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Abstract—The long-lived high-spin 178m2HfK isomer can be produced in nuclear reactions with different
projectiles. The reaction yields and cross sections have been measured in a series of experiments and the
results are now reviewed. The systematics of isomer-to-ground-state ratios are drawn and real production
capabilities are estimated for the best reactions. Such a summary is relevant to the significance of
isomer studies, both for nuclear-science knowledge and for possible applications. Potential isomer appli-
cations have been stressed previously in popular publications with probably overestimated expectations.
The real possibilities are restricted in part by the production yield and by other shortcomings as well.
c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Nuclear isomers in the mass range close to A =
180 are of special interest because they are char-
acterized by unique combinations of high excitation
energy, high spins, and K-quantum numbers with
long lifetimes. Such features make these isomers ex-
tremely attractive for applications to γ-ray pulsed
sources because they may store the nuclear excitation
energy for long time and also provide a high density
of energy. In the classical example of the 31-year
178m2Hf isomer, the energy density reaches 1.3 GJ/g.

An excited nuclear state manifests itself as a
metastable isomer when its decay is significantly
retarded due to some kind of mismatch between
the wave functions of initial and final states. Such
hindrances to the decay typically arise because of
collective deformation of a nucleus in excited state
and either of the angular-momentum step at the
decay transition or of a structure inhibition. In the
region of statically deformed nuclei, the structure
hindrance may play an important role, in addition to
the selection rules by the spin and parity (Iπ) for the
multipole electromagnetic transitions. For instance,
a change in the orientation of the angular momentum
vector generates special structure inhibition known
in the literature as K hindrance. Recall that K is
a quantum number of the I-vector projection onto
the deformation axis. The axial symmetry of the
nuclear deformation is a major assumption. Many
K-hindered isomers are known, and their properties
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are described in the literature (see, for instance, [1–4]
and references therein). 178m2Hf is one of the clearly
identified K isomers because theK-hindrance factor
is as high as about 109 in this case. Without the latter
value, the isomeric state should decay fast, with a
half-life of 0.8 s, instead of the real T1/2 = 31 yr. Thus,
the methods available for unique isomer production
are of interest in different aspects, in particular, for
extension of the exotic-nuclei phenomenology.
The field of the present work is intentionally nar-

rowed to the nuclear reaction features only. The nu-
clear structure properties are touched as far as they
influence the isomer-production cross section. The
discussion of applications is excluded because we
have no intention of supporting a “sensation” that
has appeared in some newspapers and magazines, for
instance, in the Washington Post and Der Spiegel.
One can find a more professional and responsible
approach in the review articles published in physical
journals [1–5]. They contain the explanation that the
isomer research is at a very basic stage, far from real
use of the isomer sample as an energy or weapon unit.
In the summary of the present work, the restrictions
are discussed for the amount of isomer material that
can really be produced.
Decay retardation, being useful for energy accu-

mulation, is accompanied at the same time with the
suppression of the isomer-production cross section
because of the similar factor of the wave-function
mismatch. In theory, the conservation ofK-quantum
number is not an absolute imperative because it is
conserved until the axial symmetry of nuclear shape
is perturbed. After the experiments of [6, 7], it was ev-
ident that the K-hindrance factor decreases with the
c© 2005 Pleiades Publishing, Inc.
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excitation energy growth. The long-lived states (iso-
mers) are populated in nuclear reactions through the
cascade of γ quanta emitted by the excited reaction
residue. At typical residual excitations, the K hin-
drance must be significantly diminished and the iso-
mer yield should fortunately be increased. But yet, the
isomer-to-ground-state ratio in many cases remains
not high, σm/σg � 1, as known from experiments.
This is because of high spin of the isomeric states.
In γ cascades, the most probable are the transitions
of low multipolarity, E1, M1, E2, and they cannot
directly supply the required spin deficit if the isomer
spin is much higher than the residual angular mo-
mentum. Many stretched transitions in the cascade
are needed and the probability is decreased. There
is no possibility of violating the angular-momentum
conservation because it is an integral of motion and it
should be conserved absolutely in both classical and
quantum mechanics.

The correlation of isomer cross section σm with
the spin deficit was qualitatively clear even before
the experiments reviewed here. However, it does not
mean that the isomer yields and m/g ratios could
be reliably calculated in theory and used for practical
estimations. In reality, the spin distribution of the
residual nucleus cannot be easily predicted for many
reactions. On the other hand, the measured m/g ra-
tio sometimes serves as a basis for estimates of the
mean angular momentum of the residual nuclei, for
instance, in a spallation reaction with intermediate-
energy protons. Another uncertainty is due to the
structure peculiarities of the level scheme and the γ-
cascade branching for some individual nucleus. Sim-
plified statistical-model calculations may not be very
accurate, especially if they are applied to excited levels
of below 3 MeV. So, as usual in nuclear physics,
experimental measurements are needed to obtain re-
liable values of the reaction cross section and yield.
The experiments are described below.

One introductory remark concerns also the dis-
cussion of the isomer application in a mode of the
controlled source of energy and radiation, assuming
that the isomer decay can be artificially stimulated
(triggered) by the external radiation. Within the “up-
conversion” scheme, a photon is absorbed and pro-
vides the transition from the isomer to some higher
lying level. The latter one should decay fast to the
ground state and the isomeric energy is released. But
the efficiency of such a process should be again re-
stricted by the wave-function mismatch between the
isomer and other levels. The triggering cross section
can be too small, even if such a lucky intermediate
level exists. Extensive experimental studies may clar-
ify the triggering efficiency. In the present paper, trig-
gering experiments are out of the discussion, and a
PH
review of experimental attempts for triggering known
to date is given in [1].

1. 178m2Hf PRODUCTION
WITH BREMSSTRAHLUNG

Photon-induced nuclear reactions were system-
atically studied in [8, 9] at the irradiations of natTa,
natHf, and 178m2Hf targets with bremsstrahlung at
the end-point energy of 23.5 MeV. The activation
technique was applied, and as many as 18 yields of
the (γ, γ′), (γ, n), (γ, p), (γ, 2n), and (γ, α) reactions
were successfully measured. Among them, there were
reactions leading to the population of isomeric and
ground states; thus, the isomer-to-ground-state ra-
tios were deduced. Most original was the observation
of reactions with the isomeric 180mTa and 178m2Hf nu-
clei and the demonstration that the high-spin isomers
are easy populated in the reaction product when the
target nucleus is also a high-spin isomer. This does
not contradict the correlation of yield with the nuclear
spin difference of the target and product.
At the attempts of 178m2Hf production with

bremsstrahlung, its low activity could not be dis-
tinguished in the presence of other radionuclides
induced in the irradiated natHf target [8, 9]. But later,
at the 22-MeV end-point bremsstrahlung irradiation,
higher sensitivity of measurements was reached [10]
and the yield of 178m2Hf was observed and attributed
to the 179Hf(γ, n) reaction. The latter reaction was
most productive because of the highest yield of (γ, n)
products at such an energy and because of the highest
spin value of the 179Hf nuclei among the other stable
Hf isotopes. The isomer-to-ground-state ratio was
found to be

Ym/Yg = (3.5 ± 1.0) × 10−5. (1)

Respectively, the absolute yield should not be high
when one uses the 22-MeV bremsstrahlung for the
accumulation of the 178m2Hf isomer. Assume that
10 g of isotopically enriched 179Hf is irradiated close
behind the converter and the electron beam has an
intensity of 100 µA. The estimated yield of 178m2Hf
of about 4× 107 atom/s is not of interest for the
production of the isomer in an amount needed for the
target preparation.
It would be very probable that the yield must be

higher with an electron beam of higher energy, and a
new experiment has been performed using a 4.5-GeV
electron beam at the Yerevan Synchrotron. A stack
of Ta foils was exposed to the bremsstrahlung gen-
erated in the W converter. The long-based collima-
tion system and relatively thin converter and target
samples were used for the better definition of exper-
imental conditions. After a long cooling time, the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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activity of Ta foils was measured with a Ge gamma
spectrometer having a 20% efficiency. Only long-
lived products survived to the time of measurements,
such as 178m2Hf, 172Hf, 150Eu, and 133Ba, and they
could be quantitatively determined. The experiment is
described in [11] in some detail.
The yield of 178m2Hf has been measured and the

isomer-to-ground state ratio is found to be

Ym/Yg = 0.032 ± 0.010, (2)

i.e., much higher than the value given above in (1), for
the reaction induced by bremsstrahlung at 22 MeV.
The transmutation of 181Ta into 178m2Hf requires the
emission of a proton and two neutrons; however, the
181Ta(γ, p2n)178m2Hf reaction can be written formally
because at high energy not only nucleons but also
mesons are generated and emitted. Respectively, a
variety of reactions leading to the same product arise.
Photon absorption at Eγ ≥ 200 MeV involves the
mechanism of meson generation and corresponding
peaks are strongly manifested in the excitation func-
tion. Above 1200 MeV, the absorption cross section
reaches an almost constant asymptotic value of about
0.12 mb/nucleon.
At low energies,Eγ ≤ 200MeV, the quasideuteron

mechanism provides the highest contribution, and
even lower, the tails of E1 and E2 giant multi-
pole resonances are of importance. The yield of the
181Ta(γ, p2n) reaction at Eγ ≤ 50 MeV should be
deteriorated by the energy deficit. Thus, one may
conclude that, in the irradiations with 4.5-GeV
bremsstrahlung, the 178m2Hf isomer is produced
mostly due to the absorption of photons in the range
from 50 to 1200 MeV. After understanding this, it
would be easy to accept ratio (2), which is comparable
with the values determined in [12] for the Ta spallation
by protons of intermediate energy of 600–300 MeV.
In the range of a few hundred MeV, the photon
absorption transfers to the nucleus sufficient energy
for the emission of many particles, as in the case of
proton-induced spallation.
The estimated m/g ratio also leads to the con-

clusion that a reasonably high angular momentum
is acquired by the residual nucleus in the reactions
with high-energy photons, not only with protons.
The measured yield of 178m2Hf allows estimating
the maximum achievable productivity of the reaction
with 4.5-GeV bremsstrahlung. In a view toward opti-
mization, thicknesses of the target and the converter
should be enlarged. In this way, more quanta can
be created and used for nuclear reactions, although
obviously the absorption will also be increased. A
reasonable compromise would be to combine both
converter and target, which would then be a rather
thick sample of Ta.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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Fig. 1. Yield of the 178m2Hf as a function of thickness
of the Ta sample exposed to 100-µA electron beam at
4.5 GeV.

The problem of optimization of such a unified as-
sembly was solved analytically in [11]. As is known,
the radiation energy losses of electrons in the ultrarel-
ativistic case are proportional to the electron energy(

dE

dx

)
rad

= cEe. (3)

The total yield of photonuclear reaction in a sample
of thickness d exposed to an electron beam can be
evaluated as follows:

Ynr ∼
d∫

0

Nγ(t)σdt =
σ̄c

µ2

(
µd+ e−µd − 1

)
, (4)

where σ̄ is a mean cross section of the reaction,
and µ is a linear attenuation coefficient for the
bremsstrahlung photons. In Fig. 1, the absolute
production yield of 178m2Hf is plotted as a function
of the thickness of the Ta sample when it is irradiated
with a 100-µA electron beam at 4.5 GeV. In addition
to the major production by bremsstrahlung, the reac-
tions induced directly by electrons and the secondary
processes are taken into account in the simplified
approximation. With a Ta sample 20 mm thick, the
number of 178m2Hf atoms reaches the value of

Y = 3.2× 109 [atom/s]/100 µA. (5)

The photon-conversion efficiency and, respectively,
the nuclear reaction yield must be increased by some
factor under channeling conditions, when electrons
are directed along the crystal axes or planes. But with
a thick sample, such a factor should not be significant.
05
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2. NEUTRON-INDUCED REACTIONS

Production cross sections in neutron capture
reactions with thermal neutrons are typically low for
high-spin isomers with I ≥ 10. The isomer
177mLu(Iπ = 23/2−) is an exception that confirms
the general tendency, because the high spin of the tar-
get 176gLu(Iπ = 7−) nucleus provides a rather mod-
erate spin deficit ∆I = 4� in the 176Lu(n, γ)177mLu
reaction. In contrast with neutron capture, fast neu-
tron reactions provide additional possibilities.
The yield of the high-spin 178m2Hf isomer in reac-

tions with neutrons was tested in experiments [13–
15]. A relatively high cross section was found [14,
15] in the 179Hf(n, 2n)178m2Hf reaction induced with
14.5-MeV neutrons. But productivity is restricted by
the neutron flux available when the T(d, n)4He re-
action is used for neutron generation. Much higher
fluxes are created in reactors, but the spectrum is
soft and needed energies of En ≥ 10 MeV have very
low probability. Unfortunately, slow neutrons are not
effective for 178m2Hf production because the neutron
capture 177Hf(n, γ)178m2Hf reaction is characterized
by a very low isomer-to-ground-state ratio of∼ 0.5×
10−9, according to [13].
At the same time, the isomer population in the

178Hf(n, n′γ)178m2Hf reaction has never been exper-
imentally tested. In addition, the low yield observed
in the (n, γ) reaction [13] can be a result of burnup
of the produced isomeric nuclei. The burnup process
may have been significant at the high fluence applied
in [13], but its cross section was not known. Even
now, the data on the 178m2Hf burnup in reactor ir-
radiations are not complete. Only the branch of the
178m2Hf(n, γ)179m2Hf transmutation was experimen-
tally characterized in [16], but the total 178m2Hf(n, γ)
cross section was not yet measured. In such a con-
text, a new experiment has enough motivation to
be performed testing both burnup and (n, n′γ) pro-
cesses.
Metal natHf foils 1 mm thick were activated in

an external channel of the IBR-2 reactor at FLNP
(JINR, Dubna) and were then studied using a Ge
gamma detector having 20% efficiency. This was ac-
complished by the spectrometric electronics, which
allowed a count rate up to 20 kCs/s with a reasonable
dead time and conservation of spectral resolution. The
neutron spectrum at the location of the target was
known from previous experiments. But in addition,
NiCr-alloy samples were used as spectators for the
calibration of the thermal and fast neutron fluence.
The Hf samples were irradiated with and without
Cd shields and the method of Cd difference allowed
isolating the effect of thermal neutrons and deduction
of the thermal cross section.
PH
In measured spectra of activated Hf, the γ lines
were observed and quantitatively determined for the
following radionuclides: 175Hf, 179m2Hf, 180mHf, and
181Hf. The bulk of the activity was defined by 175Hf
and 181Hf formed in (n, γ) reactions. They served as
the intrinsic calibration of the thermal and resonance
neutron fluxes in the presence of flux attenuation due
to the self-absorption in the 1-mm Hf samples.
In this way, the thermal cross section σth and

resonance integral Iγ values were figured out for the
180mHf isomer formation and the results are in ac-
cordance with the tabular values [17]. The yield of
the high-spin 179m2Hf isomer was newly obtained
and attributed to the 179Hf(n, n′γ)179m2Hf reaction
with neutrons of the fission spectrum. The isomer-
to-ground-state ratio σm/σg ≈ 1.6 × 10−3 does not
contradict the systematics of [18].
The activity of 178m2Hf was too low, and it could

not be distinguished or estimated even after long
(1.5 yr) “cooling” of the sample after irradiation. Only
an upper limit was established for the number of
produced 178m2Hf nuclei. Respectively, a limit for the
cross section of 178Hf(n, n′γ)178m2Hf could be eval-
uated immediately. This reaction may be productive
only at neutron energies of above 3 MeV because of
the isomer excitation energy 2.45 MeV plus 0.5 MeV
spent for the ejected neutron and gammas. The num-
ber of such neutrons was estimated using the known
spectrum of fast neutrons at the location of the irra-
diated sample and the measured activity of 58Co in
the NiCr spectator. As a result, the cross section of
178m2Hf production in the (n, n′γ) reaction has been
restricted to an upper limit of σm ≤ 0.04 mb, and the
corresponding σm/σg value has been found to be as
low as ≤1.5× 10−5.
More complicated would be an estimation of the

definite value of a limit for the neutron capture cross
section leading to the 178m2Hf isomer. Complications
are due to the contribution of both thermal and res-
onance neutrons and due to the unknown burnup
cross section for the produced isomeric nuclei. The
approach of [13] was obviously too simplified because
a rather low burnup cross section of ≤20 b was as-
sumed, and the effect of resonance neutrons was ne-
glected. In the present experiment with total fluence
≤1018 neutron/cm2, the burnup can be completely
neglected (but not at 3–4 orders of magnitude higher
fluences as in [13]).
However, the isolation of individual yields induced

by thermal and resonance neutrons is still a problem
in our case too. The Cd-difference method is not
applicable when the product yield is not really ob-
served and only the upper limits restrict the numbers
of produced nuclei. Thus, we propose to operate with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 1. Cross sections of the 178m2Hf production in reactions with neutrons

Reaction Projectile energy ∆I, � References Cross section, mb σm/σg

177Hf(n, γ) Thermal 12 Recalculated result of [13] 1.1× 10−3 1.5× 10−9

Thermal 12 Present study ≤2× 10−2 ≤1.1× 10−8

Resonance 12 Present study Iγ ≤ 0.2 ≤2.8× 10−8

178Hf(n, n′γ) En ≥ 3MeV 31/2 Present study ≤4× 10−2 ≤1.5× 10−5

179Hf(n, 2n) En = 14.5MeV 11 [14] 7.3 3.5× 10−3
the effective cross section σeff. As is known, after
irradiation for tirr in a reactor, the product yield in a
linear approximation is proportional to

Y ∼ tirr
(
σthFth +

Iγ
ln(E2/E1)

Fres

)
(6)

= tirrFthσeff.

Here, Fth and Fres are the fluxes of thermal and res-
onance neutrons, respectively, and σeff is defined as
follows:

σeff =
(
σth +

Iγ
c

)
, (7)

c =
Fth
Fres

ln(E2/E1), (8)

where c is a constant for definite irradiation position in
a definite reactor, E1 and E2 define the “resonance”
range of energies, and for heavy nuclei the typical
value is known to be

ln
E2

E1
≈ 8−10. (9)

The Fth/Fres ratio should be below unity, at least,
for the Dubna IBR-2 reactor, and the recommended
value c = 5 can be realistic in our case.
Such an approach expressed in Eqs. (6)–(9) has

the advantages that:
(i) the σeff value for the isomer can be deduced

simply from the measured number of produced nuclei
using the measured thermal neutron flux and
(ii) the isomer-to-ground-state ratio can be evalu-

ated exploiting the tabular values of σth and Iγ for the
production of the ground-state nuclei. Equation (7)
allows one to calculate σeff for the ground-state prod-
ucts and to compare it with that determined in an
experiment for the isomer.
Thus, the results in the present experiment were

deduced for slow neutrons. The upper limits for (n, γ)
and (n, n′γ) production reactions are compared in
Table 1 with the cross sections known from the lit-
erature.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
In order to specify the resonance integral Iγ , we
apply another method for processing the results. An
additional sample was irradiated in the straight chan-
nel of the reactor (behind the neutron mirror) within a
container surrounded with a CB4 layer 3 mm thick.
The thermal neutrons were completely screened

out, and low-energy resonances at En ≤ 10 eV were
suppressed too. After γ-spectra measurements, the
number of 178m2Hf in the sample was restricted to
the upper limit and the flux calibration was done
by such products as 95Zr, 175Hf, 181Hf, and 182Ta.
The resonance integral values for such products were
corrected taking into account the neutron spectrum
after the CB4 filter. However, such a correction is
not enough because in a Hf sample 1 mm thick the
self-absorption near the resonance energies may be
significant. The self-absorption can be neglected for
95Zr and 182Ta; it appears for 175Hf and is significant
for 181Hf. Recall that 95Zr is produced due to the small
admixture (3%) of Zr in the Hf material, and 182Ta
is formed in the two-step capture process, the same
as in the astrophysical s process: 180Hf(n, γ)181Hf
β− →181Ta(n, γ)182Ta. The 181Hf yield is measured
directly and the result includes the self-absorption
factor. In the second reaction, the yield of 182Ta is
not influenced by self-absorption because of very low
concentration of the 181Ta nuclei in the target during
the irradiation. Finally, the real flux values are es-
timated using 95Zr and 182Ta activities; both are in
agreement, while the calibrations by 175Hf and 181Hf
show a noticeable reduction of the flux. Using such
quantitative measurements, we could estimate the
resonance flux attenuation for the 177Hf(n, γ) reac-
tion, as well. Finally, the upper limits for Iγ and for
the isomer-to-ground-state ratio were deduced. They
correspond to the production of 178m2Hf with reso-
nance neutron capture and are also given in Table 1.
It seems that [13] provided a higher sensitivity of

measurements. But, as mentioned above, the burnup
effect of the produced 178m2Hf could be strong at
fluences above 1021 neutron/cm2 and was probably
underestimated in [13]. In addition, the resonance
05
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Fig. 2.Calculated transmutation functions for the Hf tar-
get stable isotopes in (n, γ) reaction (a) and the 178m2Hf
accumulation (b). For the stable isotopes, burnup cross
sections are taken from [17], and for the isomer, they
are estimated using the results of [16]. The condition of
irradiations corresponds to that in [13].

flux was neglected, and that could not be correct for
irradiation inside any reactor. Even assuming the best
thermalization, one has to use Eq. (7) for σeff with the
numerical coefficient c ≈ 20. On this basis, we recal-
culated the results [13] in more realistic approxima-
tions including the resonance neutron contribution
and the burnup effect.
It would be clear that radiative neutron cap-

ture is the most destructive process, because the
cross section σeff can be as high as thousands of
barns. Respectively, in the fluence range of Φ ≥
1021 neutron/cm2, isomer burnup can be manifested.
Other nuclear processes in reactor irradiations are
characterized by much lower cross sections, but
due to neutron capture, even the feedstock (target)
isotopes are in danger of useless depletion. The
transmutation functions for stable Hf isotopes are
calculated and shown in Fig. 2. σth and Iγ values
are taken from [17], and they are combined to get the
unified parameter σeff using Eq. (7) and numerical co-
efficient c = 20. The latter choice should be adequate
to the conditions of the experiment in [13]. One can
see that 177Hf is the most unstable in neutron flux
among other Hf nuclei.
In the presence of burnup of the target and isomer
PH
nuclei, the isomer accumulation function is expressed
as follows:

Nm(Φ) =
N0σmp

(σtb − σmb)
(10)

× {exp (−σmbΦ)− exp (−σtbΦ)} ,
where Nm and N0 are the numbers of the isomer
and target atoms, Φ is fluence, σmp is the isomer-
production cross section, and σmb and σtb are the bur-
nup cross sections of the isomer and target. In (10),
we use again σeff quantities. The production and de-
struction σeff values are needed for the calculation of
the accumulation function for 178m2Hf. One can esti-
mate the destruction cross section using the results
of the experiment in [16]. The values of σth = 45 b
and Iγ = 1070 b were obtained for the partial branch
of the 178m2Hf(n, γ) reaction with the population of
the 179m2Hf isomeric state. Combined together with
c = 20, they lead to σeff ≈ 100 b. But the total de-
struction cross section should also include that for the
(n, γ) branch leading to the 179gHf ground state. In a
rough approximation, we took σeff = 200 b as the total
destruction cross section for 178m2Hf due to (n, γ)
capture.
With such a choice, the processing of the ex-

perimental results in [13] should be revisited, and
finally, the production cross section is increased sig-
nificantly. More intense destruction requires, respec-
tively, a higher production probability to get the same
number of produced atoms [see Eq. (10)]. The re-
calculated cross section is given in Table 1 and the
corresponding σm/σg value is given as well. They
characterize the (n, γ) reaction observed in [13] and
evaluated in the present work under more realistic
assumptions. In addition, the accumulation function
is shown in Fig. 2 for the 178m2Hf isomer as is cal-
culated in a similar approach with the same numer-
ical parameters. One can see that, at fluences above
1021 neutron/cm2, the accumulation curve deviates
strongly from a linear function and then decreases.
This is due to both the transmutation of the 177Hf
target nuclei and the burnup of accumulated 178m2Hf.
The experiment of the present work also does not

promise a much higher yield of the 178m2Hf isomer.
Finally, the conclusion follows that the reactor irra-
diation cannot serve as a high-efficiency method for
178m2Hf production.

3. SPALLATION BY INTERMEDIATE
ENERGY PROTONS

It is established that the largest quantity of 178m2Hf
was produced at Los Alamos with 800-MeV protons
from a high-current accelerator (formerly LAMPF).
The advantage of this method was the ability to
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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accumulate the isomer as a by-product within a
massive Ta beam dump during the operation of the
accelerator for other experiments. The shortcoming
was due to a very high activity of other radionuclides
produced in Ta fragmentation. The yield of 178m2Hf
was reported in [19], but the experimental details were
described schematically and the productivity was only
estimated. Recently, the reactions of proton-induced
spallation were systematically studied for Ta, W, and
Re targets of natural isotopic composition and for an
enriched 186W target ([12, 20]) using the 660-MeV
Synchrocyclotron at Dubna. The yields of the long-
lived high-spin isomers of 179m2Hf, 178m2Hf, and
177mLu are quantitatively determined and the mea-
sured values can be used for productivity optimization
in some future irradiations.

Let us characterize briefly these recent experi-
ments. Metal foil targets fixed to a cooled Al backing
were inserted for irradiation into the internal beam of
protons of the Dubna Synchrocyclotron (Phasotron).
By choosing the position of a target inside the accel-
erator, it was possible to vary the beam energy from
100 to 650 MeV on the basis of known calibrations.

Gamma-spectroscopy measurements of the irra-
diated samples were performed after a “cooling” pe-
riod of one month because of the high activity of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
short-lived radionuclides accumulated during the ac-
tivation. After the measurements, the samples were
dissolved for chemical processing and isolation of
the Hf fraction. The decay activity of the long-lived
178m2Hf state is rather low as compared to the activity
of other nuclides and chemical isolation was neces-
sary to achieve good accuracy for the 178m2Hf yield.
The gamma spectra were measured for the chemically
isolated elemental fractions, in addition to the full
activity spectra measured before.

In total, as many as about 70 radionuclides were
identified, and as a result, the mass distribution of
fragmentation products could be plotted. For exam-
ple, it is shown in Fig. 3 for the case of the p + 186W
reaction at 630 MeV. Master tables of the radionu-
clide yields and cross sections are given in [12, 20]
for different targets and energies. Many details of the
γ-spectroscopic measurements, the calibration and
evaluation procedures, etc., are also given there. Fig-
ure 3 characterizes here only basic properties com-
mon for the variety of studied fragmentation reac-
tions. Two peaks in Fig. 3 correspond to the fission
and spallation reactionmechanisms. For our purpose,
most important are the production cross sections for
nuclides and isomers near and below A = 180.
We focus, in the following, on the discussion of

the spallation yield of the long-lived high-spin iso-
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Table 2. Cross sections and isomer-to-ground-state ra-
tios for the formation of high-spin isomers after the spal-
lation of different targets at a proton beam energy of
650 MeV (some products with high gamma activity are
also listed for comparison)

Nuclide
Target

natTa natW 186W natRe

Cross section σ, mb

179m2Hf 0.52 0.36 0.80 0.12

178m2Hf 0.31 0.18 0.48 0.13

177mLu 0.15 0.13 0.26 0.04

178W 5.9 23 21.8 36

175Hf 56 55 55.6 59

172Hf 47 53.5 57.4 55

173Lu 61 61 60 61

σm/σg Ratio

179m2Hf 0.040 0.14 0.25 0.24

178m2Hf 0.021 0.044 0.092 0.14

177mLu 0.103 0.21 0.29 0.40

mers of 177mLu, 178m2Hf, and 179m2Hf. The cross
sections and isomer-to-ground-state ratios σm/σg
are compared in Table 2 for the production of isomers
with a 650-MeV proton beam using different targets.
The cross sections of neighboring radionuclides with
strong gamma activity are also reported in Table 2.
They define the radioactive contaminations of the fi-
nal isomeric material. It turns out that background
isotopes are produced with very similar cross sections
when different targets are used, while the productivity
of isomers has large variations. As expected, the best
material for isomer production is a 186Wtarget; its use
leads to the increase in the cross section by a factor of
about 2.5 is relation to the natural W target for the
high-spin isomers of Hf and Lu. This is valid not only
at 650-MeV beam energy but also at 450 MeV.
In Table 2, the σm/σg values of the order of 0.1–0.2

are the highest known in the literature for the produc-
tion of the high-spin isomers. Consequently, the an-
gular momentum of the spallation residues cannot be
low; it is probably as high as 10� or more. The depen-
dence of the σm/σg values on the target mass number
indicates a growth of the residual spin as the number
of emitted nucleons increases. For instance, the total
cross section for 178Hf decreases from Ta to Re, while
PH
the σm/σg ratio, on the contrary, increases. With the
186W target, the total cross section for the 179Hf-,
178Hf-, and 177Lu-nuclide formation is higher than
with Re, while the σm/σg ratio is much better than
with the Ta target. Thus, enriched 186W is the best
target because both σm/σg and total cross section
(σm + σg) are optimal in this case. The experimental
results [12, 20] also show that σm and σm/σg val-
ues are flatly reduced with decreasing proton energy.
Such a weak dependence allows one to use the results
in Table 2 for calculations of the isomeric yield in the
case of thick targets when the proton-energy is no-
ticeably degraded within the target. The highest pro-
ductivity irradiation with intermediate-energy pro-
tons requires a massive target [19]. However, a few-
kilogram amount of enriched 186Wmaterial would be
too expensive. Instead, let us estimate the maximum
production yield of 178m2Hf in the regular Ta target.
From Table 2, it follows that the cross section with Ta
should be lower by a factor of 0.65 than with 186W, but
such a reduction is reimbursed due to the gain in the
price of the material.
For estimation, assume now the most powerful

proton beam of the Los Alamos accelerator with en-
ergy of 800 MeV and with intensity up to 1 mA.
Passing through a 10-cm Ta target, a proton loses
energy from 800 to 560 MeV. The 178m2Hf-formation
cross section should be about 0.3 mb (Table 2). Thus,
one can figure out immediately the yield value for
178m2Hf:

Ymax ≈ 1012 [nucleus/s]/1mA, (11)

i.e., about 10 mg of isomeric material per year of
effective irradiations with the high-power beam. Such
a brute-force approach is hardly realistic, but the
estimated value is near the absolute maximum of
production with the facilities for irradiations known in
the literature. A factor of 2 gain can be reached as-
suming a target 20 cm thick and taking into account
the reactions induced by the secondary particles. But
this leads to a very large amount of Ta for chemical
processing and to severe radiation safety conditions
under irradiation and processing. At present, a cardi-
nal increase in the production yield much above (11)
is probably impossible, unless new facilities supply
some fantastically high fluxes of accelerated particles,
or (and) kilogram amounts of enriched exotic 180mTa
are available as a target material.

4. REACTION WITH 4He IONS
AT LOW ENERGY

A method of 178m2Hf isomer production using the
176Yb(4He, 2n) reaction was proposed and studied
(see [21, 22]). A high-purity isomeric material was
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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accumulated in extensive irradiations with a high-
current 4He-ion beam at theDubnaU-200 cyclotron.
The amount of isomeric substance was enough to
prepare the targets for investigation of the nuclear re-
actions with the high-spin exotic isomer and some of
them were successfully observed and studied. How-
ever, the general deficit in the amount of material
has restricted the development of such studies. In
total, it was possible to accumulate only about 1 µg
178m2Hf after high-intensity long irradiations with a
4He beam. Absolute productivity is not high because
the energy losses of 4He ions in matter allow using
only about 0.2 g of 176Yb-target material and no more
during each irradiation. Some details of this method
are described below taking into account that it was
productive for the performance of many experiments
with 178m2Hf, reviewed in [16].

The excitation function of 178m2Hf in the
176Yb(4He, 2n) reaction was measured and the cross
section showed a peak near Eα = 32MeV. The opti-
mum energy range of 28–36 MeV was deduced with
a mean cross section of about 7 mb. Respectively, the
mean isomer-to-ground-state ratio was estimated to
be σm/σg ≈ 0.05. The stopping of 4He ions from 36 to
28 MeV in Yb2O3 corresponds to a layer 70 mg/cm2

thick.
Targets made of superenriched 176Yb2O3 mate-

rial were prepared and exposed to the 4He-ion beam
at long irradiations for 178m2Hf accumulation. The
U-200 cyclotron at Dubna was modified for opera-
tion in the mode of high-intensity α-particle beam.
The extracted beam current of 36-MeV 4He++ ions
reached 100 µA; i.e., the beam power was 1.8 kW.
Because of the short range of the 36-MeV α particles,
the volume density of power was high, and the Yb
oxide layer could have been unstable under the beam.
The target construction was specially designed to

prevent losses of the Yb oxide material; a scheme is
shown in Fig. 4. The layer of Yb2O3 was pressed
down onto the Al backing; thin Al foil above the layer
was also applied to improve stability of the target.
The Yb2O3 material was distributed over a larger area
than the beam cross section, and the target was in-
clined to the beam direction. Thus, heat removal due
to heat conductivity was improved. The Al backing
was cooled down with the water flow from the rear
side of the backing plate. Targets of such a design
were able to resist a 4He++-ion current of 100 µA,
while at higher intensities some losses of the Yb2O3-
target material occurred.

The produced 178m2Hf material was chemically
isolated after irradiation and thenmass-separated (for
more detail, see [21, 22]). Only one important remark
concerns the purity of materials used in the target
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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ations of 176Yb enrichedmaterial with a 36-MeV 4He-ion
beam of high intensity.

construction. To prevent some ballast natHf contami-
nation in the isolated Hf fraction, it was necessary to
take care about chemical purity of the target, back-
ing, and chemical compounds used in the extrac-
tion of a product material. The commercially supplied
96% enriched 176Yb was additionally enriched using
an electromagnetic mass separator up to a purity of
99.998%. This expensive operation was needed for
the suppression of the yield of the 175Hf(T1/2 = 70 d)
and 172Hf(1.87 yr) background activities that could
disturb some experiments with the produced 178m2Hf
samples.

Under the described conditions, the absolute yield
of the 178m2Hf nuclei reached a value of

Y = 5× 108 [nucleus/s]/100 µA, (12)

which should be compared with the yield of the other
reaction.

5. OTHER REACTIONS
AT LOW ENERGIES

The relatively high cross section of the
176Yb(α, 2n)178m2Hf reaction leads to the idea of
possible use of reactions like 181Ta(p, α), 178Hf(α,α′),
179Hf(α,α′n), and 176Lu(7Li, αn) at low energies.
Production of 178m2Hf in these reactions has not
been studied yet, but it is known from the nuclear-
reaction phenomenology that all of them are more or
less probable processes at energy well above the in-
teraction barrier. It means that the total cross section
should be hundreds of millibarns, and reasonably high
angular momentum of the products provides a not
very low isomer-to-ground-state ratio. Therefore, the
178m2Hf-production cross section is expected to be
comparable with that known for the 176Yb(4He, 2n)
reaction, though not much more preferable.
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Table 3.Quantitative parameters characterizing the different methods of 178m2Hf-isomer production

Projectile Emax, MeV Intensity Target Amount
Productivity,
atom/s

σm, mb σm/σg Ref. Rank

1 2 3 4 5 6 7 8 9 10

Photons, γ 22 100 µA∗ 179Hf 10 g (total) 4 × 107 – 3× 10−5 [10] 6

4500 100 µA∗ Ta 33 g/cm2 3 × 109 – 0.03 [11] 3

Neutrons, 1n Thermal 5× 1014/cm2 s 177Hf 1 g (total) 3.4× 105 2× 10−4 0.5× 10−9 [13] 7

14 1013/cm2 s 179Hf 10 g (total) 2.5× 109 7.3 3.5× 10−3 [15] 4

Protons, 1H+ 650 100 µA Ta 33 g/cm2 2 × 1010 0.3 0.02 [12] 1

650 100 µA 186W 5 g/cm2 5 × 109 0.5 0.09 [20] 2

Alphas, 4He++ 36 100 µA 176Yb 0.07 g/cm2 5 × 108 7 0.05 [21] 5

Note: σm is not given for the bremsstrahlung-induced reactions because of the continuous spectrum of photons. The yield ratio was
measured and is given in the eighth column.
∗ Electron beam intensity.
Especially attractive is the 176Lu(7Li, αn) reaction
because 176Lu is a unique case of high-spin (7−) tar-
get. Respectively, the σm/σg ratio can reach a level of
50% in this reaction, i.e., 10 times higher as compared
to 176Yb(α, 2n). But at the same time, the maximum
current of the 7Li ions is restricted due to the higher
density of energy released in the target layer. In total,
a factor of 3–5 can be the gain if one uses a high-
current 7Li beam and a 90% enriched 176Lu target
of the best design in the sense of heat removal. A
few orders of magnitude higher productivity is not yet
visible. Nevertheless, the reactions indicated above
should be experimentally studied in order to operate
with reliable results, instead of some realistic estima-
tions.

6. COMPARISON OF DIFFERENT
REACTIONS

In Table 3, the absolute productivities of the re-
actions induced by different projectiles are compared
for the 178m2Hf isomer, following the measurements
discussed above. The comparison is somewhat con-
ventional, because the absolute yield depends on the
beam intensity and on the appropriate amount of
target material. Despite that, we want to get some
ranking of reactions; therefore, they should be com-
pared under similar conditions with respect to input
parameters characterizing strength of the irradiation.
For instance, the beam current is chosen to be 100 µA
for all accelerators, and the same target thickness is
assumed unless it is physically restricted due to flux
absorption or price of the target material. The chosen
parameters are absolutely real, i.e., already reached at
the facilities described in the literature and remaining
PH
in operation today. No extraordinary powerful systems
are involved in comparison. The quantities of enriched
target isotopes are restricted to a value of 10 g be-
cause of the high price of such substances.

The ranks in Table 3 (column 10) reflect the ab-
solute yield of the reaction (column 6) under com-
parable conditions. The p+ Ta spallation is the most
productive and its first rank could be expected. A pro-
ductivity of 2× 1010 atom/s is given in Table 3 as
the best, but above, in Section 3, we discussed the
much higher yield achievable in this reaction. There
is no contradiction, because the absolute maximum
has been estimated above assuming that the beam
current can be as high as 1mAwith a target thickness
of 10 cm. Even so, the production of 178m2Hf is re-
stricted tomilligram amounts, while effective applica-
tions require kilograms. The latter amount is beyond
reality, at least at the modern status of experimental
physics. Despite such orders of magnitude mismatch,
the results reviewed in the present paper and summa-
rized in Table 3 are of importance. They give a real
basis for some speculations and estimations and also
stimulate nuclear-science progress in understanding
of the processes with high-spin nuclear states.

For nuclear-reaction theory, even more significant
are the isomer-to-ground-state ratios, in addition to
the production yields. In the σm/σg ratio, the scale
factors in the reaction cross section are excluded,
and the ratio value eventually has strong implica-
tions for study of the nuclear-reaction mechanism.
In particular, mean angular momentum of the reac-
tion residue has strong influence on the σm/σg ratio.
Fortunately, the latter parameter is measurable, and
for some reactions, the residual spin can be figured
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005



COMPARATIVE ANALYSIS OF THE 178m2Hf YIELD 1775
out in theory. Thus, the correlation between σm/σg
and the reaction-product spin can be verified after the
measurements. Such a dependence is plotted in Fig. 5
for 178m2Hf isomer production. When the reaction
product spin Ir increases, the spin-deficit parameter
∆I, respectively, decreases, and the probability of
isomer population grows. Such natural behavior is
experimentally confirmed and quantitatively charac-
terized in Fig. 5.
It would not be easy to calculate in theory the

Īr value for the reactions with intermediate-energy
protons or with high-energy bremsstrahlung. In such
cases, the systematics of Fig. 5 can be used for
estimation of the Īr parameter based on the measured
σm/σg ratio. In this way, unique information is de-
duced confirming that the reaction residue receives
rather high spin, like Īr ∼ 10�, both in proton-
induced spallation and in the reaction of photon
absorption at GeV energies. In addition, the system-
atics can be used in application to other processes
for estimation of the production possibilities with
reactions not yet studied.
At the end, let us discuss a somewhat fantas-

tic idea of using the 180mTa material as a high-
productivity target. Because of high spin (9−) of this
exotic nucleus, the 178m2Hf high-spin isomer can be
produced in a spallation reaction with a much higher
isomer-to-ground-state ratio. The productivity can
be enhanced by a factor of 10 using such a target, as
compared to the regular natTa target.
This follows from the systematics of Fig. 5. How-

ever, a kilogram amount of 90% enriched 180mTa
material is beyond reality today. Creation of a special
facility for 180mTa separation and accumulation of it
in large amounts should be extremely expensive, and
even technical restrictions for that are not yet clear.
Ignoring the cost arguments, one can deduce the

absolute maximum of productivity as:

Ymax = 1013 atom/s (13)

if a 1-kg target made of 90% enriched 180mTa is
exposed to 800-MeV protons at a beam current of
1 mA. Therefore, about 100 mg of 178m2Hf can be
accumulated in a 1-yr effective irradiation run.

SUMMARY

The known experimental results are reviewed for
the production cross sections of the 178m2Hf exotic
isomer. The productivity of different reactions is com-
pared and they are ranked in order of decreasing
yield. Respectively, the values are estimated for the
amount of 178m2Hf material that can be accumulated
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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in irradiations with different projectiles. Realistic pa-
rameters of existing experimental facilities restrict the
production of large amounts, while the applications
discussed in the literature require orders of magnitude
higher quantities. A conceivable maximum of produc-
tivity is estimated under the assumption that the pa-
rameters of irradiations can be significantly enlarged
using new facilities specially constructed for such
irradiations and a new isotope separator for preparing
a kilogram amount of 180mTa and 176Lu isotopes.

The measured isomer-to-ground-state ratios are
systematized as well, because they define the quality
characteristics of the accumulated 178m2Hf material.
In addition, such systematics is significant in the
nuclear-reaction phenomenology and can be used for
the prediction of productivity in the case of unstudied
reactions.

Experiments on 178m2Hf isomer production could
be carried out only within collaborations under def-
inite financial support and the corresponding ac-
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knowledgments are expressed in [10–12, 18, 20–22].
These results are used in the present paper.
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Abstract—The pd reaction (pd→3 He+ γ (5.5 MeV)) is studied in the astrophysical energy collision
range of protons with deuterons using the hydrogen liner in the inverse Z-pinch configuration at the
pulsed power generator MIG (HCEI, Tomsk). Fundamental characteristics of this and other light-nucleus
reactions at ultralow energies are important for problems of basic physics and astrophysics. The knowledge
of the energy distribution of the nuclei participating in these reactions is important due to their exponential
type of dependence on the collision energy. Two experimental techniques were designed and tested for
recovering the energy distribution of liner protons incident on the CD2 target by using optical detectors and
ion collectors. It is shown that the combined use of these two techniques could provide relevant information
on the energy distribution of the accelerated protons in the liner. The estimates of the upper limits for
the astrophysical S factor and effective cross section of the pd reaction in the proton–deuteron collision
energy range of 2.7–16.7 keV are obtained: S̄pd(Epd = 10.2 keV) ≤ 2.5× 10−7 MeV b; σ̃pd(2.7 ≤ Epd ≤
16.7 keV) ≤ 4× 10−33 cm2. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Earlier experiments [1–3] carried out on the pulsed
power generator SGM at the Institute of High Cur-
rent Electronics in Tomsk (IHCE) with I ≈ 950 kA,
τ = 80 ns [4] demonstrated the effectiveness of the
inverse Z-pinch configuration [5, 6] to study reac-
tions between light nuclei in the region of ultralow
collision energies. This class of reactions is of special
interest not only for testing fundamental symmetries
in strong interactions but also for solving specific
problems of astrophysics [7]. The mentioned study
in the energy range of 1.8–3.7 keV, which is inac-
cessible for conventional accelerators, gave the first
experimental estimates for the astrophysical S factor
and effective cross sections of the dd reaction (dd→
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3He+ n) [1–3]. The use of the same technique at
higher collision energies would allow one to compare
it with calculated and experimental results obtained
earlier at the same energy range with conventional
accelerators and to estimate the method’s potential
for this application in general. To make it feasible, we
need to increase the energy input, i.e., the current am-
plitude in the plasma liner, keeping its mass the same.
For example, when upgrading the liner’s current to
∼2MA, we could operate in the inverse Z-pinch con-
figuration with particle collision energy in the range of
3–10 keV. It also would allow us to study quite a few
nuclear reactions in the higher energy range with the
values of cross sections substantially smaller than the
respective values in the dd reaction, such as

pd→ 3He+ γ(5.5MeV), (1)

d3He
→ 5Li+ γ(16.4MeV), (2a)

→ p(14.64MeV) + α(3.5MeV), (2b)

3He+ 3He→ 5Li+ p(9.1MeV), (3)

3He+ 4He→ 7Be+ γ(1.6MeV). (4)

In addition, in the inverse Z-pinch configuration
with an expanding plasma flow, a reliable time dis-
crimination between the background and “useful”
c© 2005 Pleiades Publishing, Inc.
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events (detection of the nuclear reaction products in
the collision of plasma flow with the target) could be
provided, in contrast with imploding plasma flow in a
conventional Z pinch. The inverse Z-pinch technique
could also enhance the feasibility of calculating the
ion energy distribution due to a longer distance of
outward plasma propagation to a target. It could be
sufficient to provide ordering of the plasma flow in
such a way that the energy of the ions would be
uniquely coupledwith their spatial position in the flow.
In such a flow, the fastest ions are in the lead with the
slow ions trailing behind. The calculations are based
on the measured ion current densities and radiation
of the plasma (in the waveband characteristic for liner
ion species, for example, Hα waveband for hydrogen
liner) by arrays of ion and optical fast detectors, re-
spectively, placed at different distances from the axis
of theZ pinch. It is worth noting here that information
on the plasma ion energy distribution is particularly
important due to exponential dependence of the con-
sidered reaction cross sections in the energy range of
interest.
The reported research was focused on the estima-

tion of
(i) the ratio of the experimental pd reaction yield to

the background level of the γ detectors;
(ii) the upper limits for the astrophysical S factor

and effective cross section of the pd reaction at ul-
tralow proton–deuteron collision energy.

2. EXPERIMENTAL APPARATUS
The schematic of the experimental setup is shown

in Fig. 1.
PH
It was installed at the pulsed power generator
MIG (IHCE, Tomsk) [8, 9] and consisted of the load
module, deuterium target, γ-quantum detectors, and
diagnostic equipment for inverse plasma liner forma-
tion and outward expansion, which included mag-
netic dB/dt probes, bolometers, ion collectors, and
plasma radiation detectors in the optical range to
measure the current sheath dynamics in the plasma
liner at the stage of its acceleration, energy content
of the plasma flow, ion current density, and radiation
of the excited neutrals in the liner during its free
expansion to the target, respectively.

Higher power and current levels of the PPG MIG
[8, 9] (∼2 TW, I ≥ 1.7MA), compared with the PPG
SGM earlier used in [1–3], and a lighter gas of the
liner (hydrogen instead of deuterium) made it tech-
nically more difficult to form a supersonic jet with
a required mass per unit length. The Laval nozzle
is located at the grounded electrode (anode) of the
load module. In combination with the puff valve, the
Laval nozzle generates a hollow supersonic hydro-
gen jet 25 mm long, with inner and outer diam-
eters of 29 and 31 mm, respectively. The array of
current-intercepting structure (CIS) has the shape of
a squirrel cage cylinder 90 mm in diameter, fabricated
of 1-mm-diameter by 30-mm-long wires. The CIS
connects the HV wheel shaped electrode along its
circumference with the grounded flange beyond the
jet diameter. The load module installed at the MIG
generator was earlier used in the experiments at the
SGM generator [1–3] and its detailed description is
given in [5, 6]. The waveform of the current pulse in
the load module was measured with the Rogovsky
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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coil. At the generator current I ≥ 1.5 MA, the in-
verse Z-pinch scheme provides transfer of the stored
energy to the specific liner kinetic energy at a level
of E ≈ 1.5 kJ/cm, which corresponds to the average
radial ion velocity of the expanding liner V ∼ 8.5 ×
107 cm/s with the specific mass of the liner m =
5.6 µg/cm. The limitation of the specific liner mass
from above imposes the lower limit for the average
ion energy at 2.5–3.6 keV (at specified total energy
stored in the liner). The measurements with magnetic
probes showed that our design of the load module
provided effective energy transfer from the storage
unit inside the gas shell of the liner.
In shots with the hydrogen liner, the energy

content in the radially diverging plasma flow was
measured with a foil bolometer, whose electrode
featured a bent copper foil strip 2mmwide and 45mm
long. It was placed at a radial distance of 360 mm
from the liner axis. In shots, the bolometer measured
the average deposited specific energy of the order of
∼1 J/cm2. With assumption of azimuthal uniformity
of the plasma flow, these measurements provided data
for inventory of the accelerated ions Np bombarding
the target, Np = N0

pk1 (here, k1 is the geometry
factor, Np is the number of ions falling on the target,
and N0

p is the total number of ions in the plasma liner
when it passes CIS). Based on the 0D calculations
and B-dot probe data on the plasma motion inside
the CIS, we can conclude that nearly 40% of the
liner energy is absorbed by the target. The measured
energy density agrees with the results in the previous
experiments at the SGM generator [1–3].
An alternative method of calculating the total

number of particles falling on the target is based on
direct use of the bolometric data and average energy
of the ion as Np = EL/Ēp. Here, EL is the liner
energy, and the Ēp is the average ion energy. They
are defined from the energy distribution curve.
The deuterium target featured three sections of

a hoop fabricated from a 45-mm-wide copper strip,
placed at a distance of 40 cm from the axis. The inner
surface of the target was covered with CD2 disks
0.25 mm thick and 40 mm in diameter. The total area
of all disks was 250 cm2, which made up 22% of the
total target area.
Three γ-quantum detectors with sizes of ∅160 ×

210 mm (Dγ1 and Dγ2) and ∅50× 50 mm (Dγ3)
were used for detection of γ quanta from reaction (1)
and placed at a distance of 180 cm from the liner and
were surrounded with a 10-cm-thick Pb shield in the
back and at the sides and a 5-cm-thick one in the
front.
As follows from our earlier studies of the dd reac-

tion in the inverse Z-pinch configuration [1–3] at the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
high-current SGM generator, each shot of the gen-
erator generated two rather large amplitude pulses
(separated in time) from the neutron detectors, based
on organic plastic scintillators. The first pulse, as was
pointed out in [1–3], arises from the bremsstrahlung
radiation, and the second pulse arises from the back-
ground neutrons generated in the dd reaction inside
the plasma in the course of liner I ×B acceleration.
We were able to separate in time the “useful” events
corresponding to the interaction of the deuterium
plasma with the deuterium target from the neutrons
of background origin by placing the deuterium target
and the neutron detectors at a sufficiently large dis-
tance from the CIS, or compared with the neutron
yield in the shots with a bare target without CD2

coating.
In the case of pd experiments, there is only one

possibility to provide a reliable time separation of two-
event detection of the bremsstrahlung and of the ac-
companying 5.5-MeV γ quanta from the target—by
organizing the distance between the deuterium target
and the CIS to be big enough to meet the signal-
to-noise ratio requirement. In our experiment, the
time duration of the intense bremsstrahlung radiation
during plasma liner crossing of the CIS was∼120 ns,
and the time of the expanding plasma arrival at the
deuterated target placed at a distance of 40 cm was
∼300–600 ns; i.e., the time pause between two pulses
was much longer than a typical pulse formation time
of the fast plastic γ detectors (τ ≈ 5 ns). These detec-
tors significantly increased the accuracy of the time
resolution compared with slow NaI(Tl) scintillators
used in the earlier reported dd experiment. Though
the γ-detection efficiency of the plastic scintillators is
significantly lower than that of the NaI(Tl) or CsI(Tl),
the former provided a reliable time discrimination of
useful and background events. Using plastic γ detec-
tors, we were able to discriminate by the amplitude,
time of arrival, and duration of the background pulse
from the 5.5-MeV γ quanta pertinent to the pd reac-
tion.
To suppress the background coupled with the

bremsstrahlung inDγ1 andDγ2, theHVwas applied
to the photocathode–modulator gaps of their PMT
with a controlled time delay after HV pulse arrival
at the load. Such a technique reduced by a factor
of 103 the background pulse amplitude at the PMT
output. The required minimum time delay of the
PMT was determined as plasma acceleration phase
duration plus its travel time from the CIS to the
target. In our experimental conditions, it equaled
∼360–400 ns. The linearity of Dγ3 operation in
the heavy-background environment was provided by
attenuation of the PMT (XP-2020) multiplication
factor. This was done by using the PMT output from
the tenth dynode instead of the anode.
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Table 1.Main operational characteristics of the hydrogen
liner

Shot IL, МА
mL,
µg/cm N0

p , 1018 VI ,
107 cm/s

tCI, ns

1 1.1 4.5 6.78 6.8 126

2 1.5 2.4 3.62 11.0 92

3 1.4 4.7 7.08 8.0 114

4 1.5 4.6 6.93 8.5 110

5 1.5 8.3 12.51 6.8 126

6 1.5 2.4 5.12 9.6 100

7 1.5 6.0 9.04 8.1 112

8 1.6 8.2 12.36 7.3 120

9∗ 1.6 6.0 9.04 8.1 112

10 1.5 5.6 8.44 8.3 111

Note: IL is the liner’s current, mL is the mass per unit length
of the liner, N0

p is the number of H
+ ions in the liner, VI is the

radial velocity of the current sheath, tCI is the time interval for the
current sheath to arrive at CIS. Shots 1–8 were fired without a
target, shot 9* was fired with only a copper strip for a target, and
shot 10 was fired with a combined target consisting of CD2 thin
disks placed on the inner surface of the copper strip.

Prior to and during the experimental runs, γ-detec-
tor’s outputs were periodically calibrated with stan-
dard 60Co, 88Y, and 234Th γ-quantum sources.

The detection efficiencies of Dγ detectors for
5.5-MeV γ quanta computed by the Monte Carlo
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Fig. 2. Waveforms of the ion currents measured with
three ion collectors IC1–IC3 in shot 10. The time origin
is the high-voltage pulse at the load module of the MIG
generator.
PH
method with the selected threshold of detection on
the level of 1 MeV gave values of 5.5× 10−5 and
8.8 × 10−7 forDγ1,Dγ2, andDγ3, respectively.

Information on the proton energy distribution in
the expanding plasma flow was recovered from the
ion current amplitude-time waveforms, recorded by
several ion collectors (IC), placed at the radii r1 =
25 cm (IC1), r2 = 124 cm (IC2), and r3 = 152 cm
(IC3) relative to the position of the CIS. Such a
number of ICs were adequate to perform a variety of
tests for optimization of the recovery process of the
ion energy distribution. The criteria of applicability of
this technique are listed below:

The plasma liner after the end of the acceleration
stage expands in the state of a local thermal equilib-
rium.

All ions in the liner before they reach the positions
of the ICs must form a spatially “ordered” flow in
which the fastest ions lead the front and the slowest
trail behind; thus, the energies of the ions are uniquely
determined by their spatial positions and, respectively,
by arrival time at the ion collector.

The total rate of all processes leading to recombi-
nation and deexcitation of the ions (such as collisions
of protons with atoms, molecules, and molecular ions
and ion–electron collisions) must be independent of
or at least weakly dependent on the kinetic energy
of ions in the considered energy range. With this
condition realized, the ions’ energy distribution in the
flow stays pretty constant during expansion. Respec-
tively, the cooling of the plasma also does not change
the shape of the respective IC waveforms, resulting
only in a decrease in the waveform’s amplitude as
a proportional addition to its attenuation due to the
plasma flow spatial divergence.

The listed conditions in the present experiment
were fulfilled, the shape of the IC waveforms at dif-
ferent radii remained similar and could be adequately
normalized, accounting for IC signal attenuation with
distance mainly due to the spatial expansion.

Table 1 presents the main operational character-
istics of the hydrogen liner measured in ten shots at
the MIG generator after testing the inverse Z-pinch
formation diagnostic equipment.

Figure 2 shows the ion current waveforms from
three ion detectors IC1, IC2, IC3 in shot 10. The
high-voltage pulse of the MIG generator was used
as a synchronizing trigger. The structure of the
waveforms can be treated as follows. Its initial part
in the time interval 0–35 ns is due to the photo-
electron emission from the IC caused both by the
bremsstrahlung arising from the operation of the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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generator7) and by the ultraviolet radiation of the liner
in the course of its radial acceleration (the peak near
the boundary of the time interval mentioned). The
other rather wide peak in the time interval from 600
to 2000 ns is due to detection of the ion flow. It is
evident that the time separation of signals related to
photoemission and ion flow becomes more evident
with increasing distance between the CIS and ICs.
The estimate shows that, with l ≥ 1 m, the timing
of the ion flow arrival can be measured with good
accuracy.
The IC2 and IC3 signal waveforms were analyzed

to recover the energy distribution of the protons inci-
dent on the target.
Ignoring the radial size of the plasma flow in the

region of the CIS and taking for the origin t = 0
the moment of time when the current sheath passes
through the CIS (which was calculated with a 0D
model starting from arrival of the HV pulse at the
load), we can restore the energy distribution of the
protons in the liner solving the following system of
equations:

dNp
dEp

∼ I(Ep)E−3/2
p , (5)

dNp
dt
∼ I(t), (6)

I(t) = I

(
Ep =

mpl
2

2t2

)
. (7)

Here, dNp/dt and dNp/dEp are the time and energy
distributions of liner ions incident on the collector,mp

and Ep are the mass and energy of liner protons, l is
the distance between the CIS and IC, and I(t) is the
measured IC current.
Figure 3 shows the ion energy distributions cor-

responding to the time distributions shown in Fig. 2.
These distributions are derived from the ion current–
time relations measured with the IC2 and IC3 de-
tectors and transformed using (5)–(7). The IC1 data
were not analyzed because of a rather high back-
ground (photoelectron emission) during the time in-
terval of the proton flow arriving at it. As is evident
fromFig. 3, themain group of accelerated protons has
quite a wide energy distribution (3–10 keV). It should
be mentioned that the current sheath velocity mea-
sured by the magneticB-dot probes (when combined
with a 0D model) is near the lower limit of the above
energy range. The data obtained with the IC2 and IC3
placed at distances of 124 and 152 cm, respectively,

7)The bremsstrahlung is due to the electron losses in the
load module and in the vacuum transmission convolute dur-
ing energy flow transition to the self-magnetically insulated
regime.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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Fig. 3. Energy distributions of liner protons in shot 10
based on the IC2 and IC3 ion current waveforms shown
in Fig. 2.

show the presence of a minor proton fraction with
an energy as high as ∼15–20 keV compared to the
energy of themain group. The velocity of such protons
is (2.0−2.3)× 108 cm/s. More precise information on
these high-energy proton energy spectra is necessary
to carry out measurements with ICs placed at dis-
tances more than 1.5 m from the CIS. In this case,
it would be feasible to separate in time the IC current
pulse from this proton fraction on the background of
the UV radiation pulse of the liner.
The recovery of the proton energy distribution in

the diverging plasma flow was also done by a parallel
diagnostics based on measuring radiation of excited
neutrals H∗ in the region of Hα wavelength. Three
optical radiation detectors LD1–LD3 were used to
this end (named elsewhere in the text as “LD” tech-
nique, or method). The LDs (see Fig. 1) included
a collimator 40 mm long (the aperture diameter of
the collimator was 0.8 mm), a quartz fiber 1 mm in
diameter and 7 m long, Hα filter, and PMT. The light
detector LD1 was placed at a variable radial distance
of 75–95 mm from the CIS. The distances between
LD1 and LD2 and between LD2 and LD3 were equal
to 50mm each. A detailed description of themethod of
time waveform signal from light detectors of transfor-
mation to the proton energy distribution is presented
in [3, 6].
Figure 4 shows waveforms of signals from the op-

tical detectors LD1–LD3 and Fig. 5 shows the cor-
responding energy distributions of liner protons ob-
tained by the LDmethod of transformation in shot 10.

3. ANALYSIS AND DISCUSSION
OF THE RESULTS

In shots 1–8, both methods for recovering the
proton energy distribution were tested separately and
05
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Fig. 4.Waveforms of signals from optical detectors LD1–
LD3 in shot 10.

in combination. Shots 9 and 10 were done to measure
the γ-background level in the γ detectors and to com-
pare it with the expected γ yield from the pd reaction.
We also have done the estimation of the upper bound-
ary for the astrophysical Spd factor and the effective pd
cross section. Shot 10 was taken with the deuterated
target placed inside the load module, and shot 9∗ was
taken without the target. Table 2 presents the results
of analysis of the waveforms from the light detectors
LD1–LD3 and the ion collectors IC1–IC3 obtained
in shots 9∗ and 10. Figure 6 illustrates the energy dis-
tributions of the liner’s protons in shot 10 based on the
averaged optical data from LD1–LD3 and IC1–IC3,
respectively. There is a noticeable difference between
these two curves. The curves approximately match in
the region of 3–4 keV with differences building up at
both ends of the ion spectra.
This is likely to be caused by the violation of the

conditions listed in Section 2 which define the ap-
plicability of the methods used. Specifically, as was
already mentioned earlier, the violation could be con-
nected with the cooling of the plasma flow during
its expansion, with resulting nonconservation of the
relative ion concentrations of different energy groups.
The latter phenomenon pertains to the net decrease
in the total H+ recombination rate with the increase
in their kinetic energy. Indeed, the charge-exchange
cross sections σ for H+ in the collisions with residual
O and N drop from 5.9 to 4.3× 10−16 cm2 and from
4.9 to 3.3 × 10−16 cm2, respectively, with the energy
rise from 3 to 10 keV [10]. The H+ recombination rate
in atomic H also drops via electron capture collisions
from 3×10−15 to 5×10−16 cm2 with the energy rise
from 0.1 to 10 keV [11]. At the same time, as was al-
ready discussed earlier, the cross sections for electron
PH
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Fig. 5. Energy distributions of the liner protons based on
the waveforms from optical detectors LD1–LD3 shown
in Fig. 4.

capture in the collisions of H+ with N and O increase.
It seems that the former phenomenon prevails, and,
as a result, the maximum of the relative concentration
of the excited neutrals in the flow correlates with the
maximum of the lower energy ion group, whereas
the maximum of the ion concentration corresponds
to the higher energy ion group. Accounting for the
fact that the plasma flow during its expansion is being
“ordered,” the highest concentration of the excitedH∗

neutrals trails at the back front of the plasma flow,
and the highest concentration of the ions travels in
the front part of the flow.
Besides this, the distances of the LDs from

the CIS in experiment were located at distances
marginally or somewhat smaller than the respective
values required by the named criteria for the ions
belonging to a higher energy group.

Thus, the energy distribution recovered on the ba-
sis of the IC data would shift upward the ion energy
distribution, whereas the recovered energy distribu-
tion from the LDs data would shift downward the
distribution compared with the real situation.

It is also worth noting another mechanism—
ambipolar ion diffusion at the front of the plasma
flow, when the latter expands in vacuum. It is akin
to collective ion acceleration in the electron beams
[12]. This phenomenon boils down to formation of
a virtual cathode at the characteristic distance of
∼ c/ωpl (here, ωpl is the Lengmuir plasma frequency)
ahead of the front with generation of a local axial
electric field and respective collective acceleration of
a small group of ions (1–2% of the total) to an energy
a factor of 2–3 higher compared with the energy of
the main ion bulk in the flow [12]. It agrees with
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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detection of such a high-energy small group of ions
in the experiment.
The next stage of experimental data analysis in-

cluded processing of the waveforms from the γ-quan-
tum scintillation detectorsDγ1−Dγ3 in shots 9∗ and
10. Figure 7 gives the signals waveforms from the
γ detectors Dγ1−Dγ3 in shot 10. Arrows indicate
the boundaries of the calculated time interval corre-
sponding to detection of “useful” events. As is evident
from Fig. 7, there is a shift in the position of the time
interval for Dγ1, Dγ2, and Dγ3. This time interval
shift is due to the different intrinsic delays in the
spectrometric channels of the detectors Dγ1, Dγ2,
and Dγ3.
The following is the algorithm and analysis of

the γ-detector data. It provided the estimates of the
main pd-reaction characteristics, the astrophysical S
factor, and the effective cross section. Since at the
present time we do not have a final recipe for “match-
ing” proton energy spectra recovered with ICs and
LD, we analyzed γ spectraDγ1−Dγ3 data separately
for each of them.
In these shots, no γ quanta were detected in the

time intervals corresponding to the pd reaction. The
indicated time intervals included in each shot the liner
acceleration phase (between HV pulse arrival at the
load module and the moment of the liner passage
through the CIS), the time interval it takes for the
liner to cover the distance from the CIS to the target,
with the statistical deviation in the arrival moment
due to the proton energy spread. The arrows in Fig. 7
show the calculated time interval for detection of γ
quanta from the pd reaction in shot 10, corresponding
to the proton energy interval of 4.1 keV ≤ Epd ≤
25.3 keV. It was calculated from the LD data. The
similar energy interval based on the IC data gave
5.6 keV ≤ Epd ≤ 25.0 keV, which is quite near to the
former.
The experimental information on the astrophysical

Spd factor and the effective pd reaction cross section
was deduced by measuring the yield of 5.5-MeV γ
quanta and using the parametrical dependence of the
reaction cross section on the proton–deuteron colli-
sion energy

σpd(Epd) =
S(Epd)
Epd

e−2πη. (8)

Here, Epd is the proton–deuteron collision energy
in the c.m.s.; 2πη = (µ/E′

pd(Epd, x
′))1/2; η is the

Sommerfeld parameter; µ = 2/3 in amu is the re-
duced mass of the pd system; E

′
pd(Epd, x

′) = (E2 −
πnte

4Lx′)1/2 is the pd collision energy after the pro-
ton has passed a deuterium sheath in the target of
thickness x′ (provided that the initial collision energy
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
Table 2. Characteristics of the energy distribution of the
liner protons recovered via combined analysis of the IC and
LD data

Shot 9∗ Shot 10

LD IC LD IC

Ep
pd [keV] 0.9 7.4 1.1 5.9

V p
pd [10

8 cm/s] 0.5 1.2 0.6 1.1

Ēpd [keV] 3.6 10.6 3.4 7.8

V̄pd [108 cm/s] 0.8 1.4 0.8 1.2

E [keV] 4.5 5.8 3.8 4.1

Note:Ep
pd and Ēpd are the most probable energy and the average

energy of the liner protons after passing through the CIS; V p
pd

and V̄pd are the most probable velocity and the average velocity of
the protons; “∗” marks a shot without a deuterium target in the
measuring chamber of the generator. All quantities are in the lab.
system.

is Epd); and L is the Coulomb logarithm for the deu-
terium plasma: L = 12.8 [13].

In this case the average Spd factor and the effec-
tive pd-reaction cross section σ̃exppd are defined as [1–
3, 14, 15]

S̄pd(Ecol) (9)

=
Y
exp
γ

Npntεγ
∞∫
0

f(Epd)dEpd
∞∫
0

dx′e−2πη/E′
pd(Epd, x′)

,
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Fig. 6. Averaged energy distributions of the liner protons
measured in shot 10 based on LD and IC data. The
distributions are normalized to unity.
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σ̃
exp
pd (∆Ecol) =

Y
exp
γ

Npntεγ l̃
,

Y colγ = S̄pd(Ecol)Npntεγ (10)

×
∞∫
0

f(Epd)dEpd

∞∫
0

e−2πη

E′
pd(Epd, x

′)
dx′,

σ̃calpd (∆Ecol) =
Y colγ

NpntS̄pd(Ecol)
,

Ecol =
∫
Epd

EpdP (Epd)dEpd, (11)

P (Epd) =

e−2πηD(Epd)
∞∫
Epd

f(Epd)dEpd

∞∫
0

e−2πηD(Epd)dEpd
∫∞
Epd

f(Epd)dEpd
,

(12)

D(Epd) = − 1
Epd

dx

dEpd
, (13)

dEpd
dx

= −πnte
4L

2Epd
. (14)

Here, N0
p andNp are the numbers of liner protons in-

jected in the vacuum anode–cathode gap and hitting
the CD2 target, respectively; Y

exp
γ and Y colγ are the

total experimental and calculated (at an average value
of the Spd factor equaling 1.2× 10−7MeV b [16–18])
PH
yield of the detected γ from the pd reaction with the
calculated particle energy distribution and incident on
a target with infinite thickness; Ecol is the average
pd collision energy in the c.m.s. corresponding to the
distribution function P (Epd); P (Epd) is the pd colli-
sion energy distribution function normalized to unity
for the γ-yield probability in the pd reaction; ∆Ecol ≡
[Emin
col , E

max
col ] is the pd collision energy interval; Emin

col
and Emax

col are the minimum and maximum limits of
the above pd collision energy interval defined as

Emin
col = Ecol − 2σP (EPd),

Emax
col = Ecol + 2σP (EPd),

where σP (Epd) is the rms deviation of the pd collision
energy corresponding to the P (Epd) distribution (see
Table 3); Np = N0

pk1k2 is the number of protons in
the supersonic hydrogen jet (liner) injected in the
vacuum anode–cathode gap, where k1 is the fraction
of the liner protons hitting the target located at a
distance of 40 cm from the liner axis (according to
the bolometric measurements, k1 = 0.4 for shots 9*
and 10), and k2 = 0.22 is the fraction of the copper
plate area coated with CD2 0.25 mm thick; nt is the
deuteron density in the target; f(Epd) is the proton
energy distribution; εγ is the γ-quantum detection
efficiency of the detectors Dγ1−Dγ3; dEpd/dx are
the specific Coulomb energy losses in the deuterated
target [13]; l̃ is the effective thickness of the deuter-
ated target for the real proton energy distribution,
which is such that

Yγ(l̃) = 0.9Y colγ , (15)

Y colγ = NpntS̄(Ecol) (16)

×
∞∫
0

f(Epd)dEpd

∞∫
0

e−2πη

E′
pd(Epd, x

′)
dx′,

where Y colγ is the calculated total pd reaction yield
corresponding to the measured astrophysical factor
S̄pd(Ecol) and given energy distribution of protons
hitting the target of infinite thickness.
It should be mentioned that the average astro-

physical factor of the pd interaction S̄pd(Ecol) is de-
fined as

S̄(Ecol) =

Emax
col∫

Emin
col

S(Epd)P (Epd)dEpd. (17)

Figure 8 shows normalized distributions P (Epd)
obtained by IC and LD methods for the interval of pd
collision energies 2.7 keV ≤ Epd ≤ 16.7 keV. Though
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 3. Results of the experimental data analysis

Shot 9∗ Shot 10

LD IC LD IC

Ep
P (EP d) [keV] 10.8 12.1 7.8 9.3

Ecol [keV] 10.1 12.6 9.5 10.2

σP (EP d) [keV] 2.6 4.2 3.4 3.3

∆Ecol ≡ [Emin
col , E

max
col ] [keV] 4.9–15.4 4.3–20.9 2.7–16.2 3.7–16.7

nt l̃ [1018 cm−2] 1.92 13.81

S̄pd(Ecol) [MeV b] ≤ 17.5× 10−7 ≤ 2.5× 10−7

σ̃
exp
pd (∆Ecol) [cm2] ≤ 2.8× 10−33 ≤ 4.0× 10−33

σ̃calpd(∆Ecol) [cm2] ≤ 1.7× 10−33 ≤ 1.7× 10−33

N ′
p/N

0
p 7.6× 10−3 4.6× 10−2

Note: Ep
P (Epd) is the most probable proton–deuteron collision energies, corresponding to the distribution function P (Epd); Ecol is

the average pd collision energy in the c.m.s. corresponding to the distribution function P (Epd); σP (EPd) is the rms deviation of pd
collision energy corresponding to the P (Epd) distribution;∆Ecol ≡ [Emin

col , E
max
col ] is the pd collision energy interval; Emin

col and E
max
col

are the minimum and maximum limits of the above pd collision energy interval; nt is the target density; l̃ is the effective thickness of
the deuterated target for the real proton energy distribution f(Epd); S̄pd(Ecol) is the average value of the astrophysical factor of the
pd interaction corresponding to the collision energy interval∆Ecol; σ̃

exp
pd (∆Ecol) and σ̃calpd(∆Ecol) are the experimental and calculated

boundary values of the pd reaction cross section, respectively;N ′
p is the number of protons bombarding the deuterated target; N

0
p is

the total number of protons in the plasma liner when it passes the CIS.
the normalized distributions P (Epd) in shot 10 prac-
tically do not differ in shape for this energy interval,
nevertheless, they are substantially different in the
number of protons N ′

p hitting the CD2 target and
contributing to the yield of γ quanta from the pd
reaction [because of the difference in shape between
the initial liner proton distributions f(Epd) measured
by the LD and IC methods, see (8) and (12)]:

N ′
p = Np

Emax
col∫

Emin
col

P (Epd)dEpd.

It follows from the aforesaid that the analyses of
the spectra of the detected γ quanta with the use of the
IC and LD data give slightly different upper-bound
estimates of the average values for the astrophysical S
factor and the effective pd reaction cross section σ̃pd.

Based on the analysis of the data for shots 9* and
10 and using the known values forN0

p , εγ , k, and l̃, we
obtain two groups of bounded estimates of S̄pd(Ecol)
and σ̃exppd (Ecol) corresponding to the respective energy
distributions of liner protons f(Epd).

Table 3 presents final results on calculation of
S̄pd(Ecol) and σ̃

exp
pd (Ecol) at a 90% confidence level
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
based on the data in shots 9∗ and 10. Note that, ac-
cording to the analysis, the ion density in the plasma
flux incident on the target is∼1015 cm−3.

The obtained upper boundary values of the as-
trophysical Spd factor for shots 9∗ and 10 agree
with the Spd values extrapolated earlier for higher
pd collision energies (Spd(Ecol ≈ 8 keV) = (1.28 ±
0.08) × 10−7 MeV b [16]; Spd(Ecol ≈ 20 keV) =
(1.09 ± 0.10) × 10−7 MeV b [17]; Spd(17 keV ≤
Ecol ≤ 20 keV) = (1.2± 0.3) × 10−7MeV b [18]).

A comparison of the calculated boundary values of
σ̃colpd (∆Ecol) with the values calculated by formula (8)
also shows good agreement. Here, we used the av-
erage value of the astrophysical factor S̄pd = 1.2 ×
10−7 MeV b (according to [16–18]) with the real
proton–deuteron collision energy distribution, corre-
sponding to the function P (Epd) in shots 9∗ and 10.

The following conclusions can be drawn from the
data obtained with the scintillation γ detectors.
An increase in the pd reaction γ-detection effi-

ciency by two orders of magnitude (which is feasible)
will make feasible measurement of the astrophysi-
cal Spd factor and effective pd reaction cross section
in the region of ultralow proton–deuteron collision
energies with defined statistical errors. Specifically,
05
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Fig. 8. The normalized distributions P (Epd) obtained by
IC and LD methods.

these Spd factor and σ̃
exp
pd errors will be due to finite

inaccuracy in recovering the proton energy distribu-
tion, via combined processing of IC and LD data.
When using Monte Carlo simulation for matching
two energy distributions and varying separately and
jointly their shapes and respective number of events,
the estimated error in the measurement of the Spd
factor and effective pd reaction cross section was
≤ 15%.

4. CONCLUSIONS

Finally, the tested diagnostics based on simulta-
neous use of two types of detectors (optical plasma
radiation detectors and ion collectors) proved its ap-
plicability for measurement of the fundamental pa-
rameters in the reactions between light nuclei in the
region of ultralow energies. The modified algorithm
to recover the true energy distribution of the accel-
erated protons on the basis of the LD and IC data
is needed, which will include adequate matching of
both distributions in the middle part of the ion-energy
distribution. It must include proportional corrections
and renormalization of both distribution curves over
the respective part of the full energy span.
The measurement of the astrophysical Spd factor

and effective pd reaction cross section with defined
statistical errors in the 3–7 keV region could become
feasible with a two-order increase in the γ-detection
efficiency.
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Prib. Tekh. Éksp., No. 2, 114 (1990).

9. A. V. Luchinsky, Izv. Vyssh. Uchebn. Zaved. Fiz. 12,
67 (1997).

10. Plasma Diagnostic, Ed. by N. G. Basov (Nauka,
Moscow, 1989).

11. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).
12. C. F. Barnett, J. A. Ray, E. Ricci, et al., ORNL-5206,

A-4-2 (Feb. 1977), Vol. 1.
13. D. V. Sivukhin,Problems of Plasma. Theory (Atom-

izdat, Moscow, 1964), Vol. 4, p. 81.
14. Vit. M. Bystritskii, V. M. Bystritsky,

S. A. Chaikovsky, et al., Kerntechnik 66, 42
(2001).

15. V. M. Bystritsky and F. M. Penkov, Phys. At. Nucl.
66, 75 (2003).

16. A. Olin, A. Adamczak, G. Beer, et al., Hyperfine
Interact. 118, 163 (1999).

17. G. J. Schmid et al., Phys. Rev. Lett. 76, 3088 (1996).
18. G. M. Griffiths, M. Lal, and C. D. Scarfe, Can. J.

Phys. 41, 734 (1963).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005



Physics of Atomic Nuclei, Vol. 68, No. 11, 2005, pp. 1787–1789. Translated from Yadernaya Fizika, Vol. 68, No. 11, 2005, pp. 1849–1851.
Original Russian Text Copyright c© 2005 by Ditlov, Dubinina, Egorenkova, Krotkova, Pozharova, Smirnitsky.

NUCLEI
Experiment
Determination of Nuclear Excitation Energies from the Number
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Abstract—The mean number 〈Nb〉 of particles evaporated in the interaction of 22Ne, 32S, and 56Fe nuclei
with photoemulsion nuclei was measured as a function of the number of alpha particles emitted within
the fragmentation cone. It is found that 〈Nb〉 decreases with increasing number of the alpha particles and
increases with increasing number of projectile nucleons involved in the interaction with a target nucleus
and that 〈Nb〉 is a linear function of the excitation energy Eex of the target-nucleus residue. The maximum
experimental value of the mean number of evaporated particles is 〈Nb max〉 ∼= 12−13, which corresponds to
Eexc ∼= 540± 60MeV. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Relativistic nuclear physics studies processes in-
duced by inelastic interactions of relativistic nuclei
with nuclei. In a collision of high-energy nuclei, the
bulk of their energy is released in the overlap region,
and this is accompanied by multiparticle produc-
tion processes. The nondisintegrated target-nucleus
residue then receives energy, becomes hotter, and
evaporates particles. In the region of low energies
of nuclear reactions (E < 50 MeV), this evaporation
process was considered in detail in [1], where respec-
tive theoretical calculations and experimental results
obtained by studying the emission of particles evapo-
rated in nucleus–nucleus interactions are described.
The results of theoretical calculations have not yet

been tested experimentally at high energies. In this
article, our experimental data on the production of
evaporated particles in nucleus–nucleus interactions
are presented with the aim of estimating the exci-
tation energy of the target-nucleus in the region of
high excitation energies (100–700 MeV) and com-
paring the result with the results of the calculations
performed in [2].
Within photoemulsion procedures, slow target-

nucleus fragments (b particles) characterized by ki-
netic energies for protons in the range Tp ≤ 26 MeV
(the free path in emulsion is R ≤ 3 mm) and by β ≤
0.23 are classified as evaporated particles. We would
like to emphasize, however, that nucleons do not
exhaust the class of evaporated particles. According
to the data reported in [2], slow charged particles
emitted from a 109Ag nucleus at average excitation
1063-7788/05/6811-1787$26.00
energies (about 200 to 600 MeV) include protons,
deuterons, 4He nuclei, tritons, and 3Не nuclei, their
fractions being about 65, 16, 13, 4, and 2%, respec-
tively. Within the experimental errors, the mean num-
ber of evaporated charged particles (〈Nb〉) is indepen-
dent of (weakly dependent on) the projectile energy
and atomic number [3]. However, this statement is
valid only for mean values, in which case interactions
are averaged over all values of the impact parameter.
The energy released in the overlap region of colliding
nuclei depends on the number of projectile nucle-
ons (Nint) involved in the interaction with the target
nucleus. One can estimate Nint on the basis of the
relation

Nint
∼= Apr −Θfr(Apr/Zpr), (1)

where Apr and Zpr are the projectile atomic number
and charge, respectively, while Θfr is the sum of the
charges of projectile fragments emitted within the
fragmentation cone [4]—that is, the noninteracted
charged part of the projectile. Relation (1) was ob-
tained under the assumption that the remaining nu-
cleons interacted with the target and that Afr/Zfr ∼=
Apr/Zpr. The last formula is valid to within 10 to 15%
for projectiles not featuring a neutron excess.

2. DESCRIPTION OF THE EXPERIMENT

The emulsion chambers used were exposed to
beams of 22Ne and 32S ions accelerated to momenta
of 4.1 and 200 GeV/c per nucleon at the accelerators
of the Joint Institute for Nuclear Research (JINR,
Dubna) and CERN, respectively. The search for the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Mean number of b particles 〈Nb〉 as a function of the number of alpha particles (Nα) within the fragmentation cone
in NeEm, SEm, and FeEm interactions (the description of the curves is given in the main body of the text); (b) 〈Nb〉 as a
function of the number of interacted projectile nucleons (Nint) in NeEm, SEm, and FeEm interactions.
interactions of the ions with photoemulsion nuclei,
NeEm and SEm interactions, was performed by
the method of tracing along a track. Among NeEm
events found in our experiment, we selected five
groups classified according to the following features
of an interaction: there are no fragments within
the fragmentation cone; one, two, three, or four
alpha particles are emitted. Among SEm events,
we selected two groups: two or four alpha particles
are emitted within the fragmentation cone. In each
group, we measured 〈Nb〉 and calculated 〈Nint〉. The
results of these measurements and calculations are
given in Figs. 1a and 1b. Figure 1 shows our present
data on NeEm and SEm interactions, data on FeEm
interactions from [5], and the results of measurements
for FeEm interactions from [6].1)

3. DISCUSSION OF EXPERIMENTAL
RESULTS

From the data presented in Fig. 1, it follows that
〈Nb〉 depends on the character of projectile–target
interaction: 〈Nb〉 decreases with increasing number

1)For FeEm, Friedlander and Heckmann [6] presented the
interaction chain that they observed in a photoemul-
sion: Zpr = 26 (Nb = 4) → Zpr = 24 (Nb = 5) → Zpr =
20 (Nb = 6) → Zpr = 11 (Nb = 11); here, Zpr are the
charges of fragments that emerge in each subsequent inter-
action. In the last interaction, fragments are not indicated.
PH
of fragments (alpha particles) and, accordingly, in-
creases with increasing number of projectile nucleons
that interacted with the target nucleus. The value of
〈Nb〉 = 11.8 was obtained for the NeEm interaction
corresponding to a central collision, in which case
Nint ∼ 22. The experimental data in Fig. 1a are well
described by the exponential dependence

〈Nb〉 = a1 + a2exp(−a3Nα). (2)

The fitted values of the coefficients a2 and a3 are

a2(22Ne) = a2(32S) = a2(56Fe) = 8.2 ± 0.4,

a3(22Ne) = a3(32S) = a3(56Fe) = 1± 0.2;

that is, these two coefficients take identical values for
NeEm, SEm, and FeEm interactions. The coefficient
a1 is proportional to the projectile mass number:

a1(22Ne) : a1(32S) : a1(56Fe) ∼ A22Ne : A32S : A56Fe,

(3.6± 0.2)22Ne : (6.0 ± 0.5)32S : (10.6 ± 0.5)56Fe

∼ 22 : 32 : 56.

The sum a1 + a2 corresponds to a central collision,
in which case there is no alpha-particle emission.
This interaction is determined by the geometric cross
section. Therefore, the ratio of the geometric cross
sections (projectile areas) must be proportional to
the ratio of the sum (a1 + a2) for different projectiles.
Indeed, we have

(RFe/RNe)2 ∼= 1.84, (a1 + a2)Fe/(a1 + a2)Ne
= 1.6± 0.1;
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 2. Mean number 〈Nb〉 of b particles as a function of
the excitation energy Eexc of the target-nucleus residue.
The straight line is an approximation by a linear depen-
dence.

(RFe/RS)2 ∼= 1.45, (a1 + a2)Fe/(a1 + a2)S
= 1.3± 0.2;

(RS/RNe)2 ∼= 1.28, (a1 + a2)S/(a1 + a2)Ne
= 1.2± 0.2.

From the experimental data in Fig. 1 and from the
ratio of the coefficients in (2), it follows that, in
nucleus–nucleus collisions, 〈Nb〉 depends on the
number of projectile nucleons that interacted with
the target nucleus. We compared experimental data
with the theoretical results reported by Dostrovsky
et al. [2], who calculated the number of evaporated
particles at high excitation energies of the target
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
nucleus (100–700 MeV). Figure 2 displays our data
on NeEm, SEm, and FeEm interactions. From these
data, it follows that the number 〈Nb〉 of evaporated
particles that originate from the interaction of high-
energy nuclei with nuclei may serve as a measure
of the change in the excitation energy (Eexc) of the
target-nucleus residue. For photoemulsion nuclei
(〈AЕm〉 ∼= 80), the maximum value 〈Nbmax〉 is 12 to
13, which corresponds to Eexc ≈ 540 ± 60MeV.
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Abstract—For the kinematical region specified by the inequalities −0.4 < xF < −0.1 and 0.9 < pT <
2.5 GeV/c, the results are presented that were obtained by experimentally determining the single-spin
asymmetry of inclusive neutral-pion production in the reaction p+ p↑ → π0 +X at 70 GeV. According to
these results, the asymmetry is close to zero in the region−0.2 < xF < −0.1 and grows in magnitude with
decreasing xF, amounting to (−10.6± 3.2)% for−0.4 < xF < −0.2. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In this article, the single-spin asymmetry AN in
the reaction

p+ p↑ → π0 +X (1)

at 70 GeV in the Feynman variable region −0.4 <
xF < −0.1 is presented according to an analysis of
data obtained in 1996 at the U-70 accelerator of the
Institute for High Energy Physics (IHEP, Protvino).
Previously, the asymmetry AN of inclusive neutral-
pion production was measured in π−p↑ and pp↑ in-
teractions. In π−p↑ interactions, the asymmetry AN
is significant both in the central region [1] and in the
region of polarized-target fragmentation [2]. In pp↑
collisions, the asymmetry in the central region is close
to zero at energies of 70 GeV [3] and 200 GeV [4], but
it is different from zero at 24 GeV [5]; a significant
effect was also observed in the region of polarized-
proton-beam fragmentation [6].

For the reaction in (1), measurements ofAN in the
region of polarized-target fragmentation were per-
formed for the first time. Preliminary data on a raw

†Deceased.
1)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

3)Kharkov Institute for Physics and Technology, Akademi-
cheskaya ul. 1, Kharkov, 61108 Ukraine.

*e-mail: nogach@mx.ihep.su
1063-7788/05/6811-1790$26.00
asymmetry (without investigating systematic errors)
were reported previously in [7].

2. DESCRIPTION OF THE EXPERIMENT

Our experiment was conducted at the PROZA-М
facility (beamline 14 of the U-70 accelerator com-
plex). The layout of the experimental facility is pre-
sented in Fig. 1.

Protons of energy 70 GeV interacted with a trans-
versely polarized frozen-type target, where propane-
diol (C3H8O2) was used for a working substance [8].
In order to take into account unpolarizedmatter in the
target, background measurements were performed
with a carbon target.

Photons from neutral-pion decays were recorded
by an electromagnetric calorimeter (EMC) that was
shaped as a matrix of 12× 12 lead-glass counters [9].
The dimensions of a counter were 3.8× 3.8× 45 cm3

(18 radiation-length units along the beam). The
calorimeter was arranged at a distance of 2.7 m from
the target center, its coverage angle in the horizontal
plane being 17◦ to 26◦ in the laboratory frame. The
trigger used ensured the selection of events where the
energy deposition in the calorimeter exceeded 1 GeV.

A detailed description of basic units of the facility
was given in [10].

The calibration of the calorimeter was performed
by using a beam of 26.6-GeV/c electrons [11].
Upon the subtraction of the beam momentum spread
(about 2%), the energy resolution of the calorimeter
c© 2005 Pleiades Publishing, Inc.



SINGLE-SPIN ASYMMETRY OF INCLUSIVE NEUTRAL-PION PRODUCTION 1791

 

S1 S2 S3

PT

Öåë

21.5°
H2H1Beam

Fig. 1. Layout of the PROZA-М experimental facility: (S1–S3) scintillation counters, (H1, H2) hodoscopes, (PT) polarized
target, and (EMC) electromagnetic calorimeter.
at this energy was σ(E)/E ≈ 3%. The EMC energy
scale was additionally calibrated to the neutral-pion
mass. The calibration accuracy of 0.1% was attained
within five hours of measurements.

Around 10 million events were recorded over a
10-day run with a polarized target.

3. DATA ANALYSIS

In order to reconstruct photons in the calorime-
ter, we employed the algorithm that was developed
in [12] and which is based on the separation of an
electromagnetic shower according to a known shape.
Special features of its application to analyzing data
that come from the electromagnetic calorimeters of
the PROZA-М facility were described in [3].

In order to obtain a physical result, we selected
only those photon pairs for which (i) χ2/NDF for a
description in terms of a shower shape was less than
3.0, (ii) the asymmetry of energy satisfied the condi-
tion α < 0.7 (α = |E1 − E2|/(E1 +E2), where E1,2

are the photon energies), (iii) each photon was at a
distance from the detector edges that was not smaller
than half the distance from the respective counter to,
and (iv) (E1 + E2) > 2 GeV. In this case, the mean
multiplicity in the EMC was about 1.5 photons per
event, while the photon energies were in the range
between 0.5 and 10 GeV.

The distributions of photon pairs with respect to
kinematical variables are displayed in Fig. 2, while
the two-dimensional distribution with respect to the
variables pT and xF is given in Fig. 3a. In view of a
narrow acceptance of the EMC, the variables xF and
pT are correlated.

Figure 3b shows a characteristic mass spectrum of
photon pairs. In this spectrum, one can see a distinct
peak in the region around the neutral-pion mass.
In the transverse-momentum range between 0.9 and
2.5 GeV/c, the mass resolution for a neutral pion was
11 to 15 MeV/c2.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
3.1. Calculation of the Asymmetry
The single-spin asymmetry AN is defined by the

expression

AN (xF, pT ) =
1

Ptarg

1
〈cos φ〉 (2)

×
dσH↑ (xF, pT )− dσH↓ (xF, pT )

dσH↑ (xF, pT ) + dσH↓ (xF, pT )
,

where Ptarg is the target polarization, φ is the az-
imuthal angle between the target-polarization vector
and the normal to the plane spanned by the beam
axis and the momentum of the outgoing neutral pion,
and dσH↑ and dσH↓ are the invariant differential cross
sections for neutral-pion production on hydrogen for
opposite directions of the target-polarization vector.
In our experiment, the azimuthal angle at which we
detected neutral pions was in the range 180◦ ± 15◦;
therefore, we set 〈cosφ〉 to −1. The mean degree
of target polarization during data accumulation was
(80 ± 3)%. Since the detection efficiency for neutral
pions is identical for the two directions of the target-
polarization vector, we find for the detector on the
right of the beam that

AN = − D

Ptarg
Araw
N = − D

Ptarg

n↑ − n↓
n↑ + n↓

, (3)

where Araw
N is the raw asymmetry actually measured

in the experiment,D is the target-dilution factor, and
n↑ and n↓ are the normalized (to the monitor) num-
bers of recorded neutral pions for opposite directions
of the target-polarization vector. The procedure used
to calculateDwas described in detail elsewhere [2]. In
order to test our calculations, we employed the results
obtained previously in [13] by measuring the dilution
factor for the target being investigated. In assessing
the asymmetry, we used the calculated values of D
without allowance for errors: 8.0, 8.1, 8.2, and 9.2 for
pT from the intervals 0.9 < pT < 1.4 GeV/c, 1.4 <
pT < 1.8 GeV/c, 1.8 < pT < 2.1 GeV/c, and 2.1 <
pT < 2.5 GeV/c, respectively.

In measuring the asymmetry AN , there can arise
an additional asymmetry caused by trigger-electro-
nics jitter, failures of the monitor counters, beam drift,
05
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or some other reasons. This gives rise to a systematic
bias of the true asymmetry. Amethod that can be used
to remove this bias and which is based on the fact
that the asymmetry of photon pairs off the neutral-
pion mass peak is zero is described in detail in [2].

3.2. Analysis of a Spurious Asymmetry

A spurious asymmetry is determined predomi-
nantly by the drift of the calorimeter energy scale,
this leading to an inaccurate reconstruction of the
kinematical parameters of the photon pair. A change
of 0.1% in the energy scale gives rise to a raw spurious
asymmetry at a level of 0.2% (with allowance for the
dilution factor and a target polarization of D/Ptarg ∼
10, this corresponds to 2% in AN ).

In order to estimate the spurious asymmetry, we
broke down the total data sample for the “up” direc-
tion of the target-polarization vector into two equal
subsamples of events and, by convention, assigned
one subsample of events a positive sign of the target-
polarization vector (“+”) and the other subsample a
negative sign (“−”), whereupon we determined the
asymmetry for them. In the same way, we calculated
the asymmetry for the “down” direction of the po-
larization vector and for a carbon target. For each of
these three sets of data, we obtained zero asymmetry
in the kinematical region being studied.

Figure 4 shows the total spurious asymmetry [the
errors are somewhat less than in AN (see Fig. 5)
owing to additional data accumulated with a carbon
target]. By fitting the function a+ bxF to the spuri-
ous asymmetry, we obtained the following parameter
values: a = (−1.7± 5.9)% and b = (−3± 32)%. One
can see that the spurious asymmetry is independent
of xF and is equal to zero within the errors. From
the approximation of the same data by a constant, we
obtained c = (−1.1± 1.5)%. As was indicated above,

Asymmetry AN in the reaction p+ p↑ → π0 +X at
70 GeV

〈xF〉 〈pT 〉, GeV/c AN ,%

−0.12 0.97 −1.0± 4.9

−0.14 1.05 −2.6± 4.5

−0.16 1.15 2.1 ± 4.0

−0.18 1.28 −5.8± 4.1

−0.22 1.49 −6.3± 4.3

−0.25 1.69 −11.6± 6.2

−0.29 1.93 −18.8± 8.7

−0.34 2.27 −40.0± 17.1
PH
the spurious asymmetry is due predominantly to the
drift of the calorimeter energy scale, this drift being
corrected by means of a permanent recalibration to
the world-average value of the neutral-pion mass.
From the results of our fit, we can infer that, for each
value of the observed physical single-spin asymmetry
AN , the absolute systematic error does not exceed 3%
upon introducing this correction.

4. RESULTS AND THEIR DISCUSSION

The asymmetry AN , which is a physical observ-
able in our experiment, is shown in Fig. 5 and in
the table. The quoted errors are purely statistical.
As was indicated above, the absolute systematic er-
ror for each value of AN does not exceed 3% and,
in those intervals of xF where AN is different from
zero, is much less than the statistical error. From our
estimates, it follows that, for all values of AN , the
relative systematic error associated with the accuracy
of determining the dilution factor and the degree of
target polarization is within 10%.

The asymmetry is (−2.5 ± 2.0)% in the region
−0.2 < xF < −0.1 (〈pT 〉 ≈ 1.1GeV/c) and (−10.6±
3.2)% in the region −0.4 < xF < −0.2 (〈pT 〉 ≈
1.7 GeV/c). The value of xF ≈ −0.2 is the threshold
point for the emergence ofAN . It was indicated in [14]
that, in the majority of experiments, the asymmetry
of inclusive neutral-pion production is compatible
with zero up to the c.m. pion energy of Ec.m. = E0 ≈
1.5–2.0 GeV, whereupon it grows in magnitude. The
asymmetry measured in our experiment is shown in
Fig. 6 as a function of Ec.m..

By fitting the function

AN =

{
0 for Ec.m. < E0

k · (Ec.m. − E0) for Ec.m. ≥ E0

(4)

to our data on AN , we obtained the value of E0 =
1.5 ± 0.1 GeV, which is in good agreement with the
results reported in [14]. The fitted value of the slope
parameter k is−15± 4.

In Fig. 7, our result (the sign of AN is reversed
for a comparison to be more convenient) is given
along with data of previous experiments devoted to
measuring the single-spin asymmetry of inclusive
neutral-pion production in the region of polarized-
proton fragmentation. One can see that, within the
errors, the values ofAN in pp↑ interactions at 70 GeV
are identical to their counterparts in π−p↑ interac-
tions at 40 GeV, but that, at 200 GeV, the growth of
the asymmetry with increasing neutral-pion energy is
slower.

As is well known, large single-spin effects cannot
be explained within perturbative QCD, which is the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 2. Distribution of photon pairs with respect to (а) the Feynman variable and (b) the transverse momentum.
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Fig. 3. (a) Two-dimensional distribution of photon pairs with respect to the transverse momentum (pT ) and the Feynman
variable xF and (b) mass spectrum of photon pairs in the region −0.3 < xF < −0.2 (summation over pT was performed). In
Fig. 3b, the solid curve is an approximation by the sum of a Gaussian distribution and a third-degree polynomial, while the
dotted curve represents the contribution of a combinatorial background.
generally accepted theory of hard interactions. For the
reaction p+ p→ π0 +X, it follows from the factor-
ization theorem that

dσ =
∑
a,b,c

fa/p ⊗ fb/p ⊗ dσ(ab→ c . . .)⊗Dπ/c, (5)

where fa/p and fb/p are the parton distributions in
colliding protons, dσ(ab→ c . . .) is the elementary-
process cross section, andDπ/c is the parton-to-pion
fragmentation function. For the asymmetry AN ∼
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
(dσ↑ − dσ↓), the helicity-conservation law yields

AN ∼
mq√
s
αs ∼ 0. (6)

A number of models based on generalizations of
the factorization theorem were proposed after the
discovery of significant values of AN in some ex-
periments. These models assume the presence of (i)
higher twist correlation functions in the distribution
functions (for example, twist-3 correlation functions
in the Qui–Sterman [15] and Efremov–Korotkiyan–
05
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Teryaev [16] models), (ii) an intrinsic transverse mo-
mentum kT and a spin dependence of the distribu-
tion functions (Sivers model [17]), or (iii) an intrinsic
transverse momentum kT and a spin dependence of
the fragmentation function (Collins model [18]).

Also, so-called semiclassical models were devel-
oped on the basis of introducing a quark orbital an-
gular momentum [19, 20]. Proposing various mech-
anisms for explaining the emergence of single-spin
asymmetries, these models do not present a univer-
sal spin theory, but they describe experimental data
satisfactorily.
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Fig. 7. Asymmetry AN in the reaction hp↑ → π0X as a
function of the interaction energy for various hadron types
h (π− or p).

5. CONCLUSION

The single-spin asymmetry of inclusive neutral-
pion production in the reaction p+ p↑ → π0 +X at
70 GeV has been measured over the kinematical re-
gion specified by the inequalities −0.4 < xF < −0.1
and 0.9 < pT < 2.5 GeV/c. The asymmetry is equal
to zero for −0.2 < xF < −0.1 within the errors, but
it grows in magnitude as xF decreases beyond this
region, amounting to (−10.6 ± 3.2)% in the region
−0.4 < xF < −0.2.

In pp↑ interactions, the asymmetry AN begins
deviating from zero at a c.m. neutral-pion energy of
about 1.5 GeV.

In contrast to what we have in the central region,
the asymmetry of inclusive neutral-pion production
in the region of polarized-proton fragmentation takes
the same value within the experimental errors in π−p↑
and in pp↑ interactions.

Our result is compatible with the predictions of
theoretical models describing spin effects in hp↑ in-
teractions.
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Energy Phys., Protvino, 1993).

13. N. S. Amaglobeli et al., Yad. Fiz. 50, 695 (1989) [Sov.
J. Nucl. Phys. 50, 432 (1989)].

14. A. N. Vasiliev and V. V. Mochalov, Preprint No. 03-
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Abstract—New accurate data of the neutron–proton spin-dependent total-cross-section difference
∆σL(np) at the neutron-beam kinetic energies 1.39, 1.69, 1.89, and 1.99 GeV are presented. In general,
these data complete the measurements of energy dependence of ∆σL(np) over the Dubna Synchropha-
sotron energy region. Measurements were carried out at the Synchrophasotron of the Veksler and Baldin
Laboratory of High Energies of the Joint Institute for Nuclear Research. The quasi-monochromatic
neutron beam was produced by breakup of extracted polarized deuterons. The deuteron (and hence neutron)
polarization direction was flipped every accelerator burst. The initial transverse (with respect to beam
momentum) neutron polarization was changed to a longitudinal one and longitudinally polarized neutrons
were transmitted through the large proton longitudinally polarized target. The target polarization direction
was inverted after one to two days of measurements. Four different combinations of the beam and target
parallel and antiparallel polarization directions, both oriented along the neutron-beam momentum, were
used at each energy. A fast decrease in −∆σL(np) with increasing energy above 1.1 GeV and a structure
in the energy dependence around 1.8 GeV, first observed from our previous data, seem to be well revealed.
The new results are also compared with model predictions and with phase-shift analysis fits. The ∆σL

quantities for isosinglet state I = 0, deduced from the measured ∆σL(np) values and known ∆σL(pp) data,
are also given. The results of the measurements of unpolarized total cross sections σ0tot(np) at 1.3, 1.4, and
1.5 GeV and σ0tot(nC) at 1.4 and 1.5 GeV are presented as well. These data were obtained using the same
apparatus and high-intensity unpolarized deuteron beams extracted either from the Synchrophasotron or
from the Nuclotron. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
The paper presents new results of the spin-

dependent neutron–proton total-cross-section dif-
ference ∆σL(np) measured in 2001 with a quasi-

∗This article was submitted by the authors in English.
†Deceased.
1063-7788/05/6811-1796$26.00
monochromatic polarized neutron-beam and polar-

ized proton target (PPT). The ∆σL(np) values were
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obtained at neutron-beam kinetic energies of 1.39,
1.69, 1.89, and 1.99 GeV.

A free polarized neutron beam with sufficient
intensity was produced by breakup of polarized
deuterons accelerated by the Synchrophasotron of
the Veksler and Baldin Laboratory of High Energies
(VBLHE) at the Joint Institute for Nuclear Research
(JINR) in Dubna. This accelerator provides the
highest energy (3.7 GeV) polarized neutron beam
that can be reached at the present moment.

The spin-dependent nucleon–nucleon (NN) ob-
servables ∆σL and ∆σT are defined as the differ-
ence in the NN total cross sections for the an-
tiparallel and parallel beam and target polarizations
oriented longitudinally (L) and transversely (T ) to
the beam direction. Transmission measurements of
the ∆σL(np) and ∆σT (np) energy dependences over
the Dubna Synchrophasotron neutron-beam energy
range of 1.2–3.7 GeV have been proposed [1, 2]
and started [3–6] in Dubna. The measurements
were carried out within the program of the JINR
project DELTA-SIGMA experiment. The aim of this
experimental program is to obtain a sufficient data
set on the np polarization observables over this new
highest energy region of free polarized neutron beams
and to do a direct reconstruction of the imaginary
and real parts of the spin-dependent np forward-
scattering amplitudes for the first time.

To carry out ∆σL(np) measurements, a large
Argonne–Saclay PPT was reconstructed at Dubna
[7–9] and a new polarized-neutron-beam line [10, 11]
with suitable parameters was made and tested. A set
of dedicated neutron detectors with corresponding
electronics was used. The data-acquisition system
was based on a CAMAC parallel branch highway
controlled by an IBM PC with the branch driver [12]

3)Dzhelepov Laboratory of Nuclear Problems, Joint Institute
for Nuclear Research, Dubna, Moscow oblast, 141980 Rus-
sia.

4)Kharkov Institute of Physics and Technology, Kharkov,
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finished off by one of the authors. The on-line pro-
gram in Pascal works under DOS. Successful data-
acquisition runs were carried out in 1995 and 1997
and the ∆σL(np) values were measured at 1.19,
1.59, 1.79, 2.20, 2.49, and 3.66 GeV [3–6]. For
the measurements in 1997, a new PPT polarizing
solenoid [13] was developed at VBLHE.

The NN total-cross-section differences ∆σL and
∆σT , together with the spin-averaged total cross
section σ0tot are measured in pure inclusive transmis-
sion experiments. They are linearly related with three
nonvanishing imaginary parts of the NN forward-
scattering amplitudes via optical theorems and al-
lowed to reconstruct these imaginary parts directly.
The data are also used to check the predictions of
available dynamic models and to provide an impor-
tant contribution to databases of phase-shift analyses
(PSA). From the measured ∆σL(np) values, it is
possible to deduce the NN isosinglet (I = 0) part of
∆σL, using the existing pp (isotriplet I = 1) results.

The total-cross-section differences ∆σL,T for pp
scattering were first measured at the ANL ZGS and
then at TRIUMF, in PSI, at LAMPF, at Saturne II,
and in Fermilab. Results were obtained in the energy
range from 0.2 to 12 GeV and at 200 GeV. Measure-
ments with incident charged particles need an exper-
imental setup different from np experiments, due to
the contribution of electromagnetic interactions. Ex-
isting ∆σL,T (pp) results are discussed in review [14]
and in references therein.

The ∆σL(pn) results from 0.51 to 5.1 GeV were
deduced for the first time in 1981 from the ∆σL(pd)
and ∆σL(pp) measurement at the ANL ZGS [15].
These pn results were omitted in many existing PSA
databases due to uncertainties in the Glauber-type
rescattering corrections. They were discussed in [3,
4, 14].

Using free polarized neutrons at Saturne II,
∆σT (np) and ∆σL(np) results were obtained at 11
and 10 values of energy, respectively, in the range
from 0.31 to 1.10 GeV [16–18]. The Saclay results
were soon followed by PSI measurements [19] in
seven energy bins from 0.180 to 0.537 GeV, using
a continuous neutron energy spectrum. The PSI and
Saclay sets allowed one to deduce the imaginary parts
of np and I = 0 spin-dependent forward-scattering
amplitudes [14, 18]. Only ∆σL(np) was measured
at five energies between 0.484 and 0.788 GeV at
LAMPF [20]. There, a quasi-monoenergetic polar-
ized neutron beam was produced in pd→ n+X
scattering of longitudinally polarized protons.

At low energies, ∆σL(np) was measured at
66 MeV at the PSI injector [21] and at 16.2 MeV
in Prague [22]. The ∆σT (np) values were deter-
mined in TUNL at nine energies between 3.65 and
5
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11.6 MeV [23] and at 16.2 MeV in Prague [24].
Recently TUNL measured ∆σL(np) at six energies
between 4.98 and 19.7 MeV [25] and ∆σT (np) at
three other energies between 10.7 and 17.1 MeV [26].

At high energies, the ∆σL(np) results using
free polarized neutrons were obtained at the JINR
Synchrophasotron only. The Dubna results smoothly
connect with the existing data at lower energies.
The −∆σL(np) energy dependence shows a fast
decrease to zero above 1.1 GeV and a structure
around 1.8 GeV. Values of the I = 0 part of ∆σL are
also presented. The data are compared with model
predictions and the PSA fits.

Section 2 gives a brief determination of observ-
ables. Section 3 describes the method of measure-
ments. The essential details concerning the beam, the
polarimeters, the experimental setup, and the PPT are
given in Section 4. Data acquisition and analyses are
described in Section 5. Results and discussion are
presented in Section 6.

2. DETERMINATION OF OBSERVABLES

Throughout this paper, we use the NN formalism
and notation for elastic NN scattering observables
from [27].

The general expression of the total cross section
for a polarized nucleon beam transmitted through
the PPT, with arbitrary directions of the beam and
target polarizations PB and PT , respectively, was first
deduced in [28, 29]. Taking into account fundamental
conservation laws, it is written in the form

σtot = σ0tot + σ1tot(PB ·PT ) (2.1)

+ σ2tot(PB · k)(PT · k),

where k is a unit vector in the direction of the beam
momentum. The term σ0tot is the total cross section
for unpolarized particles, and σ1tot and σ2tot are the
spin-dependent contributions. They are related to the
measurable observables ∆σT and ∆σL (called total-
cross-section differences) by

−∆σT = 2σ1tot, (2.2)

−∆σL = 2(σ1tot + σ2tot). (2.3)

The negative signs for ∆σT and ∆σL in Eqs. (2.2) and
(2.3) correspond to the usual, although unjustified,
convention in the literature. The total-cross-section
differences are measured with either the parallel or the
antiparallel beam and target polarization directions.
Polarization vectors are transversely oriented with re-
spect to k for ∆σT measurements and longitudinally
oriented for ∆σL experiments. Only ∆σL measure-
ments are treated below, but the formulas are similar
for the both total-cross-section differences.
PH
For P±
B and P±

T , all oriented along k, we obtain
four total cross sections:

σ(⇒) = σ(++) = σ0tot + |P+
B P

+
T |(σ1tot + σ2tot),

(2.4a)

σ(�) = σ(−+) = σ0tot − |P−
B P

+
T |(σ1tot + σ2tot),

(2.4b)

σ(�) = σ(+−) = σ0tot − |P+
B P

−
T |(σ1tot + σ2tot),

(2.4c)

σ(⇔) = σ(−−) = σ0tot + |P−
B P

−
T |(σ1tot + σ2tot).

(2.4d)

The signs in brackets correspond to the PB and PT

directions with respect to k in this order. In principle,
an arbitrary pair of one parallel and one antiparallel
beam and target polarization directions determines
∆σL. By using two independent pairs, we remove an
instrumental asymmetry term.

Below the neutron beam and the proton target
are considered. Since the PB direction at the Syn-
chrophasotron could be reversed every cycle of the
accelerator, it is preferable to calculate ∆σL from
the pairs (⇒), (�) and (�), (⇔), measured with
the same PT orientation. It helps to avoid long-time
efficiency fluctuations of the neutron detectors. The
spin-averaged term σ0tot drops out when taking the
difference, and one obtains

−∆σL(P+
T ) = 2(σ1tot + σ2tot)+ (2.5a)

=
2[σ(⇒) − σ(�)]

(|P+
B |+ |P

−
B |)|P

+
T |
,

−∆σL(P−
T ) = 2(σ1tot + σ2tot)− (2.5b)

=
2[σ(⇔) − σ(�)]

(|P+
B |+ |P

−
B |)|P

−
T |
.

Measured differences −∆σL, i.e., the asymmetry
effect between the total cross sections for parallel
and antiparallel orientations of the beam and target
polarization, are proportional to the mean value of the
beam polarizations |P+

B | and |P−
B |:

|PB | =
1
2
(|P+

B |+ |P
−
B |). (2.6)

The |PB | value is well known as a function of time,
because it is continuously monitored by a beam po-
larimeter.

Each of relations (2.5a) and (2.5b) contains a
hidden contribution from the instrumental asymme-
try (IA), caused mainly by a misalignment of the
neutron detector counters (see below). The value of
IA is given as

IA =
1
2
[∆σL(P+

T )−∆σL(P−
T )]. (2.7)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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The IA disappears, giving the final results as a
simple average:

∆σL =
1
2
[∆σL(P+

T ) + ∆σL(P−
T )]. (2.8)

The scattering matrix used contains the invariant
amplitudes a, b, c, d, and e, as defined in [14, 27]. The
σ0tot, ∆σT , and ∆σL are linearly related to the imagi-
nary parts of the three independent forward scattering
invariant amplitudes a+ b, c, and d [27] via optical
theorems:

σ0tot = (2π/K)Im[a(0) + b(0)], (2.9)

−∆σT = (4π/K)Im[c(0) + d(0)], (2.10)

−∆σL = (4π/K)Im[c(0) − d(0)], (2.11)

where K is the c.m. momentum of the incident nu-
cleon. For the amplitudes in Eqs. (2.9)–(2.11) we
have a(0)− b(0) = c(0) + d(0). The optical theorems
always provide the absolute amplitudes, as discussed
in [30–32].

Using the measured ∆σ(np) values and the exist-
ing ∆σ(pp) data at the same energy, one can deduce
∆σL,T (I = 0) as

∆σL,T (I = 0) = 2∆σL,T (np)−∆σL,T (pp). (2.12)

3. METHOD OF MEASUREMENT

In the transmission experiment, we have measured
the part of the incident beam particles which remain in
the beam after its passage through the target. For the
experiments with incident neutrons, this measure-
ment is always relative. The neutron beam has a cir-
cular profile, formed by the preceding beam collima-
tors. Out of the collimator diameter, the neutron flux
is considered to be zero. The neutron-beam intensity
is monitored by neutron-beam monitors placed up-
stream from the target. The target material consists
of small beads inserted in a cylindrical container of
the circular profile. The container covers the beam
spot and its horizontal axis coincides with the beam
axis. The transmission detectors, downstream from
the target, are larger than the beam dimensions. Any
unscattered beam particle is detected with the same
probability.

IfNin is the number of neutrons entering the target
and Nout is the number of neutrons transmitted in a
counter array of solid angle Ω, then the total cross
section σ(Ω) is related to measured quantities as

Nout

Nin
= exp

(
−σ(Ω)nd

)
, (3.1)

where n is the number of all target atoms per cm3,
d is the target length, and Nout/Nin is the simple
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2
transmission ratio. The number of counts of the
beam monitor M and of the transmission counter
T depends on the efficiency of each detector, i.e.,
M = Ninη(M) and T = Noutη(T ). The extrapolation
of σ(Ω) towards Ω = 0 gives the unpolarized total
cross section σ0tot.

In the ∆σL(Ω) measurements with a completely
filled target, only the number of polarizable hydrogen
atoms nH is important, because σtot depends on the
polarizations P±

B and P±
T as shown in (2.4). If one

sums over the events taken with one fixed target po-
larization P+

T or P−
T and using Eqs. (2.5a) or (2.5b),

the double transmission ratios of the measurements
with the averaged PB from Eq. (2.6) for the two PT

directions become
Nout(++)/Nin(++)
Nout(−+)/Nin(−+)

= exp(−∆σL(Ω)|PBP+
T |nHd),

(3.3a)

Nout(−−)/Nin(−−)
Nout(+−)/Nin(+−)

= exp(−∆σL(Ω)|PBP−
T |nHd).

(3.3b)

We use here the notation of (2.4).
Thus, the neutron detector efficiencies drop out.

Further, we set N = Nout/Nin depending on the PB

and PT combination and Eqs. (3.3a), (3.3b) provide

−∆σL(Ω, P+
T ) =

1
|PBP+

T |nHd
ln
(
N(++)
N(−+)

)
,

(3.4a)

−∆σL(Ω, P−
T ) =

1
|PBP−

T |nHd
ln
(
N(−−)
N(+−)

)
.

(3.4b)

A systematic uncertainty of the −∆σL value is
mainly caused by the errors in |PB |, |PT |, and nH. A
statistical error of −∆σL is given by the formula

δstat =
1

|PBPT |nHd

√
1
M+

+
1
M− +

1
T+

+
1
T− ,

(3.5)

where the M+, M− and T+, T− are the statistics for
monitor and transmission neutron detectors with the
P+
B and P−

B neutron-beam polarizations, respectively.
If Ω→ 0, we obtain ∆σL(Ω)→ ∆σL.
For the np transmission measurement, we may

neglect the extrapolation of ∆σL(Ω) towards Ω = 0
due to the small sizes of detectors [3–6]. The Saclay–
Geneva (SG) PSA [31] at 1.1 GeV shows that, for
the angles covered by our detectors, the resulting
−∆σL value decreases by 0.04 mb if we neglect the
extrapolation procedure.
005
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The ratio of nH to other target nuclei depends on
the target material. The presence of carbon in the
PPT beads adds the term σtot(C) in (2.4). This term
is spin-independent and its contribution drops out in
differences (2.5). The same occurs for 16O and 4He in
the target and for the cryogenic envelopes.

However, there are small effects from 13C and 3He,
which may be slightly polarized. The global contribu-
tion was estimated to be±0.3% in [3–4].

4. EXPERIMENTAL SETUP

The ∆σL(np) experimental setup was described
in detail in our previous publications [3–6]. Here, we
briefly mention essential items which are important
for the data analysis and results, as well as the items
concerning modifications and improvements of the
apparatus and of the experimental conditions.

Figure 1 shows both polarized-deuteron and free
polarized-neutron beam lines [11], the two polarime-
ters [33, 34], the beryllium target (BT) for neutron
production, the collimators C1−C4, the spin rotation
magnet (SRM), the PPT [8, 9], the monitorsM1,M2
of neutron-beam intensity, the transmission detec-
tors T1, T2, T3, and the detectors for neutron-beam
profile monitoring NP. The associated electronics was
described in [3, 4]. The data acquisition system is
based on a CAMAC parallel branch highway con-
trolled by an IBM PC with the branch driver [12]
finished off by one of the authors. The on-line program
in Pascal works under DOS.

Accelerated deuterons were extracted at the beam
momenta pd of 4.29, 4.93, 5.36, and 5.57 GeV/c,
which were known with a sufficient accuracy of
≈1%. The average intensity of the primary polarized
deuteron beam was≈2× 109 d/cycle. It was continu-
ously monitored by means of two calibrated ionization
chambers placed in the two focal points upstream of
the neutron-production target BT.

The beam of free quasi-monochromatic neutrons,
polarized along the vertical direction, was obtained by
breakup at 0◦ of vector polarized deuterons in the BT.
Neglecting the BT thickness, neutrons have a labora-
tory momentum pn = pd/2 with a Gaussian momen-
tum spread of FWHM	 5% [35]. This corresponds to
the neutron-beam energies Tkin(n) of 1.40, 1.70. 1.90,
and 2.00 GeV, respectively. The BT contains 20 cm of
Be with a cross section of 8× 8 cm. Energy losses
of deuterons during their passage through air, foils
in vacuum tubes of the beam transport line, and the
BT matter provided the decrease of 20 MeV in the
deuteron-beam energy in the BT center and the mean
neutron-energy decrease of 10 MeV [3, 5]. For the
∆σL results, the energies and laboratory momenta
PH
in the BT center are quoted; for the beam polariza-
tion measurements, the extracted beam energies have
been used.

After the deuteron breakup, the resulting neutrons
and protons have the same values and directions of
the polarizations PB(n) and PB(p), respectively, as
the vector polarization PB(d) of the incident deuteron
beam [36, 37].

In our previous experiments [3–6], the deuteron-
beam polarization was determined by two indepen-
dent asymmetry measurements, either for the dp elas-
tic or for the pp quasielastic reactions. In the first case,
the four-arm beam line polarimeter [33] was used and
deuterons, scattered on the liquid hydrogen target,
were analyzed by the magnetic field. This polarimeter
worked in the primary deuteron-beam line. It accu-
rately determined the dp-elastic-scattering asymme-
try at Tkin(d) = 1.60 GeV, where the analyzing pow-
ers of this reaction are well known [38]. In principle,
the PB(d) needs to be determined at one energy value
only, since no deuteron depolarizing resonance at the
Synchrophasotron exists [33]. On the other hand, the
measurement requires changing the deuteron energy
and extracting deuterons in another beam line, which
is a time-consuming operation. For this reason, the
dp polarimeter was not used in the 2001 run. In [5,
6], we obtained an average for positive and negative
signs of the vector polarization: |PB(d)| = 0.524 ±
0.010(stat.)± 0.010(syst.).

Another four-arm beam polarimeter [34] with
small acceptance of 7.1× 10−4 sr continuously mon-
itored the PB(p) value during the data acquisi-
tion. The deuteron beam, considered as a beam of
quasi-free protons and neutrons, was scattered on
a CH2 target at 14◦ lab. This polarimeter measured
the pp left–right asymmetry on hydrogen and car-
bon at Tkin(p) = Tkin(d)/2 and the pC asymmetry
was subtracted. The polarimeter was calibrated and
improved [39, 40]. The average value |PB(p)| ≈
|PB(d)| = (|P+

B |+ |P
−
B |)/2 of deuteron-beam polar-

ization was continuously measured by this device
during the 2001 data-acquisition run. These |PB(d)|
values were taken into account for the data treatment.
The weighted average |PB(d)| over the 2001 run
is |PB(d)| = 0.528 ± 0.004(stat.)± 0.008(syst.) and
agrees with the previous dp polarimeter results very
well.

The dimensions and positions of the iron and
brass collimators C1−C4 (Fig. 1) were as described
in [3, 4]. Accurate measurements of the collimated
neutron-beam profiles were performed in a dedicated
run, using nuclear emulsions. During the data acqui-
sition, the position and X, Y profiles were monitored
by the neutron-beam profile monitor NP. It was
equipped with multiwire proportional chambers and
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 1

Beam polarization over the run ±0.9%

Target polarization ±5.0%

Number of polarizable hydrogen atoms ±1.1%

Polarization of other atoms ±0.3%

Magnetic field integral of the neutron
spin rotator

±0.2%

Inefficiencies of veto counters ±0.1%

Total of the relative systematic errors ±5.3%

Absolute error due to the extrapolation
of results towards 0◦

<0.04 mb

Table 2. Unpolarized total cross sections for np and nC
interactions

Tkin(n), GeV σ0tot(np), mb σ0tot(nC), mb

1.30± 0.013 41.35± 0.66 −
1.40± 0.014 39.18± 0.48 381.5± 2.6

1.50± 0.015 41.63± 0.83 379.6± 1.0

placed close downstream from the last transmission
detector.

In order to change the vertical orientation of the
neutron-beam polarization to the longitudinal direc-
tion, the SRM was used. The SRM magnetic field
map was accurately measured, and the value of the
magnetic field was continuously monitored by a Hall
probe. The nonuniformity of the magnetic-field inte-
gral within the neutron-beam path area provides a
small additional systematic error of±0.2%.

The frozen-spin PPT reconstructed to the mov-
able device [8, 9, 13] was used. The target material
was 1-pentanol (C5H12O + 5% H2O) with a param-
agnetic CrV impurity (EHBA) having a spin concen-
tration of 7× 1019 cm−3. The pentanol beads were
loaded in a thin-wall teflon container 200 mm long
and 30 mm in diameter, placed inside the dilution
refrigerator. The weight of the pentanol beads was
80.1 ± 0.05 g and the total number of polarizable
hydrogen atoms on the beam neutron path was

nHd = (9.14 ± 0.10) × 1023 cm−2.

The PPT polarization PT was measured using
a computer-controlled nuclear-magnetic-resonance
(NMR) system. These measurements were carried
out during the run at the beginning and at the end
of data taking for each sign of the PPT polarization.
The negative and positive target proton polarizations
PH
were near the values of −0.75 and 0.60, respectively.
The relaxation times were more than 5000 h for P−

T

and 7000 h for P+
T . The relative uncertainty of the

measured PT values has been estimated at±5%. This
uncertainty includes the errors of polarization unifor-
mity measurements using the NMR data from three
coils placed inside the PPT container all along the
target. The current values of the PT were taken into
account during the accumulated-data processing.

The configuration of the two neutron-intensity
monitors M1 and M2 and the three transmission
detectors T1, T2, and T3 is shown in Fig. 2. Each
of the detectors was independent of the others. All the
units were of similar design [16] and the electronic
systems were identical, as described in [3, 4]. Each
unit consisted of a CH2 converter, 60 mm thick,
placed behind a large veto scintillation counter A.
The emitted forward charged particles, generated by
neutron interactions in the convertor matter, were de-
tected by two counters S1 and S2 in coincidence. The
converters and S1, S2 counters for monitors M1 and
M2 were 30 mm in diameter and the corresponding
elements for the transmission detectors T1, T2, and
T3 were 90, 92, and 94 mm, respectively.

The NP array, also shown in Fig. 2, was similar to
the neutron detectors. The two multiwire proportional
chambers behind the converter were protected by its
own vetoA and triggered by the dedicated S1, S2, and
S3 counters in coincidence. The counter array used
provides very good stability of the detection efficiency.
The efficiencies of≈2% for all detectors are practically
constant with energy.

The result of ∆σL is independent of the neutron-
beam intensity if the probability of quasi-simulta-
neous detection of two neutrons in one detector unit
can be neglected. The small detection efficiencies
decrease the probability for a converted neutron
to be accompanied by another quasi-simultaneous
converted neutron in the same detector. “Simul-
taneous” detection is to be understood within the
resolution time of a scintillation counter. The prob-
ability was estimated from the results obtained with
different neutron-beam intensities and radiator thick-
nesses [16, 17]. For the same neutron fluxes, the
probability increases quadratically with increasing
detector efficiency. At high efficiencies (namely, for
pp transmission experiments), it represents the dom-
inant source of systematic errors. This effect of the
“simultaneous” detection of two neutrons in one de-
tector unit was estimated to be smaller than 2× 10−6

in the present experiment.
The misalignment of the detector components or

of the entire detectors provides IA. Reaching a per-
fect alignment is beyond experimental possibility. In
the case of misalignment, the asymmetries in each
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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neutron detector depend on the transverse beam-
polarization components only. For T detectors, the
misalignment effects are practically independent of
the target polarizations [16, 41]. The IA in Eq. (2.7)
may be of the same order or larger than the transmis-
sion effects and provides the same contributions to
each pair of measurements in Eqs. (2.5a) or (2.5b). It
is obvious that this effect will be considerably stronger
for the ∆σT measurement than for the ∆σL one,
where only residual perpendicular PB components
exist. These undesirable components depend on the
accuracy of the SRM current setting. As already
mentioned, IA cancels out when taking the simple
average of results in Eq. (2.8). The results strongly
depend on the detector stabilities and their fixed posi-
tions over the data acquisition with both PT signs.

However, there exist small instrumental random-
like effects (RLE), provided, e.g., by temperature
and magnetic-field fluctuations, beam-position vari-
ations, etc. They affect the stability of setup elements
in an uncontrolled manner. For the final ∆σL results,
uncertainties caused by these effects were taken into
account using a special procedure of data treatment
(see Section 5).

A possible inefficiency of the protection against
charged particles by all veto counters may exist.
Charged particles in the neutron beam are produced
mainly in beam collimators, in CH2 radiators of
all M and T detectors, and in the target. Only a
small fraction of the forward protons are polarized.
They are produced in the polarized target by elastic
scattering of polarized neutrons on free polarized
protons close to θc.m. = 180◦. For the longitudinally
polarized beam and target, one obtains a contribution
from the spin correlation parameter Aookk(np) [27],
which is included in the counting-rate asymmetry for
the observable ∆σL. This additional asymmetry was
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
calculated in [3, 4] and may provide±0.1% systematic
error. Let us note that Aookk(180◦, np) is one of the
observables which determine the real parts of the
forward-scattering amplitudes for the isospin I = 0
state [31]. Its measurement is foreseen in our future
experiment.

For the measured ∆σL values, the relative normal-
ization and systematic errors from different sources
are summarized in Table 1.

Dedicated tests of the experimental setup
were performed during additional runs with high-
intensity unpolarized deuteron beams. The unpolari-
zed-neutron-beam energies were 1.3, 1.4, and
1.5 GeV. We used the same transmission setup as
described above, where PPT was removed and either
liquid hydrogen or carbon targets were inserted in
the neutron-beam line. Transmission ratios were
completed by the corresponding empty target data.

These measurements allowed us to extract the to-
tal cross sections σ0tot(np) and σ0tot(nC). For the nC
experiment at Tkin(n) = 1.5 GeV, the transmission
was measured using several carbon targets having
different thickness. The obtained results for both total
cross sections are summarized in Table 2.

Our results are shown in Figs. 3 and 4, where they
are compared with existing data listed in compila-
tions [42–44] for np and in [46] for nC interactions.

5. DATA ANALYSIS

For each accelerator cycle, the following main in-
formation was recorded and displayed by the data-
acquisition system:

rates of the two calibrated ionization chambers
used as primary deuteron-beam-intensity monitors;

rates of coincidences and accidental coincidences
for the two neutron detectors M1 and M2 used as
05
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the intensity monitors of the neutron beam incident
on the PPT;

rates of coincidences and accidental coincidences
for the three neutron transmission detectors T1, T2,
and T3;

rates of the left and right arms of the pp-beam
polarimeter.

At the beginning of the run, statistics at Tkin =
1.4 GeV with P+

T and P−
T were recorded. Then the

data were taken at 1.7, 2.0, and 1.9 GeV with P−
T .

Finally, with P+
T , the data were acquired at 1.9, 2.0,

and 1.7 GeV.
The recorded data were then analyzed in three

steps. In the first step, the data were cleaned of low-
quality information. First, the “bad” data files were
removed. Then the data files were cleaned of the “bad”
cycles with an absence or incorrect sequence of labels
of PB signs. The number of such “bad” cycles for the
cumulated statistics is a few tenths of percent. The
data were also cleaned of the cycles with an absence
PH
(“empty” cycle) or a low-level beam intensity and/or
with a possible fluctuation of the neutron detector
performance. The main part of the rejected cycles
(∼5%) was caused by the low intensity of the neutron
beam. The remaining event statistics over the run
at a given energy and for each combination of the
PB and PT directions were used to determine ∆σL
and IA. The transmission ratios (3.3) averaged over
the beam and target polarizations are proportional to
σ0tot(PPT) for all targets elements. The transmission
ratios were listed in [5, 6] at three energies and are
not shown here, since the conclusions are identi-
cal. With decreasing energy, σ0tot(PPT) decreases
slightly. A monotonic decrease in σ0tot(PPT) as a
function of the neutron transmission detector dis-
tance from the target is also observed, as expected.

The second and third steps of the data analysis
used the previously selected events. The stabilities of
the magnetic field of beam line elements and of the
neutron detectors were checked, the parameters of
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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statistical distributions of the ∆σL results for all pairs
of neighboring cycles with P+

B and P−
B for a sequence

of data cycles accumulated over a single run were
determined, and the final results were obtained. The
transmission ratios as functions of time were ana-
lyzed for each combination of the individual M and
T detectors, at any neutron energy and the PT sign.
No significant time dependence of checked values and
no sizeable deviations from normal distributions were
observed.

The ∆σL values over a given run were calcu-
lated by two different methods. In the first method,
the ∆σL values were obtained using Eqs. (3.4a),
(3.4b), and (3.5) for the entire statistics of each neu-
tron detector (M1, M2, T1, T2, T3) accumulated
over the run. For the second method, first the partial
∆σL values and their statistical errors were calculated
from the individual neutron detector statistics for each
“pair” of the following cycles with the opposite beam
polarizations P+

B and P−
B . Relations (3.4a), (3.4b),

and (3.5) and the known time-dependent sequence
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
of recorded cycles were used again. Then, obtained
partial ∆σL values and their statistical errors for all
“pairs” were added using an average weighting. The
second method takes into account both the statistical
uncertainties and the RLE.

The final results of the data treatment are pre-
sented in Table 3. The −∆σL(np) values at four
energies, measured with the individual transmission
detectors T1, T2, T3 for both signs of PT , their half-
sums from Eq. (2.8), and half-differences, i.e., the
hidden contributions of IA [16] from Eq. (2.7), are
listed. The results were obtained using the combined
statistics from the two monitors M1 and M2. The
T1–T3 value at any energy represents the weighted
average of the contributions of the three transmission
detectors.

The −∆σL values and their experimental errors
presented in Table 3 have been calculated by the
second (“pair”) method. In order to estimate the RLE
contribution to the experimental error, we calculated
05
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Table 3. Measured −∆σL(np) values at different neutron-beam energies Tn for the two opposite target polarizations,
for the individual transmission detectors (TD), and for the cumulated statistics (the data presented were calculated
using the procedure of average weighting of the results for each pair of the neighboring cycles from the sequence of
all accumulated data cycles with P+

B and P−
B beam polarizations; therefore, the errors quoted take into account both the

statistical uncertainties and the instrumental RLE effects; since both the IA and the average −∆σL(np) values have the
same errors, they are indicated for the −∆σL(np) values only)

Tn, GeV TD −∆σL(P+
T ), mb −∆σL(P−

T ), mb IA, mb Average −∆σL, mb R

1.39 T 1 +12.14± 3.09 +3.33± 2.48 +4.41 +7.73± 1.98 1.195

T 2 +10.83± 3.17 +2.92± 2.56 +3.95 +6.87± 2.04 1.204

T 3 +7.73± 3.28 +1.23± 2.65 +3.25 +4.48± 2.11 1.211

T 1−T 3 +10.32± 1.83 +2.54± 1.48 +3.69 +6.43± 1.18 1.036

1.69 T 1 +2.53± 2.04 +0.68± 1.58 +0.92 +1.60± 1.29 1.190

T 2 +4.51± 2.09 −1.65± 1.62 +3.08 +1.43± 1.32 1.197

T 3 +6.08± 2.17 +0.86± 1.68 +2.61 +3.47± 1.37 1.203

T 1−T 3 +4.30± 1.21 −0.41± 0.94 +2.17 +2.13± 0.77 1.037

1.89 T 1 +3.47± 2.34 +3.08± 2.46 +0.20 +3.27± 1.70 1.272

T 2 −0.84± 2.41 +2.40± 2.54 −1.62 +0.78± 1.75 1.284

T 3 +1.17± 2.49 +4.74± 2.63 −1.78 +2.96± 1.81 1.295

T 1−T 3 +1.31± 1.39 +3.37± 1.47 −1.03 +2.34± 1.01 1.043

1.99 T 1 +0.76± 2.03 +2.87± 1.85 −1.06 +1.82± 1.37 1.222

T 2 −1.47± 2.09 +3.82± 1.90 −2.64 +1.17± 1.41 1.230

T 3 +0.71± 2.16 +2.35± 1.97 −0.82 +1.53± 1.46 1.239

T 1−T 3 +0.0003± 1.21 +3.03± 1.10 −1.51 +1.51± 0.82 1.030
the ratio
R = δ“pair”/δstat ≥ 1, (5.1)

where the δ“pair” is the error obtained by the second
method and δstat is the error obtained by the first one.

The value of R = 1 occurs if no RLE exists and
R increases with increasing RLE. In our experiment,
the errors of the final results obtained by the “pair”

Table 4. Final −∆σL(np) results (total errors are
quadratic sums of the experimental and systematic errors;
laboratory kinetic energies and momenta of the neutron
beam in the production target center are given)

Tkin(n),
GeV

pLab(n),
GeV/c

−∆σL(np),
mb

Error, mb

exp. syst. total

1.39 2.13 +6.43 ±1.18 ±0.34 ±1.23

1.69 2.46 +2.13 ±0.77 ±0.11 ±0.78

1.89 2.67 +2.34 ±1.01 ±0.12 ±1.02

1.99 2.77 +1.51 ±0.82 ±0.08 ±0.82
PH
method exceed the statistical errors obtained from
Eq. (3.5) by ∼4% (see last column in Table 3).

As can be seen from Table 3, the IA values at
1.39 and 1.69 GeV are positive, whereas at 1.89 and
1.99 GeV they are mostly negative. Since the ele-
ments of the neutron detectors were not moved during
the run, we assume that the residual perpendicular
components in PB were opposite.

6. RESULTS AND DISCUSSION

The final −∆σL(np) values are presented in Ta-
ble 4 and shown in Fig. 5. Statistical and system-
atic errors are taken into account. Total errors are
the quadratic sums of experimental and systematic
uncertainties.

The results from [3–6] together with the exist-
ing −∆σL(np) data [16, 17, 19, 20], obtained with
free polarized neutrons below 1.1 GeV, are also plot-
ted in Fig. 5. In [5], we added the TUNL point at
19.7 MeV [25] and the PSI point at 66 MeV [21] in
order to show the −∆σL(np) energy dependence and
existing structure at low energies. This structure (not
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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shown here) was described by the energy-dependent
(ED) GW/VPI PSA (solution SP99) [47] and is de-
scribed again in the recent solution SP03 [45]. In the
present paper, we discuss mainly the energy depen-
dence over the high-energy region.

The new results agree with our previous data, con-
firming a fast decrease above 1.1 GeV, and suggest
a minimum or a shoulder in the vicinity of 1.8 GeV.
The quasielastic pn data from [15] (not shown here)
are in good agreement with the Dubna results. The
solid curves represent the evolution of the PSA fits of
−∆σL(np) (FA95, SP99, and SP03 GW/VPI PSA
solutions [45, 47]) below 1.3 GeV. Above 0.6 GeV,
the fits are only in qualitative agreement with the
measured values.

From Eq. (2.12), one can deduce −∆σL(I = 0),
using the obtained −∆σL(np) results and the corre-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
sponding pp values at the same energies. In order to
determine−∆σL(pp), we have used different sources:

calculations using the ED GW/VPI PSA [45]
(solution SP03);

linear interpolation of the fixed energy (FE)
GW/VPI PSA [47] results, using the solutions at
1.275, 1.50, 1.70, 1.80, 1.95, and 2.025 GeV;

linear interpolation of the FE Saclay–Geneva
(SG) PSA results [31], using the solutions at 1.3,
1.6, 1.8, 2.1 GeV;

interpolation of the pp experimental data measured
at ANL ZGS [49, 50] and Saturne II [51] in the
vicinity of energy values for the obtained −∆σL(np)
data.

The four calculated pp data sets are listed in the
upper part of Table 5. Let us note that, from ED
GW/VPI PSA, no errors could be calculated and,
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Table 5. −∆σL(pp) (in mb) values deduced from the four sources and four sets of −∆σL(I = 0) (in mb) results,
calculated from the present np data and corresponding pp values

Tkin, GeV ED GW/VPI FE GW/VPI FE SG Data interpolation

−∆σL(pp), mb

1.39 +7.83 +7.73± 2.13 +7.82± 0.30 +6.45± 0.53

1.69 +4.17 +4.14± 1.71 +4.35± 0.30 +3.78± 0.30

1.89 +2.60 +1.87± 2.27 +3.09± 0.30 +2.77± 0.18

1.99 +2.07 +0.44± 2.21 +2.82± 0.20 +2.20± 0.18

−∆σL(I = 0), mb

1.39 +5.03± 2.38 +5.13± 3.18 +5.04± 2.38 +6.43± 2.41

1.69 +0.09± 1.58 +0.12± 2.29 −0.09± 1.58 +0.18± 1.58

1.89 +2.09± 2.05 +2.82± 3.04 +1.60± 2.05 +1.92± 2.03

1.99 +0.95± 1.64 +2.59± 2.75 +0.21± 1.64 +0.82± 1.64
in FE GW/VPI PSA, they are obviously overesti-
mated. SG PSA calculate errors using the error ma-
trix, which are compatible with those obtained by the
direct interpolation of neighborhood measured values.

The results of −∆σL(I = 0), using the four sets
of pp values, are given in the bottom part of Ta-
ble 5. We have added the SG PSA errors to the ED
GW/VPI pp predictions. The results at each energy
agree within the errors. Since, in general, the pp data
are accurate, the −∆σL(I = 0) values have roughly
two times larger errors than the np results. For this
reason, an improved accuracy of np measurements is
important.

New −∆σL(I = 0) results calculated with ED
GW/VPI pp values are plotted in Fig. 6, together
with other existing data in a large energy interval.
The solid curves were calculated from np and pp
ED GW/VPI PSA predictions [45, 47] (solutions
FA95, SP99, SP03) below 1.3 GeV. The PSA fits
described inaccurately the data starting from 0.5 GeV.
In addition, for comparison, the energy dependence
of isovector part, −∆σL(I = 1) calculated from ED
GW/VPI (solution SP03) is shown by the dotted
curve.

The new results agree again with our previous data
and confirm a plateau around 1.4 GeV followed by a
fast decrease and suggest a minimum in the vicinity of
1.8 GeV. The −∆σL(I = 0) values deduced from the
quasi-elastic pn data [15] above 1 GeV (not shown)
are in good agreement with the present results.

Some dynamic models predicted the −∆σL,T
energy behavior for np and pp interactions. Below
2.0 GeV, a usual meson exchange theory ofNN scat-
tering [48] gives the −∆σL(np) energy dependence
as shown by the dotted curve in Fig. 5. It can be seen
PH
that this model provides only a qualitative description
at low energies and disagrees considerably with the
data above 1 GeV.

The articles [3, 4, 6] discussed the model of a non-
perturbative flavor-dependent interaction between
quarks, induced by a strong fluctuation of vacuum
gluon fields, i.e., instantons. Estimation of such
nonperturbative QCD contribution to the −∆σL(np)
energy behavior is shown in Fig. 5 by the dashed
curve. One can see that this prediction disagrees with
the experimental data.

The investigated energy region corresponds to a
possible generation of heavy dibaryons with masses
M > 2.4 GeV (see review [52]). For example,
model [53, 54] predicts the formation of a heavy-
dibaryon state with a color octet–octet structure.

The possible manifestation of exotic dibaryons in
the energy dependence of different pp and np observ-
ables was predicted by another model [55–59]. The
authors used the Cloudy Bag Model and anR-matrix
connection to the long-range meson-exchange force
region with the short-range region of asymptotically
free quarks. This hybrid model gives the lowest ly-
ing exotic six-quark configurations in the isosinglet
and the spin-triplet state 3S1 with the mass M =
2.63 GeV (Tkin(n) = 1.81 GeV). This is close to the
energy where a minimum is suggested by the energy
dependence of our results.

For the I = 0 state, the 3S1 partial wave is ex-
pected to be predominant. Since −∆σT for an arbi-
trary isospin state contains no uncoupled spin-triplet
state, a possible dibaryon resonance effect in 3S1

may be less diluted. The measurement of −∆σT ob-
servable for np interaction and deducing from these
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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data the −∆σT (I = 0) values may provide a signif-
icant more sensitive check of possible manifestation
of the predicted dibaryon. Moreover, in the differ-
ence of both quantities, the spin-singlet contributions
vanish. For this reason, more detailed and accurate
measurements of energy dependences of −∆σL(np)
and −∆σT (np) in the vicinity of Tn = 1.8 GeV are
important.

The I = 0 spin-dependent total cross sections
represent a considerable advantage in seeking pos-
sible resonances. This is in contrast with the I =
1 system, where the lowest lying exotic six-quark
configuration corresponds to the spin-singlet state
1S0 [59]. This state is not dominant and it is hard to
separate it in the forward direction.

The three optical theorems determine the imagi-
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
nary parts of the nonvanishing forward amplitudes,
as shown in Eqs. (2.9)–(2.11). Extrema in I = 0
amplitudes or in their combinations dominated by the
spin-triplet states will be a necessary condition for
the predicted resonance. The sufficient condition may
be provided by real parts. For np scattering, they can
be determined by measurements of observables in the
experimentally accessible backward direction, as was
shown in [32].

7. CONCLUSIONS

New −∆σL(np) results, obtained in the trans-
mission experiment, complete in the main the mea-
surement of energy dependence at the Dubna Syn-
chrophasotron region. Measured −∆σL(np) values
are in accordance with the existing data at lower
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energies. The −∆σL(np) energy dependence shows
a fast decrease to zero above 1.1 GeV and a possible
structure around 1.8 GeV. Values of the I = 0 part of
∆σL are also presented. The data are compared with
model predictions and with the PSA fits.

The −∆σL(I = 0) quantities, deduced from the
measured ∆σL(np) values and the existing−∆σL(pp)
data, are also presented. They indicate a plateau or
a weak maximum around 1.4 GeV, followed by a
rapid decrease with energy and by a minimum around
1.8 GeV.

The obtained results are compared with the
dynamic-model predictions and with the recent
ED GW/VPI PSA fit. The necessity of more de-
tailed and accurate−∆σL(np) measurements around
1.8 GeV and new −∆σT (np) data in the kinetic
energy region above 1.1 GeV is emphasized.
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51. J. Bystrický et al., Phys. Lett. B 142B, 141 (1984).
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Abstract—Within the Wigner–Seitz approximation, a self-consistent fully quantum-mechanical calcu-
lation of the structure of the inner crust of a neutron star is performed over a wide range of densities with
allowance for superfluidity effects. Within the approach used, the Wigner–Seitz cell consists of a nuclear-
like cluster surrounded by a nearly uniform neutron gas. An effective energy functional is constructed by
matching, at the cluster surface, the realistic phenomenological nuclear functional for the cluster due to
S.A. Fayans and his coauthors and the energy functional calculated microscopically for neutron matter.
The microscopic component of the functional is calculated within the Brueckner method by using the v18
Argonne interaction. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The ideas of superfluidity in neutron stars have
a rather long history of about fifty years [1], but in-
terest in this phenomenon has grown considerably
in recent years in connection with the accumula-
tion of observational data concerning irregularities in
the spinning frequency of neutron stars. Various hy-
potheses were considered initially in order to explain
this phenomenon, but the point of view prevalent at
the present time is that the above irregularities are
associated with the emergence and disappearance of
superfluid vortices in the inner crust of a neutron star
(see the review article of Pethick and Ravenhall [2]
and references therein). By an inner crust, one usu-
ally means the neutron-star-envelope part that has a
subnuclear density in the range 0.001ρ0 ≤ ρ ≤ 0.5ρ0,
where ρ0 � 0.17 fm−3 is a normal nuclear density. A
crystalline “outer crust,” which consists of ordinary
(as a rule, neutron-rich) nuclei surrounded by elec-
trons, has still lower densities. In the above inequality,
the lower boundary is determined by the instability
of highly neutron-rich nuclei against neutron emis-
sion, while the upper boundary is associated with
the transition of neutron-star matter into a uniform
state. According to present-day ideas, the bulk of the
inner crust of a star consists of spherically symmetric
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nuclear-like clusters forming a crystal lattice that is
submerged into a neutron sea and virtually uniform
sea of ultrarelativistic electrons, which render the
system electrically neutral. At some critical density
of ρc � 0.5ρ0, a nonuniform configuration becomes
energetically unfavorable, with the result that there
arises a uniform neutron liquid featuring a small ad-
mixture of protons and electrons. In a narrow region
around ρc, the cluster in question may lose a spherical
shape, since rodlike (“spaghetti”), layer (“lasagna”),
or some other exotic configurations become more
favorable. Not only does the inclusion of neutron su-
perfluidity provide an explanation for irregularities in
the spinning frequency of neutron stars, this is also
of importance for describing the cooling of a neutron
star in the course of its evolution [2].

As a rule, one considers the superfluidity of only
the neutron component, which is dominant, and de-
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scribes it within the local-density approximation—
this means that, at each point r, where the neu-
tron density is ρn(r), one identifies the superfluid gap
∆n(r) with the gap for infinite neutron matter of the
same density. The latter is usually calculated either
within the Brueckner approach or within the varia-
tional method by using a realistic nucleon–nucleon
potential, the results of different calculations being
in good agreement. Fully quantum-mechanical cal-
culations of the gap ∆n(r) for the inner crust of a
neutron star were performed in [3, 4], where the basic
features of the Wigner–Seitz cell (the sizeRc and the
number Z of protons in the cell), as well as the form
of the mean field, were taken according to the well-
known study of Negele and Vautherin [5]. That study,
which was performed 30 years ago, still remains the
only fully quantum-mechanical self-consistent de-
scription of the inner crust of a neutron star within the
Wigner–Seitz method for a wide range of densities,
but we would like to emphasize that it does not take
into account superfluidity. In [5], the authors deter-
mined, at a fixed value of the average density ρ, the
equilibrium values of Rc and Z corresponding to the
beta-stability condition

δµ = µn − (µp + µe) = 0, (1)

where µn, µp, and µe are the chemical potentials for,
respectively, neutrons, protons, and electrons with
allowance for their rest masses.

The discovery of a sizable shell effect changing
the relation between ρ and Z that was predicted by
semiclassical calculations that existed at that time
(see, for example, [6]) was an important qualitative
result of [5]. According to [5], two local minima of
energy that correspond to the proton magic numbers
of Z = 40 (giant quasinucleus of Zr) and Z = 50 (gi-
ant quasinucleus of Sn) and which are close to each
other compete over a wide range of densities. In the
calculations reported in [5], an increase in the density
ρ led to the following changes in the hierarchy of the
two minima in question: the former first proved to be
the deeper and again became such in the vicinity of ρc,
but the latter was the deeper at intermediate values of
the density.

In recent years, there have appeared a number
of quantum-mechanical calculations of the struc-
ture of the inner crust of a neutron star within the
Hartree–Fock method [7–12]. Those calculations
employed effective Skyrme forces—more specifically,
their SLy4 and Sly7 versions, which were developed
by the Lyons group precisely for describing neutron
stars. In all of those studies, the authors explored
phase transitions in the vicinity of ρc between the
aforementioned phases, but we would like to em-
phasize that this was again done without taking into
account pairing effects.
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In [13–15], our group developed a method for
self-consistently describing the structure of the inner
crust of a neutron star, taking into account pairing
correlations of neutrons and protons. The method is
based on the approach proposed by Fayans and his
coauthors [16, 17] in order to extend the standard
Kohn–Sham method [18] of the energy density func-
tional to superfluid systems. The generalized energy
functional depends explicitly both on the usual (nor-
mal) densities ρn,p(r) of neutrons and protons and
on the anomalous densities νn,p(r) associated with
pairing. The νn,p(r)-dependent anomalous part of the
generalized energy functional is expressed in terms
of the normal-density-dependent effective pairing in-
teraction. The parameters of the generalized energy
functional were optimized in structural calculations
of the properties of long isotopic chains of spherical
nuclei [19]. The accuracy in describing mean nuclear
features that was achieved in this way was not inferior
(even being superior in some details) to the accuracy
of the most successful Hartree–Fock calculations.

In [13], the generalized energy functional intro-
duced by Fayans and his coauthors was used to study
the effect of superfluidity on the structure of the inner
crust of a neutron star within the Wigner–Seitz ap-
proximation. As a matter of fact, the method proposed
in [5] was supplemented by taking into account the
superfluidity of nucleons. The calculation was per-
formed for only one value of the crust-matter density,
that which corresponds to the Fermi momentum of
kF = 0.7 fm−1. This choice was motivated by the
following considerations: first, this density value is
rather far off the critical density ρc, so that the spher-
ical symmetry of the Wigner–Seitz cell is unques-
tionable; second, it belongs to the region where the
pairing gap ∆(kF) for neutron matter is maximal, in
which case one would expect the maximum super-
fluidity effect. Figure 1 shows the gap calculated in
the Bardeen–Cooper–Schrieffer (BCS) approxima-
tion with the v18 Argonne nucleon–nucleon poten-
tial. The inclusion of various many-body corrections
to this approximation affects predominantly the abso-
lute value of ∆(kF) (reducing it by a factor of about 2),
but this has virtually no effect on the shape of the
curve [14].

A strong change in the equilibrium values of Rc
and Z upon taking into account pairing was the main
result of [13]. The analysis in [14, 15] was based
on a more realistic model where the phenomenolog-
ical generalized energy functional was applied only
to describing the above nuclear-like cluster, while
the neutron medium around it was described by the
microscopic generalized energy functional calculated
for neutron matter by using the Brueckner approach
with the v18 nucleon–nucleon interaction. A smooth
05
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matching of the two generalized energy functionals
was performed at the boundary of the cluster. The
calculations performed in those studies for the same
value of kF confirmed a strong effect of superfluidity
on the ground state of the inner crust of a neutron star.
The resulting equilibrium values of Rc and Z proved
to be strongly different from those that were found on
the basis of a purely phenomenological generalized
energy functional. These were precisely the results
that disclosed a sizable dependence of the equilibrium
configuration on the model for the generalized energy
functional.

In the present study, systematic calculations of
the structure of the inner crust of a neutron star are
performed for a wide range of densities corresponding
to Fermi momenta in the range kF = 0.6–1.2 fm−1.
The bulk of the calculations were performed with
a more realistic semimicroscopic generalized energy
functional [15], but, for some values of kF, the calcu-
lations were also repeated for the phenomenological
generalized energy functional used in [13].

2. GENERALIZED ENERGY FUNCTIONAL
FOR THE INNER CRUST OF A NEUTRON

STAR

In order to describe the inner crust of a neutron
star, we will use the method that is based on a gen-
eralized energy functional in the coordinate repre-
sentation with allowance for pairing and which was
proposed in [16] and elaborated by Fayans and his
coauthors (see, for example, [17, 19]). This approach
generalizes the well-known Kohn–Sham method of
an energy functional [18] to the case of superfluid sys-
tems. The correlation part of the generalized energy
functional depends, on equal footing, on the normal
densities of neutrons and protons, ρn and ρp, and on
their anomalous analogs, νn and νp,

EGcor =
∫
drEGcor(ρτ (r), ντ (r)), (2)

where τ = n, p is the isotopic index and EGcor is the
generalized-energy-functional density, which, for the
sake of brevity, we will call merely the generalized
energy functional. In order to render the formulas
given below less cumbersome, we will also suppress,
as a rule, the indices “G” and “cor.”

A variation of expression (2) with respect to the
densities ρτ yields equations for the mean potentials
Uτ (r), while a variation with respect to the anomalous
densities ντ leads to equations for the pairing gaps
∆τ (r) in terms of the densities ρτ and ντ . The mean
fields Uτ and ∆τ appear in the set of equations for the
Bogolyubov functions ui(r) and vi(r), which in turn
determine the densities ρτ and ντ according to the
expressions known from [20]. Thus, there arises a set
PH
of equations that is equivalent to the set of equations
in the Hartree–Fock–Bogolyubov method. It should
be noted that the method of Gor’kov’s equations,
which yields close results, was used in [19].

In constructing the generalized energy functional
that describes the Wigner–Seitz cell, we rely on the
physical pattern that is obtained for the inner crust of
a neutron star from the calculations reported in [5].
According to this pattern, almost all of the protons
within this cell enter into the composition of a com-
pact nuclear-like cluster occurring at the center of the
cell. In many respects, the properties of this cluster
are close to the properties of ordinary nuclei, but it is
characterized by a high neutron excess. The medium
surrounding the cluster is nearly homogeneous neu-
tron matter. The Wigner–Seitz cell also contains ul-
trarelativistic electrons whose number is equal to the
proton charge Z of the cell, this rendering the system
electrically neutral.

In order to describe the nuclear-like cluster in
question, we employ the phenomenological nuclear
generalized energy functional that was introduced by
Fayans et al. [19] and which was very successful in
describing the masses and radii of spherical nuclei
belonging to long isotopic chains and including nu-
clei far off the beta-stability valley. This functional is
the sum of a normal and an anomalous (superfluid)
component,

Eph = Eph
norm(ρτ ) + Eph

an (ρτ , ντ ). (3)

The dominant, central, part of the normal component
of the generalized energy functional has the form

Eph
norm =

C0

4

[
a+ρ

2
+

1− h+
1 ρ+/(2ρ0)

1 + h+
2 ρ+/(2ρ0)

(4)

+ a−ρ2−
1− h−1 ρ+/(2ρ0)
1 + h−2 ρ+/(2ρ0)

]
,

where the normalization factor C0 = (dn/dεF)−1 is
the inverse density of states at the Fermi surface;
ρ+,− = ρn ± ρp; and a+,− and h+,−

1,2 are dimension-
less parameters. In addition to expression (4), the
total normal part of the generalized energy func-
tional [19] contains the Coulomb component, as
well as the spin-orbit component and other spin-
dependent components. Also, the total generalized
energy functional includes a term that stems from
taking into account a finite radius and which is
close in physical meaning to the gradient term of the
Skyrme functional.

The anomalous part of the generalized energy
functional—it is responsible for superfluidity—has
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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the form

Eph
an =

1
2

∑
τ=n,p

Fξ,τ (ρ)|ντ (r)|2, (5)

whereFξ,τ (ρ) is the density-dependent effective pair-
ing interaction. In [19], it was taken in a τ-independent
two-parameter form,

Fξ,τ (ρ+) = C0

(
f ξin(ρ+/ρ0)

α + f ξex(1− (ρ+/ρ0)α)
)
,

(6)

where ρ0 = 0.165 fm−3 and α = 2/3. We note that
the normalization of the effective pairing interaction
in Eqs. (5) and (6) differs from the original normal-
ization in [19] by a factor of 2, coinciding with the
standard normalization adopted in the theory of finite
Fermi systems [20]. The limiting case of a density-
independent effective pairing interaction corresponds
to the equality

f ξin = f ξex = f ξ. (7)

In [19], it was shown that fine details of the isotopic
behavior of some nuclear properties (for example, the
even–odd effect in root-mean-square radii) are sensi-
tive to details in the density dependence of Fξ, favor-
ing a pairing mechanism that involves a pronounced
surface enhancement (a negative constant f ξex of very
large magnitude versus f ξin small in magnitude and
negative in sign as well). At the same time, the ma-
jority of mean nuclear features are well described by
the extremely simple one-parameter interaction (7),
which corresponds to volume pairing. In this case,
however, one has to introduce a weak mass-number
dependence of the parameter f ξ, changing it by about
20% in going over from Ca to Pb.

Strictly speaking, the effective pairing interaction
is equal to the expression for Fξ,τ (ρ+) multiplied by
the function δ(r1 − r2). As is well known, the delta-
function form of the effective pairing interaction leads
to a divergence in the equation for the gap, with the
result that solving the problem requires introducing
a model space S0. In [19], the space S0 was chosen
in such a way that all single-particle energies satis-
fied the condition |ετλ − µτ | � Eτ0 , where En0 = Ep0 �
35 MeV. Since we basically follow the computational
scheme adopted in [19] and retain the parameters of
the generalized energy functional that were chosen
there, we will use the same model space.

The physical reason why the parameter f ξex in (6)
takes a negative value of large magnitude is that,
beyond a nucleus, the effective pairing interaction is
related to (asymptotically coincident with) the off-
shell T matrix for free nucleon–nucleon scattering
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
at zero value of all momenta and the negative en-
ergy E = 2µ � −16 MeV [21, 22],4) this correspond-
ing to a very strong attraction. However, the exact
asymptotic relation Fξ → T (E = 2µ) is valid only in
the case that was was considered in [22] and where
the model space S0 includes negative-energy single-
particle states exclusively: ελ < 0; that is, E0 = −µ.
Here, we are dealing with a wider model space, so
that the asymptotic behavior of the effective pair-
ing interaction beyond the nucleus must be analyzed
independently. In principle, the consideration of the
problem in [22] is appropriate for any model space S0,
and the result changes in an obvious way; that is,

Fξ → T eff(E = 2µ), (8)

where the “effective” T matrix obeys a standard equa-
tion that describes free nucleon–nucleon scattering,
this being so not in the whole free space but in that
part of it which is the subspace S′ complementary
to S0. The subspace S′ includes no states of energy
satisfying the condition εk < (E0 +µ). Thus, we have

T eff(E) = v(0, 0) +
∑
k>k0

v(0, k)
1

E − k2/m
T eff(E),

(9)

where E = 2µ as before and where the lower limit in
the sum is k0 =

√
2m(E0 + µ).

In order to describe neutron matter surrounding
the cluster, we will use the energy functional Emi

that was calculated microscopically for neutron mat-
ter and whose explicit form is considered below. Our
ansatz for the total generalized energy functional con-
sists in smoothly matching, at the cluster surface, the
phenomenological and the microscopic generalized
energy functional,

E(ρτ (r), ντ (r)) = Eph(ρτ (r), ντ (r))Fm(r) (10)

+ Emi(ρτ (r), ντ (r))(1 − Fm(r)),

where the function Fm(r), which implements the
matching in question is chosen in the form of a two-
parameter Fermi function,

Fm(r) = (1 + exp((r −Rm)/dm))−1. (11)

The ansatz in (10) is applied with the same match-
ing function Fm(r) both to the normal and to the
anomalous part of the generalized energy functional.
For the neutron part of the Wigner–Seitz cell, this
ansatz is actually coincident with the prescription of
the local-density approximation (LDA). This imposes
rather stringent constraints on the choice of Fm(r):
the matching function should be chosen in such a

4)This estimate was obtained for beta-stable nuclei, in which
case one can assume that µn � µp � µ � −8 MeV.
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way as to ensure a description of the region of a sharp
change in the density on the basis of predominantly
the phenomenological part of the generalized energy
functional. Indeed, it is well known that the local-
density approximation is inapplicable in this region;
at the same time, the phenomenological generalized
energy functional describes successfully the surface
region of ordinary nuclei. On the other hand, the
microscopic part of the generalized energy functional
is intended for describing the neutron part of the
Wigner–Seitz cell, where the matter density changes
smoothly, so that the local-density approximation is
applicable. Below, we will show that the Fermi func-
tion (11) satisfies these conditions for a proper choice
of parameters.

The diffuseness parameter dm in (11) remains free.
An analysis revealed that it can be chosen in a unified
way for all densities and (Z,Rc) configurations being
studied. At the same time, the matching radius Rm
must be chosen in each specific case individually. The
method for choosing Rm is the most important point
in the ansatz specified by Eqs. (10) and (11), which
is used here. For a given configuration, we determine
Rm in terms of the proton density in such a way as to
ensure fulfillment of the equality

ρp(Rm) = 0.1ρp(0). (12)

On one hand, neutrons and protons coexist in the
region r < Rm within the nuclear-like cluster be-
ing considered; therefore, the application of the phe-
nomenological nuclear generalized energy functional
is legitimate there. On the other hand, one can dis-
regard the exponentially decreasing tails of the proton
distribution in the region r > Rm, treating the system
there as purely neutron matter and applying to it the
generalized energy functional calculated microscop-
ically. We use the same parameters of (11) for the
normal and the anomalous part of the generalized
energy functional in (10). It should be noted that
almost all protons are localized within the radius Rm;
therefore, the matching procedure is in fact applied
only to neutrons, protons being entirely described
by the phenomenological nuclear generalized energy
functional. Within the local-density approximation,
the microscopic part of the normal component of the
generalized energy functional is expressed in terms
of the equation of state for neutron matter. Here, we
use the equation of state that was calculated in [23]
on the basis of the Brueckner approach with the v18
Argonne nucleon–nucleon interaction and with al-
lowance for a small admixture of three-particle forces.
In the density range being considered, the equation of
state for neutron matter of high density is described
by the polynomial

Emi
norm(ρn) =

∑
n=1,5

bnx
n, (13)
PH
where x = ρn/ρ0 with ρ0 = 0.155 fm−3 and the coef-
ficients bn are given in [23].

The matching relation (10) for the anomalous part
of the generalized energy functional leads to a similar
relation for the effective pairing interaction:

Veff
p (r) = Fξ,τ (ρ(r))Fm(r) + Vmi

p (ρ(r))(1 − Fm(r)).
(14)

3. EFFECTIVE PAIRING INTERACTION

We recall that, in fact, the matching procedure
in (14) must be applied only to neutrons and that,
for protons, we will use a purely phenomenological
pairing interaction—specifically, its simplest form (7).
The microscopic part of the effective pairing interac-
tion of neutrons, Vmi

p (r), must be found for the model
subspace S0 used here. For a fixed value of the density
ρn(r), this interaction is determined within the local-
density approximation from the equation for the gap in
uniform neutron matter of density ρ = ρn(r). We will
use the Bardeen–Cooper–Schrieffer approximation,
which is the simplest, where the gap ∆ is directly
expressed in terms of the free nucleon–nucleon po-
tential v(k, k′) in the 1S0 channel as

∆(k) = −
∑
k′

v(k, k′)
∆(k′)
2E(k′)

, (15)

where Ek =
√

(εk − µn)2 + ∆2(k) with εk =
k2/2m+ Un, Un being the mean potential in neutron
matter. As expressed in terms of the effective pairing
interaction, the equation for the gap has a similar
form, but integration with respect to momenta is
performed over the model subspace S0. Specifically,
we have

∆(k) = −
∑
k′<k0

Vmi
p (k, k′)

∆(k′)
2E(k′)

, (16)

where k0 =
√

2m(E0 + µn − Un).
In the Bardeen–Cooper–Schrieffer approxima-

tion, the relation between the effective pairing in-
teraction and the free nucleon–nucleon potential
obviously has the form

Vmi
p (k, k′) = v(k, k′)−

∑
k1>k0

v(k, k1)Vmi
p (k1, k′)

2E(k1)
.

(17)

The effective pairing interaction appearing in
Eq. (16) depends explicitly on momenta. In the co-
ordinate representation, this dependence corresponds
to nonlocal forces. Since we are going to use a simple
local form of the phenomenological effective pairing
interaction in Eq. (14), it is highly desirable to simplify
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005



SELF-CONSISTENT DESCRIPTION OF THE INNER CRUST 1817
maximally, prior to applying the matching procedure,
its microscopic counterpart Vmi

p by reducing it to a
local form as well. The simplest way consists in the
following. For a fixed values of ρ, we determine a
momentum-independent averaged effective pairing
interaction such that, upon being substituted into
Eq. (16), it leads to the same value of ∆(kF) as the
exact effective pairing interaction; that is,

∆(kF) = −V̄mi
p (kF)

∑
k′<k0

∆(k′)
2E(k′)

, (18)

where kF is the local Fermi momentum kF =
(3π2ρ)1/3. On the basis of the set of ∆(k) values
calculated microscopically for each kF value being
considered, we find V̄mi

p (kF) from Eq. (18) and sub-
stitute it into the matching condition (14).

For neutrons, it seems natural to employ the
density-dependent two-parameter interaction (6)
for the phenomenological pairing interaction in the
matching condition (14). However, there is an alter-
native possibility, that which was proposed in [15] and
which makes it possible to minimize the number of
phenomenological parameters. Instead of (6), one can
use the analogous ansatz

Fξ,τ (ρ+) = C0

(
f ξinFm(r) + f ξex(1− Fm(r))

)
,

(19)

where the matching function Fm(r) appears as the
“form factor,” taking the place of the expression
(ρ+(r)/ρ0)α. We retained the same notation for the
phenomenological parameters as in (6), but, in fact,
their values must be determined anew, since the new
form factor is shifted significantly with respect to the
old one toward greater r. Indeed, the radii Rn and
Rp at which the neutron and proton densities take
values one-half as large as their counterparts at the
center of nuclei are approximately equal to each other.
Therefore, the matching radius Rm is larger than
the radius R+ � Rn � Rp by a value approximately
equal to the doubled diffuseness parameter of the
density distribution, 2dn � 2dp � 1 fm.5) This shift
is significant for the matrix elements of the effective
pairing interaction that appear in the equation for
the gap. The gain from going over from the original
ansatz in (6) to (19) consists in that, instead of
considering the quantity f ξex as a free parameter, one
can now substitute for it the T matrix defined in (9)
and calculated microscopically; that is,

C0f
ξ
ex = T eff. (20)

5)If the proton density ρp(r) has the form of a Fermi function,
the difference of the half-density radius for protons, Rp, and
the matching radiusRm defined by relation (12) is 2dp ln 3.
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Indeed, we recall that, at present, we consider ordi-
nary nuclei, for which, in the region r > Rm, we are
in fact dealing with a free space, where one can use
the asymptotic relation (20). The quantity is question
can readily be found from (9). By way of example,
we indicate that, for E = 2µ = −16 MeV and for the
model subspace being considered, which is restricted
by the energy E0 = 35 MeV, a calculation with the
Paris potential yields T eff = −990.36 MeV. Of course,
this result must not depend on the specific choice of
realistic nucleon–nucleon potential. Upon fixing the
value of f ξex, there remains only one free parameter,
f ξin. It was found in [15] from an analysis of the prop-
erties of five tin isotopes: 112Sn, 116Sn, 120Sn, 124Sn,
and 128Sn. The self-consistent calculation there was
performed by using the generalized energy functional
from [19] and the effective pairing interaction modified
according to Eqs. (19) and (20). The value of f ξin =
−0.42 virtually reproduces the diagonal matrix ele-
ments of ∆ that were found by using the old effective
pairing interaction (6) with the parameters from [19],
which were determined from a fit to experimental data.
We will use this value in all calculations based on the
semimicroscopic generalized energy functional.

The interpolation formula (14) will be perfectly
analogous to the modified effective pairing interac-
tion (19) if one replaces the effective T matrix by
the coordinate-dependent microscopic pairing inter-
action Vmi

p (r) calculated for each point r according

to Eq. (18), where kF(r) = (3π2ρ(r))1/3. Within this
procedure, we employ the gap ∆(k) calculated for
neutron matter in the Bardeen–Cooper–Schrieffer
approximation with the v18 nucleon–nucleon inter-
action for the set of kF values required for our pur-
poses. The resulting values of ∆(kF) (gap at the
Fermi surface) are given in Fig. 1.

4. COMPUTATIONAL SCHEME

As was indicated above, the application of the vari-
ational principle to the generalized energy functional
in (2) leads to a set of equations for the Bogolyubov
functions ui(r) and vi(r) that is equivalent to the
set of equations in the Hartree–Fock–Bogolyubov
method. In the present study, which includes a mas-
sive array of calculations for the structure of the inner
crust in a neutron star, we abandoned attempts at
directly solving the cumbersome problem of pairing
in the coordinate representation; instead, we used the
simpler method of expansion in the eigenfunctions
φλ(r) = Rnlj(r)Φjlm(n) of the problem without pair-
ing (the isotopic index τ is suppressed for the sake
of brevity), Φjlm being spin–angular functions. The
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Fig. 2. Comparison of two methods of calculations.

functionsRnlj(r) satisfy the radial Schrödinger equa-
tion with the potential U(r) and boundary conditions
at the boundary of the cell that are typical of the
Wigner–Seitz method:

Rnlj(r = Rc) = 0 (21)

for even l and (
dRnlj
dr

)
r=Rc

= 0 (22)

for odd l. The radial Schrödinger equation for the
functions yλ(r) = rRλ(r) is solved by Numerov’s
method. The equation for the gap is solved in the
model subspace including single-particle states whose
energy satisfies the condition ελ − µ < E0, where
E0 � 35 MeV.

The calculations in question are strongly simplified
in the diagonal approximation for the gap: ∆λλ′ =
∆λδλλ′ . The analysis performed in [19] for ordinary
nuclei revealed that, in the case of volume pairing, the
errors of the diagonal approximation are insignificant.
In the case of surface pairing, the errors caused by the
diagonal approximation are greater, but they concern
primarily the aforementioned even–odd effects. But
for the mean features of the system, which are the
subject of our prime interest, the errors of the diagonal
approximation are insignificant; therefore, we will use
this approximation.

For a given baryon density, the computational
scheme was constructed in the following way. At a
fixed number Z of protons, one seeks the radius Rc
of the Wigner–Seitz cell such that the beta-stability
condition (1) is satisfied for it. For this equality to be
satisfied to a fairly high precision, it is necessary to
perform calculations for various values of Rc that are
very close to one another. In this case, it is convenient
to employ a coordinate mesh that has the same num-
berNc of nodes and slightly different integration steps
PH
H = Rc/(Nc − 1). Owing to this, a self-consistent
solution found for one value of Rc can be used as
an initial iteration for a neighboring value. For this
value of Rc, the total number of nucleons in the cell
is A = [4/(9π)](kFRc)3. It is distributed between Z
protons andN neutrons (A = Z +N ) with allowance
for the condition in (1). The self-consistent solution
to the equations of the generalized-energy-functional
method at a fixed value of Rc automatically yields
density distributions and other features of the ground
state of the system being considered that correspond
to the minimum of the total binding energy EB ,
which, in addition to the integral in (2) over the
cell volume, involves the contribution from electrons,
which is calculated by standard methods [5].

A numerical accuracy of solutions to Eq. (1) was
prescribed in such a way that the difference of two
values of the binding energy per nucleon, EB/A,
that correspond to two values of δµ > 0 and δµ < 0
closest to zero did not exceed 0.2 keV. Of course,
the criterion of accuracy for the convergence of our
iterative process in determining a self-consistent so-
lution is still stricter (about 0.02 keV). Among all
values of EB/A that correspond to different values
of Z, we then find the absolute minimum, and it is
this minimum that determines the equilibrium (Z,Rc)
configuration for the density being considered.

We would like to note that, in [13], we employed
a computational scheme that involved the constant
integration step of H = 0.05 fm; in solving Eq. (1) at
a fixed value of Z, this prevented the use of arbitrary
values of Rc (Rc is an integer in units of H). In
view of this, we employed a formal trick, letting the
number Z of protons be fractional at a fixed Rc, this
making it possible to solve Eq. (1) to the required
degree of precision. After that, all points of EB/A
versus Rc and the points of Z versus Rc were con-
nected by continuous lines, on which only the points
corresponding to integral values of Z were physically
meaningful. That these two methods are nearly equiv-
alent is demonstrated in Fig. 2, where the binding
energies per nucleon calculated by the two methods in
question are compared for the case of kF = 0.8 fm−1.
The solid line represents the results of the calcula-
tion at a constant step, in which case there appear
fractional values of Z. The results of the calculation
for a variable step and integral values of Z (only even
values were taken) are shown by the points. One can
see that almost all of the points lie on the curve. The
only significant distinction is observed at Z = 46, in
which case the continuous dependence of EB/A on
Z in the calculation with fractional Z proves to be
anomalously sharp. Fortunately, the binding energy
attains a minimum at a different value of Z—namely,
at Z = 42—so that the possible inaccuracy of the
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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scheme at a single point, Z = 46, does not entail any
physical consequences.

5. EEFECT OF SUPERFLUIDITY
ON THE STRUCTURE OF THE INNER

CRUST OF A NEUTRON STAR

The effect of taking into account neutron and pro-
ton pairing on the structure of the inner crust of
a neutron star—more precisely, on the features of
the equilibrium (Z,Rc) configuration—was demon-
strated in [13–15]. All of these calculations were
performed for a single value of the mean density,
that which corresponds to the Fermi momentum of
kF = 0.7 fm−1 for uniform neutron matter. For the
sake of completeness, the results of this analysis are
presented in this section. Figure 3 illustrates the effect
of pairing for the functional used by Fayans et al. [13],
the pairing interaction being taken into account in the
simplest form (7). Here, use was made of the com-
putational scheme involving the constant integration
step of H = 0.05 fm, in which case the radius Rc of
the Wigner–Seitz cell appears to be a natural inde-
pendent variable. The quantities under comparison
are the binding energies per nucleon EB/A and the
corresponding Z values calculated without pairing
(f ξ = 0) and with allowance for pairing (dotted and
solid curves, respectively). The coupling constant for
the volume pairing interaction was chosen to be f ξ =
−0.45 (the average value [19] of those for Ca and Pb).
We will first consider the case featuring no pairing.
The absolute minimum is attained atRc = 25 fm and
Z = 40, but it is only 1 keV below the second local
minimum at Rc = 28 fm and Z = 50 and the third
minimum at Rc = 30 fm and the nonmagic value
of Z = 58. In addition, there is a pronounced local
minimum at Rc = 21 fm and the magic value of Z =
20, but this minimum is much higher on the energy
scale. Thus, this calculation without pairing confirms
qualitatively the results reported in [5]. However, the
inclusion of pairing changes the pattern drastically:
although a very weak local minimum is observed at
Rc = 28 fm and Z = 50, the absolute minimum is
shifted to the region of greater values of Rc � 31 fm
and Z � 70.

Figure 4 shows the results of a similar calcula-
tion for the semimicroscopic generalized energy func-
tional proposed in [15]. Here, we employed the ba-
sic computational scheme involving a variable in-
tegration step H , in which case the number Z of
protons in the cell is a natural independent variable.
The binding energy per nucleon EB/A and the radius
Rc of the Wigner–Seitz cell are given separately in
individual panels versus Z. In just the same way as
in Fig. 3, the results obtained with allowance for
pairing and their counterparts that take no account
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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of pairing are represented by, respectively, the solid
and the dotted curves. As before, the effect of taking
into account pairing is quite sizable, albeit it is not
as drastic as in the preceding case. We note that,
in the absence of pairing, the binding energy per
nucleon reaches a minimum at the nonmagic value
of Z = 44 (the corresponding radius of the Wigner–
Seitz cell isRc = 29.473 fm). Thus, the features of the
equilibrium configuration of the Wigner–Seitz cell
exhibit a significant dependence on the specific form
of energy functional. The optimum configuration that
emerges from the calculation that takes into account
pairing is characterized by the values of Z = 52 and
Rc = 32.02 fm. This value of Z is close to the cor-
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responding result of Negele and Vautherin, but this
agreement is accidental to some extent. We will see
below that, at other density values, the results of our
calculations differ significantly from the predictions of
those authors in [5].

The fact that pairing effects change strongly the
equilibrium features of the Wigner–Seitz cell can
be qualitatively illustrated by an analysis of the be-
ta-stability condition (1). Indeed, we can see that,
since the electrons in the inner crust of a neutron star
are ultrarelativistic, the relation µe � (9πZ/4)1/3/Rc
holds. Substituting this relation into (1), we obtain

Z � 4
9π

(µn − µp)3R3
c . (23)

Upon taking into account pairing, both µn and µp
may change by a value of about the gap, which is
∆ � 1−2 MeV. In fact, this change is usually several
times smaller, which should not seem significant, at
first glance, but the difference (µn − µp) is raised
to the third power in (23); therefore, even a small
change in it at fixed Rc leads to a sizable change
in the equilibrium value of Z. The effect of pair-
ing on the single-particle spectrum is illustrated in
Figs. 5 and 6 for neutrons and protons, respectively.
As above, the equilibrium configuration characterized
by Z = 52 and Rc = 32.02 fm is considered there for
kF = 0.7 fm−1. For our analysis to be consistent, the
system without pairing was considered for the same
value of Z. In either figure, the right, the middle,
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and the left column show, respectively, the single-
particle energies ελ of the problem without pairing,
the single-particle energies ελ (basis) of the prob-
lem that involves pairing, and the true single-particle

energies Eλ = µ±
√

(ελ − µ)2 + ∆2
λ with allowance

for pairing. The dashed line indicates the position of
the chemical potential µ. The effect of pairing is much
more pronounced in the spectrum of neutrons. At
the same time, the effect of pairing on the chemical
potential is stronger in the case of protons.

6. RESULTS OF THE CALCULATIONS
FOR THE SEMIMICROSCOPIC

FUNCTIONAL

On the basis of the method developed by our
group, a number of calculations for the structure of
the inner crust in a neutron star were performed for
the density range corresponding to Fermi momenta
in the range kF = 0.6–1.2 fm−1, which was covered
with a step of δkF = 0.1 fm−1. As was indicated in
the Introduction, the intensity of pairing in uniform
neutron matter is maximal precisely in this region
(see Fig 1). This is the reason why the effect of
pairing on the structure of the crust is expected to
be maximal there and why this region is the most
interesting from the point of view of studying su-
perfluid vortices. As follows from the self-consistent
calculations performed in [7] with Skyrme forces,
a phase transition to a uniform state occurs at the
density of ρc = 0.077 fm−3, which corresponds to
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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kcF = 1.316 fm−1. This agrees qualitatively with the
estimate presented in [5]: kcF � 1.327 fm−1. At the
same time, the calculations performed in [8] predict
that, at a density of ρc � 0.05 fm−3, a spherical
shape of the Wigner–Seitz cell becomes energeti-
cally unfavorable, giving way to a more complicated
deformed configuration resembling a rod (“spaghetti”
structure). The last of the densities considered here,
kF = 1.2 fm−1, falls within this region; therefore,
the corresponding calculation possibly has only a
methodological meaning. All of the preceding den-
sities are rather far off the critical region, so that one
can dispense with considering the possible existence
of exotic structures.

The procedure for determining a self-consistent
solution for a given value of kF was described above.
At a fixed number Z of protons, we find the cell radius
Rc in such a way as to ensure fulfillment of the beta-
stability condition (1). We then compare the values
of the energy of the system per nucleon EB/A that
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correspond to different values of Z and then find the
absolute minimum that realizes the equilibrium (Z,
Rc) configuration for a given density. The set of curves
EB/A versusZ for all of the kF values considered here
is given in Fig. 7. Figure 8 shows the radiusRc of the
Wigner–Seitz cell as a function of Z.

With the aim of reducing the time of computations,
we considered only even values ofZ, with the only ex-
ception of Z = 51 in the case of kF = 0.7 fm−1, where
it was difficult to choose between the two neighboring
even values of Z = 50 and 52 and where it turned
out that the actual minimum of the binding energy
per nucleon corresponds to precisely the odd number
of Z = 51. We note that, in considering odd Z, we
disregarded the so-called blocking effect, which leads
to a regular even–odd pairing effect. It follows that
some irregularity in theZ dependence ofEB/A rather
than the even–odd pairing effect in the binding energy
manifests itself in the present case, the latter usually
having an opposite sign. Possibly, the inclusion of the
blocking effect would compensate for this irregularity,
so that, in fact, it would be more correct to take
Z = 50–52 for equilibrium Z. An analysis of the data
in Fig. 7 reveals that, with increasing mean density,
the position of the absolute minimum on the curve
EB/A(Z) is shifted leftward, the minimum remaining
fixed at the magic number Z = 20 of protons from
kF = 1.0 fm−1. We note that, in the case of kF =
1.2 fm−1, the curve is truncated at Z = 20, because,
for Z = 18, we were unable to find a self-consistent
solution of the cluster type. In all probability, this is
due to the proximity of a phase transition to a uniform
state.
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Table 1. Properties of equilibrium configurations of the Wigner–Seitz cell at various densities

kF, fm−1
Z

A Rc, fm
x

our study [5] our study [5] [23]

0.6 58 50 1612.10 37.505 0.036 0.037 0.0004

0.7 51 50 1573.70 31.890 0.032 0.037 0.0010

0.8 42 50 1409.10 26.895 0.030 0.028 0.0019

0.9 24 50 857.02 20.255 0.028 0.028 0.0034

1.0 20 40 658.07 16.693 0.030 0.027 0.0057

1.1 20 40 634.62 14.993 0.032 0.027 0.0086

1.2 20 40 626.47 13.684 0.032 0.027 0.0125
The properties of the equilibrium configurations
are given in Table 1. In the last three columns of
the table, we present the ratio x = Z/A—that is, the
mean concentration of protons in the matter of the
inner crust of a neutron star for a given density.

For the sake of comparison, we also present the
values of Z and x from the article of Negele and

  

10 20 300

 

r

 

, fm

(
 

a
 

)

(

 

b

 

)

(

 

c

 

)

(

 

d

 

)

–2

–1

0

–0.04

–0.03

–0.02

–0.01

0

–60

–40

–20

0

0.04

0.08

 

ρ

 

, f
m

 

–
3

 

U

 

, M
eV

 

δ
ε

 

n

 

, M
eV

/f
m

 

3

 

δ

 

U

 

n

 

, M
eV

Fig. 9. Basic normal mean-field features of the equilib-
rium Wigner–Seitz cell for kF = 0.7 fm−1 in the case of
a semimicroscopic generalized energy functional.
PH
Vautherin [5]. We note that, in fact, those authors
performed calculations at somewhat different values
of the density (namely, at kF = 0.55, 0.64, 0.85, 1.12,
1.33 fm−1). The Z and x values from [5] that are
given in Table 1 correspond to data for the closest
value of kF. One can see that the equilibrium values
of Z that were found here differ significantly from the
predictions of Negele and Vautherin in [5], while the
average concentrations of protons prove to be much
closer to each other. At the same time, they are much
larger (by an order of magnitude, on average) than the
corresponding values for uniform matter, which are
presented in the last column. Thus, the crystallization
of nuclear matter leads to an increase in the average
concentration of protons. With increasing density,
the distinction between the proton concentrations in
nonuniform and in uniform matter decreases, as it
must, as one approaches the critical density ρc.

Figure 9 shows basic “normal” ingredients of a
self-consistent calculation for the equilibrium config-
uration corresponding to kF = 0.7 fm−1. Figures 9a
and 9b display the densities and potentials, respec-
tively. The solid and dashed curves were constructed
for neutrons and protons, respectively. One can see
that a well-defined nuclear-like cluster occurs within
the Wigner–Seitz cell, but this cluster features a
very large neutron excess: at the cluster center, the
neutron density is three times as high as the proton
density. At the same time, the proton potential is
nearly twice as deep as the neutron potential. Beyond
the cluster boundary, the proton density tends to zero
very fast, while the neutron density approaches a
constant. By and large, Fig. 9 confirms the pattern
known from [5] for the structure of the Wigner–Seitz
cell in the density region being considered: a compact
cluster resembling in properties conventional nuclei,
which is surrounded by nearly uniform neutron mat-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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ter, occurs at the cell center. Separately, we show, in
Fig. 9c, the microscopic addition to the normal part
of the neutron phenomenological generalized energy
potential,

δEn(r) =
(
Emi(ρn(r))− Eph(ρn(r))

)
(1− Fm(r)),

(24)

and, in Fig. 9d, the analogous addition to the mean
neutron potential,

δUn(r) =
(
Umi
n (ρn(r))− Uph

n (ρn(r))
)

(1− Fm(r)).
(25)

It is necessary to discuss an irregular behavior of
the quantity δEn(r) in the vicinity of the point Rm =
8.51 fm. The reason for this is that, in this region,
the neutron density ρn(r) begins growing with in-
creasing r, the microscopic quantity Emi(ρn) calcu-
lated according to (13) growing faster (in absolute
value) with increasing ρn than its phenomenologi-
cal analog Eph(ρn) corresponding to [19]. Therefore,
the difference in Eq. (24) increases as r → Rm from
the right up to the point R0 � Rm + d, where the
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factor (1− Fm(r)) comes into play, suppressing this
growth. In the region r < Rm− d, the quantity in (24)
tends fast to zero. At first glance, the application of
the local-density approximation to the normal part
of the generalized energy functional is questionable
because of this irregular behavior. However, there
are two arguments removing these doubts. First, the
region of a fast variation in the quantity δEn(r) is
rather narrow and makes but a small contribution to
the integral of the quantity in (24) over the volume,
this integral yielding a microscopic correction to the
binding energy per nucleon EB/A (in the case being
considered, the correction in question is δ(EB/A) =
−1.0769 MeV). Second, the quantity E is not directly
involved in the self-consistent calculation. The quan-
tity δUn(r)—that is, its variational derivative with re-
spect to the density—is much more important, but it
behaves in a considerably more regular way, its max-
imum value being approximately 20 times less than
the average depth of the neutron potential within the
cluster (see Fig. 9b). It follows that the application of
the local-density approximation to the normal part of
the generalized energy functional is quite legitimate.

The anomalous features of the equilibrium con-
figuration of the Wigner–Seitz cell are displayed in
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Fig. 10 for the same value of kF = 0.7 fm−1. The
anomalous densities and the pairing gaps are shown
in Figs. 10a and 10b, respectively. As in Fig. 9, the
solid and dashed curves refer to neutrons and protons,
respectively. From Fig. 10, one can see that, beyond
the cluster, the anomalous proton density tends fast
to zero, as its normal analog in Fig. 9 does. It follows
that, upon the substitution of the interpolation for-
mula (17) for the effective proton interaction into the
equation for the proton gap, the second term is virtu-
ally inoperative. Thus, we see that, as was indicated
above, the effective pairing interaction of protons can
be taken in a purely phenomenological form.

Figure 10c shows the effective pairing interac-
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tion (17) for neutrons. One can see that, within the
cluster, it is much weaker (approximately by a factor
of 3) than in neutron matter, while the gap ∆n is less
only by 30%. This is a piece of evidence against a
naive application of the local-density approximation
in the equation for the gap, in which case we would
obtain a much smaller gap within the cluster. At
the same time, the application of this approximation
to the effective interaction itself is legitimate. The
point is that the nonlocality in the equation for the
gap stems predominantly from the anomalous den-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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sity ν, which is calculated in this approach without
invoking any form of local approximation. As to the
magnitude of the gap in neutron matter, it differs only
slightly, in accordance with intuitive ideas, from the
corresponding value for infinite neutron matter (see
Fig. 1). This conclusion agrees qualitatively with the
results of the calculations performed in [3, 4]. We note
that, according to the currently prevalent opinion, the
Bardeen–Cooper–Schrieffer approximation, which is
used here overestimates strongly the gap in neutron
matter [14]. Various many-body corrections to this
approximation suppress ∆ in neutron matter at the
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densities considered here approximately by a factor
of 2. The inclusion of these corrections introduces
no changes in the computational scheme that we
developed. In order to find a new microscopic effective
pairing interaction Vmi

p (r), we must merely substi-
tute, for each value of kF(r), a new set of ∆(k) values
into Eq. (14). A new result for the gap within neutron
matter is again expected to be close to the value of ∆
in neutron matter.

Figure 11 displays basic normal and anomalous
mean-field features of the Wigner–Seitz cell for the
equilibrium configuration (Z = 42, Rc = 26.895 fm)
corresponding to kF = 0.8 fm−1. The notation there is
identical to that in Figs. 9 and 10. All properties of the
self-consistent solution are qualitatively very close to
the corresponding properties at kF = 0.7 fm−1. We
only note that, in the case being considered, the gap
∆(r) beyond the cluster is somewhat greater than
that in Fig. 10. This is because the value of kF =
0.8 fm−1 is close to the maximum of the curve ∆(kF)
(see Fig. 1).

The systematic variations of these quantities ver-
sus the density can be traced in Figs. 12–14. The first
two of these display the neutron- and proton-density
distributions, while the third shows the neutron gap
∆n(r). Each curve in Figs. 12 and 14 terminates at
the corresponding value of Rc. From these figures,
one can see that, with increasing kF, the cluster at
the center of the Wigner–Seitz cell becomes less
compact, occupying an ever greater part of the cell.
Accordingly, the layer occupied by neutron matter be-
comes ever narrower, the excess of the density at the
05
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Table 2. Properties of clusters for equilibrium configurations of the inner crust of a neutron star

kF, fm−1 Z A Acl xcl ycl Rm, fm Rc, fm

0.6 58 1612.10 233.44 0.248 0.145 8.491 37.505

0.7 51 1573.70 224.79 0.227 0.143 8.438 31.890

0.8 42 1409.10 204.64 0.258 0.145 8.214 26.895

0.9 24 857.02 132.32 0.181 0.154 7.221 20.255

1.0 20 658.07 133.81 0.176 0.203 7.311 16.693

1.1 20 634.62 172.39 0.116 0.272 7.800 14.993

1.2 20 626.47 217.57 0.101 0.347 8.291 13.684

Table 3. Energy features of the equilibrium Wigner–Seitz cell

kF, fm−1 Z A EB/A, MeV/nucleon µn, MeV µp, MeV

0.6 58 1612.10 2.1516 3.2074 −34.4688

0.7 51 1573.70 2.7845 3.9876 −38.6206

0.8 42 1409.10 3.4374 4.8454 −42.7177

0.9 24 857.02 4.1123 5.7340 −46.9934

1.0 20 658.07 4.8210 6.8525 −53.5547

1.1 20 634.62 5.5764 7.4288 −59.9835

1.2 20 626.47 6.4225 8.5814 −65.4208
cluster (cell) center over the density of surrounding
neutron matter decreasing monotonically. As to the
neutron gap, its asymptotic value beyond the cluster
first increases with increasing kF, reaching a max-
imum at kF = 0.9 fm−1, and then decreases rather
fast. This behavior of the gap agrees qualitatively with
the kF dependence of the gap in uniform neutron mat-
ter (see Fig. 1). We note that, in the uniform case, the
value of ∆n at kF = 0.9 fm−1 is somewhat less than
its counterpart at kF = 0.8 fm−1. Therefore, the fact
that, for a nonuniform system, the gap is maximal at
kF = 0.9 fm−1 is at odds with the naive local-density
approximation.

In order to characterize the properties of the clus-
ters quantitatively, we have calculated the following
features for them. First, these are the average neutron
and proton radii Rn and Rp within the cluster that
are defined as the points of the maximum gradient
of the corresponding density. In the case where a
density distribution is described by a Fermi function,
the radius defined in this way coincides with the half-
density radius. For protons, Rp is indeed virtually
coincident with the respective half-density radius,
PH
while, for neutrons, Rn is very close to the position of
the point at which the difference δρn(r) = ρn(r)− ρan
(ρan is the asymptotic value of the neutron density far
off the cluster) is equal to half its value at r = 0. The
number of neutrons within the cluster is defined as

Ncl =
∫

r<Rm

d3rρn(r). (26)

We recall that the matching radius Rm is defined in
such a way that the proton density nearly vanishes at
this radius value, so that it is natural to identify the
cluster radius with it. Accordingly, the total number
of nucleons in the cluster is Acl = Ncl + Z. These
“global” features of the clusters versus Z (and, ac-
cordingly, versus the size of the Wigner–Seitz cell,
since there is an unambiguous relation between Z
and this size) are displayed in Figs. 15 and 16 for
various densities. In order to avoid encumbering the
figures, we restricted ourselves to four values of kF.
As before, the solid and dashed curves in Fig. 16 refer
to neutrons and protons, respectively.

For ordinary nuclei, the radii Rn and Rp are close
to each other and depend on the mass number A
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 19. Binding energy per nucleon for various values of
kF in the case of a phenomenological generalized energy
functional.
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Wigner–Seitz cell for various values of kF in the case of
phenomenological generalized energy functional.

according to the law R = r0A1/3, where the param-
eter r0 is virtually constant for all stable nuclei and
characterizes the average matter density within a
nucleus. It is of interest to calculate the analogous

quantities rn0 = Rn/A
1/3
cl and rp0 = Rp/A

1/3
cl for the

clusters being considered and to trace the variations
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of these parameters versus the average matter den-
sity. The graphs representing the dependences of rn0
and rp0 on Z are given in Figs. 17 and 18. One
can see that the character of the Z dependence of
the quantities being studied changes drastically upon
going over from kF = 1.0 fm−1 to kF = 1.2 fm−1. At
three smaller values of kF, all of the features being
considered change very smoothly with increasing Z
at a fixed density. Although the parameters rn0 and
rp0 corresponding to these values grow on average
with increasing density (the clusters “swell”), this
growth is insignificant. At the same time, all features
begin changing sharply (oscillating) with Z (with the
cell size) in the case of kF = 1.2 fm−1. Concurrently,
the average value of rn0 increases substantially. In all
probability, these oscillations and the increase in the
average value of rn0 is a precursor of a phase transition
to a uniform state.

The features of nuclear-like clusters correspond-
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Table 4. Features of the equilibrium configurations of the
Wigner–Seitz cell for various densities in the case of the
generalized energy functional introduced by Fayans and
his coauthors

kF,
fm−1 Z A Rc, fm

x

our
study [5] [23]

0.7 68 1397.90 30.655 0.049 0.033 0.0010

0.9 56 1323.10 23.410 0.042 0.026 0.0034

1.1 20 601.68 14.729 0.033 0.027 0.0086

Table 5.Features of clusters for equilibrium configurations
of the inner crust of a neutron star in the case of the
generalized energy functional introduced by Fayans and
his coauthors

kF, fm−1 Z A Acl xcl ycl Rc, fm

0.7 68 1397.90 342.99 0.198 0.245 30.655

0.9 56 1323.10 385.57 0.145 0.291 23.410

1.1 20 601.68 180.73 0.111 0.300 14.729

Table 6. Energy features of the equilibrium Wigner–Seitz
cell in the case of the generalized energy functional intro-
duced by Fayans and his coauthors

kF,
fm−1 Z A

EB/A,
MeV/nucleon

µn, MeV µp, MeV

0.7 68 1397.2 3.9679 6.0015 –42.7781

0.9 56 1323.3 5.5442 7.5937 –52.6820

1.1 20 601.7 6.6158 8.0193 –60.6237

ing to equilibrium configurations of the inner crust
of a neutron star are displayed in Table 2. Given
there are the mean proton concentration within the
cluster, xcl = Z/Acl, and the ratio ycl = Acl/A, which
indicates the fraction of the total number of nucleons
within the cluster. One can see that, with increasing
kF, xcl decreases monotonically, while ycl increases.
The last property correlates with a systematic de-
crease in the difference (Rc −Rm), the thickness of
the layer occupied by neutron matter. Finally, Table 3
compiles the energy features of equilibrium configu-
rations for various densities: the binding energies per
nucleon EB/A and the chemical potentials µn and µp
for neutrons and protons, respectively.
PH
7. RESULTS OF THE CALCULATIONS
FOR THE PHENOMENOLOGICAL

FUNCTIONAL

In this section, we describe the results of the
calculations for the purely phenomenological func-
tional proposed by Fayans and his coauthors [19].
In these calculations, the effective pairing interaction
was taken in the simplest form (7). Our objective is
to make an attempt at understanding which of the
results exposed in the preceding section are general
and which depend on the specific form of generalized
energy functional—that is, on the choice of model.
Here, we restricted ourselves to three density values
corresponding to kF = 0.7, 0.9, and 1.1 fm−1. The
results are given in Figs. 19–22 and in Tables 4–6.

The majority of the properties of the self-consistent
solution describing the structure of the inner crust of
a neutron star that were indicated in the preceding
section for the semimicroscopic functional survive in
the case of the phenomenological generalized energy
functional. In particular, the equilibrium configu-
ration at kF = 1.1 fm−1 corresponds to the magic
number Z = 20. The neutron gap, whose behavior
with increasing kF is absolutely unrealistic, is an
exception. This fact confirms that an extrapolation
of the phenomenological nuclear generalized energy
functional to neutron matter is very hazardous. In the
present case, this is manifested for the anomalous
part of the generalized energy functional.

8. CONCLUSION

For a wide interval of densities corresponding to
Fermi momenta in the range kF = 0.6–1.2 fm−1, we
have performed a self-consistent calculation of the
structure of the inner crust in a neutron star, taking
into account superfluid correlations of neutrons and
protons and relying on the Wigner–Seitz approxima-
tion. The approach used here is based on the gener-
alized method of an energy density functional in the
form proposed by Fayans and his coauthors [17], this
extending the well-known Kohn–Sham method to
superfluid systems. For the generalized energy func-
tional describing matter in the inner crust of a star,
we have proposed a semimicroscopic model where
a nuclear-like cluster occurring at the center of the
Wigner–Seitz cell is characterized by a phenomeno-
logical nuclear generalized energy functional [17] and
where the generalized energy functional for neutron
matter surrounding this cluster is calculated micro-
scopically within the Brueckner approach by using
the v18 nucleon–nucleon potential. The two gen-
eralized energy functionals in question have been
smoothly matched at the cluster boundary. System-
atic calculations have been performed for seven values
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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of kF in the above range with a step of 0.1 fm−1. With
the aim of studying the dependence of our results on
the specific form of generalized energy functional, we
have also performed calculations at three values of kF
(0.7, 0.9, 1.1 fm−1) with the purely phenomenological
generalized energy functional introduced by Fayans
and his coauthors. An analysis of the results and their
comparison with the results of the well-known study
by Negele and Vautherin [5] have demonstrated a
strong effect of pairing on the equilibrium values of
the parameters (Z, Rc) of the Wigner–Seitz cell. In
particular, the effect of the magic numbers Z = 40
and 50 that was predicted by the calculations in [5]
(according to [5], only these two values of Z compete
over the whole region being considered) is smeared to
a considerable extent. For all densities starting from
that which corresponds to kF = 1.0 fm−1, our calcu-
lations with the semimicroscopic generalized energy
functional have also led to the proton magic number
Z = 20 in the cell. We note that the proton gap ∆p

vanishes concurrently, as it does in ordinary magic
nuclei. The magic number Z = 20 also arises in the
calculations with the phenomenological functional
of Fayans and coauthors, but at somewhat higher
densities. It is interesting to note that, although the
equilibrium values of Z in our calculations and in [5]
differ by a factor of 2, the difference in the relative
proton concentration x is as small as 10 to 15%. At
the same time, the values of x exceed the predictions
for uniform matter [23] by an order of magnitude at
low kF and by a factor of 3 at kF = 1.2 fm−1.

For all values of kF, we have found self-consistently
the pairing gap for neutrons, ∆n(r); beyond the
cluster, it appears to be close to the corresponding
value for uniform neutron matter. Thus, we see that,
beyond the cluster, the local-density approximation
is quite accurate. At the same time, the value of
∆n(r) within the cluster exceeds considerably the
result obtained by applying the local-density approx-
imation. In solving the equation for the neutron gap,
we have employed the interpolated effective pairing
interaction (17) whose microscopic part was found
in the Bardeen–Cooper–Schrieffer approximation. It
is well known that, for neutron matter, this approx-
imation overestimates ∆n by a factor of about 2. In
all probability, the gap ∆n(r) found here in the region
beyond the cluster is accordingly overestimated by a
factor of about 2. The next step that we plan in con-
structing a realistic generalized energy functional is
to improve the microscopic part of the effective pairing
interaction with allowance for many-body corrections
to the Bardeen–Cooper–Schrieffer approximation.
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Abstract—Based on the data for the transitions π0, η, η′ → γγ∗(Q2) and reactions of the e+e− anni-
hilations e+e− → ρ0, ω, φ and e+e− → hadrons at 1 < Ee+e− < 3.7 GeV, we determine the light-quark
components of the photon wave function γ∗(Q2)→ qq̄ (q = u, d, s) for the region 0 � Q2 � 1 (GeV/c)2.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In the search for exotic states, one needs to find
the quark–gluon content of mesons and establish the
meson systematics. The meson radiative decay is a
powerful tool for qualitative evaluation of the quark–
antiquark components. The study of the two-photon
transitions such asmeson→ γγ and, more generally,
meson→ γ∗(Q2

1)γ∗(Q2
2) looks to be a promising way

to reveal the quark–antiquark content of mesons.

Experimental data accumulated by the Collabora-
tions L3 [1, 2], ARGUS [3], CELLO [4], TRC/2γ [5],
CLEO [6], Mark II [7], Crystal Ball [8], and others
make it obvious that the calculation of the processes
meson→ γ∗(Q2

1)γ∗(Q2
2) is up to date. To make this

reaction informative as concerns the meson quark–
gluon content, one needs a reliably determined wave
function of the photon at 0 � Q2 � 1 (GeV/c)2.
Conventionally, one may consider two pieces of the
photon wave function: soft and hard ones. The hard
component relates to the pointlike vertex γ → qq̄; it is
responsible for the production of a quark–antiquark
pair at high virtuality. At large energy of the e+e−

system, the ratio of cross sections R = σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) is determined by the
hard component of photon wave function, while the
soft component is responsible for the production of
low-energy quark–antiquark vector states, such as
ρ0, ω, φ(1020), and their excitations.

Evaluation of the photon wave function for the
γ∗(Q2)→ uū, dd̄, ss̄ transitions was carried out in [9]
on the basis of data of the CLEOCollaboration on the
Q2-dependent transition form factors π0 → γγ∗(Q2),

∗The text was submitted by the authors in English.
**e-mail: anisovic@thd.pnpi.spb.ru
1063-7788/05/6811-1830$26.00
η → γγ∗(Q2), and η′ → γγ∗(Q2) (see [6] and refer-
ences therein). The goal of the present paper is, by
adding information on the process e+e− → hadrons,
to define more precisely the wave function γ∗(Q2)→
uū, dd̄, ss̄.
Similarly to what has been done in [9], here we

determine the photon wave function working in the
approach of the spectral-integration technique. This
technique was suggested in [10] for the description
of deuteron form factors, the deuteron being treated
as a composite two-nucleon system. In [9, 11], the
spectral-integration technique was expanded for the
composite qq̄ systems with wave functions written in
terms of the light-cone variables. The wave function
depends on the invariant energy squared of the qq̄
system as follows:

s =
m2 + k2

⊥
x(1− x)

, (1)

where m is the quark mass and k⊥, and x are the
light-cone characteristics of quarks (transverse mo-
mentum and a part of the longitudinal momentum). In
this technique, the quark wave function of the photon,
γ∗(Q2)→ qq̄, is defined as follows:

Ψγ∗(Q2)→qq̄(s) =
Gγ→qq̄(s)
s + Q2

(2)

where Gγ→qq̄(s) is the vertex for the transition of the
photon into the qq̄ state and s is the energy squared
of the qq̄ system. Rather schematically, the vertex
function Gγ→qq̄(s)may be represented as

Ce−bs + θ(s− s0), (3)

where the first term stands for the soft component
which is due to the transition of photons to vector qq̄
mesons γ → V → qq̄, while the second one describes
the pointlike interaction in the hard domain (here, the
c© 2005 Pleiades Publishing, Inc.
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step function θ(s− s0) = 1 at s ≥ s0 and θ(s− s0) =
0 at s < s0). The principal characteristics of the soft
component of Gγ→qq̄(s) is the threshold value of the
vertex, C exp(−4m2b), and the rate of its decrease
with energy, that is, the slope b. The hard component
of the vertex is characterized by the magnitude s0,
which is the quark energy squared when pointlike
interaction becomes dominant.

In [9], the photon wave function has been found
assuming that the quark relative-momentum depen-
dence is the same for all quark vertices: gγ→uū(k2) =
gγ→dd̄(k

2) = gγ→ss̄(k2), where we redenoted
Gγ→qq̄(s)→ gγ→qq̄(k2) with k2 = s/4−m2. The
hypothesis of the vertex universality for u and d
quarks,

Gγ→uū(s) = Gγ→dd̄(s) ≡ Gγ(s) (4)

looks rather trustworthy because of the degeneracy
of ρ and ω states, though the similarity in the
k dependence for nonstrange and strange quarks
may be violated. In addition, using experimental
data on the transitions γγ∗(Q2)→ π0, η, η′ only,
one cannot find the main parameters (C, b, s0) for
both Gγ→ss̄(s) and Gγ(s). In the present paper,
we add the e+e−-annihilation data for the deter-
mination of wave functions, that is, e+e− → γ∗ →
ρ0, ω, φ(1020), together with the ratio R(Ee+e−) =
σ(e+e− → hadrons)/σ(e+e− → µ+µ−) at Ee+e−
higher than 1 GeV. The reactions e+e− → γ∗ →
ρ0, ω, φ(1020) are rather sensitive to the parameters
C and b of the soft component of the photon wave
function, while the data on R(Ee+e−) allow us to fix
the parameter s0 for the beginning of the pointlike
vertex regime [see Eq. (3)].

The paper is organized as follows. In Section 2,
which is in fact the introductory one, we present
the formulas for the charge form factor of the pseu-
doscalar meson and transition form factors π0, η, η′ →
γ(Q2

1)γ(Q2
2) in terms of the spectral integration

technique. In Section 3, we consider the
e+e−-annihilation processes: the partial decay widths
ω, ρ0, φ→ e+e− and the ratio R(Ee+e−) =
σ(e+e− → hadrons)/σ(e+e− → µ+µ−) at 1 ≤
Ee+e− ≤ 3.7 GeV. The photon wave function γ → qq̄
for the light quarks is determined in Section 4. The re-
sults of calculations for the decays f0(980), a0(980)→
γγ and f2(1270), f2(1525), a2(1320) → γγ carried
out with the photon wave function found here are
compared with calculations performed with the old
photon wave function [9] in Section 5. In the Conclu-
sion, we briefly summarize the results.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
2. QUARK–ANTIQUARK-STATE
FORM FACTORS

IN THE SPECTRAL-INTEGRATION
TECHNIQUE

In this section, we recall the main formulas for
the calculation of the charge and transition form fac-
tors in the spectral-integration technique; these for-
mulas are used for the determination of the photon
wave function. First, we present formulas for the pion
charge form factor—they are needed to fix up the wave
function of the pion and other members of the lowest
pseudoscalar nonet, η and η′. The calculation of the
charge form factor is based on a fundamental hypoth-
esis of the additive quark model: the mesons consist
of a quark and antiquark, and the photon interacts
with one of the constituent quarks. Hereafter, the for-
mulas for the transitions π0, η, η′ → γ(Q2

1)γ(Q2
2) are

given; they are written within a similar approach. A
more detailed discussion of these formulas and basic
assumptions may be found in [12–21].

2.1. Pion Charge Form Factor

Here, we recall the logic of calculation in the
spectral-integration technique and write down the
formulas for the pion form factor.

The general structure of the amplitude of pion–
photon interaction is as follows:

A(π)
µ = e(pµ + p′µ)Fπ(Q2), (5)

where e is the absolute value of electron charge, p and
p′ are the pion incoming and outgoing 4-momenta,
and Fπ(Q2) is the pion form factor. We are working
in the spacelike region of the momentum transfer, so

Q2 = −q2, where q = p− p′. The amplitude A(π)
µ is

the transverse one: qµA
(π)
µ = 0.

In the quark model, the pion form factor is defined
as a process shown in Fig. 1a: the photon interacts
with one of the constituent quarks. In the spectral-
integration technique, the method of calculation of
the diagram of Fig. 1a is as follows: we consider
the dispersive integrals over masses of incoming and
outgoing qq̄ states, and the corresponding cuttings of
the triangle diagram are shown in Fig. 1b. In this way,
we calculate the double discontinuity of the triangle
diagram, discsdiscs′Fπ(s, s′, Q2), where s and s′ are
the energy squared of the qq̄ systems before and after
the photon emission,P 2 = s andP ′2 = s′ (recall that,
in the dispersion relation technique, the momenta of
intermediate particles do not coincide with external
momenta, p �= P and p′ �= P ′). The double discon-
tinuity is defined by three factors:
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Fig. 1. (a) Diagram for the meson charge form factor in the additive quark model. (b) Cuts of the triangle diagram in the
spectral integral representation.
(i) product of the pion vertex functions and quark
charge

eqGπ(s)Gπ(s′), (6)

where, due to Eq. (5), eq is given in units of the
charge e;
(ii) phase space of the triangle diagram (Fig. 1b) at

s ≥ 4m2 and s′ ≥ 4m2:

dΦtr = dΦ2(P ; k1, k2)dΦ2(P ′; k′1, k
′
2)(2π)3 (7)

× 2k20δ
(3)(k2 − k′

2),

with the two-particle phase space determined as

dΦ2(P ; k1, k2) =
1
2

d3k1

(2π)3 × 2k10
(8)

× d3k2

(2π)3 × 2k20
(2π)4δ(4)(P − k1 − k2);

(iii) spin factor Sπ(s, s′, Q2) determined by the
trace of the triangle diagram process of Fig. 1b:

−Tr[iγ5(m− k̂2)iγ5(m + k̂′1)γ⊥µ (m + k̂1)] (9)

= (P + P ′)⊥µSπ(s, s′, Q2).

Recall that, in the dispersion integral, we deal with
mass-on-shell particles, so k2

1 = k′21 = k2
2 = m2. The

vertex iγ5 corresponds to the transition π → qq̄; the
photon carries the momentum q̃ = P − P ′; and the
photon momentum squared is fixed, q̃2 = q2 = −Q2.

The transversity of the amplitude A(π)
µ is guaranteed

by the use of γ⊥µ in the trace (9):

γ⊥µ = g⊥µνγν , (10)

g⊥µν = gµν −
(P ′

µ − Pµ)(P ′
ν − Pν)

q2
,

(P + P ′)⊥µ =
[
P ′
µ + Pµ −

P ′
µ − Pµ

q2
(s′ − s)

]
.

PH
The spin factor Sπ(s, s′, Q2) reads

Sπ(s, s′, Q2) = 2
[
(s + s′ + Q2)α(s, s′, Q2)−Q2

]
,

(11)

α(s, s′, Q2) =
s + s′ + Q2

2(s + s′) + (s′ − s)2/Q2 + Q2
.

As a result, the double discontinuity of the diagram
with a photon emitted by a quark is determined as

eqGπ(s)Gπ(s′)Sπ(s, s′, Q2)dΦtr. (12)

Emission of a photon by an antiquark gives a similar
contribution, with the substitution eq → eq̄, so the
total charge factor for the π+ is unity, eu + ed̄ = 1.
Then the double discontinuity reads

discsdiscs′Fπ(s, s′, Q2) (13)

= Gπ(s)Gπ(s′)Sπ(s, s′, Q2)dΦtr.

The form factor Fπ(Q2) is defined as a double disper-
sion integral as follows:

Fπ(Q2) =

∞∫
4m2

ds

π

ds′

π

discsdiscs′Fπ(s, s′, Q2)
(s′ −m2

π)(s −m2
π)

. (14)

When the form factor calculations are performed, it
is suitable to operate with the wave function of the
composite system. In the case of a pion, the wave
function is defined as follows:

Ψπ(s) =
Gπ(s)
s−m2

π

. (15)

There are different ways to work with formula (14), in
accordance with different goals, where the qq̄ system
is involved. The spectral representation of the form
factor appears after the integration in (14) over the
momenta of constituents by removing δ functions in
the phase space dΦtr. Then

Fπ(Q2) =

∞∫
4m2

ds

π

ds′

π
Ψπ(s)Ψπ(s′) (16)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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× Sπ(s, s′Q2)
θ(s′sQ2 −m2λ(s, s′, Q2))

16
√
λ(s, s′, Q2)

,

λ(s, s′, Q2) = (s′ − s)2 + 2Q2(s′ + s) +Q4.

Here, the θ function determines the integration region
over s and s′: θ(X) = 1 at X ≥ 0 and θ(X) = 0 at
X < 0.
Another way to present form factor is to remove

the integration over the energy squared of the quark–
antiquark systems, s and s′, by using δ functions
entering dΦtr. Then we have the formula for the pion
form factor in the light-cone variables:

Fπ(Q2) =
1

16π3

1∫
0

dx

x(1− x)2
(17)

×
∫

d2k⊥Ψπ(s)Ψπ(s′)Sπ(s, s′, Q2),

s =
m2 + k2

⊥
x(1− x)

, s′ =
m2 + (k⊥ − xQ)2

x(1− x)
,

where k⊥ and x are the light-cone quark characteris-
tics (transverse momentum of the quark and a part of
the momentum along the z axis).
Fitting formula (16) or (17) to data at 0 ≤ Q2 ≤

1 (GeV/c)2 with two-exponential parametrization of
the wave functionΨπ,

Ψπ(s) = cπ [exp(−bπ1s) + δπ exp(−bπ2s)] , (18)

we obtain the following values of the pion wave func-
tion parameters:

cπ = 209.36 GeV−2, δπ = 0.01381, (19)

bπ1 = 3.57 GeV−2, bπ2 = 0.4 GeV−2.

Figure 2 displays the description of the data by for-
mula (16) [or (17)] with the pion wave function given
by (18), (19).
The region 1 ≤ Q2 ≤ 2 (GeV/c)2 was not used

for the determination of parameters of the pion wave
function: one may suppose that, atQ2 ≥ 1 (GeV/c)2,
the predictions of the additive quark model fail. How-
ever, one can see that the calculated curve fits reason-
ably well to data in the neighboring region 1 ≤ Q2 ≤
2 (GeV/c)2 too (dashed curve in Fig. 2).
The constraint Fπ(0) = 1 serves us as a normal-

ization condition for the pion wave function. We have
in the low-Q2 region

Fπ(Q2) 	 1− 1
6
R2
πQ

2, (20)

with R2
π 	 10 GeV−2. The pion radius is just the

characteristic which is used later on for comparative
estimates of the wave function parameters for other
low-lying qq̄ states.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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Fig. 2. Description of the experimental data on the pion
charge form factor with the pion wave function given
by (18), (19).

2.2. Transition Form Factors
π0, η, η′ → γ∗(Q2

1)γ∗(Q2
2)

Using the same technique, we can write the
formulas for transition form factors of pseudoscalar
mesons π0, η, η′ → γ∗(Q2

1)γ∗(Q2
2); the correspond-

ing diagrams are shown in Fig. 3.
For these processes, the general structure of the

amplitude is as follows:

Aµν(Q2
1, Q

2
2) = e2εµναβqαpβFπ,η,η′→γγ(Q2

1, Q
2
2).
(21)

In the light-cone variables (x,k⊥), the expression for
the transition form factor π0 → γ∗(Q2

1)γ∗(Q2
2) deter-

mined by two processes of Fig. 3a and Fig. 3b reads

Fπ→γγ(Q2
1, Q

2
2) = ζπ→γγ

√
Nc

16π3
(22)

×
1∫

0

dx

x(1− x)2

∫
d2k⊥Ψπ(s)

×
(
Sπ→γγ(s, s′1, Q

2
1)
Gγ(s′1)
s′1 + Q2

2

+ Sπ→γγ(s, s′2, Q
2
2)
Gγ(s′2)
s′2 +Q2

1

)
,

where

s =
m2 + k2

⊥
x(1− x)

, (23)

s′i =
m2 + (k⊥ − xQi)2

x(1− x)
(i = 1, 2).
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Fig. 3.Diagrams for the two-photon decay of the qq̄ state.
The spin factor for pseudoscalar states depends on the
quark mass only:

Sπ→γγ(s, s′i, Q
2) = 4m. (24)

The charge factor for the decay π0 → γγ is equal to

ζπ→γγ =
e2u − e2d√

2
=

1
3
√

2
. (25)

In (22), the ratio Gγ(si)/(si + Q2) is the photon
wave function (recall that we denote Gγ→uū(s) =
Gγ→dd̄(s) ≡ Gγ(s)). The factor

√
Nc on the right-

hand side of (22) appears due to another definition of
the color wave function of the photon as compared to
pion’s one: without 1/

√
Nc.

In terms of the spectral integrals over the (s, s′)
variables, the transition form factor for π0 →
γ∗(Q2

1)γ∗(Q2
2) reads

Fπ→γγ(Q2
1, Q

2
2) = ζπ→γγ

√
Nc

16
(26)

×
∞∫

4m2

ds

π

ds′

π
Ψπ(s)

[
θ(s′sQ2

1 −m2λ(s, s′, Q2
1))√

λ(s, s′, Q2
1)

× Sπ(s, s′, Q2
1)
Gγ(s′)
s′ + Q2

2

+
θ(s′sQ2

2 −m2λ(s, s′, Q2
2))√

λ(s, s′, Q2
2)

Sπ(s, s′, Q2
2)
Gγ(s′)
s′ +Q2

1

]
,

where λ(s, s′, Q2
i ) is determined in (16).

Similar expressions may be written for the tran-
sitions η, η′ → γ∗(Q2

1)γ∗(Q2
2). One should bear in

mind that, because of the presence of two quarkonium
components, their flavor wave functions are ss̄ and
nn̄ = (uū + dd̄)/

√
2; in the η, η′ mesons,

η = nn̄ sin θ − ss̄ cos θ, η′ = nn̄ cos θ + ss̄ sin θ,

their transition form factors are expressed through
mixing angle θ as follows:

Fη→γγ(s) = Fη/η′(nn̄)→γγ(s) sin θ (27)

− Fη/η′(ss̄)→γγ(s) cos θ,
PH
Fη′→γγ(s) = Fη/η′(nn̄)→γγ(s) cos θ

+ Fη/η′(ss̄)→γγ(s) sin θ.

The spin factors for nonstrange components of η
and η′ are the same as those for the pion, see (24),
though with another quark mass entering the strange
component: Sη/η′(ss̄)→γγ(s, s′, Q2) = 4ms.
The charge factors for the nn̄ and ss̄ components

are equal to

ζη/η′(nn̄)→γγ =
5

9
√

2
, ζη/η′(ss̄)→γγ =

1
9
. (28)

In the calculation of transition form factors of pseu-
doscalar mesons, the wave function related to non-
strange quarks in η and η′ was assumed to be the
same as for the pion: Ψη/η′(nn̄)(s) = Ψπ(s). As to
strange components of the wave functions, we sup-
pose the same shape for nn̄ and ss̄. ForΨη/η′(ss̄)(s) =
Ψπ(s), it results in another normalization only:

Ψη/η′(ss̄)(s) = cη/η′(ss̄)[exp(−bη/η
′(ss̄)

1 s) (29)

+ δη/η′(ss̄) exp(−bη/η
′(ss̄)

2 s)],

cη/η′(ss̄) = 528.78 GeV3/2, δη/η′(ss̄) = δπ,

b
η/η′(ss̄)
1 = bπ1 , b

η/η′(ss̄)
2 = bπ2 .

3. e+e− ANNIHILATION

The e+e−-annihilation processes provide us with
additional information on the photon wave function:
(i) The partial width of the transitions ω, ρ0, φ→

e+e− is defined by the quark loop diagrams, which
contain the product Gγ(s)ΨV (s), where ΨV (s) is
the quark wave function of the vector meson (V =
ω, ρ0, φ). Supposing that radial wave functions of
ω, ρ0, φ coincide with those of the lowest pseu-
doscalar mesons (this assumption looks reasonable,
for these mesons are members of the same lowest
36-plet), we can obtain information about Gγ(s)
and Gγ(ss̄)(s) from the data on the ω, ρ0, φ→ e+e−

decays [22].
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 4. Production of the vector qq̄ state in the e+e−

annihilation (V stands for a vector meson).

(ii) The ratio R(s) = σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) at high center-of-mass
energies but below the open charm production (

√
s ≡

Ee+e− < 3.7GeV) is determined by hard components
of the photon vertices Gγ(s) and Gγ(ss̄)(s) (transi-
tions γ∗ → uū, dd̄, ss̄), thus giving us a well-known
magnitude R(s) = 2 (small deviations from R(s) = 2
come from corrections related to the gluon emission
γ∗ → qq̄g; see [23] and references therein). Hence,
the deviation of the ratio from the value R(s) = 2
at decreasing Ee+e− provides us with information
about the energies when the regime changes: hard
components in Gγ(s) and Gγ(ss̄)(s) stop working,
while soft components start to play their role.

3.1. Partial Decay Widths ω, ρ0, φ→ e+e−

Figure 4 is a diagrammatic representation of the
reaction V → e+e−: a virtual photon produces the qq̄
pair, which turns into a vector meson.
The partial width of the vector meson is deter-

mined as follows:

mV ΓV→e+e− = πα2A2
e+e−→V

1
m4
V

(30)

×
(

4
3
m2
V +

8
3
m2
e

)√
m2
V − 4m2

e

m2
V

.

Here, mV is the vector meson mass, the factor
1/m2

V is associated with the photon propagator,
and α = e2/(4π). In (30), the integration over
electron–positron phase space results in√

(m2
V − 4m2

e)/m2
V /(16π), while the averaging over

vector-meson polarizations and summing over
electron–positron spins gives

1
3
Tr
[
γ⊥µ (k̂1 + me)γ⊥µ (−k̂2 + me)

]
(31)

=
4
3
m2
V +

8
3
m2
e.

The amplitude AV→e+e− is determined through
the quark–antiquark loop calculations, within the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 200
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Fig. 5. Data for π0 → γγ∗, η → γγ∗, and η′ → γγ∗ vs.
the calculation curves.

spectral-integration technique. In this way, we get
for the decays ω, ρ0 → e+e−

Aω,ρ0→e+e− = Zω,ρ0

√
Nc

16π
(32)
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×
∞∫

4m2

ds

π
Gγ(s)Ψω,ρ(s)

√
s− 4m2

s

(
8
3
m2 +

4
3
s

)
,

where Zω,ρ0 is the quark charge factor for vector

mesons: Zω = 1/(3
√

2) and Zρ0 = 1/
√

2. We have
a similar expression for the φ(1020) → e+e− ampli-
tude:

Aφ→e+e− = Zφ

√
Nc

16π
(33)

×
∞∫

4m2
s

ds

π
Gγ→ss̄(s)Ψφ(s)

√
s− 4m2

s

s

(
8
3
m2
s +

4
3
s

)
,

with Zφ = 1/3. The normalization condition for the
PH
vector-meson wave function reads

1
16π

∞∫
4m2

ds

π
Ψ2
V (s)

√
s− 4m2

s

(
8
3
m2 +

4
3
s

)
= 1.

(34)

Thewave function is parametrized in a one-exponential
form:

ΨV (s) = cV exp(−bV s), (35)

with

bω,ρ = 2.2GeV−2, cω,ρ = 95.1GeV−2 (36)

for the nonstrange mesons and

bφ = 2.5 GeV−2, cφ(ss̄) = 374.8 GeV−2 (37)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005



DETERMINATION OF QUARK–ANTIQUARK 1837
for the φ(1020). Within the parametrization used,
the vector mesons are characterized by the follow-
ing mean radii squared: R2

ω,ρ = 10GeV−2 and R2
φ =

11 GeV−2.

3.2. The Ratio R(s) = σ(e+e− →
hadrons)/σ(e+e− → µ+µ−)

at Energies below the Open Charm Production

At high energies but below the open charm pro-
duction, Ee+e− =

√
s < 3.7 GeV, the ratio R(s) is

determined by the sum of quark charges squared in
the transition e+e− → γ∗ → uū+ dd̄ + ss̄multiplied
by the factorNc = 3:

R(s) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

(38)

= Nc(e2u + e2d + e2s) = 2.

Since theGγ(s) andGγ(ss̄)(s) vertices are normalized
as Gγ(s) = Gγ(ss̄)(s) = 1 at s→∞, at large s, we
can relate R(s) and

Rvert(s) = 3(e2u + e2d)G
2
γ(s) (39)

+ 3e2sG
2
γ(ss̄)(s) =

5
3
G2
γ(s) +

1
3
G2
γ(ss̄)(s)

to each other:

R(s) 	 Rvert(s). (40)

Following (40), we determine the energy region where
the hard components in Gγ(s) and Gγ(ss̄)(s) start to
dominate.

4. PHOTON WAVE FUNCTION

To determine the photon wave function we use
(i) transition widths π0, η, η′ → γγ∗(Q2),
(ii) partial decay widths ω, ρ0, φ→ e+e−, µ+µ−,
(iii) the ratio R(s) = σ(e+e− →

hadrons)/σ(e+e− → µ+µ−).
Transition vertices for uū, dd̄→ γ, and ss̄→ γ

have been chosen in the following form:

uū, dd̄ : Gγ(s) = cγ(e−b
γ
1s + cγ2e

−bγ2s) (41)

+
1

1 + e−b
γ
0 (s−sγ

0 )
,

ss̄ : Gγ(ss̄)(s) = cγ(ss̄)e
−bγ(ss̄)

1 s

+
1

1 + e−b
γ(ss̄)
0 (s−sγ(ss̄)

0 )
.

Recall that photon wave function is determined as
Ψγ(s,Q2) = Gγ(s)/(s + Q2) [see Eq. (2)].
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The shaded area corresponds to the values allowed by the
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The following parameter values have been found in
fitting to data:

uū, dd̄ : cγ = 32.577, cγ2 = −0.0187, (42)

bγ1 = 4GeV−2, bγ2 = 0.8GeV−2,

bγ0 = 15GeV−2, sγ0 = 1.62 GeV2,

ss̄ : cγ(ss̄) = 310.55, b
γ(ss̄)
1 = 4GeV−2, (43)

b
γ(ss̄)
0 = 15GeV−2, s

γ(ss̄)
0 = 2.15 GeV2.

Now, let us present the results of the fit in more
detail.
Figure 5 shows the data for π0 → γγ∗(Q2) [4,

22], η → γγ∗(Q2) [4–6, 22], and η′ → γγ∗(Q2) [2,
4–6, 22]. We perform the fitting procedure in the
interval 0 ≤ Q2 ≤ 1 (GeV/c)2; the fitting curves are
shown by solid curves. The continuation of the curves
into the neighboring region 1 ≤ Q2 ≤ 2 (GeV/c)2

(dashed curves) demonstrates that there is also a
reasonable description of the data.
The calculation results for the V → e+e− decay

partial widths vs. data [22] are shown below (in keV):

Γcalcρ0→e+e− = 7.50, Γexp
ρ0→e+e− = 6.77± 0.32, (44)

Γcalcω→e+e− = 0.796, Γexp
ω→e+e− = 0.60 ± 0.02,

Γcalcφ→e+e− = 1.33, Γexp
φ→e+e− = 1.32 ± 0.06,

Γcalcρ0→µ+µ− = 7.48, Γexp
ρ0→µ+µ− = 6.91 ± 0.42,

Γcalcφ→µ+µ− = 1.33, Γexp
φ→µ+µ− = 1.65± 0.22.
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Figure 6a displays the data for R(s) [23] at
Ee+e− > 1 GeV (dashed area) versus Rvert(s) given
by Eq. (39) with parameters (42) (solid line).

In Figs. 6b and 6c, one can see the k2 dependence
of photon wave functions on the quark relative-
momentum squared k2 (here, s = 4m2 + 4k2) for the
nonstrange and strange components found in our fit
(solid curves) and those found in [9] (dashed curves).
Onemay see that, in the region 0 ≤ k2 ≤ 2 (GeV/c)2,
PH
the scrupulous distinction is rather considerable,
though, on average, the old and new wave functions
almost coincide. In the next section, we compare the
results obtained for the two-photon decays of scalar
and tensor mesons, S → γγ and T → γγ, calculated
with the old and new wave functions.

5. TRANSITIONS S → γγ AND T → γγ
As was mentioned above, on average, the old [9]

and new photon wave functions coincide, though they
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differ in details. So it would be useful to understand to
what extent this difference influences the calculation
results for the two-photon decays of scalar and tensor
mesons.
The calculation of the two-photon decays of scalar

mesons f0(980)→ γγ and a0(980)→ γγ has been
performed in [12, 13] with the old wave function, un-
der the assumption that f0(980) and a0(980) are the
qq̄ systems. The results of the calculations are shown
in Fig. 7 (dashed curve). The solid curve represents
the values found with the new photon wave function;
for a0(980), the new wave function reveals a steeper
dependence on the radius squared as compared to
the old wave function. In the region R2

a0(980) ∼ R2
π =

10 GeV−2, the value Γ (a0(980) → γγ) calculated
with the new wave function becomes 1.5–2 times
smaller as compared to the old wave function—this
reflects the more precise definition of the photon wave
function. In the calculations, the flavor wave function
of f0(980) was defined as follows:

nn̄ cosϕ+ ss̄ sinϕ.

In Fig. 8, the calculated areas are shown for the re-
gion ϕ < 0 that is governed by theK-matrix analysis
results of meson spectra [24, 25]. The dashed area
corresponds to the experimental data [26].
The f0(980) being the qq̄ system is character-

ized by two parameters: the mean radius squared
of f0(980) and mixing angle ϕ. In Fig. 9, the ar-
eas allowed for these parameters are shown; they
were obtained for the processes f0(980)→ γγ and
φ(1020) → γf0(980) with the old photon wave func-
tion (Fig. 9a) and the new one (Fig. 9b). The change
in the allowed areas (R2

f0(980), ϕ) for the reaction
f0(980) → γγ is rather noticeable, but it should be
emphasized that it does not lead to a cardinal alter-
ation of the parameter magnitudes.
Another set of reactions calculated with the pho-

ton wave function is the two-photon decay of tensor
mesons as follows: a2(1320) → γγ, f2(1270) → γγ,
and f2(1525) → γγ. The calculations of a2(1320)→
γγ with the old and new wave functions are shown
in Fig. 10 (dashed and solid curves, respectively);
experimental data [22, 26] are presented in Fig. 10 too
(shaded areas). The description of experimental data
has been carried out at R2

a2(1320) ∼ 8 GeV−2: in this
region, the difference between the calculated values
of partial widths, which is due to a change in the wave
function, is of the order of 10–20%.
The amplitude of the transition f2 → γγ is deter-

mined by four form factors related to the existence
of two flavor components and two spin structures
(see [12, 14] for the details). The calculations of these
four form factors with the old and new wave functions
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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Fig. 10. Calculated curves vs. experimental data (shaded
areas) for Γ(a2(1320) → γγ). The solid curve stands for
the new photon wave function and the dashed curve
stands for the old one.

are shown in Fig. 11—at R2
T ∼ 8−10 GeV−2, the

difference is of the order of 10–20%. In Fig. 12, we
show the allowed areas (R2

T , ϕT ) obtained in the de-
scription of experimental widths Γ (f2(1270) → γγ)
and Γ (f2(1525) → γγ) [22] with the old (Fig. 12a)
and new (Fig. 12b) wave functions. The new photon
wave function results in a more rigid constraint for
the areas (R2

T , ϕT ), though there are no qualitative
changes in the description of data. The two-photon-
decay data give us two solutions for the (R2

T , ϕT )
parameters:

(R2
T , ϕT )I 	

(
8GeV −2, 0

)
, (45)

(R2
T , ϕT )II 	

(
8GeV−2, 25◦

)
.

The solution with ϕ 	 0, when f2(1270) is nearly a
pure nn̄ state and f2(1525) is an ss̄ system, is more
preferable from the point of view of hadronic decays
as well as the analysis [27].

6. CONCLUSION

Meson–photon transition form factors have been
discussed within various approaches such as per-
turbative QCD formalism [28, 29], QCD sum rules
[30–32], and variants of the light-cone quark model
[9, 33–37]. A distinctive feature of the quark-model
approach [9] consists in taking into account soft in-
teraction of quarks in the subprocess γ → qq̄, that is,
taking into account the production of vector mesons
in the intermediate state: γ → V → qq̄.
05
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In the present paper, we have reanalyzed the
quark components of the photon wave function (the
γ∗(Q2)→ uū, dd̄, ss̄ transitions) on the basis of
data on the reactions π0, η, η′ → γγ∗(Q2), e+e− →
ρ0, ω, φ, and e+e− → hadrons. On the qualitative
level, the wave function obtained here coincides
with that defined before [9] by using the transitions
π0, η, η′ → γγ∗(Q2) only. The data on the reactions
e+e− → ρ0, ω, φ and e+e− → hadrons allowed us
to get a more precise wave function structure, in
PH
particular, in the region of the relative quark momenta
k ∼ 0.4−1.0GeV/c.

Such an improvement in our knowledge of the
photon wave function does not lead to a cardinal
change in the description of two-photon decays or
basis scalar and tensor mesons obtained before [12–
14]. Still, a more detailed definition of the photon
wave function is important for the calculations of the
decays of a loosely bound qq̄ state, such as the ra-
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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dial excitation state or reactions with virtual photons,
qq̄ → γ∗(Q2

1)γ∗(Q2
2).
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ELEMENTARY PARTICLES AND FIELDS
Theory
Rare Radiative Leptonic Decays B0
d,s → �+�−γB0
d,s → �+�−γB0
d,s → �+�−γ
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Institute of Nuclear Physics, Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
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Abstract—The rare radiative leptonic decays B̄0
d,s → �+�−γ are studied. The contributions to the re-

spective amplitude from the emission of photons from the quark loop, bremsstrahlung from leptons, and
weak-annihilation effects are taken into account in relevant calculations. Results are presented for the
partial widths and distributions of leptons in the final state. It is shown that the previously disregarded
contributions of vector resonances associated with virtual-photon emission from the light valence quark of
the B meson have a significant effect on the mass spectra of dileptons. c© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The rare radiative leptonic decays B̄0
d,s → �+�−γ

(for the sake of brevity, they are referred to below
as merely rare radiative decays) are associated with
b→ s, d transitions, which are caused by a flavor-
changing weak neutral current. Within the Standard
Model, such a current arises in the lowest order
of perturbation theory only beginning from loop
diagrams of the penguin and box types. It follows
that, within the Standard Model, the partial widths
with respect to the radiative decays being considered
range between 10−8 and 10−15. The partial widths
with respect to the rare radiative leptonic decays
B0
d,s → �+�− are on the same order of magnitude.

Decays characterized by partial widths as small as
those quoted above can be detected in none of the
currently operating experiments, including those at
the Tevatron proton–antiproton collider and those at
the BaBar and Belle B-meson factories. However,
it is planned to record the decays B0

d,s → µ+µ− and
B0
d,s → µ+µ−γ at the ATLAS, CMS, and LHCb fa-

cilities, which will operate at the LHC proton–proton
collider presently under construction at CERN. The
respective partial widths are about 10−10 and 10−9 for
the former and, as will be shown in the present study
below, 10−10 and 10−8 for the latter.

The smallness of the partial widths with respect
to the decays B0

d,s → �+�−γ opens the possibility for
studying, at a high level of precision, the predictions of
the Standard Model in higher orders of perturbation
theory and for seeking new-physics effects (that is,

*e-mail: melikhov@sinp.msu.ru
**e-mail: nik679@monet.npi.msu.su
***e-mail: ktoms@mail.cern.ch
1063-7788/05/6811-1842$26.00
effects beyond the Standard Model). Moreover, such
rare radiative decays can make a nontrivial back-
ground contribution to experimental measurements
of the partial width for the decayB0

d → �+�−. Knowl-
edge of this contribution is of importance for the
problem of new-physics searches in the rare leptonic
decays of B mesons at future accelerators.

It is convenient to study rare radiative decays the-
oretically by using the effective Hamiltonian for b→ q
transitions that is represented in the form of Wilson’s
operator-product expansion [1]:

Hb→q
eff =

GF√
2
VtbV

∗
tq

∑
i

Ci(µ)Oi(µ), (1)

where q = {d, s}; GF is the Fermi constant; Ci are
Wilson coefficients, which involve all high-energy
singularities of the Standard Model or its extensions;
andOi is a set of basis operators. The scale parameter
µ separates the soft and the hard contribution from
strong interactions. In describing B-meson decays,
one usually sets µ � 5 GeV.

The hard contribution is contained inWilson coef-
ficients, which are calculated bymeans of perturbative
QCD. The soft contribution is contained in invariant
amplitudes—that is, in form factors parametrizing the
matrix elements of basis operators between the initial
and the final hadron state. A few types of basis oper-
ators are involved in describing rare radiative decays
of B mesons. Accordingly, it is necessary to calculate
form factors of a few types.

The decays B0
d,s → �+�−γ have been explored in

a number of studies. In [2–6], the radiative-decay
partial widths, the dilepton mass spectra, the photon
energy spectra, and the charge asymmetries were ob-
tained by means of various nonperturbative methods
for taking into account the contribution of strong
c© 2005 Pleiades Publishing, Inc.
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interactions. The authors of those studies considered
primarily the contribution to the amplitude of the rare
radiative decays from the transition B0

q → γ induced
by theHamiltonian for the b→ q�+�− transition. This
is accompanied by the emission of a real photon by
the valence quarks of the B0

q meson. We discuss the
transitions B0

q → γ in Section 1, following the results
reported in [2].

As contrasted to what was done in [2], we consider
here three additional contributions to the amplitudes
for the rare radiative decays.

In Section 2, we analyze the contribution of the
process in which the emission of a virtual photon
by the valence quarks of the B0

q meson (B0
q → γ∗

transition) is followed by the conversion of this photon
into a lepton pair. In describing this process, it is
necessary to take into account the resonance contri-
bution of vector mesons in the physical region of the
decay process. It is shown how the form factors for the
transitions B0

q → γ∗ can be obtained from the form
factors for the decays B0

q → V γ and B0
q → γγ.

The weak-annihilation process is considered in
Section 3. It is well known that, against photon emis-
sion from the B0

q-meson loop, this process is sup-
pressed in proportion to 1/mb [7]. Nonetheless, its
contribution is quite sizable in the region of small
values of the spectrum with respect to the invariant
dilepton mass; therefore, it is included in our consid-
eration.

Lepton bremsstrahlung in the final state is con-
sidered in Section 4. The contribution of this process
to the cross section is proportional to (m�/MB0

q
)2.

Therefore, it is dominant only in the case where τ
leptons are produced in the final state. For some
problems, however, the inclusion of bremsstrahlung
is of importance even in the case where, in the fi-
nal state, the bremsstrahlung photon is emitted by
muons. For example, this is so in studying the decays
B0
d,s → µ+µ−γ as background processes to the de-

cays B0
d,s → µ+µ− at the LHC energies.

In Section 5, numerical estimates for the par-
tial widths with respect to the decays B0

d,s → �+�−γ

and for the relevant dilepton mass spectra are given
with allowance for all of the aforementioned contribu-
tions.1)

1)In the present study, we do not consider asymmetries and
various polarization effects, since a small expected number
of detectedB0

d,s → �+�−γ events prevents the determination
of these quantities at LHC to a reasonable degree of accu-
racy [8].
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
1. TRANSITIONS INVOLVING
REAL-PHOTON EMISSION
BY THE VALENCE QUARKS

OF THE B̄0
q MESON

The B̄0
q → γ transition in which the valence

quarks of the B̄0
q meson emit a real photon are

described by the respective matrix element of the
effective Hamiltonian

Hb→q�+�−

eff =
GF√

2
αem

2π
VtbV

∗
tq

×
[
− 2

C7γ(µ)
q2

mb (q̄iσµν (1 + γ5) qνb)
(
�̄γµ�

)

+ Ceff
9V (µ, q2) (q̄Oµb)

(
�̄γµ�

)

+ C10A(µ) (q̄Oµb)
(
�̄γµγ5�

) ]
+ h.c.,

where αem = e2/4π is the fine-structure constant,
e = |e|, and mb is the b-quark mass and we have
adopted the following conventions: γ5 = iγ0γ1γ2γ3,

σµν =
i

2
[γµ, γν ], and Oµ = γµ (1− γ5). The ampli-

tude of this transition is given by the two diagrams in
Fig. 1a. The coefficient Ceff

9V (µ, q2) is the sum of the
coefficient C9V (µ) [1] and the resonance contribution
described in [9].

By using the form factors for the B̄0
q → γ, we can

represent the required amplitude in the form [2]

〈γ(k, ε), �+(p1), �−(p2)
∣∣∣Hb→q�+�−

eff

∣∣∣ B̄0
q (p,M1)〉 (2)

=
GF√

2
VtbV

∗
tq

αem
2π

eε∗α

[
2C7γ(µ)

q2
mb

×
(
εµαξηpξkηFTV (q2, 0)− i

(
gµα(pk)

− pαkµ
)
FTA(q2, 0)

)
�̄(p2)γµ�(−p1)

× Ceff
9V (µ, q2)

(
εµαξηpξkη

FV (q2)
M1

− i
(
gµα(pk)

− pαkµ
)FA(q2)

M1

)
�̄(p2)γµ�(−p1)

+ C10A(µ)

(
εµαξηpξkη

FV (q2)
M1

− i
(
gµα(pk)

− pαkµ
)FA(q2)

M1

)
�̄(p2)γµγ5�(−p1)

]
,

where p1 and p2 are, respectively, the antilepton and
lepton momenta; k is the real-photon momentum; p
05
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Fig. 1. Examples of diagrams contributing to the decays B0
d → �+�−γ. Shaded circles in the diagrams represent vertices

corresponding to the effective Hamiltonians for the (a, d) b→ d�+�− and (b) b → dγ transitions.
(p = k + p1 + p2 = k + q) andM1 are the B̄0
q-meson

momentum and mass, respectively; and ε0123 = −1.
The form factors FA(q2), FV (q2), FTA(q2, 0), and

FTV (q2, 0) are defined as follows [2]:2)

〈γ(k, ε)|q̄γµγ5b|B̄0
q (p,M1)〉 (3)

= ieε∗α (gµα(pk)− pαkµ)
FA(q2)
M1

,

〈γ(k, ε)|q̄γµb|B̄0
q (p,M1)〉

= eε∗αεµαξηpξkη
FV (q2)
M1

,

〈γ(k, ε)|q̄σµνγ5b|B̄0
q (p,M1)〉(p − k)ν

= eε∗α [gµα(pk)− pαkµ]FTA(q2, 0),

〈γ(k, ε)|q̄σµνb|B̄0
q (p,M1)〉(p − k)ν

= ieε∗αεµαξηpξkηFTV (q2, 0).

In [2], Krüger and Melikhov, who relied on the rela-
tivistic dispersion approach [10], studied these form
factors as functions of the variable (p − k)2 = q2 and
derived for them convenient parametrizations that

2)We note that, in [2], the form factors FTV (q2, 0) and
FTA(q2, 0) were denoted by FTV (q2) and FTA(q2), respec-
tively. In the present article, the notation is changed in order
to highlight the different dependences of the tensor form fac-
tors on the momenta of the two photons, a real and a virtual
one, the momentum squared of the photon emitted from the

effective vertex described by the Hamiltonian Hb→q	+	−

eff (x)

or the HamiltonianHb→qγ
eff (x) (Section 2) always appearing

as the first argument.
PH
satisfy all known rigorous constraints on the behavior
of the form factors (3) in the limit mb →∞. The
parametrizations from [2] are used in Section 5 to
obtain numerical estimates. For further applications,
it is convenient to introduce the dimensionless Man-
delstam invariant quantities

ŝ =
(p− k)2

M2
1

, t̂ =
(p− p1)2

M2
1

, (4)

û =
(p− p2)

2

M2
1

,

which are related by the equation ŝ+ t̂+ û = 1 +
2m̂2

� , where m̂
2
� = m2

�/M
2
1 , with m� being the lepton

mass; we also have m̂b = mb/M1. The variables x and
cos θ are defined as follows [2]:

x = 1− ŝ, cos θ =
ξ
(
ŝ, t̂
)

x
√

1− 4m̂2
l /ŝ

, (5)

ξ
(
ŝ, t̂
)

= û− t̂.

Equation (34) from [2] can then be recast into the
form

d2Γ(1)

dŝdt̂
=

G2
Fα

3
emM

5
1

210π4

∣∣VtbV ∗
tq

∣∣2 (6)

×
[
x2B0(ŝ, t̂) + xξ(ŝ, t̂)B̃1(ŝ, t̂)

+ ξ2(ŝ, t̂)B̃2(ŝ, t̂)
]
,

where

B0(ŝ, t̂) =
(
ŝ+ 4m̂2

�

)
(F1(ŝ) + F2(ŝ)) (7)

− 8m̂2
� |C10A(µ)|2

(
F 2
V (q2) + F 2

A(q2)
)
,
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B̃1(ŝ, t̂)

= 8
[
ŝFV (q2)FA(q2)Re

(
Ceff∗

9V (µ, q2)C10A(µ)
)

+ m̂bFV (q2)Re
(
C∗

7γ(µ)F ∗
TA(q2, 0)C10A(µ)

)
+ m̂bFA(q2)Re

(
C∗

7γ(µ)F ∗
TV (q2, 0)C10A(µ)

) ]
,

B̃2(ŝ, t̂) = ŝ (F1(ŝ) + F2(ŝ)) ,

F1(ŝ) =
(∣∣∣Ceff

9V (µ, q2)
∣∣∣2 + |C10A(µ)|2

)
F 2
V (q2)

+
(

2m̂b

ŝ

)2 ∣∣C7γ(µ)FTV (q2, 0)
∣∣2

+
4m̂b

ŝ
FV (q2)Re

(
C7γ(µ)FTV (q2, 0)Ceff∗

9V (µ, q2)
)
,

F2(ŝ) =
(∣∣∣Ceff

9V (q2, µ)
∣∣∣2 + |C10A(µ)|2

)
F 2
A(q2)

+
(

2m̂b

ŝ

)2 ∣∣C7γ(µ)FTA(q2, 0)
∣∣2

+
4m̂b

ŝ
FA(q2)Re

(
C7γ(µ)FTA(q2, 0)Ceff∗

9V (µ, q2)
)
.

In the ensuing analysis, it is convenient to treat the
form factors FTV (q2, 0) and FTA(q2, 0) as complex-
valued quantities.

2. TRANSITIONS INVOLVING
VIRTUAL-PHOTON EMISSION
BY THE VALENCE QUARKS

OF THE B̄0
q MESON

In Section 1, we have studied diagrams in which
the valence quarks of the B̄0

q meson emit a real
photon. In addition to these diagrams, there ex-
ist diagrams describing the process in which the
electromagnetic-interaction-induced emission of a
virtual photon from valence quarks in the B̄0

q-meson
loop is followed by virtual-photon transition to a
lepton pair (B̄0

q → γγ∗ → γ�+�−). The relevant di-
agrams are given in Fig. 1b. The analogous elec-
troweak process featuring the emission of a virtual
Z0 boson can be disregarded. If mq is neglected
against mb, real-photon emission in such processes
is described by the effective Hamiltonian for b→ qγ
transitions,

Hb→qγ
eff =

GF√
2
VtbV

∗
tqC7γ(µ)

e

8π2
(8)

×mb (q̄σµν (1 + γ5) b)Fµν + h.c.
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The calculation of the respective matrix elements
of the Hamiltonian in (8) leads to the appearance
of Lorentz-invariant structures that are coincident
with the structures in front of the form factors
FTV (q2, 0) and FTA(q2, 0) (see Section 1). The form
factors accompanying these structures are denoted
by FTV (0, q2) and FTA(0, q2). In order to take into
account the diagrams in Figs. 1a and 1b, it is then
necessary to make the following substitutions in
Eq. (6):

FTV (q2, 0)→ FTV (q2, 0) + FTV (0, q2), (9)

FTA(q2, 0)→ FTA(q2, 0) + FTA(0, q2).

In order to calculate the form factors FTV (0, q2)
and FTA(0, q2), one can invoke the vector-meson-
dominance (VMD) model [11, 12]. The decay B̄0

d →
�+�−γ involving virtual-photon emission by the d̄
antiquark can then be considered as the transition
of the B̄0

d meson to ρ0 and ω mesons. In describing
virtual-photon emission by the s̄ antiquark in the de-
cays B̄0

s → �+�−γ, it is necessary to take into account
only the φ-resonance contribution. Vector mesons in
turn go over to a virtual photon, which undergoes
conversion to a lepton pair. We can disregard the Υ,
Υ′, . . . contributions that arise in describing virtual-
photon emission by the b quark, since the main con-
tribution from these narrow resonances lies beyond
the physical region of the decays B̄0

d,s → �+�−γ.

For q2 → 0, the amplitude for the transition B̄0
q →

γγ∗ must reduce to the amplitude for the decay B̄0
q →

γγ. Owing to this, the form factors FTV (0, q2) and
FTA(0, q2) can be written as

FTV (0, q2) = FTV (0, 0) (10)

−
∑
i

2gi+(0)
fi

q2

q2 −M2
i + iMiΓi

,

FTA(0, q2) = FTA(0, 0)

−
∑
i

2gi+(0)
fi

q2

q2 −M2
i + iMiΓi

,

where Mi and Γi are, respectively, the masses and
total decay widths of the vector mesons Vi. The con-
stants fi are calculated on the basis of the known
widths with respect to the decays Vi → e+e−(µ+µ−)
according to the formula

Γ
(
Vi → e+e−(µ+µ−)

)
=

4π
3
α2
em

f2
i

Mi. (11)

The form factors gi+(k2) are defined as follows [13]:

〈Vi(q,Mi, ε)|d̄σµνb|B̄0
d(p,M1)〉 (12)
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= iε∗αεµνβγ
[
gi+(k2)gαβ(p + q)γ

+ gi−(k2)gαβkγ + gi0(k
2)pαpβqγ

]
.

The numerical values of the dimensionless quantities
fi and gi+(0) with allowance for the dd̄- or ss̄-pair
contributions to the ρ0-, ω-, and φ-resonance wave
functions are given in Table 1.

We note that Dincer and Sehgal [3] also consid-
ered the contribution of the diagrams in Fig. 1b, but
they set FTV,TA(q2, 0) = FTV,TA(0, q2), which is not
a physically justified approximation.

The resonance contribution calculated in this sec-
tion is analogous to the contribution of vector res-
onances to the Wilson coefficient Ceff

9V (µ, q2), which
was considered in [9]. The resonance contribution to
the coefficient Ceff

9V (µ, q2) arises owing to the chain of
transitions
b→ (d, s)(c̄c, ūu)→ (d, s)γ∗ → (d, s)�+�−, (13)

whose origin is associated with the presence of the
four-quark operators O1 and O2 in Wilson’s expan-
sion (1). The structure of the vector-meson contribu-
tions to the decay chain (13) is similar to the structure
of the contribution from the operator O9V ; that is,
the resonance contribution can be described as an
addition to the Wilson coefficient for the correspond-
ing operator. From (13), it follows that, in calculating
Ceff

9V (µ, q2), it is necessary to take into account the
contribution of only those resonances whose quark
structure involves uū and cc̄ pairs (ρ0, ω, J/ψ, ψ′,
etc.).

3. WEAK ANNIHILATION
Let us consider yet another class of diagrams, that

which represents the weak-annihilation process in
the decaysB0,± → ρ0,± (γ, �+�−) [14]. The contribu-
tion of these diagrams, which are depicted in Fig. 1c,
is proportional to the divergence of the axial current
and is the well-known axial anomaly. The effective
weak-annihilation Hamiltonian for B̄0

d-meson decay
has the form

H
B̄0

d→ūu

eff (x) = −GF√
2
VubV

∗
uda1

Table 1. Numerical values of the vector-meson decay
constants fi and form factors gi

+(0) with allowance for
additional isotopic coefficients with which the dd̄ and ss̄
states appear in the ρ0-, ω-, and φ-meson wave functions

Transition B0
d → ρ0 B0

d → ω B0
s → φ

fi 5.04 17.1 −13.2

gi
+(0) 0.27/

√
2 −0.27/

√
2 −0.38
PH
×
(
d̄(x)γµ(1− γ5)b(x)

)
(ū(x)γµ(1− γ5)u(x)) ,

where a1 = C1 + C2/Nc, Nc being the number of
colors. At Nc = 3, we obtain a1 = −0.13; that is,
weak annihilation is dynamically suppressed. For the
matrix element associated with the axial anomaly, we
have

−GF√
2
V ∗
tdVtb

αem

π
eε∗α

C7γ(µ)
q2

mbεµαξηpξkη (14)

× 4
VubV

∗
ud

VtbV
∗
td

a1NcQ
2
u

C7γ(µ)
fBd

mb
�̄(p2)γµ�(−p1),

where the leptonic B̄0
q-meson decay constant fBq > 0

is defined according to the condition〈
0 |q̄(0)γµγ5b(0)| B̄0

q (p,M1)
〉

= ifBqpµ.

Comparing (14) with (2), we find that, for the decay
B̄0
d → �+�−γ, formula (6) undergoes no changes if

one makes the substitution
FTV (q2, 0)→ FTV (q2, 0) (15)

+ FTV (0, q2)− 4
VubV

∗
ud

VtbV
∗
td

a1NcQ
2
u

C7γ(µ)
fBd

mb
,

FTA(q2, 0)→ FTA(q2, 0) + FTA(0, q2).

In the approximation of heavy-quark effective theory,
the asymptotic behavior of the form factors (3) at
photon energies Eγ in the B̄0

q-meson rest frame that
are much higher than the characteristic confinement
scale is given by [2, 15]

FV (q2) ≈ FA(q2) ≈ FTV (q2, 0)

≈ FTA(q2, 0) ∼
fBqM1

Eγ
,

while the weak-annihilation contribution is propor-
tional to the factor fBd

/mb. Thus, we see that, even
at the maximum photon energy Eγ

max ∼M1/2, the
weak-annihilation correction to FTV (q2, 0) is sup-
pressed in proportion to 1/mb. For the radiative de-
cays of the B̄0

s meson, this contribution is additionally
Cabibbo-suppressed. Therefore, it can be disregarded
in the last case.

4. BREMSSTRAHLUNG
Let us consider lepton bremsstrahlung in the de-

cays B̄0
d,s → �+�−γ. The corresponding diagrams are

shown in Fig. 1d. The bremsstrahlung amplitude has
the form

ie
GF√

2
αem

π
V ∗
tdVtb

fBq

M1
m̂�C10A(µ)�̄(p2) (16)

×
[

(γε∗)(γp)
t̂− m̂2

�

− (γp)(γε∗)
û− m̂2

�

]
γ5�(−p1).
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Table 2. Partial widths with respect to the decays B0
d,s → �+�−γ versus the cutoff in the minimum photon energy Eγ

min

in theB0
q-meson rest frame [only the contributions of the B0

q → γ transition (Section 1) and bremsstrahlung (Section 4)
are taken into account]

m� me mµ mτ

Eγ
min [GeV] 0.02 0.05 0.08 0.02 0.05 0.08 0.02 0.05 0.08

Br(B0
d → �+�−γ)× 1010 1.20 1.20 1.20 0.78 0.74 0.72 4.01 2.81 2.22

Br(B0
s → �+�−γ)× 109 2.23 2.22 2.22 1.46 1.39 1.35 7.80 5.50 4.37

Table 3. Partial widths with respect to the decays B0
d,s → �+�−γ versus the cutoff in the minimum photon energy Eγ

min

in the B0
q-meson rest frame (the contributions of all processes considered in Sections 1–4 are taken into account; the

region of J/ψ and ψ′ resonances is eliminated in integration with respect to ŝ)

m� me mµ mτ

Eγ
min [GeV] 0.02 0.05 0.08 0.02 0.05 0.08 0.02 0.05 0.08

Br(B0
d → �+�−γ)× 1010 4.67 4.67 4.66 1.58 1.56 1.55 4.00 2.80 2.21

Br(B0
s → �+�−γ)× 109 16.6 16.6 16.6 12.8 12.7 12.7 7.77 5.47 4.33
The bremsstrahlung contribution to the differential
width with respect to the decays B0

d,s → �+�−γ has
a simple form,

d2Γ(2)

dŝdt̂
=

G2
Fα

3
emM

5
1

24π4
(17)

×
∣∣VtbV ∗

tq

∣∣2(fBq

M1

)2

m̂2
� |C10A(µ)|2

×


 ŝ+ x2/2

(û− m̂2
�)(t̂− m̂2

�)
−
(

xm̂�

(û− m̂2
�)(t̂− m̂2

�)

)2

 .

The term that describes the interference between the
amplitudes in (2) and (16) is given by

d2Γ(12)

dŝdt̂
=

G2
Fα

3
emM

5
1

26π4

∣∣VtbV ∗
tq

∣∣2 fBq

M1
(18)

× m̂2
�

x2

(û− m̂2
�)(t̂− m̂2

� )

×
[

2xm̂b

ŝ
Re
(
C∗

10A(µ)C7γ(µ)FTV (q2, 0)
)

+ xFV (q2)Re
(
C∗

10A(µ)Ceff
9V (µ, q2)

)

+ ξ(ŝ, t̂)FA(q2) |C10A(µ)|2
]
,

where the form factor FTV (q2, 0) implies the sub-
stitution in (15). In (17) and (18), there is an in-
frared pole, which requires introducing a cutoff in
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
the emitted-photon energy. Obviously, the higher the
lepton mass and the lower the minimum photon en-
ergy, the greater the enhancement associated with
this pole. The dependence of the decay width on the
lepton mass and on the minimum photon energy is
studied in the next section.

5. NUMERICAL RESULTS

In order to obtain numerical estimates, it is
necessary to know respective Wilson coefficients,
elements of the Cabibbo–Maskawa matrix, lifetimes
of neutral B mesons, and form factors. The Wilson
coefficients were calculated by the formulas from [1].
Taking into account the condition C2(MW ) = −1,
one can find that C1(5 GeV) = 0.241, C2(5 GeV) =
−1.1, C7γ(5 GeV) = 0.312, C9V (5 GeV) = −4.21,
and C10A(5 GeV) = 4.64. The elements of the
Cabibbo–Maskawamatrix are |V ∗

tdVtb|
2 = 8.1× 10−5

and |V ∗
tsVtb|2 = 1.5 × 10−3. The B0

q-meson lifetimes
are taken to be τ(B0

d) = 1.55× 10−12 s and τ(B0
s ) =

1.49 × 10−12 s. The B0
d → γ form factors are para-

metrized as in [2]. The form factors for the transitions
B0
d → ρ0, B0

d → ω, and B0
s → φ are given in Table 1.

It is assumed that the form factors for the transition
B0
s → γ differ insignificantly from the form factors for

the transition B0
d → γ.

Table 2 displays the partial widths with respect
to the decays B0

d,s → �+�−γ versus the cutoff in
the minimum photon energy (“mass”) Eγ

min in the
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Fig. 2. Invariant-mass distributions of dileptons in the decays B0
s → �+�−γ for Eγ

min = (solid curves) 0.02, (dashed curves)
0.05, and (dotted curves) 0.08 GeV. The contribution of all processes considered in Sections 1–4 is taken into account.
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Fig. 3. Invariant-mass distributions of dileptons in the decays B0
d → �+�−γ at the minimum photon energy (“mass”) of

Eγ
min = 0.02 GeV. The dotted curves represent the distributions including only the contributions of the transition B0

q → γ
(Section 1) and photon bremsstrahlung (Section 4), this corresponding to the analysis in [4]; the solid curves were calculated
with allowance for all contributions considered in Sections 1–4. In the case of electrons, the variable ŝ = q2/M2

B is restricted
in the graph by the value of 10−3.
B0
q-meson rest frame. The data in this table corre-

spond to the version where the partial widths include
the contributions from only the transition B0

q → γ

and lepton bremsstrahlung [Eqs. (6), (17), and (18)].
In this case, the substitutions specified by (15) are not
made for the form factors FTV (q2, 0) and FTА(q2, 0)
and only the nonresonance part C9V (µ) is taken
into account in the Wilson coefficient Ceff

9V (µ, q2).
Table 2 is presented here in order to compare the
numerical results of our study with their counterparts
from earlier articles (see, for example, [4, 6]) and to
demonstrate compellingly the importance of taking
into account the transitions B0

q → γ∗ and weak
annihilation in the partial widths and dilepton mass
spectra. The choice of Eγ

min value is dictated by the
PH
energy resolution of a specific experimental facility.
The maximum (minimum) value of Eγ

min in Table 2
approximately corresponds to the planned resolution
in the B-meson mass at the ATLAS (LHCb) facility.

The results in Table 2 are easily understandable.
For electrons, the pole of the photon propagator in the
vicinity of ŝmin = 4m̂2

e makes a dominant contribution
to the partial decay width. Since me � Eγ

min, then
the partial widths with respect to the decays B0

d,s →
e+e−γ must depend only slightly on Eγ

min.

For the τ lepton, the situation is diametrically
opposite. Since the τ-particle mass is large, the
lepton pole at ŝmin = 4m̂2

τ is absent. On the con-
trary, Eγ

min � mτ ; therefore, the decay width depends
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 4. Invariant-mass distributions of dileptons in the decays B0
s → �+�−γ at the minimum photon energy (“mass”) of

Eγ
min = 0.05 GeV. The dotted curves represent the distributions including only the contributions of the transition B0

q → γ
(Section 1) and photon bremsstrahlung (Section 4), this corresponding to the analysis in [4]; the solid curves were calculated
with allowance for all contributions considered in Sections 1–4. In the case of electrons, the variable ŝ = q2/M2

B is restricted
in the graph by the value of 10−3.
greatly on the cutoff in the photon “mass,” in perfect
agreement with expressions (17) and (18).

In the case of � ≡ µ, which is of importance for
LHC, there is also a pole at ŝmin = 4m̂2

µ. However,
its contribution to the partial width with respect to
radiative decay is much less significant than in the
case of electrons. Moreover, Eγ

min ∼ mµ, this leading
to a weak dependence of the widths with respect to
the decays B0

d,s → µ+µ−γ on the choice of Eγ
min.

Upon rescaling the respective partial widths to
the case of identical values of the lifetimes and the
elements of the Cabibbo–Maskawa matrix, a com-
parison of the results in Table 2 with the numerical
results reported in [4] reveals that the two calculations
in question are quite consistent. However, it should
be emphasized once again that, in view of the dis-
regard of the contribution from B0

q → γ∗ transitions
in [4], this numerical agreement is nothing but an
independent test of correctness of the calculations in
Sections 1 and 4.

Table 3 displays the Eγ
min dependence of the

partial widths calculated for the decaysB0
d,s → �+�−γ

with allowance for all of the contributions described
in Sections 1–4. In order to simplify the weak-
annihilation contribution, we set VubV ∗

ud/VtbV
∗
td = 1

in Eq. (15). In performing integration with respect
to ŝ, we eliminated the region of J/ψ and ψ′ res-
onances (that is, the region where ŝ ∈ [0.33, 0.55]),
this corresponding to the experimental procedure of
searches for rare semileptonic and radiative decays
of B mesons at LHC [8, 16]. Figure 2 shows the
invariant-mass distributions dBr

(
B0
s → �+�−γ

)
/dŝ

of dileptons for various values of the parameter Eγ
min.
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One can see that, for decays involving electrons and
muons, a variation of Eγ

min over a region of a few tens
of megaelectronvolts has virtually no effect on the
partial decay width, while, for τ leptons, the choice
of Eγ

min is crucial in calculating the total width.
From a comparison of the numerical results in

Tables 2 and 3, it follows that, in order to calculate the
widths with respect to the decays B0

d,s → e+e−γ and
B0
d,s → µ+µ−γ correctly, it is of paramount impor-

tance to take into account the contributions described
in Sections 2 and 3. For the radiative decays of the
B0
d meson, the increase in the partial widths stems,

to a greater extent, from the appearance of the terms
FTV,TA(0, 0) in (15) and from weak annihilation and,
to a less extent, from the contribution of ρ0 and ω
resonances. For the radiative decays of theB0

s meson
to light leptons, the φ-resonance contribution to the
increase in the partial width is dominant.

In addition, one can see from Figs. 3 and 4 that the
presence of narrow and high resonance peaks in the
region of low ŝ (solid curves) changes rather strongly
the shape of the distributions in the invariant mass
of dileptions and in Eγ in relation to the distributions
from [4, 6] (dotted curves). For the decays of B0

d,s

mesons to light leptons and a photon, the solid and
the dotted curve are parallel at low ŝ. This is due to
the presence of the terms FTV,TA(0, 0) and an axial
anomaly in expression (15). In Fig. 4, the choice of
a logarithmic scale highlights the importance of the
φ-meson contribution to the partial widths with re-
spect to the decays B0

s → e+e−γ and B0
s → µ+µ−γ.

A comparison of the numerical results presented
in Table 3 and in [3] shows good agreement for
05
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the partial widths with respect to the decays B0
s →

e+e−(µ+µ−)γ. However, there cannot be perfect
agreement since no account of the resonance con-
tribution and the weak-annihilation contribution was
taken in [3] and since the q2 dependence of the tensor
form factors was defined differently in [3] and in this
study (see Section 2).

We note that the region of light resonances can-
not be eliminated from an experimental analysis by
analogy with the region of J/ψ and ψ′ resonances,
since, at low ŝ, the energy of the photons is sufficient
for their detection in an electromagnetic calorimeter,
and this is precisely the region where experimentalists
plan to collect the main signal for identifying the rare
radiative decays B0

d,s → µ+µ−γ at LHC.

In the decays B0
d,s → τ+τ−γ, the partial widths

undergo virtually no changes upon taking into ac-
count the results obtained in Sections 2 and 3.
Indeed, the peaks of the ρ0, ω, φ and J/ψ resonances
lie in the region below the minimum kinematical
boundary ŝmin = 4m̂2

τ for the decays being consid-
ered. The region around the ψ′-resonance peak is
eliminated in performing integration with respect to
ŝ. Thus, the partial widths calculated for the decays
B0
d,s → τ+τ−γ with allowance for resonances prove

to be even somewhat smaller than their counterparts
not including resonance contributions (see Tables 2
and 3).

CONCLUSION

We have calculated the partial widths with respect
to the decays B0

d,s → �+�−γ, taking into account
B0
q → γ and B0

q → γ∗ transitions, lepton brems-
strahlung, and weak-annihilation effects (see Ta-
ble 3). By employing the hypothesis of vector-meson
dominance, we have found the B0

q → γ∗ form factors,
which differ radically from their counterparts in [3]. It
has been shown that the contribution of these form
factors affects substantially the partial widths with
respect to rare radiative decays and the respective
dilepton mass spectra if light leptons appear in the
final state and is not significant if the final state
involves a τ+τ− pair. In view of this, it is necessary
to introduce corrections in the earlier studies reported
in [2–6].
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Abstract—An effective two-doublet Higgs potential that involves complex-valued parameters and whose
CP invariance is violated both explicitly and spontaneously is considered. The problem of diagonalizing the
mass term of this potential at a local minimum is solved. The eigenstates of Higgs bosons and their mass
spectrum are obtained for the special case of the two-doublet Higgs sector of the minimal supersymmetric
model, where the CP invariance of the effective potential is violated owing to the interactions of the Higgs
fields with the third-generation scalar quarks. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is well known that the origin of the Cabibbo–
Kobayashi–Maskawa (CKM) mixing matrix [1] is
associated with the Lagrangian terms of the Standard
Model that describe Higgs boson interactions with
quarks (Yukawa terms),

L = −guijψ̄
′i
LHu′j

R − gdijψ̄
′i
LH̃d′jR + h.c., (1)

where ψ̄1′
L = (ū′, d̄′)L, ψ̄2′

L = (c̄′, s̄′)L, ψ̄3′
L = (t̄′, b̄′)L;

u1′
R = u′

R, u2′
R = c′R, u3′

R = t′R; d1′
R = d′R, d2′

R = s′R,
d3′
R = b′R; H denotes the doublet of complex scalar

fields; H̃k = εklH
∗
l ; and guij and gdij are 3× 3 matri-

ces. Their matrix elements are in general complex
numbers that can be determined, apart from the
phases of the CP transformation3) of the spinor
fields of quarks and the scalar fields of the Higgs
boson. In order to diagonalize the mass term of the
quarks after the spontaneous symmetry breaking
H → (0, v/

√
2), one must perform unitary transfor-

mations of the fields of the up and down quarks ui′

and di′, defining the “rotated” fields ui
L,R = UL,Rui′

L,R

and diL,R = DL,Rdi′L,R. After this diagonalization,
the unitary-transformation matrices UL and DL do

1)Samara State University, ul. Akademika Pavlova 1, Samara,
443011 Russia.

2)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

*e-mail: elza@ssu.samara.ru
**e-mail: dolg@ssu.samara.ru

***e-mail: dubinin@theory.sinp.msu.ru
3)We recall that, from the definition concerning, for example,
P of the form Pa+

σ (p)P+ = ησa
+
σ (−p), where the complex

factor containing the phase of the P transformation satisfies
the condition |ησ| = 1 and where σ = 0 or 1/2, it follows that
Pφ(x)P+ = η∗0φ(x′) and Pψ(x)P+ = η∗1/2γ0ψ(x′), where
x′ = Px.
1063-7788/05/6811-1851$26.00
not appear either in the terms of the Lagrangian
in (1) or in the interactions of neutral vector quark
currents, but they arise explicitly in the Lagrangian
terms that describe the interactions of the charged
currents of ui′ and di′: gū′

Lγµd′L = gūLγµULD+
LdL.

The product VCKM = ULD+
L determines the com-

plex Cabibbo–Kobayashi–Maskawa matrix, which
describes CP-violation effects. Within the Standard
Model pattern, there arises CP violation because one
cannot obtain in general purely real matrix elements
VCKM by employing CP transformations for six up
and down quarks. In other words, CP violation in
the Standard Model is due to the fact that there are
precisely three generations of fundamental fermions.

At the same time, one can introduce, for a system
of several scalar fields, Hermitian Lagrangians that
explicitly violate CP invariance [2]. By way of exam-
ple, we indicate that, for three complex fields ϕ1, ϕ2,
and ϕ3, this may be

L = λϕ1ϕ∗
2ϕ∗

3 + λ∗ϕ∗
1ϕ2ϕ3, CP LP +C+

= LCP = λeiαϕ∗
1ϕ2ϕ3 + λ∗e−iαϕ1ϕ∗

2ϕ∗
3,

where λ is a complex-valued parameter and α is the
CP-transformation phase, which is immaterial in the
case being considered. It can be removed by means of
a phase transformation of the fields that is associated
with the conservation of the corresponding charge.
After that, one can see that L and LCP differ only by
the sign of the imaginary part of λ. In the extremely
simple example being considered, this will not lead
to observable consequences, because the phase of the
parameter λ can also be removed by means of a U(1)
rotation. However, this procedure cannot be imple-
mented in general for a system involving a trilinear
interaction λiϕjϕkϕl of four scalar fields. It can easily
be found that the Lagrangian of such a system is
CP-invariant only in the case where the phases of
the four parameters λi satisfy specific conditions that
c© 2005 Pleiades Publishing, Inc.
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ensure the possibility of removing them by means of
U(1) rotations of the fields ϕi. Models that contain an
extended Higgs sector and where the CP invariance
of the Higgs potential involving complex-valued pa-
rameters is explicitly violated are of great interest from
this point of view. The two-doublet effective potential
of the minimal supersymmetric model—if one does
not consider the possibility of a spontaneous viola-
tion of CP invariance [3], this potential contains ten
parameters, four of which can be complex-valued [4,
5]—is the simplest of such cases.

2. VIOLATION OF THE CP INVARIANCE
OF THE EFFECTIVE TWO-DOUBLET

POTENTIAL

In the general two-doubletmodel (twoHiggs dou-
blet model, also known as THDM), there are two
SU(2) doublets of complex scalar fields,

Φ1 =


φ+

1 (x)

φ0
1(x)


 =


 −iω+

1
1√
2
(v1 + η1 + iχ1)


 , (2)

Φ2 = eiξ


φ+

2 (x)

φ0
2(x)


 = eiξ


 −iω+

2
1√
2
(v2eiζ + η2 + iχ2)


 ,

(3)

their vacuum expectation values being nonzero,

〈Φ1〉 =
1√
2


 0

v1


 , (4)

〈Φ2〉 =
eiξ√
2


 0

v2eiζ


 ≡ 1√

2


 0

v2eiθ


 .

Here, the quantities v1 and v2 are real. The phases ζ
and ξ reflect the possible arbitrariness in the choice of
the relative rotation of the vacuum expectation values
and the relative rotation of the doublets of complex
scalar fields. The sum θ of the phases will appear as a
parameter in the conditions of the existence of a local
minimum of the effective Higgs potential.

It is convenient to single out the phase ξ in order
to analyze the possible relation between this phase
and the phase of the elements of the Cabibbo–
Kobayashi–Maskawa matrix. In the following, it will
be shown that these phases are different. A represen-
tation of vacuum expectation values that is similar
to (4) was studied in detail, for example, in [6] for a
simplified THDM potential not containing terms of
dimension 2Φ†

1Φ2 + Φ†
2Φ1 and featuring real-valued

parameters µ2
12 and λ5,6,7 and spontaneous CP
PH
violation (that is, the angle of the relative rotation of
the doublets is ξ = 0, but ζ 	= 0). In the present study,
we consider the most general case of the THDM, that
which involves complex-valued parameters µ2

12 and
λ5,6,7 in the scalar two-doublet potential and nonzero
phases ζ and ξ.

The most general Hermitian form of the renor-
malizableSU(2)×U(1)-invariant Lagrangian for the
system of fields specified by Eqs. (2) and (3) is

LH = (DνΦ1)†DνΦ1 + (DνΦ2)†DνΦ2 (5)

+ κ(DνΦ1)†DνΦ2 + κ∗(DνΦ2)†DνΦ1 − U(Φ1,Φ2),

where the potential may contain the following invari-
ant terms:

U(Φ1,Φ2) = −µ2
1(Φ

†
1Φ1)− µ2

2(Φ
†
2Φ2) (6)

− µ2
12(Φ

†
1Φ2)− (µ2

12)
∗(Φ†

2Φ1) + λ1(Φ
†
1Φ1)2

+ λ2(Φ
†
2Φ2)2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+ λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

λ5

2
(Φ†

1Φ2)(Φ
†
1Φ2)

+
λ∗

5

2
(Φ†

2Φ1)(Φ
†
2Φ1) + λ6(Φ

†
1Φ1)(Φ

†
1Φ2)

+ λ∗
6(Φ

†
1Φ1)(Φ

†
2Φ1) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2)

+ λ∗
7(Φ

†
2Φ2)(Φ

†
2Φ1).

The potential parameters µ2
12, λ5, λ6, and λ7 are

complex-valued. The complex-valued parameter κ
describes the mixed kinetic term of the Lagrangian
(for details, see [7]). Precision experimental data on
the gauge-boson masses mW,Z impose stringent
constraints on its real part. Moreover, the presence
of the mixed kinetic term prevents a simultaneous
construction of a diagonal 4× 4 matrix of kinetic
terms for Higgs bosons and a diagonal matrix for their
mass term.4) In the following, we therefore set κ = 0.

The potential of the Higgs sector in the minimal
supersymmetric model (MSSM) is a special case of
the two-doublet potential (6). Within this model, the
parameters λ1,...,7 are real-valued in the tree approx-
imation at the energy scale of MSUSY (that is, at
energies on the order of the sparticle masses); they
are expressed in terms of the coupling constants g1

and g2 of the electroweak gauge-symmetry group
SU(2) × U(1) as [9]

λ1(MSUSY) = λ2(MSUSY) =
1
8
(g2

2(MSUSY) (7)

4)The corresponding conditions can be written as a set of ten
linear equations, which, in the cases of practical importance,
has a solution only at κ = 0. We also note that, in order to
ensure renormalizability, it is not necessary to introduce a
mixed kinetic term. It is shown below that the corresponding
contributions from the renormalization of the scalar-quark
fields to the effective parameters λ5,6,7 vanish (see also [8]).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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+ g2
1(MSUSY)),

λ3(MSUSY) =
1
4
(g2

2(MSUSY)− g2
1(MSUSY)),

λ4(MSUSY) = −1
2

g2
2(MSUSY),

λ5(MSUSY) = λ6(MSUSY) = λ7(MSUSY) = 0.

The CP-invariance of the potential is not violated
at the scale of MSUSY. However, the parameters of
any model depend on the energy scale at which they
are measured or fixed. This dependence is described
by renormalization-group equations. The conditions
in (7) play the role of boundary conditions for the
renormalization-group equations. Below the scale of
MSUSY, the supersymmetric relations (7) are vio-
lated by a finite quantum effect caused by Higgs
boson interaction with the third-generation squarks
(the interaction with the first- and second-generation
squarks is strongly suppressed). The potential for this
interaction can be written as [8]

V0 = VM + VΓ + VΛ + V
Q̃

, (8)

where

VM = (−1)i+jm2
ijΦ

†
iΦj + M2

Q̃

(
Q̃†Q̃

)
(9)

+ M2
Ũ

Ũ∗Ũ + M2
D̃

D̃∗D̃,

VΓ = ΓD
i

(
Φ†
i Q̃
)

D̃ + ΓU
i

(
iΦT

i σ2Q̃
)

Ũ (10)

+ (ΓD
i )∗

(
Q̃†Φi

)
D̃∗ − (ΓU

i )∗
(

iQ̃†σ2Φ∗
i

)
Ũ∗,

VΛ = Λjl
ik

(
Φ†
iΦj

)(
Φ†
kΦl

)
+
(
Φ†
iΦj

)
(11)

×
[
ΛQ
ij

(
Q̃†Q̃

)
+ ΛU

ijŨ
∗Ũ + ΛD

ij D̃
∗D̃
]

+ ΛQ
ij

(
Φ†
i Q̃
)(

Q̃†Φj

)

+
1
2

[
Λεij

(
iΦT

i σ2Φj

)
D̃∗Ũ + h.c.

]
, i, j, k, l = 1, 2,

V
Q̃
stands for terms associated with the interaction of

four scalar quarks, and σ2 is the Pauli matrix

σ2 ≡


 0 i

−i 0


 .

The Yukawa coupling constants for the third-
generation scalar quarks are defined in a standard way
as

ht =
√

2mt

v sin β
, hb =

√
2mb

v cos β
,
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where v2 ≡ v2
1 + v2

2 , and tan β ≡ v2/v1. Follow-
ing [10], we obtain5)

ΓU
{1;2} = hU{−µ∗;AU}, ΓD

{1;2} = hD{AD;−µ∗}.
(12)

In the case considered here, these parameters are
complex-valued. It is obvious that, in the sector of
scalar-quark interaction with Higgs bosons, there
appear CP-odd structures of the type in (1) and that it
is natural to expect the emergence of mixing matrices
that are 3× 3 analogs of the Cabibbo–Kobayashi–
Maskawa matrix. The trilinear parameters At and Ab

and the higgsino–neutralino mass parameter µ must
be taken to be complex-valued. Their imaginary parts
may be quite large.

Thus, we see that, at the energy scale of mZ or mt,
which is much less than MSUSY, the effective poten-
tial of the minimal supersymmetric model [11] is the
general two-doublet potential (6), whose parameters
λi are expressed in terms of the coupling constants
for Higgs boson interaction with the scalar quarks
and the scalar-quark masses, which play the role of
Pauli–Villars regulators. For the renormalization-
group equations that determine the evolution of the
parameters λi, as well as the evolution of the Yukawa
coupling constants ht,b and the gauge-interaction
coupling constants g1,2, there are the boundary
conditions in (7), which are formulated at the scale
MSUSY and which are modified with allowance for
the Higgs boson interaction (8) with third-generation
scalar quarks. The radiative corrections ∆λ

eff.pot.
i to

the boundary conditions in (7) for the parameters λi

at the scale mt were calculated within the effective-
potential method. Taking also into account the one-
loop contributions ∆λfield

i from field renormalization
(which are not included within the effective-potential
method—for details, see [12]), we obtain

λ1 =
g2
2 + g2

1

8
+

3
32π2

[
h4
b

|Ab|2
M2

SUSY

(13)

×
(
2− |Ab|2

6M2
SUSY

)
− h4

t

|µ|4
6M4

SUSY

+ 2h4
b l

+
g2
2 + g2

1

4M2
SUSY

(h2
t |µ|2 − h2

b |Ab|2)
]
+ ∆λfield

1

+
1

768π2

(
11g4

1 + 9g4
2 − 36(g2

1 + g2
2)h

2
b

)
l,

λ2 = λ1(t←→ b,∆λfield
1 −→ ∆λfield

2 ),

5)For the CP -conservation case, which was considered in [8],
the trilinear parameters in (10) are real-valued. For them,
use was made of the notation ΓU

{1;2} ≡ hU{−µ;AU} and

ΓD
{1;2} ≡ hD{AD;−µ}.
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λ3 =
g2
2 − g2

1

4

[
1− 3

16π2
(h2

t + h2
b)l
]

(14)

+
3

8π2
h2
th

2
b

[
l +

1
2

Xtb

]
+

3
96π2

|µ|2
M2

SUSY

×
[
h4
t

(
3− |At|2

M2
SUSY

)
+ h4

b

(
3− |Ab|2

M2
SUSY

)]

+
3(g2

2 − g2
1)
[
h2
b(|µ|2 − |Ab|2) + h2

t(|µ|2 − |At|2)
]

128π2M2
SUSY

+ ∆λfield
3 +

9g4
2 − 11g4

1

384π2
l,

λ4 = −g2
2

2

[
1− 3

16π2
(h2

t + h2
b)l
]

(15)

− 3
8π2

h2
th

2
b

[
l +

1
2

Xtb

]
+

3
96π2

|µ|2
M2

SUSY

×
[
h4
t

(
3− |At|2

M2
SUSY

)
+ h4

b

(
3− |Ab|2

M2
SUSY

)]

−
3g2

2

[
h2
b(|µ|2 − |Ab|2) + h2

t (|µ|2 − |At|2)
]

64π2M2
SUSY

+ ∆λfield
4 − 3g4

2

64π2
l,

where

Xtb ≡
|At|2 + |Ab|2 + 2Ree(A∗

bAt)
2M2

SUSY

(16)

− |µ|2
M2

SUSY

− ||µ|
2 −A∗

bAt|2
6M4

SUSY

.

Here and in other formulas, l ≡ ln
(
M2

SUSY/σ2
)
,

where σ is the renormalization scale. The effective
complex-valued parameters λ5,6,7 are given by

λ5 = −∆λ5 = − 3
96π2

(17)

×
(

h4
t

(
µAt

M2
SUSY

)2

+ h4
b

(
µAb

M2
SUSY

)2
)

,

λ6 = −∆λ6 =
3

96π2
(18)

×
[
h4
t

|µ|2µAt

M4
SUSY

− h4
b

µAb

M2
SUSY

(
6− |Ab|2

M2
SUSY

)

+ (h2
bAb − h2

tAt)
3µ

M2
SUSY

g2
2 + g2

1

4

]
,

λ7 = −∆λ7 =
3

96π2
(19)

×
[
h4
b

|µ|2µAb

M4
SUSY

− h4
t

µAt

M2
SUSY

(
6− |At|2

M2
SUSY

)

PH
+ (h2
tAt − h2

bAb)
3µ

M2
SUSY

g2
2 + g2

1

4

]
.

The one-loop contributions λfield
i from field renormal-

ization to the aforementioned parameters λi have the
form

∆λfield
1 =

1
2
(g2

1 + g2
2)A

′
11, (20)

∆λfield
2 =

1
2
(g2

1 + g2
2)A

′
22,

∆λfield
3 = −1

4
(g2

1 − g2
2)(A

′
11 + A′

22),

∆λfield
4 = −1

2
g2
2(A

′
11 + A′

22), ∆λfield
5 = 0,

∆λfield
6 =

1
8
(g2

1 + g2
2)(A

′
12 −A′∗

21) = 0,

∆λfield
7 =

1
8
(g2

1 + g2
2)(A

′
21 −A′∗

12) = 0.

They differ from the formulas given in [8] for the case
of CP conservation by the presence of the logarithmic
term l [see Eq. (12) and footnote 5]. In our case, the
matrices [A] have the form

A′
ij = −

3
(
1− 1

2
l

)

96π2M2
SUSY

(21)

×


h2

U


 |µ|2 −µ∗A∗

U

−µAU |AU |2




+ h2
D


 |AD|2 −µ∗A∗

D

−µAD |µ|2




 .

The one-loop renormalization of the wave function
does not make a CP-violating contribution to λi. In
the following, the notation for the deviations of the
effective parameters λi from λSUSY

i = λi(MSUSY) is
identical to that in [5]; that is,

λ1,2 ≡ λSUSY
1,2 −∆λ1,2/2, (22)

λ3,4 ≡ λSUSY
3,4 −∆λ3,4, λ5,6,7 ≡ −∆λ5,6,7,

where6)

∆λi ≡ ∆λ
eff. pot
i −∆λfield

i , (23)

∆λ
{eff. pot; field}
i ≡ ∆λ

log
i + ∆λfinite

i .

It should be noted that

∆λ
log
5,6,7 = 0, ∆λfield

5,6,7 = 0. (24)

6)On the left-hand side of the first equation in (23), it is
necessary to introduce an additional factor of 1/2 for ∆λ1,2

because of the notation ∆λ1,2/2 in (22).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 1. Comparison of corrections to the parameters λi at the scale of mt for mZ = 91.19 GeV, mb = 3 GeV,
mt = 175 GeV, mW = 79.96 GeV, g2 = 0.6517, g1 = 0.3573, v = 245.4 GeV, GF = 1.174× 10−5 GeV−2, αs(mt) =
0.1072, tanβ = 5, MSUSY = 500 GeV, σ = mt, mH± = 300 GeV, |At| = |Ab| = A = 1000 GeV, |µ| = 2000 GeV, ϕ ≡
arg(µAt,b) = 0, these values being coincident with those in [15]

λ1 λ2 λ3 λ4 λ5 λ6 λ7

O(h4
t ) approximation 0.907 −0.203 0.057 0.057 0.227 −0.453 0.057

∆λi 0.860 −0.182 0.054 0.072 0.227 −0.442 0.046
One-loop approximation [4] 0.907 −0.191 0.064 0.043 0.227 −0.453 0.057
One- + two-loop approximation [4] 0.761 −0.152 0.052 0.032 0.135 −0.371 0.044
Two-loop approximation [4] −0.146 0.039 −0.012 −0.011 −0.092 0.082 −0.013
One-loop(D+ field) approximation −0.047 0.009 −0.010 0.028 0 0.011 −0.011
∆λ(D + field)−∆λ(two-loop)

∆λ(D + field)
× 100% –211 –311 –20 139 – –647 –15

|∆λ(D + field)| − |∆λ(two-loop)|
|∆λ(D + field)| × 100% –211 –311 –20 61 – –647 –15

One-loop + two-loop + one-loop(D + field) approximation 0.715 −0.143 0.042 0.061 0.135 −0.360 0.033

Note: The one-loop(D+ field) approximation includes one-loop corrections only from theD terms and from field renormalization.
Here, ∆λ
log
i are logarithmic corrections, while∆λfinite

i
are finite corrections.

To conclude this section, we will make several
general comments concerning the results of other au-
thors. A feature that distinguishes the present analy-
sis from the standard scheme of summation of leading
logarithms by means of renormalization-group equa-
tions is that, in the boundary conditions, we take into
account effects of Higgs boson interaction with third-
generation scalar quarks. In other words, we consider
a two-doublet Higgs sector model that is an effec-
tive theory for minimal supersymmetry at the energy
scale of mt. The “running” one-loop effective param-
eters (13)–(19) satisfy boundary conditions that are
specified by Eqs. (7) and finite power-law terms that
are determined by the soft-supersymmetry-breaking
Higgs boson interaction (8) with scalar quarks. The
logarithmic term l describes the evolution of the pa-
rameters as the scale decreases from MSUSY to σ =
mt. Finite power-law corrections to the parameters
λ6,7 appear owing to so-called F terms [terms of the
trilinear interaction in (10)] and D terms [which are
contained in (11)]. The corrections to λ5 appear only
owing to the F terms. The parameters λi of the effec-
tive two-doublet potential in the minimal supersym-
metric model were considered previously in [4] for the
case of CP violation and in [8, 13] for the case of CP
conservation. For a phenomenological analysis, one
usually sets At = Ab ≡ A and introduces a universal
phase µA, so that λ5 = |λ5| exp[i · 2 arg(µA)], λ6 =
|λ6| exp[i arg(µA)], and λ7 = |λ7| exp[i arg(µA)].

In [4, 13], the contributions of the D terms were
taken into account only partly. The additional terms
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
involving gauge-interaction coupling constants g2
2

and g2
1 and appearing in expressions (13)–(15), which

we obtained for the effective parameters, correspond
to their total contributions. The one-loop contribu-
tions ∆λfield

1,...,4 from field renormalization were also
disregarded in [4, 13]. Phases do not appear in expres-
sions (13)–(15) up to the two-loop approximation
inclusive, and these expressions coincide, apart from
the contributions of the D terms and apart from
the terms ∆λfield

1,...,4, with the results reported in [4,
13]. At real-valued µ and A, expressions (13)–(15)
correspond precisely to the results of Haber and
Hempfling [8], who took into account the contribu-
tions of the D terms. We note that it would be illegit-
imate to generalize the results for λ5,6,7 to the case of
CP nonconservation by directly replacing real-valued
µ and A by their complex-valued counterparts—this
would lead to an erroneous result.

If one disregards the contribution of the D terms,
the field-renormalization contributions ∆λfield

1,...,4, and
terms of order h2

b for the Yukawa coupling of the b
quark, there arise parameters in the one-loop approx-
imation, which contain only O(h4

t ) corrections. For
the case of real-valued µ and A, the respective results
are presented in [14]. By way of example, we indicate
that the result for λ2 is

λ2 ≈
g2
2 + g2

1

8
+

3
32π2

(25)

×
[
h4
t

|A|2
M2

SUSY

(
2− |A|2

6M2
SUSY

)
+ 2h4

t l

]
.
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It is interesting to note that only for λ2 does the
renormalization-group beta function involve a con-
stant (λi-independent) negative contribution, −6h4

t ,
this being coincident with the respective result in [8].

A detailed numerical comparison of the correction
to λi can be found in Table 1, where, in our case (see
the second row),

∆λi = {one-loop contribution}+ {one-loop
contribution (D terms + field renormalization)}.

We conclude that the one-loop corrections from field
renormalization and from the D terms must be taken
into account since they can be on the same order as or
even greater than the leading two-loop corrections.

3. DIAGONALIZATION OF THE MASS TERM
IN THE EFFECTIVE POTENTIAL

AT A LOCAL MINIMUM

3.1. Complex-Valued Parameters µ2
12 and λ5,6,7;

θ = 0

The components ωi, ηi, and χi of the SU(2) dou-
blets in (2) and (3) are not mass eigenstates. In order
PH
to obtain the masses of the Higgs bosons and their
interactions determined by the effective potential (6),
it is necessary to diagonalize its mass term at a local
minimum. For the case of complex-valued parame-
ters µ2

12 and λ5,6,7 and zero phase θ = 0 of the vacuum
expectation value, this problem was considered in [5].
The diagonalization at aminimum is performed in two
steps. First, the CP-even fields h and H , the CP-odd
mass eigenstate A7) (so-called pseudoscalar), and
the Goldstone field G0 are determined by means of a
linear transformation,8)

h = −η1 sin α + η2 cos α, (26)

H = η1 cos α + η2 sin α, (27)

A = −χ1 sin β + χ2 cos β, (28)

G0 = χ1 cos β + χ2 sin β, (29)
tan(2α) =
s2β(m2

A + m2
Z) + v2((∆λ3 + ∆λ4)s2β + 2c2

βRe∆λ6 + 2s2
βRe∆λ7)

c2β(m2
A −m2

Z) + v2(∆λ1c2
β −∆λ2s2

β − Re∆λ5c2β + (Re∆λ6 − Re∆λ7)s2β)
, (30)
where we have used the relations g2
1 + g2

2 =
g2
2m2

Z/m2
W , g2

2 − g2
1 = g2

2(2−m2
Z/m2

W ). Further, we
substitute into the effective potential the real-valued
parameters µ1,2 and λ1,2,3,4 and the real parts Reµ2

12

and Reλ5,6,7, which are related by linear equations,

λ1 =
1

2v2

[(
sα
cβ

)2

m2
h +

(
cα
cβ

)2

m2
H (31)

− sβ
c3
β

Reµ2
12

]
+

1
4
(Reλ7tan

3β − 3Reλ6tanβ),

λ2 =
1

2v2

[(
cα
sβ

)2

m2
h +

(
sα
sβ

)2

m2
H (32)

− cβ
s3
β

Reµ2
12

]
+

1
4
(Reλ6cot

3β − 3Reλ7cotβ),

λ3 =
1
v2

[
2m2

H± −
Reµ2

12

sβcβ
+

s2α

s2β
(m2

H −m2
h)
]

(33)

− Reλ6

2
cotβ − Reλ7

2
tanβ,

λ4 =
1
v2

(
Reµ2

12

sβcβ
+ m2

A − 2m2
H±

)
(34)
− Reλ6

2
cotβ − Reλ7

2
tanβ,

Reλ5 =
1
v2

(
Reµ2

12

sβcβ
−m2

A

)
− Reλ6

2
cotβ (35)

− Reλ7

2
tan β,

µ2
1 = λ1v2

1 + (λ3 + λ4 + Reλ5)
v2
2

2
(36)

− Reµ2
12tanβ +

v2s2
β

2
(3Reλ6cotβ + Reλ7tanβ),

µ2
2 = λ2v2

2 + (λ3 + λ4 + Reλ5)
v2
1

2
(37)

− Reµ2
12cotβ +

v2c2
β

2
(Reλ6cotβ + 3Reλ7tanβ).

At real-valued parameters (in the following, we will
also refer to this case as that of the CP-conserving

7)The fields h,H , andA are mass eigenstates at φ = 0.
8)In the following, we employ a condensed notation; that
is, sβ ≡ sin β, cβ ≡ cos β, sα ≡ sinα, cα ≡ cosα, c2β ≡
cos 2β, and so on.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 1.Masses of the neutral Higgs bosons h,H , andA versusmH± and versus the trilinear parametersAt andAb (At = Ab)
in the limit ofCP conservation at tanβ = 5 andMSUSY = 0.5 TeV: (solid curves)mh, (dotted curves)mA, and (dashed curves)
mH . The results are given here for the cases of (a)At = Ab = µ = 0, (b)At = Ab = 0.9 TeV and µ = −1.5 TeV, (c)At = Ab,
mH± = 220 GeV and µ = 0, and (d)At = Ab,mH± = 220 GeV and µ = −2 TeV.
limit at ϕ = 0, Reλi = |λi|, and Re∆λi = |∆λi|), re-
lations (36) and (37) ensure the vanishing of the terms
in the potential that are linear in the fields and are
therefore minimization conditions. From (31)–(35), it
follows that, in the CP-conserving limit, the masses
of the CP-even Higgs bosons and the real part of the
parameter µ2

12 are given by

m2
H = c2

α+βm2
Z + s2

α−βm2
A − v2(∆λ1c2

αc2
β (38)

+ ∆λ2s2
αs2

β + 2(∆λ3 + ∆λ4)cαcβsαsβ

+ Re∆λ5(c2
αs2

β + s2
αc2

β) + 2sα+β(Re∆λ6 · cαcβ

+ Re∆λ7 · sαsβ)),

m2
h = s2

α+βm2
Z + c2

α−βm2
A − v2(∆λ1s2

αc2
β (39)

+ ∆λ2c2
αs2

β − 2(∆λ3 + ∆λ4)cαcβsαsβ

+ Re∆λ5(s2
αs2

β + c2
αc2

β)− 2cα+β(Re∆λ6 · sαcβ
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
−Re∆λ7 · cαsβ)),

m2
H± = m2

W + m2
A −

v2

2
(Re∆λ5 −∆λ4), (40)

Reµ2
12 = sβcβ

[
m2

A −
v2

2
(2Re∆λ5

+ Re∆λ6 · cotβ + Re∆λ7 · tanβ)
]
.

Upon the substitution of (31)–(37) into (6), we obtain
the mass term of the effective potential in the form

Umass(h, H, A) = c0A + c1hA + c2HA (41)

+
m2

h

2
h2 +

m2
H

2
H2 +

m2
A

2
A2 + m2

H±H+H−.
05



1858 AKHMETZYANOVA et al.

 

0 2 4 6

150

50

250

(

 

‡

 

) (

 

b

 

)

(

 

c

 

) (

 

d

 

)

 
m

 

h

 

i

 
, GeV

–1.0

–0.5

0

0.5

1.0

 
a

 

1

 

i

 

0 2 4 6

 

ϕ

 

, rad

 

a

 

2

 

i

 

1.0

0.5

0

–0.5

–1.0

 

a

 

3

 

i

 

1.0

0.5

0

–0.5

–1.0
0 2 4 6

 

ϕ

 

, rad
0 2 4 6

Fig. 2. (a) Masses of the neutral Higgs bosons hi and (b–d) matrix elements aij versus the phaseϕ = arg(µAt,b) at tanβ = 5,
mH± = 180 GeV, MSUSY = 0.5 TeV, At = Ab = 1 TeV, and µ = 2 TeV: (solid curves) i = 1, (dashed curves) i = 2, and
(dotted curves) i = 3.
The minimization condition c0 = 0 fixes the imagi-
nary part of the parameter µ2

12:

Imµ2
12 =

v2

2
(sβcβImλ5 + c2

βImλ6 + s2
βImλ7). (42)

After that, the coefficients of the off-diagonal terms
terms hA and HA at the minimum corresponding to
c0 = 0 can be represented in the form

c1 =
v2

2
(sαsβ − cαcβ)Imλ5 (43)

+ v2(sαcβImλ6 − cαsβImλ7),

c2 = −v2

2
(sαcβ + cαsβ)Imλ5

− v2(cαcβImλ6 + sαsβImλ7).

They involve only the imaginary parts Imµ2
12 and

Imλ5,6,7. Obviously, there appears no off-diagonal
PH
term of the form hH in (41), so that, below, we have
M12 = M21 = 0 in the mixing matrix (45).

The second step consists in removing off-diagonal
terms of the form hA and HA by means of an orthog-
onal transformation in the sector spanned by h, H ,
and A; that is,

(h, H, A)M2




h

H

A


 (44)

= (h1, h2, h3)aTikM2
klalj




h1

h2

h3


 ,
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Fig. 3. As in Fig. 2, but formH± = 300 GeV.
where the mass matrix has the form

M2 =
1
2




m2
h 0 c1

0 m2
H c2

c1 c2 m2
A


 . (45)

As a result, there appear Higgs boson mass eigen-
states h1, h2, and h3, which are not CP eigenstates.
The eigenvalues of the matrix M2 determine the
squares of their masses, while its normalized eigen-
vectors determine the rows in the mixing matrix aij .
The squares of the masses of the Higgs boson mass
eigenstates (m2

h1
≤ m2

h2
≤ m2

h3
) are given by

m2
h1

= 2
√

(−q) cos
(

Θ + 2π

3

)
− a2

3
, (46)

m2
h2

= 2
√

(−q) cos
(

Θ + 4π

3

)
− a2

3
,

m2
h3

= 2
√

(−q) cos
(

Θ
3

)
− a2

3
,
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where

Θ = arccos
r√

(−q3)
,

r =
1
54

(9a1a2 − 27a0 − 2a3
2),

q =
1
9
(3a1 − a2

2),

a1 = m2
hm2

H + m2
hm2

A + m2
Hm2

A − c2
1 − c2

2,

a2 = −m2
h −m2

H −m2
A,

a0 = c2
1m2

H + c2
2m2

h −m2
hm2

Hm2
A,

while the components of the eigenvectors




h

H

A


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







h1

h2

h3


, aij = a′

ij/nj , are

a′
11 = ((m2

H −m2
h1

)(m2
A −m2

h1
)− c2

2),
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a′
21 = c1c2, a′

31 = −c1(m2
H −m2

h1
),

a′
12 = −c1c2,

a′
22 = −((m2

h −m2
h2

)(m2
A −m2

h2
)− c2

1),

a′
32 = c2(m2

h −m2
h2

),

a′
13 = −c1(m2

H −m2
h3

),

a′
23 = −c2(m2

h −m2
h3

),

a′
33 = (m2

h −m2
h3

)(m2
H −m2

h3
),

ni = ±
√

(a′2
1i + a′2

2i + af ′23i ). The dependences of the
Higgs boson masses on the parameters At,b and µ
of the minimal supersymmetric model and on the
universal phase ϕ = arg(µAt,b) are illustrated in
Figs. 1–4, along with the behavior of the matrix ele-
ments aij , which characterize mixed states. In con-
trast to what was done in [5], we took mH± and tanβ
for the independent parameters of the two-doublet
sector instead of mA and tanβ, our choice being more
convenient for a comparison of the results with those
reported in [4, 15]. A change in the phase ϕ may lead
PH
to the reversal of the sign of the parameters c1 and
c2, the regions of positive and negative definite c1 and
c2 depending functionally on the choice of values for
the parameters mA, tanβ, A, µ, and MSUSY in the
CP-conserving limit. Upon the passage of the zeros
of c1 and c2, the matrix elements aij must change
sign according to the requirement of a left-hand
orthonormalized basis of eigenvectors. It is the most
important that, in the mass matrix, mh1 , mh2 , and
mh3 lie on the diagonal from top to bottom and that,
in the limiting case of c1 = c2 = 0, we have mh1 =
min(mh, mH , mA) and mh3 = max(mh, mH , mA)
(“mass ordering”). We note that, with increasing
∆λi, the denominator on the right-hand side of (30)
may change sign, with the result that the mass order-
ing requires determining the angle α(ϕ) consistently
with the boundary condition at the scale of MSUSY:
m2

A + m2
Z = (−sin(2α)/sin(2β))(m2

H −m2
h), this

boundary condition following from (31)–(35) and (7).
To conclude this section, we present in Table 2
some numerical values obtained for the Higgs boson
masses within our present approach by using various
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 2. Higgs boson masses (in GeV) and decay widths (in GeV) in our case and in the case where use is made of the
CPsuperH package [15] (in either case, the parameter values are αEM(mZ) = 0.7812, αs(mZ) = 0.1172, GF = 1.174×
10−5 GeV−2, tanβ = 5, MSUSY = 500 GeV, |At| = |Ab| = A, |µ| = 2000 GeV, A = 1000 GeV, and mH± = 300 GeV)

ϕ mh1 mh2 mh3 Γh1→gg × 104 Γh1→γγ × 106

our study [15] our study [15] our study [15] our study [15] our study [15]

0 115.4 106.8 295.5 302.2 297.1 302.3 1.378 1.878 7.703 5.796

π/6 118.7 109.0 289.6 297.8 299.5 304.4 1.529 1.964 8.593 6.287

π/3 125.9 113.9 279.7 290.9 300.4 305.0 1.907 2.107 10.981 7.605

π/2 131.4 117.4 269.3 282.2 299.9 304.5 2.220 1.961 13.313 8.996

2π/3 130.7 114.9 262.2 273.9 298.8 303.5 2.101 1.262 12.953 8.969

5π/6 125.2 105.7 259.8 268.3 297.6 302.4 1.707 0.503 10.645 7.223

π 122.0 99.4 259.6 264.4 297.1 302.0 1.516 0.263 9.508 6.101
values of the phase ϕ. In this table, one can also find
the results derived on the basis of the aforementioned
CPsuperH package [15]. The authors of CPsuperH
employed a different method for diagonalizing the
mass term [in particular, they did not introduce at
all the mixing angle for the CP-even states h and H ,
with the result that M12 and M21 did not vanish in
the analog of the mass matrices (45)] for the Higgs
potential, where the radiation-induced parameters
λ6,7 are absent; also, they took into account two-loop
corrections to the Yukawa coupling constants ht,b.
The results are seen to be qualitatively consistent,
but a detailed numerical comparison is complicated
by the difference in the approaches used.

3.2. Real-Valued Parameters µ2
12 and λ5,6,7; θ 	= 0

If the parameters µ2
12 and λ5,6,7 are real-valued, the

effective potential (6) is CP-invariant. It can easily
be shown [4, 5, 16] that the phases of the complex-
valued parameters µ2

12 and λ5,6,7 can be removed by
means of a U(1)Y rotation in the hypercharge space
under the conditions

Im(µ4
12λ∗

5) = 0, Im(µ2
12λ∗

6) = 0, (47)

Im(µ2
12λ∗

7) = 0.

Since there are no physical grounds that would sub-
stantiate these conditions of the fine tuning of the
phases, it does not seem reasonable to restrict our-
selves to a CP-invariant potential featuring real-
valued parameters. If the phase of the vacuum expec-
tation value is nonzero, θ 	= 0, CP invariance is vio-
lated spontaneously. A local minimum of the effective
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
potential (6) is attained for λ5 > 0 [this is the case of
a pure imaginary value of µA—see Eq. (17)], and

cos θ =
µ2

12 −
v2
1

2
λ6 −

v2
2

2
λ7

λ5v1v2
. (48)

Upon taking into account the diagonalization condi-
tion (35), we obtain

cos θ =
m2

A

λ5v2
+ 1; (49)

that is, there is no minimum for m2
A > 0. At λ5 = 0,

the condition in (48) does not have solutions for θ.
For λ5 < 0, Eq. (48) is a condition of maximum,
while the absolute minimum (the lowest value) is
attained at the ends of the interval cos θ = ±1. By way
of example, we indicate that, with allowance for the
diagonalization condition (35), there is no absolute
minimum at θ = 0 if

m2
A > 2|λ5|v2. (50)

Thus, we see that, in the case of real-valued µ2
12 and

λ5,6,7 and a spontaneous violation of CP invariance,
it is not possible at all to diagonalize the mass term
at a minimum of the effective potential, at least at not
small masses mA.

3.3. Complex-Valued Parameters µ2
12 and λ5,6,7;

θ 	= 0

In the case of complex-valued parameters and a
nonzero phase of the vacuum expectation value for the
doubletΦ2 (3), in which case the CP invariance of the
potential is violated both explicitly and spontaneously,
the condition that the derivative of the potential with
05
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respect to θ vanishes depends on the real and imagi-
nary parts of µ2

12 and λ5,6,7; that is,

cos θ(2Imµ2
12 − v2

1Imλ6 − v2
2Imλ7) (51)

− v1v2Imλ5 cos(2θ) + sin θ(2Reµ2
12 − v2

1Reλ6

− v2
2Reλ7)− v1v2Reλ5 sin(2θ) = 0.

In this case, the condition of extremum for Imµ2
12

depends on the relative phase θ of the vacuum expec-
tation values; for our choice of the phases, the diag-
onalization condition for Reµ2

12 additionally depends
on the phase ξ of the relative rotation of the doublets
[see Eqs. (3) and (4)]. At real-valued µ2

12 and λ5,6,7

and nonzero θ, relation (51) leads to (48).
PH
The conditions of extremum (the vanishing of the
derivatives of the potential with respect to the lower,
neutral, real-valued, and imaginary components of
the doublet fields) for a general and a particular (θ =
0) case are given in the form of the coefficients of the
Higgs potential parameters in Table 3 (conditions of
extremum for µ2

1 and µ2
2 in the general case and at θ =

0) and in Table 4 (conditions of extremum for Reµ2
12

at θ = 0 and for Imµ2
12 in the general case and at

θ = 0). Since the additional condition that specifies,
in the general case, the choice of the parameter mA

for Reµ2
12 is rather cumbersome, it is given separately

below:
Reµ2
12 = −λ2

v2 cos θ sin3(2β) sin2(θ + ξ)

3 + (1− cos θ cos ξ)
(
cos4 β − 3

2
sin2(2β)

)
+ sin4 β + cos θ cos ξ(1− sin4 β)

(52)

+ Reλ5
v2(cos4 β cos2 ξ + cos2 θ sin4 β + cos β cos(θ − ξ) sin β sin(2β))

cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ

− Imλ5
v2(sin2(2β) sin(θ − ξ) + sin4 β(sin(2θ) + tanθ) + cos4 β(tanθ − sin(2ξ)))

2(cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ)

+ Reλ6
1
2

v2 cos2 β + Imλ6
v2 cos3 β sinβ sin ξ

cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ

+ Reλ7

(
v2 cos4 β(4 cos(θ + 2ξ)− 2 cos(2θ) sec θ)tanβ

4(cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ)

+
v2(2 sin2(2β) cos ξ + 2 sec θ sin4 β − cos(2θ + ξ) sin2(2β))tanβ

4(cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ)

)

+ Imλ7
v2 sin(2β)(2 cos2 β cos ξ sin(θ + ξ) + sin2 β(2 sin ξ + sin(2θ + ξ)))

2(cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ)

− Imµ2
12

sin(2β) sin ξ

cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βcotβ

+ m2
A

1
cos2 βcotβ sec θ + cos ξ sin(2β) + sec θ sin2 βtanβ

.

If one sets θ = 0 and ξ = 0, there arise expressions
coincident with those in the particular case of explicit
CP violation [see Eqs. (35) and (42)].

It is noteworthy that, in the general case, the sub-
stitution of the conditions of extremum from Tables 3
and 4 into (51) leads to an identity [irrespective of
expression (52) for Reµ2

12].

The requirement that the second derivative of the
potential with respect to θ is positive is the condition
that an extremum is a minimum:

− sin θ(2Imµ2
12 − v2

1Imλ6 − v2
2Imλ7) (53)

+ 2v1v2Imλ5 sin(2θ) + cos θ(2Reµ2
12 − v2

1Reλ6

− v2
2Reλ7)− 2v1v2Reλ5 cos(2θ) > 0.

In the general case of θ 	= 0 and ξ 	= 0, the diagonal-
ization of the mass term in the effective potential at
a local minimum can be performed on the basis of a
procedure similar to that whichwas considered above:
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 3. Conditions of extremum for µ2
1 and µ2

2 in the general case and at θ = 0

µ2
1 µ2

2

θ 	= 0 θ = 0 θ 	= 0 θ = 0

λ1 v2
1 v2

1 0 0

λ2 0 0 v2
2 v2

2

λ3
1
2

v2
2

1
2

v2
2

1
2

v2
1

1
2

v2
1

λ4
1
2

v2
2

1
2

v2
2

1
2

v2
1

1
2

v2
1

Reλ5
1
2

v2
2

1
2

v2
2

1
2

v2
1

1
2

v2
1

Imλ5 −1
2

v2
2 tan θ 0 −1

2
v2
1 tan θ 0

Reλ6
1
2

v1v2(2 + cos(2θ)) sec θ
3
2

v1v2
1
2

v2
1 sec θ cotβ

1
2

v2
1 cotβ

Imλ6 −v1v2 sin θ 0 0 0

Reλ7
1
2

v2
2 sec θ tanβ

1
2

v2
2 tanβ

1
2

v1v2(2 + cos(2θ)) sec θ
3
2

v1v2

Imλ7 0 0 −v1v2 sin θ 0

Reµ2
12 − tanβ sec θ − tanβ − cotβ sec θ − cotβ
(i)We define h̃, H̃, Ã, and G̃0 as four linear combi-
nations of the independent fields η1, η2, χ1, and χ2 in
the system specified by Eqs. (2) and (3), the zero row
and the zero column in the symmetric 4× 4 matrix of
the masses squared corresponding to the Goldstone
field G̃0. In other words, the Goldstone mode is a
linear combination that is orthogonal to the plane
spanned by those directions in the space of complex
fields that are parallel to the vacuum expectation val-
ues v1 and v2 exp{i(ξ + ζ)}. The 4× 4 mass matrix
of scalar fields then contains a 3× 3 minor, while its
remaining matrix elements vanish upon taking into
account the conditions of extremum from Tables 3
and 4.

(ii) We specify an orthogonal transformation for
the respective 3× 3 matrix by choosing the rotation
angle α̃ in the h̃−H̃ sector in such a way as to
annihilate the crossed term h̃H̃ . Concurrently, one
can readily trace the limiting transitions from the
fields and variables for the general case of nonzero
phases ξ and θ (tilde-labeled fields and variables)
to the fields and variables for the particular case of
ξ = θ = 0 (non-tilde-labeled fields and variables), as
well as to the limit of CP conservation in the basis
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
of the mass eigenstates h, H , and A. We will con-
sider that the effective-potential parameters are real
or complex-valued in diagonalizing the matrix of the
masses squared for a local minimum of the effective
potential.

Thus, we find for the CP states of the Higgs fields
in the case of ξ = 0 and θ 	= 0 that

h̃ = −η1 sin α̃ + (χ2 sin θ + η2 cos θ) cos α̃, (54)

H̃ = η1 cos α̃ + (χ2 sin θ + η2 cos θ) sin α̃, (55)

Ã = −χ1 sinβ + (χ2 cos θ − η2 sin θ) cos β, (56)

G̃0 = χ1 cos β + (χ2 cos θ − χ2 sin θ) sin β. (57)

A direct substitution of these fields into the poten-
tial (6) results in that, in the symmetric 4× 4 matrix
of the masses squared, the row and the column corre-
sponding to the Goldstone mode have zero elements;
that is, the 4× 4 mass matrix degenerates into a
symmetric 3× 3 matrix upon taking into account the
conditions of extremum from Tables 3 and 4. At a
local minimum, the matrix elements M̃13 and M̃23,
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Table 4. Conditions of extremum for Reµ2
12 at θ = 0 and

for Imµ2
12 in the general case and at θ = 0

Reµ2
12 Imµ2

12

θ = 0 and ξ = 0 θ 	= 0 θ = 0

λ1 0 0 0

λ2 0 0 0

λ3 0 0 0

λ4 0 0 0

Reλ5 v1v2 v1v2 sin θ 0

Imλ5 0
1
2

v1v2 cos(2θ) sec θ
1
2

v1v2

Reλ6
1
2

v2
1

1
2

v2
1 tan θ 0

Imλ6 0
1
2

v2
1

1
2

v2
1

Reλ7
1
2

v2
2

1
2

v2
2 tan θ 0

Imλ7 0
1
2

v2
2

1
2

v2
2

m2
A sinβ cosβ 0 0

Reµ2
12 – − tan θ 0

which correspond to the off-diagonal terms h̃Ã and
H̃Ã, have the form

c̃1 = −v2

2
(cos(α̃ + β) cos(2θ)Imλ5 (58)

− 2 sin α̃ cos β cos θImλ6

+ 2cos α̃ sin β cos θImλ7

− cos(α̃ + β) sin(2θ)Reλ5

− 2 sin α̃ cos β sin θReλ6

+ 2cos α̃ sinβ sin θReλ7),

c̃2 = −v2

2
(sin(α̃ + β) cos(2θ)Imλ5 (59)

− 2 cos α̃ cos β cos θImλ6

+ 2 sin α̃ sin β cos θImλ7

+ cos(α̃ + β) sin(2θ)Reλ5

− 2 cos α̃ cos β sin θReλ6

+ 2 sin α̃ sinβ sin θReλ7).

In the case of θ = 0, they coincide with (43).
The case of ξ 	= 0 and θ 	= 0 is analogous to that

considered above, this being associated with arbi-
trariness in choosing the phase ξ of the relative ro-
tation of the scalar-field doublets. Field mass eigen-
PH
states are obtained by means of the substitution θ→
θ − ξ:

h̃ = −η1 sin α̃ + (χ2 sin(θ − ξ) (60)

+ η2 cos(θ − ξ)) cos α̃,

H̃ = η1 cos α̃ + (χ2 sin(θ − ξ) (61)

+ η2 cos(θ − ξ)) sin α̃,

Ã = −χ1 sin β + (χ2 cos(θ − ξ) (62)

− η2 sin(θ − ξ)) cos β,

G̃0 = χ1 cos β + (χ2 cos(θ − ξ) (63)

− χ2 sin(θ − ξ)) sin β.

4. CONCLUDING REMARKS

In conclusion, we emphasize once again that the
potential of the general two-doublet model is not
CP-invariant and that the parameters µ2

12 and λ5,6,7

of the two-doublet effective potential in the Higgs
sector of the minimal supersymmetric model must
be taken to be complex-valued. The choice of purely
real parameters of the general two-doublet model is
not quite compelling because this implies that the
conditions in (47) are additionally imposed, but there
is no physical validation of these conditions. Within
the minimal supersymmetric model, complex-valued
parameters of the effective Higgs potential arise in
quite a natural way if one assumes that, in the sec-
tor of scalar quarks, there is mixing similar to the
Cabibbo–Kobayashi–Maskawa mixing for the three
generations of Standard Model quarks. If this mixing
leads to a strong CP violation (for a discussion on a
weak CP violation, see [17]) and if the scalar sector
of the minimal supersymmetric model features a fairly
strong coupling (that is, there arise large imaginary
parts of the parameters µ2

12 and λ5,6,7), the deviations
of observable effects in amodel featuring CP violation
from the respective Standard Model predictions for
the production of Higgs bosons at new-generation
colliders may be so large that they would require re-
vising experimental priorities [18] for the possibilities
of observing Higgs bosons in known channels such
as γγ, ttH , and bbH .

The phase ζ of the relative rotation of the scalar
doublets and the phase ξ of the relative rotation of
the vacuum expectation values [see (4)] can be con-
strained by the conditions of diagonalization of the
mass term at a minimum [for example, the condition
in (52)], and this would make it possible to establish
nontrivial relations between ζ and ξ, on one hand, and
the variables of the parameter space of the minimal
supersymmetric model. However, we cannot see a
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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direct relationship between the phase of the matrix
elements of the Cabibbo–Kobayashi–Maskawa ma-
trix and the phases ζ and ξ, which characterize CP
violation in the two-doublet potential. On the basis of
the notation used above in the Introduction, one can
establish that the Lagrangian for the Yukawa inter-
action of quarks in the type II THDM (the masses of
the fermions belonging to the upper and lower sectors
are generated to the different doublets Φ1 and Φ2) is
given by an expression of the form (1). Upon going
over to the basis formed by themass eigenstates of the
quark fields, a unitary mixing matrix Vui,dj appears in
the terms representing the interaction with a charged
Higgs boson:

Mdtanβ√
2v

ui
LVui,dj djRH+ +

Mu√
2vtanβ

d
i
LV †

ui,dj uj
RH−.

(64)

If, in the mixing-matrix elements, one singles out
a common phase, Vui,dj → eiϕ

∣∣Vui,dj

∣∣ and V †
ui,dj →

e−iϕ
∣∣Vui,dj

∣∣, then the terms of the Yukawa interaction
will take the form

Mdtanβ√
2v

ui
Leiϕ

∣∣Vui,dj

∣∣ djRH+ (65)

+
Mu√
2vtanβ

d
i
Le−iϕ

∣∣Vui,dj

∣∣ uj
RH−;

that is, the common phase ϕ can be identified with
the phase ξ of the relative rotation of the doublets.
However, a structure of this type does not correspond
to mixing in the sector of charged weak currents,
because the Cabibbo–Kobayashi–Maskawa matrix,
which determines this mixing, does not feature a uni-
versal complex factor.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Color Flows for the Process gg → Bc + c + b̄gg → Bc + c + b̄gg → Bc + c + b̄
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Abstract—Contributions of various color flows to the cross section for the gluonic production ofBc mesons
are calculated. This is essential for simulating events involving Bc mesons with the aid of the PYTHIA
package because the method used in PYTHIA to perform the hadronization of final partons and hadron
remnants depends on the type of color flow. A modified method of partition into color flows is proposed.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Particle-production processes in present-day
hadronic experiments can hardly be performed with-
out employingMonte Carlo methods. This is because
integro-differential equations that describe the evolu-
tion of initial partons and the hadronization of parton-
interaction products are very complicated. At the
present time, PYTHIA [1] is considered to be themost
reliable package for simulating particle-production
processes at high energies by Monte Carlo methods.
This package describes all three stages into which
one can break down, by convention, the production
process—these are the evolution of initial partons,
the hard subprocess of initial-parton interaction, and
the hadronization of hard-interaction products and
the hadron remnant. The hard subprocess is consid-
ered within perturbative QCD, and the subsequent
hadronization is described on the basis of the color-
string model [2], where it is assumed that the color
charges of hard-interaction products are connected
by color-field strings, which are eventually ruptured,
producing color-singlet final states. It should be
noted that strings between the color triplet and
antitriplet are considered in this model. The color
octet (for example, a gluon) is treated approximately
either as a weakly bound triplet–antitriplet state or
as an excitation of the string stretched between the
triplet and the antitriplet. The technique that makes
it possible to break down the matrix element into
components corresponding to specific color flows
was given in [2], and it was shown there that, in the
limit of an infinite number of colors (Nc →∞), the
interference between color flows becomes negligible.

A rather wide set of hard processes can be sim-
ulated within the PYTHIA package; however, the
entire variety of processes that can be studied at high

*e-mail: aber@ttk.ru
1063-7788/05/6811-1866$26.00
interaction energies are not exhausted by this set. In
view of this, recent versions of the PYTHIA package
provide the possibility of including an appropriate
matrix element that corresponds to the hard part of
the process. In this case, there arises the problem of
breaking down the matrix element into color flows
such that a specific way of stretching strings between
final partons and hadron remnants corresponds to
each color flow in the PYTHIA package.

In the present study, we discuss color flows for the
production ofBcmesons in gluon interaction and give
methods that can be used to perform a partition into
flows and which differ slightly from standard methods.

It should be noted that it is rather difficult to
calculate the cross section for the gluonic produc-
tion of Bc mesons, since Bc-meson production does
not proceed via hard bb̄-pair production followed by
the hadronization of the b quark into a Bc meson.
Therefore, the respective production process cannot
be described in terms of the b→ Bc fragmentation
function (this fragmentation function was calculated
in [3]). Under conditions of planned experiments and
those that are currently operating, Bc mesons are
predominantly produced via the recombinationmech-
anism. In order to estimate the contribution of the
recombination mechanism, it is necessary to calcu-
late 36 tree Feynman diagrams of order α4

s . These
calculations were performed independently by several
research groups [4–9]. The results obtained in [4–7]
are in good agreement with one another.

The approaching commissioning of LHC has
rekindled interest in the problem of studying
Bc-meson production in hadron interactions. For
example, the latest versions of the SIMUB pack-
age [10], which is intended for a complete simulation
of processes involving heavy quarks under LHC
conditions, make it possible to generate Bc-meson
events. The authors of the SIMUBpackage employed
c© 2005 Pleiades Publishing, Inc.
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the codes reported in [4, 5]. Close scientific contacts
between the present author and the developers of
SIMUB have given impetus to this study.

2. CALCULATION OF COLOR FLOWS
AT THE LEVEL OF AMPLITUDES

The Feynman diagrams describing the process
gg → Bc +X are given in Fig. 1. Since the diagram
involving the four-gluon vertex contains three differ-
ent color structures, we will treat it as three different
diagrams. The color components of the diagrams can
be represented as

T1 = fn1g2n2fn3n2g1tn1
cc̄ t

n3

bb̄
δbc̄,

T2 = fn1g2n2fn3n2g1tn3
cc̄ t

n1

bb̄
δbc̄,

T3 = fn1g1g2fn2n1n3tn2

bb̄
tn3
cc̄ δbc̄,

T4 = fn1g2n2fn2n3g1tn3

bb̄
tn1
cc̄ δbc̄,

T5 = f g2n1n2fn2n3g1tn1

bb̄
tn3
cc̄ δbc̄,

T6 = fn1n2n3fn3g2g1tn1

bb̄
tn2
cc̄ δbc̄,

T7 = ifn1n2g2tn1
cc̄ t

g1
bl1
tn2

l1b̄
δbc̄,

T8 = ifn1n2g2tn1
cc̄ t

n2
bl1
tg1
l1b̄
δbc̄,

T9 = ifn1n2g2tn1

bb̄
tg1cl1t

n2
l1c̄
δbc̄,

T10 = ifn1n2g2tn1

bb̄
tn2
cl1
tg1l1c̄δbc̄,

T11 = ifn1n2g1tn1

bb̄
tn2
cl1
tg2l1c̄δbc̄,

T12 = ifn1n2g1tn1

bb̄
tg2cl1t

n2
l1c̄
δbc̄,

T13 = ifn1n2g1tn1
cc̄ t

n2
bl1
tg2
l1 b̄
δbc̄,

T14 = ifn1n2g1tn1
cc̄ t

g2
bl1
tn2

l1 b̄
δbc̄,

T15 = tg1bl1t
n1

l1 b̄
tn1
cl2
tg2l2c̄δbc̄,

T16 = tn1
bl1
tg1
l1 b̄
tn1
cl2
tg2l2c̄δbc̄,

T17 = tg1bl1t
n1

l1 b̄
tg2cl2t

n1
l2c̄
δbc̄,

T18 = tg1bl1t
n1

l1 b̄
tg2cl2t

n1
l2c̄
δbc̄,

T19 = tn1
bl1
tg2
l1 b̄
tg1cl2t

n1
l2c̄
δbc̄,

T20 = tn1
bl1
tg2
l1 b̄
tn1
cl2
tg1l2c̄δbc̄,
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T21 = tn1
bl1
tg2
l1 b̄
tn1
cl2
tg1l2c̄δbc̄,

T22 = tg2bl1t
n1

l1 b̄
tn1
cl2
tg1l2c̄δbc̄,

T23 = tn1
bl1
tg1l1l2t

g2
l2b̄
tn1
cc̄ δbc̄,

T24 = tg1bl1t
n1
l1l2
tg2
l2b̄
tn1
cc̄ δbc̄,

T25 = tg1bl1t
g2
l1l2
tn1

l2b̄
tn1
cc̄ δbc̄,

T26 = tn1
bl1
tg2l1l2t

g1
l2b̄
tn1
cc̄ δbc̄,

T27 = tg2bl1t
n1
l1l2
tg1
l2b̄
tn1
cc̄ δbc̄,

T28 = tg2bl1t
g1
l1l2
tn1

l2b̄
tn1
cc̄ δbc̄,

T29 = tn1
cl1
tg1l1l2t

g2
l2c̄
tn1

bb̄
δbc̄,

T30 = tg1cl1t
n1
l1l2
tg2l2c̄t

n1

bb̄
δbc̄,

T31 = tg1cl1t
g2
l1l2
tn1
l2c̄
tn1

bb̄
δbc̄,

T32 = tn1
cl1
tg2l1l2t

g1
l2c̄
tn1

bb̄
δbc̄,

T33 = tg2cl1t
n1
l1l2
tg1l2c̄t

n1

bb̄
δbc̄,

T34 = tg2cl1t
g1
l1l2
tn1
l2c̄
tn1

bb̄
δbc̄,

T35 = ifn1g1g2tn2
bl1
tn1

l1 b̄
tn2
cc̄ δbc̄,

T36 = ifn1g1g2tn1
bl1
tn2

l1 b̄
tn2
cc̄ δbc̄,

T37 = ifn1g1g2tn2
cl1
tn1
l1c̄
tn2

bb̄
δbc̄,

T38 = ifn1g1g2tn1
cl1
tn2
l1c̄
tn2

bb̄
δbc̄,

where the superscripts g1 and g2 indicate the color
states of initial gluons; the subscripts b, b̄, c, and c̄
stand for the color states of the b, b̄, c, and c̄ quarks,
respectively; and δbc̄ is the color component of the
Bc-meson wave function (the normalization factor
1/
√

3 is omitted to avoid encumbering the presenta-
tion).

By way of example, we now consider the color part
of diagram 1 in Fig. 1 (in this diagram, the initial
gluons exchange a gluon in the t channel, whereupon
they split into quark–antiquark pairs). We have

T1 = fn1g2n2fn3n2g1tn1
cc̄ t

n3

bb̄
δbc̄

= fn1g2n2fn3n2g1(tn1tn3)b̄c.

Using the equality tatb − tbta = ifabctc, we ar-
rive at

fn1g2n2fn3n2g1tn1tn3 = −(tg2tn2 − tn2tg2)
05
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Fig. 1. Feynman diagrams for the gluonic production of
Bc mesons.

× (tn2tg1 − tg1tn1) = −tg2tn2tn2tg1 + tn2tg2tn2tg1

+ tg2tn2tg1tn1 − tn2tg2tg1tn1 = −4
3
tg2tg1
PH
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c
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B

 

c

 

B

 

c

 

c

b

 

–

 

1

2

1

2

1

2

Fig. 2. Color flows for the process gg → Bc + c+ b̄.
The color strings are stretched as follows: c quark −→
remnant of the hadron that contained the gluon g1 −→
remnant of the hadron that contained the gluon g2 −→
b̄ quark for flow I; c quark −→ remnant of the hadron
that contained the gluon g2 −→ remnant of the hadron
that contained the gluon g1 −→ b̄ quark for flow II; and
c quark −→ b̄ quark and remnant of the hadron that
contained the gluon g1 � remnant of the hadron that
contained the gluon g2 for flow III.

− 1
6
tg2tg1 − 1

6
tg2tg1 −

(
1
4
δg1g2 − 1

6
tg2tg1

)

= −1
4
δg1g2 − 3

2
tg2tg1.

Finally, we have

T1 = −3
2
tg2ckt

g1
kb̄
− 1

4
δg1g2δcb̄.

The first term (see scheme II in Fig. 2) corresponds
to the color flow where the color of the second gluon
(g2) flows to the c quark, the anticolor of the first
gluon (g1) flows to the b̄ quark, and the color of the
first gluon (g2) and the anticolor of the second gluon
undergo annihilaton (sum over k). The second term
corresponds to the color flow where the color and
anticolor of the initial gluons are annihilated, while
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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the color and anticolor of the c and b̄ quarks are
produced from a vacuum (see scheme III in Fig. 2).
In the other diagrams being considered, there is also
a contribution of the form tg1ckt

g2
kb̄
. It corresponds to the

case where the color of the first gluon (g1) flows to the
c quark, the anticolor of the second gluon (g2) flows
to the b̄ quark, and the anticolor of the first gluon and
the color of the second gluon undergo annihilation
(see scheme I in Fig. 2). There are no color flows in
the process in question other than those mentioned
above. This color-flow partition corresponds to the
recipe given in [2].

However, it would be desirable to rely on more
fundamental QCD principles. For example, the term
δg1g2δcb̄ corresponds to the case where the c and b̄
quarks are created in a singlet state; therefore, the
string is naturally stretched between them. We note
that the term tg2ckt

g1
kb̄

also features a singlet contribu-
tion:

tatb =
1
6
δab +

1
2

(
dabc + ifabc

)
tc. (1)

It turns out that one part of the singlet is hadronized
according to one law, while its other part is hadronized
according to a different law. Therefore, it may be more
correct to treat the whole-color singlet contribution
as a individual color flow. In this case, the remaining
two flows are composed from two octet states d and f .

Thus, we define three flows as follows:
(i) The color of the first gluon flows to the c quark,

the anticolor of the second gluon flows to the b̄ quark,
and the anticolor of the first gluon and the color of the
second gluon undergo annihilation:

1
2
(
dg1g2k + if g1g2k

)
tkcb̄.

(ii) The color of the second gluon flows to the c
quark, the anticolor of the first gluon flows to the b̄
quark, and the color of the first gluon and the anticolor
of the second gluon undergo annihilation:

1
2
(
dg1g2k − if g1g2k

)
tkcb̄.

(iii) The color and the anticolor of the initial gluons
are annihilated, while the color and the anticolor of the
c and b̄ quarks are produced from a vacuum:

δg1g2δcb̄.

In our opinion, this partition is more physically
justified because the singlet-state contribution is
treated as an individual flow that does not interfere
with the other flows.

The partitionmethod described here differs slightly
from the standard method where tg1ckt

g2
kb̄
, tg2ckt

g1
kb̄
, and

δg1g2δcb̄ are taken to be color flows, but where the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2
Vectors An, Bn, and Cn (see schemes I, II, and III in
Fig. 2) characterizing the partition of the matrix element
in flows

n An Bn Cn n An Bn Cn

1 0 −3/2 −1/2 20 −1/6 0 −1/36

2 −3/2 0 −1/2 21 −1/6 0 −1/36

3 3/2 −3/2 0 22 −1/6 0 2/9

4 0 3/2 1/2 23 4/3 0 2/9

5 −3/2 0 −1/2 24 −1/6 0 1/36

6 3/2 −3/2 0 25 −1/6 0 2/9

7 0 0 1/4 26 0 4/3 2/9

8 0 −3/2 −1/4 27 0 −1/6 −1/36

9 3/2 0 1/4 28 0 −1/6 2/9

10 0 0 −1/4 29 −1/6 0 2/9

11 0 0 −1/4 30 −1/6 0 −1/36

12 0 3/2 1/4 31 4/3 0 2/9

13 −3/2 0 −1/4 32 0 −1/6 2/9

14 0 0 1/4 33 0 −1/6 −1/36

15 0 −1/6 2/9 34 0 4/3 2/9

16 0 −1/6 −1/36 35 4/3 −4/3 0

17 0 −1/6 −1/36 36 −1/6 1/6 0

18 0 4/3 2/9 37 −1/6 1/6 0

19 4/3 0 2/9 38 4/3 −4/3 0

partition is performed to terms of order 1/Nc inclusive,
Nc being the number of colors. Formula (1) then
assumes the form

tatb =
1

2Nc
δab +

1
2

(
dabc + ifabc

)
tc, (2)

whence it follows that, in the limit Nc →∞, the two
partition methods lead to the same result.

Thus, the color component of the matrix element
(n) can be represented in the form

Tn =
1
2

(
dg1g2k + if g1g2k

)
tkcb̄ ·An (3)

+
1
2

(
dg1g2k − if g1g2k

)
tkcb̄ · Bn + δg1g2δcb̄ · Cn.

Upon averaging over the color states of initial par-
ticles and summation over the color states of final
particles, the color matrix takes the form

Mmn =
1
64

(
(D + F ) ·AmAn + (D + F ) ·BmBn

(4)
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Fig. 3. Differential distributions of the cross sections with respect to the cosine of the emission angles of final particles for
various color flows and analogous distribution of the interference term at the gluon-interaction energy of 25 GeV for the
gluonic production of a pseudoscalarBc meson (gg → Bc + b̄+ c): (a, b) angular distributions for theBc meson, (c, d) angular
distributions for the b̄ quark, and (e, f) angular distributions for the c quark. In Figs. 3а, 3c, and 3e, the solid, dashed, and dotted
curves correspond to flows I, II, and III, respectively. The interference contribution is shown in Figs. 3b, 3d, and 3f.
+ (D − F ) · (AmBn +BmAn) + S · CmCn
)
,

where D = 5/3, F = 3, and S = 24. This matrix is
determined by three vectors An, Bn, and Cn, which
are given in the table.

In our approach, the color matrix corresponding
to the interference between the color flows, (dg1g2k +
if g1g2k)tk

cb̄
and (dg1g2k − if g1g2k)tk

cb̄
, has a simple

form,

M int
mn =

1
64

(
(D − F ) · (AmBn +BmAn)

)
. (5)

It should be noted that formula (3) can easily be
rewritten in terms of standard color flows:

Tn = tg1ckt
g2
kb̄
·An + tg2ckt

g1
kb̄
· Bn (6)

+ δg1g2δcb̄ ·
(
Cn −

An +Bn
6

)
.

PH
From a comparison of Eqs. (3) and (6), one can see
that the expressions for flow I differ only in the value
of the common factor. It can readily be shown that,
for flow I, the squares of the matrix elements in these
two partition schemes are in the ratio 7 : 8, the same
being valid for flow II.

3. RESULTS OF THE CALCULATIONS

Figures 3 and 4 present the differential distribu-
tions of the cross sections with respect to the cosine
of the emission angle of final particles (Bc, b̄, and c)
for various color flows and the analogous distributions
of the interference term at the gluon-interaction en-
ergy of 25 GeV, which is characteristic of Bc-meson
production at LHC. We note that our intuitive ideas
of color flows are in accord with the results of ac-
curate calculations. From the distributions presented
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 4. As in Fig. 3 but for the gluonic production of a vectorBc meson (B∗
c ).
here for flows I and II, one can indeed see that the
b̄ quark moves predominantly in the direction of the
gluon from which the anticolor flew to it (Figs. 3c
and 4c), while the c quark moves in the direction of
the gluon from which the color flew to it (Fig. 3e and
4e). As might have been expected, flow III, which
corresponds to the color singlet, is represented by
distributions that are symmetric in angles.

The interference between flows I and III is small
(Figs. 3b, 3d, 3f, 4b, 4d, and 4f). In the case of
the production of a pseudoscalar Bc meson at the
interaction energy of 25 GeV, it is destructive over the
entire region of emission angles of final particles. In
the case of the production of a vector Bc meson, the
interference term is also negative everywhere, with
the exception of peripheral regions in the distribu-
tions with respect to the cosine of the emission angle
of the b̄ and c quarks. For both pseudoscalar- and
vector-meson production, the total contribution of
the interference to the cross section is negative. The
calculations show that, at low energies, the inter-
ICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
ference contribution becomes positive for the vector
Bc meson, but this is not so for the pseudoscalar Bc
meson. The absolute value of the interference term is
small over the entire range of gluon energies.

As was mentioned above, the contributions of
flows I and II within the present and within the
traditional scheme of partition into flows differ only in
normalization. As to the color-singlet flows obtained
in these two approaches, they differ in form as well;
therefore, it is of interest to compare the contributions
of this flow within the different approaches. In Fig. 5,
the distributions of the cross sections with respect
to the Bc-meson emission angle in our and in the
traditional approach are given for flow III. One can
see that the contribution of the singlet flow is greater
in our approach than in the standard scheme. This
enhancement can be explained by the fact that, in
our approach, there is no interference between flows I
and III and between flows II and III; that part of the
cross section which corresponded to the respective
05
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Fig. 5. Differential distributions of the cross sections
with respect to the cosine of the emission angles of the
(а) pseudoscalar and (b) vector Bc mesons for flow III
according to calculations by (solid curves) the method
proposed in the present study and (dashed curves) the
standard method.

interference terms transformed into the contribution
of flow III.

4. CONCLUSION

The proposed method of partition into color flows
for the process gg → Bc + b̄+ c→ Bc +X makes
it possible to reduce the interference between these
flows to a minimum level; therefore, one can neglect
the interference in simulating events involving a Bc
meson. In addition, this method enables one to estab-
lish a clearer correspondence between the color states
of final partons and color flows. The redistribution of
the interference terms leads to a significant enhance-
ment of flow III. In particular, the contribution of this
flow in the central region becomes commensurate
with the contribution of flows I and II, and this may
lead to a different pattern of the hadronization of final
partons b̄ and c.
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Abstract—We reanalyze deep-inelastic scattering data of the BCDMS Collaboration by including proper
cuts of ranges with large systematic errors. We also perform the fits of high-statistic deep-inelastic
scattering data of the BCDMS, SLAC, NM, and BFP Collaborations taking the data separately and in
a combined way and find good agreement between these analyses. We extract the values of both the QCD
coupling constant αs(M2

Z) up to the NLO level and of the power corrections to the structure function
F2. The fits of the combined data for the nonsinglet part of the structure function F2 predict the coupling
constant value αs(M2

Z) = 0.1174± 0.0007 (stat.)± 0.0019 (syst.)± 0.0010 (norm.) (or QCD parameter
Λ(5)

MS
= 204± 25 (total experimental error)MeV). The fits of the combined data for both the nonsinglet part

and the singlet part lead to the values αs(M2
Z) = 0.1177± 0.0007 (stat.)± 0.0021 (syst.)± 0.0009 (norm.)

(or QCD parameter Λ(5)

MS
= (208± 27 (total experimental error) MeV). The above values are in very good

agreement with each other. We estimate theoretical uncertainties for αs(M2
Z) at +0.0047 and −0.0057

from fits of the combined data when complete singlet and nonsinglet Q2 evolution is taken into account.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The deep-inelastic scattering (DIS) of leptons on
hadrons is the basic process to study the values of the
parton distribution functions (PDFs) which are uni-
versal (after choosing factorization and renormaliza-
tion schemes) and can be used in other processes. The
accuracy of the present data for deep-inelastic struc-
ture functions (SFs) has reached the level at which
the Q2 dependence of logarithmic QCD-motivated
and powerlike ones may be studied separately (for
a review, see the recent papers [1, 2] and references
therein).

In the present article, we analyze at the next-to-
leading (NLO) order1) of perturbative QCD the most
known DIS SF F2(x,Q2) taking into account SLAC,
NM, BCDMS, and BFP experimental data [4–10].
We stress the powerlike effects, so-called twist-4 (i.e.,
∼1/Q2) contributions. For our purposes, we rep-
resent the SF F2(x,Q2) as the contribution of the

∗The text was submitted by the authors in English.
1)The evaluation of α3

s(Q
2) corrections to anomalous dimen-

sions of Wilson operators, which will be done in near future
by J.A.M. Vermaseren and his coauthors (see discussions
in [3]), makes it possible to apply many modern programs
to perform fits of data at the next-next-to-leading order
(NNLO) of perturbative theory (see detailed discussions in
Summary).
1063-7788/05/6811-1873$26.00
leading-twist part F pQCD2 (x,Q2) described by per-
turbative QCD and the nonperturbative part (twist-4
terms ∼1/Q2):

F2(x,Q2) ≡ F full2 (x,Q2) (1)

= F
pQCD
2 (x,Q2)

(
1 +

h̃4(x)
Q2

)
.

The SF F
pQCD
2 (x,Q2) obeys the (leading-twist)

perturbative QCD dynamics including the target
mass corrections (TMC) (and coincides with
F tw22 (x,Q2) when the TMC are withdrawn).

Equation (1) allows us to separate pure kinemati-
cal power corrections, i.e., TMC, so that the function
h̃4(x) corresponds to the “dynamical” contribution of
the twist-4 operators. The parametrization (1) im-
plies2) that the anomalous dimensions of the twist-2
and twist-4 operators are equal to each other, which
is not correct in principle. Moreover, there are esti-
mations of these anomalous dimensions (see [11]).
Meanwhile, in view of limited precision of the data,
the approximation (1) and the one in the footnote 2

2)The right-hand side of Eq. (1) is represented sometimes as
F pQCD2 (x,Q2) + h4(x)/Q

2. It implies that the anomalous
dimensions of the twist-4 operators are equal to zero.
c© 2005 Pleiades Publishing, Inc.
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give rather good predictions (see discussions in [12,
13]).
Contrary to standard fits (see, for example, [14,

15]) when the direct numerical calculations based
on the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) equation [16] are used to evaluate SFs, we
use the exact solution of the DGLAP equation for the
Mellin momentsMk

n(Q2) of SFs F k
2 (x,Q2),

Mk
n(Q2) =

1∫
0

xn−2F k
2 (x,Q2)dx (2)

(hereafter, k = full, pQCD, tw2, . . . ),

and the subsequent reproduction of F full2 (x,Q2),
F
pQCD
2 (x,Q2), and/or F tw22 (x,Q2) at every needed

Q2 valuewith help of the Jacobi polynomial expansion
method [17–19] (see similar analyses at the NLO
level [18–21] and at the NNLO level and above [22–
27]).
The method of the Jacobi polynomial expansion

was developed in [17, 18] and described in detail
in [19]. Here, we consider only some basic definitions
in Section 3.
The paper has the following structure: In Sec-

tion 2, we present basic formulas which are needed
in our analysis: we consider different types of Q2

dependence of SFmoments, effects of nuclear correc-
tions and heavy-quark thresholds, and the structure
of normalization of parton densities in singlet and
nonsinglet channels. In Section 3, we introduce the
basic elements of our fits. Sections 4 and 5 contain
conditions and results of several types of fits with the
nonsinglet and singlet evolutions for different sets of
data. In Section 6, we study the dependence of the
results on choice of factorization and renormalization
scales. In Section 7, we summarize the basic obser-
vations following from the fits and discuss possible
future extensions of the analysis.

2. Q2 DEPENDENCE OF SFs AND THEIR
MOMENTS

In this section, we analyze Eq. (1) in detail, con-
sidering separately different types of Q2 dependence
of structure function F2.

2.1. The Leading-TwistQ2 Dependence

To study the Q2 dependence of the SF
F tw22 (x,Q2) = FNS2 (x,Q2) +FS

2 (x,Q2), which splits
explicitly into the nonsinglet (NS) part and the singlet
(S) part, it is very useful to introduce PDFs:3) a gluon

3)Our PDFs are multiplied by x to compare with the standard
definition.
PH
one fG(x,Q2) and singlet and nonsinglet quarks ones
fS(x,Q2) and fNS(x,Q2).

The moments MNS
n (Q2) and MS

n (Q2) of nonsin-
glet and singlet parts of SF F2 (see Eq. (2) for defini-
tion) are connected with the corresponding moments
of PDFs f̃i(x,Q2) (hereafter, i = NS, S,G)

fi(n,Q2) =

1∫
0

xn−2f̃i(x,Q2)dx

in the following way (see [28], for example):

MNS
n (Q2) = KNS(f)C tw2NS (n, as(Q2))fNS(n,Q2),

(3)

MS
n (Q2) = KS(f)[C tw2S (n, as(Q2))fS(n,Q2)

+ C tw2G (n, as(Q2))fG(n,Q2)],

where4)

as(Q2) =
αs(Q2)

4π
, (4)

and C tw2i (n, as(Q2)) are so-called Wilson coefficient
functions. We have also introduced here the coeffi-
cients

KS(f) =
f∑

m=1

e2
m/f, (5)

KNS(f) = e2
u −KS(f),

which come from definition of SF F2 (see, for exam-
ple, [28]). Here, f is the number of active quarks and
e2
m is charge square of the active quark ofm flavor.

1. The dependence of as(Q2) is given by the renor-
malization group equation, which in the NLO QCD
approximation reads

1
as(Q2)

− 1
as(M2

Z)
(6)

+
β1

β0
ln

[
as(Q2)
as(M2

Z)

(
β0 + β1as(M2

Z)
)

(β0 + β1as(Q2))

]

= β0 ln
(
Q2

M2
Z

)
,

where as(M2
Z) serves as a normalization. Here and

below, we use β0 and β1 for the first and second terms
with respect to as of the QCD β function:

β(as) = −β0a
2
s − β1a

3
s + . . . .

4)Sometimes, we will call the last term,
KS(f)C tw2G (n, as(Q

2))fG(n,Q2), the gluon part of the
singlet moment and denote it asMG

n (Q2).
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Equation (6) allows us to eliminate the QCD pa-
rameter ΛQCD from our analysis. However, some-
times we will present it in our discussions, essentially
to compare it with the results of old fits. The coupling
constant as(Q2) is expressed through ΛQCD (in the
MS scheme, where ΛQCD = ΛMS) as

1
as(Q2)

+
β1

β0
ln
[

β2
0as(Q

2)
(β0 + β1as(Q2))

]
(7)

= β0 ln

(
Q2

Λ2
MS

)
.

The relation between the normalization as(M2
Z)

and the QCD parameter ΛQCD can be obtained from
Eq. (7) with the replacement Q2 →M2

Z .

We would like to note that approximations of
Eq. (7), based on the expansion of inverse powers

of ln
(
Q2/Λ2

MS

)
, are very popular. The accuracy of

these expansions for evolution of as from O(GeV2)
to M2

Z may be as large as 0.001 [13], which is
comparable with the experimental uncertainties of
the αs(M2

Z) value extracted from the data (see our
analyses in Sections 4 and 5).
Note also that sometimes (see, for example, [22])

the equation

1
as(Q2)

+
β1

β0
ln
(
β0as(Q2)

)
= β0 ln

(
Q2

Λ2
MS

)
(8)

is used in the analyses. This equation can be obtained
from the basic equation

ln

(
Q2

Λ2
MS

)
=

as(Q2)∫
db

β(b)
(9)

by expansion of the inverse QCD β function 1/β(as)
in powers of as. The difference between Eqs. (8) and
(7) may be as large as 0.001 at O(GeV2) range. In
order to escape the above uncertainties, we use in the
analyses the exact numerical solution (with accuracy
about 10−5) of Eq. (6) instead. For recalculation of the

QCD parameter ΛMS from Λ(f)

MS
to Λ(f±1)

MS
(i.e., from

ΛMS at f active-quark flavors toΛMS at f ± 1 active-
quark flavors), because β0 and β1 are f-dependent
functions, we use formulas in the NLO approximation
from [29] (see discussions in the Section 2.4).

2. The coefficient functions C tw2i (n, as(Q2)) (i =
NS, S,G) have the following form:

C tw2i (n, as(Q2)) = 1− δGi + asBi(n) + O(a2
s) (10)

(δmi is the Kronecker symbol),
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
where the NLO coefficients Bi(n) are known exactly
(see, for example, [28]).

The Q2 evolution of the moments fi(n,Q2) is
given by the well-known perturbative QCD [28, 30]
formulas:

fNS(n,Q2)
fNS(n,Q2

0)
=
[
as(Q2

0)
as(Q2)

]γ(0)
NS (n)/(2β0)

HNS(n,Q2, Q2
0),

(11)

fj(n,Q2) = f+
j (n,Q2) + f−

j (n,Q2) (j = S,G),

f±
j (n,Q2)

f±
j (n,Q2

0)
=
[
as(Q2

0)
as(Q2)

]γ(0)
± (n)/(2β0)

H±
j (n,Q2, Q2

0),

where5)

f±
j (n,Q2) = ε±jl(n)fl(n,Q2) (j, l = S,G), (12)

γ
(0)
± (n) =

1
2

[(
γ

(0)
GG(n) + γ

(0)
SS(n)

)

±
√

(γ(0)
SS(n)− γ

(0)
GG(n)) + 4γ(0)

GS(n)γ(0)
SG

]
,

ε±qq(n) = ε∓gg(n) =
1
2

(
1 +

γ
(0)
SS(n)− γ

(0)
GG(n)

γ
(0)
± (n)− γ

(0)
∓ (n)

)
,

ε±jl(n) =
γ

(0)
jl (n)

γ
(0)
± (n)− γ

(0)
∓ (n)

(j �= l).

The functionsHNS(n,Q2, Q2
0) andH

±
j (n,Q2, Q2

0)
are nonzero above the leading-order (LO) approxi-
mation and may be represented as

HNS(n,Q2, Q2
0) (13)

= 1 + (as(Q2)− as(Q2
0))ZNS(n) + O(a2

s),

H±
j (n,Q2, Q2

0)

= 1 + (as(Q2)− as(Q2
0))Z±±(n)

+
(
as(Q2

0)
[
as(Q2

0)
as(Q2)

](γ
(0)
∓ (n)−γ

(0)
± (n))/(2β0)

− as(Q2)
)
Zj
±∓(n) + O(a2

s),

where

ZNS(n) =
1

2β0

(
γ

(1)
NS(n)− γ

(0)
NS(n)

β1

β0

)
, (14)

5)We use a nonstandard definition (see [31]) of the projectors
ε±jl(n), which is very convenient beyond the leading order
(see Eq. (17) and [32, 33]). The connection with the more
usual definition α, α̃, and ε in [34, 28] is given by ε−SS(n) =

α(n), ε−SG(n) = α̃(n), and ε−GS(n) = ε(n).
05
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Z±±(n) =
1

2β0

(
γ

(1)
±±(n)− γ

(0)
± (n)

β1

β0

)
, (15)

ZS
±∓(n) =

γ
(1)
±∓(n)

2β0 + γ
(0)
± (n)− γ

(0)
∓ (n)

, (16)

ZG
±∓(n) = ZS

±∓(n)
ε∓GG

ε∓SS

and

γ
(1)
±±(n) =

∑
j,l=S,G

ε±ljγ
(1)
jl , (17)

γ
(1)
±∓(n) =

∑
j=S,G

ε±jGγ
(1)
Gj − ε∓SSγ

(1)
SS

+ (ε±GS − ε±GG/ε
±
SG)γ(1)

GG.

As usual, here we use γ(0)
NS(n), γ(0)

jl (n) (j, l = S,G)

and γ(1)
NS(n), γ(1)

jl (n) as the first and second terms with
respect to as of anomalous dimensions γNS(n, as) and
γjl(n, as) (see, for example, [35]).

3. In this subsection, we would like to discuss
a possible dependence of our results on the factor-
ization scale µF and the renormalization scale µR,
which appear (see, for example, [14, 36]) because
perturbative series are truncated. These scales µ2

F =
kFQ

2 and µ2
R = kRµ

2
F = kRkFQ

2 can be added to
the right-hand side of Eqs. (3) and (11), respectively.
Then, Eqs. (3) are replaced by

MNS
n (Q2) = KNS(f)Ĉ tw2NS (n, as(kFQ2)) (18)

× fNS(n, kFQ2),

MS
n (Q2) = KS(f)[Ĉ tw2S (n, as(kFQ2))

× fS(n, kFQ2) + Ĉ tw2G (n, as(kFQ2))fG(n, kFQ2)].

Equations (11) are replaced, correspondingly, by

fNS(n, kFQ2)
fNS(n, kFQ2

0)
=
[
as(kF kRQ2

0)
as(kF kRQ2)

]γ(0)
NS (n)/(2β0)

(19)

× ĤNS(n, kF kRQ2, kF kRQ
2
0),

f±
j (n, kFQ2)

f±
j (n, kFQ2

0)
=
[
as(kF kRQ2

0)
as(kF kRQ2)

]γ(0)
± (n)/(2β0)

× Ĥ±
j (n, kF kRQ2, kF kRQ

2
0).

The coefficients ĈNS, ĈS , ĈG, ĤNS, and Ĥ±
j can

be obtained from CNS, CS, CG, HNS, and H±
j by

modification on the right-hand side of Eqs. (10), (14),
and (15) as follows:

as(Q2)→ as(kFQ2), (20)
PH
BNS(n)→ BNS(n) +
1
2
γ

(0)
NS(n) ln kF ,

Bj(n)→ Bj(n) +
1
2
γ

(0)
jS (n) ln kF (21)

(j = S,G)

in Eq. (10);

as(Q2)→ as(kF kRQ2), (22)

ZNS(n)→ ZNS(n) +
1
2
γ

(0)
NS(n) ln kR,

Z±±(n)→ Z±±(n) +
1
2
γ

(0)
± (n) ln kR (23)

in Eqs. (14) and (15).
Equations (21) can be obtained easily using, for

example, the results of [37]. Equations (23) can be
found from the expansion of the coupling constant
as(kF kRQ2) around the one as(Q2) on the right-
hand side of the exact solution of DGLAP equations
[see Eqs. (19) and (13)].

The changes (21) and (23) of the results for theQ2

dependence under variation of kF and kR (usually6)

from 1/2 to 2) give an estimation of the errors due
to factorization and renormalization scale uncertain-
ties. Evidently, by definition, these uncertainties are
connected with the impact of unaccounted terms of
the perturbative series and can represent theoreti-
cal uncertainties in values of fitted variables. Indeed,
incorporation of NNLO corrections to the analysis
strongly suppress these uncertainties (see [39, 40]).
We study exactly the µF and µR dependences here

for fitted values of the coupling constant. The results
of the study are given in Section 6.
As one can see in Eqs. (20) and (22), the cou-

pling constant as has different arguments in the NLO
corrections of coefficient functions ĈNS and Ĉj (j =
S,G) and in the NLO corrections ĤNS and Ĥ±

j of the
Q2 evolution of parton distributions. We would like
to note that the difference between the correspond-
ing coupling constants as(kFQ2) and as(kF kRQ2) is
proportional to a2

s and, thus, mathematically negligi-
ble in our NLO approximation.
Then, we can use the replacement (22) in co-

efficient functions too, as has been done in previ-
ous studies [38–40, 27]. We note that the replace-
ment as(kFQ2)→ as(kF kRQ2) in Eq. (20) increases
slightly the factorization-scheme dependence of the

6)In the recent articles [38–40, 26], the variation from 1/4
to 4 has been used. In our opinion, the case kF = kR =
4 leads to a very small scale of coupling constant Q2/16,
which requires us to reject many experimental points of data,
because we have the general cutQ2 > 1GeV2. So, we prefer
to use the variation of scales from 1/2 to 2.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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results for coupling constant (see analyses based on
nonsinglet evolution and discussions in Section 6).

2.2. Normalization of Parton Distributions

Themoments fi(n,Q2) at someQ2
0 are theoretical

input of our analysis which is fixed as follows.
For fits of data at x ≥ 0.25, we can work only

with the nonsinglet parton density and use directly its
normalization f̃NS(x,Q2

0) (see, for example, [22–26]):

fNS(n,Q2
0) =

1∫
0

dxxn−2f̃NS(x,Q2
0), (24)

f̃NS(x,Q2
0) = ANS(Q2

0)(1− x)bNS(Q
2
0)

× (1 + dNS(Q2
0)x),

where ANS(Q2
0), bNS(Q2

0), and dNS(Q2
0) are some

coefficients.7)

In the analyses, at arbitrary values of x, we should
introduce the normalizations for densities of indi-
vidual quarks (q = u, d, s, . . . ) and antiquarks (q =
u, d, s, . . . ) f̃q(x,Q2

0) and f̃q(x,Q2
0) having the mo-

ments

fi(n,Q2
0) =

1∫
0

dxxn−2f̃i(x,Q2
0). (25)

The distributions of u and d quarks f̃u(x,Q2
0) ≡

u(x,Q2
0) and f̃d(x,Q

2
0) ≡ d(x,Q2

0) are split into two
components: the valent ones uv(x,Q2

0) and dv(x,Q
2
0)

and the sea ones usea(x,Q2
0) and dsea(x,Q2

0). For
other quark distributions and antiquark densities, we
keep only sea parts. Moreover, following [28, 41], we
assume equality of all sea parts and indicate their sum
as S(x,Q2

0).
We use the following parametrizations for densi-

ties uv(x,Q2
0), dv(x,Q

2
0), S(x,Q2

0), and f̃G(x,Q2
0):

uv(x,Q2
0) =

2
B(au(Q2

0), bu(Q2
0) + 1)

xau(Q2
0) (26)

× (1− x)bu(Q2
0),

dv(x,Q2
0) =

1
B(ad(Q2

0), bd(Q
2
0) + 1)

xad(Q2
0)

× (1− x)bd(Q2
0),

7)We do not consider here the term ∼xaNS(Q
2
0) in the normal-

ization f̃NS(x,Q2
0), because x ≥ 0.25. The correct small-x

asymptotics of nonsinglet distributions will be obtained by
Eq. (29) from the corresponding parameters of the valent-
quark distributions (26) fittedwith complete singlet and non-
singlet evolution in Section 5.
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S(x,Q2
0) = CS(Q2

0)x
asea(Q2

0)(1− x)bsea(Q
2
0), (27)

f̃G(x,Q2
0) = CG(Q2

0)x
aG(Q2

0)(1− x)bG(Q2
0),

where B(a, b) is the Euler beta function. The para-
metrizations (26) have been chosen to satisfy (at the
normalization pointQ2

0) the known rule

1∫
0

dxV (x,Q2) = 3,

where V (x,Q2) = uv(x,Q2) + dv(x,Q2) is the dis-
tribution of valent quarks.

We note that the nonsinglet and singlet parts of
quark distributions, f̃NS(x,Q2

0) and f̃S(x,Q2
0), can be

represented as combination of quark ones:

f̃S(x,Q2
0) ≡

f∑
q

f̃q(x,Q2
0) (28)

= V (x,Q2
0) + S(x,Q2

0),

f̃NS(x,Q2
0) = uv(x,Q2

0)− dv(x,Q2
0), (29)

where the right-hand side of Eq. (29) is correct only
in the framework of our supposition about equality of
antiquarks distributions and sea components of quark
ones.

In principle, following the PDFmodels used in [15,
12] and Eq. (24) above, one can add in Eq. (27) terms
proportional to

√
x and x. However, the terms ∼√x

are important only in the region of rather small x (see
discussion in [12]). The terms∼x lead only to replace-
ment of Ci, ai, and bi values (see, for example, [42]).
Thus, we neglect these terms in our analysis.

Inmost of our fits, we also do not take into account
the terms ∼xaG(Q2

0) and ∼xasea(Q2
0) in the gluon and

sea quark distributions, because we do not consider
experimental data at small values of Bjorken variable
x.8) We hope to include H1 and ZEUS data [43, 44] in
our future investigations [45] and then to study theQ2

dependence of the coefficients aG(Q2) and asea(Q2),
which could be very nontrivial (see, for example, [46–
48, 43, 32] and references therein).

We also impose the condition for full-momentum
conservation in the form

1 = PG(Q2) + Pq(Q2), (30)

8)However, we have performed several fits with nonzero aG

and asea values taken into account (see Section 5). We have
found a negative value for them: aG = asea ∼ −0.18 (which
is in agreement with [12]), but these results cannot be con-
sidered seriously without taking into account H1 and ZEUS
data [43, 44] (see, however, discussions in Section 5.3.4).
05
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where

PG(Q2) =

1∫
0

dxf̃G(x,Q2), (31)

Pq(Q2) =

1∫
0

dx(f̃NS(x,Q2) + f̃S(x,Q2)).

The coefficients Ci(Q2
0), ai(Q

2
0), bi(Q

2
0), ci(Q

2
0),

and di(Q2
0) should be found together with h̃4(x) (see

Section 2.6) and the normalization αs(M2
Z) of the

QCD coupling constant (or QCD parameter Λ) by
the fits of experimental data.

2.3. Target Mass Corrections

TMC modify the SF F
pQCD
2 (x,Q2) in the follow-

ing way (see [28, 49])

F
pQCD
2 (x,Q2) =

1
r3

x2

ξ2
F tw22 (ξ,Q2) (32)

+ 6
M2
nucl

Q2

x3

r6

1∫
ξ

dξ′

(ξ′)2
F tw22 (ξ′, Q2)

+ 12
M4
nucl

Q4

x4

r5

1∫
ξ

dξ′
1∫

ξ′

dξ′′

(ξ′′)2
F tw22 (ξ′′, Q2),

where Mnucl is the mass of the nucleon, r =√
1 + x2M2

nucl/Q
2, and the Nachtmann variable ξ =

2x/(1 + r).
In our analyses below, we will use this represen-

tation (32).9) We would like to keep the full value of
kinematic power corrections, given by nonzero nu-
cleon mass. Then, the excess of the 1/Q2 dependence
encoded in experimental data will give the magnitude
of twist-4 corrections, which is the most important
part of dynamical power corrections.

2.4. Thresholds of Heavy Quarks

Modern estimates performed in [51, 52] have re-
vealed a quite significant role of threshold effects in
the αs(Q2) evolution when the DIS data lie close to
threshold pointsQ2 = M2

f+1 ∼ m2
f+1 (to the position

9)It is contrary to [13], where only the term ∼M2
nucl/Q

2

has been used. We note that the appearance of the terms
∼M2

nucl/Q
2 at x = 1 (see, for example, [50]), i.e., the absence

of the equality F pQCD2 (1, Q2) = 0, is not important in our
analyses because we do not use experimental data at very
large x values: x ≤ 1.
PH
of so-called Euclidean-reflected threshold of heavy
particles). The corresponding corrections to the nor-
malization αs(M2

Z) can reach several percent; i.e.,
they are of the order of other uncertainties which
should be under control at our analysis.

An appropriate procedure for the inclusion of
threshold effects in the Q2 dependence of αs(Q2)
in the framework of the massless MS scheme was
proposed more than 20 years ago [53, 54]: transition
from the region with a given number of flavors f

described by massless αs(Q2; f)10) to the next one
with f + 1 (transition across the Mf+1 threshold) is
realized here with the use of the so-called matching
relation for αs(Q2) [54]. The latter may be considered
as the continuity condition for αs(Q2) on (every)
heavy-quark massmf+1:

αs(Q2 = M2
f+1; f) = αs(Q2 = M2

f+1; f + 1) (33)

and

Mf+1 = mf+1, (34)

which provides an accurate αs(Q2)-evolution de-
scription for Q2 values not close to the threshold
region (see [55] and references therein).

In the analyses based on nonsinglet evolution,
the additional f dependence comes only from the
NLO correction of nonsinglet anomalous dimensions
(see [35]).11) In Section 3, we check numerically the
dependence of the results from the matching point.
We use two matching points, (34) and

Mf+1 = 2mf+1, (35)

and demonstrate very little variations of the results12)

(see Section 4 and discussion there).

As we know, for the singlet part of evolution, no
simple recipe exists for the exact value of the match-
ing point Mf+1. On one hand, as in the nonsinglet
case, there is Q2 evolution of the SF moments which
leads to above condition (34). But here we also have
the generation of heavy quarks (even in lowest non-
trivial order, in the framework of the photon–gluon
fusion process), which gives contributions to gluon

10)Following [55], in this subsection, we use the formαs(Q
2; f)

for the coupling constant with the purpose to demonstrate its
f dependence through the ones of β0 and β1 coefficients.

11)The corresponding moments at any Q2 value are propor-
tional to the same coefficient KNS(f). Thus, the coefficient
can be always taken up by the normalizationMNS

n (Q2
0).

12)We will not take into account a small variation (see [56])
of the continuity condition (33) because of the matching
point (35).
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part of the singlet coefficient function. The photon–
gluon fusion needs the matching point at the value of
Q2, whenW 2 = 4m2

f+1, i.e.,

M2
f+1

1− x

x
+ M2

nucl = 4m2
f+1. (36)

At small x values, the condition (36) is quite close
to (34) (for example, at x = 0.2 M2

f+1 = m2
f+1 −

M2
nucl/4), but in the range of large and intermediate

values of x, the value of Mf+1 is essentially large
compared with the one of Eq. (34). For example, at
x = 0.5 M2

f+1 = 4m2
f+1 −M2

nucl, it is very close to
the matching point (35). At larger x values, the value
ofM2

f+1 will be close to those in [38, 39].

We note that the difference between nonsinglet
and singletQ2 dependences comes from contribution
of the gluon distribution. The contribution is neg-
ligible at x > 0.3, which supports qualitatively the
choice (34) as the matching point.
We would like to note also that, in the NLO ap-

proximation and above, the situation is even more
difficult in the singlet case, because every subprocess
itself generates matching point Mf+1 to coefficient
functions. To estimate the possible effect of the de-
pendence on the matching point, we will fit data (in
Section 3) with two different matching points: (34)
and (35). Surprisingly, in the singlet case, where all
functions coming to Q2 evolution are f-dependent,
we do not find a strong f dependence of our results
(see Section 5 and discussions there).

2.5. Nuclear Effects

Starting with EMC discovery in [57], the dif-
ference between PDFs in free hadrons and ones in
hadrons in nuclei is well known. We incorporate the
difference in our analyses.
In the nonsinglet case, we parametrize the initial

PDF in the form (24) for every type of target. We have

fA
NS(n,Q

2
0) =

1∫
0

dxxn−2f̃A
NS(x,Q

2
0), (37)

where

f̃A
NS(x,Q

2
0) (38)

= AA
NS(Q

2
0)(1− x)b

A
NS(Q

2
0)(1 + dANS(Q2

0)x)

and A = H , D, C, and F in the case of H2, D2, 12C,
and 56Fe targets, respectively.
In the singlet case, we have many parameters in

our fits, which should be fitted very carefully. The rep-
resentations similar to (38) for gluon and sea-quark
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
PDFs should complicate our analyses. To overcome
the problem, we apply Eqs. (37) and (38) only to
the H2 and D2 cases. For heavier targets, we apply
simpler representations for FA

2 SFs in the form

FA
2 (x,Q2) = FD

2 (x,Q2)KA
1 (1−KA

2 x +KA
3 x

2)
(39)

(A = C,F ),

where we use experimental observation13) (see [60]
and references therein) about the approximate Q2

independence of the EMC ratio rA = FA
2 /FD

2 .

2.6. Higher Twist Corrections
For n space, Eq. (1) transforms to

M full
n (Q2) = MpQCD

n (Q2) +
h4(n)
Q2

, (40)

where h4(n,Q2) are the moments of the function
h̃4(x,Q2):

h4(n) =

1∫
0

xn−2h̃4(x)F pQCD2 (x)dx. (41)

The shape h̃4(x) (or coefficients h4(n)) of the
twist-4 corrections are of primary consideration in
our analysis. They can be chosen in several different
forms:
(i) The twist-4 terms (and twist-6 ones) are fixed

in agreement with the infrared renormalon (IRR)
model (see [61, 62, 1, 2] and references therein).
(ii) The twist-4 term in the form h̃4(x) ∼

d lnFNS2 (x, Q2)/dx ∼ 1/(1 − x) (see [30] and refer-
ences therein). This behavior matches the fact that
higher twist effects are usually important only at
higher x. The twist-4 coefficient function has the form
Cder4 (n) = (n− 1)Ader4 .

(iii) The twist-4 term h̃4(x) is considered as a
set of free parameters at each xi bin. The set has
the form h̃free4 (x) =

∑I
i=1 h̃4(xi), where I is the num-

ber of bins. The constants h̃4(xi) (one per x bin)
parametrize the x dependence of h̃free4 (x).
The first two cases have already been considered

in [21] and will be studied carefully later [45]. Here,
we will follow the last possibility.14)

13)The smallQ2 dependence of the EMC ratio has also been ob-
served in theoretical studies. For example, in the framework
of the rescaling model [58], the Q2 dependence is very small
(see [59]). It has double-logarithmic form and is found only
in the argument of the EulerΨ function.

14)In the Summary, we present, however, several comments
about an application of higher twist corrections in the form
of IRR model.
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3. FITS OF F2: PROCEDURE

To clear up the importance of higher twist terms,
we fit SLAC, NM, BCDMS, and BFP experimental
data [4–10] (including the systematic errors), keep-
ing identical the form of the perturbative part in the
NLO approximation. In this section, we demonstrate
the basic ingredients of the analyses.

As has been already discussed in the Introduction,
we use the exact solution of the DGLAP equation for
the Mellin momentsM tw2

n (Q2) (2) of SF F tw22 (x,Q2)
and the subsequent reproduction of F full2 (x,Q2),
F
pQCD
2 (x,Q2), and/or F tw22 (x,Q2) at every needed

Q2 value with help of the Jacobi polynomial expan-
sion method. The method of the Jacobi polynomial
expansion was developed in [17, 18] and described
in detail in [19]. Here, we consider only some basic
definitions.
Having the QCD expressions for the Mellin

moments Mk
n(Q2), we can reconstruct the SFs

F k
2 (x,Q2) as

F k,Nmax
2 (x,Q2) = xa(1− x)b (42)

×
Nmax∑
n=0

Θa,b
n (x)

n∑
j=0

c
(n)
j (a, b)Mk

j+2(Q
2),

where Θa,b
n are the Jacobi polynomials15) and a, b are

the parameters fitted by the requirement of minimiza-
tion of the error of reconstruction of SFs16) (see [18]
for details).

First of all, we choose the cut Q2 ≥ 1 GeV2 in
all our studies. For Q2 < 1 GeV2, the applicability of
twist expansion is very questionable.

Secondly, we choose quite large values of the nor-
malization pointQ2

0. There are several reasons for this
choice:
(i) Our above perturbative formulas should be ap-

plicable at the value ofQ2
0. Moreover, the higher order

corrections ∼αn
s (Q2

0) (n ≥ 2), coming from normal-
ization conditions of PDFs, are less important at
higherQ2

0 values.

15)We would like to note here that there is a similar method [63],
based on Bernstein polynomials. The method has been used
in the analyses at the NLO level in [64, 37] and at the NNLO
level in [65, 27].

16)There is another possibility to fit data. It is possible to transfer
experimental information about SFs to their moments and
to analyze these moments directly. This approach was very
popular in the past (see, for example, [66]), but it is used very
rarely at present (see, however, [67] and references therein)
because a transformation of experimental information to the
SF moments is quite a difficult procedure.
PH
(ii) It is necessary to cross heavy-quark thresholds
a fewer number of times to reachQ2 = M2

Z , the point
of QCD coupling constant normalization.

(iii) It is better to have the value of Q2
0 around

the middle point of the logarithmic range of consid-
ered Q2 values. Then, the higher order corrections
∼(αs(Q2)− αs(Q2

0))
n (n ≥ 2) are less important.

Basic characteristics of the quality of the fits are
χ2/d.o.f. for SF F2 and for its slope d lnF2/d lnQ2,
which has very sensitive perturbative properties
(see [28]).

We note that the characteristics χ2(F2) and
χ2(slope) which come in our fits are not independent,
because they come from the same data. We do
not have, however, a “double counting” problem.
The χ2(F2) value is the basic characteristic in our
fits: it determines all needed parameters, i.e., ones
in parametrizations of parton distributions and the
coupling constant normalization αs(M2

Z).

The χ2(slope) value gives additional information,
which demonstrates clearly the effect of agreement
and/or disagreement between theory and experiment.
Indeed, as these fits involve many free parameters

independent of perturbative QCD, it is important to
check whether, in the results of the fits, the fea-
tures most specific to perturbative QCD are in good
agreement with the data. The slope d lnF2/d lnQ2

has really very sensitive perturbative properties and
will be used (see Figs. 4–8 and 10–12 below) to
check properties of fits. Indeed, the DGLAP equa-
tions predict that, to a quite good approximation, the
logarithmic derivations of SF and PDF logarithms
are proportional to coupling constant αs(Q2) with an
x-dependent proportionality coefficient that depends
(at x > 0.2) only weakly on the x dependence of the
SF and PDF. Thus, the study of the Q2 dependence
of the slope d lnF2/d lnQ2 leads to obtaining direct
information about the corresponding Q2 dependence
of the QCD coupling constant and to verifying the
range of accuracy for formulas of perturbative QCD.

We use the MINUIT program [68] for minimiza-
tion of two χ2 values:

χ2(F2) =
∣∣∣∣F

exp
2 − F theor2

∆F
exp
2

∣∣∣∣
2

and

χ2(slope) =
∣∣∣∣D

exp −Dtheor

∆Dexp

∣∣∣∣
2 (

D =
d(lnF2)
d(lnQ2)

)
.

We would like to apply the following procedure:
we will study the dependence of the χ2/d.o.f. value
on value of Q2 cuts for various sets of experimental
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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data. The study will be done for both cases: including
higher twists corrections (HTC) and without them.
We use free normalizations of data for different ex-

periments. For the reference, we use the most stable
deuterium BCDMS data at the value of energy E0 =
200 GeV.17) Using other types of data as reference
gives negligible changes in our results. The usage of
fixed normalization for all data leads to fits with a bit
worse χ2.

4. RESULTS OF FITS OF F2:
THE NONSINGLET EVOLUTION PART

Firstly, we will consider theQ2 evolution of the SF
F2 in the nonsinglet case, where there are only contri-
butions of quark densities and, thus, the correspond-
ing fits are essentially simpler. The consideration of
the nonsinglet part limits the range of data by the cut
x ≥ 0.25. At smaller x values, the contributions of the
gluon distribution are no longer negligible.
Hereafter, in the nonsinglet case of evolution, we

choose Q2
0 = 90 GeV2 for the BCDMS data and all

data combined and Q2
0 = 20 GeV2 for the combined

SLAC, NM, BFP data, respectively. The choice ofQ2
0

values is in good agreement with above conditions
(see the previous section). We use also Nmax = 8,
the cut 0.25 ≤ x ≤ 0.8. The Nmax dependence of the
results has been studied carefully in [18] (see also
Table 3 below).
Except the studies done in Section 4.3.2, the ef-

fects of the thresholds of heavy quarks are taken into
account in agreement with Eqs. (33) and (34).

4.1. BCDMS 12C + H2 + D2 Data

We start our analysis with the most precise ex-
perimental data [7–9] obtained by BCDMS muon
scattering experiment at high Q2 values. The full set
of data is 607 points (when x ≥ 0.25). The starting
point of QCD evolution isQ2

0 = 90GeV2.
It is well known that the original analyses given

by the BCDMS Collaboration itself (see also [14])
lead to quite small values of αs(M2

Z): for example,
αs(M2

Z) = 0.113 has been obtained in [14].18) Al-
though in some recent papers (see, for example, [12,
13, 69]) higher values of αs(M2

Z) have been observed,
we think that an additional reanalysis of BCDMS
data should be very useful.

17)E0 is the initial energy of the lepton beam.
18)We would like to note that the paper [14] has a quite strange
result. The authors of the article have obtained the value
Λ

(4)

MS
= 263MeV, which should lead to the value of coupling

constant αs(M
2
Z) which is equal to 0.1157.
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Table 1. The values of Ycut3, Ycut4, and Ycut5

N 0 1 2 3 4 5 6

Ycut3 0 0.14 0.16 0.16 0.18 0.22 0.23

Ycut4 0 0.16 0.18 0.20 0.20 0.23 0.24

Ycut5 0 0.20 0.20 0.22 0.22 0.24 0.25

Based on study [70] (see also [71, 69]), we propose
that the reason for small values of αs(M2

Z) coming
from BCDMS data is the existence of a subset of data
having large systematic errors. Indeed, the original
analyses of H2, D2, and 12C data performed by the
BCDMS Collaboration lead to the following value of
the QCDmass parameter (see [7–9]):

Λ(4)

MS
= 220± 13 (stat.)± 50 (syst.) MeV; (43)

i.e., the systematic error is four times bigger than the
statistical one. (Hereafter, “stat.” and “syst.” mark
the statistical and systematic errors, respectively).
We study this subject by introducing several so-

called Y cuts19) (see [70] and Sections 4.1.1 and 5.1).
Excluding this set of data with large systematic errors
leads to substantially larger values of αs(M2

Z) and
very slow dependence of the values on the concrete
choice of the Y cut (see below).

4.1.1. The study of systematics. The correlated
systematic errors of the data have been studied in [70],
together with the other parameters. Regions of data
have been identified in which the fits cause large
systematic shifts of the data points. We would like to
exclude these regions from our analyses.
We have studied the influence of the experimental

systematic errors on the results of the QCD analysis
as a function of Ycut3, Ycut4, and Ycut5 applied to the
data. We use the following x-dependent Y cuts:

Y ≥ 0.14 when 0.3 < x ≤ 0.4, (44)

Y ≥ 0.16 when 0.4 < x ≤ 0.5,
Y ≥ Ycut3 when 0.5 < x ≤ 0.6,
Y ≥ Ycut4 when 0.6 < x ≤ 0.7,
Y ≥ Ycut5 when 0.7 < x ≤ 0.8.

We use several sets N of values for the cuts at
0.5 < x ≤ 0.8, which are given in Table 1.
The systematic errors for BCDMS data are

given [7–9] as multiplicative factors to be applied to
F2(x,Q2): fr, fb, fs, fd, and fh are the uncertainties
due to spectrometer resolution, beam momentum

19)Hereafter, we use the kinematical variable Y = (E0 −
E)/E0, where E0 and E are the initial and scattering en-
ergies of lepton, respectively.
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Table 2. The values of αs(M2
Z) at different values ofN

N
Number
of points χ2(F2)/d.o.f. αs(90GeV2)±

stat.
Full syst.
error

0 607 1.03 0.1590± 0.0020 0.0090

1 511 0.97 0.1711± 0.0027 0.0075

2 502 0.97 0.1720± 0.0027 0.0071

3 495 0.97 0.1723± 0.0027 0.0063

4 489 0.94 0.1741± 0.0027 0.0061

5 458 0.95 0.1730± 0.0028 0.0052

6 452 0.95 0.1737± 0.0029 0.0050

calibration, spectrometer magnetic field calibration,
detector inefficiencies, and energy normalization,
respectively.
For this study each experimental point of the

undistorted set wasmultiplied by a factor characteriz-
ing a given type of uncertainties and a new (distorted)
data set was fitted again in agreement with our pro-
cedure considered in the previous section. The factors
(fr, fb, fs, fd, fh) were taken from CERN preprint
versions in [7–9]. The absolute differences between
the values of αs for the distorted and undistorted sets
of data are given in Table 2 and Fig. 1 as the total
systematic error of αs estimated in quadratures. The
number of experimental points and the value of αs for
the undistorted set of F2 are also given in Table 2 and
Fig. 1.
From Table 2 and Fig. 1, we can see that the αs

values obtained forN = 1−6 of Ycut3, Ycut4, and Ycut5
are very stable and statistically consistent. The case
N = 6 reduces the systematic error in αs by a factor
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Fig. 1. The study of systematics at different Y -cut values
in the fits based on nonsinglet evolution. TheQCD analy-
sis of BCDMS 12C,H2, D2 data (nonsinglet case): xcut =
0.25, Q2

0 = 90 GeV2. Thresholds of c and b quarks are
chosen atQ2 = 9GeV2 andQ2 = 80GeV2, respectively.
The inner (outer) error bars show statistical (systematic)
errors.
PH
of 1.8 and increases the value of αs, while increasing
the statistical error by 30%.
After the cuts have been implemented (in this sec-

tion below, we use the setN = 6), we have 452 points
in the analysis. Fitting them in agreement with the
same procedure considered in the previous section,
we obtain the following results:

αs(90 GeV2) = 0.1737 ± 0.0029 (stat.) (45)

± 0.0050 (syst.)± 0.0025 (norm.),

αs(M2
Z) = 0.1153 ± 0.0013 (stat.)

± 0.0022 (syst.)± 0.0012 (norm.),

where hereafter “norm.” indicates the error of nor-
malization of experimental data. Thus, the last error
(±0.0012 to αs(M2

Z)) comes from the difference in
fits with free and fixed normalizations of BCDMS
data [7–9] having different values of energy.
So, for the fits with nonsinglet evolution of BCDMS

data [7–9] with minimization of systematic errors, we
have the following results:

αs(M2
Z) = 0.1153 (46)

± 0.0028 (total experimental error).

Here, total experimental error is the square root of the
sum of squares of statistical error, systematic one, and
error of normalization.
The value of αs(M2

Z) corresponds to the following
value of the QCD mass parameter:

Λ(5)

MS
= 181 ± 32 (total experimental error) MeV,

(47)

Λ(4)

MS
= 257 ± 40 (total experimental error) MeV.

4.1.2. The study ofNNNmax dependence. Follow-
ing [18, 19], we study the dependence of our results on
the Nmax value. The full set of data is 452 points. The
Q2 evolution starts atQ2

0 = 90GeV2.
As can be seen in Table 3, our results are very

stable, which is in very good agreement with [18].
Starting with Nmax = 5, where our results are al-

ready very stable, we put the results together and
can calculate the average value of αs(M2

Z) = 0.1152
and estimate the average deflection. The deflection is
0.0002 and can be considered as the error of the Ja-
cobi polynomial expansion method, i.e., method error.

4.2. SLAC and NMH2 +D2 Data
and BFP Fe Data

We continue our nonsinglet evolution analyses by
fits of experimental data [4–6, 10] obtained by the
SLAC, NM, and BFP Collaborations. The full set of
data is 345 points (when x ≥ 0.25): 238 from SLAC,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 3. The values of αs(M2
Z) at different values ofNmax

Nmax χ2(F2)/d.o.f. χ2(slope) for 6 points αs(90GeV2)± stat. (stat. = 0.0038) αs(M2
Z)± stat. (stat. = 0.0013)

3 1.08 7.3 0.1720 0.1155

4 0.97 11.3 0.1715 0.1143

5 1.11 6.9 0.1729 0.1144

6 0.95 3.6 0.1747 0.1157

7 0.94 5.4 0.1740 0.1154

8 0.94 6.8 0.1738 0.1153

9 0.94 7.6 0.1735 0.1152

10 1.07 7.7 0.1735 0.1152

11 1.08 7.2 0.1726 0.1149

12 1.04 7.1 0.1731 0.1152

13 1.11 7.1 0.1725 0.1149

Table 4. The values of αs(M2
Z) and χ2 at different regimes of fits

Fit TMC HTC Syst. error χ2(F2)/d.o.f. χ2(slope) for 6 points αs(20GeV2)± stat. αs(M2
Z)

1 No No Yes 6.0 1050 0.2131± 0.0012 0.1167

2 Yes No Yes 2.3 224 0.2017± 0.0013 0.1133

3 Yes Yes No 1.8 12.0 0.2230± 0.0030 0.1195

4 Yes Yes Yes 0.8 6.1 0.2231± 0.0060 0.1195
66 from NM, and 41 from BFP. The starting point
of QCD evolution is Q2

0 = 20 GeV2; the Q2 cut is
Q2 > 1GeV2.

For illustration of importance of 1/Q2 corrections,
we fit the data in the following way. First of all, we
analyze the data applying only the perturbative QCD
part of SF F2, i.e., F tw22 . Later, we add 1/Q2 correc-
tions: firstly, target mass and, later, twist-4 ones. As
one can see in Table 4, we have a very bad fit when we
work only with the twist-2 part F tw22 . The agreement
with the data is improved substantially when TMC
are added. The incorporation of twist-4 corrections
leads to very good fit of the data. Neglect of systematic
errors deteriorates twice our results. We combine the
statistical and systematic errors in quadrature.
We have obtained the following values for param-

eters in parametrizations (24) of parton distributions
(at Q2

0 = 20 GeV2):

AP
NS = 1.44, AD

NS = 2.06, AF
NS = 1.87, (48)

bPNS = 3.88, bDNS = 3.84, bFNS = 4.23,

dPNS = 10.9, dDNS = 4.04, dFNS = 5.03,
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
where the symbols P , D, and F denote the parame-
ters of parametrizations for proton, deuteron, and iron
data, respectively.

We note that the values of the coefficients are
close to those obtained in other numerical analyses
(see [12, 13, 26, 27] and references therein). The val-
ues of blNS (l = P,D,F ) are in a quite good agreement
with quark-counting rules of [72]. There is also good
agreement with theoretical studies [73, 42].

The values of parameters of twist-4 terms are
given in Table 5. We would like to note that the
twist-4 terms for H2 and D2 data coincide with each
other within the errors taken into account. It is in full
agreement with analogous analysis [14].

We obtain the following results (at χ2(F2) = 250,
χ2(slope) = 6.1 on six points):

αs(20 GeV2) = 0.2231 ± 0.0060 (stat.) (49)

± 0.0075 (syst.)+ 0.0030 (norm.),

αs(M2
Z) = 0.1195 ± 0.0017 (stat.)

± 0.0022 (syst.)+ 0.0010 (norm.).
05
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Table 5. The values of the twist-4 terms

xi
h̃4(xi)± stat.

H2 D2

0.25 −0.149± 0.015 −0.176± 0.014

0.35 −0.151± 0.013 −0.178± 0.012

0.45 −0.214± 0.012 −0.147± 0.022

0.55 −0.228± 0.022 −0.065± 0.037

0.65 0.024± 0.070 0.053± 0.080

0.75 0.227± 0.154 0.130± 0.131

The last error (±0.0010 to αs(M2
Z)) comes from fits

with free and fixed normalizations between different
data of the SLAC, NM, and BFP Collaborations.
So, the fits of SLAC, NM, and BFP data based on

the nonsinglet evolution give for coupling constant

αs(M2
Z) = 0.1195 (50)

± 0.0030 (total experimental error),

which corresponds to the following value of the QCD
mass parameter:

Λ(5)

MS
= 231 ± 37 (total experimental error) MeV,

(51)

Λ(4)

MS
= 321 ± 44 (total experimental error) MeV,

 

4
0.112

8 12

 

Q

 

2
cut

 

0.120

0.118

0.116

0.114

 

α

 

s

 

(

 

M

 

Z

 

2

 

)

3.0

 
χ

 
2

 
(

 
F

 

2

 
)/d.o.f.

2.5

2.0

1.5

1.0

0
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where the errors connected with the type of data
normalization are already included in the systematic
error.
Looking at the results obtained in two previous

subsections, we see good agreement (within existing
errors) between the values of the coupling constant
αs(M2

Z) obtained separately in the fits of BCDMS
data and in the fits of combined SLAC, NM, and BFP
data [see Eqs. (45)–(47) and (49)–(51)]. Thus, we
have the possibility to fit together all the data that are
the subject of the following subsection.

4.3. SLAC, BCDMS, NM, and BFP Data

We use the following common x cut, x ≥ 0.25,
and Y cut with N = 6 (see Table 1) for the BCDMS
data. After these cuts have been incorporated, the full
set of data is 797 points. The starting point of QCD
evolution isQ2

0 = 90GeV2.
4.3.1. The results of fits. We verify here the

range of applicability of perturbative QCD. To do it,
we analyze firstly the data without a contribution of
twist-4 terms, i.e., when F2 = F

pQCD
2 . We do several

fits using the cut Q2 ≥ Q2
cut and increase the value of

Q2
cut step by step. We observe good agreement of the

fits with the data whenQ2
cut ≥ 10GeV2 (see Table 6).

Later, we add the twist-4 corrections and fit the
data with the usual cutQ2 ≥ 1GeV2. We have found
very good agreement with the data. Moreover the
predictions for αs(M2

Z) in both above procedures are
very similar (see Table 6 and Fig. 2).
We have obtained the following values for param-

eters in parametrizations of parton distributions (at
Q2

0 = 90GeV2):

AP
NS = 2.40, AD

NS = 2.46, AC
NS = 2.46, (52)

AF
NS = 1.65,

bPNS = 3.98, bDNS = 3.94, bCNS = 4.08,

bFNS = 4.72,

dPNS = 4.85, dDNS = 2.38, dCNS = 1.55,

dFNS = 7.97.

The values are in good agreement with those pre-
sented in the previous subsection. Then all discus-
sions given there can be applied here.
Table 7 contains the value of parameters of the

twist-4 terms. As in the previous subsection, the
twist-4 terms for H2 and D2 data coincide with each
other within the errors taken into account, which is in
agreement with [14].
So, the analysis of combined SLAC,NM,BCDMS,

and BFP data gives the following results:
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Table 6. The values of αs(M2
Z) and χ2 for different regimes of fits

Fit Q2
cut, GeV

2 Number of points HTC χ2(F2)/d.o.f. αs(90GeV2)± stat. αs(M2
Z)

1 1.0 797 No 2.87 0.1679± 0.0007 0.1128

2 2.0 772 No 1.82 0.1733± 0.0007 0.1151

3 3.0 745 No 1.38 0.1789± 0.0009 0.1175

4 4.0 723 No 1.23 0.1802± 0.0009 0.1180

5 5.0 703 No 1.19 0.1813± 0.0011 0.1185

6 6.0 677 No 1.13 0.1803± 0.0013 0.1189

7 7.0 650 No 1.09 0.1799± 0.0016 0.1179

8 8.0 632 No 1.06 0.1803± 0.0019 0.1181

9 9.0 613 No 1.01 0.1797± 0.0023 0.1178

10 10.0 602 No 0.98 0.1776± 0.0022 0.1170

11 11.0 688 No 0.97 0.1770± 0.0024 0.1167

12 12.0 574 No 0.97 0.1768± 0.0025 0.1167

13 1.0 797 Yes 0.97 0.1785± 0.0025 0.1174

Table 7. The values of the twist-4 terms h̃4(xi)± stat. for H2, D2, C, and Fe data

xi H2 D2 xi C and Fe

0.275 −0.221± 0.010 −0.226± 0.010 0.250 −0.118± 0.187

0.350 −0.252± 0.010 −0.214± 0.010 0.350 −0.415± 0.233

0.450 −0.232± 0.019 −0.159± 0.020 0.450 −0.656± 0.494

0.550 −0.122± 0.360 −0.058± 0.300

0.650 −0.159± 0.031 −0.057± 0.031

0.750 0.040± 0.050 0.020± 0.049
When twist-4 corrections are not included and the
cut ofQ2 is 10 GeV2 at the free normalization,

χ2/d.o.f. = 0.98 and αs(90GeV2) (53)

= 0.1776 ± 0.0022 (stat.),

αs(M2
Z) = 0.1170 ± 0.0009 (stat.).

When twist-4 corrections are included and the cut
ofQ2 is 1 GeV2

χ2/d.o.f. = 0.97 and αs(90GeV2) (54)

= 0.1785 ± 0.0025 (stat.),

αs(M2
Z) = 0.1174 ± 0.0010 (stat.).

Thus, as follows from nonsinglet fits of experi-
mental data, perturbative QCD works rather well at
Q2 ≥ 10GeV2.

4.3.2. The study of threshold effects. Here, we
would like to study threshold effects inQ2 evolution of
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
SF F2. Note that, at the NLO level in the nonsinglet
case, the coefficient function of F2 and anomalous
dimension do not depend on the number f of active
quarks. Then, our study of the threshold effects inQ2

evolution of SF F2 is exactly equal to the investigation
of the role of threshold effects in the QCD coupling
constant αs(Q2).
To study the threshold effects (with TMC and

HTC included), we consider two types of possible
thresholds of heavy quarks:Q2

f = 4m2
f andQ

2
f = m2

f .
The first type of threshold appears when a heavy quark
with mass mf takes a possibility to be born. The
second one lies close to the position of the Euclidean-
reflected threshold of heavy quarks. It should play a
significant role (see [55]) in the αs(Q2) evolution.
(i) Let thresholds appear at Q2

f = 4m2
f . Then we

split the range of data into three separate ranges:
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Table 8. The values of αs(M2
Z) and χ2 at different regimes of fits

Fit Q2, GeV2 f Q2
0,

GeV2

Number
of points χ2(F2) Λ

(3)
MS

± stat.,
MeV

Λ
(4)
MS

± stat.,
MeV

Λ
(5)
MS

± stat.,
MeV

αs(M2
Z)± stat.

1 1–10 3 5 195 124 400± 30 308± 26 220± 23 0.1187± 0.0020
2 10–80 4 20 455 471 291± 17 208± 13 0.1177± 0.0012
3 80–300 5 90 190 143 199± 54 0.1169± 0.0040

Table 9. The values of αs(M2
Z) and χ2 at different regimes of fits

Fit Q2, GeV2 f Q2
0,

GeV2

Number
of points χ2(F2) Λ

(4)
MS

± stat.,
MeV

Λ
(5)
MS

± stat.,
MeV

αs(M2
Z)± stat.

1 2.5–20.5 4 10 241 197 298± 10 213± 8 0.1181± 0.0007

2 20.5–300 5 90 558 533 187± 16 0.1159± 0.0014
Table 10. The values of Ycut3, Ycut4, and Ycut5

N 0 1 2 3 4 5

Ycut3 0 0.14 0.16 0.18 0.22 0.23

Ycut4 0 0.16 0.18 0.20 0.23 0.24

Ycut5 0 0.20 0.20 0.22 0.24 0.25

Table 11. The values of αs(M2
Z) at different values ofN

N
Number
of points χ2(F2)/d.o.f. αs(20GeV2)±

stat.
Total

syst. error

0 762 1.22 0.1992± 0.0034 0.0122

1 649 1.06 0.2116± 0.0042 0.0096

2 640 1.07 0.2126± 0.0044 0.0088

3 627 1.05 0.2152± 0.0045 0.0080

4 596 1.04 0.2172± 0.0047 0.0076

5 590 1.04 0.2160± 0.0047 0.0068

The Q2 values are between 1 and 10 GeV2, where
the number f of active quarks is 3.

TheQ2 values are between 10 and 80GeV2, where
the number f of active quarks is 4.

TheQ2 values are above 80GeV2, where the num-
ber f of active quarks is 5.
The results are shown in Table 8. The average

αs(M2
Z) value can be calculated and it has the follow-

ing value:

αs(M2
Z) = 0.1178 ± 0.0010 (stat.). (55)
PH
(ii) Let thresholds appear at Q2
f = m2

f . Then we
split the range of data into two separate ranges:
The Q2 values are between 2.5 and 20.5 GeV2,

where the number f of active quarks is 4.
The Q2 values are above 20.5 GeV2, where the

number f of active quarks is 5.
The results are shown in Table 9. The average

αs(M2
Z) value can be calculated and it has the follow-

ing value:

αs(M2
Z) = 0.1176 ± 0.0006 (stat.). (56)

Thus, we do not find a strong dependence on
the exact value of thresholds of heavy quarks, i.e.,
between Eqs. (55) and (56). However, there is a
difference between these results and results (54),
which shows that the theoretical uncertainties due
to threshold effects can be estimated for αs(M2

Z) at
0.0004.

4.4. The Results of the Analysis
Based on Nonsinglet Evolution

Thus, using the analyses based on nonsinglet evo-
lution of the SLAC, NM, BCDMS, and BFP exper-
imental data for SF F2, we obtain for αs(M2

Z) the
following expressions:
(i) When we switch off the twist-4 corrections and

set the cutQ2 > 10GeV2, we get at χ2/d.o.f. = 0.98

αs(M2
Z) = 0.1170 ± 0.0009 (stat.) (57)

± 0.0019 (syst.)± 0.0010 (norm.)

or

αs(M2
Z) = 0.1170 (58)

± 0.0023 (total experimental error).
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Table 12. The values of αs(M2
Z) and χ2 for different regimes of fits

Fit TMC HTC Syst. error χ2(F2)/d.o.f. χ2(slope) for 23 points αs(20GeV2)± stat. αs(M2
Z)

1 No No Yes 5.5 800 0.2400 ± 0.0017 0.1241

2 Yes No Yes 2.2 179 0.2153 ± 0.0018 0.1174

3 Yes Yes Yes 0.85 21 0.2138 ± 0.0058 0.1170

Table 13. The values of αs(M2
Z) and χ2 in fits with different values ofW 2 cut

Fit W 2 cut, GeV2 χ2(F2)/d.o.f. αs(20GeV2)± stat. Λ
(4)
MS

± stat., MeV Λ
(5)
MS

± stat., MeV αs(M2
Z)± stat.

1 2.0 1.30 0.2407± 0.0013 400± 6 296± 4 0.1243± 0.0004
2 4.0 1.00 0.2135± 0.0018 280± 7 194± 5 0.1169± 0.0004
3 6.0 1.00 0.2070± 0.0023 253± 9 178± 7 0.1150± 0.0007
4 8.0 0.91 0.2128± 0.0043 277± 18 197± 14 0.1167± 0.0012
5 10 0.91 0.2107± 0.0053 268± 22 190± 18 0.1162± 0.0015
(ii) When we add the twist-4 corrections and set
the cutQ2 > 1GeV2, we get at χ2/d.o.f. = 0.97

αs(M2
Z) = 0.1174 ± 0.0007 (stat.) (59)

± 0.0021 (syst.)± 0.0005 (norm.)

or

αs(M2
Z) = 0.1174 (60)

± 0.0022 (total experimental error).

Looking at the results obtained in this section, we
see that the central value of the coupling constant
αs(M2

Z) obtained in the fits (based on nonsinglet evo-
lution) of combined SLAC, BCDMS, NM, and BFP
data lies between the central values of the coupling
constants obtained separately in the fits of BCDMS
data and in the fits of SLAC, BCDMS, NM, and
BFP data. All obtained values of αs(M2

Z) are in good
agreement within existing statistical errors.

5. RESULTS OF FITS OF F2:
THE COMBINED NONSINGLET
AND SINGLET EVOLUTION

For this case, the quite low x experimental data lie
in the low-Q2 range and we choose Q2

0 = 20 GeV2.
We use also Nmax = 8.
The study of the Nmax dependence of the results

in the combined nonsinglet and singlet case of evo-
lution has been found in [19]. Note here only that the
analysis in [19] shows the Nmax independence of the
obtained results starting already withNmax = 7.
Except the studies done in Section 5.3.2, the ef-

fects of the thresholds of heavy quarks are taken into
account in agreement with Eqs. (33) and (34).
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5.1. BCDMS 12C + H2 + D2 Data

As in the previous section, we start our analyses
with the experimental data [7–9] obtained by the
BCDMS muon scattering experiment. The full set
of data is 762 points. The starting point of QCD
evolution isQ2

0 = 20GeV2.
As in the nonsinglet evolution case, we have stud-

ied the influence of the experimental systematic errors
on the results of the QCD analysis as a function of
Ycut3, Ycut4, and Ycut5 applied to the data. Here we
also use several sets N of the values for the cuts at
0.5 < x ≤ 0.8, which are given in Table 10.
The absolute differences between the values of

αs for the distorted and undistorted sets of data are
given in Table 11 and Fig. 3 as the total systematic
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(the case of combined evolution): no xcut,Q2
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Fig. 5. The same as in Fig. 4 with one exception: the Y cut withN = 5 is taken into account.
error of αs estimated in quadratures. The number of
the experimental points and the value of αs for the
undistorted set of F2 are also given in Table 11 and
Fig. 3.

From Table 11 and Fig. 3, we can see that the αs

values obtained forN = 1−5 of Ycut3, Ycut4, and Ycut5
are very stable and statistically consistent. The case
N = 5 reduces the systematic error in αs by a factor
of 1.8 and increases the value of αs while increasing
the statistical error by 27%.

The importance of the Y cut can be shown also
in Figs. 4 and 5, where the slope d(lnF2)/d(lnQ2)
has been shown at Q2 = 20 GeV2. As we can see,
there is a significant improvement (the corresponding
χ2(slope) decreases by half) when the Y cut has been
taken into account.

After the cuts have been implemented (in this sec-
tion below, we use the setN = 5), we have 590 points
in the analysis. Fitting them in agreement with the
same procedure considered in Section 3, we obtain
PH
the following results:

αs(20 GeV2) = 0.2160 ± 0.0047 (stat.) (61)

± 0.0068 (syst.)± 0.0031 (norm.),

αs(M2
Z) = 0.1175 ± 0.0014 (stat.)

± 0.0020 (syst.)± 0.0011 (norm.).

As in the nonsinglet case, the last error (±0.0011
to αs(M2

Z)) comes from the difference in fits with
free and fixed normalizations of BCDMS data [7–9]
having different values of energy.

So, for the fits of BCDMS data [7–9] based on
complete singlet and nonsinglet evolution with mini-
mization of systematic errors, we have the following
results (total experimental error is the square root
of the sum of squares of statistical error, systematic
error, and error of normalization):

αs(M2
Z) = 0.1175 (62)

± 0.0026 (total experimental error).
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The value of αs(M2
Z) corresponds to the following

value of the QCD mass parameter:

Λ(4)

MS
= 290± 20 (stat.)± 29 (syst.) MeV, (63)

Λ(5)

MS
= 206 ± 17 (stat.)± 24 (syst.) MeV,

where the errors connected with the type of normal-
ization of data are already included in the systematic
error.

5.2. SLAC and NMH2 +D2 Data
and BFP Fe Data

We continue our analyses with the experimental
data [4–10] obtained by the SLAC, NM, and BFP
Collaborations. The full set of data is 719 points (with
the cut Q2 > 1 GeV2): 364 from SLAC, 300 from
NM, and 55 from BFP. The starting point of QCD
evolution isQ2

0 = 20GeV2.
As in the previous section, we give an illustration

of the importance of 1/Q2 corrections. First of all,
we analyze the data applying only the perturbative
QCD part of SF F2, i.e.,F tw22 . Later, we add the 1/Q2

corrections: firstly, TMC and, later, twist-4 correc-
tions. As one can see in Table 12 and Figs. 6–8, we
have a very bad fit (χ2(slope)/d.o.f. = 40) when we
work only with twist-2 part F tw22 . The agreement with
the data is significantly better (χ2(slope)/d.o.f. ≈ 9)
when TMC have been added. The incorporation of
twist-4 corrections leads to a very good fit of the data:
χ2(slope)/d.o.f. ≈ 1.05 (see Table 12 and Fig. 8). We
note that the statistical and systematic errors are
combined in quadratures.
Thus, we see that χ2(slope)/d.o.f. decreases by

38 times when the 1/Q2 corrections have been taken
into account.
Looking at the results in Table 12, we see the

following results for coupling constants:

αs(20 GeV2) = 0.2138 ± 0.0058 (stat.) (64)

± 0.0075 (syst.)+ 0.0030 (norm.),

αs(M2
Z) = 0.1170 ± 0.0016 (stat.)

± 0.0021 (syst.)+ 0.0011 (norm.).

As in the nonsinglet evolution fits, the last error
±0.0011 toαs(M2

Z) comes from fits with free and fixed
normalizations between different data of the SLAC,
NM, and BFP Collaborations.
We would like to compare the results in Table 12

with the results of the analyses of the data when
an additional W 2 cut is taken into account. The in-
clusion of the W 2 cut is very popular (see [74] and
references therein) and we fit the data considered with
variation of the W 2 cut (and with the standard cut
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
Q2 > 1GeV2). The results of the fits (without twist-4
correction) are presented in Table 13 (the systematic
errors of the data are included in the fits).
As we can see from Tables 12 (the last line, where

twist-4 corrections are incorporated) and 13, the re-
sults for αs(M2

Z) are in very good agreement for val-
ues of W 2 cut larger than 4 GeV2. So, the W 2-cut
procedure can be used successfully to switch off the
range of experimental data where HTC are required.
We would like to note that the results obtained

in two previous subsections show a very good agree-
ment between the values of coupling constant αs(M2

Z)
obtained separately in the fits of BCDMS data and
in the fits of combined SLAC, NM, and BFP data
[see Eqs. (61), (63) and (64)]. Thus, as in the case
of nonsinglet evolution, we have the possibility to
fit together all the data. This is the subject of the
following subsection.

5.3. SLAC, BCDMS, NM, and BFP Data

Here, we start to analyze the maximal number
of experimental points which have been produced in
the considered experiments. The full set of data is
1309 points.

5.3.1. The study ofQQQ2 range where 1/QQQ2 cor-
rections are important. Here, we would like to
repeat our analysis given in Section 4.3. Firstly, we fit
the data without a contribution of twist-4 terms. We
use the cut Q2 ≥ Q2

cut and increase the value of Q
2
cut

step by step. Later, we do fits including the twist-4
corrections and the cut Q2 ≥ 1GeV2.
As in the nonsinglet case, we observe a very good

agreement for the first type of fits starting withQ2
cut ≥

15 GeV2 (see Table 14 and Fig. 9). For the second
type of fits, the agreement is already good at Q2 ≥
1 GeV2. Both types of fits give very similar results.
Moreover, the results are very close to those obtained
earlier in the nonsinglet case (see Table 6 and Fig. 2).
We obtain the following results:
When twist-4 corrections are not included and the

cut ofQ2 is 15 GeV2,

χ2/d.o.f. = 1.14 and αs(20GeV2) (65)

= 0.2177 ± 0.0042 (stat.),

αs(M2
Z) = 0.1180 ± 0.0013 (stat.).

When twist-4 corrections are included and the cut
ofQ2 is 1 GeV2,

χ2/d.o.f. = 1.11 and αs(20GeV2) (66)

= 0.2167 ± 0.0024 (stat.),

αs(M2
Z) = 0.1177 ± 0.0007 (stat.).
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Fig. 6. The values of the slope d(lnF2)/d(lnQ
2) at Q2 = 20 GeV2. The stars correspond to the theoretical predictions based

on the twist-2 approximation of perturbative QCD and combined singlet and nonsinglet evolution; the closed circles show
SLAC, NM, and BFP experimental data.
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Fig. 7. The same as in Fig. 6 with one exception: TMC are taken into account for theoretical predictions.
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Table 14. The values of αs(M2
Z) and χ2 for different regimes of fits

Fit Q2
cut, GeV

2 Number
of points HTC χ2(F2)/d.o.f. αs(20GeV2)± stat. Λ

(4)
MS

, MeV αs(M2
Z)± stat.

1 1.0 1309 No 1.55 0.2258± 0.0011 333 0.1203± 0.0004
2 4.0 1051 No 1.27 0.2364± 0.0017 380 0.1232± 0.0005
3 6.0 942 No 1.30 0.2385± 0.0022 390 0.1237± 0.0005
4 8.0 870 No 1.32 0.2232± 0.0035 321 0.1196± 0.0010
5 10.0 817 No 1.27 0.2226± 0.0035 318 0.1194± 0.0011
6 11.0 793 No 1.21 0.2187± 0.0038 301 0.1183± 0.0011
7 12.0 758 No 1.18 0.2192± 0.0039 304 0.1185± 0.0011
8 13.0 754 No 1.17 0.2180± 0.0039 297 0.1181± 0.0012
9 14.0 740 No 1.17 0.2169± 0.0041 294 0.1178± 0.0013
10 15.0 714 No 1.14 0.2177± 0.0042 297 0.1180± 0.0013
11 1.0 1309 Yes 1.11 0.2167± 0.0024 293 0.1177± 0.0007

Table 15. The values of αs(M2
Z) and χ2 for different regimes of fits

Fit Q2, GeV2 f Q2
0,

GeV2

Number
of points χ2 Λ

(3)
MS

± stat.,
MeV

Λ
(4)
MS

± stat.,
MeV

Λ
(5)
MS

± stat.,
MeV

αs(M2
Z)± stat.

1 1–10 3 3.0 467 290 331± 24 250± 20 176± 16 0.1148± 0.0015
2 10–80 4 20 627 595 274± 21 194± 17 0.1165± 0.0014
3 80–300 5 90 190 156 220± 70 0.1187± 0.0050

Table 16. The values of αs(M2
Z) and χ2 for different regimes of fits

Fit Q2, GeV2 f Q2
0,

GeV2

Number
of points χ2 Λ

(4)
MS

± stat.,
MeV

Λ
(5)
MS

± stat.,
MeV

αs(M2
Z)± stat.

1 2.5–20.5 4 10 519 396 230± 21 160± 16 0.1132± 0.0016
2 20.5–300 5 90 631 670 205± 15 0.1174± 0.0013
For additional illustration of the importance of
1/Q2 corrections at nonlarge Q2 values, we study
the slope d(lnF2)/d(lnQ2) as has been done in Sec-
tion 5.2. First of all, we analyze the data applying only
the perturbative QCD approximation of SF F2 (with

TMC taken into account), i.e., F pQCD2 . Later, we add
the cut Q2 ≥ 15 GeV2. As can be seen in Figs. 10
and 11, we have a bad fit (χ2(slope)/d.o.f. ≈ 7.78) in
the case without a Q2 cut. The agreement with the
data is much better when thisQ2 cut has been added:
χ2(slope)/d.o.f. ≈ 1.26 in the case.

As in the previous subsection, the incorporation of
twist-4 corrections also leads to a very good fit of the
data (without a Q2 cut): χ2(slope)/d.o.f. ≈ 1.09 (see
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
Fig. 12). These results demonstrate the importance of
twist-4 corrections at nonlarge Q2 values.
Thus, as follows from the fits of experimental data

based on combined singlet and nonsinglet evolution,
perturbative QCD works well at Q2 ≥ 15GeV2.

5.3.2. The study of threshold effects. Here, we
continue our study of threshold effects inQ2 evolution
of SF F2. Note that, at LO and NLO levels in the
singlet case of evolution, the coefficient functions of
F2 and anomalous dimensions depend on the number
f of active quarks.
By analogy with the nonsinglet case of evolution

(see Section 4.3.2), to study the threshold effects
(with TMC and HTC included), we consider two
types of possible thresholds of heavy quarks: Q2

f =
4m2

f andQ
2
f = m2

f . The first type of threshold appears
05
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Fig. 8. The same as in Fig. 6 with one exception: TMC and twist-4 corrections are taken into account for theoretical
predictions.
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when a heavy quark with mass mf takes a possi-
bility to be born (in the framework of the photon–
gluon fusion process, for example). The second one
lies close to the position of the Euclidean-reflected
PH
threshold of heavy quarks. It should play a significant
role (see [55]) in the αs(Q2) evolution.
(i) Let thresholds appear at Q2

f = 4m2
f . Then we

split the range of data into three separate ranges (see
Section 4.3.2). The results are shown in Table 15.
The average αs(M2

Z) can be calculated and it has the
following value:

αs(M2
Z) = 0.1158 ± 0.0010 (stat.). (67)

(ii) Let thresholds appear at Q2
f = m2

f . Then we
split the range of data into two separate ranges (see
Section 4.3.2). The results are shown in Table 16.
The average αs(M2

Z) can be calculated and it has the
following value:

αs(M2
Z) = 0.1157 ± 0.0020 (stat.). (68)

The results are very surprising. On one hand, all
variables, the coefficient functions of F2 and anoma-
lous dimensions, depend on the number f of active
quarks. However, we do not find a strong dependence
on exact value of thresholds of heavy quarks. On the
other hand, the central values of the average αs(M2

Z)
obtained here are substantially lower than in our other
analyses [see Eqs. (66)–(68)].
Thus, the theoretical uncertainties due to thresh-

old effects can be estimated in the case of com-
bined singlet and nonsinglet evolution for αs(M2

Z) as
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 10. The values of the slope d(lnF2)/d(lnQ
2) atQ2 = 20GeV2. The stars correspond to the theoretical predictions based

on perturbative QCD (with TMC taken into account) and combined singlet and nonsinglet evolution. The closed circles show
SLAC, BCDMS, NM, and BFP experimental data without aQ2 cut.

 

0 0.2 0.4 0.6 0.8

–0.4

 
d

 
(ln

 
F

 

2

 
)/

 
d

 
(ln

 
Q

 
2

 
)

 

x

 

χ

 

2

 

(slope)/d.o.f. = 26/19

–0.6

–0.2

0

0.2

0.4

Fig. 11. The same as in Fig. 10 with one exception: the cutQ2 ≥ 15 GeV2 is taken into account for experimental data.
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Fig. 12. The same as in Fig. 10 with one exception: the twist-4 corrections are taken into account for theoretical predictions.
0.0020, mostly due to the shift of central values of the
average αs(M2

Z) in Eqs. (67) and (68).

5.3.3. The values of fitted parameters. We
have obtained the following values for parameters
in parametrizations (26), (27), and (39) with aG =
asea = 0 of parton distributions (atQ2

0 = 20GeV2):20)

au(20) = 0.72, bu(20) = 3.72, (69)

ad(20) = 0.69, bd(20) = 5.81,
Csea(20) = 0.375, bsea(20) = 13.8,
PG(20) = 0.519, bG(20) = 11.4,

KC
1 (20) = 1.222, KC

2 (20) = 0.554,

KC
3 (20) = 0.253,

KF
1 (20) = 1.10, KF

2 (20) = −0.081,

KF
3 (20) = −0.58.

For the coefficients au(20) and ad(20), we find
good agreement between their values and the double-
logarithmic estimations in [75, 76], based on [77]. We
would like to note that the estimations in [75] have
been given in another set of parameters that changes
effectively only the value of normalization point Q2

0.

20)Here and in the following subsection, we give the results for
the coefficient PG(Q2

0), but not for CG(Q2
0). They are con-

nected because of Eq. (31): PG(Q2
0) = CG(Q2

0)B(ag(Q
2
0) +

1, bg(Q2
0) + 1), where the beta function B(a, b) has been

defined in Eq. (26).
PH
As has been shown in [78, 42], the value of au(20)
and ad(20) should be nearly Q2 independent (if the
values are not too close to 1).21) This Q2 indepen-
dence of values of au(20) and ad(20) explains our
good agreement with the results of [75]. The values
of au(20) and ad(20) are supported also by recent fits
(see discussions in [27]).

The value bu(20) is in agreement with Eqs. (48)
and (52) and with other fits [12, 13, 26, 27], which
supports its slow Q2 dependence (see [73, 42]). The
value of bd(20) is higher than bu(20), which is sup-
ported by other fits (see, for example, [12, 13] and
references therein) and by quark-counting rules [72].
The values of bG(20) and bsea(20) are very high, which
is in agreement with BCDMS analyses [7–9] and
demonstrates the difficulties in studying the large-x
asymptotics of sea-quark and gluon distributions in
analyses of inclusive deep-inelastic data.22)

The value ofPG(20) shows that, atQ2
0 = 20GeV2,

gluons contain about half of the nucleon momentum.

21)This Q2 independence is very similar to corresponding Q2

independence of the coefficients asea(20) and aG(20) in the
powerlike small-x asymptotics ∼xasea and ∼xaG of singlet
parton distributions if asea and aG are not close numerically
to 0 (see studies in [47, 79–82] and references therein).

22)In the semi-inclusive case of DIS, the gluons give large con-
tributions, essentially at low-x values (see, for example, the
recent study of open charm production in [83] and references
therein), and, thus, the gluon distribution can be perfectly
extracted.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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The coefficients KC
i (20) and KF

i (20) (i = 1, 2, 3)
demonstrate nonzero values of nuclear effects for
bound nucleons in 12C and Fe nuclei. Equations (39)
with the values of coefficients KC

i (20) and KF
i (20)

given in (69) demonstrate the shapes of nuclear
effects, which are represented in Fig. 13, where we
see a reasonable agreement of our curves with the
experimental data from [57, 60].
The values of twist-4 terms are given in Table 17.

To obtain the values, we used the approximate equal-
ity of twist-4 terms for H2 and D2 targets that has
been obtained in our studies in the previous sec-
tion (see Tables 5 and 7). This is also in agreement
with [14]. The values of twist-4 terms are also repre-
sented in Fig. 14.
We would like to note (see Table 17 and Fig. 14) a

quite strong rise of twist-4 terms in lower x bins. The
necessity of a large magnitude of twist-4 corrections
at low-x values can be observed also in Figs. 6, 7, and
10, where there is a quite strong difference between
experimental data and theoretical predictions (based
on perturbativeQCD) for the slope d(lnF2)/d(lnQ2).
The rise is in good agreement with theoretical pre-
dictions [84] and with the recent analyses of H1 and
ZEUS data at low values of x and Q2 (see [33]).

5.3.4. BFKL-like parametrizations of gluon
and sea-quark distributions. As we have already
discussed in Section 2, we would like to try to
study the parameters of the sea-quark and gluon
distributions when the terms∼xasea(Q2

0) and∼xaG(Q2
0)

are incorporated. These terms take into account a
possible rise of the sea-quark and gluon distributions
at low-x values. As has been already noted in Sec-
tion 2, from DGLAP-like analyses [80, 47, 48], the
parameters asea and aG should be the same, because
they are mixed together into the “plus” component of
the Q2 evolution (see [47]). Moreover, the parameter
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Fig. 14. The values of the twist-4 terms. The closed
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∼x−ω of sea-quark and gluon distributions with ω =
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ω = −asea = −aG should beQ2 independent (see, for
example, [80, 48]), if it is not small, i.e., x−ω  const
at small x.
In the fit with free nonzero ω value, we have ob-

tained the following values for parameters (26), (27),
and (39) with aG �= 0 and asea �= 0 in parametrizations
of parton distributions (at Q2

0 = 20GeV2):23)

au(20) = 0.72, bu(20) = 3.69, (70)

ad(20) = 0.68, bd(20) = 5.44,
asea(20) = −0.18, aG(20) = −0.18,
Csea(20) = 0.185, bsea(20) = 10.4,
PG(20) = 0.524, bG(20) = 7.31,

KC
1 (20) = 1.160, KC

2 (20) = 0.472,

KC
3 (20) = 0.141,

KF
1 (20) = 1.03, KF

2 (20) = 0.131,

KF
3 (20) = −0.28.

Wewould like to note that the values of parameters
of valent-quark distributions are not really changed.
The values of bG(20) and bsea(20) are still high,
but they are closer to predictions of quark-counting

23)We would like to note that the fit contains strong correla-
tions between the values of ω, the coupling constant, and
twist-4 terms. These correlations occur because a very lim-
ited amount of experimental data used here lie in the low-x
region. Indeed, only the NMC experimental data contribute
there. Then, the results (70) can be considered seriously only
when H1 and ZEUS data [43, 44] have been taken into
account. We hope to incorporate the HERA data [43, 44] in
our future investigations.
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rules [72] than the corresponding values obtained in
the previous subsection.

The values of the parameters of the nuclear-effect
ratio are not changed within the considered errors.
The similarity of the results for the nuclear-effect ratio
is shown in Fig. 13.

The value of ω is equal to 0.18, which is in perfect
agreement with the recent studies based on BFKL
dynamics [85] when NLO corrections [86, 87] were
taken into account (see, for example, studies [88] and
review [89] and references therein). Moreover, this
value is in good agreement also with recent phe-
nomenological studies (see recent review in [90]) of
Pomeron intercept values and also with recent H1
and L3 data [43, 91].

As one can see in Tables 17 and 18 and also
in Fig. 14, the effect of the strong rise of twist-4
magnitude at small-x values observed in the previous
subsection is completely absent here.24) So, the rise is
replaced by the small-x rise of twist-2 gluon and sea-
quark distributions. This replacement seems to be
due to the small number of experimental points in the
low-x range and the narrow range ofQ2 values there.
The cancellation of twist-4 corrections at low x is in
good agreement with the recent studies [32, 92]. This
demonstrates the fact that the strong rise of twist-4
corrections coming from BFKL-like approaches [84]
has negligible magnitude (see [92, 33]).

The value of αs(M2
Z) in the fit (with the number of

points 1309 and χ2/d.o.f. = 1.1) is as follows:

αs(M2
Z) = 0.1187 ± 0.0015 (stat.); (71)

i.e., it is in good agreement within statistical errors
with fits performed earlier, but the middle value is
slightly higher.

5.4. The Results of Analyses with Combined Singlet
and Nonsinglet Evolution

Thus, using singlet analyses of the SLAC, NM,
BCDMS, and BFP experimental data for SFs F2 we
obtain for αs(M2

Z) the following expression:

αs(20 GeV2) = 0.2167 ± 0.0024 (stat.) (72)

± 0.0080 (syst.)± 0.0012 (norm.),

αs(M2
Z) = 0.1177 ± 0.0007 (stat.)

± 0.0021 (syst.)± 0.0005 (norm.).

24)As in the previous subsection, to obtain the values, we used
the approximate equality of twist-4 terms for H2 and D2

targets that have been obtained in our studies in the previous
section (see Tables 5 and 7). This is also in agreement
with [14].
PH
Looking at the results obtained in previous sec-
tions, we see a very good agreement between the
value of coupling constant αs(M2

Z) obtained in the
fits of combined SLAC, BCDMS, NM, and BFP data
and the values of αs(M2

Z) obtained separately in the
fits of BCDMS data and in ones of SLAC, BCDMS,
NM, and BFP data.

6. THE DEPENDENCE ON FACTORIZATION
AND RENORMALIZATION SCALES

In this section, we study the dependence of our
results on the different choice of the factorization
scale µF and the renormalization one µR. Following
studies [14, 36], we choose three values (1/2, 1, 2) for
the coefficients kF and kR.

6.1. Nonsinglet Evolution Case

The results are given in Table 19. We do fits here
without higher twist corrections (no HTC), with the
number of points 596, atQ2 > 10.5GeV2 and for free
normalization of different sets of data. The change of
the value of coupling constant αs(M2

Z) at some kF
and kR values is denoted by the difference

∆αs(M2
Z) = αs(M2

Z)− αs(M2
Z)|kF =kR=1. (73)

We find similar variation of αs(M2
Z) with the vari-

ations of kF and kR: αs(M2
Z) increases (falls) with

increasing (decreasing) values of kF and/or kR. So,
the dependence is quite similar to the one which has
been obtained in [39, 26, 27] by the variation of k scale
from 1/4 to 4 (k ≡ kF = kR in [39, 26, 27]).
Taking the maximal and minimal values (which

corresponds to kR = kF = 1/2 and 2, respectively)
of the coupling constant, we obtain the scale un-
certainties +0.0050 and −0.0034 for αs(M2

Z). In the
case when the replacement (22) has been used also
in NLO corrections to the coefficient functions [i.e.,
when Eq. (22) replaces Eq. (20) there], the theoretical
uncertainties for αs(M2

Z) are a little higher: +0.0070
and −0.0041.
Thus, using the analyses with NS evolution of

the SLAC, NMC, BCDMS, and BFP experimental
data for SFs F2, we obtain for αs(M2

Z) the following
expressions (when noHTC,Q2 > 10GeV2, andχ2 =
0.98):

αs(M2
Z) = 0.1170 ± 0.0009 (stat.) (74)

± 0.0019 (syst.)± 0.0010 (norm.)

+

{
+0.0050
−0.0034

(theor.)
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Table 17. The values of the twist-4 terms

xi h̃4(xi)± stat. xi h̃4(xi)± stat. xi h̃4(xi)± stat.
0.008 0.87± 0.16 0.090 0.16± 0.03 0.275 −0.19± 0.01
0.013 0.83± 0.12 0.100 0.09± 0.02 0.350 −0.19± 0.01
0.018 0.78± 0.10 0.110 0.05± 0.03 0.450 −0.12± 0.02
0.025 0.68± 0.08 0.140 −0.04± 0.01 0.500 0.45± 0.23
0.035 0.57± 0.06 0.150 0.43± 0.11 0.550 0.04± 0.03
0.050 0.39± 0.04 0.180 −0.13± 0.01 0.650 0.35± 0.05
0.070 0.28± 0.03 0.225 −0.15± 0.01 0.750 0.66± 0.10
0.080 0.30± 0.15 0.250 −0.27± 0.13

Table 18. The values of the twist-4 terms for BFKL-like PDF form

xi h̃4(xi)± stat. xi h̃4(xi)± stat. xi h̃4(xi)± stat.
0.008 0.004± 0.090 0.090 0.11± 0.03 0.275 −0.14± 0.02
0.013 0.05± 0.09 0.100 0.05± 0.02 0.350 −0.17± 0.02
0.018 0.09± 0.09 0.110 0.05± 0.03 0.450 −0.12± 0.03
0.025 0.11± 0.08 0.140 −0.01± 0.02 0.500 0.43± 0.23
0.035 0.13± 0.07 0.150 0.62± 0.12 0.550 0.01± 0.05
0.050 0.11± 0.05 0.180 −0.07± 0.02 0.650 0.26± 0.08
0.070 0.11± 0.04 0.225 −0.09± 0.02 0.750 0.47± 0.12
0.080 0.31± 0.16 0.250 −0.16± 0.14
or
αs(M2

Z) = 0.1170 (75)

± 0.0023 (total experimental error)

+

{
+0.0050
−0.0034

(theor.),

where “theor.” marks the theoretical uncertainties
which contain the sum of the scale uncertainties,
threshold error (±0.0004), and the method error
(±0.0002) in quadratures.

6.2. Combined Singlet and Nonsinglet Evolution
The results are given in Table 20. We do fits with

HTC with the number of points 1309 atQ2 > 1GeV2

and for free normalization of different sets of data.
We find that variations of αs(M2

Z) with the varia-
tions of kF and kR are very similar to those obtained in
the previous subsection. However, there is quite a big
difference in the cases kR = 2, kF = 1/2 and kR =
1/2, kF = 2 between the results in Table 20 in and
without parentheses. The difference seems to come
from the correlations between the values of higher
order contributions (mimicked by scale dependences)
and twist-4 corrections, i.e., so-called duality effect
(see [27] and references therein).
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As in the case of nonsinglet evolution, the depen-
dence of αs(M2

Z) with the variations of kF and kR
is quite similar to the one which has been obtained
in [39] by the variation of kR scale from 1/4 to 4.
Taking maximal and minimal values (which cor-

responds to kR = kF = 1/2 and 2, respectively) of
the coupling constant, we obtain the scale uncer-
tainties +0.0047 and −0.0057 for αs(M2

Z). In the
case when the replacement (22) has been used also
in NLO corrections to the coefficient functions (i.e.,
when Eq. (22) replaces Eq. (20) there), the theoretical
uncertainties for αs(M2

Z) are changed very little, but
χ2(F2) is higher.
Thus, using these analyses of the SLAC, NM,

BCDMS, and BFP experimental data for SF F2, we
obtain

αs(M2
Z) = 0.1177 ± 0.0007 (stat.) (76)

± 0.0021 (syst.)± 0.0005 (norm.)

+

{
+0.0051
−0.0061

(theor.),

where the theoretical uncertainties contain the scale
errors (see above), the errors due to threshold ef-
fects (±0.0020), and the method error (±0.0002) in
quadratures.
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Table 19. The values of αs(M2
Z) at different values of kF and kR for nonsinglet evolution (the values in parentheses

correspond to the case when Eq. (22) replaces Eq. (20) in the NLO corrections to coefficient functions)

kR kF χ2(F2) αs(90GeV2)± stat. αs(M2
Z) ∆αs(M2

Z)

1 1 556 0.1789± 0.0023 0.1175 0

1/2 1 558 0.1769± 0.0022 0.1167 −0.0008

(0.1745) (0.1155) (−0.0020)

1 1/2 545 0.1730± 0.0021 0.1150 −0.0025

1 2 568 0.1876± 0.0025 0.1211 +0.0036

2 1 555 0.1826± 0.0025 0.1191 +0.0016

(0.1858) (0.1203) (+0.0028)

1/2 2 570 0.1856± 0.0026 0.1203 +0.0028

(0.1817) (0.1186) (+0.0011)

2 1/2 554 0.1770± 0.0022 0.1167 −0.0008

(0.1784) (0.1173) (−0.0002)

1/2 1/2 556 0.1789± 0.0023 0.1175 −0.0034

(0.1694) (0.1134) (−0.0041)

2 2 567 0.1912± 0.0028 0.1225 +0.0050

(0.1965) (0.1245) (+0.0070)

Table 20. The values of αs(M2
Z) at different values of kF and kR for combined evolution (the values in parentheses

correspond to the case when Eq. (22) replaces Eq. (20) in the NLO corrections to coefficient functions)

kR kF χ2(F2) αs(20GeV2)± stat. Λ
(4)
MS

, MeV Λ
(5)
MS

, MeV αs(M2
Z) ∆αs(M2

Z)

1 1 1410 0.2167± 0.0024 293 209 0.1178 0

1/2 1 1410 0.2112± 0.0019 270 191 0.1162 −0.0016

(1443) (0.2104± 0.0029) (267) (189) (0.1160) (−0.0018)

1 1/2 1423 0.2040± 0.0020 241 168 0.1140 −0.0038

1 2 1447 0.2300± 0.0031 351 256 0.1215 +0.0037

2 1 1413 0.2204± 0.0024 309 222 0.1189 +0.0011

(1500) (0.2263± 0.0030) (334) (242) (0.1204) (+0.0026)

1/2 2 1422 0.2190± 0.0029 303 217 0.1185 +0.0007

(1500) (0.2132± 0.0031) (278) (197) (0.1167) (−0.0011)

2 1/2 1460 0.2021± 0.0022 233 162 0.1134 −0.0044

(1496) (0.2323± 0.0030) (361) (264) (0.1220) (+0.0042)

1/2 1/2 1436 0.1975± 0.0012 216 149 0.1120 −0.0058

(1450) (0.1970± 0.0018) (214) (148) (0.1120) (−0.0058)

2 2 1447 0.2340± 0.0033 369 271 0.1225 +0.0047

(1460) (0.2343± 0.0032) (370) (271) (0.1226) (+0.0048)
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In conclusion of this section, we would like to
note that the theoretical uncertainties in both types of
analyses (based on nonsinglet evolution and on com-
bined singlet and nonsinglet evolution) are substan-
tially larger than the corresponding total experimental
errors.
Indeed, the total experimental errors are as follows:

in the analyses with nonsinglet evolution,

(total experimental error) (77)

=




(stat.)+ (syst.)+ (norm.) = 0.0038
(total linear experimental error)√
(stat.)2 + (syst.)2 + (norm.)2 = 0.0023

(total quadratic experimental error);

in the analyses with combined singlet and nonsinglet
evolution,

(total experimental error) (78)

=

{
0.0033 (total linear experimental error)
0.0023 (total quadratic experimental error);

i.e., they are less by a factor of 1.5−2 compared with
the corresponding theoretical uncertainties.
As has been shown in [26, 27, 39, 40], the theo-

retical uncertainties decrease significantly (by a factor
around 2.5) whenNNLO corrections have been taken
into account. So, the fits of combined data show the
real necessity for the analysis of DIS data in the
NNLO approximation.

7. SUMMARY

As a conclusion, we would like to stress again
that, using the Jacobi polynomial expansion method,
developed in [17–19], we have studied the Q2 evolu-
tion of DIS structure function F2 fitting all modern
experimental data existing at the values of Bjorken
variable x: x ≥ 10−2.

1. From the fits, we have obtained the value of
the normalization αs(M2

Z) of the QCD coupling con-
stant. First of all, we have reanalyzed the BCDMS
data, cutting the range with large systematic errors.
As one can see in Sections 4.1 and 5.1 (and also
Figs. 1 and 3), the values of αs(M2

Z) rise strongly
when the cuts of systematics were incorporated. On
the other hand, the values of αs(M2

Z) do not depend
on the concrete type of cut within modern statistical
errors.
The values αs(M2

Z) obtained in various fits are in
good agreement with one another. Indeed, we have
very similar results for αs(M2

Z) in separate analyses
of BCDMS data (with the cuts of systematics) and
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
other data. This makes it possible for us to fit all the
data together.

We have found that, at Q2 ≥ 10−15 GeV2, the
formulas of pure perturbative QCD (i.e., twist-2 ap-
proximation together with target mass corrections)
are in good agreement with all data. The results for
αs(M2

Z) are very similar for both types of analyses:
based on nonsinglet evolution and on combined sin-
glet and nonsinglet evolution. They have the following
form:

αs(M2
Z) = 0.1170 ± 0.0009 (stat.) (79)

± 0.0019 (syst.)± 0.0010 (norm.)

from fits based on nonsinglet evolution,

αs(M2
Z) = 0.1180 ± 0.0013 (stat.) (80)

± 0.0021 (syst.)± 0.0009 (norm.)

from fits based on combined singlet and nonsinglet
evolution.
When we add twist-4 corrections, we have very

good agreement between QCD (i.e., the first two co-
efficients of the Wilson expansion) and data starting
already with Q2 = 1 GeV2, where the Wilson expan-
sion should begin to be applicable. The results for
αs(M2

Z) coincide for both types of analyses: based
on nonsinglet evolution and on combined singlet and
nonsinglet evolution. They have the following form:

αs(M2
Z) = 0.1174 ± 0.0007 (stat.) (81)

± 0.0019 (syst.)± 0.0010 (norm.)

from fits based on nonsinglet evolution,

αs(M2
Z) = 0.1177 ± 0.0007 (stat.) (82)

± 0.0021 (syst.)± 0.0009 (norm.)

from fits based on combined singlet and nonsinglet
evolution.
Thus, there is a very good agreement [see

Eqs. (79)–(82)] between the results based on pure
perturbative QCD at quite large Q2 values (i.e., at
Q2 ≥ 10−15 GeV2) and the results based on the
first two twist terms of the Wilson expansion (at
Q2 ≥ 1 GeV2, where the Wilson expansion should
be applicable).
We would like to note that we have good agree-

ment also with the analysis [69] of combined H1
and BCDMS data, which has been given by the H1
Collaboration very recently. The shapes of twist-4
corrections are very similar to the ones from [14,
93]. Our results for αs(M2

Z) are in good agreement
also with the average value for the coupling constant
presented in recent studies (see [26, 39, 40, 65, 74, 94,
95] and references therein) and in the famous review
by Bethke [96].
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2. As the second item of our summary, we would
like to note the real importance of NNLO corrections
in analyses of DIS experimental data. The incorpo-
ration of the NNLO corrections started several years
ago in various ways (see Introduction for discus-
sions).
The results are based on the studies of the effect

of high-order corrections, which can be estimated
from the dependence of our results on the factoriza-
tion scale µF and renormalization one µR. As has
already been pointed out in the previous section, the
value of the theoretical uncertainties25) coming from
this dependence of the results for αs(M2

Z) [given by
Eqs. (74) and (76) for two types of Q2 evolution] is
equal to

∆αs(M2
Z)|theor =

{
+0.0051
−0.0061.

(83)

Thus, the theoretical uncertainties are substan-
tially higher than the total experimental error (78).
Similar values of the theoretical error can be found
in recent analyses of the DIS process (see [39, 40,
26]) and of the e+e− process in [94, 95]. As has been
studied recently by van Neerven and Vogt [39, 40], the
value of the theoretical error decreases sharply (by a
factor around 2.5) when the NNLO corrections have
been taken into account. Thus, our fits of combined
data performed here and also other analyses [94, 95]
show the real necessity to include the NNLO correc-
tions in the study of DIS experimental data.
As has been noted in the Introduction, using par-

tial information about NNLO QCD corrections, sev-
eral fits of experimental data have been performed
(see [22–27, 39, 40, 65, 97] and references therein).
In order to do the analyses of experimental data in
the full range of x values, it is necessary to know
all NNLO QCD corrections exactly.26) At present,
three-loop corrections to anomalous dimensions of
Wilson operators are still unknown. These calcula-
tions, which are known only for a finite number of fixed

25)As has been already shown, the scale choices µF = µR =
2Q2 and µF = µR = Q2/2 give the maximal and minimal
values of αs(M

2
Z) (for the various choices of values kF =

1/2, kF = 2, kR = 1/2, and kR = 2 separately) and, thus,
give the basic part of the theoretical error. The additional
theoretical uncertainties due to our method error and choice
of threshold points are negligible.

26)The three-loop corrections to anomalous dimensions of Wil-
son operators and to the longitudinal structure function
FL(x,Q2) have been calculated during the time of publi-
cation of the paper (see [98] and [99], respectively). So, at
the moment, the complete NNLO analysis of the DIS SFs
F2(x,Q

2) and FL(x,Q2) can be performed. We plan to do
it with the help of the Jacobi polynomial expansion method
(see Section 3) and the results [98, 99], adopted in [100].
PH
Mellin moments [101], will be performed [102] in the
near future by usingmodern approaches (see [37, 102,
103]) to evaluate complicated Feynman diagrams.

3.At the end of our paper, we would like to discuss
the contributions of higher twist corrections.

In our study here, we have reproduced the well-
known x shape of the twist-4 corrections at large
and intermediate values of Bjorken variable x (see, for
example, Tables 5, 7, and 17 and also, for example, the
results of a very popular article [14]).

We would like to note the small-x rise of the mag-
nitude of twist-4 corrections when we use flat parton
distributions at x→ 0. The rise is in full agreement
with the theoretical predictions [84]. As we have al-
ready discussed in Section 5, there is a strong cor-
relation between the small-x behavior of twist-4 cor-
rections and the type of corresponding asymptotics of
the leading-twist parton distributions. The possibility
of having a singular type of asymptotics leads (in our
fits) to the appearance of the rise of sea-quark and
gluon distributions as ∼x−0.18 at low-x values. In
this case, the rise of the magnitude of twist-4 correc-
tions is completely canceled. This cancellation is in
full agreement with theoretical and phenomenological
studies and low-x experimental data of the H1 and L3
Collaborations (see discussions in Section 5.3.4).

We would also like to give a few words concerning
the IRR-model predictions for the twist-4 and twist-6
corrections.
In our previous study [21] based on the IRR-model

predictions for higher twist corrections, we have
found a strong correlation between these corrections
and the value of the coupling constant. The αs(M2

Z)
value tends to be very small: αs(M2

Z) = 0.103 ±
0.002 (stat.). This study has been supported by the fits
of the DELPHI Collaboration (see [104]) and by some
other analyses [95]. There is, however, a disagreement
with the results of [105], where the twist-4 corrections
in the framework of the IRR model do not lead to
a decrease in the αs(M2

Z) value. In our opinion,
the situation is not so clear here and it needs more
investigation. We hope to return to this problem in
our future studies.
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Abstract—The two-phase structure is imposed on the world continuum, with the graviton emerging as
the tensor Goldstone boson during the spontaneous transition from the affinely connected phase to the
metric one. The physics principle of metarelativity, extending the respective principle of special relativity, is
postulated. The theory of metagravitation as the general nonlinear modelGL(4, R)/SO(1, 3) in an arbitrary
background continuum is built. The concept of the Metauniverse as the ensemble of the regions of the
metric phase inside the affinely connected phase is introduced, and the possible bearing of the emerging
multiple universes to the fine tuning of our Universe is conjectured. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

General relativity (GR) is the well-stated theory
attributing gravity to the Riemannian geometry of
the spacetime. Nevertheless, the ultimate nature of
gravity awaits, conceivably, its future explanation.
In this respect, of great interest is the approach to
gravity as the Goldstone phenomenon corresponding
to the broken global affine symmetry [1, 2]. Orig-
inally, this approach was realized as the nonlinear
model GL(4, R)/SO(1, 3) in the Minkowski back-
ground spacetime, as distinct from the geometrical
framework of GR.

In the present paper, we adhere to the viewpoint
that the above construction is more than just the
mathematical one, but has a deeper physics foun-
dation underlying it. In this respect, new insights
motivating and extending the Goldstone approach to
gravity are put forward. In principle, we go beyond
the framework of the Riemannian geometry. Namely,
we start with the world continuum considered as the
affinely connected manifold without metric and end
up in the spacetime with the effective Riemannian
geometry.

Our main results are threefold:

(i) The physics principle of extended relativity is
introduced as a substitution for that of special relativ-
ity. It states the physics invariance, at an underlying
level, relative to the choice within the extended set
of the local coordinates, including the inertial ones.
The principle justifies the pattern of the affine sym-
metry breakingGL(4, R)→ SO(1, 3) required for the
Goldstone approach to gravity.

∗The text was submitted by the author in English.
**e-mail: pirogov@mx.ihep.su
1063-7788/05/6811-1904$26.00
(ii) The extended theory of gravity, with GR as
the lowest approximation, is built as the proper non-
linear model in an arbitrary background continuum.
The natural hierarchy of the possible GR extensions,
according to the accuracy of the affine symmetry re-
alization, is put forward.

(iii) The extended Universe, as the ensemble of
the Riemannian metric universes inside the affinely
connected world continuum, is considered. It is con-
jectured that the multiple universes may clarify the
fine-tuning problem of our Universe.

The content of the paper is as follows. In Section 2,
the principle of extended relativity is introduced. The
spontaneous breaking of the ensuing global symme-
try, the affine one, with the residual Poincare symme-
try and the emerging tensor Goldstone boson is then
considered. In Section 3, the nonlinear realization of
the broken affine symmetry is studied. In Section 4,
the respective nonlinear model in the tangent space is
developed. Its prolongation to the spacetime, the ex-
tended gravitation, is presented in Section 5. Finally,
the concept of the extended Universe is discussed in
Section 6, with some remarks in the Conclusion.

2. METARELATIVITY

2.1. Affine Symmetry

Conventionally, GR starts by postulating that the
world continuum, i.e., the set of the world events
(points), is the Riemannian manifold. In other words,
a metric is imposed on the world ab initio. The metric
specifies all the fine properties of the continuum con-
verting the latter into the spacetime. Nevertheless,
c© 2005 Pleiades Publishing, Inc.



GRAVITY AS THE AFFINE GOLDSTONE PHENOMENON AND BEYOND 1905
not all of the properties of the spacetime depend cru-
cially on the metric.1) To appreciate the deeper mean-
ing of the gravity and the very spacetime, one needs
possibly to go beyond the Riemannian geometry.

To this end, consider the spacetime not as a pri-
ori existing but as emerging in the processes of the
world structure formation. Namely, suppose that at
an underlying level the continuum is endowed only
with the topological structure (without metric, yet).
More particularly, it is the affinely connected mani-
fold. The affine connection supports the detailed con-
tinuity properties, such as the parallel transport of the
vector fields and their covariant derivatives. In par-
ticular, the connection produces the curvature tensor
as a result of the parallel transport of a vector around
the infinitesimal closed contour. But there is as yet no
geometrical structures which would be inherent in the
metric, such as the interval, distances, and angles.

Let xµ, µ = 0, . . . , 3, be the world coordinates,
generally, in the patches. There being, in absence
of the metric, no partition of the continuum onto
the space and time, the index 0 has as yet no
particular meaning and is just a notational one. In
ignorance of the underlying “dynamics,” consider
all the structures related to the underlying level of
the world continuum as the background ones. Let
φ̄λµν(x) be the background affine connection and
let ξ̄α, α = 0, . . . , 3, be the background affiliated
coordinates, where the connection has a particular,
to be defined, form φ̄γαβ(ξ̄).2) The connections are
related as usual:

φ̄γαβ(ξ̄) =
∂xµ

∂ξ̄α
∂xν

∂ξ̄β

(
∂ξ̄γ

∂xλ
φ̄λµν(x)−

∂2ξ̄γ

∂xµ∂xν

)
.

(1)

It follows therefore that the parts antisymmetric and
symmetric in the lower indices transform indepen-
dently, respectively, homogeneously and inhomoge-
neously. In particular, being zero at a point in some
coordinates, the antisymmetric part (the torsion) re-
mains zero independent of the coordinates. Thus,
one can adopt the background torsion to be absent
identically. As for the symmetric part, one is free to
choose the special coordinates to make the physics
description as transparent as possible.

So, let P be a fixed but otherwise arbitrary point
(the reference point) with the world coordinates Xµ.
Adjust to this point the local coordinates as follows:

ξ̄α = Ξ̄α + ēαλ(X)
(

(x−X)λ (2)

1)Compare in this respect the reflections on the spacetime
structure due to Schrödinger [3].

2)The bar sign refers in what follows to the background. The
indices α, β, etc., are those of the special coordinates, while
the indices λ, µ, etc., are the arbitrary world ones.
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
+
1
2
φ̄λµν(X)(x −X)µ(x−X)ν

)
+O((x−X)3).

Here, Ξ̄α ≡ ξ̄α(X) and ēαλ(X) ≡ ∂ξ̄α/∂xλ|x=X is the
tetrad, with ēλα(X) being the inverse one. These pa-
rameters are still arbitrary and liable to further speci-
fication. In the vicinity ofP , the affine connection now
looks like

φ̄γαβ(ξ̄) =
1
2
ρ̄γαδβ(Ξ̄)(ξ̄ − Ξ̄)δ +O((ξ̄ − Ξ̄)2), (3)

with ρ̄γαδβ(Ξ̄) being the background curvature tensor
in the reference point. In the coordinates chosen,
the affine connection vanishes at the reference point:
φ̄γαβ(Ξ̄) = 0.

Now, consider the whole set of local coordinates
nullifying the affine connection at the reference point
P . Under the world coordinates xµ being fixed, one
can choose a priori any one of the local coordinates
ξ̄α. The group of replacements ξ̄α → ξ̄′α among the
latter ones is given by the transformations

(A, a) : Ξ̄α → Ξ̄′α = AαβΞ̄β + aα, (4)

ēαµ → ē′αµ = Aαβ ēβµ,

with Aαβ being an arbitrary nondegenerate matrix and
aα being an arbitrary vector. The transformations
(A, a) being independent of ξ̄, the group is the global
one. This is the inhomogeneous general linear group
IGL(4, R) = T4 �GL(4, R) (the affine one). Under
these and only under these transformations, the affine
connection still remains zero at the reference point.
The respective coordinates will be called the local
affine ones.3) In these coordinates, the world contin-
uum is approximated by the affinely flat manifold in
a neighborhood of the reference point P . Particularly,
the covariant derivative in the affine coordinates at
the point P coincides with the ordinary one. Being
changeable underA, the nonzero background torsion
at the point P would violate explicitly the affine sym-
metry. Just to disregard this, the torsion is adopted to
be zero identically.

The affine group IGL(4, R) is 20-parametric and
extends the ten-parameter Poincare group
ISO(1, 3) = T4 � SO(1, 3) by the transformations
varying the scales, the affine dilatations,4) the rest
being the scale preserving unimodular affine trans-
formations. The dilatations A = ∆ belong to the
one-parametric multiplicative group of positive real

3)Being understood, the term “local” will be omitted in what
follows.

4)The world coordinates being fixed, the affine dilatations are
to be distinguished from the conventional ones in the space-
time [4].
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numbers, ∆α
β = e−λδαβ , with any real λ. The unimod-

ular affine transformations are the nine-parametric
part of the special linear group SL(4, R) � A0, with
detA0 = 1 (times reflections).

According to the well-known principle of special
relativity, the present-day local physics laws are un-
changed under the choice of the inertial coordinates,
the Poincare group being the physics invariance sym-
metry. Now, introduce the principle of extended rela-
tivity, ormetarelativity, stating that the local physics
laws at the underlying level are unchanged relative
to the choice of the affine coordinates. This extends
the physics invariance symmetry from the Poincare
symmetry to the affine one.

2.2. Spontaneous Symmetry Breaking
Presently, there is known no exact affine symme-

try. Thus, the latter should be broken in transition
from the underlying level to the effective one. Pos-
tulate that this is achieved due to the spontaneous
emergence of the background metric ϕ̄µν in the world
continuum. Themetric, with theMinkowskian signa-
ture, is assumed to be correlated with the background
affine connection, so that it appears in the affine coor-
dinates as

ϕ̄αβ(ξ̄) = η̄αβ −
1
2
ρ̄γαδβ(Ξ̄) (5)

× (ξ̄ − Ξ̄)γ(ξ̄ − Ξ̄)δ +O((ξ̄ − Ξ̄)3).

Here, one sets η̄αβ ≡ ϕ̄αβ(Ξ̄) and ρ̄γαδβ(Ξ̄) =
η̄γγ′ ρ̄

γ′
αδβ(Ξ̄). The metric Eq. (5) is such that the

Christoffel connection χ̄γαβ(ϕ), determined by the
metric, matches with the affine connection φ̄γαβ in
the sense that the connections coincide locally up
to the first derivative: χ̄γαβ = φ̄γαβ +O((ξ̄ − Ξ̄)2).
This is quite reminiscent of the well-known fact
that the metric in the Riemannian manifold may
be approximated locally up to the first derivative by
the Euclidean metric. In the wake of the emerging
background metric, there appears the (still primor-
dial) partition of the world continuum onto the space
and time.

Under the linearly realized affine symmetry, the
background metric ceases to be invariant. But it still
possesses an invariance subgroup. To find it note that,
without any loss of generality, one can choose among
the affine coordinates the particular ones with η̄αβ
being theMinkowski tensor η = diag(1,−1,−1,−1).
The respective coordinates will be called the back-
ground inertial ones.5) Under the affine transforma-
tions, one has

(A, a) : η → η′ = A−1T ηA−1 
= η, (6)

5)The latter ones are to be distinguished from the effective
inertial coordinates, to be introduced.
PH
whereas the Poincare transformations still leave η
invariant:

(Λ, a) : η → η′ = Λ−1T ηΛ−1 = η. (7)

It follows that the group of invariance is isomorphous
to the Poincare group ISO(1, 3) ∈ IGL(4, R) for
any fixed η̄αβ . Physically, the spontaneous symmetry
breaking corresponds to fixing, modulo the Poincare
transformations, the class of the distinguished co-
ordinates among the affine ones. These coordinates
correspond to the particular choice for η̄αβ . Of course,
the fact that the distinguished coordinates are pre-
cisely those with the Minkowskian ηαβ is no more
than a matter of convention, corresponding to the
proper inner automorphism of the affine group.

Thus under the appearance of the metric, the affine
symmetry is broken spontaneously to the residual
Poincare one:

IGL(4, R) MA−→ ISO(1, 3). (8)

For the symmetry breaking scale MA, one expects a
priori MA ∼MPl, with MPl being the Planck mass.
More particularly, the relation between the scales
is discussed in Section 5. Due to the spontaneous
breaking, the affine symmetry should be realized in a
nonlinear manner [5], with the nonlinearity scaleMA,
the residual Poincare symmetry still being realized
linearly. The unitary linear representations of the lat-
ter correspond to the matter particles, as usual. The
translation subgroup being intact, the broken part
coincides with GL(4, R)/SO(1, 3). The latter should
be realized in the Nambu–Goldstone mode. Accom-
panying the spontaneous emergence of the metric,
there should appear the ten-component affine Gold-
stone boson which corresponds to the ten generators
of the broken affine transformations. The effective field
theory of the Goldstone boson is given by the relevant
nonlinear model, to be studied in what follows.

2.3. Lorentz Symmetry

The group GL(4, R) possesses the 16 genera-
tors Σα

β . By means of ηαβ , one can redefine the
generators as Σαβ ≡ Σα

γη
γβ and replace the latter

ones with the symmetric and antisymmetric com-
binations Σαβ

± = Σαβ ± Σβα. Clearly, this partition
is affine noncovariant. The respective commutation
relations read as follows:

1
i
[Σαβ

± ,Σ
γδ
± ] = ηαγΣβδ

− ± ηαδΣ
βγ
− ± (α↔ β), (9)

1
i
[Σαβ

− ,Σ
γδ
+ ] = ηαγΣβδ

+ + ηαδΣβγ
+ − (α↔ β).
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The generators Σαβ
− correspond to the residual Lo-

rentz symmetry, whereas Σαβ
+ correspond to the bro-

ken part of the affine symmetry. The broken genera-
tors contain, in turn, the dilatation one iηαβΣ

αβ
+ . The

latter commutes with all the generators and is thus
proportional to unity in any irreducible representation.
For the generators σαβ in the adjoint representation,
one has (σαβ)γδ = (1/i)δαδ δ

γ
β , so that the respective

generators σαβ± are as follows:

(σαβ± )γδ =
1
i
(δαδ η

βγ ± δβδ η
αγ). (10)

The above partition of generators is used in what
follows in constructing the nonlinear model. First, we
study the three kinds of substances, i.e., the affine
Goldstone boson, matter, and radiation, which are
characterized by three distinct types of nonlinear re-
alization. With these building blocks, we then con-
struct the nonlinear model itself.

3. NONLINEAR REALIZATION

3.1. Affine Goldstone Boson
Let ξ̄α be the background inertial coordinates

adjusted to the spacetime point P . Attach to this
point the auxiliary linear space T , the tangent space
at the point. By definition, T is isomorphous to
the Minkowski spacetime. The tangent space is
the structure space of the theory, whereupon the
realizations of the physics spacetime symmetries, the
affine and the Poincare ones, are defined. Introduce
in T the coordinates ξα, the counterpart of the back-
ground inertial coordinates ξ̄α in the spacetime. By
construction, the connection in the tangent space is
zero identically. For the connection at the spacetime
point P in the coordinates ξ̄α to be zero too, the co-
ordinates in the vicinity of the reference point have to
be related as ξα = ξ̄α +O((ξ̄− Ξ̄)3). The coordinates
ξα are the ones wherein all the constructions in T are
originally built. The latter ones being done, one can
use in T arbitrary coordinates.

According to [5], the nonlinear realization of the
symmetry G spontaneously broken to the symmetry
H ⊂ G can be built on the quotient spaceK = G/H ,
the residual subgroup H serving as the classification
group. In the present case, one is interested in the
pattern GL(4, R)/SO(1, 3), with the quotient space
consisting of all the broken affine transformations. Let
æ(ξ) ∈ K be the coset function on the tangent space.
It can be represented by a group element k(ξ) ∈ G.
Under the affine transformations (A, a), the represen-
tative group element is to transform in the vicinity of
the reference point as

(A, a) : k(ξ)→ k′(ξ′) = Ak(ξ)Λ−1, (11)
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where Λ is the appropriate element of the residual
group, here the Lorentz one SO(1, 3). One has sim-
ilarly k−1 → Λk−1A−1. At the same time, by its very
construction, the Minkowskian η stays invariant un-
der the nonlinearly realized affine symmetry

(A, a) : η → η′ = Λ−1T ηΛ−1 = η, (12)

in contrast to the linear realization, Eq. (6). Account-
ing for Eq. (12), one gets in the other terms

(A, a) : k(ξ)η → k′(ξ′)η = Ak(ξ)ηΛT . (13)

To represent unambiguously the coset by the
group element k, one should impose on the lat-
ter some auxiliary condition, e.g., requiring k to
be pseudosymmetric in the sense that kη = (kη)T

(and similarly for k−1). This ensures that k has
10 independent components, indeed, in accord with
the 10 broken generators. Under the affine trans-
formations, this results in the restriction AkηΛT =
ΛηkTAT . This entails implicitly the dependence of the
Lorentz transformation on the Goldstone boson: Λ =
Λ(A, k). Hereof, the term “nonlinear” follows. This
construction implements the nonlinear realization
of the whole broken group GL(4, R), the residual
Lorentz subgroup SO(1, 3) still being realized lin-
early, i.e., Λ(A, k)|A=Λ ≡ Λ. And what is more, the
dilatations ∆ being Abelian, one gets Λ(∆, k) = 1,
so that Λ(A, k) = Λ(A0, k), with A ≡ ±A0∆ and
A0 ∈ SL(4, R).

By doing as above, one retains only the inde-
pendent Goldstone components but loses the local
Lorentz symmetry.6) For this reason, we will not im-
pose any auxiliary condition. Instead, we extend the
affine symmetry by the hidden local symmetry7) Ĥ �
H = SO(1, 3), with the symmetry-breaking pattern
G× Ĥ → H . For quantities in the tangent space,
one should distinguish now two types of indices: the
affine ones, acted on by the global affine transforma-
tionsA ∈ G, and the Lorentz ones, acted on by the lo-
cal Lorentz transformations Λ(ξ) ∈ Ĥ . To make this
difference explicit, designate the affine indices in the
tangent space, as before, as α, β, etc., and designate
the Lorentz ones as a, b, etc. The Goldstone field is
represented in this case by the arbitrary 4× 4 ma-
trix καa(ξ) (respectively, κ−1a

α), which transforms
similar to k by Eq. (11) but with arbitrary Λ(ξ). In
what follows, it is understood that the Lorentz indices
are manipulated by means of the Minkowskian ηab
(respectively, ηab). So, in the component notation, κη
looks like καa (similarly, ηκ−1 is κ−1

aα). This is the

6)Such a procedure was adopted in [1, 2].
7)The hat sign refers in what follows to the local Lorentz
symmetry.
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linearization of the nonlinear model, with the extra
Goldstone degrees of freedom being unphysical due
to the gauge Lorentz transformations Λ(ξ). The aux-
iliary gauge boson, corresponding to the generators
Σ̂ab
− of the local Lorentz symmetry, is expressed owing

to the equation of motion through κ and its derivative.
With this in mind, the abrupt expressions entirely in
terms of κ and its derivative are used in what follows.
The versions differ in the higher order corrections.

3.2. Matter

The affine symmetry contains the Abelian, though
broken, subgroup of the affine dilatations. For this
reason, the generic matter fields φmay additionally be
classified by their affine scale dimension lφ,8) so that

(A, a) : φ(ξ)→ φ′(ξ′) = elφλρ̂φ(Λ)φ(ξ), (14)

with ρ̂φ(Λ) taken in the proper Lorentz representa-
tion. According to Eq. (11), the scale dimension of κ
is lκ = −1 (respectively, lκ−1 = 1). Thus, accounting
for the transformation detκ→ e−4λdetκ under dilata-
tions, one can rescale the matter fields to the effective
ones φ̂ = (detκ)lφ/4φ. The new fields are affine scale
invariant, i.e., correspond to lφ̂ = 0, and transform
simply as the local Lorentz representations. They are
to be used in constructing the nonlinear model. If
the affine symmetry is not explicitly violated, only the
rescaled matter fields enter the action. In any case,
one can choose φ̂ and detκ as the independent field
variables. Thus, instead of φ̂, the matter fields will be
designated in what follows simply as φ with lφ = 0.

3.3. Radiation

From the point of view of the nonlinear realization,
the gauge bosons of the internal symmetries consti-
tute one more separate kind of substance, radiation.
By definition, the gauge boson fields Vα transform un-
der the affine transformations linearly as the derivative
∂α ≡ ∂/∂ξα,

(A, a) : V (ξ)→ V ′(ξ′) = A−1TV (ξ), (15)

thus corresponding to the scale dimension lV = 1.
For this reason, redefine the gauge fields as V̂a =
καaVα. The new fields transform as the local Lorentz
vectors

V̂ (ξ)→ V̂ ′(ξ′) = Λ−1T V̂ (ξ) (16)

8)The latter is to be distinguished from the conventional scale
dimension.
PH
and correspond to l̂V = 0. These gauge fields are to be
used in the model building. Altogether, this exhausts
the description of all three kinds of substances: the
affine Goldstone boson, matter, and radiation.

4. NONLINEAR MODEL

4.1. Nonlinear Connection

To explicitly account for both the affine symmetry
and the local Lorentz one, it is convenient to start with
the composite objects transforming only under the
latter symmetry. Clearly, any nontrivial combinations
of κ and κ−1 alone transform explicitly underA. Thus,
the derivative terms are inevitable. To describe the
latter ones, introduce the Maurer–Cartan one-form

Ω̂ = ηκ−1dκ, (17)

with dκ being the ordinary differential of κ. Under
the affine transformations κ→ κ′ = AkΛ−1, the one-
form transforms as the local Lorentz representation

Ω̂(ξ)→ Ω̂′(ξ′) = Λ−1T Ω̂(ξ)Λ−1 + Λ−1T ηdΛ−1,
(18)

with dΛ being the ordinary differential of Λ(ξ). Here,
use is made of the relation ηΛη = Λ−1T for the
Lorentz transformations.

In the component notation, the so-defined one-
form looks like Ω̂ab. Decompose it as

Ω̂ab ≡
∑
±

Ω̂±
ab =

∑
±

[ηκ−1dκ]±ab, (19)

where [. . . ]± means the symmetric and antisymmet-
ric parts, respectively. One sees that Ω̂±

ab transform
independently of each other:

Ω̂±(ξ)→ Ω̂′±(ξ′) = Λ−1T Ω̂±(ξ)Λ−1 + δ±, (20)

where

δ− = Λ−1T ηdΛ−1, (21)

δ+ = 0.

Transforming homogeneously, the symmetric part Ω̂+

can naturally be associated with the nonlinear covari-
ant differential of the Goldstone field. At the same
time, the antisymmetric part Ω̂− transforms inho-
mogeneously and allows one to define the nonlinear
covariant differential of the matter fields: Dφ = (d+
(i/2)Ω̂−

abΣ̂
ab
φ )φ, with Σ̂ab

φ being the Lorentz gener-
ators in the representation ρ̂φ. The so-defined Dφ
transform homogeneously, like φ themselves.

The generic nonlinear covariant derivative Dα ≡
D/dξα transforms as the affine vector. The effective
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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covariant derivative, which transforms as the local
Lorentz vector, can be constructed as follows:

D̂a ≡ καaDα = καaD/dξα. (22)

Thus, one gets for the covariant derivative of the one-
form

Ω̂±
abc = κγcΩ̂±

ab/dξ
γ = [ηκ−1∂̂c κ]

±
ab, (23)

where

∂̂c ≡ κγc∂γ = κγc∂/∂ξ
γ (24)

is the effective, Goldstone boson dependent, partial
derivative. It follows that Ω̂−

abc could be used as the
connection for the nonlinear realization. Note that
this expression precisely corresponds to the case of
the nonlinear realization of the spontaneously broken
internal symmetry, where this connection is deter-
mined uniquely. But in the present case of the space-
time symmetry, the coordinates transform under the
same group as the fields. This results in the possible
ambiguity of the nonlinear connection.

Namely, the transformation properties of the co-
variant derivative do not change if one adds to the
above minimal connection the properly modified
terms Ω̂+

abc, the latter ones transforming homoge-
neously. For reasons justified later in this section, we
choose for the nonminimal connection the following
special combination:

ω̂abc = Ω̂−
abc + Ω̂+

cab − Ω̂+
cba (25)

= [ηκ−1∂̂c κ]
−
ab + [ηκ−1∂̂b κ]

+
ca − [ηκ−1∂̂a κ]

+
cb.

The nonlinear covariant derivative of the matter fields
now becomes

D̂cφ =
(
∂̂c +

i

2
ω̂abcΣ̂ab

φ

)
φ. (26)

D̂cφ transforms homogeneously and can be used in
model building.

4.2. Gauge Interactions

Internal symmetry. Let V̂a be the generator-
valued gauge fields for the internal gauge symmetry.
The gauge fields are supposed to be coupled uni-
versally via the nonlinear connection [Eq. (25)]. Ac-
counting for the Lorentz generators −(σ̂ab− )T in the
contravariant adjoint representation [being given by
Eq. (10) with the obvious substitution for the indices],
one gets for the nonlinear derivative of the fields

D̂aV̂b =
(
δcb ∂̂a + ω̂cba

)
V̂c. (27)
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It follows thereof, in particular, that D̂cηab = 0. Define
the gauge strength as usual:

F̂ab =
(
D̂a + iV̂a

)
V̂b − (a↔ b). (28)

It follows that the so-defined gauge strength takes the
form F̂ab = καaκβbFαβ , with

Fαβ =
(
∂α + iVα

)
Vβ − (α↔ β). (29)

Thus, F̂ab does possess the correct transformation
properties with respect to both the affine symmetry
and the internal gauge symmetry.

Lorentz symmetry. Further, consider the local
Lorentz symmetry as the gauge one with the connec-
tion ω̂c ≡ (1/2)ω̂abcΣ̂ab

− , where Σ̂ab
− are some generic

Lorentz generators. Define the corresponding gauge
strength for the affine Goldstone boson as

Ĝcd = (∂̂c + iω̂c)ω̂d − (c↔ d) ≡ 1
2
R̂abcdΣ̂ab

− . (30)

This gives

R̂abcd = ∂̂cω̂abd − ω̂f acω̂fbd − (c↔ d). (31)

This quantity transforms homogeneously as the local
Lorentz tensor (and similarly for its partial contrac-
tion R̂bd ≡ R̂abad). The total contraction
R̂ ≡ R̂abab = 2∂̂aω̂abb − ω̂faaω̂f bb + ω̂fabω̂fba (32)

is the local Lorentz scalar and can be used in building
the Lagrangian for the Goldstone boson.

4.3. Lagrangian

Lorentz-invariant form. The constructed ob-
jects can serve as the building blocks for the nonlin-
ear model GL(4, R)/SO(1, 3) in the tangent space.
Postulate the equivalence principle in the sense that
the tangent space Lagrangian should not depend
explicitly on the tangent space counterpart of the
background curvature ρ̄γαδβ [Eq. (5)]. Thus, the
Lagrangian may be written as the general Lorentz-
invariant function built of R̂, F̂ab, D̂aφ, and φ them-
selves. As usual, we restrict ourselves to terms
containing two derivatives at most.

The generic Lorentz-invariant (and thus affine)
Lagrangian in the tangent space is

L = Lg(R̂) + Lr(F̂ab) + Lm(D̂aφ, φ). (33)

In the above, the basic Goldstone Lagrangian Lg is as
follows:

Lg = cgM2
A

(
−1

2
R̂(ω̂abc) + Λ

)
, (34)
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with cg being a dimensionless constant, to be chosen,
and Λ proving to be in what follows the cosmological
constant. The radiation Lagrangian Lr is, as usual,

Lr = −1
4
tr(F̂ abF̂ab). (35)

Finally, Lm is the proper matter Lagrangian.9) As for
the radiation and matter, their Lagrangian could well
be the affine invariant Lagrangian of the Standard
Model or of any of its extensions. In fact, the given
nonlinear model can accommodate any field theory.

Affine invariant form. The Lagrangian above
gives the basic dynamical description of the affine
Goldstone boson, radiation, and matter. The local
Lorentz representations are necessary to construct
the Lagrangian. The latter being built, one can rewrite
it in terms of the affine representations. This allows
one to make explicit the geometrical structure of
the theory and to relate it with the gravity. This is
achieved by the proper regrouping of the factors καa
and κ−1a

α, in order to make the affine indices explicit.
The Lagrangian now becomes

L = cgM2
A

(
−1

2
R(γαβ) + Λ

)
(36)

+ Lr(Fαβ) + Lm(Dαφ, φ).

Here,

γαβ = κ−1a
αηabκ

−1b
β (37)

transforms as the affine tensor

(A, a) : γαβ → γ′αβ = A−1γ
α γγδA

−1δ
β . (38)

It proves that R(γαβ) = R̂(ω̂abc) can be expressed as
the contraction R = Rαβαβ of the tensor Rγαδβ ≡
κγcκ−1a

α κ−1d
δ κ−1b

β R̂cadb, the latter in turn being re-
lated with γαβ as the Riemann–Christoffel curvature
tensor with the metric. In this, all the contractions
of the affine indices are understood with γαβ (respec-
tively, γαβ).

Similarly, Dαφ looks like the generally covariant
derivative for the matter fields

Dγφ =
(
∂γ +

i

2
ωabγΣ̂ab

φ

)
φ, (39)

with the spin connection

ωabγ ≡ κ−1c
γω̂abc = κβa∇γκ−1

bβ − (a↔ b). (40)

In the above, ∇γκ−1
bβ ≡ (δαβ∂γ − Γαβγ)κ

−1
bα is the co-

variant derivative calculated with the Christoffel con-
nection

Γαβγ = καaκ−1b
β κ−1c

γ ω̂abc + καa∂γκ
−1a
β (41)

9)The matter Lagrangian is normalized so that Lm|φ=0 = 0.
PH
=
1
2
γαδ
(
∂βγδγ + ∂γγδβ − ∂δγβγ

)
.

In particular, one gets ∇γγαβ = 0 as the affine coun-
terpart of the Lorentz relation D̂cηab = 0. For the
radiation Lagrangian, one has the usual expression

Lr = −1
4
tr(FαβFαβ), (42)

with Fαβ given by Eq. (29). Finally, the matter
Lagrangian is obtained straightforwardly from Lm
[Eq. (33)] with account of Eq. (37) and the relation
D̂a = καaDα [Eq. (22)].

Clearly, Lg looks like the GR Lagrangian in the
tangent space considered as the effective10) Rieman-
nian manifold with the metric γαβ , the Christoffel
connection Γγαβ , the Riemann–Christoffel curva-
ture tensor Rγαδβ , the Ricci tensor Rαβ , the Ricci
scalar R, and the tetrad κ−1a

α (the inverse one καa).
This is in no way accidental. Namely, as is shown
in [2], under the special choice of the nonlinear con-
nection Eq. (25), the Lagrangian becomes confor-
mally invariant too. In this, the dilaton of the con-
formal symmetry coincides with the affine dilaton,
while the vector Goldstone boson of the conformal
symmetry, proving to be the derivative of the dilaton,
is auxiliary. Further, according to the theorem due
to Ogievetsky [6], it follows that the theory which is
invariant under both the conformal symmetry and the
global affine one is generally covariant, as well. After
the proper choice of the metric, this imposes the effec-
tive Riemannian structure onto the tangent space. In
the world coordinates, this will result in the generally
covariant theory (GR, in particular). Precisely this
property justifies the special choice of Eq. (25) for
the nonlinear connection, with the Goldstone boson
being the graviton in disguise.

5. METAGRAVITATION

5.1. General Covariance

Take the tangent space Lagrangian as that for
the spacetime, being valid in the background inertial
coordinates in the infinitesimal neighborhood of the
reference pointP . After the subsequentmultiplication
of the Lagrangian by the covariant volume element
(−γ)1/2d4Ξ̄, with γ ≡ detγαβ , one gets the contribu-
tion to the action of the infinitesimal neighborhood of
the point P . Now one has to convert this contribution

10)For brevity, the term “effective” will be omitted, while the
term “background” will, in contrast, be retained.
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to the arbitrary world coordinates and to sum over the
whole spacetime.

The relation between the background inertial and
world coordinates is achieved by means of the back-
ground tetrad ēαµ(X) [Eq. (2)], with the world metric
being as follows:

gµν(X) = ēαµ(X)γαβ(Ξ̄)ēβν (X). (43)

With account of Eqs. (4), (38), this metric is invariant
under the affine transformations

(A, a) : gµν → gµν . (44)

By their very construction, the world coordinates are
unchanged as well:

(A, a) : Xµ → Xµ. (45)

As a result, the effective interval ds2 = gµνdXµdXν

remains invariant too.

Now, introduce the effective tetrad related with the
background one as

eaµ(X) = κ−1a
α(Ξ̄)ēαµ(X). (46)

The effective tetrad transforms as the local Lorentz
vector:

eµ(X)→ e′µ(X) = Λ(X)eµ(X). (47)

Due to the local Lorentz transformations Λ(X), one
can eliminate six components from eaµ, the latter thus
having ten independent components. In these terms,
the world metric is

gµν(X) = eaµ(X)ηabebν(X). (48)

In other words, the tetrad eaµ defines the effective
inertial coordinates. Physically, Eq. (46) describes the
disorientation of the effective inertial and background
inertial frames depending on the distribution of the
affine Goldstone boson (and thus the gravity).

Accounting for the relation dΞ̄α = ēαµdXµ be-
tween the displacements of the point P in the back-
ground inertial and world coordinates, and thus
∂Ξ̄α/∂Xµ = ēαµ , one has

Γλµν = ēλαē
β
µē
γ
νΓ

α
βγ + ēλα∂µē

α
ν , (49)

where ∂µ = ∂/∂Xµ. This can be rewritten, as
usual, as

Γλµν =
1
2
gλρ
(
∂µgρν + ∂νgρµ − ∂ρgµν

)
. (50)

By construction, the world indices are manipulated
via gµν and gµν . The spin connection looks in the
world coordinates like

ωabµ = ωabγ ēγµ = eνa∇µebν − (a↔ b), (51)
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with the generally covariant derivative ∇µ defined
via the Christoffel connection Γλµν , as usual. Cor-
respondingly, the covariant derivative of the matter
fields looks like

Dµφ =
(
∂µ +

i

2
ωabµΣ̂ab

φ

)
φ. (52)

In a similar way, one finds the usual expressions
for the Riemann–Christoffel tensor Rλµρν(g), the
Ricci tensor Rµν = Rλµλν , and the Ricci scalar R =
gµνRµν . The same is true for the gauge strength:

Fµν = (∂µ + iVµ)Vν − (µ↔ ν). (53)

Plugging the above-modified objects into the La-
grangians for the affine Goldstone boson, radiation,
and matter and integrating with the invariant vol-
ume element, one gets the total action, the Einstein–
Hilbert one including

S =
∫ [

M2
Pl

(
−1

2
R(gµν) + Λ

)
(54)

+ Lr(Fµν) + Lm(Dµφ, φ)

]
(−g)1/2d4X,

with g ≡ detgµν . In the above, the constant cg in
Eq. (36) is chosen so that cgM2

A = 1/(8πGN) ≡M2
Pl,

withGN being Newton’s constant andMPl being the
Planck mass. Varying the action with respect to the
metric gµν , one arrives at the well-known equation of
motion for gravity:

Gµν =M−2
Pl Tµν . (55)

In the above,Gµν is the gravity tensor,

Gµν ≡ Rµν −
1
2
Rgµν + Λgµν , (56)

and Tµν = T rµν + Tmµν is the conventional energy–
momentum tensor of the radiation and matter, pro-
duced by Lr and Lm.

5.2. General Covariance Violation

By choosing the generally covariant Lagrangian in
the tangent space, one arrives at the generally covari-
ant theory in the spacetime. Modulo the choice of the
Lagrangian, such a theory is unique, independent of
the choice of the coordinates. In particular, one man-
ages to express everything exclusively in the internal
dynamical terms (but for the numerical parameters).
Under extension of the tangent space Lagrangian
beyond the generally covariant one, the theory in the
spacetime ceases to be generally covariant and thus
unique. It depends not only on the Lagrangian but
also on the choice of the coordinates. Relative to
05
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the general coordinate transformations, the variety
of theories divides into observationally inequivalent
classes, each of which is characterized by a partic-
ular set of background parameter functions. Precisely
the latter ones make the coordinates distinguishable.
A priori, no one of the sets of parameter functions
is preferable. Which one is suitable (if any) should
be determined by observations. Each class of theo-
ries consists of the equivalent theories related by the
residual covariance group. The latter consists of the
coordinate transformations leaving the background
parameter functions invariant. On the contrary, one
class can be obtained from another by the coordinate
transformations changing these parameter functions.
Weakening the requirements on the bundling of the
tangent spaces, one extends the set of the admissible
theories, but arrives, instead, at the dependence of
the theory in the spacetime on the more elaborate
properties of the background.

To clarify the corresponding parameter functions,
construct the background metric

ḡµν(X) = ēAµ (X)ηAB ēBν (X), (57)

with the inverse one

ḡ−1µν(X) = ēµA(X)ηAB ēνB(X). (58)

Here, the generic index A means a or α, as appro-
priate (and similarly for B, b, β, etc.). This metric
transforms intricately under arbitrary affine transfor-
mations,

(A, a) : ḡµν → ḡ′µν = ēTµA
T ηAēν 
= ḡµν , (59)

though being invariant under the Poincare trans-
formations (Λ, a). The metric ḡµν is the next of
kin to the primordial one ϕ̄µν [Eq. (5)]. The former
approximates the latter as closely as possible in
the lack of knowledge of the primordial background
curvature ρ̄γαδβ [Eq. (5)]. According to the equiv-
alence principle, this curvature does not enter the
tangent space Lagrangian and thus is inessential.
Correspondingly, the Christoffel connection Γ̄λµν(ḡ)
approximates with the same accuracy the Christoffel
connection χ̄λµν(ϕ̄) and thus the primordial affine
connection φ̄λµν , i.e., Γ̄λµν � χ̄λµν � φ̄λµν . So, un-
der reasonable assumptions, it suffices to know only
the background metric ḡµν .

Affine symmetry preservation. To be more spe-
cific, consider the extension of the tangent space La-
grangian for the Goldstone boson by means of the
terms depending explicitly on Ω̂+

abc [Eq. (23)]. For
example, one can add to the basic Goldstone La-
grangian Eq. (34) the quadratic piece

∆L(0)
g =

1
2
ε0M

2
PlΩ̂

+b
baΩ̂

+
c
ca, (60)
PH
where ε0 is a dimensionless constant. Accounting for
Eqs. (23) and (41), one gets for σα ≡ −κ−1a

α Ω̂+b
ba the

relation σα = Γββα(γ) = ∂ασ, where σ ≡ (1/2) ln(−γ)
and γ ≡ detγαβ = −(detκaα)−2. In the affine terms,
one has

∆L(0)
g =

1
2
ε0M

2
Plγ

αβ∂ασ∂βσ. (61)

This Lagrangian violates the conformal symmetry in
the tangent space (more particularly, the local dilata-
tion), as well as the general covariance, though not
violating the global affine symmetry.

It follows from Eq. (43) that γ = −g/ḡ, where ḡ =
detḡµν = −(detēαµ)2. In the world coordinates, the

Lagrangian ∆L(0)
g becomes

∆L(0)
g =

1
2
ε0M

2
Plg

µν∂µσ∂νσ, (62)

with

σ ≡ 1
2

ln(g/ḡ) (63)

and

∂µσ = Γλλµ(g)− Γ̄λλµ(ḡ). (64)

Thus, all the background dependence in the given
case is determined only by the scalar density ḡ. Note
that ∂µσ transforms homogeneously and thus can-
not be eliminated by the coordinate transformations,
though each one of the contributions could separately
be nullified by the choice of coordinates.11)

Varying the total action (the Lagrangian∆L(0)
g in-

cluded), one arrives at themodification of the equation
of motion for gravity [Eq. (55)], with an extra piece in

the gravity tensor ∆G(0)
µν . Introducing the derivative

couplings of σ with matter, not violating explicitly
the affine symmetry, one would get the extra piece
∆Tmµν in the energy–momentum tensor for matter.
Clearly, the modified theory, though not generally
being covariant, is consistent with the unimodular
covariance, i.e., that leaving ḡ (as well as g) invari-
ant. The unimodular covariance is next-of-kin to the
general one. Due to this residual covariance, the given
GR extension describes only three physical degrees of
freedom corresponding to the “scalar” and massless
tensor gravitons. In the case ε0 = 0, the general co-
variance is restored, thus eliminating onemore degree
of freedom. This leaves just two of themwith helicities
λ = ±2, as should be the case for the massless spin-2
particle.

11)Under ḡ = −1, the givenGR extension reduces to that of [7].
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The extra terms in the Goldstone boson Lagran-
gian would make physical the other latent degrees of
freedom of the gravity field, but at the cost of further
violating the general covariance. For example, one
could supplement the Goldstone Lagrangian by the
other independent quadratic pieces:

∆L(1)
g = ε1M2

PlΩ̂
+
ab
bΩ̂+ac

c, (65)

∆L(2)
g = ε′2M

2
PlΩ̂

+
abcΩ̂

+abc + ε′′2M
2
PlΩ̂

+
abcΩ̂

+cab.

This would, in particular, violate causality for the
“vector” graviton, as well as modify interactions for
the tensor graviton. Phenomenologically, these and
similar modifications could be done as small as nec-
essary by the choice of the numerical parameters ε.
This is insured by the fact that, in the limit where
these parameters vanish, the symmetry of the theory
increases up to the general covariance.

Affine symmetry violation. The derivative cou-
plings above preserve the affine symmetry, though
violating the general covariance. One can conceive
another way to violate the general covariance by in-
troducing into the tangent space Lagrangian the po-
tential Ug(κ), which contains only the derivativeless
couplings of the Goldstone boson. Of necessity, this
would explicitly violate the affine symmetry too. To
preserve the local Lorentz symmetry, the potential
should depend only on γαβ (and/or γαβ). In order not
to violate the global Lorentz symmetry too, the poten-
tial is to be chosen as a Lorentz-invariant function as
follows:

Ug = Ug
(
detγ, tr(γη)n

)
, (66)

with any degree n. In the above, one sets (γη)AB ≡
γAA′ηA

′B , where as before A = a or α, etc., as
appropriate. At n < 0, one uses the relation (γη)n =
(ηγ−1)|n|, with γ−1αβ ≡ γαβ . It follows therefore
that, in the world terms, the potential should depend
on gḡ−1:

Ug = Ug
(
det(gḡ−1), tr(gḡ−1)n

)
, (67)

with the background metric given by Eqs. (57), (58).
Generally, one has ḡ−1µν 
= ḡµν ≡ gµµ′gνν′ ḡµ′ν′ (and
similarly, ḡ−1

µν ≡ gµµ′gνν′ ḡ−1µ′ν′ 
= ḡµν). At negative

n, one sets (gḡ−1)n = (ḡg−1)|n|, with g−1µν ≡ gµν .
Here, the terms depending only on det(gḡ−1) = e2σ

are unimodular covariant. The potential above corre-
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sponds to the case of the most general graviton mass
with Lorentz symmetry preservation.12)

With advent of the potential, the only modification
of the gravity equation of motion is the appearance

of the extra piece ∆G(U)
µν on the left-hand side of

Eq. (55). The Bianchi identity states the covariant
divergenceless of the gravity tensor Gµν [Eq. (56)].
Owing to this identity, there appear four constraints
on the metric field and its first derivative. These con-
straints substitute the Lorentz–Hilbert gauge con-
dition. Thus, at the level of the equation of motion,
the theory describes six physical degrees of freedom,
the massive scalar and tensor gravitons. Choosing
different contributions toUg, one can vary the relation
between the respective masses. In the limit of vanish-
ing potential, the general covariance is restored and
one recovers smoothly theGRwith themassless two-
component tensor graviton.

One more similar source of the general covariance
violation could be due to the derivativeless couplings
of the affine Goldstone boson with matter. Violating
the affine symmetry, all the derivativeless couplings
are expected naturally to be suppressed (if any). This
is in contrast to the extra terms depending on the
derivatives of the Goldstone boson. The latter terms
also result in the general covariance violation. Never-
theless, being affine invariant, they are not expected a
priori to be small.

This exhausts the foundations of the effective
field theory of gravity, radiation, and matter. The
above theory, embodying GR and its extensions in
the framework of the affine symmetry and general
relativity, may be calledmetagravitation.

6. METAUNIVERSE

6.1. World Continuum

The ultimate goal of the Goldstone approach to
gravity is to go beyond the effective metric theory and
to build the underlying premetric one. In what follows,
we present some hints of the respective scenario. Of
necessity, we will be very concise, just to indicate the
idea.

The forebear of the spacetime is supposed to be the
world continuum. At the very least, the latter is to be
endowed with the defining structure, the continuity
in the topological sense. Being covered additionally
with the patches of the smooth real coordinates xµ,

12)For the theory of the massive tensor field in the Minkowski
background spacetime, see, e.g., [8]. For the phenomenology
of the gravitonmass and for further references on the subject,
cf., e.g., [9].
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µ = 0, 1, . . . , d− 1 (index 0 having as yet no partic-
ular meaning), the continuum acquires the structure
of the differentiable manifold of the dimension d (4,
for definiteness). There exist in the continuum the
tensor densities, in particular, the volume element.
Thus, integration over the manifold is allowed. But
it does not suffice to define the covariant derivative
and thus to get the covariant differential equations,
etc. Suppose now that the continuum can exist in two
phases with the following affinity properties.

Affine connection. Being endowed with the pri-
mordial affine connection φ̄λµν , the continuum be-
comes the affinely connected manifold. Generally, the
connection is a 64-parametric structure. It defines
the parallel transport of the world vectors, as well
as their covariant derivatives. The parallel transport
along the infinitesimal closed contour defines, in turn,
the background curvature tensor ρ̄λµρν and thus its
contraction ρ̄µν = ρ̄λµλν (but not yet the scalar ρ̄).
To every point P , there can be attached the coordi-
nates ξ̄α, where the symmetric part of the connection
locally nullifies, the manifold becoming thus locally
affinely flat. This defines the global affine symmetry.
For the symmetry to be exact, the antisymmetric
part of the connection, the torsion, should be trivial,
with the connection being just 40-parametric. In this
phase, there is as yet no metric and thus no space and
time directions, even no definite spacetime signature,
no lengths and angles, no preferred Lorentz group
and thus no finite-dimensional spinors, no preferred
Poincare group and thus no conventional particles,
no invariant intervals, no quadratic invariants, no
causality, etc. Though there can be implemented the
principle of the least action with the primitive La-
grangians, the world structure is still rather dull. Nev-
ertheless, it should ultimately lead to the spontaneous
transition from the given phase to the metric one.

Metric. Further, being endowed spontaneously
with the metric ϕ̄µν having the Minkowskian sig-
nature, the continuum becomes the metric space,
i.e., the spacetime. The metric is a much more
restrictive ten-parametric structure. It defines the
background Riemannian geometry. Accompanying
the emergence of the metric and the spontaneous
breaking of the affine symmetry, there appears the
affine Goldstone boson serving as the graviton in
disguise. This results in the effective Riemannian
geometry with the effective metric gµν , etc. Now
there appear the preferred time and space directions,
the lengths and angles, the definite Lorentz group
and thus the finite-dimensional spinors, the definite
Poincare group and thus the particles, the invariant
intervals, the quadratic invariants, the causality, etc.
The world structure becomes now very flourishing.
PH
In the wake of the gravity, there appears the con-
ventional matter. The spontaneous breaking of the
affine symmetry to the Poincare one reflects the
appearance of the coherent particle structure, among
a lot of a priori possible ones corresponding to the
various choices of the Poincare subgroup. Formally,
the effective Riemannian geometry is to be valid at all
the spacetime intervals. Nevertheless, its accuracy
worsens when diminishing the intervals, requiring
more and more terms in the decomposition over
the ratio of the energy to the symmetry breaking
scale MA, as should be the case for the effective
theory. Thus, the scale MA (or, rather, the Planck
mass MPl) is a kind of inverse minimal length in
nature.

6.2. The Universe

Conceivably, the formation of the Universe is the
result of the actual transition between the two phases
of the continuum. This transition is thus the “Grand
Bang,” the origin not only of the Universe but also of
the very spacetime. At this stage, there appears the
world “arrow of time” as the reflection of the spon-
taneous synchronization of the chaotic local times.
The residual dependence of the structure of the Uni-
verse on the background parameter functions could
result in the variety of the primordial effects, such
as anisotropy and inhomogeneity. And what is more,
there is conceivably the appearance (as well as dis-
appearance and coalescence) of the various regions
of the metric phase inside the affinely connected one
(and vice versa). These regions are to be associated
with the multiple universes. One of the latter ones
happens to be ours. Call the ensemble of the universes
theMetauniverse. Within the concept of the Metau-
niverse, there becomes sensible the notion of the wave
function of the Universe. Hopefully, this may clarify
the long-standing problem of the fine-tuning of our
Universe.13)

7. CONCLUSION

To conclude, the theory proposed realizes consis-
tently the approach to gravity as the Goldstone phe-
nomenon. It proceeds, in essence, from the two ba-
sic symmetries: the global affine one and the gen-
eral covariance. The affine symmetry is the struc-
ture symmetry which defines the theory in the small.
The general covariance is the bundling symmetry
which terminates the a priori admissible local theories
according to their ability to be prolonged onto the
spacetime. The theory embodies GR as the lowest
approximation. Its distinction from GR is twofold.

13)Cf., e.g., [10].
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At the effective level, the given theory predicts the
natural hierarchy of the conceivable GR extensions,
according to the accuracy of the affine symmetry re-
alization. At the underlying level, the theory presents
a new look at gravitation, the Universe, and the very
spacetime.
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Abstract—An original analytical method for casting a real three-dimensional symmetric matrix into its
diagonal form along with explicit formulas for the corresponding eigenvectors is given. This is achieved by
a two-step procedure relying on a nice geometrical parametrization of the rotational group SO(3) and the
fundamental algebraic theorem about solutions of the polynomial equations. c© 2005 Pleiades Publish-
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1. INTRODUCTION

The main objective of the present paper is to
solve the problem of diagonalization of a real three-
dimensional symmetric matrix with determination of
explicit formulas for the corresponding eigenvectors.

A straightforward analysis of the procedure of
finding eigenvalues of a symmetric 3× 3 matrix can
be found in Smith [1], while Bojanczyk and Lutobors-
ki [2] provide explicit formulas for eigenvectors. This
was done using the standard result about rotational
matrices in real three-dimensional space, namely,
that any of them can be represented as a product
of three plane rotations. An interesting algorithm
for the construction of the eigenvector matrix and
the spectrum of 4× 4 real symmetric matrices is
presented in [3]. Using the well-known fact that the
Lie algebra of O(4) is isomorphic to the product of
two copies of the Lie algebra of O(3), the problem is
reduced eventually to the three-dimensional case.

The new procedure which we follow is based on the
so-called vector parametrization that is quite different
from the standard Euler parametrization of the rota-
tional group SO(3). Contrary to other known coordi-
natizations of SO(3), the vector parametrization is a
symmetrical and a natural one. The most important
property of this parametrization is that the vector pa-
rameters constitute a Lie group with a simple compo-
sition law and clear geometrical sense. Our aim here
is to find the vector parameter defining the orthogonal
matrix which diagonalizes a given symmetric matrix.
This process is realized in two stages. At each level,

∗The text was submitted by the authors in English.
1)Institute of Biophysics, Bulgarian Academy of Sciences,

Sofia, Bulgaria; e-mail: mladenov@obzor.bio21.bas.bg
2)Institute of Mechanics, Bulgarian Academy of Sciences,

Sofia, Bulgaria; e-mail: clem@imbm.bas.bg
1063-7788/05/6811-1916$26.00
we obtain the corresponding vector parameter and the
resultant vector parameter is their composition.

Why have we chosen the vector parameter to reach
the above aim? The answer to this question is quite
simple—this is the only parametrization which deals
with algebraic parameters that are free of redundancy
and are not transcendental. This is not the case with
the Eulerian angles, Bryant angles, Eulerian parame-
ters, or quaternions, or with Euler–Rodrigues param-
eters or Gibbs vectors which receive standard consid-
eration in the literature. In particular, the last two are
classical parametrizations which play an important
role in the geometrical and kinematical descriptions
of motion, especially in the dynamics of spacecraft
and aircraft. But the vector parametrization is the
best among others coordinatizations for all these pur-
poses. On the basis of vector parametrization, we
have developed a unified and numerically efficient ap-
proach for kinematical and dynamical modeling and
control of a rigid body and mechanical systems of rigid
and elastic bodies [4]. Because of the decoupling of
the differential equations of motion, the problem of
diagonalization of the inertia matrix and the stress
matrices is of great importance for modeling of me-
chanical systems with rigid and elastic links.

The structure of the paper is as follows. Some ba-
sic results about special orthogonal transformations
in ordinary three-dimensional space are presented in
the next section. In Sections 3 and 4, the principal
moments of the diagonalization procedure are dis-
cussed. As an example of the proposed method, in
Section 5, we consider in some detail the stress tensor
associated with Boussinesq solution in elasticity the-
ory. We end the paper with a few concluding remarks
in Section 6.
c© 2005 Pleiades Publishing, Inc.
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2. DIAGONALIZATION AND FEDOROV’S
PARAMETRIZATION

Let A = [aij], i, j = 1, 2, 3, be a real, symmetric
3× 3 matrix. Due to the spectral theorem [5], A is
diagonalizable; i.e., there exists an orthogonal matrix
O = [o1, o2, o3] such that

OTAO = Λ = diag{λπ(1), λπ(2), λπ(3)}, (1)

π ∈ Σ3,

where T means the transposed matrix, λ1 ≤ λ2 ≤ λ3

are the eigenvalues of the matrix A, π is an element
of the group Σ3 of permutations of the three element
set 1, 2, 3, and the column vectors o1, o2, o3 of O are
the orthonormal eigenvectors associated with these
eigenvalues.

The special orthogonal group in the real Euclidean
space R

3 is the group

SO(3) = {O ∈Mat(3,R);OOT = I, detO = 1},
(2)

where Mat(3,R) is the set of 3× 3 real matrices and
I is the 3× 3 identity matrix. The Lie algebra (or
infinitesimal generators) of the SO(3) group is the
vector space of real skew-symmetrical 3× 3 matrices
and will be denoted by so(3). Now, if X belongs to
so(3), the matrix I −X is invertible.

The Cayley transformation providing an explicit
connection between the Lie algebra so(3) and the Lie
group SO(3) is given by the formula

O = (I +X)(I −X)−1 (3)

= (2I − (I −X))(I −X)−1 = 2(I −X)−1 − I.

As an exception in the three-dimensional space,
there exists a map between vectors and skew-
symmetrical matrices [6]; i.e., if c ∈ R

3, then c→
X ≡ c×, where c× is the corresponding skew-sym-
metric matrix. Using this fact, we may write the
SO(3) matrix in the form (see [7] and also [8–10])

O = O(c) = (I + c×)(I − c×)−1 (4)

=
(1− c2)I + 2c⊗ c + 2c×

1 + c2
,

which can be considered as a mapping from R
3 to

SO(3). On some open domain D of the group, it
can be inverted and this yields the associated vector-
parameter

c× =
O −OT

1 + trO
, (5)

where c⊗ c means diadic and trO is the sum of
the diagonal elements of the matrix O. This formula
provides us with an explicit parametrization of the
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rotational group SO(3). Being orthogonal, matrix O
also satisfies the following relations:

1 + trO =
4

1 + c2
, O −OT =

4c×

1 + c2
. (6)

The vector c is called vector parameter. It is
directed along the rotation axis and its module is
equal to

| c |= tan(α/2). (7)

The vector parameters form a Lie group [7] with
a group composition law following from the defining
relation:

O(c)O(c′) = O(c′′), (8)

where

c′′ = 〈c, c′〉 =
c+ c′ + c× c′

1− cc′
. (9)

The symbol “×” here means the cross product of vec-
tors. More about the topological structure of the Lie
group SO(3) and the superposition laws under above-
mentioned parametrizations can be found in [11].

Our objective is the following: given a symmetric
3× 3 matrix A, construct a diagonalizing rotation
matrix O(c), where c is the vector parameter of resul-
tant rotation, such that

OT (c)AO(c) = Λ = diag{λπ(1), λπ(2), λπ(3)}. (10)

3. FIRST LEVEL OF DIAGONALIZATION

Let A = [aij ], i, j = 1, 2, 3, be a real, symmetric
3× 3 matrix. Consider the vector parameter c =
(x, 0, z). The corresponding orthogonal matrix is
O(c) = O(x, z) and OT (c) = OT (x, z). We denote by
B = [bij ], the real symmetric 3× 3 matrix

B = OT (x, z)AO(x, z). (11)

We are going to eliminate the elements b12 and b13.
For this purpose, we have to solve a pair of cou-
pled highly nonlinear equations. Several methods on
how to deal with such problems exist in computa-
tional kinematics. Most promising in our case seem
to be the elimination methods. Here, we shall use the
so called dialytic elimination method [12]. The basic
steps in this method are the following:

(1) Rewrite equations with one variable sup-
pressed.

(2) Define the remaining power products as new
linear, homogeneous unknowns.

(3) Obtain new linear equations so as to have as
many linearly independent homogeneous equations
as linear unknowns.
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(4) Set the determinant of the coefficient matrix
to zero, and obtain a polynomial in the suppressed
variable. (If one is interested in numerical solutions,
this step is omitted and we can go directly to the next
step.)

(5) Determine the roots of the characteristic poly-
nomial or the eigenvalues of the matrix. This yields all
possible values of the suppressed variable.

(6) Substitute (one of the roots or eigenvalues) the
suppressed variable and solve the linear system for the
remaining unknowns. Repeat this for each value of
the suppressed variable.

Guided by this strategy, we present the elements
b12 and b13 as polynomials of z whose coefficients
depend on x. In this form, we denote them as B12 and
B13, respectively, i.e.,

B12 = F (z) = Pol[b12, z], (12)

B13 = G(z) = Pol[b13, z].

The degree of the polynomials B12 and B13 in the
variable z is four. With the letters given below, we
denote the coefficients of the polynomialsB12 andB13

in front of the corresponding power of z:

C0 = coeff[B12, z
0], D0 = coeff[B13, z

0], (13)

C1 = coeff[B12, z
1], D1 = coeff[B13, z

1],

C2 = coeff[B12, z
2], D2 = coeff[B13, z

2],

C3 = coeff[B12, z
3], D3 = coeff[B13, z

3],

C4 = coeff[B12, z
4], D4 = coeff[B13, z

4],

where

C0 = −a12x
4 + 2a13x

3 + 2a13x+ a12, (14)

C1 = −2a23x
3 + 4a33x

2 − 2a11x
2 − 2a22x

2

+ 6a23x+ 2a22 − 2a11,

C2 = −6a13x− 6a12,

C3 = −2a23x+ 2a11 − 2a22, C4 = a12,

and

D0 = −a13x
4 − 2a12x

3 − 2a12x+ a13, (15)

D1 = −2a33x
3 + 2a11x

3 − 6a23x
2

+ 2a11x− 4a22x+ 2a33x+ 2a23,

D2 = 6a13x
2 + 6a12x,

D3 = −2a11x+ 2a33x+ 2a23,

D4 = −a13.

So, we have

B12 = C4z
4 + C3z

3 +C2z
2 + C1z +C0, (16)

B13 = D4z
4 +D3z

3 +D2z
2 +D1z +D0,

where one should take into account that the new co-
efficients C0,D0, C1,D1, . . . contain the suppressed
PH
variables x. In step two, we consider each power of
z as separate independent linear indeterminate. We
have to note also that the number one is counted
as a variable as well since it is always convenient
to have homogeneous equations and it provides a
rationale to discard trivial solutions. The coefficient
of the “variable” 1 is the constant term. Having in
mind all these arguments, we rewrite Eq. (16) as the
following linear set:

C4Z1 + C3Z2 + C2Z3 + C1Z4 + C0Z5 = 0, (17)

D4Z1 +D3Z2 +D2Z3 +D1Z4 +D0Z5 = 0.

Since we have two equations with five unknowns,
we need additional equations. In our case, this can be
accomplished by multiplying Eqs. (17) first by z, after
that by z2, and finally by z3. So, we obtain eight equa-
tions with eight unknowns since three new power
products appear. Using the concept of step two, we
invoke new independent variables Z6 = z5, Z7 = z6,
and Z8 = z7. As a result, we obtain a system of eight
homogeneous linear equations in eight unknowns:

C4Z1 + C3Z2 + C2Z3 + C1Z4 + C0Z5 = 0, (18)

D4Z1 +D3Z2 +D2Z3 +D1Z4 +D0Z5 = 0,
C4Z6 +C3Z1 +C2Z2 +C1Z3 +C0Z4 = 0,
D4Z6 +D3Z1 +D2Z2 +D1Z3 +D0Z4 = 0,
C4Z7 +C3Z6 +C2Z1 +C1Z2 +C0Z3 = 0,
D4Z7 +D3Z6 +D2Z1 +D1Z2 +D0Z3 = 0,
C4Z8 +C3Z7 +C2Z6 +C1Z1 +C0Z2 = 0,
D4Z8 +D3Z7 +D2Z6 +D1Z1 +D0Z2 = 0.

This is the main idea in the dialytic elimination
method, namely, that, even though the new equa-
tions are dependent on the original equations, their
dependence is not linear but encoded into a linear
system. We go to step four, where we obtain a single
polynomial equation in the suppressed variable x. We
rewrite the system (18) in a matrix form,


C4 C3 C2 C1 C0 0 0 0

D4 D3 D2 D1 D0 0 0 0

C3 C2 C1 C0 0 C4 0 0

D3 D2 D1 D0 0 D4 0 0

C2 C1 C0 0 0 C3 C4 0

D2 D1 D0 0 0 D3 D4 0

C1 C0 0 0 0 C2 C3 C4

D1 D0 0 0 0 D2 D3 D4







Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8




= 0,

(19)
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and in more compact notation, we have UZ = 0.
Since we know that Z5 = 1, then the trivial solution
Zi ≡ 0(i = 1, 2, ..., 8) is not admissible and therefore
the determinant of the coefficient matrix U must be
equal to zero, i.e., det U ≡ 0. Having in mind that
the entries of the matrix U contain the suppressed
variable x, expansion of its determinant produces a
polynomial of sixteenth degree which factorizes into
the form

detU = 256(1 + x2)3P 2(x)Q(x), (20)

where

P (x) = (a11a12a23 − a2
12a13 + a13a

2
23

− a12a23a33)x3 + (a11a12a22 − a3
12 + 2a12a

2
13

+ 2a13a22a23 − a11a13a23 − a12a
2
23 − a11a12a33

− a12a22a33 − a13a23a33 + a12a
2
33)x

2 + (2a2
12a13

− a3
13 − a11a13a22 + a13a

2
22 − a11a12a23

− a12a22a23 − a13a
2
23 − a13a22a33 + a11a13a33

+ 2a12a23a33)x + a11a13a23 − a12a
2
13

− a13a22a23 + a12a
2
23

and

Q(x) = (a2
11 + 4a2

13 − 2a11a33 + a2
33)x

4

+ (8a12a13 − 4a11a23 + 4a23a33)x3 + (2a2
11

+ 4a2
12 + 4a2

13 − 2a11a22 + 4a2
23 − 2a11a33

+ 2a22a33)x2 + (8a12a13 − 4a11a23 + 4a22a23)x

+ a2
11 + 4a2

12 − 2a11a22 + a2
22.

Abel’s fundamental theorem in algebra says that it is
always possible to write down the solutions of polyno-
mial equations up to fourth degree in analytical form
using rational operations and radicals, and this means
that our equations

P (x) = 0 and Q(x) = 0 (21)

can be solved explicitly in any concrete case. In both
analytical and numerical cases, we are only interested
in real roots (at least one coming from the first of the
above equations exists always). Therefore, any com-
plex or purely imaginary roots which meet the deter-
minant condition (as those coming from the multiplier
(1 + x2)3) reduce the number of admissible solutions
to the maximal possible value of seven.

Finally, in step six, we substitute the variable x
into the linear set of equations and solve them for
the other original variables, which in this case is z.
Substituting any of the real roots of x into (19) and
setting Z5 = 1, we obtain the corresponding variable
z. Since the system is linear, this yields just one z
for each x [when the rank of the matrix U in (19) is
maximal].
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It is worth noting here that the introduction of
new power products and the so-obtained additional
equations is optimized in our approach and the proof
of this fact is just the form of both polynomials which
we have obtained. In spite of the fact that U is an 8×
8 matrix, we manage to derive analytically solvable
equations. Our experience shows that, if we start the
procedure of diagonalization with another vector pa-
rameter (e.g., č = (x, y, 0)), the elimination procedure
does not give polynomials of such low degrees.

So, in principle, one can associate with the seven
couples (xi, zi) the corresponding seven vector pa-
rameters ci (i = 1, 2, . . . , 7). We substitute their val-
ues in the matrix B and we continue the procedure
towards elimination of the third nonzero (in the gen-
eral case) element b23 of the new symmetric matrixB.

Remark 3.1. If we exchange the suppressed vari-
able xwith z, the relevant polynomials P̃ (z) and Q̃(z)
are of degree four and six, respectively, and there is no
guarantee that the equations P̃ (z) = 0 and Q̃(z) = 0
allow any real root.

4. SECOND LEVEL
OF DIAGONALIZATION

After actualization of the matrix B, the resul-
tant matrix will be denoted by R = [rij ], i.e., R =
Actual[B], which is again a 3× 3 matrix. Now we
continue the process of diagonalization keeping

r12 = 0 and r13 = 0. (22)

Consider the vector parameter c̃ = (u, 0, 0). There
exists an orthogonal matrix Oc̃ = O(c̃) and OT (c̃) =
OT
c̃ . Now we form the matrix S = [sij] as follows,

S = OT
c̃ ROc̃ = OT

c̃ O
T
c AOcOc̃, (23)

and set s23 = 0. In this way, we obtain a polynomial
in u whose power is not greater than four. Assuming
that we are in the generic case, this gives

u4 − 2au3 − 6u2 + 2au+ 1 = 0, (24)

a = (r33 − r22)/r23.

Solving this equation, we find the following solutions:

u1 = (a+M −
√

2(M 2 + aM))/2, (25)

u2 = (a−M +
√

2(M 2 − aM))/2,

u3 = (a−M −
√

2(M 2 − aM))/2,

u4 = (a+M +
√

2(M 2 + aM))/2;

and all of them are real because M =
√
a2 + 4 > |a|.

Choosing any of these roots, we actually fix the vec-
tor c̃. Composing the so-obtained vector parameters
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(x, 0, z) and (u, 0, 0), we get the vector parameter of
the resultant rotation

c̈ = 〈c, c̃〉, (26)

and actually we have proved the following theorem:
Theorem4.1.LetA = [aij], i, j = 1, 2, 3, be a real

symmetric 3× 3 matrix. Then there exists a vector c̈ ∈
R

3 given in (26) and orthogonal matrix O uniquely
associated with it via (4) such that (1)

O
T
AO = Λ = diag{λπ(1), λπ(2), λπ(3)},

π ∈ Σ3,

where O = O(c̈) and O
T

= O
T
(c̈).

5. THE BOUSSINESQ STRESS TENSOR

As an illustration of the procedure described in the
previous two sections, we will consider the diagonal-
ization of the Boussinesq stress tensor which appears
in elasticity theory. Its components in Cartesian co-
ordinates ξ, η, ζ are given by the simple equations

σξξ = 2µA
∂2φ

∂ξ2
, σξη = σηξ = 2µA

∂2φ

∂ξ∂η
, (27)

σηη = 2µA
∂2φ

∂η2
, σξζ = σζξ = 2µA

∂2φ

∂ξ∂ζ
,

σζζ = 2µA
∂2φ

∂ζ2
, σηζ = σζη = 2µA

∂2φ

∂η∂ζ
.

Assuming that the solid occupies the half-space ζ ≥
0 and choosing

φ = log(ρ + ζ), ρ2 = ξ2 + η2 + ζ2, (28)

one gets the symmetric matrix (the scalar multiplier
2µA/ρ3 has been omitted)

σ(ξ, η, ζ) (29)

=




η2 + ζ2

ρ+ ζ
− ρξ2

(ρ + ζ)2
−(2ρ+ ζ)ξη

(ρ+ ζ)2
−ξ

−(2ρ+ ζ)ξη
(ρ + ζ)2

ξ2 + ζ2

ρ + ζ
− ρη2

(ρ+ ζ)2
−η

−ξ −η −ζ



.

PH
We begin its diagonalization with determination
of x and z which appear in (11). At this stage, we
recognize immediately that P (x) is a homogeneous
polynomial and therefore x = 0 is one of its roots. This
situation is just a manifestation of the hidden symme-
tries of our matrix. Thus, at the first level, we are left
with the problem of finding an appropriate z �= 0. This
can be done either by solving the linear system (19)
or by identifying the common roots of the equations
in (12). The result of the second procedure is

z =
η +

√
ξ2 + η2

ξ
=

η +
√
ρ2 − ζ2

ξ
. (30)

Accordingly, the rotation matrix O(c) generated with
the vector parameter c = (0, 0, z) is

O(c) =




− η√
ρ2 − ζ2

− ξ√
ρ2 − ζ2

0

ξ√
ρ2 − ζ2

− η√
ρ2 − ζ2

0

0 0 1




(31)

and the conjugation of σ with O(c) produces

σ −→ B = OT (c)σO(c) (32)

=




ρ2

ρ+ ζ
0 0

0
ζ2 + ρ(ζ − ρ)

ρ+ ζ

√
ρ2 − ζ2

0
√
ρ2 − ζ2 −ζ



.

From here, we obtain the four real roots of Eq. (24) by
plugging into (25)

a =
ρ2 − 2ζ (ρ+ ζ)

(ρ+ ζ)
√
ρ2 − ζ2

and

M =
ρ

ρ+ ζ

√
ρ (5ρ + 4ζ)
ρ2 − ζ2

.

Especially if we take the last root u4, the rotation
matrix generated by the vector c̃ = (u4, 0, 0) is
O(c̃) =




1 0 0

0 −
√

2(ρ+ζ)
√
ρ2−ζ2

ρ3/4(5ρ+4ζ)1/4
√

2ζ2+2ρζ−ρ2+ρ3/2
√

5ρ+4ζ
−
√

2ζ2+2ρζ−ρ2+ρ3/2
√

5ρ+4ζ√
2ρ3/4(5ρ+4ζ)1/4

0
√

2ζ2+2ρζ−ρ2+ρ3/2
√

5ρ+4ζ√
2ρ3/4(5ρ+4ζ)1/4 −

√
2(ρ+ζ)

√
ρ2−ζ2

ρ3/4(5ρ+4ζ)1/4
√

2ζ2+2ρζ−ρ2+ρ3/2
√

5ρ+4ζ



. (33)
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Performing the similarity transformation of B with O(c̃) brings it into the diagonal form

B −→ S = OT (c̃)BO(c̃) =




ρ2

ρ+ ζ
0 0

0 −
ρ3/2

(√
ρ+
√

5ρ + 4n
)

2 (ρ+ ζ)
0

0 0
2ρ3/2

√
ρ+
√

5ρ + 4n



. (34)
It has to be noted that the same result can be
obtained using u1, while the other two solutions, u2

and u3, do not diagonalize B. The rotational matrices
which furnish this diagonalization can be explicitly
built via (4) using

ci = (ui, zui, z), (35)

where ci is the composition vector of the vectors
(0, 0, z) and (ui, 0, 0) when i = 1 or 4.

In addition, a few remarks are in order here. The
first one is that the actual spectrum of (29) is dis-
played by (34) up to a factor 2µA/ρ3. The second
one concerns the fact that implicitly we have tastefully
assumed in our considerations that both a12 and a13
are nonzero elements. If this is not the case and one
of them vanishes, the proposed procedure is simplified
considerably. If both are zero, one simply goes directly
to the second stage.

Finally, it is worth noting here that our analyt-
ical algorithm is realized using version 4.2 of the
Mathematica� package for symbolic calculations.

6. CONCLUDING REMARKS

The purely algebraic feature of the presented ap-
proach allows us to find eigenvalues and eigenvec-
tors of an arbitrary real 3× 3 symmetric matrix in
a closed analytical form following a straightforward
algorithm. It offers a means of studying in full detail
various models of theoretical and experimental rele-
vance. Contrary to Jacobi’s method which is based
on three consecutive plane rotations, our method is
based upon general two-parameter rotation (first level
of diagonalization) followed by one-parameter plane
rotation (second level of diagonalization). This is the
first main point in the diagonalization procedure. The
second interesting moment is that the information
about these rotations is encoded in a vector form, their
composition is expressed by simple vector operations,
and any use of transcendental functions is avoided.
In addition, one will be able to examine the behavior
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of critical parameters as functions of input data. And
the third essential element is that, in the first level
of the diagonalization procedure, a pair of coupled
highly nonlinear equations has to be solved, which is
realized in the paper by using the so-called dialytic
elimination method. Having in mind the abundance
of contexts in physics, mechanics, crystallography,
elasticity, hydromechanics, robotics, etc., where sym-
metric matrices appear, we hope that potential users
will find this method useful in any concrete situation.
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Abstract—The influence of structural inhomogeneity onto order–disorder transitions in 1D systems is
considered in the scope of the Potts-like model with many-particle interactions. The helix–coil transition
in DNAs, heterogeneous by hydrogen bonding energy, is considered as an example. The microcanonical
method is employed to evaluate the free energy. The secular equation for the heteropolymer is constructed.
Both the melting temperature and interval of DNA melting are obtained. In the limit of small difference
between inverse melting temperatures of poly(A−T ) and poly(G−C), the coincidence with classical results
is obtained. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The phenomenon of helix-coil transition in biopoly-
mers is known from the middle of the last century
and a lot of authors have treated it both theo-
retically and experimentally (see books [1–5] and
reviews [6, 7]). However, this problem is interesting
even now [7–19].

Most of the investigations have been conducted
using approaches with phenomenological parame-
ters [1, 5, 6]. In [5] was expressed the necessity of the
consistent analytical theory of transition in biopoly-
mers, which would straightforwardly take into ac-
count the structural inhomogeneity of biopolymers
and would be based on a model with microscopic
parameters. Using the transfer matrix approach for
the evaluation of the partition function, one runs into
the problem of calculating the trace of the product of
N noncommutative matrices, which is not an easy
mathematical problem at large N [1, 5]. This paper
is devoted to overcoming this difficulty and repre-
sents itself as the first step to construct the statistical
physics of order–disorder-type transition on the basis
of the Potts-like model in a 1D system with quenched
disorder in the structure.

2. BASE MODEL

In [16, 17], the microscopic theory on the basis of
a 1D Potts-like model with ∆-particle interactions

∗The text was submitted by the authors in English.
1)Department of Molecular Physics, Yerevan State University,
Yerevan, 375025 Armenia.

**e-mail: morozov@ysu.am
1063-7788/05/6811-1922$26.00
was constructed to describe the helix–coil transition
in homopolypeptides. Thismodel was named the gen-
eralized model of polypeptide chain (GMPC). The

Hamiltonian of the GMPC looks like

−βH = J
N∑
i=1

0∏
k=∆−1

δ (γi−k, 1) = J
N∑
i=1

δ
(∆)
i , (1)

where β = T−1 is inverse temperature,N is the num-

ber of repeated units, and J = U/T is the temper-
ature reduced energy of interchain hydrogen bond-

ing. The notation δ
(∆)
j =

∏0
k=∆−1 δ (γj−k, 1) is in-

troduced, with δ (x, 1) being the Kronecker symbol;
γl = 1, Q is the variable which describes the con-
formation of lth repeated unit; Q is the number of
possible conformations of each repeated unit and thus
describes the conformational ability of each repeated

unit. Conformation number 1 corresponds to the he-
lical state. The Kronecker symbol inside the Hamilto-
nian ensures that the energy J emerges only when all
∆ neighboring repeated units are in helical number 1
conformation.

A similar approach to DNA was employed in [18]
and it was proved that a two strand problem can
be reduced to a one-strand problem, ignoring the
large-scale loop factor. Thus, it was shown that the
same GMPC may be used to describe the helix–coil
transition in both homopolymeric polypeptides and
polynucleotides.
c© 2005 Pleiades Publishing, Inc.
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The (∆×∆) transfer matrix of the model looks
like

Ĝ =




W 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 Q− 1

1 1 1 1 . . . 1 Q− 1




, (2)

where W = exp J . The secular equation for this ma-
trix looks like

λ∆−1 (λ−W ) (λ−Q) = (W − 1) (Q− 1) .

As was shown in [16], the two-particle correlation
function of this model in thermodynamic limit can be
represented as

g2 (r) =
〈
δ
(∆)
i δ

(∆)
i+r

〉
−
〈
δ
(∆)
i

〉〈
δ
(∆)
i+r

〉
∼ exp

[
−r

ξ

]
,

where r is the distance (in repeated units), ξ =
[lnλ1/λ2]

−1 is the correlation length, λ1 is the max-
imal eigenvalue, and λ2 is the second in magnitude.
Near the transition point, which is estimated as Tm =
U/ lnQ, the correlation length ξ passes through the
maximum, which can be estimated as [16–18]

ξmax ∼ Q
1−∆

2 .

The parameter σ of Zimm–Bragg theory can be put
into accordance with ξmax in the followingway [16, 17]:

σ ∼ ξ−2
max.

The following set of parameters can be estimated
for DNA [18]: Q ∝ 3−5; ∆ ∝ 10−15. One can see
that, for this set, the parameter of cooperativity σ is
estimated at 10−5−10−7. So, the high cooperativity of
homogeneous DNA can be explained as conditioned
by the large value of∆, which reflects the high rigidity
of one-strand DNA.

Using this model, it was possible to find the ex-
pressions for helicity degree, for the average number
of junctions between the helix and coil sections, and
therefore for the mean length of the helical section.
In the scope of the same model, it is also possible to
describe the influence of solvent [16, 17]. This can be
done with the help of redefinition of model parame-
ters. But another case exist, the problem of hetero-
geneous DNA melting, which cannot be reduced to
purely homogeneous model in any way. Thus, a new
Hamiltonian should be constructed and new methods
proposed.
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3. HETEROPOLYMER MODEL

In analogy with Eqs. (1), (2), the Hamiltonian and
the corresponding transfer matrix of a heteropolymer
can be written as

H =
N∑
i=1

Jiδ
(∆)
i ,

Ĝj =




Wj 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 Q− 1

1 1 1 1 . . . 1 Q− 1




,

where Wj = exp [Jj ] = exp [Uj/T ], Uj being the en-
ergy of hydrogen bond formation in the jth repeated
unit.

DNA heterogeneity is conditioned by the differ-
ence in energy of hydrogen bonding of A−T - and
G−C-type nitrogen base pairs, and by conformation,
these pairs are indistinguishable [1, 4, 5]. In the helical
state, anA−T base pair is stabilized by two andG−C
by three hydrogen bonds. It means that Uj bonding
energy in the jth repeated unit is equal to UA−T if the
jth site is occupied by an A−T pair and is equal to
UG−C if it is occupied by aG–C pair; UA−T < UG−C .

4. FREE ENERGY EVALUATION USING
MICROCANONICAL APPROACH

Using the transfer-matrix approach, the partition
function at a given realization of disorder may be
written as

Zseq = Tr
N∏
i=1

Ĝi,

where Ĝi is equal to ĜA−T or ĜG−C . As these matri-
ces do not commute with each other, each sequence
from the set of sequences of length N and disor-
der concentration q has unique statistical properties.
Generally, each particular chain may be characterized
by the sequence-dependent free energy Fseq. How-
ever, the free energy is believed to obey the self-
averaging principle [5, 19] which says that the prob-
ability distribution of free energies for independent
samples is very narrow and thus the free energy vir-
tually coincides with the mean free energy for almost
all sequences. Of course, self-averaging holds in the
05
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thermodynamic limit, and for any real computational
model, there is some sequence dependence of the
free energy. However, for the analytic theory, which
operates with the thermodynamic limit, we can safely
ignore the sequence dependence of Fseq as long as
the overall monomer composition is fixed. Thus, we
come to the idea of averaging the free energy over the
sequences [19]. In the thermodynamical limit, the free
energy per base pair and temperature is

f = lim
N→∞

〈
Fseq

〉
NT

= − lim
N→∞

1
N

〈
lnTr

N∏
i=1

Ĝi

〉
.

The problem of evaluating such a quantity becomes
much easier if we replace the “quenched” average〈
lnTr

∏N
i=1 Ĝi

〉
by “annealed” ln

〈
Tr
∏N
i=1 Ĝi

〉
at

fixed concentration of disorder. It is the main idea of
the microcanonical method. The validity and math-
ematical background of this method is considered in
detail in the book by Crisanti et al. [20]. Therefrom,
one can know that the “quenched” and “annealed”
averages are equal up to the fluctuations in disorder
concentration q.

With the help of this method, one can obtain
(see [20]) the free energy of the form

f (y) = −q ln q − (1− q) ln (1− q) (3)

− ln
[
(1 + y)λ1 (y)

y1−q

]
,

d

d ln y
ln [(1 + y)λ1 (y)] = 1− q.

Thus, the problem of heteropolymer is reduced
to the fictive homopolymeric problem with W (y) =
WG−C + yWA−T /(1 + y) redefinition. Here, λ1 (y) is

the maximal eigenvalue of the
(
ĜG−C + yĜA−T

)
matrix. In this system of equations, y is the additional
variable and should be eliminated.

5. DISCUSSION

Using the designations c = WG−C/WA−T and
b = (1− q)/q, the second equation of the system (3)
can be written in the form

θ (y) (1− c) (1 + b)
y + c

− b

y
+ 1 = 0, (4)

where θ = d ln λ1/d lnW is the helicity degree of the
auxiliary fictive homopolymeric problem. Let us as-
sume that the transition is sharp, i.e., θ = 0 at T <
Tm, and θ = 1 at T ≥ Tm (T is the temperature, and
Tm is the temperature at the transition point), and
solve this equation with respect to y:
PH
(i) at θ = 0, from Eq. (4),

y(0) = b =
1− q

q
;

(ii) at θ = 1, taking into account that y > 0,

y(1) = bc =
1− q

q

WG−C
WA−T

.

Inserting these solutions into the equationW (y) =
(WG−C + yWA−T )/(1 + y), one can obtain the ex-
plicit dependence of temperature parameter W of the
heteropolymer model on homopolymer parameters. In
the high-temperature limit, it looks like

Wθ=0 = qWG−C + (1− q)WA−T (5)

and, in the low-temperature limit,

Wθ=1 =
WA−TWG−C

qWA−T + (1− q)WG−C
. (6)

Thus, the dependence of the temperature parameter of
the heteropolymer model on homopolymeric parame-
ters changes throughout the transition. At high tem-
peratures, expression (5) for W is just the arithmetic
average of homopolymeric parameters, and at low
temperatures, expression (6) is the harmonic average.

The transition point of the model with Hamilto-
nian (1) and transfer matrix (2) can be evaluated from
the equation [16, 17]

W = Q. (7)

Let us insert Eqs. (5), (6) and W for the A−T and
G−C homopolymer models into Eq. (7):

Wθ=0 = q exp
[
UG−C
T0

]
(8)

+ (1− q) exp
[
UA−T
T0

]
= Q,

W−1
θ=1 = q exp

[
−UG−C

T1

]

+ (1− q) exp
[
−UA−T

T1

]
= Q−1,

WA−T = exp
[
UA−T
TA−T

]
= Q,

WG−C = exp
[
UG−C
TG−C

]
= Q.

Here, T0 and T1 are transition points corresponding
to the θ = 0 and θ = 1 cases, and TA−T and TG−C are
transition points of pure homopolymeric cases. As the
curveWθ=0 is always above the curveWθ=1, and they
both, as averages of WA−T and WG−C , are between
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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them, then transition temperatures satisfy the condi-
tion TA−T < T1 < T0 < TG−C . Taking into account
that the quantity (1/TA−T − 1/TG−C) is small as
these temperatures are of the same order, one can ex-
pand Eq. (8) by small parameters (1/T0 − 1/TG−C)
and (1/TA−T − 1/T1), and then obtain the values of
temperatures T0 and T1. The evaluations show that,
in a linear approximation, the heteropolymer melting
temperature looks like

T0 = T1 = Thetero = qTG−C + (1− q)TA−T . (9)

As T1 is the temperature corresponding to the com-
pletely helical state and Thetero and T0 correspond to
the completely coil state, then saying “heteropoly-
mer melting interval” we will understand the quantity
(T0 − T1). And as T1 and T0 are indistinguishable in
a linear approximation, then to obtain the interval we
need the expansion up to the second order. Therefrom,
one can obtain

∆T = T0 − T1 = 2q (1− q) (10)

×
(
TG−C − TA−T

Thetero

)2

Thetero lnQ.

Equations (9), (10) coincide with classical re-
sults [1–7].

Thus the following results are obtained:
(1) During the helix–coil transition, the averaging

regime of temperature parameter W is changed.
(2) The classical expressions for melting temper-

ature and interval are derived without using any phe-
nomenological parameter or unproven trick.

Thus, in the scope of the given approach, well-
known experimentally observable results on het-
eropolymer melting have been obtained. The pro-
posed theory, in principle, allows one to describe the
helix–coil transition in heteropolymer DNA on the
basis of the DNA structure and using new mathe-
matical results [20]. Moreover, in first- and second-
order approximations, well-known expressions are
derived [1, 4–7]. The theory allows one to control the
degree of approximation and, hence, the error range
as well. It was also noticed that, during the helix–
coil transition, the averaging regime of temperature
parameter W is changed. This result needs to be
further investigated.
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Abstract—The spectrum of a particle in a 2D potential as a polar-angle-dependent well is investigated.
One-electron states of 2D systems are considered within the framework of the simplest quantum-
mechanical models. Such states can be realized by dusting the atoms of various substances which are
posited on a substrate. c© 2005 Pleiades Publishing, Inc.
1. It is well known that the character of spa-
tial bounding has strong impact on the one-electron
spectrum of a system and, therefore, on all of its
physical properties [1]. Modern technologies make it
possible to obtain films of various substances with
thickness less than 100 Å, up to one monolayer.
It is remarkable that one can control not only the
film thickness but also its geometrical shape [2]. In
this connection, the 2D system of atoms dusted in
the form of a sector while the complementary sec-
tor is made of atoms of another sort is of interest.
The dusted atoms of both sectors can be fully dif-
ferent such as metal–dielectric, metal1–metal2, and
metal–semiconductor. It is obvious that the one-
electron spectrum and consequently all the physical
properties will depend on choice of these substances.
However, most of these systems have one interesting
property: an electron of one of these two sectors can
penetrate into the adjacent sector, and as a result,
there must exist a tunnel transition of an electron
from the sector to the same one. This is possible
if one of the dusted substances is not a dielectric.
Due to the symmetry of the system, a situation arises
which is analogous to the motion of an electron in
a periodic field; however, in our case, it concerns
only the azimuthal degree of freedom. As examples of
systems with circle symmetry, one can note the well-
investigated quantum rings [3, 4], which, in contrast
to the ones considered here, are one-dimensional sys-
tems.

In the present paper, the simplest models that can
describe such systems are considered, and the one-
electron spectrum is investigated in the framework of
these models.

∗The text was submitted by the authors in English.
1)State Engineering University of Armenia, Yerevan,
375009 Armenia.

**e-mail: sahakyan@web.am
1063-7788/05/6811-1926$26.00
Let us choose the sector-shaped infinite well with
central angle ϕ0 and radius R as a simplest model of
2D potential,

V (r, ϕ) =

{
0, 0 ≤ ϕ ≤ ϕ0

∞, ϕ0 ≤ ϕ ≤ 2π.
(1)

The one-electron wave function must obey the
following obvious boundary conditions

Ψ(r, 0) = Ψ(r, ϕ0) = 0, Ψ(r, ϕ) = 0, (2)

where the second one is due to bounding of the system
in the radial direction. The choice of potential (1) is
justified only in the case when the second sector is
covered by atoms of a dielectric.

Then the wave functions take the following form:

Ψ(r, ϕ) = C sin(q, ϕ)Jq(knmr), (3)

where q = nπ/ϕ0, n is integer, Jλ(z) is a Bessel func-
tion of real argument, knm = ænm/R, ænm are the
zeros of Bessel functions, and the energy eigenvalues
are defined by (2) and (3):

Enm =
�

2k2
nm

2m∗ =
�

2æ2
nm

2m∗R2
.

The range of nπ/ϕ0 � 1 is physically more inter-
esting. It corresponds to small central angles of the
sector. In this region,

Ψ � 1
π

√
ϕ0

2π

(
eknr

2s

)q
;

i.e., when r tends toR, the wave function increases as
rq. The reason for such behavior is simple enough. As
the particle approaches the vertex, its transversal re-
gion of localization rϕ0 decreases and its energy E ∼
�

2/(mϕ2
0r

2) increases, which makes electron motion
to the vertex energetically disadvantageous. On the
other hand, it means that a quasiclassical force F ∼
r3 acts on the electron and pushes it far from the ver-
tex. The 2D electron gas is strongly inhomogeneous
c© 2005 Pleiades Publishing, Inc.
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and it is concentrated mainly in the region of width
a ≥ R/ænm. Taking into account that, at least for
large enough n, ænm ∼ q holds, we get a ≥ R/q, i.e.,
a� R.

2. Let us consider the same problem for a model of
a potential well of finite depth:

V (ϕ) =

{
0, 0 ≤ ϕ ≤ ϕ0, (I)
V, ϕ0 ≤ ϕ ≤ 2π. (II)

(4)

Potential (4) is periodic with the period 2π, and the
finiteness of the well allows the tunnel connection of
the well with itself. Such a choice for the potential
corresponds to the case when the regions I and II are
conductive. The potentials (1) and (4) are noncentral-
symmetric and belong to the class of potentials con-
sidered in [5–11].

The Schrödinger equation describing the behavior
of an electron in the field (4) has the form

− �
2

2m

(
∂2Ψ
∂r2

+
1
r

∂Ψ
∂r

+
1
r2
∂2Ψ
∂ϕ2

)
(5)

+ V (ϕ)Ψ = EΨ

with the following boundary conditions for the wave
function:

ΨI(0, r) = ΨII(2π, r), (6)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 200
Ψ′
I(0, r) = Ψ′

II(2π, r), ∀r;
ΨI(ϕ0, r) = ΨII(ϕ0, r), Ψ′

I(ϕ0, r) = Ψ′
II(ϕ0, r);

ΨI(ϕ,R) = 0, ΨII(ϕ,R) = 0, ∀ϕ.

For the step-like potential (4), it is possible to sep-
arate the variables in (5) and the one-electron states
should be represented in the form of a linear combi-
nation of a factorized wave function, but in this case
it is a rather difficult problem to satisfy the boundary
conditions (6). For this reason, we are going to solve
Eq. (5) only approximately. We suppose that the wave
function Ψ(r, ϕ) can be represented in the factorized
form

Ψ(r, ϕ) = Ψ1(r, ϕ)Ψ2(r), (7)

where Ψ1(r, ϕ) is the solution to the equation

− �
2

2mr2
∂2Ψ1

∂ϕ2
+ V (ϕ)Ψ1 = εΨ1, (8)

which describes the states of a rotator with the mo-
ment of inertia I = mr2 in the field V (ϕ). The physi-
cal meaning of this approach we shall discuss below.
It is easy to rewrite the boundary conditions (6) for the
wave function Ψ1(r, ϕ). We seek the solutions to (8)
in the form
Ψ1(r, ϕ) =

{
A1e

iλϕ +A2e
−iλϕ, 0 ≤ ϕ ≤ ϕ0 (I)

B1e
µϕ +B2e

−µϕ, ϕ0 ≤ ϕ ≤ 2π − ϕ0. (II)
(9)
Then, due to boundary conditions (6), we come to the
following dispersion equation for eigenvalues ε:

cosh(µb) cos(λϕ0) (10)

+
µ2 − λ2

2µλ
sinh(µb) sin(λϕ0) = 1;

or, following the method of [12] developed for the case
of the Kronig–Penney model, this equation can be
reduced to

tan
µϕ0

2
=
µ

λ
tanh

µb

2
, (11)

tan
µϕ0

2
= −µ

λ
tanh

µb

2
,

where

λ =
√

2mε
�

, µ =

√
2m(V − ε)

�
r, b = 2π − ϕ0.

Equation (9) coincides with the dispersion equation
of the Kronig–Penney model for the case of zero
Bloch wave vector; i.e., it corresponds to the periodic
azimuthal states.

Then, substituting (7) into (5) and making some
transformations, we get the equation for Ψ2(r):

− �
2

2m

(
∂2Ψ2

∂r2
+

1
r

∂Ψ2

∂r

)
+ ε(r)Ψ2 = EΨ2 + ĈΨ2,

(12)

where the operator Ĉ is defined by

ĈΨ2 =
�

2

2m

×
[∫

Ψ∗
1 (∆rΨ2)Ψ2dϕ+

∫
Ψ∗

1

∂Ψ1

∂r

∂Ψ2

∂r
dϕ

]
,

and ∆r is the radial part of the 2D Laplacian. We omit
the term ĈΨ2 in (12) and obtain

− �
2

2m

(
∂2Ψ2

∂r2
+

1
r

∂Ψ2

∂r

)
+ ε(r)Ψ2 = EΨ2, (13)
5
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where the eigenvalues of (8) enter as an effective
potential, which corresponds to the adiabatic pertur-
bation theory technique [13], i.e., to the assumption
that the motion in the radial direction is slower than
that in the azimuthal direction. In other words, the
energy level spacing for spectrum of Eq. (8) is much
larger than that for Eq. (13).

Equation (10) can be solved for some limiting
cases. Thus, in the case of a sufficiently deep well and
a narrow region of its localization (ϕ0 � 1),

ε(r) =
π2

�
2n2

2mϕ2r2
, n = 1, 2, . . . . (14)

This solution corresponds to the levels of an infinite
potential well. Solving Eq. (13) with effective po-
tential (12), we obtain an expression for Ψ2 which
coincides with that of the radial part of (3). It should
be noted that, in this case, parameter λ does not
depend on r [see (11)], and consequently, all deriva-
tives of Ψ1(r, ϕ) with respect to r vanish within
the range (1) with a high degree of accuracy. Then,
Ψ1(r, ϕ) strongly dies out in the region (II). Therefore,
ĈΨ2 can be set equal to zero.

3. Now let us consider the case of a barrier which
is low enough that there exists a shallow level ε =
V − δ, δ � V . It is obvious that such a level is absent
in the limiting case (14) considered in 2. Solving (11),
we get

ε1 = V +
ϕ0

6b
V − 6�

2

mb2r2
, ε2 = V − ϕ0

6b
V.

The second energy level ε2 does not depend on r
owing to the accepted approximation. It follows from
the condition δ � V that the obtained result is valid
in the range r � 0.06λ, where λ = �/

√
2mε is the

de Broglie wavelength of the electron on the shallow
level. The solution to Eq. (13) can be represented in
the form

Ψ1(r) = AJiβ(ikr) +BJ−iβ(−ikr),
where k2 = 2m(V − E)/�2 > 0.

It should be mentioned that actually the vertex
of the angle has a smooth rather than sharp shape.
This means that the wave function must obey one
additional condition besides (6), namely, Ψ(a) = 0,
where a characterizes smoothness of the vertex. Its
value is of the order of atomic size, being a� 0.06λ.
Then the dispersion equation for the energy spectrum
holds,

Jiβ(ikR)J−iβ(−ika) (15)

− J−iβ(−ikR)Jiβ(ika) = 0.

Consider the regions kR� 1 and ka� 1, that is,
a� R. Then Eq. (15) transforms into

tan
(
β ln

ka

2
− α

)
= 1− e−2kR. (16)
PH
Ignoring the exponentially small term on the right-
hand side, we get

E = V − 2�
2

ma2

× exp
[
2α− π(2n − 1/2)

β

]
, n is integer.

It can be seen from (16) that the condition ka� 1
implies that n� 1.

In the region adjacent to the vertex, the wave
function has the form

Ψ ∼= sin
(
β ln

r

a

)
.

Thus, in the framework of the considered approxima-
tion, in the sectorial well there are an infinite number
of levels which get denser near the top of the well.

Thus, the tunnel penetration into the adjacent sec-
tor demonstrates nonexponential behavior. It is easy
to show that, in this utmost case too, one can neglect
the nonadiabaticity operator Ĉ. Indeed (in fact), as
V − ε ∼ r−2, then µ does not depend on r and the r
derivatives of Ψ1 vanish, and the contribution of the
region (I) is small due to the smallness of ϕ0. Thus,
in principle, an electron can penetrate into the vertex
region in the case of not too deep a well.
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Abstract—Global conformal invariance in Minkowski space and the Wightman axioms imply strong
locality (Huygens principle) and rationality of correlation functions, thus providing an extension of the
concept of a vertex algebra to higher (even) dimensions D. We (p)review current work on a model of a
Hermitian scalar field L of scale dimension 4 (D = 4) which can be interpreted as the Lagrangian of a
gauge field theory that generates the algebra of gauge-invariant local observables in a conformally invariant
renormalization group fixed point. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The present paper provides a concise review and a
continuation of our work [1–4] aimed at constructing
a nontrivial globally conformal invariant (GCI) four-
dimensional quantum field theory (QFT) model. Our
attempt to build such a model is based on the follow-
ing results of [4].

Invariance under finite conformal transformations
in Minkowski spacetime M and local commutativity
imply the Huygens principle: the commutator of two
local Bose fields vanishes for nonisotropic separa-
tions. The Huygens principle and energy positivity
yield rationality of correlation functions (Theorem 3.1
of [4]). These results allow one to extend any GCI
QFT to compactified Minkowski space M̄ , which
admits the following convenient complex variable re-
alization [1–3, 5, 6]:

M̄ = {zµ = e2πiζuµ, µ = 1, . . . , 4; ζ ∈ R, (1)

u ∈ S
3 = {u ∈ R

4;u2 = u2 + u2
4 = 1}} =

S
1 × S

3

Z2
.

Fields φ(z) are expressed as formal power series of the
form

φ(z) =
∑
ν∈Z

∑
m≥0

(z2)νφ{ν,m}(z), (2)

∆φ{ν,m}(z) = 0,
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φ{ν,m}(λz) = λmφ{ν,m}(z),

z2 :=
4∑

µ=1

z2
µ,∆ =

4∑
µ=1

∂2

∂z2
µ

,

φ{ν,m}(z) being an (in general, multicomponent)
operator-valued (homogeneous, harmonic) polyno-
mial in z. The expansion (2) singles out the eigen-
values of the conformal energy operator H defined up
to an additive constant (the vacuum energy) by the
commutation rules

[H,φ(z)] =
(
d + z

∂

∂z

)
φ(z), (3)

implying [H,φ{ν,m}(z)] = (d + 2ν + m)φ{ν,m}(z),

where d is the scale (or conformal) dimension of
the field φ. The Minkowski space spectral conditions
(including energy positivity) imply analyticity of the
vector-valued function φ(z)|0〉 (where |0〉 is the con-
formally invariant vacuum vector) in the z-picture
image

T+ =

{
z ∈ C

4 : |z2| < 1, (4)

|z|2

:=

4∑
µ=1

|zµ|2

 <

1 + |z2|2
2

}

of the forward tube

T+ =

{
ξ = x + iy : x, y ∈M,

y0 > |y| :=
√
y2
1 + y2

2 + y2
3

}

c© 2005 Pleiades Publishing, Inc.
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under the complex conformal transformation (with
singularities)

h : MC(
 ξ)→ EC(
 z), z =
ξ

ωξ
, z4 =

1− ξ2

ωξ
,

ξ2 = ξ2 − (ξ0)2, ωξ =
1
2
(1 + ξ2)− iξ0, (5)

z2 =
1 + ξ2 + 2iξ0

1 + ξ2 − 2iξ0
.

[Note that h maps the real Minkowski space M onto
the open dense subset of M̄ (1) such that z2 + (z4 +
1)2 = 2e2πiζ(cos 2πζ + u4) = 0.] It follows, in partic-
ular, that no negative powers of z2 appear in φ(z)|0〉:

φ{ν,m}(z)|0〉 = 0 for ν < 0. (6)

This is unambiguous [1], because, as is well known,
every homogeneous polynomial p(z) of degree m has
a unique decomposition p(z) = h(z) + z2q(z), where
h is harmonic (of degree m) and q is homogeneous of
degree m− 2.

The resulting (analytic) z picture provides a higher
dimensional generalization [1] of chiral vertex al-
gebras (which have been an outgrowth of physi-
cists’ work on conformal field theory and dual reso-
nance models, formalized by Borcherds [7] and since
the subject of numerous studies, including several
books—see, e.g., [8, 9] and references therein).

The four-dimensional vertex algebra of GCI fields
with rational correlation functions corresponds to the
algebra of local observables in Haag’s approach [10]
to QFT. Its isotypical (or factorial) representations
(i.e., multiples with a finite multiplicity of an irre-
ducible representation) give rise to the superselection
sectors of the theory. The intertwiners between the
vacuum and other superselection sectors are higher
dimensional counterparts of primary fields (which
typically have fractional dimensions and multivalued
n-point distributions).

We shall add to the traditional assumption that the
conserved (symmetric, traceless) stress-energy ten-
sor Tµν(z) is a local observable the requirement that
so is the scalar, gauge-invariant Lagrangian density
L(z) (of dimension d = 4). Then the construction of
a GCI QFT model becomes a rather concrete pro-
gram of writing down rational (conformally invariant
and “crossing symmetric”) correlation functions and
studying the associated operator product expansions
(OPE).

After a brief review (in Section 2.1) of the results
of [4] reformulated in the above z picture, we outline
(in Section 2.2) the general truncated GCI four-point
function wt4 of a neutral scalar field of (integer) di-
mension d. This is a homogeneous rational function
PH
of degree −2d in the (complex) Euclidean invariant
variables

ρij = z2
ij , zij = zi − zj , z2 = z2 + z2

4 (7)

of denominator (ρ12ρ13ρ14ρ23ρ24ρ34)d−1 and nume-
rator, a homogeneous polynomial of degree 4d− 6

(for d ≥ 2) depending (linearly) on
[
d2

3

]
(i.e., no

more than d2/3) real parameters. It is just c(ρ13ρ24 +
ρ12ρ34 + ρ14ρ23) for the simplest candidate for a non-
trivial, d = 2, model and involves five parameters for
the physically interesting case of a d = 4 Lagrangian
density. As the model of a d = 2 scalar field was
proven in [2] to correspond to normal products of
free (massless) scalar fields, we concentrate in the
rest of the paper on the d = 4 case. We study in
Section 3OPE organized in bilocal fields of fixed twist
which provide what could be called a conformal partial
wave expansion of the four-point function (a concept
introduced in [11], see also [12], and recently revisited
in [13]). The bilocal field V1(z1, z2) of (lowest) dimen-
sion (1, 1), which admits a Taylor expansion in z12

involving only twist-2 symmetric traceless tensors, is
harmonic in each argument, allowing one to compute
(in Section 3.2) its (rational) four-point function. The
corresponding (crossing) symmetrized contribution
to wt4 gives rise to a three-parameter subfamily of
the original five-parameter family of GCI four-point
functions. This provides what we call (in Section 3.3)
a minimal model corresponding to a given V1.

We argue, in Section 4.1 (summarizing results
of [3]), that the Lagrangian L(z) of a gauge field
theory should have vanishing odd point functions and
should not involve a d = 2 scalar field in its OPE. This
reduces to three the five parameters in wt4. One of the
remaining parameters corresponds to the Lagrangian
(i.e., the contracted normal square) of a free Maxwell
field. Another corresponds to a twist-4 contribution
that is not recovered in the minimal version of the
theory. We are thus led to consider a one-parameter
family of four-point functions that appears as the sim-
plest candidate for a nontrivial GCI QFT consistent
with Wightman axioms [14], which may correspond
to a (conformally invariant) renormalization group
fixed point of a gauge field theory. As a first step in
studying this distinguished simple model, we point
out, in Section 4.2, that the resulting special bilocal
field V1 = v(z1, z2) has the properties of a bilinear
combination of a free Weyl spinor and its conjugate.
This permits the computation of higher point func-
tions as displayed in Section 4.3.

The results and the challenging open problems are
discussed in Section 4.4.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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2. IMPLICATIONS OF GCI: GENERAL
FOUR-POINT FUNCTION

2.1. Strong Locality and Energy Positivity Imply
Rationality

It follows from local commutativity and GCI that,
for any pair of conjugate (Bose or Fermi) fields ψ(z1)
and ψ∗(z2), there is a positive integerNψ such that

ρN12{ψ(z1)ψ∗(z2)− εψψ
∗(z2)ψ(z1)} = 0 (8)

for N ≥ Nψ, ρ12 := z2
12,

where εψ(= ±1) is the fermion parity of ψ. If ψ trans-
forms under an elementary local field representation
of the spinor conformal group SU(2, 2) (see [15, 16]),
i.e., one induced by a (2j1 + 1)(2j2 + 1)-dimensional
representation (d; j1, j2) of the maximal compact
subgroup S(U(2) × U(2)) of SU(2, 2) (d being the
U(1) character coinciding with the scale dimension),
then
Nψ = d + j1 + j2, εψ = (−1)2j1+2j2 = (−1)2d.

(9)

It follows that, for any n-point function of GCI local
fields and for large enoughN ∈ N, the product

F1...n(z1, . . . , zn) :=


 ∏

1≤i<j≤n
ρij



N

(10)

× 〈0|φ1(z1) . . . φn(zn)|0〉
(ρij = z2

ij ≡ (zi − zj)2) is Z2 symmetric under any
permutation of the factors within the vacuum expec-
tation value. Energy positivity, on the other hand, im-
plies that 〈0|φ1(z1) . . . φn(zn)|0〉, and hence
F1...n(z1, . . . , zn) do not contain negative powers
of z2

n. It then follows from the symmetry and the
homogeneity of F1...n that it is a polynomial in all
zµi . Thus, the (Wightman) correlation functions are
rational functions of the coordinate differences. {For
more detail, see [5]; an equivalent Minkowski space
argument based on the support properties of the
Fourier transform of (the x-space counterpart of) (10)
is given in [4].}

Rationality of correlation functions implies that all
dimensions of GCI fields should be integer or half-
integer depending on their spin, more precisely, that
sums like Nψ (9) should be integer. This condition
is, however, not sufficient for rationality even of three-
point functions.

Observation 2.1. The necessary and sufficient
condition for the existence of a GCI three-point
function 〈0|φ1(z1)φ2(z2)φ3(z3)|0〉 of elementary
conformal fields φi(z) of S(U(2) × U(2)) weight
(di; ji1, ji2) is

Ni := di + ji1 + ji2 ∈ N, (11)
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
1
2

3∑
i=1

Ni ∈ N,

3∑
i=1

di ∈ N.

The statement follows from the explicit knowledge
of three-point functions (for reviews, see [16–18]).

In particular, there is no Yukawa-type rational
conformal three-point function of a pair of conju-
gate canonical (d = 3/2) spinor fields and a canonical
(d = 1) scalar field. Similarly, one observes that two-
point functions of free massless fields in odd space-
time dimensions are not rational and, hence, cannot
be GCI.

It is important for the feasibility of constructing a
GCI model that the singularities of n-point functions
[the integer N in (10)] is majorized by that of the
two-point function [Nψ in (9)] whenever Wightman
positivity is satisfied.

2.2. General Truncated Four-Point Function
of a GCI Scalar Field

Infinitesimal (or Euclidean) conformal invariance
is sufficient to determine two- and three-point func-
tions (see, e.g., [17]). One can construct, however,
two independent conformally invariant cross-ratios
out of four points,

s =
ρ12ρ34

ρ13ρ24
, t =

ρ14ρ23

ρ13ρ24
, (12)

so that a simple-minded symmetry argument does
not determine the four-point functions. GCI, on the
other hand, combined with Wightman axioms, yields
rationality and thus allows one to construct higher
point correlation functions involving just a finite num-
ber of free parameters. In particular, the truncated
four-point function of a Hermitian scalar field φ of
(integer) dimension d can be written in the form (Sec-
tion 1 of [2])

wt4 ≡ wt(z1, z2, z3, z4) := 〈1234〉 (13)

− 〈12〉〈34〉 − 〈13〉〈24〉 − 〈14〉〈23〉

=
(ρ13ρ24)d−2

(ρ12ρ23ρ34ρ14)d−1
Pd(s, t),

Pd(s, t) =
i+j≤2d−3∑
i≥0,j≥0

cijs
itj ,

where 〈1 . . . n〉 is shorthand for the n-point function
of φ:

〈1 . . . n〉 = 〈0|φ(z1) . . . φ(zn)|0〉, (14)

〈12〉 = Bφρ
−d
12 .

In writing down (13), we have used the fact that, for
spacetime dimensionsD > 2, Hilbert space positivity
05
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implies that the degree of singularities of the trun-
cated n-point function (n ≥ 4) is strictly smaller than
the degree of the two-point function.

Furthermore, crossing symmetry (which is aman-
ifestation of local commutativity) implies an S3 sym-
metry of Pd:

sii+1Pd(s, t) = Pd(s, t), i = 1, 2, (15)

s12Pd(s, t) := t2d−3Pd

(
s

t
,
1
t

)
,

s23Pd(s, t) := s2d−3Pd

(
1
s
,
t

s

)
,

sij being the substitution exchanging the arguments
zi and zj . The number of independent crossing sym-

metric polynomials Pd is
[
d2

3

]
(the integer part of

d2/3:
[
d2

3

]
= n(2d− 3n) for 3n− 1 ≤ d ≤ 3n + 1,

n = 0, 1, 2, . . .).

The one-parameter family of crossing symmetric
polynomials for d = 2 is P2(s, t) = c(1 + s + t), i.e.,

wt4 = c{(ρ12ρ23ρ34ρ14)−1 (16)

+ (ρ13ρ23ρ24ρ14)−1 + (ρ12ρ13ρ24ρ34)−1},

thus corresponding to the sum of three one-loop dia-
grams for a sum of normal products of free massless
fields:

φ(z) =
1
2

N∑
i=1

: ϕ2
i (z) : ([ϕi(z1), ϕj(z2)] = 0 (17)

for i = j, ∆ϕi(z) = 0).

Indeed, it was proven in [2] that φ(z) generates un-
der commutations a central extension of the infinite
symplectic algebra sp(∞,R) for d = 2 and that the
unitary vacuum representations of this algebra cor-
respond to integer central charge c = N(∈ N). Thus,
(17) is the general form of a d = 2 GCI field sat-
isfying Wightman axioms (including Hilbert space
positivity) and involving a unique rank-2 symmetric
traceless tensor of dimension 4 in its OPE algebra.

The physically most attractive example, corres-
ponding to a d = 4 scalar field L(z) that can be in-
terpreted as a QFT Lagrangian density, gives rise to
a five-parameter truncated four-point function [3] of
type (13) with

P4(s, t) =
2∑

ν=0

aνJν(s, t) (18)

+ st[b(Q1(s, t)− 2Q2(s, t)) + cQ2(s, t)].
PH
As we shall see in Section 3, Jν correspond to the
symmetrized twist-2 contribution to the OPE of
two L:
J0(s, t) = s2(1 + s) + t2(1 + t) + s2t2(s + t) (19)

is the only one among the five polynomials on the
right-hand side of (18) which does not vanish for
s = 0, t = 1,

J1(s, t) = s(1− s)(1− s2) (20)

+ t(1− t)(1− t2) + st[(s− t)(s2 − t2)− 2Q1],

J2(s, t) = (1 + t)3[(1 + s− t)2 − s] (21)

− 3s(1− t) + s3[(1 + t− s)2 − t];

Qi are S3 symmetric polynomials of degree 2:

Q1 = 1 + s2 + t2, Q2 = s + t + st,

Q1(s, t)− 2Q2(s, t) = (1− s− t)2 − 4st; (22)

and the contributions stQj to P4 correspond to twist
4 and higher in the OPE.

The above choice of basic S3 symmetric polyno-
mials is not accidental: it is essentially determined
by its relation to the “partial wave” expansion of wt4
to be displayed in the next section. We only note at
this point that the term proportional to J2(s, t) is
reproduced by the free Maxwell Lagrangian

L0(x) = −1
4

: Fµν(z)Fµν(z) :; (23)

here, Fµν is characterized by its two-point function

〈0|Fµ1ν1(z1)Fµ2ν2(z2)|0〉 (24)

= Rµ1µ2(z12)Rν1ν2(z12)−Rµ1ν2(z12)Rν1µ2(z12),

where Rµν is related to the vector representation of
the conformal inversion:

Rµν(z) =
rµν(z)
z2

, (25)

rµν(z) = δµν − 2
zµzν
z2

, (r2)µν = δµν .

{The calculation proving that Eqs. (23)–(25) yield a
wt4 proportional to ρ2

13 ρ2
24(ρ12ρ23ρ34ρ14)−3J2(s, t) is

given in Appendix B from [2].}

3. OPE IN TERMS OF BILOCAL FIELDS

3.1. Fixed-Twist Fields: Conformal Partial Wave
Expansion

The infinite series of integrals of local tensor
fields appearing in the singular part of the OPE of
L(z1)L(z2) can be organized into a finite sum of
bilocal (scalar) fields:

L(z1)L(z2) =
B

ρ4
12

(26)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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+
3∑

κ=1

ρκ−4
12 Vκ(z1, z2)+ : L(z1)L(z2) :,

Vκ(z1, z2) = Vκ(z2, z1).

By definition, Vκ is a bilocal conformal field of dimen-
sion (κ, κ) which only involves (derivatives of) twist-
2κ tensor fields in its Taylor expansion in z12. More
precisely, it can be written in the form (cf. [2, 11, 17,
19, 20])

Vκ(z1, z2) =
∞∑
�=0

Cκ� (27)

×
1∫

0

Kκ�(α, ρ12∆2)O2κ,�(z2 + αz12; z12)dα,

where O2κ,�(z;w) are (contracted) symmetric trace-
less tensor fields,

O2κ,�(z;w) = Oµ1...µ�
2κ (z)wµ1 . . . wµ�

(28)

(tracelessness ⇔ ∆wO2κ,�(z;w) = 0),

of scale dimension dκ� = 2κ + = (i.e., of fixed twist
dκ� − = = 2κ). The (four-dimensional) Laplacian ∆w

acts on the 4-vector w, while ∆2 acts on z2 (for fixed
z12). The integro-differential operator with kernelKk�

on the right-hand side of (27) is defined to transform
the two-point function of O2κ,� into the three-point
function

〈0|Vκ(z1, z2)O2κ,�(z3;w)|0〉 (29)

= Aκ�
(X3

12w)�

(ρ13ρ23)κ
for w2 = 0,

X3
12 =

z13

ρ13
− z23

ρ23

(
(X3

12)
2 =

ρ12

ρ13ρ23

)
(30)

{see [20] and Section of [3], where more general
OPE—for any scale dimension d and for complex
fields—are considered, and the kernel Kκ� which
implements (29) is written down}. For real L, due
to the symmetry property (26) of Vκ, only even rank
tensors (even =) appear in expansion (27).

The “normal product” : L(z1)L(z2) : is defined
by (26) and can in turn be expanded in higher twist
Vκ (κ ≥ 4), accompanied by positive powers of ρ12.

The usefulness of expansion (26) is enhanced by
the fact that fields of different twists are mutually
orthogonal under vacuum expectation values:

〈0|Vκ(z1, z2)|0〉 = 0 (31)

= 〈0|Vκ(z1, z2)Vλ(z3, z4)|0〉 for 0 < κ = λ.

For equal dimensions, we can write

〈0|Vκ(z1, z2)Vκ(z3, z4)|0〉 = (ρ13ρ24)−κfκ(s, t)
(32)
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×
(
s12fκ(s, t) = t−κfκ

(
s

t
,
1
t

)
= fκ(s, t)

)
.

As a consequence of the OPE (27) and of (29), we
find the following (light-cone) conformal partial wave
expansion:

fκ(0, t) =
∞∑
�=0

Bκ�(1− t)2� (33)

× F (2= + κ, 2= + κ; 4= + 2κ; 1 − t),

F (α, β; γ;x) =
∞∑
n=0

(α)n(β)n
n!(γ)n

xn = 1 +
αβ

γ
x + . . . ,

being the Gauss hypergeometric function. The struc-
ture constantsBκ�, unlike those appearing in (27) and
(29), are invariant under rescaling of O2κ,2�:

Bκ� := Aκ2�Cκ2,�

(
O2κ2,� → λO2κ2� (34)

⇒ Aκ → λAκ2�, Cκ2� →
1
λ
Cκ2�

)
.

The fixed-twist condition allows one to restore the
s dependence of fκ. This is particularly transpar-
ent in the κ = 1 case, in which O2�(z;w) are con-
served symmetric tensor fields (including, for = = 2,
the stress-energy tensor). Writing the expression on
the right-hand side of (29) for κ = 1, w2 = 0 as

1
=!

(
w

2

(
∂

∂z2
− ∂

∂z1

))�
,

1
ρ13ρ23

,

we observe that it is harmonic in both z1 and z2. It
then follows from (26) that V1 is harmonic in each
argument:

∆1V1(z1, z2) = 0 = ∆2V1(z1, z2) (35)
∆j =

4∑
µ=1

∂2

(∂zµj )2


 .

This implies what may be called the conformal
Laplace equation4) for f1:

∆stf1(s, t) = 0, (36)

∆st := s
∂2

∂s2
+ t

∂2

∂t2

+ (s + t− 1)
∂2

∂s∂t
+ 2

(
∂

∂s
+

∂

∂t

)
.

4)The operator (36) has appeared in various contexts in [20, 21]
and [3].
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Its general solution is expressed in terms of the “chiral
variables” u, v of [20] (see also [21]),

f1(s, t) =
g(u)− g(v)

u− v
(37)

for s = uv, t = (1− u)(1− v).

The function g is expressed in terms of f1(0, t) as
g(u) = uf1(0, 1− u) (for s = 0 = v). Furthermore, as
demonstrated in [20], the following extension of (37)
is valid for κ > 1:

fκ(s, t) =
1

u− v
{F (κ− 1, κ − 1; 2κ− 2; v) (38)

× gκ(u)− F (κ− 1, κ− 1; 2κ − 2;u)gκ(v)}.
[We shall view (38) as a generalization of (37)
which can be included as a special case if we set
F (0, 0; 0;u) ≡ 1.] Then the light-cone expansion (33)
(appearing as an “initial condition”) implies

gκ(u) = ufκ(0, 1− u) (39)

= u

∞∑
�=0

Bκ�u
2�F (2= + κ, 2= + κ; 4= + 2κ;u)

(gκ(0) = 0). The functions fκ(0, t), on the other hand,
can be determined [for a given P4 (18)] inductively in
κ as follows:

f1(0, t) = t−3P4(0, t), (40)

fκ(0, t)

= lim
s→0

{
s1−κ

[
t−3P4(s, t)−

κ−1∑
ν=1

sν−1fν(s, t)

]}
.

It is important to realize that the kernels Kκ�, the
functional form of the three-point function (29), and
the hypergeometric functions defining the conformal
partial waves (33) are universal; only the structure
constants Bκ� depend on L(z) and are, in fact, de-
termined by its four-point function.

3.2. Symmetrized Contribution of Twist-2
(Conserved) Tensors

We now proceed to writing down the general ratio-
nal solution to (36) for which t3f1(0, t) is a polynomial
of degree not exceeding five and which satisfies the
symmetry condition s12f1(s, t) = f1(s, t); in particu-
lar [according to (32)], it obeys

f1

(
0,

1
t

)
= tf1(0, t). (41)

The first requirement follows from the comparison of
the homogeneous factor multiplying Pd in (13) for
d = 4 by the factor (ρ12ρ34)−3(ρ13ρ24)−1 [resulting
from (26) and (32)] which multiplies f1(s, t) in the
PH
expression for wt4. By (crossing) symmetrizing the
contribution towt4 so obtained, we shall reproduce the
basic polynomials Jν (19)–(21) in (18).

Anticipating the result of Sections 3.2 and 4.2
of [3], we choose the following complete set of initial
conditions, f1(0, t) = jν(0, t), ν = 0, 1, 2, consistent
with the symmetry property (41):

j0(0, t) = 1 + t−1, (42)

j1(0, t) = j0(0, t)
(1 − t)2

t
,

j2(0, t) = j1(0, t)
[
(1− t)2

t
+ 1
]
.

Note that the rational function I(t) := (1 − t)2/t
which enters the expressions for j1 and j2 is the
minimal degree polynomial in t and t−1 that is
nonidentically zero and satisfies I1/t = I(t) and
I(1) = 0.

The solutions to (36) with these initial conditions
are given by

j0(s, t) = j0(0, t) = 1 + t−1, (43)

j1(s, t) =
(

1− t

t

)2

(1 + t− s)− 2
s

t

= j1(0, t) − s(1 + t−2),

j2(s, t) = (1 + t−3)

× [(1 + s− t)2 − s]− 3s(1− t)t−3.

As none of the above solutions is symmetric un-
der the exchange s23 (15), locality implies that such
twist-2 contributions to the partial wave expansion
should necessarily be accompanied by higher twist
terms present in the symmetrized expressions

Jα(s, t) = (1 + s23 + s13)t3jα(s, t), α = 0, 1, (44)

J2(s, t) =
1
2
(1 + s23 + s13)t3j2(s, t).

The presence of different factors (1 and 1/2) in front
of the symmetrizer in the two formulas calls for a
precise definition of what is meant by saying that “Jν
is a symmetrized expression of t3jν .” We note that,
for any value of λν , the expression Jν = λν(1 + s23 +
s13)t3jν is S3 symmetric. We shall say that such a
Jν is a symmetrization of t3jν if Jν − t3jν tends to
zero for s→ 0. It then in fact follows that the possible
values of λν are 1 and 1/2.

It should be stressed that not every solution to (36)
admits a symmetrized version in this sense. (The
reader can verify that, e.g., j2 − j1 does not.) Thus,
the above requirement restricts the choice of basis. In
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fact, it follows from (19)–(21) and from (43) that the
differences Jν − t3jν have different orders for small s:

J0(s, t)− t3j0(s, t) = s2(1 + t3 + s(1 + t2)), (45)

J1(s, t)− t3j1(s, t) = s(1− t)(1− t3)

− s2(1 + t3)− s3(1 + t)2 + s4(1 + t),

J2(s, t)− t3j2(s, t)

= s3(1 + t + t2)− 2s4(1 + t) + s5.

Comparing (45) with (40), we deduce that the differ-
ences J1 − t3j1, J0 − t3j0, and J2 − t3j2 carry twist 4
and higher, twist 6 and higher, and twist 8 and higher,
respectively. The above basis is clearly unique with
such a separation property.

Putting everything together, we can, in principle,
determine all structure constants Bκ�. It follows
from (29), (34) and from the relation Aκ� = Nκ�Cκ�,
where Nκ�(> 0) stands for the normalization of the
two-point function of O2κ,�, that Bκ� = Nκ2�C

2
κ2�

should be positive if Hilbert space (or Wightman)
positivity holds. (The full argument uses the classi-
fication [15] of unitary positive energy representations
of SU(2, 2) according to which the state spaces
spanned by O2κ,2�(z,w)|0〉, for κ = 1, 2, . . ., = ≥ 0,
belong to the unitary series.) Thus, such a calculation
will restrict the admissible values of the parameters
aν , b, c, and B in (18) and (26), providing a nontrivial
positivity check for the four-point function of L. We
shall display the corresponding equations and their
solution for κ = 1, 2, 3 (the twists for which the two-
point normalizationB does not contribute).

Inserting on the left-hand side of (33) for κ = 1

the expression f(0, t) =
2∑

ν=0
aνjν(0, t), we can solve

for B1� with the result

B1� =
1(
4=
2=

){2a0 + 2=(2= + 1) (46)

× [2a1 + (2=− 1)(= + 1)a2]}.

The equation for κ = 2 involves a1, b, and c:

f2(0, 1 − u) = a1u

(
1

(1− u)3
− 1
)

(47)

+
bu2

(1− u)2
+

c

1− u

=
∞∑
�=0

B2�u
2�F (2= + 2, 2= + 2; 4= + 4;u).
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Its solution is

B2� =
1(

4= + 1
2=

) (48)

× {=(2= + 3)[(= + 1)(2= + 1)a1 + 2b] + c}.

For κ = 3 we have to use expression (38) for
f2(s, t), which involves a log term as

F (1, 1; 2; v) =
∞∑
n=1

vn−1

n
=

1
v

log
1

1− v
.

The result is

f3(0, 1− u) =
(
a0 +

a1

2

)
(1 + (1− u)−3) (49)

− 3
2

b

1− u

(
1 +

1
1− u

)
+

c

2

{
2u− 1
u(1− u)

×
(

1 +
2

u(1− u)

)
− 2

log(1 − u)
u3

}

=
∞∑
�=0

B3�u
2�F (2= + 3, 2= + 3; 4= + 6;u).

A computer-aided calculation (using Maple) gives in
this case

B3� =
1
2


4= + 3

2= + 1




−1

{(= + 1)(2= + 3) (50)

× [(= + 2)(2= + 1)(2a0 + a1)− 6b + 4c] − c}.
The positivity of Bj�, j = 1, 2, 3, implies

aν ≥ 0, ν = 0, 1, 2; 3a1 + b ≥ 0, c ≥ 0; (51)

6(2a0 + a1 − 3b) + 11c ≥ 0.

This leaves a nonempty domain in the space of (four-
point function) parameters in which positivity holds.

3.3. The Concept of a Minimal Model

We observe that the twist-2 contribution to the
2n-point function,

w1(1, 2; 3, 4; . . . ; 2n − 1, 2n) :=

(
n∏
i=1

ρ−3
2i−1,2i

)

(52)

× 〈0|V1(z1, z2)V1(z3, z4) . . . V1(z2n−1, z2n)|0〉,
combined with locality, implies the existence of higher
twist terms. The question arises whether one can
define a “minimal model” obtained by an appropriate
symmetrization of such a bilocal field contribution.
The difficulty in making this idea precise comes
05



1936 NIKOLOV et al.
from the fact that there are two distinct notions
of symmetrization—as displayed in (44). We shall
therefore restrict our attention to symmetrizable V1,
which we proceed to define.

We begin by extending the notion of a truncated
2n-point function to bilocal fields, setting

wt1(1, 2; . . . ; 2n − 1, 2n) (53)

= w1(1, 2; . . . ; 2n − 1, 2n) for n < 4,

wt1(1, 2; . . . ; 7, 8) = w1(1, 2; . . . ; 7, 8)
− w1(1, 2; 3, 4)w1(5, 6; 7, 8)
− w1(1, 2; 5, 6)w1(3, 4; 7, 8)
− w1(1, 2; 7, 8)w1(3, 4; 5, 6)

(and similar expressions involving symmetric sub-
tractions for n > 4). We say that V1 is symmetrizable
if, for any n = 2, 3, . . ., there is a λn such that the
function

wt(1, 2, . . . , 2n) (54)

= λn
∑

i2k−1<i2k≤2n

wt1(1, i2; . . . ; i2n−1, i2n),

where the sum is spread over all (2n− 1)!! permuta-
tions (1, 2, . . . , 2n)→ (1, i2, . . . , i2n) whose entries
satisfy the above inequalities, involves the same
twist-2 contribution with respect to the pair of argu-
ments (2i− 1, 2i) for i = 1, . . . , n aswt1(1, 2; . . . ; 2n−
1, 2n):

lim
ρ2i−1,2i→0

{ρ3
2i−1,2i(w

t(z1, . . . , z2n) (55)

− wt1(1, 2; . . . ; 2n− 1, 2n))} = 0.

We then define a minimal model by identifying
the truncated 2n-point correlation function with
wt(1, . . . , 2n) (54).

Remark 3.1. The symmetrizability of V1 is only a
sufficient condition enabling us to construct a min-
imal model. For instance, the truncated four-point
function (13) (18) for b = c = 0 is “minimal,” al-
though V1 is not symmetrizable according to the
above definition, but is a sum of symmetric expres-
sions associated with different factors λ in (54). It
follows from the results summed up in Section 2 that
both J0 and J2 have free-field realization:

V
(0)
1 (z1, z2) =

N∑
i=1

: ϕi(z1)ϕi(z2) : (∆ϕi(z) = 0)

(56)

and to expression (4.21) of [3],

V
(2)
1 (z1, z2) = C

{
1
4
z2
12 : F στ (z1)Fστ (z2) (57)
PH
: −δστzµ12zν12 : Fσµ(z1)Fτν(z2) :

}

(dF (z) = 0 = d∗F (z)),

respectively. As we shall see (in Section 4.2, below),
J1(s, t) also admits such a realization. This allows us
to extend the construction of

wt4 =
ρ2
13ρ

2
24

(ρ12ρ23ρ34ρ14)3
(58)

× (a0J0(s, t) + a1J1(s, t) + a2J2(s, t))

to higher point correlation functions, thus obtaining a
minimal model of a more general type than the above-
considered case of a symmetrizable V1.

4. IS THERE A NONTRIVIAL GAUGE FIELD
THEORY MODEL?

4.1. Restrictions on the Parameters
in the Four-Point Function

We now address the question how to characterize
the local gauge-invariant Lagrangian, which gives
rise to a 4-form

L(z)dz1 ∧ dz2 ∧ dz3 ∧ dz4 = tr(∗F (z) ∧ F (z)),
(59)

where F is the (Maxwell, Yang–Mills) curvature
2-form and ∗F is its Hodge dual,

F (z) =
1
2
Fµν(z)dzµ ∧ dzν , (60)

∗F (z) =
1
4
εκλµνF

κλdzµ ∧ dzν ,

without introducing gauge-dependent quantities like
F (in the non-Abelian case) or the connection 1-form
(of the gauge potential) A. We first note that a pure
gauge Lagrangian of type (59) (i.e., a Lagrangian
without matter fields) should not allow for a scalar of
dimension (= twist) 2 in the OPE of L(z1)L(z2). In
view of (46), this implies

a0 = 0. (61)

Furthermore, assuming invariance of the theory
under “electric–magnetic” (or Hodge) duality5) and
noting that ∗(∗F ) = −F in Minkowski space, we
deduce that the theory should be invariant under a
change of sign of L. Hence, all odd-point functions of
L should vanish. We make the stronger assumption
that no scalar field of dimension 4 should appear in
the OPE of two L. According to (48), this implies

c = 0. (62)

5)We thank Dirk Kreimer for a discussion on this point.
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(The vanishing of the three-point function of the
Maxwell Lagrangian is verified by a direct calcula-
tion.) We are thus left with the three parameters a1,
a2, and b in the truncated four-point function, the
positivity restrictions (51) implying

a1 ≥ 0, a1 + a2 > 0, −3a1 ≤ b ≤ 1
3
a1. (63)

Clearly, for a1 = 0, we shall also have b = 0 and the
truncated four-point function will be amultiple of that
of the free electromagnetic Lagrangian (23) (Sec-
tion 2.2). In order to go beyond the free-field theory
we shall assume a1 > 0 and will study the properties
of the contribution J1 (20) to wt4.

4.2. A Composite Bilocal Field Reproducing J1

We denote by v(z1, z2) the field V1 which repro-
duces the term j1(s, t) (43) in the expansion of f1

[defined by (32) for κ = 1]; in other words, we set

〈0|v(z1, z2)v(z3, z4)|0〉 =
a

ρ13ρ24
j1(s, t) (64)

= a

(
t−1 − st−1 − 1

ρ14ρ23
+

t− s− 1
ρ13ρ24

)
.

The two terms on the right-hand side are obtained
from one another by the substitution s12(z1 � z2),
suggesting that there exists a free-field realization of
v(z1, z2) which reproduces (64) (for an appropriate
choice of the constant a). Indeed, one can check
that the CP-even projection of the product of two
conjugate Weyl fields does the job.

In order to write it down in the above z picture, we
introduce the 2× 2-matrix realization of the quater-
nion algebra setting

z/ :=
4∑

µ=1

zµQµ =


z4 − iz3 −z2 − iz1

z2 − iz1 z4 + iz3


 , (65)

z/+ :=
4∑

µ=1

zµQ
+
µ = z4 − z ·Q

(where, in the last equation, we have omitted the 2×
2 unit matrix Q4). It is characterized by the basic
anticommutation relations

z/w/+ + w/z/+ = 2zw (= 2(z ·w + z4w4)). (66)

A free Weyl field ψ is a complex two-component field
of S(U(2) × U(2)) weight (3/2; 1/2, 0) satisfying the
Weyl equation

∂/ψ(z) := Qµ
∂

∂zµ
ψ(z) = 0

(
=

∂

∂zµ
ψ+(z)Qµ

)
;

(67)
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for an appropriate normalization, its two-point func-
tion is given by

〈0|ψ(z1)ψ+(z2)|0〉 =
z/+
12

ρ2
12

. (68)

A straightforward computation (see Appendix)
shows that the bilocal field

v(z1, z2) =: ψ+(z1)z/12ψ(z2) : (69)

− : ψ+(z2)z/12ψ(z1) := v(z2, z1)

(where :: stands for the standard free-field normal
product) indeed reproduces (64) for a = 2.

The bilocal field (69), being symmetric under
the exchange of arguments, only involves even-rank
(conserved) tensors in its expansion in local fields.
The product v(z1, z2)v(z3, z4), however, also gives
rise to odd-rank tensors, in particular, a conserved
current, which will thus contribute to the eight-point
function of L. A gauge-invariant conserved current,
on the other hand, can only appear in an Abelian,
say U(1), gauge theory. This looks puzzling: Are we
not dealing with a free Weyl theory in disguise? The
answer is no: in the theory of a free Weyl field, there
is no room for a dimension-4 scalar. In particular, the
Lagrangian of a free Weyl field vanishes, while in the
model at hand L is coupled to v since the OPE of two
L involves v.

The basic question in the title of this section can
then be sharpened as follows: Is there a minimal
model (in the sense of Section 3.3) for a scalar field
L(z) with the reduced OPE (in which we have set
a2 = b = 0)

L(z1)L(z2) =
B

ρ4
12

+
v(z1, z2)

ρ3
12

+ O(ρ−2
12 ) (70)

[where v(z1, z2) has correlation functions correspon-
ding to the ansatz (69)]?

We have no definitive answer to this simple ques-
tion. We know that the four-point function of L with
truncated part

wt4 =
aρ2

13ρ
2
24

(ρ12ρ23ρ34ρ14)3
(71)

× {s(1− s)(1− s2) + t(1− t)(1− t2)

+ st[(s− t)(s2 − t2)− 2− 2s2 − 2t2]}
satisfies all Wightman axioms—including positivity
(for a nonempty set of positive a and B). Happily, as
we shall see in the next subsection, the ansatz (69)
also allows one to construct higher (even-point) cor-
relation functions of L. Then one should be able to
attack the positivity problem in its full generality (all
other Wightman axioms being obviously satisfied by
rational symmetric correlation functions). Albeit we
05
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are ultimately interested in the theory with a truncated
four-point function depending on all three admissible
parameters, a1, a2, and b, it should be easier to, first,
handle the simpler model defined by (69), (70).

4.3. Elementary Contributions to wt2n, Symmetric
under Z2 × Zn

We observe that expression (44) for J1 is a sum of
three terms each of which splits into two, as displayed
on the right-hand side of (64). This observation can
be understood as follows: each of the six contribu-
tions, say

W(12; 34) =
2

ρ3
12ρ

3
34

ρ13ρ24 − ρ12ρ34 − ρ14ρ23

ρ2
14ρ

2
23

(72)

(where we have set a = 2), has a Z2 × Z2 sym-
metry generated by the pair of involutive transfor-
mations (12; 34) → (21; 43) and (12; 34) → (43; 21).
The number of such elementary contributions is
|S4|/|Z2 × Z2| = 4!/4 = 3! (where we denote by |G|
the number of elements of the finite group G). Such
a counting readily extends to the general case of a
2n-point function.

The 2n-point function
〈0|v(z1, z2)v(z3, z4) . . . v(z2n−1, z2n)|0〉 (73)

of the composite field (69) has a (Z2)×n × Sn sym-
metry (consisting of exchanging the arguments of
each individual factor and of permuting the v). There
are, hence, |S2n|/(2n|Sn|) = (2n− 1)!! different 2n-
point functions 〈0|v(z1, zi2) . . . v(zi2n−1 , zi2n)|0〉. The
expression for each such 2n-point function has (2n−
2)!! = 2n−1(n− 1)! elementary contributions labeled
by the set of pairs (ij) for which the corresponding
rational function has a pole in ρij . Each elementary
contribution to wt2n, say W(12; 34; . . . ; 2n − 12n),
possesses a Z2 × Zn symmetry, where Zn is the
group of cyclic permutations of ordered pairs of
arguments generated by (12, 34, . . . , 2n− 12n)→
(2n − 12n, 12, . . . , 2n − 32n − 2), while the non-
trivial element of Z2 is the involutive permutation
(12, . . . , 2n − 12n)→ (2n2n − 1, . . . , 21).

For the six-point function, we have 5!! = 15 vac-
uum expectation values of type (73) each consisting
of 22 × 2! = 8 elementary Z2 × Z3 (=Z6) symmetric
contributions. One of the resulting 8× 15 = 120 ele-
mentary contributions to wt6 isW(12; 34; 56); for the
corresponding term in (73), we find (see Appendix)

ρ3
12ρ

3
34ρ

3
56W(12; 34; 56) (74)

= (ρ16ρ23ρ45)−2
{
ρ12(ρ34ρ56 − ρ35ρ46 + ρ36ρ45)

− ρ13(ρ24ρ56 − ρ25ρ46 + ρ26ρ45)
+ ρ14(ρ23ρ56 − ρ25ρ36 + ρ26ρ35)
PH
− ρ15(ρ23ρ46 − ρ24ρ36 + ρ26ρ34)

+ ρ16(ρ23ρ45 − ρ24ρ35 + ρ25ρ34)
}
,

thus exhibiting the general pattern: it displays a
Wick structure of a fermionic correlation function
with “propagators” ρij . In the perspective of studying
the positivity property of a sum of 120 terms of
type (74) (plus 15 products of two-point functions
〈1i2〉〈i3i4〉〈i5i6〉 with i2k−1 < i2k ≤ 6), it seems more
promising to try to use the OPE (70) for the minimal
model at hand together with the fact that the theory
of a free Weyl field [and hence the theory of the bilocal
field (69)] does satisfy Wightman positivity.

4.4. Concluding Remarks

Global conformal invariance [4] opens the way
to constructing four- (or higher) dimensional QFT
models satisfying all Wightman axioms (except for
asymptotic completeness). Experience with gauge
field theory suggests that the simplest local gauge-
invariant observable is the Lagrangian density L. The
present update of our effort to construct a nonper-
turbative GCI gauge QFT [2, 3] displays some new
features and suggests new questions (or new ways of
approaching old ones).

We emphasize that the main tool for attacking the
difficult problem ofWightman positivity is the confor-
mal partial wave expansions of four-point functions.
They should be extended to four-point functions of
composite (tensor) fields or, alternatively, to higher
point functions of L(z). OPE provide just a means
to derive such expansions with structure constants
invariant under rescaling [like (34)].

The notion of a minimal model is introduced that is
fully determined by a (twist-2) symmetrizable bilocal
field V1(z1, z2) which is harmonic in each argument.

It is demonstrated that the nontrivial twist-2 con-
tribution to the four-point function (which is not re-
produced by an L(z) that is a normal product of free
fields) requires a bilocal field V1 = v(z1, z2) that can
be realized by such a normal product [involving free
Weyl spinors ψ and ψ+—see (69)].

The resulting rather special minimal model ap-
pears to be sufficiently simple to enable one to decide
whether it is consistent withWightman positivity and
to find out whether its properties (in particular, the
existence of a conserved U(1) current in the OPE of
four L) agree with the conjecture that we are dealing
with a nonperturbative renormalization group fixed
point of a gauge field theory.
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Appendix

COMPUTING CORRELATION FUNCTIONS
OF v(z1, z2)

The four-point function (64) for v given by (69)
and the two-point function ofψ normalized according
to (68) is expressed as a symmetric combination of
traces:

〈0|v(z1, z2)v(z3, z4)|0〉 (A.1)

=
tr{z/12(z/

+
23z/34z/

+
14 + z/+

14z/34z/
+
23)}

ρ2
14ρ

2
23

− tr{z/12(z/
+
24z/34z/

+
13 + z/+

13z/34z/
+
24)}

ρ2
13ρ

2
24

.

It is sufficient to compute the first term since the
second can be obtained from it by the substitution
z3 � z4. To do that, we shall use the following trace
formula for the product of any four 4-vectors a, b, c, d
written as quaternions:

tr(a/b/+c/d/+) = 2[(ab)(cd) − (ac)(bd) (A.2)

+ (ad)(bc) + det(a, b, c, d)],

2(ab) = tra/b/+,

where det(a, b, c, d) is the determinant of the 4× 4
matrix of the components of the four (column) vec-
tors, changing sign under transposition of any two
arguments. It follows that

tr(z/12z/
+
23z/34z/

+
14 + z/12z/

+
14z/34z/

+
23) (A.3)

= 4[(z12z23)(z34z14)− (z12z34)(z14z23)
+ (z12z14)(z23z34)].

To reproduce (72), one uses the relations

2z12z23 = ρ13 − ρ12 − ρ23, (A.4)
2z34z14 = ρ34 + ρ14 − ρ13, etc.,

2z12z34 = ρ14 + ρ23 − ρ13 − ρ24,

2z14z23 = ρ13 + ρ24 − ρ12 − ρ34, etc.

Similarly, the (polynomial) elementary contribu-
tion (74) to the six-point function

ρ2
16ρ

2
23ρ

2
45〈0|v(z1, z2)v(z3, z4)v(z5, z6)|0〉
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is given by

P (12; 34; 56) (A.5)

:= tr{z/12(z/
+
23z/34z/

+
45z/56z/

+
16 + z/+

16z/56z/
+
45z/34z/

+
23)}

= 4{(z12z23)[(z34z45)(z56z16)− (z34z56)(z45z16)
+ (z34z16)(z45z56)]− (z12z34)[(z23z45)(z56z16)
− (z23z56)(z45z16) + (z23z16)(z45z56)] + . . .

+ (z12z16)[(z23z39)(z45z56)
− (z23z45)(z34z56) + (z23z56)(z34z45)]}

(5× 3 terms). Applying to this expression the rela-
tions of type (A.4) (and using Maple to simplify the
result), we recover (74).
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Abstract—Cλ-extended oscillator algebras, generalizing the Calogero–Vasiliev algebra, where Cλ is the
cyclic group of order λ, have recently proved very useful in the context of supersymmetric quantum
mechanics and some of its variants. Here, we determine the spectrum generating algebra of the Cλ-
extended oscillator. We then construct its coherent states, study their nonclassical properties, and com-
pare the latter with those of standard λ-photon coherent states, which are obtained as a special case.
Finally, we briefly review some other types of coherent states associated with the Cλ-extended oscillator.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Coherent states (CS) of the harmonic oscillator [1]
are known to have properties similar to those of the
classical radiation field. They may be defined in vari-
ous ways, for instance, as eigenstates of the oscillator
annihilation operator b. With the corresponding cre-
ation operator b† and the number operator Nb ≡ b†b,
the latter satisfies the commutation relations[

Nb, b
†
]

= b†, [Nb, b] = −b,
[
b, b†

]
= I. (1)

In contrast, generalized CS associated with vari-
ous algebras [2] may have some nonclassical proper-
ties, such as photon antibunching or sub-Poissonian
photon statistics, and squeezing. As examples of such
CS, we may quote the eigenstates of b2, which were
introduced as even and odd CS or cat states [3], and
are a special case of generalized CS associated with
the Lie algebra su(1, 1) [4]. We may also mention the
eigenstates of bλ (λ > 2) or kitten states [5], which
may be generated in λ-photon processes.

Other examples are provided by nonlinear CS
associated with a deformed oscillator (or f oscillator).
The latter is defined in terms of creation, annihi-
lation, and number operators, a† = f(Nb)b†, a =
bf(Nb), and N = Nb, satisfying the commutation
relations [6, 7][

N, a†
]

= a†, [N, a] = −a,
[
a, a†

]
= G(N),

(2)

∗The text was submitted by the author in English.
1)Physique Nucléaire Théorique et Physique Mathématique,

Université Libre de Bruxelles, Belgium; e-mail:
cquesne@ulb.ac.be
1063-7788/05/6811-1941$26.00
where f is some Hermitian operator-valued function
of the number operator and G(N) = (N + 1)f2(N +
1)−Nf2(N). Nonlinear CS, defined as eigenstates
of a [7–9], of a2 [10], or of an arbitrary power aλ

(λ > 2) [11], have been considered in connection with
nonclassical properties. It has been shown that, for
a particular class of nonlinearities, the first ones are
useful in the description of a trapped ion [8].

In the present paper, we shall consider some mul-
tiphoton CS, which may be associated with the re-
cently introduced Cλ-extended oscillator [12]. The
latter may be considered as a deformed oscillator with
a Zλ-graded Fock space and has proved very useful
in the context of supersymmetric quantum mechanics
and some of its variants [12, 13]. In particular, we
shall deal here in detail with CS of the Cλ-extended
oscillator spectrum generating algebra [14], which are
a special case of the CS of [11] and exhibit some
nonclassical properties.

2. THE Cλ-EXTENDED OSCILLATOR
ALGEBRA

The Cλ-extended oscillator algebra (where Cλ =
Zλ is the cyclic group of order λ) was introduced
as a generalization of the Calogero–Vasiliev algebra,
defined by[

N, a†
]

= a†,
[
a, a†

]
= I + α0K, (3){

K,a†
}

= 0,

and their Hermitian conjugates, where α0 is some
real parameter subject to the condition α0 > −1, and
K is some Hermitian operator. The latter may be
realized as K = (−1)N , so that the second equation
c© 2005 Pleiades Publishing, Inc.
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in (3) becomes equivalent to
[
a, a†

]
= I + α0P0 +

α1P1, where α0 + α1 = 0 and P0 =
1
2
[
I + (−1)N

]
,

P1 =
1
2
[
I − (−1)N

]
project onto the even and odd

subspaces of the Fock space F , respectively.
When partitioning F into λ subspaces Fµ ≡

{|kλ + µ〉|k = 0, 1, . . .}, µ = 0, 1, . . . , λ− 1, instead
of two, the Calogero–Vasiliev algebra is replaced by
the Cλ-extended oscillator algebra, defined by [12]

[
N, a†

]
= a†,

[
a, a†

]
= I +

λ−1∑
µ=0

αµPµ, (4)

a†Pµ = Pµ+1a
†,

and their Hermitian conjugates, where Pµ = λ−1 ×∑λ−1
ν=0 exp[2πiν(N − µ)/λ] projects onto Fµ,∑λ−1
µ=0 Pµ = I, and αµ are some real parameters sub-

ject to the conditions
∑λ−1

µ=0 αµ = 0 and
∑µ−1

ν=0 αν >

−µ, µ = 1, 2, . . . , λ− 1. Taking this form of Pµ into
account, it is clear that the Cλ-extended oscillator
algebra (4) is a special case of deformed oscillator
algebra, as defined in (2).

The operators N , a†, a are related to each other
through the structure function F (N) = N +∑λ−1

µ=0 βµPµ, βµ ≡
∑µ−1

ν=0 αν , which is a fundamental

concept of deformed oscillators: a†a = F (N), aa† =
F (N + 1) [6, 7]. Comparing this with Eq. (2), we get
f(N) = (F (N)/N)1/2.

The Fock space basis states |n〉 = |kλ + µ〉 =
N−1/2
n

(
a†
)n |0〉, where a|0〉 = 0, k = 0, 1, . . ., and

µ = 0, 1, . . . , λ− 1, satisfy the relations

N |n〉 = n|n〉, a†|n〉 =
√

F (n + 1)|n + 1〉, (5)

a|n〉 =
√

F (n)|n− 1〉.

Due to the restrictions on the range of the param-
eters αµ given below Eq. (4), F (µ) = βµ + µ > 0, so
that all the states |n〉 are well defined.

The Cλ-extended oscillator Hamiltonian is defined
by [12]

H0 =
1
2

{
a, a†

}
. (6)

Its eigenstates are the states |n〉 = |kλ + µ〉 and their
eigenvalues are given by Ekλ+µ = kλ+µ+ γµ + 1/2,
where γµ ≡ (1/2) (βµ + βµ+1). In each Fµ subspace
of F , the spectrum of H0 is harmonic, but the λ infi-
nite sets of equally spaced energy levels, correspond-
ing to µ = 0, 1, . . . , λ− 1, are shifted with respect
to each other by some amount depending upon the
parameters α0, α1, . . . , αλ−1.
PH
3. SPECTRUM GENERATING ALGEBRA
OF THE Cλ-EXTENDED OSCILLATOR

One can generate the whole spectrum of the
Cλ-extended oscillator Hamiltonian (6) from the
eigenstates |µ〉, µ = 0, 1, . . . , λ− 1, by using the
operators [14]

J+ =
1
λ

(
a†
)λ

, J− =
1
λ
aλ, (7)

J0 =
1
λ
H0 =

1
2λ

{
a, a†

}
.

They satisfy the commutation relations

[J0, J±] = ±J±, [J+, J−] = f(J0, Pµ), (8)

[J0, Pµ] = [J±, Pµ] = 0,

where f(J0, Pµ) [which has nothing to do with the
function f(N) of Eq. (2)] is a (λ− 1)th-degree
polynomial in J0 with Pµ-dependent coefficients,
f(J0, Pµ) =

∑λ−1
i=0 si(Pµ)J i0. The spectrum genera-

ting algebra (SGA) of the Cλ-extended oscillator is
therefore a Cλ-extended polynomial deformation of
su(1, 1): in eachFµ subspace, it reduces to a standard
polynomial deformation of su(1, 1) [15].

Its Casimir operator can be written as

C = J−J+ + h(J0, Pµ) = J+J− (9)

+ h(J0, Pµ)− f(J0, Pµ),

where h(J0, Pµ) is a λth-degree polynomial in J0 with
Pµ-dependent coefficients, h(J0, Pµ) =

∑λ
i=0 ti(Pµ)×

J i0. Each Fµ subspace is the carrier space of a
unitary irreducible representation (unirrep) of the
SGA, characterized by an eigenvalue cµ of C and by
the lowest eigenvalue (µ + γµ + 1/2) /λ of J0. The
explicit expressions of f(J0, Pµ), h(J0, Pµ), and cµ
are given in [14].

For λ = 2, for which the Cλ-extended oscillator
algebra reduces to the Calogero–Vasiliev algebra, the
SGA (7), (8) reduces to the Lie algebra su(1, 1), for
which f(J0) = −2J0, h(J0) = −J0(J0 + 1), and c =
(1 + αµ)(3− αµ)/16 [16].

Nonlinearities make their appearance for λ = 3,
for which

f(J0, Pµ) = −9J2
0 (10)

− J0

∑
µ

(αµ + 2αµ+1)Pµ

− 1
12

∑
µ

(1 + αµ)(5− αµ)Pµ,

h(J0, Pµ) = −J0

[
3J2

0

YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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+
1
2
J0

∑
µ

(9 + αµ + 2αµ+1)Pµ

+
1
12

∑
µ

(
23 + 10αµ + 12αµ+1 − α2

µ

)
Pµ

]
,

cµ =
1
72

(1 + αµ)(5− αµ)(3 + αµ + 2αµ+1).

For αµ = 0 corresponding to a† = b†, a = b, the
operators (7) close a polynomial deformation of
su(1, 1), with f(J0) and h(J0) expressed in terms of
some binomial coefficients and Stirling numbers [14].

4. COHERENT STATES ASSOCIATED
WITH THE Cλ-EXTENDED OSCILLATOR

SPECTRUM GENERATING ALGEBRA

As CS associated with the Cλ-extended oscillator
SGA, let us consider generalizations of the Barut–
Girardelle CS of su(1, 1) [4], to which they will reduce
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
in the case λ = 2. These are the eigenstates |z;µ〉 of
the operator J− defined in (7),

J−|z;µ〉 = z|z;µ〉, z ∈ C, (11)

µ = 0, 1, . . . , λ− 1.

Here, µ distinguishes between the λ-independent
(and orthogonal) solutions to Eq. (11), belonging to
the various subspacesFµ. The CS |z;µ〉may be con-
sidered as special cases of the nonlinear CS of [11],
since Eq. (11) is equivalent to aλ|z;µ〉 = λz|z;µ〉, for
a = bf(Nb) and f(Nb) as given in Section 2.

It can be shown [14] that the states (11) satisfy
Klauder’s minimal set of conditions for generalized
CS [17]: they are normalizable and continuous in the
label z, and they allow a resolution of unity. The other
discrete label µ is analogous to the vector compo-
nents of vector (or partially) CS [18].

The states |z;µ〉 can be written in either of the
alternative forms
|z;µ〉 = [Nµ(|z|)]−1/2
∞∑
k=0

(
z/λ(λ−2)/2

)k
[
k!
(∏µ

ν=1(β̄ν + 1)k
) (∏λ−1

ν′=µ+1(β̄ν′)k
)]1/2 |kλ + µ〉, (12)

|z;µ〉 = [Nµ(|z|)]−1/2
0Fλ−1

(
β̄1 + 1, . . . , β̄µ + 1, β̄µ+1, . . . , β̄λ−1; zJ+/λλ−2

)
|µ〉, (13)
where β̄µ ≡ (βµ + µ)/λ, (a)k denotes Pochhammer’s
symbol, and the normalization factor Nµ(|z|) can be
expressed in terms of a generalized hypergeometric
function,

Nµ(|z|) (14)

= 0Fλ−1

(
β̄1 + 1, . . . , β̄µ + 1, β̄µ+1, . . . , β̄λ−1; y

)
,

y ≡ |z|2/λλ−2.

Their unity resolution relation can be written as
∑
µ

∫
dρµ (z, z∗) |z;µ〉〈z;µ| = I, (15)

where dρµ (z, z∗) is a positive measure given in terms
of a generalized hypergeometric function and a Meijer
G function by

dρµ (z, z∗) (16)

= 0Fλ−1

(
β̄1 + 1, . . . , β̄µ + 1, β̄µ+1, . . . , β̄λ−1; y

)
× hµ(y)|z|d|z|dφ,
hµ(y)

=
Gλ0

0λ

(
y | 0, β̄1, . . . , β̄µ, β̄µ+1 − 1, . . . , β̄λ−1 − 1

)
πλλ−2

(∏µ
ν=1 Γ(β̄ν + 1)

) (∏λ−1
ν′=µ+1 Γ(β̄ν′)

) ,

with y defined in Eq. (14).

In the λ = 2 case, the functions 0F1 and G20
02 of

Eqs. (13), (14), and (16) being proportional to mod-
ified Bessel functions I2ν(2|z|) and K2ν(2|z|), ν =
(α0 − 1 + 2µ)/2, respectively, the CS defined in (11)
reduce to Barut–Girardello su(1, 1) CS [4] for the
appropriate unirreps, as expected.

For αµ = 0, corresponding to a† = b†, a = b, the
CS defined in (11) reduce to the eigenstates of bλ or
standard λ-photon CS [5],

|z;µ〉 = [Nµ(|z|)]−1/2 (17)

×
∞∑
k=0

(
µ!

(kλ + µ)!

)1/2

(λz)k|kλ + µ〉,
05
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Fig. 1. Mandel’s parameter Q as a function of |z| ≡ r
for λ = 2 and various parameters: (a) µ = 0 and α0 = 0
(solid curve), α0 = −4/5 (dashed curve), α0 = −24/25
(dotted curve), or α0 = 1 (dash-dotted curve); (b) µ = 1
and α0 = 0 (solid curve), α0 = 1 (dash-dotted curve),
α0 = 9 (dotted curve), or α0 = 19 (dashed curve).

satisfying the resolution of unity (15) with hµ(y)
given by

hµ(y) = λµ−λ+2 (πµ!)−1 (18)

× y(µ−λ+1)/λ exp
(
−λy1/λ

)
.

The states (17) can be rewritten in the alternative
form

|z;µ〉 =
(

µ!
Eλ,µ+1 (λ2|z|2)

)1/2

(19)

× Eλ,µ+1

(
λ2zJ+

)
|µ〉,

where Eα,β(x) ≡
∑∞

k=0 x
k/Γ(αk + β) is a genera-

lized Mittag–Leffler function. Hence, they provide a
simple example of the Mittag–Leffler CS considered
in [19].

5. NONCLASSICAL PROPERTIES
OF COHERENT STATES

The CS |z;µ〉 may be considered as exotic states
in quantum optics. Their properties may be analyzed
in two different ways, by considering either “real”
photons, described by the operators b†, b satisfy-
ing the canonical commutation relation, as given in
PH
Eq. (1), or “dressed” photons, described by the oper-
ators a†, a of Eq. (2), which may appear in some phe-
nomenological models explaining some nonintuitive
observable phenomena.

5.1. Photon Statistics
Since N = Nb, the photon-number statistics are

not affected by the choice made for the type of pho-
tons. A measure of its deviation from the Poisson
distribution is the Mandel parameter

Q =
〈(∆N)2〉 − 〈N〉

〈N〉 , ∆N ≡ N − 〈N〉, (20)

which vanishes for the Poisson distribution and is
positive or negative according to whether the distri-
bution is super-Poissonian (bunching effect) or sub-
Poissonian (antibunching effect).

It is well known that, for λ = 2, the standard
even (odd) CS, corresponding to α0 = α1 = 0 or
a† = b†, a = b, and µ = 0 (µ = 1), are characterized
by a super-Poissonian (sub-Poissonian) number
distribution. It can be shown [14] that, for the even
(odd) CS associated with the Calogero–Vasiliev
algebra, i.e., for λ = 2, α0 = −α1 �= 0, and µ = 0
(µ = 1), this trend is enhanced for positive (negative)
values ofα0. However, as shown in Fig. 1, for negative
(positive) values of α0 and sufficiently high values of
|z|, the opposite trend can be seen.

For higher values of λ, more or less similar results
are obtained for µ = 0, on one hand, and µ �= 0, on
the other hand. However, the behavior of Q becomes
more complicated for intermediate values of µ [14].

5.2. Squeezing Effect
5.2.1. “Dressed” photons. Let us define the de-

formed quadratures x and p as

x =
1√
2

(
a† + a

)
, p =

i√
2

(
a† − a

)
. (21)

In any state belonging to Fµ, their dispersions
〈(∆x)2〉 and 〈(∆p)2〉 satisfy the uncertainty relation

〈(∆x)2〉〈(∆p)2〉 ≥ 1
4
|〈[x, p]〉|2 (22)

=
λ2

4
(β̄µ+1 − β̄µ)2,

where the right-hand side becomes smaller than the
conventional value 1/4 if α0 < 0 for µ = 0 or −2 <
αµ < 0 for µ = 1, 2, . . ., or λ− 1.

InFµ, the role of the vacuum state is played by the
number state |µ〉 = |0;µ〉, which is annihilated by J−.
The corresponding dispersions are given by

〈(∆x)2〉0 = 〈(∆p)2〉0 =
λ

2
(β̄µ+1 + β̄µ). (23)
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Fig. 2. The ratios (a) X and (b) Y as functions of −z for
real z, λ = 2, and µ = 0. The parameter value is α0 = 0
(solid curves), α0 = −2/5 (dashed curves), α0 = 1 (dot-
ted curves), or α0 = 3 (dash-dotted curves).

Comparing this with the uncertainty relation (22),
we conclude that the state |µ〉 satisfies the mini-
mum uncertainty property in Fµ, i.e., gives rise to the
equality in (22), only for µ = 0 because β̄0 = 0 and
β̄µ > 0 for µ = 1, 2, . . . , λ− 1. On the other hand, the
dispersions in the vacuum may be smaller than the
conventional value 1/2 for µ = 0, 1, . . . , λ− 2.

Let us restrict ourselves to the CS |z; 0〉, which
satisfies for z = 0 the minimum uncertainty prop-
erty. The quadrature x(p) is said to be squeezed to
the second order in |z; 0〉 if X ≡ 〈(∆x)2〉/〈(∆x)2〉0
(P ≡ 〈(∆p)2〉/〈(∆p)2〉0) is less than one. Similarly,
it is said to be squeezed to the fourth order if Y ≡
〈(∆x)4〉/〈(∆x)4〉0 (Q ≡ 〈(∆p)4〉/〈(∆p)4〉0) is less
than one.

For λ = 2, X and P , or Y and Q, are related
with each other by the transformation Rez → −Rez.
Moreover, X and Y are minimum for real, negative
values of z. In Fig. 2, they are displayed for such
values. We note a large squeezing effect over the
whole range of real, negative values of z for positive
values of α0 (for which the conventional uncertainty
relation is respected).

For λ > 2, there is no second-order squeezing, but
for λ = 4, a small fourth-order squeezing is obtained
in accordance with the results for standard λ-photon
CS [5].

5.2.2. “Real” photons. Let us now define the
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
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Fig. 3. The ratio X as a function of −z for real z, λ = 2,
and µ = 0. The parameter value is α0 = 0 (solid curves),
α0 = −2/5 (dashed curves), α0 = 1 (dotted curves), or
α0 = 3 (dash-dotted curves).

quadratures x and p as

x =
1√
2

(
b† + b

)
, p =

i√
2

(
b† − b

)
. (24)

Their dispersions 〈(∆x)2〉 and 〈(∆p)2〉 satisfy the
usual uncertainty relation. Considering again the CS
|z; 0〉, in Fig. 3 we observe for the ratios X and P more
or less similar trends as noted in the case of “dressed”
photons.

6. CONCLUDING REMARKS

In the present paper, we determined the SGA of
the Cλ-extended oscillator and studied some CS as-
sociated with it, namely, the eigenstates of its lower-
ing generator J−.

Other types of CS may be considered and will be
studied in a forthcoming publication. Let us mention
here two of them:

(i) The eigenstates of the Cλ-extended oscillator
annihilation operator a:

a|z;µ〉 = z|z;µ〉. (25)

These generalize the paraboson CS, which corres-
pond to λ = 2 [20].

(ii) The solutions to the equation[
aλ−α − z

(
a†
)α]
|z;µ〉 = 0, (26)

α = 0, 1, . . . ,
[
λ

2

]
, µ = 0, 1, . . . , λ− α− 1. (27)

For α = 0, these are the eigenstates of aλ, which
are directly related to those of J−, considered here.
Moreover, for λ = 2 and α = 1, they reduce to the
Perelomov su(1, 1) CS [2].
05
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Abstract—The generalized Hénon–Heiles system with an additional nonpolynomial term is considered.
In two nonintegrable cases, new two-parameter solutions have been obtained in terms of elliptic functions.
These solutions generalize the known one-parameter solutions. The singularity analysis shows that it
is possible that three-parameter single-valued solutions exist in these two nonintegrable cases. The
knowledge of the Laurent series solutions simplifies searches for the elliptic solutions and allows them
to be automatized. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Beginning from papers [1–3], investigations of
two-dimensional Hamiltonian systems with polyno-
mial potentials have attracted a lot of attention due to
detection of “dynamical chaos” phenomena. There is
no method to find the multivalued general solution to
a two-dimensional nonintegrable system in analytic
form. At the same time, it is a topical problem to
find single-valued special solutions in analytic form,
because the investigation of the solutions with some
additional properties, for example, periodic solutions,
plays an important role in the study of physical phe-
nomena. Another problem is to pick out noninte-
grable cases, in which single-valued special solutions
can depend on a maximal number of arbitrary param-
eters.

The Hénon–Heiles Hamiltonian [2]

H =
1
2
(x2
t + y2

t + x2 + y2) + x2y − 1
3
y3

and its generalizations are one of the most actively
studied two-dimensional Hamiltonians (see [4] and
references therein). The generalized Hénon–Heiles
system is a model widely used in astronomy [5] and
physics, for example, in gravitation [6, 7].

One of the lines of investigation of this system is
the search for special solutions [8–13]. The general
solutions in analytic form are known only in the inte-
grable cases [14–17]; in other cases, not only four-
but even three-parameter exact solutions have yet
to be found. In [12], a new type of one-parameter

∗The text was submitted by the authors in English.
1)Skobeltsyn Institute of Nuclear Physics, Moscow
State University, Moscow, 119992 Russia; e-mail:
svernov@theory.sinp.msu.ru

2)Central Astronomical Observatory at Pulkovo, St. Peters-
burg, 196140 Russia; e-mail: elenatim@gao.spb.ru
1063-7788/05/6811-1947$26.00
elliptic solutions has been obtained. Such solutions
exist only in integrable cases and in two nonintegrable
ones. In these nonintegrable cases, there exist three-
parameter Laurent series solutions [18] which gen-
eralize the Laurent series of one-parameter elliptic
solutions. In this paper, we find elliptic two-parameter
solutions which generalize solutions obtained in [12].

2. BASIC EQUATIONS

The generalized Hénon–Heiles system with an
additional nonpolynomial term is described by the
Hamiltonian

H =
1
2
(x2
t + y2

t + λ1x
2 + λ2y

2) (1)

+ x2y − C

3
y3 +

µ

2x2

and the corresponding system of the motion equa-
tions: 


xtt = −λ1x− 2xy +

µ

x3

ytt = −λ2y − x2 + Cy2,
(2)

where xtt ≡ d2x/dt2 and ytt ≡ d2y/dt2, and λ1,λ2,µ,
and C are arbitrary numerical parameters. Note that,
if λ2 �= 0, then one can set λ2 = sgn(λ2) without loss
of generality.
Due to the Painlevé analysis [19–21], the following

integrable cases have been found [22]:

(i) C = −1, λ1 = λ2,

(ii) C = −6, arbitrary λ1, λ2,

(iii) C = −16, λ1 = λ2/16.

These integrable cases correspond precisely to the
stationary flows of only three integrable cases of the
fifth-order polynomial nonlinear evolution equations
c© 2005 Pleiades Publishing, Inc.
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of scale weight 7 (respectively, the Sawada–Kotega,
the fifth-order Korteweg–de Vries, and the Kaup–
Kupershmidt equations) [8, 23].

In all the above-mentioned cases, system (2) is
integrable at any value of µ. The function y, solu-
tion to system (2), satisfies the following fourth-order
equation [10, 12, 23]:

ytttt = (2C − 8)ytty − (4λ1 + λ2)ytt (3)

+ 2(C + 1)y2
t +

20C
3
y3 + (4Cλ1 − 6λ2)y2

− 4λ1λ2y − 4H,

where H is the energy of the system. We note thatH
is not an arbitrary parameter, but a function of initial
data: y0, y0t, y0tt, and y0ttt. The form of this function
depends on µ:

H =
1
2
(y2

0t + y2
0)−

C

3
y3
0

+
(
λ1

2
+ y0

)
(Cy2

0 − λ2y0 − y0tt)

+
(λ2y0t + 2Cy0y0t − y0ttt)2 + µ

2(Cy2
0 − λ2y0 − y0tt)

.

This formula is correct only if x0 = Cy2
0 − λ2y0 −

y0tt �= 0. If x0 = 0, which is possible only at µ = 0,
then we cannot express x0t through y0, y0t, y0tt, and
y0ttt, soH is not a function of the initial data. If

y0ttt = 2Cy0y0t − λ2y0t,

then Eq. (3) with an arbitrary H corresponds to sys-
tem (2) with µ = 0; in the opposite case, Eq. (3) does
not correspond to system (2).

To find a special solution to Eq. (3), one can
assume that y satisfies some simpler equation. For
example, there exist solutions in terms of the Weier-
strass elliptic functions, which satisfy the following
equation:

y2
t = Ay3 + By2 + Cy +D, (4)

where A, B, C, and D are constants yet to be deter-
mined.

The following generalization of Eq. (4)

y2
t = Ãy3 + B̃y5/2 + C̃y2 + D̃y3/2 + Ẽy + G̃ (5)

gives new one-parameter solutions in two noninte-
grable cases [12]:C = −16/5 andC = −4/3 (λ1 is an
arbitrary number, λ2 = 1). It is easy to show [12] that,
PH
if B̃ �= 0 or D̃ �= 0, then G̃ = 0; therefore, substitution
y = �2 transforms Eq. (4) into

�2
t =

1
4
(Ã�4 + B̃�3 + C̃�2 + D̃�+ Ẽ). (6)

In [13], using the substitution y → y − P0, a
new parameter P0 has been introduced and two-
parameter solutions have been constructed for the
above-mentioned values of C and a few values of
λ1 (λ2 = 1). Due to Painlevé analysis, local three-
parameter solutions as the converging Laurent series
have been found for an arbitrary λ1, λ2 = 1, and
µ = 0 [18]. In the present paper, we seek new elliptic
solutions for arbitrary values of λ1, λ2, and µ.

3. NEW SOLUTIONS

Let us assume that solutions to Eq. (3) in the
neighborhood of singularity point t0 tend to infinity
as y = cβ(t− t0)β , where β and cβ are some complex
numbers. Of course, the real part of β has to be less
than zero. From this assumption, it follows [22] that
β = −2. The Laurent series of solutions to Eq. (6) be-
gin from a term proportional to (t− t0)−1, so we seek
solutions to Eq. (3) as a quadratic polynomial, y =
P2�

2 + P1�+ P0, where P2, P1, and P0 are arbitrary
numbers, and � is the general solution to Eq. (6) with
arbitrary coefficients Ã, B̃, C̃, D̃, and Ẽ . Because the
function �̃ = (�− P1/2)/

√
P2 is a solution to Eq. (6)

as well, we can set P2 = 1 and P1 = 0 without loss of
generality.

Substituting y = �2 + P0 in Eq. (3), we obtain

�tttt� = −4�ttt�t − 3�2
tt + 2(C − 4)�tt�3 (7)

+ (2P0(C − 4)− 4λ1 − λ2)�tt�+ 2(3C − 2)�2
t �

2

+ (2CP0 − 4λ1 − 8P0 − λ2)�2
t +

10
3
C�6

+ (2Cλ1 + 10CP0 − 3λ2)�4 + 2(2λ1CP0

+ 5CP 2
0 − λ1λ2 − 3P0λ2)�2 +

10
3
CP 3

0

+ 2λ1CP
2
0 − 3P 2

0 λ2 − 2λ1λ2P0 − 2H.

The function � is a solution to Eq. (6); hence,
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005



ON TWO NONINTEGRABLE CASES 1949
Eq. (7) is equivalent to the following system:


(3Ã+ 4)(−3Ã + 2C) = 0

B̃(9C − 21Ã − 16) = 0

96ÃCP0 − 240ÃC̃ − 192Ãλ1 − 384ÃP0

− 48Ãλ2 − 105B̃2

+ 128C̃C − 192C̃ + 128Cλ1

+ 640CP0 − 192λ2 = 0

40B̃CP0 − 90ÃD̃ − 65B̃C̃ − 80B̃λ1

− 160B̃P0 − 20B̃λ2 + 56CD̃ − 64D̃ = 0

16C̃CP0 − 36ÃẼ − 21B̃D̃ − 8C̃2

− 32C̃λ1 − 64C̃P0 − 8λ2C̃ + 24CẼ
+ 64λ1CP0 + 160CP 2

0 − 16Ẽ
− 32λ1λ2 − 96P0λ2 = 0

10B̃Ẽ + (5C̃ + 8CP0 − 16λ1

− 32P0 − 4λ2)D̃ = 0

384H = −48C̃Ẽ + 96CẼP0

+ 384Cλ1P
2
0 + 640CP 3

0 − 9D̃2

− 192Ẽλ1 − 384ẼP0 − 48Ẽλ2

− 384λ1λ2P0 − 576λ2P
2
0 .

(8)

System (8) has been solved by the REDUCE com-
puter algebra system [24].

If B̃ �= 0, then, from two first equations of sys-
tem (8), we obtain

C = −4
3

and Ã = −4
3

or

C = −16
5

and Ã = −32
15
.

If B̃ = 0, then solutions with D̃ �= 0 are also possi-
ble at C = −16 and −1, but only in integrable cases.
The obtained solutions to Eq. (3) depend on two
parameters: energy H , expressed through P0, and
parameter t0, connected to homogeneity of time.
Six solutions to system (8) correspond to each

value of P0. Two of them (with B̃ = D̃ = 0) generate
solutions to Eq. (4). Values of B̃ and D̃, corresponding
to other solutions, depend on λ1 and λ2 and are zero
only at some relations between these parameters. We
will consider only solutionswith B̃ �= 0 or D̃ �= 0. They
are presented in the Appendix. These solutions can be
separated by pairs in such a way that solutions in one
pair differ only in signs of B̃ and D̃. Basic properties
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
of the obtained solution are considered in this section.
In the next section, we analyze in detail solutions to
system (8) for some values of λ1 and λ2.
If the right-hand side of Eq. (6) is a polynomial

with multiple roots, then � and y can be expressed in
terms of elementary functions. In the opposite case, y
is an elliptic function [25, 26].
If �(t) is a solution to Eq. (6), then ξ(t) ≡ −�(t)

satisfies the following equation:

ξ2t =
1
4

(
Ãξ4 − B̃ξ3 + C̃ξ2 − D̃ξ + Ẽ

)
. (6′)

It is evident that y(t) = �2(t) + P0 = ξ2(t) + P0,
so two solutions to system (8) correspond to one
function y(t). From Eq. (6), we obtain a polynomial
equation for y(t)

(y2
t − Ã(y − P0)3 − C̃(y − P0)2 (9)

− Ẽ(y − P0))2 = (y − P0)3(B̃(y − P0) + D̃)2.

The function �(t) can be expressed through the
Weierstrass elliptic function ℘(t) ([26], Chapter 5):

�(t− t0) =
a℘(t− t0) + b

c℘(t− t0) + d
, (ad− bc = 1),

where t0 is an arbitrary parameter. Periods of ℘(t) and
the constants a, b, c, and d are determined by Eq. (6).
The function

y(t− t0) =
(
a℘(t− t0) + b

c℘(t− t0) + d

)2

+ P0 (10)

is the fourth-order elliptic function. This function, as
a solution of Eq. (3), can have only the second-order
poles, therefore, in the parallelogram of periods it has
two poles with opposite residues. Solutions (10) differ
from solutions of Eq. (4), which are the second-order
elliptic functions [26].
The function x(t) satisfies the first equation of

system (2) with

µ =
8
3
C2P0

5 +
(

2λ1C
2 − 14

3
λ2C

)
P 4

0 (11)

+
(

2λ2
2 −

10
3
CẼ − 4λ1λ2C

)
P 3

0 + (2λ1λ
2
2

− 2λ1CẼ − 4CH + 3λ2Ẽ)P 2
0 + (2λ1λ2Ẽ + Ẽ2

+ 4λ2H)P0 + 2ẼH +
1
2
λ1Ẽ2 +

9
128
D̃2Ẽ .

The trajectory of the motion can be derived from
the second equation of system (2). Substituting ytt,
we obtain

x2 =
(
C − 3

2
Ã
)
y2 + (3ÃP0 − C̃ − 1)y
05
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− 1
4
(5B̃y + 3D̃ − 5B̃P0)

√
y − P0

− 1
2
(Ẽ + 3ÃP 2

0 − 2C̃P0).

If B̃ and D̃ take zero values, we get simple alge-
braic trajectories. The full list of such trajectories is
presented in [11]. The parameter P0 is absent in these
trajectory equations.

One value of the energy H can correspond to no
more than three values ofP0 and, hence, nomore than
six different one-parameter solutions.

4. ANALYSIS OF SOLUTIONS
IN A PARTICULAR CASE

4.1. The Form of Solutions

AtC = −16/5, λ1 = 1/9, and λ2 = 1, one-parameter
solutions (P0 = 0) have been considered in detail
in our previous papers [12, 18]. For these values of
parameters, solutions to system (8) are

1. Ã = −32
15
, B̃ = 0, C̃ = −32

5
P0 − 1,

D̃ = 0, Ẽ = −32
5
P 2

0 − 2P0, H =
16
15
P 3

0 +
1
2
P 2

0 ;

2. Ã = −4
3
, B̃ = 0, C̃ = −4P0 −

17
33
,

D̃ = 0, Ẽ = −4P 2
0 −

34
33
P0 +

20
3267

,

H = − 2
15
P 3

0 −
17
330

P 2
0 +

2
3267

P0 −
230

323433
;

3−4. Ã = −32
15
, B̃ = ±8i

√
15

45
,

C̃ = −32
5
P0 −

4
9
, D̃ = ±4i

√
15

9
P0,

Ẽ = −32
5
P 2

0 −
8
9
P0, H =

16
15
P 3

0 −
7
72
P 2

0 ;

5−6. Ã = −32
15
, B̃ = ± 8

8415

√
65
√

561,

C̃ = −32
5
P0 −

1748
1683

, D̃ = ±
√

65
√

561
11329956

× (26928P0 + 8125), Ẽ = −32
5
P 2

0 −
3496
1683

P0

− 333125
7553304

, H =
16
15
P 3

0 +
7291
13464

P 2
0

+
6426875

181279296
P0 +

17551324375
9762977765376

.

w
p
a
E

w

t
s
b

I
a
n
o
c

i

I
j
o
q
t
s
h

PH
If the right-hand side of Eq. (6) is a polynomial
ith multiple roots, then the function y can be ex-
ressed in terms of elementary functions. For ex-
mple, at P0 = 0, substitution of solution 3–4 into
q. (5) gives

y = − 5
3 (1− 3 sin ((t− t0)/3))2

, (12)

here t0 is an arbitrary constant.

From (11), we obtain the following values of µ:

1. µ = 0,

2. µ =
160
1089

P 3
0 +

680
11979

P 2
0 −

800
1185921

P0

− 7000
1056655611

,

3−4. µ =
4
3
P 4

0 +
5
54
P 3

0 +
50
729

P 2
0 ,

5−6. µ = − 52
561

P 4
0 −

81640
944163

P 3
0

− 4458460825
152546527584

P 2
0 −

539878421875
128367902961936

P0

− 728473377734375
6703885364284145664

.

4.2. Motion Trajectories

Let us consider the equations of the motion trajec-
ories at C = −16/5 and λ = 1/9. In the case of the
olutionswith B̃ = D̃ = 0, the trajectory equation can
e reduced either to x2 = 0 (solution 1) or to

x2 +
6
5

(
y +

20
99

)2

=
50

1089
. (13)

n the last case (solution 2), the motion trajectory is
n ellipse. Note, however, that the real motion does
ot necessarily affect the whole ellipse: it depends
n two arbitrary parameters. The energy H can be
onsidered as one of them.

In the case of solution 3–4, the trajectory equation
s the following:(

x2 +
5
9
y

)2

+
5
27

(y − P0)(2y + P0)2 = 0. (14)

f P0 = 0 [see (12)], the equation for one of the tra-
ectory branches entirely coincides with the equation
btained in [12]. The condition y < 0 is always re-
uired for the existence of real motion along these
rajectories. Formula (9) describes precisely such a
olution. For solution 5–6, the trajectory equation
as the same form as for solution 3–4.
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005
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Two types of dominant behavior and resonance structure of solutions to the generalized Hénon–Heiles system and
Eq. (3)

Case 1 Case 2: β < Re(α)

α = −2 α =
1±

√
1− 48/C
2

β = −2 β = −2

aα = ±3
√

2 + C aα = c1 (arbitrary)

bβ = −3 bβ =
6
C

r = −1, 6,
5
2
±
√

1− 24(1 + C)
2

r = −1, 0, 6,∓
√

1− 48
C

r4 = −1, 10,
5
2
±
√

1− 24(1 + C)
2

r4 = −1, 5, 5−
√

1− 48
C
, 5 +

√
1− 48

C

5. THREE–PARAMETER SOLUTIONS

The Ablowitz–Ramani–Segur algorithm of the
Painlevé test [20] is very useful for obtaining the so-
lutions as formal Laurent series. Let the behavior of a
solution in the neighborhood of the singularity point
t0 be algebraic, i.e., x and y tend to infinity as some
powers x = aα(t− t0)α and y = bβ(t− t0)β , whereα,
β, aα, and bβ are some constants. If α and β are neg-
ative integer numbers, then, substituting the Laurent
series expansions, one can transform nonlinear dif-
ferential equations into a system of linear algebraic
equations on coefficients of Laurent series. If a single-
valued solution depends on more than one arbitrary
parameter, then some coefficients of its Laurent series
have to be arbitrary and the corresponding systems
have to have zero determinants. The numbers of such
systems (named resonances or Kovalevskaya expo-
nents) can be determined due to the Painlevé test.

Two possible dominant behaviors and resonance
structures of solutions to the generalized Hénon–
Heiles system [22, 27] are presented in the table. The
values of r denote resonances: r = −1 corresponds to
arbitrary parameter t0; r = 0 (in case 2) corresponds
to arbitrary parameter c1. Other values of r determine
powers of t, to be exact, tα+r for x and tβ+r for
y, at which new arbitrary parameters can appear as
solutions to the linear systems with zero determinant.
Note, that the dominant behavior and the resonance
structure depend only on C.

It is necessary for the integrability of system (2)
that all values of r be integer and that all systems
with zero determinants have solutions for any values
of the free parameters entering these systems. This
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
is possible only in the integrable cases (i)–(iii) (see
Section 2).

For the search for special solutions, it is interesting
to consider such values of C for which r are integer
numbers either only in case 1 or only in case 2. If there
exists a negative integer resonance, different from r =
−1, then such Laurent series expansion corresponds
to a special rather than general solution [22]. We de-
mand that all values of r, but one, be nonnegative in-
teger numbers and all these values be different. From
these conditions, we obtain the following values of C:
C = −1 and C = −4/3 (case 1) or C = −16/5, C =
−6, and C = −16 (case 2, α = (1−

√
1− 48/C)/2),

and also C = −2, in which these two cases coin-
cide. It is remarkable that only for these values of
C do there exist solutions to system (8) with B̃ �= 0
or D̃ �= 0.

Let us consider the possibility of existence of
single-valued three-parameter solutions in all these
cases. To obtain the result for an arbitrary value of µ,
we consider Eq. (3) with an arbitrary H . Note that
the values of resonances obtained from Eq. (3) (in
the table, they are signified as r4) are different from
r, but we obtain the same result: the condition that
all values of r4, but r4 = −1, are nonnegative integer
numbers gives the same values of C.

At C = −2, we have a contradiction: r4 = 0, but
b−2 is not arbitrary parameter: b−2 = −3. This is
the consequence of the fact that, contrary to our
assumption, the behavior of the general solution in
the neighborhood of a singular point is not algebraic,
because its dominant term includes a logarithm [22].
At C = −6 and any values of other parameters, the
05
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exact four-parameter solutions are known. In the
cases of C = −1 and C = −16, the substitution of
an unknown function as the Laurent series leads
to the conditions λ1 = λ2 or λ1 = λ2/16, accord-
ingly. Hence, in nonintegrable cases, three-parameter
local solutions have to include logarithmic terms.
Single-valued three-parameter solutions can exist
only in two above-mentioned nonintegrable cases:
C = −16/5 and C = −4/3.
Using the method of construction of the Laurent-

series solutions for nonlinear differential equations
described in [18], we obtain single-valued local solu-
tions to Eq. (3) both at C = −16/5 and atC = −4/3.
The values of other parameters are arbitrary.
PH
At C = −4/3, these solutions are:

y = −3
1
t2

+ b−1
1
t

+
29
24
b2−1 +

1
2
λ1 −

3
4
λ2 (15)

+
(

17
6
b2−1 +

5
3
λ1 −

5
4
λ2

)
b−1t+ b2t

2

−
(

55
12
λ1b

2
−1 +

131
90

λ2
1 +

33
40
λ2

2 +
9359
2592

b4−1 + b2

−55
16
λ2b

2
−1 −

131
60

λ1λ2

)
b2−1t

3 + . . . .

There exist four possible values of the parameter b−1:
b−1 = ±

√√
7(1216λ2

1 − 1824λ1λ2 + 783λ2
2 − 140λ1 + 105λ2

385
or

b−1 = ±

√
−
√

7(1216λ2
1 − 1824λ1λ2 + 783λ2

2)− 140λ1 + 105λ2

385
.

The parameters b2 and b8, coefficients at t2 and t8,
respectively, are arbitrary. The energy H enters into
coefficients beginning from b4.
At C = −16/5, we obtain the following solutions:

y = − 15
8t−2

+ b̃−1 −
5
32
λ2 +

62
45
b̃2−1 (16)
+
(

5
12
λ1 +

632
225

b̃2−1 −
25
192

λ2

)
b̃−1t+

(
29
15
λ1b̃

2
−1

− 1
128

λ2
2 −

29
48
λ2b̃

2
−1 +

102272
10125

b̃4−1

)
t2 + b̃3t

3 + . . . ,

with
b̃−1 =
±3
√

13 090
41 888

√
525λ2 − 1680λ1 + 4

√
35(2048λ2

1 − 1280λ1λ2 + 387λ2
2)

or

b̃−1 =
±3
√

13 090
41 888

√
525λ2 − 1680λ1 − 4

√
35(2048λ2

1 − 1280λ1λ2 + 387λ2
2).
The coefficients b̃3 and b̃8 are arbitrary parameters.
Beginning from b̃4, some coefficients include the en-
ergy H . So, the obtained local solutions depend on
four independent parameters: t0, H , and two coeffi-
cients (b2 and b8 or b̃3 and b̃8).

We have found local single-valued solutions. Of
course, the existence of local single-valued solutions
is a necessary but not sufficient condition for the
existence of global ones, because solutions which are
single-valued in the neighborhood of some singularity
point can be multivalued in the neighborhood of an-
other singularity point. So, we can only assume that
global three-parameter solutions are single-valued.
If we assume this and moreover that these solutions
are elliptic functions (or some degenerations of them),
then we can seek them as solutions to some polyno-
mial first-order equations. There are a few methods to
construct such solutions [8, 10, 28, 29]. Using these
YSICS OF ATOMIC NUCLEI Vol. 68 No. 11 2005



ON TWO NONINTEGRABLE CASES 1953
methods, one represents a solution to a nonlinear
ordinary differential equation (ODE) as the sum of
finite Taylor or Laurent series of elliptic functions or
degenerate elliptic functions, for example, tanh(t). A
similar method is applied in this paper to find two-
parameter solutions. Thesemethods use results of the
Painlevé test, but do not use the obtained Laurent
series solutions. In 2003, Conte and Musette [30]
proposed a method which uses such solutions.
The classical theorem which was established by

Briot and Bouquet [31] proves that, if the general
solution to a polynomial autonomous first-order ODE
is single-valued, then this solution is either an elliptic
function; or a rational function of eγx, γ being some
constant; or a rational function of x. Note that the
third case is a degeneracy of the second one, which
in turn is a degeneracy of the first one. It has been
proved by Painlevé [19] that the necessary form of
a polynomial autonomous first-order ODE with a
single-valued general solution is

m∑
k=0

2m−2k∑
j=0

hjky
jykt = 0, h0m = 1, (17)

in whichm is a positive integer and hjk are constants.
Rather than substituting Eq. (17) into some non-

integrable system, one can substitute the Laurent se-
ries of unknown special solutions, for example, (15) or
(16), into Eq. (17) and obtain a system which is linear
in hjk and nonlinear in the parameters, including in
the Laurent coefficients [30]. There exists a package
of Maple procedures which allow one to obtain this
system from the given Laurent series. Moreover, it is
possible to exclude all hjk from this system and to
obtain a nonlinear system in parameters of a nonin-
tegrable system and free parameters from the Laurent
series. The main preference of this method is that
the number of unknowns in the resulting nonlinear
algebraic system does not depend on the number of
coefficients of the first-order equation. For example,
Eq. (17) withm = 8 includes 60 unknowns hjk, and it
is not possible to use the traditional way to find similar
solutions. Using this method, we always obtain a
nonlinear system in five variables: λ1, λ2,H , and two
PHYSICS OF ATOMIC NUCLEI Vol. 68 No. 11 20
arbitrary coefficients of the Laurent series solutions.
We hope that this method allows us to find three-
parameter global solutions.

6. CONCLUSIONS

Two nonintegrable cases (C = −16/5 or C =
−4/3, and λ1, λ2, and µ are arbitrary) of the gen-
eralized Hénon–Heiles system with a nonpolynomial
term have been considered. To avoid problems with
the nonpolynomial term, we have transformed the
system into a fourth-order equation. Two-parameter
elliptic solutions for this equation have been found in
both above-mentioned cases. Two different solutions
correspond to each pair of parameter values. The
Painlevé test does not present any obstacle to the
existence of three-parameter single-valued solutions,
so the probability of finding exact, for example, el-
liptic, three-parameter solutions that generalize the
obtained solutions is high.
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Appendix

In two nonintegrable cases (C = −16/5 and C =
−4/3) for arbitrary λ1 and λ2, we find that each value
of P0 corresponds to six solutions to system (8).
Two of them (with B̃ = D̃ = 0) generate solutions to
Eq. (4). Other solutions to system (8) can be sepa-
rated by pairs such that each pair of solutions corre-
sponds to one two-parameter function y = �2 + P0,
where � satisfies Eq. (6) with the following values of
coefficients:
C = −16
5
, Ã = −32

15
,

B̃ = −
√

1122(1120λ1 + 41888P0 + 65Sq + 6195λ2)
√
F1(λ1, λ2, P0)

29373960(3600λ2
1 − 1120λ1P0 − 2425λ1λ2 − 20944P 2

0 − 6195λ2P0 + 225λ2
2)
,

C̃ = −240
187

λ1 −
32
5
P0 +

4
1309

Sq −
112
187

λ2,
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D̃ =
√

1122
5874792

√
F1(λ1, λ2, P0),

Ẽ =
88320
244783

λ2
1 −

480
187

λ1P0 +
885

244783
λ1Sq −

153375
244783

λ1λ2

− 32
5
P 2

0 +
8

1309
P0Sq −

224
187

λ2P0 −
685

3916528
λ2Sq +

168855
3916528

λ2
2,

H = −11516270
45774421

λ3
1 +

8740
34969

λ2
1P0 −

3296515
2563367576

λ2
1Sq +

50336425
183097684

λ2
1λ2 +

258
187

λ1P
2
0 −

8209
1958264

λ1P0Sq

+
76915
279752

λ1λ2P0 +
12202395

82027762432
λ1λ2Sq −

131879855
11718251776

λ1λ
2
2 −

43
13090

P 2
0 Sq +

103
1496

λ2P
2
0 +

8881
31332224

λ2P0Sq

− 71205
4476032

λ2
2P0 −

12990165
1312444198912

λ2
2Sq −

168661575
187492028416

λ3
2 +

16
15
P 3

0 ,

C = −4
3
, Ã = −4

3
,

B̃ =

√
330(952λ1 − 616P0 + 13Rq − 945λ2)

√
F2(λ1, λ2, P0)

38115(432λ2
1 + 952λ1P0 − 291λ1λ2 − 308P 2

0 − 945P0λ2 + 27λ2
2)
,

C̃ = − 4
33
λ1 − 4P0 −

1
66
Rq −

31
22
λ2,

D̃ =
√

330
7623

√
F2(λ1, λ2, P0),

Ẽ =
3394
363

λ2
1 +

54
11
λ1P0 −

1123
10164

λ1Rq −
5897
484

λ1λ2 −
17
3
P 2

0 −
31
308

P0Rq −
349
44

λ2P0 +
1223
27104

λ2Rq +
13005
3872

λ2
2,

H = −552922
83853

λ3
1 −

29801
2541

λ2
1P0 +

173605
2347884

λ2
1Rq +

778033
74536

λ2
1λ2λ2 −

185
66

λ1P
2
0 +

3001
20328

λ1P0Rq +
104959
6776

λ1λ2P0

− 695609
12522048

λ1λ2Rq −
2990049
596288

λ1λ
2
2 +

89
1232

P 2
0Rq +

5
2
P 3

0 +
865
176

λ2P
2
0

− 3065
54208

λ2P0Rq −
225909
54208

λ2
2P0 +

2733
260876

λ2
2Rq +

57699
74536

λ3
2,
where

F1(λ1, λ2, P0) ≡ 39474176000λ3
1

+ 122782105600λ2
1P0

− 104358400λ2
1Sq − 17822336000λ2

1λ2

+ 210552545280λ1P
2
0 − 680261120λ1P0Sq

− 10941145600λ1λ2P0 − 41066800λ1λ2Sq

+ 8305290000λ1λ
2
2 − 501315584P 2

0 Sq

− 65797670400λ2P
2
0 + 55920480P0Sq

+ 1611640800λ2
2P0 + 2884725λ2

2Sq − 468507375λ3
2 ,

Sq ≡ ±
√

35(2048λ2
1 − 1280λ1λ2 + 387λ2

2),

F2(λ1, λ2, P0) ≡ 2099776λ3
1 − 497728λ2

1P0

− 20008λ2
1Rq − 4911144λ2

1λ2 + 948640λ1P
2
0

+ 19096λ1P0Rq + 1458072λ1λ2P0 + 37173λ1λ2Rq
PH
+ 3943233λ1λ
2
2 + 6776P 2

0Rq − 711480λ2P
2
0

− 9240λ2P0Rq − 615384λ2
2P0 − 13581λ2

2Rq

− 1006425λ3
2 ,

Rq ≡ ±
√

7(1216λ2
1 − 1824λ1λ2 + 783λ2

2).
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25. A. Erdélyi et al., Higher Transcendental Functions
(BatemanManuscript Project) (McGraw-Hill, New
York, 1955), Vol. 3.

26. A. von Hurwitz and R. von Courant, Allgemeine
Funktionentheorie und Elliptische Funktionen
(Springer-Verlag, Berlin, 1964).

27. S. Melkonian, J. Nonlinear Math. Phys. 6, 139
(1999); math.DS/9904186.

28. G. S. Santos, J. Phys. Soc. Jpn. 58, 4301 (1989).
29. E. Fan, J. Phys. A 36, 7009 (2003).
30. R. Conte and M. Musette, Physica D 181, 70 (2003);

nlin.PS/0302051.
31. C. Briot and T. Bouquet, Theórie des FonctionsDou-
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