conserve the normal-
ization condition in —oo < y < oo by multiplying the

function @51”) by the factor 1/4/2. The obtained wave

function ®)(y) satisfies Eq. (6) in the region —co <

y < oo and has the parity (—1)¥, i.e., describes the 1D
anyon [4].

(d) Equation (6) for —oco <z < oo and v =10
corresponds to the so-called 1D hydrogen atom [25]
(for later references, see [26]), which has some myste-
rious properties. For example, the ground state corre-
sponds to an infinite negative value of the energy and
the excited levels are doubly degenerate. The reason is
that the potential (—1/|z|) is singularin 1D space and
the system is provided by hidden symmetry [27—29]
and supersymmetry [30, 31]. As follows from (6) and
(12), the Calogero—Sutherland potential transforms
the 1D hydrogen atom into two modified atoms with
the statistical parameter v = 1/4 and v = 3/4. This
transformation leads to the formation of the ground
states with a finite energy level and removes the prob-
lem of degeneracy (replacement n — n + v).

(e) Itis easy to be convinced that Eq. (4)is identi-
cal to the Schrédinger equation with the Hamiltonian

«

N 1 . e
=5 (—max - —A) -2 (20)
B h_2y(1 —v)
2u 22

where o = €%, A = g/z, and g = ivhc/e. So, we deal
with a charged particle moving in the field created by
the 1D Coulomb dyon of the electric charge e and
purely imaginary magnetic charge g. The Calogero—
Sutherland potential acquires the meaning of the
Goldhaber term typical of the theory of magnetic
monopoles [32, 33].

Note that the Hamiltonian in (20) is not Hermi-
tian, but it could be transformed into a Hermitian
one if we do the following: (i) consider, instead of the
semiaxis x € (0,00), the axis z € (—o0, 00); (ii) re-
place a/z with «/|z|; (iii) introduce the Yang—Dunkl
operator [36] D = —ihd, — eAR/c for the Calogero

model, where R is the reflection operator.
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Abstract—It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the
AdS 444 superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS
supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of
the bosonic dimension d. Examples include the N = 1 AdS,4 supermembrane, which is associated with the
1/2 partial breaking of the OSp(1]4) supersymmetry down to the N = 1, d = 3 Poincaré supersymmetry,
and the T-duality related L3-brane on AdS5 and scalar 3-brane on AdS5 x S!, which are associated with
two different patterns of 1/2 breaking of the SU(2,2|1) supersymmetry. Another (closely related) topic
is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one
AdS 441 (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the

dimension d. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

A view of superbranes as theories explicitly ex-
hibiting the phenomenon of partial spontaneous
breaking of global supersymmetry (PBGS) [1, 2]
has received considerable attention (see, e.g, [3—
5] and references therein). In the approach with
PBGS as the guiding principle, the manifestly world-
volume supersymmetric superbrane actions (in a
static gauge) emerge as the Goldstone superfield
actions associated with nonlinear realizations of some
global spacetime supersymmetry groups sponta-
neously broken down to smaller supersymmetries.

Until now, the PBGS approach was applied to
spontaneously broken Poincaré supersymmetries in
diverse dimensions, in general, properly extended
by some central-charge generators. All systems of
this kind amount to p or Dp superbranes on flat
Minkowski backgrounds. It is tempting to generalize
the PBGS approach to the case of branes on curved
backgrounds. In view of the famous AdS/CFT cor-
respondence [6—8], the natural first step is to look
at the AdS,, xS™-type backgrounds. The Green—
Schwarz-type world-volume actions for superbranes
on such backgrounds were intensively discussed in
the literature (see, e.g., [9—12]). However, explicit
examples of world-volume superfield actions were
given quite recently. Such actions were constructed
for the N =1 supermembrane in AdS, [13] (and
some of its dimensional reductions [14—15]), as well

*The text was submitted by the author in English.

YBogolyubov Laboratory of Theoretical Physics, Joint Insti-
tute for Nuclear Research, Dubna, Moscow oblast, 141980
Russia; e-mail: eivanov@thsunl. jinr.ru

as for the L3 superbrane on AdS5 and a scalar N =1
superbrane on AdS5 x S!, which are related to each
othervia T duality [16]. In all these cases, the partially
broken supersymmetries are the NV = 1 superconfor-
mal symmetries of the relevant superworld-volumes,
namely, OSp(1]|4) in the former case and SU(2,2|1)
in the latter two. The PBGS actions of the AdS
superbranes were derived from the special nonlinear
realizations of these superconformal groups, such
that the only unbroken symmetries are the N =1
Poincaré supersymmetries of the superworld-volume
(and, generically, some of the original R symmetries).
The nonlinearly realized half of the superconformal
symmetries act as AdS superisometries mixing the
superworld-volume coordinates with the brane trans-
verse coordinates. One of the aims of the present talk
is to review this recent progress in generalizing the
PBGS ideas to AdS superbranes.

The PBGS approach to AdS (super)branes al-
lows one to reveal a new aspect of the AdS/CFT
duality, the existence of the so-called AdS/CFT
transform [15, 17, 18]. It relates conventional su-
perconformal theories containing a Goldstone field
of a dilaton among their fields and living in the
standard Minkowski (super)space to the superbranes
of the bosonic codimension 1 evolving on AdS
supermanifolds for which the given superconfor-
mal group defines superisometries. The AdS/CFT
transform maps the Minkowski superspace onto the
AdS brane superworld-volume and the dilaton onto
the brane transverse coordinate. The second half of
the present talk is devoted to explaining the origin
of this AdS/CFT transform and reviewing some
implications of it.

1063-7788/05/6810-1713$26.00 © 2005 Pleiades Publishing, Inc.
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2. AdS; MEMBRANE FROM THE COSET
APPROACH

We start with the case of the bosonic AdSy
membrane. Whereas it was known how to derive the
static-gauge Nambu—Goto action for the branes in
the d-dimensional flat Minkowski background from
the nonlinear realizations (coset) approach applied
to the relevant Poincaré group [5, 19], no such self-
contained derivation existed for AdS branes. The
algebra of the AdS, group SO(2,3) in the d =3
spinor notation reads

Moy, Meq) = €acMpq + €aaMpe + beMag (1)
+ EbdMac = (M)ab,cda

(Kaps Keal = —(M)abed,  [Map, Kea) = (K )ab,cd;
[Map, Ped] = (P)ab,cds
[Kap, D] = =2Py, + 2mKap,  [Pap, D] = —2m Py,
[Pab, Ped] = 0,
(Kab, Ped) = —2(€acebd + Ebc€ad) D — m(M ) ap.cds
a,b,e,d =1,2.

The contraction parameter m is proportional to the
inverse AdS, radius, and

Pl =Py, M} =

Kly=~Kas, D'=D,

The SO(1,2) generators My, together with K, form

the algebra of SO(1,3). As m — 0, (1) becomes the

d + 1 =4 Poincaré algebra. Another basis may be
defined as

—May, (2)

~ 1 1 ~ 1
Kab = —Nagh — —2Pab7 D= _Da (3)
m m m

which are the standard d = 3 special conformal and
dilatation generators:

[Kap,  Ked] =0, (4)
[Map, Kea) = (K)abeds  [Kap, D] = 2K,
[Py, D] = —2Py,
[Kab, Ped] = —2(EacEba + €veEad) D — (M)ap,ca-

In the basis (1), the d = 3 Poincaré subalgebra
X (Pyp, Myp) is manifest (together with the mani-
fest so(1, 3)). The generators (P, D) form the max-
imal solvable subalgebra of so(2,3). Any AdSgy;
algebra so(2,d) can be written in the basis where
the d-dimensional Poincaré algebra is manifest, the
d-dimensional translation operator together with the
dilatation generator forms a solvable subalgebra, and
the (d + 1)-dimensional Lorentz algebra so(1,d) is
manifest [20]. This basis, the particular case of which
is (1), is very advantageous for treating AdS branes in
the nonlinear realization approach.
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Now we consider the coset SO(2,3)/SO(1,2)
parametrized by

g= exabPabeqcr)DeAab(x)Kab. (5)
The parameters z% = —(2)1 and ¢(z) = —¢f(2)
provide a specific parametrization of the coset
S0(2,3)/S0(1,3) ~ AdSy, just adapted to the above
solvable-subgroup basis of so(2,3). The vector field
A®(z) = (A (z))!  parametrizes  the  coset
SO(1,3)/S0O(1,2). Its inclusion is necessary for
deducing the AdS4 membrane action from the coset
approach. Taking into account that the parameters
associated with P,; are the d = 3 spacetime coor-
dinates, the resulting nonlinear realization actually
describes the spontaneous breaking of SO(2, 3) down
to its d = 3 Poincaré subgroup as the only linearly
realized one.

The full set of the SO(2, 3) transformations of the
coset parameters in (5) can be found by acting on
(5) from the left by various SO(2, 3)-group elements.
The d =3 conformal transformations of the AdSy

coordinates (29, g(z)) are generated by gy = €% Kes:

619 = 4(22p® — 2242 —

4
8q = —— 2%y,
m

3 e4mq bab’ (6)

These transformations provide a specific nonlinear
realization of the d = 3 conformal group algebra, such
that the Goldstone field ¢(x) is present in the con-
formal transformation of z?°. Just this realization un-
derlies the AdS4; membrane. The building blocks in
constructing the action are left-invariant Cartan one-
forms:

g 'dg = wpP +wpD + wigK +wyM. (7)

For our purposes, it suffices to know the expressions

forw and wp:
b o (AN gdad
wa— 2 q(dx b+w> (8)
)\abdq .
2)\2 - Ecd( )\)d‘r d7
14 2)\2 4e=2ma )\, dx
S A P it 9
w0 1—2)\2( e )0
h v2A2
)\ab = LAab’ )\2 — )\ab)\ab
V2A?

The field A% can be traded for g(x) by the covariant
constraint [21]

e2m aabq
1+ /1= getma(d
(10)

1
Oé)\ab———
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Eij(q) = e7>™95(75,)
56 ! 9%4d,4q.
1+ \/1 — %e4mq(8q)2

The simplest invariant is the covariant volume of the
d = 3 space, [ d3zdetE(q), and the correct invariant
action vanishing for a constant ¢ reads (up to a nor-
malization factor

(11)

)
S = [ dx[e”®™ — detE(q)]

3,.,—6mgq e4mq b
= [ d’ze 1—14/1— 5 0%°q0uq | -

By construction, it possesses all symmetries of the
AdS, space and, in the limit m = 0, goes into the
static-gauge Nambu—Goto action for a membrane
in d = 4 Minkowski space. The term ~ [ d3ze=6"4 is
SO(2,3) invariant in its own right.

(12)

To see that the action (12) indeed describes a
membrane embedded into the AdS, background, let
us look at the induced distance defined as the square

of ¥ = E%(q)dz*?:
1
ds® = w}l;waab = 674mq(dxabdxab) — idqdq. (13)

Introducing U = e~2™ and rescaling

1
xab — :Eab’
2v2m

one can rewrite (13) and (12), up to some overall
constant factors, as

2
ds® = U*(dz%dz,p) — <%> , (14)
- (OUdU)
S:/d:cU L=\1- 75

Thus, ds? is recognized as the standard invariant
interval on AdS,, while S is recognized as the d = 3
analog of the Maldacena scale-invariant brane action
on AdS; [6] (actually, of the scalar fields piece of the
D3-brane action). The derivation of this AdS, inter-
val from the coset SO(2,3)/SO(1,3) parametrized
by coordinates associated with the solvable subgroup
generators (and a generalization to the generic case
of AdS441), as well as deducing the field-dependent
conformal transformations (6), was given in [20] (see
also [22]). A novel point is the explicit derivation of
the AdS4 membrane action from the coset approach.
[t can be straightforwardly extended to the case of the
(d — 1) brane in AdS441 [9, 12] (see Section 5).
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3. AdS;, SUPERMEMBRANE

Our starting point will be the N =1 AdS, super-
algebra osp(1[4) in the following basis:

{Qa, Qv} = 2P, (15)
{Sa;Sp} = 2Py — Am Ky,
{Qa; S} = 224D — 2mM gy,
[Map, Qc] = €acQp + €beQa = (Q)ab,es
[Maba Sc] = (S)ab,ca [Kab7 Qc] = (S)ab,ca
[Kap, Se] = —(Q)ave,  [Pap, Q] =0,
[Pav, Se] = —2m(Q)ab,e,  [D,Qa) = mQq,
[D,S,] = —mS,.

The generators Qg, Py, My, form the N =1,d =3
super-Poincaré algebra. The passing to the confor-
mal basis, besides the redefinitions (3), implies the

rescaling S, = mS, such that S, is the d = 3 con-
formal supersymmetry generator. The advantage of
the basis (15) is that it manifests the N =1, d =3
super-Poincaré subalgebra of osp(1]4) and still yields
the N =1, d = 4 super-Poincaré algebra in the con-
traction limit m = 0. The N = 1, d = 3 Poincaré su-
pertranslations o<(Qq, P,p) together with D form the
maximal solvable supersubalgebra of osp(1]4).

We wish to construct an OSp(1]4) extension of the
AdS, membrane action (12) such that it possesses
a manifest N =1, d = 3 supersymmetry extending
the manifest d = 3 Poincaré world-volume invariance
of (12) and reproduces the action of the flat N =1,
d = 4 supermembrane [23] in the limit m = 0.

The construction of the AdS; supermembrane
action as a Goldstone superfield action is not so
straightforward as in the bosonic case. The only
known way of constructing such actions proceeds
from a linear realization of the partially broken super-
symmetry in some appropriate superspace. The non-
linear realization is recovered by imposing proper co-
variant constraints on the corresponding superfields
(see, e.g., [24, 25]). The correct Goldstone superfield
actions then arise from some simple invariants of the
initial linear realization. There is a systematic way
of searching for such covariant constraints [4, 26—
28]. We shall apply these techniques to construct the
PBGS action of the AdS4 supermembrane.

As a first step, we need to define the appropri-
ate analog of the aforementioned linear realization. It
turns out that, in the AdS case, it is already a sort of
nonlinear realization, but with weaker nonlinearities
as compared to the final nonlinear realization. As
a natural superextension of the bosonic coset ele-
ment (5), we choose

g= eﬂfabPabegaQa ew“Sa eu(z)DeA“b(z)Kab' ( 16)

Vol. 68 No. 10 2005



1716

Here, the parameters z = (2%, 6%, ¢%) are N =2,
d = 3 superspace coordinates, while v = u(z) and
A%(z) are Goldstone superfields given on this su-
perspace. The subspace spanned by the coordinate
set ¢ = (%,0%) is the flat N =1, d = 3 superspace
in which N =1, d =3 Poincaré supertranslations
x(Qq, Pyp) are realized in a standard way:

1
5xab _ aab o 5(eaeb + ebea)’

00 = €“.
These transformations correspond to the left shift of
(16) by go = " Pavec”Qa_ The rest of the OSp(1[4)
transformations except for the SO(1, 2) rotations are
nonlinearly realized on the coset coordinates, mixing
the N =2 superspace coordinates with the Gold-
stone superfield u(z). Acting on (16) from the left by

the element gy = €""5+, we find the explicit form of the
broken supersymmetry transformations

(17)

1
02" = 2m(0"* + 0"x")ne + e (18)
3
X (Y i) + Smetp* (0% + 6°n"),
607 = 4ma®n, + mh*n® — 3me ™y,

ou = 20%,,
St =" = 2m (0’0" — 0Py — 1°6"¢y).
As follows from (15), all bosonic transformations are

actually contained in the closure of the supersymme-
try transformations.

What we have at this stage is a nonlinear realiza-
tion of the N =1 AdS4 supergroup on the N = 2,
d = 3 Goldstone superfield u(z, 0, ):

S u(x, 0,1) = —(62%0u + 60°0% + 54°0Y) (19)
x u(x, 0,10) + 20%,.

The first component in the 6,1 expansion of u can
be regarded as the Goldstone dilaton field discussed
in the previous section. The spinor derivative D,u,
where

9 b
D, = H0a +0 8ab7
is shifted by 7, under the S supersymmetry. This
suggests that we actually face the 1/2 spontaneous
breaking of the AdS, supersymmetry, with Dgu|y=o
as the corresponding Goldstone fermionic N = 1 su-
perfield. However, u contains extra component fields
having no Goldstone interpretation. To construct the
minimal Goldstone multiplet, we resort to the method
which was applied in [28] to d =2 PBGS systems
and, in [4], to the flat-space N =1, d = 4 superme-
mbrane. Following the reasonings of [4] and keeping

{Dq, Dy} =204,  (20)
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in mind that the scalar multiplets of the N =1 AdS,
supergroup are represented by chiral N = 1, d = 4 (or
N =2, d = 3) superfields, we regard the Goldstone
superfield u(z) to be complex and subject it to the
covariant chirality constraint

(VE — iV u=0, (21)
where V@u and VZu are the OSp(1]4) covariant
spinor derivatives of u(z) with respect to 6% and ¥®.
For our purpose, there is no need to know their precise
structure; what actually matters is that all the coef-
ficients in the 1 expansion of u(z) can be expressed
by (21) in terms of w(z)|ye=o and derivatives thereof.
For example, the )% = 0 component of (21 ) expresses
the first coefficient as

ou

— = —ie?™ D,u (22)
o |y =0

Thus the complex N = 1, d = 3 superfield
uo(e,6) = (x,0) + i®(x,0),  (23)

¢'=—q, o' =-9

incorporates the full irreducible field content of the
N =2, d = 3 Goldstone chiral superfield u(x, 8,1).
[ts S-supersymmetry transformation reads

6q = Lq — €*™In*[sin(2m®) D,q
+ cos(2m®) D, P] + 2n0,,
60 = L + ™% [cos(2mP) Dogq
— sin(2m®) D, P],

(24)

where Lq and L® denote the variations caused by the
corresponding coordinate shifts.

The nonlinear realization that we have at this
step is still nonminimal. Besides the N =1 su-
perfield ¢(z,0) which contains all Goldstone fields
required by the 1/2 breaking of OSp(1]4) down to
its N =1, d =3 Poincaré subgroup (q|g=o for the
dilatations, (D,q)|g=o for the broken S transforma-
tions and Jypqle—o for the broken SO(1,3)/50(1,2)
transformations), there is an extra non-Goldstone
N =1, d = 3 superfield ®(x, ). The last step is to
eliminate the latter in terms of ¢ and its derivatives
by imposing some nonlinear covariant constraint on
ug(z, 0), analogous to the constraints imposed in the
flat case [23]. It reads

_ €2MD%Dag
4+ e?2maD2P

_ 62mq‘Danaq
2+ /4 + efmaD2(DbqDyq)

[t can be directly checked to be covariant with respect
to the transformations (24). From our superfield uy,

= o (25)
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we can construct the invariant

"

Sy = —.i / d3xd®f(e” 1m0 — im0y (26)
2im

1
= —/d3:1:d26?e4mq sin(4m®).
m

In view of the nilpotency of ® defined by Eq. (25), the
final action takes the form

S ~ / d*xd’0 ¢ "D*4Dug
2+ /4 + emaD2(DPqDyq)

The action Sy contains the kinetic term of ¢(¢) and, in
the limit m — 0, reduces to theflat N =1, d = 4 su-
permembrane PBGS action of [23]. After eliminating
the auxiliary field B = D?q|g—g, the bosonic part of Sy
coincides with (12).

We come to the conclusion that the Goldstone
superfield action (27) is the natural superextension
of the conformally invariant AdS, membrane ac-
tion (12). Besides being manifestly invariant under
N =1, d = 3 Poincaré supersymmetry, it is invari-
ant under the nonlinearly realized part of N =1
AdS, supersymmetry OSp(1]4) which acts on the
N =1, d = 3 superworld-volume as the Goldstone
superfield-modified d =3 superconformal transfor-
mations. Thus, it is a PBGS superfield form of the
world-volume action of the N =1 AdS4 supermem-
brane.

. (27)

4. 3-BRANES IN SUPER AdSs
AND AdS; x S' BACKGROUNDS

We start with recalling how the PBGS N =1
L3-brane action and (related to it via T duality) N =1
scalar 3-brane action in the flat Minkowski back-
grounds can be deduced as the Goldstone superfield
actions describing the one-half partial breaking of
global N = 2 Poincaré supersymmetry in d = 4.

The first option corresponds to the N =1 tensor
multiplet as the Goldstone one [24, 25, 29]. The start-
ing point is the N = 2, d = 4 Poincaré superalgebra
with a real central charge D

{QO&?Qd} :2Pad7 {Sougd}:2pao'm
{Qa, S5} = —eapD, {Qa, S5} = —€43D.

Here, Q., Q4 and Sy, Sy are generators of the un-
broken and broken N = 1 supersymmetries, respec-
tively. These generators and the 4-translation gener-
ator P,q possess the standard commutation relations

with the Lorentz so(1, 3) generators (Mag, M)

(29)

(28)

i[Mag; Mps] = eapMps + a0 Mgy
+ EﬁpMaa + 5,80Map = (M)a,@,paa
ilM 5, Mps] = (M)

6B,p6?
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i[Mag, Pop) = €apPpp + €pPaps
i[Maﬁ'v o) = Edﬁpp,@' + %’pdev

i[Ma,@v Q'y] = Ea'yQﬁ + E_ﬁ'yQa_E (Q)oiﬂ,w
i[Maﬂasw] = (S)aﬁ,w i[Mdg,Qﬁ] = (Q)O}B,/y?
i[M5 5] = (5)

Then one introduces two N = 1 superfields: a real one
L(zx,0) subjected to the constraint

D?’L =D?*L =0

&b

(30)

and so describing a tensor N = 1 supermultiplet, and
a complex chiral superfield F, F',

Do F = Dy F = 0. (31)
Here,
o .
Da = % + 19 8ad, (32)
N 0 e 2 «
a:—%—’ée 8ad, D =D Daa
D? = Dsb*.

On these N = 1 superfields, one implements [24] the
following off-shell representation of the full N =2
supersymmetry (28):

6L = —i(n®0p — 140%) + n* Do F — 1° D4 F, (33)
0F = —1®DyL, OF =i%DgsL,

where 7, 75 are the infinitesimal transformation pa-
rameters associated with the generators Sy, S4. It is
a modification of the transformation law of the N = 2
tensor multiplet [30] written in terms of its N =1
superfield components.
One can construct the simplest invariant “action”
as follows:
S = i / d*zd?0F + i / d*zd*0F. (34)
To make it meaningful, one should express the chiral
supermultiplet F, F' in terms of the Goldstone ten-

sor multiplet L by imposing proper covariant con-
straints [24, 25]:

D*LD,L - D LD

F:_iﬂ’ F:_L{)L (35)

2 — D2F 2 — D2F

1
F=—4?+ 5D2 (36)
2,72
» (a ’
1+3A4+ \/1 + AL+ 1(A2)2

¢Ol = DaLu Qz)o'z = DdLu (37)

Ay = %(DQZZQ + D*y?).
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Finally, the action (34) becomes
S = —i / d*zd?0¢? — i / d*xd?0y®  (38)
2,72
- i / dzd*o vy

1+ 34, + \/1 + A4+ $(A2)?

It is a nonlinear extension of the standard N =1
tensor multiplet action. In the bosonic sector, it gives
rise to the static-gauge Nambu—Goto action for the
L3-brane in d = 5 Minkowski space, with one phys-
ical scalar of L being the transverse brane coordi-
nate and another one represented by the notoph field
strength. After dualizing L into a pair of conjugated
chiral and antichiral N =1 superfields (the notoph
strength is dualized into a scalar field), the PBGS
form of the world-volume action of the super 3-brane
ind = 6 is reproduced [31].

Let us point out that the constraints (35), which
play the central role in deriving the action (38), are
intimately related to the five-dimensional nature of
the brane under consideration. They guarantee five-
dimensional Lorentz covariance [16].

Now we wish to generalize this flat superspace
construction to the case of partial spontaneous
breaking of the simplest AdSs; supersymmetry
SU(2,2|1), that is, the N = 1 superconformal group
ind=4.

The superalgebra su(2,2[1) contains the
so0(2,4) @ u(1) bosonic subalgebra with the gener-
ators {Pag, Mag, Mdg, Kog, D} and {J} and eight
supercharges {Qa; Qa, Sa, Sa }. We choose the basis
in such a way that the generators K,4 form the
so(1,4) subalgebra together with the d = 4 Lorentz
generators {MaﬁvMaﬁ'}- The rest of the nontrivial

(anti)commutators reads
Z[Da Pad] = mP()é(jt?
’i[D, Kad] = 2Pus — mKaa,

(39)

. m —
’L[Pad, Kﬁﬁ] = EaﬁgdﬁD — 5(8015]\40.[5 + €o'zBMOl ),

{QOHS,B} = _€aﬁ(D —|—ZmJ) + mMaﬁ,
{Qon Qd} = 2P,q, {Sou 5'o'z} = 2P.s — 2mKaa,

m

Z[D7Qa] - %Qon ’L[_D,Sa] - _ESO“
3 3
[Ju Qa] - 5@0&7 [Ju Sa] - _58017

Z.[Kada Q,B] = _50155647 i[Kada S,@] = 5015@(547
i[Pada Sﬂ] = mgaﬁQd'

This basis is another example of the “AdS basis” of
conformal superalgebras [13, 17, 20, 32]. The param-
eter m has the meaning of the inverse AdS; radius,
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m = R~ In the limit m = 0 (R = o0), one recovers
from (39) the N =1, d =5 Poincaré superalgebra,
with D becoming the fifth component of momenta.
The generators J and K,q, Mag,Mdﬁ' decouple and

generate outer u(1) @ so(1,4) automorphisms.

Our goal is to construct an AdS5 version of the
nonlinear realization (33), (35). The main hints which
allowed us to do this are as follows. First, we as-
sert that this realization involves some modification
of N =1 tensor multiplet L and, as before, a pair
of mutually conjugated N =1 chiral and antichiral
superfields F, F' subjected to some generalization
of (35). Second, in a close analogy with the flat case,
we require that the following “action”

S ~ / d*zd*0F + / dzd*0F (40)
be an invariant of the AdS5 supersymmetry. Third, in
the limit m = 0, our construction should reproduce
the flat case outlined above. Finally, it is sufficient
to find the realization of conformal S supersymme-
try, since the rest of the SU(2,2|1) transformations
appear in the closure of S transformations with them-
selves and with V = 1 Poincaré supersymmetry.

[t turns out that this reasoning almost uniquely
fixes the sought transformation laws and constraints
(more details of the derivation are given in [ 16]). These
are

8 F = 6im0°no F — Az®0ps F'
+ AO“D,F +ie L33 D, L,
O F = —6imls i F — Az F
— AGYD4F +ie ™D, L,
6L = —i(0%, — 047%) — Az"“Dpa L
+ A0°DyL — AG*Dg L — ie*™ L [n* Dy (e*™FF)

(41)

+ 7% Da (™ F)],
1 1 -
_D2€—2mL — —D26_2mL — 0’ (42)
m m
DoF = DsF =0,
e ?mLDaLD,L
E = amipap (43)
P e LDy LD*L
T 2—eMmlD2F
Here,
Az®® = 2im(nga®0° +752°P8%)  (44)

_ m(02naéo’z _ 52770'1001)’
AO* = mijaz™® +im (020 — 04770),
AGY = mnaz®Y — im(6%7% — 0°1,0%)
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are the standard transformations of the N =1 su-
perspace coordinates with respect to the conformal
supersymmetry.

In the limit m = 0, Eqs. (41), (42), and (43) go,
respectively, into (33), (30), (31), and (35). It can be
checked that, on the surface of the nonlinear con-
straints (43), the off-shell transformations (41) are,
first, compatible with the differential constraints (42)
and, second, produce the whole SU (2, 2|1) symmetry
when commuted among themselves and with N =1
Poincaré supersymmetry. It is just due to the presence
of the nonlinear mixed terms that the transforma-
tions (41) constitute a realization of SU(2,2|1) as
the superisometry group of super AdS5 background
and correctly generalize the flat superspace realiza-
tion (33). A striking difference between Egs. (33)
and (41) lies in the fact that Egs. (33) close on the
N = 2 Poincaré superalgebra before imposing the
constraints (35), while Eqgs. (41) define a closed su-
pergroup structure only provided the constraints (43)
are imposed from the very beginning. It is easy to
check that Egs. (43) are covariant under (41).

Inspecting (41), one can be convinced that this
realization corresponds to a half-breaking of the
SU(2,2|1) supersymmetry: the spinor derivatives
of L are shifted by spinor parameters under the
action of S supersymmetry, thus signaling that the
latter is spontaneously broken. Broken also are D
transformations (with L| as the Goldstone field) and
the SO(1,4)/S0O(1,3) transformations (with Jys L]
as the relevant “Goldstone field”).

Like their flat counterparts, the constraints (43)
can be easily solved:

F = —e2mly? 4 %DQ

1719
2,72
" V7Y ’
1+3A0 + \/1 + A+ 1(A2)2
¢Ol = DaLu Qz)o'z = DdLu (46)

Ai — %GQmL(D%;Q + D2¢2)'

Finally, the action (40) can be written in the form
1 _
S=-7 / drzd?0e=2mLy? (47)
1 A 27 —omL 2 | L 4, 74
— = [ d*zd*fe v+ — [ d xd™0
4 4
V2

X .
1+ 34, + \/1+A++i(A_)2

The first two terms in (47) are recognized as the
action of the improved tensor N = 1 superfield [33]. In
the limit m = 0, (47) converts into the flat superspace

action (38).

With the bosonic components defined as

¢ = L|p=0, (48)
[Da, Dale ™ |g—g = —2mVpa,
where in virtue of (43)
Oaa VY =0, (49)
(45)  the bosonic part of (47) proves to be
Sp = / dtge=4mo [1 — \/ 1+ %e6m¢V2 — 2e2m(9¢p)2 — e8m¢(vadaad¢)2] . (50)

[t is a conformally invariant extension of the static-
gauge Nambu—Goto action for the L3 brane in d = 5:
the dilaton ¢ can be interpreted as a radial brane co-
ordinate, while V2% is the field strength of the notoph
which contributes one more scalar degree of freedom
on shell. As is well known, V% can be dualized into
an off-shell scalar by introducing the constraint (49)
into the action with a Lagrange scalar multiplier and
then eliminating V¢ by its algebraic equation of
motion. Extending (50) as

Sp = Shal—=gp4 / d*zA0aa VoY (51)
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and eliminating V¢, after some algebra, we get

SdBUa]_/d4x‘2‘4

2 0,2"0,2™
[y )

where

Z' =rcos?, Z%=rsind,

(52)

9

r=e M, (53)
d=mA, 1, =dag(+—-——).

The action (52) is recognized as the S — S re-
duction of the scalar part of the D3-brane action
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on AdS5 x S°[6], that is, the static-gauge Nambu—
Goto action of the scalar 3 brane on AdSs x St. The
field ¢ can be shown to undergo a shift under the
action of the U(1) generator J, which justifies its
interpretation as the S! angular variable.

The above duality transformation can be per-
formed at the full superfield level. This results in
SU(2,2|1) invariant action of the Goldstone chiral
N = 1 superfield which generalizes the action of 25,
29, 31] and describes a super 3 brane on AdS; x S1
superbackground. In its basic steps, this dualization
procedure is similar to the flat superspace one of [29].

We start with the superfield action (47) and relax
the constraints for L in (42) by adding a Lagrange

I[VANOV

multiplier term to the superfield Lagrangian,

1 - 1
Gdual 1 /d4xd2«9d2«9[— 53V (InY —1) (54)

X pyRovef+ e+ o)
(2m)* om * P
Y =e ", Dap=Dap=0,  (55)

B 1
1+ 3A, + \/1+A++i(A_)2

Next, we vary the action (54) with respect to Y in
order to obtain an algebraic equation that trades Y for
», @. Skipping the details, we obtain the dual action

m(o+@)
gaual _ 1 / diadio( (56)
8 m2
1 -
5(D9)*(Dp)? >
+ .
1 — emmetD9p0p + /(1 — e e +P)0p0p)? — e 2me+2) (D)2 (0p)?

This action goes into theflat N = 2 — N = 1 chi-
ral Goldstone superfield action of [25, 29, 31] in the
limit m = 0 and is obviously SU(2,2|1) invariant as
it was obtained by dualizing the SU(2,2|1) invariant
action (47). It is noteworthy that the standard U(1)
isometry associated with the duality transformation,
viz. 0 =i, §¢ = —iq, now appears in the closure
of the @ and S transformations on these Goldstone
superfields, with the imaginary part of ¢| being the
related extra Goldstone field. It is just the J (or ~5)
symmetry of SU(2,2|1). The bosonic core of the ac-
tion (56) coincides with (52) after the identification

6=-36+0), A=s(p-9). ()

Thus, we conclude that the Goldstone superfield
action (56) describes the option when the internal
U(1) R symmetry with the generator J is also broken
in addition to the (super)symmetries broken in the ac-
tion (47). The bosonic coset is basically AdSs x St o
{2%% ¢} x {\} and the bosonic part of the action (56)
is just the static-gauge Nambu—Goto action of a 3
brane on this manifold. This solves the problem of
constructing an invariant Goldstone superfield action
for such a PBGS option, as was posed in [34].

PHYSICS OF ATOMIC NUCLEI

5. AdS/CFT EQUIVALENCE
TRANSFORMATION

The group-theoretical origin of the AdS/CFT map
to be discussed lies in the existence of two different
nonlinear realizations of the conformal group in d
dimensions.

The algebra of conformal group SO(2,d) of d =
p + 1-dimensional Minkowski space reads

My, M) = 25007, (58)
[Pp,a Mup] = _np[upp}a [K/u Mup] = _ny[qu]u
[]D;UKV] = 2(_77;WD + 2M;w)7 [Da P}L] = ]D;u

(D, K,] =—-K,.

[ts standard nonlinear realization [35] is defined in the
coset SO(2,d)/SO(1,d — 1):

g = eV PuepD K

(59)

The left shifts with the parameters a*, b, and c related
to the generators P,, K, and D induce the familiar
conformal transformations of the coset coordinates

oyt = a* + eyt + 2(yb)y" — e (60)
dp = ¢+ 2yb.

The left-covariant Cartan 1-forms are defined as fol-
lows:

g tdg = WP, +wpD + Wy M, (61)
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+wh K, = e ?dy! P, + (dp — 2e~%Q,dy")D
—4e”PQFdy" M, + [dQF — QFdyp
+ e P (2Q,dy” Q" — Q*dy*) K.

The vector Goldstone field Q#(x) can be covariantly
expressed through the dilaton ¢(x) [21]

1
W = dO — e Q2 dy

The covariant derivative of Q# is defined by the rela-
tion
whe = wpD,Q* = D, Q! (63)
1 1
= 562"0 [@8"@ + Oyt — 5(890890)55 .

The conformally invariant measure of integration over
{y*} is defined as

S, = /,u(y) — /d(p+1)ye—(p+1)<p (64)

and the covariant kinetic term of ¢ reads

55111 _ /d(erl)ye(erl)SO'DHQ“ (65)

1
— Z(p —1) /d(p+1)y€(1—p)<p&p&p'

In any field theory with spontaneously broken con-
formal symmetry, it is always possible to make a field
redefinition which splits the full set of scalar fields of
the theory into the dilaton ¢ with the transformation
law (60) and the subset of fields which are scalars
of zero conformal weight. In this sense, the above
nonlinear realization is universal.

There is another nonlinear realization of the same
group [13] which is relevant to the description of
codimension-one branes on AdS;4. In this realiza-
tion, SO(2, d) acts as the group of motion of AdS441.
[t is related to the existence of the AdS basis in (58).

In the AdS basis, we introduce the following gen-
erators:

- 1

Ky =mkK, — o—F,, D=mD,  (66)

where m is the inverse AdS radius. The basic rela-
tions of the SO(2, d) algebra become
(K, K] = 4M,,,
[P, K,,] =4mM,,, — 2nuyb,
[D,P,) =mP,, [K,,D]=P,+mK,.
The main difference between (67) and (58) is that the

generators (K, M, ) generate the semi-simple sub-
group SO(1,d) € SO(2,d), while the subgroup with

(67)
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(K*, M,,) has the structure of a semidirect product.
As aresult, in the coset element (59) in the new basis

(68)

z* and q(x) parametrize SO(2,d)/SO(1,d) ~
AdS 411 [20]. Equation (62) now yields

ouq
1+ \/1 — 1e2m1(9q0q)
Vi Autanh\/AQ/Q.
VA?/2
The Cartan form w/; is then given by the expression
. AN, Y

= Efdx¥ = e ™ ENdx”.

P, qﬁ AFK
e’ FetTe [

L — _ mq
wD—Oé)\M—e

, (69)

The transformation laws of x#, g(z) under the left
shifts of (68) are as follows:

ozt = a + ca® + 2(xb)z” — 22bH (71)

1
Wewnqb“, dq = E(C + 22b).
After a field redefinition, they are recognized as the
field-dependent conformal transformations [6, 9, 12,
36] representing AdS isometries in the solvable-
subgroup parametrization.

The simplest invariant of the nonlinear realization
considered is again the covariant volume of = space
obtained as an integral of wedge product of (p + 1)
1-forms wh. It is basically the static-gauge Nambu—
Goto action for the p-brane in AdS,,»

+

SnG = / dPHDge=PHma _ det B (72)

= /d(p+1)xe_(p+1)mq [1 - \/1 - %€2mq(8an)] ;

where we have subtracted | to obey the standard
requirement of absence of vacuum energy [6]. The
subtracted term is also invariant under (71). The
action (72) is universal; it describes the radial (pure
AdS) part of any (n — 2)-brane action on AdS,, x
Sm.

In both nonlinear realizations described above, we
deal with the same coset manifold SO(2,d)/SO(1,
d — 1), the parameters of which are separated into
the spacetime coordinates and Goldstone fields in two
different ways. Hence, there should exist a relation
between these two parametrizations. It can be read
off by comparing (59) and (68):

e
yH = gt — AM

X (73)
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)\2
(p—'mq—l-ln<1—?>, QF = mAH.

It is invertible at any finite and nonzero m =1/R
and maps the Minkowski space conformal trans-
formations (60) onto the field-dependent ones (71).
This AdS/CFT transform can be defined only in the
framework of extended coset manifolds {y*, p, Q*}
and {z#, g, \*}. In[18], (73)is interpreted in a setting
where all coset parameters are independent.

Using (73), any Minkowski space conformal field
theory with a dilaton among its basic fields can be
projected onto the variables of the AdS brane and vice
versa. Making, e.g., in (72) the change of variables
inverse to (73), we find

L
4m?
x 589028 IR <I + %DQ) .

[tis an equivalent form of the static-gauge action (72)
of the p-brane in AdS,;2 as a nonlinear extension
of the conformally invariant dilaton action in M,,41.
In [17], the conformal field theory image of the full
bosonic part of D3-brane action on AdS5 x S% was
found.

Sng = d(erl)ye(lfp)so (74)

6. SUPERCONFORMAL MECHANICS
REVISITED

Conformal mechanics (CM) [37] and its super-
conformal extensions (SCM) [38, 39] are the sim-
plest models of (super)conformal field theory. Re-
cently, it was suggested [36] that the so-called “rel-
ativistic” generalizations of these d = 1 models are
candidates for the conformal field theory dual to AdS»
(super)gravity in the AdS,/CFT; framework. The
simplest model of this kind is a charged particle evolv-
ing on the AdSy x S? background (the Bertotti—
Robinson (BR) metric). It describes a near-horizon
geometry of the extreme d = 4 Reissner—Nordstrom
black hole.

Since the “old” and “new” (super)conformal me-
chanics models respect the same (super)conformal
symmetry, these models can be expected to be equiv-
alent to each other. The d = 1 version of the map (73)
allows one to explicitly prove this conjecture [15].
Here, we illustrate this by the example of N = 2 su-
perconformal mechanics.

The N =2, d =1 superconformal algebra su(1,
1]1) includes as a subalgebra the d =1 conformal
algebra so(2,1)

[P7D]:_P7 [KvD]:K7 [PvK]:_QDv (75)
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in parallel with the generators of Poincaré {Q,Q}
and conformal {S, S} supersymmetries and the U(1)
generator U. The nonvanishing (anti)commutators of
the latter read

{Q.Q} =2P, {Q,S}=2D —2U,
{S,8} =2iK, {S,Q} =2iD + 2iU,

B0 Fo

(76)

Q Qi

S
(@3] n i)
Il
N | —
N -~
i »n OO
\_/ v

S S
U, 17
s)| *\-s

The standard nonlinear realization of SU(1, 1]1) as
the d = 1, N = 2 superconformal group is set up as
left multiplications of the coset

tP 0Q+0Q (D MK (S +P5

g=¢e'e (77)

where (t,0,6) = z are coordinates of the N =2, d =
1 superspace and the remaining coset parameters are
superfields given on this superspace. The transforma-
tion rules of the supercoset parameters and the struc-
ture of the related left-covariant Cartan superforms
can be found in [39]. We only note that, on the N = 2,
d = 1 superspace coordinates, one recovers the stan-
dard N = 2 superconformal transformations, while all
the superfield coset parameters are expressed through
q(z) by the appropriate inverse Higgs constraints:

1

A= §eqq', )= —%GQ/2DQ, (78)
= —%emﬁq,
D= % +i00;, D = a%ﬂ'eat,
(D, D} = 2id,.
The invariant action of N = 2 SCM reads
Snep = / dtdQH[gDYDY (79)
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+ \/u'ylnY], Y =9/

[ts bosonic core coincides with the action of the stan-
dard “old” conformal mechanics [37]

1 1 w2 —u
S—i/dt<1ueu ~ve )
1 ) Y
= E/dt(ﬂl“ —ﬁ)a

upon the identifications glg—o = u(t), z(t) = e1/2u®
and eliminating the auxiliary field [D, D]g|g=o by its
equation of motion.

Now we pass in (75), (76) to the AdS basis

(80)

~ 1 .
K=mK-—P, D=mD, (81)
m

S =ms, S =mé.

We define the realization of SU(1,1|1) in the AdS
basis by its left action on the coset SU(1,1|1)/U(1)
in the following parametrization:

g= eyP69Q+§Q6¢DGQK€§§+§_7' (82)
As in the case of a standard nonlinear realization, one
can directly find the transformation rules of the su-
perspace coordinates and Goldstone superfields. As
distinct from the standard case, the transformation
laws of coordinates now essentially include Goldstone
superfields; i.e., we face a field-dependent realization
of the N = 2 superconformal group. The only essen-
tial Goldstone superfield is ®; the remaining ones are
eliminated by the inverse Higgs constraints:

1

A =em?9,d , 83
T an(9,0) (8)
_ 14 A2 (m/2)® A
Caviwe 0T

By comparing two different parametrizations of
the same coset SU(1,1|1)/U(1), Eqs. (77) and (82),
one finds the N = 2 extension of the d = 1 version of
the map (73)

q=m® +In(1 — A?),
i =mé.

Now we are prepared to obtain the invariant su-
perfield action which is pertinent to the above AdS
realization of the N = 2, d = 1 superconformal group
and so is expected to describe the N = 2 superexten-
sion of the bosonic BR particle action. One should
perform the transformation (84) in the “old” N =2
SCM action (79). For simplicity, we choose v = 0,

t=y— le”‘(DA, (84)
m

A=mA, Y =m¢,
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which amounts to requiring zero vacuum energy. We
obtain

S

2
% / dyd26em®

1-A% 1 1+ A?)? _
x ( - —em(D@yA) U+ A ) obyo,
m

(85)

14+ A2 1— A2

where A is expressed through ® according to (83).

[t is straightforward to pass to the component
fields in (85) and to show that, when all fermions
are discarded, F' = 0 on shell. After substituting this
into the pure bosonic part of the component action,
the latter, up to a total derivative in the Lagrangian,
becomes

Sbos = MTWLQ /dye_m(b <1 - \/1 - €2m¢(ay¢)2> ;
(86)

which is just the bosonic worldline action of BR par-
ticle in a static gauge, with the angular S? variables
being “frozen.”

Thus, (85) provides a manifestly N = 2 supersym-
metric off-shell form of the NV = 2 superconformal ex-
tension of the “new” CM action (86) which describes
the radial (AdSy) motion of the charged particle in
the BR AdS, x S? background. By construction, it is
related by the equivalence transformation (84) to the
~v = 0 case of the “old” N =2 SCM action (79).

The classical equivalence between the “old” and
“new” (S)CM models can hopefully be extended to
the quantum case and used to solve the quantum
mechanics of the charged AdSs (super)particles in
terms of (super)conformal quantum mechanics. In
the classical Hamiltonian approach, this equivalence,
both for the radial motion and with the angular S?
variables taken into account, was proved in a recent
paper [40].

7. CONCLUSIONS

In this paper, I reviewed the recent progress in
generalizing the PBGS approach to the case of su-
perbranes on the super AdS backgrounds. The off-
shell world-volume actions of superbranes on su-
permanifolds with the AdSy, AdSs, and AdS; x S1
even parts were derived from the appropriate nonlin-
ear realizations of N=1, d=3 and N=1,d=4
superconformal symmetries associated with the su-
pergroups OSp(1]4) and SU(2,2|1) [13, 14, 16]. The
nonlinear realizations constructed describe the partial
one-half breaking of these superconformal symme-
tries, and the superbrane actions are the correspond-
ing Goldstone superfield actions. I also described

a new aspect of the AdS/CFT correspondence. It
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consists in existence of the coordinate transforma-
tion which relates the standard realizations of (su-
per)conformal groups in field theories with sponta-
neously broken scale invariance and their realizations
in superbranes as groups of (super)isometries of AdS
(super)backgrounds [15, 17, 18]. One of the corollar-
ies of this map is an equivalence of various “old” and
“new” (super)conformal mechanics models, which
could be helpful in solving the second type of models
in terms of the simpler first type, both at the classical
and at the quantum level [15, 40].

Among problems for further study, let me mention
generalizing the PBGS approach to more compli-
cated superconformal groups and superbackgrounds,
such as N > 2, d = 4 supergroups SU(2,2|N), and
the related super AdS5 x S™-type backgrounds. In
this way, one can hope to construct manifestly world-
volume supersymmetric actions for AdS D3 branes
which should amount to superconformal extensions
of supersymmetric Born—Infeld actions. The corre-
sponding versions of the AdS/CFT map (73), (84)
could be of help in establishing these equivalences.
Another interesting related problem is to generalize
the manifestly world-volume supersymmetric PBGS
approach to branes on PP-wave type backgrounds.
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Optical Transitions in Parabolic Quantum Dot"
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Abstract—Direct optical absorption of light is theoretically investigated in a spherical quantum dot from
GaAs. The confinement potential of the dot is approximated as parabolic. Three regimes of size quantization
are discussed: weak, strong, and intermediate. The corresponding threshold frequencies of absorption
are determined. A comparison with the case of a spherical quantum dot with rectangular infinitely high
confinement potential is performed. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The investigation of spectra of optical absorption
of different semiconductor structures still remains one
of the most powerful tools to determine their band
structure. From the viewpoint of theoretical inves-
tigation of absorption processes in semiconductors,
the most convenient is the study of the absorption
threshold of the considered sample. The theory of
both direct and indirect (with third body) optical tran-
sitions is evolved for such absorption [1]. A lot of
articles are devoted to theoretical and experimental
investigation of optical absorption in both massive
and size-quantized semiconductors (see, e.g., [2—5]).

The presence of size quantization essentially af-
fects the nature of absorption. Indeed, the formation of
size-quantization levels near extrema of bands makes
possible the appearance of new interband transitions.
The influence of size quantization on the optical tran-
sitions in semiconductor films and wires is considered
in detail in [6]. At the same time, zero-dimensional
structures or quantum dots (QDs), in which the par-
ticle spectrum is completely quantized, are the most
interesting objects from the viewpoint of effects of size
quantization. Such objects in many respects are like
real atoms; therefore, not occasionally, they are also
called “artificial atoms” [6].

Optical transitions in QDs were discussed by dif-
ferent authors. The article [7]is one of the first articles
devoted to these problems. In this article, light ab-
sorption in semiconductor spheres disseminated into
a dielectric matrix was considered. In the scope of the
model of an infinitely high spherical dot, interband
transitions at different regimes of size quantization

*The text was submitted by the authors in English.
DYerevan State University, Department of Solid State
Physics, Yerevan, 375025 Armenia.

" e-mail: shayk@www.physdep.r.am

were considered. Further, the authors of [8] inves-
tigated the influence of anisotropy of band struc-
ture on the nature of optical transitions in spherical
QDs (with the same confinement potential) made of
lead sulfide and selenide of lead. It was shown that
the strong anisotropy of the band structure of PbS
and PbSe results in appearance of optical transi-
tions, forbidden in an isotropic approximation. On
the other hand, beginning from 1990s, in connec-
tion with the interpretation of some magneto-optical
experiments on QDs [9—11], the attention towards
QDs with parabolic confinement potential sharply
increased. The question is in the fact that the shape
of a potential well is determined by the variation of
composition of isovalent components. As a result of
some mixing of components during the growth of QD,
smoothing of the shape of the sample confinement
potential takes place. Therefore, as the first approx-
imation, the usage of the parabolic dot approximation
is quite reasonable [12, 13]. In this connection, the
consideration of optical transitions in QDs with a
parabolic confinement potential is interesting.

In the article, direct optical transitions in spherical
QD with a parabolic confinement potential are inves-
tigated.

2. THEORY

Let us consider a spherical symmetrical QD with
confinement potential of the form

,uw2r2

Vconf("”) = 5

where w is the frequency of the QD confinement
potential (w ~ h/(urd), ro is QD radius), and y is
electron effective mass (or of the hole, moreover, p, <
up). By analogy with [7], direct optical transitions
in the considered system will be discussed for three
cases of size quantization.

1063-7788/05/6810-1726$26.00 © 2005 Pleiades Publishing, Inc.
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(a) Regime of strong size quantization ag, aﬁ >
ro (ag, a}é are effective Bohr radii of electron and hole);
(b) Regime of weak size quantization af, a}é L ry;

(c) Regime of intermediate size quantization alé <
ro K a%.

2.1. Regime of Strong Size Quantization

In this case the Coulomb interaction between
electron and hole can be neglected and, accordingly,
the wave function of these particles in QD can be
written as [14]

e(h
‘Ifn(r},m(n 0,¢)

X1 F[—np, 1+ 3/2; )‘e(h)r

= Cetple M2
[Yim (0, ),

where Cﬁ(h) is the normalizing constant, n = 2n,. +1
is the principal quantum number, {n,, [, m} are quan-
tum numbers, A, are oscillator length of electron
and hole, 1 Fi[a, b; x| is a confluent hypergeometrical
function of the first kind, and Yy, (0, ¢) are spher-
ical functions. The energy levels corresponding to
these wave functions are determined in the following
way [14]:

. 3 h
En(h) = hwe(h) (n + §> s we(h) ~

:U'e(h)r(2)

According to [7], the absorption coefficient may be

written as

/ / /
nrvnrvlvl , 11,

2
(ho —eq — Ef,

K == A /\I/%T7l7m(7a707()0)

X \I/Z;‘7l/7m/(7",e,g0)dv — Eg/),

where A is the quantity, proportional to the square
of the modulus of dipole matrix element, taken on
Bloch functions; € is the width of the forbidden band,
and @ is the frequency of incident light. After the
integration (using selection rules m = —m/, I =1'),
one can obtain the expression

K=AY  Bunillnmal

ny,ni.,l
x 8(h& — e, — ES — EI),

where By, ; is some new constant, and

1 3 Ao + A —(nr+nl.+1+3/2)
I, v ==I =
=g (0 3) (552)
% )\e - )\h " )\e - )\h "
2 2
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nrv + 27 ()\h—)\e)2 )

where T'(z) is the Euler gamma function, and
o Fla, b, c; x] is a hypergeometrical function.

X o | —nyp,

2.2. Regime of Weak Size Quantization

At weak size quantization, system energy is
mainly conditioned by Coulomb interaction between
the electron and the hole. Therefore, the wave func-
tion of the system may be written in the form

f(r67 rh) = So(r)‘llnr,l,m(R)v
where r=r, —1r;, R= M, o(r) is the
He + Hp

wave function of relative motion, and ¥, ;,,(R)
is the wave function of exciton center of mass de-
termined by Eq. (1), where p = pe + py, is inserted
instead of p(p,). The system energy will be written as

3
5) - Eexa

and F is exciton energy.

E = Q) (n—i—
R
(:ue'i‘ﬂh) 2

Due to the electron localization in a quite close
neighborhood of the QD center, for K one can write

2
K=A Z ‘90(0) 2 /\Ilnr,l,m(R)dR

ny,l,m
% 6(ho — €4+ Fex — hQn + 3/2)).

Taking into account that ¢(0) # 0 only for the ground
state (l =m = 0) after integration, one can obtain

oot ()] o

3
anTé(ﬁxD—z-:g—l—Eex—hQ <n+§>>,

where D, is some constant, and A = (pe + )2/ A,
aey 18 exciton radius. In (3), the circumstance is taken
into account that, in integral in (2), only the states
[ = m = 0 are nonzero, as follows from the properties
of spherical functions ¥,,,(, o).

where ) ~

(2)

2.3. Regime of Intermediate Size Quantization

Taking into account that, in this case, an electron
moves much faster than a heavy hole, the adiabatic
approximation can be used [7]. Then the motion of the
hole will take place under the influence of the spherical
symmetrical potential of the form

WTL m 97
Vi, 1m(r) ———/' oL (T S0)|d’, (4)

v — |
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Fig. 1. The dependences of absorption threshold frequen-
cies on QD radius in units for the regime of strong size
quantization. Curve / corresponds to the case of parabolic
confinement potential, and curve 2 corresponds to the
rectangular infinitely high potential well.

w
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0.8 0.9 1.0 1.1 1.2 1.3

Fig. 2. The same as in Fig. 1, but for the regime of
intermediate size quantization.

where y is the dielectric constant of the QD. After
integration, for the potential, one can obtain

e/ ,uhwor
471'3/2 2

Vo(r) = —

where

pawd 262)\3/2

2 3m3/2y

Due to the spherical symmetry of potential (4), the
quantum numbers of the new problem are orbital I/,
azimuthal m’, and radial n,. numbers. Therefore, the
hole energy levels can be written as

o2
\/——Fhwo <2n§,+l'+g).

/ l/
Enr7 —
0 47T3/2

PHYSICS OF ATOMIC NUCLEI

KAZARYAN et al.

w
-03}F

—04} )
05}

-0.6

-0.7

! ! ! I
1.3 1.4 1.5 1.6 1.7
R

Fig. 3. The same as in Fig. 1, but for the case of weak size
quantization.

In this case, for the transition connected with the
electron level n=1,m =0 at different n/.(I" =0,
m’ = 0), the expression for the quantity K is ob-

tained:
_ACE (b N\ 3 (2n/)!
47l/2 \ ppwo ” 22n7 (! 1)2
. eV e 3
xé(fw — hwe—= +47r3/2 hwo( —|—§>).

3. CONCLUSION

The expressions for QD light absorption coeffi-
cients at different regimes of size quantization ob-
tained above allow one to determine the correspond-
ing threshold frequencies of incident light beginning
from which this quantization takes place. Thus, in
the case of strong size quantization, the following
expression holds for absorption threshold frequency:

3h
hag =g + = (
2
At weak size quantization, this frequency is deter-
mined from the equality

We + wp). (5)

3K

Eh )
Finally, in the case of intermediate size quantiza-

tion, this frequency looks like

h&gzsg—EeX—i—

3h eV e
~3 __ e
hwo—59+7(we+w0)—m- (7)
Let us also mention that, with the help of Egs. (5)—
(7), one can easily determine the dependences of
absorption threshold frequencies on QD sizes. There-
fore, one needs to express we,wpn,§) frequencies

through the QD radius. For the case of strong size
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quantization, this dependence is presented in Fig. |
(in w = (kg — €4)/ER, R =19/ap units). Curve /
corresponds to the case of parabolic confinement
potential, and curve 2 corresponds to the rectangular
infinitely high potential well. In calculations, we
took into account the equality w = ¢A/(ur), where
¢ is some constant for the value of the parameter
¢ =1 which corresponds to the frequency of the
confinement potential, e.g., for an electron in QD of
GaAs, w = 1.6 x 10" cm~!. As follows from Fig. I,
at this value of ¢, the curve of the w(R) dependence
for the parabolic case is lower than the curve for the
rectangular case. Along with increasing ro, when the
role of size quantization decreases, curves / and 2
decrease and come close to each other. Vice versa,
at small 7o, the role of size quantization sharply
increases and, therefore, the eifective width of the
forbidden band increases. This fact conditions the
growth of values of absorption threshold frequencies.
The analogous dependences corresponding to two
other regimes of size quantization are presented in
Figs. 2 and 3 (Fig. 2 corresponds to the regime of in-
termediate size quantization, and Fig. 3 corresponds
to the regime of weak size quantization). In these
figures, one can see that the curve corresponding to
QD parabolic confinement is lower than the curve
corresponding to the case of the rectangular infinitely
high well. At this, the qualitative behavior of w(R)
dependence curves does not change. Negative values
in the graph of Fig. 3 are conditioned by the fact that,
in case of weak size quantization, the input into the
energy of the system is mainly due to the Coulomb
interaction. In conclusion, let us mention that, in the
case of strong size quantization, the selection rules
change. In contrast to the case considered by the
authors of [7], in our case the transitions may take
place between levels with different n, and n/..
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Abstract—A new generalization of nonlinear Born—Infeld electrodynamics is proposed. It is inspired by the
noncommutative geometry and a new interpretation of gauge theories. The variational principle introduced
here leads to quite complicated nonlinear equations, which can be solved numerically in certain cases.
The spherically symmetric ansatz is analyzed, and static finite-energy solutions are obtained via numerical
integration. Then a pure Higgs sector Lagrangian is introduced by analogy with the non-Abelian Born—
Infeld generalization. A spherically symmetric configuration and a time-dependent homogeneous field are
investigated and qualitative behavior of solutions are discussed. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

After Coulomb’s law had been formulated in the
18th century, it was clear that the electric forces be-
come infinite for pointlike particles. Later on, when
Maxwell found his final and elegant mathematical
formulation of electrodynamics, with the introduc-
tion of the energy—momentum tensor of electromag-
netic field, the energy remained infinite for pointlike
charges. After the discovery of the electron, physicists
started to look for models able to represent it as an
extended, finite-dimensional particle, endowed with
finite distribution of charge and energy densities. The
model proposed by Mie[1] could be considered as the
most successful one at the time it was published. It
was based on the idea that Maxwell’s electrodynam-
ics should be considered as a linear approximation
of a certain nonlinear theory; as long as the field
strength is not too high, the linear theory describes
almost perfectly its behavior far away from the source,
which can be considered pointlike as seen from great
distance; the nonlinear effects should become domi-
nant at small distances, where the extended nature of
elementary charges must be taken into account.

To this end, Mie[1]introduced the notion of max-
imal field strength Eg, and in order to make it impos-
sible for any electric field to go beyond this value, he
modified Maxwell’s theory by introducing the follow-
ing nonlinear Lagrangian density for a pure electric
field:

E2
L=]1-—. (1)
2
EO
*The text was submitted by the authors in English.
1)LPTL, Universite  Paris-VI, Paris, France; e-mail:

rk@ccr. jussieu.fr
YLPTHE, Université Paris-Sud, Orsay, France.

Although the nonlinear theory derived from this La-
grangian enabled Mie to obtain a nonsingular, finite-
energy solution, it was clear that such a Lagrangian
cannot represent a Lorentz-invariant theory, espe-
cially since the magnetic field contribution was ab-
sent. This is why Born and Infeld (BI) [2] have in-
troduced a Lorentz-invariant Lagrangian density, de-
fined as follows:

Lgi(g, F) (2)
= Lgi(g, F)/]g| = 52( | det(gyu )|

- \/| det(guu + ﬁlFMV”)

252<1 — \/1 + %(BQ —E2?) - %(E-BP)\/H.

The constant § appears for dimensional reasons
and plays the same role here as the limiting value of
the electric field in Mie’s nonlinear electrodynamics.
Defining

1 1 -
P = ZF}U/FNV and S = ZFNVFHV’

w1
with F1 = 2V,

we can write
Lg = 3° [1—\/1+2P—52}. (3)

Since Dirac introduced his equation for the elec-
tron, the interest in classical models of charged par-
ticles has considerably faded. Only in 1970 did Boil-
lat [3] consider BI electrodynamics in order to study
its propagation properties. Investigating general non-
linear theories derived from a Lagrangian depending
on two Lorentz invariants L(P, S), he discovered that

1063-7788/05/6810-1730$26.00 © 2005 Pleiades Publishing, Inc.
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the BI electrodynamics is the only one ensuring the
absence of birefringence, i.e., propagation along a
single light cone, and the absence of shock waves.
In this respect, the BI theory is unique (except for
another singular Lagrangian £ = P/S). A beauti-
ful discussion of these properties can be found in
Bialynicki-Birula’s paper [4]; see also [5].

An unexpected new impulse for the revival of in-
terest in BI electrodynamics and in its non-Abelian
generalizations came from string theories, in which
Bl-type Lagrangians appear in effective action for
D branes.

Another motivation for studying Bl-type theo-
ries is the possibility of existence of solitonic solu-
tions in nonlinear field theories. In a pure Yang—Mills
theory in flat spacetime, with the usual Lagrangian

density Lym = —ZgABF;j,‘,FBW, there are no finite-

energy static nonsingular solutions. This fact can be
explained qualitatively by the conformal invariance
of the theory and the tracelessness of the energy—
momentum tensor,
3
1) = —Too + ZTM = 0. (4)
i=1
Given the positivity of energy, Tog > 0, this means
that the sum of principal pressures is positive,
> T;; > 0, leading to the conclusion that Yang—Mills
“matter” is naturally subjected to repulsive forces
only.

In the presence of a Higgs field, the conformal
invariance is broken, and this leads to the existence
of solitonic solutions like 't Hooft’s [6] and Prasad—
Sommerfield’s [7] magnetic monopoles. In what fol-
lows, we are looking for soliton-like solutions arising
in other nonlinear theories, including non-Abelian
versions of BI theory, which are not conformally in-
variant, as well as the pure Higgs field model with a
generalized Bl-type Lagrangian.

2. NON-ABELIAN GENERALIZATIONS
OF BORN—-INFELD THEORY

2.1. Basic Properties of Abelian Born—Infeld Theory

In their original paper [2], Born and Infeld consid-
ered the now famous least action principle:

Sulg. 71 = | ﬁ2< |det(gpa)
J

— /I det(gu + 5‘1F,W)]>d4x.
This action can be defined not only on the Minkows-

kian spacetime but also on any locally Lorentzian
curved manifold.
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[t is useful to recall here the three basic properties
of this Lagrangian which we want to maintain in the
case of a non-Abelian generalization:

(i) Maxwell’s theory (respectively, usual gauge
theory with quadratic Lagrangian density) is found
in the limit 8 — oo:

1 1
Sl = — / 5(]32 — EQ)\/ ‘g’d4{lf +o0 <@> . (D)
R4
(ii) There exists an upper limit for the electric field
intensity, equal to 3 when the magnetic components
of the field vanish:

Lpi|p=o = * (1 — V1= 5_2E2) . (6)

Due to this fact, the energy of a pointlike charge is
finite, and the field remains finite even at the ori-
gin. This was the main goal pursued by Mie [1] in
suggesting the choice of nonlinear generalization of
Maxwell’s theory. Indeed, for a point charge e, one has

en
E:\/ﬁ (m=r/r), (7)
mass = /(\/ 2+t —r?)dr.

0

(iii) The BI action principle is invariant under the
diffeomorphisms of R* and gauge transformations. In
this respect, this theory can be viewed as a covariant
generalization (in the sense of General Relativity) of
Mie’s theory, as well as an extension of the usual

volume element +/|g|d*z.

[t is also well known that the BI electromagnetism
has good causality properties as well as interesting
dual symmetries (electric—magnetic duality, Legen-
dre duality). Here, we shall not consider these prop-
erties, our main interest being focused on static solu-
tions.

2.2 First Non-Abelian Generalizations
of Born—Infeld Theory

The idea of non-Abelian generalization of the BI
theory Lagrangian has been in the air since the end
of the 1970s. Hagiwara discussed various possibil-
ities in [8]; however, he did not try to find soliton-
like solutions. In 1997, Tseytlin [9] argued in favor
of the symmetrized trace prescription which repro-
duced in the first four orders the string effective ac-
tion for gauge potential. Finally, Park [10] introduced
yet another non-Abelian generalization and investi-
gated qualitative behavior of instanton-like solutions.
Also supersymmetric generalization was proposed for
Abelian and non-Abelian versions [11, 12].
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Only instanton-like solutions were discussed
in the aforementioned papers. The first solitons in
Minkowskian spacetime were found in [13], which
we briefly recall in this section.

A straightforward generalization of BI theory in
four dimensions can be achieved by replacing the
quadratic invariants of U(1) theory by the non-
Abelian ones:

FuF*™ — Fi FIY and  Fy,F — F{ FY.

(8)
The corresponding action is
S =" i /(1—R)d4:c 9)
A ’
R = \/ 52 IW IW 16ﬁ4 (Fl(thFuy)

[t is easy to see that the BI nonlinearity breaks the
conformal symmetry ensuring the nonzero trace of
the stress—energy tensor

Th =R [4B*(1-R)

This quantity vanishes in the limit 8 — oo, when
the theory reduces to the standard one. For the Yang—
Mills field, we assume the usual monopole ansatz:

k
w(r)), (1)

A;‘l = eaikn_(l -
,
where nF =2 /r, r = (2% +y? + 22)/2, and w(r)
is a real-valued function. After integration over the
sphere in (9), one obtains a two-dimensional ac-
tion from which @ can be eliminated by the coor-
dinate rescaling /Bt — t,/Br — r. The following
static action results then:

S:/Ldr, L=

/2
with R = \/1—1—2—+

— FLF™] #£0. (10)

A2 =0,

r2(1—-"R) (12)

(1 —w?)?

rd 7

where the prime denotes the derivative with respect to
r. The corresponding equation of motion reads

(5) -2

A trivial solution w = 0 corresponds to the point-
like magnetic BI monopole with unit magnetic charge
(embedded U(1) solution). In the BI theory, it has
a finite self-energy. For time-independent configura-
tions, the energy density is equal to minus the La-
grangian, so the total energy (mass) is

M = /(R — 1)r2dr.
0

(13)

(14)

PHYSICS OF ATOMIC NUCLEI

KERNER, SERIE

Forw = 0, one finds the usual Bl monopole mass [see
Eq. (7)]

M—/(\/T4—|—1—7“2>d7“ (15)
3/2
=~ 1.23604978.
3r(3/4)

Looking now for the essentially non-Abelian solu-
tions of finite mass, we observe that, in order to assure
the convergence of the integral (14), the quantity
R — 1 must fall faster than »=3 as r — oo. Thus,
far from the core, the BI corrections have to vanish
and Eq. (13) should reduce to the ordinary Yang—
Mills equation, equivalent to the following two-
dimensional autonomous system:

i =u+ (w? — 1w, (16)

where a dot denotes the derivative with respect to
7 =Inr. This dynamical system has three nonde-
generate stationary points (v =0,w = 0,—1), from
which v =w = 0 is a focus, while two others u =
0,w = —1 are saddle points with eigenvalues A\ =
—1 and A = 2. The separatrices along the directions
A = —1 start at infinity and, after passing through
the saddle points, go to the focus with the eigenval-

ues A = (1 —i+/3)/2. It has been proved in [13] that
the only finite-energy configurations with nonva-
nishing magnetic charge are the embedded U(1)
BI monopoles. Indeed, such solutions should have
asymptotically w = 0, which does not correspond to
bounded solutions unless w = 0. The remaining pos-
sibility is w = —1,w = 0 asymptotically, which cor-
responds to zero magnetic charge. Coming back to
variable r, one finds from (13)

w = u,

w:—1+§+0(r_2), (17)
where ¢ is a free parameter. This gives a conver-
gent integral (14) as r — oo. The two values w = —1
correspond to two neighboring topologically distinct
Yang—Mills vacua. Now consider local solutions near
the origin » = 0. For convergence of the total en-
ergy (14), w should tend to a finite limit as » — 0.
Then, using Eq. (13), one finds that the only allowed
limiting values are w = —1 again. In view of the sym-
metry of (16) under reflection w — —w, one can take
without loss of generality w(0) = 1. The following
Taylor expansion satisfies Eq. (16):

b%(44b° + 3) A
10(4b2 + 1)
with b being a unique free parameter. As r — 0, the
function R tends to
R=Ry+ 0(7“2),

w=1—br?+ +0(r%,  (18)

Ro=1+120%. (19)
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Therefore, it is not a solution to the initial system (14).
What remains to be done is to find appropriate values
of constant b leading to smooth finite-energy solu-
tions by gluing together the two asymptotic solutions
between 0 and oo.

It has been proved in [13] that any regular so-
lution to Eq. (13) belongs to the one-parameter
family of local solutions (18) near the origin. It
follows that the global finite-energy solution starting
with (18) should meet some solution from the fam-
ily (17) at infinity. Since both of these local solutions
are nongeneric, one can at best match them for some
discrete values of parameters. This idea was used first
in[14].

For some precisely tuned value of b, the solu-
tion will remain a monotonic function of 7 reach-
ing the value —1 at infinity. This happens for b; =
12.7463. By a similar reasoning, one shows that, for
another fine-tuned value by > by, the integral curve
w(7) which has a minimum in the lower part of the
strip will be stabilized by the friction term in the upper
half of the strip [-1, 1] and tend to w = 1. This solu-
tion will have two nodes. Continuing this process, we
obtain an increasing sequence of parameter values b,
for which the solutions remain entirely within the strip
[—1,1] tending asymptotically to (—1)". The lower
values b,, converge very rapidly to the limit value given
by (15).

Some analogous solutions have been found in the
symmetrized trace prescription in[15, 16].

2.3. A New Non-Abelian Generalization

In [17], we introduced a new non-Abelian gen-
eralization of the BI Lagrangian and found a family
of nonsingular soliton-like solutions using 't Hooft’s
ansatz for the SU(2) gauge potential. As in the case
discussed in [13], and in contrast to the usual Yang—
Mills case, soliton and magnetic monopole solutions
were possible without the presence of a Higgs field or
other scalar multiplets.

Our starting point is the gauge-field tensor asso-
ciated with a compact and semisimple gauge group
G, defined as a connection 1-form in the principal
fiber bundle over Minkowskian spacetime, with its
values in Ag, the Lie algebra of G. We choose the rep-
resentation of the connection in the tensorial product
of a matrix representation of the Lie algebra Ag and
the Grassman algebra of forms over My:

A= ASdat @ T,,

1733

where Ty, a,b=1,2,..., N = dim(G), is the anti-
Hermitian basis of the particular representation R of
dimension dg of Ag.

By analogy with the Abelian case, we want the
Lagrangian to satisfy the following properties:

(i) One should find the usual Yang—M:ills theory in
the limit 8 — oo.

(ii) The (non-Abelian) analog of the electric field
strength should be bounded from above when the
magnetic components vanish. (To satisfy this partic-
ular constraint, we must ensure that the polynomial
expression under the root sign should start with terms
1—B372(E*)?+...when B*=0.)

(iii) The action should be invariant under diffeo-
morphisms of R* and gauge transformations.

The idea is to compute a determinant in the tensor
product of endomorphisms of R* and R(Ag). This
enables us to introduce the following generalization
of the BI Lagrangian density for a non-Abelian gauge
field:

=gl -

et (12 @gu ®la,  (21)

1/(4dp)
+BNIRFL, ©T,)

In the expression above, J denotes an SL(2,C) ma-
trix satisfying J? = —15, thus introducing a quasi-
complex structure. This extra doubling of tensor
space is necessary in order to ensure that the resulting
Lagrangian is real. In the SU(2) case, it is possible to
compute the Lagrangian and we obtain

L=1-{(1+42P—Q??2+ (2K3)?, (22)
where
2P 2F5VF5",
1
Q? = —_F% FwFEe FdaﬁKacbdu (23)

16 "

1
Ky = Eeachﬁ“ng Fee

with Kabcd = 6ab5bc — 5ac6bd + 6ad6bc- We then study
spherically symmetric static configurations by con-
sidering the well-known 't Hooft ansatz:

-
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A=(1—Fk(r))(Tpsinbdp — T,dh).  (24)
(20)  Then the action becomes
1—k2\? 2i2\* (1 k2\?
— ! 1+< 5 ) 1+ — +( 5 ) e3Tdr (25)
T T T
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The equations of motion can be written in the standard form:

k =u,
o =y(k,u, T)u+ k(k? —1)

with

u? + 2uk(1 — k?) + (1 — k%)?

v(k,u,7) =1—2

ot (1— k2)2

6u(l — k%) [ku® 4 2u(l — k%) + k(1 — k)?] [r* + 2u? + (1 — k?)?]

P (L RO+ 2622+ (1~ K220 6u?)]

Although the equations display asymptotic ex-
pansions analogous to those found in [13, 18, 19],
careful analysis shows that solutions of the Bartnik—
McKinnon type [20] are excluded here.

Near the origin, there are two types of asymptotic
development which satisfy the equations of motion:

5a’ g 2
k‘—k‘o—l-a’l”—k‘o(@‘f'm)r (28)
8 9 _ _ 4.3 -1 4
L @52-709) —9a79° +(9 = 1)g" 5 | 5,4,

108a°g?
where g =1-Fk2, a# 0 and g# 0, are two free
parameters.
A second development depends on only one free
parameter b and starts as follows:
b2 + 92v* b0
3b° + 926" + 608 A1 0(9)),
10 + 20062 4 16006
(29)

which corresponds to solutions along the separatrix
with A = 2 discussed in the previous section.

k——(l—br2—|—

E

1.2_ T T T T T T
/J|/| L
=1 10F 1 2131415161 7|
0 0 0
O8c 0 0
J Lo
Lo
Lo
Lo
Lo
R P

5 10 15 20

~—

o

Fig. 1. Energy as function of the parameter 7.
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At infinity, the Taylor expansion can be made with
respect to 771, It depends on one free parameter,
denoted by c:

¢ 3 1
k__<1_;+@+0<r_3)>’ (30)

which corresponds to solutions along the separatrix
with A = —1 discussed in the previous section.
Taking these expansions as the first approximation
either at » = 0 or at » = oo, we then use standard
numerical techniques in order to generate solutions
valid everywhere. [t was interesting to note that, when
we started from infinity, no fine-tuning was necessary,
and an arbitrarily fixed constant ¢ would lead to a
solution which, when extrapolated to r = 0, would
define a particular pair of values of constants kg and
a. On the contrary, starting from r = 0, arbitrarily
chosen values of ky and a would not necessarily
lead to good extrapolation at r = oo. Therefore, the
three parameters occurring in the asymptotic expan-
sions must be interrelated by two constraint equal-
ities. Then the solutions can be labeled by only one
real parameter, and then the two parameters kg and a
of (28) are functions of the parameter 7. = log(c).
We have evaluated the energy E of the solutions
found and the values of the parameter kg for 7. varying
from —10 to 20. The energy E is represented as a
function of the parameter 7, in Fig. 1. The energies
converge to the limit £, —o = Ep—co = 1.23605. . .,
which coincides with the energy of the BI monopole.
Our solutions do not interpolate between the two
singular points at k =1 and k = —1, but between
the singular point at £ =1 for » = 0o and a certain
value kg (related to 7.) which is always lower than
1 and bigger than —1 (as a matter of fact, ko = 0 is
a solution, which corresponds to the monopole solu-
tion). This is radically different from the sphaleron-
like solutions or solutions of Bartnik—McKinnon type
found in[13, 20].
As in the Bartnik—McKinnon case, we can assign
to each solution an integer n, with n — 1 denoting
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the number of zeros of the function u or the winding
number of the corresponding trajectory in the phase
plane (k,u), as seen in Fig. 2, where a few solutions
are plotted. When the parameter 7. goes from —oo to
+00, we observe that this integer n grows from 1 to
oo. At certain special values of the parameter 7, this
integer increases by 1. Here are the first critical values
of 7

. = 1.658,4.781, 7.510, 10.092, 13.218,
16.530,19.813.

3. BORN—-INFELD-TYPE LAGRANGIAN
FOR HIGGS FIELDS
FROM NONCOMMUTATIVE GEOMETRY

In this section, we study the Higgs-like fields
which naturally appear in the version of the standard
model based on noncommutative geometry [21]. We
show that soliton-like solutions with finite energy
cannot be obtained with pure Higgs fields obeying
this version of generalized Bl dynamics in the case
when the Higgs multiplet reduces to a single scalar.
This situation corresponds to the particular choice
of matrix-valued generalized Higgs field when the
corresponding matrix is proportional to the identity.
This does not exclude the possibility of soliton-like
solutions in more complicated cases, with a many-
component Higgs field.

3.1. Gauge Fields in Noncommutative Geometry

We shall generalize now the “noncommutative
Maxwell theory” developed in [21] in order to obtain
a Bl-like theory. Let us resume the notation and
language of the theory. We consider the algebra A4 =
C>*(V) ® M, (C) with the vector fields spanned by
the derivations of C°°(V') and inner derivations of
M,,(C). The differential algebra is generated by the
basis of linear 1-forms acting on the derivations. We
can consider A as a bimodule over itself. Then one
defines a gauge by the choice of a unitary element
e of A, satisfying h(e,e) =1, with h a Hermitian
structure on A. Then any element of A can be written
in the form em with m € A and a connection on A is
a map:

V:A—QlA), (31)

In the gauge e, the connection can be completely
characterized by an element w of Q!(A):

em — (Ve)m + edm.

Ve = ew.

One can also decompose w in vertical and horizontal
parts:
(32)

W = Wh + Wy

PHYSICS OF ATOMIC NUCLEI

1735

k
1.0

0.8F
0.6 -
0.4
0.2
0
-0.2

S| S
In

)/

-10 0 10 20 30

—_— W]

S 3
1l

=20

u
03r

0.2

0.1

N

1
-02 0 02 04 06 08 10
k

-0.1

Fig. 2. Plots of solutions for the values of 7. =
—3.1.2,4,7, 10.

with

wp=A, wy,=0+¢.

Here, A is like the Yang—Mills connection, whereas
6 is the canonical 1-form of the matrix algebra, and
plays the role of a preferred origin in the affine space
of vertical connections. It satisfies the equation

do + 6% = 0.

Then ¢ is a tensorial form and can be identified with
scalar-field multiplet.

We choose a local basis of derivations of \A:
{eu, eq}, where for convenience e, are outer deriva-
tions of C*°(V'), and e, = ad(\,), with {\, } a basis of
anti-Hermitian matrices of M,,(C), are inner deriva-
tions.

The dual basis will be denoted by {6#,60¢}. In this
particular basis, we have

A=A 0, 0=-X0° &= cb"

If we choose the connection to be anti-Hermitian, we

can write ¢ = ¢2\,0%. The curvature tensor associ-
ated with w is

Q= dw + w?,
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Fig. 3. Characteristic curves and points in the phase
space.

we can also define the field strength

F=dA+ A%
Then one can identify
Qw =Fu, Qua=Dpga
Qap = —Dyda,  Qap = [¢a; Pp] — Cape,

where C¢, are the constant structure in the {A,}
basis.

A gauge transformation is performed by the
choice of a unitary element U of M, (C), satisfying
h(eU,eU) = 1. Then, in the gauge ¢’ = eU

W' =UtwU + U U,
0 is invariant under gauge transformations; then,
A =UTAU +U YU, ¢ =U1oU.

3.2. Noncommutative Born—Infeld Lagrangian

The generalization proposed in our previous article
can be adapted to the noncommutative gauge theory.
The Lagrangian which we consider is

Vet |g] — {|det(1® g + J @ Q)|}/*4"

and Q= Q. with L the generators of the
fundamental representation of SO(4 +n? —1). Qa3
are the components of the curvature defined in previ-
ous section and then are anti-Hermitian elements of
M, (C). J is an element of SL(2,C) of square —1.
The above Lagrangian contains the contribution
of two types of fields: the classical Yang—Mills po-
tential, A = A,0", corresponding to the usual space-
time components of the connection 1-form, and the
scalar multiplet coming from its matrix components
b = g0 = 2 Np0%. In the case when ¢ =0, this
Lagrangian coincides with the one studied in [17]
and exposed in the previous section. The complete
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analysis of general solutions seems too tedious for the
time being. This is why we shall restrict ourselves to
a qualitative analysis of the case when the spacetime
components of € do vanish F},, = 0, leaving only the
contribution of scalar-multiplet degrees of freedom.

3.3. The Reduced Lagrangian for Scalar Fields
in the Casen =2

Let us recall the notation which will be used in the
subsequent calculations. The basis of matrix repre-
sentation of the su(2) algebra is chosen as follows:

)\a = —i0, )\a)\b = _5ab + Zeabc)\ca (33)

[)\aa )\b] = Cgb = 2€qbcAe

with o, denoting the Pauli matrices. Now we have to
evaluate the determinant of the following matrix:

1 A iD&A ’ (34)
—iD¢ 14 iH
where
H = {Qa} 103 (35)

Dé = { Dy}

From now on, we choose the simplest ansatz with one
scalar field ¢ only:

a=1,2,3 u=0,1,2,3

¢ = pb.
After some algebra, we get the following result:
L=1-{146(Dp)?+9(Dy)*
+16¢%(p = 115/ T 142 (p — 12,

3.4. The Absence of Static Configurations of ¢

In this subsection, we show that there is no non-
trivial static configurations in the present system. We
generalize Derrick’s theorem [22] to our Lagrangian.
The idea of the proof is to use spatial dilatations of
the field ¢(r) — @a(r) = @(Ar) to generate a one-
parameter curve in the space of fields around such
a solution. Thus, the variational principle along this
curve gives 9S[px]/ON =0at A =1, i.e.,

/47r7“2d7“ (g—(ﬁltp' — SE) =0.

We can show, by algebraic manipulations, that the
quantity under the integral is always nonnegative and
satisfies (36) if and only if it is zero. The solutions
are just the trivial ones ¢/ =0 and ¢ = 0 or 1 which
exclude other nontrivial solutions.

(36)
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S

Fig. 4. Trajectories in the confined region of the phase space.

3.5. The Time-Dependent Scalar Field

We have performed a numerical analysis of the
time-dependent configurations of the scalar field re-
sulting from the simplest ansatz ¢ = ¢(t). It gives
an interesting phase-space portrait and confirms the
idea that BI-like theories set an upper bound on ve-
locities (i.e., time derivatives of ¢) and on the field
strength as well. Such an ansatz could be of use in
cosmology, when coupled with the scale factor a(t)
of the Robertson—Friedmann metric. Their investiga-
tion will be the subject of our forthcoming paper [23].

The equations of motion in this case take on the
following form:

¢ =u,
(1+4X)g(X,Y )i + 4ss'h(X,Y) = 0,

where

s=p(lp—1), §=2p—1,

X =5 Y =u?
g(X,Y) =16X(1—9Y) + (1 — 3Y)?,
h(X,Y)=((1-3Y)?+16X)(1 - Y +8X)
—6(1+4X)(1 - 3Y)Y.

At some points of the phase space, 4 is not well
defined. These are the points at which the polynomial
g vanishes (four curves in Fig. 3). Nevertheless, in
most of the cases, singular behavior is only apparent,
because the undetermined ratios 0/0 prove to have a
finite limit. The total number of singular points in the
phase space is 16, but only 2 of them display a genuine
singularity. In the 14 remaining cases, the function
4ss'h(X,Y") vanishes at the same time as the function
g(X,Y), but their ratio remains finite. In Fig. 3, one
can observe the 16 aforementioned points. The only
two (Fig. 3) points with genuine singularity are the
ones without any vector attached to them, found on

PHYSICS OF ATOMIC NUCLEI

the central vertical line ¢ = 0.5 on both sides of the
horizontal line and close to it.

The phase-space portrait is symmetric by reflec-
tion around the vertical line ¢ = 0.5. Cyclic trajecto-
ries are contained inside the two pentagon-like areas
circumscribed by separatrices. These areas are dis-
posed symmetrically with respect to the vertical line
© = 0.5. One of these areas is represented in more
detailed manner in Fig. 4 below.

One can note that, in a certain region of the phase
space, the trajectories are periodic and defined for all
values of time ¢. If one chooses the initial conditions
outside this region, the integration ends up after some
finite time. This means that the solutions ¢(t) ob-
tained with these initial conditions have their second
derivative divergent after finite time when they hit one
of the curves on which g = 0.

Nevertheless, some of these curves, with fined-
tuned initial conditions, can go beyond the singular
curve g = 0 at points at which the infinite expressions
become finite again. These particular trajectories form
a special set; they can be extended beyond the limits of
the region shown in Fig. 4 and be defined for all values
of timet € R.

4. CONCLUSION AND PERSPECTIVES

Certain generalizations of the Born—Infeld-type
Lagrangian for scalar fields have been proposed by
several authors [24]. However, in these papers, only
a formal analogy was used, usually by inserting a
classical scalar field Lagrangian under the square root
sign.

The highly nonlinear behavior of the field ® in
this model suggests that, when coupled to gravi-
tation in a standard way, i.e., via minimal coupling
resulting from the replacement of ordinary deriva-
tives by their covariant counterparts, and adding the
Einstein—Hilbert Lagrangian for gravitational field, it
may lead to unusual behavior of cosmological models.
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The investigation of cosmological models using this

scalar field will be the subject of our forthcoming

paper [23].

—_—
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Abstract—Affine quantum gravity involves (i) affine commutation relations to ensure metric positivity, (ii) a
regularized projection operator procedure to accommodate first- and second-class quantum constraints,
and (iii) a hard-core interpretation of nonlinear interactions to understand and potentially overcome
nonrenormalizability. In this program, some of the less traditional mathematical methods employed are
(i) coherent-state representations, (ii) reproducing kernel Hilbert spaces, and (iii) functional-integral rep-
resentations involving a continuous-time regularization. Of special importance is the profoundly different
integration measure used for the Lagrange multiplier (shift and lapse) functions. These various concepts
are first introduced on elementary systems to help motivate their application to affine quantum gravity.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The unification of gravity and quantum theory of-
fers a major challenge to theoretical physics. The
favored approaches of string theory and loop-plus-
spin foam gravity use formulations that are in some
sense rather far from the original classical theory of
Einstein. Most workers feel this is necessary because
of the usual difficulties encountered in quantizing
gravity, namely, nonrenormalizability and anomalies,
to mention just two. The program of affine quan-
tum gravity, which is relatively new [1], attempts to
stay closer to the standard classical theory, so as
to provide suitable touchstones along the way. As a
consequence, it becomes necessary to deal directly
with some of the major problems, such as the two
mentioned above. How one deals with such difficult
issues, and especially the role played by coherent
states in this effort, is part of the story told in this
article.

As a pedagogical device, we illustrate our basic
methodology on simple quantum-mechanical sys-
tems before we discuss the case of quantum gravity.

1.1. Coherent State Basics

It is well known that coherent states provide a
useful bridge between a classical theory and the cor-
responding quantum theory. Let us briefly recall how
that bridge works with a simple example. Let @ and
P denote standard Heisenberg self-adjoint operators

*The text was submitted by the author in English.
DDepartments of Physics and Mathematics, University of
Florida, Gainesville, USA; e-mail: klauder@phys.ufl.edu

satisfying the usual commutation relation [@, P] = i1
with i = 1. Then we define canonical coherent states
by the relation

p.q) = e p), (1)

where |n) denotes a normalized vector called the fidu-
cial vector, which, in terms of the abbreviation ((-)) =
(n|(-)|n), is subject to the modest requirements that
(Q) = 0and (P) = 0. This condition on |n) has been
referred to as “physically centered.” Here, we add the
additional requirement that

lim ((P* + Q%)) =0, (2)

a relation we refer to as “physically attractive.” Given
appropriate domain conditions, it follows from (2) that

lim ((P? + Q*)™) = 0 (3)

for arbitrary m > 0. It is clear that the ground state
of a harmonic oscillator satisfies these conditions, but
so do many other vectors as well.

[f G denotes a quantum “generator” in a wide
sense, then we assert that

G(p,q) = (p,q/9Ip, @) (4)

defines the (A augmented) classical generator G(p, q)
associated with G. Of course, this connection is not
strictly what we usually mean by the classical gen-
erator since £ has not been set equal to zero—which
explains the “h augmented” phrase. In addition, we
can also consider the expression

Ge(p,q) = }iigg)@,qlglp, q), (5)

which corresponds to the complete classical limit.
The association between a quantum and classical

1063-7788/05/6810-1739$26.00 © 2005 Pleiades Publishing, Inc.
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generator illustrated by (4) and (5) is known as the
“weak correspondence principle” [2].

To illustrate this situation, let us discuss a few
examples. For example, it follows that

(p.4lQlp,q) = a, (p,qlPlp,q) =p,  (6)
while
(p,qlQlp, q) = ¢ + (Q?), (7)
(p,q|P*|p.q) = p* + (P?).
More generally, if W(P, Q) denotes an arbitrary poly-

nomial, and subject to suitable domain conditions,
then

W(p,qa) = (p.dW(P, Q)lp, a) (8)
= W(p,q) + O(h; p, q),
where, under the condition (3), it follows that
O(h;p,q) — 0ash — 0.

A complete characterization of an operator is given

in terms of its matrix elements. In particular, it is clear
that

(P, aW(P, Q). d) (9)
fully determines the operator in question.

1.2. Reproducing Kernel Hilbert Space
By assumption, the coherent states span the
Hilbert space. Therefore, a dense set of vectors may
be written in the form

J
) = ajlps,q5). (10)
i=1

where (pj,q;) € R%, a; € C, and J < co. Another
such vector may be taken as

K
0) =Y Belpwy»a), K <oo. (1)
k=1

As functional representatives of these abstract vec-
tors, let us choose their inner product with arbitrary
coherent states which leads to

J

U(p,q) = (p,qle) = Y a;(p,alpjs q),

j=1

(12)

K
¢(p,q) = (p.ald) = Brp,dlpy ay)- (13)

k=1
As the inner product between two such functional
representatives, we take

JK

(¥, 9) = (Ylo) = Z o Bk (pjs 4Py s Ary)s (14)

jk=1
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as follows from (10) and (11). We now have functional
representatives, (p,q), ¢(p,q), etc., and an inner
product between them; all that remains to make a
Hilbert space is to complete the space by including
the limits of all Cauchy sequences in the norm ||2|| =
++/(1,1). The result is the so-called (separable)
reproducing kernel Hilbert space in which the con-
tinuous function given by the coherent state overlap
function serves as the reproducing kernel. For addi-
tional information about such Hilbert spaces, see [3].

2. AFFINE FIELD OPERATORS

In a 3 4 1 split of space and time, a subset of the
basic kinematical operators chosen for affine quan-
tum field theory involves the self-adjoint spatial met-
ric gqp(x), where a,b =1,2,3. Moreover, we insist
that the spectrum of the spatial metric is restricted
so that u®ggy(x)ub > 0 for any set {u?} for which
>, (u®)? > 0, arequirement that we call “metric pos-
itivity.” To complete the set of basic kinematical op-
erators we employ the “momentric” field #%(x). The
latter field is the self-adjoint operator associated with
the classical momentric field 75(z) = 7%¢(2)gea(z),
which involves both the ADM classical momentum
7%¢(z) and spatial metric g.q(z). Promoting the Pois-
son brackets satisfied by the fields 7§ and g, to com-
mutators leads us directly to the affine commutation
relations (for h = 1) given by

(75 (), 7a(y)] (15)

= %i[égﬁbd(x + 85 Gaa()]0 (2, y),
[gab(.’ﬂ), gcd(y)] =0.

Observe that these relations define an infinite dimen-
sional Lie algebra. The reason for choosing these
particular kinematical commutators follows directly
from the fact that

e S B WER WYy ()=t WF Wy

= (72), geu () (2)s.

(16)

The meaning of this relation is clear: Unitary transfor-
mations generated by the self-adjoint momentric field
manifestly preserve the desired spectral domain of the
spatial metric tensor ensuring that u%g, (z)u® > 0for
any set {u”} that is not identically zero.
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2 1. Affine Coherent States

A representation of the basic affine operators is
determined by a state on the algebra they generate—
or, equivalently, by the set of coherent states

|7_[_’ ’Y> = eifwab(:v)g}ab(:v)d3:v6—ifwg(ac)ﬁ,’;(:v)d3:v|n> (17)

for all smooth functions 7% and vy of compact sup-
port. Here, |n) is a suitable fiducial vector which, in

<7T//, ’Y”|7T/7 ’Y/> =

1741

effect, determines the field operator representation.
The appropriate (physical) restriction on this operator
representation arises from fully enforcing the gravi-
tational constraints. However, according to Dirac [4],
quantization should be carried out first, while the in-
troduction of constraints should come second. Thus,
we are obliged to choose an initial—and temporary—
field operator representation just to get started. To
this end, it proves convenient to choose |n) so that

(@, 9" 7", q") (18)

) dot {3[5" (@) + (@) + ib(a) ") — 7 (a)]}
= exp [—/b(m)d3gc In < 2 (Aot ()] dot [g (] 172 >] .

Here, the symmetry of |n) is such that, instead of all
nine components of v, the coherent states depend on

only the six components of g, which are defined by
gab(x) = () Gea(2) (D)), (19)
where
ab(x) = (1l Gan()[n) (20)

arises as a property of |n). The scalar density b(z),
0 < b(z) < oo, arises as a property of |n) as well.
As usual, g®(x) is the inverse metric defined by
g% (z)gpe(x) = 6% for each .

Observe that the coherent state overlap (18) is a

jointly continuous function of its arguments, e.g., in
the topology of the test function space D.

2.2. Reproducing Kernel Hilbert Space

Just as in the elementary example, we can use the
coherent state overlap function (18) as a reproduc-
ing kernel to construct a reproducing kernel Hilbert
space. In particular, functional representatives in a
dense set of the Hilbert space may be given by

J
W(mg) =Y ajlmglmi,g), J<oo, (21)
j=1

K
$(m,9) = Bilm glmmy g, K < oo, (22)
k=1

etc. As an inner product between two such vectors,
we choose
JK
(lb, ¢) = Z a;ﬁk<7rjagj’7r(k)vg(k)>'

jk=1

(23)

PHYSICS OF ATOMIC NUCLEI

We may complete this Hilbert space by introduc-
ing all limit elements of Cauchy sequences in the
norm ||[¢|| = ++/ (¥, ¢), in complete analogy to what
we did in the elementary example. The result is the
separable reproducing kernel Hilbert space with (18)
serving as the reproducing kernel.

3. IMPOSITION OF CONSTRAINTS

To explain our procedure for the imposition of
constraints, we return to an N degree-of-freedom
model, N < oo. Let us suppose there are classi-
cal constraints for this model given by the condi-
tions ¢q(p,q) =0 for 1 <a < A, where p= (p',
p?, ...,pV)andq = (¢, 4%, ...,q¢"). Upon quantiza-
tion, these constraints become self-adjoint operators
D,(P,Q), 1 <a<A. Ideally, there should be a
nonvanishing subspace §pnys of the original Hilbert
space § for which ®4[¢)pnys = 0 for all [|1)pys €
$phys [4]. Uniortunately, this ideal situation does not
always occur. As a replacement for this criterion, we
introduce a projection operator

E=E (Z o2 < 6(h)2> , (24)
i.e., a projection operator such that
0<E (Z @3) E < §(h)21, (25)

where d(h) is a regularization parameter. We define
$phys = 5 as the regularized physical Hilbert space.
The general idea is to reduce the regularization pa-
rameter §(h) to an appropriate value for each sit-
uation. For example, if Y. ®2 = J2 + J2 + J2, the

1
Casimir operator for SU(2), then §(h)% = 5?12 (or
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any 6(h), 0 < §(h)? < (3/4)h?) s sufficient to ensure
that > J2 = 0. If 3 @2 = P2+ @2, then §(h)*> = h
(orany §(h), h < §(h)? < 3h) ensures that E projects
unto vectors [¢)pnys for which (Q 4 iP)[1))phys = 0.
This procedure enables a consideration of first- and
second-class constraints within the same formulation
without any need either to eliminate the second-class
constraints before quantization or to introduce Dirac
brackets for them. Other constraint situations can
also be treated; see [5].

[t is noteworthy that for any set of constraint oper-
ators, there exists a universal integral representation
to construct the projection operator [6]. In particular,
it follows that

E (Z o2 < 6(h)2>

_ / Temt i X OPadtpy )

(26)

where T denotes time ordering, R(\) is a formal
measure on c-number functions {A%(¢)}, and ty — ¢4
corresponds to any positive time interval. The integral
in (26) is constructed in a two-step procedure. First,

a Gaussian functional integral leads to
e (ta—t1) 30 @3 (27)

= N/Teif)‘a(t)q’adt(i/4'y)f2>\“(t)2dt [

Second, we integrate over y as follows:

-~ / sin[y(t2 — t1)(6(R)? + Q)]

¢—0t Ty
x et Sy = (3002 < 6(h)?)

(28)

The integral representation (26) may be used
within a coherent state path integral representation
of the propagator. We focus on [5]

(", q"|Be  EHETE | o) (29)
— liIl’(l)(p”, q//|e—iHeEe—iHeE . e_iHeE|p/, q/>’
€—
where there are (L + 1) short-time evolution opera-

tors e=€ and (L 4 1)e = T.. Insertion of L coherent
state resolutions of unity leads to

L
. —iHe
lgr(l)/ /ﬂ)(pm,qmle Elp;, @) (30)

L
< [TV pd™ ai/ (2m)",
=1

PHYSICS OF ATOMIC NUCLEI

KLAUDER

where pry1,qr+1 = p",¢" and po, g0 = p', ¢'. In turn,
it follows that

", ' |Ee " EHETE ] o) (31)

L
1 o —ie(HAA Pq)
651(1]/ /E(I%H,QHHG P, )

L
< [Td"pd"a/@m)"DR(N)
=1

= M/eif[P-dH(p,q)A‘“(t)%(p,q)]dtpppqu()\)’

where  H(p,q) =

(P, q|®alp, q).

In this fashion, we see how repeated insertions
of the projection operator lead to temporal evolution
entirely within the physical Hilbert space. Moreover,
we see how this evolution can be realized by a suitably
interpreted path integral which does not involve the
usual flat measure on the Lagrange multipliers but,
instead, uses the measure R(A) that is designed to
enforce the quantum constraints rather than the clas-
sical constraints.

Although this is not the only way the integral
representation for the projection operator (26) can be
used to formulate a path integral, it is probably the
most straightforward construction and readily illus-
trates the basic principles involved.

(p,dHlp,qa), dalp,q) =

3.1. Constraints in Quantum Gravity

For quantum gravity, there are four constraint
fields, which, from a classical point of view, comprise
an open first-class system. The quantum constraints,
however, exhibit an anomaly, and thus they are
partially second class in nature. In particular, the
diffeomorphism (Hg4,a = 1,2,3) and Hamiltonian
(H) constraint operator fields fulfill the commutation
relations

(Ha(2), H ()] (32)
— i[6.0(, y) M () — O, 5) ()],
[Ha(x)vH(y)] = ié,a(xv y)’H(:z:), (33)
(), H(y) (34)
= i3 0 al ) ()M () + Ho()g (2]

Ideally, one asks that Hy(x)|Y)pnys = 0 as well as
H(x)|¥))phys = 0 for all @ and = and for all |¢))pys €
$phys- However, this ideal situation is not possible
because it is almost surely the case that
9%(2)[Y)phys & phys, and therefore it does not
follow that [H(z), H(y)][¢))phys =0 as would be
required. This inconsistency of Eq. (34) gives rise

Vol. 68 No. 10 2005



THE UTILITY OF COHERENT STATES

to the gravitational anomaly—a partially second-
class behavior—that makes conventional treatments
of quantum gravity especially difficult. However, as
noted above, the projection operator method treats
first- and second-class constraints in the very same
manner, the only difference being how small the

regularization parameter §(h)? can be made.

By introducing a cutoff to regularize the quantum
constraints, we can imagine constructing a projec-
tion operator E onto a regularized physical Hilbert
space in which the regularized quantum constraints
are fulfilled to a certain degree. Such a cutoff can
be introduced in a variety of ways, and for simplicity
we will leave this necessary cutoff implicit. At a later
point in the calculation, it would be necessary to
remove this cutoff as well, but we will not examine
this important issue either. Instead, we go straight
to the heart of the matter and note that there is a
functional integral representation[1]for the coherent-
state matrix elements of the projection operator onto
the regularized physical Hilbert space given by

<7T//, g”|]E|7T/, gl>

_ /<7T//’g//|Teif[NaH“+NH]d3xdt|7T/’gl>

(35)

x DR(N® N) = lim N,

V—00

« / o J19ap®®®+N@Hq+N H]d3zdt

<oxp { = (1/20) [ o) gt

o+ (29" hcgiaal vl |

X [H I d=* (2, t)dgas(x, t)] DR(N® N).

z,t a<b

Implicit in these expressions are cutoffs in the con-
straint operators H, and H, and correspondingly in
the c-number symbols H, and H that arise from the
constraint operators and which appear in the func-
tional integral as their representatives.

Note the appearance of the measure DR(N“, N)
on the Lagrange multiplier fields, N, (the shift) and
N (the lapse). It is this measure, in contrast to the
usual flat measure on these fields, which leads to the
projection operator E that projects the original Hilbert
space $) onto the regularized physical Hilbert space
~6phys~

Note also the appearance of a limit as v — oo as
well as a v-dependent factor in the integrand. This
factor and the limit are connected with a different
kind of regularization of the functional integral that
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may be used instead of the usual lattice regulariza-
tion. The indicated form represents a continuous-
time regularization which involves a Wiener-like
measure that controls the nature of the paths. The
result of interest arises in the ultradiffusive limit in
which the diffusion constant v diverges. Continuous-
time regularization procedures have been well studied
for phase-space path integrals appropriate to canon-
ical, spin, and affine variables [7], and they have the
virtue that they automatically lead to a quantum-
mechanical representation of the corresponding ex-
pression in terms of coherent states with a fiducial
vector given by an extremal weight vector. Recently,
additional studies of such path integral representa-
tions have been made in the case of weak coherent
states for the affine group when a traditional resolu-
tion of unity as a local integral fails to exist [8].

Let us add that the quantity (7", ¢"|E|7’, ¢') may
also be used as a reproducing kernel to build the
reproducing kernel Hilbert space associated with the
regularized physical Hilbert space $,nys in exactly
the same way that the original coherent state overlap
(", ¢"|7", ¢’y may be used to build the reproduc-
ing kernel Hilbert space associated with the original
Hilbert space $.

Equation (35) represents as far as we can presently
go in our formal development. Despite the canonical
appearance of (35), we emphasize that this functional
integral representation has been based on the affine
commutation relations (15) and not on any canonical
commutation relations.

4. HARD-CORE INTERACTIONS
IN QUANTUM MECHANICS

Let us again return to the world of quantum me-
chanics to motivate the next issue of concern. Con-
sider an imaginary-time path integral for a single
degree-of-freedom problem formally given by

I\ = N/exp{ - % /[:t(t)2 + m2x(t)%]dt (36)

— )\/x(t)_4dt}1)x,

where the path integral runs over continuous paths for
which 2(0) = 2’ and 2(T") = 2, namely, all paths are
pinned at the initial and final times, t =0 and t =T,
respectively. This example clearly pertains to an oscil-
lator with a singular potential and a coupling constant
A that we require to be nonnegative, A > 0. To help
interpret (36), it proves useful to first regularize the
singularity of the inverse quartic interaction. How-
ever, no matter how one attempts to regularize the
singularity of the inverse quartic interaction, so as to
give unambiguous meaning to the path integral, and
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subsequently proceeds to remove that regularization,
it is known that the result leads to a discontinuous
perturbation of the oscillator [9]. A discontinuous
perturbation has the property that it leaves an indeli-
ble imprint on the original system such that, once the
interaction is introduced, it cannot be completely
removed as the coupling constant A\ — 0. In other
words,

lim I(\) = I'(0) # I(0).

lim, (37)

Singular interactions with this property are called
hard-core interactions. What happens is the follow-
ing. Whenever A > 0, those paths allowed by the free
action that reach or cross the point of singularity,
x =0, lead to a divergent value for the interaction
term, with the property that the paths in question
are all projected out of the integration for any pos-
itive value of A, however small. Thus, those paths
make no contribution to the path integral I(\) for
any A > 0, and, as a consequence, as A — 0, those
paths never reappear, and the result I'(0) is based on
the oscillator but has a contribution from only those
continuous paths z(¢) for which z(¢) # 0 for all ¢ such
that 0 <t < T. The evaluation of the resultant path
integral with the restricted set of paths defines the
expression I'(0) and it clearly gives rise to a different
result than if the interaction had never been present in
the first place, namely, 1(0), which corresponds to the
free theory, i.e., the usual imaginary-time oscillator.
The theory implicitly defined by I'(0) is called the
“pseudofree theory.”

4.1. Hard-Core Interactions in Field Theory

The kind of behavior illustrated above is not lim-
ited to the inverse quartic interaction but arises for
any interaction of the form |z|~® whenever a > 2.
There are good reasons to make the analogy of such
discontinuous perturbations with nonrenormalizable
interactions as they are known in quantum field the-
ory. The full story of this analogy is presented in
Chapter 8 in [9]. In other words, it is reasonable to
suppose that what are regarded as nonrenormalizable
interactions in quantum field theory behave as they do
because they are in fact discontinuous perturbations
that act as hard cores within appropriate functional
integral formulations. Moreover, certain specialized
nonrenormalizable models exhibit exactly the stated
behavior; see, e.g., Chapters 9, 10 in [2]. These mod-
els possess enough symmetry so that solutions can
be constructed outside of perturbation theory on the
basis of generally accepted principles. Based on the
experience gained with such models, it is our strong
conviction that all nonrenormalizable quantum field
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theories can be understood as discontinuous per-
turbations that act as hard cores within functional
integrals.

Of course, there is an important difference in the
nature of the excluded paths between what happens
in the quantum mechanical case and the field-theory
case. For quantum mechanics, the interactions ex-
hibit singularities at finite positions (e.g., z = 0, as is
the case for the interaction x=%), while for the field
case, the interactions exhibit singularities for fields
that themselves have singular behavior at some point
in Euclidean spacetime, e.g., a field having the distri-
butional behavior |z|~7 near z = 0, where +y is chosen
such that this local behavior is acceptable for the free
term but unacceptable for the interaction term; see
Chapter 8 in[9].

For quantum-mechanical cases, it is quite
straightforward to identify which paths should be
excluded and which paths are to be retained. On the
other hand, in the case of quantum fields, the situation
is far more difficult. In addition, it is one thing to say
that functions with certain singular behavior are to be
excluded, but it is a far more difficult thing to say how,
in fact, operationally to accomplish that exclusion.
For covariant, nonrenormalizable scalar fields, a pro-
posal has recently been put forward [10] that identifies
a novel, nonclassical (< h?) counterterm, which,
it is conjectured, captures the effect of the hard-
core character of the interaction, a counterterm that
remains behind—as any hard-core portion of an
interaction must certainly do—even after the strength
of the interaction is reduced to zero. The proposal
offered is at a stage where Monte Carlo computer
studies could illuminate this proposal to a consid-
erable degree; unfortunately, such computer studies
have yet to be made. If such computer studies were
made, however, and they confirmed that the hard-core
picture makes good sense and also led to nontrivial
results for such nonrenormalizable models as ¢2, for
spacetime dimensions n > 5, then we would have
greater confidence in their possible utility in the study
of quantum gravity. Since we do not yet have this
additional degree of support, we are obliged to rely
on the conjecture that the nonrenormalizable aspect
of traditional quantum gravity can be understood—
and eventually dealt with—Dby invoking the hard-core
hypothesis, even if at this stage we do not fully know
how to actually realize this proposal.

At any rate, we can make a few reasonable con-
jectures as to how the appearance of the hard-core
terms may enter. Just as with covariant scalar fields,
we expect the counterterm(s) to be atypical and not
what would be predicted on the basis of perturbation
theory. After all, perturbation theory is based on the
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assumption that the interacting theory is continu-
ously connected to the noninteracting theory, indeed,
explicitly in such a way that, as the coupling con-
stant goes to zero, one passes continuously from the
interacting theory to the noninteracting one. But, for
hard-core interactions, that is exactly what cannot
happen. Thus, we are led to expect modifications of
the constraint operators H, and H, which will then
lead to O(h) modifications to their c-number symbols
H, and H that enter into the functional integral (35).
Since these all-important modifications are unknown
at present, we are not yet in a position to try to
use (35) in order to evaluate, even approximately,
the coherent-state matrix element of the projection
operator, (7", ¢"|E|x’, ¢).

In conclusion, we expect the next level of under-
standing in this program to arise from the study of
(i) ¢, n>5, models and (ii) simple models with
anomalous constraint behavior. However, predicting
the future is known to be fairly risky!

REFERENCES

1. J. R. Klauder, J. Math. Phys. (N.Y.) 40, 5860
(1999); 42, 4440 (2001); Class. Quantum Grav.

PHYSICS OF ATOMIC NUCLEI

10

Vol. 68 No. 10 2005

1745

19, 817 (2002).
J. R. Klauder, J. Math. Phys. (N.Y.) 8, 2392 (1967).

N. Aronszajn, Proc. Cambridge Phil. Soc. 39, 133
(1943); Trans. Am. Math. Soc. 68, 337 (1950);
H. Meschkowski, Hilbertsche Riume mit Kern-
funktion (Springer-Verlag, Berlin, 1962).

P. A. M. Dirac, Lectures on Quantum Mechanics
(Belfer Graduate School of Science, Yeshiva Univer-
sity, New York, 1964; Mir, Moscow, 1971).

J. R. Klauder, Ann. Phys. (N.Y.) 254, 419 (1997),
Lect. Notes Phys. 572, 143 (2001).

J. R. Klauder, Nucl. Phys. B 547, 397 (1999).

[. Daubechies and J. R. Klauder, J. Math. Phys. (N.Y.)
26, 2239 (1985); 1. Daubechies, J. R. Klauder, and
T. Paul, J. Math. Phys. (N.Y.) 28, 85 (1987).

L. Hartmann and J. R. Klauder, J. Math. Phys. (N.Y.)
45, 87 (2004).

J. R. Klauder, Beyond Conventional Quantization
(Cambridge Univ. Press, Cambridge, 2000).

. J. R. Klauder, Lett. Math. Phys. 63, 229 (2003).



Physics of Atomic Nuclei, Vol. 68, No. 10, 2005, pp. 1746-1755. From Yadernaya Fizika, Vol. 68, No. 10, 2005, pp. 1808-1816.

Original English Text Copyright © 2005 by Mardoyan.

Spheroidal Analysis of the Generalized MIC—Kepler System”

L. G. Mardoyan"
Received October 29, 2004

Abstract—This paper deals with the dynamical system that generalizes the MIC—Kepler system. It
is shown that the Schrodinger equation for this generalized MIC—Kepler system can be separated in
prolate spheroidal coordinates. The coefficients of the interbasis expansions between three bases (spherical,
parabolic, and spheroidal) are studied in detail. It is found that the coefficients for this expansion of the
parabolic basis in terms of the spherical basis, and vice versa, can be expressed through the Clebsch—
Gordan coefficients for the group SU(2) analytically continued to real values of their arguments. The
coefficients for the expansions of the prolate spheroidal basis in terms of the spherical and parabolic bases
are proved to satisfy three-term recursion relations. (© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The generalized MIC—Kepler system is described
by the equation[1]

1 : 2 52 1
5 «_ZV7_'31X) d’+‘[§;§ — ; (1)
C1 C9
=F
+7"(T+Z)+T(T—z)}w ¥,
where ¢; and ¢y are nonnegative constants, and
1 r
A= m(y, —z,0) and curlA = 5

(We use the system of units for which Ai=m =e =
¢ = 1.) The monopole number s satisfies the Dirac
rule of charge quantization s=0,+£1/2,+1,....
Each value of s describes its particular general-
ized MIC—Kepler system. The Schrédinger equa-
tion (1) for¢; =0 (i = 1,2) and s # 0 reduces to the
Schrodinger equation of the MIC—Kepler system [2,
3]. The MIC—Kepler system could be constructed
by the reduction of the four-dimensional isotropic
oscillator by the use of the so-called Kustaanheimo—
Stiefel transformation, both on classical and quantum
mechanical levels [4]. In a similar way, reducing
the two- and eight-dimensional isotropic oscillator,
one can obtain the two- [5] and five-dimensional [6]
analogs of the MIC—Kepler system. An infinitely
thin solenoid providing the system with the spin 1/2
plays the role of monopole in the two-dimensional
case, whereas in the five-dimensional case this role is

*The text was submitted by the author in English.
DInternational Center for Advanced Studies,
State University, Yerevan, Armenia;

mardoyan@icas.ysu.am

Yerevan
e-mail:

performed by the SU (2) Yang monopole[7], endowing
the system with the isospin. All the above-mentioned
systems have Coulomb symmetries and are solved in
spherical and parabolic coordinates, both in discrete
and continuous parts of energy spectra [8, 9]. There
are generalizations of MIC—Kepler systems on a
three-dimensional sphere [10] and hyperboloid [11]
as well. The MIC—Kepler system has been worked
out from different points of view in [12—16].

At s =0, Eq. (1) is reduced to the Schrodinger
equation for the generalized Kepler—Coulomb sys-
tem [17]. In the case when s =0 and ¢; = ¢o # 0,
Eq. (1) reduces to the Hartmann system that has
been used for describing axially symmetric systems
like ring-shaped molecules [18].

The system described by the Schrédinger equa-
tion (1) is one of the superintegrable potentials inves-
tigated in [19—21].

In [1], it is shown that the variables in the
Schrodinger equation (1) are separated in spherical
and parabolic coordinates. In this article, it is shown
that the variables in Eq. (1) can be separated in
prolate spheroidal coordinates also. The system of
spheroidal coordinates is a natural system for in-
vestigating many problems in mathematical physics
(see [22] and references therein). In quantum me-
chanics, the spheroidal coordinates play an impor-
tant role because they are appropriate in describing
the behavior of a charged particle in the field of
two Coulomb centers. The distance R between the
centers is a dimensional parameter characterizing
the spheroidal coordinates. These coordinates are
changed into spherical and parabolic coordinates as
R — 0 and R — oo, respectively, if the positions of
one Coulomb center and the charged particle are fixed
when taking the limits. In this sense, the spheroidal

1063-7788/05/6810-1746$26.00 © 2005 Pleiades Publishing, Inc.
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coordinates are more general than the spherical and
parabolic coordinates.

2. SPHERICAL AND PARABOLIC BASES

For completeness, we here present the solutions
of the Schrodinger equation (1) found in [1]. Equa-
tion (1) in the spherical coordinates becomes

{A P ( > ) P

0t 5 | 5 — 40 )+ 5

0T 42 cos2(0/2) \ 0p? ! 412 sin’(0/2)
(2

X — +2is|] —dea| +2(E+ - | =0,
Jp r
where
19 (5,0 1 o (. ,0
Ao =ag, ( 5) t Zsnd 00 <Sm%> '

The solution to Eq. (2) has the form
P (18,9361, 62) (3)

1747
= R (r:61,62) Z03) (0.0:01,52) .

The functions Z](f,)L (6, p;61,02) and Rffj) (r; 01, 62) are
given by the formulas

S 9 mi

j—my

ma
X (sing) P(mQ’ml)(cos 0)em=s)%

R (ri01,82) = Coj(31,6) (2er ) 02/ 2ger
X F(—n+j+1;2j 4+ 61 + 92 + 2;2er),

where P{*?) (z) are the Jacobi polynomials, F'(a; ¢; x)

is the confluent hypergeometric function, and
Njm(01,02) and Cp;(61,62) are normalization con-
stants:

N (61,80) = | HF 0+ 0+ DG —m)TG +my +0 +0+1)
jm(01, 02 Arl(j—m_+ 6+ DTG +m_+ 5+ 1)

22

)

Crj(01,02) = T

We assume that

T 27

//sin@ZJ(-}sgj, (0, 301, 62)
0 0

x Z°) (6,301, 02) d8dp = 0510 m

[e. o]

[ PR (ri61,82) R (ri61.82) dr = 5000 (5)

0
and denote by ¢ the following expression:

1

—2F = .
n + ((51 —1—52)/2

E =

The energy spectrum has the form

5 + 05\ 2
2

p=pw-_1 <n—|— (6)
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(25 +01+02+2)

F(n+j+51+(52+1)
(n—j7—1)!

and the quantum numbers m and j run through the
valuessm =—j,—j+1,...,7 —1,7and

. ImA4s|+|m—s| [m+ s[4+ |m — s
B 2 ’ 2
We make the following notation also: m4 = (jm +
s| £ |m — s|)/2 and

m1 = |m —s|+ 61 =/ (m — s)? + 4eq,
(m + )2 + 4ey.

The wave functions (3) are the eigenfunctions of com-
muting operators M and J, and

14, 0 +d

+1,....

mo = |m+ s|+ dy =

) s
X <] + % + 1) ¢L])m(’r7 07 2 51752)7

where
261 + 262 '
1+cosf 1—cosb

M=J%+
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Here, J2 is the square of the angular momentum [2]
J=rx (—iV—sA)—s;,

J, = s —1id/d¢ is its z component, and J, = map.

The operator M is written in Cartesian coordinates
as

M= —TQA—I—x-:z:‘iaQ —1—236-i
N ‘ ja$i8x]’ Zaxi

+2i5r 2 2__ e N
r—z x@y Yor "5

Let us consider the generalized MIC—Kepler
system in the parabolic coordinates &,n € [0, 00),
¢ € [0,2m), defined by the formulas

1
v =/Eneosp, y=/Ensing, z=(6—).

In these coordinates, the differential elements of
length and volume read

(8)

2cir
r+z

&+ (df2 >

d? ==>—-"1 d

1 ¢ + ) + Endyp?,
AV = (€ + mdgdnde,

while the Laplace operator looks like

e (o (<36) * 3 (73n) ] +
T Enoe "o 377
The substitution

Y(E,n, @) =

10
£n 0p?

ei(mfs)go

V2r

separates the variables in the Schrédinger equation
and we arrive at the following system of equations:

®1(§)P2(n)

d®, E. m? 1 1 B
() 5T g w0

d( d®, E mi 1 1
—( n—= —_n—-—=—= — Py =0, (10
where (3 is the separation constant.

These equations are analogs to the equations of
the hydrogen atom in the parabolic coordinates [23].
Thus, we get

¢n1n2m(§7n7 ®; 61762) (11)
ei(m_S)QD
- \/552(1)7117711 (§)¢)H2m2 (77) W’
where
1 L(n; +m; +1)
q)n'm' =
i (%) = T \/ (no)!
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x €52 (ex)™ /2 F(—ng;my + 1jex).

Here, n1 and ngy are nonnegative integers:

n__!m—s\+51+1 g+1

' 2 2
Im+s|+d+1 F-1

ng — — - .
2 2e

From the last relations, taking into account (6), we
find that the parabolic quantum numbers n; and ng
are connected with the principal quantum number n
as follows:
Im — s| + |m + s|
2

Excluding the energy E from Egs. (9) and (10), we
obtain the additional integral of motion

9

23

.2 [0 (D ?
K=y <y () e (s

n=mnjp+ng+ + 1.

§—n & E+n° 9 LE-7
2ty 092 CEn(€+n) Oy &n
2 20€ §—n
+§(§+77) 77(£+77)+§+77

with the eigenvalues

Im — sl -

ﬂze(nl—n2+ \m+s]+51—52>

2
and eigenfunctions @Z)T(fl)mm(f, n,;01,02), i.e

X%mm(f,mso;fh,éz) ﬂ¢n1n2m(£7n7s0;51,52).
(12)

In Cartesian coordinates, the operator X can be
rewritten as

A 0? 0? 0?
Qe (AN R I
: (6:1:2 * 8y2> Y0202 (13)
9tz 0 0 K
y@y@z 287“(7” —2) 8y ~Yor 0z
2 rtz r—z r+z z
° r(r—z)+clr(r+z) ch(r—z)+r’

so that it immediately follows that X is connected to

the z component I, of the analog of the Runge—Lenz
vector

~ 1 ~ A
Izi (—iV —sA) xJ—=J x (=iV —sA)| + =
via
5 A r—z T+ z
X=1 —
=t lr(r—l—z) 2r(r—z)

and coincides with I, when ¢; = ¢y = 0.
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3. BIORTHOGONALITY OF THE RADIAL
WAVE FUNCTIONS

We shall prove that, along with condition (5) the
radial wave functions Rffj) (r; 91, 02) satisfy the follow-
ing additional orthogonality condition:

o0

1749

1 .
"i (—n+j+1),
o= p'2j+51+52+1)

(2er)?,

and perform the integration term by term with the help
of the formula [23]

L= /Rﬁjj?, (r;01,82) R (1301, 80) dr - (14) ®
4 /e Y2 F(a,y; kx)dx (15)
_ 2 9jj 0
32j 401 +d+1° r 1 k
k)2 B TR = —(;:—1 Lop, (oz,wr L7 X) :
This new relation is used in the next section to derive
interbasis expansions. It can be proved as follows.
In the integral appearing in (14), we substi- Applying the formula
tu(te) explicit expressions (4) for Rf{?(r;&l,ég) and ()T (c— a—b)
Rnsj,(r; d1,02). Then, we take the confluent hyperge- 2F1 (a,b;¢,1) = T(c—a)l(c—b) (16)
ometric function in (4) as a finite sum,
F(—n+j+1;2j 4+ 61 + 92 + 2;2er) for the hypergeometric function, we obtain
I“_F(j+j’+51+6g+1)[ T(n+j+ 01+ 62+ 1)) 1/2 2
77 [(2j+61+6+2) |(n—j—Dn—j —DI0(n+j 406 +d+1) (n+ (61 + 63)/2)*
(17)

n 1

n—i—j—i—l) (J+4 +01+0+1)

I'(n—j—p)

Sy

p=0

By introducing the formula [24]

I'(2)

N(—z+n+1)
I'(z—n)

=V

into (17), the sum over p can be expressed in terms
of the 9 F} Gauss hypergeometric function of argu-
ment 1. We thus obtain

1
I”':j+j’+61+52+1
(n—j— 1) (n+j+6 +d +1))
(n—j’—l)!F(n+j’+51+52+1)
2 1
ot G802 TG — TG —j+ 1)

Equation (14) then easily follows from (18) since
PG =7+ DTG~ + D] = b5

(18)

1/2
X

The result provided by Eq. (14) generalizes the
one for the hydrogen atom [25]. Indeed, orthogo-
nality properties similar to (14) hold for the Kepler—
Coulomb system and harmonic oscillatorin f-dimen-
sional spaces (f > 2)[25].

PHYSICS OF ATOMIC NUCLEI

2]4-514-(524-2)

(' —j—p+1)

4. INTERBASIS EXPANSION BETWEEN
PARABOLIC AND SPHERICAL BASES

The connection between spherical (r,0,¢) and
parabolic (&, 7, ¢) coordinates is

§=r(1+cosb),
w(parabolic)

n =r(1l+cosb),
= ¢(spherical).

(19)

Now, we can write, for fixed value energy Er(f), the
parabolic bound states (11) as a coherent quantum
mixture of the spherical bound states (3):

¢n1n2m(£vnv 2 51752) (20)
n—1
= Z Wnlngms (617 62) QIZ)?(’L])W (Tv ‘97 2 517 62) .
Jj=my

By virtue of Eq. (19), the left-hand side of (20) can
be rewritten in spherical coordinates. Then, by sub-
stituting 6 = 0 into the so-obtained equation and by
taking into account that

Pr(za”@)(l) _ (Oé + 1)7’L

)

n!
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we get an equation that depends only on the variable V@046 +1) ([ —my)! J——
r. Thus, we can use the orthogonality relation (14) on T T(mi + DD(2) + 01 + g + 2)  mm2’yms’
the quantum number j. This yields
Wi omes (61, 02) (21)  where
fims _ [F(j —m_ + 61+ 1)T(ny +my + D (ng +mg + DT (n+ 5 + 61 + 65 + 1)]1/2 (©9)

mn2 () (n)ln—j—DIT(G+m_+02+ 1)L (j +my + 1 +02+1) ’

and
KJ”:L%S = /exijrmlJrélJ”SQF (—ny;mi+ Lix) X F(—n+j+1;25 4+ 61 + 62 + 2;x) d.

0

To calculate the integral KJ”WZ;, itis sufficient to write the confluent hypergeometric function F' (—ny;my + 1; )

as a series, integrate according to (15), and use formula (16) for the summation of the hypergeometric function
o 1. We thus obtain

m—my—DIN(2j+0+d02+2)I'(j+my+d +02+1)

jms G —m)T (4] + 01+ 05 + 1) (23)
><3F2 —nl,—j—l—m+,j+m++51—|—5g+11
mi+1,—n+my+1
The introduction of (22) and (23) into (21) gives
: (2j+51+52+1)F(n1+m1+1)F(n2+m2+1) (n—m+—1)!
w) 01,02) = - - , 24
mngms (91,02) \/(nl)!(ng)!(n—j —DIG—m)IT(G+m_+3d+1) T'(mi+1) (24)

" F(j—m_+51+1)F(j+m++51+52+1)F —nl,—j+m+,j—|—m+—|—51+5g+11
T(n+j+06 +0+1) a2

m;+1,-—n+msy+1

The next step is to show that the interbasis coefficients (24) are, indeed, a continuation on the real line of the
Clebsch—Gordan coefficients for the group SU(2). It is known that the Clebsch—Gordan coefficient Cg:g,bﬁ

can be written as [26]
oo (2c+ 1)(a+ a)l(c+7)! 1/2
ac;bf (a—a)lc—y)a+b+c+ 1)l (a+b—0c)(a—b+c)l(b—a+c)!
(a+b—)(b+c—a) —a—b—c—l,—a—l—a,—c—l—’y‘l
3479 .
V(b= B)(b+ ) —a—b+v,-b—c+a

(25)

X (=10 018

By using the formula [27]
t'—s —N
‘1 :(t+S)N 3F2 5, s, ‘1 ’
(t)v ' t+s
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Eq. (25) can be rewritten in the form
oo 2e+1)b—a+c)l(a+ )b+ B)c+)! 1/2 (26)
acib b= ec—y)la+b—0c)la—b+c)l(a+b+c+1)!
(D) (a+b—7)! —at+a,ct+y+1l,—c+y
X 5’y,a+ﬁ b 1342 1s.
(a—a)(b—a+7) y—a—-bb—a+v+1
Finally, comparing (26) and (24), we obtain the rep- The inverse of Eq. (20), namely,
resentation
Wilngms (01,01) = (=1)™ (27) W) (r,0,0;61,62) (28)
" Cj+51;527m142-m2 n—m4—1 .
n+m_2+6271 ) m2+7;2_n1 ?nim_;rélil 7m1+21_n2 . Z Wn]ms 517 52) wnlngm(§7 ¢, 517 52)
n1=0

Equation (27) proves that the coefficients for the ex-
pansion of the parabolic basis in terms of the spherical
basis are nothing but the analytical continuation, for
real values of their arguments, of the SU(2) Clebsch—
Gordan coefficients.

51+52 m1+m2

W (01,62) = (=

njms

ni
) Cn+m +52 1 n+m +d9—1

is an immediate consequence of the orthonormality
property of the SU(2) Clebsch—Gordan coefficients.
The expansion coefficients in (28) are thus given by

n—m_+d61—1 n—m_—6;—1 (29)
—nij; - 3

2 )

and may be expressed in terms of the 3F» function
through (25) or (26).

5. PROLATE SPHEROIDAL BASIS
We now pass to the prolate spheroidal coordinates
R

V=T =) cos

DU Psing, 2=

where p € [0;00), v € [-1;1], ¢ € [0,27), and R €
[0;00). The parameter R is the interfocus distance,
and in the limits where R — 0 and R — oo, the pro-
late spheroidal coordinates give back the spherical
coordinates and the parabolic coordinates, respec-
tively [22, 28].

The Laplace operator in these coordinates has the

form
4 o ., .0
o Lo ) g
L2 Ny 4 o
o, (1=7) ay} TRGE- ) (=7 g2

xr=

R
y= 5(””+1)7

A =

5 ,n1+|m—s|— 5

the variables in the Schrédinger equation (1) are sep-
arated

d , 5 d m? m3

— (u2=1) — - 30

[du(“ )du+2(u+1) 2(p—1) 50
2

+ Ry + % (n? - 1)} U1 = A(R)Yr,

d o d m? m3

[du(l_y)du i+ 2w OV
2

4@+%?u—ﬂﬂm——xmw,

where A(R) is a separation constant in prolate
spheroidal coordinates. By eliminating the energy F
from Egs. (30) and (31), we produce the operator

(32)

X — (1 —v ) — 3 5 3
After the substitution ov ov (n? =1) (1 —2v?) 0y
el(m=s)e (pt+v) —(p+1)(1+v) ( 0 >
IEg) = y +2 47—
¢(M v (P) ¢1(M)¢2(V) \/% S (H + I/) (N — 1) (1 — V) 8@
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(v’ +@p-11-v)

T D e D (4 0)
49 (w+v)?—(u+1)(1+v) pv +1
Y prr)(u-1)(1-v) ptv’

the eigenvalues of which are A(R) and the eigenfunc-
tions of which are ¢(u, v, ¢). The significance of the

self-adjoint operator A can be found by switching to
Cartesian coordinates. Passing to Cartesian coordi-
nates in (32) and taking (8) and (13) into account, we
obtain

A =DM+ RX. (33)
Therefore,

Awnqm(:uvyv o; R, 51752) (34)

= )‘Q(R)wﬁfq)m(,uv v, @, Ra 51 s 52)7

where index ¢ labels the eigenvalues of the operator A
and varies in therange 0 < ¢ <n —my — 1.

We are now ready to deal with the interbasis ex-
pansions

¢nqm(u7 v, p; R, 51762) (35)

Z nqms R 51’52)¢n]m (747‘9790; 51752)7

j=my
¢nqm(“7 7307R751762) (36)

n—m4—1
= Y Vs (R 61,62) 43y (6,7, 361, 62)

n1=0

for the prolate spheroidal basis in terms of the spheri-
cal and parabolic bases. {Equation (35) was first con-

<y

MARDOYAN

sidered by Coulson and Joseph [29] in the particular
case s = 0 = 09 = 0.}

First, we consider Eq. (35). Let the operator A act
on both sides of (35). Then, by using Egs. (33), (34),
and (7) as well as the orthonormality property of the
spherical basis, we find that

01+ 6
() - (54 252 (37)
g
=R Z nqms ]]7
where
(X)50 = / WO (10, 0:00,6)  (38)
XX?,Z) (7":9:90551a52)dv'

n]m

The calculation of the matrix element (X )”/ can
be done by expanding the basis in (38) in terms of
parabolic wave functions [see Eq. (28)] and by making

use of the eigenvalue equation for X [see Eq. (12)].
This leads to

9 n—my—1
Xy = = Iy —
Ry =grsrs o (n n

1=0

01+ 0
+|m—s|+% >W”1 wn,

njm’ " nj'm’

Then, by using Eq. (29) together with the recursion
relation [26]

4c2(2¢ +1)(2¢ — 1)

aa;bB —

1/2
[(c—l—fy)(c—’y)(b—a—l—c)(a—b—l—c)(a—l—b—c—l—l)(a—i—b—l—c—l—l)}

(c=y=1)(c+y=-1b-—a+c—1)(a—b+c—1D(a+b—c+2)(a+b+c) 1/2
% [ 4(c— 1)2(2c — 3)(2c — 1) ]

(@ —P)e(c=1)

—~a(a+1) +~b(b+1)

c—2yy
X Caa ;b0

and the orthonormality condition

cy
Caa ;b0

>

a+pB=y

PHYSICS OF ATOMIC NUCLEI

Cflfy
2¢(c—1) Cao‘;bﬂ }

Col g = burcd

c'cOy'vs
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we find that (X)jj/ is given by
% (m1 + mg)(my —my) 2 o :
X))o = Lo = (Aitfls., Al S 39
it = G o T )@ ot e T D " Tn g by 1 8 A St + i) (39)
where
W (= ma)( +my + 01+ 82) (G — m_ +60)(G +m_ +83)(n— j)(n+j + 61 +6) ]

Now, by introducing (39) into (37), we get the
following three-term recursion relation for the coef-

ficient Uﬂ;qms:
5L +6 5L +6
[AQ(R)—(j—I— 1t 2) <j+ 1; 2+1) (40)

2
—ma) ]Uj

B R(m1 —|—m2)(m1
(27 + 01+ 02)(2) + 61 + 5 +2)| "™

2R
-~ AJH J+1 AJ
+2n—|—51+5 [ Ungms +

The recursion relation (40) provides us with a system
of n — m linear homogeneous equations which can
be solved by taking into account the normalization
condition

mUiams] = 0.

ngms

Z |Ud g (B 61,82)|” = 1.

J—my

The eigenvalues \,(R) of the operator A then follow
from the vanishing of the determinant for the latter
system.

(G4 (614 62)/2)% (2 + 61 + 02 — 1)(2) + 01 + 6 + 1)

Second, let us concentrate on the expansion (36)
of the prolate spheroidal basis in terms of the parabolic
basis. By employing a technique similar to the one
used for deriving Eq. (37), we get

(R - (41)

R
Mo, +op\ 2

n—my—1

mi —
+T>]V’%S: D2 Vidms (V)
nf =0
where

nlnl /¢ni)$2m f n, ¥; 51762)

XMw(/ / (57777()0;51752)d‘/'

ningym

+ can be calculated in the

The matrix elements (J\Z)nm1

same way as (X)jj/ except that now we must use the
relation [30]

[c(c+ 1) —ala+1)—bb+1) —2a0] aabg—\/(a+0‘)(a_0‘+1)(b B+ B+1CT 14511

+V(@—a)la+a+1)b+B)(b—-B+1)C5Y 145

and the orthonormality condition

a+b

Z Cél;bgciaf o' = Oaa’Op

c=|v|

permits deriving the formula for the matrix element (M

(M), = {(m +1)(n2 +m_) + (n — n1 + &) (n1 + [m — s + 82) + m_(m4 + 52)

)nln’l:

(42)

1
+ 1(51 —92)(01 — 62 — 2)} 6n/ n

\/ng(nl + 1)(’01 + |m — 8| + (51 + 1)(’02 + |m — S| + 52)(571/17”1_’_1

— /ni(ng + 1)(ny + |m — s|+ 6, + 1)(ng + |m — s| + 62 + 1)6pr iy —1-
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Finally, the introduction of (42) into (41) leads to the three-term recursion relation

(n1 4+ 1) (s + m_) + (1 — 11 + 62)(n1 + [m — 5|+ 62) + 3(51 CG2) (61— 62— 2) £ m_(my +5y) (43)

2R my — ms
* 2n + (51 + (52 <7’L1 ny ¥ 2 > q( ):| nqms( » 01, 2)

= V/na(n1 + 1)(n1 + |m — s| + 01 + 1)(ng + |m — s| + 62) Va1 (R; 61, 62)

+ \/’nl(TLQ + 1)(n1 + \m — 8’ + 61 + 1)(712 + \m — 8’ + 0y + 1)VTZlmsl(R; (51,(52)
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Infinite-Order Symmetries for Quantum Separable Systems”
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Abstract—We develop a calculus to describe the (in general) infinite-order differential operator symmetries
of a nonrelativistic Schrédinger eigenvalue equation that admits an orthogonal separation of variables
in Riemannian n space. The infinite-order calculus exhibits structure not apparent when one studies
only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of
looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among
the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the
space. Similarly, we can develop a calculus for conformal symmetries of the time-dependent Schrodinger
equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The main point we want to get across in this
paper is that, if a Schrodinger equation on a pseudo-
Riemannian manifold (real or complex),

(Ap+V(z)U=EV or (A,+V(x))O =0y,

admits an orthogonal separation (or R separation) of
variables, then the differential symmetry operators for
the system, including those of infinite order, can be
obtained by solving a strictly finite system of PDEs
with parameters. The finite-order symmetry (or con-
formal symmetry) operators correspond to solutions
that are polynomial in the parameters. This point of
view exhibits a structure in the space of symme-
tries that is not apparent when one looks for finite-
order symmetries alone. Understanding this structure
is of particular importance for superintegrable sys-
tems [1—7], where there exist differential symmetries
that are not obvious from the separation of the sys-
tems in a single-coordinate system.

We will describe the basic ideas by first re-
viewing the simplest example, the time-dependent
Schrédinger equation (with potential) in two-dimen-
sional spacetime [8]. There, we can easily produce

*The text was submitted by the authors in English.
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2 Department of Mathematics, University of Waikato, Hamil-
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mento de Matematicas, CUCEA, Universidad de Guadala-
yara, Mexico; e-mail: pogosyan@thsunl. jinr.ru

infinite-order conformal symmetries and show their
relevance to finding energy shifting operators for the
time-independent Schrodinger equation. However,
the system is so simple that one might not appreciate
the vital role of variable separation in the results. This
is clarified when we take up the study of the time-
independent Schrédinger equation (with potential) on
a two-dimensional pseudo-Riemannian space. The
approach extends to any number of space variables.

2. INFINITE-ORDER CONFORMAL
SYMMETRIES FOR THE TIME-DEPENDENT

SCHRODINGER EQUATION IN ONE
SPATIAL DIMENSION

The basic equation is the heat or time-dependent
Schrédinger equation

(8 — Oyw — V(2)) U(z,t) = 0. (1)

Here, V' and ¥ are complex analytic functions of the
complex variables x, t. Recall that an operator L,
acting on the solution space of (1), is a (conformal)
symmetry if

(O —H,Ll=0,L—[H,L| =R(0; — H)

for some linear operator R. Here, H = 0,, + V().

We have separation of variables for (1), in the
coordinates {z,t}. Indeed, the potential V(z,t) =
Vi(z) + Va(t) also permits separation, but a gauge
transformation W(z,t) = e?MO(z,t) with T'(t) =
Va(x) leads to Eq. (1) again for ©.

[t should not be thought that (1) refers only
to Cartesian coordinates. Indeed, there are three
R-separable coordinate systems for this equation:

(i) Cartesian  coordinates  (z,t), W, +

1063-7788/05/6810-1756$26.00 © 2005 Pleiades Publishing, Inc.
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(ii) Heat coordinates (u,7), u = x/vt, 7 = Int. If
we set U = e=%*/40(u, 1), then (1) becomes
u? 1 -
6uu+ <—Z—§+€ V>@—@T,
separable if e”V = V (u).
(iii) Airy coordinates (u,7),u = z — t2/2, 7 = t. If
we set U = ¢~ 7/12-u7/2Q (y, 1), then (1) becomes
1
separable if V =V (u).

This means that the symmetry analysis below ap-
plies to potentials of the form

_ _ [/
V—f(fl‘), V_fa

or sz(x—?).

We will only consider the action of L(¢) on the
solution space of (1). Then each term 62 in the formal
expansion of the (possibly infinite-order) conformal
symmetry

L(t)= > Uz, t)nm0yd}"

n,m=0

can be replaced successively by 9; — V (z), if at each
stage the terms in the expansion are reordered so that
the derivative terms act directly on the solution space.
Thus L(t) can be placed in the canonical form:

L(t) = a(x,t,\)0y + b(x,t, \). (2)

Here, we consider
a(z,t, ) = am(z, )0, =0,
m=0

with a similar interpretation for b. (We could also
expand a in a power series in A — Ag, so it is only
necessary for a to be analytic in A about some com-
plex number X\g. We have chosen Ao = 0 for clarity
of exposition.) The action of L(t) on constant energy
solutions

U(z,t) =" d(x), Ho=Eg,
can be made rigorous, even if ¢ and b are not analytic:
LY = P a(x,t, ), + b(x,t, E)}Yo(x).
Now let us determine the conditions on a and b so
that L(t) is a symmetry. The conditions are
1 1

b:v = Fa¢t — S0z,

2 2

PHYSICS OF ATOMIC NUCLEI

1757

1 1
bi = 30tz = S + 20\ = 2,V — V.

The integrability condition for these equations is
ayp — 20zt + Qpgze + 4amx(v - )\) (3)
+ 6a,Vy + 2aVy, = 0.

Theorem. Condition (3) is necessary and suffi-
cient for L(t) = a(z,t, X\)0y + b(x,t, X) to be a sym-
metry.

[t is not difficult to find all solutions of (3) which
are of the form

a = exp(tr(\) f(x, \).
We obtain the fourth-order ordinary differential equa-
tion

+ (2Vee + %) f = 0.

[t is easy to show that these solutions occur in
raising-operator/lowering-operator pairs [8].

To solve Eq. (4), we make use of Whittaker’s the-
orem: Let u(z) and v(z) be solutions of the differen-
tial equations v’ — p(x)u = 0, v" — g(x)v = 0. Then
y(z) = u(x)v(x) satisfies

mn /

p—ay — @ —-dW =20 -y
+ (=pp' +ad +5p'q — 5pd )y + (07 — ¢
~(P-9@" +d)+ -9’y =0.
Now consider the equations
(i) v" +Vu=A+r)u, (i)v"+ Vo=,

i,e,p=A+kK—V,qg=A—V.Then we get (4) with
f = wv. Similarly, we can find structure results for the
basic Eq. (3).

Although our theorems exhibit clearly the struc-
ture of the generalized symmetries, other methods for
computing the recurrences may be simpler.

Example (pseudo-Coulomb potential). We com-
pute the possible solutions to (4) of the form f(x, \) =
x. We find the pseudo-Coulomb potential

!

12

2
a_2 —b%2%, k= +4b.
x
Here, the raising and lowering operators are of finite
order, and they raise and lower by a fixed energy. The
raising and lowering operators and H generate the Lie
algebra s/(2) and a standard weight vector argument
yields the bound-state energy levels for the hydrogen
atom.

Example (Morse potential). We compute the so-
lutions to (4) of the form f(z, A) = exp(u(X)z). We
find that p is independent of A and

V(z) = D[2exp(—px) — exp(—2ux)],
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where D and p are positive parameters. The
Schrodinger equation admits the generalized
(infinite-order) symmetries

+
L = |emrg, + (2o — £ en 2D
x 2/_]1 2 9
where k(\) = p? +2uv/X. Since KT (\) + k= (A +
KT(A) =0 for VA+pu>0 and = (A\) + st (A +
k(X)) = 0for v/ A — p > 0, we can easily verify that

LYL™ ~D—74D2 ,
(b —2V2)?
L LT ~D— &7
(1t +2VN)2

where equality is meant in the sense that the two sides
agree when applied to a solution to (1). Thus, we have
the commutation relations

—32D% /X
(12 — 4N’
I\ LT~ (0% 4+ 20V A) LY,
[)‘7 L_] ~ (:u2 - Q:U\/X)L_v
an analog of the commutation relations for the Lie
algebra s/(2).

Even though L™, L™, X do not generate a finite-
dimensional Lie algebra, one can easily mimic the
(weight vector) approach to the representation theory
of s¢(2) to determine the irreducible representations
of the associative algebra generated by these three

operators. Note the “Casimir operator” C' acting on
the solution space of (1):
4D?
C=L'L"+ ———==~LL"
(b —2V2)?
4D?
+—«—F——=~D
(b +2V2)?

We look for a “lowest weight vector” Uy for A, i.e., a
nonzero solution to the equations

()\ — H)\I/() =0, ANyg=EyWy, L ¥y9=0.
Evaluating CVg = DWgwefind 4D?/(u — 2v/Ep)? =

D or
2
D 1
EO:M2<£__> )

[LT,L7] ~

W 2
assuming p — 2v/Eg > 0. Recursively applying Lt
to get ¥, = (LT)"¥, with eigenvalues F,, satisfying
the recurrence E, 1 = E, + st (E,) = (1 + VE,)?,
we find the spectrum

2
. n=0,1,2,....
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As an application of the determining equations
att — 2aacact + Qpzgr + 4aacac(v - )‘) (5)
+ 6a,Vy + 2aVy, = 0,

let us consider the problem of finding those potentials
that admit third-order invariants,

L(t) = a(xz,t\)0y + b(x,t, \),

where we consider A as a second-order invariant.
Thus, we look for solutions to (5) of the form

a(xz,t,\) = Az, t)\ + B(x,t),

where A(x,t) # 0. Substituting this expression
into (5) and equating powers of A, we find

A:m: :0:>A:a(t)—|—5(t)x, (6)
Ay — 4By, + 64V, +2AV,, =0, (7)

Substituting (6) into (7) and integrating, we find
22 . g3
B(e,t) = &(t) % + H(t)5; + BOW ()
1
+ 5 () + B(t)x) W) + (B + 5(8),
where V(z) = W'(z).

Substituting this result into (8), we find the func-
tional equation for the potential:

2

o) |55 ] + a0 3] (9)

2
+O[(t) |:2W/ + %W” + %W///:| + a(t)[_W///]

1
+alt) [3W/W/// + §W/v///// + 3(W”)2]

xS

+89() {2 1

3
G [2E] & g |
[+ 5900 [~5] + Ao | 5w
322 3 1 .
+ %W” + ;w’ + §W} + B [-3W"
I W///x:l + ﬂ(t) [%W///// + walwl// + le//

+ S(W//)Qx + 12wlwl/ + gwl///:| + ’Y(t)l:x:l
+ () [6W” + 20" ] + 6(t) + 6(t)[2W"™] = 0.

To find all solutions W, we would need to study
this functional equation in detail. However, many so-
lutions are obvious. Indeed, if we choose

alt) =ag, P(t) =0, ()=, )= do,
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i.e., constants, then (9) becomes a nonlinear ODE for
the potential W (x), and every solution yields a poten-
tial with a third-order differential symmetry operator.

Another very important case is obtained by setting
a(t) = ape™,  B(t) = foe™,
5(t) = dpe™,

v(t) = v0e™,

where x is a constant. Then we factor out e** from (9)
and the result is an ODE for W again. For these
potentials, L(t) becomes a third-order energy raising
operator, increasing the energy from H to H + k.
Every third-order raising operator is associated with
a third-order lowering operator, so all these cases
permit ladders of bound-state energy levels, subject
to normalization requirements.

3. TWO-DIMENSIONAL SEPARABLE
SYSTEMS FOR THE TIME-INDEPENDENT

SCHRODINGER EQUATION (A, + V)¥ = EW

If {z,y} is an orthogonal separable coordinate
system in a general Riemannian space, the corre-
sponding Schrodinger operator has the form [9]

H = (02 + 0y + vi(x) + v2(y))

1
M= ROt AW

and, due to the separability, there is the second-order
symmetry operator

L, — 12
Ji(z) + fa(y)
fl(x) 2
"~ + ) T ew)

i.e., [Lo, H] = 0, and the operator identities
fl(CC)H + L2 = 8§ + U1($),
fo(y)H — Ly = 0] + va(y).

(3:% + v (ac))

(10)

We look for a partial differential operator i(H, Lo,
x,y) that satisfies

[H,L] = 0. (11)

We require that the symmetry operator take the stan-
dard form

ff - Z(Aj,k(xv y)aacy + Bj,k(xa y)ax

g,k
(Again, only for convenience do we expand about
(Ho, Lo) = (0,0). We only require analyticity about
some point (Ho, Lg).) Note that, if the formal oper-

ators (12) contained partial derivatives in x and y of
orders >2, we could use the identities (10) recursively

(12)
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and rearrange terms to achieve the unique standard
form (12).

Using operator identities

o) =~ A
[0y, H] = —flj_céﬁH—I— fqufQ’
e =+ S
i P
we see that

(f1(@) + f2(y))[H, A(x,y)Oay + B(x,y)0:

+ C(2,y)0y + D(,y)] = (Azz + Ayy + 2By
+2C;) 05y + (Byg + Byy — 24,02 + 2D,

— Av))0, + (244 f2 + Afo.H — 24,0, Lo

+ (Cyw + Cyy — 2A,v1 + 2D, — Av})9,
+ (24, f1 + Af1)0yH + 24, 0yLy + (Dyy + Dy

— 2B,v1 — 2Cyvy — Bvj — Cvy) + (2B, f1

+2Cy fo+ Bff + Cf3)H + (2B, — 2C,) Lo.

The symmetry condition (11) is equivalent to the
system of equations

aacacAj,k + 8yij7k + QayBng + anCng =0, (13)
OzaBj i + OyyBj i — 20yA; pva + 20, Dy (14)
— Ajgvy + (204 Aj-1kfo + Aj_1kf3)
—20yAj -1 =0,
6$$Cj,]€ + ayijJC - 283514]’7]{’1)1 + 26yDj,k (15)
— Aj vy + (200 A5 1k f1 + Aj_1 k1)
+ 20, Aj -1 =0,

=20y Cjkv2 — Bjgv) — Cjpvy + (20:Bj—1 1 fa
+20,Cj 1 pfo + Bj—1kfi + Ci-1xf2)
+ (28903]%_1 — Qaijk_l) =0.

Note that condition (12) makes sense, at least for-
mally, for infinite-order differential equations. Indeed,
one can consider H and Ly as parameters in these

equations. Then, once L is expanded as a power series
in these parameters, the terms are reordered so that
the powers of the parameters are on the right, before
they are replaced by explicit differential operators.
Alternatively, one can consider the operator L as act-
ing on a simultaneous eigenbasis of the commuting
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operators H and Lo, in which case the parameters are
the eigenvalues.
In this view, we can write

L(Hﬂ L27x7y) = A('ruyu Ha LQ)a:ty
+ B(x,y,H, L2)0, + C(x,y, H, L2)0,
+ D(z,y, H, La)

(17)

and consider L as an at most second-order order
differential operator in x,y that is analytic in the pa-
rameters H, Lo. Then the above system of equations
can be written in the more compact form

Apzp + Ayy +2By, +2C, =0, (18)
Byy + Byy — 2A,v0 + 2D, — Avy (19)
+ (24, fo + Afy)H — 2A, Ly = 0,
Cyz + Cyy — 2A,v1 + 2D, — Avy (20)
+ (2A:tf1 + Af{)H + 2A£EL2 = 07
Dyy + Dyy — 2Bgv1 — 2009 — B (21)
— Cvy+ 2By f1 +2Cy fo+ Bfi + Cf5)H

+ (2B, — 2C,) Ly = 0.

and this system has many solutions.
We start with a very special case

A=0, B=X(z H, L),
C:Y(vaaLQ)a
D:X(IE7H7L2)+}~/(:U7H7L2)

Then the above PDEs uncouple into ODEs for X and
Y, whose structure we can easily analyze. We write

-Z/: M(H7L27xuax)+N(H7L27yaay)7

where

(22)

M(H L2.:00)

(23)
—z(

with a similar equation for N. We immediate obtain
the system of equations

X} +2X), =0, (24)

~]/fk — vllXj, — 2U1X/- k + 2f1X _
+ X + 22X = g

with a similar system for Y

Equations (24) can be written in the more compact
form

X/// _’_4(/1)1 _
+2(v1 — fi

AH— L)X
H)X = —2P(H, L),
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where the arbitrary function P(H, Ls) (a separation
parameter that we frequently choose to be a polyno-
mial) is common to the equations for X and for Y. The
first of Egs. (25) always has solutions for any f1, vy,
say continuously differentiable. Thus, we can always
construct M and it will be analytic in the parameters
H, Ly.(Ofcourse, a basic question is for what choices
of f1, v1, P do solutions X exist that are polynomials
in the parameters H, Lo?)

Similarly, the equation for Y (H, Lo, y) is
Y”/ + 4(7)2 - ng + LQ)Y/
v L1y

+2(vy — fAH)Y 5

Once we have obtained M and N, then we see that
the operator Ly = M + N commutes with H:

1 1
fi —I—f2P(H’L2) it fo

Thus, we can view L3 as an infinite-order differential
symmetry operator for H. (In special cases this will be
a finite-order operator.)

Theorem. For any vy, ve, f1, fo, all solutions
to Egs.(25),(26) determine a separated symmetry
operator of the form Ly = M (z) + N(y) = (X9, +
X)+ (Yo, +Y).

A straightforward computation yields

fo
it f2

fi
fit+fa
so [Lg, L3] = P(H, L) # 0. Thus, L3 is not a func-
tion of H and L.

An exactly analogous construction using the
commutators

(26)
= 2P(H, L),

[H, Ls] = P(H,Ly) = 0.

[LQvM] =

(Hv L2)7

[LQvN] =

(HvLQ)v

,051) = P L)
(8] = 722 P(H. Lo

yields the operator Ly = M + N, not a symmetry,
such that H = L4, Lo, L3, L4 satisfy the commuta-
tion relations

(L1, Lo] = [L1, L3] = [Lo, L4] = [L3, L4] = 0,

(L1, L4] = [Lo, L3] = P.
If we choose P(H,Ls) =1, the identity operator,
these are just the canonical commutation relations.
Example. Let us consider the quantum Hamilto-
nian
H=0940; +=.
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[t is known to be associated with several symmetries,
such as

1
by = ay’ b = {8y,:1:8y - y&v}+ - 52427

1
62 - aacay + §y7

where {A, B} = (AB + BA) is the anticommutator
of two operators. The occurrence of ¢ is obvious, be-
cause y is an ignorable variable for the Hamiltonian.
How can we obtain ¢; and ¢, which are associated
with the separation of the Schrédinger equation in
parabolic and shifted parabolic coordinates, from our
Cartesian coordinate construction? The obvious sep-
aration in Cartesian coordinates yields the additional
second-order symmetry

1 2 2
LQ == 5(81 —8y +CC)

Let us now consider the defining equations for a sym-
metry in the following form:

1 1
X”’+4<:c—§H—L2>X’+2X: (EH—L2>,

1 1
Y" —4 <§H—L2> Y = - <§H—L2> .

These equations have the solutions

1/1 y 1
X=-(z-H-L y=2__
2(2 2>’ 4 8

The corresponding symmetry is thus finite and given
by

1/, 1 1.,

L3 = 5 <8y3$ =+ §y8y> — Zay

1, 1

= {l2,0,}+ — Zﬁy — 5

We see that our construction yields reasonably easily
the existence of ¢5 and thereby ¢;. Note also that
[0y, 1] = 20.

4. THE GENERAL CASE IN TWO
DIMENSIONS

Up to now we have only considered the special
case A=0, B=X(z), C=Y(y), D= X(x)+
Y (y) of conditions (18)—(21). Let us now consider
the case such that A = 0, but otherwise, B, C, and D
are arbitrary. Then there is a function G(z,y, H, L9)
such that B = -0, G, C = 9,G, and the determining
conditions simplify to

(1) Gxxxy + Gmyyy = O,

o1
(ii) §Gmm + 2G4 v1 + vall
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1
— (2Gaaf1 + Gof1)H — 2G40 Ly = §nyyy

+ 2Gyyva + Gyvh — (2Gyy fo + Gy fo)H + 2Gyy Lo.
The first determining equation means that
Gz, y) = K(z,y) + F(z) + J(y),

where F' and J are arbitrary and K is harmonic:
K.z + Ky, = 0. This representation is unique in K,
F, J, up to the addition of the harmonic separable
function K (z,y) = 2(2? — y?) + b + cy + d. Alter-
natively, we can write

G(z,y) = z1(z + 1y) + z2(x — iy) + F(x) + J(y),

where z1 and zo are arbitrary analytic functions. Then
only condition (ii) remains to be satisfied. Specific
examples are readily apparent.

Example. If we make the ansatz G = X (x, H,
L9)Y (y, H, L2), then, in addition to the well-known
angular momentum invariant given earlier, we find the
following polynomial invariants:

1
X = (Z+L2> cosz + s(1+ BH), (27)
1
Y = <Z + L2> coshy +t(1+&H),
sinx a
g 2 P —
vi(z) y cos2x  cos2zx’
sinx a2
= —2 - 5
fl(ﬂf) 85C082x + COS2$’
112(?/) =21 o 2y 12 !
cosh®y  cosh®y
sinh y by
= —2t + )
F2(y) Ecosh2 Y cosh? Y
1/1
D — -3 (Z + L2> (tcosz(l+EH) (28)

+ scoshy(l + BH)),

L = —2x(y® + 4L)0, + 2y(a? — 4L9)d), + 2 — 3,

1 aq a9
Ul(x):§x2+ﬁu fl(l“):ﬁ,

1 b1 by
va(y) = §y2 + ?7 faly) = ?

Example. Again, we consider the special case of
conditions (18)—(21) such that A = 0, where now we
require

G(z,y) = —2log(X(z) + Y (y)) + F(z) + T (y)
= K(z,y) + F(z) + J(y),
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where F' and J are arbitrary and K is harmonic. Then
the harmonic requirement on K implies that

K= —2log(X +Y)+ F(z) + J(y),
where

(X/)2 ﬁ

- %X4 +5X° X7 20X+,

_0ya  Bysoy2iosy g

N2 __
()" = 12 3

§X2 +vX 46,

§Y2 —7Y +6.

X”:%X?’-l-

Yy — —%Y?’ +

Further,
- 1 Y///
Flx)=-—, JU)=-—
(z) W) =337
and the metric and potential terms have the solution
—2XA - X3 4 UX? X 4
24(X7)? ’

- hH=

Lyt —by3 _uy?igy - m

4(Y’)

vg — foH =

Here, a, 3, 7, §, ¢ and
a=aM +a@Hb=0" 4P H
b= + P H

1
m = 77§ :

are parameters.
The remaining condition is

2 2
0 o =S 0P H
1

S +2F" (01 — fiH — Ly) + F'(v, — f{H)

2J,/(U2 — ng — Lg) — J’(’Ué — féH)
1

1
(.
2

(a L bX — —Y2 n bY)

36
+§<)§(,( f1H)—%(U2—f2H)>

+ (v} = f1H) = J' (v = f3H).
The simplest family of solutions is obtained by setting
F=F J=Janda=F8=a=b=0.
Now we consider the general case of

conditions (18)—(21). Then there are two functions
F(z,y,H, L9) and G(x,y, H, L) such that

1
A=0uF, B=—0u,F -0,
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1
C - —iﬁmyF + 8yG,
and the determining conditions simplify to
) 1
(1) 2Gayyy + §F TYYyyy
+ 2Facyyy (’1)2 — f2H + Lg) + 3nyy (’Ul

+ Fay(vy — foH) =
+2Fx:t:ty(vl_
+ SFxxy(Ui - f{H) + Flty(vlll

— f2H)
—2Gaay +
J1H — Lo
- fiH),
f1H)

1
9 Fxmcmcy
)

(11) xmxmyy + 2Fxmyy (Ul

+ Fxxy(vé - féH) + _G:E:E:E:E
+2G e (v1 — f1H — L2)+G( ~ f1H)

1
_§Fxxyyyy - 2Fxmyy(v2 - fQH)

1
— Fpyy(v) — fiH )+§nyyy

+ 2ny(7)2 — ng + LQ) + Gy(’Ué — féH)

Theorem. For any wvi, ve, fi1, fo, there
are always solutions for the above equations
in which A 0, G=0, and F factors as F =
X(x,H,L2)Y(y, H, L), where X'y # 0.

Indeed, with X = X/, Y = )/, we have a solution
to Egs. (18)—(21) whenever X'Y’ # 0 and X and Y
satisfy the ordinary differential equations

X"+ 4X/(’U1 — le — Lg) (29)
+2X(v) — fiH) =
Y+ 4Y/(1}2 — foH + Lg) (30)

+2Y (vh — foH) =

5. FINAL REMARKS

The underlying structure of the solutions to the
general equations (18)—(21) is fairly simple. Let
ul(.’E,Lg) = U [LQ], ’LLQ(CC, Lg) = UQ[LQ] be a basis of
solutions of the separated equation

2
(jﬁm() fl(w)H—Lg)u—O, (31)

and let w (y, La), wa(y, L2) be a basis of solutions of
the separated equation

2
(dd2 sy )—fg(y)H—Lg)w_O. (32)

Then, for any parameter Lo, the operator

S(L2) = wa[LoJus[Lao) (w1 [Laur [Lo]Ouy
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— wi[Lo]u1[La]0; — w1 [Lo]u} [Lo]dy 4 wh[Lolu} [La]

is a symmetry operator of L; that maps any eigen-
space of Lo into another (generally different) eigen-
space. The point is that the Wronskian of any two
solutions to (31) or to (32) is constant. It is not
hard to characterize the space spanned by all linear
combinations of functions wa[La]ua[La]wi [Lao|uy [Lo]
and this gives the equations for A. Similarly, we can
characterize B, C', and D. The details can be compli-
cated, but the principle is simple.

All of these methods in this paper extend to n
dimensions. If any of the equations

n
> ¢ ppi+ V@) =E, n>2
ig=1

(A, +V(2)¥(x) = E¥(z), n>2,
(A +V(2)¥(z) =0,Y(x), n>1,
(A, +V(2)¥(x) =0, n>3

on a pseudo-Riemannian manifold admits an orthog-
onal (in the space variables) separable or R-separable
coordinate system, then we can develop a similar
calculus to describe all differential symmetries and
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conformal symmetries of the system, even those of
infinite order. In the lowest dimensional cases, we
have verified the same statements for nonorthogonal
separable systems. We will provide all these details in
forthcoming papers.
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