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Abstract—The rate of the double-beta ββ(2ν) decay of 100Mo to the first 0+ excited state in 100Ru is
measured by a γγ-coincidence technique in which two HPGe detectors are used to detect the two γ rays
(Eγ1 = 590.76 keV and Eγ2 = 539.53 keV) from the daughter nucleus 100Ru as it deexcites to the ground
state via the transition sequence 0+ → 2+ → 0+. In contrast to all previous ββ-decay experiments, this
technique provides data that are essentially background-free. By using a 1.05-kg isotopically enriched
(98.4%) disk of 100Mo, 22 coincidence events (with the background estimated at 2.5 events) are detected
in 440 d of measuring time, which translates into a half-life time of [5.9+1.7

−1.1(stat.) ± 0.6(syst.)] × 1020 yr.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although the main interest in studying double-
beta (ββ) decay is currently related to the neutrinoless
mode (0νββ) because of its potential for discover-
ing elementary-particle physics beyond the Standard
Model, considerable efforts are underway to investi-
gate the ordinary allowed second-order weak decay
(2νββ decay) [1–4]. Accumulation of experimental
information on 2νββ processes (transitions to ground
and excited states) promotes a better understanding
of the nuclear part of ββ decay and allows one to
check theoretical schemes of nuclear-matrix-element
calculations for the two-neutrino mode, as well as
for the neutrinoless one. It is very important to
note that, within models based on the quasiparti-
cle random-phase approximation (QRPA), nuclear
matrix elements depend differently on the particle–
particle strength parameter gpp for ground-state tran-
sitions and transitions to excited states [3, 5]. There-
fore, the decay to excited states probes different as-
pects of the computational method.

0νββ transitions to excited states of daughter
nuclei have a very important experimental signature:
in addition to the two electrons of fixed energy,
there are one (0+ → 2+

1 transition) or two (0+ → 0+
1
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transition) γ rays that again have strictly fixed energy.
If one can perform an experiment such that all decay
products are detected with a high efficiency and
with a good energy resolution, then the experimental
background can be totally suppressed, even for mas-
sive detectors (∼1 t) and long measurement times
(∼10 yr).
The idea of detecting the 2νββ(0+ → 0+

1 ) decay of
100Mo [6] initiated experiments to seek this decay by
using enriched molybdenum samples and γ-ray de-
tectors operated in a single mode. In the experiment
of [7] using 310 g of 100Mo and a surface-based 100-
cm3 HPGe detector, only a lower limit was obtained
for the half-life: T1/2 > 4.2 × 1019 yr. Afterward,
this decay mode was positively identified by using
about 1 kg of 100Mo and a low-background 114-
cm3 HPGe detector located in the Soudan mine in
Minnesota (2090-mwe depth); the result was T1/2 =
(6.1+1.8

−1.1) × 1020 yr [8, 9]. At approximately the same
time (the measurement started half a year after the
beginning of the measurement in the Soudan mine),
an experiment with another 1-kg sample of 100Mo
using a 100-cm3 HPGe detector was performed in the
Modane Underground Laboratory (4800-mwe depth)
[10]. However, only a lower limit was obtained be-
cause the measuring time was not sufficiently long
(a factor of about 4 shorter in comparison with the
415.43 d of [8]) and, in addition, a rather high level
of background was experienced in this experiment (a
factor of about 2 larger in comparison with [8]). A new
positive result for the 2νββ(0+ → 0+

1 ) decay of 100Mo
was obtained in [11]. This experiment was again
performed in the Modane Underground Laboratory.
A set of 100Mo enriched metal-powder samples were
2002MAIK “Nauka/Interperiodica”
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Fig. 1. ββ-decay and γ-decay schemes for 100Mo (en-
ergy in keV).

measured by using low-backgroundHPGe detectors.
Data from 17 measurements were analyzed and a
half-life of T1/2 = (9.3+2.8

−1.7) × 1020 yr was deduced
from the summed γ-ray spectrum, with an additional
systematic error estimated at approximately 15%.
When the spectrum of [8] is added to the one of [11],
one obtains T1/2 = (7.6+1.8

−1.1) × 1020 yr [11], also with
a 15% systematic error.

2. APPARATUS AND METHODS

The present article reports on a new positive re-
sult for the 2νββ(0+ → 0+

1 ) decay of 100Mo using
a novel method with two HPGe detectors in a co-
incidence scheme. The previous experiments fo-
cused on very low background detection systems.
This was achieved by building the detectors from
low-radioactivity materials and by operating the ex-
periments in underground laboratories, which offer
an efficient shielding against the cosmic-ray-induced
background. An alternative approach to background
reduction is to employ a coincidence technique, in
which two separate detectors simultaneously detect
the two emitted γ rays from the 2νββ(0+ → 0+

1 )
decay of 100Mo with Eγ1 = 590.76 keV and Eγ2 =
539.53 keV (Fig. 1). This approach was accom-
plished for the first time by using two HPGe detectors
(8.5-cm diameter, 5-cm width, 1.8-keV FWHM en-
ergy resolution at 1.33 MeV, and 0.7-keV resolution
at 0.122 MeV) in coincidence in the present study. A
disk sample of molybdenumwas sandwiched between
these two γ-ray detectors, which were inserted into a
NaI annulus (56-cm length, 35.6-cm diameter with a
12.5-cm hole along the axis of symmetry) that acted
as an active veto. Plastic plates (10-cm thickness)
PH
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Fig. 2. Experimental apparatus including a 100Mo sam-
ple, HPGe detectors, active shielding (veto), and passive
shielding (Pb).

on either side of the apparatus acted as a veto for the
regions that are not covered with the NaI annulus.
The entire apparatus was surrounded by a passive
shielding made from lead bricks (Fig. 2). The ex-
periment was conducted inside the Low-Background
Counting Facility of the Triangle Universities Nuclear
Laboratory (TUNL), a well-shielded room located in
the basement of the Physics Department of Duke
University.
In order to calculate the half-life of a given de-

cay, it is necessary to understand and to determine
the efficiency of our γγ-coincidence apparatus. To
accomplish this, a 102Rh source was produced at
TUNL by (p, n) activation of a natural Ru target. This
source was then used to measure the probability for
detecting the full energy of both γ rays. 102mRh was
chosen because it emits two γ rays having similar
energies and the same angular distribution as the γ
rays emitted in the ββ decay of 100Mo. In addition,
the lifetime of 206 d is quite convenient, and it decays
to the first excited 0+ state of the daughter nucleus
via electron capture only; this implies no radiation
from annihilation or bremsstrahlung and makes the
measurement of the efficiency very simple. The source
was used to measure the coincidence efficiency of the
apparatus as a function of the radial distance from
the center of the detectors. The source was also
surrounded by disks of molybdenum to simulate the
attenuation of the γ rays in the actual molybdenum
sample. The efficiency ε was averaged over the entire
volume of the sample and was determined to be ε =
(0.22 ± 0.02)%. The coincidence efficiency was also
studied with a Monte Carlo simulation. This calcu-
lation included the effects of extended geometry, the
attenuation of the γ rays in the sample, the full-energy
peak efficiency of the germanium detectors, and the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 3. γ-ray spectra in coincidencewith (a) 540 ± 2.5 keV and (b) 591 ± 2.5 keV. Note the 22 coincidence events (540 keV–
591 keV) in 440 d of measuring time.
strongly anisotropic angular correlation between the
γ rays.

3. RESULTS AND ANALYSIS

A 100Mo sample (1.05-kg mass, 10.6-cm di-
ameter, 1.1-cm thickness, 98.4% enrichment) has
been studied for 440 d. Twenty-two 539.6-keV
to 590.8-keV coincidence events were detected,
and Fig. 3 shows the γ-ray spectra in coincidence
with (a) 540 ± 2.5 keV and (b) 591 ± 2.5 keV.
A measurement of the background rate yields 2.5
events per 5 keV. From these data, the half-life
with respect to the ββ decay of 100Mo to the first
excited 0+ state of 100Ru can be determined. After
subtraction of the background, one obtains a half-life
of [5.9+1.7

−1.1(stat.) ± 0.6(syst.)] × 1020 yr.

Before our result obtained above ground can be
compared with the previous results for 100Mo mea-
sured underground, one must investigate the possi-
bility of whether (or not) the signal observed in our
100Mo ββ-decay experiment, or at least part of it,
is due to 100Mo(p, n) or 100Mo(n, γ) reactions (or
both). The reactions 100Mo(p, n) to bound states in
100Tc will produce, after prompt γ-ray deexcitation,
the ground state of 100Tc. The latter has a half-life of
15.8 s and a 5.7% branching ratio for the transition
to the 0+

1 state of 100Ru, which decays to the ground
state by emitting two γ rays (540 and 591 keV). It is
worth noting that our NaI veto does not act against
this process due to the 15.8-s half-life of the 100Tc
ground state. One way to estimate the magnitude
of the process 100Mo(p, n) is to seek very similar
95Mo(p, n) reactions. 95Mo is an abundant isotope:
16% of natural molybdenum. One sample, a disk
of natural molybdenum (1-kg mass, 10-cm diameter,
0.965-cm thickness, 9.6% 100Mo), has been stored in
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
the apparatus and investigated for 180 d. The produc-
tion of the isomer (1/2−, half-life time of 61 d) of 95Tc
can proceed via the (p, n) reaction on 95Mo and is very
practical for our purpose. This element decays with
large branching ratios to two excited states: 38%
to the 786.2-keV state and 30% to the 1039.3-keV
state. In both cases, these states decay to the first
excited state at 204 keV with a branching ratio of
78 and 89%, respectively. Moreover, the first excited
state has a short lifetime of 0.75 ns. One hundred
eighty days worth of data with the natural molybde-
num sample were analyzed, and no such coincidence
events were detected. Thus, it can be concluded that
a proton background does not contribute to the ββ
signal. Another potential source of background is
neutrons, which could contribute via neutron capture
in the 100Mo(n, γ) reaction. The decay of 101Moyields
some γ rays with energies very close to the ones of
interest in the ββ decay of 100Mo. However, this
neutron-capture process should also produce other
γ rays in coincidence with a 105 higher probability.
Since these γ rays have not been observed in our
experiment, this possible background is completely
ruled out.

The present experimental method is incapable of
distinguishing between 2νββ and 0νββ decay be-
cause the energy of the two electrons is not measured.
In addition, the best present limit on the 0νββ decay
of 100Mo to the first 0+ excited state of 100Ru is not
sufficiently stringent (>6 × 1020 yr [12]). Neverthe-
less, ββ transitions of 100Mo to the ground state of
100Ru indicate that our experiment observes the 2νββ
mode instead of the neutrinoless one. The experimen-
tal limit on the 0νββ decay of 100Mo to the 0+ ground
state of 100Ru is T 0ν

1/2 > 5.2× 1022 yr [13]. Taking into
account the fact that the phase-space factor is much
smaller for the transition to the excited state, one can
2



206 DE BRAECKELEER et al.
expect that the contribution of 0νββ events in our
set of data is negligible. Thus, it is safe to conclude
that we do indeed see the 2νββ decay of 100Mo to the
0+ excited state of 100Ru. An additional confirma-
tion of this conclusion can be seen in the quite good
agreement between our experimental result and the
theoretical predictions for this decay (see below).
One can compare the derived value with the

theoretical predictions that were obtained by using
QRPA-based models (5.4 × 1019–1.3 × 1020 yr [14],
2.1× 1021 yr [15], and 1021 yr [16]) and pseudo-SU(3)
models (1.5 × 1021 yr [17]). It should be mentioned
that the present accuracy of theoretical predictions
is directly related to the accuracy of nuclear-matrix-
element calculations and usually is a factor of about 4
for the half-life (factor of about 2 for nuclear matrix
elements). Thus, there is reasonable agreement
between experimental and theoretical values of the
half-life.
Recently, the half-life for the 2νββ(0+ → 0+

1 )
transition of 100Mo was estimated by using the so-
called single-state-dominance hypothesis (SSDH)
[18, 19] and a recent result for the electron-capture
(EC) transition 100Tc → 100Mo [20]: T2ν

1/2(0
+ →

0+
1 ) = 4.45 × 1020 yr [21] (with an accuracy of±50%
because of this accuracy of the EC transition [20]). If,
in the future, the accuracy of the EC transition can be
improved, then a comparison between experimental
and estimated values will provide the possibility of
checking the SSDH.

4. CONCLUSION

In summary, a new and independent confirmation
of the ββ decay of 100Mo to the first excited 0+

state of 100Ru has been obtained by using the novel
method of γγ-coincidence detection above ground
with HPGe detectors. Our result for the half-life
of T1/2 = [5.9+1.7

−1.1(stat.) ± 0.6(syst.)] × 1020 yr with
respect to this decay is consistent with previous mea-
surements [8, 11].
PH
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Abstract—Experimental limits on the half-lives with respect to the (0ν + 2ν) double-beta decay of 130Te
to excited states in 130Xe are obtained by using low-background HPGe detectors. At a 90% C.L., they
are 1.6 × 1021, 2.7 × 1021, and 2.3 × 1021 yr for transitions to the 2+

1 , 2+
2 , and 0+

1 levels, respectively.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main interest in double-beta decay is con-
nected with the neutrinoless mode (0νββ) as a probe
for physics beyond the Standard Model of elec-
troweak interactions. Its existence is connected with
fundamental aspects of particle physics—i.e., the
lepton-number nonconservation, the existence and
nature of the neutrino mass, the existence of right-
handed currents in the electroweak interaction, the
existence of a massless Goldstone boson, Majoron,
supersymmetry, etc.

To date, only lower limits on the half-lives (T 0ν
1/2)

of various nuclei have been obtained experimentally.
These limits are used to deduce upper limits on the
Majorana neutrino mass, the right-handed-current
admixture parameter, the Majoron–Majorana neu-
trino coupling constant, etc. (see, for instance, [1–
4]). One particular source of uncertainty in the above
analysis is the evaluation of nuclear matrix elements
appearing in the theoretical expressions for these fun-
damental observables.
In connection with 0νββ decay, the detection of

double-beta decay accompanied by the emission of
two neutrinos (2νββ), which is an allowed process of
second order in the Standard Model, enables an ex-
perimental determination of nuclear matrix elements
involved in the double-beta-decay processes. This in
turn leads to the development of theoretical schemes
for nuclear-matrix-element calculations, in connec-
tion with both 2νββ decays and 0νββ decays. More
precise calculations of nuclear matrix elements allow
a more unambiguous extraction of the values of the
relevant 0νββ observables mentioned above.
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1)Centre d’Etudes Nucléaires, IN2P3-CNRS et Université de
Bordeaux, France.
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Double-beta decay can proceed through transi-
tions to the ground state and to various excited states
of the daughter nuclide. Studies of the latter transi-
tions allow one to obtain supplementary information
about ββ decay. Because of lower transition energies,
the probabilities for ββ-decay transitions to excited
states are substantially suppressed in relation to tran-
sitions to the ground state. But as was shown [5],
by using low-background facilities utilizing HPGe
detectors, 2νββ decay to the 0+

1 level in the daugh-
ter nucleus can be detected for 100Mo, 96Zr, and
150Nd. In this case, the energies involved in the ββ
transitions are comparatively high (1903, 2202, and
2627 keV, respectively), and the expected half-lives
are on the order of 1020–1021 yr. The required sen-
sitivity was reached only for 100Mo, and the transition
was detected in three experiments [6–8] with a half-
life lying within (6–9) × 1020 yr. Recently, additional
isotopes, 82Se, 130Te, 116Cd, and 76Ge, also became
of interest to studies of the 2νββ decay to the 0+

1 level
(for an overview, see [9]).

Theoretical estimates of the 2νββ decay to a 2+

excited state revealed that, for a few nuclei (82Se,
96Zr, 100Mo, 130Te), the half-lives can be about 1022–
1023 yr [4]. This would mean that the detection of
such decays will become possible in the near future
by using the present and new installations.
It is very important to note that, within models

based on quasiparticle random-phase approximation,
the behavior of nuclear matrix elements with the pa-
rameter gpp is completely different for transitions to
the ground and to excited (2+ and 0+) states [4, 10].
This is why the decay to excited states and the decay
to the ground states may probe different aspects of the
computational method. Therefore, searches for ββ
transitions to excited states are of particular interest
in itself.
2002MAIK “Nauka/Interperiodica”
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Table 1. Information about TeO2 powder measurements
(sample gives the weight of the TeO2 powder, HPGe is the
volume of a Ge detector, η is the 130Te content of a sample,
and t is the time of counting)

Sample, g HPGe, cm3 η,% t, h

721.4 400 89.4 567.2

711.0 380 89.4 1192.7

698.0 380 89.4 385.8

587.8 380 89.4 666.0

1004.2 400 34.49 475.4

In this article, we present the results of an exper-
imental investigation into the ββ decay of 130Te to
the excited states in 130Xe. The decay scheme for the
130Te–130I–130Xe triplet is shown in Fig. 1. A search
for ββ transitions of 130Te to excited states in 130Xe
was carried out by using a germanium detector to
seek γ-ray lines corresponding to the decay scheme.

2. EXPERIMENTAL

The experimental work has been performed in
the Modane Underground Laboratory (depth of
4800 mwe). A set of TeO2 powder samples with
tellurium either enriched in 130Te or natural was
investigated by using two low-background HPGe
detectors of volume 380 and 400 cm3. Both Ge
spectrometers were composed of p-type crystals. For
each HPGe detector, the cryostat, the endcap, and
the main mechanical parts were made of very pure
Al–Si alloy. The cryostat had a J-type geometry to
shield the crystal from radioactive impurities in the
Dewar. The passive shielding for each detector was
similar and consisted of 4 cm of Roman time lead and
3–10 cm of OFHC copper inside 15 cm of ordinary
lead. To remove 222Rn gas, one of the main sources of
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PH
Table 2.Detection efficiencies (%) for γ rays from investi-
gated excited states for each TeO2 powder measurement

Sample, g
2+
1 2+

2 0+
1

536.1 536.1 586.1 536.1 1257.4

721.4 4.51 3.32 3.21 3.76 2.10

711.0 3.91 2.98 2.84 3.35 1.86

698.0 3.88 2.96 2.88 3.34 1.85

587.8 3.76 2.86 2.74 3.16 1.74

1004.2 3.81 2.89 2.80 3.23 1.90

A(1021 yr) 22.1 16.7 16.1 18.8 10.5

Note: Here, we present the weight of a TeO2 sample, the param-
eters of excited states, and the energies of γ rays specified for each
excited state. The last row shows quantitiesA (see main body of
the text).

background, a special effort was made to minimize
the free space near the detector. In addition, the
passive shielding was enclosed in an aluminum box
flushed with high-purity nitrogen.
The electronics used consisted of currently avail-

able spectrometric amplifiers and a 8192-channel
ADC. The energy calibration was adjusted to cover
the energy range from 50 keV to 3.5 MeV for all
detectors. The energy resolution was 1.8–2.0 keV
for the 1332-keV line of 60Co. The electronics
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Table 3. Theoretical and experimental results for the ββ decay of 130Te

Transition (T 2ν
1/2)calc, yr [4]

(T 0ν+2ν
1/2 )exp, 1021 yr

our study other studies

0+ → 0+
g.s. 2.6 × 1020–2.7 × 1021 0.8 a [11]

2.7 a [12]

0+ → 2+
1 3.0 × 1022–2.8 × 1024 >1.6 >2.8 [13]

>97 b [14]

0+ → 2+
2 2.0 × 1025–1.0 × 1028 >2.7 −

0+ → 0+
1 5.1 × 1022–1.39 × 1023 c >2.3 >25 b [14]

Note: All limits are given at a 90% C.L. (a) Geochemical experiment, (b) only the 0ν decay mode, and (c) corrected values (see main
body of the text).
was stable during the experiment owing to constant
conditions in the laboratory (temperature of 23◦C,
hygrometric degree of 50%). A daily check on
the apparatus ensured that the counting rate was
statistically constant.
The samples of TeO2 powder were put into del-

rin Marinelli boxes surrounding the HPGe detector.
Table 1 presents details of these measurements. The
most intensive γ rays from the decay scheme (Fig. 1)
were used for our analysis—i.e., the 536.1-keV γ ray
for the 2+

1 level, the 536.1-keV and the 586.1-keV
γ ray for the 2+

2 level, and the 536.1-keV and the
1257.4-keV γ ray for the 0+

1 level. The detection
efficiencies for photopeaks corresponding to the above
γ rays are given in Table 2. The efficiencies were
computed with the aid of the CERN Monte Carlo
code GEANT 3.21. Special calibration measure-
ments with radioactive sources and powders contain-
ing well-known 226Ra activities confirmed that the
accuracy of these efficiencies was about 10% for each
detector.

3. ANALYSIS AND RESULTS

To analyze the 2νββ decay of 130Te to excited
states in 130Xe, we considered the sum of all spectra.
The contribution of the ββ decay of 130Te to the peak
corresponding to a specific excited state is given by

Npeak =

∑

i
Nitiεi ln 2

T1/2
=

A

T1/2
,

where summation is performed over all measure-
ments,Ni is the number of 130Te atoms to expose, ti is
the counting time, εi is the peak-detection efficiency,
and T1/2 is the half-life with respect to the transition
being investigated. The quantities A, which charac-
terize the contributions to the peaks under study, are
given in Table 2.
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The total spectra for two specific energy ranges
and the corresponding background spectra (for
3287 h) are shown in Figs. 2a and 3a and in Figs. 2b
and 3b, respectively. As can be seen, there are no
statistically significant peaks at the points in ques-
tion. The lower half-life limits reported in Table 3 were
calculated by using the likelihood-function technique
described in [15, 16]. Available data on the ββ
decay of 130Te from other experimental studies and
theoretical estimates are also presented in Table 3.

Our limits on ββ transitions of 130Te to excited
states of a daughter nucleus are valid for the 0ν and 2ν
decay modes. As one can see from Table 3, our results
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on the transitions to the 2+
2 (0ν and 2ν modes) and 0+

1

(2ν mode) levels of 130Xe were obtained for the first
time. Here, it is worth mentioning that the theoretical
half-lives for 2νββ decay to the 0+

1 level from [4] are
less than those in Table 3 by a factor of about 200.
This is related to the error value of 4.6× 10−20 yr−1 in
the phase-space factor as given in [4]. The corrected
value is 2.35× 10−22 yr−1 [17]. Using the new phase-
space factor and the nuclear matrix elements from [4],
we recalculated the half-lives and presented them in
Table 3.
The sensitivity of such experiments could be still

increased to about 1023 yr by using larger Ge crystals
(800–1000 cm3) with a lower background and by
investigating 5–10 kg of 130Te for a few years. In
that case, there is the possibility of detecting the 2νββ
decay of 130Te to the 0+

1 level and, maybe, to the 2+
1

level of 130Xe.
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Energies (LHE) at the Joint Institute for Nuclear Research (JINR, Dubna) and about projects for this
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INTRODUCTION

The research program of the Laboratory of High
Energies (LHE) at the Joint Institute for Nuclear Re-
search (JINR, Dubna) for its own accelerator facility
is now focused on investigations into the interactions
of relativistic nuclei in the energy range from a few
hundred MeV to a few GeV per nucleon. These
investigations are aimed at seeking manifestations
of quark–gluon degrees of freedom in nuclei and
asymptotic laws for nuclear matter at high collision
energies and at establishing the spin structure of ex-
tremely light nuclei [1]. Experiments along these lines
are performed with the aid of a synchrophasotron–
nuclotron accelerator complex.

In recent years, the implementation of the research
program in question has been relying on the nuclotron
to an ever greater extent—as a matter of fact, the
synchrophasotron is used only in investigations with
a polarized deuteron beam. In the near future, it is
planned to obtain a polarized beam at the nuclotron
as well.

1. DEVELOPMENT OF THE ACCELERATOR
COMPLEX

The LHE accelerator complex is the main device
for generating protons, polarized deuterons (as well
as neutrons and protons), and multiply charged ions
in the energy region extending to 6 GeV per nucleon.
The layout of the JINR LHE accelerator complex is
displayed in Fig. 1.

The nuclotron was created on the basis of a unique
technology of superconducting magnetic systems
that were proposed and investigated in the LHE [2].

Before 1999, we used only the internal beam of
the nuclotron for physical experiments. At the end

*e-mail: malakhov@lhe.jinr.ru
1063-7788/02/6502-0211$22.00 c©
of 1999, an extracted beam of the nuclotron was
obtained with the aid of a slow-beam-extraction sys-
tem developed on the basis of superconducting units.
Some parameters of synchrophasotron and nuclotron
beams are listed in the table.

The main lines of development of the nuclotron
complex within the next few years are the following:
(i) the completion of work devoted to transporting
the beam extracted from the nuclotron to the large
experimental hall housing the experimental facilities
to be used; (ii) the creation of the injecting complex
(this involves manufacturing sources of ions, partly
reconstructing the linear accelerator, and evolving a
booster); and (iii) the production of cryogenic power-
supply units, as well as cryogenic systems for diag-
nostics and control.

There are also a program of the first experiments
with an extracted beam of the nuclotron and a
long-term program of investigations. Two facilities
(STRELA and SKAN-2) were used for physics
investigations in the first runs of the nuclotron with
the extacted beam. Concurrently, experiments in the
internal beam of the nuclotron are being continued.

1.1. First Experiments at the Nuclotron

1.1.1. First experiments
with an extracted beam of the nuclotron

The STRELA experiment (see Fig. 2) is aimed
at studying the spin-dependent component of the
nucleon scattering amplitude in the charge-exchange
process np→ pn in a deuteron beam extracted from
the nuclotron. It is planned to measure the cross
section for the production of two protons at a low
momentum transfer in dp interactions at primary
deuteron momenta in the range between 3.0 and
4.0 GeV/с.
2002MAIK “Nauka/Interperiodica”
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Some parameters of synchrophasotron and nuclotron beams

Beam

Intensity, particle/spill

Synchro-
phasotron

Nuclotron

available

planned

after
an upgrade
of the sources

with a booster

p 4 × 1012 2 × 1010 1011 1013

d 1012 2 × 1010 5 × 1010 1013

4He 5 × 1010 8 × 108 5 × 109 2 × 1012

7Li 2 × 109 2 × 1010 5 × 1012

12C 109 108 7 × 109 2 × 1012

20Ne 104 108 5 × 109

24Mg 5 × 106 4 × 106 3 × 108 5 × 1011

32S 103 108 1010

40Ar 3 × 107 2 × 109

56Fe 1011

84Kr 103 2 × 107 5 × 108

96Mo 1010

131Xe 107 2 × 108

181Ta 108

209Bi 3 × 106 108

238U 108

n 1010 108 109

n ↑ 106 106 5 × 107

d ↑ 2 × 109 109 5 × 1010

t 109 106 1010

Energy (AGeV) 4.5 5.2 6.0
The possibility of obtaining additional informa-
tion about the amplitude of the elementary charge-
exchange reaction np→ pn with the aid of the
charge-exchange process dp → (pp)n from experi-
ments with unpolarized deuterons was indicated by
Migdal and Pomeranchuk [3, 4].

Within the impulse approximation, the charge-
exchange process np→ pn and the reaction dp →
(pp)n—that is, charge exchange on a deuteron (see
Fig. 3), which is the simplest nucleus—represent the
simplest version of these two processes. In the first
case, both spin orientations are allowed, whereas, in
the second case, the reaction at a small scattering an-
gle (the two protons move in the forward direction at a
low relative momentum) can proceed, in accordance
PH
with the Pauli exclusion principle, only if the spin of
the scattered proton is flipped. At zero momentum
transfer, the differential cross section for the reaction
dp→ (pp)n is determined by the spin-flip part of the
amplitude for the charge-exchange process np→ pn.

The SKAN-2 facility is intended for studying
the proton-formation length in d+AT → p1(0◦) +
p2(0◦) + . . . reactions.

Information from the STRELA and SKAN-2 fa-
cilities, which is now being analyzed, was obtained in
the nuclotron run of March 2000 with an extracted
deuteron beam. Preliminary results concerning the
separation of two-proton and one-proton events at
the STRELA facility is presented in Fig. 4.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 1. Layout of the JINR LHE accelerator complex.
1.1.2. Experiments in an internal beam

The fragmentation of the target into two cumula-
tive protons is now being studied with the aid of the
SKAN-1 facility in the internal beam of the nuclotron
(Fig. 5).

The experiment is aimed at measuring the trans-
verse dimensions of the region of nucleus–nucleus
interactions. Use is being made of the method of
measuring correlations between cumulative protons
emitted with low relative momenta. Correlations
between protons emitted into the angular interval
between 106◦ and 112◦ in the laboratory frame are
being studied in d+ C → p+ p+ . . . and d+ Cu →
p+ p+ . . . (pd = 2 AGeV) reactions.

These measurements yield approximately equal
radii for dC and dCu interactions: rdC = 3.0+0.5

−0.4 fm
and rdCu = 2.6+0.8

−0.7 fm [5].
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tion chamber, (LH2) liquid-hydrogen target, (D) ana-
lyzing magnet, (T1–T3, M1, M2) scintillation monitors,
(С1–С4) Cherenkov counters, and (S1–S4) scintillation
counters.
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These investigations will be continued with differ-
ent projectiles and targets.

A group from the MARUSYA collaboration has
begun studying the yield of secondary fragments from
the interaction of the internal beam of the nuclotron
with heavy targets. By using a thin semiconductor
detector, this group obtained a good separation of
secondary fragments of very low energies between 2
and 25 MeV from d+ Au interactions at a deuteron
energy of 1.044 GeV (see Fig. 6).

These data are now under analysis and will be
used to study the effect of the total disintegration of
nuclei. This is facilitated by a low energy of secondary
fragments.

1.2. Program of Long-Term
Investigations at the Nuclotron

Presently, there are 12 facilities for fundamen-
tal investigations at the nuclotron. These are the
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SFERA, GIBS, FAZA, DELTA-SIGMA, DELTA,
DISK, SMS, MARUSYA, SKAN-1, SKAN-2,
STRELA, and SLON facilities. It is also planned
to use facilities based on the Medium Resolution
Spectrometer (MRS) from Los Alamos (USA).

The research program for these facilities is briefly
surveyed in the present section.

1.2.1. Experiments with relativistic nuclei

SFERA project. The main objective of the
SFERA project (Fig. 7) is to study the fragmentation
of relativistic nuclei in nearly 4π geometry.

With the forward detector of the SFERA facility,
some new results were obtained at the synchropha-
sotron. For example, the inclusive cross sections for
deuteron fragmentation into cumulative π− mesons
on a nuclear target have been measured, and the rele-
vant cross section has been investigated as a function
of the atomic mass A of the target nucleus. The
best description of these data was obtained under the
assumption that the pion-formation length is lπ =
3 ± 1 fm [6] (Fig. 8).

The research program for the SFERA facility in-
cludes (i) investigation of themultiparticle production
of cumulative particles in 4π geometry, (ii) inves-
tigation of nuclear excitations in charge-exchange
reactions, (iii) investigation of formation of η nuclei,
and (iv) investigation of the tensor analyzing power
for the production of cumulative hadrons.

GIBS project. The GIBS facility is a magnetic
spectrometer based on a streamer chamber of dimen-
sions 1.9 × 0.8 × 0.6 m. The GIBS collaboration
obtained interesting results at the synchrophasotron.
PH
One of these concerns the expansion of the volume
from which narrow dipions are emitted in MgMg
interactions. Podgoretskiı̆ proposed an interference
method for measuring the velocity and dimensions
of the source [7]. This method makes it possible to
obtain a direct piece of experimental evidence for the
time dependence of the pion-generation volume. This
proof was first obtained with the GIBS facility at the
LHE for central MgMg interactions at 4.4 GeV/с
[8]. From relevant experimental data, it can be seen
that pions from different sections of the kinematical
spectrum are emitted from different source elements
moving relative to one another (see Fig. 9).

The GIBS collaboration plans to study, at the
nuclotron, the (t, 3He) charge-exchange reaction on
carbon and magnesium by using a tritium beam of
momentum in the range between 2.2 and
3.0 AGeV/c.

Another experiment will be devoted to studying
the production of hypernuclei with momenta of a few
GeV/с—this is possible because hypernuclei decay
within distances of 20 to 30 cm from the production
vertex. Hypernuclear interactions with various ab-
sorbers will be studied in this way. In the case of the
hypertriton, the method makes it possible to estimate
the binding energy of the Λ particle involved.

FAZA project. The objective of this project is to
study the mechanism of nuclear multifragmentation
occurring in nucleus–nucleus interactions at inter-
mediate and high energies.

Some experiments have been performed with pro-
ton and alpha-particle beams of the synchophasotron
by using the FAZA spectrometer, which is character-
ized by a 4π coverage. Among the results obtained,
the main one is the following: a cold spectator of
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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the target expands prior to emitting fragments. As
a result, its density appears to be about one-third of
a normal density [9]. This effect can be explained
as an observation of a liquid–gas phase transition in
nuclear matter (see Fig. 10).

The research program of the FAZA collaboration
at the nuclotron is aimed at pursuing further inves-
tigations into the mechanism of fragment emission
in nonsymmetric nucleus–nucleus collisions. From
these investigations, one would expect the following
important results: new data on the time of decay of the
systems being studied as a function of the excitation
energy and the mass of the projectile nucleus and
data on the evolution of the decay mechanism from a
purely thermal multifragmentation to a more intricate
mechanism as the projectile mass increases.

MARUSYA project. The project MARUSYA is
aimed at studying the transition regime correspond-
ing to the situation where nucleonic degrees of free-
dom give way to quark–gluon degrees of freedom in
nuclei. This will be done by exploring hadron produc-
tion in relativistic nuclear collisions. Presently, the
facility is fully prepared for operation in an extracted
beam of the nuclotron (see Fig. 11).

SMS project. The project is devoted to studying
leading particles from proton–nucleus interactions
by using the experimental facility referred to as the
Scintillation Magnetic Spectrometer (SMS) and de-
veloped at Moscow State University. The objective
is to reveal the mechanism of strong interaction in
the energy region extending up to 10 GeV. The fa-
cility represents a one-arm magnetic spectrometer
whose spectrometric component has changeable ge-
ometry [10].
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1.2.2. Experiments with polarized beams

Investigation of polarization effects in colli-
sions of relativistic nuclei at the SFERA facility.
The main objective of this project is to study the
spin structure of the deutron at short internucleon
distances by using hadronic probes and spin effects
in hadron scattering at an energy of about a few GeV.

The tensor analyzing power Ayy for cumula-
tive pion production in d↑ +12C → π− (0, 135,
178 mrad) + . . . reactions was measured with the
SFERA facility in a beam of deuterons having a
tensor polarization and coming from a synchropha-
sotron. The experiment was focused on a cumulative
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production of pions that are formed beyond the kine-
matics of nucleon–nucleon collisions (see Fig. 12).

The measured values of Ayy do not comply
with the results of our calculations within the im-
pulse approximation that were based on the NN →
πNN transition and which were performed with
allowance for the internal motion of nucleons in the
deuteron [11].

The investigations will be continued at the nu-
clotron as soon as a polarized beam of sufficient in-
tensity is obtained.

DELTA-SIGMA project. New results for the np-
spin-dependent difference of the total cross sections,
∆σL(np), at kinetic energies of the neutron beam
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P

between 1.2 and 3.4 GeV (Fig. 13) were obtained at
the DELTA-SIGMA facility.

A quasimonochromatic beam of neutrons was ob-
tained from accelerated deuterons that were extracted
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experimental distribution is shifted toward smaller veloc-
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from the synchrophasotron and which had a vector
polarization. The neutrons passed through a large
polarized proton beam. The quantity ∆σL(np) was
measured as the difference of the total np cross sec-
tions for parallel and antiparallel polarizations of the
beam and the target. A fast decrease in∆σL(np)with
increasing energy was observed above 1 GeV [12].

In order to complete measurements concerning
the energy dependence of∆σL(np), it is necessary to
measure this quantity at 1.4, 1.6, 2.0, and 3.17 GeV.
It is also necessary to measure ∆σT (np) for the case
of transverse polarizations of the neutron beam and
target protons. It is planned to continue these exper-
iments at the nuclotron.

MRS project. It is planned to use the medium
resolution spectrometer (MRS) from Los Alamos
(USA) at our accelerator complex. This became
possible after the agreement of scientific cooperation
between the Los Alamos National Laboratory, the
Institute for Nuclear Research (Russian Academy
of Sciences), and the Joint Institute for Nuclear
Research was signed. The relevant research program
includes (i) investigation of spin effects in multiparti-
cle systems, (ii) investigation of the strange content of
the nucleon, and (iii) investigation of the production
of cumulative particles by using a polarized deuteron
beam.
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1.2.3. Investigation of asymptotic laws in relativistic
nuclear physics

Principles of symmetry and similarity were used to
obtain an analytic expression for the inclusive cross
section for the production of particles, nuclear frag-
ments, and antinuclei in relativistic nuclear collisions
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in the central rapidity region (y = 0). The results
are in agreement with available experimental data.
It is shown that the effective number of nucleons
that take part in nuclear interactions decreases with
increasing energy and that the cross section tends to
a constant that takes identical values for particles and
for antiparticles. An analysis of the results obtained
makes it possible to predict the asymptotic behavior
of the cross section for the production of particles, nu-
clear fragments, and antinuclei [13, 14]. One of such
predictions in the region extenting from the energies
of the accelerator complex in Dubna to the energies of
the LHC at CERN is displayed in Fig. 14.

2. APPLIED INVESTIGATIONS

The synchrophasotron was employed for applied
investigations that will be continued at the nuclotron
with heavier ions.

These investigations include the following lines:
(i) radiobiology and cosmic medicine [15], (ii) the
effect of nuclear beams on microelectronics com-
ponents, (iii) transmutation of radioactive wastes
[16], (iv) problems associated with the electronuclear
method for the generation of energy (Fig. 15) [17],
and the use of a carbon beam for cancer therapy.
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eration of energy and for the transmutation of radioactive
wastes.

3. CONCLUSION

A vast program of investigations with relativistic
nuclei, polarized deuterons, and polarized neutrons
has been prepared and is being implemented at
the Laboratory of High Energies at JINR. Physi-
cists from Russia and from other countries that
are both JINR members and guests are actively
participating in the implementation of this program.
New prospects for investigations into the realms
of relativistic nuclear physics are being unveiled in
connection with the creation of particle and ion beams
extracted from the nuclotron.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Abstract—New experimental data on the spin-rotation parameters A and R measured for elastic π±p
scattering in the resonance region and on the asymmetry in pC scattering at primary momenta in the range
1.35–2.02 GeV/c, as well as in quasielastic proton scattering on nuclei in the same momentum range,
are summarized. All these data were recently obtained by using the proton synchrotron installed at the
Institute of Theoretical and Experimental Physics (ITEP, Moscow). The spectrum and features of seven
isospin-3/2 baryon resonances that form a peak in the total cross section at a c.m. energy of 1.9 GeV
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ITEP and the Petersburg Nuclear Physics Institute (PNPI, Gatchina), the ITEP–PNPI collaboration.
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1. INTRODUCTION

In recent years, experiments at the SPIN facility
that were devoted to measuring the spin-rotation pa-
rameters in elastic pion–proton scattering at energies
in the resonance region, as well as allied experiments
measuring the analyzing power in proton–carbon
scattering, have been implemented by a collabora-
tion that includes experimentalists from the Insti-
tute of Theoretical and Experimental Physics (ITEP,
Moscow) and the Petersburg Nuclear Physics In-
stitute (PNPI, Gatchina) and which is referred to in
the following as the ITEP–PNPI collaboration. The
main objective of these studies was to deduce infor-
mation necessary for unambiguously reconstructing
amplitudes for pion–nucleon scattering and, hence,
the undistorted spectrum and features of baryon res-
onance consisting of light quarks.

The interval of primary momenta accessible to
the SPIN facility is 0.8–2.1 GeV/c. According to
the Particle Data Group (PDG) [1], about 65% of
the resonances known to date are concentrated in
this region; also, this is the region where the total
and elastic-scattering cross sections as functions of

1)Petersburg Nuclear Physics Institute, Russian Academy of
Sciences, Gatchina, 188350 Russia.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

*e-mail: vadim.kanavets@itep.ru
1063-7788/02/6502-0220$22.00 c©
energies display peaks at 1.7 GeV (π−p), 1.9 GeV
(π+p), and 2.2 GeV (π+p) in the c.m. frame. The
partial-wave analyses (PWA) КН80, KA84 [2], and
CМВ80 [3], which form the basis of modern experi-
mental baryon spectroscopy, reveal that the first two
of these peaks are due to clusters of, respectively, six
and seven nearly degenerate baryon resonances.

Physical interest in measuring polarization ob-
servables is motivated by some features of the ex-
perimental baryon spectrum that defy any attempt at
explaining them within the constituent quark model.
By way of example, we indicate that, although a major
part of known resonances fits in the multiplet classi-
fication scheme following from the quark model that
employs the SU(6) ⊗O(3) basis of state functions
[4], it is hardly possible to account for the observation
of negative-parity resonances at the 1.9-GeV peak.
The very fact of the existence of resonance clusters
featuring parity doublets is inexplicable within this
model. At the same time, there are general theoretical
approaches that claim to be capable of explaining
resonance clusters and parity doublets. For example,
clusters are expected in the dual resonance model [5],
whereas parity doublets are predicted on the basis
of the straight-line character of baryon Regge tra-
jectories [6]. It is also feasible that parity doublets
arise owing to the chiral symmetry of strong inter-
action [7]. The problem of missing resonances—that
is, of a deficit in observed resonances in relation to
2002 MAIK “Nauka/Interperiodica”
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at measuring the spin-rotation parameters: (�Pt) initial
target-proton polarization vector in theA experiment; (С)
nuclei of carbon scatterer; and (AA, AP ) asymmetries
corresponding to, respectively, the spin-rotation param-
eterA and the normal polarization P .

the predictions of the quark model—which concerns
primarily the excitation peak at 2.2 GeV, is also of
interest. Finally, there is the important question of the
possible existence of hybrid resonances of the (qqqg)
type. According to currently prevalent concepts, the
lowest hybrid states can be expected in the regions
around the peaks at 1.7 GeV (P11, P13 waves) and at
1.9 GeV (P31, P33, F35 waves) [8].

Despite obvious physical interest, the experimen-
tal basis of PWA in the resonance region at momen-
tum values in excess of 0.75 GeV/с is insufficient for
unambiguously reconstructing relevant amplitudes.
In contrast to the region below 0.75 GeV/с, where in-
formation about all independent observables of pion–
nucleon scattering was obtained owing primarily to
efforts of research groups from PNPI and LAMPF,
the region of momenta above 0.75 GeV/с has not yet
received adequate study: only the total and differential
cross sections and the normal polarization have been
measured prior to the present experiments. As a
result, the predictions of different PWAs for spin-
rotation parameters (A, R) showed a wide scatter
in some kinematical regions. Moreover, four of the
thirteen resonances that form the clusters at 1.7 and
1.9 GeV were not found by more recent analyses of
the group from the University of Virginia [9]. Fi-
nally, a theoretical analysis based on the formalism
of zeros of transverse amplitudes [10] reveals that,
in the absence of information about the spin-rotation
parameters, there can arise discrete ambiguities of the
type considered by Barrelet; the latter in turn can lead
to the mixing of partial-wave amplitudes, distortions
of resonance parameters, and even to spurious reso-
nances [11].

Thus, our experimental program is aimed predom-
inantly at (i) verifying the existing PWAs by measur-
ing independent variables (spin-rotation parameters)
that are not contained in their experimental basis and
(ii) revealing and eliminating the discrete ambiguities
of the PWAs.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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Fig. 2. Layout of the SPIN setup: (T ) polarized proton
target in a superconducting solenoid, (C1–C10) system
of trigger counters, (K1–K21) coordinate detectors, and
(С) carbon scatterer.

2. EXPERIMENTAL SETUP

2.1. Layout of the Experimental Setup

Figure 1 shows the layout of the experimental
setup intended for measuring spin-rotation param-
eters. The experiment consisted in measuring the
direction of the recoil-proton polarization vector with
the aid of scattering on carbon at a known polariza-
tion of target protons. In other words, we measured
the angle of polarization-vector rotation in the scat-
tering plane. In the present experiment, we adopted
the geometry of an A experiment, where the vector
of target polarization is aligned with the pion-beam
axis. In this case, the transverse component of the
recoil-proton polarization in the scattering plane is
Pt ·A, while the component along the recoil-proton
momentum is Pt ·R, where Pt is the target polar-
ization. The polarization component along the nor-
mal to the scattering plane is equal to the normal-
polarization parameter P . The horizontal (vertical)
component of the recoil-proton polarization vector
is determined by measuring the vertical (horizontal)
asymmetry of proton scattering on carbon. Because
of parity conservation in strong interactions, the cross
section for scattering on carbon is independent of
the longitudinal polarization. In the geometry of the
A experiment, the second spin-rotation parameter R
cannot therefore be measured directly by studying
scattering in a polarimeter, but its absolute value can
be found from the relation

A2 +R2 + P 2 = 1, (1)

which is valid for elastic pion–nucleon scattering [12].
A polarized proton target in a superconducting

solenoid, a carbon polarimeter, blocks of wire co-
ordinate detectors for determining the trajectories of
incident and scattered pions and recoil protons, a
triggering system, and a system for measuring time of
flight for identifying beam particles are basic elements
of the facility used (Fig. 2). The facility is arranged
2
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at the universal two-step magneto-optical channel of
the ITEP accelerator, which ensures the extraction of
charged pions and of protons in the momentum inter-
val 0.8–2.1 GeV/с with resolution ∆p/p = ±1.8%.
In the region of the target, the horizontal and the
vertical dimension of the beam (FWHM) are both
about 30 mm.

2.2. Target

We employed a dynamically polarizable proton tar-
get characterized by a horizontal orientation of the
polarization vector [13]. A magnetic field of strength
2.5 T was generated by a pair of superconducting
Helmholtz coils. The frequency of polarization pump-
ing was 70 GHz. Propanediol (С3Н8О2) with an ad-
mixture of CrV was used for an operating substance.
The fraction of hydrogen in the target was about 10%.
The operating substance of the target was enclosed
in a container having the shape of a vertical cylinder
of height 30 mm and diameter 30 mm. The degree
of proton polarization in the target was 0.7–0.8 at a
temperature of 0.55 K, which was maintained with
the aid of a cryostat employing the evacuation of 3Не
vapors. The error in measuring the polarization did
not exceed ±0.02. The polarization was reversed
every day.

2.3. Polarimeter

In the last runs of measurements, we employed a
one-layer polarimeter based on wire chambers that
features a graphite scatterer of thickness 36.5 g/cm2.
P

The choice of polarimeter configuration and of scat-
terer thickness was a tool for studying in detail var-
ious versions of polarimeter in a beam of polarized
protons. Since a low rate of counting of useful events
is the main problem in experiments devoted to dou-
ble scattering, the requirements on the polarimeter
involved achieving the maximum possible figure of
merit and measuring its analyzing power to a high
precision.

2.4. Analyzing Power of the Polarimeter
The systematic errors in the measured parameters

depend substantially on the accuracy to which we
know the analyzing power of the polarimeter and on
the level of its spurious asymmetries. In view of this,
we have performed a calibrating experiment devoted
to measuring the analyzing power of the polarimeter
in a beam of polarized protons that was obtained by
making protons of the internal beam of the accelerator
scatter on internal targets from polyethylene and car-
bon [14]. In the interval 1.35–2.02 GeV/с, we have
studied, for a carbon scatterer, the analyzing power
as a function of the scattering angle and the scatterer
thickness. The data obtained at 170 experimental
points agree with other available results in the interval
where the former and the latter overlap. For scatterer
thicknesses in the range 19–40 g/cm2, the analyzing
power exhibits but a weak thickness dependence; this
makes it possible to parametrize, to a sufficiently high
degree of precision, this analyzing power as a function
of the proton momentum determined at the scatterer
center and of the scattering angle. The mean values
of the analyzing power, together with the corridor of
errors, are shown in Fig. 3 versus the proton momen-
tum, along with available experimental data.

The spurious asymmetry of the polarimeter was
measured in a pion beam. It proved to be small
(0.0026 ± 0.0014), so that it cannot introduce signif-
icant errors in the sought parameters.

2.5. Polarization in Quasielastic Scattering
Along with the data on the analyzing power of

the polarimeter, we have obtained information about
the polarization of protons in quasielastic scattering
on carbon and beryllium nuclei for scattering at an
angle of 10.5◦ in the laboratory frame (in kinemat-
ics corresponding to elastic scattering). The results
(Fig. 4) agree with the LAMPF [18] and JINR [20]
data, but they contradict the Saclay data [17]. The
polarization in quasielastic scattering is about 70% of
the polarization in elastic proton–proton scattering.
These results comply with the expectations based on
the relativistic model [21], which takes into account
nuclear-matter-induced modification to the proton
wave function.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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3. DATA PROCESSING

3.1. Selection of Events Involving Elastic Scattering
on the Protons of the Polarized Target

The contribution of events involving quasielastic
scattering on unpolarized protons bound in the nuclei
of polarized-target matter was an important source
of systematic errors in measuring polarization pa-
rameters. Coplanarity and kinematical correlations
between the pion scattering angle and the recoil-
proton scattering angle are used to suppress this
background. In processing the last series of the
measurements, we employed a unified χ2 criterion
that takes into account both these relationships. The
specific form of the relevant functional is

χ2 = (∆θ/σθ)2 + (∆ϕ/σϕ)2, (2)

where ∆ϕ and ∆θ are angles that take into account
deviations from the kinematics of elastic scattering,
while σϕ and σθ are widths of the corresponding
distributions according to a Monte Carlo simulation.
Figure 5 shows the distribution of events with respect
to χ2 for a polarized and a carbon target. If a cut onχ2

is chosen in the interval 5–8, the background is 6–
8%, the corresponding loss of useful statistics being
5–15%.
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3.2. Selection of Secondary-Scattering Events

In the polarimeter, we selected single-track events
in which the polar scattering angle was not smaller
than 3◦ and for which the geometry of the chambers
allows any values of the azimuthal scattering angle.
In various series of the measurements, useful statis-
tics of double-scattering events were 5000 to 16 000.

3.3. Determination of Polarization Parameters

The maximum-likelihood method was used to
determine the polarization parameters from the az-
imuthal asymmetry of recoil-proton scattering in the
polarimeter. For the parameters to be found, we have
chosen A and P . The parameter R was determined
from relation (1). In the likelihood function, we

Table 1

p, GeV/с Elastic
scattering θc.m., deg References

1.00 π+p, π−p 157–168 Unpublished

1.43 π+p 125–135 [22]

1.62 π+p, π−p 120–135 [23]
2
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took into account the magnitude and the sign of the
target polarization, the fraction of the quasielastic
background and its polarization, the analyzing power
of the polarimeter, and the change suffered by the
proton-spin direction as the proton travels between
the points of the first and the second scattering events
in the magnetic field of the solenoid. The polarization
of the quasielastic-scattering background was taken
to be 0.7 ± 0.1 of the polarization in elastic π±p
scattering—this relation is similar to the relation
between the polarizations in quasielastic pС and
elastic pp scattering. The results of the fit were
virtually independent of the assumption on the sign
of the parameter R.

3.4. Estimates of Systematic Errors

The main contribution to the systematic errors
(normalization) in the parameters A,R, and P comes
from the uncertainty in the analyzing power of the
polarimeter (not more than 4%). The systematic
errors may also be due to the uncertainty in the tar-
get polarization, the instrumental asymmetry of the
polarimeter, and the uncertainty in the estimated po-
larization of the quasielastic-scattering background.
The contribution of the small instrumental asymme-
try of the polarimeter to the errors in the spin-rotation
parameters is suppressed by periodically reversing the
sign of the target polarization, so that it leads to a
negligibly small correction. For example, the contri-
bution to the instrumental asymmetry to the error in
the parameter P does not exceed 0.02. The effect of
uncertainties in the polarization of the quasielastic-
scattering background was estimated by processing
data at zero polarization and the polarization equal to
that in elastic scattering. The contributions of these
uncertainties to the spin-rotation parameters A and
R proved to be negligible, while their contribution
to the parameter P was less than 0.04. The total
estimate of systematic errors was ∆syst < ∆stat/3 at
∆stat = 0.15–0.20.

4. RESULTS

All experiments that we have performed were im-
plemented in the geometry of the A experiment. Data
on the parametersA, P , and |R| were obtained simul-
taneously. The kinematical intervals studied here are
listed in Table 1. The results of the measurements are
displayed in Fig. 6 and in Table 2.

In π+p scattering, our data on the parameter P
agree satisfactorily both with the world-averaged re-
sults and with the predictions of all PWAs at 1.00,
1.43, and 1.62 GeV/с. This indicates that there are no
grave systematic errors in our measurements. Data
on the parameter A clearly discriminate between the
PH
predictions of the different PWAs. They are consis-
tent with the solutions of the SM90 and SM99 analy-
ses performed by the group from the University of Vir-
ginia and are in sharp contradiction with the КН80,
КА84, and СМВ PWAs at 1.43 and 1.62 GeV/с.

In π−p scattering, the results for the parameter
P comply well both with all PWAs and with precise
experimental data on asymmetry that were obtained
at the ITEP SPIN facility in the early 1990s [28].
There are only discrepancies with the results of the
SM99 analysis at 1.00 GeV/с. The value of the
parameter A at 1.62 GeV/с is compatible with the
results of all analyses. At 1.00 GeV/с, data on this
parameter are consistent with the КН80 and SM99
analyses and are in sharp contradiction with the СМВ
and SM90 analyses.

5. ANALYSIS OF THE SPECTRUM
AND PROPERTIES OF ISOSPIN-3/2

BARYON RESONANCES AROUND 1.9 GeV

5.1. Formalism of Zeros of Transverse Amplitudes

The elastic-scattering matrix for pion–nucleon
interaction has the form

M = g + ih(σ · n), (3)

where n is the normal to the scattering plane, σ is
the Pauli matrix, and g and h are complex amplitudes.
The transverse amplitudes f+ and f− are defined as

f+ = g + ih, f− = g − ih. (4)

The squared moduli of the transverse amplitudes
yield the probability of scattering for a proton whose
polarization vector is parallel or antiparallel to the
normal to scattering plane. The relevant observables
are expressed in terms of f+ and f− as

dσ/dΩ = |f+|2 + |f−|2, (5)

P · dσ/dΩ = |f+|2 − |f−|2,
A/2 · dσ/dΩ = Re(f+f−∗) sin(θc.m. − θlab)

− Im(f+f−∗) cos(θc.m. − θlab),

R/2 · dσ/dΩ = Re(f+f−∗) cos(θc.m. − θlab)

+ Im(f+f−∗) sin(θc.m. − θlab),

where θc.m. and θlab are the scattering angles for the
recoil proton in the c.m. and in the laboratory frame.
From expressions (5), it is obvious that the cross
section and polarization make it possible to find only
the moduli of the transverse amplitudes. In order
to determine their relative phase, it is necessary to
measure the spin-rotation parameters.

It is well known that the amplitudes g and h
can be represented as expansions in partial-wave
amplitudes—that is, in the form of a polynomial in
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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cos θc.m. and sin θc.m.. It is convenient to introduce

the variable ω = exp(iθc.m.) [10], in which case we
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
have cos θc.m. = (ω + ω−1)/2 and sin θc.m. = (ω −

ω−1)/2i. It follows that the amplitudes f+ and f− are
2
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Table 2. Spin-rotation and polarization parameters for elastic π±p scattering at momenta of 1.00, 1.43, and 1.62 GeV/с

Elastic scattering
Momentum, GeV/с

Interval of angles
θc.m., deg

Mean angle
θc.m. , deg P A |R|

π+p 156.0–161.0 158.7 0.81 ± 0.13 0.37 ± 0.22 0.45 ± 0.30

1.00 161.0–164.7 162.8 0.59 ± 0.14 0.49 ± 0.22 0.64 ± 0.21

164.7–170.0 167.0 0.66 ± 0.13 0.30 ± 0.21 0.69 ± 0.16

π−p 156.0–160.1 158.4 –0.46 ± 0.11 0.07 ± 0.18 0.89 ± 0.06

1.00 160.1–163.4 161.8 –0.63 ± 0.12 –0.22 ± 0.18 0.75 ± 0.11

163.4–170.0 165.8 –0.61 ± 0.12 –0.37 ± 0.18 0.70 ± 0.14

π+p 127.2 0.52 ± 0.10 –0.14 ± 0.20 0.84 ± 0.07

1.43 132.5 0.47 ± 0.11 –0.58 ± 0.20 0.67 ± 0.19

π+p 118.0–123.5 121.7 0.24 ± 0.12 0.27 ± 0.18 0.93 ± 0.06

1.62 123.5–127.0 125.2 0.30 ± 0.12 0.36 ± 0.20 0.88 ± 0.09

127.0–131.0 128.8 0.40 ± 0.13 –0.32 ± 0.20 0.86 ± 0.10

π−p 118.0–124.8 122.3 –0.11 ± 0.19 0.88 ± 0.28 0.46 ± 0.54

1.62 124.8–129.4 127.0 0.03 ± 0.19 0.56 ± 0.28 0.83 ± 0.19

129.4–140.0 132.8 0.19 ± 0.20 0.51 ± 0.29 0.84 ± 0.18
represented as polynomials in ω and that their roots
occur in the complex plane of ω. At a fixed energy,
the set of the roots of the polynomials (zeros of the
amplitudes) determines completely the results of a
PWA, in just the same way as the conventionally used
set of partial-wave amplitudes does. The physical
region in the complex plane of ω is represented as
a unit circle, since |ω| = 1 at real values of θc.m..
The zeros of the amplitudes as functions of energy
generate continuous trajectories. At the points where
the trajectories of the zeros intersect the physical
region, the polarization takes the value of +1 or −1,
while the spin-rotation parameters vanish. Such
points are referred to as critical ones. The discrete
transformation ωi → 1/ω∗

i of any root—it is referred
to as the Barellet conjugation—conserves the moduli
of the transverse amplitudes, leaving the cross section
and polarization unchanged; that is, it does not
disturb correspondence between the analysis and
experimental basis. Figure 7 shows the trajectories
of the zeros of the π+p amplitudes from the КН80
and SM90 analyses. It can be seen that the trajectory
of the zero at an angle of about 140◦ is off the circle
for the former and within it for the latter analysis. This
is precisely a manifestation of what is referred to as a
discrete ambiguity in a partial-wave analysis.

5.2. Correction of Analyses

The application of the Barellet transformation to
the trajectory of a zero between two critical points
PH
makes it possible to introduce corrections in the ex-
isting analyses in order to render their results con-
sistent with experimental data on the spin-rotation
parameters. The correction of the КН80, КА84,
and СМВ analyses that was performed for π+p scat-
tering [29] led to solutions that comply well with
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data on the spin-rotation parameters. This gives
sufficient grounds to state that a wrong branch of
solutions was chosen in the original analyses. Fig-
ure 8 shows the Argand diagrams for some partial
waves. It can be seen that the correction (КН80-
С, СМВ-С) improves considerably the agreement
for partial-wave amplitudes between all the exist-
ing analyses. At the same time, the D∗

33(1940)
resonance disappears, while the elasticity factor for
the S∗∗∗

31 (1900) resonance decreases, its identification
concurrently becoming less reliable. The parame-
ters of theD∗∗∗

35 (1930), F ∗∗∗∗
35 (1905), and F ∗∗∗∗

37 (1950)
resonances change only slightly. A quantitative anal-
ysis involving a determination of the pole resonance
parameters [11] confirms these conclusions.
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6. CONCLUSION

An observation of discrete ambiguities in PWAs
for π+p scattering at 1.43 and 1.62 GeV/с and for
π−p scattering at 1.00 GeV/с and a clear-cut choice
of correct branches of solutions are important results
of our measurements and data analysis. At the same
time, satisfactory agreement of our results for A and
Rwith the predictions of partial-wave analyses (apart
from discrete ambiguities) indicates that, although
the experimental basis of modern PWAs does not
contain information about these independent param-
eters, such analyses are capable of reconstructing
amplitudes to a sufficiently high degree of precision.

The analyses of π+p scattering that are based
on the formalism of zeros of the transverse ampli-
tudes lead to results suggesting that the rating of
2
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the S31(1900) resonance should be lowered and that
it should be excluded from the summary table of
baryons that is presented by the Particle Data Group.
Since 1998, this has already been done in the issues
of the Review of Particle Physics.

The problem of negative-parity resonances in the
region around 1.9 GeV, which are not expected, with-
in quark models, to occur there, has been partly
solved since the D33(1940) resonance has not been
confirmed and since the S31(1900) resonance is not
presently considered as that which has been estab-
lished conclusively. At the same time, D∗∗∗

35 (1930)
remains the only reliably established resonance that
does not fit well in the quark model. It belongs to
the third level of excitation [possibly, it enters into (56,
1−3 ) supermultiplet], and its mass must be greater by
200 MeV.

The problem of parity doublets in the regions
around the peaks at 1.7 GeV (a pole at Re =
1665 MeV and Im = −55 MeV) and at 1.9 GeV [pair
of D35(1930) and F35(1905) ] remains open.
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Mathematics (Inst. Teor. Éksp. Fiz., Moscow, 1998).
12. S. M. Bilen’kiı̆, L. I. Lapidus, and R. M. Ryndin, Usp.

Fiz. Nauk 84, 243 (1964) [Sov. Phys. Usp. 7, 721
(1965)].
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Abstract—The spectra of fast π+ mesons from the π−A→ π+X reaction on A =6Li, 7Li, and 16O nuclei
at a primary momentum of p0 = 0.72 GeV/с (T0 = 0.59 GeV) are measured at emission-angle values in
the range ϑ = 0◦–14◦. The results obtained in this way are compared with experimental data taken in other
studies at lower energies and with the results of model calculations. The energy dependence of the cross
sections and of shadowing effects is analyzed for the reactions in question that occur on lithium isotopes.
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1. INTRODUCTION

Interest in pion double charge exchange (PDCX)
on nuclei is motivated by the following remarkable
feature of this process: it proceeds on at least two
identical nucleons. This feature makes it possible
to use PDCX to study both the structure of nuclei
(excitation of doubly isobar-analog transitions and
searches for exotic nuclear states) in exclusive reac-
tions and the dynamics of particle interactions with
nuclei in inclusive reactions (for an overview, see, for
example, [1, 2]). Inclusive PDCX reactions at primary
kinetic energies in the range T0 = 0.12–0.27 GeV
were investigated in detail, predominantly in experi-
ments at the LAMPF meson factory (see [3, 4] and
references therein). The mechanism of two sequential
single charge exchanges (SSCX) suffered by a pion in
a nucleus is a commonly accepted model for analyz-
ing experimental data on PDCX at energies of up to
0.5 GeV (see, for example [5]), which are character-
istic of meson factories. Naturally, the SSCX ampli-
tude is related to the square of the amplitude for single
charge exchange on a free nucleon, and the energy
dependence of SSCX reflects the energy dependence
of charge exchange on a free nucleon. It is well known
that, in the region T0 = 0.6–1.3 GeV, the cross sec-
tion for charge exchange on free nucleons decreases
sharply with increasing energy. Therefore, a strong
decrease in the PDCX cross section is expected in the
SSCX model at these energies [6]. In the experiments

1)Universidad de Valencia, Av. Dr. Moliner 50, E-46100
Burjassot, Valencia, Spain.

*e-mail: krutenkova@vxitep.itep.ru
1063-7788/02/6502-0229$22.00 c©
reported in [7, 8], the 3-m spectrometer installed at
the Institute of Theoretical and Experimental Physics
(ITEP, Moscow) was used to measure the cross sec-
tion for the inclusive reactions

π−16O → π+X. (1)

These measurements, which were performed in the
range of T0 between 0.6 and 1.1 GeV, revealed
evidence for an anomalously weak decrease in the
PDCX cross section with energy in relation to its
sharp decrease in the SSCX model [9]. This obser-
vation motivated the appearance of a new approach
to the PDCX problem at high energies (see [10,
11]). In describing the PDCX process within this
approach, it is necessary to take into account, in the
Glauber pattern of pion–nucleus scattering, not only
elastic rescatterings (that is, the SSCX mechanism)
but also inelastic rescatterings. As was shown in
[10], the contribution of inelastic Glauber rescattering
is dominant at energies in excess of 1 GeV. This
conclusion was based on a theoretical analysis of
the behavior of the inclusive cross section for a pure
PDCX process occurring in the forward direction
(that is, without the inclusion of the production of an
extra pion), the high-energy section of the spectrum
for reaction (1) corresponding to this in experiments.

In the present study, the spectra of fast positive
pions from the interaction of negative pions with
oxygen and lithium nuclei at T0 = 0.59 GeV have
been measured over a momentum interval broader
than that in [7]. This makes it possible to perform a
detailed comparison of our results with available data
on inclusive PDCX on nuclei. The experimental data
are also compared with the results of Monte Carlo
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the experimental setup used.
calculations within the cascade model, where, for the
first time, we take into account the effect of nuclear-
medium polarization.

2. DESCRIPTION OF THE EXPERIMENT

Our objective was to measure the energy spectra
of positive pions from the reaction

π−A→ π+X, (2)

where A =6Li, 7Li, and 16O, at a primary pion
momentum of p0 = 0.72 GeV/с and scattering angles
of ϑ = 0◦–14◦ in the range ∆T ≡ T0 − T = 0–
250 MeV, where T is the kinetic energy of the final
pion. We note that the interval ∆T ≤ mπ = 140 MeV
corresponds to the region of a pure PDCX process,
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where the production of an extra pion in the reaction
is forbidden kinematically.

The experiment, which was performed at the 3-
m ITEP spectrometer, employed spark chambers ar-
ranged in a magnetic field. The layout of the facility
used is depicted in Fig. 1. A beam of negative pi-
ons passed through the H1, C2, and C3 scintillation
counters; the PC1 and PC2 proportional chambers;
and theBSC and LSC 1–3 spark chambers and was
focused onto the target T . The C6 counter in front
of the target was used only during the adjustment
of the beam. The H1 hodoscope, which consisted of
24 scintillation counters and which was positioned at
the intermediate focus of the beam channel, made it
possible to determine the momentum of a beam pion
with a precision of ±0.3%, the momentum spread of
the beam, ∆p/p, being about 5%. For target mate-
rials, we employed H2O, D2O, enriched 6Li (90.4%
of 6Li and 9.6% 7Li) and 7Li (natural mixture of
isotopes: 7.5% 6Li and 92.5% 7Li), which completely
filled thin-wall steel containers that had the shape of
a cylinder 9.5 cm in length and 8 cm in diameter.
The targets attached to a rotatable device were pe-
riodically replaced with the aid of it, one by another.
Particles from

π−A→ (e+, π+, p, d)X (3)

reactions that were emitted from the target passed
through the LSC 4–6 spark chambers and were
recorded by the scintillation counters of the H5, H2,
and H3 hodoscopes. A considerable part of beam
particles that suffered no interaction entered the veto
counter C5. The Cherenkov counters Č2 (a beam
one) and Č3 (a wide-aperture one) [12] served to sup-
press the background from electrons and positrons,
respectively. We measured the time of flight over the
base of about 6 m between the counters C2 and H3

(seven counters of total area 1.1 × 0.7 m2). The error
of the measurements was about 0.8 ns, whereas the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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difference of the times of flight between the pions and
the fastest protons from reaction (3) was ∼4.3 ns
(for forward emitted protons from the reaction π−p→
pπ−, this difference amounted to about 7.0 ns). The
trigger that we used was determined by the formula

Sπ = (H1C2C3
¯̌C2)C̄5(H5H3

¯̌C3)(C2H3)tπ. (4)

A (C2H3)tπ coincidence selected events where the
time of flight was close to that of the pions, where-
by we achieved a considerable suppression of the
contribution from events of reaction (3) that involve
the emission of protons. Unsuppressed protonic
events were used, in particular, in comparing, with
the Monte Carlo calculations, various characteristic
distributions that are generated by particles emitted
in reactions (3). Protons from reactions (3) were
also recorded by the trigger that was intended for
studying backward quasielastic π−p scattering on
nuclei (see, for example, [13]) and which operated
along with Sπ, the counters H4 and C7 serving to
separate a backward scattered negative pion. For a
detailed description of the facility used, the interested
reader is referred to [14].

Tracks of particles from events selected by the
trigger were photographed. Information fixed on a
photofilmwas read out by the ITEPPSP-2 automatic
scanning device. The geometric reconstruction of
events was performed, and the results were analyzed.

With the Sπ trigger, we obtained, in all, more
than 35 000 photographs and processed them. A
major part of these contained the background from
beam interaction with the body of the magnet. In
order to single out the inclusive PDCX reaction, we
successively selected (i) events having tracks in the
LSC 4–6 chambers; (ii) events for which the trajec-
tories of positively charged particles passed near the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
spark chamber and intersected the plane of the H3

hodoscope; (iii) events for which the square of the
mass of a particle emitted from the target (it was de-
termined from its momentum and time of flight),M2

t ,
was constrained by the region indicated by the arrows
in Fig. 2 [this corresponds to pion emission—that is,
to the observation of reaction (2)]; and (iv) events of
the pure PDCX process (that is, events occurring in
the kinematical region ∆T = 0–140 MeV).

For the H2O, D2O, 6Li, and 7Li targets, the total
numbers of events of reaction (2) were, respectively,
707 (162), 1020 (207), 530 (88), and 507 (102)
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The subsequent steps of this selection are also
illustrated in Fig. 3, which displays the distributions
of events with respect to the momentum of the emit-
ted particle. Two groups of particles within the mo-
mentum acceptance of the facility (curve) are pro-
tons (at higher momenta) and pions. Their clear-
cut separation in Fig. 3 is ensured by the use of
(C2H3)tπ coincidences, which eliminate protons of
relatively lower momenta (left boundary of the proton
peak). Histograms 1, 2, 3, and 4 in Fig. 3 correspond
to events selected according to items (i), (ii), (iii),
and (iv) (histograms 2 and 3 for pions coincide). A
distinct separation of pion and proton events in the
time of flight (see Fig. 2) ensures a low level (less
than 5%) of the proton background to PDCX events
(see histogram 4 in Fig. 3). It should be noted
that the left boundary of histogram 4—it is due to
the constraint ∆T < 140 MeV—is smeared in this
distribution, largely because of the beam momentum
acceptance. The total resolution of the facility in ∆T
(about 8 MeV) was determined from the width of the
peak associated with backward π−p elastic scattering
on a water target (see Fig. 4).

As to the positron background, its sources are
the following: (a) e−A→ γX → e+X ′ reactions
(bremsstrahlung from electrons and photon con-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 7. Double-differential cross sections for (a–c) π+16O → π−X and (d) π−16O → π+X reactions versus ∆T [∆T =
T0 − T , where T0(T ) is the kinetic energy of a beam (forward emitted) pion] at various energies. The results of the calculations
performed on the basis of the model proposed in [9] by assuming the SSCX mechanism with (without) allowance for the effect
of nuclear-medium polarization are shown by the dashed (solid) curve.
version in a target material) induced by a 10%
admixture of electrons in the π− beam (the yield of
positrons at ϑ ≈ 0◦ is approximately two orders of
magnitude greater than the PDCX yield) and (b)
π−A→ π0X → e+X ′ reactions, whose background
(about 30% of PDCX) was estimated by eliminating
the Cherenkov counter Č3 from the trigger and by
recording its signal in collecting a small individual
data sample.

The use of the Cherenkov counters Č2 and Č3
made it possible to suppress both sources of positron
background almost completely.

That the angular distributions of events of reac-
tion (2) for various intervals of momenta of incident
π+ mesons (some of these intervals are presented in
Fig. 5) comply well with the results of our Monte
Carlo calculation of the geometric efficiency of the
facility (under the assumption that the cross section is
isotropic) suggests a rather weak angular dependence
of the measured cross section.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
3. RESULTS

The double-differential cross sections for the in-
clusive reaction (2) were calculated by the formula

d2σ

dΩdT
=

N

(ρl/A)NAN0∆ΩδTk
, (5)

where N is number of PDCX events in the interval
δT = 10 MeV; A is the target mass number; ρl is the
target thickness in g/cm2;NA is Avogadro’s number;
N0 is the negative-pion flux as determined by the
coincidences of the countersH1, C2, C3, and ¯̌C2; ∆Ω
is the solid angle covered by the facility acceptance;
and k is a coefficient that is equal to 0.55 ± 0.06
or 0.57 ± 0.06 for H2O (D2O) or 6,7Li, respectively,
and which takes into account corrections to the cross
section for the presence of a lepton admixture in the
beam (0.83), for pion absorption in the target (0.92
and 0.97) and in materials of the equipment (0.96),
for pion decays in the spectrometer (0.94), for the halo
of the beam at the entrance of the target (0.84), and
2
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for spurious actuations of the Cherenkov counter Č3

(0.94).
In order to test the correctness of our procedure

for measuring the cross section for reaction (2), we
determined the cross sections for backward elastic
pion–proton scattering in the angular range cosϑ =
0.86–0.99. To a precision higher than 10%, these
cross sections proved to be in agreement with the data
of partial-wave analysis reported in [15].

The ∆T dependence of d2σ/dΩdT for the process
occurring on 16O at T0 = 0.59 GeV was obtained
by averaging the cross sections that were found for
H2O and D2O and which comply well with each
other within the statistical errors. This dependence
is in reasonably good agreement with the spectrum
obtained previously in [7]. From Fig. 6, one can
see that, in the interval of ∆T between 0.03 and
0.25 GeV, the cross section steadily grows, showing
no special features near the threshold for the reaction
involving the production of an extra pion (the thresh-
old is indicated by the arrow). The solid curve in
Fig. 6 represents the PDCX contribution to the cross
section for reaction (1) according to the calculations
performed for the SSCX mechanism on the basis of
the model that was proposed in [9] and which was
intended for describing the set of processes induced
by pion–nucleus interaction. In these calculations,
we took into account the Fermi motion of nucleons,
the Pauli exclusion principle, and absorptive effects. It
can be seen that the results of the calculations exceed
considerably the measured cross section; a similar
excess is also observed for the inclusive spectra [16] at
P

the lower energies of T0 = 0.4–0.5 GeV for π+16O→
π−X reactions (see Fig. 7).

It is worth noting here that the results obtained by
calculating the cross sections for the exclusive reac-
tions π+14С → π−14O and π+18O → π−18Ne within
Glauber theory [6] without free parameters are also in
excess of the cross sections measured at T0 = 300–
525 MeV [17]. Oset and Strottman [6] and Oset
et al. [18] were able to fit the results of their calcu-
lations with data from [17] upon taking into account
a renormalization of the amplitude for pion charge
exchange on a nucleon, this renormalization being
interpreted as an effect of nuclear-medium polariza-
tion. The inclusion of this effect in calculating the
PDCX contribution to the cross section for reaction
(1) (dashed curve in Fig. 6) reduces substantially
the cross-section value. Such a renormalization also
leads to the reduction of the calculated cross section
displayed in Fig. 7 (dashed versus solid curve).

From Fig. 6, one can also see that the calculated
cross section for the reaction leading to the produc-
tion of an extra pion (dotted curve) grows sharply
from the threshold, considerably exceeding the mea-
sured cross section. This discrepancy may probably
be due to overly rough approximations embedded in
the model behind the computational procedure. An
adequate parametrization of the cross sections cannot
be constructed here in view of the paucity of experi-
mental data on the differential cross sections for the
production of an extra pion.

On average, the differential cross section that we
measured for 6Li proved to be about one-half as
large as the cross section for 16O, but it does not
differ, within the errors, from the cross section for
7Li (see Fig. 8а). This is the point where our data
differ substantially from the results presented in [19]
at T0 = 0.24 GeV (see Fig. 8b)—there, the cross
section measured for 7Li is smaller than that for 6Li
nearly by a factor of 1.5. We recall that the PDCX
reaction studied here proceeds on two intranuclear
protons, neutrons having only a shadowing effect.
This shadowing effect is much more pronounced at
the energy of T0 = 0.24 GeV than at the energy of our
experiment (T0 = 0.59 GeV), since the cross section
for π−n interaction is one order of magnitude larger
at T0 = 0.24 GeV.

4. CONCLUSION

The spectra of fast π+ mesons from the π−A→
π+X reactions on A =6Li, 7Li, and 16O nuclei at
a primary momentum of p0 = 0.72 GeV/с (T0 =
0.59 GeV) have been measured for ϑ = 0◦–14◦

in the range ∆T = 0–250 MeV. The results have
been analyzed and compared with experimental data
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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obtained at lower energies. Calculations performed
on the basis of the model proposed in [9] have
yielded results exceeding the cross sections obtained
here. The agreement with the experimental data is
noticeably improved upon taking into account the
effect of nuclear-medium polarization. The spectrum
in the region of the production of an extra pion has not
yet been reproduced. The shape of the π+ spectrum
measured in our experiment for the 16O target at
T0 = 0.59 GeV complies with the shape of the π−

spectrum [16] for π+16O→ π−X reactions at T0 =
0.40, 0.45, and 0.50 GeV. The distinction between
the cross sections for 6Li and 7Li vanishes at higher
energies in accordance with the decrease in the total
cross section for π−n interactions above the ∆-isobar
region.
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Abstract—The differential cross sections for the reaction π−p→ π0n were measured for scattering
angles in the backward hemisphere. The experiment was performed by using the pion channel of the
synchrocyclotron installed at the Petersburg Nuclear Physics Institute (PNPI, Gatchina), the momenta of
incident pions being varied in the range between 456 and 710 MeV/c. The measurements were performed
by recording the recoil neutron in coincidence with one of the photons from the decay process π0 → 2γ.
The experimental facility used is described, and the results of the measurements are presented. These new
results are characterized by a statistical accuracy higher than that of all results published previously and
are in better agreement with the predictions of the partial-wave analysis (SM-95 version) performed by a
group from Virginia Polytechnic Institute. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present article reports the results of an ex-
periment performed by using the pion channel of the
Synchrocyclotron installed at the Petersburg Nuclear
Physics Institute (PNPI, Gatchina). The full list of
the authors who participated in this experiment can
be found in the PNPI preprint [1].

Together with elastic π±p scattering, the process
of charge-exchange π−p scattering (π−p→ π0n)
belongs to the group of three basic processes that
furnish the main body of information about the
spectroscopy of nonstrange baryons (in other words,
pion–nucleon resonances). The features of these
resonances (masses, widths, decay modes) are of
great importance. Precise knowledge of them would
allow a multiparameter test of available quark models
that is aimed at choosing the most realistic of these.
Unfortunately, the present-day accuracy to which
the features in question have been determined is
insufficiently high; moreover, the existence of some
resonances has not yet been established conclusively.
The reason behind this situation is twofold: on one
hand, the procedures for a partial-wave analysis used
to extract the features of resonances from experimen-
tal data are imperfect; on the other hand, the quality
of these experimental data is insufficiently high.
An analysis of the currently prevalent experimental

situation reveals that, in the region of the low-lying
pion–nucleon resonances P11(1440), S11(1535), and
D13(1520), quite a rich database has been created for
1063-7788/02/6502-0236$22.00 c©
elastic π+p and π−p scattering owing predominantly
to the studies performed at PNPI [2], at the Los
Alamos meson factory (USA) [3], and at the Ruther-
ford Laboratory (United Kingdom) [4]. However, the
quality of data on charge-exchange π−p scattering
leaves much to be desired. This especially concerns
relevant differential cross sections—in the range of
incident-pion energies between 100 and 600 MeV,
data on them are scanty, some of these data being far
from reliable.

2. EXPERIMENTAL FACILITY

The experiment was performed by using the pion
channel of the PNPI synchrocyclotron at incident-
pion energies in the range between 337 and 585MeV,
the corresponding momentum values being 456 and
710 MeV/c. The layout of the experimental facility
is shown in Fig. 1. As basic elements, the facility
includes a liquid-hydrogen target, neutron detectors,
a deflecting magnet (which prevents beam pions from
hitting the neutron detectors used), and γ detectors of
two types.
The experiment detected recoil neutrons in coin-

cidence with one of the photons from neutral-pion
decay. For this, the neutron and γ detectors were
arranged at angles approximately corresponding to
the kinematics of the reaction π−p→ π0n (in the
subsequent decay of the product π0 mesons, the pho-
tons are emitted predominantly in the direction of
π0-meson emission). The layout of the equipment
2002MAIK “Nauka/Interperiodica”
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(see Fig. 1) was intended for recording the process of
charge-exchange π−p scattering into the backward
hemisphere, in which case the recoil neutron goes in
the forward direction, while the photons originating
from π0-meson decay travel predominantly in the
backward direction. In the c.m. frame, the range
of angles that is specified by the arrangement of the
neutron detectors is that between 155◦ and 180◦.
Presented immediately below is a detailed descrip-

tion of individual units of the facility.
The experiment employed a safe vacuum-type

liquid-hydrogen target [5] preliminarily cooled by
means of a nitrogen vessel. The angle open for
detecting emitted particles was 270◦. The hydrogen
container had the shape of a vertical cylinder of
height 12 cm and diameter 10 cm, its wall thick-
ness being 100 µm of aluminum. Hydrogen was
liquefied by cooling the container with cold gaseous
helium. The outer window of the vacuum casing was
manufactured from Mylar 200 µm thick. The tem-
perature (and, hence, the density) of liquid hydrogen
was monitored throughout the experimental time by
measuring the resistance of a calibrated germanium
diode and the pressure of vapors over the surface
of the liquid. The density of liquid hydrogen was
0.0740 ± 0.0004 g/cm3.
The neutron detectors were designed and manu-

factured at theUniversity of California at Los Angeles
[6]. Each detector consisted of scintillation blocks
tightly adjacent to one another that had dimensions
of 25.4 × 25.4 × 8.9 cm3 (length × height × width),
each block being viewed by two phototubes. The
scintillator length of 25.4 cm ensured the neutron-
detection efficiency εn at a level not poorer than 0.2.
The efficiency value was previously determined in the
United States [7]. The distance from the target center
to the entrance of the detector was 475 cm, and
the angular acceptance of each detector was 3.14◦

(± 1.57◦ from the detector axis). An anticoincidence
counter that rejected triggering from charged parti-
cles was arranged in front of each neutron detector;
the anticoincidence counters were manufactured at
the University of California at Los Angeles, the thick-
ness of plastic scintillators being 3 mm.
In order to prevent the incident-pion beam from

hitting the neutron detectors, a dedicated deflecting
magnet was placed in between the target and these
detectors. This magnet generated a field of strength
up to 0.8 T in a gap of width 23 cm (the diameter
of the pole was 73 cm), ensuring the deflection of
the beam through an angle of about 20◦. The scin-
tillation counter S4 was arranged on the trajectory
of the deflected pion beam. This veto counter (to-
gether with the counter S3 positioned on the beam
axis immediately downstream of the target) served to
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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Fig. 1. Layout of the experimental facility used tomeasure
the differential cross sections for charge-exchange π−p
scattering: (S1, S2) monitoring counters, (S3, S4) beam
veto counters, (N1–N4) neutron detectors, (M) Magnet
deflecting the incident pion beam, (T ) liquid-hydrogen
target, (CsI) γ detector consisting of 16 CsI(Na) crystals,
and (CRN) Cherenkov spectrometer consisting of eight
blocks from lead glass. Anticoincidence counters are
arranged in front of the neutron and γ detectors.

reduce the number of spurious triggerings due to the
background counting of photons and neutrons in the
neutron detectors.

Two types of total-absorption electromagnetic
calorimeters were used in the experiment to record
photons from π0-meson decays. The first included
eight Cherenkov spectrometers fromSF-5 lead-glass
blocks. Each block had dimensions of 15 × 15 ×
35 cm3 (the last dimension, thickness, corresponded
to 13.8 radiation-length units) and was viewed by
a phototube glued directly to the end face of this
block. The other calorimeter consisted of 16 CsI(Na)
crystals arranged as a 4× 4 assembly, the dimensions
of an individual crystal being 6 × 6 × 30 cm3. The
crystal thickness corresponded to 16.2 radiation-
length units. Anticoincidence counters were placed
in front of each of the two γ detectors. These counters
served to reject cases where it was a charged particle
emitted from the target and not a photon that hit the
detector.

An important feature peculiar to this experiment
was that it employed γ detectors of different types po-
sitioned on the different sides of the beam axis. Since
the neutron detectorsN1 andN2were also placed on
the different sides of the beam axis symmetrically with
respect to it, there arose the possibility of measuring
the cross section for scattering at the same angle by
using the different types of γ detectors, whereby we
2
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were able to study the influence of possible disre-
garded systematic effects.

3. EXPERIMENTAL PROCEDURE

As was indicated in the preceding section, the
differential cross sections for charge-exchange π−p
scattering are measured in the present experiment
by simultaneously detecting the recoil neutron and
one of the photons. In order to ensure, however, the
possibility of using, in data processing, various cuts
on energy, nγ coincidences were introduced not at the
stage of trigger formation but at the subsequent stage
of data processing.

In the course of this experiment, the entire body of
information coming from the detectors (the amplitude
spectra from the neutron and γ detectors, time-of-
flight spectra from the neutron detectors, numbers of
counts from themonitoring counters and from the an-
ticoincidence counters) was recorded in the random-
access memory of a PC. After the accumulation of
100 events, a buffer was formed and recorded on a
hard disk. The time of accumulation of one buffer was
varied from 2 to 10 s, its actual value being dependent
on the incident-pion momentum and on the beam
intensity. In all, we collected 20 000 to 40 000 buffers
in dealing with the hydrogen-filled target and approx-
imately half of this number for the empty target. The
total time of data-sample accumulation at a single
PH
momentum value was 50 h (pπ = 456 MeV/c) to
120 h (pπ = 710MeV/c).
The amplitude spectra associated with the pas-

sage of cosmic-ray muons1) through the γ detectors
were recorded simultaneously with data acquisition in
order to check the stability of the amplitude channels
of all γ detectors. The positions of the peaks in these
spectra were periodically monitored, and the required
corrections were introduced if there arose some ran-
dom drifts.
In the course of subsequent data processing, the

number of events due to the reaction being studied
was determined from an analysis of the time-of-flight
spectra measured over a flight base of about 5 m
between the monitoring counter S2 and the actu-
ated neutron detector. First, we performed (upon
the relevant renormalization of monitoring numbers)
a channel-by-channel subtraction of the spectra ob-
tained in measurements with the hydrogen-filled and
the empty target. This made it possible to eliminate
the contribution of the charge-exchange reaction oc-
curring on a material of the scintillator of the S2
counter, on aluminum walls of the container, and on
the entrance Mylar diaphragm of the target. Thus,
the resulting spectrum contained only events of pion
interaction with hydrogen. An example of such a
spectrum is represented by the upper histogram in
Fig. 2, where we plotted the number of events along
the ordinate and the number of a channel of the time-
to-digital converter (TDC) along the abscissa. The
spectrum is seen to be dominated by a strong peak2)

associated with photons from the decay process π0 →
2γ that hit the detector, recoil neutrons from the re-
action π−p→ π0nmanifesting themselves as a mod-
est enhancement (in the region of the 130th chan-
nel) above the pedestal that is associated with neu-
trons from pion-production reactions (π−p→ π0π0n,
π+π−n, etc.) and with a general neutron background
in the experimental hall of the accelerator.

The lower histogram in Fig. 2 demonstrates that
the separation of “useful” events (that is, events due
to the reaction π−p→ π0n) is facilitated upon in-
troducing the requirement of nγ coincidences: the
photon peak and the pedestal are substantially sup-
pressed, while the component generated by the re-
action π−p→ π0n, which is studied here, becomes
quite distinct.3) It is the number of events under the
corresponding peak—we denote it by Nevent—that

1)These muons were detected in pauses of 10 ms between two
successive accelerator spills.

2)For the sake of convenience, the peak position was chosen
for a reference point of the histograms.

3)It should be emphasized that different scales along the ordi-
nate are chosen for the upper and the lower histogram.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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is used below to calculate the absolute value of the
differential cross section.
It is worth noting here that the number Nevent

may also include events due to the radiative-capture
reaction π−p→ γn. The time-of-flight criterion can-
not distinguish between neutrons from the charge-
exchange process (in the formulas given below, we
denote it by “cex”) from neutrons from the radiative-
capture reaction (“rex”)—the positions of the cor-
responding neutron peaks are separated by 0.2 to
0.3 ns. In a further treatment of the data that come
from the present experiment, it is therefore necessary
to subtract the contribution of the radiative-capture
reaction; that is, the differential cross sections for
charge-exchange π−p scattering must be calculated
with the numberN cex

ev = Nev −N rex
ev .

The formula for calculating the required differential
cross sections in the c.m. frame has the form

dσ

dΩ
=

N cex
ev

NπNp∆Ωlab
n JnεnFγ

. (1)

The number Nπ of pions that traversed the op-
erating volume of the target and which actuated the
facility was determined on the basis of the recorded
number of coincidences of the monitoring counters
S1 and S2 that was corrected for percentage of alien
particles (electrons and muons) in the beam.
The number of protons in the target is given by

Np = NAρteff , where NA is Avogadro’s number, ρ
is the liquid-hydrogen density corresponding to the
measured (in the course of the experiment) temper-
ature of the target operating volume, and teff is the
effective target thickness calculated with allowance
for the radius of the cylindrical container of hydrogen
and for the dimensions of the monitoring counter S2.

The solid angle ∆Ωlab
n covered by the neutron

detector is determined by the geometry of the ex-
periment and, for a distance of 488 cm between the
target center and the midpoint of the detector, is
2.85 × 10−3 sr.
The values of the neutron-detector efficiency εn

were taken from [7], where they were measured with
the aid of tagged neutrons from the reaction π−d→
nn. In the neutron-energy range En = 83–290 MeV,
which was explored in that study, the energy depen-
dence of the efficiency in question was described there
by the expression

εn(En) = 1 − e−λ(En)L,

where λ(En) is the neutron-detection efficiency per
centimeter of the scintillator traversed and L is the
thickness of the scintillation block. For three neutron
detection thresholds of 2, 5, and 15 MeV, the effi-
ciency of neutron detectors was determined to within
± 3.5%.
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The neutron Jacobian Jn is determined exclusively
by the kinematics of the process being studied, rang-
ing here between 0.43 and 0.49, its specific value
being dependent on the incident-pionmomentum and
on the recoil-neutron emission angle.
The coefficient Fγ , which is hereafter referred to

as the angular acceptance, indicates, among all pho-
tons that originate from the decays of neutral pions
kinematically conjugate with recoil neutrons hitting a
given neutron detector, the fraction that is recorded
by the γ detector. In order to calculate Fγ , the ex-
periment was simulated by the Monte Carlo method.
In these calculations, we took precisely into account
the actual geometry of the experiment, including the
design of the γ detectors and the possible interaction
of neutrons and photons emitted from the hydrogen
container with the structural elements of the tar-
get and of the detectors. Since the anticoincidence
counter situated in front of a γ detector could be trig-
gered by the conversion of photons in the scintillator
of this counter that were emitted from the target or by
the conversion of annihilation photons that escaped
from the γ detector in the opposite direction, our sim-
ulation procedure allowed for the probability of such
spurious actuations. In the calculations, we employed
the spatial features of the pion beam (its dimensions
and angular divergence) that were measured previ-
ously and took into account the momentum distribu-
tion of particles in the beam. For the chosen geometry
of the experiment, the coefficient Fγ ranged between
0.2 and 0.4, its specific value being dependent on the
angle at which the neutron detector was arranged.
To conclude this section, we revisit the definition

of the number N cex
ev . It can easily be shown that this

number can be represented as
N cex

event (2)

=
Nevent

1 + (F rex
γ /F cex

γ )(J rex
n /Jcex

n )(1/R)
= NeventK,

where

R =
(
dσ

dΩ

)cex
/(

dσ

dΩ

)rex

is the so-called Panofsky ratio. In the ensuing cal-
culations, we used R values that were computed on
the basis of partial-wave analyses of pion–nucleon
scattering [8] and of pion photoproduction [9]. The
possible error in the R values obtained in this way
can be estimated by comparing themwith those mea-
sured experimentally at a few points for which such
measurements were performed. Usually, R > 1 (for
the scattering angles being investigated, the ratio R
takes values between 3 and 30, depending on the
incident-pion momentum), but this is compensated
to a considerable extent by the fact that the angular
2
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acceptance F cex
γ for the charge-exchange reaction

is considerably smaller than the angular acceptance
F rex

γ for the radiative-capture reaction (this is be-
cause, in the case of the reaction π−p→ π0n, pho-
tons from pion decay have a broad angular distribu-
tion, whereas the photon produced in the reaction
π−p→ γn travels in a specific direction). As a re-
sult, the contribution of the radiative-capture reaction
proves to be quite large for specific combinations of
neutron and γ detectors. By way of example, we indi-
cate that, in the case where neutrons hitting the N3
or the N4 detector are recorded in coincidence with
photons hitting the Cherenkov spectrometer CRN ,
the denominator in formula (2) proves to be close to 2
(that is, N cex

event ≈ Nevent/2 ≈ N rex
event) in the momen-

tum range 500–600 MeV/c, where the cross section
for the charge-exchange reaction is minimal for scat-
tering at large angles. At the same time, we note
that the contribution of the radiative-capture reaction
vanishes if one records N1 + CsI and N2 + CRN
coincidences since, in this case, the relative disposi-
tion of the neutron detector and γ detectors does not
fit the kinematics of the reaction π−p→ γn, so that
the photons from this reaction that are kinematically
conjugate with the recorded neutrons merely miss the
γ detector.
It is necessary to introduce some corrections in the

quantity dσ/dΩ obtained with the aid of formula (1).
We now consider this issue at greater length.
The number of particles that have traversed,

throughout the experimental time, the target vol-
ume singled out by the monitoring counter S2 is
determined by the number of S1 · S2 coincidences;
however, it is necessary to introduce a correction
for the presence of muons and electrons in the pion
beam. The composition of the beam was com-
prehensively studied in [10], where it was shown
experimentally that the concentration of electrons
increases with decreasing momentum of particles in
the beam, changing from 4.5% at 625 MeV/c to 20%
at 450 MeV/c. More recently, the composition of
the beam was measured in the course of experiments
reported in [11] and devoted to the energy calibration
of γ detectors by using electrons of various energies.
The results obtained in this way comply well with
the beam composition presented in [10]. As to the
admixture of muons in the beam, it is less significant:
according to [10], it is about 4% at 570 MeV/c and
(8.0 ± 1.3)% at 400 MeV/c.

Taking the above into account, we have

Nπ = Nbeam −Ne −Nµ = Nbeam(1 − α1), (3)

where the correction term is given by α1 = (Ne +
Nµ)/Nbeam.
P

In addition, a small fraction of pions recorded by
the monitoring counter S2 decay on the path be-
tween this counter and the target. Assuming that,
on average, this decay proceeds within the base of
25 cm between the S2 counter and the target center,
we estimate the relevant correction α2 at 0.7% for
710 MeV/c and at 1.0% for 456 MeV/c.
Yet another correction is associated with the peri-

odic time structure of the proton beam at the outlet of
the accelerator, where particle microbunches of dura-
tion about 10 ns are separated by intervals of 75 ns.
Accordingly, secondary-particle beams generated by
the primary beam have a similar time structure. At
a particle flux of 106 s−1 in the pion channel, there is
a nonzero probability that two pions from two suc-
cessive microbunches hit the hydrogen target. If the
second of these pions undergoes interaction in the
target, inducing the charge-exchange reaction, this
useful event will be rejected provided that the beam
veto counter actuated by the preceding pion has a
pulse duration commensurate with the separation of
microbunches, which is about 75 ns (see above).
The corresponding correction α3 was calculated

on the basis of the Poisson distribution. By way
of example, we indicate that, at a momentum of
456 MeV/c, the calculated value of this correction is
α3 = 0.1. At this momentum value, we additionally
performed a dedicated test experiment at an accel-
erator intensity reduced by a factor of 2; needless to
say, the suppression of useful events that is due to
the effect being considered must be less pronounced
in that case. Upon introducing the calculated cor-
rections, the cross-section values obtained in the test
experiment at the reducedmultiplicity and in the basic
experiment at full intensity were in agreement within
5%. This gives sufficient grounds to state that, at
a momentum of 456 MeV/c, the systematic error in
determining the cross sections that is introduced by
the correction being discussed does not exceed 5%;
that is, α3 = 0.1 ± 0.05. In other words, the quantity
α3 itself is known to within ± 50%.
With allowance for all the aforementioned correc-

tions, expression (1) takes the form
dσ

dΩ
=

N cex
event

NbeamNp∆Ωlab
n JnεnFγ

(4)

× 1
(1 − α1)(1 − α2)(1 − α3)

.

4. RESULTS

The measurements were performed at the pion
channel of the PNPI synchrophasotron for nine val-
ues of the incident-pion momentum. These were
456, 490, 573, 614, 655, 681.5, 685, 697.5, and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Differential cross sections for charge-exchange π−p scattering that are obtained in the present study [both the statistical
and the systematic error (respectively, first and second error) are quoted for each cross-section value]

p, dσ/dΩ, mb/sr

MeV/c N1 + CsI N2 + CRN N3 + CRN N4 + CRN

θc.m. = 175◦ θc.m. = 166◦ θc.m. = 157◦

456 0.326± 0.024 ± 0.023 0.388± 0.016 ± 0.032 0.339± 0.010 ± 0.023 0.305 ± 0.008± 0.020

490 0.117± 0.016 ± 0.013 0.097± 0.012 ± 0.011 0.101± 0.006 ± 0.011 0.113 ± 0.005± 0.012

573 0.065± 0.011 ± 0.010 0.067± 0.008 ± 0.011 0.066± 0.003 ± 0.010 0.055 ± 0.003± 0.008

614 0.277± 0.015 ± 0.018 0.244± 0.013 ± 0.020 0.207± 0.007 ± 0.014 0.162 ± 0.006± 0.011

655 0.491± 0.013 ± 0.021 0.506± 0.011 ± 0.033 0.447± 0.007 ± 0.022 0.339 ± 0.006± 0.015

681.5 0.641± 0.012 ± 0.027 0.684± 0.014 ± 0.045 0.581± 0.007 ± 0.029 0.475 ± 0.007± 0.020

685 0.662± 0.016 ± 0.028 0.714± 0.014 ± 0.047 0.601± 0.009 ± 0.030 0.489 ± 0.008± 0.021

697.5 0.686± 0.018 ± 0.033 0.712± 0.015 ± 0.049 0.617± 0.009 ± 0.033 0.534 ± 0.008± 0.026

710 0.642± 0.017 ± 0.031 0.697± 0.015 ± 0.048 0.600± 0.010 ± 0.032 0.529 ± 0.009± 0.025
710 MeV/c. The absolute values of the particle mo-
menta in the beam were known to within± 0.5% from
the previous measurements reported in [10]. The to-
tal momentum acceptance (FWHM of the respective
distribution) was 6%. The particle flux through the
monitoring counter S2 changed from 1.5 × 105s−1 at
710 MeV/c to 3.5 × 105s−1 at 450 MeV/c, the S2
counter capturing about 70% of the total particle flux
in the beam.
The results are compiled in the table, which

quotes, for each value of the differential cross section,
both the statistical and the systematic error (respec-
tively, first and second error value).
The systematic errors stemmed predominantly

from (i) the uncertainty in determining the density
of liquid hydrogen in the target (estimated above
at 0.7%); (ii) the uncertainty in determining the
neutron-detector efficiency (3.5%); (iii) uncertainty
in determining the admixture of electrons and muons
in the pion beam [the coefficient α1 in (4) was 3 to
1%, depending on the momentum value]; (iv) the
uncertainties in determining the angles at which the
neutron detectors, the calorimeter from CsI crystals,
and the Cherenkov spectrometer are arranged with
respect to the beam axis (± 0.2◦, ± 0.1◦, and ± 0.5◦,
respectively), the corresponding total error in calcu-
lating the angular acceptance being 0.5 and 5% (the
specific value of this error depends on the combination
of the neutron and γ detectors that is being consid-
ered); (v) the uncertainty in subtracting the contribu-
tion of the radiative-capture reaction (for the N3 +
CRN and N4 + CRN combinations, it amounts
to 15% for a momentum value of 573 MeV/c, at
which the radiative-capture cross section becomes
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
commensurate with the cross section for charge-
exchange reaction, and decreases to a few percent
at lower and at higher momenta; for the N1 CsI
and N2 + CRN combinations, the contribution of
the radiative-capture reaction vanishes); and (vi) the
uncertainty in determining the correction α3 for the
suppression of useful events because of the presence
of beam particles in two successive microbunches (in
the preceding section, this uncertainty was estimated
at ± 50% of the correction value itself; this yields the
error of 1 to 7% in determining the cross section, the
specific value being dependent on the beam intensity).
The total systematic error was calculated as the

square root of the sum of the squares of the above
six components. For the majority of the momentum
values, it is at a level of 5 to 10%, and only at 490 and
573 MeV/c, where the contribution of the radiative-
capture reaction appears to be significant, does the
total systematic error become as large as 13–16%.
For the c.m. scattering angle of 175◦, we dis-

play two sets of the results, that obtained with the
Cherenkov spectrometers used as γ detectors and
that obtained with the calorimeter of CsI(Na) crys-
tals. As was mentioned above, the neutron detectors
conjugate to these two γ detectors were arranged at
identical angles on the two sides of the beam axis.
A comparison of the cross sections as obtained for
the same scattering angle but with the different γ
detectors can make it possible to assess additional
systematic effects overlooked in data processing. We
can state that, in the majority of the cases, the differ-
ence of the two cross-section values does not exceed
10%; only for the lowest two momentum values does
this difference become as large as 20%. At some
2



242 LOPATIN

 

0.8

0.4

0

(

 

a

 

)

(

 

b

 

)

(

 

c

 

)

0.8

0.4

0

0.8

0.4

0
400 500 600 700

 

p

 

, MeV/

 

Ò

d
 

σ
 

/
 

d
 

Ω
 

, mb/sr

Fig. 3. Experimental results for the π−p→ π0n differ-
ential cross sections at the scattering angles of θc.m. =
(a) 175◦, (b) 166◦, and (c) 157◦: (closed circles) results
obtained with the aid of the Cherenkov spectrometers and
(open circles) results obtained with the aid of the CsI(Na)
crystals. The dashed, dotted, and solid curves represent
the predictions of respectively the KH-80 [12], the PNPI-
94 [13], and the SM-95 [8] partial-wave analysis.

momentum values, the difference in question is be-
yond the statistical errors, but it never exceeds two
standard deviations. At the same time, this discrep-
ancy cannot be associated with the systematic errors
discussed above, because these could lead to a regular
bias of one series of the results (obtained with the
Cherenkov spectrometers) with respect to the other
series (obtained with the CsI crystals), but, in fact,
this is not observed. In all probability, there are some
other errors of yet unknown nature.
Our data on the differential cross sections for the

charge-exchange reaction4) are displayed in Fig. 3,
along with the predictions of three partial-wave anal-
yses (KH-80 [12], PNPI-94 [13], SM-95 [8]). It
can be seen that, over the entire momentum interval
being studied, the new experimental results comply
well with the data from the SM-95 partial-wave anal-
ysis, but they deviate significantly from the predic-
tions of the KH-80 analysis. This fact can have far-
reaching consequences since all features of the pion–
nucleon resonances from the tables of the Particle
Data Group were obtained on the basis of precisely

4)The statistical errors of the measurements are within the
dimensions of the points.
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Fig. 4. Differential cross sections for the reaction π−p→
π0n at the scattering angle of θc.m. = 166◦ according
to our data (closed circles), along with results of other
experiments (open symbols): (∇) [14], (�) [15], (♦) [16],
(×) [17], and (�) [18].

the KH-80 partial-wave analysis. As a matter of fact,
the discrepancy between the new experimental data
obtained in the present study and the predictions of
the KH-80 analysis suggests that the results of that
analysis are not quite correct and should be revised.

In order to illustrate the significance of what our
new results introduce in the world database of the
charge-exchange reaction, the differential cross sec-
tions that we obtained for the scattering angle of
θc.m. = 166◦ are shown in Fig. 4, along with the
results of those scanty measurements that were per-
formed previously (it should be recalled that all those
experiments were performed 25 or even more years
ago). It can be seen that there have been no measure-
ments at momenta below 600 MeV/c and that the
results of our study in this region are the only source
of experimental information about the cross sections
for charge-exchange backward scattering. In the re-
gion of higher momenta, there is only one consistent
set of data that were reported in [17] and which are
in satisfactory agreement with our data, especially
if one considers that the systematic error therein as
estimated by the authors of [17] themselves is 11 to
14%. The remaining results of earlier experiments in
Fig. 4 are fragmentary and are characterized by much
greater errors.

As can be seen, the PNPI results have a higher
statistical accuracy than all previous experiments.
Moreover, they cast some doubt on the majority of
previous results, which were used as a basis in the
partial-wave analyses of pion–proton scattering.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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12. G. Höhler,Handbook of Pion–Nucleon Scattering,

Physics Data, No. 12-1 (Fachinformationzentrum,
Karlsruhe, 1979).

13. V. V. Abaev and S. P. Kruglov, Z. Phys. A 352, 85
(1995).

14. C. B. Chiu et al., Phys. Rev. 156, 1415 (1967).
15. E. Hyman et al., Phys. Rev. 165, 1437 (1968).
16. F. Bulos et al., Phys. Rev. 187, 1827 (1969).
17. N. C. Debenham et al., Phys. Rev. D 12, 2545 (1975).
18. R. M. Brown et al., Nucl. Phys. B 117, 12 (1976).

Translated by A. Isaakyan
2



Physics of Atomic Nuclei, Vol. 65, No. 2, 2002, pp. 244–248. From Yadernaya Fizika, Vol. 65, No. 2, 2002, pp. 269–273.
Original English Text Copyright c© 2002 by Kudenko.

Conference on Physics of Fundamental Interactions
Experiment
Search for T Violation in the Decays K+ → π0µ+ν and K+ → µ+νγ*

Yu. G. Kudenko
Institute for Nuclear Research, Russian Academy of Sciences,
pr. Shestidesyatiletiya Oktyabry 7a, Moscow, 117312 Russia

Received March 21, 2001; in final form, June 4, 2001

Abstract—Recent advances in a search for a T -violating transverse muon polarization in the decays
K+ → π0µ+ν and K+ → µ+νγ in the on-going E246 experiment at KEK are reported. Future prospects
in polarization measurements are also discussed. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Measurement of the transverse muon polarization

PT in the decays K+ → π0µ+ν (Kµ3) and K+ →
µ+νγ (Kµ2γ) can provide important clues to new
physics beyond the Standard Model (SM). In Kµ3

decay, PT is the T-odd observable sµ · [pπ × pµ] de-
termined by the π0 momentum pπ and the muon
momentum pµ and spin sµ. In the case of Kµ2γ

decay, PT is proportional to sµ · [q × pµ], where q is
the photon momentum. These observables are very
small in the SM [1], but they are interesting probes of
non-SM CP-violation mechanisms [2–4], where PT

could be as large as 10−3 in eitherKµ3 orKµ2γ .
Whether CP or T is violated or not, a nonvan-

ishing PT in both decays can be induced by elec-
tromagnetic final-state interactions (FSI). The value
of PT due to FSI is expected to be about 4 × 10−6

for Kµ3 decay [5, 6]—i.e., much smaller than the
expected non-SM effects. On the contrary, for Kµ2γ

decay, FSI can induce an average PT � 10−3 [7].
In this decay, PT due to FSI depends on the axial-
vector form factor FA and the vector form factor FV .
Moreover, PT varies significantly over the Dalitz plot,
reaching a maximum value at a high muon energy—
i.e., in the region of high sensitivity to T -violating
parameters [3].

For Kµ3 decay, the most general invariant ampli-
tude is

MKµ3 = −GF√
2
Vus

1√
2

[
(pK + pπ)λf+(t) (1)

+ (pK − pπ)λf−(t)
]
ū(pµ)γλ(1 + γ5)v(pν),

where GF is the Fermi constant; Vus is the Kobaya-
shi–Maskawa matrix element; pK , pπ, pµ, and pν

are, respectively, the kaon, the pion, the muon, and
the antineutrino momentum; and t = (pK − pπ)2 is

∗This article was submitted by the author in English.
1063-7788/02/6502-0244$22.00 c©
the square of the momentum transfer to the lepton
pair. In theK+ c.m. frame, PT can be expressed as a
function of the muon and pion energies,

PT
∼= Im(ξ)

(
mµ

mK

)
|pµ|

Eµ + |pµ|nµ · nν −m2
µ/mK

(2)

= Im(ξ) · Φ,

where ξ(t) = f−(t)/f+(t); mµ and mK are, respec-
tively, the muon and the kaon mass; nν and nµ are
unit vectors along the neutrino and the muon mo-
mentum, respectively; and Φ 	 0.3 is a kinematical
factor. In the case of T invariance, the parameter
ξ must be real-valued; i.e., a nonvanishing Im(ξ)
would signal a violation of T invariance. The value
of Im(ξ) depends on the choice of model. In the
case of models featuring nonstandard scalar interac-
tions, it is proportional to the imaginary part of the
scalar coupling constants, and measurement of PT

is a very efficient tool for constraining these models
(multi-Higgs, leptoquark, minimal SUSY with R-
parity violation). In the minimal three-Higgs-doublet
model, the indirect limits on PT that were obtained
from measurements of the neutron dipole moment
and B → Xτν and b → sγ decays are updated in [8].

In the decay K+ → µ+νγ, the T -violating po-
larization is sensitive to new pseudoscalar, vector,
and axial-vector interactions. It can arise from the
interference between the tree-level amplitude in the
SM and the new CP-violating amplitudes. The po-
larization can be as large as 10−2–10−3 in models
involving left–right symmetry, multi-Higgs bosons,
SUSY, and leptoquarks [3]. As was shown in [4], it
is important to study both decays because of existing
correlations between T -violating polarizations that
could allow one to distinguish new sources of CP
violation if PT 
= 0 in one or both decays or to set new
constraints on new CP phases if PT = 0.
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the KEK E246 detector: (a) side view, (b) end view, and (c) one sector of the polarimeter.
2. DESCRIPTION OF THE DETECTOR

Figure 1 shows the E246 setup. A separated
660-MeV/c K+ beam (π/K 	 6) is produced at the
12-GeV KEK proton synchrotron with a typical in-
tensity of 3.0 × 105 kaons per 0.6-s spill duration
with a repetition of 3 s. A Cherenkov counter with a
multiplicity trigger distinguished positive kaons from
positive pions. The kaons were then moderated in
a BeO degrader and stopped in a target made from
256 scintillating fibers located at the center of a 12-
sector superconducting toroidal spectrometer. AK+

µ3

event was identified by analyzing µ+ with the spec-
trometer and detecting π0 with a CsI(Tl) photon de-
tector consisting of 768 modules [9]. In the CsI(Tl)
barrel, there were twelve holes for muons to pass into
the magnet. Since the solid-angle coverage of the
CsI(Tl) was only 75% of 4π, π0 was identified not
only as two photons (2γ) giving a π0 invariant mass
(Mγγ) but also as one photon (1γ) with an energy
greater than 70 MeV, which preserved directional in-
formation about parent π0. Charged particles from
the target were tracked by means of multiwire pro-
portional chambers at the entrance (C2) and exit (C3
and C4) of each magnet sector, along with the target
and a scintillation ring hodoscope [10] around the
target. The momentum resolution (σp = 2.6 MeV/c
at 205 MeV/c) was adequate to remove the predom-
inant background of the decay K+ → π+π0 (Kπ2).
Positrons fromK+ → π0e+ν in the relevant momen-
tum region 100–190 MeV/c were rejected by the
time of flight. The K+ → π+π0π0 background was
negligible because π+ stopped in the Cu degrader and
could not reach the polarimeter. Muons entering the
polarimeter (Fig. 1c) were degraded by a Cu block
and stopped in a stack of pure Al plates. Positron
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
counters involving three layers of plastic scintillators
were located between the magnet gaps. The time
spectra of e+ were recorded by multistop TDCs up to
20 µs. The background associated with the beamwas
suppressed by a veto counter system surrounding the
beam region.

The transverse polarization PT is directed in a
screw sense around the beam axis and generates
the asymmetry AT = [Ncw −Nccw]/[Ncw + Nccw] ≈
[Ncw/Nccw − 1]/2 in the counting rate between
clockwise (cw) and counterclockwise (ccw) emitted
positrons. Here, Ncw and Nccw are the sums of cw
and ccw positron counts over all 12 sectors. The
sign of PT of events featuring forward-going π0 is
opposite to that of events featuring backward-going
π0. This allows one to take a double ratio of these two
types of events, which is of importance for reducing
a major part of systematic errors. The quantity PT is
related to AT by the equation AT = αfPT , where α
is the analyzing power of the polarimeter and f is the
average angular attenuation factor.

3. K+ → π0µ+ν

3.1. Analysis

The experimental data were analyzed by two
groups independently using a so-called “blind” ap-
proach. Each analysis selected Kµ3 events in the µ+

momentum range 100–190 MeV/c, which removes
Kπ2 decays. The majority of muons from pion decay
in-flight into Kπ2 were rejected by using the χ2 cut
in tracking. For 2γ events, π0 was identified by a
γγ coincidence in CsI and by applying a cut on the
pion invariant mass. Ke3 events, which also satisfied
these requirements, were removed by the time of
flight. Kµ3 events from in-flight kaon decays in the
2
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circles represent the difference of the R and L normal
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target were rejected by applying a cut on the kaon
decay time: the time difference between kaon stop and
decay should be more than 2 ns. “Good” Kµ3 events
were separated into two classes: forward (fwd) events,
where the angle between π0 and beam directions (z
axis) was less than 70◦, and backward (bwd) events,
where the angle between π0 and beam directions was
more than 110◦.

The signal was extracted by integrating the time
spectrum of positrons from µ+ → e+νν̄ decays of
muons stopped in the polarimeter after subtracting
the background. A null asymmetry check (A0 =
[(Ncw/Nccw)fwd+bwd − 1]/2 for fwd + bwd events)
performed in each analysis did not show a significant
spurious asymmetry. After that, T -violating asym-
metry

AT =
1
4

[
(Ncw/Nccw)fwd

(Ncw/Nccw)bwd
− 1
]

(3)

was obtained by using a combination of both analyses
as described in [11].

The detector sensitivity to muon polarization (an-
alyzing power α) can be obtained from a measure-
ment of the normal muon polarization PN , which
is the in-plane component of the muon polarization
normal to the muonmomentum. The polarization PN

is the T -even observable sµ · [pµ × (pπ × pµ)]. The
value of PN averaged over the accepted part of the
Kµ3 Dalitz plot is about 0.6 and can be measured if
PH
the accepted events are separated into two classes:
events where the pion moves into the left hemisphere
with respect to the median plane of a given magnet
sector and events where the pion moves into the right
hemisphere. The values of PN for these two classes
should be of the same magnitude but opposite in
sign. In addition, PN decreases with increasing pion
energy. The results are presented in Fig. 2. The value
of α 	 0.2was extracted from this measurement. The
difference between the L and R normal asymmetries
is consistent with zero, and this is also a good test of
the detector azimuthal symmetry.

The main systematic contributions to PT come
from the presence of two large components of the
muon in-plane polarization: PL, which is parallel to
the muon momentum, and PN (PT � PN,L � 1). A
major part of their contribution is canceled by the az-
imuthal symmetry of the detector and by the fwd/bwd
ratio. The largest systematic errors are due to the
misalignment of the polarimeter, the asymmetry of
the magnetic-field distribution, and the asymmet-
ric kaon stopping distribution. The fwd/bwd ratio
dramatically reduces these contributions. The total
systematic error of PT is 0.9 × 10−3 [11], which is
significantly lower than the statistical error.

3.2. Results

After the analysis of data taken in 1996 and 1997,
we selected about 3.9 × 106 good fwd + bwd Kµ3

events. The value obtained for PT was −0.0042 ±
0.0049(stat.) ± 0.0009(syst.) and Im(ξ)= −0.013 ±
0.016(stat.) ± 0.003(syst.) [11]. The analysis of the
1998 data was recently completed. The results ob-
tained in both analyses are consistent and both show
zero transverse muon polarization [12]. The depen-
dence of AT on the pion energy for forward- and
backward-going pions (2γ events) is shown in Fig. 3.
The statistical error of PT of the combined 1996–
1998 result is expected to be about 3 × 10−3 (1σ
level), which corresponds to δIm(ξ) ∼ 1.1 × 10−2.
The systematic error is three times smaller than the
statistical one.

4. K+ → µ+νγ

4.1. Analysis

A key problem in extracting K+ → µ+νγ events
is the presence of the intense background from Kµ3

decays when only one photon from the π0 decay
was detected and the second disappeared in one of
12 holes in the CsI calorimeter. However, due to the
precise measurement of the muon momentum and
the photon energy and direction, the kinematics of
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Kµ3 and Kµ2γ decays could be reconstructed com-
pletely. Kinematical parameters such as the missing
mass squaredM2

miss, the angle between themuon and
photon momenta, θµγ , and the neutrino momentum
pν can be efficiently used to suppress the Kµ3 back-
ground. The missing mass squared for 1γ events is

M2
miss = E2

miss − p2
miss = (MK − Eµ − Eγ)2 (4)

− (pK − pµ − q)2.

ForKµ2γ events, the neutrino is the only missing par-
ticle; therefore, pν = pmiss, Eν = Emiss, andM2

miss =
E2

ν − p2
ν = 0. The missing mass squared M2

miss in
Kµ3 events is distributed over a wide range with the
maximum of the broad peak at about 20000MeV2/c4.
The best suppression ofKµ3 events is achieved for the
cut |M2

miss| � 5000 MeV2/c4. A cut additional to the
M2

miss cut is that on pν = −(pµ + pγ). Other cuts
are that on the muon momentum, pµ �195 MeV/c,
and θµγ � 75◦. The neutrino momentum of 1γ events
that was reconstructed after imposing theM2

miss, θµγ ,
and pµ cuts and accepting events with Eγ > 50 MeV
is given in Fig. 4. The peak at pν ∼ 220 MeV/c
corresponds to Kµ2γ events. In the region pν >

200 MeV/c, the contamination of the Kµ3 events
is estimated to be not higher than 20%. Accepted
Kµ2γ events are concentrated in the Dalitz plot region
where the inner-bremsstrahlung (IB) term dominates
and where the normal polarization of the muon in
the decay plane, PN , is about 0.2. It is interesting
that PN in Kµ2γ and Kµ3 events have the opposite
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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signs. This provides another test of Kµ2γ events and
shows the detector sensitivity to polarization mea-
surements in Kµ2γ decay. For the data accumu-
lated in 1998, the values obtained for normal asym-
metries for 1γ Kµ3 decays for left and right cones
were AL

N = (−4.89 ± 0.2) × 10−2 and AR
N = (4.36 ±

0.2) × 10−2. The analogous values for Kµ2γ events
are AL

N = (0.64 ± 1.16) × 10−2 and AR
N = (−2.05 ±

1.16) × 10−2. All these results are in agreement with
the expected polarization values, although the statis-
tical errors are overly large inKµ2γ decay to support a
more definitive conclusion.

4.2. Results

From the data accumulated by E246 between
1996 and 2000, about (2–3) ×105 “good” Kµ2γ

events are estimated to be extracted. The final
sensitivity to T-odd muon polarization inKµ2γ decay
is expected to be at a level of 1.5 × 10−2. The analysis
is in progress.

5. FUTURE PROSPECTS

The final E246 sensitivity to PT inKµ3 is expected
to be about 2× 10−3, which corresponds to δIm(ξ) of
about 7× 10−3. Since statistics mainly determine the
2
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sensitivity, the detector still has an ability to improve
the sensitivity at least by a factor of 2 for a more
intense kaon beam.

New planned experiments will reach higher sensi-
tivity in measuring both Kµ3 and Kµ2γ decays. The
proposed E923 experiment at BNL [13] is designed
to use in-flight K+ decays. A cylindrical active
polarimeter around the kaon beam and an electro-
magnetic calorimeter will be used to reconstruct Kµ3

decays and suppress the background. The detector
acceptance to Kµ3 events is about 2.5×10−5 per
2-GeV/c kaons. The advantage of the in-flight ex-
periment is thus a relatively high detector acceptance.
The statistical sensitivity (1σ level) to PT in this ex-
periment will be about 1.3× 10−4, which corresponds
to δIm(ξ) = 7 × 10−4. In this experiment, a sensi-
tivity of ≤ 10−3 can be also obtained for PT in Kµ2γ

decay.
A new approach tomeasure the T-odd polarization

in Kµ3 and Kµ2γ with a statistical sensitivity to PT

at a 1σ level of about 10−4 by using stopped kaons
was proposed in [14]. The virtue of this experiment
is a high-resolution measurement of π0 (momentum
resolution of about 1 to 2%), which will allow an
almost complete suppression of Kπ2 decay. An-
other important detector element is an active muon
polarimeter that provides higher sensitivity to the
muon polarization and a more efficient background
suppression than a passive polarimeter by means of
a complete measurement of the muon track, muon
stopping point, and both energy and direction of the
positron from muon decay. A calorimeter and an
additional highly efficient photon veto system around
the polarimeter cover nearly a 4π solid angle. This ex-
periment can be performed in a low-energy separated
kaon beam at JHF [15].

6. CONCLUSION

The status of measurements of T-violating muon
polarization in the decays K+ → π0µ+ν and K+ →
PH
µ+νγ and future prospects have been outlined. These
measurements with a sensitivity to PT at a level
of 10−3–10−4 could be a good test of nonstandard
sources of CP violation.
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Abstract—The first measurement of the cross sections for D∗±-meson diffractive photoproduction was
performed with the ZEUS detector at the HERA ep collider by using an integrated luminosity of 38 pb−1.
The measurement was performed for photon–proton c.m. energies in the range 130 < W < 280GeV
and photon virtualities in the region Q2 < 1 GeV2. The product D∗± mesons were reconstructed for
pD∗

T > 2 GeV and −1.5 < ηD∗
< 1.5 from the decay channel D∗+ → D0π+

s with D0 → K−π+ (+ c.c.).
The diffractive component was selected for 0.001 < xP < 0.018. The measured cross section in this
kinematical range is σdiff

ep→e′D∗Xp′ = 0.74 ± 0.21(stat.)+0.27
−0.18(syst.) ± 0.16(p.diss.) nb (ZEUS prelimi-

nary). The measured integrated and differential cross sections are compared with theoretical expectations.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Charm-production processes are those that pro-
ceed mainly through gluon-initiated hard subpro-
cesses and are perturbatively calculable. Thus, the
diffractive production of charmed mesons can pro-
vide new tests of the partonic structure of diffractive
interactions—in particular, of their gluon component.

Over the years of HERA collider operation, the
integrated and differential cross sections for inclu-
sive charm production have been measured in kine-
matical ranges where an effective signal separation
from suppressed backgrounds could be achieved [1,
2]. The measured cross sections for photoproduction
(PhP) and deep-inelastic scattering (DIS) processes
were compared with various next-to-leading (NLO)
calculations within perturbative QCD (pQCD). DIS
data were found to be in good agreement with the
calculations. The calculated PhP cross sections are
smaller than the measured ones, especially in the
forward (proton) direction.

As for diffractive charm production, there are only
preliminary results on diffractive dissociation in DIS,
measured with D∗± mesons [3, 4]. Here, we present
preliminary results from ZEUS measurements of the
cross sections for the diffractive photoproduction of

∗This article was submitted by the author in English.
1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

**e-mail: irina@mail.desy.de
1063-7788/02/6502-0249$22.00 c©
D∗±(2010) mesons2) for Pomeron fractional momen-
tum in the range 0.001 < xP < 0.018 at energies
130 < W < 280 GeV in the photon–proton c.m.
frame and at photon virtualities Q2 < 1 GeV2. D∗

mesons were reconstructed through the decay chan-
nel D∗+ → D0π+

s → (K−π+)π+
s (and c.c.) in the

restricted kinematical region specified by the inequal-
ities pD∗

T > 2 GeV and |ηD∗ | < 1.5. Here, pD∗
T is the

transverse momentum of the product D∗ meson, and
ηD∗

= − ln(tan(θ/2)) is its pseudorapidity, defined
in terms of the D∗ polar angle θ with respect to the
proton-beam direction.

The measurements were performed at the HERA
collider with the ZEUS detector, whose detailed de-
scription can be found elsewhere [5]. The data were
taken throughout 1996 and 1997, when HERA col-
lided positron and proton beams with energies of 27.5
and 820 GeV, respectively. An integrated luminosity
of 38 pb−1 was used for this measurement. Charged
particles were measured in the central tracking de-
tector (CTD) [6]. The uranium-scintillator sam-
pling calorimeter (CAL) [7] was used to detect the
scattered electron and to measure global energy val-
ues. The luminosity was determined from the rate of
the bremsstrahlung process e+p→ e+γp, where the
photon was measured by a lead scintillator calorime-
ter [8].

2)In the following, D∗±(2010) will be referred to simply asD∗.
2002MAIK “Nauka/Interperiodica”
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2. KINEMATICS OF DIFFRACTIVE
PHOTOPRODUCTION

We consider diffractive photoproduction in ep
scattering at HERA,

e(e) + p(p) → e′(e′) +X + p′(p′),

where the four momenta of the particles involved are
indicated in parentheses. A collision occurs at the
squared positron–proton c.m. energy s = (e+ p)2

and a photon virtuality Q2 = −q2, where q = e− e′.
The squared photon–proton c.m. energy W 2 = (p+
q)2 is defined for this reaction. One may consider that
the interaction proceeds through a photon–Pomeron
(P) scattering,

γ(q) + P(PP) → X,

where PP = p− p′. This process is described by
the invariant mass MX of the hadronic system X
produced by photon dissociation, and the proton-
momentum fraction

xP =
PP · q
p · q � M2

X

W 2

carried away by the Pomeron.

The variablesW,MX , and xP were reconstructed
from the final hadronic system measured by energy-
flow objects (EFO) [9] made from tracks detected by
the CTD and from energy depositions in the CAL
cells. The Jacquet–Blondel formula [10]

WJB =
√

2Ep

∑

i

(E − Pz)i

was used to reconstruct W . Here, Ep is the proton
beam energy. The invariant mass of the diffractively
produced system,MX , was calculated by the formula

M2
X =

(
∑

i

Ei

)2

−
(
∑

i

Pxi

)2

−
(
∑

i

Pyi

)2

−
(
∑

i

Pzi

)2

.

The sums in both equations are taken over the en-
ergies Ei and momenta Pi of all EFOs. To select
the W range, WJB was calculated with calorimeter
cell depositions only so as to be consistent with the
inclusive-charm-photoproduction analysis [1]. Mea-
sured values were corrected to the true ones by fac-
tors determined from Monte Carlo simulations of
diffraction as the average ratios of reconstructed-to-
generated values. All variables were reconstructed to
a precision higher than 15%.
P

3. EVENT SELECTION AND D∗

RECONSTRUCTION

Event-selection and D∗-reconstruction proce-
dures are described in detail elsewhere [1]. Here, a
short description is given.
Photoproduction events were selected by requir-

ing that no scattered positron be identified in the
CAL [11] and that the photon–proton c.m. energy
W be between 130 and 280 GeV. Under these
conditions, the photon virtuality Q2 is limited to
values less than 1 GeV2. The corresponding median
Q2 was estimated from a Monte Carlo simulation
to be about 3 × 10−4 GeV2. The product D∗

mesons were reconstructed through the decay chan-
nel D∗ → (D0 → Kπ)πs by combining candidates
from charged tracks measured by the CTD. For the
reconstruction, “right-charge” track combinations
defined for (Kπ) with two tracks of opposite charges
and with πs that has a charge that is opposite to
that of the K meson in (Kπ) were accepted as long
as the combination of the invariant masses ∆M =
M(Kππs) −M(Kπ) and M(Kπ) were within wide
mass windows around the nominal values of ∆M =
M(D∗) −M(D0) andM(D0) [12]. To determine the
number ofD∗mesons in the signal, the combinatorial
background was simulated by “wrong-charge” track
combinations and subtracted after a normalization to
the “right-charge” distribution in the range 0.15 <
∆M < 0.17 GeV. “Wrong-charge” combinations
were defined for (Kπ) with two tracks of the same
charge and with πs of an opposite charge. The
measurements were performed in the pseudorapidity
range −1.5 < ηD∗

< 1.5, where the CTD acceptance
is high. The kinematical region in pD∗

T was limited to
2 < pD∗

T < 8GeV.
The Monte Carlo event samples used for this

analysis were prepared with the RAPGAP [13],
PYTHIA [14], and HERWIG [15] generators. Dif-
fractive interactions were simulated within the re-
solved Pomeron model [16] with β(1 − β) or the
H1 FIT2 [17] parametrizations for the initial parton
distributions in the Pomeron. Here, β is the Pomeron
momentum fraction carried by a parton that couples
to the Pomeron and which participates in hard in-
teraction. The MRSG [18] and GRV-G HO [19]
parametrizations were used for the proton and the
photon structure functions, respectively, in simulat-
ing nondiffractive interactions. The fragmentation
of the generated partons (parton-shower evolution
and hadronization) was simulated according to the
LUND model [20] in using RAPGAP or PYTHIA
simulations. The HERWIG generator models the
hadronization process with a cluster hadronization
model. The Monte Carlo events were processed
through the standard ZEUS detector and trigger
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 1. Comparison of the measured ηmax distribu-
tion (points) with the sum of the diffractive and non-
diffractiveMonte Carlo distributions (solid histogram) for
events with D∗ mesons. D∗ candidates were selected
in the kinematical region specified by the conditions
Q2 < 1 GeV2, 130 < W < 280 GeV, pD∗

T > 2 GeV, and
|ηD∗ | < 1.5. The sums of diffractive resolved Pomeron
RAPGAP Monte Carlo (dotted histogram) and non-
diffractive Monte Carlo (dashed histogram) events were
normalized to the data.

simulation codes and through the same event recon-
struction package as that used for data processing.
The shapes of Monte Carlo and data distributions
were found to be in reasonable agreement within
statistical errors.
Diffractive events were identified by a large rapidity

gap (LRG) between the scattered proton that escaped
detection through the beam pipe and the hadronic
system X produced by the dissociated photon. LRG
events were sought by using the ηmax method, for
which ηmax was defined as the pseudorapidity of
the most forward EFO with energy greater than
400 MeV. Figure 1 presents the ηmax distribution for
all photoproduced D∗ mesons reconstructed within
the signal range 0.143 < M(Kππs) −M(Kπ) <
0.148 GeV and 1.80 < M(Kπ) < 1.92 GeV after
the combinatorial-background subtraction. This
distribution shows two structures. The plateaulike
structure at ηmax � 2 is populated predominantly by
LRG events, while the wide peaklike structure around
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Fig. 2. ∆M distribution for the D∗-diffractive-
photoproduction reaction with D∗ → (D0 → Kπ)πs for
Q2 < 1 GeV2, 130 < W < 280 GeV, and 0.001 <
xP < 0.018. The kinematical region of the
measurements is specified by the inequalities
pD∗

T > 2 GeV and |ηD∗ | < 1.5. The points are for the
right-charge combinations, and the dashed histogram is
for the wrong-charge combinations from the D0-signal
region (1.80–1.92 GeV). The solid curve represents the
result of a fit to the sum of a Gaussian function and the
functional formA(∆M −mπ)B .

ηmax ∼ 3.5 originates from nondiffractive events and
has an exponential falloff toward lower values of
ηmax. From a comparison of the data points and
the sum of simulated diffractive and nondiffractive
event distributions normalized to the data, a cutoff
of ηmax = 1.75 was chosen as a compromise be-
tween the magnitudes of the diffractive signal and
the nondiffractive background. The nondiffractive
background fractions for subtraction were estimated
from the Monte Carlo-to-data distribution ratios by
using nondiffractive Monte Carlo simulations.

In using the ηmax method for diffractive-event se-
lection, one needs to take into account the follow-
ing properties of the method. The measurement of
rapidities by the CAL is limited to the edge of the
forward beam hole of the CAL. Thus, the proton dis-
sociative events, ep→ e′XN , can satisfy the require-
ment ηmax < 1.75 if the proton dissociative hadronic
system N has an invariant mass that is sufficiently
2
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the diffractive-photoproduction reaction ep→ e′D∗Xp′

for Q2 < 1 GeV2, 130 < W < 280 GeV, and 0.001 <
xP < 0.018. The kinematical region of the measure-
ments is specified by the inequalities pD∗

T > 2 GeV and
|ηD∗ | < 1.5. The inner bars show statistical errors, while
the outer bars correspond to statistical and systematic
errors added in quadrature. The data are compared with
the distributions of the RAPGAP Monte Carlo diffrac-
tive events simulated within the resolved-Pomeronmodel
with the H1 FIT2 Pomeron parametrization (histogram).
The Monte Carlo distribution was normalized to have the
same area as the data distribution.

small to pass undetected through the forward beam
pipe. It was found earlier that the proton dissocia-
tion contribution comprises 0.31 ± 0.15 [21]. The
measured cross sections were corrected for this value.
A cut in ηmax correlates with the range of accessible
values of xP; ηmax < 1.75 constrains it to be in the
region xP < 0.018. In addition, a limited acceptance
restricts it to be in the region xP > 0.001.
After the above selection and the “wrong-charge”

background subtraction, a signal of 56 ± 10 diffrac-
tively photoproduced D∗ mesons was found in the
∆M distribution (Fig. 2).

4. CROSS SECTIONS
The cross section for inclusive D∗ production is

given by

σep→D∗X =
N corr

D∗

L ·BD∗→(D0→Kπ)π
,

PH
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Fig. 4. Differential cross section dσ/dηD∗
(points) for

the diffractive-photoproduction reaction ep→ e′D∗Xp′

for Q2 < 1 GeV2, 130 < W < 280 GeV, and 0.001 <
xP < 0.018. The kinematical region of the measure-
ments is specified by the inequalities pD∗

T > 2 GeV and
|ηD∗ | < 1.5. The inner bars show statistical errors, while
the outer bars correspond to statistical and systematic
errors added in quadrature. The data are compared with
the distributions of the RAPGAP Monte Carlo diffrac-
tive events simulated within the resolved-Pomeronmodel
with the H1 FIT2 Pomeron parametrization (histogram).
The Monte Carlo distribution was normalized to have the
same area as the data distribution.

where N corr
D∗ is the number of observed D∗ mesons

corrected for the acceptance, L = 38.0 ± 0.6 pb−1

is the integrated luminosity, and BD∗→(D0→Kπ)π =
0.0263 ± 0.0010 is the combined branching ratio for
the decay D∗ → (D0 → K+π−)πs [12]. Acceptance
corrections were calculated by using the RAPGAP
Monte Carlo sample.
The total cross section forD∗ diffractive photopro-

duction in the kinematical region specified by the in-
equalities Q2 < 1 GeV2, 130 < W< 280 GeV, pD∗

T >

2 GeV, |ηD∗ | < 1.5, and 0.001 < xP < 0.018 was
measured to be σdiff

ep→e′D∗Xp′ = 0.74 ±
0.21(stat.)+0.27

−0.18(syst.) ± 0.16(p.diss.) nb (ZEUS
preliminary). The last error is due to the uncertainty
in the proton-dissociative-background subtraction.
Other sources of systematic uncertainties due to
analysis and detector features were studied, and their
effect on the cross section was estimated. The largest
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 5. Differential cross section dσ/dMX (dots) for the
diffractive-photoproduction reaction ep→ e′D∗Xp′ for
Q2 < 1 GeV2, 130 < W < 280 GeV, and 0.001 < xP <
0.018. The kinematical region of the measurements is
specified by the inequalities pD∗

T > 2 GeV and |ηD∗ | <
1.5. The inner bars show statistical errors, while the
outer bars correspond to statistical and systematic errors
added in quadrature. The data are compared with the
distributions of the RAPGAP Monte Carlo diffractive
events simulated within the resolved Pomeronmodel with
the H1 FIT2 Pomeron parametrization (histogram). The
Monte Carlo distribution was normalized to have the
same area as the data distribution.

contributions to the systematic error came from
the uncertainty in the CAL energy scale (+12.0

−4.8 %),
the signal-determination procedure (+16.4

−14.5%), the
selection of diffractive events (+11.3

−8.0 %), and the
acceptance-correction calculations (+26.5

−16.9%). The
overall normalization uncertainties due to the error in
the luminosity value (±1.7%) and in theD∗- andD0-
decay branching ratios (±3.8%) were not included
in the systematic error quoted above. All of the
systematic uncertainties were added in quadrature
to determine the overall systematic uncertainty of
+35.6
−24.1%. The summation of the systematic uncertain-
ties was also performed for each bin of the differential
distributions.
The measured cross section for D∗ diffractive

photoproduction, while only a fraction of the total
diffractive contribution, amounts to about 4% of
the cross section for inclusive D∗ photoproduction,
σep→D∗X = 18.9 ± 1.2(stat.)+1.8

−0.8(syst.) nb [1], in the
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Fig. 6. Differential cross section dσ/dxP (dots) for the
diffractive-photoproduction reaction ep→ e′D∗Xp′ for
Q2 < 1 GeV2, 130 < W < 280 GeV, and 0.001 < xP <
0.018. The kinematical region of the measurements is
specified by the inequalities pD∗

T > 2 GeV and |ηD∗ | <
1.5. The inner bars show statistical errors, while the outer
bars correspond to statistical and systematic errors added
in quadrature. The data are compared with the distri-
butions of the RAPGAP Monte Carlo diffractive events
simulated within the resolved-Pomeron model with the
H1 FIT2 Pomeron parametrization (histogram). The
Monte Carlo distribution was normalized to have the
same area as the data distribution.

same kinematical region. This fraction indicates that
diffractive charm production is not suppressed as
much as some early models predicted [22].
Measurements were compared with resolved-

Pomeron-model expectations [16] calculated with the
RAPGAPMonte Carlo code in the same kinematical
region. The parton distributions in the Pomeron
were parametrized by using a fit to the HERA data
[17] of the H1 collaboration (H1 FIT2). Only the
boson–gluon fusion (BGF) mechanism of charm
production was taken into account. The leading-
order RAPGAPMonte Carlo simulation with the H1
FIT2 Pomeron parametrization predicts 1.42 nb for
the cross section for D∗ diffractive photoproduction
in the same kinematical region [23].

The differential cross sections dσ/dpD∗
T , dσ/dηD∗

,
dσ/dMX , and dσ/dxP are presented in Figs. 3–
6. All of the above-mentioned systematic uncertain-
ties were added in quadratures to statistical errors
(inner error bars) in each bin to calculate the total
error (outer error bars), both of which are shown in
Figs. 3–6.
2
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The measured differential cross sections (Figs. 3–
6), when compared to the ones of the resolved-
Pomeron model that were calculated with the aid of
the RAPGAP Monte Carlo code show reasonable
agreement in shape with the theoretical expectations
with allowance for the measurement errors. The cross
section dσ/dpD∗

T agrees well, while the other three
distributions are shifted somewhat toward larger
values with respect to the predictions.

5. SUMMARY AND CONCLUSIONS

The first measurement of diffractive D∗ pho-
toproduction has been performed with the ZEUS
detector at HERA with a luminosity of 38 pb−1.
The preliminary results are reported here. The total
cross section forD∗ diffractive photoproduction in the
kinematical region specified by the inequalities Q2 <
1GeV2, 130 < W < 280GeV, pD∗

T > 2GeV, |ηD∗ | <
1.5, and 0.001 < xP < 0.018 has been measured to
be σdiff

ep→e′D∗Xp′ = 0.74 ± 0.21(stat.)+0.27
−0.18(syst.) ±

0.16(p.diss.) nb (ZEUS preliminary). The leading-
order calculations within the resolved Pomeronmodel
predict 1.42 nb for this cross section. The differential-
cross-section shapes for dσ/dpD∗

T , dσ/dηD∗
,

dσ/dMX , and dσ/dxP show reasonable agreement
with the resolved-Pomeron model with allowance for
the measurement errors.
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Abstract—An experiment aimed at testing the equivalence of the inertial and the gravitational mass is
considered in which use is made of a facility including a vacuum chamber with two coupled oscillators
(a pendulum and dynamical damper that form a vibrational system featuring two degrees of freedom) and
falling onto the Sun. The layout of the facility and its basic parameters are presented. The pendulum and the
dynamical damper have the same natural frequency, which is equal to the frequency of their rotation about
the Sun. This frequency is dependent on the date of the experiment and can be calculated on the basis of the
time equation. In the proposed facility, the amplitude of oscillations of the damper is 1.2 × 10−5 rad, which
is much greater than the value of 10−7 rad previously achieved in the experiment that tested the equivalence
principle to the highest precision of about 10−12. This precision can be considerably improved. The result is
presented that was obtained from a measurement during the solar eclipse in Moscow on August 11, 1999.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The concept of the mass of a body has a double
meaning. On one hand, it determines the inertial
properties of this body (Newton’s second law); on
the other hand, it is the source of gravitational forces
(Newton’s third law). This duality is reflected in the
terms “inertial mass” m(i) and “gravitational mass”
m(g). An experimental test of the equivalence of these
masses is of fundamental importance for confirming
Einstein’s general theory of relativity.

In the majority of the most precise experiments,
use is made of a torsional pendulum, with weights
from different materials (“1” and “2”) being placed
at the ends of its arm. The experiments consist in
investigating the dimensionless quantity

∆ =

(
m(g)

m(i)

)

1

−
(
m(g)

m(i)

)

2

for the situationwhere the bodies fall onto the Earth or
onto the Sun. In the first case (falling onto the Earth),
the sought torque TE is static and is given by

TE = m(i)lΩ2R∆ sinϕ cosϕ,

where l is the arm length, Ω is the angular velocity
of Earth’s rotation, R is the radius of the Earth, and
ϕ is the latitude of the place where this experiment is
1063-7788/02/6502-0255$22.00 c©
performed. In the second case, the torque is variable,
its amplitude TD being

TD ≈ 0.62[cm s−2]m(i)l∆,

where 0.62 cm s−2 is the acceleration due to the
Sun’s gravitational attraction.

An experiment where use is made of bodies falling
onto the Earth was first proposed and implemented
by Eötvös et al. [1], while the analogous experiment
to study falling onto the Sun was proposed by the
authors of [2].

The literature devoted to the test of the equivalence
principle is quite extensive. A considerable number of
more recent publications were initiated by the study
reported in [3], where the hypothesis of the fifth force
was put forth on the basis of an analysis of the data
presented in [1].

The most accurate test of the equivalence princi-
ple was performed in [4], where the quantity ∆ was
estimated to a precision of about 10−12.

In the present study, we discuss a way to improve
considerably the accuracy of this estimate under ter-
restrial conditions. A preliminary report is given on
the experimental facility that is being developed at
the Institute of Theoretical and Experimental Physics
(ITEP, Moscow) and which is intended for this pur-
pose. Specialists from the All-Russia Research Insti-
tute for Electronic Mechanics (ARRIEM) are taking
part in its fabrication.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1.Graph of the time equation.

2. WAY TO IMPROVE
THE ACCURACY OF THE TEST

OF THE EQUIVALENCE PRINCIPLE

The proposed experiment for testing the equiva-
lence principle employs a device having a vacuum
chamber equipped with two coupled torsional pendu-
lums and falling onto the Sun. The device is sus-
pended in space with the aid of a magnetic field and
rotates at an angular velocity ω that is maintained
with a high precision. The coupled torsional pendu-
lums form a vibrational system having two degrees
of freedom; each taken separately (that is, in an un-
coupled state) has the same natural frequency ω0, the
period τ0 of the system being given by

τ0 = 2π

√
32IL
Eπd4

,

where L is the length of the pendulum thread, d is
the thread diameter, I is the moment of inertia, and
E is the shear modulus of the thread material [1.5 ×
1012g/(cm s2) for tungsten]. One (large) pendulum
has a moment of inertia I1; in order to generate the
required variable torque from the Sun, there are two
identical weights from different materials at the ends
of its arm. The other (small) pendulum from the
same material has a moment of inertia I2 � I1, a
weight at the end of its thread being much lighter
than the weights of the massive pendulum. If the
equivalence principle were violated, the effect of the
Sun on the weights of the massive pendulum would
excite small-amplitude oscillations of frequency ω0;
in the steady-state regime, there would concurrently
arise oscillations of the lighter pendulum in antiphase,
their amplitude being much larger. The oscillations
of the massive pendulum would then be damped by
the oscillations of the lighter pendulum and could in
principle disappear completely despite the effect of the
sought torque on the massive pendulum. In this case,
the oscillations of the lighter pendulum in antiphase
become very large. In the theory of oscillators, this
PH
remarkable phenomenon is commonly referred to as
an antiresonance, while the small pendulum is called
a dynamical damper. In the experiment being dis-
cussed, this property of the oscillations of a dynamical
damper is used to improve the sensitivity of searches
for sought oscillations. In contrast to conventional
applications of an oscillating system with two degrees
of freedom in many technical devices, the proposed
experiment would employ it, figuratively speaking, in
an “inverted” form. Under the antiresonance condi-
tion, the angular velocity of the dynamical damper is
given by

ω = −Ωu sinϕ+
√

Ω2
u sin2 ϕ+ ω2

0 − Ω2
u,

where Ωu is the angular velocity of the Earth with
respect to the Sun (it depends on the date of exper-
iment), while the period T can be found from the time
equation (Fig. 1)

T = (1440 − η) min,

η = 7.6 sin 0.986◦(n− 4) − 9.8 sin 1.973◦(n− 81),

where n is the ordinal number of the day in a year from
January 1. The numerical value of η can be found in
the astronomical calendar.

If the accuracy of the experiment is sufficiently
high, the resonance frequency ω0 can be fixed for a
specific date of the experiment in accordance with the
time equation; for another date, the torsional pendu-
lum will automatically be off the resonance. If the
measuring procedure is invariable, the manifestation
of the sought oscillations will become different, which
will be a clear signal of their existence. The condition

δω < |ω0 − ω| ,
where δω = ω0/Q is the half-width of the resonance
and Q is its quality factor, is satisfied in this experi-
ment. From this inequality, it follows that the sought
oscillations induced by the Sun can be separated in
frequency from the background oscillations associ-
ated with the rotation about the Earth.

Krylov [5] performed a calculation of steady-state
forced oscillations for a stabilizer of ship rolling.
The formulas that he obtained are applicable to
oscillations of a torsional pendulum and a dynamical
damper, the former and the latter playing, respec-
tively, the role of a ship and the role of the stabilizer
of rolling. In the antiresonance regime, the amplitude
AГ of sought forced steady-state oscillations of the
dynamical damper will be

AГ =
TDτ1τ2

4I1

[(

1 +
I2ω

2
0τ1τ2
4I1

)2

+
I2
2ω

2
0τ

2
1

4I2
1

]−1/2

,

where τ1 = τ2 = τ = 2Q/ω0 is the relaxation time for
the pendulum and the dynamical damper and I1 and
I2 are their moments of inertia.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Parameters of coupled oscillators

Pendulum Damper

Thread length, L 250 cm 53 cm

Thread diameter, d 5 × 10−3 cm 5 × 10−4 cm

Arm length, l 15 cm 4 cm

Mass of weights,m 600 g 4 g

Moment of inertia, I 1.35 × 105 g cm2 64 g cm2

Resonance frequency, ω0 1.7 × 10−3 rad/s 1.7 × 10−3 rad/s

Relaxation time, τ 105 s 105 s

Quality factor,Q 85 85

Resonance half-width, δω 2 × 10−5 rad/s 2 × 10−5 rad/s
The damper-induced enhancement of the ampli-
tude AM of pendulum oscillations is

AГ

AM
= Q.

We note that, in an experiment without a dynam-
ical damper, the amplitude of the pendulum, AM, due
to the sought torque TD is equal to the resonance
value Ar:

Ar =
TDτ1
2I1ω0

.

If the experiment features a damper and if the
condition I2ω2

0τ1τ2(4I1) � 1 is satisfied, the increase
in this amplitude is

AГ

Ar
=

I1
I2Q

.

The precision that can be achieved in the exper-
iment is restricted by thermal noise causing the de-
flection angle δΘ [6],

δΘ =
(

1
ω0

)2
√

6kT 0

I2τ2t
,

where k is the Boltzmann constant, T 0 is the absolute
temperature, and t is the measurement time.

The estimated parameters of the apparatus are
presented in the table. For the experiment performed
in February, the time equation yields Ωu = 7.345 ×
10−5 rad/s (the period is equal to 24 h – 14.3 min =
8.5542 × 104 s). At the measurement time of t = 6 ×
105 s, the condition t� τ is satisfied, and the forced
pendulum oscillations in question can be considered
to be steady-state.

For the value of ∆ = 10−12 and the parameters
of the pendulum and the dynamical damper from the
table, we obtain

TD = 2.8 × 10−9g cm2/s2,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
ω = 1.636 × 10−3 rad/s,

ω0 − ω = 6.4 × 10−5 rad/s,

АГ = 1.2 × 10−5 rad,

АГ

AM
= 85,

AГ

Ar
= 24.8,

δΘ ≈ 8.8 × 10−8 rad.

From a comparison of the above value of AГ with
the value of 10−7 rad reported in [4], we conclude that
the accuracy of testing the equivalence principle can
be considerably improved. In order to isolate the ef-
fect, use is made of the Fourier analysis of oscillations
of the main pendulum and dynamical damper. At ∆ =
10−12, the amplitude of the sought oscillations of the
dynamical damper will be greater than the amplitude
of the main pendulum by the factor AГ/AM.

3. EXPERIMENTAL FACILITY

The layout of the experimental facility for testing
the equivalence principle is shown in Fig. 2. The de-
vice is suspended in space with the aid of an electro-
magnet (5) (see [7]) and, through a flexible link (3), is
rotated with a frequency ω ≈ 1.636 × 10−3 rad/s (the
period is about 1 h) with respect to the Earth by an
electric motor (1), which is controlled by an electronic
device (2). The rotation is monitored by a laser and
recording electronics (11), as well as by 36 mirrors
(12). Upon the switching of the electromagnet on
and a smooth increase in the current through it, the
experimental facility of weight about 150 kg is gently
lifted from the support (not shown in the figure) and is
2
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Fig. 2. Layout of the experimental facility: (1) electric motor, (2) electronic control for the electric motor, (3) flexible link
between the electric motor and the experimental facility, (4) damper of the experimental facility, (5) magnetic suspension
device, (6) coils for generating a rotating magnetic field, (7) weight of the experimental facility, (8) damper of the vacuum
chamber, (9) thread for suspending the vacuum chamber, (10) magnet for damping pendulum oscillations, (11) laser and
electronics for measuring the rotation, (12) 36 mirrors mounted on the device for measuring the rotation, (13) tungsten thread
of the torsional pendulum, (14) mirrors for measuring the oscillations of the pendulum and dynamical damper, (15) weight of
the torsional pendulum, (16) tungsten thread of the dynamical damper, (17) weight of the dynamical damper, (18) adsorption
vacuum pump, (19) autocollimators, (20) Earth’s surface, (21) vacuum chamber, and (22) concrete walls of the basement.
suspended at a current of about 120 mA in the space
at a given altitude.

The laboratory room formed by four weights (7) of
about 30 kg each (only two of them are shown in the
figure) that rotates at a constant speed, its moment of
inertia being about 2 × 108 g cm2, is the main struc-
tural part of the facility. In the rotating laboratory
room, background perturbations (including seismic
perturbations) are suppressed by the magnetic sus-
pension device and the damper (4). In the laboratory
room, a vacuum chamber (21) is suspended with a
thread (9) about 3 mm in diameter; in turn, two cou-
pled oscillators (13) and (16) are suspended within
PH
the vacuum chamber. In the laboratory room, the
background oscillations of the vacuum chamber are
suppressed by the damper (8). Prior to the beginning
of the experiment, the chamber is evacuated, and an
adsorption pump (18) is used in the course of the
experiment to maintain a vacuum at the required level
of 10−5 torr. The initial torsional oscillations of the
pendulum and the dynamical damper are forced to
relax by the rotating magnetic field with the aid of
a follow-up system (not shown in the figure), while
pendulum oscillations are suppressed by a magnetic
damper (10).

In the facility, the sought oscillations are measured
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 4. Relative energy loss per revolution in inertial free
rotation of bodies suspended in space with the aid of
magnetic field during the solar eclipse in Moscow on
August 11 (the symbol “no.” stands for the ordinal num-
ber of a period, while the symbol t stands for time of its
detection.).

by autocollimators (19) that are attached to the ro-
tating vacuum chamber. Information is transferred
in a contactless way through the infrared channel.
The light beams of autocollimators are incident on
the mirror of the pendulum and of the dynamical
damper from opposite sides; owing to this, the effect
of background chamber oscillations decreases in the
difference of their readings. Therewith the amplitude
of the sought oscillations of the dynamical damper
undergoes virtually no changes, since, in the antires-
onance regime, it is much greater than the amplitude
of oscillations of the torsional pendulum. In the ex-
perimental facility, the dynamical damper, which is a
sensitive detector of the sought oscillations, is there-
by shielded from background oscillations (including
seismic oscillations) by the magnetic suspension de-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
vice, the damper of the laboratory room, the damper
of the vacuum chamber, and the damper of pendulum
oscillations.

For the experimental facility to be rotated in such
a way that the relative deviation of its period was
less than the attained value of about 6 × 10−6 (see
Fig. 3), two versions of driver are investigated. The
first employs a step-type motor with a reduction of
2 × 106, while the second relies on an electronically
controlled special motor developed in ARRIEM.

4. CONCLUSIONS

The proposed experiment is advantageous in that
the accuracy can be improved by using (1) heavy (a
few hundred kilograms) bodies that are suspended
in space with the aid of a magnetic field and which
can freely rotate with a period of one hour; (2) the
resonance enhancement of the sought oscillations;
(3) an oscillatory system with two degrees of free-
dom and special features of oscillations of coupled
oscillators; (4) a multistep damping of background
oscillations, whose effect can be reduced owing to a
special detection of the sought oscillations; and (5)
the time equation for test measurements.

As a result, it becomes possible to investigate,
with an improved precision, the following fundamen-
tal problems of gravitation: the dependence of gravi-
tational interaction on the material of the substance,
the effect of screening, the interaction of ordinary
matter with dark matter, and so on.

We note that the use of the experimental features
indicated above gives impetus to the development
of the technique of physical experiments aimed at
revealing and analyzing weak physical interactions.
In this context, we would like to mention the circum-
stance that may be of interest.

In 2000, there appeared the study of Qian-shen
Wang et al. [8], who discussed the experiment that
was performed during the solar eclipse in March 1997
and which revealed an unusual variation in the accel-
eration due to the gravitational attraction of the Earth.
In connection with this observation, they put forth
the assumption that the gravitational field is screened.
This highlights the need for precision measurements
that would seek the possible new properties of the
gravitational interaction. We therefore deem it advis-
able to recall the experiment performed at the facility
in question with a magnetic suspension of bodies
of weight about 120 kg that were executing inertial
free rotation in a suspended state during the solar
eclipse in Moscow on August 11, 1999 [9]. The
results are presented in Fig. 4. The graph depicts
the time variation of the ratio δE/E0, where δE is
the rotational-energy loss per revolution and E0 is
the initial rotational energy. In the case of ordinary
2
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damping of rotation, the graph would have the form
of a straight line (exponential damping). In all prob-
ability, the observed shape of the curve is associated
with a magnetic hysteresis and with the rotation of the
magnetization vector in the magnetic field of the sus-
pension device as the horizontal inclination of Earth’s
surface changes owing to tidal forces; however, we
cannot rule out the possible existence of a new phe-
nomenon in gravitational interaction.
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P.V. Mokrov for their interest in this study.

This work was supported by the Russian Founda-
tion for Basic Research (project no. 95-02-03534-а).

REFERENCES
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Abstract—For the first time, an analysis of all experimental data on the differential cross section for
elastic γp scattering at photon energies below 150 MeV is performed in order to determine the electric
(αp) and magnetic (βp) polarizabilities of the proton. A fit to these data with two free parameters αp

and βp embedded into the theoretical cross section obtained on the basis of finite-energy s-channel
dispersion relations gives the following world-average values of the proton polarizabilities: αp = 11.7±
0.8 (stat.+ syst.)± 0.7 (model), βp = 2.3± 0.9 (stat.+ syst.)± 0.7 (model) in units of 10−4 fm3. The
first error is combined—it takes into account the statistical and systematic errors in the experimental cross
sections—while the second error comes from the theoretical uncertainties in the dispersion-theory cross
sections. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electromagnetic polarizabilities of the proton
are structure parameters that characterize the ability
of a particle to be deformed under the effect of an
external electromagnetic field. A convenient tool for
studying the polarizability phenomenon is provided
by γp scattering at low energies, in which case the
wavelength of the photon is larger than the proton
size.

Experimental studies of γp scattering started in
the mid-1950s [1–7], but the proton polarizabilities
αp and βp were extracted from experimental cross
sections for the first time only in [4, 7]. New ex-
perimental results [8–11] on γp scattering and new
determinations of αp and βp were published only in
the 1990s. In those new studies, however, statistical
and systematic errors in the experimental values of
proton polarizabilities were quite sizable.

This short report presents some results of our
analysis concerning the compatibility of all world data
on elastic γp scattering at photon energies below
150 MeV. The proton polarizabilities αp and βp and
their world-average values are determined from dif-
ferent data sets and their combinations, and the com-
patibility of different data is estimated on the basis
of the statistical criterion χ2/Nf . Uncertainties in
the polarizabilities coming from the theoretical-model
cross sections are also estimated.

∗This article was submitted by the authors in English.
**e-mail: shtarkov@x4u.lpi.ruhep.ru
1063-7788/02/6502-0261$22.00 c©
2. ANALYSIS OF DATA

All experimental data on the differential cross sec-
tion for elastic γp scattering at photon energies below
150MeV fromFIAN,MAMI, SAL, and other centers
are split into two sets: 46 early data points of 1955
to 1974 [2–7] and 48 recent data points of the 1990s
[8–11]. In our analysis, we consider that the authors
of [6–8] later introduced significant corrections in
their data. We do not use data from [1], since the
systematic uncertainty is not given there.

A compilation of all those data (with corrections)
and a description of the calculations of the theoretical
cross section on the basis of dispersion relations that
is used to fit the data points are given in [12, 13].

2.1. Statistical Method of Analysis

An important point of our analysis consists in
combining statistical and systematic experimental
errors in a special way that was proposed in [14]. The
functional χ2 used in fitting the experimental cross
sections is written as

χ2 =
N∑

j=1

{ nj∑

i=1

(
kjσ

expt
ij − σtheor

ij (αp, βp)

kj∆σ
expt
ij

)2

+
(
kj − 1
kjδj

)2
}

,

where N is the total number of experiments, j is
the experiment number, nj is the number of points
in the jth experiment, i is the point number, σexpt

ij

and σtheor
ij (α, β) are the experimental and theoretical
2002MAIK “Nauka/Interperiodica”
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Table 1. Proton polarizabilities extracted from [2–11]

Exper. Ref. n αp βp αp + βp χ2/Nf P, %

Oxl58 [2] 4 17.0± 8.1 −6.7± 3.7 10.2± 9.2 4.2/2 12

Hym59 [3] 12 13.9± 5.6 −4.7± 7.2 9.2± 6.1 0.6/10 100

Gol60 [4] 5 10.1± 7.8 9.0± 5.0 19.1± 10.2 2.3/3 52

Ber60 [5] 2 11.4± 2.9 2.6± 2.9 – 0.7/1 41

Fri67 [6] 16 14.2± 4.0 5.6± 4.2 19.8± 4.3 2.4/14 100

Bar74 [7] 7 11.4±1.4 −4.7± 2.5 6.7± 3.3 8.0/5 15

Fed91 [8] 16 13.7± 3.7 2.1± 3.1 15.9± 4.4 17/14 24

Zie92 [9] 2 10.0± 1.4 4.0± 1.4 – 0.1/1 73

Hal93 [10] 12 9.1± 1.7 3.7± 1.5 12.7± 2.0 5.9/10 82

Mac95 [11] 18 12.2± 1.7 3.3± 1.8 15.5± 3.1 7.4/16 97

M95tag [11] 8 18.3± 5.7 13.2± 7.2 31.5± 12.3 2.2/6 90

Note: The polarizabilities are given in units of 10−4 fm3; n is the number of experimental points; χ2/Nf shows the values of chi
squared and the number of degrees of freedom; and P is the probability for the shown values of χ2/Nf . The errors take into account
both statistical and systematic uncertainties in the experimental cross sections. The last line refers to the tagged-photon subset of the
experiment reported in [11].
cross sections taken at the photon energy ωi and the
scattering angle θi,∆σ

expt
ij is the statistical error at an

individual point, δj is the systematic error for the jth
experiment, kj is a normalization factor to be found
for the jth experiment, and αp and βp are the proton
polarizabilities to be found.

With this functional, fitting the combined data
of N experiments leads to some nontrivial conse-
quences: (a) before averaging, the values of σexpt

ij are
corrected for each experiment on the scale of sys-
tematic errors δj ; (b) the final averaged values of the
polarizabilities αp and βp are calculated from the cor-

rected values of σexpt
ij ; (c) the final errors∆αp and∆βp

automatically take into account both statistical and
systematic errors of the measurements; (d) the final
value of χ2 shows the compatibility of all measured
points with the dispersion-theory version used; and
(e) as a by-product, theN normalization (correcting)
factors kj are calculated.

2.2. Polarizabilities from Separate Experiments
The first step in our analysis consists in separate

fits to experimental data from each of the studies
quoted above. Since the data from [5, 9] are taken
at a fixed angle, two polarizabilities cannot be found,
and we fit those data using fixed αp + βp = 14.0± 0.5
calculated from a dispersion sum rule [13].

The results in Table 1 show that (1) all individual
experiments are in agreement with the dispersion the-
ory used, (2) errors (statistical plus systematic) in the
P

extracted polarizabilities are rather large, and (3) the
individual extracted values of αp and βp are approxi-
mately consistent within 2 to 3 standard deviations.
All that means the possibility of using differential
cross sections measured in [2–11] in a combined fit.

It is interesting to note that the tagged-photon
subset of data from [11] results in rather large errors
in the extracted polarizabilities (see the last line in
Table 1). Therefore, traditional experiments with the
bremsstrahlung photon spectrum still have a certain
advantage for determining αp and βp over tagged-
photon experiments, at least at the present level of
statistical errors in the measured cross sections.

2.3. Polarizabilities from Groups of Experiments

The second step in our analysis consisted in fitting
two groups of data, the early 46 points and the recent
48 points. After that, a global fit to all 94 points was
performed.

The corresponding world-average polarizabilities
are shown in Table 2. In this table, the low values
of χ2/Nf demonstrate satisfactory agreement inside
the group of early experiments, inside the group of
recent experiments, and between the early and recent
experiments. The early and the recent experiments
have virtually the same level of errors; by combining
of all the experiments results, we therefore reduce the
errors. At present, the results given in the bottom
line are themost objective world-average values of the
proton polarizabilities.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 2. Final world-average values of the proton polarizabilities

Expt. Refs. n αp βp αp + βp αp − βp χ2/Nf

Early [2–7] 46 12.8± 1.1 −0.3± 1.6 12.5± 2.2 13.0± 1.7 33/44

Recent [8–11] 48 10.8± 1.0 3.2± 1.0 14.0± 1.6 7.7± 1.2 33/46

All [2–11] 94 11.7± 0.8 2.3± 0.9 14.0± 1.3 9.5± 1.0 73/92

Note: The polarizabilities were separately extracted (three lines) from early data, recent data, and all data. The units are 10−4 fm3; n is
the number of experimental points; χ2/Nf shows the values of chi squared and the number of degrees of freedom. The errors take into
account both statistical and systematic uncertainties in the experimental cross sections.

Table 3. Polarizability uncertainties from the model dependence of the theory

Changes ∆αp ∆βp ∆(αp + βp) ∆(αp − βp)

a SAID→ HDT −0.44 −0.08 −0.51 −0.36
(−0.19) (+0.03) (−0.16) (−0.22)

b M1+ → +2% +0.18 −0.11 +0.06 +0.29

(+0.07) (−0.04) (+0.03) (+0.11)

c M1 = 500→ 700MeV −0.35 +0.53 +0.19 −0.88
(−0.20) (+0.24) (+0.04) (−0.44)

d | gπNNFπγγ | → +4% −0.14 +0.10 −0.04 −0.24
(−0.09) (+0.07) (−0.02) (−0.16)

e γ
(non-π◦)
π = 5.5→ 7.3 +0.40 −0.45 −0.05 +0.84

(+0.18) (−0.15) (+0.03) (+0.32)

Total model uncertainty 0.72 0.72 0.56 1.33

(0.34) (0.29) (0.17) (0.62)

Note: Uncertainties are in units of 10−4 fm3. The values without parentheses were obtained for the energy region below 150 MeV,
while the values in parentheses are for the energy region below 100 MeV. The sources of uncertainties are the following: (a) the pion-
photoproduction amplitudes near the threshold, (b) the resonance pion-photoproduction amplitudeM1+, (c) the σ-meson mass, (d)
the pion coupling constants, (e) the non-π0-exchange background.
2.4. Model Uncertainties in Polarizabilities

The third step in our analysis consisted in vary-
ing model parameters in the theoretical cross section
obtained on the basis of the finite-energy s-channel
dispersion relations and in estimating model errors in
the extracted values ofαp and βp. Themost important
contributions to the model errors are shown in Table 3
for ω < 150MeV and for ω < 100MeV (in parenthe-
ses).

Summing the contributions in quadrature, we get
the total model errors:
∆αmod

p ≈ ∆βmod
p ≈ 0.7 at ω < 150 MeV

(∆αmod
p ≈ ∆βmod

p ≈ 0.3 at ω < 100 MeV).

It can be seen that the calculated model errors are
comparable with the experimental ones (cf. Table 2).
All the theoretical model errors would be much lower
if the energy region under consideration were below
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
100 MeV (see the values in parentheses). Unfortu-
nately, there are presently insufficient data points in
this low-energy region.

3. SUMMARY AND CONCLUSION
An analysis of world data on γp elastic scattering

below 150 MeV has been performed on the basis
of finite-energy s-channel dispersion relations and
with allowance for both statistical and systematic
errors. All the data have been shown to be statistically
compatible. The earlier data set and the recent-data
set have virtually the same level of errors, and they
have been combined in order to extract more reliable
average values for the proton polarizabilities. Taking
the values of αp and βp from Table 2 for the case of all
data and adding the model errors, we get the world-
average values of the proton polarizabilities:
αp = 11.7 ± 0.8 (stat. + syst.) ± 0.7 (model),
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βp = 2.3 ± 0.9 (stat. + syst.) ± 0.7 (model).
It should be emphasized that these values were ob-
tained without a theoretical constraint on their sum.
Instead, the experimental value of the sum
αp + βp = 14.0 ± 1.3 (stat. + syst.) ± 0.6 (model)
is found to be in agreement with the theoretical sum-
rule prediction [13]. The values determined for αp and
βp and for the sum αp + βp seem the most precise
and the most reliable average values for the proton
polarizabilities.

The above values might be recommended for a
general use and for publications of the Particle Data
Group (PDG). The current proton-polarizability val-
ues given by the PDG are based on the results of only
three recent experiments [8–10]; moreover, they were
obtained at the fixed value of αp + βp = 14.2 ± 0.5 in
order to reduce actual experimental errors.

At present, experimental and model errors in the
polarizabilities are comparable. In order to reduce
both kinds of errors, it is necessary to perform new
measurements of the differential cross section for γp
scattering with statistical and systematic errors of
about 1 to 2%, preferably in the energy region below
100 MeV, where the model errors are significantly
lower.
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For many years, investigation of the hyperfine
splitting (HFS) of the hydrogen-atom ground state
has been considered as an important test of quantum
electrodynamics (QED). The experimental value of
the hyperfine splitting in hydrogen was obtained with
a very high precision [1]:

∆Eexp
HFS = 1420405.7517667(9) kHz. (1)

The corresponding theoretical expression for the
hyperfine splitting in hydrogen can be presently writ-
ten in the form [2]

∆Eth
HFS = EF(1 + δQED + δS + δP ), (2)

EF =
8
3
α4 µpm

2
pm

2
e

(mp +me)3
,

where µp is the proton magnetic moment andme and
mp are the masses of the electron and the proton,
respectively. The calculation of various corrections
to EF has a long history. The modern status in the
theory of hydrogenic atoms was presented in detail in
[3]. The quantity δQED stands for the contribution of
higher order QED effects. The corrections δS and δP

take into account the influence of strong interaction,
while δS describes the effects of proton finite-size and
recoil contribution; δP is the correction due to the
proton polarizability. The basic uncertainty in the
theoretical result (2) is associated with this term.

The main contribution to δP is determined by the
two-photon diagrams in Fig. 1. The corresponding
amplitudes of virtual Compton scattering on a proton
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can be expressed in terms of the nucleon polarized
structure functions G1(ν,Q2) and G2(ν,Q2). The
inelastic contribution of the diagrams in Figs. 1a and
1b can be represented in the form [3–8]

∆EP
HFS =

Zαme

2πmp(1 + κ)
EF(∆1 + ∆2) (3)

= (δP1 + δP2 )EF = δPEF,

∆1 =

∞∫

0

dQ2

Q2

{
9
4
F 2

2 (Q2) (4)

− 4m3
p

∞∫

νth

dν

ν
β1

(
ν2

Q2

)

G1(ν,Q2)
}

,

∆2 = −12m2
p

∞∫

0

dQ2

Q2

∞∫

νthr

dνβ2

(
ν2

Q2

)

G2(ν,Q2),

(5)

where νthr determines the pion–nucleon threshold,

νthr = mπ +
m2

π +Q2

2mp
, (6)

and the functions β1,2 are given by

β1(θ) = 3θ − 2θ2 − 2(2 − θ)
√
θ(θ + 1), (7)

β2(θ) = 1 + 2θ − 2
√
θ(θ + 1), θ = ν2/Q2. (8)

Further, F2(Q2) is the Pauli form factor for the pro-
ton, and κ is the proton anomalous magnetic mo-
ment (κ = 1.792847386(63) [9]). For many years,
there have not been sufficient experimental data and
theoretical information about proton spin-dependent
structure functions. Therefore, previous investiga-
tions of the contribution ∆EP

HFS contain only esti-
mates of the proton polarizability effects, δP ∼ 1–
2 ppm, or the calculation of the main resonance
contributions [6–8, 10]. A theoretical bound on the
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Feynman diagrams for the proton-polarizability
correction to the hyperfine splitting in hydrogen.

proton-polarizability contribution is |δP | ≤ 4 ppm.
As was noted in [3], the problem of the proton-
polarizability contribution requires a new investiga-
tion, which would take into account more recent ex-
perimental data on the spin structure of the nucleon.

The polarized structure functions g1(ν,Q2) and
g2(ν,Q2) appear in the antisymmetric part of had-
ronic tensor Wµν , describing deep-inelastic lepton–
nucleon scattering [11]:

Wµν =W [S]
µν +W [A]

µν , (9)

W [S]
µν =

(

−gµν +
qµqν
q2

)

W1(ν,Q2) (10)

+
(

Pµ − P · q
q2
qµ

)(

Pν − P · q
q2
qν

)
W2(ν,Q2)
m2

p

,

W [A]
µν = εµναβq

α

{

Sβ g1(ν,Q
2)

P · q (11)

+ [(P · q)Sβ − (S · q)P β ]
g2(ν,Q2)
(P · q)2

}

.

Here, εµναβ is the totally antisymmetric tensor in
four dimensions; g1(ν,Q2) = m2

pνG1(ν,Q2) and
g2(ν,Q2) = mpν

2G2(ν,Q2); P is the nucleon 4-
momentum; x = Q2/2mpν is the Bjorken variable;
S is the proton spin 4-vector normalized as S2 = −1;
and q2 = −Q2 is the square of the four-momentum
transfer. The invariant quantity P · q is related to
the energy transfer ν in the proton rest frame as
P · q = mpν. The invariant mass of the electropro-
duced hadronic system, W , is then given by W 2 =
m2

p + 2mpν −Q2 = m2
p +Q2(1/x− 1). Here, W1

and W2 are the structure functions for unpolarized
scattering. In the regime of deep-inelastic scattering,
the invariant mass W must be greater than that of
any resonance in the nucleon. The threshold between
the resonance region and the deep-inelastic region is
not well defined, but it is usually taken to be about
W 2 = 4.

The hadronic tensor Wµν is proportional to the
imaginary part of the off-shell Compton amplitude for
the forward scattering of virtual photons on nucleons:
PH
γ∗N → γ∗N . The photon–nucleon interaction de-
pends on the photon and on the nucleon polarization.
This gives four independent helicity amplitudes of the
formMab;cd, with a, b, c, and d specifying the helicities
of the photon and the nucleon initial and final states:

M1,1/2;1,1/2, M1,−1/2;1,−1/2, M0,1/2;0,1/2,

M1,1/2;0,−1/2.

Their degrees of freedom correspond to four struc-
ture functions W1,W2, g1, and g2. All other possible
combinations of the initial and the final photon and
nucleon helicities are related to the above by the time
reversal and the parity transformation.

The proton spin structure functions can be mea-
sured in the inelastic scattering of polarized electrons
on polarized protons. Recent improvements in po-
larized lepton beams and targets made it possible
to perform ever more accurate measurements of the
nucleon polarized structure functions g1,2 in exper-
iments at SLAC, CERN, and DESY [12–19]. The
spin-dependent structure functions can be expressed
in terms of virtual photon-absorption cross sections
as [11]

g1(ν,Q2) =
mp ·K

8π2α(1 +Q2/ν2)

[

σ1/2(ν,Q
2) (12)

− σ3/2(ν,Q
2) +

2
√
Q2

ν
σTL(ν,Q2)

]

,

g2(ν,Q2) =
mp ·K

8π2α(1 +Q2/ν2)

[

− σ1/2(ν,Q
2)

(13)

+ σ3/2(ν,Q
2) +

2ν
√
Q2
σTL(ν,Q2)

]

,

whereK = ν −Q2/2mp is the Hand kinematical flux
factor for virtual photons; σ1/2 and σ3/2 are the virtual
photoabsorption transverse cross sections for the to-
tal helicity of, respectively, 1/2 and 3/2 between the
photon and the nucleon; and σTL is the term taking
into account the interference between the transverse
and longitudinal photon–nucleon amplitude. In this
study, we calculate the contribution ∆EP

HFS on the
basis of modern experimental data on the structure
functions g1,2(ν,Q2) and theoretical predictions on
the cross sections σ1/2,3/2,TL.

To obtain correction (3) in the resonance re-
gion (W 2 ≤ 4 GeV2), we use the Breit–Wigner
parametrization for the photoabsorption cross sec-
tions in (12) and (13), which was suggested in
[20–26]. There are many baryon resonances that
contribute to the photon-absorption cross sections.
We take into account only five important resonances:
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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P33(1232), S11(1535), D13(1520), P11(1440), and
F15(1680). Considering the one-pion decay channel
of the resonances, we can recast the absorption cross
sections σ1/2 and σ3/2 into the form [23, 27]

σ1/2,3/2 =
(
kR

k

)2 W 2ΓγΓR→Nπ

(W 2 −M2
R)2 +W 2Γ2

tot

(14)

× 4mp

MRΓR
|A1/2,3/2|2,

whereA1/2,3/2 are transverse electromagnetic helicity
amplitudes,

Γγ = ΓR

(
k

kR

)j1 (k2
R +X2

k2 +X2

)j2

, (15)

X = 0.3 GeV.
The resonance parameters ΓR, MR, j1, j2, and Γtot

were taken from [9, 28]. In accordance with [22, 24,
28], the parametrization of the one-pion decay width
is

ΓR→Nπ(q) = ΓR
MR

M

(
q

qR

)3(q2R + C2

q2 + C2

)2

, (16)

C = 0.3 GeV,

for P33(1232) and

ΓR→Nπ(q) = ΓR

(
q

qR

)2l+1(q2R + δ2

q2 + δ2

)l+1

(17)

forD13(1520), P11(1440), and F15(1680); l is the pion
angular momentum, and δ2 = (MR −mp −mπ)2 +
Γ2

R/4. Here, q (k) and qR (kR) denote the momenta
of the resonances with masses M and MR, respec-
tively, in the pion (photon) c.m. frame. In the case
of S11(1535) we take into account πN and ηN decay
modes [24, 28],

ΓR→π,η =
qπ,η

q
bπ,ηΓR

q2π,η + C2
π,η

q2 +C2
π,η

, (18)

where bπ,η is the π(η) branching ratio.
The cross section σTL is determined by an ex-

pression that is similar to (14), but which contains
(S∗

1/2A1/2 +A∗
1/2S1/2) [12]. The helicity amplitudes

A1/2 and A3/2 and the longitudinal amplitude S1/2

as functions of Q2 were calculated on the basis of
the constituent quark model in [29–34]. In the real-
photon limit Q2 = 0, we take the corresponding res-
onance amplitudes from [9]. For the ∆-isobar am-
plitudes A1/2(Q2) and A3/2(Q2), we used the re-
lations obtained in [35]. The helicity amplitudes
of the other resonances were taken from [31–34].
We have considered the Roper resonance P11(1440)
as an ordinary qqq state [36]. As follows from the
predictions of the quark model, the helicity ampli-
tudes, which may be suppressed at Q2 = 0, become
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
dominant very fast with increasing Q2. This can
be seen from Figs. 2 and 3, where we also show
experimental data of the E143 collaboration at two
fixedmomentum-transfer points: Q2 = 0.5GeV2 and
Q2 = 1.2GeV2. Our results for the structure function
g1(ν,Q2) in Fig. 2, which are in qualitative agreement
with [27] and experimental data, show that Breit–
Wigner five-resonance parametrization of the photon
cross sections and the constituent quark model pro-
vide a good description of the proton polarized struc-
ture functions in the resonance region. The existing
discrepancy between the predictions of this model for
g1,2(ν,Q2) and experimental data, which is clearly
seen in Fig. 2b, requires a further improvement in
constructing the spin-dependent structure functions.
This may be implemented by considering the contri-
butions of other baryon resonances in the large-W
region [S31(1620), F37(1950), D33(1700), P13(1720),
F35(1905)] and taking into account various decay
modes for such states [27]. The Gerasimov–Drell–
Hern sum rule [37]

− κ2

4m2
p

=
1

8π2α

∞∫

νth

dν

ν
[σ1/2(ν, 0) − σ3/2(ν, 0)] (19)

is valid to a high precision [27]. The second part of
(4) gives an especially large negative contribution to
the correction δP1 in the region of small Q2, where
the contribution of the ∆ isobar is dominant. With
increasing Q2, its value decreases and the total cor-
rection δP1 is positive.

Our calculation of the contribution ∆EP
HFS in the

region of deep-inelastic scattering (W 2 ≥ 4 GeV2) is
based on experimental data from [12–19]. All data,
including the SMC data at Q2 ≤ 1 GeV2, were fitted
in terms of the parametrization

g1(x,Q2) = a1xa2(1 + a3x+ a4x2) (20)

×[1 + a5f(Q2)]F1(x,Q2),

where x = Q2/2mpν is the Bjorken scaling variable
and F1 =W1mp. Fitted coefficients and various
models for the form of the Q2 dependence can be
found in [12, 19]. In Fig. 4, the experimental data
and the parametrization in the form (20) for the ratio
g1/F1 are presented at two different points Q2. A
numerical integration in (4) was performed with the
function f(Q2) = − lnQ2 (fit IV), corresponding to
perturbative-QCD behavior. The coefficient function
is f(Q2) = 0 in the case of fit I. We have extrapolated
relation (20) to the region near Q2 = 0. The second
part of the correction δP in (5) for the nonresonance
2
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Fig. 2. Proton structure function g1(W,Q
2) at Q2 =

(a) 0.5 and (b) 1.2 GeV2 in the resonance region. The
experimental data were taken from [12].
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Fig. 3. Proton structure function g2(W,Q2) at Q2 = (a)
0.5 and (b) 1.2 GeV2 in the resonance region.

region was calculated by means of the Wandzura–
Wilczek relation between the spin structure functions
g1(x,Q2) and g2(x,Q2):

gWW
2 (x,Q2) = −g1(x,Q2) +

1∫

x

g1(t,Q2)
dt

t
, (21)
PH
gWW
2 ≈ g2.

Higher twist terms contribute to g2(x,Q2) as well,
but they are so small that, when the transverse asym-
metry A⊥ has not been measured or when it is not
known sufficiently well, g2 = gWW

2 is often used. The
values of contributions δP1 and δP2 and of the total
contribution δP that are obtained after a numerical
integration over the resonance and nonresonance re-
gions are as follows:

δP1,res = 0.93 ppm, δP1,nonres = 0.86 ppm, (22)

δP1 = 1.79 ppm,

δP2,res = −0.42 ppm, δP2,nonres = −0.01 ppm, (23)

δP2 = −0.43 ppm,

δP = δP1 + δP2 = 1.4 ± 0.6 ppm, (24)

where the error indicated in expression (24) is de-
termined by two main factors associated with the
polarized structure functions: uncertainty in the ex-
perimental data in the nonresonance region and the
possible contribution of other baryonic resonances
to the functions g1,2(ν,Q2). The second error was
estimated by means of the results of integration in
(4) and (5) for various intervals of Q2 and W and for
possible modification of the spin-dependent structure
functions in the resonance region W ≥ 1.5 GeV due
to changing the Breit–Wigner parametrization (14).
The first part of the error in (24) is associated with
statistical and systematic errors in the experimental
data from [12].

The difference between the experimental value (1)
and the theoretical result ∆Eth

HFS =
1420399.3(1.6) kHz without the proton-polarizability
contribution can be represented in the form [2, 3,
38, 39]

∆Eexp
HFS − ∆Eth

HFS

EF
= 4.5(1.1) ppm. (25)

As was indicated in [2, 3, 38], the main sources
of uncertainty in this difference are the inaccuracy
of the proton-form-factor parametrization (dipole fit,
etc.) and contradictory experimental data on the
proton radius. The proton-polarizability correction
δP calculated here makes the contribution in (24) of
the proper sign and order of magnitude to the differ-
ence (25). A further improvement of this calculation
is associated with new experimental and theoretical
investigation of the internal structure of the light-
quark baryons [40], with new more accurate mea-
surements of the proton polarized structure func-
tions, and with the use of QCD-based methods for
calculating spin-dependent structure functions [41,
42]. A more detailed consideration of the structure
functions g1,2(ν,Q2) in the resonance region, with
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 4. Ratio g1(W,Q2)/F1(W,Q
2) as a function of W

for the proton at Q2 = (a) 0.7 and (b) 1.2 GeV2 in the
region of deep-inelastic scattering [12]. The dashed and
solid curves represent the results of fits I and IV, respec-
tively.

allowance for the contributions of some other bary-
onic resonances and additional decay channels, is
also required.
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tov, Fiz. Élem. Chastits At. Yadra 25, 144 (1994)
[Phys. Part. Nucl. 25, 58 (1994)].

3. M. I. Eides, H.Grotch, and V. A. Shelyuto, Phys. Rep.
342, 62 (2001).

4. C. K. Iddings and P. M. Platzman, Phys. Rev. 115,
919 (1959).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
5. S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477
(1967).

6. A. Verganalakis and D. Zwanziger, Nuovo Cimento A
39, 613 (1965).

7. F. Guerin, Nuovo Cimento A 50, 1 (1967).
8. G. M. Zinov’ev, B. V. Struminskii, R. N. Faustov, and

V. L. Chernyak, Yad. Fiz. 11, 1284 (1970) [Sov. J.
Nucl. Phys. 11, 715 (1970)].

9. Particle Data Group, Eur. Phys. J. C 15, 1 (2000).
10. R. N. Faustov, A. P. Martynenko, and V. A. Saleev,

Yad. Fiz. 62, 2280 (1999) [Phys. At. Nucl. 62, 2099
(1999)].

11. R. P. Feynman, Photon–Hadron Interactions
(Benjamin, Reading, 1972; Mir, Moscow, 1975);
F. E. Close,An Introduction to Quarks and Partons
(Academic, London, 1979; Mir, Moscow, 1972).

12. K. Abe, T. Akagi, P. L. Anthony, et al., Phys. Rev. D
58, 112003 (1998).

13. K. Abe et al., Phys. Rev. Lett. 78, 815 (1997).
14. P. L. Anthony et al., Phys. Lett. B 458, 529 (1999).
15. G. S. Mitchell, Preprint SLAC-PUB-8104 (1999).
16. D. Adams et al., Phys. Rev. D 56, 5330 (1997).
17. D. Adeva et al., Phys. Rev. D 60, 072004 (1999).
18. V. W. Hughes, Preprint CERN-PPE/95-178 (1995);

C. Aidala, A. Deshpande, and V. Hughes, in Pro-
ceedings of the Workshop on Polarized Protons
at High Energies—Accelerator Challenges and
Physics Opportunities, 1999, DESY-PROC-1999-
03, p. 248.

19. R. D. Erbacher, SLAC-Report-546 (1999).
20. R. L. Walker, Phys. Rev. 182, 1729 (1969).
21. R. A. Arndt, R. L. Workman, Z. Li, et al., Phys. Rev.

C 42, 1864 (1990).
22. S. Teis, W. Cassing, M. Effenberger, et al., Z. Phys.

A 356, 421 (1997).
23. M. Effenberger, A. Hombach, S. Teis, et al., Nucl.

Phys. A 613, 353 (1997).
24. B. Krusche, J. Ahrens, G. Anton, et al., Phys. Rev.

Lett. 74, 3736 (1995).
25. N. Bianchi, V. Muccifora, E. Sanctis, et al., Phys.

Rev. C 54, 1688 (1996).
26. D.Drechsel, O. Hanstein, S. S. Kamalov, et al., Nucl.

Phys. A 645, 145 (1999).
27. Y.-B. Dong, Eur. Phys. J. A 1, 347 (1998).
28. M. Effenberger, A. Hombach, S. Teis, et al., Nucl.

Phys. A 614, 501 (1997).
29. Z. Li and Y.-B. Dong, Phys. Rev. D 54, 4301 (1996).
30. R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868

(1980).
31. F. E. Close and Z. Li, Phys. Rev. D 42, 2194 (1990);

42, 2207 (1990).
32. S. Capstick, Phys. Rev. D 46, 1965 (1992); 46, 2864

(1992).
33. Zhenping Li, V. Burkert, and Zhujun Li, Phys. Rev. D

46, 70 (1992).
34. M. Warns, W. Pfeil, and H. Rollnik, Phys. Rev. D 42,

2215 (1990).
35. C. E. Carlson and N. C. Mukhopadhyay, Preprint

RPI-98-N126; WM-98-105; hep-ph/9804356.
2



270 FAUSTOV, MARTYNENKO
36. A. P. Martynenko, Yad. Fiz. 54, 809 (1991) [Sov.
J. Nucl. Phys. 54, 488 (1991)]; Yad. Fiz. 58, 2054
(1995) [Phys. At. Nucl. 58, 1943 (1995)].

37. S. B. Gerasimov, Yad. Fiz. 2, 598 (1965) [Sov.
J. Nucl. Phys. 2, 430 (1966)]; S. D. Drell and
A. C. Hern, Phys. Rev. Lett. 16, 908 (1966).

38. G. T. Bodwin and D. R. Yennie, Phys. Rev. D 37, 498
(1988).
PH
39. S. G. Karshenboim, Phys. Lett. A 225, 97 (1997).

40. V. Burkert, Nucl. Phys. A 623, 59 (1997).

41. G. Altarelli, R. D. Ball, S. Forte, et al., Nucl. Phys. B

496, 337 (1997).

42. M. Hirai, S. Kumano, and M. Miyama, Comput.

Phys. Commun. 108, 38 (1998).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002



Physics of Atomic Nuclei, Vol. 65, No. 2, 2002, pp. 271–276. Translated from Yadernaya Fizika, Vol. 65, No. 2, 2002, pp. 297–302.
Original Russian Text Copyright c© 2002 by Martynenko, Faustov.

Conference on Physics of Fundamental Interactions
Theory
Magnetic Moment of a Two-Particle Bound State in Quantum
Electrodynamics

A. P. Martynenko1), * and R. N. Faustov2), **

Received March 7, 2001; in final form, August 23, 2001

Abstract—A quasipotential method for calculating relativistic and radiative corrections to the magnetic
moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that
the expression for the g factors of bound particles involve O(α2) terms depending on the particle spin.
Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium.
c© 2002 MAIK “Nauka/Interperiodica”.
In quantum electrodynamics (QED), investiga-
tion of the electromagnetic properties of hydrogen-
like atoms and ions is one of the basic problems in the
theory of two-particle bound states. The calculation
of the g factors for bound-state particles has been
verified experimentally for a long time [1, 2]. The g
factors measured for the electron in hydrogen, deu-
terium, and helium (4He+) are in good agreement
with theoretical results. In recent years, the range of
the experimental investigations of hydrogen-like ions
has been considerably extended [3, 4]. These exper-
iments stimulate new theoretical calculations of var-
ious contributions to the g factors of bound particles
[5–7]. At present, the most precise measurements of
the g factor have been performed for the electron in
the carbon hydrogen-like ion 12C5+ (Z = 6) [3, 4, 7]:

gexpte (12C5+) = 2.0010415964(8)(6)(40). (1)

Here, the statistical error, the systematic error,
and the uncertainties associated with the electron
mass (8, 6, and 40, respectively) are indicated con-
secutively in parentheses. Theoretical investigations
of the electromagnetic properties of hydrogen-like
atoms showed [8–14] that the gyromagnetic factors
of bound particles can be represented in the form of
the expansion

g(H atom) = 2 +∆grel +∆grad +∆grec + .... (2)

The relativistic corrections ∆grel, the radiative
corrections ∆grad, and the recoil corrections ∆grec

1)Samara State University, ul. Akademika Pavlova 1, Samara,
443011 Russia.

2)Scientific Council for the Interdisciplinary Problem Cyber-
netics, Russian Academy of Sciences, ul. Vavilova 40,
Moscow, 117967 Russia.

*e-mail: mart@info.ssu.samara.ru
**e-mail: faustov@theory.npi.msu.su
1063-7788/02/6502-0271$22.00 c©
were calculated to orders α3(m/M) and α2(m/M)2
inclusive (here, α is the fine-structure constant and
m/M is the ratio of the electron mass to the mass of
the nucleus) [8, 9] by using the quasipotential method
for spin-1/2 particles forming the bound system. The
ellipsis in (2) stands for other possible terms that can
appear in the expression for the g factor.

At the same time, experiments studying deuterium
and hydrogen-like ions, where the nuclei have various
spins, require constructing methods for calculating g
factors for the case of an arbitrary spin. Eides and
Grotch [15] proposed a method for calculating cor-
rections to gyromagnetic factors on the basis of the
Bargmann–Michel–Telegdi equation [16] and con-
cluded that these corrections are independent of the
value of the constituent spins. In the present study,
a quasipotential method for calculating the magnetic
moment of the bound state formed by two particles
of arbitrary-spin is formulated in the one-photon ap-
proximation. By using this method, we further cal-
culate the leading contributions of orders O(α2) and
O(α3) to relation (2) (see figure).

Over a long period of time, the interaction of mas-
sive particles of arbitrary spin with an electromagnetic
field has been investigated on the basis of various
approaches [17–27], but the relevant problem has
not yet been solved conclusively. It was shown in
[18–20] that, in the tree approximation, particles of
arbitrary spin must have the gyromagnetic factor of
g = 2. For a particle of spin s, the matrix element of
the electromagnetic current is generally determined
in terms of 2s+ 1 form factors (charge, magnetic,
quadrupole, and so on). In investigating the mag-
netic moments of the simplest atomic systems, we
can restrict ourselves to form factors of lowest mul-
tipole orders that determine the electric-charge and
magnetic-moment distributions. The matrix element
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Generalized two-particle vertex function Γµ:
(a) Γ

(0)
µ and (b) Γ

(1)
µ (here, thick lines represent the

negative-frequency part of the particle propagator).

Jµ of the electromagnetic-current operator between
states characterized by the momenta p and q can be
written in the form

Jµ = Ū(p)
{

ΓµF
D
1 +

1
2m
Σµνk

νFP
2

}

U(q), (3)

where kν = (p − q)ν ; m is the particle mass; and FD
1

and FP
2 are, respectively, the Dirac and the Pauli form

factor. The wave function U(p) for a particle of arbi-
trary spin [it appears in Eq. (3)] can be represented in
the form [26, 27]

U =
(

ξ

η

)

=




ξ
α1α2...αp

β̇1β̇2...β̇q

η
β1β2...βq

α̇1α̇2...α̇p



 , p+ q = 2s, (4)

where the spin tensors ξ and η are symmetric in su-
perscripts and subscripts individually. For a particle
of half-integer spin, we have p = s+ 1/2 and q =
s − 1/2; for a particle of integral spin, p = q = s. The
Lorentz transformation for the spinors ξ and η has the
form [27, 28]

ξ = eΣ·φ/2ξ0, η = e−Σ·φ/2ξ0, (5)
where ξ0 is the spinоr in the rest frame, the direction
of the vector φ coincides with the particle velocity
v, tanhφ = v, and the generator Σ of the Lorentz
transformation has the form

Σ =
p∑

i=1

σi −
p+q∑

i=p+1

σi. (6)

The matrix σi acts on the index i of the spinor ξ0
in the following way:

σiξ0 = (σi)αiβi
(ξ0)...βi.... (7)

The components of the antisymmetric tensor Σµν

in (3) are the generators of boosts and rotations
[27, 28]; that is,

Σn0 =



 Σn 0

0 −Σn



 , (8)
PH
Σmn = −2iεmnk



 sk 0

0 sk



 ,

s =
1
2

2s∑

i=1

σi.

In the standard representation that is introduced
by analogy with the case of a spin of 1/2, the wave
function (4) for a free particle to terms of order (v/c)2
has the form

U(p) =





[
1 + (Σ·p)2

8m2

]
ξ0

Σ·p
2m ξ0



. (9)

The magnetic moment of the bound state of two
particles of arbitrary spin is given by [8, 9]

M = − i

2

[
∂

∂∆
× 〈KA|J(0)|KB〉

]

, (10)

∆ = KA − KB ,

where the matrix element of the electromagnetic-
current operator between bound states can be written
as

〈KA|Jµ(0)|KB〉 =
∫

dp1dp2

(2π)3
δ(p1 + p2 − KA)

(11)

×Ψ∗
KA
(p)Γµ(p,q, EA, EB)

×ΨKB
(q)δ(q1 + q2 − KB)

dq1dq2
(2π)3

;

that is, it is expressed in terms of the wave functions
ΨKB

(p) for the bound system and the generalized
vertex function Γµ, which is shown in the figure. The
vertex function Γµ is expressed in terms of the five-
point function

Rµ = 〈0|ψ1(t,x1)ψ2(t,x2) (12)

× Jµ(0)ψ̄1(τ,y1)ψ̄2(τ,y2)|0〉,
which is projected onto positive-frequency states.
Specifically, we have

Γµ = G−1R(+)
µ G−1, R(+)

µ = U∗
1U

∗
2RµU1U2, (13)

where G is the two-particle Green’s function and
ψ(t,x) is the Heisenberg field operator of the particle.
Since we study a loosely bound two-particle system,
all of the quantities Γ, R, and G−1 can be expanded in
the perturbation-theory series

Γ = Γ(0) + Γ(1) + ..., (14)

R = R0 +R1 + ..., G−1 = G−1
0 − V1 − ...,

Γ(0) = G−1
0 R0G

−1
0 , (15)

Γ(1) = G−1
0 R1G

−1
0 − V1G0Γ(0) (16)

− Γ(0)G0V1, ...,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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whereG0 is the Green’s function for two noninteract-
ing particles and V1 is the quasipotential for the one-
photon interaction [see Eq. (19)].

It was shown in [29] that, upon the transition from
the rest frame to the frame moving at the momen-
tum KB , the wave function ΨKB

(p) for the system
consisting of two particles with the spins s1 and s2
transforms as

δ(p1 + p2 − KB)ΨKB
(p) (17)

= Ds1
1 (RW)D

s2
2 (RW)

√
ε◦1ε

◦
2M

ε1ε2E
Ψ0(p◦)δ(p◦

1 + p◦
2),

whereDs(R) stands for the rotation matrices andRW
is the Wigner rotation that is related to the Lorentz
transformation ΛKB

: (EB ,KB) =

ΛKB
(M, 0); (ε,p) = Λ(ε◦,p◦), EB =

√
M2 +K2

B ,

ε(p) =
√

p2 +m2. The exact expression for the
rotation matrix has the form [9]

Ds(RW) = S−1(p)S(KB)S(p◦), (18)

where S(p) is the matrix of the Lorentz transforma-
tion of the spinоr wave function (4). In the rest frame
of the bound state, the quasipotential wave function
Ψ0(p◦) satisfies the quasipotential equation [30]

G−1
0 Ψ ≡

(
b2

2µR
− p◦2

2µR

)

Ψ0(p◦) (19)

=
∫

V (p◦,q◦,M)Ψ0(q◦)
dq◦

(2π)3
,

where the relativistic reduced mass is given by

µR =
E1E2

M
=

M4 − (m2
1 − m2

2)
2

4M3
,

E1,2 =
M2 − m2

2,1 +m2
1,2

2M
,

with M = E1 + E2 being the bound-state mass,
while

b2(M) =
[M2 − (m1 +m2)2][M2 − (m1 − m2)2]

4M2
.

In the nonrelativistic limit, Eq. (19) reduces to the
Schrödinger equation with the Coulomb potential.
The functions Ds (18) can be obtained in an approxi-
mate form by using expressions (5):

Ds(RW) ≈ 1 +
p◦2 − (Σ · p◦)(Σ · p◦)

4m2
(20)

+
KB

2 − (Σ · KB)(Σ ·KB)
4M2

+
p◦ · KB − (Σ · p◦)(Σ ·KB)

4mM
.
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The main contribution to the vertex function Γµ is
represented by the diagram in Fig. 1a. In the Breit
frame, it has the form

Γ(0)(p,q) = Ū1(p1)e1

{

Γ1 +
iκ1
m1

[S1 × ∆]
}

(21)

× U1(q1)δ(p2 − q2) + (1↔ 2),

S1 =




s1 0

0 s1



 , ∆ = p1 − q1,

where FD
1,2(0) = e1,2, FP

1,2(0) = e1,2κ1,2 (κ1,2 are the
anomalous magnetic moments of particles), and the
matrix

Γ =



 0 Σ

−Σ 0



 (22)

is a natural generalization of the Dirac γ matrix for the
spin of 1/2 in the standard representation. In order to
simplify the individual terms in (21), it is convenient
to use the commutation relations [27]

[Σi,Σj] = 4iεijksk, [Σi, sj] = iεijkΣk. (23)

In order to construct the vertex functionΓ(0)(p,q)
with allowance for terms of order (v/c)2, we use the
explicit form of the wave function (9), transforming
the individual terms of the matrix element in (21) with
the aid of the equation of motion for the spinors U(p).
Taking into account the factor δ(p2 − q2), we obtain

Ū1(p1)(p1 + q1)U1(q1) (24)

= 2p◦ − ε2
M

∆+
ip◦ (S1 · [p◦ × ∆])

m2
1

,

Ū1(p1)[ε1(p1)− ε1(q1)]A1U1(q1) (25)

= −2p
◦ ·∆
m2

1

i[S1 × p◦],

Ū1(p1)[S1 × ∆]U1(q1) (26)

= [S1 × ∆]− 1
2m2

1

{p◦ (S1 · [p◦ × ∆])

+ [p◦ × S1](p◦ · ∆)} .

The effects in the vertex function Γµ that are asso-
ciated with the fact that the particles being considered
are bound are represented by the diagram in Fig. 1b.
The expression that corresponds to this diagram and
which takes into account the iterative terms of the
quasipotential approach can be written in the conve-
nient form [8, 9]

Γ(1)(p,q) = U∗
1 (p1)U∗

2 (p2)
e1
2m1

(27)

× { A1Λ
(−)
1 (p′

1)B1B2V̂ (q2 − p2)
2
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+ B1B2V̂ (p2 − q2)Λ
(−)
1 (q′

1)A1 }
× U1(q1)U2(q2) + (1↔ 2),

V̂ (k) = B1B2
{(

1 +
κ1
2m1

Γ1 · k
)

(28)

×
(

1− κ2
2m2

Γ2 · k
)

−
(

A1 +
κ1
m1

B1i[S1 × k]
)

×
(

A2 −
κ2
m2

B2i[S2 × K]
)}

e1e2
k2

,

where Λ−(p) ≈ (1− B)/2− A · p/2m is the single-
particle operator of projection onto negative-frequen-
cy states, p′

1 = p1 − ∆, and q′
1 = q1 +∆. As in

(22), the matrices A1,2 and B1,2 are natural general-
izations of α1,2, β1,2 in the case of spin-1/2 particles:

A =




0 Σ

Σ 0



 , B =




I 0

0 −I



. (29)

Apart from terms of order (v/c)2, both terms of the
potential (28) contribute to the magnetic moment of
the system. By substituting (27), (28), and (9) into
(11) and calculating the derivative with respect to ∆
in (10), we obtain

M =
1

(2π)3

∫

dpΨ∗
0(p)

e1
2ε1(p)

(30)

×
{

2(1 + κ1)s1[1 +N1 +N2]

+ (1 + 4κ1)
[p× [s1 × p]]

2m2
1

+ (1 + κ2)
[p× [s2 × p]]

m1m2

Σ2
1

3
− ε2(p)

M

×
[

1 +N1 +N2 +
(M − ε1 − ε2)

m2

Σ2
1

3

]

i

[

p× ∂

∂p

]

P

+
1
2M

[

p ×
[

p×
(

s1
m1

− s2
m2

)]]}

×Ψ0(p) + (1↔ 2),

where

Ni =
p2 − (Σi · p)(Σi · p)

2m2
i

. (31)

For S states, expression (30) is significantly sim-
plified to become

M =
1
2
g
(bound)
1

e1
m1

〈s1〉+
1
2
g
(bound)
2

e2
m2

〈s2〉, (32)

where the g factors of bound particles are given by

g
(bound)
1 = g1

{

1− 〈p2〉
3m2

1

[

1− 3κ1
2(1 + κ1)

]

(33)

+
〈p2〉
2m2

1

[

1− 〈Σ2
1〉
3

+
m2

1

m2
2

(

1− 〈Σ2
2〉
3

)]

+
e2
e1

〈p2〉
3m2

2

〈Σ2
2〉
3

− 〈p2〉
(1 + κ1)6m1(m1 +m2)

×
(

1− e2
e1

m1

m2

)}

,

g
(bound)
2 = g

(bound)
1 (1↔ 2), g1,2/2 = 1 + κ1,2.

For a hydrogen-like ion (here, 1 and 2 stand for
the electron and the nucleus, respectively), we have
e1 = −e, e2 = Ze, 〈p2〉 = m2

1m
2
2(Zα)2/(m1 +m2)2,

ge/2 = 1 + κ1, gN/2 = 1 + κ2, and

Ks1 =
〈Σ2

1〉
3

= 1, (34)
Ks2 =
〈Σ2

2〉
3

=

{
4s2/3, s2 being an integral nuclear spin

(4s2 + 1)/3, s2 being a half-integer nuclear spin,
so that the g factors for the electron and the nucleus
in the bound state are given by

g(bound)e = ge

{

1− m2
2(Zα)2

3(m1 +m2)2

[

1− 3κ1
2(1 + κ1)

(35)

− 3
2
(1− Ks1)−

3
2

m2
1

m2
2

(

1− Ks2 −
2
3
ZKs2

)

+
m1

2(m1 +m2)(1 + κ1)

(

1 + Z
m1

m2

)]}

,

g
(bound)
N = gN

{

1− m2
1(Zα)2

3(m1 +m2)2

[

1− 3κ2
2(1 + κ2)
H

− 3
2
(1− Ks2)−

3
2
m2

2

m2
1

(1− Ks1 −
2
3Z

Ks1) (36)

+
m2

2(m1 +m2)(1 + κ2)

(

1 +
m2

Zm1

)]}

.

Here, we have retained the factors Ks1 and Ks2 in
the general form in order to demonstrate the symme-
try of relations (35) and (36) under the interchange
1↔ 2. Expressions (35) and (36), which were ob-
tained on the basis of the diagrams in Figs. 1a and 1b,
involve O(α2) and O(α3) corrections, which are due
to effects of particle binding. We recall that the inter-
action of particles in the bound state was considered
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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in the one-photon approximation. In the case being
considered, O(α3) corrections arise upon taking into
account quasipotential terms that are proportional to
the anomalous magnetic moments κ1 and κ2 of the
particles. Relations (30), (35), and (36) generalize the
expressions for the magnetic moment of a hydrogen-
like atom and for the gyromagnetic factors for spin-
1/2 particles from [8, 9] to the case of particles of
arbitrary spin. The expression for the magnetic mo-
ment in (30) involves terms corresponding to the
interaction of free nonrelativistic pointlike charged
particles with an external electromagnetic field and
some corrections to these terms for the effects of
particle binding. Among these corrections, which are
quadratic in the spin operator Σ (terms proportional
to Ni), those that are determined by the transfor-
mation properties of the spinors ξ and η (5) can be
interpreted as relativistic corrections for a particle of
spin s. Other corrections associated with the general
structure of the matrix element of the current Jµ in (3)
stem from the dipole interaction. As follows from (35)
and (36), our calculations show that the O(α2) terms

in expressions for g(bound)e and g
(bound)
N depend on the

spin of the second particle, nucleus, in contrast to the
results presented in [15], where there is no such de-
pendence. The g factors for the electron in the hydro-
gen atom, deuterium, and tritium and their ratios are
of importance from the experimental point of view [1].

The experimental value of the ratio gHe /gDe was
obtained in [13] to a high precision. It is

rexpt =
[
gHe
gDe

]expt

= 1 + 7.22(3) × 10−9. (37)

The theoretical expression for this ratio follows
from (35):

rth =
[
gHe
gDe

]th

= 1 + α2

[
1
4
m1

m2
− 25
72

m2
1

m2
2

(38)

−α

π

(
m1

24m2
− 1
16

m2
1

m2
2

)]

.

The numerical value of the expression in (38) is
rth = 1 + 7.237 × 10−9, which is in good agreement
with the experimental result in (37).

The problem of constructing a relativistic descrip-
tion of the interaction of a massive particle of arbitrary
spin with an electromagnetic field has been studied for
a long time [17–25], but, at the moment, it is far from
being conclusively solved. It is well known that, if the
minimal-interaction principle is used in relativistic
equations for particles of spin s ≥ 1, there arise
difficulties of a fundamental character [17–27]. In the
nonrelativistic limit, different relativistic wave equa-
tions for a particle of spin s lead to different equations
of the Pauli type. As was mentioned above, Eides
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and Grotch [15] proposed a method for calculating
the contributions of various orders to the magnetic
moment of a loosely bound system on the basis of
the relativistic semiclassical equation of motion for a
spin. The Hamiltonian that was constructed in [15]
on the basis of this equation describes the interaction
of a particle of arbitrary spin with an external electro-
magnetic field and leads to spin-independent g factors
for bound-state particles. The Bargmann–Michel–
Telegdi equation is approximate: it is linear in the spin
of a particle and in the field Fµν whose coordinate
dependence is disregarded. In the case where a parti-
cle of spin s is in a bound state in a uniform external
electromagnetic field, the terms that are omitted in
the approximation of the Bargmann–Michel–Telegdi
equation can contribute to the g factors for bound
particles. In this study, the method proposed in
[26, 27] to describe the interaction of a particle of
arbitrary spin with an electromagnetic field is used
to calculate nuclear-spin-dependent contributions to
the g factors for the bound particles of a hydrogen-
like ion. New (in relation to the results presented
in [8]) contributions in expressions (35), (36), and
(38) are due to the replacement of the ordinary boost
generatorsα for spin-1/2 particles by the operators in
(29). Thus, our approach to describing the interaction
of a particle of arbitrary spin with an electromagnetic
field is based on the use of the matrix element of
the electromagnetic current (11) and on the Lorentz
transformation (5) of the spinor wave functions ξ
and η. We have obtained additional spin-dependent
terms in the g factors for bound particles [see (33)].
They arise upon taking into account, in the particle-
interaction operator, terms that are nonlinear in the
spin operator Σ. The Hamiltonian obtained in [15]
does not involve such O((v/c)2) nonlinear terms for
particles of arbitrary spin s. Effects quadratic in the
operator Σ that appear in the interaction operator of
particles of arbitrary spin were investigated in [26, 27].
A term of the (Σ · q)2 type can be represented as the
sum of a contact and a quadrupole term:

ΣiΣjqiqj =
1
3
q2ΣiΣi +

(

qiqj −
1
3
q2δij

)

ΣiΣj .
(39)

The contact term contributes to the energy spec-
trum of the system, while the quadrupole term deter-
mines the correction to the quadrupole moment of the
nucleus. The results that we obtained here for the
contributions to the gyromagnetic factors of particles
are determined by the contact terms of interaction
(39). For spin-1/2 particles, these terms correctly
reproduce the well-known result that was indepen-
dently obtained within the various approximations in
[8, 10, 11, 22]. The numerical value of the correction
to rth associated with the spin of the deuteron, for
2



276 MARTYNENKO, FAUSTOV
which we have I = 1, Z = 1, and m = 2m2 (m2 is
the proton mass), is∆rth = 5α2m2

1/72m
2
2 = 0.001×

10−9; as follows from (37), it is currently within the
experimental errors. The corrections in (35) and (36)
that are associated with the spin of the nucleus also
depend on Z and N (the latter being the number of
nucleons in the nucleus). Although these corrections
grow in proportion to Z3 with increasing Z, an in-
crease in the number N of nucleons in the nucleus
leads to the inverse effect. Because of this, the nu-
merical value of these corrections is currently beyond
the experimental accuracy for ions of the 12C5+ type
of nonzero spin (I �= 0). For the carbon ion 12C5+
itself, the spin is I = 0; therefore, KI = 0, and the
corresponding spin correction vanishes. At present,
the g factors for the electron have been measured in
the oxygen and sulfur ions (16O7+ and 32S14+ [4]),
whose nuclei also have zero spin I = 0. In our opin-
ion, it would be interesting to measure, by means of
Penning traps [3, 4], the g factors of particles for ions
such that their spin is nonzero (I �= 0), on one hand,
and the ratio Z3/N2 would be as great as possible, on
the other hand. Thismay be, for example, the 59Co26+

ion, for which I = 7/2 and Z3/N2 ≈ 5.65, while the
spin-dependent correction in (35) is 0.1 × 10−9. As
was indicated in the report presented by Quint [4],
measurement of the g factor for a bound electron to
a precision higher that 10−9 will become possible in
the near future.
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Abstract—Lepton-pair production by a neutrino in an external electromagnetic field is investigated within
the Standard Model. For the probability of this process, a comparatively simple exact expression is derived
that is convenient for a numerical analysis. c© 2002 MAIK “Nauka/Interperiodica”.
Presently, the well-established fact that a medium
has a profound impact on quantum processes oc-
curring in it stimulates an ever growing interest in
the physics of elementary particles in a medium,
especially in connection with possible astrophysical
applications. By a medium, we mean here not only
dense matter but also an intense electromagnetic
field, which, in astrophysical objects, can attain
the Schwinger critical value of Be = m2

e/e � 4.41 ×
1013 G or even significantly exceed it.1) At the same
time, the situation is possible where, for a relativistic
particle moving in a relatively weak electromagnetic
field, F < Be (F = E or B), the so-called dynamical
field parameter e(pαFαβFβσpσ)1/2 (here, pα is the
particle 4-momentum, and Fαβ is the strength tensor
of the electromagnetic field) can prove to be the
greatest dimensional parameter of the problem. In
the rest frame of this particle, the field can then
considerably exceed the critical value and can be very
close to a crossed field. Thus, a calculation in a
crossed field is of interest in and of itself. A technique
for computations in such a field was developed by
Nikishov and Ritus (see, for example, [1]).

There are processes—in particular, lepton-pair
production by a neutrino, ν → ν�−�+ (� = e, µ, τ)—
that are forbidden in a vacuum, but which become
possible in an intense electromagnetic field. We note
that, by virtue of the special kinematical features
of a charged particle in an electromagnetic field, a
�−�+ pair can have a total spacelike momentum
of rather large magnitude, whence it follows that,

*e-mail: avkuzn@uniyar.ac.ru
**e-mail: mikheev@yars.free.net
***e-mail: rda@uniyar.ac.ru
1)In this article, we use a natural system of units where � =
c = 1 and the pseudo-Euclidean metric with a (+ −−−)
signature.
1063-7788/02/6502-0277$22.00 c©
for ultrarelativistic neutrinos, the process becomes
purely diagonal in the neutrino flavor and insensitive
to the neutrino mass and to mixing in the lepton
sector.

Investigation of the production of electron–posi-
tron pairs by a neutrino in the crossed-field limit
has a rather long history [2–6]. Even in the first
of the studies quoted immediately above ([2]), a
correct dependence of the leading contribution to
the probability of the process on the dimensionless
dynamical parameter χ [the parameter χ is given by
χ2 = e2(pαFαβFβσpσ)/m6

e ≡ e2(pFFp)/m6
e , where

pα is the 4-momentum of the primary neutrino and
me is the electron mass] was found in the leading-
logarithm approximation (the result was proportional
to χ2 lnχ), but the numerical factor was erroneous
there. More recent studies were devoted to refining
the common factor in the expression for the proba-
bility and to computing postlogarithmic corrections,
which may prove to be of importance at not overly
large values of lnχ.

From the very formulation of the problem, it fol-
lows that we are dealing here solely with an ultrarel-
ativistic neutrino, which, owing to a chiral character
of its interaction within the StandardModel, can exist
only in a state having a left-hand circular polarization,
this being so even if its mass is nonzero. This state-
ment remains in force even if we assume that the neu-
trino has exotic properties that, under certain physical
conditions, could lead to depolarization effects (which
have not yet been observed). The disregard of the
fact that, in nature, there are no unpolarized ultrarel-
ativistic neutrinos fluxes often led to the appearance
of the erroneous factor of 1/2 in expressions for the
probabilities of processes involving neutrinos in the
initial state, this being due to unphysical averaging
over it polarizations (see, for example, [7, 8]).
2002MAIK “Nauka/Interperiodica”
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Table 1. ConstantsK and∆ appearing in expression (1) according to various studies

K ∆

Choban, Ivanov 1969 [2]
29

1024π
–

Borisov et al. 1983 [3] 1 −2 ln2 − 389
384

+
9

128
g2

V − g2
A

g2
V + g2

A

Knizhnikov et al. 1984 [4]
9
16

Eν

me
–

Borisov et al. 1993 [5]
1
2

+
5
4

Kuznetsov, Mikheev 1997 [6] 1 −29
24

Borisov, Zamorin 1999 [8]
1
2

−29
24
The results that the authors of the studies quoted
above obtained for the probability of the process ν →
νe−e+ in a crossed field show significant distinc-
tions. In their recent study, Borisov and Zamorin
[8], who considered the massive-neutrino decay νi →
νje

−e+ (mi > mj + 2me) in an external field, also
compared various formulas for the probability of the
process and asserted that the results are consistent;
however, we do not think so.
Let us explore this point in greater detail. In the

limit χ � 1, the probability of the process can be
represented in the form

W (ν → νe−e+) (1)

= KW0χ
2

(

lnχ− 1
2

ln 3 − γE + ∆
)

,

where

W0 =
G2
F(g

2
V + g2

A)m6
e

27π3Eν
, (2)

γE = 0.577 . . . is the Euler constant, and gV and
gA are constants in the effective local Lagrangian
for neutrino–electron interaction [see Eq. (3) below].
The constants K and ∆ appearing in expression (1)
were calculated by various authors (see table). By
way of example, we indicate that the calculation in [2,
8] took into account electron–neutrino interaction
only through a W boson. In order to compare for-
mula (1) with the results obtained in those stud-
ies, it is necessary to set, in it, gV = gA = 1 for the
calculations from [2] and gV = gA = |UeiUe3| for the
calculation from [8]. That the factor me/Eν was lost
in the formulas for the probability in [4] is a physical
(rather than a numerical) error, since this violates the
relativistic invariance of the quantity wE.
PH
As has already been indicated, formula (1) for
the probability describes a very particular case of
lnχ � 1. In a number of physics problems, a situ-
ation can be realized, however, where the dynamical
field parameter takes moderately large values, so that
χ � 1, but lnχ ∼ 1. In this case, the crossed-field
approximation is applicable, but the aforementioned
condition lnχ � 1 is not satisfied, with the result
that, in expression (1), it is necessary to take into
account higher order terms in the expansion in inverse
powers of the parameter χ. The formulas presented
in the aforementioned studies for arbitrary values of χ
involve cumbersome multidimensional integrals and
are therefore inconvenient for an analysis.
Thus, the problem of calculating the probability

of the production of a lepton (electron–positron or
muon) pair by a neutrino in a crossed field at an
arbitrary value of the parameter χ is of considerable
importance. At the same time, an analysis of the
production of e−e+ and µ−µ+ pairs by a neutrino
would be, in a sense, incomplete without considering
processes featuring the production of e−µ+ and e+µ−

pairs via the standard µ-decay interaction, because
the latter processes are less suppressed kinemati-
cally than the production of a µ−µ+ pair. Here, we
present a rather simple expression that we found for
the probability of the process νi → νj�

−
n �

+
m and which

is convenient for a numerical analysis.
We will consider the case of relatively low mo-

mentum transfers, |q2| 
 m2
W . The weak neutrino–

lepton interaction can then be described in the local
limit by the general effective Lagrangian

L =
GF√

2

[
�̄nγα(gV + gAγ5)�m

]
(3)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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×
[
ν̄jγ

α(1 + γ5)νi

]
,

where gV and gA are, respectively, the vector and the
axial-vector electroweak coupling constants,

gV = UinU
∗
jm − 1

2
δijδnm(1 − 4 sin2 θW),

gA = UinU
∗
jm − 1

2
δijδnm.

Here, the subscripts i and j label pure neutrino mass
states, and Uin are elements of the neutrino mixing
matrix in the lepton sector. As has already been
indicated, the effects of mixing in the lepton sector
are irrelevant to the process that we consider here in
an external field. Since Uin = δin if mixing is disre-
garded, the expressions for the coupling constants in
Lagrangian (3) can be represented in a convenient
form for each specific process being considered. We
quote these results immediately below:
In the case where both Z- and W -boson ex-

changes contribute,

νe → νee
−e+, νµ → νµµ

−µ+, (4)

gV = 1/2 + 2 sin2 θW, gA = 1/2.

For processes featuring only Z-boson exchanges,

νµ → νµe
−e+, νe → νeµ

−µ+, (5)

gV = −1/2 + 2 sin2 θW, gA = −1/2.

For processes of inverse µ decay, which are medi-
ated only by aW boson,

νµ → νeµ
−e+, νe → νµe

−µ+, (6)

gV = 1, gA = 1.

We have used a standard computational technique
employing exact solutions to the Dirac equation for
the electron and the muon in a crossed field [1].
Omitting the details of the calculations, we present
the result for the probability of the process ν → ν�1�̄2
in the form of a double integral involving the Airy
function:

W (ν → ν�1�̄2) (7)

=
G2
F(g

2
V + g2

A)m3
1m

3
2χ

2

54π4Eν

1∫

−1

du

1∫

0

xdxzΦ(z)

×
{

3 + x2

(1 − u2)(1 − x)
+

3
8
(1 − 3x)

+
9(1 − λ2)u

16λy

(

1 + x+ 2
1 − x

x
ln(1 − x)

)

+
9(1 − λ2)2(1 − u2)

64λ2y2

(

1 + 4
1 − x

x
ln(1 − x)

)

+
9(1 − λ)2(5 + x)

16λy
+

9
4

g2
A

g2
V + g2

A

5 + x

y
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+
3
4

gV gA

g2
V + g2

A

1 − λ2

λy

3 − x2

1 − x

}

.

For the process being considered, it is convenient
to define the dynamical parameter χ as χ2 = e2 =
(pFFp)/m3

1m
3
2, where m1 and m2 are the charged-

lepton masses. In addition, we have introduced the
following notation in expression (7):

y =
1 + λ2

2λ
+ u

1 − λ2

2λ
,

z = y

(
4

χ(1 − u2)(1 − x)

)2/3

, λ =
m2

m1
,

and Φ(z) is the Airy function defined as

Φ(z) =

∞∫

0

dt cos
(

zt +
t3

3

)

.

It is interesting to analyze the properties of for-
mula (7) with respect to the charge-conjugation op-
eration, which, in the case being considered, con-
sists in the substitutions m1 ↔ m2 (λ → 1/λ) and
u → −u (the variable u derives from integration with
respect to the momenta of the lepton pair, and its
sign is reversed upon the interchange of the leptons
involved). It can easily be seen that, under this oper-
ation, all terms in (7) are invariant, with the exception
of the last one, which involves the product gV gA

changing sign. Since this term is also P-odd, CP
symmetry holds, as might have been expected.

Expression (7) for the probability can further be
recast into a form that involves a one-dimensional
integral and which is more convenient for a numer-
ical analysis, but, in the general case of m1 �= m2,
the resulting formula is very cumbersome and is not
presented here for this reason. At identical values
of the lepton masses (m1 = m2 = m�)—that is, for
the processes in (4) and (5)—the probability can be
represented in a comparatively simple form involving
a one-dimensional integral. Specifically, we have

W (ν → ν�−�+) (8)

=
G2
F(g

2
V + g2

A)m6
�χ

2

27π4Eν

1∫

0

u2duτΦ(τ)

×
{

4
1 − u2

(

2L(u) − 29
24

)

− 15
2
L(u) − 47

48

+
1
8
(
1 + (1 − u2)L(u)

)
(

33 − 47
4

(1 − u2)
)

+
9
16

g2
A

g2
V + g2

A

[
48L(u) + 2 −

(
1 + (1 − u2)L(u)

)

2
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×
(
28 − 3(1 − u2)

)]
}

,

where χ2 = e2(pFFp)/m6
� ,

τ =
(

4
χ(1 − u2)

)2/3

, L(u) =
1
2u

ln
1 + u

1 − u
.

In the case of χ 
 1, it immediately follows from
formula (8) that the expression for the probability can
be represented in the form

W (χ 
 1) =
3
√

6G2
Fm

6
�

(16π)3Eν
(9)

×(3g2
V + 13g2

A)χ4 exp
(

− 8
3χ

)

,

which involves the well-known exponential suppres-
sion and which is consistent with the corresponding
expression from [5].
In the case of χ � 1, expression (8) straightfor-

wardly leads to formula (1), where K = 1 and ∆ =
−29/24, in agreement with the result presented in [6].
From formula (7), one can also derive an approx-

imate formula for the probability of the process ν →
ν�1�̄2 form1 �= m2. The result is

W (χ � 1) =
G2
F(g

2
V + g2

A)m3
1m

3
2χ

2

27π3Eν
(10)

×
{

lnχ− 1
2

ln 3 − γE − 29
24

+
3
2

gV gA

g2
V + g2

A

ln
m1

m2

}

.

An attempt at refining formula (1) and at finding,
from expression (8), the next term of the expansion in
inverse powers of the parameter χ revealed [9] that,
in the region of moderately large values of χ, the
correction term of order χ−2/3 tends to impair the
description of the behavior of the probability. An anal-
ysis shows that this term (∼χ−2/3) has the meaning
of a correction proper only for χ � 105. From the
figures presented in [9], it can also be seen that, at
any value of χ, the probability computed by the exact
formula (8) is greater than the approximate value
P

given by (1) [by way of example, we indicate that,
at χ = 20, it is greater by a factor of about 1.5—at
smaller values of χ, the approximate formula (1) is
inapplicable].

Thus, we see that, at moderately large values of
the parameter χ, it is reasonable to employ our exact
formula (8) in performing a detailed analysis of the
probability of lepton-pair production by a neutrino in
an external electromagnetic field.
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Abstract—The quark and leptonic widths of the Z ′ boson that arises from four-color quark–lepton
symmetry are calculated and compared with the predictions of the E6 and the left–right (LR) model.
It is shown that this four-color symmetry leads to a specific relation of the type (v′q + a′q)/(v

′
l + a′l) =

(t15)q/(t15)l = −1/3 between the vector and axial coupling constants forZ ′-boson interaction with quarks
and leptons. Calculations with allowance for the four-color symmetry in question yield leptonic widths
of the Z ′ boson that are considerably greater than those predicted within the E6 and the LR model
and result in a relatively small hadronic-to-leptonic width ratio. Since these features are associated
with the four-color symmetry, their observation would suggest its manifestation in Z ′-boson decays.
c© 2002 MAIK “Nauka/Interperiodica”.
Searches for and analysis of possible symmetries
higher than that of the Standard Model—such as
supersymmetries and left–right (LR) symmetry—
represent one of the lines of investigations in elemen-
tary-particle physics. As an example of such sym-
metries, we consider here a four-color symmetry
of quarks and leptons that belongs to the Pati–
Salam type [1] and which can indeed exist in nature.
Minimally combined with the Standard Model on
the basis of the SUV (4) × SUL(2) × UR(1) group,
the four-color symmetry in question {the resulting
model is referred to as that of minimal quark–lepton
symmetry (MQLS) or the MQLS model [2, 3]} leads
to the prediction of two vector leptoquarks V ± of
charge ±2/3 and an additional neutral Z ′ boson.
Controlling the interactions of these new particles
with quarks and leptons, the four-color symmetry
can manifest itself via some features of processes
involving quarks and leptons. A theoretical analysis
of such features is of interest for revealing the possible
experimental signals from four-color symmetry.

On the basis of the MQLS model, we analyze
here the fermionic decays of the Z ′ boson induced by
the four-color symmetry in order to reveal possible
manifestations of four-color quark–lepton symmetry
in these decays. We compare our results with those
produced by other models also predicting an extra Z ′

boson like the E6 and the LR model (for an overview,
see [4]).

*e-mail: povarov@univ.uniyar.ac.ru
**e-mail: asmirnov@univ.uniyar.ac.ru
1063-7788/02/6502-0281$22.00 c© 2
The interaction of Z and Z ′ bosons with the cor-
responding neutral currents can be represented in the
form

Lgauge
NC = −eZµJ

Z
µ − e

cW
Z ′

µJ
Z′
µ (1)

= −eZ1µJ
Z1
µ − e

cW
Z2µJ

Z2
µ ,

where cW = cos θW, θW being the Weinberg angle;
Zµ and Z ′

µ are mass eigenstates that are superposi-
tions of the standard field Z1µ and the extra field Z2µ;
and the currents

JZ1
µ = f̄γµ(vZ1

f + aZ1
f γ5)f, (2)

JZ2
µ = f̄γµ(vZ2

f + aZ2
f γ5)f

are, respectively, the usual neutral current of the
Standard Model (here, vZ1

f and aZ1
f are the vector and

axial Z-boson coupling constants within the Stan-
dard Model) and the extra neutral current specified by
the model being considered.

Within the MQLS model, the coupling constants
for Z ′-boson interaction with up (a = 1) and down
(a = 2) fermions fa take the form (hereafter, we ne-
glect the smallZ–Z ′ mixing that is present within the
model)

v′fa
≈ vZ2

fa
=

1

sS

√
1 − s2W − s2S

(3)

×
[

c2W

√
2
3
(t15)f −

(

Qfa − (τ3)aa

4

)

s2S

]

,

002MAIK “Nauka/Interperiodica”
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Table 1. Vector and axial fermionic coupling constants of
the Z ′ boson within the MQLS model

f a′f v′f

ν
sS

4
√

1 − s2W − s2S
−2c2W + s2S

4sS
√

1 − s2W − s2S

e − sS

4
√

1 − s2W − s2S
−2c2W + 3s2S

4sS
√

1 − s2W − s2S

u
sS

4
√

1 − s2W − s2S
2c2W − 5s2S

12sS
√

1 − s2W − s2S

d − sS

4
√

1 − s2W − s2S
2c2W + s2S

12sS
√

1 − s2W − s2S

a′fa
≈ aZ2

fa
=

sS√
1 − s2W − s2S

(τ3)aa

4
, (4)

where sS = sin θS, θS being the strong-mixing angle
introduced in the model; t15 is the 15th generator of
the SUV (4) group; τ3 is the third Pauli matrix; and
Qfa is the electric charge of the fermion in units of the
proton charge. The parameter s2S is controlled by the
ratio of the coupling constants for electromagnetic
and strong interaction and is associated with the scale
MC of the breakdown of SU(4) symmetry. Provided
that the four-color symmetry is a primary symmetry,
a lower limit on MC is determined by experimental
data and can be MC ∼ 10–103 TeV [5–9], in which
case, s2S ∼ 0.08–0.14. AtMC ∼ 109 TeV, which cor-
responds to the scale ofMC within the Grand Unified
theories, s2S ∼ 0.25.

An extra Z ′ boson also arises in other models
involving an additional U(1)′ factor at the scale of
the Standard Model, with the interaction of the Z ′
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Fig. 1. Vector leptonic coupling constant v′e of the Z′

boson within the MQLS model as a function of s2S and
of the scaleMC of the breakdown of four-color symmetry.
PH
boson with fermions carrying an imprint of the pri-
mary symmetry of the model. The fermionic coupling
constants of the Z ′ boson within the MQLS model
are presented in Table 1 versus the parameter s2S .
For the sake of comparison, the analogous constants
predicted by the E6 and the LR model [4, 10–12] are
quoted in Table 2 versus β and αLR, respectively. In
the E6 model, the angle β determines the orientation
of the U(1)′ generator in the E6 group space and sat-
isfies the condition 0 ≤ β ≤ π. Within the LR model,

αLR =
√
k2c2W/s

2
W − 1, where k = gR/gL is the ratio

of the gauge coupling constants for the SUL(2) and
SUR(2) groups, which usually varies in the range
1/
√

2 < αLR < 3.
In order to compare the coupling constants, we

introduce the ratio

P ql
L ≡ P q

L/P
l
L =

v′q + a′q
v′l + a′l

,

where P f
L = (v′f + a′f )/(2a′e) is a generalization of the

parameter P q
L from [10]. Within the MQLS model,

this ratio is equal to the ratio of the eigenvalues of the
15th generator of the SUV (4) color group for quarks
and leptons:

P ql
L ≡

v′q + a′q
v′l + a′l

=
(t15)q
(t15)l

= −1
3
. (5)

This result is a direct consequence of four-color sym-
metry. Within the E6 model, this ratio can take any
value, depending on cosβ. Within the LR model, it is
also equal to −1/3, but this is not, strictly speaking,
a model prediction but a result of the use of the actual
quark and lepton charges.

A comparison of the absolute values of the fermio-
nic coupling constants of the Z ′ boson reveals that
the predictions of the MQLS model for them differ
from those of the E6 and the LR model. The largest
distinctions are observed for the vector leptonic con-
stant. In Fig. 1, the vector leptonic coupling constant
v′e within the MQLS model is displayed as a function
of s2S . It can easily be seen that, atMC ∼ 10–103 TeV
(that is, at s2S ∼ 0.08–0.14), the MQLS model pre-
dicts relatively large absolute values of the vector
leptonic coupling constant (from−1.6 to−1.0); at the
same time, the analogous results within the E6 and
the LR model are predicted to fall between −0.5 and
0.5, the specific value being dependent on the model
parameters. Thus, the absolute value of the vector
leptonic coupling constant v′e is 2 to 3 times greater
in theMQLSmodel than in theE6 and the LRmodel.

This leads to the corresponding distinctions be-
tween the leptonic widths. At m2

f/m
2
Z′ � 1, the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 2. Vector and axial fermionic coupling constants of the Z ′ boson within the E6 and the LR model

f a′f v′f a′f v′f

ν
3 cosβ
4
√

6
+

√
10 sinβ

24
3 cosβ
4
√

6
+

√
10 sinβ

24
1

4αLR

1
4αLR

e
cosβ
2
√

6
+

√
10 sinβ

12
cosβ√

6
αLR

4
1

2αLR
− αLR

4

u −cosβ
2
√

6
+

√
10 sinβ

12
0 −αLR

4
− 1

6αLR
+
αLR

4

d
cosβ
2
√

6
+

√
10 sinβ

12
−cosβ√

6
αLR

4
− 1

6αLR
− αLR

4

width of the Z ′ boson with respect to decay into a
fermion pair has the form

Γ(Z ′ → f f̄) = Γff̄ = NfMZ′
α

3c2W
(v′2f + a′2f ),
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Fig. 2. Leptonic width of the Z′ boson, Γeē/MZ′ , within
the MQLSmodel as a function of s2S and of the scaleMC

of the breakdown of four-color symmetry.
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Fig. 3. Hadronic-to-leptonic width ratio Rhl for the Z′-
boson as a function of s2S and of the scale MC of the
breakdown of four-color symmetry.
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whereNf is the color index [Nf = 1 (3) for f = l (q)].

In Fig. 2, the leptonic-decay width Γeē of the
Z ′ boson within the MQLS model is displayed (in
units of the Z ′-boson mass MZ′) as a function of
s2S . For s2S = 0.08–0.14, it amounts to 0.007–0.003
of MZ′ , while, in the E6 and the LR model, we have
Γeē/MZ′ < 0.001 and Γeē/MZ′ < 0.003, respectively.

Finally, a considerable distinction is predicted
for the hadronic-to-leptonic width ratio Rhl =∑

q Γqq̄/Γll̄ as well. The s2S dependence of Rhl within
the MQLS model is shown in Fig. 3, where one can
see that, for s2S ∼ 0.08–0.14, this ratio is about 2 to
3; at the same time, Rhl > 9 in the E6 model and
Rhl > 7 in the LR model.

Thus, we can see that, in the case where the
mass scale at which four-color symmetry is broken
is modest (MC ∼ 10–103 TeV), the predictions of the
MQLSmodel forZ ′-boson decays differ considerably
from the corresponding predictions of the E6 and the
LR model. In particular, the four-color symmetry
leads to the specific ratio (5) for the fermionic coupling
constants; it predicts a two- to threefold increase in
the vector leptonic constant with respect to the E6

and the LR model, relatively large leptonic widths,
and a small hadronic-to-leptonic width ratio. These
features are caused by the Z ′-boson interaction (1)–
(4) with fermions, which is induced by the four-color
symmetry of quarks and leptons. An experimental
observation of these features could be treated as a
manifestation of this particular symmetry inZ ′-boson
decays.
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Abstract—Nowadays, in the MSSM, the moderate values of tanβ are almost excluded by the LEP II
lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard
model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit
of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near
the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can
be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-
consistent solution in the limit of strong Yukawa coupling. This model allows one to get mh ∼ 125GeV
at tanβ ≥ 1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed
130.5± 3.5GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated
supersymmetric models is also discussed. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Last year, there was great progress inHiggs boson
searches. The experimental lower bound on theHiggs
boson mass in the Standard Model (SM) increased
from 95.2 [1] to 113.3 GeV [2]. At the same time, the
upper bound that comes from an analysis of radiative
corrections to the electroweak observables decreased
to 210 GeV [2]. Thus, the allowed region of the
Higgs boson mass in the SM has shrunk drastically.
Moreover, a few additional bb̄ events were observed
at LEP II [3]. They can be interpreted as a signal of
the production of a Higgs boson with mass 115 GeV
in e+e− annihilation. This Higgs boson mass does
not agree with the theoretical lower bound in the SM
following from the stability of the physical vacuum up
to the Planck scale ofMPl ≈ 2.4× 1018 GeV [4–7].

The simplest supersymmetric (SUSY) extension
of the SM is the minimal supersymmetric standard
model (MSSM). Its Higgs sector includes two dou-
blets H1 and H2. Each of them, after spontaneous
symmetry breaking, acquires a nonzero vacuum ex-
pectation value, v1 and v2, respectively. Instead of
them, the sum of their squares v2 = v2

1 + v2
2 and the

value of tan β = v2/v1 are usually used.
An important feature of SUSY models is the ex-

istence of a light Higgs boson in the CP-even Higgs
sector. The upper bound on its mass strongly depends
on the value of tan β. At the tree level, the mass of the
lightest Higgs boson does not exceed [8] theZ-boson
mass: mh ≤MZ | cos 2β|. Loop corrections from the t

∗This article was submitted by the authors in English.
1063-7788/02/6502-0285$22.00 c©
quark and its superpartners significantly increase the
upper bound onmh:

mh ≤
√
M2

Z cos2 2β + ∆, (1)

where, in the one-loop approximation, ∆ is given by

∆ ≈ 3
2π2

m4
t

v2

[

ln
M2

S

m2
t

+
X2

t

M2
S

(

1− X2
t

12M2
S

)]

. (2)

Here, mt is the running t-quark mass at the elec-
troweak scale (at q =M

pole
t = 174 GeV,Mpole

t is the
t-quark pole mass); Xt is the stop mixing param-
eter; and MS is the SUSY breaking scale, which
is expressed in terms of the stop masses mt̃1

and
mt̃2

: MS = √
mt̃1

mt̃2
. The one-loop corrections (2)

attain a maximum value at Xt = ±
√
6MS . These

corrections are proportional to m4
t and depend log-

arithmically on the SUSY breaking scale MS . They
are almost insensitive to the choice of tan β. The
absolute value of ∆ is of order M2

Z . The one-loop
and two-loop corrections to the mass of the lightest
Higgs boson were calculated and analyzed in [9] and
[10], respectively. The upper bound on the mass of the
lightest Higgs boson grows with increasing tan β and
ln(M2

S/m
2
t ) and, for large tan β (tan β � 1), reaches

125–128 GeV. In [6], the bounds on the mass of
the Higgs boson in the SM and the MSSM were
compared.

However, large values of tan β are undesirable for
two reasons. The first of these is proton decay. If
one assumes that electroweak and strong interactions
are embedded in SUSYGrand Unified Theory (GUT)
2002MAIK “Nauka/Interperiodica”
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at high energies, then an overly fast proton decay is
induced owing to d = 5 operators. The major decay
mode is p→ ν̄K+. In this case, the proton lifetime
τp is inversely proportional to tan2 β. When tan β
is large enough, the proton lifetime calculated with-
in SUSY GUT models contradicts an experimental
constraint on it. Another problem of the large-tan β
scenario concerns flavor-changing neutral currents.
The b→ sγ branching ratio increases with tan β as
Br(b→ sγ) ∼ tan2 β. Thus, values of tan β much
greater than unity (tan β � 40) lead to unacceptable
large flavor-changing transitions.

In the case of moderate values of tan β (tan β �
5), the b-quark and τ-lepton Yukawa coupling con-
stants are small and one can get an analytic so-
lution to one-loop renormalization-group equations
[11]. For the t-quark Yukawa coupling constant ht(t)
and the gauge coupling constants gi(t), the analytic
solution has the form

Yt(t) =
E(t)/(6F (t))

(1 + 1/[6Yt(0)F (t)])
, (3)

α̃i(t) =
α̃i(0)

1 + biα̃i(0)t
,

E(t) =
[
α̃3(t)
α̃3(0)

]16/9 [ α̃2(t)
α̃2(0)

]−3 [ α̃1(t)
α̃1(0)

]−13/99

,

F (t) =

t∫

0

E(τ)dτ,

where Yt(t)=(ht(t)/(4π))
2 and α̃i(t)=(gi(t)/(4π))

2.
The index i varies from 1 to 3, which corresponds
to U(1), SU(2), and SU(3) gauge couplings. The
coefficients bi of the one-loop beta functions of α̃i(t)
are b1 = 33/5, b2 = 1, and b3 = −3. The initial condi-
tions Yt(0) and α̃i(0) for theMSSM renormalization-
group equations are usually set at the Grand Uni-
fication scale MX ≈ 3× 1016 GeV, where all gauge
coupling constants coincide. The variable t is defined
in a conventional way; that is, t = ln(M2

X/q
2).

Substituting the numerical values of the gauge
coupling constants, one finds that, at the electroweak
scale, the second term in the denominator of the
expression describing the evolution of Yt(t) is ap-
proximately equal to [10h2

t (0)]−1. If h2
t (0) ≥ 1, the

dependence of the t-quark Yukawa coupling constant
on its initial value Yt(0) disappears and all solutions
are concentrated near the quasifixed point [12]:

YQFP(t0) =
E(t0)
6F (t0)

, (4)

where t0=2 ln(MX/M
pole
t ) ≈ 65. Together with

Yt(t), the trilinear scalar coupling of the Higgs boson
PH
doublet H2 to stops, At(t), and some combination
of their masses, M2

t (t) = m2
Q +m2

U +m2
2, are also

driven to the infrared quasifixed points. In the
vicinity of these points, At(t) is proportional to the
universal gaugino mass M1/2 at the scale MX and
M2

t (t) ∼M2
1/2. Although the solutions to theMSSM

renormalization-group equations achieve quasifixed
points only for infinite values of Yt(0), the deviations
from them at the electroweak scale are determined
by the ratio 1/[6F (t0)Yt(0)], which is quite small if
h2

t (0) ≥ 1.

The behavior of solutions to the MSSM renorma-
lization-group equations near the quasifixed point at
tan β ∼ 1 and the particle spectrum were studied by
many authors [13–15]. It was shown that, in the
vicinity of this point, the b–τ Yukawa coupling uni-
fication is realized [13]. The value of tan β that corre-
sponds to the quasifixed-point regime was calculated
in some recent publications (see [15–17]). It was
restricted to be between 1.3 and 1.8. Such com-
paratively low values of tan β yield a more stringent
bound on the mass of the lightest Higgs boson in
the MSSM. Thus, it does not exceed 94± 5 GeV
[15, 16]. The resulting theoretical bound on mh

has to be compared with the lower experimental one
in the SM since it was computed for the SUSY
breaking scale MS on the order of 1 TeV, where
all other Higgs bosons and superparticles are rather
heavy. A straightforward comparison shows that the
quasifixed-point scenario and a considerable part of
the MSSM parameter space are almost excluded by
LEP II data, which stimulates a theoretical analysis
of the Higgs sector in nonminimal SUSY models.

In this article, the spectrum of Higgs bosons in
the next-to-minimal supersymmetric standard model
(NMSSM) is reviewed. The mass of the lightest
Higgs boson in the NMSSM attains a maximum
value in the limit of strong Yukawa coupling, where
the Yukawa coupling constants are much larger than
the gauge ones. All SUSY models contain a large
number of free parameters, which is the main ob-
stacle in the way of their investigations. For exam-
ple, each SUSY model includes three or four inde-
pendent SUSY breaking constants, which determine
the SUSY particle spectrum. Nevertheless, in the
limit of strong Yukawa coupling, solutions to the
renormalization-group equations are focused near the
quasifixed point, which simplifies the analysis. We
propose a modification of the NMSSM that allows
one to get mh ∼ 125 GeV for moderate values of
tan β and to study the Higgs boson spectrum of the
model. In the last part, the mass of the lightest
Higgs boson in more complicated SUSY models is
considered.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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2. HIGGS SECTOR OF THE NMSSM

2.1. µ Problem and Parameters of the NMSSM

The simplest extension of the MSSM is the
NMSSM. Historically, the NMSSM was suggested
as a solution to the µ problem in the supergravity
(SUGRA) models [18]. In addition to observable
superfields, these models contain a “hidden” sec-
tor where local supersymmetry is broken. In the
superstring-inspired SUGRA models, the “hidden”
sector always includes the singlet dilaton S and
moduli Tm superfields. They appear in the four-
dimensional theory as a result of compactification of
extra dimensions. The full superpotential of SUGRA
models can be represented as an expansion in powers
of observable superfields,

W = Ŵ0(S, Tm) + µ(S, Tm)(Ĥ1Ĥ2) (5)

+ ht(S, Ti)(Q̂Ĥ2)Û c
R + . . . ,

where Ŵ0(S, Tm) is the superpotential of the hidden
sector. From the expansion in (5), it is obvious
that the parameter µ should be on the order of the
Planck scale because that is the only scale charac-
terizing the hidden (gravity) sector of the theory. On
the other hand, if µ ∼MPl, then the Higgs doublets
get huge positive masses m2

H1,H2

 µ2 
M2

Pl and
electroweak-symmetry breaking does not occur at all.

In the NMSSM, a new singlet superfield Y is
introduced. By definition, the superpotential of this
model is invariant with respect to the Z3 discrete
transformations [19]. TheZ3 symmetry usually arises
in the superstring-inspired models in which all ob-
servable superfields are massless in the exact super-
symmetry limit. The term µ(Ĥ1Ĥ2) does not satisfy
the last requirement. Therefore, it must be eliminated
from the NMSSM superpotential. Instead of it, there
arises the sum of two terms [18–20],

Wh = λŶ (Ĥ1Ĥ2) +
κ

3
Ŷ 3. (6)

After electroweak-symmetry breaking, the singlet
field Y acquires a nonzero vacuum expectation value
(〈Y 〉 = y/

√
2) and the effective µ term (µ = λy/

√
2)

is generated.
The NMSSM superpotential contains a lot of

Yukawa couplings. But at the moderate values of
tan β, all of them are small and can be neglected,
with the exception of ht, λ, and κ. In addition to the
Yukawa couplings, the Lagrangian of the NMSSM
contains a large number of soft SUSY breaking
parameters. Each of the scalar and gaugino fields
has a soft mass (mi and Mi, respectively). Each of
the Yukawa couplings corresponds to the trilinear
scalar couplingAi in the full Lagrangian. The number
of these unknown parameters can be considerably
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
reduced if one assumes the universality of the soft
SUSY breaking terms at the scale MX . Thus, only
three independent dimensional parameters are left:
the universal gauginomassM1/2, the universal scalar
massm0, and the universal trilinear coupling of scalar
fields A. Naturally, universal soft SUSY breaking
terms appear in the minimal supergravity model
[21] and in the simplest models deduced from the
superstring theories [22]. The universal parameters
of soft supersymmetry breaking determined at the
Grand Unification scale have to be considered as
boundary conditions for the renormalization-group
equations that describe the evolution of all funda-
mental couplings up to electroweak scale or SUSY
breaking scale. A complete set of the NMSSM
renormalization-group equations can be found in
[23, 24].

2.2. CP-Even Higgs Boson Spectrum

The Higgs sector of the NMSSM includes six
massive states. Three of them are CP-even fields,
two are CP-odd fields, and one is a charged field.
The determinants of the mass matrices of the CP-
odd and charged Higgs bosons are equal to zero.
This corresponds to the appearance of two Goldstone
bosons,

η0 =
√
2 sinβ ImH0

2 +
√
2 cosβ ImH0

1 , (7)

η+ = sinβ H+
2 + cos β (H−

1 )∗,

which are swallowed up by the massive vector W±

and Z bosons during the spontaneous breaking of
SU(2)⊗U(1) symmetry. For this reason, the masses
of neutral CP-odd bosons and charged boson are
easily calculated.

In theCP-evenHiggs sector, the situation ismore
complicated. The CP-even states arise as the result
of mixing of the real parts of the neutral components
of two Higgs doublets with the real part of the field
Y . The determinant of their mass matrix does not
vanish, and one has to diagonalize the 3× 3 mass
matrix in order to calculate its eigenvalues. Instead of
ReH0

1 , ReH0
2 , and ReY , it is much more convenient

to consider their linear combinations

χ1 =
√
2 cos β ReH0

1 +
√
2 sin βReH0

2 , (8)

χ2 = −
√
2 sinβ ReH0

1 +
√
2 cos βReH0

2 ,

χ3 =
√
2ReY.
2
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In basis (8), the mass matrix ofCP-even Higgs fields
can be simply written in the symmetric form (see [25])

M2
ij =












∂2V

∂v2

1
v

∂2V

∂v∂β

∂2V

∂v∂y

1
v

∂2V

∂v∂β

1
v2

∂2V

∂β2

1
v

∂2V

∂y∂β

∂2V

∂v∂y

1
v

∂2V

∂y∂β

∂2V

∂y2












, (9)

where V (v1, v2, y) is the effective potential of the
NMSSM Higgs sector,

V (H1,H2, Y ) = m2
1|H1|2 (10)

+m2
2|H2|2 +m2

y|Y |2

+
(
λAλ(H1H2)Y +

κ

3
AκY

3

+ λκ(H1H2)(Y ∗)2 + h.c.
)

+ λ2|h1H2|2 + λ2|H2|2|Y |2

+ λ2|H1|2|Y |2 + κ
2|Y |4 +

g′2

8
(|H1|2 − |H2|2)2

+
g2

8
(H+

1 σH1 +H+
2 σH2)2 + ∆V.

Here, ∆V (H1,H2, Y ) is the sum of loop corrections
to the effective potential, and g and g′ are the gauge
constants of the SU(2) and U(1) interactions, re-
spectively (g1 =

√
5/3 g′).

It is well known that the minimum eigenvalue
of a matrix does not exceed its minimum diagonal
element. Thus, the mass of the lightest CP-even
Higgs boson is always smaller than

m2
h ≤M2

11 =
∂2V

∂v2
(11)

=
λ2

2
v2 sin2 2β +M2

Z cos2 2β + ∆.

On the right-hand side of inequality (11), ∆ is the
contribution of loop corrections to the Higgs boson
potential. Expression (11) was obtained in the tree-
level approximation (∆ = 0) in [20]. The contribution
of loop corrections to the upper bound on the lightest
Higgs bosonmass in theNMSSM is almost the same
as in the minimal SUSY model. In particular, in order
to calculate the corrections from the t quark and its
superpartners, one has to replace the parameter µ in
the corresponding formulas of the MSSM by λy/

√
2.

The Higgs boson sector of the NMSSM and loop
corrections to it were studied in [24–26]. Let us also
remark that the upper bound on mh in the NMSSM
was compared (see [7]) with theoretical bounds in the
SM and in its minimal SUSY extension.
P

The calculation of theCP-evenHiggs spectrum is
simplified in the most interesting realistic case where
all superparticles are heavy (MS �MZ). In this case,
the contributions of new particles to the electroweak
observables are suppressed as (MZ/MS)2 (see, for
example, [27]). On the other hand, the prediction
for the values of the strong coupling constant at
the electroweak scale α3(MZ) that can be obtained
from the gauge coupling unification [28] is improved
with increasing of the supersymmetry breaking scale
MS . ForMS 
 1 TeV, it becomes close to α3(MZ) =
0.118(3) which has been found independently from
the analysis of the experimental data [29]. Also it
should be noted that the lightest Higgs boson mass
reaches its maximal value in the SUSY models for
MS ∼ 1–3 TeV.

In the limit being considered, the mass matrix (9)
has a hierarchical structure and can be represented as
a sum of two matrices [25]:

M2
ij =








E2
1 0 0

0 E2
2 0

0 0 E2
3








+








V11 V12 V13

V21 V22 V23

V31 V32 V33







. (12)

The first matrix is diagonal with E2
1 = 0 and E2

2,3 ∼
M2

S . The matrix elements V11, V22, V33, and V12 =
V21 are of orderM2

Z . The other matrix elements that
correspond to mixing of χ1 and χ2 with χ3 are

V13 = V31 = λvX1, V23 = V32 = λvX2, (13)

whereX1 ∼ X2 ∼MS .
Considering the ratioM2

Z/E
2
2,3 as a small param-

eter, it is easy to diagonalize the mass matrix (12)
by means of usual quantum-mechanical perturbation
theory. For the Higgs boson masses, it yields

m2
S ≈ E2

3 + V33 + λ2v2X
2
1

E2
3

+ λ2v2 X2
2

E2
3 − E2

2

, (14)

m2
H ≈ E2

2 + V22 + λ2v2 X2
2

E2
2 − E2

3

,

m2
h ≈ λ2

2
v2 sin2 2β +M2

Z cos2 2β + ∆− λ2v2X
2
1

E2
3

.

The explicit expressions for the E2
i and Vij can be

found in [25]. For the sake of simplicity, we restrict
our consideration to the first order of perturbation
theory and neglect matrix element V12 because its
contribution tom2

i is of orderM4
Z/M

2
S .

Perturbation theory becomes inapplicable when
|E2

2 − E2
3 | ∼ λvX2. However, the mass matrix (12)

can be easily diagonalized even in this case. In order
to do this, one should choose the basis where the
matrix element M23 is zero. After that, in the new
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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basis, the Higgs boson masses can be computed
using ordinary perturbation theory.

The first three terms in the last relation in (14)
reproduce the upper bound on the lightest Higgs
boson mass in the NMSSM. Their sum is equal to
V11 in our notation. The last term in this expression
makes a negative contribution tomh. Even when the
ratioM2

Z/M
2
S goes to zero, it does not vanish. Thus,

in the NMSSM, the mass of the lightest CP-even
Higgs boson can be considerably less than its upper
bound [25].

2.3. Renormalization of the Yukawa Couplings and
Soft SUSY Breaking Terms

According to inequality (11), the upper bound on
mh rises when λ increases and the value of tan β
diminishes. For tan β � 1, the value of sin 2β goes
to zero and the upper bound on the lightest Higgs
boson mass in the NMSSM coincides with that in
the minimal SUSY model. With decreasing tan β,
the t-quark Yukawa coupling at the electroweak
scale ht(t0) grows. An analysis of solutions to the
NMSSM renormalization-group equations reveals
that a growth of the Yukawa coupling constants at
the electroweak scale entails an increase in them
at the Grand Unification scale. As a result, the
upper bound on the lightest Higgs boson mass in the
NMSSM reaches its maximum value in the limit of
strong Yukawa coupling, where the Yukawa coupling
constants are much larger than the gauge ones at the
scaleMX .

The renormalization of the NMSSM coupling
constants in the strong Yukawa coupling limit has
been studied in [30, 31]. In the case under consid-
eration, the Yukawa coupling constants are attracted
toward a Hill-type effective (quasifixed) line (κ = 0)
or surface (κ �= 0) which restricts the allowed regions
of ht, λ, and κ. Outside this range, the solutions
to renormalization-group equations blow up before
the Grand Unification scale MX and perturbation
theory becomes invalid at q2 ∼M2

X . While the values
of the Yukawa couplings at the scale MX grow, the
region where all solutions are concentrated shrinks
and h2

t (0), λ2(0), and κ
2(0) are focused near the

quasifixed points [30]. These points appear as a result
of intersection of the quasifixed line or surface with the
invariant (fixed) line. The latter connects the stable
fixed point in the strong Yukawa coupling regime
[32] with the infrared fixed point of the NMSSM
renormalization-group equations [33]. The properties
of invariant lines and surfaces were reviewed in detail
in [5, 34].

When the values of Yukawa couplings tend to
quasifixed points, the trilinear scalar couplings Ai(t)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
and some combinations of scalar particle masses,
M2

i (t), where

M
2
t (t) = m2

2(t) +m2
Q(t) +m2

U (t),

M
2
λ(t) = m2

1(t) +m2
2(t) +m2

y(t),

M
2
κ
(t) = 3m2

y(t),

(15)

become insensitive to their initial values A and 3m2
0

at the scale MX [31]. For the universal boundary
conditions, one has

Ai(t) = ei(t)A+ fi(t)M1/2, (16)

m2
i (t) = ai(t)m2

0 + bi(t)M2
1/2

+ ci(t)AM1/2 + di(t)A2.

The functions ei(t), fi(t), ai(t), bi(t), ci(t), and di(t)
remain unknown since an analytic solution to the
NMSSM renormalization-group equations has not
yet been found. While the Yukawa coupling constants
tend to infinity, the values of functions ei(t0), ci(t0),
and di(t0) vanish. This means that the solutions of
renormalization-group equations go to the quasifixed
points too. In the vicinity of the quasifixed points,
Ai(t) are proportional toM1/2 and M2

i (t) ∼M2
1/2.

3. PARTICLE SPECTRUM IN THE MODIFIED
NMSSM

3.1. Modified NMSSM

The fundamental parameters of the NMSSM at
the Grand Unification scale have to be adjusted in
such a way as to satisfy the minimization conditions
for the effective Higgs boson potential:

∂V (v1, v2, y)
∂v1

= 0,
∂V (v1, v2, y)

∂v2
= 0, (17)

∂V (v1, v2, y)
∂y

= 0.

Since the vacuum expectation value v is known,
they can be used for the calculation of A, m0, and
M1/2. But in the strong Yukawa coupling limit, it
is impossible to get the real solution of nonlinear
algebraic equations (17). Thus, although the recent
investigations [35, 36] reveal that the upper bound on
the mass of the lightest Higgs boson in the NMSSM
is larger than that in the MSSM by 7–10 GeV, the
self-consistent solution cannot be obtained in that
region of the NMSSM parameter space which we
consider here. Such a solution to Eqs. (17) appears
for λ2(0),κ2(0) ≤ 0.1 if the upper bound on mh is
identical to that in the minimal SUSY model.

Moreover, three degenerate vacuum configura-
tions arise owing to Z3 symmetry. After a phase tran-
sition at the electroweak scale, the Universe is filled
2
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by three degenerate phases. The regions with differ-
ent phases are separated from each other by domain
walls. The cosmological observations do not confirm
the existence of such domain walls. The domain
structure of the vacuum is destroyed if the discrete
Z3 symmetry of the NMSSMLagrangian disappears.
An attempt at obtaining Z3 symmetry breaking by
means of operators of dimension d = 5 was made in
[37]. It was shown that their introduction leads to
quadratic divergences in the two-loop approximation,
i.e., to the emergence of the hierarchy problem. As a
result, the vacuum expectation value of Y turns out to
be on the order of 1011 GeV.

Thus, in order to avoid the domain wall problem
and obtain the self-consistent solution in the limit
of strong Yukawa coupling, one has to modify the
NMSSM. The simplest way is to introduce the bi-
linear terms µ(Ĥ1Ĥ2) and µ′Ŷ 2 in the superpotential
which are not forbidden by electroweak symmetry. At
the same time, one can omit the coupling κ, which
allows one to simplify the analysis of the modified
NMSSM (MNSSM). In this case (κ = 0), the upper
bound on the lightest Higgs boson mass reaches its
maximum value. Neglecting all the Yukawa con-
stants except for ht and λ, one obtains the following
expression for the MNSSM superpotential [38]:

WMNSSM = µ(Ĥ1Ĥ2) + µ′Ŷ 2 (18)

+ λŶ (Ĥ1Ĥ2) + ht(Ĥ2Q̂)ÛC
R .

The bilinear terms in the superpotential (18) break
the Z3 symmetry, and the domain walls do not arise,
because the degenerate vacua do not exist. The in-
troduction of the parameter µ permits us to obtain the
self-consistent solution of algebraic equations (17)
for h2

t (0), λ
2(0) � g2

i (0). In the SUGRA models, the
bilinear terms may be generated due to the additional
terms [Z(H1H2) +Z ′Y 2 +h.c.] in the Kähller poten-
tial [39, 40] or due to nonrenormalizable interaction of
the Higgs doublet superfields with the hidden sector
ones [40, 41].

The effective Higgs boson potential of MNSSM
can be written as the sum

V (H1,H2, Y ) = µ2
1|H1|2 + µ2

2|H2|2 (19)

+ µ2
y|Y |2 +

[
µ2

3(H1H2) + µ2
4Y

2 + λAλY (H1H2)

+ λµ′Y ∗(H1H2) + λµY (|H1|2 + |H2|2) + h.c.
]

+ λ2|(H1H2)|2 + λ2Y 2(|H1|2 + |H2|2)

+
g′2

8
(|H2|2 − |H1|2)2

+
g2

8
(H+

1 σH1 +H+
2 σH2)2 + ∆V (H1,H2, Y ),
P

where the parameters µ2
i are expressed via the soft

SUSY breaking terms as follows:

µ2
1 = m2

1 + µ2, µ2
2 = m2

2 + µ2, µ2
y = m2

y + µ′
2
,

µ2
3 = Bµ, µ2

4 =
1
2
B′µ′.

The µ terms in the superpotential (18) lead to the
appearance of bilinear scalar couplings B and B′ in
the effective potential of the Higgs fields. They arise
as the result of the soft supersymmetry breaking. The
values of B and B′ depend on the mechanism of the
µ and µ′ generation. For a minimal choice of the
fundamental parameters, all soft scalar masses and
all bilinear scalar couplings should be set equal at the
scaleMX :

m2
1(MX) = m2

2(MX) = m2
y(MX) = m2

0,

B(MX) = B′(MX) = B0.

Thus, in addition to the parameters of the SM, the
MNSSM contains seven independent ones:

λ, µ, µ′, A, B0, m
2
0, M1/2.

3.2. Method of the Analysis

Although the parameter space of the model be-
ing considered is enlarged, it is possible to deduce
some predictions for the Higgs boson spectrum in the
strong Yukawa coupling limit. It is reasonable to start
our analysis from the quasifixed point of MNSSM
[30],

ρQFP
t (t0) = 0.803, ρQFP

At
(t0) = 1.77, (20)

ρQFP
M2

t
(t0) = 6.09,

ρQFP
λ (t0) = 0.224, ρQFP

Aλ
(t0) = −0.42,

ρQFP
M2

λ
(t0) = −2.28,

because all solutions to renormalization-group equa-
tions are concentrated in the vicinity of it at h2

t (0),
λ2(0) � g2

i (0). In relations (20), the following nota-
tion is used: ρt,λ(t) = Yt,λ(t)/α̃3(t), Yt =
h2

t (t)/(4π)2, Yλ(t) = λ2(t)/(4π)2, ρAt,λ
=

At,λ/M1/2, and ρM2
t,λ

= M2
t,λ/M

2
1/2.

For given ρt(t0) (20), the value of tan β can be
extracted from the equation that relates the running
t-quark massmt(M

pole
t ) to ht(t0):

mt(M
pole
t ) =

1√
2
ht(M

pole
t )v sin β. (21)

We substitute, into the expression on the left-hand
side of Eq. (21), the value of the running t-quark
mass mt(M

pole
t ) = 165± 5 GeV calculated in the

MS scheme [42]. The uncertainty in mt(M
pole
t ) is
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determined by the experimental error with which the
t-quark pole mass is measured: M

pole
t = 174.3 ±

5.1 GeV [43]. In the infrared-quasifixed-point regime,
which corresponds to the maximum allowed values
of h2

t (0) and λ2(0) [we take h2
t (0) = λ2(0) = 10], we

obtain tan β ≈ 1.88 formt(M
pole
t ) = 165GeV [38].

At the first step of our analysis, the supersym-
metry-breaking scale is also fixed by means of the
condition M3(1000 GeV) = 1000 GeV, where M3 is
the gluino mass. This condition permits us to cal-
culate immediately the universal gaugino mass at the
Grand Unification scale. It ensures that the super-
particles are much heavier than the observable ones.

Next, we use Eqs. (17), which define the minimum
of the Higgs boson potential of the NMSSM, to
restrict the allowed region of the parameter space.
Instead of µ, it is more convenient to introduce µeff =
µ+ λy/

√
2. After some transformations, we then

obtain

µ2
eff =

m2
1 −m2

2 tan
2 β + ∆Z

tan2 β − 1
− 1

2
M2

Z , (22)

sin 2β =
−2 (Bµ+ λyX2/cos 2β)

m2
1 +m2

2 + 2µ2
eff + λ2v2/2 + ∆β

,

y
(
m2

y + µ′
2 +B′µ′

)
=
λ

2
v2X1 −∆y,

where∆i are the contributions of loop corrections and

X1 =
1√
2

(
2µeff + (µ′ +Aλ) sin 2β

)
,

X2 =
1√
2

(
µ′ +Aλ

)
cos 2β.

As the values of v and tan β are known, one can find
from Eqs. (22) the vacuum expectation value y and
parameters B0 and µeff. In the numerical analysis,
we take into account only the loop corrections from
t quark and its superpartners, because they give a
leading contribution. Therefore, ∆i are the functions
of µeff and do not depend on B0 and y. From the
first equation in (22), the absolute value of µeff is
calculated. The sign of µeff is not determined and
should be considered as a free parameter. The bilinear
scalar coupling B0 and vacuum expectation value y
are computed from the two other equations in (22).
The last of them indicates that the value of y is on
the order of λv2/MS and is much smaller than v if the
superparticles are sufficiently heavy.

Since µeff, B0, and y have been found, we investi-
gate the dependence of the Higgs boson spectrum on
A, m0, and µ′ using relations (16). For the masses
of CP-odd states, one can obtain the exact analytic
result

m2
A1,A2

=
1
2

(

m2
A +m2

B (23)
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±

√
(
m2

A −m2
B

)2 + 4
(
λv√
2
(µ′ +Aλ) +∆0

)2
)

,

m2
A = m2

1 +m2
2 + 2µ2

eff +
λ2

2
v2 + ∆A,

m2
B = m2

y + µ′
2 −B′µ′ +

λ2

2
v2 + ∆3.

Themass matrix of theCP-evenHiggs sector has
a hierarchical structure and can be written in the form
(12) with

E2
2 = m2

1 +m2
2 + 2µ2

eff, (24)

E2
3 = m2

y + µ′2 +B′µ′,

V11 =M2
Z cos2 2β +

1
2
λ2v2 sin2 2β + ∆11,

V12 = V21 =
(
1
4
λ2v2 − 1

2
M2

Z

)

sin 4β + ∆12,

V22 =M2
Z sin2 2β +

1
2
λ2v2 cos2 2β + ∆A + ∆22,

V13 = V31 = λvX1 + ∆13,

V23 = V32 = λvX2 + ∆23,

V33 =
1
2
λ2v2 + ∆33.

In formulas (23) and (24), ∆0,∆3,∆A, and ∆ij

(∆11 = ∆) are loop corrections to the CP-odd and
CP-even mass matrices. The mass matrix of CP-
even Higgs sector can be diagonalized, and the
expressions for the masses of the CP-odd states (23)
can be simplified by using the perturbation theory of
quantummechanics. In the leading order of perturba-
tion theory, the masses of the heavy Higgs bosons are
m2

H ≈ E2
2 , m

2
S ≈ E2

3 , m
2
A1

≈ m2
B , and m2

A2
≈ m2

A,
while the first-order perturbation corrections have a
form similar to that in Eq. (14).

3.3. Numerical Results

The results of the numerical analysis of the parti-
cle spectrum near the MNSSM quasifixed point are
presented in Figs. 1–3. There are two regions of the
MNSSM parameter space. In one of them, the mass
of the lightest CP-even Higgs boson is larger than
the upper bound on mh in the MSSM (see Figs. 1a
and 2a), whereas, in the other region, it is smaller (see
Figs. 1b and 2b). As follows from relations (14), the
lightest Higgs boson mass in the NMSSM and in its
modification attains its upper bound when V13 (orX1)
goes to zero. In the MNSSM, this happens if

µ′ = − 2µeff

sin 2β
−Aλ −

√
2∆13

λv sin 2β
. (25)

Thus,mh is larger in that part of the parameter space
where the signs of µ and µ′ are opposite. If µ′ tends to
2
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Fig. 1. Particle spectrum (in GeV) in the MNSSM as a function of z = µ′/(1TeV) and x = A/M1/2 for h2
t (0) = λ2(0) = 10,

m2
0 = 0,M3 = 1TeV, and µeff < 0. The thick and thin curves (a and b) correspond to the lightestHiggs bosonmass calculated

in the one- and the two-loop approximation, respectively. The thick and thin curves (c and d) reproduce the dependence ofCP -
even Higgs boson masses mS and mH on z and x, while the dotted and dashed curves represent the CP -odd Higgs boson
masses mA1 and mA2 as functions of these parameters. The dash-dotted curve (c) corresponds to the mass of the heaviest
neutralino.
infinity, then the singlet CP-odd and CP-even fields
get hugemasses and their contribution to the effective
potential of the Higgs bosons vanishes because of
the decoupling property. In the considered limit, the
lightest Higgs boson mass is the same as in the
minimal SUSY model.

It is necessary to emphasize that the one-loop
and even two-loop corrections give an appreciable
contribution to the mass of the lightest CP-even
Higgs boson. Thus, the two-loop corrections [10]
reduce its mass approximately by 10 GeV. They
nearly compensate the growth of the lightest Higgs
boson mass with increasing SUSY breaking scale
MS which arises because of one-loop corrections.
Due to loop corrections, the values of mh for µeff > 0
and µeff < 0 become different. The contribution of
loop corrections ∆ grows with increasing stop mix-
ing parameter Xt = At + µeff/ tan β. Since near the
quasifixed point At < 0 [see (20)], the absolute value
ofXt is larger if µeff < 0.

As the part of the parameter space where µeff and
µ′ have the same signs is almost excluded by Higgs
PH
search data from LEP II, we investigate the particle
spectrum in the case when the signs of µeff and µ′

are opposite. In the most interesting region, where
the lightest Higgs boson mass is close to its upper
bound, the value of µ′ is considerably larger than
µeff and MS [see (25)]. Moreover, the product B′µ′

is positive. Indeed, from the second relation of the
system in (22), which defines the minimum of the
MNSSM Higgs boson potential (19), it follows that
the bilinear scalar coupling B and µ have different
signs. As a consequence, near the maximum of the
curves in Figs. 1a and 2a, the sign of B′ coincides
with the sign of µ′.

It means that the heaviest particle in the MNSSM
is the CP-even Higgs boson that corresponds to
the neutral field Y . Its mass is m2

S > µ′2 and is
substantially larger than the scale of supersymmetry
breaking. As one can see from Figs. 1c and 2c, the
mass of the other heavy CP-even Higgs bosonmH is
almost insensitive to the value of µ′ sincem2

S � m2
H .

Themasses ofCP-odd states are always smaller than
µ′2. If the value of µ′ grows, the mass of the heaviest
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 2. Particle spectrum (in GeV) in the MNSSM as a function of z = µ′/1TeV and x = A/M1/2 for h2
t (0) = λ2(0) = 10,

m2
0 = 0,M3 = 1TeV, and µeff > 0. The notation is identical to that in Fig. 1.
CP-odd state m2
A1

increases too as m2
A1

∼ µ′2. As
the value of µ′ decreases, the massmA2 of the lightest
CP-odd boson decreases and appears to be on the
order of the electroweak scale for µ′ ∼ B′. At given
values of µ′, a lower constraint on µ′ appears that
comes from the requirementm2

A2
> 0. However, even

if the mass of the lightest CP-odd state is on the
order of MZ , it will be quite difficult to observe it in
future experiments because the main contribution to
its wave function gives theCP-odd component of the
singlet field Y . The heaviest fermion in the MNSSM
is the neutralino (mχ̃5) which is a superpartner of
the scalar field Y . Its mass is proportional to µ′.
The remaining masses of the neutralinos (mχ̃i), the
charginos (mχ̃±

i
), the squarks, and the sleptons do

not depend on µ′.

The spectrum of new fermion states, squarks, and
sleptons is also insensitive to the choice of the pa-
rameter A, since near the quasifixed point (20), the
dependence of scalar masses m2

i and trilinear scalar
couplings Ai on it disappears. For this reason, the
lightest CP-even Higgs boson mass is almost inde-
pendent of A. Nevertheless, the dependence of the
heavyHiggs boson spectrum on the universal trilinear
scalar coupling A is conserved. This occurs because
the bilinear scalar coupling B′ is proportional to A.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
The dependence of the Higgs boson masses on the
parameter A for m0 = 0 is presented in Figs. 1d and
2d.

Althoughwe setm0 = 0 everywhere in Figs. 1 and
2, the qualitative pattern of the particle spectrum does
not change if the universal soft scalar mass varies
from zero toM2

1/2. It should be noted that the masses
of the squarks, the sleptons, the heavy Higgs bosons,
the heavy charginos, and the neutralinos grow with
increasing m0, while the spectrum of the lightest
particles remains unchanged.

Up to now, the particle spectrum in the quasifixed-
point regime, which corresponds to the initial values
of the Yukawa couplings h2

t (0) = λ2(0) = 10, has
been studied. In the vicinity of the quasifixed point
(20) for mt(M

pole
t ) = 165 GeV and M3 ≤ 2 TeV, the

lightest Higgs boson mass does not exceed 127 GeV.
The results presented in the table point out that the
qualitative pattern of the MNSSM particle spectrum
does not change even if h2

t (0) � λ2(0) or h2
t (0) �

λ2(0) as long as the Yukawa couplings are much
larger than the gauge ones at the scale MX . The
masses of the Higgs bosons and the masses of the
superpartners of the observable particles were calcu-
lated there for the values of µ′ computed by formula
(25) and A = m0 = 0. At the same time, one can see
from the table that the numerical value of the lightest
2
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Table 1. Spectrum of the superparticles andHiggs bosons formt(174GeV)= 165 GeV andA = m0 = 0 and for different
initial values of h2

t (0) and λ
2(0) (all mass parameters are given in GeV)

µeff < 0 µeff > 0

λ2(0) 2 10 10 2 10 10

h2
t (0) 10 10 2 10 10 2

M1/2 −392.8 −392.8 −392.8 −392.8 −392.8 −392.8

tanβ 1.736 1.883 2.439 1.736 1.883 2.439

µeff −771.4 −727.8 −641.8 772.4 728.6 642.3

B0 622.5 1008.0 886.2 −988.1 −1629.1 −1583.3

y −0.0014 −0.0015 −0.0012 −0.0003 −0.0004 −0.0005

µ′(t0) 1693.9 1671.5 1749.8 −1941.4 −1899.8 −1943.1

mh(t0) 123.6 134.1 137.6 112.4 125.0 131.2

(one-loop)

mh(t0) 113.0 124.4 127.8 105.5 118.4 123.6

(two-loop)

M3(1TeV) 1000 1000 1000 1000 1000 1000

mt̃1(1TeV) 891.6 890.2 890.5 837.0 840.6 853.5

mt̃2(1TeV) 622.2 630.3 648.5 693.8 695.1 696.4

mH(1TeV) 961.0 896.2 758.5 963.3 898.5 761.1

mS(1TeV) 1999.8 2147.4 2187.2 2405.3 2623.4 2663.8

mA1(1TeV) 1374.8 1123.2 1294.0 1390.6 953.9 965.1

mA2(1TeV) 949.8 857.6 735.6 951.6 704.3 674.3

mχ̃1(t0) 160.1 160.0 159.9 164.6 164.6 164.4

mχ̃2(t0) 311.9 311.1 309.4 328.1 327.8 326.4

|mχ̃3(1TeV)| 795.8 753.7 665.8 797.2 755.1 668.1

|mχ̃4(1TeV)| 807.8 764.7 677.1 800.9 755.9 666.7

|mχ̃5(1TeV)| 1711.2 1700.7 1790.0 1960.7 1931.8 1986.5

mχ̃±
1
(t0) 311.6 310.7 309.0 328.1 327.8 326.4

mχ̃±
2
(1TeV) 806.0 763.3 676.7 800.4 757.0 669.0
Higgs boson mass is raised from 105–113 GeV for
λ2(0) = 2 to 118–128 GeV for λ2(0) = 10.

Therefore, at the last stage of our analysis, we
investigate the dependence of the upper bound on
mh on the choice of the Yukawa couplings at the
Grand Unification scale. For each h2

t (t0), we find the
value of tan β using relation (21) and choose λ2(t0)
and µ′ so that the lightest Higgs boson mass attains
its upper bound. The resulting curve mh(tan β) is
PH
plotted in Fig. 3, where the upper bound onmh in the
MSSM as a function of tan β is also presented. The
two bounds are very close for large tan β (tan β �
1). The curve mh(tan β) in the MNSSM reaches its
maximum at tan β = 2.2–2.4, which corresponds to
the limit of strong Yukawa coupling. The numerical
analysis reveals that themass of the lightestCP-even
Higgs boson in the NMSSM is always smaller than
130.5± 3.5 GeV, where the uncertainty is mainly due
to the error in the t-quark mass.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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4. FINAL REMARKS AND CONCLUSIONS

We have argued that the upper bound on the
lightest Higgs boson mass in the NMSSM attains
its maximal value in the strong Yukawa coupling
limit. In the limit being considered, all solutions of
renormalization-group equations are gathered near
the quasifixed points. If the scale of supersymme-
try breaking is much larger than the electroweak
one, perturbation theory can be used to calculate the
Higgs boson masses. Even forMS �MZ , however,
the mass of the lightest CP-even Higgs boson in
the NMSSM is appreciably smaller than its upper
bound in the dominant part of the parameter space.
Moreover, the self-consistent solution does not exist
in the limit of strong Yukawa coupling within the
NMSSM with a minimal set of fundamental param-
eters. In addition, the Z3 symmetry of the NMSSM
superpotential leads to the domain-wall problem.

We have suggested such a modification of the
NMSSM that allows one to get the self-consistent
solution in the strong Yukawa coupling limit and at
the same time to avoid the domain-wall problem.
The superpotential of MNSSM includes the bilinear
terms which break the Z3 symmetry. We have studied
the spectrum of the Higgs bosons in the MNSSM.
The qualitative pattern of the particle spectrum is
most sensitive to the choice of two parameters: µ′

andMS . The limit µ′ �MS , where theCP-even and
CP-odd scalar fields become very heavy, corresponds
to the minimal SUSY model. In the most interesting
region of the parameter space, where the mass of
the lightest Higgs boson is larger than that in the
MSSM, the Higgs boson mass matrix has a hierar-
chical structure and can be diagonalized by using the
method of perturbation theory. The heaviest particle
in this region of the MNSSM parameters is the CP-
even Higgs boson corresponding to the neutral scalar
field Y and the heaviest fermion is Ỹ , which is the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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Fig. 4. Upper bound on the mass of the lightest Higgs
boson (in GeV) in the NMSSM (solid and long-dashed
curves) and in the MSSM (short-dashed curve) as a
function of tan β. The solid curve is the upper bound
on mh in the NMSSM with four additional 5 + 5̄ mul-
tiplets, while the long-dashed curve is that in the ordinary
NMSSM (see [36]).

superpartner of the singlet field Y . The lightest Higgs
boson mass in the model under consideration may
reach 127 GeV even for the comparatively low value
of tan β 
 1.9 and does not exceed 130.5 ± 3.5 GeV.

The resulting upper bound on the mass of the
lightest CP-even Higgs boson is not an absolute one
in the SUSY models. For instance, the upper bound
on mh increases if new 5 + 5̄ supermultiplets appear
in the NMSSM at the SUSY breaking scale. These
multiplets change the evolution of gauge coupling
constants. Their values at the intermediate scale
grow if the number of new supermultiplets increases.
For this reason, the allowed region of the Yukawa
couplings at the electroweak scale is expanded. This
leads to the growth of the upper bound onmh with in-
creasing number of 5+ 5̄ supermultiplets (see Fig. 4).
The investigations performed in [36] showed that the
introduction of four or five 5 + 5̄ supermultiplets in-
creases the theoretical bound on the mass of the
lightest Higgs boson up to 155 GeV. If more than
five multiplets are introduced at the SUSY breaking
scale, then the gauge coupling constants blow up
before the Grand Unification scale and perturbation
theory is not valid at q2 ∼M2

X .
Recently, the upper bound on the lightest Higgs

boson mass in more complicated SUSY models has
been analyzed [44–47]. In particular, in addition to
the gauge singlet superfield, three SU(2) triplets T̂i

with different hypercharges can be introduced in the
Higgs boson superpotential:

WHiggs = λŶ (Ĥ1Ĥ2) + λ1(Ĥ1T̂0Ĥ2) (26)

+ χ1(Ĥ1T̂1Ĥ1) + χ2(Ĥ2T̂1Ĥ2) + . . . .
2
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boson mass in the SUSY model, which contains singlet
and three SU(2) triplet fields in the Higgs sector and four
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(see [45]).

As a result, the expression for the upper bound onmh

changes to become

m2
h ≤M2

Z cos2 2β +

[(
λ2

2
+
λ2

1

4

)

sin2 2β (27)

+ 2χ2
1 cos

4 β + 2χ2
2 sin

4 β

]

v2 + ∆.

The appearance of triplet superfields destroys the
gauge-coupling-constant unification at high ener-
gies. In order to restore the unification scheme of
the electroweak and strong interactions, one has
to add several SU(3) multiplets, for example, four
3 + 3̄, that do not participate in the SU(2) ⊗ U(1)
interactions. A numerical analysis [45, 46] reveals
that the unification of gauge couplings then occurs
at the scale M̃X ∼ 1017 GeV. As one can see from
Fig. 5 (see also [45]), the upper bound on the mass of
the lightest Higgs boson mass grows with increasing
tan β and, for tan β � 1, can be approximately equal
to 190 GeV [46].

Also the upper bound on mh is raised if a fourth
generation of the quarks and leptons exists in the
MSSM [47]. However, no evidence for the existence
of the fourth generation in the SM or the MSSM has
been found so far. Moreover, new particles make con-
siderable contributions to electroweak observables,
which upsets the agreement between theoretical pre-
dictions and the results of experimental measure-
ments. Thus, the growth of the upper bound on the
lightest Higgs boson mass in the supersymmetric
PH
models is usually accompanied by a substantial in-
crease in the number of particles that may be consid-
ered as the main drawback of these models.
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7521 (1998); A. Lukas, B. A. Ovrut, and D.Waldram,
Phys. Rev. D 57, 7529 (1998); T. Li, Phys. Rev. D 59,
107902 (1999).

23. J.-P. Derendinger and C. A. Savoy, Nucl. Phys. B
237, 307 (1984).

24. S. F. King and P. L. White, Phys. Rev. D 52, 4183
(1995).

25. P. A. Kovalenko, R. B. Nevzorov, and K. A. Ter-
Martirosyan, Yad. Fiz. 61, 898 (1998) [Phys. At.
Nucl. 61, 812 (1998)].

26. T. Elliott, S. F. King, and P. L. White, Phys. Lett. B
314, 56 (1993); U. Ellwanger, Phys. Lett. B 303, 271
(1993); U. Ellwanger and M. Lindner, Phys. Lett. B
301, 365 (1993); P. N. Pandita, Phys. Lett. B 318,
338 (1993); Z. Phys. C 59, 575 (1993); T. Elliott,
S. F. King, and P. L. White, Phys. Rev. D 49, 2435
(1994); S. W. Ham, S. K. Oh, and B. R. Kim, J.
Phys. G 22, 1575 (1996); Phys. Lett. B 414, 305
(1997); S. W. Ham, S. K. Oh, and H. S. Song, hep-
ph/9910461.

27. I. V. Gaidaenko, A. V. Novikov, V. A. Novikov, et al.,
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Abstract—The production of baryons involving two charmed quarks (Ξ∗
cc or Ξcc) in hadron interactions

at high energies and high transverse momenta is considered. It is assumed that a Ξcc baryon is formed in
the nonperturbative fragmentation of a (cc) diquark produced in the hard partonic process of the scattering
of charmed quarks from colliding hadrons: c+ c→ (cc) + g. It is shown that, upon the inclusion of this
mechanism, the cross section for the production of doubly charmed baryons becomes approximately twice
as large as that which is expected at the Tevatron and LHC colliders according to the predictions based
on the model of gluon–gluon production of a (cc) diquark and obtained in the leading order of perturbative
QCD. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Doubly heavy baryons stand out among baryons
containing heavy quarks. The presence of two heavy
quarks determines a pronounced quark–diquark
structure of doubly heavy baryons, whose wave
functions are dominated by configurations involving
a compact doubly heavy (QQ) diquark. In many
respects, the regularities observed in the mass spec-
trum of doubly heavy baryons appear to be similar
to those in the case of mesons containing one heavy
quark [1–4]. The mechanisms of production of
(QQq) baryons and (Qq̄) mesons also have com-
mon features. For the former, the production of a
compact heavy (QQ) diquark at the first stage is
followed by its nonperturbative fragmentation into a
(QQq) baryon through the pickup of a light quark.
Presently, the cross sections for the production of
doubly heavy baryons in ep and pp interactions have
been calculated both within the model of heavy-quark
hard fragmentation into a doubly heavy diquark [5–7]
and within a model based on an exact calculation of
the cross section for the gluon–gluon production of a
diquark and two heavy antiquarks in the leading order
of perturbative QCD [8–10].

The mechanism that is responsible for the produc-
tion of hadrons involving charmed quarks and which
is based on studying hard partonic subprocesses fea-
turing one c quark in the initial state was considered
previously in [11–13]. It was shown that, in the region
of highmomentum transfers (Q2 � m2

c), the concept
of intrinsic charm in hadrons is compatible with the

*e-mail: saleev@ssu.samara.ru
1063-7788/02/6502-0299$22.00 c©
parton model and makes it possible to take effectively
into account higher order corrections of perturbative
QCD to the Born approximation. However, there re-
mains the double-counting problem associated with
the fact that part of the Born diagrams for the produc-
tion of two heavy quarks in gluon–gluon fusion can
be interpreted as diagrams describing charm excita-
tion in one of the colliding protons; that is, the same
diagrams make the leading contribution in αs to the
perturbative (pointlike) c-quark structure function for
the proton. The nonperturbative contribution to the
c-quark structure function for the proton [14] is inde-
pendent of Q2 and, at Q2 � m2

c , becomes negligibly
small in relation to the contribution of the perturba-
tive photon structure function. Experience gained in
calculating the cross sections for the production of
heavy quarks in gluon–gluon fusion suggests that the
next-to-leading contribution of perturbation theory
in αs can be commensurate with the contribution
of the Born diagrams. Figure 1 depicts one of 36
Born diagrams Born diagram of order α4

s that describe
the production of a (cc) diquark and two charmed
antiquarks in gluon–gluon fusion. In the case of
the gluonic production of two pairs of heavy quarks,
there exist more than 300 diagrams featuring an extra
gluon in the final state—that is, α5

s diagrams—and it
is difficult to calculate them directly at present.

2. SUBPROCESS c+ c→ (cc) + g

In considering the production of a (cc) diquark in
proton–proton interactions, we rely here on themodel
where the underlying mechanism is that of intrinsic-
charm excitation in a proton. It is assumed that a
2002MAIK “Nauka/Interperiodica”
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Fig. 1. One of the diagrams for the subprocess g + g →
(cc) + c̄+ c̄.

(cc) diquark is produced in the fusion of c quarks
from colliding protons, which is accompanied by the
emission of a hard bremsstrahlung gluon—that is, in
the partonic process

c+ c→ (cc) + g. (1)

The Feynman diagrams for the partonic subpro-
cess (1) are shown in Fig. 2, where q1 and q2 are the
4-momenta of the primary c quarks, k is the gluon
4-momentum, and p is the diquark 4-momentum
shared by the c quarks in equal fractions. In this
case, the doubly charmed diquark is considered as
a nonrelativistic bound state of two c quarks in the
color-antitriplet spin-1 state. If i and j are the color
indices of the primary quarks and if m is the color
index of the diquark, the amplitude for the production
of a (cc) diquark, Mijm(c+ c→ (cc) + g), is related
to the amplitude for the production of two c quarks
whose 4-momenta are p1 = p2 = p/2. Specifically,
we have

Mijm(c+ c→ (cc) + g, p) (2)

= K0
εnmk

√
2
Mijnk

(
c+ c→ c+ c+ g, p1 = p2 =

p

2

)
,

where εnmk/
√

2 is the color part of the diquark wave
function and K0 =

√
2/mccΨcc(0), with mcc = 2mc

and Ψcc(0) being, respectively, the diquark mass and
wave function at the origin. As to the spin degrees
of freedom of the quarks and the diquark, there is a
correspondence between their production amplitudes
(the color indices and the common factor K0 are
omitted here):

M(c+ c→ (cc) + g, sz = +1) (3)

∼M(c+ c→ c+ c+ g, s1z = +
1
2
, s2z = +

1
2
),

M(c+ c→ (cc) + g, sz = −1) (4)

∼M(c+ c→ c+ c+ g, s1z = −1
2
, s2z = −1

2
),

M(c+ c→ (cc) + g, sz = 0) (5)

∼ 1√
2

[

M(c+ c→ c+ c+ g,

s1z = +
1
2
, s2z = −1

2
)

PH
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Fig. 2. Diagrams for the subprocess c+ c→ (cc) + g.

+M(c+ c→ c+ c+ g, s1z = −1
2
, s2z = +

1
2
)

]

.

Since the wave function of the (cc) diquark is an-
tisymmetric in color and symmetric in the remaining
indices, the production of a scalar (cc) diquark is
forbidden; that is,

M

(

c+ c→ c+ c+ g, s1z = +
1
2
, s2z = −1

2

)

(6)

−M
(

c+ c→ c+ c+ g, s1z = −1
2
, s2z = +

1
2

)

= 0.

Omitting color factors, we present immediately
below the amplitudesM1 −M5 that correspond to the
first five diagrams in Fig. 2 and which describe the
partonic process c+ c→ c+ c+ g, where the final
c quarks are in the color-antitriplet state. We note
that the amplitudes M6 −M10 can be obtained by
interchanging the primary quarks (q1 ↔ q2) in the
amplitudes M1 −M5 and by reversing their sign,
whereby the antisymmetry of the initial state of two
identical c-quarks is taken into account. Specifically,
we have

M1 = g3sεµ(k)Ū (p1)γµ(p̂1 + k̂ +mc)γνU(q1) (7)

× Ū(p2)γνU(q2)/((p1 + k)2 −m2
c)(p2 − q2)2,

M2 = g3sεµ(k)Ū (p1)γνU(q1)Ū(p2)γµ(p̂2 + k̂ (8)

+mc)γνU(q2)/((p2 + k)2 −m2
c)(q1 − p1)2,

M3 = g3sεµ(k)Ū (p1)γν(q̂1 − k̂ +mc)γµU(q1) (9)

× Ū(p2)γνU(q2)/((q1 − k)2 −m2
c)(p2 − q2)2,

M4 = g3sεµ(k)Ū (p1)γνU(q1)Ū(p2)γν(q̂2 − k̂ (10)

+mc)γµU(q2)/((q2 − k)2 −m2
c)(q1 − p1)2,

M5 = g3sεµ(k)Ū (p1)γνU(q1)Ū (p2)γλU(q2) (11)

×Gλµν(p2 − q2, k, p1 − q1)/(q1 − p1)2(p2 − q2)2,

where gs =
√

4παs, Gλµν(p, k, q) = (p− k)νgλµ +
(k− q)λgνµ + (q− p)µgνλ, and εµ(k) is the gluon po-
larization 4-vector. The color factors corresponding
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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to the diagrams forM1–M10 are given by

C1 =
εnmk

√
2

(T c
nlT

b
li)(T

b
kj), C6 =

εnmk

√
2

(T c
nlT

b
lj)(T

b
ki),

(12)

C2 =
εnmk

√
2

(T b
ni)(T

c
klT

b
lj), C7 =

εnmk

√
2

(T c
nj)(T

c
klT

b
li),

C3 =
εnmk

√
2

(T b
nlT

c
li)(T

b
kj), C8 =

εnmk

√
2

(T b
nlT

c
lj)(T

b
ki),

C4 =
εnmk

√
2

(T b
ni)(T

b
klT

c
lj), C9 =

εnmk

√
2

(T b
nj)(T

b
klT

c
li),

C5 =
iεnmk

√
2

(T b
ni)(T

a
kj)f

bac,

C10 =
iεnmk

√
2

(T b
nj)(T

a
ki)f

bac.

By using Eqs. (7)–(12), one can straightforwardly
verify that, at p1 = p2, the following relations hold:

C1M1 = C7M7, C2M2 = C6M6,

C3M3 = C9M9,

C4M4 = C8M8, C5M5 = C10M10.

The method that we use to calculate the ampli-
tudes for the production of the bound states of non-
relativistic quarks in a pure spin and orbital state
is based on the projection-operator formalism [15].
By using the properties of the charge-conjugation
matrix C = iγ2γ0, we can express the amplitude for
quark–quark scattering in terms of the amplitude for
antiquark–quark scattering; for example, we have

M1 = g3sεµ(k)Ū (p1)γµ(p̂1 + k̂ +mc)γνU(q1) (13)

× Ū(p2)γνU(q2)/((p1 + k)2 −m2
c)(p2 − q2)2

= g3sεµ(k)V̄ (q1)γν(−p̂1 − k̂ +mc)γµV (p1)

× Ū(p2)γνU(q2)/((p1 + k)2 −m2
c)(p2 − q2)2.

For p1 = p2 = p/2, it can be shown that

V (p1, s1z = −1
2
)Ū(p2, s2z = +

1
2
) (14)

∼ ε̂(p, sz = +1)(p̂ +mcc),

V (p1, s1z = +
1
2
)Ū(p2, s2z = −1

2
)

∼ ε̂(p, sz = −1)(p̂ +mcc),
1√
2

[
V (p1, s1z = −1

2
)Ū(p2, s2z = +

1
2
)

+ V (p1, s1z = +
1
2
)Ū(p2, s2z = −1

2
)
]

∼ ε̂(p, sz = 0)(p̂ +mcc),
where ε̂(p) = εµγµ and εµ(p) is the diquark polariza-
tion 4-vector. Upon the substitution

V (p1)Ū(p2) → Kε̂(p)(p̂ +mcc), (15)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
where K = Ψ(0)/2
√
mcc, the amplitudes Mi, the

color factors Ci apart, describe the production of a
(cc) diquark. The squared modulus of the amplitude
for the process in question can be written in the form

|M|2 =
1
72
K2

10∑

i,j=1

∑

spin

Mi(p1 = p2 =
p

2
) (16)

×M∗
j (p1 = p2 =

p

2
)Ci,j ,

where the factor 1/72 = (1/2)2(1/3)2(1/2) takes into
account averaging over the spin and color states of
the primary quarks and the identity of the final c
quarks. Summation over the polarizations of the vec-
tor diquark is performed with the aid of the standard
formula

∑

spin

εµ(p)ε∗ν(p) = −gµν +
pµpν

m2
cc

. (17)

By considering that the fully antisymmetric rank-3
tensor possesses the well-known property

εn′mk′εnmk = δnn′δkk′ − δkn′δnk′ ,

it is straightforward to evaluate the following form of
the color factors: Ci,j =

∑
color CiC

∗
j . The results are

given in the Appendix А. The quantity

F =
10∑

i,j

∑

spin

(MiM
∗
j ) · Ci,j

is computed by using the FeynCalc package for ana-
lytic calculations [16]. The analytic expression forF is
presented in Appendix B as a function of the standard
Mandelstam variables ŝ and t̂.

3. RESULTS OF THE CALCULATIONS

In the parton model, the cross section for the
production of a (cc) diquark in pp interactions can be
represented in the form

dσ

dp⊥
(pp→ (cc) +X) (18)

= 2p⊥

ymax∫

ymin

dy

1∫

x1min

dx1Cp(x1, Q
2)Cp(x2, Q

2)

× |M|2
16π(s(s −m2

cc))1/2

1
x1s−

√
sm⊥ey

,

where

x2 =
x1

√
sm⊥e

−y − 3
2m

2
cc

x1s−
√
sm⊥ey

,

x1min =
√
sm⊥e

y − 3
2m

2
cc

s−
√
sm⊥e−y

;

2
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Fig. 3. Cross section for the production of Ξcc baryons
at

√
s = 1.8 TeV and |y| < 1. Points (*) represent the

results from [10], while the curve corresponds to the re-
sults our calculationswithin the model of intrinsic-charm
excitation in colliding protons.
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Fig. 4. Cross section for the production of Ξcc baryons
at

√
s = 14 TeV and |y| < 1. Points (*) represent the

results from [10], while the curve corresponds to the re-
sults our calculationswithin the model of intrinsic-charm
excitation in colliding protons.

Cp(x,Q2) is the distribution of c quarks in the proton
at Q2 = m2

⊥ = m2
cc + p2⊥; p⊥ is the transverse mo-

mentum of the (cc) diquark; y is the rapidity of the
diquark in the c.m. frame of colliding protons; and s
is the square of the total energy in the c.m. frame of
colliding protons,

ŝ = (q1 + q2)2 = x1x2s+
m2

cc

2
, (19)
P

t̂ = (q1 − p)2 =
3
2
m2

cc − x1

√
sm⊥e

−y,

û = (q2 − p)2 =
3
2
m2

cc − x2

√
sm⊥e

y.

Within the nonperturbative-fragmentation model,
the cross section for the production of Ξcc baryons is
related to the cross section for the production of (cc)
diquarks by the equation

dσ

dp⊥
(pp→ Ξcc +X) (20)

=

1∫

0

dz

z

dσ

dp′⊥

(
pp→ (cc)X, p′⊥ =

p⊥
z

)

×D(cc)→Ξcc
(z,Q2),

where D(cc)→Ξcc
(z,Q2) is the phenomenological

fragmentation function normalized to a unit prob-
ability for the transition of a (cc) diquark into the
final doubly charmed baryon. At Q2

0 = m2
cc, the

fragmentation function is chosen in the standard
form [17]

D(cc)→Ξcc
(z,Q2

0) =
D0

z

(

m2
cc −

m2
Ξ

z
−
m2

q

1 − z

)2 ,

(21)

wheremΞ = mcc +mq is the mass of the Ξcc baryon,
mq is the mass of the light constituent quark, and
D0 is the normalization constant. At Q2 > Q2

0, the
fragmentation function D(cc)→Ξcc

(z,Q2) can be ob-
tained by numerically solving the QCD evolution
equation [18].

Following [10], we performed here our numeri-
cal calculations with the parameter values of mcc =
3.4 GeV, αs = 0.2, |Ψcc(0)|2 = 0.03 GeV3, andmq =
0.3GeV. For the distribution of c quarks in the proton,
Cp(x,Q2), we used the CTEQ5 parametrization [19].
The curves in Figs. 3 and 4 represent the results of
our calculations for the p⊥ spectra (|y| < 1) of the Ξcc

baryons at
√
s = 1.8 and 14 TeV, respectively, while

the points correspond to the results obtained in [10]
by calculating the contribution of the gluon–gluon
production of Ξcc baryons in the Born approximation.
Thus, our calculations demonstrate that, owing to the
contribution of the partonic process c+ c→ (cc) + g,
the observed total cross section for the production of
Ξcc baryons at the Tevatron and LHC colliders can
be approximately twice as large as those predicted in
[8, 10].
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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APPENDIX A

C1,1 =
7
9
, C2,3 =

10
9
, C3,6 = −10

9
,

C4,10 = −2, C6,10 = 1,

C1,2 =
1
9
, C2,4 = −2

9
,

C3,7 =
2
9
, C5,5 = 3, C7,7 =

7
9
,

C1,3 = −2
9
, C2,5 = 1, C3,8 =

8
9
,

C5,6 = −1, C7,8 =
10
9
,

C1,4 =
10
9
, C2,6 = −7

9
, C3,9 = −16

9
,

C5,7 = 1, C7,9 = −2
9
,

C1,5 = −1, C2,7 = −1
9
, C3,10 = 2,

C5,8 = 2, C7,10 = 1,

C1,6 = −1
9
, C2,8 =

2
9
, C4,4 =

16
9
,

C5,9 = −2, C8,8 =
16
9
,

C1,7 = −7
9
, C2,9 = −10

9
, C4,5 = −2,

C5,10 = 3, C8,9 = −8
9
,

C1,8 = −10
9
, C2,10 = 1, C4,6 =

2
9
,

C6,6 =
7
9
, C8,10 = 2,

C1,9 =
2
9
, C3,3 =

16
9
, C4,7 = −10

9
,

C6,7 =
1
9
, C9,9 =

16
9
,

C1,10 = −1, C3,4 = −8
9
, C4,8 = −16

9
,

C6,8 = −2
9
, C9,10 = −2,

C2,2 =
7
9
, C3,5 = 2, C4,9 =

8
9
,
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C6,9 =
10
9
, C10,10 = 3.

APPENDIX B

F = −(4παs)3
512FN

9FD
; (A.1)

FN = 26361M18 − 6M16
(
20513s + 67472t

)

+ 16M14
(
14621s2 + 100076st − 86020t2

)

− 16M12
(
14873s3 + 122408s2t

− 657280st2 − 382560t3
)

(A.2)

+ 64M10
(
2101s4 − 658s3t− 509652s2t2

− 468736st3 − 170408t4
)

+ 65536st2
(
s+ t

)2(
9s4 + 11s3t+ 13s2t2

+ 4st3 + 2t4
)

− 256M8
(
120s5 − 8749s4t− 201737s3t2

− 255896s2t3 − 149332st4 − 44640t5
)

− 1024M6
(
7s6 + 2180s5t+ 44390s4t2

+ 74060s3t3 + 57876s2t4 + 28176st5 + 7184t6
)

− 16384M2t
(
10s7 + 353s6t+ 924s5t2

+ 1151s4t3 + 898s3t4 + 460s2t5 + 160st6 + 28t7
)

+ 4096M4
(
s7 + 235s6t+ 5484s5t2 + 11610s4t3

+ 11609s3t4 + 7368s2t5 + 3056st6 + 672t7
)
;

FD =
(
M2 − s

)2(
M2 − 4t

)4(
5M2 − 4 (s+ t)

)4
.

(A.3)
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Abstract—An extension of traditional renormalization methods that assigns each element of Feynman
diagrams an individual evolution parameter is considered. It is shown that conditions necessary for such an
extension to be valid are satisfied in quantum gluodynamics. c© 2002 MAIK “Nauka/Interperiodica”.
A multiplicative renormalization of operators and
coupling constants is widely used in contemporary
field theory. In the traditional approach, all renorma-
lization factors Zk are functions of one scaling vari-
able λ that determines the scaling transformation of
all momenta, pi → λpi. It can also be said that the
factors Zk are determined by one momentum scale.
However, this mathematically irreproachable formu-
lation does not always fit the physics of problems that
the theory has to address. For example, there are two
momentum scales in hadron–hadron scattering—
one that governs the relative motion of the hadrons
involved and the other that characterizes the internal
motion of the quarks in a hadron—with the result
that, in solving specific problems, one has to invoke
additional model assumptions.

As a matter of fact, the application of the renorma-
lization-group approach to gluodynamics must be
based on the classical Yang–Mills equations with a
running coupling constant that depends on one ar-
gument, the evolution parameter t. In the one-loop
approximation, t is proportional to the logarithm of
the squared momentum, t ∼ ln(p2/Λ2), where Λ is a
new dimensional constant arising from a dimensional
transmutation. In dealing with states characterized
by a few momentum scales, there arises the ques-
tion of whether it is possible to construct an effec-
tive action that would allow both for the main con-
sequences of renormalization, including asymptotic
freedom, and for the dependence of renormalization
on all momenta. To tackle this question, we consider
a conventional scheme of multiplicative renormaliza-
tion.

*This article is a part of the talk “Search for
Self-Consistent Vacuum States of a Gluon Field”
presented at the Conference on the Physics of
Fundamental Interactions (Institute of Theoretical and
Experimental Physics, Moscow, November 28, 2000).
1063-7788/02/6502-0305$22.00 c©
In the Feynman gauge, the original Yang–Mills
Lagrangian involving ghost fields has the form

L = −1
4
F a

µνF
a
µν − 1

2
∂µΦ+DµΦ − 1

2
∂λVλDµVµ,

(1)

where
F a

µν = ∂µV
a
ν − ∂νV

a
µ + gcabcV b

µV
c
ν , (2)

Dac
µ = ∂µδ

ac + gcabcV b
µ (3)

[all fields transform according to the adjoint represen-
tation of the SU(3) group].

Upon a multiplicative renormalization of the fields,

V a
µ → Z

1/2
3 V a

µ , Φ+a → Z̄
1/2
3 Φa, and Φ+a → Z̄

1/2
3 Φa,

and of the coupling constant g, the Lagrangian takes
the form

L = −(1/4Z3)(∂µV
a
ν − ∂νV

a
µ )2 (4)

− (g/Z1)cabc(∂µV
a
ν )(V b

µV
c
ν )

− (g2/Z4)cabccadeV b
µV

c
ν V

d
µ V

e
ν

+ (1/Z̄3)(∂µΦ+a)(∂µΦa)

+ (g/Z̄1)cabc(∂µΦ+a)V b
µΦc

− (1/2Z3)(∂µV
a
µ )2.

The renormalization factors diverge logarithmically
as the parameter of the cutoff in the squared momen-
tum, M2, tends to infinity. In the one-loop approxi-
mation, they are given by the general formula

Zl − 1 = bl(g2/16π2) ln(M2/p2), (5)

where p2 is the square of the spacelike momentum
and bl stands for numerical factors computed in the
leading order of perturbation theory. Here, we adopt
the traditional notation for the renormalization factors
[1]: Z3 is associated with the renormalization of the
vector-field propagator, although it would be more
convenient to use ZV =

√
Z3 (renormalization of the

field), as was proposed in [2].
2002 MAIK “Nauka/Interperiodica”
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Table 1

Z nV nΦ nc bl

Z3 2 0 0 5

Z1 3 0 1 2

Z4 4 0 2 −1

Z̄3 0 2 0 3/2

Z̄1 1 2 1 −3/2

β(g2) 0 0 2 11
In the case of propagators, renormalization that
depends on many arguments presents no special
problems because each propagator involves only
one momentum variable, which can be used as an
argument of the respective renormalization factor. It
is somewhat more difficult to renormalize vertices
involving two or three independent momenta. This
problem can be solved on the basis of the natural
assumption that the renormalization factor for a
vertex is the product of the renormalization factors for
the fields involved and the renormalization factor for
the coupling constant, the momentum corresponding
to each field and the momentum transfer to the
gluon field being taken, respectively, for the argument
of the renormalization factor for this field and for
the argument of the renormalization factor for the
coupling constant. This assignment of the arguments
is nothing but a natural assumption, whereas the
consistency of the above factorization scheme can be
verified by straightforwardly computing all factors Zl

in the one-loop approximation of perturbation theory
with allowance for the Ward identities

Z3

Z1
=
Z̄3

Z̄1
=
Z

1/2
3

Z
1/2
4

, (6)

which reduce the number of independent factors from
five to three. At |Zl − 1| � 1, it follows from (6) that

b3 − b1 = b̄3 − b̄1 =
1
2
(b3 − b4). (7)

For the renormalization of the fields in propagators
and vertices to be identical and for the above scheme
of the factorization of vertices to be valid, the coef-
ficients bl must be linear functions of three integer-
valued variables: the number of free legs of the vector
PH
field (it is equal to the number of creation or annihi-
lation operators), nV ; the analogous number for the
ghost fields, nΦ; and the exponent of the coupling
constant in the respective elementary diagram (see
Table 1), nc. For the square of the coupling constant
and five renormalized terms in the Lagrangian, these
topological features are given in Table 1. The coeffi-
cients bl are evaluated in the one-loop approximation
for SU(3) theory in the Feynman gauge. They satisfy
the relation

b =
5
2
nV +

3
4
nΦ − 11

2
nc (8)

[by definition, β(g2) differs from Zl by the sign of bl].
Under some plausible assumptions, a multiplica-

tive formula for the factors Zl follows from the addi-
tive relation between bl. Since the quark fields are
not included in the Lagrangian, the theory involves
no dimensional parameters other than ΛQCD that
emerges from a dimensional transmutation. In view
of this, it may be assumed, as is always done in the
renormalization-group approach, that the running
coupling constant is the only parameter that deter-
mines renormalization of all quantities Zl = fl(g2).

Replacing the renormalization factors of the prop-
agators by the renormalization factors of the fields,

Z3 = Z2
V , Z̄3 = Z2

Φ, (9)

and expressing the coupling constant in terms of the
evolution parameter as

g2 = t−1, (10)

we can formulate Feynman rules for renormalized di-
agrams, assigning each renormalization factor an in-
dividual momentum argument (see Table 2). Relation
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 2. Feynman rules for renormalized diagrams
 

k
 

1

 

a

 

µ

 

b

 

ν
−Z2

V 1

i

k2
1 + i0

δabηµν

 
a

 
µ

 

k

 

1

 

k

 

2

 

k

 

3

 

b

 

ν

 

c

 

λ

−Z−1
V 1Z

−1
V 2Z

−1
V 3c

abc
[
(k1ληµν − k1νηµλ)t−1/2

1 + (k2µηνλ − k2ληµν)t−1/2
2 +

(k3νηµλ − k3µηνλ)t−1/2
3

]

 
a
 

µ
 

d
 

β
 

k

 

4

 

k

 

1

 

k

 

3

 

k

 

2

 

b

 

ν

 

c

 

α

−iZ−1
V 1Z

−1
V 2Z

−1
V 3Z

−1
V 4

[
cabeccde(ηµαηνβ − ηµβηνα)t−1

12 +

cacecbde(ηµνηαβ − ηµβηνα)t−1
13 + cadeccbe(ηµαηνβ − ηµνηαβ)t−1

14

]

 
b a

p

 

1

Z2
Φ1

iδab

p2
1 + i0

 
b

 
µ

 

k

 

1

 

ac
p

 

2

 

p

 

3
Z−1

V 1Z
−1
Φ2Z

−1
Φ3 c

abcp2µt
−1/2
1

(10) corresponds to the value of g2 = 1 at the normal-
ization point p2 = eΛ2 in the one-loop approximation.
Upon adopting this definition, only in the one-loop
approximation is there a simple relation between the
variable t and the squared momentum,

t =
bl

16π2
ln

|p2|
Λ2

. (11)

With allowance for higher loop corrections, the re-
lation between t and ln |p2| becomes more intricate,
the renormalization-group method yielding ln |p2| as
a function of t (or g2). Despite this, we can treat
momentum as a primary argument and g2 as a func-
tion of this argument. We use the following conven-
tions for the arguments: ZV 1 = ZV (p2

1), t2 = t(p2
2),

ZΦ3 = ZΦ(p2
3), t12 = t((p1 + p2)2), and so on. The

momentum-conservation law is taken into account
in all formulas. In comparing renormalized Feynman
rules with the coefficients bl presented in Table 1,
it should be recalled that, by definition, the renor-
malized propagatorD incorporating quantum correc-
tions is related to the bare propagator D(0) by the
formula D = Z3D

(0); the respective relation between
the renormalized and bare vertices has the form Γ =
Z−1

1 Γ(0), and there are analogous relations for ghost
fields.

If |Zl − 1| � 1 (in which case perturbation theory
is applicable), the renormalization factors for the fields
are related to the evolution parameter by the equa-
tions

ZV = t5/22, ZΦ = t3/44. (12)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
In general, the dependence of ZV and ZΦ on g2 and t
can be more complicated.

For vacuum diagrams, the field renormalization
factors ZV and ZΦ cancel, and there remain only
the renormalization factors for the coupling constants
g = t−1/2 and g2 = t−1. The reason is that the renor-
malization factors Z3 and Z̄3 for the propagators
appear in the numerator of the integrand, while the
renormalization factors Z1, Z4, and Z̄1 for the vertices
enter into the denominator. The arguments of the
vertices are identical to the arguments of the propa-
gators because of the momentum-conservation law.
For arbitrary diagrams, one must renormalize only
the propagators associated with external lines. Since
there are no external lines corresponding to ghost
fields, we can always set ZΦ = 1. Although there are
no free gluons in nature, the external lines of gluon
fields occur in diagrams that describe the static inter-
action of colored particles. For this reason, there is
the problem of correctly renormalizing external gluon
lines, and it must be solved both at high and at low
momenta.

The proposed method is rather general—in partic-
ular, it can be applied to theories having no rigorous
classical limit, including QCD, where the classical
approach is inconsistent because of a running cou-
pling constant and also because of the absence of
stable solutions with constant fields [3]. In view of
the latter, quantum corrections cannot be computed
on the basis of the Legendre transformation. Mul-
tiargument renormalization does not solve the most
2
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intricate problems of QCD, but it creates precondi-
tions for seeking self-consistent quantum solutions.
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Abstract—At the nonperturbative stage of jet evolution, fluctuations of soft gluons are less than those for
coherent states under specific conditions. This fact suggests that there can arise squeezed gluon states.
The angular and rapidity dependences of the gluon correlation function are investigated at this stage of jet
evolution. It is shown that these new states of soft gluons can display sub-Poissonian or super-Poissonian
statistics corresponding to, respectively, antibunching and bunching of gluons, by analogy with squeezed
photon states. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many experiments at e+e−, pp̄, and ep colliders
are devoted to the physics of hadron jets, since a
detailed investigation of interjet and intrajet features
is of great importance for testing perturbative and
nonperturbative QCD.

Although the nature of jets is of a universal char-
acter, e+e− annihilation stands out among hard pro-
cesses, since jet events admit a straightforward and
clear-cut separation in this process. In the reaction
e+e− → hadrons, there are four phases correspond-
ing to various time and space scales. These are (i) the
production of a quark–antiquark pairs, e+e− → qq̄;
(ii) the emission of gluons and quarks from primary
partons (perturbative evolution of the quark–gluon
cascade); (iii) the nonperturbative evolution and the
hadronization of quarks and gluons; and (iv) the de-
cays of unstable particles.

The second phase of e+e− annihilation has been
well understood, and rather accurate predictions for it
have been obtained within perturbation theory [1, 2].
At the same time, the third phase is usually taken into
account either through a constant factor that relates
partonic features through hadronic ones (within local
parton–hadron duality) or through the application of
various phenomenological models of hadronization.
As a consequence, theoretical predictions both for
intrajet and for interjet features remain unsatisfactory.
For example, the width of the distribution in the num-
ber of particles according to the predictions of pertur-
bative QCD is larger than the experimental one. The
discrepancies between theoretical calculations and

*e-mail: kuvshino@dragon.bas-net.by
**e-mail: shaporov@dragon.bas-net.by
1063-7788/02/6502-0309$22.00 c©
experimental data suggest that, following the per-
turbative stage, the quark–gluon cascade undergoes
nonperturbative evolution, whereupon hadronization
effects come into play. New gluon states generated
at the nonperturbative stage contribute to various
features of jets. For example, such a contribution
to the distribution in the number of particles can re-
sult in the formation of a sub-Poissonian distribution
[3, 4]. Because of this, the distribution width obtained
within perturbation theory must become smaller upon
taking into account nonperturbative evolution and
hadronization effects.

Calculations performed within perturbative QCD
show [5, 6] that, at the end of the evolution of the
quark–gluon cascade, the distribution in the number
of gluons near the completion of the development of a
quark–gluon cascade is close to a negative binomial
distribution. At the same time, this distribution can
be represented as a combination of Poisson distri-
butions [7] and associate a coherent state with each
such distribution. Studying a further evolution of
gluon states at the nonperturbative stage of jet evo-
lution, we obtain new gluon states that are squeezed
states under specific conditions. These states are
formed as the result of the nonlinear self-interaction
of gluons in a way similar to that in which squeezed
photon states arise in quantum optics as the result
of interaction with a nonlinear medium [8–11]. Such
squeezed states possess some unusual properties—
they display a characteristic of factorial and cumu-
lant moments [12] and can have sub-Poissonian or
super-Poissonian statistics corresponding to particle
antibunching or bunching. At the same time, the
distribution in the number of photons in a squeezed
state can exhibit oscillations [8, 9], in contrast to
Poisson and negative binomial distributions.
2002 MAIK “Nauka/Interperiodica”
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2. SQUEEZED GLUON STATES IN A JET

Let us consider the Hamiltonian for gluon-field
self-interaction. We have

V = −g

∫

fabcEa · AbA
0
c d3x (1)

+
g

2

∫

fabcBa · [Ab ×Ac]d3x

+
g2

2

∫
(
fabcAbA

0
c

)2
d3x

+
g2

8

∫

(fabc[Ab ×Ac])
2 d3x,

where Ea = −∇A0
a − ∂0Aa, Ba = [∇×Aa], and Aµ

a

is the potential of the gluon field (µ = 0, 4, a = 1, 8).
In the momentum representation, this potential for
the jet ring of thickness dθ can be represented in the
form [13, 14]

V =
k4
0

4(2π)3

(

1 − q2
0

k2
0

)3/2

g2πfabcfadf (2)

×
{(

2 − q2
0

k2
0

)[
abcdf

1212 + abcdf
1313

]
+ abcdf

2323

+
sin2 θ

2

(

1 − q2
0

k2
0

)

×
[
2abcdf

2323 − abcdf
1212 − abcdf

1313

]
}

sin θdθ,

where abcdf
lmlm = ab+

l ac+
m ad

l a
f
m + ab+

l ac
mad+

l af
m+

ab
la

c+
m ad+

l af
m + h.с., ab

l (ab+
l ) is the operator anni-

hilating (creating) a gluon of color b and vector
component l, q2

0 is the gluon virtuality at the end of
the perturbative cascade, k0 is the gluon energy at
the end of the perturbative cascade, g is the coupling
constant, fabc stands for the structure constants of
the SU(3) group, and θ is the angle between the jet
axis and the momentum k (0 ≤ θ ≤ θmax, θmax is half
of the opening angle of the jet cone).

The Hamiltonian for gluon self-interaction (2) in
the jet ring1) includes the squares of the creation
and annihilation operators for gluons with specific
color and vector indices. As is known from quantum
mechanics and quantum optics, the presence of such
structures in the Hamiltonian and, consequently, in
the evolution operator is a necessary condition for

1)By performing integration with respect to θ, it is easy to
obtain the gluon Hamiltonian for the whole jet; this Hamil-
tonian differs from the original one in (2) only by a factor.
Hence, all of the further conclusions about the existence of
squeezed states remain valid in this case.
P

emergence of squeezed states [10], since the squeez-
ing operator involves quadratic combinations of the
creation and annihilation operators:

S(z) = exp
{z∗

2
a2 − z

2
(a+)2

}
. (3)

In order to verify whether the final soft-gluon state
vector describes the squeezed state, it is necessary
to introduce the phase-sensitive Hermitian operators
(Xb

l )1 =
[
ab

l + ab
l
+
]
/2 and (Xb

l )2 =
[
ab

l − ab
l
+
]
/2i by

analogy with quantum optics and to establish condi-
tions under which the variance of one of them can be
less than the variance of a coherent state.

Mathematically, the condition of squeezing is ex-
pressed in the form of the inequalities [11]
〈(

∆(Xb
l ) 1

2

)2〉
=
〈
N
(
∆(Xb

l ) 1
2

)2〉
+

1
4

<
1
4

or
〈
N
(
∆(Xb

l ) 1
2

)2〉
< 0. (4)

Here, N is the normal-ordering operator and
〈
N
(
∆(Xb

l ) 1
2

)2〉
=

1
4

{

±
[〈(

ab
l

)2〉
−
〈
ab

l

〉2
]

(5)

±
[〈(

ab+
l

)2〉
−
〈
ab+

l

〉2
]

+ 2
[〈

ab+
l ab

l

〉
−
〈
ab+

l

〉〈
ab

l

〉]
}

.

The expectation values of the creation and an-
nihilation operators for gluons having specific color
and vector components are taken for the vector
8∏

c=1

3∏

l=1

| αc
l (t)〉, which arises as the result of evolution

within a small interval of time t:
8∏

c=1

3∏

l=1

| αc
l (t)〉 


8∏

c=1

3∏

l=1

| αc
l (0)〉 (6)

− itV

8∏

c=1

3∏

l=1

| αc
l (0)〉.

Here, the time is reckoned from the beginning of

the nonperturbative stage, the vector
8∏

c=1

3∏

l=1

| αc
l (0)〉

describes the initial coherent soft-gluon state pre-
pared by the perturbative stage,2) and the potential V
is determined by formula (2).

2)In general, we are dealing with a superposition of coherent
states that have specific weights. However, this circum-
stance does not lead to qualitative changes in the subsequent
conclusions.
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Let us consider the specific case where the color
index is b = 1 and where the vector index l is arbitrary.
We then have

〈
N
(
∆(X1

l ) 1
2

)2〉
= ±4πu2tdθ (7)

×
{

(1 + u1) sin θ
[
δl1(Z33 + Z22) + (1 − δl1)Z11

]

+ (1 − δl1) sin θ
[
δl2Z33 + δl3Z22

]

+ u1 sin3 θ
[
−1

2
δl1(Z22 + Z33)

+ δl2

(

Z33 −
1
2
Z11

)

+ δl3

(

Z22 −
1
2
Z11

)]}

�= 0,

where

Zmn =
7∑′

k=2

〈
(Xk

m)1
〉〈

(Xk
n)2
〉

(m,n = 1, 2, 3),

7∑′

k=2

( )
=

3∑

k=2

( )
+

1
4

7∑

k=4

( )
,

u1 =
(

1 − q2
0

k2
0

)

, u2 =
k4
0

4(2π)3
g2

2

√
u3

1.

In the final state being considered, fluctuations
of one of the squared components of the gluon field,
∆(X1

l )2, are weaker than those in the initial coherent
state under the following conditions:

〈
(Xk

m)1
〉
< 0

and
〈
(Xk

m)2
〉
< 0 or

〈
(Xk

m)1
〉
> 0 and

〈
(Xk

m)2
〉
> 0

(k �= 1,m �= l). In this case, we have phase-squeezed
gluon states by analogy with quantum optics [9, 10].
If the conditions

〈
(Xk

m)1
〉
> 0 and

〈
(Xk

m)2
〉
< 0 or

〈
(Xk

m)1
〉
< 0 and

〈
(Xk

m)2
〉
> 0 (k �= 1,m �= l) are

satisfied, fluctuations in another squared component
of the gluon field, ∆(X1

l )1, will be weaker in the

final state
8∏

c=1

3∏

l=1

| αc
l (t)〉 than in the coherent state,

in which case we arrive at the amplitude-squeezed
states (as in the case of photons [9, 10]). Similar con-
clusions will also be valid for a gluon field featuring
other color indices.

Thus, the vector
8∏

c=1

3∏

l=1

| αc
l (t)〉 describes the

squeezed state of soft gluons that is produced at
the nonperturbative stage of jet evolution within a
small interval of time t. Here, the corresponding
fluctuations of the squared components of the gluon
field will be weaker, under the conditions specified
above, than those in the case of the initial coherent
state.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
3. CORRELATION FUNCTIONS
FOR SQUEEZED GLUON STATES

The behavior of a correlation function can provide
a criterion of the existence of squeezed gluon states.
It is common to define the normalized second-order
correlation function as [15]

K(2)(θ1, θ2) =
C(2)(θ1, θ2)
ρ1(θ1)ρ1(θ2)

, (8)

where C(2)(θ1, θ2) = ρ2(θ1, θ2) − ρ1(θ1)ρ1(θ2), with
ρ2(θ1, θ2)(ρ1(θ)) being the two-particle (single-
particle) inclusive distribution. For gluons involving
color b with a vector component l, we can therefore
write

Kb
l(2)(θ1, θ2) =

ρb
l(2)(θ1, θ2)

ρb
l(1)(θ1)ρb

l(1)(θ2)
− 1. (9)

At the same time, we have
∫

Ω

ρ1(θ) dθ = 〈n〉 = 〈a+a〉 (10)

=
∫

Ω

〈f(θ, t)|a+a|f(θ, t)〉dθ,

where |f(θ, t)〉 is the final state vector. From (10),
we find that the single- and two-particle inclusive
distributions can be represented as

ρ1(θ) = 〈f(θ, t)|a+a|f(θ, t)〉, (11)

ρ2(θ1, θ2)

= 〈f(θ2, t), f(θ1, t)|a+a+a a|f(θ1, t), f(θ2, t)〉.
By taking the expectation values over the vector

8∏

c=1

3∏

l=1

| αc
l (θ1, t), αc

l (θ2, t)〉, 3) we obtain the explicit

form of the normalized second-order correlation func-
tion for squeezed gluon states:

Kb
l(2)(θ1, θ2) = −M1(θ1, θ2)/{| αb

l |4 (12)

− 2 | αb
l |2 M1(θ1, θ2) + M2(θ1, θ2)}.

For the color index b = 1 and an arbitrary vector
component l, we have here

M1(θ1, θ2) = 24tu2π | α |2| β |2 sin
(
δ +

π

2

)
(13)

×
{

(1 + δl1)(2 + u1 − δl1)(sin θ1 + sin θ2)

− 1
2
u1(3δl1 − 1)(sin3 θ1 + sin3 θ2)

}
,

M2(θ1, θ2) = 80tu2π | α |3| β |3 sin
(
δ

2
+

π

4

)

(14)

3)That this vector also describes squeezed gluon states can be
proven by verifying the squeezing conditions (4).
2
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Fig. 1. Angular dependence of the correlation function of squeezed gluons at |α|2 = 1, |β|2 = 1, and δ = 0.
×
{

(1 + δl1)(2 + u1 − δl1)(sin θ1 + sin θ2)

− 1
2
u1(3δl1 − 1)(sin3 θ1 + sin3 θ2)

}
.

In deriving these formulas, we assumed, for the
sake of simplicity, that α1

l = |α|eiγ1 for arbitrary l

and αb
l = |β|eiγ2 for b �= 1 and arbitrary l, where γ1 −

γ2 = δ/2 + π/4 (the phase δ specifies the direction of
squeezing [10]).

Let us perform a comparative analysis of the corre-
lation function (12) for squeezed gluon states and the
corresponding function for squeezed photon states,
which was thoroughly studied in quantum optics.
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Fig. 2. As in Fig. 1, but for (а) |α|2 = 3 and |β|2 = 1 and (b)
|α|2 = 10 and |β|2 = 1.
P

In quantum optics, the normalized second-order
correlation function is defined as [11]

Kl(2) = g
(2)
l − 1 =

〈
a+

l a+
l alal

〉

〈
a+

l al

〉2 − 1, (15)

where the expectation values are taken over the final
state vector at the instant t. If the correlation func-
tion being considered is positive, there occurs pho-
ton bunching (super-Poissonian distribution); other-
wise (Kl(2) < 0), we have photon antibunching (sub-
Poissonian distribution) [9, 11]. For a coherent field
obeying Poisson statistics, the normalized second-
order correlation function vanishes (Kl(2) = 0).

For squeezed photon states whose state vector is
defined as |α, z〉 = S(z)|α〉, the corresponding corre-
lation function has the form (at small values of the
squeezing parameter rl)

Kl(2) = − rl[α2
l e

−iδ + (α∗
l )

2eiδ]
|αl|4 − 2rl|αl|2[α2

l e
−iδ + (α∗

l )2eiδ ]
. (16)

In contrast to the correlation function for squeezed
photon states, Kl(2), the corresponding function for
the squeezed gluon states, Kb

l(2)(θ1, θ2), includes,
as follows from (12), the function M2(θ1, θ2), which
appears because the Hamiltonian (2) of the gluon field
involves a nonlinear combination of the creation and
annihilation operators for gluons featuring different
color components.

The angular dependence of the correlation func-
tion for squeezed gluon states (of color b = 1) that are
formed at the nonperturbative stage after a lapse of
t = 0.001 is investigated graphically at the following
parameter values: θ2 = 0, q2

0 = 1 GeV2 (gluon virtu-
ality at the beginning of the nonperturbative stage),
k0 =

√
s/2〈ngluon〉 (gluon energy in the case of dijet

events),
√
s = 91 GeV, and 〈ngluon〉 = |α|2 + 7|β|2.

If the amplitude |α| of the gluon field being con-
sidered is equal to the amplitudes |β| of the gluon
fields having different colors and vector components,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002



FLUCTUATIONS AND CORRELATIONS OF SOFT GLUONS 313

 

0 0.00002 0.00004 0.00006

0.229510

0.229512

0.229514

 
K

 
1
1(2)

 
(

 
θ

 

1

 
, 

 
θ

 

2

 
 = 0)

 

θ

 

1

 

(

 

a

 

)

0 0.0004 0.0008

0.0991819

0.0991817

0.0991815

 

θ

 

1

 

(

 

b

 

)

Fig. 3. Angular dependence of the correlation function for an-
tiphased squeezed gluons (δ = π): (а) |α|2 = 1 and |β|2 = 1

and (b) |α|2 = 3 and |β|2 = 1.

the values of the correlation function are negative
(Fig. 1), and there occurs the antibunching of gluons
with the corresponding sub-Poissonian distribution.
In this case, the correlation function tends to a con-
stant as the angle θ1 increases: K1

1(2)(θ1, θ2 = 0) =
−2.80094. This behavior of the angular correlations of
the cophased squeezed gluon states (δ = 0) is similar
to correlations of the analogous photon states at small
values of the squeezing parameter [8].

In the case where the amplitude of the gluon field
of specific color—for example, b = 1—begins to dom-
inate in relation to the amplitudes of other color fields
(b �= 1), the correlation function involves a singularity
(in Fig. 2, θ1 ≈ 1.518928762 × 10−9 at |α|2 = 3 for
|β|2 = 1 and θ1 ≈ 7.8873381715 × 10−9 at |α|2 = 10
for |β|2 = 1).

For antiphased squeezed states of soft gluons (δ =
π), angular correlations fall within the region of pos-
itive values, and there occurs gluon bunching with
the corresponding super-Poissonian distribution. In
this case, the correlation function grows fast at small
angles θ1 and tends to a constant irrespective of the
values of the amplitudes |α| and |β| (Fig. 3).

By using the transformation

sin θ =

√

1 − tanh2 y

u1
, (17)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
 

–2 –1

0

1 2

–0.0002

–0.0001

0

 
K

 
1
1(2)

 
(

 
y

 

1

 
, 

 
y

 

2

 
 = 0)

 

y

 

1

Fig. 4. Squeezed-gluon correlation function versus rapidity at
y2 = 0: (solid curve) |α|2 = 1 and |β|2 = 1 and (dashed curve)
|α|2 = 3 and |β|2 = 1.

dθ = − dy

cosh2 y
√

u1 − tanh2 y
,

we can rewrite the correlation function for squeezed
gluon states in terms of rapidities; that is,

Kb
l(2)(θ1, θ2) = −M1(y1, y2)/{|αb

l |4 (18)

− 2|αb
l |2M1(y1, y2) + M2(y1, y2)}.

Rapidity correlations of cophased squeezed gluon
states (Fig. 4) fall within the region of negative values
and have a minimum at the center (y1 = y2 = 0) and
two peripheral maxima. For |α| > |β|, the correlation
functionKb

l(2)(θ1, θ2 = 0) has a less pronounced min-
imum at the center. Thus, the behavior of rapidity
correlations for the gluon states under investigation
suggests that, at the nonperturbative stage of evolu-
tion of a QCD jet, there exists the effect of antibunch-
ing with the corresponding sub-Poissonian statistics.

4. CONCLUSION

Our investigation of soft-gluon fluctuations at the
nonperturbative stage of jet evolution within a small
time interval has revealed that squeezed states of
gluons are formed under specific conditions. The
emergence of such remarkable states becomes pos-
sible owing to the self-interaction of gluons having
different color indices.

In order to reveal the effect of squeezing for gluons,
we have analyzed the behavior of angular and rapidity
correlations. Additionally, we have compared our
results with the corresponding correlation function
for squeezed photon states, which was comprehen-
sively investigated in quantum optics. The form of
the normalized correlation function Kb

l(2)(θ1, θ2) for
cophased squeezed states suggests the effect of gluon
2
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antibunching if the amplitudes of all gluon fields (fea-
turing various color and vector components) are equal
to one another. Such behavior of angular correla-
tions is analogous to the behavior of corresponding
correlations of squeezed photon states at small val-
ues of the squeezing parameter. At the same time,
there is distinction betweem them: in contrast to the
normalized correlation function known in quantum
optics, the squeezed-gluon correlation function in-
vestigated here displays a singularity if the amplitude
for the fixed-color gluon field being studied is much
greater than the amplitudes for gluon fields featuring
other color components. The correlations of cophased
squeezed states suggest the presence of a gluon-
antibunching effect; on the contrary, gluon bunching
occurs for antiphased squeezed states. Hence, the
parton distribution that is prepared by the pertur-
bative stage of jet evolution receives a contribution
from the nonperturbative evolution of gluons, this
contribution coming in the form of a sub-Poissonian
(cophased squeezed states) or a super-Poissonian
(antiphased squeezed states) distribution.

Thus, the behavior of two-particle angular and
rapidity correlations can serve as one of the criteria
of the existence of squeezed gluon states. At the
same time, it is obvious that, for a comparison of
our results with experimental data, we must take into
account the contribution of the perturbative stage of
jet evolution and hadronization effects. This can be
done by using the Monte Carlo method and will be
the subject of our further investigations.
PH
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Abstract—The valence-quark distributions in the πmeson and in transversely and longitudinally polarized
ρ mesons in the region of intermediate x are obtained on the basis of generalized QCD sum rules. Power-
law corrections up to d = 6 are taken into account. The quark distributions in the pion agree with those
found from the data on Drell–Yan processes. A comparison of the results for the π and ρmesons show that
polarization effects are very significant and that the distribution functions do not have SU(6) symmetry.
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1. INTRODUCTION

One of the most significant characteristics of the
inner structure of hadrons is quark (and gluon) dis-
tribution functions. Unfortunately, it is possible to
calculate directly only the evolution of the distribution
functions in QCD, so that it is necessary to know
the distribution functions at some starting normal-
ization point (initial conditions). Usually, these ini-
tial conditions are extracted from experimental data
by some fitting procedure (see, e.g., [1–4] for the
nucleon and [5–7] for the pion). In the case of
hadrons, for which there are no experimental results,
one should use some models or additional supposi-
tions about the inner structure of hadrons. That is
why a determination of quark distribution functions
in a model-independent way in QCD sum rules based
only on QCD and an operator-product expansion
(OPE) seems a very important task, especially for
such particles as the ρ meson, where there are no
experimental results.

A method for calculating valence-quark distribu-
tions at intermediate x was suggested in [8] and de-
veloped in [9–11]. The idea was to consider the imag-
inary part (in the s channel) of a four-point correla-
tion function corresponding to the forward scattering
of a virtual photon on a current with the quantum
numbers of the hadron of interest. The virtualities
of the photon and hadronic current (q2 and p2, re-
spectively) are supposed to be large and negative,
|q2| � |p2| � R−2

c , where Rc is the confinement ra-
dius. The crucial point is that, as was shown in [8,
9], the imaginary part in the s channel [s = (p + q)2]

∗This article was submitted by the authors in English.
**e-mail: ioffe@vitep5.itep.ru

***e-mail: armen@vitep5.itep.ru
1063-7788/02/6502-0315$22.00 c©
of the forward-scattering amplitude at intermediate x
is dominated by short-distance contributions. There-
fore, an operator-product expansion is applicable in
this x region. Comparing the dispersion represen-
tation of the forward-scattering amplitude in terms
of physical states with that calculated in OPE and
using the Borel transformation to suppress higher
resonance contributions, one can then find quark dis-
tribution functions at intermediate x. The fact that
this method for calculating the quark distributions
in hadrons is invalid at x � 1 and at (1 − x) � 1
follows immediately from the theory: OPE diverges
in these two domains. Therefore, calculating higher
order terms of OPE makes it possible to estimate
the numerical values of x up to which the theory is
reliable in the domains of small and large x in each
particular case. In the way described above, valence-
quark distributions in the nucleon were calculated in
[9, 11]. However, the accuracy of the calculation
was not sufficiently high, especially for d quarks [9].
Moreover, it was found to be impossible to calculate
quark distributions in the π and ρmesons in this way.
The reason is that the sum rules in the form used in
[9, 11] have a serious drawback.

This drawback comes from the fact that, in the
case of a four-point function that corresponds to a
forward-scattering amplitude with equal initial and
final hadron (h) momenta, the contributions of excited
states (h∗) of the form

〈0|jh|h∗〉〈h∗|jel(x)jel(0)|h〉〈h|jh |0〉 (1)

are not suppressed directly after the Borel transfor-
mation in relation to the matrix element of interest,

〈0|jh|h〉〈h|jel(x)jel(0)|h〉〈h|jh|0〉, (2)

which is proportional to the hadron structure func-
tion. In order to eliminate the background matrix
2002MAIK “Nauka/Interperiodica”
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elements (1), it was necessary to differentiate the sum
rule with respect to the Borel parameter. But, as is
well known, differentiation of an approximate relation
may seriously spoil the accuracy of the results. In
QCD sum rules, such a differentiation increases con-
tributions of higher order terms of OPE and excited
states in the physical spectrum, so that the sum rules
become much poorer or even fail (as for the π and ρ
mesons). The situation for the pion is especially bad
because a direct calculation shows that the leading
term in the OPE (the bare loop diagram) corresponds
just to the off-diagonalmatrix element, not to the pion
structure function.

Recently, a modified method for calculating the
hadron structure functions (quark distributions in
hadrons) where this problem was eliminated was
proposed in [12], and valence-quark distributions
in the pion were calculated. This method was also
used in [13] to calculate the valence-quark distribu-
tions in the ρ meson, separately for longitudinally
and for transversely (with respect to the virtual-
photon beam) polarized ρ mesons. Since the quark
distributions in the ρ meson cannot be measured,
a general way to obtain them is to assume SU(6)
symmetry, where the π and ρ mesons belong to
the same multiplet. Then, the quark distributions
in the ρ meson should be similar to those in the
pion and are independent of ρ polarization. On
the other hand, the pion plays a specific role in the
theory—it is a Goldstone boson. From this point of
view, it has nothing in common with the ρ meson,
and there are no reasons to expect that the quark
distributions in the π and the ρ meson are similar.
This problem will be resolved, and it will be shown
that the valence-quark distributions in the pion and
in longitudinally and transversely polarized ρ mesons
are quite different.

For the reader’s convenience, the method pro-
posed in [12] is briefly surveyed in Section 2. In Sec-
tion 3, the quark distribution in the pion is considered.
In Section 4, the results for the valence-quark distri-
bution in longitudinally and transversely polarized ρ
mesons are presented. By using the Regge behavior
at small x and quark-counting rules at large x, the
first and second moments of the quark distributions
are found.

2. DESCRIPTION OF THE METHOD

Let us consider the nonforward four-point correla-
tion function

Π(p1, p2; q, q′) (3)

= −i

∫

d4xd4yd4z exp(ip1x + iqy − ip2z)

× 〈0|T{jh(x), jel(y), jel(0), jh(z)}|0〉.
PH
Here, p1 and p2 are, respectively, the initial and final
momenta carried by the hadronic current jh; q and
q′ = q + p1 − p2 are, respectively, the initial and final
momenta carried by virtual photons; and Lorentz
indices are omitted. It will be very important for us
to consider unequal p1 and p2 and to treat p2

1 and p2
2

as two independent variables. However, we may set
q2 = q′2 and t = (p1 − p2)2 = 0. The general form
of the double dispersion relation (in p2

1, p
2
2) for the

imaginary part of Π(p2
1, p

2
2, q

2, s) in the s channel has
the form

ImΠ(p2
1, p

2
2, q

2, s) = a(q2, s) (4)

+

∞∫

0

ϕ(q2, s, u)
u− p2

1

du +

∞∫

0

ϕ(q2, s, u)
u− p2

2

du

+

∞∫

0

du1

∞∫

0

du2
ρ(q2, s, u1, u2)

(u1 − p2
1)(u2 − p2

2)
.

The double Borel transformation of (4) in p2
1 and p2

2
eliminates the first three terms, and we have

BM2
1
BM2

2
ImΠ(p2

1, p
2
2, q

2, s) (5)

=

∞∫

0

du1

∞∫

0

du2ρ(q2, s, u1, u2) exp

[

− u1

M2
1

− u2

M2
2

]

,

whereM2
1 andM2

2 are the squared Borel masses. The
region of integration with respect to u1 and u2 may be
broken down into four areas:

I. u1 < s0, u2 < s0;

II. u1 < s0, u2 > s0;

III. u1 > s0, u2 < s0;

IV. u1 > s0, u2 > s0.

Here, s0 is the continuum threshold in the stan-
dard QCD-sum-rule model of the hadronic spectrum
featuring one lowest resonance and a continuum.
Area I obviously corresponds to the resonance con-
tribution, and the spectral density in this area can be
written as

ρ(u1, u2, x,Q
2) (6)

= g2
h · 2πF2(x,Q2)δ(u1 −m2

h)δ(u2 −m2
h),

where gh is defined as
〈0|jh|h〉 = gh. (7)

(For the sake of simplicity, we consider the case of
the Lorentz scalar hadronic current. The necessary
modifications for the π and ρmesons will be presented
below.) If the structure proportional to PµPν [Pµ =
(p1 + p2)µ/2] is considered in Im Π(p1, p2, q, q

′),
then, in the lowest twist approximation, F2(x,Q2)
is the structure function we are interested in.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002



QCD QUARK DISTRIBUTIONS IN MESONS 317
In area IV, where both variables u1 and u2 are
far from the resonance region, nonperturbative effects
can be neglected and, as is usual in sum rules, the
spectral function for a hadron state is described by the
bare loop spectral function ρ0 in the same region:

ρ(u1, u2, x) = ρ0(u1, u2, x). (8)
In areas II and III, one of the variables is far from the
resonance region, while the other is in the resonance
region, and the spectral function in this region is some
unknown function ρ = ψ(u1, u2, x) that corresponds
to h → continuum transitions.

Taking all these facts into account, we can recast
the physical side of the sum rule (5) into the form

B̂1B̂2[Im Π] = 2πF2(x,Q2)g2
h (9)

× exp
[

−m2
h

(
1

M2
1

+
1

M2
2

)]

+

s0∫

0

du1

∞∫

s0

du2ψ(u1, u2, x)

× exp
[

−
(

u1

M2
1

+
u2

M2
2

)]

+

∞∫

s0

du1

s0∫

0

du2ψ(u1, u2, x)

× exp
[

−
(

u1

M2
1

+
u2

M2
2

)]

+

∞∫

s0

∞∫

s0

du1du2ρ
0(u1, u2, x)

× exp
[

−
(

u1

M2
1

+
u2

M2
2

)]

.

In what follows, we set M2
1 = M2

2 ≡ 2M2. (As was
shown in [14], the values of the Borel parameters M2

1

and M2
2 in the double Borel transformation are about

twice as large as those in the ordinary ones.)
One of the advantages of this method is that,

after the double Borel transformation, the unknown
contributions of areas II and III [the second and
the third term in (9)] are exponentially suppressed.
Therefore—and we would like to emphasize this—
we do not need any additional artificial procedure
such as differentiation with respect to the Borel mass.
Using standard duality arguments, we estimate the
contribution of the entire nonresonance region (i.e.,
areas II, III, IV) as the contribution of the bare loop
in the same region and require their value to be small
(less than 30%). Finally, equating the physical and
QCD representations of Π, one can write the sum
rules

ImΠ0
QCD + Power-law correction (10)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
= 2πF2(x,Q2)g2
h exp

[

−m2
h

(
1

M2
1

+
1

M2
2

)]

,

Im Π0
QCD =

s0∫

0

s0∫

0

ρ0(u1, u2, x) × exp
[

−u1 + u2

2M2

]

.

It is worth mentioning that, if we considered the
forward-scattering amplitude from the very beginning
(i.e., if we set p1 = p2 = p as in [8–11]) and performed
the Borel transformation in p2, then the contributions
of the second and third terms in (4), in contrast to
(9), would not be suppressed in relation to the lowest
resonance contribution we are interested in. They
correspond to the off-diagonal transition matrix ele-
ments discussed in the Introduction.

3. QUARK DISTRIBUTIONS IN THE PION

To find the pion structure function by the method
described in the preceding section, one should con-
sider the imaginary part of four-point correlation
function (3) with two axial and two electromagnetic
currents. Since d̄(x) = u(x), it is sufficient to find the
distribution of the valence u quark in π+. The most
suitable choice of the axial current is

jµ5 = ūγµγ5d. (11)

In order to find the u-quark distribution, the electro-
magnetic current is chosen as the u-quark current
with a unit charge,

jelµ = ūγµu. (12)

The most convenient tensor structure, which is
chosen to construct the sum rule, is a structure
proportional to PµPνPλPσ/ν. The reasons are the
following. As is known, the results of QCD-sum-
rule calculations are more reliable if the invariant am-
plitude at the kinematical structure with the maximal
dimension is used. Different p1 �= p2 values are im-
portant for us only in denominators, where they allow
one to separate the terms in dispersion relations. In
numerators, one may restrict the consideration to the
terms proportional to the 4-vector Pµ and ignore the
terms of order rµ [r = (p1 − p2), r2 = 0]. Then, the
factor PµPν provides the contribution of the structure
function F2(x), and the factor PλPσ corresponds to
the contribution of zero-spin states. (The factor 1/ν
is the scaling factor: w2 = F2/ν.)

Let us use the notation
Πµνλσ = (PµPνPλPσ/ν)Π(p2

1, p
2
2, x) + . . . . (13)

Then, the bare loop contribution to Im Π(p2
1, p

2
2, x)

is [12]

ImΠ(p2
1, p

2
2, x) =

3
π
x2(1 − x)

∞∫

0

du1 (14)
2
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Fig. 1.Quark distribution in the pion (thick curve) and fit
from [6] (thin curve).

×
∞∫

0

du2
δ(u1 − u2)

(u1 − p2
1)(u2 − p2

2)
.

The matrix element of the axial current between the
vacuum and pion states is well known,

〈0|jµ5|π〉 = ipµfπ, (15)

where fπ = 131 MeV. The use of Eqs. (10), (14), and
(15) leads to the sum rule for the valence u-quark
distribution in the pion in the bare loop approxima-
tion [12],

uπ(x) =
3

2π2

M2

f2
π

x(1 − x) (16)

× (1 − e−s0/M2
)em2

π/M2
,

where s0 is the continuum threshold. In [12], the
following corrections to Eq. (16) were taken into ac-
count:

(i) leading-order (LO) perturbative corrections
proportional to ln(Q2/µ2), where µ2 is the normal-
ization point (in what follows, the normalization point
will be chosen to be equal to the Borel parameter
µ2 = M2);

(ii) power-law corrections—that is, higher order
terms of OPE (among them, the dimension-4 correc-
tion, which is proportional to the gluon condensate

〈0|(αs/π)Gn
µνG

n
µν |0〉,

was first taken into account, but it was found that
the gluon-condensate contribution to the sum rule
vanishes after double borelization). There are two
types of vacuum expectation values of dimension 6,
one involving only gluonic fields,

gs

π
αsf

abc〈0|Ga
µν Gb

νλ Gc
λµ|0〉, (17)

and the other proportional to the 4-quark operators

〈0|ψ̄Γψ · ψ̄Γψ|0〉. (18)

It was shown in [12] that terms of the first type cancel
in the sum rule and that only terms of the second type
survive. For the latter, one may use the factorization
PH
hypothesis, which reduces all terms of this type to the
square of the quark condensate.

The following comment is in order here. As was
mentioned in the Introduction, the present approach
is invalid at small and large x. No-loop 4-quark
condensate contributions are proportional to δ(1 − x)
and, being outside of the applicability domain of the
approach, cannot be taken into account. In the same
way, the diagrams that can be considered as radiative
corrections to those proportional to δ(1 − x) must
also be omitted.

All dimension-6 power-law corrections to the sum
rule were calculated in [12], and the final result is
given by (the pion mass is neglected)

xuπ(x) =
3

2π2

M2

f2
π

x2(1 − x) (19)

×
[(

1 +
αs(M2) ln(Q2

0/M
2)

3π

×
(

1 + 4x ln(1 − x)
x

− 2(1 − 2x) ln x

1 − x

))

× (1−e−s0/M2
)− 4παs(M2) · 4παsa

2

26 · 37(2π)4M6

ω(x)
x3(1−x)3

]

,

where ω(x) is the fourth-degree polynomial in x,

a = −(2π)2〈0|ψ̄ψ|0〉, (20)

ω(x) =
(
−5784x4 − 1140x3 − 20196x2 (21)

+ 20628x − 8292
)

ln 2 + 4740x4 + 8847x3

+ 2066x2 − 2553x + 1416.

The function uπ(x) can be used as an initial condition
atQ2 = Q2

0 for a solution to the QCD evolution equa-
tions (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
equations).1)

In the numerical calculations, we choose the effec-
tive ΛLO

QCD = 200 MeV, Q2
0 = 2 GeV2, and

αsa
2(1 GeV2) = 0.13GeV6 [12]. The continuum

threshold was varied in the interval 0.8 < s0 <
1.2 GeV2, and it was found that the results depend
only slightly on its variation. The analysis of the sum
rule (19) shows that it is fulfilled in the region 0.15 <
x < 0.7; the power-law corrections are less than 30%,
and the continuum contribution is small (<25%).
The stability in the dependence on the Borel mass
parameter M2 in the region 0.4 < M2 < 0.6 GeV2

1)There was a misprint in Eq. (40) in [12]: instead of αs(M
2),

αs(Q
2
0) was in the last term. In the numerical calculations,

the correct value αs(M
2) was taken.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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is good. The result of our calculation of the valence
quark distribution xuπ(x,Q2

0) in the pion is shown in
Fig. 1.

Let us assume that uπ(x) ∼ 1/
√
x at small x �

0.15 according to the Regge behavior and that
uπ(x) ∼ (1−x)2 at large x � 0.7 according to quark-
counting rules. Then, matching these functions with
(19), one may find the numerical values of the first and
the second moment of the u-quark distribution,

M1 =

1∫

0

uπ(x)dx ≈ 0.84 (0.85), (22)

M2 =

1∫

0

xuπ(x)dx ≈ 0.21 (0.23), (23)

where the values in parentheses correspond to behav-
ior uπ(x) ∼ (1 − x) at large x. The results depend
only slightly on the points of matching (not more
than 5% when the lower and the upper matching
point are varied in the regions 0.15–0.2 and 0.65–
0.75, respectively). ThemomentM1 has themeaning
of the number of u quarks in π+, and it should be
M1 = 1. The deviation of (22) from unity charac-
terizes the accuracy of our calculation. The mo-
ment M2 has the meaning of the pion-momentum
fraction carried by the valence u quark. Therefore,
the valence u and d̄ quarks carry about 40% of the
total momentum. In Fig. 1, we also plot the valence
u-quark distribution found in [6] by fitting the data
on the production of µ+µ− and e+e− pairs in pion–
nucleon collisions (Drell–Yan process). In a com-
parison with the distribution found here, it should be
recalled that the accuracy of our curve is on order
of 10–20% (see discussion in Section 5). The u-
quark distribution found from experimental data is
also not free from uncertainties (at least 10–20%, see
[5–7]). In particular, what is measured in the Drell–
Yan process is the quark fragmentation function into
the pion defined at q2 > 0. In order to get the quark
distribution in the pion defined at q2 < 0, the analytic
continuation is used, which may introduce some un-
certainties, especially at the low normalization point,
e.g., Q2

0 = 2 GeV2, to which the data in Fig. 1 refer.
For all these reasons, we consider the agreement of
the two curves as being good. The valence u-quark
distribution in the pion was calculated recently in the
instanton model [15]. At intermediate x, the values of
xuπ(x) found in [15] are about 20% higher than our
results. Recently, the pion valence quark momentum
distribution was also calculated [16] by using a model
based on the Dyson–Schwinger equation. Our re-
sults are in reasonable agreement with the results of
[16]. One should note that, within this accuracy, our
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
estimate (23) of the second moments of the quark
distribution in the π meson is in good agreement
with that obtained in [16]. Our estimation (23) of
the second moment of the valence quark distribution
can also be compared with calculation of the second
moment of the total (valence plus sea) quark distri-
bution in the pion [17]. The value obtained in [17]
is 0.6 for the total momentum carried by all quarks
(valence plus sea) with the accuracy of about 10%.
Considering that sea quarks are usually supposed to
carry 15% of the total momentum, one can find from
the result of [17] that the second moment of one-
valence-quark distribution should be about 20–22%,
which is in good agreement with our result (23). The
quark distribution in the pion was also calculated in
[18] by using sum rules with nonlocal condensates.
Unfortunately, it is impossible to perform a compar-
ison directly because the quark distribution was cal-
culated in [18] only at a very low normalization point.
But, comparing his result with different models, the
author of that study arrived at the conclusion that
the result is in agreement with experimental data at
Q2 = 20 GeV2 within the accuracy about 20%. Our
result is also close to an experimental fit, so that we
can believe that our results are in agreement with
those of [18].

4. QUARK DISTRIBUTIONS
IN THE ρ MESON

Let us calculate the valence u-quark distribution
in the ρ+ meson. The choice of hadronic current is
evident:

jρ
µ = uγµd. (24)

The matrix element 〈ρ+|jρ
µ|0〉 is given by

〈ρ+|jρ
µ|0〉 =

m2
ρ

gρ
eµ, (25)

where mρ is the ρ-meson mass, gρ is the ρ–γ cou-
pling constant, g2

ρ/4π = 1.27, and eµ is the ρ-meson
polarization vector. We consider the coordinate sys-
tem where a collision of the ρmeson with momentum
p and a virtual photon with a momentum q proceeds
along the z axis. Averaging over ρ polarizations is
given by the formulas

eL
µe

L
ν =

(

qµ − νpµ

m2
ρ

)(

qν − νpν

m2
ρ

)
m2

ρ

ν2 − q2m2
ρ

(26)

for longitudinally polarized ρ and
∑

r=1,2

er
µe

r
ν = −

(

δµν − pµpν

m2
ρ

)

(27)

−
m2

ρ

ν2 − q2m2
ρ

(

qµ − νpµ

m2
ρ

)(

qν − νpν

m2
ρ

)

2
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Fig. 2. Quark distribution function for longitudinally po-
larized ρmeson.

for transversely polarized ρ.
The imaginary part Wµνλσ of the amplitude for

forward ργ scattering (before multiplication by ρ
polarizations) satisfies the equations Wµνλσqµ =
Wµνλσqν = Wµνλσpλ = Wµνλσpσ = 0, which follow
from current conservation. The indices µ and ν refer
to the initial and the final photon; λ and σ refer to
the initial and the final ρ meson. The general form of
Wµνλσ is

Wµνλσ =

[(

δµν−
qµqν

q2

)(

δλσ−
pλpσ

m2
ρ

)

A (28)

−
(

δµν − qµqν

q2

)(

qλ − νpλ

m2
ρ

)(

qσ − νpσ

m2
ρ

)

B

−
(

pµ − νqµ

q2

)(

pν − νqν

q2

)(

δλσ − pλpσ

m2
ρ

)

C

+

(

pµ − νqµ

q2

)(

pν − νqν

q2

)

×
(

qλ − νpλ

m2
ρ

)(

qσ − νpσ

m2
ρ

)

D

]

,

where A, B, C, and D are invariant functions. By
averaging Eq. (28) over polarizations for longitudinal
and transverse ρmesons, one can find that the struc-
ture function F2(x) proportional to pµpν is given in
the scaling limit (ν2 � |q2|m2

ρ) by the contribution of
the invariants C + (ν2/m2

ρ)D and C in the cases of a
longitudinally polarized and a transversely polarized ρ
meson, respectively. This means that, in the forward-
scattering amplitude Wµνλσ (28), one must separate
the structure proportional to pµpνpλpσ in the first
case and the structure proportional to pµpνδλσ in the
second case.

Let us now consider the nonforward four-point
correlation function

Πµνλσ(p1, p2; q, q′) (29)
P

= −i

∫

d4xd4yd4z exp (ip1x + iqy − ip2z)

× 〈0|T{jρ
λ(x), jelµ (y), jelν (0), jρ

σ(z)}|0〉,

where the currents jelµ (x) and jρ
λ(x) are given by

Eqs. (12) and (25). It is evident from the considera-
tion that, in the nonforward amplitude, the most suit-
able tensor structure for determining the u-quark dis-
tribution in the longitudinal ρ meson is that propor-
tional to PµPνPσPλ, while the u-quark distribution in
the transverse ρ meson can be found by considering
the invariant function at the structure (−PµPνδλσ).

In the case of a longitudinal ρ meson, the tensor
structure that is separated is the same as that in
the case of the pion. Since bare loop contributions
for vector and axial hadronic currents are equal at
mq = 0, the only difference from the pion case is the
normalization. It can be shown that the u-quark
distribution in the longitudinal ρmeson can be found
from Eq. (19) by means of the substitutions mπ →
mρ and fπ → mρ/gρ; therefore, one can easily write
down sum rules for this distribution,

xuL
ρ (x) =

3
2π2

M2
g2
ρ

m2
ρ

em2
ρ/M2

x2(1 − x) (30)

×
[(

1 +
αs(M2) ln(Q2

0/M
2)

3π

×
(

1 + 4x ln(1 − x)
x

− 2(1 − 2x) ln x

1 − x

))

× (1 − e−s0/M2
) − αs(M2)αsa

2

26 · 37π2M6

ω(x)
x3(1 − x)3

]

,

where a and ω(x) are given by Eqs. (20) and (21),
respectively. The sum rules for uL

ρ (x) are satisfied
in a wide x region: 0.1 < x < 0.85. The dependence
on the Borel mass M2 is weak in the entire range
of x, with the exception of x ≤ 0.15 and x ≥ 0.7.
As was discussed in the Introduction, the reason for
a stronger M2 dependence at small and large x is
related to the fact that our approach is invalid at small
x and at x close to unity. This is manifested in the
blowup of the dimension-6 correction for x → 0 and
x → 1 in Eq. (30). Thus, the applicability domain of
the sum rule can be found immediately from the sum
rule. Figure 2 presents xuL

ρ (x) as a function of x.
The values M2 = 1 GeV2, s0 = 1.5 GeV2, and Q2

0 =
4 GeV2 were chosen, while the parameters ΛLO

QCD

and αsa
2 were identical to those in the calculation of

xuπ(x).
Let us now consider the case of a transversely

polarized ρ meson—i.e., the term proportional to the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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structure PµPνδλσ. We first calculate the bare loop
contribution

ImΠ(0)
µνλσ ≡ −1

ν
PµPνδλσ ImΠ(0)

T (31)

= − 3
2π

1
ν
PµPνδλσx

[
1
2
− x(1 − x)

]

×
∫

udu

(u− p2
1)(u− p2

2)
.

After borelization, we get the following expression for
the u-quark distribution in a transversely polarized ρ
meson in bare loop approximation:

uT
ρ (x) =

3
(2π)2

g2
ρ

M4

m4
ρ

em2
ρ/M2

(32)

× E1

(
s0

M2

)[
1
2
− x(1 − x)

]

,

where
E1(z) = 1 − (1 + z)e−z . (33)

We take into account the leading-order perturba-
tive correction proportional to ln (Q2/µ2) and choose
Q2 = Q2

0 for the point where we calculate our sum
rules. The result is (the second term in the square
brackets corresponds to the perturbative correction)

uT (x) =
3

8π2

g2
ρ

m4
ρ

× em2
ρ/M2

M4E1

(
s0

M2

)

ϕ0(x)

(34)

×
[

1 +
αs(µ2) ln(Q2

0/µ
2)

3π

(

(4x− 1)/ϕ0(x)

+ 4 ln(1 − x) − 2(1 − 2x + 4x2) ln x

ϕ0(x)

)]

,

where
ϕ0(x) = 1 − 2x(1 − x). (35)

We now consider the power-law-correction con-
tribution to the sum rules. The power-law correction
of the lowest dimension is proportional to the gluon
condensate 〈Gq

µνG
q
µν〉 with d = 4. The 〈Gq

µνG
q
µν〉

correction was calculated in the standard way in the
Fock–Schwinger gauge xµAµ = 0 [19].

The quark propagator iS(x, y) = 〈ψ(x)ψ(y)〉 in
the external field Aµ has the well-known form [9, 14,
19, 20]. In contrast to the pion case, the 〈Ga

µνG
a
µν〉

correction for transversely polarized ρ (ρT ) does not
vanish,

Im Π(d=4)
T ·M4 = − π

8x
〈0|αs

π
G2

µν |0〉. (36)

Hereafter, all diagrams are calculated by using the
REDUCE system for analytic calculations. Let us
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recall that we should not take into account nonloop
diagrams and diagrams that can be treated as their
evolution. There are a large number of loop diagrams
for the d = 6 correction. It is convenient to divide
them into two types and discuss these types sepa-
rately. Type-I diagrams are those in which only the
interaction with the external gluon field is taken into
account, while type-II diagrams are those in which
the expansion of the quark field is also taken into
account.

Let us briefly discuss the special features of a cal-
culation of diagrams of these two types. Type-I dia-
grams are obviously proportional to
〈0|g3fabcGa

µνG
b
αβG

c
ρσ|0〉, 〈0|DρG

a
µνDτG

a
αβ |0〉, and

〈0|Ga
µνDρDτG

a
αβ |0〉.

One can demonstrate [21] that these tensor struc-
tures are proportional to two vacuum expectation val-
ues,

〈0|g2j2
µ|0〉 and 〈0|g3Ga

µνG
b
νρG

c
ρµf

abc|0〉.
By using the factorization hypothesis, the first of them
〈0|g2j2

µ|0〉 can easily be reduced to 〈gψ̄ψ〉2, which is
well known:

〈0|g2j2
µ|0〉 = −(4/3)[〈0|gψ̄ψ|0〉]2. (37)

But 〈0|g3Ga
µνG

b
νρG

c
ρµf

abc|0〉 is not well known; there
are only some estimates based on the instantonmodel
[22, 23]. In contrast to the π- and ρL-meson cases,
the terms proportional to 〈0|g3fabcGa

µνG
b
νρ G

c
ρµ|0〉 do

not cancel for ρT , and one should estimate it. The
estimation based on the instanton model [22] gives

−〈g3fabcGa
µνG

b
νρG

c
ρµ〉 =

48π2

5
1
ρ2

c

〈0|αs

π
G2

µν |0〉,
(38)

where ρc is the effective instanton radius.
Among type-II diagrams, only those in which the

interaction with the vacuum occurs inside the loop
are considered. Such diagrams cannot be treated as
the evolution of any nonloop diagrams and are pure
power-law corrections of dimension 6.

The total number of d = 6 diagrams is enormous,
about 500. Collecting the results, we finally obtain
the following sum rules for the valence u-quark dis-
tribution in a transversely polarized ρmeson:

xuT
ρ (x) =

3
8π2

g2
ρe

m2
ρ/M2

(39)

× M4

m4
ρ

x

{

ϕ0(x)E1

(
s0

M2

)

×
[

1 +
αs(M2) ln(Q2

0/M
2)

3π

(
4x− 1
ϕ0(x)
2



322 IOFFE, OGANESIAN

 

0.2 0.4 0.6 0.8

0.2

0.6

0.4

0

 

x

xu
 

T
 

ρ

 
(

 
x

 
)

Fig. 3. Quark distribution function for transversely po-
larized ρ meson at three choices of instanton radius,
ρc = 0.4, 0.5, and 0.6 fm (curves from top to bottom,
respectively).

+ 4 ln(1 − x) − 2(1 − 2x + 4x2) lnx

ϕ0(x)

)]

− π2

6
〈0|(αs/π)G2|0〉

M4x2
+

1
28 · 35M6x3(1 − x)3

× 〈0|g3fabcGa
µνG

b
νλG

c
λµ|0〉ξ(x)

+
αs(M2)αsa

2

25 · 38π2M6x3(1 − x)3
χ(x)

}

,

where
ξ(x) = −1639 + 8039x − 15233x2 (40)

+ 10055x3 − 624x4 − 974x5,

χ(x) = 8513 − 41692x + 64589x2 (41)

− 60154x3 + 99948x4 − 112516x5 + 45792x6

+ (−180 − 8604x + 53532x2 − 75492x3

− 28872x4 + 109296x5 − 55440x6) ln 2.

The standard value of the gluon condensate,
〈0|(αs/π)G2|0〉 = 0.012 GeV4, was taken in nu-
merical calculations. Equation (38) was used, and
the effective instanton radius ρc was chosen to be
ρc = 0.5 fm. This value is between the estimates in
[22] (ρc = 1 fm) and [23] (ρc = 0.33 fm). (In [24],
it was argued that the liquid–gas instanton model
overestimates higher order gluon condensates, and
larger values of ρc than in [23] should be used in order
to correct this effect.) The Borel mass dependence
of xuT

ρ (x) in the interval 0.2 < x < 0.65 is weak for
0.8 < M2 < 1.2 GeV2. Figure 3 shows xuT

ρ (x) at
M2 = 1 GeV2 and Q2

0 = 4 GeV2. The dashed and
thin solid curves demonstrate the influence of the
variation in ρc on the final result: the lower curve
corresponds to ρc = 0.6 fm, and the upper corre-
sponds to ρc = 0.4 fm. Our results are reliable for
0.25 < x < 0.65, where d = 4 and d = 6 power-law
PH
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Fig. 4.Valenceu-quark distributions for (thick curve)ρT ,
(curve with squares) ρL, and (thin curve) the π meson.

corrections each comprise less than 30% of the bare
loop contribution. (The contributions 〈0|(αs/π)G2|0〉
and 〈0|g3fabcGa

µνG
b
νλG

c
λµ|0〉 are of opposite signs

and compensate one another; the αs(M2)αsa
2 con-

tribution is negligible.) At ρc = 0.4 fm, the applica-
bility domain shrinks to 0.3 < x < 0.6.

The moments of the quark distributions in a lon-
gitudinally polarized ρ meson are calculated in the
same way as this was done in the case of the pion:
by matching with the Regge behavior u(x) ∼ 1/

√
x

at low x and with the quark-counting rule u(x) ∼
(1− x)2 at large x. The matching points were chosen
to be x = 0.10 at low x and x = 0.80 at large x. The
numerical values of the moments for a longitudinally
polarized ρ are

ML
1 =

1∫

0

dxuL
ρ (x) = 1.06 (1.05), (42)

ML
2 =

1∫

0

xdxuL
ρ (x) = 0.39 (0.37).

The values of themoments obtained by assuming that
uρ(x) ∼ (1 − x) at large x are given in parentheses.

A reliable calculation of moments for the case
of transversely polarized ρ meson is impossible be-
cause of a narrow applicability domain in x and ex-
pected double-hump shape of the u-quark distribu-
tion, which does not allow soft matching with the
expected behavior xuT

ρ (x) at small and large x.

Let us now discuss the case of an unpolarized ρ
meson. In this case, the quark distribution function
u(x) is

uρ(x) = (uL
ρ (x) + 2uT

ρ (x))/3

and we can determine u(x) only in the region where
sum rules for uL

ρ (x) and uT
ρ are satisfied, i.e., in the

range 0.2 � x ≤ 0.65. In this region, uρ(x) is found
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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to be very close to uπ(x) [the difference in the whole
range of x is no more than 10–15%].

5. SUMMARY AND DISCUSSION

Figure 4 gives a comparison of the valence u-
quark distributions in the pion and in a longitudinally
and a transversely polarized ρ meson. The shapes
of the curves are quite different, especially of xuT

ρ (x)
in relation to xuL

ρ (x) and xuπ(x). Strongly different
are also the second moments in the pion and a lon-
gitudinal ρ meson: the momentum fraction carried
by valence quarks and antiquarks −(u + d̄) in the
longitudinal ρ meson is about 0.8, while, in the pion,
it is much less—about 0.4–0.5. All these distinc-
tions are very large and many times larger than the
estimated uncertainties of our results. In the case of
the u-quark distribution in the pion, the main source
of them is the value of the renormalization-invariant
quantity (2π)4αs〈0|ψ̄ψ|0〉2. In our calculations, we
took it to be equal to 0.13 GeV6. In fact, however,
it is uncertain by a factor of 2. (The determination
of this quantity in [25] from τ-decay data indicates
that it may be two times larger.) The perturbative
corrections also introduce some uncertainties, espe-
cially at large x(x > 0.6), where the LO correction,
which is taken into account, is large. The estimation
of both effects shows that they may result in a 10–
20% variation (an increase at x < 0.3 and a decrease
at x > 0.3) of xuπ(x).

For the u-quark distribution in a longitudinally
polarized ρ meson, the uncertainties in αs〈0|ψ̄ψ|0〉2
do not play any role because of higher M2 values, so
that the expected accuracy is even better.

The accuracy of our results for the u-quark dis-
tribution in a transversely polarized ρ meson is lower
because of a large role of the contributions of the
d = 4 and d = 6 gluon condensates. For the latter,
as was discussed before, there are only estimations
based on the instanton model, and the gluon con-
densate 〈0|(αs/π)G2|0〉 is also uncertain by a factor
1.5. Estimations show that they result in no more
than 30–40% variation in xuT

ρ at x ≈ 0.3–0.4 but in
much less variation at x ≈ 0.5–0.6. (The leading-
order perturbative corrections are no more than 20%
at small x and negligible at large x.) Thus, one can
see that the difference obtained in the quark distribu-
tion in the pion and a longitudinally and a transversely
polarized ρ meson is in fact much larger than any
possible uncertainties of the results.

In summary, the main physical conclusions are the
following:

(1) The quark distributions in the pion and in the ρ
meson have little in common. The specific properties
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
of the pion as a Goldstone boson manifest themselves
in the quark distributions, which are different from
those in the ρmeson. SU(6) symmetry may probably
take place for the static properties of π and ρ but not
for their internal structure. We cannot explainwhy the
u-quark distributions in the pion and the unpolarized
ρ meson at 0.2 < x < 0.65 are close to each other—
we do not know whether this is purely accidental or
whether there are some deep reasons for this.

(2) The quark distribution in a polarized ρ meson
is significantly dependent on polarization: it is single-
humped and double-humped for a longitudinally and
for a transversely polarized ρmeson, respectively.
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Abstract—An anomalous suppression of the charmonium yield in central collisions was observed in
studying charmonium production in collisions of Pb nuclei accelerated to a momentum of 158 GeV/c
per nucleon with Pb target nuclei. It is shown that, in peripheral collisions, the ratio of the cross
section for J/ψ production to the cross section for the Drell–Yan process decreases exponentially (as in
the case of collisions of lighter nuclei) owing to the ordinary absorption of J/ψ in nuclear matter. The
observed threshold effect of the anomalous suppression of charmonium production agrees well with the
predictions based on the assumption of Debye color screening in the formation of quark–gluon plasma.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although the existence of quark–qluon deconfine-
ment (quark–gluon plasma) is predicted by nonper-
turbative lattice calculations [1], only an experimental
observation of this new state of matter can yield actual
values of the critical temperature and energy density
at the phase-transition point. In recent years, a few
experiments performed at CERN have given some
pieces of evidence for the formation of quark–gluon
plasma in high-energy nucleus–nucleus collisions.

In particular, the NA50 experiment studied the
production of charmonium in collisions of Pb nuclei.
Previously, the NA38 experiment explored the analo-
gous process in collisions of protons and light nuclei.
A physical motivation of the NA50 experiment is
based on the predictions in [2] that, because of Debye
color screening, charmonium production in heavy-
ion collisions can be suppressed upon the formation
of quark–gluon plasma.

A comparison of the cross sections for charmo-
nium production for various incident and target nuclei
can be performed with respect to the cross sections
for the Drell–Yan process. It was found that the
production cross sections for the Drell–Yan process
are proportional to the product of the atomic num-
bers of colliding nuclei, σ(DY) ∼ A ·B. Therefore,
we can assume that, in nucleus–nucleus collisions,
the Drell–Yan process proceeds through nucleon–
nucleon interactions.
1063-7788/02/6502-0325$22.00 c©
In the NA38 experiment, which employed incident
light ions, the cross section for J/ψ production was
found to deviate from the A ·B dependence. A de-
crease in the cross section for charmonium produc-
tion in relation to the cross section for the Drell–Yan
process for heavier colliding nuclei is explained by the
nuclear absorption of cc̄ pairs prior to the formation of
a J/ψ state [3]. This ordinary nuclear absorption can
be described by one parameter, the absorption cross
section σabs = 6.1 ± 0.7mb [4].
The first experimental data on PbPb collisions—

they were obtained in the NA50 experiment of 1995—
revealed a strong deviation from a smooth behavior.
The cross section for J/ψ production in PbPb colli-
sions appeared to be 0.77 ± 0.04 times smaller than
the value obtained by extrapolating, with allowance
for conventional nuclear absorption, the experimental
cross sections for J/ψ production that were obtained
for pA to SU interactions. This effect of the anoma-
lous suppression of charmonium production becomes
more pronounced with increasing degree of collision
centrality. The degree of collision centrality was de-
termined by measuring the transverse energy ET of
neutral particles with an electromagnetic calorimeter.
Collisions characterized by the highest degree of col-
lision centrality correspond to ET > 100 GeV.
The newmeasurements of 1996 with a thicker tar-

get yielded vaster statistics [5]. This made it possible
to explore in detail the dependence on the degree of
collision centrality; as a result, it was shown that, at
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Ratio σ(J/ψ)/σ(DY) as a function of transverse
energy according to a standard analysis and an analysis
that employs data for the minimum bias from the mea-
surement runs of 1996 and 1998.

low ET —that is, for the most peripheral collisions—
the behavior of the cross sections for charmonium
production can be described by ordinary nuclear ab-
sorption. The statistical accuracy of experimental
results was significantly improved by using, for the
collision-centrality-independent process of the pro-
duction of the minimum number of particles in the
interaction, the so-called minimum-bias process to
calculate the cross sections for the Drell–Yan pro-
cess.
Events characterized by the minimum bias were

analyzed by using the procedure that was compre-
hensively described in [5]. The data obtained in 1996
show that the cross section for J/ψ production in
PbPb collisions changes abruptly at ET ∼ 40 GeV,
which corresponds to the impact-parameter value of
about 8 fm.
However, a comparison of the high-ET results

obtained with a thin target in 1995 and with a thick
target in 1996 reveals that the cross section is larger
somewhat in the last case. This deviation can be
explained by the rescatterings of spectator fragments
in the thick target, whose thickness is approximately
30% of the interaction length. Some secondary
peripheral collisions characterized by large cross-
section ratios can be erroneously taken to be more
central collisions free from rescatterings. For this
reason, an experiment with a single thin target was
performed in 1998 [6]. The results comply well with
the data of 1995. The review of data on charmonium
suppression in PbPb collisions from three measure-
ment runs is presented in this study.
P

2. EXPERIMENTAL FACILITY

In the NA50 facility, a dimuon spectrometer
equipped with tracking wire chambers, scintillation
trigger detectors, a carbon hadron absorber, and a
BeO preabsorber [5] was used as the main detector.
Additional detectors, including a beam hodoscope
and a number of antihalo detectors, were constructed
that are able to operate under the conditions of a high
radiation, a high multiplicity, and a high background
level generated by incident Pb ions. Quartz detectors
arranged near each target were used to determine
the interaction vertex in a segmented target and to
reject events in which a spectator fragment induces
a secondary interaction in one of the subsequent
targets.
The degree of collision centrality was determined

with the aid of an electromagnetic calorimeter, a mul-
tiplicity detector, and a zero-angle calorimeter (in all,
by three detectors).
In extracting the yields of J/ψ and ψ′ from the

invariant-mass distribution of dimuons, we also took
into account the contributions of other processes,
including open-charm production and the Drell–Yan
process, as well as the contribution of the combina-
torial background that arises because of the uncorre-
lated decays of pions and kaons.

3. RESULTS OF THE NA50 EXPERIMENT

The main objective of the NA50 experiment was
to investigate in detail the anomalous suppression
of charmonium production in PbPb collisions. The
results obtained to date are presented in Figs. 1–3.
In Fig. 1, the ratio of the measured cross sections for
J/ψ production and the Drell–Yan process is shown
as a function of the transverse energy ET of neutral
particles. The results that are characterized by vaster
statistics and which were processed with a larger
number of bins in ET were obtained in calculating
the cross sections for the Drell–Yan process from the
minimum-bias data within the Glauber model. These
ratios were normalized to the results of the standard
analysis in the ET interval between 50 and 75 GeV.
The data of 1996 for the most central events having
ET > 100 GeV were distorted because of the effect
of rescatterings in the thick target and are therefore
not shown in the figure. The solid curve in Fig. 1
corresponds to the extrapolation of the exponential
obtained by theNA38 and NA51 collaborations [7] for
ordinary nuclear absorption in proton–nucleus colli-
sions and in collisions of lighter nuclei. While data
for ET < 40 GeV are consistent with the exponential
dependence within the errors, nearET = 40GeV and
above this value, there is a sharp deviation from the
solid curve. An anomalous threshold effect that was
first discovered by the NA50 collaboration in 1995,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 2. Experimental data along with the results of the-
oretical calculations within some hadron models taking
into account subsequent rescatterings. The data were
borrowed from (solid curve) [8], (dashed curve) [9], (dot-
ted curve) [10], and (dash-dotted curve) [11].

was confirmed by the data of 1996 that have vaster
statistics. Hadron models of subsequent rescatter-
ings cannot reproduce this threshold effect arising as
the degree of collision centrality becomes higher.
The data from the measurement run of 1998 are

shown in Fig. 1 forET > 40GeV, since, for lower val-
ues ofET , the contribution of rescatterings of Pb ions
in air is rather high. In a dedicated investigation with
an empty target, it was found that this contribution
is negligibly small for ET > 40 GeV. In the data of
1998, there appeared a second drop in the suppression
of J/ψ production at ET ∼ 90GeV.
As the degree of collision centrality becomes

higher, the ratio of the cross section for J/ψ produc-
tion to the cross section for the Drell–Yan process
decreases abruptly. Such a dependence on the degree
of collision centrality is at odds with the predictions
of some hadron models that assume the absorption
of charmonium in its interactions with accompanying
hadrons [8–11]. All these models predict a smooth
reduction of the cross section for J/ψ production
in going over from pp to PbPb collisions, with the
suppression of the J/ψ yield showing a tendency
toward saturation for the most central interactions.
A comparison of experimental data with the results of
the calculations is illustrated in Fig. 2.
According to the measurements in the NA50 ex-

periment, the dependence of the anomalous suppres-
sion of the J/ψ yield on the degree of collision cen-
trality corresponds to the behavior expected in the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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Fig. 3. Measured J/ψ-meson yield normalized to the
yield value expected under the assumption that ordinary
nuclear absorption is the only source of yield suppression.
The results are presented versus the energy density ε
achieved in a collision event.

case of quark–qluon deconfinement and the forma-
tion of quark–gluon plasma [12]. The threshold effect
and the anomalous suppression of the charmonium
yields are illustrated in Fig. 3, where the ratio of
the measured J/ψ yield to that which is expected in
the presence of ordinary nuclear absorption alone is
shown as a function of the energy density achieved in
the nucleus–nucleus collision being considered. The
data obtained in the NA38, NA50, and NA51 exper-
iments for various interacting systems are compared
in this figure. The energy density was calculated on
the basis of the Bjorken model [13]. It amounts to
3.5 GeV/fm3 for PbPb collisions characterized by the
highest degree of centrality and is consistent with
other experimental data and with the results of the
calculations within the cascade model. In Fig. 3,
two inflection points that were observed in the cross
section for charmonium production correspond to
energy-density values of about 2.3 and 3.1 GeV/fm3

and can be explained by the disintegration first of the
looser bound state χс and then of the J/ψ state. The
fraction of the J/ψ states formed as the result of χс
decay is not known for nucleus–nucleus interactions.
For proton–nucleus collisions, it is approximately 30
to 40%.

4. CONCLUSION
A global analysis of the results of the NA38 and

NА50 experiments suggests that, at high energy den-
sities, charmonium production is suppressed in two
2
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steps without a visible saturation for the most central
events. These results contradict the available models
of J/ψ suppression, which are based on the interac-
tion of charmonium with accompanying hadrons in
ordinary nuclear matter. The threshold behavior of the
suppression of charmonium production on the degree
of collision centrality is readily explained as the result
of Debye color screening upon the phase transition of
nuclear matter into quark–gluon plasma in heavy-ion
collisions. Thus, the investigation of the suppression
of the charmonium yield in the NA50 experiment
furnishes evidence for quark–gluon deconfinement in
central PbPb collisions at the energies of the SPS
accelerator at CERN.
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Abstract—Current versions of the most popular generators of ultrarelativistic heavy-ion collisions are used
to simulate central (b < 3 fm) Pb + Pb collisions at the LHC energy,

√
s = 6A TeV. The charged-particle

density predicted by the generators for the mid-rapidity range, dNch/dη, varies in a wide range, from about
2000 to about 6000. Moreover, even for a given generator, it depends strongly on model parameters and
can vary from 10 to 100%. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
There are many codes for simulating high-energy

heavy-ion collisions [1]. Five years ago, a detailed
comparison of predictions of different generators was
performed for Pb + Pb collisions at the LHC energy
[2]. In particular, it was shown that the charged-
particle density in the mid-rapidity region varies
strongly from one prediction to another. Namely, for
the VENUS4.12, HIJING1.31, DPMJET-II, and
SFM (without and with fusion) codes, the density
dNch/dη at η = 0 was found to be 7000, 5200, 3700,
3400, and 1400, respectively. Now, there are updated
versions of the generators, and we will consider their
predictions.

2. SIMULATIONS
The latest version of the HIJING [3] code,

HIJING1.36, was taken from the author’s home page
http://www-nsdth.lbl.gov/ xnwang/hijing. Twenty-
five central (b < 3 fm)Pb + Pb events were simulated
with and without jet quenching at a beam energy of
3 TeV per nucleon. The entire body of information
(the code itself, files with events in the ROOT [4]
format, plots with results, etc.) can be found in the
area /afs/cern.ch/alice/offline/data/evtgen/hijing.
The current version of the DPMJET [5] gen-

erator, DPMJET-II.5 [6], was used by the au-
thor, J. Ranft, to simulate 50 central (b < 3 fm)
Pb + Pb events with and without baryon stopping
at a beam energy of 3 TeV per nucleon. Files
with events, code and physics of baryon stopping,
manuals, and some plots with results are in the area
/afs/cern.ch/alice/offline/data/evtgen/dpmjet/dpm-
jet25.
The last version of the SFM [7] code, PSM-1.0

[8], was used by one of the coauthors, N. Armesto,

∗This article was submitted by the author in English.
1063-7788/02/6502-0329$22.00 c©
to generate 50 central (b < 3 fm) Pb + Pb events
with and without string fusion. Although rescattering
of secondaries and spectators is included as a pos-
sibility, these simulations did not take into account
rescattering. A description of the code, along with
events and some results can be found in the area
/afs/cern.ch/alice/offline/data/evtgen/sfm.
The latest version of the NEXUS [9] code,

NEXUS2.0 (NEXUS is theVENUS [10] successor),
was taken from the NEXUS site http://www.suba-
tech.in2p3.fr/theo/nexus/. Unfortunately, there are
problems in running the code with the rescattering
mode, and we will use below the results for one central
event without rescattering.
The last versions of the RQMD, VNI, and VNIb

generators taken from the OSCAR site [1] were also
used. Although these codes work at the RHIC energy
[11], they give error messages during a run. The
authors should adopt their codes to the LHC energy
scale.

3. RESULTS

In Fig. 1, the multiplicities of various species, the
pseudorapidity and transverse momentum distribu-
tions of charged particles, and the net baryon pseu-
dorapidity plot are shown for HIJING. The GEANT
codes of particles used in the first plot of the fig-
ure are presented in Table 1. One can see that
switching on the energy loss of a gluon jet inside
excited nuclear matter, jet quenching, leads to ap-
proximately two times higher multiplicity in the mid-
rapidity region and to a steeper transverse momentum
spectrum. Moreover, the pseudorapidity distribution
demonstrates a characteristic bump in the region
|η| < 3.
The same plots obtained for the DPMJET-II code

are shown in Fig. 2. The baryon-stoppingmechanism
2002MAIK “Nauka/Interperiodica”
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Fig. 1. HIJING1.36: Twenty-five central (b < 3 fm) Pb + Pb events at a beam energy of 3 TeV per nucleon. The solid-line
(dashed-line) histograms represent results obtained with (without) quenching.
increases the multiplicity by about 15% and changes
significantly the net baryon distribution.
Figure 3 demonstrates the same dependences

obtained with the aid of the SFM generator. The
PH
inclusion of string fusion leads to an about 10% lower
multiplicity and does not change the transverse-
momentum spectrum.
Some parameters of the charged-particle multi-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 2.DPMJET-II.5: Fifty central (b < 3 fm)Pb + Pb events at a beam energy of 3 TeV per nucleon. The solid-line (dashed-
line) histograms represent results obtained with (without) the baryon-stopping mechanism.
plicity for various generators are presented in Table 2.
In the last column, the old value for dNch/dη is taken
from [2].

4. CONCLUSION

The most popular generators of ultrarelativistic
heavy-ion collisions were tested at the LHC energy
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
scale. Half of the tested codes (VNI, VNIb, RQMD,
NEXUS) do not work in the LHC regime probably
for technical reasons. With the help of the other
ones (HIJING, DPMJET, SFM), central Pb + Pb
events have been simulated at the energy of

√
s =

6A TeV. The charged-particle density dNch/dη pre-
dicted by these generators varies in a wide range, from
about 2000 (SFM) to about 6000 (HIJING). More-
2



332 KISELEV

 

10

 

5

 

10

 

4

 

10

 

3

 

10

 

2

 

10

 

1

 

10

 

0

 

0 1 2 3 4 5 0 2 4 6 8 10

 

η

 

P

 

t

 

, GeV/

 

c

 

100

80

60

40

20

 

|θ

 

 – 45°

 

|

 

 < 90°

(1/

 

N

 

event

 

P

 

t

 

)

 

dN

 

ch

 

/

 

dP

 

t

 

, (GeV/

 

c

 

)

 

–2

 

(1/

 

N

 

event

 

)

 

dN

 

net baryon

 

/

 

d

 

η

 

10

 

–1

 

10

 

0

 

10

 

1

 

10

 

2

 

10

 

3

 
N

 

|θ

 

 – 45°

 

|

 

 < 90°

10

 

3

 

10

 

2

 

10

 

1

 

10

 

0

 
(1/

 
N

 

event

 
)

 
dN

 

ch

 
/

 
d

 
η

 

0 10 20 30 40 50
GEANT code

0 2 4 6 8 10

 

η

Fig. 3. SFM: Twenty-five central (b < 3 fm) Pb + Pb events at a beam energy of 3 TeV per nucleon without rescattering. The
solid-line (dashed-line) histograms represent results obtained with (without) fusion.
over, even for a given generator, the density depends
strongly on model mechanisms and has an uncer-
tainty of about 10% (SFM with or without fusion)
to about 100% (HIJINGwith or without quenching).
PHY
One can hope that the first [12] and forthcoming
RHIC data on the charged-particle multiplicity will
help to choose model parameters more correctly and
reduce uncertainties.
SICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 1.GEANT codes of particles

Code Particle Code Particle Code Particle Code Particle

1 γ 13 n 25 n̄ 37 D0

2 e+ 14 p 26 Λ̄ 38 D̄0

3 e− 15 p̄ 27 Σ̄− 39 D+
s

4 ν 16 K0
S 28 Σ̄0 40 D−

s

5 µ+ 17 η 29 Σ̄+ 41 Λ+
c

6 µ− 18 Λ 30 Ξ̄0 42 ρ+

7 π0 19 Σ+ 31 Ξ̄+ 43 ρ−

8 π+ 20 Σ0 32 Ω̄+ 44 ρ0

9 π− 21 Σ− 33 ω 45 d

10 K0
L 22 Ξ0 34 φ 46 t

11 K+ 23 Ξ− 35 D+ 47 α

12 K− 24 Ω− 36 D− 48 Geantino

Table 2. Some parameters of the charge-particle multiplicity for various generators

Generator Comments dNch/dη
at η = 0

Nch for
| θ − 90◦ |< 45◦

Event time
(machine)

New/old for
dNch/dη

HIJING1.36 With quenching � 6200 � 10800 3 min � 1.2
(HP-UX ion)

Without quenching � 2900 � 5200 2.6 min

(HP-UX ion)

DPMJET-II.5 With baryon stopping � 2300 � 4000 15 s

(PC 350 MHz)

Without baryon stopping � 2000 � 3500 15 s � 0.5
(PC 350 MHz)

SFM With fusion � 2700 � 4700 5 min � 2.1
(PC 500 MHz)

Without fusion � 3100 � 5500 4 min � 0.9
(PC 500 MHz)

NEXUS-2 With rescattering

Without rescattering � 1100 1 h 20 min

(HP-UX ion)
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Abstract—The modified next-to-minimal supersymmetric standard model is the simplest model that is
obtained as an extension of the minimal supersymmetric standard model and which is compatible with the
LEP II experimental constraint on the mass of the lightest Higgs boson at tanβ ∼ 1. The renormalization
of Yukawa coupling constants and of the parameters of a soft breakdown of supersymmetry is investigated
within this model. The possibility of unifying the Yukawa coupling constants for the b quark and the
τ lepton at the Grand Unification scale MX is studied. The spectrum of particles is analyzed in the
vicinity of a quasifixed point where solutions to the renormalization-group equations are concentrated at
the electroweak scale. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A rapid development of experimental high-energy
physics over the last decades of the 20th century gave
impetus to intensive investigations of various exten-
sions of the Standard Model. Its supersymmetric
generalization known as theminimal supersymmetric
(SUSY) standard model (MSSM) is one of the most
popular extensions of the StandardModel. TheHiggs
sector of the MSSM includes two doublets of Higgs
fields, H1 and H2. Upon a spontaneous breakdown
of gauge symmetry, each of these develops a vac-
uum expectation value; we denote the corresponding
vacuum expectation values by v1 and v2. The sum
of the squares of the vacuum expectation values of
the Higgs fields is v2 = (246 GeV)2, the ratio of the
expectation values being determined by the angle β.
By definition, β = arctan(v2/v1). The value of tan β
is not fixed experimentally. It is varied within a wide
interval, from 1.3–1.8 to 50–60. Within SUSY mod-
els, the upper and lower limits on tan β arise under
the assumption that perturbation theory is applicable
up to the scale at which gauge coupling constants
are unified, MX = 3 × 1016 GeV—that is, under the
assumption that there is no Landau pole in solutions
to relevant renormalization-group equations.

The spectrum of the Higgs sector of the MSSM
contains four massive states. Two of these are СР-
even, one is СР-odd, and one is charged. The pres-
ence of a light Higgs boson in the СР-even sector is

*e-mail: trusov@heron.itep.ru
1063-7788/02/6502-0335$22.00 c©
an important distinguishing feature of SUSY models.
Its mass is constrained from above as

mh ≤
√
M2

Z cos2 2β + ∆, (1)

where MZ is the Z-boson mass (MZ ≈ 91.2 GeV)
and ∆ stands for the contribution of loop corrections.
The magnitude of these corrections is proportional to
m4

t (mt is the running mass of the t quark), depends
logarithmically on the supersymmetry-breakdown
scale MS , and is virtually independent of the choice
of tan β. An upper limit on the mass of the light
СР-even Higgs boson within the MSSM grows
with increasing tan β and, for tan β � 1, reaches
125–128 GeV in realistic SUSY models with MS ≤
1000 GeV.

At the same time, it is known from [1] that, for
tan β � 50–60, solutions to the renormalization-
group equations for the t-quark Yukawa coupling
constant ht(t) are concentrated in the vicinity of the
quasifixed point

YQFP(t0) = E(t0)/6F (t0), (2)

where

E(t) =
[
α̃3(t)
α̃(0)

]16/9 [ α̃2(t)
α̃(0)

]−3 [ α̃1(t)
α̃(0)

]−13/99

,

F (t) =

t∫

0

E(t′)dt′ ,

Yt(t) =
h2

t (t)
(4π)2

, α̃i(t) =
g2i (t)
(4π)2

,

2002MAIK “Nauka/Interperiodica”
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with gi being the gauge constants of the Standard
Model group. The variable t is defined in the
standard way: t = ln(M2

X/q
2). Its value at the

electroweak scale is t0 = 2 ln(MX/M
pole
t ), where

M
pole
t ≈ 174.3 ± 5.1 GeV is the pole mass of the t

quark. Along with the t-quark Yukawa coupling
constant, solutions to the renormalization-group
equations for the corresponding trilinear coupling
constant At characterizing the interaction of scalar
fields and for the combination M2

t = m2
Q +m2

U +
m2

2 of the scalar-particle masses also approach the
infrared quasifixed point. The properties of solutions
to the renormalization-group equations within the
MSSM and the spectrum of particles in the infrared-
quasifixed-point regime at tan β ∼ 1 were investi-
gated in [2, 3].

A reduction of the number of independent param-
eters in the vicinity of the infrared quasifixed point
considerably increased the predictive power of the
theory. On the basis of the equation relating the
Yukawa coupling constant for the t quark to its mass
at the electroweak scale,

mt(M
pole
t ) =

ht(M
pole
t )√
2

v sinβ, (3)

and the value calculated for the running mass of the
t quark within the MS scheme [mt(M

pole
t ) = 165 ±

5 GeV], it was shown in [3–5] that, for a broad class of
solutions satisfying the renormalization-group equa-
tions within the MSSM and corresponding to the
infrared-quasifixed-point regime, tan β takes values
in the interval between 1.3 and 1.8. These compara-
tively small values of tan β lead to much more strin-
gent constraints on the mass of the lightest Higgs
boson. A detailed theoretical analysis performed in
[3, 4] revealed that, in the case being considered,
its mass does not exceed 94 ± 5 GeV, which is 25–
30 GeV below the absolute upper limit in the minimal
SUSY model. It should be noted that the LEP II
constraints on the mass of the lightest Higgs boson
[6] are such that a considerable fraction of solutions
approaching a quasifixed point at tan β ∼ 1 have al-
ready been ruled out by existing experimental data.

All the aforesaid furnishes a sufficient motiva-
tion for studying the Higgs sector in more com-
plicated SUSY models, as well as renormalization-
group equations and solutions to these equations
therein. The present article is devoted to an analysis of
coupling-constant renormalization within a modified
next-to-minimal SUSYmodel, where the mass of the
lightest Higgs boson can be as large as 120–130 GeV
even at comparatively small values of tan β ∼ 2. In
addition, the spectrum of superpartners of observ-
able particles and of Higgs bosons is studied in the
PH
vicinity of the quasifixed point of the renormalization-
group equations within the modified next-to-minimal
SUSY model.

2. MODIFIED NEXT-TO-MINIMAL
SUPERSYMMETRIC STANDARD MODEL

The next-to-minimal supersymmetric standard
model (NMSSM) [7–9] is the simplest extension of
the MSSM. Historically, the NMSSM arose as one
of the possible solutions to the problem of the µ term
in supergravity (SUGRA) models [7]. Along with
observable superfields, SUGRA theories contain a
hidden sector that includes the dilaton and moduli
fields (S and Tm, respectively), which are singlet
in gauge interactions. The total superpotential in
SUGRA models is usually represented as an expan-
sion in the superfields of the observable sector; that
is,

W = W0(S, Tm) + µ(S, Tm)(Ĥ1Ĥ2) (4)

+ ht(S, Tm)(Q̂Ĥ2)Û c
R + ...,

where W0(S, Tm) is the superpotential of the hid-
den sector. The expansion in (4) presumes that the
parameter µ appearing in front of the bilinear term
(Ĥ1Ĥ2) must be about the Planck mass, since this
scale is the only dimensional parameter character-
izing the hidden sector of the theory. In this case,
however, the Higgs bosons H1 and H2 acquire an
enormous mass (m2

H1,H2

 µ2 
M2

Pl) and SU(2) ⊗
U(1) symmetry remains unbroken.

In the NMSSM, an additional singlet superfield Ŷ
is introduced, while the term µ(Ĥ1Ĥ2) is replaced by
λŶ (Ĥ1Ĥ2) + (κ/3)Ŷ 3. A spontaneous breakdown
of gauge symmetry leads to the emergence of the
vacuum expectation value 〈Y 〉 = y/

√
2 of the field

Y and to the generation of an effective µ term (µ =
λ〈Y 〉). The resulting superpotential of the next-
to-minimal SUSY model is invariant under discrete
transformations of theZ3 group [8]. TheZ3 symmetry
of the superpotential of the observable sector naturally
arises in string models, where all observable fields are
massless in the limit of exact supersymmetry.

Upon the introduction of the neutral field Y in
the superpotential of the NMSSM, there arises the
corresponding F term in the potential of interaction of
Higgs fields. As a result, an upper limit on the mass
of the lightest Higgs boson becomes higher than that
in the MSSM:

mh ≤
√
λ2

2
v2 sin2 2β +M2

Z cos2 2β + ∆. (5)

In the tree approximation (∆ = 0), relation (5) was
obtained in [9]. For λ→ 0, the expressions for the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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upper limit in the MSSM and in the NMSSM coin-
cide after the substitution of λy/

√
2 for µ. The Higgs

sector of the next-to-minimal SUSY model and one-
loop corrections to it were studied in [10, 11]. In [12],
the upper limit on the mass mh of the lightest Higgs
boson within the NMSSM was contrasted against
the analogous limits in the minimal standard and the
minimal SUSY model.

From relation (5), it follows that the upper limit on
mh grows with increasing λ(t0). It should be noted
that only in the region of small values of tan β does
it differ significantly from the analogous limit in the
MSSM. As to the small-tan β scenario, it is realized
in the case of sufficiently large values of ht(t0). The
growth of the Yukawa coupling constants at the elec-
troweak scale is accompanied by an increase in ht(0)
and λ(0) at theGrand Unification scale; therefore, the
upper limit on the mass of the lightest Higgs boson
in the nonminimal SUSY model attains a maximum
value in the limit of strong Yukawa coupling, in which
case both h2

t (0) and λ2(0) are much greater than
g2i (0).

Unfortunately, we were unable to obtain a self-
consistent solution in the regime of strong Yukawa
coupling within the NMSSM featuring the minimal
set of fundamental parameters. Moreover, Z3 sym-
metry, which makes it possible to avoid the problem
of the µ term in the next-to-minimal SUSY model,
leads to the emergence of three degenerate vacua in
the theory. Immediately following the phase transition
at the electroweak scale, the Universe is filled with
three degenerate phases that must be separated by
domain walls. However, the hypothesis of a domain
structure of the vacuum is at odds with data from
astrophysical observations. An attempt at destroy-
ing Z3 symmetry and the domain structure of the
vacuum by introducing nonrenormalizable operators
in the NMSSM Lagrangian leads to the appearance
of quadratic divergences—that is, to the hierarchy
problem [13].

In order to avoid the domain structure of the vac-
uum and to obtain a self-consistent solution in the
regime of strong Yukawa coupling, it is necessary
to modify the next-to-minimal SUSY model. The
simplest way to modify the NMSSM is to introduce
additional terms in the superpotential of the Higgs
sector, µ(Ĥ1Ĥ2) and µ′Ŷ 2 [14], that are not forbidden
by gauge symmetry. The additional bilinear terms
in the NMSSM superpotential destroy Z3 symmetry,
and domain walls are not formed in such a theory.
Upon the introduction of the parameter µ, it becomes
possible to obtain the spectrum of SUSY particles
in the modified model; for a specific choice of µ′, the
massmh of the lightestHiggs boson reaches its upper
limit, taking the largest value at κ = 0. In analyzing
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the modified next-to-minimal supersymmetric stan-
dard model (MNSSM), it is therefore reasonable to
set the coupling constant for the self-interaction of
neutral superfields Ŷ to zero.

The MNSSM superpotential involves a large
number of Yukawa coupling constants. At tan β ∼ 1,
they are all negligibly small, however, with the ex-
ception of the t-quark Yukawa coupling constant ht

and the coupling constant λ, which is responsible for
the interaction of the superfield Ŷ with the doublets
Ĥ1 and Ĥ2. Thus, the total superpotential of the
modified next-to-minimal supersymmetric standard
model can be represented in the form

WMNSSM = µ(Ĥ1Ĥ2) + µ′Ŷ 2 (6)

+ λŶ (Ĥ1Ĥ2) + ht(Q̂Ĥ2)Û c
R.

WithinSUGRAmodels, the terms in the superpoten-
tial (6) that are bilinear in the superfields can be gen-
erated owing to the term (Z(H1H2) + Z ′Y 2 + h.c.)
in the Kähler potential [15, 16] or owing to the non-
renormalized interaction of fields from the observable
and the hidden sector (this interaction may be due to
nonperturbative effects) [16, 17].

Along with the parameters µ and µ′, the masses of
scalar fields,m2

i , and the gaugino massesMi are also
generated upon a soft breakdown of supersymmetry.
Moreover, a trilinear coupling constant Ai for the
interaction of scalar fields is associated in the total
Lagrangian of the theory with each Yukawa coupling
constant, while a bilinear coupling constant B (B′)
is associated there with the parameter µ (µ′). The
hypothesis of universality of these constants at the
scaleMX makes it possible to reduce their number to
four: the scalar-particle mass m0, the trilinear cou-
pling constant A and the bilinear coupling constant
B0 for the interaction of scalar fields, and the gaugino
massM1/2.

3. ANALYSIS OF THE EVOLUTION
OF YUKAWA COUPLING CONSTANTS

AND DETERMINATION OF A QUASIFIXED
POINT

The MNSSM parameters
λ, ht, µ, µ

′, m0, A, B0, M1/2

specified at the Grand Unification scale evolve down
to the electroweak scale or the scale of supersym-
metry breakdown. Their renormalization is deter-
mined by the set of renormalization-group equations,
these equations for the coupling constants λ, ht, Ai,
m2

i , andMi being coincident with the corresponding
renormalization-group equations within the nonmin-
imal supersymmetric standard model (see, for exam-
ple, [11]) if one sets κ = 0 in them. The equations
2
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describing the evolution of µ, µ′, B, and B′ within
the modified nonminimal supersymmetric standard
model were obtained in [14].

Even in the one-loop approximation, the full sys-
tem of renormalization-group equations is nonlinear,
so that it is hardly possible to solve it analytically.
This set of equations can be broken down into two
subsets. The first subset includes equations that
describe the evolution of gauge and Yukawa coupling
constants and of the parameters µ and µ′. The second
subset comprises equations for the parameters of a
soft breakdown of supersymmetry.

In studying the evolution of the Yukawa coupling
constants, it is convenient to introduce, instead of the
constants ht, λ, and gi, the ratios

ρt(t) =
Yt(t)
α̃3(t)

, ρλ(t) =
Yλ(t)
α̃3(t)

,

ρ1(t) =
α̃1(t)
α̃3(t)

, ρ2(t) =
α̃2(t)
α̃3(t)

,

where Yλ(t) = λ2(t)/(4π)2. The region of admis-
sible values of the Yukawa coupling constants at
the electroweak scale is bounded by the quasifixed
(or Hill) line. Beyond this region, solutions to the
renormalization-group equations for Yi(t) develop a
Landau pole below the scale MX , so that perturba-
tion theory becomes inapplicable for q2 ∼M2

X . The
results of our numerical calculations are presented
in Fig. 1, whence one can see that, in the regime
of strong Yukawa coupling, all solutions for Yi(t)
are attracted to the Hill line, which intersects the ρt

axis at the point whose coordinates (ρλ(t0), ρt(t0)) =
(0, 0.87) correspond to the quasifixed point in the
minimal supersymmetric standard model.

In analyzing the results of the numerical calcu-
lations (see Fig. 1), attention is captured by a pro-
nounced nonuniformity in the distribution of solutions
to the renormalization-group equations along the
quasifixed line. The main reason behind this is that, in
the regime of strong Yukawa coupling, solutions are
attracted not only to the quasifixed but also to the in-
frared fixed (or invariant) line. The latter connects two
fixed points. Of these, one is the stable infrared fixed
point for the set of renormalization-group equations
within the modified nonminimal supersymmetric
standard model (ρt = 7/18, ρλ = 0, ρ1 = 0, ρ2 = 0)
[18]. As the invariant line approaches this point, ρλ ∼
(ρt − 7/18)25/14 . The other fixed point [(ρλ/ρt) = 1]
corresponds to large values of the Yukawa coupling
constants, Yt, Yλ � α̃i, in which case the gauge
coupling constants can be disregarded [19]. In the
limiting case of ρλ, ρt � 1, the asymptotic behavior
of the curve being studied is given by

ρλ = ρt −
8
15

− 2
75
ρ1. (7)
PH
The infrared fixed lines and their properties in the
minimal standard and the minimal supersymmetric
model were studied in detail elsewhere [20].

With increasing initial values of the Yukawa cou-
pling constants Yt(0) and Yλ(0) at the Grand Uni-
fication scale, the region where solutions are con-
centrated at the electroweak scale shrinks abruptly
and all solutions to the renormalization-group equa-
tions within the modified nonminimal supersymmet-
ric standard model are focused near the point of inter-
section of the invariant and the quasifixed line:

ρQFP
t (t0) = 0.803, ρQFP

λ (t0) = 0.224. (8)

This point can be considered as the quasifixed point
for the set of renormalization-group equations for
the modified nonminimal supersymmetric standard
model [21].

Among subsidiary constraints that are frequently
imposed in studying supersymmetric models, we
would like to mention the unification of the Yukawa
coupling constants for the b quark and for τ lepton at
the scaleMX ; this usually occurs in minimal schemes
for unifying gauge interactions—for example, in those
that are based on the SU(5), the E6, or the SO(10)
group. The unification of hb and hτ within the mod-
ified nonminimal standard supersymmetric model is
realized only in the case where the constants satisfy
a specific relation between Yt and Yλ. Integrating the
renormalization-group equations and substituting
Rbτ (t0) = mb(t0)/mτ (t0) = 1.61, which corresponds
to mτ (t0) = 1.78 GeV and mb(t0) = 2.86 GeV, we
obtain

Yt(0)
Yt(t0)

=
[

1
Rbτ (t0)

]21/2 [α3(t0)
α3(0)

]68/9

(9)

×
[
α2(t0)
α2(0)

]9/4 [α1(t0)
α1(0)

]463/396

×
[
Yλ(0)
Yλ(t0)

]1/4

≈ 3.67
[
Yλ(0)
Yλ(t0)

]1/4

.

The results obtained here indicate that b–τ unifi-
cation is possible under the condition that Yt(0) �
Yt(t0), which is realized only in the regime of strong
Yukawa coupling. By varying the running mass
mb(mb) of the b quark from 4.1 to 4.4 GeV, we found
that the equality of the Yukawa coupling constants at
the Grand Unification scale can be achieved only at
tan β ≤ 2.

The possibility of unifying the Yukawa coupling
constants within the nonminimal supersymmetric
standard model was comprehensively studied in
[21, 22]. The condition Yb(0) = Yτ (0) imposes strin-
gent constraints on the parameter space of the model
being studied. Since hb and hτ are small inmagnitude
at tan β ∼ 1, they can be generated, however, owing
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Fig. 1. (a) Boundary conditions specified for the renormalization-group equations within the modified nonminimal supersym-
metric standard model at the scale q = MX for 2 ≤ h2

t (0), λ
2(0) ≤ 10 and uniformly distributed over the (ρt, ρλ) plane and

(b) corresponding values of the Yukawa coupling constants at the electroweak scale. In Fig. 1b, the thick and the thin solid
curve correspond to the invariant and the Hill line, respectively, while the dashed straight line represents the results of a fit to
the values (ρt(t0), ρλ(t0)) for 20 ≤ h2

t (0), λ
2(0) ≤ 100.
to nonrenormalizable operators upon a spontaneous
breakdown of symmetry at the Grand Unification
scale. In this case, hb and hτ may be different. In
studying the spectrum of superpartners below, we will
not therefore assume that Rbτ (0) = 1.

4. RENORMALIZATION OF THE
PARAMETERS OF A SOFT BREAKDOWN OF

SUPERSYMMETRY

If the evolution of gauge and Yukawa coupling
constants is known, the remaining subset of renor-
malization-group equations within the modified non-
minimal supersymmetric standard model can be
treated as a set of linear differential equations for the
parameters of a soft breakdown of supersymmetry.
For universal boundary conditions, a general solution
for the trilinear coupling constants Ai(t) for the
interaction of scalar fields and their massesm2

i (t) has
the form

Ai(t) = ei(t)A+ fi(t)M1/2, (10)

m2
i (t) = ai(t)m2

0 + bi(t)M2
1/2

+ ci(t)AM1/2 + di(t)A2.

The functions ei(t), fi(t), ai(t), bi(t), ci(t), and di(t),
which determine the evolution of Ai(t) and m2

i (t),
remain unknown. The results of our numerical calcu-
lations reveal that these functions greatly depend on
the choice of Yukawa coupling constants at the scale
MX .

In analyzing the behavior of solutions to the
renormalization-group equations in the regime of
strong Yukawa coupling, it is more convenient to
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consider, instead of the squares of the scalar-particle
masses, their linear combinations

M
2
t (t) = m2

2(t) +m2
Q(t) +m2

U (t), (11)

M2
λ(t) = m2

1(t) +m2
2(t) +m2

y(t).

For the universal boundary conditions, solutions to
the differential equations forM2

i (t) can be represented
in the same form as the solutions for m2

i (t) [see
Eqs. (10)]; that is,

M2
i (t) = 3ãi(t)m2

0 + b̃i(t)M2
1/2 (12)

+ c̃i(t)AM1/2 + d̃i(t)A2.

Since the homogeneous equations for Ai(t) and
M2

i (t) have the same form, the functions ãi(t) and
ei(t) coincide.

With increasing Yi(0), the functions ei(t0), ci(t0),
and di(t0) decrease and tend to zero in the limit
Yi(0) → ∞. Concurrently, At(t), Aλ(t), M2

t (t), and
M2

λ(t) become independent of A and m2
0, while rela-

tions (10) and (12) are significantly simplified. This
behavior of the solutions in question implies that, as
the solutions to the renormalization-group equations
for the Yukawa coupling constants approach quasi-
fixed points, the corresponding solutions forAi(t) and
M2

i (t) also approach quasifixed points whose coordi-
nates are [23]

ρQFP
At

(t0) ≈ 1.77, ρQFP
M2

t
(t0) ≈ 6.09, (13)

ρQFP
Aλ

(t0) ≈ −0.42, ρQFP
M2

λ
(t0) ≈ −2.28,

where ρAi(t) = Ai(t)/M1/2 and ρM2
i
(t) =

M2
i (t)/M

2
1/2. At the same time, the functions ai(t)
2
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approach some constants independent of t and Yi(0):

ay(t) → 1/7, a1(t) → 4/7, a2(t) → −5/7,
(14)

au(t) → 1/7, aq(t) → 4/7.

In the case of nonuniversal boundary condi-
tions at Yt(0) 
 Yλ(0), the required solution to the
renormalization-group equations forAi(t) and M2

i (t)
can be represented as [23]

(
At(t)
Aλ(t)

)

= α1

(
v11(t)
v21(t)

)

(εt(t))λ1 (15)

+ α2

(
v12(t)

−3v22(t)

)

(εt(t))λ2 + ...,
(

M2
t (t)

M2
λ(t)

)

= β1

(
v11(t)
v21(t)

)

(εt(t))λ1

+ β2

(
v12(t)

−3v22(t)

)

(εt(t))λ2 + ...,

where αi and βi are constants of integration that can
be expressed in terms of At(0), Aλ(0), M2

t (0), and
M2

λ(0); εt(t) = Yt(t)/Yt(0); λ1 = 1; and λ2 = 3/7.
The functions vij(t) are weakly dependent on the
Yukawa coupling constants at the scale MX , and
vij(0) = 1. In Eqs. (15), we have omitted terms pro-
portional toM1/2,M2

1/2,Ai(0)M1/2, and Ai(0)Aj(0).

With increasing Yt(0)
Yλ(0), the dependence of
Ai(t0) and M2

i (t0) on α1 and β1 quickly becomes
weaker. The results of our numerical analysis that are
displayed in Fig. 2 indicate that, for h2

t (0) = λ2(0) =
20 and boundary conditions uniformly distributed in
the (At, Aλ) and the (M2

t ,M
2
λ) plane, the solutions

to the renormalization-group equations for the pa-
rameters of a soft breakdown of supersymmetry in the
vicinity of the quasifixed point are concentrated near
some straight lines. The equations of these straight
lines can be obtained by setting Aλ(0) = −3At(0)
and M2

λ(0) = −3M2
t (0) (that is, α1 = β1 = 0) at the

Grand Unification scale. As a result, we find that,
at the electroweak scale, the parameters of a soft
breakdown of supersymmetry satisfy the relations

At + 0.137(0.147)Aλ = 1.70M1/2, (16)

M
2
t + 0.137(0.147)M2

λ = 5.76M2
1/2.

The equation for M2
i has been obtained for all Ai(0)

set to zero. In relations (16), the coefficients obtained
by fitting the results of our numerical calculations (see
Fig. 2) are indicated parenthetically. As the Yukawa
coupling constants approach quasifixed points, the
two sets of coefficients in (16) fast approach each
other and, at Yi(0) ∼ 1, become virtually coincident.
PH
5. SPECTRUM OF SUPERSYMMETRIC
PARTICLES AND HIGGS BOSONS

Let us now proceed to study the spectrum of
the superpartners of observable particles and Higgs
bosons in the vicinity of the quasifixed point within
the modified nonminimal supersymmetric standard
model. The Yukawa coupling constants ht and λ are
determined here by relations (8). The value of tan β
can be calculated by formula (3). In the regime of the
infrared quasifixed point at mt(M

pole
t ) = 165 GeV,

the result is tan β ≈ 1.88.
The remaining fundamental parameters of the

modified nonminimal supesymmetric standard model
must be chosen in such a way that a spontaneous
breakdown of SU(2) ⊗ U(1) gauge symmetry would
occur at the electroweak scale. The position of the
physical minimum of the potential representing the
interaction of Higgs fields is determined by solving
the set of nonlinear algebraic equations

∂V (v1, v2, y)
∂v1

= 0,
∂V (v1, v2, y)

∂v2
= 0, (17)

∂V (v1, v2, y)
∂y

= 0,

where V (v1, v2, y) is the effective potential of interac-
tion of Higgs fields within the modified nonminimal
supersymmetric standard model [14].

Since the vacuum expectation value v and tan β
are known, the set of Eqs. (17) can be used to deter-
mine the parameters µ and B0 and to compute the
vacuum expectation value 〈Y 〉. Instead of µ, it is
convenient to introduce here µeff = µ+ λy/

√
2. The

sign of µeff is not fixed in solving the set of Eqs. (17); it
must be considered as a free parameter of the theory.
The results obtained in this way for the vacuum ex-
pectation value y, the parameters µeff and B0, and the
spectrum of particles within the modified nonminimal
supersymmetric standard model depend on the choice
of A,m0,M1/2, and µ′.

It is of particular interest to analyze the spectrum
of particles in that region of the parameter space of
the modified nonminimal supersymmetric standard
model where the mass of the lightest Higgs boson is
close to its theoretical upper limit, since the remaining
part of the parameter space is virtually ruled out by
the existing experimental data. For each individual
set of the parameters A, m0, and M1/2, the mass of
the lightest Higgs boson reaches the upper bound on
it at a specific choice of µ′. It is precisely at these
values of the parameter µ′ that we have calculated the
particle spectrum presented in Tables 1 and 2. On
the basis of our numerical results given there, one
can assess the effect of the fundamental constants
A,m0, andM1/2 on the spectrum of the superpartners
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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corresponding values of the parameters at the electroweak scale for h2
t (0) = λ2(0) = 20. The quantities M

2
t (t0) and M

2
λ(t0)

were computed at At(0) = Aλ(0) = 0. The straight lines in Figs. 2c and 2d represent the results of a fit to the values (At(t0),
Aλ(t0)) and (M2

t (t0),M
2
λ(t0)).
of the t quark (mt̃1,2
), the gluino (M3), the neu-

tralino (mχ̃1,...,5), the chargino (mχ̃±
1,2
), and the Higgs

bosons (mh,mH ,mS ,mA1,2). For each set of the
aforementioned parameters, we quote the mass of the
lightest Higgs boson according to the calculations
in the one- and the two-loop approximation, along
with the corresponding values of µeff, B0, y, and µ′.
As can be seen from the data displayed in Tables 1
and 2, the qualitative pattern of the spectrum within
the modified nonminimal supersymmetric standard
model undergoes no changes in response to variations
of the parameters A andm0 within reasonable limits.

The CP-even Higgs boson (mS), which corre-
sponds to the neutral field Y , is the heaviest particle in
the spectrum of the modified nonminimal supersym-
metric standard model, while the neutralino (mχ5) is
the heaviest fermion there, the main contribution to
its wave function coming from the superpartner of
the field Y . With increasing m2

0, the masses of the
squarks, the Higgs bosons, and the heavy charginos
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and neutralinos grow, whereas the spectrum of ex-
tremely light particles remains unchanged. Since the
dependence of the parameters of a soft breakdown of
supersymmetry on A disappears at the electroweak
scale in the regime of strong Yukawa coupling, the
parameters µeff,B, and µ′, together with the spectrum
of the superpartners of observable particles and the
mass of the lightest Higgs boson, undergo only slight
changes in response to a variation of the trilinear
coupling constant for the interaction of scalar fields
from−M1/2 toM1/2. Despite this, the A dependence
of the masses of one of the CP-even (mS) and of
two CP-odd (mA1,2) Higgs bosons survives. It is
due primarily to the fact that the bilinear coupling
constant B′ for the interaction of neutral scalar fields
is proportional to A. It should be noted in addition
that, for a specific choice of fundamental parameters
(in particular, of the parameter A), the mass of the
lightest CP-odd Higgs boson may prove to be about
100 GeV or less. However, this Higgs boson takes
2
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Table 1. Spectrum of particles in the vicinity of the quasifixed point within the modified nonminimal supersymmetric
standard model atmt(M

pole
t ) = 165 GeV, tanβ ≈ 1.883, and µeff > 0 for various choices of the fundamental parameters

A,m0, andM1/2 (all the parameters and masses are given in GeV)

m2
0 0 M2

1/2 0 0 0 0

A 0 0 −M1/2 0.5M1/2 0 0

M1/2 −392.8 −392.8 −392.8 −392.8 −785.5 −196.4

µeff 728.6 841.7 726.8 730.1 1361.2 380.4

B0 −1629.1 −1935.4 −1260.0 −1813.2 −3064.4 −861.8

y −0.00037 −0.00021 −0.00043 −0.00035 −0.00006 −0.00233

µ′(t0) −1899.8 −2176.7 −1905.9 −1898.3 −3544.6 −993.1

mh(t0) 125.0 125.1 125.0 125.0 134.9 114.8

(1-loop)

mh(t0) 118.4 118.5 118.4 118.4 123.2 111.9

(2-loop)

M3(1 TeV) 1000 1000 1000 1000 2000 500

mt̃1(1 TeV) 840.6 889.7 841.1 840.3 1652.0 447.4

mt̃2(1 TeV) 695.1 713.6 696.6 694.3 1366.2 371.6

mH(1 TeV) 898.5 1080.5 895.4 900.3 1691.0 468.8

mS(1 TeV) 2623.4 3034.3 2452.2 2706.0 4901.7 1378.0

mA1(1 TeV) 953.9 1113.8 1245.7 925.2 1722.6 538.2

mA2(1 TeV) 704.3 762.7 872.0 318.2 1366.2 302.2

mχ̃1(t0) 164.6 164.4 164.6 164.6 326.9 84.3

mχ̃2(t0) 327.8 327.6 327.8 327.8 649.4 170.1

mχ̃3(1 TeV) 755.1 870.8 753.3 756.7 1404.2 400.9

|mχ̃4(1 TeV)| 755.9 872.6 755.1 758.4 1405.0 404.3

|mχ̃5(1 TeV)| 1931.8 2212.3 1938 1930.3 3599.0 1015.4

mχ̃±
1
(t0) 327.8 327.6 327.8 327.8 649.4 169.9

mχ̃±
2
(1 TeV) 757.0 872.6 755.2 758.5 1405.2 404.5
virtually no part in electroweak interaction, since the
main contribution to its wave function comes from
the CP-odd component of the field Y . Therefore,
attempts at experimentally detecting it run into prob-
lems.

Loop corrections play an important role in calcu-
lating the mass of the lightest Higgs boson. Their
inclusion results in that themass of the lightestHiggs
boson proves to be greater for µeff < 0 than for µeff >
0. This is because mh grows as the mixing in the
sector of the superpartners of the t quark (t̃R and t̃L)
becomes stronger. The point is that the mixing of
t̃R and t̃L is determined by the quantity Xt = At +
µeff/ tan β and is therefore greater in magnitude for
P

µeff < 0 since At < 0. It should also be noted that the
inclusion of two-loop corrections leads to a reduction
of mh by approximately 10 GeV. The mass of the
lightest Higgs boson depends only slightly on A and
m0, because the squarkmasses depend slightly on the
corresponding fundamental parameters (see Tables 1
and 2). The value of mh is determined primarily by
the supersymmetry-breaking scale MS—that is, by
the quantityM3. From our numerical results quoted

in Tables 1 and 2, one can see that, at mt(M
pole
t ) =

165 GeV and M3 ≤ 2 TeV, the mass of the lightest
Higgs boson does not exceed 127 GeV.
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Table 2. Spectrum of particles in the vicinity of the quasifixed point within the modified nonminimal supersymmetric
standard model atmt(M

pole
t ) = 165 GeV, tanβ ≈ 1.883, and µeff < 0 for various choices of the fundamental parameters

A,m0, andM1/2 (all the parameters and masses are given in GeV)

m2
0 0 M2

1/2 0 0 0 0

A 0 0 −M1/2 M1/2 0 0

M1/2 −392.8 −392.8 −392.8 −392.8 −785.5 −196.4

µeff −727.8 −840.9 −726.0 −731.2 −1360.7 −378.9

B0 1008 1320.3 1366.7 647.9 2050.4 495.8

y −0.00149 −0.001 −0.00128 −0.00177 −0.00020 −0.0112

µ′(t0) 1671.5 1950.6 1656.8 1690.3 3172.7 857.8

mh(t0) 134.1 134.9 134.0 134.2 143.1 124.1

(1-loop)

mh(t0) 124.4 124.8 124.3 124.5 127.2 119.6

(2-loop)

M3(1 TeV) 1000 1000 1000 1000 2000 500

mt̃1(1 TeV) 890.2 935.6 890.5 889.8 1682.8 507.9

mt̃2(1 TeV) 630.3 652.2 632.2 628.0 1328.1 283.5

mH(1 TeV) 896.2 1078.5 893.5 899.3 1689.9 464.4

mS(1 TeV) 2147.4 2565.9 2309.2 1972.3 4126.5 1097.7

mA1(1 TeV) 1123.2 1219.3 931.0 1437.9 1984.8 623.1

mA2(1 TeV) 857.6 1017.8 545.0 886.9 1657.5 412.8

mχ̃1(t0) 160.0 160.5 160.0 160.0 324.4 74.9

mχ̃2(t0) 311.1 313.7 311.0 311.2 639.9 141.4

|mχ̃3(1 TeV)| 753.7 896.6 751.9 757.2 1403.4 398.5

mχ̃4(1 TeV) 764.7 878.1 763.0 768.1 1410.0 416.7

mχ̃5(1 TeV) 1700.7 1983.2 1685.8 1719.6 3221.8 879.1

mχ̃±
1
(t0) 310.7 313.4 310.7 310.8 639.8 139.4

mχ̃±
2
(1 TeV) 763.3 877.0 761.6 766.7 1409.1 414.5
6. CONCLUSION

We have studied coupling-constant renormaliza-
tion and the spectrum of particles within the modified
nonminimal supersymmetric standard model. We
have shown that, in the regime of strong Yukawa cou-
pling, solutions to the renormalization-group equa-
tions for Yi(t) are attracted to the Hill line and that,
under specific conditions, b–τ unification is realized
at the scaleMX . In the limit Yi(0) → ∞, all solutions
for the Yukawa coupling constants are concentrated
in the vicinity of the quasifixed point that is formed
in the space of the Yukawa coupling constants as the
result of intersection of the invariant and the Hill line.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
As the Yukawa coupling constants approach the
quasifixed point, the corresponding trilinear coupling
constants and combinations (11) of the scalar-
particle masses cease to depend on the boundary
conditions at the scale MX . In the case of nonuni-
versal boundary conditions, Ai(t) and M2

i (t) are
attracted to straight lines in the space spanned by
the parameters of a soft breakdown of supersymmetry
and, with increasing Yi(0), approach the quasifixed
points, moving along these straight lines.

We have analyzed the spectrum of particles in the
infrared-quasifixed-point regime of the modified non-
minimal supersymmetric standard model. The CP-
even Higgs boson, which corresponds to the neutral
2
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field Y , is the heaviest particle in this spectrum. At
reasonable values of the parameters of the model be-
ing studied, the gluinos, the squarks, and the heavy
Higgs bosons are much heavier than the lightest
Higgs boson and than the lightest chargino and the
lightest neutralino as well. This is not so only for one
of the CP-odd Higgs bosons whose mass changes
within a wide range in response to variations in the
fundamental parameters of the modified nonminimal
supersymmetric standard model. In the vicinity of the
quasifixed point at mt(M

pole
t ) = 165 GeV, the mass

of the lightest Higgs boson does not exceed 127 GeV.
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Abstract—Cross sections for processes involving three or more identical nucleons in the final state are
expected to be strongly suppressed near the threshold because of the Pauli exclusion principle. It is
shown that theMigdal–Watson effect (final-state interaction between nucleons) removes this suppression.
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1. INTRODUCTION

In this study, we examine reactions involving more
than two identical fermions (nucleons) in the final
state. The features of such reactions induced by pi-
ons and photons are measured at numerous research
centers worldwide, such as TRIUMF (π+ 4He →
π−pppp, π− 3He → π+nnn), PSI [single-charge-
exchange reactions (π+, π0) on 3He and 4He], and
TJNAF (γ∗ 3He→ π+nnn).
The cross sections for such reactions are expected

to be strongly suppressed (especially near the thresh-
old) because of the Pauli exclusion principle (see [1–
7] and references therein). However, this expecta-
tion is not corroborated experimentally. In particular,
the low-energy cross sections for the single-charge-
exchange reactions π+ 3He → π0ppp and π+d →
π0pp are on the same order of magnitude [8]. Accord-
ing to naive estimates, the cross section for the reac-
tion π+ 3He→ π0ppp at incident pion energies in the
range Tπ ∼ 40–70 MeV is two order of magnitude
smaller than the cross section for the single-charge-
exchange reaction π+d → π0pp on a deuteron. In
this study, we show that final-state nucleon–nucleon
interaction removes the suppression induced by the
Pauli exclusion principle.
The Pauli exclusion principle and final-state NN

interaction are discussed in almost all articles de-
voted to studying low-energy processes that lead to
the production of more than two identical nucleons
in the final state and which include double-charge-
exchange reactions on helium isotopes [1–7]. Never-
theless, it seems reasonable to analyze such reactions

1)Institute of Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117218 Russia, and
Moscow State Engineering Physics Institute (Technical
University), Kashirskoe sh. 31, Moscow, 115409 Russia.

2)Institut für Theoretische Physik, Universität Tübingen, Auf
der Morgenstelle 14, D-72076 Tübingen, Germany.
1063-7788/02/6502-0345$22.00 c©
more comprehensively in order to clarify the specific
role of the final-state interaction between nucleons.
In what follows, questions associated with taking
into account the Pauli exclusion principle and final-
state nucleon–nucleon interaction are discussed for
the example of the reaction π+ 3He→ π0ppp.

2. ESTIMATING THE SUPPRESSION
OF CROSS SECTIONS

We consider the single-charge-exchange reac-
tions π+ 3He → π0ppp and π− 3He → π0nnp. As-
suming that these processes are governed by identi-
cal mechanisms (see Fig. 1a), we can easily show
that the amplitude of the reaction π+ 3He → π0ppp
must involve an additional factor 〈v〉, where 〈v〉 is the
characteristic velocity of a final nucleon. For an inci-
dent pion energy of Tπ ∼ 50 MeV, the characteristic
velocity of particles is 〈v〉 ∼ 0.1; therefore, the cross
sections for these two reactions must differ by two
orders of magnitude.3)

The appearance of the additional factor 〈v〉 (or
its powers) in the reaction amplitude is due to anti-
symmetrization with respect to final-state nucleons.
The amplitude of the single-charge-exchange reac-
tion π+ 3He→ π0ppp can be written in the invariant
form

M ∼
∑

ijk

εijk(ūi(A + Bq̂)U)(ūjCγ5ū
T
k ) , (1)

where the subscripts i, j, and k label the final nu-
cleons; ui and U are the bispinors corresponding
to the ith nucleon and 3He, respectively; C is the

3)In a similar way, it can be shown that, because the process
where a positive pion undergoes double charge exchange on
4He involves four identical nucleons in the final state, the
corresponding suppressionmust be proportional to 〈v〉4 (see,
for example, the relevant discussion in [6]).
2002MAIK “Nauka/Interperiodica”
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Fig. 1.Diagrams for the reaction where a pion undergoes
single charge exchange on 3He (a) without and (b) with
allowance for final-state nucleon–nucleon interaction.

charge-conjugation matrix; and q = k1 − k2 is the
momentum transfer, where k1,2 are the momenta of
initial and final pions, respectively. In expression (1),
we omitted trivial isotopic factors, but they can easily
be recovered.
In a realistic amplitude corresponding to the

process depicted in Fig. 1a, the factors A and B
P

are smooth functions of kinematic variables. These
functions can be determined explicitly from the πN-
scattering amplitudes [9] with the phase shifts from
[10]. In order to solve the main problem of this study,
it is sufficient, however, to use a simplified amplitude
where A and B are set to constants.

For further calculations, it is convenient to ex-
press the reaction amplitude M in terms of the two-
component spinors ϕi and φ associated with the ith
nucleon and 3He, respectively. In the laboratory
frame, where 3He is at rest and where the ith nucleon
has a momentum pi and an energy Ei, we have

ui =






ϕi

(σ · pi)
Ei + m

ϕi




 , U =




φ

0



 .

Substituting this expression into Eq. (1), we obtain
M ∼
∑

ijk

εijk

(

ϕ+
j

{

1 + iσ
[pj × pk]

(Ej + m)(Ek + m)

}

σ2ϕ
∗
k

)(

ϕ+
i

{

A + q0B − iBσ
[pi × q]
Ei + m

}

φ

)

. (2)
From the equality
∑

ijk

εijk

(
ϕ+

j σ2ϕ
∗
k

) (
ϕ+

i φ
)

= 0,

it is obvious that, upon antisymmetrization in each
term of the sum over i, j, and k, the leading con-
tributions cancel. The remaining terms have a sim-
ple physical meaning: the term proportional to A
corresponds to the transfer of even orbital angular
momenta from the pion to the nucleon subsystem,
whereas the term proportional to B corresponds to
the transfer of odd orbital angular momenta from the
p wave, which is the lowest wave allowed by the
Pauli exclusion principle. This interpretation is quite
clear and is independent of the specific form of the
functions A and B. However, the inclusion of the
final-state nucleon–nucleon interaction considerably
changes this situation.

3. NUCLEON–NUCLEON CORRELATIONS

It is well known that the final-state NN interac-
tion is the most important in the case where a pair of
nucleons has low relative invariant mass and where
these nucleons are in the relative s wave [11, 12].
For two identical nucleons, this is the 1S0 (JP = 0+)
state. In the case of three identical nucleons, only
two of them can be in the relative s wave. One can
demonstrate that the (ūi(A+Bq̂)U)(ūjCγ5ū

T
k ) term
in amplitude (1) corresponds to the case where the jth
and the kth nucleon form a 0+ state, whereas the ith
nucleon has a higher orbital angular momentum than
the jk pair.
The final-state interaction is represented by the

diagram involving the rescattering of two nucleons
(Fig. 1b). The contribution of this diagram is pro-
portional to the scattering amplitude fjk for a pair
of nucleons in the 1S0 states. In order to take into
account the interaction between final nucleons, we
must therefore multiply each term that appears in
Eq. (1) and which involves the factor (ūjCγ5ū

T
k ) by

(1 + R−1 · fjk), where R is about the 3He radius
and fjk depends on the relative momentum |pjk| =
√

m2
jk/4 −m2 (mjk is the invariant mass of the jk

nucleon pair) of jth and kth nucleons in their c.m.
frame.
With allowance for the final-state nucleon–nuc-

leon interaction, the amplitude of the reaction
π+ 3He → π0ppp can therefore be represented as

MFSI ∼
∑

ijk

εijk(ūi(A + Bq̂)U)(ūjCγ5ū
T
k ) (3)

×
(
1 + R−1 · fjk

)
.

This amplitude is antisymmetric with respect to per-
mutations of identical fermions, thereby satisfying the
Pauli exclusion principle. In contrast to what occurs
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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in Eq. (2), however, antisymmetrization does not lead
in this case to a complete cancellation of the leading
terms:

∑

ijk

εijk

(
ϕ+

j σ2ϕ
∗
k

) (
ϕ+

i φ
)
fjk 
= 0.

This is because there is a singularity in the NN-
interaction amplitude at low relative momenta of nu-
cleons. This is the region where the nucleon–nucleon
interaction is especially strong.
In mathematical terms, the difference between the

two cases is the following: the low-energy amplitude
determined without taking into account the nucleon–
nucleon interaction can be expanded in a power series
in low nucleon velocities, but there is no such expan-
sion for the amplitude including this interaction.
Physically, this means that higher orbital angular

momenta of each of the nucleons in the 1S0 state with
respect to the third nucleon are no longer suppressed.

4. CONCLUSION

If the final state of a reaction involves three or more
identical nucleons of low invariant mass, theMigdal–
Watson effect (final-state nucleon–nucleon interac-
tion) removes the suppression of cross sections that
is associated with the Pauli exclusion principle. This
result has been obtained here for the example of the
reaction π+3He → π0ppp, whose amplitude is very
sensitive to the details of the nucleon–nucleon in-
teraction, in contrast to, for example, the reaction
π−3He → π0nnp, where there is no suppression by
the Pauli exclusion principle.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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Abstract—Two-particle pion correlations in exclusive πp and pp interactions at
√
s = 2.9–4 GeV are

studied in the region of low relative 4-momenta. Relevant correlation functions are obtained with allowance
for the results of calculations based on the model of quark–gluon strings and the FRITIOFmodel. Positive
correlations that make it possible to estimate the spatial size of the pion source are observed for pairs
of identical pions. No correlations are observed for pairs featuring one charged and one neutral pion.
c© 2002 MAIK “Nauka/Interperiodica”.
Investigation of correlations between hadrons of
low relative momentum makes it possible to measure
the spacetime features of the hadron-generation re-
gion. This is of importance for obtaining deeper in-
sights into the quark-hadronization mechanism and
is of interest in connection with developing methods
for seeking quark–gluon plasma. The first experi-
mental data on correlations between identical pions
were obtained as far back as 1959 [1]. Later on, these
data gave impetus to the new line of investigations
that is known as pion interferometry [2, 3].

Different effects are possible in systems of non-
identical pions in the region of low relative momenta.
In particular, systems consisting of a neutral and a
charged pion can develop correlations associated with
the Fermi statistics of quarks [4, 5].

In this particle, we report on an investigation of the
reactions presented in Table 1. The experimental data
used come from the 2-m hydrogen bubble chambers
installed at the Institute of Theoretical and Experi-
mental Physics (ITEP, Moscow) and at CERN. The
total sample consisted of 120 000 interactions. The
features of neutral pions were determined in each
individual event from kinematical balance.

In our data analysis, we used the two-particle
correlation function defined as

C2(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
, (1)

where p1 and p2 are the particle 4-momenta, whileN1

and N2 are, respectively, the single- and two-particle
distribution density.

1)Moscow State Engineering Physics Institute (Technical
University), Kashirskoe sh. 31, Moscow, 115409 Russia.

*e-mail: bulekov@pc4k07.exp.mephi.ru
1063-7788/02/6502-0348$22.00 c©
Westudied the dependence of the correlation func-
tion C2 on the invariant variable Q2 = −(p1 − p2)2.
This variable combines the properties of a three-
dimensional analysis with reduced requirements on
the volume of the data sample, which are typical of
one-dimensional problems [6].

The model of independent emission from single-
particle sources whose spacetime distribution over
the volume of a static sphere obeys the Gaussian law
leads to the Goldhaber parametrization [7]

C2(Q) = (1 + λ exp(−R2Q2))(α + βQ+ γQ2),
(2)

where (α+ βQ+ γQ2) is an additional factor intro-
duced to take into account kinematical correlations
off the interference peak, λ is the coherence param-
eter, and R is a parameter that is proportional to the
mean-square radius of a spherically symmetric source
in the dipion rest frame (R2 = 〈r2〉/3).

In order to take into account the final-state
Coulomb interaction in the product charged-pion
pair, we used the Gamow factor

G =
2πη

e2πη − 1
, η =

Z1Z2mπα

Q
, (3)

where α is the fine-structure constant and Z1 and Z2
are the pion charges.

The choice of background is a key problem in
studying interference correlations. For a background,
use is usually made either of pairs of oppositely
charged pions from the same experiment, or of pairs
of particles from different events, or of model calcula-
tions. Each method has drawbacks inherent in it. In
order to estimate the background effect on the shape
of the correlation function, we preliminarily studied
2002MAIK “Nauka/Interperiodica”
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Table 1. Reactions under study

Reaction number Reaction pbeam, GeV/c Number of events

1 π−p→ pπ+π−π− 3.9 35972

2 π−p→ pπ+π−π−π0 3.9 38371

3 π−p→ nπ+π+π−π− 3.9 16189

4 π+p→ pπ+π+π−π0 4.2 18567

5 pp→ npπ+π+π− 8 6924

6 pp→ ppπ+π−π0 8 4046

Table 2. Fitted values of the parameters in the parametrization (2) of the distributions C2(Q) for reactions 1–5 in the
interval 0 ≤ Q ≤ 0.5 GeV

Reaction number Ndata/NBG λ R, fm χ2/NDF

1 N−−/N+− 0.33± 0.09 0.80± 0.23 0.53

2 N−−/N+− 0.78± 0.11 1.14± 0.09 1.98

2∗ N−−/N+− 0.54± 0.09 0.92± 0.11 1.18

3 N±±/N+− 0.67± 0.11 1.14± 0.13 0.53

4 N++/N+− 0.84± 0.19 1.31± 0.16 2.3

4∗ N++/N+− 0.82± 0.21 1.31± 0.19 1.83

5 N++/N+− 0.64± 0.44 1.84± 0.63 0.91
the correlations between pairs of identical pions for
the above three types of background distributions.

The observed interference correlations may be af-
fected by intermediate resonance states, Coulomb
and strong interactions in the final state, and leading-
particle effects. In [8], the effect of these factors on
the correlations between identical pions was studied
for the example where the background was formed by
pairs of oppositely charged pions and pairs consisting
of one charged and one neutral pion. It was shown
that narrow meson resonances affect the shape of
the correlation function in the region of low relative
4-momenta, resulting in the enhancement of spa-
tial dimensions. The leading-particle effect reduces
the amplitude of correlations without changing their
width. The introduction of the Gamow factor cannot
take completely into account final-state Coulomb in-
teraction.

Table 2 displays the results obtained by the corre-
lation function for identical pions from reactions 1–5
(see Table 1) in terms of the function in (2). For the
background distributions, we chose the correspond-
ing dependences for oppositely charged pions. An
asterisk on the reaction number in the table means
that the fitting procedure rejected events where the
three-pion effective mass Meff(π+π−π0) fell within
the intervals corresponding to the η and ω resonances
(537–561 MeV and 757–813 MeV for reaction 2 and
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
531–567 MeV and 739–835 MeV for reaction 4).
These intervals correspond to the condition Meff ∈
[Mη,ω ± 2σ], whereMη,ω and σ are the mean values
and the standard deviation obtained for the η and the
ω meson by fitting the effective-mass distribution of
the three-pion system π+π−π0 in terms of the sum of
a Gaussian and a smooth function.

Figure 1 displays the dependences C2(Q) for iden-
tical particles from reactions 2 and 4 for the back-
ground distributions constructed from identical-pion
pairs simulated on the basis of the FRITIOF model
[9] or the model of quark–gluon strings (MSDM)
[10]. The curves correspond to the approximation (2)
of the correlation function. It is clear that, off the
interference peak, the correlation function depends
only slightly onQ.

Figure 2 shows the distributions analogous to
those in Fig. 1, but the background was obtained here
by the mixing method. It is clear that this method
requires an additional correction for the “violation”
of the energy-conservation law in background events.
This correction can be introduced by dividing C2(Q)
by the correlation function obtained with the aid of
the same mixing method but, this time, applied to
simulated events (open symbols in Fig. 2). To a high
precision, the correlation function is close to unity off
the interference peak.
2



350 ANDRYAKOV et al.
Table 3. Fitted values of the parameters in the parametrization (2) of the distributions C2(Q) for reactions 2 and 4 in the
interval 0 ≤ Q ≤ 1 GeV

Reaction number Ndata/NBG λ R, fm χ2/NDF

2∗ N−−/N−−
FRITIOF 1.77 ± 0.38 1.19± 0.06 1.42

2∗ N−−/N−−
MSDM 1.25 ± 0.19 1.13± 0.07 0.81

2∗ N−−/N−−
mix 0.72 ± 0.14 0.73± 0.05 1.29

2∗
(N−−/N−−

mix)data

(N−−/N−−
mix)FRITIOF 2.07 ± 0.31 1.11± 0.06 1.48

2∗
(N−−/N−−

mix)data

(N−−/N−−
mix)MSDM 0.61 ± 0.12 0.92± 0.09 0.87

4∗ N++/N++
FRITIOF 1.3 ± 0.4 1.35± 0.11 1.48

4∗ N++/N++
MSDM 0.72 ± 0.24 1.31± 0.15 1.52

4∗ N++/N++
mix 0.52 ± 0.22 1.25± 0.19 1.26

4∗
(N++/N++

mix)data

(N++/N++
mix)

FRITIOF 1.62 ± 0.34 1.37± 0.11 1.46

4∗
(N++/N++

mix)data

(N++/N++
mix)

MSDM 0.55 ± 0.23 1.28± 0.19 1.51
The results obtained on the basis of fits to the
correlation functions in Figs. 1 and 2 are quoted in
Table 3. The resulting values of the parameter R do
not differ significantly from those obtained for the case
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Fig. 1. Correlation function C2(Q) for identical pions
versus the differenceQ of the 4-momenta in (a) reaction
2 and (b) reaction 4 (see Table 1). Events satisfying the
condition Meff(π+π−π0) ∈ [Mη,ω ± 2σ] were rejected.
The background was constructed from pion pairs gen-
erated on the basis of (◦) FRITIOF and (�) MSDM.
The solid curve represents the approximation by the func-
tion (2).
P

where the background consists of oppositely charged
pions. The coherence parameter λ derived with the
aid of the FRITIOF model is systematically overesti-
mated.

The data in Tables 2 and 3 enable us to estimate
the root-mean-square radius of the source within
the model used. For the background constructed
by the mixing method and improved by the MSDM,
the root-mean-square radii in reactions 2 and 4 are
1.6 ± 0.2 and 2.2 ± 0.3 fm, respectively. These values
agree with those measured by the Dubna group for πp
interactions in inclusive reactions (1.9 ± 0.3 fm) [11].

Figure 3 displays the correlation functions C2(Q)
for pairs consisting of one charged and one neutral
pion from reaction 2. For the background formed
by similar pion pairs simulated on the basis of the
FRITIOF and MSDM, there is no dependence on
the difference of the 4-momenta, the scatter of ex-
perimental points being within the statistical fluctu-
ations (see Fig. 3a). For the background constructed
by mixing (asterisks in Fig. 3b), the observed de-
pendence of C2 on Q is determined by kinematics.
The dependence on Q disappears completely upon
dividing the correlation function by that for simulated
events (open symbols in Fig. 3b). A similar result was
obtained for events from reactions 4 and 6.

In the system consisting of a charged and a neutral
pion, featuring no Coulomb interaction, there are no
interference correlations. Therefore, this system can
be used to construct the background distribution.
Table 4 displays the relevant results for reactions 2
and 4. Within statistical errors, the parameters agree
with the values obtained here by other methods.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 4. Fitted values of the parameters in the parametrization (2) of the distributions C2(Q) for reactions 2 and 4 in the
region 0 ≤ Q ≤ 0.5 GeV

Reaction number Ndata/NBG λ R, fm χ2/NDF

2 N−−/N0− 0.77± 0.13 1.21± 0.11 0.43

2∗ N−−/N0− 0.75± 0.13 1.05± 0.13 0.66

4 N++/N0+ 0.54± 0.18 1.45± 0.24 0.96

4∗ N++/N0+ 0.59± 0.19 1.32± 0.25 0.39
In summary, the main results of our study are the
following.

For exclusive hadron interactions, we have an-
alyzed two-particle correlations at low relative mo-
menta in pairs of identical and oppositely charged
pions, as well as in pairs consisting of one charged
and one neutral pion. We have determined the size of
the pion generation region for identical pions.
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Fig. 2. Correlation function C2(Q) for identical pions
versus the difference Q of the 4-momenta in (a) reaction
1 and (b) reaction 2. Events satisfying the condition
Meff(π+π−π0) ∈ [Mη,ω ± 2σ] were rejected. The back-
ground was constructed from pion pairs obtained by mix-
ing (∗). The correlation function C2(Q) was divided by
the analogous correlation function obtained on the basis
of (◦) FRITIOF and (�) MSDM calculations. The solid
curves represent the approximation by the function (2).
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It has been shown that, among the methods used
here to construct the background distributions, the
best one is that which relies on mixing and which
takes into account kinematical correlations through
model calculations.

The analysis of the distributions for π+π0 (π−π0)
pairs has revealed that, at the current level of accu-
racy, there are no effects determined by quark statis-
tics in the system consisting of one charged and one
neutral pion.
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Fig. 3. Correlation function C2(Q) for pairs consisting
of a neutral and a charged pion versus the difference Q
of the 4-momenta in reaction 2. Events satisfying the
condition Meff(π+π−π0) ∈ [Mη,ω ± 2σ] were rejected.
The background was constructed (a) from pion pairs
simulated on the basis of (◦) FRITIOF and (�) MSDM
or (b) by mixing (∗). The function C2(Q) in Fig. 3b ob-
tained bymixing was divided by the analogous correlation
function for model events generated by (◦) FRITIOF and
(�) MSDM.
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Abstract—The phase transition in the regularized U(1) gauge theory is investigated by using the dual
Abelian Higgs model of scalar monopoles. The corresponding-renormalization-group-improved effective
potential, analogous to the Coleman–Weinberg one, is considered in the two-loop approximation for β
functions, and the phase-transition (critical) dual and nondual couplings are calculated in the U(1) gauge
theory. It is shown that the critical value of the renormalized electric fine-structure constant, αcrit ≈ 0.208,
obtained in this study agrees with the lattice result for compact QED: αlat

crit ≈ 0.20 ± 0.015. This result
and the behavior of α in the vicinity of the phase-transition point are compared with the multiple-point-
model prediction for the values of α near the Planck scale. Such a comparison is very encouraging
for the multiple point model assuming the existence of the multiple critical point at the Planck scale.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The philosophy of the multiple-point model
(MPM) suggested in [1] and developed in [2–4] leads
to the need for investigating the phase transition in
various gauge theories. According to theMPM, there
is a special point, the multiple critical point (MCP),
on the phase diagram of the fundamental regularized
gauge theory G—that is, a point where the vacua of
all fields existing in nature are degenerate having the
same vacuum energy density. Such a phase diagram
has axes given by all coupling constants considered in
theory. The MPM assumes the existence of an MCP
at the Planck scale.

A lattice model of gauge theories is the most con-
venient formalism for implementing MPM ideas. In
the simplest case, we can imagine our spacetime as a
regular hypercubic (3 + 1) lattice with the parameter
a equal to the fundamental (Planck) scale: a = λPl =
1/MPl, where

MPl = 1.22 × 1019 GeV. (1)

Lattice gauge theories, first introduced by Wilson
[5] for studying the problem of confinement, are de-
scribed by the simplest action

S = − β

N

∑

p

Re(trUp), (2)

∗This article was submitted by the authors in English.
1) Niels Bohr Institute, Copenhagen, Denmark.
**e-mail: laper@heron.itep.ru

***e-mail: hbech@alf.nbi.dk
****e-mail: ryzhikh@heron.itep.ru
1063-7788/02/6502-0353$22.00 c©
where the sum runs over all plaquettes of a hypercubic
lattice, Up is the product around the plaquette p of
the link variables in the N-dimensional fundamental
representation of the gauge groupG, β = 1/g2

0 is the
lattice constant, and g0 is the bare coupling con-
stant in the gauge theory considered. Monte Carlo
simulations of these simple Wilson lattice theories in
the four dimensions showed a (or an almost) second-
order deconfining phase transition for U(1) [6, 7], a
crossover behavior for SU(2) and SU(3) [8, 9], and
a first-order phase transition for SU(N) with N ≥ 4
[10]. Bhanot and Creutz [11, 12] generalized the
simple Wilson action, introducing two parameters in
the action

S =
∑

p

[

−βf

N
Re(trUp) − βA

N2−1
Re(trAUp)

]

, (3)

where βf (βA) and tr (trA) are, respectively, the lattice
constants and traces in the fundamental (adjoint)
representation of SU(N) considered in this action for
Up. The phase diagrams obtained for the generalized
lattice SU(2) and SU(3) theories (3) by Monte Carlo
methods in [11, 12] showed the existence of a triple
point that is a boundary point of three first-order
phase transitions: the “Coulomb-like” and the con-
fining SU(N)/ZN and ZN phases meet together at
this point. Three phase border lines that separate the
corresponding phases emanate from the triple point.
The ZN phase transition is a “discreteness” tran-
sition occurring when lattice plaquettes jump from
the identity to nearby elements in the group. The
SU(N)/ZN phase transition is due to a condensation
2002MAIK “Nauka/Interperiodica”
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Fig. 1. Phase diagram for U(1) where the two-parameter
lattice action is used. This type of action makes it pos-
sible to provoke the Z2 (or Z3) confinement alone. The
diagram shows the existence of a triple (critical) point.
Three phase borders emanate from this triple point: the
phase border 1 separates the totally confining phase from
the phase where only the discrete subgroup Z2 is con-
fined; the phase border 2 separates the latter phase from
the totally Coulomb-like phase; and the phase border 3
separates the totally confining and totally Coulomb-like
phases.

of monopoles (a consequence the nontrivial Π1 of the
group).

Monte Carlo simulations of the U(1) gauge theory
described by the two-parameter lattice action [13, 14]

S =
∑

p

[βlat cos Θp + γlat cos 2Θp], (4)

where Up = eiΘp ,

also indicate the existence of a triple point on the
corresponding phase diagram (see Fig. 1): Coulomb-
like, totally confining, and Z2 confining phases come
together at the triple point shown in Fig. 1.

Monte Carlo simulations of the lattice U(1) gauge
theory described by the simple Wilson action corre-
sponding to the case of γlat = 0 in Eq. (4) yield [14]

αlat
crit ≈ 0.20 ± 0.015, α̃lat

crit ≈ 1.25 ± 0.10, (5)

where α = e2/4π and α̃ = g2/4π are the electric and
the magnetic fine-structure constant containing the
electric charge e and the magnetic charge g, respec-
tively. The lattice artifact monopoles are responsi-
ble for the confinement mechanism in lattice gauge
theories, which is confirmed by many numerical and
theoretical investigations (see the reviews articles in
[15] and the original studies in [16]). The simplest
PH
effective dynamics describing the confinement mech-
anism in pure gauge lattice U(1) theory is the dual
Abelian Higgs model of scalar monopoles [17].

In [1–3], the calculations of the U(1) phase-
transition (critical) coupling constant were connected
with the existence of artifact monopoles in lattice
gauge theory and also in theWilson loop actionmodel
[3]. Here, we consider the Higgs monopole model
(HMM) approximating the lattice artifact monopoles
as fundamental pointlike particles described by the
Higgs scalar field. The phase border separating the
Coulomb-like and confinement phases is investigated
by the method developed in the MPM, where de-
generate vacua are considered. The phase-transition
Coulomb confinement is given by the condition where
the first local minimum of the effective potential is de-
generate with its second minimum. Considering the
renormalization-group improvement of the effective
Coleman–Weinberg potential [18, 19] written for the
dual sector of scalar electrodynamics in the two-loop
approximation, we have calculated the U(1) critical
values of the magnetic fine-structure constant α̃crit =
g2
crit/4π ≈ 1.20 and electric fine-structure constant
αcrit = π/g2

crit ≈ 0.208 (by the Dirac relation). These
values agree with the lattice result in (5).

Investigating the phase transition in the HMM,
we have pursued two objectives. On one hand, we
aimed at explaining lattice results. But we also had
another aim.

According to the MPM, at the Planck scale, there
exists a MCP, which is a boundary point of the phase
transitions in U(1), SU(2), and SU(3) sectors of the
fundamental regularized gauge theory G. The idea
of [1] was that the corresponding critical couplings
coincide with the lattice ones. Our calculations in the
HMM indicate that the Higgs scalar monopole fields
are responsible for the phase-transition Coulomb
confinement, giving the same lattice values of critical
couplings. For this reason, the results of the present
study are very encouraging for the antigrand unified
theory (AGUT) [20–25], which was developed previ-
ously as a realistic alternative to SUSYGrandUnified
Theories (GUTs). In this article, we also discuss the
problems of AGUT, which is used in conjunction with
the MPM.

2. THE COLEMAN–WEINBERG EFFECTIVE
POTENTIAL FOR THE HIGGS MONOPOLE

MODEL
As was mentioned in the Introduction, the dual

Abelian Higgs model of scalar monopoles (abbrevi-
ated as HMM) describes the dynamics of confine-
ment in lattice theories. This model, first suggested
in [17], considers the Lagrangian

L = − 1
4g2

F 2
µν(B) +

1
2
|(∂µ − iBµ)Φ|2 − U(Φ), (6)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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where

U(Φ) =
1
2
µ2|Φ|2 +

λ

4
|Φ|4

is the Higgs potential of scalar monopoles with mag-
netic charge g andBµ is the dual gauge (photon) field
interacting with the scalar monopole field Φ. In this
model, λ is the self-interaction constant for scalar
fields and the mass parameter µ2 is negative. In
Eq. (6), the complex scalar field Φ contains the Higgs
(φ) and Goldstone (χ) boson fields:

Φ = φ+ iχ. (7)

The effective potential in Higgs scalar electrodynam-
ics (HSED) was first calculated by Coleman and
Weinberg [18] in the one-loop approximation. The
general method for calculating it is given in the review
article of Sher [19]. Using this method, we can
construct the effective potential for the HMM. In this
case, the total field system of the gauge (Bµ) and
magnetically charged (Φ) fields is described by the
partition function that, in Euclidean space, has the
form

Z =
∫

[DB][DΦ][DΦ+] e−S , (8)

where the action S =
∫
d4xL(x) + Sgf contains La-

grangian (6) written in Euclidean space and the
gauge-fixing action Sgf. Let us now consider the shift

Φ(x) = Φb + Φ̂(x) (9)

with Φb as a background field and calculate the fol-
lowing expression for the partition function in the
one-loop approximation:

Z =
∫

[DB][DΦ̂][DΦ̂+] (10)

× exp

{

−S(B,Φb) −
∫

d4x

[
δS(Φ)
δΦ(x)

∣
∣
∣
∣
∣
Φ=Φb

× Φ̂(x) + h.c.

]}

= exp{−F (Φb, g
2, µ2, λ)}.

Using representation (7), we obtain the effective po-
tential

Veff = F (φb, g
2, µ2, λ) (11)

given by the function F of Eq. (10) for the constant
background field Φb = φb = const. In this case, the
one-loop effective potential for monopoles coincides
with the expression for the effective potential calcu-
lated by the authors of [18] for HSED and extended
to the massive theory (see review [19]),

Veff(φ2
b) =

µ2

2
φ2

b +
λ

4
φ4
b (12)

+
1

64π2

[

3g4φ4
b log

φ2
b

M2
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+ (µ2 + 3λφ2
b)2 log

µ2 + 3λφ2
b

M2

+ (µ2 + λφ2
b)2 log

µ2 + λφ2
b

M2

]

+ C,

where M is the cutoff scale and C is a constant
independent of φ2

b .
The effective potential (11) has several minima.

Their positions depend on g2, µ2, and λ. If the first
local minimum occurs at φb = 0 and Veff(0) = 0, it
corresponds to the so-called symmetric phase, which
is the Coulomb-like phase in our description. It is
then easy to determine the constant C in Eq. (12),

C = − µ4

16π2
log

µ

M
, (13)

and we have the effective potential for the HMM
described by the expression

Veff(φ2
b) =

µ2
run

2
φ2

b +
λrun

4
φ4

b (14)

+
µ4

64π2
log

(µ2 + 3λφ2
b)(µ2 + λφ2

b)
µ4

.

Here, λrun is the running self-interaction constant
given by Eq. (12):

λrun(φ2
b) = λ+

1
16π2

[

3g4 log
φ2

b

M2
(15)

+ 9λ2 log
µ2 + 3λφ2

b

M2
+ λ2 log

µ2 + λφ2
b

M2

]

.

The running squared mass of the Higgs scalar
monopoles also follows from Eq. (12):

µ2
run(φ2

b) = µ2 +
λµ2

16π2
(16)

×
[

3 log
µ2 + 3λφ2

b

M2
+ log

µ2 + λφ2
b

M2

]

.

3. RENORMALIZATION-GROUP
EQUATIONS IN THE HIGGS MONOPOLE

MODEL

The renormalization-group equations (RGE) for
the effective potential mean that the potential can-
not depend on a change in an arbitrary parameter—
renormalization scale M ; i.e., dVeff/dM = 0. The
effects of changing it are absorbed into changes in
the coupling constants, masses, and fields giving so-
called running quantities.

Considering the renormalization-group (RG) im-
provement of the effective potential [18, 19] and
choosing the evolution variable as

t = log(φ2/M2), (17)
2
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we have the following RGE for the improved Veff(φ2)
with φ2 ≡ φ2

b [26]:
(

M2 ∂

∂M2
+ βλ

∂

∂λ
+ βg

∂

∂g2
(18)

+ β(µ2)µ
2 ∂

∂µ2
− γφ2 ∂

∂φ2

)

Veff(φ2) = 0.

Here, γ is the anomalous dimension, and β(µ2), βλ,
and βg are the RG β functions for mass, scalar, and
gauge couplings, respectively. The renormalization-
group Eq. (18) leads to the following form of the
improved effective potential [18]:

Veff =
1
2
µ2
run(t)G2(t)φ2 +

1
4
λrun(t)G4(t)φ4. (19)

In our case,

G(t) = exp



−1
2

t∫

0

dt′ γ
(
grun(t′), λrun(t′)

)


 . (20)

A set of ordinary differential equations (RGE) corre-
sponds to Eq. (18):

dλrun
dt

= βλ (grun(t), λrun(t)) , (21)

dµ2
run

dt
= µ2

run(t)β(µ2) (grun(t), λrun(t)) , (22)

dg2
run

dt
= βg (grun(t), λrun(t)) . (23)

So far as the mathematical structure of HMM is
equivalent to HSED, we can use all results of the
scalar electrodynamics in our calculations, replacing
the electric charge e and the photon field Aµ by the
magnetic charge g and the dual gauge field Bµ, re-
spectively.

The one-loop results for βλ, β(µ2), βg , and γ are
given in [18, 19] for a scalar field with electric charge
e. Using these results, we obtain, for monopoles with
charge g = grun, the following expressions in the one-
loop approximation:

dλrun
dt

≈ β
(1)
λ (24)

=
1

16π2
(3g4

run + 10λ2
run − 6λrung2

run),

dµ2
run

dt
≈ β

(1)
(µ2)

=
µ2
run

16π2
(4λrun − 3g2

run), (25)

dg2
run

dt
≈ β(1)

g =
g4
run

48π2
, (26)

γ(1) = −3g2
run

16π2
. (27)
PH
The RG β functions for various renormalizable gauge
theories based on a semisimple group were calculated
in the two-loop approximation [27–32] and even be-
yond it [33]. But in this study, we use the results of
[27] and [30] to calculate β functions and the anoma-
lous dimension in the two-loop approximation for the
HMMwith scalar monopole fields.

In the two-loop approximation, we find for all β
functions that

β = β(1) + β(2), (28)

where

β
(2)
λ =

1
(16π2)2

(

− 25λ3 (29)

+
15
2
g2λ2 − 229

12
g4λ− 59

6
g6

)

,

β
(2)
(µ2)

=
1

(16π2)2

(
31
12
g4 + 3λ2

)

. (30)

The gauge coupling β(2)
g function is given by [27]

β(2)
g =

g6

(16π2)2
. (31)

The anomalous dimension follows from the calcula-
tions made in [30]:

γ(2) =
1

(16π2)2
31
12
g4. (32)

In Eqs. (28)–(32) and below, we have used, for the
sake of simplicity, the following notation: λ ≡ λrun,
g ≡ grun, and µ ≡ µrun.

4. THE PHASE DIAGRAM IN THE HIGGS
MONOPOLE MODEL

Now, we want to apply the effective-potential cal-
culation as a technique for obtaining phase-diagram
information about the condensation of monopoles in
HMM. As was mentioned in Section 2, the effec-
tive potential (19) can have several minima. Their
positions depend on g2, µ2, and λ. If the first local
minimum occurs at φ = 0 and Veff(0) = 0, it corre-
sponds to the Coulomb-like phase. In the case where
the effective potential has the second local minimum
at φ = φmin �= 0 with V min

eff (φ2
min) < 0, we have the

confinement phase. The phase transition between
the Coulomb-like and confinement phases is given
by the condition where the first local minimum at
φ = 0 is degenerate with the second minimum at φ =
φ0. These degenerate minima are shown in Fig. 2
by curve 1. They correspond to the different vacua
arising in this model. The dashed curve 2 describes
the appearance of two minima corresponding to the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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confinement phases (for more details, see the next
section).

The conditions of the existence of degenerate
vacua are given by the equations

Veff(0) = Veff(φ2
0) = 0, (33)

∂Veff

∂φ

∣
∣
∣
φ=0

=
∂Veff

∂φ

∣
∣
∣
φ=φ0

= 0, (34)

or

V ′
eff(φ2

0) ≡ ∂Veff

∂φ2

∣
∣
∣
φ=φ0

= 0,

and inequalities

∂2Veff

∂φ2

∣
∣
∣
φ=0

> 0,
∂2Veff

∂φ2

∣
∣
∣
φ=φ0

> 0. (35)

Equation (33) applied to Eq. (19) yields

µ2
run = −1

2
λrun(t0)φ2

0G
2(t0), t0 = log(φ2

0/M
2).

(36)

Calculating the first derivative of Veff given by
Eq. (34), we obtain the following expression:

V ′
eff(φ2) =

Veff(φ2)
φ2

(37)

×
(

1 + 2
d logG
dt

)

+
1
2
dµ2

run

dt
G2(t)

+
1
4

(

λrun(t) +
dλrun
dt

+ 2λrun
d logG
dt

)

G4(t)φ2.

From Eq. (20), we have
d logG
dt

= −1
2
γ. (38)

It is easy to find the joint solution of equations

Veff(φ2
0) = V ′

eff(φ2
0) = 0. (39)

Using RGE (21), (22), and Eqs. (36)–(38), we obtain

V ′
eff(φ2

0) =
1
4

(−λrunβ(µ2) (40)

+ λrun + βλ − γλrun)G4(t0)φ2
0 = 0,

or
βλ + λrun(1 − γ − β(µ2)) = 0. (41)

Substituting, into Eq. (41), the functions β(1)
λ , β

(1)
(µ2)

,

and γ(1) given by Eqs. (24), (25), and (27), we obtain,
in the one-loop approximation, the following equation
for the phase-transition border:

g4
PT = −2λrun

(
8π2

3
+ λrun

)

. (42)

Equation (42) is represented on the (λrun; g2
run) phase

diagram in Fig. 3 by curve 1, which describes the
border between the Coulomb-like phase with Veff ≥
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0 and the confinement phase with V min
eff < 0. This

border corresponds to the one-loop approximation.
Using Eqs. (24), (25), (27)–(30), and (32), we are

able to construct the phase-transition border in the
two-loop approximation. Substituting these equa-
tions into Eq. (41), we obtain the following equation
for the phase-transition border in the two-loop ap-
proximation:

3y2 − 16π2 + 6x2 +
1

16π2

(

28x3 (43)

+
15
2
x2y +

97
4
xy2 − 59

6
y3

)

= 0,

where x = −λPT and y = g2
PT are the phase-transi-

tion values of −λrun and g2
run. Choosing the physical

branch corresponding to g2 ≥ 0 and g2 → 0, when
λ→ 0, we have obtained curve 2 on the phase dia-
gram (λrun; g2

run) shown in Fig. 3. This curve cor-
responds to the two-loop approximation and can be
compared with curve 1 in Fig. 3, which describes
2
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the same phase border calculated in the one-loop
approximation. It is easy to see from a comparison
of curves 1 and 2 that the accuracy of the one-loop
approximation is not excellent, errors being on the
order of 30%.

According to the phase diagram shown in Fig. 3,
the confinement phase begins at g2 = g2

max and exists
under the phase-transition borderline in the region
g2 ≤ g2

max, where e2 is large, e2 ≥ (2π/gmax)2, due to
the Dirac relation (see below). Therefore, we have

g2
crit = g2

max1 ≈ 18.61 (44)

in the one-loop approximation and

g2
crit = g2

max2 ≈ 15.11
in the two-loop approximation.

Comparing these results, we obtain the accuracy
of deviation between them on the order of 20%.

The results in (44) yield

α̃crit =
g2
crit

4π
≈ 1.48 (45)

in the one-loop approximation and

α̃crit =
g2
crit

4π
≈ 1.20

in the two-loop approximation.
Using the Dirac relation for elementary charges,

eg = 2π or αα̃ = 1/4, (46)

we obtain the following values for the critical electric
fine-structure constant:

αcrit =
1

4α̃crit
≈ 0.17 (47)

in the one-loop approximation and

αcrit =
1

4α̃crit
≈ 0.208

in the two-loop approximation.
The last result agrees with the lattice values (5)

obtained for the compact QED by the Monte Carlo
method [14].

Writing Eq. (23) with βg function given by
Eqs. (26), (28), and (31), we have the following RGE
for the monopole charge in the two-loop approxima-
tion:

dg2
run

dt
≈ g4

run

48π2
+

g6
run

(16π2)2
(48)

or
d log α̃
dt

≈ α̃

12π

(

1 + 3
α̃

4π

)

. (49)

The values in (44) for g2
crit = g2

max1,2 indicate that the
contribution of two loops described by the second
term of Eq. (48) or Eq. (49) is about 0.3, which
confirms the validity of perturbation theory.
PH
In general, we are able to estimate the validity
of the two-loop approximation for all β functions by
calculating the corresponding ratios of two-loop con-
tributions to one-loop contributions at the maximum
of curve 2, where

λcrit = λmax2
run ≈ −7.13, g2

crit = g2
max2 ≈ 15.11.

(50)

We have the results

β
(2)
(µ2)

β
(1)
(µ2)

≈ −0.0637,
β

(2)
λ

β
(1)
λ

≈ 0.0412, (51)

β(2)
g

β(1)
g

≈ 0.2871.

Here, we see that all ratios are sufficiently small,
i.e., all two-loop contributions are small in relation
to one-loop contributions, confirming the validity of
perturbation theory in the two-loop approximation
considered in this model. The accuracy of deviation is
poorer (∼30%) for the βg function. But it is necessary
to emphasize that, in calculating the border curves 1
and 2 of Fig. 3, we have not used RGE (23) for the
monopole charge: there is no βg function in Eq. (41).
Therefore, the calculation of g2

crit according to Eq. (43)
does not depend on the approximation of the βg func-
tion. The above-mentioned βg function appears only
in the second-order derivative of Veff, which is related
to the monopole massm (see the next section).

Equations (5) and (47) yield

α−1
crit ≈ 5. (52)

This value is important for the phase transition at the
Planck scale predicted by the MPM.

5. TRIPLE POINT

In this section, we demonstrate the existence of
the triple point on the phase diagram of the HMM.

Considering the second derivative of the effective
potential,

V ′′
eff(φ2

0) ≡ ∂2Veff

∂(φ2)2 , (53)

we can calculate it for the RG-improved effective
potential (19)

V ′′
eff(φ2) =

V ′
eff(φ2)
φ2

+
(

−1
2
µ2
run (54)

+
1
2
d2µ2

run

dt2
+ 2

dµ2
run

dt

d logG
dt

+ µ2
run
d2 logG
dt2

+ 2µ2
run

(
d logG
dt

)2)G2

φ2
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+
(

1
2
dλrun
dt

+
1
4
d2λrun
dt2

+ 2
dλrun
dt

d logG
dt

+ 2λrun
d logG
dt

+ λrun
d2 logG
dt2

+ 4λrun

(
d logG
dt

)2)

G4(t).

Let us now consider the case where this second
derivative changes sign, giving a maximum of Veff
instead of theminimum atφ2 = φ2

0. Such a possibility
is shown in Fig. 2 by curve 2. Now, two additional
minima at φ2 = φ2

1 and φ2 = φ2
2 appear in our theory.

They correspond to two different confinement phases
for the confinement of electrically charged particles if
they exist in the system. When these two minima are
degenerate, we have the requirements

Veff(φ2
1) = Veff(φ2

2) < 0, (55)

V ′
eff(φ2

1) = V ′
eff(φ2

2) = 0,
which describe the border between the confinement
phases conf. 1 and conf. 2 presented in Fig. 4. This
border is given as a curve 3 at the phase diagram
(λrun; g4

run) drawn in Fig. 4. Curve 3 meets curve 1 at
the triple pointA. According to the illustration shown
in Fig. 2, it is obvious that this triple point A is given
by the following requirements:

Veff(φ2
0) = V ′

eff(φ2
0) = V ′′

eff(φ2
0) = 0. (56)

In contrast to the requirements

Veff(φ2
0) = V ′

eff(φ2
0) = 0 (57)

giving curve 1, let us now consider the joint solution
to the equations

Veff(φ2
0) = V ′′

eff(φ2
0) = 0. (58)

For the sake of simplicity, we have considered the
one-loop approximation. It is easy to obtain the
solution to Eq. (58) in the one-loop approximation by
using Eqs. (54), (36), (38), and (24)–(27):

F(λrun, g2
run) = 0, (59)

where
F(λrun, g2

run) = 5g6
run + 24π2g4

run + 12λrung4
run (60)

− 9λ2
rung

2
run + 36λ3

run + 80π2λ2
run + 64π4λrun.

The dashed curve 2 in Fig. 4 represents the solution
to Eq. (59), which is equivalent to Eqs. (58). Curve 2
goes very close to themaximum of curve 1. Assuming
that the position of the triple point A coincides with
this maximum, we consider the border between the
phase conf. 1 having the first minimum at nonzero φ1

with V min
eff (φ2

1) = c1 < 0 and the phase conf. 2 which
reveals two minima with the second minimum being
the deeper one and having V min

eff (φ2
2) = c2 < 0. This

border (described by curve 3 in Fig. 4) was calcu-
lated in the vicinity of the triple point A by means of
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2
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eff(φ
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Abrikosov–Nielsen–Olesen electric vortices are created
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Eqs. (55) with φ1 and φ2 represented as φ1,2 = φ0 ± ε
with ε� φ0. The result of such calculations yields
the following expression for curve 3:

g4
PT,3 =

5
2

(5λrun + 8π2)λrun + 8π4. (61)

Curve 3 meets curve 1 at the triple point A. The
piece of curve 1 to the left of the point A describes the
border between the Coulomb-like phase and phase
conf. 1. In the vicinity of the triple point A, the
second derivative V ′′

eff(φ2
0) changes sign, which leads

to the existence of the maximum at φ2 = φ2
0, in cor-

respondence with dashed curve 2 in Fig. 2. For this
reason, curve 1 in Fig. 4 does not describe a phase-
transition border from the point A to the point B
where curve 2 again intersects curve 1 at λ(B) ≈
−12.24. This intersection (again giving V ′′

eff(φ2
0) > 0)

occurs surprisingly fast. The right piece of curve 1 to
the right of the point B separates the Coulomb-like
phase and the phase conf. 2. But between the points
A and B, the phase-transition border goes slightly
above curve 1. This deviation is very small and cannot
be distinguished in Fig. 4.

It is necessary to note that only V ′′
eff(φ2) contains

the derivative dg2
run/dt. The joint solution to Eqs. (56)

leads to the joint solution of Eqs. (42) and (59). This
solution was obtained numerically and gave the fol-
lowing triple-point values of λrun and g2

run:

λ(A) ≈ −13.4073, g2
(A) ≈ 18.6070. (62)
2



360 LAPERASHVILI et al.
The solution in (62) demonstrates that the triple point
A exists in the very neighborhood of the maximum of
the curve given by (42). The position of this maximum
is determined by the following analytic expressions,
together with their approximate values:

λ(A) ≈ −4π2

3
≈ −13.2, (63)

g2
(A) = g2

crit|λrun=λ(A)
≈ 4

√
2

3
π2 ≈ 18.6. (64)

Finally, we can conclude that the phase diagram
shown in Fig. 4 gives such a description: there exist
three phases in the dual sector of the HSED—the
Coulomb-like phase and confinement phases conf. 1
and conf. 2.

The border 1, which is described by the curve given
by (42), separates the Coulomb-like phase (with
Veff ≥ 0) and confinement phases (with V min

eff (φ2
0) <

0). Curve 1 corresponds to the joint solution to
the equations Veff(φ2

0) = V ′
eff(φ2

0) = 0. The dashed
curve 2 represents the solution to the equations
Veff(φ2

0) = V ′′
eff(φ2

0) = 0. The phase border 3 in Fig. 4
separates two confinement phases. The following
requirements take place for this border:

Veff(φ2
1,2) < 0, Veff(φ2

1) = Veff(φ2
2), (65)

V ′
eff(φ2

1) = V ′
eff(φ2

2) = 0, V ′′
eff(φ2

1) > 0, V ′′
eff(φ2

2) > 0.

The triple point A is the boundary point of all three
phase transitions shown in the phase diagram in
Fig. 4. For g2 < g2

(A), the field system described by
our model exists in the confinement phase, where all
electric charges have to be confined.

Considering that monopole massm is given by the
expression

V ′′
eff(φ2

0) =
1

4φ2
0

d2Veff

dφ2
|φ=φ0 =

m2

4φ2
0

, (66)

we see that monopoles acquire zeromass in the vicin-
ity of the triple point A:

V ′′
eff(φ2

0A) =
m2

(A)

4φ2
0A

= 0. (67)

This result is in agreement with the result of compact
QED [34]: m2 → 0 in the vicinity of the critical point.
P

6. ABRIKOSOV–NIELSEN–OLESEN
STRINGS, OR THE VORTEX DESCRIPTION

OF THE CONFINEMENT PHASES

As was shown in the preceding section, two re-
gions between curves 1, 3 and 3, 1 given by the
phase diagram in Fig. 4 correspond to the existence
of the two confinement phases, different in the sense
that the phase conf. 1 is produced by the second
minimum, while the phase conf. 2 corresponds to
the third minimum of the effective potential. It is
obvious that, in our case, both phases have nonzero
monopole condensate at the minima of the effective
potential, where V min

eff (φ1,2 �= 0) < 0. For this rea-
son, the Abrikosov–Nielsen–Olesen (ANO) electric
vortices (see [35, 36]) may be created in both these
phases. Only closed strings exist in the confinement
phases of the HMM. The properties of ANO strings
in U(1) gauge theory were investigated in [37].

7. MULTIPLE-POINT MODEL
AND CRITICAL VALUES OF THE U(1)

AND SU(N) FINE-STRUCTURE
CONSTANTS

7.1. Antigrand Unified Theory

Grand Unified Theories were constructed with the
aim of extending the Standard Model (SM). The su-
persymmetric extension of the SM consists in taking
the SM and adding the corresponding supersym-
metric partners [38]. The minimal supersymmetric
standard model (MSSM) shows the possibility of the
existence of the Grand Unification point at µGUT ∼
1016 GeV [39]. Unfortunately, experimental data do
not presently indicate any manifestation of supersym-
metry. In this connection, AGUT was developed in
[20–25] as a realistic alternative to SUSY GUTs.
According to this theory, supersymmetry does not
come into existence up to the Planck energy scale (1).

The SM is based on the group
SMG = SU(3)c × SU(2)L × U(1)Y . (68)

Antigrand unified theory suggests that, at the scale
µG ∼ µPl = MPl, there exists the more fundamental
group G containing Ngen copies of the SM group
(SMG), that is,

G = SMG1 × SMG2 (69)

...× SMGNgen ≡ (SMG)Ngen ,

where Ngen denotes the number of quark and lepton
generations.

If Ngen = 3 (as AGUT predicts), then the funda-
mental gauge groupG is

G = (SMG)3 = SMG1st gen (70)

× SMG2nd gen × SMG3rd gen
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or the generalized one

Gf = (SMG)3 × U(1)f , (71)

which was suggested by the fitting the SM fermion
masses (see [22]).

Recently, a new generalization of AGUT was sug-
gested in [24],

Gext = (SMG× U(1)B−L)3. (72)

It takes into account the seesaw mechanism with
right-handed neutrinos, also gives a reasonable fit to
the SM fermion masses, and describes all neutrino
experiments known today.

The group Gf contains the following gauge fields:
3 × 8 = 24 gluons, 3 × 3 = 9W bosons, and 3 × 1 +
1 = 4 Abelian gauge bosons.

At first glance, this (SMG)3 ⊗ U(1)f group with
its 37 generators seems to be just one among many
possible SM gauge group extensions. However, it is
not such an arbitrary choice. There are reasonable
requirements (postulates) on the gauge group G (or
Gf , or Gext) that unambiguously specify this group.
It should obey the following postulates [the first two
are also valid for SU(5) GUT]:

(1) G or Gf should only contain transformations
converting the known 45 Weyl fermions (three gen-
erations of 15 Weyl particles each) counted as left-
handed ones, say, into each other unitarily, so that G
(orGf ) must be a subgroup of U(45): G ⊆ U(45).

(2) No anomalies, neither gauge nor mixed, occur;
AGUT assumes that only straightforward anomaly
cancellation takes place and forbids the Green–
Schwarz-type anomaly cancellation [40].

(3) AGUT should not unify the irreducible rep-
resentations under the SM gauge group called here
SMG [see Eq. (68)].

(4) G is the maximal group satisfying the above-
mentioned postulates.

There are five Higgs fields in the extended AGUT
with the symmetry group Gf [22]. These fields
break AGUT to the SM, which means that their
vacuum expectation values (VEVs) are active. The
extended AGUT with the symmetry group Gext given
by Eq. (72) was suggested in [24] with the aim of
explaining the neutrino oscillations. Introducing the
right-handed neutrino in the model, the authors of
this theory replaced postulate (1) and considered
U(48) group instead of U(45), so that Gext is a
subgroup of U(48): Gext ⊆ U(48). This group
ends up having seven Higgs fields (for details, see
[24]). A typical fit to the masses and mixing angles
for the SM leptons and quarks within Gext theory
showed that, in contrast to the old extended AGUT
with the symmetry group Gf , new results are more
encouraging.
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7.2. AGUT–MPMPrediction for the Planck Scale
Values of the U(1), SU(2), and SU(3)

Fine-Structure Constants

As was mentioned in the Introduction, the AGUT
approach is used in conjunction with the MPM [1–
4], which assumes the existence of the MCP at the
Planck scale.

The usual definition of the SM coupling constants,

α1 =
5
3

α

cos2 θMS

, α2 =
α

sin2 θMS

, (73)

α3 ≡ αs =
g2
s

4π
,

where α and αs are the electromagnetic and SU(3)
fine-structure constants, respectively, is given in the
modified minimal subtraction scheme (MS). Here,
θMS is the Weinberg weak angle in theMS scheme.
With the aid of RGE with experimentally established
parameters, it is possible to extrapolate the exper-
imental values of three inverse running constants
α−1

i (µ) [here, µ is an energy scale and i = 1, 2, 3
correspond to U(1), SU(2), and SU(3) groups of the
SM] from the electroweak scale to the Planck scale.
The precision of the LEP data allows one to make
this extrapolation with small errors (see [39]). As-
suming that these RGE for α−1

i (µ) contain only the
contributions of the SM particles up to µ ≈ µPl and
performing an extrapolation with one Higgs doublet
under the assumption of a “desert,” one can obtain
the following results for the inverses α−1

Y,2,3 (here,
αY ≡ (3/5)α1) [1] (compare with [39]):

α−1
Y (µPl) ≈ 55.5, α−1

2 (µPl) ≈ 49.5, (74)

α−1
3 (µPl) ≈ 54.0.

The extrapolation of α−1
Y,2,3(µ) up to the point µ = µPl

is shown in Fig. 5.
According to the AGUT, the fundamental groupG

(or Gf , or Gext) undergoes, at some point µ = µG <
µPl (but near µPl), a spontaneous breakdown to the
diagonal subgroup,

G −→ Gdiag.subgr = {g, g, g||g ∈ SMG}, (75)

which is identified with the usual (low-energy) group
SMG. The point µG ∼ 1018 GeV is also shown in
Fig. 5, together with the region of G theory where the
AGUT works.

The AGUT prediction of the values of αi(µ) at
µ = µPl is based on the MPM assumption about the
existence of the phase-transition boundary MCP at
the Planck scale and gives these values in terms of
the corresponding critical couplings αi,crit [1, 20, 21]:

αi(µPl) =
αi,crit

Ngen
=
αi,crit

3
for i = 2, 3, (76)
2
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and

α1(µPl) =
2α1,crit

Ngen(Ngen + 1)
=
α1,crit

6
(77)

for U(1).

There exists a simple explanation of relations (76) and
(77). As was mentioned above, the group G breaks
down at µ = µG. It should be said that, at the very
high energies µG ≤ µ ≤ µPl (see Fig. 5), each gen-
eration has its own gluons, own W bosons, etc. The
breaking makes only a linear combination of a certain
color combination of gluons which exists below µ =
µG and down to low energies. We can say that the
phenomenological gluon is a linear combination (with
amplitude 1/

√
3 for Ngen = 3) for each of the AGUT

gluons of the same color combination. This means
that the coupling constant for the phenomenological
gluon has a strength that is

√
3 times smaller if, as

we effectively assume, three AGUT SU(3) couplings
are equal to each other. Then, we have the following
formula relating the fine-structure constants of G
theory (e.g., AGUT) to low-energy surviving diagonal
subgroupGdiag.subg ⊆ (SMG)3 given by Eq. (75):

α−1
diag,i = α−1

1st gen,i + α−1
2nd gen,i + α−1

3rd gen,i. (78)

Here, i = U(1), SU(2), SU(3), and i = 3 means
that we talk about the gluon couplings. For non-
Abelian theories, we immediately obtain Eq. (76) from
Eq. (78) at the critical point (MCP).

In contrast to non-Abelian theories, in which the
gauge invariance forbids the mixed (in generations)
PH
terms in the Lagrangian of G theory, the U(1) sector
of AGUT contains such mixed terms:

1
g2

∑

p,q

Fµν,pF
µν
q =

1
g2
11

Fµν,1F
µν
1 (79)

+
1
g2
12

Fµν,1F
µν
2 + · · · +

1
g2
23

Fµν,2F
µν
3 +

1
g2
33

Fµν,3F
µν
3 ,

where p, q = 1, 2, 3 are the indices of three genera-
tions of the AGUT group (SMG)3. Equation (79)
explains the difference between expressions (76)
and (77).

It was assumed in [1] that theMCP values αi,crit in
Eqs. (76) and (77) coincide with (or are very close to)
the triple-point values of the effective fine-structure
constants given by the generalized lattice SU(3),
SU(2), and U(1) gauge theories [11–14] described
by Eqs. (3) and (4). Also, the authors of [1] used the
assumption that the effective αcrit does not change
(at least too much) along the entire borderline 3 of
Fig. 1 for the phase-transition Coulomb confinement
(for details, see in [1]).

7.3. Multiple-Point Model and Behavior
of the Electric Fine-Structure Constant near

the Phase-Transition Point
The authors of [11–14] were not able to obtain the

lattice triple-point values of αi,crit by theMonte Carlo
simulationmethod. Only the critical value of the elec-
tric fine-structure constant α was obtained in [14] in
compact QED described by the simple Wilson action
corresponding to the case of γlat = 0 in Eq. (4). The
result of [14] for the behavior of α(β) in the vicinity
of the phase-transition point βT is shown in Fig. 6a
for the Wilson and Villain lattice actions. Here, β ≡
βlat = 1/e20, and e0 is the bare electric charge. The
Villain lattice action has the form

SV = (β/2)
∑

p

(Θp − 2πk)2, k ∈ Z. (80)

Figure 6b demonstrates a comparison of the functions
α(β) obtained by the Monte Carlo method for the
Wilson lattice action and by theoretical calculation
of the same quantity. The theoretical (dashed) curve
was calculated by the so-called Parisi improvement
formula [41]

α(β) = [4πβWp]−1. (81)

Here, Wp = 〈cos Θp〉 is the mean value of the pla-
quette energy. The corresponding values of Wp were
taken from [13].

According to Fig. 6b, we have
α−1
crit,theor ≈ 8. (82)

This result does not agree with the lattice and the
HMM result (52). The deviation of the theoretical
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Fig. 6. (a) Renormalized electric fine-structure constant
plotted versus β/βT for the (circles) Villain action and
(crosses) Wilson action. The points were obtained in
[14] by the Monte Carlo simulation method for compact
QED. (b) Behavior of the effective electric fine-structure
constant in the vicinity of the phase-transition point for
the case of the lattice Wilson action. The dashed curve
corresponds to the theoretical calculations by the Parisi
improvement formula [41].

calculations from the lattice ones has the following
explanation. The Parisi improvement formula (81) is
valid in the Coulomb phase, where themass of artifact
monopoles is infinitely large and where the photon is
massless. But in the vicinity of the phase-transition
(critical) point, the monopole mass m tends to zero
and the photon acquires a nonzero mass (m0 �= 0).
This phenomenon leads to the “freezing” of α at
the phase-transition point: the effective electric fine-
structure constant is nearly constant in the confine-
ment phase and approaches its maximal value α =
αmax. The authors of [42] predicted αmax = π/12 ≈
0.26 due to the Casimir effect (see also [3]). The
analogous freezing of αs was considered in [43] in
QCD. We also see that Fig. 6a demonstrates the
tendency toward the freezing of α.

Let us now consider α−1
Y (≈ α−1) at the point µ =

µG shown in Fig. 5. If the point µ = µG is very
close to the Planck scale µ = µPl, then, according to
Eqs. (74) and (77), we have

α−1
1st gen ≈ α−1

2nd gen ≈ α−1
3rd gen ≈ α−1

Y (µG)
6

≈ 9, (83)

which is very close to the value in (82). This means
(see Fig. 6b) that, in the U(1) sector of G theory, we
have α near the critical point; therefore, we can expect
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
the existence of a MCP at the Planck scale. As a
consequence of such a prediction, we have to expect
a change in the evolution of α−1

i (µ) in the region µ >
µG shown in Fig. 5 by dashed lines. Instead of these
dashed lines, we have to see a decrease in α−1

i (µ) ap-
proaching theMCP at the Planck scale, where αcrit is
close to the value in (52) obtained in the present study.
But this is an aim of our future investigations based
on the idea that the MCP governs the evolution of all
fine-structure constants in the SM and beyond it.

8. CONCLUSION

In the present study, we have considered the dual
Abelian Higgs model of scalar monopoles reproduc-
ing a confinement mechanism in the lattice gauge
theories. Using the Coleman–Weinberg idea of the
RG improvement of the effective potential [18], we
have considered this potential with β functions cal-
culated in the two-loop approximation. The phase
transition between the Coulomb-like and confine-
ment phases has been investigated in U(1) gauge
theory by the method developed in the MPM, where
degenerate vacua are considered. A comparison of the
results αcrit ≈ 0.17 and α̃crit ≈ 1.48 obtained in the
one-loop approximation with the results αcrit ≈ 0.208
and α̃crit ≈ 1.20 obtained in the two-loop approxi-
mation demonstrates that the critical values of the
electric and magnetic fine-structure constants cal-
culated in the two-loop approximation of the HMM
agree with the lattice result [14]: αlat

crit ≈ 0.20 ± 0.015
and α̃lat

crit ≈ 1.25 ± 0.10. Comparing the one-loop and
two-loop contributions to the β functions, we have
also demonstrated the validity of perturbation the-
ory in solving the phase-transition problem in U(1)
gauge theory.

In the second part of our article, we have compared
the prediction of AGUT and the MPM for the Planck
scale values of α−1

i (µ) with the lattice and HMM
results. Such a comparison is very encouraging for
the MPM.
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Abstract—Isomeric ratios are investigated in simple photonuclear reactions occurring on targets in the
mass range 90–180 amu that are irradiated with 20- to 40-MeV photons. The results of measurements
are compared with estimates based on the statistical model of deexcitation of compound nuclei. The
isomeric ratios in question are calculated with allowance for special features of photonuclear reactions
induced by bremsstrahlung photons and for the properties of nuclear transitions in residual products. The
results of these calculations, involving no free parameters, agree satisfactorily with experimental data.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The probability of formation of high-spin nuclear
states in the interaction of accelerated particles with
nuclei is extremely sensitive to the energy and spin
features of excited nuclei and to the mechanism of
their deexcitation.

Investigation of such processes provides the pos-
sibility of exploring the properties of intermediate nu-
clear states and determining parameters characteriz-
ing them (spin–parities, moments of inertia, excita-
tion energies, distributions of nuclear-level density).

In reactions involving the emission of a small
number of particles, it is easier to obtain reliable
information of this kind.

Photonuclear reactions are characterized by pure
electromagnetic interaction and by resonance pho-
toabsorption at energies below 50MeV [1, 2]. In con-
trast to charged particles, photons interacting with
nuclei do not have to overcome a Coulomb barrier, so
that the excitation of a nucleus formed is completely
determined by the energy of the absorbed photon. In-
vestigation of absorption processes at such energies
that is usually based on the long-wave approxima-
tion and on a partial-wave analysis [1, 2] makes it
possible to determine the features of the compound
system formed. This simplifies the reaction pattern by
imposing constraints on the spin and energy features
of excited nuclear systems. In the energy range 10–
40 MeV, simple processes involving the emission of
not more than three particles are dominant channels
of photon interaction with light and medium-mass

1)Yerevan State University, ul. A. Manukyana 1, Yerevan,
375049 Armenia.
1063-7788/02/6502-0365$22.00 c©
nuclei. In this energy range, the properties of reaction
products are usually interpreted on the basis of the
statistical model and the compound-nucleus formal-
ism [1, 3–5].

Experimental inquiries into this region include in-
vestigation of the probability of formation of long-
lived high-spin nuclear states. The ratio of the yields
of high-spin and low-spin states (isomeric ratio) is
controlled by the following factors: the spin of the
target nucleus; the energy and spin distributions of
the density of excited states; the number, the type, and
the energy of particles emitted from the compound
nucleus; and the spin and the energy features of the
isomeric and the ground state. Calculations based on
the statistical model and a comparison with experi-
mental results make it possible to assess the poten-
tial of the model approximations used and to obtain
information about the character of spin distributions
of nuclear levels [3, 5, 6].

Here, the precision of experimental information
guarantees the reliability of the results of such an
analysis. Unfortunately, the experimental data pub-
lished so far in the literature are sometimes contra-
dictory because the contribution of radioactive prede-
cessors was either disregarded or taken into account
incompletely. In the future, the experimental database
may also prove to be somewhat “outdated” because
the sensitivity of detecting facilities is being improved
and because the spectroscopic features of nuclei are
being refined.

The use of precise calculated or experimental val-
ues of isomeric ratios plays a substantial role for a
number of applied problems as well.
2002MAIK “Nauka/Interperiodica”
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Table 1

Target Isotopic composition Reaction type

Zr Natural 90Zr(γ, n)

Ag » 107Ag(γ, n)
113In » 113In(γ, n)
124Sn Enriched 124Sn(γ, n)
112Sn » 112Sn(γ, p)
118Sn » 118Sn(γ, p)
120Sn » 120Sn(γ, p)

Hf Natural 179Hf(γ, p)

W » 180W(γ, n)

Cd » 116Cd(γ, n)

2. EXPERIMENTAL PROCEDURE

The irradiations were carried out at the linear
electron accelerator-injector of the Yerevan syn-
chrotron at accelerated-electron energies of 20, 30,
and 40 MeV. For targets, we used a set of elements of
natural and enriched isotopic composition (Table 1).

The thicknesses of the targets used did not ex-
ceed 0.1 r.l. The gamma radiation from radioactive
products was measured by a semiconductor detector
from ultrapure germanium, its resolution being about
0.25% at an energy of 1330 keV (60Co line). As
a reference reaction, we chose 65Cu(γ, n)64Cu [7]
and measured its yield. In processing the results of
measurements, we employed the most recent spec-
troscopic data quoted on the Internet (Nuclide Infor-
mation, Nuclear Wallet Card).

The isomeric ratios were calculated by formulas
involving the ratio of the areas under the peaks of
measured γ transitions and taking into account, if
necessary, the contribution of the isomeric state as
the radioactive predecessor [8, 9]:

σm

σg
=

[
λg(1 − eλmt1)eλmt2(1 − eλmt3)
λm(1 − eλgt1)eλgt2(1 − eλgt3)

(1)

×
(
kmNgηmεm
kgNmηgεg

− p λg

λg − λm

)

+ p
λm

λg − λm

]−1

.

Here, N is the area under the photopeak, t1 is the
time of irradiation, t2 is the time of exposure between
the end of irradiation and the beginning of measure-
ments, t3 is the time of measurements, λ is the decay
constant, η is the relative intensity of the γ transitions
with allowance for the effect of internal conversion, k
is the coefficient of photon absorption in target and
detector materials, ε is the efficiency of measurements
of the energies for recorded γ transitions, and p is the
P

contribution of the isomeric state. The subscripts m
and g label quantities referring to the isomeric and the
ground state, respectively.

The formula becomes more cumbersome if it is
necessary to take into account the parent contribu-
tion from the radioactive predecessor to the formation
of both the isomeric and the ground state.

Below, we present the results of a data treatment
and of a comparison with those known from the liter-
ature:

(i) In the reaction 90Zr(γ, n)89m,gZr (the contri-
bution of the metastable state to the ground state
amounts to 94%), the isomeric ratio agrees with the
results of measurements published in [6, 10–12].

(ii) In the reaction 107Ag(γ, n)106m,gAg (the yields
of the metastable and the ground state were consid-
ered to be independent), the agreement with data from
the literature [11] is attained within the statistical
errors.

(iii) In the reaction 112Sn(γ, p)111m,gIn (the par-
ent contribution from 111Sn to the formation of the
metastable state is 0.2%, while that to the forma-
tion of the ground state is 99.8%; the isomeric state
is converted completely into the ground state, and
the isomeric ratio was calculated by a complicated
formula that takes into account the contribution of
both parents), the data differ substantially from the
results presented in [11, 13, 14]; this difference can
be explained by the contribution from 111Sn, whose
yield is approximately an order of magnitude higher
than that from the reaction under investigation.

(iv) In the reaction 113In(γ, n)112m,gIn (the contri-
bution from the metastable state to the ground state
amounts to 100%), the result agrees with data from
[6, 10, 11].

(v) In the reaction 116Cd(γ, n)115m,gCd (the con-
tribution from the radioactive predecessor 115gAg to
the ground-state yield amounts to 94.2%, while that
to themetastable-state yield is 5.8%), the value of the
isomeric ratio agrees with data from [10, 11].

(vi) In the reaction 118Sn(γ, p)117m,gIn (the con-
tribution from the metastable state to the ground
state amounts to 47.1%), the value of the isomeric
ratio agrees within the two statistical errors with data
from [9] and differs from the values quoted in [11, 15],
where the contribution from the isomeric state seems
to be disregarded.

(vii) In the reaction 120Sn(γ, p)119m,gIn (the con-
tribution from themetastable level to the ground state
amounts to 5.6%), the isomeric ratio differs from the
data presented by Gangrsky et al. [15], who disre-
garded the parent contribution of the isomeric state.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 2. Isomeric ratios

Target nucleus
Product
nucleus

Isomeric ratio, MeV

20 30 40
120Sn(0+)(γ, p) 119In m(1/2−) 0.49∗∗ 0.65∗∗ 0.7∗∗

g(9/2+) 0.53 ± 0.05 0.68 ± 0.07 0.68 ± 0.07
118Sn(0+)(γ, p) 117In m(1/2−) 0.44 0.63∗∗ 0.82∗∗

g(9/2+) 0.66 ± 0.07 0.85 ± 0.08
112Sn(0+)(γ, p) 111In m(1/2−) 1.26∗ 1.84 1.9

g(9/2+) ≤ 2
179Hf(9/2+)(γ, p) 178Lu m(9−) 0.34 0.38∗∗ 0.44

g(1+) 0.36 ± 0.04
90Zr(0+)(γ, n) 89Zr m(1/2−) 0.57∗∗ 0.575∗∗ 0.6∗∗

g(9/2+) 0.85 ± 0.04
107Ag(1/2−)(γ, n) 106Ag m(6+) 0.0147∗∗ 0.016∗∗ 0.0197∗∗

g(1+) 0.015 ± 0.0045 0.010 ± 0.002
113In(9/2+)(γ, n) 112I m(4+) 1.9∗∗ 2.37∗∗ 2.5∗∗

g(1+) 2.21 ± 0.20
124Sn(0+)(γ, n) 123Sn m(3/2+) 0.2 0.32∗∗ 0.5

g(11/2−) 0.33 ± 0.10 0.49 ± 0.30
180W(0+)(γ, n) 179W m(1/2−) 1.45∗∗ 1.72∗∗ 1.82∗∗

g(7/2−) 1.93 ± 0.20
85Rb(7/2−)(γ, n)∗ 84Rb m(6+) 0.23∗∗ 0.3 0.352

g(2+) 0.31 ± 0.04 0.34 ± 0.06 0.44 ± 0.08
116Cd(0+)(γ, n) 115Cd m(11/2−) 0.13∗∗ 0.178∗∗ 0.179∗∗

g(1/2+) 0.148 ± 0.020
130Te(0+)(γ, n)∗ 129Te m(11/2−) 0.43∗∗ 0.56∗∗ 0.58∗∗

g(3/2+) 0.43 ± 0.06 0.48 ± 0.02 0.55 ± 0.11

∗ Data from [16].
∗∗ Data calculated with the aid of photon strength functions [17].
(viii) In the reaction 124Sn(γ, n)123m,gSn (the
contributions from the metastable and the ground
state were considered to be independent), the iso-
meric ratio agrees with the results of measurements
reported in [11].

(ix) In the reaction 179Hf(γ, p)178m,gLu, the iso-
meric and the ground state are considered to be
independent; the data agree satisfactory with those
from [6].

(x) For the reaction 180W(γ, n)179m,gW (the con-
tribution from the metastable state to the ground
state is 99.7%), there are no corresponding experi-
mental data.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
From the results of our measurements (Table 2)
and also from data reported previously in [16], it can
be seen that, in the range 20–40 MeV, the isomeric
ratio increases somewhat with incident-photon en-
ergy.

The dependence of this type means that, with in-
creasing endpoint bremsstrahlung energy, the yields
of high-spin states grow faster than the yield of low-
spin states.

3. CALCULATION OF ISOMERIC RATIOS

A method that can be used to analyze the ratio of
the cross sections for the formation of isomeric pairs
2
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in nuclear reactions was proposed by Huizenga and
Vandenbosch [3] and is based on the use of the statis-
tical model and the concept of a compound nucleus.
By considering, within this model, the probability of
emission of one or two nucleons with the subsequent
cascade of photons, one can reproduce the interaction
pattern and estimate the possibility of population of
high-spin states. The density of the spin distribution
of nuclear levels and its variation during the reaction
form a key element of the calculations. Huizenga
and Vandenbosch introduced a number of free pa-
rameters associated with the properties of cascade γ
transitions, nuclear levels, and the spin distributions
of intermediate states. In more recent studies, the
applicability range of this formalism was considerably
extended and the computational method was stan-
dardized by introducing the effect of parity, the pairing
of nucleons, and the admixture of higher multipoles
in the formation and deexcitation of the compound
nucleus and by taking into account the effect of the
features of nuclear states in that section of the discrete
spectrum where the last transitions occur [17, 18].

In this study, we have calculated isomeric states
on the basis of the method proposed in [18]. In con-
sistently applying the statistical model, we relied on
the recursion relation for calculating the probability
of population of intermediate nuclear levels, took into
account the specific properties of nuclear γ transitions
at the final stage of the reaction, and eliminated free
parameters. Investigation of photonuclear reactions
induced by bremsstrahlung photons presumes an ad-
ditional procedure for calculating the excitation of the
compound nucleus.

The mean excitation energy of the compound nu-
cleus was calculated with allowance for the mag-
nitude, the shape, and the position of the giant-
resonance function describing the photoabsorption
cross section [1, 4] and also for the continuous energy
spectrum of incident photons. Under the assumption
of dipole photon absorption, the absorption cross sec-
tion was taken in the form of the Lorentzian function;
that is,

σ(Eγ) = C

[
E2

m + 1
4Γ2
]

(Eγ − Em)2 + 1
4Γ2

, (2a)

where C is a constant involving some constant fac-
tors. The position of the maximum of the curve was
determined within the hydrodynamic model (Em =
82A−1/3), while the FWHM was approximated by a
mean value of Γ ∼ 5 MeV. Our results proved to be
weakly sensitive to variations in the position of the
resonance maximum and width within 1 to 2 MeV. In
PH
calculating the mean excitation energy

Ē∗ =

Emax
γ∫

Ethr

Eγσ(Eγ)N(Eγ , E
max
γ )dEγ

Emax
γ∫

Ethr

σ(Eγ)N(Eγ , Emax
γ )dEγ

, (2b)

where Ethr is the energy threshold of the reaction, the
energy distribution of photons in the bremsstrahlung
spectrum was approximated as N(Eγ , E

max
γ ) ∼

const · (1/Eγ), the endpoint energy being set to
Emax

γ = 20, 30, or 40 MeV. In response to a variation
of the endpoint bremsstrahlung energy in the range
20–40 MeV, the excitation energy of nuclei increased
by 2 to 3 MeV, on average.

The spin and the parity of the compound nucleus
were determined by the multipolarity of the absorbed
photon; in the case of dipole photon absorption, the
spins of product nuclei take the values of Jc = J ,
J ± 1. In the calculations, we used the normalized (to
unity) spin distribution of compound nuclei instead of
the absolute values of the absorption cross sections.

Nucleon emission is accompanied by a change
in the energy and the spin distribution of compound
nuclei. In the case of (γ, n) reactions, the effective
excitation energy that corresponds to the beginning
of photon emission was determined with allowance
for the threshold energy (Ethr) of the reaction and the
mean energy (εn) of an evaporated neutron: E∗

eff =
Ē∗ − Ethr − εn.

According to the evaporation model, neutrons are
emitted by an excited nucleus with a mean energy
εn equal to 2t, where t is the nuclear temperature
satisfying the equation at2 − 4t = E∗

eff [19], with a
being the level-density parameter determined directly
in terms of the density of single-particle states at
the Fermi surface; in our calculations, we used the
values of a = A/8, A/9, and A/10. The results of
the calculations changed insignificantly in response
to a variation in the parameter a within the above
range, and the mean energy of the neutrons was
about 1 MeV. The calculations of the transmission
coefficients revealed that, in the reactions under in-
vestigation, the neutrons are emitted predominantly
in the S-wave state; the relative probability of the
emission of neutrons in the P- and D-wave state is
much less.

In determining the mean energy of emitted pro-
tons, we took additionally into account the effect of
the Coulomb barrier; as a result, there arose a non-
negligible probability of the emission of protons in the
P- and theD-wave state in relation to that in the S-
wave state [19]. In this case, the calculation of the
effective excitation energy of a nucleus must also take
into account the centrifugal energy.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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The parity of the nucleus at the onset of deex-
citation was determined with allowance for internal
nucleon parity.

At the stage of the process involving the cascade of
γ transitions eventually leading to the metastable or
the ground state, the density of the spin distribution
of nuclear levels is the most substantial factor deter-
mining the probability of population of intermediate
nuclear states. In the calculations, we used the spin
part of the Bethe–Bloch formula,

ρ(J) = ρ(0)(2J + 1) exp
[

−(J + 1/2)2

2σ2

]

, (3)

where σ is the spin-cutoff parameter given by σ2 =
0.00889

√
aE∗

effA
2/3.

For the population of intermediate states, we fur-
ther used the recursion relation proposed by Arifov
et al. [18], who analyzed data on proton–nucleus
reactions. In addition to the conditions of the calcu-
lations in [18], we took into account the change in the
excitation energy and in the parameters associated
with it at each stage of the γ cascade.

The basic points of the calculations can be formu-
lated as follows:

(a) All γ transitions, including the last “crucial”
one, are of the E1 type.

(b) The transition probabilities are determined by
the spin part of the density of the distribution of levels.

(c) The total multiplicity of photons is calculated
on the basis of data including the excitation energy
of the compound nucleus and the mean energy of the
emitted photon:

N̄γ =

√
aE∗

eff

2
(4)

{in this case, we consider various assumptions
on the mean energy Ē of emitted photons: Ē =
4
(
E∗

eff/a− 5/a2
)1/2 and Ē = [4(E∗

eff − 1)]1/2}.

(d) The excitation energy E∗
eff and, accordingly,

the energy Ē of emitted photons are determined at
each stage of the cascade.

(e) The last “crucial” level from which the popu-
lation of the ground or the isomeric state occurs is
characterized by an excitation energy E∗

eff not higher
than 2 MeV and by a change of (−1)Nγ−1 in parity
upon photon emission.

(f) At the last stage of population, we take into
account the known experimental fact that the E1
transitions from lower levels are suppressed in rela-
tion to E2 transitions and the spectroscopic features
of specific nuclear levels from Tables 1 and 2 and
from the Internet. The relative probability of radiative
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
transitions was estimated by means of the strength
functions in the form [17]

SE1
γ = 4 × 10−9A2/3 MeV−3, (5)

SE2
γ = 2 × 10−14A4/3 MeV−5,

SM1
γ = 10−8A2/3 MeV−3.

The results of the calculations (Table 2) agree
satisfactorily with experimental data. With increasing
incident-photon energy (from 20 to 40MeV), the iso-
meric ratios somewhat grow, which is also observed
in experimental data. Usually, the energy dependence
of yields in reactions induced by bremsstrahlung pho-
tons is less pronounced.

As can be seen from a comparison of the calculated
and experimental data, the deexcitation of compound
nuclei can be described satisfactorily within the as-
sumptions adopted here. It should be emphasized
that the agreement is attained without introducing
free parameters. However, we admitted some uncer-
tainty in choosing the mean number of γ transitions
(within N̄γ ± 1), because it can prove to be fractional
according to relation (4).

On average, the spin-cutoff parameter σ char-
acterizing the spin distributions of excited nuclei
changed from 3 to 4 for a = A/8, A/9, A/10.

The parameter σ is related to the moment of inertia
of the nucleus involved by the equation

I =
2πσ2t

h2
. (6)

On the basis of the values found here for the pa-
rameter σ, we have calculated the moments of inertia
for nuclei in the excited state. On average, the results
did not exceed 0.71Irb, where Irb = (2/5)MAR2 is
the rigid-body moment of inertia for a spherical nu-
cleus of mass number A and radius R = 1.2r0A1/3,
M being the nucleon mass.

The conclusions drawn from our analysis per-
formed are compatible with data obtained by investi-
gating the isomeric ratios in other processes proceed-
ing through a compound nucleus [20, 21].
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Abstract—The asymptotic normalization constant C2
T for the triton is calculated within a two-body

model for potentials characterized by a Yukawa-type short-distance behavior and the long-distance
asymptotic behavior V (r) → const× r−ν exp(−µr), where ν = 0, 1, 2. It is shown that C2

T decreases
monotonically with increasing ν and that it smoothly decreases with increasing a2κ, where a2 is the
doublet scattering length and κ is the triton wave number. This behavior is consistent with effective-
range theory taking into account the pole of k cot δ and with the general trend of Faddeev calculations.
It is established, however, that some calculations reported previously and performed on the basis of the
N/D method yield, on the contrary, a sharp growth of C2

T . The results of the calculation of the form
factor for the T → d + n vertex are compared with the results of the well-known three-body calculation.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Information about the T → d + n vertex function
can be obtained by solving Faddeev equations for the
three-body problem as formulated for the bound-state
triton T . However, the results of three-body calcula-
tions with a realisticNN interaction poorly reproduce
even the triton binding energy εT . These results
greatly depend on input data. The doublet nd scat-
tering length a2 is an especially sensitive quantity—it
can change not only in magnitude but also in sign. In
view of this, it is of interest to calculate the T → d +n
vertex function on the basis of some model that would
provide correct values (compatible with experimental
data) for the triton binding energy εT and for the
doublet nd scattering length a2. This is of paramount
importance in applications where the cross sections
for nuclear reactions are calculated with the aid of
Feynman diagrams involving this vertex function.

As was shown in investigations performed in re-
cent years, the low-energy properties of the doublet
nd system are successfully described on the basis of
the two-body potential model proposed for the first
time by Petrov [1] and by Tomio et al. [2].

Petrov [1] considered the Hulthén potential
V (r) = −V0/[exp(µr) − 1] (1)

and calculated the nuclear structure constantG2
T . He

showed that the model in question reproduces fairly
well the trend of variations in the results of Faddeev
calculations for the vertex functions at various values
of a2 and εT , which were used to fit the potential
parameters. Later on, it was shown [3] that, at
1063-7788/02/6502-0371$22.00 c©
the experimental values of a2 = 0.65 fm and εT =
8.48 MeV, the model value of G2

T for the Hulthén
potential complies well with the result produced by
generalized effective-range theory [4] taking into ac-
count the pole of k cot δ and employing data from a
partial-wave analysis of nd scattering. In [3, 5], it
was shown that, within the same model, other low-
energy features of the doublet nd system can also
be described satisfactorily without additionally fitting
the parameters involved. These features include the
position of the virtual pole (the binding energy εT ∗ of
the virtual triton T ∗) and the corresponding nuclear
vertex constant (G2

T ∗) [5], as well as the position of
the pole of k cot δ—that is, the position of the zero of
the s-wave partial scattering amplitude f(k) [3].

Two potentials were proposed in [2]; of these, one
(version В) has the form

V (r) = −V0(R/r)2[sin(r/R)]2 exp(−µr). (2)

The potential (2) involves three parameters (V0, R,
and µ), which were fitted in [2] to three experimental
values, those of a2 and εT and that of the binding
energy of the 3He nucleus. Tomio et al. [2] aimed
at obtaining a theoretical estimate of the “nuclear”
doublet pd scattering length. Following [6], they sup-
plemented the potential with the factor 1/r2, which
leads to a long-range interaction when µ → 0. The
oscillating factor in (2) ensures that the potential is
regular at the origin of coordinates. In our opinion,
the oscillations of the potential in (2) does not seem
natural. An acceptable behavior of V (r) at the origin
2002MAIK “Nauka/Interperiodica”
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can be obtained, for example, with the aid of the factor
[1 − exp(−r/R)], which is used in the present study.

In [3], we calculated all of the aforementioned
quantities for the Yukawa potential

V (r) = −V0(µr)−1 exp(−µr) (3)

and also achieved a fairly good agreement both with
experimental data and with the results of the cal-
culations with the Hulthén potential. In [7], we
computed all these features of the doublet nd system
using the potential (2) and refitted the parameters of
this potential to the experimental values of a2 and
εT . The results of the calculations with the po-
tentials (1)–(3) were compared over a broad range
of values of the interaction-strength parameter g =
K2

0/µ
2, where K2

0 = (2m12/�
2)V0 and m12 is the

reducedmass of the system (for the nd system,m12 =
(2/3)m, withm being the nucleon mass). In order to
perform a systematic analysis of the models featuring
the potentials (1)–(3) at the same level (that is, with
two parameters), µR was fixed in [7] at the value of
0.2646, as in [2]. It turned out that C2

T takes nearly
the same values for the case of the Hulthén potential
(1) and for the case of the potential (2). On this basis,
we concluded in [7] that the quality of description of
C2

T is not affected significantly by taking into account
the Faddeev character of the asymptotic behavior of
the potential; therefore, this is not very advantageous.
The Hulthén potential (1) and the Yukawa poten-
tial (3) belong to the class of potentials featuring
screened Coulomb interaction, since their behavior at
the origin (V (r) ∼ 1/r) is analogous to the Coulomb
behavior; on the contrary, the potential (2) is finite
at the origin. With the aim of singling out effects of
long-range interaction, we consider here the potential

V (r) = −(V0/βµr
2)[1 − exp(−βr)] exp(−µr), (4)

which is free from oscillations. The potential (4) has a
correct Faddeev asymptotic behavior, but, in contrast
to what we have for the potential in (2), its behavior
at the origin is characteristic of screened Coulomb
potentials. By analogy with the potential in (2), we
fixed, for the potential (4), the value of M/R ∼= 3.5
(M = 1/µ, R = 1/β).

The possibility of using a model that involves only
two adjustable parameter is closely related to the
existence of correlations between the low-energy fea-
tures of the doublet nd system. Investigation of such
correlations has a long history, which includes, in
particular, the Phillips graph [8] for the dependence of
the triton binding energy εT on the doublet scattering
length a2. This dependence, which is nearly linear,
is based on the results of numerous Faddeev calcu-
lations. Another example is provided by the Girard–
Fuda graph [9] for the analogous a2 dependence of the
position of the pole in the energy of the virtual triton
PH
T ∗. Correlations between a2 and the asymptotic nor-
malization parameter C2 (or the vertex constant G2)
for T and T ∗ were considered in a number of studies.
For the triton, this was done in [9, 10] by using the
N/Dmethod. The a2 dependence ofC2

T was analyzed
in [9] at the fixed experimental value of εT , and the
analogous dependence of the nuclear vertex constant
G2

T was considered in [10].
In the present study, we continue exploring the

correlation between C2
T and the product a2κ1, where

κ1 =
√

(4/3) (m/�2) (εT − εd), with εd being the
deuteron binding energy. For the aforementioned po-
tentials (1)–(4), which possess the scaling property,
it is natural to investigate the function C2

T (a2κ1),
since the quantities C2

T and a2κ1 are invariant under
the scaling transformation r → γr, p → γ−1p of the
coordinates r and momenta p (see [3]). This prop-
erty of the potentials makes it possible to consider
combinations of physical quantities (they can include
potential parameters) that are invariant under scaling
transformations andwhich depend only on the scaling
parameter g of the excitation strength.

Specifically, we calculate the scaling-invariant
quantities

aκ1, κ1/µ, κ2/µ, κ0/µ,CT , Cν . (5)

In addition to the asymptotic normalization coeffi-
cients CT and Cν , these include quantities propor-
tional to κn = (2m12εn)1/2/� and κ0 =
(2m12E0)1/2/�, where ε1 and ε2 are the binding
energies for, respectively, the ground (real) and the
first excited (virtual in the case being considered)
state (the corresponding principal quantum numbers
are n = 1 and 2) and−E0 is the position of the pole of
the function k cot δ in the complex plane of the energy
E, with E and k = (2m12E)1/2/� being the energy
and the momentum of the relative motion of d and n.
The two-body energy E is related to the three-body
energy E3 by the obvious equation E3 = E − εd. The
positions of the poles of the scattering amplitude at
E = −εn for the bound (BT = ε1 = εT − εd) and the
virtual (Bν = ε2 = εν − εd) state and the position of
the pole (−E0) of the function k cot δ are reckoned
from the threshold for the nd-scattering channel at
E3 = −εd. In order to avoid encumbering the presen-
tation, the subscript that indicates, in the scattering
length a2, the spin-doublet character (= 1/2) of the
nd state being considered is suppressed in (5) and in
some other places; also, the subscript T ∗ is replaced
by ν.

By eliminating the parameter g, one can derive a
relation between the aforementioned scaling invari-
ant physical variables—for example, between CT and
aκ1—which do not involve explicitly the potential
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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parameters. The procedure of fitting the potential
parameters on the basis of preset values of a2 and
κ1 is considerably simplified by taking into account
scaling invariance. The parameters in question were
determined in the order specified by the following
chain:

aκ1 → g → κ1/µ → µ → R → V0. (6)

As a matter of fact, scaling invariance makes it possi-
ble to reduce the two-parameter problem in question
to a single-parameter problem, whereby the fitting
of the parameters and a comparison of the results
of the calculations with the different potentials are
simplified. For the aκ1 dependences of C2

T that corre-
spond to all four potentials, it is of interest to perform
a comparison over a broad range of interaction that
covers the case of extremely light systems bound
by nuclear forces [deuteron d, hypertriton 3

ΛH, and
triton T (3H)], because such a comparison would not
explicitly involve the parameters of the potentials and
because this wouldmake it possible to explore the role
of effects that are associated with different types of
behavior of the potentials at infinity and at the origin
of coordinates.

The dependence of C2
T on aκ1 is a special form of

correlation between three physical observables: the
asymptotic normalization factor for the triton radial
wave function, the triton binding energy, and the
doublet nd scattering length. This dependence can
also be derived from other approaches to describ-
ing the doublet nd system. Below, we will discuss
some results obtained within generalized effective-
range theory [4] and within the N/D method [9–12].
Simenog et al. [4] presented explicit expressions for
the scattering-length (a2) dependence of the param-
eters appearing in the formula that effective-range
theory yields for k cot δ. On this basis, we find here
the corresponding dependence of C2

T on aκ1.
In the present study, we show for the first time

that the functions C2
T (aκ1) obtained in [9, 10] by

using the N/D method (see the tables in [9, 10])
differ qualitatively from all others: they grow with
increasing aκ1. Below, we will discuss the possible
reasons behind this discrepancy. It should be noted,
however, that, at the experimental value of aκ1, the
results obtained in [9, 10] for C2

T are close to the
results of corresponding Faddeev calculations. In the
literature, this was considered as a success of the
model based on theN/D method.

The present study pursues the following basic ob-
jectives:

(i) a comparison of the results obtained for the
functionC2

T (aκ1) within the two-bodymodel by using
some effective nd potentials (this is done in order
to reveal the sensitivity of this function to the form
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
of potential—in particular, to effects of long-range
interaction);

(ii) a comparison of the results obtained upon im-
plementing item (i) with the results produced by other
approaches—specifically, (a) approaches employing
Faddeev equations for various nucleon–nucleon in-
teractions and (b) approaches relying on effective-
range theory featuring a pole of the function k cot δ;

(iii) a comparison of the results of the investiga-
tions listed in items (i) and (ii) with results following
from the application of theN/D method;

(iv) a calculation of the form factor for the T →
d + n vertex within the two-body potential model, an
estimation of its sensitivity to the form of the effective
nd potential, and a comparison with the results of the
calculations based on Faddeev equations.

In the calculations performed on the basis of
the two-body potential model, use is made of the
Lippmann–Schwinger equation and of the Schrödin-
ger equation in the momentum representation. The
method employed in these calculations is described in
detail elsewhere [7]. We consider energies at which it
is sufficient to take into account only the s wave. As
a rule, we perform our analysis in the system of units
where � = c = 1.

2. TWO-BODY POTENTIAL MODEL

Let us briefly recall the analytic properties of the
s-wave amplitude f (k) for elastic nd scattering (for
more details, see [7]). The important role of the
Feynman pole diagram corresponding to proton ex-
change between the deuteron and the neutron in-
volved and featuring a singularity in the momentum-
transfer variable at a point that is close to the physical
region is a theoretical argument in favor of the two-
body potential model. The corresponding dynami-
cal singularities of f (k) occur at k = ±ik1/2, where
k1 = (2/3)

√
mεd = 0.154 fm, or at E1 = −εd/3 ∼=

−0.74 MeV on the energy scale. This character of
singularity can be simulated with the aid of a potential
that belongs to the Yukawa type and which has the
following asymptotic behavior:

V (r) → C(r)r−ν exp(−µr). (7)

Here,C(r) � const; the exponent ν takes the value of
ν = 0 for the Hulthén potential (1), the value of ν = 1
for the Yukawa potential (3), and the value of ν = 2 for
the potentials given by (2) and (4). The corresponding
dynamical singularities of f(k) are situated at k =
±iµ/2 (see, for example, [13]). Setting µ = 2k1, we
obtain a value of about 3 fm for the radiusM = 1/µ.

The properties of the scattering amplitude that are
being discussed at this point follow from the ana-
lytic structure of the kernel of the Faddeev integral
2
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equation (see, for example, [14]). A 1/r2 long-range
interaction, which arises when the scattering length
for the pair subsystem tends to infinity, is one of the
consequences of this. Long-range interactions of this
type lead to the Efimov effect [15] (accumulation of
levels near the threshold). The corresponding char-
acter of the behavior of V (r) is indeed of importance
if the physical system being studied is close to a
state where the Efimov effect is realized—that is, if
µ → 0. However, the parameters of nucleon–nucleon
interaction are such that the doublet nd system has
only one bound state, the triton. For this reason,
the value of the exponent ν in (7) is expected to
be immaterial, provided that an exponential decay of
the potential at infinity is ensured. Thus, all of the
aforementioned potentials (1)–(4) can in principle be
used to construct a model description of the doublet
nd system.

In analyzing the results of relevant numerical cal-
culations, we use some well-known statements from
quantum scattering theory, including the symmetry
theorem [16] for bound and virtual levels and its con-
sequence presented in [17]. For potentials belonging
to the Yukawa type and having the asymptotic be-
havior as given by (7) (ν ≤ 2), it was shown in [16]
that the points at which the trajectories of the poles
of the function f (k) intersect the lines of dynamical
singularities possess a mirror symmetry with respect
to the zero-momentum axis. In [17], it was also
shown that the above symmetry points also belong
to the trajectories of the zeros of f (k). The virtual
triton T ∗ differs from the triton only by the value of
the principal quantum number. Therefore, its features
are determined by the same set of parameters as the
features of the triton. This means that, simultane-
ously with κ1 and C2

T , one determines the quantities
κ2 and κ0 (or ε2 and E0 on the energy scale), as well
as CT ∗ . The features of T ∗ were evaluated with the
aid of integral equations continued analytically to an
unphysical sheet of energy (see, for example, [14, 18]).

3. GENERALIZED EFFECTIVE-RANGE
THEORY

The important role of the pole of k cot δ at negative
energy near the threshold in doublet nd scattering—
for the first time, this pole was introduced in [19,
20]—has long since been known and has often been
discussed in the literature (see, for example, [17]).
Instead of the usual effective-range approximation

k cot δ = −1/a + r0k
2, (8)

it was proposed to use the modified formula of
effective-range theory:

k ctg δ = (1 + k2/κ2
0)

−1(−1/a + C2k
2 + C4k

4).
(9)
P

The modified formula at C4 = 0 was considered in
[21]. From (9), one can easily obtain (see [3, 12]) the
asymptotic normalization constant in the form
C2

T = (1 − κ2
1/κ

2
0)/(1 − 2C2κ1 − 3κ2

1/κ
2
0 + 4C4κ

3
1).
(10)

We recall that κ1 = [(4/3)m(εT − εd)]1/2.
Simenog et al. [4] used the formula

k cot δ = [a + (c0 + c′a)k2]−1 (11)

× [−1 + (c1 − c′ + c2a)k2 + (c3 + c4a)k4],
which is analogous to (9) and which involves the a
dependence of the parameters of formula (10) in an
explicit form:

κ2
0 = a/(c0 + c′a); (12)

C2 = (c1 − c′ + c2a)/a; C4 = (c3 + c4a)/a.
It is obvious that, for a → 0, there are no prob-
lems in calculating C2

T [it is only necessary to recast
Eq. (9) into the form (11) with the coefficients aC2

and aC4]. From (12), it follows that the parameters
in expressions (9) and (10) cannot be considered to
be independent of the doublet scattering length a2, an
important conclusion indeed. In (12), the first relation
is directly associated with the definitions of κ2

0 and a2,
because it is obvious that κ2

0 = 0 when the scattering
length a2 is zero. Since, in the one-channel problem,
the s-wave partial scattering amplitude is given by

f(k) = (k cot δ − ik)−1, (13)
the pole of k cot δ corresponds to the zero of f (k).

Formula (11) was obtained in [4] on the basis of
the following considerations. From an analysis of the
Faddeev equations for the scattering problem in the
case of a separable nucleon–nucleon potential, the
dependence of the effective range r0 [see Eq. (8)]
on the scattering length a was found in the form of
the expansion of the so-called slope parameter of the
scattering amplitude (a2r0/2) in powers of a:

a2r0/2 = c0 + c1a + c2a
2. (14)

The best approximation of three-body calculations
with some separable nucleon–nucleon potentials was
obtained in [4] for the following sets of values of
the coefficients in Eq. (14) (α = 0.2316 fm−1 is the
wave number corresponding to the deuteron binding
energy):

c0 = 1.67/α3, c1 = −2.30/α2, c2 = 1.05/α;
(15)

c′ = 0.230/α2 , c3 = 0.273/α4, c4 = 0.168/α3.
(16)

The set of values in (16) was obtained from an anal-
ysis of relation (11) between the scattering length
a and the wave number κ1 with allowance for the
experimental values of εT and a2. For further details,
the reader is referred to [4].
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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4. APPLICATION OF THE N/D METHOD
TO DESCRIBING THE DOUBLET nd

SYSTEM

The scattering amplitude is written as

f(k) = N(k2)/D(k2), (17)

where the numerator N (k2) has dynamical singular-
ities on the left, negative, semiaxis of the complex
plane of energy, while the denominator D(k2) has
only a right unitary cut along the positive real axis of
energy (the unitarity of the S matrix is ensured). The
zeros of D(k2) determine the positions of the poles of
f (k) that correspond to the bound, virtual, or reso-
nance states of the system. The dispersion integral
equations of the N/D method that are known from
the literature relate the functions N (k2) and D(k2).
At the points k = ±iκ0, where f(k) = 0, the equality
N(−κ2

0) = 0 holds, since the functionD(k2) does not
have poles in a finite part of the complex plane of k.

A number of studies devoted to calculating the
features of the doublet nd system by theN/Dmethod
have been reported in the literature. The values of C2

T

(or G2
T ) for various values of the scattering length a2

at a fixed experimental value of κT were presented in
[9, 10]. The strategies adopted in these two studies
are close—the discontinuity of the scattering ampli-
tude on the left-hand cut is determined there from
the Feynman diagram corresponding to one-proton
exchange in nd scattering. Like the potential model,
theN/D method involves adjustable parameters. For
these, Safronov [10] took εT and G2

T and calculated
a2, while Girard and Fuda [9] took εT and a2 and
calculated C2

T . It seems preferable to choose a2 for an
adjustable parameter, since the doublet nd scattering
length a2 was determined from experimental data
more reliably than G2

T or C2
T . It is well known that

the nuclear vertex constant G2 and the asymptotic
normalization factor C are related by the equation
(see, for example, [5]; ν ≡ T ∗)

(GT,ν)2 = 3π(3/2)2(�/mc)2κ1,2(CT,ν)2. (18)

Baryshnikov [12] considered a simple two-polemodel,

N(k2) =
λ1

k2 + γ2
1

+
λ2

k2 + γ2
2

, (19)

where the set of equations of theN/D method can be
solved analytically. The resulting expression for the
functionD(k2) is

D(k2) = 1 − λ1

γ1 − ik
− λ2

γ2 − ik
. (20)

It is remarkable that themodel based on Eqs. (19) and
(20) leads to expression (10) for C2

T . The scattering
amplitude f (k) involves four parameters, which can
be found by specifying the values of four physical
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
quantities. For example, one can specify κ1, κ2 (wave
numbers for the triton and the virtual triton), and
the position iκ0 of the zero of f (k) from experiments
(or from a version of Faddeev calculations that yields
results that are close to experimental data) and obtain
the dependence of the parameters λ1, λ2, γ1, and γ2

on a2 by solving the set of equations

f(0) = −a2; N(−κ2
0) = 0; (21)

D(−κ2
1) = 0; D(−κ2

2) = 0
with allowance for relations (17), (19), and (20). At a
preset value of a2, one can then calculate the coeffi-
cients C2 and C4 in expression (9) and find C2

T (a2κ1)
with the aid of Eq. (10). In [12], it was found that
the quantities κ2

0, a2, C2, and C4 can be analytically
expressed in terms of the parameters λ1, λ2, γ1, and
γ2 as

a2 = d/[γ1γ2(λ1γ2 + λ2γ1 − γ1γ2)]; (22)

κ2
0 = (λ1 + λ2)/d;

C2 = [γ2
1 + γ2

2 − λ1γ1 − λ2γ2]/d; C4 = 1/d,

where d = λ1γ
2
2 + λ2γ

2
1 .

5. RESULTS OF THE CALCULATIONS

5.1. Two-Body Potential Model

For the sets of parameters from Table 1, which
were fitted to the experimental values of εT and a2,
Fig. 1 displays all the potentials being discussed.
The function rV (r), which is finite at the origin of
coordinates, considered here for the convenience of
comparison. We can clearly see a sharp distinction
between the potential (2), on one hand, and the group
of potentials that feature no oscillations and which
are similar to one another within this group, on the
other hand. For this potential, the values obtained
in [7] for the parameters R and M are close to the
parameter values quoted in [2]. Table 1 indicates
the position of the closest singularity on the energy
scale [E1 = −(3/4)k2

1/m]. For the position of the
dynamical singularity, the two-bodymodel employing
the Yukawa potential yields a result that is close to
the singularity of this diagram. In the case of the
Hulthén potential [ν = 0 in Eq. (7)], this singularity
is a spurious pole; on the energy scale, its position
is twice as far as that for the Yukawa potential. As
to the case of the potential (2), the singularity is one
order of magnitude closer to the physical region. So
strong a distinction is caused by the concerted effect
of two factors: a distinction of the exponent of the
radius in the denominator (ν = 2) and the presence
of an oscillating factor in the potential (2). Both
these factors reduce the attracting properties of the
potential, but this is compensated by an increase in its
radius (M ) and its depth (V0). For the potential (4),
2
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Table 1.Parameters of the potentials (1)–(4), adjustable quantities, and position (E1) of the closest dynamical singularity
of the scattering amplitude

Parameter
Potential

Hulthén (1) Yukawa (3) Our study, (4) Tomio et al. (2)

V0, MeV 22.11 17.95 11.38 40.50

M = 1/µ, fm 1.976 2.73 5.012 6.64

R, fm – – 1.432 1.7565

εT − εd, MeV 6.26 6.26 6.256 6.260

a2, fm 0.65 0.65 0.651 0.650

−E1, MeV 2.00 1.04 0.311 0.177

Note: The parameters that we refined in [7] are presented for the potential of Tomio et al. and used in the calculations. The values
of V0 andM for the Yukawa potential were obtained in the calculations performed with a higher precision (by makingN = 400 steps
in evaluating relevant integrals) and are somewhat different from the parameters presented previously in [3, 7]. In Table 3 of [7], it is
necessary to interchange the values of E1 that were obtained for the Yukawa and the Hulthén potential. The Feynman diagram for the
one-proton exchange has a singularity at E1 = −0.738 MeV.
the dynamical singularity is closer to the singularity
of the Feynman diagram being discussed than for the
potential (2) (see Table 1).

For the potentials (1)–(4) with the parameters set
to the values from Table 1, the calculated features
of the nd system are quoted in Table 2. The value
of the vertex constant G2

T for the potential (2) is
close to the result for the Hulthén potential and the
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curve (Hu), and the dash-dotted curve displaying oscilla-
tions (Tom) represent, respectively, the potential (4), the
Yukawa potential (3), the Hulthén potential (1), and the
potential (2) of Tomio et al.
PH
result produced by generalized effective-range theory
(C4 
= 0). However, the value of E0 = 0.063 MeV,
which specifies the position (−E0) of the pole of the
function k cot δ for the potential (2) at the experi-
mental value of aκ1, is strongly underestimated in
relation to the corresponding results for the Hulthén
and the Yukawa potential as well as in relation to the
“experimental” value of E0 = 0.15 MeV [4]. For the
potential (4), the resulting value of E0 = 0.125 MeV
is in fairly good agreement with experimental data.

The value of the potential radius (M = 1/µ) is of
crucial importance for correctly describing the posi-
tion of the virtual triton level. The symmetry theorem
[16] for bound and virtual states imposes a constraint
(see [7]) on the position of the virtual level: κν �
µ/2 [∼= 0.075 and 0.10 fm−1 for the potentials (2)
and (4), respectively]. On the energy scale, we ac-
cordingly have Bν � 0.176 MeV for the potential (2);
this is approximately one-third as large as the well-
known estimate Bν

∼= 0.5 MeV, which was obtained
both from experimental data and from calculations
based on Faddeev equations (see, for example, [9, 14,
18]). For the potential (4), we have Bν � 0.31 MeV,
which is approximately two times lower than the
required value. From the “experimental” value of
Bν

∼= 0.5 MeV, it follows that the potential radius is
constrained as M � 3.7 fm. In view of this, we do
not consider the virtual triton level for the potentials
(2) and (4), in which case the values ofM go beyond
the above limit. The parameters of the potentials (1),
(3), and (4) do not differ very strongly, monotonically
changing with the exponent ν in the asymptotic ex-
pression (7). The difference in the behavior of the
potentials (1), (3), and (4) can easily be explained:
an increase in the exponent ν in expression (7) leads
to a faster decay of the potential at large distances,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Table 2. Features of the doublet nd system

Model, reference
Physical quantities

C2
T (G2

T , fm) Bν , MeV −C2
ν (−G2

ν , fm) E0, MeV

Effective-range theory:

[4, 3], C4 
= 0 3.50(1.48) 0.530 0.017(0.007) 0.150

[21], C4 = 0 0.77(0.33) 0.482 0.019(0.008) 0.047

N/D method:

[9] 3.31(1.39) 0.48 0.051(0.006) –

[10] 3.50(1.48) 0.48 0.051(0.006) –

[12]∗ 3.66(1.54) 0.53∗ 0.052(0.006) 0.15∗

Potential:

Hulthén [3, 5], (1) 3.50(1.48) 0.75 0.043(0.018) 0.24∗∗

Yukawa [3], (3) 2.74(1.16) 0.61 0.059(0.025) 0.18

Tomio et al. [2], (2) 3.48(1.47) 0.176 − 0.063

Our study, (4) 2.17(0.91) � 0.31 − 0.125

∗ The calculations were performed by formulas (19)–(22) at the experimental values of εT , εT∗ , and a2 for κ2
0 = 4.737 × 10−3fm−2

(the value of κ2
0 was borrowed from [4]) (see main body of the text).
but this is compensated by a moderate increase in
the potential depth. From Table 2, it is obvious that
within the group of potentials that is being presently
discussed, the dependence ofC2

T on ν is quite natural:
the asymptotic normalization constant C2

T decreases
monotonically with increasing ν.

The trajectories for the bound and for the virtual
level, as well as for the pole of k cot δ, are displayed
in Fig. 2 in the form of the dependence of the cor-
responding scaling quantities in (5) on the poten-
tial strength. The quantity ρ =

√
g/gcr, where g =

(4/3)mV0M
2 and gcr is the value of g at which the

ground state becomes bound [gcr = 1.422 for the po-
tential (2) and 4.038 for the potential (4)], was taken
for the argument. In order to avoid encumbering the
figure, the results of the calculations for the aforemen-
tioned trajectories, as well as for the function aκ1(ρ),
are displayed only for two potentials [those that are
given by (2) and (4)]. Here, we are interested in a
comparison of the results for the potentials (2) and
(4)], which have a Faddeev-like asymptotic form. The
results for other potentials are described elsewhere [3,
7]. They have the same qualitative character as those
shown in Fig. 2. One can notice only one distinction:
for the potentials (2) and (4)], the ρ dependence of
κ1M is close to a linear one; as to the Yukawa and
the Hulthén potential, there is a linear dependence for
them between κ1M and g, which is approximate for
the former and exact for the latter (see [1, 3]). For
the potentials (2) and (4), the dependences of κ1M
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
on ρ are rather close to each other. As a matter
of fact, the distinctions for the quantities aκ1 and
κ0/µ amount to a renormalization of the scale of the
argument ρ. For all of the potentials considered here,
the trajectories of the pole of k cot δ [zero of f (k)] have
a similar character: they intersect the abscissa (zero-
momentum axis) at a right angle (that is, the deriva-
tive is infinite at the point of intersection) and quickly
move away from the physical region. This is one of the
reasons why it is difficult to discover experimentally
the pole of k cot δ. As the interaction strength g is
reduced, the trajectory of κ0/µ approaches asymptot-
ically the line of the closest dynamical singularity of
the partial-wave scattering amplitude.

The results of the calculations for the function
C2

T (a2κ1) are shown in Fig. 3. The graphs for the
two-body model employing the potentials (1)–(4) are
qualitatively similar. From Fig. 3 and from Table 2, it
can be seen that the asymptotic normalization con-
stant for the triton decreases with increasing ν. This
is the point where the effect of long-range interaction
manifests itself in the two-body potential model for
the doublet nd system. From a comparison of the
results obtained for the quantity C2

T by using the
potentials (2) and (4), it follows, in addition, that, for
the physical system being considered, the behavior
at the origin of coordinates is even more important
than the asymptotic behavior of the potential. This
means that the doublet nd system is indeed far from
the situation where the Efimov effect must occur.
2
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cording to the calculations with the potential (2) from
the study of Tomio et al. [2] and with the potential
(4) (our present study) versus the scaling parameter ρ =√
g/gcr. The crosses indicate those points on the curves

that correspond to the experimental value of aκ1 = 0.292
for the doublet nd system. The thick and the thin curves
represent the result obtained for, respectively, the po-
tential (4) and the potential (2): (dash-dotted curves)
κ1M/2, (dashed curves) aκ1, and (solid curves) κ0M .
Also shown in the figure are the abscissa (kM = 0) and
the lines of dynamical singularities (kM = ±i0.5).

Unfortunately, the uncertainties in currently available
experimental data on the nuclear vertex constant G2

T

(and, accordingly, onC2
T ) are so great that it is impos-

sible at present to make a definitive choice between
the potentials considered here. The scatter of the C2

T
values calculated on the basis of the two-body model
with the different potentials and displayed in Fig. 3
is commensurate with the uncertainty in the analysis
of experimental data on G2

T and, in particular, with
the estimate presented for the relevant error in [23]
(C2

T = 2.78 ± 1.09).

5.2. Generalized Effective-Range Theory

Table 2 also presents the results obtained from
an analysis of experimental data on the doublet nd
system [4] according to formula (11) of effective-
range theory for the function k cot δ, which has a
pole at k = ±iκ0. It should be emphasized that,
in effective-range theory, G2

T takes sharply different
PH
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Fig. 3. Asymptotic normalization factor C2
T for the triton

radial wave function (ground bound state) as a function of
the product a2κ1 according to calculationswithin various
approaches and experimental data derived from an analy-
sis of nuclear reactions. The results derived on the basis
of the two-body model are shown by the dashed curve
(Hu) for the Hulthén potential (1), the solid curve (Yu) for
the Yukawa potential (3), the dash-dotted curve (Tom) for
the potential (2), and the solid curve (Ef) for the potential
(4). Closed circles represent the results of Faddeev cal-
culations (for references, see [1]) with the (1) Yamaguchi
separable, (2) quark-bag-method, (3, 4) square-well,
(5) Malfliet–Tjon, and (6, 7) soft-core Reid nucleon–
nucleon potentials. The results produced by effective-
range theory are depicted by the thick solid curve (Sim),
taken from [4], and the dotted curve, taken from [11, 21].
The results derived by theN/D method are illustrated by
the crosses (×) [9]; diamonds (♦) [10]; and the dash-and-
double-dot curve, which was computed with allowance
for the dependence of κ2

0 on a2 (see main body of the
text and [12]). The experimental data are represented
by the vertical straight-line segment (|) A [22] and by
the straight crosses (+) B [23] and C [24]. The arrows
indicate the values of aκ1 for the triton T (= 0.292), the
hypertriton ΛT (= 1.088), and the deuteron d(= 1.256).

values at C4 = 0 and at C4 
= 0. It is worth not-
ing that the position of the dynamical singularity
of f (k) in generalized effective-range theory (E1 =
−1.02 MeV) [4] is close to the position of the sin-
gularity of f (k) for the case where the calculation is
based on the one-nucleon-exchange Feynman dia-
gram (E1 = −0.738 MeV).

The functionC2
T (a2κ1) calculated by formulas (10)

and (12) with the constants set to values presented in
(15) and (16) is displayed in Fig. 3. It can be seen
that the corresponding curve (Sim), which descends
smoothly, complies well with the results of Faddeev
calculations and with the graphs corresponding to the
potentials (1) and (2).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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5.3.N/D Method

That the character of the aκ1 dependence of C2
T

within the versions of the N/D method that were
considered in [9, 10] is sharply different from the entire
body of other results (see Fig. 3) is, we believe, the
most interesting result obtained in the present study,
because it is quite unexpected. This result seems
all the more strange if we consider that the physical
concepts underlying the two-body potential model
and the N/D method (namely, the importance of the
one-proton-exchange Feynman diagram) are close.
The corresponding functions C2

T (aκ1) are qualita-
tively similar—they grow sharply with increasing aκ1,
yielding close results at the experimental value of aκ1,
which are in good agreement with the result presented
in [4] for the triton. Since we did not reproduce the
calculations from [9, 10], the latter circumstance is
of paramount importance for being confident that the
discrepancy discovered here does indeed occur.

In [11], where the approximate formulas derived
within the N/D method correspond to expression
(9) at C4 = 0 (this expression is identical to that for
k cot δ from [21]), it was also pointed out that the
value of G2

T is strongly underestimated in relation to
the results of Faddeev calculations from [9]. Accord-
ing to [11], this means that it is necessary to take into
account the three-body cut of the S matrix. In [7], it
was indicated that the reason behind this discrepancy
is simpler: Adhikari [11] and Adhikari and Torreaõ
[21] and did not retain the required number of terms
in the expansion of the partial-wave scattering ampli-
tude f (k) (or the function k cot δ) in powers of k. We
have calculated the function C2

T (aκ1) corresponding
to the results from [11, 21]. From Fig. 3, it can be
seen that, in contrast to what was obtained in [9, 10],
the relevant (dotted) curve has a correct descending
character, but it lies overly low because of the small
value of C2

T for the triton. We recall that, in [11],
the analytic formula for f (k) was obtained within the
N/D method by using the pole approximation for the
discontinuity at the dynamical left-hand cut and that
a linear relation between κ2

0 and a2 was taken in doing
this.

The set of parameters appearing in expressions
(19)–(22) that corresponds to the values of εT =
9.2 MeV and a2 = 0.333 fm, which were found from
Faddeev calculations with a separable potential, is
quoted in [12], where it was found, for this case, that
κ2

0 = 2.306 × 10−3fm−2. In the present study, we
have found the set of parameters that, at κ2

0 = 4.737×
10−3fm−2, corresponds to the experimental values of
εT , εT ∗ , and a2. The position of the pole of k cot δ
[zero of f (k)] was taken from [4]. The corresponding
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
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Fig. 4. Calculated nuclear form factor g(q2) [and the
quantity g(−κ2

1)] for the T → d+ n vertex. The calcula-
tions on the basis of the two-body model were performed
for (dash-dotted curve, +) the potential (2) (Tom) from
[2], (dashed curve, •) the Hulthén potential, (thin solid
curve,×) the Yukawa potential, and (thick solid curve, �)
the potential (4). The presentation of the curves corre-
sponds to that in Fig. 1. The results of the Faddeev cal-
culations from [25, 26] with the Malfliet–Tjon potential
are represented by open circles.

values calculated forC2
T are presented in Table 2. Fig-

ure 3 also displays the function C2
T (a2κT ) computed

at the experimental values of κT and κT ∗ {data on
κT ∗ can be obtained from Faddeev calculations (see,
for example, [9, 14, 18])} for κ2

0 proportional to the
scattering length,

κ2
0 = 7.288 × 10−3a2. (23)

In contrast to the curves that were obtained from the
tables presented in [9, 10] and which are displayed in
the same figure, this function has a sharply descend-
ing character. We note that, if the relevant experi-
mental value is taken instead of the quantity κ2

0 pro-
portional to the scattering length a2, the correspond-
ing function C2

T (a2κ1) appears to be sharply growing
with increasing a2κ1. In the range of a2 being con-
sidered, the simple dependence in (23) shows virtu-
ally no difference from the more complicated function
presented in (12) for the parameter values from (15)
and (16).

5.4. Nuclear Form Factor for the T → d + n Vertex

Figure 4 displays the calculated nuclear form fac-
tor g(q2) for the T → d+ n vertex. It can be seen that,
at low momentum transfers, this function depends
only moderately on the choice of potential for the two-
bodymodel. The range of its variation does not exceed
the scatter of values of the vertex constant G2

T =
2
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g(−κ2
1). With increasing q2, this range shrinks, vir-

tually vanishing in the interval 0.3–0.5 fm−2. As q2

increases further, the distinctions between the func-
tions corresponding to the different potentials become
more pronounced, the relevant curves occurring in
the order inverse to their order near the origin. The
curve calculated for the potential (2), which involves
oscillations, proves to be the closest to the results
for the Faddeev calculations from [25, 26] for the
Malfliet–Tjon nucleon–nucleon potential (see also
[27]), while the curve for the potential (4), which
exhibits a Faddeev-like asymptotic behavior without
oscillations, is the farthest from it. Obviously, the
function g(q2) is more sensitive to the periphery of the
potential at lowmomentum transfers (q2 < 0.3 fm−2)
and to the short-distance behavior of the potential
at high momentum transfers (q2 > 0.5 fm−2). The
observed distinctions between the vertex functions
g(q2) and the constants C2

T for the different potentials
and the fact that the results for the potential (2) from
the study of Tomio et al. [2] stand out admit a rather
simple explanation. In the potential (2), the attraction
is severely reduced in the central region because of
oscillations in relation to potentials belonging to the
type of screened Coulomb potentials. As a result,
the triton radial wave function for this potential is
the most peripheral (which corresponds to the great-
est value of C2

T ) for the potentials considered in the
present study. It can be stated that, upon solving
the corresponding Faddeev equations, one arrives at
the same character of the structure of the wave func-
tion (see Fig. 4). Low momenta, where the proton-
exchange Feynman diagram plays an important role,
correspond to long distances. Because of the in-
distinguishability of nucleons, this exchange process
does not disturb the original d + n configuration of
the bound triton. In a sense, the Faddeev solution
proves to be even more peripheral than that in the
two-body potential model, since, in this model, one
has to introduce an ad hoc reduction of the attraction
in the central region in order to obtain the vertex form
factor g(q2) that is consistent with the three-body
result. Within the three-body approach, the vertex
constants G2

T and G2
T ∗ were computed in a number

of publications for some nucleon–nucleon potentials,
including local potentials (for the first time, in [25,
26]).

6. CONCLUSION

From a comparison of the results obtained with
potentials showing different types of asymptotic be-
havior, one can draw the conclusion that effects of
long-range interaction are quite sizable in the cal-
culations of C2

T (or G2
T ) for the virtual decay T →
PH
d + n, but that these effects are less pronounced in
the results for the position of the pole of k cot δ [zero
of f(k)]. The quantities C2

T and E0 have been found
to decrease upon going over to a correct asymp-
totic behavior [that which corresponds to ν = 2 in
Eq. (7)]. The resulting distinctions between the
quantities C2

T and G2
T are even more pronounced

than the distinctions between the potentials (1), (3),
and (4) themselves. These quantities undergo still
stronger variations upon going over from the screened
Coulomb potential (4) to the potential (2), which is
finite at the origin of coordinates. It is well known
that the residue of the scattering amplitude at the
pole corresponding to the bound state (this residue
is directly related to the quantities C2

T and G2
T ) plays

an important role in solving the inverse problem of
reconstructing the potential from the phase shifts. In
the present study, we have revealed the effect of the
behavior of the potential at the coordinate origin and
of its asymptotic behavior on low-energy parameters
in the direct problem. It would be highly desirable
to improve the accuracy in determining the nuclear
vertex constant G2

T from an analysis of experimental
data, because this would provide a firmer basis for
choosing between the various potentials in the two-
body model for describing the doublet nd system at
low energies. This would be of importance for specific
applications as well, especially in the theory of direct
reactions treated in terms of Feynman diagrams in-
volving the T → d + n vertex. Taking into account
uncertainties in experimental data on the vertex con-
stant G2

T , we can state that, presently, the two-body
model employing the Hulthén potential provides a
fairly good description of the low-energy properties of
the doublet nd system. This model can be used to
perform specific calculations in the theory of nuclear
reactions, especially as an analytic solution to the
problem in the s wave is known. This choice is also
supported by results obtained with the aid of Faddeev
equations. As can be seen from Fig. 3, the results
for C2

T that are obtained from Faddeev calculations
are largely grouped in the vicinity of the result for the
Hulthén potential. In order to assess the applicability
of the two-body potential model, one could in prin-
ciple invoke a comparison with the results of accu-
rate three-body calculations. It would be of interest
to analyze, from this point of view, modern three-
nucleon calculations yielding correct values for the
triton binding energy and the doublet nd scattering
length.

A qualitative distinction between the functions
C2

T (aκ1) that we have calculated here with the aid
of the tables quoted in [9, 10], where the authors
used the N/D method, on one hand, and all other
results, on the other hand, is a new and unexpected
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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result of the present study. The latter include the
functionC2

T (aκ1) found with the aid of the formulas of
generalized effective-range theory [4] and the results
obtained from calculations on the basis of Faddeev
equations and displayed in Fig. 3. For the possible
reason behind this discrepancy, we can indicate the
dependence of the parameters of the N/D method,
which are used in a fit to experimental data, on the
doublet nd scattering length a2. In all probabil-
ity, the correct a2 dependence of the coefficients in
the expansion of the function k cot δ in powers of
k2 was obtained in [4]. We note that the function
C2

T (aκ1) computed by using the formula for k cot δ
from [11, 21] also has a correct descending character
(see Fig. 3), but that it is greatly underestimated in
absolute value. In the immediate vicinity of the ex-
perimental value of aκ1, the asymptotic normalization
constants C2

T obtained from calculations on the basis
of Faddeev equations and shown in Fig. 3 also grow
with increasing aκ1, as the results from [9, 10] do.

One of the conclusions drawn in the present study
is that, in applying the N/D method, one should
be very careful in analyzing correlations between the
low-energy features of the doublet nd system, since
the parameters of the model can be dependent on the
scattering length a2.

Finally, a comparison of the results obtained by
calculating the form factor g(q2) for the T → d +
n vertex within the two-body potential model with
the results of Faddeev calculations indicates that the
structure of the triton wave function has a peripheral
character and that the (d + n) cluster configuration
plays an important role in the triton.
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Abstract—The accumulation of relic fourth-generation heavy neutrinos (of mass 50 GeV) in the Earth
and the Sun, which is followed by their annihilation, is considered. The most conservative estimates of the
fluxes of monochromatic electron, muon, and tau neutrinos and antineutrinos of energy 50 GeV from the
annihilation of heavy neutrinos are 4.1 × 10−6 cm−2 s−1 from Earth’s core and 1.1 × 10−7 cm−2 s−1 from
Sun’s core, whence it follows that an analysis of data from underground neutrino observatoriesmay furnish
additional information about the existence of fourth-generation neutrinos. It is shown that, because of
kinetic equilibrium between the arrival of cosmic neutrinos and their annihilation, the existence of newU (1)
gauge interaction of fourth-generation neutrinos has virtually no effect on the estimates of the annihilation
fluxes of electron, muon, and tau neutrinos. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Searches for the fourth fermion generation are
among the hottest problems of high-energy physics.
The most important tools for such searches are pro-
vided not only by accelerator experiments but also
by cosmological and astrophysical data, where one
seeks, in particular, manifestations of the new gen-
eration with special emphasis on the existence of
a new neutrino (ν4) as the lightest and, possibly,
stable weakly interacting neutral particle of fourth
generation. It has been known for a long time [1]
that a neutrino of mass about a few GeV may be
a candidate for a particle providing cold dark mat-
ter in the Universe. The up-to-date experimental
constraint on the mass of the new neutrino follows
from experimental data on the Z-boson width: the ν4

mass must be greater than mZ/2 ≈ 45 GeV, where
mZ is the Z-boson mass. An analysis of virtual
processes featuring fourth-generation particles leads
to results that are compatible with the mass of the
new neutrino in the region around 50GeV [2]. Recent
results from an underground experiment devoted to a
direct search for a weakly interacting massive particle
(WIMP) at the DAMA facility do not rule out a
WIMP of mass around 50 GeV, which is consistent
with the accelerator constraint on themass of the new

1)Moscow State Engineering Physics Institute (Technical
University), Kashirskoe sh. 31, Moscow, 115409 Russia.

2)Keldysh Institute for Applied Mathematics, Russian
Academy of Sciences, Miusskaya pl. 4, Moscow,
125047 Russia.

3)CosmionCentre for CosmoparticlePhysics,Miusskaya pl. 4,
Moscow, 125047 Russia.
1063-7788/02/6502-0382$22.00 c©
neutrino. If neutrinos of this mass do indeed exist,
the pairs of such neutrinos and their antineutrinos
must have been in equilibrium in the early Universe
and, upon the quenching of their concentration, must
be preserved in the present-day Universe in the form
of a relic background whose mean relative density is
Ω ∼ 10−4 [3]. It follows that relic fourth-generation
neutrinos cannot dominate dark matter; this implies
that a cosmological test of their existence requires
considering subtler astrophysical effects whose anal-
ysis must be performed under the assumption that
there is hidden mass of a different origin. The pos-
sible manifestations of a new heavy stable neutrino,
should it exist, were studied in experiments at LEP
[4, 5] and on the basis of astrophysical observations
[4, 6, 7]. Just like any other form of nonrelativistic
dark matter, heavy neutrinos must be concentrated
in galaxies. Under the assumption of charge sym-
metry, galaxies must contain an equal number of
their antineutrinos, so that there occur effects associ-
ated with neutrino–antineutrino annihilation. It was
shown in [7] that neutrino–antineutrino annihilation
in the halo of the Milky Way Galaxy may account
for the galactic diffuse gamma background, which
was recently discovered by the EGRET collaboration.
An attempt at explaining this gamma background
in terms of the annihilation of neutralinos that are
predicted in supersymmetric models and which are
known to be popular candidates for WIMP runs into
difficulties associated with the Majorana nature of the
neutralino. On the Earth, fluxes of products origi-
nating from the annihilation of heavy neutrinos were
recorded in [4, 5]. In this connection, it should be
mentioned that the fluxes of positrons, antiprotons,
2002MAIK “Nauka/Interperiodica”
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and photons suggest the most sensitive experimental
test of the existence of ν4 neutrinos in the Milky Way
Galaxy. It is also of interest to consider other possible
astrophysical effects associated with the existence of
fourth-generation neutrinos.
Many authors (see, for example, [8–10]) consider

the accumulation of WIMPs (neutralinos, neutrinos)
in the Earth and in the Sun and their subsequent an-
nihilation producing fluxes that are formed by neutri-
nos of conventional flavors and which can be recorded
by underground neutrino detectors. In the present
study, we analyze similar processes for the specific ex-
ample of fourth-generation neutrinos of mass 50GeV.
We briefly consider the possibility that the heavy neu-
trino features a new type of interaction (a property
that may be peculiar to the fourth generation as a
whole). In realistic versions of superstring theory, an
additional interaction (or even a few of them) appears
in the low-energy limit. We also assess the impact
of this new interaction on effects associated with the
annihilation of heavy neutrinos.

2. CAPTURE OF GALACTIC MASSIVE
NEUTRINOS IN THE EARTH

AND IN THE SUN

The concentration of massive neutrinos (which are
henceforth referred to as merely neutrinos) that are
not disturbed by the gravitational fields of the Earth
and the Sun (for the sake of generality, they will be
called a gravitating body) will be estimated here under
the assumption that the distribution of the neutrino
concentration in the Milky Way Galaxy has the form

n = ξ(r)〈n〉 =
κ

1 + r2/r2
0

〈n〉,

where 〈n〉 ≈ 10−11 Ω
10−4

см−3 is the mean concen-

tration of neutrinos in the Universe at the Hubble

constant value of h = 0.65, κ =
n(r = 0)

〈n〉 , r is the

distance from the center of the galaxy, and r0 is
the characteristic range of the distribution. It was
shown in [11] that, for weakly interacting nonrel-
ativistic matter, the ratio κ of the concentration of
neutrinos at the center of the Milky Way Galaxy to
their mean concentration in the Universe is related to
the analogous ratio of concentrations for baryons (B)
and dark matter (DM), which contains antineutrinos
as well (however, their weight is small there):

κ ≡ n(r = 0)
〈n〉 =

(
ρB(r = 0)
〈ρB+DM〉

)3/4

≈ 106.

We set r0 to 1.2 kpc and r to rС = 8.5 kpc for the
Solar System; for the neutrino concentration undis-
turbed by the gravitational fields of the Sun and the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
Earth (this will be indicated by labeling the relevant
quantities with the subscript∞), we obtain

n∞ = ξC〈n〉 ≈ 2 × 104〈n〉 ≈ 2 × 10−7 cm−3.

We set the mean velocity of neutrinos in the Milky
Way Galaxy to v∞ = 300 km/s, the corresponding
kinetic energy of neutrinos being T∞ = 25 keV. It
can be shown that, for a neutrino of fixed energy in
a potential field, the following relation holds:

n/v = const. (1)

The number of neutrinos captured by the gravitat-
ing body per unit time is

Ṅcapt =
∑

A

∫

nσvw1nAdV , (2)

where n and nA are the concentrations of, respec-
tively, incident neutrinos and the nuclei of Earth’s
or Sun’s matter4) [summation over these nuclei is
performed in (2), and the subscript ν on the neutrino
concentration is omitted there]; σ is the cross section
for neutrino–nucleus interaction; v is the neutrino
velocity;5) w1 is the probability that, in one collision
event, a neutrino loses an amount of energy such that
it can be captured, after this event, by the gravita-
tional field of the gravitating body; and integration
is performed over the volume of the gravitating body.
The concentration and the velocity of incident neutri-
nos are assumed to be disturbed by the gravitational
field of the gravitating body [in accordance with (1)],
but the change in these features of the neutrino flux
because of its interaction with matter is disregarded.
The latter is obviously justified for weakly interacting
particles, and the validity of this approximation will
be demonstrated below. With the aid of Eq. (1),
expression (2) can be recast into the form

Ṅcapt =
∑

A

n∞
v∞

∫

σv2w1nAdV . (3)

The distribution of density in Earth’s matter will
be assumed to be uniform; other, more realistic, dis-
tributions complicate the situation considerably, but
this changes the result only slightly. For a uniform
distribution, the escape velocity as a function of the
dimensionless radius x = R/R0, where R0 is the ra-
dius of the gravitating body, within the Earth has the
form

v2
escE(x) = v2

escE
3 − x2

2
, (4)

4)The interaction of neutrinos with electrons is much weaker;
therefore, we consider only their interaction with nuclei.

5)In the calculations,we use the system of units where � = c =
1. For the velocities denoted by v, we employ dimensional
units (km/s, cm/s).
2
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where vescE ≡ vescE(1) = 11.2 km/s is the escape ve-
locity at Earth’s surface (second cosmic velocity).
Obviously, the gravitational field of the Earth has
virtually no effect either on the neutrino concentration
or on the neutrino velocity; it plays an important role
only in determining the factor w1. The gravitational
field of the Sun near the Earth is also immaterial.
In the present study, we disregard the possibility
indicated in [10], where it is argued that there can
exist a “slow” neutrino component. According to
[10], this population of neutrinos that rotate about the
Sun along orbits that intersect Earth’s orbit arises as
the result of “weak” collisions between background
neutrinos and nuclei in the Sun. This population
can contribute significantly to processes of neutrino
accumulation in the Earth owing to a large value of
the factor w1; the reason for the latter is that the
speed of these neutrinos (which is about the orbital
speed of the Earth) is much less than the speed of
neutrinos in the Milky Way Galaxy. The role of the
slow component in the effects of ν4 accumulation and
annihilation in the Earth will be considered elsewhere.
The radial distribution of the solar-matter density

(we denote by x the relevant radial coordinate) as
obtained on the basis of the standard solar model [12]
can be approximated by the function

ρС(x) = 148
(
1 − x2

)
exp

(

− 9.04x2

0.17 + x1.52

)

(g/cm3).

(5)

The resulting dependence for the squared velocity
v2
escS(x) is closely approximated as

v2
escS(x) = v2

escS

(

4.011
1 − x1.868

1 + 8.05x1.868
+ 1
)

, (6)

where vescS ≡ vescS(1) = 618 km/s. We will now
present the values of the escape and the total (max-
imal) velocity for a neutrino at the center of the Sun
and of the corresponding kinetic energies: vescS(0) =

1383 km/s, vS(0) =
√
v2
∞ + v2

escS(0) = 1416 km/s,
TescS(0) = 531 keV, and TS(0) = T∞ + TescS(0) =
556 keV.
Let us now consider the cross sections for mas-

sive-neutrino interactions with nuclei.
The wavelength of neutrinos having a mass of

50 GeV and velocities in the range 300–1416 km/s
takes values in the range λ̄ = (3.9–0.84)× 10−13 cm,
which are commensurate with nuclear sizes. There-
fore, it is necessary to consider that nuclei are non-
pointlike particles. For all nuclei whose numbers in
the Sun and in the Earth are significant, the lowest
excitation energies, which are greater than 0.8 MeV,
exceed the neutrino kinetic energies, which are less
than 0.56 MeV. In view of this, neutrino–nucleus
PH
scattering will be considered here as an elastic pro-
cess occurring on a nucleus as a discrete unit. In
this case, the amplitude for neutrino (antineutrino)
scattering on a nucleus is determined by the coherent
contribution of the isoscalar vector neutral weak cur-
rent and, in the nonrelativistic limit, is given by [13]

M =
GF

2
√

2
FV F (q2).

Here, GF is the Fermi constant; FV = 2Z −A−
4Z × sin2 θW = −(A− 1.074Z), where A and Z are,
respectively, the atomic number and the charge of the
nucleus involved and θW is the Weinberg angle; and
F (q2) is a form factor through which it is considered
that the nucleus is nonpointlike. The cross section in
question has the form

σ =
G2
Fµ

2

8π
F 2

V η(T ) = σ0η(T ), (7)

where µ = mνmA/(mν +mA) is the reducedmass of
the system formed by the neutrino of mass mν and
the nucleus of mass mA, while η(T ) is a factor that
takes into account the finite size of the nucleus and
which is dependent on the neutrino kinetic energy
(velocity). For the proton, we have FV ≈ 0, so that its
interaction with the neutrino is dominated by the axial
weak current. In the nonrelativistic limit, the cross
section for proton–neutrino interaction assumes the
form

σ =
G2
Fµ

2

8π
(
3F 2

A + F 2
V

)
η(T ) = σ0η(T ).

Both for the proton and for the neutron, we have
FA ≈ 1.25.
For all nuclei, the q2 dependence of the form factor

will be determined on the basis of the Fermi gasmodel
for nucleons, but this is not quite correct in general for
extremely light nuclei. Since the neutrino energies
are insufficient for exciting a nucleus, the Fermi gas
of nucleons is assumed to be fully degenerate. In this
case, we have

F (q2) = 3 (sin y − y cos y)/y3, y = qa,

where q is the absolute value of the 3-momentum
transfer from the neutrino to the nucleus involved.
The factor η(T ) is given by

η =
9
4
(−1 + cos 2ymax − 2y2

max (8)

+ 2ymax sin 2ymax + 2y4
max)/y

6
max,

ymax = qmaxa = 2µβa ≡ v/vnonpoint.

In two limiting cases, it becomes

η ≈ 1 for y2
max � 1 (or v2 � v2

nonpoint),

η ≈ 9
2y2

max

for y2
max � 1 (or v2 � v2

nonpoint).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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In the above expressions, β = v/c is the neutrino
speed (we everywhere disregard the speed of the
nucleus), c being the speed of light, while vnonpoint =
c/(2µa) is the characteristic speed above which the
nucleus cannot be treated as a pointlike object.
The size of the nucleus is a = 1.25 fm × A1/3 =
A1/3/(158MeV).
At this point, we would like to emphasize the im-

portant role of heavy nuclei in the capture of massive
neutrinos. First, the cross section in question grows
sharply with A—specifically, in proportion to A4 for
mA � mν and v2 � v2

nonpoint. Second, it can be
shown that, for nuclei of mass around 50 GeV, the
probability that a neutrino loses a large amount of en-
ergy in a single collision event grows for kinematical
reasons; accordingly, the probability w1 of neutrino
capture per collision event becomes higher for these
nuclei—the amount of energy that a neutrino must
release in order to undergo capture is T∞ = 25 keV in
this case. The value ofw1 is determined by the proba-
bility distribution with respect to the neutrino kinetic
energy transferred to the nucleus involved. The shape
of this distribution depends on the extension of the
nucleus: it is stepwise in the case of a pointlike
nucleus and descends toward high energy transfers
(where the finite dimensions of the nucleus has the
most pronounced effect). In general, the probability
w1 can be represented in the form

w1 = 1 − f(y∞)
f(ymax)

, (9)

where y∞ =
√
mνmAβ∞a and β∞ = v∞/c. The

function f(y) appears in the expression for η [see
Eq. (8)] and is given by

f(y) =
−1 + cos 2y − 2y2 + 2y sin 2y + 2y4

2y4
. (10)

In two limiting cases, it becomes

f(y) ≈ 2y2/9 for y � 1

f(y) ≈ 1 − 1/y2 for y � 1

(the small term 1/y2 is of importance in the case
where ymax � 1 and y∞ � 1). The quantity w1 is
meaningful for y∞ < ymax or

v > γv∞, γ =
mν +mA

2
√
mνmA

(11)

(v =
√
v2
∞ + v2

esc(x)). In the Earth, a neutrino
can be captured only upon a collision with nuclei
whose masses are close to 50 GeV (between 46 and
54 GeV). Fortunately, this mass interval includes
the iron nucleus, which is abundant in the Earth,
the relevant capture probability being w1 ∼ 10−3. In
the case of the Sun, the inequality in (11) holds for
all nuclei, with the exception of that of hydrogen.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 200
The probability w1 for the hydrogen nucleus (proton)
is positive only in the interior of the Sun for x ∈
[0; 0.29].
With the aid of expressions (8) and (9) for η and

w1, respectively, we can recast Eq. (3) into the form

Ṅcapt =
∑

A

n∞
v∞

σ0NA tot (12)

×

∫

v2 9
2y2

max

(f(ymax) − f(y∞))nAdV

NA tot
,

where NA tot =
〈αA〉M

A
NA is the total number of A

nuclei in the gravitating body, 〈αA〉 is the mass frac-
tion of the A element in the entire gravitating body
of mass M , NA is Avogadro’s number, and nA =
αAρ

A
NA is the concentration of the A element. In

limiting cases, expression (12) can be simplified. For
example, we have

Ṅcapt ∼=
∑

A

n∞
v∞

σ0NA tot
(
〈v2
esc〉 − δ2v2

∞
)

(13)

for v2 � v2
nonpoint, δ2 ≡ γ2 − 1.

In expression (13), 〈v2
esc〉 stands for the quantity ob-

tained by averaging the square of the escape velocity
over the density (concentration) of A nuclei in the
Earth or in the Sun. If the relative content of the A
element is uniform over the volume of the gravitating
body—that is, if αA = const = 〈αA〉—〈v2

esc〉 reduces
to the square of the escape velocity averaged over the
total matter density:

〈v2
esc〉 =

∫

v2
esc(x)ρdV /M.

For the chosen distribution of Earth’s density, we
have 〈v2

escE〉 = 1.2v2
escE. For the Sun, the correspond-

ing result is 〈v2
escS〉 ≈ 3.3v2

escS.
In the opposite limiting case, expression (12) takes

the form

Ṅcapt ∼=
∑

A

n∞
v∞

σ0NA tot
9
2
v2
nonpoint (1 − f(y∞))

(14)

for v2 � v2
nonpoint.

There are virtually no data on the chemical com-
position of the interior of the Earth (we are interested
above all in the abundance of iron there). It is only
known that, in all probability, Earth’s core is domi-
nated by iron and that there are considerable amounts
of iron in the mantle of the Earth. We set the mass
fraction of iron in the Earth to 〈αFe〉 = 20% and as-
sume that its distribution over the volume of the Earth
is uniform. The result would slightly increase upon
2
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taking into account an increase in the concentration
of iron toward the center of the Earth.
For the sake of simplicity, the chemical composi-

tion of the Sun will also be assumed to be uniform
over its volume and to be consistent to the compo-
sition of Sun’s atmosphere, the latter being known
from observations. Calculations based on the stan-
dard solar model reveal that, in general, the relative
concentration of helium increases toward the center
of the Sun, that of hydrogen decreases, and so on.
Upon taking into account this nonuniformity of the
chemical composition, the result would slightly in-
crease, owing primarily to a higher concentration of
helium. Data on the chemical composition of Sun’s
atmosphere were borrowed from [14]. The relevant
atomic mass will everywhere be set to the atomic
mass of the most abundant isotope of the element
being considered.

3. ACCUMULATION AND ANNIHILATION
OF MASSIVE NEUTRINOS IN THE EARTH

AND IN THE SUN

Let us now consider processes of neutrino accu-
mulation and annihilation.
In calculating the rate of neutrino capture in the

Earth with allowance for the relations n ≈ n∞ and
v ≈ v∞, it is convenient to make use of expression
(3) and to take everything there outside of the integral
sign, with the exception of w1, whereupon this for-
mula becomes similar to that in (13), but it features
the additional factor η (8); as a result, we obtain

η ≈ 0.86, (15a)

〈w1〉 = 1.2
v2
escE

v2
∞

− δ2 ≈ 1.3 × 10−3, (15b)

Ṅcapt = n∞v∞σ0ηNFe tot〈w1〉 ≈ 1.0 × 1014 s−1.
(15c)

Estimates show that the contribution of multiple
collisions to neutrino capture does not exceed 10%.
The correction that is associated with taking into
account the velocity distribution of neutrinos is also
insignificant. Under the assumption that neutrinos
obey the Maxwell velocity distribution at a mean ve-
locity of 300 km/s, the result will increase by a factor
of 1.3. If we take additionally into account, in this
distribution, the motion of the Solar System (about
the center of the Milky Way Galaxy) at a velocity of
200 km/s, the result will increase by at least 10%.
There are no grounds to expect that the correction
associated with the velocity distribution of neutrinos
will be significant for the Sun either.
Over a time interval of about a year, which is

obviously much less than the age of the Earth, the
PH
kinetic energy of neutrinos that are captured by its
field reduces to energies of thermal motion of nu-
clei, with the result that the neutrinos settle in the
central part of the Earth. In the following, we will
refer to this process as the thermalization of neutrinos
and to its characteristic time as the thermalization
time. In order to estimate the number of neutrinos
accumulated in the Earth, we assume, for the sake
of simplicity, that the concentration of thermalized
neutrinos is distributed uniformly (is constant) within
a sphere of radius xthermal. This radius is defined as
the limiting distance within which a particle of total
energy Ttherm + U(0), where Ttherm and U(0) are, re-
spectively, the thermal energy of particles (molecules)
and the potential energy of neutrinos at the center of
the Earth, can occur in its potential field. A precise
value of the temperature at the center of the Earth
is unknown and is assumed to be within the range
3000–10000 K. Setting Ttherm = 1 eV, taking into
account (4), and using the equality

Ttherm − 3
2
TescE = −TescE

(3 − x2
therm)

2
,

(TescE ≡ mνv
2
escE/2 = 35 eV), we obtain xthermal ≈

0.24. The accumulation of neutrinos within the Earth
(an increase in the concentration of thermalized neu-
trinos) terminates as soon as the rate of their annihi-
lation becomes equal to the capture rate (Ṅann. equil =
Ṅcapt), in which case the energy release in annihila-
tion is 0.84 × 1013 erg/s (this corresponds to 0.5 ×
10−12 of the total energy flux incident on the Earth
from the Sun). We note that, in studying the actual
thermodynamic distribution of thermalized neutrinos,
it is necessary to consider evaporation (escape from
the Earth). It was shown in [9], however, that, for
neutrino masses in excess of 10 GeV, the rate of an-
nihilation is much higher than the rate of evaporation.
The cross section for ν4 annihilation is determined by
the weak interaction of neutrinos in the vicinity of the
Z-boson resonance. In the nonrelativistic approx-
imation, the cross section for such an annihilation
process through the channel involving the production
of a neutrino–antineutrino pair of specific flavor is

σνeν̄e
∼=

ḡ4

28π

m2
ν

(4m2
ν −m2

Z)2
1
β∗ ≈ 1.28 × 10−34 cm2

β∗ .

The total annihilation cross section is

σann =
σνeν̄e

Br(Z → νeν̄e)
≈ 1.93 × 10−33 cm2

β∗ . (16)

In the above expressions, ḡ =
√

4
√

2GFm2
Z is the

dimensionless weak-interaction constant; GF is the
Fermi constant;mZ is the Z-bosonmass; β∗ = v∗/c,
v∗ being the ν4 velocity in the c.m. frame; and
Br(Z → νeν̄e) ≈ 6.67% is the branching fraction for
YSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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Z-boson decay into a pair formed by a neutrino and
an antineutrino of the same flavor. The equilibrium
concentration nequil and the corresponding total num-
ber Nequil of thermalized neutrinos are [Ṅann. equil =
0.25n2

equilσannvrelVtherm, where vrel =
√

2v∗ is the
mean relative velocity of the neutrinos and Vthermal =
4
3π (RExthermal)

3 ≈ 1.5 × 1025 cm3] nequil ≈ 0.58 ×
106 cm−3 and Nequil = nequilVthermal ≈ 0.88 × 1031

(this corresponds to a mass of 780 t). The time it
takes for this equilibrium state to be established is

tequil =
Nequil

Ṅcapt
≈ 2.6 × 109 yr.

The value that we obtained for this time is commen-
surate with the age of the Earth (the former is one-half
as great as the latter); therefore, the current number
N of neutrinos (that is, the number of these accu-
mulated over the time period equal to the age of the
Earth) may be different from Nequil. Solving equation
Ṅ = Ṅcapt − Ṅann with respect toN , we obtain

N = Nequil tanh
(
tE/tequil

)
= 0.964Nequil,

where tE is the present-day age of the Earth. Accord-
ingly, Ṅann is given by

Ṅann = 0.9642Ṅcapt = 0.93Ṅcapt.

Taking into account the degree of precision to which
this result was obtained, we can set N ≈ Nequil and
Ṅann ≈ Ṅcapt.
In the case where the annihilation process pro-

ceeds through an intermediateZ boson, 20% of anni-
hilated ν4 are converted into pairs of monochromatic
neutrinos of known species (νeν̄e, νµν̄µ, ντ ν̄τ ), their
energies being 50 GeV. Their flux at Earth’s surface
is

I =
0.2Ṅann
4πR2

E

≈ 4.1 × 10−6 cm−2 s−1.

For each neutrino (neutrino + antineutrino) flavor
individually, the flux is one-third as great as that.
For the Sun, the number of captured neutrinos

per unit time upon the interaction with a specific
nuclear species, ṄA capt, is given in Table 1, where
the elements are arranged in order of decrease in their
concentration in the Sun. The total number of ν4
captured in the Sun per unit time is

Ṅcapt ≈ 2.2 × 1021 s−1.

The total flux of ν4 through the entire surface of the

Sun is nσSv =
n∞
v∞

v2πR2
S ≈ 4.8 × 1023 s−1, where

n and v are, respectively, the neutrino concentration
and the neutrino velocity at the level of Sun’s surface
(v = 687 km/s) and σS = πR2

S is the cross-sectional
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area of the Sun. The flux of arriving neutrinos is
much greater than Ṅcapt. Therefore, the approxima-
tion where the interaction with matter is assumed to
induce only negligible changes in the concentration of
incident neutrinos is justified. We also note that the
relationship between Ṅcapt and the arriving flux is in-
dependent of n∞, and so therefore is the applicability
of this approximation.
The time of thermalization of neutrinos captured in

the Sun (it is also about a year) is much less than the
age of the Sun. The kinetic energy of the neutrinos at
the center of the Sun is Ttherm = 1.9 keV, while the
potential energy is obtained by multiplying expres-
sion (6) by −mν/2. We then have xthermal ≈ 0.017;
Vthermal ≈ 0.69 × 1028 cm3; nequil ≈ 1.3 × 108 cm−3;
Nequil ≈ 0.87 × 1036, which corresponds to a mass of
0.78 × 1014 g; and tequil ≈ 1.2 × 107 yr—that is,N =
Nequil and Ṅann = Ṅcapt. The energy release from
ν4 annihilation is 1.8 × 1020 erg/s = 4.7 × 10−14LС,
where LС is Sun’s luminosity.
Neutrinos of known species from the annihilation

of 50-GeV ν4 are partly absorbed in the Sun. The
cross sections for the interaction of 50-GeV neutrinos
and antineutrinos of known species with a nucleon
are different [15]: they are 5.1 × 10−37 and 2.6 ×
10−37 cm2, respectively. We note that the distinctions
between the cross sections for neutrinos of different
flavors are insignificant at the energies being consid-
ered. The fractions of neutrinos and antineutrinos
that escaped from the Sun are 0.63 and 0.79, respec-
tively. The fluxes of monochromatic neutrinos and
antineutrinos and their total (neutrino + neutrino)
flux from ν4 annihilation is

Iν ≈ 0.50 × 10−7 cm−2 s−1,

Iν̄ ≈ 0.63 × 10−7 cm−2 s−1,

Iνν̄ ≈ 1.1 × 10−7 cm−2 s−1.

For each flavor individually, the fluxes are smaller by a
factor of 3.
Among the parameters that affect eventual results,

the neutrino concentration n∞, which is proportional
to ξCΩ, is characterized by the highest degree of
uncertainty. The concentration n∞ affects not only
Ṅcapt and I but also the equilibration time tequil. The
ξCΩ values at which tequil is equal to the present-day
age of the Earth and the present-day age of the Sun
are 0.5 and 1.2 × 10−5, respectively. Taking these
values into account, we can generalize the neutrino
fluxes from Earth’s and Sun’s center to the case of
arbitrary ξCΩ. The result for the Sun is

I ≈ 1.1 × 10−7 ξCΩ
2

2
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Table 1. Rates of neutrino capture by nuclei of specific elements in the Sun

Element ṄA capt, 1020 s−1 Element ṄA capt, 1020 s−1 Element ṄA capt, 1020 s−1

1H 0.94 26Fe 3.34 17Cl 0.02

2He 4.60 16S 0.75 15P 0.01

8O 5.89 18Ar 0.29 25Mn
∗ 0.03

6C 1.26 13Al 0.11 19K 0.01

10Ne 1.94 20Ca 0.15 22Ti 0.01

7N 0.53 11Na 0.05 27Co 0.01

12Mg 0.97 28Ni 0.18

14Si 1.27 24Cr 0.05

∗ The lowest excited level of the 25Mn55 nucleus is that at 126 keV. In the interaction of neutrinos having energies (within the Sun) in
the range 131–556 keV, there can occur inelastic scattering, which is not coherent. In calculating the interaction-cross-sectionvalues
quoted in the table, we relied on formula (7), which is valid for elastic interaction, so that the possible effects of inelastic scattering
were disregarded.
× tanh2

√
ξCΩ

1.2 × 10−5
(cm−2 s−1).

Upon a generalization to the case of an arbitrary mass
fraction of iron, we find for the Earth that

I ≈ 4.1 × 10−6 ξCΩ
2

αFe

20%

× tanh2

√
ξCΩ
0.5

αFe
20%

(cm−2 s−1),

where ξCΩ = 2 corresponds to the value used here
(ξCΩ = 2 × 104 × 10−4 = 2, n∞ = 2 × 10−7 cm−3)
and tanhx ≈ 1 for x > 1.
The solid angle of the annihilation-neutrino flux

from Earth’s center is about 1 sr; for the Sun, the
analogous solid angle is determined by the angular
resolution of the detector. The fluxes of atmospheric
neutrinos are direction-dependent (this dependence is
especially strong for high-energy electron neutrinos
[16]): a flux in the horizontal direction is greater
than the analogous flux in the vertical direction. For
various neutrino flavors, the data in Table 2 illus-
trate, at various energies, a comparison of the fluxes
of monochromatic annihilation neutrinos and of up-
ward going atmospheric neutrinos of the same fla-
vor. In the first column, the ratios of these fluxes

Table 2. Ratios of the fluxes of monochromatic annihila-
tion neutrinos of specific flavor from Earth’s center to the
flux of upward going atmospheric neutrinos of the same
flavor for various neutrino flavors at various energies

50GeV >50GeV >1GeV

νµν̄µ 3 0.14 0.6 × 10−4

νeν̄e 50 2.4 2 × 10−4
P

are given for atmospheric neutrinos in the energy
region (chosen by convention) around 1 GeV. The
ratios in the remaining columns were taken for the
integrated fluxes of atmospheric neutrinos. Similar
ratios for atmospheric-neutrino fluxes averaged over
directions are considerably smaller. We note once
again that these ratios were obtained at ξCΩ = 2 and
αFe = 20%.
It is important to note that the presence of elec-

tron, muon, and tau neutrinos (in equal amounts)
from ν4 annihilation is a feature that distinguishes
the case at hand from the analogous case where the
accumulation and annihilation at Sun’s and Earth’s
center are considered for neutralinos, another popu-
lar candidate for a WIMP. Because of its Majorana
nature, the neutralino cannot directly annihilate into
a neutrino. Neutrinos are produced in the decays
of neutralino-annihilation products and in the inter-
actions of these products with surrounding matter;
as a result, their spectrum becomes softer (in this
way, there arise many muon neutrinos and only a few
tau neutrinos). There is a similar soft section of the
spectrum of electron, muon, and tau neutrinos in ν4

annihilation as well.
Let us now estimate the local concentration of

heavy neutrinos at the level of Earth’s surface. The
total neutrino concentration near the surface of the
Earth receives contributions not only from galactic
neutrinos themselves, whose concentration near the
Earth is approximately equal to n∞, and the slow
component, but also from neutrinos captured by the
Earth (both from nonthermalized and from thermal-
ized ones). The group of nonthermalized neutrinos
consists of captured neutrinos, which, upon the first
collision with a nucleus, execute oscillatory motion
of amplitude greater than Earth’s radius, forming a
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 2 2002
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neutrino atmosphere around the Earth. The neutrino
atmosphere of the Earth also involves thermalized
neutrinos, since the actual distribution of their con-
centration can go beyond Earth’s surface. These
neutrinos have a velocity of about 1 km/s, which
is two orders of magnitude less than the velocity of
galactic neutrinos and one order of magnitude less
than the velocity of neutrinos from the slow compo-
nent; in view of this, they can hardly be discovered
with present-day underground facilities intended for
direct WIMP searches. In order to estimate the con-
centration of this ultraslow component of heavy neu-
trinos, we assume that thermalized neutrinos obey
the Boltzmann distribution

n(x) = n0 exp
(

−U ′(x)
kT

)

,

where n0 is the concentration of neutrinos at Earth’s
center, U ′(x) is the neutrino potential energy reck-
oned from Earth’s center [at the surface of the
Earth, it is U ′(1) = TescE/2 ≈ 18 eV], and kT =
(2/3)Ttherm ≈ 0.6 eV is the temperature of thermal-
ized neutrinos. At the surface of the Earth, the
concentration isn(1) ≈ 10−13n0 ≈ 5× 10−8 cm−3 ≈
0.3n∞; in order to obtain this estimate, we set
the concentration at Earth’s center to n0 = nequil ≈
0.58 × 106 cm−3. Upon taking into account an
increase in the density of Earth’s matter toward the
center, U ′(1) will increase, with the result that the
concentration of thermalized neutrinos at Earth’s
surface will become a few orders of magnitude
smaller. Thus, the number of thermalized neutrinos
at Earth’s surface is negligibly small in relation to the
number of galactic neutrinos. In order to assess the
concentration of nonthermalized neutrinos, we as-
sume that the neutrinos being discussed move along
orbits whose eccentricity is e = 1—that is, along
straight-line trajectories—and consider neutrinos
only after the first collision with a nucleus; in other
words, we disregard the contribution from neutrinos
that suffered two or more collisions with nuclei of
Earth’s matter. For a single neutrino of total energy
E (E < 0), the amplitude of oscillations can then be
represented as a = GMEmν/|E| = RETescE/|E|. We
interested in neutrinos for which a > RE; in this case,
the distribution of the concentration of neutrinos with
respect to the radius r is given by

n1 =
1

2π2ar3/2
√
a− r

, r < a.

The rate (dṄ+/dE) at which this neutrino population
is replenished in the energy range E to E + dE is ob-
tained by dividing expression (15c), where the factor
wesc = v2

escE/v
2
∞ − δ2 is substituted for 〈w1〉 (15b), by

TescE. In contrast to 〈w1〉, the factor wesc is inde-
pendent of the form of the density distribution in the
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Earth. In order to demonstrate this explicitly, we note
that, at a point where the potential energy U(x) takes
any value satisfying the condition |U(x)| � T∞ and
depending on the density distribution in the Earth,
the probability that a neutrino is scattered by an iron
nucleus into an orbit whose size a is greater than
RE is determined by the final-total-energy interval
−TescE < E < 0, which is independent of U(x) and,
hence, of the density distribution. This explains why,
in wesc, there is not the factor of 1.2, which arose
in 〈w1〉 (15b) from averaging over the entire volume
of the Earth. Neutrinos of energy E that belong
to this population exist (are thermalized) within the

time period t(E) = T1/2/w, where T1/2 =
πa3/2

vescE
√
RE

is the oscillation half-period and w ≈ 2RE〈nFe〉σ0 is
the probability for a neutrino to undergo a collision
with an iron nucleus in traversing the Earth. The dis-
tribution of the thermalized-neutrino concentration n
is determined by a balance between its replenishment
via the capture of new neutrinos and their departure
via thermalization. The corresponding balance equa-
tion can be represented as

dṄ+

dE
n1(E) =

dn

dE

1
t(E)

.

Upon the substitution of all relevant quantities and
integration over the region covering all possible neu-
trino energies, we find from this equation that the
concentration n(x), x > 1, can be represented as

n(x) =
2
3
η
v∞
vIIE

wII
n∞
x5/2

,

where η given by (15a). We note that this result will
also be valid for WIMPs of mass 50 GeV that are
of a different nature, since it is virtually independent
of the properties of the particles involved and of the
properties of Earth’s matter. This is because the
rate of capture of new galactic neutrinos and the
thermalization rate depend identically on these prop-
erties (in particular, on the transparency of the Earth).
In accordance with the expression obtained for the
concentration of nonthermalized neutrinos, its value
at the surface of the Earth is n(1) ≈ 1.6 × 10−2n∞.
Thus, the neutrino atmosphere does not make a sig-
nificant contribution to the neutrino background near
the surface of the Earth, nor does it accordingly pro-
duce noticeable effects from annihilation.

4. EFFECTS OF NEW LONG-RANGE
INTERACTION IN THE ANNIHILATION

OF FOURTH-INTERACTION NEUTRINOS

The existence of fourth-generation fermions, in-
cluding ν4, can be theoretically justified within super-
string theory. In the low-energy limit of its realistic
2
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versions, there arisesU (1) gauge symmetry (or even a
few of them) [17] that is not contained in the Standard
Model and which may be associated only with the
fourth generation of fermions, not involving fermions
of the three known generations. The corresponding
new gauge interaction may be similar to electromag-
netic interaction. For the sake of definiteness, we
denote its coupling constant by αy and refer to the
massless boson mediating it as a y photon. The im-
pact of the new interaction on phenomena associated
with the existence of ν4 was considered elsewhere
[18]. Here, we will briefly consider the effect of the new
interaction of ν4 on its accumulation and annihilation
in the Earth and in the Sun.
The new interaction leads to the new annihilation

channel ν4ν̄4 → yy. The cross section for this pro-
cess is analogous to the cross section for electron–
positron annihilation into two photons and, in the
nonrelativistic approximation (αy � β∗ � 1), has
the form [19]

σy-ann
∼=

πα2
y

2m2
ν

1
β∗ ≈ 1.30 × 10−35 cm2

β∗

(αy

α

)2
,

where α = 1/137 is the coupling constant for elec-
tromagnetic interaction (fine-structure constant). At
αy = α, this cross section is more than two orders
of magnitude smaller than the cross section (16)
for annihilation through a Z boson. For αy about
α, the dominant channel of neutrino annihilation is
that through an intermediate Z boson. Of greater
importance is the following fact also associated with
the new interaction: the presence of the long-range
interaction between neutrinos whose velocities β∗ are
less than 2παy , which is similar to Coulomb inter-
action, leads to an increase in interaction cross sec-
tions (Sakharov’s enhancement), including the cross
section for annihilation through a Z boson, that is
expressed in terms of the Coulomb factor [20]

C(β∗) =
2παy/β

∗

1 − exp (−2παy/β∗)
.

At a speed of 300 km/s, a maximal speed of ther-
malized neutrinos that correspond to Ttherm in the
Earth, and a maximal speed of thermalized neutrinos
that correspond to Ttherm in the Sun, the Coulomb
factor C(β∗) at αy = α takes the values of 46, 7300,
and 166, respectively. If we assume that the dy-
namics of capture and thermalization, together with
the adopted approximations on the distribution of
the thermalized-neutrino concentration, undergoes
no changes, the quantities nequil, Nequil, and tequil de-
crease in proportion to the square root of the Coulomb
factor—that is, in proportion to 85 for the Earth and in
proportion to 13 for the Sun. The fluxes of neutrinos
of known flavors from ν4 annihilation correspond to
the equilibrium case of Ṅann. equil = Ṅcapt and remain
PH
unchanged; since tequil � tthermal as before, ν4 have
time to be accumulated at the center prior to the com-
mencement of annihilation. Hence, we can conclude
that, because of kinetic equilibrium, the presence of
the new long-range interaction and the enhancement
of the annihilation cross section because of this inter-
action have virtually no effect on the estimates of the
fluxes of neutrinos from annihilation.

5. CONCLUSION

The present article reports on a continuation of
investigations into observable effects that could be
associated with the existence of the fourth-generation
neutrino ν4 [3–7]. Some of such effects make it
possible to single out manifestations of the new neu-
trino against the background of other candidates for a
WIMP and may serve as a tool for studying the com-
position of multicomponent dark matter in the Milky
WayGalaxy. For example, the annihilation of ν4 in the
halo leads to the emergence of a characteristic outlier
at an energy of aboutmν in the spectrum of cosmic-
ray positrons [4, 5]. The prediction of fluxes of strictly
monochromatic neutrinos of energy precisely equal
to mν that belong to the known species, including
tau neutrinos, is an important distinguishing feature
in dealing with ν4 annihilation in the Earth and in
the Sun. By using the soft continuous section that
is present in the spectrum of annihilation neutrinos
and which is associated with other channels of ν4
annihilation, it is more difficult to distinguish ν4 from
other WIMP candidates, especially as this section of
the spectrum has a comparatively low spectral den-
sity because of a comparatively low density of relic
ν4. In searches for manifestations of ν4 from the
Sun, a difference of about 25% between the fluxes of
monochromatic neutrinos and antineutrinos, which is
due to a stronger absorption of escaping neutrinos in
Sun’s matter, may be of considerable interest.
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