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Abstract—A systematic investigation of the forward-angle inclusive yields of 2 ≤ Z ≤ 11 isotopes pro-
duced in collisions of 18O projectile nuclei with a 9Be target in the Fermi energy region (35A MeV) is
performed. The measurements were based on the use of the COMBAS double achromatic kinematical
separator in the spectrometry mode at the Flerov Laboratory of Nuclear Reactions at the Joint Institute for
Nuclear Research, FLNR (JINR, Dubna). The velocity, isotopic, and element distributions are presented.
There is no unique mechanism that would explain the total set of results obtained in this experiment. A
dominant role of low-energy reactionmechanisms is observed. The intensity of secondary beams of halolike
nuclei 11Li, 12Be, and 14Be is determined. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The availability of heavy ions in the intermediate-
energy region offers a unique opportunity for detailed
studies of the transition-energy region [1] between
low-energy nuclear collisions [2] and high-energy
multifragmentation processes [3]. In the transition
region (20 to 100A MeV), the projectile velocities
are commensurate with the characteristic velocities
in nuclear matter such as the velocity of sound and
the Fermi velocity of nucleons inside nuclei. Over-
coming these threshold velocities, one can hope to
encounter qualitatively new phenomena. There still
remains the open question of how fast reaction mech-
anisms of the binary type (characteristic of the low-
energy regime) evolve in the multifragmentation dis-
integration of colliding partners (characteristic of the
high-energy regime). The possible influence of the
neutron excess (N/Z)p in the projectile and (N/Z)t
in the target on the cross section for the production
of unstable nuclei also remains unknown. It is well
known that weakly bound drip-line isotopes are syn-
thesized with maximum yields in nucleus–nucleus
collisions at intermediate energies [4, 5]. What re-
action mechanisms are dominant in processes that
produce “cold” drip-line isotopes at intermediate en-
ergies?

∗This article was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Moscow oblast,
Dubna, 141980 Russia.

2)Henryk Niewodniczanski Institute of Nuclear Physics, Cra-
cow, Poland.

3)Institute for Nuclear Research, National Academy of Sci-
ences, pr. Nauki 47, Kiev, 252028 Ukraine.
1063-7788/02/6503-0393$22.00 c©
Presently, there are many experimental data con-
cerning the investigation of reaction mechanisms in
the region of intermediate energies, but the main
sample of data was obtained in large-angle mea-
surements [1, 6–11]. As a rule, fragments emitted
outside the zero-angle region (large angles) are pro-
duced in nucleus–nucleus collisions involving high
traverse-momentum transfers (large losses of kinetic
energy) or in multifragmentation processes. Such
experiments are not sensitive to the “quasielastic”
production of weakly bound (drip-line) isotopes.

To fill the gap in our knowledge, it is necessary to
study the evolution of the mechanisms of reactions
producing weakly bound nuclei versus projectile
energy in nucleus–nucleus collisions with different
entry mass and charge asymmetry. Moreover, exper-
imental information to be obtained is of paramount
importance for choosing the optimal energy and
projectile–target combination needed to synthesize
unknown drip-line nuclei and to form intense sec-
ondary radioactive beams.

This study is aimed at exploring the yields of
charged reaction products with reference to the
production of near-drip-line nuclei in collisions be-
tween 18O projectiles in the Fermi energy domain
(35A MeV) and a light 9Be target efficiently used in
the synthesis of drip-line nuclei and at determining
the intensity of secondary radioactive beams of halo-
like 11Li, 12Be, and 14Be nuclei.
Considering that weakly bound neutron-drip-line

isotopes could survive only when they are involved in
“soft” peripheral nuclear collisions with a minimum
transverse-momentum transfer (minimum excitation
2002 MAIK “Nauka/Interperiodica”



394 ARTUKH et al.

 

F

 

0

 

M

 

1

 

M

 

2

 

M

 

3

 

M

 

4

 

M

 

5

 

M

 

6

 

M

 

7

 

M

 

8

 

F

 

d

 

Primary
beam

Production
target

Beam
stopper

Momentum
slit

Silicon
telescope

 

F

 

a

 

E

 

∆

 

E

 

1

 

∆

 

E

 

2

First selection
by 

 

B

 

ρ

 
Second selection

by 

 

B

 

ρ

 

Configuration

 

M

 

1

 

M

 

2

 

M

 

3

 

M

 

4

 

F

 

d

 

M

 

5

 

M

 

6

 

M

 

7

 

M

 

8

 

F

 

a

 

∆Ω

 

, msr

 

∆

 

p

 

/

 

p

 

, %

 

B

 

ρ

 

, T m

 

R

 

p

 

/

 

∆

 

p

 

L

 

, m

6.4 4.5 4360 14.5±10

Fig. 1. Layout of the COMBAS secondary-beam facility.
The main ion-optics parameters of the COMBAS kine-
matic separator are presented in the table.

energy), we used the COMBAS kinematical sepa-
rator in zero-angle spectrometry of charged reaction
products [12].

2. EXPERIMENTAL CONDITIONS

A 14-mg/cm2 9Be target foil was irradiated with a
35A-MeV 18O beam of (electric) intensity up to 2 µA
from the U-400M cyclotron installed at the Flerov
Laboratory of Nuclear Reactions, Joint Institute for
Nuclear Research (JINR, Dubna). The target was
placed at the entrance focus of the COMBAS sepa-
rator (Fig. 1). The diameter of the beam spot on the
target did not exceed 3 mm.
Nuclear products emitted at forward angles within

a COMBAS solid angle (6.4 msr) were separated
from the intense beam of bombarding particles by
magnetic rigidity and identified by themass numberA
and atomic number Z with a (∆E, E) telescope [13,
14] placed at the exit achromatic focus of the COM-
BAS separator. The yields of isotopes were measured
by scanning the range of magnetic rigidities covering
the velocity distributions of the 2 ≤ Z ≤ 11 light-
element isotopes studied here. The magnetic fields
of all eight magnets of the separator were measured
with Hall probes. The 18O primary beam was trans-
mitted along the ion-optics axis of the separator in
order to determine the beam magnetic rigidity and
to use it as a momentum reference in measuring
momentum distributions (or velocity distributions)
of charged products. The thickness of the Be target
was controlled by the primary-beammagnetic rigidity
with the installed target and without it. Proportional
counters were placed behind the target on both sides
of the beam axis to monitor the beam intensity and
beam position on the target. The target was also used
to measure the beam current.
In the Fd dispersive focal plane, the 2-mm slit on

the ion-optics axis of the separator was positioned
P

to restrict the momentum acceptance within 0.15%
and to reduce the load of the electronics and read-
out system near the beam magnetic rigidity. In the
same Fd plane, a thin stripping 24-µm Mylar foil
was installed to remove products whose ionic charge
differed from the nuclear charge. The proximity to
the beam magnetic rigidity was restricted by the ra-
tiosBρ/Bρbeam = 0.98 and Bρ/Bρbeam = 1.01. The
products were detected in the achromatic focus Fa

by a telescope consisting of silicon detectors—∆E1
(0.38 mm, 60 × 60 mm2), ∆E2 (3.5 mm, ∅60 mm),
andE (7.5 mm,∅60mm)—and were identified by the
nuclear charge and by themass number by combining
two methods: magnetic rigidity and (∆E, E):

E = (Bρ)2 × Z2/A, (1)

∆E ≈ A× Z2/E. (2)

Here,A,Z, andE are, respectively, the mass number,
the atomic number, and the energy of the detected
product.
The yields of all of the isotopes are presented in

relative units after the normalization of the recorded
isotopic events to the monitor detector counting.

3. EXPERIMENTAL RESULTS

3.1. Forward-Angle Inclusive Velocity Distributions
of Products

The inclusive forward-angle velocity distributions
of 2 ≤ Z ≤ 11 isotopes produced in the reaction of
35A-MeV 18O nuclei on a 9Be target are shown in
Figs. 2–5. The isotopic velocity V is referred to that
of the projectile, Vprojectile. The existence of different
reaction mechanisms can be observed from the evolu-
tion of the shape of the isotopic velocity distributions
with increasing number of transferred nucleons.
Figure 2 displays the velocity distributions for the

two extreme cases of a small nucleon transfer (a) and
a multinucleon transfer (b) corresponding to weakly
bound nuclei produced near the neutron drip-line.
Nuclear-reaction products of mass close to the mass
of the projectile (16,17,19O, 17,18N, 16C) are char-
acterized (see Fig. 2a) by a narrow bell-like shape
with a maximum close to the projectile velocity. The
visual shift of the velocity maxima of the 18N and
19O isotopes produced in the neutron-pickup reaction
is of a kinematical origin (see below). Gaussian-like
velocity distributions of such a shape are observed
in small-nucleon-transfer reactions at low energies
(quasielastic transfer). The shape of the velocity dis-
tributions in the region of smaller velocities (Fig. 2a)
shows a bend at a level of more than 100 below the
maximum yield; then, a slower exponential fall is ob-
served. The contribution of this slower fall component
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 2. Forward-angle inclusive velocity distributions
(relative yields) of isotopes produced in (a) small-
nucleon-transfer reactions and (b) proton-strippingreac-
tions. The isotope velocity V is referred to the projectile
velocity Vprojectile. The numbers near the isotopic sym-
bols (within the frame) show the factors by which the
experimental yields are multiplied.

(inelastic portion of the spectrum) to the total yield
of the isotope increases noticeably with increasing
number of transferred nucleons.
The group of weakly bound isotopes (Fig. 2b) is

characterized by a Gaussian-like single-component
shape that is symmetrically concentrated around the
projectile velocity. The widths of the velocity distribu-
tions for those isotopes tend to increase with increas-
ing number of transferred nucleons. The shape of the
velocity distributions of those weakly bound nuclei is
close to the shape of the quasielastic component in
the yields of isotopes obtained in the case of small nu-
cleon transfer (Fig. 2a). As can be seen from Fig. 2b,
there is no inelastic component in the yields of these
nuclei, despite the fact that they are produced through
a massive nucleon transfer. Evidently, this is due to
the decay of weakly bound nuclei produced in inelastic
processes with a noticeable excitation energy.
More complicated velocity distributions are ob-

served for the intermediate case of massive nucleon
transfers (Figs. 3–5). The isotopes around the stabil-
ity line and proton-rich isotopes produced in a more
massive stripping of nucleons are characterized by
asymmetric shapes. The maximum yields are con-
centrated near the projectile velocity (with excep-
tion of the alpha-particle distribution), and there is
a trend toward the broadening of the distributions
with increasing number of transferred nucleons. The
contribution of inelastic components (low-velocity
sides) increases appreciably as the number of trans-
ferred nucleons increases (the tails are flattened). This
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 3. Forward-angle inclusive velocity distributions
(relative yields) of He, Li, Be, and B isotopes. The isotope
velocity V is referred to the projectile velocity Vprojectile.
The numbers near isotopes (within the frame) show the
factors by which the experimental yields are multiplied.

growing contribution of the exponential tails from the
low-velocity side to the total yields of these isotopes
demonstrates the increasing role of dissipative pro-
cesses and of secondary deexcitation processes.

The velocity distributions of isotopes produced
in nucleon-pickup or nucleon-exchange reactions
(19–21F, 18–22Ne, 17,18C, 18N, 19O) are similar in
shape to those of the intermediate group, with the
exception of the positions of maxima. The maxima
of these distributions are concentrated at velocities
less than the projectile velocity, showing a tendency
toward a systematic shift as the number of pickup
protons and neutrons increases. These phenomena
are of a kinematical origin and are due to a decrease
in the velocity of isotopes with the pickup of nucleons.
The growing contribution of the low-energy tails,
with increasing number of pickup nucleons, demon-
strates the increasing role of dissipative processes in
the production of nuclei.
2
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Fig. 4. As in Fig. 3, but for C, N, O, and F isotopes.

3.2. Isotopic Distribution of Reaction Products

To produce isotopic distributions, the velocity dis-
tributions were integrated over the measured region
of velocities (Fig. 6a). In the oxygen isotopic dis-
tribution, the yield of the 18O isotope was excluded
because it was impossible to separate the reaction
yield of 18O from 18O projectiles.

For each element, the isotopic distributions are
similar to bell-like shapes; this is not so only for the
He and Li distributions. The most probable yields
correspond to masses around the stability-line iso-
topes. A sharp exponential decrease in the yields of
heavy isotopes for each element is observed. The
light-isotope side of the distributions increases with
the number of stripping protons. The isotopic dis-
tributions of Li and He elements produced with a
maximum number of stripping protons and neutrons
degenerate into an exponential shape. An accumu-
lation of the lightest isotopes (proton-rich ones) for
each element, especially for the lightest elements, is
affected by the contributions of evaporative lightest
particles. This correlates with the behavior of growing
PH
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Fig. 5. As in Fig. 3, but for Ne and Na isotopes.

contributions of the low-energy part of velocity distri-
butions of these isotopes.

3.3. Element Distributions of Reaction Products

The element distributions (Z distributions) were
obtained by integrating the isotopic distributions
(Fig. 6b). The yield of the Z = 8 element (projectile)
is underestimated because of the unknown yield of
18O reaction products.
For the products of Z greater than the Z value

of the projectile, the production yields decrease with
increasing Z. A weak odd–even effect (enhancement
of carbon) is also visible in the Z distribution. A
striking feature of the resulting Z distribution is that,
within a factor of five, all the elements from Z = 2
to Z = 7 are equally produced. A sharply increasing
yield of the lightest elements (withZ ≤ 2) is observed.

4. DISCUSSION OF THE RESULTS

The evolution of the velocity and isotopic distribu-
tions obtained in forward-angle measurements ver-
sus the number of transferred nucleons suggests the
existence of different reaction mechanisms.
In the Fermi energy domain (35A MeV), the ve-

locity distribution of isotopes close to the projectile
demonstrates a dominant role of direct peripheral
reactions like the binary processes of stripping and
pickup of a few nucleons in the low-energy region [2,
15]. The main contribution of these reactions is ob-
served in the yields of all isotopes including isotopes
produced in reactions involving a massive transfer
of nucleons. In the production of the weakly bound
nuclei of 8He, 11Li, 12Be, 14Be, and 15B, the peripheral
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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binary reactions also play a dominant role. These
drip-line nuclei are produced in nuclear reactions with
the maximum number of the transferred protons.

The analysis of the velocity distributions of de-
tected fragments within the simple fragmentation
model showed that there is disagreement with the
experimental data obtained in forward-angle mea-
surements.
A naive picture of geometric fragmentation pre-

dicts a regular decrease in the velocity of isotopeswith
increasing number of removed nucleons [1, 6]:

V/Vp = [(35A− (Ap −A) × 8) /(35Ap)]
1/2 (3)

× (Ap/A)1/2 ,

where Ap and A are the mass numbers of the 18O
projectile with 35AMeV and the isotope, respectively,
while Vp and V are their velocities; 8 MeV is the
mean energy of a single removed nucleon. As can be
seen from Fig. 2b, the experiment has not confirmed
the systematic shift of the maximum of the velocity
distributions toward lower velocities with increasing
number of removed protons as predicted by the frag-
mentation model.
For example, the relative yields of Be isotopes

according to the calculation by the LISE code based
on the fragmentation hypothesis [16] are presented in
Fig. 7. There is no agreement between the prediction
and the experimental data in the shape and, espe-
cially, in the position of the maximum. The discrep-
ancy between the predicted shape of the magnetic-
rigidity distributions and the experimental data in-
creases for heavier isotopes. For the drip-line iso-
tope 14Be, the widest distribution is predicted and the
centroid is considerably shifted toward smaller values
of the magnetic rigidity. The observed discrepancy
in the shape and position of the maximum for the
drip-line nuclei should be taken into account in the
experiments being planned, especially when a low-
momentum-acceptance fragment separator is used.
Figure 6a illustrates the degree of agreement between
the fit calculated by the LISE code and the experi-
mental data on the isotopic yields.

In addition, the production of Z > Zprojectile iso-
topes (F, Ne, and Na) is not conceptually assumed
within the projectile-fragmentation hypothesis. In
Fig. 6a, the experimental points for these isotopes
are connected by dotted curves to guide the eye.

It is well known from [17] that, in the low-energy
region, the yields of isotopes produced in stripping re-
actions can be approximated by a simple exponential
function of Qgg,

y = C exp(Qgg/T ), (4)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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where T is the parameter (measured in MeV) de-
termining the slope of the exponential and C is a
constant.
2
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The Qgg systematics characterizing the binary
type of isotopic production is given in Fig. 8. In
calculating Qgg, it is assumed that there are two
particles (projectile and target) in the entrance chan-
nel and two particles (the detected fragment and an
undetected residue of the compound system) in the
exit channel. The Qgg value is determined by the
difference of the ground-state masses of the partners
before and after the collision event being considered.
It can be seen from Fig. 8 that the simple expo-

nential approximation realized by theQgg systematics
describes the total yield of the isotopes produced in
nucleon-stripping reactions with large negative Qgg

values. The uniqueness of the Qgg systematics con-
sists in a satisfactory description of the isotopic yields
of all elements by the same simple exponential over a
range of more than five orders. The Qgg systematics
is a powerful tool for correctly predicting the expected
yields of unknown drip-line nuclei in experimental
searches. As can be seen from Fig. 8, the decrease in
the yields of the detected isotopes in relation to the
averaged Qgg exponential is observed in the region
of small negative or positive Qgg values. The largest
discrepancy is observed for the heavy isotopes of 19O
and 20O produced in the neutron-pickup reactions.
It is well known that each nucleon-pickup event de-
posits an excitation energy in a nuclear acceptor. That
is why the observed decrease in the yields for nuclei
originating from neutron-pickup reactions can be due
to deexcitation effects. The reduction of the detected
yields of single-neutron-halo isotopes of 11Be, 14B,
PH
 
Relative yields

10

 

6

 

10

 

0

 

10

 

3

 

17
16

19
15

14
13

14

14

14

13
12

15
16
11

20

18
9

17
10109

11

12

7
4

6

8 8

6

11

4

6
8 9

7

8 15

12

15

16
14

17

1318

10

11

12
13

 

O 

 

×

 

 10

 

5

 

C 

 

× 

 

10

 

3

 

Be 

 

× 

 

10
He

N 

 

×

 

 10

 

4

 

B 

 

× 

 

10

 

2

 

Li
He

 

10

 

12

 

10

 

9

 

20 0 –20 –40 –60 0 –20 –40 –60

 

Q

 

gg

 

, MeV

Fig. 8. Isotopic yields of 2 ≤ Z ≤ 8 elements versusQgg

(Qgg systematics), where Qgg is (Mp +Mt) − (Mdet +
Mundet), with Mp, Mt, Mdet, and Mundet being the
ground-state masses of the projectile, the target, the de-
tected isotope, and the undetected isotope (the partner of
the detected isotope in the exit channel of the reaction),
respectively. The arrows for the 19O and 20O isotopes
show the decrease in the yields of the isotopes as the pos-
sible consequence of deexcitation effects. The numbers
near isotopes (in frame) show the factors by which the
experimental yields are multiplied for visual convenience.

and 15C can be caused by their low binding energies
favoring disintegration.
The experiment was also carried out to estimate

the production rates for halolike nuclei of 11Li (6 ×
103 pps), 12Be (3 × 105 pps), and 14Be (5 × 102 pps)
generated by a 630-MeV 18O beam on a 200-
mg/cm2 9Be target. The primary-beam current at
the target reached 10 µAe. The COMBAS achro-
matic spectrometer was used with a total momentum
(±10%) acceptance and a total solid angle (6.4 msr).

5. CONCLUSION

The production of 4 ≤ A ≤ 22, 2 ≤ Z ≤ 11 iso-
topes that is induced in the inverse-kinematics
reaction 18O + 9Be in the Fermi energy domain
(35A MeV) has been studied in forward-angle mea-
surements by using theCOMBASdouble achromatic
kinematical separator.
No evidence has been found for any dramatic

change in the reaction mechanism for peripheral
reactions in relation to that in the low-energy range.
In the beam direct selection of isotopes produced in
the interaction of a light projectile and a light target,
the dominant role of stripping, pickup, and exchange
nuclear reactions has been observed. Considerable
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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contributions from dissipative processes have been
found for isotopes around the stability line. A unified
exponential approximation using theQgg systematics
of isotopic distributions for all detected elements has
confirmed the binary type of the reaction produc-
ing neutron-rich isotopes. The simple exponential
approximation realized by the Qgg systematics is a
powerful tool for correctly predicting the expected
yields of unknown drip-line nuclei.
It has been shown that the LISE code underes-

timates the yields and incorrectly predicts the char-
acteristics of the velocity distributions of the drip-line
isotopes (the width and the position of themaximum),
and this fact should be taken into account in experi-
ments aimed at synthesizing unknown drip-line iso-
topes by using a fragment separator with small mo-
mentum acceptances. The observed intense produc-
tion of isotopes with atomic numbers larger than that
of the projectile (Z > 8) contradicts the projectile-
fragmentation hypothesis.
The production rates have been determined for

exotic nuclei of 9Li, 11Li, 11Be, 12Be, and 14Be, which
could be used for secondary radioactive beams of
halolike nuclei.
It would be very important to continue studying

the evolution of reaction mechanisms versus the pro-
jectile energy and the target neutron excess (N/Z)t.
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Abstract—Two hypotheses concerning the interaction of neutrons with nanoparticles and having ap-
plications in the physics of ultracold neutrons (UCN) are considered. In 1997, it was found that, upon
reflection from the sample surface or spectrometer walls, UCN change their energy by about 10−7 eV with
a probability of 10−7–10−5 per collision. The nature of this phenomenon is not clear at present. Probably,
it is due to the inelastic coherent scattering of UCN on nanoparticles or nanostructures weakly attached
at the surface, in a state of Brownian thermal motion. An analysis of experimental data on the basis of
this model allows one to estimate the mass of such nanoparticles and nanostructures at 107 a.u. The
proposed hypothesis indicates a method for studying the dynamics of nanoparticles and nanostructures
and, accordingly, their interactions with the surface or with one another, this method being selective in
their sizes. In all experiments with UCN, the trap-wall temperature was much higher than a temperature
of about 1 mK, which corresponds to the UCN energy. Therefore, UCN increased their energy. The surface
density of weakly attached nanoparticles was low. If, however, the nanoparticle temperature is lower than
the neutron temperature and if the nanoparticle density is high, the problem of interaction of neutrons with
nanoparticles is inverted. In this case, the neutrons of initial velocity below 102 m/s can cool down, under
certain conditions, owing to their scattering on ultracold heavy-water, deuterium, and oxygen nanoparticles
to their temperature of about 1 mK, with the result that the UCN density increases by many orders of
magnitude. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A long storage of ultracold neutrons (UCN,
VUCN ∼ 5m/s,EUCN ∼ 10−7 eV) in traps is useful in
fundamental-physics experiments. This application
of UCNmotivates continuing attempts at eliminating
their extra losses in the trap wall. Let us recall how
the interaction of UCN with a surface is described:
UCN are reflected from a uniform potential barrier,
which is formed upon averaging strong neutron–
nucleon interaction, with a critical energy Elim and
the corresponding critical velocity Vlim. One observes
total reflection if VUCN < Vlim, but UCN can be lost
with a small probability because of their absorp-
tion by nuclei in the trap walls or because of their
upscattering in the trap walls to the energy region
around kT , where k is the Boltzmann constant and
T is the trap-wall temperature. UCN may penetrate
inside if VUCN > Vlim. If the surface is immobile in
the laboratory frame, collisions are elastic. Otherwise,
UCN may change their energy.

An additional kind of UCN escape mechanism
from gravitational spectrometers [1] due to their scat-
tering on surfaces of beryllium, copper, stainless steel,
and liquid fomblin oil was found and investigated

*e-mail: nesvizhevsky@ill.fr
1063-7788/02/6503-0400$22.00 c©
in 1997. The phenomenon consists in a small in-
crease in UCN energy owing to their interaction with
the surface. By analogy with the usual evaporation
process, such events will be referred to as the for-
mation of VUCN (Vaporizing UCN). The measured
characteristic probability of VUCN generation was
PVUCN ∼ 10−7–10−5 per collision. If the resulting
neutron energy is higher than the wall potential bar-
rier, then the neutron can penetrate into the wall
material, where it will be absorbed or upscattered;
if the wall is sufficiently thin, then it may penetrate
through it, as this was measured in [2]. A permanent
generation of VUCN prevents a spectrum shaping
such that all above-barrier neutrons are removed. The
new escape channel, described below in detail, is in
line with the general hypothesis proposed in [3] to
explain anomalous UCN losses [4].

At the liquid-fomblin-oil surface, where the prob-
ability PVUCN has the highest value among all mea-
sured materials, this process was independently found
and studied in [5] and in other publications of this
group. Other research groups are expected to publish
their papers later that also confirm the existence of
small changes in UCN energy in fomblin-oil-coated
traps. It is straightforward to assume that the phe-
nomenon of a small decrease in the UCN energy—it
was found in [6] at a liquid-fomblin-oil surface and
2002 MAIK “Nauka/Interperiodica”



INTERACTION OF NEUTRONS WITH NANOPARTICLES 401
in [1] at a solid-stainless-steel surface—has the same
nature as the aforementioned phenomenon of a small
increase in the UCN energy.

Thus, UCN were expected to be upscattered on
surfaces to energies in the region around kT (that
is, about 10−2 eV at room temperature or at liquid
nitrogen temperature). Such upscattering was actu-
ally measured in [7, 8] and in other experiments. The
total probability of this process is usually 10−5–10−4

per collision with the surface. The “tail” of such an
energy distribution at energies of about 10−7 eV has
to be negligible. In all models, the probability of such
a scattering process is much lower than 10−10. How-
ever the probability of upscattering to this energy
region appeared to be surprisingly high (PVUCN ∼
10−7–10−5), commensurate with the probability of
normal upscattering to the energies around kT . The
nature of this phenomenon has to be clarified. More-
over, a simultaneous investigation of VUCN gen-
eration and UCN anomalous losses is of interest,
since these two phenomena have similar experimental
manifestations.

These small changes in the energy of UCN, which
occur in their interaction with trap walls, are probably
due to the thermal motion of nuclei forming the wall
potential. However, the mechanism that is responsi-
ble for the transformation of this thermal motion into
the spreading of the UCN spectrum is not clear. The
point is that the interaction of neutrons with nuclei is
a quantum process, and the corresponding potential
results from the interaction of neutrons with a large
number of nuclei even when these nuclei are at rest.
When the nuclei move, we have a quantum problem
of many interacting bodies, and even methods for
solving such a problem are still under discussion.

The reflection of UCN from a flat surface was con-
sidered in a series of theoretical studies of Barabanov
and Belyaev [9]. The changes in the energy of UCN
in their quasielastic reflections from the surface cor-
responded to values measured in experiments. How-
ever the probability of VUCN generation due to the
reflection of UCN from a flat surface was estimated to
be much lower than that measured in experiments.

In Section 2, we consider the hypothesis that
VUCN are generated owing to the inelastic coherent
scattering of UCN on nanoparticles or nanostruc-
tures weakly attached at the surface in a state of
thermal motion. In this case, the problem is much
simpler because of the assumption that the inter-
action of UCN with surface nanoparticles involved
in the thermal motion is the dominant mechanism
of transformation of the thermal motion of atomic
nuclei in walls into small changes in the UCN
energy. As a result, the problem becomes equivalent
to the well-known quantum-mechanical problem of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
two bodies—that is, to the problem of a neutron–
nanoparticle collision that is elastic in the c.m. frame
of the colliding particles. General ideas of additional
UCN losses due to small particles at the surface
were formulated earlier, for instance, in [10, 11]. In
[10], clusters of molecules were considered. In [11],
it was indicated that UCN could aid in identifying a
new particle with a long-range potential and a weak
coupling to the surface. In any case, the nanoparticle
temperature is obviously equal to the trap temper-
ature T in the range 101–103 K. The UCN energy
corresponds to TUCN ∼ 1 mK. Ultracold neutrons
increase preferentially their energy in collisions with
such “warm” nanoparticles. The probability of such
inelastic UCN scattering on the surface is small,
since the surface density of such weakly attached
nanoparticles is small.

However, the mathematical problem of neutron–
nanoparticle interaction can in principle be inverted:
the interaction of “warm” neutrons with ultracold
nanoparticles of temperature about 1 mK can cool
down the neutrons. If the density of weakly attached
nanoparticles is high (not only do these nanoparticles
cover the surface, but they also fill the volume) and if,
during cooling of neutrons, the probability of their ab-
sorption and β decay is low, then the neutron density
increases. This process can allow, for the first time,
the equilibrium cooling of neutrons down to UCN
temperature. It is analyzed in Section 3.

In order to produce UCN, one first uses nuclear
fission in nuclear reactors, which releases neutrons
of energy about 107 eV. The energy of neutrons in
pulsed sources based on proton accelerators is com-
mensurate with that in reactors. However, the cooling
of neutrons by a factor of about 108(!) is achieved just
owing to a few tens of their collisions with nuclei in
reactor moderators (hydrogen, deuterium). The en-
ergy transfer is very efficient, and the neutron losses
during the cooling process are low because the mass
of moderator nuclei is equal to (or about) the neutron
mass. However, a further cooling does not occur:
the lower the neutron energy, the larger the neutron
wavelength. When it becomes commensurate with
the distances between the nuclei of the moderator, the
neutrons do not “see” individual nuclei any longer—
they are just affected by the average optical potential
of the medium. The neutron energy becomes lower
than the binding energy of atoms in the medium. A
further cooling of the neutrons due to their interaction
with collective degrees of freedom (such as phonons)
is less efficient than the moderation of the neutrons
due to their collisions with nuclei. However, it allows
the cooling of the neutrons to the energy range of
cold neutrons (about 10−3 eV). But this is insufficient
for the cooling of the main portion of the neutrons
2



402 NESVIZHEVSKY

 

10

 

–12

 

10

 

–7

 

10

 

–3

 

10

 

–1

 

10

 

7

 

10

 

3

 

10

 

1

 

10

 

–3

 

VUCN

Quantum states of
a neutron in Earth’s
gravitational field

Neutron
energy, eV

Temperature, K

Reactor
moderators

Cold
sources

Ultracold
nanoparticles

?

Fig. 1. Neutron energy and temperature ranges that correspond to various moderators, along with a few examples of physical
phenomena involvingUCN and even slower neutrons.
to the UCN energy region [12–15]. The idea of neu-
tron cooling on ultracold nanoparticles as proposed
in Section 3 in this article consists in reproducing
the principle of neutron cooling in reactor moderators
via multiple collisions. However, the scale is differ-
ent: the sizes are greater by a factor of about 102,
which increases the energy range of application of this
mechanism by a few orders of magnitude. The energy
and the temperature scales that correspond to the
mechanisms being considered are shown in Fig. 1.
It should be noted that such a UCN source is based
on the principle of UCN density accumulation as in a
superthermal source [13] but not on the use of UCN
flux from a source in the flow-through mode.

In conventional sources used to select UCN, ther-
mal equilibrium is not achieved. Sources are much
hotter than UCN. Only a very small portion of the
neutrons are used—other neutrons are lost. Actually,
these are sources of cold or very cold neutrons (VCN),
and experimentalists have to select a narrow fraction
of a broad energy spectrum. For instance, the most
intense flux of UCN is now produced in a liquid-
deuterium source placed within the core of the high-
flux reactor at the Institute Laue-Langevin (ILL) [12].
It increases the UCN flux by a factor of about 102 in
relation to that available anyway in a reactor in the
thermal equilibrium spectrum. Only a fraction of the
neutron flux of about 10−9 is actually used then. On
the other hand, the cooling of neutrons on ultracold
nanoparticles could provide a further neutron cooling
in a significant energy range, thereby increasing the
neutron density available for experiments.
P

2. ARE VUCN PRODUCED
ON SURFACE NANOPARTICLES?

2.1. Description of the Model

Let us assume that inelastic coherent UCN scat-
tering on nanoparticles or nanostructures that are
weakly attached at the surface and which are per-
manently in a state of random thermal motion is the
dominant mechanism through which the energy of
UCN undergoes small changes in their interaction
with the surface. In contrast to the general quantum-
mechanical problem of UCN reflection from many
moving nuclei, this model allows a radical simpli-
fication, which reduces the general problem to that
of a UCN collision with a moving nanoparticle, this
collision being elastic in the c.m. frame of the two
particles. In contrast to the general problem, the pro-
posed model does not obviously describe any features
of UCN interaction with the surface other than the
aforementioned mechanism of small changes in the
UCN energy.

Within the proposed model, no assumptions about
the size distribution for such objects at the surface
is needed for explaining experimental results. The
nature of the interaction itself provides a selection of
the particle size d that is important in experiments
and which corresponds to the neutron wavelength λ̄n,
which is related to the neutron velocity Vn as

λ̄n[nm] =
63

Vn[m/s]
or λ̄UCN[nm] =

63
VUCN[m/s]

.

(1)

Thus, we conclude that, if, on one hand, d�
λ̄UCN, then such particles are too slow; therefore, the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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change in UCN velocity, ∆VUCN, is too low and can
hardly be measured. If, on the other hand, d� λ̄UCN,
then such particles are too small; therefore, the prob-
ability of their interaction with neutrons PVUCN is too
low, since neutrons diffract around such nanoparti-
cles. Only if

d ≈ λ̄UCN, (2)

then corresponding VUCN can easily be measured,
both owing to their relatively high energy and owing
to the high probability of such a process.

Moreover, we do not need any hypothesis about
special features of the interaction of nanoparticles
with the surface. The probability of inelastic UCN
scattering on strongly bound particles (or merely on
a flat surface) is too small because of the smallness
of their vibration amplitudes. In a rather general case,
VUCN are produced on rigid small objects weakly at-
tached to the surface. Nanoparticles can move along
surface and (or) oscillate about equilibrium points
with a large amplitude. Weak coupling of nanopar-
ticles to the surface is natural because, usually, only
a few atoms in nanoparticles interact simultaneously
with the surface: the interatomic interaction is small
at distances longer than about one angstrom, and any
actual surface is rough on a nanometer scale.

Upon formulating the model, we will now justify
its statements and estimate its parameters.

2.2. Justification of the Model and Estimation
of Its Parameters

(i) Let us show that the thermal motion of nanopar-
ticles or surface nanozones of diameter d equal to the
UCN wavelength λ̄UCN at a characteristic velocity of
VUCN ≈ 3 m/s, d ≈ λ̄UCN ≈ 20 nm, just corresponds
to a change of ∆VUCN ∼ 1 m/s in the UCN velocity,
a value that was measured in [1, 5, 6].

In thermodynamic equilibrium at a temperature T ,
the mean energy of about kT/2 is associated with
each degree of freedom of a particle. For a nanopar-
ticle of massM , this allows one to estimate its mean
velocity component VM parallel to the momentum-
transfer direction:

VM ≈
√
kT/M. (3)

The mass of a spherical particle of density ρ is

M ≈ ρd3

2
. (4)

The change in UCN energy is equal to the doubled
nanoparticle velocity:

∆VUCN = 2VM . (5)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
Thus, the mean change in the UCN velocity is

∆VUCN ≈ 2

√
2kT
ρd3

; (6)

that is, it is just about 1 m/s.

(ii) How large is the mass of the particles that are
responsible for the measured phenomenon? Equa-
tions (3), (5), and (6) give themass ofM ≈ kT/V 2

M ≈
107 a.u.

(iii) Let us show how the nanoparticle diameter
that is of importance in experiments is chosen. If d�
λ̄UCN, then the scattering probability is too low and
depends strongly on the nanoparticle diameter:

PVUCN ∼
(

d

λ̄UCN

)6

. (7)

This is so because neutron scattering on a nanopar-
ticle is a coherent process; therefore, the scattering
cross section is proportional to the square of the
number of nuclei in the nanoparticle, this number in
turn being proportional to the cube of the nanoparticle
size.

Equation (6) shows that, if d� λ̄UCN, the change
in UCN velocity is too low, so that such VUCN can
hardly be measured.

(iv) Let us show that the scattering of UCN on
strongly bound nanoparticles corresponds to a low
probability PVUCN. The limiting case is that of a piece
of material belonging to a flat uniform surface and
having a total mass M and a diameter of d ≈ λ̄UCN.
In the Debye approximation, the quantum zero-point
mean-square displacement of such a particle as a dis-
crete unit in the direction perpendicular to the surface
plane is

〈X2〉0⊥ =
�

8π2M

νD∫
0

g(ν)
ν

dν =
3�

16π2MνD
, (8)

where g(ν) =
3ν2

ν3
D

is the phonon density of states

and νD is the Debye cutoff frequency. Evidently, we

have
√

〈X2
⊥〉0 < 10−4 Å. At a finite temperature T ,

the surface displacement (Debye–Waller factor) is

larger, but it is still at least as small as
√

〈X2
⊥〉T <

10−3 Å. Since
√

〈X2
⊥〉T � λ̄UCN and since the vibra-

tion frequency is much higher than the characteristic
frequency of about 108 Hz, which is equal to the
reciprocal quantum-mechanical time of UCN inter-
action with the surface, the interaction is of quantum
2
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Fig. 2. Interaction of nanoparticles with the surface. The
points of attraction of nanoparticles to the surface are
indicated by solid arrows. The directions of motion are
shown by dotted arrows.

nature: it is mainly elastic (in the absence of triv-
ial vibrations of the walls), but, with a low proba-
bility, inelastic. The probability of such inelastic re-
flection can be estimated as the square of the ra-
tio of the amplitude of wall vibrations to the neu-
tron wavelength [16, 10]. Evidently, the correspond-
ing value PVUCN is much less than the measured
probabilities; therefore, thermal vibrations of strongly
bound nanostructures cannot produce the experi-
mentally observed phenomenon.

(v) The opposite case is that of a free nanoparticle
(a particle of mass about 107 a.u. at room temper-
ature can ascend at an altitude of about 3 cm in
Earth’s gravitational field) or that of a weakly at-
tached nanoparticle (it may diffuse along the surface
or oscillate with a frequency of about 108 Hz and
with an amplitude commensurate with its size). In
this limit, the interaction cross section is nearly equal
to the geometric cross section of the nanoparticle if
the condition in (2) is satisfied. In all these cases, the
probability PVUCN can be estimated as the relative
area coated with such “active” nanoparticles. One
“active” nanoparticle of size about 20 nm on a square
area of size about 20 µm provides the value of PVUCN

that wasmeasured in [1]. Under such collisions, UCN
change the energy of nanoparticles by a negligible
value of ∆EUCN ≈ 10−7 eV ∼ ∆EM . Figure 2 illus-
trates the phenomenon under discussion in an ideal-
ized way.

(vi) In an intermediate case of slightly stronger

binding (νosc > 108 Hz and
√

〈X2〉T⊥ < λ̄UCN), the

population of such objects at the surface must be
higher than the probability PVUCN of VUCN gener-
ation in order to fit measured PVUCN values. It should
be noted that the population of such “active” particles
seems to have a reasonable value, since the popula-
tion of any nanostructures, structural irregularities,
or nanoparticles of the required size on an actual sur-
face is much higher than that. These were measured
with an atomic-force microscope at the surfaces of all
samples that were actually used in the experiments
reported in [1].
P

(vii) Let us analyze the predictions of this model.

As follows fromEq. (6),∆VUCN ∼ T 1/2; therefore,
∆EUCN ∼ T if VM < VUCN. These dependences are
better satisfied for smaller velocities of the thermal
motion of nanoparticles and larger values of the UCN
wavelength.

The probability PVUCN depends on the number
of active weakly attached nanoparticles. The depen-
dence PVUCN(T ) is smooth if the coupling in the di-
rection of large-amplitude motion (along the surface)
is small.

Equation (6) also indicates that ∆VUCN ∼ ρ−1/2;
that is, the smaller the nanoparticle density, the larger
the change in the UCN velocity. By the way, the den-
sity ρ can be calculated by using experimental data or
can be obtained by comparing experimental data with
a calibration measurement involving nanoparticles of
known density.

In addition, ∆VUCN ∼ d−3/2; for the optimal ratio
of the nanoparticle diameter to the UCN wavelength

[see Eq. (2)], this yields ∆VUCN ∼ V
3/2
UCN.

Equation (6) estimates the upper boundary of the
VUCN spectrum due to the wave properties of neu-
trons as they tunnel “around” overly small nanoparti-
cles. The penetration of neutrons “through” nanopar-
ticles above their potential barrier provides an alterna-
tive upper boundary of the VUCN spectrum. Known
values of the critical velocity for various materials
can provide additional information for verifying the
present hypothesis or for identifying the particle ma-
terial if the validity of the present model would be
established. The actual value of∆Vmax is the smallest
value of these two. Of course, a quantitative analy-
sis of experiments within the present model requires
more careful calculations than the above estimations.

2.3. Qualitative Analysis of Experimental Results

This hypothesis assumes a universal reason for
VUCN generation at surfaces of different materials;
in fact, relevant measurements were performed for the
surfaces of stainless steel, fomblin oil, beryllium, and
copper [1, 5], with the generation probability being
scattered by one to two orders of magnitude.

From [1], it follows that, at solid surfaces, the
generation probability PVUCN(T ) at a temperature
of 400 K is not considerably higher than that at
a temperature of 300 K. New data [17] showed a
rather smooth temperature dependence PVUCN(T )
for beryllium and copper samples in the temperature
range 100–300 K. On the other hand, the mobility of
any nanoobjects at fomblin-oil surfaces (and, accord-
ingly, the PVUCN value) must be much higher than
that at solid surfaces. Also, PVUCN must increase
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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strongly at higher temperatures owing to a decrease
in the oil viscosity.

The present model is compatible with the mea-
sured values for the low energy transfer of ∆EUCN ∼
10−7 eV.

It assumes higher values of ∆EUCN for greater
initial values of EUCN. Such a trend was actually
found in [1] for a stainless-steel surface.

TheDoppler shift in energy could be either positive
or negative. A negative shift was in fact found in
[6, 1]. The probability of such a process depends on
the phase space available to VUCN. As might have
been expected, measurements showed a much higher
probability for heating than for cooling.

It is often stated that, if UCN gain in energy owing
to any thermal motion, the energy scale around kT is
involved. This is not true in our case since UCN leave
traps just after the first event(s) of increase in energy,
when no thermal equilibrium of UCN with walls has
been achieved so far. The energy change depends on
the nanoparticle velocity, which is small since it is
associated with a relatively massive object of energy
about kT .

A few factors complicate experiments of this kind.
If VUCN − VM > Vlim, then PVUCN is low. If ∆EUCN
is too low, such VUCN could hardly be distinguished
from UCN because of a finite energy resolution of
spectrometers. If ∆EUCN is too high, then a poor
storage time for such VUCN in spectrometers re-
duces significantly the detection efficiency. If EUCN +
∆EUCN > Elim, the efficiency is negligible. These
reasons make difficult quantitative analysis of many
previous experiments with UCN. Therefore, a dedi-
cated study of small changes in the UCN energy in a
well-optimized spectrometer is required.

3. CAN COOLING ON NANOPARTICLES
PRODUCE UCN?

A new method for producing UCN consists in
the equilibrium cooling of VCN owing to their many
collisions with ultracold nanoparticles made from
low-absorbing materials (D2O, D2, O2, etc.) down to
the temperature of these nanoparticles of about 1 mK
during the diffusion motion of these neutrons in a
macroscopically large ensemble of nanoparticles. The
principle of equilibrium cooling allows an increase
in the neutron phase-space density in contrast to
the method of discrimination of a narrow energy
range out of a warmer neutron spectrum. The use
of nanoparticles provides a sufficiently large cross
section for coherent interaction and an inhomogene-
ity of the moderator density on a spatial scale of
about the neutron wavelength; they also shift the
energy-transfer range far below a value of about
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10−3 eV, a characteristic limit for liquid and solid
moderators. Many collisions are needed since the
nanoparticle mass is much higher than the neutron
mass; therefore, the energy transfer to nanoparticles
and nanostructures is difficult. A large number of
collisions constrains the choice of materials: only
low-absorbing ones are appropriate. The nanoparticle
temperature should correspond to such a minimal
neutron energy down to which neutrons can still be
cooled by this method. The diffusion motion of neu-
trons in the ensemble of nanoparticles allows one to
minimize the thermalization length and, accordingly,
to increase the achievable UCN density. The cooling
itself is provided by the interaction of neutrons with
individual degrees of freedom of weakly bound or free
nanoparticles, as well as by the excitation of collective
degrees of freedom in ensembles of nanoparticles,
such as vibrations and rotations, and also by the
breaking of internanoparticle bonds.

Upon formulating our main ideas, we will now
proceed to justify them within the simple model of free
nanoparticles and to estimate the model parameters.

3.1. Model of Free Nanoparticles and Estimation
of Parameters

(i) Let us estimate the loss of neutrons due to their
capture in nuclei during their cooling in a gas of free
molecules. At low temperatures, all gases become
liquid (helium) or solid. Therefore, a consideration of
neutron scattering on free molecules at temperature
of about 1 mK is only the first step in analyzing neu-
tron interaction with nanoparticles. From the theory
of neutron cooling in reactor moderators, it follows
that, for an isotropic angular distribution of scattered
neutrons in the c.m. frame, the cooling of neutrons
in gases of free atoms (or molecules) with an atomic
mass A is efficient if

σcoh

Aσabs
> ln

(
Vi

Vf

)
, (9)

where Vi is the initial neutron velocity and Vf is the
final neutron velocity. It should be noted that the
coherent-scattering cross section σcoh is independent
of the neutron velocity, while the absorption cross
section σabs is proportional to the reciprocal neutron
velocity:

σabs(Vn) ∼ σabs(V0)V0/Vn. (10)

This circumstance limits the minimal velocity Vmin

that can be achieved owing to the cooling of neutrons
in a free molecular gas even at zero temperature. On
the other hand, the losses of neutrons are negligible
when the neutron velocity is higher than this “danger-
ous” limit. The condition in (9) constrains the list of
candidates to a very few: deuterium, oxygen, probably
2
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Estimates of the minimal velocity to which neutrons can
be cooled down in a gas of free atoms, molecules, or

nanoparticles of various materials [
σcoh

Aσabs(Vmin)
= 1]

Molecule/atom Vmin, m/s

D, D2 ∼ 0.4

D2O ∼ 1.0

O, O2 ∼ 2.4

CO2 ∼ 10.0

C ∼ 16.0

Be ∼ 20.0

carbon, or a combination of these species. The table
compares different materials for nanomoderators. The
cooling of neutrons down to velocities even lower
than that presented in the table is not efficient, but,
fortunately, such neutrons have already been cooled
sufficiently in order to trap them.

(ii) Evidently, a decrease in the thermalization
length increases the density of cooled neutrons.
This condition requires a significant increase in
the neutron-scattering cross section in moderators;
this may be achieved by assembling molecules (or
atoms) into nanoparticles. The cross section for the
interaction of neutrons with nanoparticles is propor-
tional to the square of the number of molecules in
a nanoparticle, while the absorption cross section is
in direct proportion to the number of molecules in
a nanoparticle. (If T ∼ 10−3 K, then absorption is
supposed to be the only alternative to the cooling
of neutrons. This assumption is surely correct if the
low-energy upscattering of UCN [1, 5] is actually
responsible for anomalous losses of UCN [4] and if
other unknown phenomena are not involved.) With
increasing the nanoparticle size, there arise two fac-
tors that compensate each other. (A) The number of
collisions needed for cooling neutrons is proportional
to the nanoparticle mass M . (B) The ratio of the
coherent-scattering cross section to the absorption
cross section is also proportional to the nanoparticle
mass, σM

coh/σ
M
abs ∼M . Therefore, the condition in

(9) for the efficiency of cooling is valid until the
nanoparticle size becomes so great that scattering
proves to be anisotropic; that is, if d < λ̄n, then

σM
coh

MσM
abs

≈ σcoh

Aσabs
. (11)

If the neutron velocity is higher or if the nanopar-
ticle size exceeds these limits (or if both these con-
ditions are satisfied), the angular distribution of scat-
tered neutrons is directed forward. This change in the
P

angular distribution of scattered neutrons increases
the relative importance of absorption. The condition
in (11) is not valid in this case, since the coherent-
scattering cross section increases more slowly than
in proportion to N2; also, the energy transfer per
collision decreases. Therefore, the velocity range for
neutrons that can still be cooled down is restricted
from above by some velocity Vmax.

(iii) Thus, the neutron velocity range Vmin–Vmax

in which the cooling at ultracold nanoparticles is
efficient is restricted from both sides: the minimal
velocity Vmin is restricted by neutron absorption in the
nuclei of a nanoparticle material, while the maximal
velocity Vmax is restricted by a decrease both in the
interaction cross section and in the energy transfer.
The broader this range of acceptable velocities, the
greater the resulting increase in the neutron phase-
space density.

(iv) Let us show that the range of acceptable
neutron velocities in the model of free nanoparticles
is broad. An estimate of Vmin is independent of the
nanoparticles size, since the condition in (11) is al-
ways valid if d < λ̄n. But the neutron wavelength
is proportional to the reciprocal neutron velocity (1)
and, in the low-velocity limit, is just large at the last
stage of cooling. Thus, only the nanoparticle material
specifies the value of Vmin, which can be estimated as

σcoh

Aσabs(Vmin)
= 1; (12)

that is, it can be as low as about 1 m/s (see table).
On the other hand, the quantum-mechanical

problem of neutron interaction with a nanoparticle
must be solved in order to estimate Vmax. This is
beyond the scope of the present study, but I am going
to address the problem in a forthcoming publication.
However, Vmax can be estimated. Let us use the
following model: The distance between nanoparticles
is three times greater than the nanoparticle diameter;
that is, the relative volume of about 1.6% is occupied
by nanoparticles. Therefore, neutrons can resolve the
variation in the density of nuclei in such a moderator.
The macroscopic scattering length in such a moder-
ator is

∆l ≈ 1
NMσM

coh

≈ (3d)3A2m2
n

σcohM2
≈ 108A2m2

n

σcohρ2d3
. (13)

Under the assumption of an isotropic angular dis-
tribution of scattered neutrons, the thermalization
length L is greater by a factor equal to the square
root of the number of scattering events needed for
thermalization:

L ≈ ∆l
√
M

mn
≈ 80A2m

3/2
n

σcohρ3/2d3/2
. (14)
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The thermalization length for heavy-water nanopar-
ticles in this simplified model is

LD2O[cm] ≈ 40
(d[nm])3/2

. (15)

A reasonable moderator size of 10 cm corresponds
to the nanoparticle diameter of about 2.5 nm or [see
Eq. (2)] to the initial neutron velocity of about 25 m/s.
The efficiency of neutron thermalization is still signif-
icant for an initial neutron velocity a few times higher
than that; therefore, the maximal neutron velocity of
interest is about 102 m/s.

4. DISCUSSION

(i) In actual nanoparticle moderators at ultralow
temperatures, nanoparticles are not free. However,
the interaction between them is very weak sometimes.
By way of example, we indicate that, if one takes
nanoparticles of needed size and material (D2O, D2,
O2, etc.) and drops them into superfluid 4Не (not
absorbing neutrons and just providing heat trans-
fer), they are immediately coated with a thin layer
of solidified helium. This layer screens the nanopar-
ticles from one another and reduces the interaction
between neighboring nanoparticles [18, 19]. An im-
portant problem to be studied in experiments is that
of the conditions under which nanoparticles move
rather independently in their collisions with neutrons.
Does the interaction of nanoparticles in such gels
leave sufficient freedom for them? Their independent
interaction with neutrons is of crucial importance,
since, otherwise, the effective mass of nanoparticles
increases, with the result that the energy transfer
decreases dramatically. On the other hand, additional
degrees of freedom (vibrations, rotations, breaking of
interparticles bonds) in such gels provide probably
an even more efficient cooling of neutrons than col-
lisions, and they should be considered specially.

(ii) In actual moderators, in contrast to the sim-
plified model of free nanoparticles, it is necessary to
take into account neutron-optics effects due to fi-
nite distances between nanoparticles. As soon as the
neutron energy becomes sufficiently low (the neutron
wavelength becomes sufficiently large), the neutron
wavelength covers simultaneously a few nanoparti-
cles; therefore, the effect of coherent upward scat-
tering of neutrons in the ensemble of nanoparticles
takes place. This results in the following: (A) The
energy transfer decreases, and the cooling process
becomes less efficient. (B) The depth of extraction of
such neutrons increases, and the moderator becomes
more transparent for such low-energy neutrons. In
this case, UCN can diffuse out to the moderator
surface from its total depth, and this simplifies their
extraction.
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(iii) The technical feasibility of such a moderator
should be carefully studied. The use of ultralow tem-
peratures does not permit placing it in the vicinity of
the reactor core. It can be installed at the exit of an op-
timized VCN neutron guide. A detailed experimental
and theoretical study of the feasibility of the proposed
neutron moderator using ultracold nanoparticles is
to be performed in the framework of the project de-
scribed in [20].

5. CONCLUSION

The proposed hypothesis on the nature of VUCN
generation explains small changes in the UCN en-
ergy in traps in terms of their coherent scattering
on nanoparticles weakly bound to surface or just on
nanostructures of a rough surface for which large
oscillation amplitudes are allowed. UCN change their
energy in such a scattering process because nanopar-
ticles and nanostructures are always in a state of
thermal motion. This model is qualitatively compat-
ible with available experimental data. Such weakly
attached nanoparticles or nanostructures could be
selected in a direct measurement (for instance, with
an atomic-force microscope) or in future UCN ex-
periments (for instance, by a selective action on a
surface nanostructure with a simultaneous control of
VUCN generation). This model provides guidelines
for experimental studies, but it cannot yet be proven
or rejected on the basis of already known results.
On the other hand, this hypothesis provides a sen-
sitive method for studying the dynamics of specially
introduced nanoparticles or nanostructures and, as a
result, their interactions with the surface or with one
another.

In addition, a new concept for increasing the UCN
density has been proposed. This concept is based on
the cooling of neutrons on ultracold nanoparticles
of heavy water, deuterium, or oxygen in superfluid
helium. This method can be applied at initial neu-
tron energies in the range from 10−8–10−7 eV to
10−5–10−4 eV. It differs from traditional methods for
UCN selection by a high efficiency of employing the
initial neutron flux. Detailed theoretical and experi-
mental study of such a cooling process, as well as
reliable estimations of UCN density gain and the
maximal neutron energy at which such a process is
still efficient, is required.
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Abstract—A method is proposed for theoretically studying the energy distributions of fast protons
traversing oriented crystal targets. The method combines the use of kinetic equations for the distribution
of channeled and dechanneled particles with a Monte Carlo computer simulation of their propagation.
Specific calculations were performed for 1-MeV protons traversing a silicon target along the 〈100〉 axis.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Special features of the transmission of charged
particles through oriented crystals is of great inter-
est for various realms of investigations—from high-
energy physics (the transportation of accelerated par-
ticles by using bent single crystals [1–3]) to atomic
physics (the resonance coherent excitation ofmultiply
charged ions in channeling [4–7]). However, there
are still obscure questions in the theory of the trans-
mission process itself. In particular, this concerns the
description of energy losses of particles in channeling.
Even at the early stages of investigating this phe-
nomenon, there arose the question of how the spectra
of particles ejected from a target can be broken down
into the contribution from those that travel the entire
path as channeled ones and the contribution from
dechanneled particles moving as if being in a nonori-
ented target. These dechanneled particles, which are
in a medium where the electron density is higher than
that inside the channel, lose, on average, a much
greater amount of energy than channeled particles.
On the other hand, dechanneling, which is caused,
according to Lindhard [8], by multiple random colli-
sions between the traveling particle and the electrons
of the medium and by thermal vibrations of the crystal
lattice, is a stochastic process. The combination of
these factors results in that the superposition of the
loss spectra of channeled and dechanneled particles
generates a nontrivial picture of total loss spectra at
the output of the target (see, for example, [9]), and
reliable methods for quantitatively describing these
spectra have yet to be developed. The recent experi-
ments reported in [10], which seem to produce results
where the contributions from the channeled and the
dechanneled component to the observed loss spec-
trum are separated, and their interpretation in [11]

*e-mail: balash@anna19.npi.msu.su
**e-mail: bodrenko@anna19.npi.msu.su
1063-7788/02/6503-0409$22.00 c©
on the basis of a Monte Carlo computer simulation
rekindled interest in this long-standing problem. In
this study, we consider it within an approach that
combines the Monte Carlo method and the method of
kinetic equations for the distribution of channeled and
dechanneled particles. Our quantitative calculations
are performed with an eye to the conditions of the
experiment described in [10], where a 1-MeV proton
beam traverses a silicon target 3.8 µm thick in direc-
tions close to the 〈100〉 axis.

2. KINETIC EQUATIONS
FOR THE STOPPING PROCESS

AND DECHANNELING

We introduce the distributions Fch(∆, z) and
Fdec(∆, z) of the energy losses ∆ = E0 − E for
channeled and dechanneled particles at a given dis-
tance z from the input of the target. In general, the
stopping kinetics of charged particles is described
by a set of coupled differential or integral equations
if multiple transitions from one state to another are
taken into account. We consider the equations for
partial (for a specific charge state 〈k〉 of a particle)
energy distributions Fk(∆, z) that were proposed in
[12] for describing, within the diffusion approach, ion
stopping accompanied by charge exchange. In the
differential form, these equations can be represented
as
∂Fk(∆, z)

∂z
= −λtot

k Fk(∆, z) − Sk
∂Fk(∆, z)

∂∆
(1)

+
Ω2

k

2
∂2

∂∆2
Fk(∆, z) +

∑
l

λklFl(∆ − ∆lk, z),

k = 1, . . . , N,

where Sk andΩ2
k are, respectively, the stopping power

and the straggling parameter in the state 〈k〉; λkl are
2002 MAIK “Nauka/Interperiodica”
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the partial rates of transitions from the state 〈k〉 to
various states 〈l〉; λtot

k =
∑

l λkl is the correspond-
ing total rate of transitions; and ∆lk is the average
energy loss in an event of the charge-exchange pro-
cess leading from the state 〈l〉 to the state 〈k〉. In
the dechanneling problem, the structure of the set of
coupled equations is considerably simplified because
the transition from one state under consideration to
the other proceeds only in one direction—from chan-
neling to dechanneling—and the additional energy
loss in a dechanneling event is negligible under the
conditions of a transmission experiment.

We denote by λdec(z) the dechanneling rate (that
is, the inverse length of dechanneling) at a distance
z from the input of the target; by Sch and Sdec the
stopping powers for, respectively, the channeled and
the dechanneled component of the particle beam; and
byΩ2

ch andΩ2
dec the corresponding straggling param-

eters. The set of kinetic equations for the distributions
Fch(∆, z) and Fdec(∆, z) that follows from (1) has the
form

∂Fch

∂z
= −λdecFch − Sch

∂Fch

∂∆
+

Ω2
ch

2
∂2

∂∆2
Fch, (2a)

∂Fdec

∂z
= λdecFch−Sdec

∂Fdec

∂∆
+

Ω2
dec

2
∂2

∂∆2
Fdec. (2b)

We also specify initial conditions as

Fch(∆, z = 0) = F 0
ch(∆), (3)

Fdec(∆, z = 0) = F 0
dec(∆).

Solving the first equation with these initial condi-
tions at fixed parameters Sch and Ω2

ch, we obtain

Fch(∆, z) = exp


−

z∫
0

λdec(z′)dz′


 (4)

×
∫
F 0

ch(∆ − ∆′)
exp(−(∆′ − Schz)2/(2Ω2

chz))√
2πΩ2

chz
d∆′.

This solution has the form of a convolution of a Gaus-
sian distribution decaying in amplitude and the initial
distributionF 0

ch. In this case, the fraction of channeled
particles is

Pch(z) =
∫
Fch(∆, z)d∆ (5)

= Pch(0) exp


−

z∫
0

λdec(z′)dz′


.

In order to obtain the loss spectrum of dechan-
neled particles, we solved the second equation in (2)
numerically.
PH
3. STATISTICAL SIMULATION ACCORDING
TO THE MONTE CARLO METHOD

A Monte Carlo computer simulation of proton
channeling in a silicon crystal was carried out here
by using the ASTRA code described in [13, 14].
The basic physical approximations underlying the
code are as follows. Incident-beam particles en-
tering the channel with an initial energy E0 are
assumed to move independently of one another
along classical trajectories. The deflecting force
Fsc(r) = −gradU(x, y) acting from crystal-lattice
atoms is calculated by using the continuous Lind-
hard potential U(x, y), which in turn is obtained by
averaging the sum of the potentials representing the
interaction between a proton and individual atoms or-
dered along the chains forming the channel. For these
potentials, we take the known Molière–Erginsoy
form [15]. The contributions from the electrons of
outer and inner shells of medium atoms are assumed
to be additive. To calculate moderation due to the
interaction with valence electrons, we use the local-
density approximation. The dependence of energy
losses on the impact parameter in the interaction
of propagating particles with the electrons of inner
shells is computed according to [16]. We take into
account multiple collisions with electrons of the
medium and with thermal vibrations of the lattice.

The trajectory of each particle is traced until its
angle of inclination ψ with respect to the channel
axis exceeds the critical angle ψmax for which we take
the Lindhard angle ψL = (2Ze2/E0d)1/2, where d is
the lattice parameter. In the case under considera-
tion, where a 1-MeV proton travels along the 〈100〉
channel of a silicon crystal, the critical angle ψmax is
0.49◦. A particle is considered to be dechanneled if
the condition ψ < ψmax is violated at some point r of
its trajectory or if the particle approaches the channel
chain at a distance less than a critical value rcr that
is specified by the amplitude of thermal vibrations
of lattice atoms. The energy E′ of the particle and
the slope θ′ of its trajectory are fixed at this point;
from this instant on, its energy E and the scattering
angle θ at the output of the target are calculated on
the basis of the standard formulas of stopping theory
and the multiple scattering of particles traveling in
disordered media [17] (the mean values of the required
parameters for proton energies in the interval from
0.8 to 1.0 MeV are Sdec = 40 keV/µm and Ω2

dec =
26 keV2/µm).

In each series of calculations that corresponds to
a given target thickness, we considered 20 000 tra-
jectories. As in [10], we took the value of FWHM =
19.5 keV for the particle-energy spread in the incident
beam; the initial angular spread in the beam was
characterized by the parameter ∆(ψin) = 0.025◦.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 1. Fraction of channeled particles in a proton beam
having an initial energy of 1 MeV and traversing a silicon
crystal along the 〈100〉 axis: (solid curve) results of a
Monte Carlo calculation and (dashed curve) results of the
calculation by formula (5).

4. RESULTS OF THE CALCULATIONS
AND DISCUSSION

The parameters Sch, Ω2
ch, and λdec, which are nec-

essary for solving the set of Eqs. (2), depend on
the dynamics of channeled-particle interaction with
lattice atoms and electrons of the medium. In this
study, we take them from the results of a Monte Carlo
computer simulation of the process under consider-
ation. The first two parameters proved to be Sch =
25 keV/µm and Ω2

ch = 1.55 keV2/µm. Data on the
dechanneling rate

λdec(z) = −dPch/dz

Pch

and on its dependence on the path traveled by the
particle are taken from the Monte Carlo calculation
of the fraction of channeled particles.

For a 1-MeV proton beam incident on a silicon
crystal along the 〈100〉 axis, Fig. 1 shows the results
of Monte Carlo calculations illustrating the variation
of the channeled-particle fraction Pch(z) in the beam
as it traverses the target. Some fraction of protons
(about 3%) occur outside the channel immediately
upon entering the target. As the channeled particles
propagate into the target, the rate of their dechannel-
ing grows steadily. In the thickness interval z = 0–
3.8 µm considered here, this growth can be taken
to be linear. The dashed curve shows the fraction of
channeled particles that was calculated by formula
(5) with the aid of the linear approximation λdec(z) =
0.032z + 0.012: Pch(0) = 0.966.

In order to obtain the spectra of channeled and
dechanneled particles (and the total spectra together
with them) at various distances from the input of
the target by using the set of Eqs. (2), we adopt
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 2. Energy distribution of protons of initial energy
1 MeV upon traversing a 3.8-µm silicon target along the
〈100〉 axis: (solid curve) result obtained by solvingEq. (2)
and (dashed curve) result of a Monte Carlo calculation.
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Fig. 3. Energy distribution of protons of initial energy
1 MeV upon traversing silicon targets of various thick-
nesses z along the 〈100〉 axis (thick solid curves). The
dashed and thin solid curves represent the contributions
from, respectively, channeled and dechanneled particles.
Points correspond to experimental data from [10].

the above linear approximation for λdec(z). Figure 2
shows the total energy distributions of channeled and
dechanneled protons according to Monte Carlo cal-
culations (the dashed curve) and according to cal-
culations based on solving Eqs. (2) with the param-
2
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eters chosen in the way indicated above. That the
two curves are virtually coincident suggests that the
basic statistical approximations underlying the set of
Eqs. (2) are adequate to the dynamics of particle-
beam propagation through the target as simulated by
the Monte Carlo procedure.

The results of the calculations for the thickness
values of z = 2.4, 3.8, and 5.2 µm are displayed in
Fig. 3. For the second value, they can be compared
with experimental data from [10]. Separately, we show
the contributions from channeled and from dechan-
neled particles. The spectra of channeled protons have
a Gaussian shape. The shape of the spectrum of
dechanneled protons is more complicated and is de-
termined by the fact that part of their path lies in
the region of low-electron density within the channel,
while the part after dechanneling occurs in the region
of high-electron density. It should be emphasized that
the spectrum of dechanneled particles at the output of
the target is not Gaussian, so that a Gaussian fit to
such spectra, which is used in practice (in particular,
in [10]), drastically simplifies the situation.

5. CONCLUSION

An approach combining the method of kinetic
equations borrowed from the theory of propagation of
multicomponent beams of charged particles through
a medium with a Monte Carlo computer simula-
tion supplements the theory of channeling with a
procedure for calculating the energy-loss spectra of
charged particles in targets of various thicknesses
that admits a simple implementation and which is
physically clear. In this study, we have presented an
example of such a calculation with reference to the
problem of separating the contributions from chan-
neled and dechanneled particles to their energy distri-
bution at the output from the target. Good agreement
with available experimental data has been obtained
without using adjustable parameters. In the future,
the approach proposed here will be extended with
the aim of including, in the consideration, not only
energy spectra, but also angular characteristics of
channeling and dechanneling.
PH
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Abstract—A method for calculating mean single-particle potentials and the corresponding single-particle
energy levels in nuclei is presented. Specific formulas for these quantities are written for Slater determinant
wave functions in the case of polarized orbitals and a central exchange nucleon–nucleon potential featuring
a Gaussian radial dependence. The resulting theoretical estimates of single-particle properties of the
nuclei considered in the present study are in satisfactory agreement with relevant experimental data.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The objective of a traditional microscopic theory
of the nucleus is to construct nuclei on the basis of
the nonrelativistic Schrödinger equation for a system
of A interacting particles. In this case, the nucleon–
nucleon potential plays the role of the main link in the
chain that makes it possible to relate various nuclear
properties within the algorithm of the model and to
understand special features of their behavior versus
variations in relevant physical parameters. In view of
well-known difficulties, the nuclear many-body prob-
lem is solved approximately. An approximate theory
(microscopic model) is constructed in such a way
as to meet the following requirements: (i) It must
be sufficiently simple from the mathematical point of
view. (ii) It must describe satisfactorily the measured
properties of actual nuclei.

At the first stage, it seems natural to describe a
nuclear system in terms of individual particle states
by representing the multinucleon wave function ΨA

of the nucleus as the antisymmetrized product of
single-particle orbitals φi(j) (Hartree–Fock approx-
imation). By applying then the variational principle to
the energy functional, one can derive [1], for φi(j),
an equation that is interpreted as the Schrödinger
equation for the corresponding particle moving in a
self-consistent (mean or single-particle) nuclear field.

Owing to the explicit dependence of the wave
function ΨA on the coordinates of all A intranuclear
nucleons, it is possible to estimate, within multipar-
ticle models, almost all nuclear quantities. However,
microscopic calculations on the basis of model vari-
ational wave functions are usually performed only for
collective (multinucleon) nuclear properties (binding
1063-7788/02/6503-0413$22.00 c©
energies, root-mean-square radii, spectra of the low-
est energy levels, probabilities of E2 transitions, and
so on), virtually no attention being given to single-
particle features of nuclei. In an attempt at filling this
gap to some extent, mean single-particle potentials
and single-particle energies are considered in the
present study on the basis of a microscopic model
involving a pair exchange nucleon–nucleon potential.

The approach proposed here combines the follow-
ing three equations: (i) an equation for the variational
total-nuclear-energy functional, (ii) the Hartree–
Fock equation for single-particle orbitals φi(j), and
(iii) the well-known equation relating the total energy
E of a nucleus to the sum of single-particle ener-
gies ελ. These equations are used to derive general
formulas for mean single-particle potentials and
mean single-particle energies. On the basis of these
formulas, a dedicated package of codes is developed
that makes it possible to calculate the aforementioned
single-particle features for almost all nuclei (both
spherical and deformed ones). For some light and
medium-mass nuclei, specific calculations, which
illustrate the efficiency of the approach proposed here,
are performed for a few central exchange nucleon–
nucleon forces that are often used in the literature.

2. SINGLE-PARTICLE POTENTIALS
In the model of deformed oscillator shells, the mul-

tiparticle wave function of a nucleus is represented as
the Slater determinant

ΨA(1, 2, . . . , A) =
1√
A!

det[φi(j)] (1)

formed by the single-particle orbitals

φi(j) = ψni(rj)χσiτi(j) ≡ ψnx
i
(xj/ai) (2)
2002 MAIK “Nauka/Interperiodica”
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× ψny
i
(yj/bi)ψnz

i
(zj/ci)χσiτi(j),

where ψn(x/a) are well-known functions for a one-
dimensional harmonic oscillator (the oscillator-length
parameter a is related to the frequency ωx by the
equation a =

√
�/mωx) and χσiτi(j) is the spin–

isospin function for the jth nucleon. The oscillator
lengths {ai, bi, ci} are taken here for variational
parameters. The variational functional for the total
nuclear energy is defined as the expectation value of
the multiparticle Hamiltonian for the functions in (1);
that is,

E({ai, bi, ci}) = 〈ΨA|Ĥ|ΨA〉/〈ΨAΨA〉. (3)

The Hamiltonian Ĥ of the system under con-
sideration includes a central exchange nucleon–
nucleon potential, whose radial dependence can be
represented, without loss of generality, as the sum of
Gaussian functions,

V̂ij(r) =
∑

S,T=0,1

νpot∑
ν=1

V
[ν]
2S+1,2T+1 (4)

× exp
{
− r

2

µ2
ν

}
P̂S,T (i, j), r ≡ |ri − rj |,

where P̂S,T (i, j) are well-known projection opera-
tors [2], which, in the wave function ΨA, cut states
corresponding to the total spin S and isospin T
of the (i, j) pair of interacting nucleons. Owing to
this choice of the radial dependence of the nucleon–
nucleon potential, all matrix elements required for
determining the functional in (3) can be calculated
in terms of elementary functions. In this connection,
it is convenient to represent the Coulomb interaction
of intranuclear protons in the integral form

ÛCoul =
Z∑

i>j=1

e2

|ri−rj |
(5)

=
2e2√
π

Z∑
i>j=1

1∫
0

e
− (ri−rj )2

µ2
c

dτ

(1 − τ2)3/2
,

µc ≡
1
τ

√
1 − τ2.

In the following, we consider only even–even light
and medium-mass nuclei, in which case the matrix
‖B‖ ≡ ‖bij‖ formed by the overlap integrals bij =
〈φiφj〉 of single-particle functions has a diagonal
form. Upon summation over spin–isospin variables,
the functional in (3) for the total nuclear energy will
then be given by [3]

E = 〈ΨA| −
�

2

2m

A∑
i=1

∆i − T̂c.m. |ΨA〉 (6)
PH
+

∞∫
−∞

∞∫
−∞

dr1dr2
3V33 + V13

2 × 4
F (n; r1, r1)F (n; r2, r2)

−
∞∫

−∞

∞∫
−∞

dr1dr2
3V33 − V13

2 × 4
F 2(n; r1, r2)

+

∞∫
−∞

∞∫
−∞

dr1dr2
3V33 + V13

2 × 4
Φ(m; r1, r1)Φ(m; r2, r2)

−
∞∫

−∞

∞∫
−∞

dr1dr2
3V33 − V13

2 × 4
Φ2(m; r1, r2)

+

∞∫
−∞

∞∫
−∞

dr1dr2
3V33 + 3V31 + V13 + V11

2 × 4

× F (n; r1, r1)Φ(m; r2, r2)

−
∞∫

−∞

∞∫
−∞

dr1dr2
3V33 − 3V31 − V13 + V11

2 × 4

× F (n; r1, r2)Φ(m; r1, r2)

+
e2√
π

1∫
0

dτ

(1 − τ2)3/2

×


 ∞∫
−∞

∞∫
−∞

dr1dr2F (n; r1, r1)F (n; r2, r2)e
− |r1−r2|

µ2
c

− 1
2

∞∫
−∞

∞∫
−∞

dr1dr2F
2(n; r1, r2)e

− |r1−r2|
µ2

c


 ,

where the two-particle density matrices for the proton
and neutron distributions,

F (n; r1, r2) =
Z∑

i=1

ψni(r1)ψni(r2), (7)

Φ(m; r1, r2) =
N∑

j=1

ψmj (r1)ψmj (r2),

now depend only on the spatial coordinates r1 and r2.
The quantities V33, V31, V13, and V11 are the corre-
sponding spin–isospin components of the exchange
potential (4); that is,

V2S+1,2T+1 =
νpot∑
ν=1

V
[ν]
2S+1,2T+1 exp

{
− r

2

µ2
ν

}
. (8)

The total nuclear energy E and the sum of the
single-particle energies ελ are related by the equa-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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tion [4]

E =
A∑

λ=1

ελ − 1
2

[
A∑

λ=1

∫
drψλ(r)Vd(r)ψλ(r) (9)

+
A∑

λ=1

∫ ∫
dr1dr2ψλ(r1)Vex(r1, r2)ψλ(r2)

]

− 〈Tc.m.〉,
where Vd(r) and Vex(r1, r2) are, respectively, the so-
called direct and the so-called exchange potential,
which appear in the Hartree–Fock equation for the
orbitals ψλ(r); that is,

− �
2

2m
∆ψλ(r) + Vd(r)ψλ(r) (10)

+
∫
dr′Vex(r, r′)ψλ(r′) = ελψλ(r).

The expressions for the potentials Vd(r) and
Vex(r, r′) follow from Eqs. (6), (9), and (10). By
way of example, we indicate that, for protons, these
expressions are

Vd(r1) =
1
4

∫
dr2(3V33 + V13)F (n; r2, r2) (11)

+
1
8

∫
dr2(3V33 + 3V31 + V13 + V11)Φ(m; r2, r2)

+
∫
dr2

e2

|r1 − r2|
F (n; r2, r2),

Vex(r1, r2) = −1
4
(3V33 − V13)F (n; r1, r2)

− 1
8
(3V33 − 3V31 − V13 + V11)Φ(m; r1, r2)

− e2

2|r1 − r2|
F (n; r1, r2).

In the case of neutrons, it is necessary to make the
substitutionsF (n; . . .) → Φ(m; . . .) and Φ(m; . . .) →
F (n; . . .) in (11) and discard the Coulomb terms.

It should be noted that the expressions in (11)
for Vd(r) and Vex(r1, r2) are not, strictly speaking,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
solutions to the Hartree–Fock equation, but they
represent an approximation (possibly, a rough one) to
the self-consistent nuclear field of the nucleus. Here,
the accuracy of the approximation is determined by
the precision of the variational calculation within the
multiparticle problem being considered for specific
nucleon–nucleon forces. In other words, the self-
consistent field calculated by formulas (11) will be
close to the actual mean field of the nucleus only if the
chosen multiparticle variational function reproduces
adequately the most important modes of the motion
of nucleons.

As is well known, the self-consistent field of a
fermion system is nonlocal and depends on the state
of a particle that occurs in this field. Formally, the
nonlocal potential being considered can be replaced
by the local potential

V loc
[λ] (r)ψλ(r) ≡ Vd(r)ψλ(r) (12)

+
∫
dr′Vex(r, r′)ψλ(r′),

where λ stands for the set of quantum numbers
that are necessary for fully characterizing the single-
particle functions ψλ. For the first time, such a
replacement was made by Slater [5] for electrons as
far back as 1951. At some point ri > 0, the local
potential introduced in (12) can have a singularity
if the single-particle function ψλ has a node at this
point.

It was mentioned above that, in our model, the
single-particle orbitals ψλ are approximated by the
functions of a deformed three-dimensional harmonic
oscillator; that is,

ψλ ≡ ψn(r) ≡ ψnx
i
(xj/ai)ψny

i
(yj/bi)ψnz

i
(zj/ci).

For the case of an even–even nucleus, the general
expression for the mean local potential describing the
interaction of the λ proton with the A nucleus can be
found by taking into account the explicit form of the
oscillator functionsψn (. . . ) and by using the formulas
presented above. The result is
V loc
[λ] (r) =

νpot∑
ν=1

{
1
4

Z∑
i=1

[(3V ν
33 + V ν

13)fnx
i
(x; ai, µν)fny

i
(y; bi, µν)fnz

i
(z; ci, µν) (13)

− (3V ν
33 − V ν

13)f̃nx
λnx

i
(x; aλ, ai, µν)f̃ny

λny
i
(y; bλ, bi, µν)f̃nz

λnz
i
(z; cλ, ci, µν)]

+
1
8

N∑
j=1

[(3V ν
33 + 3V ν

31 + V ν
13 + V ν

11)fmx
j
(x; a′j , µν)fmy

j
(y; b′j , µν)fmz

j
(z; c′j , µν)

− (3V ν
33 − 3V ν

31 − V ν
13 + V ν

11)f̃nx
λmx

j
(x; aλ, a

′
j , µν)f̃ny

λmy
j
(y; bλ, b′j , µν)f̃nz

λmz
j
(z; cλ, c′j , µν)]

}

2
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+
e2√
π

1∫
0

dτ

(1 − τ2)3/2

Z∑
i=1

[2fnx
i
(x; ai, µc)fny

i
(y; bi, µc)fnz

i
(z; ci, µc)

− f̃nx
λnx

i
(x; aλ, ai, µc)f̃ny

λny
i
(y; bλ, bi, µc)f̃nz

λnz
i
(z; cλ, ci, µc)],
where the functions fn(. . .) and f̃nλn(. . .) are the
incomplete partial overlap integrals of single-particle
orbitals and the Gaussian component of the nucleon–
nucleon potential (4). The explicit expressions for
these overlap integrals are presented in Appendix A
[see Eqs. (A.1) and (A.2)]. As can be seen from
Eq. (13), the mean single-particle potential depends
on the parameters of the nucleon–nucleon potential

(specifically, on the strengths V [ν]
2S+1,2T+1 and on the

ranges µν) and on the set of variational parameters in
the total wave function ΨA.

We note that a specific calculation must be
performed in the following order: (i) The first step
consists in a variational calculation aimed at mini-
mizing the total-nuclear-energy functional (6) in the
hyperspace of nonlinear parameters ({ai, bi, ci}, i =
1, 2, . . . , Z, for protons and {a′j , b′j , c′j}, j = 1, 2, . . . ,
N , for neutrons). (ii) Given the numerical values of
these parameters for the optimal configurations of
protons ({nx

i , n
y
i , n

z
i }, i = 1, 2, . . . , Z) and neutrons

({mx
j ,m

y
j ,m

z
j}, j = 1, 2, . . . , N ), the mean single-

particle potential (13) of the A = Z +N nucleus is
calculated at the second step. If there is a neutron
in the field of a nucleus, the corresponding mean
potential V loc

[λ] (r) is also calculated by formulas (13),
where the obvious substitutions Z → N , fn(. . .) →
fm(. . .), f̃nλn(. . .) → f̃nλm(. . .), and {ai, bi, ci} →
{a′j , b′j , c′j} are made and where the Coulomb terms
are discarded.

3. SINGLE-PARTICLE ENERGIES

In order to calculate the single-particle energies,
it is necessary to solve the Schrödinger equation with
the local potential V loc

[λ] given by Eq. (13). This is al-
most always not a simple problem, with the exception
of the case of a magic nucleus, where V loc

[λ] depends
only on the absolute value of the vector r. The diffi-
culty in question can be sidestepped if the orbitals ψλ
determined in a variational calculation are sufficiently
close to exact solutions to the corresponding set of the
Hartree–Fock equations over the important region of
r. The single-particle energy for the λ proton can then
be roughly estimated with the aid of the relation

ελ =
〈
ψnλ

∣∣∣∣− �
2

2m
∆
∣∣∣∣ψnλ

〉
(14)
PH
+
1
8

νpot∑
ν=1

∫ ∫
dr1dr2

{
ψ2

nλ
(r1)[2(3V ν

33 + V ν
13)

× F (n; r2, r2) + (3V ν
33 + 3V ν

31 + V ν
13 + V ν

11)
× Φ(m; r2, r2)] − ψnλ

(r1)ψnλ
(r2)[2(3V ν

33 − V ν
13)

× F (n; r1, r2) + (3V ν
33 − 3V ν

31 − V ν
13 + V ν

11)

× Φ(m, r1; r2)]} exp

(
−|r1 − r2|2

µ2
ν

)

+
1
2

∫ ∫
dr1dr2[2ψ2

nλ
(r1)F (n; r2, r2)

− ψnλ
(r1)ψnλ

(r2)F (n; r1, r2)]
e2

|r1 − r2|
.

By taking into account the explicit form of the
functions F (n, r1, r2), Φ(m; r1.r2), and ψnλ

(r) ap-
pearing in the above relation, we obtain the general
formula

ελ =
�

2

2m

(
nx

λ + 1/2
a2

λ

+
ny

λ + 1/2
b2λ

+
nz

λ + 1/2
c2λ

)

+
1
8

νpot∑
ν=1

{
2

Z∑
i=1

[(3V ν
33 + V ν

13)f
′
nx

λnx
i
(aλ, ai, µν)

× f ′ny
λny

i
(bλ, bi, µν)f ′nz

λnz
i
(cλ, ci, µν)

− (3V ν
33 − V ν

13)f
′′
nx

λnx
i
(aλ, ai, µν) (15)

× f ′′ny
λny

i
(bλ, bi, µν)f ′′nz

λnz
i
(cλ, ci, µν)]

+
N∑

j=1

[(3V ν
33 + 3V ν

31 + V ν
13 + V ν

11)f
′
nx

λmx
j
(aλ, a

′
j , µν)

× f ′ny
λmy

j
(bλ, b′j , µν)f ′nz

λmz
j
(cλ, c′j , µν)

− (3V ν
33 − 3V ν

31 − V ν
13 + V ν

11)f
′′
nx

λmx
j
(aλ, a

′
j , µν)

× f ′′ny
λmy

j
(bλ, b′j , µν)f ′′nz

λmz
j
(cλ, c′j , µν)]

}
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+
e2√
π

1∫
0

dτ

(1 − τ2)3/2

Z∑
i=1

[2f ′nx
λnx

i
(aλ, ai, µc)

× f ′ny
λny

i
(bλ, bi, µc)f ′nz

λnz
i
(cλ, ci, µc)

− f ′′nx
λnx

i
(aλ, ai, µc)f ′′ny

λny
i
(bλ, bi, µc)f ′′nz

λnz
i
(cλ, ci, µc)],

where the functions f ′nλn(...) and f ′′nλn(...), in con-

trast to the functions fn(...) and f̃nλn(...) appearing
in Eq. (13), are expressed in terms of complete partial
overlap integrals of single-particle orbitals and the
Gaussian component of the nucleon–nucleon po-
tential (4). The definition of these functions and the
explicit expressions for them are given in Appendix A
[see Eqs. (A.3), (A.4)]. In order to derive a similar
formula for the case of the λ neutron, it is necessary to
make the simple substitutions Z → N , f ′nλn(. . .) →
f ′nλm(. . .), f ′′nλn(. . .) → f ′′nλm(. . .), and {ai, bi, ci} →
→ {a′j , b′j , c′j} in (15) and to discard the Coulomb
integral [the last term in Eq. (15)].

4He and 16O Nuclei
To illustrate the use of the above formulas, we con-

sider two first magic nuclei, 4He and 16O. We take the
determinant functions (1) of maximum SU(3) sym-
metry for the wave functions describing the ground
states (0+) of the aforementioned nuclei. We employ
one variational parameter a0 (common to the proton
and the neutron s orbital) in ΨA for 4He and as many
as four parameters in ΨA for 16O. In the latter case,
two parameters (a and b) correspond to the proton
s and p orbitals, while the remaining two (a′ and
b′) correspond to the neutron s and p orbitals. From
the general formula (13), we can then find the mean
local potential describing the interaction of the s pro-
ton [ψs- state = ψ0(x/aλ)ψ0(y/aλ)ψ0(z/aλ)] with the
4He nucleus. The result is

V loc
s-state(r) =

1
4

νpot∑
ν=1

[
(9V ν

33 + 3V ν
31 + 3V ν

13 + V ν
11)

(16)

×
(

1 +
a2

0

µ2
ν

)−3/2

exp
(
− r2

a2
0 + µ2

ν

)

− (9V ν
33 − 3V ν

31 − 3V ν
13 + V ν

11)

×
(

1
2

+
a2

0

2a2
λ

+
a2

0

µ2
ν

)−3/2

× exp
{
− r2

ã2
0 + µ2

ν

−
(

1
a2

0

− 1
a2

λ

)
r2

2

}]
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+ 2
e2

r
erf
(
r

a0

)
−
(

1
2

+
a2

0

2a2
λ

)−3/2

× exp
{
−r

2

2

(
1
a2

0

− 1
a2

λ

)}
e2

r
erf
(
r

ã0

)
,

ã−2
0 ≡ 1

2a2
0

+
1

2a2
λ

.

In the case of a0 = aλ, expression (16) is simplified to
become

V loc
s-state(r) =

3
2

νpot∑
ν=1

[
(V ν

31 + V ν
13)

(
1 +

a2
0

µ2
ν

)−3/2

(17)

× exp
(
− r2

a2
0 + µ2

ν

)]
+
e2

r
erf
(
r

a0

)
.

The analogous formulas for the 16O nucleus are given
by

V loc
s(p)-state(r) =

νpot∑
ν=1

{
1
2
(3V ν

33 + V ν
13)Φ0(r; a, b, µν)

(18)

+
1
4
(3V ν

33 + 3V ν
31 + V ν

13 + V ν
11)Φ0(r; a′, b′, µν)

− 1
2
(3V ν

33 − V ν
13)Φs(p)(r; aλ, a, b, µν)

− 1
4
(3V ν

33 − 3V ν
31 − V ν

13 + V ν
11)

× Φs(p)(r; aλ, a
′, b′, µν)

}
+ V C(r) −WC

s(p)(r),

where the explicit expressions for the functions
Φ0(. . .), Φs(p)(. . .), V C(r), and WC

s(p)(r) are pre-
sented in Appendix B [see Eqs. (A.5)–(A.10)]. If all
the parameters involved are equal, a = b = a′ = b′ =
aλ, expressions (18) reduce to

V loc
s-state(r) =

1
4

νpot∑
ν=1

(
1 +

a2

µ2
ν

)−3/2

(19)

×
{

(9V ν
33 + 3V ν

31 + 3V ν
13 + V ν

11)

×
[
1 + 3

(
1 +

a2

µ2
ν

)−1

+ 2
a2r2

µ4
ν

(
1 +

a2

µ2
ν

)−2
]

− (9V ν
33 − 3V ν

31 − 3V ν
13 + V ν

11)
2
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×
[
1 + 2

r2

µ2
ν

(
1 +

a2

µ2
ν

)−1
]}

exp
(
− r2

a2 + µ2
ν

)

+
e2

r

(
7 − a2

2r2

)
erf
(r
a

)

− e2

a
√
π

(
4 − a2

r2

)
exp

(
−r

2

a2

)
,

V loc
p-state(r) − V loc

s−state(r) =
1
2

νpot∑
ν=1

[(
1 +

a2

µ2
ν

)−5/2

(20)

× (9V ν
33 − 3V ν

31 − 3V ν
13 + V ν

11)
(

r2

a2 + µ2
ν

)

× exp
(
− r2

a2 + µ2
ν

)]
+ 2

e2

a
√
π

(
1 +

a2

r2

)

× exp
(
−r

2

a2

)
− e2a2

r3
erf
( r
a

)
.

For the single-particle energies ελ, the expres-
sions obtained with the aid of (15) are presented im-
mediately below.

(i) For the s state of the 4He nucleus, we have

εs-state =
3�

2

4ma2
λ

(21)

+
1
4

νpot∑
ν=1

{
(9V ν

33 + 3V ν
31 + 3V ν

13 + V ν
11)

×
(

1 +
a2

µ2
ν

+
a2

λ

µ2
ν

)−3/2

− (9V ν
33 − 3V ν

31 − 3V ν
13 + V ν

11)

×
[(

1
2

+
a2

2a2
λ

)(
1
2

+
a2

λ

2a2
+ 2

a2
λ

µ2
ν

)]−3/2
}

+

√
2
π
e2

√
2

a2 + a2
λ

[
2 −

(
2aaλ

a2 + a2
λ

)2
]
.

(ii) For the s and p states of the 16O nucleus, the
results are

εs-state =
3�

2

4ma2
λ

(22)

+
νpot∑
ν=1

[
1
2
(3V ν

33 + V ν
13)Fd(aλ, a, b, µν)

+
1
4
(3V ν

33 + 3V ν
31 + V ν

13 + V ν
11)Fd(aλ, a

′, b′, µν)
PH
− 1
2
(3V ν

33 − V ν
13)Fex(aλ, a, b, µν)

− 1
4

(3V ν
33 − 3V ν

31 − V ν
13 + V ν

11)Fex(aλ, a
′, b′, µν)

]

+
2e2√
π


 2√

a2 + a2
λ

+
2√

b2 + a2
λ

(
2 +

a2
λ

b2 + a2
λ

)

− 1
2
√

2aλ

[
2
(

1
2

+
a2

λ

2a2

)−1(1
2

+
a2

2a2
λ

)−3/2

+
(

1
2

+
a2

λ

2b2

)−1(1
2

+
b2

2a2
λ

)−5/2
]}

,

εp-state =
5�

2

4ma2
λ

(23)

+
νpot∑
ν=1

[
1
2
(3V ν

33 + V ν
13)F

1
d (aλ, a, b, µν)

+
1
4
(3V ν

33 + 3V ν
31 + V ν

13 + V ν
11)F

1
d (aλ, a

′, b′, µν)

− 1
2
(3V ν

33 − V ν
13)F

1
ex(aλ, a, b, µν)

− 1
4
(3V ν

33 − 3V ν
31 − V ν

13 + V ν
11)F

1
ex(aλ, a

′, b′, µν)
]

+
4e2√
π


 1√

a2 + a2
λ

(
1 − 1

3
a2

λ

a2 + a2
λ

)

+
1√

b2 + a2
λ

(
2 +

b2a2
λ

(b2 + a2
λ)2

)

− e2

3
√

2πaλ

[
a2

a2
λ

(
1
2

+
a2

λ

2a2

)−1(1
2

+
a2

2a2
λ

)−5/2

+
11
2

(
1
2

+
a2

λ

2b2

)−2(1
2

+
b2

2a2
λ

)−5/2
]
.

The definitions of the functions Fd(. . .), Fex(. . .),
F 1

d (. . .), and F 1
ex(. . .) appearing in formulas (22)

and (23) are given in Appendix B [see Eqs. (A.11)–
(A.14)]. The neutron single-particle energies are cal-
culated by formulas (21)–(23), where it is necessary
to make the substitution a, b↔ a′, b′ and discard the
Coulomb terms.

In the case of a = b = a′ = b′ = aλ, expressions
(21)–(23) are simplified.

(а) For the 4He nucleus, we then have

εs-state =
3�

2

4ma2
(24)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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+
3
2

νpot∑
ν=1

(V ν
31 + V ν

13)
(

1 + 2
a2

µ2
ν

)−3/2

+

√
2
π

e2

a
.

(b) For the 16O nucleus, the corresponding results
are

εs-state =
3�

2

4ma2
+

11√
2π
e2

a

+
νpot∑
ν=1

(
1 + 2

a2

µ2
ν

)−3/2

×
{
Ṽν

[
1 + 3

(
1 +

a2

µ2
ν

)(
1 + 2

a2

µ2
ν

)−1
]

− W̃ν

[
1 + 3

a2

µ2
ν

(
1 + 2

a2

µ2
ν

)−1
]}

,

εp-state =
5�

2

4ma2
+

61
6
√

2π
e2

a
(25)

+
νpot∑
ν=1

(
1 + 2

a2

µ2
ν

)−5/2

×
{
Ṽν

[
4 +

a2

µ2
ν

+ 5
a4

µ4
ν

(
1 + 2

a2

µ2
ν

)−1
]

− W̃ν

[
1 +

a2

µ2
ν

+ 5
a4

µ4
ν

(
1 + 2

a2

µ2
ν

)−1
]}

,

Ṽν ≡ 1
4
(V ν

33 + 3V ν
31 + 3V ν

13 + V ν
11),

W̃ν ≡ 1
4
(V ν

33 − 3V ν
31 − 3V ν

13 + V ν
11).

4. RESULTS OF NUMERICAL
CALCULATIONS AND CONCLUSIONS

In order to perform specific numerical calculations,
dedicated computer codes were developed on the ba-
sis of the general formulas (13) and (15) for the mean
single-particle potentials and for the single-particle
energies, respectively. For exchange central nucleon–
nucleon forces, we chose known central nucleon–
nucleon potentials having a Gaussian radial depen-
dence [6, 7].

Let us first consider the results obtained within the
SU(3) microscopic nuclear model, where the highest
weight function (or the function characterized by a
maximally compact filling) involving only one varia-
tional parameter a =

√
�/mω is taken for the wave

function. In this case, the single-particle potentials
for the 4He and 16O nuclei can easily be calculated by
using the simple formulas (17) and (19). The results
obtained by calculating the potential V loc(r) for the
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Fig. 1. Mean single-particle potential in the 4He nucleus
for protons according to the calculation by formula (17)
with the nucleon–nucleon potential in the (curve 1) ВВI
or the (curve 2) VI form. Curve 3, which represents the
potential of proton interaction with the 4He nucleus, was
borrowed from [10].

4He nucleus are presented in Fig. 1 for the Brink–
Boecker [6] (BBI) and the Volkov [7] (VI) version of
the nucleon–nucleon potential. In order to calculate
V loc(r) by these formulas, it is necessary to know, in
addition to the parameters of the nucleon–nucleon
potential, that value of the variational parameter a
which minimizes the total-nuclear-energy functional
for a chosen nucleon–nucleon potential. The vari-
ational calculations of the bound-state energies for
light and medium-mass nuclei within the SU(3) nu-
clear model were performed by many authors (see,
for example, [8]). According to [9], the optimal value
of the variational parameter a for the 4He nucleus
is 1.40 fm for the ВВI potential and 1.38 fm for the
VI potential. Figure 1 also displays the potential of
proton interaction with the 4He nucleus (curve 3).
It was reconstructed in [10] on the basis of data on
proton scattering by the 4He nucleus at low energies
(up to 23 MeV inclusive). From Fig. 1, we can see
that, in the most important region of the argument
r, the single-particle potentials under investigation
behave consistently.

For neutrons in the 16O nucleus, the results of
similar calculations for the single-particle potentials
are shown in Fig. 2. Here, curves 1 and 2 were
calculated for the s and the p state, respectively, by
using formulas (19) and (20) with the BBI nucleon–
nucleon potential (the corresponding optimal value
of the variational parameter is a = 1.79 fm), while
curves 1′ and 2′ represent phenomenological analogs
of the potentials V loc(r) for the 16O nucleus in the
2
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Fig. 2.Mean single-particle potentials for neutrons in the
16O nucleus according to the calculation by formulas (19)
and (20) with the ВВI nucleon–nucleon potential for
(curve 1) the s and (curve 2) the p state. Curves 1′ and 2′

represent the corresponding phenomenological potentials
from [11].
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Fig. 3. As in Fig. 2, but for the 40Ca nucleus. The calcu-
lated s, p, and d single-particle potentials are associated
with the s, p, and d states; the curves labeled with the
symbols s′, p′, and d′ represent their phenomenological
analogs from [11].

Woods–Saxon form from the study of Elton and
Swift [11].

The potentials V loc(r) for neutrons in the 40Ca
nucleus according to the theoretical calculation with
the BBI nucleon–nucleon potential (the equilibrium
value of the oscillator parameter is a = 1.97 fm) is
displayed in Fig. 3, along with the phenomenological
analogs of these potentials from [11] (curves s′, p′, and
d′). From Fig. 2, it can be seen that the potentials
P

V loc(r) calculated here are in satisfactory agreement
with the phenomenological single-particle potentials
from [11].

Figures 4 and 5 illustrate the effect of Coulomb
forces on the behavior of the mean single-particle
potentials V loc(r) in the 16O and 40Ca nuclei, respec-
tively. As can be seen from these figures, the proton
single-particle potentials nearly replicate the behavior
of the corresponding neutron potentials, but there is
some Coulomb shift, which, in the interval 1 ≤ r ≤
2 fm, is ∆ ≈ 4 MeV for the 16O nucleus and ∆ ≈
9 MeV for the 40Ca nucleus. The coincidence of the
s and p single-particle potentials at the point r = 0
(in Fig. 4) follows from formula (20) determining the
difference of the potentials being considered. Figure 4
also displays the mean single-particle potential for
protons that was calculated by the folding method as

Vfold(r) =
∫
dr′Vpp(

∣∣r− r′
∣∣)F (n; r′, r′) (26)

+
∫
dr′Vpn(

∣∣r − r′
∣∣)Φ(n; r′, r′)

+
∫
dr′

e2

|r− r′|F (n; r′, r′),

where the proton and the neutron density matrix
[F (. . .) and Φ(. . .), respectively] were defined in
Eq. (7) (see above). The potentials Vpp and Vpn were
constructed from the components of the nucleon–
nucleon potential (4) as

Vpp(r) = Vnn(r) (27)

=
1
4
(3V33 + V13) −

1
4
(3V33 − V13) =

1
2
V13(r),

Vpn(r) =
1
8
(3V33 + 3V31 + V13 + V11)

− 1
8
(3V33 − 3V31 − V13 + V11)

=
1
4

[3V31(r) + V13(r)] .

(The same combinations of the components of this
potential appear in the direct and exchange integrals
for the total energy of the nucleus.) For the 16O nu-
cleus treated on the basis of the SU(3) model being
considered, it can be found with the aid of expressions
(26) and (27) that

Vfold(r) =
3
2

νpot∑
ν=1

{
(V ν

31 + V ν
13)

(
1 +

a2

µ2
ν

)−3/2

(28)

×
[
1 + 3

(
1 +

a2

µ2
ν

)−1

+ 2
a2r2

µ4
ν

(
1 +

a2

µ2
ν

)−2
]

× exp
(
− r2

a2 + µ2
ν

)}
+

8e2

r
erf
( r
a

)
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in the 16O nucleus according to the calculations with the
ВВI potential. The curve labeled with the symbol “fold”
represents the folding potential.

− 4e2

a
√
π

exp
(
−r

2

a2

)
,

where, for the ВВI potential, the equilibrium value of
the variational parameter a is a = 1.79 fm.

As is well known, a drawback of folding poten-
tials is that the Pauli exclusion principle is ignored
in constructing them. This is the reason why, for
r ≤ 2 fm (see Fig. 4), the potential Vfold(r) can sig-
nificantly differ from actual single-particle potentials.
Nevertheless, it is folding potentials that are often
used to describe scattering data. In all probability, this
is justified at low energies, in which case the main
contribution comes from the periphery of Vfold(r)—
the point is that, there, the potential Vfold(r) can be
close to the potential of the actual mean field of the
nucleus (see Fig. 4).

So far, we have demonstrated the results obtained
with the simple one-parameter function of the SU(3)
model of the nucleus, in which case, the potentials
V loc(r) are central. If we consider a more complicated
model or a nonmagic nucleus, the potential V loc will
be, in general, a function of all three Cartesian co-
ordinates x, y, and z. As a nontrivial example, the
potential V loc(r) for the proton p state in the 11Be
nucleus is displayed in Fig. 6. This potential was
calculated on the basis of the general formula (13)
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Fig. 5. As in Fig. 4, but for the 40Ca nucleus and for the
s, p, and d states.

by using the wave function of the polarized-orbital
model and the nucleon–nucleon potential from [12],
where it was constructed in terms of five Gaussian
functions. The relevant variational calculation of the
energies of the 11Be nucleus was performed in [12],
where, among other things, all optimum values of the
variational parameters {ai, bi, ci} of the wave function
for the ground (1/2+) state of the 11Be nucleus [they
are necessary for calculating V loc(r)] are presented in
Table 3. The complicated surface in Fig. 6 represents
the potential V loc as a function of two Cartesian
coordinates x and z at a fixed value of the third coordi-
nate (y = 0). A similar (but not equivalent) pattern is
obtained in terms of the coordinates y and z at a fixed
value of x (x = 0).

Further, we proceed to consider single-particle
energies. In order to determine these quantities, it is
necessary solve the corresponding Schrödinger equa-
tion, which can generally involve nontrivial objects,
such as the potential V loc(r) displayed in Fig. 6. For
nuclear problems, however, which are characterized
by a rather poor accuracy (in relation to the accuracy
of the results in some atomic problems) in view of
the special features of nucleon–nucleon forces, one
can use an approximate solution for single-particle
energies. Within our approach, such solutions are
given by Eq. (15). The required quantities ελ can
easily be calculated if we know the optimum values of
the variational parameters for the single-particle state
being considered and the parameters of the nucleon–
nucleon potential that was used in a specific varia-
tional calculation of the total energy of the nucleus.

In the table, we present the theoretical values of ελ
for the 16O and 4He nuclei according to the calcula-
tion by formulas (25) and (24) with the ВВI nucleon–
2
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Fig. 6. Single-particle potential for the proton p state in
the 11Be nucleus as a function of the coordinates x and z
at the fixed value of y = 0.

nucleon potential. As can be seen from the table, the
theoretical values of ελ are in satisfactory agreement
with experimental estimates even in the case where
use is made of the functions of the simplest SU(3)
model.

As was noted above, the mean single-particle
potential calculated in this way may prove to be
not a rigorously self-consistent (in the sense of
Hartree–Fock theory) potential. The accuracy of
our approximation can probably be estimated in
terms of the normalized difference of single-particle
energies, δ ≡ (ελ − ε′λ)/ε′λ, where ε′λ is the value
that represents the same single-particle energy as
ελ does, but which follows from a precise numer-
ical solution to the Schrödinger equation with the
corresponding single-particle potential (13) rather

Single-particle energies (in MeV) calculated theoretically
and obtained from the experimental data reported in [13]
for the 16O and 4He nuclei

State

Nucleus

16O 4He

Neutrons Protons Neutrons Protons

s (theor.) −47.197 −45.029 −22.029 −21.208

s (expt.) −47.0 −40 ± 8 – –

p (theor.) −19.783 −16.520 – –

p (expt.) −20.36 −16.30 – –
PH
than from a calculation by formula (15). For this,
such numerical solutions to the Schrödinger equation
with the potential (13) were found here for neutrons
in the 16O and 4He nuclei. Specifically, the s states
in the single-particle potential V loc(r) were calcu-
lated with the parameters corresponding to the ВВI
nucleon–nucleon potential. In the calculation, use
was made of the special Fortran code presented in
[14]. This code makes it possible to choose the most
efficient method for numerically solving the radial
Schrödinger equation among those that are known
in the literature. The calculation yielded two s states
at ε1 = −47.652 MeV and ε2 = −15.411 MeV in the
potential V loc

s-state(r) for the 16O nucleus and only one s
state at ε = −22.461 MeV in the potential V loc

s-state(r)
for the 4He nucleus. By comparing these values of
ελ with the corresponding theoretical values from
the table, we see that the parameter δ introduced
above to characterize the accuracy of the proposed
approximation is δ ≈ 0.95% for the 16O nucleus and
δ ≈ 1.92% for the 4He nucleus. Therefore, we can
conclude that, in nuclear problems, the accuracy of
the single-particle energies ελ calculated by formula
(15) is quite acceptable. This is especially impor-
tant for complicated potentials V loc(r), in which
case a precise determination of ελ requires dealing
with the three-dimensional Schrödinger equation.
The extremely difficult problem involving the three-
dimensional Schrödinger equation obviously arises in
the case of the model that was considered in [12] and
which takes into account, in addition to deformations,
the polarization of single-particle orbitals.

In conclusion, we note that this study have not
been aimed at describing experimental data on the
single-particle properties of a large number of nuclei
(specific systematic calculations and their compar-
ative analysis have yet to be performed). Moreover,
we have not considered here potentials V loc

s-state(r)
featuring singularities in the region r > 0 (the use
of such potentials in calculating physical quantities
involves considerable mathematical difficulties). We
have deliberately restricted our consideration to the
simplest nuclei (with the exception of 11Be) and the
SU(3) model in order to represent the formulas for
V loc(r) and ελ in the most concise form and to provide
the reader with the simplest possibility of assessing
the efficiency of this approach to obtaining the single-
particle properties of the nucleus in the case of other
versions of nucleon–nucleon forces.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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APPENDIX А

The incomplete partial overlap integrals fn(. . .)
and f̃nλn(. . .) appearing in Eq. (13) are given by

fn(x; a, µ) ≡
∞∫

−∞

dx′ψ2
n(x′/a) exp

{
−(x− x′)2

µ2

}

(A.1)

= exp
{
− x2

a2 + µ2

}(
1 +

a2

µ2

)−1/2

×
n∑

k=0

n!
2n−kk![(n − k)!]2

(
a2

a2 + µ2

)n−k

×H2(n−k)

(
x√

a2 + µ2

)
;

f̃nλn(x; aλ, a, µ) ≡ [ψn(x/a)/ψnλ
(x/aλ)] (A.2)

×
∞∫

−∞

dx′ψn(x′/a)ψnλ
(x′/aλ) exp

{
−(x− x′)2

µ2

}

= 2nλnλ!
(

1√
α

)[
Hn(x/a)
Hnλ

(x/aλ)

]

× exp
{
− x2

a2 + µ2
− x2

2

(
1
a2

− 1
a2

λ

)}

×
[nλ/2]∑
l=0

(−1)l

4ll!(nλ − 2l)!

(
µ

aλ

)nλ−2l

×
[ n
2
]∑

k=0

(−1)k

4kk!(n − 2k)!

(µ
a

)n−2k

[
nλ+n

2
−k−l

]∑
m=0

(
a2

µ2

)m

× (nλ + n− 2k − 2l)!
(4α)mm!(nλ + n− 2k − 2l − 2m)!

×
(

1
α

xµ

a2

)nλ+n−2k−2l−2m

,

where Hn(x) are Hermitian polynomials, [X] is
the integral part of the number X, and α ≡ 1/2 +
a2/2a2

λ + a2/µ2.

In the case of n, nλ = {0, 1}, we can find from
(A.1) and (A.2) that

f0(x; a, µ) = exp
{
− x2

a2 + µ2

}(
1 +

a2

µ2

)−1/2

,

(A.1a)

f1(x; a, µ) = f0(x; a, µ)

×
[
1 + 2

x2a2

µ4

(
1 +

a2

µ2

)−1
](

1 +
a2

µ2

)−1

;
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f̃00(x; aλ, a, µ) =
1√
α

(A.2a)

× exp
{
− x2

ã2 + µ2
− x2

2

(
1
a2

− 1
a2

λ

)}
≡ f̃00,

ã−2 ≡ 1
2a2

+
1

2a2
λ

, f̃10(x; aλ, a, µ) = f̃00
a2

αµ2
,

f̃01(x; aλ, a, µ) = f̃00
2x2

αµ2
,

f̃11(x; aλ, a, µ) = f̃00
1
α

(
1 +

2x2a2

αµ4

)
.

The complete partial overlap integrals f ′nλn(. . .)
and f ′′nλn(. . .) determining the single-particle ener-
gies in (15) have the form

f ′nλn(aλ, a, µ) ≡
∞∫

−∞

dx1

∞∫
−∞

dx2ψ
2
nλ

(
x1

aλ

)
(A.3)

× ψ2
n

(x2

a

)
exp

{
−(x1 − x2)2

µ2

}

= nλ!n!
(

1 +
a2

λ + a2

µ2

)−1/2

×
nλ∑
l=0

n∑
k=0

(−1)n+k+lCnλn
lk

a2l
λ a

2(n−k)

(µ2 + a2
λ + a2)n+l−k

,

Cnλn
lk ≡ (2l − 1)!!(2n − 2k − 1)!!

k!(n − k)!l!(nλ − l)!

×
min(l,n−k)∑

i=0

2i

(n− k − i)!(l − i)!i!(2i − 1)!!
;

f ′′nλn(aλ, a, µ) ≡
∞∫

−∞

dx1

∞∫
−∞

dx2ψnλ

(
x1

aλ

)
(A.4)

× ψnλ

(
x2

aλ

)
ψn

(x1

a

)
ψn

(x2

a

)

× exp
{
−(x1 − x2)2

µ2

}
=

1
nλ!n!

a2
r

aλa

×
(

1 − a4
r

µ4

)−1/2 [nλ/2]∑
k1=0

Ck1
nλ

[nλ/2]∑
l1=0

C l1
nλ

×
[n/2]∑
k2=0

Ck2
n

[n/2]∑
l2=0

C l2
n

[nr/2]∑
m=0

nr!
2mm!

× [nλ + n+ nr − 2(l1 + l2 +m) − 1]!!
(nr − 2m)!

×
(
a2

r

a2
λ

)nλ−k1−l1 (a2
r

a2

)n−k2−l2
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×
(
a2

r

µ2

)nr−2m(
µ4

µ4 − a4
r

)nr+k1+k2−l1−l2−m

,

Ck
n ≡ (−1)kn!

2kk!(n − 2k)!
,

1
a2

r

≡ 1
µ2

+
1

2a2
λ

+
1

2a2
,

nr ≡ nλ + n− 2k1 − 2k2.

In the case of n, nλ = {0, 1}, expressions (A.3)
and (A.4) reduce to

f ′00(aλ, a, µ) =
(

1 +
a2

λ + a2

µ2

)−1/2

≡ f ′00, (A.3a)

f ′10(aλ, a, µ) = f ′00
a2 + µ2

a2 + µ2 + a2
λ

,

f ′01(aλ, a, µ) = f ′00
a2

λ + µ2

a2
λ + µ2 + a2

,

f ′11(aλ, a, µ) = f ′00

(
1 +

a2
λ + a2

µ2

)−1

×
[
1 + 3

a2
λa

2

µ4

(
1 +

a2
λ + a2

µ2

)−1
]

;

f ′′00(aλ, a, µ) =
a2

r

aλa

(
1 − a4

r

µ4

)−1/2

≡ f ′′00, (A.4a)

f ′′10(aλ, a, µ) =
a2

µ2
(f ′′00)

3,

f ′′01(aλ, a, µ) =
a2

λ

µ2
(f ′′00)

3,

f ′′11(aλ, a, µ) =
[
1 + 3

a2
λa

2

µ4
(f ′′00)

2

]
(f ′′00)

3.

APPENDIX B

The functions appearing in the definition of the
local potential (18) are given by

Φ0(r; a, b, µ) =
(

1 +
a2

µ2

)
exp

{
− r2

a2 + µ2

}
(A.5)

+
(

1 +
b2

µ2

)−5/2

exp
{
− r2

b2 + µ2

}

×
[
3 + 2

b2r2

µ4

1
1 + b2

µ2

]
,

Φs(r; aλ, a, b, µ) =
(

1
2

+
a2

2a2
λ

+
a2

µ2

)−3/2

(A.6)

× exp
{
− r2

ã2 + µ2
−
(

1
a2

− 1
a2

λ

)
r2

2

}

PH
+ 2
r2

µ2

(
1
2

+
b2

2a2
λ

+
b2

µ2

)−5/2

× exp
{
− r2

b̃2 + µ2
−
(

1
b2

− 1
a2

λ

)
r2

2

}
,

Φp(r; aλ, a, b, µ) =
a2

µ2

(
1
2

+
a2

2a2
λ

+
a2

µ2

)−5/2

(A.7)

× exp
{
− r2

ã2 + µ2
−
(

1
a2

− 1
a2

λ

)
r2

2

}

+

[
1 + 2

b2r2

µ4

(
1
2

+
b2

2a2
λ

+
b2

µ2

)−1
]

×
(

1
2

+
b2

2a2
λ

+
b2

µ2

)−5/2

× exp
{
− r2

b̃2 + µ2
−
(

1
b2

− 1
a2

λ

)
r2

2

}
,

V C(r) = 2
e2

r
erf
( r
a

)
(A.8)

+ 6
e2

r
erf
(r
b

)
− 4

e2

b
√
π

exp
(
−r

2

b2

)
,

WC
s (r) =

(
ã

a

)3

(A.9)

× exp
{
−r

2

2

(
1
a2

− 1
a2

λ

)}
e2

r
erf
( r
ã

)

+

(
b̃

b

)5

exp
{
−r

2

2

(
1
b2

− 1
a2

λ

)}

× e2b2

2r2

[
1
r

erf
(
r

b̃

)
− 2
b̃
√
π

exp
(
−r

2

b̃2

)]
,

WC
p (r) =

(
ã

a

)5

(A.10)

× exp
{
−r

2

2

(
1
a2

− 1
a2

λ

)}
e2a2

2r3
erf
(r
ã

)

−
(
ã

a

)4 ae2

r2
√
π

exp
(
−r

2

a2

)

+

(
b̃

b

)5

exp
{
−r

2

2

(
1
b2

− 1
a2

λ

)}

× e2

r

(
1 +

b̃2

r2

)
erf
(
r

b̃

)
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−
(
b̃

b

)4
2e2

b
√
π

(
1 +

b̃2

r2

)
exp

(
−r

2

b2

)
,

where we have used the notation

ã−2 ≡ 1
2a2

+
1

2a2
λ

, b̃−2 ≡ 1
2b2

+
1

2a2
λ

.

In formulas (22) and (23) for the single-particle
energies of the 16O nucleus, the following notation
has been introduced:

Fd(aλ, a, b, µ) ≡
(

1 +
a2 + a2

λ

µ2

)−3/2

(A.11)

+ 3
(

1 +
a2

λ

µ2

)(
1 +

b2 + a2
λ

µ2

)−5/2

,

Fex(aλ, a, b, µ) (A.12)

≡
[(

1
2

+
a2

2a2
λ

)(
1
2

+
a2

λ

2a2
+ 2

a2
λ

µ2

)]−3/2

+ 3
a2

λ

µ2

[(
1
2

+
b2

2a2
λ

)(
1
2

+
a2

λ

2b2
+ 2

a2
λ

µ2

)]−5/2

,

F 1
d (aλ, a, b, µ) (A.13)

≡
(

1 +
a2

µ2

)(
1 +

a2 + a2
λ

µ2

)−5/2

+

[
3 + 5

b2a2
λ

µ4

(
1 +

b2 + a2
λ

µ2

)−1
]

×
(

1 +
b2 + a2

λ

µ2

)−5/2

,

F 1
ex(aλ, a, b, µ) (A.14)

≡ a2

µ2

[(
1
2

+
a2

2a2
λ

)(
1
2

+
a2

λ

2a2
+ 2

a2
λ

µ2

)]−5/2
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+

[
1 + 5

b2a2
λ

µ4

(
1
2

+
b2

2a2
λ

)−1

×
(

1
2

+
a2

λ

2b2
+ 2

a2
λ

µ2

)−1
]

×
[(

1
2

+
b2

2a2
λ

)(
1
2

+
a2

λ

2b2
+ 2

a2
λ

µ2

)]−5/2

.
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Abstract—Rotationally single-particle and vibrational excitations of deformable nonaxial odd nuclei are
investigated with allowance for the interaction of collective and single-particle states. The ratios of
excitation energies, of reduced probabilities of E2 transitions, and of quadrupole moments for deformed
nonaxial odd nuclei are calculated up to high-spin states. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

By convention, low-lying excited states of de-
formable nuclei can be broken down into the group
of single-particle states and the group of collective
states [1–3]. The latter in turn can be divided into
β- and γ-vibrational levels and rotational levels [2].
The partition of excitations into single-particle and
collective ones is legitimate for even–even nuclei, be-
cause their spectrum of the single-particle excitations
is separated from the ground state by a gap of 1 to
2 MeV. In odd nuclei, the energy of single-particle
excitations is on the same order of magnitude as the
rotational energy and the energy of vibrations of the
nuclear surface; therefore, the separation of single-
particle excitations from the total excitation of a nu-
cleus is not very well justified [3, 4].

The theory of collective quadrupole-type excita-
tions that takes into account the coupling of single-
particle and collective motion and which was de-
veloped in [3–7] makes it possible to explain some
regularities observed in the excitation spectra of de-
formable odd nuclei.

Investigation of heavy-ion reactions furnished in-
formation about high-spin high-lying excited states
of nuclei [8, 9]—in particular, information about the
energy levels of the ground-state rotationally single-
particle, anomalous rotationally single-particle, rota-
tionally single-particle γ-vibrational, and rotationally
single-particle β-vibrational bands, which is in good
agreement with theoretical predictions [3–7].

The arrangement of energy levels, the probabilities
of electric quadrupole transitions between excited lev-
els, and quadrupole moments of excited states change
significantly upon taking into account the deforma-
bility of nuclei [4]. Below, the effect of the deformabil-
ity of the shape of an odd nucleus on its energy spec-
tra, on the reduced probabilities of E2 transitions,
and on the quadrupole moments of excited states of
1063-7788/02/6503-0426$22.00 c©
nonaxial odd nuclei is investigated in the nonadiabatic
approximation up to high-spin states.

2. ENERGY OF LEVELS AND WAVE
FUNCTIONS

It is well known that, in the case of strong cou-
pling, the general theory of quadrupole excitations in
nonspherical odd nuclei featuring one external nu-
cleon is determined by a Hamiltonian that involves
five collective dynamical variables β, γ, θ1, θ2, and
θ3, (where β and γ are the variables of, respectively,
longitudinal and transverse vibrations and θ1, θ2, and
θ3 are Euler angles) and the external-nucleon coordi-
nates x, y, and z [1] and which can be represented in
the form

Ĥ =
�

2

2B

[
T̂β +

1
β2

(
T̂γ + T̂rot

)]
+ V (β, γ) + Ĥp

(1)

− Tβ
[
cos γ

(
3ĵ23 − ĵ2

)
+

√
3 sin γ

(
j21 − j22

)]
.

Here, B is the mass parameter;

T̂β = − 1
β4

∂

∂β

(
β4 ∂

∂β

)
,

T̂γ = − 1
sin 3γ

∂

∂γ

(
sin 3γ

∂

∂γ

)
,

T̂rot =
1
4

3∑
κ=1

(Îκ − ĵκ)2

sin2

(
γ − κ

2π
3

) ;
Iκ and jκ are the projections of the operators of,
respectively, the total nuclear spin Î and the angular
momentum ĵ of the external nucleon onto the prin-
cipal axes of the nucleus; V (β, γ) is the potential
energy of β and γ vibrations; Hp is the spherically
2002 MAIK “Nauka/Interperiodica”
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symmetric part of the Hamiltonian of the external
nucleon; and Tβ is a quantity that characterizes the
interaction of the nucleon with the nonspherical part
of the nuclear-core field. The eigenfunctions Ψ of the
operator in (1) are defined in the space of the variables
β > 0, 0 < γ < π/3, 0 < θ1 < 2π, 0 < θ2 < π, 0 <
θ3 < 2π, −∞ < x < ∞, −∞ < y < ∞, and −∞ <
z < ∞, the relevant volume element being

dτ = β4 |sin 3γ| dβdγdθ1 sin θ2dθ2dθ3dxdydz. (2)

It is very difficult to solve the Schrödinger equation
with the operator in (1). A general solution to this
equation has not yet been found. Only some particular
cases have been considered so far [2–7]. Suppose that
the potential energy has the form

V (β, γ) = V (β) +
β4

0

β2
V (γ) +

(
β

β0
− β2

0

β2

)
β2

0V (γ).

(3)

At low excitation energies, the eigenvalues and
eigenfunctions of the operator in (1) can then be
found by perturbation theory in the third term of the
potential-energy operator (3),

H ′ =
(
β

β0
− β2

0

β2

)
β2

0V (γ). (4)

For the Hamiltonian of the zero-order approxima-
tion, the Schrödinger equation can be represented as[

�
2

2B

(
T̂β +

2B
�2

V (β) +
Λ(β, γ)
β2

)]
Ψ = (E − εj)Ψ,

(5)

where

Λ (β, γ) = T̂γ + T̂rot +
2Bβ4

0

�2
V (γ) (6)

− 2BTβ3

�2

[
(3ĵ23 − ĵ2) cos γ +

√
3(ĵ21 − j22) sin γ

]
,

ĤpΨp = εjΨp, (7)

with Ψp being the eigenfunctions of the spherically
symmetric part of the Hamiltonian for the external
nucleon. In Eq. (5), we replace the operator Λ(β, γ)
by the operatorΛ(β0, γ) and seek a solution to Eq. (5)
in the form

Ψ = F (β)Φ(x, y, z, γ, θi), i = 1, 2, 3. (8)

Upon separating the variable β, the Schrödinger
equation (5) reduces to a set of two coupled equa-
tions: [

− �
2

2B
d2

dβ2
− 2�2

Bβ

d

dβ
+ V (β) +

�
2Λ0

2Bβ2
(9)

+
�

2(Λ− Λ0)
2Bβ2

− (E − εj)
]
F (β) = 0,
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{
1

sin 3γ
∂

∂γ

(
sin 3γ

∂

∂γ

)
− 1
4

3∑
κ=1

(Îκ − ĵκ)2

sin2

(
γ − κ

2π
3

)
(10)

− 2Bβ4
0V (γ)
�2

+
2BTβ3

0

�2

[
(3ĵ23 − ĵ2) cos γ

+
√
3(ĵ21 − ĵ22) sin γ

]
+ Λ

}
Φ(x, y, z, γ, θi) = 0.

The constant Λ0 is chosen in such a way that it
coincides with the minimum value of Λ determined by
Eq. (10).

In order to take into account transverse γ vibra-
tions, we expand the operator

X̂(γ) =
1
4

3∑
κ=1

(Îκ − ĵκ)2

sin2

(
γ − κ

2π
3

) +
2BTβ3

0

�2
(11)

×
[
(3ĵ23 − ĵ2) cos γ +

√
3(ĵ21 − ĵ22) sin γ

]
in Eq. (10) in a series around the equilibrium ground-
state deformation γ0:

X̂(γ) = X̂(γ0) +
∂X̂(γ)
∂γ

∣∣∣∣∣
γ=γ0

(γ − γ0) (12)

+
∂2X̂(γ)
∂γ2

∣∣∣∣∣
γ=γ0

(γ − γ0)2 + . . . .

In order to find the wave functions Φ(x, y, z, γ, θi)
and the eigenvalues Λ, we make use of perturbation
theory. In the zeroth order of the expansion of the
operator X̂(γ), Eq. (10) has the form{

1
sin 3γ

∂

∂γ

(
sin 3γ

∂

∂γ

)
− 1
4

3∑
κ=1

(Îκ − ĵκ)2

sin2

(
γ0 − κ

2π
3

)
(13)

− 2Bβ4
0V (γ)
�2

+
2BTβ3

0

�2

[
(3ĵ23 − ĵ2) cos γ0

+
√
3(ĵ21 − ĵ22) sin γ0

]
+ Λ

}
Φ(x, y, z, γ, θi) = 0.

The variables are then separated; that is,
Φ(x, y, z, γ, θi) = χ(γ)ϕ(x, y, z, θi). (14)

After that, Eq. (13) reduces to the set of two equa-
tions {

1
4

3∑
κ=1

(Îκ − ĵκ)2

sin2

(
γ0 − κ

2π
3

) − 2BTβ3
0

�2
(15)
2
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×
[
(3ĵ23 − ĵ2) cos γ0 +

√
3(ĵ21 − ĵ22) sin γ0

]
− εIτ

}

× ϕ(x, y, z, θi) = 0,{
1

sin 3γ
∂

∂γ

(
sin 3γ

∂

∂γ

)
(16)

− 2Bβ4
0V (γ)
�2

+Λ− εIτ

}
χ(γ) = 0,

where εIτ are the eigenvalues of a rigid nonaxial rotor
and τ numbers wave functions that are associated
with identical I. The terms that are disregarded in
Eq. (12) are not expected to have a pronounced effect
on the results of our calculations [5].

Solutions to Eq. (15) are well known [3]. In order
to solve Eq. (16), we introduce the function

χ(γ) =
Y (γ)√
sin 3γ

, (17)

whereupon Eq. (16) reduces to the form

− �
2

2B
d2Y (γ)
dγ2

+
[
W (γ) +

�
2

2B
(εIτ − Λ)

]
Y (γ) = 0,

(18)

where

W (γ) = β4
0V (γ)−

9�2

8B
1 + sin2 3γ
sin2 3γ

. (19)

For the first time, an equation having the form
(18) appeared in the Davydov–Chabanmodel [3]; this
equation can be solved for an oscillatory-type poten-
tial. In this case, the quantum number of β vibrations
will be noninteger. Equation (18) is similar to the
equation for β vibrations in [10], where the potential
for β vibrations is chosen in such a way that the
quantum number of β vibrations is integral. Since γ0

is the equilibrium position for transverse vibrations,
the effective potential energyW (γ) has a minimum at
γ = γ0 and can be represented in the form

W (γ) = V (γ0)
(
γ

γ0
− γ0

γ

)2

. (20)

The eigenvalues and eigenfunctions of Eq. (18) are
then given by

Λ = ΛnγIjτ = (4nγ + 2p+ 3)

√
2gγ0

γ2
0

− 4gγ0

γ2
0

+ εIτ ,

(21)

Y (γ) = Cγ0γ
p+1 exp

(
− γ2

2bγ0

)
Lp+1/2

nγ

(
− γ2

2bγ0

)
,

(22)
where nγ = 1, 2, . . . is the quantum number of γ vi-

brations, p =
1
2
(
−1 +

√
1 + 8gγ0

)
, gγ0 =

BV (γ0)γ2
0

�2
P

is a dimensionless parameter of the theory, V (γ0) is a
parameter appearing in the theory and having dimen-

sions of energy, bγ0 = γ0[2gγ0 ]
−1/4, Lp+1/2

nγ

(
− γ2

2bγ0

)
are Laguerre polynomials, and Cγ0 is the normaliza-
tion factor.

We will now solve Eq. (9) by making use of the
zero-order solution (21) to Eq. (10). Since β0 is the
equilibrium position for longitudinal vibrations, the
effective potential energy

W (β) = V (β) +
�

2Λ0

2Bβ2
(23)

has a minimum at β = β0 and can be represented in
the form

W (β) =
V (β0)
β2

(β − β0)2. (24)

For the potential (24), the eigenvalues and eigen-
functions of Eq. (9) are given by

Enβ
= −1 (25)

+
2gβ0[

nβ + 0.5 + (2.25 + Λ− Λ0 + 2gβ0)
1/2

]2 − εj

V0
,

Fnβ
(β) = Nβ exp

(
−x

2

)
F (−nβ, 2s + 4, x), (26)

where nβ is the quantum number of β vibrations,

x =
2gβ0

nβ + 0.5 + (2gβ0 + Λ− Λ0 + 2.25)
1/2

β

β0
,

gβ0 =
BV (β0)β2

0

�2
is a dimensionless parameter of the

theory, V (β0) is a parameter appearing in the theory
and having dimensions of energy, s =√
2.25 + Λ− Λ0 + 2gβ0 − 1.5, F (−nβ, 2s+ 4, x) is

a confluent hypergeometric function, and

Nβ =
4√

nβ + s+ 2
(27)

×
{

4gβ0

β0

(
nβ + 0.5 +

√
2.25 + Λ− Λ0 + 2gβ0

)
}5/2

× 1
Γ(2s+ 4)

√
Γ(n

β
+ 2s+ 4)

Γ(nβ + 1)

is the normalization factor.

According to expressions (21) and (25), the energy
of an excited level of an odd nucleus is specified the
quantum numbers nβ, nγ , I, j, and τ :
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PH
∆EnβnγII0τ = EnβnγII0τ − E00I0I01 =
2gβ0[

0.5 + (2.25 + 2gβ0)
1/2

]2 (28)

− 2gβ0
nβ + 0.5 +

(
2.25 + 4nγ

√
2gγ0

γ2
0

+ εIτ (ξ, γ0) + εI01(ξ, γ0) + 2gβ0

)1/2



2 .
Here, ξ =
�

2

6BTβ3
0

is a dimensionless parameter

that takes into account the relationship between ro-
tation and single-particle motion.

It is convenient to consider the ratio of the excita-
tion energy to the energy of the first excited level,

R =
∆EnβnγII0τ

∆E00I0+1I01
. (29)

By way of example, the calculated ratios of the
excitation energy to the energy of the first excited
level in the ground-state rotationally single-particle
(I0 = 5/2, nβ = nγ = 0), the first rotationally single-
particle β-vibrational (I0 = 5/2, nβ = 1, nγ = 0),
and the first rotationally single-particle γ-vibrational
(I0 = 5/2, nβ = 0, nγ = 1) band (at the parameter
values of ξ = 1, γ0 = 10◦, and gγ0 = 1) versus the
parameter gβ0 are displayed in Fig. 1 for deformable
nonaxial odd nuclei whose ground-state spin is 5/2.
In the figure, each bandhead is indicated by the
quantum numbers (nβ , nγ).

From Fig. 1, it can be seen that, at fixed values
of ξ, γ0, and gγ0 , the energies of levels in all bands
increase with increasing gβ0 and that, for gβ0 → 0
and fixed values of ξ, γ0, and gγ0 , the levels in all the
aforementioned bands descend considerably on the
energy scale and are mixed, becoming equidistant,
which corresponds to spherical nuclei. As the param-
eter gβ0 grows, the equidistant structure of the spec-
trum is gradually violated and the levels in the first
rotationally single-particle β-vibrational and the first
rotationally single-particle γ-vibrational band ascend
noticeably on the energy scale with respect to the
level of the ground-state rotationally single-particle
band, as in the case of even–even [11] and deformable
nonaxial odd [5] nuclei (only the excitation energies
for a different potential for β vibrations were calcu-
lated in [5]). In this case, low-lying energy levels of
deformable odd nonaxial nuclei will be purely rota-
tionally single-particle ones, and this corresponds to
the spectra of deformed odd nuclei.

Therefore, the shape of a deformable nonaxial odd
nucleus changes from a spherical to an ellipsoidal one
in response to changes in the parameters ξ, γ0, gγ0 ,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
and gβ0 . There arises the possibility of describing, in
a unified way, the spectrum of levels of excited states
in the spherical, transition, and deformable odd nuclei
in terms of four parameters ξ, γ0, gγ0 , and gβ0 , which
can be determined by fitting the theoretical values of
energy to their experimental counterparts.

The theoretical and experimental energies of the
excited levels in the odd nuclei 161Dy, 163Dy, and 167Er
are quoted in Table 1.

The calculated energy levels better reproduce ex-
perimental data on the 163Dy and 167Er nuclei; for the
energy levels of the 161Dy nucleus, there is a con-
siderable deviation from experimental values at high
spins. All experimentally observed levels appear in the
theory. However, the nonadiabatic theory developed in
this study for nonaxial odd nuclei predicts many other
levels that have not yet been observed experimentally.

3. REDUCED PROBABILITIES OF E2
TRANSITIONS

In order to calculate the reduced probabilities of
E2 transitions, we represent the E2-transition oper-
ator in the form [3]

�(E2) = eeffr
2
∑

q

D2
µqY2q(θ, ϕ) (30)

+

√
5
16π

Q2µ(β, γ0),

where eeff is the effective charge of the external nu-
cleon; Dµq is a Wigner function; q = 0, ±1, ±2 is the
projection of the angular momentum of the external
nucleon in the coordinate frame associated with it;
and

Q2µ(β, γ0) = Q0
β

β0
(31)

×
{
D2

µ0 cos γ0 + [D2
µ2 +D2

µ,−2]
sin γ0√
2

}
.

Here, Q0 is the internal quadrupole moment of the
odd nucleus being considered. By substituting the
operator from (30) and the wave functions (8) into the
expression

B(E2; i → f) (32)
2
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Table 1

Theory Experiment Theory Experiment

I R I R I R I R
161Dy

ξ = 0.3, gβ0 = 418, γ0 = 7◦ [16]
163Dy

ξ = 0.3, gβ0 = 418, γ0 = 7◦ [14]

5/2 0 5/2 0 5/2 0 5/2 0

7/2 1 7/2 1 7/2 1 7/2 1

9/2 2.27 9/2 2.29 9/2 2.27 9/2 2.28

11/2 3.83 11/2 4.21 11/2 3.82 11/2 3.83

13/2 5.61 13/2 6.11 13/2 5.60 13/2 5.65

3/2 6.52 – – 3/2 7.34 – –

5/2 6.93 – – 15/2 7.67 15/2 7.74

15/2 7.74 15/2 9.29 5/2 7.79 – –

7/2 8.20 – – 7/2 8.97 – –

9/2 8.55 – – 9/2 9.41 – –

1/2 9.30 – – 17/2 9.90 17/2 10.07

17/2 9.93 17/2 11.60 1/2 10.44 – –

5/2 10.16 – – 5/2 11.22 – –

11/2 11.11 – – 11/2 11.76 – –

13/2 11.22 – – 13/2 12.03 – –

3/2 11.25 – – 3/2 12.36 – –

19/2 12.66 19/2 16.41 19/2 12.48 19/2 12.67

9/2 12.76 – – 9/2 13.66 – –

7/2 14.32 – – 1/2 14.14 – –

17/2 15.07 – – 3/2 14.55 – –

21/2 15.16 21/2 18.86 9/2 14.56 – –

15/2 15.23 – – 21/2 15.06 21/2 15.48

13/2 16.78 – – 5/2 15.20 – –

23/2 18.53 23/2 25.53 7/2 15.29 – –

11/2 18.57 – – 15/2 15.67 – –

21/2 20.07 – – 17/2 15.71 – –

17/2 20.45 – – 11/2 16.03 – –

25/2 21.21 25/2 27.90 7/2 16.18 – –

17/2 21.98 – – 9/2 17.31 – –

15/2 23.90 – – 13/2 17.45 – –

27/2 25.25 27/2 36.56 13/2 17.76 – –

25/2 26.16 – – 23/2 18.14 23/2 18.56

23/2 26.67 – – 11/2 18.62 – –

29/2 28.02 29/2 36.56 11/2 19.57 – –

21/2 28.17 – – 15/2 19.73 – –

1/2 28.95 – – 21/2 20.42 – –
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Table 1. (Contd.)

Theory Experiment Theory Experiment

I R I R I R I R

3/2 29.32 – – 13/2 20.43 – –

9/2 29.39 – – 19/2 20.59 – –

5/2 29.93 – – 25/2 20.98 25/2 21.79

19/2 30.16 – – 1/2 21.15 – –

11/2 30.75 – – 7/2 21.24 – –

7/2 30.77 – – 3/2 21.46 – –

9/2 31.86 – – 17/2 21.94 – –

13/2 32.34 – – 5/2 22.00 – –

31/2 32.74 31/2 39.34 9/2 22.26 – –

11/2 33.17 – – 17/2 22.34 – –

29/2 33.18 – – 7/2 22.74 – –

27/2 33.75 – – 11/2 23.47 – –

15/2 34.16 – – 9/2 23.76 – –

13/2 34.71 – – 5/2 24.29 – –

1/2 34.76 – – 19/2 24.38 – –

7/2 34.85 – – 17/2 24.49 – –

3/2 35.05 – – 27/2 24.53 27/2 25.29

25/2 35.23 – –

33/2 35.50 33/2 51.05
167Er

ξ = 0.7, gβ0 = 330, γ0 = 5◦ [15]

7/2 0 7/2 0 1/2 8.68 – –

9/2 1 9/2 1 17/2 8.91 17/2 9.74

11/2 2.20 11/2 2.24 11/2 8.95 – –

13/2 3.63 13/2 3.72 9/2 9.64 – –

5/2 3.97 – – 7/2 10.48 – –

7/2 4.54 – – 5/2 11.29 – –

15/7 5.21 15/7 5.48 19/2 11.34 19/2 12.04

9/2 5.59 – – 17/2 11.80 – –

11/2 6.13 – – 19/2 11.92 – –

3/2 6.29 – – 15/2 12.37 – –

7/2 6.86 – – 13/2 13.11 – –

17/2 7.09 17/2 7.40 23/2 13.26 23/2 15.05

5/2 7.33 – – 11/2 14.00 – –

3/2 8.14 – – 9/2 14.93 – –

13/2 8.19 – – 25/2 16.33 25/2 17.56

15/2 8.51 – –
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Fig. 1.RatiosR of the excitation energies of levels to the energy of the first excited level in the ground-state rotationally single-
particle, the first rotationally single-particle β-vibrational, and the first rotationally single-particle γ-vibrational band versus
gβ0 at γ0 = 10◦, ξ = 1, and gγ0 = 1.
=
∑

MM ′µ

∣∣∣〈ΨnβnγIjτ |�(E2)| Ψn′
βn′

γI′j′τ ′

〉∣∣∣2,
 we find for transitions between the i ≡ {nβnγIjτ}

and f ≡
{
n′βn

′
γI

′j′τ ′
}
states that
B(E2; i → f) =

∣∣∣∣∣
√

5
16π

Q0

{ ∑
KK ′Ω

AIτ ′
K ′ΩA

Iτ
KΩ(I2K2|I ′K) cos γ0

+
∑

KK ′Ω

AIτ ′
K ′ΩA

Iτ
KΩ[(I2K2|I ′K + 2) + (I2K,−2|I ′K − 2)]sin γ0√

2

+
∑

KK ′Ω

AIτ ′
K ′ΩA

Iτ
KΩ(I2,−K2|I ′2−K)

sin γ0√
2

}
Sif (33)

+ s(l2 j/2; r)
∑

KK ′Ω

[AIτ ′
K ′ΩA

Iτ
KΩ(j2Ω,K

′ −K|jΩ)(I2K,K ′ −K|I ′K ′)

+ (−1)I−jAIτ
K ′,ΩA

Iτ
KΩ(j2,−Ω,K ′ +K|j′Ω)(I2,−K,K ′ +K|I ′K ′)]

∣∣2 ,
where

s(l2 j/2; r) = (−1)j+l−1/2en 〈fnl| r2
nl |fnl〉 (34)

×
√

5
16π

(2j + 1)(2l + 1)(2l00|l0)W (jljl; 1/2 2).

Here, 〈fnl| r2
nl |fnl〉 is the mean-square radius of

an individual nucleon, W (jljl; 1/2 2) are Racah co-
efficients, l is the orbital angular momentum of the
PH
external nucleon, and AIτ
KΩ is the coefficient in the

expansion of the wave function ϕ(x,y,z, θ) in terms
of the eigenfunctions of the axially symmetric nucleus
[3]. The factor Sif takes into account the deformabil-
ity of the nucleus and has the integral form

Sif =

∞∫
0

Ff (β)
β

β0
Fi(β)β4dβ. (35)
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particle bands versus gβ0 at γ0 = 10◦ and ξ = 1.

The general expression for the matrix elements
(35) is very cumbersome. For this reason, we consider
the particular cases of nβ = nγ = 0 and nβ = 1, nγ =
0. For the matrix element (35), we then obtain

S00Ij1;00I′j′1 =
2s′+s+3

gβ0

(36)

× (s+ 2)s
′+3(s′ + 2)s+3

(s′ + s+ 4)s′+s+6

Γ(s′ + s+ 6)√
Γ(2s′ + 4)Γ(2s + 4)

within the ground-state rotationally single-particle
band,

S10Ij1;00I′j′1 =
2s′+s+3

gβ0

(37)

× (s+ 3)s
′+3

(s′ + s+ 5)s′+s+6

√
2s+ 4

Γ(2s′ + 4)Γ(2s + 4)

× Γ(s′ + s+ 6)
{
1− (s′ + s+ 6)(s′ + 2)

(s′ + s+ 5)(s + 2)

}

between the first and the ground-state rotationally
single-particle β-vibrational band, and

S10Ij1;10I′j′1 =
2s′+s+4

gβ0

(s′ + 3)s+3(s+ 3)s
′+3

(s′ + s+ 6)s′+s+6

× Γ(s′ + s+ 6)

√
(s′ + 2)(s + 2)

Γ(2s′ + 4)Γ(2s + 4)
(38)
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×
{
1 +

(s′ + s+ 7)(s′ + 3)(s + 3)
(s′ + s+ 6)(s′ + 2)(s + 2)

− s+ 3
s′ + 2

− 1
s+ 2

}
within the first rotationally single-particle β-vibra-
tional band. By using expressions (33) and (36), we
can calculate the following ratios of the reduced prob-
abilities of E2 transitions:

Λ1(E2; 00Ij1 → 00I − 1j1) (39)

=
B(E2; 00Ij1 → 00I − 1j1)
B(E2; 00I0 + 1j1→ 00I0j1)

,

Λ2(E2; 00Ij1 → 00I − 2j1) (40)

=
B(E2; 00Ij1 → 00I − 2j1)
B(E2; 00I0 + 2j1→ 00I0j1)

.

For heavy nuclei, the effect of the first (single-
particle) term in the operator given by (30) can be
neglected [3]. The ratios of the reduced probabilities
of E2 transitions in (39) and (40) depend only on the
parameters gβ0 , ξ, and γ0, which also appear in the
formula for the ratio of the excitation energy to the
energy of the first excited level.

For transitions within the ground-state rotation-
ally single-particle band, the results of the calcula-
tions for the ratios in (39) and (40) at ξ = 1 and γ0 =
10◦ are displayed in Figs. 2 and 3, respectively, versus
the parameter gβ0 . As the parameter gβ0 grows, these
2
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ratios decrease at different rates. Only for gβ0 → 0
do we obtain the results corresponding to a rigid rotor
[12]. As the spin of nuclear levels grows at fixed values
of the parameters ξ, γ0, and gβ0 , the ratio in (39)
decreases, while the ratio in (40) increases similarly
to what was observed in the experiments reported in
[13–15].

For the 161Dy, 163Dy, and 167Er nuclei, Table 2
presents the theoretical and experimental ratios of the
reduced probabilities of E2 transitions.

Just like in the case of the energy levels, the max-
imal discrepancy is observed for the 161Dy nucleus,
since the energy levels and the probabilities for E2
transitions are calculated at the same parameter val-
ues.
PH
4. ELECTRIC QUADRUPOLE MOMENTS

Let us now consider the effect of nuclear-shape
deformability on the mean values of the electric
quadrupole moments of excited states of deformable
nonaxial odd nuclei. These mean values are deter-
mined by the relevant diagonal matrix elements

〈Q2〉nβnγIjτ =
〈
ΨnβnγIjτ |�(E2)| ΨnβnγIjτ

〉
.
(41)

If use is made of the operator in (30), the mean val-
ues of the electric quadrupole moments of a nonaxial
odd nucleus can be represented as
〈Q2〉00Ij1 =

√
I(2I − 1)

(I + 1)(2I + 3)

{
(2s + 4)(2s + 5)

8gβ0

√
5
16π

Q0

[∑
KΩ

AIτ ′
KΩA

Iτ
KΩ(I2K0|IK) cos γ0 (42)

+
∑
KΩ

AIτ ′
KΩA

Iτ
KΩ[(I2K2|IK + 2) + (I2K,−2|IK − 2) + (I2,−K2|I2 −K)]

sin γ0√
2

]

+ s(l2 1/2j; r)
∑

KK ′Ω

[AIτ ′
K ′ΩA

Iτ
KΩ(I2K,K

′ −K|IK)(j2Ω,K ′ −K|jΩ)

+ (−1)I−jAIτ ′
K ′ΩA

Iτ
KΩ(I2,−K,K ′ +K|I,Ω)(j2,−Ω,K ′ +K|jΩ)]

}

for the ground state rotationally single-particle β-vibrational band and as

〈Q2〉10Ij1 =

√
I(2I − 1)

(I + 1)(2I + 3)

{
(s+ 2)2(2s + 5)
2gβ0(s+ 3)4

(43)

×
[
1 +

(2s + 7)(s + 3)
2(s + 2)2

− s+ 4
s+ 2

]√
5
16π

Q0

[∑
KΩ

AIτ ′
KΩA

Iτ
KΩ(I2K0|IK) cos γ0

+
∑
KΩ

AIτ ′
KΩA

Iτ
KΩ[(I2K2|IK + 2) + (I2K,−2|IK − 2) + (I2,−K2|I2 −K)]

sin γ0√
2

]

+ s(l2 1/2j; r)
∑

KK ′Ω

[AIτ ′
K ′ΩA

Iτ
KΩ(I2K,K

′ −K|IK ′)(j2ΩK ′ −K|jΩ)

+ (−1)I−jAIτ ′
K ′ΩA

Iτ
KΩ(I2,−K,K ′ +K|IK ′)(j2 − Ω,K ′ +K|jΩ)]

}

for the first rotationally single-particle β-vibrational
band.

For heavy nuclei, the effect of the first (single-
particle) term in the operator given by (30) can
be neglected, in which case the ratios of the elec-
tric quadrupole moments of excited levels to the
quadrupole moment of the first excited state depend
on three parameters: gβ0 , ξ, and γ0.

For the ground-state rotationally single-particle
β- and γ-vibrational bands of deformed nonaxial
odd nuclei, the calculated ratio of the mean electric
quadrupole moment to the quadrupole moment of the
spin-9/2 excited state at the fixed parameter values of
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Table 2

Spin
Λ1(E2;nβnγ I 5/2 τ → 00 I 15/2 1) Λ2(E2;nβnγ I 5/2 τ → 00 I 25/2 1)

Theory Experiment Theory Experiment
161Dy

ξ = 0.3, gβ0 = 418, γ0 = 7◦ [13]

7/2 1 1

9/2 0.79 0.75(41) 1 1

11/2 0.58 0.45(45) 1.54 1.63(12)

13/2 0.43 0.21(14) 1.85 1.71(11)

15/2 0.33 0.28(15) 2.06 1.94(12)

17/2 0.26 0.03(06) 2.16 2.42(12)

19/2 0.21 0.09(07) 2.30 2.60(14)

21/2 0.16 0.03(07) 2.29 2.83(14)

23/2 0.14 0.04(06) 2.48 2.54(13)

25/2 0.11 0.01(07) 2.32 3.75(35)
163Dy

ξ = 0.25, gβ0 = 418, γ0 = 10◦ [14]

7/2 1 1

9/2 0.80 0.75(18) 1 1

11/2 0.59 0.50(12) 1.55 1.63(11)

13/2 0.44 0.44(35) 1.85 2.04(44)

15/2 0.34 0.33(16) 2.07 2.80(31)

17/2 0.26 0.17(11) 2.15 2.44(18)

19/2 0.22 0.12(14) 2.33 2.6(4)

21/2 2.23 2.44(24)

23/2 2.51 2.28(35)
167Er

ξ = 0.7, gβ0 = 330, γ0 = 5◦ [16]

9/2 1 1

11/2 0.95 1.9(20) 1 1

13/2 0.78 0.6(11) 1.76 2.29(20)

15/2 0.61 0.35(68) 2.28 2.34(28)

17/2 0.49 0.54(61) 2.67 3.39(20)

19/2 0.37 0.25(48) 2.93 3.44(32)

21/2 0.31 0.14(19) 3.18 4.29(43)

23/2 0.23 0.10(22) 3.33 3.15(33)
ξ = 1 and γ0 = 10◦ is displayed in Fig. 4 versus the
parameter gβ0 .

It can be seen that the ratios of the quadrupolemo-
ments of the levels in the rotationally single-particle
β- and γ-vibrational bands decrease at different rates
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
as the parameter gβ0 increases and, at large values of
gβ0 , tend to constant values. At a fixed value of gβ0 ,
the ratios of the quadrupole moments of the levels
in the above bands increase with increasing spin of
nuclear levels.
2
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Fig. 4. Ratio of quadrupole moments to the quadrupole
moment of the spin-9/2 excited level of the rotationally
single-particle band as a function of gβ0 at γ0 = 10◦ and
ξ = 1.

5. CONCLUSION

The observed regularities in the behavior of the
ratios of energy levels, in the behavior of the reduced
probabilities of E2 transitions, and in the behavior
of electric quadrupole moments as functions of the
parameter gβ0 demonstrate that the shape of a de-
formable nonaxial odd nucleus changes from a spher-
ical to an ellipsoidal one. There arises the possibility
of constructing a unified description of the spectrum
of energy levels, the reduced probabilities of E2 tran-
sitions, and electric quadrupole moments for excited
states of spherical, transition, and deformed nonaxial
odd nuclei in terms of four parameters: gβ0 , gγ0 , ξ,
and γ0. From the above comparison of the theoretical
results and experimental data (Tables 1 and 2), it
P

can be seen that the model describes satisfactorily,
at the same values of the parameters gβ0 , ξ, and
γ0, the ratios of the energies of levels and the ratios
of the reduced probabilities of E2 transitions within
the ground-state rotationally single-particle band of
nonaxial odd nuclei.
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Abstract—The parameters of the pion-electroproduction peak in the cross section for inclusive electron
scattering on 1H and d target nuclei are determined for various kinematical conditions of measurements.
It is shown that, for low 4-momentum transfers, 0.030 ≤ Q2 ≤ 0.086 (GeV/c)2, the Q2 dependence of
the shift of the pion-electroproduction peak in the πN invariant mass for a deuteron target with respect
to that for a free proton does not exhibit a universal behavior that is characteristic of complex nuclei.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The energy spectrum of high-energy electrons in-
elastically scattered by nuclei for energy transfers (ω)
from the pion-electroproduction threshold to about
500 MeV is dominated by a wide peak [1], which
is associated with the electroexcitation and decay of
the first pion–nucleon resonance, ∆(1232), in nu-
clear matter. Under specific conditions, the pion-
electroproduction peak can determine almost com-
pletely the structure of the energy spectrum; there-
fore, it is attractive for experimental and theoretical
investigations.

A great body of experimental data on the inclusive
scattering of electrons near the∆(1232) resonance on
light, medium-mass, and heavy nuclei have already
been accumulated (see, for example, [1–4]). Mea-
surements cover a wide range of 4-momentum trans-
fers [0.09 ≤ Q2 ≤ 0.52 (GeV/c)2]. An analysis of the
A(e, e′) differential cross sections revealed a num-
ber of regularities. The cross-section values per nu-
cleon, (d2σ/dωdΩ)/A, at the maximum of the pion-
electroproduction peak virtually coincide for different
nuclei and are systematically smaller than the cross
section for a free-proton target [1, 2]. The FWHM
of the pion-electroproduction peak for nuclear tar-
gets (FWHMA) differs considerably from the peak
width for a hydrogen target (FWHMH) and from
the quasifree-peak width [1]. An extraordinary 4-
momentum-transfer dependence of the position of
the pion-electroproduction peak in the energy spec-
trum with respect to the peak for a free proton was
found [3].

A comprehensive analysis revealed [2] that, with-
in the experimental errors, the πN invariant mass
WA corresponding to the maximum of the pion-
electroproduction peak in the double-differential
1063-7788/02/6503-0437$22.00 c©
cross section near the ∆(1232) resonance undergoes
no changes from 4He to 184W nuclei. This quantity
depends only on the square of the 4-momentum
transfer (Q2). At the same time, the πN invariant
mass corresponding to the maximum of the pion-
electroproduction peak for a free proton is indepen-
dent of the kinematical conditions of measurements
and is equal toWH ∼ 1220 MeV [2]. The πN invari-
ant mass was calculated as [3]

W 2 = M2 −Q2 + 2Mω, (1)

where M is the nucleon mass, while Q =
[4E1E2 sin2(θ/2)]1/2 and ω = E1 − E2 (E1 and E2

are the energies of, respectively, the incident and the
detected electron) are, respectively, the momentum
and the energy transfer from the electron to the target
nucleus.

From an analysis of the Q2 dependence of WA

for A = 4–184 nuclei, it was found [2] that WA(Q2)
for Q2 < 0.13 (GeV/c)2 is less than the correspond-
ing value for a free proton. For Q2 ∼ 0.13 (GeV/c)2,
the W values for complex nuclei are approximately
equal to that for a proton. As the momentum trans-
fer increases further [Q2 > 0.13 (GeV/c)2], WA(Q2)
grows smoothly with respect to WH. Under certain
conditions, the difference can be as great as a few
tens of MeV [2]. The reasons behind this behavior
of the pion-electroproduction peak for complex nu-
clei with respect to the peak for a free proton have
not been established conclusively. The observed de-
pendence may carry an imprint of the properties of
the resonance itself [5]. Problems in interpreting the
dependence WA(Q2) are partly due to the fact that
the final state of the system in inclusive (e, e′) scatter-
ing on nuclei is not specified completely—the pion-
electroproduction peak receives contributions from
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Differential cross sections for the reactions (•) 1H(e, e′) and (�) d(e, e′) versus the energy transfer for a scattering
angle of 14◦ and initial energies of (a) 0.888 and (b) 1.385 GeV.
all physical processes possible under the kinemat-
ical conditions of reaction being considered. These
background processes are not associated with the
resonance, but their contribution to the cross section
can in principle change the basic parameters of the
pion-electroproduction peak [2–4].

The cross section for inclusive electron–deuteron
scattering near the first nucleon resonance has re-
ceived considerably less adequate study. Systematic
experimental data were obtained in [6, 7]. The cross
section for ∆(1232) production on a neutron in the
range 0.1 ≤ Q2 ≤ 0.5 (GeV/c)2 was extracted in [6].
For squared momentum transfers in the range 0.16–
0.38 (GeV/c)2, the transition form factors G∗ for
the γ∗n∆0 and γ∗ð∆+ vertices were determined in
[7]. The theoretical calculations performed in [6, 7]
describe quite well the differential cross section for
the reaction d(e, e′) near the ∆ resonance and the
position of the pion-electroproduction peak over a
wide kinematical range. Discrepancies were observed
only in the regions of the low- and the high-energy
tails of the pion-electroproduction peak.
P

This article presents systematic experimental data
on high-energy inelastic (e, e′) scattering on hydro-
gen and deuteron targets near the first nucleon reso-
nance. The energy spectra were measured at lowmo-
mentum transfers [0.030 ≤ Q2 ≤ 0.086 (GeV/c)2],
where one observes the largest distinction between
the πN invariant masses WA and WH for complex
nuclei and for a free proton [2]. The basic parameters
of the pion-electroproduction peak were determined
for various kinematical conditions of measurements.
The results are compared with the results of other
experiments.

2. DESCRIPTION OF THE EXPERIMENT

The double-differential cross sections for the in-
elastic reactions 1H(e, e′) and d(e, e′) were measured
at a 2-GeV linear electron accelerator for incident
electron energies of E1 = 0.888, 0.990, 1.191, and
1.385 GeV and a scattering angle of θ = 14◦. The
experiment was conducted at a facility for studying
the electromagnetic structure of nuclei and nucle-
ons [8]. A three-target hydrogen–deuterium cryostat
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 2. Differential cross sections per nucleon for the reactions (•) 1H(e, e′) and (◦) d(e, e′) versus the energy transfer for a
scattering angle of 14◦ and an incident energy of 1.191 GeV.
was used for a target [9]. Three operating targets
were situated at an angle of 120◦ to each other and
were remotely exposed to a beam. Electrons scat-
tered on hydrogen, deuterium, or an empty target,
which was employed for measuring the background,
were momentum-analyzed by a uniform-field double-
focusingmagnetic spectrometer and were detected by
a counter telescope.

Each spectrum was measured for a negative and a
positive polarity of the spectrometer. Assuming that
the numbers of the product electron–positron pairs
are identical for all spectra, we subtracted the back-
ground events from the electron spectrum. The inten-
sity of the primary electron beam was measured by
a secondary emission monitor. For the absolute nor-
malization of the double-differential cross section, the
cross section for elastic ep scattering was measured
under identical kinematical conditions. The contri-
butions from processes where an electron interacting
with target nuclei emits real or virtual photons were
taken into account by introducing radiative correc-
tions in the differential cross section. These correc-
tions were calculated and introduced in the inclusive
(e, e′) cross section by means of the standard proce-
dure proposed in [10].

3. ANALYSIS OF DATA AND DISCUSSION
OF THE RESULTS

Figure 1 displays the corrected differential cross
sections for hydrogen and deuterium targets in the
region of the pion-electroproduction peak. These
data were obtained for a scattering angle of θ = 14◦
and incident electron energies of E1 = 0.888 and
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
1.385 GeV. Wide peaks above the pion-electropro-
duction threshold are attributed to the transition
of an intranuclear nucleon to the first excited state
∆(1232), which is predominantly formed by two
contributions, that from the electroproduction of
∆+(1232) and that from the electroproduction of
∆0(1232).

Figure 1 demonstrates that, in contrast to what
occurs for complex nuclei, the pion-electroproduction
peak is not noticeably shifted with respect to the
peak for a free proton at low momentum transfers
[0.030 and 0.086 (GeV/c)2]. Above the ∆(1232)
region (for ω � ωmax, where ωmax is the energy
transfer corresponding to the maximum of the pion-
electroproduction peak), the differential cross section
does not vanish and is virtually independent of the
energy transfer. At the same time, the ratio of the
cross section in the region of the high-energy tail to
that at the maximum of the pion-electroproduction
peak takes different values under different kinematical
conditions of measurements—it is about 27 and
30% at, respectively,Q2 = 0.061 and 0.086 (GeV/c)2

for the reaction d(e, e′) and is about 18% at Q2 =
0.086 (GeV/c)2 for the reaction 1H(e, e′). For a
moderate value of the momentum transfer [Q2 =
0.302 (GeV/c)2] at E1 = 1.215 GeV and θ = 35◦,
the cross section in the region ω � ωmax is one-
half as large as that at the maximum of the pion-
electroproduction peak [7]. The effect observed in
the energy-spectrum section under investigation
is thought to be due to the contributions from
higher resonances and deep-inelastic electron scat-
tering [1–3].
2
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the square of the 4-momentum transfer: (�) and (�)
data obtained in this study for the reactions d(e, e′) and
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from an analysis of the energy spectra for the reactions
d(e, e′) [6] and 1H(e, e′) [7], respectively.

The differential cross sections per nucleon for
deuteron and hydrogen targets, (d2σ/dωdΩ)d/A
and (d2σ/dωdΩ)H, are shown in Fig. 2 for the
region of the ∆(1232) resonance. The energy spectra
were measured for an incident electron energy of
1.191 GeV and a scattering angle of 14◦. It can
be seen that the cross section for a proton at the
maximum of the pion-electroproduction peak is larger
than (d2σ/dωdΩ)d/A; the excess is about 29% for
Q2 ≤ 0.061 (GeV/c)2. This difference may be due to
the nuclear-medium effect. A theoretical calculation
of the inclusive cross section near the ∆(1232) reso-
nance for complex nuclei within the most consistent
isobar–hole model [11] revealed [1] that the nuclear-
medium effect reduces the pion-electroproduction
cross section and increases the width of its peak.

The FWHM of the pion-electroproduction peak
for the reactions 1H(e, e′) and d(e, e′) as a func-
tion of the square of the momentum transfer is dis-
played in Fig. 3, along with data taken from [6, 7]. As
can be seen, the FWHMd increases smoothly from
160 ± 9 to 228 ± 12 MeV in the range 0.030 ≤ Q2 ≤
0.4 (GeV/c)2. The experimental width of the pion-
electroproduction peak for a deuteron is larger than
that for a free proton. Within the measurement errors,
FWHMH is virtually independent of the momentum
transfer, its mean value in the range studied here
being 126 ± 7 MeV. For the sake of comparison, we
indicate that the experimental values obtained in [1]
for the width of the pion-electroproduction peak at
PH
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Fig. 4.Difference of theπN invariantmasses at themaxi-
mum of the pion-electroproductionpeak for deuteron and
hydrogen targets versus the square of the 4-momentum
transfer. Three points at high values in the range Q2 =
0.165–0.302 (GeV/c)2 were determined from an analysis
of the energy spectra presented in [7]. The solid curve was
obtained for nuclear data taken from [2].

Q2 = 0.103 (GeV/c)2 for a free nucleon and for A =
4, 9, 12, and 16 nuclei are FWHMH = 120 ± 5 MeV
and FWHMA ∼ 250 MeV. The quasifree-peak width,
which is almost entirely due to the Fermi motion of
nucleons, is about 100 to 120 MeV. An additional
FWHMA (squared) is about 185 MeV. The value
of FWHMH = 120 ± 5 MeV agrees reasonably well
with our data.

To analyze the position of the pion-electroproduc-
tion peak in the energy spectrum, the double-differen-
tial cross sections for the reactions 1H(e, e′) and
d(e, e′) are expressed here in terms of the invariant
mass W according to Eq. (1). The WH, d values
corresponding to the peak maximum are then de-
termined by fitting a smooth polynomial curve to
experimental data near the maximum of the pion-
electroproduction peak. Representing the data in this
form, one can easily compare the invariant masses
W d(Q2),WA(Q2) [2], and WH for a deuteron, com-
plex nuclei, and a free proton, respectively; determine
the shift of peaks; and analyze the dependence of this
shift on the kinematical conditions of measurements.

The shift of the maximum of the pion-electropro-
duction peak for a deuteron with respect to that for a
free proton was defined as εd(Q2) = W d(Q2) −WH.
For A ≥ 4 nuclear data [2], the corresponding quan-
tity was roughly estimated as εA(Q2) = WA(Q2) −
WH = WA(Q2)− 1220MeV. Since experimental da-
ta on WA(Q2) for numerous nuclei agree within the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002



EXCITATION OF THE ∆ RESONANCE 441
experimental errors, the experimental points for A ≥
4 [2] were approximated by a smooth curveWA(Q2).
The results are shown in Fig. 4, where it can be
seen that εd(Q2) differs from εA(Q2) both in absolute
value and in Q2 dependence. The quantity εd(Q2) is
positive; that is, the pion-electroproduction peak for
a deuteron (in contrast to what occurs for complex
nuclei) is systematically shifted toward higher ener-
gies with respect to that for a hydrogen target over the
entire momentum transfer range under investigation.
In principle, this is not surprising, since it is natural to
assume that the formation of a resonance on a bound
nucleon requires additional energy.

4. CONCLUSIONS

The energy spectra for the reactions 1H(e, e′)
and d(e, e′) in the region of ∆(1232) excitation have
been measured at a 2-GeV linear electron accel-
erator for low momentum transfers [0.030 ≤ Q2 ≤
0.086 (GeV/c)2].

An analysis of experimental data has led to the
following conclusions:

(i) The differential cross section per nucleon for
the reaction d(e, e′) at the maximum of the pion-
electroproduction peak is systematically smaller than
that for a free-proton target. For high energy trans-
fers (above the resonance region), the cross section
does not vanish and is virtually independent of the
energy transfer. The ratio of the cross section for
the reaction d(e, e′) in the region of the high-energy
tail (ω � ωmax) of the pion-electroproduction peak to
that at the maximum depends on Q2, changing from
about 27 to about 50% in the range 0.061 ≤ Q2 ≤
0.302 (GeV/c)2.

(ii) In the range 0.030 ≤ Q2 ≤ 0.4 (GeV/c)2,
the width of the pion-electroproduction peak for a
deuteron increases from 160 ± 9 to 228 ± 12 MeV
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
with increasing Q2. The analogous width for a free
proton is independent of Q2 within the experimental
errors. The mean value is FWHMH = 126 ± 7 MeV.

(iii) On the scale of the πN invariant mass, the
pion-electroproduction peak for a deuteron occurs
systematically higher (in contrast to that for complex
nuclei) than the peak for a free proton over the entire
momentum-transfer range studied here.
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Abstract—The charge-exchange reaction pd → n(pp) at low momentum transfers and low excitation
energies of the pp pair is considered within the Bethe–Salpeter approach. The method is proposed for
calculating observables in the case where the pp pair is in the 1S0 state. The results of methodological
numerical calculations for the differential cross sections and the tensor analyzing power T20 are presented.
The possibility of using the reaction in question as a basic reaction for creating a deuteron tensor polarimeter
at high energies and for obtaining additional information about the elementary amplitude for nucleon–
nucleon charge-exchange is predicted. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of polarization features in hadron
and lepton scattering on light nuclei furnishes de-
tailed information both about the reaction mecha-
nism and about the structure of the nucleon–nucleon
potential and of nuclear wave functions. In addition,
the quasielastic scattering of polarized light nuclei
on heavy targets makes it possible to investigate ex-
otic excitations of heavy nuclei, such as the excita-
tion of anomalous-parity levels and the separation of
∆T = 0 and ∆T = 1 isospin admixtures in spin-flip
transitions (see, for example, [1, 2]). At present, the
programs of experimental investigations (at COSY,
TJNAF, etc.) into elastic and quasielastic scattering
in electromagnetic [3, 4] and hadronic processes [5]
on polarized deuterons are being actively deployed. By
way of example, we indicate that, in order to under-
stand the electromagnetic structure of the deuteron,
it is necessary to determine three deuteron form fac-
tors: the magnetic, the electric, and the quadrupole
one. In unpolarized elastic ed scattering, it is pos-
sible to investigate only the magnetic form factor
and some function that depends on the momentum
transfer, A(Q2), and which is a combination of all
three of them. In order to isolate the charge form
factor and investigate all form factors individually, one
needs experiments measuring polarization features of
a reaction— for example, the tensor polarization T20

of the recoil deuteron in elastic ed scattering. This
would make it possible to determine the deuteron

1)Far Eastern State University, ul. Sukhanova 8, Vladivostok,
690600 Russia.

2)Research Center Rossendorf, Institute for Nuclear and
Hadron Physics, Germany.
1063-7788/02/6503-0442$22.00 c©
charge form factor Gc at high momentum transfers.
This is an important problem, since it is the form
factor Gc that is sensitive to models of the NN in-
teraction at short internucleon distances [3, 4, 6].
Various reactions, including elastic scattering at large
angles [7], inclusive reactions [8], and exclusive pro-
cesses [9], are investigated in the realm of hadron–
deuteron scattering, and all of the possible polar-
ization observables are measured in such processes.
It should be noted that, in hadron processes, it is
quite feasible to perform experiments that admit a
complete experimental reconstruction of the reaction
amplitude (for example, the amplitude for backward
elastic pd scattering [10–12]). Here, however, it is
also necessary to measure the polarizations of recoil
deuterons, as in the case of determination of Gc.
Thus, we arrive at the general conclusion that, in
polarization experiments, it is of paramount impor-
tance to measure the polarization features of reac-
tion products. It is obvious that any process where
one measures final polarizations represents a double-
scattering experiment where the final deuteron be-
ing investigated undergoes scattering in a secondary
reaction in a polarimeter. Therefore, it is necessary
that the cross section for the secondary reaction and
its analyzing powers be sufficiently large—otherwise,
the efficiency of the polarimeter will be low. For the
secondary reaction, it is common practice to use the
process 3He(d, p) 4He at low energies (a few tens of
MeV) [13] and elastic dp scattering [14] at relativistic
energies (a few GeV and higher). Along with these
processes, it is of great interest to study the potential
of the exclusive reaction p�d → (pp)n where the pp
pair of very low excitation energy is observed. Bugg
and Wilkin [15] proposed using this reaction as a
2002 MAIK “Nauka/Interperiodica”
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deuteron tensor polarimeter at relatively low energies
(a few hundred MeV) [16]. They noticed that, at low
momentum transfers and low relative energies in the
pp pair, the reaction p�d → n(pp) predominantly pro-
ceeds via the elementary charge-exchange process
suffered by the incident proton on the neutron of the
deuteron, the remaining proton playing the role of
a spectator. In this case, the nonrelativistic model
proposed in [15] and based on the spectator mecha-
nism predicts, for this reaction, zero vector analyzing
power and a rather large tensor analyzing power,
the reaction cross section being sufficiently large for
efficiently studying the process in experiments. More
recent investigations of this process [1, 17–19] at low
energies completely confirmed the validity of these
predictions. Thus, this reaction can serve, for exam-
ple, as a means for measuring T20 in the reaction
pp → dπ+ [20] in investigating NNπ systems or for
exploring∆T = 0,∆S = 1 isoscalar transitions [2] in
inelastic (�d, �d′) reactions on heavy nuclei. Along with
the possibility of using the process p�d → n(pp) for an
effective polarimeter, its investigation is of interest for
some other reasons. First, it was shown in [15] that
the cross section for this reaction is directly related
to the partial amplitudes for nucleon–nucleon charge
exchange. Using this circumstance, together with
nucleon–nucleon data, one can deduce experimental
information for completely reconstructing the pn →
np amplitude [21]. Second, it is possible to investi-
gate the impact of nuclear effects on the elementary
amplitude of charge-exchange nuclear reactions [22,
23] and also to obtain directly the probability of spin
flip in quasielastic deuteron scattering on nuclei [1].
Third, interest in this reaction is quickened by the
experiments that are being performed and planned at
COSY [5, 9] for the region of relativistic energies.
In the present study, we propose a theoretical anal-

ysis of the reaction p�d → n(pp) at relativistic energies
(Dubna, COSY) and, as in the case of the nonrela-
tivistic analysis from [15], consider the possible ap-
plications of this reaction in the relativistic case. The
proposed approach relies on the relativistic Bethe–
Salpeter formalism and invokes a numerical solution
to the homogeneous Bethe–Salpeter equations with
a realistic interaction kernel [24, 25]. On this basis, all
partial spin amplitudes of the process are calculated
in a covariant form; this makes it possible to deter-
mine any spin observables of the reaction. By way
of example, we present calculations of the differential
cross section and the tensor analyzing power T20 and
compare our results with available experimental data.
The ensuing exposition is organized as follows. In

Section 2, we introduce basic kinematical quantities
and a general expression for the differential cross sec-
tion and determine the most general form of the spin
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
structures of the amplitude and of the observables
for the reaction being considered. In Section 3, we
describe the dynamical model of the reaction within
the Bethe–Salpeter approach, calculate analytically
the matrix element of the process, and discuss the
approximations adopted in this section. The results
of our numerical calculations, along with their anal-
ysis and comparison with experimental data, are pre-
sented in Section 4, which also contains basic con-
clusions drawn from this study. Some cumbersome
formulas and notation can be found in the Appen-
dices.

2. KINEMATICS AND NOTATION

In this study, we consider the exclusive reac-
tion induced by collisions of protons with polarized
deuterons at intermediate and high energies that
leads to the production of three nucleons in the
final state. Of all possible kinematically different
processes, we choose those that, in the deuteron
c.m. frame, correspond to the formation of a slow
correlated pair of two protons and one fast neutron—
that is, to a reaction of the type

p + �d = n + (p1 + p2). (1)

A feature peculiar to process (1) is that the mo-
mentum transfer from the proton to the neutron is
low; therefore, the main mechanism of this reac-
tion can be described in terms of charge transfer
from the incident proton to the target neutron, the
remaining proton of the deuteron playing the role
of a spectator. It is well known from [26] that the
differential cross section for the elementary charge-
exchange process pn → np has a sharp peak at zero
momentum transfer. It follows that, if process (1) is
indeed due to the charge-exchange subprocess, the
resulting pp pair will be characterized by low values of
the total and the relative momentum. Such reactions
can be reliably extracted against the background of
other possible processes and comprehensively stud-
ied in experiments. The diagram for such processes
is depicted in Fig. 1, where the following notation
is adopted: p = (Ep,p) and n = (En,n) are the 4-
momenta of the initial proton and the final neutron,
respectively, and P ′ is the total 4-momentum of the
pp pair—that is, the sum of the proton momenta
p1 = (E1,p1) and p2 = (E2,p2), P ′ = p1 + p2. The
invariant square of the pp-pair mass is denoted by
sf , sf = P ′2 = (2m + Ex)2, where m is the nucleon
mass and Ex is the excitation energy of the pair. Ac-
cording to the above assumptions about the reaction
mechanism, the excitation energy Ex is low; here, we
consider its range between zero and a fewMeV (Ex ∼
0–8 MeV). At such low values of Ex, the pp pair
occurs predominantly in the 1S0 state [18]. Hereafter,
2
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Fig. 1. Diagram for the process pd→ n(pp) under the
assumption that it proceeds through charge transfer from
the initial proton to the target neutron.

we therefore assume that the contribution of higher
partial waves is much smaller than the contribution
of the 1S0 component. The problem of corrections
from higher waves will be discussed in a separate
publication.
In the case of standard normalizations adopted

here, the Dirac spinors

u(p, r) =
√
m + ε


 χr

σ · p
m + ε

χr


 (2)

are normalized by the condition ū(p)u(p) = 2m and
the differential cross section for reaction (1) is given
by

d9σ =
1

2
√

λ(p,D)
|Mfi|2(2π)4δ(Pf − Pi) (3)

× d3n

2En(2π)3
1
2

2∏
k=1

d3pk

2Ek(2π)3
,

where λ(p,D) is the flux factor, Mfi is the invariant
amplitude for process (1), and the statistical factor of
1/2 corresponds to two identical particles (protons) in
the final state. In expression (3), it is convenient to go
over from themomentap1,2 to the relativemomentum
in the pair and its total momentum, whereupon inte-
gration with respect to the total momentum and the
absolute value of the relative momentum is removed
by the δ function. The resulting four-dimensional dif-
ferential cross section can once again be integrated in
view of the fact that, in the case where the pair is in
the 1S0 state, the matrix elementMfi is independent
of the angles specifying the direction of the relative
momentum. As a result, we arrive at

d3σ =
1

16π
√

λ(p,D)

√
1 − 4m2

sf
|Mfi|2 (4)

× d3n

2En(2π)3
1
2
.

This is a general expression for the invariant dif-
ferential cross section describing process (1) under
the assumption that the final-state protons are in the
1S0 state. For the ensuing calculations, we choose
the deuteron rest frame and present all subsequent
P

arguments in it. In this frame, the z axis (quantiza-
tion axis) is taken to be aligned with the direction of
the incident-proton momentum p (the directions of
the x and y axes are specified below). Defining the
momentum transfer as q = n− p, we go over, in (4),
to the invariant variables t = q2 and sf = (D − q)2,
whereupon the cross section takes the form

d2σ

dtdsf
=

1
2

1
64πλ(p,D)

√
1 − 4m2

sf
(5)

×
∫

dφ

(2π)3
|Mfi|2,

where φ is the azimuthal angle of final-neutron emis-
sion. In the following, we consider only the case where
the primary proton and the final neutron are unpo-
larized and where the deuteron density matrix ρd is
axisymmetric with respect to the z||p axis; that is,

ρd =
1
3
1 + pvT̂10 + ptT̂20,

with pv and pt being, respectively, the vector and the
tensor polarization parameter. It can then easily be
shown that, in (5), there is no dependence on the
angle φ, so that we finally have

d2σ

dtdsf
=

1
2

1
64πλ(p,D)

√
1 − 4m2

sf

1
(2π)2

|Mfi|2, (6)

where the amplitude |Mfi|2 can be calculated at an
arbitrary value of φ—for example, at φ = 0. In order
to determine the amplitude Mfi, we can in principle
calculate directly the diagram in Fig. 1 and obtain
expression (6) for the cross section. This, however,
obscures the final results and hampers the interpre-
tation of spin observables. In order to avoid this, we
adopt here a procedure for computing observables
that consists of a few steps (see also [12])—namely,
we (i) write the most general spin structure of the
amplitude Mfi in the form of an expansion in par-
tial invariant amplitudes and independent spin factors
and define observables of the process in terms of these
partial amplitudes, (ii) calculate the diagram in Fig. 1
and rearrange the resulting theoretical expression for
the amplitude Mfi in such a way as to obtain the
spin structure in a general form, and (iii) determine
the explicit form of the partial spin amplitudes from
a comparison of the theoretical expression for the
amplitude and its general structure and evaluate the
observables numerically.
By virtue of the assumption that the total angular

momentum of the pp pair is zero, reaction (1) is of
the 1/2 + 1 = 1/2 + 0 spin type, in which case there
are only six independent complex amplitudes because
of parity conservation. The choice of representation
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002



CHARGE-EXCHANGE REACTION 445
for these amplitudes is dictated by considerations of
convenience and can be different for different partic-
ular cases (for example, the partial amplitudes can be
defined in the helicity basis or in the representation
of a specific spin projection onto the z axis in the
c.m. frame of the particles involved). In this study,
the general form of the amplitude Mfi is specified
as follows [27]. The initial (|i〉) and the final (|f〉)
state of the system will be characterized, apart from
other quantum numbers, by specific values of the spin
projection onto the quantization axis. In the matrix
elementMfi, we write the spin dependence explicitly,
isolating, in the |i〉 and |f〉 states, the deuteron po-
larization 3-vector and the two-component spinors of
free nucleons. In the deuteron rest frame (D = 0), we
introduce the basis formed by the vectors

c =
p
|p| , b =

[p × n]
|[p × n]| , a = [b× c]. (7)

The amplitudeMfi can then be represented in the
form

Mfi ≡ T M
r′r = [χ+

r′ ]α (MαβξM ) [χr]β, (8)

α, β = 1, 2,

where r′, r, andM are the projections of, respectively,
the neutron, the proton, and the deuteron spin onto
the z axis, while the amplitudeMαβ , which is simul-
taneously a vector in coordinate space and a matrix in
spinor space, can be expanded in the basis vectors (7)
and the Pauli matrices σi (i = x, y, z) as

Mαβ = iAbδαβ + Bb(σ · b)αβ + Ca(σ · a)αβ (9)

+Da(σ · c)αβ + Ec(σ · a)αβ + Fc(σ · c)αβ .

In expression (8), ξM denotes the polarization vec-
tor of the deuteron in its rest frame:

ξ+1 = − 1√
2




1

i

0


 , ξ−1 =

1√
2




1

−i

0


 , (10)

ξ0 =




0

0

1


 .

Although expressions (8) and (9) are noncovari-
ant, this form of the amplitude is the most general
one and is valid both in the nonrelativistic and in the
relativistic approach. This can easily be verified by
noticing that, in any reference frame, the deuteron
polarization 4-vector ξM can be expressed in terms
of the vector ξM as

ξM =
[
D · ξM

Md
, ξM + D

D · ξM

Md(Ed + Md)

]
,
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where Md and Ed are the deuteron mass and total
energy, respectively, and that, in the covariant matrix
elements, we can always go over from the spinors in
(2) to the two-component spinors χr.

As was mentioned above, the z axis is aligned with
the vector c. For the sake of convenience, the y and
x axes are chosen to be directed along the vectors b
and a, respectively; this choice is justified by the fact
that the azimuthal angle of the neutron emission, φ,
can be assumed to be zero. The invariant amplitudes
A, B, . . ., F depend only on three variables; for these,
we can take the total initial energy, the square of the
momentum transfer (t), and the invariant mass of
the pp pair (sf ). These amplitudes are related to the
partial spin amplitudes T M

r′r by the equations

A = (T 1
− 1

2
− 1

2

+ T 1
1
2

1
2

)/
√

2, (11)

B = −(T 1
1
2
− 1

2
− T 1

− 1
2

1
2
)/
√

2,

C = −(T 1
1
2
− 1

2

+ T 1
− 1

2
1
2

)/
√

2,

D = (T 1
− 1

2
− 1

2
− T 1

1
2

1
2
)/
√

2,

E = T 0
1
2
− 1

2
, F = T 0

1
2

1
2
.

The amplitudes A, B, . . ., F make it possible to
calculate any spin observables for process (1). Specif-
ically, the expectation value of a physical quantity
associated with a spin operatorO is given by

〈O〉 = 6
tr (MOM+)
tr (MM+)

, (12)

where the denominator corresponds to the cross sec-
tion for process (1) in the case of unpolarized parti-
cles,

1
6
tr
(
MM+

)
=

1
3
(AA∗ + BB∗

+ CC∗ + DD∗ + EE∗ + FF∗).

For example, the tensor analyzing power 〈T20〉 is
given by

〈T20〉 = 6
tr
(
MT̂20M+

)
tr (MM+)

=
√

2
tr (MM+)

(13)

× (AA∗ + BB∗ + CC∗ + DD∗ − 2[EE∗ + FF∗]).

It should be noted that the representation of the
amplitude Mfi in the form specified by Eqs. (8) and
(9) is valid in the case where the initial and the final
state can be described by wave functions—that is,
where these are pure states. In the case of mixed
states, all of the aforesaid remains valid except that,
2
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in squaring the amplitudeMfi, it is necessary to sum
all spin projections by using the density matrices

ρN =
1
2

∑
r

|r〉〈r|, ρd =
1
3

∑
M

|M〉〈M |.

Thus, the problem consists in calculating first the
amplitudes T M

r′r and then the observables of process
(1) by using relations (11)–(13). It should be empha-
sized once again that objective of this study is to per-
formmethodological calculations of a predictive char-
acter for planned experiments at high initial energies
under the conditions where, in any reference frame,
either the initial deuteron or the final pp pair moves.
In order to describe correctly a moving two-nucleon
system at high energies, covariant approaches are
preferable where the procedure of Lorentz boosts is
defined for states of the system. The Bethe–Salpeter
formalism, within which it is possible to describe self-
consistently both the bound state (deuteron) and the
scattering states of the pp pair, is quite appropriate for
our purposes. The effects of Lorentz boosts of a two-
nucleon state are taken into account automatically in
this approach [12]. It is also possible to use, for exam-
ple, the approach based on the Gross equation [28]. It
is very close to the Bethe–Salpeter formalism—as a
matter of fact, this is the Bethe–Salpeter equation in
the approximation where one nucleon is on the mass
shell. We prefer to avoid this additional simplification;
therefore, we employ the numerical solution to the
Bethe–Salpeter equation from [24, 25], where this
solution was constructed for the case, in which the
deuteron, with its two nucleons, is off the mass shell.
Moreover, a detailed comparison of our solution and
the solution to the Gross equation [29] revealed that,
up to the relative momenta of |k| ∼ 1.5 GeV/c, these
two approaches yield virtually identical results.
In the present study, the amplitude T M

r′r is deter-
mined within the Bethe–Salpeter formalism directly
on the basis of the diagram in Fig. 1. In the following,
we assume that the initial energy of the reaction is so
high that the initial-state proton–deuteron interac-
tion and the final-state interaction between the neu-
tron and the pp pair can be neglected. Thismeans that
the initial and final three-particle states can be treated
as the direct product of the relativistic spinor of a fast
nucleon and the states of a nucleon–nucleon system
that are described by the homogeneous (deuteron) or
the nonhomogeneous (a pp-pair state in the continu-
ous spectrum) Bethe–Salpeter equation.

3. REACTION AMPLITUDE
WITHIN THE BETHE–SALPETER

APPROACH
As was mentioned above, we consider here pro-

cess (1) at intermediate and high energies and low
P

momentum transfers. Under these conditions, the
main reaction mechanism is that of charge exchange
between the initial proton and the target neutron.
Following the technique of Mandelstam [30], we rep-
resent the covariant reaction matrix element corre-
sponding to the diagram in Fig. 1 (spinor indices are
retained) in the form

T M
r′r = ūr′

γ (n)ur
δ(p)

∫
d4kΦ̄P ′

(q
2

+ k
)

αβ
(14)

×
(

D̂

2
+ k̂ −m

)
αµ

ΦM (k)µνAce
βγ,δν ,

whereΦM is the Bethe–Salpeter deuteron amplitude,
which is a solution to the homogeneous Bethe–
Salpeter equation for the deuteron, and Φ̄P ′ is the
conjugate Bethe–Salpeter amplitude for the pp pair
(it is a solution to the nonhomogeneous Bethe–
Salpeter equation for the pair in the continuum spec-
trum). The charge-exchange vertex Ace corresponds
to the four-point Green’s function for the process
pn → npwhere the initial neutron and the final proton
are generally off the mass shell. In Eq. (14), it is
convenient to go over from the direct product of the
spinors and the amplitudes to the matrix product. For
this, the Bethe–Salpeter amplitudes are redefined as
[31]

Φ(k) ≡ Ψ(k)UC , Ψ̄(k) = γ0Ψ†(k)γ0,

where UC = iγ2γ0 is the charge-conjugation matrix.
The new amplitudes Ψ(k) can then be considered as
ordinary 4 × 4 matrices acting in spinor space, and
the Bethe–Salpeter equations for the new amplitudes
are matrix integral equations. In order to solve these
equations numerically, the amplitudes Ψ(k) are usu-
ally expanded in some complete set of 4 × 4matrices,
whereby a set of integral equations for the coefficients
in this expansion is obtained. These coefficients are
known in the literature as Bethe–Salpeter partial
amplitudes. It is obvious that the form of partial am-
plitudes depends on the specific choice of basis for
the aforementioned expansion, different bases being
related by a unitary transformation. In [24, 25], the
set of Bethe–Salpeter equations for deuteron partial
amplitudes with a realistic interaction kernel (sum of
exchanges of π, ω, ρ, σ, η, and δ mesons) was solved
numerically in the representation of the complete set
of 16 Dirac matrices. This representation is conve-
nient for obtaining a numerical solution; however,
clarity is lost here in calculating observables for spe-
cific processes, and the interpretation of the results
derived in this way becomes complicated. From the
physical point of view, it is more convenient to use the
so-called ρ-spin classification of partial amplitudes
that is obtained in the basis of spin–angular harmon-
ics [32], where partial amplitudes can be interpreted
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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in terms of states characterized by specific values
of the spin and of the total angular momentum. In
particular, this makes it possible to find their non-
relativistic analogs. By way of example, we indicate
that, for the deuteron, the amplitude ΨM consists of
eight components, which can be divided into three
groups: (i) two components that are the largest in
magnitude and which are characterized by positive ρ
spins (they correspond to the S and theD wave in the
nonrelativistic pattern of the deuteron), (ii) four so-
called P waves (which are small in relation to the S
and D waves) having one positive and one negative ρ
spin, and (iii) two negligibly small components whose
ρ spins are both negative (for more details, see [33]).
In the present study, all analytic calculations are per-
formed in the ρ-spin representation, while numerical
results are derived by using the solution presented in
[24, 25]. The explicit form of the unitary transforma-
tion from the expansion in the Dirac matrices to the
expansion in spin–angular harmonics can be found
in [33]. Below, we disregard the contribution of the
partial amplitudes having at least one negative ρ-spin
value. This means that the Bethe–Salpeter amplitude
for the deuteron can be represented in the form (see
also Appendix А)

ΨM (k) = ΨM
S++(k) + ΨM

D++(k). (15)

It should be noted that, for a two-nucleon system
(deuteron or pp pair), the inclusion of only the leading
partial components of the Bethe–Salpeter amplitude
does not mean a rejection of the relativistic descrip-
tion of the reaction, but it is a well-justified approxi-
mation within the general relativistic formalism.
In order to determine the vertex Ace, we can

expand it in the complete set of matrices—in just
the same way as in solving the Bethe–Salpeter
equations—and determine the expansion coefficients
from an experiment studying nucleon–nucleon charge
exchange. However, this procedure is not quite con-
sistent since all nucleons are not real in this case.
Obviously, additional theoretical arguments and ded-
icated theoretical models are required for estimating
off-shell-mass effects inAce.Moreover, the excitation
energies and momentum transfers are comparatively
low in the reaction being considered; therefore, the
nucleons of the pp pair are close to the mass shell, so
that off-mass-shell corrections can be neglected. The
quantity Ace can then be directly expressed in terms
of the amplitudes fr′s′,sr for the real charge-exchange
process p + pn = pp + n, where all particles are on
the mass shell; that is, we have

fr′s′,sr = ūs′
α (pp)ūr′

β (n)Ace
αβ,γδu

r
γ(p)us

δ(pn). (16)

By using Eq. (16), we obtain

T M
r′r =

∑
ss′

1
(2m)2

∫
d4kfr′s′,srū

s(pn)ΨM (k) (17)
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×(D̂/2 − k̂ + m)Ψ̄P ′(k − q/2)us′(pp).

The amplitude in (17) now becomes the main
subject of a further analysis. It can be seen that it
possesses a manifest Lorentz covariance.
The problem of taking into account the interaction

in the 1S0 final state of this reaction is equivalent to
the analogous problem in describing the deuteron-
electrodisintegration process ed → e′(pn); therefore,
we will follow [31] in our approach. According to
the ρ classification, the Bethe–Salpeter amplitude in
the 1S0 state has four components whose quantum
numbers are 1S++

0 , 1S−−
0 , 3P+−

0 , and 3P−+
0 ; in the

following, these components are denoted by φ1, . . .,
φ4, respectively. As in the case of the deuteron, we
will disregard, in the final expressions, all components
whose ρ spin is negative—that is, we will retain only
the leading (++) component (φ1). It should be noted
that the expansion in spin–angular harmonics is con-
structed in the rest frame of the pp pair. In order to
derive the amplitude in any other reference frame, we
must make a Lorentz boost (see, for example, [33]).
However, the cumbersome procedure of performing
the boost explicitly can be sidestepped by noticing
that the amplitude Ψ̄P ′ can be written in the covariant
form [31]

√
4πΨ̄P ′(p) = −b1γ5 − b2

1
m

(γ5p̂1 + p̂2γ5) (18)

− b3

(
γ5

p̂1 −m

m
− p̂2 + m

m
γ5

)
− b4

p̂2 + m

m
γ5

p̂1 −m

m
,

where p1,2 = P ′/2± p, p being the relative 4-momen-
tum, and where the functions bi ≡ bi(P ′p, p2) are
Lorentz-invariant. It is now sufficient to express them
in terms of the ρ-spin components φi ≡ φi(r0, |r|),
i = 1, . . . , 4, whereby the effects of the Lorentz boost
are automatically taken into account (see also [12]).
The relation between bi and φi is presented in Ap-
pendix А.
Following the above method for calculating ob-

servables, we substitute Eqs. (18) and (15) into (17)
and obtain an expression for the integrand matrix
element in terms of two-component spinors and 3-
vectors, that is,

fr′s′,srū
s(pn)ΨM (k)(D̂/2 − k̂ + m) (19)

× Ψ̄P ′(k − q/2)us′(pp) = fr′s′,sr

{
χ†

s(σ · ξM )

×χs′(ψS−ψD/
√

2)C1 +χ†
s(σ ·k)χs′(k ·ξM )ψDC2

+ [−χ†
s(σ · q)χs′(k · ξM )(ψS +

√
2ψD)

+ χ†
s(σ · k)χs′(q · ξM )(ψS − ψD/

√
2)

+ χ†
sχs′i([q × k] · ξM )(ψS − ψD/

√
2)]C3

}
,

2
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where the scalar coefficients C1, C2, and C3, which
were introduced for the sake of brevity, depend on
the kinematical variables of the process and on the
partial wave functions φ1, . . . , φ4 for the 1S0 final
states, but they are independent of the spin variables.
The explicit expressions for them are presented in
Appendix А. From formula (19), it is clear how one
can calculate the amplitude T M

r′r at specific values of
the spin indices r′, r, and M and, hence, determine
the invariant amplitudes A, B, . . ., F (11) and the
observables given by (12) and (13).
In order to determine φi, it is necessary, in prin-

ciple, to use the same NN-interaction model as for
the deuteron, but this model must be supplemented
with the electromagnetic interactions of protons. By
way of example, we indicate that, in the simplest
case, where only the pseudoscalar pion–nucleon in-
teraction is taken into account, the nonhomogeneous
Bethe–Salpeter equation for Ψ̄P ′(p) has the form [34]

Ψ̄P ′(p) = Ψ̄0
P ′(p) + ig2

πNN (20)

×
∫

d4p′

(2π)4
∆(p− p′)S̃(p2)γ5Ψ̄P ′(p′)γ5S(p1),

where ∆ and S are the propagators for the scalar
and the spinor field, respectively; S̃ ≡ UCSU−1

C ; and
Ψ̄0

P ′(p) is the relativistic plane wave corresponding to
the motion of two noninteracting protons. A solution
to Eq. (20) can be represented, for example, in the
form of a Neumann series, its first term being Ψ̄0

P ′(p).
Symbolically, this can be represented as

Ψ̄P ′(p) = Ψ̄0
P ′(p) + Ψ̄i

P ′(p). (21)

The second term, which is determined by the inter-
action, can be referred to by convention as a diverging
wave. In the rest frame of the pp pair, we find for the
1S0 state that [31]

Ψ̄0
P ′(r)|P ′=(

√
sf ,0) = φ0

1(r0, |r|)Γ1S++
0

(r̂),

φ0
1(r0, |r|) = 2(2π)4

1√
4π

1
|r∗|2 δ(r0)δ(|r| − |r∗|),

where r = (r0, r) is the relative 4-momentum (argu-
ment of the amplitude), |r∗| =

√
sf/4 −m2 is the real

(measured experimentally) relative 3-momentum in
the pair, and Γ1S++

0
(r̂) is a spin–angular harmonic

(see Appendix A). In order to determine the diverging
wave in (21), it is necessary to solve an equation of
the type in (20). This, however, involves consider-
able difficulties—in particular, such equations do not
admit the Wick rotation procedure [35], so that it is
necessary to solve them directly in Minkowski space,
but there are presently no regular methods for this.
One possible way to estimate Ψ̄i

P ′ is to invoke the so-
called one-iteration approximation described in [31],
P

where it was shown that the corrections from the
second term in expansion (21) are similar to meson-
exchange currents in nonrelativistic approaches. A
detailed investigation of the contribution from the
second term in (21) will be performed in a subsequent
publication. As a natural initial step in developing a
model for reaction (1), we will retain here only the first
term in expansion (21); that is,

φ1(r0, |r|) = φ0
1(r0, |r|), (22)

φ2 = 0, φ3 = 0, φ4 = 0.

For the specific kinematical situation considered in
our study [see Eq. (17)],

δ(r0) = δ[(P ′, k − q/2)/
√
sf ], (23)

δ(|r| − |r∗|) = δ

(√
−(k − q/2)2 −

√
sf/4 −m2

)
,

(24)

and we finally have

φ0
1(r0, |r|) = 2(2π)4

1√
4π

1
E|k||q| (25)

×
√

sf

sf/4 −m2
δ(k0 − [Md/2 − E])

× δ

(
cos θkq +

sf − 2E(Md − q0)
2|k||q|

)
,

where θkq is the angle between the vectors k and q. In
the approximation specified by Eqs. (22)–(25), which
is also known as the relativistic impulse approxima-
tion, the matrix element (17) assumes the form

T M
r′r =

∑
ss′

|k|max∫
|k|min

d|k|Fk

2π∫
0

dφkfr′s′,sr (26)

×
{
χ†

s(σ · ξM )χs′

(
GS − GD√

2

)(sf

2
+ mP ′

0

)

+ χ†
s(σ ·Rqk)χs′(ξM ·Rqk)

3√
2
GD

P ′
0

E −m

− χ†
s(σ · q)χs′(ξM ·Rqk)(GS +

√
2GD)

+ χ†
s(σ ·Rqk)χs′(q · ξM )

(
GS − GD√

2

)

+ χ†
sχs′i([q ×Rqk] · ξM )

(
GS − GD√

2

)}
,

Fk =
1

(4π)3/2
(27)

× |k|
|q|E(Md −2E)

√
(sf/4−m2)(E +m)(p0

p +m)
,
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where we have introduced, instead of the Bethe–
Salpeter amplitudes, the corresponding vertex func-
tions GS,D (see Appendix A); Rq is the matrix de-
scribing the rotation about the y axis through the
angle θ (the angle between the vector q and the z
axis),

Rq =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 ;

and the limits of integration with respect to |k| are

|k|max,min =

∣∣∣∣∣
√

1 +
q2

sf

√
sf

4
−m2 ± |q|

2

∣∣∣∣∣.
By using expressions (10) and the explicit form

of the Pauli matrices, we can now calculate T M
r′r for

specific values of the indices and obtain numerically
the amplitudesA,B, . . .,F with the aid of expressions
(11). It is only necessary to explain how one can
perform calculations with the charge-exchange am-
plitudes fr′s′,sr. In addition to the spin indices, they
also depend on two Mandelstam variables: the total
energy of the charge-exchange subprocess, spn =
(D/2 + k + p)2 (where p is the primary-proton mo-
mentum), and the momentum transfer squared t =
(n − p)2 (this variable is common to the subprocess
and the reaction as a whole). Under the kinemati-
cal conditions being considered, the neutron in the
deuteron (it plays the role of the primary neutron
in the elementary subprocess) and the final proton
possess the 4-momentaD/2 + k and P ′/2 + k− q/2,
respectively; in general, these particles are off the
mass shell. In the relativistic impulse approximation,
however, we have pp = P ′/2 + k − q/2 after integra-
tion with the δ functions, so that only the neutron
in the deuteron remains off the mass shell. It was
indicated in [26] that the amplitude for theNN charge
exchange depends only slightly on the total energy; in
view of the smallness of the neutron binding energy in
the deuteron, we can neglect the off-mass-shellness
of the neutron. Additionally, the amplitude fr′s′,sr

can be taken outside the sign of the integral with
respect toφk to a high precision, whereby the calcula-
tions are significantly simplified. These arguments are
commonly accepted in the literature devoted to eval-
uating diagrams for proton–deuteron scattering in
the impulse approximation, where the off-mass-shell
amplitude of the subprocess is replaced by the on-
shell nucleon–nucleon amplitude, which is directly
measured in experiments [15, 36–38].
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
4. RESULTS AND CONCLUSIONS

In numerical calculations, we have used the ele-
mentary charge-exchange amplitudes in the form of
the analytic parametrization from [26] or in the form
of numerical results deduced by various groups of
authors [41, 42] from partial-wave analyses:3)

f1 = 〈+ + |Ace| + +〉, (28)

f2 = 〈+ + |Ace| − −〉, f3 = 〈+ − |Ace| + −〉,
f4 = 〈+ − |Ace| − +〉, f5 = 〈+ + |Ace| + −〉.

Here, fi are the helicity amplitudes forNN charge
exchange that are normalized by the condition

dσce

dt
=

1
32πs(s− 4m2)

{
4∑

i=1

|fi|2 + 4|f5|2
}

. (29)

In the matrix element (26), the amplitudes fr′s′,sr

are spin (not helicity) amplitudes, on one hand, and
are defined in the deuteron rest frame, on the other
hand. It follows that, in numerical calculations, one
must first perform the Lorentz boost in (28) along the
vector p + k from the c.m. frame of the pn system to
the laboratory frame and then, by means of a Wigner
rotation, go over from particle helicities to spin pro-
jections onto the z axis. Considering that the Lorentz
boost procedure leads to a rotation of the helicities
[43], two rotations of the spin state are needed for each
particle (see Appendix B).
The partial amplitudes in (28) versus the momen-

tum transfer |q| are shown in Fig. 2 at the energy
value corresponding to the primary-nucleon momen-
tum of |p| = 2.5 GeV/c in the laboratory frame. The
solid curves represent the results of the partial-wave
analysis presented in [40, 42], while the dashed curves
correspond to the parametrization proposed in [26]. It
can be seen that the partial-wave amplitudes obtained
by different groups of authors differ significantly, and
it is difficult to give preference from the outset to one
result or another. In order to obtain unambiguous
results for the phenomenological amplitudes in (28),
it is necessary to have a great number (approximately
ten) of independent polarization experiments, and the
most accurate fit to experimental data is a basic cri-
terion here. If the existing data are insufficient, there
remain ambiguities in determining the partial am-
plitudes in (28). In this connection, an investigation
of the process in (1) can significantly supplement
available information about the amplitude for the ele-
mentary event of nucleon–nucleon charge exchange,
and this was already indicated, for example, in [21].
For the case of polarized deuterons, Figs. 3 and

4 display the differential cross section dσ/dt and the

3)These amplitudes are freely available in the on-line regime
(see, for example, [39, 40]).
2
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Fig. 2. Absolute values of the amplitudes in (28), which
correspond to the primary-nucleon momentum of |p| =

2.5 GeV/c in the laboratory frame: (solid curves) SAID
parametrization of the charge-exchange subprocess [40,
42] and (dashed curve) parametrization from [26]. The
amplitudes in question are dimensionless, as follows from
(29).

tensor analyzing power T20 for process (1) at the pri-
mary momentum of |p| = 2.5GeV/c that were calcu-
lated with (solid curves) the partial-wave amplitudes
from [40, 42] and (dashed curves) the amplitudes from
[26]. The above differential cross section dσ/dt is
obtained by integrating the double-differential cross
section (6) over the intervals of the excitation energy
of the pair, Ex, that correspond to the actual experi-
mental condition; that is,(

dσ

dt

)
k

=
1

(8π)3λ

∫
Rk

dsf

√
1 − 4m2

sf
|Mfi|2, (30)

k = 1, 2, 3, . . . ,

where k numbers the experimentally accessible in-
tervals of the energy Ex. By way of example, we
indicate that, at the SATURN-II facility [19], re-
action (1) was investigated in detail at the initial
energies corresponding to the proton momenta of
|p| = 0.444GeV/c and |p| = 0.599GeV/c. The pair-
excitation-energy intervals studied there are

R1 : 0 ≤ Ex ≤ 1MeV, (31)

R2 : 1 ≤ Ex ≤ 4MeV, (32)

R3 : 4 ≤ Ex ≤ 8MeV, (33)

with the variable t taking values from 0 to
PH
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Fig. 3. Unpolarized differential cross section (30) at
the primary-proton momentum of |p| = 2.5 GeV/c (in
the laboratory frame) for the excitation-energy inter-
vals (31)–(33): (solid curves) results for the SAID
parametrization of the charge-exchange subprocess [40,
42] and (dashed curves) results for the parametrization
from [26].

0.16 (GeV/c)2. For the convenience of comparison,
we will everywhere quote the results of our calcula-
tions for precisely these kinematical intervals of Ex

and t.

It can be seen from Fig. 3 that, as might have been
expected, the differential cross section is not sensitive
to the choice of parametrization for the elementary
charge-exchange cross section, since the elementary
cross section (29) itself does not depend on the details
of the choice of form for the partial amplitudes (28).
A totally different pattern is observed in the results of
the calculation of the polarization features (12), where
the contribution of the partial-wave amplitudes is off-
diagonal. Inspecting Fig. 4, one can conclude that
the behavior of the tensor analyzing power (13) de-
pends greatly on the choice of parametrization for the
elementary amplitude—in principle, an experimental
investigation of T20 can furnish information about
the relative contribution of the elementary partial-
wave amplitudes and about the quality of the chosen
parametrization. There are presently no experimental
data on the polarization features of reaction (1) at
high energies. However, it was mentioned above that,
at initial energies of about a few hundredMeV, this re-
action was thoroughly investigated at the SATURN-
II facility [19] for two values of the primary momen-
tum |p| (0.444 and 0.599 GeV/c). Although these
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 4. Tensor analyzing powers T20 (13) corresponding
to the same conditions as those adopted for Fig. 3.

energies are insufficiently high for the impulse ap-
proximation adopted here to be valid and for effects of
initial- and final-state interaction to be negligible, a
comparison of the theoretical results and experimen-
tal data is informative.
Figures 5 and 6 present the differential cross sec-

tion (30) and the tensor analyzing power T20 (13)
computed by using formulas (26) and (27). The solid
and the dashed curves correspond to the parametriza-
tions of the helicity amplitudes from [40, 42] and
[26], respectively. From Fig. 5, it can be seen that
the behavior of the cross section is in reasonable
agreement with experimental data at low values of
the momentum transfer |q| up to about 0.2 GeV/c
and in the pair-excitation-energy interval 1 ≤ Ex ≤
4 MeV. In other intervals of Ex and at higher values
of |q|, the agreement of the results of the calculations
with the experimental data is poorer. From here, one
can immediately conclude that, at very low excitation
energies (Ex ∼ 0), the final-state interaction of two
protons (strong Coulomb repulsion) plays a signif-
icant role, so that the disregard of these effects is
illegitimate here at any initial energies. As the exci-
tation energy of the pair grows, the final-state inter-
action becomes less important, so that the use of the
impulse approximation becomes more justified. With
increasing primary energy and momentum transfer,
the agreement with experimental data is improved,
which seems to validate the assumption that the pp
pair is detected in the 1S0 state.
The same conclusions are suggested by the anal-

ysis of the results presented in Fig. 6 for T20 . It can
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 5. Unpolarized differential cross section (30) at
the primary-proton momenta of |p| = 0.444 GeV/c
and |p| = 0.599 GeV/c for the excitation-energy inter-
vals (31)–(33): results of the calculations with (solid
curves) the SAID parametrization [40, 42] of the charge-
exchange process and (dashed curves) the parametriza-
tion from [26]. The experimental data displayed here were
borrowed from [19].
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be seen that only if use is made of the partial-wave
amplitudes from [40, 42] (solid curves) are the results
of the calculations in qualitative agreement with ex-
2
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Fig. 7. Unpolarized differential cross section (30) at
the primary-proton momentum of |p| = 5 GeV/c. The
amplitudes for nucleon–nucleon charge exchange were
taken from [26].

perimental data over the entire interval of momentum
transfers for all values of the pair excitation energy.
The calculation with the amplitudes from [26] leads
to a qualitatively different behavior of T20 and even
to a wrong sign of it. This indicates that preference
should be given to the results from [40, 42]. Since
T20 is determined by the ratio of two quantities [see
Eq. (13)], the contribution from the effects of final-
state interaction is expected to be suppressed here in
relation to that in the differential cross section. There-
fore, the agreement with experimental data must be of
approximately the same qualitative character in all in-
tervals of the excitation energy Ex, and this is indeed
observed in Fig. 6. The quantitative discrepancy seen
here indicates that, in all probability, it is necessary to
take into account the contribution from higher partial
waves (in particular, from the triplet states) to the final
state of the proton pair [15]. In the region of energies
realized at COSY and in Dubna (2–5 GeV), which
is the subject of our prime interest, the contribution of
higher partial waves is not expected to be sizable (see,
for example, [21]). It should be noted that, in all previ-
ous calculations, the vector analyzing power was rig-
orously equal to zero. Thus, we can conclude that, in
the excitation-energy interval 1 ≤ Ex ≤ 4 MeV and
at relatively low momentum transfers |q|, the proton
pair is detected in the 1S0 state. Both in the nonrel-
ativistic and in the relativistic approach, the reaction
mechanism can be reliably described in terms of nu-
cleon charge exchange in the impulse approximation,
P
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Fig. 8. Tensor analyzing power T20 (13) under the same
conditions as those adopted for Fig. 7.

the accuracy of this approximation becoming higher
with increasing primary energy.Within this approach,
we have found that the differential cross sections
are sufficiently large for experimentally studying the
polarization features of reaction (1). Owing to this,
one can obtain, among other things, additional in-
formation about elementary partial charge-exchange
amplitudes. On the other hand, the observation of
a proton pair originating from this process with a
low excitation energy and having simultaneously zero
vector analyzing power and significant tensor ana-
lyzing power may furnish unambiguous information
about the character of initial deuteron polarization.
In other words, this reaction may serve as a good
polarimeter not only at low initial energies [15], but
also at intermediate and relativistic initial energies.
For the sake of completeness, the cross sections and
tensor analyzing powers expected at the energies of
the Dubna synchrophasotron are displayed in Figs. 7
and 8.

5. SUMMARY

Within the covariant approach based on the
Bethe–Salpeter formalism, it has been shown that
the reaction �d(p, n)pp producing a proton pair of low
excitation energy can be used as an efficient deuteron
polarimeter at intermediate energies attainable at
COSY and in Dubna and as a source of information
about the amplitude for nucleon–nucleon charge
exchange.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002



CHARGE-EXCHANGE REACTION 453
ACKNOWLEDGMENTS

We are grateful to A.I. Titov and Yu.N. Uzikov
for stimulating discussions and support. L.P. Kaptari
and S.S. Semikh gratefully acknowledge the hospi-
tality extended to them at Institute for Nuclear and
Hadron Physics (Rossendorf Research Center, Ger-
many), where part of this study was performed.
This work was supported by grant nos. BMBF

06 DR 829/1 and WTZ RUS 98/678 and by the
Heisenberg–Landau program (JINR–Germany).
The work of S.S. Semikh was also supported by
the Russian Foundation for Basic Research (project
no. 00-15-96737).

APPENDIX A

Bethe–Salpeter Amplitudes

1. In the laboratory frame (rest frame), the com-
ponents of the Bethe–Salpeter amplitude for the
deuteron that appear in Eq. (15) are given by [33]

ΨM
S++(k) = N (k̂1 + m) (A.1)

× 1 + γ0

2
ξ̂M (k̂2 −m)ψS(k0, |k|),

ΨM
D++(k) = − N√

2
(k̂1 + m)

1 + γ0

2

×
(
ξ̂M +

3
2|k|2 (k̂1 − k̂2)(kξM )

)
× (k̂2 −m)ψD(k0, |k|),

where ξM = (0, ξM ); k1,2 are 4-vectors on the mass
shell,

k1 = (E,k), k2 = (E,−k), k = (k0,k), (A.2)

E =
√

k2 + m2;

and k̂1,2 ≡ kµ
1,2γµ. The quantities ψS,D(k0, |k|) are

partial amplitudes related to the partial vertex func-
tions by the equations

ψS,D(k0, |k|) =
GS,D(k0, |k|)

(Md/2 − E)2 − k2
0

.

In formulas (A.1), the normalization factor isN =
1√
8π

1
2E(E + m)

.

2. The invariant functions bi appearing in expan-
sion (18) are related to the partial amplitudes φi ≡
φi(r0, |r|) in the expansion in spin–angular harmon-
ics by the equations [31]

b1 = −
√

2
16

a1[D−
1 φ1 −D+

1 φ2] −
1
8
a1a2D2φ3
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+
1

√
sf

a2r0φ4,

b2 = −1
4
a2φ4,

b3 =
√

2
2

a1m
2[φ1 − φ2] −

1
2
a1a2(e2 − 2m2)φ3

+
1

2√sf
a2r0φ4,

b4 = −
√

2
4

a1m
2[φ1 − φ2] − a1a2m

2φ3,

where

a1 = 1/(
√
sfe), a2 = m/|r|,

D±
1 = (

√
sf ± 2e)2 − 4(4m2 + r2

0),

D2 = sf + 12e2 − 16m2 − 4r2
0.

Here,

r0 =
(P ′, p)
√
sf

, |r| =
√

r2
0 − p2, (A.3)

e =
√

r2 + m2,

where p is the relative 4-momentum in (18). It is
obvious from (A.3) that the 4-vector r = (r0, r) is the
relative 4-momentum in the pp pair in its rest frame;
throughout the present article, we adopt this notation.
By analogy with (A.1) and (A.2), we define 4-vectors
on the mass shell as

r1 = (e, r), r2 = (e,−r).

The spin–angular harmonic for the++ component of
the amplitude Ψ̄P ′ can be represented in the form [31]

Γ1S++
0

(r̂) =
1√

8π(e + m)
(m− r̂2)

1 − γ0

2
γ5(m + r̂1).

3. The explicit expressions for the scalar coeffi-
cients C1, C2, and C3 appearing in Eq. (19) are

C1 = B[(pp · k)(d1 − d2) − (E + m)(p0
p + m)

× (d1 + d2) − (q · k)(p0
p + m)(d3 + d4)

− (q · pp)(E + m)(d3 − d4)],

C2 =
3B√

2(E −m)
[d1(E − p0

p − 2m)

− d2(p0
p + E) + (d4 − d3)(2k − q · q)],

C3=B[d1 − d2+d3(p0
p −E) + d4(p0

p + E + 2m)],

where

B = 2mN (Md/2 − k0 − E)
1√
4π

√
E + m

p0
p + m

,

d1 = −b1 − 2b2 + 2b3 (A.4)
2
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+ (1 + [P ′
0(p

0
1 − p0

p) − p2
1]/m

2)b4,

d2 = [(P ′
0 − 2[p0

1 − p0
p])b2 − P ′

0b3]/m, (A.5)

d3 = (b2 − b3)/m, (A.6)

d4 = (p0
1 − p0

p)b4/m
2. (A.7)

Here, we have introduced the 4-vectors p1 [see
Eq. (18)] and pp, the latter being on the mass shell;
that is,

p1 =
P ′

2
+ k − q

2
= (p0

1,pp),

pp = (p0
p,pp), p0

p =
√

m2 + p2
p, pp = k− q.

In the plane-wave approximation, we have p0
1 = p0

p,
and formulas (A.4)–(A.7) can be significantly simpli-
fied.

APPENDIX B

Helicity Wick Rotations

By definition, the state characterized by a mo-
mentum p and a helicity λ in some reference frame
O can be obtained from the state characterized by
the spin projection sz with the aid of the Lorentz
transformation from the rest frameOrest toO; that is,

|p;λ〉 ≡ |
0
p, s, sz〉O,

where
0
p = (m, 0, 0, 0). The Lorentz transformation

h(p) involves two operations performed consecu-
tively: (i) the boost lz(v) along the z axis, where v
is the particle velocity in the reference frame O, and
(ii) rotation in the direction from the z axis to p—that
is,O = r−1(φ, θ, 0)l−1

z (v)Orest.
Let us now assume that there exists a state |p;λ〉

specified in the reference frame O, and it is necessary
find out how it is transformed upon the transition to
another reference frame O′ that is related to O by a
Lorentz transformation l:

|p;λ〉O′ = U(l−1)|p;λ〉.
According to the definition of helicity states, we have

U(l−1)|p;λ〉 = U(l−1)U [h(p)]|
0
p;λ〉, (A.8)

where h(p) is the corresponding Lorentz transfor-

mation
0
p → p. Multiplying (A.8) by unity repre-

sented as U [h(p′)]U−1[h(p′)] = 1, where h(p′) is the
transformation leading to the helicity state |p′;λ〉 =

U [h(p′)]|
0
p, λ〉with the same vector p′ (p′ is obtained

from p upon the transition fromO toO′), we obtain

U(l−1)|p;λ〉 = U [h(p′)]R|
0
p, λ〉,
P

where the operation R = U−1[h(p′)]U(l−1)U [h(p)]
can be represented as the succession of the trans-

formations
0
p → p → p′ →

0
p, which is nothing but a

three-dimensional rotation. We then have

|p, λ〉O′ = D
(s)
λλ′(ω)|p′, λ′〉,

where ω is the set of Euler angles describing this ro-
tation. In the case where the Lorentz transformation
in question is an ordinary boost along the z axis with
the velocity β, ω is a single angle of rotation about the
y axis; that is,

cosω = cos θ′ cos θ + γ sin θ′ sin θ,

where, as usual, γ = 1/
√

1 − β2 and θ and θ′ are the
polar angles of the vector p in the reference frames O
and O′, respectively. This operation is known as the
Wick rotation of helicities, in contrast to the canoni-
cal Wigner rotation of spins. In our case, the z axis for
the boost is directed along the vector k + p.
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Abstract—In the approximation of unpolarized nuclear matter, the optical potential for nucleon–nucleus
scattering is calculated on the basis of the effective Skyrme interaction with allowance for tensor nucleon–
nucleon forces. It is shown that the tensor Skyrme forces make a significant contribution to the imaginary
part of the optical potential. The effect of tensor nucleon–nucleon forces on the radial distribution of
the imaginary part of the optical potential is investigated by considering the example of elastic neutron
scattering by 40Ca nuclei at scattering energies of about a few tens of MeV. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. In the approximation of nuclear matter, the
nucleon–nucleus optical potential obtained by cal-
culating the mass operator for the single-particle
Green’s function [1, 2] is considered here for the ef-
fective density-dependent nucleon–nucleon Skyrme
interaction [3–5].

It is well known [5, 6] that the effective nucleon–
nucleon Skyrme interaction involves components
describing tensor interaction between intranuclear
nucleons. However, tensor nucleon–nucleon forces
are usually disregarded in studying the structure of
nuclei and various collective phenomena in them
[7], as well as nucleon–nucleus scattering [8–10].
It should also be noted that the disregard of tensor
nucleon–nucleon forces is characteristic of various
calculations based on Skyrme forces or on other
effective nucleon–nucleon interactions [7]. In many
cases, this is justified, since any density-dependent
effective nucleon–nucleon interaction, including the
Skyrme interaction, takes partly into account the
contribution of tensor forces [11]. For example, the
effect of tensor Skyrme forces on the single-particle
spectra of some even–even nuclei was analyzed in
[5], where it was shown that the contribution of these
forces is not decisive for the features of these spectra.

The optical potential for the interaction of nucle-
ons with even–even nuclei was investigated in [12]
without taking into account tensor forces. As was
shown in [13], however, the tensor component of the
effective Skyrme interaction makes a significant con-
tribution to the central and the tensor spin–spin po-
tential for the interaction of nucleons with odd nuclei.

Hence, it is of particular interest to investigate the
effect of tensor Skyrme forces on the optical potential
for the interaction of nucleons with even nuclei.
1063-7788/02/6503-0456$22.00 c©
In the present study, the nucleon–nucleus optical
potential is analyzed on the basis of a calculation
of the mass operator for the single-particle Green’s
function [8–10, 12], this calculation being performed
with allowance for the tensor component of the ef-
fective Skyrme nucleon–nucleon interaction. It is
shown, among other things, that, in the Hartree–
Fock approximation (within the method used here,
this is the zero-order approximation [12]), the tensor
nucleon–nucleon interaction does not contribute to
the mass operator—that is, to the real part of the
optical potential. In this mass operator, the expres-
sion that determines the imaginary part of the optical
potential develops, however, in the second order of
perturbation theory in the effective nucleon–nucleon
interaction [12], additional terms that are quadratic
in the parameters of the tensor Skyrme interaction.
The effect of the tensor Skyrme forces on the radial
dependence of the optical potential is analyzed here
by considering the example of neutron scattering by
40Ca nuclei.
2. Let us represent the effective Skyrme nucleon–

nucleon interaction in the form [4, 5]

v = v1 + v2(ρ) + vte + vto, (1)

where v1 and v2(ρ) are the components that are,
respectively, independent of and dependent on the
density ρ, while vte and vto are, respectively, the even
and the odd component of the tensor interaction. The
terms appearing in expression (1) are given by

v1 = t0(1 + x0Pσ)δ(r) +
1
2
t1(1 + x1Pσ) (2)

×
[
k′2δ(r) + δ(r)k2

]
+ t2(1 + x2Pσ)k′δ(r)k

+ iW0

[
k′ × δ(r)k

]
(σ1 + σ2),
2002 MAIK “Nauka/Interperiodica”
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v2(ρ) =
1
6
t3(1 + x3Pσ)ργ(R)δ(r) (3)

+
1
2
t4(1 + x4Pσ)

[
k′2ρ(R)δ(r) + δ(r)ρ(R)k2

]
+ t5(1 + x5Pσ)k′ρ(R)δ(r)k,

vte =
1
2
T (4)

×
{[

(σ1 · k′)(σ2 · k′) − 1
3
(σ1 · σ2)k′2

]
δ(r)

+ δ(r)
[
(σ1 · k)(σ2 · k) − 1

3
(σ1 · σ2)k2

]}
,

vto = U
{
(σ1 · k′)δ(r)(σ2 · k) (5)

− 1
3
(σ1 · σ2)(k′ · δ(r)k)

}
,

where the notation used is identical to that in [4, 5, 7,
9, 10].

In the approximation of unpolarized nuclear mat-
ter (that is, for even–even nuclei), the real part of
the optical potential Uαα based on the interaction
in (1) with vte = vto = 0 was calculated in [12]. The
corresponding expression for Uαα is presented in the
Appendix.

Since the potential Uαα is determined by the an-
tisymmetrized diagonal matrix elements of the in-
teraction in (1) [7, 12], the tensor nucleon–nucleon
interaction specified by Eqs. (4) and (5) does not
contribute to the real part of the optical potential in
the approximation of unpolarized nuclear matter.

In the second order of perturbation theory in the
effective nucleon–nucleon interaction, the imaginary
part of the mass operator for the single-particle
Green’s function is given by [8–10, 12]

Mαα(ε) = −π
∑
λµν

〈αν|v|λµ〉〈λµ|v(1 − P )|αν〉 (6)

× (1 − nλ) (1 − nµ)nνδ (ε + εν − ελ − εµ) ,

where α, ν (λ, µ) are quantum numbers that charac-
terize states of two interacting nucleons, εµ stands for
single-particle energies, nµ are occupation numbers,
and P is the operator executing the permutations of
spatial, spin, and isospin variables.

Substituting the Skyrme interaction specified by
Eqs. (1)–(5) into (6) and replacing single-particle
wave functions by plane waves, we represent the
imaginary part of the optical potential in the form

Wαα(r) = − 1
64π5

7∑
i=1

Wi, (7)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
W1 =
(

2g00 +
1
18
g33ρ

2γ +
2
3
g03ρ

γ

)
(8)

× [I1(τα, n) + I1(τα, p)]

−
(

2h00 +
1
18
h33ρ

2γ +
2
3
h03ρ

γ

)
I1(τα, τα),

W2 =
(

2g01 + 2g04ρ +
1
3
g13ρ

γ +
1
3
g34ρ

γ+1

)
(9)

× [I2(τα, n) + I2(τα, p)]

−
(

2h01 + 2h04ρ+
1
3
h13ρ

γ +
1
3
h34ρ

γ+1

)
I2(τα, τα),

W3 =
(

1
2
g11 +

1
2
g44ρ

2 + g14ρ+
1
3
T 2

)
(10)

× [I3(τα, n) + I3(τα, p)]

−
(

1
2
h11 +

1
2
h44ρ

2 + h14ρ+
1
3
T 2

)
I3(τα, τα),

W4 = 2
(

2g02 + 2g05ρ +
1
3
g23ρ

γ +
1
3
g35ρ

γ+1

)
(11)

× [I4(τα, n) + I4(τα, p)] ,

W5 = 2
(
g12 + g15ρ+ g24ρ+ g45ρ

2 +
2
3
UT

)
(12)

× [I5(τα, n) + I5(τα, p)] ,

W6 = 2
(
g22 + g55ρ

2 + 2g25ρ +
2
3
U2

)
(13)

× [I6(τα, n) + I6(τα, p)]

+ 2
(
h22 + h55ρ

2 + 2h25ρ+
2
3
U2

)
I6(τα, τα),

W7 = (4W 2
0 + U2 − T 2) [I7(τα, n) + I7(τα, p)]

+(4W 2
0 + U2 + T 2)I7(τα, τα), (14)

where ρ = ρ(r); gij = titj

(
1 + xixj + xi + xj

2

)
;

hij = titj

(
xi + xj + 1 + xixj

2

)
, i, j = 0, 1, . . . , 5;

and
Ii(τα, τµ) (15)

=
∫

dKµdKλdKνfi (Kα,Kµ,Kλ,Kν)

× δ(E + εµ − ελ − εν)δ (Kα + Kµ − Kλ − Kν)
× nµ(1 − nλ)(1 − nν), i = 1, . . . , 7.

In expression (15), τµ is the isospin index of the
µ state (τµ = n for neutrons and τµ = p for pro-
tons) with τλ = τα and τν = τµ, while the functions
2
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Fig. 1. Radial distribution of the imaginary part of the
optical potential for the elastic scattering of 50-MeVneu-
trons by 40Ca nuclei according to the calculation (solid
curve) with and (dashed curve) without allowance for the
tensor Skyrme forces (SkM∗ parametrization).

fi (Kα,Kµ,Kλ,Kν) (i = 1, . . . , 7) are given by [8]

f1 = 1, f2 = K2
αµ + K2

λν , (16)

f3 =
(
K2

αµ + K2
λν

)2
, f4 = Kαµ · Kλν ,

f5 =
(
K2

αµ + K2
λν

)
(Kαµ ·Kλν) ,

f6 = (Kαµ ·Kλν)
2 , f7 = (Kαµ × Kλν)

2 ,

where Kαµ = (Kα − Kµ)/2 and Kλν = (Kλ −
Kν)/2.

The integrals in (15) can be calculated analytically
[8]. For the case of symmetric nuclear matter (that
is, for nuclear matter consisting of an equal number
of neutrons and protons) considered below, the corre-
sponding expressions are presented in the Appendix.

Thus, we see that, in expressions (10) and (12)–
(14), which determine the imaginary part of the
nucleon–nucleus optical potential, there arise terms
describing the contribution of the tensor nucleon–
nucleon interaction [recall that it is specified by
Eqs. (4) and (5)], which are quadratic in the parame-
ters T and U of this interaction.
3. For the example of neutron scattering by 40Ca

nuclei, in which case the approximation of unpolar-
ized symmetric nuclear matter is valid, we further
consider the effect of tensor nucleon–nucleon forces
on the radial distribution of the imaginary part of the
optical potential.

Aswasmentioned above, virtually no parametriza-
tions that are currently used for the effective Skyrme
interaction include the parameters T and U , which
characterize the strength of tensor forces. They were
taken into account only in [5, 6]; it should be noted
that three-particle velocity-dependent Skyrme forces
were used in [6], whereas a two-particle density-
dependent effective interaction is employed here.

Two approaches to parametrizing tensor Skyrme
forces were proposed in [5]. The first approach reduces
PH
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Fig. 2. As in Fig. 1, but for the Ska parametrization.

to calculating the parameters T and U on the basis of
a specific realistic potential for free nucleon–nucleon
scattering, while the second one consists in fitting
these parameters on the basis of an analysis of the
single-particle spectra of the 48Ca, 56Ni, and 208Pb
nuclei.

In [13], both these parametrizations of the ten-
sor forces were used in studying the real part of the
optical potential for the interaction of nucleons with
odd nuclei. As a result, it was shown that the second
approach is preferable in describing experimental data
on elastic nucleon–nucleus scattering. In this study,
we therefore use the T and U values that were ob-
tained from the analysis of the single-particle nuclear
spectra.

According to [5], the admissible values of the pa-
rameters T and U [under the condition that the re-
maining parameters of the effective interaction (1) are
preset] are constrained as

α0 + β0 � 0, −80 � α0 � 0, 0 � β0 � 80, (17)

where

α0 =
5
12
U +

1
8
(t1 − t2) −

1
8
(t1x1 + t2x2), (18)

β0 =
5
24

(T + U) − 1
8
(t1x1 + t2x2). (19)

In the particular case of α0 = β0 = 0, we obtain
T = −U = 163.5 MeV fm5 for the SkM∗ parametri-
zation [14] and T = −U = 191.574 MeV fm5 for the
Ska parametrization [15].

The results obtained by numerically calculating
the imaginary part of the optical potential for elastic
neutron scattering by 40Ca nuclei are displayed in
Figs. 1 and 2. In this calculation, the empirical Negele
formula [16] was used to describe the nucleon-density
distribution in the 40Ca nucleus.

Figures 1 and 2 show the radial distributions of
the imaginary part of the optical potential for neu-
tron scattering at E = 50 MeV that were calculated
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Table 1. Volume integrals and root-mean-square radii of the imaginary part of the optical potential for elastic neutron
scattering by 40Ca nuclei according to the calculation performed with [W (r)] and without [W0(r)] allowance for the
tensor Skyrme forces; {also presented are the analogous results for the phenomenological optical potential W̃ (r) [18]}

Forces Potential
JW , MeV fm3 rW , fm

E = 0 E = 50 MeV E = 0 E = 50 MeV

SkM∗ W (r) 75.40 462.40 4.03 4.39

W0(r) 71.31 414.89 4.08 4.50

Ska W (r) 43.91 268.48 4.06 4.34

W0(r) 40.75 230.27 4.12 4.48

S3m W (r) 57.99 374.59 3.90 4.18

W0(r) 55.08 312.34 3.94 4.27

S4 W (r) 25.93 170.76 4.05 4.20

W0(r) 23.68 141.54 4.11 4.31

S5 W (r) 22.29 155.97 4.09 4.20

W0(r) 20.18 127.36 4.15 4.29

W̃ (r) 52.20 81.64 4.84 4.35
with or without allowing for the tensor nucleon–
nucleon forces obtained on the basis of the SkM∗ and
Ska parametrizations, respectively. As can be seen
from these figures, the inclusion of the tensor Skyrme
forces leads to the noticeable increase in the depth of
W (r) in the interior of the nucleus (approximately by
a factor of 1.3 for the SkM∗ forces and by a factor of
1.4 for the Ska forces), but this does not affect the
behavior of the imaginary part of the optical potential
in the surface region.

In order to characterize the radial distribution of
W (r), the values of the volume integrals JW ,

JW = − 1
A

∫
d3rW (r), (20)

where A is the number of intranuclear nucleons, and
the values of the root-mean-square radii rW ,

r2
W =

∫
d3rr2W (r)∫
d3rW (r)

, (21)

are listed in Table 1. We note that the inclusion of
the tensor Skyrme forces leads to an increase in the
volume integrals and to a decrease in the root-mean-
square radii, the relative contribution of the tensor
forces becoming greater at higher scattering energy.

It is also worth noting that the T and |U | values
obtained from the condition α0 = β0 = 0 are minimal
in the region specified by (17). Therefore, a variation
of the parameters α0 and β0 leads to a further increase
in the depth ofW (r).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
Table 1 also displays the values of JW and rW for
the S3m, S4, and S5 forces [17] and for the phe-
nomenological optical potential (last row in the table)
that was obtained from an analysis of experimental
data on elastic nucleon–nucleus scattering [18]. The
best agreement is achieved if we use the S4 and S5
forces (up to 50 MeV) and the Ska and S3m forces
(up to 20 MeV). At the same time, the best de-
scription of the real part of the optical potential (A.1)
is obtained with the S3m, Ska, and SkM∗ Skyrme
forces (see Table 2).

In Table 2, the quantities JU and rU are defined
in the same way as the quantities JW (20) and rW

Table 2. Volume integrals and root-mean-square radii of
the real part of the optical potential for elastic neutron
scattering by 40Ca nuclei according to the calculation that
employs various parametrizations of the Skyrme forces
(given additionally in the last row are the analogous results
for the phenomenological optical potential from [18])

Forces
JU , MeV fm3 rU , fm

E = 0 E = 50 MeV E = 0 E = 50 MeV

SkM∗ 498.75 426.93 3.91 3.98

Ska 464.29 315.05 3.89 4.01

S3m 463.15 374.59 3.82 3.88

S4 431.01 206.92 3.86 4.02

S5 420.47 145.30 3.87 4.05

500.67 373.75 4.06 4.06
2
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Fig. 3.As in Fig. 1, but either (solid curve) with or (dash-
dotted curve) without allowance for the tensor Skyrme
forces, as well as with allowance for only (long-dashed
curve) odd (T = 0) or (short-dashed curve) even (U = 0)
component of these forces.

(21) and the values in the last row correspond to the
phenomenological optical potential from [18].

Further, we investigate the partial contributions of
the tensor Skyrme forces acting in the even and in
the odd states of the relative motion of two nucleons.
Figure 3 shows the radial distribution of W (r) at
E = 50 MeV for the SkM∗ parametrization accord-
ing to the calculation allowing only for the even or
only for the odd component of the tensor forces. As
can be seen from this figure, the contribution to the
imaginary part of the optical potential from the odd
component (at the center of nucleus) considerably
exceeds the contribution from the even component:

Wodd(0) −W0(0)
Weven(0) −W0(0)

≈ 5.4. (22)

This is a consequence of the antisymmetrization of
the matrix elements of the effective interaction that
determine the imaginary part of the optical potential.
Indeed, it can be seen from formulas (10) and (14)
that, at τα = n (neutron scattering), the terms pro-
portional to T 2 cancel partly, in contrast to the terms
proportional to U2 [see formulas (13), (14)].

4. Thus, we have demonstrated that the tensor
nucleon–nucleon forces determine, to a considerable
extent, the imaginary part of the optical potential for
nucleon–nucleus scattering, the main contribution
coming from the component of the tensor forces that
corresponds to the interaction of two nucleons in odd
states of their relative motion.

The present analysis has revealed that, at least
for E < 20 MeV, the optical potential for nucleon–
nucleus scattering can be calculated by using the
S3m and Ska forces. In order to achieve better agree-
ment between the microscopic optical potential and
P

phenomenological ones, it seems necessary to calcu-
late simultaneously the basic properties of nuclei and
the relevant optical potentials. Preliminary calcula-
tions show that even a small (smaller than 5%) vari-
ation in the parameters t0 and t3 of the Skyrme forces
makes it possible to improve considerably the accu-
racy in describing elastic nucleon–nucleus scatter-
ing, basic properties of bound nuclear states concur-
rently undergoing only minor changes (within 1%).

Another way to improve the results obtained here
consists in studying more comprehensively and con-
sistently taking into account those components of the
Skyrme forces that are proportional to the parameters
t4 and t5. These terms make a dominant contribution
to the Hartree–Fock potential (and, hence, to the
optical potential) only near the nuclear surface and, in
principle, enable one to describe better the smearing
of the surface nuclear layer.
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APPENDIX

In the approximation of unpolarized nuclear mat-
ter, the real part of the optical potential is given by [12]

Uαα(r,E) =
m∗

α

mα

{
g0ρ−h0ρα +

1
4
κ[g1 +g2 (A.1)

+ (g4 + g5)ρ] −
1
4
κα[h1 − h2 + (h4 − h5)ρ]

+
1
6
ργ(g3ρ− h3ρα) +

1
4
(g4 + g5)ρκ

− 1
4
(h4 − h5)

∑
q

ρqκq +
1
12
γργ−1

×
(
g3ρ

2 − h3

∑
q

ρ2
q

)}
+
(

1 − m∗
α

mα

)
M

M +mα
E,

where mα is the mass of the incident nucleon; M
is the target-nucleus mass; E is the scattering
energy; α= {n, p} is the isospin index; gi = ti(1 +
xi/2) and hi = ti(1/2 + xi) with i = 0, 1, . . . , 5; κ =
3
5
(
3π2ρ/2

)2/3
ρ; κα = 3

5(3π2ρα)2/3ρα; and m∗
α is an

effective mass that satisfies the relation
mα

m∗
α

= 1 +
1
4

2mα

�
2

{[g1 + g2 + (g4 + g5)ρ]ρ (A.2)

− [h1 − h2 + (h4 − h5)ρ]ρα} .
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In the approximation of symmetric nuclear matter,
we have ρn = ρp = ρ/2 and m∗

n = m∗
p = m∗, while

the integrals in (15) become [8]

I1 =
2m∗

�2

2π2

15Kα

[
(5K2

α − 7K2
F)K3

F (A.3)

+ 2(2K2
F −K2

α)5/2θ(2K2
F −K2

α)
]
,

I2 =
2m∗

�2

π2

105Kα
[(35K4

α − 14K2
αK

2
F (A.4)

− 45K4
F)K3

F + 4(K2
α + 5K2

F)

× (2K2
F −K2

α)5/2θ(2K2
F −K2

α)],

I3 =
m∗

�2

π2

945Kα
[(315K6

α + 441K4
αK

2
F (A.5)

− 747K2
αK

4
F − 473K6

F)K3
F − 8(5K4

α − 20K2
αK

2
F

− 43K4
F)(2K2

F −K2
α)5/2θ(2K2

F −K2
α)],

I4 = I5 = 0, (A.6)

I6 =
m∗

4�2

π2

945Kα
[(105K6

α − 189K4
αK

2
F (A.7)

+ 711K2
αK

4
F − 803K6

F)K3
F − 16(2K2

α − 13K2
F)

× (2K2
F −K2

α)7/2θ(2K2
F −K2

α)],

I7 = I3 − I6, (A.8)

where θ(x) is a theta function, KF =
(
3π2ρ/2

)1/3 is
the Fermi momentum, and

K2
α =

2mα

�2

(
M

M +mα
E − Uαα

)
. (A.9)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
REFERENCES
1. J. S. Bell and E. J. Squires, Phys. Rev. Lett. 3, 96

(1959).
2. D. A. Kirzhnits, Field Theoretical Methods in

Many-Body Systems (Gosatomizdat, Moscow,
1963; Pergamon, Oxford, 1967).

3. T. H. R. Skyrme, Nucl. Phys. 9, 615 (1958/1959).
4. S. Krewald, V. Klemt, J. Speth, and A. Faessler, Nucl.

Phys. A 281, 166 (1977).
5. Fl. Stancu, D. M. Brink, and H. Flocard, Phys. Lett.

B 68B, 108 (1977).
6. Keh-Fei Liu, Hongde Luo, Zhongyu Ma, et al., Nucl.

Phys. A 534, 1 (1991).
7. B. I. Barts, Yu. L. Bolotin, E. V. Inopin, and

V. Yu. Gonchar, Hartree–Fock Method in the The-
ory of the Nucleus (Naukova Dumka, Kiev, 1982).

8. Qingbiao Shen, Jingshang Zhang, Ye Tian, et al., Z.
Phys. A 303, 69 (1981).

9. Lingxiao Ge, Yizhong Zhuo, and N. Wolfgang, Nucl.
Phys. A 459, 77 (1986).

10. Guo-Qiang Li, Jian-Qing Shi, and Qin Gao, Nucl.
Phys. A 515, 273 (1990).

11. H. A. Bethe, Phys. Rev. 167, 879 (1968).
12. S. M. Kravchenko, V. I. Kuprikov, and A. P. Soznik,

Int. J. Mod. Phys. E 7, 465 (1998).
13. S.M.Kravchenko and A. P. Soznik, Int. J.Mod. Phys.

E 8, 137 (1999).
14. J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A

386, 79 (1982).
15. H. S. Köhler, Nucl. Phys. A 258, 301 (1976).
16. J. W. Negele, Phys. Rev. C 1, 1260 (1970).
17. M. Beiner, H. Flocard, N. van Giai, and P. Quentin,

Nucl. Phys. A 238, 29 (1975).
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Abstract—On the basis of the Migdal–Watson approximation, various data on the double- and triple-
differential cross sections for the processes d + p → np + p and d + t(h) → np + t(h) or d + t → nn + h
are recast into a unified form of the angular dependences of the differential cross section for the production
of singlet nucleon–nucleon pairs. The results are compared with those produced by the supermultiplet
potential model for the interaction of extremely light nuclei. For d + t(h) scattering, where the power of
the potential V [41](r) is 50% higher than the power of the potential V [32](r) ([f ] = [41] and [f ] = [32]
are orbital Young diagrams), the theory in question is able to provide a quantitative description of both
the experimental data being discussed and experimental data on elastic scattering. For d + p scattering,
where the difference of the powers of the potentials for [f ] = [3] and [f ] = [21] is not more than 20%,
the agreement with the data on the deuteron-spin-flip reaction leading to the singlet final state is only
qualitative. It would be of interest to investigate, by means of triple coincidences, the process d + d →
ds + ds, where the difference of the corresponding powers for [f ] = [4] and [f ] = [22] amounts to about
300%. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Theoretical investigations of extremely light clus-
ters formed by nucleons employ three main ap-
proaches.

The first is developed within the theory of three-
body systems [1], which is based on the set of
Faddeev–Yakubovsky equatons for coupled antisym-
metrized wave functions corresponding to all possible
partitions of the nucleon system being considered
into subsystems. With the aid of these equations,
involving a nucleon–nucleon (NN) interaction that
is assumed to be known, specific nuclear reactions
of various types are analyzed by means of unwieldy
numerical calculations (this unwieldiness is due to
taking completely into account a virtual continuum
in the set of coupled equations). Somewhat simplified
versions of this theory are also used [2].

The second is the resonating-group method
(RGM) [3], where, for a fixed composition of nucleon
clusters, a full antisymmetrization is performed and
where a specific version of NN interaction is em-
bedded, but where no account is taken of a virtual
continuum. The method is used to determine the E-
and L-dependent interaction of the clusters involved

1)Institute for Nuclear Research, National Academy of Sci-
ences of Ukraine, pr. Nauki 47, Kiev, 252028 Ukraine.
1063-7788/02/6503-0462$22.00 c©
and to calculate relevant phase shifts, reactions of
photodisintegration into clusters, etc.
The third is based on the potential model of cluster

interaction [4]. Conceptually, the model relies on a
rich experience gained in microscopically studying
cluster degrees of freedom in light nuclei within the
multiparticle-shell model [5]. This makes it possible,
among other things, to take effectively into account
the Pauli exclusion principle through the introduction
of deep attractive potentials involving forbidden states
[4–6]. On this basis, a good description can be ob-
tained both for α + α, α + d, α + t, and t + h cluster
scattering and for relevant photonuclear reactions [7],
the phenomenological parameters being eventually
fixed within rather narrow corridors. By thus combin-
ing an investigation of the on-shell scattering ma-
trix with an investigation of the off-shell scattering
matrix, the validity of the above attractive potentials
was reliably confirmed; that is, it was proven that all
phase shifts for them are positive. In contrast to the
extensively usedRGM, this approach unveils a simple
physics of the scattering process; in addition, it pro-
vides a fresh view of cluster–cluster interaction and
is quite simple in numerical calculations. We foresee
seminal possibilities in combining the potential model
with the aforementioned theory of few-body systems,
whereby one could perform, for example, an ab initio
determination of cluster-interaction potentials being
2002 MAIK “Nauka/Interperiodica”
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discussed, taking into account a virtual continuum.
A specific analysis of various reactions will then be
performed by using these cluster–cluster potentials
without invoking, each time, the whole machinery of
numerical calculations within this theory. From the
general point of view, such an approach is quite in line
with a common practice of using conventional opti-
cal potentials of nucleon–nucleus interaction, which
effectively reproduce the microscopic multinucleon
pattern.

In the 1980s and 1990s, the potential model of
cluster interactions was generalized to cover cluster
systems like d+ p, d+ d, t+ p, and d+ t that had pre-
viously defied any attempt at describing them within
potential models. This became possible as soon as an
important step that is absolutely necessary in deal-
ing with channels characterized by a minimum total
spin S and which consists in taking into account the
interference of two potential amplitudes correspond-
ing to two different Young diagrams [f ] (this is a
supermultiplet potential model also known as SPM)
was made in [8]. Some applications of this approach
were discussed in [8–11]. In particular, an interesting
possibility within the supermultiplet potential model
was indicated there: a superposition of potential am-
plitudes for different [f ] leads to the emergence of
the inelastic channel where the deuteron spin and
isospin are flipped (in particular, charge-exchange
channel) [10]. In other words, the respective differ-
ential cross section can be expressed in terms of

the elastic-scattering phase shifts δ[f ]
L (E) determined

experimentally, provided that the phase shifts δL,S(E)
corresponding to different values of the total spin
S of the system have been measured. Moreover, a
superposition of Young diagrams proved to be a very
useful concept in analyzing photonuclear reactions in
the region of extremely light nuclei as well [11, 12].

The formalism being discussed is characterized
by an extensive use of multiparticle spin–isospin
fractional-parentage coefficients [5, 13].

So far, [f ]-dependent potentials have not been
used in studies (with the exception of those that were
reported in [11]) devoted to the theory of few-body
systems, since the spectra of such systems begin
to display spectacular features associated with Ma-
jorana nucleon–nucleon interaction and Young dia-
grams behind it from the atomic weights of 4 and
5, in which case rows of maximum length appear
in a Young diagram: [f ] = [4] and [f ] = [41] for 4He
and 5He–5Li nuclei, respectively. The energy ∆E
associated with the excitation of a closed quartet
of Young diagrams, [f ] = [4] → [f ] = [31] or [f ] =
[41] → [f ] = [32], is especially high here: ∆E � 15–
20 MeV (see below).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 20
Experimental data accumulated over the past
few decades for reactions involving light nuclei and
proceeding either through charge-exchange channels
(which lead to the production of nn or pp pairs
of zero total spin) or through channels where the
spin and isospin are flipped with the production of
a singlet deuteron [14–29] are sufficient for analysis
and systematics. The present study is devoted to
describing the entire body of these data on the basis
of the supermultiplet potential model and to clarifying
the predictive power and the applicability range of this
model. Naturally, this must be done along with an
analysis of data on elastic scattering.
It should be noted that only a few studies (for

example, [14, 15, 24, 29]) present experimental an-
gular dependences of the differential cross sections
dσ/dΩ for the production of singlet nucleon pairs
characterized by low relative energies. In the majority
of the cases, these data are represented in the form of
various spectra of double- and triple-differential cross
sections (in various projections, in various coordinate
frames, etc.) or in the form of angular dependences
of cross sections at the corresponding maxima of
the spectra (for an overview, see, for example, [30]).
First of all, we will therefore try to recast such data
into a unified form of the angular dependences of the
differential cross sections for singlet-pair production.
In general, the experimental spectra of double- and
triple-differential cross sections involve contributions
from sequential decays through various resonances,
from the formation of an np pair in the triplet state,
and so on. In order to single out the component that is
associated with the production of a singlet dinucleon,
use was made of the well-known Migdal–Watson
approximation [31, 32], which describes the final-
state interaction (FSI) of nucleons at energies of their
relative motion that are close to the internal energy of
a singlet deuteron (dineutron). In the present study,
we do not analyze reactions leading to the produc-
tion of proton–proton pairs, since, in that case, the
Coulomb interaction of the protons involved smears
the relevant spectra, rendering the results deduced
from their analysis less transparent.
Presently, a vast body of experimental data on

elastic pd and dt(h) scattering has been accumulated,
and we also give here an analysis of these data on
the basis of the supermultiplet potential model. Only
via a global analysis outlined above can one assess
comprehensively the advantages and disadvantages
of this model and pinpoint interesting problems re-
quiring a further investigation.

2. FORMALISM OF THE SUPERMULTIPLET
POTENTIAL MODEL

Under the assumption of SU (4) symmetry, the ex-
pansion of a partial-wave amplitude for A + B scat-
02
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tering (here, A and B stand for some nuclei) can be
represented in the form [8–12]

TL =
∑
S

TL,S =
∑

S,σ,t,τ,[f ]

(tAτA, tBτB|tτ) (1)

× (SAσA, SBσB|Sσ)〈[f̃A]SAtA, [f̃B ]SBtB |[f̃ ]St〉

× T
[f ]
L 〈[f̃ ]St|[f̃A]S′

At
′
A, [f̃ ]S′

Bt
′
B〉

× (Sσ|S′
Aσ

′
A, S

′
Bσ′

B)(tτ |t′Aτ ′A, t′Bτ ′B),

where S and t are, respectively, the spin and the
isospin of the A + B system; [f̃ ] is the correspond-
ing spin–isospin Young diagram; σ and τ are the
projections of the spin and the isospin, respectively;
〈[f̃A]SAtA, [f̃B]SBtB|[f̃ ]St〉 are isoscalar factors in
the Clebsch–Gordan coefficients of the SU (4) group
(spin–isospin fractional-parentage coefficients) [5,
13]; T [f ]

L are partial-wave amplitudes invariant under
the transformations of the SU (4) group; and [f ] is
the orbital Young diagram for the A + B system.
Within the supermultiplet potential model, the am-
plitude TL,S depends on S indirectly through the
dependence on the form (signature) of [f ], which is
the most important. This nontrivial feature of the
supermultiplet potential model leads to an economical
description of experimental data—the model features
no explicit spin–orbit, spin–spin, etc., interactions,
but it takes into account the most important effect,
a very large (about 15 to 20 MeV) splitting of the
levels of extremely light p-shell nuclei (A ≤ 9) in
Young diagrams that occurs (see above) in the cases
where a closed quartet of four such diagrams is
excited ([f ] = [4] → [f ] = [31]). This is due to strong
Majorana forces between the nucleons involved [5].
In the aspect that is of interest to us, there is a similar
strong splitting of the cluster–cluster potentials
V [f ](r) between Young diagrams of the [f ] = [41] and
the [f ] = [32] type. In other words, the supermultiplet
model can be quite workable for the d + t(h) and
p + t(h) systems, but it is more questionable whether
this is so for the d + p system because the splitting
of the levels between the signatures of [f ] = [3] and
[f ] = [21] is one-half as great as that in the preceding
case (see a comparison of the powers of the potentials
in Tables 1 and 2 below).

The partial-wave amplitudes TL specify the ex-
pansion of the total scattering amplitude f(θ) in the
orbital angular momenta L; that is,

f(θ) = − i

2p0

∑
L

(2L + 1)TLPL(cos θ), (2)

where p0 is the momentum of the relative motion of
particles A and B in the c.m. frame.
P

The quantity obtained by averaging, over the initial
orientations of the spins σA and σB , the cross section
for scattering accompanied by the flip of the deuteron
spin and isospin and summing the result over final
σ′

A and σ
′
B (we consider the scattering of unpolarized

particles) has the form [11]

dσ

dΩ
(θ) =

1
(2SA + 1)(2SB + 1)

(3)

×
∑

σA,σB,σ′
A,σ′

B

|f(θ)|2 =
1

4p2
0

(2S′
A + 1)(2S′

B + 1)
(2SA + 1)(2SB + 1)

× (t′Aτ
′
A, t

′
Bτ ′B |tτ)2|

∑
L

(2L + 1)PL(cos θ)

× {〈[f̃A]SAtA, [f̃B ]SBtB|[f̃1]St〉
×〈[f̃ ′

A]S′
At

′
A, [f̃

′
B ]S′

Bt′B|[f̃1]St〉T [f1]
L

+〈[f̃A]SAtA, [f̃B ]SBtB|[f̃2]St〉
×〈[f̃ ′

A]S′
At

′
A, [f̃

′
B ]S′

Bt
′
B |[f̃2]St〉T [f2]

L }|2,

where SB = 1, S′
B = 0, tB = 0, t′B = 1, [f̃B] =

[f̃ ′
B ] = [2̃], SA = 1/2, S′

A = 1/2, tA = 1/2, t′A = 1/2,
[f̃A] = [f̃ ′

A] = [1̃] or [3̃], t = 1/2, τ = 1/2, and S =
1/2 for the p + d and the h + d system and SA = 1,
S′

A = 0, tA = 0, t′A = 1, [f̃A] = [f̃ ′
A] = [2̃], t = 0, τ =

0, and S = 0 for the d+ d system. If the deuteron spin
and isospin are flipped without charge exchange, we
have τ ′A = 1/2 and τ

′
B = 0 for the p + d and the d + h

system and τ ′A = τ ′B = 0 for the d + d system; but if
charge exchange occurs, then τ ′A = 1/2 and τ ′B = 1
for the p + d and the d + h system and τ ′A = 1 and
τ ′B = −1 for the d + d system.

Formulas (1) and (3) demonstrate (it is nec-
essary to substitute there specific values of spin–
isospin Clebsch–Gordan coefficients and fractional-
parentage coefficients [5, 13]) that, if use is made of
the conventional notation

SelL,S = ηL,S exp(2iδL,S) ≡ TL,S + 1, (4)

the following relations hold for these systems:

δL,1/2 =
1
2
δ
[f1]
L +

1
2
δ
[f2]
L , (5)

ηL,1/2 = | cos(δ[f1]
L − δ

[f2]
L )|;

δL,3/2 = δ
[f2]
L , ηL,3/2 = 1. (6)

Here, [f1] = [3] and [f2] = [21] for the d + p(n) sys-
tem, and [f1] = [41] and [f2] = [32] for the d + t(h)
system, while the phase shift δ[f ]

L characterizes the

potential V [f ]
AB(r) of A + B interaction. These poten-

tials, which are strongly dependent on the signature of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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[f ]—this is a key point of the supermultiplet potential
model—are presented in [9–12] (see below).
The nonunitarity of the elastic-scattering ampli-

tude in the doublet channels (5) is due to the in-
clusion of channels involving the flip of the deuteron
spin and isospin, d+ p → ds + p and d+ h → ds + h,
and charge exchange, d + p → pp + n and d + h →
pp + t:

S
flip
L,1/2 =

(
1
2

1
2
, 10
∣∣∣1
2

1
2

)(
1
2
T

[f1]
L − 1

2
T

[f2]
L

)
, (7)

SceL,1/2 =
(

1
2
− 1

2
, 11
∣∣∣1
2

1
2

)(
1
2
T

[f1]
L − 1

2
T

[f2]
L

)
. (8)

Obviously, the S matrix is unitary:∣∣∣SelL,1/2

∣∣∣2 +
∣∣∣Sflip

L,1/2

∣∣∣2 +
∣∣∣SceL,1/2

∣∣∣2 = 1, (9)∣∣∣SelL,3/2

∣∣∣2 = 1.

As a result, we obtain a simple and informative
expression describing the cross section for p + d in-
teraction accompanied by the flip of the deuteron spin
and isospin:

dσ

dΩ
(θ) =

1
144p2

0

∣∣∣∑
L

(2L + 1)PL(cos θ) (10)

×
[
T

[21]
L − T

[3]
L

] ∣∣∣2.
For t + d (3He + d) scattering governed by the same
mechanism, we have the analogous expression

dσ

dΩ
(θ) =

1
144p2

0

∣∣∣∑
L

(2L + 1)PL(cos θ) (11)

×
[
T

[41]
L − T

[32]
L

] ∣∣∣2.
In the case of charge exchange, we arrive at ex-

pressions that are similar to (10) and (11), but which
involve an additional factor of 2 appearing because of
different projections τ ′B of the isospin for the deuteron
and for the pp and nn pairs in the relevant Clebsch–
Gordan coefficient (t′Aτ

′
A, t

′
Bτ

′
B |tτ). It should be re-

called [11] that these expressions are valid if the colli-
sion energy in the c.m. frame is considerably higher
than that required for exciting the deuteron to the
singlet state (that is, higher than 2.22 MeV).
For elastic proton–deuteron scattering, we simi-

larly obtain

dσ

dΩ
(θ) =

1
12p2

0

{∣∣∣∣∣
∑
L

(2L + 1)PL(cos θ) (12)

×
[
1
2
T

[3]
L +

1
2
T

[21]
L

] ∣∣∣∣∣
2

+ 2
∣∣∣∑

L

(2L + 1)
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× PL(cos θ)T [21]
L

∣∣∣2
}
.

In describing elastic dt(h) scattering, the substi-
tutions T [3]

L → T
[41]
L and T [21]

L → T
[32]
L must be made

in expression (12). For the ensuing analysis, it is im-
portant to indicate that the values of the total spin of
the system that correspond to the first and the second
sum in (12) are S = 1/2 and S = 3/2, respectively.
The potentials corresponding to various admissi-

ble permutation symmetries [f ] can be reconstructed
according to the procedure described in detail in [11].
Here, we only note that for the d + p(n) and the
d + h(t) system, they are constructed in the form

V
[f ]
L (r) = V1 exp(−α1r

2) + V2 exp(−α2r),

where the exponential term V2 exp(−α2r) simulates
the attraction at the periphery. The splitting in the
orbital angular momentum L is taken into account
in constructing the potentials [10, 11]. This signifi-
cant splitting reflects the important role of nucleon
exchange between the subsystems [11]. The poten-
tial parameters are given in Tables 1 and 2. The
corresponding phase shifts (which are used in the
present study) are presented in [10, 11]. Comparing
the strongest components of the potentials, we note

that the power of the potential V [41]
Lodd(r) (it is defined

here in the simplest way as V0R
2
0) is 50% higher

than that of the potential V [32]
Leven(r), but that, for the

potentials V
[3]
Leven and V

[21]
Lodd, this distinction is only

20%. In this way, we can comprehend the important
fact that (as will be seen below) the d → ds process is
described fairly well in the case of d + t(h) scattering,
whereas there is only general qualitative agreement
between experimental data and the supermultiplet
potential model for this process in the case of d + p
scattering. Nevertheless, it proved to be possible for
the first time to explain, on this basis, a spectacular
feature of elastic d + p scattering (see Section 4).

3. TREATMENT OF SPECTRA
IN THE MIGDAL–WATSON

APPROXIMATION

In order to verify the above theoretical approach,
it is necessary to compare the calculated and the
experimental differential cross sections dσ/dΩ both
for elastic scattering and for the inelastic scattering
under discussion in d + p and d + t(h) collisions. For
elastic scattering, such a comparison is performed di-
rectly; as to the inelastic processes being considered,
the experimental cross sections for the formation of
singlet dinucleons must be extracted by integrating
2
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Table 1. Potentials of proton–deuteron interaction

[f ] L V1, MeV α1, fm−2 V2, MeV α2, fm−1 Power, MeV fm2

[21] Even –57.0 0.37 7.2 0.36 –53

[21] Odd –8.8 0.06 – – –73

[3] Even –55.8 0.31 – – –90

[3] Odd –13.8 0.16 1.6 0.09 –30

Table 2. Potentials of d3He interaction

[f ] L V1, MeV α1, fm−2 V2, MeV α2, fm−1 Power, MeV fm2

[32] Even –50.0 0.15 – – –167

[32] Odd –73.1 0.23 18.1 0.56 –123

[41] Even –57.0 0.16 8.4 0.21 –138

[41] Odd –69.0 0.14 – – –246
the continuous spectra for three-body reactions, since
the singlet states of dinucleons are not bound. In
order to determine the contribution from the FSI of
nucleons, one has naturally to simulate experimental
distributions and to take into account the variety of
physical processes leading to a specific final state,
which include the quasifree scattering of clusters, the
formation and decay of resonances in the subsystems,
and the triplet interaction in the np final state.
In this section, we will briefly describe the tech-

nique used in the present study to obtain the experi-
mental differential cross sections dσ/dΩds(c.m.) from
the spectra presented in the literature for three-body
reactions of the type

A + B → N1 + N2 + N3. (13)

The kinematical relations for such reactions are com-
prehensively described by Olsen [33]; therefore, we
will briefly recall only some of them.
The kinematics of the three-particle final state

of reaction (13) is specified by three particle mo-
menta Pi(i = 1, 2, 3), but the number of independent
momentum components becomes equal to five (not
nine) upon taking into account the laws of energy–
momentum conservation:

P = PA + PB = P1 + P2 + P3, (14)

E = EA + EB = E1 + E2 + E3. (15)

Kinematically complete experiments record two
final products of the three at specific values of the an-
gles θ1, θ2, ϕ1, and ϕ2 and measure their kinetic en-
ergies E1 and E2. This results in determining six mo-
mentum components, their number exceeding that of
independent components by one. In accordance with
the laws of energy–momentum conservation, the al-
lowed values of the kinetic energies E1 and E2 in the
P

laboratory frame are determined by the well-known
equation of an ellipse [33] in the (E1)1/2(E2)1/2 plane.
As a result, measurements yield two-dimensional co-
incidence vectors N(E1, E2), where N is the number
of coincidences—that is, the number of particles that
were detected simultaneously and which had energies
in the intervals [E1, E1 + ∆E1] and [E2, E2 + ∆E2].
In order to perform a comparison with the results of
theoretical calculations, the two-dimensional spec-
tra are further reduced, by various methods, to one-
dimensional spectra. In the majority of studies, the
triple-differential cross sections are represented as
a function of the length Es of the arc s along the
kinematical line of the ellipse—that is, the projection
onto the kinematical curve. If an experiment records
particlesN1 andN2, we then obtain

d3σ/dΩ1dΩ2dEs = d3σ/dΩ1dΩ2dE1 (16)

× [1 + (dE2/dE1)2]−1/2.

On the right-hand side, there appears a cross section
that can already be compared with theoretical models,
where the differential cross section is given by [33, 34]

d3σ/dΩ1dΩ2dE1 = (2π/v0)|Tfi|2ρ∗1l. (17)

Here, v0 is the relative velocity of particles A and
B; Tfi is the reaction amplitude; and the subscript
l indicates that the quantity ρ∗1l, which is the well-
known phase-space factor whose explicit expression
is given in [33], is taken in the laboratory frame.
It is convenient to perform integration of the spec-

tra in the system of Jacobi coordinates, where the
shape of the spectrum is described analytically. In
the coordinate frame employing the relative momenta
(Jacobi momenta), the triple-differential cross section
assumes the form
d3σ/dΩ1−23dΩ2–3dE1–23 = (2π/v0)|Tfi|2ρ1ñ, (18)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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ρ1ñ(E1–23) = [2/(2π)6](m1m2m3/M)3/2 (19)

× [E1–23(Ec
tot − E1–23)]1/2,

where Ec
tot is the total energy of the three-particle

system in the c.m. frame; the indices “2–3” and “1–
23” label quantities referring, respectively, to the rel-
ative motion of particlesN2 andN3 and to the motion
of particleN1 with respect to the center of mass of the
N2 +N3 system; andM = m1 +m2 +m3. Since the
quantity E1−23 can be defined as

E1–23 = Ec
tot − E2–3, (20)

E2–3 can be used in expression (19) instead of E1–23.

In some cases, experimentalists content them-
selves with measuring the inclusive spectrum of one
reaction product. Such experiments are referred to as
kinematically incomplete experiments, because only
three kinematical parameters (for example, the energy
E1 and the angles θ1 and ϕ1) of five independent ones
are then known in the final state. Nonetheless, some
features in the behavior of the N2 + N3 system can
be revealed in the cross sections obtained in this way.
From the relations

Ec
tot = Q + [mA/(mA + mB)]El

A (21)

= E1–23 + E2–3,

E1–23 = (m1 + m2 + m3)Ec
1/(m2 + m3),

where Ec
1 is the energy of particle N1 in the c.m.

frame and Q is the reaction energy, it does indeed
follow that the energy E2–3 is specified at each point
of the inclusive spectrum; however, the dependence of
the cross sections on some other parameters (E1–2,
E1–3) is not specified (it is integrated out); therefore,
the results obtained in this way should be interpreted
with caution. By integrating Eq. (18) over the solid
angle Ω2–3, we can find that the differential cross
section and the matrix element for particle N1 are
related as

d2σ/dΩ1–23dE1–23 (22)

= (2π/v0)ρ1c(E1–23)
∫

|Tfi|2dΩ2–3.

In the laboratory frame, we have

d2σ/dΩ1dE
l
1 = (2π/v0)ρ1l(El

1)
∫

|Tfi|2dΩ2−3, (23)

ρ1l(El
1)dE

l
1dΩ1 =

2
(2π)6

M1/2(m1m2m3)3/2

(m2 + m3)

×
[
El

1

(
m2 + m3

M
Ec

tot − El
1

+ 2a1(El
1)

1/2 − a2
1

)]1/2

dEl
1dΩ1,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
where a1 = (m1mAE
l
1)

1/2/(mA +mB). We note that
the last expression for ρ1l(El

1)dE
l
1dΩ1 differs from

that presented in [33], where it is obviously erroneous.
The reaction involving the formation of a singlet

dinucleon proceeds in two stages:

(i) A + B → N1 + (N2 + N3)∗,
(ii) (N2 + N3)∗ → N2 + N3.

Particle N1 and an intermediate system—that is, a
dinucleon (N2 + N3)∗—are formed at the first stage.
At the second stage, the dinucleon (N2 +N3)∗ decays
into two nucleons. As a rule, the Migdal–Watson
model is applied to a subsystem of two nucleons, such
as two neutrons or two protons in the singlet 1S0

state, or a neutron–proton pair both in the singlet and
in the triplet 3S1 state.
In accordance with this model, the shape of the

three-particle spectrum at low relative energies E2–3

is determined primarily by a virtual 1S0 level, and the
square of the reaction amplitude can be factorized:

|Tfi|2 = |FNN∗ |2|FFSI(E2–3)|2. (24)

The first factor in (24) is associated with the forma-
tion of the dinucleon and is assumed to be smoothly
changing; therefore, the shape of the spectrum in the
region of the maximum is determined by the ampli-
tude FFSI(E2–3). In the following, the square of this
amplitude will be represented as the linear combina-
tion

|FFSI|2 = cs|Fs|2 + ct|Ft|2 + cr|Fr|2. (25)

The amplitudes Fs and Ft describe the FSI of the
neutron–proton pair in, respectively, the 1S0 and the
3S1 state [in the case of the nn system, the term Ft

drops out from expression (25)]; Fr takes into account
the effect of resonances in other subsystems of the
type (N1 + N2)∗ or (N1 + N3)∗ (by way of example,
we indicate that, in the reaction t + d → t + p + n,
this is the resonance 4He∗ in the t + p and 3He + n
subsystems); and cs, ct, and cr are free parameters
that are determined from a least squares fit to exper-
imental spectra. In the Migdal–Watson approxima-
tion, the amplitudes Fs and Ft are given by [31]

Fs(t)(k) ∼ rNN (k2 + α2)/[2(−a−1 (26)

+ rNNk2/2 − ik)],

α = [1 + (1 − 2rNN/a)1/2]/rNN ,

where k is the internal momentum in the dinucleon,
rNN is the effective range of the interaction, and a is
the NN scattering length. In fitting the spectra for
the three-body reactions in question, we used here the
following values of the parameters a and rNN [35, 36]:

as
np = (−23.748±0.009) fm, rs

np = (2.73±0.03) fm,
2
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as
nn = (−18.7 ± 0.6) fm, rs

nn = (2.84 ± 0.03) fm,

at
np = (5.411±0.004) fm, rt

np = (1.747±0.004) fm.

The amplitude Fr is specified in the form of the
Breit–Wigner resonance; that is,

Fr(E) ∼ (Γ/2)(E − Er + iΓ/2),

where E is the energy of relative motion in the p3H
pair, Er is the position of the resonance 4He∗ over the
threshold for the breakup process 4He→ p+3H, and
Γ is its width.
Since, in analyzing the experimental spectra, we

are interested only in the region ofnp or nnFSI where
the Migdal–Watson maximum is present, we can
henceforth assume that the shape of these spectra in
kinematically complete experiments (in the laboratory
frame) is given by [see Eqs. (17), (24), and (25)]

d3σ/dΩ1dΩ2dE1 = (2π/v0)(cs|Fs|2 (27)

+ ct|Ft|2 + cr|Fr|2)ρ∗1l.

For the inclusive spectra, we have

d2σ/dΩ1dE1 = (8π2/v0)(cs|Fs|2 + ct|Ft|2 (28)

+ cr|Fr|2)ρ1l,

where ρ1l is given by expression (23).
The coefficients cs found in fitting experimental

data were then used to determine the cross sections
dσ/dΩds in the system of Jacobi coordinates by using
relations (18) and (19):

d3σ/dΩ1−23dΩ2–3dE1–23 = (2π/v0)cs|Fs|2ρ1c. (29)

Defining dΩ1–23 = dΩ(N2N3)s and considering
that a dinucleon in the 1S0 configuration decays
isotropically in relative coordinates, we obtain

d2σ/dΩ(N2N3)sdE1–23 = (8π2/v0)cs|Fs|2ρ1c. (30)

Taking into account relation (20) and integrating
Eq. (30) with respect to energy, we eventually arrive
at the relation

dσ/dΩ(N2N3)s = (8π2/v0)cs

Em
2–3∫

0

|Fs|2ρ1cdE2–3, (31)

where Em
2–3 is taken from the interval (0–Ec

tot). Thus,
similar computational schemes were used in analyz-
ing the kinematically complete spectra and in analyz-
ing the inclusive spectra, the only distinction of im-
portance being that different expressions were taken
for ρ1l in Eqs. (27) and (28). A similar approach to
calculating dσ/dΩ(N2N3)s was previously employed
in [14, 24]. In [14], use was made of the alterna-
tive Phillips–Griffy–Biedenharn model [37], which
PH
displays virtually no distinctions from the Migdal–
Watson distribution at low values of the relative en-
ergy of the nucleons involved; at high energies, how-
ever, the cross section within that approach decreases
faster.
By way of example, Fig. 1 displays the experi-

mental and the computed inclusive spectra for the
reactions 3H(d, t)np and 3H(d, 3He)nn at Ec.m. =
8.31 MeV [24]. Shown in the figure are the com-
puted contributions to the spectra from the singlet
and the triplet component, as well as the contribu-
tion from the decays of the 4He resonances at 21.1
and 22.1 MeV. The energy resolution was taken into
account. It can be seen that the Migdal–Watson
model describes fairly well the experimental data be-
ing discussed, whence it follows that this model can
indeed be used to reconstruct the differential cross
sections for the processes 3H + d → t + ds and 3H +
d → 3He + (nn)s on the basis of inclusive experi-
mental data.
One of the problems to be solved in analyzing

experimental spectra is associated with choosing the
region of integration with respect to the relative en-
ergy E2–3 of the nucleons. Obviously, the upper limit
of this integration must be bounded by some energy
Em

2–3. There is presently no consensus on choosing
Em

2–3. The values of E
m
2–3 that are equal to 150 keV,

700 keV, and 1 MeV, as well as the value of Em
2–3 =

Ec
tot, can be found in the literature [14, 15, 27, 38].

For a criterion in determining Em
2–3, we use here

general agreement between the absolute values of the
calculated and the experimental angular distributions
dσ/dΩ(N2N3)s . Figure 2 shows the excitation func-
tions for the reaction 2H(p, ds)p at θds(lab) = 25◦

[θp(c.m.) = 126◦–129◦ for the reaction 2H(p, p)ds]
that were obtained by integrating the corresponding
spectra at Em

2–3 = 1 MeV and Em
2–3 = Ec

tot. It can
be seen that, on average, the calculated energy de-
pendence of the cross section agrees fairly well with
experimental dependence at Em

2–3 = 1 MeV; at the
same time, points corresponding to integration over
the entire kinematically allowed region of E2–3 lie
higher than the computed values by approximately
one-half of an order of magnitude. On this basis, we
eventually decided on the value of Em

2–3 = 1 MeV for
both types of scattering.
For the sake of comparison, the experimental an-

gular distributions are shown in Figs. 3 and 4 both for
Em

2–3 = 1MeV and for Em
2–3 = Ec

tot.

For protons from the reaction 2H(p, p)ds leading
to the production of a singlet deuteron, Fig. 3 presents
the experimental angular distributions obtained in the
way outlined above. As has already been mentioned,
the experimental data used were borrowed from [14,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 1. Inclusive spectra for the reactions (a) 3H(d, t)np and (b) 3H(d, 3He)nn at an energy of Ec.m. = 8.31 MeV. The
experimental points shown here were borrowed from [24] at the particle detection angles θlab indicated in the figure. The dotted
and the dashed curves represent the calculated contributions of the formation of a dinucleon in, respectively, the singlet and
the triplet state, while the dash-dotted curves correspond to the contribution from the decay of the resonance of 4He. The total
calculated spectra are shown by solid curves.
15], where pn coincidences were measured directly
at Ec.m. = 8.3, 9.1, 10, and 11.33 MeV. The angular
distributions of protons atEc.m. = 10.6 and 20.2MeV
were obtained by fitting and integrating the spectra
of pp coincidences from [16, 20] according to the
above formulas. Only the regions of Migdal–Watson
peaks were processed in the spectra of those stud-
ies, and the results obtained in this way were then
transformed into the coordinate frame corresponding
to the scattering process 2H(p, p)ds. Only the angular
distributions of triple-differential cross sections at the
maxima of Migdal–Watson peaks are presented in
[17, 18]. In those cases, the computed peaks at the
maxima were fitted to the corresponding experimental
values and were further integrated as usual (Ec.m. =
12.67, 15.3 MeV). Data at Ec.m. = 17.3 MeV in the
form of integrated cross sections were taken from the
article of Van der Weerd et al. [15], who used, at
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
this energy value, the results presented in [19]. Also
displayed at the energy value of Ec.m. = 9.1 MeV,
which is indicated in Fig. 3, are the experimental
points obtained with the aid of the data from [22],
where the inclusive spectrum for n + 2H scattering
was studied at the close energy ofEc.m. = 9.6MeV. A
comparison with the results forEc.m. = 9.1MeV that
were obtained from a kinematically complete experi-
ment shows satisfactory agreement.
Figure 4 displays the angular distribution of

singlet dinucleons from the reactions 3H(d, ds),
3He(d, ds), and 3H(d, nn). These results were de-
duced from an analysis of experimental data from
[23–29]. The inclusive spectra of tritons or 3He nuclei
were measured in [23, 24, 29] (Ec.m. = 6.55, 8.31,
and 18.6 MeV), while the results of kinematically
complete experiments (which detected tp or 3Hep
coincidences) were presented in [25–28] (Ec.m. =
2
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10.2, 13, 13.85, and 14.36 MeV). The cross sections
dσ/dΩds were given only in [24, 27, 29] at Ec.m. =
8.31, 13.85, and 18.6 MeV. For the remaining energy
values indicated in Fig. 4 (Ec.m. = 6.55, 10.2, and
14.36 MeV), the cross sections were determined
according to the procedure described above. The
results at Ec.m. = 13 and 13.85 MeV are not quoted,
since they involve only one experimental point at
either energy value.

We note that Aleksandrov et al. [29] (Ec.m. =
18.6 MeV) integrated the singlet-dinucleon peak in
the inclusive spectra, approximating it by a normal
Gaussian distribution; obviously, this reduces the ab-
solute cross-section value and distorts the shape of
the angular dependence of the cross section in rela-
tion to the results that are obtained in the Migdal–
Watson approximation. Since we were unable to ob-
tain the required cross sections by processing their
spectra with the aid of the Migdal–Watson procedure
(these spectra are presented in relative units), we do
not employ those data.

A comparison of various experimental angular de-
pendences in Figs. 3 and 4 reveals that there is no
significant difference between the cross sections as
obtained from kinematically complete spectra and
from inclusive spectra.

It should be noted that the above method for de-
riving differential cross sections made it possible to
reconstruct them even in the case where only the
cross-section values at the maxima of the spectra
P

are available, whereas the experimental spectra them-
selves are not presented (such a situation is not rare
in the literature).

4. DISCUSSION OF THE RESULTS

We begin a discussion of our results by analyzing
experimental data on elastic p(n) + d and d + 3He(t)
scattering. These data are presented in Figs. 5 and 6,
along with the results of the calculations on the basis
of the supermultiplet potential model [formula (12)].
The experimental points in Fig. 5 were borrowed
from [39–45] (Ec.m. = 6.47 MeV [39]; 9.4 MeV [40];
10.8, 11.4, 14.7, and 23.3 MeV [41]; 12 MeV [42];
15.1 MeV [43]; 20.7 MeV [44]; and 30.9 MeV [45]);
for Fig. 6, usewasmade of data from [46–49] (Ec.m. =
6.6MeV [46]; 7.23, 8.27, 10, 12.22, 13.84, 16.65, and
17.49 MeV [47]; 8.64 MeV [48]; and 23.5 MeV [49]).
The experimental and the theoretical angular de-

pendences of the differential cross section for elas-
tic p(n)d scattering are seen to be in satisfactory
agreement (at least in shape) from low energies to
Ec.m. = 15.1 MeV. There appears a significant dis-
crepancy between these theoretical and experimental
results (especially in the backward hemisphere of θp)
at Ec.m. = 20.7 MeV, and it becomes still more pro-
nounced as the energy is increased further.
A better situation is observed for d + 3He(t) scat-

tering (Fig. 6). Here, however, there is also a discrep-
ancy at large values of the angle θd from 16.65 MeV;
at lower values of Ec.m., the experimental data are
described fairly well both at small and at large an-
gles of deuteron emission. For Ec.m. = 13.84 MeV,
the dotted curve in Fig. 6 represents the theoretical
angular dependence obtained in [50] on the basis of
the resonating-group method. It can be seen that,
in describing experimental data for large scattering
angles, this approach also runs into difficulties at the
above energy value (at lower energies, the calcula-
tions performed in [50] within this framework comply
well with the experimental data).
For both types of elastic scattering, poorer agree-

ment with the experimental data in the backward
hemisphere of angles forEc.m. > 17–20 MeV is likely
to be due to a greater role of the increasing imaginary
part of the potential, since it masks supermultiplet
effects, rendering the model inefficient.
A comparison of the theoretical results obtained

on the basis of the supermultiplet potential model [see
Eq. (10)] with experimental angular dependences for
inelastic proton scattering on 2H nuclei that leads
to the formation of a singlet np pair (Fig. 3) shows
that there is only qualitative agreement over the en-
tire energy region subjected to investigation. Better
agreement is observed in the backward hemisphere
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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of the angle θp. As to the forward hemisphere, we
can state that there is a qualitative agreement here
at energies in the range Ec.m. = 8–11 MeV, but it
is impaired as the energy is increased further. Since
there are unfortunately no experimental data at small
values of the angle θp in the region Ec.m. > 10 MeV,
we cannot state, with absolute confidence, that the
conclusions drawn from the analysis of the results
obtained are quite unambiguous.
The theoretical results presented here (even those

of a qualitative character) make it possible to under-
stand the spectacular fact (see [11] and references
therein) that, in the doublet channels of elastic d + p
scattering, there is a significant inelasticity (ηL,1/2 ≤
0.5 forEc.m. ≥ 7MeV), whereas, in the quartet chan-
nels, there is a nearly exact unitarity: ηL,3/2 ≈ 1 up
to Ec.m. � 25 MeV. Obviously, the reason is that the
quartet channel is a potential one; as to the doublet
channel, it was indicated in Section 2 that two dif-
ferent amplitudes interfere there, which yields a mi-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
croscopically motivated inelasticity at comparatively
low energies. This inelasticity has nothing to do with
the imaginary part iW (r) that could be introduced
in the potential for the sake of completeness and
which would reflect the effect of the three-body con-
tinuum proper on the elastic-scattering channel; as
was indicated above, the imaginary part in question
becomes significant in the region Ec.m. ≥ 20 MeV.
A similar phenomenon must occur for the d + t(h)
system as well, but there are presently no necessary
data from partial-wave analyses for that case, so that
their derivation would be of great value.
As a brief summary of our consideration of the

d + p system, we note that the aforementioned 20%
difference of the powers of the d + p potentials for the
[f ] = [3] and [f ] = [21] Young diagrams is insufficient
for the supermultiplet potential model to be workable
at a quantitative level. That this distinction is small is
reflected, in particular, in the smallness of the cross
section for the d → ds process in Fig. 3 in relation to
2
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Fig. 4. As in Fig. 3, but for inelastic deuteron scattering on 3H and 3He nuclei.
the cross section for elastic scattering in the S = 1/2
channel.

For reactions where the initial state is that of
d + 3H(3He) (Fig. 4), there are, as a rule, no ex-
perimental points for small and medium values of
the emission angles of singlet np and nn pairs (it
would be desirable to fill this gap), since, inmeasuring
the corresponding inclusive spectra (it is measure-
ments of precisely this type that were predominantly
performed), relevant peaks are very rapidly smeared
with increasing angle of detection of 3H (3He) nu-
clei. This can be seen, for example, from Fig. 1 [the
experiment in question investigated reactions of the
type 3H(d, t)ds, and the angles are reversed upon the
P

interchange of t and ds]. The comparison of available
experimental data with the results of the calculations
on the basis of the supermultiplet potential model [see
Eq. (11)] in Fig. 4 demonstrates fairly good agree-
ment up to an energy of 10.2 MeV, at which the
theoretical calculations describe well the shape of the
experimental angular distribution, but they overesti-
mate the cross section. Unfortunately, data for higher
energies are very scanty.

Thus, we conclude that, both for elastic d + t(h)
scattering and for the respective inelastic processes
leading to the production of singlet np (nn) pairs,
the supermultiplet potential model is able to describe
satisfactorily the available experimental data in the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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energy range Ec.m. � 6–17 MeV and that, as the
energy increases further, the agreement fast becomes
poorer, which is due to an increase in the imaginary
part iW (r) of the potential.
Briefly summarizing our consideration of the d +

t(h) system, we can state that even the aforemen-
tioned 50% difference of the powers of the d + t(h)
potentials for the [f ] = [41] and [f ] = [32] Young di-
agrams is sufficient for the supermultiplet potential
model to be quantitatively accurate. The significant
difference between these potentials in power is mani-
fested, in particular, in that the differential cross sec-
tions for elastic scattering in the S = 1/2 channel and
those for the process d → ds(nn) are commensurate
in Fig. 4, in contrast to what can be seen in Fig. 3.
The situation for the d + d system, where [with

an eye to the process d + d → ds(nn) + ds(pp) in
relation to elastic scattering in the S = 0 channel] the
potentials V [4](r) and V [22](r) differ in power by a
factor as great as 3 [11], would be extreme. That the
process d + d → ds + ds is of paramount importance
is suggested even by available results (see [51]). In
principle, the above formidable distinction furnishes
a sufficient motivation for performing a 6Li + d ex-
periment [both for elastic scattering and for spin flip
into singlets 6Li(3.56MeV, 0+, T = 1) + ds] with the
interference in the S = 0 channel between the ampli-
tudes for the signatures of [f ] = [44] and [f ] = [422].
However, it is very difficult at present to measure
phase shifts for this scattering process at various
values of the total spin S and the cross sections for
the spin-flip process leading to the formation of the
above singlets.

5. CONCLUSION

We have systematically investigated the conse-
quences of the fact that, within the supermultiplet
potential model, there can arise an inelastic channel
where, owing to a superposition of potential am-
plitudes corresponding to different Young diagrams
[f ], a deuteron undergoes spin–isospin flip (charge
exchange), d → ds(nn). The approach to studying
the interactions of extremely light nuclei (clusters)
that is based on this important possibility makes it
possible to express the differential cross sections for
the process d → ds(nn) in terms of phase shifts δL,S

at different total spins S for the elastic-scattering pro-
cess, which is described simultaneously, and provides
a clear pattern of the physics behind the scattering
process. This approach is also very straightforward in
numerical calculations.
Experiments studying reactions that lead to the

production of singlet np and nn pairs have been per-
formed over a few decades; however, it turned out
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
that only a small amount of data can be found in the
literature that are suitable for directly analyzing them
within the supermultiplet potential model; moreover,
all of them concern dp and dt(h) scattering. In the
present study, we have therefore performed, for the
first time, a systematization of these data from the
literature and have recast them into a unified form
of the angular dependences of the differential cross
sections for reactions leading to the production of
singlet pairs (this is of value in itself). This procedure
was implemented by using the well-known Migdal–
Watson approximation, which successfully describes
spectra in the region of final-state interaction. For our
analysis, we have used data both from kinematically
complete experiments and from measurements of in-
clusive spectra. In either case, the application of the
Migdal–Watson approximation has made it possible
to perform integration of the spectra quite reliably
and to obtain identical results in those cases where
the same reaction has been considered by the two
methods.
A comparison of the experimental data trans-

formed in this way with theoretical results based
on the supermultiplet potential model has revealed
that, over quite a broad energy region, this model
successfully describes both elastic scattering in the
d + t(h) system and reactions involving the flip of
the deuteron spin and isospin into a singlet or the
production of np and nn pairs (in principle, this
must also be so for pp pairs). At the same time,
the description of the spin-flip process producing
a singlet is only qualitative for the d + p system.
The latter is due to the fact that the potentials for
the [f ] = [3] and [f ] = [21] Young diagrams differ
in power only by 20%, which is insufficient for the
supermultiplet potential model to be valid; for the
[f ] = [41] and [f ] = [32] Young diagrams (which dif-
fer by the excitation of a closed nucleon quartet), this
distinction is 50%. At the same time, the difference
of the powers of the potentials for the signatures of
[f ] = [4] and [f ] = [22] must be as great as 300% for
the d + d system. The question associated with this
is of importance for describing the process d + d →
ds + ds, but experimental data required here have
yet to be obtained [currently available data on the
processes d + t(h) → ds + t(h) and d + t → nn + h
cover only the narrow region of small angles]. By
and large, the results presented here demonstrate
that analyses in terms of Young diagrams, which
characterize multiplet symmetry, could be very useful
in the theory of few-body systems.
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Abstract—In heavy-nucleus disintegration induced by a relativistic projectile particle, the production of
collinear massive fragments accompanied by numerous charged particles and neutrons is explained in
terms of the mechanism of projectile-momentum compensation due to the emission of a particle whose
mass is greater than the projectile mass. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of high-energy particles with nu-
clei has been analyzed for many years. The preva-
lent opinion is [1] that, to a first approximation, the
interaction with an incident particle whose energy
is not less than a few hundred MeV can be broken
down into two stages. At the first, fast, stage, the
incident particle is scattered on target nucleons a
few times, thereby leaving part of its energy in the
nucleus. At the second stage—it presumably begins
when the incident particle has already escaped from
the nucleus—the energy transferred to the nucleus
at the first stage is dissipated in this nucleus, which
eventually decays. In the case of heavy nuclei, the de-
cay products include two massive fragments accom-
panied by neutrons and charged particles. The cross
sections for the production of two massive fragments
are large, which suggests a high fissility of heavy
nuclei in the channel of fission induced by relativis-
tic particles. For example, the ratio of the measured
total cross section for the production of two massive
fragments to the total inelastic cross section, σf/σin,
is 0.865 ± 0.036 for the irradiation of 238U nuclei with
1-GeV protons [2].

A detailed analysis of the mechanism of heavy-
nucleus disintegration versus the excitation energy is
a conventional topic of reviews regularly appearing in
the literature. Since the publication of that presented
in [3], there have appeared new experimental data that
make it possible to refine or even to change our ideas
of the process being discussed. In this article, special
emphasis is placed on the fact that the motion of two
massive fragments is collinear, which is inherent in
heavy-nucleus disintegration induced by relativistic
particles. This property is at odds with observations
of fragments of fission induced by heavy ions, but it
is similar to what is observed in spontaneous fission,
where there is no momentum transfer to the nucleus
undergoing fission.
1063-7788/02/6503-0478$22.00 c©
The objective of this study is to analyze the
possible consequences of going over from a branched
cascade [1, 3] at the first stage of relativistic-particle
interaction with a heavy nucleus to the concept
of a single scattering event resulting in projectile-
momentum compensation. In [4], we compared the
properties of charged particles accompanying two
massive fragments in the spontaneous fission of the
252Cf nucleus and in 238U disintegration induced
by relativistic particles and collected references to
relevant experimental studies. Below, we use exper-
imental data on charged particles from these two
processes.

2. 238U DISINTEGRATION INDUCED
BY 1-GeV PROTONS AND 2-GeV 3He

NUCLEI

In studying heavy-nucleus disintegration into two
massive fragments accompanied by charged particles
and neutrons, it is important to know the numbers
of these charged particles and neutrons and their
production rates. Relevant experimental data are pre-
sented in [5–8]. Necessary information from those
studies for 1-GeV protons is given in Table 1, which
displays the production rates (F) for (2f + nc) disin-
tegration events, where two massive fragments (2f )
are accompanied by a preset number nc of charged
particles of lower mass. The experimental probability
of the process in which 238U nuclei irradiated with
1-GeV protons undergo coplanar ternary fission into
fragments of commensurate masses is quoted in the
last column of Table 1. Thus, the irradiation of heavy
nuclei with relativistic particles can initiate decays
into either three fragments of commensurate masses
(3f ) or two massive fragments accompanied by a
large number of charged particles (2f + nc). It is
noteworthy that, in the case of large nc, the total
mass of all particles, both charged ones and neutrons,
can appear to be commensurate with the mass of
2002 MAIK “Nauka/Interperiodica”
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Table 1. Production rates (F ) for 2f + nc events at various nc in 238U disintegration induced by 1-GeV protons

nc 0 1 2 3 4 5 6 7 8 9 10–13 3f

F , % 46.3 18.9 14.7 9.5 4.1 3.7 1.4 0.6 0.4 0.2 0.2 (4.7 ± 0.5) × 10−2
each of the recorded fragments. Naturally, this could
imply that the missing mass or a major part of it
is associated with a third massive nuclear fragment
that is unstable, with a lifetime being commensurate
with the time over which the massive fragments fly
apart under the effect of their Coulomb repulsion. To
confirm or disprove this, it is necessary to measure
those parameters of nuclear disintegration that would
be sensitive to the motion of the missing mass lost by
the initial nucleus. For such a parameter, we can pro-
pose the angle θ between the momenta of the massive
fragments, which characterizes the recoil momentum
caused by the motion of the missing mass.

Measurements of θ for 238Udisintegration induced
by 1-GeV protons were performed in photoemulsion
layers irradiated at the Gatchina synchrocyclotron.
The mean angle 〈θ〉 as a function of themultiplicity nc

of accompanying charged particles was presented in
[9]. Immediately after that, there appeared similar da-
ta obtained in Saclay for 238U disintegration induced
by 2-GeV 3He ions [10], but those data were pre-
sented as a function of the number n0 of the accompa-
nying neutrons. Calculations of relevant distributions
on the basis of the cascade–evaporation model were
also presented in [10]. However, the possibility that
a third, unstable, nuclear fragment can be formed
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Fig. 1. Experimental dependence of the mean angle 〈θ〉
between the momenta of two massive fragments on the
number nc of accompanying charged particles for 238U
disintegration induced by 1-GeV protons.
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was disregarded there. Here, we compare these data
from the different experiments and analyze the role of
unstable nuclear fragments in the mechanism of 238U
disintegration induced by relativistic particles.

The experimental dependence of the mean angle
〈θ〉 on the multiplicity nc of accompanying charged
particles for 238U disintegration induced by 1-GeV
protons is shown in Fig. 1 according to data from [9].
For 238U disintegration induced by 2-GeV 3He ions,
the experimental and the calculated results from [10]
for the mean angle 〈θ〉 as a function of the number
n0 of neutrons accompanying two massive fragments
are displayed in Fig. 2. The discrepancy between
the experimental data and the cascade–evaporation
results, which becomes more pronounced with in-
creasing number n0 of emitted neutrons, is the most
impressive result in Fig. 2. This discrepancy, which
is as large as 20◦ at high n0 values, indicates that
the recoil momentum is strongly overestimated in the
calculation. This overestimation is due to adopting
an exaggerated value for the excitation energy ac-
cumulated in the residual nucleus. The requirement
of projectile-momentum compensation needed for the
formation of a collinear three-body configuration re-
duces significantly the excitation energy accumulated
in the residual nucleus. A decrease in the energy and
momentum per unit of the missing mass can lead to a
reduction of the total recoil momentum.
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Fig. 2. Experimental (solid straight-line segments) and
calculated (dotted straight-line segments) dependences
of the mean angle 〈θ〉 between the momenta of two frag-
ments on the number n0 of accompanying neutrons for
the 238U disintegration induced by 2-GeV 3He ions. The
lengths of the segments correspond to the limits within
which the numbers of recorded neutrons varied.
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Table 2. Properties of light unstable nuclear fragments

Decay of third
(unstable) fragment Lifetime, s

Energy
releaseQ,

MeV
5He(3/2−) → 4He + n 1.1 × 10−21 0.85
7He(3/2−) → 6He + n 4.1 × 10−21 0.44

8Li∗(3+) → 7Li + n 2 × 10−20 0.25
7Li∗(7/2−) → 4He +3 H 7 × 10−21 2.16
6He∗(2+) → 4He + 2n 6 × 10−21 0.98

It seems difficult to relate directly the dependence
of the angle in question on the multiplicity of charged
particles to the dependence of this angle on the num-
ber of accompanying neutrons for any multiplicity
value. For example, accompanying charged particles
can be absent in the case of small n0. At the same
time, one charged particle can accompany two mas-
sive fragments both in the case where there are a great
number of accompanying neutrons and in the case
where their number is small. Nevertheless, there can
be a correlation for the maximum measured values
of n0 and nc, since a high multiplicity of charged
particles and a large number of emitted neutrons
must correspond to the same disintegration events
recorded in different experiments. In order to render
a further analysis more illustrative, we deem it appro-
priate to combine the data presented in Figs. 1 and
2 in the way adopted in Fig. 3. The ordinate remains
unchanged, and the bottom and the top abscissa are
used for nc and n0, respectively. In choosing the axes,
we impose the condition n0/nc = 5, which corre-
sponds to the emission of one charged particle per
five neutrons. This choice seems realistic; however,
a strict relationship cannot be guaranteed at small
values of n0 and nc (see above). In principle, we can
choose a different scale, but the problem of correlation
between n0 and nc cannot be solved unambiguously
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Fig. 3. Combination of the data presented in Figs. 1
and 2.
PH
without additional experimental data. If the 〈θ〉 data
for all nc ≥ 7 are considered as a single experimental
point, it turns out that, for the multiplicities from
nc = 4 to nc ≥ 7, the mean values of the angles 〈θ〉
between the momenta of two massive fragments fall
just in the middle between the experimental and cal-
culated data obtained for the number n0 of neutrons
from 20 to 35. This means that the recoil momentum
in the system of two massive fragments is always
higher if the missing mass initially has an electric
charge. The motion of this charge as a discrete unit
generates a greater recoil effect than the motion of
individual nucleons among which neutrons prevail.
The motion of a charged nuclear bunch is rather
similar to the motion of two fragments at an early
stage of Coulomb acceleration, whence it follows that
it can be considered as a third fragment. However,
this third fragment is unstable; therefore, it does not
have time to acquire the total speed and energy, de-
caying within the time of the Coulomb acceleration
of the stable fragments. The very production of these
unstable nuclear fragments appears to be possible
owing to the collinear three-body configuration, with
the excitation energy being concentrated in between
two would-be fragments, which, at the initial instant,
help to hold excited hadronic matter at rest. As was
mentioned above, an overestimation of recoil in the
calculation within the cascade–evaporation model at
nc ≥ 4 is due to the use of a substantially exaggerated
value for the accumulated excitation energy, which
is concentrated in the entire volume of the residual
nucleus. However, the cascade–evaporation mech-
anism is not completely replaced by the mechanism
of the production and subsequent disintegration of a
three-body collinear configuration. On the contrary, it
remains the basic mechanism in terms of the proba-
bility of disintegration leading to small and moderate
multiplicities of accompanying particles. This means
that the experimental and the calculated values of
〈θ〉 must coincide at some value of nc. In Fig. 3,
this occurs at nc = 3. For a different relation between
n0 and nc, the coincidence would occur at higher
or lower values of accompanying charged particles.
This uncertainty will be irremovable as long as there
are only two sets of experimental data, presented
in Fig. 3. Nevertheless, it can be stated that, since
the last three calculated values corresponding to the
angles of 〈θ〉 = 154.8◦, 149.9◦, and 146.4◦ cannot
be correlated with any available experimental data,
the dominant role of the collinear three-body con-
figuration is unquestionable for such events of 238U
disintegration induced by relativistic particles.

As in the case of nc = 3 in Fig. 3, the agreement
between the results of the calculations and experi-
mental data can be considered as the disappearance
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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of the collinear three-body configuration with its in-
herent features in the excitation energy and the initial
position of the unstable nuclear fragment in between
the two recorded fragments. The conventional mech-
anism considered in [1, 3] then becomes dominant. In
this case, the excitation energy is far from its maxi-
mum possible value; this is confirmed by the detection
of a small or a moderate number of charged or neutral
accompanying particles.

For our analysis to be complete, it only remains
to find out why the recoil is greater than that which
follows from the calculation for nc = 1 and nc = 2
(Fig. 3). Strange as it may seem, the production of
light unstable nuclear fragments accompanying two
massive fragments is one of the reasons for this. The
existence of the spatial and kinematic correlations
between charged particles and neutrons and between
two charged particles [4] accompanying pair massive
fragments of spontaneous fission of 252Cf nuclei was
established in different experiments. The experimen-
tal data could be explained by the formation of light
unstable nuclear fragments and their subsequent dis-
integration from the ground state or from excited
states. Table 2 displays the features of light unstable
nuclear fragments known at present. Their lifetimes
are commensurate with the time of the Coulomb
acceleration of pair massive fragments or exceed it
sometimes.

If such neutron-rich nuclei are produced in the
spontaneous fission of 252Cf, their production is
even more probable in heavy-nucleus disintegra-
tion induced by relativistic particles. In particu-
lar, disintegration processes starting from excited
states are possible; for one, this may be the process
6He∗(1.80 MeV)→ 4He + 2n featuring two neutrons
in the final state. Our statement is that the recoil effect
associated with the escape of 6He∗ is always more
pronounced than a random combination of recoil
effects from three particles. This conclusion remains
valid for any disintegration process involving a single
charged particle in the final state.

For disintegration processes where the number of
accompanying charged particles is nc ≥ 4, the dia-
metrically opposite observation of mean angles be-
tween the momenta of massive fragments in excess
of the calculated ones can also be explained by the
disintegration of unstable nuclear fragments. These
fragments have higher mass than light fragments in
nc = 1 events. A few charged particles are produced
in the fission of such fragments, and the direction of
motion of the primary fragment is not conserved.

The argument presented in our article is qualita-
tive, because the analysis of the distributions of 〈θ〉
was not the main subject in [9, 10]. Nevertheless, this
analysis shows that the data on the angles between
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
the momenta of massive fragments may be a direct
source of information about themechanism of nuclear
disintegration.

3. COMPENSATION OF THE MOMENTUM
OF A RELATIVISTIC PARTICLE INCIDENT

ON A HEAVY NUCLEUS

If we go over, as was discussed in the Introduction,
from the assumption of a branched cascade at the first
stage of the interaction to the single-collision hypoth-
esis, which results in projectile-momentum compen-
sation, the excitation energyWex accumulated in the
nucleus will be given by

Wex = (A1 −A2 +m1)c2 + T (1)

− (m2
2c

4 + 2m1c
2T + T 2)1/2,

where A1 and A2 are the masses of, respectively, the
target and the residual nucleus; m1 and m2 are the
masses of, respectively, the incident and the outgoing
particle; c is the speed of light; and T is the kinetic
energy of the incident particle. The sum of the last two
terms in the radicand is equal to the product of the
square of the projectile momentum, P 2

1 = 2m1T +
(T/c)2, and the square of the speed of light. Atm1 =
m2, we automatically obtain A1 = A2 and Wex = 0.
This result is usual for the conventional cascade–
evaporation model, where the excitation energy of the
residual nucleus is related to the longitudinal mo-
mentum transfer to the nucleus by a linear equation.
Experiments seem to support this result, because
an appreciable fraction of all disintegration events
(Table 1) are those of low-energy collinear fission
not involving outgoing charged particles. However,
experimental data also demonstrate that the escape
of massive fragments is collinear in high-nc events
when charged particles are recorded [9] and in high-
n0 events when neutrons are recorded [10] as well.
This suggests thatWex is not zero. In order to ensure
this in formula (1), it is necessary that m2 > m1,
which automatically entails the condition A2 < A1.

We deem it appropriate to perform specific calcu-
lations by formula (1) for the reactions

p+ 238U → 237U + d,
3He + 238U → 237U + 4He.

For the first and the second reaction, the solid
and the dashed curve in Fig. 4, respectively, illustrate
the behavior of the excitation energy Wex versus the
kinetic energy T of the incident particle. It can clearly
be seen that the excitation energies Wex are quite
close for the two reactions when Tp = 1 GeV and
T3He = 2GeV. This justifies the comparison of the ex-
perimental data obtained in [9, 10]. In both reactions,
the excitation energy Wex tends to the limit (A1 −
2
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Fig. 4. Excitation energyWex as a function of the kinetic
energy T of the incident particle for the reactions (solid
curve) p+ 238U → 237U + d and (dashed curve) 3He +
238U → 237U + 4He under the assumption of projectile-
momentum compensation.

A2)c2 with increasing T , their difference vanishing in
proportion to (m2

2 −m2
1)c

4/2T .

In the limit T 	 m2c
2, formula (1) reduces to

Wex = [(A1 +m1) − (A2 +m2)]c2 (2)

+ T

(
1 − m1

m2

)(
1 − T

2m2c2

)
.

Here, the second term increases with decreasing m1.
This means that a photon beammust be themost effi-
cient incident beam if the momentum-compensation
mechanism is realized in nuclear reactions at low
energies. Probably, enhanced yields of some frag-
ments in 232Th photofission [11] are a manifestation
of a higher photoexcitation energy in relation to what
occurs in charged-particle beams.

In considering the mechanism of projectile-mo-
mentum compensation, it should be borne in mind
that conservation laws also admit the mechanism
of overcompensation, in which case the outgoing-
particle momentum exceeds the incident-particle
momentum, with the result that both massive frag-
ments of the heavy nucleus escape into the backward
hemisphere. From the experimental data discussed
in [3], it follows that the effect of escape of both
fragments into the backward hemisphere (θ > 180◦)
was sometimes observed. This is also suggested by
experimental data presented in [10].

The degree of overcompensation can be charac-
terized by a dimensionless parameter ξ (ξ = 1 corre-
sponds to exact compensation). Formula (1) forWex

can then be rewritten as

Wex = (A1 −A2 +m1)c2 + T (3)

− [m2
2c

4 + ξ2(2m1c
2T + T 2)]1/2
PH
− (ξ − 1)2(2m1c
2T + T 2)

2A2c2
,

where the last term takes into account the transla-
tional motion of the residual nucleus A2. For each
value of the initial kinetic energy T of the incom-
ing particle m1, there is some maximum value ξmax

specified by (3), provided that the excitation energy
is equal to the height of the fission barrier for the
heavy nucleus being considered (Wex = Bf). In turn,
ξmax makes it possible to calculate the limiting angle
θmax > 180◦ between the momenta of two fragments
flying into the backward hemisphere.

4. CONCLUSION

Collinear two- and three-body configurations
arising as the result of the primary interaction of an
incident particle with a heavy nucleus have enabled
us to explain the appearance of events featuring the
production of massive fragments accompanied by
neutrons and charged particles. An analysis of the
experimental distributions with respect to the angle
between the momenta of two massive fragments
in events characterized by a high multiplicity of
accompanying charged particles suggests that the
entire missing nuclear mass moves as a discrete unit.

The condition of projectile-momentum compen-
sation considered in this study is the simplest one,
because the masses of the incident (m1) and the out-
going (m2) particle differ by one mass unit. It is this
circumstance that minimizes the excitation energy
Wex accumulated in the nucleus undergoing fission.
If the mass m2 differs from m1 more strongly, the
excitation energyWex will be higher.
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Abstract—The inclusive invariant cross sections for protons produced at angles of θ = 90◦ and 60◦ and
for positively and negatively charged pions produced at an angle of θ = 90◦ are presented for π−Be, π−Al,
and π−Cu interactions induced by 43-GeV/c incident π− mesons. The shape of the inclusive spectra of
secondary hadrons, theA dependence of their cross sections, and the correlation functions for pairs of likely
charged secondary hadrons at large angles of their divergence are studied. The kinematical region explored
in the present article corresponded to kinetic energies of T ≈ 0.16–0.70 GeV and T ≈ 0.20–0.76 GeV for
secondary protons and secondary pions, respectively. The angles of divergence of hadrons forming a pair,
ψ, satisfied the condition cosψ < −0.5. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This article is the last one in a series that presents
the results obtained by studying data from the most
recent run of an experiment performed at the
SIGMA–AYAKS facility [1], which was installed
at the Institute for High Energy Physics (IHEP,
Protvino). Specifically, we consider the results from
an investigation of the inclusive spectra of secondary
protons produced in π−Bе, π−Al, and π−Cu in-
teractions at an incident-negative-pion momentum
of pbm = 43 GeV/c and recorded at angles of 90◦
and 60◦ and of positively and negatively charged
secondary pions that originate from the same inter-
actions at an angle of 90◦. These secondary pro-
tons and pions were detected by the double-arm
magnetic spectrometer (DAMS) of the facility in
the momentum ranges 0.5 < p < 1.5 GeV/c and
0.3 < p < 1 GeV/c, respectively. Also presented here
are results that were deduced from an analysis of
correlations for pairs of likely charged secondary
hadrons at large angles of their divergence. The kine-
matical region explored in this article corresponded
to kinetic energies in the ranges T ≈ 0.16–0.70 GeV
and T ≈ 0.20–0.76 GeV for secondary protons and
secondary pions, respectively. That the data of new
measurements were obtained in the course of one
exposure ensures a high reliability of conclusions that
are drawn both from a comparison of the shapes of
the inclusive spectra of secondary hadrons and from a
comparison of correlation functions for different pairs
of hadrons.
1063-7788/02/6503-0484$22.00 c©
The analysis of correlations for some pairs of
secondary hadrons originating from hadron–nucleus
interactions at incident-positive-pion and incident-
proton momenta of pbm = 3 and 7.5 GeV/c that
was performed at the Institute of Theoretical and
Experimental Physics (ITEP, Moscow) revealed [2–
4] that the character of wide correlations for pairs of
likely charged hadrons (that is, correlations at large
angles of divergence of hadrons forming such pairs)
is sensitive to the mechanism of their formation, since
interference effects and the final-state interaction of
particles are immaterial at large angles of divergence,
the disregard of such effects and interactions becom-
ing more justified with increasing projectile energy
[5]. Therefore, an investigation of wide pair correla-
tions provides an independent check on the concept
of hadron-formation processes that is deduced from
an analysis of the inclusive spectra of secondary
hadrons [2].

Despite a vast body of available experimental data
on the generation of secondaries in the region of their
cumulative production [6], themechanism of hadron–
nucleus interactions and the effect of nuclear struc-
ture on the generation of secondaries in the target-
fragmentation region have yet to be understood con-
clusively. A comparative analysis of inclusive spectra
of secondary protons and positively and negatively
charged secondary pions recorded at an angle of 90◦
within a single exposure, along with an investigation
of correlations for pairs formed by likely charged sec-
ondary hadrons that diverge at large angles, furnishes
2002 MAIK “Nauka/Interperiodica”



INVESTIGATION OF THE INCLUSIVE SPECTRA 485
new information for testing numerous models cur-
rently used to describe particle production in nuclear-
fragmentation processes.

2. DESCRIPTION OF THE EXPERIMENT
AND DATA PROCESSING

The SIGMA–AYAKS facility was arranged at the
2B channel of the accelerator installed at the Insti-
tute for High-Energy Physics (IHEP, Protvino). The
equipment used in this facility is described in [7, 8].
A beam of 43-GeV/c negatively charged particles
that was incident on a target consisted of negative
pions, negative kaons, and antiprotons (about 97.9,
1.9, and 0.2%, respectively). Beryllium, aluminum,
and copper disks 40 mm in diameter were used for
targets, their thicknesses in the beam direction being
70, 23, and 3.86 mm, respectively.

The DAMS of the facility consisted of two arms
nearly symmetric with respect to the beam axis. For
all targets, the right and the left arm of the DAMS
recorded positively charged secondary hadrons of low
kinetic energy for emission angles such that−0.15 <
cos θ < 0.35 and 0.30 < cos θ < 0.75 (θ is the angle of
secondary-hadron emission in the laboratory frame),
respectively, and vice versa for negatively charged
secondary hadrons.

For about 60% of statistics, trigger logic selected
events where secondaries were emitted into both
DAMS arms (an LR trigger corresponding to the
LR correlation sample). About 20% of statistics cor-
responded to the trigger condition for the actuation
of the equipment only in one DAMS arm (L and R
triggers corresponding to L and R inclusive samples).

Methods for analyzing information from various
groups of the tracking detectors of the facility in
the exposure being studied, procedures for identifying
charged secondaries recorded by the DAMS in the
course of the exposure, and results of this identifica-
tion for π−Be interactions are described in [7, 9].

In studying the inclusive spectra of secondary
hadrons, the efficiencies of particle detection and the
momentum and angular resolutions for secondaries
were calculated with the aid of the GEANT package
[10]. The results of these calculations agree well with
the results of analogous calculations performed in
studying the facility [7] with the aid of a simplified
code that takes into account ionization losses and
multiple Coulomb scattering. The inefficiencies of the
detectors and of event reconstruction were estimated
in [7–9, 11]. For the kinematical region of π−Be,
π−Al, and π−Cu interactions that is studied here, the
results of GEANT calculations for the kinetic-energy
(T ) dependence of the accuracy in reconstructing the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 1. Inclusive invariant cross sections for (open circles)
proton production at an angle of θ = 90◦ in π−Be, π−Al,
and π−Cu interactions (fp

A) at a projectile momentum of
pbm = 43 GeV/c versus the kinetic energy T and (closed
circles) results of analogous measurements for π−Be and
π−Cu interactions at a momentum of pbm = 5 GeV/c
[15]. The straight line represents the result of a fit.

kinetic energy T of secondary protons and the esti-
mated accuracies in reconstructing T for secondary
pions recorded by each DAMS arm were presented
in [12].

3. ANALYSIS OF INCLUSIVE SPECTRA
OF SECONDARY PROTONS AND PIONS

The contributions to the measured cross sections
from cascade processes in the target were calculated
by using the FLUKA hadronic-shower generator [13]
of the GEANT package [10] (about 20% in π−Be
interactions and about 11 to 15% in π−Al and in
π−Cu interactions) and were taken into account by
introducing correction factors. Statistical errors are
displayed in Figs. 1–4, which depict the cross sec-
tions for the inclusive production of recorded hadrons.
The systematic errors in determining the cross sec-
tions for hadron production in π−Be interactions were
estimated at 13 and 16% for protons detected at an-
gles of 90◦ and 60◦, respectively, and at 15% for pions
detected at an angle of 90◦. An additional systematic
error in the production cross section measured by the
left DAMS arm for Al and Cu target nuclei did not
exceed 5% for protons and 7% for pions. For the
cross sections measured by the right DAMS arm, the
analogous additional error was 5% for protons and
pions produced on Al nuclei; for Cu nuclei, it proved
2
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Fig. 2. As in Fig. 1, but for θ = 60◦

to be as great as 9% for protons and as great as 15%
for pions.

The invariant differential cross sections per tar-
get nucleon for the inclusive production of secondary
hadrons in π−A interactions were computed by the
formula

fA = (E/A)(d3σ/d3p) = (1/pA)(d2σ/dTdΩ),
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Fig. 3. Inclusive invariant cross sections for negative-
pion production at an angle of θ = 90◦ in π−Be, π−Al,

and π−Cu interactions (fπ−
A ) at a momentum of pbm =

43 GeV/c versus the kinetic energy T (open circles). For
each type of interaction, the straight line represents the
resulting approximation.
P

where A is the mass number of the target nucleus; E,
p, and T are respectively, the energy, the momentum,
and the kinetic energy of a secondary particle; σ is the
cross section for its production; andΩ is a solid angle.

In calculating fA, use was made of the cross sec-
tions determined experimentally over the angular in-
terval ∆θ whose width did not exceed 10◦. The cu-
mulative number ncum for secondary hadrons was
calculated by the formula ncum =

(
E − p cos θ

)/
Mp,

where E is the energy of a particle whose momentum
is p andMp is the protonmass. By using theMINUIT
package [14], the spectra in question were fitted in
terms of the function

fA = fA0 exp (−T/T0). (1)

Table 1 shows the values of the parameter T0 that
were obtained in studying the shape of the spectra of
secondary particles for various regions of their kinetic
energies T . The values of T0 that are labeled with an
asterisk in this table were deduced from a fit of the
dependence in Eq. (1) to the inclusive spectra of sec-
ondary hadrons for the energy-scale binnings shown
in Figs. 1–4, where the straight lines represent the
resulting approximations. The values of T0 in Table 1
that are not labeled with an asterisk were obtained
from fits constructed by breaking down the range of
T under study into the maximum possible number of
energy bins having equal widths. In each fit, whose
results are quoted in Table 1, the value of χ2/NDF did
not exceed unity.

It should be noted that, although the inclusive
production of cumulative hadrons in hadron–nucleus
interactions was subjected to extensive experimental
studies, data on proton and pion production at angles
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Table 1. Fitted values of the parameter T0 in the approximation (1) of the invariant differential cross sections for
the inclusive production of protons at angles of 90◦ and 60◦ and of pions at an angle of 90◦ in π−A interactions at
pbm = 43 GeV/c

Be Al Cu

T , GeV T0, MeV T , GeV T0, MeV T , GeV T0, MeV

θp = 90◦

0.16–0.54 56.7 ± 2.6∗ 0.18–0.56 61.7 ± 2.7∗ 0.18–0.54 62.3 ± 3.0∗
0.16–0.54 56.1 ± 2.6 0.18–0.56 59.3 ± 2.6 0.18–0.54 61.4 ± 2.9

0.09–0.23 56.3 ± 1.0 [15] 0.09–0.23 59.0 ± 1.0 [15]

θp = 60◦

0.16–0.64 101.2 ± 2.9∗ 0.16–0.70 96.9 ± 3.1∗ 0.16–0.64 92.4 ± 3.8∗
0.16–0.64 98.9 ± 2.8 0.16–0.70 94.3 ± 2.9 0.16–0.64 91.3 ± 3.7

0.09–0.23 97.2 ± 2.6 [15] 0.09–0.23 84.9 ± 1.8 [15]

θπ− = 90◦

0.20–0.54 70.3 ± 3.1∗ 0.20–0.62 63.9 ± 2.8∗ 0.22–0.64 64.1 ± 4.0∗
0.28–0.54 57.5 ± 4.7 0.28–0.66 58.8 ± 4.6 0.28–0.64 63.2 ± 5.6

θπ+ = 90◦

0.20–0.76 71.4 ± 2.6∗ 0.20–0.68 83.2 ± 3.7∗ 0.22–0.76 85.2 ± 4.9∗
0.28–0.76 67.6 ± 4.0 0.28–0.68 72.6 ± 5.1 0.28–0.76 77.5 ± 6.4
of θ = 90◦ and 60◦ in π−A interactions have been
hitherto unavailable for kinetic energies of secon-
daries in the range studied here.

The kinetic-energy dependences of the invariant
differential cross sections for inclusive proton pro-
duction that were measured in the experiment by the
right DAMS arm at angle of θ = 90◦ and by the left
DAMS arm at angle of θ = 60◦ in π−Be, π−Al, and
π−Cu interactions at pbm = 43 GeV/c are displayed
in Figs. 1 (θ = 90◦) and 2 (θ = 60◦). Also shown in
these figures are the results of analogous measure-
ments at pbm = 5 GeV/c [15]. The fitted values of the
parameter T0 in the approximation (1) of the mea-
sured inclusive proton spectra in the region 0.09 <
T < 0.23 GeV are quoted in Table 1 [15]. For pro-
tons produced at an angle of θ = 90◦, the cumulative
number ncum changed in the range ncum ≈ 1.1–1.9
for T varying from 0.16 to 0.54GeV, while, for protons
produced at angle of θ = 60◦, it changed in the range
ncum ≈ 0.8–1.1 for T varying from 0.16 to 0.7 GeV.
Thus, the protons produced at angle of θ = 90◦ were
predominantly cumulative. Also, protons formed in
the process of deep-inelastic nuclear interaction must
constitute a considerable part of the protons produced
at angle of θ = 60◦ [16]. An investigation of the shape
of the inclusive proton spectra has revealed that the
experimental spectra of secondary protons are well
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
approximated by the form (1), the values of the pa-
rameter T0 changing only slightly over a broad range
of the kinetic energy of these protons.

The agreement between the experimental values of
the cross sections for proton production at an angle
of θ = 90◦ and the corresponding cross sections cal-
culated with the aid of the FLUKA hadronic-shower
generator [13] of the GEANT package [10] improved
with increasing mass numberA of the target nucleus.
For the spectra of protons produced at an angle of θ =
90◦, the results obtained with the aid of the HEISHA
hadronic-shower generator [17] differed considerably
in shape and in magnitude both from the experimental
spectra and from the spectra calculated with the aid
of the FLUKA generator [13], especially for the light
target nucleus of Be. For protons generated at an
angle of θ = 60◦, the results produced by these two
generators for the relevant cross sections are closer.1)

1)On the basis of the FLUKA and the HEISHA hadronic-
shower generator (see [13] and [17], respectively) of the
GEANT package [10], the cross sections for proton pro-
duction at angles of θ = 90◦ and 60◦ were calculated in
[12] for the propagation of 43-GeV/c negative pions through
nuclear targets in the form of disks of radius 1 mm and
thickness about 1 mm (0.7 mm) for Be and Al (Cu), in which
case effects associated with the target dimensions can be
disregarded.
2
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Table 2. Ratio Rf (π+/π−) of the invariant cross sections for inclusive pion production in the region−0.1 < cos θ < 0.1
for π−A interactions at pbm = 43 GeV/c

Be Al Cu

T , GeV Rf (π+/π−) T , GeV Rf (π+/π−) T , GeV Rf (π+/π−)

0.20−0.28 1.12± 0.09 0.20−0.28 1.00 ± 0.10 0.20−0.28 0.84 ± 0.11

0.22−0.28 1.18± 0.11 0.22−0.28 1.07 ± 0.12 0.22−0.28 0.92 ± 0.11

0.28−0.54 1.28± 0.10 0.28−0.60 1.63 ± 0.15 0.28−0.60 1.65 ± 0.19
For negatively and for positively charged pions
produced at an angle of θ = 90◦, the kinetic-energy
dependences of the inclusive invariant differential
cross sections fA are displayed in Figs. 3 and 4,
respectively. The spectra of negatively (positively)
charged pions originating at an angle of θ = 90◦
were measured in the experiment by the left (right)
DAMS arm. The cumulative number ncum changed
from ncum ≈ 0.3 for T = 0.2 GeV pions through
ncum ≈ 0.8 for T = 0.54 GeV pions to ncum ≈ 1.1 for
T = 0.76 GeV pions. The values of the parameter T0

that were obtained by fitting the function in (1) to
these invariant cross sections are quoted in Table 1.

The cross sections for positive-pion production at
an angle of θ = 90◦ that were calculated with the aid
of the FLUKA hadronic-shower generator [13] simi-
larly to the proton cross sections were approximately
twice as large as the corresponding experimental val-
ues, but their dependence on the kinetic energy T was
close to that observed experimentally. In just the same
way as for protons, the agreement between the results
of the calculations and the cross sections determined
experimentally improved with increasing mass num-
ber A of the target nucleus. The results of the anal-
ogous calculation of the cross section for negative-
pion production at an angle of θ = 90◦ showed still
more pronounced deviations from experimental data.
The calculation of the cross sections for π±-meson
production at an angle of θ = 90◦ on the basis of the
HEISHA hadronic-shower generator [17] could not
reproduce even the character of the kinetic-energy
dependence of the cross sections determined exper-
imentally.

An investigation of the shape of the inclusive spec-
tra of negative pions produced at an angle of θ =
90◦ has revealed that the values of the parameter T0

for these spectra in π−Al and π−Cu interactions are
close to the values of T0 for the spectra of secondary
protons in the region of the kinetic energies of these
hadrons that was studied here. For energies in excess
of T � 0.28 GeV, the values of the parameter T0 for
the spectra of negative pions and protons agree within
the errors for all targets used in the experiment being
discussed.
P

In the T region studied here, the values of the
parameter T0 for the inclusive spectra of positively
charged secondary pions differed from the corre-
sponding values of T0 both for the spectra of sec-
ondary protons and for the spectra of negatively
charged secondary pions and increased considerably
in going over from the light nucleus of Be to the heav-
ier nuclei of Al and Cu. Statistics of the experiment
were not sufficient for studying the dependence of
T0 on T for comparatively high energies of positive
pions. Upon an increase in the lower boundary of the
T region to 0.28 GeV, the values of T0 decreased, but
they remained about 25% greater than the value of T0

for the spectra of negatively charged secondary pions
in the corresponding region of T , this difference being
greater than two measurement errors.

The results of a comparative analysis of the shapes
of the inclusive spectra of protons and positive pions
produced at an angle of θ = 90◦ are in qualitative
agreement with the results deduced in [18, 19] from
an analysis of the shapes of the inclusive spectra mea-
sured with a high statistical accuracy at the ISTRA-
3 facility for protons and positively charged pions
originating from π−A interactions at a considerably
lower momentum of primary negative pions (pbm =
1.5 GeV/c) and having kinetic energies on the same
order of magnitude as in the experiment being dis-
cussed. In particular, it was stated in [18, 19] that,
even forT > 0.4GeV, the values of T0 for the inclusive
spectra of positively charged pions produced at an
angle of θ = 118◦ in π−16O and π−Cu interactions
were about 12 to 13% greater than the values of T0

for the inclusive spectra of protons formed at an angle
of θ = 110◦, this being approximately equal to two
measurement errors.

The experimental values of the ratio Rf (π+/π−)
of the invariant cross sections for the inclusive pro-
duction of positively and negatively charged pions for
−0.1 < cos θ < 0.1 are given in Table 2. For π−Al
and π−Cu interactions, the values of Rf (π+/π−)
increased significantly upon going over from pion ki-
netic energies in the region T < 0.28 GeV to those in
the region T > 0.28 GeV.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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It is natural to assume that an increase in the
parameter T0 for the inclusive spectra of positively
charged secondary pions originating at an angle
of θ = 90◦ as the target mass number A becomes
greater is associated, to a considerable extent, with
the fact that the absorption of T < 0.4 GeV positively
charged pions by correlated groups of intranuclear
nucleons is enhanced with increasing A. The pos-
sible effect of such processes on the behavior of the
spectra of positively charged secondary pions for
T < 0.4GeV is determined by the character of the de-
pendence of the cross section for the process π+d→
pp on the kinetic energy of the positively charged
pion involved (see Fig. 5, where this dependence is
plotted on the basis of the compilation of data from
[20]). The effect of such processes on the behavior
of the spectra of negatively charged pions can be
masked by the distinctions between the mechanisms
of specific reactions of intranuclear absorption of
unlikely charged low-energy pions [21, 22] and by the
shift of the negative-pion spectrum with respect to
the positive-pion spectrum toward lower energies of
the secondaries because of the Coulomb nuclear field
(especially for the rather heavy nucleus of Cu) [23].

The results presented in [11] and obtained by
studying the experimental data of the exposure in
question on the invariant differential cross sections for
the inclusive production of positively and negatively
charged pions at an angle of θ = 60◦ in π−Be inter-
actions are compatible with the above assumption.
The values of the parameter T0 that were deduced
by fitting the function in (1) to these cross sections
for T > 0.4 GeV were considerably smaller than its
values at lower T . The experimental spectra of posi-
tively and negatively charged pions that originate at
an angle of θ = 60◦ from π−Al and π−Cu interactions
were described much more poorly by the dependence
in (1). Statistics of the experiment were not sufficient
for studying the structure of these spectra.

For Be, Al, and Cu target nuclei, the ratios of the
yields of protons to the yields of positively charged
pions, R(p/π+), at identical values of secondary-
hadron momenta in the range 0.6 < p < 0.85 GeV/c
at production angles satisfying the condition−0.10 <
cos θ < 0.15, under which secondary hadrons are ef-
ficiently recorded by the DAMS, were 12.0 ± 1.9,
14.7 ± 2.5, and 19.1 ± 3.5, respectively.

In the range 0.25 < cos θ < 0.30, the values of
the ratio R(p/π+) were less by a factor greater than
2. Thus, the measured value of the ratio R(p/π+)
increased sharply with decreasing cos θ upon go-
ing over to the region cos θ < 0.1, where the proton
cumulative number ncum is greater than unity and
where the interaction on a free nucleon is forbidden.
That, at identical momenta of secondary hadrons, the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 5. Cross section for the process π+d→ pp versus
the kinetic energy of the positive pions involved according
to the compilation of data from [20] (closed circles).

yield of pions is suppressed in relation to the yield
of cumulative protons is naturally explained within
the concept of short-range dynamical correlations
between intranuclear nucleons as a source of cumu-
lative hadrons [5]. Dynamical correlations between
intranuclear nucleons must arise owing to the exper-
imentally established fact that, at internucleon dis-
tances less than some 0.5 fm, the two-nucleon po-
tential features a strong repulsive component [24].

That processes where slow positively charged pi-
ons originating predominantly from the rescattering
of secondaries are absorbed by correlated pairs of
intranuclear nucleons are essential for the production
of cumulative hadrons was demonstrated both for
hadron–nucleus [25] and for neutrino–nucleus [26]
interactions at projectile energies below 10 GeV. By
studying the experimental data of the exposure under
discussion on the spectra of secondary pions having
low kinetic energies and originating at an angle of θ =
90◦ from π−A interactions at a momentum of pbm =
43 GeV/c, some pieces of evidence were obtained for
the significance of such processes at higher primary-
hadron momenta, in which case the probability of the
production of secondary hadrons in projectile interac-
tion with correlated groups of intranuclear nucleons
becomes higher [5].

It is interesting to note that the results quoted
in Table 2, which were obtained by studying the ra-
tio Rf (π+/π−) at the kinetic-energy values indi-
cated above, are in qualitative agreement with the
results deduced in [26] from an analysis of the ratio
R(π+/π−) of the yields of p < 1 GeV/c positively
and negatively charged pions from the interaction of
neutrinos with heavy nuclei at the mean energy of pri-
mary neutrinos that is equal to 6 GeV. Despite rather
2
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Table 3. Values of αAl/Be, αCu/Be, and αCu/Al determined by formula (3) for the invariant cross sections in the form (2)
that characterize the production of secondary protons at angles of θ = 90◦ and 60◦ and of secondary pions at an angle of
θ = 90◦ in π−A interactions at pbm = 43 GeV/c

αAl/Be αCu/Be αCu/Al

θp = 90◦, T = 0.18–0.54 GeV

1.51 ± 0.06 ± 0.05 1.48 ± 0.04 ± 0.06 1.43 ± 0.09 ± 0.07

θp = 60◦, T = 0.18–0.64 GeV

1.36 ± 0.04 ± 0.04 1.30 ± 0.03 ± 0.05 1.23 ± 0.06 ± 0.06

θπ− = 90◦, T = 0.22–0.54 GeV

1.04 ± 0.08 ± 0.04 1.03 ± 0.05 ± 0.05 1.02 ± 0.05 ± 0.06

θπ+ = 90◦, T = 0.22–0.54 GeV

1.01 ± 0.08 ± 0.04 0.94 ± 0.05 ± 0.07 0.86 ± 0.12 ± 0.10
large experimental errors, it can be stated that the
ratio R(π+/π−) measured with the SKAT chamber
at IHEP [26] exceeded unity and increased by a factor
not less than 1.5 in response to an increase in T in
the range 0.28 < T < 0.7 GeV, this being so both in
events featuring no cumulative protons and in events
where such protons were recorded. For T < 0.2 GeV,
this ratio in events where cumulative protons were
present sharply decreased to values below unity.

4. INVESTIGATION
OF THE A DEPENDENCE

OF THE INVARIANT INCLUSIVE CROSS
SECTIONS FOR SECONDARY PROTONS

AND PIONS

The invariant cross section f (f = fAA) for inclu-
sive hadron production on nuclei as a function of the
target mass number is usually expressed in terms of a
power-law function featuring an exponent α:

f = f0A
α. (2)

For each hadron, the values of αAl/Be, αCu/Be, and
αCu/Al were determined over the kinetic-energy re-
gion that is the most accessible in the cases of all
the nuclei under study. This was done by using the
formula

αA1/A2
= ln(fA1/fA2)/ln(A1/A2). (3)

The results are quoted in Table 3, along with the sta-
tistical and the systematic error of the measurements
for each value of α.

In accord with the results of other measurements
[15, 27], the values of the exponents in the A depen-
dence (2) of the invariant cross sections for inclusive
proton production exceeded unity and increased with
increasing angle θ of secondary-proton production
and, hence, with increasing cumulative number ncum
PH
of secondary protons. Despite the proximity of the
values of the parameter T0 for the inclusive spectra
of protons and negatively charged pions originating
at an angle of θ = 90◦ from π−A interactions, the
values of α ≈ 1 for the invariant cross sections for
the inclusive production of negatively charged pions
according to the value of their cumulative number
ncum were, however, less than the values of α not
only for the cross sections for protons produced at the
same angle but also for the cross sections for protons
produced at an angle of θ = 60◦.

Within the errors, the values of α that are pre-
sented in Table 3 for protons agree with the esti-
mates of α that were obtained according to data
from [15] at pbm = 5 GeV/c. However, the values of
α both for protons and for positively charged pions
are in excess of the estimates of α from [18, 19]
at pbm = 1.5 GeV/c. That, at low energies of the
hadron incident on the target nucleus, the growth of
the cross sections for the production of cumulative
nucleons and pions with increasing A is moderated
because of Glauber rescatterings was indicated by
Strikman and Frankfurt [5], who analyzed theoreti-
cally the scattering of particles on nuclei, relying on
the Gribov–Feynman spacetime pattern and on the
pair-correlation approximation.

The accuracy of measurements in the experiment
being discussed is not sufficient for studying the be-
havior of α as a function of T in the case of the
invariant inclusive cross sections for the production
of positively and negatively charged pions at an angle
of θ = 90◦. It should be noted, however, that, in the
case of the invariant cross sections for the inclusive
production of negatively charged pions having ki-
netic energies in excess of 0.28 GeV and arising in
the region −0.1 < cos θ < 0.1, the values of α were
nearly identical to those presented in Table 3 for neg-
atively charged pions. At the same time, the values
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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of α for positively charged pions of kinetic energies
higher than 0.28 GeV for −0.1 < cos θ < 0.1 were
greater than those presented in Table 3; forT = 0.28–
0.64 GeV, they were

αAl/Be = 1.21 ± 0.07; αCu/Be = 1.14 ± 0.05;

αCu/Al = 1.05 ± 0.11.

The A dependence of the inclusive cross sections
for negatively charged pions having momenta in the
range 100–500 MeV/c and originating at angles of
θ = 110◦–155◦ from π−Al and π−Pb interactions at
pbm = 4.4 GeV/c was explored at ITEP [28]. As a
result, it was shown that α greatly depends on the
secondary-pion momentum. For π−-meson momen-
ta in the regions p ≤ 120 MeV/c and p ≥ 350 MeV/c
(T ≥ 237 MeV), α ≈ 1. There is a minimum at the
momenta of negatively charged secondary pions in
the range 200–250 MeV/c, where α ≈ 0.7. By com-
paring their results with the results that were deduced
by studying the A dependence of the yields of neg-
atively charged pions at an angle of θ = 168◦ from
proton–nucleus interactions at pbm = 8.9GeV/c [29]
and which have a similar character, the authors of
[28] arrived at the conclusion that the irregularities in
the A dependence are determined by the features of a
secondary particle.

The results in Table 3 of the present article that
were obtained by measuring the A dependence of the
inclusive cross sections for negatively charged pions
having kinetic energies in excess of 0.22 GeV (the
corresponding momenta of negatively charged pions
are p > 330 MeV/c) and originating at an angle of
θ = 90◦ from π−A interactions at pbm = 43 GeV/c
agree with the results from [28] for the correspond-
ing momenta of negatively charged pions. Further, a
comparison with the results presented in [28] reveals
that, for the inclusive cross sections describing π+-
meson production at an angle of θ = 90◦ that were
measured in the exposure under analysis in π−Al and
π−Cu interactions, the character of the momentum
dependence of α is similar to the character of the
A dependence of the inclusive cross sections for the
production of negatively charged pions of momenta
in excess of 200 MeV/c [28]. The region of a min-
imum in the momentum (or kinetic-energy) depen-
dence of α for positively and negatively charged pions
is determined by the region where the processes of
secondary-pion absorption are operative. The upper
momentum (or kinetic-energy) boundary of this re-
gion for negatively charged pions is somewhat shifted
toward lower momenta with respect to the corre-
sponding boundary for positively charged pions. It
should be noted that the values of αAl/Be and αCu/Be

for positively charged pions of kinetic energy in excess
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of 0.28 GeV are greater than unity, which suggests
that, in the kinematical region being considered, the
contribution to the cross section for the production of
positively charged pions on medium-mass and heavy
nuclei from processes of their multiplication is en-
hanced in relation to the contribution of such pro-
cesses to the cross section for the formation of neg-
atively charged pions. The behavior of α for pions
as a function of kinetic energy corresponded to the
behavior of the measured ratio Rf (π+/π−) of the
invariant cross sections for the inclusive production
of positively and negatively charged pions for −0.1 <
cos θ < 0.1 (see Table 2).

The experimental-data sample quoted above indi-
cates that, in the case where secondary pions of low
kinetic energy are produced on medium-mass and
heavy nuclei, the special features of their inclusive
spectra and the A dependences of the inclusive cross
sections are determined by those properties of the
intranuclear structure that manifest themselves in the
interaction of secondaries with these nuclei.

5. INVESTIGATION OF WIDE
CORRELATIONS FOR LIKELY CHARGED

PAIRS OF HADRONS

In studying wide correlations for pairs of likely
charged hadrons, the correlation function for a pair
was defined as [2–4] RhLhR

2 = σinF
hLhR/(F hLF hR),

where the functions F hL and F hR are the invari-
ant cross sections for the inclusive production of the
hadrons of the pair that were recorded by, respectively,
the left and the right DAMS arm and F hLhR is the
double-inclusive invariant cross section for the pro-
duction of hLhR pairs in those regions of TL,R and
cos θL,R where the invariant inclusive cross sections
F hL and F hR were specified. For the normalization of
each function in π−Be interactions, use is made of the
cross section measured at the SIGMA facility [30] for
the inelastic interaction of negatively charged pions
with Ве nuclei at a momentum of 40 GeV/c; in the
case of π−Al and π−Cu interactions, the cross sec-
tions for the inelastic interaction of 60-GeV/c neg-
atively charged pions with the corresponding nuclei
were taken for this purpose from [31].

In the following, hadrons that are recorded in the
experiment by the left (right) DAMS arm are referred
to as left (right) hadrons. The type of a pair is labeled
with the index hLhR—that is, the index of the left
hadron always comes first.

It should be noted that, in the region −0.10 <
cos θ < 0.25, the detection efficiencies of the facility
are smooth functions showing rather slow variations
in magnitude with T and cos θ for secondary protons
of kinetic energy in the range 0.16 < T < 0.6 GeV
2
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Table 4. Correlation functions for proton–proton pairs
detected in π−A interactions at pbm = 43 GeV/c

Target TL, GeV TR, GeV Rpp
2

Be 0.16–0.64 0.16–0.54 2.00 ± 0.19

0.16–0.30 0.28–0.54 3.32 ± 0.60

Al 0.16–0.70 0.18–0.60 2.10 ± 0.20

0.16–0.30 0.28–0.60 2.62 ± 0.48

Cu 0.16–0.70 0.18–0.60 2.71 ± 0.24

0.16–0.30 0.28–0.60 3.23 ± 0.50

for a Be target and of kinetic energy in the range
0.18 < T < 0.6 GeV for a Cu target, as well as for
secondary pions of kinetic energy in the range 0.20 <
T < 0.76 GeV for a Be target and of kinetic energy
in the range 0.22 < T < 0.76 GeV for a Cu target.
The same is true for protons of kinetic energy in
the range 0.18 < T < 0.7 GeV that were recorded
at angles satisfying the condition 0.35 < cos θ < 0.65
and for pions of kinetic energy in the range 0.28 <
T < 0.76 GeV that were recorded at angles satisfy-
ing the condition 0.35 < cos θ < 0.70 for Be targets
and the condition 0.35 < cos θ < 0.75 for the heavier
target nucleus. Pairs of likely charged hadrons were
recorded at angles of divergence ψ that satisfy the
inequality cosψ < −0.5.

For pairs of likely charged secondary hadrons
recorded in π−A interactions, the correlation func-
tions RhLhR

2 are given in Tables 4–6, which also
indicate the domains of the functions in the kinetic
energies of the hadrons. For all the samples of
hadron pairs under analysis, the emission angles of
right protons and positively charged pions and of
left negatively charged pions satisfied the condition
−0.15 < cos θ < 0.25. Left protons of the pairs were
selected at the values of cos θ from the range 0.35 <
cos θ < 0.65. In order to enlarge statistics, the pion
partners from π+p and ππ pairs were selected in
the range 0.35 < cos θ < 0.75. In response to the
reduction of the upper boundary of the angular range
to cos θ = 0.70, the correlation functions for the
corresponding samples of π+p and ππ pairs produced
in π−Bе interactions changed insignificantly. Ta-
bles 4–6 display the statistical errors in determining
the correlation functions. The systematic errors in
determining RhLhR

2 , which were associated primarily
with the procedure for separating events of hadron-
pair production, did not exceed 16%. That inelastic
cross sections measured in different experiments and
at different momentum values were used to normalize
the correlations functions for the various nuclei could
lead to a systematic bias of the resulting value of
PH
Table 5. Correlation functions for pπ+ and π+p pairs
detected in π−A interactions at pbm = 43 GeV/c

Target TL, GeV TR, GeV RhLhR
2

pπ+

Be 0.16–0.64 0.20–0.76 1.78 ± 0.21

0.16–0.64 0.28–0.76 1.92 ± 0.27

Al 0.16–0.70 0.20–0.76 1.76 ± 0.22

0.16–0.70 0.28–0.76 1.88 ± 0.28

Cu 0.16–0.70 0.22–0.76 2.43 ± 0.32

0.16–0.70 0.28–0.76 2.58 ± 0.39

π+p

Be 0.35–0.70 0.16–0.54 1.32 ± 0.23

0.40–0.70 0.16–0.54 1.43 ± 0.29

Al 0.35–0.70 0.18–0.60 1.50 ± 0.23

0.40–0.70 0.18–0.60 1.59 ± 0.28

Cu 0.35–0.70 0.18–0.60 1.43 ± 0.24

0.40–0.70 0.18–0.60 1.49 ± 0.28

RhLhR
2 for Al and Cu with respect to Be, but this

effect was disregarded here. A comparison of the
cross sections for inelastic π−Cu interactions at a
momentum of 60 GeV/c [31] with those at momenta
of 40, 50, and 60 MeV/c [30] gives sufficient grounds
to believe that the procedure used for a normalization
can reduce the correlation functions for Al and Cu by
not more than 8%.

The spectra of protons of pp pairs formed in π−A
interactions and recorded by the right DAMS arm
in the range −0.15 < cos θ < 0.25 are displayed in
Fig. 6 in a form not corrected for the acceptance of
the facility. If protons formed upon the dissociation
of strongly correlated groups of intranuclear nucle-
ons make a significant contribution to this sample,
it follows from [5] that the universality of the spectra
must be violated owing to a transition at momenta
close to 0.8–0.9 GeV/c (the corresponding values
of the kinetic energy T are close to 0.30–0.36 GeV)
from the region dominated by pair correlations to the
region dominated by triple correlations. It is worth
noting that the distributions shown in Fig. 6 are
compatible with such a violation. It is of interest to
study the behavior of these spectra on the basis of
vaster experimental statistics.

The measured values of Rpp
2 (Table 4) suggest

the correlated production of pp pairs formed in the
kinematical region of π−A interactions that is studied
here, the degree of correlation increasing somewhat
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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for the heaviest nucleus explored here (Cu). Evidence
obtained in the experiment for an increase in Rpp

2
(it is especially pronounced for the light nucleus of
Be) upon selecting pp pairs featuring TR ≥ 0.28 GeV
right protons and 0.16 ≤ TL ≤ 0.30 GeV left protons
is worthy of special note. The selection of such events
made it possible to increase, in the resulting sample,
the number of events involving a right proton from
deep-inelastic interactions, on one hand, and to reject
events in which the sum of the cumulative numbers of
the protons of the pair, npp

cum, is much greater than 2,
on the other hand. A statistically significant observa-
tion of such an effect would favor the pair-correlation
hypothesis [5], since the presence of two nucleons
diverging at a large angle that meet the condition
npp
cum ≤ 2 can be explained as the result of interaction

with a pair correlation. It was indicated in [5] that
searches for pair correlations are feasible only for light
nuclei, where the mean number of interactions of the
incident hadron is small and where the probability of
the rescatterings and absorption of secondary nucle-
ons is lower.

The values of the correlation functions Rpπ+

2 for
pπ+ pairs (see Table 5) suggest their correlated pro-
duction in the kinematical region being studied. Ev-

idence indicating that the correlation functions Rpπ+

2

andRpp
2 for hadron pairs featuring identically specified

left protons approach each other as the energy of the
right pion increases (that is, as we go over to right-
pion momenta closer to right-proton momenta) has
been obtained, which is an argument in favor of the
common mechanism of formation of the bulk of these
pairs.

That, for hadron pairs involving identically spec-
ified right protons, measurements yield smaller val-

ues of the correlation function Rπ+p
2 for π+p pairs

(Table 5) than of Rpp
2 must correspond to a smaller

contribution to the cross sections for π+-meson pro-
duction at angles 40◦ < θ < 70◦ in the momentum
range under study from processes of the correlated
production of π+p pairs in relation to the contribution
of processes of the correlated production of two or
more protons to the cross section for proton produc-
tion at the same angles.

Table 6 displays the correlation functions for π+π+

and π−π− pairs. For pairs of likely charged pions
produced on the light nucleus of Be, the correlation
functions Rπ+π+

2 and Rπ−π−
2 measured over the en-

tire kinematical region accessible to investigation are
close to unity and take the minimum values among
all correlation functions RhLhR

2 measured in the ex-
periment being discussed. Upon going over to the
heavier target nuclei, the correlation functions Rππ

2
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Table 6. Correlation functions for π+π+ and π−π− pairs
detected in π−A interaction at pbm = 43 GeV/c

Target TL, GeV TR, GeV RhLhR
2

π+π+

Be 0.35–0.70 0.20–0.76 1.27 ± 0.26

0.35–0.70 0.28–0.76 1.40 ± 0.34

Al 0.35–0.70 0.20–0.76 1.59 ± 0.30

0.35–0.70 0.28–0.76 1.60 ± 0.36

Cu 0.35–0.70 0.22–0.76 1.77 ± 0.39

0.32–0.76 0.28–0.76 1.98 ± 0.44

π−π−

Be 0.30–0.70 0.20–0.76 1.16 ± 0.16

0.30–0.70 0.28–0.76 1.27 ± 0.33

Al 0.30–0.70 0.20–0.76 1.73 ± 0.23

0.30–0.70 0.28–0.76 1.77 ± 0.32

Cu 0.30–0.70 0.22–0.76 1.58 ± 0.27

0.30–0.70 0.28–0.76 1.74 ± 0.36

increase, which is compatible with the concept sug-
gesting that the relative contribution of deep-inelastic
hadron production to the cross sections for the pro-
duction of hadrons becomes greater with increasing
A [16, 32]. In order to compare the mechanisms of
the deep-inelastic production of protons and pions, it

is necessary to study the correlation functions Rpπ+

2 ,

Rπ+p
2 , and Rππ

2 at pion kinetic energies in excess of
0.4 GeV—that is, at momenta close to the momen-
ta of protons recorded in the corresponding angular
regions. The upper boundary (in cos θ) of the range
−0.15 < cos θ < 0.25 should be reduced at least to
cos θ = 0.15.

An analysis revealed that an investigation of wide
correlations of proton pairs in π−Be interactions on
the basis of vaster experimental statistics would be
the most informative for exploring the mechanism of
the deep-inelastic production of proton–proton pairs.
The accumulation of such statistics would also be
of interest from the point of view of studying the
mechanism of production of proton–proton pairs in
diffraction-like events of π−Be interactions, where
the forward detector of the facility recorded only a fast
negatively charged pion at low values of the square
of the momentum transfer to this meson [11]. It is
also interesting to collect vaster statistics of events
of dp-pair production that were recorded in the ex-
posure being studied. Additionally, it should be noted
that a few events featuring the production of dp pairs
where the momenta of the left deuteron were higher
2
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Table 7. Correlation functions for pp, pπ+, and π+π+ pairs according to calculations involving a simulation of their
production in π−A interactions at pbm = 43 GeV/c on the basis of the FLUKA hadronic-shower generator of the
GEANT package

Target TL, GeV TR, GeV cos θR RhLhR
2

pp

Be 0.16–0.70 0.16–0.60 −0.15–0.35 1.20 ± 0.13

0.16–0.70 0.16–0.60 −0.15–0.25 1.48 ± 0.15

0.16–0.70 0.16–0.60 −0.15–0.25 1.12 ± 0.12*

0.16–0.70 0.16–0.60 −0.15–0.15 1.48 ± 0.17

Al 0.16–0.70 0.18–0.60 −0.15–0.35 1.39 ± 0.10

0.16–0.70 0.18–0.60 −0.15–0.25 1.35 ± 0.10

0.16–0.70 0.18–0.60 −0.15–0.15 1.36 ± 0.13

Cu 0.16–0.70 0.18–0.60 −0.15–0.35 1.58 ± 0.09

0.16–0.70 0.18–0.60 −0.15–0.25 1.59 ± 0.10

0.16–0.70 0.18–0.60 −0.15–0.25 1.53 ± 0.09*

0.16–0.70 0.18–0.60 −0.15–0.15 1.63 ± 0.11

pπ+

Be 0.16–0.70 0.20–0.76 −0.15–0.25 1.41 ± 0.12

Al 0.16–0.70 0.20–0.76 −0.15–0.25 1.36 ± 0.11

Cu 0.16–0.70 0.22–0.76 −0.15–0.25 1.54 ± 0.12

π+π+

Be 0.35–0.70 0.20–0.76 −0.15–0.25 0.83 ± 0.09

Al 0.35–0.70 0.20–0.76 −0.15–0.25 1.05 ± 0.09

Cu 0.35–0.70 0.22–0.76 −0.15–0.25 1.20 ± 0.11
than 0.8 GeV/c were recorded among diffraction-like
events of π−Be interactions [13]. In estimating the
available resources, it should be borne in mind that
the use of a beryllium target in the exposure exclu-
sively would make it possible to enlarge statistics of
the correlation sample by a factor of 5, provided that
statistics of the L and the R sample were doubled.

The correlation functions for pp, pπ+, and π+π+

pairs were also estimated by simulating, on the basis
of the FLUKA hadronic-shower generator [13] of the
GEANT package [10], the processes of their produc-
tion that accompany the passage of 43 GeV/c nega-
tively charged pions through nuclear targets used in
the experiment being discussed. The resulting esti-
mates are quoted in Table 7. In order to reduce the
machine time in performing this simulation, events
of hadron-pair production were specified as those
that featured, among its secondaries, two hadrons
occurring within the z acceptance of the DAMS and
possessing the following properties: (i) their kinetic
PH
energies and emission angles with respect to the
momentum of the incident negatively charged pion
were in the region studied experimentally, and (ii)
the difference of the coordinates y of their produc-
tion vertices in the target were less than 10, 6, and
4 mm for Be, Al, and Cu, respectively, in accordance
with the procedures used to reconstruct the tracks of
charged particles and to select events of hadron-pair
production in π−A interactions [7, 9]. In addition to
the estimates of Rpp

2 in the angular range −0.15 <
cos θ < 0.25 for recording right protons of pp pairs,
which was studied experimentally, Table 7 also dis-
plays values of Rpp

2 calculated for regions containing
smaller and larger emission angles (−0.15 < cos θ <
0.35 and −0.15 < cos θ < 0.15, respectively) of right
protons of these pairs.

The correlation-function values obtained as the
result of model calculations are less than those that
were determined experimentally. The greatest under-
estimation is observed for pp and pπ+ pairs produced
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 6. Spectra of protons that were recorded by the
right DAMS arm and which belong to pp pairs formed in
π−Be, π−Al, and π−Cu interactions at pbm = 43GeV/c.
The emission angles of right (left) protons of these
pp pairs satisfied the condition −0.15 < cos θ < 0.25
(0.35 < cos θ < 0.65).

in π−Cu interactions. In Table 7, the estimates of
the correlation function Rpp

2 in π−Be interactions for
a few upper boundaries of the angular range of de-
tection of right protons belonging to pp pairs show
an about 25% increase when the upper boundary in
question is changed from cos θR = 0.35 to cos θR =
0.15, but these values remain significantly smaller
than their experimental counterparts. In the simula-
tion for a beryllium target, the production of pp pairs
in the kinematical region corresponding to that which
was studied experimentally occurs predominantly in
the interactions of secondaries. At the same time, the
correlation functions Rpp

2 obtained for copper targets
from a simulation of the production of pp pairs without
taking into account the strong interaction of secon-
daries are consistent, within the errors, with their val-
ues computed with allowance for these interactions.
The values of Rpp

2 that were obtained for the case
where the mechanism of strong interactions is sup-
pressed for secondaries are labeled with an asterisk
in Table 7. In the simulation of π−A interactions,
the calculation of the correlation functions for pairs
of secondary hadrons with allowance for all physical
effects arising as these hadrons traverse DAMS de-
tectors and an investigation of the dependence of the
correlation functions on target dimensions with com-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
puters available to the present author would require
too much machine time.

6. CONCLUSION

First of all, it should be noted that the results
obtained by studying the shapes of the measured
inclusive invariant spectra of secondary protons orig-
inating at angles of θ = 90◦ and 60◦ from π−Be,
π−Al, and π−Cu interactions induced by an incident
negatively charged pion of a momentum of 43 GeV/c
and the analogous results for negatively and positively
charged secondary pions originating at an angle of
θ = 90◦ from the same interactions, as well as the
results of an investigation of the A dependence of the
cross sections for their production, are in fairly good
agreement with the results of other experiments per-
formed in similar regions of the kinematical variables
of secondary hadrons at lower projectile momenta.
The results deduced from an analysis of experimen-
tal data and presented in this article indicate that,
for secondary pions of low kinetic energy that are
produced on medium-mass and heavy nuclei, special
features in the behavior of their inclusive spectra and
of the A dependence of their inclusive cross sections
are determined by the properties of the intranuclear
structure that are manifested in the interaction of
secondaries with these nuclei.

An investigation of wide correlations for pairs of
likely charged secondary hadrons has revealed that
the production of pp and pπ+ pairs is correlated, their

correlation functionsRpp
2 andRpπ+

2 approaching each
other with increasing kinetic energy of the pions. This
behavior of the correlation functions suggests that
the production of the bulk of such pairs is governed
by a common mechanism. The correlation functions
for pairs of likely charged pions—they were mea-
sured over the entire kinematical region accessible
to investigation—were close to unity in π−Be inter-
action; upon going over to the heavier target nuclei,
they increased, which is compatible with the concept
that the relative contribution of the deep-inelastic
production of hadrons to their cross section increases
with increasing mass numberA of the target nucleus.
In order to compare the mechanisms of the deep-
inelastic production of protons and pions, it is nec-
essary to study, on the basis of vaster experimental
statistics, wide correlations for proton and pion pairs
at kinetic energies of the pions in excess of 0.4 GeV.

From an analysis of experimental data, it follows
that an experimental investigation of the interaction
of high-energy hadrons with light nuclei is the most
informative for studying the mechanism of the deep-
inelastic production of proton–proton pairs. It would
be of interest to confirm evidence obtained in the
2
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experiment that, in π−Be interactions, the correlation
function Rpp

2 increases considerably for pp pairs such
that the contribution of events where the sum of the
cumulative numbers of the protons of the pair satisfies
the condition npp

cum ≤ 2 is enhanced. An observation
of this effect, should it be statistically significant,
would be evidence in favor of the pair-correlation
hypothesis [5].
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of Theoretical and Experimental Physics, Moscow,
1982).

20. G. Jones, Preprint TRI-PP-81-62 (Vancouver,
1981).

21. V. M. Asaturyan et al., Yad. Fiz. 38, 684 (1983) [Sov.
J. Nucl. Phys. 38, 408 (1983)].

22. G. R. Gulkanyan et al., Preprint No. 962(12)-87, EFI
(Yerevan Physics Institute, Yerevan, 1987).

23. V. S. Barashenkov and V. D. Toneev, Interactions
of High-Energy Particles and Nuclei with Nuclei
(Atomizdat, Moscow, 1972).

24. R. I. Jibuti,Dynamical Correlations of Nucleons in
Atomic Nucleus (Metsniereba, Tbilisi, 1981).

25. O. B. Abdinov et al., Preprint No. E1-84-421, OIYaI
(Joint Inst. for Nuclear Research, Dubna, 1984).

26. V. V. Ammosov et al., Yad. Fiz. 43, 1186 (1986) [Sov.
J. Nucl. Phys. 43, 759 (1986)].

27. Yu. M. Antipov et al., Yad. Fiz. 53, 439 (1991) [Sov.
J. Nucl. Phys. 53, 274 (1991)].

28. Yu. D. Bayukov et al., Preprint ITÉF-30 (Institute
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Abstract—The quark structure of φ(1020) and f0(980) is studied on the basis of data on the radiative
decays φ(1020) → γπ0, γη, γη′, γa0(980), γf0(980) and f0(980) → γγ. The partial widths are calculated
under the assumption that all the mesons under consideration are qq̄ states: φ(1020) is a dominantly ss̄ state
(nn̄ component contributes not more than 1%); η, η′, and π0 are standard qq̄ states, η = nn̄ cos θ− ss̄ sin θ
and η′ = nn̄ sin θ + ss̄ cos θ with θ � 37◦; and f0(980) is a qq̄ meson with the flavor wave function
nn̄ cosϕ+ ss̄ sinϕ. The transition φ→ γπ0 specifies the admixture of the nn̄ component in the φ meson:
it is on the order of 0.5%. We argue that this order of nn̄ value does not contradict data on the decay
φ(1020) → γa0(980). The partial widths calculated for the decays φ→ γη, γη′ are in reasonable agreement
with experimental data. The measured branching-ratio value Br(φ→ γf0(980)) = (3.4± 0.4 +1.5

−0.5)× 10−4

requires 25◦ ≤ |ϕ| ≤ 90◦. For the decay f0(980) → γγ, the agreement with data, Γ(f0(980) → γγ) =
0.28+0.09

−0.13 keV, is attained at either ϕ = 85◦ ± 8◦ or ϕ = −46◦ ± 8◦. A simultaneous analysis of the
decays φ(1020) → γf0(980) and f0(980) → γγ favors the solution with the negative mixing angle of
ϕ = −48◦ ± 6◦, setting f0(980) very close to the flavor octet (ϕoctet = −54.7◦). c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The f0(980) and a0(980) resonances are clue par-
ticles for the systematics of qq̄ states in the range
1000–2300 MeV [1] and for fixing the glueball (see,
e.g., [2–5]). TheK-matrix analysis of meson spectra
[6, 7] on the basis of a combined fit to data of Crys-
tal Barrel [8], GAMS [9], and BNL [10] definitively
supports the qq̄ origin of f0(980) and a0(980). Still,
the other possibilities for the origin of these reso-
nances are actively discussed: accordingly, f0(980)
and a0(980) are exotic states, and such a picture of
f0(980) and a0(980) is presented in detail in [11] (see
the minireview of Spanier and Törnqvist (p. 437) and
the list of references).

According to the K-matrix analysis [4, 6, 7], the
scalar–isoscalar sector (the IJPC = 00++ wave)
is affected by a strong mixing of overlapping reso-
nances. In this way, a decisive role belongs to the res-
onance → real mesons decay processes. In the re-
gion 1000–1800 MeV, there exist four comparatively
narrow resonances—f0(980), f0(1300) {denoted in
the PDG compilation in [11] as f0(1370)}, f0(1500),
and f0(1750)—and the broad state f0(1530+90−250).
According to the K-matrix analysis, the f0(1300),
f0(1500), and f0(1530+90−250) resonances are formed

∗This article was submitted by the authors in English.
1063-7788/02/6503-0497$22.00 c©
as the result of a strong mixing of the lightest scalar
gluonium with the 13P0qq̄ and 23P0qq̄ states.

As was emphasized in [4, 6, 7], it is reasonable
to perform the qq̄-nonet classification in terms of the
K-matrix, or “bare,” poles corresponding to states
“before” the mixing that is caused by the qq̄ state→
real mesons transitions.

In terms of fbare0 , the scalar–isoscalar states of
the basic 13P0qq̄ nonet are fbare0 (720 ± 100) and
fbare0 (1260 ± 30); the fbare0 (720) state is close to the
flavor octet—that is, ϕ � −70◦ [the mixing angle is
determined as f0 = nn̄ cosϕ+ ss̄ sinϕ, where nn̄ =
(uū+ dd̄)/

√
2], while the fbare0 (1260) state is close

to a singlet (ϕ � 20◦). The transitions that are due
to the decay processes f0 → ππ,KK̄, ηη mix the
fbare0 (720) and fbare0 (1260) states with each other,
as well as with the nearby states fbare0 (1235 ± 50),
fbare0 (1600 ± 50), and fbare0 (1810 ± 30) (the orthog-
onality of the coordinate wave functions does not
work in the (qq̄ state)1 → real mesons → (qq̄
state)2 transition). Two of these states are members
of the 23P0qq̄ nonet, and one is a scalar gluonium—
that is either fbare0 (1235) or fbare0 (1600); the K-
matrix analysis cannot definitively tell us which
one. Lattice calculations [12] favor fbare0 (1600) as a
candidate for the glueball. After mixing, we have, in
the IJPC = 00++ wave, four comparatively narrow
2002 MAIK “Nauka/Interperiodica”
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resonances [f0(980), f0(1300), f0(1500), f0(1750)]
and one rather broad state f0(1530+90−250). The broad
state (Γ/2 � 400–500 MeV) appears as the result
of a specific phenomenon that is typical of scalar–
isoscalar states in the region 1200–1600 MeV—that
is, the accumulation of the widths of overlapping res-
onances by one of them [13]. A similar phenomenon
in nuclear physics was discussed in [14]. A fit to data
proves that themain participants of themixing are the
glueball and two qq̄ states belonging to the 13P0qq̄
and 23P0qq̄ nonets whose flavor wave functions
are close to a singlet: the glueball → qq̄(singlet)
transition is allowed, while the glueball→ qq̄(octet)
transition is suppressed. The gluonium–qq̄mixture is
not suppressed according to the 1/N-expansion rules
[15] (see [16] for details). The glueball descendant is a
broad state f0(1530+90−250), which contains about 40–
50% of the gluonium component; the rest is almost
equally shared by f0(1300) and f0(1500).

In addition to the scalar–isoscalar wave, the K-
matrix analysis of the scalar–isovector IJP = 10+
wave was performed in [7], while the analysis of scalar
kaons (IJP = 1

20
+) was performed in [17]; this al-

lowed one to reconstruct the lightest scalar multiplet
13P0qq̄ in terms of bare states [7, 17]. It is as follows:

abare0 (960 ± 30), Kbare0

(
1220+50−150

)
, (1)

fbare0 (720 ± 100), fbare0 (1260 ± 30) ,

ϕ
[
fbare0 (720)

]
= −70◦ +5

◦
−16◦ .

According to the K-matrix analysis, the f0(980)
resonance is the descendant of fbare0 (720 ± 100): the
shift of the bare pole into the region around 1000MeV
is due to the transitions of fbare0 (720 ± 100) into real
two-meson states, ππ and KK̄. As to its origin,
the f0(980) state is a superposition of the states qq̄,
qqq̄q̄, gluonium, KK̄, and ππ, and the wave function
is to be represented as a Fock column. Concerning
the KK̄ and ππ components, one should consider
that only part of the wave function responds to large
meson–meson separations, rmeson > Rconfinement; on
the contrary, the small interquark separations must be
taken into account for the qqq̄q̄ state. As to the glue-
ball admixture in f0(980), the relative suppression of
the decay J/ψ → γf0(980) [11] tells us that it is not
large.

Based on the results of the K-matrix analysis [4,
6, 7], it is natural to check whether the qq̄ compo-
nent dominates f0(980). In Section 3, we calculate
the φ(1020) → γf0(980) decay amplitude, assuming
f0(980) to be a qq̄ system: the calculated ampli-
tude describes data for the branching ratio, Br(φ→
PH
γf0(980)) = (3.4± 0.4 +1.5−0.5)× 10−4 [11, 18, 19], with
the following mixing angle for the ss̄ and nn̄ compo-
nents:

ψflavor (f0(980)) = nn̄ cosϕ+ ss̄ sinϕ, (2)

25◦ ≤ |ϕ| ≤ 90◦.

The width Γ(φ→ γf0(980)) depends strongly on the
radius squared of f0(980), R2f0(980)

. For R2f0(980)
≥

12 GeV−2 (0.47 fm2), the data require |ϕ| ∼ 25◦–45◦,
while, for R2f0(980)

∼ 8 GeV−2 (0.32 fm2), one needs
|ϕ| ∼ 40◦–75◦.

The estimation of radii of the scalar–isoscalar
mesons that was performed by using GAMS data
for π−p→ π0π0n [9] shows that the qq̄ component
in f0(980) is comparatively compact, R2f0(980)

= 6 ±
6 GeV−2 [20]. Based on GAMS data, it is therefore
reasonable to set

6 ≤ R2f0(980)
≤ 12 GeV−2, (3)

which favors large values of the mixing angle.
In what is concerned with the scheme under inves-

tigation, it is of prime importance to verify whether
the transition φ(1020) → γf0(980) → γπ0π0 de-
scribes the measured π0π0 spectrumwithin the Flatté
formula [21], with the parameters determined by
hadronic reactions: in Section 4, we calculate the
π0π0 spectrum using the parametrization proposed
by Bugg, Sarantsev, and Zou [22, 23] and obtain
reasonable agreement with data. The calculations
of the spectrum indicate the existence of significant
systematic errors in the φ(1020) → γf0(980) reso-
nance signal, which are caused by the background
contribution.

The radiative decay f0(980) → γγ provides us
with another source of information about the content
of f0(980): the calculation of the f0(980) → γγ partial
width was performed in [24] under the assumption
of the qq̄ structure of f0(980). It was emphasized in
[25], however, that the extraction of the f0(980) → γγ
signal from the measured γγ → ππ spectra involves
a difficulty associated with a strong interference
between the resonance and the background, which
leads to uncontrollable errors. The partial width
Γ(f0(980) → γγ) = 0.28+0.09−0.13 keV obtained in [26]
is one-half as great as the averaged value reported
previously (0.56± 0.11 keV [27]). In Section 5, we re-
analyze the decay f0(980) → γγ using the Boglione–
Pennington value for the width (0.28+0.09−0.13 keV),
together with the constraint on the mean radius
squared of f0(980) [20] (R2f0(980)

≤ 12 GeV−2). This
provides two possible intervals for the nn̄–ss̄ mixing
angle:

f0(980) → γγ : i) 80◦ ≤ ϕ ≤ 93◦, (4)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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ii) − 54◦ ≤ ϕ ≤ −42◦.

In Section 6, we calculate the partial widths with
respect to the decays φ→ γη, γη′, γπ0, γa0(980) on
the basis of the same technique as that used for
φ(1020) → γf0(980) and with the same parametriza-
tion of the φ-meson wave function. The calculation
of the transition φ→ γπ0 allows us to determine the
nn̄ admixture in the φ meson: within the definition
ψflavor (φ(1020)) = ss̄ cosϕV + nn̄ sinϕV , we have

|ϕV | � 4◦. (5)

For the calculation of φ(1020) → γf0(980), we have
used the value of |ϕV | = 4◦ ± 4◦, which suggests the
uncertainty of the quark calculus to be about 3◦–
5◦. The decay φ(1020) → γa0(980) provides us with
information about the mixing angle ϕV as well: we
argue that the data on the decay φ(1020) → γπ0η
[28], which, for Mπ0η ≥ 900 MeV, include a signal
from the γa0(980) channel, agree quite reasonably
with small |ϕV |.

The reactions φ(1020) → γη, γη′, which are de-
termined exclusively by the well-known probabilities
of ss̄ in η and η′, are not sensitive to a small admixture
of the nn̄ component in the φ meson. The calculated
partial widths are in reasonable agreement with data,
so that the consideration performed for the decays
φ(1020) → γη, γη′ gives us a strong argument that
the applied method for calculating the radiative de-
cays of qq̄ mesons is entirely reliable. The need for
performing a complete investigation of the radiative
decays of φ mesons is motivated by a recent discus-
sion on the possible incompatibility of the data on
φ(1020) → γf0(980) with the qq̄ structure of f0(980)
(see, e.g., [29, 30]).

The constraints on the mixing angle ϕ that
come from a combined analysis of the radiative
decays φ(1020) → γf0(980) and f0(980) → γγ are
discussed in Section 8. For negative mixing angles,
the combined analysis does not change the constraint
in (4),

ϕ = −48◦ ± 6◦, (6)

and does not set any constraint on the radius squared
R2f0(980)

(nn̄).

For positive mixing angles, the allowed region of(
ϕ,R2f0(980)

(nn̄)
)
is as follows:

ϕ = 86◦ ± 3◦, R2f0(980)
(nn̄) ≤ 6.8 GeV−2. (7)

However, the hadronic decays of f0(980) strongly
contradict the almost complete absence of the nn̄
component in f0(980); this gives priority to the so-
lution in (6), according to which f0(980) is close to
the octet state (recall that ϕoctet = −54.7◦).
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This article is organized as follows.
In Section 2, we write the spin structure of the

V → γS, γP and S → γγ decay amplitudes, where
V , S, and P are vector, scalar, and pseudoscalar
mesons, respectively.

In Section 3, a method for calculating the decay
amplitudes in terms of the spectral integrals with
respect to qq̄ invariant masses and light-cone vari-
ables is presented for the example of V → γS reac-
tions. The technique that uses double spectral in-
tegrals to calculate the transition amplitudes was
developed for photon–deuteron interactions [31, 32]
and applied to P → γγ∗(Q2) transition form factors
[32]. Using this method, we calculate here the ra-
diative form factors for φ(1020) → γf0(980) (Sec-
tion 4), f0(980) → γγ (Section 6), and φ(1020) →
γπ0, γa0(980), γη, γη′ (Section 7).

The estimation of the ππ spectrum in the de-
cay φ(1020) → γπ0π0 with the Flatté formula is dis-
cussed in Section 5. The results are summarized in
Section 8. The necessary technique is presented in
Appendices A, B, C, and D.

2. SPIN STRUCTURE OF THE V → γS,
V → γP , AND S → γγ TRANSITION

AMPLITUDES
Here, we present the spin operators for ampli-

tudes under consideration: φ(1020) → γπ0, γη, γη′,
γa0(980), γf0(980), and f0(980) → γγ.

(a) V → γS transition amplitude. The V → γS
transition amplitude, with V and S being vector and
scalar qq̄ states, is determined by the final-state or-
bital angular momenta of L = 0, 2. Accordingly, the
spin-dependent part of the amplitude, Aµν (the index
µ stands for spin of the photon and ν for that of φ
meson), consists of two terms that are proportional
to g⊥µν (S wave) and q⊥µ q

⊥
ν − q2⊥g⊥µν/3 (D wave):

Aµν = e
[
g⊥µνFS(q2) + (q⊥µ q

⊥
ν (8)

− 1
3
g⊥µνq

2
⊥)FD(q2)

]
.

Here, q⊥ is the projection of the photon momentum,
which is orthogonal to the φ-meson momentum p,
and g⊥µν is the metric tensor in the space orthogonal
to p:

q⊥µ = qµ − pµ
(qp)
p2
, g⊥µν = gµν − pµpν

p2
. (9)

The requirement qµAµν = 0 results in the following
constraint on the invariant amplitudes FS(q2) and
FD(q2):

FS(q2) +
2
3

(qq⊥)FD(q2) = 0. (10)
2
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Fig. 1. (a) Diagrammatic representation of the transition
φ(1020) → γf0(980). (b) Three-point quark diagram:
dashed lines I and II mark two cuts in the double spectral
representation.

Thus, Eq. (8) takes the form

Aµν =
3
2
eFS(q2)

(
g⊥µν −

q⊥µ q
⊥
ν

q2⊥

)
(11)

≡ eAV →γS(q2)g⊥⊥
µν .

The metric tensor g⊥⊥
µν works in the space orthogonal

to p and q (namely, g⊥⊥
µν pν = 0 and g⊥⊥

µν qν = 0).

(b) V → γP transition amplitude. Here, the
notation for the spin indices and particle momenta is
identical to that for V → γS reactions.

The spin operator for the V → γP amplitude
involves the antisymmetric tensor εµναβ associated
with pseudoscalar-particle production. The only way
to construct the spin operator is to contract εµναβ

with two independent momenta p and q. Therefore,
the amplitude has the following structure:

Aµν = eεµναβpαqβAV →γP (q2). (12)

(c) S → γ(q2)γ(q′2) transition amplitude.
The S → γ(q2)γ(q′2) transition amplitude has the
same spin structure as the V → γS amplitude. It has
the form

Aµν = e2AS→γγ(q2, q′2)g⊥⊥
µν , (13)

where q and q′ are the momenta of outgoing photons
with spin projections µ and ν, respectively. Themetric
tensor g⊥⊥

µν works in the space orthogonal to q and q′.
It is as follows:

g⊥⊥
µν = gµν − qµqν

q′2

D
− q′µq′ν

q2

D
(14)

+ (qµq′ν + q′µqν)
qq′

D
,

D = q2q′2 − (qq′)2.

Since (qq′) = 1
2(p

2 − q′2 − q2), where p is the 4-
momentum of the scalar particle, the factorD can be
P

expressed in terms of the external momenta squared
as

D =
1
4
[
2q2(p2 + q′2) − (p2 − q′2)2 − q4

]
. (15)

3. SPECTRAL REPRESENTATION
OF THE FORM-FACTOR AMPLITUDES
AND THE REACTION φ(1020) → γf0(980)

Following the prescription of [32], we present, in
this section, the method for calculating the three-
point form-factor amplitudes in terms of the spectral
representations for intermediate qq̄ states. Then, the
resulting formulas are applied to the decay φ(1020) →
γf0(980).

(a) Double spectral representation of the
V → γ(q2)S form factor. Here, we give a general
presentation of the spectral-integral method using
V → γ(q2)S reactions as an example.

Under the assumption of the qq̄ structure for the
initial (V ) and final (S) mesons, the V → γS coupling
constant is determined by V → qq̄ and qq̄ → S pro-
cesses with the emission of γ(q2) (see Fig. 1a). The
corresponding three-point loop diagram (see Fig. 1b)
is calculated by using double spectral representation
with respect to intermediate qq̄ states (indicated by
dashed lines in Fig. 1b).

To be illustrative, let us start with the three-point
Feynman diagram. For the process in Fig. 1a, one has

A(Feynman)µν =
∫

d4k

i(2π)4
GV (16)

×
Z
(qq̄)
V →γS S

(V →S)
µν

(m2 − k21)(m2 − k′21 )(m2 − k22)
GS .

Here, k1, k′1, and k2 are quark momenta; m is the
quark mass; and GV and GS are quark–meson ver-

tices. The quark charges are included in Z(qq̄)
V →γS . The

spin-dependent block has the form

S(V →S)
µν = −tr

[
(k̂′1 +m)γ⊥µ (17)

× (k̂1 +m)γ⊥ν (−k̂2 +m)
]
,

where the Dirac matrices γ⊥µ and γ⊥ν are orthogonal
to the outgoing momenta: γ⊥µ qµ = 0 and γ⊥ν pν = 0.

To transform the Feynman integral (16) into the
double spectral integral with respect to the invariant
qq̄ masses squared, one should (i) consider the cor-
responding off-energy-shell diagram, Fig. 1b, with
P 2 = (k1 + k2)2 ≥ 4m2 and P ′2 = (k′1 + k2)2 ≥ 4m2

and with a fixed momentum transfer squared q2 =
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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(P − P ′)2; (ii) extract the invariant amplitude sepa-
rating spin operators; and (iii) calculate the discon-
tinuities of the invariant amplitude with respect to
intermediate qq̄ states indicated in Fig. 1b by dashed
lines.

The double discontinuity is the integrand of the
spectral integral with respect to P 2 and P ′2. Further-
more, we adopt the following notation:

P 2 = s, P ′2 = s′. (18)

In order to calculate a discontinuity by cutting the
relevant Feynman diagram, the pole terms of the
propagators are replaced by their residues: (m2 −
k2)−1 → δ(m2 − k2). Therefore, the particles in the
intermediate states indicated by the dashed lines I and
II in Fig. 1b are on the mass shell, k21 = k22 = k′21 =
m2. As a result, integration of the Feynman diagram
reduces to integration of the cut diagram states over
phase spaces. The corresponding phase space for the
three-point diagram is

dΦ(P,P ′; k1, k2, k′1) = dΦ(P ; k1, k2) (19)

× dΦ(P ′; k′1, k
′
2)(2π)32k20δ(3)(k′

2 − k2),

where the invariant two-particle phase space
dΦ(P ; k1, k2) has the form

dΦ(P ; k1, k2) =
1
2

d3k1
(2π)32k10

d3k2
(2π)32k20

(20)

× (2π)4δ(4)(P − k1 − k2).
The last step is to single out the invariant compo-
nent from the spin factor (17). According to (11), the
spin factor (17) is proportional to the metric tensor:

S
(V →S)
µν ∼ g⊥⊥

µν . The spin factor S(tr)V →γS defined as

S(V →S)
µν = g⊥⊥

µν S
(tr)
V →γS(s, s′, q2) (21)

is then given by

S
(tr)
V →γS(s, s′, q2) = −2m

(
4m2 + s− s′ (22)

− 4ss′

s+ s′ − q2α(s, s′, q2)

)
,

α(s, s′, q2) =
q2(s + s′ − q2)

2q2(s+ s′) − (s− s′)2 − q4 .

Recall that, in going from (17) to (21), (22), and (23),
we have (k1k2) = s/2−m2, (k′1k2) = s′/2−m2, and
(k′1k1) = m2 − q2/2. The calculation of the spin fac-
tor is presented in more detail in Appendix A.

The spectral integration is performed with respect
to the energy squared of quarks in the intermedi-
ate states, s = P 2 = (k1 + k2)2 and s′ = P ′2 = (k′1 +
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k2)2, at fixed q2 = (P ′ − P )2. The spectral represen-
tation for the amplitude AV →γS(q2) has the form

AV →γS(q2) =

∞∫
4m2

ds

π
(23)

×
∞∫

4m2

ds′

π

GV (s)
s−M2

V

GS(s′)
s′ −M2

S

×
∫
dΦ(P,P ′; k1, k2, k′1)S

(tr)
V →γS(s, s′, q2)Z(qq̄)

V →γS .

The spectral representation of the amplitude

AV →γS(q2) gives us the invariant part of A(Feynman)µν ,
Eq. (16), if the vertices are constant: GV (s) = const
and GS(s′) = const. Generally, energy-dependent
vertices can be incorporated into spectral integrals.
According to [31, 32], the form factor for a composite
system can be obtained by considering the 1 + 2 →
1 + 2 two-particle partial-wave scattering amplitude,
with the same quantum numbers as for the composite
system. In this amplitude, the composite system
reveals itself as a pole. The amplitude for the emission
of a photon by the two-particle-interaction system
has two poles associated with the states “before”
and “after” electromagnetic interaction, and the two-
pole residue of this amplitude provides us with the
form factor of the composite system. When a partial-
wave scattering amplitude is treated by using the
N/D dispersion-relation method, the vertex G(s) is
determined by the N function: the vertex, as well as
the N function, has left-hand singularities that are
determined by the forces between particles 1 and 2.

It is reasonable to refer to the ratios GV (s)/(s −
m2) and GS(s′)/(s′ −m2) as the wave functions of
the vector and the scalar particle, respectively:

GV (s)
s−m2 = ψV (s),

GS(s′)
s′ −m2 = ψS(s′). (24)

Dealing with Eq. (24), one can either (i) express it
in terms of the light-cone variables or (ii) retain the
spectral integrals with respect to s and s′ and elimi-
nate integrations with respect to quarkmomenta with
the aid of phase-space δ functions.

(b) Light-cone variables. The formulas (18) and
(24) allow one to go over to the light-cone variables
by using the boost along the z axis. Let us use the
reference frame where the initial vector meson moves
along the z axis with an infinite momentum:

P = (p+
s

2p
,0, p), (25)

P ′ = (p+
s′ + q2⊥

2p
,−q⊥, p).
2
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In this frame, the two-particle phase space is

dΦ(P ; k1, k2) =
1

16π2
dx1dx2
x1x2

d2k1⊥d
2k2⊥ (26)

× δ(1 − x1 − x2)δ(2)(k1⊥ + k2⊥)

× δ
(
s− m2 + k21⊥

x1
− m2 + k22⊥

x2

)
,

where xi = kiz/p and the phase space for the triangle
diagram has the form

dΦ(P,P ′; k1, k2, k′1) (27)

=
1

16π
dx1dx2
x21x2

d2k1⊥d
2k2⊥

× δ(1 − x1 − x2)δ(2)(k1⊥ + k2⊥)

× δ
(
s− m2 + k21⊥

x1
− m2 + k22⊥

x2

)

× δ
(
s′ + q2⊥ − m2 + (k1⊥ − q⊥)2

x1
− m2 + k22⊥

x2

)
.

The V → γ(q2)S amplitude is then given by

AV →γ(q2)S(q2) =
Z
(qq̄)
V →γS

16π3

1∫
0

dx

x(1 − x)2
(28)

×
∫
d2k⊥ψV (s)ψS(s′)S(tr)V →γS(s, s′, q2),

where x = k2z/p, k⊥ = k2⊥, and the qq̄ invariant
masses squared are

s =
m2 + k2⊥
x(1 − x)

, s′ =
m2 + (k⊥ + xq⊥)2

x(1 − x)
. (29)

(c) Spectral integral representation. In
Eq. (23), one can perform integration over the phase
space, considering the energies squared s and s′ to
be fixed. After using the phase-space δ functions, we
have

AV →γS(q2) =

∞∫
4m2

dsds′

π2
ψV (s)ψS(s′) (30)

×
θ
(
ss′Q2 −m2λ(s, s′, Q2)

)
16
√
λ(s, s′, Q2)

× Z(qq̄)
V →γSS

(tr)
V →γS(s, s′, Q2),

where

λ(s, s′, Q2) = (s′ − s)2 + 2Q2(s′ + s) +Q4. (31)

The θ function θ(X) restricts the integration region
for different Q2 = −q2: θ(X) = 1 at X ≥ 0 and
θ(X) = 0 atX < 0.
PH
In the limit Q2 → 0, integration with respect to s′

is performed (see Appendix B for details). As a result,
we obtain

AV →γS(0) =

∞∫
4m2

ds

π
ψV (s)ψS(s) (32)

×
[
−m

3

2π
ln

√
s+

√
s− 4m2

√
s−

√
s− 4m2

+
m

4π

√
s(s− 4m2)

]
Z
(qq̄)
V →γS.

(d) Meson wave functions. To calculate the
form factors, one should definemeson wave functions.
The simplest parametrization is an exponential one:

ψV (s) = CV e
−bV s, ψS(s) = CSe

−bSs. (33)

The parameters bV and bS characterize the size of the
system; they are related to the mean radii squared
R2V and R2S of the mesons. At fixed R2V and R2S, the
constants CV and CS are determined by the normal-
ization of the wave function; it is given by the meson
form factor in an external field, Fmeson(q2). At small
q2, the form factor is

Fmeson(q2) � 1 +
1
6
R2mesonq

2. (34)

The requirement Fmeson(0) = 1 fixes the constant
Cmeson in (33), while the value R2meson is directly
related to bmeson.

The form factor Fmeson(q2) has the form

Fmeson(q2) =

∞∫
4m2

dsds′

π2
ψmeson(s)ψmeson(s′) (35)

×
θ
(
ss′Q2 −m2λ(s, s′, Q2)

)
16
√
λ(s, s′, Q2)

S(tr)meson(s, s
′, q2),

where S(tr)meson is determined by the following traces:

2P⊥
µ S

(tr)
S (s, s′, q2) (36)

= −tr
[
(k̂′1 +m)γ⊥µ (k̂1 +m)(−k̂2 +m)

]
,

2P⊥
µ S

(tr)
V (s, s′, q2)

= −1
3

tr
[
γ′⊥α (k̂′1 +m)γ⊥µ (k̂1 +m)γ⊥α (−k̂2 +m)

]
;

the orthogonal components are

P⊥
µ = Pµ − qµ

(Pq)
q2

, γ⊥µ = γµ − qµ
q̂

q2
, (37)

γ⊥α = γα − Pα
P̂

P 2
, γ′⊥α = γα − P ′

α

P̂ ′

P ′2 ,
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and q = k′1 − k1. In determining S(tr)V , we have aver-
aged over three polarizations of the vector meson (the
factor of 1/3).

The functions S(tr)S and S(tr)V are given by

S
(tr)
S (s, s′, q2) (38)

= α(s, s′, q2)(s + s′ − 8m2 − q2) + q2,

S
(tr)
V (s, s′, q2)

=
2
3
[
α(s, s′, q2)(s + s′ + 4m2 − q2) + q2

]
.

Taking into account (34), one can determine the nor-
malization of the wave function as well as the mean
radius squared. For the scalar meson, the normaliza-
tion condition is

1 =

∞∫
4m2

ds

π
ψ2S(s)

s− 4m2

8π

√
s− 4m2

s
, (39)

and the mean radius squared is

R2S =

∞∫
4m2

ds

π
ψ2S(s)

3
8π

(40)

×
(

ln
√
s+

√
s− 4m2

√
s−

√
s− 4m2

− s+ 2m2

2s

√
s− 4m2

s

)

+

∞∫
4m2

ds

π

(
ψ′2

S (s) − ψ′′
S(s)ψS(s)

) 3(s − 4m2)
8π

×
(
s ln

√
s+

√
s− 4m2

√
s−

√
s− 4m2

− 2
√
s(s− 4m2)

)
.

For the exponential parametrization of the wave
function, the second term in (40) vanishes: ψ′2

S (s) −
ψ′′

S(s)ψS(s) = 0.
Likewise, the normalization condition for vector

meson is

1 =

∞∫
4m2

ds

π
ψ2V (s)

s+ 2m2

12π

√
s− 4m2

s
, (41)

and the mean radius squared is given by

R2V =

∞∫
4m2

ds

π
ψ2V (s)

1
4π

(42)

×
(

ln
√
s+

√
s− 4m2

√
s−

√
s− 4m2

− s2 − 8m2s+ 4m4

2s(s− 4m2)

√
s− 4m2

s

)
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+

∞∫
4m2

ds

π

(
ψ′2

V (s) − ψ′′
V (s)ψV (s)

) s+ 2m2

4π

×
(
s ln

√
s+

√
s− 4m2

√
s−

√
s− 4m2

− 2
√
s(s− 4m2)

)
.

Themeson form factor can also be written in terms
of the light-cone variables, whereupon we arrive at a
formula similar to (28); that is,

Fmeson(q2) =
1

16π3

1∫
0

dx

x(1 − x)2
(43)

×
∫
d2k⊥Ψmeson(s)Ψmeson(s′)S(tr)meson(s, s

′, q2),

where S(tr)meson(s, s′, q2) is given by (38).

4. φ(1020) → γf0(980): THE DECAY
AMPLITUDE AND PARTIAL WIDTH

In this section, we calculate the branching ratio for
the decay φ→ γf0(980), assuming the qq̄ structure of
f0(980).

(a) Partial width. The decay partial width is de-
termined as

mφΓφ→f0γ =
∫

1
3
|Aµν |2dΦ(p; q, kf ). (44)

In (44), the averaging over spin projections of the φ
meson and summation over those of the photon are
performed; dΦ is the two-particle phase space, which,
for the radiative decay φ→ γ+ f0, is

∫
dΦ(p; q, kf ) =

(m2φ −m2f )/(16πm2φ).
Summation over photon spin variables results in

the metric tensor g⊥⊥
µµ′ :

|Aµν |2 = A∗
νµg

⊥⊥
µµ′Aµ′ν , (45)

where

g⊥⊥
µµ′ = gµµ′ +

4m2φqµqµ′

(m2φ −m2f )2
(46)

+
2(qµpµ′ + pµqµ′)
m2φ −m2f

.

Hence, the partial width is

mφΓφ→f0γ =
1
6
α
m2φ −m2f
m2φ

|Aφ→γf0(980)(0)|2, (47)

where α = e2/4π = 1/137.
(b) Wave functions of φ(1020) and f0(980).

We write the wave functions of φ(1020) and f0(980)
as

Ψφ(s) = (nn̄ sinϕV + ss̄ cosϕV )ψφ(s), (48)
2
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Ψf0(s) = (nn̄ cosϕ+ ss̄ sinϕ)ψf (s),

assuming the same s dependence for the nn̄ and ss̄
components. An exponential parametrization is used
for ψφ(s) and ψf0(s). The radius squared of the nn̄
component in the φmeson is assumed to be identical

to that of the pion (R(nn̄) 2
φ � 10.9 GeV−2), while

the radius squared R(ss̄) 2φ is slightly less, R(ss̄) 2φ �
9.3 GeV−2 (this corresponds to bφ = 2.5 GeV−2).
As to f0(980), we vary its radius in the interval 6 ≤
R2f0(980)

≤ 18 GeV−2.

(c) The result for φ(1020) → γf0(980). The
amplitude Aφ→γf0(0) is the sum of two terms associ-
ated with the nn̄ and ss̄ components:

Aφ→γf0(0) = cosϕ sinϕVA
(nn̄)
φ→γf0

(0) (49)

+ sinϕ cosϕV A
(ss̄)
φ→γf0

(0).

In our estimations, we set cosϕV ∼ 0.99 and, corre-
spondingly, | sinϕV | ∼ 0.1; for f0(980), we vary mix-
ing angle in the interval 0◦ ≤ |ϕ| ≤ 90◦.

The charge factors for the reaction φ(1020) →
γf0(980) are equal to Z(nn̄)

φ→γf0
= 1/3 and Z(ss̄)φ→γf0

=
−2/3 (see Appendix C).

The results of the calculation are shown in Figs. 2

and 3. In Fig. 2a, A(nn̄)
φ→γf0

(0) and A(ss̄)φ→γf0
(0) are

plotted versus the radius squared R2f0(980)
, while the

mean radius squared of the φmeson is close to that of
the pion: R2φ(1020) � 0.4 fm2.

In Fig. 3, one can see Br(φ(1020) → γf0(980))
at various values of sin |ϕ|: sin |ϕ| = 0.4, 0.6, 0.8,
0.9, and 0.985. The shaded areas correspond to the
variation of ϕV in the interval −8◦ ≤ ϕV ≤ 8◦; the
lower and upper curves of the shaded area correspond,
respectively, to the destructive and to the constructive

interference ofA(nn̄)
φ→γf0

(0) and A(ss̄)φ→γf0
(0).

The measurement of the f0(980) signal in the
γπ0π0 reaction gives the branching ratio Br(φ→
γf0(980)) = (3.5 ± 0.3+1.3−0.5) × 10−4 [19]; in the anal-
ysis of γπ0π0 and γπ+π− channels, it was found
thatBr(φ→ γf0(980)) = (2.90± 0.21 ± 1.5)× 10−4
[18]. The averaged value is given in [11]: Br(φ→
γf0(980)) = (3.4 ± 0.4) × 10−4. Our calculations of
the π0π0 spectrum with the conventional Flatté for-
mula (Section 5) support the statement of [18, 19]
about the presence of large systematic errors asso-
ciated with the procedure for extracting the f0(980)
signal. In our estimation of the permissible interval
for the mixing angle ϕ, we have used the averaged
value given by [11], with the inclusion of systematic
PH
errors on the order of those found in [18, 19]: Br(φ→
γf0(980)) = (3.4 ± 0.4+1.5−0.5) × 10−4.

The calculated values of Br(φ→ γf0(980)) agree
with experimental data for |ϕ| ≥ 25◦; larger values
of mixing angle, |ϕ| ≥ 55◦, correspond to a more
compact structure of f0(980), namely, R2f0(980)

≤
10 GeV−2, while small mixing angles of |ϕ| ∼ 25◦ are
associated with a loosely bound structure, R2f0(980)

≥
12 GeV−2 (recall that, for the pion, R2π�10 GeV−2).

The evaluation of the radius of f0(980) was per-
formed in [24] on the basis of GAMS data [9], where
the t dependence wasmeasured in the process π−p→
f0(980)n [t is the square of the momentum transfer
to f0(980)]: these data favor a comparatively compact
structure of the qq̄ component in f0(980), namely,
R2f0(980)

= 6 ± 6 GeV−2.

5. PARTIAL WIDTH FOR THE REACTION
φ(1020) → γπ0π0

In the π0π0 spectrum, the f0(980) resonance is
seen as a peak on the edge of the spectrum. It is there-
fore rather instructive to find the Mππ dependence
of Br(φ(1020) → γπ0π0) by using the conventional
Flatté formula [21].

In hadronic reactions, the f0(980) resonance is
well described by the Flatté formula which takes
into account two decay channels, f0(980) → ππ and
f0(980) → KK̄; the parameters of the Flatté formula
were found by Bugg, Sarantsev, and Zou [22, 23].

In calculating the ππ spectrum, we take into
account both the resonance and the background
[B(M2

ππ)] contributions. The partial width dΓφ→γππ

is then given by

dΓφ→γππ = Γφ→γf0(980) (50)

×
Mf (m2φ −M2

ππ)

Mππ(m2φ −M2
f )
F 2thresh(M

2
ππ)

F 2thresh(M2
f )

×
∣∣∣∣ 1
M2
0 −M2

ππ − ig2πρππ − ig2KρKK̄

+B(M2
ππ)
∣∣∣∣
2

× g2πρππ
dM2

ππ

π
.

Here, we separate Γφ→γf0(980) and introduce the ratio
of the phase spaces for (ππ) + γ and f0(980) + γ:

dΦ(ππ)γ

dΦf0(980)γ
=
Mf (m2φ −M2

ππ)

Mππ(m2φ −M2
f )
, (51)

where Mf = 0.98 GeV and M0 is an adjustable pa-
rameter.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 2. Amplitudes for strange and nonstrange components, ss̄ and nn̄, versus the f0(980) meson radius squared for
φ(1020) → γf0(980) and f0(980) → γγ: (a) A(nn̄)

φ→γf0
(0)/Z

(nn̄)
φ→γf0

and A(ss̄)
φ→γf0

(0)/Z
(ss̄)
φ→γf0

and (b) A(nn̄)
f0→γγ(0, 0)/Z

(nn̄)
f0→γγ

andA(ss̄)
f0→γγ(0, 0)/Z

(ss̄)
f0→γγ .
The factor Fthresh(M2
ππ) provides the thresh-

old behavior of the amplitude Aφ→γππ for M2
ππ →

m2φ; we have chosen it to be F 2thresh(M
2
ππ) = 1 −

exp[−(M2
ππ −m2φ)2/µ40], where µ0 is the scale pa-

rameter (we set µ0 = 2mπ).
The quantities gπ and gK are the coupling con-

stants for the transitions f0(980) → ππ,KK̄, respec-
tively. Also, ρππ and ρKK̄ are the phase spaces for the
ππ andKK̄ states: ρππ =

√
M2

ππ − 4m2π/(16πMππ)

and ρKK̄ =
√
M2

ππ − 4m2K/(16πMππ); recall that,

forM2
ππ < 4m2K , the kaon phase space is imaginary:√

M2
ππ − 4m2K = i

√
4m2K −M2

ππ .

TheBugg–Sarantsev–Zou parametrization of the
Flatté formula [22, 23] is

g2πρππ → (0.12 GeV)
√
M2

ππ − 4m2π, (52)

g2KρKK̄ → (0.27 GeV)
√
M2

ππ − 4m2K ,

M0 = 0.99 ± 0.01 GeV.

The background term is parametrized as B(M2
ππ) =

a+ bM2
ππ, where a and b are complex-valued con-

stants.
The unitarity condition in the ππ channel tells

us that the φ(1020) → γππ decay amplitude has
a complex phase factor associated with the ππ
phase shift in the (IJPC = 00++) channel: Aγππ =
|Aγππ| exp

(
iδ00(Mππ)

)
. Therefore, one has(

1
M2
0 −M2

ππ − ig2πρππ − ig2KρKK̄

+B(M2
ππ)
)

× ei∆δ0
0(Mππ) (53)

=
∣∣∣∣ 1
M2
0 −M2

ππ − ig2πρππ − ig2KρKK̄

+B(M2
ππ)
∣∣∣∣
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× eiδ0
0(Mππ).

Weparametrize the phase∆δ00(Mππ) as∆δ00(Mππ) =
∆0 + ∆1(Mππ/m0 − 1) + ∆2(Mππ/m0 − 1)2 with
m0 = 1 GeV. The complex-valuedness of B(M2

ππ) is
determined by the difference of the phases in the terms
for f0(980) production and the primary background
contribution.

To calculate the γπ0π0 spectrum, one should
multiply (50) by the factor associated with the π0π0

channel, dΓφ→γπ0π0 = 1
3dΓφ→γππ. Figure 4 demon-
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tude; five other bands, with skew shading, correspond to
|ϕ| = 24◦, 37◦, 53◦, 64◦, 80◦ at −8◦ ≤ ϕV ≤ 8◦.
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curves) at different Br(φ(1020) → γf0(980)) andMf0(980). The background-term contributions are shown by dashed lines.
Experimental data were taken from [19].
strates Br(φ(1020) → γπ0π0) calculated by Eq. (50)
at Br(φ→ γf0(980)) = 3.4 × 10−4, 5.4 × 10−4 and
M0 = 0.98, 1.00 GeV. The following parameters (in
GeV) are used for the background term B(M2

ππ) and
the phase ∆δ00(Mππ):

(a) Br = 3.4 × 10−4 , M0 = 0.98 : (54)

a = −1.24 + i0.74, b = 1.91 − i0.95,

∆0 = 99◦,∆1 = 11◦,∆2 = 440◦;

(b) Br = 3.4 × 10−4, M0 = 1.00 :
a = −1.96 + i0.073, b = 2.37 + i1.8,

∆0 = 106◦,∆1 = −136◦,∆2 = 341◦;

(c) Br = 5.4 × 10−4, M0 = 0.98 :
a = −0.84 + i0.91, b = 0.73 − i2.63,

∆0 = 98◦,∆1 = 203◦,∆2 = 735◦;

(d) Br = 5.4 × 10−4, M0 = 1.00 :
a = −1.13 + i0.69, b = 1.39 − i1.13,

∆0 = 94◦,∆1 = 9◦,∆2 = 462◦.
P

The phase shift δ00(Mππ) for this set of background
terms is shown in Fig. 5.

It can be seen that the data from [18] shown
in Fig. 4 agree reasonably well with the Flatté
parametrization for hadronic reactions given by [22,
23]. A good description of the π0π0 spectrum at
Br(φ→ γf0(980)) = 5.4 × 10−4 supports the state-
ment of [18, 19] that there were large systematic
errors in determining the γf0(980) signal.

6. RADIATIVE DECAY f0(980) → γγ

The f0(980) → γ(q2 = 0)γ(q′2 = 0) decay ampli-
tude is determined asAµν = e2Af0→γγ(0, 0) g⊥⊥

µν [see
Eq. (13)] with g⊥⊥

µν q
′
ν = 0 and g⊥⊥

µν qµ = 0.

The partial width Γf0→γγ is

Mf Γf0→γγ =
1
2

∫
dΦ(p; q, kf ) (55)

×A∗
µνg

⊥⊥
µµ′ g⊥⊥

νν′ Aµ′ν′ = πα2|Af0→γγ(0, 0)|2,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 5. Phase shifts δ00 determined by (53) for different
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where the factor of 1/2 is associated with the identity
of photons. The amplitudeAf0→γγ(0, 0) is determined
by the contributions of two flavor components:

Af0→γγ(0, 0) = cosϕA(nn̄)
f0→γγ(0, 0) (56)

+ sinϕA(ss̄)f0→γγ(0, 0).

The invariant amplitude for the transition f0 →
γ(q2)γ has the form

A
(qq̄)
f0→γγ(q2, 0) =

√
Nc

∞∫
4m2

dsds′

π2
ψf0(s)ψγ(s′) (57)

× θ(ss′Q2 −m2λ(s, s′, Q2))
16
√
λ(s, s′, Q2)

× Z(qq̄)
f0→γγS

(tr)
f0→γγ(s, s′, Q2),

where Nc = 3 is the number of colors, Z(nn̄)
f0→γγ =

5
√

2/9, and Z(ss̄)f0→γγ = 2/9 (see Appendix C). The

spin factor S(tr)f0→γγ(s, s′, Q2) is similar to that for φ→
γf0:

S
(tr)
f0→γγ(s, s′, q2) = −2m

(
− s+ s′ + 4m2 (58)

− 4ss′

s+ s′ − q2α(s, s′, q2)

)
.
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The formula for the amplitude A(qq̄)
f0→γγ(q2, 0) in terms

of the light-cone variables is written in Appendix D.
In the limit Q2 → 0, the term that makes

S
(tr)
f0→γγ(s, s′, q2) and S(tr)φ→γf0

(s, s′, q2) different van-

ishes in the integral (57), and we have forA(qq̄)
f0→γγ(0, 0)

an expression similar to (32):

A
(qq̄)
f0→γγ(0, 0) =

m
√
NcZ

(qq̄)
f0→γγ

4π
(59)

×
∞∫

4m2

ds

π
ψf0(s)ψγ(s)

×
[√

s(s− 4m2) − 2m2 ln
√
s+

√
s− 4m2

√
s−

√
s− 4m2

]
.

The photon wave function was found from an analysis
of the π0 → γ(Q2)γ, η → γ(Q2)γ, and η′ → γ(Q2)γ
transition form factors [32]; it is shown in Fig. 6. With
this wave function, we have calculated Ann̄

f0→γγ(0, 0)
and Ass̄

f0→γγ(0, 0); these amplitudes plotted versus
R2f0(980)

are shown in Fig. 2b.

Figure 7 displays Γf0→γγ calculated at vari-
ous R2f0(980)

and ϕ, along with the data from [26].
It is possible to describe the experimental data
(Γf0(980)→γγ = 0.28+0.09−0.13 keV [26]) by using positive
mixing angles or negative ones: 77◦ ≤ ϕ ≤ 93◦ and
−54◦ ≤ ϕ ≤ −38◦. The use of constraint in (3) on
2
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the radius constricts slightly the allowed interval of
mixing angles [see (4)].

7. RADIATIVE DECAYS
φ(1020) → γη, γη′, γπ0, γa0(980)

The decays φ(1020) → γη, γη′ do not provide us
with direct information about the quark content of
f0(980) and φ(1020); yet, calculations and compar-
ison with data are necessary to check the reliabil-
ity of the method. The decays φ(1020) → γπ0 and
φ(1020) → γa0(980) allow us to evaluate the admix-
ture of the nn̄ component in the φ meson; as was
seen in Section 4, this admixture affects significantly
Γγf0(980).

The amplitude for the φ→ γP reactions, where
P = η, η′, π0, has the following structure: Aµν =
eAφ→γP (0)εµναβpαqβ [see Eq. (12)]. The invariant
parts of the φ→ γη, γη′, γπ0, γa0(980) radiative-
decay amplitudes are calculated similarly to that of
φ→ γf0(980) [see Eq. (30)] with necessary substi-
tution of the wave functions, ψS → ψη, ψη′ , ψπ, ψa0 ,
as well as of the charge and spin factors. The charge
factors for the radiative decays being considered are

as follows: Z(ss̄)φ→γη = Z
(ss̄)
φ→γη′ = −2/3 for the ss̄ com-

ponent in the reactions φ→ γη, γη′, and Zφ→γπ0 =
Zφ→γa0(980) = 1 for π0 and a0(980) production (see
Appendix C).

For the transitions φ→ γη and φ→ γη′, we
take into account only the dominant ss̄ component:
− sin θ ss̄ in the η meson and cos θ ss̄ in the η′ meson,
with sin θ = 0.6.

The spin factors for pseudoscalar mesons are

S
(tr)
φ→γη(s, s′, q2) = Sφ→γη′(s, s′, q2) = 4ms, (60)
P

S
(tr)
φ→γπ(s, s′, q2) = 4m.

The formula for the amplitude Aφ→γP (q2) is given in
Appendix D. For q2 → 0, one has

Aφ→γP (0) =
mZ

(qq̄)
φ→γP

4π
(61)

×
∞∫

4m2

ds

π
ψφ(s)ψP (s) ln

√
s+

√
s− 4m2

√
s−

√
s− 4m2

.

For the pion wave function, we have chosen bπ =
2.0 GeV−2, which corresponds to R2π = 10.1 GeV−2;
the same radius is fixed for the nn̄ component in η and
η′. As to the strange component in η and η′, we took
its slope to be the same (bη(ss̄) = 2 GeV−2), which
leads to the smaller radius ofR2(ss̄) = 8.3 GeV−2.

The results of the calculations versus branching
ratios given by PDG compilation [11] are as follows:

Br(φ→ ηγ) = 1.46 × 10−2, (62)

BrPDG(φ→ ηγ) = (1.30 ± 0.03) × 10−2,

Br(φ→ η′γ) = 0.97 × 10−4,

BrPDG(φ→ η′γ) = (0.67+0.35−0.31) × 10−4.

The calculated branching ratios agree reasonably well
with those given in [11].

For the process φ→ γπ0, the compilation [11]
gives Br(φ→ γπ0) = (1.26 ± 0.10) × 10−3, and this
value requires | sinϕV | � 0.07 (or |ϕV | � 4◦), be-
cause just with this admixture of the nn̄ component in
φ(1020) do we attain agreement with data. However,
in estimating the allowed regions for the mixing angle
ϕ (see Fig. 3), we use

|ϕV | = 4◦ ± 4◦, (63)

considering the accuracy inherent in the quark model
to be comparable with the small value obtained for
|ϕV |.

The process φ(1020) → γa0(980) also depends on
the mixing angle |ϕV |: the decay amplitude is propor-

tional to sinϕV , namely, Aφ→γa0 = sinϕVA
(nn̄)
φ→γa0

,

and the amplitude A(nn̄)
φ→γa0

is equal to that for the
process φ→ γf0, apart from a numerical factor:

A
(nn̄)
φ→γa0

/A
(nn̄)
φ→γf0

= Z
(nn̄)
φ→γa0

/Z
(nn̄)
φ→γf0

= 3 because

Z
(nn̄)
φ→γa0

= 1 (3A(nn̄)
φ→γf0

is shown in Fig. 2a).

For the regionR2a0(980)
∼ 8–12 GeV−2, one has

Br (φ(1020) → γa0(980)) (64)

= sin2 ϕV · (14 ± 3) × 10−4
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Fig. 8. (ϕ,R2
f0(980)) plot: the shaded areas are allowed for

the reactions φ(1020) → γf0(980) and f0(980) → γγ.

with lower values for R2a0(980)
∼ 8 GeV−2 and larger

ones for R2a0(980)
∼ 12 GeV−2. At sin2 ϕV = 0.01 ±

0.01, we have Br(φ(1020) → γa0(980)) = (0.14 ±
0.14) × 10−4.

In [28], the partial width for φ(1020)→ γηπ0

was measured; the result was Br(φ(1020) → γηπ0;
Mηπ > 900 MeV) = (0.46 ± 0.13) × 10−4. If, for
Mηπ > 900 MeV, the resonance-to-background ratio
is about unity, which is rather possible, the value
found in [28] is in agreement with a small value of
|ϕV |.

8. CONCLUSION

Figure 8 demonstrates the (ϕ,R2f0(980)
) plot,

where the allowed areas for the reactions φ(1020) →
γf0(980) and f0(980) → γγ are shown. We see
that the radiative decays φ(1020) → γf0(980) and
f0(980) → γγ are well described within the hypoth-
esis of the dominant qq̄ structure of f0(980). The
solution with negative ϕ seems preferable. For this
solution, the mixing angle ϕ for the nn̄ and ss̄
components (nn̄ cosϕ+ ss̄ sinϕ) is equal to ϕ =
−48◦ ± 6◦; that is, the qq̄ component is rather close
to the flavor octet (ϕoctet = −54.7◦). This proximity
to the octet may be due to the following scenario: the
broad resonance f0(1530+90−250), which is, according to
theK-matrix analysis, the descendant of the lightest
scalar glueball, took, after accumulating the widths of
neighboring resonances, the singlet component from
a predecessor of f0(980), thus converting f0(980) into
an almost pure octet.
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The dominance of the quark–antiquark compo-
nent does not rule out the existence of other compo-
nents in f0(980). The location of the resonance pole
near the KK̄ threshold definitively points to a cer-
tain admixture of the long-range KK̄ component in
f0(980). To investigate this admixture, precise mea-
surements of the KK̄ spectra in the interval 1000–
1150 MeV are necessary: only these spectra could
shed light on the role of the long-range KK̄ compo-
nent in f0(980).

The existence of the long-range KK̄ component
or that of gluonium in the f0(980) leads to a decrease
in the ss̄ fraction in the qq̄ component: for example,
if the long-range KK̄ (or gluonium) admixture is on
the order of 15%, the data require either ϕ = −45◦ ±
6◦ or ϕ = 83◦ ± 4◦.
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APPENDIX A

Spin Factor for f0 → γγ

Here, we calculate the spin factor of the triangle
diagram for the transition f0 → γγ. It is determined
by the trace

Sµν(f0 → γγ) = −tr[γ⊥⊥
ν (k̂′1 +m) (A.1)

× γ⊥⊥
ν (k̂1 +m)(−k̂2 +m)].

Here, γ⊥⊥
µ and γ⊥⊥

ν are defined as

γ⊥⊥
µ = g⊥⊥

µµ′ γµ′ , γ⊥⊥
ν = g⊥⊥

νν′ γν′ . (A.2)

Sµν(f0 → γγ) = 4m
[
g⊥⊥
µν ((k1k′1) (A.3)

− (k′1k2) + (k1k2) −m2) − 4k⊥⊥
1µ k

⊥⊥
1ν

]
= 4m

[
1
2

(s− s′ − q2)g⊥⊥
µν − 2k2⊥⊥g

⊥⊥
µν

]
,

where

k2⊥⊥ = k⊥⊥
1α k

⊥⊥
1β g

⊥⊥
αβ . (A.4)

Here, the particle momenta in the dispersion inte-
gral are on the mass shell (k21 = k′21 = k22 = m2) but
not on the energy shell [(k1 + k2)2 = s �= M2

f , (k′1 +
k2)2 = s′ �= q′2]. This means that s and s′ are inter-
nal variables; we have also used the relations (k1 −
2
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k′1)
2 = q2 and k⊥⊥

1µ = k
′⊥⊥
1µ = −k⊥⊥

2µ . Owing to in-
tegration with respect to the angles, we additionally
have k⊥⊥

1µ k
⊥⊥
1ν → 1

2g
⊥⊥
µν k

2
⊥⊥.

The simplest way to calculate k2⊥⊥ is to use
Eq. (14) directly; therefore,

k⊥⊥
1µ = k

′⊥⊥
1µ = k′1µ′g⊥⊥

µµ′ = k′1µ (A.5)

+ qµ
q′2(q2 + (qq′))

2D
− q′µ

q2(q′2 + (qq′))
2D

.

Here, we have taken into account the equalities
(k′1q) = −1

2q
2 and (k′1q

′) = −1
2q

′2, which follow from
the fact that intermediate particles are on the mass
shell: m2 = (k′1 + q)2 and m2 = (−k′1 + q′)2. The
square of Eq. (A.5) has the form

k2⊥⊥ = m2 − q2q′2

4D
(q + q′)2, (A.6)

whence it follows that

Sµν(f0 → γγ) = g⊥⊥
µν Sf0→γ(s, s′, q2), (A.7)

where

Sf0→γ(s, s′, q2) = −2m

[
s′ − s+ q2 + 4m2 (A.8)

− 4q2ss′

2q2(s+ s′) − (s− s′)2 − q4

]
.

APPENDIX B

Spectral Integral for the Form Factor

Considering the scalar- and vector-meson form
factors as an example, we write below the spectral
integrals with respect to the qq̄ mass. Using the vari-
ables s+ s′ = 2Σ and s′ − s = ∆, we can represent
the form factor given by Eq. (35) as

Fmeson(−Q2) =

∞∫
4m2

dΣ
π

∞∫
−∞

d∆
π

(A.9)

× ψmeson(Σ − 1
2

∆)ψmeson(Σ +
1
2

∆)

×
θ
(
Q2
(
Σ2 − ∆2/4 − 4m2Σ

)
−m2∆2 −m2Q4

)
16
√

∆2 + 4ΣQ2 +Q4

× S(tr)meson(Σ +
1
2

∆,Σ − 1
2

∆,−Q2).

After the substitution z = ∆/Q, we have

Fmeson(−Q2) =

∞∫
4m2

dΣ
π

b∫
−b

dz

16π
(A.10)
P

× ψmeson(Σ − 1
2
zQ)ψmeson(Σ +

1
2
zQ)

×
S
(tr)
meson(Σ + 1

2zQ,Σ − 1
2zQ,−Q2)√

z2 + 4Σ +Q2
,

where

b =

√
Σ2 − 4Σm2 −m2Q2

m2 +Q2/4
. (A.11)

In terms of the new variables, the spin factors

S
(tr)
S (s, s′, q2) and S(tr)V (s, s′, q2) are rewritten as

S
(tr)
S (s, s′, q2) (A.12)

=
2Σ +Q2

z2 + 4Σ +Q2
(2Σ − 8m2 +Q2) −Q2

≡ aS(Σ, Q2)
z2 + 4Σ +Q2

+ bS(Q2),

S
(tr)
V (s, s′, q2) (A.13)

=
2
3

[
2Σ +Q2

z2 + 4Σ +Q2
(2Σ + 4m2 +Q2) −Q2

]

≡ aV (Σ, Q2)
z2 + 4Σ +Q2

+ bV (Q2).

An exponential parametrization for the meson wave
function allows one to remove the integration with
respect to z. In this case,ψmeson(Σ− 1

2∆)ψmeson(Σ +
1
2∆) = ψ2meson(Σ), and Fmeson(q2) takes the form

Fmeson(−Q2) =

∞∫
4m2

ds

π
ψ2meson(s) (A.14)

×
b∫

−b

dz

16π
S
(tr)
meson(s+ 1

2zQ, s −
1
2zQ,−Q2)√

z2 + 4s +Q2
.

Here, we made the substitution Σ → s. The integral
with respect to z can easily be calculated, whereupon
one has

Fmeson(−Q2) =

∞∫
4m2

ds

π
ψ2meson(s) (A.15)

×
(
ameson(s,Q2) I1(s,Q2)

+ bmeson(s,Q2) I2(s,Q2)
)
,

where

I1(s,Q2) (A.16)

=
1

4π(4s +Q2)

√
s2 − 4sm2 −m2Q2
4s2 + 4sQ2 +Q4

,
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I2(s,Q2) (A.17)

= − 1
16π

ln
2s+Q2 − 2

√
s2 − 4sm2 −m2Q2

2s+Q2 + 2
√
s2 − 4sm2 −m2Q2

.

APPENDIX C

Charge Factors

The charge factor for the nn̄ component in the
transition φ→ γf0 is defined as

Z
(nn̄)
φ→γf0

= 2ζ(nn̄)
φ→γf0

, (A.18)

where ζ(nn̄)
φ→γf0

is the convolution

ζ
(nn̄)
φ→γf0

=
uū+ dd̄√

2
êq
uū+ dd̄√

2
=

1
2

(eu + ed) =
1
6
.

(A.19)

Here, eu and ed are the charges of u and d quarks,
respectively. The factor of 2 in (A.18) is due to two
possibilities for photon emission: the corresponding
traces for photon emission by a quark and by an
antiquark are equal to each other, namely,

tr
(

(k̂′1 +m)γµ(k̂1 +m)γν(−k̂2 +m)
)

(A.20)

= tr
(

(−k̂′1 +m)γµ(−k̂1 +m)γν(k̂2 +m)
)
.

Likewise, we have

Z
(ss̄)
φ→γf0

= 2ζ(ss̄)φ→γf0
= 2 es = −2

3
. (A.21)

The charge factors for ss̄ in the reactions φ→ γη and
φ→ γη′ are identical to that for the decay φ→ γf0:

Z
(ss̄)
φ→γη = Z

(ss̄)
φ→γη′ = Z

(ss̄)
φ→γf0

. (A.22)

For the process φ→ γa0, one likewise has

Zφ→γa0 = 2ζφ→γa0 , (A.23)

ζ
(nn̄)
φ→γa0

=
uū+ dd̄√

2
êq
uū− dd̄√

2
=

1
2

(eu − ed) =
1
2
.

The charge factors for f0 → γγ are given by

Z
(nn̄)
f0→γγ = 2

e2u + e2d√
2
, Z

(ss̄)
f0→γγ = 2 e2s. (A.24)

APPENDIX D

Light-Cone Representation for the f0 → γ(q2)γ
and φ→ γ(q2)P Amplitudes

The light-cone representation of the transition
amplitudes for the processes f0 → γ(q2)γ and φ→
γ(q2)P has the form

Af0→γγ(q2, 0) =
Zf0→γγ

√
Nc

16π3
(A.25)
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×
1∫
0

dx

x(1 − x)2

∫
d2k⊥ψf0(s)ψγ(s′)Sf0→γγ(s, s′, q2),

Aφ→γP (q2) =
Zφ→γP

16π3
(A.26)

×
1∫
0

dx

x(1 − x)2

∫
d2k⊥ψφ(s)ψP (s′)Sφ→γP (s, s′, q2),

where s = (m2+ k2⊥)/x(1−x) and s′ = (m2+ (k⊥+
xq⊥)2)/x(1 − x). The factors Zf0→γγ , Zφ→γP ,
Sf0→γγ(s, s′, q2), and Sφ→γP (s, s′, q2) are given in
Appendices B and C.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Muon Transverse Polarization in Kl2γ Decay Due to the Electromagnetic
Final-State Interaction
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Abstract—For the decay process K+ → µ+νγ, the effect of muon transverse polarization caused by
electromagnetic final-state interaction is analyzed. It is shown that, in the one-loop approximation,
the muon transverse polarization varies from −1.3 × 10−3 to zero in the region of the Dalitz plot. The
mean value of the muon polarization, 〈PT 〉, in the kinematical region Eγ ≥ 20 MeV is −5.44× 10−4.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of radiative K-meson decays is of
interest in connection with searches for effects of new
physics beyond the Standard Model of electroweak
interactions. Searches for new interactions that may
result in CP violation represent one of the most in-
teresting possibilities. In contrast to the Standard
Model, where CP violation is caused by the pres-
ence of a complex phase in the Cabibbo–Kobayashi–
Maskawa matrix, supersymmetry models, for exam-
ple, may feature CP violation naturally arising owing
to the complex-valuedness of the fermionic Yukawa
coupling constants of new Higgs bosons [1]. In view
of this, it seems interesting to analyze those observ-
ables of K-meson decays that are especially sensi-
tive to CP-violation effects. These include the trans-
verse polarization of muons from the decays K± →
µ±νγ and K± → π0µ±ν and the T -odd correlation

T =
1

M3
K

pγ · [pπ × pl] in the processK
± → π0µ±νγ

[2]. In particular, the muon transverse polarization
can amount to PT 	 7.0 × 10−3 in models involving
left–right symmetry and one Higgs doublet [3] and
to PT 	 6.0 × 10−2 in models involving three Higgs
doublets [4].

New possibilities in this realm are being unveiled
in connection with the planned OKA experiment [5],
which is intended for studying charged-kaon decays.
Expected statistics for the decays K+ → µ+νγ,
K+ → π0µ+ν, and K+ → π0µ+νγ are approxi-
mately 4.3 × 108, 1.7 × 109, and 7.0 × 105 events,
respectively. This gives every reason to hope either
to detect new-physics events or to set stringent
constraints on the parameters of extended models.
1063-7788/02/6503-0513$22.00 c©
In seeking the new-interaction contribution to the
muon transverse polarization, it is of crucial impor-
tance to estimate the background contribution of the
so-called spurious muon polarization that is due to
electromagnetic final-state interaction. For the pro-
cess K+ → µ+νγ, the muon transverse polarization
caused by electromagnetic final-state interaction was
calculated by Efrosinin and Kudenko [6] in the one-
loop approximation of minimal QED. They showed
that this polarization can vary within the interval
(−0.1–4.0) × 10−3. In the present article, we rean-
alyze the effect of the muon transverse polarization
due to final-state interaction. We have revealed dis-
agreement with previous results [6] in calculating
the Dalitz plot density ρ0 and the transverse com-
ponent ρT of muon polarization, which contribute to
transverse polarization. This disagreement leads to a
change in the interval of values and to a shift of the
mean value of the transverse polarization.

The ensuing exposition is organized as follows.
In Section 2, we describe the procedure for calcu-
lating the transverse polarization with allowance for
one-loop diagrams featuring final-state interaction.
In Section 3, we present and discuss our numerical
results for PT and 〈PT 〉. The last section contains a
summary and conclusions.

2. TRANSVERSE POLARIZATION
OF MUONS IN THE DECAY K+ → µ+νγ

In the tree approximation, the decayK+ → µ+νγ
is described by the diagrams in Fig. 1. The diagrams
in Figs. 1b and 1c correspond to bremsstrahlung from
the muon and the kaon, respectively, while the dia-
gram in Fig. 1а takes into account structural radia-
tion. The amplitude of this process can be represented
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Feynman diagrams for the decayK+ → µ+νγ in
the tree approximation.

in the form

M = ie
GF√

2
V ∗

usε
∗
µ

(
fKmµū(pν)(1 + γ5) (1)

×
(

pµ
K

(pKq)
− (pµ)µ

(pµq)
− q̂γµ

2(pµq)

)
v(pµ) −Gµν lν

)
,

where

lµ = ū(pν)(1 + γ5)γµv(pµ); (2)

Gµν = iFvε
µναβqα(pK)β − Fa(gµν(pKq) − pµ

Kq
ν);

GF is the Fermi constant; Vus is the relevant element
of the Cabibbo–Kobayashi–Maskawa matrix; fK is
the leptonic coupling constant of the K meson; pK ,
pµ, pν , and q are the 4-momenta of the kaon, the
muon, the neutrino, and the photon, respectively; εµ

is the photon polarization vector; and Fv and Fa are
the vector and axial kaon form factors.

That part of the amplitude which is associated with
structural radiation and radiation in the initial kaon
state and which we will use below in the one-loop
calculations has the form

MK = ie
GF√

2
V ∗

usε
∗
µ

(
fKmµū(pν)(1 + γ5) (3)

×
(

pµ
K

(pKq)
− γµ

m µ

)
v(pµ) −Gµν lν

)
.

The K+ → µ+νγ partial decay width in the kaon
rest frame can be represented as

dΓ =
|M |2
2mK

(2π)4δ(pK − pµ − q − pν) (4)

× d3q

(2π)32Eq

d3pµ

(2π)32Eµ

d3pν

(2π)32Eν
.

Upon introducing a unit vector s directed along
the spin of the muon in its rest frame, where ei (i =
L,N, T ) are unit vectors directed along, respectively,
the longitudinal, the normal, and the transverse com-
ponent of the muon polarization, the square of the
matrix element for the transition into a pure muon-
polarization state takes the form

|M |2 = ρ0[1 + (PLeL + PNeN + PTeT ) · s], (5)
PH
where ρ0 is the probability density on the Dalitz plot;
the unit vectors ei are expressed in terms of the 3-
momenta of final particles as

eL =
pµ

|pµ|
, eN =

pµ × (q× pµ)
|pµ × (q× pµ)| , (6)

eT =
q× pµ

|q× pµ|
;

and PT is the muon transverse polarization. Employ-
ing the notation introduced in [6],

x =
2Eγ

mK
, y =

2Eµ

mK
, (7)

λ =
x+ y − 1 − rµ

x
, rµ =

m2
µ

m2
K

,

where Eγ (Eµ) is the photon (muon) energy in the
kaon rest frame, we can write the probability density
on the Dalitz plot,

ρ0(x, y) =
d2Γ
dxdy

=
mK

256π3
|M |2, (8)

as a function of the variables x and y:

ρ0 =
1
2
e2G2

F|Vus|2
(

4m2
µ|fK |2

λx2
(1 − λ) (9)

×
(
x2 + 2(1 − rµ)

(
1 − x− rµ

λ

))
+m6

Kx
2(|Fa|2 + |Fv |2)(y − 2λy − λx + 2λ2)

+ 4Re(fKF
∗
v )m4

Krµ
x

λ
(λ− 1) + 4Re(fKF

∗
a )

×m4
Krµ

(
−2y + x+ 2

rµ

λ
− x

λ
+ 2λ

)
+2Re(FaF

∗
v )m6

Kx
2(y − 2λ + xλ)

)
.

In calculating the muon transverse polarization, we
will henceforth follow the strategies adopted in [7] and
assume that the amplitude of the decay under consid-
eration is CP-invariant and that the form factors fK ,
Fv , and Fa are real-valued. In the tree approximation,
themuon transverse polarization then vanishes: PT =
0. The inclusion of one-loop contributions leads to a
nonzero muon transverse polarization owing to the
interference between tree diagrams and the imaginary
parts of one-loop diagrams generated by electromag-
netic final-state interaction.

In order to determine these imaginary parts of the
form factors, we employ the unitarity of S matrix [7],

S+S = 1; (10)

considering that S = 1 + iT , we then arrive at

Tfi − T ∗
if = i

∑
n

T ∗
nfTni, (11)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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where the indices i, f , and n correspond, respectively,
to the initial, to the final, and to the intermediate
state of the particle system. Taking into account the
T invariance of the matrix element, we obtain

ImTfi =
1
2

∑
n

T ∗
nfTni, (12)

Tfi = (2π)4δ(Pf − Pi)Mfi. (13)

The one-loop diagrams that contribute to the
muon transverse polarization in the decay K+ →
µ+νγ are presented in Fig. 2. Applying expression
(3), we can write their imaginary parts generating
a nonzero contribution to PT . For the diagrams in
Figs. 2а and 2c, we have

ImM1 =
ieα

2π
GF√

2
V ∗

usū(pν)(1 + γ5) (14)

×
∫

d3kγ

2ωγ

d3kµ

2ωµ
δ(kγ + kµ − P )Rµ

× (k̂µ −mµ)γµ q̂ + p̂µ −mµ

(q + pµ)2 −m2
µ

γδε∗δv(pµ).

The contribution of the diagrams in Figs. 2b and 2d
is given by

ImM2 =
ieα

2π
GF√

2
V ∗

usū(pν)(1 + γ5) (15)

×
∫

d3kγ

2ωγ

d3kµ

2ωµ
δ(kγ + kµ − P )Rµ

× (k̂µ −mµ)γδε∗δ
k̂µ − q̂ −mµ

(kµ − q)2 −m2
µ

γµv(pµ),

where we have introduced the notation

Rµ = fKmµ

(
(pK)µ
(pKkγ)

− γµ

mµ

)
(16)

− iFvεµναβ(kγ)α(pK)βγν

+ Fa(γµ(pKkγ) − (pK)µk̂γ).

In order to write the contributions from the di-
agrams in Figs. 2e and 2f, we must modify Rµ in
expressions (14) and (15) by representing it in the
form

Rµ = fKmµ

(
γµ

mµ
− (kµ)µ

(kµkγ)
− k̂γγµ

2(kµkγ)

)
. (17)

Here, we do not quote the expression for the imagi-
nary part of the diagram in Fig. 2g and, in the ensuing
calculations, neglect its contribution to the muon
transverse polarization, since it is much less than the
contributions from other diagrams.

A detailed account of the procedure that we use
to calculate the integrals in (14) and (15) and their
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 2. Feynman diagrams contributing to the muon
transverse polarization in the one-loop approximation.

dependences on the kinematical parameters is given
in Appendix 1. The expression for the amplitude with
allowance for ImM1 + ImM2 has the form

M = ie
GF√

2
V ∗

usε
∗
µ

(
f̃Kmµū(pν)(1 + γ5) (18)

×
(

pµ
K

(pKq)
− (pµ)µ

(pµq)

)
v(pµ)

+ F̃nū(pν)(1 + γ5)q̂γµv(pµ) − G̃µν lν

)
,

where

G̃µν = iF̃vε
µναβqα(pK)β − F̃a(gµν(pKq) − pµ

Kq
ν).
(19)

The form factors f̃K , F̃v, F̃a, and F̃n include the one-
loop contributions from the diagrams in Figs. 2a–2f.
The choice of these form factors is determined by the
decomposition of thematrix element into independent
gauge-invariant structures.

We are interested only in the contributions from
the imaginary parts, since it is these contributions
that lead to the appearance of a nonzero transverse
muon polarization. This is the reason why we ne-
glect the real parts of these diagrams, assuming that
Ref̃K , ReF̃v, and ReF̃a coincide with their values in
the tree approximation (fK , Fv , and Fa, respectively)
and that ReF̃n = −fKmµ(pµq)/2. The expressions
2
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Fig. 3. Three-dimensional Dalitz plot for the muon trans-
verse polarization as a function of the variables x =
2Eγ/mK and y = 2Eµ/mK .

for the imaginary parts of the form factors are pre-
sented in Appendix 2. The muon transverse polariza-
tion can be represented in the form

PT = ρT /ρ0, (20)

where

ρT = −2m3
Ke

2G2
F|Vus|2x

√
λy − λ2 − rµ (21)

×
(
mµIm(f̃KF̃

∗
a )
(

1 − 2
x

+
y

λx

)

+mµIm(f̃KF̃
∗
v )
( y

λx
− 1 − 2

rµ

λx

)
+ 2

rµ

λx
Im(f̃KF̃

∗
n)(1 − λ)

+m2
KxIm(F̃nF̃

∗
a )(λ− 1)

+m2
KxIm(F̃nF̃

∗
v )(λ− 1)

)
.

3. RESULTS

Before proceeding to discuss our numerical re-
sults, we would like to make a few comments.

The above expression for the probability density on
the Dalitz plot (ρ0) differs in the structure of the inter-
ference terms from the result presented previously in
[6]. In addition, expression (21) differs from the result
for ρT quoted in [6]. In particular, the expression for
ρT in [6] does not involve the terms including the
imaginary part of the form factor Fn, while the term
Im(f̃K F̃

∗
a ) has an opposite sign. This is not the whole

story, however: in calculating the muon transverse
polarization, we have taken here into account the
contributions from the diagrams in Figs. 2e and 2f;
these contributions were disregarded in [6], but they
are commensurate with the contributions from the
PH
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Fig. 4. Level contours on the Dalitz plot for the muon
transverse polarization PT = f(x, y).

other diagrams in Fig. 2. (It should be noted that the
expression for ρ0 was obtained in [8] as well, where
all kinematical structures in front of the quadratic
and interference terms coincide with those obtained
here, but the terms proportional to Re(fKF

∗
v ) and

Re(FaF
∗
v ) have opposite signs.) These distinctions

lead to considerable discrepancies between the values
calculated here and in [6] for the muon transverse
polarization.

In performing numerical calculations, we have
used the form-factor values [8, 9]

fK = 0.16 GeV, Fv = −0.095
mK

, Fa = −0.043
mK

.

The value of the form factor fK is determined from
experimental data on kaon decays, while the values
of Fv and Fa are calculated within chiral perturbation
theory in the one-loop approximation [8].

Figure 3 shows the three-dimensional distribution
of the muon transverse polarization calculated in the
one-loop approximation of the Standard Model. The
behavior of PT as a function of the parameters x and
y is controlled by the additive contributions from the
diagrams in Figs. 2a–2f. The contribution from the
diagrams in Figs. 2a–2d is close in magnitude to
that from the diagrams in Figs. 2e and 2f, but they
have opposite signs, so that the total distribution of
PT (x, y) is the difference of these contributions and
is an order of magnitude smaller than each of them.
Estimations show that, over the entire Dalitz plot, the
contribution from the diagram in Fig. 2g is an order
of magnitude smaller than the total contribution from
the other diagrams.

As can be seen from Fig. 3, the absolute value
of the muon transverse polarization takes the largest
values in two regions of the Dalitz plot: (a) for
0.2 ≤ x = 2Eγ/mK ≤ 0.4 and y = 2Eµ/mK → 1;
(b) for 0.4 ≤ x = 2Eγ/mK ≤ 0.7 and 0.5 ≤ y =
2Eµ/mK ≤ 0.7.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Indeed, an analysis of the behavior of the level
contours for the muon transverse polarization versus
the parameters x and y (see Fig. 4) shows that the
maxima of the absolute value of the transverse polar-
ization are located in the regions of (x, y) around (0.3,
1.0) and (0.6, 0.6). It should be noted that, in this
case, the muon transverse polarization is negative
over the entire Dalitz plot. The mean muon polar-
ization 〈PSM

T 〉 can be obtained upon integration over
the physical region with allowance for the constraint
Eγ > 20 MeV on the photon energy. The result is

〈PSM
T 〉 = −5.44 × 10−4 .
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APPENDIX 1

In calculating the integrals appearing in expres-
sions (14) and (15), we use the notation

P = pµ + q,

dρ =
d3kγ

2ωγ

d3kµ

2ωµ
δ(kγ + kµ − P ).

Below, we present either explicit expressions for cor-
responding integrals in terms of the parameters intro-
duced above or sets of equations in these parameters,
in which case the integrals in question can be calcu-
lated by solving these sets of equations.

Thus, we have

J11 =
∫

dρ =
π

2
P 2 −m2

µ

P 2
,

J12 =
∫

dρ
1

(pKkγ)
=

π

2I
ln
(

(PpK) + I

(PpK) − I

)
,

where

I2 = (PpK)2 −m2
KP

2,∫
dρ

kα
γ

(pKkγ)
= a11p

α
K + b11P

α.

Here, the parameters a11 and b11 are defined as

a11 = − 1
(PpK)2 −m2

KP
2

×
(
P 2J11 −

J12

2
(PpK)(P 2 −m2

µ)
)
,
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b11 =
1

(PpK)2 −m2
KP

2

×
(

(PpK)J11 −
J12

2
m2

K(P 2 −m2
µ)
)

;

∫
dρkα

γ = a12P
α,∫

dρkα
γ k

β
γ = a13g

αβ + b13P
αP β,

where

a12 =
P 2 −m2

µ

2P 2
J11,

a13 = − 1
12

(P 2 −m2
µ)2

P 2
J11,

b13 =
1
3

(
P 2 −m2

µ

P 2

)2

J11;

J1 =
∫

dρ
1

(pKkγ)((pµ − kγ)2 −m2
µ)

= − π

2I1(P 2 −m2
µ)

ln
(

(pKpµ) + I1
(pKpµ) − I1

)
,

J2 =
∫

dρ
1

(pµ − kγ)2 −m2
µ

= − π

4I2
ln
(

(Ppµ) + I2
(Ppµ) − I2

)
.

Here, we have

I2
1 = (pKpµ)2 −m2

µm
2
K , I2

2 = (Ppµ)2 −m2
µP

2;∫
dρ

kα
γ

(pµ − kγ)2 −m2
µ

= a1P
α + b1p

α
µ,

where

a1 = −
m2

µ(P 2 −m2
µ)J2 + (Ppµ)J11

2((Ppµ)2 −m2
µP

2)
,

b1 =
(Ppµ)(P 2 −m2

µ)J2 + P 2J11

2((Ppµ)2 −m2
µP

2)
.

The following integrals are expressed in terms of
the parameters whose values can be obtained by solv-
ing the corresponding sets of equations:∫

dρ
kα

γ

(pKkγ)((pµ − kγ)2 −m2
µ)

= a2P
α + b2p

α
K + c2p

α
µ,


a2(PpK) + b2m

2
K + c2(pKpµ) = J2,

a2(Ppµ) + b2(pKpµ) + c2m
2
µ = −1

2
J12,

a2P
2 + b2(PpK) + c2(Ppµ) = (pµq)J1;
2
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∫
dρ

kα
γ k

β
γ

(pKkγ)((pµ − kγ)2 −m2
µ)

= a3g
αβ + b3(Pαpβ

K + P βpα
K)

+ c3(Pαpβ
µ + P βpα

µ) + d3(pα
Kp

β
µ + pβ

Kp
α
µ)

+ e3p
α
µp

β
µ + f3P

αP β + g3p
α
Kp

β
K ,




4a3 + 2b3(PpK) + 2c3(Ppµ) + 2d3(pKpµ)

+ g3m
2
K + e3m

2
µ + f3P

2 = 0,

c3(pKpµ) + b3m
2
K + f3(PpK) − a1 = 0,

c3(PpK) + d3m
2
K + e3(pKpµ) − b1 = 0,

a3 + b3(PpK) + d3(pKpµ) + g3m
2
K = 0,

b3(pKpµ) + c3m
2
µ + f3(Ppµ) = −1

2
b11,

b3(Ppµ) + d3m
2
µ + g3(pKpµ) = −1

2
a11,

a3P
2 + 2b3P 2(PpK) + 2c3P 2(Ppµ)

+ 2d3(Ppµ)(PpK) + e3(Ppµ)2 + f3(P 2)2

+ g3(PpK)2 = (pµq)2J1;

∫
dρ

kα
γ k

β
γ

(pµ − kγ)2 −m2
µ

= a4gαβ + b4(Pαpβ
µ + P βpα

µ) + c4P
αP β + d4p

α
µp

β
µ,




a4 + d4m
2
µ + b4(Ppµ) = 0,

b4m
2
µ + c4(Ppµ) = −1

2
a12,

4a4 + 2b4(Ppµ) + c4P
2 + d4m

2
µ = 0,

a4P
2 + 2b4P 2(Ppµ) + c4(P 2)2

+ d4(Ppµ)2 =
(P 2 −m2

µ)2

4
J2;

∫
dρ

kα
γ k

β
γkδ

γ

(pµ − kγ)2 −m2
µ

= a5(gαβpδ
µ + gδαpβ

µ + gβδpα
µ)

+ b5(gαβP δ + gδαP β + gβδPα)

+ c5p
α
µp

β
µp

δ
µ + d5P

αP βP δ

+ e5(Pαpβ
µp

δ
µ + P δpα

µp
β
µ + P βpδ

µp
α
µ)

+ f5(PαP βpδ
µ + P δPαpβ

µ + P βP δpα
µ),
P




2a5 + c5m
2
µ + e5(Ppµ) = 0,

a5m
2
µ + b5(Ppµ) = −1

2
a13,

b5 + e5m
2
µ + f5(Ppµ) = 0,

d5(Ppµ) + f5m
2
µ = −1

2
b13,

6a5 + c5m
2
µ + 2e5(Ppµ) + f5P

2 = 0,

3a5P
2(Ppµ) + 3b5(P 2)2 + c5(Ppµ)3

+ d5(P 2)3 + 3e5P 2(Ppµ)2

+3f5(P 2)2(Ppµ) =
(P 2 −m2

µ)3

8
J2.

APPENDIX 2

In this appendix, we present expressions for the
imaginary parts of the form factors in terms of the
parameters calculated in Appendix 1. Specifically, we
have

Imf̃K =
α

2π
fK

(
− 4a3(pKq) + 4a2m

2
µ(pKq)

− 2b3m2
µ(pKq) + 4c2m2

µ(pKq) − 4c3m2
µ(pKq)

− 2d3m
2
µ(pKq) − 2e3m2

µ(pKq) − 2f3m
2
µ(pKq)

+ 4a2(pKq)(pµq) − 4b3(pKq)(pµq)

− 4c3(pKq)(pµq) − 4f3(pKq)(pµq)
)

+
α

2π
Fa

(
8 a4(pKq) − 8a5(pKq)

− 8b5(pKq) + 8b4m2
µ(pKq)

+ 4c4m2
µ(pKq) − 2c5m2

µ(pKq)

+ 4d4m
2
µ(pKq) − 2d5m

2
µ(pKq)

− 6e5m2
µ(pKq) − 6f5 m

2
µ(pKq)

+ 12b4(pKq)(pµq) + 8c4(pKq)(pµq)
+ 4d4(pKq)(pµq) − 4d5(pKq)(pµq)

− 4e5(pKq)(pµq) − 8f5(pKq)(pµq)
)

+
α

2π
Fv

(
8 a4(pKq) − 8a5(pKq)

− 8b5(pKq) + 8b4m2
µ(pKq)

+ 4c4m2
µ(pKq) − 2c5m2

µ(pKq)

+ 4d4m
2
µ(pKq) − 2 d5m

2
µ(pKq)

− 6e5m2
µ(pKq) − 6f5m

2
µ(pKq)

+ 12b4(pKq)(pµq) + 8c4 (pKq)(pµq)
+ 4d4(pKq)(pµq) − 4d5(pKq)(pµq)

− 4e5(pKq)(pµq) − 8f5(pKq)(pµq)
)
;

ImF̃a =
α

2π
fK

(
a2m

2
µ + 2c2m2

µ
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− c3m
2
µ − 2d3m

2
µ − e3m

2
µ

−
a1m

2
µ

(pµq)
−
b1m

2
µ

(pµq)
+

2b4m2
µ

(pµq)
+
c4m

2
µ

(pµq)
+
d4m

2
µ

(pµq)

)
+

α

2π
Fv

(
8a4 − 4a5 − 12b5

− 2a1m
2
µ + 4b4m2

µ + 5c4m2
µ

− c5m
2
µ − d4m

2
µ − 3d5m

2
µ

− 5e5m2
µ − 7f5m

2
µ + 2a1(pKpµ)

− 4b4(pKpµ) − 4c4(pKpµ) + 2d5(pKpµ)
+ 2e5(pKpµ) + 4f5(pKpµ) + 2a1(pKq)
− 2b4(pKq) − 4c4(pKq) + 2d5(pKq)
+ 2f5(pKq) − 4a1(pµq) + 6b4(pµq)
+ 10c4(pµq) − 6d5(pµq) − 2e5(pµq)

− 8f5(pµq)
)

+
α

2π
Fa

(
− 6a4 + 2 a5

+ c4m
2
µ − d4m

2
µ − d5m

2
µ − e5m

2
µ

− 2f5m
2
µ + 2a1(pKpµ) − 4b4(pKpµ)

− 4c4(pKpµ) + 2d5(pKpµ) + 2e5(pKpµ)
+ 4f5(pKpµ) + 2a1(pKq) − 2b4(pKq)
− 4c4(pKq) + 2d5(pKq) + 2f5(pKq)

+ 2c4(pµq) − 2d5(pµq) − 2f5(pµq)
)
;

ImF̃n =
α

2π
fK

(
4a1mµ + 2a3mµ

+ 2b1mµ + b11mµ − 2b4mµ − 2c4mµ

− J12mµ − 2J2mµ − b2m
2
Kmµ

+ g3m
2
Kmµ − 2a2m

3
µ − c2m

3
µ + c3m

3
µ

+ f3m
3
µ − 2a2mµ(pKpµ) − 2b2mµ(pKpµ)

+ 2b3mµ(pKpµ) − 2c2mµ(pKpµ)
+ 2d3mµ(pKpµ) + 2J1mµ(pKpµ) + 2b3mµ(pKq)

−
a12m

3
µ

(pµq)
2 −

J11m
3
µ

(pµq)
2 − a12mµ

(pµq)
− 2a4mµ

(pµq)

+
J11mµ

(pµq)
− a11m

2
Kmµ

2(pµq)
+

3 a1m
3
µ

(pµq)
+

3 b1m3
µ

(pµq)

+
b11m

3
µ

2(pµq)
−

2J2m
3
µ

(pµq)
− b11mµ(pKpµ)

(pµq)

+
J12mµ(pKpµ)

(pµq)
− b11mµ(pKq)

(pµq)
+
J12mµ(pKq)

(pµq)

− 2a2mµ(pµq) + 2c3mµ(pµq) + 2f3mµ(pµq)
)

+
α

2π
Fv

(
2a4mµ − 4a5mµ + 2b13mµ

− 4b5mµ − 2a1m
3
µ + c4m

3
µ
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− c5m
3
µ − d4m

3
µ − d5m

3
µ

− 3e5m3
µ − 3f5m

3
µ + 2a1mµ(pKpµ)

− 2c4mµ(pKpµ) + 2d4mµ(pKpµ)
+ 2d5mµ(pKpµ) + 2e5mµ(pKpµ)
+ 4f5mµ(pKpµ) − 2c4mµ(pKq)
+ 2d5mµ(pKq) + 2f5mµ(pKq)

+
3a13mµ

(pµq)
+
b13m

3
µ

(pµq)

− b13mµ(pKpµ)
(pµq)

− b13mµ(pKq)
(pµq)

− 2a1mµ(pµq) + 2c4mµ(pµq)
− 2d4mµ(pµq) − 2d5mµ(pµq)

− 2e5mµ(pµq) − 4f5mµ(pµq)
)

+
α

2π
Fa

(
− 6a4mµ + 8a5mµ − b13mµ

+ 8b5mµ − 4b4m3
µ − 2c4m3

µ

+ c5m
3
µ − 2d4m

3
µ + d5m

3
µ + 3e5mµ

3

+ 3f5m
3
µ + 2a1mµ(pKpµ) − 2c4mµ(pKpµ)

+ 2d4mµ(pKpµ) + 2d5mµ(pKpµ)
+ 2e5mµ(pKpµ) + 4f5mµ(pKpµ)

− 2c4mµ(pKq) + 2d5mµ(pKq) + 2f5mµ(pKq)

− 3a13mµ

(pµq)
− b13mµ

3

2(pµq)
− b13mµ(pKpµ)

(pµq)

− b13mµ(pKq)
(pµq)

− 6b4mµ(pµq)

− 4c4mµ(pµq) − 2d4mµ(pµq)

+ 2d5mµ(pµq) + 2e5mµ(pµq) + 4f5mµ(pµq)
)
;

ImF̃v =
α

2π
fK

(
a2m

2
µ + c3m

2
µ + e3m

2
µ

+
a1m

2
µ

(pµq)
+
b1m

2
µ

(pµq)
−

2b4m2
µ

(pµq)

−
c4m

2
µ

(pµq)
−
d4m

2
µ

(pµq)

)
+

α

2π
Fa

(
6a4

− 2a5 − 8b5 + c4m
2
µ − d4m

2
µ

− d5m
2
µ − e5m

2
µ − 2f5m

2
µ

− 2a1(pKpµ) + 4b4(pKpµ) + 4 c4(pKpµ)
− 2d5(pKpµ) − 2e5(pKpµ) − 4f5(pKpµ)

− 2a1(pKq) + 2b4(pKq) + 4c4(pKq) − 2d5(pKq)

− 2f5(pKq) + 2c4(pµq) − 2d5(pµq) − 2f5(pµq)
)

+
α

2π
Fv

(
− 8a4 + 4a5 + 4b5
2
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+ 2a1m
2
µ − 4b4m2

µ − 3c4m2
µ

+ c5m
2
µ − d4m

2
µ + d5m

2
µ + 3e5m2

µ

+ 3f5m
2
µ − 2a1(pKpµ) + 4b4(pKpµ)

+ 4c4(pKpµ) − 2d5(pKpµ) − 2e5(pKpµ)
− 4f5(pKpµ) − 2a1(pKq) + 2b4(pKq)
+ 4c4(pKq) − 2d5(pKq) − 2f5(pKq)
+ 4a1(pµq) − 6b4(pµq) − 6c4(pµq)

+ 2d5(pµq) + 2e5(pµq) + 4f5(pµq)
)
.
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Abstract—Effects that are induced by contact four-fermion interactions in the processes e+e− → µ+µ−,
b̄b, and c̄c at

√
s = 0.5 TeV linear electron–positron colliders are investigated for the case of longitudinally

polarized initial beams. This analysis employs new integrated observables constructed from the polarized
cross sections for the scattering of final fermions into the forward (σF ) and the backward (σB) hemisphere in
such a way that they single out the helicity cross sections for the processes in question. This property of the
observablesmakes it possible to perform, in the most general form, amodel-independent analysis of contact
four-fermion interactions and to set constraints on their parameters. It is also shown that the sensitivity of
new polarization observables to contact interactions is noticeably higher than the corresponding sensitivity
of canonical observables like σ, AFB , ALR, and ALR,FB . c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Slightly more than a quarter of a century has
passed since the discovery of weak neutral currents
at the Gargamelle facility [1]. This discovery, which
was one of the first successful applications of the
Standard Model (SM), ensured a high phenomeno-
logical status of this model and gave impetus to mas-
sive efforts aimed at thoroughly verifying every as-
pect of it in accelerator and nonaccelerator exper-
iments [2–4]. The accuracy of experiments testing
the Standard Model has been considerably improved
over those years, and impressive advances, which
culminated in precision resonance (

√
s =MZ) and

nonresonance (
√
s > MZ) experiments at the LEP

electron–positron collider, the level of precision being
0.1% in the resonance experiments, have been made
along this line. Mention should also be made here of
recently performed experiments that measured effects
of parity violation in cesium atoms (see, for example,
[4]) and which are highly sensitive to P-odd effects
of nonstandard physics. Processes that are due to
neutral currents provide a powerful tool not only for
testing the Standard Model but also for seeking the
effects of new particles and interactions beyond it.
An observation of deviations fromStandard Model

predictions in the annihilation production of fermion
pairs,

e+ + e− → f̄ + f , (1)

where f = l (l = µ, τ ) or f = q (q = u, d, c, s, b),
would be an unambiguous indication of the exis-
tence of new (nonstandard) physics. At low energies,
these deviations can be systematically described
and investigated on the basis of the formalism of
1063-7788/02/6503-0521$22.00 c©
effective Lagrangians. In this approach, an effective
Lagrangian is constructed from the matter fields that
occur in the Standard Model, so that, at low energies,
the symmetry properties of this Lagrangian are iden-
tical to those of the Standard Model. The resulting
interaction involves the Standard Model interaction
as the leading term in a series and higher order terms
in the scale parameter (1/Λn) that are formed by local
operators whose dimensions are higher than those
in the Standard Model. Thus, effects of nonstandard
physics can be observed at energies much lower than
Λ in the form of deviations of observables from the
values predicted by the Standard Model and can
correspond to some effective contact interactions.
The first term in the effective Lagrangian for con-

tact four-fermion interaction has the dimension of
D = 6 and includes the factor g2

eff/Λ
2. If we restrict

our analysis to the case of fermion currents that con-
serve helicity and which are diagonal in flavor, the
general form of the contact four-fermion eeff in-
teraction invariant under the SU(3)C × SU(2)L ×
U(1)Y symmetry group can be represented in the
form [5–12]

L =
∑

f

∑
αβ

ηαβ (ēαγµeα)
(
f̄βγ

µfβ

)
, (2)

where eight independent coefficients ηαβ have dimen-
sions of TeV−2 and are usually described in the form
ηαβ = g2

effεαβ/Λ2
αβ , with the strength of interaction

being g2
eff = 4π. The choice of the constant geff in this

form is dictated by considerations according to which
the contact interaction becomes strong for

√
s→

Λαβ . The quantity εαβ takes the values of εαβ = 0 and
±1. The positive and negative signs correspond to the
2002 MAIK “Nauka/Interperiodica”
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Table 1.Models of contact four-fermion interactions

Model εLL εRR εLR εRL

LL ±1 0 0 0

RR 0 ±1 0 0

LR 0 0 ±1 0

RL 0 0 0 ±1
V V ±1 ±1 ±1 ±1
AA ±1 ±1 ∓1 ∓1

LL+RR ±1 ±1 0 0

LR+RL 0 0 ±1 ±1

constructive and the destructive interference between
the contact interactions and the standard amplitudes
describing photon and Z-boson exchanges. In the
above expressions, we suppressed the color and the
generation indices. The parameters ηαβ (α, β = L,R)
determine the chiral structure of the interaction. In-
teraction terms violating the lepton and the fermion
chirality—such as (ēLeR)(f̄LfR)—are not included
in expression (2) for the effective Lagrangian. This is
done because available experimental data on the pro-
cess π− → e−ν̄ suggest a significant suppression of
scalar and tensor terms of the Lagrangian for a theory
that is invariant under the SU(2)×U(1) transforma-
tions.
In composite models of leptons and quarks, con-

tact interactions are considered as a residual mani-
festation of binding forces acting between their con-
stituent objects (for example, preons). Moreover, var-
ious types of nonstandard physics where fermion in-
teractions are characterized by particle exchanges
in the s, t, and u channels can be described by an
effective contact four-fermion interaction under the
condition that the square of the mass of the ex-
changed particle is much greater than the relevant
Mandelstam variables. This concerns, for example,
effects induced by the exchange of heavy Z ′ bosons
[13], leptoquarks [14], and sleptons and squarks in
supersymmetric theories featuring R-parity violation
[15]. The concept of contact interactions is widely
used in describing processes that proceed through
neutral currents in e+e−, ep, and p̄p collisions [8,
9, 16]. Searches for the internal structure of leptons
and quarks or for new heavy particles interacting with
quarks and gluons are performed in these processes.
Thus, contact interactions can be considered as a
convenient parametrization of deviations from Stan-
dardModel predictions due to some types of nonstan-
dard physics.
The structure of the Lagrangian in (2) is such that,

for a given fermion f , there are eight possible types of
P

interaction that correspond to the total number of in-
dependent models. This number is determined by the
possible number of the helicity combinations αβ =
LL,LR,RL, andRRwith allowance for arbitrariness
in the choice of the signs (±) of the coupling con-
stants. As a matter of fact, each of these possibilities,
which corresponds to one model or another, or any
of their combinations can be realized in nature. The
list of the models and their parametrizations that are
discussed most often in analyzing experimental data
in the context of contact four-fermion interactions is
presented in Table 1 [3, 8, 17].
We note that the number of independent param-

eters of the four-fermion interaction can be reduced
by imposing additional constraints on the symmetries
of the Lagrangian. This results in the appearance of
specific relations between the coupling constants.
We will briefly explain this by considering some

examples [10]. In the theoretical scheme based on the
interaction that is invariant under the transformations
of the SU(2) × U(1) group, leptons and quarks of
left-hand helicity form SU(2) doublets; that is, they
can be represented asL = (νL, eL) andQ = (uL, dL).
The Lagrangian for lepton–quark interactions that is
invariant under the transformations of the SU(2) ×
U(1) group has the form [10]

LSU(2) = η1(L̄γµL)(Q̄γµQ) (3)

+ η2(L̄γµT aL)(Q̄γµT
aQ) + η3(L̄γµL)(ūRγµuR)

+ η4(L̄γµL)(d̄RγµdR) + η5(ēRγµeR)(Q̄γµQ)

+ η6(ēRγµeR)(ūRγµuR) + η7(ēRγµeR)(d̄RγµdR),

where L = (νL, eL) and Q = (uL, dL). In the above
expression, the Lagrangian term describing the lep-
ton–quark interaction involving lepton-helicity vio-
lation, (L̄γµQ)(d̄RγµeR), is discarded. This is done
because, upon the Fierz transformation, it becomes
equivalent to the interaction of the form (L̄eR)(d̄RQ),
which, as was mentioned above, is suppressed by
virtue of available experimental information about the
decay π− → e−ν̄. The second term of the Lagrangian
in (3) includes the factor T a = σa/2, where σa are the
generators of the SU(2) group. There are constraints
that SU(2) symmetry imposes on the right-handed
electron coupling constants; that is,

ηeu
RL = η5 = ηed

RL. (4)

Additionally, SU(2) invariance dictates the follow-
ing relations between the neutrino and the leptonic
coupling constants:

ηνu
LL = η1 +

1
4
η2 = ηed

LL, (5)

ηνd
LL = η1 −

1
4
η2 = ηeu

LL,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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ηνu
LR = η3 = ηeu

LR,

ηνd
LR = η4 = ηed

LR.

The breakdown of electroweak symmetry can lead
to the removal of degeneracy of the states that form
the SU(2) multiplets and to corresponding modifica-
tion of relations (5). In particular, this may be due to
the exchanges of supersymmetric states, such as t̃1,
t̃2, b̃L, and b̃R [10], in supersymmetric theory involv-
ing R-parity violation.
Another example is associated with the symmetry

of contact interactions with respect to the SU(12)
group. This leads to the relation

ηeq
αL = −ηeq

αR. (6)

Finally, the vector–vector (V V ) character of in-
teractions imposes the following constraints on the
coupling constants:

ηeq
LL = ηeq

RR = ηeq
LR = ηeq

RL = ηeq
V V . (7)

The axial–axial (AA) interactions mediated by a
vector boson, which have purely axial-vector coupling
constants, yield

ηeq
LL = ηeq

RR = −ηeq
LR = −ηeq

RL = ηeq
AA. (8)

All these features are reflected in Table 1.
Experimental investigation of contact four-fermion

interactions and estimations of constraints on their
parameters are based on the analysis of processes
that proceed owing to neutral currents. Recently,
Barger et al. [10] and Zeppenfeld and Cheung [12]
performed a global analysis of available experimental
data on neutral currents and presented the corre-
sponding constraints on the individual parameters
of the contact four-fermion interactions. These data
include information about deep-inelastic scattering
implemented at the ZEUS and H1 facilities, about
parity-violation effects measured at the JILA facility
for cesium atoms, about the scattering of polarized
electrons on nuclei that was explored at SLAC, about
Drell–Yan lepton pairs measured at the Tevatron col-
lider, and about fermion-pair production in electron–
positron annihilation at the LEP collider. The absence
of signals from nonstandard physics in experiments
with leptons and quarks made it possible to set con-
straints on the parameters Λαβ , the most stringent of
these appearing to be at a level of Λαβ > 10–15 TeV
at a confidence level of 95%. The most stringent
constraints on the eell lepton interaction follow from
data of recent LEP2 experiments at

√
s = 130–

202 GeV, which lead to Λαβ > 2.0–9.8 TeV, depend-
ing on the choice of model [17]. For first-generation
quarks, the constraints on lepton–quark parameters
of the eeqq interaction from LEP2 data appeared to
be less stringent (1.5–9.1 TeV). Information about
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
lepton–quark interactions can also be extracted in an
alternative way from HERA data on deep-inelastic
lepton scattering and from data on hadron–hadron
collisions—for example, from the results of measure-
ments of the Drell–Yan process p(p̄) + p→ l+l−+X
at the Tevatron collider [18]. The lower bound on
the parameter Λαβ from these experiments is close
to the constraints following from the LEP2 data.
However, the currently most stringent constraints
on the contact four-fermion lepton–quark interaction
eeqq (Λαβ > 10–15 TeV [19]) come from experiments
that measured parity-violation effects in atoms. At
the same time, it should be borne in mind that these
experiments can constrain only those parameters of
the contact interactions that violate parity.

As soon as the current high-luminosity experi-
mental runs at the Tevatron collider (run II) are com-
pleted in the near future, these constraints will be im-
proved to a level of 10 to 30 TeV, a specific value being
dependent on the structure of interaction. Should the
plans for further increasing the energy and luminosity
of the Tevatron collider in the Tripler mode be im-
plemented [20], an improvement in the sensitivity to
some parameters of the contact interactions at least
by a factor of two are in sight. The expected sensitivity
of the hadron supercollider LHC remains the highest,
reaching a scale of a few tens of TeV for the majority
of the models [20]. Future linear electron–positron
colliders (LC) of energy

√
s ≥ 500 GeV provide the

best possibilities for seeking and investigating effects
induced by eell, eebb, and eecc contact interactions in
process (1) owing to a high sensitivity of this process
at high energies and especially in the case of polarized
initial beams [9, 21, 22].

Let us now address an extremely important prob-
lem in studying contact four-fermion interactions,
that which is associated with a large number (eight)
of interaction parameters [5] (see above). In general,
the deviations of observables from Standard Model
predictions due to contact interactions can indeed
depend on a few effective coupling constants (≤4). In
view of so wide a variety of the parameters, it is rather
difficult to separate and determine them empirically
either theoretically or experimentally. Obviously, fits
to experimental data must take into account all possi-
ble versions of contact four-fermion interactions and
corresponding coupling constants. In order to sim-
plify relevant analyses or for want of necessary event
statistics, however, the authors who studied contact
four-fermion interactions (including the authors of
the articles quoted above) presented most frequently,
for the respective coupling constants, constraints that
they obtained by varying only a few (one or two)
parameters at zero values of the remaining param-
eters. Upon simultaneously taking into account the
2
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contributions from a number of chiral coupling con-
stants, there can arise cancellations and, as a result,
a reduction of the sensitivity of observables to the
parameters Λαβ . In particular, it was indicated in [11]
that the constraints can loosen considerably—from a
level of Λαβ ∼ 10 TeV, which was given in [10] as a
typical one-parameter scale, to 3 or 4 TeV—as soon
as the dependence of observables on the entire set of
parameters is taken fully into account. As a further
characteristic example, we can indicate the loosening
of constraints in atomic physics from experiments
seeking parity-violation effects. It was emphasized
in [11] that they become much more lenient upon
simultaneously taking into account the contributions
to observables from a few sources of different physical
origins. From the above examples, it follows that the
procedure for setting constraints on the parameters
Λαβ that considers the dependence of observables on
an incomplete set of parameters cannot be justified
since it leads, as a rule, to obviously exaggerated
estimates, which are often by far unrealistic.
An attempt at solving this problem is made in

this study. Specifically, a simple and efficient ap-
proach is developed here for performing a model-
independent analysis of contact four-fermion interac-
tions with allowance for the entire set of interaction
parameters treated on equal terms. This approach is
based on the use of new integrated observables that
are constructed from the cross sections for forward
and backward scattering. In [23, 24], Z ′-boson ef-
fects at the LEP2 collider for the case of unpolarized
beams were analyzed in terms of observables similar
in structure to those employed here. In contrast to
that case, where the initial-beam polarization was
impossible, emphasis is placed here, however, on the
possibility of using longitudinally polarized beams at
linear electron–positron colliders in order to separate
different effects and to improve the sensitivity of ob-
servables. It is owing to the longitudinal polarization
of electron–positron beams that we can isolate here
the helicity cross sections for the scattering process
(1), thereby solving the problem of separating and
extracting the parameters for contact four-fermion
interactions. This problem is solved in the most gen-
eral form—that is, with allowance for the entire set of
contact four-fermion coupling constants. A model-
independent analysis of contact lepton–lepton (eell)
and lepton–quark (eebb and eecc) interactions in pro-
cess (1) at a linear electron–positron collider employ-
ing longitudinally polarized initial beams is performed
here on the basis of this approach.
The ensuing exposition is organized as follows.

In Section 2, we discuss canonical unpolarized (σ,
AFB) and polarized (ALR, ALR,FB) observables and
define new integrated variables σ±. The possibili-
ties for isolating the helicity cross sections with the
P

aid of a longitudinal polarization of initial electron–
positron beams are considered further in this section.
Section 3 is devoted to analyzing the sensitivity of
observables to contact interactions for the cases of
unpolarized and polarized positrons. The dependence
of the sensitivity of observables on systematic errors
is investigated in detail. Here, we also obtain model-
independent constraints on Λαβ from a quantitative
analysis of the helicity cross sections and present a
comparative analysis of the sensitivities of the canon-
ical and the new observables. The effects of radia-
tive corrections on the resulting constraints are also
discussed. The last section summarizes the results
obtained in this study and contains concluding com-
ments on them.

2. ISOLATION OF HELICITY CROSS
SECTIONS

In the Born approximation that takes into account
the exchange of a photon γ and a Z boson and the
contribution of the contact four-fermion interactions
(2), the differential cross section for the scattering
process e+e− → f̄f (f �= e, t) involving longitudi-
nally polarized electron–positron beams can be rep-
resented in the form

dσ

d cos θ
=

3
8
[
(1 + cos θ)2 σ+ (9)

+ (1− cos θ)2 σ−
]
,

where θ is the fermion emission angle with respect to
the direction of the electron beam in the с.m. frame of
the f̄f pair. Formula (9) is written in the approxima-
tion of mf  √

s. The functions σ± are expressed in
terms of the helicity cross sections σαβ as

σ+ =
1
4
[(1− Pe)(1 + Pē)σLL (10)

+ (1 + Pe)(1− Pē)σRR]

=
D

4
[(1− Peff)σLL + (1 + Peff)σRR] ,

σ− =
1
4
[(1− Pe)(1 + Pē)σLR (11)

+ (1 + Pe)(1 − Pē)σRL]

=
D

4
[(1− Peff)σLR + (1 + Peff )σRL] ,

where Pe and Pē are the degrees of the longitudinal
polarization of the electrons and positrons, respec-
tively;

Peff =
Pe − Pē

1− PePē
(12)

is the effective polarization [25], |Peff | ≤ 1; and D =
1−PePē. It is obvious that, for unpolarized positrons,
we have Peff → Pe and D → 1. We also note that, for
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Pē �= 0, the quantity |Peff | can be greater than |Pe|.
Additionally, the helicity cross section is given by

σαβ = NC σpt|Mαβ|2, (13)

where α, β = L,R; NC is the color factor, which is
NC ≈ 3(1 + αs/π) and NC = 1 for quarks and lep-
tons, respectively; and the electromagnetic cross sec-
tion can be represented as σpt ≡ σ(e+e− → γ∗ →
l+l−) = (4πα2)/(3s), with α being the fine-structure
constant (α = e2/4π). The helicity amplitudesMαβ

have the form

Mαβ = QeQf + ge
α g

f
β χZ +

s

4πα
ηαβ , (14)

where χZ = s/(s−M2
Z + iMZΓZ) is the propaga-

tor for the neutral gauge boson Z, while ΓZ and
MZ are its total decay width and mass, respectively.
The normalization conditions for the chiral coupling
constants of fermions in the Standard Model are
taken to be gf

L = (If
3L −Qf s2W)/ sW cW and gf

R =
−Qf s2W/ sW cW, where s2W = 1− c2W ≡ sin2 θW, Qf

is the electric charge of fermions, and If
3L is the weak

isospin of fermions of left-hand helicity.

A further analysis is based on employing the
helicity cross sections for investigating the contact
interactions—these cross sections are directly related
to the individual coupling constants for the interac-
tions in (2), and it is this property that makes it pos-
sible to perform a model-independent analysis of the
contact interactions, provided that the helicity cross
sections are singled out experimentally. Moreover, the
possibility of cancellation of effects that are induced
by different parameters of the contact interactions is
completely ruled out in this case.

From the practical point of view, it is necessary
to perform an experiment at two different sets of po-
larizations (Pe, Pē) in order to single out the helicity
cross sections appearing in expressions (10) and (11).
In this way, we would obtain four observables de-
pending on the entire set of parameters of the contact
interactions, and this is sufficient for extracting the
helicity cross sections. For example, an experiment
can be performed at Pe = ±P1 and Pē = ∓P2 (P1,2 >
0), in which case the polarization Peff = ±P reverses
sign, while D does not. Solving the set of Eqs. (10)
and (11), we obtain

σLL =
1
D

[
1 + P

P
σ+(−P ) +

1− P

−P σ+(P )
]
, (15)

σRR =
1
D

[
1 + P

P
σ+(P ) +

1− P

−P σ+(−P )
]
, (16)

σLR =
1
D

[
1 + P

P
σ−(−P ) +

1− P

−P σ−(P )
]
, (17)
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σRL =
1
D

[
1 + P

P
σ−(P ) +

1− P

−P σ−(−P )
]
. (18)

As follows from formulas (15)–(18), the helicity
cross sections are expressed in terms of the functions
σ± taken at two different values of the effective po-
larization. In turn, the functions σ± can be measured
with the aid of two integrated cross sections that
are determined in different kinematical regions—for
example, the cross sections for scattering into the
forward and the backward hemisphere (σF and σB ,
respectively). In particular, it follows from (9) that

σF (P,D) ≡
1∫

0

dσ

d cos θ
d cos θ =

1
8
(7σ+ + σ−), (19)

σB(P,D) ≡
0∫

−1

dσ

d cos θ
d cos θ =

1
8
(σ+ + 7σ−).

(20)

With the aid of the equalities in (19) and (20), σ+

and σ− can easily be expressed in terms of the directly
measurable observables σF and σB as

σ+ =
7
6
σF (P,D)− 1

6
σB(P,D), (21)

σ− =
7
6
σB(P,D)− 1

6
σF (P,D). (22)

Thus, the above procedure for determining the
helicity cross sections is based on the use of the
observables σF and σB , which are directly measurable
in experiments. Indeed, the functions σ+ and σ− can
be estimated on the basis of (21) and (22), while
their linear combinations in (15)–(18) will provide
information about the helicity cross sections σαβ .

It should be noted that σ± can also be expressed in
terms of observables that are traditionally measured
in experiments—namely, the scattering cross sec-
tion σ and the forward–backward asymmetry AFB .
Specifically, we have

σ+ =
1
2
σ(P,D)

[
1 +

4
3
AFB(P,D)

]
(23)

=
1
2
σ(P,D) +

2
3
σFB(P,D),

σ− =
1
2
σ(P,D)

[
1− 4

3
AFB(P,D)

]
(24)

=
1
2
σ(P,D)− 2

3
σFB(P,D),

where

σ = σ+ + σ− =
D

4
[(1− Peff)(σLL + σLR) (25)

+ (1 + Peff)(σRR + σRL)] ,
2
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σFB ≡ σAFB = σF − σB =
3
4
(σ+ − σ−) (26)

=
3
16
D [(1− Peff)(σLL − σLR)

+ (1 + Peff)(σRR − σRL)] .

From (19) and (20), it follows that the observ-
ables being considered are expressed in terms of the
differential cross sections. The energy distributions
of these cross sections are considerably modified in
shape and magnitude by radiative corrections such
as those that are associated with the emission of
real photons by initial electrons and positrons. The
inclusion of radiative corrections in the investigation
of the contact interactions was performed on the basis
of the scheme proposed in [26] and realized in the
ZEFIT code, which was used simultaneously with
the ZFITTER code [27] atmt = 175GeV andmH =
100 GeV. This code was specially adapted for analyz-
ing the contact four-fermion interactions. In order to
enhance the signal from contact four-fermion inter-
actions, it is necessary in addition to exclude events
of hard-photon emission. This was done by imposing
a constraint on the photon energy, ∆ = Eγ/Ebeam =
0.9 [26], its numerical value corresponding to the
energy of a

√
s = 0.5 TeV linear collider.

To conclude this section, we note that there ex-
ists an alternative possibility of extracting the helicity
cross sections that is based on analyzing the differen-
tial cross sections and which was investigated in [28].
However, the observables σ± are integrated charac-
teristics and, in the case of not very large statistics,
have some advantage over differential variables, yield-
ing mathematically identical results.

3. SENSITIVITY OF OBSERVABLES
AND CONSTRAINTS ON Λαβ

As was mentioned in Section 1, the present-day
constraints on the scale parameter Λαβ are about a
few TeV; therefore, the contribution of the contact
interactions to the amplitude (14) of the process (1)
will be suppressed by a factor of s/Λ2

αβ  1 at fu-
ture linear electron–positron colliders of energy

√
s =

0.5 TeV. For this reason, the contact interactions can
manifest themselves only indirectly in the form of
small deviations of observables from Standard Model
predictions. In this case, the sensitivity of the helicity
cross sections (15)–(18) for process (1) to the param-
eters of contact interactions can be defined as the ratio
of their deviations from Standard Model predictions,
∆σαβ , to the corresponding error in measuring the
observables:

S(σαβ) =
|∆σαβ |
δσαβ

. (27)
PH
In the limit
√
s Λαβ ,∆σαβ is determined predom-

inantly by the interference term:

∆σαβ ≡ σαβ − σSM
αβ (28)

� 2NC σpt

(
QeQf + ge

α g
f
β χZ

) sηαβ

4πα
.

In (28), δσαβ stands for the error in measuring the
helicity cross section; it involves a statistical and a
systematic contribution. The expected experimental
precision in determining these cross sections can be
estimated with the aid of formulas (15)–(18), which
determine the helicity cross sections in terms of the
directly measurable integrated quantities (21) and
(22). By summing the uncertainties in quadratures
and neglecting, at this stage, the systematic uncer-
tainty induced by the polarization of the electron and
positron beams, we obtain

(δσLL)
2 =

49
36

[(
1− P

PD

)2

(δσF (P,D))2 (29)

+
(
1 + P

PD

)2

(δσF (−P,D))2
]

+
1
36

[(
1− P

PD

)2

(δσB(P,D))2

+
(
1 + P

PD

)2

(δσB(−P,D))2
]
,

(δσRR)
2 =

49
36

[(
1− P

PD

)2

(δσF (−P,D))2 (30)

+
(
1 + P

PD

)2

(δσF (P,D))2
]

+
1
36

[(
1− P

PD

)2

(δσB(−P,D))2

+
(
1 + P

PD

)2

(δσB(P,D))2
]
,

(δσLR)
2 =

1
36

[(
1− P

PD

)2

(δσF (P,D))2 (31)

+
(
1 + P

PD

)2

(δσF (−P,D))2
]

+
49
36

[(
1− P

PD

)2

(δσB(P,D))2

+
(
1 + P

PD

)2

(δσB(−P,D))2
]
,
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(δσRL)
2 =

1
36

[(
1− P

PD

)2

(δσF (−P,D))2 (32)

+
(
1 + P

PD

)2

(δσF (P,D))2
]

+
49
36

[(
1− P

PD

)2

(δσB(−P,D))2

+
(
1 + P

PD

)2

(δσB(P,D))2
]
.

It should be noted that the above expressions
(29)–(32) for the uncertainties in the helicity cross
sections do not take into account the possible cor-
relation between the observables σF and σB. The
inclusion of this correlation would lead to the loss of
clarity of the relevant formulas that are required for
a further analysis. At the same time, a quantitative
comparison of these two cases reveals that results
concerning the estimates of the lower bound on Λαβ

remain virtually unchanged.
By summing in quadratures the statistical and

systematic errors for σF,B, we obtain

(δσF,B)2 � (δσSM
F,B)

2 =
σSM

F,B

εLint
+
(
δsystσSM

F,B

)2
, (33)

where Lint is the integrated luminosity of the collider
over the entire experimental time. In the quantitative
calculations presented below, the integrated luminos-
ity of the linear collider per year Lint is set to

Lint =
∫

Ldt = 50, 500 fb−1. (34)

Additionally, we assume that, for each value±P of the
polarization, the relevant luminosity is half of its total
value, Lint/2.
In the quantitative analysis presented below, the

detection efficiency for final fermion states, ε, and
the systematic errors δsyst inherent in each fermionic
channel [29] are set to ε = 95% and δsyst = 0.5%
for l+l− leptons pairs, ε = 60% and δsyst = 1% for
b̄b quark pairs, and ε = 35% and δsyst = 1.5% for c̄c
quark pairs. It is assumed that the systematic errors
in the cross sections for forward and backward scat-
tering, σF and σB, are identical. The planned char-
acteristics of the collider and the detector correspond
to the following energy and total interval of scattering
angles:

√
s = 0.5 TeV and | cos θ| ≤ 0.99.

In order to take into account the effects of sys-
tematic uncertainties in measuring the helicity cross
sections due to imperfections in measuring the elec-
tron and positron polarizations, δPe and δPē, we
must supplement the relevant expressions in formulas
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(29)–(32). It can be seen from formulas presented
in Section 2 that finite values of the quantities δPe

and δPē will directly affect the accuracy of resulting
information about the cross sections σαβ through
the polarization coefficients in equalities (15)–(18),
(21), and (22) and through the dependence of σF,B

on P and D. All the aforesaid can be represented
schematically in the form

(δσαβ)2 → (δσαβ)2 +
(
δσpol

αβ

)2
, (35)

where (
δσpol

LL

)2
= [f(P,D)(1 + PēP

2) (36)

− f(−P,D)(1− PēP
2)]2

(
δPe

D2P 2

)2

+ [f(P,D)(1− PeP
2)− f(−P,D)

× (1 + PeP
2)]2

(
δPē

D2P 2

)2

,

(
δσpol

LR

)2
= [f ′(P,D)(1 + PēP

2)

− f ′(−P,D)(1− PēP
2)]2

(
δPe

D2P 2

)2

+ [f ′(P,D)(1 − PeP
2)− f ′(−P,D)

× (1 + PeP
2)]2

(
δPē

D2P 2

)2

,

(
δσpol

RR

)2
= [f(P,D)(1 − PēP

2)

− f(−P,D)(1 + PēP
2)]2

(
δPe

D2P 2

)2

+ [f(P,D)(1 + PeP
2)− f(−P,D)

× (1− PeP
2)]2

(
δPē

D2P 2

)2

,

(
δσpol

RL

)2
= [f ′(P,D)(1 − PēP

2)

− f ′(−P,D)(1 + PēP
2)]2

(
δPe

D2P 2

)2

+ [f ′(P,D)(1 + PeP
2)− f ′(−P,D)

× (1− PeP
2)]2

(
δPē

D2P 2

)2

with

f(P,D) =
7
6
σF (P,D)− 1

6
σB(P,D), (37)

f ′(P,D) = −1
6
σF (P,D) +

7
6
σB(P,D). (38)
2
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Table 2.Model-independent constraints on the parameter
Λαβ (at a 95% C.L.) that were obtained from the helicity
cross sections measured at an Ec.m. = 0.5 TeV, Lint =
50 fb−1 linear electron–positron collider employing a lon-
gitudinally polarized electron beam and an unpolarized
positron beam (Pē = 0; δPe/Pe = 0.5%)

Process P ΛRR,
TeV

ΛLL,
TeV

ΛRL,
TeV

ΛLR,
TeV

1.0 42.6 42.3 38.7 38.0

e+e− → µ+µ− 0.9 41.3 41.3 37.7 37.0

0.5 33.4 34.2 30.8 30.5

1.0 48.4 45.1 44.7 34.8

e+e− → bb 0.9 44.9 44.6 42.6 34.2

0.5 31.4 39.5 31.7 29.6

1.0 39.1 36.0 28.9 32.8

e+e− → cc 0.9 37.4 35.4 27.3 32.2

0.5 28.3 30.4 19.1 27.6

In our quantitative analysis, the polarization of
initial beams was set to |Pe| = 0.9 (δPe/Pe = 0.5%)
in estimating the constraints on Λαβ . It is precisely
the accuracy in the measurement of the electron
polarization that was achieved at the SLAC collider
[30]. As concerns the positron polarization, two
cases will be considered here: (i) that of unpolarized
positrons (|Pē| = 0) and (ii) that of longitudinally
polarized positrons with |Pē| = 0.6 [31]. We have the
effective polarization of Peff = P in the first case and
Peff = P = 0.974 and D = 1.54 in the second case.
No reliable estimates of the parameter δPē have been
obtained so far—it is only known definitively that
it must be poorer than the corresponding electron
characteristic. For the above reasons, the value of
δPē/Pē = 1% is adopted for the ensuing analysis.
In some cases, however, the quantity δPē/Pē is
varied in a rather wide interval for investigating this
dependence more precisely.

In estimating the potential of linear electron–
positron colliders in searches for effects of nonstan-
dard physics beyond the Standard Model, such as
contact four-fermion interactions, it is important to
develop a procedure for treatment and analysis of
experimental data. In many respects, it depends on
a number of factors associated with details of specific
experiments and on the physical and technological
characteristics of accelerator facilities and detec-
tors. Even without this experimental information,
however, a preliminary estimate can be obtained for
the sensitivity of observables of process (1) to the
parameters of contact four-fermion interactions. One
PH
Table 3.Model-independent constraints on the parameter
Λαβ (at a 95% C.L.) that were obtained from the helicity
cross sections measured at an Ec.m. = 0.5 TeV, Lint =
500 fb−1 linear electron–positron collider employing a lon-
gitudinally polarized electron beam and an unpolarized
positron beam (Pē = 0; δPe/Pe = 0.5%)

Process P ΛRR,
TeV

ΛLL,
TeV

ΛRL,
TeV

ΛLR,
TeV

1.0 61.3 59.8 61.2 59.6

e+e− → µ+µ− 0.9 59.4 58.4 59.5 58.1

0.5 47.8 48.6 48.4 47.9

1.0 65.6 54.3 72.4 48.9

e+e− → bb 0.9 60.9 53.9 68.5 48.3

0.5 41.0 49.0 49.7 42.5

1.0 47.3 40.7 42.3 42.4

e+e− → cc 0.9 45.0 40.1 39.8 41.8

0.5 33.3 34.9 28.0 36.6

of the standard procedures for calculations of this kind
is based on the analysis of the functions χ2 defined
as [32]

χ2 =
(
∆σαβ

δσαβ

)2

, (39)

which characterize manifestations of new interac-
tions.

In setting constraints on the parameters of the
contact four-fermion interactions, we proceed from
the assumption that the results of (future) experi-
ments aimed at measuring observables of process (1)
are in agreement with Standard Model predictions
within the expected accuracy of measurements. In
this case, the requirement imposed on the function in
(39) and expressed in the form of the inequality

χ2 < χ2
C.L. (40)

makes it possible to determine the allowed region of
the parameters of the contact four-fermion interac-
tions. Here, χ2

C.L. is a number that is specified by a
preset confidence level. As follows from formula (28),
the deviation ∆σαβ depends only on one effective
parameter of the contact interactions; therefore, the
value of χ2

C.L. = 3.84, which corresponds to a confi-
dence level of 95% [32], is adopted in this analysis.

Tables 2 and 3 display model-independent con-
straints on the scale parameter Λαβ that were ob-
tained from the processes e+e− → µ+µ−, e+e− →
b̄b, and e+e− → c̄cwith an unpolarized positron beam
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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at the integrated luminosity of 50 and 500 fb−1, re-
spectively. It can be seen that the helicity cross sec-
tions are very sensitive to the parameters of the con-
tact four-fermion interactions. For example, the lower
bound on the parameter Λαβ at Lint = 500 fb−1 falls
within the interval whose width is greater by a factor
of 50 to 140 than the energy of the linear collider being
considered. The production of b̄b pairs and e+e− → c̄c
are processes that exhibit, respectively, the highest
and the lowest sensitivity. The decrease in the electron
polarization from P = 1 to P = 0.5 leads to a de-
crease of 10–40% in the sensitivity, its specific value
being dependent on the final state. At the same time,
the cross sections σLL and σLR for the production of
quark pairs are the least prone to such effects.
In the case where the statistical error in measuring

observables is much greater than the systematic
error, the improvement of the sensitivity in response
to the growth of the luminosity from 50 to 500 fb−1

obeys the scaling law Λ′
αβ = (L′

int/Lint)1/4Λαβ ,
whence it follows that the lower bound on Λαβ would
then increase by a factor of about 1.8. However, a
comparison of data in Tables 2 and 3 shows that this
rule is satisfied very roughly and only for LR and RL
helicity configurations, for which the statistical error
is much greater than the systematic one. For the RR
and LL combinations, the improvement of the sensi-
tivity to Λαβ with increasing luminosity Lint is not so
significant because of a relatively large contribution of
the systematic errors. The dependence of the limiting
values of Λαβ on the energy, integrated luminosity,
and statistical and systematic uncertainties can be
expressed by the compact formula

Λαβ ∼ (Lint × s)1/4
[
1 +

(
δsyst/δstat

)2]−1/4
. (41)

Let us now discuss the role of the positron po-
larization in studying the effects of the contact in-
teractions. From (9)–(11), it follows that, if the po-
larization configuration is chosen in such a way that
PePē < 0, then D > 1 and |Peff | > max(|Pe|, |Pē|).
This means that an improvement of the sensitivity
of observables to the contact interactions at a fixed
luminosity could be expected on the basis of statisti-
cal arguments alone. At the same time, the inclusion
of a positron polarization leads to an increase in the
total systematic errors because of an uncertainty of
the type δPē/Pē. These two factors affect the sensi-
tivity to observables differently, but the calculations
show that it is improved in the majority of the cases.
Table 4 presents the lower bounds on the parameter
Λαβ for two situations, that where only the electrons
are polarized (the positrons are unpolarized) and that
where both beams are polarized. In the majority of the
cases, the presence of a positron polarization leads to
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an increase in the lower bound on Λαβ ; only for some
of them—namely, for the of production of lepton pairs
at a luminosity of 500 fb−1 that have the RR and
LL configurations and also for the process e+e−L →
b̄bL—does the limiting value in question decrease.
This occurs because, in the helicity cross sections,
the systematic error induced by the factor δPē/Pē

increases significantly in relation to the statistical
uncertainty.
It is also instructive to compare, at various values

of the parameter δPē/Pē, the sensitivities in (27) for
process (1) to the contact interactions for the above
two cases, where the electron and positron beams
are polarized, S(Pe, Pē), and where only the electron
beam is polarized, S(Pe, 0). A comparison of these
characteristics is illustrated graphically in Figs. 1–
3 and in Figs. 4–6 in the form of the functional de-
pendence of the ratio of the sensitivities on the quan-
tity δPē/Pē at the luminosities of 50 and 500 fb−1,
respectively. It can be seen from Figs. 1–6 that,
for δPē/Pē ≈ δPe/Pe = 0.5%, the advantage of the
positron polarization manifests itself in the improve-
ment of the sensitivity of the process up to 50%. With
increasing δPē/Pē, however, this ratio decreases and,
at some values of δPē/Pē, becomes less than unity.
Hence, the advantage provided by the positron polar-
ization disappears completely in this case. The region
of δPē/Pē values where the inclusion of a positron
polarization leads to the improvement of the sensi-
tivity lies in the interval from 0.5% to a few tens of
percent. Thus, an insignificant growth of the uncer-
tainty in the positron polarization (δPē/Pē > 0.5%)
annihilates the effect of improvement of the sensi-
tivity. At the same time, the sensitivity of the cross
section σRL is virtually independent of the parameter
δPē/Pē. From a comparison of the data in Figs. 1–3
with those in Figs. 4–6, we can deduce that, at the
luminosity of 500 fb−1, the role of systematic error
becomes dominant. This is the reason why, at a high
luminosity, the lower bound on the parameter Λαβ

becomes highly sensitive to the input parameters that
determine the systematic error.
It should be noted that the data in Figs. 1–6 and

in Tables 2 and 3 make it possible to set constraints
on Λαβ for any values of the parameter δPē/Pē. The
formula necessary for this has the form

Λαβ(Pe, Pē) (42)

≈
√

S(Pe, Pē)/S(Pe, 0)Λαβ(Pe, 0).

It was obtained by expanding the deviation ∆σαβ

in the small parameter sηαβ/e
2 and by retaining

only linear terms. The linear approximation ensures
a rather high precision of formula (42) in determining
2
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Table 4.Model-independent constraints on the parameter Λαβ at a 95% C.L. that were obtained from the helicity cross
sections at Eс.m. = 0.5 TeV, Pe = 0.9, δPe/Pe = 0.5%, Pē = 0.6, and δPē/Pē = 1.0% [the arrows indicate the change in
the sensitivity of observables in going over from unpolarized to polarized positrons: (Pe, 0)→ (Pe, Pē)]

Process Lint, fb−1 ΛRR, TeV ΛLL, TeV ΛRL, TeV ΛLR, TeV

e+e− → µ+µ− 50 41.3 → 45.0 41.3 → 44.5 37.7 → 42.3 37.0→ 41.5

500 59.4 → 58.4 58.4 → 56.2 59.5 → 63.0 58.1→ 61.4

e+e− → bb
50 44.9 → 53.2 44.6 → 46.9 42.6 → 48.9 34.2→ 37.6

500 60.9 → 73.6 53.9 → 53.3 68.5 → 75.5 48.3→ 50.3

e+e− → cc
50 37.4 → 40.9 35.4 → 37.0 27.3 → 31.4 32.2→ 35.1

500 45.0 → 46.9 40.1 → 40.2 39.8 → 43.2 41.8→ 43.0
the constraints on Λαβ . In particular, it is straightfor-
ward to reproduce Table 4 for δPē/Pē = 1% with the
aid of (42) and Figs. 1–6.
Finally, we address the problem of comparing the

model-independent constraints obtained on the basis
of the helicity cross sections with the correspond-
ing estimates following from the analysis of observ-
ables that are traditionally measured in experiments
and which are hereafter referred to as canonical ob-
servables. In what is concerned with the problem
of choosing canonical observables, it is necessary
to consider that the number of independent observ-
ables corresponds to the number of different spin
configurations of the initial and final states of pro-
cess (1), the latter number being determined by the
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P

helicity-conservation law. For massless initial and
final fermions, there are only four such configura-
tions. By way of example, we choose the independent
observables as follows. For unpolarized e+e− beams
(Pe = Pē = 0), these are the scattering cross section
(25) and the forward–backward asymmetry (26). The
presence of a longitudinal polarization of the electron
beam in the case of an unpolarized positron beam
(Pē = 0) makes it possible to supplement this list by
including two polarization аsymmetries in it. The first
is the left–right asymmetry

ALR =
σL − σR

σL + σR
, (43)

where σL and σR are the cross sections for electrons
having, respectively, a left- and a right-hand circular
polarization in the case of unpolarized positrons. For
the last observable in this list, we can take the polar-
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ization forward–backward asymmetry

Apol
FB =

(σF
L − σF

R)− (σB
L − σB

R )
(σF

L + σF
R) + (σB

L + σB
R )
. (44)

Under the assumption of e–l universality in the
lepton process (1), the number of independent ob-
servables is reduced by one owing to the relation
MLR = MRL between the relevant amplitudes.
However, it is necessary to take into account the
complete set of observables for the production of
quark pairs.
It should be emphasized that, for linear colliders,

there are presently no data on model-independent
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constraints on the contact interactions from the
canonical observables in the general form. Indeed,
such an analysis is nontrivial from the practical point
of view, since each canonical observable depends on
the entire set of parameters (there are four of them).
We did not aim here at deriving a general solution
to this problem. In order to obtain the required
information, we can adopt, however, a traditional
way that is described in the literature and which is
based on considering the dependence of the canonical
observables only on one parameter of the contact
interactions, the remaining parameters then being set
to zero. Obviously, the limits on Λαβ from such an
analysis will be greater than those that would follow
from a general analysis, since the one-parameter
dependence of observables completely rules out the
possibility of an accidental cancellation of effects
induced by different contact interactions. Neverthe-
less, such a possibility cannot be excluded either,
since any of these could be realized in nature. For
the canonical observables denoted in the following by
Oi = σ, AFB , ALR, and ALR,FB , the function χ2 is
constructed in the form

χ2 =
∑

i

(
Oi −Oi(SM)
δOi(SM)

)2

, (45)

where the index i runs through the entire set of the
observables and δOi(SM) is the expected experimen-
tal error for each observable Oi(SM) in the Standard
Model. The statistical uncertainties in the cross sec-
tion and in the forward–backward asymmetry can be

 

0 0.05 0.10 0.15
0.2

0.6

1.0

1.4

 

e

 

+

 

e

 

– 

 

→ 

 

bb

 
S

 
(

 
P

 

e

 
, 
 
P
 

–

 

e

 
) /
 

S
 

(
 

P
 

e

 
, 0)

 

δ

 

P

 

–

 

e

 

 /

 

P

 

–e

 

LL

LR

RR

RL

–

Fig. 5. As in Fig. 1, but for the process e+e− → b̄b at
Lint = 500 fb−1.
2



532 PANKOV

 

0 0.05 0.10 0.15
0.2

0.6

1.0

1.4

 
S
 
(
 

P
 

e

 
, 

 
P

 
–

 

e

 
) /

 
S

 
(

 
P

 

e

 
, 0)

 

e

 

+

 

e

 

– 

 

→ 

 

cc

 

δ

 

P

 

–

 

e

 

 / 

 

P

 

–e

 

RR

RL

LR

LL

–

Fig. 6. As in Fig. 1, but for the process e+e− → c̄c at
Lint = 500 fb−1.

represented in the form

δσ

σ
=

1√
N
, δAFB =

√
1−A2

FB

N
, (46)

where N = εLint σ(Pe = Pē = 0). The total error in
σ, including the statistical and the systematic con-
tribution, has the same form as the expression in
(33) at δsyst = 0.5%. As is well known from [25], the
systematic error in AFB is extremely small because
the corresponding contributions in the numerator and
the denominator are canceled almost completely. For
the left–right asymmetry ALR (and for the left–right
forward–backward asymmetry ALR,FB as well), the
total experimental uncertainty, which includes the
statistical and systematic errors in quadratures, is

Table 5. Model-dependent constraints on the parameter
Λαβ (at a 95% C.L.) that were obtained from the canon-
ical observables σ, AFB , ALR, and ALR,FB at Pe = 0.9,
δPe/Pe = 0.5%, Pē = 0.6, and δPē/Pē = 1.0% by varying
one parameter of the contact interactions, with the remain-
ing parameters being set to zero

Process Lint,
fb−1

ΛRR,
TeV

ΛLL,
TeV

ΛRL,
TeV

ΛLR,
TeV

e+e− → µ+µ− 50 33.4 33.6 25.5 24.8

500 49.7 48.9 38.4 37.6

e+e− → bb
50 42.2 38.1 39.1 27.3

500 62.3 50.0 43.8 37.4

e+e− → cc
50 35.5 32.4 19.6 26.0

500 46.2 40.1 24.8 31.2
P

given by

δALR =

√
1− (PeffALR)2

P 2
effNP

+A2
LR

(
δPeff

Peff

)2

, (47)

where the equality NP = DN follows from the as-
sumption that events are measured for the same ex-
posure time at Pe = 0.9 and Pē = −0.6 and at Pe =
−0.9 and Pē = 0.6. As above, it is additionally as-
sumed that δPe/Pe = 0.5% and δPē/Pē = 1%. The
resulting constraints at a 95% C.L. are presented
in Table 5. They should be compared with the con-
straints derived on the basis of the helicity cross sec-
tions (Table 4). We can see that the constraints on
Λαβ differ most strongly at a luminosity of 50 fb

−1,
the respective difference being a few TeV to 10 TeV for
the RR and LL configurations. For the off-diagonal
helicity configurations LR and RL, this difference
is even more pronounced and, in some cases, is as
large as 15 TeV for the scale Λαβ . At the higher
luminosity of 500 fb−1, the distinctions between the
limiting values of the scales ΛLL and ΛRR become
less significant and, in some cases (for example, in the
production of c-quark pairs), disappear completely.
For the LR and RL configurations, this difference
of Λαβ values continues increasing and, for some
processes, exceeds 20 TeV.

4. CONCLUSIONS

Let us summarize our conclusions and list the
most important results obtained from a model-
independent analysis of the contact four-fermion
interactions at linear electron–positron colliders em-
ploying longitudinally polarized beams.
(i) A general approach has been developed for

separating the helicity cross sections for the process
e+e− → f̄f on the basis of new integrated observ-
ables constructed from the polarization cross sections
σF and σB for fermion scattering into the forward and
the backward hemisphere, respectively.

(ii) By using the properties of the helicity cross
sections—that is the fact that they depend only on
one parameter of the contact interactions—we have
performed amodel-independent analysis and set con-
straints on the parameters of the interactions being
considered.
(iii) The constraints on the parameter Λαβ have

been investigated in detail as functions of the sys-
tematic errors introduced by the corresponding un-
certainties in the longitudinal polarization of electrons
and positrons. The regions of δPē/Pē have been found
where the presence of a positron polarization leads to
an improvement of the sensitivity of observables in
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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relation to that in the case where only the electron
beam is polarized.
(iv) We have performed a comparative analysis

of the constraints on the parameters Λαβ from the
new observables and from the canonical variables
(σ, AFB , ALR, and ALR,FB). A comparison of their
sensitivities demonstrates a noticeable advantage of
the former over the latter for the majority of the cases.

ACKNOWLEDGMENTS

I am grateful to A.A. Babich and N. Paver for
stimulating discussions and enlightening comments.

REFERENCES
1. Gargamelle Collab. (F. J. Hasert et al.), Phys. Lett. B

46B, 138 (1973).
2. J. Erler and P. Langacker, in Proceedings of the 5th

International Wein Symposium: A Conference on
Physics Beyond the Standard Model (WEIN 98),
Santa Fe, 1998.

3. D. Abbaneo et al., Preprint CERN-EP-2000-016
(2000).

4. A. Gurtu, Talk at the XXX International Confer-
ence on High Energy Physics, Osaka, Japan, 2000.

5. E. J. Eichten, K. D. Lane, and M. E. Peskin, Phys.
Rev. Lett. 50, 811 (1983).

6. R. J. Cashmoreet et al., Phys. Rep. 122, 275 (1985);
R. Rückl, Phys. Lett. B 129B, 363 (1983).

7. P. Haberl, F. Schrempp, and H.-U. Martyn, in Pro-
ceedings of “Physics at HERA,” Hamburg, 1991,
Vol .2, p. 1133.

8. H. Kroha, Phys. Rev. D 46, 58 (1992).
9. K. Cheung, S. Godfrey, and J. A. Hewett, in Proceed-

ings of the 1996 DPF/DPB Summer Study on New
Directions for High Energy Physics (Snowmass
96), Ed. by D. G. Cassel, L. Trindle Gennari, and
R. H. Siemann (SLAC, Stanford, 1997), p. 989.

10. V. Barger, K. Cheung, K. Hagiwara, and D. Zeppen-
feld, Phys. Rev. D 57, 391 (1998).

11. V. Barger, K. Cheung, K. Hagiwara, and D. Zeppen-
feld, Phys. Lett. B 404, 147 (1997).

12. D. Zeppenfeld and K. Cheung, PreprintMADPH-98-
1081 (1998).

13. A. A. Babich, A. A. Pankov, and N. Paver, Phys. Lett.
B 452, 355 (1999).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
14. J. Kalinowski, R. Rückl, H. Spiesberger, and P. Zer-
was, Phys. Lett. B 406, 314 (1997).

15. T. G. Rizzo, Preprint SLAC-PUB-7982 (1998).
16. J. A. Valls, Preprint FERMILAB-Conf-97/135-E

(1997).
17. P. Abreu et al., Preprint CERN-EP/2000-068
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Abstract—The parity-violating pion–nucleon coupling constant for the neutral currents of electroweak
interaction is calculated by the method of QCD sum rules. In doing this, operators up to dimension
5 are retained in the operator-product expansion for the correlation function in an external pion field.
That the value obtained for the pion–nucleon coupling constant is comparatively small stems from
a partial cancellation between the leading perturbative and condensate contributions. This constant
is compared with experimental data and with the results of calculations performed by other authors.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electroweak interactions of hadrons at low
energies—in particular, parity-violating nuclear inte-
ractions—present problems that have received the
least adequate study in electroweak theory [1]. In this
theory, the electroweak interactions of hadrons at low
energies are described by the sum of the products of
neutral and charged currents [2]. Neutral currents are
associated with Z-boson exchange between quarks,
while charged currents are associated with the ex-
change of W± bosons. However, the contributions
of neutral currents to hadronic reactions have not
yet been observed experimentally. An upper limit on
the pion–nucleon constant f for the neutral currents
(f ≤ 2.2 × 10−7) was obtained from the experimental
investigation [3] of the P-odd circular polarization of
photons in the transition from the 0+ excited level to
the 1+ ground state in the 18F nucleus. This limit
on the constant f is at least one-half as great as
the “best value” obtained from the analysis of a vast
body of experimental data within the quark model of
hadrons [4].

The electroweak nucleon–nucleon interaction is
usually described in terms of the exchange of the
extremely light mesons π, ρ, and ω between inter-
acting nucleons [1, 5]. This approach was developed
by analogy with the one-boson-exchange model of
strong interactions between nucleons. In contrast
to the case of strong interactions, diagrams for the
electroweak nucleon–nucleon interaction involve
only one strong-interaction vertex rather than two.
The other vertex is determined by the electroweak
interaction. It should be recalled that CP invariance
rules out any exchange of a neutral pseudoscalar
meson—in particular, the exchange of a π0 meson.
1063-7788/02/6503-0534$22.00 c©
The point is that, in a CP-invariant theory, one
cannot construct a P-odd and C-odd vertex because
of the positive C parity of a neutral pseudoscalar
meson. Thus, the interactions between nucleons in
a CP-invariant theory of electroweak interactions
can be mediated only by charged π± mesons. At
the quark level, the electroweak vertex involving π±-
meson exchange is completely determined by Z-
boson exchange between the quarks of a nucleon; that
is, the electroweak vertex is determined completely
by electroweak neutral currents. Since the pions are
the lightest mesons, the nucleon–nucleon potential
arising from the exchange of π± mesons is the most
far-range potential among those caused by one-
boson (ρ, ω) exchange.

The constants of the electroweak potentials aris-
ing from the exchange of the vector mesons ρ and ω
can be reliably calculated within the quark model by
using the formalism of vector-meson dominance [6].
These constants are about 10−7–10−6, and the re-
spective potentials are short-range because of rela-
tively large masses of the vector mesons in relation to
the pseudoscalar-pion mass.

Thus, the values of the electroweak pion–nucleon
constants deduced from a comprehensive analysis of
P-odd effects [4] disagree with those obtained from a
“direct” experiment with the 18F nucleus [3].

The present study is devoted to consistently com-
puting the electroweak pion–nucleon coupling con-
stant on the basis of QCD sum rules [7, 8]. This
method makes it possible to calculate the quantities
characterizing the properties of nucleons in terms of
quantities characterizing the QCD ground state. In
particular, the nucleon mass [8] and the anomalous
magnetic moments of nucleons [9] were evaluated by
2002 MAIK “Nauka/Interperiodica”



ELECTROWEAK PION–NUCLEON CONSTANT 535
this method. The QCD sum rules were successfully
used in calculating the masses and leptonic decay
widths of mesons. This method also yields various re-
lations between a great many observables and makes
it possible to predict some of them by using only a
small number of parameters, which include, above all,
vacuum expectation values of some quark and gluon
operators.

In what follows, we calculate the electroweak
pion–nucleon constant using the QCD sum rules. A
detailed description of the method used can be found
in [10, 11].

2. POLARIZATION OPERATOR

The basic quantity in our calculations is the polar-
ization operator (two-point correlation function) in an
external pion field. It is defined as

Π = i
∫
d4xeipx〈0 | T{ηp(x), ηn(0)} | 0〉π+ , (1)

where the currents η are the color-singlet products of
three quark fields featuring quantum numbers of the
proton and the neutron:

ηp = uaCγµu
bγ5γµd

cεabc, (2)

ηn = daCγµd
bγ5γµu

cεabc. (3)

Here, u and d are quark fields; a, b, and c are color in-
dices; and C is the charge-conjugation operator. The
polarization operator (1) describes the transition n→
p+ π− (or p→ n+ π+), since the current η̄n creates
a neutron, which interacts with the charged-pion field
and which is then annihilated by the current ηp. In the
calculation of the pion–nucleon coupling constant,
a major contribution to the polarization operator (1)
comes from the diagram where one of the quarks
interacts with the quark–antiquark system (charged
pion) and where the remaining two quarks undergo
electroweak interaction mediated by the exchange
of a neutral Z boson. The other diagrams, includ-
ing those describing the interactions of the charged
electroweak currents through the exchange of W±

bosons, either make no contribution, or their contri-
butions cancel one another.

This conclusion was deduced from a rather cum-
bersome analysis, which did not result in obtaining
some explicit formula that would prove the cancella-
tions in question. Nevertheless, the basic mechanism
responsible for these cancellations could be revealed:
the processes of emission or absorption of charged
pions by one of the quarks in the nucleon competes
with the exchange ofW bosons between the quarks;
therefore, the respective diagrams either are forbidden
or cancel each other.
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In the present study, we make use of the polariza-
tion operator (1) in an external pion field at zero pion
4-momentum. In order to calculate the contribution
of the continuum to the polarization operator (1) at
a nonvanishing pion 4-momentum, one has to use a
double dispersion relation. In computing the constant
of the electroweak interaction due to the exchange
of pions between intranuclear nucleons, the pion 4-
momentum is, however, close to zero.

3. OPERATOR PRODUCT EXPANSION AND
CONDENSATES

According to the method of QCD sum rules, the
polarization operator (1) in the Euclidean domain
p2 < 0, |p| ∼ 1 GeV2 is represented as an operator-
product expansion in inverse powers of p2, where the
coefficients are expressed in terms of vacuum expec-
tation values of various operators [10]; that is,

Π(p2) =
∑
n

Cn(p2)〈On〉. (4)

This expansion is valid at high p2. Given the numer-
ical values of the vacuum expectation values of the
condensates (〈On〉), the behavior of the polarization
operator at relatively large values of p can be deter-
mined from (4). The coefficients Cn(p2) in (4) can be
calculated within QCD. As a rule, expressions of the
type in (4) are extended up to values of |p2| ∼ 1GeV2.
At smaller values of the momentum, all terms in the
series in (4) are significant, so that the correlation
function (1) cannot be evaluated by the method being
discussed.

The first term of the operator-product expan-
sion (1) is generally associated with the diagram
for asymptotically free quarks. The second term
takes into account the interactions of quarks and
gluons by perturbation theory. All virtual particles
in the respective diagrams carry high momenta;
therefore, their propagators are adequately described
within perturbation theory. All the propagators in
the diagrams associated with the third term do
not have high momenta—the momenta of some of
these propagators are close to zero. These diagrams
involve large-scale vacuum fluctuations, and their
contribution is proportional to nonvanishing vacuum
expectation values of quark and gluon fields. The
diagrams contributing to the fourth term involve no
virtual particles of high momentum. In this case,
the whole momentum flows through an instanton (a
small-scale vacuum fluctuation). The third and the
fourth terms of the expansion in (4) can be dubbed
a partly perturbative and a nonperturbative term,
respectively [12]. Thus the electroweak pion–nucleon
2
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coupling constant is determined by the vacuum
expectation values

a = −(2π)2〈qq〉 = 0.55 GeV, (5)

〈qiτjγ5q〉π = χ · gπj〈qq〉, (6)

〈qiγ5τjσ ·Gq〉π = mπ
0gπj〈qq〉, (7)

where G is the strength tensor of the gluon field
in QCD [10]. The chiral-symmetry-breaking quark-
condensate density 〈qq〉 is presented in (5). Its mini-
mum mass dimension is equal to three. The value of
the quark condensate was derived from the analysis
of the meson data that was performed in [3]. In (6)
and (7), j is the pion isospin index field, while g is the
coupling constant for the strong interaction between
the pion and the quark. The coupling constant g can
be estimated within the model assuming that the
current quark becomes massive in the field of vacuum
fluctuations and that the resulting constituent quark
interacts with the pion field. An interaction of this
type gives rise to the factor m2

q/p
2 ≈ 0.1 (mq is the

constituent quark mass), which modifies the quark
propagator in the pion field.

The Goldberger–Treiman relation implies that

g = 2.8 (8)

in the case of constituent quarks; this being so, the
constant χ in (6) is

χ ≈ −5.7 GeV−1. (9)

From (7), it follows that the numerical value of
the quark–gluon condensate in the pion field is deter-
mined by the constantmπ

0 . In the case of a constituent
quark of mass mq ≈ 0.35 GeV, this constant and
the constant m2

0, which governs the numerical value
of the quark–gluon condensate of dimension 5, are
related as

mπ
0 = 2m2

0/mq, (10)

〈qgπ ·Gq〉 = −m2
0〈qq〉, (11)

provided that the pion field vanishes.
The numerical value of the constant m2

0 in for-
mula (11) was first derived in [13] from the condition
ensuring the self-consistency of the sum rules for
baryons. This constant was also determined in [14];
its numerical value is 0.4 GeV2. From (10), we then
obtain

mπ
0 ≈ 2.3 GeV. (12)

The electroweak pion–nucleon constant depends not
only on the aforementioned quantities but also on the
constant describing the coupling of the quark current
to the nucleon. In accordance with [10], this constant
will henceforth be set to

β2 = 0.3 GeV6. (13)
P

4. DISPERSION RELATIONS

The QCD sum rules are based on the dispersion
relations that make it possible to relate the polariza-
tion operator (1) in the Euclidean domain (it can be
found theoretically) to the imaginary part of this op-
erator in the domain of timelike momenta (this imag-
inary part can be extracted from experimental data).
If, in some domain of the values of p2, the function in
(1) can be expressed in terms of the parameters ci and
if its imaginary part ImΠ(p2) in another domain can
be expressed in terms of the observables aj , then the
equation

Π(s, ci) =
1
π

∞∫
0

ImΠ(p2, aj)
p2 + s

dp2 (14)

relates ci to aj .

In the dispersion relation (14), we set s→ ∞. In
this case, the left-hand side of Eq. (1) can be ex-
pressed in terms of the vacuum expectation values
of quark and gluon fields [parameters ci in (14)] by
employing the operator-product expansion (4). On
the other hand, a phenomenological formula for the
correlation function (1) in an external pion field can
be obtained in terms of the baryon fields by using
the dispersion relation (14), with the proviso that
the correlation function (1) can be saturated by the
contributions of the lowest physical states. This being
so, all other states can be approximated by the contri-
bution of a continuum whose threshold w2 is also to
be determined from the sum rules.

If the left-hand and right-hand sides of Eq. (14)
could be calculated exactly, then Eq. (14) would hold
identically at an arbitrary value of s. However, both
sides were calculated approximately. The left-hand
side of Eq. (14) was calculated by using the operator-
product expansion (4), the accuracy of such a cal-
culation becoming higher with increasing s. On the
contrary, the nucleon pole plus continuum approx-
imation becomes more accurate with decreasing s.
The basic idea is that there exists some region of s
values where both approximations are valid, yielding
a reasonably accurate result for the function Π(s).
However, a straightforward application of Eq. (14)
involves some difficulties. The main problem is that
the continuum (the domain of large p2 > 0) can make
a contribution commensurate with that of the nu-
cleon pole. Therefore, the nucleon pole plus contin-
uum approximation is ill-defined. This problem can
be solved by applying the Borel transformation [7, 8]
to both sides of Eq. (14).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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5. BOREL TRANSFORMATION

The Borel transformation is applied to a function
f(s) satisfying Eq. (14) in order to suppress the con-
tributions of excited states to the sum rules. It has the
form

Bf(s) =
sn+1

n!

(
− d

ds

)n

f(s) (15)

=
1
π

∞∫
0

dp2 exp
(
− p2

M2

)
Imf(p2),

s = −p2 → ∞, n→ ∞, s/n =M2,

where Bf(s) is a function of s/n =M2. Considering
s/n to be finite, we arrive at the Borel transforms

Bf(s) = f(M2).

The procedure specified by (15) leads to a suppression
of the contribution from the domain of large p2 (con-
tinuum), but it enhances the pole contribution. Thus,
we have to find an appropriate interval of M2 values
instead of an interval of p2 values.

From (15), it follows that

B(sk) = 0.

B(s+ p2)−1 = exp
(
− p2

M2

)
, (16)

B

(
1
sn

)
=

1
(M2)n−1(n − 1)!

.

The first equation in (16) is valid for all integral k ≥ 0,
whereby the problem of subtractions in the dispersion
relations is solved. The second equation leads to a
suppression of the contribution from the continuum in
relation to the contribution of the nucleon pole, while
the third equation ensures a suppression of higher
order terms in the operator-product expansion (4)
owing to the factorial in the denominator.

The sum rule used here to determine the pion–
nucleon electroweak constant naturally involves the
threshold w of the continuum and the Borel mass
M , which are free parameters. The best fit gives the
values

w2 = 2 GeV2, (17)

M2 = 1.2 GeV2, (18)

which determine the required pion–nucleon constant.
The values in (17) and (18) ensure a controllable
accuracy at a level of 20 to 30%.
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6. PION–NUCLEON CONSTANT

Here, we omit standard technical details of our
calculations, such as those that are associated with
applying the dimensional regularization and the mod-
ified minimal-subtraction scheme and with taking
into account anomalous dimensions. The resulting
expression for the electroweak pion–nucleon con-
stant as obtained on basis of QCD sum rules has the
form

f = A
{[

(4M2 −m2)M4E3 (19)

−
(

2M2 − 2
3
m2

)
χaM2E2

−
(
M2 − 1

2
m2

)
mπ

0aE1

](
1 +

4
27
L−1 +

m2

M2

)
+ (−20M2 + 4m2)M4E3

+ (8M2 + 2m2)χaM2E2 + (3M2 −m2)mπ
0aE1

+ exp
(
− w

2

M2

)
w4

M4

[
(4M2 −m2)

1
6
w4

−
(

2M2 − 2
3
m2

)
χa

1
2
w2 −

(
M2 − 1

2
m2

)
mπ

0a

]}
,

where χ and a are given by (9) and (5), respectively,
and where

A =
gGF sin2 θW
34π2m2β2

M4L−4/9 exp
(
m2

M2

)
. (20)

Here, GF = 10−5/m2 is the Fermi constant for the
electroweak interactions; m is the nucleon mass;
sin2 θW ≈ 0.23, where θW is the Weinberg angle. In
(19),

L = 0.62 ln(10M) = 1.5, (21)

Ek = Ek(x) = 1 − exp(−x)
k∑
0

xl

l!
, x =

w2

M2

(22)

arise upon taking into account anomalous dimen-
sions and the contribution of the continuum [9, 10].
From (19) and (20), it follows that the constant f is
proportional to sin2 θW. This result is a consequence
of the fact that the constant f is determined by the
contribution of the neutral currents that are due to Z-
boson exchange between quarks. The pion–nucleon
constant

f = 3.4 × 10−7 (23)

is obtained by substituting into (19)–(22) the nu-
merical values of the parameters of the theory from
the preceding sections. The nonperturbative terms
in Eq. (19), which are proportional to χa, constitute
about half the magnitude of the constant in (23).
2
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The pion–nucleon electroweak coupling constant
appears in the effective Lagrangian

L =
f√
2
ε3ikN̄ · τiNπk, (24)

which describes emission and absorption of charged
pions by nucleons. The isovector structure of the
interaction (24) implies the isospin selection rule
∆T = 1.

7. CONCLUSION

The pion–nucleon electroweak coupling constant
has been calculated on the basis of QCD sum rules.
Previously, this method was successfully used to cal-
culate various features of hadrons. The calculation
of the coupling constant under consideration in [15]
yielded a value that is more than an order of magni-
tude less than that obtained here. According to [15],
this is due to incorrectly taking into account the p2

dependence of the imaginary part of the polarization
operator (14) [16]. Within the accuracy of the cal-
culations, our value of the pion–nucleon coupling
constant (23) is consistent both with the latest direct
experimental limits on this constant [3] and with the
results of a global fit to the entire body of experimental
data on P-odd effects in nucleon–nucleon interac-
tions [17].

From the theoretical standpoint, the conclu-
sion that the contribution of the chiral-symmetry-
breaking quark condensate 〈qq〉 accounts for half of
the pion–nucleon electroweak coupling constant is
the most interesting result of our study. This explains
the failure of all attempts at evaluating the pion–
nucleon electroweak coupling constant within per-
turbation theory [6]. The accuracy of our calculation
of the pion–nucleon electroweak coupling constant
(23) (30% or better) can be deduced by estimating
higher order terms of the operator-product expansion
(condensates of dimension six) and the contribution
of higher excited states.
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Abstract—On the basis of data on the P33 amplitude from various partial-wave analyses of elastic πN
scattering, the pole characteristics of the ∆(1232) resonance are determined within the resonance model.
An approximate analytic formula that relates the residue to the background is obtained. Estimates confirm
that the nonresonance part of the phase shift is small and differs significantly from the results of the
calculations within the current algebra and the approach of effective Lagrangians. This contradiction
is removed in a modified resonance-model version developed on the basis of taking into account the
quadratic term in the expansion of the Jost function in a series at the pole point. It is shown that
the coordinates of the pole and the phase shift of the residue change only slightly in relation to the
results within the traditional model, but that the absolute value of the residue increases by about 20%.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although elastic πN scattering has been studied
for a long time and is thought to be well understood,
there is a significant scatter of the results for the
absolute value and the phase shift of the residue at
the pole of the P33-wave amplitude in the ∆(1232)-
resonance region (Table 1, [1, 2]). In principle, this
can be due to modifications in the experimental basis,
its qualitative and quantitative improvements. An-
other reason behind this can be associated with the
presence of amodel ambiguity in the analytic descrip-
tion of the amplitude. This is manifested significantly
in the extrapolation of the amplitude toward the pole
point occurring beyond the physical region. As to the
P33 amplitude itself, it is well described within the res-
onance model [3, 4], where an additional background
contribution is taken into account along with the
standard Breit–Wigner expression. From the results
of the calculations presented in [4], it follows that the
magnitude of this background is moderate and that
the corresponding phase shift at the resonance point
is about 3◦ to 4◦. However, this estimate contradicts
the results of the calculations within the current alge-
bra and the approach of effective Lagrangians, where
the background phase shift at the resonance proves to
be about 15◦ [5, 6].

In order to clarify these questions, the resonance
and the pole characteristics of the P33-wave ampli-
tude are calculated here within a realistic resonance
model by using data from a few partial-wave analyses

*e-mail: omelaenko@kipt.kharkov.ua
1063-7788/02/6503-0539$22.00 c©
of elastic πN scattering. The relation between the
residues of the total and the resonance amplitude is
derived in an analytic form with allowance for the
background, and the resonance model is modified by
taking into account the second-order correction in
the expansion of the Jost function in the vicinity of
the pole of the amplitude.

2. AMPLITUDE OF THE P33 WAVE
IN THE ∆(1232)-RESONANCE REGION

2.1. Residue in the Resonance Model
In the region of the excitation of the first nucleon

resonance, the description of the P33-wave amplitude
for πN scattering is simplified because this amplitude
is elastic. In the resonance model, the relevant S-
matrix element depending on the total energy W (in
the с.m. frame) has the factorized form

S(W ) = SB(W )SR(W ), (1)

where the quantities SB and SR correspond to the
background and the resonance, respectively; in the
physical region, they are determined by correspond-
ing real phase shifts,

S = e2iδ , SB = e2iδB , SR = e2iδR . (2)

Here, the rule of phase summation is

δ(W ) = δB(W ) + δR(W ). (3)

In the complex plane ofW , the quantities SB and
SR are given by

SB(W ) =
1 + iB(W )
1 − iB(W )

, (4a)
2002 MAIK “Nauka/Interperiodica”
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Table 1. Pole parameters of the P33-wave amplitude [1]

Data MP , MeV ΓP /2, MeV |res|, MeV ϕ(res), deg

Cutkosky 80 1210 ± 1 53 ± 2 50 ± 1 −47 ± 1

Arndt 91 1210 50 52 −31

Hoehler 93 1209 50 50 −48

Arndt 95 1211 50 38 −22

Arndt 99a 1211 51 39 −23

Arndt 99b 1211 50 47 −47

Note: The symbols |res| and ϕ(res) stand for, respectively, the absolute value and the phase shift of the residue at the pole point
MP − iΓP /2 in the complex plane of the total energyW . The values in the two lower rows correspond to versions of the treatment of
the data from the analysis reported in [2] (private communication of Arndt).
SR(W ) =
W −MR − iΓ(W )/2
W −MR + iΓ(W )/2

. (4b)

It is assumed that the background functionB(W )
introduced above and the width Γ(W ) satisfy the
conditions B(W ) = B∗(W ∗) and Γ(W ) = Γ∗(W ∗),
so that, in the physical region, B(W ) and Γ(W ) are
real and are related to the phase shifts δB and δR as

tan δB(W ) = B(W ), (5a)

tan δR(W ) =
Γ(W )/2
MR −W

, (5b)

where MR is the resonance mass. From Eq. (4b), it
can be seen that, at the W values that satisfy the
equation

W −MR + iΓ(W ) = 0, (6)

the function SR has a pole. According to scattering
theory, the root of Eq. (6), WP = MP − iΓP/2, that
lies in the fourth quadrant of the complex plane of
W at positive values of MP and ΓP corresponds to
a resonance. Considering that the expansion of the
denominator on the right-hand side of Eq. (4b) in a
series in powers of (W −WP ) begins from the linear
term and retaining only this term in the vicinity of the
pole, we can recast (4b) into the form

SR(W ) ∼=
W −MR − iΓ(W )/2

(1 + iΓ′(WP )/2)(W −WP )
, (7)

where Γ′(WP ) is the value of the derivative
dΓ(W )/dW at the pole point. From Eqs. (6) and (7),
we can obtain an exact formula for the residue:

res(SR) =
−iΓ(WP )

1 + iΓ′(WP )/2
. (8)

We will now consider that the numerator on the
right-hand side of (7) vanishes at the point W ∗

P =
MP + iΓP /2, which is conjugate to the pole, and
expand it in a series at this point. Retaining only the
P

first term in this expansion and assuming that this
approximation can be used at the pole as well, we find
that, in the unipolar approximation, the resonance S-
matrix element has the form

SR(W ) ∼=
1 − iΓ′(W ∗

P )/2
1 + iΓ′(WP )/2

W −MP − iΓP/2
W −MP + iΓP/2

, (9)

whence we obtain an approximate expression for the
residue:

res(SR) ∼= −iΓP
1 − iΓ′(W ∗

P )/2
1 + iΓ′(WP )/2

. (10)

For expression (10) to be correct, it is obviously
necessary that the distance ΓP between W ∗

P and
the pole not be overly large and that the energy de-
pendence of the width Γ(W ) be sufficiently smooth.
Comparing (8) and (10), we also obtain

Γ(WP )/ΓP
∼= 1 − iΓ′(W ∗

P )/2. (11)

In particular, the equality Γ(WP ) = ΓP holds for
an energy-independent width.

The residue of the amplitude T ≡ (S − 1)/2i is
usually presented in analyses. It follows from (10) that
the absolute value and the phase shift of the residue of
the resonance amplitude are

|res(TR)| ∼= ΓP /2, (12)

ϕ(res(TR)) = 2ϕ0, (13)

where

ϕ0
∼= arg(1 − iΓ′(W ∗

P )/2) (14)

= −arg(1 + iΓ′(WP )/2).

From (13) and (14), it can be seen that the phase
shift of the residue is equal to zero if the width is
independent of energy.

In general, the approximate result for the residue
of the amplitude with allowance for the background
has the form (it should be noted that the presence of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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a background does not affect the coordinates of the
pole)

|res(T )| ∼= (ΓP /2)|SB(WP )|, (15)

ϕ(res(T )) ∼= 2ϕ0 + arg(SB). (16)

The second term on the right-hand side of (16)
determines the contribution of the background to the
phase shift of the residue.

2.2. Inclusion of the Second-Order Correction
in the Expansion of the Jost Function

As a matter of fact, the above approximation is
a starting point for constructing, in a standard way,
the resonance model, where only the first term in the
expansion of the Jost function in a power series in the
vicinity of the pole point is taken into account (see, for
example, [7]). By introducing the parameter c defined
by the ratio of the coefficients of the second and the
first term in this expansion, we can take into account
the second-order correction on the right-hand side of
(9) by making the substitution

W −MP − iΓP /2
W −MP + iΓP /2

→ W −MP − iΓP/2 + c∗(W −MP − iΓP /2)2

W −MP + iΓP /2 + c(W −MP + iΓP/2)2
.

Upon going over to the model and introducing
the energy-dependent width in (4b), there arises the
additional factor

Sc(W ) =
1 + c∗(W −MR − iΓ(W )/2)
1 + c(W −MR + iΓ(W )/2)

. (17)

For the corresponding phase shift δc determined by
the relation Sc(W ) = e2iδc to vanish as we approach
the threshold, the constant c must be real. In this
case, the modification of the model via the inclusion
of the second-order term in the expansion of the Jost
function generates, in the phase shift, the additional
contribution given by

tan δc = − cΓ(W )/2
1 + c(W −MR)

. (18)

Thus, the total phase shift is equal to the sum

δ = δB + δR + δc, (19)

while the expressions for the absolute value of the
residue and for its phase shift [(15) and (16), respec-
tively] are modified to become

|res(T )| ∼= (ΓP /2)|SB(WP )||1 − icΓ(WP )|, (20)

ϕ(res(T )) ∼= 2ϕ0 (21)

+ arg(SB(WP )) + arg(1 − icΓ(WP )).
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Fig. 1. Energy dependence of the total phase shift δ and of
its resonance and background parts according to the cal-
culations within the standard resonance model atMR =
1235.14 MeV, ΓR = 123.36 MeV, r = 0.97520 fm, and
a = 0.02822 fm3: (a) results of the calculations for δ
and δR (curves 1 and 2, respectively) and data of the
SM99 partial-wave analysis (points); (b) results of the
calculations for the background phase shift δB and for the
difference of δR and the values of this quantity at r = 0
(curves 1 and 2, respectively).

3. NUMERICAL CALCULATIONS
3.1. Resonance Model

The width was calculated here by the formula

Γ(W ) = ΓR(q/qR)3R(W ), (22)

which takes into account the threshold dependence
and which involves the c.m. particle momentum q ≡
q(W ); its value at W = MR, qR; the quantity ΓR =
Γ(MR); and the factor R(W ) correcting the energy
dependence of the width,

R(W ) = (1 + q2Rr
2)/(1 + q2r2), (23)

with r being a phenomenological parameter. The
background was described with the aid of Eqs. (4а)
and (5а), where B(W ) was parametrized as

B(W ) = aq3(W ). (24)

The inclusion of the additional factor 2MR/(MR +
W ) in expression (22) for the width leads to the
relativistic version of the model, with the resonance
amplitude being given by

TR(W ) =
Γ(W )WR

M2
R −W 2 − iΓ(W )MR

. (25)

However, the calculations have revealed that, in
this case, the results for the resonance and pole pa-
rameters remain virtually unchanged. For this reason,
we will employ below only the nonrelativistic formu-
lation of the model.
2
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Fig. 2. Resonance and pole parameters according to the
data of the (boxes) SM99, (triangles) SM99s, and (cir-
cles) KA84 partial-wave analyses in the energy intervals
of widths 30, 60, and 80 MeV, respectively, their centers
being plotted along the abscissa.

3.2. Fitting Data on the Phase Shift of the P33

Amplitude

The model parameters MR, ΓR, r, and a were
determined from the data on the phase shift of the
P33 wave in the region of W from the threshold
to 1350 MeV that were obtained with a step of
5 MeV from the SAID system available through
the Internet (http://said.phys.vt.edu). It includes the
parametrized (SM99) and the energy-independent
(SM99s) version of the partial-wave analysis reported
in [2], its preceding versions SM90 [8] and SM95
[9], and the КP80 partial-wave analysis [10] and its
smoothed version КА84. Upon fitting the parameters,
the resonance model makes it possible to obtain a
good description of the data on δ in all cases. By way
of example, the result of a fit to data of the SM99
partial-wave analysis is presented in Fig. 1a. Fig-
ure 1b illustrates the role that the empirical parameter
r plays in the formation of the resonance contribution.
The background phase shift is positive, taking values
of 2◦ to 3◦ at the resonance point.

The calculations were further performed for the
resonance parameters M0 (the position of the point
where the phase shift takes the value of 90◦) and
Γ0 = 2/(dδ/dW )|W=M0 (the experimental width)
and for the pole parameters—namely, the coordinates
of the pole of the amplitude, the absolute value of the
corresponding residue, and its phase shift ϕ[res ≡
res(T )]. The resonance and pole parameters for the
SM99 partial-wave analysis and for solutions of other
PH
partial-wave analyses are quoted in Table 2. There,
the values of χ2 are of a rather arbitrary character
because, as a rule, the errors in the phase-shift
values are not presented in partial-wave analyses—
in the calculations, the experimental points were
arbitrarily assigned the error values of 0.25◦. The
SM99s (single energy) version, which was imple-
mented for 16 energy values in such a way that a
strong dependence on the experimental data that fell
within the vicinity of each node was preserved, is
the only partial-wave analysis presenting the error
values. The value of χ2 = 65 was obtained from a fit
to this solution, with the overwhelming contribution
to it coming from the point atW = 1180 MeV. Upon
the elimination of this point, χ2 decreased to 27, but
the results for the sought parameters changed only
slightly. Unfortunately, there are only a few points in
the central region, which is of greatest interest.

In order to estimate the effect exerted by individual
groups of experimental points on the formation of
the values of the sought parameters, fits were also
performed for data from specific energy intervals. In
principle, the results obtained in this way must be
compatible if the experimental data are of a very high
quality and if the model used in fitting is adequate. For
the SM99, SM99s, and KA84 partial-wave analyses,
this was so in some cases for energy intervals of
widths 30, 60, and 80 MeV, respectively (Fig. 2). It
can be seen that the region around 1210–1220 MeV
is the most informative. For the SM99 solution, this
test yielded the best result—at the center of the res-
onance distribution, the results for the experimen-
tal mass, the width, and all of the pole parameters
showed the weakest dependence on the choice of
input data interval, errors increasing away from the
center of the distribution. For the energy-independent
SM99s solution and the earlier KA84 solution, there
are pronounced deviations in the central region that
is shown in the graphs, the results losing physical
significance beyond it. In view of this, the resonance
and pole parameters were determined here on the
basis of only data in the central region (1180 < W <
1260 MeV), since this region is the most appropriate
for this purpose. In Table 2, the corresponding results
are presented in the lower row for each of the analyses
considered in the present study. It can be seen that, in
some cases, these results differ from those obtained
from a fit over the entire resonance region, especially
for the phase shift of the residue.

3.3. Approximate Formula for the Residue

The approximate values calculated by formulas
(14)–(16) for the absolute value and the phase shift of
the residue within the standard resonance model are
presented parenthetically in Table 2 under the precise
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Table 2. Resonance and pole parameters of P33-wave amplitude

Data N χ2 M0, MeV Γ0,MeV MP , MeV ΓP /2, MeV |res|, MeV ϕ(res), deg

KР80 27 19.0 1231.0 116.0 1209.2 50.4 52.4 −48.9

(52.9) (−49.9)

* 10 4.2 1230.9 115.4 1210.1 49.5 50.1 −46.2

KA84 55 54.0 1231.2 118.2 1208.7 51.4 53.7 −49.8

(54.5) (−51.1)

* 17 7.9 1231.2 116.8 1211.2 50.7 51.3 −43.2

SM90 55 0.25 1231.3 113.9 1210.6 49.9 51.8 −46.8

(51.8) (−46.9)

* 17 0.14 1231.3 114.0 1210.5 49.8 51.6 −46.9

SM95 55 0.18 1231.9 113.0 1211.6 50.1 52.4 −46.0

(52.4) (−46.2)

* 17 0.08 1232.0 113.2 1211.6 50.2 52.5 −46.2

SM99 55 0.15 1232.5 115.2 1211.5 50.8 53.1 −46.9

(53.2) (−47.1)

* 17 0.00 1232.5 115.4 1211.5 50.9 53.2 −47.0

SM99s 16 65.0 1232.1 114.7 1210.9 50.5 52.9 −48.0

(53.6) (−49.2)

SM99s, c 15 27.0 1232.1 115.0 1210.6 50.5 53.0 −48.6

* 5 0.82 1231.9 112.8 1212.9 48.3 47.6 −42.0

Note:N is the number of points; asterisks and the letter “c” correspond to data for 1180 < W < 1260MeV and data without the point
atW = 1180 MeV, respectively; and the values in parentheses correspond to the calculations of the residue by formulas (14)–(16).

Table 3. Resonance and pole parameters of the P33-wave amplitude within the modified resonance model

Data M0, MeV Γ0,MeV MP , MeV ΓP /2, MeV |res|, MeV ϕ(res), deg

KP80 1231.1 118.8 1206.7 52.2 57.0 −55.4

KA84 1231.4 120.8 1206.4 53.2 58.5 −56.1

SM99 1232.8 118.2 1209.1 53.6 60.7 −53.5

SM99s 1233.3 117.9 1210.4 55.2 64.7 −51.7
results and are in good agreement with them. Also,
there is the possibility of obtaining, within a realistic
model, an independent estimate of the background in
the case where data on the pole parameters of the
resonance are available. Indeed, formula (15) makes
it possible to establish a relation between the relative
value of the residue, y, and the background parameter
a:

y ≡ |res(T )|
ΓP /2

∼=
∣∣∣∣1 + iaq3(WP )
1 − iaq3(WP )

∣∣∣∣ . (26)

Upon solving Eq. (26) for a, the background phase
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
shift δB(W ) can be calculated with the aid of (24)
and (5а). In order to characterize the background,
the results of such a calculation at W = 1232 MeV
are presented in Fig. 3 versus y from various partial-
wave analyses. It can be seen that the estimates of the
background phase shift at the resonance are grouped
around the values of −15◦, −3◦, and +3◦. In order to
obtain the value of +15◦, which is characteristic of
the approach of effective Lagrangians [4], one must
have the value of y ≈ 1.32, which would correspond
to the absolute value of the residue of about 68 MeV.
The contribution of the background to the phase shift
2
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Fig. 3. Background phase shift δB at W = 1232 MeV
(curve 1) and contribution of the background to the phase
shift of the residue (curve 2) versus y. Vertical dashed
lines correspond to (y ≈ 0.76) Arndt 95, Arndt 99а
data; (y ≈ 0.94) Cutkosky 80, Arndt 99b data; (y ≈
1.00) Hoehler 93 data; (y ≈ 1.04) SM90 data and the
present estimate based on the SM99 data; and (y ≈ 1.32)
δB(1232) ≈ 15◦.

of the residue also changes considerably with y (see
curve 2 in Fig. 3).

3.4. Modified Resonance Model

Alternatively, the phase shift δ was described with
the aid of formulas (17)–(21), which were derived
within the model developed by taking into account
the second-order term in the expansion of the Jost
function and by introducing a free parameter c. As
before, the background was described with the aid of
(24); however, the empirical factor R(W ) (with the
parameter r), which is typical of the standard model,
was not introduced in expression (22) for the width.
Hence, the modified model involves four adjustable
parameters as before. A good description was ob-
tained for data on δ from all of the partial-wave anal-
yses considered here. By way of example, the result
for the SM99 partial-wave analysis is presented in
Fig. 4a. At the resonance point, we have δB ∼ 23◦ in
this case. However, the correction associated with the
inclusion of the second-order term in the expansion
of the Jost function is negative, and the total non-
resonance phase shift approaches 15◦ (Fig. 4b). This
is in agreement with the estimates obtained within
the approach of effective Lagrangians [6]. By and
large, the curve representing the nonresonance phase
shift is in reasonable agreement with the estimate
based on the current-algebra model [5] as well. The
values of the resonance and pole parameters for the
modified model are presented in Table 3. In relation to
what we have in the standard resonance model, the
coordinates of the pole exhibit moderate shifts that
depend on the choice of analysis, while the absolute
value of the residue appears to be about 20% greater.
The phase shift of the residue increases somewhat. As
to the experimental mass and width, the results for
them are close, on the whole, to traditional values.
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Fig. 4. Energy dependence of the total phase shift δ
and of its resonance and background parts within the
modified resonance model atMR = 1256.08 MeV, ΓR =
222.44 MeV, a = 0.29143 fm3, and c = 0.34821 fm: (a)
results for δ and δR (curves 1 and 2, respectively) and data
of the SM99 partial-wave analysis (points); (b) results for
δB , δc, and δB + δc (curves 1, 2, and 3, respectively) and
nonresonance phase shift borrowed from [3] (curve 4).

4. CONCLUSIONS

The basic points of the present study and its con-
clusions concerning the P33-wave amplitude for πN
scattering can be briefly formulated as follows:

(i) As a matter of fact, the approximation consid-
ered in Section 2 is the starting point in constructing
the resonance model on the basis of the expansion
of the Jost function in the vicinity of the pole of
the amplitude; the above test has demonstrated its
applicability to calculating the pole parameters. For
the absolute value and the phase shift of the residue,
the analytic expressions (14)–(16) have been derived
in this approximation. From these expressions, it fol-
lows, among other things, that the equality of the
absolute values of the residue and the imaginary pole
coordinate suggests the absence of background and
that the resonance contribution to the phase shift of
the residue is determined by the value of dΓ(W )/dW
at the pole point.

(ii) If the background is described by one pa-
rameter and if the residue and the pole coordinates
are known, the background can be estimated on the
basis of expression (15) without invoking information
about Γ(W ) for this. Estimates of the background
phase shift according to data from various partial-
wave analyses exhibit a wide scatter—from −15◦ to
+3◦ at the resonance point; however, values of about
+15◦, which are characteristic of the calculations
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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within the current algebra and the approach of ef-
fective Lagrangians [5, 6], cannot be obtained in this
way.

(iii) A retrospective fit to the data from basic
partial-wave analyses has revealed that the pole pa-
rameters have changed only slightly over the last two
decades. This may indirectly suggest that advances in
experiments studying the ∆(1232)-resonance region
are not as pronounced as might have been expected.

(iv) The present calculations within the con-
strained energy intervals has enabled us to assess the
“energy resolution” of various analyses. For example,
a determination of the resonance and pole parameters
on the basis of the SM99 analysis, which employs the
most comprehensive sample of experimental data, is
possible by using the data from the interval of width
about 30 MeV. For other analyses, the minimal width
of such an interval varies from 60 to 80 MeV, and the
results for the pole parameters change significantly
in response to its shift. This demonstrates that the
region of the first resonance has not yet received
adequately study, so that new systematic and precise
measurements are required for performing a reliable
analysis.

(v) Amodified resonance-model version developed
on the basis of retaining the quadratic term in the
expansion of the Jost function at the pole point has
been considered. A satisfactory description of data
from partial-wave analyses has been obtained. The
resulting estimate of the nonresonance phase shift
complies well with the results of the calculations
within the current algebra and the approach of ef-
fective Lagrangians. In relation to the results within
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
the traditional model, the absolute value of the residue
undergoes the most pronounced change (an increase
of about 20%).
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Abstract—A critical consideration of all unusual properties of the scalar a0(980) and f0(980) mesons
is presented within the four-quark, two-quark, and molecular models. Arguments in favor of the
four-quark model are given. Further experiments that could finally resolve this issue are discussed.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spherical neutral detector (SND) at the
VEPP-2M e+e− collider in Novosibirsk discovered
[1, 2] the electric dipole decays φ→ γπ0π0 and
φ→ γπ0η in the region of soft (by strong-interaction
standards) photons with energies of ω < 120MeV—
i.e., in the region of the scalar a0(980) and f0(980)
mesons, mπ0π0 > 900MeV and mπ0η > 900MeV
[φ→γf0(980)→ γπ0π0 and φ→ γa0(980)→γπ0η].
The data yield

Br(φ→ γπ0π0 ; mπ0π0 > 900MeV) (1)

= (0.5 ± 0.06 ± 0.06) × 10−4

of the total

Br(φ→ γπ0π0) = (1.14 ± 0.10 ± 0.12) × 10−4,

Br(φ→ γπ0η ; mπ0η > 900MeV) � 0.5×10−4 (2)

of the total

Br(φ→ γπ0η) = (0.83 ± 023) × 10−4.

The cryogenic magnetic detector-2 (CMD-2) at
the VEPP-2M e+e− collider in Novosibirsk con-
firmed these results [3].

A new preliminary SND analysis [4] of 1998 data
with twice as large a data sample in relation to 1996
data [1] also confirms the results in (2).

The branching ratios in Eqs. (1) and (2) are huge
for this photon-energy region and can probably be
understood only if four-quark resonances are pro-
duced [5, 6]. Note that the a0(980) meson is produced
in φ radiative decay as intensively as the η′ meson
containing strange quarks.

∗This article was submitted by the author in English.
1063-7788/02/6503-0546$22.00 c©
2. EVIDENCE FOR STRANGE QUARKS
IN THE f0(980) AND a0(980) MESONS

To feel why the numbers in Eqs. (1) and (2) are
huge, one can make a rough estimate. Let us assume
that there is structural radiation without a resonance
in the final state with the spectrum

dΓ(φ→ γπ0π0(η))
dω

∼ α

π
δOZI

1
m3

φ

ω3,

where δOZI ∼ 10−2 is a factor describing the sup-
pression by the Okubo–Zweig–Iizuka (OZI) rule.
Recall that the ω3 law follows from gauge invariance.
Indeed, the decay amplitude is proportional to the
electromagnetic field Fµν (in our case, to the electric
field)—i.e., to the photon energy ω in the soft photon
region.

Then, one obtains

Γ(φ→ γπ0π0(η)) ∼ 1
4
α

π
δOZI

ω4
0

m3
φ

� 10−6 MeV;

i.e., Br(φ→ γπ0π0(η)) ∼ 2 × 10−7, where ω0 =
120MeV.

To understand why Eq. (2) points to the four-
quark model is especially easy. Indeed, the φ meson
is an isoscalar, virtually pure ss̄ state that decays
into the isovector hadron state π0η and the isovec-
tor photon. The isovector photon originates from the
ρ meson, φ→ ρ a0(980) → γπ0η, whose structure in
this energy region is familiar,

ρ ≈ uū− dd̄√
2

. (3)

The structure of the a0(980) meson, from which
the π0η system originates, is in general the following:

a0(980) = c1
uū− dd̄√

2
+ c2

ss̄(uū− dd̄)√
2

+ . . . . (4)
2002 MAIK “Nauka/Interperiodica”
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With the first term in Eq. (4) taken to be dominant,
there are no strange quarks in the intermediate
state. Thus, we would have the decay suppressed
by OZI rule with Br(φ→ γa0(980) → γπ0η) ∼ 10−6

owing to the real part of the decay amplitude [6].
The imaginary part of the decay amplitude, resulting
from theK+K− intermediate state (φ→ γK+K− →
γa0(980) → γπ0η), violates the OZI rule and in-
creases the branching ratio to 10−5 [5, 6].

The four-quark hypothesis is also supported by
J/ψ decays. Indeed, we have

Br(J/ψ → a2(1320) ρ) = (109 ± 22) × 10−4 [7],
(5)

while
Br(J/ψ → a0(980) ρ) < 4.4 × 10−4 [8]. (6)

The suppression

B(J/ψ → a0(980) ρ)
B(J/ψ → a2(1320) ρ)

< 0.04 ± 0.008 (7)

seems strange if one considers the a2(1320) and
a0(980) states as tensor and scalar two-quark states
from the same P-wave multiplet with the quark
structure

a0
0 =

uū− dd̄√
2

, a+
0 = ud̄, a−0 = dū, (8)

while the four-quark nature of the a0(980) meson
with the symbolic quark structure

a0
0 =

ss̄(uū− dd̄)√
2

, a+
0 = ss̄ud̄, a−0 = ss̄dū (9)

does not contradict the suppression in Eq. (7).
Moreover, it was predicted in [9] that, if the a0(980)

meson is taken as a four-quark state from the lightest
nonet of the MIT bag [10], its production rate should
be suppressed in γγ collisions by a factor of ten in
relation to the a0(980) meson taken as a two-quark
P-wave state. The estimate obtained in [9] for the
four-quark model was

Γ(a0(980) → γγ) ∼ 0.27 keV, (10)

which was confirmed by the experiments reported in
[11, 12]:

Γ(a0 → γγ) =
0.19 ± 0.07+0.1

−0.07

B(a0 → πη)
keV (Crystal Ball),

(11)

Γ(a0 → γγ) =
0.28 ± 0.04 ± 0.1
B(a0 → πη)

keV (JADE).

At the same time, it was anticipated [13, 14] in the
two-quark model (8) that

Γ(a0 → γγ) (12)
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= (1.5–5.9)Γ(a2 → γγ)
= (1.5–5.9)(1.04 ± 0.09) keV.

The wide spread in the predictions is due to different
reasonable guesses at the form of the potential.

As for the decay φ→ γf0(980) → γπ0π0, a more
sophisticated analysis is required.

The structure of the f0(980) meson, from which
the π0π0 system originates, is in general the follow-
ing:

f0(980) = c̃0gg + c̃1
uū+ dd̄√

2
(13)

+ c̃2ss̄+ c̃3
ss̄(uū+ dd̄)√

2
+ . . . .

First, we discuss the possibility of treating the
f0(980) meson as a quark–antiquark state.

The hypothesis that the f0(980) meson is the low-
est two-quark P-wave scalar state with the quark
structure

f0 =
uū+ dd̄√

2
(14)

contradicts Eq. (1) in view of the OZI rule, in the
same way as Eq. (8) contradicts Eq. (2) (see the above
arguments).

Moreover, this hypothesis contradicts the follow-
ing facts:

(i) a strong coupling to theKK̄ channel [15, 6],

1 < R =
∣∣∣∣gf0K+K−

gf0π+π−

∣∣∣∣
2

� 8, (15)

since Eq. (14) implies that |gf0K+K−/gf0π+π− |2 =
λ/4 � 1/8, where λ characterizes strange-sea sup-
pression;

(ii) a weak coupling to gluons [16],

Br(J/ψ → γf0(980) → γππ) < 1.4 × 10−5, (16)

versus the expected one [17] for Eq. (14),

Br(J/ψ → γf0(980)) (17)

� Br(J/ψ → γf2(1270))
4

� 3.4 × 10−4;

(iii) weak coupling to photons [18, 19],

Γ(f0 → γγ) = 0.31 ± 0.14 ± 0.09 keV (18)
(Crystal Ball),

Γ(f0 → γγ) = 0.24 ± 0.06 ± 0.15 keV (MARK II),

versus the expected one [13, 14] for Eq. (14),

Γ(f0 → γγ) = (1.7–5.5)Γ(f2 → γγ) (19)

= (1.7–5.5)(2.8 ± 0.4) keV;
2
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(iv) the decays J/ψ → f0(980)ω, J/ψ →
f0(980)φ, J/ψ → f2(1270)ω, and J/ψ →
f ′2(1525)φ [7]:

Br(J/ψ → f0(980)ω) = (1.4 ± 0.5) × 10−4, (20)

Br(J/ψ → f0(980)φ) = (3.2 ± 0.9) × 10−4, (21)

Br(J/ψ → f2(1270)ω) = (4.3 ± 0.6) × 10−3, (22)

Br(J/ψ → f ′2(1525)φ) = (8 ± 4) × 10−4. (23)

The suppression

Br(J/ψ → f0(980)ω)
Br(J/ψ → f2(1270)ω)

= 0.033 ± 0.013 (24)

seems strange in the model under consideration, as
well as Eq. (7) in the model (8).

The existence of the decay J/ψ → f0(980)φ of
greater intensity than the decay J/ψ → f0(980)ω
[compare Eqs. (20) and (21)] rules out the model
specified by Eq. (14) since, in the case under discus-
sion, the decay J/ψ → f0(980)φmust be suppressed
in relation to the J/ψ → f0(980)ω decay by the OZI
rule. Thus, Eq. (14) is excluded at a level of physical
rigor.

Can one consider the f0(980) meson as an almost
pure ss̄ state? This is impossible without a gluon
component. Indeed, it is anticipated for the scalar
ss̄ state from the lowest P-wave multiplet that [17]

Br(J/ψ → γf0(980)) (25)

� Br(J/ψ → γf ′2(1525))
4

� 1.6 × 10−4,

in contradiction to Eq. (16), which, in fact, requires
the f0(980) meson to be the eighth component of the
SUf (3) octet,

f0(980) =
uū+ dd̄− 2ss̄√

6
. (26)

This structure gives

Γ(f0 → γγ) =
3
25

(1.7–5.5)Γ(f2 → γγ) (27)

= (0.57–1.9)(1 ± 0.14) keV,

which is on the verge of conflict with Eq. (18).
In addition, it predicts

Br(J/ψ → f0(980)φ) (28)

= (2λ ≈ 1) · Br(J/ψ → f0(980)ω),

which is also on the verge of conflict with experimen-
tal data [compare Eq. (20) with Eq. (21)].
P

Equation (26) contradicts Eq. (15) for the predic-
tion

R =
∣∣∣∣gf0K+K−

gf0π+π−

∣∣∣∣
2

=
(
√
λ− 2)2

4
� 0.4. (29)

In addition, the mass degeneracy mf0 � ma0 is
coincidental in this case if the a0 meson is treated as
the four-quark state or contradicts the light hypothe-
sis (8).

The introduction of a gluon component gg in the
structure of the f0(980) meson allows the puzzle of
weak coupling to gluons [see (16)] to be easily re-
solved. Indeed, since [17]

Br(R[qq̄] → gg) � O(α2
s) � 0.1–0.2, (30)

Br(R[gg] → gg) � O(1),

a minor (sin2 α ≤ 0.08) dopant of gluonium,

f0 = gg sinα+
[(

1/
√

2
)

(uū+ dd̄) sin β (31)

+ ss̄ cos β
]
cosα,

tanα = −O(αs)
(√

2 sin β + cosβ
)
,

makes it possible to satisfy Eqs. (15) and (16) and to
obtain a weak coupling to photons,

Γ(f0(980) → γγ) < 0.22 keV (32)

at

−0.22 > tan β > −0.52. (33)

Thus, cos2 β > 0.8 and the f0(980) meson is an al-
most pure ss̄ state, as in [20]. This yields

0.1 <
Br(J/ψ → f0(980)ω)
Br(J/ψ → f0(980)φ)

=
1
λ

tan2 β < 0.54.

(34)

As for the experimental value

Br(J/ψ → f0(980)ω)
Br(J/ψ → f0(980)φ)

= 0.44 ± 0.2, (35)

it needs refinement.
The scenario with the f0(980)meson as in Eq. (31)

and with the a0(980) meson as a two-quark state (8)
runs into the following difficulties:

(i) It is impossible to explain the mass degeneracy
of the f0 and the a0 meson.

(ii) It is possible to obtain only [5, 6]

Br(φ→ γf0 → γπ0π0) � 1.7 × 10−5, (36)

Br(φ→ γa0 → γπ0η0) � 10−5.

(iii) It is predicted that

Γ(f0 → γγ) < 0.13 × Γ(a0 → γγ), (37)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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which is on the verge of conflict with the experimental
data [compare Eqs. (11) and (18)].

(iv) It is also predicted that

Br(J/ψ → a0(980)ρ) (38)

= (3/λ ≈ 6) × Br(J/ψ → f0(980)φ),

which has almost no chance [compare Eqs. (6) and
(21)].

Note that the prediction independent of λ,

Br(J/ψ → f0(980)φ)
Br(J/ψ → f ′2(1525)φ)

(39)

=
Br(J/ψ → a0(980)ρ)
Br(J/ψ → a2(1320)ρ)

,

is excluded by the central value in

Br(J/ψ → f0(980)φ)
Br(J/ψ → f ′2(1525)φ)

= 0.4 ± 0.23, (40)

obtained from Eqs. (21) and (23) [compare with
Eq. (7)]. However, the experimental error is of course
overly large. Even a twofold improvement in the
accuracy of the measurement in Eq. (40) could be
crucial for the scenario under discussion.

The prospects for the model of the f0(980) meson
as the almost pure ss̄ state (31) and the a0(980)
meson as the four-quark state (9) with a coincidental
mass degeneracy are rather poor, especially as the
four-quark model with the symbolic structure

f0 =
ss̄(uū+ dd̄)√

2
cos θ + uūdd̄ sin θ, (41)

built around the MIT bag [10], reasonably justifies all
unusual features of the f0(980) meson [15, 21].

Indeed, a strong coupling to the KK̄ channel is
resolved at 1/16 < tan2 θ < 1/2 (see [15]). There is
no problem of the a0- and f0-mesonmass degeneracy
for tan2 θ < 1/3. A weak coupling to photons was
predicted in [9],

Γ(f0(980) → γγ) ∼ 0.27 keV. (42)

There is also no problem with the suppression in (24).
But it should be explained how the problem of a

weak coupling to gluons is resolved. Recall that, in
the MIT-bag model, the f0(980) meson “consists”
of pairs of color-singlet and colored pseudoscalar and
vector two-quark mesons [10, 9, 15], including a pair
of flavorless colored vector two-quark mesons. It is
precisely this pair that converts into two gluons in the
lowest order in αs.

The width of the f0(980) meson with respect to
decay into two gluons can be calculated by using a
procedure similar to that for calculating the width
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of a four-quark state with respect to decay into two
photons [9]. This yields

Γ(f0 → gg) =
g2
0

16πmf0

· 0.03
(
αs · 4π
f2

V

)2

(43)

× (1 + tan θ)2 cos2 θ,

where g2
0/4π ≈ 10–20 GeV is the OZI-superallowed

coupling constant; 0.03 is the fraction of the pair of
the flavorless colored vector two-quark mesons in
the f0(980)-meson wave function, which is converted
into two massless gluons; and αs4π/f2

V is the prob-
ability of the transition of the flavorless colored vector
two-quark meson into the massless gluon, V ↔ g
(f2

V /4π = f2
ρ/8π ≈ 1 since the spatial wave functions

of the flavorless colored vector two-quark meson and
the ρmeson are identical). Thus, we have

Γ(f0 → gg) ≈ 15α2
s(1 + tan θ)2 cos2 θ (MeV).

(44)

For−1/
√

2 < tan θ < −1/4, one obtains a width that
is at worst one order of magnitude less than in the
case of a two-quark scalar meson [17] and which does
not contradict Eq. (16).

If we use only planar diagrams, we can find, in the
four-quark model, that

Br(J/ψ → a0
0(980)ρ

0) ≈ Br(J/ψ → f0(980)ω)
(45)

≈ 0.5Br(J/ψ → f0(980)φ),

which does not contradict experimental data [see
Eqs. (6), (20), and (21)].

Recall that almost all four-quark states of the
MIT bag [10] are very broad owing to their decays
through OZI-superallowed channels. That is why it
is impossible to extract them from the background.
Only in the rare cases near or under the thresholds
of the OZI-superallowed decay channels should the
“primitive” four-quark states emerge as narrow res-
onances. Such evidence for the MIT bag is probably
provided by the a0(980) and f0(980) mesons as well
as by the resonance–interference phenomena pre-
dicted in [9] and discovered at the thresholds of the re-
actions γγ → ρ0ρ0 and γγ → ρ+ρ− (for an overview,
see [21]).

A few words on the attractive molecular model,
wherein the a0(980) and f0(980) mesons are the
bound states of theKK̄ system [22, 23], are in order.
Thismodel explains themass degeneracy of the states
and their strong coupling to the KK̄ channel. In the
molecular model, as in the four-quark model, there
is no problem with the suppressions in (7) and (24).
Note that Eq. (45) is also valid in the KK̄-molecule
model.
2
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But its predictions for two-photon widths [14],

Γ(a0(KK̄) → γγ) (46)

= Γ(f0(KK̄) → γγ) ≈ 0.6 keV,

are on the verge of conflict with the data in (11)
and (18). Moreover, theKK̄-molecule widths should
be less than the binding energy of ε ≈ 20 MeV.
The current data [7], Γa0 � 50–100 MeV and Γf0 �
40–100 MeV, contradict this. The KK̄-molecule
model also predicts [24]

Br(φ→ γf0 → γππ) (47)

� Br(φ→ γa0 → γπ0η) � 10−5,

which contradicts Eqs. (1) and (2).
Investigations of the production of a0(980) and

f0(980) mesons in the reactions π−p→ π0ηn [25]
and π−p→ π0π0n [26] over a wide range of the
4-momentum transfer squared [0 < −t < 1GeV2]
show that these states are compact like the ρ and
other two-quark mesons but not extended like the
molecules with form factors due to the wave func-
tions. It seems that these experiments rule out the
KK̄-molecule model. As for the four-quark states,
they are compact like the two-quark ones.

Finally, it is necessary to answer the traditional
question of where the scalar two-quark states from
the lowest P-wave multiplet with the quark struc-
tures (8) and (14) are. We believe that there is no
problem with this now! All members of this multiplet
are established [7]:

b1(1235), IG(JPC) = 1+(1+−), (48)

Γb1(1235) � 142MeV;

h1(1170), IG(JPC) = 0−(1+−),
Γh1(1170) � 360MeV;

a1(1260), IG(JPC) = 1−(1++),
Γa1(1260) = 250–600MeV;

f1(1285), IG(JPC) = 0+(1++),
Γf1(1285) � 24MeV;

a2(1320), IG(JPC) = 1−(2++),
Γa2(1320) � 107MeV;

f2(1270), IG(JPC) = 0+(2++),
Γf2(1270) � 185MeV;

a0(1450), IG(JPC) = 1−(0++),
Γa0(1450) � 265MeV,

ma0(1450) = 1300–1500MeV,

Γa0(1450) = 100–300MeV;

f0(1370), IG(JPC) = 0+(2++),
PH
Γf0(1370) = 200–500MeV,

mf0(1370) = 1200–1500MeV.

Of course, one cannot consider the scalar members
of Eq. (48) as well established, and it is still neces-
sary to reduce the experimental uncertainties in their
masses and widths. Nevertheless, it will be obvious
from Eq. (48) that forces responsible for the mass
splitting in the P-wave multiplet are either small
or compensate each other. That is why it is justi-
fied to expect the existence of the a0(∼ 1300) and
f0(∼ 1300) states, and it seems beyond doubt that
the a0(980) and f0(980) mesons do not fit into the set
in (48).

The statement of the OPAL collaboration [27] that
the inclusive production of f0(980) in hadronic Z0

decay is consistent with the hypothesis in (14) is
not conclusive because no calculation of the inclusive
production of four-quark states has been performed
thus far. From the general point of view, one can
nevertheless expect both copious multiquark-state
inclusive production and two-quark one, because, in
either case, primary production is themultiproduction
of vacuum qq̄ pairs.

3. THEORETICAL GROUNDS
FOR THE FOUR-QUARK MODEL

A few words on the theoretical grounds for the
four-quark nature of the scalar f0(980) and a0(980)
mesons are in order. It was shown in the context of
theMIT bag [10] that the low-lying scalar four-quark
nonet as a bound state of diquarks1) arises from the
strong binding energy in such a configuration due to
a hyperfine interaction Hamiltonian of the form

Hhf = −∆
∑
i<j

si · sjFi · Fj, s = σ/2, F = λ/2,

which was obtained from single-gluon exchange in
QCD.

The result is [10]

σ = C0 = udūd̄,

κ+ = CK+ = udd̄s̄, κ0 = CK0 = udūs̄,

κ− = CK− = dsūd̄, κ̄0 = CK̄0 = usūd̄,

f0 = Cs =
(usūs̄+ dsd̄s̄)√

2
,

a+
0 = Cs

π+ = usd̄s̄, a0
0 = Cs

π0 =
(usūs̄− dsd̄s̄)√

2
,

a−0 = Cs
π− = dsūs̄,

1)Ta = εabcq̄
bq̄c and T̄ a = εabcqbqc. Note that similar di-

quarks bind up with quarks to form the baryon octet.
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mσ = 650MeV, mκ = 900MeV,

mf0 = ma0 = 1100MeV.

Of course, the MIT bag model is rather rough, so
that one can consider its prediction only as a guide.
Since the σ and κmesons lie considerably above their
OZI-superallowed decay channels, their widths are
on the order of 1 GeV. That is why information about
them can be obtained only in a model-dependent way.

In the last few years, there has been a true renais-
sance in the treatments of ππ and πK scattering on
the basis of phenomenological linear σ models (see,
for example, [28–32]). It has been argued that corre-
sponding σ mesons are quark–antiquark states. But,
in fact, there is no difference in the formulation of the
two-quark and the four-quark case at the Lagrangian
level [33].

4. CONCLUSION

There are many reasons to consider the a0(980)
and f0(980) mesons as four-quark states. In sum-
mary, we nevertheless emphasize once again that a
further study of the decays φ→ γf0(980), γa0(980);
J/ψ → a0(980) ρ, f0(980)ω, f0(980)φ, a2(1320) ρ,
f2(1270)ω, f ′2(1525)φ; a0(980) → γγ; and
f0(980) → γγ will make it possible to solve the puzzle
of the nature of the a0(980) and the f0(980) meson or
at least to rule out some of the scenarios discussed
above.
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Abstract—For IG(JPC) = 1−(1−+) exotic waves in the reactions ρπ → ρπ, ρπ → ηπ, ρπ → η′π, and
ρπ → (K∗K̄ + K̄∗K) and in allied reactions, amodel is constructed that satisfies the conditions of unitarity
and analyticity and which employs, as an input, an “anomalous” nondiagonal V PPP interaction relating
the ρπ, ηπ, η′π, andK∗K̄ + K̄∗K channels. The possibility of obtaining, within this simple field-theoretical
model, a resonance behavior of the IG(JPC) = 1−(1−+) amplitudes corresponding to the {10}− {1̄0} and
{8} representations of the SU(3) group and their mixing is demonstrated explicitly in the mass range
1.3–1.6 GeV, where data of present-day experiments suggest a rich exoticism. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Hints of states featuring the exotic quantum num-
bers of IG(JPC) = 1−(1−+) create an ever increasing
agitation among both experimentalists and theorists
[1–20]. In the range 1.3–1.6 GeV, they were found
in the mass spectra of the ηπ, η′π, ρπ, b1π, and f1π
systems produced in high-energy π−p collisions and
inNN̄ annihilation at rest [1–12].

Theoretical considerations on the spectrum of ex-
otic resonance states and their decay modes are based
primarily on the MIT bag model, the constituent-
gluon model, the color-tube model, lattice calcula-
tions, and QCD sum rules, as well as on a number
of quite general selection rules. With special empha-
sis on observed JPC = 1−+ phenomena, these con-
stituent quark–gluon models and rules are discussed
in [1–20], where the interested reader can also find
comprehensive analyses of relevant experimental data
and extensive lists of references. The resonance char-
acter of recorded signals and the most popular as-
sumption of their hybrid (qq̄g) nature form the subject
of lively discussions and call for further refinements
[1, 6, 7, 12, 14–20].

We note that the first argument in favor of the
possible existence of an exotic JPC = 1−+ state that
is associated with the ηπ and ρπ channels and which
is a member of the SU(3) 20-plet was obtained by the
bootstrap method more than 35 years ago [21] (see
also [22]).

*e-mail: achasov@math.nsc.ru
**e-mail: shestako@math.nsc.ru
1063-7788/02/6503-0552$22.00 c©
Methods that produce information about exotic
partial waves and which do not employ quark–gluon
terms also include those of current algebra and of
effective chiral Lagrangians. Suffice it to recall that
a prediction was obtained within these approaches for
isospin-2 ππ scattering length [23, 24]. Constructing,
with the aid of effective chiral Lagrangians, expan-
sions of amplitudes in power series in momenta, one
can reveal, even in lower order terms, the presence of
contributions featuring open exoticism. This brings
about the question of whether at least some of these
contributions, which are specified at low energies,
are manifestations (“tails”) of high-lying exotic res-
onances. For example, it is well known that, for ππ-
scattering channels involving σ and ρ resonances, the
regions of a resonant and a low-energy behavior of
scattering amplitudes can be matched consistently
(in the sense of agreement with experimental data) by
using an appropriately chosen scheme for unitarizing
input chiral contributions and by respecting, to the
highest possible degree, the requirements of analyt-
icity [25–34]. In other words, these channels can be
treated within model concepts demonstrating that the
low-energy contributions computed with the aid of
chiral Lagrangians can in principle transform, with
increasing energy, into resonances that have param-
eters observed experimentally. In the present study,
we continue following this way and construct a model
that satisfies the requirements of unitarity and analyt-
icity and which describes the JPC = 1−+ exotic wave
in the reaction ρπ → ηπ and in allied reactions like
ρπ → η′π, ηπ → ηπ, ρπ → ρπ, and ηπ → (K∗K̄ +
K̄∗K) using, as inputs, exotic tree-level amplitudes
2002 MAIK “Nauka/Interperiodica”
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generated by the simplest anomalous effective inter-
action (that is, an interaction that involves the tensor
εµντκ) of vector (V ) and pseudoscalar (P ) mesons.
Such an interaction is induced by the Wess–Zumino
anomalous chiral Lagrangian [35].

In the effective nonlinear chiral Lagrangian, the
ordinary normal component, which contains the octet
of pseudoscalar mesons, generates the amplitudes for
PP → PP reactions in the tree approximation, the
corresponding quantum numbers in the s channel be-
ing JPC = 0++ and 1−− [24]. In the next approxima-
tion, JPC = 1−+ exotic contributions appear in the
PP → PP amplitudes owing to finite parts of one-
loop diagrams. However, they prove to be nonzero
only because of the violation of SU(3) symmetry for
the masses of pseudoscalar mesons. Resonances to
which such contributions could be matched must
possess quite strange a property—all constants of
their coupling to the octet of pseudoscalar mesons are
bound to vanish in the limit of SU(3) symmetry. It
would therefore bemore natural to believe that JPC =
1−+ exotic resonances, if any, have a different origin.
Within effective chiral Lagrangians, their generation
may be due to the anomalous interaction of vector and
pseudoscalar mesons [36–43]. This is indirectly sup-
ported by an analysis of the PP → PP amplitudes
within the linear SU(3) × SU(3) σ model including
only scalar and pseudoscalar mesons [28]. In this
model, repulsive forces are operative in the JPC =
1−+ channel, so that no resonance states arise.

The ensuing exposition is organized as follows. In
Section 2, the general properties of the amplitudes for
V P → PP reactions involving the nonets of vector
and pseudoscalar mesons are considered under the
assumption of SU(3) symmetry. In Section 3, we
construct a simple model aimed at describing the p-
wave (exotic) amplitudes for V P → V P , V P → PP ,
and PP → PP reactions that employs, as an input,
a nondiagonal V PPP interaction relating the ρπ, ηπ,
η′π, and K∗K̄ + K̄∗K channels. In Section 4, it is
demonstrated that, within this model, a resonance
behavior of the IG(JPC) = 1−(1−+) amplitudes cor-
responding to the {10} − {1̄0} and {8} representa-
tions of the SU(3) group and to their mixing can
be obtained in the range 1.3–1.6 GeV. In quark–
gluon terms, the {10} − {1̄0} representation can be
realized from the sector of qqq̄q̄ states, while the {8}
representation corresponding to JPC = 1−+ can in
principle be associated with either qqq̄q̄ or qq̄g states.
In the Appendix, we present an example where n-
loop diagrams are calculated and summed in order to
obtain unitarized amplitudes.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
2. GENERAL PROPERTIES OF V P → PP
AMPLITUDES

The Lorentz and SU(3) structure of the ampli-
tudes for Va(k) + Pb(q1) → Pc(q2) + Pd(q3) reac-
tions, where Va and Pa are members of the vector
and the pseudoscalar meson octet in the Cartesian
basis (a = 1, ..., 8)1) and k, q1, q2, and q3 are the
4-momenta of the particles involved in the reaction
being considered, has the form

M
(λ)
ab;cd = −iεµντκe

µ
(λ)q

ν
1q

τ
2q

κ
3 [fabmdmcdA(s, t, u)

(1)

+ dabmfmcdB(s, t, u) + (uab)cdC(s, t, u)].

Here, fabc and dabc are the standard structure con-
stants of the SU(3) group [44], (uab)cd = fcamdmbd −
dcamfmbd [45], eµ(λ) is the µ component of the vec-
tor characterizing the polarization of the V meson
of helicity λ, s = (k + q1)2, t = (k − q2)2, and u =
(k − q3)2; from Bose symmetry, it follows that the
invariant amplitude A(s, t, u) is antisymmetric under
the substitution t↔ u, while the invariant amplitudes
B(s, t, u) and C(s, t, u) are symmetric. We note that
expression (1) can be obtained in a standard way
[45–48] by taking into account, along with SU(3)
symmetry, the requirements of P and C conservation.

The first and the second term in (1) correspond
to the amplitudes for, respectively, {8a} → {8s} and
{8s} → {8a} octet transitions (we denote these am-
plitudes by Aas and Asa); as usual, {8s} and {8a}
stand for the SU(3) symmetric and antisymmetric
octet representations contained in the representations
{8} × {8}. The third term in (1) describes transitions
that proceed through the representations {10} and
{1̄0} with amplitudes A10 and A1̄0 having equal
magnitudes and entering into (1) in the combination
A10 −A1̄0; in other words, this is the transition from
the {10} − {1̄0} V P 20-plet to the final {10} + {1̄0}
PP 20-plet. The amplitudes Aas and Asa for the
transitions between the self-adjoint representations
are expanded in, respectively, the JPC = 2++, 4++, ...
and the JPC = 1−−, 3−−, ... partial waves; therefore,
they do not contain explicitly exotic contributions.
The specific η8π final state is absent from the repre-
sentation {8a}, but it is present in the representations
{8s}, {10}, and {1̄0} [21, 22, 49]. The SU(3)-exotic
meson amplitudes A10 and A1̄0 are expanded in the
JP = 1−, 3−, ... partial waves. The isotriplet ampli-
tudes from A10 −A1̄0 correspond to the following
two sets of reactions that differ in s-channel G
parity: (i) ρη8 → ππ, ρη8 → KK̄, ω8π → ππ, and

1)Va = (ρ1, ρ2, ρ3, K
∗
4 ,K

∗
5 ,K

∗
6 ,K

∗
7 , ω8) and Pa =

(π1, π2, π3,K4, K5,K6,K7, η8).
2
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ω8π → KK̄ and (ii) ρπ → η8π, K∗K̄ → η8π, and
K̄∗K → η8π. The partial amplitudes for the reactions
from the first set possess the nonexotic quantum
numbers IG(JPC) = 1+(1−−, 3−−, ...) and, hence,
only a hidden SU(3) exoticism. Reactions from the
second set—in the following, we will be interested,
among other things, precisely in these reactions—
are purely exotic, since they involve the IG(JPC) =
1−(1−+, 3−+, ...) partial waves.

The amplitude for Va(k) + Pb(q1) → Pc(q2) +
Pd(q3) reactions involving the SU(3) singlets V0 and
P0 can be represented in the form

N
(λ)
ab;cd = −iεµντκe

µ
(λ)q

ν
1q

τ
2q

κ
3 [δa0fbcdD(s, t, u) (2)

+ δb0facdE(s, t, u) + δc0fabdF (s, t, u)],

where the Latin indices, which correspond to flavors,
run through the values of 0, 1, ..., 8 and where V0 =
ω0, P0 = η0, and fab0 = 0. By isoscalar particles
of specific masses, we mean the η = η8 cos θP −
η0 sin θP and η′ = η8 sin θP + η0 cos θP mesons char-
acterized by the mixing angle of θP ≈ −20◦ [50,
51] and the ideally mixed mesons ω =

√
1/3ω8 +√

2/3ω0 and φ =
√

2/3ω8 −
√

1/3ω0.
The amplitude in (2) describes transitions through

octet intermediate states. The first two SU(3) struc-
tures in (2) do not contribute to the production of ηπ
and η′π, because they correspond to transitions to the
{8a} final states, which do not involve η8π states. The
third SU(3) structure in (2) describes the produc-
tion of the ηπ and η′π systems owing to the singlet
component in the wave functions for the η and η′

mesons. Under the substitution t↔ u, the invariant
amplitudes D(s, t, u) and E(s, t, u) are symmetric,
whereas the invariant amplitude F (s, t, u) does not
possess any specific symmetry. Thus, the first two
terms in (2) are expanded in the JPC = 1−−, 3−−, ...
partial waves, while the third term is expanded in the
JPC = 1−+, 2++, 3−+, 4++, ... partial waves, the odd
waves in the latter set (1−+, 3−+, ...) being exotic.
P

In principle, V P → PP channels featuring ω, φ, η,
and η′ mesons can be considered on the basis of
expressions (1) and (2) in the most general form.

3. MODEL FOR THE IG(JPC) = 1−(1−+)
WAVES IN V P → V P , V P → PP ,
AND PP → PP REACTIONS

Let us consider the SU(3)-invariant Lagrangian
that describes contact V PPP interaction and which,
with respect to vector mesons, also possesses nonet
symmetry. Specifically, we set

L(V PPP ) = ih εµντκtr(V̂ µ∂νP̂ ∂τ P̂ ∂κP̂ ) (3)
+ i
√

1/3 h′ εµντκtr(V̂ µ∂ν P̂ ∂τ P̂ )∂κη0,

where h and h′ are coupling constants, P̂ =∑8
a=1 λaPa/

√
2, V̂ µ =

∑8
a=0 λaV

µ
a /

√
2, and λa are

the Gell-Mann matrices [44]. Tree-level V P → PP
amplitudes corresponding to the Lagrangian in (3)
are specified by expressions (1) and (2) featuring the
following set of invariant amplitudes (for the sake of
brevity, their arguments are omitted): (A,B,C,D) =
h(0, 2, 1,

√
6) and (E,F ) = h′(

√
2/3,−

√
2/3). From

the discussion in Section 2, it follows that the fact that
the amplitudes C and F are nonzero implies that, for
the inelastic reactions ρπ → η8π, K∗K̄ → η8π, and
K̄∗K → η8π, the Lagrangian in (3) generates the
input IG(JPC) = 1−(1−+) exotic amplitudes corre-
sponding to the {10} − {1̄0} 20-plet of the SU(3)
group and that, for the reactions ρπ → η0π, K∗K̄ →
η0π, and K̄∗K → η0π, this Lagrangian generates
amplitudes corresponding to the {8} octet of the
SU(3) group. In higher orders, these amplitudes also
induce IG(JPC) = 1−(1−+) exotic amplitudes for
elastic processes like ρπ → ρπ and ηπ → ηπ. In this
connection, it is of interest to consider the following
4× 4 set of mutually coupled amplitudes for the exotic
channels of V P → V P , V P ↔ PP , and PP → PP
reactions:
Tij =




T (ρπ → ρπ) T (ρπ → ηπ) T (ρπ → η′π) T (ρπ → K∗K)

T (ηπ → ρπ) T (ηπ → ηπ) T (ηπ → η′π) T (ηπ → K∗K)

T (η′π → ρπ) T (η′π → ηπ) T (η′π → η′π) T (η′π → K∗K)

T (K∗K → ρπ) T (K∗K → ηπ) T (K∗K → η′π) T (K∗K → K∗K)



. (4)
Here, i, j = 1, 2, 3, 4 number the ρπ, the ηπ, the η′π,
and the K∗K channel, respectively; it goes with-
out saying that, by the brief notation of K∗K, we
H

mean K̄∗K and K∗K̄. The corresponding matrix
of coupling constants generated by the Lagrangian
in (3) for the contact V PPP interaction has the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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form

hij = h




0 α β 0

α 0 0 γ

β 0 0 δ

0 γ δ 0



, (5)

where

α =

√
1
3

cos θP − h′

h

√
2
3

sin θP , (6)

β =

√
1
3

sin θP +
h′

h

√
2
3

cos θP ,

γ =

√
2
3

cos θP +
h′

h

√
1
3

sin θP , (7)

δ =

√
2
3

sin θP − h′

h

√
1
3

cos θP .

Below, we consider three natural limiting cases:
(I) h′ = 0, all exotic amplitudes belong to the

{10} − {1̄0} representation of the SU(3) group.
(II) h = 0, all exotic amplitudes belong to the octet

representation of the SU(3) group.
(III) h′ = h, the input interaction (3) possesses an

additional nonet symmetry in relation to pseudoscalar
mesons.

In order to meet the condition of unitarity for
coupled-channel amplitudes, we sum the chains of
all s-channel loop diagrams of the type depicted
in Fig. 1. This model-dependent field-theoretical
method of unitarization has long since been well
known in the literature (see, for example, [32, 52–
55]). It should be noted that, for cases (I) and (II), the
unitarized amplitudes for the entire set of processes in
which we are interested can actually be constructed
from the amplitudes for loop diagrams explicitly
shown in Fig. 1. Indeed, it can be proven that, in all
channels, the common ratio of the arising geometric
progressions proves to be proportional to the sum of
the diagrams in Figs. 1b–1e, loop diagrams of the
types in Figs. 1f and 1g and in Figs. 1h and 1i playing
the role of input contributions in the corresponding
elastic channels (in just the same way as the contact
diagram in Fig. 1a plays this role for the inelastic
ρπ → ηπ channel). But in case (III), the situation is
much more involved.

Prior to presenting the results of summation and of
the calculation of loops, we deem it expedient to make
two comments concerning the model used.

First, the contact contributions from V PPP in-
teraction in exotic channels could be modified by
the contributions of tree diagrams involving the ex-
changes of V mesons that arise upon taking into
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 1. Examples of the diagrams that are summed in
order to obtain unitarized amplitudes.

account the anomalous Lagrangian for V V P inter-
action and the usual Lagrangian for V PP interac-
tion. However, the resulting complication of the form
of input exotic amplitudes does not in fact lead to
any new possibilities (or degrees of freedom) for ob-
taining a resonance behavior of the total unitarized
amplitudes—this merely encumbers the model with
additional technical problems, rendering it much less
transparent than the model exclusively relying on the
Lagrangian in (3). By way of example, we indicate
that, upon modifying the input exotic amplitudes, the
above clear-cut way of unitarization would have to
be replaced by one version of Padé approximation of
another [27, 28], because it would become impossible
to calculate and sum up higher loops directly.

Second, the effective coupling constant h appear-
ing in the Lagrangian given by Eq. (3) is not un-
ambiguously defined in a theory involving anomalous
chiral Lagrangians (for a detailed discussion of this
issue, see, for example, [36–43]). One can only state
that it is quite modest in relation to the scale specified
by the combination 2gρππgωρπ/m

2
ρ ≈ 284GeV−3 [40,

43]. For this reason, we will consider the coupling
constants h and h′ as free parameters of the model
in the region of their relatively small values.

Summation of the relevant diagrams can easily
be performed with the aid of the matrix equation
for auxiliary amplitudes T̃ij . This equation, which is
schematically depicted in Fig. 2, has the form

T̃ij = hij + himΠmnT̃nj . (8)
2



556 ACHASOV, SHESTAKOV

 

= +

 

Π

 

mn

 

h

 

ij

 

h

 

im

 

T

 

nj

 

~

 

T

 

ij

 

~

Fig. 2. Auxiliary equation for summation of chains of
diagrams belonging to the types in Fig. 1.

The auxiliary amplitudes T̃ij are introduced at an
intermediate stage of the calculations and correspond
to the hypothetical situation where all particles in-
volved in the reactions being studied are considered
without taking their spins into account, but where
these amplitudes are otherwise precise analogs of the
physical amplitudes Tij quoted in Eq. (4). In Eq. (8),
the quantities hij are given by relations (5)–(7), while
Πij is a diagonal matrix of loops; that is, Πij = δijΠj ,
where Π1, Π2, Π3, and Π4 correspond to four inde-
pendent s-channel loops featuring the ρπ, ηπ, η′π,
and K∗K intermediate states, respectively, with the
assumption that all particles are spinless still being
retained. We note that, if all particles are spinless,
hij and Πij in Eq. (8) are dimesionless just like the
amplitudes T̃ij themselves. For the elements of the
matrix himΠmj = hijΠj , it is convenient to introduce,
with allowance for (5), the compact notation

himΠmj = hijΠj = h




0 α2 β3 0

α1 0 0 γ4

β1 0 0 δ4

0 γ2 δ3 0



, (9)

where α1 = αΠ1, β3 = βΠ3, etc. Solving Eq. (8), we
obtain

T̃ij = [ (1̂ − ĥΠ̂)−1 ]im hmj , (10)

where 1̂ is an identity matrix and the matrix ĥΠ̂ is
specified by relation (9); we also have

D̄ = det(1̂ − ĥΠ̂) (11)

= 1 − h2(α1α2 + β1β3 + γ2γ4 + δ3δ4)

+ h4(α1δ4 − β1γ4)(α2δ3 − β3γ2).

Byway of example, we present explicit expressions
for the amplitudes of five reactions:

T̃ (ρπ → ρπ) = h2[αα2 + ββ3 (12)

− h2(αδ4 − βγ4)(α2δ3 − β3γ2)]/D̄,

T̃ (ρπ → ηπ) = h [α− h2(αδ3 − β3γ)δ4]/D̄, (13)

T̃ (ρπ → η′π) = h [β + h2(α2δ − βγ2)γ4]/D̄, (14)

T̃ (ρπ → K∗K) = h2[α2γ + β3δ]/D̄, (15)
PH
T̃ (ηπ → ηπ) = h2[αα1 + γγ4 (16)

− h2(αδ3 − β3γ)(α1δ4 − β1γ4)]/D̄.

In cases (I) and (II), the relation h2(αδ − βγ) = 0
holds [see Eqs. (5)–(7)], so that, in Eqs. (10)–(16),
the terms proportional to the combination on the
left-hand side of it drop out, with the result that all
formulas are significantly simplified [for example, the
numerator on the right-hand side of (13) reduces to
hα since h2(αδ3 − β3γ) = h2(αδ − βγ)Π3 according
to (9)].

Let us now take into account the particle spins.We
consider the following three processes:

ρ0(k) + π−(q1) → ρ0(k′) + π−(q′1), (17)

ρ0(k) + π−(q1) → η(q2) + π−(q3), (18)

η(p) + π−(q) → η(q2) + π−(q3). (19)

Suppose that Q = k + q1 = k′ + q′1 = q2 + q3 = p+
q and s = Q2. By directly calculating, with the aid of
the Lagrangian in (3), arbitrary terms in the summed
series of diagrams (see Appendix), we find that the
Lorentz structures in relevant physical amplitudes
and their angular dependences are given by

T (λ′,λ)(ρ0π− → ρ0π−) (20)

= εµ′ν′τ ′σe
µ′∗
(λ′)q

′ν′
1 k

′τ ′
εσµντe

µ
(λ)q

ν
1k

τ T̃ ′(ρπ → ρπ)

= (δλ,+1 + δλ,−1)(δλ′,+1 + δλ′,−1)

× (s/2)|q1|2(λλ′ + cos θ) T̃ ′(ρπ → ρπ),

T (λ)(ρ0π− → ηπ−) (21)

= εµντσe
µ
(λ)q

ν
1q

τ
2q

σ
3 T̃

′(ρπ → ηπ)

= −(δλ,+1 + δλ,−1)i
√
s/2|q1||q3|

× sin θ T̃ ′(ρπ → ηπ),

T (ηπ− → ηπ−) = |q|2 cos θ T̃ ′(ηπ → ηπ), (22)

where λ (λ′) is the helicity of the primary (final) ρ0

meson and θ is the angle between the momenta of
the primary and the final pion in the reaction c.m.
frame. Needless to say, all the physical amplitudes
T in Eqs. (20)–(22) are dimensionless. At the same
time, it can be seen from (20)–(22) that the invariant
amplitudes T̃ ′ have different dimensions in V P →
V P , V P → PP , and PP → PP channels. These
invariant amplitudes are directly obtained from the
corresponding auxiliary amplitudes T̃ [see Eqs. (10)–
(16)] by substituting, into the latter, the physical
dimensional coupling constants h and h′ from La-
grangian (3) and the p-wave loop integrals in the form

Πi =
1

16π
2
3
Fi (23)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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×


 4s, i = 1, 4 (V P loops),

1, i = 2, 3 (PP loops),

where

Fi = C1i + sC2i +
s2

π

∞∫
m2

i+

[Pi(s′)]3 ds′√
s′ s′ 2(s′ − s− iε)

(24)

= C1i + sC2i +
(s −m2

i+)3/2(s−m2
i−)3/2

8πs2

×


ln



√
s−m2

i− −
√
s−m2

i+√
s−m2

i− +
√
s−m2

i+


+ iπ




+
1
4π

{
1

2mi+mi−
ln
(
mi+ −mi−
mi+ +mi−

)

×
[
m4

i+m
4
i−

s2
−

3m2
i+m

2
i−

2s
(m2

i+ +m2
i−)

+
3
8
(m4

i+ +m4
i− + 6m2

i+m
2
i−)

+
s(m2

i+ +m2
i−)

16m2
i+m

2
i−

(m4
i+ − 10m2

i+m
2
i− +m4

i−)
]

+
m2

i+m
2
i−

2s
− 5

8
(m2

i+ +m2
i−)

+
s(3m4

i+ + 3m4
i− + 38m2

i+m
2
i−)

48m2
i+m

2
i−

}
.

Here, Pi(s) = [(s−m2
i+)(s −m2

i−)/(4s)]1/2; mi+

and mi− are, respectively, the sum and the difference
of the particle masses in the ith channel; and C1i

and C2i are subtraction constants. We note that
expression (24) is valid for s ≥ m2

i+. In the regions
m2

i− < s < m
2
i+ and s ≤ m2

i−, it changes form in
accordance with an analytic continuation [56].

4. ANALYSIS OF POSSIBLE RESONANCE
PHENOMENA

First of all, we note that the number of free pa-
rameters in the model can be reduced almost with-
out adversely affecting its potential. In particular,
we assume that C11 = C14 and C21 = C24 for V P
loops and that C12 = C13 and C22 = C23 for PP
loops. Moreover, the s dependence of the combina-
tions C1i + sC2i is not crucial in the vicinity of a
possible resonance; for the important free parameters,
one can therefore retain only the constants C11 and
C12, setting C21 = C22 = 0, which will be done in the
majority of the versions considered below. The sim-
plest way to grope for a possible resonance situation
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
consists in finding a zero of Re(D̄) [see Eqs. (11)–
(16)] at fixed values of h and h′ and fixed

√
s—for

example, at
√
s = 1.43 GeV. In doing this, the sub-

traction constants C11 and C12, which are left to be
free parameters, are not determined unambiguously.
By way of example, we indicate that, in cases I and
II, they are only bound to satisfy a relation of the
type C12 = (ξ1 + ξ2C11)/(ξ3 + ξ4C11), with ξi being
known numbers. However, this ambiguity is not a
drawback—on the contrary, it offers the possibility
for varying C11, whereby one can readily change the
shape of resonance curves and the relationships be-
tween the cross sections for different channels.

According to the analysis performed in [36–40,
43], the region |h̃| ≤ 0.4 is admissible for the quantity
h̃ ≡ F 3

πh, where Fπ ≈ 130 MeV. In order to illustrate
the existence of resonance phenomena in our toy
model, we consider the values of h̃ (and of h̃′ ≡ F 3

πh
′)

in the vicinity of 0.1. It is worth noting that, actually,
resonance phenomena are possible in the model over
the entire region |h̃| ≤ 0.4, but, as |h̃| (or |h̃′| or both)
increases from 0.1 to 0.4, distinct enhancements of
the resonance type are shifted in the reaction cross
sections to the region

√
s ≈ 1–1.3 GeV (it should

be emphasized that the unitarized amplitudes greatly
depend on the second and fourth powers of the cou-
pling constants; therefore, they are highly sensitive to
changes in |h̃| and |h̃′|).

Figures 3 and 4 display typical energy depen-
dences of the cross sections for the reactions ρ0π− →
ρ0π−, ρ0π− → ηπ−, ρ0π− → η′π−, and ρ0π− →
K∗0K− and of the phases of the amplitudes for the
reactions ρπ → ρπ and ρπ → ηπ according to the
predictions of the model for cases (I)–(III) (note that
the amplitude for the inelastic process ρπ → ηπ was
found apart from the sign). These figures, together
with Tables 1 and 2, which give specific parameter
values used in plotting the curves in the figures,
illustrate resonance effects that are concentrated
predominantly in the regions

√
s ≈ 1.3–1.4 GeV

and
√
s ≈ 1.5–1.6 GeV, respectively. Among the

aforementioned four channels, the ρπ → ηπ channel
is dominant as a rule in case (I), where all the am-
plitudes being considered belong to the {10} − {1̄0}
representation. In case (II), where all the amplitudes
belong to the octet representation, the channels ρπ →
ρπ and ρπ → η′π play a leading role. In case (III),
where h′ = h and where the input interaction (3)
possesses a nonet symmetry, the cross sections for
all channels, with the exception of that for the K∗K
channel, are quite sizable, so that the general pattern
is rather intricate.

Let us now compare the values found here for the
cross sections (see Figs. 3 and 4) with the cross
2
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Fig. 3. Cross sections for the reactions (1) ρ0π− →
ρ0π−, (2) ρ0π− → ηπ−, (3) ρ0π− → η′π−, and (4)
ρ0π− → K∗0K− and phases of the amplitudes for the re-
actions (1) ρπ → ρπ and (2) ρπ → ηπ in cases (I)–(III).
The values of the parameters were taken from Table 1.

sections for the production of the a2(1320) resonance.
By using data on the decay branching fractions from
[1], we find that, at

√
s = ma2 = 1.32GeV, σ(ρ0π− →

a2 → ρ0π−) ≈ 5.7 mb and σ(ρ0π− → a2 → ηπ−) ≈
2.36 mb. If we additionally take into account the rela-
tionship between the factor (2J + 1)/|k|2 for a2(1320)
and the J = 1 enhancement found for

√
s ≈ 1.3–

1.4 GeV or for
√
s ≈ 1.5–1.6 GeV, it can be con-

cluded that we are definitively dealing here with a res-
onance behavior of the IG(JPC) = 1−(1−+) exotic
waves in the range 1.3 ≤ √

s ≤ 1.6 GeV, at least in
the ρπ, ηπ, and η′π channels.2)

It seems that the most pronounced manifestation
of the IG(JPC) = 1−(1−+) exotic state in the range
1.3–1.4 GeV (or of states that are most often denoted
by π1) was observed in the ηπ0 channel of the charge-

2)In the model considered here, the question of additional
couplings between the resonance-type formations being dis-
cussed and the b1π and f1π channels remains open, but
it is difficult to include these couplings in our scheme in a
straightforward way.
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Fig. 4.As in Fig. 3, but for the parameter values borrowed
from Table 2.

exchange reaction π−p→ ηπ0n at energies of 32, 38,
and 100 GeV [11]. The intensity of the π1 signal at a
maximum in this reaction proved to be only 3.5 times
smaller than the corresponding intensity of the sig-
nal from the a2(1320) resonance. It is of paramount
importance that, in this case, both a2(1320) and π1

are produced through the same mechanism, that of
Reggeized ρ-meson exchange, which is dominant at
high energies. If π1 is indeed a complicated structure
of the qqq̄q̄ or qq̄g type, then the fact that the cross
section for π1 production in the charge-exchange re-
action proved to be on the same order of magnitude as
the cross section for the production of the “simple” qq̄
resonance a2(1320) is strong evidence in favor of the
resonance character of the observed exotic signal.

In the reaction π−p→ ηπ−p at 37 GeV [3] and
18 GeV [12], the production of the π1 state in the
ηπ− channel proved to be suppressed in relation to the
production of the a2(1320) resonance in proportion to
15 and 30, respectively. This may be due to a more
complicated mechanism of this reaction as compared
to the charge-exchange reaction. As a matter of fact,
there are three competing natural-parity exchanges
in the former case: Reggeized ρ exchange, Reggeized
f2 exchange, and Pomeron exchange. As is known
from [57], the last two types of exchange are dominant
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Table 1. Values of the model parameters for the curves in
Fig. 3 (C11 andC12 are given in GeV2, while the remaining
parameters are dimensionless)

Case F 3
πh F 3

πh
′ C11 C21 C12 C22

I 0.10746 0 0.17 0 1.25 0

II 0 0.10746 0.34 0 0.67 0

III 0.10746 0.10746 0.49 0 0.50 0

Table 2. Values of the model parameters for the curves in
Fig. 4 (C11 andC12 are given in GeV2, while the remaining
parameters are dimensionless)

Case F 3
πh F 3

πh
′ C11 C21 C12 C22

I 0.10746 0 0.18 0 0.76 0

II 0 0.08417 0.33 0 0.78 0

III 0.10746 0.10746 0.11 0.11 0.11 0.11

in the case of a−2 (1320) production. We note that the
π1 state can be produced through Pomeron exchange
only owing to the presence of an octet component
in its wave function. If, however, this component is
small—that is, if π1 predominantly belongs to the
{10} − {1̄0} representation of the SU(3) group—the
production of π1 through Pomeron exchange must be
suppressed.

In high-energy photoproduction reactions, which
are dominated by Reggeized one-pion exchange
(for example, in the reaction γp→ ρ0π−∆++ →
π+π−π−∆++ at low momentum transfers from the
photon to the π+π−π− system), it is natural to
expect that the Regge form factors normalized to
unity at the pion pole will have close values for the
cases of a2(1320) and π1 production; therefore, the
corresponding cross sections can in principle be
on the same order of magnitude. Indeed, a sizable
signal in the region around 1.7 GeV is observed
in the reactions γp→ ρ0π−∆++ → π+π−π−∆++

and γp→ ρ0π+n→ π+π−π+n along with a distinct
a2(1320) peak [58]. However, this signal may be
due, at least partly, to the contribution of the known
resonance π2(1670) [58]. In this connection, we deem
that large-statistics searches for the π1 state (or
states) in photoproduction reactions—such searches
are planned in the physics program of the Jefferson
Laboratory (see the relevant discussion in [6, 14, 15,
18–20])—are of crucial importance. In addition, one
may hope to see commensurate cross sections for
a2(1320) and for π1 production via the one-pion-
exchange mechanism in electroproduction reactions
as well—for example, in γ∗p→ ρ0π−∆++ and γ∗p→
ρ0π+n. By combining data on the photoproduction
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
and electroproduction of π1 with data on π1 decay
into ρπ, it would become possible to verify, for the
first time, the vector-dominance model for an exotic
meson state. We note that a detailed investigation
of the radiative decays of π1 states into γπ in π1

production on nuclei via the one-photon-exchange
mechanism is planned at CERN with the aid of the
COMPASS spectrometer [59].

In summary, we conclude that our calculations
appear to be yet another piece of evidence in favor
of the existence of a manifestly exotic IG(JPC) =
1−(1−+) resonance in the range 1.3–1.6 GeV.
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APPENDIX

By way of example, we will calculate, on the basis
of the Lagrangian in (3), the contribution of the dia-
gram featuring an arbitrary number of s-channel ηπ
and ρπ loops to the ρ0π− → ρ0π− amplitude, which
is given by (20). For the process

ρ0(k) + π−(q1) → η(q̃1) + π−(Q− q̃1)
→ ρ(k̃1) + π(Q− k̃1) → η(q̃2) + π−(Q− q̃2)

→ ρ(k̃2) + π(Q− k̃2) → η(q̃3)

+ π−(Q− q̃3) → . . .→ ρ(k̃n) + π(Q− k̃n)

→ η(q̃n+1) + π−(Q− q̃n+1) → ρ0(k′) + π−(q′1),

where q̃i and k̃j are the variables of momentum inte-
gration in the loops involved and Q = k + q1 = k′ +
q′1 (Q2 = s), we consider a diagram where there are
n+ 1 s-channel ηπ loops and n s-channel ρπ loops,
with n taking values of 0, 1, 2, ... (see, for example,
the diagram in Fig. 1h). Further, we introduce the
notation

εµντσe
µ
(λ)Q

ν q̃τ1k
σ = [e(λ)Qq̃1k],

εµντσe
µ∗
(λ′)Q

ν q̃τn+1k
′σ = [e∗(λ′)Qq̃n+1k

′],

εµjντσQ
ν q̃τi k̃

σ
j = [Qq̃ik̃j ]µj ,

εµjντiσjQ
ν = [Q]µjτiσj ,

l(q̃i) = (q̃2i −m2
η)((Q− q̃i)2 −m2

π),

l(k̃j) = (k̃2
j −m2

ρ)((Q− k̃j)2 −m2
π).

The amplitude corresponding to the diagram in ques-
tion can then be represented in the form

I
(λ′,λ)
2n+1 = −(hα)2n+2(−1)n2n

(
i

(2π)4

)2n+1
2
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×
∫
. . .

∫
dq̃1 dk̃1 dq̃2 dk̃2 dq̃3 . . . dk̃n dq̃n+1

×
[ε(λ)Qq̃1k]
l(q̃1)

[Qq̃1k̃1]µ1

l(k̃1)
[Qq̃2k̃1]µ1

l(q̃2)
[Qq̃2k̃2]µ2

l(k̃2)

× [Qq̃3k̃2]µ2

l(q̃3)
. . .

[Qq̃nk̃n]µn

l(k̃n)

× [Qq̃n+1k̃n]µn

l(q̃n+1)
[e∗(λ′)Qq̃n+1k

′].

The factor 2n originates from identical contributions
of ρ0π− and ρ−π0 intermediate states. Upon integra-
tion followed by summation over intermediate indices,
we obtain

I
(λ′,λ)
2n+1 = −(hα)2n+2

(
1

16π
2
3
F2

)n+1

×
(
− 1

16π
2
3
· 2F1

)n

(εµντ1σe
µ
(λ)Q

νkσ)

× gτ1τ ′
1 [Q]µ1τ ′

1σ1
gµ1µ′

1gσ1σ′
1 [Q]µ′

1τ2σ′
1

× gτ2τ ′
2 [Q]µ2τ ′

2σ2
gµ2µ′

2gσ2σ′
2 [Q]µ′

2τ3σ′
2
×

· · · × gτnτ ′
n [Q]µnτ ′

nσng
µnµ′

ngσnσ′
n [Q]µ′

nτn+1σ′
n

× gτn+1τ ′
n+1(εµ′ν′τn+1σ′eµ

′∗
(λ′)Q

ν′
k′σ

′
)

= (hα)2n+2

(
1

16π
2
3
F2

)n+1( 1
16π

2
3
· 4sF1

)n

× εµ′ν′τ ′σe
µ′∗
(λ′)q

′ν′
1 k

′τ ′
εσµντe

µ
(λ)q

ν
1k

τ

= εµ′ν′τ ′σe
µ′∗
(λ′)q

′ν′
1 k

′τ ′
εσµντ

× eµ(λ)q
ν
1k

τ (hα)2n+2Πn+1
2 Πn

1

= εµ′ν′τ ′σe
µ′∗
(λ′)q

′ν′
1 k

′τ ′
εσµντ

× eµ(λ)q
ν
1k

τ [h2αα2(h2α1α2)n].

From this representation, it follows that the Lorentz
structures of the initial and the final vertex of the dia-
gram factorize and are independent of the number of
loops and that the invariant amplitude
h2αα2 (h2α1α2)n coincides with the nth term of the
expansion of the invariant amplitude T̃ ′(ρπ → ρπ)
from (20) in powers of h2α1α2 [this can easily be
proven with the aid of expressions (11) and (12)].
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Abstract—The properties of Skyrmions in finite nuclei are considered. The deformation effect is taken into
account through the external-field-induced distortion of the profile function of a chiral field. The masses
of classical Skyrmions and the distribution of their baryon number versus the Skyrmion position within a
nucleus are discussed. c© 2002 MAIK “Nauka/Interperiodica”.
The in-medium modification of the properties of
nucleons is an interesting topical problem of low-
energy hadron physics. Previously, the properties of
a nucleon at the center of a finite nucleus or in infi-
nite nuclear matter were analyzed within a modified
Skyrme model [1]. More recent model extensions in-
clude the QCD scale anomaly in the approximation
of infinite nuclear matter [2], where the effective La-
grangian was modified via the external-field-induced
distortion of pion fields; that is, a pion–nucleus op-
tical potential was introduced. The effective proper-
ties of a nucleon that were determined in this way
were in qualitative agreement with experimental data
and with the results of other authors. In particular,
a nucleon in nuclear matter was found to be de-
formed. Since a spherically symmetric problem was
considered, the deformation appeared to be only a
breathing Skyrmion mode, a deviation of the shape of
a Skyrmion from a spherical shape being beyond the
scope of those studies.

In a number of studies devoted to exploring the
properties of baryons whose baryon number is above
unity (B > 1) [3], a deformation was introduced
through a unit vector n in the so-called chiral ansatz
U . Upon quantization, there then arises a rich spec-
trum of rotational soliton states, which can be treated
as multi-Skyrmion systems. In those studies, the
deformation was introduced in connection with the
need for considering multi-Skyrmion systems as a
discrete unit, and the case of unit baryon number
(B = 1) reduces to the ordinary hedgehog ansatz [4].

Using the modified Skyrme Lagrangian in nu-
clear matter [1], we consider here the properties of
a classical Skyrmion located out of the center of a
finite nucleus. Since a finite nucleus has a nonuniform
density, a Skyrmion is deformed, its properties being
dependent on the distance R from the nuclear center.
We aim at analyzing this dependence.
1063-7788/02/6503-0562$22.00 c©
In the static form, the modified Skyrme La-
grangian in nuclear matter is given by [1]

L = −F 2
π

16
αp(r)tr(∇U)(∇U+) (1)

+
1

32e2
tr[Li, L

j ]2 +
F 2

πm
2
π

16
αs(r)tr[U + U+ − 2],

where Li = U+∂iU , Fπ is the pion decay constant,
e is a dimensionless parameter, and mπ is the pion
mass. The medium functionals αs(r) and αp(r) are
expressed in terms of functionals χs(r) and χp(r)
that depend on the S- and P-wave pion–nucleus
scattering lengths and scattering volumes and on the
nuclear density ρ(r):

αp(r) = 1 − χp(r), αs(r) = 1 +
χs(r)
m2

π

. (2)

The nuclear effect is taken into account through these
functionals. The chiral ansatz U has the hedgehog

form U(r) = exp
[
iτ · r
|r| F (r)

]
for a Skyrmion lo-

cated at the center of a nucleus [1]. When a Skyrmion
is out of the nuclear center, the ansatz has the form

U(r − R) = exp
[
iτ · (r − R)
|r −R| F (r − R)

]
, (3)

where the profile function F depends not only on the
absolute value of the radius vector but also on its di-
rection. In this approach, a soliton is deformed, so that
its shape deviates from a spherical shape. Since the
deformation is induced by an external field distorting
the profile of the pion fields, the ansatz in (3) is quite
appropriate for analyzing the properties of a Skyrmion
in finite nuclei.

In calculating the mass functional on the basis of
Lagrangian (1), it is more convenient to use the ref-
erence frame whose origin coincides with the center
of mass of the Skyrmion. This implies a transition
2002 MAIK “Nauka/Interperiodica”
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from the variable r to the variable r′ = r− R in the
expression for the mass functional

M(R) = −
∫

L[U(r − R), r]d3r (4)

= −
∫

L[U(r′), r′,R]d3r′.

We will explore the properties of a Skyrmion in
spherical nuclei. In this case, the Skyrmion mass
depends only on the absolute value of the vector
R. The Skyrmion plus nucleus system then has
a symmetry axis passing through the centers of the
nucleus and the Skyrmion. We choose the direction
of the z′ axis along this symmetry axis, in which
case the azimuthal (ϕ) dependence of the chiral-field
profile function F is removed. Taking this fact into
account, performing some algebraic manipulations,
and introducing the notation s ≡ sin(F ), c ≡ cos(F ),
and r̃ = eFπr

′ (which is a dimensionless variable), we
obtain the mass functional

M(R) =
2πFπ

e

∞∫
0

dr̃ (5)

×
π∫

0

sin θdθ

{
m2

π

4e2F 2
π

αs(r̃, θ, R)(1 − c)r̃2

+
1
8
[2s2 + (Fθ(r̃, θ))2 + r̃2(Fr̃(r̃, θ))2]αp(r̃, θ, R)

+
s2

2

[
s2

r̃2
+

(Fθ(r̃, θ))2

r̃2
+ 2(Fr̃(r̃, θ))2

]}
,

where Fr̃(r̃, θ) and Fθ(r̃, θ) are the derivatives with
respect to the first and the second argument, respec-
tively.

Obviously, the θ dependence appears in the profile
function F because of a nonuniform density of a finite
nucleus. To simplify this dependence, we break down
the interval of the variable θ into Nθ sectors in such a
way that the density and the corresponding medium
functionals vary only slightly within a given sector
[i, i + 1] (i = 0, Nθ − 1). Since the profile function
and its derivatives depend only slightly on the medium
density [1], they can be considered to be independent
of θ in a given sector θi < θ < θi+1. Therefore, F and
its derivatives can be approximated as

F (r̃, θi < θ < θi+1) = F i(r̃), (6)

Fr̃(r̃, θi < θ < θi+1) = F i
r̃(r̃),

Fθ(r̃, θi < θ < θi+1) = F i
θ(r̃).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
In this approximation, the mass functional takes
the form

M(R) =
2πFπ

e

Nθ−1∑
i=0

∞∫
0

dr̃
{
M

(2)
i A

(2)
i (7)

+ A
(4)
i M

(4)
i + M

(χSB)
i A

(χSB)
i

}
,

M
(2)
i =

1
8
[2s2i + (F i

θ)
2 + r̃2(F i

r̃)
2],

A
(2)
i =

θi+1∫
θi

dθ sin θαp(r̃, R, θ),

M
(4)
i =

s2i
2

[
s2i
r̃2

+
(F i

θ)
2

r̃2
+ 2(F i

r̃)
2

]
,

A
(4)
i =

θi+1∫
θi

dθ sin θ,

M
(χSB)
i =

m2
π

4e2F 2
π

(1 − ci)r̃2,

A
(χSB)
i =

θi+1∫
θi

dθ sin θαs(r̃, R, θ),

where θi and θi+1 are the boundaries of the corre-
sponding sector (θ0 = 0, θNθ

= π), si = sin(F i), and
ci = cos(F i).

Minimizing the mass functional in a certain sector
[i, i + 1], we find that F i satisfy the set of equations[

A
(2)
i + A

(4)
i

8s2i
r̃2

]
F i

r̃r̃ + A
(2)
r̃,i F

i
r̃ + A

(2)
i

2F i
r̃

r̃
(8)

−A
(χSB)
i β2si −

s2,i

r̃2

[
A

(2)
i + A

(4)
i

(
4s2i
r̃2

+
2(F i

θ)
2

r̃2
− 4(F i

r̃)
2

)]
= 0,

where s2,i = sin(2F i) and

A
(2)
r̃,i =

bi∫
ai

dθ
∂αp(r̃, R, θ)

∂r̃
.

The boundary conditions for these equations,

F i(0) = π, F i(∞) = 0, (9)

are determined from the condition that the soliton has
a unit topological charge:

B = −
Nθ−1∑
i=0

1
π

∞∫
0

A
(4)
i F i

r̃s2
i dr̃ = 1. (10)
2
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Applying the iteration method, we successively cal-
culate the derivatives of the profile functions with re-
spect to θ by using the results of preceding iterations:

F i
θ(r̃) =

F i+1(r̃) − F i(r̃)
θi+1 − θi

. (11)

Let us discuss the parametrization of the nuclear
density and of the input parameters of the model. The
medium functionals are taken in the form [1]

χs(r̃, R, θ) = −4πb0

(
1 +

mπ

MN

)
ρ(r̃, R, θ),

χp(r̃, R, θ) =
κ(r̃, R, θ)

1 + g′0κ(r̃, R, θ)
,

κ(r̃, R, θ) =
4πc0ρ(r̃, R, θ)
1 + mπ/MN

,

where MN = 938 MeV is the nucleon mass and
g′0 = 1/3 is the Migdal parameter taking into account
short-range correlations. The empirical parameters
b0 = −0.024m−1

π and c0 = 0.21m−3
π were determined

by fitting low-energy data on pion–nucleus scatter-
ings [5].

Since we consider the properties of a Skyrmion in
spherical nuclei, the density is parametrized as [6]

ρ(r) =
2

π3/2r3
0

[
1+

Z − 2
3

(
r

r0

)2
]
exp

{
−r2

r2
0

}
(12)

for 4 < A < 20,

ρ(r) =
ρ0

1 + exp
{
r −R′

a

} for A ≥ 20,

where Z is the charge number of a nucleus, ρ0 =
0.5m−3

π is the normal nuclear density, R′ =
1.2A−1/3 fm, and a = 0.58 fm. We consider the 16O
and 40Ca nuclei, for which this density parametriza-
tion is fairly accurate. The parameter r0 is equal to
1.76 fm for 16O.

The input parameters of the model are set to the
values of Fπ = 108 MeV and e = 4.84, at which the
nucleon mass and ∆ in free space prove to be equal to
the respective experimental values [4].

Figure 1 shows the Skyrmion mass as a function
of the distance R from the center of the nucleus being
considered. The solid curves represent the ratio of the
intranuclear Skyrmion mass MS(R) ≡ M(R) [see
Eq. (5)] at the distance R from the center of the nu-
cleus to the free-space value MS(ρ = 0). The dashed
curves correspond to the nuclear density divided by
its value at the center of the nucleus, ρ(R)/ρ(R = 0).
As might have been expected, the effective Skyrmion
mass is minimal at the center—it increases toward
the nuclear surface, tending to its free-space value.
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Fig. 1. Ratio of the effective Skyrmion mass MS(R) in a
nucleus to its free value MS(ρ = 0) versus the distance
R between the centers of the nucleus and the Skyrmion
(solid curves) and nuclear density ρ(R) divided by its
value ρ(R = 0) at the nuclear center (dashed curves).
Curves 1 and 2 refer to the 16O and the 40Ca nucleus,
respectively.

The solid curves 1 and 2 approach unity at large
distances. This behavior is observed for a Skyrmion
in a medium-mass (16O) and a heavy (40Ca) nucleus.
Thus, the effective Skyrmion mass averaged over the
entire nuclear volume differs from the free-space value
not by about 40%, as in the case of infinite nuclear
matter of density ρ0 [1], but by a considerably smaller
value.

For a Skyrmion in 16O, Fig. 2 shows the distri-
bution of the baryon-number density in the yz plane
at the distance of R = 0.5 fm between the centers
of the nucleus and the Skyrmion. Figure 2b shows
the projection of the baryon number density onto the
yz plane. The contour lines are the projections of
constant values of the baryon-number density. For
neighboring contours, the baryon-number density
differs by 0.004. The arrow indicates the direction
toward the nuclear center. The y = z = 0 point in
Fig. 2 corresponds to the center of the Skyrmion
(not to the nuclear center). It can be seen that
the distribution is asymmetric; that is, the baryon
number peaks out of the center of the Skyrmion
(r′ = 0). Therefore, the Skyrmion is deformed in
such a way that its shape becomes nonspherical.
This deformation can be analyzed by examining the
quadrupole moments of Skyrmions. The quadrupole
moments of nucleons should be calculated but, in
fact, they may be considered only upon quantizing
the theory in question. Here, only the isoscalar and
isovector quadrupole moments of Skyrmions in 40Ca
are shown in Fig. 3 by the solid and dashed curves,
respectively. The maxima of these quantities are at
a distance where the nuclear density decreases by
about 5–8%. The isoscalar and isovector quadrupole
moments change sign at large R; that is, the shape
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Fig. 2. (a) Baryon-number densityB0 = −Fr̃s2/(2π2r̃2) in the yz plane and (b) its projection onto the yz plane with a step of
0.004 between contours for the Skyrmion in 16O. The arrow indicates the direction toward the nuclear center. Here, y = eFπr
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tively) in 40Ca versus the distance R from the nuclear
center.
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of quantized Skyrmions changes from a prolate to an
oblate one, or vice versa.

In summary, we have considered the effective La-
grangian that takes into account the nuclear-matter
effect on a chiral field. This has resulted in a de-
formed nonspherical state of Skyrmions in a nonuni-
form medium. The deformation is maximal at dis-
tances where the heavy-nucleus density decreases
by about 5 to 8%. For a Skyrmion within the 40Ca
nucleus, this distance is about 2.5 fm. The effective
Skyrmion mass in a nucleus decreases with increas-
ing nuclear density, attaining a minimum at the nu-
clear center. The mean effective mass of a nucleon
in a nucleus—it enables one to estimate the nuclear
binding energy—can be calculated upon quantizing
the theory. Such a quantization would also make it
2
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possible to compare the properties of nucleons with
experimental data.
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Abstract—An investigation of a dominant role of the simplest t-channel pole diagrams in pion elec-
troproduction on nucleons for quasielastic-knockout kinematics at an electron energy of a few GeV is
completed—namely, the competition between the t-channel pion and rho-meson pole amplitudes, on
one hand, and the s-channel pole amplitude (tree diagram), on the other hand, is considered. When the
virtual-photon mass is sufficiently large [Q2 > 2 (GeV/с)2], the last amplitude does not make significant
contributions to relevant cross sections, either the longitudinal (dσL/dt) or the transverse (dσT /dt) one. At
Q2 = 0.7 (GeV/с)2, the term associated with the interference between the t-channel pion-pole amplitude
and the s-channel pole amplitude is still noticeable in the longitudinal cross section. The vertex functions
gρNN(t) as obtained from the cross section for the quasielastic knockout of rho mesons and from the cross
section for pion photoproduction are compared. Their disagreement must give impetus to a further devel-
opment of the gauge-invariant theory of pion photoproduction. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The possibility of describing the electroproduction
process p(e, e′π+)n at high energies of the knock-on
pion in terms of the mechanism employing the pion
pole in the t channel (see the diagrams in Fig. 1)
has been discussed in the literature since the appear-
ance of the study reported in [1]. Here, an important
argument is that the cross section corresponding to
the main competing mechanism associated with the
nucleon pole in the s channel (tree diagram in Fig. 2)
dies out in proportion to Q−4 with increasing virtual-
photon 4-momentum qµ (Q2 = −q2) in relation to the
cross section for the t-channel pole mechanism [1]. In
[1–6], the pole mechanism in question (Fig. 1) was
calculated within light-front dynamics; this made it
possible to find the form factor (wave function) for
the πNN vertex from a comparison with experimental
data.
In contrast to those studies, we considered the

process p(e, e′π+)n in the laboratory frame [7, 8]; as
a result, we were able to single out, in a natural way,
the kinematical region where the recoil momenta of
the final baryon are low and where the energies of the
knock-on meson are high. By making use of crossing
symmetry, one can introduce, in just the same way as
in light-front dynamics, the concept of the pion wave
function in the nucleon. If the pole diagram is domi-
nant, a consideration in the laboratory frame makes it

*e-mail: yudin@helene.npi.msu.su
1063-7788/02/6503-0567$22.00 c©
possible to extract the square of the pion wave func-
tion in the channel p → n+ π+, |Ψnπ

p (k2)|2, directly
from experimental data on electroproduction [9]. This
is done by following the same line of reasoning as in
the nonrelativistic physics of the quasielastic knock-
out of nucleons from nuclei [10] and of electrons from
atoms, molecules, and solid-state films [11], where
these reactions furnished a vast body of radically new
information.
In analyzing experimental data, we obtained three

pieces of evidence for a dominant role of the pole
mechanism—that is, for aminor role of the competing
s-channel pole diagram.
First, we found that, in quasielastic-knockout

kinematics, experimental data reported in [9, 12]
lead to the same momentum distribution over a wide
region of energies of the knock-on pion, but this is
the result that is expected in the case where the pole
mechanism is dominant.
Second, our results obtained in [7, 8] from an anal-

ysis of experimental data from [9, 12] revealed that the
constant component in themomentum distribution—
the background that characterizes qualitatively the
distorting effect of the s-channel pole diagram on the
momentum distribution—is very small (in the physics
of direct nuclear reactions, a similar constant compo-
nent in differential cross sections is associated with
the compound-nucleus contribution).
Third, the momentum distribution |Ψnπ

p (k2)|2 that
we extracted from experimental data on pion electro-
production is in excellent agreement with that which
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. t-channel pole diagram involving an intermediate
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we obtained on the basis of the separable Afnan pion–
nucleon potential for the P wave [13]. This potential
in turn was determined from the phase shifts for pion–
nucleon scattering, which are absolutely independent
data.
Needless to say, all the above considerations must

be supplemented with a formal analysis of the relative
importance of the t-channel pole diagram and of the
s-channel pole diagram under various kinematical
conditions [in performing this analysis, it should be
borne in mind, among other things, that the actual
values of Q2 in the experiments reported in [9, 12] fall
within the range 1–3 (GeV/c)2]. Here, this is done
both for longitudinal and for transverse virtual pho-
tons, a comparison with photoproduction data being
drawn for the latter case. Naturally, allowances for the
special features of all vertex functions—in particular,
in the NNγ and NNπ vertices of the s-channel pole
diagram—are made here.
We will demonstrate that, in the case of lon-

gitudinal photons, the s-channel pole diagram is
suppressed to a considerable extent in quasielastic-
knockout kinematics (here, only the process e +
π+ → e′ + π+, which is diagonal in the internal state
of the knock-on pion, is operative). Of course, this
is a spectacular feature of the pion-electroproduction
reaction, and it justifies our previous results from [7,
8], which were mentioned above (for a preliminary
qualitative discussion, the reader is referred to the
review article [14]). However, the contribution of
the interference between the t- and the s-channel
pole diagram is nonnegligible at a comparatively
small value of the photon-virtuality parameter [Q2 =
0.7 (GeV/c)2].
In the case of transverse photons characterized

by a comparatively high virtuality [Q2 ≥ 2 (GeV/c)2],
the s-channel pole diagram is also suppressed, the
aforementioned correction being small here.
PH
For real photons, there is no such suppression, so
that the s-channel pole diagram plays a significant
role here. However, a comparative analysis of pion
electroproduction and pion photoproduction on a nu-
cleon makes it possible to extract quite reliably, from
experimental data on the photoproduction process
p+ γ → π+ + n, the contribution of the pole diagram
featuring a virtual rho meson (see Fig. 1b)—that is, to
determine the momentum distribution of rho mesons
in a nucleon over a broad range of momenta (in [8,
15], we were able to extract, within the pole approx-
imation, the momentum distribution of rho mesons
in a nucleon from experimental data on the process
e + p → e′ + π+ + n [12] for transverse virtual pho-
tons γ∗T , but this was done only for low momenta;
we also outlined the way in which one can extract
the momentum distribution of omega mesons from
data of e+ p → e′ +π0 + p quasielastic experiments).
Here, we implement the simplest version of such an
analysis, describing the final pion in the plane-wave
approximation.

2. DESCRIPTION OF THE FORMALISM
Without going into details, we present the fun-

damentals of the theoretical formalism. The quantity
obtained by integrating the differential cross section
for pion electroproduction on a nucleon with respect
to the azimuthal angle has the form [16]

d3σ

dW 2dQ2dt
= Γ

{
ε
dσL

dt
+
dσT

dt

}
, (1)

where

Γ =
α

(4π)2
W 2 −M2

Q2E2
eM

2

1
1 − ε

(2)

is the flux of virtual photons and

ε =
[
1 +

2q2

Q2
tan2 θe

2

]−1

(3)

is a parameter that determines the degree of longi-
tudinal photon polarization. Here, M is the nucleon
mass, Ee is the incident-electron energy, (q0,q) =
qµ is the photon 4-momentum, Q2 = −q2, W 2 ≡
(p+ q)2 = (−Q2 +M2 + 2q0M)lab (p is the primary-
nucleon momentum), θe is the electron scattering an-
gle, t ≡ (k′ − q)2, and k′ is the final-pion momentum.
The contributions of the longitudinal and the

transverse cross section (dσL/dt and dσT /dt, re-
spectively) are separated by varying kinematical
conditions.
The cross sections dσL,T /dt can be represented in

the form

dσL

dt
=

|Jλ=0|2

32πW |q| (W 2 −M2)
, (4)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002



SCALE OF CORRECTIONS TO THE t-CHANNEL POLE APPROXIMATION 569
dσT

dt
=

1
2

{
|Jλ=1|2 + |Jλ=−1|2

}
32πW |q| (W 2 −M2)

,

where Jλ stands for the matrix elements of the
hadronic current for longitudinal (λ = 0) and trans-
verse (λ = ±1) photons,

Jλ = Jµeλµ, (5)

with eλµ being unit vectors of virtual-photon po-
larization that satisfy the transverseness condition
qµeλµ = 0. The overbars in (4) denote averaging over
spins.
A pion (Fig. 1a) or a rho meson (Fig. 1b) can

appear in the reaction being considered as a virtual
meson. For the process depicted in Fig. 1a (this is
the case of an intermediate virtual pion), the matrix
element of the current can be represented as

Jλ = ie
M(p → nπ)
k2 −m2

π

Fπ(Q2)(k + k′)eλ, (6)

where

M(p → nπ) (7)

=
√

2GπNNgπNN (k2)ū(p′)γ5u(p);

u are the Dirac spinors for the nucleons; p and
p′ are the momenta of, respectively, the primary
and the final nucleon; k is the momentum of the
virtual meson (a pion in the case being consid-
ered); e is the electron charge; G2

πNN/4π ≈ 14;
gπNN (k2) = (Λ2

π −m2
π)/(Λ2

π + k2) is the relevant
vertex function; mπ is the pion mass; and Fπ(Q2) is
the pion form factor, which was set to the free-pion
form factor

Fπ(Q2) = [1 +Q2/0.5 (GeV/c)2]−1.

The matrix element of the current for the diagram
in Fig. 1b (which involves an intermediate virtual rho
meson) has the form

Jλ = e
Mµ(p → nρ)
k2 −m2

ρ

(
−gµν +

kµkν

m2
ρ

)
(8)

× εµναβeλνqαkβ
gρπγ

mπ
Fρπ(Q2),

where Mµ(p → nρ+) =
√

2GρNNgρNN (k2)ū(p′) ×
Γµu(p); Γµ = γµ + (κ/2M )σµνkµ; κ = 6.1 is the
isovector magnetic moment of the nucleon; mρ is
the rho-meson mass; G2

ρNN/4π = 0.84; gρNN (k2) =
(Λ2

ρ −m2
ρ)/(Λ

2
ρ + k2) is the relevant meson–nucleon

vertex function; εµναβ is a fully antisymmetric tensor;
gρπγ = 0.0378/e; and Fρπ(Q2) is the form factor for
the ρπγ transition, Fρπ(Q2) = [1 +Q2/Λ2]−2 with
Λ = 3mρ.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
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Fig. 3. Photoproduction cross section: (dashed curve)
contribution of the pion pole, (thin solid curve) contribu-
tion of the rho-meson pole, (dash-dotted curve) contri-
bution of the diagram in Fig. 2, and (thick solid curve)
total contribution. The experimental data (points) were
borrowed from [18].

For the s-channel pole diagram in Fig. 2, the
matrix element Jλ is given by

Jλ = ie
√

2GπNNgπNN (k2)ū(p′)γ5 (p̂ + q̂) +M

(p+ q)2 −M2

(9)

× γµeλµu(p)FγNN (Q2)FπNN (W 2, Q2),

where p̂ = pµγ
µ;

FγNN (Q2) = (1 +Q2/Λ2
γ)−2 (10)

is the electromagnetic form factor for the nucleon
with Λγ = 0.88 GeV/с; and FπNN (W 2, Q2) is the
form factor for the πNN vertex for the s-channel pole
diagram (a real pion and a real nucleon plus a virtual
nucleon), the latter usually being taken in the form

FπNN (W 2, Q2) =
(

1 +
W 2 +Q2 −M2

Λ2

)−2

. (11)

As in [17], we set FπNN (W 2, Q2) = 1. At a
FπNN (W 2, Q2) value significantly differing from
unity, the contribution of the s-channel pole diagram
(Fig. 3, dash-dotted curve) to the photoproduction
cross section is strongly suppressed, with the result
that the experimental cross section could not be
reproduced at low t.

The momentum distribution of a meson (its wave
function) in a nucleon is in direct proportion to the
form factor for the relevant meson–nucleon vertex. By
way of example, we indicate that, for the virtual pion,
the relation between the two quantities has the form
[7, 14]

∣∣Ψnπ
p (k2)

∣∣2 = 2G2
πNN g2

πNN (k2)

∣∣k2
∣∣

(k0 − εk)2
, (12)

where εk =
√

k2 +m2
π, |k0| � εk.
2
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Fig. 4. (a) Contribution of pions to the longitudinal cross
section for electroproduction at Q2 = 0.7 (GeV/ñ)2 and
W = 2.19 GeV: (thin solid curve) contribution of the
mechanism depicted in Fig. 1a, (dashed curve) contribu-
tion of the mechanism depicted in Fig. 1b, (dash-dotted
curve) contribution of the mechanism depicted in Fig. 2,
and (thick solid curve) total contribution.The interference
terms are not shown. As a matter of fact, the difference of
the values represented by the thin and thick solid curve is
the contribution of interference terms. The experimental
data shown by points were borrowed from [9, 12]. (b)
As in Fig. 4a, but on a different scale (contribution of
rho mesons and contribution of the diagram in Fig. 2).
(c) Longitudinal cross section for electroproduction at
Q2 = 3.32 (GeV/c)2 and W = 2.65 GeV. The notation
is identical to that in Fig. 4a.

3. RESULTS OF THE CALCULATIONS
AND DISCUSSION

First of all, we note a significant distinction be-
tween the structures of the currents Jλ for longi-
tudinal and transverse photons [Eqs. (7), (8)]. We
begin our discussion of the results by considering the
longitudinal electroproduction cross section dσL/dt.
The vertex function gπNN (k2) was found here in the
pole approximation [7] from the longitudinal cross
section dσL/dt determined experimentally at Q2 =
0.7 (GeV/c)2 in the region of quasielastic kinemat-
ics [9]. This approximation is justified if the contri-
bution of the s-channel pole diagram to this cross
section is small and if, in addition, the contribution
of the pole diagram in Fig. 1b (the case of an in-
termediate rho meson) is insignificant in relation to
the contribution of the analogous diagram involving
P
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Fig. 5. (a) Contribution of rho mesons to the trans-
verse cross section for electroproduction at Q2 =
3.32 (GeV/c)2 forW = 2.65 GeV. The notation is iden-
tical to that in Fig. 4. (b) As in Fig. 5a, but on a different
scale (contribution of pions and contribution of the dia-
gram in Fig. 2).

an intermediate pion (Fig. 1a). This is indeed so
(see Figs. 4a, 4b). Thus, the mechanism depicted
in Fig. 1a makes a dominant contribution to the
longitudinal cross section for pion electroproduction
at Q2 = 0.7 (GeV/c)2. The diagrams in Figs. 1b and
2 yield corrections that improve the agreement with
experimental data (the contribution from the interfer-
ence between the mechanisms shown in Figs. 1a and
2 is especially important here). ForQ2 ≥ 2 (GeV/c)2,
this factor is no longer operative (Fig. 4c).
The smallness of off-shell effects, which is ensured

by the condition |k| � |k′| [11], is one of the criteria of
the validity of the pole approximation for quasielas-
tic knockout. In this case, the condition of gauge
invariance is also satisfied to a high precision since
there occurs quasifree electron scattering on a meson
(e + π+ → e′ + π+).
Let us now proceed to discuss the transverse cross

section dσT /dt. From experimental data on dσT /dt at
Q2 = 3.3 (GeV/c)2, we found, in [8], the vertex func-
tion gρNN (k2) in the pole approximation for momenta
much lower than the meson mass, k2 ≡ |t| � m2

ρ.
Using this function in calculating the cross section
dσT /dt and taking into account the contributions
of the diagrams in Figs. 1 and 2, we now arrive at
two conclusions. From a comparison of the t-channel
pole diagrams in Figs. 1a and 1b, we can find that,
at sufficiently large Q2 [Q2 = 3.3 (GeV/c)2 in our
case], the diagram in Fig. 1b with an intermediate rho
meson is by far dominant (in contrast to what occurs
for dσL/dt)—see Fig. 5. Further, a comparison of the
contributions of the pole diagram in Fig. 1b and the
s-channel pole diagram in Fig. 2 reveals that, at the
above value of Q2, the contribution of the latter is
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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insignificant (see Fig. 5). (By considering a process
that is inclusive in the states of the final spectator
baryon Â, it was found in [1] that, with increasing
Q2, the contribution of the s-channel diagram to
the cross section dσT /dt decreases asymptotically
in proportion to Q−4.) It follows that the use of the
pole approximation in determining the vertex function
gρNN (k2) was justified in this case as well.

Thus, a measurement of the transverse cross sec-
tion dσT /dt for the process p(e, e′π+)n at electron
energies of about 10 GeV, transverse-photon virtu-
alities in the region Q2 ≥ 2 (GeV/c)2, and the recoil
momenta of the final neutron in the region extending
up to k2 ≈ 1 (GeV/c)2 would be the most direct
way to determine experimentally the momentum dis-
tribution of rho mesons in a nucleon over a rather
broad momentum range required for our purposes.
No such experiments have been performed so far {the
experimental data reported in [12] were obtained only
for k2 = |t| ≤ 0.4 (GeV/c)2, whereas the momentum
distribution of rho mesons extends far beyond this
region up to k2 = |t| ∼ 1 (GeV/c)2}.

In view of this, it is advisable to address the ques-
tion of the extent to which experimental data on pion
photoproduction on a proton that were obtained for
k2 = |t| ≤ 2 (GeV/c)2 [18] can be used to extract the
momentum distribution of rho mesons. The electro-
and the photoproduction process differ drastically
from each other in that the quasielastic-knockout
situation is not realized in the case of photoproduction
since a real photon cannot be absorbed by a free
meson; therefore, the entire process can proceed only
for a meson bound in a nucleon. This is the reason
why the pole diagrams in Fig. 1 are not dominant
here—that is, all three diagrams in Figs. 1a, 1b, and
2 are operative in the case being considered.

The momentum distribution of rho mesons can
be determined by simultaneously taking into account
the t-channel pole diagrams in Fig. 1 and the s-
channel pole diagram in Fig. 2. In such a situation,
there arises the question of gauge invariance. The
simplest way is adopted in [17], where a common
cutoff factor is introduced in order to multiply by it the
gauge-invariant sum of the amplitudes for Figs. 1a
and 2 for pointlike particles—this factor is taken in
the form of the function (t−m2

π)P π
Regge(t,W ), which

modifies the pion pole 1/(t−m2
π), transforming it into

the Reggeized image P π
Regge(t,W ). In terms of our

study, the common factor is question is equivalent to
the form factor gπNN (t). The t-channel pole diagram
involving a virtual rho meson (Fig. 1b) corresponds to
an amplitude that is gauge-invariant as it is. The cor-
responding amplitude for pointlike particles is multi-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
plied by gρNN (t) in our studies and by the expression
(t−m2

ρ)P
ρ
Regge(t,W ) in [17].

The procedure for Reggeization according to [17]
is quite natural for the pole diagrams in Fig. 1. But
the diagram in Fig. 2 corresponds to a totally different
physics. Here, we are dealing with a strongly excited
nucleon; therefore, the approach being discussed is
questionable in that case. The results that we ob-
tained previously for the electroproduction process
make it possible to test the correctness of the ap-
proach employed in [17].
The two cutoff factors are related by the equation

g2
мNN (t) = (t−m2

м)2
∣∣Pм

Regge

∣∣2 . (13)

The parameters of the function Pм
Regge(t,W ) were

fitted to experimental data at Eγ = 5 and 8 GeV.
From (13), one can obtain the function gмNN (t)
and the cutoff constant Λм. Satisfactory agree-
ment between the two curves representing g2

ρNN (t)

{g2
ρNN (t) =

[
(Λ2

ρ −m2
ρ)/(Λ2

ρ − t)
]2 and g2

ρNN (t) =
(t−m2

ρ)2|P
ρ
Regge|2} can be achieved by setting Λρ =

0.87 GeV/с. Our previous result based on elec-
troproduction data is Λρ = 1.4 GeV/с [8]. This is
a significant discrepancy, which implies that the
gauge-invariant theory of photoproduction requires
a further refinement.
For |t| ≤ 1 (GeV/c)2, there is no such discrep-

ancy; for pions, we obtained here Λπ = 0.7 GeV/с,
which is in agreement with our previous value [7].

4. CONCLUSION

We have completed our investigation of the role
of the simplest pole diagrams in pion photo- and
electroproduction on nucleons at energies of a few
GeV. This has been done by considering formal as-
pects of the competition between the pole amplitudes
represented by Figs. 1a and 1b and the tree amplitude
represented by Fig. 2 under various kinematical con-
ditions. We have arrived at the conclusion that, un-
der the kinematical conditions of quasielastic meson
knockout, in which case the virtual-photon mass is
rather large ([Q2 ≥ 2 (GeV/с)2], the tree diagram (s-
channel pole diagram) is immaterial, as was assumed
in our previous studies.
An analysis of the longitudinal cross section

dσL/dt at Q2 = 0.7 (GeV/c)2 has revealed that, at
a photon mass squared on this order of magnitude—
that is, at comparatively small values of it—the agree-
ment with experimental data can be considerably
improved by taking into account the interference be-
tween the pion pole amplitude and the tree amplitude.
This, however, does not change our previous results
2
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reported in [7, 8], which were based on the use of
solely the t-channel pole amplitude. On the basis
of our experience summarized above, we have briefly
touched upon the pion-photoproduction reaction at
energy of a few GeV. Here, Q2 = 0 and the tree
diagram plays a significant role; in view of this, the
question of the gauge invariance of the total reaction
amplitude becomes nontrivial. The values of the cutoff
parameter Λρ for the vertex function gρNN (t) that
were obtained on the basis of experimental data on
the quasielastic knockout of rho mesons appear to
be sharply different from those determined with the
aid of data on pion photoproduction. We believe that
this will give impetus to a further development of the
theory of meson photoproduction.
As a next step in a theoretical analysis of pion

electro- and photoproduction, it would be desirable
to go over from the plane-wave approximation to
an approach where allowance is made for the final-
state interaction between the knock-on pion and the
spectator nucleon.
The concept of quasielastic knockout can natu-

rally be extended to an investigation of the momen-
tum distributions of sigma and eta mesons in a nu-
cleon, but electron and photon beams are inappro-
priate for this; instead, one can harness pion beams
of energy about a few GeV and record triple coinci-
dences of a scattered pion with two decay particles
from η → 2γ or σ → 2π. However, such experiments
are difficult.
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Abstract—The effect of the sizes of the initial pion wave packet on the results that the interferencemethod
yields for the sizes of the elements of the pion-generation volume is studied experimentally for central
MgMg interactions at a momentum of 4.3 GeV/c per nucleon. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Identical pions emitted from their generation vo-
lume—for example, from the region of a collision of
two high-energy nuclei—are related by quantum-
mechanical interference correlations, which are sig-
nificant for pions having close momenta:
(p1 − p2) ∼ �/R, where R is the size of the gener-
ation volume [1] (hereafter, we usually set � = 1).

The distinction between the actual two-particle
spectrum and the background spectrum where in-
terference correlations are “switched off” in one way
or another can contain information about the spatial
sizes of the generation volume, about the duration of
the pion-emission process [2–5] (for an overview, see
[6–9]), about the velocity of the generation volume in
a given reference frame [10, 11], and even about the
sizes and relative velocities of various elements of this
volume [12–14].

The notion of an “element” is introduced for an
inhomogeneous generation volume (see Section 4)
whose parts (elements) move at different velocities
in different directions and emit pions into different
regions of the momentum spectrum from different
spacetime points. Such inhomogeneities, which are
typical of the majority of multiparticle-production
models, give no way to define the spacetime size of the
whole generation volume; more precisely, the notion
of the size of the whole volume is meaningless in this
case.

For pions originating from central MgMg interac-
tions at a momentum of 4.3 GeV/c per nucleon and
belonging to restricted regions of their momentum
spectrum, we explore here the possibility of determin-
ing the sizes of the quasi-steady-state elements of the

*e-mail: anikina@sunhe.jinr.ru
**e-mail: golokhv@sunhe.jinr.ru

***e-mail: jaris@sunhe.jinr.ru
1063-7788/02/6503-0573$22.00 c©
pion generation volume. The problem consists in that
the degree to which an element can be considered to
be steady-state and probably its sizes depend on the
degree of boundedness of the pion spectrum subjected
to analysis. However, the use of soft (long-wave)
pions could affect the results of measurements.

In other words, a bounded subensemble of pions
chosen for an interference analysis is characterized by
the initial wave packet, whose sizes are related to the
degree of boundedness of the momentum spectrum
of pions of the subensemble (see Section 2). In this
study, we examine the effect of the sizes of the packet
on the results that the interference method yields for
the sizes of an element (Section 8).

2. INITIAL WAVE PACKET

The mean multiplicity of negative pions in nucle-
on–nucleon interaction at the energy considered here
is 〈n〉 ∼ 0.6 [15]. Therefore, we can expect that π−

mesons from MgMg collisions (〈n〉 ∼ 9) are pro-
duced almost independently of one another by dif-
ferent “single-particle sources” (that is, in different
nucleon–nucleon interactions, pion–nucleon rescat-
terings and charge-exchange processes, and reso-
nance decays) at different spacetime points of the
generation volume.

For a single-particle source of a pion, we consider
a reaction where the pion was produced or was sig-
nificantly rescattered for the last time prior to leaving
the generation volume, whereupon it can be thought
to be free. Its momentum at the instant of detec-
tion coincides with that at the instant of emission,
and the energy at the detection point coincides with
the energy at the emission point. Further, we have
E2 = p2 +m2

π.
The amplitude of the probability that an arbitrarily

chosen pion is emitted at the 4-point r = (t, r) of a
2002 MAIK “Nauka/Interperiodica”
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single-particle source and has a 4-momentum p =
(E,p) is

ψ(r) exp(ipr), (1)

where ψ(r) is the amplitude of the probability for
the pion to be emitted at the point r and exp(ipr) =
exp[i(Et−p · r)] is the amplitude of the conditional
probability for the pion occurring at the point r to have
the momentum p [16].

Upon coherently averaging the amplitude in (1)
over all possible emission points, we arrive at the
amplitude of the probability for the pion emitted by
the single-particle source in question to have the
momentum p:

ϕ(p) =
∫
ψ(r) exp(ipr)d4r. (2)

Upon the inverse Fourier transformation of this am-
plitude, we return to ψ(r):

ψ(r) = (2π)−3

∫
ϕ(p) exp(−ipr)d3p. (3)

Here, ϕ(p) is the amplitude of the probability for
the pion to have the momentum p and exp(−ipr) is
the amplitude of the probability for the pion having
the momentum p to occur at the point r [16]. The
procedure specified by Eq. (3) is the averaging of the
amplitude

ϕ(p) exp(−ipr) (4)

over all possible momenta of the single-particle
source. The amplitudes ψ(r) and ϕ(p) are bijectively
related to each other.

The density of the probability that the pion has the
momentum p—that is, the 4-momentum spectrum
of the single-particle source—is W (p) = ϕ(p)ϕ∗(p).
The density of the probability that the pion is emitted
at the point r—that is, the spacetime form of a single-
particle source—is V (r) = ψ(r)ψ∗(r).

The root-mean-square deviations for the spa-
tial function V (r), ∆ri = (〈r2i 〉−〈ri〉2)1/2 and ∆t =
(〈t2〉−〈t〉2)1/2, and the corresponding quantities for
themomentum functionW (p),∆pi = (〈p2i 〉−〈pi〉2)1/2

and ∆E = (〈E2〉−〈E〉2)1/2, satusfy the uncertainty
relations ∆pi∆ri ≥ 1/2 and ∆E∆t ≥ 1/2. It is the
mathematical property of the Fourier transformations
(2) and (3). The uncertainty relations reduce to
equalities for Gaussian distributions.

We emphasize that the amplitudes in (1)–(4) are
not plane waves or wave packets that propagate from
the emission point to a detector. Yet, one can state
that ψ(r) is the initial wave packet of a pion. However,
all the preceding equalities become invalid as soon as
it begins to diffuse (with the velocity approximately
P

equal to that of pions diverging in various directions
[17]). For example, ∆ri grows infinitely at a constant
∆pi.

The variances ∆ri and ∆t in terms of the ampli-
tudes are usually referred to as the sizes of a single-
particle source—that is, the ambiguity in the posi-
tion of the pion-emission 4-point (see [4, 18–20]). In
terms of wave functions, they are called the sizes of
the initial wave packet of a pion [9, 20–25]. In some
cases, they are also called the coherence length and
time [18, 21, 22, 26] or the correlation length and time
[26, 27].

The effect of these sizes on the results that the
interference method yields for the size of the pion-
generation volume was studied within various theo-
retical models (see [4, 9, 18–27] and references there-
in). The results were different and even opposite, from
an underestimation of the actual size of the generation
volume to its overestimation.

In this study, we try to explore this effect experi-
mentally using the dependence of the variances of the
momentum spectra, ∆pi and ∆E, and, therefore, of
the amplitude ϕ(p) on the chosen pion subensemble
[16, 28]. This choice also affects the amplitude ψ(r)
and, therefore, the sizes of the single-particle source
(the sizes of the initial wave packet), ∆ri and ∆t (see
Section 8).

3. INTERFERENCE

If we shift the single-particle source ψ(r) being
considered by a 4-vector ra (see [4, 19]), the am-
plitude of the probability for the pion to have the
momentum p changes in such a way that, instead of
(2), we arrive at (x = r−ra)∫

ψ(r−ra) exp(ipr)d4r = exp(ipra) (5)

×
∫
ψ(x) exp(ipx)d4x = ϕ(p) exp(ipra).

Let the centers of the single-particle sources for
two arbitrarily chosen π− mesons be at the points
ra and rb, and let the possible emission points be
distributed around them over r′a and r

′
b. The amplitude

of the probability that the first and the second pion
(with momenta p1 and p2, respectively) are emitted
at the points r′a and r′b, respectively, is equal to the
product of the single-particle amplitudes, because the
pions are assumed to be produced independently:

A′
ab = ψa(r′a − ra)ψb(r′b − rb) (6)

× exp[i(p1r′a + p2r′b)].

We average this amplitude over the shape of the
source; that is, we integrate it with respect to r′a and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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r′b. Since the integrals factorize and since the Fourier
integral of the shifted function is given by (5), we
obtain [4, 19]

Aab = ϕa(p1)ϕb(p2) exp[i(p1ra + p2rb)]. (7)

Similarly, the probability amplitude for the first and
the second π− meson to be emitted by the sources
with the centers at rb and ra, respectively, is

Aba = ϕb(p1)ϕa(p2) exp[i(p1rb + p2ra)]. (8)

If the two possibilities are indistinguishable (see
the discussion in [3]), the density of the probability
of choosing two π− mesons that have the momenta
p1 and p2 and which are emitted by the sources with
the centers at ra and rb is one-half of the squared
modulus of the sum of these two amplitudes:

2Wab(p1,p2) = |Aab +Aba|2 (9)

= |Aab|2 + |Aba|2 + 2Re(AabA
∗
ba).

If the possibilities are distinguishable (for example, if
these two pions with different momenta are emitted
in different nucleus–nucleus collisions, where the
momentum-conservation law is satisfied indepen-
dently), we must average the probabilities rather than
the amplitudes:

2W off
ab (p1,p2) = |Aab|2 + |Aba|2. (10)

This two-particle background spectrum, where cor-
relations are switched off, is usually obtained in ex-
periments precisely in this way, by mixing pions from
different events [5] (see Section [7]).

The ratio of the probabilities in (9) and (10)
(that is, the correlation function for these two pion-
emission points) is

Cab(p1,p2) = 1 +
2Re(AabA

∗
ba)

|Aab|2 + |Aba|2
. (11)

The numerator of the interference term in (11) is

2Re {ϕa(p1)ϕb(p2)ϕ∗b(p1)ϕ∗a(p2) (12)

× exp[i(p1 − p2)(ra − rb)]} .
Here, all amplitudes are the complex functions, and
this expression cannot be simplified without addi-
tional assumptions.

4. HOMOGENEOUS GENERATION VOLUME

We consider the case of a homogeneous pion-
generation volume—that is the case where all single-
particle sources are identical:

ϕa(p) = ϕb(p) = ϕ(p). (13)

This condition is not valid for a generation volume
whose elements move in different directions and emit
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
pions from different point into different parts of the
momentum spectrum.

Such an inhomogeneity is typical of almost all
multiparticle-production models, such as cascade
models with resonances that decay in flight; fireball
models with diverging fireballs; hydrodynamic and
thermodynamic models with an expanding volume;
and multiperipheral, parton, and string models, where
the momentum depends, for example, on the chain
vertex or on the break point.

In MgMg interactions, the equality in (13) does
not hold for the whole generation volume either—that
is, for the complete ensemble of negative pions [12,
13]. However, it is likely valid, in some approximation,
for an “individual” element of the volume—that is,
for a subensemble of pions from a small region of the
momentum spectrum where p1 ≈ p2 [12, 13].

Hereafter, we adopt the assumption specified by
Eq. (13), nourishing the hope that it is possible to
separate such (virtually) homogeneous elements. In
this case, the amplitudes ϕ(p) in (12) are combined
into the probabilities ϕ(p)ϕ∗(p) and cancel with the
denominator in (11):

Cab(q) = 1 + cos[(p1 − p2)(ra − rb)]. (14)

In contrast to the original expression (11), this ex-
pression is Lorentz-invariant: it contains only differ-
ences of momenta but not the momenta themselves.

The function in (14) depends on the distance be-
tween the centers of one-particle sources. Under con-
dition (13), the size and the shape of the sources are
identical [see Eqs. (2), (3)], and any points located
similarly with respect to the sources can be con-
sidered as centers [4]. The correlation function (14)
is independent of the source sizes (the sizes of the
initial wave packets) even if they exceed the distance
between the source centers [see Eqs. (7)–(11)]. Of
course, it is valid only if pions are indeed emitted
independently and if they do not interact in the final
state.

5. SHAPE OF THE GENERATION VOLUME

Given the shape of a homogeneous generation
volume (homogeneous element)—that is, the space-
time density of the distribution of the centers of pion
sources, ρ(r)—we can calculate the total correlation
function by averaging the two-point correlation func-
tion (14) over all possible positions of these two points
(q ≡ p1−p2):

C(q) = 1 (15)

+
∫ ∫

ρ(ra)ρ(rb) cos[q(ra − rb)]d4rad4rb.

The procedure of averaging probabilities rather than
amplitudes assumes that different positions of the
2
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point ra (or rb or both) result in different final states
(see the discussion in [3]).

Considering that cos[q(ra−rb)] =
Re[exp(iqra) exp(−iqrb)], we obtain

C(q) = 1 + Re
{∫

ρ(ra) exp(iqra)d4ra (16)

×
∫
ρ(rb) exp(−iqrb)d4rb

}

= 1 +
∣∣∣∣
∫
ρ(r) exp(iqr)d4r

∣∣∣∣
2

.

This is the basic relation of the interference method
for determining the experimental sizes of the pion-
generation volume.

Assuming that the spacetime shape of the gener-
ation volume in its rest frame is close to the Gaussian
distribution

ρ(r) =
1

(2π)2RhRvR‖T
(17)

× exp

(
− r2h

2R2
h

− r2v
2R2

v

−
r2‖

2R2
‖
− t2

2T 2

)
,

we find from the square of the Fourier transform (16)
that

C(q) = 1 (18)

+ exp
(
−q2hR2

h − q2vR2
v − q2‖R2

‖ − q20T 2
)
,

where the symbol ‖ and the subscripts h and v indi-
cate, respectively, the longitudinal direction and the
directions transverse to the beam and to each other
(for example, a vertical and a horizontal direction);
Ri is the root-mean-square scatter of pion-emission
points; and T is the root-mean-square scatter of the
pion-emission instants. By fitting this (or any other)
approximation to the experimental correlation func-
tion, one can determine the sizes Ri and T of the
generation volume.

Usually, the root-mean-square sizes of the gen-
eration volume that are determined by the interfer-
ence method are weakly dependent on the choice
of approximation. The Gaussian distribution is used
because of its simplicity; only for this distribution
can the projections be simultaneously factorized and
combined in a natural way, for example, q2⊥ ≡ q2h + q2v .

A few physical and methodological factors can
distort the shape of the correlation peak [6–8]. Usu-
ally, this is “compensated” by introducing an addi-
tional free parameter λ:

C(q) = 1 + λ exp
(
−q2⊥R2

⊥ − q2‖R2
‖ − q20T 2

)
. (19)
PH
In contrast to (14), expression (18) is not Lorentz-
invariant, because the shape of the generation volume
(17) is noninvariant. Moreover, there is no Lorentz-
invariant probability-density function ρ(r). The in-
variant function ρ(r) = ρ(t2−r2) cannot be normal-
ized to unity, because 4-dimensional integrals of this
function are divergent. In the literature, the correla-
tion function is often approximated (since the appear-
ance of Goldhaber’s study [1]) by the invariant form

C(Qinv) = 1 + λ exp(−Q2
invS

2), (20)

where Q2
inv ≡ q2−q20, but this form does not follow

directly from the general formula (16). It can be ob-
tained only in the “variable reference frame” that co-
incides with the c.m. frame of each successive pion
pair, where q0 = 0.

6. EXPERIMENTAL DATA

Films of experimental data for a 4π coverage were
obtained at a 2-m streamer chamber in a magnetic
field (SKM-200–GIBS [29]) by using a 24Mg beam
of momentum plab = 4.3 GeV/c per nucleon from the
Dubna synchrophasotron. The magnesium target of
thickness 1.2 g/cm2 was placed inside the sensitive
volume of the chamber. The chamber was triggered
only in the case of a central MgMg collision—that
is, when stripping neutrons, protons, and other frag-
ments of the beam nucleusmissed the forward cone of
angle about 2.4◦ to the beam (about 4 msr). This cor-
responds to a stripping-nucleon transverse momen-
tum of about 180 MeV/c [29]. Antistripping counters
were placed at a distance of 6m from the target, with 2
m of a 0.9-Tmagnetic field behind; therefore, particles
softer than stripping particles missed the counters
almost always. The fraction of these central (more
precisely, all-nucleon) interactions amounted to ap-
proximately 4×10−4 of all inelastic MgMg collisions.

The accuracies to which the pion momenta and
angles were measured in the laboratory frame were,
respectively, about 1% and 5 mrad [29], which corre-
sponds to the accuracy in determining the relative
momenta of two pions in the MgMg c.m. frame
(2–6 MeV/c). Since the invariant relative momen-
tum of two pions depends only on their effective
mass,Q2

inv = M2
ππ−4m2

π, the accuracy of the present
experiment can be estimated on the basis of the
accuracy of the mass measurement in the decays
of relativistic (∼4A GeV/c) 4

ΛH hypernuclei (4ΛH →
4He + π−) at the same spectrometer [30]. The decay
energy in that process (56 MeV) is close to the region
of interest. The root-mean-square deviation of the
effective masses measured in [30] from tabular values
was approximately 3 MeV.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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Multiple scattering in the target introduces an
additional error of about 4 MeV/c in the relative
momentum of two pions. Thus, the total root-mean-
square error is less than the bin width that we used
in the fit (10 MeV/c, see below). In turn, the bin
width was significantly less than the width of the
interference peak (σ ∼ 40 MeV/c).

The analysis did not include pions such that the
measurement error for them that was translated into
their rest frame exceeded 10 MeV/c. Therefore, the
maximum error in the relative momentum of two pi-
ons at the interference peak does not exceed a value
of about 14 MeV/c. The loss of π− mesons (about
10%) that was caused mainly by the absorption in the
target and by a poor measurability of vertical tracks
is localized in the target-rapidity region around –1.1
in the MgMg c.m. frame. The sample subjected to
analysis comprises 120 000 pions from 14 000 events
(470 000 pion pairs).

7. BACKGROUND ENSEMBLE AND FITTING

The ensemble of the events without correlations
was constructed in the form of complete events rather
than in the form of individual pion pairs. This back-
ground ensemble has the same multiplicity distribu-
tion as the actual ensemble, but the number of events
in it is 30 times greater. For each multiplicity of π−

mesons (n), a background event was formed by n
π− mesons randomly chosen from different actual
events containing the same number of π− mesons.
This procedure is very close to that used in [31] and
differs from the procedure proposed in [32] in that the
actual and the background spectrum are constructed
by using the same event sample—they contain the
same fraction of π− mesons (and their pairs) from the
events characterized by the same multiplicity of π−
mesons.

In the interference analysis, we used all pairs of π−

mesons that belonged both to the actual and to the
background ensemble and which satisfied selection
criteria (|p1|, |p2| < pcut, see Section 8).

The parameters of the generation volume were de-
termined by the method of maximum likelihood, ap-
proximately in the same way as in [33, 34]. We plotted
three-dimensional (or four-dimensional) histograms
with respect to q⊥ (or |qv| and |qh|), as well as |q‖| and
|q0|, separately for actual and for background pairs
with a step of 10 MeV/c (MeV) in the interval 0–
80 MeV/c (MeV).

The number of pairs in each bin of the histogram
for background pairs was divided by 30, which is the
ratio of the number of background to the number
of actual events. After that, the contents of each
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
nonempty bin in the histogram for background pairs
was multiplied by C(q) (19) [or (18)] for a certain set
of free parameters R2

⊥ (or R2
v and R2

h), R
2
‖, T

2, and
λ. Assuming that the value obtained in this way is
the mean value for the Poisson distribution, we calcu-
lated, for actual pairs, the probability for the number of
pairs in the same bin of the histogram. The product of
the probabilities for all bins was then maximized with
respect to the above parameters by using the FUMILI
code.

In contrast to [34], we did not use a normaliza-
tion free parameter that would reduce the ratio of
the numbers of actual and background pairs outside
the interference peak to unity. In our method, this
ratio is about 0.99 for |q| > 100 MeV/c at all pcut,
because the excess of the number of actual events
over the background at the peak is approximately 1%
of all π− pairs. When we analyze, however, the pion
subensembles with extremely low pcut, there are few
pairs outside the peak, so that it is impossible to use a
normalization free parameter; as a result, it becomes
necessary to construct the background ensemble in
the form of complete events rather than the form of
individual pion pairs.

The histogram width of 80 MeV/c (MeV) in-
cludes almost entirely the informative part of the
interference peak: the peak width at the bottom is
about 100 MeV/c (MeV). At the same time, the
histogram width is sufficiently small to permit a fit
to pion subensembles with a broad and a narrow
momentum spectra (for different pcut) on the basis
of approximately the same part of the peak. This may
be of importance since the approximation in (18) was
chosen quite arbitrarily. However, our result depends
only slightly on the histogram width, at least within
the interval 60–100 MeV/c (MeV).

In our analysis, we did not include π− pairs (ei-
ther actual or background ones) withQinv < 10 MeV
because, in this region, there can occur measurement
errors that are associated with the confusion of tracks
on different stereoscopic projections of the films. This
also removes the problem of two-particle resolution
of pions with very close momenta, the Gamow cor-
rection for the Coulomb interaction of pions [32] be-
coming negligible, because it is significant only in
the region of small Qinv. Nevertheless, we introduced
this correction in the standard way [33]: we took each
mixed pair with the weight η′/[exp(η′) − 1], where
η′ = 2πmπα/Qinv (α = 1/137).

8. ELEMENT SIZE

The volume of pion generation inMgMg collisions
is inhomogeneous; it expands both in the longitudinal
[12] and in the transverse [13] direction with respect
2
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Fig. 1. Parameters of the generation-volume element
versus the pion subensemble chosen for the interference
analysis. The subensemble includesπ− mesons withmo-
menta |p| < pcut in the MgMg c.m. frame. A fit em-
ploys the approximation in (19). The solid curves indicate
the minimum sizes of the wave packet that were deter-
mined according to the relations R‖ = �/2∆p‖ and T =
�/2∆E, where ∆p‖ and ∆E are the experimental root-
mean-square deviations for the pion spectrum at given
pcut.

to the beam. Pions from different parts of the mo-
mentum spectrum correspond to different elements
of the volume, which move relative to one another
with relativistic velocities; therefore, the applicability
condition for the basic formula (16) of the interference
analysis is violated. Any attempt at performing such
an analysis for the whole pion ensemble leads to an
absurd result: the parameter T 2, which stands for the
variance of the distribution of pion-emission instants,
appears to be negative [12, 13].

Let us try to single out a rather homogeneous
generation-volume element that is at rest in the
MgMg c.m. frame and which emits pions into a
bounded region of the momentum spectrum, |p| <
pcut. The result obtained by fitting the approximation
in (19) to correlation functions for such bounded
subensembles is displayed in Fig. 1 versus pcut. It can
be seen from Fig. 1 that the parameter T 2 becomes
positive from pcut < 250 MeV/c. The boundary value
of the element energy in [13] was chosen precisely in
this way.
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Fig. 2.Sizes of the generation-volumeelement versus the
pion subensemble chosen for the interference analysis.
The subensemble includes π− mesons with momenta
|p| < pcut in the MgMg c.m. frame. A fit employs the
approximation in (18). The solid curves indicate the min-
imum sizes of the wave packet that are determined ac-
cording to the relations Ri = �/2∆p‖ and T = �/2∆E,
where ∆pi and ∆E are the experimental root-mean-
square deviations for the pion spectrum at given pcut.

As we shrink the bounded region of the mo-
mentum spectrum, the pion subensemble becomes
“purer,” better satisfying the condition in (13); that
is, it is described by the unique amplitude ϕ(p). In
this pure subensemble, one can single out, however,
a subset that is characterized by a lower variance
of the momentum spectrum and which therefore
corresponds to a different amplitude ϕ′(p) [16, 28]. In
this case, ϕ′(p) = ϕ(p) for |p| < pcut and ϕ′(p) = 0
for |p| > pcut. The new function ϕ′(p) is bijectively
related to the new function ψ′(r) through the Fourier
transformation specified by Eqs. (2) and (3).

For this bounded subset of pions, no experiment
would enable one to find out whether the new filtered
function ϕ′(p) is merely the projection of the func-
tion ϕ(p) or whether it completely describes single-
particle sources. In other words, it can be stated that,
if our single-particle sources were actually described
by the initial wave packet ψ′(r) rather than by ψ(r),
we would obtain the same experimental results as
those for the packet ψ(r) in the case of |p| < pcut.
Slightly relaxing the interpretation, we can formulate
YSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002
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this as follows: without changing the initial wave
packet, we just exactly simulate the situation where
it is described by the amplitude ψ′(r) rather than by
ψ(r).

To state it otherwise, the only physical meaning of
the amplitude (wave function) is that its square is the
probability. As to the probability for a pion to have
a specific momentum depends on the subensemble
with which we associated this pion. For example, the
probability that the pion belonging to the |p| < pcut

subensemble has a momentum in excess of pcut is
zero.

Thus, there arises the possibility of studying, on
the basis of our experimental data, the effect of the
sizes of the initial wave packet for a pion on the sizes
of its generation volume that are determined by the in-
terference method. For specific pcut values, the curves
in Fig. 1 show the lower bounds on the size of the
wave packet. The curves are drawn through the points
determined according to the relations R‖ = �/2∆p‖
and T = �/2∆E, where ∆p‖ and ∆E are experimen-
tal root-mean-square deviations for the spectrum of
pions belonging to the subensemble corresponding to
given pcut. It is impossible to draw a similar curve for
R⊥, because q⊥ has no definite direction.

Figure 2 displays the results of a complete four-
dimensional fit to the data by using the approxima-
tion in (18) (with the preexponential factor λ). The
behavior of this factor is not shown—it is identical
to that in Fig. 1. Yet, Figs. 1 and 2 remain virtually
unchanged upon setting λ = 1. The curves in Fig. 2
and the curves in Fig. 1 are obtained similarly, but the
former feature transverse directions as well.

The errors in the figures are purely statistical,
but the neighboring points are of course correlated,
because they were obtained for nearly the same en-
semble of pairs. The difference of the horizontal and
the vertical size provides a measure of our systematic
errors.

The dependence of the sizes of generation-volume
elements on the chosen pion subensemble was stud-
ied in some other experiments as well (see, for ex-
ample, [34–39] and references therein), but without
any connection with the sizes of the wave packet:
the variances of the momentum distribution in the
subensembles were not presented there (see, how-
ever, [37]).

The use of a sharp boundary pcut of the subensem-
ble (though somewhat smoothed owing to finite
statistics) could lead to the strong inequalities
Ri∆pi � �/2 and T∆E � �/2, which are insignif-
icant for estimates [28]. However, the interference
analysis for subensembles characterized by a smooth
boundary for the case where a pion is included in
the subensemble at random, with the probability
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 200
exp(−p4/σ4) (where σ is varied), leads to results that
are close to preceding ones (they are not shown here).
We used the fourth power (not of the second one) be-
cause, for a Gaussian distribution, the subensemble
includes an overly great number of pions with high
momenta, in which case there arise large errors.

Our results agree and simultaneously disagree
with both groups of theoretical models. The behavior
of the transverse sizes is closer to that in models
where the finiteness of the wave-packet sizes results
in underestimating the actual sizes of the generation
volume. The behavior of the longitudinal size and
the duration of the emission process seems to lend
support to models where the squared sizes of the wave
packet and of the generation volume are summed up.
However, the statistical significance of these results
is insufficient for drawing a definitive conclusion on
this point.

The behavior of the time parameter in Figs. 1 and
2 casts some doubt on the possibility of measuring it
by the interference method.
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(1999).
26. I. V. Andreev and R. M. Weiner, Phys. Lett. B 253,

416 (1991).
27. I. V. Andreev et al., Int. J. Mod. Phys. A 8, 4577

(1993).
28. L. I. Mandel’shtam, Full Collection of Works,Vol. 5:

Lectures on Foundations of Quantum Mechanics
(Akad. Nauk SSSR, Leningrad, 1950), Lecture 5.
P

29. S. A. Avramenko et al., Prib. Tekh. Éksp., No. 3, 27
(1999).

30. A. U. Abdurakhimov et al., Nuovo Cimento A 102,
645 (1989).

31. S. Y. Fung et al., Phys. Rev. Lett. 41, 1592 (1978).

32. M. Gyulassy et al., Phys. Rev. C 20, 2267 (1979).

33. W. A. Zajc et al., Phys. Rev. C 29, 2173 (1984).

34. A. D. Chacon et al., Phys. Rev. C 43, 2670 (1991).

35. D. Beavis et al., Phys. Rev. C 34, 757 (1986).

36. R. Bock et al.,Mod. Phys. Lett. A 3, 1745 (1988).

37. W. B. Christie et al., Phys. Rev. C 47, 779 (1993).

38. T. Alber et al., Z. Phys. C 66, 77 (1995).

39. I. G. Bearden et al., Phys. Rev. C 58, 1656 (1998).

Translated by M. Kobrinsky
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002



Physics of Atomic Nuclei, Vol. 65, No. 3, 2002, p. 581. Translated from Yadernaya Fizika, Vol. 65, No. 3, 2002, p. 608.
Original Russian Text Copyright c© 2002 by the Editorial Board.

ERRATA
Erratum: “Final-State Interaction in Multichannel Quantum Systems
and Pair Correlations of Nonidentical and Identical Particles
at Low Relative Velocities”

[Physics of Atomic Nuclei 61, 2050–2063 (1998)]

R. Lednicky, V. V. Lyuboshitz, and V. L. Lyuboshitz

In Eqs. (66) and (68), the term
1
2
k̂ d̂0 k̂

should be replaced by

1
4
(k̂2 d̂0 + d̂0 k̂

2).

Equation (69) should read

βl =
π

| al |
cot
(

π

κl | al |

)

+
2

| al |

{
ln(κl | al |) +

1
2

[
ψ

(
1

κl | al |

)
+ ψ

(
− 1
κl | al |

)]}
.

In footnote 4 on page 2061, the minus sign in the expression for βl should be deleted.
1063-7788/02/6503-0581$22.00 c© 2002 MAIK “Nauka/Interperiodica”
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