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Abstract—New data on the mechanism of decay of the giant dipole resonance in the 58Ni nucleus are
obtained from an analysis of the experimental cross sections for the photonucleon reactions 58Ni(γ, pi)57Co
and 58Ni(γ, ni)57Ni. The method used in this analysis takes into account both the energy spread of
the dipole strength concentrated in various isospin components of the giant dipole resonance and the
spread of the spectroscopic strength of the populated nucleon-hole states over the levels of the final
nuclei. The entire body of experimental spectroscopic information about the levels of the final nuclei
57Co and 57Ni is employed. It is found that the probability of the semidirect mechanism of decay of
the giant dipole resonance in the 57Ni nucleus lies in the range 0.16–0.3. The probability of semidirect
processes is much higher in the (γ, n) channel (0.28–0.62) than in the (γ, p) channel (0.07–0.17).
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Modern investigations of a giant dipole resonance
(GDR) in nuclei are expected to furnish information
about its shell structure and decay mechanism. As
a matter of fact, the only type of experiments that
presently makes it possible to obtain such data is
that which admits a separation of partial photonu-
clear channels—that is, channels of GDR decay that
lead to the population of individual levels of the final
nucleus. Since a GDR decays predominantly via
nucleon emission, it is important above all to have
information about (γ, pi) and (γ, ni) reactions, where
the index i numbers levels of the final nucleus A− 1
from the ground-state level for which i = 0. The en-
ergies of levels of the final nucleus that are populated
in GDR decays are much lower than the energies
of decaying GDR states. Much is known about the
structure of these low-lying states populated in GDR
decays. This information comes from independent
data of other experiments—in particular, from pre-
cision experiments that studied one-nucleon-transfer
reactions. In many cases, knowledge of the nature
of the populated states enables one to obtain, with-
out resort to involved theoretical calculations, reliable
information about the shell structure of high-lying
GDR states and about the mechanism of their decay.

Strategies adopted in such investigations were
described in detail elsewhere (for an overview, see
[1–3]). For the first time, the concepts underlying
the interpretation of partial photonuclear experiments
were formulated in [4]. Later on, they were refined,
1063-7788/02/6501-0001$22.00 c©
and the most comprehensive account of these can be
found in [3, 5].

In order to study partial photonucleon channels,
symbolized by convention as (γ, pi) and (γ, ni), one
has to employ the spectrometry of photonucleons or
the spectrometry of γ′ rays removing the excitation of
final nuclei A− 1. In the latter case, use is made of
the term “deexcitation” and of the notation (γ, xγ′),
where x is an undetected particle emitted from the
nucleus (most often, this is a nucleon). Experiments
that explore deexcitation processes are especially im-
portant, since they make it possible to fix reliably
individual levels populated in the final nucleus.

The majority of present-day (γ, pi) and (γ, ni) ex-
periments have been performed for 1d2s-shell nu-
clei (A = 16–40). A breakthrough in qualitatively
understanding the origin of the GDR in light nuclei
was made owing to these experiments—in particular,
the decisive role of the configuration-splitting phe-
nomenon in the formation of the GDR was revealed
[1, 6].

Among heavier nuclei, only two 1f2p-shell nuclei,
45Sc and 58Ni, were investigated by the methods of
partial photodisintegration (see [6, 10] and [7, 10],
respectively). Especially rich information is available
for the 58Ni nucleus, whichwas studied both in exper-
iments relying on the spectrometry of protons [8] and
neutrons [9] and in deexcitation experiments [7, 10].
An interpretation of data from these experiments was
already given in [7]. Since then, however, a more effi-
cient method for data analysis has been developed and
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data on the structure of the populated states of final
nuclei A− 1 have become significantly vaster; owing
to this, much more comprehensive and more detailed
information about the GDR in the 58Ni nucleus can
be extracted from available data on the (γ, pi) and
(γ, ni) reactions on this nucleus. Here, we aim at
obtaining precisely this information.

2. INPUT DATA

The analysis described in the present article
has been performed on the basis of data on 26
partial photonucleon reactions 58Ni(γ, pi)57Co and
58Ni(γ, ni)57Ni in the GDR region. These data
were obtained in a single (γ, xγ′) experiment [7,
10] and were supplemented with information about
the (γ, p0) and (γ, n0) channels from photonucleon-
spectrometry experiments [9, 11].

The integrals of these cross sections over theGDR
region in the 58Ni nucleus,

σint(i) = σint(γ, xi) =

Em∫
0

σ(γ, xi)dE,

where x = p or n and Em = 32 MeV, are given in
Tables 1 and 2, along with the spectroscopic features
of the populated levels of the final nuclei 57Co and
57Ni (these features were extracted from data on one-
nucleon-pickup reactions and are contained in the
ENSDF international nuclear-data file [12]). For
each populated level, we indicate the excitation en-
ergyEi, the spin–parity Jπ , the hole configuration nlj
with respect to the ground state of the target nucleus
58Ni (here, n is the principal quantum number; l
is the orbital angular momentum of the nucleon in
the shell being considered; and j is its total angular
momentum, j = l + 1/2 or l− 1/2), and the quantity
C2
i Si [where Si is the relevant spectroscopic factor

and C2 = 2T/(2T + 1), with T being the isospin of
the populated level]. In addition, we have used da-
ta on the total (inclusive) photoproton cross section
σ(γ, p) and the total (inclusive) photoneutron cross
section σ(γ, n) as functions of the excitation energies
of the target nucleus from the experiments reported
in [13–15] and on their sum σ(γ, p) + σ(γ, n), which
is an accurate approximation to the photoabsorption
cross section. These photonucleon cross sections
are related to the partial (exclusive) cross sections
σ(γ, pi) and σ(γ, ni), which were discussed above, by
the equations

σ(γ, p) =
∑
i=0

σ(γ, pi), σ(γ, n) =
∑
i=0

σ(γ, ni).
P

More detailed information about all experiments that
studied the photodisintegration of 58Ni and which are
of importance for us can be found in [7, 10].

An essentially new element in the present study
is that the analysis performed here is based on the
entire body of information about the spectroscopic
features of states of the final nuclei 57Co and 57Ni
that was obtained in one-nucleon-pickup reactions
on 58Ni target nuclei (see Table 3). In all, data on
approximately 150 levels of the 57Co and 57Ni nuclei
were obtained in experiments of this type. The way in
which we have used these data in our analysis of the
GDR in the 58Ni nucleus will be described below.

3. BASIC PRINCIPLES OF DATA ANALYSIS

In general, the formation and decay of GDRs
proceeds as follows. Upon the absorption of an E1
photon by a nucleus, there arises a collective doorway
state of the dipole type. This state is a superposition
of 1p1h particle–hole configurations, and it decays
via nucleon emission into a continuous spectrum
with the formation of a nucleus in a 1h hole state
(semidirect mechanism characterized by a width Γ↑)
or via consecutive transitions into more complicated
states—2p2h, 3p3h, etc.—(preequilibrium stage) up
to thermal equilibration (compound-nucleus stage).
At each of these stages, nucleon emission into a
continuous spectrum can occur, which leads to the
emergence of statistical decay products. The proba-
bility of statistical decay is characterized by a width
Γ↓. The total decay width of the collective dipole state
in question is Γ = Γ↑ + Γ↓.

Knowledge of the nature of final-nucleus states
that are populated in the nucleonic decays of GDR
states makes it possible to reveal the role of various
mechanisms of this decay. For example, the semidi-
rect decay of the doorway (1p1h) state leads to the
population of that level of the final nucleus A− 1
which is a nucleonic hole (1h) with respect to the
ground state of the primary nucleus A. The decay of
a GDR at the equilibrium stage or at the equilibration
stage leads to the population of states of the final
nucleus A− 1 that are not nucleonic holes. In this
case, the populated states have a more complicated
structure (1p2h, 2p3h, etc.). Knowledge of the cross
sections for partial photonuclear reactions (γ, pi) and
(γ, ni) and of the hole structure of populated states
from independent data on one-nucleon-transfer reac-
tions makes it possible to isolate reliably the semidi-
rect branch of GDR decay. Concurrently, these data
enable one to establish the shell structure of the dipole
resonance being considered.

In the 58Ni nucleus, the external 1f2p shell is
unfilled. In nuclei belonging to this type, the GDR
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 1. Integrated cross sections σint(i) for the reactions 58Ni(γ, pi)57Co, their semidirect components σint
ph (i), and

features of the populated levels of the 57Co nucleus

57Co
σint(i), MeV mb σint

ph (i), MeV mb
i Ei, MeV Jπ, T = 3/2 nlj C2S

0 0 7/2− 1f7/2 3.8–5.53 31 10.1–31∗

2 1.377 3/2− 2p3/2 0.06 29.7 0.9–1.9

5 1.757 3/2− 2p3/2 0.11–0.19 10.0 2.7–3.3

6 1.897 7/2− 1f7/2 0.92–1.37 7.7 1.9–5.8

7 1.919 5/2− 1f5/2 10.8

8 2.133 3/2+; 5/2+ 1d3/2,5/2 0.04–0.10; 0.03
}

12.5
0.1; 0.1

8 2.133 5/2− 1f5/2

9 2.311 7/2− 1f7/2 0.14–0.20 6.1 0.3–0.8

20 2.730 7/2−; 5/2− 1f7/2,5/2 0.03–0.04; 0.05 3.1 0.1–0.2; 0.8–2.1

21 2.743 (9/2; 11/2) 5.3

22 2.804 5/2 11.1

23 2.879 3/2− 2p3/2 12.1

24 2.980 1/2+ 2s1/2 1.05–1.31 9.9 9.9∗

26 3.108 (3/2)− 2p3/2 5.8

29 3.176 7/2−; 5/2− 1f7/2,5/2 2.5

30 3.184 3/2+; 5/2+ 1d3/2,5/2 0.09; 0.14 }
2.432 3.262

33 3.273 7/2−; 5/2− 1f7/2,5/2 0.07; 0.11 0.2–0.5; 1.7–4.3

44 3.553 3/2+; 5/2+ 1d3/2,5/2 1.5–2.33; 1.0 2.3 2.3∗

∗ Cross-section values associated with levels featuring the greatest admixture of a hole excitation.
consists of two branches formed by E1 nucleonic
transitions from the partly filled external shell to the
nearest free shell (that is, by 1f2p→ 1g2d3s tran-
sitions) and from the least deep filled shell to the
external shell (that is, by 1d2s→ 1f2p transitions).
In the case of semidirect GDR decay, the emitted
nucleon escapes from the shell in which it appeared,
leaving the nucleus in the corresponding hole state—
(1f2p)−1 if it is the (1f2p)−1(1g2d3s)1 particle–
hole configuration that decays or (1d2s)−1 if it is
the (1d2s)−1(1f2p)1 particle–hole configuration that
decays. Thus, the type of the populated hole state
makes it possible to reconstruct the shell structure of
the E1 nucleonic transition and to associate a given
partial cross section with one shell branch of theGDR
or the other.

Let us briefly describe the method for extracting
the semidirect components of the integrated partial
photonucleon cross sections σint

ph (γ, xi) (x = n or p)
that was used in the present study (a more detailed
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
account of the method is given in [5, 10]). The
method was developed for non-self-conjugate nuclei,
where the GDR consists of excitations featuring two
isospins, T< = T0 and T> = T0 + 1, T0 being the
isospin of the ground state. If the GDR is represented
in the form of one doorway collective state that is a
mixture of excitations characterized by T< and T>,
the expression for σint

ph (γ, xi) can be written as

σint
ph (γ, xi) = σint

<

Γ↑
<(i)
Γ<

+ σint
>

Γ↑
>(i)
Γ>

, (1)

where σint
< and σint

> are the integrated cross sections
for the excitation of the T< and the T> GDR com-
ponent, respectively; Γ< and Γ> are the total decay
widths of the corresponding components, the width
associated with the spread of the doorway states
over complex states of the 2p2h type being included
in them; and Γ↑

<(i) and Γ↑
>(i) are the correspond-

ing widths with respect to nucleon emission at the
semidirect decay stage. Considering that Γ< ≈ Γ>,
2



4 ISHKHANOV et al.
Table 2. Integrated cross sections σint(i) for the reactions 58Ni(γ, ni)57Ni, their semidirect components σint
ph (i), and

features of the populated levels of the 57Ni nucleus

57Ni
σint(i), MeV mb σint

ph (i), MeV mb
i Ei, MeV Jπ, T = 1/2 nlj C2S

0 0 3/2− 2p3/2 0.72–1.25 35 35∗

1 0.780 5/2− 1f5/2 0.44–1.14 40 40∗

2 1.110 1/2− 2p1/2 0.15–0.22 0.43 0.43∗

3 2.445 5/2− 1f5/2 22

4 2.580 7/2− 1f7/2 2.13–3.30 6.3 3.6∗–19.2

5 3.007 3/2− 2p3/2 0.007 6.4 0.1–0.2

7 3.230 7/2− 1f7/2 0.30–0.61 2.2 0.8–3.1

13 3.850 3/2− 2p3/2 0.08 5.4 1.2–2.5

19 4.230 7/2− 1f7/2 0.18–0.34 2.0 0.4–1.4

42 5.580 1/2+ 2s1/2 0.62–1.08 5.4 4.4–6.1

∗ Cross-section values associated with levels featuring the greatest admixture of a hole excitation.
we find that the ratio of the semidirect components of
the integrated cross sections for the (γ, xa) and (γ, xb)
reactions corresponding to the population of the i = a
and b levels can be represented in the form

σint
ph (γ, xa)

σint
ph (γ, xb)

≈ σint
< Γ↑

<(a) + σint
> Γ↑

>(a)

σint
< Γ↑

<(b) + σint
> Γ↑

>(b)
. (2)

If one of the semidirect integrated partial cross sec-
tions appearing in the expression on the left-hand
side of Eq. (2) is known (it is then called a reference
cross section), the other one can determined from
this equation, provided that its right-hand side can be
computed.

In [5], it is shown that, under the condition that
the population of the hole state occurs owing pre-
dominantly to the emission nucleons having the same
orbital angular momentum l, allowance for the energy
spread of the dipole strength concentrated in the T<
and T> components on the basis of relation (2) yields

σint
ph (γ, xa)

σint
ph (γ, xb)

≈
C2
aSa

Em∫
0

Axa(E)
√
εaPl(εa)dE

C2
bSb

Em∫
0

Axb (E)
√
εbPl(εb)dE

, (3)

whereE is the excitation energy of the target nucleus;
ε is the kinetic energy of the emitted nucleon; Pl(ε) is
the penetrability of the Coulomb and the centrifugal
barrier; and the factors Ax=n,pi=a,b (E) can be represented
as

Axi (E) = Cx(T<, Ti)σ<(E) + Cx(T>, Ti)σ>(E),
PH
with Cx(T<, Ti) and Cx(T>, Ti) being the isospin
factors (squares of the isospin Clebsch–Gordan co-
efficients) that determine the probabilities of the de-
cay of the T< and T> GDR components via nucleon
emission (x = p, n) with the formation of the final
nucleus A− 1 in a state that is characterized by the
isospin Ti. All quantities appearing on the right-hand
side of Eq. (3) either are known or can easily be
calculated. For various partial isospin transitions in
the 58Ni nucleus, the values of Cx are shown near the
arrows in Fig. 1. The spectroscopic factors Si of the
populated levels are extracted from data of nucleon-
pickup experiments. The penetrability factors Pl(ε)
are calculable. The cross sections σ<(E) and σ>(E)
for the isospinGDRcomponents are obtained from an
analysis of the energy dependences of the experimen-
tal photoproton and photoneutron cross sections, the
formulas given by the concept of the isospin splitting
of the GDR [16, 17] being taken into account in this
analysis.

As the result of an analysis of the experimental
photoabsorption cross section σγ for the 58Ni nucleus
[7, 10] (for σγ , we used the sum of the inclusive
photoproton and the inclusive photoneutron cross
section), this cross section was broken down into
the T< and the T> component [σ<(E) and σ>(E),
respectively]. These components as functions of en-
ergy are displayed in Fig. 2, along with the smoothed
experimental energy dependence of σγ . It is precisely
these cross sections that were used in extracting
the semidirect components of the partial cross sec-
tions.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002



NEW DATA ON THE MECHANISM OF DECAY 5
Table 3. Integrated cross sections σint
ph (i) computed for all final levels that manifest themselves in one-nucleon-pickup

reactions [the data are grouped according to the final-nucleus species (57Co or 57Ni) and the hole configuration nlj of the
populated level; reference cross sections labeled with an asterisk were borrowed from experimental data]

Ei, MeV C2S σint
ph (i), MeV mb Ei, MeV C2S σint

ph (i), MeV mb

nlj = 2s1/2 nlj = 1d3/2

57Co 57Ni
2.980 1.05–1.31 9.9∗ 7.200 0.05 0.03–0.05

57Ni 7.275 0.07 0.04–0.06

5.580 0.62–1.08 4.4–6.1 7.320 0.07 0.04–0.06

8.280a) 0.28–0.50 2.0–2.9 7.462 0.07 0.04–0.06

8.515 0.12–0.13 0.5–0.4 7.522 0.35–0.37 0.19–0.13

8.723 0.04 0.1–0.2 7.700 0.06 0.03–0.05

nlj = 1f5/2 7.802 0.25–0.26 0.12–0.20
57Co 7.870 0.10 0.05–0.08

2.728 0.05 0.83–2.15 8.015 0.07 0.03–0.05

3.273 0.11 1.66–4.29 8.100 0.14–0.15 0.07–0.11

3.921 0.12 1.60-4.16 8.130 0.09 0.04–0.07

4.882 0.07 0.78–2.02 8.230 0.13–0.14 0.06–0.10

5.459 0.08 0.79–2.05 8.325 0.06 0.02–0.04
57Ni 8.840a) 0.77–1.18 0.88–0.91

0.780 0.44–1.14 40∗ nlj = 1d5/2

nlj = 1d3/2
57Co

57Co 2.133 0.03 0.08–0.09

2.133 0.04–0.10 0.08–0.13 3.184 0.09 0.21–0.22

3.184 0.14 0.15–0.23 3.553 1.00 2.3∗

3.553 1.5–2.33 2.3∗ 4.318 0.128 0.25–0.26

3.906 0.20 0.18–0.29 4.619 0.05 0.09

4.318 0.19 0.16–0.26 4.772 0.10 0.18

4.619 0.07 0.05–0.09 5.103 0.08 0.13–0.14

4.772 0.16 0.12–0.20 5.222 0.03 0.05

5.103 0.12 0.08–0.14 5.877 0.17 0.23–0.26

5.222 0.04 0.03–0.05 5.987 0.22 0.29–0.33

5.877 0.23–0.26 0.15–0.24 6.398 0.14 0.17–0.20

5.987 0.34 0.19–0.35 6.671 0.06 0.07–0.08

6.013 0.29 0.16–0.30 6.817 0.03 0.03–0.04

6.398 0.21 0.11–0.19 57Ni

6.671 0.09 0.04–0.08 8.445 0.21–0.22 0.19–0.23

6.817 0.04 0.02–0.03 8.662 0.27–0.28 0.23–0.29
57Ni 8.745 0.10 0.08–0.10

4.372 0.01 0.01–0.02 8.945 0.12–0.13 0.09–0.13

5.980 0.17–0.18 0.13–0.21 9.185 0.08 0.06–0.07

6.027 0.54–1.00 0.63–0.77 9.280 0.12–0.13 0.08–0.12

6.315 0.05 0.04–0.05 9.400 0.15–0.16 0.10–0.14

6.655 0.06 0.04–0.06 9.430 0.09 0.06–0.08

6.730 0.10 0.06–0.10 9.585 0.19–0.20 0.12–0.17
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 3. (Contd.)

Ei, MeV C2S σint
ph (i), MeV mb Ei, MeV C2S σint

ph (i), MeV mb

nlj = 1d5/2 nlj = 2p3/2

57Ni 57Co

10.210 0.14–0.15 0.07–0.11 3.365 0.035 0.37–0.85

10.240 0.14–0.15 0.07–0.11 3.469 0.013 0.14–0.31

10.515 0.12–0.13 0.05–0.09 4.530 0.028 0.24–0.57

10.790 0.27–0.28 0.11–0.17 5.057 0.007 0.05–0.13

11.120a) 0.07–0.10 0.02–0.06 5.157 0.019 0.14–0.35

11.155a) 0.07–0.10 0.02–0.06 5.384 0.006 0.04–0.11

11.195a) 0.12–0.17 0.04–0.09 5.524 0.02 0.14–0.34

nlj = 2p1/2 5.638 0.024 0.16–0.41
57Co 5.715 0.007 0.05–0.12

1.505 0.007 0.008–0.014 6.148 0.013 0.08–0.20

3.469 0.016 0.013–0.025 6.306 0.011 0.07–0.16

4.530 0.034 0.024–0.045 6.901 0.014 0.07–0.19

5.057 0.008 0.004–0.010 57Ni

5.157 0.023 0.014–0.027 0.00 0.72–1.25 35∗

5.384 0.007 0.004–0.008 3.850 0.08 1.17–2.52

5.520 0.025 0.014–0.028 4.458 0.03 0.39–0.86

5.638 0.030 0.017–0.033 4.932 0.03 0.35–0.78

5.715 0.009 0.005–0.010 5.089 0.03 0.34–0.77

6.148 0.016 0.008–0.016 5.190 0.02 0.22–0.50

6.306 0.014 0.007–0.014 5.668 0.03 0.30–0.68

6.901 0.017 0.007–0.015 6.230 0.01 0.09–0.20
57Ni 6.550a) 0.02–0.03 0.44–0.60

1.110 0.15–0.22 0.43∗ 6.592a) 0.02–0.03 0.56–0.78

nlj = 2p3/2 6.695 0.01 0.08–0.18
57Co 6.955a) 0.11–0.13 1.77–3.09

1.377 0.06 0.89–1.89 7.042 0.02 0.15–0.33

1.757 0.11–0.19 2.65–3.31

Ei, MeV C2S
σint
ph, ref, MeV mb

Ei, MeV C2S
σint
ph, ref, MeV mb

31 6.3 31 6.3

nlj = 1f7/2 nlj = 1f7/2

57Co 57Co

0.00 3.8–5.53 31∗ 10.12–10.92 3.921 0.07 0.21–0.30 0.07–0.11

1.897 0.92–1.37 5.66–5.80 1.89–1.99 4.882 0.04 0.10–0.14 0.03–0.05

2.311 0.14–0.20 0.80 0.26–0.28 5.459 0.04 0.09–0.13 0.03–0.05

2.611 0.06–0.07 0.26–0.33 0.09–0.12 57Ni

2.730 0.03–0.04 0.16 0.05–0.06 2.580 2.13–3.30 18.02–19.18 6.3∗

3.273 0.07–0.14 0.34–0.47 0.12–0.15 3.230 0.30–0.61 2.24–3.14 0.79–1.02

3.356 0.11 0.36–0.53 0.12–0.19 3.300 0.02 0.10–0.15 0.03–0.05

3.681 0.10–0.13 0.40–0.45 0.13–0.16 3.362 0.08–0.17 0.55–0.85 0.19–0.27
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 3. (Contd.)

Ei, MeV C2S
σint
ph(i), MeV mb

Ei, MeV C2S
σint
ph, ref, MeV mb

31 6.3 31 6.3

nlj = 1f7/2 nlj = 1f7/2

57Ni 57Ni

3.700 0.09–0.16 0.63–0.75 0.22–0.25 6.115 0.05 0.14–0.21 0.05–0.07

4.050 0.01 0.04–0.06 0.01–0.02 6.280 0.02 0.06–0.08 0.02–0.03

4.220 0.18–0.34 1.11–1.44 0.39–0.47 6.427 0.02 0.05–0.08 0.02–0.03

4.572 0.13–0.25 0.75–0.99 0.26–0.32 6.520 0.04 0.10–0.15 0.03–0.05

4.892 0.02 0.07–0.11 0.02–0.04 6.845 0.07 0.17–0.25 0.06–0.09

5.132a) 0.12–0.13 0.76–1.02 0.25–0.36 6.880 0.04 0.10–0.14 0.03–0.05

5.235a) 1.21–2.40 10.09–13.75 3.55–4.49 7.130a) 0.72–0.76 3.98–5.48 1.30–1.93

5.367 0.24–0.25 1.40–1.96 0.46–0.69 7.580a) 0.06 0.22–0.33 0.08–0.12

5.710 0.05 0.16–0.23 0.05–0.07 7.985 0.04 0.07–0.11 0.02–0.04

5.765 0.06 0.18–0.27 0.06–0.09 8.530a) 0.05 0.08–0.12 0.03–0.04

5.795 0.06 0.18–0.27 0.06–0.09 9.110 0.14–0.15 0.21–0.29 0.07–0.10

5.850 0.09 0.27–0.40 0.09–0.14

a) T = 3/2 level.
Thus, the procedure that we used to extract the
semidirect branch of the GDR employed the follow-
ing important pieces of information that were taken
directly from experimental data:

(i) the energy spread of the dipole strength con-
centrated in the T< and the T> GDR component;

(ii) the spread of the spectroscopic strength of
nucleon-hole states of the primary nucleusA over the
levels of the final nucleus A− 1.

For the 58Ni nucleus, this procedure must be ap-
plied only to E1 nucleon transitions of the following
three types:

1f5/2, 7/2 → 1g2d,
1d3/2, 5/2 → 1f2p,

2s1/2 → 2p.

For either of the first two types, the orbital angular
momentum l of the semidirect nucleon can take two
values: 4 and 2 for the first type and 3 and 1 for the
second type. Only the emission of an l = 1 nucleon is
possible for transitions from the 2s1/2 shell. For all of
the l values listed above, the semidirect components
of the partial cross sections were computed here on
the basis of relation (3). The variations that, in doing
this, arose in the values of σint

ph (γ, xi) were included
in the total uncertainty of the result. Yet another
important source of uncertainty was associated with
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
that in the experimental spectroscopic factor Si of the
populated level.

4. RESULTS OF THE ANALYSIS

The integrated cross section summed over all pro-
tonic channels indicated in Table 1 is equal to 162 ±
40 MeV mb. The analogous result for all neutronic
channels from Table 2 is 125± 30 MeV mb. These
are, respectively, 30 and 40% of the integrated total
(inclusive) photoproton and photoneutron cross sec-
tions [13–15]. In the experimental γ′ spectra, we were
unable to single out transitions that would indicate
that the photodisintegration of 58Ni nuclei leads to the
population of states in 57Cu and 57Ni nuclei above
3.6 and 5.6 MeV, respectively. On one hand, this
is because attempts at detecting γ′ transitions from
such high levels run into considerable methodological
difficulties. On the other hand, excited states of 57Co
and 57Ni above the nucleon-separation energy decay
by emitting one more nucleon, so that they do not
manifest themselves in the relevant γ′ spectra. It
should be emphasized from the outset, however, that
this apparently significant incompleteness of the ex-
perimental pattern of the partial photodisintegration
of 58Ni has virtually no effect on the eventual con-
clusion of our analysis, since partial cross sections
2
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in the 58Ni nucleus.

known to date are sufficient for reconstructing all
quantities that are of interest to us.

From the data presented in Tables 1 and 2, it
follows that, of all the observed partial channels, only
four are associated with the decay of E1 nucleon
transitions from the internal shell of the 58Ni nucleus.
These are cross sections for the population of the i =
8, 24, and 44 levels of the 57Co nucleus and the i = 42
level of the 57Ni nucleus. All these levels are of a posi-
tive parity (the parity of the i = 8 level in 57Co has not
yet been established definitively). Two of these have
the (2s1/2)−1 hole structure and are populated upon
the decay of the 1p1h configuration (2s1/2)−1(2p)1,
while the other two have the (1d3/2,5/2)−1 hole struc-
ture and are populated upon the decay of the 1p1h
configuration (1d3/2,5/2)−1(1f2p)1.

The remaining populated levels are of a negative
parity, which corresponds to the hole structure of the
1f2p shell. They are populated upon the decay of the
1p1h configuration (1f2p)−1(1g2d3s)1.

Summing the partial cross sections for the pop-
ulation of negative-parity states with allowance for
P

the data from Table 3 on the semidirect component
of high-lying levels, we obtain a lower bound on
the contribution of the 1f2p→ 1g2d3s branch to the
GDR in the 58Ni nucleus. The resulting values are
0.25 and 0.32 for the protonic and the neutronic chan-
nel, respectively, and 0.28 for photoabsorption. The
eventual results are presented in Table 4.

Knowing partial photonucleon cross sections and
the spectroscopic factors of the populated states from
data on one-nucleon-pickup reactions and using the
procedure described in the preceding section, we can
obtain the probability of the semidirect mechanism of
the decay of the GDR in the 58Ni nucleus.

From Tables 1 and 2, one can see that it is nec-
essary to take into account hole excitations in seven
subshells (1f7/2, 1f5/2, 2p3/2, 2p1/2, 1d5/2, 1d3/2,
and 2s1/2); that is, it is necessary to have seven
reference partial cross sections. We adopt the fol-
lowing hypothesis: the partial cross sections for the
population of levels involving the greatest admixture
of a hole excitation of each type are fully saturated by
the semidirect decay (this is definitively so for purely
hole states). In Tables 1 and 2, asterisks label cross
sections associated with levels featuring the greatest
admixture of a hole of each of the types indicated
above. According to the ENSDF data, three of these
levels can be believed to be purely hole ones (i = 24
level of the 57Co nucleus and the i = 1 and 2 levels
of the 57Ni nucleus). They absorb the entire spectro-
scopic strength of the corresponding hole states that
was observed in pickup reactions. The i = 0 level of
the 57Ni nucleus is very close to a purely hole one.
According to the ENSDF data, it contributes 0.84 to
1.0 of the entire spectroscopic strength of the 2p3/2

neutron hole. The i = 0 level of the 57Co nucleus
saturates 0.73 of the spectroscopic strength of the
1f7/2 proton hole. Since the semidirect cross section
calculated for the i = 4 level of the 57Ni nucleus on
the basis of this reference cross section proved to
be in excess of the experimental value, the version
was considered where the cross section for the 57Ni
i = 4 level, which also has a significant spectroscopic
factor, was in turn a reference cross section. Since
the i = 44 level of the 57Co nucleus absorbs a major
part of the spectroscopic strength of the 1d proton
hole, the cross section for the population of this level
was chosen to be a reference cross section for the
1d3/2,5/2 configurations. It was assumed that the par-
tial cross sections labeled with asterisks are saturated
entirely (or almost entirely) by the contribution from
the semidirect decay of the GDR in the 58Ni nucleus.
It is precisely these cross sections that were chosen
for reference ones. The semidirect components of
the remaining partial cross sections were computed
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 4. Integrated cross sections and their semidirect components (in MeVmb) for E1 nucleon transitions forming the
GDR in the 58Ni nucleus (fractions of the corresponding transitions in the cross sections are indicated parenthetically)

(γ, p) (γ, n) (γ, p) + (γ, n)

All transitions 570 250–380 830–950

Transitions >140 >120 >260

1f2p→ 1g2d3s (>0.25) (>0.32) (>0.28)
Semidirect branch of 16–49 84–102 100–151
transitions 1f2p→ 1g2d3s (0.07–0.35) (0.20–0.85) (0.11–0.58)

Semidirect branch of all 41–97 108–156 149–253
transitions (0.07–0.17) (0.28–0.62) (0.16–0.30)
according to the procedure described in the preceding
section.

The calculated values of σint
ph (i) are also quoted

in Table 3, where they are combined in groups cor-
responding to the same values of nlj . In contrast
to Tables 1 and 2, Table 3 includes all levels that
were detected experimentally and which are known to
involve an admixture of the spectroscopic strength of
the hole states being discussed. The scatter of the
values of σint

ph (i) takes into account the uncertainty
in the spectroscopic factor of a given level and the
possible range of the orbital angular momenta of the
emitted nucleon. As was indicated above, two ver-
sions of the reference cross section were used for the
1f7/2 hole configuration.

By and large, the results of the calculations for
σint

ph (i) lend support to the assumption that the ref-
erence cross sections that we chose receive an over-
whelming contribution from the semidirect decay of
the GDR. In all cases, with the exception of one
(that of the i = 4 level of the 57Ni nucleus), the
cross section for semidirect decay did not exceed the
experimental value. This indicates that the fraction
of the semidirect mechanism in the reference cross
section was not exaggerated. It is also worth noting
that the spectroscopic factors are very small for all
levels that are not displayed in Tables 1 and 2 be-
cause the corresponding partial cross sections were
not observed. For such levels, the cross sections for
semidirect decay must be close to zero, which is a
good illustration of the correlation between the partial
cross section and the spectroscopic factor in the case
where photonucleon reactions are governed by the
semidirect mechanism.

Summing the semidirect partial cross sections for
protons and for neutrons separately, we obtain the
values of 41–83 and 108–150 MeV mb for, respec-
tively, the integrated semidirect proton and the in-
tegrated semidirect neutron cross section. Taking
into account the unobservable part of the spectro-
scopic strength of hole levels—it admits an increase
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
of 14 MeV mb in the semidirect cross section for pro-
tons and an increase of 6 MeV mb in the semidirect
cross section for neutrons—we obtain the following
ranges for the probabilities of the semidirect decay of
the GDR in the 58Ni nucleus:

0.07–0.17 for the photoproton channel,
0.28–0.62 for the photoneutron channel,
0.16–0.30 for photoabsorption.

Available data make it possible to estimate the
probability of the semidirect mechanism for the
1f2p→ 1g2d3s branch of the GDR in the 58Ni
nucleus. In order to do this, it is necessary to calculate∑

i σ
int
ph (i) for the observed partial transitions in the

above branch and to determine the fraction of these
transitions in it. The results of this calculation are
quoted in Table 4.

5. CONCLUSION
All the results obtained in the present study

are compiled in Table 4, where they are contrasted
against the integrated values of the experimental
inclusive photonucleon cross sections [denoted by
(γ, p) and (γ, n)] and against their sum [denoted by
(γ, p) + (γ, n)], which nearly exhausts the integrated
photoabsorption cross section. In relation to the
data in [7], these results refine significantly the shell
structure of the GDR in the 58Ni nucleus and the
mechanism of its decay.

An analysis of the data presented in Table 4 leads
to the following conclusions:

(i) The probability of the semidirect mechanism
of the decay of the GDR in 58Ni, which belongs to
the class of 1f2p-shell nuclei, lies predominantly in
the range 16–30%; this is approximately one-half as
great as the corresponding probabilities typical of the
majority of 1d2s-shell nuclei (A = 16–40).

(ii) The probability of semidirect processes in the
(γ, n) channel (28–62%) is much higher than that in
the (γ, p) channel (7–17%).
2
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A reduction of the probability of semidirect GDR
decay with increasing mass number (and, accord-
ingly, a growth of the probability of statistical decay)
is a natural trend that was reliably established and
which was discussed in [10, 18].

As to the higher probability of semidirect decay
in the neutronic channel in relation to the protonic
channel, this is explained by a considerable excess
of the neutron threshold in 58Ni (12.2 MeV) over
the proton threshold (8.2 MeV). This distinction is
due to the Coulomb interaction between the protons,
which results in that the nuclear potential well for
protons in the majority of stable nuclei, including
58Ni, is shallower than that for neutrons (accordingly,
the threshold is lower). Because of a high neutron
threshold, the photoneutron cross sections for the
population of high-lying final levels, which are of a
nonhole origin in the majority of cases, are strongly
suppressed; as a result, the total photoneutron cross
section is associated, to a greater extent in relation to
the photoproton one, with low-lying levels, which are
predominantly of a hole origin—that is, it involves a
greater fraction of the semidirect component.
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R. A. Éramzhyan, Fiz. Élem. Chastits At. Yadra
26, 873 (1995) [Phys. Part. Nucl. 26, 367 (1995)].

4. I. M. Kapitonov, Yad. Fiz. 37, 569 (1983) [Sov. J.
Nucl. Phys. 37, 338 (1983)].
PH
5. B. S. Ishkhanov, I. M. Kapitonov, and I. A. Tutyn’,
Yad. Fiz. 58, 1180 (1995) [Phys. At. Nucl. 58, 1103
(1995)].

6. B. S. Ishkhanov, I. M. Kapitonov, V. G. Neudachin,
et al., Usp. Fiz. Nauk 160 (3), 57 (1990) [Sov. Phys.
Usp. 33, 204 (1990)].

7. B. S. Ishkhanov, I. M. Kapitonov, and I. A. Tutyn’,
Yad. Fiz. 56 (8), 1 (1993) [Phys. At. Nucl. 56, 991
(1993)].

8. B. S. Dolbilkin, in Proceedings of the VII Workshop
on Electromagnetic Interactions of Nuclei at Low
and Intermediate Energies (Inst. Yad. Issled. Akad.
Nauk SSSR, Moscow, 1990), p. 289.

9. I. M. Glatky, A. M. Lapik, B. S. Ratner, et al., Nucl.
Phys. A 512, 167 (1990).

10. I. A. Tutyn’, Candidate’s Dissertation in Physics and
Mathematics (Nauchn. Issled. Inst. Yad. Fiz. Mosk.
Gos. Univ., Moscow, 1995).

11. H. Miyase, S. Oikawa, A. Suzuki, et al., PINCS
(Asilomar, 1973), Vol. 1, p. 533.

12. I. N. Boboshin and V. V. Varlamov, Nucl. Instrum.
Methods Phys. Res. A 369, 113 (1996).

13. B. S. Ishkhanov, I. M. Kapitonov, I. M. Piskarev,
et al., Yad. Fiz. 11, 485 (1970) [Sov. J. Nucl. Phys.
11, 272 (1970)].

14. B. I. Goryachev, B. S. Ishkhanov, I. M. Kapitonov,
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ELEMENTARY PARTICLES AND FIELDS
Theory
Ortho–Para Conversion in the Muonic Molecule ppµ
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Abstract—The ortho–para conversion due to the interaction between the nuclear magnetic moments and
the atomic electron is considered in the muonic molecule (ppµ)e produced in the ortho state. It is shown
that the rate of this transition is w ≈ 0.466 s−1, which is much less than the rate of the transition induced
by the mixing of states having opposite parities with respect to the inversion of the muon coordinates.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Previously, measurement of muon capture by a
proton was the most important check on the validity
of universal weak V –A interaction. Presently, it
can be (and is planned to be) employed for a preci-
sion investigation of the induced pseudoscalar, whose
value is predicted within chiral theories [1]. In this
connection, it seems reasonable to deduce additional
estimates for muon–atom and muon–molecule pro-
cesses, which control the probability of weak muon
capture in hydrogen.

As was shown in [2], the mechanism of muon
exchange in collisions of muonic atoms with pro-
tons of the medium leads to a rather fast transition
of pµ atoms from the upper level of the hyperfine
structure (F = 1) to the lower one (F = 0), F being
the absolute value of the total spin of the muonic
atom involved. According to the estimates presented
in [2, 3], the rate of this transition is wF=1→F=0 ≈
1010ϕ s−1, where ϕ is the ratio of the density of
the hydrogen target employed to the density of liq-
uid hydrogen at 20 K (more recent calculations yield
wF=1→F=0 ≈ 5.6× 1010ϕ s−1 [3]). Since the rates of
muon capture from the different states of the hyperfine
structure of the muonic atom pµ differ considerably
(wF=1 ≈ 659 s−1, wF=0 ≈ 14.6 s−1), the transition
under consideration changes strongly the probabil-
ity of muon capture in hydrogen—this probability
becomes approximately four times as great as that
in the case of a statistical distribution in the levels
of the hyperfine structure (gF=1 = 3/4, gF=0 = 1/4),
wst ≈ 160 s−1 [4]. This result agrees well with data
from experiments in gaseous hydrogen at pressures
of about 10–20 atm, where the F = 1→ F = 0 tran-
sition to the lower state of the hyperfine structure

*e-mail: gershtein@mx.ihep.su
**e-mail: mpti9502@mx.ihep.su
1063-7788/02/6501-0102$22.00 c©
occurs almost completely and where the production
of muonic molecules ppµ can be disregarded at the
currently available experiment accuracy. According
to data from [5], the capture rate in gaseous hydrogen
is 1/τpµ ≈ 4wst [5, 6]. At large densities (similar to
those of liquid hydrogen), the process proceeds in a
different way. In that case, the rate of production of
muonic molecules ppµ is about 2.7× 106 s−1, and
muon capture by a proton occurs predominantly in
muonic molecules ppµ rather than in muonic atoms
pµ. In collisions of muonic atoms pµ with the nuclei
of hydrogen molecules H2, muonic molecules ppµ
are produced mainly via the E1 dipole transition ac-
companied by the conversion of the molecule electron
[7, 8]. Therefore, the muonic molecule appears to
be in the rotational state having the orbital angular
momentum of K = 1—that is, in the ortho state—
with the total spin of the protons being I = 1. Since a
fast transition of muonic atoms pµ to the lower F = 0
state of the hyperfine structure precedes the formation
of a muonic molecule and since the spin flip in the
formation of a muonic molecule can be disregarded,
the total spin of the muonic molecule ppµ is S = 1/2.
With respect to each proton, the muon then appears
to be in the state where the weights of the spin-
singlet and the spin-triplet state are 3/4 and 1/4,
respectively. This means that the muon-capture rate
in liquid hydrogen must be 1/τppµ ≈ 3wst ≈ 480 s−1;
within rather large experimental errors (about 10–
15%), this agrees with the data from [9, 10].

In what is concerned with the proposal to measure
precisely the probability of muon capture in hydrogen,
it is necessary to take into account some additional
factors in the case of capture occurring in a muonic
molecule. The ratio γ = |Ψppµ(0)|2/|Ψpµ(0)|2 (here,
|Ψpµ(0)|2 and |Ψppµ(0)|2 are the squared moduli of
the muon wave functions at the proton-location point
2002 MAIK “Nauka/Interperiodica”



ORTHO–PARA CONVERSION IN THE MUONIC MOLECULE ppµ 103
in the muonic atom pµ and the muonic molecule
ppµ, respectively), which is one of these factors, was
reliably calculated in [11]. There are two more factors:
the probability that, because of hyperfine interaction
between the spin and the rotation of the muonic
molecule, its spin is 3/2 (that is, the muon appears
to be in the triplet state with respect to the protons)
and the probability of the transition of the muonic
molecule from the ortho to the para state, where, with
respect to each proton, the weights of the spin-triplet
and the spin-singlet state in the state of the muon
are 3/4 and 1/4, respectively. The probability of the
first of these two factors can be obtained from the
calculations of the hyperfine structure of the muonic
molecule ppµ that were performed in [12], where it
was shown that its effect is rather small. If a muonic
molecule ppµwas initially produced in the ortho state
having the total spin of S = 1/2 (that is, in a state
featuring 3/4 of singlet state between the muon and
the protons), then, owing to the interaction with the
rotation of the muonic molecule, the probability of
the singlet state is Q(3) = 0.7499 at the total angular
momentum of J = 3/2 and Q(1) = 0.7494 at J =
1/2. Thus, the admixture of the triplet state does not
exceed 0.1%.

As to the transition of a muonic molecule from
the ortho to the para state, two mechanisms are
possible here, each changing both the orbital angular
momentum and the total spin of the nuclei involved
[13]. One of these mechanisms is associated with
the hyperfine interaction of the muon spin with the
spins of the nuclei. Without this interaction, the
muon wave function would be even, in the adiabatic
approximation (Σg), with respect to the interchange
of the nuclei, but, upon its inclusion, the odd function
(Σu) corresponding to a different total nuclear spin
(that which is equal to zero in the K = 1 rotational
state of the muonic molecule) is admixed to the even
component. Since the electric-dipole moment for the
muon transition between the statesΣg andΣu (dug =
〈Σu|erµ|Σg〉) differs from zero—it is proportional to
the radius vector between the nuclei—this can induce
the K = 1→ K = 0 E1 transition between the ro-
tational states of the muonic molecule. This transi-
tion must be accompanied by the conversion of the
electron occurring in the orbit of the hydrogen-like
atom having a muonic molecule ppµ as a nucleus.1)

The probability of the ortho–para conversion in the
muonic molecule ppµ via this mechanism was calcu-
lated in [12] with allowance for nonadiabatic effects.

1)With a high probability, the muonic molecule ppµ produced
upon a collision of a muonic atom pµ with one of the nuclei
of a H2 molecule either becomes the nucleus of an excited
muonic molecular system [(ppµ), p]e (like a H+

2 ion) or es-
capes from it, capturing the electron.
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The ortho–para conversion in the muonic mole-
cule ppµ can also be due to the mechanism of direct
interaction between the magnetic moments of its nu-
clei and the magnetic moment of the orbital electron.
The objective of the present study is to calculate the
probability of this mechanism, which causes electron
conversion. From a dimensional analysis, it can
easily be deduced that its efficiency is considerably
lower than the efficiency of the first mechanism; this
is because the admixture of Σu to Σg is determined
by the interaction between the magnetic moments of
the protons and the muon in the muonic molecule,
while electron conversion in the second mechanism is
controlled by the interaction of the electron with the
magnetic moments of the protons in the hydrogen-
like atom having ppµ for the nucleus. Nevertheless,
the calculation of its probability is of interest not only
from the physical but also from the methodological
point of view. To illustrate the last statement, we
recall that, in baryons containing two heavy quarks,
there exist excited states such that transitions from
them to the ground state must be accompanied by
simultaneous changes in the spin and in the angular
momentum of the heavy-quark pair [14], in just the
same way as this occurs in a muonic molecule ppµ
undergoing ortho–para conversion.

2. INTERACTION

In the muonic molecule ppµ, the ortho–para con-
version accompanied by changes in the total nuclear
spin and the angular momentum (K = 1→ K = 0)
can be induced by a nonuniform magnetic field gen-
erated by the magnetic moment of the electron oc-
curring in the K orbit of the hydrogen-like atom ppµ.
In order to calculate this process, it is convenient,
however, to employ the method developed by Fermi
for calculating the hyperfine structure of atoms [15]
and to consider the nuclear magnetic field acting on
the orbital electron.

Since the size of the ppµ system is far less than
the Bohr radius for an electron, we can assume, for
a first approximation, that the electron moves in the
Coulomb field of a pointlike charge.

The operator for electron interaction with the
magnetic field induced by the magnetic moments of
the nuclei is then given by

V = − e

mc

A · p+ p ·A
2

− e�

mc
H · s (1)

=
ie�

mc

(
A ·∇+

∇ ·A
2

)
− e�

mc
H · s,

where A and H are, respectively, the vector potential
and the magnetic field induced by the nuclei of the
muonic molecule ppµ and (−e), m, and s are the
electron charge, mass, and spin, respectively.
2
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The vector potential of a magnetic dipole occurring
at the coordinate origin and having the magnetic
moment µ is given by

A0(r;µ) =
[
∇1
r
× µ

]
.

The magnetic field induced by this dipole is

H0(r;µ) = [∇×A0(r;µ)] =
[
∇×

[
∇1
r
× µ

]]
(2)

=
3(n · µ)n− µ

r3
+
8π
3

µδ(r),

where n = r/r. In deriving this expression, we have
used the formula

∂2

∂xi∂xj

1
r
= 3

ninj
r3
− δij
r3
− 4π
3
δijδ(r),

which can easily be proven by means of a simple
integration. As a rule, formula (2) is used for r 
= 0
and the last term is discarded. In calculating relevant
matrix elements, however, integration with respect to
the electron coordinates is performed over the entire
space, including the coordinate origin; therefore, it is
necessary to take into account the term involving the
delta function.

The vector potential of two magnetic dipoles µ1

and µ2 located at the points −R/2 and R/2, respec-
tively, is

A(r) = A0(r+R/2;µ1) +A0(r−R/2;µ2).

Expanding it in powers of the small ratio R/r (r is
the distance between the electron and the center), we
arrive at

A(r) ≈ A0(r;µ1) +
(

R
2
·∇
)

A0(r;µ1) (3)

+A0(r;µ2)−
(

R
2
·∇
)

A0(r;µ2)

= A0(r;µ1 + µ2)

+
3
2
(R · n)
r3

[n× µ] +
[µ×R]
2r3

+
2π
3
[µ×R]δ(r),

where µ = µ1 − µ2.
PH
Similarly, the magnetic field is
H(r) = H0(r+R/2;µ1) +H0(r−R/2;µ2) (4)

≈ H0(r;µ1) +
(

R
2
·∇
)

H0(r;µ1) +H0(r;µ2)

−
(

R
2
·∇
)

H0(r;µ2)

= H0(r,µ1 + µ2) +
3
2r4
{(R · µ)n

+ (n · µ)R+ (n ·R)µ

− 5(n ·R) (n · µ)n}+ 4π
3

µ(R ·∇)δ(r).

The matrix element of (µ1+µ2) between the ortho
and para states (having different values of the total
nuclear spin) is zero; therefore, the first terms in (3)
and (4) can be discarded. Similarly, the interaction
between the muon magnetic moment and the electron
can be neglected. Other interaction terms in (3) and
(4) involve the products of the operators µ = µ1 −µ2

and R; these products change simultaneously the
total spin of the nuclei and the angular momentum
of the muonic molecule—that is, they lead to ortho–
para conversion. The components of the vector n
appearing in these terms change the orbital angular
momentum of the electron by unity. According to the
structure of the interaction, the conversion electron
can therefore have the orbital-angular-momentum
values of l = 1 and 3 in the final state.

3. INITIAL AND FINAL STATES

The initial-state wave function has the form
Ψ(i) = F1,mK

(R, rµ)ψ(0,0)(r)χmsS1,mS
,

where FK,mK
(R, rµ) is the wave function for the

muonic molecule ppµ in a rotational state charac-
terized by the orbital angular momentum K and its
projection mK (the notation for vectors is illustrated
in the figure); ψ(0,0)(r) = e−r/a/

√
πa3 is the wave

function for the electron in the effective field of the ppµ
system; a = �

2/(me2) ≈ 0.529 × 10−8 cm is Bohr
radius for the electron; χms is the spin wave function
for the electron; ms is the spin projection onto a fixed
axis; and SI,mS

is the spin wave function of the ppµ
system in the state where the nuclear spin is I, the
total spin is S = 1/2, and its projection onto a fixed
axis is mS . The energy of this state is E1 = −109 eV.

The energy of the para state, E0 = −250 eV, is
lower than the energy of the ortho state by 141 eV. The
energy difference is transferred to the electron ejected
into the continuous spectrum. The final-state wave
function is

Ψ(f) = F0,0(R, rµ)ψ(−)(r)S0,m′
S
χm′

s
,
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where the electron wave function in the continuous
spectrum has the form

ψ(−) =
1
2ka

∞∑
l=0

il(2l + 1)e−iδlRkl(r)Pl

(
k · r
kr

)
,

Rkl(r) =
Ckl

(2l + 1)!
(2kr)le−ikr

× F (i/ka + l + 1, 2l + 2, 2ikr),

k =
√
2m∆E

�
.

Here, ∆E ≈ 129.4 eV is the conversion-electron en-
ergy and we have used the same notation as in [15]
and conventional units (not atomic units adopted for
this case in [15]).

The wave functions (in the atomic units for the
muonic atom) for the system ppµ can be conveniently
expressed in terms of hyperspherical coordinates ρ
and χ [16], which are related to the Jacobi coordinates
R and rµ by the equations



ρ2 = 2MR2 + 2µr2µ,

tan
χ

2
=
√

µ

M

rµ
R
,




R =
cos (χ/2)√

2M
ρ,

rµ =
sin (χ/2)√

2µ
ρ,

M =
Mp

2mµ
, µ−1 = 1 +

mµ

2Mp
,

where mµ and Mp are the muon and the proton
mass, respectively. The wave functions for the muonic
molecule then take the form

FK,mK
(R, rµ) = fK(ρ)φg(ρ|χ, ϑ)

YK,mK
(Φ,Θ)√
2π

,

where Θ and Φ are angles that specify the direction
of the axis of the muonic molecule, ϑ is the angle be-
tween the vectorsR and rµ, YK,mK

(Φ,Θ) are ordinary
spherical harmonics, φg(ρ|χ, ϑ) are hyperspherical
harmonics used in [16], and the index g indicates that
we considered here states that are even (gerade) with
respect to the inversion of the muon coordinates.

This enables us to use, in calculating the matrix
elements for the variable R, their tabular values that
were obtained by means of the algorithm developed
in [16] and which were placed at our disposal by
V.V. Gusev.

The wave functions (5) satisfy the normalization
condition

∞∫
0

ρ5dρ

π∫
0

sin2 χdχ

π∫
0

sinϑdϑ

×
π∫

0

sinΘdΘ

2π∫
0

dΦF 2
K,mK

(ρ, χ, ϑ,Θ,Φ) =
1
2π
.
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4. MATRIX ELEMENTS IN THE ORBITAL
VARIABLES OF THE ELECTRON

The orbital angular momentum of the conversion
electron can take the values of l = 1 and 3, the in-
terference between the states characterized by the
different values of l being absent because the corre-
sponding Legendre polynomials are orthogonal. We
now consider these states individually.

1. At l = 1, we have

ψf = i
Ck1e

−iδ1

2
r

a
e−ikrF

(
i

ka
+ 2, 4, 2ikr

)
k · r
kr

.

Only the last term in (4) makes a nonzero contribu-
tion to the matrix element 〈l = 1|H · s|l = 0〉e,

〈l = 1|H · s|l = 0〉e
=
4π
3
(µ · s) 〈l = 1|R ·∇δ(r)|l = 0〉e

= −iCk1e
iδ1

2
4π
3

µ · s√
πa3

×
∫

r

a
e−(1/a+ik)rF

(
i

ka
+ 2, 4, 2ikr

)

× k · r
kr

(R ·∇)δ(r)d3r = i
Ck1e

iδ1

2
4
√
π

3a5/2
(µ · s)

× (R ·∇)
[
e−(1/a+ik)rF

(
i

ka
+ 2, 4, 2ikr

)
k · r
k

]
r=0

= i
2
√
π

3
Ck1e

iδ1

a5/2
(µ · s)

(
R · k

k

)
.

The matrix element 〈l = 1|A ·∇|l = 0〉e is con-
trolled by the third term in (3),

〈l = 1|A ·∇|l = 0〉e =
〈
l = 1

∣∣∣∣ [µ×R]
2r3

·∇
∣∣∣∣ l = 0

〉
e

= i
Ck1e

iδ1

2
[µ×R]

2
√
πa3

∞∫
0

1
a
e−(1/a+ik)r

× F
(
i

ka
+ 2, 4, 2ikr

)
dr

×
∫
(k · n)n

k
dΩ = i

√
π

4
Ck1e

iδ1

a5/2

×
(
1− e−2δ/ka

) [µ×R] · k
k

,

where δ = arctan ka. The last term in (3) contributes

to
〈
l = 1

∣∣∣∣∇ ·A2
∣∣∣∣ l = 0

〉
e

,〈
l = 1

∣∣∣∣∇ ·A2
∣∣∣∣ l = 0

〉
e

=
〈
l = 1

∣∣∣∣12 2π3 [µ×R] ·∇δ(r)
∣∣∣∣ l = 0

〉
e

2
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= −iCk1e
iδ1

2

√
π

3a3/2
[µ×R]

∫
1
a
e−(1/a+ik)r

× F
(
i

ka
+ 2, 4, 2ikr

)
(k · r)
k

∇δ(r)d3r

= i

√
π

3a5/2

Ck1e
iδ1

2
[µ×R] · k.

Thus, we arrive at

〈l = 1|V |l = 0〉e =
√
π

2
Ck1e

iδ1

a5/2

|e|�
mc

×
[
[µ×R] · k

k

(
1
3
+
1− e−2δ/ka

2

)

+ i
4
3
(µ · s)(R · k)

k

]
.

2. At l = 3, we have

ψf = −i
Ck3e

−iδ3k2

360
r3

a
e−ikr

× F
(
i

ka
+ 4, 8, 2ikr

)
k · r
kr

[
5
(

k · r
kr

)2

− 3
]
.

For the first term of the interaction (1),〈
l = 3

∣∣∣∣A ·∇+
∇ ·A
2

∣∣∣∣ l = 0
〉
e

= 0.

The penultimate term in (4) contributes to (H · s).
Using the formulas from the mathematical appen-
dices in [15] to calculate integrals involving con-
fluent hypergeometric functions and performing the
required transformations, we obtain

〈l = 3|V |l = 0〉e

=
15
2
|e|�
mc

〈
l = 3

∣∣∣∣ 1r4 (n · µ)(n ·R)(n · s)
∣∣∣∣ l = 0

〉
e

= i
15
2
|e|�
mc

Ck3e
iδ3k2

360
1
a

∫
r3e−ikr

× F
(
i

ka
+ 4, 8, 2ikr

)
k · r
kr

[
5
(

k · r
kr

)2

− 3
]

× 1
r4
(n · µ)(n ·R)(n · s) 1√

πa3
e−r/ad3r

= i
|e|�
mc

√
π

2
Ck3e

iδ3
√
a

k2

× −2 + 15e
−2δ/ka + (ka)2(−3 + 15e−2δ/ka)
1 + 13(ka)2 + 36(ka)4

×
[(

µ · k
k

)(
R · k

k

)(
s · k

k

)

−1
5

(
(µ ·R)

(
k
k
· s
)

PH
+ (µ · s)
(

k
k
·R
)
+ (s ·R)

(
k
k
· µ
))]

.

5. RATE OF THE ORTHO–PARA
CONVERSION CAUSED

BY THE MECHANISM UNDER
CONSIDERATION

The total probability of ortho–para conversion
from the two states of the hyperfine structure of
the muonic molecule (J = 3/2 and J = 1/2) can be
obtained by means of averaging over the initial states
of the partial transitions [that is, the transitions from
the states characterized by the different projections of
the total spin of the muonic molecule (mS = ±1/2)
and different projections of the angular momentum
(mK = 0,±1)] and summation over the spin of the
conversion electron. Performing integration with re-
spect to the angular variables of the muonic molecule
and denoting by U the matrix element of the distance
R between the nuclei of the muonic molecule,

U = 〈K = 0|R|K = 1〉/aµ,
where aµ = �

2/mµe
2 is the Bohr radius for the muon,

we can obtain expressions for the partial-transition
probabilities. The results are presented in the table.
The symbols α and β stand for the projection values
of 1/2 and −1/2, respectively.

The symbols D1, D2, and D3 appearing in the
table are spelled out as

D1 =
π

12
1

1− e−2π/ka
α4∆E

�

×
(

m2

mµMp

)2

g2U2

(
1 +

1
(ka)2

)

×
(
1
3
+
1− e−2δ/ka

2

)2

,

D2 =
4π
27

1
1− e−2π/ka

α4∆E
�

×
(

m2

mµMp

)2

g2U2

(
1 +

1
(ka)2

)
,

D3 =
π

12
∆E
�
α4

(
m2

mµMp

)2

g2U2

(
1 +

1
(ka)2

)

×(4(ka)
2 + 1)(9(ka)2 + 1)
1− e−2π/ka

×
(
−2 + 15e−2δ/ka + (ka)2(−3 + 15e−2δ/ka)

1 + 13(ka)2 + 36(ka)4

)2

,

where α = e2/(�c) ≈ 1/137 is the fine-structure
constant and g ≈ 2.79 is the proton magnetic mo-
ment.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table

mK mS → m′
S ms → m′

s Partial probabilities

1 α→ α α→ α
1
27
(2
√
D1 −

√
D2)2 +

8D3

4725
α→ β 4D3/945

β → β β → α 2D3/1575

β → β
1
27
(2
√
D1 +

√
D2)2 +

8D3

4725
α→ β α→ α 4D3/945

α→ β 8D3/315

β → α 4D2/27 + 8D3/4725

β → β 4D3/945

β → α α→ α 8D1/27 + 2D3/1575

α→ β 4D2/27 + 8D3/4725

β → α 8D3/4725

β → β 8D1/27 + 2D3/1575

0 α→ α α→ α D2/27 + 4D3/1575

α→ β 16D3/4725

β → α 16D3/4725

β → β D2/27 + 4D3/1575

α→ β α→ α 8D1/27 + 16D3/4725

α→ β 8D3/945

β → α 4D2/27 + 4D3/1575

β → β 8D1/27 + 16D3/4725
The total rate is given by

w =
32D1

9
+
4D2

3
+
8D3

45
.

The quantity U is equal to an integral with respect
to the hyperspherical coordinates,

U =

∞∫
0

ρ5dρ

π∫
0

sin2 χdχ

π∫
0

sinϑdϑ

× f1(ρ)f0(ρ)φ2
g(ρ|χ, ϑ)

ρ cos (χ/2)√
2M

.

6. CONCLUSION

Using the tabular values of the functions for the
muonic molecule, we arrive at

U = 3.5019,

D1 = 0.0462 s−1,

D2 = 0.219 s−1,

D3 = 0.0561 s−1,
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w = 0.466 s−1.

Thus, the conclusions drawn from estimates based
on a dimensional analysis have been confirmed: in the
muonic molecule ppµ, the probability of the ortho–
para transition due to atomic-electron conversion
caused by the interaction between the magnetic mo-
ment of the electron and the magnetic moments of the
nuclei is much less than that for the mechanism of the
electric-dipole transition that can occur owing to the
admixture of the odd state Σu [12]. Since, however,
the calculated rate of the ortho–para transition [12]
exceeds considerably the experimental estimate [10],
it seems reasonable to perform, as was proposed in
[17], precise measurements of the probability of muon
capture by a proton not in liquid but in gaseous hydro-
gen, where the production of muonic molecules can
be disregarded with the needed accuracy.
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Abstract—Neutrino mixing in Standard Model extensions, both renormalizable and effective, with ar-
bitrary numbers of singlet and left-handed doublet neutrinos is investigated in a systematic fashion.
The charged and neutral (Z-boson- and Higgs-boson-mediated) lepton currents are written under a
general Majorana condition, and the independence of observables from the choice of condition, rephasing
invariance, is studied. A parametrization of the neutrino mixing matrices in the doublet–singlet factorized
form is developed. Its relationship with the seesawmechanism is shown in the limit of small doublet–singlet
mixing. The structure of the mixing matrices relevant to neutrino-oscillation experiments is explicated.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The lepton sector of the minimal Standard Model

(SM) of electroweak interactions is amazingly simple
and symmetric. Owing to the supposed absence of
right-handed neutrinos and neutrino masses, the SM
predicts no flavor and CP violation for leptons. Nev-
ertheless, there is no known rule that would prohibit
neutrinos from acquiring masses. More than this,
there are numerous indications of the contrary. If so,
lepton mixing has to occur with all subsequent phe-
nomena such as flavor and CP violation and neutrino
oscillations (for a recent review, see, e.g., [1]).

Lepton mixing should generally be much more
complicated than quark mixing. There are two main
reasons for this. First, the number of (iso)singlet
neutrinos is a priori arbitrary relative to that of
(iso)doublet ones. Second, the Majorana masses for
neutrinos are possible in addition to the Dirac ones.
As a result, three types of associated problems arise.
First, what is the total number of physical parameters,
and how many of them are masses, mixing angles,
and CP-violating phases? Second, what do the
lepton currents, both the vector and scalar ones,
look like in terms of the mixing matrices? And
third, how to parametrize the matrices explicitly? In
the previous paper [2] (see also references therein),
we systematically studied the parameter-counting
problem for SM extensions, both renormalizable and
effective, with arbitrary numbers of singlet and left-
handed doublet neutrinos. Here, we address the
second and third problems.

The gauge interactions of Majorana neutrinos for
SM extensions with arbitrary numbers of singlet and
left-handed doublet neutrinos were studied in [3],

∗This article was submitted by the author in English.
1063-7788/02/6501-0109$22.00 c©
where a parametrization of the neutrino mixing ma-
trices was also proposed. The Yukawa neutrino inter-
actions within renormalizable SM extensions with an
equal number of singlet and doublet neutrinos were
considered in [4]. The studies reported in [3, 4] were
carried out traditionally under the canonical Majo-
rana condition. In the present paper, these results
are generalized under an arbitrary Majorana condi-
tion for any SM extensions, both renormalizable and
effective, with arbitrary numbers of singlet and left-
handed doublet neutrinos. The freedom in choosing
the Majorana condition, rephasing invariance, is put
as a cornerstone of the whole study.

In Section 2, the structure of neutrino interac-
tions, both gauge and Yukawa interactions, is studied
under an arbitrary Majorana condition. In Section 3,
the properties of the interactions under Majorana
neutrino rephasing, including the requirements of
CP invariance, are considered. A parametrization of
the mixing matrices in the doublet–singlet factorized
form is proposed in Section 4. Its relationship, un-
der small doublet–singlet mixing, with the seesaw
mechanism [5] is shown. And finally, the patterns
of neutrino-mixing matrices, relevant to neutrino-
oscillation experiments, are discussed in Section 5.

2. LAGRANGIANS AND MIXING MATRICES

Weak basis. The most general renormalizable
SU(2)W ×U(1)Y -invariant lepton Lagrangian of the
SM supplemented with right-handed neutrinos reads

L = l0LiD/ l0L + e0
RiD/ e0

R + ν0
Ri∂/ν0

R (1)

−
(
l0LY

ee0
Rφ + l0LY

νν0
RφC +

1
2
ν0C

L M †ν0
R + h.c.

)
.
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In (1), the lepton doublet l0L and singlet e0
R and ν0

R
fields with a zero superscript mean those in a weak
basis where, by definition, the symmetry properties
are well stated. It is supposed that the ordinary chiral
families of the SM with the doublet left-handed Weyl
neutrinos in number d ≥ 3 are supplemented with the
singlet (sterile) Weyl neutrinos in number s ≥ 0. Let
us denote such a renormalizable SM extension as
(d, s)r . A priori, one should retain s and d as arbitrary
integers, both s ≤ d and s > d being allowed. We
omit, in the present analysis, the possible vectorlike
lepton doublets. Hence, with allowance for the most
probable exclusion of the fourth heavy chiral fam-
ily [6], one should set, in fact, d = 3. Nevertheless,
we retain d as a free parameter to clarify better the
parameter-space structure of the extended SM. Fur-
ther, D/ ≡ γαDα is the generic covariant derivative
that reduces to the ordinary one, ∂/ = γα∂α, for the
hypercharge-zero singlet neutrinos. Here and inwhat
follows, the notation ν0C

L ≡ (ν0
R)C = Cν0

R
T , etc., is

used for the particle–antiparticle conjugates of chiral
fermions in the weak basis. Y e and Y ν are arbitrary
complex d× d and d× s Yukawa matrices, respec-
tively, and M is a complex symmetric s× s matrix
of the Majorana masses for the singlet neutrinos.
Finally, φ is the Higgs isodoublet and φC ≡ iτ2φ

∗ is
its charge conjugate.

One can generalize the preceding considerations
to the most exhaustive Dirac–Majorana case with
left-handed Majorana masses. The direct Majorana
mass term for the doublet neutrinos is excluded in the
minimal SM by the symmetry and renormalizability
requirements. But in the extended SM as a low-
energy effective theory, it could stem from the SM-
invariant operator of the fifth dimension:

−L′ =
1

2Λ
(
φC†τiφ

)(
l0C
R h iτ2τil

0
L

)
+ h.c. (2)

Here, τi, i = 1, 2, 3, are the Pauli matrices; h is a
d× d symmetric constant matrix; Λ� v is a lepton-
number-violating mass scale (supposedly of order of
the singletMajoranamasses); and v is theHiggs vac-
uum expectation value. The above operator with the
effective isotriplet field ∆i = (1/Λ)

(
φC†τiφ

)
reflects

the oblique radiative corrections in the low-energy
Lagrangian produced by the physics beyond the SM.
With the Higgs doublet as

φ =


 iw+

1√
2
(v + H + iz)


 , (3)

H being the physical Higgs boson and z and w+

being the would-be Goldstone bosons, formula (2)
P

yields (in the unitary gauge) the following mass and
Yukawa term for the neutrinos:

−L′ =
1
2

(
1 +

H

v

)2

ν0C
R µ ν0

L + h.c., (4)

where µ = hv2/Λ. Such an effective SM extension
will be denoted in what follows as (d, s). Note that, if
the isotriplet ∆i were considered to be elementary in
the renormalizable framework, it would change only
the emerging Yukawa interactions, not affecting the
mass and mixing matrices.

Let us now introduce the complete one-handed
neutrino collection (which can always be chosen, say,
as left-handed)

n0
L = (ν0

L, ν
0C
L ), (5)

so that (n0
L)C ≡ n0C

R = (ν0C
R , ν0

R). In this notation,
the total neutrino mass matrix Mn

0 defined by the
mass Lagrangian

−Ln
mass =

1
2
n0C

R M
n
0n

0
L + h.c. (6)

≡ −1
2
n0T

L C−1Mn
0n

0
L + h.c.

is clearly symmetric with allowance for CT = −C.
More particularly, it has the form

Mn
0 =


 µ m

mT M


 , (7)

where m ≡ Y ∗v/
√

2 is an arbitrary d× s matrix of
the Dirac masses; mT is obtained by transposing it;
and M and µ are, respectively, the s× s and d× d
symmetric Majorana mass matrices from (1) and (4).

Mass basis. Let us now consider the mass basis
nL, where, by definition, the neutrino mass matrix is
diagonal. It is understood that the true neutrino mass
eigenfields are d + s four-component fields N (nL)
bringing the neutrino kinetic Lagrangian to the diag-
onal positive form and simultaneously satisfying some
subsidiary Majorana condition to halve the number
of degrees of freedom. The most general condition of
this type has the form [7–9]

NC
ϕ ≡ ϕNϕ, (8)

where NC
ϕ ≡ CN T

ϕ and ϕ = diag (ϕ1, . . . , ϕd+s) is a
diagonal phase matrix. Here and in what follows, we
use the notation with the subscriptϕ to stress that the
quantity at hand generally depends on ϕ. Note that
the maximum number of independent Majorana spe-
cific phases inϕmight be d+ s− 1 because an overall
neutrino phase is unobservable. Expressing Nϕ in
terms of Weyl spinors as Nϕ = ϕLnL ⊕ ϕRnC

R with
some diagonal phase matrices ϕL and ϕR, one finds
that theMajorana condition is satisfied ifϕLϕR = ϕ∗.
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Without loss of generality, one can set, e.g., ϕL = I
and ϕR = ϕ∗, so that

Nϕ = nL ⊕ ϕ∗nC
R. (9)

This choice is advantageous because it results in the
simplest form for the charged current, which is left-
handed (see below). Note that Eqs. (8) and (9) do not
impose any constraint on the original Weyl fields nL.

In these terms, we demand the kinetic part of the
neutrino Lagrangian to be

Ln
kin =

1
2
Nϕ i∂/Nϕ −

1
2
NϕMn

diagNϕ, (10)

with a nonnegative diagonal mass matrixMn
diag in-

dependent of ϕ. To this end, we choose the (d + s)×
(d + s) unitary transformation Un

ϕ ,

n0
L = Un

ϕnL, (11)

so that
UnT

ϕ Mn
0 Un

ϕ = ϕMn
diag, (12)

with1)

Mn
diag = diag (mν

1 , . . . ,m
ν
d;MN

1 , . . . ,MN
s ). (13)

With allowance for Nϕ = NC
ϕ ϕ ≡ −N T

ϕ C−1ϕ, the
neutrino kinetic Lagrangian takes the required form
(10). At s ≤ d for the (d, s)r extension, d− s elements
mν are zero. This reflects the fact that, in this case,
the rank of the (d + s)× (d + s) matrix given by (7)
with µ = 0 is 2s. At s > d, the rank of the matrix is
generally d+ s; hence, there is nomassless neutrinos.

Similarly, the charged lepton fields eχ (χ = L, R)
in the mass basis are defined as

e0
χ = Ue

χeχ (14)

with the unitary d× d matrices Ue
χ, and the bidiago-

nalization of the relevant mass matrix has the form
Ue

L
†Me

0 Ue
R =Me

diag = diag (me
1, . . . ,m

e
d). (15)

By means of the global symmetries of the kinetic part
of Lagrangian (1), one can arrange, without loss of
generality, the charged-lepton weak basis to coincide
with the mass one. This means that Me

0 can be
chosen to be diagonal ab initio, so that Ue

L = Ue
R = I.

The associated neutrinos are usually referred to as
the flavor ones.2) Traditionally, the corresponding
basis is used in discussing the neutrino-oscillation
phenomenon. When there is an admixture of the
heavy Majorana neutrinos, it is only the coherent part

1)The notation corresponds to the partitionNϕ ≡ (ν,N)ϕ and
tacitly implies the seesaw hierarchy mν �MN for all the
elements, with ν being (quasi)doublet neutrinos andN being
(quasi)singlet ones. Nevertheless, there might be experi-
mental indications of the existence of at least one light singlet
neutrino [1].

2)Unfortunately, this is unlike the quark sector where flavor is
synonymous with the mass eigenstate.
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of the light neutrinos that has the meaning of the
flavor state. Note that flavor states modified in this
way are nonorthogonal and process-dependent. But
in fact, there is no need for such a particular choice.
Moreover, themass basis suffices to describe neutrino
oscillations without resort to weak eigenstates [10].

Now, the charged-current Lagrangian in the mass
basis reads

−LW =
g√
2
W−

α eLγ
αVϕNϕL + h.c., (16)

W− being a charged gauge boson and the rectangular
d× (d + s) mixing matrix for the charged currents
being

Vϕ = Ue†
L P enUn

ϕ . (17)

Here, P en is the charged-current matrix in the weak
basis,

P en =
(
Id Od×s

)
, (18)

Id being the d-dimensional identity matrix and Od×s

being the d× s zero matrix. The lepton mixing matrix
Vϕ is the counterpart of the quark CKM matrix. It
follows from (17) and (18) that

VϕV
†

ϕ = Id, (19)

though V †
ϕVϕ �= Id+s. Equation (19) can be regarded

as the one-sided unitarity condition at s �= 0. Note
that, because of the supposed absence of vectorlike
lepton doublets, the right-handed charged currents
do not emerge.

The neutral-current Lagrangian with the SM
neutral-current operator T3 − s2

WQ in the mass ba-
sis is

−LZ =
g

cW
Zα

(
−1

2
eLγ

αeL (20)

+ s2
W eγαe +

1
2
NϕL γαXϕNϕL

)
,

Z being a massive neutral gauge boson. Here, the
(d + s)× (d + s) neutrino mixing matrix for the neu-
tral currents is

Xϕ = Un†
ϕ Pn Un

ϕ (21)

with the onto-doublet neutrino projection operator
Pn = (Pn)2,

Pn = diag ( 1, . . . , 1︸ ︷︷ ︸
d

; 0, . . . , 0︸ ︷︷ ︸
s

). (22)

In (20), one sets cW ≡ cos θW and sW ≡ sin θW, with
θW being theWeinberg angle. Clearly,Xϕ is a Hermi-
tian projection-operator matrix: Xϕ = X†

ϕ and Xϕ =
X2

ϕ �= I. Due to (17) and (18), the relation

Xϕ = V †
ϕVϕ (23)
2
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between the neutral- and charged-current mixing
matrices is obeyed. For the (d, 0) extension, one has
Pn = Id, so thatXϕ ≡ Id; thus, the d× dmatrix Vϕ is
unitary. Moreover, for the renormalizable (d, 0)r ex-
tension, one can always set Un

ϕ = I, whence it follows
that Vϕ = Id. Hence, the lepton-flavor conservation
of the minimal SM is readily recovered.

The Yukawa Lagrangian for the renormalizable
extension (d, s)r has the form

−LY =
H

v
eMe

diage +
z

v
eMe

diagiγ5 e (24)

+
(

1
2
H + iz

v
NϕR

(
ϕ∗XT

ϕ ϕMn
diag

+Mn
diagXϕ

)
NϕL +

√
2i

w−

v

(
eL VϕMn

diagNϕR

− eRMe
diagVϕNϕL

)
+ h.c.

)
.

Here, one makes use of the constraint

XT
ϕ ϕMn

diagXϕ = 0, (25)

which follows from the more particular constraint

Pn Un
ϕ
∗ϕMn

diag Un
ϕ
†Pn = 0, (26)

the latter reflecting the absence of the d× d symmet-
ric left-handed Majorana mass term µ in (7).

For the general extension (d, s), the constraint in
(25) should be discarded. This results in addition
of a number of interaction terms to the Yukawa La-
grangian. For example, according to (4), one should
add, in the unitary gauge, the term

−L′Y =
1
2

(H
v

)2
NϕR ϕ∗XT

ϕ ϕ (27)

×Mn
diagXϕNϕL + h.c.

In (4), the term linear in H is canceled by a similar
term that should now be present in LY.

3. REPHASING INVARIANCE

Let us consider the group of transformations con-
sisting of theMajorana field rephasingNϕ → Φ1/2Nϕ

followed by the transformations

ϕ → ϕΦ∗,

Vϕ → VϕΦ∗1/2
(28)

with a diagonal phase matrix Φ = diag (Φ1, . . . ,

Φd+s). As a result, one also getsXϕ → Φ1/2XϕΦ∗1/2.
All the Lagrangians are clearly rephasing-invariant.
It follows from (28) that independent rephasing-
invariant quantities containing ϕ may be chosen as
Vϕϕ

∗1/2(ϕ1/2Xϕϕ
∗1/2) and ϕ1/2Nϕ. Thus, rephasing

allows one to extract a number of neutrino phases
P

from Vϕ and to reabsorb them in ϕ, or vice versa.
Observables depend only on the sum of the comple-
mentary phases of Vϕ and ϕ∗1/2, as well as ofNϕ and
ϕ1/2, but not separately on each of them (in addition
to phases in the rephasing-invariant combinations of
the matrix Vϕ itself). Clearly, it is not a particular
choice of the Majorana condition but invariance with
respect to this choice that is physically meaningful.3)

Rephasing invariance permits one to chooseϕ that
is the most appropriate for the problem at hand. The
reason is that only theHiggs vertices and the neutrino
wave functions (and, thus, the 〈NϕNC

ϕ 〉 propagators)
depend explicitly on ϕ, whereas the gauge vertices
and the 〈NϕNϕ〉 propagators do not depend on it. As
a result, if the matrix element for a particular process
does not contain ϕ explicitly, then one can extract,
by means of rephasing, as many Majorana specific
phases from Vϕ as is possible. Rephasing invariance
then ensures that, for other ϕ, these phases, though
being superficially present in Vϕ, would not enter into
the final results nevertheless.

To illustrate, the amplitude for (chirality conserv-
ing)NN oscillations

A0(t) = Vϕe
−iEtV †

ϕ (29)

clearly does not depend on the Majorana specific
phases capable of being stored in ϕ, whereas the
amplitude for the (chirality-flip)NNC oscillations

A1(t) = Vϕe
−iEtϕ∗Mn

diagE
−1V T

ϕ (30)

does depend on the phases. In the above, E is the
diagonal energy matrix for the light neutrinos. The
same is true for the neutrino-mass elements ννC in
the weak basis

Mn ∗
νeνe′

=
(
Vϕϕ

∗Mn
diagV

T
ϕ

)
νeνe′

, (31)

which determine the rates of neutrinoless double β
decay (at e′ = e) or eµ̄ conversion (at e′ = µ). Note
that, according to (24) and (27), the (chirality-flip)
Yukawa interactions might also serve as a probe for
the Majorana specific phases.

3)Let us stress that, owing to rephasing invariance, fixing
a choice for ϕ has nothing to do with the real physical
properties of the Majorana neutrinos—in particular, with
those concerning C conjugation. The latter properties are
described additionally by the fact that, if the neutrino mass
eigenstates do possess definite C parity ηC = diag (±1),
then C conjugation for the Majorana eigenfields should be

consistently redefined [8] asNϕ
C→ NCϕ

ϕ ≡ ηCϕ
∗NC

ϕ , where

traditionally NC
ϕ ≡ CN T

ϕ . It follows hereof that the mod-

ified (anti-)self-charge conjugacy condition NCϕ
ϕ = ηCNϕ

is indeed satisfied independently of ϕ. Hence, an attempt at
ascribing physics content to the Majorana condition being
chosen superficially in the self- or anti-self-charge conjugate
form would be misleading.
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Canonical Majorana condition. Sometimes, it
might be tempting to go over to a basis where the
Majorana neutrino wave functions have a canonical
form. Namely, the rephasing by Φ = ϕ yields ϕ→ I,
with I being the identity matrix, and the transformed
fields NI satisfy the canonical Majorana condition
NC

I = NI . Under this condition, all physical mixing
parameters reside only in mixing matrices. With al-
lowance for theXϕ Hermiticity propertyXϕ = X†

ϕ, or
ReXT

ϕ = ReXϕ and ImXT
ϕ = −ImXϕ, the neutrino

neutral-current parts of Lagrangians (20) and (24)
can now be reexpressed as

−Ln
Z =

g

4cW
ZαNIγ

α
(
i ImXI − γ5 ReXI

)
NI

(32)

and4)

−Ln
Y =

1
2
H

v
NI

(
ReXI (33)

+ iγ5 ImXI

)
Mn

diagNI

+
1
2
z

v
NI

(
ImXI − iγ5 ReXI

)
Mn

diagNI + h.c.

CP invariance. It is well known that, for a field
theory not to explicitly violate CP , there should be
allowed a weak basis where all the parameters in the
Lagrangian are real. Under this condition, the neu-
trino mass matrixMn, being symmetric, can always
be reduced to the (real) diagonal form (generally, not
positive definite) by means of an orthogonal transfor-
mation Un = On with the effect

OnTMnOn = ηMMn
diag. (34)

Here, ηM ≡ diag (±1) is the mass-signature matrix,
which is completely determined by the originalMn.
Clearly, the mixing matrix VηM

≡ R = P enOn is real.
Here and in what follows, the basis where Ue

L =
Ue

R = I is generally chosen for the sake of simplic-
ity. In the rephasing-invariant form, one gets Vϕ =
R (ϕηM )1/2; hence, the condition for CP invariance
has the form

Vϕ = V ∗
ϕϕηM , (35)

as well as
Xϕ = ηMϕ∗X∗

ϕϕηM . (36)

Let us stress that CP conservation does not mean
that Vϕ and Xϕ must be real in general.

In the mass basis, one can define CP conjugation
(in the unitary gauge) as

e(x)→ γ0e
C(xP ), (37)

Nϕ(x)→ ηCPϕ∗γ0NC
ϕ (xP ),

4)Under the condition ϕ = I , the Yukawa term for the renor-
malizable extension (n, n)r was found in [4].
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W±(x)→ −W∓P (xP ),

Z(x)→ −ZP (xP ),

H(x)→ H(xP )

(with xP ≡ (x0,−x), etc.). The definition is clearly
rephasing-invariant. Here, iηCP , with ηCP ≡
diag (±1), is the matrix of the (relative) CP parities
for the neutrino mass eigenstates [8, 9]. In the
above, ηCP is not arbitrary, but it is to be properly
defined for consistency. Namely, under (37) the whole
Lagrangian can be shown to transform into itself,
where the substitution

Vϕ → V ∗
ϕϕηCP (38)

is made. Imposing the requirement of CP invariance,
one arrives with allowance for (35) at the identity

ηCP ≡ ηM . (39)

This identity ensures the consistency of the descrip-
tion of CP invariance directly in terms of rephasing-
invariant quantities, which, being built of Vϕ and ϕ,
depend on ηM , with the description in terms of the
explicit CP transformations (37), which depends on
ηCP .

In particular, in the case of CP conservation, one
finds for the amplitudes in (29)–(31) that

A0(t) = Vϕe
−iEtηCP ϕ∗V T

ϕ , (40)

A1(t) = Vϕe
−iEtηCPMn

diagE
−1V †

ϕ ,

Mn ∗
νeνe′

=
(
Vϕ ηCPMn

diagV
†

ϕ

)
νeνe′

.

At νe = νe′ , the last line explicitly demonstrates the
possibility for the (partial) compensation of vari-
ous contributions to the lepton-number-violating
eē transition under CP conservation. At ϕ = ηCP ,
the matrix Vϕ (as well as Xϕ) becomes pure real,
VηCP

≡ R, so that

A0(t) = R e−iEtRT , (41)

A1(t) = R e−iEtηCPMn
diagE

−1RT ,

Mn
νeνe′

=
(
R ηCPMn

diagRT
)

νeνe′
.

The basis NηCP
may be referred to as a CP-

associated one. In a sense, it might present the most
natural choice for a CP-conserving theory, all other
bases being equivalent, though probably less conve-
nient. To compare, under the canonical Majorana
condition ϕ = I, the elements of VI (and XI ) in the
CP-conserving theory should be, according to (35),
either pure real or imaginary [8, 9, 11], and this has
nothing to do with maximal CP violation, as might
superficially seem.
2
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4. DOUBLET–SINGLET PARAMETRIZATION

General case. A mathematical parametrization
of the neutrino mixing matrix Un is given in [3]. An
alternative physical prescription, heavily relying on
the doublet–singlet neutrino content and thus be-
ing useful for practical purposes, is proposed in the
present study. For the sake of simplicity, the subscript
ϕ will be omitted in what follows. First of all, we
note that, by means of the global symmetries of the
Lagrangian, one can always ensure, without loss of
generality, that Ue

L = Ue
R = I.5) Now, before applying

any restrictions on the neutrino mass matrixMn, the
(d+ s)× (d+ s) unitary mixingmatrix Un is arbitrary
and can be decomposed in a unique way (at least in a
neighborhood of unity) as

Un = Un
d Un

s Un
m. (42)

Here, Un
d is a unitary d× d matrix in the doublet

neutrino subspace. This matrix is spanned by d2

generators and depends on d(d− 1)/2 mixing angles
and d(d + 1)/2 phases. More particularly, one can set

Un
d =


 Uν

d 0

0 Is


 (43)

with a d× d unitary matrix Uν
d . There is still a

freedom of redefining d charged lepton phases which
is left after the mass matrix in (15) is diagonalized.
According to (17) and (42), this freedom can be used
to eliminate d phases from Un

d . It clearly leaves only
d(d− 1)/2 independent phases in this matrix (and an
equal number of mixing angles).

Now, one can write the following explicit paramet-
rization for Uν

d (d > 1) in terms of the modified Pon-
tryagin coordinates of the second kind [3]:

Uν
d = udiag(α)

∏
f,g=1,...,d

f<g

⊗ufg(θfg, δfg). (44)

The product above should be understood in some
particular (but a priori unspecified) order. Here,
udiag is a diagonal d× d phase matrix udiag(α) =
diag (eiα1 , . . . . . . , eiαd), which distinguishes equiv-
alent parametrizations and is at our disposal. (At
d = 1, one has Uν

1 = eiα1 .) The basic matrix ufg

(“complex rotation”), one of a set of d(d− 1)/2
unitary SU(2) submatrices, acts in the f–g plane,
f �= g, and depends only on one mixing angle θfg and
one phase δfg :

ufg = exp


 0 θfge

iδfg

−θfge
−iδfg 0


 (45)

5)For this reason, lepton mixing is synonymous with the neu-
trino one.
P

=


 cos θfg sin θfge

iδfg

− sin θfge
−iδfg cos θfg


 .

By means of the identity

udiag(α)ufg(θfg, δfg)u
†
diag(α) (46)

= ufg(θfg, αf + δfg − αg),
one can eliminate d− 1 δ’s from Uν

d and transform
these phases into the same number of Majorana spe-
cific ones, the dth of the latter phases being un-
physical.6) It clearly leaves (d− 1)(d− 2)/2 CKM-
like phases and d− 1 Majorana specific ones. Thus,
under proper phase redefinitions, the matrix Uν

d may
be chosen in experimentally viable cases of d = 2 and
3, respectively, as

Uν
2 =


 c s

−s c




 eiα 0

0 1


 (47)

and

Uν
3 =




c3 s3 0

−s3 c3 0

0 0 1






c2 0 s2

0 1 0

−s2 0 c2


 (48)

×




1 0 0

0 c1 s1e
iδ

0 −s1e
−iδ c1






eiα1 0 0

0 eiα2 0

0 0 1


 ,

where c ≡ cos θ and s ≡ sin θ for respective θ’s.
Clearly, one can shift the ordinary phase δ to any of
the si, i = 1, 2, 3.

Further, Un
s is the counterpart of Un

d in the singlet
neutrino subspace with indices f = d + 1, . . . , d + s
being spanned by s2 generators and dependent on
s(s− 1)/2mixing angles and s(s+ 1)/2 phases. One
has

Un
s =


 Id 0

0 UN
s


 (49)

with an s× s unitary matrix UN
s . Clearly, Un

d
and Un

s commute with each other. According to
(17), the matrix Un

s is irrelevant to observables.
Hence, by means of global symmetries, one can
always ensure, without loss of generality, that UN

s =
diag (eiαd+1 , . . . , eiαd+s), with α’s being at our dis-
posal. This choice is advantageous to subsequently
expose the Majorana specific phases in Un.

6)Strictly speaking, this is true only for the (d, 0) case. For
the (d, s) extension, the Majorana specific phases could be
exposed only after taking into account the matrix Un

m.
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Finally, Un
m is a unitary (d + s)× (d + s) matrix

spanned by 2sd generators that mix the two sub-
spaces. The last property follows from inversion of
(11) for the transformation between the weak and
mass neutrino bases. This matrix depends generally
on the sd mixing angles and on the same number of
phases. It follows from (21) and (42) that the neutral-
current mixing matrix takes the form

X = Un†
m Pn Un

m. (50)

In other words, it depends exclusively on the pa-
rameters of Un

m, the rest of the parameters present
in Un

d manifesting themselves only through charged
currents (and thus through neutrino oscillations). To
achieve this goal, the chosen order of matrices Un

d
and Un

s relative to Un
m in (42) is crucial. The factor-

ization property of the charged and neutral currents
makes the parametrization in (42) very convenient
in practice. Altogether, the total neutrino mixing
matrix Un for the general (d, s) extension contains
d(d− 1)/2 + sd physical mixing angles and the same
number of phases, in agreement with [2, 3]. Similarly
to (44) and (45), one can propose, for Un

m, the explicit
representation

Un
m =

∏
f=1,...,d
g=1,...,s

⊗uf,d+g(ωf,d+g) (51)

with a fixed but a priori unspecified order of sub-
matrices and with ωf,d+g being ds arbitrary complex
numbers. When restricted to a 2× 2 complex plane,
the matrices uf,d+g are quite similar to those given by
(45). By means of the identity in (46) with diagonal
phases from Uν

s , one can eliminate s phases from ds
ones in Un

m and get, in the end, d + s− 1 Majorana
specific phases in Un.

As for the renormalizable (d, s)r extension, the
d× d symmetric matrix constraint (26) reduces d(d +
1)/2 phases and the same number of moduli, d of
the latter ones corresponding to masses and d(d−
1)/2 to mixing angles. As a result, Un contains
sd-independent physical mixing angles and d(s− 1)
phases, precisely as it should according to the general
counting of [2]. Superficially, the above constraint re-
stricts only the parameters in Un

m and does not touch
those in Uν

d . But it can be shown that, at d ≥ s > 0,
due to the presence of d− s massless neutrinos, it
is additionally possible to eliminate, from Uν

d , the
parameters corresponding to U(d− s) symmetry. It
leaves, in Uν

d , ds− s(s + 1)/2 independent θ’s and
d(s− 1)− s(s− 1)/2 δ’s. Note that the constraint
does not invalidate the charged-neutral-current fac-
torization property.

This gives a complete solution to the problem.
There are two important cases with neutral currents
remaining diagonal.
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Only Dirac masses. For the particular case of the
(d, s)r extension with only Dirac masses, a further
reduction of parameters is possible. For the d×
s Dirac mass term, diagonalization of the neutrino
mass matrix by Un

d Un
s yields

mdiag = UνT
d mUN

s , (52)

with the nonnegative elements on the quasidiagonal,
the rest being zero. Let us recall that UN

s is unob-
servable. At 0 < s ≤ d, one has s nonzero entries
in mdiag. Hence, there is the U(d− s)× U(1)s−1

left-out symmetry in the doublet neutrino subspace,
which reduces the number of parameters in Uν

d to
sd− s(s+ 1)/2 mixing angles and sd− s(s+ 1)/2−
d + 1 phases. At 0 < d < s, there are d nonzero
entries, the left-out symmetry in the doublet neu-
trino subspace is only U(1)d−1, and one recovers the
CKM-like scheme for d Dirac neutrinos with d(d−
1)/2mixing angles and (d− 1)(d− 2)/2 phases. This
explicit counting is completely in accordance with the
general one in [2].

Finally, there still remains, in Un
m, the maximal

(with π/4 angles) mixing between the pairs of the
mass-degenerate eigenfields. For a proper choice of
ϕ, the ensuing orthogonal transformationOn reduces
the neutrino mass matrix to the real diagonal form
Mn

diag =
(
m1(1,−1), . . . ,mp(1,−1), 0, . . . , 0

)
, with

p = min (d, s). It corresponds to p pairs of the mass-
degenerate Majorana neutrinos with the opposite
CP parities plus |s− d| massless neutrinos. The
emerging mixing matrix X in (50) is superficially
nondiagonal. Via the reversed transition to the
Dirac basis, the neutral currents may nevertheless
be represented in an explicitly flavor-conserving form
independent of ϕ. As for massless neutrinos, there
is no difference whether they are considered as Weyl
or Majorana ones. The neutral-current Lagrangian
Ln

Z for the doublet massless neutrinos is flavor-
conserving, singlet massless neutrinos being sterile.

Only Majorana masses. In the case of (d, s)
extension with only Majorana masses, one has Un

m ≡
I; hence, X ≡ Pn. The neutrino part of interactions
now becomes

Ln
Z =

g

4cW
ZαNγαγ5P

nN (53)

and (in the unitary gauge)

−Ln
Y =

(
H

v
+

1
2

(H
v

)2
)
NMn

diagP
nN , (54)

both Lagrangians being explicitly independent of ϕ.
Owing to presence of the onto-doublet neutrino pro-
jection operator Pn, the singlet neutrinos are ensured
to be sterile.

Small doublet–singlet mixing. It is instructive
to discuss the mixing matrices under the condition
2
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of a small doublet–singlet mixing, the case of im-
portance for phenomenology. In particular, this is so
in the framework of the seesaw approximation (see
below). Making use of the equivalent representation
for (51) as

Un
m = exp


 0 ω

−ω† 0


 , (55)

where ω is an arbitrary complex d× s matrix, one
finds at small ω that

Un
m (56)

=


 1− 1

2ωω
† ω

(
1− 1

6ω
†ω
)

−ω†(1− 1
6ωω

†) 1− 1
2ω

†ω


+O(ω4)

and
Un (57)

=


 Uν

d

(
1− 1

2ωω
†) Uν

d ω
(
1− 1

6ω
†ω
)

−ω†(1− 1
6ωω

†) 1− 1
2ω

†ω


+O(ω4).

Hence, one has

V =
(

Uν
d

(
1− 1

2ωω
†)Uν

d ω

)
+O(ω3), (58)

as well as

X =


 1− ωω† ω

ω† ω†ω


+O(ω3). (59)

These expressions can readily be generalized with any
finite accuracy in ω.7)

Finally, the constraint for the (d, s)r extension
given by (25) yields

ϕν∗mν
diag = −ωϕN∗MN

diagω
T +O(ω4). (60)

This determinesmν
diag and a part of the ω’s in terms of

MN and the rest of the ω’s. For example, in the sim-
plest case of s = 1, the solution to the equation can
be shown to be given by the d-dimensional vector ω
with one nonzero component ωd = (−ϕν

d/ϕ
N )1/2|ω|,

so thatmd = |ω|2M . Reversing, one gets generically
ω = O(|mν

diag/M
N
diag|1/2). The general solution to

Eq. (60) is given by an s× s nonzero matrix with the
proper constraints following from the equation. As a

7)Clearly, the above results are not applicable in the case of
pseudo-Dirac neutrinos where ω’s are generally not small.
Here, (55) could be properly modified by decomposing the
mixing matrix Un

m into the product of two parts, Un
m ≡

Un
m2Un

m1. The part Un
m1 should produce a transition to

the pseudo-Dirac basis by a set of (mutually commuting)
pairwise transformations at (nearly) π/4 angles. The part
Un

m2 due to the rest of the ω’s could result in the remaining
flavor-violating corrections.
P

result, the parameters in Un are shared between the
independent ones in Un

d and Un
m as is shown in the

table. The relations above have their close counter-
parts in the framework of the seesaw approximation
(see below).

The part Un|d×d of the total mixing matrix Un that
spans the d× d subspace of the doublet neutrinos
reads

Un|d×d = Uν
d

(
1− 1

2
ωω†

)
+O(ω4). (61)

It includes the d× d Hermitian combination ωω† for
the d× s matrix ω. This brings in additional mixing
angles and phases. But even if these terms are disre-
garded, when Un|d×d = Uν

d is unitary, the number of
physical phases in it being relevant for the Majorana
neutrinos, d(d− 1)/2, would exceed (d− 1)(d− 2)/2
given by the CKM-like unitary matrix for the Dirac
neutrinos. In essence, this difference is due to the
freedom of fixing, in Uν

d , out of the initial d(d + 1)/2
phases, only d phases in the Majorana case, instead
of 2d− 1 ones in the Dirac case.

Seesaw approximation. In order to evaluate the
mixing magnitudes and to study the decoupling limit,
it is useful to compare the general results for small
mixing with those obtained within the seesaw mech-
anism by the explicit diagonalization of the neutrino
mass matrix. By the unitary global transformation
U(s) of the singlet neutrinos, the mass matrix M in
(7) can be reduced to the diagonal form

M = ϕNMN
diag. (62)

Moreover, d phases of the Dirac mass matrix m can
be eliminated owing to the freedom of redefining the
charged-lepton phase. This freedom is still left af-
ter the simultaneous diagonalization of the charged-
lepton mass matrix by the biunitary d× d transfor-
mation. Thus, the total neutrino mass matrix Mn

clearly contains s(d + 1) independent moduli, s of
them corresponding to physical masses and sd ones
to mixing angles, as well as d(s− 1) phases. This
explicit counting for the (d, s)r extension is in accor-
dance with the general one presented in [2].

The results of [12] for the neutrino-mass diag-
onalization in the (n, n)r extension can readily be
generalized to the (d, s)r one. Under the condition
MN

diag � |m| for all the elements, the seesaw neutrino
mixing matrix can be found to be

Un′
m =


 1− 1

2ξ
†ξ ξ†

(
1− 1

2ξξ
†)

−ξ
(
1− 1

2ξ
†ξ
)

1− 1
2ξξ

†


+O(ξ4),

(63)

where the s× d matrix ξ is ξ ≡M−1mT , |ξ| � 1.
Clearly, ξ results in sd mixing angles and d(s − 1)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Independent mixing parameters for the renormalizable (d, s)r extension

Case Parameters Un Un
d Un

m

d ≥ s > 0 Angles ds d(d− 1)/2 s(s + 1)/2

−(d− s)(d− s− 1)/2

Phases d(s− 1) d(d− 1)/2 s(s− 1)/2

−(d− s)(d− s + 1)/2

s > d > 0 Angles ds d(d− 1)/2 sd− d(d− 1)/2

Phases d(s− 1) d(d− 1)/2 sd− d(d + 1)/2

d = s = n Angles n2 n(n− 1)/2 n(n + 1)/2

Phases n(n− 1) n(n− 1)/2 n(n− 1)/2
phases in the neutrino mixing matrix. Up to next-to-
leading order in ξ, the matrix Un′

m bringsMn
0 from the

texture form

Mn
0 =


 0 ξTM

Mξ M


 (64)

to the block-diagonal formMn′
= Un′T

m Mn
0 Un′

m with

Mn′
(65)

=


−ξTMξ 0

0 M +
1
2

(
Mξξ† + ξ∗ξTM

)

+O(ξ3).

Now, by means of the unitary d× d transformation
Uν′

d , one can diagonalize the mass matrix for light
neutrinos,

ϕνmν
diag = −Uν′

d

T
ξTϕNMN

diag ξ U
ν′
d +O(ξ4), (66)

so that ξ = O((mν/MN )1/2). Similarly, by the uni-
tary s× s transformation UN ′

s = Is +O(ξ2), one can
diagonalize the mass matrix for the heavy neutrinos.
Under the condition that the left-handed Majorana
mass term µ isO(1/M), Eq. (66) is straightforwardly
generalized to

ϕνmν
diag (67)

= Uν′
d

T
(
µ− ξTϕNMN

diagξ
)
Uν′

d +O(1/M3).

The full neutrino mixing matrix in the seesaw
framework has the form Un = Un′

m Un′
d Un′

s . Compar-
ing it with that in the doublet–singlet parametrization
(42), one finds that the parametrizations differ by
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
the order of the matrices. As a result, this leads to
somewhat different representations for V (and X).
In the absence of the direct masses for the doublet
neutrinos, the model-independent matrix ω is related
to the seesaw matrix ξ as

ξ = (Uν
d ω)† +O(ω3), (68)

where Uν′
d = Uν

d +O(ω2). In this, all the quantities
ω, Uν

d , and ξ generally depend on ϕ. The parameters
of ξ are clearly shared between the independent ones
in Uν

d and ω in accordance with the table.

In the limit ξ=O(m/M)→0 and, hence, mν→0,
one has to substitute effectively Uν

d → Id because of
neutrino mass degeneracy. Thus, all light-neutrino-
mixing effects in the seesaw framework disappear
at v/M � 1, signaling the onset of decoupling. In
particular, it follows from (24) and (27) that the Higgs
boson decouples from the νN current in the seesaw
framework in the leading order O(M), only Yukawa
couplings O(v) generally being left. As for NNH

vertices, they are O(v2/M) in the limit M � v.8)

The seesaw matrix ξ (and, more generally, ω) results
in the nonuniversality and nonunitarity of the lepton
charged and neutral currents, and it can be estimated
experimentally to be small, typically | ξ | ≤ O(10−1–
10−2) [13].

8)This contradicts the statement of [4] made within the seesaw
framework on a significant enhancement of the νNH and
NNH vertices. The enhancement could clearly take place
at large M only if the suppression (∼1/M or 1/M2) of the
mixing elements is disregarded. Otherwise, it could be just a
numerical effect at not overly largeM .
2
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Some comments are finally in order. It is clear from
the above that the seesaw form of Un′

m , given by (63),
closely resembles the most general one given by (56).
In fact, this seesawlike structure does not depend on
the particular expression (7) for the neutrino mass
matrix, the latter restricting only the number of inde-
pendent parameters through constraint (60). Where-
as the seesaw results, under condition mν �= 0, can
strictly be applicable only at ξ �= 0, the advantage of
the model-independent parametrization is that it can
straightforwardly be generalized to a case of arbitrary
ω. The mixings and masses become completely dis-
entangled. In particular, one can have, e.g., ω = 0
at mν �= 0, or mν = 0 at ω �= 0. In addition, it is
possible to have finite ω at M � v and thus produce
enhancement in vertices involving heavy neutrinos.
Clearly, the violation of decoupling can originate in
the given framework only owing to the nonrenormal-
izable Lagrangian (2). This general parametrization
completely exhausts all the possibilities for the neu-
trino masses, including these of the pure Dirac and
Majorana origins.

5. NEUTRINO OSCILLATIONS

The structure of Un for the SM general extension
(d, s) (in practice, d = 3) could be used in discussing
the pattern of light-neutrino oscillations. Both Dirac
and Majorana light neutrinos are permitted a priori.
Because the Dirac neutrino can be regarded as a pair
of mass-degenerate Majorana ones (with opposite
CP parities), SM extensions featuring at least a few
additional light degrees of freedom are of interest.
The primordial abundances of light nuclei in standard
big-bang nucleosynthesis restrict the number of rel-
ativistic two-component neutrinos in equilibrium to
be less than 3.2 (95% C.L.) [14]. Hence, depending
on the model, the number of the light sterile neutrinos
could still be accommodated. Sticking to as simple
a neutrino content as is possible, one can encounter
two different scenarios: with and without one sterile
light Majorana neutrino.

No light singlet neutrino. At any s, that part
of the neutrino mixing matrix Un which is relevant to
oscillations reduces, in this case, to Un|d×d. In the
leading O(ω) approximation, it is the d× d unitary
matrix Uν

d . This effectively simplifies the (d, s) exten-
sion to (d, 0) in the light-lepton sector [in practice, it
is the (3, 0) one and the corresponding mixing matrix
is given by (48)]. As is stated before, Uν

d depends
generally on d(d− 1)/2 physical mixing angles and
on the same number of phases. But, according to
(29), neutrino oscillations with chirality conservation
(coinciding here with the total-lepton-number con-
servation, ∆L = 0) are insensitive to d− 1 phases
PH
capable of residing in the Majorana condition matrix
ϕ. This reduces the number of observable phases
to (d− 1)(d − 2)/2, precisely as in the Dirac case.
Hence, there is no difference here for ∆L = 0 neu-
trino oscillations between the Majorana and Dirac
cases [15]. This effective suppression could be evaded
though for chirality-flip (here also, lepton-number-
violating, |∆L| = 2) oscillations. But, according to
(30), these ones are in turn chirally suppressed; i.e.,
their intensity is O((mν/E)2) at neutrino energies
E > mν [15, 16]. It follows that, in this case, it would
be hard to observe, in oscillations, specific Majorana
CP violation, if any.

Finally, in the absence of light singlet neutri-
nos, chirality-conserving light-neutrino oscillations
are described within the given assumptions just by
the d× d unitary matrix Uν

d of the CKM-like type
with d(d− 1)/2 mixing angles and (d− 1)(d − 2)/2
phases. Allowance for O(ω2) terms due to the
doublet–singlet mixing would reveal additional CP-
violating phases in Uν

d (plus those in ω itself). In
addition, it is clear that, in this case, neutrino os-
cillations are mainly sensitive to a different set of
mixing parameters than the neutral-current mixing
matrix, the latter one being determined entirely by the
doublet–singlet mixing matrix Un

m(ω). Hence, the
two phenomena essentially disentangle in this case.

Light singlet neutrino. As for the case with
a light singlet neutrino, the doublet–singlet mixing
can no longer be ignored and should be taken into
account, producing the observable effect. Among
singlet neutrinos, only the light one is relevant in
the leading O(ω) order to light-neutrino mixing. In
the approximation used, one can effectively set s = 1,
thus reducing the problem to the (d, 1) case. The
matrix Un

m in (56) is given by its part not higher
than O(ω), where ω = (ω1, . . . , ωd). Thus, Un ef-
fectively depends on d(d + 1)/2 physical mixing an-
gles and an equal number of phases, in accordance
with [2]; d(d− 1)/2 of each of them reside in the
doublet–doublet mixing Uν

d , and d in the doublet–
singlet mixing Un

m(ω). Such an approximate (d +
1)× (d + 1) matrix Un is unitary to the given accu-
racy and presents the most general mixing matrix in
this approximation. Owing to explicitϕ independence
of the helicity-conserving (now not coinciding any
longer with lepton-number-conserving) oscillations,
the number of phases relevant to these oscillations,
reduces to d(d− 1)/2, as if there were d + 1 Dirac
neutrinos.

Actually, one has d = 3, and experiments might
suggest a pairwise neutrino mixing [1]. It consists
only of the mixing of a pair of doublet neutrinos
(chosen here as ν1 and ν2) between themselves and
the mixing of the light singlet neutrino (N1 ≡ ν4)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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only with the remaining doublet neutrino ν3, i.e., ω =
(0, 0, ω3). Hence, in the case at hand, the neutrino
mixing (3, 1) reduces to the product of two cases,
(2, 0) and (1, 1), each of them corresponding to one
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
mixing angle and one Majorana specific phase (the
latter being unobservable in the helicity-conserving
oscillations). For proper redefinitions, the mixing
matrix Un thus becomes
Un =





 c1 s1

−s1 c1




 eiα1 0

0 1


 0

0


 c2 s2

−s2 c2




 eiα2 0

0 1







. (69)
Under the given assumptions, Eq. (69) describes the
general mixing for four light neutrinos [one of them
being (quasi)sterile], which is consistent with exper-
imental data. For the charged-current mixing matrix
V = P enUn, one accordingly has

V =




c1 s1 0 0

−s1 c1 0 0

0 0 c2 s2







eiα1 0 0 0

0 1 0 0

0 0 eiα2 0

0 0 0 1




. (70)

For the neutral-current mixing matrix X =
UnPnUn† = V †V , the result is

X =





1 0

0 1


 0

0


 c22 c2s2e

−iα2

c2s2e
iα2 s2

2







. (71)

Clearly, c2, s2 �= 0 results in flavor violation in neutral
currents. Let us recall that, to describe completely
lepton interactions, one should also specify the matrix
ηCP of neutrino CP signatures, as well as the matrix
ϕ of the Majorana condition to which the mixing
matrices above correspond. In particular, only then
can one decide whether there isCP violation or not in
general. But in chirality-conserving oscillations, CP
will always be conserved because all the phases here
are the specific Majorana ones.

6. SUMMARY

The neutrino gauge and Yukawa interactions
for the SM extensions, both renormalizable and
effective, have been systematically investigated under
an arbitrary Majorana condition. Independence
from the particular choice of this condition has
been demonstrated by means of explicit rephasing
invariance. This invariance has been used to exhibit
2

manifestations of the specific Majorana phases. The
parametrization of the neutrinomixingmatrices in the
doublet–singlet factorized form has been proposed.
Its relation to the seesaw approximation has been
shown. The patterns of neutrino mixing relevant to
neutrino oscillation experiments are exposed.
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Abstract—The rare processes of weak heating and cooling of ultracold neutrons reflected from the surface
of fluorosubstituted oil are studied. The probability of these processes is estimated at 10−6 per single
reflection at energy transfer commensurate with the primary neutron energy. Weak heating and cooling
are shown to be a manifestation of a more general phenomenon—quasielastic neutron reflection whose
probability is dependent on temperature. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the preliminary article [1], we reported on the
observation of the rare process of weak cooling of
ultracold neutrons (UCN) stored in a vessel whose
walls were covered with Fomblin fluorosubstituted
oil. In [2, 3], this rare process was revealed for UCN
reflected from the surface of various materials. The
results of those studies were at odds with the preva-
lent concept of absolutely elastic UCN reflection from
material surfaces and stimulated theoretical studies
to explain the observed phenomenon [4, 5].

In this article, we present the results of a more
detailed study of the rare processes of weak heating
and cooling of neutrons reflected from the surface of
Fomblin oil, which is widely used in UCN storage
experiments—in particular, in those that are aimed at
measuring the neutron lifetime.

2. WEAK UCN COOLING IN THE CASE
OF SUBBARRIER REFLECTION

Weak UCN cooling has been studied with the aid
of a gravitation spectrometer employing a plunging
absorber (Fig. 1) intended for generating a narrow
energy spectrum of UCN and for subsequently ana-
lyzing its variations with time. A cylindrical vessel
of diameter 64 cm used to store UCN and inserted
into a vacuum casing was the hub of our facility.
Ultracold neutrons produced by a source were fed into
the vacuum casing, whereupon they penetrated into
the storage vessel through a narrow ring-shaped slit
formed by the top edge of the vessel ledge of height
a = 12.3 cm and the bottom edge of the movable
cylinder. Neutrons that ascended at altitudes in ex-
cess of a (these were neutrons whose kinetic energy
near the vessel bottom was above Eb = mga, where

1) Laue–Langevin Institute, 38042 Grenoble, France.
1063-7788/02/6501-0011$22.00 c©
m is the neutron mass and g is the acceleration due
gravity) could be accumulated in the vessel. While the
vessel was filled, the movable cylinder was held at the
highest position, opening the slit for UCN to enter the
vessel. On filling, the cylinder was lowered to close
the slit. To increase the frequency of UCN reflections,
a few layers of lead shot 3.5 mm in diameter were
strewed on special horizontal grids in the vessel and
at its bottom. The entire inner surface of the ves-
sel and the shot surface were covered with Fomblin
oil. The presence of the shot ensured a virtually
isotropic distribution of the UCN flux in the volume.
A polyethylene disk 58 cm in diameter arranged at
an altitude hd with respect to the bottom was used
to form the upper boundary of the UCN spectrum.
The disk efficiently absorbed UCN that could reach
altitudes of h > hd, with the result that a narrow
spectrum of neutrons was formed in the vessel. The
maximum altitude at which UCN belonging to the
main part of the spectrum could ascend was within
the range a < h < hd. The relative fraction of UCN
that could reach altitudes of h > hd was determined
by the time parameters of the accumulation procedure
and the so-called spectrum purification from above.
Upon the formation of the primary spectrum of UCN
and their storage, the disk was used to measure the
spectrum by consecutively moving it down to a preset
altitude h and by determining the number of UCN
that remained in the vessel.

The measuring run included the procedures of (1)
filling the vessel over a period of tf = 175–300 s with
a disk positioned at the altitude hd; (2) bounding the
spectrum from above (purification) over a period of
tc = 100 s with the disk fixed at the altitude hd; (3)
lifting the disk to the altitude of hmax = 15.5 cm and
storing UCN in the vessel (evolution) for tev = 20,
620, and 1200 s at this disk position; (4) moving
the disk down to an altitude h and removing UCN
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the spectrometer and its position in the
UCN beam: (1) inlet UCN guide, (2) inlet valve, (3) de-
tector valve, (4) UCN detector, (5) outlet valve, (6) stor-
age vessel, (7) bottom cylinder of the storage vessel, (8)
outer vacuum casing of the spectrometer, (9) movable top
cylinder, (10) polyethylene disk used to absorb UCN, (11)
evacuation, (12) absorber position at various altitudes h
of the disk, (13) inlet slit, and (14) additional sample in
the form of lead-shot layers.

with a maximum altitude above a preset value of h
by means of their absorption in the disk over a period
of tm = 200 s; (5) recording UCN that remained in
the vessel after the completion of procedure (4) over
a period of tr = 200 s [during this procedure, the disk
was held at the altitude h, the shutter of the bottom
vessel was opened, and UCN flowed onto the detector
that recorded their number J(h)]; and (6) measuring
the detector background over a period of 50 s.

A consecutive fulfillment of these procedures
made it possible to measure the dependence J(h) =
const×

∫ h
0 F (x)dx, where F (x) is the spectrum of

UCN in the vessel in terms of the maximum altitude
at which they ascend. Numerically, the UCN energy
measured in neV was nearly coincident with their
maximum altitude in centimeters.

In the first run, the measurements were performed
at hd = 13.475 cm and the inlet-slit width of d =
1.175 cm (the mean value along the perimeter). The
calculated frequency of UCN reflections in the vessel
was f = 19 Hz, the mean UCN speed near the bot-
tom was 160 cm/s, and the measured time of neutron
storage was τ = 680.0(9.5) s. Figure 2 shows the
dependences J(h) for the evolution times of 20, 620,
and 1200 s. The solid curve in the figure represents
PH
       

8 10 12 14 16

 

h

 

, cm

0

50

100
1200 s

 

Inlet
slit

 

0

100

200
620 s

 

Inlet
slit

Inlet
slit

 

0

200

400

 
J

 

(

 
h

 

)

 

t

 

ev

 

 = 20 s

Fig. 2. Calculated and experimental dependences J(h)
for various times of spectrum evolution. The experimental
results are presented for h < 12.3 cm both (open cir-
cles) on a full scale and (closed circles) with a 15-fold
magnification. The solid curve represents the calculated
dependences normalized to the experimental data for h >
14 cm.

the dependences J(h) calculated under the assump-
tion [6] that the reflection of UCN from the surface is
absolutely elastic. These dependences are normalized
in such away that the experimental and the calculated
dependences J(h) are consistent on average in the re-
gion of h valuesmuch higher than the upper boundary
of the spectrum (h > 14 cm). It can be seen that the
experimental and the calculated distributions deviate,
the degree of this deviation growing with evolution
time. The tail of the distributions on the left, which
extends as far as 3 to 4 cm below the ledge, is themost
important feature of the deviation. This tail can be
associated with a spurious experimental effect caused
by the deficient time tm over which UCN having the
maximum altitude of ascent above that of the disk are
removed from the vessel. In this case, UCN whose
maximum altitude of ascent is greater than h can
remain in the vessel even when the disk is below the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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vessel ledge, mimicking the effect of the presence of
UCN whose energy is below the inlet barrier.

However, two circumstances show that the ob-
served distributions at h < a do not stem from this
spurious effect. First, it follows from the calculations
performed in [6] that, at tm = 200 s, the eventual
value of J for altitudes h < a that is due to this effect
cannot be greater than 1.4× 10−8 of the total number
of UCN in the vessel. Thus, the spurious effect
can yield only J(h = 12.3 cm) = 420× 1.4× 10−8 =
6× 10−6 for tev = 20 s, the experimental value being
J ≈ 8 at this altitude. Second, the spurious effect
would manifest itself in the same way for all evolu-
tion times as a constant instrumental effect causing
a distortion of the true dependences J(h), but the
figure demonstrates that the number of experimental
counts for h ≤ a remains virtually unchanged with
increasing evolution time, while the total number of
UCN decreases because of decay and losses at the
walls. It follows that UCN whose maximum altitude
of ascent is less than a do indeed arise in the vessel,
their relative fraction in the spectrum growing with
evolution time.

The appearance of such UCN could be associ-
ated with the trivial effect of gradual cooling (and
also heating) in the interactions of stored UCN with
acoustic vibrations. An experimental investigation
of 5- to 800-Hz vessel-wall vibrations that was per-
formed with a B&K 4370 accelerometer has revealed
that the maximum speed of the walls does not exceed
vw = 100 µm/s. The change in the UCN energy
due to multiple scattering on the vibrating wall is
described in terms of a diffusion along the axis of
energy E. For the random motion of neutrons that is
accompanied by discontinuous energy jumps of ∆E,
the diffusion coefficient is D = ∆E2

/(2∆t), where
∆t = 1/f is the time between subsequent reflections.
The probability that, after a lapse of time t, a neutron
that had the energyE0 at the initial instant has energy
E in a unit interval is

ρ(E, t) =
1

2
√
πDt

e
−(E − E0)2

4Dt . (1)

In the experiment, the vibrations in question would
manifest themselves in the broadening of the original
UCN spectrum. In this case, the quantity obtained by
averaging the variation of the maximum altitude over

the UCN flux is ∆h =
16vw
3π

√
h

2g
, while the diffusion

coefficient isD = (∆h)2f/2. Figure 3 shows the cal-
culated maximum-altitude distributions of monoen-
ergetic UCN whose initial altitudes of ascent were
12.3 and 13.475 cm, which corresponds to the bound-
aries of the spectrum formed in the experiment. The
calculations based on Eq. (1) were performed for the
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tudes (12.3 and 13.475 cm) correspond to the boundaries
of the distribution being formed.

wall speed of 100 µm/s and for the evolution times of
20 and 1020 s. The figure shows that the root-mean-
square deviation from the initial altitude of ascent is
0.2 to 0.3 cm for tev = 1020 s. Therefore, acoustic
vibrations of the walls can in principle lead to a devi-
ation of the experimental distributions J(h) from the
calculated distributions in the region a < h < hd (see
Fig. 2). They can account for appearance of UCN
whose altitude of ascent is below the height a of the
ledge, but not more than by 0.2 to 0.3 cm. It follows
from (1) that, for example, the probability of observing
UCNwhose altitude of ascent is 11.3 cm (1 cm below
the ledge height) after 1200 s of storage does not ex-
ceed 5× 10−8 even for neutrons of the lower spectrum
boundary. This means that the appearance of UCN in
the vessel such that their maximum altitude of ascent
is below 11.3 cm cannot be explained by acoustic
cooling. Such neutrons can be generated only by the
rare processes of quasielastic reflection, in which case
the energy of a neutron undergoes a discontinuous
drop that is quite sizable in magnitude, but which is
not greater than 3 neV. The relative fraction of cooled
UCN must then grow linearly with increasing evo-
lution time (the number of reflections). Let us show
this explicitly. We denote by Nu the number of UCN
that have not suffered cooling, by Nc the number of
cooled UCN, by λc the probability of cooling per unit
time, by λl = τ−1 the total probability of UCN losses
in the vessel, and by λ∗l the analogous probability for
cooled UCN. The variation of the number of cooled
and uncooled UCNwith time is determined by the set
of equations

dNu

dt
= −(λl + λc)Nu, (2)
2
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dNc

dt
= λcNu − λ∗lNc.

Since Nu(t) = Nu(0)e−(λl+λc)t, then dNc/dt =
λcNu(0)e−(λl+λc)t − λ∗lNc and

Nc(t) = Nc(0)e−λ
∗
l t

+
λcNu(0)

λl − λ∗l + λc

[
e−λ

∗
l t − e−(λl+λc)t

]
,

where Nc(0) is the initial number of cooled UCN
generated in the vessel by the commencement of evo-
lution at the stage of filling and spectrum purification.
Setting λ∗l = λl, which is valid for this experiment
with a high degree of precision, we obtain Nc(t) =
Nc(0)e−λlt +Nu(0)e−λlt[1− e−λct]. For t� λ−1

c ,
the total number of UCN in the vessel is N ≈ Nu;
therefore, we have

Nc(t)
N(t)

≈ Nc(0)
Nu(0)

+ λct ≈
Nc(0)
N(0)

+ fµct, (3)

where µc is the probability of UCN cooling upon a
single reflection.

Figure 4 shows the results of the measurements
performed at hd = 13.9 cm, d = 16 mm, tf = 220 s,
tc = 100 s, tm = 200 s, and f = 38 Hz. The fre-
quency of UCN reflections was increased by inserting
additional shot. The number of UCN cooled 1.2 cm
below the ledge height (Nc) and the total number of
UCN (N) that survived in the vessel at the end of
the evolution time were measured in the experiment.
The number of reflections is R = ftev. The figure
shows that the experimental points fit in a straight
line quite well, thus supporting the occurrence of the
rare process of UCN cooling. The ratio Nc(0)/N(0)
is about 0.8%, and extrapolation of the linear de-
pendence Nc(R)/N(R) to 0 cuts the number R0 =
P

−8500 of reflections on the abscissa. This is an
approximate number of reflections suffered by UCN
in the course of filling (tf/2 ∼= 110 s) and purification
(tc = 100 s): 220 · 38 ≈ 8400. In accordance with (3),
the probability of cooling 1.2 cm below the ledge is
µc = 8.5(9) × 10−7.

3. WEAK HEATING OF UCN IN THE CASE
OF SUBBARRIER REFLECTION

Since the gravitation spectrometer is not efficient
in searches for weak heating and its investigation,
further studies were performed with the setup shown
in Fig. 5. Ultracold neutrons from a source were
fed in an aluminum storage vessel of diameter 20 cm
and length 70 cm; its inner surface was covered with
Fomblin oil. In order to increase the frequency of
reflections, an additional surface of aluminum sheet
was arranged in the vessel, and this surface was also
covered with Fomblin oil. The vessel temperature
could be varied in the range between−15 and+70◦C.
A filter for bounding the UCN spectrum from above
was installed in the vertical neutron guide connecting
the UCN source with the setup, the position of the
filter being 45 cm below the vessel bottom. The filter
was implemented as an aluminum chamber 7 cm in
diameter and 5 cm high. It had an enlarged inner sur-
face covered with Fomblin oil and small inlet and out-
let holes. Having penetrated through the filter, UCN
had energies in the range 0–106 neV, the admixture
of neutrons of higher energies being negligible. In
ascending along the neutron guide, UCN slowed
down, so that their energies in the vessel were in the
range 0–52 neV at a mean speed of vu = 2.2m/s, the
frequency of reflections being f = 40 Hz. Two pro-
portional gas detectors were connected to the vessel
by means of vertical neutron guides. The detectorD1,
with an inlet diaphragm of diameter 6 mm, measured
the density of the total UCN flux. The detector D2,
with an aluminum foil (13 µm) at the inlet, measured
the flux density of UCN that could overcome an en-
ergy barrier of 52 neV (EAl

lim = 52 neV). This flux was
generated by (a) neutrons that initially had energies
above 52 neV and which penetrated into the vessel
through the filter (in the following, they are referred
to as background neutrons) and (b) neutrons that
had initial energies below 52 neV, but which were
weakly heated upon reflections, with the result that
their energies became higher than 52 neV.

If there is weak heating and if there are no back-
ground neutrons, the state of the neutron gas in the
vessel is described by the set of two equations

dNu

dt
= −(λl + λ0)Nu − λupNu + φS0, (4)

dNup

dt
= λupNu − (λ∗l + λ∗0)Nup,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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whereNu is the number of UCN that did not undergo
weak heating; Nup is the number of UCN that un-
derwent weak heating; λl and λ0 are, respectively, the
probability of losses in the vessel and the probability
of leakage from it through the inlet hole of area S0 for
UCN that did not undergo weak heating; λ∗l and λ

∗
0

are the analogous probabilities for UCN that under-
went weak heating; φ is the flux density of UCN from
the main spectrum of the source; and λup = µupf is
the quantity obtained by averaging, over the density
spectrum, the probability of weak heating (per unit
time) that caused the growth of the UCN energy
above 52 neV, with µup being the analogous proba-
bility per single reflection. If the vessel was filled for a
long time, in which case we can set dNu/dt = 0 and
dNup/dt = 0, the numbers of UCN are

Nu =
φS0

λl + λ0 + λup
,

Nup =
φS0λup

(λl + λ0 + λup)(λ∗l + λ∗0)
,

and the corresponding flux densities are φu =
Nuvu/(4Ω) and φup = Nupvup/(4Ω), where vu and
vup are themean speeds of neutrons that did not suffer
and that suffered weak heating, respectively, and Ω is
the vessel volume.

If there were no background UCN, the count-
ing rates Jtot and Jup in the detectors D1 and D2

would determine the quantities φu = Jtot/(S1ε) and
φup = Jup/(S2εµp), where S1 and S2 are the areas
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of the inlet detector diaphragms, ε is the detection
efficiency, and µp is the coefficient characterizing the
penetration of UCN of energy above EAl

lim through
the aluminum foil. In this case, the weak-heating
probability could be determined as λup = Jup(λ∗l +
λ∗0)S1/(JtotµpS2). In the presence of a background,
we have

λup =
(
JupS1

JtotS2
− φbS1

Jtot

)
λ∗l + λ∗0
µp

;

that is, additional measurements are necessary for
determining the quantity φb corresponding to the flux
density of background neutrons recorded by the de-
tector.

Figure 6 presents the detector counting rates
measured in the course of filling the vessel with
neutrons over 175 s and their subsequent storage at
two values of the vessel temperature. In either case,
the detectorD2 records neutrons penetrating through
the 52-neV barrier created by the foil. However, its
counting rate increases noticeably with increasing
temperature of the vessel, while the number of ac-
cumulated UCN remains virtually unchanged. The
basic gas-kinetic properties of the storage vessel un-
dergo virtually no changes at the higher temperature:
the characteristic filling time is τf = 1/(λl + λ0) ≈
40 s and the time of neutron storage in the vessel
is τst = 1/λl ≈ 80 s. This is because λl is given by
2
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λl = λβ + λF + λh, where λβ = 1.13 × 10−3 s−1 is
the beta-decay probability, λF ≈ 4× 10−4 s−1 is the
probability of the capture and inelastic scattering of
UCN undergoing reflection from the vessel surface
and the additional surface, and λh ≈ 1.1× 10−2 s−1

is the probability of UCN leakage from the vessel
through the operating holes for evacuation and the
diaphragm of the detector D1. Among these prob-
abilities, only λF depends on temperature, but it is
small, only 2.5% of λl + λ0. Therefore, the counting
rate for background UCN must undergo virtually no
changes, just as the counting rate in detector D1

and the basic gas-kinetic properties of the vessel.
Thus, a noticeable increase in the counting rate in
the detectorD2 with increasing temperature indicates
that, in the vessel, there are some UCNwhose energy
increased above 52 neV upon weak heating caused by
reflections from the walls.

In order to estimate the spectral composition of
UCN, recorded by the detector D2, the aluminum foil
was covered with a thin Fomblin oil layer (30 µm),
whereupon the inlet detector barrier increased up to
106 neV. As a result, the counting rate in the detector
D2 reduced to the level of the intrinsic background,
whence we concluded that the main spectrum of both
weakly heated and background UCNwas localized in
the range 52–106 neV.

In order to determine the contribution of back-
ground neutrons to the counting rate in the detec-
tor D2, the measurements were repeated without
the additional surface in the vessel. The frequency
of UCN reflections then decreased to 15 Hz. Ac-
cordingly, λup would have to decrease by a factor of
2.8, while φbS1/Jtot would have to remain virtually
unchanged. Therefore, two experiments featuring
different frequencies of reflections would make it pos-
sible to determine, from two measured values of the
ratio Jp/Jtot, both the quantity φbS1/Jtot and the
probability λup. By measuring the mean value of the
P

ratios Jp/Jtot over the time interval of 125–175 s in
the temperature range between +5 and +70◦C, we
showed that the relative fraction of background UCN
in the counting rate in detectorD2 is rather high (90–
95% of the total counting rate in the temperature
region below 25◦C). Therefore, the weak heating of
UCN could be reliably identified only in the region
of elevated temperatures, where the contribution of
the background is less pronounced because of an
increase in the probability of this process. Figure 7
presents the experimental temperature dependence
of the probability µup. In order to estimate the ab-
solute value of µup, the speed of heated UCN, vup,
was set to the mean speed of 52- to 106-neV neu-
trons (3.9 m/s). Thus, λ∗l + λ∗0 = (vup/vu)(λl + λ0)
is equal to 4.4× 10−2 s−1. The coefficient µp was
taken to be equal to 0.3, which corresponded to the
quantity obtained by averaging, over the isotropic flux
distribution, the penetration coefficient for 3.9-m/s
UCN passing through the foil. Figure 7 shows that
µup is about 1× 10−6 for T ≤ 25◦C, but that it grows
noticeably with increasing temperature. Because of
the approximations used, the estimate obtained for
the absolute value of the weak-heating probability
can differ from the true value by a factor of 2 to 3.
Therefore, the data presented in the figure rather illus-
trate the magnitude of the effect and its temperature
dependence.

4. CONCLUSION

The observation of the rare processes of weak
heating and cooling of UCN due to their reflection
from the surface of the same material gives reasons
to assume that these processes are two branches
of a single phenomenon, the quasielastic reflection
of UCN. For the Fomblin oil surface, the probabil-
ity of quasielastic reflection is about 10−6 per re-
flection event at room temperature. The resulting
change in the UCN energy is commensurate with
the initial neutron energy. The observed temperature
dependence indicates that quasielastic reflection is
caused by interaction with the collective motion of
nuclei whose speed is commensurate with the speed
of UCN. The occurrence of such processes is the-
oretically predicted in [4, 5]. However, model cal-
culations of the probabilities of neutron heating and
cooling with allowance for themacroscopic properties
of the reflecting medium (thermal conductivity, self-
diffusion coefficient, ratio of heat capacities, etc.) are
necessary for verifying these theoretical predictions.
On the other hand, more detailed experimental in-
vestigations into the energy distribution of UCN after
their quasielastic reflection are required.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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From the practical point of view, the observation
of weak heating of UCN is important for measuring
the neutron lifetime by the storage method. Since the
upper boundary of the spectrum is close to 106 neV,
the weak heating of UCN can open an additional
channel of neutron leakage from vessels covered with
Fomblin oil. In the most precise measurements of
the neutron lifetime by the storage method [7–10],
this channel was disregarded since it had not been
known by that time. Therefore, it is necessary to
reanalyze the measurements in those studies with
allowance for the effect of the weak heating of UCN
on the accuracy of the results obtained there. We
analyzed here the experiment reported in [10], and
this analysis, together with additional experiments,
allowed us to conclude that this channel of UCN
leakage has virtually no effect on either the final result
or its accuracy owing to the special features of the
procedure used in that study.
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Abstract—The structure and the generation of flavor-changing neutral currents are considered in a
Standard Model extension involving a singlet quark of the up type. Anomalous top-quark properties
caused by singlet–ordinary mixing is described in a phenomenological way. It is shown that, for single
top production and for asymmetry in electron–positron annihilation, there is an enhancement in relation to
predictions of the Standard Model. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The Standard Model (SM) is being tested inten-

sively now over a wide energy region with a high
precision. In particular, rare processes caused by
flavor-changing neutral currents (FCNC) represent
a relevant range for testing the SM and for seeking
new-physics signals due to their extreme sensitivity
to the type of SM extension. This is because standard
FCNC occur only at the loop level, so that the rates
of corresponding processes are very low. Therefore,
we have a low standard background with a fixed sig-
nature and, as a consequence, a good opportunity to
pick out signals beyond the SM.

The most popular extensions of the SM with
FCNC that arise in the quark sector at the tree level
are the following:

(i) supersymmetry (with a singlet quark and an
extra Z boson),

(ii) multiple-Higgs-doublet models (without dis-
crete symmetry),

(iii) models involving new dynamical interactions
of heavy quarks (top quark),

(iv) composite or soliton structure of a heavy
quark,

(v) extension involving horizontal symmetry.
Investigation of top-quark properties should play

an important role in testing the SM. Because of
its very large mass, the top quark is expected to
hold clues to many problems in high-energy physics.
For example, single top production due to FCNC
in the process e+ e− → Z → tc̄, t̄c at energies near
the threshold,

√
s ≥ mt, leads to a good discerned

kinematical structure [1]. This fact implies that the
invariant mass of the jet with a charm quark must
be close to zero and should be helpful for identifying

∗This article was submitted by the authors in English.
1063-7788/02/6501-0121$22.00 c©
such events, which were attainable at LEP2 when
this experimental installation was in operation.

The large top mass affects the FCNC coupling
in almost all of the aforementioned types of SM
extensions. We will consider here only the first
two types: supersymmetry and the multiple-Higgs-
doublet model. A wide class of supersymmetry
extensions contains a so-called singlet quark in
the fermion sector [2]. Singlet-quark mixing with
ordinary (standard) quarks leads to the emergence
of FCNC at the tree level. In realistic models of
mixing, the FCNC quark coupling is proportional
to the quark mass. Therefore, the rate of processes
that are caused by FCNC and which involve a top
quark can be drastically enhanced in relation to the
SM predictions. In the two-Higgs-doublet model
without discrete symmetry, a flavor-changing scalar
interaction also arises at the tree level [1, 3]. In
this case, Yukawa coupling for the interaction is
related to the masses of fermions inherent in relevant
vertices. Naturally, this fact leads to an enhancement
of some effects that involve a top quark. We should
also assume that the mass-generation mechanism is
significantly complicated in relation to the standard
Higgs mechanism; from this point of view, the Higgs
sector of the SM is only some approximation to
the true high-energy theory. Thus, new-physics
phenomena can be manifested through effective in-
teractions of the top quark—in particular, through
FCNC interactions. This observation stimulated
some discussion on the so-called anomalous top-
quark FCNC coupling [4, 5], which generates specific
rare processes. A short classification list of the rare
processes in the quark sector is given below:

(i) rare leptonic, semileptonic, and nonleptonic
decays of hadrons,M → l+l−,M ′l+l−,M1M2;

(ii) rare radiative decaysM →M ′γ;
2002MAIK “Nauka/Interperiodica”



122 BEILIN, KUKSA
(iii) M0 −M0
mixing in neutral meson systems

(mass splitting∆m, oscillation);
(iv) CP-violating effects;
(v) nondiagonal boson decay Z → qαq̄β, q̄αqβ ;

(vi) nondiagonal quark-pair production in e+e−,
ep, and pp̄ interactions.

The set of experimental data on rare processes is
not complete yet. Most of the data are only some
experimental limits on the branching ratios and give
us a wide region for putting new physics into consid-
eration. Research programs of collider experiments
lean toward top-quark and Higgs-meson properties.
It should be noted that investigations of top rare
decays are included in CDF, D0, DELPHI, and Fer-
milab programs [6, 7]. Measurements of the mass
splitting∆ms for the B0

s mesons are in progress now
in the OPAL, ALEPH, and DELPHI collaborations
[8–10]. The high-energy production of top and Higgs
particles is planned to be investigated at LHC.

2. PHENOMENOLOGY OF ANOMALOUS
FCNC TOP-QUARK COUPLING

The top-quark FCNC coupling is usually consid-
ered in a phenomenological way as the additional part
to the SM Lagrangian of lowest dimension [4, 11]:

∆Leff=
1
Λ

[
kγet̄σµνcF

µν+kggst̄σµν
λa

2
cGµνa

]
(1)

− g

2 cos θW
[kL t̄γµLc+ kRt̄γµRc]Zµ + h.c.

Here, Fµν and Gµν are, respectively, the Uem(1)
and the SUc(3) field strength tensor; e, g, and gs
are, respectively, the Uem(1), the SUw(2), and the
SUc(3) coupling constant; kγ , kg , kL, and kR are the
strengths of the corresponding anomalous interac-
tions; ΘW is the known Weinberg angle; and Λ is the
cutoff parameter for the effective theory (∼ 1 TeV).

From LEP2 experimental data on the tcZ and tcγ
couplings, we get the experimental limits k2

L < 0.533
and k2

γ < 0.176 (95% C.L.) [12].

In a model with a singlet quark, the structure
of FCNC quark–boson coupling at the tree level is
determined by the simple expression [2]

∆LZ = gik q̄iγµLqkZµ. (2)

Here, gik =
g

2 cosΘW
U∗
DiUDk,UDk being themixing-

matrix element that characterizes the value of singlet-
ordinary mixing of dk andD (down singlet quark); for
the case of up singlet quark gik = − g

2 cosΘW
U∗
UiUUk,

UUk characterizing uk–U mixing, where U stand for
an up singlet quark.
PH
In themodel involving twoHiggs doublets, FCNC
quark-scalar coupling arises from the Lagrangian [1]

LΦ = λuijQ̄iΦ̄1uj + λdijQ̄iΦ1dj (3)

+ ξuijQ̄iΦ̄2uj + ξdijQ̄iΦ2dj ,

where λqij and ξ
q
ij are “bare” coupling constants. In

(3), the FCNC coupling arises at the tree level as the
result of a vacuum shift in the doublet Φ1 only (model
without a discrete symmetry).

The anomalous FCNC couplings in (2) and (3)
have some similar special features:

(a) gik ∼
√
mimk/mU , where mi,mk, and mU

are the masses of, respectively, qi, qk, and U quarks
(seesaw mechanism of mixing);

(b) ξik ∼
√
mimk/v, where v is a vacuum shift

(Cheng–Sher ansatz);

(c) ξik ∼ (mi +mk)/(2v) (sum-rule ansatz).

From expressions (a)–(c), it can be seen that the
quarkmass plays an important role in the formation of
FCNC coupling. Therefore, we should expect that the
anomalous FCNC top coupling emerges in the most
interesting SM extensions—in supersymmetry and in
the two-Higgs-doublet model.

Further, we will consider a phenomenology of the
anomalous FCNC top-quark coupling in the model
involving the up singlet quark U . In this model, an
extra Yukawa term that describes qUΦ interaction
[13] is

∆LY = λaQ̄′
LaΦU

′
R + h.c., a = 1, 2, 3. (4)

After a vacuum shift, it leads to the mixing of the
singlet U quark with ordinary up-type quarks. This
fact in turn leads to the reconstruction of charged-
and neutral-current structures. The charged currents
are described now by a 4× 3mixing matrix; that is,

J+
µ =

1√
2
g(u, c, t, U)γµV (4× 3)



d

s

b


 , (5)

where V (4× 3) is not unitary and differs from the
Kobayashi–Maskawa matrix. More important chan-
ges occur in the structure of neutral currents. In
addition to standard diagonal terms, we also have
nondiagonal terms, which describe FCNC at the tree
level:

∆J0
µ = −

g

2 cosΘW
(UL)∗4i(UL)4kūLiγµuLk, (6)

i, k = 1, 2, 3, 4 (u, c, t, U).

In (6), UL is the unitary matrix that diagonalizes the
mass matrix in the up-quark sector. The element
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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(UL)4k corresponds to uk–U mixing. As a rule, it is
described by the seesaw mechanism,

|U4k|2 	 (mk/mU )p, (7)

where p = 1 corresponds to the linear seesaw and
p = 2 corresponds to the quadratic seesaw [see the
above expression for the FCNC coupling gik in (a)].
It follows that, for mU < 1 TeV, we should expect a
noticeable t–U mixing that can be observed in rare
processes.

3. PHENOMENOLOGICAL CONSEQUENCES
OF SINGLET–ORDINARY QUARK MIXING

We now consider some main consequences of
singlet-quark mixing with the standard quarks—in
particular, t–U mixing. At the same time, we can
interpret results obtained for the model with a singlet
quark as those suitable for the two-Higgs-doublet
model. To carry out this interpretation, we should
substitute mU for v in the Cheng–Sher ansatz (b)
and the Z boson for the Higgs particle. A special
feature of the model with a singlet quark consists of
two possibilities. On one hand, the large topmass can
be explained by its mixing with a superheavy singlet
quark. On the other hand, the initial large top mass
leads to a large mixing with the singlet quark.

To calculate the rate of FCNC processes involving
the top quark, we need some information on the ma-
trix element U4i in (6). We can obtain an upper limit
on the mixing value from experimental data on the
rare decay D0 → µ+µ− and the mass splitting ∆mD

in theD0–D̄0 system. In the last case, the constraint
becomes more strict [14]:

∆mD < 4.6× 10−14GeV (8)

−→ |U∗
UuUUc| < 3.3× 10−4GeV.

We can evaluate a lower bound on the singlet
quark mass: mU > 220 GeV for the linear seesaw
p = 1 from (8) with the seesaw mechanism (7). In
the case of a quadratic seesaw, the bound is less
stringent. From (8) and (7) for p = 1, we also obtain
some limits on the mixing angles:

|UUu| < 3.7 × 10−3, |UUc| < 0.8× 10−1, (9)

|UUt| < Umax = 1/
√
2.

Thus, known data on rare processes in the up-
quark sector give us a lenient bound on the mass
mU and on singlet-quark mixing. The value of t–U
mixing can be near its maximum, and c–U mixing is
about 0.1. From this value and from (6), it follows that
the FCNC tcZ coupling may be anomalously large in
relation to the SM prediction at the loop level. The
unitarity condition gives an additional constraint on
mixing angles. In the model with singlet quarks, the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 20
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Fig. 1. Normalized t→ cZ branching ratio as a function
ofmU .

Kobayashi–Maskawa matrix is generalized to a 4× 4
unitary matrix that is constructed from the V (3× 4)
matrix (5) and (UL)4i elements [13]. The structure of
the U(4× 4)mixing matrix is

U(4× 4) =




Uαβ
− UuU

− UcU

− −
UUd UUs

Utb UtU

UUb UUU



, (10)

α, β = 1, 2,
where that part of the matrix which contains uk–U
mixings is indicated in detail. If t–U mixing is large,
we can write the unitary condition for U(4× 4) in the
form

(|Utb|2 + |UtU |2)1/2 ≈ 1, (11)

(|UtU |2 + |UUU |2)1/2 ≈ 1.
In the SM, |Utb| ≈ 1, but, for SM extensions in-

volving more than three generations (n > 3), we have
0 < |Utb| < 0.9993 (90% C.L.) [14]; that is, there are
virtually no restrictions aboutUtb. An additional piece
of information on the value should be given by a
measurement of Br(t→ bW ). The existing data on
t→ cZ, uZ, bW decays [15, 16],

Br(t→ bW ) = 0.87±0.13±0.13
±0.30±0.11,

Br(t→ cZ) + Br(t→ uZ) < 33%, (95%C.L.),
set no new limits in relation to the estimates in (8), so
that we need more precise measurements.

It is important that the large singlet–ordinary
mixing leads to the enhancement of the “rare” t→ cZ
decay channel. The expression for the branching ratio
normalized to the unsuppressed channel t→ bW is

KZW ≡
Br(t→ cZ)
Brt→ bW )

(12)
02
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≈ 1
2
1− 3x2

Z + 2x
3
Z

1− 3x2
W + 2x3

W

|U∗
tUUcU |2
|Utb|2

,

where xZ = (mZ/mt)2 and xW = (mW /mt)2. Fig-
ure 1 displays KZW versus the U-quark mass for
the linear (p = 1) and the quadratic (p = 2) seesaw
mechanism. At the SM loop level, the decay t→ cZ
has the branching ratio Br(t→ cZ) ∼ 10−13 [17, 18];
in the two-Higgs-doublet model without a discrete
symmetry, this decay becomes possible at the tree
level, and we have Br(t→ cZ) ≥ 10−7 for this case
[1, 3]. As can be seen from Fig. 1, the correspond-
ing values in the singlet-quark model are an order
of magnitude greater in amplitude. The known ex-
perimental limit on the anomalous tcZ coupling is
k2
Z < 0.533 [12], where, in accordance with (6), kZ =
(g/2 cos ΘW)|U∗

tUUcU |, and it does not furnish any
extra information.

The large t–U mixing leads to a reconstruction
of the CV –CA structure for the tt̄Z and UŪZ cou-
plings. In the SM, the structure of the diagonal
qq̄Z (q = u, c, t) vertices is specified by the standard
values,

(CV )st =
1
4

(
1− 8

3
sin2ΘW

)
, (13)

(CA)st = −
1
4
.

For the model where the singlet quark is not mixed
with the ordinary quark, we have [2, 13]

C0
V = −

2
3
sin2 2ΘW, C0

A = 0. (14)

If the value of the t–U mixing UtU is not zero, then,
for the t and U quarks, we obtain

CtV = (CV )st −
1
4
|UtU |2, (15)

CtA = (CA)st +
1
4
|UtU |2,

CUV = (CV )st −
1
4
|UUU |2,

CUA = (CA)st +
1
4
|UUU |2.

This deviation from the standard values can be di-
rectly checked by measuring the forward–backward
asymmetry AFB in reactions leading to tt̄ and UŪ
production. In the case of pure Z exchange, AFB is
expressed in terms ofCV andCA in a simple way (this
is the Born approximation for the process e+e− →
Z → f f̄):

AfFB =
3
4

2CeV C
e
A

(CeV )2 + (C
e
A)2

2CfV C
f
A

(CfV )2 + (C
f
A)2
. (16)
P

For a real process, the γ–Z interference and QCD
corrections must be taken into account. Neverthe-
less, it is known [19] that QCD corrections to the
forward–backward asymmetry to the second order
are less than 10%.

To illustrate the effect of t–U mixing [see Eq. (15)],
we consider the relation

af =
AfFB

(AfFB)st
(17)

=
CfV C

f
A

(CfV )st(C
f
A)st

(CfV )
2
st + (C

f
A)

2
st

(CfV )2 + (C
f
A)2

.

Illustrations of the effects specified by Eqs. (15) and
(17) can be found in Fig. 2, where CV , CA, and af

are plotted versus the U-quark mass mU . From the
figure, it can be seen that the effect of t–U mixing
is appreciable in the mass region mU ≤ 1 TeV. At
mU ∼ mt, we will have a drastic discrepancy between
these results and the SM predictions.

We will now calculate the cross section of single
top production in e+e−, ep, and pp̄ collisions. For
e+e− interaction, single top production due to pair
tc̄+ t̄c formation is of greatest interest. The expres-
sion for the cross section coincides with that from
[5], where kγ and kZ are set to kγ ≈ 0 (loop-level
contribution of the singlet quark) and kZ = U∗

tUUcU
{tree-level contribution of the singlet quark [see (6)]}.

As a result, the expression for the cross section
σ(e+e− → Z → tc̄) takes the form

σ(s) ≈ g4(1 + a2
e)

210πs cos4ΘW

(
1− m

2
t

s

)2

(18)

× (2 +m2
t /s)

(1−m2
Z/s)2

|U∗
tUUcU |2,

where ae = 1− 4 sin2ΘW and
√
s is the total energy.

Figure 3 shows σ(e+e− → Z → tc̄) versus
√
s at var-

ious values of mU . As can be seen, the maximum
values of σ are in the region

√
smax ≈ 200–400 GeV,

where σ(s)max ≈ 0.4–0.7 fb for mU = 400 GeV. If
mU = 600 or 1000 GeV, σ(s)max ≈ 0.2–0.3 fb and
0.05–0.1 fb, respectively. In spite of the very low value
of the cross section, we have some energy gain and,
as was noted in the Introduction, a good distinctive
kinematical signature of single top production. An
estimation of the cross sections for single top produc-
tion in ep and pp̄ interactions yields values less up to
an order of magnitude in relation to e+e− interaction.

The cross section σ(e+e− → Z → Uc) can be
found with the aid of (18) by making the substitutions
mt → mU and UtU → UUU . It is obvious that, at
mU ∼ mt, we have σU ∼ σt. The cross section for
the subprocess uq → Z → Uq occurring in single U
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Fig. 2. CV , CA, and af for p = 1 and p = 2 as functions
ofmU .

production pp̄→ UH̄, ŪH can be found with the aid
of (18) upon the substitution ae → aq, where au =
1− 8 sin2ΘW/3, ad = 1− 4 sin2ΘW/3, mt → mU ,
UcU → UuU , and UtU → UUU . Thus, we have some
additional suppression up to ordermu/mc (p = 1) or
m2
u/m

2
c (p = 2) in relation to σ(e+e− → tc̄).

The rate of single U production in ep collisions can
be found by calculating the subprocess cross section
σ(eu→ Z → eU) in the t channel. We have calcu-
lated an approximate value of σ near the threshold of
U production, i.e., for

√
s−mU 

√
s [20]:

σ(s) ≈ g
4(3 + 2ae + 3a2

e)
29π cos4ΘW

1√
smU

(19)
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×
[
1 +

m2
Z

mU(
√
s−mU )

]−1

|U∗
UUUuU |2.

The results for σ(s) are presented in Fig. 4 at vari-
ous values of mU as the curve σ(s) versus ε = 1−
mU/

√
s. The value of σ(s) in ep collisions is on

the same order of magnitude as the value of σ for U
production in e+e− collisions.

4. CONCLUSION

Recently, precision tests of the SM at the loop
level have received much attention of experimental-
ists because rare processes are a convenient tool for
studying of SM in different aspects. Superstrings
and the two-Higgs-doublet model are of particular
interest because of appearance of FCNC at the tree
2
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level. This fact in turn can strongly enhance the rate
of rare processes in these models. In the present
paper, we have shown that the enhancement occurs
in the model involving a singlet up-type quark as
well. A large top-quark mass causes large top–
singlet mixing and results in anomalous properties
of the top quark. These features are manifested in
rare-decay branching ratios, in the asymmetry AFB,
and in the cross sections for single top production.
It has been shown that these effects can in principle
be detected in the singlet-quark mass region mU ≤
1TeV. It should be noted that singlet–ordinary mixing
effects are accessible at energies of about mt; i.e.,
indirect signals, as might have been expected, should
be checked at the Tevatron in the near future (unfor-
tunately, LEP2 is closing down now).

We have no definitive information about the mass
of a singlet up-type quark. A low limit on the mass
follows from rare processes in the up-quark sector—
namely, from mixing in the D0–D̄0 system and from
rare D-meson decays. Unfortunately, it is not pos-
sible, as far as we know, to deduce more stringent
upper limits from known experimental data on these
processes. Furthermore, an accurate determination
of singlet-quark properties depends on some progress
in the experimental investigation ofDmesons and top
physics.
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Abstract—We present a calculation of the inclusive xF distributions of charmed hadrons produced
in a high-energy Σ− beam. The calculation is based on the modified mechanism of charmed-quark
fragmentation, as well as on the mechanism of c-quark recombination with the valence quarks from
initial hadrons. We predict additional asymmetry in the production of charmed hadrons due to different
distributions of the valence s and d quarks in a Σ− beam. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the hadronic production of particles with open
charm, an interesting situation connected with the
interaction of charmed quarks with the hadronic rem-
nant takes place (see [1–3] and references therein).

Let us recall that this problem does not arise in
the case of e+e− annihilation, where a heavy quark is
hadronized owing to its own radiation and where the
description is entirely reduced to the fragmentation
function,

1
σcc̄

dσ

dz
= D(z,Q2), (1)

where the fraction z of the c-quark momentum is
taken by charmed hadron; Q2 is the square of the
total energy in e+e− annihilation; and σ and σcc̄ are
the cross sections for charmed-hadron and cc̄-pair
production, respectively.

It is well known that a simple application of the
factorization approach (1) to the charmed-particle
production in hadronic interaction leads to a consid-
erable deviation from experimental data. Indeed, there
is a substantial difference in the yields of different
charmed hadrons in the fragmentation region of initial
hadrons, i.e., when |x| → 1 (here, x ≡ 2pH/

√
s, pH is

the momentum of charmed hadron, and s is the total
energy squared).

The asymmetryA of the charmed-particle yield (or
the leading-particle effect) is defined as

A =

dσ

dx
(leading)− dσ

dx
(nonleading)

dσ

dx
(leading) +

dσ

dx
(nonleading)

. (2)

∗This article was submitted by the authors in English.
**e-mail: likhoded@mx.ihep.su
1063-7788/02/6501-0127$22.00 c©
Here, the labels “leading” and “nonleading” refer to
charmed hadrons, respectively, with and without light
quarks identical to valence quarks from the initial
hadrons. For example, in a π−(ūd) beam,D0(cū) and
D−(c̄d) mesons are leading particles, while D̄0(c̄u)
andD+(cd̄) should be considered as nonleading ones.

There are many theoretical articles devoted to de-
scribing this phenomenon [4]. In [5, 6], the interaction
of c quarks with the quarks of the initial hadrons was
taken into account and good agreement with data
was obtained in describing the spectrum at large x
and the x-asymmetry dependence in π−N and Σ−N
interactions.

Recent data on charm production in Σ− beams [2,
3] are of special interest because the beam hadron
(here Σ) has an s quark, with the result that the
distributions of valence quarks in theΣ− baryon differ
from those in the proton [7]. This should lead to a set
of observable effects; in particular, the asymmetry in
the yield of charmed hadrons should differ from that in
proton–proton collisions.

Preliminary data presented by the SELEX collab-
oration [3] on the charm yield in Σ−p and π−p colli-
sions show, however, some disagreement with other
experiments [2] and general theoretical assump-
tions—in particular, in the expected yields of charmed
particles and antiparticles in the central region.

In this article, we consider this problem very briefly
from the general theoretical point of view (Section 2).
In Section 3, we give a short description of the frag-
mentation mechanism. Our approach to calculating
x distributions of charmed particles produced via the
recombination mechanism is given in Section 4. We
present the predictions for the differential distribu-
tions of charmed hadrons produced in Σ−N interac-
tions in Section 5. A short summary of the results is
given in the Conclusion.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Six-particle amplitudeM3→3.

2. ASYMPTOTIC BEHAVIOR
IN THE CENTRAL REGION

Prior to presenting a detailed discussion of the
behavior of the spectrum and of the charge asymmetry
in the hadron yield, we consider the general behavior
of charmed-particle spectra.

According to the generalized optical theorem [8],
the inclusive spectrum is related to the discontinuity
of the six-particle amplitude as (see Fig. 1)

E
d3σ

d3p
=

1
s
discM3→3, (3)

where s is the total energy squared.
Let us introduce the invariants (see Fig. 1)

s1 = (pa + pc)2, s2 = (pb + pc)2.

At high energies, the asymptotic behavior of the
amplitude M3→3 as a function of these invariants
s1,2 is determined by leading Regge trajectories—
the Pomeron (P) and secondary trajectories (Ri)—
related to ρ, ω, f , and A2 mesons. In this approach,
the PP , RP , and RR contributions become impor-
tant.

In the central region (x ∼ 0), where the kinemati-
cal invariants s1 and s2 are large, one has

s1 ≈
√
sm⊥e

−y, s2 ≈
√
sm⊥e

y, (4)

where y is the rapidity, m⊥ =
√
m2 + p2

T , and pT is

the transverse momentum.
The double Regge representation is a good ap-

proximation for the amplitude M3→3 (see Fig. 1) in
this kinematical region. Therefore, one has

E
d3σ

d3p
≈ 1

s

∑
i,j

f̃ijs
αi
1 s

αj

2 , (5)

where αi and αj are the intercepts of the leading
Regge trajectories [8, 9]. For the Pomeron trajectory,
one has αP ≈ 1; the f , ρ, ω, and A2 trajectories have
the intercept of αR ≈ 1/2.

The unknown functions f̃ij(m⊥) of m⊥ seem to
be universal and do not depend on the type of product
PH
particles [8, 10]. These functions can be determined
from a fit to experimental data. The dependence on
the quantum numbers of initial and final particles is
entirely determined by the coupling constants of the
secondary Reggeons R included in the definition of
the functions f̃ij(m⊥).

Substituting (4) into (5), we obtain

E
d3σ

d3p
= f̃PP(m⊥)−

∑
i,j

f̃ij(m⊥)
s1−(αi+αj)/2

e(αj−αi)y.
(6)

This equation provides a good description of the tran-
sition to the asymptotic regime in the central region
for all yields of π andK mesons [10].

For theD and B mesons, Eq. (6) is simplified ow-
ing to the fact that the contribution of the trajectories
associated with the charmed c quark in the D meson
(J/ψ, χc trajectories) or the beauty b quark in the B
meson (Υ, χb trajectories) is strongly suppressed by
the Zweig rule for coupling to the initial mesons or
nucleons. Therefore, the sum appearing in Eq. (6)
does not include contributions with two secondary
Reggeons (RR contributions) in the upper and lower
“shoulder” of the diagram in Fig. 1. Thus, one gets
the simpler expression

E
d3σ(D)
d3p

≈ f̃PP(m⊥) (7)

− 1
4
√
s
{f̃RP (m⊥)ey/2 + f̃PR(m⊥)e−y/2}.

Note that the contribution of the first PP term
in Eq. (7) is the same for the particle and for the
antiparticle and is proportional to the total cross sec-
tion for the interaction of initial hadrons. Thus, the
normalized cross section

1
σhhtot

E
d3σ(hh→ DX)

d3p

in the high-energy limit has one universal limiting
value independent of the type of colliding hadrons.

For the case of Ds-meson production in Σ or K
beams, the leading intercept is related to theφmeson,
αj = αφ ≈ 0, and there is no contribution from the
third PR term in Eq. (7). The φ trajectory can be
associated with the Σ particle only because there are
no valence strange quarks in the proton. As a result,
one has only two terms:

1
σtot

E
d3σ(Ds)
d3p

≈ f̃PP(m⊥)−
1√
s
f̃RP(m⊥)ey. (8)

The contribution of secondary trajectories deter-
mines the difference between the yields of the par-
ticle and the antiparticle in the central region. For
instance, for pp and pp̄ collisions, one has

∆pp ∼
a

s1/4
cosh

y

2
, ∆pp̄ ∼

b√
s
sinh

y

2
,

YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002



ASYMMETRY IN CHARMED-PARTICLE PRODUCTION 129
where the coefficients a and b depend on both combi-
nations of secondary Reggeon couplings and on the
particle type (D orB meson).

In most experiments with a fixed target, the point
y = 0 (x = 0) is not usually reached because of ex-
perimental conditions, and the measured spectrum
starts from x ∼ 0.1. Upon the simple substitution
y  ln(x

√
s/m⊥), Eq. (7) for D mesons takes the

form
1
σtot

E
d3σ(D)
d3p

 f̃PP(m⊥) (9)

−
{
f̃RP(m⊥)

√
m⊥
√
x+ f̃PR(m⊥)

√
m⊥√
sx

}
.

ForDs-meson production in Σ orK beams, one has

1
σtot

E
d3σ(Ds)
d3p

 f̃PP(m⊥)− f̃RP(m⊥)m⊥x.

(10)

The asymmetry in the particle yield depends on the
quantum numbers of initial hadrons and observed
charmed particles and is determined by the second
term in these expressions, which is different for the
D and theDs case. One can see that the transition to
the asymptotic behavior at fixed x occurs much faster
than in the fixed-rapidity regime. It is also seen that
the behavior in the vicinity of x = 0 is determined by
the value of the intercept of the secondary trajectory
associated with the valence quark common to the
beam hadron and the observed particle.

It is evident that the applicability region of the
above expressions is severely restricted by the need for
satisfying the condition of large values of the invari-
ants s1 and s2 in the case of the Regge approximation.
However, the general conclusions on the character of
the asymptotic behavior of charmed-particle spectra
are quite definite, on one hand, and agree well with
the parton-model predictions, on the other hand.

We wish to emphasize once again that, from
general theoretical considerations, one should expect
equal yields of charmed particles and antiparticles in
the central region (x ≈ 0) when s→∞:

E
d2σ(D)
d3p

∣∣∣∣
x≈0

≈ E
d2σ(D̄)
d3p

∣∣∣∣
x≈0

. (11)

We will show that this behavior agrees with parton-
model predictions as well.

3. FRAGMENTATION MECHANISM

In [5, 6], a phenomenological model was developed
where the hadronization of a charmed c quark is de-
scribed by the sum of two mechanisms, namely,

dσH
dx

=
dσFH
dx

+
dσRH
dx

, (12)
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where the first term corresponds to charmed-quark
fragmentation, while the second term takes into ac-
count the interaction of a charmed c quark with va-
lence quarks from initial hadrons (recombination).

In the fragmentation mechanism, the inclusive
cross section for charmed-hadron (D-meson) pro-
duction has the form

EH
d3σF

d3pH
(13)

=
∫

Ec
d3σ(h1h2 → cX)

d3pc
D(z)δ(pH − zpc)d3pc,

where the fraction z = |pH |/|pc| of the c-quark mo-
mentum is carried away by the charmed hadronH .

The parametrization of the fragmentation function
D(z) (for example, in the form proposed in [11] or
[12]) can be found from a fit to data on the reaction
e+e− → D(cq̄)X. However, the situation is more
complicated in hadronic collisions. Indeed, the use
of the fragmentation function is justified at asymp-
totically large values of the invariant mass of the cc̄
pair or high pT . However, in the hadronic production
of charmed particles, the main contribution to the
inclusive charm-production cross section comes from
c quarks with low values of the invariant mass of the
cc̄ pair (Mcc̄ ≥ 2mc) [13]. These quarks dominate in
the small-x region. At the same time, there are a
large number of partons from initial hadrons in the
same (central) region of x. Therefore, the c quark,
in combination with one of these partons, can easily
produce a charmed hadron. Such a process occurs
almost without any loss of the c-quark momentum
(i.e., pH ≈ pc). Therefore, in the small-x region,
one should expect the coincidence of the spectra of
charmed hadrons and c quarks. At the same time, one
may use the conventional fragmentation mechanism
at high x.

Following these arguments, we have proposed a
modified form of the fragmentation function [6],

DMF(z,Mcc̄) ∼ z−α(Mcc̄)(1− z), (14)

with two additional conditions imposed on α(Mcc̄):
α(Mcc̄)→ −∞, (15)

D(z)→ δ(1− z) forMcc̄ → 2mc;
α(Mcc̄)→ αc ≈ −2.2,

D(z)→ z−αc(1− z) forMcc̄ ≈M0.

The explicit form of α(Mcc̄) is

α(Mcc̄) =
1− 3µ(Mcc̄)
1− µ(Mcc̄)

,

where

µ(Mcc̄) =

(
ln(Mcc̄

2mc
q0)

ln q0

)0.464

, q0 ≈ 0.12.
2
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Note that the use of the fragmentation function
assumes the absence of the interaction of the product
heavy c quark with the remaining initial hadrons.
Therefore, there should be no difference between the
spectra of charmed and anticharmed hadrons. More-
over, any modification of the fragmentation mech-
anism cannot reproduce the production asymmetry
(leading-particle effect).

4. RECOMBINATION MECHANISM

The fragmentation mechanism can be applied to
the production of a cc̄ pair in the color-singlet state
or to the high-pT production of open charm. On the
other hand, for the hadronic production of a color cc̄
pair with small pT , one should take into account the
possibility of interaction of charmed c and c̄ quarks
with the initial-hadron remnants. It follows that,
because of the different valence quarks in the initial
hadrons, one may expect different inclusive spectra of
final charmed hadrons.

In the parton model, a heavy c quark should inter-
act, with a high probability, with its nearest neighbor
in the rapidity space to form a color-singlet state with
P

 

0 0.2 0.4 0.6 0.8

 

x

 

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00
Asymmetry

 

D

D

 

s

 

Λ

 

c

Fig. 4. Asymmetry in charmed-hadron production in
Σ−p interactions atPlab = 340GeV [2]. The solid curves
represent our predictions, the dotted curve corresponds to
PYTHIA results, and the dashed curves are the predic-
tions of Piskounova [4].

this neighbor. In some cases, the heavy antiquark
(quark) may approach closely (in the rapidity space) a
valence light quark (diquark) from the initial hadron.
This would result in the formation of a fast heavy
meson (baryon) in the fragmentation region of the
initial hadron.

The model developed in [5, 6] is used here to
describe the production asymmetry for charmed
hadrons. In this model, the interaction of charmed
quarks with valence quarks from the initial hadrons is
described in terms of the recombination function [5,
6]. The recombination of the valence qV and c̄ quarks
into aD meson is described by the function

RM (xq, z;x) =
Γ(2− αq − αc)

Γ(1− αc)Γ(1− αq)
(16)

× ξ
(1−αq)
q ξ(1−αc)

c δ(1 − ξq − ξc),

where ξq = xq/x; ξc = z/x; and the fractions xq,
z, and x of the initial-hadron c.m. momentum are
carried away by the valence q quark, the charmed
c quark, and the D(c̄q) meson, respectively. The
corresponding recombination of three quarks into a
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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baryon can be described by means of the similar re-
combination function

RB(x1, x2, z;x) =
Γ(3− α1 − α2 − αc)

Γ(1− α1)Γ(1− α2)Γ(1− αc)
(17)

× ξ
(1−α1)
1 ξ

(1−α2)
2 ξ(1−αc)

c δ(1 − ξ1 − ξ2 − ξc).

These functions take into account momentum con-
servation and the proximity of partons in the ra-
pidity space. Indeed, the recombination function
is the square of the modulus of the heavy-meson
(baryon) wave function in momentum space taken in
the infinite-momentum frame in the valence-quark
approximation.

In terms of the functionR(xV , z;x) describing the
recombination of the quarks qV and c̄ into a meson,
we represent the corresponding contribution to the
inclusive spectrum ofD meson as [5, 6]

x∗
dσR

dx
= R0

∫
xV z

∗ d2σ

dxV dz
R(xV , z;x)

dxV
xV

dz

z
.

(18)
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Here, x∗ = 2E/
√
s and x = 2pL/

√
s, where E and

pL are the energy and the longitudinal momentum
of the D meson in the c.m. frame of the initial
hadrons; xV and z are the momentum fractions
carried away by the valence quark and the heavy
antiquark, respectively; and xV z∗d2σ/(dxV dz) is the
double-differential cross section for the simultaneous
production of the quarks qV and c̄ in a hadronic
collision. The equation describing the production of a
charmed baryon has a similar form.

The constant termR0 of the model determines the
relative contribution of recombination. We fitted data
on charmed-hadron production in π−N collisions and
found that R0 ≈ 0.8 [6].

Note that the use of arecombination with valence
quarks provides a good description of the leading-
particle effect. At the same time, its contribution to
the total inclusive cross section for the production of
charmed particles is rather small (about 10%). This
mechanism dominates in the high-x region.

Note that the description provided by this model
for the production of a charmed D meson in π−N
2
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interactions is successful to a greater or lesser extent
(see Figs. 2, 3 and [6] for details).

5. CHARM PRODUCTION IN A Σ– BEAM

In this section, we consider charmed-hadron pro-
duction in a high-energy beam of Σ− hyperons. First
of all, we expect that the distributions of the valence d
and s quarks will behave differently. Indeed, as a first
approximation, the distribution of the valence quark
in the baryon B(q1q2q3) can be represented as [5, 6]

V B
q1 (x) ∝ x−α1(1− x)γb−α2−α3 , (19)

where αi is the intercept of the leading Regge trajec-
tory for the qi quark and γB  4. Note that, because of
violation of flavor SU(N) symmetry, we have different
intercepts for d(u) and s quarks [9, 11]:

αu = αd =
1
2
, αs ≈ 0, αc ≈ −2.2. (20)
PH
As a result, the x dependence of the valence d and s
quarks in the Σ−(sdd) hyperon has the form [7]

V Σ
d ∼

1√
x
(1− x)3.5, V Σ

s ∼ (1− x)3. (21)

It is seen from Eq. (21) that the valence s quark in
the Σ− hyperon has a harder x distribution than that
for the d quark. A comparative analysis of the gluon
distributions for the π and K mesons showed [14]
that the total gluon distributions for these mesons are
almost indistinguishable, irrespective of the form of
initial distributions of valence quarks. Therefore, we
arrive at the conclusion that the gluon distributions
for theΣ hyperon and the nucleon are nearly identical.
As a result, we expect a harder x dependence of the s-
quark distribution in the Σ hyperon than that of the
u-quark distribution in the nucleon. Thus, one may
expect that the spectrum of Ds mesons produced in
a Σ beam is slightly harder than the spectrum of D0
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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mesons produced in a nucleon beam. On the other
hand, the d quark in the Σ hyperon should be slightly
softer than that in the nucleon. As a result, we should
observe the different xF dependences of the spectra of
charmed hadrons with d or s quarks, namely,D−(c̄d)
andD−

s (c̄s), Ξ0
c(cds) and Σ−

c (cdd), etc.
We use the leading-order formulas to calculate the

cross sections for quark–antiquark and gluon–gluon
annihilation into a cc̄ pair. We setmc to 1.25 GeV and
the strong coupling constant to 0.3. For the cross
section for Σ−p interaction at Plab = 600 GeV, one
then has

σ(Σ−p→ cc̄X)  8 µb. (22)

In our calculations, we do not aim at reproducing the
absolute value of this cross section (see [13], for a
detailed consideration of this problem), but we con-
centrate on describing the xF distribution of charmed
mesons and baryons.

Recently, we calculated the asymmetry of the x
spectra for D, Ds, and Λc hadrons produced in a Σ−

beam of energy 340 GeV. The WA89 collaboration
compared these predictions with their experimental
data [2]. This comparison is presented in Fig. 4. It can
be seen that the asymmetry in D-meson production
in a Σ– beam differs from that in a π− beam and that
there is more pronounced asymmetry for Ds-meson
production.

Below, we present the predictions for charmed-
hadron production in a 600-GeV Σ− beam. The
corresponding distributions (integrated with respect
to pT ) are presented in Fig. 5. We can see from these
graphs that, indeed, the final-state charmed-quark
interaction being considered (recombination) leads to
noticeable distinctions between the xF spectra. These
distinctions can be explicitly seen in Fig. 6, where we
present the corresponding asymmetry A [see Eq. (2)
for definition]. The most nontrivial prediction of the
proposed model is presented in the two lower plots
in Fig. 6, where we display the ratio of the inclusive
spectra ofD∗−

s (c̄s) andD∗−(c̄d)mesons, as well as of
Ξ0
c and Σ0

c baryons. Indeed, because of the difference
of the valence d and s quarks in the Σ− beam [see
Eq. (21)], we expect additional asymmetry in leading-
charmed-particle production.

6. CONCLUSION

In this article, we have emphasized once again
that the interaction of product charmed quarks with
valence quarks from initial hadrons is the source
of the observed asymmetry in charmed-hadron pro-
duction. Note that the model under consideration
also provides an additional method for measuring the
valence-quark distributions in the Σ baryons.
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Upon the completion of this study, we received
the article of the E791 collaboration [15] with its
latest results on the inclusive x and pT distributions
of charmed hadrons produced in a π− beam. In
particular, this collaboration observed a noticeable
asymmetry in the production of Λ+

c and Λ−
c baryons

in the forward region (about 13%). Note that our
model cannot explain this result. Because of the equal
numbers of valence ū and d quarks in a π− beam,
we expect the equal yields of Λ+

c (cud) and Λ−
c (cud)

baryons in a π− beam. Moreover, the majority of
theoretical models [4] also predict zero asymmetry for
the production of these particles.

ACKNOWLEDGMENTS
We are grateful to E. Chudakov, A. Kushnirenko,

O. Piskounova, and J.S. Russ for stimulating discus-
sions.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 99-02-
16558) and by the Federal Ministry for Higher Edu-
cation (grant no. RF E00-33-062).

REFERENCES
1. E791 Collab. (J. C. Anjos), hep-ex/9912039; E791

Collab. (E. M. Aitala et al.), Phys. Lett. B 411, 230
(1997); hep-ex/9708040; E791 Collab. (E. M. Aitala
et al.), Phys. Lett. B 371, 157 (1996); WA82 Collab.
(M. I. Adamovich et al.), Phys. Lett. B 305, 402
(1993); E769 Collab. (G. A. Alves et al.), Phys. Rev.
Lett. 77, 2388 (1996); E769 Collab. (G. A. Alves
et al.), Phys. Rev. Lett. 72, 812 (1994).

2. WA89 Collab. (M. I. Adamovich et al.), Eur. Phys. J.
C 8, 593 (1999); hep-ex/9803021.

3. SELEX Collab. (M. Lori et al.), hep-ex/9910039;
SELEX Collab. (M. Lori), Nucl. Phys. B (Proc.
Suppl.) 75, 16 (1999); SELEX Collab. (F. G. Garcia
and S. Y. Jun), hep-ex/9905003.

4. R. Vogt and S. J. Brodsky, Nucl. Phys. B 478,
311 (1996); hep-ph/9512300; T. Gutierrez and
R. Vogt, Nucl. Phys. B 539, 189 (1999); hep-
ph/9808213; J. C. Anjos, J. Magnin, F. R. Simao,
and J. Solano, hep-ph/9806396; E. Cuautle, G. Her-
rera, and J. Magnin, Eur. Phys. J. C 2, 473 (1998);
hep-ph/9711354; G. Herrera and J. Magnin, Eur.
Phys. J. C 2, 477 (1998); hep-ph/9703385; J. C. An-
jos, G. Herrera, J. Magnin, and F. R. A. Simao,
Phys. Rev. D 56, 394 (1997); hep-ph/9702256;
O. I. Piskounova, hep-ph/9904208; T. Tashiro,
H. Noda, K. Kinoshita, and S. Nakariki, hep-
ph/9810284; G. H. Arakelyan and S. S. Yeremyan,
hep-ph/9808325; G. H. Arakelyan, Yad. Fiz. 61,
1682 (1998) [Phys. At. Nucl. 61, 1570 (1998)]; hep-
ph/9711276; E. Norrbin and T. Sjöstrand, hep-
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Abstract—It is shown that analytic properties of standard QCD perturbation theory contradict known
spectral properties and contain, in particular, infrared-generated Landau ghost poles and cuts. As an
outcome, a rigorous background perturbation theory is developed and its analytic properties are shown
to be in agreement with general requirements. In the limiting case of large Nc, where QCD amplitudes
contain only pole singularities, the strong coupling constant αs(Q2) is shown to be a meromorphic function
of external momenta as well. Some simple models and examples are given where nonperturbative β
function and αs(Q2) can be written explicitly. The general form of amplitudes at large Nc is given in the
framework of background perturbation theory, and its correspondence with standard perturbation theory at
high momenta is demonstrated in the example of e+e− annihilation. For timelikemomenta, the background
coupling constant differs drastically from the standard one, but the background series averaged over energy
intervals has the same (AF) behavior at high momenta in the Euclidean and in the Minkowskian region.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The standard perturbation theory (SPT) in QCD
is well developed both on the theoretical and on the
phenomenological level [1, 2] and constitutes the
major and best understood part of QCD. Successful
applications of perturbative expansions to processes
featuring high momenta are numerous and impres-
sive.

However, there are a few basic difficulties in SPT
[it is assumed that renormalization-group (RG) im-
provements, such as partial summation of large loga-
rithms, are automatically included in SPT], namely:

(i) The analytic properties of SPT amplitudes do
not correspond to the expected spectral behavior. In
particular, there appear ghost poles and cuts even in
the Euclidean region of momenta, where one expects
amplitudes to be holomorphic.

These ghost singularities are due to the analytic
properties of RG-improved αs(Q2) and are associated
with the infrared (IR) divergence of αs(Q2). Also in
the Minkowskian region of momenta, αs(Q2) have
logarithmic cuts that must not appear in a physical
amplitude and which are therefore an artifact of SPT.

In short, the analytic behavior of amplitudes that
are computed in SPT has nothing to do with phys-
ical thresholds and cuts due to creation of hadrons.
Therefore, one may only speak about some duality
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relations between SPT amplitudes and physical am-
plitudes integrated over a sufficiently large energy
interval.

(ii) Another basic defect of SPT is the lack of
convergence of standard perturbative series. There
are arguments that the latter is an asymptotic series
[3], and it is not clear, in all cases, where the series
should be cut off. (Some hints that the three-loop
contribution impairs the physical results in the 1- to
1.5-GeV region are contained in [3, 4].) Moreover,
Landau ghost poles give rise to the appearance of the
so-called IR renormalons [5], which make the sum of
perturbative series undefined even in the Borel sense.

Attempts at associating IR renormalons with non-
perturbative contributionsmay have only a qualitative
character at best. Strictly speaking, the notion of the
sum of an SPT series therefore has no definite mean-
ing, and one may only hope that, at high Euclidean
momenta, the first few terms of the RG-improved
perturbative series describe the asymptotic behavior
of physical amplitudes with reasonable accuracy.

A few approaches have been developed to improve
the situation. First of all, it was understood long ago
that, in addition to SPT, nonperturbative contribu-
tions should also be taken into account. Technically,
the latter were introduced as local terms (conden-
sates) in the operator-product expansion (OPE), and
QCD sum rules were proposed on this basis [6]. In
this way, one can approach the low-energy region
around 1 to 2 GeV, and a lot of useful physical infor-
mation has been obtained by this method over the last
20 years [7].
2002MAIK “Nauka/Interperiodica”
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However, in this method, one does not solve the
two problems of SPT described above, but instead
postulates that, in addition to the first few SPT terms,
one can add a few power-law terms to imitate the be-
havior of physical amplitudes not only in the asymp-
totic region but also in the region of a few GeV. At
lower energies, the OPE series have at least double
divergence: due to the explosion of αs near the Lan-
dau ghost pole and due to the explosion of the power-
law terms Cn/Q

2n.
It is important to note that the original OPE and

QCD sum rules [6] were properly defined only in the
Euclidean region, and the transition to the timelike
region is assumed to be done a posteriori, upon per-
forming all calculations in the Euclidean region.

Defining αs(Q2) in theMinkowskian region ofQ2,
Q2 < 0, is a problem in itself within SPT, since a for-
mal analytic continuation of expressions for αs(Q2)
that involve two or more loops yields complex ex-
pressions violating explicit unitarity conditions in the
nonasymptotic region.

Moreover, as was stressed in [8], the invariant
coupling ḡ(Q) can be defined only in the spacelike do-
main, and “inside the RG formalism there is no simple
means for defining ḡ(Q) in the timelike region.”

A new formalism for defining αs(Q2) both in the
space- and in the timelike region was developed in
[9] (see [8] for a review and further references), where
αs(Q2) is forced to be analytic for Q2 > 0 and where
a special procedure is envisaged to continue αs ana-
lytically into the timelike region.

It is clear, however, that this is not a unique way
of analytic definition in the entire complex plane of z,
and, in particular, αs(z) has nevertheless a divergent
first derivative at z = 0, which is not justified from the
physical point of view.

In what follows, we shall choose a completely
different strategy. To simplify the matter, we shall
consider below the limiting case of large Nc. In this
case, one can be sure that all physical amplitudes
contain only poles as functions of external momenta
[10], and we shall require that perturbative expan-
sions reproduce the meromorphic properties of phys-
ical amplitudes—i.e., that αs(Q2) have singularities
only in the timelike region and that those be poles.

To achieve this goal, one needs to use background
perturbation theory (BPT) instead of the standard
one, and we shall derive rigorous formalism based on
BPT developed in the 1970s and 1980s [11] and gen-
eralized in [12–14] to include a nonclassical back-
ground and averaging over background fields.

In this way, one obtains a systematic formalism
that makes it possible to express all terms of BPT
P

in terms of irreducible correlation functions for back-
ground fields (integrals thereof) and the renormalized
coupling constant αB , which we shall denote αB(s)
to distinguish it from αs(s) in SPT.

It was argued in [14] that αB(s) and physical
amplitudes satisfy the same RG equations—in par-
ticular, the Ovsyannikov–Callan–Simanzyk (OCS)
equations—and the important distinction between
αB(Q2) and αs(Q2) lies in the character of the Q2

dependence of the former. It was demonstrated in
[12–14] that αB(Q2) has the property of freezing or
saturation at small Q2; i.e., it tends to a finite limit
αB(0) when Q2 → 0 and has no singularities in the
entire Euclidean regionQ2 ≥ 0.

This behavior of αB(Q2) was tested repeatedly in
e+e− annihilation [13, 14], in the fine structure of
charmonium [15] and bottomonium levels [16], and
recently [4] in a comparison with accurate lattice data
on the small-distance behavior of αL(R). In all cases,
the same form of solution for αB was used with-
out free parameters, which produced results in good
agreement with experimental and lattice data. In this
way, the phenomenon of freezing (saturation) was
demonstrated both theoretically as a result of con-
finement in background fields [12] and phenomeno-
logically in comparison with lattice and experimental
data.

With all that, some important theoretical ques-
tions were not answered: First of all, what happens
to αB(s) in the Minkowskian (timelike) region and
what are the analytic properties of αB(s) in the entire
s-plane? Second, what is the connection between
αB(s) and other nonperturbative definitions of α(s),
e.g., lattice definitions of α–αL(s)?

In the present paper, our objective is to study the
problem of BPT in the large-Nc limit in order to
elucidate several aspects.

First, we formulate the foundations of BPT and
rules for calculating perturbative series, starting from
the purely nonperturbative term.

Second, we derive RG equations, taking into ac-
count the fact that nonperturbative background is in
general not a classical solution and is subject to vac-
uum averaging, which, owing to the ’t Hooft identity,
can be performed independently of perturbative-field
averaging.

Third, we find the most general solution to RG
equations and, in particular, the nonperturbative β
function, which has a known lowest term expansion;
at the same time, αB(Q2) is represented as the sum
of pole terms.

To understand which kind of singularities αB(Q2)
may have without ceasing to be compatible with an-
alytic properties of physical amplitudes, we consider
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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a simplified model and demonstrate that any finite-
order perturbative expansion has additional singular-
ities that are eliminated when a partial summation of
the perturbative series is performed.

As a next step, we formulate a generic perturba-
tive expansion for a physical amplitude, choosing the
example of e+e− annihilation into hadrons and write
it as a sum over poles in the timelike region with
calculable coefficients.

At this point, one may wonder how this mero-
morphic expansion is related to the SPT expansion,
where the perturbative series is in powers of αs(Q2),
which contains logarithmic functions ofQ2 andwhich
is not meromorphic. The answer to this question
was given in the analysis of the lowest term of e+e−

annihilation—the hadronic part of the photon self-
energy. The latter is the sum over meson poles at
large Nc and has a proper logarithmic behavior lnQ2

at largeQ2. We demonstrate that a similar correspon-
dence takes place also for higher terms of BPT and
formulate conditions on the coefficients of the mero-
morphic expansion that are necessary to reproduce
the known SPT expansion at large Q2.

A discussion on practical applications and on a
comparison with other approaches concludes the pa-
per.

The exact structure of the paper is as follows. In
Section 2, general rules of BPT are given and Green’s
functions for valence quarks, gluons, and hadrons are
written explicitly. In Section 3, RG equations are
written for the case of the most general background,
the point of the RG scheme is discussed, and a par-
ticular solution to the RG equations for the β function
and αB(Q2) is presented. In Section 4, a simple
model is discussed where some BPT subseries can be
summed up explicitly. In Section 5, nonasymptotic
terms in the spectral sums are calculated. In Section
6, the behavior of perturbative series in the region of
timelike Q2 is studied in detail. The discussion and
outlook are contained in the concluding section.

2. BACKGROUND PERTURBATION THEORY
FOR AN ARBITRARY BACKGROUND

The gluon field plays two different roles in QCD:
(i) Gluons propagate, and, at small distances,

this process can be described perturbatively, leading,
in particular, to color Coulomb interaction between
quarks (antiquarks).

(ii) Gluons form a kind of condensate, which
serves as a background for propagating perturbative
gluons and quarks. This background is Euclidean
and ensures the phenomena of confinement and
chiral-symmetry breaking (CSB).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
Correspondingly, we shall break down the total
gluon field Aµ into a perturbative part aµ and a non-
perturbative (NP) backgroundBµ:

Aµ = Bµ + aµ. (1)

There are many questions about this partition,
which may be answered now only partially. For
example, what exactly is the criterion of partition?
The possible answer is that perturbative fields aµ get
their dimension from distance (momentum); there-
fore, all correlation functions for the fields aµ (in
the absence of Bµ) are singular and made of inverse
powers of (x− y) and logarithms, where the only
dimensional parameter of perturbative QCD (ΛQCD)
appears. Obviously, any dimensional constant, like
hadronic masses or string tension, cannot therefore
be obtained as a perturbation series. In contrast to
that, the NP fieldsBµ have dimensions of mass owing
to the violation of scale invariance, which is intrinsi-
cally present in the gluodynamics Lagrangian. The
origin of partition in (1) is clearly seen in the solutions
to nonlinear equations for field correlation functions
[17]: a perturbative solution to those leads to a sin-
gular powerlike field correlation function, whereas, at
large distances, there is a self-consistent solution to
the equations, decaying exponentially with distance
with an arbitrary mass scale, since the equations in
[17] are scale-invariant. A full solution including
intermediate distances produces mixed perturbative–
nonperturbative terms containing both inverse pow-
ers of distance and exponentials. For these terms, the
criterion of partition fails.

One can avoid formally the question of the par-
tition principle (and of double counting) using the
’t Hooft identity [13], which allows one to integrate
in (1) independently over Bµ and aµ:

Z =
1
N ′

∫
DBµη(B)DψDψ̄Daµe

Ltot . (2)

Here, the weight η(B) is arbitrary and may be taken
to be a constant.

To define perturbation theory series in gaµ, one
starts from (1) and rewrites the Lagrangian as

Ltot = Lgf + Lgh + L(B + a) (3)

= L0 + L1 + L2 + Lint + Lgf + Lgh,

where Li have the form

L0 = −1
4

(F a
µν(B))2; L1 = ac

νD
ca
µ (B)F a

µν ; (4)

L2(a) =
1
2
aν(D̂2

λδµν − D̂µD̂ν + igF̂µν)aµ

=
1
2
ac

ν [Dca
λ D

ad
λ δµν −Dca

µ D
ad
ν − g f cadF a

µν ]ad
µ;

Dca
λ = ∂λ · δca + gf cbaBb

λ ≡ D̂λ,
2
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F a
µν = ∂µB

a
ν − ∂νB

a
µ + gfabcBb

µB
c
ν ;

Lint = −1
2

(Dµ(B)aν (5)

−Dν(B)aµ)agfabcab
µa

c
ν −

1
4
g2fabcab

µa
c
νf

aefae
µa

f
ν ;

Lgh = −θ+
a (Dµ(B)Dµ(B + a))abθb. (6)

It is convenient to prescribe, to aµ and Bµ, the
gauge transformations

aµ → U+aµU, (7)

Bµ → U

(
Bµ +

i

g
∂µ

)
U (8)

and to impose on aµ the background gauge condition

Ga ≡ (Dµaµ)a = ∂µa
a
µ + gfabcBb

µa
c
µ = 0. (9)

In this case, the ghost field has to be introduced as in
(6) and the gauge-fixing term is

Lgf = − 1
2ξ

(Ga)2.

One can write the resulting partition function as

Z =
1
N ′

∫
DBη(B)Z(J,B), (10)

where

Z(J,B) =
∫
DψDψ̄DaµDθDθ

+ (11)

× exp
(
Ltot +

∫
Jµaµdx

)
.

We now can identify the propagator of aµ from the

quadratic terms in Lagrangian L2(a),
1
2ξ

(Ga)2:

Gab
νµ =

[
D̂2

λδµν − D̂µD̂ν (12)

+ igF̂µν +
1
ξ
D̂νD̂µ

]−1

ab

.

It will sometimes be convenient to choose ξ = 1
and end up with the well-known form of propagator
in—what one would call—the background Feynman
gauge:

Gab
νµ = (D̂2

λδµν − 2igF̂µν )−1. (13)

Integration over ghost and gluon degrees of free-
dom in (11) yields

Z(J,B) = const · (detW (B))−1/2
reg (14)

× [det(−Dµ(B)Dµ(B + a))]a=δ/δJ

×
{

1 +
∞∑

l=1

Sint

l!

(
a =

δ

δJ

)}
P

× exp
(
−1

2
JW−1J

)∣∣∣∣
Jν=Dµ(B)Fµν (B)

,

whereW = G−1 and G is defined in (12) and (13).
Let usmention the important property of the back-

ground Lagrangian (3): under gauge transforma-
tions, the fields aµ and Bµ transform as in (7) and (8)
and all terms of (3), including the gauge-fixing one,
1
2(Ga)2, are gauge-invariant. That was actually one
of the aims put forward by ’t Hooft in [11], and it has
important consequences too:

(i) Any amplitude in perturbative expansion in gaµ

of (11) and (14) corresponding to a generalized Feyn-
man diagram is separately gauge-invariant (for color-
singlet initial and final states, of course).

(ii) Due to gauge invariance of all terms, the renor-
malization is especially simple in the background-
field formalism [11], since the counterterms appear
only in a gauge-invariant combination, e.g., F 2

µν ;
hence, the Z factors Zg and ZA are connected. We
shall exploit this fact in Sections 6 and 7.

Let us now address the term L1 in (3), L1 =
2tr(aνDµFµν), which is usually missing in the stan-
dard background-field formalism [11], since one tac-
itly assumes there that the background Bµ is a clas-
sical solution,

Dµ(B)Fµν(B) = 0. (15)

Here, we do not impose condition (15) and consider
any background, classical or purely quantum fluctu-
ations. Let us estimate the influence of the vertex L1.
In general, it leads to the shift of the current Jµ in
the expression for the perturbative series (14). Phys-
ically, this means that, at each point, the background
Bµ can generate a perturbative gluon via the vertex
(aµDνFνµ), and this vertex is proportional to the de-
gree of “nonclassicality” of Bµ. For the semiclassical
vacuum, like the instanton model, the expectation
value 〈(DµFµν)2〉 over the instanton ensemble is less
than O(ρ4/R4) and is small (at most, of the order of
a few percent), while the expectation value 〈DµFµν〉
vanishes in the symmetric vacuum. All this is true,
provided that the instanton gas stabilizes at small
density.

Let us estimate the effect of L1 in the general
quantum case. To this end, we calculate, as in [12],
the contribution of L1 to the gluon propagator.

If one denotes by 〈 〉a the integral Daµ with the
weight Ltot as in (11), we obtain

〈aµ1(x1)aµ2(x2)〉a = Gµ1µ2(x1, x2) + ∆B
µ1µ2

, (16)

∆B
µ1µ2

≡
∫
d4y1d

4y2Gµ1ν1(x1, y1)

×DρFρν1(y1)DλFλν2(y2)Gν2µ2(y2, x2).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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The gluon Green’s function Gµν is given in (13) and
depends on the background field Bµ, as well as Dµ

and Fρλ. To get a simple estimate of ∆, we replace

Gµν by the free Green’s function G(0)
µν and take into

account the fact that
〈DρFρν1(y1)DλFλν2(y2)〉B (17)

→ ∂

∂y1ρ

∂

∂y2λ
〈Fρν1(y1)Fλν2(y2)〉,

and, for the latter, we use the representation [18] in
terms of two independent Lorentz structures,D(y1 −
y2) and D1(y1 − y2). The contribution of D (that of
D1 is of a similar character) in the momentum space
is

∆B
µ1µ2

(k) ∼ k2δµ1µ2 − kµ1kµ2

k4
D(k), (18)

where

D(k) =
∫
d4yeikyD(y). (19)

Inserting, in (19), the exponential falloff for D(y)
found in lattice calculations [19], we obtain

D(k) =
〈F 2(0)〉

(N2
c − 1)

π2µ

(µ2 + k2)5/2
. (20)

At µ � 1 GeV,D(k) � 0.12. Thus, ∆B(k) is a soft
correction to the perturbative gluon propagator fast
decreasing with k (in proportion to k−5).

3. RENORMALIZATION-GROUP
IMPROVEMENT OF PERTURBATIVE
SERIES AND ANALYTIC PROPERTIES

OF αs(Q2)

The most important property of the background
method discussed in the preceding section is the
gauge invariance of the total Lagrangian including
the gauge-fixing term Lgf.

As a consequence of this, the counterterms in
the renormalization procedure have to be gauge-
invariant too, and this fact establishes a connection
between the Z factors of the charge and of the
background field [11]; namely, if

g0 = Zgg, B(0)
µ = Z

1/2
B Bµ, (21)

then we have

ZgZ
1/2
B = 1. (22)

This property is very important for the BPT and
for the method of field correlation functions in general.
Indeed, the combinations entering into the latter have
the form

∆n ≡ tr〈gF (B)
µ1ν1

(1)Φ(1, 2)gF (B)
µ2ν2

(2)Φ(2, 3) (23)

. . . gF (B)
µnνn

(n)Φ(n, 1)〉B ,
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where F (B)
µiνi is made of the background field Bµ only

and the parallel transporters Φ(i, k) making Eq. (23)
gauge-invariant also depend on gBµ. Hence, ex-
pression in (23) contains only the combinations gBµ,
which, according to (22), are invariant under RG
transformations.

Therefore, in all RG relations—in particular, in
OCS equations—the background fields (averaged as
in ∆n or nonaveraged) appear on the same ground
as the external momenta; hence, all relations can be
kept intact. For example, OCS equations for some
physical amplitude Γ now have the form [14]{
− ∂

∂ lnλ
+ β

∂

∂g2
+m(γm − 1)

∂

∂m
− γΓ

}
(24)

× Γ(λp1, . . . , λpN , λ
2k∆k, g, ν) = 0,

where we have defined as usual
dαs(λ)
d lnλ

= β(αs) (25)

and similarly for γm, with boundary conditions
αs(λ = 1) = αs(ν). (26)

In writing the right-hand side of (26), we tacitly
assume that αs also depends on all external param-
eters {pi} and {∆k}, in addition to the dimensional
regularization parameter ν (or its equivalent in other
schemes, µ). The reason why external parameters are
not usually written lies in the fact that RG equations
[like (24) and (25)] define only the dependence on one
scale parameter, e.g., λ, and, through it, on ν (µ),
while the dependence on external parameters is not
fixed, and they may in principle enter into αs in arbi-
trary dimensionless combinations, unless additional
information is obtained from perturbation expansion
(BPT or SPT).

A few words should be said about the choice of
renormalization scheme for BPT.

It is convenient to use the MS scheme, since,
in the presence of a background as well, the mod-
ified Feynman amplitudes of BPT are divergent at
small distances (large momenta), and, when these
momenta are much larger than the average magni-
tude of the background fields, one can neglect the
latter; e.g., using OPE, one expects corrections of
the form g2〈F 2

µν〉/p4, which do not alter Z factors.
In particular, the difference Γ− Γpert ≡ ∆Γ, where
Γpert is the usual sum of Feynman amplitudes without
a background, is convergent in the ultraviolet (UV)
region, so that all UV divergences of Γ are the same
as in Γpert.

Now, we address the possible solutions to Eq. (25).
The SPT expansion for β(αs) has the form

βpert(αs) = − b0
2π
α2

s −
b1

4π2
α3

s (27)
2
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− b2
64π3

α4
s −

b3
(4π)4

α5
s − . . . ,

where the first coefficients are1)

SU(3) : nf = 0, b0 = 11, b1 = 51, (28)

b2(MS) = 2857, b3(MS) = 58486;

SU(Nc) : nf = 0, b0 =
11
3
Nc, b1 =

17
3
N2

c . (29)

Following (27), we will seek β(αs) in the form

β(αs) = − b0
2π

α2
s[

1− b1
2πb0

ϕ′
(

1
αs

)] , (30)

where ϕ(x) is an unknown function and ϕ′(x) is the
derivative with respect to the argument x. Solving
(30) for αs, one obtains

αs =
4π
b0

[
lnµ2C2 +

2b1
b20
ϕ

(
1
αs

)]−1

, (31)

where we have made the substitution λ→ µ and C2

is an arbitrary function of external parameters having
dimensions of (mass)−2.

From (27), one concludes that the only condition
on ϕ is the expansion in powers of αs:[

1− b1
2πb0

ϕ′
(

1
αs

)]−1

= 1 +
b1

2πb0
αs (32)

+
b2

32π2b0
α2

s +
b3

128π3b0
α3

s.

One can rewrite (31) in the form

χ(Q2) = z − b1
2πb0

ϕ(z), (33)

where z ≡ 1/αs and

χ(Q2) ≡ b0
4π

lnµ2C2,

Q2 being the representative of the external parame-
ters.

As a simple example, one can consider the photon
self-energy function Π(Q2) entering into the e+e−

annihilation process, in which case Q2 is the only
external momentum, while background fields create
masses of the bound-state spectrum. In this case,
one can take the form appearing in the lowest approx-
imation of BPT [14], which leads to the substitution

lnµ2C2 = ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)
, (34)

Λ2 = ν2 exp
[
−4π
b0
αs(ν2)

]
.

1)Note that the definition of our coefficients bi differ from that
in [1].
P

Here, ψ(x) ≡ Γ′(x)/Γ(x) is the Euler function, which
has only simple poles at x = −n, n = 0, 1, 2, . . . .

This example clearly shows that χ(Q2) is a mero-
morphic function of Q2, and we must require that
αs also be a meromorphic function of Q2, analytic in
the Euclidean region ReQ2 ≥ 0, since the BPTwould
otherwise violate the analytic properties of amplitudes
in the limitNc →∞.

In this way, we are lead to the conclusion that
ϕ(z) should be a meromorphic function of z = 1/αs,
since in this case the right-hand side of Eq. (33) is a
meromorphic function of Q2 (meromorphic function
of a meromorphic function of some argument is again
meromorphic). Thus, one can equalize functions on
the two sides of Eq. (33) since they have the same
analytic properties.

We do not specify, at this point, the character of
possible singularities; the resulting physical ampli-
tude should have only simple poles at bound-state
energies, while any finite series of BPT may have
poles of higher order and additional poles, as will be
seen in the examples given below.

To illustrate the possible forms of ϕ(z), we con-
sider one example of a meromorphic function, namely,

ϕ

(
1
αs

)
= ψ

(
1
αs

+ ∆
)
, ∆ = const. (35)

A perturbative expansion of ψ has the form

ψ′(z) =
1
z

+
1

2z2
+

1
6z3

+ . . . , z →∞, (36)

or, applying it to (35), one has

ψ′
(

1
αs

+ ∆
)

=
αs

1 + αs∆
(37)

+
α2

s

2(1 + αs∆)2
+

α3
s

6(1 + αs∆)3
+ . . . .

Therefore, one obtains[
1− b1

2πb0
ψ′
(

1
αs

+ ∆
)]−1

(38)

= 1 +
b1

2πb0
αs +

b1
2πb0

α2
s

[
−∆ +

1
2

+
b1

2πb0

]

+
b1

2πb0
α3

s

[
∆2 −∆ +

1
6

+
(

b1
2πb0

)
(1− 2∆) +

(
b1

2πb0

)2]
.

From (38), one can find the “theoretical” value of b2
and b3, namely,

b
(th)
2 = 16πb1

(
1
2
−∆ +

b1
2πb0

)
(39)

= 3173.4 − 16πb1∆,
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b
(th)
3 = 64π2b1[∆2 −∆ +

1
3

+ γ

(
1
2
−∆

)
+ γ2], γ =

b1
2πb0

.

Now, since ψ(z) has poles at z = 0,−1,−2, . . . ,
ψ (1/αs + ∆) has poles at the following values of αs

αs = − 1
∆
,− 1

1 + ∆
,− 1

2 + ∆
, . . . . (40)

Correspondingly, ψ′(z) has double poles, and, as
a consequence of (30), β(αs) has zeros at the values
of αs given in (40). These zeros condense at αs = 0
from the negative side.

The poles of β(αs) are defined by the zeros of the
denominator in (30); i.e., they are given by

1 =
b1

2πb0
ψ′
(

1
αs

+ ∆
)
. (41)

For ∆ > 0 and αs > 0, there is one root of (41) at

αs = α
(∆)
s if ∆ ≤ ∆0, where ∆0 is defined by

ψ′(∆0) =
2πb0
b1

= 1.355, ∆0 = 1.145. (42)

For ∆ ≤ ∆0, one obtains one pole of β(αs) given
by (41), while, for ∆ > ∆0, there are no poles of β(αs)
for αs ≥ 0, and β(αs) is a monotonically decreasing
function.

For αs < 0, one has an infinite number of poles of
β(αs), which lie between the zeros of β(αs) described
by Eq. (40).

We now come to the analytic properties of αs(Q2),
having in mind parametrization (34) for Π(Q2) in
e+e− annihilation.

The poles of αs are to be found from the equation

ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)
+

2b1
b20
ψ

(
1
αs

+ ∆
)

= 0,

(43)

and we require that, for ReQ2 ≥ 0, αs(Q2) have no
poles, which gives the condition

ln
m2

Λ2
+ ψ

(
M2

0

m2

)
+

2b1
b20

minψ
(

1
αs

+ ∆
)
≥ 0.

(44)

Now, ψ(z) > 0 for z > 1.46, and m2 = 4πσ =
2.5 GeV2; since M2

0 , as will be seen, corresponds
to the difference of double-hybrid mass and hybrid
mass, it can lie in the interval 1 ≤M0 ≤ 1.5 GeV, and
the accurate calculations in [4, 15, 16] strongly prefer
M0 = 1 GeV. Hence, one obtains, for the sum of two
first terms in (44), the minimum value

ln
m2

Λ2
+ ψ

(
M2

0

m2

)
= 3.32−


 0.755

2.5


 , (45)
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where the upper (lower) figure in parenthesis refers to
M0 = 1.5 GeV (1 GeV).

Finally, one can see that, for ∆ > ∆0, one has
ψ(∆) > −0.5 and the left-hand side of (44) is posi-
tive; hence, for all Q2 > 0 as well, the left-hand side
of Eq. (43) is always positive. In this way, we have
proven that αs(Q2) has no poles for all Q2 > 0 if
∆ > ∆0.

The resulting form ofαB(Q2) valid in the entireQ2

plane is now

αB =
4π
b0

[
ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)

+
2b1
b20
ψ

(
1
αB

+ ∆
)]−1

, (46)

where ∆ > ∆0 = 1.145. For Q2 < 0, the function
αB(Q2) in (46) has zeros and poles that do not neces-

sarily coincide with the poles of ψ
(
Q2 +M2

0

m2

)
, i.e.,

with the unperturbed spectrum −Q2 = M2
0 + nm2

computed with αs = 0, i.e., without the influence of
valence-gluon excitations.

But this is as it should be, since the amplitude
Π(Q2) must have poles at the final positions

−Q2 = (M (n))2, n = 0, 1, 2, . . . , (47)

which take into account valence (and Coulomb)
gluon effects.

4. SIMPLE MODEL FOR CONSTRUCTING
PERTURBATION SERIES

In this section, we shall consider a simple model
that is to illustrate the analytic properties of individual
terms of BPT and of its infinite sum. Our discus-
sion in this section will be formally similar to the
lectures [20] where old-fashioned perturbation theory
was used for SPT, except that we use confined states
instead of free quarks and gluons. To this end, we
define a quantum-mechanical Hamiltonian H0 that
produces bound states (equivalent to an infinite num-
ber of mesonic states) and two second-quantized op-
erators V1(t) and V2(t) that create additional valence
gluons, to be bound together with a quark and an
antiquark into a sequence of hybrid states. We define
the total Hamiltonian

H = H0 + V1(t) + V2(t) (48)

and
V1(t) = eiω1tv1a

+ + h.c., (49)

V2(t) = eiω2tv2b
+a+a+ h.c., (50)

where a, a+ and b, b+ are annihilation (creation) op-
erators. We do not specify the d-space dependence of
2
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v1(x) and v2(x); t is the common time of the instant
form of dynamics. It is clear that V1 and V2 are
prototypes of the terms ψ̄âψ and a2∂a in the QCD
Lagrangian; here, to simplify matters, we disregard,
in aµ(x) orAµ(k), the dependence on the polarization
µ and the momentum k, but we introduce b and a to
distinguish between gluon emission from quarks (in
V1) and from gluons (in V2).

We assume that H0 has only a discrete spectrum
of mesons (confinement); for the Green’s function, we
therefore have

i
∂

∂t
G0(t) = H0(t)G0(t), (51)

G0(t) =
∑

n

ϕ(0)
n ϕ(0)+

n e−iE
(0)
n t,

while, for the Fourier transform, one has

G0(E) =

∞∫
0

e−iEtG0(t)dt = i
∑

n

ϕ
(0)
n ϕ

(0)+
n

E −E(0)
n

. (52)

For the full Green’s function, one can write

i
∂

∂t
G(t) = (H0 + V (t))G(t), (53)
P

V (t) = V1(t) + V2(t),

with the solution

G(q1, q2; t) (54)

= 〈q1| exp


−i

t∫
0

(H0 + V (t′))dt′


 |q2〉.

The perturbative series has the form

G(t) = G0(t) +
∫
G0(t− t1)(−i)V (t1)G0(t1)dt1

+
∫ ∫

G0(t− t1)(−i)V (t1)dt1 (55)

×G0(t1 − t2)(−i)V (t2)G0(t2)dt2 + . . . .

For the energy-dependent Green’s functionG(E),
the perturbative series can be written by taking into
account the vacuum state for the operators a and b,

a|vac〉 = b|vac〉 = 0, (56)

which yields
G(E) = G0(E) +G0(E)(−iṼ1)G0(E − ω1)(−iṼ1)G0(E) (57)

+G0(E)(−iṼ1)G0(E − ω1)(−iṼ2)G0(E − ω1 − ω2)(−iṼ2)G0(E − ω1)(−iṼ1)G0(E)

+G0(E)(−iṼ1)G0(E − ω1)(−iṼ1)G0(E)(−iṼ1)G0(E − ω1)(−iṼ1)G0(E)

+G0(E)(−iṼ1)G0(E − ω1)(−iṼ1)G0(E − 2ω1)(−iṼ1)G0(E − ω1)(−iṼ1)G0(E) + . . . .
If one introduces the “gluon propagator”

K1(E) = (−iṼ1)G0(E − ω1)(−iṼ1), (58)

then the partial summation of diagrams with gluons
emitted by quarks only yields

G(K1)(E) = G0(E) +G0(E)K1(E)G0(E) + . . .
(59)

= G0(E)
1

1 −K1G0
.

For the “gluon-b” propagator, we similarly have

k2(E) = (−iṼ2)G0(E − ω1 − ω2)(−iṼ2) (60)

and the “full gluon propagator” is given by

K2(E) = K1(E) + (−iṼ1)G0(E − ω1) (61)

× [1 + k2G0(E − ω1) + (k2G0(E − ω1))2 + . . .]

× (−iṼ1) = (−iṼ1)G0(E − ω1)

× 1
1− k2G0(E − ω1)

(−iṼ1).
H

One should note that Ṽi are operators and that
the denominators in (59) and (61) are formal oper-
ator expressions. Now, to analyze the perturbative
expansion (57) or its partial sums (59) and (61), one
should specify the unperturbed spectrum (52) and
define matrix elements of Ṽi between the unperturbed

eigenfunctions ϕ(0)
n . For the sake of simplicity, we

assume that the spectrum is linear in n,

E(0)
n = M0 +mn, n = 0, 1, . . . , (62)

and, for V (i)
nk ≡ (ϕ(0)+

n Ṽiϕ
(0)
k ), one can assume that,

at large n and k, this matrix element factorizes,

V
(i)

nk = c
(i)+
n c

(i)
k .

As a consequence, one has

G(K1)(E) =
∑

n

ϕnc
(1)+
n

E − En
Ω1(E − ω1) (63)

× 1
1− g(E)Ω1(E − ω1)

′∑
n

c
(1)
n′ ϕ

+
n′

E − En′
,
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where we have defined

Ω1(E − ω1) ≡ −
∑

k

|c(1)k |2
E − Ek − ω1

, (64)

g(E) ≡
∑

n

|c(1)n |2
E − En

. (65)

It is clear thatΩ1(E −ω1) has poles at the “gluon-
excited,” i.e., “hybrid-state,” masses E = Ek + ω1;
however, the partial sum G(K1)(E) has shifted poles
owing to the vanishing of the denominator in (63), in
addition to unperturbed poles at En.

A similar situation occurs forK2(E). If one defines

Ω2(E − ω1) =
∑

k

|c(2)k |2
E − Ek − ω1

, (66)

Π2(E − ω1 − ω2) = −
∑

k

|c(2)k |2
E − Ek − ω1 − ω2

,

(67)

then one can rewrite (61) as

K2(E) =
(−iṼ1)|ϕn〉
E − En − ω1

(68)

×
{
δmn + c(2)+n

Π2(E − ω1 − ω2)c(2)m

1− Ω2(E − ω1)Π2(E − ω1 − ω2)

}

× 〈ϕm|(−iṼ1)
E − Em − ω1

.

This exercise was undertaken to illustrate that
the “full gluon propagator” K2(E) has, in addition
to unperturbed “one-gluon poles” 1/(E −En − ω1),
also shifted “two-gluon poles” due to the vanishing of
the denominator in (68), but not “two-gluon poles”
themselves.

To make our model more realistic and finally to
incorporate in it QCD features, one should make
several steps. First, one must take into account
negative-energy states corresponding to the back-
ground in time motion; i.e., as in the Feynman prop-
agator, we replace (cf. [20])

1
E − En

→ 1
E2 − E2

n

→ 1

s− (M (0)
n )2

. (69)

Correspondingly, the hybrid propagators take the
form

1
E − ω1 − En

→ 1

s− (M (1)
n )2

, (70)

1
E − ω1 − ω2 − En

→ 1

s− (M (2)
n )2

,
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whereM (1)
n andM (2)

n are hybrid masses with one and
two gluons, respectively.

Now, one must take into account the structure
of the operators Ṽ1 and Ṽ2 in QCD. Both describe
the emission of one gluon from the quark and the
gluon line, respectively, and both are local field opera-
tors, whereas the wave functions refer to the nonlocal
instantaneous bound-state objects, namely, mesons
(qq̄), one-gluon hybrids (qq̄g), and two-gluon hy-

brids (qq̄gg). We denote by ϕ(0)
n (x), ϕ(1)

n,ν1(x,y),
and ϕ(2)

n,ν1ν2(x,y, z) the full set of the corresponding
eigenfunctions. Note that the string pieces between
quarks and gluons formed by background field are

straight lines given by vectors x and y in ϕ(1)
n and

by x,y, and z in ϕ
(2)
n , and they contribute to the

rotational and vibrational eigenenergies. We also note
that the string vibration in this background picture is
described by the full set of one-gluon, two-gluon, and
multigluon hybrid states.

Here, we have introduced, in hybrid eigenfunc-
tions, additional lower indices ν1 and ν1, ν2 to de-
scribe the quantum numbers of additional bound glu-
ons. Note that νi are multidimensional vectors with
integer components. Correspondingly, the hybrid
masses depend on the same quantum numbers:

M (0)
n = M (0)(nr, L;JP C), (71)

M (1)
n = M (1)(nr, L;n′r, L

′;JP C), (72)

M (2)
n = M (2)(nr, L;n′r, L

′;n′′r , L
′′;JP C). (73)

Here, nr and L refer to the radial quantum number
and angular momentum of quark with respect to an-
tiquark, and each additional gluon has its own nr and
L with respect to the neighboring quark or gluon.
We have not yet taken into account spin degrees of
freedom of q, q̄, and gluons, which create the fine
and the hyperfine structure of levels, and we shall
neglect those, since we are interested in the dominant
contributions to the masses at large excitations, and
our final goal is to obtain the result of summation over
all excitations inG(E) and to establish some relation
between SPT and BPT, which requires analyzing
highly excited states in the sums.

Now, the local character of the operators Ṽ1 and
V̂2 mentioned above leads to the following properties
of matrix elements (since Ṽi acts only on one of the
end points of vectors x and y, it does not affect the
quantum wave function, unless Ṽi contains derivative
with respect to the coordinates as in Ṽ2, and, in
this case, it changes quantum numbers by a discrete
number):

〈nr, L|Ṽ (1)|n̄r, L̄;n′r, L
′〉 ∼ δnrn̄rδLL̄,
2
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〈nr, L;n′r, L
′|Ṽ (2)|n̄r, L̄; n̄′r, L̄

′;n′′r , L
′′〉 (74)

∼ δnrn̄rδLL̄δn̄′
rn′

r
δL̄′L′ .

Moreover, we assume that (M (i)
n )2 depends on all

quantum numbers linearly,

(M (i)
n )2 = m2

(
a
∑

i

n(i)
r + b

∑
L(i)

)
. (75)

Let us now apply these rules to the computation of
the “full gluon propagator” K2(E) and try to find a
correspondence with the standard perturbative calcu-
lations.

To this end, we assume that the sum entering into
K1(E) is convergent; i.e.,

〈n|K1(E)|m〉 (76)

=
∑
n̄,ν

〈n| − iṼ1|n̄, ν〉 〈n̄, ν| − iṼ1|m〉
Q2 +M2(n̄, ν)

∼ 1
Q2
,

where we have denoted n̄ (ν) = nr, L (n′r, L′) and
have made the substitution s→ −Q2.

The same type of expression for k2(E) yields
〈n, ν|k2(E)|ñ, ν̃〉 (77)

=
∑

n̄,ν̄,ν′

〈n, ν| − iṼ2|n̄, ν̄, ν ′〉 〈n̄, ν̄, ν ′| − iṼ2|ñ, ν̃〉
Q2 +M2(n̄, ν̄, ν ′)

.

Due to the properties in (75), the sum in (77) is
actually a double sum in, say, L′ and n′r, while M2

depends on them linearly, and we assume, at this
point, that the coefficients in (77) do not depend on
ν ′. Therefore, one must regularize this expression,
making one subtraction at s = 0, and renormalize the
retaining logarithmic divergence. This is in full corre-
spondence with the standard perturbative calculation
of a one-gluon loop correction to gluon propagator.
As a result, k2(E) takes the form

〈n, ν|k2(E)|ñ, ν̃〉 (78)

∼ Q2 ln
(
Q2 −M2(n, ν)− δM2

µ2

)
δnñδνν̃ ,

where
δM2 = M2

min(n, ν, ν ′)−M2(n, ν) (79)

and minimization is performed with respect to ν ′.
Now, one can considerK2(E); extracting coupling

constant g0 from Ṽ1 and Ṽ2, one has the series (at
large s)

K2(s) ∼ g2
0

Q2
− C g4

0

Q2
ln
Q2 + M̄2

µ2
+ . . . (80)

∼ g2
0

Q2

(
1 + g2

0C ln
Q2 + M̄2

µ2

)−1

.

PH
Expression (80) is similar for the running coupling
constant, but with the mass M̄2 corresponding to the
freezing coupling constant derived in [12] and studied
later in [13, 14]. We note that the logarithms in (80)
appear as the result of summation over the stringlike
spectrum (75) with the coefficients asymptotically
constant, which is the property of the matrix elements
of eigenfunctions of linear interaction [14]. Therefore,
this property and the correspondence found above
can be valid only in the asymptotic region, while, at
finite s, there are corrections that should be taken into
account. In the next section, we inspect this problem
more carefully.

5. NONASYMPTOTIC TERMS
IN THE SPECTRAL SUMS

We start with the definition of the photon vacuum
polarization functionΠ(q2) and, after a short review of
asymptotic correspondence between the spectral sum
and perturbative expansion, inspect more carefully
correction terms and a comparison between OPE and
spectral sum.

We define the photon vacuum polarization func-
tion Π(q2) as a correlation function for electromag-
netic currents for the process e+e− → hadrons in a
usual way:

−i
∫
d4xeiqx〈0|T (jµ(x)jν(0))|0〉 (81)

= (qµqν − gµνq
2)Π(q2).

Here, the imaginary part of Π is related to the total
hadronic ratio R as

R(q2) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

(82)

= 12πImΠ(
q2

µ2
, αs(µ)).

There are two standard approaches to calculating
Π(q2). The first one employs a purely perturbative
expansion, which is now known to O(α3

s) [21]. The
second one is the OPE approach [6], which includes
the NP contributions in the form of local condensates.
For two light quarks of equal masses (mu = md =
m), it yields

Π(Q2) = − 1
4π2

(
1 +

αs

π

)
ln
Q2

µ2
+

6m2

Q2
(83)

+
2m〈qq̄〉
Q4

+
αs〈FF 〉
12πQ4

+ . . . .

To make explicit this renormalization of αB , one
can write the perturbative expansion of the function
Π(Q2) (83) as

Π(Q2) = Π(0)(Q2) (84)
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+ αBΠ(1)(Q2) + α2
BΠ(2)(Q2) + . . . .

We now again use the large-Nc approximation,
in which case Π(0) contains only simple poles in Q2

[5, 14],

Π(0)(Q2) =
1

12π2

∞∑
n=0

Cn

Q2 +M2
n

, (85)

and the massMn is an eigenvalue of the Hamiltonian
H(0), which contains only quarks and background
field Bµ,

H(0)Ψn = MnΨn. (86)

In what follows, we are mostly interested in the
long-distance effective Hamiltonian which is ob-
tained from Gqq̄ for large distances, r � Tg, where
Tg is the gluonic correlation length of the vacuum,
Tg ≈ 0.2 fm [19],

Gqq̄(x, 0) =
∫
DBη(B) (87)

× tr(γµGq(x, 0)γµGq(0, x)) = 〈x|e−H(0)|x||0〉.
At these distances, one can neglect in Gq the quark
spin insertions σµνFµν and use the area law

〈WC〉 → exp(−σSmin), (88)

where Smin is the minimal area inside the loop C.
The Hamiltonian in (87) is then readily obtained

by the method of [22]. In the c.m. frame, at the orbital
angular momentum of l = 0, it has the familiar form

H(0) = 2
√

p2 +m2 + σr + const, (89)

where the constant appears owing to the self-energy
parts of quarks [23], while, for l = 2, a small correc-
tion from the rotating string appears [22], which is
neglected here for a first approximation.

We can now use the results of the semiclassical
analysis of H(0) [24], where the values ofMn and Cn

have been already found.
These results can be represented as (n = nr + l/2,

nr = 0, 1, 2, . . ., and l = 0, 2)

M2
n = 2πσ(2nr + l) +M2

0 , (90)

whereM2
0 is a weak function of the quantum numbers

nr and l comprising the constant term of (89); in
what follows, we shall set it to the ρ-meson mass:
M2

0 � m2
ρ (see [23] for more discussion).

For Cn, one semiclassically obtains [24]

Cn(l = 0) =
2
3
e2qNcm

2, m2 ≡ 4πσ, (91)

Cn(l = 2) =
1
3
e2qNcm

2.
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Using the asymptotic expressions (90) and (91) for
Mn and Cn and starting with n = n0, one can write

Π(0)(Q2) = +
1

12π2

n0−1∑
n=0

Cn

Q2 +M2
n

(92)

−
e2qNc

12π2
ψ

(
Q2 +M2

0 + n0m
2

m2

)
+ divergent constant,

where we have used the equality
∞∑

n=n0

1
Q2 +M2

n

(93)

= − 1
m2

ψ

(
Q2 +M2

0 + n0m
2

m2

)
+ divergent constant

and ψ(z) = Γ′(z)/Γ(z).
In (92), we have separated the first n0 terms

to treat them nonsemiclassically, while keeping, for
other states with n ≥ n0, the semiclassical expres-
sions (90) and (91). In what follows, however, we
shall set n0 = 1 for the sake of simplicity. It was
shown in [14] that, even in this case, our results
reproduce e+e− experimental data to a high precision.

Let us now consider the asymptotic behavior of
Π(0)(Q2) at large Q2. Using the asymptotic expres-
sion for ψ(z),

ψ(z)z→∞ = ln z − 1
2z
−

∞∑
k=1

B2k

2kz2k
, (94)

where Bn are Bernoulli numbers, one finds from (92)
that

Π(0)(Q2) = −
e2qNc

12π2
ln
Q2 +m2

µ2
+O

(
m2

Q2

)
. (95)

One can easily see that, at Q2 �M2
0 , this term

coincides with the first term in the OPE (83), the
logarithmic one. Taking the imaginary part of (95) for
Q2 → −s, one obtains

R(q2) = 12πIm Π(0)(−s) = Nce
2
q ; (96)

i.e., this means that we have got from Π(0) the same
result as for free quarks. This fact is an explicit
manifestation of quark–hadron duality.

We can now identify Π(0)(Q2) as

Π(0)(Q2) = −
e2qNc

12π2
ψ

(
Q2 +M2

0

m2

)
(97)

and compare this expression with the OPE series
(83).
2
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To this end, one can use the asymptotic expansion
for ψ(z),

ψ(z)z→∞ = ln z − 1
2z
−

∞∑
k=1

B2k

2kz2k
(98)

= ln z − 1
2z
− 1

12z2
+

1
120z4

− 1
252z6

+ . . . ,

and the expansion

ψ(z) = −C −
∞∑

k=0

(
1

z + k
− 1
k + 1

)
, (99)

C = 0.577.

Two features are immediately seen when com-
paring expansion (98) with the OPE (83) (see also
discussion in [13, 14]):

(i) At m = 0, the term O(1/Q2) is absent, since
one cannot construct a local gauge-invariant opera-
tor having dimensions of mass squared. One should
stress that this type of operator may appear from the
interference of perturbative and nonperturbative con-
tributions [25] and is welcome on phenomenological
grounds [26]. However, in the framework of BPT
accepted in this paper, the term Π(0)(Q2) is solely
due to NP contributions and cannot have OPE terms
O(1/Q2).

(ii) The generic terms in Π(0)(Q2) from ex-
pansion (97) have the magnitude m2n/Q2n, while
the corresponding OPE terms are much smaller;
e.g., one should compare −(π/3)

(
αs〈FF 〉/Q4

)
≈

−0.04 GeV4/Q4 (OPE) with −m4/12Q4 ≈
−0.5 GeV4/Q4 [spectral decomposition (97)].

In the remaining part of this section, we shall
discuss the possible solutions to problems (i) and (ii).

Concerning item (i), one should say that (97) is an
approximate expression forΠ(0) valid for largeQ2, i.e.,
reproducing correctly the logarithmic term in (95).
However, if one is interested in the next asymptotic
terms, one should take into account corrections toCn
andMn in (92).

The first major correction comes from the fact that
we have considered in (93) that levels with nr + 1, l =
0 and nr, l = 2 are degenerate (in the lowest approxi-
mation where one neglects the spin-dependent force)
and have therefore used the sum of the coefficients in
(91) for Cn in (92). However, this is not true for the ρ
meson, where the coefficient with l = 0 yields 2/3 of
Cn. Therefore, one should use, instead of ψ(z) in (93)
and (97), the corrected expression

ψ(z)→ ψ̃(z) ≡ ψ(z) +
1− γ
z

, (100)
P

where (1− γ)/z cancels the corresponding pole (with
k = 0) in (99) and replaces it with the correct coeffi-
cient γ = γ0 = 2/3.

Moreover, in the analysis performed in [14], it was
realized that the value of γ0 = 2/3 (which does not
take into account the radiative correction to the ρ
width) yields some 10% discrepancy in the leptonic
width of ρ meson. Now, the destiny of the 1/q2
term in the asymptotic expansion (98) depends on the
exact value of γ. Indeed, using (98), one obtains the
expansion

ψ̃(z) = ln z +
1
z

(
1− γ − 1

2

)
+O

(
1
z2

)
, (101)

where z = (Q2 +M2
0 )/m2 → Q2/m2.

One can see that the requirement that O(1/Q2)
terms be absent implies the following condition for γ:

γ =
2
3
κrad =

1
2
. (102)

Here, κrad = 1−∆κ, with ∆κ being the radiative
correction due to gluon exchanges in the leptonic
width of ρ meson. It is clear that the condition is in
the correct ballpark, and one should take into account
other possible corrections, to be discussed below.

Until now, we have considered the lowest approx-
imation for M2

n and Cn, Eqs. (90) and (91), where
M2

n is linear in n and Cn is n-independent. However,
there are corrections to this semiclassical behavior
[27], yielding

M2
n = 4πσn+M2

0 + b/n, (103)

Cn = C(0)
n (1 + a/n) ,

where C(0)
n is given in (91). To see the effect of these

corrections, we first set b = 0 and consider the sum
[cf. Eq. (93)], which can be expressed in terms ofψ(z)
again:

∞∑
n=n0=1

1 + a/n

Q2 +M2
0 +m2

(104)

= −
{

1
m2

(
1− am2

Q2 +M2
0

)

× ψ

(
Q2 +M2

0 +m2

m2

)
− C a

Q2 +M2
0

}
,

C = 0.577.
Thus, we see that the correction a/n yields a power-
law correction am2/(Q2 +M2

0 ), which modifies the
asymptotic expansion of ψ(z) (98) and can occa-
sionally diminish some terms to bring them closer
in agreement with those in the OPE (83). The
same is true for the mass correction b/n in (103) as
well, which yields the power-law correction
bm2/(Q2 +M2

0 )2 as a factor in an expression like
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(104). However, since the coefficients in (98) de-
crease fast, the overall cancellation in all terms seems
to be improbable; therefore, problem (ii) remains
unsolved.

6. ANALYTIC PROPERTIES OF αB(s)

In this section, we shall discuss the analytic struc-
ture of BPT in the limitNc →∞ in the entire complex
plane of −s = Q2 and establish connection between
our results and SPT. In what follows, the basic role
will be played by the function Π(Q2), and we shall use
this example as a typical one, generalizing it to other
amplitudes at the end of this section.

Our starting point is the BPT for Π(Q2), Eq. (84).
The analytic properties of Π(0)(Q2) are given in
Eq. (85), which shows a sequence of purely nonper-
turbative poles,

s = −Q2 = (M (0)
n )2, n = 0, 1, 2, . . . . (105)

The inclusion of αB to all orders leads to the fol-
lowing changes in the unperturbed spectrum (105).
Gluon exchanges play two different roles: (a) instan-
taneous Coulomb interaction shifts NP poles, and
(b) gluons aµ propagating in the confining film form
hybrid states. Correspondingly, the NP poles, are
mixed and shifted by the hybrid states. Therefore, one
has the following hierarchy of the shifts of the original
NP-meson masses:

M (0)
n →M (0)

n (O(αk
B)) ≡M (0)

n (k). (106)

The one-gluon hybrid state (apart from the Coulomb
shift, which we disregard for the sake of simplicity at

this moment) with massM (1)
n is also shifted because

of mixing with a meson and higher hybrid states,
the mixing being characterized by the power of αB ;
therefore, one has

M (1)
n (O(αk

B)) ≡M (1)
n (k). (107)

In a similar way, one has shifted states M (m)
n (k) for

m-hybrid configurations (withm gluons).
As is clear from the schematic example of Sec-

tion 4, theO(g2
0) terms [the second term on the right-

hand side of (57)] refer to one-gluon hybrid states and
do not contain any analytic structure ofαB(Q2), since
they are not yet renormalized (and of course not yet
RG-improved, i.e., resummed).

This renormalization process, leading to the non-
trivial dependence of αB(Q2), starts with the O(g4

0)
diagrams in SPT [and the O(Ṽ 2

1 Ṽ
2
2 ) ones in the ex-

ample of Section 4—see the third term on the right-
hand side of (57)].

This term and its QCD analog have singularities
of the double hybrid [the term G0(E − ω1 − ω2) in
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(57)] corresponding to the gluon-loop diagram and
accompanying the O(g4

0) diagrams in SPT.

Next, one can do a RG improvement of this O(g4
0)

result, which leads to the resummation presented in
K2(E), Eq. (68). In this approximation, one can write

αB =
4π
b0

[
ln
m2

Λ2
+ ψ̃(Q2)

]−1

, (108)

where ψ̃(Q2) is a meromorphic function with poles at
the double-hybrid position, i.e., at

s = M2
n(k = 0). (109)

In the particular case where ψ̃(Q2) = ψ

(
Q2 +M2

0

m2

)
and M0 ≡M (2)

0 (k = 0), the form (108) coincides
with that suggested in [14].

In the large-Q2 limit, one has

ψ̃(Q2)→ ln
Q2 +M2

0

m2
, (110)

and αB has the same freezing form, which was exten-
sively used before in [12–16]:

ᾱB =
4π
b0

(
ln
Q2 +M2

0

Λ2

)−1

. (111)

We now can compare the form (108) with our model
solution (46). Indeed, when (Q2 +M2

0 )/m2 is large,
one can retain, in the denominator of (46), the first
two terms, and one has the form coinciding with
(108). In the next approximation, one can retain, in
(108), the term

2b1
b20
ψ

(
1
αB

+ ∆
)
,

which yields the next-order approximation, where

M
(2)
n (0) is shifted to the higher order positionM (2)

n (2)
and so on.

Thus, one can see that, while the O(g4
0) term

contains double hybrid poles, the RG improvement
leads to shifted poles, which do not correspond to
the final physical poles, the latter being the result of
infinite resummation to all orders.

Let us now discuss the imaginary part of Π(Q2).
It is clear that Π(0)(Q2) contains NP poles. The term
O(g2

0) [equivalent to the second term on the right-
hand side of (57)] contains double NP poles from
(G0(E))2 and one-gluon hybrid poles from G0(E −
ω1). The O(g4

0) term contains double NP poles,
double one-gluon hybrid poles, and two-gluon hy-
brid poles—the latter are associated with αB in the
lowest order. The same type of classification goes
on for higher terms. The outcome for the expansion
in (84) is that, in the term αk

BΠ(k)(Q2), part of the
2
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singularities are associated with αk
B and another part

with Π(k)(Q2).
Thus, we see that the requirements of (i) logarith-

mic behavior of ψ̃(Q2) at large Q2 and (ii) meromor-
phic analytic properties in the entire Q2 plane lead to
one possible representation of ψ̃(Q2),

ψ̃(Q2) = ψ

(
Q2 +M2

0

m2

)
+

N∑
k=0

ak

Q2 +m2
k

, (112)

where N is finite, so that the logarithmic asymptotic
expression for ψ(z) is not modified.

Let us now compare our Eq. (31) with the SPT,
more explicitly with Gell-Mann–Low equation writ-
ten in the form adopted by Radyushkin [9]:

L = ln
Q2

Λ2
=

4π
b0αs

+
2b1
b20

ln
αs

4π
(113)

+ ∆̃ +
b2b0 − 8b21

2b30

αs

4π
+O

((αs

4π

)2
)
.

Here, ∆̃ is a parameter of integration that fixed the
definition of Λ. This should be compared with our
Eq. (31) which we can write in a similar form

ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)
=

4π
b0αs

− 2b1
b20
ϕ

(
1
αs

)
.

(114)

It is clear that our analysis with expansion (32) is
equivalent to the analysis of (113) for large Q2 and
small αs. As we have found in (39), the predicted

values of b(th)2 and b(th)3 depend on ∆; keeping the
choice

ϕ

(
1
αs

)
= ψ

(
1
αs

+ ∆
)
,

one finds from (39) for ∆ ≥ ∆0 = 1.145 that

b
(th)
2 < 238.15, b

(th)
3 ≥ 18266. (115)

To repair the values obtained and to get agreement
with MS-calculated values [21], one can use the
modified ψ(z) function like that in (112), namely,

ϕ

(
1
αs

)
= ψ

(
1
αs

+ ∆
)

(116)

+
N∑

k=0

Ãk
αs

1 + αs(∆ + k)
.

It is important that the positions of poles of ψ(k) do
not change—the only change is in the coefficients
of those pole terms that can modify expansion (37),
yielding agreement with the MS coefficients in ex-
pansion (27).
P

We now consider the problem of an analytic con-
tinuation of αs(Q2) and αB(Q2) from the Euclidean
regionQ2 ≥ 0 to the timelike regionQ2 < 0.

One can see that the freezing form αB (110) is well
defined for Q2 ≥ −M2

0 and has a logarithmic branch
point atQ2 = −M2

0 .
However, this is an artifact of representation (112),

which is valid in the asymptotic region where (Q2 +
M2

0 )/Λ2 � 1; otherwise, one should use the original
form (108).

Choosing it in the form

αB =
4π
b0

[
ln
m2

Λ2
+ ψ

(
Q2 +M2

0

m2

)]−1

, (117)

one can see that αB(Q2) is defined in the entire com-
plex plane Q2 and has only isolated poles there at the
zeros of the denominator in (117). These poles result
from the partial resummation of two-gluon hybrid

poles that are present in ψ
(
Q2 +M2

0

m2

)
and which

occur at s ≡ −Q2 = M2
0 + nm2, n = 0, 1, 2, . . .. We

note that this resummation is the standard RG im-
provement of perturbative series, where large loga-
rithms are summed up in a geometric series (or are
a result of solving RG equations). The crucial point
is that the most important physical thresholds are
contained in Π(0)(Q2) and have nothing to do with
singularities of αB(Q2) [or of αs(Q2)].

In a similar way, the singularities that appear from
the asymptotic solution of (46) for small αB , namely,
term lnαB(Q2), do not produce additional logarith-
mic cuts and result from the asymptotic expansion of
Eq. (46), where only the meromorphic function αB(s)
is obtained in the exact solution.

Thus, as we discussed above, Eq. (46) or its gen-
eralized form

αB =
4π
b0

[
ln
m2

Λ2
+ ψ̃(Q2) + ϕ

(
1
αB

)]−1

, (118)

where ψ̃(Q2) is given in (112) and ϕ (1/αB) is given
in (116), produces αB(Q2), which is a meromorphic
function ofQ2 in the entire complex plane ofQ2.

Let us now examine more carefully the creation of
the imaginary part of Π(Q2), which leads to the posi-
tive hadronic ratioR(s). We start with Π(0)(Q2) [(85)
and (83)]; Π(0) in SPT and BPT coincide asymptoti-
cally, namely,

Π(0)(SPT) = −
e2qNc

12π2
ln
Q2

µ2
, (119)

Π(0)(BPT) = −
e2qNc

12π2
ln
Q2 +M2

0

µ2
.
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Defining s = −Q2 and arg(M2
0 − s) = 0 for s < M2

0 ,
one has [if one disregards the fact that (119) is true
only forQ2 → +∞]

Im Π(0)((BPT) (120)

=
Π(0)(s + iε) −Π(0)(s− iε)

2i
=
e2qNc

12π
Θ(s−M2

0 ),

and, for SPT, one has, on the right-hand side, Θ(s)
instead of Θ(s−M2

0 ).
Note, however, that expression (119) for

Π(0)(BPT) is the asymptotic form at large positiveQ2

and, in getting the result in (120), the analytic contin-
uation of the logarithmic asymptotic expression was
performed unlawfully, strictly speaking.

To perform calculations in BPT more rigorously,
one should use (85) in the region s > M2

0 , and one
gets

Im Π(0)(s+ iε) = −
e2qNc

12π2
Im ψ

(
−s+M2

0

m2

)
(121)

= +
e2qNc

12π2
Im

∞∑
k=0

m2

M2
0 − s+ km2

=
e2qNc

12π
m2

∞∑
k=0

δ(M2
0 − s+ km2).

One can introduce the average of Im Π(0) = (s+ iε)
over some energy interval (this is the “duality inter-
val” discussed, e.g., in [7]) comprising N poles:

〈 Im Π(0)(s0 + iε)〉N (122)

=

s0+Nm2∫
s0

ds Im Π(0)(s + iε)
Nm2

=
e2qNc

12π
.

One can see that (122) coincides with (120), thus jus-
tifying the procedure of direct analytic continuation of
the logarithms in (119), where the averaging over the
duality interval is performed.

One can also see that the standard SPT expres-
sion (119) yields the correct answer for the same rea-
son: the imaginary part of the asymptotic expression
(both of SPT and BPT) coincides with the correct
averaged imaginary part. We note that, for SPT, this
check is impossible, since the correct procedure is not
available.

We now address the more delicate point of the
analytic continuation of α(s). In BPT, as was dis-
cussed above, αB(s) is given by (118) or, in the “one-
loop approximation,” by (117) and is a meromorphic
function; hence, its analytic continuation is a direct
and unique procedure. For example, separating one
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pole in ψ
(
Q2 +M2

0

m2

)
,M2

n = M2
0 + nm2, one finds,

for αB (117), in its vicinity that

αB(s �M2
n + iε) =

4π
b0ψ′(z0)(z − z0)

, (123)

where z0 is to be found from the equation ln(m2/Λ2) +
ψ(z0) = 0, and z = (M2

0 − s)/m2. Using the rela-
tions from the Appendix, one gets

Im αB(s �M2
n + iε) (124)

=
4π2

b0

m2δ(M2
n − s− δ0m2)[

δ−2
0 (n) + S2(n) + ζ(2)

] ,
where δ0 and Sk(n) are defined in the Appendix,

δ−1
0 (n) = ln

m2

Λ2
− C + S1(n).

We now compare this exact procedure with the
suggested one using the asymptotic form of (117),
Eq. (111). As before, we have

Im ᾱB ≡
ᾱB(s + iε) − ᾱB(s − iε)

2i
(125)

=
4π2Θ(s−M2

0 )

b0

{
ln2

∣∣∣∣M2
0 − s
Λ2

∣∣∣∣ + π2

} .

One can notice, however, that averaging over
some duality interval in (124) yields

〈 Im αB〉Nm2 � 4π2

b0

1
N

N∑
k=0

1
δ−2
0 (n+ k) + π2/3

,

(126)

and this result, as is shown in the Appendix, asymp-
totically agrees with (125), specifically at large s,
in which case the denominator in (125) grows. To
make contact with SPT calculations, we consider, in-
stead ofΠ(Q2), the so-called Adler functionD(Q2) =
Q2dΠ(Q2)/dQ2 expanded as

D(Q2) =
∑

q

e2q

{
1 +

αs(Q2)
π

(127)

+ d2

(
αs(Q2)
π

)2

+ d3

(
αs(Q2)
π

)3

+ . . .

}
,

where the coefficients d3 and d2 were found in [21] and
[28], respectively:

d2(MS) = 1.986 − 0.115nf , (128)

d̄3(MS) = 18.244 − 4.216nf + 0.086n2
f .

The procedure suggested in [9] to go over from
D(Q2) to R(s) is straightforward, provided that one
knows the discontinuity of Π(Q2) (see the relevant
2
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discussion in [8, 9] and the recent publication of
Shirkov [29]); that is,

R(s) =
1

2πi

−s+iε∫
−s−iε

D(σ)
dσ

σ
, (129)

where the integration contour goes on the two sides
of the cut on the real axis starting at s = 0.

To proceed further, one inserts the one- or the two-
loop expression for αs(Q2) into (129), whereupon one
obtains an expansion for R(s) [9],

R(s) =
∑

q

e2q

{
1 +

∑
k=1

dkΦ
{(αs

π

)k
}}

, (130)

where Φ is the transformation defined by (129). In
this procedure, lnQ2 in the denominator of αs(Q2)
transforms into ln s with coefficients less than unity
and asymptotically tending to it.

Let us now consider what happens with our ex-
pression (117) for αB(Q2), which is valid not only
for large Q2 but in the entire Q2 plane. We assume
that, in BPT, the functionD(Q2) is given by the same
expansion (127), where only αs should be replaced by
αB(Q2), and we use (117) for αB(Q2) to insert into
(129). In this way, one obtains

Φ
{(αB

π

)k
}

=
1

2πi

(
4
b0

)k

(131)

×
∑
n=0

s−iε∫
s+iε

ds′

[ψ′(z0)(z − z0)]ks′
,

where use is made of the notation from [9].

As is shown in the Appendix,

ψ′(z0) �
(

ln
M2

0 + nm2

Λ2

)2

.

Here, the pole of the kth order is at s′ = M2
0 + nm2 −

δ0(n)m2, and n satisfies the condition M2
0 + nm2 ≤

s. For arbitrary k, one obtains

Φ
{(αB

π

)}
= 0. (132)

This is a property of the integral in (131) with the
weight ds/s that any function representable as a finite
sum of poles yields zero since

s+iε∫
s−iε

dz

z(z − sn)k
= 0.
P

However, in the asymptotic region of s, s� m2, in
which case the number of poles is large, one can use
the asymptotic form of αB (112), and the result is

Φ
{(αB

π

)}
� 4
b0

(
1
π

arctan


 π

ln
s

Λ2


 (133)

+
2(M0)2

s
(

ln
s

Λ2

)3 + . . .

)
.

This result can be most easily obtained from (129),
where the contour of integration CR is modified to
be a circle of radius R = s with the center at σ = 0,
namely,

R(s) =
1

2iπ

∫
CR

D(σ)
dσ

σ
, (134)

Φ
{(αB

π

)k
}

=
1

2iπ

∫
CR

dσ

σ

(
αB(σ)
π

)k

.

The result in (132) is obtained from (134) trivially by
introducing the angular variable σ = s exp(iφ). For
large s, s� m2, (M0)2, one can use, in (134), the
asymptotic form of αB(σ) from (112).

Thus, one obtains

R(s) = Nc

∑
q

e2q

[
1 + Φ̄

{αB

π

}
(135)

+ d2Φ̄
{(αB

π

)2
}

+ d3Φ̄
{(αB

π

)3
}

+ . . .

]
.

Comparing with Φ
{(αs

π

)k
}

from the study of

Radyushkin [9], one can see very close correspon-

dence with our Φ̄
{(αB

π

)k
}
.

7. DISCUSSION AND CONCLUSIONS

In this study, we have developed background per-
turbation theory (BPT) in the large-Nc limit, where
all physical amplitudes and their perturbative expan-
sions have only isolated singularities (poles).

Using this fact, we have proposed a nonperturba-
tive solution for β(α) and α(Q2) containing all terms
of the loop expansion.

By choosing a specific meromorphic function, we
have simulated both β(αB) andαB(Q2) satisfying the
necessary criteria of analyticity of αB in the Euclidean
region ofQ2 and analyticity of β(α) for positive values
of αB.
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We have constructed time-dependent old-fa-
shioned perturbation theory to investigate the ana-
lytic properties of different terms of the perturbation
series and have shown that those reduce to isolated
poles (simple poles and those of higher degree) shifted
with respect to unperturbed bound-state positions.

This has enabled us to modify the original ansatz
for β(α) and αB(Q2) to achieve a full correspondence
with the standard perturbative expansion of β(α).

Finally, we have studied the problem of analyticity
of αB(Q2) and of its analytic continuation into the
region of timelike Q2, where αB(Q2) has singulari-
ties, and have compared this procedure with analytic
continuation in SPT.

We have found a striking similarity of the pertur-
bative series for R(s) in the case of SPT and BPT
at large s. However, our BPT series have correct
physical singularities, in contrast to SPT.

More detailed calculations and a comparison with
experimental data may solve the problem of applica-
bility of both methods and are planned for the subse-
quent publication.
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APPENDIX

To find the poles of

αB(s) =
4π
b0

[
ln
m2

Λ2
+ ψ

(
M2

0 − s
m2

)]−1

,

one must find the roots z0(n) of the equation

ln
m2

Λ2
+ ψ(z0) = 0, (A.1)

which can be represented as
z0(n) = −n+ δ, δ � 1, n = 0, 1, 2.

The following relations will be useful:

ψ(−n + δ) =
n∑

k=0

1
k − δ + ψ(1 + δ), n ≥ 0,

ψ(1 + δ) = −C + δ{ζ(2) − δζ(3) + . . .},
where ζ(2) = π2/6, ζ(3) = 1.202.

Hence, one can write an expansion in powers of δ:

ψ(−n + δ) = −1
δ
− C + S1(n)

+ δ(1 + S2(n) + ζ(2)) +O(δ2),
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where Sk(n) =
∑n

k=1
1
k , C = 0.577, and Eq. (A.1)

takes the form

−1
δ
−C + S1(n) + δ(1 + S2(n) + ζ(2)) = − ln

m2

Λ2
.

To the lowest order, one has

δ � δ0 =
[
ln
m2

Λ2
− C + S1(n)

]−1

+O(δ30). (A.2)

In a similar way, one obtains ψ′(z0),

ψ′(z0) =
1
δ2

+ S2(n) + ζ(2) +O(δ).

For n� 1, we have S2(n) ≈ ζ(2) = π2/6.

In this way, αB in the vicinity of the pole is

αB(s �M2
n + iε)

=
4π
b0

{[
δ−2
0 (n) + S2(n) + ζ(2)

]
× (M2

n − s− δ0m2)
}−1

,

whereM2
n = M2

0 + nm2.

Now, the following asymptotic expression is valid
for S1(n)

S1(n) = C + lnn+
1

2n
+O

(
1
n2

)
.

Therefore, δ0 (A.2) can be rewritten as

δ0 �
[
ln
m2

Λ2
+ ln

(
n+

1
2

)]−1

=
[
ln
m2(n+ 1/2)

Λ2

]−1

�
[
ln
M2

n

Λ2

]−1

,

and the averaged imaginary part of αB in (126) has
the form

〈Im αB〉Nm2

=
4π2

b0N

N∑
k=0

1(
ln
M2

n+k

Λ2

)2

+
π2

3

� 4π2

b0

(
ln
M

2

Λ2

)2 ,

whereM
2 ∼ s is in the middle of the averaging inter-

val, which is asymptotically close to the expression in
Eq. (125).
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Abstract—The spectroscopy of the isovector resonances ρ′ and ρ′′ and the isoscalar resonances ω′ and ω′′

is considered on the basis of their masses and coupling constants extracted from data on e+e− annihilation,
τ-lepton decays, and the reactionK−p→ π+π−Λ. The total widths of these resonances and the branching
fractions for their decay modes are calculated. It is argued that the shift of the apparent position of the
peak in the energy dependence of the cross section with respect to the bare mass is significant for broad
resonances. The results are compared with the predictions of available models for the ρ′, ρ′′, ω′, and ω′′

resonances. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The situation around the ρ′ ≡ ρ′1 ≡ ρ(1450), ρ′′ ≡
ρ′2 ≡ ρ(1700) and ω′ ≡ ω′

1 ≡ ω(1420), ω′′ ≡ ω′
2 ≡

ω(1600) resonances (the respective isospin values
are I = 1 and 0) is still intricate. Although typical
peaks associated with these structures were observed
in some channels of single-photon e+e− annihilation,
τ-lepton decays, NN̄ annihilation, photoproduction,
etc., specific values of the masses and partial widths
of these resonances have not yet been reliably deter-
mined; therefore, they are not presented in the main
body of the particle tables [1]. The contributions
of these resonances have been seen in the reaction
K−p→ π+π−Λ, e+e− annihilation, and the four-
pion decays of the τ lepton. A few years ago, we
made an attempt to treat available data on these
processes within a unified approach based on a model
that takes into account the energy dependence of
the partial widths, the mixing of heavy resonances
with one another, and their mixing with the ρ(770)
and ω(782) mesons from the ground-state vector
nonet in the isovector [2] and the isoscalar [3] chan-
nel, respectively. In doing this, we considered the
resonance masses and coupling constants as free
parameters to be determined from a fit to data. This
choice of free parameters is particularly convenient
because it is precisely these parameters that play a
key role in investigating the nature of JCP = 1−−

heavy resonances and because the function χ2 used
in determining the allowed intervals of the parameters
being extracted can be represented, in this case, as
the sum of independent contributions, so that the

*e-mail: achasov@math.nsc.ru
**e-mail: kozhev@math.nsc.ru
1063-7788/02/6501-0153$22.00 c©
covariance matrix (see the section “Statistics” in [1])
has a diagonal form. However, experimental results
on the resonance parameters are usually presented in
terms of masses and branching ratios. The partial and
total widths computed on the basis of values found
for the coupling constants were not quoted in our
previous publications [2, 3] for the reasons of space
limitations. Here, we fill this gap by presenting the
results of our calculations for the partial and total
decay widths of the ρ′1,2 and ω′

1,2 resonances. In these
calculations, we used experimental data on the cross
sections for the reactions e+e− → π+π−π0 [4, 5] and
e+e− → ωπ0 [6] and the data on the spectral function
v1 that were obtained in studying the decay processes
τ− → ωπ−ντ and τ− → π+π−π−π0ντ [7]. We also
discuss the question of why a resonance of mass
in excess of 1400 MeV must be broad within the
generally accepted qq̄ quark model and the question
of why the bare mass of such a resonance is shifted
toward greater values in relation to the position of the
respective peak observed in the energy dependence
of the cross section. As is shown below, the latter
has a direct bearing on the spectroscopy of the
ρ(1300) resonance observed with the LASS detector
[8] and the ω(1200) resonance observed with the
SND detector [5].

The mass shift of a resonance whose width is large
and grows fast with increasing energy is discussed in
Section 2. A qualitative discussion of the couplings of
the V ′

1,2 mesons (V = ρ, ω) to the states composed of
the pseudoscalar and the vector meson is also given
in that section. The results of the calculation of the
total widths of the V ′

1,2 mesons and of the branching
fractions for their decays are presented in Section 3.
2002 MAIK “Nauka/Interperiodica”



154 ACHASOV, KOZHEVNIKOV
Section 4 contains our considerations on the ρ(1300)
and ω(1200) resonance states, which were observed
in recent experiments. The conclusions drawn from
the present analysis are summarized in Section 5.

2. QUALITATIVE CONSIDERATIONS
ON THE MASS SHIFTS OF HEAVY

RESONANCES AND THEIR COUPLING
CONSTANTS

First, we will try to understand why the situa-
tion around resonances of mass exceeding 1400 MeV
remains intricate despite a great many experiments
devoted to a determination of their masses and partial
widths. It is well known [1] that some pieces of
evidence for the existence of the ρ′1,2 and ω′

1,2 reso-
nances were obtained in studying reactions producing
V P final states, where V and P are a vector and a
pseudoscalar meson, respectively. It is also known
that a typical value of the V V P coupling constant
is gωρπ � 14 GeV−1. All other coupling constants of
this type can be expressed in terms of gωρπ by using
the Clebsch–Gordan coefficients of the SU(3) group.
Theoretical models do not provide specific values of
the V ′

1,2V P coupling constants. For example, QCD
sum rules [9], which are used to estimate the coupling
constant gωρπ [10], yield no predictions here because
the contributions of higher resonances are suppressed
upon the Borel transformation. The predictions of
quark models are uncertain to a considerable extent
because different approaches give different values of
the coupling constants. By way of example, we
indicate that Gerasimov and Govorkov [11] present
the values of |gρ′1ωπ| = 4–24 GeV−1 and |gρ′2ωπ| =
3–5 GeV−1 and that Godfrey and Isgur [12] ob-
tained |gρ′1ωπ| ≈ 6 GeV−1 and |gρ′2ωπ| ≈ 2 GeV−1; at
the same time, the value quoted in [13] is |gρ′1ωπ| ≈
5 GeV−1. For this reason, we do not rely on theoret-
ical predictions and determine the required values of
the V ′

1,2V P coupling constants from available data,
following [2, 3], where it was found that the values
of the coupling constants under consideration lie in
the ranges |gρ′1ωπ| = 10–18 GeV−1 and |gρ′2ωπ| = 2–
13 GeV−1 and that the couplings of the isovector and
isoscalar resonances to V P states are on the same
order of magnitude: |gρ′1,2ωπ

| ∼ |gω′
1,2ρπ
|. The above

implies that there are no theoretical or phenomeno-
logical grounds for V ′

1,2V P coupling constants to be
substantially suppressed in relation to V V P cou-
pling constants. Assuming that gρ′1,2ωπ

∼ gω′
1,2ρπ

�
10 GeV−1 and that mρ′1

≈ mω′
1

= 1400 MeV, we ob-
tain

Γρ′1→ωπ = g2
ρ′1ωπ

q3
ωπ(mρ′1

)/12π ∼ 280 MeV, (2.1)
P

Γω′
1→ρπ = g2

ω′
1ρπ

q3
ρπ(mω′

1
)/4π ∼ 820 MeV.

Hereafter,
qbc(ma) =

{[
m2
a − (mb +mc)2

]
(2.2)

×
[
m2
a − (mb −mc)2

]}1/2
/2ma

is the momentum of the outgoing particle b or c in the
reference frame comoving with the initial particle a
in the decay a→ b+ c. Three isotopic modes of the
decay ω′

1 → ρπ are taken into account. In order to
give a feeling of a fast growth of the partial widths
with respect to V ′

1,2 → V P decays as the energy is
increased, we present the relevant values at a mass
of 1200 MeV: 92 and 295 MeV. Proceeding as before
and assuming that mρ′2

≈ mω′
2

= 1750 MeV, we ob-
tain

Γρ′2→ωπ ∼ 880 MeV, (2.3)

Γω′
2→ρπ ∼ 2600 MeV.

Needless to say, the qualitative conclusions on the
partial widths with respect to V ′

1,2 → V P decays will
not change even upon halving the above coupling
constants. Since heavy vector resonances can decay
not only via V P modes [1], we conclude that the ρ′1,2
and ω′

1,2 resonances are in fact rather broad, which
hampers the identification of these resonances mani-
festing themselves as rather smooth structures in the
energy dependence of the reaction cross section.

The shift of the resonance peak in relation to the
bare mass toward smaller values [2, 3] is yet an-
other feature that hinders the identification of the
resonances. We will demonstrate this by consider-
ing the energy dependence of the cross section for
the production of an individual resonance R of bare
mass mR in some channel f of e+e− annihilation:
e+e− → R→ f . The cross section for this process
has the form

σ(s)=12πm3
RΓRe+e−(mR)g2

Rf

s−3/2WRf (s)
(s−m2

R)2 + sΓ2
R(s)

,

(2.4)

where s is the square of the total energy in the c.m.
frame and ΓRe+e−(mR) is the leptonic width of the
resonance at

√
s = mR. The partial width with re-

spect to the hadronic decay R→ f has the form
ΓRf (s) = g2

RfWRf (s),

where gRf is the coupling of the resonance R to the
final state f andWRf (s) is the dynamical phase space
for the decay R→ f with allowance for the possible
intermediate states (for example, those in the decay
ω → ρπ → 3π). The total width can be represented
in the form

ΓR(s) =
∑
f

ΓRf (s).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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The position of the peak can be found by equating the
derivative of σ(s) with respect to s to zero. This yields

s−m2
R =

1
G(s)

{
1±

[
1 + sΓ2

RF (s)G(s)
]1/2}

,

(2.5)

where the functionsG(s) and F (s) are given by

G(s) =
[
ln
(
s−3/2WRf

)]′
, (2.6)

F (s) =
[
ln
(
s5/2Γ2

R/WRf

)]′
.

Here and below, ΓR ≡ ΓR(s), WRf ≡WRf (s), and
the prime denotes differentiation with respect to s. In
the limit of a slowly varying or a small width, Eq. (2.5)
must take the form s−m2

R = 0. Therefore, we must
choose the lower (minus) sign in (2.5), which is still a
rather complicated equation for determining the peak
position and which can be solved only numerically.
However, the required qualitative conclusions can be
drawn by taking its right-hand side at s = m2

R. It can
be proven that, for the resonances being considered,
the phase spaces of their main decay modes increase
with energy faster than the respective leptonic width
decreases. The energy dependence of the leptonic
width is described by the formula

ΓRl+l−(s) = ΓRl+l−(m2
R)
(mR

s1/2

)3
.

It follows that the functionG(s) and, the more so, the
function F (s) are positive. Hence, the factor appear-
ing in Eq. (2.5) immediately to the right of G−1(s)
is negative. From this, we conclude that the position
of the peak is indeed shifted to the left from the bare
resonance mass. To the first order in G(s)F (s), the
functionG(s) drops out from the resulting expression,
so that the position of the resonance peak is deter-
mined by the approximate formula

sR ≈ m2
R −

1
2
sΓ2

RF (s)|s=m2
R
. (2.7)

It can be seen that, in the case of a sufficiently narrow
resonance such that its width satisfies the relation
ΓR ≤ 150 MeV [ρ(770), ω(782), or φ(1020)], the po-
sition of the peak is determined by the bare mass mR

to a high precision.
A completely different type of situation occurs

when the resonance width is large and grows fast with
energy. This case is realized for the ρ′1,2 and ω′

1,2

resonances [see (2.1) and (2.3)]. The position of the
peak is shifted from the bare massmR toward smaller
mass values. This was revealed in the treatment of
experimental data in [2, 3]. For the above resonances,
all phase spaces corresponding to their main decay
modes grow fast with energy, whereas their coupling
constants are not suppressed in relation to the ρ(770)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
and ω(782) resonances. From this, it follows that,
although the bare masses of the ρ′2 and ω′

2 resonances
are approximately equal to 1900 MeV, they appear, in
the energy dependence of the cross sections, as peaks
in the range 1500–1600 MeV.

3. TOTAL WIDTHS OF THE ρ′1,2
AND ω′

1,2 RESONANCES AND THEIR
BRANCHING RATIOS

We now proceed to present the results obtained
by calculating the total widths of the resonances in-
dicated in the title of this section and the branching
fractions for their decay modes. The expressions for
these widths were obtained in [2, 3]. As in [2, 3],
the parameters of a resonance are given here for each
individual channel being considered because exper-
imental data obtained in different experiments and
associated with different channels can disagree. Ac-
cording to the procedure adopted in this section, the
calculation of the partial widths, the masses, and the
coupling constants, along with the respective errors,
precedes the calculation of the total widths and the
errors in them. The leptonic widths of the ρ′1,2 res-
onances were taken from [2], whereas the leptonic
widths of the ω′

1,2 resonances and their errors were
computed by the formula

Γω′
1,2

=
4πα2mω′

1,2

3f2
ω′

1,2

(3.1)

with the values of the mass and the leptonic cou-
pling constants fω′

1,2
from [3]. Moreover, we take

into consideration new data on the reactions e+e− →
π+π−π0 [4, 5] and e+e− → ωπ0 [6] and on the decay
of the τ lepton [7] (these data appeared after the
publication of [2, 3]).

The results of the computation for the branching
fractions and the total widths are presented in Ta-
bles 1–3. Considering that V P do not exhaust the
possible decay modes, we conclude that the simple
qualitative estimates in (2.1) and (2.3) are compatible
with experimental data.

4. COMMENTS ON THE SPECTROSCOPY
OF HEAVY VECTOR RESONANCES

First, the observation of the resonance state
ρ(1300) with the LASS detector [8] in the mass
spectrum of the π+π− pair produced in the reaction
K−p→ π+π−Λ rekindled the discussion on the
possible existence of the ρ(1250) meson in addition to
the ρ(1450) state, which is required for describing the
behavior of the cross sections for some reactions—
in particular, the cross section for e+e− annihilation.
2
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Table 1.Masses and total widths (in MeV) and leptonic widths (in keV) of the ρ′1 resonance and its branching fractions
(%) according to calculations with the coupling constants from [2] and from the present study

Parameter
Channel

π+π− ρη 2π+2π− π+π−2π0 J/ψ → 3π K−p→ π+π−Λ

mρ′
1

1370+90
−70 1460± 400 1350± 50 1400+220

−140 1570+250
−190 1360+180

−160

Bρ′
1→π+π− 1.1± 1.1 ∼ 3.7 ∼ 1.4 ∼ 8.0 ∼ 0 ∼ 0.7

Bρ′
1→ωπ0 86.5± 41.5 ∼ 56.9 93.6± 60.0 77.8± 62.2 66.5± 65.5 93.3± 82.7

Bρ′
1→ρη ∼ 5.6 ∼ 3.6 ∼ 5.0 ∼ 6.6 ∼ 13.2 ∼ 5.5

Bρ′
1→K∗K̄+c. c. 0 ∼ 4.3 0 ∼ 0.4 ∼ 15.0 0

Bρ′
1→4π ∼ 6.8 ∼ 31.5 ∼ 0.2 ∼ 7.2 ∼ 4.4 ∼ 0.7

Γρ′
1→l+l− 6.4+1.2

−1.4 ∼ 13 5.4+2.6
−1.8 6.3+3.3

−2.5 − −
Γρ′

1
763± 500 ∼ 2222 ∼ 518 ∼ 970 ∼ 3444 ∼ 460

Note: The symbol ∼ denotes that the central parameter value is given and that the error exceeds this central value. The ρ′1 resonance
is not seen either in the reaction e+e− → ωπ0 or in the decay of the τ− lepton. The parameters in columns 2–5 refer to the e+e−-
annihilation channels indicated there. The branching fractions for the decays of the ρ′1 resonance into ρη and K∗K̄ + c.c. were
computed according to the relations of SU(3) symmetry for V ′V P coupling constants.

Table 2.Masses and total widths (in MeV) and leptonic widths (in keV) of the ρ′2 resonance and its branching fractions
(%) according to calculations with the coupling constants from [2] and from the present study

Parameter
Channel

π+π− ωπ0 ρη 2π+2π− π+π−2π0 J/ψ → 3π τ− → (4π)−ντ

mρ′
2

1900+170
−130 1710± 90 1910+1000

−370 1851+270
−240 1790+110

−70 2080+160
−900 1860+260

−160

Bρ′
2→π+π− ∼ 0 ∼ 0 ∼ 0.4 ∼ 1.2 ∼ 0.4 ∼ 0 1.5± 1.4

Bρ′
2→ωπ0 ∼ 16.7 22.3± 8.0 ∼ 1.6 13.4± 3.9 31.0± 18.6 ∼ 28.4 18.9± 2.8

Bρ′
2→ρη ∼ 5.9 6.3± 2.0 ∼ 0.3 4.6± 1.4 9.6± 8.6 ∼ 11.5 10.3± 2.2

Bρ′
2→K∗K̄+c.c. ∼ 8.9 8.7± 2.8 ∼ 0.9 6.7± 2.0 14.0± 11.2 ∼ 17.8 6.8± 1.5

Bρ′
2→4π ∼ 68.5 61.2± 7.8 ∼ 96.9 74.0± 32.1 45.0± 18.0 ∼ 42.2 62.6± 5.0

Γρ′
2→l+l− 1.8± 1.5 5.2± 1.5 ∼ 1.1 4.02+0.28

−0.27 4.5± 1.3 − 9.3± 0.6

Γρ′
2

∼ 303.9 1886± 613 ∼ 3284 3123± 296 3151± 1281 ∼ 9386 3255± 388

Note: The ρ′2 resonance is not seen in the reactionK−p→ π+π−Λ. The value of the leptonic width was extracted from the analysis
of τ-lepton decay under the assumption of vector-current conservation (this makes it possible to express the spectral function of the
vector current in terms of the cross sections for the scattering e+e− → 4π to various isospin states of the final pions [14]).
However, the results presented in Table 1 suggest
that the resonance peak observed with the LASS fa-
cility is rather due to the ρ(1450) resonance included
in the “Review of Particle Physics” [1].

Second, the situation around the ω(1200) reso-
nance observed in the reaction e+e− → π+π−π0 with
the SND detector [5] is similar. This state is con-
sidered here on the basis of the approach proposed
in [2, 3]. However, the present study differs from [3]
in that, here, we use new data on the above reaction
[4, 5] to determine the ω(1200) mass and coupling
P

constants and neglect the contribution of the φ′1,2 res-
onances because the intervals allowed for their cou-
pling constants include zero, as was indicated in [3].
It should be noted, however, that these coupling con-
stants are known to a poor precision . Our analysis
reveals that the new data from [4, 5] can be interpreted
without taking into account the above excitations of
the φ(1020) meson. It has been found that, within
the errors of the analysis, the resulting values of the
ω′

1,2 masses and coupling constants agree with those
obtained in [3]. These new values of the resonance
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 3. Masses and total widths (in MeV) and leptonic widths (in eV) of the ω′
1,2 resonances and their branching

fractions (in %) according to calculations with the coupling constants derived in [3] and in the present study

Parameter
Channel

π+π−π0 ωπ+π− K+K− K0
SK

±π∓ K∗0K∓π±

mω′
1

1430+110
−70 ∼ 1400 ∼ 1460 ∼ 1500 ∼ 1380

Bω′
1→3π ∼ 21.6 ∼ 8 ∼ 67 ∼ 96 ∼ 34

Bω′
1→K∗K̄+c. c. ∼ 0.2 ∼ 0 ∼ 1 ∼ 4 0

Bω′
1→K∗K̄π ∼ 0 0 0 0 0

Bω′
1→ωπ+π− ∼ 78.2 ∼ 92 ∼ 31.2 ∼ 0 ∼ 65.8

Γω′
1→l+l− 144+94

−58 ∼ 0.2 ∼ 8 ∼ 8 ∼ 48

Γω′
1

∼ 903 ∼ 129 ∼ 173 ∼ 1252 ∼ 112

mω′
2

1940+170
−130 2000± 180 1780+170

−300 ∼ 2120 1880+600
−1000

Bω′
2→3π ∼ 22.1 ∼ 34.2 ∼ 88.8 ∼ 91.2 ∼ 60.1

Bω′
2→K∗K̄+c. c. ∼ 3.5 ∼ 5.8 ∼ 11.2 ∼ 15.8 ∼ 8.9

Bω′
2→K∗K̄π ∼ 68.2 ∼ 53.4 0 0 ∼ 30.9

Bω′
2→ωπ+π− ∼ 6.2 ∼ 6.6 0 0 ∼ 0

Γω′
2l+l− 109+58

−46 531± 225 0 ∼ 189 1162± 922

Γω′
2

∼ 14000 ∼ 5757 ∼ 2420 ∼ 9854 ∼ 13820

Note: The symbol ∼ denotes that the central parameter value is given and that the error exceeds this central value. The branching
fractions for the decays ω′

1,2 → K∗K̄ + c.c. were computed according to the relations of SU(3) symmetry for V ′V P coupling
constants.
parameters are used to fill the respective entries in
Table 3. The relevant energy dependences of the
cross sections that were calculated by the formulas
from [3] are presented in Figs. 1 and 2. Eventually,
we conclude that the ω(1200) state observed with
the SND detector [5] is nothing but the ω(1420) ≡
ω′

1 resonance presented in [1]. As was indicated in
Section 2, the shift of the observed peak with respect
to the position associated with the bare mass can be
explained by a large total width of the resonance and
its fast growth with energy. According to (2.7), the
huge width of the ω′

2 resonance (see Table 2) causes
the shift of the apparent peak from the bare-mass
value of about 1900–2000 MeV to a value of about
1600 MeV. The large partial widths agree qualitatively
with the simple estimates in (2.1) and (2.3).

The new SND data [5] make it possible to draw
some conclusions on the quark structure of the ω′

1,2

resonances by using the numerical values of the radial
wave functionRS(0) for a bound qq̄ state at the origin.
Taking into account the results presented in [18] and
the fact that the ω′

1 resonance is usually interpreted in
spectroscopy as the 23S1 state [1, 12], we obtain
|RS(0)|2 = 6πm3

ω′
1
/f2
ω′

1
= (25± 10) × 10−3 GeV3.

(4.1)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
Within the errors, this value agrees with the value of
(38± 4)× 10−3 GeV3 obtained for theω(782) meson.
On the other hand, the ω′

2 resonance is associated
with the 13D1 state [1, 12]; hence, we must consider
the second derivative of the radial wave function at the
origin [18]:

|R′′
D(0)|2 =

3πm7
ω′

2

25f2
ω′

2

= (10± 8)× 10−3 GeV7.
(4.2)

It should be noted that the S-wave characteristic
[defined by analogy with (4.1)] of the ω′

2 resonance is
equal to |RS(0)|2 = (35± 23)× 10−3 GeV3. We give
this value because, strictly speaking, the spectro-
scopic identification ω′

2 ≡ 13D1 [1, 12] is hypothetical
at present.

The results obtained by processing recent data
from [6] on the reaction e+e− → ωπ0 are quoted in the
present article. Within the errors, the values obtained
for the parameters of the ρ′1,2 resonances agree with
those reported in [2]. In particular, the ρ′1 resonance is
not needed for adequately describing these data; more
precisely, its parameters extracted from the data are
compatible with zero within the large error. For this
2
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Fig. 1. Cross section for the reaction e+e− → π+π−π0

at energies above 1 GeV. Shown in the figure are the con-
tributions of the (solid curve) ω + φ+ ω′

1 + ω′
2, (dotted

curve)ω+ φ, (dashed curve)ω′
1, and (dash-dotted curve)

ω′
2 channels. The experimental data were taken from (�)

[5], (�) [15], and (•) [16].

reason, the resonance being discussed was not in-
cluded in final data processing. The resulting descrip-
tion with allowance for the ρ(770) + ρ′2 contribution
is shown in Fig. 3. In visually comparing the con-
tributions of the individual resonances in Figs. 1, 2,
and 3 with the total contribution, it should be borne in
mind that the last contribution is not directly related
to the first ones. The point is that the resonances are
strongly mixed by their common decay modes, and
this mixing makes a substantial contribution to the
cross section [2, 3]. We note that the central value of
the parameter R appearing in the expression for the
form factor

Cρωπ(E) =
1 + (Rmρ)2

1 + (RE)2
, (4.3)

which was introduced to moderate an overly fast
growth of the ρ→ ωπ0 partial width with energy,

Γρωπ(E)→ C2
ρωπ(E)Γρωπ(E),

proved to be zero in our data processing; more pre-
cisely, the experimental errors allow variations of this
parameter in the range from 0 to 0.37 GeV−1. Let
PH
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Fig. 2. Cross section for the reaction e+e− → π+π−π0

over the energy region containing the resonances of the
ground-state vector nonet. The experimental data were
taken from (�) [5], (�) [15], (•) [16], (�) [17], and (�) [4].
The notation for the curves is identical to that in Fig. 1.

us indicate the distinctions between our data analysis
and that in [6]. First, we have taken into account
the contributions of all known decay modes (see Ta-
bles 1 and 2), whereas the authors of [6] included only
two decay modes, π+π− and ωπ0, in their analysis.
Second, we have taken into account the mixing of the
resonances that is due to the decay modes neglected
in [6]. Third, the expression

Cρωπ(E) =
{
1 + [Rqωπ(E)]2

}−1

used in [6] for the form factor differs from ours.
The expression for the form factor in [6] and that in
(4.3) have the same asymptotic behavior for E →∞:
EΓρ→ωπ(E)→ const. However, it was assumed in
[6] that the value of the parameter R is common
both to the π+π− and ωπ0 modes and to ρ-like
resonances; in our study these parameters were taken
to be different, with the value of R for the π+π−

channel being set to zero because of a rather slow
growth of the partial width with respect to this decay
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Fig. 3. Cross section for the reaction e+e− → ωπ0.
Shown in the figure are the contributions of (solid curve)
the ρ(770) + ρ′2 state, (dotted curve) the ρ(770) meson,
and (dashed curve) the ρ′2 resonance. The experimental
data were taken from (�) [6] and (�) [19].

mode with increasing energy. The authors of [6] argue
that R does not vanish.

In the present study, we performed a global anal-
ysis of new data on the decay τ− → ντ (4π)− from
the CLEO detector [7] (four pions in the final state,
including ωπ−). The high precision of these mea-
surements makes it possible to improve the accuracy
in determining the parameters of the ρ′2 resonance in
relation to that in [2], where data from the ARGUS
detector were used [20]. Our analysis of the new data
has revealed that they can be adequately described
by the contributions of the ρ′2 resonance and ρ(770)
meson without including the contribution of the ρ′1
resonance. The results are shown in Fig. 4. The
shift of the peak toward smaller values of the invariant
mass of the (4π)− system near 1500 MeV can be
explained by the aforementioned shift of a resonance
peak according to Eq. (2.7).

5. CONCLUSION

Our conclusions are as follows. First, the widths
of the resonances ρ′1,2 and ω′

1,2 are very large. This
naturally fits in the usual two-quark model, where
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 4. Spectral function of the vector current according
to measurements in the decays (a) τ− → ωπ−ντ and
(b) τ− → π+2π−π0ντ . The notation for the curves is
identical to that in Fig. 3. The experimental data were
taken from (◦) [7] and (�) [20].

these resonances are nothing but radial excitations
of the mesons from the ground-state vector nonet.
In view of the large uncertainties in determining the
resonance parameters, we cannot rule out either the
traditional spectroscopic identification1) of the ρ′1 and
ω′

1 resonances with the 23S1 state in the qq̄ model
[1, 12] or some involved schemes of mixing that in-
clude exotic configurations [21]. At the same time, the

1)The fact that the central value of the width Γρ′
1

in the

channels e+e− → ρη and J/ψ → π+π−π0 far exceeds its
values obtained in the other channels considered here (see
Table 1) can be explained by a large central value of the
mass of the ρ′1 resonance. However, the uncertainties in
determining this mass in the above channels are so large that
it would be premature to state that our conclusions disagree
with the predictions from [12], where ΓρS ∼ 500 MeV. Note
that the central value of mρ′

1
in the ρη channel should be

taken to be preliminary because of large uncertainties in the
experimental data; at the same time, a large central value
of this mass in the channel J/ψ → π+π−π0 was obtained
by requiring that the coupling constants determined for the
resonances from different reactions be consistent (for details,
see [2]).
2
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fact that the central values of the widths of the ρ′2 and
ω′

2 resonances are large rules out the interpretation
of these states as the 13D1 orbital excitation of the
ground-state vector nonet, because this excitation
is relatively narrow [12]. However, this conclusion
cannot be considered to be final because of large un-
certainties in determining the above widths. Second,
care should be taken in identifying a particular peak
or some other structure in the energy dependence of
the cross section with a specific spectroscopic state,
since the concerted effect of such factors as a large
resonance width, a fast increase in phase space with
energy, and resonance mixing caused by common
decay modes [2, 3] may result in a significant shift of
the apparent peak with respect to the bare resonance
mass. In a broader context, the fact that our analy-
sis leads to very large widths of the resonances un-
der study—in particular, of isoscalar ω-like states—
suggests that either the available experimental data
are inconsistent, or the description in terms of res-
onances exclusively is not adequate, in which case
some nonresonance contributions must be included
in the amplitudes of the processes being considered.
However, the accuracy of the experimental data is not
sufficient for specifying such contributions. One can
hope that a more precise measurement of the cross
sections over the energy range 1400–2000 MeV in
future experiments would make it possible to isolate
nonresonance contributions (if they do exist) and to
check the interpretation of higher excitations of the
vector nonet as resonances.
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Abstract—An approach is suggested that invokes vitally the notion of constituent massive quarks (valons)
that can survive and propagate rather than hadrons (except of pions) within hot and dense matter formed
below the chiral-transition temperature in the course of heavy-ion collisions at high energies. This
approach is shown to be quite good for describing the experimentally observed excess in the dilepton
yield at masses 250 ≤Mee ≤ 700 MeV over the prompt-resonance-decay mechanism (CERES cocktail)
predictions. In certain aspects, it appears to be even more successful than conventional approaches: it
seems to match the data somewhat better at dilepton masses below the two-pion threshold and below the
ρ-meson peak, as well as at higher dilepton masses (beyond the φ-meson one). The approach implies
no specific assumptions on the special features of phase transitions in expanding nuclear matter, and the
ideal gas approximation is motivated to be still workable for describing the pion–valonic system under
consideration. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A few years ago, experimental evidence was ob-
tained [1] that e+e− pairs (below referred to as dilep-
tons) with invariant masses of 250 ≤M ≤ 700 MeV
produced in the course of heavy-ion collisions at
high energies are by far more numerous (up to a
factor of about 5–7) than what could be predicted
by directly summing the contributions of known
mesonic-resonance decays (CERES cocktail), al-
though a similar treatment of the dilepton yield in
the proton–nucleus collisions was quite successful.
Since then, many attempts have been made [2] to
put forward a reasonable theoretical explanation of
such a distinction. Generally, most of these attempts
were based on the thermodynamical approach [3]
supplemented with some assumptions on the kinetics
and in-medium properties of hadronic resonances
(changes in their masses and widths [2, 4]) in hot
and dense matter (fireball) formed in the course of
the heavy-ion collisions at high energies. It was
demonstrated in [2] that, for a proper choice of
resonance modifications (predominantly, of the ρ-
meson width), a seemingly satisfactory agreement
between the above experimental data and their the-
oretical treatment can be achieved. Unfortunately,
relevant models inevitably suffer from the well-known

∗This article was submitted by the authors in English.
**e-mail: chernav@lpi.ru

***e-mail: feinberg@lpi.ru
****e-mail: royzen@lpi.ru
1063-7788/02/6501-0161$22.00 c©
underlying ambiguities—first of all, from a large
extent of freedom in choosing the equation of state
(EoS) and the in-medium particle mass operator.
That is why their predictions are not undeniable and
the elaboration of some alternative approaches seems
to be not out of place.

The approach we are to discuss below is based
on a microscopic picture of hot-fireball evolution,
which necessarily implies the important role of mas-
sive constituent quarks [5] (following Hwa [6], we
refer to them below as valons) at a certain stage of
evolution. The notion of a valon was quite fruitfully
exploited at the early age of the quark model and was
almost forgotten upon the advent of elegant QCD,
which makes it possible to deduce and predict many
phenomena in terms of current (pointlike) quarks and
gluons. Attempts at embedding valons rigorously
into the framework of QCD as some quasibound color
states of quarks and gluons were not successful [7],
but, being physically very attractive, the notion of
a valon was exploited nevertheless to furnish quali-
tative motivations in favor of one or another state-
ment. Among them, we would like to mention,
first of all, attempts at distinguishing between the
hadronic breakdown temperature [8] and the chiral-
symmetry-restoration temperature by considering ei-
ther two successive phase transitions [9, 10] or grad-
ual valonic-mass decrease as the temperature rises,
being above the former one [11].

More detailed attempts at incorporating valons as
certain phenomenological entities were made [12, 13]
2002 MAIK “Nauka/Interperiodica”
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within the bag-model EoS of nuclear matter. Two
first-order phase transitions were considered (instead
of one within conventional models) in the course
of fireball expansion: first, from the short phase of
quark–gluon plasma (QGP) to the intermediate one
(chiral symmetry breaking at Tch � 200 MeV), which
is rather short too (it lasts until quick cooling down to
the Hagedorn temperature, TH � 140 MeV, is com-
pleted), and, second, long and nearly isothermic tran-
sition (which is referred to as a mixed pion–valonic
state by analogy with the conventional mixed QGP–
hadronic state) from this phase to the short hadronic
phase that ends by freeze-out at slightly lower tem-
perature, Tf � 120 MeV.

Being undoubtedly different, all these models (in-
cluding conventional ones) show one common fea-
ture: the (mixed) phase preceding color confinement
lasts much longer than the other ones, irrespective
of the special features of a specific model. That is
why one can reasonably believe that the substantial
deceleration of expansion and the corresponding pro-
longation of the pion–valonic phase is inherent not
only in all versions of the bag model—this qualitative
effect is, most probably, a general and inevitable con-
sequence of the need for meeting color confinement at
low densities. In what follows, we keep this pattern in
mind as a guideline. Thus, within our approach, just
the pion–valonic phase of expansion (not the QGP
one) is expected to be responsible for “extra dilep-
tons” with low masses (over the CERES cocktail
sample) seen at SPS: they can indeed be produced
during this long phase in the course of numerous
successive collisions of particles within the fireball.
Being quite short, the hadronic phase can provide a
resonance background (CERES cocktail) only.

The physical meaning of these phases in fireball
evolution seems quite transparent [5], irrespective of
whether a sharp or a soft phase transitions occurs,
as well as of the specific time profile of the fireball
temperature or of some other model-dependent fea-
tures: chiral symmetry breaking (restoration) and
color confinement (deconfinement) are assumed to
happen under substantially different thermodynamic
conditions. The valon can be thought of as a quasi-
particle in a sense that it absorbs the most part of
strong color interaction to form (within a suitable
range of temperatures and densities) a nearly ideal
(color-screened) valonic gas that is equivalent, in its
physical manifestations, to the gas of strongly inter-
acting conventional (free) hadrons or QCD (point-
like) quarks and gluons. One can deal with either of
the above representations, but, of these two options,
the former is obviously by far more comfortable for
a theoretical treatment. Indeed, within a medium
of density about the nucleon density (in which the
nucleon bodies themselves would occupy the entire
P

volume), the “equivalent” set of valon bodies (whose
radius is supposed [14, 15] to be about three times
smaller than the nucleon one) would occupy about
10% of the volume only. Therefore, even at noticeably
higher densities (say, at the density that is assumed to
appear at the chiral phase transition—about twice as
high as the nucleon one or about four times higher
than the density of nuclei), a gaseous approach to
the treatment of valonic matter still seems reason-
able. As usual, one has to pay for this simplifica-
tion: a poorly determined entity—the cross section for
valon–valon interaction—enters into relevant formu-
las inevitably. Below, a semiquantitative approxima-
tion is suggested that makes it possible to overcome
this unpleasant obstacle.

It is worthy of note that, because of what is said
above, precise and complicated calculations are un-
necessary even at those points where they could in-
deed be performed, when the problem we are inter-
ested in is considered. That is why rather crude ap-
proximations that we shall exploit below are suitable.

2. GENERAL DESCRIPTION
OF THE APPROACH

The following picture of fireball evolution is adop-
ted:

(i) After cooling down to the temperature T =
Tch, the QGP fireball undergoes a rather quick phase
transition,1) which results in the formation of two-
component (valonic and pionic) quasi-ideal gases in
an equilibrium state,2) the relative content of each
species being controlled by the detailed-balance prin-
ciple; the only interaction is taken into account that
converts QQ̄ valons into pions, and vice versa.

(ii) This state is maintained sufficiently long for
copiously producing dileptons via successive particle
interactions. As for “macroscopic” patterns (longi-
tudinal and transverse flows), they are subjected, as
usual, to a relativistic thermo- and hydrodynamical
treatment. What we need here of all that is an es-
timate of duration of the pion–valonic phase. So
long as, in the end, the need for color confinement

1)Nothing, except of temperature and baryon density, prevents
the transformation of pointlike quarks and antiquarks into
“dressed” ones (i.e., into the valons and antivalons, Q and
Q̄). That is why valons are reasonably expected to appear,
under proper conditions, almost instantly.

2)The pions are the only hadrons that have a good chance to
survive within the medium at this stage because the bind-
ing energy of valons coupled to form a pion, 2mQ −mπ �
500 MeV, substantially exceeds the temperature. Although
the time of chemical equilibration within the fireball is, most
probably, somewhat longer than that of the chiral phase
transition itself, it is comparatively short too [16].
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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at low densities is motivated above to be responsi-
ble for its prolongation, no reasons seem to be put
forward for the appearance of a substantial difference
in this respect between the suggested approach and
conventional or bag-model treatments. That is why
the corresponding estimates given by the latter ones
[12, 13, 17] will be quoted for orientation.

(iii) Mesonic resonances are expected to be nearly
melted [18] over almost the entire duration of the
pion–valonic phase in the sense that their effective
widths are crucially influenced by the inverse mean
free time t̄−1, which is undoubtedly greater than the
relevant intrinsic widths Γi.3) That is why dilep-
tons produced under such conditions in the reactions
π+π− → e+e− and QQ̄→ e+e− are to be treated
reasonably as a kind of a nonresonance multicollision
(transport) contribution (just what we are here to deal
with), which should be added to dileptons originating
from “normal” mesonic-resonance decays (CERES
cocktail) at the final stage of expansion (when these
resonances can survive). The heavier the colliding
nuclei and the higher the degree of centrality of an
observed collision, the greater the number of these
transport dileptons.4)

The general strategy of the calculations looks as
follows:

(i) The total numbers of pions, Nπ, and valons,
NQ andNQ̄, within the fireball are linked by using the
detailed-balance principle.

(ii) The rate of the reactions π+π− → e+e− and
QQ̄→ e+e− is estimated as a function of M and Nπ.
Being multiplied by the entire duration of fireball ex-
pansion from the temperature Tch to the temperature
Tf , it gives the total yield of dileptons produced via
pionic and valonic collisions.

(iii) Nπ is linked to Nch, the total number of
charged hadrons coming from the fireball after freeze-
out, and the general formula is adopted for comparing
the results of the calculations and experimental data.

3)Since T > TH, the mean free time (path) must be shorter
than or about 1 fm (the radius of valonic confinement or of
hadronization); the effective width of each resonance thus
decreases along with the evolution of the intermediate phase
to become finally (t̄−1 + Γi) � 200 MeV + Γi.

4)The dileptons originating from processes of the
bremsstrahlung type make virtually no contribution to
the part of the dilepton mass spectrum under discussion.
Indeed, typical masses of bremsstrahlung virtual photons
emitted by pions or u and d valons are wittingly lower than
mπ or mQ, respectively, thus being, in any case, lower than
300 MeV (in fact, only photons of much lower masses are
noticeable). As for heavier valons, yes, they could emit
such heavy photons (especially, c, b, and t ones), but their
relative concentration itself is by far too low and one can
undoubtedly disregard the relevant dilepton yield.
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(iv) The results obtained are contrasted against
available data on the production of low-mass dilep-
tons, as well as against the results of some conven-
tional approaches.

3. NOTATION

The following notation is used:
dνwQ/dt is the rate of “white” QQ̄ collisions in

which colors of Q and Q̄ are canceled to produce a
color-singlet state;

dνπ/dt is the rate of π+π− and π0π collisions;
dνw0
Q /dt and dν0

π/dt are the rates of collisions
selected from the above ones in which the particles in-
volved necessarily have opposite (and nonzero) elec-
tric charges;

λ = [NQ/NQ̄]1/2 � exp (µQ/T ), µQ being the
chemical potential of u and d valons, is the valon
fugacity;

b = Nπ/(NQ +NQ̄);
t̄ and τ are, respectively, the mean free time of

particles within fireball and the duration of fireball
cooling from the temperature Tch to the temperature
TH.

4. CALCULATIONS

1. Being averaged over the particle distributions,
the detailed-balance principle reads

νwQ(T )Ωπ(T ) � νπ(T )ΩQ(T ), (1)

where Ωi are the mean values of the corresponding
final-state phase spaces. Below, the binary reactions
are to be considered only because 2 → 4 reactions
are substantially suppressed by scarcity of the typical
thermal final-state phase space at T < Tch, and 3 (or
more) → anything reactions are rather rare events
at the typical particle densities under consideration
(however, see the discussion below). Moreover, we
restrict ourselves, for a while, to the two lightest
flavors (Nf = 2) because of the low concentration of
s quarks: their number is believed to be about [19]
(0.25–0.5)exp[(mu,d−ms)/T ] � 10% of the number
of (ū+ d̄) quarks; thus, the relevant corrections are
obviously within the very accuracy of the suggested
approach.

Since each antiquark of certain color and flavor
can encounter, with the same probability, λ2 quarks
and one antiquark (2Nc species of each of them) and
b pions for each of them, of which only two species are
suitable to build a color singlet state,

dνwQ(T ) =
λ2NQ̄

(λ2 + 1)(1 + b)Nc

dt

t̄(T )
. (2)
2
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Fig. 1. Low-mass dilepton (e+e−) yield. Our re-
sults (bold solid and bold dashed curves refer to mπ =
140 MeV, τ/t̄ = 20 and mπ = 100 MeV, τ/t̄ = 30, re-
spectively; σ0 = 10 mb, ∆ = 0.2 GeV) are contrasted
against the entire bulk of CERES dilepton data [1] and
the predictions of thermal dilepton calculations quoted in
[2, 24].

Quite similarly, a π0 meson encounters another πme-

son with the probability
1

(1 + b−1)
dt

t̄
, the total rate of

π0π collisions being, therefore,
2Nπ

9(1 + b−1)
dt

t̄
(π0π±

collisions) plus
Nπ

18(1 + b−1)
dt

t̄
(π0π0 collisions); the

rate of π+π− collisions is obviously
Nπ

9(1 + b−1)
dt

t̄
.

Of course, π+π+ and π−π− collisions are out of the
game in the detailed-balance equation (within the
above approximation), since they never result in a
two-valonic final state. Thus, for the total rate of ππ
collisions to be taken into account, one gets

dνπ(T ) =
7
18

bNπ

1 + b

dt

t̄(T )
. (3)

The valonic and pionic phase spaces are

ΩQ(T ) � 4(2SQ + 1)2Ncp2
Q(T ) (4)

(5)

and
Ωπ(T ) � (2Iπ + 1)2p2

π(T ),
respectively, where SQ is the valonic spin, Iπ is the pi-
onic isospin, pQ(pπ) is the valon (pion) momentum in
PH
the c.m. frame of two interacting valons (pions), and
Nc appears here instead of N2

c since only the color-
singlet sector of the total phase space of two valons is
taken into account. Straightforward averaging over
the Boltzmann distribution gives the mean value of
the square of the energy of a particle of mass m,

E2(m,T ) = T 2

[
3
m

T

K1(m/T )
K2(m/T )

+ 12 +
m2

T 2

]
,

where K1,2 are the corresponding Bessel functions.

The c.m. value of p2
π (p2

Q) for each particle in the
pionic (valonic) final state is obtained obviously by in-
sertingm = mQ into this expression (m = mπ), sub-
tracting m2

π (m2
Q), and taking half of this difference.

Within the temperature range we are interested in, the
ratio of these values varies slowly and it (namely, the
ratio of the mean value of pion momentum squared to
that of the valon momentum squared) is about two
at the temperature of T̄ � 160 MeV, which will be
exploited in what follows as a certain effective mean
temperature instead of the current one. Making use
of the above notation and combining Eqs. (1)–(4),
we obtain

b � 0.6
λ

(λ2 + 1)
≤ 0.3. (6)

Since the fraction of “large” pions (as compared to
“small” valons) is relatively small (at the reasonable
value of λ, λ �

√
3, that refers to µQ � 80 MeV, one

has b � 0.24), the motivation in favor of the appli-
cability of the gaseous approximation given above
for the purely valonic medium remains valid. It is
also worthy of note that this chemically equilibrium
ratio of valons and pions corresponds to what would
be obtained if they were considered as being ideal
noninteracting gases. This fact makes it possible, at
least, to be sure that the rather crude and idealized
gaseous approach to the problem under consideration
is not controversial.
2. The rates of “white” collisions with zero total

electric charge, which can produce dileptons via the
virtual photon intermediate state, are estimated quite
similarly:

dν0
Q = 0.5dνQ, dν0

π =
b

9(1 + b)
dt

t̄
. (7)

It is easy to check that the probability dW/dM of
a two-particle collision with the invariant mass (the
total energy in their c.m. frame)M is (in the approxi-
mation of ideal Boltzmann gas 5))

5)There is no reason to refine it by taking into accountBose and
Fermi statistics of pions and valons, respectively, in view of a
poor accuracy and specific kinematical selection (see below)
of available experimental data.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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dW

dM
=

M

8

∞∫
M

e−ξ/Tdξ

√
(ξ2−M2)(1−4m2

i /M
2)∫

0

(ξ2 − η2)dη

/[ ∞∫
0

p2e−
√
p2+m2

i /T dp

]2

, (8)
where i = Q,π and ξ and η are, respectively, the sum
and difference of colliding particle energies.6)

3. To compare the above approach straightfor-
wardly with experimental data on dilepton production,
one should link the numbers of pions and valons
within the fireball and the number of observed charged
particles. This relation is suggested to be

Nch �
2
3
Nπ + 2NQ̄ + 0.4NB , (9)

where

NB =
1
3
(λ2 − 1)Nu+d

Q̄
� 1

3
(λ2 − 1)NQ̄

is the fireball total baryon number and, thus, 0.4NB

is approximately equal to the proton outcome from
the fireball (in accordance with the approximate ra-
tio of protons and neutrons in heavy-ion collisions).
Equation (8) also implies that, in course of thermally
equilibrium hadronization, the number of decoupled
pions emitted from the fireball is nearly equal to the
number of pions coupled within it and that each
QQ̄ pair produces about two charged pions (actually,
about three pions, the third being neutral).

Now, combining Eqs. (5)–(8), we arrive at the
basic formula for the excess in the dilepton yield,
which is to be compared with observations:

1
Nch

dNee

dM
� 0.1λ2(1 + 0.6λ + λ2)−1

4.7 + λ+ 0.33λ2
(10)

× τ

t̄

[
dWππ

dM

σππ→ee

σtot
ππ

+ 4
dWQQ̄

dM

σQQ̄→ee

σtot
QQ̄

+ β × (the previous term where Qs

appears instead of Q ≡ Qu,d)
]
.

Here, σQQ̄ stands for the half-sum of the cross sec-
tions for QuQ̄u and QdQ̄d annihilation into e+e−;
σtot
ππ and σtot

QQ̄
stand for the corresponding total cross

sections; and β takes into account the relative rate
of strange-valon collisions, β � 0.1 (see above). The
relative effectiveness of the latter ones in dilepton

6)The nominator here is nothing but the product of the mo-
mentum distributions of two independent particles in the
c.m. frame of a small volume dV (where they are assumed to
be spherically symmetric) integrated with the factor δ[(p1 +

p2)
2 −M2], whereas the denominator takes into account the

normalization.
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production is still about 1.7 times lower,7) thus being
about 6% of the light quark one. That is why the
strange-valon contribution is neglected below. Of
course, Eq. (9) could be reformulated to take a more
traditional form (for the latter, see [20]), by mak-
ing use of the above relations and the well-known
definition σtot

i t̄i
√

2 � n−1
i , where ni is the number

density of the ith particle species and σtot
i and t̄i

are the relevant cross section and mean free time,
respectively. The chosen way of description is pre-
ferred here deliberately to avoid unnecessary compli-
cations. Moreover, its physical meaning seems more
transparent, whereas the drawbacks of two ways of
description are essentially equivalent (poorly defined
ππ and QQ̄ total cross sections in the one given here
and equally poorly defined corresponding in-medium
ρ-meson electromagnetic form factor which would
enter inevitably into the usually exploited formulas).

Two general results can be deduced from Eq. (9)
right away, before going into more detailed calcula-
tions. First, the mean number of successive interac-
tions of a particle over the fireball evolution time, τ/t̄,
is the only factor on the right-hand side of Eq. (9) that

depends on Nch: τ ∼ V ∼ Nch and τ ∼ V 1/3 ∼ N
1/3
ch

in the limiting cases of, respectively, one-dimensional
(longitudinal) and three-dimensional (spherical) ex-
pansion of the fireball (V is the fireball volume at
the freeze-out temperature); thus, Eq. (9) apparently
admits the trend Nee ∼ N2

ch observed in the SPS
experiments [21]. Second, the predicted excess in the
dilepton yield is almost insensitive to the choice of
valon chemical potential within the range 0 ≤ µQ ≤
80 MeV, since the corresponding variation of the λ-
dependent factor on the right-hand side of Eq. (9)
does not exceed 20%.8)

7)This coefficient appears as the interplay of two factors:
the ratio of quark electromagnetic charges squared, (e2u +

e2d)/2e
2
s = 2.5, and the ratio σtot

QQ̄/σ
tot
QsQ̄s

estimated, from a
comparison of the πp and theKp cross sections, to be nearly
equal to 1.5.

8)However, at lower energies (AGS, SIS), when this potential
is expected to be considerably higher, its influence should
result in quite observable (about two times) reduction of the
dilepton excess in collisions of the same nuclei as compared
to the SPS one. At the same time, it should be noted that a
similar effect comes from a decrease in the ratio τ/t̄ at overly
low energies, when the fireball initial temperature Ti is lower
than Tch.
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The most vulnerable point of formula (9) is the
ratio of the above cross sections. It can be estimated
within the framework of the following reasoning. The
resonance irregularities (mostly, the ρ-meson one)
in the cross section of dilepton production and in
the total one are expected to be of similar (the same
within VDM) shape [22] and cancel each other to
a considerable extent. That is why the background
contributions (namely, they are meant under the letter
σ below) are to be compared only. Thus, we have

σππ→ee �
4πα2

3M2
, σQQ̄→ee �

10πα2

27M2
.

The total cross sections for QQ̄ and ππ interactions
can be estimated, obviously, only in terms of plausi-
bility and similarity to the known hadronic ones. We
assume that, in spirit of the suggested approach, each
of u and d valons (antivalons) interacts (strongly) as
if it were “1/3 of the proton” (antiproton). Since the
cross section for pp̄ interaction [23] exhibits almost
no resonance structure and can be fitted pretty well
(at not overly high c.m. energies Ec) in terms of the
simple phenomenological formula9)

σpp̄(Ec)− 40 mb � 24 mb√
Ec/(2mp)− 1

, (11)

one can expect that the corresponding cross section
for the interaction of a light valon and a light antivalon
respects approximately the formula

σQQ̄(M)− 9 mb � 5.4 mb√
M/(2mQ)− 1

, (12)

where the Qu,dQ̄u,d cross section at the c.m. energy
M = Ec/3 is estimated to be about 0.22 (instead of
1/9) of the pp̄ one at the c.m. energy Ec, approx-
imately 50% shadowing in the pp̄ interaction being
taken into account.10)

This way of reasoning is not applicable immedi-
ately to linking the shapes of the pp̄ and π+π− total
cross sections, first of all, because the former reaction
is exothermic11) (just like the QQ̄ one), whereas the

9)This formula corrected by multiplying of its right-hand side
by the factor (Ec/2mp)−0.4 (which is of no importancewith-
in the energy range of our interest here) smoothly interpo-
lates between the threshold behavior of the total pp̄ cross
section and its high-energy parametrization [23] motivated
by the Regge approach.

10)This qualitative estimate emerged from the observation that
total πp and pp cross sections at the relevant energies are
more likely in the ratio 5 : 6 [23] than in the ratio 2 : 3,
which would be expected if there were no shadowing at all.
By the way, Eq. (11) is coordinated pretty well with the
(also qualitative) estimate that QQ̄ total cross section at
c.m. energy of a few GeV should be on the order of the
confinement radius squared, i.e., about 1 fm2 � 10 mb.

11)That is why the simplest interpolation of the form ∼(Ec −
2mp)−1/2 fits its cross section fairly well.
PH
latter one is not; therefore, the above cross sections
differ substantially in their threshold behavior. Nev-
ertheless, available experimental data show unam-
biguously a general trend of all the known hadronic
cross sections (apart from their resonance structure,
i.e., averaged with respect to it—namely, of their
background components that are just relevant) to
increase gradually toward the threshold (except for,
maybe, a very narrow domain in the close vicinity of
the threshold). Compiling the data, one can conclude
that these cross sections show a two- to threefold
decrease as the c.m. energy increases by about 1 GeV
above the threshold and that they approach almost
constant values as the energy exceeds substantially
the sum of the interacting-particle masses. It seems
reasonable to assume that the same is qualitatively
true for the background component of the π+π− cross
section as well. That is why the following formula can
be proposed:

σππ(M)− σ0 �
3σ0∆√

M/(2mπ)− 1 + ∆
. (13)

Here, σ0 � 10–15 mb is the high-energy value of σππ
and 0.2 ≤ ∆ ≤ 1, a somewhat low value of ∆ from
this interval seeming rather more suitable because of
the relatively small pion mass.
4. After insertion of Eqs. (11)–(13) into the basic

Eq. (9), we are almost ready to compare the ap-
proach with data. What remains to be done is to
adapt formula (7) to the specific conditions of the
measurements, i.e., to take into account the fact that
only leptons, e+ and e−, with transverse momenta of
pT > 200 MeV were selected in all data and that a
further selection of data into two groups incorporating
events where the dilepton total transverse momenta
are 200 < qT < 500 MeV and qT > 500 MeV, respec-
tively, was made. These restrictions are taken into
account approximately: the limits of integration with
respect to ξ in Eq. (7) are chosen to allow for the above
conditions on average (i.e., these limits correspond
to a “typical dilepton” built up of two leptons whose
momenta are averaged over their relative directions
and over their absolute values). As a result,

max[M,pT
√

6 � 0.5 GeV], pT = 0.2 GeV,

appears instead of M for the lower limit and√
M2 +

3
2
q2
T , qT = 0.5 GeV,

stands for the upper (lower) limit for qT < 0.5 GeV
(qT > 0.5 GeV) events.

Below, the results of the suggested approach are
compared with the experimental data and with the
theoretical predictions obtained within some conven-
tional theoretical approaches.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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5. DISCUSSION AND CONCLUDING
REMARKS

At first glance, a doubt could be expressed that
the valons play a significant role in the production
of dileptons with masses of M ≤ 2mQ � 660 MeV,
which are just of primary interest here, since they do
not produce these dileptons directly. However, this
is not correct: they do play this role because they
directly affect the number of pions within the fireball
and the number of charged particles in the final state;
therefore, their influence on the ratio of dileptons to
charged particles is quite unambiguous.

Unfortunately, we cannot extract, from our results,
direct information about the duration of fireball ex-
pansion, τ , and about the mean free time t̄ separately
because the dilepton yield is proportional to their ratio
only. The curves presented in Figs. 1 and 2 are ob-
tained under the condition that τ/t̄ = 20 or 30 for free
pions (mπ = 140 MeV) or “in-medium” pions (mπ =
100 MeV), respectively. At the same time, a quadratic
growth of the total dilepton yield in relation to the
charged particle one, Nee ∼ N2

ch, which was drawn
[21] from the CERES data, is a piece of evidence in
favor of predominantly longitudinal fireball expansion
at the SPS energies. The well-known estimates
predict, in this case, a rather long expansion time
[13, 17]. If one adopts a reasonable estimate for the
mean free time, t̄ � 0.7–1.0 fm, then the duration of
the pion–valonic phase (which is nearly equal to the
entire duration of fireball expansion) is τ � 15–20 or
20–30 fm for free or in-medium pions, respectively.
These values are compatible with what was predicted,
the latter seeming somewhat preferable.

At the same time, owing to a considerable en-
hancement of the pressure within the fireball, along
with an increase in its energy density predicted within
the hydrodynamical model, the role of transverse flow
increases too; thus, the three-dimensional pattern of
fireball expansion is expected to become substantially
more pronounced in RHIC and LHC collisions. As
a result, a certain modification in the functional form
of the above correlation is expected to be observed,
the degree of 2 there gradually decreasing toward that
of 4/3 (which refers to spherical expansion). Thus,
at RHIC, one can expect a noticeably slower rise
of the excess in the dilepton yield over the CERES
cocktail sample than would be predicted by a careless
extrapolation of the longitudinal-expansion models
(say, than approximately 4.5-fold in relation to SPS

if one assumes thatNch ∼ E
1/2
c ).

Within the suggested approach, three-particle
collisions were neglected. This approximation can be
justified only if the mean interaction time (about the
particle size) is much shorter than the mean free time
(about the mean free path). One has to agree that the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 2. As in Fig. 1, but for two qT -selected groups of
data.

above estimate of a reasonable value of the mean free
time, t̄ � 0.7–1.0 fm, does not meet this requirement
completely even for valons of size about 0.3 fm. A
typical diagram that refers to three-particle collision
is shown in Fig. 3. Intervention of a third particle
(labeled as 3) results, apparently, in some dispersion
of the dilepton mass around its only value that would
be prescribed by the energy conservation law if only
two particles collided. In turn, this results in smooth-
ing the irregularities (kinks, dips, or bumps), if they
are inherent in the dilepton mass spectrum predicted
by two-particle collision kinematics. In particular,
the dip in the spectrum below the two-pion threshold
obtained in the two-particle collision approximation
(see Fig. 2a) could be flattened, to some extent, by
this smoothing. However, the relevant corrections
are hardly sufficient to level this dip completely—we
mean quite a probable minimum also seen there in the
2
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Fig. 3. A typical diagram of three-particle collision. It
shows that intervention of the “third” particle can affect
the mass of the produced dilepton pair to shift it up or
down. In particular, this mass can occur below the phys-
ical threshold of the corresponding two-particle (1 + 2)
reaction. A very likely minimum before the two-pion
threshold seen in Fig. 2a is indicative of the conclusion
that the contribution of three-particle collisions to the
dilepton yield is rather small.

data specially selected to emphasize the contribution
of pion–pion collisions.

At the same time, Fig. 1 shows that the occur-
rence of a noticeable dip below the 2mπ threshold is
apparently predicted in the entire bulk of data if the
in-medium pionmass is equal to the free one, whereas
virtually no visible dip is predicted if an effective low-
ering of this mass is qualitatively taken into account
by setting it to 100 MeV. That is why a significant
refinement of the data within this mass region is
asked anxiously, because this can provide valuable
information about the properties of dense and hot
matter that might be even more important than the
dilepton yield itself. In particular, it can be correlated
with the properties of the chiral transition. As for the
properly selected events, qT ≤ 500 MeV (see Fig. 2),
we would like to point out again that this dip is quite
apparently predicted by either of the above versions
of the theoretical approach suggested, in contrast
to the conventional ones. Again, allowance for a
some decrease in the in-medium pion mass seems
fruitful [although three-particle interaction could be
responsible too (see above) for a slight shift to the
left of the minimum suggested by the data from the
position predicted by the free-pion-mass version of
the approach presented].

The predicted yield of dileptons with Mρ ≤M ≤
Mφ looks slightly overestimated (see Figs. 1 and 2).
However, this excess (if it can be taken seriously
into consideration in view of overly poor accuracy of
the data), which is undoubtedly due to QQ̄ annihi-
lation, may be rather illusory: in particular, at the
φ-meson peak, experimental points are even slightly
lower than they are expected to occur according to the
estimate of the prompt-resonance (CERES cocktail)
contribution itself, which seems unreasonable. This
disparity can be taken as a hint that something here
P

may suffer from a systematic error. If this is so, then
the agreement between our predictions and the data
is improved, irrespective of what—data or CERES
cocktail—is to be corrected, since what we have cal-
culated is just the expected excess in the observed
dilepton yield over the CERES cocktail sample. At
still higher dilepton masses, both the data and our
results (unlike the other ones) show a quite compat-
ible excess over this sample (see Fig. 2b), which is
undoubtedly due to QQ̄ annihilation.

An advantage of the suggested approach is that
its physical meaning and internal structure are very
transparent and open for discussion, tracing, and
corrections, since no complicated generators are in-
volved: almost all the calculations are quite simple to
perform approximately by hand.

Summarizing what was said above, we conclude
that the low-mass spectrum of dileptons produced
in the course of heavy-ion collisions can be under-
stood in quite a natural way in terms of the pion–
valonic contents of expanding hot and dense matter
(fireball) below the chiral transition temperature. The
above consideration showed, however, that dilepton
production is affected by a number of factors and
that some of them could be estimated rather semi-
quantitatively. Thus, we are supplied again with an
insight on fruitfulness of using the notion of a valon,
although the suggested pieces of evidence in favor of
its right to be acknowledged as a real physical object
are still far from being decisive.
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Abstract—The results that the FLUKA, GHEISHA, and QGSM codes produce for the features of
hadron interactions are compared with one another and with experimental data. Distinctions between
hadronic cascades computed in lead and iron on the basis of the different codes are analyzed. The
possibility of using model concepts underlying the codes in question at energies above 1 TeV is considered.
c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The GEANT package [1], involving an exclusive
description of cascade processes, whichmakes it pos-
sible to determine mean cascade features and their
fluctuations, is extensively used to simulate nuclear
cascades in matter. The existing GEANT versions
include various codes generating inelastic nuclear
interactions and relying on the results of accelerator
experiments. However, advancements toward the re-
gion of higher energies present a challenge in testing
these codes. In order to employ, for this purpose,
data from collider experiments on proton–proton and
proton–antiproton interactions, it is necessary to de-
scribe adequately intranuclear processes in hadron–
nucleus and nucleus–nucleus interactions.

There are also difficulties in the region of accel-
erator energies proper. Frequently, accelerator ex-
periments do not record neutral secondaries, with
the result that many features that are of importance
for simulating cascade processes—for example, the
partial inelasticity factorKγ , its fluctuations, and the
spectrum of product photons—cannot be normalized
to experimental data.

In view of this, it is advisable to perform a com-
parative analysis of conceptually different codes for
generating hadron interactions, with reference to rel-
evant energy dependences, because this aspect is
of paramount importance for simulating cascades in
matter and for comparing the results obtained from
such simulations with available experimental data.

*e-mail: ant@eas.npi.msu.ru
1063-7788/02/6501-0170$22.00 c©
1. COMPARISON OF FEATURES
OF AN INTERACTION EVENT
AT ACCELERATOR ENERGIES
IN DIFFERENT MODELS

1.1. Model Concepts of Hadron Interactions

According to approaches to describing processes
of hadron–nucleus interaction, the class of codes
generating such processes can be partitioned, by con-
vention, into two subclasses. The first includes gen-
erators employing phenomenological models based
on approximations of experimental data on hadron–
nucleus interactions at comparatively low energies
(below 400 GeV) and on hadron–hadron interactions
implemented at colliders (below

√
s = 900 GeV).

Within models underlying generators that form the
other subclass, an event of hadron–nucleus interac-
tion is treated as a set of hadron–nucleon interactions
described within various model concepts. The codes
being discussed can consist of conceptually dissimilar
parts employing different approaches to describe
different processes.
In our comparative analysis, we consider the

GHEISHA [1, 2] and the FLUKA [1, 3, 4] generators
of hadron interactions (they are contained in the
modern version of the GEANT 3.21 package) and
the QGSM [5, 6], which belongs to a different class
of codes.
The phenomenological code GHEISHA [1, 2],

which is the fastest one, belongs to the first subclass.
It is based on a direct approximation of accelera-
tor data (multiplicity, inelasticity factor) on hadron–
hadron and hadron–nucleus interactions. In this
code, the number of secondaries generated in an in-
teraction event is bounded by a value chosen by con-
vention (N < 100). This is a purely technical feature,
2002MAIK “Nauka/Interperiodica”
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but it imposes some limitations on the potential of the
code.

The FLUKA code, which is based on the model
of dual topological unitarization [1, 3, 4], belongs to
the second subclass of models. According to this
model, hadron–hadron collisions result in the forma-
tion of two strings, which then fragment into sec-
ondary hadrons. String fragmentation into hadrons
is described by the special code BAMJET, which is
based on an analysis of experimental data [7]. In the
case of hadron–nucleus interaction, the impact pa-
rameter and the distribution of nucleons in the target
nucleus are varied at random. The code determines
the types of secondary hadrons and their momentum
distributions, along with some sort of spacetime de-
scription of particle formation. A particle-formation
time τ that is constant in the particle rest frame
is introduced in the code; a secondary hadron can
undergo interaction only at the distance l = cβγτ
from the production vertex (β = v/c, and γ is the
Lorentz factor for a given particle). At the same time,
the correlation between the multiplicity of low-energy
nucleons knocked out in the developing intranuclear
cascade, on one hand, and the number of nucleons
hit by the incident hadron, on the other hand, is taken
into account empirically [4]. The interactions of parti-
cles whose momenta lie in the region extending up to
5 GeV/c are simulated with the aid of the dedicated
code HADRIN [8]. By varying the parameters of
the code, it is possible to obtain secondary-particle
distributions that are compatible with available ex-
perimental data [9].

It should be indicated that nucleus–nucleus in-
teractions cannot be simulated on the basis of the
GHEISHA and FLUKA versions that are contained
in the GEANT 3.21 package.

The resort to the QGSM code, which makes it
possible to simulate nucleus–nucleus interactions,
was motivated by different model concepts. It is also
based on the model of quark–gluon strings [5, 6],
but the momentum distributions used in this code for
constituents are somewhat different from that in the
FLUKA code, the description of the spacetime evolu-
tion of the intranuclear cascade also being different.
For the hadron-formation coordinate and time, one
takes either the coordinate and time of the point where
the trajectories of the quarks forming the secondary
hadron in question intersect (“yo-yo” formation time)
or the coordinate and time of the point at which
the string is ruptured (“constituent” formation time).
The hadron-formation time is then determined by the
string tension κ (a free parameter that is taken to
be κ = 0.5 or 0.9 GeV/fm in the different versions of
this model). That secondaries can interact with one
another (“hot cascading”) is also taken into account.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 1. Multiplicities of secondaries versus the target
mass number (E = 200 GeV) according to simulations
based on (thick solid curves) the FLUKA code, (thin solid
curves) the GHEISHA code, or the QGSM code imple-
mented (dashed curves) with the string tension of κ =

0.9GeV/fm and the constituent formation time or (dotted
curves) with the string tension of κ = 0.5 GeV/fm and
the “yo-yo” time. Points represent experimental data
from [11, 12].

The QGSM code satisfactorily describes basic
features of all processes induced by high-energy
hadron–nucleus and nucleus–nucleus collisions,
with the exception of the evaporation process and the
fragmentation of the residual nucleus. This code was
tested by applying it to proton–nucleus collisions, as
well as to pion–nucleus and kaon–nucleus collisions
at 250 GeV [10].

1.2. Features of Hadron Interactions in Various
Models

The multiplicity of secondaries is one of the im-
portant features of an inelastic-interaction event. The
results of the calculations performed according to the
various models for the multiplicity of all charged par-
ticles, n±, and the multiplicity of negatively charged
particles, n−, generated in pMg, pAu, pAr, and pXe
interactions (at an energy of 200 GeV), for which
there are relevant experimental data [11, 12], are
displayed in Table 1. The resulting multiplicities of
secondaries are also shown in Fig. 1 versus the target
mass number. The quantity n± takes into account
hadrons generated in multiparticle-production pro-
cesses and protons knocked out of the target nucleus.
Here, the best agreement with experimental data is
achieved within the GHEISHA model. The FLUKA
model exaggerates the relevant multiplicity because
of an excess of low-energy protons emitted in the
nuclear-residue-evaporation process, which is taken
into account in the model. The dependence of the
multiplicity n± on the target mass number is stronger
2
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Table 1.Multiplicity of secondaries (E = 200GeV)

Code
Reaction

p24Mg p197Au p40Ar p131Xe

n±

FLUKA 15.0 27.9 17.9 24.1

GHEISHA 12.6 22.8 13.8 20.2

QGSM, “yo-yo,” κ = 0.5GeV/fm 11.1 23.0 12.9 19.0

QGSM, constituent, κ = 0.9GeV/fm 11.8 25.1 13.6 21.3

Experiment 13.1± 0.9 21.6± 1.2 14.98± 0.45 20.67± 0.40

n−

FLUKA 5.0 7.8 5.7 7.2

GHEISHA 5.0 7.7 5.3 7.0

QGSM, “yo-yo,” κ = 0.5GeV/fm 4.4 9.2 5.2 7.7

QGSM, constituent, κ = 0.9GeV/fm 4.7 10.0 5.5 8.5

Experiment 4.9± 0.4 7.0± 0.4 5.39± 0.17 6.84± 0.13

Table 2.Mean rapidity of secondaries (E = 200GeV)

Code
Reaction

p40Ar p131Xe

〈y±〉
FLUKA 1.88 1.63

GHEISHA 2.25 1.88

QGSM, “yo-yo,” κ = 0.5GeV/fm 2.43 2.06

QGSM, constituent, κ = 0.9GeV/fm 2.34 1.92

Experiment 2.39± 0.04 2.00± 0.02

〈y−〉
FLUKA 2.45 2.32

GHEISHA 2.43 2.27

QGSM, “yo-yo,” κ = 0.5GeV/fm 2.51 2.22

QGSM, constituent, κ = 0.9GeV/fm 2.41 2.06

Experiment 2.61± 0.08 2.42± 0.03
in the QGSM than in the other models and in ex-
periments. This model disregards the evaporation
and fragmentation processes, so that the emission
of low-energy protons is governed exclusively by the
intranuclear cascade. Still stronger distinctions be-
tween the results produced by the different models
are observed for the analogous dependence of the
multiplicity n−. That the multiplicity n− depends
rather strongly, within theQGSM, on the target mass
P

number is due to an exaggerated contribution of in-
elastic contributions in the intranuclear cascade.

For another feature of nuclear processes, we take
the rapidity averaged over the inclusive distribution,
〈y〉. One can also consider the rapidity distribution
of all charged particles and the rapidity distribution of
only negatively charged particles, the corresponding
mean values being 〈y±〉 and 〈y−〉. While the latter
is due exclusively to multiparticle-production pro-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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cesses, 〈y±〉 also depends on the emission of protons
knocked out of the target nucleus.

The 〈y〉 values calculated within the various mod-
els for pAr and pXe interactions at 200 GeV are given
in Table 2, along with experimental data from [11, 12].
For the lighter nucleus of argon, the 〈y−〉 value calcu-
lated within the QGSM is close to experimental data,
but, for the heavier nucleus of xenon, the 〈y−〉 value is
noticeably underestimated, which suggests an excess
of low-energy negative pions, in accordance with the
above comment on an exaggerated contribution of the
inelastic intranuclear cascade in this model. That the
〈y±〉 values are underestimated in the FLUKA model
is due to the inclusion of the nuclear-evaporation
process and “black”-proton formation in the model
that are not always detected experimentally.

The process of hadron–nucleus interaction can be
represented as a set of interactions with individual
intranuclear nucleons (Glauber approach [9]). Un-
der the assumption that the cross section for hadron
interaction with an intranuclear nucleon is equal to
the cross section for the analogous interaction with a
free nucleon, σhn, the mean number of hit nucleons,
〈ν〉, is given by 〈ν〉 = Aσhn/σhA (σhA is the cross
section for hadron–nucleus interaction). Individual
interaction events differ in impact parameter and in
the number ν of hit intranuclear nucleons. The quan-
tity ν is not observed directly; as an estimate of it,
some authors use the quantity νg, which depends on
the multiplicity ng of emitted “gray” protons: νg =
(1.02 ± 0.12)〈ν〉(ng/〈ng〉)1/2 (ng > 0) [11, 13, 14].
By and large, the estimate of hit nucleons on the basis
of the number of gray protons corresponds to the true
value of ν at a given value of ng, but, in an individual
case, there are fluctuations associated with unequal
numbers protons and neutrons knocked out of the
nucleus by the primary particle [13].

By gray protons, some authors mean all low-
energy protons (of momentum less than 1 to
1.5 GeV/c) [13, 14], while others eliminate black
protons (of momenta not greater than 0.3 GeV/c)
from their number [11]. The elimination of these
is motivated by the following consideration. For a
first approximation, one can treat gray protons as
low-energy products of incident-hadron interaction
with intranuclear nucleons and black protons as the
products of residual-nucleus evaporation. If these
processes are weakly correlated [11], the elimination
of black protons contributes to revealing the rela-
tionship between the number of observed protons, ng
(defined as is described above), and the number of hit
intranuclear nucleons, ν. It should be noted that the
different models describe differently the intranuclear
cascade, which affects the yield of gray and black
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 2. Distribution with respect to the number of gray
protons in (a) pAr and (b) pXe interactions at E =
200 GeV [P (ng) is the fraction of events characterized
by a given value of ng ]. The notation for the curves is
identical to that in Fig. 1. Points represent experimental
data from [14].

protons, and that the yield of inelastic-interaction
products depends on the number of hit nucleons.

For pAr and pXe interactions at 200 GeV, the dis-
tributions with respect to the number of gray protons
according to our calculations within the various mod-
els are displayed in Fig. 2, along with experimental
data from [14]. Taking into account the conditions
prevalent in that experiment, we included, in these
distributions, protons with momenta in the range
0.1 < p < 0.6 GeV/c. A deficiency of protons within
the QGSM demonstrates that evaporation and frag-
mentation processes, which are disregarded in this
model, are operative here.

For pAu and pMg interactions at 200 GeV,
we have calculated the multiplicities of negatively
charged secondaries, n−, relying on the various mod-
els discussed above. The results of these calculations
are presented in Fig. 3 versus ng. Also shown in this
figure are the relevant experimental data from [11]. In
order to perform normalization to experimental data,
2
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Fig. 3. Multiplicity of negatively charged secondaries
versus the number of gray protons in (a) pAu and (b)
pMg interactions at E = 200 GeV. The notation for the
curves is identical to that in Fig. 1. Points represent
experimental data from [11].

gray protons were selected according to the criterion
0.3 < p < 1.2 GeV/c.
Figure 4 displays the corresponding dependences

of n− on the number of hit nucleons, νg, which was
determined from the number ng of gray protons. For
the comparatively light nucleus of magnesium, all
of the models considered above successfully describe
experimental data, but, in dealing with interactions
involving the heavier nucleus of gold, pAu, these
models produce substantially different results. A
stronger dependence of the multiplicity n− on νg in
the QGSM than in the other models results from the
aforementioned special feature of the model, where
gray protons originate only from the interactions of
the primary particle and from the intranuclear cas-
cade, since the evaporation and fragmentation pro-
cesses are disregarded in this model. Because of a
small fraction of central collisions, this circumstance
has a less pronounced effect on the mean multiplicity
(see Table 1).
Our analysis of inclusive and eventual features of

hadron interactions that was based on various model
concepts makes it possible to pinpoint the lines that
one should follow in order to refine the models dis-
cussed above.
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Fig. 4. Multiplicity of negatively charged secondaries
versus the number of hit target nucleons (which is de-
termined by the number of gray protons) in (a) pAu and
(b) pMg interactions at E = 200 GeV. The notation for
the curves is identical to that in Fig. 1. Points represent
experimental data from [11].

2. EXTRAPOLATION TO THE REGION
OF HIGH ENERGIES AND SOME DATA
FROM COSMIC-RAY EXPERIMENTS

2.1. High-Energy Hadron Interactions within Model
Concepts

Discrepancies between the model concepts were
analyzed above in the region of accelerator energies.
The choice of the quantities to be subjected to a
comparison was dictated by available data from ac-
celerator experiments. A similar comparative analysis
at higher energies can rely only on cosmic-ray exper-
iments, the only source of information in this region.
Information that is of importance for describing the
cascade process in matter and which is employed in
this case includes data on interaction cross sections,
inelasticity factors, and spectral features of photons
that are produced predominantly in neutral-pion and
eta-meson decays over a wide energy range.
That the number of secondaries is bounded in the

GHEISHA code—this feature of the code has already
been discussed above—entails an underestimation of
the multiplicity at high energies, especially for targets
of large mass number (Table 3). Although the multi-
plicity of secondaries, which possess an exponentially
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 3.Mean multiplicity 〈nπ0〉

Code
E, TeV

0.125 0.5 2 8 32

pC

FLUKA 4.52 6.91 9.75 13.63 17.75

GHEISHA 3.96 6.39 9.61 12.61 13.76

QGSM, constituent, κ = 0.9GeV/fm 4.09 5.96 8.16 10.48 15.72

pFe

FLUKA 6.21 9.72 13.67 20.38 27.57

GHEISHA 5.30 8.22 12.78 16.57 18.27

QGSM, constituent, κ = 0.9GeV/fm 6.05 8.75 12.11 19.06 27.19

pPb

FLUKA 7.48 11.92 18.35 27.05 38.19

GHEISHA 7.13 10.95 15.79 21.37 23.87

QGSM, constituent, κ = 0.9GeV/fm 9.31 13.68 21.01 33.68 46.72

Table 4. Partial inelasticity factorKγ

Code
E, TeV

0.125 0.5 2 8 32

pC

FLUKA 0.182 0.182 0.179 0.194 0.194

GHEISHA 0.127 0.143 0.159 0.183 0.179

QGSM, constituent, κ = 0.9GeV/fm 0.166 0.173 0.175 0.175 0.178

pFe

FLUKA 0.201 0.201 0.199 0.203 0.202

GHEISHA 0.140 0.152 0.178 0.187 0.196

QGSM, constituent, κ = 0.9GeV/fm 0.197 0.200 0.196 0.209 0.201

pPb

FLUKA 0.207 0.203 0.203 0.209 0.214

GHEISHA 0.163 0.173 0.182 0.205 0.210

QGSM, constituent, κ = 0.9GeV/fm 0.226 0.233 0.226 0.230 0.233
descending energy spectrum, is determined primarily
by the low-energy component, calculations reveal
that discrepancies between the estimates of the mul-
tiplicity of, say, neutral pions and of the corresponding
yield of photons have a sizable effect on the energy-
dependent features of the interaction (see Tables 3, 4).
From Table 4, it can be seen that the mean partial
inelasticity factor Kγ in the GHEISHA model is
much less than the experimental value of 0.19 ± 0.01
(E > 0.4 TeV, Fe) [15]. Satisfactory agreement with
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
experimental data is attained within the FLUKA and
QGSM concepts.

For pN interaction at 100 TeV, the partial in-
elasticity factors Kγ and Kπ± and the multiplicities
nγ and nπ± calculated according to the FLUKA,
the GHEISHA, and the QGSM code are quoted in
Table 5, along with the results of the calculations
performed in [16] within different models relying on
various versions of the model of quark–gluon strings
and including DPMJET (which is a further devel-
2
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Table 5. Partial inelasticity factors and multiplicities of secondaries along with data from [16] (for γ and π± from pN
interaction at E = 100 TeV)

Code Kγ Kπ± nγ nπ± 〈Eγ〉, GeV 〈Eπ±〉, GeV
FLUKA 0.1949 0.3936 41.1 36.8 474 958

GHEISHA 0.1850 0.4735 29.1 30.1 636 1573

QGSM, constituent, κ = 0.9GeV/fm 0.1777 0.2729 45.0 34.2 395 798

QGSM, “yo-yo,” κ = 0.5GeV/fm 0.1748 0.2736 43.2 32.8 405 834

VENUS 0.1697 0.3031 44.9 38.8 378 781

QGSJET 0.1901 0.3059 45.5 34.2 418 894

SIBYLL 0.1919 0.3018 37.8 28.1 508 1074

HDPM 0.1484 0.2673 47.8 36.7 310 728

DPMJET 0.2093 0.3409 46.3 38.4 452 888

Table 6. Fitted values of the parameters in the cross section for inelastic interactions

Reaction σ0, mb b, mb Reaction σ0, mb b, mb

FLUKA GHEISHA

pC 252 11.1 pC 315 25.3

pFe 750 16.5 pFe 954 68.2

pPb 1927 18.7 pPb 2302 157.8

QGSM, constituent, κ = 0.9GeV/fm

pC 280 9.3 HeC 480 17.5

pFe 764 23.0 HeFe 1109 2208

pPb 1727 44.4 HePb 15.3 44.1

Table 7.Mean energy-absorption length (g/cm2) in an iron and a lead absorber within various models

Model
E, TeV

0.5 2 8 32

Empirical formula 270 325 380 436

pFe, FLUKA 288 317 420 506

pFe, GHEISHA 325 397 458 391

pFe, QGSM (constituent, κ = 0.9GeV/fm) 251 366 400 472

HeFe, QGSM (constituent, κ = 0.9GeV/fm)+ FLUKA 266 306 396 446

pPb, FLUKA 442 622 863 929

pPb, GHEISHA 387 528 569 679

pPb, QGSM (constituent, κ = 0.9GeV/fm) 550 610 692 737

HePb, QGSM (constituent, κ = 0.9GeV/fm)+ FLUKA 429 489 715 828
opment of the FLUKA model), QGSJET (which is
conceptually close to the QGSM), and VENUS. The
phenomenological models SIBYLL and HDPM [16]
are based on approaches that are close to the ap-
P

proach underlying the GHEISHA model. Data from
Table 5 indicate that the different model descriptions
of pN interaction lead to strongly different results for
the features of the interaction. The phenomenolog-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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ical codes stand out owing to some of their special
features. The GHEISHA and SIBYLL models yield
the lowest multiplicities of secondaries at the highest
mean energy, while theHDPMmodel underestimates
(in relation to the othermodels) the inelasticity factors
and, accordingly, the mean energy of secondaries.
The main contribution to the energy release at the

initial segment of the cascade curve comes from the
products of the first inelastic interaction (these are
predominantly photons originating from neutral-pion
decays). For pC, pFe, and pPb interactions at E = 5,
8, and 8 TeV, respectively, the distributions of the
inelastic-interaction cross section σin with respect to
the partial inelasticity factor Kγ , dσin/dKγ , accord-
ing to the calculations within the various models are
displayed in Fig. 5, along with experimental data from
[17, 18]. Here, the best agreement is attained with the
QGSM code.
The distinctions between the models are associ-

ated, to a considerable extent, with the character of
the distribution in the small-Kγ region (an excess of
events in this region is observed in the GHEISHA
model). For the development of a cascade in matter,
this is insignificant, because such interactions do not
make sizable contributions to the cascade.
The shape of the spectrum of product photons has

a profound effect on the development of the cascade:
in the case of a harder spectrum, a considerable part
of the energy is carried away by high-energy pho-
tons, the maximum of the electromagnetic cascade
is shifted toward the interior of the absorber, and the
energy release near the interaction vertex is reduced.
The photon energy spectra computed on the basis of
the models considered here are displayed in Fig. 6,
along with experimental data from [17]. Within the
experimental errors, all three models describe satis-
factorily the spectrum of photons.
The distinctions between the codes generating

hadron interactions are manifested in the energy de-
pendence of the inelastic-interaction cross section
σin. All of the models used assume a logarithmic
growth of the cross section, σin = σ0 + b lnE (here,
σin and b are measured in mb, and E is taken in
TeV), with various parameter values quoted in Table 6
for all three models in the case of pC, pFe, and pPb
interactions and for the QGSM code in the case of
HeC, HeFe, and HePb interactions. (For the models
considered here, we present, in Tables 1–6, features
that were obtained by generating about 104 interac-
tion events according to the relevant models for each
value of primary energy.)
As follows from Table 6, the GHEISHA model

yields the sharpest energy dependence of the cross
section for proton–nucleus interaction, the cross sec-
tions calculated within this model being in excess
of experimental data for energies above a value of
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Fig. 5. Distributions of the inelastic-interaction cross
sections in the partial inelasticity factor Kγ , dσin/dKγ ,
for (a) pC, (b) pFe, and (c) pPb collisions at E = 5, 8,
and 8 TeV, respectively. The thick solid, thin solid, and
dashed curves represent the results obtained with the aid
of, respectively, the FLUKA, the GHEISHA, and the
QGSM code (in the last case, the string tension was
set to κ = 0.9 GeV/fm and the constituent formation
time was used). The experimental data displayed in this
figure were borrowed from (closed boxes) [17] and (closed
circles) [18].

about 50 GeV. By way of example, we indicate that
an interpolation of experimental data from [19] leads
to σin(pFe) = 711 ± 23 mb at 200 GeV, while the
result obtained at this energy value according to the
GHEISHA model is 844 mb (calculations on the
basis of the FLUKA and the QGSM code lead to
the values of 723 and 727 mb, respectively). It
should be noted, however, that this overestimation
of the cross section does not mean a complete fail-
ure of the GHEISHA model in describing intranu-
clear cascades, since a significant contribution to the
inelastic-interaction cross section comes from events
characterized by a small inelasticity factor, in which
case a small number of secondaries are produced.
2



178 RAPOPORT et al.
Table 8. Mean energy-release fraction 〈Kb〉 and corresponding root-mean-square deviation D = 〈(Kb −
〈Kb〉)2〉1/2/〈Kb〉 versus the absorber thickness

X , cm
〈Kb〉 D 〈Kb〉 D

X , cm
〈Kb〉 D 〈Kb〉 D

E = 0.5 TeV E = 32 TeV E = 0.5, TeV E = 32 TeV

pFe, FLUKA pPb, FLUKA

15 0.050 1.41 0.015 1.72 10 0.079 1.60 0.045 1.99

30 0.23 0.81 0.15 0.90 15 0.15 1.21 0.11 1.36

45 0.41 0.53 0.34 0.54 30 0.33 0.70 0.28 0.75

60 0.55 0.38 0.48 0.36 45 0.49 0.46 0.43 0.50

75 0.65 0.28 0.60 0.24 60 0.61 0.31 0.54 0.36

pFe, GHEISHA pPb, GHEISHA

15 0.056 1.27 0.015 1.40 10 0.069 1.46 0.063 1.75

30 0.22 0.80 0.16 0.80 15 0.13 1.12 0.14 1.20

45 0.38 0.52 0.34 0.49 30 0.30 0.62 0.33 0.63

60 0.50 0.35 0.49 0.31 45 0.44 0.42 0.46 0.38

75 0.60 0.26 0.59 0.21 60 0.54 0.29 0.55 0.27

pFe, QGSM (constituent, κ = 0.9GeV/fm) pPb, QGSM (constituent, κ = 0.9GeV/fm)

15 0.056 1.44 0.015 1.78 10 0.071 1.74 0.046 1.99

30 0.24 0.82 0.14 0.96 15 0.14 1.26 0.11 1.40

45 0.41 0.56 0.32 0.62 30 0.34 0.70 0.29 0.71

60 0.55 0.40 0.47 0.40 45 0.50 0.47 0.44 0.48

75 0.66 0.29 0.60 0.29 60 0.62 0.35 0.56 0.33

HeFe, QGSM (constituent, κ = 0.9GeV/fm)+ FLUKA HePb, QGSM (constituent, κ = 0.9GeV/fm)+ FLUKA

15 0.077 1.11 0.021 1.43 10 0.086 1.50 0.053 1.59

30 0.27 0.61 0.16 0.76 15 0.16 1.08 0.12 1.08

45 0.44 0.38 0.33 0.46 30 0.37 0.58 0.30 0.56

60 0.58 0.25 0.48 0.30 45 0.54 0.36 0.46 0.36

75 0.68 0.17 0.60 0.21 60 0.66 0.24 0.58 0.25
2.2. Nuclear Cascade in Matter and Its Energy
Features

Obviously, the distinctions between the codes
generating hadron interactions must lead to distinc-
tions between results obtained by simulating high-
energy hadronic cascades in matter. For a quantity
that characterizes a code, we can choose the energy
release in matter (this quantity, which involves the
integrated effect of many interactions, is determined
by the development of the cascade), Erel, or the
dimensionless relative energy releaseKb = Erel/E. A
simulation of hadronic cascades initiated by protons
and He nuclei in the energy range 0.5–32 TeV was
performed for iron and lead absorbers (of thickness up
to 90 and 60 cm, respectively).
P

Cascades initiated by protons were simulated with
the aid of the FLUKA, GHEISHA, and QGSM
codes. In cascades initiated by He nuclei, the first
interaction was computed on the basis of the QGSM,
while subsequent interactions were treated by using
the FLUKA code. Electromagnetic processes were
described within the relevant GEANT package [1].

The absorption of the hadronic-cascade energy
can be analyzed in two aspects. In the first of these,
the mean fraction of the energy release, 〈Kb〉, and
the relevant root-mean-square deviationD = 〈(Kb −
〈Kb〉)2〉1/2/〈Kb〉 are described as functions of the ab-
sorber thicknessX, all cascades in the absorber being
considered, irrespective of the position of the vertex of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Fig. 6. Energy spectra of photons (X = Eγ/E) from (a) pC, (b) pFe, and (c) pPb interactions at E = 5, 8, and 8 TeV,
respectively. The notation for the histograms is identical to that in Fig. 5. Points represent experimental data from [17].
the first inelastic interaction. In the second one, the
mean fraction of the energy release, 〈Kb〉, and the rel-
evant root-mean-square deviationD are investigated
as functions of the depth of cascade development,
(X −Xint) (Xint is the position of the vertex of the
first interaction event). This makes it possible to
study the development of a cascade by comparing
the different models. The first approach corresponds
to experiments that do not localize first-interaction
events inmatter, while the second approach simulates
experiments featuring such detailed information [20,
21]. (Questions concerning the localization of the first
events of inelastic interactions and the distinctions
between the generators of inelastic interactions in
describing the initial segment of the cascade curve are
considered in [22].)
For an iron absorber, the results obtained within

the various models for the quantity 〈Kb〉 as a function
of the depth to which cascades initiated by protons
and alpha particles of various energies penetrate are
displayed in Fig. 7a, along with experimental da-
ta from [23, 24]. Figure 7b shows similar depen-
dences for a lead absorber. In describing proton-
initiated cascades, experimental points correspond-
ing to depths in excess of 200 g/cm2 are best repro-
duced with the aid of the FLUKA model. For this
case, the QGSM predicts a greater energy release,
while theGHEISHAmodel leads to a smaller value of
it. At small depths, all of the models being considered
overestimate somewhat 〈Kb〉.
Figure 8 displays fluctuations of the energy release

at various cascade levels. If the absorber thickness
is sufficiently large (greater than 200 g/cm2 for iron),
the dependence of these fluctuations on the cascade
depth is close to an exponential dependence. It should
be noted that an absorber of thickness in excess of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
500 g/cm2 is required for measuringKb to a precision
of 20%.

The exponential approximation 〈dE/dX〉 ∼
exp(−X/L) was proposed in [25] for describing the
absorption of energy at the tail of the cascade curve.
For the mean absorption length L (in t units), we
take here the expression L(E) = 21.4 + 6.6 logE
(E is measured in TeV), which was obtained as an
approximation of accelerator and cosmic-ray data
on proton-initiated cascades in iron over the energy
range 0.02–20 TeV.

An analysis of experimental data reported in [23,
24] and of the results of simulations reveals that the
exponential approximation is possible from the cas-
cade depth of about 300 g/cm2 for a primary proton
and 400 g/cm2 for a primary alpha particle in the
energy range 1–100 TeV. The distinction is due to the
fact that, in the case of a primary nucleus, fragments
or individual spectator nucleons carry away, after the
first interaction event, a considerable part of the en-
ergy, thereby smearing the cascade maximum.

For an iron absorber, the values of L that were
calculated on the basis of the models considered here
are quoted in Table 7. The results obtained by using
the FLUKA and the QGSMmodel are in satisfactory
agreement with the above empirical formula. The
GHEISHA code produces somewhat overestimated
values of the absorption length L at the energies of
0.5, 2, and 8 TeV and a considerably underestimated
value of L at 32 TeV. The latter may stem from an
inadequate description of inelastic interactions in the
region E > 10 TeV within this model. The FLUKA
model agrees best of all with experimental data from
[26]: L = 264 ± 15 g/cm2 at E = 0.6 TeV and L =
2
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Fig. 7. Mean energy-release fraction 〈Kb〉 as a function
of the depth to which the cascade develops and which is
reckoned from the interaction vertex Xint. The curves in
the figure are plotted for (a) pFe,HeFe and (b) pPb, HePb
interactions at E = 8 TeV. The case of proton interac-
tions is represented by thick solid, thin solid, and dashed
curves, which were computedwith the aid of, respectively,
the FLUKA code, the GHEISHA code, and the QGSM
code with the string tension of κ = 0.9 GeV/fm and the
constituent formation time. The case of He interactions
(dotted curves)was treatedwithin the approachwhere the
QGSM code with the string tension of κ = 0.9 GeV/fm
and the constituent formation time is combined with the
FLUKA code. The Sokol-2 experimental data [23, 24] in
Fig. 7a are shown by closed circles and closed triangles
for, respectively, pFe and HeFe interactions.

314± 24 g/cm2 at E = 1.4 TeV. The model values of
L for a lead absorber are also quoted in Table 7.
In addition to the dependence of 〈Kb〉 on the

cascade-penetration depth, we have also investigated
the dependence of 〈Kb〉 on the absorber thickness
without fixing the vertex of the first inelastic inter-
action. The results of the simulation on the basis
of the three models considered here are compiled in
Table 8 (〈Kb〉 and D = 〈(Kb − 〈Kb〉)2〉1/2/〈Kb〉 for
pFe and pPb interactions) for E = 0.5 and 32 TeV.
From Table 8, it can be seen that, for pFe interactions,
the three models lead to close values (within 10%) of
〈Kb〉 and D. For a lead absorber, close values are
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energy-release fraction, D = 〈(Kb − 〈Kb〉)2〉1/2/〈Kb〉,
as a function of the depth to which the cascade develops
and which is reckoned from the interaction vertex Xint.
The curves in the figure are plotted for (a) pFe, HeFe and
(b) pPb, HePb interactions at E = 8 TeV. The Sokol-2
experimental data in Fig. 8awere borrowed from [23, 24].
The notation for the curves and points is identical to that
in Fig. 7.

obtained for these quantities within the FLUKA and
the QGSM approach; here, the GHEISHA model
yields underestimated values of 〈Kb〉 at 0.5 TeV and
overestimated values of this quantity at 32 TeV for
small cascade-penetration depths. This is due to the
energy dependence of the partial inelasticity factorKγ

within this model (see Table 4).

CONCLUSION

Some features of the FLUKA, GHEISHA, and
QGSM codes generating hadron interactions have
been compared with available experimental results
(specifically, this has been done for cross sections,
partial inelasticity factors, and rapidity distributions
of interaction products). On this basis, we have
been able to conclude that the model concepts un-
derlying the FLUKA and the QGSM code closely
correlate with experimental observations. Within
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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the GHEISHA model, the cross section for inelastic
interaction is larger, while the inelasticity factor is
smaller. This distorts, within 10%, the energy release
in an iron absorber and substantially affects the char-
acter of the energy release in lead for E > 10 TeV. In
view of this, it is preferable to use the FLUKA and
QGSM codes in the region of higher energies. By
comparing the dependences of the energy release and
of its fluctuations on the depth of cascade propagation
with the results of the Sokol-2 experiment, we have
been able to assess the applicability of the models
considered here to describing cascade processes in
matter at high energies.
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Abstract—The experimental fission times are analyzed for excited nuclei produced in the 28Si + natPt re-
action. Experimental lifetimes obtained by the crystal-blocking technique range between 10−17 and 10−18

s at bombarding energies between 140 and 170 MeV, respectively. Experimental data are analyzed within
the statistical theory of nuclear reactions and the double-humped-fission-barrier model with allowance for
preequilibrium processes and the nuclear-dissipation phenomenon. It is shown that fission barriers retain
their double-humped structure for nuclear temperatures up to about 1.7–1.8 MeV and that the lifetimes of
excited strongly deformed states in the second potential well contribute substantially to the observed delay
times in the fission decay channel. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The potential-energy surfaces of heavy nuclei dis-
play two minima, whose nature is associated with
the existence of shells even at anomalously large de-
formations [1]. Consequently, the fission barrier for
heavy nuclei is double-humped, where the popula-
tion of excited states in the second potential well is
realized. At excitation energies near the barrier, the
crossing of nuclei through the second minimum is
noticeably influenced by the states in the second po-
tential well. However, with increasing excitation en-
ergy, the penetrability of the fission barrier approaches
unity and the sensitivity of the fission-cross-section
structure to the second-well states becomes lower.
Moreover, an increase in the excitation energy leads
to a decrease in the shell correction values, so that the
double-humped structure of the fission barriers tends
to transform into a single-humped one: the liquid-
drop barrier with only one class of excited states under
equilibrium deformations.

The energy dependence of the shell effect on the
fission-barrier structure can be experimentally inves-
tigated by measuring the delay time in the fission
channel. In this way, it was shown in [2] that the
existence of quasistationary transition states in the
second well of heavy fissioning nuclei manifests itself

∗This article was submitted by the authors in English.
1)Istituto Nazionale di Fisica Nucleare, Sezione di Catania,
and Dipartimento di Fisica, Università di Messina, Messina,
Italy.

2)Istituto Nazionale di Fisica Nucleare, and Dipartimento di
Fisica, Università di Bolognà, Viale C. Berti Pichat 6/2, I-
40127 Bologna, Italy.
1063-7788/02/6501-0018$22.00 c©
in the dynamics of induced fission. It was demon-
strated in [3, 4] that the existence of two classes of
excited states in heavy nuclei is reflected in different
time dependences of the decay yields for different
channels. In particular, the fission delay time is due
to the lifetimes of excited states in the first and second
potential wells. They appear as an additional time
delay in the fission channel in relation to the decay
times in any other decay channel, like the emission
of neutrons, light charged particles, or photons.

In the present study, we analyze the experimental
fission times for excited nuclei produced in the 28Si +
natPt reaction. Experimental lifetimes have been
obtained by the crystal-blocking technique at beam
energies of 140 to 170 MeV. Experimental data have
been compared with the results of statistical-model
calculations that take into account the existence of
both classes of excited states realized in the first and
second potential wells of fissioning nuclei. The aim
was to find evidence of an additional time delay in
the fission decay channel, induced by the lifetime of
the excited states in the second well, and to check
whether the fission barrier retains or loses its double-
humped structure at the excitation energies consid-
ered here. It is shown that the additional time delay
in the fission decay channel does indeed exist, which
is interpreted as the effect that excited states in the
second potential well exert on the fission time. This
also demonstrates that the fission barriers retain their
double-humped structure for nuclear temperatures
up to about 1.7–1.8 MeV.
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Typical scatter plot from the Bragg chamber in the
E–Z plane, with no cut on x and y values, displaying
“elastic events” and the “fission island.” Individual Z
values are not resolved.

2. EXPERIMENTAL PROCEDURE

The crystal-blocking method [5–8] was used to
measure fission times in the 28Si + natPt reaction.
The measurements were carried out at the

LLINFN (Italy) by using thin (∼0.5 µm) self-
sustaining natPt〈100〉 single-crystal targets of large
area (diameter ≈5 mm). They were prepared at the
Physics Institute, Århus University (Denmark), by
epitaxial growth from the gaseous the phase on a
NaCl crystal, later dissolved in water. This technique
ensured a nearly perfect orthogonality between the
crystal axis (〈100〉) and its surface.
A 140- to 170-MeV 28Si beamwas extracted from

the Tandem-XTU accelerator and was successfully
focused to less than 1 mm in diameter by using only
magnetic steerers and lenses. Thus, no collimator
was necessary, whereby the related “slit-scattering”
effects and the consequent spoiling of the pattern
quality were avoided. The focusing was achieved with
magnets very far upstream of the target, in order to
minimize the beam divergence.
A six-axis computerized goniometer was used to

orient the crystals and to translate them to exploit
“fresh” positions on the target when radiation dam-
age appeared. This happened typically after approx-
imately a 15-µC beam fluence at a current of about
2 nA.
Reaction products were observed at θlab = 25◦ by

using a detector telescope made from a multiwire
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Fig. 2. Example of the experimental spectrum of initial
kinetic energies of fission fragment for the case of a 150-
MeV beam.

gas proportional chamber followed by an axial Bragg
chamber. The multiwire detector, 10× 10 cm2 in area
and placed at a distance of 60 cm from the target, was
a two-sector gas proportional counter with a common
(1-µm thick) cathode and two anodes formed bywires
orthogonal to each other to have both the x and y
coordinates of the incident-ion position. The anodes
were on the opposite sides of the cathode, and the
wires (20 µm in diameter) were 1 mm away. Gas
(isobutane at 14 mbar) was under continuous flux,
and the total detector thickness was 5 mm.
The multiwire detector had a spatial resolution

of 1 mm and was placed 60 cm from the target,
with the result that the angular resolution was ∆θ =
1.667 mrad.
The Bragg chamber was a gas (CF4) ionization

chamber operating in an axial electric field. In this
way, reaction products with atomic number Z > 12
were fully stopped in the chamber.
Events defined by the x, y spatial coordinates of

the ion from the multiwire and by its kinetic energy E
and charge Z from the Bragg chamber were collected
individually on magtape for off-line data reduction.
For more details, the reader is referred to [9–11].

3. DATA REDUCTION

Figure 1 displays a typical scatter plot from the
Bragg chamber in the Z–E plane, with no cut on x
and y values. The elastic peak and the island of fission
fragments (FF) are clearly recognized. Individual Z
2
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Fig. 3. Radial scans around the dip center for FF at beam energies of 150 and 170 MeV. The unit along the abscissa is the
multiwire angular resolution, 5/3 mrad. The 170-MeV scan is used as the reference (prompt) dip.
values for FF are not resolved, because of their low
kinetic energies, about 1.5 MeV per nucleon. As an
example, Fig. 2 shows the experimental spectrum
of initial kinetic energies of FF for the case of a
150-MeV beam. This spectrum was reconstructed
from the energy distribution of fission events in the
Bragg chamber.

Figure 3 displays the fission blocking dips at bom-
barding energies of 150 and 170 MeV. The FF block-
ing dips used hereafter are the sums over all experi-
mental runs and correspond to the total beam fluence
of about 250 µC.
Data reduction consisted in constructing separate

blocking dips for FF. Their volume Ω [9], which is
known [12, 13] to depend on the reaction time, was
then evaluated. In order to avoid detection of possible
nonexisting time delays simulated by crystal damage,
we used, instead of Ω, the ratio

R = ΩD/ΩP (1)

of the delayed volume being considered and a ref-
erence (prompt) one extracted from a “zero delay
blocking pattern” [9].
Since the dip also depends on the FF energy and

charge, the delayed volumes must be corrected for
their energy and charge difference from the prompt
one by using an appropriate scaling law [14], stating
that the transformed (reduced) volumes, viz.,

Ω∗ = Ω 〈E−1〉−1
/Z, (2)

are, to a good approximation, independent of the
charge and kinetic energy of the channeled ion.
PH
The calibration curve R(v⊥τ) (see Fig. 4) relating
changes in the blocking dip to the mean transverse
displacement of the nucleus before decay was calcu-
lated for the mean mass and the mean kinetic energy
of FF. Here, v⊥ is the component of the compound-
nucleus velocity in the direction orthogonal to the
crystallographic axis, and τ is the mean lifetime of a
decaying nucleus.

A common practice is to use the elastic dip (i.e.,
the one generated by elastically scattered projectiles)
as a reference, but, because of a low (14 mbar)
gas pressure in the multiwire detector, required to
have the best possible resolution in the Bragg cham-
ber (EZ plane), we had a poor quality of the 2-
dimensional x–y scatter plot. Unfortunately, this had
the undesirable consequence that elastic 28Si events
suffered from a low and unstable detection efficiency.
As a result, the radial scan was not able to reach
the “isotropic yield,” rendering calculation of elastic
dip volumes very ambiguous and useless for our pur-
poses.

A way out of the difficulty is to observe (see Fig. 4)
that the delayed volume (proportional to R) increases
as v⊥τ ≡ s⊥ decreases, reaching an asymptotic limit
(∼1.0) for s⊥ < 0.025 Å. Therefore, if two consequent
beam energies generate two dips of the same volume,
it seems quite reasonable to assume that they are in
the asymptotic region. Then, they are prompt and
can be used as a reference. In the present case, this
happens forEbeam = 160 and 170MeV; therefore, we
can take the FF dip at 170 MeV as our “reference.”
This assumption reinforces the observation that all
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Summary of experimental results

Ebeam,
MeV

Ω, µsr 〈E〉theor,
MeV

〈E〉expt,
MeV

〈E〉theor

〈E〉theor
170

Ω∗, µsr R =
Ω∗/Ω170

s⊥ = v⊥τ ,
Å

τ ,
10−18 s

140 318.3 ± 13.6 138.6 138.6 0.95 302.3 ± 12.9 0.73± 0.03 0.12+0.01
−0.02 7.3+0.6

−1.2

147 353.8 ± 5.2 140.2 142.6 0.97 343.2 ± 5.0 0.82± 0.02 0.084+0.008
−0.006 5.0± 0.4

150 393.7 ± 3.7 140.7 142.8 0.97 381.9 ± 3.6 0.91± 0.02 0.062± 0.004 3.6± 0.3

160 427.4 ± 4.4 142.9 142.9 0.98 418.8 ± 4.3 1.01± 0.02 <0.032 <1.8

170 417.0 ± 6.1 145.0 145.9 1.00 417.0 ± 6.1 1.0 0.0 0.0

Note: Ω values are the measured dip volumes. 〈E〉theor and 〈E〉expt represent the fragment mean kinetic energy evaluated by Viola
systematics (see [15]) and the respective measured values. Ω∗ displays the dip volumes scaled to a 170-MeV beam by
multiplying them by the energy ratios of column 5. This is equivalent to the use of the scaling law (2) under the observation
that Z has the same value for all detected fragments. From R values and from the calibration curve of Fig. 4, we get the mean
transverse displacements s⊥, where the v⊥ stands for transverse recoil velocities for the respective incident beam energies. The
last column shows the delay times τ .
our theoretical calculations of delay times result in
τ ∼ 0 (not measurable) at 170 MeV (see Fig. 5).
In order to estimate FF energies, we used the

well-known Viola systematics [15], and the result is
displayed in column 3 of the table.
The table summarizes the experimental results:

the last column contains the mean delay times for the
five beam energies. Note that, at 160 MeV, we find
R ∼ 1; hence τ ∼ 0 (not measurable). This fact, sug-
gesting that times at 160 MeV are already below the
lowest sensitivity limit of the method, gives additional
value to the choice of the 170-MeV dip as a reference
one.
The resulting delay times in the fission channel

due to nuclei produced in the 28Si + 196Pt reaction
at different beam energies are displayed in Fig. 5. As
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one can see from Fig. 5, experimental fission times
range between 10−18 and 10−17 s. It is useful to note
that such long fission times were obtained for U-like
nuclei at approximately the same excitation energy
in [16] and [17] by means of the crystal-blocking
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the dashed curves were computed (5) with or (6) without
allowance for the delay times introduced by the excited
states in the second potential well. The solid curves are
the results of the calculations allowing for the delay due
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temperature dependence of shell correctionswith different
values of the temperature parameter T0: ∞ (1), 2.00 (2),
1.85 (3), and 1.75 MeV (4).
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Fig. 6. Pictorial formulation of the dynamics of fusion–
fission reactions: τfus denotes the duration of the stage
of the fusion of a bombarding particle with the target
nucleus; τpre is the duration of the stage of equilibration
of the nuclear system; τcomp is the duration of the stage
of compound-nucleus decay and the dynamical stage to
build up the fission flux at the saddle point of the fission
barrier; τfis is the duration of the stage of the motion of
the fissioning system from the saddle to the scission point;
and τfrag is the duration of the stage of fission-fragment
deexcitation.

technique and K-vacancy experimental method, re-
spectively.

4. ANALYSIS OF EXPERIMENTAL
LIFETIME RESULTS

The experimental data were analyzed under the
assumption that the complete fusion of interacting
nuclei that is followed by the fission of the com-
pound nucleus and the formation of daughter nuclei
upon neutron emission is the dominant channel of the
reaction under study. This assumption was based,
first of all, on the analysis of the experimental spec-
tra of FF kinetic energies (see Fig. 2). The mean
values of the kinetic energy of FF recorded at an
angle of 25◦ in the laboratory frame nearly coincide
with those that were evaluated for the case of sym-
metric complete fusion–fission reaction (see table,
columns 3 and 4). As one can see from Fig. 2,
the shape of the experimental spectra also favors
the symmetric fission mode. Fast processes (like
quasifission) make no substantial contribution to the
reaction being investigated. In fact, the mean ki-
netic energies of fragments in these fast processes
are approximately 10 MeV higher than in the case
of the fusion–fission reaction (see, for example, [18]);
on the other hand, the measured fission-time val-
ues favor slow processes, such as complete fusion
followed by multichance fission. In our case, the
fission of nuclei formed by the transfers of several
nucleons should result in FF with energy significantly
P

lower than 100 MeV. For example, the mean value of
the FF kinetic energy in the laboratory frame should
be about 69 MeV in the case of α-particle transfer.
Events characterized by such values of the FF en-
ergy were not recorded by our detection system (see
Fig. 2).
As a rule, the dynamical characteristics of nuclear

reactions, like the nuclear lifetime, are analyzed on
the basis of the well-known relation τ = �/Γ, where
Γ is the total decay width of a given compound nu-
cleus. Within this approach, the lifetimes of nu-
clear systems produced in the resonance reactions
and fusion–fission reactions induced by heavy ions
can be described satisfactorily for nuclear excitation
energies ≤50 MeV. With increasing excitation en-
ergy, the lifetimes of compound nuclear systems de-
crease very promptly, and the dynamical stages of the
evolution of nuclear systems begin to play a signif-
icant role at higher excitation energies. By way of
example, we indicate that, by means of the “neu-
tron clock” experimental technique, it was demon-
strated in [19, 20] that the dynamical time scale
of the motion of a fissioning nuclear system from
the equilibrium deformation to the scission point is
dominant in the total duration of the fusion–fission
process.
In the experiments conducted by means of the

crystal-blocking technique, we measure the delay
time interval from the instant at which themomentum
is transferred from the beam particle to the target
nucleus to the instant at which the final fragment
is formed (see Fig. 6). In this connection, we note
that, to describe correctly the observable duration
of the nuclear reaction under study, it is necessary
to analyze all stages of the reaction that may con-
tribute to the experimental fission lifetime: (i) the
fusion of a bombarding particle with the target nu-
cleus; (ii) the equilibration time at the initial stage
of compound-nucleus formation; (iii) the lifetimes
of the fissionable compound nuclei produced in the
development of a neutron-emission cascade and the
dynamical times to build up the fission flux at the
saddle point of the fission barrier; (iv) the time it
takes for the system to move from the saddle to the
scission point; and, finally, (v) the time of FF deexci-
tation.

4.1. Analysis of the Influence of Preequilibrium
Processes on the Duration of the Reaction

To describe the relaxation processes in the nuclear
system produced in the fusion reaction being investi-
gated, we use Griffin’s exciton model [21].
In this model, the state of a nuclear system pro-

duced in a collision of a bombarding particle and a
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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target nucleus is determined by the exciton num-
ber n = p+ h, where p is the number of particles
above the Fermi energy and h is a number of holes
below the Fermi energy, and by the excitation en-
ergy E∗.
We are interested only in the spectra of preequi-

librium neutrons and in the equilibration time for
the system under study; therefore, we can use the
generalized kinetic master equation to analyze the
probability P of finding the system in the n-exciton
state at the time instant t [22],

dP (n, t)
dt

= P (n− 2, t)λ+(n− 2, E∗) (3)

+ P (n+ 2, t)λ−(n + 2, E∗)
− P (n, t)[λ+(n,E∗) + λ−(n,E∗) +W (n,E∗)],

with the initial condition
P (n, 0) = δn,n0 = δp,p0δh,h0 , (4)

where

W (n,E∗) =
∑
b

Wb(n,E∗) (5)

=
∑
b

E∗−Bb∫
0

λb(n, εb)dεb

is the probability of the emission of a particle b (neu-
tron, proton, deuteron, triton, helion, or α particle)
into a continuum.
The transition rate of the emission of a particle of

energy εb into a continuum is

λb(n, εb) =
2sb + 1
π2�3

µbεbσinv(εb)Rb(p) (6)

× ω(p− pb, h,E∗ −Bb − εb)
ω(p, h,E∗)

,
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where sb and µb are, respectively, the spin and the
reduced mass of the projectile; Bb is the binding
energy of the particle b; Rb(p) is the term that takes
into account charge conservation; and σinv,b is the
cross section for the inverse reaction.

The cross section for the inverse reaction, σinv,b,
is determined by the penetrability factor in the optical
model,

σinv,b =
∑
lb

π

k2
(2lb + 1)Tb,lb , (7)

where lb is the angular momentum of the particle b
and Tb,lb is the respective transmission coefficient.

In our calculations, we used the density of exciton
states suggested by Ericson and Strutinsky with the
Williams corrections [23]:

ω(p, h,E∗) =
g(gE∗ −Aph)p+h−1

h!p!(p + h− 1)!
. (8)

Here, Aph is connected with the Pauli exclusion prin-
ciple and is given by

Aph =
(p2 + h2) + (p− h)− 2h

4
. (9)

The single-particle level density g in (8) is related
to the level-density parameter in the Fermi gas model
by the equation g = 6a/π2.

The rates of internal transitions are given by

λ0,± =
2π
�
〈|M |2〉ω0,±(E∗), (10)

where the transition matrix element 〈|M |2〉 is esti-
mated by using the systematics from [24],
〈|M |2〉 = kn

A3E∗ ×




(
E∗

7n

)1/2 (E∗

2n

)1/2

for E∗/n < 2MeV(
E∗

7n

)1/2

for 2 ≤ E∗/n < 7MeV

1 for 7 ≤ E∗/n ≤ 15MeV(
E∗

15n

)1/2

for E∗/n > 15MeV,

(11)
where k is a free parameter.

The terms ω0,± are determined by the expres-
sions [23]

ω+ =
g(gE −Aph)2

n+ 1
, (12)

ω0 = g(gE −Aph)
3n− 2

4
, (13)
ω− = gph(n − 2), (14)

corrected by the Pauli exclusion principle.

To determine the free parameter k of the exciton
model, we used experimental data on the yields of α
particles in the 20Ne + 197Au reaction [25]. We fitted
the parameter k with g = A/13 in (12)–(14) and (8)
(see, for example, [26]). We chose these experimen-
tal data, because the excitation-energy range 50–
2
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70 MeV considered here is close to that in the 28Si +
natPt reaction. We found the value of k in (11) to be
340 MeV3.
The initial exciton configuration (p0, h0) from

which the equilibration process starts is a free pa-
rameter of the model. In our calculations, we tested
three versions of the initial exciton configurations:
n0 = (30p, 1h), (18p, 1h), and (10p, 1h).
PH
The criterion of equilibration was chosen to be [27]

∣∣∣∣P (n, t)− P (n, t+∆t)
P (n, t)

∣∣∣∣ ≤ 0.05, (15)

where
∆t =
1

λ+(n,E∗) + λ−(n,E∗) + λ0(n,E∗) +W (n,E∗)
. (16)
The preequilibrium fraction of neutron emission is
determined as

ppe
n =

n̄∑
n

τpe∫
0

dtP (n, t)W (n,E∗), n̄ = 2
√
2gE∗,

(17)

where τpe is the equilibration time obtained from a
solution to the master equation (3) with the equili-
bration criterion (15).

Figure 7 demonstrates the dependences of the
equilibration time calculated for the above initial ex-
citon configurations on the energy of bombarding
particles in the 28Si + 196Pt reaction (taken as an
example). As might have been expected, the equili-
bration times decrease smoothly as the beam energy
increases and increase as the initial exciton config-
uration becomes more complicated. But as one can
see, thermodynamic equilibration during the relax-
ation process occurs at times of 10−21–10−20 s in
any case. At this instant, the excitation energy has a
random distribution over the degrees of freedom and
the transition probabilities in more complex configu-
rations become equal to the transition probabilities in
less complex ones.

During the evolution of the nuclear system, the
fraction of “hard” (preequilibrium) neutrons in the
total neutron yield decreases as the exciton config-
uration becomes more complicated. The results ob-
tained from an analysis of neutron emission at differ-
ent stages of the equilibration process are presented
in Fig. 8.

It should be noted that the emission of preequi-
librium neutrons occurs even at the earliest stages
of thermodynamic equilibration. The neutron en-
ergy spectrum then becomes “softer,” and the “hard”
component of the neutron spectrum may be con-
sidered to be formed within a time interval of about
10−20 s. After that, the “soft” part of the neutron
spectrum is formed. Figure 9 demonstrates, as an
example, the calculated total-energy spectra of neu-
trons emitted from the 224U nucleus produced in the
28Si + 196Pt reaction.
As can be seen, the thermodynamic-equilibration

time of about 10−20 s does not manifest itself in the
experimental lifetime values because it is shorter than
the lowest sensitivity limit of the blocking method
(about 10−18 s in the case of the nuclear reaction
under study). But as was demonstrated in [28], the
emission of “hard” neutrons at the earliest stages of
thermodynamic equilibration (see Fig. 10) leads to
the formation of daughter nuclei “colder” than those
formed upon the emission of evaporated neutrons.
Because of a decrease in the excitation energy, the
lifetimes of fissioning nuclei significantly increase;
therefore, preequilibrium neutron emission can affect
the experimental lifetime values. In view of this, it is
necessary to evaluate the fraction of preequilibrium
neutron emission in the total neutron yield from the
compound nuclear system formed in the reaction be-
ing investigated.
The calculated preequilibrium fraction of neutron

emission for various beam energies is presented in
Fig. 11. One can see that the fraction of fissioning
nuclei produced upon preequilibrium neutron emis-
sion is less than 15% for initial compound nuclei. But
in the total neutron yield in the emission cascade, with
the inclusion of neutron emission from the second
potential well, the preequilibrium neutron fraction is
less than 1.5%. In analyzing our experimental life-
time data, we can therefore neglect the mechanism of
formation of “colder” fissioning daughter nuclei.

4.2. Time Decay Characteristics of Compound
Nuclei with a Double-Humped Fission Barrier

In [2], the fission of compound nuclei that possess
two classes of excited states realized in the first and
second potential wells of a double-humped fission
barrier was analyzed in terms of a statistical model.
With reference to Fig. 12, we may identify the follow-
ing two evolution stages in a fissioning nucleus:
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002



FISSION TIME IN THE 28Si + natPt REACTION 25

 

140 150 160 170
10

 

–21

 

10

 

–20

 

1

2

3

 
τ

 
pe

 
, s
 

E

 

(

 

28

 

Si

 

)

 

, MeV

Fig. 7. Equilibration time as a function of the energy of
bombarding particles in the 28Si + 196Pt reaction accord-
ing to the calculations for the (1) (10p, 1h), (2) (18p, 1h),
and (3) (30p, 1h) initial exciton configurations.
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from the 224U nucleus produced in the 28Si + 196Pt
reaction at the beam energy of 150 MeV according to
the calculations for the (1) (10p, 1h), (2) (18p, 1h), and
(3) (30p, 1h) initial exciton configurations.

(i) the formation and decay of excited states under
equilibrium deformation [the excited states in the first
potential well can decay either through the emission
of particles or photons (or both) or through nonra-
diative transitions across the inner fission barrier to
states in the second potential well];
(ii) decay of the second-well states [this can pro-

ceed either via the emission of particles or photons (or
both), or via nonradiative transitions across the inner
fission barrier into first-well states, or via transitions
across the outer barrier, i.e., fission].
In this case, the populations of the states in the

first and second potential wells [n1(t) and n2(t), re-
spectively] are described by the set of “master” equa-
tions [2] (� = 1)


dn1(t)
dt

= −Γ1n1(t) + Γ21n2(t)

dn2(t)
dt

= −Γ2n2(t) + Γ12n1(t),
(18)
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Fig. 10. Energy spectra of preequilibrium neutrons emit-
ted from the 224U nucleus produced in the 28Si + 196Pt
reaction (taken as an example) at the beam energy of
150 MeV according to the calculations for the (1) (10p,
1h), (2) (18p, 1h), and (3) (30p, 1h) initial exciton config-
urations.

where Γ1 and Γ2 are the total decay widths of first-
and second-well states, respectively:

Γ1 =
∑
i

Γ1i + Γ12, (19)

Γ2 =
∑
i

Γ2i + Γ2f + Γ21. (20)

Here, Γ1i and Γ2i are the partial widths with respect
to the emission of particles and photons from the first
and second potential wells, respectively; Γ12 and Γ21

are the widths with respect to nonradiative transitions
through the inner fission barrier from one potential
well to the other; and Γ2f is the width with respect
to the transitions through the outer barrier from the
second well.
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Assuming that, at the initial instant (t = 0), the
populations of the states in the first and second po-
tential wells are

n1(0) = 1, n2(0) = 0, (21)

one can easily obtain [2] solutions to Eqs. (18), n1(t)
and n2(t). Once they are known, the counting rate in
any specific decay channel can easily be obtained.
For example, the counting rate in the induced-

fission decay channel is
dnf (t)
dt

= Γ2fn2(t), (22)

while, in decay channels associated with particle
emission or in the γ-decay channel, we have

dni(t)
dt

= Γ1in1(t) + Γ2in2(t). (23)
P

A similar situation occurs for the mean decay
times

τj =

∫∞
0 t

dnj(t)
dt dt∫∞

0
dnj(t)
dt dt

, (24)

which will also depend on the exit reaction channel.
It was shown in [3, 4] that the induced-fission time

of decay

τf =
Γ1 + Γ2

Γ1Γ2 − Γ12Γ21
(25)

is longer than the time of decay of an excited nucleus
via any other channel,

τi =
{

Γ1 + Γ2

Γ1Γ2 − Γ12Γ21
− Γ1i

Γ1iΓ2 + Γ2iΓ12

}
. (26)

The additional time delay in the decay of an excited
nucleus via the fission channel is determined by the
expression

∆τ = τf − τi =
Γ1i

Γ1iΓ2 + Γ2iΓ12
. (27)

Expressions (25)–(27) are especially pronounced
if the coupling of excited states in the first and second
potential wells is weak (i.e., Γ21 � Γ2) and if the
emission of particles and photons from excited states
in the second potential well is neglected:

τf 
�

Γ1
+

�

Γ2
, (28)

τi 
�

Γ1
, (29)

∆τ  �

Γ2
= 2π�

ρ2

N2
. (30)

Here, ρ2 is the level density in the second potential
well, andN2 is the effective number of decay channels
for second-well excited states.
It follows from (28)–(30) that the additional fission

time delay is directly related to the lifetime of second-
well excited states. Thus, the existence of two classes
of quasistationary transition states in heavy nuclei
leads to the differences of the dynamical character-
istics of decay (such as mean decay times) through
different exit channels. In this case, the decay times
differ from the times of decay of excited nuclei featur-
ing one class of excited states (τf = τi = �/Γ1) [4].
From (30), it can also be seen that the exper-

imental determination of the additional time delay
of the induced fission reaction, ∆τ , permits one to
obtain information on the nuclear characteristics of
strongly deformed excited states, such as the level
density in the second potential well, the fission-barrier
parameters, and shell corrections [29]. At the same
time, it was demonstrated in [4] that traditional time-
integrated decay characteristics, such as cross sec-
tions, are insensitive to the structure of excited states
in the second potential well of fissioning nuclei in the
above-barrier region of excitation energies.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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4.3. Analysis of the Probability of Populating
Second-Well States

As was noted above, transition excited states in
the second potential well can greatly affect the fission
dynamics of compound nuclei, increasing the mean
time of decay via the fission channel in relation to any
other decay channels. This effect is of importance only
when these states are populated with a high probabil-
ity, owing to the damping of collective motion [30].
In order to estimate this probability for the case

of the nuclear reaction under study, we used the
diffusion model [31], which permits us to take into
account both thermal fluctuations in the fission mode
and nuclear dissipation phenomena.
In the diffusion model [31], a fissioning system is

described by a time-dependent distribution function
f(x, p, t). The function f depends on the collective
variables x associated with the deformation of the
system and its conjugate momentum p. The time
evolution of the distribution function in phase space
is described by the Fokker–Planck equation, which,
in the case of one deformation degree of freedom, has
the form

∂f

∂t
= − p

m

∂f

∂x
+
∂U(x)
∂x

∂f

∂p
(31)

+
γ

m

∂

∂p
(fp) +D

∂2f

∂p2
,

where U(x) is the deformation potential, m is the
reduced mass of the system, and γ is the friction
constant that describes the coupling of the fission
degree of freedom to the remainder of the system. The
diffusion constant is given by D = γT ∗, where T ∗ is
the effective temperature of the nuclear system.
In the present calculations, we used the quadratic

approximation for the deformation potential U(x),

U(x) = Ei ±
1
2
mω2

i (x− xi)2, (32)

where i = 1, 2, 3; the positive sign applies to i = 2
(second potential well), and the negative sign cor-
responds to i = 1, 3 (inner and outer fission barriers,
respectively); Ei represent the minima and maxima
of the double-humped potential barrier; �ωi are their
respective curvature energies; and xi are the locations
of extreme values of the deformation energy (fission
coordinate).
We required that the parabolas representing the

inner and outer fission barriers match smoothly with
the parabola representing the second minimum at
their points of intersection. This leads to four match-
ing conditions. In order to specify the double-humped
fission barrier, we used the translation invariance of
the potential barrier along the x axis,

U(x) = E2 at x = x2 = 0, (33)
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and six parameters. These are chosen to be three
energies Ei and three curvature energies �ωi. The
values of these parameters were fixed on the basis
of the well-known systematics of the parameters of
double-humped fission barrier [32, 33].
In addition, we included a deep minimum for x >

x3 (corresponding to deformations near the scission
point), which is identified with the completed fission
process. In our calculations, we assumed that, at the
temperatures considered here, the backflow through
the outer fission barrier is absent.
For the inertia parameterm, we have taken the re-

duced mass corresponding to symmetric fission (m =
A/4). The reduced dissipation coefficient β = γ/m is
treated as a coordinate-independent quantity.
For the effective temperature of a fissioning nu-

clear system, we took the value corresponding to the
intrinsic excitation energy of the compound system.
This temperature, which determines the equilibrium
variance of the coordinate of a quantum oscillator
according to the fluctuation–dissipation theorem and
which makes it possible to take into account both
thermal and quantum fluctuations, was found from
the well-known relation [31, 34, 35]

T ∗ =
�ω(x̄(t))

2π
coth

�ω(x̄(t))
2T

, (34)

where

x̄(t) =

+∞∫
−∞

dp
+∞∫
−∞

xf(x, p, t)dx

+∞∫
−∞

dp
+∞∫
−∞

f(x, p, t)dx
(35)

and

T =
√
Ēint(t)/(A/10). (36)

The intrinsic excitation energy of the nucleus is
represented as the difference

Ēint(t) = E∗ − Ēcoll(t), (37)

whereE∗ is the total excitation energy and the kinetic
energy of the collective motion of the fissioning com-
pound system is

Ēcoll(t) =

∞∫
−∞

dp
x3∫
x1

dx(p2/2m+ U(x))f(x, p, t)

∞∫
−∞

dp
∞∫

−∞
dxf(x, p, t)

.

(38)

The distribution function f(x, p, t) obeys the initial
condition

f(x, p, t = 0) = f(p)δ(x− x1), (39)

where x1 is the value of the collective variable at the
first saddle point. The initial collective-momentum
2
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Fig. 13. Calculated spreading distribution f(x, p, t) of the 224U fissioning system for the reduced dissipation coefficient of
β = 0.2 × 1021 s−1 and the excitation energy of E∗ = 60 MeV at (a) t0 = 0, (b) t1 = 2 × 10−21 s, (c) t2 = 4 × 10−21 s, (d)
t2 = 6 × 10−21 s, (e) t2 = 8 × 10−21 s, and (f) t3 = 10 × 10−21 s.
distribution f(p) is related to the kinetic-energy dis-
tribution at the first saddle point and was calculated
within the transition-state method [36]:

F (Ekin) = C
ρ(E∗ − U(x1)− Ekin)
1 + exp(2πEkin/�ω1)

. (40)

Here, ρ(E∗ −U(x1)−Ekin) is the level density at the
first saddle point, and C is the normalization factor.

The Fokker–Planck equation was solved by
means of the propagator method [34].

The spreading distribution f(x, p, t) of the 224U
fissioning system produced upon the complete fusion
P

of the 28Si projectile nucleus with the 196Pt target
nucleus in phase space at various times is presented
in Fig. 13 as an example of the results of our calcula-
tions.
The probability of the second-well-state popula-

tion was determined by the relation

W (x3, tp) =

∞∫
−∞

dp
x3∫
x1

dxf(x, p, tp)

∞∫
−∞

dp
∞∫

−∞
dxf(x, p, tp)

, (41)

where tp is the transient time required for fission
events without trapping in the second well. The time
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002



FISSION TIME IN THE 28Si + natPt REACTION 29

 

0 4 8 12 16 20
0.85

0.90

0.95

1.00

 

1

2

3
4

5

t

 

, 10

 

–21

 

 s

 
W

 
(

 
x

 

3

 
, 
 
t
 

)

Fig. 14. Typical time dependence of the probability of
finding the 224U fissioning system to the left of the
second saddle according to the calculations for E∗ =

60MeVand the β values of (1) 0.2× 1021, (2) 0.3× 1021,
(3) 0.4 × 1021, (4) 0.6 × 1021, and (5) 1.0 × 1021 s−1.

dependence of the second-well-state population was
used in order to determine tp. Typical time depen-
dences ofW (x3, t) for 224U are presented in Fig. 14.
Here, the stepwise change in the time dependences
ofW (x3, t) is due to the completion of fission motion
without trapping in the second well. In the present
calculations, the value of tp was taken to be 1.5×
10−20 s.

The calculated probabilities of populating the
second-well states versus the reduced dissipation
coefficient β for the 224U nucleus, chosen as an
example, are presented in Fig. 15 at various excita-
tion energies in the range achieved in experiments.
In these dependences, a very fast saturation with
increasing β attracts attention. It can be seen
that the probability becomes close to unity at very
low β values that are consistent with underdamped
collective motion. It should be noted that, at present,
all the deduced dissipation coefficients are consistent
with an overdamped motion (β ≥ 2× 1021 s−1) of
a fissioning nucleus [19, 37]. It is significant that,
by using any other value of the reduced dissipation
coefficient, such estimates only lead to an increase in
the probability.

Figure 16 shows the dependence of the population
probability for the 224U nucleus on the difference of
the minimal fission barrier and the second-well depth
[min(E1, E3)− E2] at various values of the excita-
tion energy and β = 0.5× 1021 s−1. It can be seen
that, even for a very shallow second potential well
[min(E1, E3)−E2  5MeV], the probability remains
rather large (≥ 0.8). This fact is supposedly due to a
small increase in the kinetic energy of the fissionmode
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 15. Probabilities of populating second-well states
versus the reduced dissipation coefficient β for the fis-
sioning 224U nucleus according to the calculations at the
excitation energies of (solid curve) 50, (dashed curve) 60,
and (dotted curve) 70 MeV.

during the evolution from the first saddle point to the
second potential well.

The calculated probabilities of populating second-
well states in the 224U fissioning nucleus versus
the excitation energy are presented in Fig. 17.
These calculations were also made for the cases of
temperature-dependent and temperature-indepen-
dent fission-barrier parameters. In the first case,
we took into account the damping of shell effects
with increasing nuclear temperature (for more details,
see Subsection 4.4). As one can see from the data
presented in Fig. 17, the inclusion of the temperature
damping of shell effects in the potential surface of
fissioning nucleus under study leads to a decrease
in the population probabilities, especially at high
excitation energies. This is due, first of all, to a
decrease in the second-well depth {i.e., the parameter
[min(E1, E3)− E2]—see Fig. 16}. However, it is
necessary to emphasize that, even despite a decrease
in the probability with increasing excitation energy,
its magnitude exceeds 0.7 in the energy range being
considered.

Thus, our calculations indicate that the probability
of populating the second well remains close to unity
for the energies to which fissioning nuclei are excited
in the present experiments, even for small values
of the reduced dissipation coefficient and even for a
very shallow second well. This means that we must
consider the lifetime of the excited states in the sec-
ond potential well in the analysis of the experimental
data on the fission lifetimes of actinide nuclei in this
excitation-energy region.
2
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Fig. 17. Probability of populating second-well states in
the 224U fissioning nucleus as a function of the ex-
citation energy according to the calculation at the re-
duced dissipation coefficient of β = 0.5× 1021 s−1 for the
cases of (1) temperature-dependent and (2) temperature-
independent fission-barrier parameters.

4.4. Statistical Analysis of the Compound-Nuclei
Decay Times

The experimental values of the fission decay time
τf that were observed in the reaction under study are
presented in Fig. 5. These values cover the range
between 10−17 and 10−18 s, its specific value being
dependent on the projectile energy.

Our theoretical analysis of the experimental data
was made with reference to the statistical theory of
nuclear reactions and with allowance for the fusion of
bombarding nuclei with the natural isotopic mixture
of target nuclei.
P

The statistical-model calculations were made by
using the GFOT computer code [38], which was de-
veloped at the Institute of Nuclear Physics (Moscow
State University) to analyze the dynamical decay
characteristics of excited heavy nuclei. The GFOT
code makes it possible to perform calculations both
within a traditional approach, which assumes that the
decay time of excited fissionable nuclei is determined
exclusively by the lifetime of excited states at an equi-
librium deformation, and within the approach that
takes additionally into account the lifetime of excited
nuclear states in the second potential well.

The cross section for compound-nucleus forma-
tion in the fusion of bombarding particles with target
nuclei and also the distributions of the fissile nuclei
with respect to the excitation energy and angular
momentum at each step of the neutron-emission cas-
cade were calculated within the optical model. The
nuclear-potential parameters were taken from [39].
The Coulomb potential was treated in the parabola
approximation.

According to (25), we calculated the fission decay
times of excited compound nuclei within the statis-
tical theory of nuclear reactions, taking into account
the existence of two classes of excited states realized
in the first and second potential wells:

τf = 2π�
N2ρ1 +N1ρ2

N1N2 −N2
A

, (42)

where ρ1 and ρ2 are the level densities in the first and
the second potential well, respectively, andN1 andN2

are the total effective numbers of decay channels for
first- and second-well excited states, respectively:

N1 = NA +
∑
i

N1i, (43)

N2 = NA +NB +
∑
i

N2i. (44)

Here, i is the index of the emitted particle (neutron,
proton, α particle) or of the emitted photon. The
concrete form of N1i was used as in [40], while N2i

was calculated by the same relation but with the level-
density parameters in the second potential well. The
effective number of channels of nonradiative transi-
tions from the first to the second potential well was
determined as

NA =

E∗−BI
f∫

−BI
f

ρA(E∗ −BI
f − ε, J)dε

1 + exp(−2πε/(�ω1))
. (45)

It was assumed that it is equal to the effective num-
ber of channels of nonradiative transitions from the
second to the first potential well. Analogously, it can
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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be found for the transitions through the outer fission
barrier that

NB =

E∗−BII
f∫

−BII
f

ρB(E∗ −BII
f − ε, J)dε

1 + exp(−2πε/(�ω2))
, (46)

where ρA and ρB are the level densities at the first
and at the second saddle point, respectively; BI

f and

BII
f are the heights of the inner and the outer fission

barrier, respectively; and J is the angular momentum.
In terms of the effective numbers of decay chan-

nels, the fission cross section and the cross section
for the emission of the ith particle were expressed as

σf = σc
NANB

N1N2 −N2
A

, (47)

σi = σ1i + σ2i = σc
N2N1i +NAN2i

N1N2 −N2
A

, (48)

where σc is the cross section for compound-nucleus
formation. It is necessary to emphasize that the
probability of particle emission from excited first- and
second-well states has been taken into account in the
last expression.
In order to simulate the angular-momentum de-

pendence of the double-humped fission barrier, we
used the predictions of the advanced rotating liquid-
drop model due to Sierk [41] that were corrected for
shell effects,

Bf (J) = Bld(J) + δWadd, (49)

where Bld(J) is the liquid-drop part of the fission
barrier and δWadd is the adiabatic value of the shell
correction at the corresponding point of the potential
surface.
In order to extract shell-correction values at the

characteristic points of the fission barrier, i.e., at the
first and second saddle points and in the second po-
tential well, we took the difference of the liquid-drop
part of the fission barrier and the real parameters of
the double-humped fission barrier that were obtained
by extrapolating the well-known systematics of ex-
perimental data [32].
The level density at the extreme points of the fis-

sion barrier was calculated within the level-density
phenomenological model. The model allows one to
take into account coherent collective excitations, cor-
relation effects of the superconducting type, and shell
effects [42].
In order to calculate the total level density within

this model, we used the adiabatic approximation [43]
ρ(U, J) = ρin(U, J)Kcoll(U), (50)

where ρin(U, J) is the intrinsic level density, which
is associated with the internal degrees of freedom,
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and Kcoll(U) is the collective-enhancement factor
describing the effects of collective motions.
The density of internal nuclear states was calcu-

lated by the relation [44]

ρin(U, J) =
(2J + 1)

√
π

24
√
2σ3

eff

√
a3t5

exp

(
2at−

(J + 1
2)

2

2σ2
eff

)
,

(51)

where t is the nuclear temperature; a is the intrinsic
level-density parameter; and σeff is the effective spin-
cutoff parameter, which is related to the moments of
inertia by the equation

σ2
eff = I

2/3
⊥ I

1/3
‖ t. (52)

For the nuclear moments of inertia, we used the
rigid-body values with the well-determined depen-
dence on the quadrupole-deformation parameter ε
[45],

I‖ =
6
π2
〈m2〉a(1− ε2)1/3, (53)

I⊥ =
2
5
m0r

2
0A

5/3(1− ε2)−2/3
. (54)

The dependences in (53) and (54), which are distinct
from the analogous dependences in [42], are suitable
for any values of the quadrupole deformations.
For the mean square of the nuclear-magnetic-

moment projection, we used the parametrization
〈m2〉 = ξA2/3, where ξ = 0.19 [45].
The values of the quadrupole-deformation param-

eter ε for the first and second potential wells were
taken to be 0.2 and 0.6, respectively, and 0.4 and 0.8
for the first and second saddle points [46].
At nuclear temperatures above the critical point,

the internal nuclear excitation energy has the form
U = at2 −∆+ Econd. The condensation energy
Econd, which characterizes the decrease in the
ground-state energy owing to the correlation inter-
action, was found from the parameter ∆ [42]. The
parameter ∆ determines the odd–even difference of
the nuclear binding energies (masses) in the ground
state. It was chosen on the basis of the semiempirical
estimate ∆1 = 12/

√
A MeV [42]. In the second

potential well, the corresponding parameter ∆2 was
chosen to be equal to the experimental value: 2∆2 =
1.3MeV [32].
The phenomenological model parameter a, which

allows for shell effects in the behavior of the level
density within the shell-correctionmethod, was taken
above the critical temperature [42]:

a(U) = ã

(
1 + f(U)

δW

U − Econd +∆

)
. (55)

Here,
f(U) = 1− exp(−γ(U − Econd +∆)) (56)
2
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is the dimensionless universal function determining
the energy dependence of the level-density parameter,
and δW is the shell correction. For the parameter
γ, we used the traditional value of γ = 0.064, which
was obtained from the systematized data on the ap-
proximation of the experimental density of neutron
resonances for heavy nuclei [47].
The asymptotic values of the level-density param-

eter ã at high excitation energies were calculated with
allowance for the influence of the diffusivity of the
surface layer of nuclei, according to [48], as

ã ≈ αr3
0A+ βr2

0A
2/3Bs + γr0A

1/3Bk, (57)

where

Bs =
∮
∑ dσ/4πR2 (58)

and

Bk =
∮
∑ kdσ/8πR (59)

are the surface area of a deformed nucleus and its
integrated curvature (normalized to the correspond-
ing values for the spherical nucleus), respectively; the
symbol k represents the local curvature of the nuclear
surface, which is defined in terms of the principal
radii of curvature [48]; and r0 = 1.16 fm is the “scale”
parameter corresponding to the charge radius, which
is determined from the experiments on elastic electron
P

scattering. The numerical values of the parameters α,
β, and γ were taken from [48]. The numerical values
of the coefficients Bs and Bk for various values of the
quadrupole and the hexadecapole deformation were
taken from the calculations performed in [49].
Below the phase-transition point, the parametri-

zation proposed in [42] was used to describe the
above-listed level-density relations.
The collective enhancement factor has the form

Kcoll(U) = Kvibr(U)Krot(U), (60)

whereKvibr(U) andKrot(U) are the factors of vibra-
tional and rotational enhancements, respectively.
In order to calculate the factor of vibrational en-

hancement, we used the liquid-drop estimate [42]

Kvibr(U) = exp

{
1.69

(
3m0A

4πσld

Cld

C

)2/3

t4/3

}
,

(61)

where σld = 1.2 MeV fm−2 is the surface tension in
the liquid-dropmodel corresponding to the analogous
phenomenological parameter in the mass formula.
The ratio Cld/C characterizes the difference of the
rigidity coefficients between an excited nucleus and a
liquid drop. In our calculations, we set C = Cld.
For the rotational enhancement factor, we used the

following expression, which depends strongly on the
type of nuclear-shape symmetry:
Krot =




1 for spherical nuclei

σ2
⊥ for axisymmetric and mirror-symmetric nuclei

2σ2
⊥ for axisymmetric and

mirror-asymmetric nuclei√
π/2σ2

⊥σ‖ for ellipsoidal symmetry√
2πσ2

⊥σ‖ for axially asymmetric and

mirror-symmetric nuclei√
8πσ2

⊥σ‖ for nuclei possessing no symmetry.

(62)
Here, σ⊥ = I⊥t/�
2 and σ‖ = I‖t/�

2, where I⊥ and I‖
are the nuclear moments of inertia with respect to the
axes perpendicular and parallel to the symmetry axis,
while t is the nuclear temperature.
Following common ideas of nuclear shapes (see,

for example, [50]), we used the approximation of axial
and reflection symmetry at an equilibrium deforma-
tion. According to traditional assumptions, axial
asymmetry and reflection symmetry (axial symmetry
and reflection asymmetry) were used at the first (sec-
ond) saddle point. In the second potential well, the
axial and reflection asymmetries of the nuclear shape
were assumed according to [51, 52].

In Fig. 5, we present the results of the calcu-
lation of the fission decay times averaged over the
isotopic composition of the initial compound nuclei
222U, 223U, and 224U produced in the reaction inves-
tigated here.

As one can see, a simple calculation of the fission
decay time within the advanced rotating liquid-drop
model [41] taking into account only the lifetime of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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excited states at an equilibrium deformation under-
estimates the experimental values by approximately
three orders of magnitude. If we include the double-
humped-fission-barrier model in the analysis with al-
lowance for the lifetime of excited states in the second
and first potential wells [4], the description of the
experimental data is greatly improved.

The solid curves in Fig. 5 represent the results
of the calculations performed within the double-
humped-fission-barrier model that take into account
all possible fission chances according to the expres-
sion

τf =
∑
i

τfiβi, (63)

where βi is the contribution of the FF of the ith fission
chance to the total yield of FF in the nuclear reaction
under study and τfi is the fission decay time of the ith
fission chance. Neutron emission leads to the cooling
of nuclei before fission and, as a result, to an increase
in the mean decay times in the fission channel.
In this case, the possibilities of neutron emission

from the first and second potential wells were con-
sidered. Our analysis demonstrates that the proba-
bility of neutron emission from the second potential
well, which leads to the population of the second-well
states of daughter nuclei, is commensurate with or
higher than the probability of neutron emission from
the states at an equilibrium deformation. Therefore,
the lifetimes of excited states in the second well play a
significant role in the observed fission decay time.
The solid curve 1 in Fig. 5 was calculated without

the damping of shell effects with increasing nuclear
temperature. It can be seen that this curve overes-
timates the experimental τf values. To take into ac-
count the decrease in the shell-correction part (δW )
of the fission-barrier parameters (heights of the inner
and outer fission barriers and the second-well depth)
with increasing nuclear temperature, we represented
the shell correction as δW = δWaddF , where F is a
universal Fermi-type damping function F (T ) [53],

F (T ) =
1

1 + exp((T − T0)/d)
, (64)

where d = 0.2 MeV is the rate at which the shell
correction decreases with increasing nuclear temper-
ature and T0 is an adjustable parameter. The best
description of the experimental data can be achieved
at T0 = 1.75MeV.
Thus, our experimental data indicate that the fis-

sion barriers retain their double-humped structure in
the range of excitation energies considered here and
that the lifetimes of transition excited states in the
second potential well significantly contribute to the
observed fission decay times.
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Fig. 18. Estimated time to build up the fission flux at
the saddle point (τfd) and estimated time it takes for the
system to move from the saddle to the scission point (τss)
versus the normalized nuclear-friction coefficient for the
case of the 224U fissioning nucleus with an excitation
energy of 40 MeV.

4.5. Analysis of the Influence of Dynamical
Processes on the Duration
of Induced Fission Reaction

Compound-nucleus fission has two dynamical
time scales: the time to build up the fission flux at the
saddle point (τfd) and the time it takes for a fissioning
system to move from the saddle to the scission point
(τss).
In the presence of the phenomenon of nuclear

dissipation, the saddle–scission time is given by

τss = τ0
ss(
√
(1 + γ2) + γ), (65)

where τ0
ss = (3 × 10−21) s [20, 54].

Usually, τfd is estimated on the basis of the relation
[19, 55]

τfd =
β

2ω2
gs

ln(10Bf/T ) =
γ

ωgs
ln(10Bf/T ) (66)

for β > 2ω2
gs or

τfd =
1
β
ln(10Bf/T ) =

1
2γωgs

ln(10Bf/T ) (67)

for β < 2ω2
gs.

In expressions (65)–(67), the parameter γ =
β/2ωgs is the normalized friction coefficient [see (31)],
β is the reduced dissipation coefficient, and �ωgs is
a characteristic energy in the local potential surface
near the ground state.
It should be noted that τfd plays an important

role in the decay of a fissionable compound nucleus,
since this time delay may substantially change the
contributions of competitive decay channels at the
early stage of the evolution of a fissioning nucleus.
2
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Fig. 19. Excitation function calculated for nuclei formed
in the development of the neutron-evaporation cascade
in excited FF produced in the reaction 196Pt(28Si, f) for
beam energies of (a) 140 and (b) 170 MeV.

The results obtained by estimating τfd and τss for
the case of the 224U fissioning nuclear system, chosen
as an example, with an excitation energy of 40 MeV
(which is minimal in our energy range) are presented
in Fig. 18 versus the normalized friction coefficient
γ. It should be noted that, in the estimations, we
varied the γ values in the range given in the review of
Hilscher and Rossner [19], who present all available
data on the dissipation coefficient that were obtained
from an analysis of various observables of heavy-ion-
induced reactions. It is seen that these time scales
are very short (not longer than 10−19 s) relative to the
reaction time values observed in the present experi-
ments.

4.6. Analysis of the Dechanneling Process due
to the In-flight Decay of Observed FF

The phenomenon of the in-flight decay of the
observed FF was first described by Karamyan [56],
Gomez del Campo et al. [57], and Sellshop et al.
[58] and is based on the observation that the reaction
PH
products are themselves excited nuclei that can decay
by γ or particle emission during their flight within
a crystal. The recoil associated with in-flight decay
produces a random perturbation on the fragment path
that fills the blocking dip, simulating a compound
nucleus having a long lifetime.
In fact, it is possible to include this effect in the

theory of channeling, and this results in a newmethod
that is able to measure the lifetime of in-flight frag-
ments [9, 13].
The dechanneling effect must be taken into ac-

count in interpreting the results of crystal-blocking
experiments.
Let us assume, for the sake of simplicity, that

the beam interacts with a lattice atom, producing a
compound nucleus whose primary lifetime is τ1 ≈ 0;
i.e., it is below the sensitivity limit of the blocking
method. The compound nucleus splits into excited
FF, which eventually decay in flight after a secondary
mean time τ2. The distributions of recoil angles ψ
can be calculated from reaction kinematics and can
be introduced in ourMonte Carlo code for channeling
[13].
Under the assumption of isotropic emission from

FF in the c.m. frame and of small deflection angles,
the probability density for ψ is [58]

f(ψ) =
ψ/ψm

(ψ2
m − ψ2)1/2

, ψ ∈ [0, ψm], (68)

where the maximum deflection angle ψm is given by

ψ2
m = E2

γ/(2Mc2T ) (69)

for γ decay or by

ψ2
m =MpTp/(MT ) (70)

for particle decay. Here, M and T (Mp and Tp) are,
respectively, the mass and the kinetic energy of the
FF (emitted particle).
The deflection angles ψ can easily be sampled as

ψ = ψm
√
1−Ran2, (71)

where Ran is a uniform [0, 1] variation. They can be
introduced in the full three-dimensional Monte Carlo
simulation, together with the azimuthal angle χ that
is assumed to be uniform in the segment [−π,+π]. In
this way, a new direction of propagation was gener-
ated for FF, whose subsequent path was calculated in
the usual way [13].
Clearly, the effect on the whole blocking pattern

will depend on the distribution of distances xL trav-
eled along its path by the FF before decay; hence, we
find for exponential decay along the longitudinal mean
displacement that

sL = 〈xL〉 = vτ2, (72)

where v is velocity of the FF.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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In particular, the blocking pattern remains un-
changed if sL = 0. In fact, the angular distribution
of FF due to decay has to be convoluted with that
before decay, which is initially isotropic (and therefore
remains isotropic) at small angles around the crystal
axis.
If sL now increases, the originally isotropic distri-

bution evolves toward the blocking pattern, which is
reached upon passing a few tenths of crystal planes.
Correspondingly, the dechanneling effect due to in-
flight decay ever becomes larger, and so does the
modification to the final blocking pattern.
Detailed calculations performed with the Monte

Carlo code have shown that the way in which the
blocking pattern is strongly affected depends on the
maximum deflection angle ψm [see (69) and (70)].
A simple kinematical consideration demonstrated

that, in the case of heavy FF, the emission of photons
cannot produce a considerable-secondary lifetime
effect. In the decay of excited FF, the main decay
mode is neutron emission (the α-decay yield is
approximately two orders smaller). Assuming that
Tn = 0.5MeV and T = 150MeV, we obtain the value
of ψm = 5.455 mrad for FF. Therefore, sL = 0.05 Å is
necessary for the secondary lifetime to affect the
blocking pattern. According to the values of the FF
velocity that are realized in the reaction under study,
the τ2 values must be greater than about 10−16 s to
have the effect of the secondary lifetime.
We used the GFOT computer code (see Subsec-

tion 4.4) to calculate the excitation functions for the
FF, neutron-evaporation-cascade components, pro-
duced in the reaction investigated here (see Fig. 19)
on the basis of the statistical theory of nuclear reac-
tions. The calculations were made by using the level-
density parameters from the well-known systematics
of Dilg et al. [59]. We used the mean values of the
excitation energy of FF (evaluated from the equation
of reaction-energy balance): 38 and 51 MeV for the
beam energies of 140 and 170 MeV, respectively. The
shapes of the fission-fragment energy distributions
were simulated by the Gaussian form with a variance
of 10 MeV (FWHM). In this case, we have a six- or
seven-neutron evaporation cascade from excited FF.

The values of τ2 can be greater than 10−16 s in
the range of 1 to 2 MeV around the neutron binding
energy for the penultimate nucleus of the cascade (see
Fig. 20). Since we extracted information about the
primary lifetimes of compound nuclei from the ratio
R(ESi) = Ω(ESi)/Ω(ESi = 170MeV), we must eval-
uate the fraction of FF having τ2 greater than 10−16 s
for beam energies of 140 and 170 MeV. We obtained
this fraction as 6.8 and 6.6% for the cases of 140 and
170 MeV, respectively. Thus, we have demonstrated
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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that the secondary-lifetime effect exists for the “de-
layed” blocking patterns and for the “prompt” one.
But the influence of the secondary lifetimes is virtually
the same for the beam energy used.

5. DISCUSSION AND CONCLUSIONS

We have measured delay times for induced fis-
sion in nuclei produced in the 28Si + natPt reac-
tion at bombarding energies of 140 to 170 MeV.
Delay times induced in the fission channel by the
compound nucleus (U isotopes with initial excita-
tion energies of 40 to 70 MeV) vary from 10−17 to
10−18 s. This excitation-energy range is very inter-
esting because, here, we can expect (from the energy
dependence of the mass–energy distributions of FF
[60] and other experimental data) that the influence of
the nuclear-shell structure on the deformation energy
of fissionable nuclei begins to decrease and that the
double-humped fission barrier tends to transform into
a single-humped one, so that nuclei have only one
class of excited states.
The analysis of our experimental data has demon-

strated that the time characteristics of fissioning
heavy nuclei are very sensitive to the structure of
the fission barrier. The rotating-liquid-drop-model
calculation of τf underestimates the experimental
data by approximately three orders of magnitude. In
this case, a very low fission barrier (3.5 MeV) leads to
a low probability of neutron emission by compound
nuclei (Γn/Γf ≈ 0.01) and, as a result, to a low
probability of multichance fission.

The main goal of our investigations has been to
find the energy range where shell effects totally disap-
pear. The result has been that the experimental data
2
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d = 0.2MeV and T0 = 1.75MeV.

can be understood only on the basis of the double-
humped-fission-barrier model allowing for a time de-
lay in the second well. In this case, they are success-
fully described by taking into account the damping
of shell effects with increasing nuclear temperature.
A phenomenological description of the temperature-
dependent shell correction has been found by using
the temperature parameter of the damping factor F ,
where F = 1/2 at T = T0 = 1.75MeV (see Fig. 21).
Indeed, an important property of the shell structure

is that its influence on nuclear processes becomes
less pronounced in highly excited nuclei and finally
disappears at a certain temperature that was found by
Strutinsky to be t∗ = �Ω/2π = 1.5− 2 MeV, where
�Ω is the intershell energy spacing [62]. The the-
oretical considerations by Bohr and Mottelson [63]
also predict that shell effects should disappear at sim-
ilar temperatures. In addition, our shell-correction
damping used is very similar to the result from [61],
where a semiempirical analysis was carried out for
the temperature and spin dependences of shell cor-
rections, but it is different from other results (see, for
example, [42, 64]), which suggested a much faster
decrease from a smaller energy. If we use the tem-
perature damping function from [42], the analysis
leads to fission-time values nearly identical to those
in the case of the liquid-drop model (see the dashed
curve 6 in Fig. 5). This result is a consequence of the
fact that, at a beam energy of 120 MeV, the double-
humped structure of the fission barrier completely
disappears, whereupon the fission barrier becomes
identical to that in the liquid-drop model. A decrease
in the fission-barrier height leads to an increase in the
fission probability and, consequently, to a reduction
of the effect of fission after a few events of neutron
emission in the course of deexcitation of the com-
pound nucleus. Such behavior does not agree with
our experimental results.
PH
Figure 21 displays the various shell-correction
damping functions discussed above.
In summary, we have shown that fission bar-

riers retain their double-humped structure in the
excitation-energy range considered here and that
the times in the second potential well significantly
contribute to the total observed delay time in the
fission channel. This means that shell corrections are
important up to a temperature of about 1.7–1.8 MeV.
This result may be very important for the synthesis

of superheavy elements, since it extends the stabi-
lizing effect of the shell structure to higher temper-
atures. One of the main problems in the synthesis
of superheavy elements is to guarantee their stability
against fission, which is supposed to be a predom-
inant decay mode. If the temperature dependence
of shell corrections obtained here holds for the su-
perheavy “island of stability” as well, shell correc-
tions to the fission barrier (hindering the rupture of a
nucleus) may persist at excitation energies that are
characteristic of heavy-ion-induced reactions near
the Coulomb barrier.
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Abstract—Within the impulse approximation, polarization effects in inelastic deuteron scattering on nuclei
are investigated in the region around the resonance of mass about 2190 MeV/c2. It is shown that the spin-
dependent part of the NN → NN∗(2190) amplitude plays a significant role at high momentum transfers.
Predictions are obtained for some polarization observables and cross sections for various deuteron-spin-flip
processes. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of nuclear reactions involving rel-
ativistic deuterons is an important line of research
into intermediate- and high-energy physics. Here,
reactions of deep-inelastic deuteron scattering on nu-
clei constitute one of the important subjects of such
studies.

Since a deuteron loses a considerable part of
its energy in such reactions, relevant observables
must be sensitive to the structure of the deuteron
at small distances, where nonnucleonic degrees of
freedom can play a significant role. Thus, important
information about the properties of the deuteron
can be obtained not only from data on relativistic-
deuteron fragmentation, elastic electron–deuteron
and proton–deuteron scattering, the electro- and
photodisintegration of deuterons, and other simi-
lar processes but also from data on deep-inelastic
deuteron scattering on nuclei.

At the same time, inelastic deuteron scattering is
traditionally used to investigate the mechanisms of
formation of baryon resonances and their properties.
Since the isospin of the deuteron is zero, A(d, d)X
reactions are selective with respect to the isospin of
the unobservable system X (it must be equal to the
isospin of the target A). Therefore, the 1H(d, d)X
reactions, where a deuteron is inelastically scattered
on hydrogen, is selective to the isospin of 1/2, and
this process can be used to obtain important infor-
mation about the production of baryon resonances
like N∗(1440), N∗(1520), N∗(1680), and N∗(2190).
In addition, it is of particular interest that the above
reactions on nuclei are sensitive to processes of the

*e-mail: ladygin@sunhe.jinr.ru
**e-mail: ladygina@sunhe.jinr.ru
1063-7788/02/6501-0182$22.00 c©
NN∗ → NN∗ type, where a resonance produced on
one nucleon is scattered on another one. For example,
these properties of the dp→ dX reactions made it
possible to estimate, on the basis of data on the
inelastic scattering of 9-GeV/c deuterons at angles
of 103 and 139 mrad [1], the cross sections for the
processes dp→ dN∗(1440), dp→ dN∗(1520), and
dp→ dN∗(1680), on one hand, and the correspond-
ing amplitudes for NN∗ → NN∗ elementary pro-
cesses, on the other hand.

The differential cross sections for inelastic deute-
ron scattering were measured in Saclay for hydro-
gen targets at a primary momentum of 2.95 GeV/c
[2, 3], in Dubna for hydrogen and nuclear targets
at primary-momentum values of up to 9 GeV/c [1,
4, 5], and at Fermilab for hydrogen targets at high
momenta [6]. These investigations revealed that basic
features of the processes in question can be explained
rather well within themultiple-scatteringmodel [7, 8].

The advent of polarized-deuteron beams has
quickened interest in the reaction of inelastic deuteron
scattering on nuclei, since the polarization observ-
ables of such reactions can furnish additional infor-
mation about the properties of resonances in a nuclear
medium.

So far, high-energy polarized deuterons have only
been used, however, to study the tensor analyzing
power T20 in the region of Roper resonance excita-
tion [P11(1440)] for inelastic deuteron scattering on
hydrogen and carbon targets in Dubna [9] and on
hydrogen targets in Saclay [10], as well as for the
reactions on hydrogen and carbon targets for the
excitation of higher masses [11]. These experiments
showed that, at momentum-transfer values satisfy-
ing the condition −t ∼ 0.3–0.6 (GeV/c)2, the tensor
2002MAIK “Nauka/Interperiodica”
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analyzing power T20 takes negative values of large
magnitude.

Within the model based on ω-meson exchange in
the t channel [12], this behavior of the tensor analyz-
ing power T20 was explained by the effect of a nonzero
longitudinal isoscalar form factor for Roper resonance
excitation [13].

In this article, experimental data on the tensor
analyzing power Ayy and the vector analyzing power
Ay for the inelastic scattering of 9-GeV/c deuterons
on carbon nuclei at a secondary-deuteron detection
angle of 85 mrad in the region around the 2190-
MeV/c2 resonance [14] are analyzed on the basis of
the plane-wave impulse approximation. Polarization
effects in inelastic deuteron scattering are considered
in Section 2. In Section 3, we discuss the results
obtained here. In the last section, we formulate the
basic results of our investigation and the conclusions
drawn from it.

2. POLARIZATION EFFECTS
in (d, d′)X REACTIONS

Measurements of the tensor analyzing power T20

for forward inelastic deuteron scattering on hydrogen
and carbon targets in the region of baryon-resonance
excitation revealed that it is independent of the target
mass number [9, 11]. This suggests that collective ef-
fects associated with target excitation are inoperative
in this process and that data obtained for a nuclear
target also furnish information predominantly about
isospin-1/2 resonances. Moreover, we consider the
case where the momentum transfers from the pri-
mary to the secondary deuteron are high [|t| ∼ 0.5–
1.0 (GeV/c)2], so that the Fermi motion of nucleons
in the nucleus can be neglected. Because of this,
it seems reasonable to consider inelastic deuteron
scattering on a carbon nucleus as the incoherent sum
of inelastic deuteron-scattering processes on target
nucleons, at least for polarization observables.

We consider the simplest impulse-approximation
diagram (see Fig. 1) for inelastic deuteron scattering
occurring on a nucleon and leading to the production
of a resonance in the final state. The dN → dN∗ am-
plitude, which is an element of the scattering matrix
T , can be written in the form

FMd→Md′ = 〈d′N∗|T |dN〉 (1)

=
∫
d3p′

0

〈
1Md′

1
2
m′
N∗

∣∣∣ψd′(p′
0)[tpN (q)

+ tnN (q)]ψd
(
p′

0 −
q
2

) ∣∣∣1Md
1
2
mN

〉
,

where ψd is the deuteron wave function, q = k− k′

is the 3-momentum transfer, and tiN (q) is the ampli-
tude for the production of the resonanceN∗ on the ith
nucleon.
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Fig. 1. Diagram for inelastic deuteron scattering in the
plane-wave impulse approximation: (d) deuteron, (N)
nucleon, and (N∗)N∗(2190) resonance.

The deuteron wave function can be represented in
the form

ψd(p)|1Md〉 =
∑
L=0, 2

∑
MS=−1, 0, 1

〈LML1MS |1Md〉

× |1MS〉YML
L (p̂)uL(p), (2)

where YML
L is a spherical harmonic; uL(p) is the

wave-function component corresponding to the or-
bital angular momentum L (it can take the values of
0 and 2); and Md, ML, and MS are the projections
of, respectively, the spin of the deutron, the orbital
angular momentum of the deuteron, and the spin
of the neutron–proton system onto the z axis. We
choose the system of coordinates in such a way that
the z axis is directed along the vector q and that the y
axis is orthogonal to the scattering plane; that is,

z =
k− k′

|k− k′| , y =
k× k′

|k× k′| , x = y × z, (3)

where k and k′ are, respectively, the primary- and the
secondary-deuteron momentum in the c.m. frame.

In the impulse approximation, the nonzero vector
analyzing power Ay obtained in [14] can be inter-
preted as follows: the spin-dependent part of the
NN → NN∗ elementary amplitude, where N∗ is a
baryon resonance of mass about 2.2 GeV/c2, plays
a significant role, and this must be taken into account
in relevant calculations.

Let us write the NN → NN∗ amplitude in the
simplified form

tiN (q) = fnfiN (q) + (σn)f sfiN (q), (4)

where f nf
iN and f sf

iN are, respectively, the spin-inde-
pendent and the spin-dependent part of the NN →
NN∗ amplitude and σ stands for the 2× 2 Pauli
matrix. The vector n is directed along the y axis. The
form of the NN → NN elementary amplitude was
simplified in a similar way in order to describe the data
obtained in [15] for elastic pd scattering at 3.5 GeV
because a partial-wave analysis for nucleon–nucleon
scattering has not yet been performed at high ener-
gies.
02
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It should be noted that, in general, the NN →
NN∗ amplitude is given by a more complicated
expression involving a greater number of complex-
valued amplitudes. For example, the matrix ele-
ment for the process NN → NN∗, where N∗ is a
1440-MeV/c2 resonance, generally depends on six
complex-valued amplitudes. In order to reconstruct
them even at a fixed primary energy, it is necessary
to perform a large number of experiments measuring
polarization observables over a wide range of angles.
The NN → NN∗(2190) elementary amplitude was
simplified here for want of experimental data on
particle polarizations. We also assume that the
production of the N∗(2190) resonance in pp and
np interactions is characterized by the same cross-
section value and that the relevant amplitudes are
both pure imaginary. This is done for the same reason:
we do not have a sufficient amount of experimental
data on the NN → NN∗(2190) elementary process
at our disposal.

The amplitudes fnfiN and f sfiN can be parametrized
as

fnfiN(q) = i
√
An/π exp(−Bnq2/2), (5)

f sfiN (q) = iq
√
As/π exp(−Bsq2/2),

where An, As, Bn, and Bs are constants. In prin-
ciple, An and Bn can be determined on the basis of
experimental data on the excitation of the N∗(2190)
resonance in pp interactions. However, such data
were obtained only at proton momenta of 20 and
30 GeV/c [16]; at the same time, the proton momen-
tumwas 4.5 GeV/c in the experiment discussed here.
Under the assumption that the NN → NN∗(2190)
amplitude is weakly dependent on the primary energy,
An and Bn can be estimated at 0.310 ± 0.058 mb
(GeV/c)−2 and 5.12 ± 0.48 (GeV/c)−2, respectively.

Because of the presence of the D wave in the
deuteron wave function and the spin-dependent part
of the amplitude for the elementary reaction, there
are three independent amplitudes (F0→0, F1→1, and
F1→0). They are related to the remaining transitions
by the equations

F−1→−1 = F1→1, (6)
F0→−1 = −F−1→0 = −F0→1 = F1→0.

In the impulse approximation, the independent
amplitudes are given by

F0→0(q) = 2fnf(q)T00(q/2), (7)

F1→1(q) = 2fnf(q)T11(q/2),

F1→0(q) = 2f sf(q)T10(q/2),

where the amplitudes fnf and f sf are, respectively, the
spin-independent and the spin-dependent part of the
PH
elementary amplitude for the production of a 2190-
MeV/c2 resonance, while the amplitudes T00, T11,
and T10 are determined exclusively by the deuteron
wave function. We have

T00 = S0(q/2) +
√

2S2(q/2), (8)

T11 = S0(q/2) −
1√
2
S2(q/2),

where S0 and S2 are, respectively, the spherical and
quadrupole deuteron form factors, which can be rep-
resented as

S0(q/2) =

∞∫
0

(u2(r) +w2(r))j0(rq/2)dr, (9)

S2(q/2) =

∞∫
0

2w(r)
(
u(r)− 1

2
√

2
w(r)

)
j2(rq/2)dr.

Here, u(r) and w(r) are, respectively, the S- and
theD-wave component of the deuteronwave function
in the coordinate representation and j0(rq/2) and
j2(rq/2) are, respectively, a zero- and a second-order
Bessel function.

The amplitude T10 is also expressed in terms of the
S and theD wave; that is,

T10 =
i√
2

∞∫
0

(
u2(r)− w

2(r)
2

)
j0(rq/2)dr (10)

+
i
2

∞∫
0

w(r)
(
u(r) +

w(r)√
2

)
j2(rq/2)dr.

Let us define a second-order polarization observ-
able that is related to the polarizations of the primary
and the secondary deuteron by the equation

Ci,j =
1
|F|2

∑〈
1Md′

1
2
m′|T |1Md

1
2
m

〉
(11)

× 〈1Md|Qi|1M
′′
d 〉 〈1M

′′
d

1
2
m|T |1M ′

d′
1
2
m′〉

× 〈1M ′
d′ |Qj |1Md′〉,

where summation is performed over all dummy in-
dices; |F|2 is the quantity obtained by summing the
square of the relevant matrix element over all possible
states of both initial and final particles; the indices i
and j are associated with the polarization of the initial
and the final deuteron, respectively; and the matrices
Qk = Q0,Qy, and Qyy are given by

Q0 =




1 0 0

0 1 0

0 0 1


 , Qy =




0 0 i

0 0 0

−i 0 0


 , (12)
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Qyy =




1 0 0

0 −2 0

0 0 1


 .

The identity matrix Q0 corresponds to the case
where the deuteron is unpolarized.

The basis spin functions for the deuteron are de-
termined in the standard way as

|1+〉 = − 1√
2




1

i

0


 , |1−〉 =

1√
2




1

−i

0


 , (13)

|10〉 =




0

0

1


 .

The tensor analyzing power Ayy and the vector
analyzing power Ay; the polarizations of secondaries,
Pyy and Py ; and the vector–vector and the tensor–
tensor polarization transfer Ky

y and Kyy
yy determined

in [17] are related to Ci,j as follows:
Ayy = Cyy,0, Ay = Cy,0,
Pyy = C0,yy, Py = C0,y,

Ky
y = Cy,y, Kyy

yy = Cyy,yy.
By using (11), we can derive the expressions for

the polarization observables in terms of the ampli-
tudes that are given by the formulas in (7).

The tensor analyzing power Ayy and the vector
analyzing power Ay can be represented as

Ayy =
F2

0→0 −F2
1→1 + 4F2

1→0

F2
0→0 + 2F2

1→1 + 4F2
1→0

, (14)

Ay = −2
√

2
Im (F0→0 + F1→1)F∗

1→0

F2
0→0 + 2F2

1→1 + 4F2
1→0

. (15)

The vector–vector polarization transfer from the
primary to the secondary deuteron,Ky

y , is given by

Ky
y = 2

2F2
1→0 + Re F1→1F∗

0→0

F2
0→0 + 2F2

1→1 + 4F2
1→0

. (16)

The tensor–tensor polarization transferKyy
yy is ex-

pressed in terms of the amplitudes squared as

Kyy
yy =

F2
0→0 + 5F2

1→1 − 8F2
1→0

F2
0→0 + 2F2

1→1 + 4F2
1→0

. (17)

Within this approach, the vector and the tensor
polarization of the secondary deuteron—Py and Pyy ,
respectively—are equal to the corresponding analyz-
ing powers; that is,

Py = Ay, Pyy = Ayy. (18)
We note that relations (18) can be violated in

general.
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Fig. 2. Vector analyzing power Ay for the reac-
tion 12C(d, d)X at a primary-deuteron momentum of
9 GeV/c and a detection angle of 85 mrad as a function
of t. The experimental values (•) were borrowed from [14]
and were reduced by a factor of 1.33 according to [20].
The solid curve represents the result of the calculation
with the deuteron wave function for the Paris potential
[18]; the dashed, the dotted, and the dash-dotted curve
correspond to the results obtained by using the deuteron
wave function for, respectively, the A, the B, and the C
version of the Bonn potential [19]. The ratio of the spin-
dependent to the spin-independent part of the NN →
NN∗(2190) amplitude was taken in accordance with
(22).

3. RESULTS

In order to simplify the above expressions for the
polarization observables, we introduce the parameter
r(q),

r(q) = f sf(q)/fnf(q), (19)

which is defined as the ratio of the spin-dependent and
the spin-independent part of the NN → NN∗(2190)
amplitude. If the slope parameters Bs and Bn coin-
cide, r(q) is a linear function of q. Since there is an
insufficient amount of information about the elemen-
tary amplitude, it seems reasonable to set Bs = Bn.

The tensor analyzing power Ayy and the vector
analyzing power Ay are expressed in terms of the
quantities Tij(q/2), which were determined in formu-
las (8)–(10). Specifically, we have

Ayy(q) =
T 2

00 − T 2
11 + 4r2T 2

10

T 2
00 + 2T 2

11 + 4r2T 2
10

, (20)

Ay(q) = 2
√

2r
(T11 + T00)T10

T 2
00 + 2T 2

11 + 4r2T 2
10

. (21)

According to expression (21), the vector analyzing
power Ay is proportional to the parameter r(q). In
Fig. 2, the data on the vector analyzing powerAy [14]
2
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Fig. 3. Tensor analyzing power Ayy for the reaction
12C(d, d)X at a primary deuteronmomentum of 9 GeV/c
and a detection angle of 85 mrad as a function of t [14].
The curves were obtained under the same assumptions as
in Fig. 2. The experimental data (�) were borrowed from
[14].

are contrasted against the results of the calculations
according to formula (21) by using standard deuteron
wave functions [18, 19]. The corresponding experi-
mental values [14] were reduced by a factor of 1.33 ac-
cording to [20]. The solid curve represents the results
of the calculation with the deuteron wave function for
the Paris nucleon–nucleon potential [18]; the dashed,
the dotted, and the dash-dotted curve correspond
to the results obtained by using the deuteron wave
functions for, respectively, the A, the B, and the C
version of the Bonn potential [19]. The parameter r(q)
was taken in the form

r(q) = 0.4q. (22)

It can be seen that, by and large, the results of
the calculations are in fairly good agreement with
available experimental data, the use of the deuteron
wave function for the Paris potential [18] providing a
better description. If, however, we adopt r ∼ 0.3q, the
wave functions based on the Bonn potential [19] also
make it possible to describe the experimental data
reported in [14].

According to (20), the tensor analyzing powerAyy
also depends on the parameter r(q). However, this
dependence is weaker than that for Ay . If the spin-
dependent part of the amplitude of the elementary
P

 

–1.2 –0.6 0

 

t

 

, (GeV/

 

Ò

 

)

 

2

 

0

1

 
K

 

y
y

 

–1

Fig. 4. Vector–vector polarization transfer Ky
y in the

reaction 12C(d, d)X at a primary deuteron momentum of
9 GeV/c and a detection angle of 85 mrad as a function of
t. The curves were obtained under the same assumptions
as in Fig. 2.

process is zero, the expression forAyy takes the form

Ayy(q) =
1
2
S2

2(q/2) + 2
√

2S2(q/2)S0(q/2)
S2

0(q/2) + S2
2(q/2)

. (23)

From (23), it can be seen that, in the impulse
approximation (Fig. 1), the tensor analyzing power
Ayy is completely determined by the structure of the
deuteron—it is independent of the properties of nu-
cleon resonances. In Fig. 3, experimental data on
Ayy [14] are presented along with the results of the
calculations relying on formula (20) and employing
the deuteron wave functions (solid curve) for the Paris
potential [18] and (dashed, dotted, and dash-dotted
curves) for various versions (A, B, and C, respec-
tively) of the Bonn potential [19]. The parameter r(q)
was taken in the form (22), but the corresponding
theoretical results are nearly coincident with the re-
sults of the calculations by formula (23). It can be
seen that, by and large, the model yields results that
are in qualitative agreement with experimental data—
that is, it predicts positive values of Ayy at low |t|
and the passage through zero in the region of −t =
1.0–1.2 (GeV/c)2. The deviation of the behavior of
Ayy from the predictions of this model can be due
both to the contribution of double rescatterings and
to the presence of nonnucleonic degrees of freedom
(for example, NN∗ configurations [21, 22]) in the
deuteron.
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Fig. 5. Tensor–tensor polarization transfer Kyy
yy in the

reaction 12C(d, d)X at a primary-deuteronmomentumof
9 GeV/c and a detection angle of 85 mrad as a function of
t. The curves were obtained under the same assumptions
as in Fig. 2.

The vector–vector and the tensor–tensor polar-
ization transfer are given by

Ky
y (q) = 2

T00T11 + 2r2T 2
10

T 2
00 + 2T 2

11 + 4r2T 2
10

, (24)

Kyy
yy (q) =

5T 2
11 + T 2

00 − 8r2T 2
10

T 2
00 + 2T 2

11 + 4r2T 2
10

. (25)

The predictions for the observables Ky
y and Kyy

yy

are displayed in Figs. 4 and 5, respectively. The
curves were obtained under the same assumptions
as in Fig. 2. The parameter r(q) was taken in the
form (22). It can be seen that both these observ-
ables are sensitive to deuteron-wave-function val-
ues for |t| ≥ 0.5 (GeV/c)2. The vector–vector po-
larization transfer Ky

y is equal to +2/3 at low |t|,
but it passes through zero in the region around t ∼
−0.6 (GeV/c)2, taking negative values at higher |t|.
The tensor–tensor polarization transfer Kyy

yy is posi-
tive and takes a minimum value of about 0.8 to 1.0 in
the region −t ∼ 0.4–0.6 (GeV/c)2.

Sometimes, it is convenient to use partial cross
sections (or so-called spin-flip cross sections), be-
ing characterized by a specific spin flip. Since the
deuteron spin is equal to unity, there are three such
cross sections—σ0, σ1, and σ2—which are expressed
in terms of the polarization observables as [23]

σ0 =
1
6
(
2 + 3Ky

y +Kyy
yy

)
, (26)

σ1 =
1
9
(
4− (Ayy + Pyy)− 2Kyy

yy

)
,
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Fig. 6. Spin-flip cross sections for the reaction
12C(d, d)X at a primary deuteron momentum of
9 GeV/c and a detection angle of 85 mrad: (solid curve)
σ0, (dashed curve) σ1, and (dotted curve) σ2. The curves
were obtained by using the deuteronwave function for the
Paris potential [18] and the ratio of the spin-dependent
to the spin-independent part of the NN → NN∗(2190)
amplitude in the form (22).

σ2 =
1
18
(
4 + 2(Ayy + Pyy)− 9Ky

y +Kyy
yy

)
.

The sum of these cross sections is independent of t
and is equal to unity. The results of the calculations
with the deuteronwave function for the Paris potential
[18] and the parameter r(q) taken in the form (22) are
shown in Fig. 6. The solid, the dashed, and the dotted
curve represent the partial cross sections σ0, σ1, and
σ2, respectively. The cross section σ0 is dominant at
low values of |t|, but, even at−t ∼ 0.5–0.6 (GeV/c)2,
it is the cross section σ2 (which corresponds to spin-2
flip) that begins to dominate. The cross section σ1 is
small—in the region −t ∼ 0.3–0.6 (GeV/c)2, it does
not exceed 5%.

It should be noted that, in the approach adopted
in the present study, the polarization observables are
functions of the square of the 4-momentum transfer,
t. We also note that the expressions that we obtained
can be applied not only to the N∗(2190) resonance
but also to other resonances. It goes without saying
that, in this case, as well as in the case where
the amplitude for the elementary process NN →
→ NN∗ depends strongly on the primary energy, the
parameter r(q) can have a different optimal value.
Both the polarization observables and the spin-flip
cross sections will then behave somewhat differently.
Figure 7 displays the cross sections (solid curve) σ0,
(dashed curve) σ1, and (dotted curve) σ2. These
2
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Fig. 7. Spin-flip cross sections for the reaction
12C(d, d)X at a primary-deuteron momentum of
9 GeV/c and a detection angle of 85 mrad: (solid curve)
σ0, (dashed curve) σ1, and (dotted curve) σ2. The curves
were obtained by using the deuteronwave function for the
Paris potential [18] and the ratio of the spin-dependent
to the spin-independent part of the NN → NN∗(2190)
amplitude in the form r(q) = q.

results were obtained by using the deuteron wave
function for the Paris potential [18] and the relation
r = q. It can be seen that, in this case, the spin-flip
cross section σ1 can become as large as some 20%.

4. CONCLUSION

The main results of our study can be formulated as
follows.

Data on the vector analyzing power Ay for the
inelastic scattering of 9-GeV/c deuterons on carbon
nuclei [14] have been described in the plane-wave
impulse approximation. It has been shown that the
spin-dependent part of the amplitude for the NN →
NN∗(2190) elementary process plays a significant
role and that, at −t = 1 (GeV/c)2, it is as large as 30
to 40% (its specific value depending on the choice of
the deuteron wave function) of the spin-independent
amplitude.

By and large, the data on the tensor analyzing
power Ayy [14] can be qualitatively described within
the plane-wave impulse approximation. The devia-
tion of Ayy from the predictions of the model based
on this approximation can be associated both with
the presence of additional degrees of freedom in the
deuteron [21, 22] and with the possible contribution
of additional mechanisms of the double-rescattering
type.
P

The predictions obtained for the vector–vector
and the tensor–tensor polarization transfer—Ky

y and
Kyy
yy , respectively—are sensitive both to the choice of

deuteron wave function and to the choice of NN →
NN∗(2190) elementary amplitude.

The cross sections σ0, σ1, and σ2 for the various
spin-flip processes have been estimated with the pa-
rameter r(q) fixed on the basis of a fit to the experi-
mental data on Ay from [14]. It has been shown that
the cross section σ0 is dominant at low |t|, but that,
even at −t ∼ 0.5–0.6 (GeV/c)2, the cross section σ2

begins to play the leading role. The cross section σ1 is
small—in the region −t ∼ 0.3–0.6 (GeV/c)2, it does
not exceed 5%.

It should be emphasized, however, that, in cal-
culating the process 12C(d, d)X, many approxima-
tions have been made predominantly because of
lack of necessary experimental data on the NN →
NN∗(2190) elementary process. In view of this, it
is important and interesting to perform polarization
experiments aimed at reconstructing the matrix el-
ements for baryon-resonance production in proton–
proton and neutron–proton interactions.

Additionally, measurement of polarization observ-
ables in inelastic deuteron scattering on hydrogen
and deuterium is of crucial importance for obtaining
deeper insight into the effect of the target nucleus on
the behavior of these observables.
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Abstract—The amplitude-symmetrization procedure employed in studying interference correlations of
identical pions is shown to be always valid only within one elementary cell 2π� of phase space—that
is, within one period of the interference cosine. However, this limitation does not lead to far-reaching
consequences in using the interference method to determine the spacetime dimensions of the pion-
generation volume. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interference method for determining the
spacetime dimensions of the pion-generation volume
[1–5] is essentially based on two assumptions: (i) the
possibility of averaging the amplitudes for two differ-
ent ways of pion-pair emission at two different points
of the pion-generation volume and (ii) the possibility
of averaging the probabilities for various positions of
these points within the generation volume.

In this study, it is shown that the first assumption
is always valid only within one elementary cell 2π�

of phase space, which corresponds to one period
of the interference cosine (Section 5). The second
assumption is invalid if there is not this restriction
(Section 6).

This does not impose stringent limitations on the
use of the method, but the model assumption that
single-particle pion sources undergo no recoil be-
comes redundant in view of this.

In Sections 2–4, we give a brief account of the
method for nucleus–nucleus interactions, where
noninterference kinematical and dynamical correla-
tions of pions are expected to be negligible. In those
sections, we use the system of units where � = 1.

2. SYMMETRIZATION

We consider the case where, for example, π−

mesons are produced almost independently of each
other by different “single-particle sources”—that
is, in different nucleon–nucleon collisions, pion–
nucleon rescatterings, and resonance decays at differ-
ent spacetime points of the nuclear-collision region.
The source position where the pion being considered
was produced or underwent a significant rescattering
for the last time prior to leaving the generation

*e-mail: golokhv@sunhe.jinr.ru
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volume, whereupon it can be considered to be free,
will be referred to as the pion-emission point.

The probability amplitude for an arbitrarily chosen
pion to have a 4-momentum p = (E,p) and to be
emitted at a point r=(t, r) is [5]

φ(p) exp(−ipr), (1)

where φ(p) is the probability amplitude for the pion to
have a momentum p; exp(−ipr)≡ exp[−i(Et−p·r)]
is the probability amplitude for the pion that has the
momentum p to occur at the point r at the instant t
[6, §5.1].

The probability density for the pion to have the
momentum p and to be emitted by the source being
considered is equal to the squared modulus of (1):
W (p) = φ∗(p)φ(p).

Let us choose, at random, two successive π−

mesons from an arbitrary event. Since we assumed
that pions are produced independently of one another,
the amplitude of the probability that the first pion has
a momentum p1 and is emitted at a point ra and that
the second pion has a momentum p2 and is emitted
at a point rb is equal to the product of the one-particle
amplitudes,

Aab = φa(p1)φb(p2) exp[−i(p1ra + p2rb)]. (2)

Similarly, the probability amplitude for the first and
the second π− meson to be emitted at the points rb
and ra, respectively, is

Aba = φb(p1)φa(p2) exp[−i(p1rb + p2ra)]. (3)

If these two cases are indistinguishable (see the
relevant discussion in [2]; see also Section 5 of the
present article)—that is, if they lead to the same
final quantum state of all particles involved in the
reaction—the probability density to choose two π−

mesons that have the momenta p1 and p2 and which
are emitted by the sources at the points ra and rb is
2002MAIK “Nauka/Interperiodica”



INTERFERENCE CORRELATIONS OF PIONS 191
equal to one-half of the squared modulus of the sum
of two amplitudes:

2W (p1,p2) = |Aab +Aba|2 (4)

= |Aab|2 + |Aba|2 + 2Re(A∗
abAba).

A similar result is obtained in a famous experiment
where one electron is scattered off two holes [6, §1.1]
or two atoms [7, §XIX.25]. In just the same way as
in those single-particle cases, one must average the
probabilities rather than the amplitudes, provided that
the points at which the pions were emitted can be
determined with the aid of some detectors:

2W off(p1,p2) = Wa(p1)Wb(p2) (5)

+Wb(p1)Wa(p2) = |Aab|2 + |Aba|2.

This background spectrum free from correlations
(correlations off) is usually obtained in experiments
from mixed pion pairs, where the pions are chosen
at random from different events [4]. In the case
of single-particle interference, the background is
similarly obtained from events where only one hole
is open [6, §1.1].

The correlation function for these two single-
particle sources is equal to the ratio of the probabili-
ties in (4) and (5):

Cab(p1,p2) = 1 +
2Re(A∗

abAba)
|Aab|2 + |Aba|2

. (6)

The correlation function is not equal to unity, al-
though it was obtained under the assumption of in-
dependent pion production and in the absence of any
interaction between them. The reason is that wemul-
tiplied, in (2) and (3), the amplitudes rather than the
probabilities of independent events and also averaged,
in (4), the amplitudes and not the probabilities of
different possibilities. The quantum theory of prob-
abilities is different from the corresponding classical
theory—the former is non-Laplacian [6, §1.1] and
non-Kolmogorovian [8].

The numerator of the interference term in (6) is
[see (2) and (3)]

2Re {φ∗a(p1)φ∗b(p2)φb(p1)φa(p2) (7)

× exp[i(p1 − p2)(ra − rb)]} .

Here, all the amplitudes are complex-valued func-
tions, and we cannot simplify this expression without
additional assumptions.
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3. HOMOGENEITY CONDITION

Let us consider the case of a homogeneous volume
of pion generation—that is, the case where all single-
particle sources are identical:

φa(p) = φb(p) = φ(p). (8)

This condition is invalid for a generation volume
where different parts (elements) move in different
directions at different velocities and emit pions in
different regions of the momentum spectrum. Such
nonhomogeneity (momentum–coordinate correla-
tion) is typical of almost all models of multiparticle
production.

However, the equality in (8) seems valid in a cer-
tain approximation for an “individual” element of the
volume—that is, for the subensemble of pions from
the small part of the momentum spectrum where
p1 ≈ p2 [9]. For example, such an element, which is
(virtually) homogeneous, could be formed by two ∆
isobars (two single-pion sources) that move at close
velocities and which are produced in different parts of
the generation volume. In this example, the element
may occupy the entire spacetime part of a nucleus
collision—it is small only in momentum space.

With an eye to the application of such quasiho-
mogeneous elements, we will adhere to condition (8).
Under the condition in (8), the amplitudes φ(p) in (7)
are combined into probabilities and are canceled by
the denominator in (6):

Cab(q) = 1 + cos[(p1 − p2)(ra − rb)]. (9)

The correlation function for the scattering of one
electron off two holes (atoms) can be represented in
the similar form

Cab(k) = 1 + cos[(k′ − k)(ra − rb)], (10)

where k and k′ are, respectively, the initial and the
final momentum of the electron [7, §XIX. 25].

4. CORRELATION FUNCTION

If the shape of a homogeneous-generation volume
(homogeneous element)—that is, the spacetime den-
sity of pion sources (more precisely, of their centers
[3]), ρ(r)—is known, we can obtain the total cor-
relation function by averaging the two-point corre-
lation function (9) over all positions of these points
(qv ≡ p1−p2):

C(q) = 1 +
∫ ∫

ρ(ra)ρ(rb) cos[q(ra − rb)]d4rad
4rb.

(11)

This procedure—that of averaging the probabilities
rather than the amplitudes—assumes that different
positions of the point ra (or of rb or of both) lead to
different final quantum states of the particles involved
2
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in the reaction (see the relevant discussion in [2]; see
also Section 6).

Considering that cos[q(ra− rb)] = Re[exp(iqra)×
exp(−iqrb)], we arrive at

C(q) = 1 + Re
{∫

ρ(ra) exp(iqra)d4ra (12)

×
∫
ρ(rb) exp(−iqrb)d4rb

}

= 1 +
∣∣∣∣
∫
ρ(r) exp(iqr)d4r

∣∣∣∣
2

.

It is the basic formula of the interference method for
determining the spacetime dimensions of the pion-
generation volume.

Assuming that the spacetime shape of the gener-
ation volume in its rest frame is close to the Gaussian
distribution

ρ(r) =
1

(2π)2RxRyRzT
(13)

× exp

(
− r2x

2R2
x

−
r2y

2R2
y

− r2z
2R2

z

− t2

2T 2

)

and substituting it into the square of the Fourier
transform in (12), we obtain

C(q) = 1 + exp
(
−q2xR2

x − q2yR2
y − q2zR2

z − q2t T 2
)
,

(14)

where Ri is the root-mean-square scatter of pion-
emission points and T is the root-mean-square scat-
ter of pion-emission instants. We can determine the
dimensions of the generation volume, Ri and T , from
a fit to the experimental correlation function in terms
of this (or any other) approximation.

5. AVERAGING OF AMPLITUDES

In (4), we averaged amplitudes (not probabilities)
of two possible ways of pion-pair emission by two
single-particle sources, assuming that the two ways
lead to the same final quantum state of all particles
involved in the reaction (for the same initial state)
and that there are no spectators that preserved more
detailed information.

However, a nucleus–nucleus interaction pro-
duces, in addition to the two π− mesons being
considered, many free particles that are emitted from
various parts of the collision area. By measuring the
coordinates and momenta of these particles imme-
diately after their emission, we can try to pinpoint,
without disturbing the two π− mesons, the path
realized in the event under study. Of course, this
can be done only to a precision not higher than
that which is allowed by the uncertainty relations.
However, there is no need for performing actual
PH
measurements—the spectator particles themselves
are detectors that can appear in a different quantum
state upon the interchange of the pion momenta.

The emission of two pions from two different
nucleus–nucleus collisions rather than from two
regions of the same collision is a vivid example that
does not differ radically from that considered here. If
the spatial or time interval between these two colli-
sions is large, the energy–momentum conservation
laws are satisfied independently in either individual
collision, thereby ruling out the possibility of pion-
momentum exchange between the collisions (for
p1 
= p2). If this interval is small, this possibility
appears: various groups of spectator particles can
exchange the momentum of p1 − p2 simultaneously
with pion-pair emission.

A quantitative estimate is obtained with the aid
of the concept of a quantum (quantized) state in
momentum–coordinate phase space for the system
in the continuous part of the momentum spectrum
[6, §4.3]. An elementary cell of size 2π� per degree
of freedom (equivalent to one discrete state) in phase
space corresponds to a quantum state of any free
particle (particle system) (see [10, §62] and [11, §7]).

The recoil momentum is redistributed among
spectators upon the interchange of the pionmomenta.
The momentum increases by q ≡ p1 − p2 for those
spectators that are emitted from the region around the
point ra and decreases by the same amount for those
that are emitted from the region around the point rb.
In other words, a change occurs in the entire system
of spectators: 4-momentum q is transferred to the 4-
vector s ≡ ra − rb. Thus, the position of the system
in phase space is shifted by qisi along each coordinate
(i). If this shift significantly exceeds 2π�, the system
of spectator particles occurs in a different quantum
state. Therefore, the direct and the crossed reaction
path are indistinguishable only for qisi < 2π�.

In this case, the two pions that we singled out
must be emitted from one cell qisi<2π�—that is, in
one quantum state—and the effect is equivalent to the
phenomenon of induced radiation [12, §§4.2–4.5].

It was shown in [2] that the interference contri-
bution cannot be neglected even for qisi � �. Here,
we have proven that, as soon as qisi > 2π�, this
contribution can be small. In the intermediate case
of qisi ∼ 2π�, the amplitudes in (2) and (3) must
obviously be averaged in (4) with different weights—
this situation is analogous to that in single-particle
interference where electrons behind the screen are
irradiated with photons of wavelength on the order of
the distance between the holes [12, §3.2].

Therefore, we can guarantee that the emission
paths are indistinguishable only within one period of
the cosine in (9). This is the point where our case
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Dependence of the shape of the correlation function (in
one dimension) on the corrections associated with the
fact that the range of the cosine in (11) is bounded [the
results are presented for the Gaussian generation volume
(13)]. The solid curve was obtained by introducing the
factor exp[−(qisi)

2/2(2π�)2], with the variance 2π� in
the integrand in (11). The dashed curve is the usual
Gaussian function (14) corresponding to the absence of
this factor, or, which is equivalent, to an infinite variance
in this factor. The inset displays the cosine before and
after introducing the restriction.

differs from that of single-particle interference, where
no constraint is imposed on the cosine (10). The
reason is that an indefinite mass or, equivalently, a
fixed position of two atoms [7, §XIX.24], mirrors [10,
§3], or holes [13] (this rules out the possibility of
determining the scatterer by the recoil momentum) is
the condition of applicability of (10). In our case, the
spectators are free particles.

Let us discuss the effect of this correction on
the form of the correlation function for the Gaus-
sian generation volume (13) (in one dimension).
For this we introduce the fast decreasing factor
exp[−(qisi)2/2(2π�)2], with the variance 2π�, in
the integrand in (11). The solid curve in the figure
illustrates the result obtained in this way. The dashed
curve in the figure represents the usual Gaussian
function (14). The fact that the upper curve depends
only on the product qiRi is merely accidental—it is
associated with the Gaussian character of both the
factor and the shape of the volume.

Strictly speaking, the upper curve reduces to a hy-
perbola for large qiRi. However, the model condition
requiring [2, 3] that single-pion sources have infi-
nite masses and therefore undergo no recoil becomes
redundant because of arbitrariness in choosing the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
approximation in (13) and because of indistinguisha-
bility of the two curves in experiments.

6. AVERAGING OF PROBABILITIES

In (11), we averaged the probabilities (rather than
amplitudes) of various positions of the points ra and
rb; that is, we assumed that different positions of the
point ra (or rb or both) lead to different final quan-
tum states of the particles involved in the reaction.
However, the possibility of distinguishing different
positions of the points is directly related to the above
restriction on the indistinguishability of the direct and
the crossed reaction path.

If different groups of spectator particles did not un-
dergo recoil or, which is equivalent, if they could ex-
changemomenta significantly exceeding 2π�/(ra−rb)
simultaneously with the emission of a pion pair,
thereby rendering the direct and the crossed way in-
distinguishable for any spacing between the emission
points, different positions of the points would also be
indistinguishable. In this case, we should average the
amplitudes [prior to squaring them in (4)] rather than
the probabilities over the entire generation area. As
a result, the interference peak would disappear (so-
called coherent sources—see, for example, [14]).
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Abstract—The equivalence theorem in quantum field theory is proven on the basis of the field–antifield
formalism. It is shown that the equivalence theorem does not contradict the well-known fact that, in
quantum theory, some symmetries of the classical action functional are broken (anomalous). By way
of example, a model is considered where natural finite counterterms can be chosen in different ways
leading to physically nonequivalent quantum theories, but where the equivalence theorem remains valid.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The equivalence theorem in Lagrangian quantum
field theory [that is, the fact that physical observables
in quantum theory—in particular, the S matrix—
are independent of changes of field variables in the
classical action functional (in other words, on the
choice of parametrization of the classical action func-
tional)] has a long history [1–11]. The first rigorous
result belongs to Borchers [2], who proved that the S
matrix for a Heisenberg field that has the form of a
local normally ordered polynomial of a free field and
a nonvanishing in-limit coincides with the S matrix
that describes a free field and which is equal to unity
(for a generalization of Borchers’ results to theories
involving interactions that is formulated within the
axiomatic approach, the reader is referred to [11]).
For models where there is a nonvanishing interaction,
the first rigorous perturbative proof of the equiva-
lence theorem on the basis of the quantum action
principle was given in [8, 9]. In those studies, the
authors considered theories for which the quantum
action principle is valid in a form that coincides with
the formal expression obtained, for example, from the
representation of Green’s functions in terms of a path
integral. In general, however, the form of the quantum
action principle differs from this formal expression by
so-called local insertions (see Section 3).

For the equivalence theorem, we give here a per-
turbative proof that is valid in an arbitrary quan-
tum theory renormalized with the aid of the Bo-
golyubov R operation [12] (see also [13] and refer-
ences therein). The change in the classical action
functional under a change of variables is interpreted
as some kind of symmetry of this action functional.
In this approach, the problem of proving the equiv-
alence theorem reduces to the problem of exploring
1063-7788/02/6501-0194$22.00 c©
the possibility of conserving this symmetry in quan-
tum theory. In order to solve this problem, we use
a generalization of the field–antifield formalism [14]
to the case of global symmetries [15–17] and the
cohomologous method that was developed to study
the structure of symmetries in a renormalized theory
and which was successfully applied to gauge theories
(see [18, 19] and references therein). We show that
the equivalence theorem is valid in the sense that
finite quantum corrections (counterterms depending
on the parametrization of the action functional) to the
classical action functional can always be chosen in
such a way that physical observables and the S matrix
are independent of the choice of parametrization of the
classical action functional.

As is well known, a given classical action func-
tional does not uniquely determine a quantum theory
because there exists a wide arbitrariness in choosing
finite counterterms, so that physically nonequivalent
quantum theories can be obtained from the same
classical action functional. From our results, it fol-
lows that the set of quantum theories that is gen-
erated by the family of classical action functionals
related by changes of field variables is broken down
into classes such that the equivalence theorem is valid
within each individual class.

The validity of the equivalence theorem does not
mean, however, that any symmetries of a classical
theory, which are also formulated in terms of changes
of variables, can be extended to the corresponding
quantum theory. That a quantum theory has a sym-
metry implies that Green’s functions must obey sub-
sidiary conditions, Ward identities, which are inde-
pendent of the conditions of the equivalence theo-
rem. Conditions of these two types cannot always
be satisfied simultaneously. By convention, we can
say that the equivalence theorem means an on-shell
2002 MAIK “Nauka/Interperiodica”
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symmetry, while Ward identities mean an off-shell
symmetry, which is stronger.

This article is organized as follows. In Section 2,
we perform a formal consideration of the equivalence
theorem. InSection 3, we derive a master equation for
the generating functional for vertices and show that
the equivalence theorem follows from this equation.
In Section 4, we consider an example of theory where
natural counterterms can be chosen in different ways
leading to physically nonequivalent theories without
violating the equivalence theorem. Within this theory,
we also demonstrate that the validity of the equiva-
lence theorem does not contradict the possible viola-
tion of some classical symmetries in the correspond-
ing quantum theory.

2. FORMAL CONSIDERATION
In this section, we briefly recall a scheme accord-

ing to which the equivalence theorem can be proven
in a way that is convenient for our purposes. Suppose
that the classical action functional has the form

S0 = S0(ϕ) =
∫
dxL(ϕi(x), ∂µϕi(x), . . .).

For the sake of simplicity, we also assume that all
fields (which will also be referred to as variables)
ϕi(x) ≡ ϕA are Bose fields and that the Lagrangian
densityL depends on a finite number of spatial deriva-
tives of the fields ϕi(x) (at least, perturbatively). We
consider the family of the classical action functionals
S(α,ϕ),

S(α,ϕ) = S0(Φ(α,ϕ)), (1)

where the change of field variables ΦA(α,ϕ) = Φi(α,
ϕ;x) = Φi(α,ϕj(x), ∂µϕj(x), . . .) = ϕA +O(g),1)

Φi(0, ϕ;x) = ϕi(x), and the inverse change of vari-
ables ϕ̃A(α,Φ) = ΦA +O(g), ΦA(α, ϕ̃(α,Φ)) = ΦA,
ϕ̃A(α,Φ(α,ϕ)) = ϕA, are local (at least, perturba-
tively), the quantities

fA = fA(α,ϕ) = f i(α,ϕ;x)

= −∂Φ
B(α,ϕ)
∂α

δϕ̃A(α,Φ)
δΦB

=
∂ϕ̃A(α,Φ)

∂α
being (perturbatively) local functions of ϕi(x). It is
obvious that the following equality holds:

S(0, ϕ) = S0(ϕ).

The fact that action functional S(α,ϕ) was derived
from the action functional S0(ϕ) by a change of vari-
ables is reflected in the validity of the following equa-
tion (symmetry) for the action functional S(α,ϕ):

∂S(α,ϕ)
∂α

+ fA(α,ϕ)
δS(α,ϕ)
δϕA

= 0. (2)

1)Here, g denotes the complete set of coupling constants of the
theory.
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We note that Eq. (2) is satisfied by virtue of the fact
that the change of variables itself obeys this equation:

∂ΦA(α,ϕ)
∂α

+ fB(α,ϕ)
δΦA(α,ϕ)

δϕB
= 0.

Classical theories related by changes of variables
are equivalent. Naively, the same is true in quantum
field theory as well. Let us consider the familyZ(α, J)
of generating functionals for Green’s functions in
quantum field theory:

Z(α, J) = e
i
�
W (α,J)

=
∫
Dϕ∆(α,ϕ)e

i
�
(S(α,ϕ)+JAϕ

A)

=
∫
DΦe

i
�
(S0(Φ)+JAϕ̃

A(α,Φ)),

∆(α,ϕ) = Det
δΦA(α,ϕ)

δϕB
.

By calculating the quantum expectation of the
symmetry Eq. (2) and by formally performing inte-
gration by parts in the path integral, we obtain the
equation for the generating functional for Green’s
functions,

∂

∂α
W (α, J) − JA〈fA〉(α, J) = 0, (3)

〈fA〉(α, J) ≡ 1
Z(α, J)

×
∫
DϕfA(α,ϕ)∆(α,ϕ)e

i
�
(S(α,ϕ)+JAϕ

A),

or, which is the same, the equation for the generating
functional for vertex functions,

∂Γ(α,ϕ)
∂α

+ 〈fA〉δΓ(α,ϕ)
δϕA

= 0, (4)

Γ(α,ϕ) =W (α, J)− JAϕ
A,

ϕA =
δW (α, J)

δJA
. JA = −δΓ(α,ϕ)

δϕA
.

In Eq. (4), the quantity J is expressed in terms of
ϕ in the functional 〈fA〉. An equation of the type in
(4) for the generating functional for vertex functions
is referred to as a master equation.

We now assume that single-particle-irreducible
components of skeleton diagrams (single-particle-
irreducible skeleton subdiagrams not contained in
any other single-particle-irreducible subdiagrams)
have no single-particle pole singularities in the mo-
mentum conjugate to the coordinate of the vertex
f i(α,ϕ;x) (this assumption is correct at least when
all fields are massive). From Eqs. (3) or (4), it then
follows (see, for example, [7]) that particle masses and
S-matrix elements are independent of α.
2
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A drawback of this consideration is that none of
the above expressions for quantities in quantum field
theory (Z, W , Γ, 〈fA〉) exists in view of known
ultraviolet divergences. However, we can draw a
useful conclusion from this formal consideration. As
a matter of fact, the equivalence theorem is based on
equations of the type in (3) or (4). If we prove that
finite (renormalized) generating functionals satisfy
equations of the type in (3) or (4), where 〈fA〉 is the
expectation value of a local operator, this will mean
that masses and S-matrix elements are independent
of α, but this is what we interpret as the equivalence
theorem. In the next section, we will show that,
in any theory that can be rendered finite with the
aid of a renormalization similar to the Bogolyubov R
operation, a master equation of the type in (4) can
be obtained for the generating functional for vertex
functions.

3. MASTER EQUATION

As was mentioned above, the fact that the action
functional S(α,ϕ) is derived by a change of variables
from the action functional S0(ϕ) can be interpreted
as the presence of a global symmetry in the action
functional S(α,ϕ), its infinitesimal form being

δϕA = fAθ, δα = θ,

where θ is a parameter of global symmetry trans-
formations. In order to study global symmetries in
quantum field theory, it is convenient to use the field–
antifield formalism [15–17] developed by Batalin and
Vilkovisky for the case of local (gauge) symmetries
[14]. Here, we will follow this strategy.

In accordance with the presence of a global sym-
metry, we introduce an additional global ghost vari-
able c, ε(c) = 1, c2 = 0; for the variables ϕi(x), we
introduce the antivariables ϕ∗

i (x) of opposite Grass-
mann parity (we will not need the antivariables α∗

and c∗). With each variable, we associate a ghost
number gh,

gh(ϕA) = gh(α) = 0, gh(ϕ∗
A) = −1, gh(c) = 1.

In the following, the complete set of variables will
be denoted by η: η = {ϕA, ϕ∗

A, α, c}; the set of vari-
ables ϕA, α will be denoted by ξ: ξ = {ϕA, α}; and
the dependence on these variables will be indicated
explicitly.

For the master action functional S(η), ε(S) =
gh(S) = 0, we take the expression

S(η) = S(ξ) + ϕ∗
Af

A(ξ)c,

which satisfies the master equation
1
2
(S(η),S(η)) + c

∂S(η)
∂α

(5)
P

=
(
∂S(ξ)
∂α

+ fA(ξ)
δS(ξ)
δϕA

)
c = 0,

where the antibracket (F,G) of the functionals F and
G is defined as

(F,G) = F

←−
δ

δϕA
δ

δϕ∗
A

G− F

←−
δ

δϕ∗
A

δ

δϕA
G.

The only corollary of the master Eq. (5) is Eq. (2)
for the functional S(η)|ϕ∗=0 = S(ξ); its general solu-
tion is

S(ξ) = S0(Φ(ξ)),

where S0 is a functional. Thus, if S(ξ) has the form
(1), the master action functional S(η) satisfies the
master equation, and vice versa: if we require that
the master action functional S(η) satisfy the master
Eq. (5), S(ξ) has the form (1).

The generating functional for Green’s functions is
given by

Z(J) = e
i
�
W (J) =

〈
exp
(
i

�
(Sint(η) + JAϕ

A)
)〉

ren

,

〈Q〉 ≡ 1
Z(J)

〈
Q(η) exp

(
i

�
(Sint(η) + JAϕ

A)
)〉

ren

,

Sint(η) = S(η)− S2(ϕ),

where S2(ϕ) = S(η)|g=ϕ∗=0; Q(η) is an arbitrary
functional; and 〈(. . .)〉ren means that the expectation
value of the expression in the parentheses over a free
vacuum is calculated according to Feynman rules for
free propagators determined by the action functional
S2(ϕ), some regularization and renormalization pro-
cedure being employed in this calculation. We will not
need an explicit form of the regularization scheme, but
we assume that the quantum action principle is valid
for finite Green’s functions (see [18] and references
therein; all schemes used at present satisfy this
assumption). In particular, the generating functional
Σ(η) for vertices in the theory specified by the action
functional S(η) possesses the following properties:

(i)
∂

∂λ
Σ(η) = Qλ(�, η) ◦Σ(η), Qλ(�, η)

=
∂

∂λ
S(η) + �Q

(1)
λ (�, η),

where the operation (insertion)Qλ(�, η) ◦Σ(η)means
that vertex functions are calculated according to
standard Feynman rules with the additional vertex
Qλ(�, η),2) λ is an arbitrary parameter of the theory,

and Q
(1)
λ (�, η) is a local functional that is equal to

2)As a matter of fact, we have Q(�, η) ◦ Σ(η) ≡ 〈Q〉 (we use
the notation adopted in the literature).
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zero if the parameter λ does not appear in the free
propagators (that is, if it appears only in Sint).

(ii) 〈MA〉 δ

δϕA
Σ(η) = QM (�, η) ◦ Σ(η),

QM(�, η) =MA(η)
δ

δϕA
S(η) + �Q

(1)
M (�, η),

where MA =MA(η) are local functions and

Q
(1)
M (�, η) is a local functional.
(iii) The generating functional Σ(η) for vertex

functions is invariant under Poincaré transformations
and possesses all linear homogeneous symmetries of
the action functional S(η) that do not involve the
spacetime coordinates and Lorentz indices. In par-
ticular, the generating functional for vertex functions
conserves the ghost number in the case under con-
sideration.

The regularization properties (i) and (ii) make it
possible to prove [18] that, local insertions apart,
the generating functional for vertex functions satisfies
Eq. (5):
1
2
(Σ(η),Σ(η)) + c

∂Σ(η)
∂α

= −�Q(1)(�, η) ◦ Σ(η),
(6)

Q(1)(�, η) = Q
(1)
1 (η) +O(�).

Let us calculate the antibracket of the right- and
the left-hand side of Eq. (6) with Σ(η); on the left-
hand side of the resulting relation, we will use the
Jacobi identity for the antibracket, Eq. (6) itself, and
the property c2 = 0. As a result, we arrive at an
equation that local insertions must obey and which
is the consistency condition for Eq. (6):

(Σ(η), Q(1)(�, η) ◦Σ(η)) (7)

+ c
∂

∂α
(Q(1)(�, η) ◦ Σ(η)) = 0.

In the one-loop approximation, we find from (6)
that

1
2
(Σ[1](η),Σ[1](η))[1] + c

∂Σ[1](η)
∂α

= −�Q
(1)
1 (η),

Σ(η) = S(η) + �Σ1(η) +O(�2),

where the subscript [n] on an arbitrary function G
means that only the first n+ 1 terms of its Taylor
series in � are taken into account:

G ≡ G[n] +O(�n+1),
∂n+1

∂�n+1
G[n] = 0.

Because the ghost number is conserved, the local

functional Q(1)
1 (η) has the ghost number of 1, so that

it is linear in c and is independent of ϕ∗
A; that is,

Q
(1)
1 (η) = cq(1)(ξ).
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In the one-loop approximation, the consistency
condition for (7),

ωQ
(1)
1 (η) = 0,

ω =
δS(η)
δϕA

δ

δϕ∗
A

+
δS(η)
δϕ∗

A

δ

δϕA
+ c

∂

∂α
, ω2 = 0,

is satisfied identically.

Lemma. The functional Q(1)
1 can be represented

in the form

Q
(1)
1 (η) = ωX(1)(η),

where X(1)(η) is a local functional, gh(X(1)) = 0.
In order to prove this lemma, it is convenient to

go over from the variables η to the variables η̃ =
{ΦA,Φ∗

A = ϕ∗
B(∂ϕ̃

B(α,Φ)/∂ΦA), α, c}. For an ar-
bitrary functional G(η), we also introduce the func-
tional G̃(η̃),

G̃(η̃) = G(η(η̃)), G(η) = G̃(η̃(η)).

We then have
ωG(η) = ω̃G̃(η̃),

ω̃ =
δS0(Φ)
δΦA

δ

δΦ∗
A

+ c
∂

∂α
.

In terms of the new variables, the statement of the
lemma in the form of an equation for X(1)(η) can be
represented as

Q̃
(1)
1 (η̃) = ω̃X̃(1)(η̃). (8)

In order to solve this equation, we introduce the
operator γ = α∂/∂c. The operators ω and γ form the
algebra specified by the relations

ω2 = γ2 = 0, ωγ + γω = N,

[ω,N ] = [γ,N ] = 0, N = α
∂

∂α
+ c

∂

∂c
.

A particular solution X̃
(1)
p (η̃) to the nonhomoge-

neous Eq. (8) can be taken in the form

X̃(1)
p (η̃) =

1
N
γQ̃

(1)
1 (η̃) =

α∫
0

dα′q̃(1)(α′,Φ),

where the action of an arbitrary function F (N) of the
operatorN is determined as follows:

F (N)αkcl = F (k + l)αkcl, k, l ≥ 0.

We note that, by construction, the functional

X̃
(1)
p (η̃) is local and is independent of ϕ∗ and c:

X̃
(1)
p = X̃

(1)
p (ξ̃). A general solution to Eq. (8) is
2
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obtained by adding, to X̃
(1)
p (ξ̃), a general solution

X̃
(1)
h (η̃) to the homogeneous equation

ω̃X̃
(1)
h (η̃) = 0. (9)

Let us represent X̃(1)
h (η̃) in the form

X̃
(1)
h (η̃) = S01(Φ) + X̃

(1)
h1 (η̃),

S01(Φ) = X̃
(1)
h (η̃)|α=c=0

(since gh(X̃(1)
h ) = 0, the functional S01 depends only

on Φ). The functional S01(Φ) drops out of Eq. (9),
and a standard argument leads to

X̃
(1)
h1 (η̃) = ω̃Ỹ (1)(η̃), gh(Ỹ (1)) = −1,

where Ỹ (1)(η̃) = Φ∗
AΦ̃

A
1 (ξ̃) is a local functional.

Going over to the original variables, we eventually
obtain

X(1)(η) = S01(Φ) +
δS0(Φ)
δΦA

ΦA1 (ξ) (10)

+ ϕ∗
A

δϕ̃A

δΦB

(
δΦB1 (ξ)
δϕC

δϕ̃C

δΦD
∂ΦD(ξ)
∂α

− ∂ΦB1 (ξ)
∂α

)
c

+X(1)
p (ξ).

Let us introduce the master action functional
S(1)(η)

S(1)(η) = S(η) + �X(1)(η) ≡ S(1)(ξ)

+ ϕ∗
Af

(1)A(ξ)c,

where f (1)A(ξ) = fA(ξ) +O(�) is a local function.
The master action functional S(1)(η) does not satisfy
the master Eq. (5):

(S(1)(η),S(1)(η)) + c
∂S(1)(η)
∂α

= �Λ(1)(�, η).

It is important, however, that Λ(1)(�, η) is a local
functional.

In the theory specified by the action functional
S(1)(η),3) the generating functional Σ(1)(η) for ver-
tices again satisfies the master equation, apart from
the local insertions. However, it is straightforward to
verify that, in the one-loop approximation, there are
no local insertions:

Σ(1)
[1] (η) = Σ[1](η) + �X(1)(η),

1
2
(Σ(1)

[1] (η),Σ
(1)
[1] (η))[1] + c

∂

∂α
Σ(1)

[1] (η)

=
1
2
(Σ[1](η),Σ[1](η))[1] + c

∂

∂α
Σ[1](η)

3)All expectation values 〈(. . .)〉ren must nowbe calculatedwith

the action functional S(1)
int (η) = S(1)(η) − S2(ϕ).
P

+(Σ[1](η), �X
(1)(η))[1] + �c

∂

∂α
X(1)(η)

= −�Q
(1)
1 (η) + �ωX(1)(η) = 0.

Thus, themaster equation forΣ(1)(η) fails from the
two-loop approximation:

1
2
(Σ(1)(η),Σ(1)(η)) + c

∂

∂α
Σ(1)(η)

= −�
2Q(2)(�, η) ◦Σ(1)(η),

(Σ(1)(η), Q(2)(�, η) ◦Σ(1)(η))

+ c
∂

∂α
(Q(2)(�, η) ◦ Σ(1)(η)) = 0.

The meaning of individual terms in expression (10)
for X(1) now becomes clear: (i) The first term de-
scribes quantum corrections to the original classical
action functional. (ii) The second and the third term
take into account quantum corrections to the classi-
cal change of variables. (iii) The last term must com-
pensate for the possible noncovariance (with respect
to changes of field variables) of this regularization
scheme.

By applying further the method of induction, we
eventually find that there exists an action functional
S(∞)(η),

S(∞)(η) = S(η) +
∑
n=1

�
nX(n)(η) ≡ S(∞)(ξ)

+ ϕ∗
Af

(∞)A(ξ)c,

where f (∞)A(ξ) are local functions, such that the
generating functional Σ(∞)(η) for vertex functions
that is associated with it satisfies the master equation

1
2
(Σ(∞)(η),Σ(∞)(η)) + c

∂

∂α
Σ(∞)(η) = 0.

By taking into account the relation [it is valid by
virtue of property (i) for the regularization schemes
used]

δ

δϕ∗
A

Σ(∞)(η) = 〈f (∞)A〉(0)(ξ)c,

where the subscript (0) on the angular bracket means
that the relevant expectation value is calculated with

the action functional S(∞)
int (ξ) = S(∞)(ξ)− S2(ϕ), we

obtain
∂

∂α
Γ(∞)(ξ) + 〈f (∞)A〉(0)(ξ)

δ

δϕA
Γ(∞)(ξ) = 0,

where Γ(∞)(ξ) ≡ Σ(∞)(η)|ϕ∗=0 is the generating
functional for vertex functions in the theory specified
by the renormalized action functional S(∞)(ξ) (of
course, it is straightforward to verify that the equality
Σ(∞)(η) = Γ(∞)(ξ) + ϕ∗

A〈f (∞)A〉(0)(ξ)c holds).
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Thus, it has been established that, with the aid
of adding appropriate counterterms to the original
action functional, we can always arrive at a gener-
ating functional for vertex functions that satisfies the
master Eq. (4)—that is, ensure fulfillment of the
equivalence theorem.

We note that counterterms describing quantum
corrections to the classical change of variables [in the
one-loop approximation, these are the second and the
third term in expression (10)] are arbitrary and can
be set to zero. For this choice of counterterms, we
have f (∞)A = fA and the master equation coincides
in form with the naive Eq. (4).

We also note that the statement that we have
proven does not contradict the well-known fact that
some classical symmetries can be violated (anoma-
lous) in quantum theory. Indeed, let the transforma-
tion ϕA → ΦA(α,ϕ) be a symmetry of the classical
action functional. In this case, S(α,ϕ) = S0(ϕ), and
we have, instead of Eq. (2), the stronger equations

∂S(α,ϕ)
∂α

= 0, fA(α,ϕ)
δS(α,ϕ)
δϕA

= 0, (11)

or, which is equivalent, two independent linear com-
binations of these equations,

∂S(α,ϕ)
∂α

+ afA(α,ϕ)
δS(α,ϕ)
δϕA

= 0, (12)

∂S(α,ϕ)
∂α

+ bfA(α,ϕ)
δS(α,ϕ)
δϕA

= 0, a �= b (13)

(one of the coefficients—for example, a—can be equal
to zero).

From the results of this section, it follows that
one of the equations—for example, Eq. (12)—can be
generalized to quantum theory. In this case, specific
constraints [they must have the form (10)] are im-
posed on possible counterterms, with the result that
it is impossible to verify analogously the possibility
of simultaneously generalizing the second equation
[that is, Eq. (13)] to quantum theory. This will be
demonstrated explicitly in the next section.

4. EXAMPLE

As was indicated in the Introduction, arbitrariness
in choosing counterterms X

(n)
h (η)—specifically the

terms S0n(ϕ) [see (10)]—corresponds to the partition
of renormalized theories into classes (in part, this
arbitrariness is, of course, associated with redefining
the original parameters of the theory). The validity
of the equivalence theorem within a single class is

ensured by the counterterms X(n+1)
p (ξ).

In this section, we will consider, by way of exam-
ple, a family of classical models such that they are
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related by a change of variables and that the quan-
tization of these leads to physically nonequivalent
theories without violation of the equivalence theorem.

The model is specified by the action functional
S(α,ψ) = S0(Ψ(α,ψ)) (14)

=
∫
dxψ̄

(
iγµ∂µ+ γµVµ+ γµγ5Aµ+ α

fπ
m
γµγ5∂µϕ

)
ψ,

S0(ψ) =
∫
dxψ̄(iγµ∂µ + γµVµ + γµγ5Aµ)ψ,

Ψ(α,ψ) = exp
(
−iαfπ

m
ϕγ5

)
ψ,

where ψ(x) is a quantum Dirac field; Vµ(x), Aµ(x),
and ϕ(x) are external vector, axial-vector, and pseu-
doscalar fields; γ5 = iγ0γ1γ2γ3; and the metric is
diag(+,−,−,−).

The action functional (14) satisfies the equation
∂

∂α
S +

ifπ
m

∫
dxϕ(γ5ψ

δ

δψ
+ ψ̄γ5 δ

δψ̄
)S = 0. (15)

The generating functional for vertex functions
must obey the equation
∂

∂α
Γ(1) +

∫
dx(〈f (1)

ψ 〉(0)
δ

δψ
+ 〈f (1)

ψ̄
〉(0)

δ

δψ̄
)Γ(1) = 0,

(16)

where the superscript (1) [instead of the superscript
(∞)] means that the theory is exhausted by the one-

loop approximation, f
(1)
ψ = (ifπ

mϕγ
5 +O(�))ψ and

f
(1)

ψ̄
= ψ̄(ifπ

mϕγ
5 +O(�)).

The generating functional Γ(1) for vertex functions
has the structure

Γ(1) = S(α,ψ) + Γ̄,

where Γ̄ ≡ Γ(1)|ψ=ψ̄=0 = Γ̄(α, Vµ, Aµ, ϕ) corresponds
to a set of vacuum diagrams that represent some
example of physical observables; as a result, Eq. (16)
takes the form

∂

∂α
Γ̄ = 0. (17)

At ϕ = 0, the expression for Γ̃(Vµ, Aµ) ≡ Γ̄|ϕ=0 is
unambiguously {apart from the terms

∫
dx[a(∂µVν −

∂νVµ)2 + b(∂µAν − ∂νAµ)2], which can be thought to
be absorbed in �Scounter(α, Vµ, Aµ, ϕ) in expression
(18) (see below)} determined by the requirements that
the vector current be exactly conserved,

∂µ
δ

δVµ(x)
Γ̃ = 0,

and that the axial current be “maximally” conserved
(that is, conserved apart from terms associated with
2
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diagrams involving three external legs). In this case,
we have

∂µ
δ

δAµ(x)
Γ̃ = − �

4π2
(εµνλσ∂µVν(x)∂λVσ(x)

+
1
3
εµνλσ∂µAν(x)∂λAσ(x))

with ε0123 = 1. For ϕ �= 0, the expression for Γ̄ is
derived from the expression for Γ̃ by substituting
Aµ + αfπ

m ∂µϕ forAµ and by adding the possible local
counterterms (as before, the vector current must be
conserved):

Γ̄(α, Vµ, Aµ, ϕ) = Γ̃
(
Vµ, Aµ + α

fπ
m
∂µϕ

)
(18)

+ �Scounter(α, Vµ, Aµ, ϕ).

The dependence of Γ̃ on ϕ can be calculated ex-
plicitly (for example, by means of differentiation with
respect to α):

Γ̃
(
Vµ, Aµ + α

fπ
m
∂µϕ

)
= Γ̃(Vµ, Aµ)

+
α�

4π2

fπ
m

∫
dx
(
ϕ(x)εµνλσ∂µVν(x)∂λVσ(x)

+
1
3
ϕ(x)εµνλσ∂µAν(x)∂λAσ(x)

)
.

As to Scounter(α, Vµ, Aµ, ϕ), the only term that will
be isolated in it here is linear inϕ and includes the ten-
sor εµνλσ (terms corresponding to other independent
structures are immaterial for our purposes and are not
be written explicitly):

Scounter(α, Vµ, Aµ, ϕ)

=
fπ
m

∫
dxϕ

(
r′1(α)ε

µνλσ∂µVν∂λVσ

+ r′2(α)ε
µνλσ∂µAν∂λAσ

)
+ S′

counter(α, Vµ, Aµ, ϕ).

Thus, the general expression for Γ̄ can be represented
in the form

Γ̄(α, Vµ, Aµ, ϕ) = Γ̃(Vµ, Aµ) (19)

+ �
fπ
m

∫
dxϕ

(
r1(α)εµνλσ∂µVν∂λVσ

+ r2(α)εµνλσ∂µAν∂λAσ
)
+ �S′

counter(α, Vµ, Aµ, ϕ),

r1(α) =
α

4π2
+ r′1(α), r2(α) =

α

12π2
+ r′2(α).

Equation (17) is satisfied for the following choice
of counterterms:

r′1(α) = −
α

4π2
+ r1, r′2(α) = −

α

12π2
+ r2,

r1, r2 = const,

S′
counter = S′

counter(Vµ, Aµ, ϕ),
P

where r1, r2, and S′
counter are independent of α.

As a result, we arrive at the following expression
for Γ̄:
Γ̄(α, Vµ, Aµ, ϕ) = Γ̃(Vµ, Aµ) + �S′

counter(Vµ, Aµ, ϕ)

+ �
fπ
m

∫
dxϕ

(
r1ε

µνλσ∂µVν∂λVσ

+ r2ε
µνλσ∂µAν∂λAσ

)
= Γ̃

(
Vµ, Aµ +

fπ
m
∂µϕ

)
+ �S′

counter(Vµ, Aµ, ϕ)+

+�
fπ
m

∫
dxϕ

((
r1 −

1
4π2

)
εµνλσ∂µVν∂λVσ

+
(
r2 −

1
12π2

)
εµνλσ∂µAν∂λAσ

)
.

Obviously, this expression satisfies the equiva-
lence theorem (it does not depend on the change of
field variables in the classical action functional), but it
still involves arbitrariness in choosing counterterms,
which admits different types of treatment.

If one proceeds from the quantum theory that is
constructed on the basis of the classical action func-
tional (14) at α = 0,

S(0, ψ) = S0(ψ)

=
∫
dxψ̄(iγµ∂µ + γµVµ + γµγ5Aµ)ψ,

it seems natural to require that, at α = 0 and, hence,
at any value of α, the quantum theory be independent
of the field ϕ on the fermion mass shell. For the
functional Γ̄, this requirement means that it is merely
independent of ϕ; that is,

Γ̄ = Γ̃(Vµ, Aµ)

(r1 = r2 = S′
counter = 0).

If one proceeds from the quantum theory that is
constructed on the basis of the classical action func-
tional (14) atα = 1 (the case where any other nonzero
value of α is taken for a normalization reduces to
merely redefining the parameter fπ orm),

S(1, ψ) =
∫
dxψ̄

(
iγµ∂µ + γµVµ + γµγ5Aµ

+
fπ
m
γµγ5∂µϕ

)
ψ,

it seems natural to require that the field fπ

m ∂µϕ inter-
act with the same axial-vector current as the axial-
vector field Aν . In this case, we must set r1 = 1/4π2

and r2 = 1/12π2 (in addition, we assume for the sake
of simplicity that S′

counter = 0), which yields

Γ̄ = Γ̃(Vµ, Aµ +
fπ
m
∂µϕ).
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Thus, the above example demonstrates that the
requirement that the equivalence theorem be valid
does not remove arbitrariness associated with the
possibility of adding finite counterterms that lead to
physically nonequivalent theories.

By considering the same model, we will now
demonstrate that, in contrast to the equivalence the-
orem, all symmetries of the classical action functional
cannot be generalized to the case of quantum theory.

We note that, in addition to (15), the action func-
tional (14) possesses the local vector symmetry(

∂µ
δ

δVµ
− i

(
ψ
δ

δψ
− ψ̄

δ

δψ̄

))
S = 0 (20)

and the local axial symmetry(
∂µ

δ

δAµ
− ifπ

m

(
γ5ψ

δ

δψ
+ ψ̄γ5 δ

δψ̄

))
S = 0. (21)

Let us explicitly write the equation that corresponds
to the symmetry of the classical action functional (14)
under global axial transformations and which is of
course a limiting case of Eq. (21):

∫
dx

(
γ5ψ

δ

δψ
+ ψ̄γ5 δ

δψ̄

)
S = 0. (22)

Instead of Eq. (21), we can consider the equation(
∂

∂α
− fπ
m

∫
dx∂µϕ

δ

δAµ

)
S = 0, (23)

which, with allowance for (15), is equivalent to it.
As to the local vector symmetry, we assume (al-

though this is immaterial for our purposes) that it
preserves its form in quantum theory—that is, that
the generating functional for vertex functions satisfies
the equation(

∂µ
δ

δVµ
− i

(
ψ
δ

δψ
− ψ̄ δ

δψ̄

))
Γ(1) = 0, (24)

or, which is equivalent, the equation

∂µ
δ

δVµ
Γ̄ = 0. (25)

In quantum theory, the analogs of Eqs. (21) and
(23) of the local axial symmetry must take the form∫

dx

(
(∂µϕ+O(�))

δ

δAµ
+
ifπ
m

[
(γ5ϕ (26)

+O(�))ψ
δ

δψ
+ ψ̄(γ5ϕ+O(�))

δ

δψ̄

])
Γ(1) = 0;(

∂

∂α
− fπ
m

∫
dx(∂µϕ+O(�))

δ

δAµ

)
Γ(1) = 0, (27)

or, which is equivalent,

∂µ
δ

δAµ
Γ̄ = 0; (28)
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(
∂

∂α
− fπ
m

∫
dx∂µϕ

δ

δAµ

)
Γ̄ = 0 (29)

[we recall that the functional Γ̄ is an O(�) quantity].
From the explicit expression (19) for the functional

Γ̄, it can be seen that either Eq. (17) can be satisfied,
as was discussed above, or this is so for Eq. (29)
[which means that the functional Γ̄ depends on Aµ
and ϕ only in the form of the combination Aµ +
(αfπ/m)∂µϕ], but that the two equations cannot be
satisfied simultaneously. Equation (28) can never be
valid [irrespective of whether Eqs. (17), (25), and (29)
hold or whether they do not hold].

On the other hand, it can be seen from the explicit
expression for the functional Γ(1) that it possesses a
global axial symmetry,∫

dx

(
γ5ψ

δ

δψ
+ ψ̄γ5 δ

δψ̄

)
Γ(1) = 0; (30)

that is, the global axial symmetry (22) of the classical
action functional remains valid in quantum theory as
well (in contrast to a local axial symmetry). This
fact does not contradict the violation of (anomaly
in) the law of axial-current conservation in quantum
theory, since, in quantum theory, there is no direct
analog of the Noether theorem, according to which
the presence of a continuous symmetry of the local
classical action functional leads to the existence of a
conserved current.
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Abstract—A device for amplifying weak electric signals arising in a normal- or a superconducting-metal
absorber upon the absorption of photons or phonons is proposed. The device consists of a cascade of
normal-metal–insulator–superconductor (NIS) tunnel junctions, where the normal metal is used as an
electrode and as a hot-electron microcalorimeter. Tunneling through the barrier, a particle transports
energy of about ∆ (energy gap in the superconductor) from one microcalorimeter to another and amplifies
the current through the next NIS junction. The device operates as a solid-state electron multiplier at low
temperatures. c© 2002 MAIK “Nauka/Interperiodica”.
In this study, it is shown that the signal initiated
by the emergence of hot electrons upon the absorption
of, for example, the energy of x-ray and γ-ray photons
or the energy of recoil nuclei in a metal can be
detected and amplified by a device based on a chain
of series microcalorimeters involving normal-metal–
insulator–superconductor (NIS) tunnel junctions.
Such a device has the N1I1S1N2I2S2 . . . NnInSn
structure formed by a cascade of microcalorimeters
and NIS junctions (n), where the normal metal N is
a microcalorimeter; simultaneously, part of its surface
plays the role of the normal electrode of the tunnel
junction. The second, superconducting, electrode S
of this junction is in contact with the normal metal of
the next calorimeter. Either the first microcalorimeter
or, for enhancing the efficiency, the superconductor
contacting it serves as the absorber.

The densities of electron states and transitions of
quasielectrons through the tunnel junctions of the
structure under consideration are shown in Fig. 1a.
The direct tunnel current I through the NIS junction
is given by

I =
1

2eRn
(2π∆kBT )1/2 exp

(
−∆− eV

kBT

)
. (1)

The bias voltageV applied to each junction has the
same value and satisfies the condition (∆ − eV )�
kBT , where T is the absolute temperature; ∆ is the
energy gap in the superconductor; and Rn is the
normal resistance, which is assumed to be identical
for all junctions. Upon traversing the first junction,
electrons arrive at the second microcalorimeter N2
and release a power ∆× I/e in it. In equilibrium, the
heat coming to the calorimeter must be equal to the
1063-7788/02/6501-0038$22.00 c©
loss of heat by thermal conductivity. In this case, the
following condition must be satisfied:

∆
1
e
I = −GδT. (2)

Here, δT is the temperature difference between the
electrons in the calorimeter and the ambient medium,
whileG is the thermal conductivity determined by two
possible mechanisms, G = ge−p + gt. One of them,
ge−p, is the thermal conductivity associated with en-
ergy transfer to phonons by radiation, while the other,
gt, is the electron-energy transport during tunnel-
ing itself. The thermal conductivity ge−p is given
by ge−p = 5ΣUT 4, where Σ is the electron–phonon
coupling constant depending on the microcalorimeter
material (for copper, Σ = 2× 10−9 W K−5 µm−3)
and U and T are, respectively, the volume and the
temperature of the microcalorimeter. The thermal
conductivity gt can be obtained by multiplying the
energy carried by one electron, ∼(∆− eV ), by the
current increment per 1 K of heating:

gt = (∆ − eV )
1
e

dI

dT
. (3)

Calculations reveal that the increase δT [Eq. (2)]
in the microcalorimeter temperature due to the pas-
sage of the direct tunnel current of required magni-
tude is small because of the thermal conductivity of
the electrodes, which are in thermal contact with the
cool conductor of the refrigirator.

The absorption of energy E in the first mi-
crocalorimeter N1 leads, above all, to the heating of
electrons because the electron–phonon interaction
ge−p is very weak (kBT � ∆) at low temperatures.
2002 MAIK “Nauka/Interperiodica”
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We assume that the time of electron heating is
very short, in which case the further variation of the
electron temperature is given by

δT1(t) =
E

c1
exp

(
− t

τd

)
, (4)

where the constant τd characterizes the time of cool-
ing of the first microcalorimeter: τd = c1/(ge−p + g1)
(g1 is the value of gt for the first calorimeter and c1 is
its heat capacity). As soon as hot electrons appear in
the normal electrode N1 of the first NIS junction, the
tunnel current through this junction increases by the
quantity

δI1(t) =
dI1
dT

δT1(t). (5)

As a result, excess quasielectrons of energy about
∆ appear in the superconducting electrode S2 and,
then, quickly penetrate into the microcalorimeter N2,
increasing its electron temperature by δT2(t). It
should be emphasized that the inverse tunneling is
suppressed here because the metal N2 acts as a trap.
The temperature δT2(t) is a function of time and can
be found from the differential equation

d(δT2)
dt

=
∆
c2

1
e
δI1 −

g2
c2
δT2, (6)

where c2 is the heat capacity of the second microcalori-
meter and g2 is the thermal conductivity gt due to tun-
neling through the second NIS junction. The thermal
conductivity due to electron–phonon interaction is
much less than gt and is neglected here (ge−p � gt).
Integrating Eq. (6), we obtain

δT2(t) =
a∆
c2c1

E

[
exp(−λ1t)
λ2 − λ1

+
exp(−λ2t)
λ1 − λ2

]
. (7)

For the current δI2 through the second microcalori-
meter, we then have

δI2(t) =
a2∆
c2c1

E

[
exp(−λ1t)
λ2 − λ1

+
exp(−λ2t)
λ1 − λ2

]
, (8)

where a = 1/e · dI/dT and λi = gi/ci. The sub-
sequent penetration of electrons into the third mi-
crocalorimeter leads to a change in the temperature
of this calorimeter. This change, δT3(t), can be found
from an equation similar to (6).

δT3(t) =
a2∆2

c3c2c1
E

[
exp(−λ1t)

(λ3 − λ1)(λ2 − λ1)
(9)

+
exp(−λ2t)

(λ3 − λ2)(λ1 − λ2)
+

exp(−λ3t)
(λ1 − λ3)(λ2 − λ3)

]
.

For the current, we obtain

δI3(t) =
a3∆2

c3c2c1
E

[
exp(−λ1t)

(λ3 − λ1)(λ2 − λ1)
(10)

+
exp(−λ2t)

(λ3 − λ2)(λ1 − λ2)
+

exp(−λ3t)
(λ1 − λ3)(λ2 − λ3)

]
.
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Fig. 1. (a) Diagram of electron states in the supercon-
ducting absorber (S0) and in the electrodes of the electron
multiplier (N1S1, N2S2 . . .). The notation used in the
figure is the following: I1, I2 . . ., are insulating barriers;
arrows indicate the directions of quasiparticle transitions;
Ee andEh are the energies of electrons and holes, respec-
tively; EF is the Fermi energy; and V is the bias voltage.
(b) Layout of the multiplier structure: (1) absorber, (2)
normal metal (Ag), (3) insulating barrier (Al2O3), (4)
superconducting electrode (Nb), (5) substrate, and (6)
electric contacts.

Using the same method, we find, for the nth
calorimeter of the cascade, that

δIn(t) =
an∆n−1

cn · · · c1
E

[
exp(−λ1t)

(λ2 − λ1) · · · (λn − λ1)
(11)

+
exp(−λ2t)

(λ1 − λ2) · · · (λn − λ2)
+ . . .

+
exp(−λnt)

(λ1 − λn) · · · (λn−1 − λn)

]
.

These expressions show that the current-pulse shape
is described by a superposition of exponentials and
that its amplitude value δIn(τ) increases with in-
creasing number n of cascades. The amplification
factor Kn = δIn(τ)/δI1(0) for the system involving
only two series NIS junctions (n = 2) has the form

K2 =
∆
c2

1
e

dI

dT

(
exp(−λ1τ2)
λ2 − λ1

+
exp(−λ2τ2)
λ1 − λ2

)
,

(12)
2



40 SHPINEL
where the constant τ2 is the time it takes for the signal
to pass an amplitude value:

τ2 =
lnλ2 − lnλ1

λ2 − λ1
. (13)

To estimate Kn, we assume that, in expres-
sion (11), all the values of ci are on the same order
of magnitude and that all differences (λ1 − λk) there
are about λ1. We then have

Kn =
(

∆
g

1
e

dI

dT

)n−1

f(τn) =
(

∆
∆− eV

)n−1

f(τn),

(14)

where f(τn) is the value obtained by taking the func-
tion describing the time dependence of the pulse
shape at the instant τn corresponding to its maxi-
mum.

The structure of the cascade of series NIS junc-
tions is shown schematically in Fig. 1b. For mi-
crocalorimeters and normal electrodes, use is made
there of silver films of area 40× 10 µm2 and thickness
0.1 µm. The films were sputtered on a substrate
20 µm apart. On each film, an Al2O3 oxide layer
is formed that covers only part of its surface. After
that, Nb was sputtered on this oxide layer and on the
surface of the neighboring silver film not covered with
the oxide. In this way, we formed the superconducting
electrode of the junction and implemented a Nb–Ag
contact. In order to eliminate or to reduce heat losses
into the substrate, it must be fabricated in the form of
a thin membrane from Si3N4, as is recommended in
the literature [1].

The volume of each microcalorimeter is 40 µm3,
and its heat capacity is c = 7× 10−16 cal K−1.
Setting the parameters to ∆ = 1.4 × 10−3 eV, (∆−
eV )/kBT = 2, Rn = 0.1 Ω, and T = 80× 10−3 K,
we obtain the current of I = 1.63 × 10−4 A, the time
constant of τ ∼ 0.5 × 10−7 s, the amplification factor
of K2 = 102, and a strong increase in the amplifi-
cation with increasing number of cascades. Thus,
the structure that is considered here and which is
formed by a cascade of NIS tunnel junctions involving
microcalorimeters has the properties of an electron
multiplier that makes it possible to dispense with
routinely used preamplifiers and SQUID amplifiers
specially developed for detecting weak signals.

The energy resolution of such a multiplier is lim-
ited by thermal and electron noises. In our case,
the thermodynamic limit on the resolution, ∆E =
2.35(kBT

2c)1/2, is 0.25 eV. Electron noises caused
by the shot effect of the direct tunnel current yield a
value of (Iτ/e)1/2 = 0.7× 104 electrons for the fluc-
tuation of the number of electrons over the time τ (it
PH
is equivalent to the absorption of energy of 0.16 eV).
If we replace Nb by Al (∆ = 0.235 × 10−3 eV) in
such a multiplier, the amplification decreases for the
adopted values of the parameters [Rn, T , and (∆−
eV )/kBT = 2], but it still remains reasonably high,
K2 = 18.

While the quantity ge−p increases with increasing
temperature, gt decreases. For example, these quan-
tities are on the same order of magnitude in our case of
Ag/Al2O3/Nb junctions at T = 1.3 K: ge–p = 2.8×
10−7 cal s−1 K−1 and gt = 0.58 × 10−7 cal s−1 K−1.
For this reason, it is necessary to replace λ = gt/c
byλ = G/c = (ge–p + gt)/c in the formulas presented
above. This will result in that the signal duration
will become shorter, while the amplification factor will
decrease to the value of K2 = 1.19. Such a multiplier
formed by ten cascades yields the total amplification
factor of K10 = 4.8. It should be noted that an in-
crease in ge–p will lead to an increase in the noise
associated with it.

The amplification of the signal by two cascades
of tunnel NIS junctions was reported in [2], and the
same principle of amplification was proposed in [3]
for creating a low-temperature amplifier that would
replace transistors and which was dubbed a “quatra-
tran.”

In summary, a new principle of the amplification of
signals induced by hot electrons in a microcalorimeter
operating as a high-resolution cryogenic detector of
soft x rays and γ rays has been proposed in the present
article. Owing to a low energy detection threshold in
such a detector, it would become possible to measure
the recoil energy of metal nuclei undergoing beta
decay or capturing electrons.
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Abstract—The ground-state energy of three-particle Coulomb systems (trions) is investigated versus the
masses of the particles involved. Variational calculations are performed for 34 asymmetric trionsX±Y ±Z∓

consisting of electrons, muons, pions, kaons, nuclei of hydrogen isotopes and their antiparticles, as well as
for more than 100 auxiliary three-particle systems involving particles of masses chosen arbitrarily. Wide
bases of Laguerre exponential–polynomial functions depending on perimetric particle coordinates are used.
Approximate analytic formulas for the ground-state energies of all trionsX±Y ±Z∓ with arbitrary particle
masses are constructed on the basis of the values found here for the energies of asymmetric trions and the
values calculated previously for the energies of symmetric trions X±X±Z∓. Particle-mass regions are
determined where trions are stable with respect to dissociation. In addition to symmetric trionsX±X±Z∓,
which are stable at any particle masses, asymmetric trions X±X±Z∓ possess the stability property if the
masses of the particles X and Y exceed the mass of the particle Z, where, by Z, we mean, for example,
an electron, a muon, a pion, or a kaon. The t+d+p− and t+d+d− combinations of hydrogen nuclei and
antinuclei are also stable with respect to dissociation. The general properties of the ground-state trion
energy as a function of the particle masses are discussed. c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Three-particle Coulomb systems (trions) are of
interest for the theory of atoms and molecules, solid-
state and nuclear physics, and elementary-particle
theory. In view of a wide diversity of trions, which
may consist of electrons, muons, pions, kaons, hy-
drogen nuclei, and other particles and antiparticles,
it is highly desirable to perform a systematic analysis
of their energies and properties versus the masses of
the particles involved. The relevant dependences are
determined by the dependence of the trion Hamilto-
nians on the particle masses, which can be treated
by convention as continuous variables. The basic
points of this approach were formulated in [1], where
an approximate formula was proposed for the ground-
state energy ofX±X±Z∓ trions, which are symmet-
ric with respect to two particles and which represent
a series extending from the molecular hydrogen ion
H+

2 through various molecule-like and atomlike tri-
ons to the negative ion H− of the hydrogen atom
as one varies the particle masses. In [2], this ap-
proach was supplemented with detailed variational
calculations performed for symmetric trions by us-
ing wide bases of Laguerre exponential–polynomial

1)Makarov State Marine Academy, St. Petersburg, Russia.
1063-7788/02/6501-0041$22.00 c©
functions; also, precision analytic formulas were con-
structed there for predicting their energies. The re-
sults obtained along these lines demonstrate that the
approach based on studying the parametric depen-
dence of relevant Hamiltonians on particle masses
possesses a rich potential.

It is of importance to generalize such an approach
to a wide variety of particle-mass-asymmetric trions
X±Y ±Z∓, in which the charges of the particles in-
volved are taken to be q1 = q2 = −q3 = ±1, while the
masses of the particles carrying identical charges are
different: m1 �= m2.

When the masses of all particles are changed by a
factor of k, the energy of the Coulomb systems being
considered changes by the same factor. The reduced
energy of symmetric trions that arises upon separat-
ing this proportionality factor depends only on one pa-
rameter that is determined by the particle-mass ratio
m3/m1; as to the reduced energy of asymmetric tri-
ons, it depends on two parameters determined by the
particle-mass ratiosm3/m1 andm2/m1. Because of
this dependence on two variables, it is more difficult to
investigate the reduced energy of asymmetric trions
than the reduced energy of symmetric trions.

In contrast to symmetric trions X±X±Z∓, which
are stable with respect to dissociation at any particle
2002MAIK “Nauka/Interperiodica”
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masses, asymmetric trions X±Y ±Z∓ become un-
stable as soon as the masses of the particles X and
Y appear to be strongly different—as a result, such
trions decay into the atomX±Z∓ and the free particle
Y ±.

PARAMETRIZATION
OF THE PARTICLE-MASS DEPENDENCE

OF THE TRION ENERGY

Trions formed by particles having unit charges and
arbitrary masses are described by the Hamiltonian

H(r1, r2, r3) (1)

= −(1/2)[∆1/m1 + ∆2/m2 + ∆3/m3]
+ 1/r12 − 1/r13 − 1/r23.

Here, we have used the system of Hartree atomic
units (� = me = |e| = 1). The likely charged parti-
cles 1 and 2 will be numbered in such a way that
m1 � m2.

Introducing the relative particle coordinates
s = α(r1 − r2), t = α(r1 + r2 − 2r3) (2)

and separating the nonquantized motion of the center
of mass, we find from (1) that the Hamiltonian can be
recast into the form

H = αh(s, t;β, γ), (3)

where h(s, t;β, γ) is the operator representing the
reduced energy of the trion whose center of mass is
at rest,

h(s, t;β, γ) = −β∆s + 2γ∇s∇t (4)

−∆t + 1/|s| − 2/|s + t| − 2/|s− t|,
and where the parameters α, β, and γ depend on the
particle masses as

α = 2/(4/m3 + 1/m1 + 1/m2), (5)

β = (1/m1 + 1/m2)/[4/m3 + 1/m1 + 1/m2], (6a)

γ = (1/m2 − 1/m1)/[4/m3 + 1/m1 + 1/m2]. (6b)

The quantities β and γ are dimensionless and are
bounded for any positive values of the particle masses:

0 � β � 1, (7a)

0 � γ � β. (7b)

They can vary within a right triangle whose legs
are of unit length. Small values of the parameter
β correspond to molecule-like systems consisting of
heavy particles 1 and 2 and a light particle 3, while its
values close to unity correspond to atomlike systems
involving light particles 1 and 2 and a heavy particle 3.

Denoting by ε(β, γ) the lowest eigenvalue of the
operator h(s, t;β, γ) (4), we find from (3) that the
P

ground-state energy of a trion whose center of mass
is at rest can be recast into the form

E(m1,m2,m3) = αε(β, γ). (8)

Thus, investigation of the ground-state energy
of trions formed by particles of arbitrary masses
amounts to considering the function ε(β, γ) of two
variables. We will show that this function in-
creases monotonically with increasing β and de-
creases monotonically with increasing γ.

By applying the Feynman–Hellmann theorem to
the β dependence of the eigenvalue of the reduced-
energy operator (4), we arrive at

∂ε(β, γ)/∂β = 〈−∆s〉 � 0. (9)

Here, the inequality sign takes into account non-
negativity of the expectation value of the operator
−∆s. From (9), it follows that the reduced energy of
a trion increases monotonically with increasing β:

ε(β2, γ) � ε(β1, γ) for β2 � β1. (10)

According to (6b), the reversal of the sign of γ
corresponds to the interchange of the masses of the
likely charged particles 1 and 2; since this does not
affect the trion energy, the reduced energy ε is an even
function of γ:
ε(β, γ) = ε(β,−γ), ∂ε(β, γ)/∂γ|γ=0 = 0. (11)

From the basic equations of perturbation theory, it
follows that the second derivative of the lowest energy
eigenvalue with respect to a parameter that appears
linearly in theHamiltonian cannot be positive (see, for
example, [3]):

∂2ε(β, γ)/∂γ2 � 0. (12)

With allowance for (11), this means that the func-
tion ε(β, γ) has a maximum at γ = 0 and decreases
monotonically with increasing absolute value of γ.
Therefore, we have
ε(β, γ2) � ε(β, γ1) < ε(β, 0) for γ2 � γ1 > 0.

(13)

FORMULAS FOR TRION ENERGIES

Let us now construct analytic formulas for the
energies of molecule-like and atomlike trions formed
by particles of arbitrary masses. We denote by β0

the value of β [recall that this parameter is given by
Eq. (6a)] that separates the region of molecule-like
trions (0 � β � β0) and the region of atomlike trions
(1 � β � β0) and which can of course be chosen only
by convention.

The quantity β (6a) can be represented in the form
β = 1/(1 + 4µ12/m3), where µ12 = m1m2/(m1 +
m2), whence it follows that β is small if the ratio of
the mass m3 of particle 3 to the reduced mass µ12

of particles 1 and 2 is small. The case of m3 = 1
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Table 1. Variational values of the ground state energy E of asymmetric trionsXY Z and their dissociation energyD

XY Z E D XY Z E D

∞pe −0.59879012 0.09879012 dpK −384.336511 1.920730

∞Ke −0.59728342 0.09728342 dpπ −135.752052 8.646704

∞πe −0.59226972 0.09226972 dpµ −106.012527 8.141724

∞µe −0.59061563 0.09061563 dpe −0.59789797 0.09803415

tdd −1101.36421 0.92422 dKπ −129.714658 2.609310

tdK −429.800535 18.938568 dKµ −101.487236 3.616433

tdπ −143.966185 13.866982 dKe −0.59659347 0.09672966

tdµ −111.364347 11.728063 dπe −0.59186474 0.09200092

tde −0.59913066 0.09922161 pKπ −122.833333 3.953225

tpK −411.130254 0.268287 pKµ −97.4398216 4.5194127

tpπ −138.194810 8.0956969 pπe −0.59147245 0.09174461

tpµ −107.494703 7.858419 pµe −0.58990379 0.09017595

tpe −0.59817613 0.09826708 Kπe −0.59079299 0.09130997

tKπ −132.371970 2.272768 Kµe −0.58928945 0.08980643

tKµ −103.014124 3.377840 πµπ −68.4438759 0.1621304

tKe −0.59681456 0.09690551 πµµ −59.1982179 0.3583052

tπe −0.59199787 0.09208881 πµe −0.58632206 0.08814603

Note: The calculations were performed for the following particle-mass values: me = 1, mµ = 206.768262, mπ = 273.12695,
mK = 966.1521, mp = 1836.152701, md = 3670.483014, and mt = 5496.92158. The symbol “∞” stands for an infinitely
heavy particle. The energy values are given in Hartree atomic units.
and µ12 =∞ (β = 0) corresponds to the energy of
the molecular hydrogen ion H+

2 formed by immobile
nuclei occurring at equilibrium distances from each
other. The first correction to this energy due to a
deviation of β from zero is a quantum of zero-point
oscillations and is of order (m3/µ12)1/2 (first order in
β1/2). In view of this, we assume that, at small β,
the lowest eigenvalue ε(β, γ) of the operator given by
(4) can be expanded in a series in powers of β1/2. By
virtue of (11), the expansion of ε(β, γ) in γ involves
only even powers of γ. As a result, we have

ε (β, γ) =
∑
k,l=0

Cklβ
k/2γ2l (0 � β � β0). (14)

Taking into account Eq. (8), we find that the
energy of molecule-like trions (0 � β � β0) can be
represented as

E (m1,m2,m3) = α (m1,m2,m3) (15)

×
∑
k,l=0

Cklβ (m1,m2,m3)
k/2 γ (m1,m2,m3)

2l.

The dependence of α, β, and γ on the particle masses
is specified by Eqs. (5), (6a), and (6b).
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In the case of atomlike trions (1 � β � β0), it is
of importance to study the behavior of the function
ε(β, γ) in the vicinity of the point β = 1. In describing
such trions, it is convenient to use, instead of the
coordinates given by Eq. (2), the different relative
coordinates
u = 2m1m2m3(r1 − r3)/[2m1m2 + (m1 +m2)m3],

(16)

v = 2m1m2m3(r2 − r3)/[2m1m2 + (m1 +m2)m3].
In terms of these coordinates, the Hamiltonian for a
trion whose center of mass is immobile takes the form

H(u, v) = [2α/(1 + β)] [−(∆u + ∆v)/2 (17)

+ γ(∆u −∆v)/(1 + β)− (1− β)∇u∇v/(1 + β)
+ 1/|u − v| − 1/|u| − 1/|v|] .

Its eigenvalues are proportional to 2α/(1 +β) and de-
pend on (1− β)/(1 + β) and γ/(1 + β), these eigen-
values being even functions of the latter. In accor-
dance with this, we find that the energy of atomlike
trions (1 � β � β0) can be represented as

E (m1,m2,m3) = 2α (m1,m2,m3) (18)

×
∑
k,l=0

Dkl
[1− β (m1,m2,m3)]

k γ (m1,m2,m3)
2l

[1 + β (m1,m2,m3)]
1+k+2l

.

2
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Table 2. Coefficients Ckl in expression (15) for the ground-state energies of molecule-like trions formed by particles of
arbitrary masses

k\l 0 1 2 3 4

0 −1.20526928 +1.51242531× 10−6 +3.16620400× 10−5 −2.99544647× 10−4 +2.60965753× 10−4

1 +6.41792883× 10−1 −3.97265783× 10−4 −3.34351306× 10−3 +3.69621461× 10−2 −3.20288790× 10−2

2 +2.84533332× 10−1 +2.58994774× 10−2 +1.42668705× 10−1 −1.64771021 +1.38281792

3 −1.68692736× 10−1 −9.46297876× 10−1 −2.61150278 +3.11319673× 10 −2.43842847× 10

4 −2.31688557× 10−1 −3.90717332 +1.27581061× 10 −2.28777592× 102 +1.51267584× 102

5 +5.15901631× 10−1 −4.21275017× 10 −2.53003514 +7.64003373× 102 −3.40806411× 10−2

6 −9.65653999× 10−1 +6.49728994× 10 −1.04401088× 102 −1.17529236× 103 +9.34085320× 10

7 +6.92626729× 10−1 −1.52826472× 10 +2.03656867× 102 +6.78822845× 102 +3.62074191× 102

Table 3. CoefficientsDkl in expression (18) for ground-state energies of atomlike trions formed by particles of arbitrary
masses

k\l 0 1 2 3 4

0 −5.27751026× 10−1 −1.13168929× 10 +7.57548297 +2.04115176× 103 +3.12236903× 105

1 +3.28858696× 10−2 −1.10733733× 10 +2.82168215× 102 −2.42035309× 104 +1.10089366× 106

2 −5.99730266× 10−2 +7.14241581 −1.18146825× 103 +1.19192854× 106 −2.78805701× 108

3 +3.71230296× 10−2 +1.08208407× 10 +1.59135593× 104 −1.15845842× 107 +2.87030990× 109

4 −4.66442081× 10−2 +4.85297705× 10 −6.83844656× 104 +4.84275484× 107 −1.23371748× 1010

5 +3.38522644× 10−2 −1.01678037× 102 +1.22934741× 105 −9.07993966× 107 +2.31729541× 1010

6 −3.14792151× 10−2 +5.54377099× 10 −8.13036181× 104 +6.21813140× 107 −1.57911719× 1010
Expressions (15) and (18) are generalizations of
the corresponding expressions for the energies of
symmetric trions from [2] to the case of asymmetric
trions formed by particles of arbitrary masses and
reduce to them at γ = 0.

The coefficients Ckl and Dkl in expressions (15)
and (18), respectively, were determined from a least
squares fit to the results of our variational calculations
performed for the energies of 206 trions by using wide
bases of up to 3000 Laguerre exponential–polynomial
functions of perimetric particle coordinates. In order
to obtain a denser coverage of triangle (7) in the plane
spanned by the parameters β and γ with reference
points, these calculations were performed both for
sets of the particle masses m1, m2, and m3 corre-
sponding to actual trions and for hypothetical sets of
masses.

The variational values that we calculated for the
energies of 34 actual asymmetric trions are presented
in Table 1, along with the corresponding dissociation
energies. These values comply with the results of the
calculations from [4] to within seven to eight signif-
icant digits for the energies of asymmetric muonic
molecules and to within eight to nine significant digits
PHY
for the energies of asymmetric kaonic molecules. At
the same time, the variational values that we found for
the ground-state energies of two systems formed by
particles of close masses (π+µ+µ− and π+µ+π−) are
well below the values of –59.19816 and –68.44278
quoted in [4] (see Table 1).

Choosing an ad hoc boundary between molecule-
like and atomlike trions at β0 = 0.3, we found that
the 40-term formula (15) with the coefficients Ckl
from Table 2 reproduces the ground-state energies for
all 85 reference molecule-like trions with a relative
root-mean-square uncertainty of 9× 10−8 and that
the 35-term formula (18) with the coefficients Dkl
from Table 3 reproduces the ground-state energies
for all 121 reference atomlike trions with a relative
root-mean-square uncertainty of 2× 10−8. These
formulas make it possible to predict, to a precision of
a few units at the seventh decimal place, the energies
of all trions formed by particles of arbitrary masses.
At γ = 0, they approximate the ground-state energies
of symmetric trions. (The values found here for the
coefficients Ck0 and Dk0 differ somewhat from those
that were reported in [2] for symmetric trions; this is
because the numbers of terms in the sums over k here
and in [2] are different.)
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ON THE STABILITY OF TRIONS

The problem of stability of trions consisting of
particles that have unit charges was considered in
[5–10]. Here, we are going to demonstrate that the
particle-mass region where trions are stable with re-
spect to dissociation can be considerably extended by
combining the results of our variational calculations
with the quantum-mechanical convexity relation for
energy.

The lowest eigenvalue E(λ) of the operator
H = T + V + λW, (19)

where the operators T , V , and W are homogeneous
functions of coordinates, their degrees of homogene-
ity being, respectively, –2,−p, and−q, and where λ is
a parameter, which is seen to appear linearly in (19),
was considered in [11, 12]. By varying the scale of
the wave function, it can be proven that the following
inequality is valid for the derivatives of E(λ):
E ′′(λ) � q2E ′(λ)2/[2pE(λ) + (q − p)(2− q)λE ′(λ)].

(20)

We now draw the straight line passing through
two points (β1, γ1) and (β2, γ2) in the βγ plane:

β(λ) = β1 + λ(β2 − β1), (21)

γ(λ) = γ1 + λ(γ2 − γ1).

Let us consider the family of trions that is rep-
resented by the points (β(λ), γ(λ)) lying on this
straight line. Substituting (21) into (4), we obtain
the reduced-energy operator for the members of this
family. It has the form (19), where p = 1 and q = 2
and where

T = −β∆s + 2γ∇s∇t −∆t, (22)

V = 1/|s| − 2/|s + t| − 2/|s− t|,
W = (β1 − β2)∆s + 2(γ2 − γ1)∇s∇t.

Therefore, the reduced ground-state energy of trions
belonging to this family,

E(λ) = ε(β(λ), γ(λ)), (23)

satisfies the inequality in (20) with p = 1 and q = 2:

E ′′(λ) � 2E ′(λ)2/E(λ). (24)

Since E(λ) < 0 for a Coulomb system, it follows from
(24) that

[−1/E(λ)]′′ � 0. (25)

This inequality demonstrates that the graph repre-
senting the dependence of −1/E(λ) on λ is convex
upward. A linear approximation of such a function on
the basis of its values at the points λ = 0 and λ = 1
determines the boundary of its values at any point λ:

−1/E(λ) �
� −1/E(0) − λ[1/E(1) − 1/E(0)]. (26)
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Here, the upper (lower) inequality sign corresponds
to λ within (off) the interval 0 < λ < 1. Returning,
with allowance for (23), from the quantity E(λ) to
the function ε(β(λ), γ(λ)), we find from (26) that the
reduced energies of the family of trions occurring on
the straight line (21) satisfy the inequalities

ε(β(λ), γ(λ)) �
� ε(β1, γ1)ε(β2, γ2)/[(1 − λ) (27)

× ε(β2, γ2) + λε(β1, γ1)],
with the same conventions for the inequality signs as
in (26). The inequalities in (27) specify a lower bound
on the reduced energy ε(β(λ), γ(λ)) at the points
lying on the straight-line segment between the points
(β1, γ1) and (β2, γ2) and an upper bound on it at the
points occurring off this segment.

If, of the two likely charged particles, the lighter
(particle 2) is removed from the trion, there arises a
(1, 3) atom whose ground-state energy is

Eat(m1,m3) = −m1m3/2(m1 +m3). (28)

By virtue of the variational principle, the ground-
state energy of the trion is either below the energy of
this atom,

E(m1,m2,m3) < Eat(m1,m3), (29a)

or equal to it,
E(m1,m2,m3) = Eat(m1,m3). (29b)

The trion is stable (unstable) with respect to dissoci-
ation in the first (second) case. By using relations (5),
(6), and (8), the conditions under which the triton is
stable or unstable [(29a) or (29b), respectively] reduce
to the following inequalities for its reduced energy:

ε(β, γ) < 1/(2γ − β − 1), (30a)

ε(β, γ) = 1/(2γ − β − 1). (30b)

At the boundary of the stability region given by (30b),
the reduced energy ε(β, γ) changes continuously, but
its derivative along the normal to the boundary under-
goes a discontinuity, taking unequal values on the two
sides of the boundary. Therefore, expressions (14),
(15), and (18), which are continuously differentiable
with respect to β and γ, approximate the energy of
trions only in the region of their stability.

STABILITY OF SYMMETRIC TRIONS

All symmetric trions such that the likely charged
particles have identical masses (m1 = m2) are stable
with respect to dissociation [5]. This follows, for
example, from the properties of the positronium ion
e−e−e+ (m1 = m2 = m3 = 1), for which the ground-
state energy and the mean values of the kinetic ener-
gies of the individual constituent particles are [13] (in
Hartree atomic units)

E(1, 1, 1) = −0.262005;
2
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〈−∆1/2〉 = 〈−∆2/2〉 = 0.066619
and 〈−∆3/2〉 = 0.128767.

Let us now consider a symmetric trion formed
by particles of masses m1 = m2 = M and m3 = m.
We take the expectation value of its energy for the
positronium-ion eigenfunction where the scale of the
coordinates of all particles is changed by a factor k.
By using the variational principle and the virial theo-
rem and considering that the operators of the kinetic
and the Coulomb potential energy are homogeneous,
we obtain the inequality

E(M,M,m) � k2[(〈−∆1/2〉 + 〈−∆2/2〉)/M (31)

+ 〈−∆3/2〉/m] + 2kE(1, 1, 1),

where angular brackets denote expectation values for
the positronium ion. By determining the optimum
value of the scale factor k from the requirement that
the right-hand side of the inequality in (31) be mini-
mal and taking into account the numerical values of
〈−∆1/2〉, 〈−∆2/2〉, and 〈−∆3/2〉, we obtain an up-
per bound on the energy of a symmetric trion formed
by particles of massesm1 = m2 = M andm3 = m:

E(M,M,m) � −mM/(1.9409m + 1.8758M). (32)

At all values of M and m, the upper bound given by
(32) is below the energy Eat(M,m) = −mM/2(m +
M) of the atom that is produced upon the decay of the
symmetric trion being considered. Thus, all symmet-
ric trions are stable with respect to dissociation. By
virtue of continuity, asymmetric trions in which the
difference ofm−1

1 andm−1
2 is small [that is, the asym-

metry parameter γ as given by (6b) is small] are also
stable. If, however, the asymmetry becomes greater,
the trion can lose stability, in which case it decays into
an atom that consists of two particles, 1 and 3, and
the free light particle 2, which is not confined in the
potential well of its polarization interaction with this
atom.

CONVEXITY OF INSTABILITY REGION

Wewill now show that, if two trions corresponding
to two points in the βγ plane that have coordinates
(β1, γ1) and (β2, γ2) are unstable, all trions corre-
sponding to the straight-line segment (21), which
connects these two points, are also unstable.

By virtue of (30b), the reduced energy of unstable
trions is given by

ε(β1, γ1) = 1/(2γ1 − β1 − 1), (33)

ε(β2, γ2) = 1/(2γ2 − β2 − 1).

Substituting these values into (27), we find that the
reduced energy of a trion that corresponds to any
P

point (β (λ),γ(λ)) of the straight-line segment (21)
satisfies the inequality

ε(β(λ), γ(λ)) � 1/[λ(2γ2 − β2 − 1) (34)

− (λ− 1)(2γ1 − β1 − 1)] = 1/(2γ(λ) − β(λ)− 1).

This means that trions are unstable at all points of
the straight-line segment connecting the points (β1,
γ1) and (β2, γ2). Therefore, the region of instability of
trions is convex [10].

REGION WHERE THE INSTABILITY
OF TRIONS CAN BE FIRMLY ESTABLISHED

An exact determination of the boundary separat-
ing, in the βγ plane, the region where trions are stable
from the region where trions are unstable is a problem
that has yet to be solved: variational calculations
furnish an upper bound on the ground-state energy
and make it possible to demonstrate stability for one
system or another, but special methods are required
to prove instability of such systems. Presently, a
reliable proof of instability has been obtained only for
trions with m1 =∞, m2 � 1.51, and m3 = 1 (β =
γ > 0.142) [14,15], whence it follows, among other
things, that a positron cannot form a bound state
with a hydrogen atom, and for trions withm1 � 1.57,
m2 = 1, andm3 =∞ (β = 1, γ > 0.222), which cor-
responds to instability of an analog of the negative ion
of the hydrogen atom where one “electron” is heavier
than the other one by a factor of 1.57 [16].

Let us now consider the region of β and γ values
where stability of trions can be reliably established.
The dimensions of such a region depend on the ap-
proach used and grow as this approach is refined.
The simplest approach is based on employing the
monotonic dependence of the reduced energy on γ.
Suppose that, for some trion, the parameters β and
γ satisfy the equation

1/(2γ − β − 1) = ε(β, 0), (35)

where ε(β,0) is the reduced energy of a symmetric
trion that is characterized by the same value of the
parameter β. With allowance for (13), it can then be
shown that inequality (30a) holds and that the trion is
stable at these values of the parameters β and γ.

In Fig. 1, the region in which the stability of trions
can be reliably established and whichwas constructed
on the basis of solving Eq. (35) is below the bro-
ken line formed by curve 3 and a segment of the
hypotenuse of the right triangle (7).

The region where stability can be definitively
proven can be extended on the basis of direct vari-
ational calculations of asymmetric trions. Such
calculations performed by using a basis of 50 ex-
ponential functions of interparticle distances reliably
established [7] stability in the region that, in Fig. 1,
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Fig. 1. Boundaries of the region where stability of X±X±Z∓ trions can be reliably established: (1) results of variational
calculations performed by using wide bases of Laguerre functions, (2) results of the calculations from [7], and (3) results of the
calculations based on Eq. (35). Stable symmetric trions lying on the β axis and stable trions bound by an electron, which are
represented by points occurring very closely to the origin of coordinates are not shown in the figure.
lies below curve 2 and a segment of the hypotenuse of
the triangle given by (7).

With the aid of variational calculations performed
by using wide bases of Laguerre functions of peri-
metric particle coordinates, we have refined the re-
gion where trions are definitively stable: in Fig. 1,
this region lies below curve 1 and the corresponding
segment of triangle (7).

In Fig. 2, points represent all trions that can be
composed of tritons (t), deuterons (d), protons (p),
kaons (K), pions (π), muons (µ), and electrons (e) (in
all, seven particle species) and their antiparticles and
which include 49 symmetric systems X±X±Z∓ and
147 asymmetric systems X±Y ±Z∓. All symmetric
trions are stable. Of the aforementioned 147 asym-
metric trions, 34 are definitively stable. These include
asymmetric molecule-like trions bound by an electron
(t+d+e−, t+p+e−, d+p+e−, t+K+e−, d+K+e−,
p+K+e−, t+π+e−, d+π+e−, p+π+e−, K+π+e−,
t+µ+e−, d+µ+e−, p+µ+e−, K+µ+e−, π+µ+e−),
a muon (t+d+µ−, t+p+µ−, d+p+µ−, t+K+µ−,
d+K+µ−, p+K+µ−, π+µ+µ−), a pion (t+d+π−,
t+p+π−, d+p+π−, t+K+π−, d+K+π−, p+K+π−,
π+µ+π−), or a kaon (t+d+K−, d+p+K−, t+p+K−).
Two asymmetric combinations of hydrogen nuclei
and antinuclei (t+d+p− and t+d+d−) are also stable.

The straight-line segment 2 in Fig. 2 connects the
aforementioned trion-instability points (β1 = 0.142,
γ1 = 0.142) and (β2 = 1, γ2 = 0.222). Since the
region of instability is convex, all trions occurring
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
above this line are unstable. The remaining 16 trions
(p+K+K−, t+d+t−, d+p+p−, π+µ+K−, K+π+µ−,
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Fig. 2. Points that, in the plane spanned by the pa-
rameters β = (1/m1 + 1/m2)/[4/m3 + 1/m1 + 1/m2]
and γ = (1/m2 − 1/m1)/[4/m3 + 1/m1 + 1/m2], cor-
respond to 196 trions X±Y ±Z∓ obtained by taking all
possible combinations of the following particle species
and their antiparticles: t, d, p,K, π, µ, and e. Symmetric
trionsX±X±Z∓, which are stable with respect to disso-
ciation, lie on the β axis. Asymmetric trions X±Y ±Z∓

whose stability (instability) can be definitively proven lie
below curve 1 (above the straight line 2). The condensa-
tion of points near the origin of coordinates corresponds
to trions bound by an electron, a muon, a pion, or a kaon.
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π+µ+p−, π+µ+d−, t+p+p−, π+µ+t−, p+K+p−,
p+π+µ−, K+π+π−, d+K+K−, d+p+d−, d+p+t−,
and p+K+d−) occurring between this line and the
boundary of the region where the trions in question
are definitively stable either are unstable or are char-
acterized by very low dissociation energies.

CONCLUSION

The results obtained here have revealed that, by
combining precision variational calculations of the
ground-state energies of reference trions with an
analysis of the parametric dependence of the relevant
Hamiltonian on the masses of the particles involved,
one can determine, to a fairly high precision, the
ground-state energies of all possible trions formed
by particles of arbitrary masses and unit charges.
The ground-state energies have been approximated
by expression (15) for all molecule-like trions and
by expression (18) for all atomlike trions. The
same approach has enables us to establish that, of
196 trions that can be composed of seven particle and
antiparticle species, 49 symmetric and 34 asymmetric
trions are stable.
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Abstract—Data published in the literature on various photonuclear reactions for the 20,22Ne isotopes
and for their natural mixture are analyzed with the aim of exploring special features of the decay of
giant-dipole-resonance states in these two isotopes. With the aid of data on the abundances of the
isotopes and on the energy reaction thresholds, the cross sections for the reactions 20,22Ne[(γ, n) + (γ, np)]
and 20,22Ne[(γ, p) + (γ, np)] are broken down into the contributions from the one-nucleon reactions
(γ, n) and (γ, p) and the contributions from the reactions (γ, np). The cross sections for the reactions
20,22Ne(γ, n)19,21Ne and 20,22Ne(γ, p)19,21F in the energy range Eγ = 16.0–28.0 MeV and the cross
sections for the reactions 20,22Ne(γ, np)18,20F in the energy range Eγ = 23.3–28.0 MeV are estimated.
The behavior of the cross-section ratio r = σ(γ, p)/σ(γ, n) for the 22Ne nucleus as a function of energy
is analyzed, and the isospin components of the giant dipole resonance in the 22Ne nucleus are identified.
The contributions of the isospin components of the giant dipole resonance in the 22Ne nucleus to the cross
sections for various photonuclear reactions are determined on the basis of an analysis of the diagram of
the excitation and decay of pure isospin states in the 22Ne nucleus and in nuclei neighboring it, which are
members of the corresponding isospin multiplets. The isospin splitting of the giant dipole resonance and
the ratio of the intensities of the isospin components are determined to be ∆E = 4.57± 0.69 MeV and
R = 0.24± 0.04, respectively. c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Experimental data on the isospin splitting

∆E = Ec.g.(T>)− Ec.g.(T<), (1)

where Ec.g. stands for the energy centers of gravity
of the cross sections σ> and σ< for the reactions
contributing to the corresponding components of the
giant dipole resonance (GDR) that are characterized
by the isospin values T> = T0 + 1 and T< = T0 =
(N − Z)/2 (the latter being the isospin of the ground
state of the nucleus being considered), and experi-
mental data on the ratio R of the intensities of the
isospin GDR components,

R = σ>−1/(σ
>
−1 + σ<−1), (2)

where σ−1 =
∫
σE−1dE is the first moment of the

integrated cross section for the GDR, were analyzed
in [1] for a large number of nuclei.

*e-mail: varlamov@depni.npi.msu.su
**e-mail: stepanov@depni.npi.msu.su
1063-7788/02/6501-0049$22.00 c©
For many nuclei (such as 14С, 44,48Ca, 48,54Ti,
54Cr, 54Fe, 65Cu, and 55Co), it was found that experi-
mental data deviate considerably from the predictions
of the traditional theoretical models proposed in [2–
5] for relatively heavy nuclei (A > 90). According to
these models,

∆Etheor = U(T0 + 1)/T0 = U0(T0 + 1)/A, (3)

where U = (U0/A)T0, U0 being the energy of nuclear
symmetry, and

Rtheor = 1/(T0 + 1). (4)

It was shown that these discrepancies reflect the
individual character of the manifestations of isospin
GDR components in different nuclei and are due to
the effect [6, 7] of the energy and isospin constraints
on the decay of isobar-analog states of such nuclei
through the neutronic channel. These constraints
manifest themselves in many experiments [8–12], but
they are disregarded by simple models.

It is not always possible to separate, on the
basis of data from photonuclear experiments, in-
formation about the photoneutron from information
about the photoproton channel of the decay of highly
2002MAIK “Nauka/Interperiodica”
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Table 1. Abundances of neon isotopes and thresholds for some photonuclear reactions

Isotope Abundance, %
Particle-separation energy in reactions, MeV

(γ, n) (γ, p) (γ, np) (γ, 2n) (γ, 2p)
20Ne 90.51 16.9 12.8 23.3 28.5 20.8
21Ne 0.27 6.3 13.0 19.6 23.6 23.6
22Ne 9.22 10.4 15.3 23.4 17.1 26.4

Table 2. Information about the energy dependences of the cross sections for photoneutron and photoproton reactions

Isotope Reaction Energy range, MeV References Code
natNe (γ, n) + (γ, np) + (γ, 2n)a) 16–26 [15] σV

(γ, n0 + n1 + n2)b) 17–31 [16]
20Ne (γ, n) + (γ, np) 16–28 [17] σA

(γ, p) + (γ, np)c) 16–28 [18]
22Ne (γ, 2n)a) 16–26 [15]

(γ, p) + (γ, np)c) 18–30 [18]

(γ, n) + (γ, np) (estimate) 16–26 [14] σX

a) Below the energy threshold for the reaction 20Ne(γ, 2n) (Ethr = 28.5 MeV), the cross sections for the reactions natNe(γ, 2n) and
22Ne(γ, 2n) are identical.

b) Presented in this case is the differential reaction cross section that was obtained from the energy spectrum of photoneutrons emitted
at an angle of 90◦ and which was multiplied by 4π.

c) Presented in this case is the differential reaction cross section that was obtained from the energy spectrum of photoprotons emitted
at an angle of 90◦ and which was multiplied by 4π.
excited states forming a GDR. Without invoking
the coincidence method, whose application runs into
considerable difficulties under the conditions where
the majority of the cross sections for photonuclear
reactions are moderately small, one can obtain in-
formation only about the sums of some reactions—
for example, [(γ, n) + (γ, np)] or [(γ, p) + (γ, np)]—
rather than about the one-neutron or the one-proton
reaction individually. In many cases, the use of alter-
native experimental methods—above all, the popular
induced-activity method, where the final nucleus of
the specific reaction being studied is fixed—does not
produce the desired effect either. By way of example,
we indicate that, in the case of the 20,22Ne nuclei,
which are considered in the present study, only the
final nucleus in the reaction 20Ne(γ, np)18F has a
half-life value (T1/2 = 109.77 min) that is more or
less appropriate for measuring induced activities; at
the same time, nuclei produced in the other reactions
that are discussed here have the half-life values in-
dicated immediately below: 20Ne(γ, n)19Ne (T1/2 =
17.22 s), 22Ne(γ, n)21Ne (stable), 20Ne(γ, p)19F
(stable), 22Ne(γ, p)21F (T1/2 = 4.158 s), and
22Ne(γ, np)20F (T1/2 = 11.00 s). A similar situation
can also be observed for a considerable number of
PH
other nuclei [1], since, for many of these, the reactions
being discussed have relatively low energy thresholds.

At the same time, it is quite obvious that, without
having detailed information about the energy depen-
dences of the cross sections for all reactions being
studied, it is rather difficult to analyze mechanisms
that may be responsible for the formation and decay
of GDR states, to consider effects that determine
the resonance width (for example, configuration and
isospin splittings), and to test various theoretical pre-
dictions for the magnitude and shape of the GDR.

The present article, which reports on a continua-
tion of our previous studies, describes investigations
into the isospin splitting of the GDR in the 22Ne
nucleus that have been performed by using new data
on the cross sections for the one-nucleon reactions
on 20,22Ne nuclei. In [13, 14], we analyzed available
experimental information about the cross sections for
various photonuclear reactions on 20,22Ne nuclei and
on targets from a natural mixture of stable isotopes
and estimated the energy dependences of the cross
sections for the one-neutron (γ, n) and one-proton
(γ, p) reactions, as well as for the (γ, np) reactions,
on these nuclei.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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1. ESTIMATING CROSS SECTIONS
FOR THE REACTIONS 20,22Ne(γ, n)19,21Ne,
20,22Ne(γ, p)19,21F, AND 20,22Ne(γ, np)18,20F

1.1. Experimental Data

The energy thresholds for the reactions under
study on three stable neon isotopes are presented in
Table 1, along with data on the isotope abundances
(percentage in a natural mixture of the isotopes). In
the following, we disregard the presence of the 21Ne
isotope, whose abundance in a natural mixture is
0.27% .

Information about basic experimental data on the
energy dependences of the cross sections for various
photonuclear reactions on neon isotopes and on their
natural mixture in theGDR energy region is displayed
in Table 2.

1.2. Principles behind the Procedures for Estimating
the Cross Sections for the Reactions

20,22Ne(γ, n)19,21Ne, 20,22Ne(γ, p)19,21F,
and 20,22Ne(γ, np)18,20F

The estimates of the cross sections and the pro-
cedures used to derive them are described in detail
elsewhere [13]. Below, we give a brief account of the
basic principles behind these procedures and of the
results obtained.

(i) The cross section σA = σ{20Ne[(γ, n) +
(γ, np)]} [16], which was obtained by means of a non-
traditional, rather involved procedure, was normalized
to σV [15]. The resulting value of σA-pn was used
to estimate the cross section σX = σ{22Ne[(γ, n) +
(γ, np)} for the 21Ne isotope by means of the relation

σV = 90.51σA-pn + 9.22σX , (5)

which takes into account the abundances of the iso-
topes (as was indicated above, the presence of the
21Ne isotope in a natural mixture was disregarded).
The renormalized cross section σA-pn for the reac-
tion 20Ne[(γ, n) + (γ, np)] and the estimated cross
section (σX) for the reaction 22Ne[(γ, n) + (γ, np)]
were used to assess the cross sections for the re-
actions 20,22Ne(γ, n)19,21Ne and 20Ne(γ, np)18F. The
contributions of these two reactions were singled out
(this corresponds to separating the contributions of
the corresponding two giant resonances) by means
of the procedure where the cross sections for the
reactions 20,22Ne[(γ, n) + (γ, np)] are approximated
by Gaussian functions:

Gauss(Eγ) = σmax exp{−0.5[(Eγ − Emax)/Γ]2}.
(6)

Here, Emax is the energy position of the maximum
value σmax of a Gaussian function of width Γ. In
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
order to separate the contributions of the (γ, n) and
(γ, np) reactions, usewasmade of theGaussian func-
tions centered in the energy regions below and above
the thresholds for the (γ, np) reactions [the energy
values of Eγ = 23.3 and 23.4 MeV for, respectively,
the 20Ne and the 22Ne nucleus (see Table 1)]. In
the case of the 20Ne nucleus, this procedure was
implemented with the inclusion of additional infor-
mation [18] about the cross section for the reaction
20Ne[(γ, p) + (γ, np)], since, for the self-conjugate
nucleus 20Ne (N = Z = 10), the cross sections for
the (γ, n) and (γ, p) reactions caused by the decays of
the same GDR states through the neutronic and the
protonic channel, respectively, must have the same
shape {an investigation [19] of the cross-section ratio
for the (γ, p) and (γ, n) reactions on a large number
of 1d–2s-shell self-conjugate nuclei revealed that,
for the N = Z = 10 nucleus, the absolute values of
these cross sections can differ by a factor of 1.5 to
2.5 because of the distinctions between the energy
thresholds}. We have also taken into account the cir-
cumstance that protons of energy in excess of 2 MeV
were recorded in [18]; as a result, the effective thresh-
old for the reaction 20Ne(γ, np)18F was higher in the
protonic than in the neutronic channel by precisely
this value—it amounted toEγ = 25.3 MeV—and the
corresponding resonance occurred at an energy of
Eγ = 27.58 MeV.

(ii) In estimating the cross section for the reaction
20Ne(γ, p)19F,

(a) use was also made of the assumption that, for
the self-conjugate (N = Z) nucleus 20Ne, the same
states of the compound nucleus 20Ne decay through
the neutronic and through the protonic channel;

(b) the experimental cross section for the reaction
20Ne[(γ, p) + (γ, np)] [18] and the cross section es-
timated previously for the reaction 20Ne(γ, n)19Ne
were smoothed by Gaussian functions of width
3.0 MeV in order to eliminate the effect of structural
features on their general behavior;

(c) the aforementioned two cross sections were
normalized to data on the integrated cross sections
that were computed for the energy range from the
GDR maximum in the photoneutron channel (Eγ =
20 MeV) to the effective threshold of the detection of
protons from the (γ, np) channel (Eγ = 25.3 MeV)—
they must coincide in shape in this region;

(d) the difference of the normalized cross sections
was interpreted as the contribution of protons from
the reaction 20Ne(γ, np)18F;

(e) the cross section for the reaction 20Ne(γ, p)19F
was determined as the difference of the experimental
cross section for the reaction 20Ne[(γ, p) + (γ, np)]
2
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Table 3. Parameters of the Gaussian functions (energyEmax, amplitude σmax, and width Γ of the maximum) approximat-
ing the cross sections for the reactions 22Ne[(γ, n) + (γ, np)] and 22Ne[(γ, p) + (γ, np)]

Emax, MeV σmax, mb Γ, MeV
22Ne[(γ, n) + (γ, np)], χ2 = 0.22

21.21 19.70 1.73

25.56 9.34 0.41
22Ne[(γ, p) + (γ, np)], χ2 = 0.48

20.26 10.99 1.46

24.23 5.87 1.52

27.75 2.18 1.38
and the cross section that corresponds to the con-
tribution of protons from the reaction 20Ne(γ, np)18F
and which was estimated according to the procedure
described above.

(iii) In estimating the cross section for the reaction
22Ne(γ, p)21F,

(a) use was also made of the approach based on
determining the contribution of the cross section for
the reaction 22Ne(γ, np)20F to the cross section for
the reaction 22Ne[(γ, p) + (γ, np)] [18] and on em-
ploying the procedure of approximations in terms of
Gaussian functions in the energy regions below and
above the effective energy thresholds for the (γ, np)
reactions in the neutronic (Eγ = 23.4 MeV) and the
protonic (Eγ = 25.4 MeV) channel;

(b) three maxima (at energies of Eγ = 20.26,
24.23, and 27.75 MeV), and not two (as in the
situation for the 20Ne nucleus), were reliably identified
in the cross section for the reaction 22Ne[(γ, p) +
(γ, np)] (the procedure of approximating this cross
section by three Gaussian functions was character-
ized by a much higher stability than the procedure
employing two Gaussian functions);

(c) the only Gaussian function that occurs in the
energy region above the effective proton-detection
threshold (Eγ = 25.4 MeV)—it peaks at an energy of
Eγ = 27.75 MeV (see Table 3)—was interpreted as
that which corresponds to the contribution of protons
from the reaction 22Ne(γ, np)20F, data on the relation
between the cross section for this reaction and its
effective contribution to the cross section for the re-
action [(γ, p) + (γ, np)] [18] on the 20Ne isotope being
used in doing this.

The cross sections estimated for the reactions
20,22Ne(γ, n)19,21Ne, 20,22Ne(γ, p)19,21F, and
20,22Ne(γ, np)18,20F on the basis of the procedures
outlined above—these cross sections were obtained
for the first time—are displayed in Fig. 1.
P

For the sake of comparison and for the purposes of
the subsequent discussion, the cross section that de-
scribes the reaction 22Ne(γ, 2n)20Ne [15] and which
receives a contribution (see below) only from the T<
component of the GDR in the 22Ne nucleus is shown
in Fig. 1b.

2. ISOSPIN SPLITTING OF THE GIANT
DIPOLE RESONANCE IN THE 22Ne

NUCLEUS

In [13], we showed that the cross section for the
reaction 22Ne[(γ, n) + (γ, np)] can be reliably ap-
proximated by the sum of two Gaussian functions
(Table 3) centered at energies below (one) and above
(the other)Eγ = 23.4MeV and that the cross section
for the reaction 22Ne[(γ, p) + (γ, np)] can be approx-
imated by the sum of three Gaussian functions. In
the latter case, one is centered in the energy region
Eγ < 23.4 MeV, while the other two are centered in
the energy region Eγ > 23.4 MeV.

From the data in Table 3, it can be seen that the
position (Eγ = 21.21 MeV) of one of the Gaussian
functions approximating the cross section for the re-
action 22Ne[(γ, n) + (γ, np)] is very close to the posi-
tion (Eγ = 20.26 MeV) of the first of the three Gaus-
sian functions approximating the cross section for the
reaction 22Ne[(γ, p) + (γ, np)]. This means that they
are due to the decay of 22Ne states of the same origin.
For the 22Ne nucleus, whose ground-state isospin
is T0 = (N − Z)/2 = (12− 10)/2 = 1 �= 0, these are
presumably the states of the T< = T0 = 1GDR com-
ponent [2–5]. States of the GDR that are manifested
in the protonic channel, but which are not manifested
in the neutronic channel and which are shifted with
respect to the isospin-T< states toward higher ener-
gies by about 5 MeV, may be only states of isospin
T> = T0 + 1 = 2 [2–5].

A more detailed analysis of the excitation and de-
cay of the GDR states in the 22Ne nucleus is required
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Fig. 1. Estimated cross sections for the reactions (a) 20Ne(γ, n)19Ne (×), 20Ne(γ, p)19F (�), and 20Ne(γ, np)18F (�) and
(b) 22Ne(γ, n)21Ne (×), 22Ne(γ, p)21F (�), and 22Ne(γ, np)20F (�). For the sake of comparison, the cross section for the
reaction 22Ne(γ, 2n)20Ne (+) [15] is additionally shown in the figure; for the clarity of the presentation, it is magnified by a
factor of 5.
in order to interpret more reliably the relationship that
we revealed between the neutronic and the protonic
channel of the decay of its highly excited states.

2.1. Analysis of the Cross-Section Ratio
for the Reactions 22Ne(γ, p)21F

and 22Ne(γ, n)21Ne as a Function of Energy

Numerous previous investigations (see, for exam-
ple, [7, 10, 20]) revealed the following: since, accord-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
ing to the concept of isospin splitting [2–5], isospin-
T> states decay predominantly via proton emission,
a significant growth of the ratio r = σ(γ, p)/σ(γ, n)
with energy is a manifestation of isospin-T> states
against the background of isospin-T< states. The en-
ergy dependence r(Eγ) obtained for the 22Ne nucleus
on the basis of data on the corresponding reaction
cross sections smoothed with the aid of Gaussian
functions of width 2 MeV is displayed in Fig. 2. The
2
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Fig. 2.Energy dependences of the cross-section ratio r =

σ(γ, p)/σ(γ, n) for (×) 20Ne and (�) 22Ne nuclei. The
straight lines represent least squares fits to the segments
of the ratio r for the 22Ne nucleus in the energy ranges
18.4–21.8 and 22.8–25.8 MeV.

analogous dependence for the 20Ne nucleus is pre-
sented for the sake of comparison.

From Fig. 2, we can clearly see that the cross-
section ratio r = σ(γ, p)/σ(γ, n) for the 22Ne nucleus
remains approximately constant in the excitation-
energy region below Eγ ∼ 22.5 MeV, but it begins
to grow quite fast at higher energies. In the case of
the 20Ne nucleus, where there is no isospin splitting
of the GDR, the cross-section ratio σ(γ, p)/σ(γ, n)
shows a relatively slow growth only at substantially
higher energies, in excess of Eγ ∼ 25.5 MeV. On
the basis of the data in Fig. 2, we can assume that
the formation and decay of the GDR states in the
22Ne nucleus proceeds in such a way that its T<
states are concentrated predominantly at excitation
energies below Eγ ∼ 22.5 MeV, while the T> states
are concentrated at higher energies.

As was indicated above, the position of one of the
two Gaussian functions (with a maximum at Eγ =
20.26 MeV) approximating the cross section for the
reaction 22Ne(γ, p)21F (see Table 3) is very close to
the position (Eγ = 21.21 MeV) of the Gaussian func-
tion approximating the cross section for the reaction
22Ne(γ, n)21Ne (Table 3). This means that these two
maxima are associated with the decay of GDR states
of the 22Ne nucleus that are of the same origin—these
states are the GDR components of isospin T< =
T0 = 1 [2–5].

More reliable information can be given only upon
comprehensively examining the diagrams of the exci-
tation and decay of states in the 22Ne nucleus that are
characterized by various isospin values and in nuclei
neighboring it that are members of the corresponding
isospin multiplets.
P
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Fig. 3. Diagram of the excitation and decay of levels
in the 22Ne nucleus that are characterized by various
isospin values and in nuclei neighboring it. Shown by
the dashed line is the shift of the isospin-3/2 lowest level
of the 21Ne nucleus by the Coulomb energy {∆Ec =

[1.444(Z − 1/2)A−1/3 − 1.131] = 3.77 MeV} with re-
spect to the ground state of the 21F nucleus (the 21F
and the 21Ne nuclei are members of an isospin multiplet).
Also displayed (wide arrows) are the energy positions [21]
of the first levels of nuclei whose isospin is greater than
the ground-state isospin by unity. The dotted lines with
arrows indicate realizable (two of the four possible ones)
channels of the reaction 22Ne(γ, np)20F.

2.2. Analysis of the Diagrams of the Excitation
and Decay of States in the 22Ne Nucleus That Are

Characterized by Various Isospin Values
and in Nuclei Neighboring It

Information about the thresholds of various reac-
tions and about the energy positions of 20,21,22Ne and
20,21F levels characterized by various isospin values
that is necessary for performing such an analysis can
be found in Fig. 3 (use is made here of data obtained
in [21] by estimating the energy positions of the first
levels whose isospin is greater than the ground-state
isospin by unity).

From Fig. 3, we can see that, of the transitions
that could occur, according to isospin-selection rules,
between the corresponding states in the 22Ne, 21Ne,
20Ne, 21F, and 20F nuclei, some are forbidden by
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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energy constraints. In the diagrams presented below
for the possible transitions, those that are allowed
both in isospin and in energy are labeled with the word
“yes” and are printed in boldface.

Data in Fig. 3 indicate that none of the afore-
mentioned constraints is operative for transitions that
form the (γ, n) and the (γ, p) channel of GDR decay.
The contributions of both isospin GDR components
can manifest themselves in these channels:

22Ne[T< = 1](γ, n)21Ne[T = 1/2, 3/2], yes;

22Ne[T> = 2](γ, n)21Ne[T> = 3/2], yes;

22Ne[T< = 1](γ, p)21F[T< = 3/2], yes;

22Ne[T> = 2](γ, p)21F[T = 3/2, 5/2], yes.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
It should only be emphasized that the decay of the
T>(= 2) states of the 22Ne nucleus into the T>(=
5/2) states of the 21F nucleus does not seem to occur
because energies at which T> = 5/2 states appear in
the 21F nucleus are overly high for this (see Fig. 3).

Obviously, the (γ, np) reaction proceeds in two
steps. According to the diagram considered above,
there are no energy constraints at the first (neutron)
step for the channels 22Ne[T< = 1](γ, n)21Ne[T< =
1/2] and 22Ne[T< = 1](γ, n)21Ne[T> = 3/2]. Be-
cause of the high reaction thresholds at the sec-
ond (proton) step—21Ne[T< = 1/2](γ, p)20F[T< =
1] and 21Ne[T> = 3/2](γ, p)×20F[T = 1, 2]—such
transitions are impossible:
22Ne[T< = 1](γ, np)20F[T = 1, 2]→
{

22Ne[T< = 1](γ, n)21Ne[T< = 1/2](γ, p)20F[T< = 1], no;
22Ne[T< = 1](γ, n)21Ne[T> = 3/2](γ, p)20F[T = 1, 2], no;

22Ne[T> = 2](γ, np)20F[T = 1, 2]→
{
22Ne[T> = 2](γ, n)21Ne[T> = 3/2](γ, p)20F[T< = 1], yes;
22Ne[T> = 2](γ, n)21Ne[T> = 3/2](γ, p)20F[T> = 2], no.
The excitation of the T> states in the 22Ne nu-
cleus above the T< states by a few MeV reduces
the effect of the high threshold at the second re-
action step and renders the probability of the de-
cay 21Ne[T> = 3/2](γ, p)20F[T< = 1] nonzero, albeit
small. In Fig. 3, this channel of the (γ, np) reaction is
shown by the dotted line with arrows.
On the basis of similar considerations, only the de-

cay 22Ne[T> = 2](γ, p)21F[T> = 3/2](γ, n)20F[T< =

1] can be singled out as a feasible one in the decay

diagrams for the (γ, np) reaction that are presented

below:
22Ne[T< = 1](γ, np)20F[T = 1, 2]→ 22Ne[T< = 1](γ, p)21F[T< = 3/2](γ, n)20F[T = 1, 2], no;

22Ne[T> = 2](γ, np)20F[T = 1, 2]→
{
22Ne[T> = 2](γ, p)21F[T> = 3/2](γ, n)20F[T< = 1], yes;
22Ne[T> = 2](γ, p)21F[T> = 5/2](γ, n)20F[T> = 2], no.
In just the same way as the (γ, np) reaction, the
(γ, 2n) reaction occurs in two steps, the only dif-
ference being that, at the second step, the decay
proceeds through the neutronic rather than through
the protonic channel.

In Fig. 3, it can clearly be seen that the conditions
for the decay of the T< states of the 22Ne nucleus with
the successive emission of two neutrons are much
more favorable (the difference of the corresponding
thresholds is about 6 MeV) than the conditions for
the successive emission of a neutron and a proton.
At the same time, the T> states of the 22Ne nu-
cleus can decay, according to isospin selection rules,
only into the T> = 1 states of the 20Ne nucleus that
occur (see Fig. 3) at energies in the region Eγ >
27.3 MeV:
22Ne[T< = 1](γ, 2n)20Ne[T< = 0]→ 22Ne[T< = 1](γ, n)21Ne[T< = 1/2](γ, n)20Ne[T< = 0], yes;
22Ne[T> = 2](γ, 2n)20Ne[T> = 1]→ 22Ne[T> = 2](γ, n)21Ne[T> = 3/2](γ, n)20Ne[T> = 1], no.
The above diagrams of the possible transitions

make it possible to draw the following conclusions:
(i) The (γ, n) and (γ, np) cross sections receive

contributions from both GDR components.
2
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Table 4. Parameters of the T< and T> isospin components
of the GDR in the 22Ne nucleus (energy center of gravity
Ec.g., integrated cross section σint, first moment σ−1 of the
integrated cross section)

Component Ec.g., MeV σint, MeV mb σ−1, mb

T< 21.14± 1.90 125.00± 0.04 5.94± 0.53

T> 25.71± 2.32 40.00± 0.01 1.92± 0.17

(ii) The cross section for the (γ, 2n) reaction re-
ceives a contribution only from the T< GDR com-
ponent; this result of the analysis that we performed
is supported by the experimental cross section for
the reaction 22Ne(γ, 2n)20Ne [15] (it is displayed in
Fig. 1b): as was indicated in [21] and as is directly
confirmed by our analysis, the decays of the T> states
can be manifested in this cross section only at ener-
gies in the region Eγ > 27 MeV.

(iii) The cross section for the (γ, np) reaction re-
ceives a contribution only from the T> GDR com-
ponent, this contribution being relatively small: only
two decay channels of the possible four are realized;
the energy thresholds of the two channels that are
realized appear to be (Fig. 3) quite high [Ethr(γ, np) =
23.4 MeV].

The transitions that are singled out in the decay
diagrams presented here as realizable ones can be
used to interpret the contributions from the various
isospin components of the GDR in the 22Ne nucleus
to various channels of its decay. Taking into account
the way in which the T< and T> GDR components
in the 22Ne nucleus contribute to the (γ, n), (γ, p),
(γ, np), and (γ, 2n) cross sections, we can interpret
the isospin components σ< and σ> as

σ< = σ<(γ, n) + σ<(γ, p) + σ(γ, 2n), (7)

σ> = σ>(γ, n) + σ>(γ, p) + σ(γ, np).

Table 3 displays the parameters of the Gaussian
functions that approximate the estimated cross sec-
tions for the reactions 22Ne(γ, n)21Ne and
22Ne(γ, p)21F; these approximations can be associ-
ated with the components σ<(γ, n) and σ>(γ, n), as
well as with σ<(γ, p) and σ>(γ, p). By using them
and relations (7), we have calculated the parameters
of the isospin GDR components in the 22Ne nucleus
(the results are presented in Table 4). These data
make it possible to estimate the isospin splitting
∆E (1),

∆E = Ec.g.(T>)− Ec.g.(T<)
= 25.71 − 21.14 = 4.57 ± 0.69 MeV,

and the ratio R (2) of the intensities of the isospin
GDR components,

R = σ>−1/(σ
>
−1 + σ<−1)
P

= 1.92/(1.92 + 5.94) = 0.24 ± 0.04.

These estimates deviate considerably from the
theoretical values of ∆Etheor = 5.45 MeV (3) and
Rtheor = 0.5 (4). From the above results of the
analysis of the diagrams of the excitation and decay
of states characterized by various isospin values, it
is clear that these discrepancies are due above all to
the special features of the decay of the 22Ne GDR
through the (γ, np) channel. In [1], it was shown
that manifestations of the isospin GDR components
in the cross sections for various reactions are highly
individual and that the parameters of isospin GDR
splitting differ considerably from the predicted values
in (3) and (4); the latter was observed in many
experiments (see [8–12]). It was indicated that, for
heavy nuclei, there are sufficient grounds to believe
that the T> GDR branch manifests itself primarily
in the photoproton channel, while the T< manifests
itself in the photoneutron channel. This is not so for
lighter nuclei because the thresholds for the isospin-
allowed neutronic decay of T> states are insufficiently
high in such nuclei and because the Coulomb nuclear
barrier impedes the protonic decay of T< states
in them less than in heavier nuclei. In addition,
isospin splitting plays a much more important role
in light and intermediate-mass nuclei than in heavy
nuclei. In the specific case of the 22Ne nucleus, the
individual character of the isospin splitting of the
GDR manifests itself in that, because of a very high
threshold (see Table 1), in relation to the thresholds
for the (γ, n) and (γ, p) reactions, the contribution to
this channel from the T> GDR component proves to
be significantly reduced, which is disregarded in the
model considered in [2–5].

CONCLUSION

By performing a global analysis of the cross
sections for various photonuclear reactions on the
20,22Ne isotopes and on their natural mixture and
by invoking data on the abundances of the isotopes
and on the energy thresholds for the reactions be-
ing considered, we have been able to estimate, for
the first time, the cross sections for the reactions
20,22Ne(γ, n)19,21Ne and 20,22Ne(γ, p)19,21F in the
energy range Eγ = 16.0–28.0 MeV and for the
reactions 20,22Ne(γ, np)18,20F in the energy range
Eγ = 23.3–28.0 MeV.

For the 22Ne nucleus, we have analyzed the ra-
tio r = σ(γ, p)/σ(γ, n) of the cross sections for the
photoproton and the photoneutron reaction and iden-
tified the isospin GDR components. We have also
analyzed the diagram of the excitation and decay
of states in the 22Ne nucleus that are characterized
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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by various isospin values and in nuclei neighboring
it, which are members of the corresponding isospin
multiplets. We have identified the contributions of
the GDR components of isospins T< = 1 and T> = 2
in the 22Ne nucleus to the cross sections for various
photonuclear reactions. The isospin splitting of the
GDR and the ratio of the intensities of its isospin
components have been determined to be, respectively,
∆E = 4.57 ± 0.69 MeV and R = 0.24 ± 0.04.
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Abstract—The classical and quantum aspects of the analytically solvable one-dimensional purely
monopole Suzuki model are studied to clarify the problem of quantization of classical collective motion.
A set of nonlinear dynamical equations for the monopole moment of a nucleus are derived from the time-
dependent Hartree-Fock equation by using the Wigner function moments. It provides a description
of large-amplitude monopole vibrations. The corresponding collective Hamiltonian is constructed and
quantized. The anharmonicity of the collective spectra is analyzed in detail. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION
A one-dimensional harmonic-oscillator model

with a monopole–monopole residual interaction was
suggested by Suzuki [1] in 1973. Using the mean-
field approach and the small-amplitude approxima-
tion, he gave a qualitative explanation of the nature
of the recently discovered giant monopole resonance.
However, the main interest in this model is connected
with the fact that it has an exact solution. It is known
that, in the Hartree approximation, the model reduces
to the time-dependent Schrödinger equation with a
harmonic-oscillator Hamiltonian, whose frequency is
time-dependent. Its analytic solution was found by
Popov and Perelomov [2]. Thus, we have here a rare
example of a nonlinear problem having an analytic
solution. That is why the Suzuki model is widely
used as a test for various approximate methods for
describing large-amplitude nuclear collective motion
[3–5]. The first attempt at treating this model beyond
the small-amplitude approximation was made by
Kirson [6], who gave its algebraic analysis and found
numerically its “exact” solution. Interest in investi-
gating a collective motion beyond the usual random-
phase approximation (small-amplitude approach) has
been quickened since the experimental discovery of
high-energy structures in heavy-ion grazing colli-
sions and their interpretation in terms of multiphonon
excitations of giant quadrupole resonances [7–9].
We consider this model with the aim of verifying the
potential of the method of the Wigner function mo-
ments (WFM) in studying large-amplitude motion
and nonlinear effects accompanying it. The simplicity
of the model allows one to observe the appearance of
anharmonicity in the collective spectra and to clarify
some problems of quantization of classical equations
of motion for collective variables describing giant

∗This article was submitted by the author in English.
1063-7788/02/6501-0058$22.00 c©
resonances. In addition, using the WFM method,
one is able to perform more extensive analysis of the
collective aspects of the Suzuki model.

2. FORMULATION OF THE METHOD

The basis of our method for describing collective
nuclear dynamics is the equation of motion for the
one-body density matrix ρ(r1, r2, t) = 〈r1|ρ̂(t)|r2〉,

i�
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
, (1)

where Ĥ is the self-consistent one-body Hamiltonian
depending implicitly on the density matrix.
This equation is modified by applying the Wigner

transform of the density matrix [10],

f(r,p, t) =
∫

d3s exp(−ip · s/�) (2)

× ρ
(
r+

s
2
, r− s

2
, t
)
,

and of the Hamiltonian,

HW(r,p) =
∫

d3s exp(−ip · s/�) (3)

×
(
r+

s
2

∣∣∣Ĥ∣∣∣ r− s
2

)
.

Using (2) and (3), one arrives at [11, 12]
∂f

∂t
=
2
�
sin
(

�

2
(∇Hr · ∇fp −∇Hp · ∇fr )

)
HWf, (4)

where the upper index on the nabla operator stands for
the function on which this operator acts. The right-
hand side is just the brief notation for the infinite series
corresponding to the expansion of the sine function.
When one takes into account only the first term of
this expansion, one obtains the equation equivalent
to the Vlasov equation for the distribution function.
2002MAIK “Nauka/Interperiodica”



LARGE-AMPLITUDE MOTION IN THE SUZUKI MODEL 59
If the Hamiltonian is the sum of a kinetic term and a
local potential V (r), its Wigner transform is just the
classical version of the same Hamiltonian,

HW = p2/2m+ V (r). (5)

Then, Eq. (4) becomes

∂f

∂t
+
1
m

p · ∇rf =
2
�
sin
(

�

2
∇Vr · ∇fp

)
V f. (6)

Now, we apply theWFMmethod to derive a closed
set of dynamical equations for Cartesian tensors of
second rank. This method was suggested in [13] and
is described in detail in [14]. Its idea is based on the
virial theorems of Chandrasekhar and Lebovitz [15].
Thus, without going into details, we integrate Eq. (6)
over the phase space {p, r} with the weights xixj ,
pixj , and pipj to get the set of equations

d

dt
Jij(t)−

1
m
(Li,j + Lj,i) = 0, (7)

1
2
d

dt
Li,j(t) +

1
2

∫
d{p, r}xi

∂V

∂xj
f(r,p, t)

−Πij(t) = 0,
d

dt
Πij(t) +

1
2m

∫
d{p, r}

[
pi

∂V

∂xj

]
ij

f(r,p, t) = 0,

where
∫
d{p, r} ≡ 4/(2π�)3

∫
d3p

∫
d3r and [. . .]ij

means symmetrization with respect to the indices i
and j ([aibj ]ij = aibj + ajbi). We have introduced the
notation

Jij(t) =
∫

d{p, r} xixjf(r,p, t)

for an inertia tensor,

Li,j(t) =
∫

d{p, r}xipjf(r,p, t)

for a mixed momentum–position tensor, and

Πij(t) =
1
2m

∫
d{p, r}pipjf(r,p, t)

for the integral kinetic energy tensor.

We have thus derived the set of three dynamical
equations for three collective variables Jij(t), Li,j(t),
and Πij(t). It is necessary to stress that these equa-
tions are exact because, up to this moment, we have
not made any approximations. To close this set of
equations, it is necessary to express the integrals
involving derivatives of the potential V (r) in terms
of the three variables mentioned above. This prob-
lem can be solved rigorously in the case of V with
quadratic coordinate dependence (which is the sub-
ject of this study).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
3. SUZUKI MODEL

Themicroscopic Hamiltonian of the Suzukimodel
[1] is

H =
A∑
i=1

(
p2
i

2m
+
1
2
mω2x2

i

)
(8)

+
1
2
κ

A∑
i�=j
(x2
i − x2

0/A)(x
2
j − x2

0/A),

where x2
0 is the value of the tensor J11 for the oscillator

ground state. Usually, it is studied in the Hartree
approximation. The time-dependent mean field of the
model is

V (x, t) =
m

2
ω2x2 + κ(J − x2

0)(x
2 − x2

0/A), (9)

where J = J11(t). It looks like a harmonic-oscillator
potential with the time-dependent frequency ω2(t) =
ω2+ 2

mκ(J − x2
0).An exact solution to the Schrödin-

ger equation with such a potential was found by
Popov and Perelomov [2]. Roughly speaking, it is the
usual oscillator wave function whose arguments are
modified by the linearly independent solutions Z1 and
Z2 to the classical equation

Z̈ + ω2(t)Z = 0. (10)

One can write Z1 and Z2 in the form

Z1 = r(t)eiγ(t), Z2 = Z∗
1 ,

with r(t) and γ(t) obeying the differential equations

r̈ − W 2

r3
+ ω2(t)r = 0, (11)

γ̇ −W/r2 = 0.

The constantW , being proportional to theWronskian
of Eq. (10),

2iW = Ż1Z2 − Ż2Z1,

is determined by the initial conditions.

Suzuki estimated the energy of the giantmonopole
resonance in the small-amplitude approximation,
neglecting nonlinear effects of the model. They were
considered in [3–5], where this model was used to test
various approaches to investigating large-amplitude
collective motion. We pursue just the same goal with
our method.
2
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Fig. 1. Potential V (r) (19) as a function of r for various
values of κ̄ and c′.

3.1. Equations of Motion

For the potential (9), Eqs. (7) become
m

4
J̈ + J

[m
2
ω2 + κ(J − J0)

]
−Π = 0, (12)

Π̇ + J̇
[m
2
ω2 + κ(J − J0)

]
= 0,

with J0 ≡ x2
0 and Π = Π11(t). The time dependence

of the tensors is omitted for the sake of simplicity. The
second equation of this set reduces to the integral of
the motion

Π+
m

2
ω2J +

κ

2
(J − J0)2 = E, (13)

whose physical meaning is that the total energy of
the system is a conserved quantity. It is indeed easy
to see that it is equal to the Hartree–Fock average
of the microscopic Hamiltonian (8)—that is, E =
〈Ψ | H | Ψ〉. Another integral can be found by mul-
tiplying the second equation in (12) by J and by sub-
tracting the result from the first equation multiplied
by J̇ ,

J(t)Π(t) − m

8
J̇(t)2 = c, (14)

where the constant c is determined by the initial con-
ditions. With the aid of Eq. (14), one is able to reduce
the set of Eqs. (12) to the single equation

m

4
J̈ +

m

2
ω2J + κ(J − J0)J −

c

J
− m

8J
J̇2 = 0.

(15)

Upon the change of variable J = J0r
2, this equation

can be written in the form

r̈ + ω2(t)r − ω2 c
′

r3
= 0, (16)

where ω2(t) = ω2[1 + 2κ̄(r2 − 1)], κ̄ = κJ0/(mω2),
and c′ = 2c/(mω2J2

0 ). In this equation, one imme-
diately recognizes one of the above equations written
in (11), the constants W and c′ being related by the
P
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Fig. 2. Function g(r) for various values of κ̄.

equationW 2 = ω2c′. If one supposes here that c′ = 1,
this equation becomes identical to the corresponding
equations from [3, 4]. This choice of c′ was dictated by
their choice of the initial condition ω(t = −∞) = ω,
which is not accidental—just this initial condition
was used in [2] to find an exact solution to the
problem. The analysis of the c′ dependence of Eq. (16)
allows one to find new properties of the model.
Solving Eqs. (13) and (14) with respect to Π, one

can rewrite the energy in a more traditional form, as a
sum of kinetic and potential energies,

E =
m

8J
J̇2 +

c

J
+

m

2
ω2J +

κ

2
(J − J0)2, (17)

or in terms of r,

E =
m

2
J0{ṙ2 + ω2[r2 + c′/r2 + κ̄(r2 − 1)2]}. (18)

The r dependence of the potential

V (r) =
m

2
ω2J0[r2 + c′/r2 + κ̄(r2 − 1)2] (19)

for various values of κ̄ and c′ is schematically illus-
trated in Fig. 1.

3.2. Equilibrium State
and Small-Amplitude Approximation

By definition, the kinetic energy at equilibrium is
equal to zero and the potential energy is at its mini-
mum. The equation determining the extrema of V (r)
is

g(r) − c′ = 0, (20)

where g(r) = r4[1 + 2κ̄(r2 − 1)]. The function g(r) is
sketched in Fig. 2.
It is seen that, in the case of κ̄ > 0, the poly-

nomial in (20) has only one positive root for c′ > 0,
which corresponds to the minimum of the potential
(see Fig. 1). It describes the stable equilibrium state,
which is more compressed (Jeq < J0) than that of the
harmonic oscillator when c′ < 1 and less compressed
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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(Jeq > J0) when c′ > 1. Using an analogy with an
equilibrium deformation, one can say that the system
has a positive static compression for c′ < 1 and a
negative static compression (dilatation) for c′ > 1 if
one assumes that the oscillator ground state has zero
static compression.
There is no need for analyzing the situation with

c′ < 0 (see, however, the next section) because this
integral of the motion cannot be negative in the state
of equilibrium. Indeed, substituting J̇ = 0 into (14),
we obtain

ceq = JeqΠeq, (21)

J and Π being positive by definition; hence, ceq and
c′eq are positive definite.

In the case of κ̄ < 0, the polynomial in (20) has
two positive roots if 0 ≤ c′ < (1− 2κ̄)3/(27κ̄2). The
smaller root corresponds to the minimum of the po-
tential well, and the larger one corresponds to the
maximum of the barrier. The latter equilibrium state
is metastable due to a finite value of the barrier height.
For κ̄ ≤ −1, the equilibrium state has a positive static
compression independent of the c′ value. For κ̄ >
−1, the equilibrium state has a positive static com-
pression when c′ < 1 and a negative one when c′ >
1. The potential has no extrema when c′ ≥ (1−
2κ̄)3/(27κ̄2), possessing only an inflection point at
r2 = (−c′/κ̄)1/3.
To find the energy of small vibrations about the

equilibrium state, we apply a linearization procedure.
Writing Eq. (16) in terms of the new variable y =
r − req and neglecting y2 terms, we find

ÿ + yω2
[
1 + 3c′/r4

eq + 2κ̄(3r
2
eq − 1)

]
(22)

+ ω2
[
req − c′/r3

eq + 2κ̄(r
3
eq − req)

]
= 0.

This equation is transformed into

ÿ + 4ω2[1 + κ̄(3r2
eq − 2)]y = 0 (23)

after taking into account Eq. (20), which is satisfied
by req. The corresponding eigenfrequency is

Ω̃ = 2ω
√
1 + κ̄(3r2

eq − 2). (24)

Assuming here that J0 = 0, we reproduce the result
from [5]:

Ω̃ = 2ω

√
1 +

3κ
mω2

Jeq.

Equation (20) can easily be solved at c′ = 1. One
positive extremum lies at r2 = 1. It corresponds to
the maximum of the barrier for κ̄ < −1 and to the
minimum of the potential for κ̄ > −1. Only this min-
imum was analyzed in [3, 4]. From (24), one obtains
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the corresponding expression for the frequency in the
random-phase approximation (RPA)

Ω̃ = 2ω
√
1 + κ̄. (25)

Another positive extremum lies at r2 = −(1 +√
1− 8κ̄)/(4κ̄). It corresponds to the maximum of

the barrier for 0 > κ̄ > −1 and to the minimum of the
potential for κ̄ < −1. The corresponding expression
for the RPA frequency is

Ω̃2 = ω2(1− 8κ̄− 3
√
1− 8κ̄). (26)

The strength constant κ̄ = −1 is the critical one.
With this κ̄, the potential has neither a minimum
nor a maximum and the point r2 = 1 proves to be its
inflection point.

3.3. Analysis of the Exact Solution

To find an exact expression for the function J(t),
it is convenient to use Eq. (17). Its solution can be
expressed in terms of the Jacobian elliptic function
[16],

J(t) = η1 + (η2 − η1)sn2(ω̄t+ χ). (27)

Here, ω̄ =
√
(η1 − η3)κ/m and ηi are the real roots of

the polynomial

P (J) = −J3 + a2J
2 + a1J + a0 (28)

with a2 = 2J0 −mω2/κ, a1 = 2E/κ− J2
0 , and a0 =

−2c/κ. The roots satisfy the condition η1 > η2 > η3

for κ > 0 and the condition η1 < η2 < η3 for κ < 0.
The phase χ is determined by the initial conditions.
The function sn(φ) is periodic with period∆φ = 4K,
where

K(k) =

π/2∫
0

dφ√
1− k2 sin2 φ

(29)

is a complete elliptic integral of the first kind with
k2 = (η2 − η1)/(η3 − η1). There exists an analytic
expression for the Fourier expansion of this function
[17],

sn(ω̄t) =
2π
kK

∞∑
n=1

qn−1/2

1− q2n−1
sin(2n− 1) ω̄π

2K
t,

where q = exp(−πK′/K), K′(k) = K(
√
1− k2).

This formula involves only frequencies that are pro-
portional to odd numbers of the basic frequency Ω =
ω̄π

2K
. It is obvious that sn2 includes the frequencies

nΩ with n even only. Thus, the Fourier expansion of
the function J(t)will involve only one basic frequency
2Ω and its satellites 4Ω, 6Ω, etc. Numerically, the

frequency 2Ω =
ω̄π

K
can be rather different from the

result of the harmonic problem (24). Thus, the
2
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Table 1. Dependence of eigenfrequencies on the initial
conditions

I c′ 0 0.01 0.1 0.5 1

�Ω 9.25 14.13 17.91 21.84 23.98

II c′ −0.0001 −0.04 −0.08 −0.1 −0.11
�Ω 16.89 15.96 14.55 13.31 12.18

III c′ 0.94 0.945 0.95 1 1.005

�Ω 5.53 7.04 7.58 9.50 9.60

IV c′ 0.47 0.5 0.7 0.75 0.755

�Ω 10.66 14.68 18.90 19.42 19.46

Note: (I) κ̄ = 2, E = 24MeV, r2eq = 1; (II) κ̄ = 2, E = 24MeV,
r2eq = 0.752; (III) κ̄ = −0.5, E = 9.5 MeV, r2eq = 1; (IV)
κ̄ = −2,E = 15MeV, r2eq = 0.5.

effect of including the anharmonic term ∼J2(t) in
the system (12) is the transformation of the basic
frequency Ω̃ into 2Ω and the appearance of satellites
n2Ω. The equidistance of such a spectrum is evident,
characteristic of a bounded classical motion.

It is necessary to note the dependence of Ω on
the initial conditions (also characteristic of classical
motion). The roots of the polynomial in (28) depend
on c and E. These constants, together with the phase
χ, are determined by J(0), J̇(0), and Π(0). Examples
of such a dependence are demonstrated in Table 1.

A very interesting situation arises at a sufficiently
large value of J̇(0), in which case the constant c′

becomes negative. If κ̄ > 1/2 and 0 > c′ > (1−
2κ̄)3/(27κ̄2), the polynomial in (20) has two positive
roots (Fig. 2) with r2 < 1: the larger one corresponds
to the minimum of the potential well, and the smaller
one corresponds to the top of the barrier. In this
case, the time-dependent single-particle potential (9)
is always repulsive. This fact becomes obvious after
rewriting (9) as

V (x, t) =
m

2
ω2[1 + 2κ̄(r2 − 1)]x2

−mω2κ̄(r2 − 1)x2
0/A

and noting that [1 + 2κ̄(r2 − 1)] < 0 for the region
0 < r2 < (2κ̄− 1)/(2κ̄) being considered. Neverthe-
less, the system can possess a collective dynamical
potential whose bottom is lower than that of the equi-
librium state. The corresponding condition Vbot <
Veq can be written as

2r2
bot + κ̄(3r2

bot − 1)(r2
bot − 1)

< 2r2
eq + κ̄(3r2

eq − 1)(r2
eq − 1),
P

where rbot is the position of the minimum of the
dynamical potential. After simple transformations,
one gets

(r2
bot − r2

eq){2 + κ̄[3(r2
bot + r2

eq)− 4]} < 0.
Considering that r2

bot is determined by c
′ < 0 and that

r2
eq is determined by c

′ > 0, it is easy to see fromFig. 2
(the case of κ̄ > 1/2) that r2

bot is always smaller than
r2
eq. Hence, one has

2 + κ̄[3(r2
bot + r2

eq)− 4] > 0.
Substituting the minimal values of r2

bot and r
2
eq,

r2
bot(min) =

2κ̄− 1
3κ̄

, r2
eq(min) =

2κ̄− 1
2κ̄

,

into this formula, one finally obtains the condition
κ̄ > 1/2, which is just our case.
In an analogous way, one can derive the condition

for the top of the barrier Vtop to be higher than Veq:

(r2
top − r2

eq){2 + κ̄[3(r2
top + r2

eq)− 4]} > 0.
It is obvious that r2

top < r2
eq. Therefore, one has

2 + κ̄[3(r2
top + r2

eq)− 4] < 0.
Considering that r2

top ∼ 0, one obtains the condition

r2
eq <

4
3
2κ̄− 1
2κ̄

=
4
3
r2
eq(min).

Such a potential is shown in Fig. 1 by the dashed
curve. The eigenfrequencies calculated for this po-
tential well are given in Table 1. The limits of variation
of c′ are determined by the input excitation energy E:
at some value of c′, the energy Eeq + E proves to be
lower than the bottom of the potential well or higher
than the top of the potential barrier.

3.4. Quantization

Solving nonlinear equations of motion, one ex-
pects to find anharmonicity effects. We have al-
ready observed the main effect of anharmonicity—the
emergence of satellites of the basic frequency that
form the equidistant spectrum. However, this re-
sult contradicts the practice of quantum-mechanical
calculations, where one usually has some deviation
from precise equidistance. In order to obtain anhar-
monicity of the spectrum, it is therefore necessary to
quantize this model.
Its quantization is straightforward because we al-

ready have the expression for the energy of vibrations
(17). Choosing q = J and p = (mJ̇)/(4J) as the
canonically conjugate variables, one can represent
the Hamiltonian in the form

H =
p2

2m∗ + V (q) (30)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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with

V (q) =
m

2
ω2q +

c

q
+

κ

2
(q − J0)2, m∗ =

m

4q
. (31)

It is easy to see that the first Hamilton’s equation
ṗ = −∂H/∂q coincides with Eq. (15), while the
second Hamilton’s equation q̇ = ∂H/∂p reproduces
our definition of p.
The quantum Hamiltonian can be produced by

following the Pauli [18, 19] prescription:

H = −�
2

m

(
∂

∂q
+ 2q

∂2

∂q2

)
+ V (q).

This operation, however, does not complete the con-
struction of the quantum Hamiltonian because it is
necessary to solve the initial-condition problem. Our
quantum Hamiltonian will contain the constant c,
which is determined by the initial conditions. Thus,
the variety of initial conditions of the classical prob-
lem will generate a variety of quantum Hamiltonians.
However, the Hamiltonian that ideally describes the
dynamics of the nucleus should be unique.
We suppose that the solution to this problem can

be found by taking into account the fundamental
difference between the classical and quantum de-
scriptions of excitations. Being an integral of the
motion (energy), the classical Hamiltonian changes
each time when the initial conditions are changed.
Hence, strictly speaking, all excited states and the
equilibrium (ground) state are described by different
Hamiltonians. An absolutely different situation pre-
vails in a quantum case. Here, all states (ground
and excited) are obtained as eigenstates of only one
Hamiltonian. The ground state is the only state that
is described by the same Hamiltonian in both cases.
Therefore, it is natural to use, for quantization, the
classical Hamiltonian derived for the initial conditions
that correspond to the ground state. This means that,
for our model, we have to take the equilibrium value
of the constant c. This statement agrees with the
conclusion of Klein [5] that “the value of c is related
to the equilibrium value of q.” Furthermore, it bears
a strong resemblance to the stationarity conditions of
Kan [20].
Twomethods will be used to analyze the spectrum.

The first one is the Bohr–Sommerfeld quantization
rule

q2∫
q1

P (q) dq = π�

(
n+

1
2

)
, (32)

where q1 and q2 are the classical turning points and
P (q) =

√
2m∗(E − V ).

The other method was suggested by Cambiaggio
[21]. Its idea is in the self-consistency prescription:
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Table 2. Spectra calculated by the Bohr–Sommerfeld (B)
and Cambiaggio (C) methods

E1 − E0 E2 − E1 E3 − E2 E4 − E3

IIa B 9.489 9.151 8.749 8.243

C 9.496 9.166 8.777 8.299

IIb B 8.557 8.032 – –

C 8.572 8.073 – –

III B 14.339 13.686 12.858 11.657

C 14.355 13.723 12.939 11.870

Note: (IIa) c′ = 1, κ̄ = −0.5, ERPA = 9.786 MeV, r2eq = 1;
(IIb) c′ = 1.05, κ̄ = −0.5, ERPA = 8.975 MeV, r2eq =

1.053; (III) c′ = 1, κ̄ = −2, ERPA = 14.891 MeV, r2eq =
0.64.

the input energies must coincide with the Fourier
spectrum of the action.
The results strongly depend on the values of ceq

and κ̄. In accordance with the results of the previous
analysis, three domains of κ̄ values must be consid-
ered separately: κ̄ > 0, −1 < κ̄ < 0, and κ̄ < −1.
Let us first consider the case of κ̄ > 0. Here, the

potential well has infinite walls and a minimum at
the point J = J0 (for c′eq = 1), which corresponds to
an equilibrium state of a harmonic oscillator; i.e., the
inclusion of the residual interaction does not change
the equilibrium state of the system that is character-
ized by the inertia tensor Jeq = J0 and by the energy
Eeq = mω2J0. The spectrum, being infinite, has
a very small anharmonicity. The calculations with
κ̄ = 2 show that the levels En are positioned equidis-
tantly to a good accuracy up to a rather large n.
For example, the difference E1 − E0 = 23.984 MeV
nearly coincides with ERPA = 23.971 MeV. A small
anharmonicity can be noticed at n ≈ 100. Thus,
the difference E101 − E100 = 26.017 MeV demon-
strates the anharmonicity Anh = (E101 − E100 −
ERPA)/ERPA ≈ 8%.
The second case (−1 < κ̄ < 0) is more interesting.

Here, the potential (31) has a minimum at the same
point J = J0 (for c′eq = 1), which also corresponds to
an equilibrium state of a harmonic oscillator. How-
ever, this state is metastable because, now, the po-
tential has a finite-height barrier whose top lies at the
point J = −J0(1 +

√
1− 8κ̄)/(4κ̄) > J0. Therefore,

the inclusion of the residual interaction with −1 <
κ̄ < 0 changes the equilibrium state of the system
qualitatively without changing its quantitative char-
acteristics Jeq and Eeq. The barrier height decreases
from∞ to 0when κ̄ changes from 0 to−1. Hence, the
anharmonicity can be rather large when κ̄ is close to
−1. For example, the barrier height is about 50 MeV
2
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at κ̄ = −0.5 and c′eq = 1. The potential well has
four bound states, and the deviation of the spectrum
from an equidistant one is appreciable right from the
beginning (Table 2). Taking c′eq = 1.05, one obtains
the barrier of height about 22 MeV. The potential has
only two bound states and the anharmonicity slightly
increases (Table 2).
The third case (κ̄ < −1) is of special interest

because this potential has a maximum at J = J0 (for
c′eq = 1). Its minimum lies at J = Jeq = −J0(1 +√
1− 8κ̄)/(4κ̄) < J0. The well depth (or barrier

height) increases from 0 to∞ when κ̄ changes from
−1 to −∞. Hence, a remarkable anharmonicity can
be observed in the vicinity of κ̄ = −1. For example,
the well depth is about 67 MeV at κ̄ = −2. Here,
there are four bound states, and the deviation of the
spectrum from an equidistant one is strong, precisely
as in the preceding case, even for low-lying states
(Table 2).
It is seen from Table 2 that the results found by

the Bohr–Sommerfeld and Cambiaggio methods are
quite close, the difference between them increasing
together with the anharmonicity. This behavior is
naturally explained by the fact that both methods are
approximate ones.

4. CONCLUSION

Let us list the main results of this study.
The classical and quantum aspects of the ana-

lytically solvable one-dimensional monopole model
of Suzuki have been revisited. The set of nonlinear
dynamical equations for monopole collective char-
acteristics of a nucleus has been derived from the
time-dependent Hartree–Fock equation by using
the method of the Wigner function moments. This
method reproduces the exact results for the collective
properties of the model. It allows one to perform
a more extensive analysis of the classical aspects
of the problem and to look at the model from new
sides (c dependence of the solutions of the equations
of motion). The collective Hamiltonian that gener-
ates these equations has been constructed. It has
been shown that the anharmonicity of the collective
spectrum, being a specific property of quantum
systems, cannot be observed in classical ones. The
PH
Hamiltonian has been quantized by two methods.
The choice of initial conditions that is necessary for
quantization of the model has been established. The
calculations have shown that the anharmonicity of
quantum spectra depends strongly on the strength
constant of the residual interaction, being negligible
for κ > 0 and rather large for κ < 0.
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Abstract—A mechanical instability of an incompressible Fermi liquid drop with respect to surface
distortions is considered. It is shown that the Fermi surface distortion (FSD) reduces the instability-
growth rate for surface fluctuations due to its effects on both the viscosity and the increase in the stiffness
coefficient. The dependence of the limiting temperature Tlim on the mass number and the multipolarity
of the nuclear-surface distortion is calculated. It is shown that Tlim is not influenced by the FSD effect.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

With increasing internal excitation energy (tem-
perature), an incompressible liquid drop reaches the
region of mechanical instability with respect to shape
fluctuations. The process of instability development is
a complicated one. Both finite-size and memory and
temperature effects in the collision integral influence
strongly the rate of instability growth in a nuclear
liquid drop [1, 2]. A realistic charged nuclear liquid
drop becomes unstable at a limiting temperature Tlim

that is significantly lower than the critical tempera-
ture Tc of the liquid–gas phase transition [3–8]. In
the case of an incompressible and charged liquid,
the limiting temperature is derived by the balance of
the Coulomb and the surface energy and depends on
the temperature behavior (critical exponent) of the
surface tension in the vicinity of the critical tempera-
ture. In the present study, we analyze the instability-
growth rate and the limiting temperature using a
simple Fermi liquid–drop model with a sharp edge.
The limiting temperature and the transition to an
unstable regime are derived by the condition of the
disappearance of the stiffness coefficient with respect
to a small surface distortion of multipolarity L. In
our model for the surface instability of finite nuclei,
we assume an incompressible and uniformly charged
liquid drop with temperature-dependent surface and
Coulomb energies. This model is adequate to give
general information about the A and L dependence of
the limiting temperature and about the role of Fermi
surface–distortion effects on the surface instability of
finite nuclei. In Section 2, we derive the instability-
growth rate for a hot and viscous Fermi liquid drop.
In Section 3, we calculate the A dependence of the

∗This article was submitted by the authors in English.
1)Cyclotron Institute, Texas A&M University, College Station,
TX 77843-4242 USA.
1063-7788/02/6501-0065$22.00 c©
limiting temperature for various multipolarities L of
the surface distortion and for various values of the
surface critical exponent.

2. INSTABILITY-GROWTH RATE
FOR SURFACE DISTORTIONS

We will consider small surface fluctuations of an
incompressible Fermi liquid drop, assuming a time
variation of the particle density in the form

ρ(t) = ρ0Θ(R(t)− r), (1)

where ρ0 is the bulk density and the nuclear radius
R(t) is given by

R(t) = R0

[
1 +

∑
LM

βLM (t)YLM

]
, (2)

with βLM (t) being a small dimensionless parameter.
In the present study, we concentrate on the surface
instability with respect to small isoscalar fluctuations
of the shape parameter βLM (t) only. Such a kind of
instability is related to the surface stiffness coefficient
of a nuclear liquid drop. We will not consider here
the isovector mode and the corresponding instability,
which are related to the symmetry energy. The lin-
earized equation of motion for the collective variables
βLM (t) can be directly derived from the collision ki-
netic equation under the assumption of a quadrupole
distortion of the Fermi surface (fluid-dynamics ap-
proximation) and has the form (see [9–11])

−ω2BLβLM,ω +
(
C

(LD)
L + C̃L(ω)

)
βLM,ω = 0. (3)

The collective mass BL and the stiffness coefficient
C

(LD)
L are given by the traditional liquid-drop model

[12, 13]. Namely,we have

BL =
3

4πL
AmR2

0, (4)
2002 MAIK “Nauka/Interperiodica”
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C
(LD)
L =

1
4π

(L− 1)(L + 2)bSA2/3

− 5
2π

L− 1
2L + 1

bC
Z2

A1/3
,

where bS and bC are, respectively, the surface-energy
and Coulomb energy coefficients appearing in the
nuclear-mass formula and R0 is the radius of the
nucleus. The additional contribution C̃L(ω) to the
stiffness coefficient in Eq. (3) is due to the dynamical
Fermi surface distortion. It is given by [9]

C̃L(ω) =
−iωτ

1− iωτ
dLPeq, (5)

where information about the multipolarity is in

dL = 2
(L− 1)(2L + 1)

L
R3

0. (6)

Here, τ is the relaxation time and Peq the equilibrium
pressure of a Fermi gas,

Peq ≈ ρ0p
2
F/5m,

where pF is the Fermi momentum.
We point out that Eqs. (3) and (5) can be estab-

lished by means of a direct algebraic transformation
of the collision kinetic equation in the case of an
incompressible and irrotational liquid (see [9, 10]).
The ω dependence of the stiffness coefficient C̃L(ω)
in Eq. (5) reflects memory effects due to the colli-
sion integral. In the rare-collision regime, ωτ � 1,
the contribution of C̃L(ω) exceeds significantly the

liquid drop term C
(LD)
L in Eq. (3) and provides a

correct description of the isoscalar multipole giant
resonances in cold nuclei (see [10]) and a correct
zero-to-first-sound transition in heated nuclei (see [9,
11, 14]). In this respect, our approach is applicable
to nuclei. Notice also that, from the point of view
of quantum theory, like the random-phase approxi-
mation (RPA) or the time-dependent Hartree–Fock

(TDHF) approximation, the terms C
(LD)
L and C̃L(ω)

are both caused (at ωτ � 1) by the long-range (zero-
sound) correlations through a self-consistent mean
field. That the term C̃L(ω) appears owing to the Fermi
surface–distortion effect only and that it disappears in
the frequent-collision limit at ωτ � 1 are, however,
important features of this term. We want to stress
that Eqs. (3) and (5) are valid for arbitrary relaxation
times τ and describe both the rare- and the frequent-
interparticle-collision limit, as well as the intermedi-
ate case. Thus, the term C̃L(ω) takes into account
long-range (mean-field) correlations in the case of
pure zero-sound regime, ωτ � 1, and the collision
(two-body) viscosity in all intermediate cases of ωτ .
Moreover, depending on the derivation of the relax-
ation time τ in Eq. (5), the term C̃L(ω) takes into
P

account one- or two-body dissipation, temperature
effects, etc. (see [14]). The equations of motion
(3) and Eq. (5) are obtained as the semiclassical
and fluid-dynamics [15] approximation to the collision
kinetic equation for an incompressible Fermi liquid
(see [9]).

In the case of a stable mode, Im(ω) > 0, Eq. (3)
describes a damped capillary excitation at the surface
of the Fermi liquid drop. The corresponding secular
equation has the form [9]

−ω2BL + C
(LD)
L + C ′

L(ω)− iωγL(ω) = 0, (7)

where γL(ω) is the friction coefficient,

γL(ω) = Re
( τ

1− iωτ

)
dLPeq, (8)

and

C ′
L(ω) = Im

( ωτ

1− iωτ

)
dLPeq. (9)

The additional contribution C ′
L(ω) to the stiffness co-

efficient in Eq. (7) disappears in the frequent-collision
(first-sound) regime for Re(ω)τ → 0.

Important information concerning the instability
of hot nuclei can be obtained from a thermodynamic
consideration through the evaluation of the free en-
ergy and the equation of state in some appropriate
models (see [4] and references therein). In the present
study, we use the dynamical approach to instability,
considering a mechanical instability with respect to
surface fluctuations. An advantage of this approach
is that we are able to take into consideration several
important aspects of nuclear instability that cannot be
studied within thermodynamic approaches—namely,
(i) the influence of Fermi surface–distortion effects
on the instability-growth rate, (ii) the influence of
memory effects in nuclear friction on the development
of instability, and (iii) the dependence of the limiting
temperature on the multipolarity L of the deformation
of the nuclear surface. Let us consider the surface-
instability regime, C(LD)

L < 0. The growth rate Γ =
−iω (Γ is real, Γ > 0) can be found from Eq. (7) and
is given by

Γ2
L = Γ(LD)

L

2
− ζL(ΓL), (10)

where

Γ(LD)
L =

√
|C(LD)|/BL (11)

and

ζL(ΓL) =
ΓLτ

1 + ΓLτ
dLPeq

BL
. (12)
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Fig. 1. Temperature dependence of the LDM stiffness
coefficient C(LD)

L for a quadrupole surface deformation
(L = 2). The nuclei being considered are indicated near
the corresponding curves.

2.1. Frequent-Collision Regime: τΓL → 0

The perturbation-theory solution to Eq. (10) has
the form

ΓL ≈ Γ(LD)
L

(
1− τdLPeq

2BLΓ(LD)
L

)
. (13)

Thus, in the frequent-collision regime, the Fermi sur-
face distortion influences the instability-growth rate
ΓL through interparticle collisions only. As can be
seen from Eqs. (13), (11), (6), and (4), the instability-
growth rate decreases with increasing L. Relaxation
processes reduce slightly the surface instability due to
the second term on the right-hand side of Eq. (13).

2.2. Rare-Collision Regime: τΓL →∞

The secular Eq. (10) reduces to the form

Γ2
L = Γ(LD)

L

2
− dLPeq

BL
. (14)

We point out that the second term on the right-
hand side of Eq. (14) is due to the Fermi surface–
distortion effects. This term reduces significantly the

instability-growth rate ΓL with respect to that, Γ(LD)
L ,

given by the liquid-drop model.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
 

208

 

Pb

 

40

 

Ca

 

L

T
 

lim

 
, MeV

11852
5

10

15

20

Fig. 2. Limiting temperature Tlim as a function of the
multipolarity L of the surface deformation for the 208Pb
and 40Ca nuclei. The solid curve is for the critical expo-
nent of ν = 1.25, and the dashed curve is for ν = 1.5.

3. LIMITING TEMPERATURE: NUMERICAL
ILLUSTRATIONS AND DISCUSSION

For the numerical calculations performed in this
study, we assume a temperature dependence of the
surface and Coulomb parameters in the liquid-drop

stiffness coefficient C(LD)
L of Eq. (4) [16, 17]:

bS = 17.2
16 + Ci

x−3
i + Ci + (1− xi)−3

(15)

×
(

T 2
c (xi)− T 2

T 2
c (xi) + a(xi)T 2

)ν
(MeV),

bc = 0.7(1 − xCT
2) (MeV),

where (see [17]) a(xi) = a0 + a2y
2 + a4y

4, y = 0.5−
xi, Ci = 24.4, a0 = 0.935, a2 = −5.1, a4 = −1.1,
and the parameter xC was chosen to be xC = 0.76 ×
10−3 MeV−2 [16]. The dependence of the critical
temperature Tc(xi) on the asymmetry parameter xi
was taken in the form Tc(xi) = Tc[1− cy2 − dy4],
with c = 3.31 and d = 7.36, and Tc = 18 MeV is the
critical temperature for infinite nuclear Fermi liquid
[17]. We performed our numerical calculations for
two values of the surface critical exponent, ν = 1.25
and ν = 1.5. The corrected asymmetry parameter
xi ≈ Z/A for certain nuclei was taken from [17]. We
point out that, due to the temperature dependence
of the surface and Coulomb parameters bS and bC
in Eq. (15), our model takes into consideration the
temperature dependence of the bulk particle density
ρ0. Indeed, the temperature dependence of both
parameters bS and bC has been established from a fit
to the self-consistent calculations of the free energy in
the temperature-dependent Thomas–Fermi model,
2
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Fig. 3. Limiting temperature Tlim as a function of the
mass number A for L = 2 and L = 4 deformations of
the nuclear surface. The solid curve is for the critical
exponent of ν = 1.25, and the dashed curve is for ν = 1.5.

where the temperature dependence of the particle
density is taken into account automatically. More-
over, the temperature dependence of the Coulomb
parameter bC in Eq. (15) is in fact due to the radial
blow up of the nucleus by temperature.

The temperature dependence of the LDM stiffness

coefficient C
(LD)
L is shown in Fig. 1 for a quadrupole

surface distortion (L = 2). The T dependence

of C
(LD)
L is significantly stronger for heavy nuclei

because of the balance of the larger surface and
Coulomb terms in Eq. (4) in these nuclei.

Using Eq. (15), one can find the limiting tempera-

ture Tlim at which the liquid-drop contribution C
(LD)
L

to the stiffness coefficient vanishes:

C
(LD)
L ≡ C

(LD)
L (T )

∣∣∣
T=Tlim

= 0.

For temperatures T > Tlim, the nucleus is unstable
with respect to surface distortions. The limiting tem-
perature Tlim depends on the mass number A and on
the multipolarity L of the surface distortion. In Fig. 2,
the L dependence of Tlim is shown for the 208 Pb and
40Ca nuclei. An increase in the limiting temperature
with L means that the yield of small clusters (high
L) caused by the surface instability of the nucleus
increases with T . The A dependence of the limiting
temperature Tlim for L = 2 and L = 4 and for two
values of the surface critical exponent ν is plotted in
PH
Fig. 3. This A dependence becomes weaker with
increasing L.

We point out that Figs. 2 and 3 were obtained
within the liquid-drop model, Fermi surface–distor-
tion effects being neglected. However, as can be seen
from Eqs. (10) and (12), the general condition of
the development of the instability given by ΓL = 0
coincides with the same condition Γ(LD)

L = 0 for the
liquid-drop model. Therefore, the limiting temper-
ature Tlim should be the same in both cases, and
Figs. 2 and 3 are applicable to the Fermi liquid drop
as well.
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Abstract—Energy and angular distributions of the neutrons and the α particle from the reaction
6He(γ, 2n)4He is examined in the minimal approximation of the hyperspherical-function method in the
algebraic version of the resonating-group method. The differential cross section for 6He photodisintegra-
tion is calculated as a function of the energies of the product particles, the angles between their momenta,
and their emission angles with respect to the incident-photon momentum. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Since facilities employing intense beams of 6He
ions are expected to be commissioned in the near
future and are planned to be used to study 6He pho-
todisintegration into an α particle and two neutrons,
it is of current interest to analyze theoretically the re-
action 6He(γ, 2n)4He in order to predict the behavior
of the energy and angular distributions of three final
particles and to reveal basic factors that control the
dependence of the differential cross section on the
energies of emitted particles and on the direction of
their motion.

Three-body 6He disintegration was experimen-
tally observed in various reactions—for example, in
the reaction 6He → 4He + n + n in the Coulomb
field of a lead target [1]. It should be borne inmind that
we examine nuclear disintegration by a dipole photon
rather than Coulomb excitation in the field of a heavy
nucleus, in which case there can occur Eλ, λ ≥ 1,
transitions.

Previously, 6He photodisintegration was investi-
gated theoretically in [2] and in [3], where the photon-
energy dependence of the E1-transition matrix ele-
ment was found among other things. In this study, we
aim at determining the photodisintegration cross sec-
tion as a function of the energies of final particles and
their emission angles with respect to the incident-
photon momentum, as well as of the angles between
the final-particle momenta.

As in [3], we apply the algebraic version of
the resonating-group model and the asymptotic-
potential approximation. The 6He nucleus is treated
as a system of three loosely bound clusters into which

*e-mail: gfilippov@gluk.apc.org
1063-7788/02/6501-0069$22.00 c©
it decays above the 6He→ α + n+ n threshold. For
its ground (0+) state, thewave function is represented
as a superposition of the hyperspherical harmonics
corresponding to the grand-orbital values of K = 0
and 2 that is allowed by the Pauli exclusion principle;
the wave functions for the 1− continuum states
into which the E1 transitions occur are constructed
as an allowed superposition of the K = 1 and 3
hyperspherical harmonics.

First, we discuss some features of the three-body
decay of a nuclear system that distinguish it from
two-body decays. In the latter case, the angular
distribution with respect to a specified direction is the
only characteristic of the system at a given energy.
In analyzing a three-body decay process at a given
energy of the system being considered, it is necessary
to determine not only the emission probability for
each of the three product particles as a function of
the direction of its momentum with respect to both
a specified direction and directions of the momenta
of the remaining final particles but also the energy
distribution of this particle.

To answer the questions that arise in analyzing
three-body decay, we first consider phase space and,
taking into account all constraints imposed by con-
servation laws, find the region of allowed values of
themomenta and energy of the emitted particles; after
that, we represent the phase-space element in a form
that is the most convenient for practical applications
(Section 2). As a result, we obtain the contribution
of the phase-space volume to the energy and angular
distributions, a factor that is indeed of importance for
further calculations.

The second factor that must be taken into account
is the squared matrix element of the electric-dipole-
transition operator. This matrix element relates the
2002MAIK “Nauka/Interperiodica”



70 FILIPPOV, LASHKO
wave function for the 6He ground state to continuum-
state wave functions. For this reason, the next stage
of the calculations (Section 3) is devoted to analyzing
the wave functions constructed for the 1− continuum
states of the 6He nucleus as an expansion in the
harmonic-oscillator basis. The simple example of a
six-dimensional plane wave demonstrates that not
only the functions of the harmonic-oscillator basis
but also the coefficients in the expansion of solu-
tions to the Schrödinger equation in this basis are
expressed in terms of hyperspherical functions and
depend on the momenta of diverging particles. The
reduction of hyperspherical harmonics to bispherical
functions is a means to separate the variables that
specify the spatial orientation of the entire three-
cluster system from variables characterizing both the
absolute value of the momentum of each cluster and
the direction of this momentum with respect to the
momenta of the other two clusters. As a result, we re-
veal the importance of the hyperspherical harmonics
for determining the angular and energy distributions.

2. MOMENTA OF CLUSTERS
IN THEIR c.m. FRAME

Let us begin by considering the kinetic energy T
of the system formed by an alpha particle and two
neutrons. We denote by p1 the momentum of the
alpha particle and by p2 and p3 the momenta of the
two neutrons. We then have

T =
p2

1

8
+

p2
2

2
+

p2
3

2
, (1)

where the neutron mass is set to unity, whereupon
the alpha-particle mass takes the value of 4. Since
6He photodisintegration is analyzed here above the
threshold for three-body decay, the energy E is fixed
and equal to T at long distances between the parti-
cles. This energy is defined in the c.m. frame, where

p1 + p2 + p3 = 0. (2)

It is appropriate to exclude p3 from the right-hand
side of Eq. (1) by using Eq. (2) and substitute E for
T on the left-hand side of Eq. (1). The remaining two
vector variables are related as

E =
p2

1

8
+

p2
2

2
+

(p1 + p2)2

2
. (3)

In order to calculate the energy and angular distri-
butions, it is necessary to determine the density dρf of
states per unit energy in phase space. It is convenient
to introduce the vectors

k1 =
1√
3

(p1

2
− p2 − p3

)
=
√

3
2

p1,

k2 =
1√
2
(p2 − p3) =

1√
2
(p1 + 2p2)
P

in the c.m. frame, which are defined in such a way
that the reduced masses corresponding to them are
equal to unity. In terms of these vectors, the energy is
expressed as

k2
1

2
+

k2
2

2
= E =

k2

2
. (4)

As a result, many relations are simplified. In particu-
lar, we have

dρf =
dk1dk2

(2π)6dE
. (5)

It follows from Eq. (4) that
k1 = k cosα, k2 = k sinα, 0 ≤ α ≤ π/2. (6)

We also note that

p1 =
2√
3

k1, p2 =
1√
2

k2 −
1√
3
k1. (7)

The quantities p1 and p2 are related to α and t as

p1 =
2√
3
k cosα, (8)

p2 = k

√
5− cos 2α

12
− 1√

6
sin 2α× t,

where t=(k1 ·k2)/k1k2.Therefore, theα-particle en-
ergy E1 and the energy E2 of one of the neutrons can
be represented as

E1 =
k2

6
cos2 α, (9)

E2 =
k2

24
(5− cos 2α − 2

√
6 t sin 2α).

From (9), it immediately follows that the domain of
the allowed E1 and E2 values is within a loop referred
to as a “kinematical locus” or a Dalitz plot [4]. This
region, whose lower and upper boundaries correspond
to t = 1 and −1, respectively, is specified by the in-
equalities

0 ≤ E1 ≤
k2

6
,

5k2

12
sin2(α− α0) ≤ E2 ≤

5k2

12
sin2(α + α0),

where sinα0 =
√

2/5 and cosα0 =
√

3/5.
Figure 1 shows that the locus in the (E1, E2) plane

is an oval tangent to the E2 and the E1 axis at the
points where α = π/2 and α0, respectively.

From the energy-conservation law

k2
1 + k2

2 =
5
4
p2
1 + 2p2

2 + 2(p1 · p2) = k2,

it follows that the cosine of the angle between the
vectors p1 and p2 is

τ =
(p1 · p2)
p1p2

=
k2 − 5/4× p2

1 − 2p2
2

2p1p2
(10)
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=
−2 cosα +

√
6 sinα× t√

5− 2 cos 2α − 2
√

6 sin 2α× t
.

Each point in the locus corresponds to specific
values of the momentum and energy of the α particle
and each of the two neutrons. In particular, the
point a, where α = π/2, corresponds to the alpha
particle at rest and the neutrons having the energy
k2/4 and moving in opposite directions. A neutron
has the maximum energy of 5k2/12 at α = π/2− α0

(point b). In this case, τ = −1; that is, the al-
pha particle, whose energy is k2/15, and the second
neutron move in the opposite direction. Yet another
noteworthy point is c, where α = 0. In this case, the
alpha-particle energy attains its maximum value of
k2/6 and is equal to the energy of each of the two
neutrons moving together in the direction opposite
to that of the alpha particle (τ = −1 again). In the
situation corresponding to the point d, where α = α0,
one neutron is at rest and the energies of the alpha
particle and the second neutron are k2/10 and 2k2/5,
respectively.

As a result, the number of states per unit phase-
space volume is

dρf =
(

3
2

)3/2 dp1dp2

(2π)6dE

=
(

3
2

)3/2 p2
1dp1p

2
2dp2dΩ1dΩ2

(2π)6dE
,

where Ω1 and Ω2 are the angles specifying the direc-
tions of the vectors pi and p2, respectively. We define
these angles in the coordinate system where the z axis
is aligned with the vector p1. Therefore, we have

dΩ2 = dτdφ2,

where the angle φ2 specifies the rotation of the plane
spanned by the vectors p1 and p2 about the vector p1.
We then have

dρf =
(

3
2

)3/2 p1dp1p2dp2

(2π)6
dΩ1dφ2 (11)

= 4
(

3
2

)3/2 dE1dE2

(2π)6
sin θ1dθ1dφ1dφ2.

The angular distributions in the three-body decay
of 6He will be analyzed in terms of the angles θ1, φ1,
and φ2, which specify the spatial orientations of the
set of the vectors p1 and p2, and the cosine τ of the
angle between these vectors. The energy distribution
is characterized by a function that depends on the
above angle α and which is to be determined. As
a matter of fact, these are five independent variables
of hyperspherical harmonics in the momentum repre-
sentation. In order to determine the angular and en-
ergy distributions in question, it is therefore sufficient
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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(points a, b, c, and d correspond toα = π/2, π/2−α0, 0,
and α0, respectively).

to find the weight coefficients of the hyperspherical
harmonics entering into the wave functions for those
1− states of the 6He continuum that are related to the
ground state by the E1-transition operator.

Later, we will return to the expression for dρf ; for
now, we proceed to analyze the wave functions for the
states of our interest and the matrix elements of the
E1-transition operator.

3. WAVE FUNCTION
FOR THE 6He GROUND STATE

As in [3], the wave function Ψ(0+) for the 6He
ground state is represented as an expansion in the
harmonic-oscillator basis states Ψν(0+). Each of
these is a superposition of the K = 0 and 2 hyper-
spherical harmonics:

Ψ(0+) =
∞∑
ν=0

Cν(0+)Ψν(0+), (12)

Ψν(0+) = N+
ν (3a2 − 2b2)(a2 + b2)ν ,

N+
ν =

1
2ν

√
4

(29ν + 104)ν!(ν + 3)!
.

Here, ν is the number of oscillator excitation quanta
of the basis function (this number is measured from
the minimal number equal to two; that is, ν = 0 cor-
responds to two oscillator quanta), and a and b are the
lengths of the Jacobi vectors a and b that are defined
in the c.m. frame in Fock–Bargmann space and
which are related to the complex vector parameters
Ri, i = 1, 2, 3, of the Bloch–Brink orbitals as

a =

√
2
3

(
R1 −

R2 −R3

2

)
;

b =
1√
2
(R2 −R3).
2
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The expansion coefficients Cν(0+) were determined
by solving the set of the algebraic equations of the
asymptotic-potential approximation [3].

4. STRUCTURE OF THE WAVE FUNCTIONS
FOR THE 1− CONTINUUM STATES

In order to analyze the distributions in the energy
and the angles of the alpha particle and two neutrons
diverging after 6He photodisintegration, we represent
the wave functions for the Lπ = 1−, S = 0 contin-
uum states of this nucleus as

Ψ(1−,m) =
∞∑
ν=0

Cν(1−,m;k1,k2)Ψν(1−,m;a,b),

(13)

where the harmonic-oscillator basis functions
Ψν(1−,m;a,b) (14)

= N−
ν (3a2 − 2b2)am(a2 + b2)ν

= N−
ν (a2 + b2)ν+3/2(3 cos2 β

− 2 sin2 β) cos β
4π
3
Y1m(Ωa),

N−
ν =

1
2ν

√
4!

(13ν + 38)ν!(ν + 4)!

defined in Fock–Bargmann space are superpositions
of the hyperspherical harmonics that are specified by
the grand-orbital value ofK = 1 and 3, the orbital an-
gular momentum of L = 1, and its projection m and
which are allowed by the Pauli exclusion principle:

Ψν(1−,m;a,b) =
1

2
√

13ν + 38

(
5
√
ν + 5ΨL=1,m

ν,K=3

+ 3
√

3(ν + 1)ΨL=1,m
ν+1,K=1

)
.

The angle β is defined in such a way that

a2 = (a2 + b2) cos2 β, b2 = (a2 + b2) sin2 β. (15)

In turn, we have

ΨL=1,m
ν,K=3 (a,b)

=
1
2ν

√
5!

(ν + 5)!ν!
1

4
√

15
(a2 + b2)ν(3a2 − 5b2)am,

ΨL=1,m
ν+1,K=1(a,b)

=
1
2ν

√
4!

(ν + 4)!(ν + 1)!
1
4
(a2 + b2)ν+1am.

In [3], use was made of two 1− states characterized
by different sets of grand-orbital values. Here, we
restrict ourselves to the simpler single-channel case.
The basis wave function (14) is a linear superposition
of the basis functions presented in [3].
P

The coefficients in the expansion in the harmonic-
oscillator basis,

Cν(1−,m;k1,k2) (16)

= Cν(1−, E)φ1− ,m(α,Ωk1 ,Ωk2),

are expressed in terms of the Jacobi momenta k1 and
k2 and possess the same transformation properties as
the basis functions Ψν(1−,m;a,b). In particular, the
factor

φ1−,m(α,Ωk1 ,Ωk2) (17)

=

√
512
117π

(3 cos2 α− 2 sin2 α)

× cosαY ∗
1m(Ωk1)Y00(Ωk2),

which appears in the expansion coefficients, is a su-
perposition of the K = 1 and 3 hyperspherical har-
monics in the momentum representation. It differs
only in notation from the analogous factor in the basis
functions (14) and provides information on the energy
and angular distributions of particles. By analogy
with Eq. (15), we write

k1 = k cosα, k2 = k sinα, k2 = k2
1 + k2

2, (18)

where α is the hyperspherical angle and k is the
hyperradius in momentum space. The superposition
of hyperspherical harmonics in (17) is normalized in
such a way that

∑
m

π/2∫
0

sin2 α cos2 αdα (19)

×
∫

dΩk1

∫
dΩk2|φ1−,m(α,Ωk1 ,Ωk2)|2 = 1.

We now can obtain the differential cross section for
the electric-dipole photodisintegration of the 6He nu-
cleus.

5. DIFFERENTIAL CROSS SECTION
FOR THE E1 PHOTODISINTEGRATION

OF THE 6He NUCLEUS

The differential cross section for 6He photodisin-
tegration is given by

dσf =
4π3

9c
dρfω ×B(E1), (20)

where �ω is the energy of the photon absorbed by
the nucleus. As was shown in Section 2, the density
dρf of states depends trivially on the energies of the
final particles; that is, all the values of the energies
E1 and E2 are equiprobable in their allowed domain.
The nontrivial dependence of the cross section for
nuclear photodisintegration on the energies of the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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alpha particle and one of the neutrons is determined
by the reduced transition probability

B(E1) = r2
0

(2π)6

k5
×
∑
m,µ

(
Ψ(1−,m)|M̂µ|Ψ(0+, 0)

)2
.

(21)

In Fock–Bargmann space, the electric-dipole-tran-
sition operator can be represented as [3]

M̂(E1) =
e√
8π

(a + a∗).

The matrix element of the E1-transition operator has
the form(

Ψ(1−,m)|M̂µ|Ψ(0+, 0)
)

=
∞∑
ν=0

Cν(1−,m;k1,k2)

×
(
〈ν, 1−,m|M̂µ|ν, 0+, 0〉Cν(0+)

+ 〈ν, 1−,m|M̂µ|ν + 1, 0+, 0〉Cν+1(0+)
)
,

where the partial matrix elements are given by

〈ν, 1−,m|M̂µ|ν, 0+, 0〉 = C1,m
00;1µ

e√
8π

N+
ν

N−
ν

= C1,m
00;1µ

e√
8π

1√
6

√
(13ν + 38)(ν + 4)

29ν + 104
,

〈ν, 1−,m|M̂µ|ν + 1, 0+, 0〉 = C1,m
00;1µ

e

9
√

8π
N−
ν

N+
ν+1

= C1,m
00;1µ

e×
√

6
9
√

8π

√
(29ν + 133)(ν + 1)

13ν + 38
.

Taking into account the dependence (17) of the ex-
pansion coefficients on the hyperspherical angles, we
eventually obtain∑

m,µ

(
Ψ(1−,m)|M̂µ|Ψ(0+, 0)

)2

=
e2

π3

2
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sin2 θ1 cos2 α(3 cos2 α− 2 sin2 α)2

×
( ∞∑
ν=0

Cν(1−, E)

(√
(13ν + 38)(ν + 4)

29ν + 104
Cν(0+)

+
4
3

√
(ν + 1)(29ν + 133)

13ν + 38
Cν+1(0+)

))2

.

The differential cross section for 6He photodisinte-
gration can be represented as

dσf = σ0(E)
219/2 × 35/2

13π
Ẽ1(15Ẽ1 − 1)2 (22)

× sin3 θ1dθ1dẼ1dẼ2,
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Fig. 2.Differential cross section for 6He photodisintegra-
tion at a fixed photon energy E and θ1 = π/2. The locus
is shown in the (E1, E2) plane.

where E1 = k2Ẽ1 and E2 = k2Ẽ2. The coefficient in
Eq. (22) is chosen in such a way that∫

dẼ1

∫
dẼ2

∫
dθ1dσf = σ0(E).

The total cross section σ0(E) depends only on the
photon energy:

σ0(E) =
π2

162
e2r2

0

c

ω

k

( ∞∑
ν=0

Cν(1−, E)

×
(√

(13ν + 38)(ν + 4)
29ν + 104

Cν(0+)

+
4
3

√
(ν + 1)(29ν + 133)

13ν + 38
Cν+1(0+)

))2

.

Upon specifying this energy, we can therefore de-
termine the differential cross section as a function
of the energies and angles between the final-particle
momenta.

The θ1 dependence of the cross section is identical
to that for the deuteron because this anisotropy is due
to the transverse photon polarization. The differential
cross section dσf will obviously peak at θ1 = π/2 (the
alpha particle is emitted perpendicularly to the photon
momentum). Figure 2 shows dσf/σ0dθ1dẼ1 dẼ2 as
a function of E1 and E2 at fixed θ1. The photodis-
integration cross section is maximal at α = 0. As
was shown in Section 2, this α value corresponds
2
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to τ = −1; that is, the decay process in which the
momentum of the alpha particle and the momentum
of the pair of neutrons are opposite to each other is
the most probable. In this case, the energies of all
the three particles are equal to one another and the
alpha-particle energy attains its maximum possible
value (E1 = E2 = E3 = k2/6). The cross section is
minimal when two neutrons move in opposite direc-
tions and the alpha particle is at rest.

6. CONCLUSION

By considering the example of 6He photodisinte-
gration, we have demonstrated that the angular and
energy distributions are completely determined by the
wave function for the final nuclear state—more pre-
cisely, by the coefficients in the wave-function expan-
sion in allowed basis functions. Using hyperspherical
functions, one can easily obtain the differential cross
section for 6He disintegration as a function of the
energies of the final particles and the angles between
their momenta.

It is important that our results are independent
of the asymptotic-potential approximation used here.
Even beyond this approximation, we would arrive at
the same conclusions because a resort to a more
precise potential would affect only the coefficients
Cν(1−, E), which can change solely the total cross
section σ0(E). However, the form of the functions in
(17) is dictated by the use of the minimal approx-
imation of the hyperspherical-harmonic method. If
hyperspherical harmonics of higher grand orbitals K
were included, the energy and angular distributions of
final particles would be somewhat different.

As can be seen from Eq. (22), the energy and
angular distributions are similar for different photon
energies. However, this is so only for low photon
energies. As the energy increases, other reaction
channels open, with the result that the distributions
become energy-dependent.

Thus, 6He disintegration is most probably ac-
companied by the emission of the alpha particle and
P

valence neutrons in opposite directions in the plane
orthogonal to the photon momentum. This behav-
ior is explained by the following mechanism. The
electric dipole moment of the 6He nucleus is zero in
the ground state. Following the E1 transition, the
nucleus occurs in a state whose dipole moment is
determined by the configuration of the excited nu-
clear state in the c.m. frame of the nucleus. Two
limiting configurations can in principle be realized
at given 6He energy. One of these corresponds to
the alpha particle at rest and the neutrons moving
in opposite directions and has zero electric dipole
moment. Therefore, the effective differential cross
section for the transition to this configuration is also
equal to zero. The second configuration is realized
when the α particle and the neutron pair move in
opposite directions. The electric dipole moment of
the system is maximal in this configuration; therefore,
the probability of exciting this configuration is also
maximal.

According to the experimental data of Aumann et
al. [1], who measured the energy distribution of neu-
trons emitted in three-body 6He disintegration in the
Coulomb field of a lead nucleus and who employed the
relative energies equivalent to the energiesE1 = k2

1/2
and E2 = k2

2/2, very small values of both the relative
energy of the neutrons and the angle between their
momenta are the most probable. This result agrees
with our conclusions based on an expression for the
cross section in terms of the c.m. cluster energies.
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Abstract—The coupled-channel method as implemented within the intermediate-coupling scheme of the
shell model is used to describe the noncompound component of nucleon–nucleus reactions. The proposed
model is aimed at taking into account the effect of collective doorway states (giant resonances) on the
properties of nucleon-induced reactions on light and medium-mass nuclei at incident-nucleon energies of
up to 12 MeV. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the past 10–15 years, the Feshbach–Ker-
man–Koonin statistical theory of multistep reactions
[1–3] has been widely used to describe nucleon-
induced reactions. In many aspects, this quantum-
mechanical theory is equivalent to the semiclassical
exciton model proposed by Griffin [4], despite ob-
vious distinctions between the formalisms adopted
in the two approaches (see the relevant discussion
in [5]); however, the former provides a considerably
better description of angular distributions of reaction
products, because it takes explicitly into account the
presence of configurations of the compound system
that involve a particle in a continuum.

Calculations based on Feshbach–Kerman–Koo-
nin theory reproduce fairly well available experimental
data, including experimental nucleon spectra inte-
grated with respect to angles and experimental an-
gular distributions of nucleons. However, an analysis
of these calculations reveals a strong scatter of the
resulting estimates for the contributions of various
possible processes [multistep direct, multistep com-
pound, and equilibrium (evaporation) processes] for
identical reactions on the same target nuclei at the
same incident-nucleon energies; this indicates that
there are too many adjustable parameters in the the-
ory and casts some doubt on the physical meaning of
the results it yields (see the discussion of this question
in [6]). The problem in question is especially impor-
tant at moderate energies of nucleons inducing the
reactions being considered (ε < 30 MeV), in which
case various processes strongly compete. In [7], it
was assumed that difficulties arising in Feshbach–
Kerman–Koonin theory are due to the disregard of
1063-7788/02/6501-0075$22.00 c©
processes involving the excitation of collective de-
grees of freedom of the final nucleus. The inclusion
of such collective nuclear processes [8, 9] does indeed
render the description of various reactions more con-
sistent, but it was shown in [6] that this does not solve
completely the problem of unifying the parameters of
the theory.

In all probability, this difficulty is inherent in
Feshbach–Kerman–Koonin theory, which is based
on the assumption that the amplitudes of vari-
ous multistep processes leading to the same final
state contribute to the total amplitude incoherently,
whence it follows that the total reaction cross section
can be represented as the sum of contributions from
individual processes. However, this approximation,
which is correct at high energies ε of nucleons
incident on a target, becomes invalid in the energy
region ε ≤ 20 MeV, where coherent doorway states
corresponding to the giant dipole resonance and,
possibly, to some other eigenstates of the compound
system are formed at initial reaction stages. It
therefore comes as no surprise that the predictions
of the theory are quite ambiguous at moderate values
of the energy ε.

If the giant dipole resonance of a compound
system has an intermediate structure—this is char-
acteristic of many light and medium-mass nuclei
(A ≤ 80) featuring unfilled shells—it modulates the
dependence of the cross section for a nucleon–
nucleus reaction on the incident-nucleon energy
ε. This can be seen, for example, from the data
presented in [10], where the partial cross sections
σ(p, n) corresponding to a fixed state of the final nu-
cleus were measured for some 1f2p-shell vibrational
nuclei. For the incident-proton energy varied from
2002MAIK “Nauka/Interperiodica”
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Schematic representation of the reaction cross section
dσ(ε,U)/dU integrated with respect to angles as a func-
tion of (upper part of the figure) the excitation energyU of
the final nucleus and (lower part of the figure) the energy
ε of the nucleon incident on а target for the case where
the giant dipole resonance formed in the compound sys-
tem has an intermediate structure. The segments of the
cross-section graph that are dominated by evaporation
and noncompound processes are indicated in the upper
part of the figure.

the reaction threshold to εp ∼ 12–14 MeV, the cross
sections found in [10] reveal a pronounced resonance
structure that can be interpreted as the intermediate
structure of the giant dipole resonance of a compound
system. It should be emphasized that Feshbach–
Kerman–Koonin theory is unable to account for such
a structure.

The figure illustrates the role of coherent doorway
states. For nucleon-induced reactions, the cross sec-
tion dσ(ε, U)/dU integrated with respect to angles
as a function of the excitation energy U of the final
nucleus and as a function of the incident-nucleon
energy ε is depicted schematically for the case where
the giant dipole resonance formed in a compound
system has an intermediate structure.

Because of a nonuniform (shell) distribution of
single-particle nuclear levels, a significant part of
the total excitation energy of the compound system
formed in reactions induced by a projectile nucleon
of moderate energy is absorbed, at the first stage
(within which nonequilibrium processes develop), ei-
ther by a particle occupying a quasidiscrete level in
a continuum or by a hole in a totally filled shell.
The remaining part of the energy of the system is
quickly distributed among the eigenstates of valence
nucleons (this is so at least in light andmedium-mass
nuclei with unfilled outer shells, in which case the
ground state is strongly degenerate). Owing to this,
the noncompound component of nucleon-induced re-
actions that takes into account multistep direct, mul-
P

tistep compound, and collective nuclear processes of
Feshbach–Kerman–Koonin theory can be described
on the basis of the coupled-channel method employ-
ing |α〉|Ψi〉 and |γ−1〉|Ψi〉 basis configurations, where
|α〉 is a nucleon state on a free level α, |γ−1〉 is a
nucleon-hole state on a filled level γ, and |Ψi〉 stands
for low-lying eigenstates of the nuclear core.

The formalism proposed in this study is similar to
the formalism developed in [11–14] to describe gi-
ant multipole resonances in light and medium-mass
nuclei. However, there are two important distinc-
tions: (i) In describing the noncompound component
of nucleon-induced reactions, an absorbing optical
potential must be used for the particle α and the
hole γ−1 in order to consider that doorway states die
out in the course of formation of compound nuclear
states. (ii) In relation to the calculations of giant
resonances, it is necessary to extend the basis {|Ψi〉}
by including in it low-lying states of anomalous parity
since a specific particle or a specific hole can execute
transitions between opposite-parity levels.

By successively adding nucleons to a nuclear sys-
tem [15], the wave functions for low-lying states of
light andmedium-mass nuclei can be calculated up to
excitation energies ofU ∼ 10–12 MeV. This makes it
possible to describe the noncompound component of
the energy spectrum of emitted nucleons at incident-
nucleon energies in the region ε ≤ 12 MeV and the
ε dependence of this component (see figure) over the
entire region of the giant dipole resonance for exci-
tation energies of the final nucleus that satisfy the
condition U ≤ 10–12 MeV.

The model employed in the present article is de-
scribed in Sections 3–5: An account of the basic
concepts of the formalism developed here is given in
Section 3. The procedure used to discretize a contin-
uum is outlined in Section 4. The on-shell elements
of the scattering matrix are calculated in Section 5.

2. FORMAL EXPRESSION
FOR THE CROSS SECTION

FOR NUCLEON–NUCLEUS REACTIONS

For a reaction where a two-particle system goes
over from the τi to the τ ′i′ nucleon–nucleus channel,
the differential cross section obtained upon averaging
over initial magnetic numbers and summation over
final magnetic numbers is given by

dστi→τ ′i′(ε, ε′, θ)
dΩ

=
�

2

4εµ(2Ji + 1)
(1)

×
Lmax∑
L=0

BL(τi→ τ ′i′; ε, ε′)PL(cos θ),

where µ, τ , and ε (µ′, τ ′, and ε′) are, respectively, the
reduced mass, the z projection of the isospin, and the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002



SHELL-MODEL DESCRIPTION OF THE NONCOMPOUND COMPONENT 77
energy of the relative motion of the incident (emitted)
nucleon; i ≡ Ei, Ji, . . . (i′ ≡ Ei′ , Ji′ , . . .) stands for
the set of quantum numbers that characterize the
internal state of the target nucleus (final nucleus);
and θ is the angle between by the wave vectors of the
incident and the emitted nucleon.

The coefficients in the expansion of the cross sec-
tion dσ/dΩ in Legendre polynomials have the form

BL(τi→ τ ′i′; ε, ε′) =
π2

2(2L+ 1)
(2)

×
∑
ll′

∑
l′′l′′′

∑
jj′

∑
j′′j′′′

∑
JJ ′

(−1)j−j
′
(2J ′ + 1)

× [(2j + 1)(2j′ + 1)(2l + 1)

× (2l′ + 1)(2l′′ + 1)(2l′′′ + 1)]1/2

× (l0l′′0|L0)(l′0l′′′0|L0)U(ll′′jj′′;L1/2)

× U(l′l′′′j′j′′′;L1/2)U(jJiLJ ′;Jj′′)

× U(j′Ji′LJ ′;Jj′′′)×
〈
(ε′l′j′τ ′, i′)J |T |(εljτ, i)J

〉
×
〈
(ε′l′′′j′′′τ ′, i′)J ′ |T |(εl′′j′′τ, i)J ′

〉∗
,

where 〈(ε′l′j′τ ′, i′)J |T |(εljτ, i)J 〉 are the elements of
the transition matrix in the representation specified by
the quantum numbers εljτiJ (l is the orbital angular
momentum of the nucleon, j is its total angular mo-
mentum, and J is the total angular momentum of the
reaction channel).

The matrix T , which is related to the scattering
matrix S by the equation

S = 1− 2πiT , (3)
is calculated on the energy shell

ε+mτc
2 + Ei = ε′ +mτ ′c

2 + Ei′ , (4)
whereEi (Ei′) is the energy of the internal state of the
target nucleus (final nucleus) andmτc

2 (mτ ′c
2) is the

rest energy of the incident (emitted) nucleon.
In the C ≡ αiJ ≡ εljτiJ representation, the on-

shell elements of the scattering matrix can be repre-
sented in the form

〈C ′|S|C〉 = lim
η→0

EC+η∫
EC−η

〈C ′(−)|C(+)〉 dEC′ , (5)

where |C(±)〉 are eigenstates of the nuclear Hamilto-
nian H (H|C(±)〉 = EC |C(±)〉, EC = εC +mτC c

2 +
EiC ) that satisfy the boundary conditions

|C(±)〉 −→ (|αC〉free|ΨiC 〉)JC
(6)

+ diverging (converging) spherical waves

for r →∞.
Here, r is the distance between the nucleon and the
residual nucleus, and |αC〉free and |ΨiC 〉 are the wave
functions describing, respectively, the free motion of
the nucleon and the internal state of the residual
nucleus.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
3. BASIC CONCEPTS OF THE MODEL

Let us consider the problem of describing the
noncompound component of nucleon-induced reac-
tions on light and medium-mass nuclei at incident-
nucleon energies corresponding to the region of the
excitation of the giant dipole resonance in the com-
pound system. As was indicated in the Introduction,
the main contribution to the noncompound compo-
nent of such reactions comes from particle on a free
level + nuclear core in a low-lying excited state
and hole on a completely filled level + nuclear core
in a low-lying excited state configurations. There-
fore, the nucleon–nucleus scattering states |C(±)〉
that involve diverging (+) or converging (–) waves at
infinity can be represented in the form

|C(±)〉 =
∑
W

〈W/C(±)〉|W 〉, (7)

where |W 〉 are basis states corresponding to particle
(|α, i〉 ≡ a+α |Ψi(A)〉) and hole (|γ, i〉 ≡ a−γ |Ψi(A+
2)〉) reaction channels [in order to simplify the pre-
sentation, the quantum numbers J characterizing
the total angular momentum of the p (h) channel
are omitted here and below]; 〈W/C(±)〉 are coeffi-
cients in the expansion of the scattering states in
the basis configurations; a+α is the operator that cre-
ates a nucleon in the free single-particle state |α〉 ≡
|εljmτ〉 of the mean nuclear field u(r); a−γ is the
hole creation operator corresponding to the absorp-
tion of a nucleon from the filled single-particle state
| − γ〉 ≡ (−1)j+m|εlj −mτ〉; |Ψi(A)〉 and |Ψi(A+
2)〉 are low-lying eigenstates of, respectively, the A
and the A+ 2 nucleus (A is the mass number of
target nucleus); and the symbol

∑
x denotes sum-

mation over discrete and integration with respect to
continuous quantum numbers x [in (7), integration
is performed with respect to single-particle energies
ε > 0 of the continuous spectrum].

The expansion in (7) corresponds to the interme-
diate-coupling approximation. The aforementioned
low-lying states |Ψi(A)〉 and |Ψi(A+ 2)〉 (at excita-
tion energies of U ≤ 10–12 MeV), which are nec-
essary for implementing this approximation, can be
computed on the basis of the method proposed in [15].

In order to obtain a correct absolute value of the
noncompound component of the reaction cross sec-
tion, we must consider that the doorway states |W 〉
die out in the process of formation of a compound
nuclear state. This can be done by introducing a
complex-valued optical potential u(r) for the particle
α and the hole γ−1.

Generally speaking, the basis |W 〉 is not orthonor-
malized since aα|Ψi〉 = 0 and a+−γ |Ψi〉 = 0 for the
2
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anomalous-parity state |Ψi〉. This basis is character-
ized by the metric tensor

〈W̃ |W ′〉 = δWW ′ + 〈W̃ |W ′〉reg, (8)
PH
where the symbol tilde over a state indicates that it
is defined for the complex-conjugate single-particle
potential u∗(r);
〈W̃ |W ′〉reg = −



〈ΨiW (A)|a+αW ′aαW

|ΨiW ′ (A)〉 forW,W ′ ∈ p channels
〈ΨiW (A+ 2)|a−γW ′ a

+
−γW
|Ψi′W

(A+ 2)〉 forW,W ′ ∈ h channels
0 in the remaining cases

(9)
is the regular part of the scalar product 〈W̃ |W ′〉;
and δWW ′ is a Kronecker delta symbol for discrete
quantum numbers and a Dirac delta function for con-
tinuous quantum numbers.

The expansion coefficients 〈W/C(±)〉 determine
the contravariant coordinates of the state |C(±)〉 in
the nonorthonormalized basis {|W 〉}, while the scalar
products

〈W̃ |C(±)〉 =
∑
W̃

〈W/C(±)〉〈W̃ |W 〉 (10)

determine the covariant coordinates of this state.
The scattering states |C(±)〉 satisfy the time-

independent Schrödinger equation

H|C(±)〉 = EC |C(±)〉, (11)

where H = H0 + Vres is the nuclear Hamiltonian;
H0 =

∑
k[− �2

2mτk
∆k +mτkc

2 + u(rk)] is the single-
particle shell-model Hamiltonian describing the mo-
tion of nucleons in a finite spherically symmetric
potential u(r) (which is complex-valued for open
and closed reaction channels W ); Vres is the residual
nucleon–nucleon interaction (its choice is discussed
in [12, 13]); and EC = εC +mτCc

2 + EiC (A) is the
energy of the scattering states |C(±)〉 corresponding
to the reaction channel C = αC iC = εC lCjCτCiC .

We multiply this equation by 〈W̃ | from the left and
substitute the expansion given by (7) into the result.
We then obtain the following set of homogeneous
integral equations for the amplitudes 〈W ′/C(±)〉 of
coupled reaction channels:∑
W ′

(
〈W̃ |H|W ′〉 − EC〈W̃ |W ′〉

)
〈W ′/C(±)〉 = 0.

(12)

The matrix elements 〈W̃ |H|W ′〉 can be repre-
sented in the form
〈W̃ |H|W ′〉 = EW 〈W̃ |W ′〉+ 〈W̃ |V|W ′〉, (13)

where
EW =

{
εW +mτW c

2 + EiW (A) forW ∈ p channels
−εW −mτW c

2 + EiW (A+ 2) forW ∈ h channels
(14)

and the operator V is defined as

〈W̃ |V =

{
〈ΨiW (A)|[aαW

, Vres] forW ∈ p channels
〈ΨiW (A+ 2)|[a+−γW

, Vres] forW ∈ h channels.
(15)
In deriving Eqs. (13)–(15), we have considered that
|Ψi(A)〉 and |Ψi(A+ 2)〉 are eigenstates of the nu-
clear Hamiltonian H and that |α〉 and | − γ〉 are
eigenstates of the HamiltonianH0.

By substituting expressions (13) into Eqs. (12),
we can recast the coupled-channel equations into the
form

(EC − EW )
∑
W ′

〈W̃ |W ′〉〈W ′/C(±)〉 (16)

=
∑
W ′

〈W̃ |V|W ′〉〈W ′/C(±)〉.
In order to take into account the boundary con-
ditions (6), we replace the homogeneous set of
Eqs. (16) by the nonhomogeneous set of equations∑

W ′

〈W̃ |W ′〉〈W ′/C(±)〉 = exp{±iδC}δW,C (17)

+
1

EC − EW ± iρ
∑
W ′

〈W̃ |V|W ′〉〈W ′/C(±)〉,

where ρ→ 0+ and δC is the phase shift associated
with nucleon scattering on the complex potential
u(r).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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It is obvious that solutions to the set of Eqs. (17)
are also solutions to the homogeneous set of Eqs. (16).
We will now show that they satisfy the necessary
boundary conditions. To do this, it is sufficient to
prove that, in the limit t→ ∓∞, the wave packet

|C(±)(t)〉〉 =

+∞∫
−∞

ρη(εC − ε(0)C )|C(±)〉 (18)

× exp
{
− i

�
[εC + EiC (A)]t

}
dεC ,

which is constructed from solutions to Eqs. (17) with
the weight function

ρη(ε) =
η/π

ε2 + η2
, (19)

is transformed into a wave packet that describes the
free motion of a nucleon relative to the residual nu-
cleus.

From Eqs. (8) and (17), we obtain

〈W/C(±)〉 = exp{±iδC}δW,C (20)

−
∑
W ′

〈W̃ |W ′〉reg〈W ′/C(±)〉

+
1

EC − EW ± iρ
∑
W ′

〈W̃ |V|W ′〉〈W ′/C(±)〉.

By substituting this expression into the expansion
in (7) and by using the definition (18) of the wave
packet, we arrive at

〈W/C(±)(t)〉〉 �
+∞∫

−∞

ρη(εC − ε(0)C ) (21)

× exp{±iδC}δW,C exp
{
− i

�
[εC + EiC (A)]t

}
dεC

−
(∑
W ′

〈W̃ |W ′〉reg〈W ′/C(±)〉
) ∣∣∣∣∣

εC=ε
(0)
C

×
+∞∫

−∞

ρη(εC − ε(0)C ) exp
{
− i

�
[εC + EiC (A)]t

}
dεC

+

(∑
W ′

〈W̃ |V|W ′〉〈W ′/C(±)〉
)∣∣∣∣∣

εC=ε
(0)
C

×
+∞∫

−∞

ρη(εC − ε(0)C )
exp

{
− i

�
[εC + EiC (A)]t

}
EC − EW ± iρ

dεC .
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[In deriving Eq. (21), it was assumed that the
wave-packet width η is much smaller than the width
of resonances in the nuclear matrix elements.]

For t→ ∓∞, the second and the third term on the
right-hand side of Eq. (21) tend to zero in proportion
to exp{−η|t|/�}. It follows that, for t→ ∓∞, we
have

|C(±)(t)〉〉 →


 +∞∫
−∞

ρη(εC − ε(0)C ) (22)

× exp {±iδC} a+αC
exp

{
−iεCt

�

}
dεC




× |ΨC(A)〉 exp
{
−iEiC (A)t

�

}

→
+∞∫

−∞

ρη(εC − ε(0)C )a+αC
(free)|ΨC(A)〉

× exp
{
− i

�
[εC + EiC (A)]t

}
dεC ,

but this is precisely the statement that we wanted to
prove [a+αC

(free) is the operator that creates a nucleon
in the free state |αC〉free].

4. DISCRETIZATION OF A CONTINUUM

The matrix elements 〈W̃ |W ′〉reg and 〈W̃ |V|W ′〉
appearing in Eqs. (20) depend on the behavior of
the continuum single-particle states |α〉 only in the
internal region of the reaction (r ≤ R0 ≈ 1.5A1/3 fm),
since it is the region where these states overlap the
bound configurations |Ψi(A)〉 and |Ψi(A+ 2)〉. But
in a finite spatial region, the following expansion is
valid:

|α〉 =
∑
n

〈nα̂|α〉|nα̂〉 for r ≤ R0. (23)

Here, |α〉 = |εljmτ〉 is that continuum or bound
nucleon state in the field of the potential u(r) which
corresponds to a free level, and |nα̂〉 ≡ |nljmτ〉 is the
wave function for a spherical oscillator involving n
oscillator quanta (α̂ ≡ ljmτ ).

By using the expansion in (23), we recast Eqs. (20)
into the form
〈W/C(±)〉 = exp{±iδC}δW,C −
∑
w′

〈W̃ |w′〉reg〈w′/C(±)〉+ 1
EC − EW ± iρ

∑
w′

〈W̃ |V|w′〉〈w′/C(±)〉, (24)
2
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where

|w′〉 =
{
|nw′α̂w′iw′〉 = a+nw′ α̂w′ |Ψiw′ (A)〉 for |w′〉 ∈ p channels
|W ′〉 for |w′〉 ∈ h channels

(25)

are discrete states that determine the basis for r ≤ R0 (a+nw′ α̂w′ is the operator that creates the oscillator state
|nw′α̂w′〉) and

〈w′/C(±)〉 =



∑
εW ′
〈nw′α̂w′ |αW ′〉〈W ′/C(±)〉 for w′ ∈ p channels

〈W ′/C(±)〉 for w′ ∈ h channels
(26)
are the contravariant components of the scattering
state that characterize its configuration composition
in the internal region of the reaction [in (26), inte-
gration (summation) is performed with respect to the
single-particle energies εW ′ ].

Equations (24) reduce the problem of calculating
scattering states to calculating a finite number of
internal components 〈w′/C(±)〉. For these compo-
nents, we can derive a compact set of linear algebraic
equations. Bymultiplying Eqs. (17) withW = αW iW
by 〈nwα̂w|αW 〉 from the left and by integrating (sum-
ming) the result with respect to the single-particle
energies εW , we obtain∑

w′

{
〈w̃|w′〉 − U+(w)

∑
k

f
(±)
kw (EC) (27)

× 〈kα̂wiw|V|w′〉 − (1− U+(w))

× 1
EC − EW ± iρ

〈w̃|V|w′〉
}
〈w′/C(±)〉

= U+(w)exp{±iδC}δα̂cα̂wδiC iW 〈nwα̂w|αC〉,
where U+(w) is a step function equal to unity for w ∈
particle channels and zero for w ∈ hole channels and

the function f (±)
kw (EC) can be represented in the form

f
(±)
kw (EC) =

∑
εW

〈nwα̂w|αW 〉〈kα̂w|αW 〉
EC − EW ± iρ

(28)

=

εmax∫
0

〈nwα̂w|αW 〉〈kα̂w|αW 〉
EC −EW ± iρ

dεW

+ discrete terms

(εmax > 50 MeV is the maximal single-particle en-
ergy up to which we take into account the contin-
uum).

From Eqs. (27) and (28), it can be seen that the
problem of taking into account the continuum re-
duces to calculating the principal values of the im-
proper integrals in (28). The matrix of the set of
Eqs. (27) depends on the energyEC , the angular mo-
mentum JC , and the parity of the compound nucleus,
but it is independent of whether the channel αi to
P

which the scattering state |C(±)〉 under consideration
corresponds is an input or an output one. For a
realistic choice of oscillator states, the sum in (23)
converges fast, so that the dimension of the set of
Eqs. (27) is not very large in general. A conventional
technique of shell-model calculations can be used to
compute the nuclear matrix elements 〈w̃|V|w′〉 on
the basis of the known low-lying states |Ψi(A)〉 and
|Ψi(A+ 2)〉.

5. CALCULATION OF ON-SHELL
SCATTERING-MATRIX ELEMENTS

Since a complex-valued potential is used in this
model, expression (5) for the on-shell elements of the
scattering matrix must be recast into the form

〈C ′|S|C〉 = lim
η→0

EC+η∫
EC−η

〈C̃ ′(−)|C(+)〉 dEC′ , (29)

where |C̃ ′(−)〉 is the scattering state found for the
complex-conjugate potential u∗(r).

By using the expansion in (7), we obtain

〈C ′|S|C〉 = lim
η→0

EC+η∫
EC−η

∑
W

∑
W̃ ′

〈W/C(+)〉 (30)

× 〈W̃ ′/C̃ ′(−)〉∗ 〈W̃ ′|W 〉 dEC′ .

Further, we substitute relations (8) and (24) into
(30) and perform some simple transformations. In
this way, we find that the on-shell elements of the
scattering matrix can be represented in the form

〈C ′|S|C〉 = exp{2iδC}δα̂cα̂c′ δiC iC′ (31)

− iπ exp{iδC′}
∑
w′

〈C̃ ′|V|w′〉〈w′/C(+)〉

− iπ exp{iδC}
∑
w̃′

〈C|V|w̃′〉∗ 〈w̃′/C̃ ′(−)〉∗,

where it is assumed that EC = EC′ .
From Eq. (31), it can be seen that the on-shell

scattering matrix can be expressed in terms of a finite
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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number of the internal components of the scattering
states |C(+)〉 and |C̃ ′(−)〉, for which we have derived
above a compact set of algebraic equations [see for-
mula (27)].

6. DISCUSSION

Let us summarize some results of this investiga-
tion.

(i) First and foremost, we note that the formal-
ism proposed here is a two-component one. The
coupled-channel Eqs. (27) make it possible to calcu-
late both the proton (〈ljτ = −1/2, i|C(±)〉) and the
neutron (〈ljτ = +1/2, i|C(±)〉) components of scat-
tering states, whereby one can simultaneously inves-
tigate (n, n′), (n, p), (p, n), and (p, p′) reactions.

(ii) The model enables one to describe correctly
collective nuclear processes [7], since the basis states
a+α |Ψi(A)〉 include low-lying collective states |Ψi(A)〉
of the final nucleus. It should be emphasized that,
in contrast to the analyses performed in [8, 9], this
description is fully microscopic and is not based on
the distorted-wave approximation.

(iii) At moderate energies of incident nucleons
(ε ≤ 12 MeV), it is sufficient to take into account, in
the single-particle basis {|α〉, | − γ〉} used in relevant
calculations, only two shells, one above the valence
shell and one below it.

(iv) In order to obtain a correct absolute value of
the noncompound reaction component, it is neces-
sary to use a complex-valued single-particle potential
u(r) (see above). This potential must be absorbing
for particle states above the Fermi surface and gen-
erating for particle states below the Fermi surface (in
order to ensure the absorption of a hole). The surface
potential found in the global optical model [16] from
an analysis of data on the scattering of ε ≤ 15 MeV
neutrons possesses the required property. It seems
that the potential from [16] cannot be used directly,
since Eqs. (27) take partly into account inelastic pro-
cesses that determine the imaginary part of the optical
potential. However, one can make use of the form of
this potential, considering its amplitude as a model
parameter.

(v) In contrast to Feshbach–Kerman–Koonin
theory, the model being considered does not sepa-
rate the contributions of multistep direct, multistep
compound, and collective nuclear processes to the
noncompound component of a nucleon-induced re-
action. Such a partition is probably meaningful at
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
high projectile energies (ε > 30MeV), but it is hardly
possible in the energy region where collective states
(giant resonances) are formed in input channels. For
nucleon-induced reactions, a detailed investigation of
the behavior of partial cross sections corresponding
to a fixed state (or a fixed group of states) of the
final nucleus versus the incident-nucleon energy ε
or versus the excitation energy of the compound
system (see figure) could be a good test of advantages
of the two approaches. This test would reveal the
role of collective doorway states in nucleon-induced
reactions.
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Abstract—The resonance-averaged spectra of primary γ transitions in the reaction 115In(n, γ) are ana-
lyzed at the average neutron energies of En = 1.9, 24.3, and 134 keV. The temperature dependence of the
width of the giant magnetic resonance is found by parametrizing the observed intensities ofM1 transitions.
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1. INTRODUCTION

Investigation of γ-ray spectra from neutron cap-
ture that are averaged over neutron resonances (ARC
spectra) indicates that giant resonances manifest
themselves in the energy dependence of E1 and
M1 radiative strength functions SE1,M1

γ (Eγ) [1].
Radiative strength functions SPLγ are determined
by parametrizing the experimental mean values of
the partial widths of primary γ transitions in (n, γ)
reactions as

ΓJγi(Eγi) =
∑

SPLγ DJ(Eγi)2L+1, (1)

whereDJ is the mean spacing between resonances of
spin J ,Eγi is the γ-transition energy, and summation
is performed over all P types (electric and magnetic)
and multipole orders L contributing to ith γ transi-
tion.

Recent experimental data provide information pre-
dominantly about the E1 component, which makes
the main contribution to γ spectra. As was shown in
[2–4], E1-transition intensities observed for spher-
ical nuclei cannot be satisfactorily approximated on
the basis of the Brink hypothesis, which predicts the
Lorentzian energy dependence

SE1
γ (Eγ) ∼ ΓGEγ/((E2

γ − E2
G)2 + (EγΓG)2), (2)

where EG and ΓG are the energy and width of the
giant electric dipole resonance (GEDR) observed in
(γ, n) reactions.

The energy dependence SE1
γ (Eγ) experimentally

observed in ARC spectra and in γ spectra from
(n, γα) reactions on spherical nuclei is satisfac-
torily approximated by introducing a temperature-
dependent GEDR width. This approach was most
1063-7788/02/6501-0082$22.00 c©
consistently justified within the Kadmensky–Marku-
shin–Furman model [4], where the E1 strength
function is parametrized as

SE1
γ (Eγ) ∼ EγΓt(Eγ , T )/(E2

γ − E2
G)2. (3)

Here, the spreading GEDR width Γt associated with
the residual-nucleus temperature T has the form

Γt(Eγ , T ) = ΓG(E2
γ + 4πT 2)/EG, (4)

where
T = ((En +Bn − Eγ)/a)1/2, (5)

withBn and a being the binding energy and the level-
density parameter, respectively.

Experimental data on the energy dependence of
the M1 radiative strength function SM1

γ (Eγ) are
scanty. Kopecky and Chrien [5] showed that the
intensities of M1 transitions in the ARC spectra
from the reaction 105Pd(n, γ) are consistent with
the predictions of the spin-flip model [6], where a
giant magnetic resonance (GMR) is associated with
transitions between the components of the single-
particle spin–orbit doublet. The energy dependence
SM1
γ (Eγ) is approximated by the Lorentzian profile

(2) with a width ΓM1
G of about the single-particle

fragmentation width,

ΓM1
G ≈ Γ ↓≈ 4 MeV. (6)

The GMR energy predicted by the spin-flip model
for A ∼ 100 nuclei is [6]

EM1
G ≈ 8 MeV. (7)

In analyzing the ARC spectra from the reaction
113Cd(n, γ), one of the present authors [7, 8] esti-
mated the parameters of the GMR at

EM1
G = 8.8± 1.6 MeV, ΓM1

G = 4.7± 2.6 MeV,
(8)
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Reduced relative intensities of primary γ tran-
sitions in the reaction 115In(n, γ) at the mean neutron
energies of (a) 1.9, (b) 24.3, and (c) 134 keV [9]: (points)
experimental data and (solid and dashed lines) mean in-
tensities of the transitions to final states of spin–parities
indicated in the figure.

in accord with the model results in (6) and (7).

At the same time, large statistical and fluctuation
errors in the experimental data analyzed in [5, 7, 8]
gave no way to examine reliably the possible temper-
ature dependence of the GMR width or to disprove
its presence. Here, we analyze the ARC spectra from
the reaction 115In(n, γ) that were measured in [9] with
a higher statistical accuracy and a lower fluctuation
error in relation to the data analyzed in [5, 7, 8].
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
 
S
 

γ

 
E
 

1, 
 

M
 

1
 

, arb. units

10

 

3

 

10

 

2

 

5.4 5.8 6.2 6.6

 

E

 

γ

 

, MeV

 

M

 

1

 

E

 

1

Fig. 2. Energy dependence of the E1 and M1 radiative
strength functions: (points) experimental data and (solid
and dashed lines) their approximations by Eqs. (3) and
(2), respectively.

2. ENERGY DEPENDENCE
OF THE E1 AND M1 RADIATIVE

STRENGTH FUNCTIONS

Figure 1 shows the energy dependence of the re-
duced relative intensities I0

γi determined for the re-
action 115In(n, γ) in [9] for the neutron energies of
En = 1.9, 24.3, and 134 keV as

I0
γi = Iγi/E

5
γi, (9)

where Iγi are the relative intensities of the γ tran-
sitions directly observed in the ARC spectra. The
method used to process and analyze the spectra was
described in detail elsewhere [10].

The intensities I0
γi were analyzed by the method

outlined in [7, 8]. The contributions of the d and the
f wave and corrections for resonance self-shielding
were taken into account in data analysis, but these
effects are not crucial. At En = 1.9 keV, the E1
transitions from Jπ = 4+ and 5+ s-wave resonances
make a dominant contribution to the intensities of
primary transitions to the Jπ = 3−–6− final states.
The intensities of the transitions to the Jπ = 3+–
6+ states for En = 1.9 keV are determined not only
by M1 transitions from s-wave resonances but also
by a sizable contribution of E1 transitions from p-
wave resonances. At En = 24.3 and 134 keV, the
p-wave contribution increases, whereas the s-wave
contribution decreases noticeably.

To investigate the energy dependence of SE1
γ (Eγ)

and SM1
γ (Eγ), we analyzed transitions to positive-

parity states for En = 24.3 and 134 keV and En =
1.9 keV, respectively. The contribution from the
opposite-parity component was taken into account
by the method of successive approximations. Our
calculations also included the contribution from E2
2
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transitions. Figure 2 shows the results that we
obtained.

3. PARAMETERS OF THE GIANT ELECTRIC
AND MAGNETIC RESONANCES

The resulting radiative strength functions
SE1
γ (Eγ) and SM1

γ (Eγ) were approximated by two
methods:

(i) as the Lorentzian profile (2) with a constant
width ΓG(ΓM1

G );
(ii) within the Kadmensky–Markushin–Furman

model specified by expression (3) with a temperature-
dependent width.

The estimates in (6) and (7) were taken as the
input values of the GMR parameters. For the GEDR
parameters, we adopted the estimates

EG = 16 MeV, ΓG = 7 MeV, (10)

which were based on data for neighboring nuclei [1].
Figure 2 shows the resulting parametrizations.

Experimental data on SE1
γ proved to be insufficiently

sensitive for reliably determining the GEDR param-
eters. The χ2 values for the parametrizations of
SE1
γ (Eγ) with the parameters fixed at the values in

(10) are the following:
for the Lorentzian profile (2), χ = 1.3; (11)

for the Kadmensky–Markushin–Furman model
[expression (3)], χ = 0.92.

In accord with other data for spherical nuclei [1],
the results in (11) indicate that the approach based
on (3) is preferable.

Our analysis of data on SM1
γ has revealed that

EM1
G and ΓM1

G cannot be determined simultaneously
because of their strong correlation. For χ2 and EM1

G ,
the calculations that were performed with ΓM1

G fixed
at the value in (6) yielded the following results:

for the Lorentzian profile (2), χ2 = 2.3, (12)

EM1
G = 9± 6 MeV;

for expression (3), χ2 = 0.93,
EM1
G = 8.6 ± 0.4 MeV.
P

From these results, it follows that the quality of
the fit is much higher in the case of the temperature-
dependent GMR width. A similar improvement is
also achieved by using the Lorentzian profile (2) with
the invariable parameter ΓM1

G reduced to values

ΓM1
G < 1 MeV. (13)

However, these values of the width ΓM1
G are much less

than the single-particle estimate (6) and the exper-
imental results for neighboring nuclei [5, 7, 8]. In
contrast to the results reported in [5, 7, 8], the data
obtained in this study refer to an energy range far off
the GMR energy. For this reason, the required small
ΓM1
G value (13) can also be treated as a manifestation

of the strong temperature dependence of the GMR
width.
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Abstract—New results are presented that were obtained from an analysis of experimental data on rapidity
and azimuthal correlations in π−p and π−C collisions at 40 GeV/c. Some nonstandard methods for
seeking correlations are developed. Dynamical correlations associated with fluctuations of the number
of intranuclear collisions at a given multiplicity are discovered in π−C collisions. It is shown that the Lund
model cannot describe the experimental data being discussed. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The multiparticle production of hadrons domi-
nates strong interactions at high energies. Numerous
models, including those based on the quark-parton
structure of hadrons, are developed to describe this
complicated process. However, existing experimental
data and standard methods for their treatment do not
favor any of the competing models. In the present
study, correlations are analyzed by the nonstandard
statistical methods proposed in [1–4]. The exposition
is organized as follows. In Section 2, we briefly
describe these methods and a further development [3]
of the method for an analysis of variances of rapidities.
In Section 3, the methods described in the preceding
section are used to investigate π−p and π−С interac-
tions at 40 GeV/c.

In order to find out whether any of the methods
proposed below are sensitive to the interaction mech-
anism and to choose between various theoretical ap-
proaches, experimental data are contrasted against
the results of calculations based on the Lund quark-
fragmentation model [5], which describes success-
fully the multiplicities and other inclusive features of
secondaries from high-energy hadron–nucleon and
hadron–nucleus collisions. In the model version [5]
tested here, a string is stretched between a quark
and a diquark (in the case where a nucleon is used
as a projectile) separately for the target and the pro-
jectile. The interaction occurs via momentum ex-
change when two colliding hadrons approach each

1)Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Republic of Uzbekistan.

*e-mail:olimov@physic.uzsci.net
1063-7788/02/6501-0085$22.00 c©
other at a distance d ≤ √σhh (where σhh is the in-
elastic cross section for the colliding hadrons). As a
result, there arise two longitudinally extended excited
objects, which then fragment independently. For
hadron–nucleus interactions, it is assumed that the
projectile traversing the nucleus can interact with
ν target nucleons and that the mass of the projec-
tile string increases upon each successive interaction
event. If the projectile mass after n subcollisions
became mn, the next subcollision is considered as
a collision of two hadrons having the mass equal to
that of the nucleon and the mass mn. Eventually,
we obtain ν target strings and one projectile string.
The string-fragmentation time substantially exceeds
the internucleon time of flight; therefore, the projectile
string fragments outside the nucleus. The number
of intranuclear collisions is usually calculated by the
Glauber method.

2. STATISTICAL CORRELATION METHODS

χ2 criterion. The χ2 criterion is applicable for
arbitrary multiplicities. The azimuthal angle ϕ (the
angle of particle emission in the plane orthogonal
to the direction of the incident beam) varies in the
interval from 0 to 2π. We break down this interval into
m equal bins and compose the well-known quantity

χ2 =
m

n

m∑
k=1

[
nk −

n

m

]2
=
m

n

m∑
k=1

n2
k − n, (1)

where nk is the number of particles in the kth bin and
n =

∑m
k=1 nk is the number of charged secondaries

in one event. The azimuthal angles ϕ1, ϕ2, . . . , ϕn
have the same distributions in events characterized by
a givenmultiplicityn. Assuming that these angles are
2002MAIK “Nauka/Interperiodica”
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mutually independent, we write the multidimensional
probability in the form

p(ϕ1, ϕ2, . . . , ϕn)dϕ1dϕ2 . . . dϕn =
n∏
i=1

p(ϕi)dϕi.

(2)

The mean value of the quantity α = χ2/(m− 1) is
then given by

〈α〉 = 1 + (n− 1)
m

m− 1

m∑
k=1

[
pk −

1
m

]2

, (3)

where pk is the probability for ϕ to fall within the
kth bin and angular brackets denote averaging over
events. It can easily be shown that, in the presence
of dynamical (kinematical) correlations, the value 〈α〉
is maximal (minimal) at m = 2 and that 〈α〉 → 1
for m→∞. If both the projectile and the target
are unpolarized, the density of the one-dimensional
distribution is

p(ϕ) = 1/2π, (4)

so that the mean value of α is
〈α〉 = 1, (5)

its variance being

σ2[α] =
2(n − 1)
(m− 1)n

<
2

m− 1
. (6)

The equality in (5) and the inequality in (6) can easily
be generalized to events where n can take different
values. According to the central limit theorem of
probability theory, α averaged over a large number N
of events must fall within the interval[

1− 2
√

2√
(m− 1)N

]
(7)

<
1
N

N∑
i=1

αi <

[
1 +

2
√

2√
(m− 1)N

]

with a probability over 95%. Otherwise, we can
conclude that there are azimuthal correlations.

The χ2 criterion can be applied to searches for
rapidity correlations if, from the rapidity y, we go over
to the uniformly distributed quantity

z =

y∫
−∞

pn(y′)dy′, (8)

where pn(y) is the density of the rapidity distribution
in events characterized by a fixed multiplicity n. Ac-
cording to (8), one can associate, with each value of
the rapidity y, the quantity z equal to the ratio of the
number of rapidities lower than y to the total number
of rapidities characterized by identical multiplicities.
We break down the range of z between 0 and 1 into
m equal bins and calculate the value of χ2 (1) for
P

each event. If the inequality in (7) is violated, rapidity
correlations are present.

β criterion. To study azimuthal correlations at
large n, P. Zelinskii (private communication, 1962)
used the quantity

β =
r2

n
=

(
n∑
i=1

cosϕi

)2

+

(
n∑
i=1

sinϕi

)2

n
, (9)

where r is the sum of unit vectors directed along the
transverse momenta of n secondaries. In contrast to
α, β is independent of the choice of reference axis for
azimuthal angles. Let us show that this criterion is
applicable at any n. We have

〈β〉 = 1 + (n− 1)[〈cosϕ〉2 + 〈sinϕ〉2], (10)

〈cosϕ〉 =

2π∫
0

cosϕp(ϕ)dϕ,

〈sinϕ〉 =

2π∫
0

sinϕp(ϕ)dϕ.

It follows from (2) and (4) that

〈β〉 = 1, σ2[β] =
n− 1
n

< 1. (11)

Therefore, β averaged over a large number N of
events must fall within the interval[

1− 2√
N

]
<

1
N

N∑
i=1

βi <

[
1 +

2√
N

]
(12)

with a probability over 95%. Otherwise, azimuthal
correlations are present.
Analysis of variances of rapidities. In the theory

of the analysis of variance, use is made of the quantity

F =
nS2

1

S2
2

, (13)

where

S2
1 =

1
N − 1

N∑
i=1

[ȳi − 〈y〉]2 , (14)

S2
2 =

1
N

N∑
i=1


 1
n− 1

n∑
j=1

(yij − ȳi)2



with

ȳi =
1
n

n∑
j=1

yij , 〈y〉 =
1
N

N∑
i=1

yi.

Here, N is the number of events characterized by
the same multiplicity n and yij is the rapidity of the
jth particle in the ith event. If n quantities yj are
independent, then F → 1 forN →∞.
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Let us consider a nonhomogeneous ensemble of
events; it can easily be broken down into subensem-
bles having different rapidity distributions of secon-
daries. If the quantities yj (j = 1, 2, . . . , n) are inde-
pendent in each subensemble and if the number N of
events in the ensemble is infinitely large, the ratio of
variances is

F = 1 + n
∑
k

ωk(υk − υ)2/
∑
k

ωkσ
2
k, (15)

υ =
∑
k

ωkυk,

where υk and σ2
k are, respectively, the expectation

value and the variance of yj in the kth subensemble
and ωk is the fraction of the events from the kth
subensemble in the ensemble.

We group the events of the ensemble into complex
trials, each consisting of N events, and consider the
distribution of the quantity F in these complex trials.
If the quantities yj (j = 1, 2, . . . , n) in the ensemble
are independent and have arbitrary distributions and
if n is large, the ratio of variances assumes the form

F ≈ χ2
N−1/(N − 1), (16)

where the quantity χ2
N−1 has a χ2 distribution with

(N − 1) degrees of freedom. According to (16), the
expectation value and the variance of the quantity F
are

υ[F ] = 1, σ2[F ] = 2/(N − 1). (17)

At N exceeding 30, the χ2 distribution reduces to a
normal distribution. Therefore, the quantity F must
fall within the interval[

1− 2
√

2√
N − 1

]
< F <

[
1 +

2
√

2√
N − 1

]
(18)

with a probability of about 95%. Otherwise, there are
rapidity correlations.

In relation to the χ2 criterion, the analysis of
variances is advantageous in that it does not require
determining the values of z from the rapidities. This
procedure is incorrect for a small number of events
and is cumbersome for a large number of events.

The problem of assessing values of n at which
formulas (16) and (18) are valid was not discussed
in [3]. It is difficult to solve this problem in general.
Let us consider it for the example of a normal rapidity
distribution. In this case, we have

nS2
1/σ

2 = χ2
N−1/(N − 1), (19)

S2
2/σ

2 = χ2
N(n−1)/N(n − 1),

where σ2 is the variance of rapidities. The two quan-
tities in (19) are independent. At large values of N ,
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Fig. 1. 〈α〉 as a function of the number n of secondary
pions for azimuthal angles atm = 2 (experimental points
and theoretical curves calculated on the basis of the Lund
model): (closed circles) experimental data for π−C, (open
circles) experimental data for π−p, (solid curve) theoreti-
cal results for π−C, and (dashed curve) theoretical results
for π−p.

these quantities have narrow distributions; therefore,
the ratio of variances assumes the form

F ≈ 1 + nS2
1/σ

2 − S2
2/σ

2. (20)

It follows from (19) and (20) that the quantity F
has an approximately normal distribution with the
parameters

υ[F ] = 1, σ2[F ] =
2

N − 1
+

2
N(n − 1)

. (21)

Neglecting the second term in the second formula in
(21) for n > 5, we arrive at the approximation in (16).

3. ANALYSIS
OF EXPERIMENTAL DATA

Here, we analyze experimental data obtained by
a collaboration that processes films from the 2-m
propane (С3Н8) bubble chamber installed at the Joint
Institute for Nuclear Research (JINR, Dubna). The
chamber was irradiated with 40-GeV/c π− mesons.
We studied 5336 π−p and 5576 π−Сcollisions featur-
ing more than five charged secondaries. We excluded
unambiguously identified protons from secondaries.
Events that did not satisfy selection criteria for π−N
collisionswere identified as those of π−С interactions.
The details of the experiment are described in [6]. We
determined the rapidity using the pion mass. Events
characterized by close values of nwere combined into
groups, and groups containing less than 50 events
were discarded.
Azimuthal correlations. Figure 1 displays the

mean value of α (m = 2), which characterizes az-
imuthal correlations, as a function of the number
n of secondary pions. The statistical error is as-
sumed to be

√
1/ (m− 1)N . Correlations in π−p
2
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Fig. 2. 〈β〉 as a function of the number n of secondary
pions. The notation is identical to that in Fig. 1.
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Fig. 3. Ratio F of variances as a function of the number
n of secondary pions for azimuthal angles atm = 2. The
notation is identical to that in Fig. 1.
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Fig. 4. 〈z〉 as a function of the number n of secondary
pions for rapidities at m = 2. The notation is identical to
that in Fig. 1.

and π−С collisions have a kinematical character. The
momentum-conservation law suppresses asymmet-
ric configurations of the transverse momenta, with the
result that the mean value of α is reduced. Within the
statistical errors, 〈α〉(m = 2) does not depend on the
number of secondary pions, and we did not observe
positive correlations associated with the dynamics of
particle production. The calculations on the basis of
PH
the Lundmodel satisfactorily describe the experimen-
tal data in question.

Figure 2 presents themean value of β as a function
of the multiplicity n. In this case, we also confirm the
kinematical character of azimuthal correlations. The
conservation of the transverse momentum reduces
the length of the vector r in (9). At the same time, the
development of the intranuclear cascade could lead to
an excess of asymmetric configurations of azimuthal
angles and to fulfillment of the inequality 〈β〉 > 1 in
π−С collisions.

In either dependence, the kinematical correlations
are more pronounced in π−p collisions than in π−С
collisions.
Rapidity correlations. The quantity F (m = 2),

which characterizes rapidity correlations, is displayed
in Fig. 3 as a function of the number of secondary
pions. As in the two dependences considered above,
we do not observe here any positive correlations. Dy-
namical correlations are likely to be compensated by
kinematical ones [F (m = 2) ≈ 1]. Within the sta-
tistical errors, F (m = 2) does not depend on n. In
the Lundmodel, kinematical correlations are stronger
than dynamical.

Figure 4 presents the mean value of z (m = 2)
as a function of the number of secondary pions.
Clear rapidity correlations in π−С interactions can
be explained in the following way. The number of
intranuclear nucleons that participate in collision
events characterized by the same multiplicity n
fluctuates, whence it follows that the ensemble of
events can be broken down into subensembles. The
partial rapidity distributions of secondaries and the
quantity z are different in the subensembles, and the
partial distribution of z differs from a uniform one. By
applying formula (1) to the subensembles, we obtain

z = χ2(m− 1),

〈z〉 = 1 + (n− 1)
m

m− 1

m∑
k=1

[
pk −

1
m

]2

,

where pk is the probability for z to fall within the kth
bin. On this basis, we conclude that the inequality
〈z〉 > 1 is valid in the subensembles and, hence, over
the entire ensemble. In π−p interactions, dynamical
and kinematical correlations compensate each other.
The occurrence of moderate positive correlations at
odd n is due to the admixture of diffraction events. In
the Lund model, dynamical correlations are strongly
suppressed by kinematical correlations.

From the above data analysis, we can draw the
conclusion that the quantity z is the most sensitive
to the presence of correlations and to distinction be-
tween various models. The quantities α and β, which
depend on the azimuthal angle of particle emission,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002



RAPIDITY AND AZIMUTHAL CORRELATIONS 89
seem insensitive to either the mechanism of mul-
tiparticle production or the choice between various
theoretical approaches.
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Abstract—The multiplicity, rapidity, and transverse-momentum distributions of secondaries (negative
pions and protons) from CC interactions characterized by various numbers of participant protons are
presented. It is shown that, in contrast to the mean transverse momenta of protons, the mean transverse
momenta of pions depend only slightly on the degree of collision centrality. The shape of the rapidity
distributions of negative pions is also weakly dependent on the degree of collision centrality. With
decreasing impact parameter, the product protons are found to concentrate in the central rapidity region.
The data in question are analyzed within the modified version of the FRITIOF model. It is shown that,
as soon as elastic nucleon rescatterings are taken into account, the model describes satisfactorily the
experimental features of negative pions and fast protons. The spectra of slow protons are described only
qualitatively because of limitations of the evaporation model used here to treat the deexcitation of residual
nuclei. c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The idea of a cascade of elementary-particle in-
teractions in hadron–nucleus and nucleus–nucleus
collisions forms a basis of the popular cascade–
evaporation model [1, 2].1) It is believed that only
within this framework is it possible to explain the
yield of fast nucleons. An alternative point of view
according to which a large yield of particles in the
nuclear-fragmentation region is due to a cascade
of Reggeon exchanges (it cannot be reduced to a
cascade of particle interactions) was formulated in [6].
According to [6], hadron–nucleus interactions may
proceed not only through a succession of nucleon-
knockout events in time (ordinary cascade) but also
through a simultaneous nucleon knockout, which is
described by so-called enhanced nonplanar diagrams.
Since all nucleons knocked out simultaneously occur
in the same situation, it is natural to expect that, in
the regions of nuclear fragmentation, the shape of
nucleon spectra is weakly dependent on the degree
of collision centrality. Central and peripheral interac-
tions differ predominantly in the number of primary
intranuclear collisions. If the number of primary

*e-mail: klad@sunhe.jinr.ru
1)The FRITIOF [3], RQMD [4], and HIJING [5] models
assume a cascade of interactions of intermediate systems,
quark strings or excited nucleons, but this does not lead to
substantial changes in the pattern of the interactions.
1063-7788/02/6501-0090$22.00 c©
collisions is large, multiple rescatterings of partici-
pant nucleons must lead to their concentration in the
central rapidity region. According to the Reggeon
approach, the shape of nucleon spectra in nuclear-
fragmentation regions that is associated with the
cascading mechanism must then remain unchanged;
at the same time, the yield of nucleons must first
increase with decreasing impact parameter and then
decrease at very small values of the impact parameter
because of a decrease in the mass of the residual
nucleus where the Reggeon cascade develops.

A somewhat different situation may be realized
according to the cascade–evaporation model. As
the impact parameter is reduced, the number of
secondaries and the number of cascade interactions
in residual nuclei increase. Therefore, one can
expect that nucleons are predominantly produced
in the regions of nuclear fragmentation. In central
collisions—that is, at small values of the impact
parameter—the yield of nucleons in the regions of
nuclear fragmentation must be minimal because of a
large number of primary interactions. It follows that,
according to the cascade–evaporation model, the
shape of the nucleon spectra in the regions of nuclear
fragmentation must undergo changes. This argu-
ment is supported by the calculations presented in
[7]. However, experiments show an inverse pattern—
with increasing degree of collision centrality, a relative
increase in the yield of protons is observed in the
central region rather than in the region of nuclear
2002 MAIK “Nauka/Interperiodica”
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fragmentation [7], the shape of the spectra of slow
nucleons remaining virtually unchanged.

In principle, the experimental situation can be un-
derstood within the Reggeon approach, but there is
not much hope that relevant processes will be de-
scribed in detail on this basis because the computa-
tional formalism of Reggeon theory is very involved.
Nonetheless, the simplified computational scheme
proposed in [8] enables one to estimate the yield of
fast nucleons, whereas the method for determining
the momentum features of nucleons that is based on
a treatment of nucleons in the Reggeon cascade on
equal terms and which was expounded in [9] provides
a convenient framework for an exclusive description
of the reactions in question. Within this simpli-
fied approach, it proved to be possible to describe
successfully experimental data on the interactions of
gold nuclei with photoemulsion nuclei at an energy of
10.7 GeV per nucleon [9]. Of course, it is of interest
to apply this approach, which is implemented in a
modified version of the FRITIOF code [10], to an
analysis of a different set of experimental data.

The present article reports on a continuation of
an analysis of experimental data on the interactions
of light nuclei with carbon nuclei at a momentum of
4.2 GeV/c per nucleon on the basis of the FRITIOF
model [11] adapted to energies below 10 GeV [10, 12].

In comparing the inclusive features of negative
pions and protons from pC, dC, αC, and CС interac-
tions (AC interactions) at a momentum 4.2 GeV/c,
it was previously found [11] that the experimental
and calculated mean multiplicities of negative pions
and protons are in satisfactory agreement and that so
are the distributions of negative pions in kinematical
variables for allAC interactions. Only in dealing with
the distributions of protons in the regions of fragmen-
tation of colliding nuclei did there arise a problem.
In order to remove it, we had to take into account
here elastic nucleon rescatterings in the interaction
process. This made it possible to describe, to a very
high precision, the inclusive distributions of protons
with respect to kinematical variables in CC interac-
tions. Investigation of nucleus–nucleus interactions
characterized by various values of the impact param-
eter furnishes additional possibilities for assessing the
applicability of the aforementioned modified version
of the FRITIOF model. Here, we will consider only
CC interactions, because the accumulated statistics
of experimental events of such interactions are the
vastest.

Events in which carbon nuclei collided at spe-
cific values of the impact parameter were selected
on the basis of the number of protons that partici-
pated in such interaction events. As is well known,
the number of participant protons is correlated with
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
the impact parameter [7]. This approach to sepa-
rating events in the number of participant protons
was applied both to the experimental ensemble of
CС interactions and to the set of simulated events.
Previously, the dependence of the mean multiplicity of
secondaries and of their momentum and angular dis-
tributions on the impact parameter ofAC interactions
at 4.2 GeV/cwas explored in a number of studies (see
[7, 13–16]).

Here, we compare the calculated and the mea-
sured features of product pions and protons for var-
ious degrees of centrality of CС interactions at a
momentum of 4.2 GeV/c per nucleon.

1. EXPERIMENTAL DATA

In this study, use was made of data obtained by ex-
posing the 2-m propane bubble chamber installed at
the Laboratory of High Energies at the Joint Institute
forNuclear Research (JINR, Dubna) to a beam of 12C
nuclei accelerated to a momentum of 4.2 GeV/c per
nucleon at the JINR synchrophasotron. The exper-
iment was performed in a magnetic field of strength
1.5 T. Procedures for separating events of inelastic
CС interactions from the total ensemble of inter-
actions between carbon nuclei and propane and for
introducing corrections for the number of secondaries
and their momentum and angular features are de-
scribed in detail elsewhere [17]. We recall that, be-
cause of a short range (less than 2 mm) of protons
with momenta below 150 MeV/c and of negative
pions with momenta below 40 MeV/c, they are not
recorded in the bubble chamber.

In the ensemble of CС interactions that was sub-
jected to an analysis here, charged pions, slow pro-
tons (p < 0.3 GeV/c ) originating from the evapo-
ration process, stripping fragments of the projectile
nucleus (θ < 4◦ and p > 3 GeV/c), and participant
protons (p > 0.3 GeV/c, stripping particles being ex-
cluded) were singled out among secondaries. In the
following, we also consider two groups of protons:
that which includes protons of momenta in the range
between 0.3 and 0.75 GeV/c (these are predomi-
nantly participant protons from the target) and that
which includes protons of momenta in the region p >
0.75 GeV/c. The last group comprises predominantly
participant protons from the projectile nucleus.

The entire ensemble of inelastic CС interactions
was broken down into three groups. Events featur-
ing not greater than four participant protons were
classified with peripheral events, the mean impact
parameter 〈b〉 for them being greater than 4 fm [7].

This group is dominated by npart
p < 〈npart

p 〉
in

CC = 4.43
events. The second and the third group comprise,
2
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respectively, 4 < n
part
p ≤ 9 and npart

p > 9 events (as a

matter of fact, npart
p > 2〈npart

p 〉
in

CC in the last case). In
the following, events belonging to the third group will
be referred to as central events (〈b〉 < 2 fm) [7].

In addition, we singled out the group of CC events
in which the total charge of the stripping fragments of
the projectile nucleus is equal to zero. This criterion
is frequently used to select central nucleus–nucleus
interactions [18–22].

2. MODIFIED VERSION OF THE FRITIOF
CODE

2.1. Fundamentals of the Model

The FRITIOF model presumes the two-body
kinematics of inelastic hadron–hadron interactions,
a+ b −→ a′ + b′; here, a′ and b′ are excited states of
the primary hadrons a and b. Either excited state is
characterized by its mass. In order to choose hadron
masses, we use the approach described in [3] (see also
[9, 11]). The parameters of the model were refined
in [12].

In the case of hadron–nucleus and nucleus–
nucleus interactions, it is assumed that nucleons
excited in primary collisions can interact with one
another and with other intranuclear nucleons, in-
creasing their masses. Thus, the model takes into
account the interaction between cascade particles
from the point of view of the cascade–evaporation
model. The probabilities of multiple collisions are
calculated within the Glauber approach.

Excited hadrons are treated as QCD strings,
whose fragmentation leads to the production of
hadrons. The multiplicity of secondaries grows with
increasing string masses. These are the factors that
explain an increase in the particle multiplicity when
we go over from hadron–hadron to hadron–nucleus
and nucleus–nucleus interactions.

Following [23], we took phenomenologically into
account not only inelastic collisions of nucleons
but also their elastic rescatterings. Specifically,
we assumed that two nucleons belonging to the
different nuclei interact if the impact parameter of

their collision satisfies the condition bij ≤
√
σtot
NN/π.

In the case where there was interaction, we simulated
elastic scattering with the probability σel

NN/σ
tot
NN

and an inelastic collision with the probability(
1− σel

NN/σ
tot
NN

)
.

P

2.2. Simulation of the Breakup of Nuclei at the Fast
Stage of Interactions

The Glauber approximation is used to determine
the time succession of nucleon–nucleon collisions in
hadron–nucleus and nucleus–nucleus interactions
within the FRITIOF model. Since the cascading of
secondaries is disregarded here, the model is unable
to reproduce the features of slow particles associated
with the breakup of the nuclei involved. In order to
remedy this drawback, it was proposed in [9, 10] to
supplement the FRITIOF model with the Reggeon
model of nuclear breakup [8].

The breakup of nuclei is taken into account into
two steps. At the first step, the number of inelastically
interacted (hit) nucleons is determined with the aid
of the Glauber approximation [24]. Noninteracted
nucleons are considered at the second step. It is
assumed that a noninteracted nucleon occurring at
a distance r from a hit nucleon can be involved in a
Reggeon cascade with the probability

W = Cnde
−r2/r2nd .

The nucleon involved can involve another spectator
nucleon, etc. It is assumed that all hit nucleons and
all nucleons involved escape from the nucleus.

In order to describe the multiplicity of specta-
tor protons in the interactions considered here, we
choose the following parameter values:

Cnd = 1, rnd = 1.2 fm.

The excitation energy of the residual nucleus was
calculated by employing the approach proposed in
[25] and by invoking the method described compre-
hensively in [9]. The relaxation of excited nuclei was
simulated on the basis of the evaporation model [26]
(see also [1]).

2.3. Determination of the Momenta of Knock-on
Nucleons

In the modified FRITIOF code, it is assumed [9,
27] that the distribution of nucleons knocked out,
for example, from the target nucleus with respect to
kinematical variables has the form

P ({x−i }, {pi⊥}) ∝
NT∏
i=1

exp[−p2
i⊥/〈p2

⊥〉]

× exp[−(x−i − 1/NT )2/(dx/NT )2],
NT∑
i=1

pi⊥ = 0,
NT∑
i=1

x−i = 1,

where NT is the multiplicity of knock-on nucleons;
pi⊥ is the transverse momentum of the ith knock-on
nucleon; and x−i is the light-cone variable given by

x−i = (Ei − pi‖)/W−
T ,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Fig. 1. Distributions of CC interactions with respect
to the multiplicity of charged particles for (a) npart

p ≤ 4,
(b) 4 < npart

p ≤ 9, (c) npart
p > 9, and (d) Qstr = 0 events.

The closed and the open circles represent, respectively,
experimental data and the results of model calculations
performed on the basis of the modified FRITIOF code.

with Ei and pi‖ being the nucleon energy and the
longitudinal momentum, respectively.

The law of energy–momentum conservation is
used to determine the quantityW−

T and the analogous
quantity W+

P for nucleons knocked out from the pro-
jectile nucleus [9].

For the parameters of the above distribution, the
values of 〈p2

⊥〉=0.296 (GeV/c)2 and dx = 0.25 were
determined here by analyzing the spectra of particles
emitted in hadron–nucleus and nucleus–nucleus in-
teractions into the backward hemisphere.

3. RESULTS

For the above groups of CC interactions, the mean
multiplicities of secondaries are given in Table 1,
which also displays the number of events in each
group. We note that more than half of CC interactions
are peripheral, the fraction of central interactions be-
ing only a few percent.

As is obvious from this table (see also Fig. 1),
the multiplicity of charged particles increases with
decreasing impact parameter. Concurrently, the frac-
tion of pions among charged particles increases from
23% in peripheral to about 35% in central interac-
tions.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 2. Distributions of CC interactions with respect to
the multiplicity of negative pions. The notation is identi-
cal to that in Fig. 1.

In the npart
p ≤ 4 group, the mean multiplicity of

positive pions is greater than the mean multiplicity
of negative pions. The reason for this is that, in the
n

part
p ≤ 4 group, the number of events of the proton-

to-neutron charge-exchange process p→ n+ π+ is
greater than the number of events of the neutron-to-
proton charge-exchange process n→ p+ π−. The
inverse relationship 〈nπ−〉 > 〈nπ+〉 is observed in the

group of npart
p > 9 events. In events where nucleon-

charge-exchange processes are equiprobable, we
have 〈nπ−〉 = 〈nπ+〉. This relationship was obtained

for the 4 < n
part
p ≤ 9 and the Qstr = 0 group (see

Table 1).

The shape of the distribution of events with re-
spect to the number of pions changes as one goes
over from peripheral to central CC interactions (for
negative pions, see Fig. 2). The number of events not
involving pion production decreases sharply, while
the fraction of multimeson events increases; as a
consequence, the mean multiplicities of positive and
negative pions grow (see Table 1). Upon rescaling the
mean multiplicities of pions per participant proton,
it turned out that, in events characterized by equal
〈nπ−〉 and 〈nπ+〉, the ratio 〈nπ−〉/〈npart

p 〉 is compat-
ible with the corresponding ratio for inelastic CС in-
teractions (0.325± 0.003) [11]. The different relation-
ships between the mean multiplicities of negative and
2
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Table 1.Mean multiplicities of secondaries fromСС interactions characterized by various numbers of participant protons

Event type

npart
p ≤ 4 4 < npart

p ≤ 9 npart
p > 9 Qstr = 0

Nevent
expt 12004 58.3% 7107 34.5% 1483 7.2% 665 3.2%

model 24495 49.0% 21357 42.7% 4148 8.3% 2299 4.6%

〈nch〉
expt 6.86± 0.02 13.84± 0.04 19.52± 0.09 17.33± 0.16

model 6.65± 0.02 12.92± 0.02 17.70± 0.05 15.11± 0.08

〈nπ−〉 expt 0.719± 0.005 2.166± 0.016 4.00± 0.04 3.16± 0.07

model 0.689± 0.005 1.664± 0.008 3.17± 0.02 2.32± 0.03

〈nπ+〉 expt 0.886± 0.006 2.134± 0.018 2.90± 0.04 3.31± 0.07

model 0.894± 0.006 1.642± 0.010 1.95± 0.02 2.58± 0.03

〈np〉,
pp < 0.15

expt 4.110± 0.039 1.819± 0.023 0.37± 0.10 1.00± 0.08

model 4.389± 0.028 2.009± 0.014 0.63± 0.09 1.52± 0.04

〈np〉,
0.15 ≤ pp < 0.3

expt 0.653± 0.006 0.889± 0.012 0.50± 0.02 0.80± 0.04

model 0.348± 0.005 0.663± 0.006 0.48± 0.01 0.53± 0.02

〈np〉,
0.3 ≤ pp < 0.75

expt 0.717± 0.005 1.717± 0.015 2.61± 0.04 1.91± 0.06

model 0.613± 0.005 1.736± 0.009 2.48± 0.02 1.61± 0.03

〈np〉,
pp ≥ 0.75

expt 1.586± 0.007 4.925± 0.019 8.41± 0.05 8.15± 0.09

model 1.712± 0.007 4.957± 0.012 8.44± 0.03 8.07± 0.04

〈npart
p 〉

expt 2.304± 0.007 6.643± 0.016 11.02± 0.03 10.06± 0.09

model 2.325± 0.008 6.693± 0.009 10.92± 0.02 9.68± 0.05

〈n〉Z=1
str

expt 1.092± 0.007 1.440± 0.014 0.98± 0.02 –

model 1.577± 0.011 2.038± 0.009 1.17± 0.02 –

〈n〉Z≥2
str

expt 1.205± 0.004 0.565± 0.014 0.119± 0.024 –

model 0.819± 0.003 0.218± 0.003 0.012± 0.002 –

Note: The momentum values are given here in GeV/c units; the model values were computed by using the FRITIOF code.
positive pions in peripheral and central (npart
p > 9) CС

interactions lead to different dependences of 〈nπ−〉
and 〈nπ+〉 on the degree of centrality (see Table 2).

From Table 2, it can be seen that, upon going

over from n
part
p < 4 to npart

p > 9 CC events, there is
a modest decrease (of about 10%) in the yield of
charged pions per participant proton. With decreas-
ing impact parameter, the mean number of partici-
pant protons both from the projectile and from the
PH
target nucleus naturally increases; accordingly, the
multiplicity of the stripping fragments of the projectile
nucleus and the multiplicity of evaporated protons
(pp < 0.3 GeV/c) from the target nucleus both de-
crease, which is associated predominantly with pro-
tons of momenta less than 0.15 GeV/c (see Table 1
and Figs. 3, 4). The mean number of p < 0.15 GeV/c
protons was estimated by the missing charge in an
event (see Table 1). It should be noted that the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 2. Relative multiplicities of negative and positive pions from СС interactions characterized by various numbers of
participant protons

Event type

npart
p ≤ 4 4 < npart

p ≤ 9 npart
p > 9 Qstr = 0

〈nπ−〉
〈npart

p 〉
expt 0.312± 0.003 0.326± 0.003 0.363± 0.004 0.314± 0.007

model 0.296± 0.002 0.249± 0.002 0.290± 0.003 0.239± 0.004

〈nπ+〉
〈npart

p 〉
expt 0.385± 0.003 0.321± 0.003 0.263± 0.004 0.329± 0.008

model 0.384± 0.003 0.245± 0.002 0.179± 0.003 0.267± 0.006

〈nπ+〉+ 〈nπ−〉
〈npart

p 〉
expt 0.697± 0.004 0.647± 0.004 0.626± 0.006 0.643± 0.010

model 0.680± 0.004 0.494± 0.003 0.469± 0.004 0.506± 0.007

Note: The model values were computed by using the FRITIOF code.
mean multiplicity of participant protons grows more
slowly in the subgroup where the proton momen-
tum ranges between 0.3 and 0.75 GeV/c than in the
p > 0.75 GeV/c subgroup (see Table 1). An analysis
of experimental data revealed that, in collisions with
nucleons of the projectile nucleus, the momentum
transfer to part (40–50%) of the participant protons of
the target nucleus is high; as a result, such participant
protons occur in the p > 0.75 GeV/c subgroup. It
follows that the mean number of participant protons
whose momenta are in excess of 0.75 GeV/c in-
creases considerably in central interactions (see Ta-
ble 1).

A comparison of the mean particle multiplicities in
the npart

p > 9 and Qstr = 0 groups of CC interactions

reveals that npart
p > 9 events are characterized by a

higher multiplicity of charged secondaries, a signif-
icantly lower mean multiplicity of protons from the
evaporation process, and the presence of stripping
fragments of the projectile nucleus (see Table 1).

By definition, all six protons of the carbon nucleus
interact with the target inQstr = 0 events; on average,
4.2 protons of the target nucleus are involved in the
interaction in this case. In n

part
p > 9 events, these

numbers are 4.78± 0.03 and 5.13± 0.10, respectively.
They were obtained by using data from Table 1 on the
mean multiplicities of stripping particles and protons
from the evaporation process. We can get a clear idea
of the features of two types of central CС interactions
(those where n

part
p > 9 and those where Qstr = 0)

by inspecting Figs. 3c and 3d. In these groups of
events, the mean multiplicities of participant protons
are quite close (the distinction is about 10% here;
see Table 1), but their distributions in npart

p are quite

different. By virtue of the selection criterion, npart
p > 9
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
events are concentrated in a narrow interval in npart
p ;

at the same time, the npart
p distribution of Qstr = 0

events is rather broad (see Fig. 3d). In all proba-
bility, proton–neutron interactions (pn→ pnX) and
proton-charge-exchange interactions (pn→ nnπ+)
play a significant role in Qstr = 0 events. This can
explain the emergence of npart

p < 9 events in the in-
teraction of six protons from the projectile carbon
nucleus with a carbon target. From the comparison
performed in the present study, we can conclude that,
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Fig. 3. Distributions of events of CC interactions with
respect to the multiplicity of participant protons. The
notation is identical to that in Fig. 1.
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in the npart
p > 9 and the Qstr = 0 subgroup of events,

the degrees of centrality of CС interactions are ap-
proximately equal.

A comparison of experimental data on the mul-
tiplicity of secondaries with the results of the cal-
culations based on the FRITIOF model shows that
this model reproduces satisfactorily (the discrepancy
is not more than 10%) the mean multiplicities of all
charged particles, participant protons, and protons
from the evaporation process (p < 0.3 GeV/c) in all
CС-interaction groups analyzed here (see Table 1 and
Figs. 1, 3). The greatest discrepancy between exper-
imental data and the results of the model calculations
is observed in comparing the multiplicities of pions
and evaporation protons in the p < 0.15 GeV/c and
0.15 ≤ p < 0.3 GeV/c subgroups. The momentum
spectrum of evaporated protons that was computed
on the basis of the FRITIOF model is softer than the
corresponding experimental spectrum (see Table 1
and Figs. 2, 4).

In relation to the preceding calculations reported
in [11], we have somewhat lower multiplicities of
product mesons because of the inclusion of elastic
rescatterings. This decrease in the multiplicity of
mesons entails a decrease in the total multiplicity
of charged particles. Within the phenomenological
approach underlying the cascade–evaporation model,
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Fig. 4. Distributions of events of CC interactions with
respect to the number of protons originating from the
evaporation process and having momenta between 0.15
and 0.3 GeV/c. The notation is identical to that in Fig. 1.
P

it is rather difficult to improve the description of the
interactions in question. In the Glauber–Sitenko
theory of multiple scattering, there is unfortunately
no consistent procedure for taking into account elas-
tic rescatterings in inelastic nuclear–nuclear inter-
actions. At the same time, the description of the
multiplicity of participant protons has been consid-
erably improved. The discrepancy between the re-
sults of the calculations and experimental data on
the multiplicity of evaporated protons with momenta
of 0.15 to 0.3 GeV/c and of stripping protons and
multiply charged fragments of the projectile nucleus
(〈n〉Z=1 and 〈n〉Z≥2, respectively) stems from the use
of the evaporation model. As a rule, the evaporation
model yields many singly charged fragments and one
multiply charged fragment. In order to improve the
description of experimental data, it is necessary to
take into account nuclear multifragmentation. This is
also suggested by the relationship between the mul-
tiplicities of stripping protons and multiply charged
fragments. The model used here overestimates the
multiplicity of stripping protons and the multiplicity
of protons whose momenta are below 0.15 GeV/c.

For CС interactions studied here, a comparative
analysis of the momentum and angular features of
secondaries versus the collision-centrality degree as
determined from the number of participant protons
revealed that, for negative pions, these features are
virtually independent of the impact parameter. By way
of example, we indicate that, upon going over from
peripheral to central interactions, the mean momenta
of negative pions and their transverse momenta and
emission angles change within 5% (see Table 3).
The shape of the corresponding distributions does
not change either (Figs. 5, 6). The above features
of negative pions behave in this way only in the
case of interactions of symmetric nuclei [13, 14, 20].
It is noteworthy that, in the transverse-momentum
distributions of negative pions, there is a deviation
from an exponential dependence in the region pπ

−
T >

1 GeV/c. This feature is observed in all subgroups of
CC interactions (see Fig. 6).

The situation for protons is different. An increase
in the degree of centrality of CС interactions leads
to an increase in the mean values of the total and
the transverse momentum of participant protons (see
Table 3) and to significant changes in their rapid-
ity (y) and transverse-momentum (pT ) distributions
(see Figs. 7, 8). In peripheral collisions (npart

p ≤ 4),
the rapidity distribution of participant protons has a
pronounced two-peak structure caused by the con-
tribution of protons originating from the fragmen-
tation of the projectile and the target nucleus (see
Fig. 7a). The two-peak structure is less spectacular
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 2002
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Table 3. Mean values of the variables p, pT , and θ (the θ values are given in degrees) for secondary particles from СС
interactions characterized by various numbers of participant protons

Event type

npart
p ≤ 4 4 < npart

p ≤ 9 npart
p > 9 Qstr = 0

〈pπ−〉 expt 0.593± 0.005 0.588± 0.004 0.599± 0.007 0.628± 0.011

model 0.617± 0.004 0.616± 0.003 0.626± 0.004 0.636± 0.007

〈pπ−

T 〉
expt 0.238± 0.001 0.240± 0.001 0.248± 0.002 0.243± 0.004

model 0.249± 0.001 0.253± 0.001 0.259± 0.001 0.256± 0.002

〈θπ−〉 expt 41.3± 0.3 40.9± 0.3 40.7± 0.4 37.7± 0.6

model 39.4± 0.2 39.4± 0.2 39.0± 0.3 37.4± 0.4

〈ppart
p 〉

expt 1.802± 0.006 1.886± 0.006 1.866± 0.011 2.084± 0.019

model 1.935± 0.006 1.961± 0.004 1.951± 0.006 2.308± 0.010

〈ppart
T 〉

expt 0.446± 0.001 0.484± 0.001 0.504± 0.002 0.516± 0.004

model 0.498± 0.001 0.513± 0.001 0.525± 0.001 0.526± 0.002

〈θpart
p 〉

expt 28.7± 0.1 27.2± 0.1 26.5± 0.2 23.2± 0.3

model 30.6± 0.1 30.85± 0.08 28.94± 0.13 24.0± 0.2

〈pp〉,
0.3 ≤ pp < 0.75

expt 0.481± 0.001 0.494± 0.001 0.509± 0.002 0.513± 0.004

model 0.508± 0.001 0.503± 0.001 0.509± 0.001 0.515± 0.002

〈pp
T 〉,

0.3 ≤ pp < 0.75
expt 0.326± 0.001 0.331± 0.001 0.333± 0.002 0.330± 0.004

model 0.378± 0.001 0.378± 0.001 0.374± 0.002 0.376± 0.002

〈θp〉,
0.3 ≤ pp < 0.75

expt 55.0± 0.2 54.0± 0.2 51.6± 0.4 49.1± 0.8

model 65.5± 0.3 65.8± 0.2 62.4± 0.3 61.2± 0.5

〈pp〉,
pp ≥ 0.75

expt 2.399± 0.007 2.372± 0.008 2.287± 0.012 2.453± 0.020

model 2.445± 0.006 2.471± 0.004 2.375± 0.007 2.664± 0.010

〈pp
T 〉,

pp ≥ 0.75
expt 0.500± 0.002 0.537± 0.002 0.557± 0.003 0.560± 0.005

model 0.541± 0.001 0.561± 0.001 0.570± 0.002 0.556± 0.002

〈θp〉,
pp ≥ 0.75

expt 16.8± 0.1 17.9± 0.1 18.7± 0.2 17.0± 0.2

model 18.13± 0.8 18.62± 0.05 19.11± 0.08 16.6± 0.1

Note: The momentum values are given here in GeV/c units; the model values were computed by using the FRITIOF code.
in the group of 4 < n
part
p ≤ 9 events (see Fig. 7b); in

central events (npart
p > 9 and Qstr = 0), it disappears

completely, giving way to a broad plateau in the cen-
tral rapidity region (see Figs. 7c, 7d). The latter is
indicative of the increasing contribution of secondary
interactions in colliding carbon nuclei. The asymme-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
try of the rapidity distribution in Fig. 7 is partly due
to a small (10–15%) admixture of deuterons, which
shift the spectrum toward the region of high rapidities
if they are assigned the proton mass. The distinc-
tion between the multiplicities of interacting protons
from the projectile and from the target nucleus (see
2
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Fig. 5. Rapidity distributions of negative pions in CC in-
teractions characterized by various degrees of centrality.
The notation is identical to that in Fig. 1.

Fig. 7d) is also operative. It can be seen from Fig. 8
that, in central interactions, the fraction of protons
having high transverse momenta (pT >1 GeV/c) in-
creases, which is manifested in an increase in the
mean values of pT (see Table 3).

It is of interest to trace the behavior of the angular
and momentum distributions of participant protons
in various momentum intervals versus the degree of
collision centrality. In the case being considered, we
analyze the distributions of protons having momenta
in the range between 0.3 and 0.75 GeV/c (these are
predominantly target fragments) and in the region
p > 0.75 GeV/c (these are predominantly projectile
fragments) (see Figs. 9–11). As the number of par-
ticipant protons in an event grows, we observe a slight
increase in the mean momenta and a decrease in the
mean emission angles 〈θ〉 for protons of momenta in
the range 0.3 ≤ p < 0.75 GeV/c. At the same time,
the mean transverse momenta of the protons remain
unchanged (see Table 3). The transverse-momentum
and angular distributions of protons from this group
are displayed in Figs. 10 and 11, respectively. For
p > 0.75 GeV/c protons, the transverse momentum
grows with decreasing impact parameter (see Table 3
and Fig. 9). Thus, an increase in the fraction of
participant protons with high transverse momenta in
central interactions is due to p > 0.75 GeV/c protons,
whose fraction amounts to 76% (80%) in npart

p > 9
(Qstr = 0) events.
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Fig. 6. Transverse-momentum distributions of negative
pions. The notation is identical to that in Fig. 1.

Presented in Figs. 5–11 are the results of our
FRITIOF calculations for the angular and momen-
tum features of negative pions and participant protons
from carbon–carbon interactions. It can be seen that
the experimental rapidity distributions of negative pi-
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Fig. 7. Rapidity distributions of participant protons. The
notation is identical to that in Fig. 1.
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Fig. 8. Transverse-momentum distributions of partici-
pant protons. The notation is identical to that in Fig. 1.

ons from peripheral interactions are faithfully repro-
duced (Fig. 5a) and that the theoretical predictions
for the rapidity distributions of negative pions from
other subgroups deviate considerably from the cor-
responding experimental distributions (Figs. 5b–5d),
because the multiplicity of negative pions is underes-
timated in these subgroups. The model description of
the transverse-momentum distributions of negative
pions is quite satisfactory (Fig. 6).

The most interesting distribution is that of partic-
ipant protons with respect to the rapidity y (Fig. 7).
According to the model underlying our calculations,
the peaks at y ∼ 0.2 and y ∼ 1.8 are largely due to
elastically scattered protons. The distributions of pro-
tons involved in inelastic interactions do not display
such peaks. The contribution of elastically scattered
protons decreases with increasing degree of collision
centrality. They take virtually no part in central inter-
actions. The peaks from elastically scattered protons
or from protons involved in secondary interactions are
present in the results of cascade calculations (see [7]).
It should be noted that the shape of experimental and
the shape of calculated distributions undergo virtually
no changes in the regions around y ∼ 0 and y ∼ 2.
In the calculations based on the cascade–evaporation
model, the spectra of protons in the region around
y ∼ 0 (y ∼ 2) undergo an ever increasing shift toward
negative (positive) rapidity values as the degree of
collision centrality becomes higher. Therefore, inves-
tigation of the proton yields in the regions of nuclear
fragmentation for interactions that occurs at various
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 1 200
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Fig. 9. Transverse-momentum distributions of protons
with momenta in excess of 0.75 GeV/c. The notation is
identical to that in Fig. 1.

degrees of collision centrality can furnish valuable
information about the mechanism of nuclear breakup.

The model used provides a satisfactory description
of the transverse-momentum distributions of partic-
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Fig. 10. Transverse-momentum distributions of protons
in the range 0.3–0.75 GeV/c. The notation is identical to
that in Fig. 1.
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Fig. 11. Angular distributions of protons with momenta
in the range 0.3–0.75 GeV/c. The notation is identical to
that in Fig. 1.

ipant protons in the range 0.2–1.5 GeV/c. A glar-
ing discrepancy between the model and the experi-
ment is observed in the region of higher transverse-
momentum values (see Fig. 8).

The model reproduces best of all the transverse-
momentum distribution of participant protons with
momenta in excess of 0.75 GeV/c from peripheral
interactions (Fig. 9a). In other subgroups (4 <
n

part
p ≤ 9 and n

part
p > 9), there are discrepancies at

high transverse-momentum values.
The properties of slower protons are described

by the model less satisfactorily. From Table 3 and
from Fig. 10, it can be seen that the model overes-
timates the mean transverse momenta of 0.3 ≤ p <
0.75 GeV/c protons and underestimates their longi-
tudinal momenta, with the result that proton emission
angles prove to be overly large (see Fig. 11). Since
0.3 ≤ p < 0.75 GeV/c protons constitute only one-
third of participant protons, the discrepancy between
the experimental and the calculated values is less
spectacular in their total distributions.

4. CONCLUSIONS

(i) New experimental data on the features of pions
and protons from CC interactions at a momentum
of 4.2 GeV/c per nucleon that are characterized by
various degrees of collision centrality have been pre-
sented.
P

(ii) It has been shown that the mean kinematical
features of mesons are weakly dependent on the de-
gree of collision centrality.

(iii) With increasing degree of collision central-
ity, the angular and momentum features of protons
participating in carbon–carbon interactions undergo
the following variations: the shape of their rapidity
distributions changes substantially, and the fraction
of protons of high transverse momenta increases.

(iv) The FRITIOF model modified by taking into
account elastic rescatterings reproduces satisfacto-
rily the experimental features of mesons and partici-
pant protons in all groups of events considered here.
The multiplicities of slow protons from the evapora-
tion process are described poorly because of the use of
the evaporation model for simulating the deexcitation
of residual nuclei.

(v) In order to refine the model further, it is neces-
sary to take into account nuclear-multifragmentation
processes.
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