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Abstract—The α clustering in nuclei from 4He to 40Ca has been presented on a systematic footing which
depicts the similarities from nucleus to nucleus. Here, the isomorphic shell model has been employed,
which is a hybrid between the conventional shell model and liquid drop model in conjunction with the
nucleon finite size and which, in addition, uses no adjustable parameters. In the framework of the model
an α-like particle is defined as four close-by nucleons (two neutrons and two protons) in relative angular
momentum zero. Thus, up to 40Ca nine such α-like particles and two deuterons are formed whose average
positions are well specified in the model. Hence, each time an α-like particle is formed (following the
aforementioned definition), this could have an average position only at one of the above nine available
positions for such particles. Any 4n nucleus arranges its n α-like particles in the same way and any
such arrangement corresponds to the ground state or to an excited state of this nucleus and serves as
the band head of a rotational band. For 20Ne nine such bands have been found, while for 12C and 28Si
two and five bands, respectively. The linear α-chain for 12C and persisting α-planar structures for heavier
nuclei appear in a natural way in the framework of the model and are supported by many observables.
The real novelty of this presentation is the fact that the axis of rotation and the number of rotating
nucleons inside the same rotational band may change in such a way that the relevant moment of inertia
increases monotonically in steps forming for each step a new branch of the band. Thus, several such
bands have the same band head, a fact which closely resembles the phenomenon of superdeformation.
This phenomenon here is the result of existence of several axes of symmetry and of several axes of rotation
which, by changing the axis of rotation, permit the moment of inertia to increase up to the solid body limit.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of alpha clustering has a long history
in nuclear physics and many geometries of α-cluster
configurations have been examined in the literature
ranging from three-dimensional to two-dimensional
and even to one-dimensional configurations [1–14].

A common characteristic of many α-cluster mod-
els is that the α particles involved in the nuclear
structure are considered preformed and thus the nu-
cleus appears in the framework of these models as an
aggregate of α-particle subunits. Despite the appar-
ent successes of these models, however, the wealth
of nuclear reactions does not support this α-particle
composition of nuclei even for the 4n nuclei. One thus
could compromise the situation by assuming that
each such α-like particle is composed of four close-
by nucleons (two neutrons and two protons) with the
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same n and l quantum numbers (i.e., of four nucleons
in a relative s state) instead of being composed of four
nucleons in a real s state as usually assumed [15–17].
Thus, effectively nucleons and not α particles could be
the fundamental constituents of a nucleus.

In the present study an alternative approach, along
the lines of the isomorphic shell model [18–21], has
been considered, where indeed nucleons and not α-
particles compose the nuclei and, thus, possible α
particles and their spatial distributions in nuclei are
derived. The common point between the isomorphic
shell model and any α-cluster model is that both
models consider the geometry of the average positions
of the constituent particles as the starting point for
describing the total wave function of a nucleus.

The present study starts with a brief development
of the isomorphic shell model and continues with its
applications on several nuclear properties of 4n nuclei
with emphasis on rotational bands. For applications
on more properties and additional nuclei one could
consult the cited references [15–17].
2002 MAIK “Nauka/Interperiodica”
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2. THE MODEL

The model employed here is the isomorphic shell
model (ISM), which is a microscopic nuclear-struc-
ture model that incorporates into a hybrid model the
prominent features of single-particle and collective
approaches in conjunction with the nucleon finite
size.

The model consists of two complementary parts,
namely, the semiclassical part [18] and the quantum
mechanical part [19]. Both parts give very good re-
sults which are consistent with each other.

2.1. The Quantum Mechanical ISM

The Hamiltonian of the model is analyzed in partial
state-dependent Hamiltonians which are different for
neutrons (n) and for protons (Z) as follows, where
crossing terms between partial Hamiltonians of dif-
ferent shells, Hij , have been omitted:

H = NH1s + NH1p + NH1d2s + . . . (1)

+ ZH1s + ZH1p + ZH1d2s + . . . ,

where the harmonic oscillator is taken as the central
potential.

The different ωi are not taken as adjusted pa-
rameters, but all are determined from the harmonic
oscillator relation [22]

�ωi =
(

�
2

m〈r2
i 〉

)(
ni +

3
2

)
, (2)

where 〈r2
i 〉1/2 is the root-mean-square radius of nu-

cleon centers for the particular neutron or proton shell
under consideration and is estimated in the semiclas-
sical part of the model (given bellow) with respect to
only two numerical parameters.

In addition to eigenvalues for the energy derived
from Eq. (1), Coulomb, spin–orbit, isospin, and last
odd nucleon (neutron or proton, if it exists) energies
are introduced in the estimation of the binding energy
of a nucleus as usual.

2.2. The Semiclassical ISM

This part of the model is based on two assump-
tions, namely, that of equilibrium of nucleon average
positions on spherical shells and that of packing of the
average forms of nuclear shells [18]. The first leads
uniquely to the conclusion that the average forms
PH
of nuclear shells have the high symmetry of equilib-
rium (regular) polyhedra [23], while the second leads
uniquely to the sizes of these polyhedra, when they are
considered superimposed with a common center and
nucleons are taken with finite size (rp = 0.860 fm and
rn = 0.974 fm).

Figure 1 shows the average forms of the first three
neutron shells and those of the first three proton shells
in relative size and orientation, while Fig. 1 of [18]
shows the average polyhedral forms of all nuclear
shells up to 208Pb. The sizes of these polyhedra are
also given at the bottom of each block of these figures.
From Fig. 1 here and Fig. 1 of [18] it is apparent that a
magic number is reproduced, all the way up to 208Pb,
each time a polyhedron is completed.

One should further notice in Fig. 1 that the vectors
labelled nθ

m
l precisely represent the orbital angular

momentum quantization of directions and that the
value labelled ρ at the lower right corner of each block
of Fig. 1 stands for the maximum possible distance
of the polyhedral vertices from these vectors. These
ρ values are used for the estimation of the kinetic-
energy part due to nucleon orbiting as will be under-
stood shortly [21].

In this part of the model the binding energy of a
nucleus is given by

EB =
∑
ij

Vij +
∑
nlm

〈Tnlm〉 +
∑
ij

(EC)ij (3)

+
∑

(ESO)ij + EISO + Eodd n,

where the expressions for the last four terms are
taken in the usual way as mentioned in the quantum-
mechanical part of the model [18, 19], while the first
two terms are computed by using Eqs. (4) and (5)
below [20]:
Vij =
1.7 × 1017 exp(−31.8538rij ) − 187 exp(−1.3538rij)

rij
(in MeV), (4)
〈Tnlm〉 =
�

2

2m

[
1

R2
max

+
l(l + 1)
ρ2
nlm

]
, (5)
 where Rmax is the outermost polyhedral radius (R)

plus the relevant nucleon radius (i.e., rn = 0.974 fm
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 1. Average structure of the first three neutron and the first three proton shells in the ISM. The letter h stands for empty
vertices (holes), while arrows precisely present the orbital angular momentum quantization of directions as shown. Values of R
give the average sizes of the relevant shells (in fm) and values of ρ give the maximum distances of polyhedral vertices from the
aforementioned arrows. Finally, numbers in brackets stand for the cumulative numbers of vertices up to each polyhedral shell
and coincide with the magic numbers.
and rp = 0.860 fm), i.e., it is the radius of the nuclear
volume in which the nucleons are confined, and ρnlm
as is explained earlier [21].

The mass nuclear radius for both parts of the
model is given by

〈r2〉1/2m (6)

=

[∑Z
i=1 R

2
i +

∑N
i=1 R

2
i + Z(0.8)2 + N(0.91)2

Z + N

]1/2

,

from which one can get the expression for the neutron
radius by taking Z = 0 or the expression for the
charge radius by taking N = 0. In the latter case
one could consider an extra small term equal to
−0.116(N), where −0.116 fm2 is the mean-square
charge radius of a neutron [21].

3. ALPHA-LIKE PARTICLES IN ISM

In the framework of the model an α-like particle
is defined as four close-by nucleons (two neutrons
and two protons) in relative angular momentum zero.
In this sense the following ten α-like particles are
formed up to 40Ca composed by two protons and two
neutrons in the states 1s1/2 (1), 1p3/2 (2), 1p1/2
(“1”), 1d5/2 (3), 1d3/2 (2), and 2s1/2 (1), where
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
inside parentheses the number of identical α-like par-
ticles is given. It is noticeable that in the model the
α-like particle with nucleons in 1p1/2 states is ques-
tionable since, while each one neutron has one close-
by proton, the two neutron–proton pairs are not close
to each other but have relative positions diametri-
cally apart. Thus, according to our aforementioned
definition, one could say that an α-like particle with
nucleons in 1p1/2 states does not exist and instead
we have two deuterons which are not close to each
other but diametrically sited.

Concerning the size of the above remaining nine
α-like particles in 40Ca, in the framework of the
model, there are three sizes, one for each of the shells
1s, 1p, and 1d2s. In all these three cases the form of
an α-like particle is a highly deformed tetrahedron.
Finally, the interaction taken is a nucleon–nucleon
interaction [20], that is, not an α–α interaction.

Further, the α-like particles in the model are not
in general preformed; however, the 1s and 2s α-like
particles could be considered somehow preformed.
The time evolution of an α-like particle in the model
leads each of the four constituent nucleons into the
relevant shell model orbital. The α-like particles are
both on the nuclear surface and in the nuclear interior
and their average positions are well determined in the
model.
2



586 ANAGNOSTATOS et al.

 

16
 

O core
 

12

 

C core

(

 

a

 

) (

 

b

 

) (

 

c

 

)

(

 

d

 

) (

 

e

 

) (

 

f

 

)

 

z

z

 

y

y

x

x

 

z

z

 

y

y

x

x

 

z

 

y

y

 

z

 

x

x

 

z

 

y

x

 

z

 

x

y

 

z

z

 

y

y

x

x

A B

C D

 

16

 

O

 

16

 

O

Fig. 2. Average structures of 12C, 16O, 36Ar, and 40Ca considering nucleon average positions and α-like particle average
positions. Specifically, (a)–(c) present 16O, (d)–(f) 40Ca, (A), (B) 12C and (C), (D) 36Ar. Numbering is the same as in Fig.1.
In (b) and (e), in addition to the α-like particle average positions, the nucleon average positions numbered 9, 10 for neutrons
and 15, 16 for protons (not forming an α-like particle but two deuterons) are shown (number 16 is hidden by the other nucleon
spheres). White numbered spheres designate protons; gray numbered spheres, neutrons. Large, white, unnumbered spheres
designate α-like particles.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Figures 2a–2f demonstrate the geometry of the
average positions for the nine α-like particles and the
two deuterons that appeared in 40Ca. It is noticeable
that the average positions of the three α-like particles
appeared in 12C (1s and 1p3/2 states) are in a straight
line, while the average positions of the six α-like
particles appeared after 16O; i.e., the three 1d5/2, the
two 1d3/2, and the one 2s1/2 α-like particles form
a regular octahedron. The aforementioned straight
line bisects two opposite edges of this octahedron as
shown and thus this straight line is situated on the
same plane with the three 1d5/2 and the one 2s1/2 α-
like particles, while the remaining two 1d3/2 α-like
particles are on an axis perpendicular to this plane,
the z axis (on which are also the neutron average po-
sitions of the two deuterons numbered 9 and 10). The
axes x and y are diagonals of the square formed by the
average positions of the (1d5/2 and 2s1/2) fourα-like
particles as shown. When 12C (see Figs. 2A–2D) and
not 16O (see Figs. 2a–2f) is the core for α-cluster
nuclei heavier than 12C, then the aforementioned two
deuterons are moved on the outer shell and together
form one of the six α-like particles of the octahedral
α-cluster shell.

It is worthwhile to be more specific with Fig. 2
since starting from this figure the average α-cluster
structure of the g.s. or of an excited state of any of
the 4n nuclei up to 40Ca can be created, as will be
understood shortly. Specifically, Fig. 2a stands for the
average positions of the eight neutrons and of the
eight protons in 16O, which are identical and possess
the same numbering with the average positions for
the 1s and 1p neutrons and protons presented in
Figs. 1a, 1b and Figs. 1d, 1e, respectively. Figure 2b
comes from Fig. 2awhen each of the three sets of four
nucleons [the close-by two neutrons and two protons
numbered 1, 2 and 3, 4 (1s states); 5, 7 and 11, 13
(1p3/2 states); and 6, 8 and 13, 14 (1p3/2 states)] is
presented by an α-like particle at its center of gravity,
while the 1p1/2 nucleon average positions numbered
9, 10 and 15, 16 are not presented as anα-like particle
since they are not all close-by (and thus do not fulfill
both requirements for an α-like particle). Figure 2c
presents 16O as a sphere despite the fact that its
average shape is a polyhedral one.

In Fig. 2d the average structure of 40Ca is shown
made of the average positions of the 20 neutrons
and of the 20 protons in the states 1s, 1p, and 1d2s
presented by Figs. 1a–1f and depicted by the same
numbering. In Fig. 2e the nine α-like particles and
the two deuterons of 40Ca are shown made of the sets
of the close-by two neutron and two proton average
positions numbered (in Figs. 1 and 2) 1, 2 and 3, 4
(1s states); 5, 7 and 11,13 (1p3/2 states); 6, 8 and 12,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
14 (1p3/2 states); 21, 22 and 33, 34 (1d5/2 states);
23, 24 and 35, 36 (1d5/2 states); 25, 26 and 37, 38
(1d5/2 states); 27, 28 and 39, 49 (2s1/2 states); 17,
18 and 29, 30 (1d3/2 states), and 19, 20 and 31, 32
(1d3/2 states). Figure 2f comes from Fig. 2e, when
16O is presented by a sphere.

In a way similar to that used for Figs. 2a–2e
one can describe Figs. 2A–2D. Specifically, Figs. 2A
and 2B present the average structure of 12C, while
Figs. 2C and 2D present the average structure of an
excited state of 36Ar and help one to describe the
average structure of any 4n nucleus from 12C to 36Ar
when 12C is its core.

In the cases of either 16O core or 12C core, all
possible average positions of α-like particles are fixed
in space as part of Fig. 2 and can accommodate α-like
particles for the g.s. or excited states of the relevant 4n
nuclei.

4. APPLICATIONS ON SPECIFIC 4n NUCLEI

Figure 3 stands for the study of 20Ne [16]. Specif-
ically, Figs. 3a and 3A show the α-like cluster struc-
tures of different states of this nucleus when nucleons
are taken as the constituent particles and the core is
16O or 12C, respectively, while Figs. 3b and 3B show
the same structures when the center of gravity of
the four nucleon average positions constituting each
α-like particle is considered in place of these four
nucleons. Finally, Fig. 3c presents again the same
structures when 16O core is represented by a sphere.
From Fig. 3 one can see the relationship of the α-like
structure of 20Ne states with that of Fig. 2 referred
to 40Ca and 36Ar. Indeed, all average positions of
α-like particles in Fig. 3 are average positions in
Fig. 2. The x, y, z axes noted in both these figures help
this visualization. The numbering of nucleon average
positions shown in Fig. 3 helps one to see the rela-
tionship of this figure with Fig. 1, where the nucleon
average positions are depicted with the same numbers
in both figures. In each row of Figs. 3a–3c the two
close-by columns present degenerate structures (i.e.,
structures possessing the same energy).

Each block of Table 1 corresponds to a part of
Fig. 3 and is identified by the relevant core, the va-
lence nucleon average positions, and the valence α-
like particles on x, y, and z axes. This table gives
the binding energies corresponding to all parts of
Fig. 3 (by applying Eq. (3)) and their assignment to
experimental specific 0+

n values as specified. For the
assignment of each excited band head, the difference
of its binding energy from that of the ground-state
energy (as estimated in the present calculations) is
considered. As seen from this table, the cases (a)–(c)
2
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Fig. 3. Alpha-cluster structures of different states of 20Ne. Specifically, (a) six different such structures are presented by
nucleon average positions, (b) the same structures are presented by α-like particle average positions, and (c) again the same
structures, where the 16O core of all these structures becomes transparent. (A) fifteen different such structures are presented
by nucleon average positions and (B) the same structures are presented by α-like particle average positions, where the 12C
core of all these structures is apparent according to Fig. 2B. In (b) and (B) one may locate pairs of structures with the same
energy. White numbered spheres designate protons, while gray numbered spheres neutrons. Large white unnumbered spheres
designate α-like particles.
are not assigned to band heads but to the shell model
levels 0+

4 , 2+
4 , and 4+

4 .
In Table 2 the moments of inertia and the corre-

sponding excitation energies from experiments and
model predictions for I = 0–8 of the rotational bands
0+
1 , 0+

2 , 0+
5 , 0+

8 , and 0+
9 are given.

It is noticeable that in the cases of 0+
2 , 0+

5 , and 0+
8 ,

more than one band correspond to the same band-
PH
head. Both bands with bandhead 0+
8 are complete

(i.e., no in-between states are missing), while the two
bands with 0+

5 bandhead are complete and the third
band starts from I = 4+. Finally, in the case of the
0+
2 bandhead, two bands start from I = 6+, one band

starts from I = 4+, while the fourth band has only 0+

and 2+ states.
This multiband appearance with the same band-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Table 1. Binding energies EB (MeV), excitation energies Ex, and band head assignment of nine α-like vertex
configurations of 20Ne. (Each block of the table corresponds to a specific block of Fig. 3 having the same letter labeling.
The cases (f ), (h), and (i) possess excitations beyond available experimental data. The terms “normal” and “relaxed”
refer to two different average positions of the first two protons, namely, nos. 3 and 4 (see [16]). Experimental errors for the
energies are given in [16].)

(a) (b) (c)

Core 16O (Nos 1–16)
valence 1α on x axis
(nos. 17, 18; 29, 30)

valence 1α on y axis
(nos. 25, 26; 37, 38)

valence 1α on z axis
(nos. 21, 22; 33, 34)

normal relaxed normal relaxed normal relaxed

EB 167.4 167.9 166.2

Ex(mod) 9.1 8.6 10.3

Ex(exp) ∼ 8.8 ∼ 8.7 10.8

I+
n 2+

4 0+
4 4+

4

(d) (e) (f )

Core 12C (1–8,11–14)
valence 2α on x axis

(17, 18; 29, 30)
(19, 20; 31, 32)

valence 2α on y axis
(25, 26; 37, 38)
(27, 28; 39, 40)

valence 2α on z axis
(21, 22; 33, 34)
(23, 24; 35, 36)

normal relaxed normal relaxed normal relaxed

EB 160.3 169.5 163.5 176.5 100.6 104.9

Ex(mod) 16.2 7.0 13.0 0.0 75.9 71.6

Ex(exp) 16.4 6.7 13.2 0.0

I+
n 0+

9 0+
2 0+

8 0+
1

(g) (h) (i)

Core 12C (1–8,11–14)
1α on x axis
1α on y axis

(17, 18; 29, 30)
(25, 26; 37, 38)

1α on y axis
1α on z axis

(25,26; 37, 38)
(21, 22; 33, 34)

1α on z axis
1α on x axis

(21, 22; 33, 34)
(17, 18; 29, 30)

normal relaxed normal relaxed normal relaxed

EB 165.4 176.5 135.6 144.3 134.0 140.8

Ex(mod) 11.1 0.0 40.9 32.2 42.5 34.7

Ex(exp) 11.0 0.0

I+
n 0+

5 0+
1

head recalls similar phenomena observed in the well-
deformed region (and elsewhere) characterized as su-
perdeformation, e.g., see Fig. 4a for 152Dy [24]. Ac-
cording to the present study, an interpretation of su-
perdeformation is suggested with the help of Fig. 4b,
where two mechanical analogs are shown to support
this interpretation. Figure 4b shows a rod (I) and a
ring (II) rotating around their vertical symmetry axis
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
with the help of a mechanism (see top of the figure).
As long as the rotational speed is relatively small,
the rod and the ring continue to rotate around this
axis, which possesses the smallest moment of inertia
(vertical axis). However, when the rotational speed
exceeds a certain limit, which the most probable is
different for the rod and the ring, the rod and the
ring start to rotate firmly around their axis of largest
2



590 ANAGNOSTATOS et al.
Table 2. Model predictions for five rotational bands (EB in MeV) in 20Ne and their experimental bands together with
corresponding moments of inertia � (fm2). (The first line for each band stands for experimental energies, while second
line for model predictions. Experimental errors for the energies are given in [16].)

I+
n � I = 0+ 2+ 4+ 6+ 8+

0+
1 Mixed configuration 0.0 1.63 4.25 8.78 15.87

0.0 1.63 4.26 8.78 15.88

0+
2 189.54 6.73 7.42

6.73 7.39

124.48 9.99 13.93 18.96

10.06 13.72 18.72

137.74 13.11 17.30

13.05 17.56

151.30 12.59 16.75

12.48 16.59

0+
5 93.04 10.97 12.33 15.33 20.17 28.00

10.97 12.31 15.43 20.33 27.02

96.14 12.22 15.33 20.03

12.26 15.28 20.03 26.50

186.54 13.05 15.70 18.96

13.19 15.64 18.97

0+
8 131.54 13.22 14.12 16.33 19.85 24.90

13.00 14.17 16.37 19.84 24.57

183.34 13.91 15.33 18.29

13.90 15.48 17.99

0+
9 189.54 15.82 16.44 18.08 20.42 23.40

15.82 16.48 18.01 20.41 23.70
moment of inertia (horizontal axis) [see dotted parts
of Fig. 4b].

This mechanical analog, in the framework of the
ISM, explains the appearance of deformed and su-
perdeformed bands of nuclei in the well-deformed
region and in other regions of nuclei like here in 20Ne.
This explanation implies the existence of more than
one axes of rotation in nuclei, a fact which is very
well justified in the framework of the ISM. According
to this model there are several axes of symmetry and
several axes of rotation, as one can easily conceive
from Figs. 1–3 or from [15–17]. Thus, the appear-
ance of more than one band with the same band
head (as in Table 2), or the appearance of a deformed
and a superdeformed band in the framework of the
PH
ISM, implies the change of the axis of rotation of the
average structure of the nucleus, e.g., like in Fig. 4b.

In Table V of [16] one can find the model predic-
tions for the radius, the electric quadrupole moment,
the reduced electric quadruple transition, the mean
lifetime, the deformation parameter, and the average
moment of inertia for the g.s. (together with experi-
mental values) of 20Ne derived from the same average
structure (see Fig. 3) by just applying the definition of
the aforementioned observables.

Additional strength to the applicability of the ISM
to 4n nuclei one can obtain from [15, 17], where the
12C(n = 3) and 28Si (n = 7) nuclei have been treated
in detail.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 4. (a) Low-deformation and superdeformation bands of 152Dy. (b) Mechanism for a rod (I) and for a ring (II) to demonstrate
that after a certain angular speed the rod and the ring become horizontal (dotted figures) rotating around their axis of maximum
moment of inertia.
5. CONCLUSIONS

As proved here, the isomorphic shell model is a
useful tool in studying the α-cluster structure in 4n
nuclei. In the framework of this model α-like particles
are not considered preformed and the close-by two
neutrons and two protons composing each α-like
particle evolve in time into some shell model orbitals.
In addition, the average shape of an α-like particle in
the model is a highly distorted tetrahedron which has
a different size and deformation for an α-like particle
in the 1s, 1p, and 1d2s shells.

The different 4n nuclei, considered in their α-
like particle presentation [15–17], may have a three-
dimensional or a two-dimensional or even linear
average structure. Since in the framework of the
isomorphic shell model each α-like particle has a
well-specified composition of four nucleons with well-
specified average positions, two nucleon forces are
applied instead of a two α particle force for the deter-
mination of binding energies and other observables.

Up to 40Ca at maximum, nine α-like particles and
two deuterons compose the average structure of any
4n nucleus. A 12C core is composed of three α-like
particles in a row, while an 16O core is composed of
a 12C plus two deuterons. Heavier 4n nuclei, having
either 12C or 16O as a core, arrange their valence α-
like particles at the vertices of a regular octahedron for
their g.s. and excited states.

In the framework of the isomorphic shell model,
the average structure of an α-like nucleus possesses
several axes of symmetry and several axes of rotation.
By increasing the speed of rotation around a specific
axis, the rotational band may jump from this axis to
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
another axis of rotation of a larger moment of inertia.
This jump is responsible for the appearance of differ-
ent rotational bands with the same band head, i.e., for
the appearance of the phenomenon of superdeforma-
tion [24].

Finally, in this model entirely new rotational bands
may be predicted for a nucleus, since the correspond-
ing moment of inertia is determined from the average
structure of this nucleus and knowledge of experi-
mental rotational levels is not necessary.
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Abstract—On the basis of gross properties of nuclei, a simple semiempirical equation of state is developed
for cold hadronic matter composed of light quarks of two flavors. The source of binding energy in the
model is the decreasing asymmetry between the number of up and down quarks in extended regions of
overlapping nucleons. The resulting incompressibility of symmetric nuclear matter at equilibrium density
isK = 324MeV. The incompressibility decreases rapidly with decreasing density but increases only slowly
with increasing density until homogenous quark matter is reached at a density just above three times
ordinary nuclear matter density. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of nuclear matter away from equi-
librium have been at the center of attention within
nuclear physics for several decades. Fits to measured
properties of nuclei provide information on the equa-
tion of state of cold nuclear matter in the vicinity
of equilibrium. Heavy-ion collisions in combination
with complex theoretical modelling provide informa-
tion on the properties under more extreme conditions.
Theoretically, starting from microscopic theories of
hadron interactions, expressions for the equation of
state are derived which are matched to the results
of experiments and then used in calculations of the
properties of neutron stars.

This paper has a more restricted aim. Starting
from the well-known gross properties of nuclear
masses, we develop an expression for the equation
of state which provides a conceptually simple con-
nection between the binding energy, the symmetry
energy, and the incompressibility of nuclear matter.

The main trend of the masses of nuclei in their
ground state as a function of A and Z can be under-
stood in terms of a simple semiempirical formula [1]

M(A,Z) = Zmp + (A− Z)mn − avolA (1)

+ asurfA
2/3 + asym

(A− 2Z)2

A
,

where we have suppressed the Coulomb term. In
contemporary theory protons and neutrons are de-
scribed as being made up of quarks and gluons and

∗This article was submitted by the author in English.
**e-mail: bargholtz@physto.se
1063-7788/02/6504-0593$22.00 c©
a transformation can be made expressing A and Z in
the number of valence quarks u and d. Then

A =
u + d

3
, Z =

2u− d

3
, (2)

and the nuclear mass

M(u, d) =
2u− d

3
mp +

2d− u

3
mn (3)

− avol
u + d

3
+ asurf

(
u + d

3

)2/3

+ asym
3(u− d)2

u + d

=
u + d

6
(mp +mn − 2avol) +

u− d

2
(mp −mn)

+ asurf

(
u + d

3

)2/3

+ asym
3(u− d)2

u + d
.

Naively applying (3) to the three-quark system
and interpreting the delta resonance, ∆++, as the
ground state of three up quarks we obtain M∆ −
MN ≈ 8asym. The value of the symmetry coefficient
varies somewhat in the literature. A value of approx-
imately 25 MeV/c2 [2] is appropriate for the simple
form of (1) and leads to a value within roughly 30% of
the empirical nucleon–delta mass difference.

Inspired by this observation we develop, in Sec-
tion 2, a phenomenological expression for the mass
and volume of the ground state of homogenous, color-
neutral quark-matter objects with an integer baryon
number combining features of the semiempirical
mass formula and bag models of the nucleon. Using
this expression we proceed, in Section 3, to develop
an equation of state of extended nuclear matter. Four
numerical constants appearing in the equation of
state are determined in Section 4, by a fit to empirical
values for the nucleon mass and the equilibrium
density, binding energy and symmetry energy of
2002 MAIK “Nauka/Interperiodica”
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nuclear matter. In Section 5 results are presented
for the binding energy and incompressibility as a
function of density for nuclear matter with a varying
neutron to proton ratio. In the final section our main
results are briefly summarized and directions for
future development of the model are indicated.

2. A PHENOMENOLOGICAL
EXPRESSION FOR THE MASS
OF THE NUCLEONIC BAG

In the static spherical MIT bag model [3, 4], the
mass of the nucleon and delta is given by

M(R) =
4π
3
BR3 + 3

Tq
R

∓ η

R
+

Z0

R
. (4)

The first term corresponds to the energy needed
in order to create a perturbative vacuum of volume
V = (4π/3)R3 within which the quarks are confined.
The second term is the total kinetic energy of three
massless quarks free to move in the volume V . The
color-electric and the color-magnetic hyperfine in-
teraction gives rise to the third term, responsible for
the N–∆ mass splitting. The last term, with Z0 <
0, collects effects that are difficult to calculate like
spurious center of massmotion and zero-point energy
of the bag surface. The equilibrium radius, RN , of the
bag is determined by requiring that

dM

dR

∣∣∣
R=R0

= 0, (5)

which is equivalent to requiring a balance of pressure.
Different values are quoted in the literature for the
parameters B, η, and Z0; however, a general feature
is that they give a rather large radius for the nucleon,
RN ≈ 1.1 fm. For this radius the baryon density in
the nucleon bag is approximately the same as that of
ordinary nuclear matter.

We will follow a different, more phenomenological
route, adopting for the mass of the ground state of a
nucleonic bag the expression

Mb(u, d, V ) = B · V (6)

+
(
bV (u + d) + bS

(u− d)2

u + d

)(
u + d

V

)x
+ (u + d− 3)fZ0(u, d, V ),

where with n a positive definite integer u + d = 3n.
The first term is the same as in the MIT bag model
(4), whereas the second term is identical in form to the
first and last terms of the semiempirical mass formula
(3) multiplied by a common density dependence. In
the last termwe hide effects of the spurious center-of-
mass motion, zero-point motion, etc. Or to be more
precise, we neglect these effects for the three-quark
bag and therefore should make corrections for their
PH
dependence on the quark number and bag size for
heavier bags. However, we will neglect this term for
the time being and return to it later. The requirement
of a balance of pressure determines the equilibrium
volume of the bag to be

V eq(u, d) (7)

=
(
x(u + d)x

B

(
bV (u + d) + bS

(u− d)2

u + d

)) 1
1+x

.

3. NUCLEAR MATTER AS AN AGGREGATE
OF NUCLEONIC BAGS

Bags with 3n quarks have half-integer spin and
obey Fermi statistics. For a degenerate gas ofA non-
interacting nucleon bags within the volume VA, the
average kinetic energy is therefore

Ekin

A
=

3h2

40MN

(
3A

2πVA

)2/3

, (8)

whereMN denotes the nucleonmass and we have as-
sumed a degeneracy of 4. This is, thus, the appropri-
ate kinetic energy to be used in conventional descrip-
tions of symmetric nuclear matter, i.e., matter with
equal numbers of neutrons and protons. However, we
will assume a constant degeneracy of four irrespective
of the neutron to proton ratio. The underlying quark
structure of nucleons is the reason for this. As long
as two bags do not overlap, the expectation value
of the total kinetic energy of the quarks receives no
contribution from quark exchange between the bags
because the wave functions describing quark states
in distinct bags do not overlap. The kinetic energy of a
gas of nontouching bags is thus the same irrespective
of the ratio of neutron to proton bags. However, in a
gas, bags will inevitably touch. We shall assume that
the effects of the required antisymmetry of quark wave
functions in a situation where n bags are touching
or overlapping one another, in our model, receive the
remaining contribution from the symmetry term in the
resulting merged 3n-quark bag. The symmetry term,
it should be noted, is exactly zero only in the case
where an equal number of neutron and proton bags
are involved. What is the probability for individual
nucleon bags to merge in the gas? We will apply a
naive combinatorial approach in order to answer this
question. In a homogenous gas of spherical bags we
select a volume VA containing on the average 3A
quarks. The volume VA should be chosen large but
must not be mistaken for the volume of the gas, which
we assume to be infinite. Nucleon bags each have a
volume V eq(2, 1).

Neutron and proton bags have the same equilib-
rium volume in our model. Assuming that two bags
merge if their centers are closer than twice the bag
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002



A SIMPLE SEMIEMPIRICAL EQUATION 595
radius the probability that a certain nucleon bag does
not merge with any other bag is

PA
1 =

(
1 − 8V eq(2, 1)

VA

)A−1

(9)

and the average number of 3-quark bags within the
volume VA is NA

1 = A · PA
1 . Similarly, the average

number of 3n-quark bags within VA, or equivalently,
the number of bags with baryon number n, is given by

NA
n =

(
1 − 8V eq(2, 1)

VA

)A−n
(10)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
×
(

8V eq(2, 1)
VA

)n−1(A
n

)
.

This expression, however, must be modified. For
n substantially larger than two, the n bags may all
merge even if the centers of two bags are further
apart than twice the radius of a 3-quark bag. We,
admittedly somewhat arbitrarily, choose the following
modified form:
NA
n =

n−1∏
i=0

(
VA

(V eq(A+Z
A i, 2A−Z

A i)1/3 + V eq(2, 1)1/3)3
− 1

)−1

A∑
j=1

(
A− 1
j − 1

) j−1∏
i=0

(
VA

(V eq(A+Z
A i, 2A−Z

A i)1/3 + V eq(2, 1)1/3)3
− 1

)−1

(
A

n

)
. (11)
Our choice is based on the assumption that a nu-
cleon bag will merge with a given number i of other
nucleon bags if it touches or overlaps the equiva-
lent volume of i merged bags. Exchanging, in (11),
V eq(A+Z

A i, 2A−Z
A i) for V eq(2, 1) we recover (10).

In a gas where Z out of A “nucleons” within VA
correspond to protons, the average number of bags
with baryon number n and charge z is

NA,Z
n,z = NA

n

(
Z
z

)(
A−Z
n−z

)
(A
n

) . (12)

The energy per nucleon in homogenous nuclear
matter with density ρ = A/VA and a proton fraction
Z/A is then given by

lim
A→∞

E

A
= lim

A→∞

(
3h2

40MN

(
3A

2πVA

)2/3

(13)

+
1
A

A∑
n=1

min(n,Z)∑
z=max(0,n+Z−A)

NA,Z
n,z

×Mx
b (n + z, 2n− z, V eq(n + z, 2n − z))c2

)
,

Mx
b (u, d, V ) = B · V (14)

+
(
bV (u + d) + bS

(u− d)2

u + d

)(
u + d

V

)x
,

where we keep the density constant when taking the
limit.

We have included in (13) the kinetic energy ap-
propriate for a nucleon gas for all densities. This
reflects our ignorance concerning the kinetic energy
of strongly overlapping bags. However, the correction
corresponding to the hitherto neglected last term in
(6) at least has the same sign as the first term in
(13). For the time being we will assume that the way
we have included the kinetic energy makes up for the
neglected term in (6).

In the limit of very low density, the equation of state
(13) corresponds to that of a dilute gas of nucleons,
whereas, at the density

ρ = lim
A→∞

A

V eq(A + Z, 2A − Z)
, (15)

it connects to the equation of state of a single bagwith
3A quarks, i.e., of quark matter.

4. DETERMINATION OF THE PARAMETERS
IN THE EQUATION OF STATE

The equilibrium density of nuclear matter, ρ0,
is determined by the requirement of zero pressure,
P (ρ0) = 0,

P

(
ρ =

A

VA

)
= − lim

A→∞
A
∂(E/A)
∂VA

. (16)

The incompressibility is calculated as

K

(
ρ =

A

VA

)
= lim

A→∞
9V 2

A

∂2(E/A)
∂V 2

A

. (17)

We now proceed to determine the four arbitrary
constants, B, bV , bS , and x by fitting (14) (and
(7)) to the average of the neutron and proton mass,
2
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Results obtained with the semiempirical equation of state for A = 400

Nuclear property Present result Empirical value

Nucleon mass,MN (MeV/c2) 938.91 (fitted) 938.91

Volume of nucleon, V eq(2, 1) (fm3) 2.3

Delta mass,M∆ (MeV/c2) 1218 1232

Volume of delta, V eq(3, 0) (fm3) 2.9

Equil. density, ρ0 (fm−3) 0.145 (fitted) 0.145 [5]

E/A at ρ = ρ0 (MeV) 922.95 (fitted) 922.95 [5]

Symmetry energy,Esym (MeV) 37.2 (fitted) 36.8 [5]

Incompr.,K(ρ = ρ0) (MeV) 324 240 [5]
MN = 938.91 MeV/c2, and (13) and (16) to empir-
ical values by Myers [5] for the equilibrium density,
ρ0 = 0.145 fm−3, the energy per nucleon, E/A =
922.95 MeV, and the symmetry energy,

Esym = lim
A→∞

E

A

∣∣∣
Z=A 1−δ

2

− E

A

∣∣∣
Z=A

2

δ2
= 36.8 MeV.

Such a fit returns a value of x = 0.9997. We there-
fore choose x to be exactly one and the equation of
state simplifies to

lim
A→∞

E

A
= lim

A→∞

(
3h2

40MN

(
3A

2πVA

)2/3

(18)

+
1
A

A∑
n=1

min(n,Z)∑
z=max(0,n+Z−A)

NA,Z
n,z

×M1
b (n + z, 2n − z, V eq(n + z, 2n− z))c2

)
,

where

M1
b (u, d, V ) = B · V + bV

(u + d)2

V
(19)

+ bS
(u− d)2

V

and

V eq(u, d) =

√
bV
B

(u + d)2 +
bS
B

(u− d)2. (20)

Fitting (16), (18), and (19), for A = 400, to the
nucleon mass and the empirical values for the energy
per nucleon and the symmetry energy at equilibrium
density as determined byMyers, we obtain the follow-
ing values for the coefficients:

B = 207.169146 MeV c−2 fm−3,

bV = 108.091778 MeV c−2 fm3,
P

bS = 90.963175 MeV c−2 fm3.

Different sets of values for the energy per nucleon,
the equilibrium density, and the symmetry energy of
infinite nuclear matter occur in the literature, based
on fits to nuclear masses. Choosing a different set we
obtain somewhat different values for the coefficients.
However, qualitatively, our results remain the same.
In particular, x stays close to one.

The convergence of the limits in (16) and (18)
depend on the baryon density. At ordinary nuclear
matter density the result for the energy per nucleon
differs by less than 30 keV choosing A = 300 or 400.

5. RESULTS AND DISCUSSION

With the empirically determined values for the co-
efficients, we obtain the results in the table. In the fit
the weighting was done in such a way that the small
deviation caused by our choice of x = 1 only affects
the result for the symmetry energy. The result we
obtain for the nucleon volume, V eq(2, 1) = 2.3 fm3,
corresponds to a radius of 0.82 fm. The nucleon-
delta mass splitting comes out within less than 5% of
the empirical value even though the value was in no
way included in the fitting. Remarkably, the result for
the incompressibility at equilibrium, K = 324 MeV,
is only 35% larger than the value adopted by Myers,
K = 240 MeV, but it varies rapidly (and nonlinearly)
with density. Decreasing the density by 20% the in-
compressibility falls to 136 MeV, whereas, for a 20%
increase in density, the incompressibility increases to
379 MeV.

The radius of the nucleonic bag is only weakly
dependent on the ratio of the number of up and down
quarks. In this respect the delta isobar is extreme
with a radius 10% larger than that of the nucleon.
The bag with equal numbers of up and down quarks
is only 1.5% smaller than the bag corresponding to
pure neutron matter, d/u = 2. The approximation in
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 1. Energy per baryon in nuclear matter for different
proton fractions: Z/A = 0 (dashed curve), Z/A = 0.33
(dotted curve), and Z/A = 0.5 (solid curve).

(11), where we neglected the varying composition of
overlapping bags, therefore, is a rather good one.

Even though we are intrigued by these results,
we feel obliged to stress that many simplifying as-
sumptions and approximations have been made along
the way. The neglect of any dynamic and quantum
effects prohibits us from applying the model in its
present form to finite nuclei, in particular, to light
nuclear systems where quantum effects are essential
to the binding. In a finite nucleus the probability for
bag overlap falls off smoothly near the surface and
so the model is expected to reproduce, in principle,
the surface effects well known from the semiempirical
mass formula.

Perhaps the detailed workings of our model are not
so essential, but rather its conceptual foundations. In
the present model the decreasing asymmetry between
the number of up and down quarks in overlapping
bags is the sole source for binding in nuclear matter
and therefore the incompressibility and the symme-
try energy are strongly covariant. More asymmetric
nuclear matter is less bound and has a lower in-
compressibility at equilibriumdensity than symmetric
matter because the probability to form joint bags with
equal numbers of up and down quarks is smaller.

We now proceed to calculate the predictions re-
garding the properties of nuclear matter far from equi-
librium. In Figs. 1 and 2 we show our results for
the energy per nucleon and the incompressibility as
a function of density for different proton fractions.
From (15) we obtain the baryon density at which the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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transition to homogenous quark matter is completed,

ρqm =
1
3

√
B(u + d)2

bV (u + d)2 + bS(u− d)2
, (21)

to be for symmetric nuclear matter ρqm(δ = 0) =
0.46, and for pure neutron matter, ρqm(δ = 1) = 0.44.
For densities greater then these the quark density
inside the bag would have to increase and so our
simple equation of state can no longer be expected to
be relevant as it explicitly assumes the bags to remain
in their ground state. However, even before that point
at a density between twice and three times ordinary
nuclear matter density, our neglect of strangeness is
expected to significantly influence the results [6].

The semiempirical equation of state remains fairly
soft until homogenous quark matter is reached. The
incompressibility (Fig. 2) is larger for asymmetric
nuclear matter than for symmetric for densities well
below equilibrium nuclear matter density, whereas
for densities between nuclear matter density and the
transition to quark matter, symmetric nuclear matter
has the largest incompressibility.

6. CONCLUSION

Based on analogy with the mass formula for nuclei
and the MIT bag model, we have formulated a sim-
ple semiempirical equation of state for cold nuclear
matter. The source of binding energy is the decreas-
ing asymmetry between the number of up and down
quarks in overlapping bags and the incompressibility
and the symmetry energy are strongly covariant. The
striking simplicity of the equation of state and its
success in reproducing empirically known properties
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of nuclear matter and the nucleon–delta mass dif-
ference suggests that it models important aspects of
the properties of hadronic matter. A smooth transition
from nuclear matter to quark matter is predicted,
the transformation being completed at approximately
three times the equilibrium density of nuclear matter.
The incompressibility at equilibrium density is pre-
dicted somewhat above the most commonly quoted
values; however, it increases only slowly until ho-
mogenous quark matter is reached.

Neutron star matter at a few times nuclear matter
density may have finite strangeness in the ground
state [6]. In order to investigate the effects of strange-
ness work to extend our model to include the strange
quark is under way.
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Abstract—The level structure in 181Hf is studied by using (n, γ) and (d, p) reactions. Gamma–gamma
coincidences permit an unambiguous placement of the majority of gamma transitions in the level scheme
up to 1.8 MeV, while the (d, p) angular distributions and vector analyzing powers are used to deduce spin–
parity assignments. Forty-three levels are grouped into 12 rotational bands built on one-quasiparticle and
quasiparticle-plus-vibrational states. The proposed level structures are in qualitative agreement with earlier
quasiparticle-phonon-model calculations. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Up to the present time, information about the
nuclear levels in 181Hf has been rather scarce and
ambiguous [1]. Only two rotational bands, 1/2−[510]
and 3/2−[512], in the vicinity of the ground state have
been firmly assigned. The bandhead of the 9/2+[624]
Nilsson orbital has been established at the excita-
tion energy of about 600 keV. Also, the bandhead
7/2−[503] orbital was assigned to a level at 670 keV.
The others states reported in [1], apart from those
mentioned above, could only be tentatively assigned
to specific Nilsson configurations because of the ex-
perimental uncertainty in the spins of these levels.
The experimental methods used in the past included
(d, p) [2], (n, γ) [3, 4], and (t, p) [5] reactions, together
with β decay [6]. In the present study, we focus first
on clarifying the problem of the discrepancy in energy
between old (d, p) and (n, γ) measurements and sec-
ond on extending the level scheme and on performing
a comparison with the quasiparticle-phonon-model
(QPM) predictions [7].

2. EXPERIMENTS AND RESULTS

Thermal-neutron-capture studies of 180Hf were
performed at the light-water reactor LWR-15 at Řež

∗This article was submitted by the authors in English.
†Deceased.
1)Physik-Department, Technische Universität München,
Germany.

2)Sektion Physik, Universität München, Garching, Germany.
3)Nuclear Physics Institute, Řež, Czech Republic.
**e-mail: jberzins@latnet.lv
1063-7788/02/6504-0599$22.00 c©
near Prague. A much higher sensitivity of the present
measurements was achived by using a neutron guide
[8]. A 28% HPGe detector with a resolution of
2.0 keV at 1332 keV (60Co line) and 4.8 keV at
6530 keV and a 12% detector with about the same
resolution were applied. The sample of 300 mg of
oxide powder enriched in 180Hf to 96.2% was used.
The appropriate placement of the γ-ray transitions
in the level scheme was ensured by γγ-coincidence
measurements. About 4 × 108 coincidences were
recorded.

The (d, p) measurements were performed with
a 24-MeV vectorially polarized deuteron beam pro-
vided by the Lamb shift ion source at the Munich
MP tandem accelerator. The protons were analyzed
with a Q3Dmagnetic spectrograph and detected by a
1.8-m-long position sensitive proportional chamber.
A Hf target of thickness about 105 µg/cm2 enriched
in 180Hf to 96.2% was prepared by evaporating HfO2

onto a 5.6 µg/cm2 carbon foil backing. The pro-
ton spectra with an energy resolution of 5 to 6 keV
(FWHM) were recorded up to 3 MeV at ten scatter-
ing angles between 11◦ and 45◦ and with two polar-
izations. The excitation energies were obtained after
the calibration of the (d, p) peaks by using the present
(n, γ) measurements. Spin–parity assignments and
spectroscopic factors were obtained from a compar-
ison with the cross-section and asymmetry values
calculated by using the DWBA method. Also, the
importance of inelastic collective processes is clearly
seen in the present measurement by observing the
rotational members of the ground-state band up to
15/2−. In the calculations based on the CHUCK3
2002 MAIK “Nauka/Interperiodica”
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code, we added some “coupled channels” (CC) with
collective form factors (β2 and β4).

3. LEVEL SCHEME

The observed levels were grouped into 12 rota-
tional bands (see figure). These assignments were
made with allowance with our new results and avail-
able experimental data on the neighboring nuclei.
The 1/2−[510] band (energies in keV): 0

(1/2−), 45.8 (3/2−), 98.5 (5/2−), 204.0 (7/2−),
303.9 (9/2−), 466 (11/2−), 619 (13/2−), and 834
(15/2−).
The 3/2−[512] band: 252 (3/2−), 329.4

(5/2−), 440.8 (7/2−), 573.9 (9/2−), 751.0
(11/2−), 931.0 (13/2−), and 1185.0 (15/2−).

The levels up to 7/2− in both bands have already
been known. We have added the rotational members
from 9/2− to 15/2−.
The 9/2+[624] band: 595.3 (9/2+), 801.5

(11/2+), and 1010 (13/2+).
The 11/2+[615] band: 620 (11/2+) and 758.6

(13/2+).
The bandhead of the 9/2+[624] Nilsson config-

uration has been firmly established in the (t, p) re-
action [5] at about 600 keV. Using the prompt γγ-
coincidence data, we have established the level at
595.3 keV, which was deexcited by four transitions
to the levels of the 1/2−[510] and 3/2−[512] bands.
Because we did not observe populating transitions in
prompt coincidences, we identify this latter state with
the 9/2+ state of [5]. An additional analysis of the
delayed γγ coincidences gives evidence for the half-
life of 1.2 ± 0.4 µs. Thus, the 9/2+[624] bandhead
is the lowest positive-parity state in 181Hf decaying
through∆K-forbiddenE1 transitions. There are two
proton peaks at 801 and 1010 keV with a high l value
in the (d, p) spectra; they could be considered as
rotational members of this band. In the (d, p) spectra,
we have also observed a clear l = 6, 13/2+ state at
759 keV. Most likely, this is a “particle” state that
belongs to the i13/2 shell—namely, the 11/2+[615]
Nilsson configuration. Following [5], we consider the
level at 620 keV as a reasonable candidate for the
bandhead.
The 7/2−[503] band: 663.8 (7/2−), 800.0

(9/2−), and 964.8 (11/2−).
The bandhead has already been observed in previ-

ous (d, p) measurements as the strongest l = 3 “par-
ticle” state in this region carrying almost the entire
strength of the 7/2−[503] band. In thermal-neutron
capture, this state is depopulated by fiveM1 and one
E2 transitions. The 9/2− rotational level has been
P

identified at 800.0 keV in γγ coincidences and (d, p)
spectra. The 11/2− member of this rotational band
was observed in the (d, p) spectra. The angular dis-
tributions are comparatively flat, and the asymmetry
distributions are compatible with the CCBA shape for
the 11/2− state.
The 7/2−[514] band: 904.4 (7/2−) and 1031.7

(9/2−).
The Iπ = 7/2− level at 904.4 keV was established

in the β decay of 181Lu [6] and has been confirmed
in the present (d, p) studies. The rotational 9/2−
member is located at 1032 keV for which the angular
distributions and asymmetry are consistent with a
l = 5 transfer to the 9/2− state. Very tentatively, we
suggest the 11/2− state at 1173 keV. All rotational
bands mentioned above constitute structures built on
rather pure one-quasineutron states. These results
agree with the earlier QPM calculations from [7],
where the single-particle fractions amount to 95%.
Above these energies, the level structure becomes
progressively more complicated.
The 1/2−[510] + Q20 band: 1044.9 (1/2−),

1086.2 (3/2−), and 1134.7 (5/2−).
Two levels at 1045 and at 1086 keV, both popu-

lated by primary transitions in thermal-neutron cap-
ture, are depopulated byM1 andE2 transitions to the
ground-state band. A very similar rotational spacing,
evidence of E2 transitions, and the entire absence in
the (d, p) spectra allow us to identify these levels with
β-vibrational states based on the 1/2−[510] Nils-
son configuration. Also, the third state at 1134 keV
demonstrates significant E2 branches to the 1/2−

and 9/2− levels of the ground-state band. Very sim-
ilar moments of inertia and decoupling parameters
in the latter and in the parent band indicate a minor
admixture of other configurations expected at these
energies.
The 1/2−[510] – Q22 band: 1117.1 (3/2−)

and 1178.3 (5/2−).
The state at 1117 keV has already been observed

in previous thermal-neutron-capture studies with-
out a definite spin–parity assignment. Based on our
observation of an additional state at 1178 keV with
a similar decay mode predominantly to the ground-
state band, we group these two levels into a band. The
missing (d, p) strength indicates its possible vibra-
tional character, suggesting the γ-vibrational band
based on the 1/2−[510] Nilsson configuration. It is
instructive to note that, in the neighboring even–
even Hf nucleus, the lowest vibrations are the 2+ and
0+ states near 1200 keV. According to QPM calcu-
lations, the lowest purely γ-vibrational state based
on the ground-state configuration appears only at
1464 keV.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Level scheme of 181Hf. Arrows indicate that the levels are populated by primary γ transitions. The symbols b, o, t, and c
correspond to β decay, the (d, p) reaction, the (t, p) reaction, and γγ-coincidence method, respectively.
The 5/2−[512] band: 1056.0 (5/2−), 1157.5
(7/2−), and 1287.3 (9/2−).

The new level at 1056 keV was established in the
present thermal-neutron-capture study by depopu-
lation through six transitions, which imply the most
likely 5/2− characteristic. The corresponding (d, p)
peak observed at this energy unfortunately belongs
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
to 179Hf. The neigboring (d, p) peak in this energy
region at 1157 keV displays a clear l = 3 transfer
to 7/2−. Taking into account a reasonable rotational
spacing between the two levels and the expected
“fingerprint” patterns, we associated these two levels
with the 5/2−[512] Nilsson configuration. The third
member 9/2− of this band could be tentatively located
2
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at 1287 keV on the basis of the only coincident transi-
tion at 231 keV from this level. Again, a part of the in-
tensity of the 1287- keV (d, p) peak belongs to 179Hf.
The calculated QPM structure of the 5/2−[512] state
is complicated: 5/2−[512] 68%, {1/2−[510] + Q22}
29%, and {9/2+[624] + Q32} 1%.
The 3/2−[501] band: 1321.8 (3/2−), 1397.0

(5/2−), and 1492.7 (7/2−).
There are two particle states, 3/2−[501] and

1/2−[501], according to the Nilsson scheme which
could be expected as the strongest peaks in the (d,
p) spectra of Hf nuclei. The lowest one of this family
of strongly populated l = 1 levels is the 3/2− state
at 1322 keV, which is also populated by a strong
primary transition in thermal-neutron capture. The
rotational member 5/2− was established at 1397 keV;
its decay mode is very similar to the bandhead level
at 1322 keV. The corresponding (d, p) peak shows a
clear l = 3 transfer with the asymmetry distribution
peculiar to 5/2−. The 7/2− rotational member was
observed in coincidences at 1493 keV. The decay
mode of these levels shows some similarity to the
decay of the 3/2−[501] state at 1459.0 keV in 179Hf
[9]. Noteworthy, the strong E2 decay from the 3/2−

bandhead state to the 7/2−[503] state at 663 keV
strongly suggests an admixture of the {7/2−[503] +
Q22} vibrational component. This observation agrees
well with the QPM predictions, which give the
following structure: 3/2−[501] 27%, 3/2−[512] 1%,
{7/2−[503] +Q22} 56%, and {3/2−[512] +Q20}
13%.
The 1/2−[501] band: 1629.4 (1/2−), 1682.7

(3/2−), and 1746 (5/2−).
A pair of l = 1 states at 1629 and 1683 keV known

previously only from (n, γ) studies are assigned here
to the 1/2−[501] band. The next member 5/2− was
established at 1746 keV. The relative cross sections
for all three levels follow rather well the expected
fingerprints for the 1/2−[501] Nilsson configuration.
The 1/2+[651] band: 1454.0 (1/2+), 1616.2

(3/2+), 1452.2 (5/2+), and 1520.2 (9/2+).
There are the two strongest peaks in the (d, p)

spectra at 1452 and 1520 keV, which provide rather
firm l = 2 and l = 4 angular-momentum transfers
and unambiguous spin–parity assignments of 5/2+

and 9/2+. A much weaker state was observed at
1616 keV, which indicates a clear l = 2 transfer with
an evident asymmetry oscillations peculiar to a 3/2+

state. These three levels are grouped into a rota-
tional band with the moment of inertia and decou-
pling parameter given in the figure. The 1/2+ band-
head is placed very close to the 5/2+ state. Thermal-
neutron-capture data provide a definite population
PH
and decay information for the level at 1454 keV, which
is seen in the 4242–1454 two-step cascade. A similar
positive-parity structure was observed only in 175Yb
[10]. No band with the proposed structure was pre-
dicted by the QPM in this energy interval. On the
contrary, the two lowest 1/2+ states reported in [7] are
formed by the octupole phonons Q31 coupled to the
two low-lying Nilsson states of negative parity. The
observation of possible octupole structures is very
problematic in the present study because of their ex-
pected very weak population both in thermal-neutron
capture and in the (d, p) reaction.

CONCLUSION

Our new experimental results, containing data on
the (n, γγ) and (d, p) reactions have allowed us to de-
velop the level scheme of 181Hf up to about 1.8 MeV.
Eight new rotational bands have been established;
two of them have been observed only in the (n, γ)
reaction and interpreted as relatively pure γ- and β-
vibrational bands belonging to the ground-state con-
figuration. The rotational parameters are close to the
corresponding values in the neighboring Hf and W
nuclei. The interpretation of levels does not contradict
the earlier QPM calculations. Experimental details, a
further extension of the level scheme, and a compari-
son with calculations will be published elsewhere.
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Abstract—Excited states of 11Be have been studied with several transfer reactions. Nine states between
3.96 and 25.0 MeV excitation energy show the characteristic energy dependence of a rotational band. The
deduced large moment of inertia is consistent with a 2α structure with large deformation. In 12Be four
high-lying states observed at 7.3, 10.7, 14.6, and 21.7 MeV in the reaction 9Be (15N,12N)12Be, also form
a rotational band with almost the same moment of inertia; tentative spin assignments of 2+–8+ are used.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Neutron-rich Be isotopes show pronounced 2α-
cluster structures, and molecular structures can be
found in excited states with the two α particles bound
by additional neutrons [1]. It is known from ear-
lier studies that the ground states of Be isotopes
with A ≥ 10 have a more compact shape. Molecular
states are localized at higher excitation energy, as
discussed by von Oertzen [1]. For 11Be the states at
3.96 MeV (3/2−), 5.25, 6.72, and 8.82 MeV, known
from 9Be(t, p) reactions [2, 3], form a molecular ro-
tational band with the 3/2− bandhead. Several the-
oretical papers have been published recently about
the structure of 10Be [4–6]. Kanada-En’yo et al. [4]
obtained in AMD calculations pronounced molecu-
lar structures of excited states of 10Be, whereas the
ground state is less deformed. In these calculations it
is characteristic that the α–α distance is large, and,
e.g., in the case of 10Be (0+

2 , 6.18 MeV), the density
distribution of the two extra neutrons corresponds
to a σ-bond, whereas the more compact form of the
ground state is related to the π-bond [1, 4–6].
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2. A MOLECULAR ROTATIONAL BAND
IN 11Be

We have investigated the structure of 11Be using
two-neutron transfer reactions on 9Be, and also
the one-neutron transfer reaction (14N,13N) on a
radioactive 10Be target. In the latter reaction we found
that only the single-particle states were populated,
up to the 3/2− state at 3.41 MeV, above which no
more states were observed. This behavior changes
dramatically using 9Be as target and two-neutron
transfer reactions: in the 9Be (14N, 12N)11Be reaction
at Elab � 218 MeV (Fig. 1, upper panel), all the
states known from (t, p) and a formerly unknown
state at 5.98(4) MeV were observed, and in the
9Be (13C,11C)11Be reaction at 379 MeV, states even
up to 25MeV excitation energy were populated due to
the more favorable excitation conditions at the higher
incident energy. In the latter reaction five new states
were found at 10.8, 13.8, 18.6, 21.6, and 25.0 MeV
[7] (Fig. 1, center panel). When these new states are
included in the K = 3/2− molecular band starting
at 3.96 MeV excitation energy, a rather good linear
dependence is obtained in a plot of excitation energies
vs. J(J + 1) (Fig. 1, lower panel). The spins of the
band members run up to a maximum spin of 19/2−

for the highest lying state. From the slope (�2/2Θ =
0.23 MeV) of the line in Fig. 1 (lower panel), a large
moment of inertia 2Θ/�2 = 4.3 MeV−1 is deduced,
which corresponds to a large α–α distance in the
core (∼ 6 fm) and supports the interpretation as a
molecular structure. The highest spin 19/2− can
only be explained in a molecular model: the two α
particles are separated by a large distance and rotate
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectra of the 9Be (14N,12N)11Be (upper panel, Elab = 217.9 MeV, θlab = 2.0◦–5.9◦) and 9Be (13C,11C)11Be
reactions (center panel, Elab = 379 MeV, θlab = 4◦–8◦). The background results from 16O in the target (hatched area),
12C (black area) and from three-body contributions. The lower panel shows a plot of excitation energies vs. J(J + 1) for
the K = 3/2− molecular rotational band of 11Be (�2/2Θ = 0.23 MeV). The broad distributions correspond to 13N∗ → 12N
+n decay (upper panel); 12C∗ → 11C + n, 10Be (g.s.), (dash-dotted curve), 10Be (7.34 MeV) (center panel).
in an l = 4 resonance state. Higher l values are not
observed as resonances in α–α scattering [8]. The
first 4+ state of 8Be is found at 11.4 MeV excitation
energy. Furthermore, for the 19/2− state of 11Be the
two transferred neutrons are placed into molecular
orbitals of σ(d5/2) bonds and couple to a maximum
P

spin of 4+, and the single neutron of the 9Be target
adds with Jπ = 3/2− to give the total spin 19/2−.

The observed widths of the nine band members are
rather small (<15 keV [2] for the 3/2− bandhead; they
increase to 0.7 MeV for the state at 25.0 MeV excita-
tion energy). The moderate width is consistent with a
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 2. Correlation diagram for molecular states of neu-
trons in the potential of two α particles (schematic,
adopted from [1]); the α–α distance r is given on the
x axis.

shape isomeric state at high spin. We want to remark
that in this reaction the new state at 6.0(1) MeV is
observed again.

In a third 2n-transfer reaction we have measured
the 9Be (15N, 13N)11Be reaction, Elab = 240 MeV,
where the states at 10.8, 13.8, and 21.6 MeV were
confirmed.

From previous studies we know that the formation
of molecular structures in transfer reactions depends
sensitively on the structure in the initial channel and
the reaction mechanism. As we have seen, the mole-
cular band of 11Be could be well populated starting
with 9Be as the target, which has in its ground state
already a strongly deformed 2α structure, whereas
this was not the case using a 10Be target. In Fig. 2
a schematic picture of the correlation diagram for
neutrons in a two-center potential of two α particles
is shown. Asymptotically the external neutrons are
bound in a p3/2 state of one of the α particles (states
on the right), while, at a small distance, there is
the deformed bound state potential of the compound
system. At intermediate distances, σ and π bonds are
developing as indicated. For the 9Be ground state the
potential minimum is located at an α–α distance of
about 3.2 fm (the dot in Fig. 2). When two neutrons
are transferred on 9Be to the molecular σ1/2+(u)
orbits, this distance is increased to more than 5 fm.
The increase of the α–α distance for this molecular
configuration in 11Be with two neutrons in the σ bond
is indicated in Fig. 2 by the horizontal arrow.
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Fig. 3. Spectra of reactions, which populate final
states of 12Be: the double-charge-exchange reaction
(14C,14O) on 12C (upper panel), and the 3n-transfer
reaction 9Be (15N,12N)12Be (center panel). The broad
distributions correspond to sequential decay contribu-
tions (e.g., 16O∗ → 14O +n + n for upper panel and
13N∗ → 12N + n for central panel). The lower panel
shows a plot of excitation energies vs. J(J + 1) for
the molecular rotational band of 12Be found in the 3n-
transfer reaction (�2/2Θ = 0.21 MeV).

3. MOLECULAR STRUCTURE STUDIES
OF 12Be

Low-lying states of 12Be up to 5.7 MeV excitation
energy have been measured by Alburger et al. [9]
and Fortune et al. [10] using the (t, p) reaction on
2
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10Be. Spins have been assigned only to the two lowest
excited states: 2+ at 2.10 MeV [9] and recently 1− for
the 2.70 MeV [11]. In earlier studies of neutron-rich
nuclei, we measured the double-charge-exchange re-
action 12C(14C, 14O)12Be, Elab = 336 MeV (Fig. 3,
upper panel) and found two higher lying states: a nar-
row state at 7.2(1) MeV and a broad peak at 9.3MeV
excitation energy with a width of 2.0(3) MeV [12].
The experimental resolution in this measurement is
0.4 MeV.

Exotic cluster structures of 12Be have been search-
ed for also by Korsheninnikov et al. [13] using the
12Be + p inelastic scattering. The authors found
two peaks at 8.6 ± 0.15 and 10.0 ± 0.15 MeV. The
observed structures consist of only two channels at
a higher counting rate above the background, which
are separated by one channel. The common center
of gravity of the observed structure is located at
about 9.3 MeV, making it probable that it may be
the same as the one we observed in the (14C, 14O)
reaction. Further measurements with better statistics
and resolution are necessary to clarify the situation at
this region of excitation energy.

An extremely deformed molecular band of 12Be
has been found by Freer et al. [14] at excitation ener-
gies between 12 and 21MeV using the fragmentation
of 12Be into 6He+6He by coincident detection of two
correlated 6He fragments. From the angular correla-
tion they propose spin assignments from 4+ to 8+.

In the 12C(14C, 14O) reaction we did not observe
states at higher excitation energies than 9.3 MeV.
However, using a 9Be target and the three-neutron
transfer reaction 9Be(15N, 12N)12Be, further states
at energies of 10.7, 14.6, 19.2, and 21.7 MeV were
found (Fig. 3, center panel) with significances larger
than 4σ. In 12Be, a molecular rotational band can be
formed in a similar way as for 11Be using the same
configurations: an α–α core with rotational states
0+, 2+, 4+ and two neutrons transferred to the 1d5/2
orbit of the molecular system, which can couple to a
maximum spin of 4+; the third transferred neutron in
the 1p3/2 orbit couples to zero with the 3/2− neutron
from the 9Be target. A maximum spin of 8+ can be
obtained in this case. Using the tentative assignment
of 8+ for the state at 21.7 MeV, which is consistent
with the results of Freer et al., a molecular rotational
band can be assigned with the members 14.6 MeV
(6+), 10.7 MeV (4+), and 7.40 MeV (2+) according
to the linear dependence of the excitation energies on
P

J(J + 1) in Fig. 3 (lower panel). A moment of inertia
of 4.76 MeV−1 is obtained, very similar to the case
of 11Be. The 0+ bandhead is not directly observed in
the spectrum due to the small cross section expected
for a 0+ state, but its position can be predicted from
the extrapolation of the straight line to J = 0. An
excitation energy of 6.4 MeV is deduced for this 0+

bandhead.

4. SUMMARY

High-lying states have been found in 11Be and
12Be up to excitation energies of 25.0 and 21.7 MeV,
respectively. Molecular rotational bands have been
assigned according to a linear dependence of the ex-
citation energies of the band members on J(J + 1).
From the slope parameters, large moments of inertia
are deduced: Θ(11Be) = 91 ± 5 u fm2 and Θ(12Be) =
100± 8 u fm2, respectively. These values can be inter-
preted by molecular structures with two α particles at
a large distance.
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Abstract—We introduce a novel coupling potential for the scattering of deformed light heavy-ion reactions.
This new approach is based on replacing the usual first derivative coupling potential by a new, second
derivative coupling potential in the coupled-channels formalism. This new approach has been successfully
applied to the study of the 12C + 12C, 12C + 24Mg, 16O + 28Si, and 16O + 24Mg systems and made major
improvements over all the previous coupled-channels calculations for these systems. This paper also shows
the limitations of the standard coupled-channels theory and presents a global solution to the problems faced
in the previous theoretical accounts of these reactions. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We investigate the elastic and inelastic scattering
of light heavy-ions, which have stimulated a great
deal of interest over the last 40 years. There has been
extensive experimental effort to measure the elastic
and inelastic scattering data as well as their 90◦-
and 180◦-excitation functions. A large body of ex-
perimental data for these systems is available (see
[1–4] and references therein). A variety of theoret-
ical accounts based on dynamical models or purely
phenomenological treatments have been proposed to
explain these data [1, 5]. The elastic scattering data
have already been studied in detail using an optical
model and coupled-channels method.

Althoughmost of these models provide reasonably
good fits, no unique model has been proposed that
explains consistently the elastic and inelastic scatter-
ing data over a wide energy range without applying
any ad hoc approaches. Consequently, the following
problems continue to exist for light heavy-ion reac-
tions: (1) explanation of anomalous large angle scat-
tering data (ALAS); (2) reproduction of the oscillatory
structure near the Coulomb barrier; (3) the lack of
the correct oscillatory structure agreement between
theoretical predictions and experimental data for the
ground and excited states; (4) simultaneous fits of
the individual angular distributions, resonances, and
excitation functions (for the 12C+ 12C system in par-
ticular); (5) the magnitude of the mutual-2+ excited
state data in the 12C+ 12C system is unaccounted for;
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(6) the deformation parameters (β values): previous
calculations require β values that are at variance with
the empirical values and are physically unjustifiable.

Therefore, in this paper, we are concerned with the
measured experimental data for 12C+ 12C, 16O+ 28Si,
12C+ 24Mg, and 16O+ 24Mg in an attempt to find a
global model, which simultaneously fits the elastic
and inelastic scattering data for the ground and
excited states in a consistent way over a wide energy
range and which throws light on the underlying
mechanism of the reactions and on the nature of the
interactions involved.

2. STANDARD COUPLED-CHANNELS
MODEL

Although we have considered and studied four
different reactions in detail, we will show some of the
results for the 16O+ 28Si and 12C+ 12C reactions.
The details of the models and a complete set of the
results for all four reactions can be found in [6–9].

We describe the interaction between 16O and 28Si
nuclei with a deformed optical potential. The real
potential is assumed to have the square of a Woods–
Saxon shape:

VN (r) =
−V0

[1 + exp((r −R)/a)]2
, (1)

where V0 = 706.5 MeV, R = r0(A
1/3
p +A1/3

t ) with
r0 = 0.7490 fm and a = 1.40 fm. The parameters of
the real potential were fixed as a function of energy
and were not changed in the present calculations,
although it was observed that small changes could
improve the quality of the fits.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. For 16O+ 28Si: The comparison of the stan-
dard coupling potential (solid curve) which is the first
derivative of the central potential and our new coupling
potential (dashed curve), which is parametrized as the
second derivative of Woods–Saxon shape and which has
V = 155.0MeV,R = 4.160 fm, and a = 0.81 fm.

The imaginary part of the potential was taken as in
[4] as the sum of aWoods–Saxon volume and surface
potential, i.e.,

W (r) = −WV f(r,RV , aV ) (2)

+ 4WSaSdf(r,RS , aS)/dr,

f(r,R, a) =
1

1 + exp((r −R)/a)
(3)

with WV = 59.9 MeV, aV = 0.127 fm, and WS =
25.0 MeV, aS = 0.257 fm. These parameters were
also fixed in the calculations and only their radii in-
creased linearly with energy according to the follow-
ing formulas:

RV = 0.06084Ec.m. − 0.442, (4)

RS = 0.2406Ec.m. − 2.191. (5)

Since the target nucleus 28Si is strongly deformed,
it is essential to treat its collective excitation explicitly
in the framework of the coupled-channels formalism.
It has been assumed that the target nucleus has a
static quadrupole deformation and that its rotation
can be described in the framework of the collective
rotational model. It is therefore taken into account by
deforming the real optical potential in the following
way:

R(θ, φ) = r0A
1/3
p + r0A

1/3
t [1 + β2Y20(θ, φ)], (6)

where β2 = −0.64 is the deformation parameter of
28Si. This value is actually larger than the value cal-
culated from the known BE(2) value. However, this
larger β2 was needed to be able to fit the magnitude
for the 2+ data.
P

In the present calculations, the first two excited
states of the target nucleus 28Si: 2+ (1.78 MeV)
and 4+ (4.62 MeV) were included and the 0+–2+–
4+ coupling scheme was employed. The reorientation
effects for 2+ and 4+ excited states were also in-
cluded. The calculations were performed with an ex-
tensively modified version of the code CHUCK [10].
Using the standard coupled-channels theory, we

found, as other authors had found, that it was impos-
sible to describe consistently the elastic and inelastic
scattering of this and other reactions we considered.

3. NEW COUPLING POTENTIAL

The limitations of the standard coupled-channels
theory in the analyses of these reactions compelled
us to look for another solution. Therefore, a second-
derivative coupling potential, as shown in Fig. 1, has
been used in the place of the usual first-derivative
coupling potential. The interpretation of this new
coupling potential is given in [11]. Here we employed
the same method with small changes in the potential
parameters. The empirical deformation parameter
(β2) is used in these calculations.

4. RESULTS

4.1. 16O + 28Si

The first system we consider is 16O + 28Si, which
shows ALAS. In the present work, we consider an
extensive simultaneous investigation of the elastic
and the inelastic scattering of this system at numer-
ous energies from Elab = 29.0 to 142.5 MeV over the
whole angular range up to 180◦. In this energy range,
the excitation functions for the ground and 2+ states
are also analyzed [6, 12].
Several ad hoc models have been proposed to

explain these data, but no satisfactory microscopic
models have been put forward yet. The most satisfac-
tory explanation proposed so far is that of Kobos and
Satchler [4], who attempted to fit the elastic scatter-
ing data with a microscopic double-folding potential.
However, these authors had to use some small ad-
ditional ad hoc potentials to obtain good agreement
with the experimental data.
Using the standard coupled-channels method,

some of the results obtained for the 180◦-excitation
functions for the ground and 2+ states of the reaction
16O+ 28Si are shown in Fig. 2. The magnitude of
the cross sections and the phase of the oscillations
for the individual angular distributions are given
correctly at most angles. However, there is an out-
of-phase problem between the theoretical predictions
and the experimental data towards large angles at
higher energies. This problem is clearly seen in the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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figure. A number of models have been proposed,

ranging from isolated resonances to cluster exchange
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
between the projectile and target nucleus to solve
these problems (see [1] for a detailed discussion).
We have also attempted to overcome these prob-

lems by considering (i) changes in the real and
2
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imaginary potentials, (ii) the inclusion of the 6+

excited state, (iii) changes in the β2 value, and (iv)
the inclusion of the hexadecapole deformation (β4).
These attempts failed to solve the problems at all
[6, 12]. We were unable to get an agreement with
the elastic and the 2+ inelastic data as well as the
180◦-excitation functions simultaneously within the
standard coupled-channels formalism. However, as
shown in Fig. 2, the new coupling potential has solved
the out-of-phase problem for the 180◦-excitation
functions and fits the ground state and 2+ state data
simultaneously.

4.2. 12C + 24Mg and 16O + 24Mg

The second and third examples we have consid-
ered are 12C + 24Mg and 16O + 24Mg. Fifteen com-
plete angular distributions of the elastic scattering
of 12C + 24Mg system were measured at energies
around the Coulomb barrier and were published re-
cently [2]. We have studied these 15 complete elas-
tic scattering angular distributions as well as some
inelastic scattering data measured by Carter et al.
[13, 14] some 20 years ago. Excellent agreement with
the experimental data was obtained by using this new
coupling potential. Our model has also solved some
problems in 16O + 24Mg scattering [8].

4.3. 12C + 12C

The final system we have considered is that of
12C+ 12C, which has been studied extensively over
the last 40 years. There has been so far no model that
fits consistently the elastic and inelastic scattering
data, mutual excited state data, or the resonances
P

and excitation functions. Another problem is the pre-
dicted magnitude of the excited state cross sections,
in particular for the mutual-2+ channel. The con-
ventional coupled-channels model underestimates its
magnitude by a factor of at least two and often much
more [15–17]. We have also observed this in our con-
ventional coupled-channels calculations as shown in
Fig. 3 with dashed curves. There are also resonances
observed at low energies, which have never been fit-
ted by a potential, which also fits either the angular
distributions or the excitation functions. Therefore,
the experimental data at many energies between 20.0
and 126.7 MeV in the laboratory system have been
studied simultaneously to attempt to find a global
potential.
Using this new coupling potential, we have been

able to fit the energy average of all the available
ground, single-2+, mutual-2+ and the backgrounds
in the integrated cross sections, as well as the main
gross features of the 90◦-excitation function, as
shown in Figs. 3 and 4, simultaneously. Our prelim-
inary calculations of resonances using no imaginary
potential are promising but there are problems with
the widths of the resonances.
To summarize, while these four systems show

quite different properties and problems, a unique
solution has come from a new coupling potential.
Although the origin of this new coupling potential
is still speculative and needs to be understood from
a microscopic viewpoint, the approach outlined here
is universal and applicable to all the systems. Studies
using this new coupling potential are likely to lead to
new insights into the formalism and the interpretation
of these systems. Therefore, this work represents an
important step towards understanding the elastic
and inelastic scattering of light deformed heavy-ion
systems.
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Abstract—The interaction of α particles above 5 MeV with a 2s–1d target is dominated by resonances. It
cannot be described only in terms of a mean-field one-body potential. An analysis of the elastic α-particle
scattering by 28Si encourages the comprehension of the resonance states to be mainly fragments of a
mixed-parity band. In the present article, the angular distributions of particles scattered by 32S are analyzed
in terms of such bands. The analysis of new data from an experiment made at Florida State University
reveals the existence of states that do not belong to the above bands. This follows from a coupled-channel
analysis of the elastic and inelastic (2+) cross sections. An α-particle structure at the nuclear surface is
suggested. c© 2002 MAIK “Nauka/Interperiodica”.
1. RESONANCES OBSERVED
IN THE EXCITATION FUNCTION

The large backward yield of elastically scattered
particles was called anomalous large-angle scatter-
ing (ALAS). Many explanations of this phenomenon
were proposed [1]. The cross section depends strongly
on energy and scattering angle. In order to study α-
particle scattering, experimental data should prefer-
ably be taken with small energy steps of a few MeV
up to about 20 MeV or more. Moreover, the energy
and the angular resolution should be 10 keV and 0.2◦
or better. Only a few experiments satisfy one of these
requirements, but none satisfies all of them [2–12].
The energy dependence of elasticα + 28Si scattering
at 173◦ was measured between 3 and 28 MeV [6,
7, 13–15]. The energy resolution between 6.5 and
19.0 MeV was typically 15 keV.

The diffraction pattern of the angular distributions
has mostly been analyzed in terms of scattering by
a complex potential. Mostly, the real and imaginary
parts of the potential were of theWoods–Saxon (WS)
form or its square (WS)2. These approaches give good
fits to experimental angular distributions for bom-
barding energies above 22 MeV. Below that energy,
the (WS) and (WS)2 fits are generally poor. Similarly,
the global potential proposed by Malik has to be
modified at, e.g., 14.5 MeV [16]. The shortcomings
of fits based on potential scattering exclusively is
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demonstrated by α scattering on 32S [9]. We have
improved the fits considerably by adding a complex
resonance term to the amplitude of potential scatter-
ing on (WS)2.

Various circumstances indicate that the peaks ob-
served in the excitation function are single or over-
lapping resonances, whose spins can be assigned
uniquely [6, 7]. The effect of intermediate states or
resonances on α scattering was considered by several
investigators before (e.g., [3, 17–19]). Nevertheless,
the strong variation of the cross section was some-
times considered as the result of statistical fluctua-
tions [20]. Recently, however, an analysis of α + 28Si
data in terms of the contribution of resonances re-
sulted in a successful fit to the elastic and the inelastic
excitation function at many backward angles [21].
It excludes a claim that the peaks observed in the
excitation function would be due to statistical fluctu-
ations.

Two interfering mechanisms, resonance scatter-
ing and nonresonance potential scattering, are thus
considered. The effect of large-angle scattering is
mainly due to the former. It is proportional to the
squared Legendre polynomial of order L. Since the
target and the projectile are spinless, the spins J of
the resonances involved are equal to L. The contribu-
tion of potential scattering to the cross section can
frequently be considered as a small “background.”
In comparison, especially high-spin resonances con-
tribute much more. The cross section may increase
by one or more orders of magnitude upon going over
from 165◦ to the most backward experimental angles
[22].
2002 MAIK “Nauka/Interperiodica”
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2. ASSIGNMENT OF SPINS
FROM ANGULAR DISTRIBUTIONS

Scattering by silicon targets was compared in a
previous study with (6Li, d) stripping measurements
[23]. The excitation function for elastic scattering
showed peaks at the same excitation energy in 32S
as the excitation function for the stripping reaction
28Si(6Li, d)32S. The spins were obtained from a com-
parison of the angular distributions with the squared
Legendre polynomials P 2

L(cosθ). The parities are nat-
ural: 0+, 1−, 2+, 3−, and so on.

In the scattering of 10- to 20-MeV α particles
by silicon, resonance spins between 7 and 9 are ob-
served. The energy range 14.3–15.4 MeV was in-
vestigated in more detail by using the Florida State
University Pelletron. The current good energy res-
olution of this experiment led to an observation of
about eight times more resonances than before in
that energy range. From a correlation analysis, we
deduced the mean resonance width of 20 keV. For a
couple of resonances, all were assigned a spin of 8 [8].
A coupled-channel analysis of the same energy region
reveals ten J = 5, one J = 6, 13 J = 7, ten J = 8,
and three J = 9 resonances [21].

3. MIXED-PARITY ROTATIONAL BANDS
AND SURFACE STRUCTURE

A linear dependence has been noted when the
energies of the resonance in α + 28Si are plotted ver-
sus J(J + 1) [5]. A similar line describes α-particle
transfer to 24Mg by (6Li, d) stripping [24]. This has
been understood to be an indication of the existence
of a mixed-parity band [3, 25], whose states are rep-
resented by many fragments of equal spin. Bands of
even- and odd-parity states are not expected from
fundamental theories based on the interaction be-
tween fermions. In terms of the Pauli exclusion prin-
ciple, there should be so-called Firsov splitting be-
tween bands of opposite parities [26]. The lack of
the splitting implies that the nuclear surface has a
structure of bosons, which interact with incoming α
particles [25]. The low density at the nuclear sur-
face makes the existence of α matter probable there.
Nuclear-matter theories do indeed imply that, below
the point of the matter being compressible, there is no
thermodynamically stable uniform state of it. Below
this point, the system breaks up into clusters [27, 28].
The variety of possible clusters may be illustrated by
the Ikeda diagram [29]. The bosonization mentioned
here is considered to occur when the Broglie wave-
length corresponding to the interacting α particles is
commensurate with the distance between them [30].

The moment-of-inertia parameter C of the rela-
tion E = CJ(J + 1) + E0 is small in relation to that
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
Parameters of the angular-distribution fits (the real and
the imaginary radius and diffuseness parameters were fixed
at rV = 1.37 fm, aV = 1.30 fm, rW = 1.75 fm, and aW =
0.70 fm)

Eα,
MeV

V ,
MeV

W ,
MeV

J Γα/Γ Pres J [31]

10.1 207.3 7.6 5 0.60 0.0 5

10.3 211.8 7.8 5 0.60 2.9 5

10.6 206.4 7.3 6 0.40 3.0 5

11.0 199.6 1.5 6 0.06 3.0 6

11.3 No fit

11.8 No fit 7

12.0 198.9 3.0 No res. 6

12.2 200.6 3.2 No res. 7

12.5 212.9 4.3 No res. 7

12.9 208.6 4.2 8 0.11 0.18 7

13.4 184.1 11.1 6 0.40 0.55 6

13.6 210.5 11.0 7 0.26 0.7 7

13.9 196.4 9.1 7 0.20 0.3 7

14.3 186.8 7.2 7 0.40 1.9 7

14.8 208.3 6.8 8 0.16 0.3 8

15.2 182.3 9.9 8 0.34 0.4 8

15.5 215.4 11.2 8 0.26 3.1 8

15.9 194.5 6.6 No res. 8

16.1 209.5 7.1 No res. 8

expected for a single α-particle orbiting the target
nucleus. If we assume that the orbit radius is equal
to the sum of the target and the α-particle radius,
1.25A1/3 + 1.60, we expect, for A = 24 and 28, the
rotational constants C = 225 and 205 keV (energy in
the c.m. frame). However, the experimental constants
are C = 131 and 103 keV. The radius parameter of
1.25 gives, e.g., a 28Si radius of 3.8 fm. The Hofs-
tadter rms radius of the target is 3.04 fm. The latter
would yield an even greater rotational constant, which
would deviate more strongly from the experimental
value.

We conclude that the value of C cannot be repro-
duced by assuming a single particle orbiting a nonro-
tating target. Agreement with experimental data is,
however, achieved if a part of the target nucleus is
assumed to rotate jointly with the captured α particle
[5]. The rotating mass of 28Si and 32Smay be consid-
ered to consist of three and four α particles orbiting
the 16O core [31].
2
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The formation of α particles from valence nucle-
ons was discussed by Lönnroth [32]. Microscopic
shell-model calculations were mentioned as a means
for generating α-cluster correlations. One possibility
would be to start from 16O and to advance toward
more complicated cases of a greater number of nucle-
ons. A sudden cutoff of the cross section at 27 MeV
is indicative of an upper limit on the spin near 12�

to 14�. It may be due to the “running out of valence
particle spin.” If so, it indicates the limitation in the
number of valence particles, i.e., to particles within
the skin at the nuclear surface mentioned above.

The occurrence of even and odd spins in the same
band also implies that the rotating object has not
more than one symmetry axis. We may think of a
rotating pear or of an asymmetric disk, which has
the symmetry axis in the plane of the disk. Such
shapes would occur if an α particle is captured by
a spherical target. As was mentioned above, only
part of the target will start to rotate jointly. We may
expect various shapes of that jointly rotating part and
consider its thickness to depend on the azimuthal and
polar angles.
P

4. ALPHA-PARTICLE SCATTERING BY 32S

Only a few authors reported on resonance states
in the α + 32S system at high energies [10, 33]. For
this reason, the angular distributions of α particles
scattered by 32S deserve more investigations for a
comparison with states in other 2s–1d nuclei.

The angular distributions of α particles elastically
scattered by 32S were previously published in the
article of Aldridge et al. [9]. Rapid variations of the
optical-model parameters were indeed assumed to
occur owing to compound-system resonances, but
a determination of energies and spins of such reso-
nances was not aimed at. Since the energy was varied
in large steps (100 keV), the energies of resonances
could not be determined from the excitation function.
The authors extracted numerical data for 76 angular
distributions between 10 and 17.5MeV from the pub-
lished figures. The coordinates of the cursor at data
points and scale marks were read when the scanned
figures were displayed on a PC. In the 100-keV-
step excitation function, 19 peaks were considered to
sample the strongest resonances. At these energies,
the angular distributions from 25◦ to 175◦ were fitted
in the same way as was described above for α + 28Si.

Potential scattering was assumed to be described
by the real and the imaginary part (V andW , respec-
tively) of the squared WS form. The radius and the
diffuseness parameters were fixed at the values used
in [34, 35]. To obtain a good fit, the potentials V and
W , the ratio Γα/Γ of the α partial width and the total
width, and the phase shift Pres were varied [35]. For
the best fits, the values of the parameters are given in
the table. We note that the fits to the angular distribu-
tions at 12.0, 12.2, 12.5, 15.9, and 16.1 MeV are not
improved upon the addition of a resonance amplitude
to the scattered wave. Strong backward scattering
at 11.3 MeV and that at 11.8 MeV could not be
fitted so far. For the remaining energies, the spins
could be assigned. The excitation energies in 24Mg
[4], 28Si [24], 32S [6, 7], and 36Ar are plotted versus
J(J + 1) in the figure as obtained from α + 20Ne,
24Mg(6Li, d)28Si, α + 28Si, and α + 32S. Solid
lines have been fitted to the silicon, sulfur, and argon
points. The spin-0 crossings of the energy axis are in
all cases approximately 13 MeV. This corresponds to
the bombardment energy 6.5 MeV in the case of the
28Si target. It is roughly where many spin-0 levels are
found in α + 28Si. The slope gives the values of 130,
103, and 93 keV for the moment-of-inertia parameter
C. For α + 32S, the value is consistent with the
moment of inertia of three orbiting α particles. From
the corresponding plot forα + 40Ca, we obtain one to
two α-particles in 44Ti. Thus, the last two estimates
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002



ASPECTS OF ALPHA-PARTICLE SCATTERING 615
mentioned above are not in agreement with the as-
sumption of a structure of α particles orbiting a 16O
core, as was suggested for 28Si and 32S.

5. DISCUSSIONS AND CONCLUSIONS
In the present article, the existence of resonances

in the scattering of α particles by 2s–1d targets
is placed without dispute by experimental evidence.
Bands of resonance states at excitation energies over
13 MeV in 28Si and 32S are explained in terms of
a model of, respectively, three and four α particles
orbiting a 16O core. This model is deduced from the
systematics of resonances of highest spins. The dy-
namical properties of these particles have been dis-
cussed in the context of published theoretical models.
A vibrational degree of freedom [31, 36] and soliton
or boson quantum numbers [30, 37] have been men-
tioned as exciting issues. They hint at the occurrence
of new kinds of nuclear dynamics [6]. The recently
found resonances of lower spins do not fit in the
systematics under discussion. These resonances have
merely been deduced in fitting the excitation functions
and angular distributions of α particles scattered by
the aforementioned two targets; they have not been
observed if resonances of highest spin occur. These
circumstances should not weaken interest in the nu-
clear properties being discussed. New measurements
for elastic and inelastic scattering that would cover
wide energy ranges scanned in small energy and an-
gular steps are required for promoting the under-
standing of the current experimental results.
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Abstract—A possible explanation is presented of the T-odd correlation observed in ternary fission induced
by polarized cold neutrons. c© 2002 MAIK “Nauka/Interperiodica”.
I. Recently, a collaboration of ILL, Tuebingen,
Darmstadt, ITEP, and PNPI observed (see, e.g., [1,
2]), in ternary fission, a triple correlation σn · [pLF ×
pTP] between the vectors of the incident-neutron spin
and the momenta pLF and pTP of the light frag-
ment and the ternary particle. The scheme of the
experimental setup can be found in [1, 2]. The po-
larization vector of incident cold neutrons is directed
either along or against the neutron-beam direction.
The fission-fragment and ternary-particle detectors
are located in the plane perpendicular to the beam di-
rection and allow one to choose events where the light
fragment goes either to the left or to the right, while
the ternary particle goes either upward or downward.
The definition of the asymmetry coefficient is [1]

D =
N(+) −N(−)
N(+) +N(−)

, (1)

where N(±) is the number of coincidences for posi-
tive and negative neutron helicities, respectively. One
can also reverse the direction of the light-fragment
or of the ternary-particle momentum. The corrected
values of the observed asymmetry D resulting from
the inversion of any of three vectors is [3]

D = (−2.43 ± 0.11) × 10−3 for a 233U target,

D = (+0.40 ± 0.08) × 10−3 for a 235U target.

It was also observed that the magnitude of the effect
is roughly proportional to the ternary-particle final
energy (see, e.g., Fig. 1 for the case of a 233U target).

Although this correlation is formally T-odd, it was
continuously indicated (see, e.g., [4, 5]) that (in con-
trast to what occurs in the case of parity violation)
a nonzero T-odd correlation is directly related to T
invariance only in the case of elastic scattering. In
all inelastic processes like β and γ decays or fission,

∗This article was submitted by the author in English.
**e-mail: vadim.bunakov@pobox.spbu.ru
1063-7788/02/6504-0616$22.00 c© 2
this direct connection can be established only if the
process can be described in the first-order Born ap-
proximation and, even then, is strongly camouflaged
by effects of initial- or final-state interactions. The
strong-interaction process of fission can hardly be
treated in the Born approximation. Therefore, one
should seek the possible explanations of the observed
correlation in fission dynamics rather than treat it
as a signature of T-invariance violation. A feasible
qualitative version of such an explanation is presented
here.

II. The absorption of the polarized neutron with
polarizationPn by a target nucleus with spin I creates
partially polarized compound resonances with the po-
larizations

P (J+) =
(2I + 3)

[3(2I + 1)]
Pn

for J+ = I + 1/2,

P (J−) = −1/3 · Pn for J− = I − 1/2

(recall that the direction of polarization changes sign
in this case).

Let us first consider, for the sake of simplicity, the
situation of one isolated resonance (say J+). The
probability of neutron-induced ternary fission can
then be written as

Wn,tf ∼ πλ2 2J+ + 1
3(2I + 1)

(2)

× ΓnΓtot

(E − E(J+))2 + Γ2
tot/4

[
wtf + P (J+)wPtf

]
.

Here, the structure in front of the brackets is the
probability σ(J+) of the compound-resonance for-
mation.

In order to estimate the probability wtf of the
ternary fission of an unpolarized nucleus, we will use
the statistical approach, whose validity in describing
002 MAIK “Nauka/Interperiodica”
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Fig. 1. T-odd correlation D as a function of the final α-particle energy Eα for the ternary fission of a 233U target. The
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HF ≈15 MeV. Both curves are
normalized to experimental data at Eα = 16MeV.
fission was established in many cases. In this ap-
proach, we have

wtf ∼ ρ
(
A,E∗

f , J
)

(3)

∼ exp

[
2
√
a
(
E∗
f − Erot(J)

)]
≈ exp

[
2
√
aE∗

f

]
,

where ρ(A,E∗
f , J) is the standard expression for

the level density in the system upon the emission
of a ternary particle. The rotational energy Erot =
�

2J(J+1)/2J is usually about oneMeV or even less,
which allows one to neglect it in the above equation
in relation to the internal excitation E∗

f of the system.

In order to write the probability wPtf of ternary
fission for a polarized compound nucleus, one should
rather use an expression for the level density
ρ(A,E∗

f ,M) for a system with a fixed projection M
of its total angular momentum J onto a given axis.
According to Eq. (2.324) in [6], it is

ρ(A,E∗,M) ∼ exp
[
2
√
a (E∗ − �2M2/2J )

]
(4)

≈ exp
[
2
√
aE∗

(
1 − �

2M2/4JE∗)].
Now, the main idea of our approach is that, if the

angular momentum of the outgoing ternary particle
(let it be α), lα = [rα × pα], is parallel to the spin J
(Jz = M = J) of the polarized system, then the emit-
ted α particle carries away part of the total angular
momentum of the system, so that Mf = M − lα. If
lα is antiparallel to J, then the system receives, as
a recoil, Mf = M + lα. Therefore, the emission of α
increases or decreases the final level density of the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
system, so that

wP↑
tf − wP↓ ≈ e

(
2
√
aE∗

f

)
�

2Mlα
√
a

J
√
E∗
f

(5)

≡ e

(
2
√
aE∗

f

)
∆.

Now, the number of coincidences for the case of lα
parallel to the spin J of the polarized system is

Npar ≈ N0


1 + P (J+)


1 − �

2(M − lα)2
√
a

J
√
E∗
f




 .
(6)

For lα antiparallel to J, we have

Nanti ≈ N0


1 + P (J+)


2 − �

2(M + lα)2
√
a

J
√
E∗
f




 .
(7)

Therefore, the expression for the asymmetry coeffi-
cient (1) is

D =
P (J+)∆

2[1 + P (J+)]
, (8)

where ∆ is defined [see Eq. (5)] as

∆ =
�

2Mlα
√
a

J
√
E∗
f

. (9)

III. The sign and the magnitude of ∆ depend on
the dynamics of the process. Let us first consider the
rather unrealistic but simple case where the ternary
particle is emitted before scission. In this case (see
Fig. 2), the radius vector rα issues from the center
2
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Fig. 2. Case of ternary-particle emission before scission.

of mass of the entire system. For pα directed upward
and the light fragment going to the left, the α-particle
momentum is then parallel to J+ ↑↑ σn (see Fig. 2). If
the neutron helicity is reversed, lα becomes antiparal-
lel to J+. Therefore, the sign of∆ is positive according
to (1).

Even in this simple case, the majority of the pa-
rameters in expression (5) for ∆ are not known pre-
cisely. Therefore, all the estimates of D given below
only demonstrate that one can obtain a correct order
of magnitude for the effect using reasonable educated
guesses concerning these parameters. We choose the
level-density parameter to be a = A/8 ≈ 30 MeV−1.
For the moment of inertia of the system, J , we take
half the rigid-body value with a deformation of β2 ≈
1.4 at the scission point. Although J is known to
be only half the rigid-body value for low-lying states
because of the pairing-correlation effect, the role of
these correlations decreases with increasing excita-
tion. Therefore, this might be a slightly underesti-
mated value of J , but it is still good for our order-
of-magnitude estimates. As a reasonable guess for
the orbital angular momentum lα, we take 1�, since,
from a comparison of multiplicities for gamma rays
emitted by fragments in binary and ternary fission, it
is known that ternary particles carry away about 0.1
of the total angular momentum of (10–14)� carried by
γ emission. As a reasonable guess of the prescission
excitation energy E∗

f of the system, we take 6 MeV.
Inserting all these values into Eqs. (5), (8), and (9),
we find, for the case of J+ = 3, that

D(J+) ≈ +5.5 × 10−3. (10)

Let us now estimate the effect of an isolated J− =
2 resonance. Recall that, in this case, the compound-
nucleus polarization is P (J−) = −1/3 · Pn and is di-
rected against the neutron polarization. Therefore, ∆
would be negative; under the same assumptions as
those for J+, we obtain

D(J−) ≈ −4.5 × 10−3. (11)
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neck rupture.

Taking into account the contributions of both res-
onances (and neglecting the interference effects), we
obtain the net result

D =
σ(J+)P (J+)∆ + σ(J−)P (J−)∆

2σ(J+)[1 + P (J+)] + 2σ(J−)[1 + P (J−)]
.

(12)

Thus, we see that, depending on the relative contribu-
tions of σ(J±), we obtain, for D, the values between
the rough estimates in (10) and (11).

IV. Let us now consider the more realistic case of
the double neck rupture (see [7]), in which case the
first rupture separates a heavy fragment and a light
“prefragment,” which then emits a ternary particle.
In this case, the theoretical difficulties increase even
more. The main trouble is how the initial spin J and
polarization of the compound nucleus is shared be-
tween the light and heavy fragments and the angular
momenta of their relative motion:

J = J1 + J2 + Lf .

This problem was considered by Barabanov and
Grechukhin [8], who introduced the coefficient µ11(J1)
characterizing the transfer of the initial polarization
P (J) to one of the fragments (transmission coef-
ficient), so that the fragment polarization can be
represented as

P1(J1) ≈ µ11(J1)P (J).

According to estimates based on various models of
the prescission process, this coefficient ranges be-
tween −0.1 and +0.1. Unfortunately, those calcula-
tions were performed for the compound-nucleus po-
larization directed along the fission axis. Therefore,
one of the nearest future problems is to apply this
formalism to the case of interest to us, where the
polarization direction is perpendicular to the fission
axis. There are, however, some indications that the
order of magnitude of µ11 in our case would be the
same. For the time being, we can simply assume
that the initial polarization of the compound nucleus
is approximately equally shared between those three
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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components. Then, we assume that the projection of
the light-prefragment spin onto the z axis is J1z =
M1 ≈ 1� and that the transmission coefficient µ11 is

µ11 ≈ J/3J1.

Here, J1 ≈ (5–7)� is the total spin of the fission
fragments, which was estimated from the experi-
ments with γ emission from the fragments and was
explained by either the collective bending modes of
the compound system at scission or by a postscis-
sion Coulomb excitation. The same experiments also
show that the direction of this spin is perpendicular to
the fission axis. Since this “additional” J1 is directed
isotropically around the scission axis, it would not on
average change the value J1z = M1, but would rather
decrease the polarization of the fragment by the factor
µ11.

Otherwise, our general idea of the triple-correlation
origin remains the same. One should only replace the
level density of the entire system by the product of
the fragment level densities and take into account
the coefficient µ11 in calculating the polarization of
the light fragment in expressions (2) and (4)–(8).
Another difference is that the radius vector rα now
issues from the center of mass of the light prefragment
(see Fig. 3). This means that, if µ11 is positive (i.e.,
the direction of light-fragment polarization coincides
with that of the compound nucleus), the values of ∆
would change signs.

We should also replace the total prescission ex-
citation energy E∗

f of the system in (9) by the aver-
age excitation energy 〈E∗

LF〉 of the light fragment. It
should be recalled that, in [9], the anticorrelation was
found between the average excitation energy 〈E∗

f 〉 of
the system and the final energy Eα of the outgoing α
particle:

〈E∗
f 〉 ≈ 〈E∗

max〉 − 0.4Eα. (13)

Here, 〈E∗
max〉 ≈ 30 MeV is the average fissioning-

system internal excitation energy corresponding to
Eα = 0. Now, the total excitation energy E∗

f of the
system is the sum of the fragment excitation energies:

E∗
f = E∗

LF + E∗
HF.

Themechanism behind the anticorrelation in (13) has
yet to be clarified. Therefore, we can consider two
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possibilities. One of them is to assume that the ratio
of the excitation energies of the fragments in this
sum is constant, E∗

LF/E
∗
HF ≈ 1. Then, we obtain the

dependence of the effect on Eα in the form

D ∼ 1/
√

15 − 0.2Eα.

This dependence is shown in Fig. 1 by the dotted
curve (which is normalized to the experimental value
at Eα = 16MeV).

The other possibility is to consider the excitation
energies of the fragments as independent quantities
and to suppose that Eα changes with E∗

LF for fixed
E∗

HF ≈ 15 MeV. In this case, we obtain the depen-
dence of the effect on Eα in the form

D ∼ 1/
√

15 − 0.4Eα.

This dependence is shown in Fig. 1 by the solid curve.
The curve is again normalized at the experimental
point Eα = 16 MeV. Below, this value of Eα is also
taken in the estimates of the average coefficients D.

Assuming again lα = 1 and half the rigid-body
value for the light-fragment moment of inertia J1, we
find for the J+ = 3 compound resonance and J1 = 5
that

D = − P (J+)µ11∆
2[1 + P (J+)µ11]

= − J+

3J1
(14)

× �
2lαM1

√
a

J1

√
〈E∗

LF〉
P (J+)

2[1 + P (J+)µ11]
≈ −2 × 10−3.

For the J− = 2 compound resonance, we obtain

D =
P (J−)µ11∆

2[1 + P (J−)µ11]
=
J−

3J1
(15)

× �
2lαM1

√
a

J1

√
〈E∗

LF〉
P (J−)

2[1 + P (J−)µ11]
≈ 1 × 10−3.

Those values of D were obtained under the assump-
tion of the independent variation of the fragment ex-
citations in Eq. (13) (our second assumption). If the
ratio of these energies is fixed, the values of D in
Eqs. (14) and (15) would be larger by a factor of about
1.4.

Finally, taking into account the contribution from
both resonances, we get
D = − σ(J+)P (J+)µ11∆ + σ(J−)P (J−)µ11∆
2σ(J+)[1 + P (J+)µ11] + 2σ(J−)[1 + P (J−)µ11]

. (16)
As in the preceding case, we find that the net effect

D depends on the relative contribution of σ(J+) and
σ(J−) and varies in the range between the approxi-

mate values in Eqs. (14) and (15).
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620 BUNAKOV
In the case of a 235U target, the values of σ(J+ =
4) and σ(J− = 3) are already known [10]. Substitut-
ing them into Eq. (15), we obtain D ≈ −0.7 × 10−3,
that is, a correct order of magnitude but a wrong
sign of the effect. Since the polarization-transmission
coefficients of [8] might also be negative, this means
most probably that, instead of our simplified estimate
of µ, one should perform more detailed calculations of
this quantity.

V. Thus, we have shown that the suggested ap-
proach might reproduce both a correct order of mag-
nitude of the observed effect and the character of its
dependence on Eα observed experimentally.
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Abstract—A microscopic approach to cluster decay including single-particle states in a continuum is
given. The equations of motion describing cluster-like states are derived within the multistep shell-
model approach. The lowest collective two-particle eigenmodes are used as building blocks for α-like
states. Good agreement with low-lying states in 212Po is obtained. The spectroscopic factor for the α
decay between ground states is reproduced. It is shown that only by including the continuum part of
the single-particle spectrum is the decay width for α- and cluster-decay processes reproduced. The α-
like structure of the lowest states in 212Po is analyzed, and strong high-lying resonances are predicted.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although the first study in theoretical nuclear
physics was devoted to α decay and provided a
nice explanation in terms of the Coulomb barrier
penetration of a preformed α particle [1], a micro-
scopic description of cluster formation at the nuclear
surface is still an open problem. The usual shell-
model configuration space used in estimating the
cluster probability is not able to reproduce the ab-
solute value of the half-life for the transition between
ground states (g.s.) [2]. This deficiency is connected
with the asymptotic exponential decrease of single-
particle (s.p.) wave functions for bound states [3].
The problem of considering the continuum part of
the spectrum in microscopic calculations is rather
involved, but it is very important, especially for drip-
line nuclei [4]. An attempt at reproducing half-lives
would be the inclusion of s.p. narrow resonances
lying in a continuum [5–7], so-called Gamow states.
Although the true asymptotic behavior of the wave
functions is achieved, the value of the half-life has not
yet been reproduced. We will show that the inclusion
of the background components is able to reproduce
the total decay width because an important part of
the clustering process proceeds through such states.
To this aim, we use, for the diagonalization of the
Woods–Saxon s.p. mean field, a harmonic-oscillator
(h.o.) basis with two constants, which is very suitable
for treating states in a continuum together with the
discrete part of the spectrum.

∗This article was submitted by the authors in English.
1)Department of Physics, University of Jyväskylä, Finland.
**e-mail: delion@theor1.theory.nipne.ro
1063-7788/02/6504-0621$22.00 c©
Narrow s.p. Gamow resonances can become a
useful tool for analyzing high-lying α-like four-
particle states that were observed long ago as res-
onances in α-particle anomalous large-angle scat-
tering (ALAS) and which are associated with so-
called “quasimolecular states.” Such states were
mainly observed and analyzed in α scattering on light
nuclei like 16O [8], 40Ca [9], or 28Si [10], but it is also
interesting to look for such states in heavy nuclei such
as 208Pb [11]. We will show that such resonances
can indeed be built on top of Gamow s.p. resonances
and that they have a structure similar to that of low-
lying α-decaying states. As an example, we chose the
212Po nucleus, which exhibits a nice α-like structure
on top of the doubly magic nucleus 208Pb.

2. THEORETICAL BACKGROUND

The cluster-decay rate for the process B → A +
C connecting two spherical nuclei is given by the
standard quantum-mechanical prescription

Γ ≡
∑
l

Γl = lim
r→∞

�v
∑
l

|gl(r)|2, (2.1)

where v is the relative velocity of the emitted clusterC
and the daughter nucleus A and gl(r) is the lth com-
ponent of the wave function describing their relative
motion in some spherical potential according to the
Schrödinger equation[

− �
2

2µ
d2

dr2
+

�
2l(l + 1)
2µr2

]
gl(r) (2.2)

+ V (r)gl(r) = ECgl(r).
2002 MAIK “Nauka/Interperiodica”



622 DELION, SUHONEN
Table 1. Low-lying energies in 212Po (in MeV) for various
thresholds of the metric-matrix eigenvalues (in parenthe-
ses)

Jπ
a4

Eexp [23] E(0.05) E(0.2) E(0.5)

0+
1 0.000 0.000 0.000 0.000

2+
1 0.727 0.949 0.952 0.952

4+
1 1.132 1.087 1.090 1.081

6+
1 1.355 1.081 1.144 1.135

8+
1 1.476 1.131 1.174 1.166

2+
2 1.513 1.203 1.203 2.398

1+
1 1.621 1.907 1.909 1.901

2+
3 1.679 1.783 1.995 2.423

0+
2 1.801 2.080 2.091 2.081

2+
4 1.806 2.248 2.253 2.607

This set of equations can be integrated by proceed-
ing from large distances, where each component is a
spherical outgoing Coulomb wave:

lim
r→∞

[gl(r)] = Cl[Gl(r) + iFl(r)]. (2.3)

Narrow resonances have a very small imaginary part
of the cluster energy EC , and the regular Coulomb
functions Fl(r) have vanishing values inside the bar-
rier; therefore, the constants Cl are virtually real-
valued. These values are determined by matching the
outgoing solution to the Schrödinger equation with
the internal solution at some radius R,

gl(R)/R = Fl(R), (2.4)

where

Fl(R) =
∫

[ΨC(ξC)ΨA(ξA)Yl(R̂)]∗ (2.5)

× ΨB(ξB)dξCdξAdR̂

is themicroscopic cluster-formation amplitude. Here,
the notation is standard—in particular, ξ are internal
coordinates. From (2.4), one thus obtains

Γl = �v

[
R

Gl(R)

]2

|Fl(R)|2 ≡ PlFl. (2.6)

This quantity is the product of two functions strongly
depending on the matching radius R, but it should
be a constant with respect to this radius. Therefore,
the internal and external wave functions should
also have the same logarithmic derivatives fl(R) ≡
g′l(R)/gl(R) = G′

l(R)/Gl(R), and this is just the
condition for a resonance state in a potential V (r).

The modulus squared of the formation amplitude
Fl in (2.5) has the meaning of the cluster probability
P

inside the parent wave function. In order to evalu-
ate the overlap integral (2.5), the wave function for
the parent nucleus ΨB should be expanded in terms
of the same building blocks as the cluster internal
wave function ΨC . For intance, the α-particle wave
function is the product of the proton–proton (pp)
and neutron–neutron (nn) h.o. functions [12]. There-
fore, the parent wave function is a superposition of
the products of the two-body components and the
daugther wave function taken as a vacuum,

|ΨB〉 ≡ P †
α4
|0〉 (2.7)

=
∑
α2β2

X(α2β2;α4)(P †
α2

P †
β2

)α4 |0〉,

where the index has the meaning of the angular mo-
mentum, parity, eigenvalue, and isospin projection:
αk ≡ (Jπak , τ), k = 2, 4. Summation contains pp–nn

(τ, τ ′ = +1,−1) and pn–pn (τ, τ ′ = 0, 0) terms. For
instance, 212Po is a typical example of the α-like
structure built on top of the doubly magic nucleus
208Pb. For the core state |0〉 = |208〉Pb, these two
kinds of terms correspond to the couplings (210Po ⊗
210Pb)α4 and (210Bi ⊗ 210Bi)α4 , respectively.

The microscopic treatment of 212Po is given in
[13], where the equations of motion were written by
using a representation that is equivalent to (2.7).
This procedure is related to the multistep shell-model
(MSM) procedure [14–16]. Using the TDA equa-
tions of motion for the two-particle and four-particle
systems, respectively,

[H,P †
α2

] = Eα2P
†
α2

, [H,P †
α4

] = Eα4P
†
α4

, (2.8)

one obtains, by using a symmetrized double commu-
tator, the set of equations∑

α′
2β

′
2

H(α2β2;α′
2β

′
2)X(α′

2β
′
2;α4) (2.9)

= Eα4

∑
α′

2β
′
2

I(α2β2;α′
2β

′
2)X(α′

2β
′
2;α4),

where the metric and Hamiltonian matrices are given
by the following overlap integrals:

I(α2β2;α′
2β

′
2) ≡ 〈0|(Pβ2Pα2)α4(P

†
α′

2
P †
β′
2
)α4 |0〉,

H(α2β2;α′
2β

′
2) (2.10)

≡ 1
2
〈0|[(Pβ2Pα2)α4 ,H, (P †

α′
2
P †
β′
2
)α4 ]|0〉

=
1
2
(Eα2 + Eβ2 + Eα′

2
+ Eβ′

2
)I(α2β2;α′

2β
′
2).

In this way, the interaction is involved only in the first,
two-particle step. In the second, four-particle step,
only two-particle energies appear in the equation of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Table 2. Quartet structure of low-lying α-like states in terms of two-particle pairs (second column) (the amplitude is
given in the third column; given are also the spectroscopic factors of the pp–nn (the fourth column) and pn–pn (the fifth
column) four-particle terms in the quartet operator defined by Eq. (27); given in the sixth and seventh columns are the
hindrance factors of the Jπ

a4
states)

Jπ
a4

J(pp), J(nn) X S1 S2 HF1 HF2

0+
1 0+

1 (pp), 0+
1 (nn) 1.084 1.19(–2) 8.49(–7) 1.00 1.00

2+
1 0+

1 (pp), 2+
1 (nn) 1.091 1.38(–3) 5.16(–8) 0.12 0.06

4+
1 0+

1 (pp), 4+
1 (nn) 1.092 7.49(–4) 1.39(–9) 0.07 0.00

6+
1 0+

1 (pp), 6+
1 (nn) 1.092 4.44(–4) 1.02(–8) 0.04 0.01

8+
1 0+

1 (pp), 8+
1 (nn) 1.092 3.33(–4) 5.36(–9) 0.02 0.00

2+
2 2+

1 (pp), 0+
1 (nn) 1.092 1.54(–3) 6.44(–8) 0.04 0.73
motion. The set of Eqs. (2.9) can be solved by us-
ing the eigenstates of the metric matrix [17] as an
orthonormalized basis.

In order to analyze the emission of heavier clusters
like 10Be, 14C, or 16O, one can extend the MSM
technique to a chain of calculations by using, in the
next steps, together with pairs, α clusters as new
building blocks [18, 19]:

P †
αN |0〉 =

∑
αmβn

X(αmβn;αN )(P †
αmP †

βn
)αN |0〉,

(2.11)

N = m + n.

3. NUMERICAL APPLICATION
FOR 212Po → 208Pb + α

The s.p. spectrum is obtained by integrating the
Schrödinger equation for the Woods–Saxon (WS)
potential with a universal parametrization [20]. First,
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Fig. 1. Local equivalent potential computed by using
the formation amplitude as a wave function. The dashed
curve represents the α–daughter Coulomb potential. The
horizontal solid line shows the energy of the emitted α
particle.
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we have computed bound states and resonances in
a continuum using the “Gamow” code [21]. Two-
particle states were treated by using the surface delta
interaction [22]. The calculated spectrum is in good
agreement with experimental data [17]. The result of
the calculation for four-body states is given in Table 1,
which also displays the experimental energies in the
second column. Given in the next three columns are
the eigenvalue computed by solving Eq. (2.9). They
correspond to different minimal accepted eigenvalues
Dmin of the metric matrix written in parentheses.
Although only the lowest two-particle states were
included in calculation, the agreement with the ex-
perimental low-lying part of the spectrum is quite
satisfactory, somewhere between that in [13] and that
in [24].

Table 2 (second column) presents the structure of
the four-particle states in terms of the most impor-
tant two-particle pairs. One can see that the first six
low-lying states have practically one major compo-
nent. It is important to stress the fact that the low-
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Fig. 3. Some single-particle levels versus the ratio f ≡ λ2/λ1 of the h.o. parameters.
est monopole two-particle components 0+
1 (pp) and

0+
1 (nn), entering into the four-particle wave function,
are the only ones having, in their structure, Gamow
resonances in a continuum [17].

It is of interest to see which would be the equiv-
alent local potential if one considers the α-particle-
formation amplitude as a wave function satisfying
the Schrödinger equation (2.2). In Fig. 1, we de-
pict this equivalent potential for l = 0 (solid curve).
One can clearly see the molecular shape of this lo-
cal equivalent potential. This kind of local potential
was used as a phenomenological interaction to repro-
duce quasimolecular resonances in the α-particle-
scattering data [10]. The dashed curve represents the
pure Coulomb potential between the daughter and the
α particle. TheCoulomb barrier at this point is around
25 MeV. The horizontal solid line denotes the energy
of the emitted α particle, Eα = 8.95 MeV.

The integral of the formation probability Fl defines
the so-called spectroscopic factor (SF) Si. Given in
the fourth and fifth columns of Table 2 are the SF for
the pp–nn (i = 1) and pn–pn (i = 2) four-particle
components of the wave function (2.7). One can ob-
serve that the total g.s.-to-g.s. SF has the right order
of magnitude [25]. The so-called hindrance factors
HFi are given in the sixth and seventh columns. They
are defined as a mean value on the interval (8–10) fm
of the ratio of the formation probabilities correspond-
ing to some eigenstate and the g.s. The states given
in Table 2 haveHF1 > 0.01.
PH
In the region of the geometric-touching radius
Rc.m. = 9 fm, the decay width, as can be seen from
Fig. 2 (solid curve), is virtually constant, proving the
validity of our calculation. According to Eq. (2.6),
the decay width is the product of two terms that
have behave oppositely: the formation probability F0

(dashed curve in Fig. 2) decreases, while the pene-
trability P0 (dash-dotted curve in Fig. 2) increases.
It is important to observe from the same figure that
the decay width is underestimated by two orders of
magnitude. This means that the inclusion of narrow
Gamow resonances is not sufficient for reproducing
the absolute value of the decay width. The role of
the “background” is also very important, because the
probability of an α-cluster formation at the nuclear
surface is proportional to the density of the s.p. com-
ponents in the continuum. This can be achieved by
using a mixed nonorthogonal h.o. basis in the diag-
onalization procedure, whereby the number of shells
needed in the expansion is reduced and, whereby,
at the same time, a better description of the decay
process is obtained. For this purpose, we represented
the radial s.p. wave functions as [26]

ul(r) =
∑

2n1+l=N1≤N0

c
(1)
n1l

R(λ1)
n1l

(r) (3.1)

+
∑

2n2+l=N2>N0

c
(2)
n2l

R(λ2)
n2l

(r),

where λ1 is the h.o. parameter coresponding to the
h.o. potential that fits theWS interaction in the region
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Table 3.High-lying monopole (0+
a4
) states with a large hindrance factor for the pp− nn channel (HF1, last column)[ the

spectroscopic factor of the pp–nn quartet operator (2.7) is given in the fifth column].

a4 E, MeV J(pp), J(nn) X S1 HF1

141 6.332 0+
4 (pp), 0+

1 (nn) –0.667 1.34(–03) 14.33

0+
3 (pp), 0+

2 (nn) 0.242

0+
1 (pp), 0+

6 (nn) 0.614

316 12.181 0+
1 (pp), 0+

8 (nn) 1.063 1.34(–03) 14.33

0+
2 (pp), 0+

8 (nn) –0.366

356 14.494 0+
7 (pp), 0+

1 (nn) 1.036 2.66(–03) 1.48

383 16.541 0+
3 (pp), 0+

8 (nn) –1.030 1.43(–04) 2.93

0+
2 (pp), 0+

8 (nn) –0.136

438 19.338 0+
4 (pp), 0+

8 (nn) 1.002 6.88(–04) 7.89

458 20.396 0+
7 (pp), 0+

5 (nn) –0.987 6.44(–04) 1.70

472 21.662 0+
7 (pp), 0+

6 (nn) 1.001 1.02(–03) 1.09

475 21.979 0+
7 (pp), 0+

7 (nn) 1.002 2.84(–04) 1.28

476 22.100 0+
6 (pp), 0+

8 (nn) 1.000 2.05(–04) 2.70

507 27.486 0+
7 (pp), 0+

8 (nn) 1.001 7.09(–04) 21.98

510 31.499 0+
8 (pp), 0+

8 (nn) 1.000 8.97(–05) 4.28

Table 4. As in Table 3, but for 2+
a4

states

a4 E, MeV J(pp), J(nn) X S1 HF1

171 4.334 2+
11(pp), 0

+
8 (nn) 1.033 0.54(–04) 1.48

2+
11(pp), 2

+
19(nn) –0.114

409 11.034 0+
7 (pp), 2+

19(nn) 1.009 0.18(–03) 5.08

432 12.020 2+
16(pp), 0

+
8 (nn) 0.812 0.18(–03) 5.08

2+
16(pp), 2

+
19(nn) 0.589

485 18.087 0+
11(pp), 2

+
19(nn) 1.000 0.35(–03) 13.32

487 18.585 0+
11(pp), 2

+
21(nn) 1.000 0.20(–03) 1.28
of the discrete spectrum, while λ2 corresponds to an
h.o. potential that describes better the continuum part
of the spectrum. Figure 3 shows some s.p. levels
versus the ratio f ≡ λ2/λ1. One can see that the
bound states and narrow resonances have relatively
stable positions, while the density of other states in
a continuum becomes higher with decreasing f . In
this way, one obtains a quasicontinuum description of
the background. The optimal value of the parameter f
is taken in such a way as to obtain the right value of
the total decay width (2.6) by using aminimal amount
of major shells. Figure 4 shows that, if one considers
only N0 = 6 major shells, the total decay width is not
reproduced (dash-dotted curve). The same happens
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
if one takes N = 9 shells with f = 1 (dashed curve),
while, in the case of f = 0.2 (solid curve) for the
last three shells, one obtains nearly a plateau beyond
the geometric-touching point, reproducing the exper-
imental value.

As was indicated above, narrow s.p. Gamow res-
onances play an important role in some low-lying
states that have a strong overlap with the α-particle
wave function and which are called α-like states.
They should also play an important role in some high-
lying states seen as resonances in the scattering of
α particles on the daughter nucleus, especially above
the Coulomb barrier. Table 3 presents the monopole
α-like four-particle states having HF1 > 1 (last col-
2



626 DELION, SUHONEN

 

0

–5

–10

–15
8 9 10 11 12

 

R

 

, fm

log(
 

Γ
 

theor

 
/

 
Γ

 

expt

 
)

Fig. 4. Total decay width if one considers N0 = 6 ma-
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umn). States above the barrier have energies greater
than 16(= 25 − 9) MeV. The excitation energies are
relative to the g.s. energy in 212Po.

To obtain such high-lying states, we performed
a diagonalization by considering the two-particle
states with energies less than 20 MeV and J = 0,
. . ., 4. Despite a very large number of eigenstates,
only very few have large overlaps with the α-particle
wave function, i.e., large values of HF1 and spec-
troscopic factors. All these states contain at least
one of the states involving Gamow resonances in
their structure, as can be seen from the third column
of Table 3. High-lying α-like quadrupole states are
given in Table 4. As in the preceding case, these states
have two-particle monopole components carrying
Gamow resonances and only two of them are above
the Coulomb barrier.

4. CONCLUSION

We have analyzed the influence of states in a con-
tinuum on cluster-decay processes. As an example
containing basic ideas, we have considered the α
decay of 212Po. We have used the MSM technique to
describe α-like structures in terms of two-body states
as main building blocks. This is a very appropriate
procedure to be extended in a straightforward way
to the emission of heavier clusters. In order to con-
struct the two-particle pp, nn, and pn states in 210Po,
Pb, and Bi nuclei, we have first considered, in the
s.p. spectrum, only bound states and narrow Gamow
resonances in a continuum. As a residual two-body
potential, we have used a surface delta interaction. It
is very satisfactory that low-lying states in 212Po can
be reproduced by using only the lowest two-particle
eigenstates of these three nuclei as building blocks.
Spurious components with small eigenvalues of the
P

metric matrix were eliminated in order to take into
account the Pauli exclusion principle. We have ana-
lyzed the α-cluster content of the wave function for
all four-particle eigenstates. We have found that the
first lowest states have an α-particle-formation am-
plitude commensurate with that of the g.s. and called
them α-like states. We have also found some high-
lying monopole and quadrupole eigenstates strongly
overlapping with the α-cluster wave function. All of
them have, in their structure, monopole two-particle
states of pp or nn type, with important Gamow res-
onance components. States above the Coulomb bar-
rier should be observed as resonances in α-particle
scattering on 208Pb. Moreover, the equivalent lo-
cal potential derived by evaluating the α-particle-
formation amplitude for the transition between the
ground states and interpreted as a wave function
satisfying the Schrödinger equation has a “pocket”
molecular shape. Similar potentials were used in cal-
culations reproducing resonances in the elastic scat-
tering of α particles. The majority of such resonances
were observed in light nuclei aroundCa; therefore, our
future purpose is to extend the multistep shell-model
calculation to this region.

It turned out that the spectroscopic factor of the
pp–nn component is much greater than that of the
pn–pn component owing to the difference in the pro-
ton and neutron single-particle structures. In addi-
tion, the pp–nn component has a right order of mag-
nitude. If one considers only bound and resonance
s.p. states, the absolute value of the g.s.-to-g.s. decay
width is underestimated by two orders of magnitude.
The inclusion of the background components by us-
ing a very efficient quasicontinuum representation, in
terms of an h.o. basis with two constants, corrects for
this deficiency.
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Pionic Fusion Study of the Halo Nucleus 6He,
the Reaction d + 4He → 6He + π+ at CELSIUS*

M. Andersson, Chr. Bargholtz, Kj. Fransson, E. Fumero, L. Gerén**, L. Holmberg,
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Abstract—The halo nucleus 6He has been studied in a pionic fusion experiment at the CELSIUS storage
ring facility in Uppsala. The 6He nuclei were produced in reactions with a deuteron beam incident on a
4He jet target 0.9–5.4 MeV above threshold in the center-of-mass frame. The 6He ions were detected in a
∆E–E solid-state detector telescope inserted into the CELSIUS ring. The aim of the experiment was to
investigate, in particular, the high-momentum part of the halo wave function by measuring the total and
differential cross sections of the reaction d + 4He→ 6He + π+. c© 2002MAIK “Nauka/Interperiodica”.
The nuclide 6He is the simplest two-neutron
halo nucleus. Most experiments on 6He so far have
concentrated on the low-momentum part of the
halo wave function [1–3]. The high-momentum
part of the wave function is less well known. The
aim of this experiment was to investigate the high-
momentum part of the wave function by producing
6He, in its ground state, in the pionic fusion reaction
d + 4He→ 6He + π+, close to threshold. A mea-
surement very close to threshold has the advantage
that only low-angular momenta contribute to the
reaction. Results of theoretical estimates have shown
high sensitivity to both the reaction mechanism and
different models of 6He. The isobaric analog state of
the ground state of 6He at 3.56 MeV excitation en-
ergy in 6Li has been studied in an earlier pionic fusion
experiment [4]. The results from this measurement
reflect a sensitivity to the structure of the halo.

The experiment was done at the CELSIUS accel-
erator and storage ring at TheSvedberg Laboratory in
Uppsala. The electron-cooled circulating ion beam,
in combination with thin internal targets, ensures
small momentum spread and high luminosity. This
makes it ideally suited for studies of nuclear reactions
close to threshold.

In this experiment a deuteron beam was used to-
gether with a 4He gas-jet target with a nominal thick-
ness of 1.6 × 1014 atom/cm2. The measurements
were done at three different beam energies, 217.7,
218.6, and 224.5 MeV, corresponding to Ec.m. = 0.9,

∗This article was submitted by the authors in English.
**e-mail: geren@physto.se
1063-7788/02/6504-0628$22.00 c©
1.5, and 5.4 MeV above threshold in the center-of-
mass frame. The reaction products were detected in a
zero-degree spectrometer [5]. The spectrometer uses
the quadrupole and dipole magnets of the CELSIUS
ring to focus the 6He ions onto a charged-particle
telescope inside the beam tube, 6.1 m downstream
from the target. The radial position of the telescope
is continuously adjustable in order to match the
momenta of the reaction products. For these mea-
surements, a transmission (∆E) detector of 1.0 mm
silicon and a stopping (E) detector of 1.7 mm high-
purity germanium were used. The stopping detector
is position-sensitive with its contacts divided into 18
horizontal strips of 2-mm width on one side and 66
vertical, 1-mm-wide strips on the other side. From
the position and energy information, the emission
angle can be deduced.

Very close to threshold heavy-reaction products
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PIONIC FUSION STUDY 629
carry most of the beam momentum and therefore
travel close to the beam. Hence forward and backward
scattered ions in the center of mass are simultane-
ously detected in the telescope. Simulations assum-
ing an isotropic angular distribution of 6He show an
acceptance of 60% at a beam energy of 217.7 MeV
and 30% at a beam energy of 218.6 MeV.

The energy deposited in each detector was sum-
med to obtain the full energy of the 6He ions. A
∆E–E spectrum recorded at 217.7 MeV energy is
shown in the figure. The 6He events are well separated
from all other charged particles. A similar spectrum
recorded at a beam energy below the absolute thresh-
old for the reaction will be used to further reduce the
background.

Preliminary results from the reaction d + 4He →
6He + π+ show an anisotropic angular distribution of
6He with a larger forward than backward peak. This
would indicate that the pion is emitted preferentially
in the direction of the heavier particle in the initial
system. A similar asymmetry was found for the analog
reaction α+ d→ 6Li∗ + π0 [4]. However, preliminary
results seem to indicate that the cross section for
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
the d + 4He→ 6He + π+ reaction increases with
energy, whereas for the analog reaction the total cross
section decreased with about 40% over 0.7 MeV.
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Angular Correlations in Ternary Fission Induced by Polarized Neutrons*
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Abstract—Ternary fission induced by cold polarized neutrons was studied for the two isotopes 233U and
235U at the Institut Laue–Langevin in Grenoble, France. In particular two types of angular correlations
between the spin of the incoming neutrons and the emission directions of both, the fission fragments
(FF) and the ternary particles (TP), were investigated. For FF and TP detectors facing the target at
right angles to the neutron beam, first, for longitudinally polarized neutrons a triple correlation between
spin and the emission of outgoing particles was explored and, second, for transversally polarized neutrons
parity violating asymmetries in the emission of FFs and TPs were analyzed. Nonzero expectation values for
the triple correlation were oberserved in the present experiments for the first time. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

With the discovery of parity nonconserving (PNC)
asymmetries in the angular distributions of fission
fragments (FF) for reactions induced by polarized
neutrons, it was demonstrated that, surprisingly, even
in this complex nuclear reaction effects usually traced
to the weak interaction can be unraveled [1]. PNC
effects could further be shown to be a useful tool to
explore themechanism of more complicated phenom-
ena like ternary fission just by comparing the sizes
of angular asymmetries of fragments for ternary and
binary fission [2, 3]. In ternary fission, besides the
two familiar fission fragments, an additional light-
charged particle appears which in 90% of all cases is
an α particle. Evidently, in ternary fission new types of
angular correlations between the emission directions
of the outgoing particles and the spin direction of
the neutrons being captured in fissile nuclei become
observable. In fact, it was proposedmore recently that
ternary fission may even be an appropriate testing
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ground for time reversal invariance [4] (TRI). The
correlation to be studied in fission is modeled on the
correlation in the emission of electrons and antineu-
trinos in the decay of polarized neutrons which is
investigated in the search for a violation of TRI.

The correlation at hand is a triple correlation be-
tween the direction of the spin of the neutron inducing
fission and the directions of emission of one of the
FFs (conventionally the light fragment, LF) and the
ternary particles (TP). The observable to be measured
reads

B = σ̂ · [p̂LF × p̂TP] . (1)

In Eq. (1) σ̂ is the spin vector of the neutron, while
p̂LF and p̂TP are the momenta of the light fragment
and the ternary particle, respectively, all vectors be-
ing unit vectors. Formally the observable B violates
TRI. However, it has always been stressed by theory
that, in general, a nonzero expectation value for an
observable like B does not by itself prove a violation
of TRI [5]. Instead, interactions between particles
in the entrance or exit channel may mimic TRI. By
contrast, experiments on parity violation do not suffer
from this ambiguity. In fission PNC is observed for
reactions with polarized neutrons as a nonvanishing
expectation value for the observable

APNC
LF = σ̂ · p̂LF. (2)

The observable in Eq. (2) is a pseudoscalar signaling
PNC in case a nonzero average value is observed.
PNC according to Eq. (2) may be studied for both,
binary, and ternary fission, where in the latter reaction
simply the presence of a TP is requested.
2002 MAIK “Nauka/Interperiodica”
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In experiments to be reported here the triple corre-
lationB and the PNC observable APNC

LF were investi-
gated in ternary fission of U isotopes.

2. EXPERIMENTAL SETUP

The experiments on ternary fission were carried
out for (n, f) reactions with 233U and 235U as targets
and a neutron beam from the ILL reactor in Greno-
ble. The neutron beam was available at the exit of a
curved neutron guide facing a cold neutron source.
The spectrum of cold neutrons was rather broad with
an average wavelength of 4.5 Å. With a supermirror
polarizer the polarization achieved was (95 ± 1)%,
and the flux density was 6× 108 n/cm2 s. The neutron
beam was running horizontally. The target and the
detectors for FFs and TPs facing the target were
placed in a common plane oriented perpendicularly to
the beam. The two main FFs were intercepted by two
multiwire proportional counters (MWPC) mounted
symmetrically on opposite sides of the beam on a
common axis with the target. The timing signals from
the MWPCs were used to derive the time-of-flight
(TOF) difference between two correlated FFs. The
TOF difference allows one to separate reasonably well
light and heavy fragments. The TPs were detected by
PIN diodes. Each PIN diode was 3 × 3 cm2 in size,
and 16 diodes were assembled to form an array. Two
such arrays were positioned again on opposite sides
of the beam and at right angles to the axis defined
by the MWPCs and the target. This arrangement of
detectors exploits the fact that the emission of TPs is
roughly peaked at right angles relative to the fission
axis established by the momenta of the two receding
FFs. The diodes had to be protected from αs due to
the radioactivity of the targets. Since αs from ternary
fission have an average energy of about 16 MeV
they are readily distinguished from the αs from target
radioactivity. Some of the diodes were furthermore
equipped for particle identification by analyzing the
signal rise time [6]. A novel technique enabled a clear-
cut separation of αs from H isotopes, the by far most
abundant ternary particles.

With properly chosen magnetic guiding fields be-
tween the polarizer and the U target the spin of the
neutron beammay be rotated in any direction wanted.
For measuring the triple correlation of Eq. (1) the spin
was oriented longitudinally along the beam. The ob-
servable B is thus close to ±1, giving the experiment
maximum sensitivity. For the PNC experiments, on
the other hand, the neutron spin was turned perpen-
dicularly to the beam and pointing towards the FF
detectors. Now the observable APNC

LF from Eq. (2) is
close to ±1 optimizing the detection of PNC asym-
metries.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
In both types of experiments the asymmetries are
expected to be very small and giving rise to only small
deviations from angular isotropy. Therefore, the two
experiments for the triple correlation and the PNC
asymmetry are evaluated, respectively, in terms of the
two probability distributions

W (p̂LF, p̂TP) dΩLFdΩTP (3)

∼ (1 +DB)P (p̂LF, p̂TP) dΩLFdΩTP,

W (θ, ϕ)dΩLF ∼
(
1 + αPNC

LF APNC
LF

)
dΩLF. (4)

It should be stressed that in deriving Eq. (3) or (4) the
spin vector σ̂ is kept fixed, either parallel or perpen-
dicular to the beam direction, respectively. The factor
P (p̂LF, p̂TP) in Eq. (3) takes into account the angular
distribution of the TP relative to the direction of flight
of the light FF. In Eq. (4) it has to be noted that the
observable APNC

LF is just equal to cos θ with θ being
the angle between the spin vector σ̂ and the fission
axis p̂LF. The coefficients D and αPNC

LF are taken to
be constants measuring the size of the triple corre-
lation and the PNC asymmetry, respectively. It can
be shown that simple relations hold between these
constants and the corresponding expectation values
〈B〉 and 〈APNC

LF 〉 of the observables, namely,
〈B〉 ≈ D/3 and 〈APNC

LF 〉 = αPNC
LF /3. (5)

While taking the experimental data use was made of
the spin flip technique. Every second the neutron spin
was flipped by 180◦. From the number of counts N+

and N− in the two spin positions the above constant
asymmetry coefficients are obtained as the differ-
ence of counts normalized to the sum of counts, viz.,
(N+ −N−)/(N+ +N−). The experimental setup al-
lowed one to measure in parallel the coefficients for
four independent combinations of detectors yielding
four independent values for the coefficients. In addi-
tion data were taken for two settings of the guide fields
inverting the spins at the target position and hence
also the signs of the coefficients. The guide fields were
inverted typically once per day. Thus a total of eight
independent measurements is available for evalua-
tion. Finally, it was checked that for a depolarized
neutron beam the asymmetries indeed vanish within
experimental uncertainty.

More details on the experiment and its evaluation
may be found in a recent publication [7].

3. EXPERIMENTAL RESULTS

In the experiments on triple correlations in ternary
fission unexpected effects were observed for both U
isotopes studied. The correlation coefficients D as
obtained from the raw data for α particles as TPs are
shown in Figs. 1 and 2 for the isotopes 233U and 235U,
2
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Fig. 1. 233U target. Top panel: energy distribution of
ternary α particles corrected for energy loss in absorber
foil. Bottom panel: triple correlation coefficient D as a
function of α energy. The straight line is a linear fit to the
data.

respectively. The correlation coefficientD is plotted as
a function of the α-particle energy in the bottom pan-
els of the figures. For comparison the energy spectra
of α particles measured in the present experiments
are given in the top panels. The α detectors were
calibrated with an 241Am source, and the spectra were
corrected for the energy loss in the Al foil protecting
the PIN diodes. The spectra are well known in the
literature to be to good approximation Gaussian in
shape with average energies of 15.9 ± 0.2 MeV and
with an FWHM of 10 ± 0.5MeV for thermal neutron
induced fission of all isotopes investigated so far [8].
The energy loss correction amounted up to almost
10 MeV and, as is evident from Figs. 1 and 2, the
present spectra are severely truncated at lower α en-
ergies when compared to the actual spectra. These
latter spectra extend down to α energy zero. About
25% of ternary αs are missed in the present setup.
PH
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Fig. 2. 235U target. Top panel: energy distribution of
ternary α particles corrected for energy loss in absorber
foil. Bottom panel: triple correlation coefficient D as a
function of α energy. The straight line is a linear fit to the
data.

Probably the most striking feature of the corre-
lation depicted in Figs. 1 and 2 is the large size
of D which comes close to ±4 × 10−3 at the upper
limit of the α-energy spectrum. The different signs
of the correlation for the two U isotopes under study
is likewise noteworthy. Furthermore, the pronounced
dependence of the correlation on the α-particle en-
ergy catches the eye. This strong energy dependence
makes it impossible to find reproducible values for
the energy-averaged correlation 〈D〉 from the raw da-
ta of different experiments with different low-energy
cutoffs of α detection. Instead, the dependence of D
on the full range of α energies has to be taken into
account. To this purpose the shape of the function
for the correlation D vs. α energy has to be known.
The present experiments, unfortunately, do not allow
one 4to uniquely determine the precise shape of this
function. As a first approach a linear fit to the data
has been chosen which is shown in Figs. 1 and 2.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Having discovered that the triple correlation co-
efficient D varies as a function of α-particle energy,
the question arises whether a similar variation also
obtains as a function of the angle of emission of the
α particle relative to the fission axis. The granulated
PIN diode arrays of the experiments to be reported
here enable one to determine the correlation D vs.
the angle θ between α particle and light fragment
momenta. Results of this analysis for the reaction
233U(n, f) are depicted in Fig. 3. The top panel shows
the angular distribution of α particles in the angular
range covered by the diodes of the arrays. The angular
distribution is in good agreement with literature data
[9]. The panel on bottom of Fig. 3 represents the
energy averaged correlation 〈D〉 as a function of the
angle θ. Evidently, within statistical uncertainty the
correlation stays virtually constant for the range of
angles accessible to measurement.

Several corrections have to be applied to the raw
data before quoting a final result for the triple correla-
tion. There are some trivial ones like, first, corrections
for the geometry of the experimental setup chosen
(finite size and position of detectors and target), sec-
ond, finite resolving power in the separation of light
and heavy fragments, third, finite polarization of the
neutron beam and, fourth, chance coincidences. More
details on how these corrections were implemented
are given elsewhere [10]. A much more delicate ques-
tion is how the averaging over α-particle energy has
to be performed since quite a sizable fraction of all
ternary α particles escape detection at low energies.
For the present purpose it has been chosen to rely
on the linear fit to the data for the correlation coeffi-
cient D shown in Figs. 1 and 2 and its extrapolation
to zero energy. It should be stressed that this linear fit
and especially its extrapolation is not very convincing
and furthermore in conflict with the predictions of
recent theoretical models of the triple correlation [11].
In any case, any assumption on the dependence of
the correlation D on α-particle energy will introduce
a systematic uncertainty or error which is difficult to
assess precisely. The errors quoted in the following
are, therefore, only the statistical errors.

Final results for the energy-averaged triple corre-
lation coefficients 〈D〉 are given separately for α par-
ticles and tritons. For ternary fission in the 233U(n, f)
reaction the correlations are, respectively,

〈D〉α = (−2.52 ± 0.14) × 10−3, (6)

〈D〉t = (−1.99 ± 0.63) × 10−3.

For the 235U(n, f) reaction the corresponding results
for α particles and tritons are, respectively,

〈D〉α = (+0.83 ± 0.11) × 10−3, (7)

〈D〉t = (+0.60 ± 0.41) × 10−3.
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Fig. 3. 233U target. Top panel: ternary α-particle yield
as a function of the angle between light fission fragment
and ternary particle. Bottom panel: triple correlation coef-
ficient 〈D〉 averaged over energy as a function of the angle
between light fission fragment and ternary particle.

In the results laid down in Eqs. (6) and (7) it is re-
markable that the correlation has the same size for the
two main contributors to TPs, α particles and tritons.
The observation holds within statistical uncertainty
for both reactions studied. Since unlike theα particles
the tritons carry spin, the result appears to indicate
that the correlation depends on neither particle type
nor particle spin of the TP emitted.

PNC effects in neutron induced fission being dis-
cussed since decades, only a shorthand report on
the present PNC investigation will be given. With
the experimental setup described for the measure-
ment of the triple correlation staying untouched, the
experiment is switched to a PNC study by turning
the spin of the neutron beam from longitudinal to
transverse and pointing towards the FF detectors.
The basic equations for the PNC asymmetry in the
angular distribution of FFs have already been quoted
in Eqs. (2) and (4). PNC effects were measured for
ternary fission of the 233U(n, f) reaction only. More-
over, the statistics accumulated did not allow one to
disentangle PNC asymmetries for FFs accompanied
by either α particles or tritons. A new and notable
result is here that the PNC asymmetry as quantified
by the coefficient αPNC

LF in Eq. (4) is independent
of the energy of the TPs. The final result, corrected
similarly to the triple correlation above and averaged
2
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over energy, is

〈αPNC
LF 〉 = (0.37 ± 0.10) × 10−3. (8)

The present result for ternary fission is remarkably
close to the value for the asymmetry found for binary
fission of the same 233U target nucleus investigated
in the same neutron beam of the ILL which has been
measured to be [12]

〈αPNC
LF 〉 = (0.400 ± 0.017) × 10−3. (9)

The equality of PNC asymmetries of fragments in
binary and ternary fission is well known from previous
work [3] where the ratio of asymmetries for ternary to
binary fission is reported to be (1.05 ± 0.10) for the
reaction at hand.

A further result of the present experiment should
be noted in passing. With the same setup as used
in the investigation of PNC effects for the FFs, i.e.,
for transverse polarization of the neutron beam with
the spin pointing towards the FF detectors, the left–
right asymmetry of TPs in ternary fission can be
determined by observing the count rates in the TP de-
tectors positioned at right angles to neutron spin and
neutron momentum. The observable in question is

ALR
TP = p̂TP · [σ̂ × p̂n] . (10)

It measures the asymmetry in the emission p̂TP of
TPs with respect to an oriented plane formed by neu-
tron spin σ̂ and neutron momentum p̂n. In analogy to
Eqs. (3) and (4) the asymmetry is parametrized by the
ansatz

W (θ, ϕ)dΩTP ∼
(
1 + αLR

TPA
LR
TP

)
dΩTP. (11)

In Eq. (11) the polar angles (θ, ϕ) specify the emis-
sion direction of the TPs relative to the oriented nor-
mal to the plane (σ̂, p̂n). The constant αLR

TP in the
above equation is called the left–right asymmetry
coefficient which quantifies the size of the asymmetry.
In analogy to Eq. (5) the relation 〈ALR

TP〉 = αLR
TP/3

between the expectation value of the observable and
the coefficient holds.

For the 233U(n, f) reaction induced by cold neu-
trons the left–right asymmetry coefficient for ternary
particles averaged over TP energy is found to be

〈αLR
TP〉 = −(0.08 ± 0.08) × 10−3. (12)

The result indicates that within statistical uncertainty
TPs from ternary fission exhibit no left–right asym-
metry.

4. DISCUSSION

The observable B from Eq. (1) with the particu-
lar feature to invert sign when time is reversed has
been investigated for ternary fission induced by cold
P

polarized neutrons in the fissile isotopes 233U and
235U. The experiments to be reported here are novel.
Though originally motivated by the idea that possibly
the experiments could probe TRI it became evident
very quickly that, as predicted by theory, in a complex
reaction like fission TRI is not directly linked to a
nonvanishing expectation value for the observable B.
From experiment this conclusion is strongly sup-
ported by the mere size of the correlation as quantified
by the correlation coefficient D approaching ±4 ×
10−3. Most probably the effect observed is much too
large to be traced to a violation of TRI and, hence, an
alternative interpretation has to be found.

Looking for an interaction in the ternary fission
process which could bring forth the correlation dis-
covered, attention has to be drawn to the fact that the
dependence on the energy of the TP is quite different
for the triple correlation and the PNC effect for FF.
While the size of the triple correlation varies markedly
with the energy of the TP, the PNC asymmetry is
independent of the TP energy. As to the PNC effect,
it is now well established that it becomes promi-
nent in nuclear fission due to an enhancement of the
mixing of states with opposite parities in the com-
pound nucleus. It is further generally accepted that
angular distributions, either parity conserving or not,
are settled in the course of low-energy fission at the
saddle point. Hence, PNC asymmetries in the angular
distributions of FFs probe the early stages of fission
up to the saddle point. This statement allows one to
draw some conclusions from the PNC effect in ternary
fission. As confirmed by the present experiments, the
PNC effect has the same size, in both binary and
ternary fission. The equality is interpreted to show
that the TPs of ternary fission appear at a late stage
of fission, i.e., close to or right at scission, since then
all PNC effects are already established when the TPs
come into existence. It is, hence, not surprising that
the PNC effects for the FFs are also independent of
the energies of the TPs as observed for the first time
in the present experiments.

By contrast to the PNC effects, the triple correla-
tion does depend on TP energy (Figs. 1, 2) and this is
taken as a strong indication that the correlation orig-
inates near the scission point, i.e., at the final stage of
the fission process. Different scenarios are then con-
ceivable. In any case the polarization of the compound
nucleus following capture of a polarized neutron has
to be taken into account. As a first idea it is then
obvious to imagine a spin–orbit interaction between
the polarized fissioning nucleus and the ejected TP,
either electromagnetic or—more probably—nuclear
in character [13]. The spin–orbit interaction adds to
the Coulomb interaction exerted by the two nascent
FFs on the TP. The Coulomb force is held responsible
for the focusing of the TP roughly at right angles to
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the fission axis. More precisely, due to the asymmetry
in mass and charge split of the FFs, the TP is slightly
pushed by the Coulomb force toward the light FF and
the average opening angle between the light FF and
the TP is 83◦. The angular distribution measured in
the present experiments clearly exhibits this feature
as shown in the top panel of Fig. 3. The additional
spin–orbit interaction should become manifest as a
further shift, widening or narrowing down the opening
angle between light FF and TP away from the average
83◦, depending on the direction of neutron and hence
also nuclear spin. This prediction can be checked ex-
perimentally. In fact, in the case where the spin–orbit
interaction is operative, the correlation coefficient D
should have opposite signs for angles smaller or larger
than the average angle 83◦ since, when flipping the
spin, the event rate, e.g., drops for angles smaller but
increases for angles larger than the average opening
angle and vice versa. However, as demonstrated in
the bottom panel of Fig. 3, experiment clearly tells
that the correlation coefficientD is independent of the
emission angle of the TP. The spin–orbit interaction
thus appears to be ruled out as a factor behind the
triple correlation observed.

A more elaborate model for the triple correlation
has been proposed by Bunakov [11]. The model is
described in detail in a companion paper and only the
main ideas are sketched here. Basically it is assumed
that the fissioning system is sufficiently equilibrated
at the scission point and therefore a stastistical model
should be a valid approach. It is then argued that
the spin of the polarized compound nucleus is trans-
ferred onto the two FFs and that, for the detector
setup chosen in the present experiments, the orbital
angular momentum of, say, an α particle enters into
the angular momentum balance with the TP orbital
angular momentum being parallel or antiparallel to
the nuclear spin. If now in the level density of nuclei
a dependence on angular momentum is taken into
account, a nonvanishing triple correlation with the
observed order of magnitude emerges in the statistical
approach.

Even more gratifying is that the dependence of the
triple correlation on TP energy is surprisingly well
reproduced. The dependence is traced to a correlation
between the intrinsic excitation energy at scission
and the kinetic energy of the TP. The link between
these two energies is understood by noting that the
dumbbell shape of a fissioning nucleus at scission
may vary between very compact and very deformed
configurations. While on average the intrinsic en-
ergy at scission is expected to be about 6 MeV, for
compact shapes the intrinsic energy is known to be
close to zero (“cold fission”) while the TP energy
will be large due to the stronger Coulomb repulsion
in a compact scission configuration. By contrast, for
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
deformed scission shapes the intrinsic energy will be
larger than average and the TP energy smaller than
average. Thus there is a correlation between the two
energies at hand which is mediated by the scission
configuration.

The mechanism behind the triple correlation
should be very similar for ternary fission of any po-
larized nucleus. Therefore, the size of the effect could
be expected to have the same order of magnitude for
all fission reactions. However, the polarization of the
compound nucleus and the transfer of the polarization
onto the FFs enter as further crucial parameters
when the FF spin is coupled to the orbital angular
momentum of the TP. The polarization picked up by
a nucleus following capture of a polarized neutron
is governed by the capture states and these change
rapidly with neutron energy. For given neutron spin
the polarization can even change sign. Hence, the
opposite signs of the correlation coefficient D mea-
sured for the two isotopes 233U and 235U in the
present experiments is likewise within the scope of
the correlation model proposed.

Finally, as a comment to the investigation of left–
right asymmetries of TPs in ternary fission it may be
conjectured that this asymmetry should be zero. The
reason is that, similar to the PNC asymmetry, also the
left–right asymmetry is settled by the interference of
compound nucleus levels at an early stage of fission.
This is at least the view advanced for the interpreta-
tion of left–right asymmetries of FFs in binary fission.
But at this early stage of the process the TPs have
not yet come into view. The experimental result, with
the left–right asymmetry being according to Eq. (12)
compatible with nil for the TPs is, hence, not surpris-
ing.

Evidently, there is much work still ahead to get a
comprehensive survey on all conceivable correlations
and asymmetries in ternary fission. Of course, as a
natural extension of the present work, the dependence
of correlations and asymmetries should be studied for
a larger choice of fissile nuclei, both as a function
of the energy of neutrons inducing fission and as a
function of masses and energies of FFs and TPs.

Besides the correlations studied here, it should
also be interesting to analyze for ternary fission the
PNC asymmetries of TPs and the left–right asym-
metries of FFs which are complementary to those
reported from the present experiments. Likewise the
forward–backward asymmetries of both FFs and
TPs could give further insight into the mechanism
of ternary fission.
2
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Nonlinear Evolution of the Axisymmetric Nuclear Surface*
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Abstract—We consider a uniformly charged incompressible nuclear liquid bounded by a closed surface.
It is shown that the evolution of an axisymmetric surface Γ(r, t) ≡ σ − Σ(z, t) = 0, r = (σ, φ, z) can be
approximately reduced to the motion of a curve in the (σ, z) plane. A nonlinear integro-diffrerential equation
for the contour Σ(z, t) is derived. The contour Σ(z, t) and the local curvature are found to be a direct
correspondence, which makes it possible to use methods of differential geometry to analyze the evolution of
an axisymmetric nuclear surface. c© 2002 MAIK “Nauka/Interperiodica”.
1. MOTIVATION

The nonlinear dynamics of a nuclear surface is
an object of special interest for the following rea-
sons. First, the nuclear density decreases consider-
ably in the surface region, where density fluctuations
and clustering may be of importance. Second, var-
ious types of instability may develop in the surface
region and lead to fragmentation processes at low
(fission, nucleon transfer) and high (multifragmenta-
tion, breakup, etc.) energies. Finally, the liquid-drop
concept [1] has been intensively used in macro- [2]
and microphysics [3] for over a century. In any com-
plicated systems, the nonlinear dynamics of shapes
inevitably leads to mathematical problems in describ-
ing global geometric quantities such as a surface or
an enclosed volume in various dimensions (polymers,
cell membranes, 3D droplets).

Application of the soliton concept to nonlinear
nuclear hydrodynamics opened yet new possibilities
in this field (see, e.g., the review in [4] and [5–8] for
recent references). However, any extension of nonlin-
ear dynamics from 1 + 1 to 2+ 1 and 3+ 1 dimensions
runs into difficulties of a fundamental character. The
crucial point is to reduce the dimension of the prob-
lem at hand. The simplest two-dimensional nonlinear
liquid objects were considered in [9]. It was shown
that the 2D pure vortical motion of an inviscid nu-
clear liquid can be reduced to the 1D evolution of the
contour bounding this drop. An extension to semi-
3D geometry was performed in [10]. The equations

∗This article was submitted by the authors in English.
1)Bogoliubov Laboratory of Theoretical Physics, Joint Insti-
tute for Nuclear Research, Dubna, 141980 Russia.

2)Institut für Theoretische Physik der J.W.GoetheUniversität
Frankfurt amMain, Frankfurt am Main, Germany.

**e-mail: gridnev@nuclpc1.phys.spbu.ru
1063-7788/02/6504-0637$22.00 c©
of motion describing a localized vortex on a spherical
nuclear surface—a bounded region of constant vor-
ticity surrounded by irrotational flux—were reduced
to the 1D nonlinear evolution of the boundary.
Here, we consider a uniformly charged incom-

pressible nuclear 3D fluid bounded by a closed sur-
face. It is shown that the evolution of an axisymmetric
surface Γ(r, t) ≡ σ−Σ(z, t) = 0, r = (σ, φ, z) can be
approximately reduced to the motion of a curve in the
(σ, z) plane.

2. FRAMEWORK

The evolution of a one-body Wigner phase-space
distribution function is analyzed instead of a full
many-body wave function. Integrating the kinetic
equation

∂f

∂t
+

p
m

∂f

∂r
− ∂V

∂r
∂f

∂p
= Irel, (1)

HW =
p2

2m
+ V (r)

over momentum space with various polynomial
weighting functions of the variable p, one arrives
at an infinite chain of equations for local collective
observables, including the density, the collective
velocity, the pressure, and an infinite set of tensorial
functions of the time and spatial coordinates, which
are defined as moments of the distribution function in
momentum space:
the particle density n(r, t) ≡ g

∫
dp f(r,p, t) and

the mass density ρ(r, t) = mn(r, t), where we con-
sider a proton and a neutron as different states of the
same particle (the spin–isospin degeneracy of g = 4);
the collective current and velocity of nuclear mat-

ter, ρ(r, t)u(r, t) = g
∫
dppf(r,p, t);
2002 MAIK “Nauka/Interperiodica”
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the pressure tensor Pij(r, t) = (g/m)
∫
dp ×

qiqjf(r,p, t),q = p−mu;
tensors of various order describing energy–mo-

mentum transfer,

Pijk(r, t) =
g

m2

∫
dpqiqjqkf(r,p, t), (2)

P ij...k︸︷︷︸
n

(r, t) =
g

mn−1

∫
dp qiqj . . . qk︸ ︷︷ ︸

n

f(r,p, t),

and integrals related to relaxation terms,∫
dpIrel = 0,

∫
dppIrel = 0, (3)

Rij ≡
g

m

∫
dp qiqjIrel, . . . .

Truncating this chain, one arrives at the “fluid-
dynamics” level of the description of nuclear pro-
cesses,

∂ρ

∂t
+
∑
k

∂

∂xk
(ukρ) = 0, (4)

ρ
Dui
Dt

+
∑
k

∂Pik
∂xk

+
ρ

m

∂V

∂xi
(5)

+ ρ

(
Ωi

∑
k

Ωkxk − Ω2xi

)

+ ρ
∑
s,j

εisj

(
2Ωsuj +

dΩs

dt
xj

)
= 0,

DPij
Dt

+
∑
k

(
Pik

∂uj
∂xk

+ Pjk
∂ui
∂xk

+ Pij
∂uk
∂xk

)
(6)

+ 2
∑
s,m

Ωm(εjmsPis + εimsPjs)

+
∑
k

∂

∂xk
Pijk = Rij .

Here, we have used the standard notation

D

Dt
≡ ∂

∂t
+
∑
k

uk
∂

∂xk

for the operator giving thematter derivative or the rate
of change at a point locally moving with the fluid. The
hydrodynamic set of Eqs. (4)–(6) describes evolution
in a rotating nuclear system. The linear transforma-
tion

xi =
3∑
j=1

TijXj
PH
relates the coordinates of a point (X1, X2, X3) in an
inertial frame and (x1, x2, x3) in a moving reference
frame with a common origin. The orientation of the
moving frame with respect to the inertial frame will be
assumed to be time-dependent, Tij(t), representing
an orthogonal transformation, and the vector

Ωi =
1
2

∑
j,k,m

εijk (dT/dt)jm T+
mk

represents a general time-dependent rotation.

Let us restrict ourselves to the simplest possible
motion of a nuclear liquid. We consider a uniformly
charged (with a total charge Ze) incompressible
nuclear “liquid” confined in a volume V bounded by
a closed surface S obeying the equation Γ(r, t) ≡
σ − Σ(z, t) = 0, r = (σ, φ, z), where (σ, φ, z) are
the cylindrical coordinates of a point. The geome-
try of the problem places the origin at the center
of mass (

∫
dr ρ(r, t) × u(r, t) = 0). The mean-field

potential and the related tensors can be decom-
posed into nuclear and Coulomb terms V (x, t) =
Vnucl(x, t) + Vcoul(x, t). The nuclear potential can
be derived as the first variation of the short-range
interaction-functional (as usual, for effective density-
dependent Skyrme forces) with respect to the density,
Vnucl(x, t) ≡ δE [n]/δn. This gives the nuclear poten-
tial as a function of the density n(r, t) = n0η(r, t).
The incompressibility of nuclear matter implies n0 =
(2p3

F)/(3π�
3), where n0 and pF are, respectively, the

density of nuclear matter and the Fermi momentum.
Bearing inmind that the effectivemean-field potential
is approximately constant in the interior of nuclei
and that it has a sharp coordinate dependence in
the surface region, we replace it by the surface term
[11] γsdivn̂, where n̂ = ∇Γ/|∇Γ| is the unit outward
normal to S and the surface tension γs is related to the
mass formula coefficient as bs = 4πr2

0γs ∼ 22 MeV.
In both cases, the contour Σ(z, t) defines completely
the nuclear potential on the nuclear surface,

Vcoul(x, t) =
(
Z

A
e

)2

n0

∫
dx′ η(x′, t)

|x − x′| (7)

=
(
Z

A
e

)2

n0

zmax∫
zmin

dz′
Σ(z′,t)∫
0

dσ′σ′I(σ, σ′, z′),

I(σ, σ′, z′) =

2π∫
0

dφ
1√

σ2 + σ′2 − 2σσ′ cosφ
.

Concerning pressure tensors, we will not solve the
kinetic Eq. (1), but will use the fact that this simplest
picture can be reproduced under the assumption that
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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the distribution functions f(r,p, t) has the factorized
form

f0(r,p) = (2π�)−3η0(r)φ0(p), (8)

f(r,p, t) = (2π�)−3η(r, t) φ(r,p, t),

where η(r, t) ≡ θ(Γ(r, t)) [η0(r) ≡ θ(Γ0(r))] is a step
function that is equal to unity inside the surface
Γ(r, t) [Γ0(r)] and to zero outside it. The distribution
function f0(r,p) describes an equilibrium spherically
symmetric state {Γ0(r) ≡ σ−

√
R2

0 − z2, whereR0 is
the radius of a sphere of the equivalent volume [4R3

0 =
3
∫
dzΣ(z, t)2]}. The distribution function f(r,p, t)

corresponds to a dynamical picture. Both distribution
functions describe a homogeneous distribution of
nuclear matter within the volume bounded by a
narrow surface. The momentum-dependent parts of
the distribution functions could be parametrized as

φ0(p) = θ(p2
F − p2), (9)

φ


r,p, t) = θ(p2

F −
∑
i,j

(δij + αij(t))qiqj


 .

The form chosen for the momentum-dependent part
of f(r,p, t) (f0(r,p)) ensures that it yields the cur-
rent density with the collective velocity u(r, t) (u0 =
0). Of course, the symmetry of the problem is defined
by the symmetry of all effective forces and of the initial
state. In a fluid at rest, there are only normal stresses,
which are independent of the direction of the normal
to the surface element across which it acts and the
equilibrium pressure tensor has a spherically sym-
metric form via the symmetry of the equilibrium dis-
tribution function, P 0

ij(r) = (2/5)εFη0(r)n0δij . There
is no reason to expect these results to be valid for a
moving fluid, where the tangential stresses are gen-
erally nonzero and where the normal component of
the stress acting across a surface element depends
on the direction of the normal to the element. The
simple notion of a pressure acting equally in all di-
rections is often lost in a moving fluid. Deformations
of Cartesian space define a deformation inmomentum
space, and vice versa. We only consider a motion with
Ω = 0 and assume that the tensorαij is diagonal. The
dynamical pressure tensors are Pij(r, t) = (2/5)(1 +
αii)−1εFn0η(r, t)δij . These equations show that the
introduction of the functions αii(t) in the expression
for φ(r,p, t) take into account the deformation of the
Fermi surface.
In the cylindrical coordinates, the main hydrody-

namical set of equations takes the form

∂uσ
∂t

+ uσ
∂uσ
∂σ

+ uz
∂uσ
∂z

= Fσ , (10)
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∂uz
∂t

+ uσ
∂uz
∂σ

+ uz
∂uz
∂z

= Fz,

∂uσ
∂σ

+
∂uz
∂z

+
uσ
σ

= 0,

where uσ and uz (Fσ and Fz) are the projections of the
velocity (forces) onto the axes σ and z, respectively.
The boundary conditions are

n̂Ξn̂ = −γs

(
1
C1

+
1
C2

)
, n̂Ξt̂ = 0, (11)

where Ξ is the stress tensor, which can be calculated
by using all the above formulas for the pressure tensor
and the mean-field potentials, and C1 and C2 are the
principal radii of curvature. A direct evaluation yields

1
C1

+
1
C2

=
1

Σ(1 + Σ2
z)1/2

− Σzz

(1 + Σ2
z)3/2

, (12)

Σz ≡
∂Σ
∂z

, Σzz ≡
∂2Σ
∂z2

,

n̂ =
êσ − Σz êz√

1 + Σ2
z

, t̂ =
Σzêσ + êz√

1 + Σ2
z

, (13)

êσ =
n̂ + Σz t̂√

1 + Σ2
z

, êz =
−Σzn̂ + t̂√

1 + Σ2
z

.

The final integro-differential equation of motion for a
contour accumulates the coupled set of Eqs. (10)–
(12):

DΣ(z, t)
Dt

=
∂Σ(z, t)

∂t
(14)

+ uz(Σ, z, t)
∂Σ(z, t)

∂z
= uσ(Σ, z, t).

The evolution of the surface Γ(σ, z, t) as a motion of
a 2D spatial curve in the (σ, z) plane is a particular
choice of a general 3D curve dynamics,

u = utt̂ + unn̂ + ubb̂, (15)

where the tangent t̂, the normal n̂, and the binormal
b̂ ≡ t̂ × n̂ form the Frenet–Serret triad [12] obeying
the equations of differential geometry:

t̂ ≡ dr
ds

,
dt̂
ds

=
d2r
ds2

= κn̂, κ =
∣∣∣∣d2r
ds2

∣∣∣∣ , (16)

db̂
ds

= −τ n̂, τ = κ−2
(dr
ds

× d2r
ds2

)
· d

3r
ds3

,

dn
ds

= −κt̂ + τ b̂.

Here, κ is the curvature and τ is the torsion of the
curve at the arclength position s and time t. A direct
evaluation yields

ds

dz
=
√

1 + Σ2
z, τ = 0, κ =

Σzz

1 + Σ2
z

.

2
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The axial symmetry of the problem constrains the
evolution to the (n̂, t̂) plane and (z ↔ s) and
[Σ(z, t) ↔ κ(s, t)] equivalence. This describes the
evolution of an axisymmetric surface in purely ge-
ometric terms of the curvature and the arclength.
The integro-differential form of Eqs. (10)–(14) leads
to strong nonlocality as a consequence of the long-
range part of the interaction.

3. SUMMARY

We have considered a uniformly charged incom-
pressible nuclear liquid bounded by a closed surface.
It has been shown that the evolution of an axisym-
metric surface Γ(r, t) ≡ σ−Σ(z, t) = 0, r = (σ, φ, z)
can be approximately reduced to the motion of a curve
in the (σ, z) plane. A nonlinear integro-differential
equation for the contour Σ(z, t) has been derived. It
has been shown that Σ(z, t) and the local curvature
are in direct correspondence, which makes it possible
to use methods of differential geometry to analyze the
evolution of an axisymmetric nuclear surface.
The objective of this short report was only to

present the main line. The extended article is in
preparation.
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Abstract—Coriolis interaction between levels of two rotational bands in 172Yb with Kπ = 2+ and 3+
and in 168Er between levels withKπ = 0−, 1−, and 2− is studied. The values of the interaction parameters
are obtained. The mutual influence of two bands in 162Dy with ∆K = 2, Kπ

i = 0+
2 and 2+

1 due to Coriolis
interaction is demonstrated. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The wave functions of the unified model define
the energy of the excited states of nuclei and their
other properties [1]. It is necessary to know exper-
imental data on band energies, transition probabil-
ities, moments, and other quantities to identify the
quadrupole-vibrational, octupole-vibrational, or two-
quasiparticle type of the band excitation. The wave
functions of many states are complex—they contain
two or more components. The effects of Coriolis mix-
ing of two states are observed when ∆K = 1 rota-
tional bands are close or when they intersect. The
mixing affects, first of all, the shift of rotational levels.
We used this effect to consider the pairs of ∆K = 1
bands in 172Yb and 168Er and the pair of bands with
∆K = 2 in 162Dy.

The term Hrot in the Hamiltonian and Wigner
functionDJ

MK define the eigenenergies of band levels,
E = (�2/2J )J(J + 1). This formula may be violated
because of a pairing reduction, an increase in the spin,
and band interaction. The pairing reduction leads to
a decrease in the inertia parameter A = �

2/2J in
the ground-states band from A = 12–30 keV, which
follows from the energy of the 2+ → 0+ transition
to the approximately rigid-body value A ≈ 7 keV if
J > 20�. The same tendency takes place in bands
built on the excited head levels. The band interaction,
the second reason, creates irregularity in the behavior
of A in the band. It is necessary to find the reason for
irregularities if they are discovered in experiments.

We considered four cases of two-band interac-
tion and A anomalies. For three of them, ∆K = 1
and irregularities are associated with Coriolis inter-
action. We can understand the energy of levels if we
take into account the mixing of the bands with K

∗This article was submitted by the author in English.
**e-mail: epgrig@nuclepc1.phys.spbu.ru
1063-7788/02/6504-0641$22.00 c©
and K + 1. The fourth example considered here is
that of the intersection of Kπ

i = 2+
1 and 0+2 bands

in 162Dy. The analysis contains the following limita-
tions: (i) The moments of inertia are the same for two
bands. (ii) Other bands do not affect the bands under
consideration. The observed energy of two levels with
spin J is defined by the terms [1]

EK,K+1 =
1
2
[ε0,K +AKJ(J + 1) + ε0,K+1

+AK+1J(J + 1)] ± 1
2
([ε0,K+1 +AKJ(J + 1)

− ε0,K −AK+1J(J + 1)]2 + 4W 2
K,K+1)

1/2,

where ε0,K and ε0,K+1 are the energy of unreal J = 0
noninteracting levels of the bands withK andK + 1,
WK,K+1 is the matrix element of the band inter-
action, and AK = AK+1. It is important to define
the interaction parameter B in the term WK,K+1 =
B[J(J + 1) −K(K + 1)]1/2 and its dependence on
the structure of interacting bands. The high quality
of experimental data is needed for this aim, and we
obtained new results using part of them [2–4]. We
used the above formulas to determine three interac-
tion parameters and evaluated the energies of levels
in five rotational bands.

2. CORIOLIS INTERACTION IN THE Kπ = 2+

AND 3+ LEVELS IN 172Yb

Two pair of bands with Kπ = 2+ and 3+ are
known up to an excitation energy of 2 MeV in 172Yb
[2]. A smooth decrease in A(J) with increasing J is
observed in low-level bands with 1172.39-keV, 3+

1

and 1465.88-keV, 2+
1 head levels.

For the second pair of the bands, the experimental
and calculated values of the energy of the levels and
the parameters A(J) are shown in Table 1. A large
gap between the 2+ and 3+ levels and an increase in
2002 MAIK “Nauka/Interperiodica”
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parameter A with increasing J are features peculiar
to the band withKπ = 2+.
We consider this agreement to be rather good,

bearing in mind the above assumptions. We obtained
the agreement of energy values within approximately
4 keV for 5+ levels and within 15 keV for 6+ levels.
The parameter value ofB = 6.86 keV corresponds

to the mixing of the two quasiparticle states 3+,
p[411] ↓ − p[404] ↓ and 2+, p[411] ↓ + p[411] ↑,
7.7%. Identification was made in [3]. Errors in cal-
PH
culatingB are less than 0.01 keV, but the influence of
other bands may change this value ofB. Specific cal-
culations are required for obtaining an actual value,
but such calculations are to be done not only in the
two-band approximation.

3. CORIOLIS INTERACTION
OF THE Kπ

i = 0−1 AND 1−1 BANDS IN
168Er

Between the head levels of the Kπ = 0− and 1−
bands in 168Er, there is a large gap of∆E = 426 keV
(Fig. 1 [4]). In spite of this, a strong signature split-
ting takes place in the K = 1 band between levels
with even and odd spins, and we suppose that this
may be due to the influence of the Kπ = 0− band,
which consists of only odd spin levels. We can see in
Table 2 that the experimental values of the parameter
A in the K = 1 band are 11–16 keV for odd-spin
levels and only 2–5 keV for odd-spin levels.
The K = 0 band does not affect the spin 2−, 4−,

. . . levels in the K = 1 band. The odd-spin levels in
K = 1 band go down, while, in theK = 0 band, they
go up because of the repulsion of the levels.
The results of our calculation show that energies of

J = 5 levels and J = 7 levels agree with experimental
values within 8 and 19 keV, respectively. The differ-
ence of the calculated and experimental values of the
energy of Jπ = 2−, 4−, and 6− levels does not exceed
5 keV. The reduction of their energy may be associ-
ated with the interaction with theKπ = 2− band, the
bandhead energy of the 2− level being 1569.45 keV.
The interaction-parameter value of B =

35.44 keV is rather large. The structure of the band
was defined in [5]: 0−, n[512] ↑ − n[642] ↑, 25% and
1−, n[512] ↑ − n[633] ↑, 72%.
The second Kπ

i = 1−2 band is known (the band-
head energy is 1936.40 keV, its spin–parity being 1−);
its signature splitting is about 1 keV. We expect that
the interaction with a known 0− band may increase
energies of odd-spin levels. However, we observe a
decrease in the energies of these levels, just as in
the low-lying 1− band. This may be explained by the
influence of higherKπ = 0− levels, for example, those
at 2137 and 2417 keV [6].

4. CORIOLIS INTERACTION
OF THE Kπ

i = 1−1 AND 2−1 BANDS IN
168Er

The Kπ = 0− band does not affect even-spin lev-
els in the Kπ = 1− and other bands. Nevertheless,
the inertia parameters A+(J → J − 2) increase with
increasing J (Table 3). We assume that this effect is
associated with the influence of the Kπ = 2− band,
where there are irregularities in the dependenceA(J).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Table 1. Experimental Eexpt and calculated Ecalc values of the energy of levels and values of inertia parameter A for
bands with Kπ

i = 2+
2 and 3+

2 in 172Yb (in keV) [the parameters used to calculate Ecalc are the following (in keV):
ε0(K = 2) = 1549.0, ε0(K = 3) = 1530.8,A(K = 2) = A(K = 3) = 11.94, and B = 6.86]

J
Kπ = 2+ Kπ = 3+

Eexpt Ecalc A Eexpt Ecalc A

2 1608.49 1619.7 – – – –
3 1700.64 ≡1700.64 15.36 1662.81 ≡1662.81 –
4 1803.11 ≡1803.11 12.80 1749.21 ≡1749.21 10.80

5 1927.02 1928.8 12.39 1862.80 1859.2 11.36

6 2075.27 2077.8 12.35 2007.98 1993.5 12.10

Table 2. Experimental Eexpt and calculated Ecalc values of the energy of levels and values of the inertia parameter A
for bands with Kπ

i = 0−1 and 1−1 in
168Er (in keV) [the parameters used to calculate Ecalc are the following (in keV):

ε0(K = 0) = 1760.12, ε0(K = 1) = 1344.83,A(K = 0) = A(K = 1) = 10.018, and B = 35.44]

J
Kπ = 0− Kπ = 1−

Eexpt Ecalc A Eexpt Ecalc A

1 1786.11 ≡1786.11 – 1358.90 ≡1358.90 –
2 – – – 1403.74 1403.93 11.21

3 1913.90 ≡1913.90 12.78 1431.47 ≡1431.47 4.62

4 – – – 1541.71 1545.18 13.78

5 2129.24 2137.24 11.96 1574.12 1568.76 3.24

6 – – – 1760.76 1765.57 15.55

7 – 2450.27 – 1795.32 1776.65 2.47

Table 3. Experimental Eexpt and calculated Ecalc values of the energy of levels and values of the inertia parameter A
for bands with Kπ

i = 1−1 and 2−1 in
168Er (in keV) [the parameters used to calculate Ecalc are the following (in keV):

ε0(K = 1) = 1143.85, ε0(K = 2) = 1306.04,A(K = 1) = A(K = 2) = 10.275, and B = 8.49]

J
K = 1 K = 2

Eexpt Ecalc A+ Eexpt Ecalc A+ A

1 1358.90 1364.4 – – – – –

2 1403.74 ≡1403.74 – 1569.75 ≡1569.75 – –

3 1431.47 1466.0 – 1633.46 1630.4 – 10.67

4 1541.71 ≡1541.71 9.86 1541.71 ≡1541.71 10.70 10.71

5 1574.12 1670.7 – 1820.48 1826.3 – 10.13

6 1760.76 1759.2 9.96 1949.64 1953.7 10.48 10.76

7 1795.32 1896.6 – – 2104.0 – –
The calculations were performed for the interaction
between even-spin levels of the Kπ = 1− and 2−

bands. At fixed energies of the J = 2 and 4 levels, the
difference of the experimental and calculated energies
for J = 6 levels is 1.5 keV for the K = 1 band and
4 keV for the K = 2 band. The difference of 3 keV
and 6 keV for 3− and 5− levels inK = 2 band may be
connected with the influence ofK = 0 band.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
The band-mixing parameter B = 8.49 keV is sig-

nificantly less than that for the K = 0 and K = 1

bands: B = 35.44 keV. The structure of the bands
was established in [5]: 1−, n[633] ↑ − n[512] ↑, 72%

and 2−, n[633] ↑ − n[521] ↑, 27%.
2
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5. INTERACTION OF Kπ
i = 2+

1 AND 0+
2

BANDS IN 162Dy

The 0+
2 and 2+

1 rotational bands in
162Dy [7] are

shown in Fig. 2. They intersect at the energy of
2.44 MeV and the spin values of J = 11 and 12.
Here, some other mechanism of mixing should take
place because there is no Coriolis interaction between
∆K = 2 levels.
On the top of Fig. 2, the signature splitting in the

Kπ = 2+ γ-vibrational band is shown. At J = 12,
there is the largest amplitude of signature splitting,
and we see the inversion of the spin position after
J = 11. Up to J = 12, higher positions have values
A for odd J ; after J = 12, they have values of A for
even J . The dependence of the parameters A+(J →
J − 2) = ∆E/2(2J + 1) and A− for even-spin and
for odd-spin levels, respectively, is shown in the lower
part of Fig. 2. We can see the anomaly in the depen-
dence A+(J) in both bands at J = 12. The lowest
value for the 0+2 band corresponds to the influence
of the 2+1 band. A smooth dependence for odd-spin
levels means that the anomaly is associated with the
interaction of even-spin levels in both bands as they
intersect.
To understand the repulsion mechanism, it is nec-

essary to know the structure of intersecting bands
PH
and the energy and the structure of the 1+ states if
Coriolis effect takes place here. The interaction pa-
rameters calculated for other bands may be useful for
their analysis.
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Abstract—The spontaneous fission (SF) of 252Cf has been studied via γ–γ–γ coincidence and light
charged particle—γ–γ coincidence with Gammasphere. The yields of correlated Mo–Ba pairs in binary
fission with 0–10 neutron emission have been remeasured with an uncompressed cube. The previous
hot fission mode with 8–10 neutron emission seen in the Mo–Ba split is found to be smaller than
earlier results but still present. New 0n binary SF yields are reported. By gating on the light charged
particles detected in ∆E–E detectors and γ–γ coincidence with Gammasphere, the relative yields of
correlated pairs in alpha ternary fission with zero to 6n emission are observed for the first time. The peak
occurs around the α2n channel. A number of correlated pairs are identified in ternary fission with 10Be
as the light charged particle. We observed only cold, 0n 10Be and little, if any, hot, xn 10Be channels.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of prompt γ rays emitted in spontaneous
fission (SF) with large detector arrays have given new
insights into the fission process [1–5]. From γ–γ–
γ coincidence studies of the prompt γ rays emitted
in the SF of 252Cf with Gammasphere, yields of in-
dividual correlated pairs in binary and ternary fission
were determined for the first time for 0 to 10 neutron
emission [2–4]. Earlier we reported an ultrahot fission
mode in the Mo–Ba split in the 252Cf SF [2]. By
using an uncompressed γ–γ–γ cube, problems in the
fission data analysis from complexity in the spectra

∗This article was submitted by the authors in English.
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Nuclear Research, Dubna, Russia.
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in the 8–10 neutron emission yields were overcome.
The new Mo–Ba yields show a reduced yield for the
ultrahot mode. These data also allowed the extraction
of more accurate zero neutron emission yields in cold
binary fission. A new experiment was carried out in
which the light charged particles (LCP) involved in
ternary fission were detected in an LCP–γ–γ coin-
cidence mode. From gating on the α particles and
a γ ray, the relative 0 to 6n yields associated with
α ternary fission were extracted. Gamma rays asso-
ciated with new correlated pairs in coincidence with
high-energy 10Be particles also were identified. These
data give new insights into fission. In contrast to α
ternary SF, only the 0nmode is observed for 10Be.

2. A NEW DETERMINATION
OF THE Ba–Mo YIELD MATRIX FOR 252Cf

We carried out pioneering work on the quantita-
tive determination of yield matrices, using γ–γ and
γ–γ–γ coincidence data to extract yields of partic-
ular fragment pairs in the SF of 252Cf [2–4]. One
interesting finding was that ≈ 0.5% of the 252Cf Ba–
Mo split proceeds via a “hot fission” mode, where
as many as 10 neutrons are emitted [2, 3]. This lat-
ter feature stimulated some theoretical speculations
and also some scepticism, since the hot fission mode
2002 MAIK “Nauka/Interperiodica”



646 HAMILTON et al.
Table 1. Pairwise percentage yields of Mo–Ba fission fragments [10]

Mo\Ba 138 140 141 142 143 144 145 146 147

102 <0.01 <0.01 0.03(1) 0.09(1) 0.17(1) 0.21(1) 0.05(1)

103 0.02(1) 0.04(2) 0.05(1) 0.18(2) 0.59(1) 0.70(2) 0.46(1) 0.18(1)

104 0.003(2) 0.06(1) 0.05(1) 0.23(1) 0.46(2) 1.25(1) 0.77(1) 0.46(1) 0.05(1)

105 <0.01 0.06(1) 0.12(2) 0.56(1) 0.89(3) 1.28(2) 0.53(2) 0.14(1) <0.01

106 0.004(2) 0.14(1) 0.20(1) 0.87(1) 0.83(2) 0.73(1) 0.14(1) 0.04(1)

107 0.02(1) 0.23(1) 0.29(2) 0.44(1) 0.31(2) 0.18(1) 0.03(1)

108 0.004(1) 0.19(1) 0.14(2) 0.14(1) 0.05(1) 0.02(1)
(called Mode 2) has been reported only in the Ba–
Mo pairs in 252Cf and not in 248Cf SF [6]. There have
been some theoretical efforts to understand how this
hot fission could arise [4, 7, 8]. In the present work
we used our 1995 Gammasphere data, taken by the
GANDS95 collaboration [2]. The analysis was car-
ried out with uncompressed triple coincidence spec-
tra. This differs from the previous analysis, where
either uncompressed double coincidence spectra or
compressed triple coincidence spectra were used. In
both of these methods one faces problems because
of the vast number of γ rays in the spectrum and
particularly because of the degeneracy of several γ
rays in the 8–10 neutron emission yields for Mo–Ba.
In this new analysis, using the uncompressed

three-dimensional data, we remeasured the pair yields
of Ba (Z = 56) with Mo (Z = 42) partners. Because
104Mo and 108Mo have 2+ → 0+ transitions that are
too close in energy to resolve and their 4+ → 2+

transitions are barely resolvable with peak-fitting
routines, we have generally chosen to double-gate
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P

on the Ba fragments and measure the 2+ → 0+

intensities in the Mo partners (and 4+ → 2+, where
the 2+ → 0+ are unresolvable). The Ba double gates
are on the 4 → 2 → 0 cascade and the 3 → 2 → 0
cascade, the latter being significant in the heavier
bariums where octupole deformation is reported [9].
The odd-A nuclei are special cases discussed in
a separate publication. Their yields in our triple-
coincidence analysis fall rather smoothly into the
yield patterns of their even–even neighbours. In the
yield calculations we have taken into account that
Compton suppression is not complete and that, also,
Compton scattering on the walls of the chamber
and into a detector occur and that true continuum
gammas are simultaneously present. Rather than
using one of the existing gamma efficiency curves
for Gammasphere, as determined off-line with ra-
dioactive standards in a single mode, we checked
the efficiency curves with rotational cascades in the
actual experiment, double-gating on two transitions
high in the rotational band and measuring the in-
tensities of the lower transitions in the band. Thus,
these efficiency measurements involved coincidence
efficiencies and take into account Compton suppres-
sion, “time-walk,” and other factors at the high count
rates of the actual experiment.
In Table 1 we give the fission yields in percent.

The columns are labeled by the Ba mass numbers
and the rows by the Mo mass numbers. The numbers
in parentheses after each value are the statistical
standard deviations (s.d.), taken as the square root
of the sum of the squares of the peak fit of the value
and the average of the squares of the two shifted-
gate background subtractions. We have summed
the 4+ → 2+ → 0+ cascade and the 3− → 2+ →
0+ cascade contributions of the Ba gates and the
2+ → 0+ and the 2+

γ → 0+ Mo peaks in the resulting
spectra to give yields in Table 1 as close as possible to
twofold coincidence yields. Our yields are normalized
so that the sum of 106Mo yields matches that of Ter-
Akopian et al. [2, 3].
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 2. Spectrum of γ rays detected in coincidence with α particles emitted in the ternary fission of 252Cf. Peaks of γ rays
emitted by various fragments formed in the ternary α-particle fission are labeled in the spectrum.
Figure 1 shows semilog plots of the summed Ba–
Mo fission yields vs. neutron-emission number found
in our work and in the previous work [2, 3]. One
sees that the hot fission mode is still present but its
intensity is reduced by about a factor of 3 from the
14% reported earlier [2]. Since work was completed,
Biswas et al. [11] also reported analogous data that
show a similar small irregularity around eight neu-
trons lost. They reported they could not observe a
10-neutron loss. We do report one such cell, 104Mo–
138Ba, but with a large s.d., as (0.003 ± 0.002)%.

3. COLD BINARY SF
Since the neutronless binary events are much

smaller than those with neutrons emitted, double-
gating techniques have been employed to extract the
yields for the cold binary fission. No direct measure-
ments of yields of correlated pairs in cold binary fission
had been made prior to our work. Earlier we reported
the first results for the correlated pairs in cold binary
fission in 252Cf [1, 3] and 242Pu [12]. Subsequently
we extracted additional and more accurate yields of
cold binary fission [4] from Gammasphere data with
72 detectors.
The cold binary fission yields are shown in Table 2

along with the theoretical values predicted by San-
dulescu et al. [13]. In Table 2, the first reports of the
cold binary fission of an odd-Z–odd-Z fragmentation
is shown for the Tc–Cs pair and of an even-Z–
odd-A pair. The overall agreement with the theory is
generally good, including the predicted enhancement
of the odd-Z and odd-A cases.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
4. LCP TERNARY FISSION
More recently, another experiment was performed

incorporating charged particle detectors to detect
ternary particles in coincidence with γ rays in Gam-
masphere. The energy spectrum of charged particles

Table 2. Average cold binary fission yields from gates on
two light fragment and two heavy fragment transitions (re-
sults of two different predictions made in [13] are presented
in columns 4 and 5)

Fragments AL/AH Yexp Yth Y
(ren)
th

Zr/Ce 100/152 0.010(2) 0.38 0.004

102/150 0.020(4) 2.82 0.033

103/149 0.030(6) 4.21 0.049

104/148 0.010(2) 1.03 0.012

Mo/Ba 104/148 0.010(2) 0.47 0.005

106/146 0.040(8) 0.61 0.007

107/145 0.070(14) 3.07 0.036

108/144 0.030(6) 7.45 0.087

Tc/Cs 109/143 0.090(18) 11.03 0.128

Ru/Xe 110/142 0.060(12) 3.78 0.044

111/141 0.10(2) 7.12 0.083

112/140 0.020(4) 0.59 0.007

114/138 0.020(4) 1.17 0.014

Pd/Te 116/136 0.050(20) 2.35 0.027
2
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should be also in coincidence with the 2+ → 0+ transition in 142Xe.
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fission resulting in Ba isotopes emitted as heavy fragments in coincidence with the partner 106Mo and 102Zr, respectively. The
solid and dashed curves show Gaussian approximations with average neutron emission equal, respectively, 3.2 and 2.4.
emitted in the spontaneous fission of 252Cf was
measured by using two∆E–E Si detector telescopes
installed at the center of the Gammasphere array
at Argonne National Laboratory. With the position
resolution of the strip detector (2-mm-wide strips),
the ∆E–E telescopes provided unambiguous Z and
A identification for all the LCP of interest. The
energy calibration of the telescopes was performed
with 224Ra and 228Th radioactive sources. The γ
spectrum in coincidence with ternary α particles is
shown in Fig. 2. In this spectrum, one can easily see
the γ transitions for various partner nuclei where a
P

ternary α particle is emitted. For example, Xe and
Mo isotopes are partners, where α and xn are emit-
ted. Now, imposing an additional condition that the
α-gated γ spectrum should be also in coincidence
with the 2+ → 0+ transition in 142Xe, one gets a very
clean spectrum as shown in Fig. 3. Various α, xn
fission channels are marked on the spectrum. From
the analysis of the γ-ray intensities in these types
of spectra, one can calculate the yield distributions.
The yield distributions both for binary and ternary α
channel from 0 to 6n emission are shown in Fig. 4
for two particular channels. These are the first relative
0–6n yields for any ternary α SF. Note the peak of the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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neutron emission yields for Ba–α–102Zr is shifted up
about 0.5 u from the Ba–106Mo binary yield and so
the average neutron emission in this α ternary SF
channel is shifted down by about 0.8n. About 20% of
the α yield is from 5He ternary fission in 252Cf SF.

5. IDENTIFICATION OF THE COLD 10Be
TERNARY SF PAIRS OF 252Cf

Ternary fission is a very rare process that oc-
curs roughly only once in every 500 SF dominated
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
by α ternary fission. Roughly, the 10Be particles are
emitted once per 105 SF. The maximum yield in the
binary SF is located around three to four neutrons.
We now find that the α ternary fission is, mostly,
accompanied by≈2 to 3 neutrons.

In neutronless ternary SF, the two larger frag-
ments have very low excitation energy and high ki-
netic energies. Experimentally it is not easy to identify
the γ transitions of the cold or hot 10Be ternary SF
2
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pair because it is a very rare process. The first case
of neutronless 10Be ternary SF in 252Cf was reported
from a γ–γ–γ coincidence spectrum where the pairs
are 96Sr and 146Ba without neutrons emitted [5]. In
our LCP–γ–γ data, the cover foils allowed only the
high energy tail of the 10Be energy spectrum to be
observed in the particle detector and their partners
established from the 3D cube data. In the present
work, the neutronless (cold) 10Be ternary sponta-
neous fission pairs of 252Cf are identified for two other
fragment pairs of 104Zr–138Xe and 106Mo–136Te from
the analysis of the γ–γ matrix gated by the 10Be
P

particles. Also, several isotopes related to the 10Be
ternary SF are observed.

From the ∆E–E plot, the 10Be charged particles
are selected as a gate to make the γ–γ matrix. Here
we selected a narrow time gate of a width of ≈80 ns
between the γ rays and the 10Be charged particles.
Also, we did not subtract the background spectrum
from the full projection of the γ–γ matrix because of
poor statistics. The high efficiency of Gammasphere
enables coincidence relationships to be established
even with the low-statistics data associated with a
small 10Be ternary SF yield. The γ spectrum gated
on the 10Be charged particles is shown in Fig. 5.
Several peaks are marked with isotopes related to
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Table 3. Fragments identified from the coincidence relationship between γ rays and 10Be ternary particle (∗ identified in
γ–γ–γ data and ∗∗ in LCP–γ–γ data)

Identified isotopes (β2 [14, 15]) Observed γ rays, keV Partner isotopes (β2 [14, 15])
100
40Zr (0.321) 212.6, 352.0, 497.0 142

54Xe (0.145)
∗

102
40Zr (0.421) 151.8, 326.2 140

54Xe (0.1136)
∗

104
40Zr (0.381) 140.3, 312.5 138

54Xe(0.0309)
∗∗

104
42Mo (0.325) (or

108
42Mo) 192.0, 368.5 138

52Te (0.000) (or
134
52Te)

106
42Mo (0.353) 171.6 with 606.6 (136Te) 136

52Te (0.000)
∗∗

110
44Ru (0.303) (or

108
44Ru) 240.7, 422.2 132

50Sn (0.000) (or
134
50Sn)

136
52Te (0.000) 606.6, 424.0 106

42Mo (0.353)
∗∗

138
54Xe (0.0309) 588.9, 483.8, 482.1 104

40Zr (0.381)
∗∗

140
54Xe (0.1136) 376.7, 457.4, 582.5 102

40Zr (0.421)
∗

the present work. It is sometimes hard to assign the
right isotopes from the energies of the peaks alone
because the same energy transition may be present in
one or more isotopes. For example, the strong 212-
keV peak in the spectrum can come from several
sources such as 100Zr, 111,113Rh, and 147La. So next,
in the 10Be gated γ–γ matrix, we set a gate on the
212.6 keV energy in 100Zr. There we can see the
352.0 (4+ → 2+) and 497.0 (4+ → 2+) keV transi-
tions in 100Zr. Four examples are shown in Fig. 6 to
identify 110Ru (or 108Ru), 104Mo (or 108Mo), 140Xe,
and 100Zr, respectively. But the identification of the
γ transitions belonging to these partner fragments is
not clear in those spectra. From the γ–γ–γ cube we
could clearly establish coincidence for 100Zr–142Xe
and 102Zr–140Xe. Also, by double gating on the 376.7
and 457.3 keV γ rays in 140Xe (Fig. 7), we can see
clearly the zero neutron channel 102Zr and probably
the 100Zr 2n channel, which is weaker by a factor
of 5–10 if present. The identification of several iso-
topes related with the 10Be emission is made by the
observation of two or three transitions in coincidence
belonging to each isotope and from the γ–γ–γ cube.
All isotopes and the related γ transitions identified in
the present work are tabulated in Table 3. In Table 3,
partner fragments pertaining to the cold (neutronless)
channel are shown, some of which are confirmed as
noted. Quadrupole deformations for each isotope are
taken from [14, 15]. From these examples, we can see
that the statistics of the coincident spectrum with a
single gate on the lowest gamma transition does not
depend on the statistics of the gated peak shown in
Fig. 1 because of complexity of the γ-ray multiplicity
and the enhanced population of the low-lying levels in
the 10Be SF.
Two fragment pairs, 138Xe–104Zr and 136Te–
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
106Mo with no neutrons emitted show γ rays pro-
duced from both pair fragments in the 10Be gated
coincidence spectrum with a single γ gate. In other
words, the 171.6 keV transition of 106Mo is observed
in the coincidence spectrum with a single gate on
the 606.6 keV transition of 136Te. Also, the 140.3
and 312.5 keV transitions in 104Zr are observed in
the coincidence spectrum with a single gate on the
588.9 keV transition of 138Xe. For a single gate set
on the 588.9 keV transition (2+ → 0+) in 138Xe,
the coincidence spectrum is shown in Fig. 8. The
4+ → 2+ and 2+ → 0+ transitions in 104Zr and the
483.8 and 482.9 keV doublet transitions (6+ → 4+

and 4+ → 2+) in 138Xe show up clearly. To find
the real peaks coincident with both the 588.9 and
483.8 keV transitions, we set the “AND” gate of 588.9
and 483.8 keV transitions as shown in Fig. 8. This
logical “AND” gate takes arithmetic minimum of two
spectra for each channel in the Radware program [16].
Then only three transitions of energies 140.3 keV
(2+ → 0+) and 312.5 keV (4+ → 2+) in 104Zr and
482.1 keV (6+ → 4+) transition in 138Xe show up
clearly in Fig. 8. Although the three peaks in Fig. 8c
contain only two counts, the background is less than
0.01/channel in Fig. 8. The 140.3 and 312.5 keV
transitions do not exist in the level scheme of 138Xe.
Since the γ–γ matrix is gated by 10Be particles,
140.3 and 312.5 keV transitions belong to the partner
nucleus 104Zr. However, 109.0 and 146.8 keV transi-
tions in 103Zr (10Be + 1n channel) and the 151.8 and
326.2 keV transitions in 102Zr (channel 10Be + 2n)
do not show up clearly. In another case of 136Te–
106Mo, also, the channels 10Be + 1n and 10Be + 2n
are not observed. This could be caused by the larger
feeding to the ground state but more likely by small
yields in the channels 10Be + n and 10Be + 2n. The
2
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hot fission mode can excite the fragments up to
higher level energies than the cold fission. Therefore,
SF yields of the channels 10Be + n and 10Be + 2n
have to be smaller than the neutronless (cold) 10Be
SF yield. The present results indicate that the cold
(neutronless) process is dominant in the ternary SF
accompanying a heavy third particle such as 10Be
with high kinetic energy.
In our work, we are gating only on the high kinetic

energy part of the 10Be particles. The 104Zr isotope
is highly deformed with a β2 value of around 0.4 [15,
16] and the 138Xe nucleus is very spherical. There-
fore, the 10Be particle seems to be emitted from the
breaking of 148Ce = 138Xe+10Be at scission which
would enhance the 10Be kinetic energy. Increased
deformation at the scission point increases excitation
energy for the third ternary particle and two heavy
fragments. Therefore, the possibility of observing the
exciated levels in both the fragments increases when
both of them are deformed at the scission point such
as 104Zr (deformed)–148Ce(138Xe+10Be) (deformed).
Actually, the neutronless binary fission yield for the
148Ce–104Zr pair is as high as 0.05(3) per 100 SF of
252Cf [17]. These cases are very similar to the one we
reported earlier for the pair 96Sr (spherical shape) and
146Ba (deformed shape) [5].
In the α ternary fission we see the cold, zero,

neutron fission but 2n and 3n channels are much
stronger. However, for the cold 10Be ternary SF pairs
identified from the γ–γ matrix gated on 10Be charged
particles and the 3D data, we find the zero neutron
channel clearly much stronger than 1n and 2n. This
is a very unique discovery in the study of cold (zero
neutron) fission processes.
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Abstract—A microscopic approach to the problem of anisotropic α decay in deformed nuclei is pre-
sented. Nuclear wave functions are calculated within the BCS approach, and the WKB semiclassical
approximation is used for the penetration through the deformed Coulomb barrier. Results are compared
with recent experimental data obtained at CERN by the ISOLDE and NICOLE collaborations. The
predictions of the model for well-deformed nuclei are in very good agreement with experimental findings.
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1. INTRODUCTION

It was shown long ago that, in odd-mass actinides
at very low temperature, alpha particles are emitted
preferentially with respect to the direction of the total
nuclear spin [1–5]. Recently, new experiments [6]
have renewed interest in this problem by reporting
anisotropic emission in some At, near spherical iso-
topes, in connection with several theoretical descrip-
tions of this effect.

Preferential emission of alpha particles from de-
formed nuclei was first explained by Hill and Wheeler
[7] and then by Bohr, Fröman, and Mottelson [8] in
terms of the penetration of an alpha cluster through
a deformed Coulomb barrier. It was thus found that,
since, for a prolate nucleus, the barrier at the poles
is thinner than at the equator, the probability of pene-
trating through the barrier is larger along the nuclear-
symmetry axis. More recently, Berggren [9] proposed
an alpha + core model in order to explain observed
anisotropies for almost spherical At isotopes. The
quadrupole–quadrupole interaction acting between
the already existing structureless alpha cluster and
an odd-mass core was diagonalized within a weak-
coupling scheme. The strength of the interaction was
adjusted to obtain the energy of the emitted alpha par-
ticle. Several solutions with pronounced anisotropy
were obtained on the basis of this model [10]. No
good comparison with available data was obtained.
Buck et al. [11] describe the alpha decay of odd-mass
nuclei within a similar model in which the depth of
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the alpha–core potential (taken as a square well), the
alpha-formation probability, and the number of nodes
in the radial wave function are fitted to experimental
data. Rowley et al. [12] followed the same philosophy,
diagonalizing the quadrupole–quadrupole interaction
in an extreme-cluster-model basis. Stewart et al.
[13], using either semiclassical or coupled-channels
transmission matrices without any formation mecha-
nism, also calculated anisotropic α emission.
The traditional Hill and Wheeler line was adopted

in [14, 15], but use was made there of a realistic
deformed mean field with a large configuration
space + pairing residual interaction in comput-
ing the alpha-cluster-preformation amplitude inside
a nucleus. The penetration through a deformed
Coulomb barrier was estimated within the WKB
approximation [8]. The anisotropy was explained
mainly by the effect of the deformed barrier (see [16]
for an overview on the microscopic approach to the
alpha-decay problem).
The objective of the present article is to give a short

account of our work on anisotropic alpha-particle
emission from odd-mass nuclei at low temperatures.
We will discuss some predictions of [14, 15], as well
as some more recent calculations, yet unpublished, in
connection with the experimental results obtained by
Schuurmans et al. on anisotropy in At, Fr, and Pa
isotopes [17, 18]. We will show that our predictions
were very well confirmed by recent experimental find-
ings in well-deformed nuclei.

2. MICROSCOPIC DESCRIPTION
OF ANISOTROPY

The mechanism used in [14, 15] to describe the
emission of an alpha particle involves a classical two
step process [19]: first, four nucleons cluster at a
point of the nuclear surface with a given formation
2002 MAIK “Nauka/Interperiodica”
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amplitude; afterward, this object penetrates through
the Coulomb barrier.
Let us consider the decay process

B(Ii,Ki,Mi) → A(If ,Kf ,Mf ) + α, (1)

whereKi (Kf ) andMi (Mf ) are the projections of the
initial (final) total angular momenta in, respectively,
the intrinsic and the laboratory frame [19].
We describe the parent and daughter nuclei within

the BCS approximation; that is, the wave function for
a nucleusX (A orB) is

|φX〉 = a+
kΩ|(BCS)〉Xπ ⊗ |(BCS)〉Xν , (2)

where π (ν) labels proton (neutron) degrees of free-
dom. The operator a+

kΩ is the creation operator for an
unpaired nucleon with projection Ω on the intrinsic
symmetry axis, and k stands for the other quantum
numbers. In the case of favored transitions of an odd-
mass nucleus, the quantum numbers kΩ of the odd
nucleon remain unchanged during the decay process.
The formation amplitude can be written as [14, 15]

F (R,ϑ, ϕ) =
∑
L

FL(R,ϑ, ϕ) (3)

=
∑
L

∫
dξαdξA[φα(ξα)φA(ξA)

× YL(R,ϑ, ϕ)]∗JBMB
φB(ξB),

where R is the distance between the cluster and the
daughter nucleus and ξ represents the internal coor-
dinates. The intrinsic wave function for the alpha par-
ticle has a standard Gaussian form. Additional details
on the evaluation of the multidimensional integral in
Eq. (3) can be found in [14, 15].
Experimentally, nuclei are typically first produced,

then separated, implanted into a foil of a ferromagnet
material (cooled down to a few 10−2 mK) and even-
tually oriented by applying a strong magnetic field.
The anisotropy is thus measured with respect to the
direction of the applied magnetic field [17, 18].
If full alignment is not achieved in orienting the

implanted isotopes, the conditions are such that one
has to perform averaging over the initial distribution
of the angular-momentum projections Mi. The total
width is given by

Γ(ϑ,ϕ) =
�v

4π

(
R

G0(E,R)

)2∑
l

F 2
l W (ϑ), (4)

where Fl is the partial-wave formation amplitude for
the emitted alpha particle; i.e.,

Fl = exp
{
−2l(l + 1)

χ

√( χ

kR
− 1
)}

(5)
PH
×
∑
Ω

(−1)
Ω〈IiKil − Ω|IfKf 〉

∑
l′

K
Ω

ll′
al′Ω(R).

The matrix element Kll′ , as well as the quantities
χ and G0(E,R), is defined as in [14] (see also [8] for
additional details). The microscopic formation ampli-
tude enters into the calculation through the amplitude
al′Ω(R) in Eq. (4).
The functionW in (4) determines the angular dis-

tribution of the emitted particle. After recoupling l and
l′ to the angular momentum L of the emitted alpha
particle and under the assumption that the nucleus
involved is axisymmetric, one gets

W (ϑ) =
∑
L

ALPL(cos ϑ), (6)

where the amplitudes AL are given in terms of the Fl
amplitudes of Eq. (5) [15].

3. NUMERICAL CALCULATIONS
AND DISCUSSION

Wewill apply the above formalism to a few selected
cases of the anisotropic α decay of odd–even nuclei.
In particular, we will discuss 241Am, At isotopes,
221Fr, and the 227,229Pt isotopes.

3.1. Application to the α Decay of 241Am

In this section, we present an application of the
formalism developed above to the case of the favored
transition [15]

241Am →237 Np + α, (7)

for which Ki = Kf = Ii, the Nilsson quantum num-
bers of both the parent and daughter nuclei being
5/2−[523]. The deformed Woods–Saxon potential is
diagonalized by using 18 major shells [20]. The defor-
mation parameters were chosen to be β2 = 0.22, β3 =
0, and β4 = 0.08. The total width was computed ac-
cording to the above formalism.We obtained Γtheor =
2.09 × 10−34 MeV, which is quite close to the ex-
perimental value of Γexpt = 3.34 × 10−34 MeV. As to
the case of even–even nuclei [15, 16], the absolute
alpha-decay widths for odd nuclei are given within the
right order of magnitude. For instance, in the case of
243Am → 239Np + α, we obtained Γtheor = 1.17 ×
10−33 MeV, which is to be compared with the experi-
mental value of Γexpt = 1.96 × 10−33 MeV. However,
the main goal of our analysis is to determine the
influence of deformation on the angular distributions
of emitted alpha particles.
The model predicts a large enhancement of the

anisotropy versus quadrupole deformation. The role
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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of deformations with multipolarities higher than the
quadrupole one is much less important [15]. The
influence of the intrinsic structure of the parent
and daughter wave functions can be estimated by
studying the angular distribution versus the angular-
momentum transfer L. We found that, if only the
L = 0 component is included, the total width Γ versus
ϑ shows a variation that is 10% smaller than that
in the case where all L components are included.
This result evinces the important role of the barrier
deformation. As a matter of fact, the L = 0 part of
the formation amplitude is isotropic, in which case
the calculated anisotropy must be entirely attributed
to the barrier. A similar feature was found in axially
deformed even–even nuclei [14]. Although higher L
contributions seem to give rise to a small effect, one
should bear in mind that, without the inclusion of
deformations and without a large basis included in
the calculation of single-particle states, one would
fail to reproduce the absolute value of the width by
many orders of magnitude [16].
The functionW (ϑ) is a relevant quantity in dealing

with the anisotropy in alpha-decay processes. Once
the microscopic formation amplitude has been calcu-
lated, one can easily expand the functionW in terms
of even-order Legendre polynomials, as is shown in
Eq. (6).
We found that, in the case where all nuclei are as-

sumed to be aligned with the maximum projection of
the total angular momentum in the laboratory frame,
Mi, the coefficients AL have the same phase [15].
Applying the reduction procedure of [3], we can

compare the calculated W values with the experi-
mental data [3] at 1/T = 90.5 K−1. We did this and
obtained the results presented in Table 1.
The agreement can be considered to be remark-

able, especially if one considers that the absolute
normalization is given by the formation amplitude
entering into the evaluation of the coefficients AL.

3.2. At Isotopes

With the basis and the residual interaction pre-
viously discussed, we now proceed to evaluate the
absolute decay widths and the coefficients W versus
the deformation parameters for At isotopes. An im-
portant motivation for this study is the comparison
with recent experimental data obtained at ISOLDE
(CERN) [17].
For many At isotopes (from the odd-proton nu-

cleus 207At with Ii = If = 9/2−), we have calcu-
lated the dependence of the amplitudes AL and of the
anisotropy of the decay on the deformation parameter
β2. We have found, within our model [15], that the
amplitudes AL [as well as the coefficients W (ϑ)] are
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Predictions from [15] for the amplitudes AL (right upper
panel) and anisotropy versus deformation (right lower
panel) for a typical case of 207At; experimental results of
[17] for the same quantities (left panels). The results seem
to suggest that the anisotropy increases with increasing
prolate deformation.

almost similar for different isotopes. The only relevant
parameter is the nuclear deformation.
In the right panels of the figure, we present our

predictions from [15] for the amplitudes AL and the
anisotropy versus the deformation for a typical case.
In the left panels of the figure, the experimental results
of [17] are displayed. Our results seem to suggest
that the anisotropy increases with increasing pro-
late deformation. This is a possible key to interpret
the experimental data [17]. We agree that this inter-
pretation brings about the problem associated with
the possibility that the deformation increases as one
approaches 211At. Some criticism has been raised
against this interpretation; a different interpretation of
the data from [17] was proposed.
Anyway, the data of [17] suggest (in terms of the

model) a sharp change in the nuclear properties (de-
formation from a prolate to an oblate case, for in-
stance) to justify a dramatic decrease in the measured
anisotropy ratio down to values smaller than unity.
It is worth mentioning that the model has no free

parameter and that the anisotropic ratio is strongly

Table 1. Function W (ϑ) at ϑ = 0 and ϑ = π/2 ver-
sus the measured anisotropy for the favored transition
241Am→ 237Np + α(Ωπ = 5/2−)

ϑ Wtheor Wexpt

0 1.500 1.610

π/2 0.736 0.714
2
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Table 2. Deformations and experimental and computed
coefficients A2 for 221

87Fr and for the Pa isotopes indicated
in the table [18]

Isotope β2 β3 Ath
2 Aexp

2

221
87Fr −0.069 0.0 −0.215 −0.375

0.120 0.15 −0.373
227
91Pa 0.168 0.0 0.649 0.696

−0.068 0.1 0.748
229
91Pa 0.185 0.0 0.733 1.13

0.185 0.08 0.808

dependent on the deformation (see, for instance, the
results in [15] for almost spherical Rn isotopes, with
appreciable differences between cases of 207Rn and
207At nuclei, which have the same mass number, so
that any difference should be attributed only to differ-
ent properties of the odd neutron and proton orbital
entering into the problem).
A general comment is in order: we can say that

the coefficient A2 is positive (in the phase with A0 =
1) for prolate deformations and negative (opposite
phase) for oblate ones. The other coefficients AL with
L 	= 2 are virtually negligible. The values of A4 are
one order of magnitude smaller than A2. In spite of
this, it is interesting to note that A4 is positive and
symmetric with respect to the deformation param-
eter β2. A similar qualitative and even quantitative
behavior is found for other At isotopes. Actually, all
the features discussed above are essentially the same
even for the odd–neutron case of 207Rn (Ii = If =
5/2) and the other Rn isotopes.

3.3. The Case of 221Fr and Pa Isotopes

Finally, it is of great interest to quote the most
recent results of Schuurmans et al. [18] for well-
deformed nuclei. For 221Fr, a K = 1/2 ground state
was assumed with a prolate deformation [18], while a
previous calculation [14, 15] used an oblate ground
state with K = I = 5/2 (displayed in the first line
of Table 2 as a theoretical prediction for Atheor2 ). For
Pa isotopes, a prolate ground state was taken for
the favored 5/2− → 5/2− (22791Pa→ α+ 223

89Ac) and
5/2+ → 5/2+ (22991Pa → α+225

89Ac) transitions. The
results are reported in Table 2 (adapted from [18]).
The agreement between the microscopic model

and the experimental data is excellent. The calcula-
tion of the total widths gives Γ = 0.64 × 10−25 MeV
and Γ = 0.29 × 10−28 MeV for the 227

91Pa and
229
91Pa,

respectively.
PH
As was already discussed explicitly for the 241Am
case, the L = 0 part in the formation amplitude is the
largest contribution. The neglect of higher multipoles
in the formation amplitude produces anisotropy only
slightly smaller (10–20% in relation to the case in
which all multipolarities are included). This shows
that themain role is played by the penetration through
the deformed barrier. The effect is therefore expected
to be larger for very well deformed nuclei.

4. CONCLUDING REMARKS

A realistic microscopic approach to calculating the
formation amplitude for the alpha-decay problem in
axisymmetric deformed nuclei has been constructed
within the well-known approach by Mang and Ras-
mussen (see, e.g., [19] and references therein). It
is worthwhile to stress the main ingredients of the
alpha-width calculation for deformed nuclei: (a) the
use of a realistic deformed mean field, (b) a large
shell-model space, (c) an exact diagonalization of the
deformed mean field, and (d) no cut (within the se-
lected large basis) in calculating the alpha-formation
amplitude. The predicted absolute values of the total
alpha widths are reproduced within 10–30% [16].
In the model, we performed a systematic mi-

croscopic calculation of quantities related to alpha-
particle emission from oriented odd-mass nuclei; in
particular, we have done this for 85At, 86Rn, 87Fr, and
91Pa isotopes.
We have found that the probability of emitting an

alpha particle in the polar direction with respect to
the corresponding probability in the equatorial di-
rection is strongly dependent on the emission angle.
For prolate deformations, this ratio is above unity,
while, for oblate deformations, it is less than one.
We have also found that deformations higher than
quadrupole deformation can play an important role
in some cases. Even in the region of near spherical
nuclei, the anisotropy was found to be measurable.
In addition, we have found that the main role in
the observed anisotropy is due to deformed-barrier
penetration. This has been recently confirmed exper-
imentally in the case of well-deformed nuclei [18]. A
different interpretation was suggested for the case of
quasispherical nuclei [18].
In this study, we have emphasized the importance

of anisotropies in alpha-decay processes as a tool for
extracting intrinsic deformation parameters in nuclei.

REFERENCES
1. S. H. Hanauer, J. W. T. Dabbs, L. D. Roberts,

et al., Phys. Rev. 124, 1512 (1961); Q. O. Navarro,
J. O. Rasmussen, andD. A. Shirley, Phys. Lett. 2, 353
(1962).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002



ANISOTROPIC α DECAY 657
2. A. J. Soinski, R. B. Frankel, Q. O. Navarro, et al.,
Phys. Rev. C 2, 2379 (1970).

3. A. J. Soinski and D. D. Shirley, Phys. Rev. C 10, 1488
(1974).

4. D. Vandeplassche, E. van Walle, C. Nuytten, et al.,
Phys. Rev. Lett. 49, 1390 (1982).

5. F. A. Dilmanian et al., Phys. Rev. Lett. 49, 1909
(1982).

6. J. Wouters et al., Phys. Rev. Lett. 56, 1901 (1986);
Nucl. Instrum. Methods Phys. Res. B 26, 463 (1987);
N. G. Nicolis et al., Phys. Rev. C 41, 2118 (1990).

7. D. L. Hill and J. D. Wheeler, Phys. Rev. 89, 1102
(1953).
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Abstract—A review of some recent experimental studies of dripline nuclei is given. The main empha-
sis is devoted to light nulcei and especially to the occurrence of halo states. c© 2002 MAIK “Nau-
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1. INTRODUCTION

Current nuclear physics focuses on exploring nu-
cleonic matter under extreme conditions, which can
be created in modern accelerator laboratories. The
opportunities offered by beams of exotic nuclei for
research in the areas of nuclear structure physics
and nuclear astrophysics are exciting, and world-
wide activity in the construction of different types of
radioactive beam facilities bears witness to the strong
scientific interest in the physics that can be probed
with such beams [1]. With access to exotic nuclei
at the very limits of nuclear stability, the physics of
the neutron and proton driplines have been in focus.
The driplines are the limits of the nuclear landscape,
where additional protons or neutrons can no longer
be kept in the nucleus—they literally drip out. In the
vicinity of the driplines, the structural features of the
nuclei change compared to nuclei closer to the beta-
stability line. It was among neutron-rich light nuclei
that a threshold phenomenon, nuclear halo states,
was discovered about 15 years ago. Since then, the
halo phenomenon has been studied extensively, both
experimentally and theoretically, and is now a well-
established structural feature of many light dripline
nuclei [2–6]. The low binding energy of particles or
clusters of particles, combined with high beta-decay
energy in the dripline regions, gives rise to exotic
nuclear decay modes, such as beta-delayed particle
emission and particle radioactivity. The normal nu-
clear shell closures may disappear and be replaced by
new magic numbers. Examples are the recent obser-
vations of the breakdown of the N = 8 shell closure
for 12Be [7, 8] and the new magic number at N = 16
[9]. In this review, I shall present some recent studies
relevant to the physics of dripline nuclei.

∗This article was submitted by the author in English.
**e-mail: bjn@fy.chalmers.se
1063-7788/02/6504-0658$22.00 c©
2. DRIPLINE NUCLEI

There has over the past decades been a rapid de-
velopment of different techniques to study nuclei at
the driplines. As defined above the driplines are the
edges of the nuclear landscape on the two sides of the
peninsula of stable nuclear speices. But let me first
point to another development that has been striking.
The heaviest elements had been identified up to Z =
112 after many years of hard work at GSI and Dubna.
Recently there has, however, been a development that
is amazingly fast: There are now indications that
elements Z = 114 [10] and Z = 116 [11] have been
found at Dubna.

The proton dripline has been reached up to the
element Bismuth. This has been done by studies of
proton radioactivity, and ground-state proton emit-
ters from 105Sb to 185mBi [12] have been identified
at present. The N = Z line has been reached up to
100Sn, and nuclides with very large proton excess
have been observed and studied for many of the lighter
elements. Some of the most striking results are the
detailed spectroscopic study of the TZ = −5/2 nu-
cleus 31Ar [13] and the recent obsrevation of the
doubly-magic TZ = −4 nucleus 48Ni [14].

3. EXPERIMENTAL STUDIES
OF HALO STATES

A halo state is a bound state very close to the
continuum—the threshold for particle emission. For
this reason, the properties of other states of the same
nucleus are only of indirect relevance to it. A halo
state may be studied via its diagonal matrix elements,
accessible through measurements such as nuclear
moments or elastic scattering. So far, however, the
main body of information has come from its nondiag-
onal matrix elements, i.e., in processes where the halo
is destroyed or created. This is the case for nuclear
breakup processes and beta decays, where especially
2002 MAIK “Nauka/Interperiodica”
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the former method has been widely utilized. The mo-
mentum distributions of both the halo particles and
core fragments have been studied. The distributions
revealed narrow momentum widths, which are inter-
preted as corresponding to the wide spatial size of
the halo ground state. There are, however, important
steps to take before the measured distributions may
be interpreted. It must first be understood how to
bridge the gap between experiment and theory—the
experimental filter. This has to be included in order
to correct the distortions of the picture and must be
known in order to make a meaningful comparison. In-
terpretation is, however, still not completely straight-
forward, and the reaction mechanism and final-state
interactions have to be taken into account.

Two-body halos. In general, two-body nuclear
halos are limited to weakly bound nucleon-core sys-
tems in relative s or p states [15]. The simplest ex-
ample is given by 11Be, which to a good approxi-
mation may be viewed as a neutron coupled to the
quadrupole-deformed 10Be core. The neutron sepa-
ration energy is 504 keV, and both the ground state,
an 1s1/2 intruder, and the 0p1/2 first excited state at
320 keV are well-developed halo states. The contri-
bution of core excitations to the ground-state wave
function was recently determined from analysis of a
11Be(p, d)10Be reaction performed in inverse kine-
matics using a 35.3 MeV/u 11Be beam [16, 17].
The results show a dominant 1s1/2 component in
the 11Be ground state wave function with a 16%
[0d5/2 ⊗ 2+]1/2+ particle-rotation admixture. A sim-
ilar result is obtained by comparing cross sections
from measured coincidences between 10Be and γ rays
[18] after breakup of 60 MeV/u 11Be and from a β-
NMR measurement of the nuclear magnetic moment,
µ(11Be) = −1.6816(8)µN [19].

Several experiments have identified 19C as a one-
neutron halo nucleus [20, 21]. The neutron separation
energy has been determined from Coulomb dissoci-
ation experiments as Sn = 530 ± 130 keV [22]. The
1s1/2 and 0d5/2 orbitals are expected to be close in
energy, and the ground-state spin has been sug-
gested as either 1/2+ ([1s1/2 ⊗ 18C(0+)]1/2

+
) or

5/2+ ([0d5/2 ⊗ 18C(0+)]5/2
+
). In both these cases,

contribution from core excitation 18C(2+) is expected.
The presence of the 0d5/2 component in the wave
function results in a less pronounced halo [23, 24] for
19C. The energy sequence between the s and d or-
bitals is not yet known, but the best present evidence
points to the most likely ground state spin as being
1/2+ [22, 25, 26].

Three-body halos. The two-neutron halo nuclei
have received the most attention among the halo
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Fig. 1. Distribution of the decay neutrons from 10Li
formed in 11Li neutronknockout reactions [32]. The insert
shows a schematic diagram of the reaction, where θnf is
the angle between the momentumdirection of 10Li recon-
structed as a sum of the momenta of the 9Li fragment
and the decay neutron and the direction of the n+9Li
relative momentum pnf . The distribution asymmetry is
due to a linear term in cos θnf and shows that there are
contributions from interfering s and p states.

systems. This is due to their Borromean character
[2], where the three-body system is bound and its
pair-wise subsystems are unbound. The most studied
nuclei of this type are 6He, 11Li, and 14Be. Much effort
has gone into the experimental determination and
theoretical interpretation of the momentum distribu-
tion of fragments from breakup reactions. It must
be generally expected that for three-body halos the
two-body subsystems have a low-lying continuum
structure, so final-state interactions become impor-
tant. But it is also known that knowledge on the
two-body substructure can be gained from reactions
with three-body systems. An example is provided by
single-nucleon stripping experiments, with beams of
11Be and 11Li [27] showing that the ground state of
10Li is an 1s1/2 intruder state, as in 11Be.

Experiments on three-body halo systems, where
the core and one of the neutrons are detected, are
referred to as one-neutron knockout (or stripping)
reactions. In the sudden approximation, the momen-
tum transfer to the (A− 1) system can be neglected
in experiments with high beam energy. In the pro-
jectile rest frame we have pn1 + pn2 + pC = 0. The
momentum transferred to the (A− 1) system is then
equal to the momentum of the ejected neutron pn1

with the opposite sign and will therefore reflect the
2
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internal neutron momentum distribution. This is only
valid to a certain extent, however. An example is given
in an experiment with a beam of 224 MeV/u 6He,
where the 5He fragments after one-neutron knockout
were studied [28]. The Fourier transformation of the
wave function from a three-body cluster model [29]
showed too large a momentum width. The reason for
this is that the knockout process gives a “wound”
in the wave function, and only the remaining part of
it should be taken into account. This was done by
using a cylindrical-shaped cut [30], and in this way
the momentum distribution could be reproduced.

Early theoretical calculations [31] showed that
an approximately equal admixture of (1s1/2)2 and
(0p1/2)2 components in the ground state of 11Li gave
the best fit to the experimentally measured narrow
momentum distribution measured for 9Li recoils
after its breakup. The presence of this admixture
was recently demonstrated in an experiment with a
287 MeV/u beam of 11Li where the recoil momentum
of p(10Li) = p(9Li + n) was determined from a com-
plete kinematics experiment performed at GSI [32]. A
fit to these data using spherical Hankel functions for
the s and p neutrons gives a (45 ± 10)% admixture of
(1s1/2)2 in the 11Li ground state.

In a one-neutron stripping experiment with a
240 MeV/u 6He beam [33] a large spin alignment
of the 5He fragment was observed. The angular
distribution of the pαn vector on polar angles in a
coordinate system with the z axis parallel to the
direction of the p5He momentum shows an anisotropy,
which can be described by a correlation function
W (θαn) = 1 + 1.5 cos2 θαn. The correlation coeffi-
cient is smaller than expected for a pure (0p3/2)2,
indicating a 7% admixture of (0p1/2)2 [34] in the 6He
ground-state wave function.

For 11Li, a similar analysis [32] of the distribution
of the decay neutrons from the 10Li fragments gave
a skew angular distribution (Fig. 1). This is a model
independent way to demonstrate the mixing of s and
p states in the 11Li ground state wave function.

The heaviest Be isotope 14Be has recently been
studied in kinematically complete experiments at
GANIL [35] and at GSI [36]. The results are con-
sistent with a large (1s1/2)2 admixture in the ground
state. An analysis of the skew angular distribution
of the decay neutron from 13Be shows that the 14Be
ground-state wave function also has contributions
from different parity states and gives evidence of a
contribution from the 0d5/2 state.
PH
4. THE A = 8 ISOBARIC CHAIN

The A = 8 dripline nuclei are 8He and 8B. 8He is
a nucleus that best may be described as a five-body
cluster consisting of an α core surrounded by four
valence neutrons [37]. On the other side of the isobar,
the last bound nucleus before the dripline is 8B, which
has been shown to be a one-proton halo nucleus,
and which is well described in a (p + 3He + α)-
picture [38, 39]. A similar cluster structure has been
suggested for 8Li [38].

The 8He nucleus has a larger two-neutron sepa-
ration energy than its neighbor, the 6He Borromean
nucleus. Its radius is also slightly smaller and early on
it was pointed out that its structure is better described
as a five-body cluster than a “double” Borromean
system. The first experimental indication of a predom-
inant α+ 4n structure came from a compilation of
cross section data at 790 MeV/u [40] and from ex-
periments on its beta decay. In the latter experiments
it was found that almost half of the GT sum-rule
strength is concentrated in a state at 9.3 MeV in 8Li,
which decays with the emission of tritons together
with 5He (α+ n). This shows that the ground state
of 8He has a large overlap with an (α + t+ n) in 8Li
[41]. In a recent study of 227 MeV/u 8He breaking
up in a carbon target [30], the decay channels up
to σ−2n were detected. The difference in interaction
cross section between 8He and 4He exceeds the sum
of the cross sections of the measured channels by
more than 50%. This excess is due to the α+ 4n
breakup and gives another sign of the five-body struc-
ture of 8He. The excitation energy spectrum from the
(6He + n+ n)-channel in the same experiment [30]
shows a broad distribution of up to about 3.5 MeV.
The interpretation of this structure is a relatively nar-
row 2+ state with an overlapping broader, higher-
lying 1− state. The interpretation of the dipole state is
further supported in an experiment with a lead target
which shows an increased excitation probability of the
1− state [42].

The proton-rich nucleus 8B with Sp = 138 keV
has been shown to be a one-proton halo nucleus.
The first experiments performed at the FRS at GSI
[43, 44] revealed a narrow momentum distribution of
the 7Be fragments (FWHM value of 91 ± 5 MeV/c)
and a large one-proton removal cross section, σ−1p =
98 ± 6 mb, in breakup reactions of 1440 MeV/u 8B
in a carbon target. The data [44] were reproduced in a
model [38, 39] where the 8B wave function was calcu-
lated in an extended three-body model (α + 3He + p)
with explicit inclusion of the binary 7Be + p channel.
The model [39] predicts a sizeable fraction of core
excitation [7Be∗(1/2−) ⊗ 0p3/2]2+ . In a recent study
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 2. (a) Excitation function of 11N with data from GANIL (filled circles) and MSU (open squares). The curve is a potential
model fit with added resonances [55]. (b) Relative energy spectrum of 12Be and the decay neutron after one-neutron knockout
in 14Be. The solid curve is a fit assuming the ground state to be a neutron in a l = 0 motion relative to the core at very low
energy with another resonance at 2.3 MeV [36].
[45], the experiments were extended to include mea-
surements of gamma rays in coincidence with the 7Be
fragments. A Doppler shifted line, with a center-of-
mass energy of 429 keV corresponding to the first
excited state in 7Be, could clearly be observed and
its intensity shows good agreement with the predicted
15.6% core excitation [39].

5. UNBOUND NUCLEI AT THE DRIPLINE

The relative kinetic energy distribution of α-
particle and neutrons from one-neutron knockout re-
actions in 6He is strongly influenced by the unbound
5He (Iπ = 3/2−) system [28]. This resonance is com-
paratively long lived (Γ = 600 keV, corresponding to
a lifetime of more than 300 fm/c) and it therefore
decays far away from the reaction zone. Themeasured
spectrum was found to reproduce the expected shape
of the 5He, and from an event-mixed correlation
function it was shown that the peak in the distribution
is a real resonance.

The ground state of 7He is known [46] to have
Iπ = 3/2−, corresponding to a 0p3/2 orbital accord-
ing to the standard shell-model prediction. The spin-
orbit partner of the ground state was only recently
observed in an experiment where 7He was produced
in a one-neutron knockout reaction from 8He [30, 47].
The relative energy spectrum of 6He + n showed a
distribution that in a sequential fragmentation model
could be fitted with the known ground state resonance
and a resonance at Er = 1.2 MeV (Γ = 1.0 MeV),
which is interpreted as the 0p1/2 spin-orbit partner of
the ground state. A second excited state in 7He at an
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
energy 3 MeV above the threshold was observed [48–
50] earlier. The decay of this resonance goes mainly
into α+ 3n, which indicates that it is a 5/2− state
with probable structure [6He (2+) ⊗ 0p1/2]5/2− [48].

In a recent experiment at MSU [51], 9He was
produced from a beam of 11Be. The relative veloc-
ity spectrum between 8He and a neutron showed a
narrow peak around zero velocity. This is interpreted
as an 1s1/2 ground state in 9He with a scattering
length of as = −25 fm. This adds one more case to the
intruder s states in the N = 7 isotones, where 11Be
was the first case to be observed [52].

It has been shown [53–56] that the 1s1/2 in-
truder state also is the ground state of the unbound
nucleus 11N—the mirror of 11Be. The results from
a resonance scattering experiment performed at
GANIL are shown in Fig. 2, where 11N was pro-
duced with a radioactive beam of 10C in the reaction
10C + p → 11N. Reactions of this type will certainly
be frequently utilized in the investigations of unbound
nuclei in the vicinity of the driplines when the new
generation of radioactive beam facilities becomes
operational.

Theoretical models for 11Li need as input the
structure of the low lying states in 10Li. The current
experimental situation is that it is quite clear the
ground state of 10Li is a 1s1/2 neutron coupled to
the Iπ = 3/2− ground state of 9Li. Some of the main
experiments are as follows:

(1) The momentum distribution of neutrons in co-
incidence with 9Li fragments in proton- and neutron-
removal reactions from 11Be and 11Li, respectively,
2
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revealed a narrow width that can only be understood
if the ground state of 10Li is an s state [27, 31].

(2) The relative velocity distribution of 9Li and
neutrons was studied, where the 10Li was produced
from an 18O beam [57] and more recently from a 11Be
beam [51]. The data are consistent with an s state as
the ground state, with a scattering length similar to
the one found in [27].

(3) The relative energy spectrum of 9Li + n after
one-neutron removal [58] reveals a structure that is
consistent with a 2− state as the ground state. A
more recent result [36] confirms the low energy state
and also shows a state at about 0.7 MeV, which is
interpreted as the [0p1/2 ⊗ 3/2−]1+ state.

From this it is clear that 10Li belongs to the group
of isotones with a 1s1/2 intruder as the ground state.
The exact energy of the scattering state in the ground
state and the position of the p state remains to be de-
termined. Future experiments with radioactive beams
as the d(9Li, 10Li)p reaction for a direct study of the
excited states in 10Li or via its isobaric analog states
in resonance scattering, 9Li+ p→ 10Be (see Fig. 2a)
may shed light on this problem.

The relative energy spectrum of 12Be + n obtained
from one-neutron knockout reaction data from 14Be
measured at GSI [36] is shown in Fig. 2b. The struc-
ture at low energy shows that the ground state of 13Be
is dominated by a s-motion of the neutron versus the
core [59].

6. SUMMARY AND OUTLOOK

In this review, I have given some examples of re-
cent results from a subfield of nuclear physics that is
remarkably active at present. It is clear that, to a large
extent, the discovery of halo states sparked this inter-
est, but the halo phenomenon is only one of many new
elements that have added to the nuclear paradigm
for experiments with radioactive nuclear beams. We
are still only in the initial stages of exploring the
outer parts of the nuclear landscape, and the next
generation of experiments with radioactive nuclear
beams will undoubtedly provide new possibilities for
research with very good chances of discovering un-
expected phenomena. High priority should be given
to systematic investigations of nuclei spanning the
region from stability towards the edges of the nuclear
landscape. At the same time there is a need for strong
interaction with theory, so that further steps can be
taken in carrying out calculations on as fundamental
a level as possible.

A few of the burning issues that may be addressed
in the years to come can be mentioned. First, it is
clear that continued investigations of the structure of
P

halo states not only need better detection techniques
and more intensity, but also access to heavier sys-
tems. The continuum structure of neutron-rich nuclei
in particular is important for a full understanding of
these nuclei. The role of the binary subsystems in
Borromean nuclei has to be understood in more de-
tail. In this context, unbound nuclei in the vicinity of
the dripline could provide essential information. The
structural changes in the dripline regions that already
have been observed in several cases need more inves-
tigation and further mapping. The role of fusion reac-
tion to reach far away from stability with high cross
sections should also be investigated. These examples
are of direct relevance to halo physics, but other im-
portant subjects that RNB physics should address are
the exploration of the position of the neutron dripline
for heavier elements, the exploration of exotic nuclei
with large isospin, theN = Z line up to 100Sn, super-
heavy elements, and studies of the r- and rp-process
paths. On the theory side, better understanding is
needed of the connection between cluster and few-
body models to shell-model and mean-field theories.
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Abstract—Data on the spectroscopy of 5H and 7He from recent experiments with radioactive beams in
Dubna and in RIKEN are presented. c© 2002 MAIK “Nauka/Interperiodica”.
The neutron-rich nuclei 5H and 7He have been
investigated in numerous experiments for 30 years.
However, the existence of 5H as a well-defined res-
onance has yet to be proven conclusively. The 7He
ground state, which decays into n + 6He, was very
well established experimentally, but many attempts at
observing an excited state of 7He has proven to be
futile. We performed a spectroscopic study of 5H and
7He using radioactive beams.

In a search for 5H, we applied an experimental
method that is similar to the missing-mass method,
but which involves detecting an unstable recoil par-
ticle. The usual missing-mass experiment studies a
binary reaction A(b, c)D, and measurement of the
recoil particle c allows one to obtain the excitation
spectrum for the residual nucleus D. If the residual
systemD is very neutron-rich, then, generally speak-
ing, the particle c is very proton-rich and can be even
unstable, like, e.g., 6Be, which decays into p+ p+ α,
or like the 2He singlet state, which decays into p+ p.
To deal with the unstable recoil nucleus c, one needs
to detect all particles from its decay. Having kine-
matically complete information about the unstable
system c, one can determine the excitation energy in
the residual system D and study its spectroscopy. Of
course, the residual system D can also be unstable.
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To detect all particles from the decay of the un-
stable recoil c, we constructed the RIKEN telescope,
which represents a stack of solid-state detectors
(Fig. 1). Each detector is position-sensitive (strip-
detector); it allows one to determine the coordinates
of all particles detected in coincidence—that is, to
measure their angles. Energy depositions and energy
losses are measured for each particle as well. The
detectors have an annular hole, and a beam goes
through this hole. With the aid of this telescope,
decay products of the unstable recoil c can be detected
at small angles in the laboratory frame. This corre-
sponds to measurements under inverse kinematics,
which is typical of many experiments with secondary
beams.

In a search for 5H, we studied the reaction p (6He,
2He)5H. A secondary beam of 6He with an energy
of 36A MeV was obtained from a primary beam of
13C by using the ACCULINA fragment separator at
JINR (Dubna). The experimental scheme is shown in
Fig. 1. Two plastic scintillators were used to identify
each particle of the secondary beam and to measure
its energy by the time-of-flight method. The trajec-
tory of 6He was measured by two multiwire propor-
tional chambers. For a target, we used a cryogenic
target taken from GANIL (France) and filled with a
hydrogen gas at a temperature of 35 K and a pres-
sure of 10 atm. The target thickness was 6 × 1021

proton/cm2. Two protons from the decay of 2He were
detected in coincidences by the RIKEN telescope.
Apart from protons, we also detected tritons from the
decay process 5H → t+ n+ n using a downstream
telescope that consisted of a large-area SSD detector
and a BGO crystal.
002 MAIK “Nauka/Interperiodica”



SUPERHEAVY HYDROGEN 5H 665

 

t
p

p

 

BGO
SSD RIKEN

telescope

H

 

2

 

 cryogenic
target, GANIL

MWPCs

Beam scintillators

 

6

 

He
Fragment separator

ACCULINA,
DUBNA

Production
target

Fig. 1. Experimental setup for search for 5H.
Figure 2 shows a preliminary result for the 5H
spectrum extracted from p+ p coincidences andmea-
sured in coincidences with tritons from the decay of
the 5H system, p(6He, ppt). The spectrum is shown
versus the energy of 5H above the t+ n+ n decay
threshold. The background from measurements with
the empty target (instead of the target filled with
hydrogen) is negligible in this spectrum. A cutoff at
about 7 MeV reflects the detection limit due to the
acceptance of the RIKEN telescope.

In the spectrum in Fig. 2, a peak at about 2 MeV,
which is a good candidate for the resonance 5H, at-
tracts attention. The analysis of the data is still in
progress. On the other hand, the spectra obtained for
various reaction channels, p(6He, pt)3H and p(6He,
t)4He, show proper peaks corresponding to the resid-
ual nuclei 3H and 4He, confirming the reliability of the
results obtained.
Prior to the present conference we found out that,

very recently, calculations of 5Hwere performed with-
in a t+ n+ n three-body model [1]. In that investiga-
tion, the t+n+n continuumwas taken into account,
in contrast to previous calculations of 5H within the
oscillator shell model. The calculations in [1] show
the resonance 5H(1/2+) in the energy region, which
is consistent with our observation of the peak at about
2 MeV.
Let us now address the spectroscopy of 7He. The

reaction p(8He, d)7He was studied in [2]. A secondary
beam of 8He at 50AMeV was produced by the RIPS
fragment separator (RIKEN). For a proton target,
use was made of CH2; background measurements
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
with a carbon foil and an empty target were also
performed. The experimental setup used is shown in
Fig. 3. Deuterons were detected by the RIKEN tele-
scope at small angles in the laboratory frame, which
correspond to a large cross section. Particles emitted
from the decay of 7He were detected in addition to the
deuterons. Neutrons were measured by the neutron
walls of plastic scintillators, while charged particles
were bent in a dipole magnet and detected by a drift
chamber and a plastic scintillators’ hodoscope. These
parts of the detection system allowed us to investigate
the spectra of deuterons detected in coincidences with
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Fig. 2. Missing-mass spectrum of 5H from the reaction
p(6He, ppt).
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6He, 4He, and neutrons. Other detectors in Fig. 3,
beam scintillators and multiwire proportional cham-
bers, were used to identify each beam particle, to
measure its energy, and to perform its tracking.
As a result, the deuteron spectra were obtained for

the reactions p(8He, d), p(8He, d6He), p(8He, d4He),
p(8He, dn), p(8He, dn6He), and p(8He, dn4He).
These spectra show the well-known ground state of
7He at the energy of En–6He = 0.44 MeV above the
n+6He decay threshold and an excited state of 7He at
En–6He ∼ 3.3MeV in addition to it.
As an example, we show two spectra in Figs. 4

and 5. A strong peak in Fig. 4 corresponds to the
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Fig. 4. Spectrum of deuterons from the reaction p(8He,
dn6He). The spectrum is shown versus energy above the
n + 6He decay threshold.
P

ground state of 7He. This peak is not seen in Fig. 5
in the spectrum of deuterons detected in d + n+4He
coincidences, because the ground state of 7He cannot
decay into an α particle (see the decay scheme in
Fig. 6). Instead, Fig. 5 displays another peak that
corresponds to the excited state found for 7He.

The decay scheme of 7He is shown in Fig. 6. The
most interesting experimental finding is that the re-
vealed excited state of 7He decays predominantly into
4He + 3n, despite a greater 6He + n decay energy.
This reflects an unusual structure of this state.
We investigated the structure of the excited state

found in our study within theα+ 3n four-bodymodel.
We considered various ways to arrange three valence
neutrons in the low-lying orbitals P3/2, P1/2, and
S1/2 relative to the α particle. For each such case,
we considered all possible spin–parities of the total
system α+ 3n. The antisymmetrization of three va-
lence neutrons was taken into account. After that,
coupling of angular momenta and spins in the system
α+ 3n can be analyzed for each particular case. We
investigated the spin–parity of the subsystem α+ 2n,
which is the subsystem 6He inside 7He∗.
For example, it turns out that the Jπ = 1/2− 7He

excited state, which is formed by two neutrons in the
P3/2 orbital relative to α particle and one neutron in
the P1/2 orbital, contains the 6He subsystem pro-
duced by the (P3/2)2 pair of neutrons with a norm
of 100% for the spin–parity of 6He Jπ = 0+. This
means that this excited state is prepared for decay
into 6Heg.s + n. Furthermore, the latter is the most
preferable decay from the point of view of penetration
through a barrier due to the highest decay energy.
Thus, this state 7He∗(1/2−) should decay mainly into
6Heg.s + n.
Finally, two candidates attracted our attention

upon investigating the subsystem 6He inside 7He∗.
These are excited states 7He∗(5/2−) and 7He∗(3/2−).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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These states are not prepared for decay into 6Heg.s +
n, but they contain the subsystem 6He with a
spin–parity of 2+. Thus, these states should de-
cay into 6He∗(2+) + n with the subsequent decay
6He∗(2+) → 4He + n + n. It is consistent with the
experimental observation of decay of the 7He excited
state found there into 4He+ 3n.
The 7He∗(5/2−) state has a configuration involv-

ing a neutron excited into the P1/2 orbital and cou-
pled to the 6He subsystem, which itself is in an ex-
cited 2+ state and which is produced by two P3/2
neutrons. The 7He∗(3/2−) state includes the same
configuration of neutrons. Thus, one can expect that,
owing to spin–orbit forces, the 5/2− state should be
located at a lower energy, while the 3/2− state should
be pushed higher into a continuum and should be
broader. In other words, 7He∗(5/2−) seems to re-
main the only candidate for the observed excited state
of 7He decaying into 4He + 3n. This conclusion is
supported by the calculations performed in [3] within
the resonating-groupmethod. In particular, the phase
shifts for n + 6He∗(2+) scattering in 5/2− and 3/2−
states were calculated in [3]. It was found that the
3/2− phase shift does not show any resonance, while
the 5/2− phase shift shows a resonantlike structure.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
Thus, the structure of the revealed 7He∗ level
should represent a neutron in an excited state coupled
to the 6He core, which itself is in an excited 2+

state. The population of such an unusual state in
our experiment is consistent with the structure of
8He used as a projectile. It was noticed in [4] that
the ground state of 8He contains mainly the 6He
subsystem in a 2+ excited state. Indeed, we arrived
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at the same conclusion about 8Heg.s. as that drawn in
[4] by investigating the 6He subsystem within 7He∗

along the lines adopted above. Namely, an analysis
of the antisymmetrized 8He(0+) wave function on
the basis of the 4n+ α five-body model involving
four neutrons in the P3/2 orbital relative to the α
core leads to the following norms for various Jπ

in the 6He subsystem: P (0+) = 17%, P (1+) = 0,
P (2+) = 83%, and P (3+) = 0.
In summary, we have studied the reaction p(6He,

pp)5H via correlation measurements. Preliminary re-
sults show a peak that is a good candidate for the
resonance 5H at an energy about 2 MeV above the
t+ n+ n decay threshold. In studying the reaction
p(8He, d)7He, we have observed an excited state of
P

7He, which decays into 4He + 3n. Most likely, this
state has a structure involving a neutron in the excited
P1/2 state coupled to the 6He core, which itself is in
an 2+ excited state. A tentative spin assignment for
this state is Jπ = 5/2−.
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Abstract—We propose a method to select core and cluster in a binary component description of atomic
nuclei. The choice is based on the mismatch between measured binding energies and the underlying trend
supplied by the liquid drop model. A key point is that the charge to mass ratios of parent, core, and
cluster should be as nearly equal as possible. This approach reinforces our earlier conclusions concerning
the occurrence of exotic clustering in actinide nuclei and also reveals a competing binary mode in these
nuclei in which the cluster charge and mass are substantially larger than those corresponding to an exotic
decomposition. In fact, this additional mode corresponds to superdeformation, and we predict that it should
be widespread across the Periodic Table. In binary models, the transition quadrupole moments Qt of su-
perdeformed (SD) bands depend strongly on the charge and mass splits, but are rather insensitive to other
details. Indeed, given the cluster charge 〈Z2〉,Qt can be determined algebraically.We compare calculations
of transition quadrupole moments with the measured values for the 41 SD bands in 21 even–even nuclei for
which experimental data are available. The mass range is fromA ∼ 60 toA ∼ 240 and the values ofQt vary
from∼ 3 to∼ 30 e b. A good level of agreement is obtained. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The cluster model of nuclear structure is well es-
tablished for light nuclei up to 44Ti [1–4], and we
have further shown that a binary cluster description
of actinide and mediummass nuclei reproduces many
of their properties with astonishing precision [5–7].
Thus we have been able to account for the band
structure, detailed spectra, electromagnetic decays
and half-lives for exotic and alpha emission in many
isotopes in the trans-Pb [6] and Ba–Nd [7] regions.
We have often been guided in our choices of cluster
decomposition by knowledge of the observed exotic
decay modes; however, in order to justify these selec-
tions more plausibly, and with a view to applying the
model to other parts of the periodic table, we have now
developed simple methods for deciding the optimum
binary cluster structures (if any) for all even–even
nuclei.

We often find that very large clusters are indicated
by our method. This provides an intuitively appealing
description for superdeformed (SD) states. As an ap-
plication of our cluster selection procedure we point
out here that it enables us to obtain a systematic
understanding of the measured values of the tran-
sition quadrupole moment Qt for the 41 SD bands

∗This article was submitted by the authors in English.
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Private Bag, Rondebosch, South Africa; e-mail:
perez@physci.uct.ac.za

**e-mail: a.merchant1@physics.ox.ac.uk
1063-7788/02/6504-0669$22.00 c©
in 21 even–even nuclei listed in [8, 9]. The result
for Qt follows from a simple algebraic formula which
requires only the identification of the two components
into which a given nucleus is to be decomposed and a
radius parameter common to all the 41 cases consid-
ered.

2. CLUSTER SELECTION

We suggest [10] that likely binary clusterizations
of a given parent nucleus can be identified from the
local maxima of the function D(Z1, A1, Z2, A2) de-
fined by

D(Z1, A1, Z2, A2) = [BE(Z1, A1) (1)

−BL(Z1, A1)] + [BE(Z2, A2) −BL(Z2, A2)],

where BE is an experimentally determined binding
energy and BL is the corresponding liquid drop value
for each of the fragments of (charge, mass) (Zi, Ai)
with i = 1, 2 into which the parent of (charge, mass)
(ZT , AT ) may be divided. This means we are search-
ing for the largest deviations of the summed binding
energies of the two fragments from the underlying
trend, as given by liquid drop values. A convenient
form forBL is [11]

BL = avA− asA
2/3 − ac

Z2

A1/3
(2)

− aa
(A− 2Z)2

A
+ δ,
2002 MAIK “Nauka/Interperiodica”
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Transition quadrupole moments

Nucleus Qt(calc.), e b Qt(exp.) [8, 9] (for different observed bands), e b
60Zn = 48Cr +12 C 2.5 ± 0.1 2.75 ± 0.45
62Zn = 50Cr +12 C 2.6 ± 0.1 2.7+0.7

−0.5

80Sr = 68Ge+12 C 3.2 ± 0.1 2.7+0.7
−0.6; 2.2

+0.6
−0.5; 2.8

+1.1
−0.8; 3.6

+2.0
−1.1

82Sr = 70Ge+12 C 3.3 ± 0.2 4.5 ± 0.9
84Zr = 56Fe +28 Si 5.9 ± 0.2 5.2 ± 0.8
86Zr = 58Fe +28 Si 6.0 ± 0.2 4.6+0.7

−0.6; 4.0 ± 0.3; 3.8+0.6
−0.5; and 5.4+2.2

−1.1

132Ce = 100Ru +32 Si 9.5 ± 0.3 7.4 ± 0.4; 7.3 ± 0.3; 7.6 ± 0.4
134Nd = 102Pd +32 Si 9.8 ± 0.3 6.8 ± 0.3; 6.4 ± 0.4
142Sm = 88Sr +54 Cr 13.6 ± 0.5 11.7 ± 0.1; 13.2+0.8

−0.7

146Gd = 90Zr +56 Cr 14.2 ± 0.5 12 ± 2
148Gd = 88Sr +60 Fe 14.7 ± 0.5 14.6 ± 0.2; 14.8 ± 0.3; 17.8 ± 1.3
150Gd = 88Sr +62 Fe 14.8 ± 0.5 17.0+0.5

−0.4; 17.4+0.5
−0.4; 16.2 ± 0.4; and 15.0+0.6

−0.4; 16.8 ± 1.2
152Dy = 88Sr +64 Ni 15.6 ± 0.6 17.5 ± 0.5
154Dy = 88Sr +66 Ni 15.7 ± 0.6 15.9+3.1

−2.1

190Hg = 142Nd +48 Ca 17.1 ± 0.6 17.7+1.0
−1.2; 17.6 ± 1.5

192Hg = 140Ce +52 Ti 18.1 ± 0.6 20.2 ± 1.2; 19.5 ± 1.5
194Hg = 140Ce +54 Ti 18.4 ± 0.7 17.7 ± 0.4; 17.6 ± 0.6; 17.6 ± 0.8
194Pb = 144Nd +50 Ti 18.3 ± 0.7 20.1+0.3

−0.5

196Pb = 144Nd +52 Ti 18.6 ± 0.7 19.5+0.4
−0.3

236U = 134Te+102 Zr 29.3 ± 1.1 32 ± 5
238U = 134Te+104 Zr 29.5 ± 1.1 29 ± 3
where

av = 15.56 MeV, as = 17.23 MeV, (3)

ac = 0.697 MeV, aa = 23.285 MeV.

The pairing term δ in Eq. (2) is taken as 12/
√
A

(MeV) because in this paper we consider only the
fragmentation of even–even nuclei into even–even
fragments. In addition, electric dipole transitions in
even–even nuclei are found to be very weak, suggest-
ing that attention should be restricted to fragments
obeying the condition

Z1

A1
=
Z2

A2
=
ZT
AT

(4)

as closely as possible, so that the calculated dipole
transition rates, which involve the operator (Z1/A1 −
Z2/A2), are very small. This implies that the centers
of charge and mass in the nucleus almost coincide.
In general, no single choice of cluster can satisfy this
dipole constraint exactly. However, if we are willing
to consider that the nuclear state is a superposition
P

of several possible cluster partitions then it becomes
feasible to satisfy Eq. (4) by using effective or average
cluster charges and masses [10].

Initially we applied the dipole constraint by se-
lecting a specific cluster charge Z2 and finding a
corresponding cluster mass A2 such that

A2

Z2
≤ AT
ZT

≤ (A2 + 2)
Z2

. (5)

We then assigned weights (probabilities) p(A2) and
p(A2 + 2) to the two isotopic masses, with the sum
of the weights equal to unity and the mean mass
given by 〈A2〉 = ATZ2/ZT . Hence this superposition
obeys the dipole constraint exactly. Themean neutron
number would then be 〈N2〉 = NTZ2/ZT . It is thus
now possible to calculate the similarly weighted mean
deviations 〈D(1, 2)〉 and to plot them against the even
integer values of the cluster charge Z2.

A similar procedure was also applied to mixtures of
adjacent cluster isotones. That is, we chose particular
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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values of N2 and found the corresponding masses A2

satisfying the relation

A2

N2
≤ AT
NT

≤ (A2 + 2)
N2

. (6)

Again the appropriate probabilities p(A2) and p(A2 +
2) were assigned, so that now the mean mass was
〈A2〉 = ATN2/NT and the dipole condition fulfilled.
This leads to mean values of the cluster charge given
by 〈Z2〉 = ZTN2/NT .

However, it is preferable to have a method of in-
terpolating exactly between the above results for iso-
topes and isotones. That is, we wish to choose ar-
bitrary mean values for the plotting parameter 〈Z2〉
and for each choice to find the weighted combina-
tions of clusterings which ensure the correct mean
〈Z2〉, along with the effective 〈N2〉 implied by the
dipole rule. Thus, after selecting some value of 〈Z2〉,
the required value of 〈N2〉 will be given by 〈N2〉 =
NT 〈Z2〉/ZT , equivalent to the dipole condition.

Given 〈Z2〉 and 〈N2〉 we can determine clusters
with adjoining values of Z2 and of N2 which bracket
the above mean values and have probabilities consis-
tent with them. Thus, using

Z2 + 2 ≥ 〈Z2〉 ≥ Z2, N2 + 2 ≥ 〈N2〉 ≥ N2, (7)

we easily find that the weighting probabilities are
given by

p(Z2 + 2) = (1/2)[〈Z2〉 − Z2], (8)

p(Z2) = (1/2)[(Z2 + 2) − 〈Z2〉],
p(N2 + 2) = (1/2)[〈N2〉 −N2],
p(N2) = (1/2)[(N2 + 2) − 〈N2〉].

We now consider that a nucleus could be composed of
a superposition of up to four different cluster configu-
rations, with weights which are products of the above
probabilities. The mean binding for assigned 〈Z2〉 and
〈N2〉 takes the form

〈D(1, 2)〉 = 〈D(〈Z2〉, 〈N2〉)〉 (9)

=
∑
Z2,N2

p(Z2)p(N2)D(Z2, N2).

To keep things as simple as possible, we use the
even–even cluster closest to the peak indicated by a
plot of this average in what follows.

The figure shows D(Z1, A1, Z2, A2) as a function
of cluster charge 〈Z2〉 for six nuclei representative
of the mass regions where SD bands have been re-
ported. The behavior illustrated is completely typical
of most of the nuclei we have examined to date, which
leads us to expect bands of strongly deformed states
essentially everywhere (although at excitation ener-
gies which we are, at present, unable to determine).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 20
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Collective motion of these structures gives rise to SD
bands in the parent nuclei. The SD clusterizations
presented in the table result from a straightforward
application of the above criteria.

Experiment often shows several SD bands in a
given nucleus, sometimes with similar values of Qt,
but also with different ones. This can be understood
in our model as follows.We expect several bands with
very similar quadrupole deformations associated with
any given cluster structure because excitations of
cluster or core or both can all produce closely related
bands with comparable excitation energies. The sig-
nificance of the lesser maxima ofD(Z1, A1, Z2, A2) is
currently under investigation, butwe strongly suspect
that bands associated with these clusterings may be
present as well. This would lead to the coexistence
of several clusterizations in the same nucleus marked
out by their different quadrupole deformations.
02
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3. TRANSITION QUADRUPOLE MOMENTS

There is a well-known relationship between the
charge radii of a given nucleus and the core and
cluster into which it is decomposed (see, for example,
[12]) of the form:

(Z1 + Z2)〈R2〉 = Z1〈R2
1〉 (10)

+ Z2〈R2
2〉 + α2〈r2L,L〉,

where (Zi, Ai) are as defined in the previous section;
〈R2〉, 〈R2

1〉, and 〈R2
2〉 are mean square charge radii for

the parent, core, and cluster nuclei, respectively;

α2 =
Z1A

2
2 + Z2A

2
1

(A1 +A2)2
, (11)

〈r2L,L〉 =

∞∫
0

r2|χL(r)|2 dr,

with χL(r) being the radial wave function for the
relative motion of cluster and core with angular mo-
mentum L (L = 0 for positive parity bandheads in
even–even nuclei). For an internally unexcited even–
even cluster and core, the total angular momentum
is identical to the relative orbital angular momentum
of the two bodies and so the transition quadrupole
moment for states J = L+ 2 and J = L is simply

Qt = 2α2〈r2L+2,L〉, (12)

〈r2L+2,L〉 =

∞∫
0

r2χ∗
L(r)χL+2(r)dr.

Cluster bands are characterized by a large value of
the quantum number G = 2n+ L, so that the radial
wave functions for states with low angular momen-
tum L have a large number of nodes n. Clearly, the
radial functions for states with J = L+ 2 and J = L
differ in their node number by one. However, we have
previously shown that [6], even up to rather high L
values, such pairs of radial functions are practically
identical, except very close to the origin (r = 0) where
the extra node is accommodated. It is therefore a good
approximation to replace 〈r2L+2,L〉 by 〈r2L,L〉 and write

Qt ≈ 2[(Z1 + Z2)〈R2〉 − Z1〈R2
1〉 − Z2〈R2

2〉] (13)

= 2R2
0[ZTA

2/3
T − Z1A

2/3
1 − Z2A

2/3
2 ],

where the mean square charge radius of each of the

nuclei has been related to its mass by 〈R2
i 〉 = R2

0A
2/3
i .

Equation (13) enables us to evaluate Qt once the
core-cluster binary decomposition of the parent nu-
cleus has been chosen and a value forR0 specified.

We take R0 = 1.07 ± 0.02 fm, determined from
elastic electron scattering by Ravenhall [13] as the
PH
radius parameter of a Fermi density distribution for
heavy nuclei. The resulting values for Qt are com-
pared with experiment in the table. We note the large
number of magic proton and neutron values amongst
the cores and clusters in the table (reflecting the as-
sociated increase in stability). Thus, there are magic
proton numbers in the isotopes of Ca and Ni of 20
and 28, respectively. Also there are magic neutron
numbers in 48Ca, 88Sr, 134Te, 140Ce, and 142Nd of 28,
50, 82, 82, and 82, respectively.

We see from the table that, except for 132Ce and
134Nd, the clusterization indicated by the highest
maximum of the appropriate D plot gives a good
description of the transition quadrupole moment of
at least one experimental SD band in each of the
21 nuclei examined. However, the naive geometric
picture of two more or less equal clusters, in touch-
ing contact, giving rise to a 2 : 1 major to minor
axis ratio is not borne out. Rather, we usually find
a considerable asymmetry between core and cluster,
and in some cases it is so great that it corresponds
to what we have previously called “exotic” clustering
(because it involves a light ion, such as 14C, seen to
be emitted in exotic nuclear decay). Thus, although all
cases examined are undoubtedly strongly deformed,
many of them do not seem to be superdeformed in
the 2 : 1 axis ratio sense in which this term is often
employed.

To calculate other properties of SD states, more
detailed calculations are necessary. In principle this is
a relatively straightforward task. Once core and clus-
ter have been identified, we can solve a Schrödinger
equation for their relative motion using a universal
form for the ion–ion potential [14]. A value for the
relative motion quantum number G = 2n+ L can
also be assigned from systematic considerations [15].
Then energies and wave functions are available for
the calculation of whichever observables are desired.
However, the details of such calculations depend on
the precise excitation energy of the bandhead and the
value of G employed. To attain maximum accuracy
in these matters it is best to fine-tune the potential
radius and G value so as to reproduce the experimen-
tal excitation energies of a couple of states of known
angular momentum. Because linking transitions be-
tween SD and ND bands are rarely seen, this infor-
mation is not often available (although we have per-
formed such calculations for 60Zn [16], 194Hg, 236U,
and 240Pu [15], some of the rare examples where it is
possible). We hope that this situation will gradually
improve as more experimental data are gathered.

4. CONCLUSIONS

We have applied a principle of maximum stability
to determine the most favoured core-cluster decom-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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positions of the 21 even–even nuclei for which transi-
tion quadrupole moments Qt of superdeformed bands
have been measured. Once the clustering was spec-
ified, we used a simple algebraic formula to calculate
Qt, viz., Eq. (13). The single adjustable parameter R0

was taken as 1.07 ± 0.2 fm from Ravenhall’s fits to
elastic electron scattering from heavy nuclei [13]. A
generally good account was given of the data. The
final clusterizations seem to indicate that although
all the bands studied are certainly strongly deformed,
they do not all have major to minor axis ratios as large
as 2 : 1.
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Abstract—The observation of refractive effects in 16O + 16O and 16O + 12C elastic scattering data
has definitively established the fact that the optical potential for some light heavy-ion systems is relatively
transparent and that its real part is deep. Most of the interpretations of the rainbow features of these data rely
on the so-called nearside–farside decomposition of the scattering amplitude. Starting from recent optical
model analyses of 16O + 16O and 16O + 12C elastic scattering around 100 MeV incident energy as an
example, we present an alternative interpretation based on the barrier-wave/internal-wave decomposition
first proposed by Brink and Takigawa. This method, which complements the nearside–farside approach,
demonstrates clearly the exceptional transparency of the 16O + 16O, and to a lesser extent 16O + 12C,
interactions at the investigated energies and makes possible the extraction of the two contributions
whose interference explains the Airy oscillations seen in the farside amplitude. c© 2002 MAIK “Nau-
ka/Interperiodica”.
The observation in 16O + 16O, 16O + 12C, and
12C + 12C elastic scattering data of distinctive re-
fractive effects [1–3], like strong Airy minima, su-
perimposed on more classic diffractive features, has
definitively established the fact that the real part of
the light heavy-ion nucleus–nucleus optical potential
is deep, and that—in some favorable cases—the light
heavy-ion interaction displays some transparency [1].
This refractive behavior shows up, e.g., in analyses
carried out very recently for the 16O + 16O [4, 5] and
the 16O + 12C [6, 7] systems.

Semiclassical approaches [8] are often used to
interpret the optical model calculations results. The
semiclassical analyses presented in this context have
nearly invariably been performed within the frame-
work of the nearside–farside decomposition of the
elastic scattering amplitude proposed 25 years ago by
Fuller [9]. In this approach, the scattering amplitude
is decomposed into nearside and farside components,
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which are obtained simply from the partial wave ex-
pansion of f(θ),

f(θ) = fR(θ) +
∑
�

a�P�(cos θ), (1)

by replacing the usual Legendre polynomialsP�(cos θ)
by combinations Q̃(−)

� and Q̃(+)
� of Legendre polyno-

mials and Legendre functions of the second kind, Q�,

P�(cos θ) → Q̃
(±)
� (2)

=
1
2
[P�(cos θ) ∓ i

2
π
Q�(cos θ)],

and by decomposing the Rutherford amplitude into its
nearside and farside components fR,N (θ) and fR,F (θ)
[9]. The nearside and farside contributions correspond
in a semiclassical picture to trajectories with positive
and negative deflection angles, respectively (Fig. 1).
The ratios to the Rutherford cross section of the
nearside (σN ) and farside (σF ) contributions to the
unsymmetrized 16O + 16O elastic scattering cross
section at 124 MeV are presented as an example in
Fig. 2. This is one of the incident energies where
a minimum is observed in the experimental angular
distribution at 90◦ [4, 10] and in the excitation func-
tion at the same angle [11]; if a minimum is found at
90◦ in the symmetrized cross section σS(θ) = |f(θ) +
f(π − θ)|2, such a minimum is guaranteed to exist
also in the unsymmetrized cross section [12]. Here
2002 MAIK “Nauka/Interperiodica”
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(fN ) and farside (fF ) components of the elastic scat-
tering amplitude; the latter generally contains contribu-
tions from deeply penetrating (fF,<) and more peripheral
(fF,>) trajectories.
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Fig. 2. Nearside (σN ) and farside (σF ) contributions to
the unsymmetrized 16O + 16O optical model angular
distribution at 124 MeV.

and in the following, calculations are carried out with
the phenomenological potential of Nicoli et al. [4].

While the forward angle Fraunhofer oscillations
are readily understood in the nearside–farside picture
in terms of an interference between fN and fF , the
Airy minima, which are observed here around 60◦,
90◦, and 120◦ in the farside contribution to the am-
plitude, can only be explained if one assumes [1, 13,
14] that two different ranges of angular momenta,

< and 
>, contribute to fF (Fig. 1). This interpre-
tation, which is suggested by the general behavior
of the classical deflection function, is substantiated
by the fact that an increase of the absorption, which
affects preferentially the lower-
 contribution, tends
to smooth out these minima.

We found that another decomposition of the
scattering amplitude in terms of barrier-wave and
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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contributions to the unsymmetrized 16O + 16O optical
model angular distribution at 124 MeV; (b) moduli of the
barrier-wave (SB) and internal-wave (SI ) components of
the elastic S matrix.

internal-wave components, originally introduced by
Brink and Takigawa [15], complements the infor-
mation supplied by the nearside–farside approach
and sheds additional light on light heavy-ion scat-
tering in an incomplete absorption context. This
method, which proved very useful in understand-
ing the anomalous features seen in some light-
ion elastic scattering systems at low energy [8, 15,
16]—providing for the first time clear evidence for
transparency in the scattering of composite nuclear
projectiles like the α-particle—has to our knowledge
been practically ignored in the context of light heavy-
ion scattering.

The internal-wave/barrier-wave decomposition
makes sense only for potentials which are deep
2
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enough for the effective potentials active in the scat-
tering at the considered energy to display a “potential
pocket”; the scattering amplitude f(θ) can then be
split into barrier-wave fB(θ) and internal-wave fI(θ)
components, corresponding, respectively, to the part
of the incident flux which is reflected at the barrier of
the effective potential and that which penetrates the
nuclear interior and reemerges after reflection at the
most internal turning point (Fig. 3).

Although the barrier-wave/internal-wave decom-
position was initially introduced within a semiclassi-
cal frame [15], it was shown by Albiński and Michel
[17] that, by investigating the response of the elastic
scattering amplitude to small modifications of the
optical potential inside of the barrier radius, this
decomposition can be carried out for many systems
in an accurate way using any conventional optical
model code. We used this method for decomposing
the 16O + 16O elastic scattering amplitudes at the
energies investigated by Nicoli et al. between 75 and
124 MeV [4]. The result of the barrier-wave/internal-
wave decomposition at 124 MeV is presented in
Fig. 4a. The barrier-wave contribution σB is seen
to decrease steadily with angle and to account for
the diffractive oscillations observed up to 50◦, while
the internal-wave contribution σI dominates the
scattering beyond about 120◦ and behaves smoothly
up to that angle. The deep minima seen in the
unsymmetrized cross section around 60◦ and 90◦,
and the shallower one around 120◦, are interpreted
here as resulting from a strong interference between
the barrier-wave and internal-wave amplitudes fB
and fI . The presence of a strong internal-wave
contribution in the intermediate angle region is seen
to be essential for the reproduction of these minima,
and more generally for a correct description of the
cross section beyond 50◦; since the internal-wave
PH
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Fig. 6. Nearside/farside (σN/σF ) and barrier-
wave/internal-wave (σB/σI ) components of the
16O + 12C optical model cross section at 132 MeV.

contribution arises from that part of the incident
flux which probes the nuclear interior, this result
demonstrates clearly the remarkable transparency of
the 16O + 16O interaction at the studied energy.
The moduli of the barrier-wave and internal-wave
contributions to the S-matrix are displayed in Fig. 4b.

While we interpret the minima around 60◦ and 90◦

as being due to an interference between the barrier-
wave and internal-wave contributions to the scatter-
ing amplitude, these minima have repeatedly been in-
terpreted in previous works (see, e.g., [1]) as resulting
from an interference in the farside amplitude between
the contributions of the two ranges of angular mo-
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menta 
< and 
> alluded to above. The contributions
σF,< and σF,> of these two ranges to the farside
cross section have sometimes been extracted in an
approximate way using the so-called interpolated-
envelope technique [13, 18]. These two contributions
can be obtained in a more natural and more rigorous
way by performing a nearside–farside decomposi-
tion of the barrier-wave and internal-wave amplitudes
themselves; this decomposition is performed in an
automatic way by replacing the Legendre polynomials

by the functions Q̃(−)
� and Q̃

(+)
� in the partial wave

series for the barrier-wave and internal-wave ampli-
tudes. The farside contributions σB,F = |fB,F |2 and
σI,F = |fI,F |2 to the barrier-wave and internal-wave
cross sections σB and σI are presented in Fig. 5;
σF is seen to have been split into two components
varying smoothly with angle—and which furthermore
originate from different ranges of angular momen-
ta since the barrier-wave and internal-wave contri-
butions are nearly decoupled in angular momentum
space (Fig. 4b). These two components σI,F and
σB,F thus appear to be nothing else than the cross
sections σF,< and σF,>.

For symmetric systems like 16O + 16O, the struc-
ture of the unsymmetrized angular distributions pre-
dicted by the optical model calculations at large an-
gles is difficult to observe in the experimental data.
It is thus interesting to examine asymmetric sys-
tems which are not affected by Mott interference to
investigate further the merits of our approach. We
have performed similar calculations for 16O + 12C
elastic scattering at 132 MeV incident energy [6]; in
contrast to 16O + 16O, the 16O + 12C experimental
angular distribution displays a prominent Airy mini-
mum around θ = 80◦, which appears to be of second
order and which is well described by optical model
calculations carried out with a deep real potential
[6]. Figure 6 presents the barrier-wave/internal-wave
and nearside–farside cross sections calculated with
this potential. Absorption is seen to be somewhat
larger than in the 16O + 16O case, since the dif-
ference between the internal-wave and barrier-wave
contributions at large angles does not exceed one or-
der of magnitude (it reaches two orders of magnitude
in 16O + 16O); another indication of stronger ab-
sorption is that the modulus of the internal S-matrix
at low angular momenta is about twice smaller here
than in the latter case. The barrier-wave and internal-
wave contributions to the full farside cross section are
presented in Fig. 7.

In summary, we have shown that a barrier-
wave/internal-wave decomposition of the elastic
scattering amplitude complements the often used
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
nearside–farside decomposition and sheds new light
on the exceptional transparency of some light heavy-
ion systems like 16O + 16O or 16O + 12C. In
particular, the Airy minima observed in the angular
distributions appear here to be due to an interference
between the contribution of the flux reflected at the
barrier and that of the flux which probes the nuclear
interior and reemerges in the entrance channel.
Moreover, the two contributions to the farside am-
plitude introduced in the nearside–farside approach
to explain the occurrence of these Airy minima are
obtained in a natural and unambiguous way from the
barrier-wave/internal-wave decomposition. Further
investigation of light heavy-ion scattering along these
lines might help to clarify the mechanism of the
nucleus–nucleus interaction and thus pave the way
to a better understanding of the cluster structure of
the unified nuclear system.
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Abstract—The elastic scattering of strongly bound nuclei at energies of 10 to 70 MeV per nucleon shows
the phenomenon of “rainbow scattering.” A nuclear rainbow appears because of deflection to negative
angles. This process involves a strong overlap of nuclear densities, with values of up to twice the saturation
density of nuclear matter. The 16O + 16O system is studied with a high precision over a wide energy
range from 7 to 70 MeV per nucleon in several laboratories. Primary Airy maxima and higher order Airy
structures are observed. At all energies, excellent fits are obtained with deep potentials as deduced from the
double-foldingmodel involving a nucleon–nucleon interactionweakly dependent on the density. It is shown
that Pauli blocking expected at low energies is strongly reduced if the local momenta are calculated self-
consistently. Systematics confirms a refractive origin of large-angle scattering, at low energies inclusive.
Thus, nuclear-rainbow scattering yields unique information about the properties of cold nuclear matter at
higher densities. c© 2002 MAIK “Nauka/Interperiodica”.
1. NUCLEAR-RAINBOW SCATTERING

Refractive nuclear (rainbow) scattering has been a
subject of increased attention over the last decades,
because it became possible to establish that deep
potentials are needed to describe the systematics of
heavy-ion scattering. At lower energies, the angular
distributions were originally fitted with rather shal-
low potentials; however, the use of the double-folding
model produced very deep real parts of the optical po-
tential for 16O + 16O scattering [1–6], as well as for
α-particle scattering [7, 8]. New precise and complete
data revealed a very clear sensitivity of large-angle
scattering to the details of the real potential at short
distances. At these short distances, where there are
large density overlaps of scattered nuclei, the double-
folding potential is very sensitive to the details of the
effective nucleon–nucleon interaction (based on the
Paris M3Y interaction [2, 9, 10]), and it has been
shown that a consistent description can only be ob-
tained with a distinct, but small density dependence
[2, 3, 9, 10]. The same effective interaction gives, in
Hartree–Fock calculations, a soft equation of state of
cold nuclear matter [4, 9, 10], with the incompress-

∗This article was submitted by the authors in English.
1)Also Freie Universität Berlin, Germany; e-mail:
oertzen@hmi.de

2)Institute for Nuclear Science, Hanoi, Vietnam.
3)GANIL, Caen Cedex, France.
1063-7788/02/6504-0678$22.00 c©
ibility parameter taking values in the rangeK � 220–
250 MeV with an accuracy of±15%.
We give a brief survey of recent experimental re-

sults for elastic 16O + 16O scattering over a wide
range of energies. Precise data have now been mea-
sured up to large angles at nine energy values in the
range Elab = 75–124 MeV at IreS [5] and at Elab =
250, 350, 480, 704 and 1120 MeV at the HMI and at
GANIL [6]; further data at two energies were mea-
sured by Kondo et al. [11]. The phenomenology and
the quality of the data are shown in Fig. 1 for elastic
scattering at higher energies (from 124 to 1120MeV)
and at lower energies. Elastic-scattering data were
fitted with an optical potential, where the real part was
obtained on the basis of the double-folding model or
on the basis of the functional dependence represented
by the squared Woods–Saxon form f2

i (r), where

fi(r) =
(

1 + exp
(
r −Ri
ai

))−1

with i = V and W for, respectively, the real and the
imaginary part. The latter parametrization gives po-
tential shapes that are very close to double-folding
potentials. In addition, a surface term, with the form

factor 4aS
d

dr
fS(r), must be added to the imaginary

potential, as was found in [10].

We repeat here the basic facts of rainbow scat-
tering [12, 13]. The rainbow structure appears if the
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Differential cross section for elastic 16O + 16O scattering at many energy values (fits to these data are discussed in
[5, 9, 10, 14]): (left panel) data for energies Elab = 124 to 1120 MeV (the primary rainbow maximum at Elab = 350 MeV is
located at an angle of 55◦; it moves to larger angles outside the observation region at lower energies) and (right panel) data for
energies fromElab = 95 to 124MeV [5], with fits obtained with optical model potentials from the double-foldingmodel or with
the squared Woods–Saxon potentials.
nuclear potential is sufficiently strong for deflecting
particles at “negative angles” and a maximum deflec-
tion (rainbow) angle occurs. In this case, a particular
oscillating interference structure due to contributions
from several impact parameters contributing to the
maximum deflection angle will appear, and it will be
described by an Airy function (this function is shown
in Fig. 2). Higher order maxima, which are refered
to as second or third-order Airy structures, appear
inside the lighted region. Themost remarkable feature
of this complete data set for 16O + 16O is the fact
that we can follow the evolution of the primary Airy
structure from the higher energies ofElab = 350MeV,
where it is well pronounced, down to 124 MeV and
lower, where higher order Airy structures appear in
the angular range of observation.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
2. DOUBLE-FOLDING MODEL
AND THE EQUATION OF STATE

OF NUCLEAR MATTER

In a systematic analysis, the folded potentials
and the squared Woods–Saxon potentials (WS2)
were used and found to give equivalent overall fits
to elastic-scattering data. We must emphasize the
most important point concerning these potentials :
The originally (30 years ago) used Woods–Saxon
potentials have incorrect radial shapes. This is true,
for example, in many cases of α-particle scattering,
where only in the last 15 years was it found from
a systematic study of scattering states and bound
states that the deep potentials [14] of the cited shapes
are required. For a further discussion, the potentials
2
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Fig. 2. Airy function describing the rainbow phe-
nomenon. The first intensity maximum appears within
the classical lighted region away from the shadow border
line. It extends into the shadow and in the lighted region,
where higher order maxima and minima occur, which are
indeed observed in 16O + 16O scattering at lower energy
(see Fig. 1). The “classical” solutions show divergence at
the rainbow angle θR.

can be classified by their volume integrals

JV,W = − 4π
NANB

∫
VV,W (r)r2dr,

which are normalized to the number of interacting
nucleon pairs (the nucleon numbers are NA and NB

for the projectile and the target, respectively). Even
in previous studies using the folding model [10] for
nucleus–nucleus potentials—in particular, for α-
particle scattering on nuclei [7, 8]—it was found that
a consistent description is obtained with particular
values of the volume integral for nucleon–nucleus
potentials [15]. Thus, the criterion for the choice of the
potentials was often the value of the volume integral of
the real potential per interacting nucleon pair. Values
for the volume integrals of JV �300 MeV fm3 at
Elab � 30 MeV per nucleon were obtained in [5,
6] from an analysis for composite particles. The
volume integrals for heavier particles could be slightly
reduced because of antisymmetrisation effects. We
will return to this question later. The systematics of
these volume integrals are shown in Fig. 3 over all
energies.
An important aspect of the investigation of re-

fractive scattering is a study of the in-medium ef-
fective nucleon–nucleon interaction [4, 8–10]. This
is achieved by introducing, in the M3Y interaction,
a density dependence in such a way that the corre-
sponding Hartree–Fock calculation reproduces the
saturation point of nuclear matter [10, 15]. In the
double-folding model and in the Hartree–Fock cal-
culation, the exchange part (which is nonlocal) must
be treated consistently. In these calculations, different
P
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Fig. 3. Volume integrals JV and JW of, respectively, the
real and the imaginary part of the best-fit real WS2 and
folded potentials for the 16O + 16O system at incident
energies in the rangeElab = 124–1120 MeV. The curves
are only drawn to guide the eye.

choices of density dependence give different values of
the nuclear incompressibility, which is described by
the factor K. Examples of such calculations for the
equation of state with different values of K are given
in Fig.4.
In this approach, the systematics of the nucleon–

nucleus potentials, as well as the mean-field poten-
tials of Jeukenne et al. [15], are well reproduced [10].
Finally, we return to the question of Pauli blocking

effects in the double-foldingmodel. In both heavy-ion
and α-particle scattering, very deep squared Woods–
Saxon potentials are obtained. This fact could be
seen to comply with the Pauli exclusion principle by
generating an appropriate number of nodes for the
wave function in the interior {the rule (2N + L) =∑

(ni + li) is obeyed [11]}. For the elastic channel,
the double-folding model with an effective NN in-
teraction adjusted to the properties of nuclear matter
independently gives a potential, as a mean field effect,
that is very deep in accordance with the empirical
result quoted above. A consistent description of the
exchange part of the potential, which is nonlocal, is
very important in this concept. It implies that the in-
clusion of Pauli blocking in the double-folding model
must also be done in a self-consistent way. This was
recently formulated by Soubbotin et al. [16, 17], who
calculated a potential based on the Pauli-distorted
double-folding model (PDDFM). The main idea is
explained in [17] and is illustrated in Fig. 5. Since
the relative momentum of nucleons in the potential is
determined by the very deep double-folding potential,
it increases in the self-consistent description of the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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BDM3Y1, the BDM3Y2, and the BDM3Y3 version),
which yield different values for the incompressibility con-
stantK (150MeV for DDM3Y1, 210MeV for BDM3Y1,
330MeV for BDM3Y2, and 435 MeV for BDM3Y3).

local PDDFM potential. The effect of Pauli blocking
is thus strongly reduced in the regions of strong over-
lap.The potentials therefore remain deep over a wide
energy range (6–60 MeV per nucleon).

We can thus understand the systematics of nuc-
lear-rainbow scattering down to rather low energies
of 7 MeV per nucleon (and even lower energies). The
deep potential creates the interference patterns in the
angular distributions, which are due to third-order,
fourth-order, and higher order Airy structures. The
classical studies of low-energy elastic scattering in
the 12C + 12C and 16O + 16O systems appear in a
completely new light. The structures observed in the
excitation functions for the elastic-scattering cross
section at 90◦ are due to the passage of Airy minima
in energy (see also [12] for “Airy elephants”).

In conclusion, we find that the complete set of
data for the 16O + 16O system gives clear criteria
for the choice of the particular class of real potentials,
which agree well with the results of calculations based
on the double-folding model involving a nucleon–
nucleon interaction with a weak density dependence,
as discussed in [2–4, 8–10]. The related scattering
trajectories are deeply penetrating, creating an ap-
preciable density overlap of the two nuclei. Thus, the
refractive scattering of strongly bound nuclei is one of
the clearest sources of information about the behavior
of nuclear matter at higher density.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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Fig. 5. Illustration of the reduction of Pauli blocking.
The local momentum K of nucleons during the overlap
in the potential becomes high owing to the very strong
attractive potential V (r) (|K| ∼ [E − V (r)]1/2, whereE
is the energy of two nuclei in the c.m. frame). In rainbow
scattering, overlaps of the densities (ρ) with twice the
saturation value (ρ0) are observed in the elastic channel.
The reduced overlap of the Fermi spheres thus occurs
owing to the very strong attractive potential created by
the mean-field effect in the double-folding model. The
circles represent the Fermi spheres in momentum space.
The upper part of this figure shows the distance in mo-
mentum space with the asymptotic K value; the lower
part presents the rainbow region with the density overlap
and the PDDFMmean field.
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Abstract—In order to understand the α–nucleus interactions for the α + 12C ∼ α + 16O systems
systematically, α scattering from 12C is studied in a microscopic coupled-channel model using a folding
potential and realistic microscopic wave functions of 12C. The experimental angular distributions of elastic
and inelastic scattering to the 2+ (4.43 MeV), 3− (9.64 MeV), and 0+

2 (7.66 MeV) states in the range of
Eα = 41–172.5 MeV are analyzed. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It has been shown that α-clustering is an es-
sential correlation not only in light nuclei but also
in medium-weight and heavy nuclei [1, 2]. Many
phenomenological and microscopic approaches have
been devoted to reveal the spectroscopic properties of
the cluster structure of nuclei. Among them, unified
description of the α + nucleus system of scattering
and bound states has been very powerful in the case
when the clustering aspects are not well explored.
44Ti is a typical controversial case where the existence
of cluster structure was predicted [3–5] from a careful
study of the low-energy properties of the real part
of the optical potential determined from a system-
atic analysis of the experimental data of α scattering
from 40Ca. The α-cluster structure in the 44Ti region
has been well understood in the microscopic cluster
model [6].

On the other hand, α-clustering aspects in the
20Ne region have been thoroughly studied and the
spectroscopic properties in the 16O–20Ne region have
been well understood. Alpha scattering from target
nuclei, 16O [7–10], 15N [10], 14N [11], and 14C [12],
have been systematically analyzed, and global opti-
cal potentials have been determined. The potentials
obtained for hole nuclei, 15N [10] and 14C [12], are
very similar to that for the α + 16O system [7, 8,
10], which is in accordance with the fact that the α-
clustering aspects of the composite system are also a
similar supporting weak coupling feature.

∗This article was submitted by the authors in English.
1)Center for Information and Multimedia Studies,
Hokkaido University, Sapporo, Japan; e-mail:
hirabay@hipecs.hokudai.ac.jp

**e-mail: ohkubo@is.kochi-wu.ac.jp
1063-7788/02/6504-0683$22.00 c©
One of the long-standing problems is to determine
a global potential for the α + 12C system. As for the
structure of the composite system 16O, all the T = 0
energy levels below 12.80 MeV of excitation energy
are well understood in the α-cluster model [1]. Also,
there are many experimental data on α scattering
from 12C in a wide range of incident energies [13–22]
. To understand the α12C potential, many theoretical
studies have been conducted [23–34].

To our knowledge, to date, nobody has succeeded
in making a systematic description of elastic and in-
elastic α12C scattering in a unified way. The purpose
of this paper is to study elastic and inelastic α12C
scattering simultaneously in a wide range of incident
energies in a microscopic coupled-channel model us-
ing a folding potential consistent with a global poten-
tial in this mass region. In Section 2, our microscopic
coupled-channel model is given, and in Section 3,
analysis of the α12C scattering is reported. In Section
4, conclusions are given.

2. MICROSCOPIC COUPLED-CHANNEL
MODEL WITH DOUBLE-FOLDING

INTERACTIONS

It is important to describe elastic and inelastic
α12C scattering simultaneously because the nucleus
12C is strongly deformed and inelastic scattering to
the 2+ (4.43 MeV) and 3− (9.64 MeV) states are
strongly enhanced. Although a conventional collec-
tive model is often used in the calculations, it has
been known that in 12C, the shell-model-like struc-
ture and α-cluster structure coexist. It is desirable
to use wave functions for 12C which are as realistic
as possible. The coexistence of shell-like states and
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. The experimental data [13] of elastic and inelastic
α scattering from 12C at Eα = 172.5 MeV are compared
with the coupled-channel calculations (solid curves).
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Fig. 2. The experimental data [14] of elastic and inelastic
α scattering from 12C at Eα = 166 MeV are compared
with the coupled-channel calculations (solid curves).

cluster states are well described in a microscopic α-
cluster model. In the present calculations, we take the
wave functions of 12C calculated in the three-α RGM
by Kamimura [35].

It is also better to start from an interaction po-
P

tential which has as least parameters as possible.
In this respect, it is noted that the so-called unique
global potentials obtained from a systematic analysis
of α scattering from 16O and 40Ca are very similar
to the folding potential obtained from DDM3Y [36]:
we note that this folding-potential works in the 90Zr
and 208Pb regions as well in the systematic descrip-
tion of the angular distributions of α scattering in
a wide range of incident energies [37]. Therefore, in
the coupled-channel calculations, we take the folding
model and the effective interaction DDM3Y.

The total wave function of the α + 12C system is
expressed in terms of internal states of 12C as follows:

Ψ =
∑
i

ϕ(α)ϕi(12C)χi(R), (1)

where ϕ(α) is the intrinsic wave function of the α
particle and ϕi(12C) is that of the core with spin I
and χi(R) is the relative wave function between α
and 12C, with i being the ith state of the target.
The relative wave function is obtained by solving the
following coupled-channel equations:[

− �
2

2µ
�2 +Uii(R) − (E − εi)

]
χi(R) (2)

= −
∑
j �=i

Uij(R)χj(R).

The real part of the diagonal and coupling poten-
tial in the coupled-channel equation is calculated
by double-folding the effective two-body interaction
with the nucleon densities of 12C and the α particle:

Vi,j(R) (3)

=
∫
ρα(rα)ρi,j(rT )v(R − rT + rα)drT drα,

where ρi,j represents the diagonal (i = j) or transi-
tion (i �= j) nucleon density of the target 12C [35].
The density of the α particle is taken from [38]. By
introducing a phenomenological imaginary potential,
the complex coupled potential is given by

Ui,j(R) = NRVi,j(R) + iW (R)δi,j , (4)

where NR is the normalization factor of the real
potential. As for the imaginary potential, a phe-
nomenological Woods–Saxon potential is used. In
the coupled-channel calculations, we take into ac-
count the five states of 12C; shell-like states 0+

(0.0 MeV), 2+ (4.43 MeV), and 3− (9.64 MeV); and
cluster states 0+

2 (7.66 MeV) and 2+
2 (10.3 MeV).

3. ANALYSIS OF α12C SCATTERING

Experimental data are analyzed starting from
higher energy moving to lower energy because at
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 3. The experimental data [15] of elastic and inelastic
α scattering from 12C at Eα = 139 MeV are compared
with the coupled-channel calculations (solid curves).

higher energies, the effects of the Pauli principle and
resonance are smaller and the reaction mechanism is
simpler.

In Fig. 1, the angular distributions at Eα =
172.5 MeV obtained for the ground state, 2+, 3−,
and 0+

2 , in the coupled-channel calculations are
compared with the experimental data [13]. The elastic
scattering angular distribution is reproduced very
well. Inelastic scattering to the 2+ (4.43MeV) state is
also well reproduced by the calculation. The angular
distributions for the 3− state is reproduced well up
to 20◦, and the calculation slightly overestimates
experimental values at larger angles. As for the
cluster state 0+ (7.6 MeV), the general trend of the
angular distribution is reproduced by the calculation.

In Fig. 2, calculated angular distributions at Eα =
166MeV for the ground state, 2+, 2+

2 , 3
−, and 0+

2 , are
displayed in comparison with the experimental data
[14]. The fit to the elastic cross sections is very good.
The angular distribution for the 2+ state is also well
reproduced. As for the 0+

2 and 3− states, which have
a very different structure from the ground band, the
experimental feature of the angular distribution is well
reproduced by the calculation; the slight enhance-
ment of the cross sections for the 3− state at larger
angles is similar to the 172.5-MeV case. The angular
distribution for the 0+

2 state is well reproduced at this
energy.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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α scattering from 12C at Eα = 104 MeV are compared
with the coupled-channel calculations (solid curves).

In Fig. 3, the results for Eα = 139MeV are given.
The experimental angular distributions [15] of elastic
scattering and inelastic scattering to the 2+ state are
reproduced very well by the calculations. The calcu-
lated angular distributions for the 0+

2 and 3− states
also reproduce the essential features of the experi-
mental data, although there is slight overestimation of
the cross sections for the 3− state at larger angles, as
was the case for 172.5 and 166 MeV. In the relevant
high energy region, the experimental angular distri-
butions for the four states are well reproduced without
resorting to a fitting game, although the structures of
the states are different. This suggests that not only
the wave functions for the states of 12C but also the
couplings between the states are well incorporated in
the calculations.

The data at Eα = 104 MeV were first measured
by Hauser et al. [16]. They analyzed the data in the
forward angles, up to θ ∼ 100◦, using the Austern–
Blair theory and could reproduce the data very well.
Also, optical-model analysis was done assuming a
bell-shaped potential. They concluded that a repul-
sive inner core potential added to the larger attractive
potential well reproduces the data. They also obtained
a similar potential for 16O and 14N, which are very
different from the global potential [5]. Specht et al.
[17] extended the measurement of the angular dis-
tributions up to the extreme backward angle, 176◦,
and they also measured the inelastic angular dis-
tribution to the 2+ (4.43 MeV) state. The inelastic
2
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Fig. 5. The experimental data [19] of elastic and inelastic
α scattering from 12C at Eα = 82 MeV are compared
with the coupled-channel calculations (solid curves).

cross sections are greatly enhanced in the backward
hemisphere and show a structure similar to elastic
scattering. Unfortunately no optical potential model
analysis was done. Because the data at high energy
and at backward angles could discriminate many po-
tentials that work in the forward angle region, it is
very interesting to try to fit the data up to extreme
backward angles using an optical potential. Khallaf
et al. [33] analyzed only elastic data systematically
and successfully reproduced the angular distributions
at 172.5, 166, 139, and 90 MeV. At 104 MeV, their
potential reproduced the slope of the experimental
angular distribution, which is similar to the 172.5,
166, and 139 MeV data; however, the pronounced
peak in the angular distribution at 100◦ could not
be reproduced and the theoretical result beyond 110◦

Normalization factor NR and volume integral per nucleon
pair JV (in MeV fm3)

Eα, MeV NR JV JV [28] JV [15]

41 0.90 246

65 1.16 313

82 1.16 305

104 1.16 298 393 319

139 1.16 286 353 278

166 1.16 279 326

172.5 1.16 286 277
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Fig. 6. The experimental data [20] of elastic and inelastic
α scattering from 12C at Eα = 65 MeV are compared
with the coupled-channel calculations (solid curves).

was not compared with the experimental data: also no
analysis of the inelastic scattering has been reported.
To date, nobody has succeeded in explaining these
important data in the potential model.

In Fig. 4, the experimental angular distributions at
Eα = 104 MeV [17] are compared with our coupled-
channel calculations. The calculation reproduces the
behavior of the angular distributions at forward an-
gles, which is consistent with that at higher ener-
gies of 172.5, 166, and 139 MeV. Beyond 90◦, there
appear characteristic oscillations in the elastic an-
gular distributions. The calculation reproduces the
oscillatory structure very well. Also in the inelas-
tic scattering, the fall-off stops around 120◦, beyond
which there appears a plateau: the calculation agrees
very well with the experimental data in the forward
angles up to 100◦, and, interestingly, the calculation
increases toward backward angles being consistent
with the experimental data. Since the backward data
are sensitive to the internal part of the potential, the
agreement between the calculations and the data up
to backward angles show that the present potential
is reasonable at this energy. Therefore, the potential
which is consistent with the global potential for the
α + 16O system also works for the α + 12C system.

In Fig. 5, experimental data at Eα = 82 MeV [19]
are compared with the calculations. The behavior of
the angular distributions with some oscillatory struc-
ture is reproduced by the calculation. The theory
shows structure even beyond 120◦; it is interesting
whether the oscillations are observed in experiment.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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The angular distribution for inelastic scattering to the
2+ state shows a structure similar to the 104 MeV
data with fall-off up to about 100◦ following some
oscillatory structure. This behavior is essentially well
described by our calculation.

In Fig. 6, experimental data at Eα = 65 MeV
[20] are compared with the calculations. The be-
havior of the elastic scattering angular distributions
is reproduced well by the calculation except around
50◦, where the oscillatory structure is slightly ex-
aggerated. The inelastic cross sections are greatly
enhanced. The coupled-channel calculation gives the
right magnitude of the cross sections and the be-
havior: the oscillatory structure in the 50◦–120◦ is
suppressed in the calculated results. It is noted that
a small diffuseness parameter a = 0.1 fm is needed.
Yasue et al. [20] tried to fit the data with a conven-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
tional Woods–Saxon potential and a collective form
factor but could not get a good agreement: the results
are poorer than the present one.

In Fig. 7, the experimental elastic scattering data
in the range of Eα = 41–172.5 MeV are summarized
in comparison with the coupled-channel calculations.
The agreement of the calculations with experiment
is good in the whole angular range. It should be
noted that the potential parameter NR is kept at 1.16
for all the incident energies (except Eα = 41 MeV)
and no parameter search has been done. The energy
dependence of the real potential is due to that of
the DDM3Y. Only imaginary parameters are fitted at
each energy.

At Eα = 41 MeV [22], the forward oscillatory
structure is reproduced by the calculation; however,
the agreement deteriorates. Also, we note that a
smaller NR = 0.9 is needed. As energy becomes
lower, smaller diffuseness parameters are needed for
the imaginary potential. At lower energies, effects not
included in the present formalism may be involved.

The used parameters of the normalization factor
for the real potentials and the volume integrals are
given in the table in comparison with other analy-
ses. The energy dependence of the volume integral
is consistent with other analyses. It is interesting
to investigate whether the difference of the volume
integral between the present bare potential and the
phenomenological potential of [15] is due to dynam-
ical coupling. On the other hand, the difference be-
tween the bare potential and Khoa’s folding potential
is rather small, suggesting that dynamical polariza-
tion due to coupling is rather small at these higher
energies.

4. CONCLUSIONS
Alpha-particle scattering from nonclosed shell

nucleus 12C was studied by using a folding type
deep potential with the use of microscopic α-cluster
wave functions for 12C. The angular distributions of
elastic and inelastic scattering from 41 to 172.5 MeV
were analyzed in the coupled-channel calculations by
taking not only the ground-state band but also the α-
cluster states, and the agreement of the calculations
with the data is fairly good.

The present results show that a deep potential ob-
tained by the folding model works for the description
of elastic and inelastic scattering from 12C in a wide
range of incident energies employing microscopic α-
cluster model wave functions: the potential is consis-
tent with the global ones for theα+ 16O,α+ 15N, and
α + 14N systems. The calculations, however, suggest
that at lower energies, some ingredients, which are
not included in the present frame, may be needed to
improve the fit to the experimental data.
2
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L. C. Gomes, Phys. Rev. C 44, 1152 (1991).
31. E. H. Esmael, S. A. H. Abou Steit, M. E. M. Zedan,

and M. Y. M. Hassan, J. Phys. G 17, 1755 (1991).
32. F. Michel and G. Reidemeister, in Proceedings of the

6th International Conference “Clusters in Nuclear
Structure and Dynamics,” Strasbourg, France,
1994, Ed. by F. Haas, p. 56.

33. S. A. E. Khallaf, A. M. A. Amry, and S. R. Mokhtar,
Phys. Rev. C 56, 2093 (1997).

34. L. C. Chamon, D. Pereira, M. S. Hussein, et al.,
Phys. Rev. Lett. 79, 5218 (1997).

35. M. Kamimura, Nucl. Phys. A 351, 456 (1981);
Y. Fukushima and M. Kamimura, in Proceedings of
the International Conference on Nuclear Struc-
ture, Tokyo, Japan, 1977, p. 225.

36. A. M. Kobos, B. A. Brown, R. Lindsay, and
G. R. Satchler, Nucl. Phys. A 425, 205 (1984).

37. S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995).
38. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183

(1979).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002



Physics of Atomic Nuclei, Vol. 65, No. 4, 2002, pp. 689–696. From Yadernaya Fizika, Vol. 65, No. 4, 2002, pp. 721–728.
Original English Text Copyright c© 2002 by Roeckl.
Decay Properties of N ∼ Z Nuclei*

E. Roeckl**

Gesellschaft für Schwerionenforschung, Darmstadt, Germany
Received July 20, 2001

Abstract—By using heavy-ion induced fusion-evaporation reactions at the on-line mass separator of GSI,
the decay properties of neutron-deficient isotopes between 56Ni and 100Sn were investigated. The experi-
mental results will be presented and discussed in comparisonwithmodel predictions. c© 2002MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The study of nuclear decay properties at and near
the N = Z line in general, and of nuclei between the
double shell closure at 56Ni and 100Sn in particular,
meets exceptional phenomena. In addition to β de-
cay and the accompanying emission of β-delayed γ
radiation, proton or α emission may occur either as
a β-delayed or “Coulomb-delayed” (direct) process,
the latter disintegration mode indicating that nuclei
beyond the drip lines for proton or α emission have
been reached. Nuclei, situated near these borderlines
of nuclear stability, are of great current interest to
nuclear physics and astrophysics. The latter research
link relates to, e.g., the detection of solar neutrinos
[1, 2], the rp process [3], and the electron-capture
cooling of supernovae [4]. As far as nuclear physics
is concerned, experiments on direct particle emission
give access to binding energies and reduced parti-
cle width, while the high energy release in β de-
cay allows one to measure the Gamow–Teller (GT)
strength BGT for a large range of excitation energies
in the daughter nucleus and thus to stringently test
theoretical BGT predictions. The tasks of β-decay
measurements are to deduce the experimental BGT

distribution as a function of the excitation energy
in the daughter nucleus, if possible completely, i.e.,
including (weak) decay branches to high-lying levels,
and to investigate whether theoretical calculations
are able to reproduce this distribution, with particular
emphasis on the possible quenching of the calculated
GT strength.

Another interesting feature of β decay is the pos-
sibility to determine spin/parity of the parent state if
the configuration(s) of the daughter level(s), popu-
lated in the decay, is (are) known. This yields another

∗This article was submitted by the author in English.
**e-mail: e.roeckl@gsi.de
1063-7788/02/6504-0689$22.00 c©
quantity to be compared to (shell) model predictions,
represents an important “service” to in-beam spec-
troscopists in their attempt to establish the γ-ray
deexcitation of high-spin levels to, hopefully, well-
established low-spin states, and offers, in the case
of odd–odd parent nuclei, the chance of studying
the structure of low-lying two-quasiparticle states.
Odd–odd N = Z nuclei play a special role, as their
superallowed 0+ → 0+ β decay allows one to accu-
rately determine the weak vector-coupling constant
and thus to probe physics beyond the standard model.
In this context, it is important to clarify whether β
decay of non-0+ (high-spin) states competes with the
superallowed transition.

Based on these motivations, there has been a
recent upsurge of both theoretical and experimen-
tal work on the decay properties of N ∼ Z nuclei,
measurements being carried out, in particular, at
ISOLDE/CERN [5–8], GANIL [9], and GSI. The
present paper deals with work performed in the latter
laboratory, where two major facilities are available
for the study of N ∼ Z nuclei. One is a projectile-
fragment separator (FRS) which uses fragmenta-
tion reactions induced by relativistic beams from a
heavy-ion synchrotron SIS. However, only a few
experiments on decay properties near N ∼ Z have
been carried out on this instrument so far [1, 2,
10], in contrast to the other facility, i.e., the isotope
separator on-line (ISOL) to the heavy-ion accelerator
UNILAC. It is the research program of ISOL, and,
in particular, the recent decay studies of 56Cu, 58Cu,
and 70Br and of nuclei near 100Sn, which forms the
focus of the present overview. A detailed discussion of
the nuclear-physics aspects of these results, as well
as of their astrophysical relevance, cannot be given
within the scope of this report, but can be found in the
references cited throughout the text.
2002 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUES

At the ISOL, heavy-ion induced fusion-evapo-
ration reactions are induced by 32S, 36Ar, 40Ca, or
58Ni beams on 28Si, 40Ca, 50,52Cr, or 58,60Ni targets.
Forced electron-beam arc discharge (FEBIAD) ion
sources [11, 12] or thermal ion sources (TIS) [13],
which are chemically selective and yield high re-
lease efficiencies, are used to producemass-separated
beams of neutron-deficient iron-to-barium isotopes.
The 55-keV ISOL beams are implanted either in a
thin carbon foil or in a tape that transports the ac-
tivity to (or away from) the various detector arrays.
Coulomb-delayed or β-delayed protons and α par-
ticles are measured by means of ∆E–E telescopes
consisting of a thin gas or silicon (Si) ∆E-detector
and a thick SiE-detector. The former records the en-
ergy loss of β-delayed charged particles, whereas the
latter measures their rest energy. Low-energy protons
or α particles are stopped in the thin detector, while
positrons are recorded in the thick detector to derive
an anticoincidence condition and thus to suppress
energy-loss events of β-delayed particles.

The high-resolution spectroscopy of β-delayed
γ rays emitted from mass-separated sources is ac-
complished by using germanium (Ge) detectors, re-
cently including those of the Euroball-Cluster [14]
and Clover type [15]. An exceptionally efficient high-
resolution γ-ray detector became available at ISOL
in 1996, i.e., a cubelike array of six Euroball-Cluster
detectors (Cluster Cube) which comprised 42 Ge
crystals and had an absolute photopeak efficiency of
10.2(0.5)% for 1.33-MeV γ rays [16]. In the case of
low source strengths, the β-delayed γ rays can be
measured in coincidence with positrons recorded in
a NE102A plastic-scintillation detector.

As a low-resolution but high-efficiency alterna-
tive to the γ-ray detectors described above, a total-
absorption spectrometer (TAS) is used. The TAS [17]
consists of a large NaI crystal surrounding a ra-
dioactive source, two small Si detectors above and
below the source, and a Ge detector placed above
the upper Si detector. By demanding coincidence
with signals from the Si detectors, the β+-decay
component for the nucleus of interest is selected,
whereas coincidences with characteristicKα,β x-rays
recorded by the Ge detector can be used to select
the EC mode. In this way, the complete distribution
of the β strength can be determined for neutron-
deficient isotopes, including, in particular, high-lying
levels of the respective daughter nuclei, and the QEC

value can be deduced from the ratio between the
β+ and EC intensities. Moreover, the TAS enables
one to investigate X-rays related to the emission
of conversion electrons (from isomeric transitions),
PH
with an optional anticoincidence condition on sig-
nals from the Si detectors and the NaI crystal in
order to suppress (room) background. Last but not
least, the TAS can also be used to measure β-delayed
protons, detected in one of the Si detectors (or a
telescope of Si detectors) operated in coincidence
with positrons, x-rays, and/or γ rays. In this way,
one can, e.g., distinguish between β+ and EC tran-
sitions preceeding proton emission, determine the
(QEC − Sp) value for a selected level of the final nu-
cleus populated by proton transitions, deduce infor-
mation on the lifetime of the proton-emitting levels by
means of the proton and x-ray coincidence technique
(PXCT) [18], and use proton–γ coincidence data to
identify excited states in the final nucleus.

3. RESULTS AND DISCUSSION

3.1. Direct Charged-Particle Decay

In addition to interesting nuclear-structure data
such as spectroscopic factors, the line spectra of di-
rect protons and α particles yield the mass differ-
ence between the parent and daughter nucleus in a
straightforward way, i.e., without the complications
involved in, e.g., β-endpoint determination. After the
early experiments on 147Tm [19], no further ISOL re-
search on direct proton emitters, except for the search
experiment of 105Sb [20], was performed. As the data
available for this decay are at variance, a new ISOL
experiment with improved granularity and resolution
of the proton detector is being prepared.

The island of α emission beyond 100Sn was a
favorite ISOL topic in the eighties (see, e.g., [21]).
More recently, α and cluster emission from 114Ba
was searched for, yielding, however, only upper limits
of 3.7 × 10−3 and 3.4 × 10−5 for the respective
decay branching ratios [22]. (In a related effort, cluster
emission from excited states of 116Ba was studied
by measuring 58Ni+58Ni reaction cross sections at
ISOL [23].) In the summer of 2000, the decay of 114Ba
was reinvestigated at the ISOL. According to results
from a very preliminary data evaluation [24], dis-
played in Fig. 1, the α decay of 114Ba was observed as
the lowest energy line of∼3.4 MeV, the neighbouring
higher energy members of the triplet being ascribed
to the known [21] α lines of the daughter 110Xe and
the granddaughter 106Te. This result is interesting for
the following reasons. First, the increase of the en-
ergies along the triple α chain is a textbook example
of experimental evidence of a shell closure. Second,
and indeed related to the topic of this conference,
by summing the three α-decay Q values one can
deduce, preliminarily again, an experimental Q value
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Beta decay of 56Cu to low-lying 56Ni states [the experimental 56Ni level energies Eexpt, β intensities Iβ , and β strengths

B
expt
GT , determined from a preliminary data evaluation [27], are comparedwith shell-model predictions for the level energies

(EFPD6, EKB3) and the β strengths (BFPD6
GT , BKB3

GT ); the spin/parity/isospin assignments (Iπ;T ) were deduced from
reaction data [28], except for the 4936, 5483 keV, and 5988 levels, whose configurations were tentatively deduced from a
comparison with shell-model predictions]

Eexpt, keV EFPD6, keV [26] EKB3, keV [4] Iπ;T Iexpt
β ,% Bexpt

GT BFPD6
GT [26] BKB3

GT [4]

2700.6(4) 3220 4318 2+; 0 –1.2(6.6) – – –

3925.1(5) 4072 4901 4+; 0 22.2(6.5) 0.113(33) 0.087 0.128

4935.5(6) 4955 5439 (3+); 0 10.2(3.2) 0.084(27) 0.102 0.061

5483.0(5) 5643 5893 (4+); 0 10.0(2.1) 0.110(24) 0.46 0.100

5987.9(6) 6463 6069 (3+); 1 11.6(1.9) 0.169(29) 0.28 0.21

6431.7(7) 6181 6862 4+; 1 67.5(3.7) 2.0 2.002 2.001

6588.6(8) 7938 7452 (3, 4, 5)+ 7.6(1.7) 0.158(36) 0.022 0.034
of ∼19.0 MeV for 12C decay of 114Ba, which is im-
portant in obtaining experimentally relevant predic-
tions from cluster-emission calculations. Third, the
analysis of time correlations between 114Ba and 110Xe
events will hopefully yield the hitherto unknown half-
life of the latter nucleus. This result, together with the
previously unknown α-branching ratio of 110Xe de-
duced from the intensities of the two lines, can be used
to determine the s-wave α width of this nuclide and
thus to extend the corresponding sytematics towards
its low-mass end [25].

3.2. Beta Decay
56Cu: Beta decay to doubly magic 56Ni. Com-

pared to the previous ISOL work [26], which repre-
sented the first observation of the 56Cu decay, the data
on β-delayed γ rays have been improved in statistics
by about a factor of 30 in a recent measurement [27].
The experimental results are compiled in the table.
Besides the γ transitions of 1225, 2507, 2701, and
2780 keV, that were already observed in the earlier
work [26] and used to identify four excited states of
56Ni, additional γ lines of 951, 1010, 1653, 2063,
2235, and 3287 keV were assigned to the decay of
56Cu, respectively. The intensity of the β transition
to the 2701-keV 2+

1 state in 56Ni was found to be
zero within the experimental uncertainties (see the
table). The experimentalBGT values were determined
by using the branching ratios and the half-life of
78(15) ms from recent data [27] and a QEC value of
15 300(140) keV [29]. As the latter was derived from
systematical (Coulomb energy) trends, the resulting
BGT values represent semi-empirical estimates. A
discussion of the Fermi and GT strength for the iso-
baric analog state at 6432 keV [26] is outside the
scope of this paper.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
The table also lists results obtained from large-
scale shell-model calculations. The first one, called
Model C in [26], used the FPD6* interaction to de-
termine the strengths of GT transitions between the
[(f7/2)−1 × p3/2] (4+; T = 1) ground state of 56Cu
and the [(f7/2)−1 × p3/2] (3+, 4+, 5+; T = 0, 1) and
[(f7/2)−1 × p1/2] (3+, 4+; T = 0, 1) excited states of
56Ni. Up to three particles excited from the f7/2 or-
bital to the p3/2, p1/2, and f5/2 orbitals were taken
into account. The second calculation [4] was based
on the monopole-corrected KB3 interaction. In both
calculations, the global effective quenching of the
GT matrix elements was included as determined by
Martinez-Pinedo et al. [30]. As can be seen from
the table, qualitative agreement has been obtained
between experimental and theoretical BGT values.
However, the total BGT value measured for the 56Cu
decay amounts to 0.42(0.09) compared to the FPD6∗

result of 4.29. The FPD6∗, as well as the KB3 calcu-
lation, predicts most of the GT strength to reside at
higher 56Ni excitation energies, which are difficult to
experimentally access due to their small phase space.
However, even BGT at lower excitation energies are
valuable for testing model predictions, also in view of
their use for calculating EC rates in supernovae.

58Cu: Beta decay versus charge-exchange re-
actions. By using the TAS, the β decay of 58Cu was
studied. The experimental results obtained for this
decay (see Fig. 2), as well as for the superallowed
0+ → 0+ disintegration of 46V [31], may serve as an
example of the response function of the TAS and for
the determination of β intensities from TAS spec-
tra. The branching ratio for the transition from the
58Cu ground state to the 58Ni ground state was re-
determined with improved accuracy to be 81.2(0.5)%
2
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Fig. 1. Triple α chain involving the decays of 114Ba,
110Xe, and 106Te.

[31], which is of interest for deducing reliable BGT

values from cross-section measurements of charge-
exchange reactions such as 58Ni(3He, t)58Cu.

70Br and 94Ag: Beta decay of high-spin states
of odd–odd N = Z nuclei. As has been mentioned
in Section 1, odd–odd N = Z nuclei play a spe-
cial (fundamental) role in view of their superallowed
0+ → 0+ β decay. This feature will be discussed here
for the cases of 70Br and 94Ag.
There is contradictory information available in the

literature concerning the β decay of 70Br. By detec-
tion of high-energy positrons, values of 2.2(0.2) s
[32] and 79.54(0.59) ms [33] were found, the lat-
ter result being in agreement with earlier heavy-ion
based studies. Moreover, a recent measurement of β-
delayed γ rays [34, 35] did not yield a new half-life
value but lead to contradictory conclusions drawn by
comparing the γ rays observed with those identified in
the β-decay daughter 70Se by in-beam spectroscopy
[36]. While in an earlier conference contribution [34]
it was concluded that the β-decaying 70Br state has
a 5+ assignment and might be “a quite spherical
nucleus,” the subsequent publication [35] mentions
a 9+ assignment. At any rate, the discussion of the
configuration of this state has to take into account
that in-beam work on the neighboring nucleus 68Se
has been interpreted by ascribing substantial oblate
deformation to its ground-state band [37].

In a recent measurement of the 70Br decay [38],
an intensity of approximately 100 atoms/s was ob-
tained for the mass-separated and chemically sepa-
rated ISOL beam of 70Br. This beam intensity is suf-
ficiently high to allow one to obtain, in contrast to [34,
35], very good γ-singles and good γ–γ coincidence
data (see Fig. 3). This is indeed an achievement,
P
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Fig. 2. Total-absorption spectrum of γ rays from the de-
cay of 58Cu decomposed into parts corresponding to the
feeding of the ground state and excited levels of 58Ni. The
high-energy tail of the 1022 keV peak is due to positrons
penetrating into the NaI crystal.

as 70Br is presumably the lightest bound isotope of
bromine. A preliminary data evaluation indicates that
the half-life of 70Br is 2.2(0.3) s and that the β-
decaying state most probably has a 9+ assignment.
The latter conclusion is again based on a comparison
with in-beam data [36]. However, it is clear already
now that the level scheme of 70Se will be substantially
extended by the new data. Detailed analysis of the
rich γ-singles and γ–γ coincidence data, including a
search for a short-lived (superallowed) decay compo-
nent, will hopefully be able to solve the puzzles which
may be characterized as “short-lived versus long-
lived,” “5+ versus 9+,” and “sphericity versus oblate
deformation.”

94Ag is the heaviest odd–oddN = Z nucleus with
known decay properties. The only information avail-
able so far had been gained in an earlier ISOL experi-
ment [39]. The half-life of 0.42(5) ms observed for the
β-delayed proton activity was tentatively assigned to
the decay of a 9+ (or 7+) state in 94Ag, this conclusion
being based on a comparison with a shell-model pre-
diction of low-lying 94Ag levels. The latter calculation
assumes 100Sn as an inert core and allows the valence
protons and neutrons to occupy the g9/2, p1/2, p3/2,
and f5/2 orbitals [39–41]. A recent ISOL measure-
ment succeeded in detecting β-delayed γ rays of 94Ag
for the first time. The preliminary data evaluation [42]
yielded a half-life of 0.36(3) ms, which is in agree-
ment with the above-mentioned result obtained for β-
delayed protons, and identified several γ transitions
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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known in the daughter nucleus 94Pd from in-beam
studies [43].

93Pd, an rp-process waiting-point nucleus.
By measuring β-delayed protons (T1/2 = 0.7+0.2

−0.1 s)
and β-delayed γ rays (T1/2 = 1.0(0.3) s), the β-decay
of 93Pd was observed [44] for the first time. The aver-
aged half-life of 0.9(0.2) s is at variance with that of
9.3+2.5

−1.7 s, resulting from a preliminary evaluation of
FRS data [45] which has meanwhile been superseded
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
[10]. However, it agrees with a shell-model prediction
[46] obtained by using a Gross–Frenkel interaction
in a g9/2, p1/2 model space. By comparing the low-
lying 93Pd levels predicted by this model, the four β-
delayed γ rays observed (see Fig. 4) can tentatively
be assigned to transitions from the first excited 7/2+,
9/2+, and 13/2+ levels of 93Pd to the 9/2+ ground
state of this nucleus (see Fig. 5).

Furthermore, the β decay of 93Pd is tentatively
2
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interpreted to occur from a low-lying 7/2+ and/or a
9/2+ state in 93Pd. As 93Pd may represent a waiting-
point nucleus of the astrophysical rp process [3],
experiments such as this, together with the related
shell-model interpretations, may yield valuable in-
put parameters for improved calculations of the rp-
process path.

97,98Ag and 103–107In: Observation of the
Gamow–Teller resonance. The β decay of 97Ag,
a three proton-hole nucleus with respect to 100Sn,
was investigated [47] by using both the TAS and the
Cluster Cube. One of the striking results is that the
Cluster Cube, even though probably being the most
advanced high-resolution detector for β-delayed γ
rays available to date, missed about one third of the
total GT strength detected by the TAS. The distri-
bution of the GT strength as a function of the 97Pd
excitation energy, deduced from the TAS data, shows
a pronounced resonance at an energy around 4 MeV
with a width of about 1.8MeV (see Fig. 6). The shape
of this GT resonance agrees with that obtained by a
shell-model calculation using the SNB Hamiltonian
and a model space consisting of active proton orbitals
p1/2 and g9/2 and active neutron orbitals g7/2, d5/2,
s1/2, and h11/2 [47, 48] (see Fig. 6). The hindrance
factor for the total GT strength amounts to 4.3(6)
with reference to the SNB calculation (see [47, 48] for
details), which agrees with the value of 3.7 expected
from further configuration mixing within the SNB
model space and from the higher order configuration
mixing beyond the SNB model space. By means of
the TAS, theGT strength distributions have also been
measured for the chain of indium isotopes from 103In
[49] to 107In [50]. These data, together with those for
98Cd [51], 97Ag [47], and 98Ag [52], can now be used
P

 

3

2

1

0

 
B
 

GT

 
, MeV

 
–1

 

2 4 6
Energy, MeV

 

Q

 

E
C

 

 =
 6

.9
8 

(1
1)

 M
eV

Fig. 6. Comparison of the experimental BGT distribu-
tion for 97Ag (solid curve) with the corresponding SNB
prediction reduced by a hindrance factor of 4.3 (dotted
curve). See text and [47] for details.

to establish, for the first time, a mass dependence of
the GT hindrance factor near 100Sn.

4. SUMMARY AND OUTLOOK

By using heavy-ion induced fusion-evaporation
reactions at the on-line mass separator of GSI, new
and interesting data have been obtained for the β
decays of 56Cu, 70Br, and of other N ∼ Z nuclei be-
low 100Sn. The results have been interpreted through
comparison with shell-model predictions, the topics
ranging from BGT values of individual daughter lev-
els, the related spin/parity assignment for the parent
states, the GT resonance, and its quenching all the
way to a waiting-point nucleus of the astrophysical rp
process. These investigations are part of an ongoing
research program which also includes the following
topics.
The experimental knowledge on high-spin states

in the even–even N = Z nucleus 52mFe [53] is very
limited in comparison with neighboring nuclei. This
is due to the occurrence of a 12+ “yrast-trap” isomer
which predominantly decays by positron emission
and whose long half-life of 45.9(0.6) s prevents in-
beam measurements from being extended to higher
spins. Moreover, the excitation energy of the isomer
was poorly known (E∗ = 6820(130) keV). In a recent
ISOL experiment, the (internal) γ deexcitation of the
isomer was observed for the first time, the isomeric
energy was measured with significantly higher accu-
racy (E∗ = 6957.5(0.4) keV), andB(E4) values were
determined for the 12+ → 8+

1 (597.1(0.4) keV) and
12+ → 8+

2 (465.0(0.4) keV) transitions, which offers
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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a new way of checking shell-model (KB3, FPD6∗,
etc.) predictions [54].

The β-delayed proton data obtained for 57Zn [55],
which probe excited states in the single-proton nu-
cleus 57Cu, were considerably improved, with respect
to source purity and energy resolution, over those
gained in the one and only previous measurement [56]
of this decay. The current evaluation of these data will
hopefully allow one to experimentally identify hitherto
unknown single-proton states in 57Cu.

In the first study of the 61Ga decay (T1/2 =
140(70) ms) [57], the GT population of four excited
61Zn levels (Iπ = 1/2−, 3/2−, or 5/2−) was observed
in addition to the dominant Fermi transition to the
61Zn ground state.

Beta-delayed γ rays of the odd–odd nucleus 100In
were measured for the first time. The preliminary
evaluation [58] of the high-resolution data yielded a
half-life of 6.5(2.2) s in agreement with the previous
ISOL result of 6.1(0.9) s, based on β-delayed proton
data [59]. The population of the 6+

2 and 8+ states in
100Cd, known from in-beam work [60], indicates a
tentative spin/parity assignment of 6+ and/or 7+ for
the β-decaying 100In state(s).

The TAS has recently been used to study the β-
delayed proton emission from 96Ag [61]. These da-
ta look promising for the determination of lifetimes
of proton-unbound 96Pd levels through PXCT (see
Section 2) and for the identification of single-proton
states in 95Rh (N = 50) populated by proton emis-
sion. There is preliminary evidence [61] supporting
the occurrence of an excited level of 95Rh at 686 keV,
which is interpreted, with reference to a shell-model
calculation [62], to be the hitherto unobserved πg7/2
configuration.

All in all, a wealth of β-decay data has become
and will continue to become available for N ∼ Z
nuclei between the double closed-shell nuclei 56Ni
and 100Sn. Amongst the ISOL experiments planned
for the immediate future, there are a TAS β-strength
measurement of 52mFe, an identification of the β or
isomeric decay of 99In, a proton-hole nucleus with
respect to 100Sn, and a search for direct proton decay
of 113Ba. It is indeed amazing to see the high data
quality that can be obtained for nuclei close to the
proton drip line, and it is also encouraging to ob-
serve what could be called, at least in the authors’s
judgement, a renaissance in the “interface” between
in-beam and decay spectroscopy.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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Abstract—The results of experimental and theoretical studies of the double-differential proton and neutron
spectra measured in coincidence with fission fragments in the deuteron-induced reaction on a 238U target
at Ed = 65MeV are presented. These spectra measured in the forward direction are analyzed in the plane-
wave Born approximation by using the modified model of stripping into a continuum. The pre-neutron
emission fission fragment mass distributions were measured for the (d, f), (d, pf), and (d, nf) reaction
channels. The enhancement of highly asymmetric mass division in the (d, pf) channel for the low-energy
part of the breakup proton spectrum was observed. The (d, pf) channel can be used to imitate the neutron-
induced fission at intermediate energy. The fission characteristics were analyzed in the model taking into
account nuclear friction and relevant fission modes. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of direct reactions induced by
deuterons at low energy is a powerful method for
exploring the structure of nuclei. For fissioning nuclei,
the direct reaction with a deuteron provides possi-
bilities for studying subbarrier resonanses and the
structure of the fission barrier. Recently, new pieces
of evidence for the existence of hyperdeformed states
at the third minimum in the potential energy of 236U
were obtained in the reaction 235U(d, pf) [1]. Interest
in deuteron-induced reactions at intermediate energy
(Ed > 30 MeV) is increasing presently. More than
fifty years ago, Serber [2] considered the deuteron-
breakup process as a source of high-energy neutrons.
Powerful neutron sources are very important for
multiple practical purposes, such as accelerator-
driven systems for nuclear-energy generation and
incineration of nuclear waste [3], and for producing
beams of neutron-rich radioactive ions by high-
energy neutron-induced fission [4].

By analogy with the use of the stripping reac-
tion at low energies for investigating subbarrier fis-

∗This article was submitted by the authors in English.
1)Khlopin Radium Institute, St. Petersburg, Russia.
2)Flerov Laboratory of Nuclear Reactions, JINR, Dubna,
141980 Russia.

3)Technical University, Dresden, Germany.
4)Technical University, Darmstadt, Germany.
**e-mail: rubchen@phys.jyu.fi
1063-7788/02/6504-0697$22.00 c©
sion, one can use (d, pf) reactions to study neutron-
induced fission at intermediate energies [5]. The shape
of the virtual neutron spectrum relevant to this re-
action is determined by direct (stripping or breakup,
or both), preequilibrium, and compound mechanisms
of the reaction. One of the important problems is the
role of the Coulomb breakup mechanism in reactions
on heavy nuclei. The importance of the Coulomb
breakup of the incident deuteron in the high-energy
neutron yield at forward angles was shown in [6]. It
is interesting to investigate the role of the Coulomb
breakup of deuterons in (d, pf) and (d, nf) reactions
on heavy nuclei.
In this article, we report on a study of the double-

differential spectra of protons and neutrons measured
in coincidence with a fission fragment (FF) in the
deuteron-induced reaction on a 238U target at Ed =
65 MeV by using the K-130 cyclotron of the Accel-
erator Laboratory at the University of Jyväskylä. The
fission channel is suitable for investigating inelastic
deuteron breakup for heavy nuclei at intermediate
energies. The mechanism of inelastic breakup fol-
lowed by fission was analyzed within the stripping-
into-continuum model [7] with some corrections. Si-
multaneously, the FF mass distributions were con-
structed for the proton-energy bins that correspond
to specific bins of the neutron energy. The (d, pf)
channel can be used to imitate neutron-induced fis-
sion in a wide region of fast-neutron energies. Spe-
cial attention was paid to exploring extremely asym-
metric fission, where the light fragment mass AL is
2002 MAIK “Nauka/Interperiodica”
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Main characteristics of the detectors used: dimensions, angle to the beam direction (θ), time resolution (δT ), energy
resolution (δE), and position resolution (δX)

Detector Dimension, cm θ, deg δT , ns δE,% δX , cm

PSACs ∅24.3 88–90 0.4 – 0.2

PPAC ∅3.0 88 0.2 – –

LCP telescopes 2×2 29, 41, 48, 56, 59, 130, 142 1 5 –

PSND 10×10×100 From 335 to –25 1.0 – 10

∅5.5×10×100 From 60 to –120

From 150 to –210
below 80. Fission-fragment mass distributions are
analyzed within the theoretical model developed in [8,
9] to describe fission-product yields. The contribution
from various fission chances and fission modes, the
effect of nuclear shells, odd–even effects, and charge
polarization in the fission process are taken into con-
sideration.

2. EXPERIMENTAL METHOD

We used the HENDES array [10] installed at
the Accelerator Laboratory (University of Jyväskylä)
to measure the double-differential spectra of pro-
tons and neutrons in coincidence with two FFs
from the 238U + d reaction at Ed = 65 MeV. The
deuteron beam of intensity 3–5 nA was incident on
a 106 µg/cm2 natU target placed at the center of
the reaction chamber. The reaction chamber housed
two gas-filled position-sensitive avalanche counters
(PSAC) for recording FFs and six∆E–E telescopes
for recording light charged particles (LCP). Four
position-sensitive neutron detectors (PSND) [10,
11] were placed around the reaction chamber. The
geometric arrangement of the experiment is shown in
Fig. 1.
A common start for TOF measurements was pro-

vided by a gas-filled parallel-plate avalanche counter
(PPAC, not shown in the figure). The geometric effi-
ciency was 10% of 4π for FF detectors, 4% of 4π for
neutron detectors, and 2.5% of 4π for LCP telescopes.
The flight path was 25 cm for FF and 60–100 cm for
neutrons. The main characteristics of the detectors
are presented in the table.
Three of the LCP telescopes positioned at 29◦,

41◦, and 56◦ in the vertical plane consisted of 380-
µm-thick 2 × 2 cm PIN diodes operated in the fully
depleted mode, which were followed by 20-mm-thick
CsI(Tl) crystals 20mm in diameter with a PMT read-
out. The other two telescopes were made of four 380-
µm-thick 2 × 2 cm PIN diodes and 5 × 5 cm CsI(Tl)
PH
crystals optically coupled to PIN photodiodes. The
energy resolution of the CsI(Tl) telescopes was 5% as
measured with a 226Ra α source.

3. RESULTS AND DISCUSSION

The double-differential LCP (d, p, t, and α) spec-
tra were measured at seven angles ranging between
29◦ and 142◦. The proton spectra measured in coin-
cidence with FFs at θ = 29◦, 41◦, 59◦, and 142◦ are
shown in Fig. 2, along with the results of theoretical
direct-model calculations.
To estimate the 238U(d, pf) and 238U(d, nf) cross

sections in the plane-wave Born approximation, we
used the modified formula proposed in [7]. For the
(d, pf) channel, the cross section was calculated ac-
cording to the expression [the modification for the
(d, nf) channel is obvious]

d2σ

dEpdΩp
=

µdAµpB
(2π�)3µnA

(1)

× ppp

pd

∣∣∣∣F
(

1
2
pd − pp

)∣∣∣∣
2

σfis
nA(En),

where µdA is the reduced mass of the system formed
by the deuteron and the target nucleus, pd is the
deuteron momentum, µpB is the reduced mass of the
system formed by the proton and the final nucleus, pp
is the proton momentum, µnA is the reduced mass
of the system formed by the neutron and the target
nucleus, p = pd − pp is the momentum transfer, F
is the deuteron form factor calculated by using the
Hulthén-type deuteron wave function, and σfis

nA(En)
is the cross section for target-nucleus fission induced
by neutrons.

The original expression from [7] was modified in
two respects. First, the Coulomb field correction was
introduced in the local approximation by replacing the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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PSND 1

PSAC 2

PSAC 1

PSND 2

Fig. 1. Experimental layout of HENDES for the 238U(d, p(n) fission) experiment (see text).
deuteron and proton momenta by the “local”momen-
ta:

pLd =
√

1 − Vc
Ed
pd, pLp =

√
1 − Vc

Ep
pp, (2)

Vc = 1.44
Z

1.5(A1/3 + 1)
,

where Z and A are the charge and mass numbers of
the target nucleus. Second, the total cross section
calculated in the optical model was used instead of
the off-shell total cross section for a nucleon incident
on the target nucleus. The probabilities of the forma-
tion of a compound nucleus and of its fission were
introduced to calculate the (d, pf) and (d, nf) cross
sections. One can see from Fig. 2 that the shapes of
the proton spectra measured in the forward direction
are described by the model near the maximum of the
spectra. However, we had to introduce a scaling factor
of about 40–50 to ensure coincidence at the maxi-
mum of the experimental spectra. The reasons why
so large a scaling factor was needed are still unclear.
Probably, the contribution of the Coulomb breakup
followed by the absorbtion of a neutron may enhance
the cross sections. A comparison of the theoretical
spectra with experimental ones at large angles shows
that the contribution from inelastic breakup is small
(the scaling factor for θ = 142◦ is 125). The con-
tributions from the evaporation and preequilibrium
reaction mechanisms are important at Ep < 20MeV.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
The neutron spectra were measured at 20 angles
from 10◦ to 164◦ by using four PSNDs. The neu-
tron spectra measured in coincidence with FFs at
θ = 10◦ and 164◦ are shown in Fig. 3 along with
the results of the theoretical calculations at θ = 10◦
performed according to formula (1) modified for the
(d, nf) channel. The same theoretical model that un-
derestimates the cross section for the (d, pf) chan-
nel describes the neutron spectra for En > 20 MeV
at small angles for the (d, nf) channel surprisingly
well without any scaling. The processing of neutron
data is in progress, and the cross section for inelastic
deuteron breakup can be estimated. The calculated
value of the total cross section for inelastic breakup in
the reaction 238U(d, nf) at Ed = 65MeV is 13.7 mb.
Apart from the neutron component originating from
deuteron breakup, three more components contribute
to themeasured neutron spectra: (i) prescission evap-
oration, (ii) preequilibrium emission from a compound
nucleus, and (iii) postscission evaporation from FFs.

The mass and energy distributions of FFs were
obtained for certain proton or neutron energy bins of
the measured spectra for each LCP and each neutron
detector fromTOFmeasurements by an iterative pro-
cedure that took into account energy losses in tar-
get and detector materials [11]. Prescission neutron
emission has been taken into account in processing
the FF TOF data. We were primarily interested in the
effect that the compound-nucleus excitation energy
may have on the far-asymmetric region of the mass
2
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Fig. 2. Measured proton spectra in coincidence with FF at θ = 29◦ (squares), θ = 41◦ (circles), θ = 59◦ (diamonds) and
θ = 142◦ (triangles) and theoretical direct components (curves).
distribution. For a given proton energy Ep in the
reaction 238U(d, pf) at Ed = 65 MeV, the energy of
a virtual neutron that causes fission is

En � 62.2 −Ep + 0.0954
√
Ep cos θp. (3)

A comparison of the measured pre-neutron-emission
FF mass distributions in the (d, pf) channel with the
mass distributions obtained in the neutron-induced
fission of 238U by using a Los Alamos neutron source
[12] has shown suprisingly good agreement between
the two methods. The light tail of the FF mass dis-
tributions for the (d, f) channel and for two proton
energy bins for the (d, pf) channel (symbols) at θp =
29◦ are displayed in Fig. 4, along with the results
of the theoretical calculation for two corresponding
proton energies (curves). The experimental results
were analyzed within the theoretical model proposed
in [8, 9] and used here in a more advanced version.
In this version of the model for light-particle-induced
fission, the probability of the formation of compound
systems for a given angular momentum was calcu-
PH
lated by using the optical model. The probability of
the formation of a compound nucleus is affected by
the emission of fast and preequilibrium light parti-
cles. The fission of a compound nucleus having a
specific certain excitation energy and a specific spin
is calculated on the basis of the dynamical fusion–
fission model proposed in [11] for heavy ion reactions.
The distributions of the mass and charge number
and the excitation energy and the spin of compound
nuclei that are to undergo fission have been calcu-
lated by means of a Monte Carlo simulation of the
fission process. For each particular compound nu-
cleus, the FF characteristics have been calculated by
using the semiphenomenological fission model. The
influence of nuclear shells, of charge polarization, and
of odd–even effects and their dependence on the exci-
tation energy of a compound nucleus have been taken
into account. The mass distribution of primary fission
fragments is supposed to be determined by the sym-
metric, two asymmetric, and superasymmetric fission
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 3. Measured neutron spectra in coincidence with
FFs at Θ = (circles) 10◦ (triangles) 164◦ and results of
the theoretical calculations at θ = 10◦ that are based on
the direct model (curve).

modes. One can see from Fig. 4 that the theoretical
model satisfactorily describes the experimental data.

4. CONCLUSION

Inelastic deuteron breakup followed by the fission
of heavy nuclei at intermediate energy has been mea-
sured for the first time. The double-differential spec-
tra of protons and neutrons in coincidence with FFs
in the deuteron-induced reactions on a natU target
at Ed = 65 MeV have been measured. The simpli-
fied model of deuteron stripping into a continuum
in the plane-wave Born approximation describes the
experimental high-energy part of the proton spectra
[in the (d, pf) channel] and the neutron spectra [in
the (d, nf) channel] at small angles. This model en-
sures good agreement with experimental cross sec-
tions for the reaction 238U(d, nf) at small angles
and greatly underestimates the cross section for the
reaction 238U(d, pf) at θp ≥ 29◦. The possible contri-
bution of the Coulomb breakup is planned for investi-
gation. We intend to continue this study at a higher
deuteron energy and at as small angles of breakup
protons as possible.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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of theoretical model calculations for two corresponding
proton energies (curves).

It has been shown that the (d, pf) channel can
be used to measure fission characteristics in high-
energy neutron-induced fission. We observed the en-
hancement of highly asymmetric mass division in the
(d, pf) channel for the low-energy part of the proton
spectrum in relation to the thermal-neutron-induced
fission of heavy nuclei [13]. A model for calculat-
ing the fission characteristics in the light-particle-
induced fission of heavy nuclei has been developed.
This model can be used to predict the cross sections
for the formation of exotic nuclides and to evaluate the
product yields in fission at intermediate energy.
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Abstract—The structure of the nucleus 48Cr is investigated by the 40Ca + α+ α orthogonality condition
model. The energy spectra and electromagnetic transitions are calculated. The observed energies and E2
transitions of the yrast band, which show interesting collective behavior, are well reproduced by the cluster
model. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well established that α-cluster structure is
a stable feature of 40Ca–44Ti nuclei [1]. It is now
necessary to study howα-cluster structure persists in
nuclei beyond 44Ti. 48Cr is the α nucleus next to 44Ti,
and 2α-cluster states may be expected to be in the
nucleus. It is very interesting to verify the 2α-cluster
states, which could show a greater variety of cluster
structure. Furthermore, much attention has been de-
voted to the yrast states in the 48Cr nucleus [2–4].
They are characterized by the backbend and strong
enhancement of E2 intraband transitions. Various
approaches have been carried out [4–7]. Full fp-shell
model calculations are in very good agreement with
the experimental energy spectrum [4]. However, large
effective charges are needed to get a good agreement
for the E2 transitions. We want to analyze these
features of 48Cr from the viewpoint ofα-cluster struc-
ture. We will apply the 40Ca + α+ α orthogonality
condition model for the 48Cr nucleus. The multiclus-
ter model is able to span a large model space which
includes many shell-model states and various kinds
of cluster configurations.

2. ORTOGONALITY CONDITION MODEL
FOR THE 40Ca + α+ α SYSTEM

The model space is described by a set of wave
functions

ΦJ =

√
4!4!40!

48!
A{φ(α)φ(α)φ(Ca)

× [UN23,l23(r), UN1,l1(R)]J},
∗This article was submitted by the authors in English.
1)Department of Applied Science and Environ-
ment, Kochi Women’s University, Japan; e-mail:
ohkubo@yukawa.kyoto-u.ac.jp

**e-mail: sakuda@cc.miyazaki-u.ac.jp
1063-7788/02/6504-0703$22.00 c©
where φ
′
s are the antisymmetrized internal wave

functions and UN23,l23(r) and UN1,l1(R) are harmonic
oscillator functions with N23 and N1 quanta for the
relative motions. The relative coordinates r and R
are shown in Fig. 1. We adopt a common oscillator

Table 1. The Pauli-allowed states of the 40Ca + α+ α
system [they are classified by the SU(3) label (λ, µ) with
the multiplicity n]

N (λ, µ)n

24 (16, 4) (12, 6) (8, 8) (4, 10) (0, 12)

25 (19, 3) (17, 4) (15, 5) (13, 6) (11, 7) (9, 8) (7, 9)
(5, 10) (3, 11) (1, 12)

26 (22, 2) (20, 3) (18, 4)2 (16, 5) (14, 6)2 (12, 7)
(10, 8)2 (8, 9) (6, 10)2 (4, 11) (2, 12)2

27 (25, 1) (23, 2) (21, 3)2 (19, 4)2 (17, 5)2 (15, 6)2

(13, 7)2 (11, 8)2 (9, 9)2 (7, 10)2 (5, 11)2 (3, 12)2

(1, 13)

28 (28, 0) (26, 1) (24, 2)2 (22, 3)2 (20, 4)3 (18, 5)2

(16, 6)3 (14, 7)2 (12, 8)3 (10, 9)2 (8, 10)3 (6, 11)2

(4, 12)3 (2, 13) (0, 14)
29 (29, 0) (27, 1)2 (25, 2)2 (23, 3)3 (21, 4)3 (19, 5)3

(17, 6)3 (15, 7)3 (13, 8)3 (11, 9)3 (9, 10)3 (7, 11)3

(5, 12)3 (3, 13)2 (1, 14)
30 (30, 0)2 (28, 1)2 (26, 2)3 (24, 3)3 (22, 4)4 (20, 5)3

(18, 6)4 (16, 7)3 (14, 8)4 (12, 9)3 (10, 10)4 (8, 11)3

(6, 12)4 (4, 13)2 (2, 14)2 (0, 15)
31 (31, 0)2 (29, 1)3 (27, 2)3 (25, 3)4 (23, 4)4 (21, 5)4

(19, 6)4 (17, 7)4 (15, 8)4 (13, 9)4 (11, 10)4 (9, 11)4

(7, 12)4 (5, 13)3 (3, 14)2 (1, 15)
32 (32, 0)3 (30, 1)3 (28, 2)4 (26, 3)4 (24, 4)5 (22, 5)4

(20, 6)5 (18, 7)4 (16, 8)5 (14, 9)4 (12, 10)5 (10, 11)4

(8, 12)5 (6, 13)3 (4, 14)3 (2, 15) (0, 16)
33 (33, 0)3 (31, 1)4 (29, 2)4 (27, 3)5 (25, 4)5 (23, 5)5

(21, 6)5 (19, 7)5 (17, 8)5 (15, 9)5 (13, 10)5 (11, 11)5

(9, 12)5 (7, 13)4 (5, 14)3 (3, 15)2 (1, 16)
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Table 2. Squared components withN oscillator quanta of the wave functions for the yrast band in 48Cr

Jπ N = 24
N = 26 N = 28 N = 30 N = 32

(16, 4)
K = 0

(16, 4)
K = 2

(16, 4)
K = 4

(12, 6) (8, 8) (4, 10) (0, 12)

0+ 0.414 0.108 0.095 0.064 0.042 0.078 0.166 0.014 0.019

2+ 0.500 0.011 0.098 0.069 0.029 0.012 0.093 0.154 0.016 0.016

4+ 0.402 0.075 0.004 0.104 0.082 0.060 0.001 0.085 0.155 0.015 0.016

6+ 0.451 0.129 0.005 0.090 0.048 0.009 0.000 0.099 0.139 0.016 0.013

8+ 0.281 0.248 0.024 0.113 0.089 0.001 0.000 0.085 0.134 0.013 0.013

10+ 0.238 0.384 0.058 0.089 0.006 0.000 0.000 0.092 0.112 0.012 0.009

12+ 0.111 0.412 0.125 0.158 0.001 0.000 0.000 0.072 0.104 0.008 0.009

14+ 0.067 0.482 0.287 0.003 0.000 0.000 0.000 0.072 0.077 0.007 0.005

16+ 0.015 0.315 0.539 0.000 0.000 0.000 0.000 0.049 0.072 0.004 0.005
constant a = 0.2815 fm−2 for all clusters. The model
wave function is generated as a direct product of the
two relative wave functions: (N23, 0) × (N1, 0). The
Pauli-allowed states are obtained by diagonalizing
the norm kernel. The resulting allowed states are
listed in the Table 1 and are classified by SU (3)
symmetry. The states with the total quanta N ≤ 23
are not allowed as a matter of course. We can see
the N = 24 space contains important (fp)8 shell-
model states (16, 4). The configurations with a larger
value of N have a capacity for presenting the 2α-
and also α-cluster states. As for the interactions
between clusters, we use the folding potentials with
the Hasegawa–Nagata–Yamamoto (HNY) effec-
tive two-nucleon interaction (see [1] and references
therein). The depth parameters of HNY, V0(3E) =
−480 MeV for the 40Ca–α potential and −522 MeV
for the α–α one, are chosen so as to reproduce
the energies of the low-lying states in 48Cr. The
calculated potentials are shown in Fig. 2 and are
similar to the ones used in 40Ca + α and α+ α
systems but are somewhat shallower.

3. ENERGY SPECTRA

The orthogonality condition model (OCM) equa-
tion is solved for the positive-parity states of Jπ =
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Fig. 1. Relative coordinates of the 40Ca + α + α system.
PH
0–16 by taking the total quanta N = 24–32 for the
relative motions. The calculated energy spectra are
compared with the experimental data in Fig. 3. The
energies are given with respect to the 40Ca + α+ α
threshold (Eth = 12.82 MeV). The yrast band is very
well reproduced. These states are mainly the (16, 4)
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Fig. 2. Folding potentials for the 40Ca + α and α + α

in 48Cr (solid curves). For comparison, the correspond-
ing potentials in 44Ti and 8Be are also shown (dashed
curves).
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Fig. 3. Calculated and experimental positive-parity states of 48Cr. The energy scale is measured from the 40Ca + α + α
threshold (Eth = 12.82 MeV).
K = 0 states. The second band built on the second 2+

state is also predicted and is interpreted as the (16, 4)
K = 2 band. As there is no experimental candidate
for the 2+ state at such low excitation, the calculated
energy may be somewhat overbound. There is con-
siderable mixing between these two bands at higher
angular momenta (Jπ ≥ 10+ ). The calculated wave
functions of the yrast band are given in Table 2. The
lowest N = 24 component of the ground 0+ state is
about 72%, which is larger than the lowest compo-
nent (50%) of the ground state of 44Ti. This means,
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Fig. 4. The angular momentum J plotted against ex-
perimental (squares) and calculated (triangles) rotational
energy Eγ(J) = E(J) − E(J − 2) for the yrast band of
48Cr.
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however, that the ground state of 48Cr still has 28%
cluster components. The proportion of the N = 24
components increases from 72% for 0+ to 87% for
16+; that is, a higher spin state is a more shell-model
state. It is also noteworthy that the (16, 4) K = 0
component decreases with spin, but, on the other
hand, the (16, 4) K = 2 and 4 components increase
with spin.

The γ-ray energiesEγ(J) = E(J)−E(J − 2) are
plotted against angular momentum J in Fig. 4. The
cluster model can describe the backbend at Jπ =
10+, but it unfortunately leads to a false backbend at
Jπ = 14+. This may be due to a shortcoming of the
model that the spin–orbit splittings of single-particle
orbits are not included.

In Fig. 5, we present the calculated and experi-
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Fig. 5. Calculated (circles correspond to cluster model,
crosses denote results for fp-shell model) and experi-
mental E2-transitions for the yrast band of 48Cr.
2



706 SAKUDA, OHKUBO
mental B(E2) values. Both the cluster model and the
full fp-shell model yield excellent agreement for the
E2 transitions. In this calculation, additional effective
charges δep = δen = 0.22e are used, which are con-
sistent with the values needed in the cluster model
calculations for 40Ca–44Ti [1]. These values, how-
ever, are far smaller than the values δep = δen = 0.5e
required by the shell-model calculations [4]. There
are important effects due to the α-clustering for en-
hancing the transitions. It is also noteworthy that
the B(E2) values decrease smoothly for higher spin
states. This is because of a combined effect of smaller
clustering and largerK mixing for higher spin states.

4. SUMMARY

We have applied the microscopic 40Ca + α + α
cluster model to 48Cr in order to attain a unified
understanding of its structure. Within this model, the
energy spectra and E2-transition probabilities are in
very good agreement with the experimental data. The
P

mechanism of backbending and smooth decrease of
B(E2) values of the yrast band is analyzed by the
change of α-clustering and mixing of the (16, 4)K =
0, 2, and 4 configurations. It is concluded that the
cluster model is very successful for the nucleus 48Cr.
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Abstract—A new method for incorporating the Pauli exclusion principle into the double-folding approach
to the heavy-ion potential is proposed. The description of the exchange terms at the level of the semiclassical
one-body density matrix is used. It is shown that, in order to take into account Pauli blocking properly, the
density matrices of free isolated nuclei must be redefined. A solution to the self-consistent incorporation
of Pauli blocking effects in the mean-field nucleus–nucleus potential is obtained in the Thomas–Fermi
approximation. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For a long time, microscopic calculations of the
nucleus–nucleus potential to describe scattering
phenomena have been a subject of interest in heavy-
ion physics. A large variety of theoretical models have
been proposed to this aim. Due to the extreme level of
difficulty involved in this problem, many assumptions
are needed to calculate the nucleus–nucleus potential
at the numerical level. However, these simplified
approaches must satisfy the fundamental quantum-
mechanical principles, and the Pauli exclusion prin-
ciple is one of the most important considered in the
problem of nucleus–nucleus scattering. To incorpo-
rate the Pauli exclusion principle into the standard
coupled-channel scattering theory, the resonating-
group method (RGM) [1] was proposed. However,
even for the simple elastic-scattering problem (one-
channel approximation), microscopic calculation of
the effective Hamiltonian that describes the relative
motion of the nuclei in the RGM is very complicated.

Therefore, the double-folding model (DFM) [2],
which is less fundamental than the RGM, but which
starts from realistic nuclear densities, has become
one of the most popular methods for calculating the
real part of the optical potential. On the basis of
the DFM, detailed fits to elastic-scattering data for
many systems were obtained [3–10]. An analysis
of nuclear-rainbow scattering provides arguments in
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favor of a deep DFM-like nucleus–nucleus poten-
tial. While, in early publications, one-particle ex-
change was described by a zero-range pseudopoten-
tial, more accurate methods were developed later to
this aim [5–13]. When one uses a finite-range effec-
tive nucleon–nucleon force in the DFM calculation,
the one-body density matrix (DM) for each isolated
nucleus is needed. It can be obtained numerically
from a solution to the Hartree–Fock (HF) equations.
However, this is not suitable for a DFM calculation.
Methods for expressing the DM by means of the local
density are used according to the original DFM idea.
One of the most popular approaches to the DM was
given by Campi and Bouyssy (CB) [14]. Recently,
another approach to the DM based on the extended
Thomas–Fermi theory (ETF) was proposed [15].

There are still open questions concerning the the-
oretical foundations of the DFM. First of all, the DFM
potential represents the interaction energy (energy
surface) of two nuclei, depending on the distance
between the centers of the mean fields rather than
depending on the dynamical relative variable. Sec-
ond, the Pauli exclusion principle should be treated
correctly. It is known that the DFM is valid at large
separation distances, where single-particle states of
different nuclei are almost orthogonal. However, this
is not true at intermediate distances. The nonorthog-
onality of single-particle states violates the Pauli ex-
clusion principle. In the present article, we discuss
the foundation of the DFM, starting from the gen-
eralized Born–Oppenheimer method [16] and using
Slater determinants as wave functions for describing
the interacting nuclei.

2. DOUBLE-FOLDING MODEL WITH PAULI
EXCLUSION

The formal foundation of the DFM can be found
in the generalized Born–Oppenheimer method [16],
2002 MAIK “Nauka/Interperiodica”
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where the potential between two nuclei (with N1 and
N2 nucleons, N = N1 +N2) is defined as (see [17])

V (D) = E0(D)− E0(D = ∞). (1)

In this equation, E0(D) is the energy of the two
nuclei separated by the distance D without their rel-
ative kinetic energy: E0(D) = E(D) − P 2(D)/2µm,
which is the expectation value of the energy operator
Ĥ − T̂R, where Ĥ and T̂R are, respectively, the total
microscopic Hamiltonian and the kinetic energy op-
erator for relative motion.

We start from the normalized many-particle wave
function (see also [16, 18])

Φ = n(D)Â
[
Φ1(D1)Φ2(D2)ei(K1·R1+K2·R2)/�

]
, (2)

where DI (I = 1, 2) are the centers with respect to
which the coordinates of the nucleons are defined
(we set N1D1/N +N2D2/N = 0); Â =

∑
P δPP is

the antisymmetrization operator; δP is the sign of
the permutation P ; ΦI(DI) are the wave functions
for the interacting nuclei; KI and RI(I = 1, 2) are,
respectively, the center-of-mass momentum and the
coordinate of the I nucleus; D = D1 − D2; and n(D)
is the normalization constant. Let us assume that the
center-of-mass momenta KI depend on D and tend
to their asymptotic values at an infinite separation
distance.

Choosing, for intrinsic states, single-particle shell-
model wave functions, one can write

ΦI =
1√
NI !
ÂI
∏
α∈I
φ′α(x

′
α) (3)

=
1√
NI !
ÂI
∏
α∈I
φα(xα),

where I = 1, 2; x contains the spatial r and the spin–
isospin variables s, t [x = (r, s, t)]; and φ′α(x′) stands
for the wave function of the shifted argument x′ =
(r − DI , s, t) [φ′α∈I(x

′) = φα(x)]. The index of each
state α contains orbital and spin–isospin quantum
numbers.

Let us introduce momentum-dependent single-
particle states in the following way:

φ̃α∈I(x) ≡ φα∈I(x) exp(ikI · r/�), (4)(
kI =

KI

NI

)
.

The wave function (2) now can be written as a Slater
determinant, that is,

Φ(D) =
1√
N !Γ

Â
∏
α∈1,2

φ̃α(xα) =
1√
N !Γ

det Λα,β,
(5)
P

where Λα,β = φ̃α(xβ), Gα,β = {〈φ̃α|φ̃β〉}, and Γ =
detG is the Gram determinant of the set {|φ̃α〉}.

The functions {φ̃α(x)} are square-integrable and
depend on the center positions DI=1,2 and the mo-
menta kI=1,2. These functions are orthonormalized if
they belong to the same nucleus [Gα,β ≡ 〈φ̃α|φ̃β〉 =
δα,β(α, β ∈ I)], but they are not if α and β are states
of different nuclei [Gα,β 
= δα,β ].

Since the functions {φα} are finite with respect
to r, the functions Gα,β(D,K) → 0 if D → ∞ and
(or) K → ∞. Thus, the matrix G is strictly diagonal
at infinite separation distance and infinite K. It can
also be approximately valid in the small-overlap re-
gion (where one-particle exchange dominates) or at
sufficiently high energies.

IfD 
= 0 orK 
= 0, the Gram determinant does not
vanish, Γ = det{〈φ̃α|φ̃β〉} 
= 0. The single-particle
states of both nuclei are linearly independent, and
the vectors {|φ̃α〉} form a basis in the N dimensional
subspace of the Hilbert space. This is due to their
separation in r space and in momentum space. In
the case of a complete overlap, Γ → 0 for D → 0
and K → 0, but Φ still remains well defined and
tends to the ground-state shell-model configuration
of the composite system [19]. However, we will not
consider this case in this study because the value
of the potential at zero separation is insignificant in
the elastic-scattering problem. With the aid of the
well-known technique from [19], one can calculate
the potential (1) using the nonorthogonal basis {φ̃α},
which coincides with the DFM potential at large
separation distances, where the nonorthogonality
vanishes.

We will use another option. If the set of states {φ̃α}
is linearly independent (Γ 
= 0), one can orthogonal-
ize it and consider the corresponding orthonormal
set {ψ̃α}. Thus, one can write the wave function of
Eq. (2) with the aid of this orthonormal basis. Us-
ing the expansion φ̃α =

∑
β Cα,βψ̃β , where detC 
= 0,

and the properties of the determinants, we obtain Φ =
exp[iσ] det{ψ̃α(xβ)} [where σ = arg(detC)]. The set
{ψ̃α} is ordered in the sense that one can find the
nucleus to which each state belongs by consider-
ing its asymptotic behavior: ψ̃α → φ̃α when D →
∞ (at finite k). The nucleus–nucleus potential (1)
can easily be calculated by using the momentum-
dependent orthonormal set {ψ̃α}. However, we define
new wave functions ψα ≡ ψ̃α exp[−ikI · r/�] (I =
1, 2, α ∈ I) to obtain an expression close to the stan-
dard DFM one. In contrast to φα, these wave func-
tions ψα depend on the relative momentum k. In-
troducing ψ′

α(x′) ≡ ψα(x), one finally finds another
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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definition of the DFM potential, which will be re-
ferred to as the Pauli-distorted double-folding model
(PDDFM). Assuming spin–isospin degeneracy (e.g.,
each orbital state is occupied by four nucleons [19])
and using the central nucleon–nucleon force, we can
represent the nucleus–nucleus potential as

V (D) = Xd

∫
dr1dr2ρ1(r1)ρ2(r2) (6)

× v(|r1 − r2 + D|) +Xe
∫
dr1dr2ρ1(r1, r2)

× ρ2(r2 −D, r1 − D)v(s)eik·s/� + ε(D),

where Xd = w + b/2− h/2 −m/4 and Xe = m+
h/2 − b/2− w/4 are the standard combinations of,
respectively, the direct and the exchange parameter
of the central nucleon–nucleon force; ρI(r1, r2) =∑

st ρI(x1, x2) (x1 = r1, s, t; x2 = r2, s, t) is the DM
obtained from the wave functions {ψα}, which is
related to the DM associated with {ψ̃α} by the
equation ρ̃(r1, r2) = ρ(r1, r2)eikI ·s/�; and ρI(r) =
ρI(r, r). The last term on the right-hand side of
Eq. (6) represents the excitation energy of the nuclei
during the interaction, ε(D) = ε1(D) + ε2(D); that
is,

εI(D) =
Xd
2

∫
dr1dr2 [ρI(r1)ρI(r2) (7)

− ρI0(r1)ρI0(r2)] v(|r1 − r2|)

+
Xe
2

∫
dRds

[
ρ2I(R, s)− ρ2I0(R, s)

]
v(s)

+
�

2

2m

∫
dr [τI(r)− τI0(r)] ,

where I = 1, 2 and τI0 and τI are the kinetic en-
ergy densities of the ground and excited states,
respectively. The potential V (D) given by Eq. (6)
differs from the DFM potential for two main reasons.
First of all, the Pauli-distorted DM ρI(x1, x2) =∑

α∈I ψ
∗
α(x2)ψα(x1) enters into (6) instead of the

ground-state DM for each isolated nucleus
[ρI0(x1, x2) =

∑
α∈I φ

∗
α(x2)φα(x1)], the latter being

used in the DFM. Second, the intrinsic-excitation-
energy term appears in the PDDFM.

To calculate the DM ρI , one must also know the
relative momentum k(D) explicitly. In the DFM, it is
assumed that k2(D) = 2mN(Ec.m.−V (D))/(N1N2).
Thus, the problem of determining the potential by
considering the proper values of k(D) must be solved
self-consistently. Using Eq. (2) as an ansatz, one can
calculate a model nucleus–nucleus potential by per-
forming an orthogonalization of single-particle states
at each separation D self-consistently.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
Nothing is implied concerning the choice of these
single-particle states. In fact, one can use the single-
particle states of the isolated nuclei. However, the
single-particle states of a given nucleus can change
in the presence of a second one, which complicates
the problem significantly. Another problem involved
in applying the above procedure consists in the use
of explicit single-particle states, while the main ad-
vantage of the DFM is that only local densities are
employed. It will be shown in the next section that all
these problems can be solved at a semiclassical level.

3. SEMICLASSICAL APPROXIMATION

It is possible to simplify the calculations of the
potential (6) by using semiclassical approaches based
on the Thomas–Fermi (TF) method and its exten-
sion. In fact, such approaches are applied in the ma-
jority of recent studies devoted to the DFM potential.
For example, the CB approximation to the DM is
used in many cases. In this approach, the DM is
taken in the Slater form with an effective momentum
that depends on the kinetic energy density τ and the
Fermi momentum pF. The CB DM corresponds to a
truncation of the full quantal DM. However, τ and
pF are unknown at the quantum level, so that use
is made of their semiclassical counterparts, which
can be written in terms of the local density. In this
case, the semiclassical CB DM corresponds to the
truncation of the semiclassical DM in the ETF ap-
proximation [15]. Thus, a semiclassical approach is
actually included in the DFM.

In coordinate space, the semiclassical density ma-
trix is given by the inverse Wigner transformation of
the distribution function f(R,p) (see, for example,
[20]); for a moving nucleus, we have

ρ̃I(r, r′,kI) =
g

(2π�)3
(8)

×
∫
dpfI(R,p)ei(p+kI )·s/�,

where R = 1/2(r + r′) and s = r− r′, while g is
the spin–isospin degeneracy factor. The ground-
state distribution function for each nucleus at the
Thomas–Fermi level (the �

0-order term in the Wig-
ner–Kirkwood expansion) is fI(R,p) = Θ[pFI (R)−
p]. One can define f̃I(R,p) = fI(R,p − kI) =
Θ[pFI (R)− |p− kI |], where Θ(x) is the unit step
function: Θ(x) = 1 at x ≥ 0 and Θ(x) = 0 other-
wise. Notice that this f̃I is precisely the distribution
function related to the DM ρ̃I obtained with the
orthogonal set ψ̃α (see above).

We suggest that, during the interaction, these
Fermi spheres can deform, so that, at each point in
coordinate space, one can define, for each nucleus, an
2
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Fig. 1. Fermi spheres corresponding to different points in
the coordinate space of interacting nuclei separated by the
local momentum k(D) in momentum space (D is the dis-
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effective Fermi volume ΩF,I and a distribution func-
tion fI(R,p) = Θ[pFI (ωp,R) − p]. The Fermi mo-
mentum pFI is related to the local density of the
nucleus I at this point of coordinate space and de-
pends on its orientation ωp in momentum space. At
the semiclassical level, it is not possible to introduce
single-particle states explicitly and the orthogonal-
ity condition should be formulated in terms of the
semiclassical DM. For this purpose, we assume that
the quantum orthogonality condition ˆ̃ρ1 ˆ̃ρ2 = 0 has
to be fulfilled at the semiclassical level as follows:
(ˆ̃ρ1 ˆ̃ρ2)W = 0, where the subindex W stands for the
Wigner transformation of the quantal operator. At the
TF level (considering only �

0 terms in the Wigner–
Kirkwood expansion), one will get

(ˆ̃ρ1 ˆ̃ρ2)W = (ˆ̃ρ1)W(ˆ̃ρ2)W (9)

= f1(R − D1,p − k1)f2(R − D2,p − k2) = 0.

By using the translational invariance in the center-of-
mass frame (K1 + K2 = 0), one obtains the relation

Θ [pF1(ωp,R − D1)− p] (10)

×Θ [pF2(ωp,R −D2)− |p + k|] = 0.

This means that the Fermi volume of two interacting
nuclei should not overlap in momentum space. Re-
turning to the standard DFM potential, one can see
PH
that, at the semiclassical level, the nonorthogonality
of the single-particle states of different nuclei at finite
values of D and K means that their Fermi spheres
overlap in momentum space as shown in Fig. 1 (upper
part). The overlap region is forbidden by the Pauli
exclusion principle. If K → ∞, these Fermi spheres
are separated and no overlap occurs. If D → ∞, the
Fermi momentum of one of the nuclei tends to zero
(pFI → 0) and the Fermi spheres are also separated.
At finite K and D, the overlap will appear, which
means that the DFM is not applicable and that the
orthogonalization procedure must be used.

There is a significant difference between the quan-
tal and the semiclassical orthogonality conditions. In
the first case, the orthogonalization procedure defines
a distorted density matrix of interacting nuclei (up to a
unitary transformation of the orthonormalized basis).
In the semiclassical approximation, single-particle
states are not defined; as a result, this orthogonal-
ization procedure is not applicable. In order to solve
this situation, we use the following geometric ansatz:
If there is no overlap of the initial Fermi spheres, we
have unperturbed states of the isolated nuclei and
the Pauli exclusion principle will not affect the DFM
potential. If there is an overlap, we assume that the
distribution functions for the interacting nuclei are
precisely the Fermi spheres truncated by the plane
going through the curve along the connection line of
the initial Fermi spheres. This ansatz is displayed in
Fig. 1 (bottom). This is not a unique solution, but it
is probably the simplest assumption used in [21] to
calculate the adiabatic nucleus–nucleus potential in
the nuclear-matter approach.

Actually, the Thomas–Fermi approximation cor-
responds to a local nuclear-matter approach. The
truncated spheres are determined by two parameters:
the radius pFI and the angle θ as defined in Fig. 1. The
angle θ depends on the relative momenta k and the
Fermi momenta pFI . Therefore, we have to calculate
new values of pFI . To this aim, one can note that
the local density is determined by the distribution
function as

ρI(R) =
g

(2π�)3

∫
dpfI(R,p) (11)

=
g

(2π�)3
VFI (pFI ,k),

where we assume a sharp-border distribution func-
tion fI and VFI is the volume in momentum space
occupied by nucleons of a given nucleus after the
distortion.

To determine the value of pFI , we must know
the volume VFI or the value of the local density ρI .
Following the frozen-density approximation used in
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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DFM, which means that the local densities of nu-
clei do not change during the interaction (ρI(r) =
ρI0(r)), one has to set VFI = VFI0 .

The DM of the ground state at the TF level is
given by a step function in momentum space. This
case corresponds to a full Fermi sphere in momentum
space. If there is overlap, we define truncated Fermi
spheres (see Fig. 1). The truncated Fermi sphere
corresponds to an excited state of the nucleus be-
cause we depopulate the states that correspond to the
forbidden overlap region and occupy new states with
a different Fermi momentum pFI (ω,R). In this case,
the distribution function is given by

fI(R,p) = Θ[pFI (ωp,R)− p], (12)

where the new Fermi momentum pFI depends on its
orientation in p space. The DMs for the truncated
Fermi spheres averaged over the direction s are ob-
tained as

ρI(R, s) =
gp3FI

12π2�3

[
ĵ1(pFIs/�)(1− x0) (13)

+
3�3

(pFIs)3
(x0 sin(pFIs/�)− sin(x0pFIs/�))

]
,

where ĵ1(x) = (3/x)j1(x) is normalized to unity at
x = 0, j1(x) is a first-order spherical Bessel function,
and x0 = cos(θ) is the cosine of the angle determined
by the point where the new Fermi spheres cross (see
Fig. 1). At s = 0, one obtains the local density corre-
sponding to the truncated Fermi sphere:

ρI(R) =
gp3FI

24π2�3
(2− 3x0 + x3

0). (14)

One can see that, if there is no overlap (x0 = −1),
then Eqs. (13) and (14) give the usual formulas for the
full Fermi spheres. For the ground state, the kinetic-
energy density at the TF level has the form

τI0(R) =
gp5FI

10π2�5
. (15)

To calculate the kinetic-energy density τI in an ex-
cited state, the integral of the TF distribution function
(12) is taken over the truncated Fermi sphere of radius
pFI . In this case, one obtains

τI(R) =
gp5FI

80π2�5
(4− 5x0 + x5

0). (16)

4. RESULTS AND SUMMARY

To estimate the importance of the Pauli distortion,
we compare the potentials corresponding to elastic
16O–16O scattering that were obtained within the
DFM and PDDFM approaches. Figure 2 displays
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the relative deviation of the PDDFM potential from
the DFM one at various energies. Apart from the
trivial result that the Pauli distortion decreases with
increasing incident energy, it can be seen that the
largest deviation of the two potentials appears at some
distance that shifts to smaller radial distances with
increasing energy. In order to understand this be-
havior, we look at the local definition of the relative
momenta k(D): if the potential is sufficiently deep, it
will increase the momenta k and we will have, at small
distances, a “repulsion” of the Fermi spheres, which
induces a reduction of the Pauli distortion. Still, it
is interesting to note that the maximum of the Pauli
distortion appears in the range of distances between
3 and 5 fm, where a deep potential determines the
occurrence of nuclear-rainbow scattering.

Thus, starting from the generalized Born–Oppen-
heimer approach, we have derived the PDDFM po-
tential with a correct treatment of the Pauli exclusion
principle at the semiclassical level. This PDDFM
potential coincides with the DFM one at infinite en-
ergy and (or) infinite separation. The most surprising
result is that, at finite energies, the Pauli exclusion
principle does not affect the DFM potential dramat-
ically in the interior. This is due to the fact that the
local definition of the relative momentum increases
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its value inside the potential. Thus, the PDDFM po-
tentials remain deep over a large energy range (6–
60 MeV/nucleon), which is important in explaining
the systematics of nuclear-rainbow scattering.

ACKNOWLEDGMENTS

This work was supported in part by the Ger-
man Ministry (BMFT) Verbundforschung under con-
tract no. 06OB472D/4. X. Viñas is grateful for grant
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Abstract—States in neutron-rich s–d shell nuclei were populated in the reaction of a 14C beam at
Elab = 22 MeV on a 14C target. Coincidences between γ rays and either other γ rays or light charged
particles were measured. γ rays in coincidence with protons established levels at 66.8, 1730, 1823, and
2219 keV in 27Na. The states are compared with calculations based on the s–d shell model and the
cranked Nilsson–Strutinsky model. A number of levels in 24Ne were observed in both α–γ and α–γ–γ
coincidences and are compared with shell-model calculations. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The positive-parity structure of nuclei near the
valley of stability in the s–d shell has generally been
reproduced rather well by shell-model calculations,
although the effective interactions have been deter-
mined by fitting much of the same structure [1]. The
exploration of nuclei farther from stability provides
an excellent test of the calculations. Considerable
interest has been focused on the properties of nuclei
farther from stability, and the increasing availability
of radioactive beams will allow further exploration
beyond the valley of stability. However, experimental
challenges provided by low-intensity, short-lived ra-
dioactive beams will limit what can be learned. It is
therefore valuable to stretch the more conventional
spectroscopic techniques as far as possible to form
a bridge of nuclear-structure information reaching
the nuclei that can only be studied with the future
generation of radioactive beams.

In the past two decades, a vast amount has been
learned about high-spin structures in heavier de-
formed nuclei, both experimentally and theoretically.
The s–d shell provides an ideal arena where more
collective calculations developed for heavier nuclei
can be compared with both experiment and the more
microscopic shell-model calculations, which become
increasingly difficult for heavier mid-shell nuclei. A
comparison of the descriptions of low-lying collec-
tive and noncollective states in 25Mg provided new
insights into both the microscopic and macroscopic
models [2].

∗This article was submitted by the authors in English.
1)Department of Mathematical Physics, Lund Institute of
Technology, Sweden.

**e-mail: tabor@nucott.physics.fsu.edu
1063-7788/02/6504-0713$22.00 c©
The long lifetime of 14C provides the opportunity
of exploring the structure of more neutron-rich nuclei
at a level of detail usually seen only near the valley
of stability by using it as both the target and the
beam. A major goal of this project was the T = 5/2
nucleus 27Na. Only a few levels had been seen pre-
viously with limited resolution by using the reaction
26Mg (18O,17F) [3]. Without spin assignments, it
was not possible to compare the results with model
calculations.

2. EXPERIMENTAL PROCEDURE

The 14C beam used was produced with a dedicated
Cs sputter ion source. It was accelerated to 22 MeV
by using the Florida State University FN tandem
Van de Graaf accelerator. A highly enriched self-
supporting 14C foil of 280 µg/cm2 was used as the
target. However, subsequent analysis of the data has
revealed that some 12C contamination had built up on
the target. Light charged particles from the reaction
were detected by using a Si detector telescope placed
at 0◦ relative to the beam. A stack of two 2000 µm Si
diodes was used as the E detector, and a 150 µm Si
diode served as the ∆E detector. A 33.8-mg/cm2 Au
foil was placed between the target and the telescope
to stop the beam.

Two four-crystal “clover” detectors and seven
Compton-suppressed HPGe detectors were used to
detect γ rays at angles of 35◦, 90◦, and 145◦ relative
to the beam. Both particle–γ and γ–γ coincidences
(along with some higher multiplicity events) were
written on a 8-mm tape for subsequent analysis.
Because Compton scattering between elements of
the clover detectors was common, the four crystals in
a clover detector were treated as one detector. Events
2002 MAIK “Nauka/Interperiodica”



714 TABOR et al.

 

800 1200 1600 2000

 

E

 

γ

 

, keV

10
03

 3

 

+

 

 

 

→

 

 2

 

+ 2

 

11
30

 2

 

+ 2

 

 

 

→

 

 2

 

+

 

14
12

 3

 

+ 2

 

 

 

→

 

 2

 

+ 2

 

17
79

 0

 

+ 2

 

 

 

→

 

 2

 

+

 

0

2

4

6

10
03

 3

 

+

 

 

 

→

 

 2

 

+ 2

 

11
30

 2

 

+ 2

 

 

 

→

 

 2

 

+

 

17
79

 0

 

+ 2

 

 

 

→

 

 2

 

+

 

18
09

 2

 

+

 

 

 

→

 

 0

 

+

 

14
12

 3

 

+ 2

 

 

 

→

 

 2

 

+ 2

 

13
69

 

 

24

 

M
g 

2

 

+

 

 

 

→

 

 0

 

+

26

 

Mg

0

50

100

150
Counts, 10

 
4

Fig. 1. Total projection of γ–γ coincidences (top) and γ spectrum in coincidence with the 1809-keV 2+ → 0+ transition in
26Mg (bottom).
in which only elements of one clover detector was
actuated were not recorded, and the energies detected
by each crystal were added (add-back mode) to give
a single γ energy.

After the experiment, the event data were stored
on a computer disk to facilitate sorting in a variety
of ways. Clear p, d, t, and α groups were seen in
the E–∆E matrix, although the d and t groups were
significantly weaker.
PH
3. γ–γ COINCIDENCES

All γ–γ coincidences were sorted into a 2D ma-
trix. This was found to be completely dominated by
transitions in 26Mg. The emission of two neutrons
was the major decay mode, by far, of the neutron-rich
compound nucleus 28Mg. This can be seen in Fig. 1.
The region of the total projection is shown in the top
panel, while a portion of the spectrum of γ rays in
coincidence with the 1809-keV 2+ → 0+ transition
is displayed in the bottom panel. The lower spectrum,
consisting entirely of 26Mg lines, is nearly identical
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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to the total projection, except for the missing 1809-

keV gating transition and a greatly reduced peak

around 1369 keV. The latter peak arises mainly from

the 2+ → 0+ transition in 24Mg produced from the

12C contamination in the target and multiple neutron

emission.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
4. 27Na

A portion of the γ spectrum in coincidence with
higher energy protons is shown in Fig. 2. The lines
identified as those that are due to 27Na are labeled
with their energies in keV. The strongest 26Mg line
appears weakly from random coincidences, and the
25Na line results from the small 12C contamination
in the target. The drastic reduction in the number of
2
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counts compared to Fig. 1 illustrates how weak the
proton-emission channel is in relation to the emission
of two neutrons.

The levels in 27Na that were established by these
p–γ coincidences are shown in the middle of Fig. 3.
The energies of the two excited states at 1730 and
2219 keV are well within the stated uncertainties of
PH
the peaks seen in the reaction 26Mg (18O,17F) [3], but
two other excited states, at 67 and 1823 keV, were not
seen in that reaction. The levels seen experimentally
in 27Na agree rather well in number and position with
those predicted by the s–d shell model. (The next
predicted shell-model state lies at 2671 keV.) The
spin assignments are based on the observed decay
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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patterns and correspondence with shell-model calcu-
lations. By way of example, we indicate that, although
the 7/2+ and 9/2+ levels lie close together in the shell
model and could be inverted, the experimental 1823-
keV state could not be the 9/2+ state because of its
decay to the 3/2+ state.

The levels seen experimentally in 27Na are com-
pared with the band structures predicted in both
the shell model (SM) and the cranked Nilsson–
Strutinsky model (CNSM) [4] in Fig. 4. The energies
of a rotating liquid drop with a constant moment of in-
ertia of �

2/(2Θ) = 0.133 MeV have been subtracted
from all energies on the ordinate. A rotational band
with exactly this moment of inertia would lie on a
horizontal line. The experimental results agree rather
well with both the SM and the CNSM calculations,
especially if we recall that the CNSM is optimized
for high-spin states and neglects pairing. A major
difference between the two models is the inclusion of
higher orbitals in the CNSM. This may account for
the reduced signature splitting in the CNSM at spins
around 11/2. Observation of the 11/2+ level would
help resolve this issue, and a further search for data is
planned.

The lowest negative-parity bands have a dominant
structure of ν[fp] in the CNSM. They are predicted
to show small signature splitting, to fall rapidly with
spin, and to become yrast at the spin value of 15/2.
The ν2[fp] structure is predicted to be superdeformed
and to become yrast among the positive-parity states
at the spin value of 17/2. The shape of this structure
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
is driven by the nearby Z = 10 and N = 16 superde-
formed gaps. The potential-energy surface for the
13/2+ states (Fig. 5) provides a comparison of the
weakly deformed (ε2 ≈ 0.1) pure s–d and the pro-
late superdeformed (ε2 > 0.5) ν2[fp] configurations.
Experimental observation of these structures remains
a challenge, but the firm establishment of the lower
level decay structure provides an important first step.

5. 24Ne

The production of states of increasing excitation
energy in 24Ne with decreasing α energy can be seen
in the α–γ coincidence spectra in Fig. 6. The top row
of the spectra just shows random coincidences be-
tween α particles leaving 24Ne in its ground state and
the dominant γ rays from 26Mg. The 1981-keV 2+ →
0+ transition in 24Ne shows up clearly in the next row
corresponding to somewhat lower α energies. More γ
transitions in 24Ne appear for lower α energies which
leave the nucleus with increasing higher excitation
energy. The 2082-keV 4+ → 2+ line in 22Ne results
from the 12C contamination in the target.

The upper panel in Fig. 7 shows a portion of the
γ spectrum in coincidence with α particles of all en-
ergies, while the lower panel shows α–γ–γ coinci-
dences, namely, the spectrum of γ rays in coincidence
withα particles and the 1981-keV γ line in 24Ne. This
clearly demonstrates that there are two γ rays near
1981 keV in coincidence with each other. They are the
2+ → 0+ and 4+ → 2+ transitions.
2
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Abstract—The properties of α-cluster-type nuclei with 4 ≤ A ≤ 80 are studied by employing the mi-
croscopic strictly restricted dynamics model (SRDM). The SRDM parameter set found via a fit to the
experimental and theoretical values of nuclear binding and excited-level energies, classified according to
the ground-state SU3 configurations, includes a nuclear-radius parameter r0 entering into the expression
R = r0A

1/3 [fm], as well as the parameters of the effective central NN-interaction potential. The use
of the microscopic SRDM allows one to obtain additional information about nuclei along the Z = N
line, including binding energies, radii, and spectra of low-lying levels. The calculated nuclear binding
energies and nuclear root-mean-square radii 〈r2〉1/2 are in reasonable agreement with their experimental
counterparts. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Themicroscopic nuclear model proposed byVana-
gas [1, 2] allows one to obtain a self-consistent
description of nuclear radii, binding energies, and
excited-level spectra via an approximate solution to
the microscopic nuclear Schrödinger equation for
a system of A nucleons. In the simplest case of
low-lying states of α-cluster-type nuclei, when only
central NN-interaction is taken into account, the
nuclear microscopic Hamiltonian has the form

Hmicr = Tmicr + V micr = − �
2

2m
1
A

(1)

×
A∑

i<j=2

(∇i − ∇j)
2 +

A∑
i<j=2

(
VW (rij) + P

(rij)
ij

×VM (rij) + P
(σij)
ij · VB (rij) + P

(τij)
ij · VH (rij)

)
.

Here, the subscripts W, M, B, and H refer to the
Wigner, Majorana, Bartlett, and Heisenberg interac-

tions, respectively; P (...)
ij are the projection operators

for the spatial, spin, and isospin states of nucleon
pairs; and rij =| ri − rj |.
If one introduces Jacobi vectors and rewrites

Eq. (1) in terms of Dzublik–Zickendraht variables,
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one can construct models either by restricting the
Hilbert space where Hmicr acts, by taking only some
irreducible components of Hmicr relative to some
group of symmetry, by doing both the former and the
latter. For the basis functions of Hmicr Hilbert space,
one can take those of the irreps of U3(A−1) labeled
according to the following unitary chain of subgroups:

U3(A−1) ⊃ (U3 ⊃ SO3) × (UA−1 ⊃ OA−1 ⊃ SA).
(2)

The strictly restricted dynamics model (SRDM)
[1, 3] considers, in Eq. (1), only two terms: the UA−1-
scalar part of the collective term and the anticollec-
tive one (U3-scalar); i.e., the general structure of the
SRDMHamiltonian is

HSRDM ≡ H0 = H0coll + H0a. (3)

The best area for the application of SRDM are nuclei
in the neighborhood of the Z = N line.

A detailed description of the SRDM and of its
application for α-cluster-type nuclei with A ≤ 40,
with an effective NN-interaction potential of the
multipole–Gaussian–exponent type, can be found in
[4]. In the present study, attention is given primarily
to α-cluster-type nuclei with A > 40, which require
further development of the SU3-invariant density-
matrix-evaluation technique [5], as well as a detailed
study of the classification of SU3 states [6].

The results presented here for α-cluster-type nu-
clei with 4 ≤ A ≤ 80 include binding energies and
2002 MAIK “Nauka/Interperiodica”
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root-mean-square radii 〈r2〉1/2. The values calcu-
lated within the SRDM are compared with their ex-
perimental counterparts and with the radii calculated
by using other model approaches.

2. THE SRDM FOR α-CLUSTER-TYPE
NUCLEI

TheSRDMHamiltonian forα-cluster-type nuclei
has the form (see, e.g., [4, 7])

HSRDM = Hkin + Hcoll
e + Hcoll

c + Ha
e + Ha

c , (4)

where separate terms denote the kinetic energy (kin)
and the collective (coll) and anticollective (a) terms
of the Coulomb (e) and central (c) NN interaction.
Combining all expressions for particular terms of the
SRDM Hamiltonian (4) (for details, see [4]), one can
obtain the following final expression for the SRDM
matrix elements in terms of Wigner supermultiplet
basis functions:

Ekin

2

(
B

(λµ)L
KK ′ + 1

)
+

e2

8
√
νAA(A− 2) (5)

×Ecoll
eW(KL,K ′L) + C1

[
3A(A + 4)

16

× Ecoll
cW (KL,K ′L) + E+a

c

]

+ C2

[
5A(A − 4)

16
Ecoll
cW (KL,K ′L) + E−a

c

]

+
e2

6

[
E+a
e +

9
5
E−a
e

]
− EB

(λµ)L
KK ′ = 0.

In Eq. (5),

Ekin = 20.7357νA (E0 + (3A − 1)/2)) [MeV] (6)

is the kinetic-energy term, in which νA is the oscilla-
tor frequency parameter

νA =
1
r2
ψ

=
5(E0 + 3(A − 1)/2)

3r2
0A

5/3
, (7)

where r0 is the nuclear-radius parameter appearing
in the well-known expressionR = r0A

1/3 for the nu-
clear radius.
The collective submatrix elements of the orbital

operators for the Wigner interaction are given by

Ecoll
c,eW(KL,K ′L) (8)

=
E1∑
ε=0

I
rψ
εε (V c

W, V e
W)Q[E1,E2,E3],coll

εε,W (KL,K ′L),

whereQ[E1,E2,E3]coll
εε,W (KL,K ′L) denotes the collective

(UA−1-invariant) density matrices in a compact form
and I

rψ
εε (V c

W, V e
W) are the Talmi integrals of the central
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(V c
W) or the Coulomb (V e

W) interaction. Some details
concerning the collective density matrices are given
in [4], and the technique for calculating them is de-
scribed, e.g., in [8].

In Eq. (5), E±a
c,e denotes the anticollective (SU3-

invariant) orbital matrix elements of the central (c)
and Coulomb (e) interactions:

E±a
c,e =

(
E [00]

W ± E [00]
M

)
/2. (9)

The anticollective Wigner and Majorana energy sub-

matrix elements E [00]
W,M are given by

E [00]
W =

∑
ε

Iε[00]Qε[00], (10)

E [00]
M =

∑
ε

(−1)εIε[00]Qε[00],

where Iε[00] are the SU3-averaged interaction inte-
grals

Iε[00] =
1
dε

∑
l

(2l + 1)Iεl, (11)

Iεl =

∞∫
0

r2drRεl(r)V (r)Rεl(r),

with dε = (ε + 1)(ε + 2)/2. The interaction integrals
Iεl in turn can be reduced to the Talmi integrals Iεε
(see, e.g., [3, 7]).

The quantities Qε[00] in Eq. (10) are the compo-
nents of the SU3-invariant density matrix. The ex-
act expressions for the SU3-invariant density matrix
are known as yet only for ε0 = 0, 1, 2 (see [9, 10]),
which allows one to perform SRDM calculations for
nuclei with A ≤ 40. In [11], approximate formulas
were proposed for use in nuclei with A > 40. We
reevaluated these approximate expressions in order
to correct some mistakes and used them for SRDM
calculations of some α-cluster-type nuclei with 44 ≤
A ≤ 60 in [7]. Later, we revisited this problem in [5]
and showed that new relationships between quanti-
ties forming Q

′
εs can be evaluated, which allows one

to obtain an improved approximation for the SU3-
invariant density matrices when ε0 > 2.

The Talmi integrals appearing in the collective and
anticollective energy terms are defined in terms of un-
knotted three-dimensional harmonic-oscillator radial
wave functions as

I
rψ
εε (VW,M,B,H) (12)

= I
rψ
εε,εε

(
VW,M,B,H

(
rψ
rp

√
2ρa

))
2
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Table 1. SRDM ground-state configurations for α-
cluster-type nuclei

Nuclei ε0 [f ] [E1, E2, E3] E0 (λµ) K

4He 0 [4] [0, 0, 0] 0 (0, 0) 0
8Be

1

[42] [4, 0, 0] 4 (4, 0) 0
12C [43] [4, 4, 0] 8 (0, 4) 0
16O [44] [4, 4, 4] 12 (0, 0) 0
20Ne

2

[45] [12, 4, 4] 20 (8, 0) 0
24Mg [46] [16, 8, 4] 28 (8, 4) 0, 2, 4
28Si [47] [16, 16, 4] 36 (0, 12) 0
32S [48] [20, 16, 8] 44 (4, 8) 0, 2, 4
36Ar [49] [20, 20, 12] 52 (0, 8) 0
40Ca [410] [20, 20, 20] 60 (0, 0) 0
44Ti

3

[411] [32, 20, 20] 72 (12, 0) 0
48Cr [412] [40, 24, 20] 84 (16, 4) 0, 2, 4
52Fe [413] [48, 24, 24] 96 (24, 0) 0
56Ni [414] [52, 32, 24] 108 (20, 8) 0, 2, 4, 6, 8
60Zn [415] [52, 44, 24] 120 (8, 20) 0, 2, 4, 6, 8
64Ge [416] [56, 48, 28] 132 (8, 20) 0, 2, 4, 6, 8
68Se [417] [56, 56, 32] 144 (0, 24) 0
72Kr [418] [60, 56, 40] 156 (4, 16) 0, 2, 4
76Sr [419] [60, 60, 48] 168 (0, 12) 0
80Zr [420] [60, 60, 60] 180 (0, 0) 0
84Mo

4

[421] [76, 60, 60] 196 (16, 0) 0
88Ru [422] [88, 64, 60] 212 (24, 4) 0, 2, 4
92Pd [423] [100, 64, 64] 228 (36, 0) 0
96Cd [424] [108, 72, 64] 244 (36, 8) 0, 2, 4, 6, 8
100Sn [425] [116, 76, 68] 260 (40, 8) 0, 2, 4, 6, 8

=

∞∫
0

ρ2
adρaR

rψ
εε (ρa)VW,M,B,H

(
rψ
rp

√
2ρa

)
R
rψ
ε′ε′(ρa),

where ρa = |ρa|.
The choice of the effective NN-interaction po-

tential is limited by the consideration that its ex-
pression should not be overly complicated, so that
one could evaluate Talmi integrals. However, it must
reproduce experimentally known features of NN in-
teraction (e.g., it must be able to describe a hard
core at small distances, and its tail must not extend
outside the size of the nucleus). For this purpose, we
will useNN potentials having a radial dependence of
the multipole–Gaussian–exponential type (see [12]);
P

that is,

V (ρa) = V0

(
rψ
rp

√
2ρa

)q
(13)

× exp

[
−z2

(
rψ
rp

√
2ρa

)2

− z1

(
rψ
rp

√
2ρa

)β]
,

where rp is the scale parameter of the potential and
V0 is the potential depth. Usually, β = 1; the potential
shape parameters z1 and z2 can assume values of 0,
±1; and q = −2, −1, 0, 1, 2, . . .. This choice of po-
tential shape allows one to model a vast class of NN
potentials, as well as the Coulomb interaction poten-
tial when V0 = 1, rp = 1, z2 = z1 = 0, and q = −1.
The evaluation of Talmi integrals for the effectiveNN
potential employed in our calculations is described,
e.g., in [4, 7].
The model parameters C1 and C2 are defined by

C1 = Vc0 (cW + cM) , (14)

C2 = Vc0

[
(cW − cM) +

4
5

(cB + cH)
]
.

These parameters are two independent combinations
of central NN-interaction exchange constants (sub-
jected to the normalization condition cW + cM + cB −
cH = −1) together with the commonNN-interaction
potential depth Vc0 under the assumption that the
effective central NN-interaction potential V c

NN has
the same shape for the Wigner, Majorana, Bartlett,
and Heisenberg forces.
The SRDMHamiltonian matrices are given in the

Elliott basis |(λµ)KL〉, and the quantitiesB(λµ)L
KK ′ ap-

pearing in Eq. (5) can be expressed [4] in terms of the
overlap integrals 〈(λµ)KL|(λµ)K ′L〉 of SU3-basis
functions. Applying the orthogonalization and diag-
onalization procedures to Eq. (5), we obtain eigen-
values (energies E) and mixing amplitudes of the
SRDMHamiltonian [Eq. (4)].

3. BINDING ENERGIES AND RADII OF
α-CLUSTER-TYPE NUCLEI WITH 4 ≤ A ≤ 80

WITHIN THE SRDM

α-Cluster-type nuclei with A = 4, 8, . . . are char-
acterized by the Young pattern [f ] = [4A/4, 0, 0, 0]
and the spin–isospin pair (S, T ) = (0, 0). The SRDM
quantum numbers for α-cluster-type nuclei withA =
4, 8, . . . , 100 (experimental data on Z = N nuclei are
available now up to 100

50Sn50) are presented in Ta-
ble 1, where the ground-state SU3 configurations
[E1, E2, E3] are given with E0 = E1 + E2 + E3. In
the same table, one can also find the Elliott quantum
numbers (λ, µ) = (E1 − E2, E2 − E3) and K, which
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Table 2. Binding energies and radius parameters of α-cluster-type nuclei with 4 ≤ A ≤ 80

Nuclei ESRDM
b , MeV Eexp

b , MeV 〈r2〉1/2
SRDM, fm 〈r2〉1/2, fmb) 〈r2〉1/2, fmc) 〈r2〉1/2, fme)

4Hea) –28.329 –28.296 1.641 1.603 1.674d)

8Be –56.987 –56.500 2.068 2.117
12Ca) –92.217 –92.162 2.397 2.414 2.468
16O –127.620 –127.619 2.638 2.642 2.693
20Ne –160.068 –160.645 3.005 2.833 3.006
24Mg –196.791 –198.257 3.760 3.000 3.057
28Si –236.201 –236.537 3.094 3.150 3.123
32S –269.982 –271.781 3.335 3.285 3.263
36Ara) –306.516 –306.716 3.267 3.411 3.390
40Ca –342.060 –342.052 3.384 3.527 3.478 3.415
44Ti –375.151 –375.475 3.643 3.493
48Cr –409.173 –411.462 3.755 3.620
52Fe –447.537 –447.697 3.831 3.705
56Ni –479.940 –483.988 3.978 3.778
60Zn –512.799 –514.992 4.039 3.860
64Ge –543.902 –545.954 4.139 3.950
68Sea) –577.520 –576.398 4.189 4.021
72Kr –605.794 –607.083 4.269 4.108
76Sr –637.171 –638.081 4.347 4.188
80Zr –670.843 –669.789 4.422 4.238

a) 4He and 8Be, 12C and 16O, and 36Ar and 40Ca were calculated together, because they have too few states in their respective ground-
state SU3 configurations; 68Se, 72Kr, 76Sr, and 80Zr were calculated together because experimental data available for these isotopes
are insufficient;
b) value deduced by using the approximation r2

0 = a + b/A + c/A2 with a = 1.717856 fm2, b = 2.459589 fm2, and c =

−10.119970 fm2;
c) experimental values taken from [17];
d) from [18];
e) values from the DMM calculations [19].
is the multiplicity index of the SO3 irrep (labeled with
L) in the chain U3 ⊃ SO3.

The SRDM parameters r0, rp, C1, and C2 were
found from a fit to the experimental and calculated
binding and excited-level energies separately for each
nucleus, except the pairs 4He and 8Be, 12C and 16O,
and 36Ar and 40Ca, which were calculated together
because they have too few states in their respective
ground-state SU3 configurations, and also the group
of the nuclei 68Se, 72Kr, 76Sr, 80Zr, which were cal-
culated together because experimental data available
for these isotopes are insufficient. The experimental
values of the binding energies were taken from [13],
while experimental information about the spectra of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
excitations were borrowed from the compilations in
[14, 16]. For the shape parameters of the effective
NN-interaction potential, we used the same values
as in our earlier calculations for α-cluster-type nuclei
with 4 ≤ A ≤ 40 [4], i.e., q = −1, z1 = 4, and z2 = 0.
Table 2 presents the results of our calculations for
the nuclear binding energies Eb and the root-mean-
square radii 〈r2〉1/2.
For α-cluster-type nuclei, the nuclear binding en-

ergy within the SRDM is calculated by the formula
Eb = Ekin + Ea

e + Ea
c ; (15)

i.e., it depends only on the kinetic and anticollective
terms of the Hamiltonian in (4). Therefore, it is essen-
tial to have a very good SU3-invariant density-matrix
2
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approximation in order to obtain good agreement for
the binding energies. Such approximate expressions
were obtained in [5].
Another factor that greatly affects the calculated

SRDM binding energies is the nuclear-radius pa-
rameter r0 appearing in Eq. (7). This means that r0

values obtained via a fit to the binding and excited-
level energies would provide valuable information
about the sizes of nuclei along the Z = N line. In
Table 2, one can find nuclear root-mean-square radii
〈r2〉1/2, which can be obtained from r0 by using the
expression [20, 21]

〈r2〉1/2 =

[〈 ∣∣∣∣∣ 1A
A∑
i=1

r2
i

∣∣∣∣∣
〉]1/2

=

√
3
5
r0A

1/3, (16)

where ri is the position vector of the ith nucleon with
respect to the nuclear center of mass. One can see
that the values obtained from our SRDM calculations
are in good agreement with known experimental val-
ues for A ≤ 40, except for 24Mg.
Unfortunately, we had no access to experimental

data on the radii for nuclei with A > 40, though, in
this region, one can compare our results with the re-
sults of the calculations that use, e.g., the dynamical
microscopic model (DMM) [19]. These calculations
were made with the deformed single-particle Nilsson
potential involving pairing forces; i.e., the DMM is
based on a completely different understanding of the
nuclear structure than the SRDM. Nevertheless, the
results of the SRDM and DMM calculations re-
veal the same trend for 〈r2〉1/2 values, although the
SRDM values are somewhat higher.
In our earlier calculations of α-cluster-type nuclei

[4], the nuclear-radius parameter r0 was not included
in the set of fitted parameters. We used the approxi-
mation

r2
0 = a + b/A + c/A2 (17)

with a = 1.717856 fm2, b = 2.459589 fm2, and c =
−10.119970 fm2, which were obtained for p- and sd-
shell nuclei in [20, 21] by using the experimental
radius values for 4He, 12C, 16O, and 40Ca from [22].
The 〈r2〉1/2 values calculated by using r0 values from
this approximation are also given in Table 2. One
can see that the 〈r2〉1/2SRDM values are close to those
calculated by using the approximation specified in
(17). However, the application of this r0 approxima-
tion in the SRDM calculations of the ε0 = 3 shell
PH
nuclei (44 ≤ A ≤ 80) leads to considerable deviations
from the experimental binding-energy values, since
the calculated SRDM energies are very sensitive to
slight changes in the r0 values. Thus, we conclude
that, in order to obtain an approximation analogous
to Eq. (17), one would need new experimental data on
the radii for nuclei of the 44 ≤ A ≤ 80 region.
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Abstract—A short overview of the ongoing nuclear-reaction program at the Department of Physics,
University of Jyväskylä, is presented. Special emphasis is put on cluster phenomena investigated with
the K = 130 heavy-ion cyclotron, such as measurements of alpha-resonance states, rainbow scattering,
and some special features in fusion–fission reactions. Relevant developments in detection techniques are
mentioned, and the outlook for the possible continuation of the nuclear-reaction program in Jyväskylä is
given. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The accelerator Laboratory of the Department of
Physics at the University of Jyväskylä (JYFL) is one
of the few low-energy nuclear laboratories that was
able to defy the stagnation all too evident, both in
Europe and in the USA, throughout the 1990s. At the
same time, when the funding to the other laboratories
was being drastically cut, Jyväskylä built a new labo-
ratory and a new heavy-ion cyclotron with a K value
of 1301). Undoubtedly, one of the key factors that have
since promoted steady growth of the laboratory is
the outstanding operation of the new accelerator. As
early as in 1994, the delivered beam time reached the
expected capacity of 4000 h annually. Ever since, this
value has been surpassed by a wide margin, reaching,
in 1999, the absolute record of nearly 7500 h, of
which only 275 h were spend for beam tuning and
development. It should perhaps be recalled that a
full calendar year has a total of about 8700 h. The
quality of the accelerated beams has helped to attract
new collaborators and start new research projects,
often connected with the installation at JYFL of new
experimental equipment generating further propos-
als. The position of Jyväskylä as one of the main
European centers for nuclear physics was recognized
back in 1995 by the award of the status of a Large
Scale Facility under the Training and Mobility of the
Researchers program of the European Commission.
Recently, JYFL received an extension of this status
(under a slightly different name) and was nominated

∗This article was submitted by the author in English.
**e-mail: trzaska@phys.jyu.fi
1)To estimate the maximum available beam energy (in MeV),
one should multiply the K value by the square of the charge
state of the injected ion and divide by its mass (in u). See also
[www.phys.jyu.fi] for further references.
1063-7788/02/6504-0725$22.00 c©
by the Academy of Finland as a Center of Excellence
in Nuclear and Material Physics.

About 15% of the beam time—that is, 1000 h
annually—is devoted to nuclear-reaction (NR) stud-
ies. The NR program currently involves about 50 sci-
entists from 14 institutes in eight countries. The two
main experimental setups are the High Efficiency
Neutron Detection System (HENDES) and a large
scattering chamber (LSC). HENDES makes it pos-
sible to perform coincident measurements (with fis-
sion fragments) of neutrons and light charged parti-
cles (LCP). Fission fragments (FF) are detected in
two (or more) arms of a position-sensitive time-of-
flight (TOF) spectrometer that can be equipped with
ancillary semiconductor detectors for measuring FF
energies and for detecting LCP.

2. RESONANCE SCATTERING IN INVERSE
KINEMATICS

Measurement of the resonance scattering of alpha
particles is a well-known method for investigating
alpha-cluster states. For many years, tandem ac-
celerators have been widely used for this purpose.
However, tandem beams have relatively low maxi-
mum energies because of a limited high voltage at the
terminal, making them useless for studies of high-
lying cluster states. Even at lower energies, many
energy points are needed to cover, step-by-step, the
full region of interest. Of course, high-energy alpha
particles can easily be obtained from a cyclotron.
However, the energy spread of a cyclotron beam is
very broad in relation to a typical resonance width.
Also, it is much more difficult and time-consuming
to change the beam energy on a cyclotron in relation
to a tandem. These two factors make cyclotrons a
poor choice for resonance-scattering measurements.
Fortunately, all these problems can be overcome by
2002 MAIK “Nauka/Interperiodica”



726 TRZASKA

 

4 5 6 7 8

200

400

600

0

mb/sr

MeV

Fig. 1. Preliminary results of an R-matrix analysis of
elastic scattering of 18O on 4He at 0◦ in the laboratory
frame (180◦ in the c.m. frame) for the excitation-energy
interval 13.5–17.7 MeV. The scale on the y axis indicates
cross sections (in mb/sr). The x-axis scale shows alpha
energy (in MeV) that differs from the excitation energy by
the Q value of 9.67 MeV.

the new method of elastic resonance scattering on a
thick target in inverse kinematics. This method [1, 2]
was developed by a Moscow–Turku–Jyväskylä col-
laboration and was further refined to allow separation
of elastic and inelastic scattering events by using the
TOF technique. Recent experiments include scatter-
ing of 94-MeV 12C, 135-MeV 16O, 110-MeV 18O,
150-MeV 20Ne, and 160-MeV 32,34S beams on 4He.
These beams entered the LSC, filled with a helium
gas, via a thin Havar window. During the passage
through the gas, heavy ions (HI), constantly loosing
energy (mostly through interaction with atomic elec-
trons), could, at any point of the trajectory, scatter
on He nuclei. These recoil alpha particles were de-
tected by silicon detectors placed inside the gas in
the forward direction. Naturally, 0◦ in the laboratory
frame corresponds to 180◦ in the c.m. frame. The gas
pressure of helium was adjusted so that HI beams
would stop completely before reaching the detectors.
The energy of scattered alpha particles was recorded
together with the arrival time measured with respect
to a radio frequency (RF) pulse from the cyclotron.
The energy of a recoil alpha particle at 0◦ (Eα) is
Eα = 4mαME0/(mα +M)2, where mα and M are
the masses of alpha particles and of the incident HI
and E0 is the energy of HI at the time of scattering.
P

Since the recoil velocity of the alpha particle is nearly
twice as great as that of HI, inelastic events produc-
ing alpha particles of certain energy will arrive earlier
than alpha particles having exactly the same energy
but originating from an elastic process that obviously
occurred somewhere closer to the detector. In the
measurements, we could reach a time resolution of
FWHM = 0.5 ns. This resolution was possible only
after special tuning of the cyclotron.

Measurements of resonance scattering do not
have to be restricted to 180◦ in the c.m. frame. On
the contrary, only with angular distributions can one
determine spin and parity values for alpha-cluster
states in the “target + alpha” nuclei. Lately, such
measurements were performed for the resonance
scattering of 18O ions on a thick helium target at
bombarding energies of 80 and 120 MeV. These
data are expected to yield new information about
the spins and parities of alpha-cluster states in 22Ne
in the excitation energy region 10–25 MeV. Figure
1 illustrates the preliminary results of an R-matrix
analysis of the elastic scattering of 18O on 4He at
0◦ in the laboratory frame (180◦ in the c.m. frame)
for the excitation energy interval 13.5–17.7 MeV.
The measurements were later repeated by using
methane instead of He as a thick gas target and by
recording scattered protons instead of alpha particles.
These measurements should bring new evidence for
the relationship between single-particle and cluster
degrees of nuclear motion and pave the way for
studying analogous states of very neutron-rich nuclei
at radioactive-beam facilities.

3. RAINBOW SCATTERING

Elastic scattering, despite its apparent simplicity
as the most fundamental nuclear reaction, continues
to surprise us with the complexity of nuclear inter-
actions it reveals. This is perhaps especially so in
the region where the cross section drops well below
the Rutherford value and where regular diffractive
patterns diminish sufficiently to allow the refractive
effects to show up. These refractive, or rainbow, phe-
nomena provide important information about the HI
interaction potential and deliver valuable data on the
character of the optical potential, advancing us to-
ward the goal of determining the equation of state of
cold nuclear matter.

Since rainbow effects become visible at relatively
large scattering angles, where cross sections are
already two or three orders of magnitude below
the Rutherford values, rainbow-scattering measure-
ments present a major experimental challenge. They
require not only the best possible equipment but
also sufficient beam intensities and long irradiation
times. The last point is perhaps the most restricting
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 2. Results of recent experimental work by the nuclear-rainbow collaboration. These curves and, especially, the large
primary Airy minimum around 65◦ in 200-MeV data are among the most pronounced rainbow-scattering effects that have
ever been observed.
requirement since, in Jyväskylä, this demand exceeds
the available beam time by a factor of greater than
2. Therefore, it should be mentioned that the only
way to collect impressive data, like those shown in
Fig. 2, was to scarify several Christmas, New Year,
and summer holidays.

Until recently, the most impressive manifesta-
tion of rainbow effects came from elastic scattering
of symmetric systems, 12C + 12C and especially
16O + 16O. Therefore, it was not at all obvious
that one might expect more pronounced effects
from the scattering of asymmetric systems such as
16O + 12C. Figure 2 shows part of the recently
published [3, 4] data from the Jyväskylä measure-
ments. These curves and, especially, the impressive
large primary Airy minimum around 65◦ in 200-MeV
data are perhaps the most pronounced manifestation
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
of rainbow-scattering effects that has ever been
observed.

Equally interesting are precise measurements
of elastic scattering on heavy targets, since they
mimic the exit channel for the cluster radioactivity of
superheavy nuclei. Unfortunately, the majority of the
discovered clusters—for instance, 14C—are radioac-
tive themselves. This creates obvious experimental
problems with the availability and maximum intensity
of such beams. An important exception is 22Ne.
Recently, the first run of measurements of elastic
22Ne + 208Pb scattering was performed at JYFL.
The preliminary angular distribution is shown in
Fig. 3. As is obvious, the measured cross sections are
three orders of magnitude smaller than the Rutherford
values. Further analysis is needed to find whether
(or not) this data would lead to determination of
2
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Fig. 3. Preliminary results from elastic 22Ne +208 Pb scattering at ENe = 125 MeV.
the shape and height of the barrier for 22Ne cluster
radioactivity.

4. FUSION–FISSION

Fusion-fission processes provide a good insight
into a variety of fundamental questions of nuclear
physics. They range from the fission dynamics of hot
rotating nuclear matter to applied questions associ-
ated with the development of radioactive-beam facil-
ities. Among the wide scope of problems studied at
JYFL by the HENDES collaboration,2) the formation
and decay of superheavy nuclear systems is perhaps
the closest to the conference topic.

 

0 50 100 200 250150

40

80

120

 

S

 

2 

 

= 5.36 

 

S

 

1

 
Counts

 

M

 

, u

 

S

 

2

 

S

 

1

 

5 u/ch

Fig. 4. Pronounced fine structure observed in the
fragment-mass spectrum in the reaction 238U +40 Ar at
EAr = 243 MeV.

2)A full list of the main publications by the HENDES collabo-
ration is presented in [1].
PH
Coulomb repulsion is the main obstacle in the
formation of cold compound nuclei by means of fu-
sion. To overcome the electrostatic barrier, one has
to increase the bombarding energy. Unfortunately,
this also leads to higher excitation energies, sharply
reducing the survivability of the compound system.
Finding the optimum between these opposite effects
is the main challenge of superheavy research. There
is, however, another approach that has been success-
fully applied in recent experiments at JYFL, yielding
some very interesting results on shell effects in su-
perheavy nuclei.

Fission is the main decay channel for a hot, heavy
compound nucleus. Usually, fission is preceded by
particle emission, mostly neutron emission, with a
multiplicity dependent on the excitation energy. The
relation works in the opposite direction as well: the
greater the number of emitted prescission particles,
the cooler the compound system. As the excitation
energy decreases, shell effects come into play, affect-
ing the decay probabilities and the FF mass distri-
butions. Therefore, an experimental setup making it
possible to detect prescission neutrons in coincidence
with FFs should be a good tool for studying such
effects. Figure 4 shows an interesting result obtained
in this way in a recent HENDES experiment. The
displayed FF mass spectrum for the 238U + 40Ar
reaction at EAr = 243 MeV shows a pronounced fine
structure (FS) instead of the smooth Gaussian-like
shape expected from this reaction. The spectrum was
constructed by requiring coincidence with neutrons
emitted at backward angles. Such neutrons origi-
nate almost exclusively from prescission processes
since the detection geometry strongly favors forward
emission of postscission particles. The central dashed
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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line indicates one-half of the mass of the compound
system (238U+40 Ar). The positions of the FS peaks,
each with a statistical significance of about 5σ, agree
closely with the expected masses of spherical and
deformed magic nuclei (clusters) of Ni, Ge, Zr, Sn,
and Sr. The peaks have corresponding partners in
the other half of the mass spectrum, even though the
spectrum has not been forcefully symmetrized, as is
the standard practice in the analysis. A highly sup-
pressed reminiscence of beamlike particles at masses
around 40 can still be visible.

The next run of experiments is scheduled for De-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
cember 2000. They should finally determine whether
the observed FS is indeed a manifestation of strong
shell effects in a cooled compound nucleus. The
present setup should allow an order of magnitude
improvement in statistics in a one-week-long, ded-
icated experiment. Such a large margin should be
well above any possible instrumental or statistical
errors. A positive answer would open the doors for
systematic studies at HENDES of these new fas-
cinating phenomena, including supposed tripartition
into a large, nearly stationary residue and two heavy,
magic clusters.
2
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5. DETECTOR RESEARCH

It is impossible to overstate the importance of
proper experimental tools in basic research. One can
even risk a general statement, well backed up by
actual progress in modern nuclear physics, that it is
new detection techniques and instrument develop-
ment that push the cutting edge of science. Beingwell
aware of that fact, the NR group devotes considerable
effort to the refinement and development of its experi-
mental arsenal: detectors, custom-designed electron-
ics, data acquisition, etc. One of the most successful
examples, which is, at the same time, relevant to a
broader physics community, is our breakthrough in
pulse-shape-based particle identification with a sili-
con detector [5].

The principle of using rise-time-based analysis in
a single-detector particle identification is not new, but
it has always been hampered by serious limitations,
mostly by the degradation of timing properties and
of the energy resolution to achieve a useful particle
separation. We have managed to overcome these two
major stumbling blocks of the method. The key el-
ements of our success have been the following: (i)
extracting rise-time information as early as at the
preamplifier level; (ii) optimization of fast electronics;
(iii) use of highly homogeneous detectors, polished on
both sides, with thin front- and back-dead layers; and
(iv) maintaining a high bias at the detectors.

As a result, our detectors did not exhibit any major
resolution loss despite irradiation from the reverse
side. The full dynamical range of a rise-time separa-
tion was below 35 ns. We have reached a discrimina-
tion threshold at a level equivalent to the 20-µm range
in silicon. Neighboring elements (∆Z = 1) could be
fully resolved down to energies corresponding to at
least 30 µmof range in silicon, and individual isotopes
(∆A = 1) could be fully resolved down to the effective
range of about 100 µm (see Fig. 5). For any given
isotope and energy value, the time resolution of the
total drift time was very good. For instance, it was
only 214 ps (FWHM) for 14N at 120 MeV.

Further work is in progress, but, even now, our
method is being successfully applied to ternary-
fission studies at ILL Grenoble and in rainbow-
scattering measurements at JYFL. Keen interest in
our method has also been shown by the EURISOL
community and by many individual researchers.
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Abstract—Somebasic concepts of the statistical description of the nuclear Fermi liquid drop are discussed.
The key quantity, the Wigner distribution function corresponding to the one-body density matrix in
phase space, is analyzed. Its asymptotic expansion in powers of �, which leads to the Thomas–Fermi
approach, is revisited. A survey of nuclear properties whose average value can be derived in Thomas–Fermi
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1. INTRODUCTION

One of the basic problems of a finite quantum
system composed of a set of interacting fermions
(nuclei, atoms, helium, metallic clusters, etc.) is the
determination of the ground-state energy and density.
This is in general a complicated many-body problem.
In the case of nuclei, an additional difficulty comes
from the fact that the basic ingredient, the nuclear
force, is still under debate. Even in the simplest mean
field approximation, the calculation of the binding en-
ergy of finite nuclei can present serious technical dif-
ficulties. Therefore, very early statistical or semiclas-
sical approaches have been worked out to describe
the ground-state energy of the atomic nucleus. The
simplest example of these approaches is the semiem-
pirical mass formula [1], which contains a smooth
part represented by the Bethe–Weizsäcker liquid drop
formula and a shell correction (quantal effects) that is
small (∼1%) as compared to the smooth part.

The perturbative treatment of the shell correction
energy in a Fermi system is justified, from the theore-
tical point of view, by the Strutinsky energy theorem
[2], which states that the total quantal energy can be
split in two parts. The largest part varies smoothly
with the number of particles in the same way as the
mass formula energy. The other part corresponds to
the shell correction: it is small as compared to the
smooth contribution and has a quantal origin and
a nonsmooth behavior. In practice, computing the

∗This article was submitted by the authors in English.
1)Institut des Sciences Nucléaires, Université Joseph Fourier,
Grenoble, France.
2)’Ecole Navale, Brest Naval, France.
**E-mail:xavier@ecm.ub.es
1063-7788/02/6504-0731$22.00 c©
smooth part of the energy with the Strutinsky pro-
cedure can be as complicated as the full quantal cal-
culation. To avoid this difficulty, semiclassical meth-
ods like the Thomas–Fermi (TF) approach, which is
well known from its successful applications in atomic
physics, have been developed. Like the droplet model
or the Strutinsky calculations, these methods smooth
out the quantal effects and estimate the average part
of the Hartree–Fock energy. In this contribution, we
want to outline some basic features of the statistical
approach to the atomic nucleus.

2. BASIC THEORY

TheWigner transform of an operator [3] defines its
representation in phase space, which is more suitable
for semiclassical approximations. One key quantity in
the TF theory is the Wigner transform of the one-
body density matrix ρ̂ = Θ(µ− Ĥ), where Ĥ is the
single-particle Hamiltonian (Ĥϕα = εαϕα) and µ is
the chemical potential. It is defined by

f(r,p) =
∫

dse−ip · s/�〈r + s/2|ρ̂|r− s/2〉, (1)

where r = (r1 + r2)/2 and s = r1 − r2 are the center-
of-mass and relative coordinates, respectively, and p
is the momentum. The inverse operation to (1) is

ρ(r1, r2) =
1

(2π�)3

∫
dpe−ip · s/�f(r,p). (2)

The previous definitions can be generalized to any
arbitrary single-particle hermitian operator Ô. The
expectation value of Ô is given by the trace

〈Ô〉 = tr[ρ̂Ô] (3)
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Wigner function for a system of A = 224 nu-
cleons bounded by a spherical harmonic oscillator well.
Solid curve: the exact f(r, p), Eq. (5); dashed curve: the
Strutinsky averaged result; dotted line: the lowest-order
Thomas–Fermi approximation.

=
1

(2π�)3

∫∫
drdpOW(r,p)f(r,p),

where OW(r,p) is the Wigner transform of Ô follow-
ing Eq. (1). In particular, the number of particles A
which fixes the chemical potential µ reads

A = tr[ρ̂] =
4

(2π�)3

∫∫
drdpf(r,p), (4)

where a spin–isospin degeneracy of 4 has been as-
sumed.
Let us now discuss some of the most salient fea-

tures of theWigner function f(r,p) for the simple but
illustrative case of a spherical harmonic oscillator.

3. PROPERTIES OF THE WIGNER
DISTRIBUTION FUNCTION

For closed-shell nuclei, the Wigner function cor-
responding to nucleons in a spherical harmonic oscil-
lator potential is given by [4, 5]

f(r,p) = 8
N∑

n = 0

(−1)nL2
n(4HW/�ω)e−2HW/�ω. (5)

The index n runs over the N occupied shells, the
Lαn(x) are associated Laguerre polynomials, and

HW =
p2

2m
+

1
2
mω2r2 (6)

is the classical Hamiltonian. For this special case,
the dependence of f(r,p) on the six phase-space
P

variables is lumped into one single variable, which is
the classical energy. In the general case, f(r,p) will
also depend on the direction of r and p.

The Wigner function of the harmonic oscillator
potential is represented in Fig. 1 as a function of the
variable ε = 2HW/�ω for A = 224 nucleons, which
means that six harmonic oscillator shells are filled.
The solid curve represents Eq. (5): it displays six
maxima andminima corresponding to the filled shells.

The dashed curve corresponds to the Strutinsky
averaged Wigner function f̃(r,p). The Strutinsky
averaging method [2] is a well-defined mathematical
procedure to average out the shell effects, so that the
dashed curve of the figure can be considered as the
liquid drop part [1] of the phase-space distribution
function. The figure shows that f̃(r,p) stays approx-
imately constant and equal to 4 (due to the degener-
acy) forHW ≤ εF, with εF being the Fermi energy. In
the vicinity of εF, the averaged distribution function
drops to zero within a characteristic domain of width
δ. For nuclei at equilibrium, this width δ turns out
to be much smaller than εF, in which case η = δ/εF

constitutes a small expansion parameter. Notice that
due to (5), η depends on �.

From Fig. 1 (and other examples with different
potentials), one can see that the general shape of
the distribution function is similar to that of Fermi
function on top of which oscillations are built in the
interior. This suggests derivation of the asymptotic �

expansion of the Wigner function in analogy to what
is done for the well-known low-temperature expan-
sion in powers of T of the Fermi–Dirac function

FT (µ− ε) =
1

1 + exp [(ε− µ)/T ]
(7)

(the Boltzmann constant has been put equal to 1).
Under the condition T/εF � 1, one derives the
asymptotic formula [6]

FT (µ− ε) = Θ(µ− ε) +
π2

6
T 2δ′(µ− ε) (8)

+
7π4

360
T 4δ′′′(µ− ε) + . . . ,

known as Sommerfeld’s low-temperature expansion.

The asymptotic expansion of f(r,p) in powers
of � is derived from the so-called Wigner–Kirkwood
expansion of the density matrix [3]. It can be obtained
by formally expanding f(r,p) = [Θ(µ− Ĥ)]W into a
Taylor series about the classical Hamiltonian HW =
p2/2m+ V = [Ĥ]W, which reads

f(r,p) = Θ(µ−HW)− �
2

8m
∆V δ′(µ−HW) (9)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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+
�

2

24m

[
(∇V )2+

1
m
(p · ∇)2V

]
δ′′(µ−HW)+O(�4).

The lowest order or Thomas–Fermi approximation,
i.e., the step function Θ(µ−HW), has been drawn
in Fig. 1 for the harmonic oscillator. Usually, it is
sufficient to stop the expansion at order �

2, though
extension to order �4 is possible. An important prop-
erty of (9) is that it fulfils, order by order in �, the
idempotency property of the one-particle density ma-
trix ρ̂2 = ρ̂ [7].
The analogy of the semiclassical expansion (9)

with the low-temperature expansion (8) is manifest,
even though the details are different. The Fermi–
Dirac function (7) and the Wigner function [see ex-
ample (5) for the latter] are nonanalytic in T and
�, respectively, thus, (8) and (9) are asymptotic ex-
pansions in powers of T and �, respectively. In both
cases, the derivatives of the step function Θ simulate
the finite surface width. These derivatives of the step
function in the expansion (9) of the Wigner function
contain much information about the true quantal dis-
tribution.
To illustrate this point, we consider again the ex-

ample of the harmonic oscillator. In this case, the
semiclassical expansion (9) of the distribution func-
tion, as well as the exact distribution (5), depends on
the classicalHW alone:

f(HW) = Θ(µ−HW)− 3
8
(�ω)2δ′(µ−HW) (10)

+
1
12

(�ω)2HWδ′′(µ−HW) +O(�4).

For this problem, HW = p2/2m+mω2r2/2 = P 2 +
Q2 can be seen as the square of a radial component√

P 2 +Q2 in polar coordinates with polar angle θ =
arctan (P/Q):

P =
p√
2m

=
√

HW sin θ, (11)

Q =

√
mω2

2
r =

√
HW cos θ.

This allows switching from the variables (r,p) to the
new ones (HW, θ) in the integrals over phase space.
The number of particles then reads

A =
2

(�ω)3

∞∫
0

dHWH2
Wf(HW), (12)

which suggests considering g(HW) = H2
Wf(HW) as

a kind of energy distribution function. Its width is

δ =
〈H2

W〉
A

− 〈HW〉2
A2

, (13)
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Table 1. First moments and width of the energy distribu-
tion function

Method 〈HW〉/�ω 〈H2
W〉/(�ω)2 δ/(�ω)2

WK–�
2 1180.09 6779.19 2.509

Strutinsky 1180.12 6766.28 2.500

Quantal 1176.00 6720.00 2.438

where

〈Hn
W〉 = 2

(�ω)3

∞∫
0

dHWHn
Wg(HW). (14)

For the harmonic oscillator potential, the mo-
ments 〈Hn

W〉 can be calculated analytically, both
semiclassically and quantally. Results for a nucleus
with A = 224 particles and �ω = 41A−1/3 are pre-
sented in Table 1. The Wigner–Kirkwood calculation
of order �2 is compared with the result obtained with
the Strutinsky averaged distribution function and
with the quantal value. From the table, one can see
that the Wigner–Kirkwood expansion reproduces
very precisely the results provided by the averaged
distribution function. The semiclassical expectation
values correspond to the smoothly varying part of the
quantal values. The difference between the semiclas-
sical and quantal mean values is due to shell effects,
and, as can be seen, they are small.

4. WIGNER FUNCTION ON THE ENERGY
SHELL

Let us consider the density matrix of a bunch of
states belonging to the same energy, as happens for a
harmonic oscillator shell:

ρ̂E =
1

g(E)

∑
i

|i〉〈i|δ(E − εi), (15)

with g(E) = tr[δ(E − Ĥ)]W being the level density.
The interest of (15) lies in the fact that its Wigner–
Kirkwood expansion is again very useful in computing
matrix elements of one-body and two-body operators.
The TF approximation of (15) is given by

fTF
E (r,p) =

1
gTF(E)

δ(E −HW). (16)

Integrating over momentum yields the local density
on the energy shell:

ρTF
E (r) =

4
(2π�)3

∫
dpfTF

E (r,p) (17)

=
1

gTF(E)
2mkE(r)
π2�2
2
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for a degeneracy of 4 and with kE(r) = {2m[E −
V (r)]/�

2}1/2 being the local momentum at energyE.
In Fig. 2, we display the quantal and TF densities of
A = 224 particles in a harmonic oscillator potential
for the N = 5 shell. The TF result passes quite well
through the average.

From Fig. 2, it can be noted that quantally there
exists a marked bump/hole structure at the origin
for even/odd parity shells. One may suspect that this
is due to the presence/absence of s waves. We can
try to recover this feature from the TF approximation
projecting it on good parity. To do this, we transform
(16) into (r, r′) space,

ρTF
E (r, r′) =

1
gTF(E)

4
(2π�)3

(18)

×
∫

dpeip·s/�δ(E −HW)

=
1

gTF(E)
2mkE(R)

π2�2

sin [skE(R)]
skE(R)

= ρTF
E (R)j0[skE(R)],

in terms of the center-of-mass R = (r + r′)/2 and
relative s = r− r′ coordinates and the spherical
Bessel function j0. Now, the even/odd parity density
on the energy shell is obtained as

ρ
even/odd
E (r) =

1
2
{
ρTF
E (r, r′)± ρTF

E (r,−r′)
}
r′=r

(19)
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=
1
2
{
ρTF
E (r)± ρTF

E (0)j0[2rkE(0)]
}
.

We have drawn this expression in Fig. 2. The
bump/hole structure exhibited by the quantal density
is well reproduced in the interior. The agreement
only deteriorates near the classical turning point. It
should be noted that the semiclassical expressions of
Wigner–Kirkwood type for local densities should be
regarded as distributions, in the sense that they are
efficient when used in integrals to compute expecta-
tion values.
In Fig. 3, dashed curve represents the rms radius

Table 2. TF and QM calculations of the matrix elements
v(E,E′) defined in Eq. (20) are compared for a harmonic
oscillator

Method N/N ′ 0 1 2 3 4 5

QM 0 0.99 1.48 1.85 2.16 2.43 2.68

TF 0.82 1.41 1.81 2.13 2.41 2.66

QM 1 3.71 5.00 6.02 6.89 7.66

TF 3.45 4.87 5.93 6.82 7.61

QM 2 8.66 11.0 12.9 14.5

TF 8.33 10.8 12.8 14.4

QM 3 16.3 19.9 22.8

TF 15.9 19.6 22.6

QM 4 26.9 31.9

TF 26.4 31.6

QM 5 40.8

TF 40.3
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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obtained using the TF on-shell density (17) as a func-
tion of the energy for a Woods–Saxon potential with
V0 = −44 MeV, a = 0.67 fm, and R = 1.27A1/3 for
A = 224 nucleons. The quantal values corresponding
to the different energy levels are indicated by dots. The
TF curve nicely averages the quantal results.
One can also consider two-body matrix elements

of a force of δ type:

v(E,E′) = v0

∫
drρE(r)ρE′(r), (20)

where ρE(r) is the on-shell density. As an example,
we show in Table 2 the value of the matrix elements
(20) calculated for a harmonic oscillator potential
[E = (N + 3/2)�ω] in the quantal and TF cases with
v0 = 1 in 100/�ω units.

5. VARIATIONAL CONTENT
OF THE WIGNER–KIRKWOOD EXPANSION

The chemical potential µ in the expansion (9) for
f(r,p) is to be determined from the particle number
condition (4). Therefore, µ depends implicitly on �,
µ = µ0 + �

2µ2 + . . ., and (9) does not yet constitute
the proper sorting out of the � expansion. For a self-
consistent mean field case, the potential V also de-
pends implicitly on � and one thus has to write V =
V0 + �

2V2. Therefore, the first term of (9) becomes

Θ(µ−HW) = Θ
(
µ0 −

p2

2m
− V0

)
(21)

+ �
2δ

(
µ0 −

p2

2m
− V0

)
(µ2 − V2).

Inserting this expression into (9) and replacing µ and
V by µ0 and V0 in the �

2 part, one gets the proper �

expansion of f = f0 + �
2f2 +O(�4). It can be used,

for example, to compute the ground-state energyE in
the mean field approximation by means of Eq. (3).
Functional minimization of E with respect to

V2 and V0 yields variational equations for V0 and
V2, the first one being the TF equation. The par-
ticle number condition determines µ0 from A =∫
drdpf0/(2π�)3, whereas µ2 is obtained from the
condition

∫
drdpf2/(2π�)3 = 0. This method has

been called the variationalWigner–Kirkwood (VWK)
approach [8]. In the VWK, the higher order correc-
tions µ2, V2, etc., are all obtained in terms of the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
lowest order TF solution. In this sense, the VWK
bears some similarity to the Schrödinger perturbation
theory. The VWK approach differs from the usual
extended Thomas–Fermi (ETF) formalism in the
sense that the VWK properly sorts out the powers
in � whereas ETF partially sums � to all orders [8].

6. SUMMARY

We have shown, with the help of the harmonic
oscillator potential, that the Wigner–Kirkwood � ex-
pansion of the density matrix is very useful for the
calculation of average nuclear properties. This is still
valid for more realistic potentials. Many quantities
can be calculated within the semiclassical method.
We may mention optical potentials, nuclear pairing
properties, giant resonance widths, etc. We think that
the understanding of the average behavior of such
quantities enlightens us and teaches us most of the
salient features of nuclear physics.
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Abstract—Elastic proton scattering is investigated as a means for probing density the distribution of
exotic neutron-rich nuclei. In this context, the calculations for elastic p + 8He scattering within the JLM
and eikonal-approximation models are performed by using the cluster-orbital-shell-model-approximation
parameters for the density distribution. The results of the calculations are compared with existing experi-
mental data. It is found that, at large scattering angles, both models are sensitive to the extension of valence
neutrons. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Elastic proton scattering is a well-known tool for
studying ground-state densities, since the interaction
potential can be related to the ground-state nuclear
densities. In recent years, radioactive beams became
available, enabling one to use this inverse elastic pro-
ton scattering to probe features of the halo structure
in exotic neutron-rich nuclei. There is a commonly
shared conviction that one could extract, from proton
scattering, at least the rms radius of nuclear mat-
ter [1, 2]. However, the ability of such studies to
disclose the density distribution in more detail and,
in particular, to discriminate halo (skin) nuclei from
nonhalo (nonskin) states has not yet been clarified
conclusively [1–3]. We investigate here the potential
of elastic p + 8He scattering at intermediate ener-
gies for differentiating between density distributions
of the 8He core and its four valence neutrons. The
density distributions were simulated by the formu-
las of the cluster-orbital-shell-model approximation
(COSMA) [4]. Each distribution was characterized
by two parameters, being, this time, the rms core
and valence-neutron radii. In this context, the terms
“halo (skin)” or “nonhalo (nonskin)” used in this
article mean a large or no difference between these
radii. The low-density long tail of 8He matter distri-
bution and its manifestation at very forward angles in
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2)Department of Physics, The University of Ioannina, Greece;
e-mail: apakou@cc.uoi.gr

3)CEA/DSM/DAPNIA/SED, Saclay, France; e-mail:
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1063-7788/02/6504-0736$22.00 c©
high-energy elastic scattering are beyond the scope
of the present article. Two entirely different mod-
els, the microscopic JLM model [5] and the eikonal-
approximation model [6], were used to calculate elas-
tic scattering for a given density distribution. The
calculations were performed for three energy values
of 26, 45, and 72 MeV/nucleon accessible at the
laboratories used. The results of the calculations for
26 and 72 MeV/nucleon were contrasted against two
sets of experimental data, a preliminary one, obtained
in a wide angular range at 26 MeV/nucleon in Dubna
[7] and a set at 72 MeV/nucleon at RIKEN [8].

2. THE MODELS

Calculation on the basis of the JLM model.
The elastic-scattering calculations were performed
within the microscopic DWBA approach, where the
optical potential (OP) for the entrance and exit chan-
nels, as well as transition form factors, are calcu-
lated consistently by using an energy- and density-
dependent interaction. The starting point for comput-
ing the JLM potentials is the Brueckner–Hartree–
Fock approximation and the Reid hard core nucleon–
nucleon interaction, which provide, for energies up to
160 MeV, the energy and density dependence of the
isoscalar, isovector, and Coulomb components of the
complex OP in infinite matter. The OP for a finite
nucleus is obtainable by replacing the nuclear matter
density by the density distribution of the nucleus. The
JLM central potential was extensively studied in [9,
10]. It has been particularly successful in describing
elastic proton and neutron scattering by stable nuclei,
provided that the imaginary part of the OP is slightly
modified by a normalization factor on the order of
0.8. It should be emphasized that the isovector part
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Results of the (left) JLM and (right) eikonal-approximation calculations of the angular distributions for elastic 8He + p
scattering. The symbols are experimental points from [7, 8]. The curves correspond to various COSMA rms values of the radius
of the total density distribution at a fixed rms core radius of 1.69 fm: (dashed curves) 2.14 fm, (dash-dotted curves) 2.84 fm,
and (solid curves) 2.52 fm. The imaginary JLM potential was scaled down by a factor of 0.95 or 0.85 to fit the 26- or 72-
MeV/nucleon data, respectively.
is included in the JLM model and that this is ex-
pected to produce a sensitivity dependence on the
core and valence neutron distributions. In order to fit
experimental data on elastic p+8He scattering, the
imaginary part of the JLM potential was normalized
here by a factor of 0.95 for the 26-MeV/nucleon
calculations and 0.85 for the 72-MeV/nucleon calcu-
lations. These values of the normalization factors are
independent, within reasonable limits, of the density-
distribution parameters.

Eikonal approximation. This approach belongs
to a different class since the Schrödinger equation
is not solved: the cross section is calculated directly
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
from the scattering amplitude given by an integral of
the Coulomb and nuclear phase shifts with respect to
the impact parameter. The nuclear phase shift is ex-
pressed in terms of the nucleon–nucleus OP, which,
in the optical-limit approximation, has the form [6]

U0(r) = 〈tpn〉ρn(r) + 〈tpp〉ρp(r), (1)

where ρn(r) and ρp(r) are, respectively, the neutron
and proton ground-state densities and 〈tpn〉 and
〈tpp〉 stand for, respectively, the proton–neutron
and proton–proton transition matrix elements for
proton–nucleon scattering, which are given by the
nucleon–nucleon total cross sections corrected for
2
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Fig. 2. Results of (left) JLM and (right) eikonal-approximation calculations of the angular distributions for elastic 8He + p
scattering. The symbols are experimental points from [7, 8]. The curves correspond to a fixed COSMA total rms radius of
2.52 fm and various values of the valence-neutron-skin thickness: (dashed curve) 0.0 fm (nonskin), (dash-dotted curve) 0.8 fm
(thin skin), and (solid curve) 1.46 fm (thick skin). The imaginary JLM potential was scaled down by a factor of 0.95 or 0.85 to
fit the 26- or 72-MeV/nucleon data, respectively.
Pauli blocking. In this model, the sensitivity of the
calculated angular distribution for elastic proton
scattering on the core and valence neutron densities
originates from the difference between the densities
ρn(r) and ρp(r), as well as between free proton–proton
and proton–neutron total cross sections, the latter
being larger at the energies in question. It should
be noted that there are no free parameters in this
approach.

COSMA density parameters. In order to perform
the calculations, it is necessary to know the one-
nucleon densities. For the core- and valence-neutron
densities, we used here the simple formulas [4]

ρc(r) =
1
π

√
2
π

1
a3

exp
−r2
2a2

, a =
α√
3

[fm], (2)
P

ρv(r) =
8

3π
√
π

r2

b5
exp

−r2
b2

, b = β [fm]; (3)

the total matter density is given by
ρt(r) = ρc(r) + ρv(r) (4)

and is normalized to the total number of nucleons
(eight). The parameter α is just the rms value of the
core (proton) radius (the distance between a pointlike
proton and the center of mass of 8He), rc = rp = α,
while the rms value of the valence neutron radius
(the distance between the pointlike valence neutron
and the center of mass of 8He), rv, is given by rv =√

2.5 × β2. Thus, by using these formulas, we have
the flexibility of generating various density distribu-
tions and see their effect on the calculated angular
distribution for elastic scattering. The authors of [4]
proposed the values of rc = 1.69 fm and rv = 3.15 fm,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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the resulting rms value of the total matter radius being
rt = 2.52 fm. These values were the starting point in
our analysis. Figure 1 shows the angular distributions
calculated by the two models with rc kept fixed at
1.69 fm and with rv varied, with the resulting rt being
2.14, 2.52, or 2.84 fm. Since the effect of the core
itself was found to be small, this, in fact, probes elastic
scattering with various rms values of total radii.

Figure 2 presents the results of the calculations for
three values of the valence-neutron-skin thickness
defined as the difference (rv − rc) but with rt fixed at
2.52 fm. One can see that, at rather large scattering
angles, the calculated elastic scattering is sensitive to
the presence of a neutron halo (skin).

3. CONCLUSION

Elastic p + 8He scattering has been analyzed by
using two entirely different models of the interaction:
the JLM model and the eikonal-approximation ap-
proach. Simple formulas of the COSMA have been
taken for the 8He density. The calculations have
been performed for 8He beam energies of 26, 45,
and 72 MeV/nucleon. For the first and last cases,
the results have been compared with the existing
experimental data. The two models have produced
similar results at forward scattering angles, in which
case the imaginary part of the optical potential
from the JLM calculations has been renormalized
by a factor of 0.95 for 26-MeV/nucleon data and
0.85 for 72-MeV/nucleon data. For more backward
scattering angles, the predictions of the two models
are at variance. For extremely backward angles, a
comparison between the models and the data could
be misleading—in particular, for the lowest energy—
because of the possible effects of nonpotential origin
(e.g., exchange processes) and because of the inap-
plicability of the eikonal approximation in this angular
region. The density-parameter values extracted from
an analysis of the cross sections for the removal
of two and four neutrons from 8He at high energy
[11] seem to be surprisingly well suited to describing
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
elastic p + 8He scattering. In terms of the density-
parameters dependence, our simulation of elastic pro-
ton scattering suggests that the angular distribution
depends on the rms value of the total matter radius at
rather forward scattering angles; this is in accordance
with the previous findings [1, 2]. At more backward
angles, a distinction between the neutron skin and
the nonskin structure can be revealed. It should be
noted, however, that the differentiation is not striking
and appears to be model-dependent. The difference
between the two models needs further clarification.
Precise measurements at large angles are required for
the use of elastic proton scattering as a measure of
the density distribution. However, this task could be
hard to accomplish because the cross section at large
angles is generally small.
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Abstract—We adopt a personal approach here reviewing several calculations over the years in which
we have experienced confrontations between cluster models and the shell model. In previous cluster
conferences, we have noted that cluster models go hand in hand with Skyrme–Hartree–Fock calculations
in describing states which cannot easily, if at all, be handled by the shell model. These are the highly
deformed (many particle–many hole) intruder states, linear chain states, etc. In the present work, we will
consider several topics: the quadrupole moment of 6Li; the nonexistence of low-lying intruders in 8Be; and
then jumping to the f7/2 shell, we discuss the two-faceted nature of the nuclei, which sometimes display
shell-model properties and other times cluster properties. c© 2002 MAIK “Nauka/Interperiodica”.
1. THE QUADRUPOLE MOMENT
OF THE J = 1+ STATE IN 6Li

Whereas the quadrupole moment of the deuteron
is positive (Q = +2.74 mb), that of the J = 1+ state
of 6Li is negative, Q = −0.818(17) mb. The magnetic
moment of the deuteron isµ = 0.85741 nm, while that
of 6Li is 0.822 nm.

There appears to be a big discrepancy between
cluster model calculations and the shell model cal-
culations. In nearly all cluster model calculations, Q
comes out positive. However, in many shell model
calculations, Q comes out negative, sometimes too
negative. This is an important problem that deserves
further attention. See, for example, arguments in the
literature between the cluster group [1] and the shell
model group [2]. See also the recent compendium of
A = 6 by Tilley et al. [3].

For example, a modern shell model approach by
Forest et al. [4] gets about−8 mb forQ, a factor of 10
too large but of the correct sign. On the other hand,
in a dynamical microscopic three cluster description
of 6Li where the clusters are α, n, and p, the result is
Q = 2.56 mb [1].

In shell model calculations that we performed [5],
we started with two valence particles in the 0p shell
(0 �ω). Then, we allowed up to 2 �ω and then up
to 4 �ω excitations. In the 0 �ω, space if you do not
have a tensor interaction, Q comes out positive. With
a “realistic” tensor interaction Q comes out negative,

∗This article was submitted by the authors in English.
**e-mail: lzamick@physics.rutgers.edu
1063-7788/02/6504-0740$22.00 c©
but too negative Q = −3.5 mb. However, with a for-
mer student, Zheng, who, at Arizona, also developed
the no-core approximation with Barrett et al. [6],
we showed that when higher shell admixtures were
admitted, Q became smaller in magnitude and closer
to experiment [5].

Space, �ω Q, mb µ, nm

0 –3.60 0.866

2 –2.51 0.848

4 –0.085 0.846

Experiment –0.82 0.822

Note that the shell model calculations cannot
get the magnetic moment low enough. With up
to 4 �ω admixtures, we actually overshoot and get
a quadrupole moment that is too small but still
negative. Some cluster models appear to explain the
low magnetic moment.

An excellent discussion of many shell model cal-
cultion of Q and µ has been given by Karataglidis
et al. [7]. The value of Q that they obtain with what
they call the “Zheng” interaction [8] in the up to 0,
2, 4, and 6 �ω spaces are −2.64, −2.08, −0.12, and
0.17 mb, respectively. Thus, they get Q to become
positive at the 6 �ω level. But then they quote Zheng
et al. [8] as getting a value of −0.67 mb in the same
6 �ω space. It is not clear why the two calculations
give different answers. The changes in µ in [7] are
more moderate, 0.869, 0.848, 0.845, and 0.840 nm,
in the up to 0, 2, 4, and 6 �ω spaces.

Looking at all the calculations by all groups (in-
cluding our own), the situation is certainly confusing
2002 MAIK “Nauka/Interperiodica”
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and the problem deserves further attention. This is
certainly a basic problem, the deuteron embedded in
the nuclear medium. This problem has wider impli-
cations: whether or not there is T = 0 pairing can
depend on how higher order configurations affect the
tensor interaction in the valence space.

2. ABSENCE OF LOW LYING INTRUDERS
IN 8Be AND THE α PARTICLE MODEL

The 0+ bandhead for low lying intruders in 16O,
12C, and 10Be are at 6.05, 7.65, and 6.18 MeV, re-
spectively. In 16O and 12C, these are predominantly
4p–4h excitations. In 12C, we identify the intrinsic
state as a linear chain. In the 7th edition of the “Tables
of Isotopes,” possible intruders in 8Be were indicated,
a J = 0+ state at 6 MeV and a J = 2+ state at 9 MeV.

In shell model calculations allowing 2p–2h exci-
tations, we were able, with a quadrupole–quadrupole
force, to get a J = 0+ state at 9.7 MeV in 10Be, too
high but in the right ballpark [7, 8]. However, we could
not get low lying intruders in 8Be below 30 MeV [7,
8]. We used a deformed oscillator model to show why
one gets intruders in 12C and 10Be but not 8Be.

But perhaps the simplest explanation, as sug-
gested to us by Vogt [9], is given by the α particle
model. In 12C, we can rearrange the α particles from
a triangle to a linear chain. In 8Be, we have only two
α particles. One can get a rotational band by having
the two α rotate around each other, but that is all.

The mere existence of these intruder states is of
astrophysical importance. In the beta decay
8B → 8Be + e+ + ν, one goes from a J = 2+ T = 1
to J = 1 or 2+ states. This is the famous “Ray
Davis” neutrino. If there were a 2+ state at 9 MeV,
then there would be more high energy alphas than
there would be if the decay were to the 2+

1 state at
3.04 MeV [10]. The α spectrum from the decay of
8Be seems to show more high energy alphas, but we
would say that they are not due to low lying intruders.

3. CLUSTERING AND SHELL MODEL
IN THE f7/2 REGION

In a previous cluster conference in Santorini
(1993), a spectrum of 44Ti was shown in an α cluster
model [11]. The spectrum looked reasonable except
that there was a wide gap between the 10+ and 12+

states. However, these states are sufficiently so close
together that the 12+ state is isomeric. In a single
j shell basis (j = f7/2),

52Fe is the 4h system and
it should have an identical spectrum to that of 44Ti
provided the same interaction is used. However, in
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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44Ti spectra for Models I, II, III, IV.

52Fe, the 12+ lies below the 10+ state. It is extremely
isomeric and has a lifetime of 12 min.

We have studied this and other topics by calcu-
lating the spectrum of 44Ti (52Fe) with a variety of
interactions designated as Model X (see Tables 1, 2
and the figure).
Model I. Use the spectrum of 42Sc as input

(particle–particle). Identify 〈(j2)JV (j2)J〉 = E(J)
experimentally. For isospin T = 0, J can be 1, 3, 5,
and 7, while, for T = 1, J is even 0, 2, 4, and 6.
Model II. Use the spectrum of 54Co as input

(hole–hole). If there were no configuration mixing,
these two spectra would be identical. However, there
are some differences, e.g., the 7+ state is much lower
in 54Co than in 42Sc.
Model III. Now, we play games. We want to find

out how important the T = 0 matrix elements are
for the structure of the nuclei (e.g., is T = 0 pairing
important?). Noticing that, in 42Sc, the J = 2, 3, and
5 states are nearly degenerate in this model, we set
all the T = 0 matrix elements to be the same and all
equal to E(2+) = 1.5863 MeV.

In Model III, we then have V T=1 = V (42Sc)T=1

J = 0, 2, 4, 6 and V T=0 = const = E(2+) J = 1,
3, 5, 7. We can then write V T=0 = c(1/4 − t1 ·
t2), where c is a constant. Hence

∑
i<j V

T=0
ij =

c/8(n(n − 1) + 6) − c/2T (T + 1). This means that
the spectrum of states of a given isospin, e.g., T = 0
in 44Ti (52Fe), is independent of what the constant
is; it might as well be zero. Of course, the relative
splitting of T = 1 and T = 0 states will be affected.
Model III will be the standard from which we derive
Model IV.
Model IV. Relative to the degenerate case above,

we now move the J = 1+ state down in energy to
0.5863 MeV. Our motivation is based on numerous
2
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Table 1. Two particle matrix elements 〈(j2)JV (j2)J 〉 (in MeV)

Model

Case

J = 0
T = 1

J = 2
T = 1

J = 4
T = 1

J = 6
T = 1

J = 1
T = 0

J = 3
T = 0

J = 5
T = 0

J = 7
T = 0

Ia) 0.000 1.5863 2.8153 3.2420 0.6110 1.4904 1.5101 0.6163

IIb) 0.000 1.4465 2.6450 2.9000 0.9372 1.8224 2.1490 0.1990

IIIc) 0.000 1.5863 2.8153 3.2420 1.5863 1.5863 1.5863 1.5863

IVd) 0.000 1.5863 2.8153 3.2420 0.5863 1.5863 1.5863 1.5863

a) Input is spectrum of 42Sc (particle–particle).
b) Input is spectrum of 54Co (hole–hole).
c) The T = 1 matrix elements are from the spectrum of 42Sc. The T = 0 matrix elements are degenerate at 1.5863 MeV.
d) Same as Model III except that the J = 1+ T = 0 energy is lowered to 0.5863 MeV.

Table 1. 44Ti (52Fe) spectra for Model I, II, III, and IV

Model I (Jπ E)a) Model II (Jπ E)b) Model III (Jπ E) c) Model IV (Jπ E)d)

0+ 0.000 0+ 0.000 0+ 0.000 0+ 0.000

2+ 1.163 2+ 1.015 2+ 1.303 2+ 1.253

4+ 2.790 4+ 2.628 4+ 2.741 4+ 2.800

6+ 4.062 6+ 4.079 6+ 3.500 6+ 3.738

3+ 5.786 8+ 5.772 3+ 4.716 3+ 5.031

5+ 5.871 7+ 6.018 5+ 4.998 5+ 5.082

7+ 6.043 12+ 6.514 7+ 5.356 7+ 5.687

8+ 6.084 3+ 6.540 8+ 5.656 8+ 6.045

10+ 7.384 5+ 6.602 9+ 7.200 9+ 7.731

12+ 7.702 10+ 6.722 10+ 7.200 10+ 7.731

9+ 7.984 9+ 8.048 12+ 7.840 12+ 8.371

Note: See Table 1.
discussions about the importance of T = 0 S = 1
“pairing” in nuclei. We hope to simulate the T = 0
pairing by this lowering.
Model V. Relative to Model III, we bring the

J = 1+ and J = 7+ states down to an energy of
0.5863 MeV but keep the J = 3+ and 5+ at E =
E(2+) = 1.5863 MeV. This spectrum is very close to
that of 42Sc.

4. DISCUSSION OF RESULTS

Let us first compare Model III (all T = 0 matrix
elements are degenerate) with Model I (spectra of
42Sc). As already mentioned, making T = 0 matrix
P

elements degenerate is equivalent to making them
zero as far as T = 0 states are concerned.

The main difference is that the states with J = 6,
4, 7, and 8 come down in energy as does J = 9+.
Also, the 12–10 gap is a bit greater than for the 42Sc
spectra case, reminiscent of the α particle model. The
J = 9+ state is below the 10+ and 12+ states in
the degenerate case. Clearly, it is the high energy
side of the spectrum which is most sensitive to the
change from the experimental spectrum to the “T = 0
degenerate” case.

Despite the changes, we can say that the T = 1
two bodymatrix elements give the dominant structure
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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of the spectrum whilst the T = 0 matrix elements
provide the fine tuning.

We now compare Model IV with Model III. The
only difference is that we break the T = 0 degen-
eracy by lowering the J = 1+ state from 1.5863 to
0.5863 MeV. We hope that this simulates, to some
extent, T = 0 S = 1 neutron–proton pairing. The
change from the degenerate case is not that large.
There is a tendency to go toward the spectrum
of 42Sc. The J = 3, 5, 7, and 8 states are raised
somewhat in energy. However, it is hard to find a clear
signature of this S = 1 pairing.

Not shown is Model V, where we bring down both
the J = 1+ and 7+ states to 0.5863 MeV keeping J =
3 and 5 at E(2) = 1.5863 MeV. This input spectrum
is close to that of 42Sc; therefore, it is not surprising
that the 44Ti spectrum is likewise close.

We lastly consider the results using the spectrum
of 54Co. This was done some time ago by Geesaman
[12, 13]. Note that there are significant changes, all
at the high-energy, high-angular-momentum part of
the spectrum. Relative to the 42Sc case, the 10+ state,
and 12+ states are down in energy, with the 12+

below the 10+ state, thus leading to a long lifetime for
the 12+ state. Note that the 9+ state is now at a much
higher energy than the 10+ or 12+. Recently, the 10+

state in 52Fe, which lies above the 12+, was found in
52Fe by Ur et al. [14]. It would also be of interest to
find the 9+ state.

5. MANY PARTICLE, MANY HOLE
STATES IN 40Ca

This is a topic we discussed in previous cluster
meetings [15]; therefore we will be brief. We just want
to remind the reader that there are all sorts of many
particle, many hole highly deformed states in 40Ca.
One cannot properly describe 40Ca in a cluster model
consisting of 36Ar plus an alpha particle. At the very
least, one has to start with 32S plus two alpha parti-
cles.

In a Skyrme–Hartree–Fock calculation (Sk III),
we obtain a near degeneracy of the 4p–4h and 8p–8h
intrinsic state. The respective energies are 12.1 and
11.4 MeV. The 8p–8h intrinsic state energy is lower
than the 4p–4h. By the time projection and pairing
are included, the 4p–4h comes lower than the 8p–
8h (6.85 vs. 8.02 MeV), which is in agreement with
the order of the J = 0 excitation energies of 3.0 and
5.1 MeV. Pairing will lower the states even more. We
actually found many more deformed states of the form
np–nh, n = 2, 3, 4, 5, 6, 7, and 8. The intrinsic states
are nearly degenerate in energy—we called this a de-
formation condensate. We also found for these states
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
that the deformation parameter was approximately
proportional to n; i.e., the value of β for 8p–8h is
approximately twice the value of β for 4p–4h.

In 80Zr, one of the np–nh states becomes the
ground state. This is the 12p–12h state which has
a calculated value of β = 0.4. A more superdeformed
16p–16h state with β = 0.6 is calculated to be at an
excitation energy of about 8 MeV.

6. TWO DIFFERENT VIEWS
OF THE f7/2 REGION

In the March 2000 issue of Phys. Rev. C 61, there
are two side-by-side papers. One is by our group
[16], and one is by Hasegawa and Koneko [17]. We
both do calculations in the f7/2 shell. We emphasize
shell-model behavior; the other authors, the α cluster
behaviors, even though their model space is limited to
f7/2.

The other authors point out that we can get an
excellent approximation to the ground states of np =
nn = 2m nuclei (np is the number of protons, etc):

|(f7/2)
4mI = T = 0〉 =

1√
N0

(α†
0)
m|A0〉, (1)

where (α†
0) creates a four nucleon cluster:

α†
0 =

∑
J,τ

(Jτ, Jτ : I = T = 0) (2)

× (A†
JτA

†
Jτ )I=0 T=0.

For 48Cr, this approximation gives −32.04 MeV for
the ground state energy, whereas the exact value is
32.70 MeV.

We, on the other hand, have emphasized the shell
model aspects [16]. In the previously mentioned pa-
per, we find an approximation for the excitation en-
ergies of single and double analog states in the f7/2

region, and, in an earlier paper, “Fermionic Symme-
tries: Extension of the two-to-one relationship be-
tween spectra of even–even and neighboring odd
mass nuclei,” [18] we noted two things:

A. There is often a two-to-one relation between
spectra of even–even and even–odd nuclei, and, in
some cases, the single j shell model predicts this.

B. Excitation energies of the analog state are ap-
proximately the same if the neutron excess (or, equiv-
alently, the ground-state isospin) is the same.

The above results can be parametrized by the fol-
lowing formulae.
Single analog excitation (SA)

E(SA) = b(T + X). (3)
2
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Double analog excitation (DA)

E(DA) = 2b(T + X + 1/2). (4)

This formula will give a two-to-one ratio for
E(DA)/E(SA) for (44Ti, 43Ti), (51Cr, 50Cr), (47Sc,
48Ti), etc.

The experimental SA and DA are shown below:

T Excitation energy

0 44Ti (9.340), 48Cr (8.75), 52Fe (8.559)

1/2 43Sc (4.274)a), 43Ti (4.338)a),
45Ti (4.176), 49Cr(4.49), 51Mn (4.451),
53Co (4.390), 53Fe (4.250)

1 46Ti (14.153), 50Cr (13.222)

3/2 45Sc (6.752)a), 47Ti (7.187), 51Cr (6.611)

2 48Ti (17.379)

5/2 47Sc (8.487)a), 49Ti (8.724)

a) Obtained from binding energy data.

In Table 2, we compare the theoretical single j
shell calculations with the linear formula. We take
b = 2.32 MeV, X = 1.30. Note that, in the SU (4)
limit, X = 2.5. The fact that SU (3) gives the lin-
ear formula is not sufficient for it to be the correct
theory. For a simple monopole–monopole interaction
a + bt(1)t(2), X = 1.

Some of the two-to-one ratios hold rigorously in
the single j shell model. This holds for 3p and 4p
systems or 3h and 4h, e.g., (43Ti,44Ti), (43Sc,44Ti),
(53Fe,52Fe). Here, not only a single or double analog
but all the J = j states in the odd spectrum are at half
the energy of the J = 0+ states in the even system.

Some of the relations hold approximately in the
single j shell model; e.g., for (45Sc,46Ti) and for the
cross conjugate pair (51Cr,50Cr), we would get a two-
to-one ratio if the seniority four states could be ne-
glected and one only had v = 0 and v = 2.

Miraculously, the two-to-one ratio holds remark-
ably well experimentally for (51Cr,50Cr)—the values
are 6.511 and 13.022 MeV, respectively—despite the
fact that, in the single j shell, it should only hold ap-
proximately. Ironically, the simplest system for which
the two-to-one ratio should hold exactly does not
work so well. That is to say, the values are 4.338
and 9.340 MeV for (43Ti,44Ti). When configuration
mixing is included, agreement with the deviation is
explained. This might be an example of a 4p clus-
tering. For the hole system (53Fe, 52Fe), on the other
hand, the two-to-one ratio works much better.

The fact that there is, in general, a close rela-
tion between even–even and even–odd nuclei puts to
P

question whether there is any α-particle clustering in
those numerous cases.

The single j shell calculation does not predict
exact equality for the SA excitation energies in 43Sc
and 45Ti. The relative values are very close, however,
4.142 and 4.112 MeV, respectively. This is fascinat-
ing. We take 43Sc and jam a deuteron into it to form
45Ti, and it seems hardly to make any difference for
SA excitations [16].

7. TWO VIEWS OF CROSS
CONJUGATE RELATIONS

In the single j shell model, the spectra of cross
conjugate nuclei should be identical (for jn states). A
cross conjugate nucleus is one obtained by changing
protons into neutron holes and neutrons into proton
holes. The cross conjugate of 46Ti is 50Cr. Let us
compare the spectra:

J 46Ti 50Cr Ratio

0 0.000 0.000

2 0.889 0.787 0.8853

4 2.010 1.884 0.9373

6 3.297 3.164 0.9597

8 4.896 4.740 0.9681

The fits are very good. The 50Cr excitations are
slightly smaller; it could be a universal A dependence.
Where does the remarkable agreement leave room for
α clustering?

However, we can look for other things besides the
spectra. A recent experiment–theory collaboration
where the leading experimentalists were Koller and
Speidel [19], obtained good agreement for g(2+) in
50Cr and bad agreement for 46Ti. The shell model
predicts a high value of g(2+) and g(4+) for 50Cr
but low values for 46Ti (0.25 nm). The high values
are confirmed for 50Cr, but, for 46Ti, the measured g
factors are closer to 0.5, which suggests the rotational
value gR = Z/A. These results suggest that there
must be considerable clustering in 46Ti that is not
present in 50Cr. In general, the shell model appears
to work better in the upper half of the “f7/2 shell”
than in the lower half. There appears to be much more
going on in the lower half, and this is probably due to
an intruder/cluster mixing with the basic shell model
states.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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8. CLOSING REMARKS

We have provided several examples where cluster
models and the shell model confront each other usu-
ally to the mutual benefit of both models even though
in the short term there might be some arguments. The
two models give the opposite sign for the quadrupole
moment of 6Li, and this has to be resolved. The
cluster model provides insight into some results of
detailed shell model calculations, e.g., why there are
no low lying intruders in 8Be. The low-lying intruder
states, e.g., 4p–4h and 8p–8h in 40Ca, are essentially
impossible to calculate in the shell model. However,
here, cluster models and the Skyrme–Hartree–Fock
model go together in describing such states. In the
f7/2 region, we raise the question (without fully an-
swering it) of how to distinguish symmetry energy
from clustering energy. Finally, we point out the issue
of hidden clustering.
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Abstract—Current nuclear physics focuses on exploring nucleon matter under extreme conditions, such
as those that can be created in modern accelerator laboratories. On the neutron-rich side of stability,
radioactive beams have already led to the discovery of halos in nuclei with neutron distributions extending
to large distances. Halo nuclei are composite systems with prominent features of few-body correlations,
which reveal themselves in various reactions involving these systems. We will discuss experiments that
probe a halo structure through studying various reactions involving halo nuclei, with special emphasis on
how, from the theoretical point of view, such reactions contribute to our knowledge of the structure and
dynamics of the nuclear halo. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Once exotic nuclei produced in radioactive-beam
facilities have become accessible, the very limits of
nuclear existence—that is, the edges of the nuclear
landscape—can be explored. At these limits [the so-
called neutron (proton) drip lines], additional neu-
trons (protons) can no longer be kept in a nucleus—
they literally drip out. The exact location of the neu-
tron drip line is far from clear, and it is known only for
light nuclei. In the vicinity of the drip lines, the struc-
tural features of nuclei change in relation to nuclei
closer to the beta-stability line. The disappearance
of the normal nuclear-shell closures was found, and
new magic numbers were introduced. Examples are
recent observations of the breakdown of the N = 8
shell closure for 12Be [1, 2] and the newmagic number
N = 16 [3].

On the neutron-rich side of stability, radioactive
beams have already led to the discovery of nuclei
with nucleon distributions extending to large dis-
tances. Light nuclei so far constitute the part of the
nuclear landscape where the neutron drip line has
been reached. Triggered by the discovery [4] of ab-
normally spatially extended nuclei (6He, 11Li, 11Be)
in the vicinity of the neutron drip line, the initial idea
of (binary) halos was suggested in [5]. Subsequent
developments have deepened and enriched the picture
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1)Institute ofNuclear Physics,MoscowStateUniversity, Rus-
sia; e-mail: parfenov@fu.chalmers.se

2)SENTEF, Institute of Physics, University of Bergen, Nor-
way; e-mail: jans.vaagen@fi.uib.no

**e-mail: Mikhail.Zhukov@fy.chalmers.se
1063-7788/02/6504-0746$22.00 c©
of halos as phenomena involving extreme clustering
into an ordinary core nucleus and a veil of halo nucle-
ons. The halo phenomenon is now a well-established
structural feature of many light drip-line nuclei [6–
8]. In this article, we will discuss various reactions
featuring halo nuclei, with special emphasis on how,
from the theoretical point of view, such reactions con-
tribute to our knowledge of the structure and dynam-
ics of the nuclear halo.

2. REACTIONS INVOLVING LIGHT
HALO NUCLEI

2.1. Total Reaction (Interaction) Cross Sections

It is well known from traditional nuclear-physics
courses that nuclei (many-particle systems bound
by a strong and short-range interaction) are very
condensed (saturated) systems with volumes propor-
tional to the nucleon number A. As we have already
mentioned in the Introduction, the first experiments
with radioactive beams measured interaction cross
sections (or reaction cross sections) for light neutron-
drip-line nuclei and revealed abnormally large cross
sections for some light neutron-rich nuclei. The mea-
sured cross sections (see also more recent measure-
ments reported in [9, 10]) provide important infor-
mation about the structure of exotic nuclei, namely,
about their sizes. This means that, from the measured
interaction cross sections, one can see an unexpected
large increase in the radii of 6He, 11Li, 11Be, 14Be, and
17B in relation to the corresponding lighter particle-
stable isotopes; this is the first piece of evidence of an
unusual structure of these nuclei.
Later theoretical studies [11, 12] indicate that the

sizes of some of these systems can be larger than
2002 MAIK “Nauka/Interperiodica”



REACTION MECHANISMS FOR LIGHT HALO NUCLEI 747
the sizes extracted from the cross sections at the
first stage. For example, the 11Li radius can be as
large as 3.55 fm [11] (compare with the old estimate
of 3.12 fm), making 11Li comparable in size with
stable nuclei having approximately four times more
nucleons. Note that the root-mean-square (rms) ra-
dius of 11Li is about 1 fm larger than the rms radius
of 9Li. This is very unusual for strongly interacting
systems bound by short-range interactions. Thus,
some distance within the 11Li system must be very
large. Combining this fact with the low two-neutron
separation energy of 11Li, one can conclude that, on
average, the valence neutrons must be far from the
9Li core.
There is another piece of important information

about the structure of neutron-halo nuclei, which
can be obtained if both the interaction cross section
and the neutron-removal cross section on a light
target at high energy are known. For example, the
cross section for the interaction of high-energy 11Li
[σI (11Li)] with light targets [4, 13] is approximately
equal to the interaction cross section for 9Li [σI(9Li)]
plus the two-neutron-removal cross section (σ−2n):
σI(core + n+ n) ≈ σI(core) + σ−2n. This is strong
evidence of rather well-defined clustering into the
core and two neutrons.
This formula is valid not only for 11Li but also for

6He, but it is not valid if we assume the 6He + n+ n
structure for 8He. Probably, systems like 8He and 19B
can be classified as those that contain four-neutron
halos. At least in the case of 8He, we have strong ev-
idence for such a classification. The cross section for
the interaction of high-energy 8He with light targets
[13] is approximately equal to the interaction cross
section for an α particle plus the sum of the two-
neutron-removal and the four-neutron-removal cross
section. Thus, this system may be considered a five-
body system containing an α-particle core and four
valence neutrons.

2.2. Elastic and Inelastic Scattering

The elastic scattering of 6He, 8He, and 11Li halo
nuclei on light targets was measured at low [14–
16] and high [17] energies in inverse kinematics. In
general, the measurements of elastic scattering were
intended for providing information about density dis-
tributions in nuclear halos. However, detailed theo-
retical studies of elastic scattering at low energies
(< 100 MeV/nucleon) clearly showed [16, 18] that
this process (at least for the current level of accuracy
and the currently measured angular range) does not
set a stringent constraint to be used to determine
features of the underlying structure, and it is not a
very promising tool for obtaining information about
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
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Fig. 1. Calculated [21] and experimental [17] angular
distributions of the differential cross section for elastic
p+6He scattering versus the square of the 4-momentum
transfer (q2 = −t) at 717 MeV per nucleon. The calcu-
lations use various three-body 6He wave functions with
the indicated rms matter radii equal to (dotted line) 2.33,
(solid line) 2.50, and (dashed line) 2.77 fm. The inset
shows the predicted total reaction cross section versus
the rms radius.

the density distribution of the valence neutrons in
the halo. The results also show that the size of the
core in halo nuclei plays a more important role in
determining the differential cross section for elastic
scattering than the low density tail associated with
the valence neutrons.
It should be noted, however, that elastic scatter-

ing on specific light targets at very low energies can
still provide interesting information about the halo
structure and correlations. As an example, we can
refer to the elastic 6He scattering on a 4He target
measured at 25 MeV per nucleon [19]. It is very
important that these measurements covered a broad
angular range, including backward angles. A theoret-
ical treatment of the resulting differential cross sec-
tion clearly indicates [20] that two-neutron transfer
between two identical α particles plays a significant
role in explaining the behavior of the cross section at
backward angles. It is also found that the “dineutron”
configuration of the 6He nucleus (see [6]) makes a
2
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dominant contribution to the two-neutron-transfer
cross section.
Elastic scattering at high energies [17] is more

sensitive to the halo tail of the density distribution
than at low energies. A theoretical analysis performed
within the Glauber models [21, 22] with microscopic
6He wave functions led to the conclusion that the rms
matter radius of 6He is around 2.5 fm. In Fig. 1, taken
from [21], the sensitivity of the results to the size of
6He is demonstrated. The sensitivity of the reaction
cross section to the 6He rms matter radius is also
shown.
The inelastic scattering of halo nuclei where all ha-

lo constituents are measured in coincidence furnishes
information about the continuum structure of these
nuclei. The positions and widths of the resonances,
the momentum distributions, and momentum trans-
fers can be extracted from the data. Note that, for the
cases where the low-lying resonance is a dominant
feature of the spectrum, the corresponding momen-
tum distributions are not straightforwardly related to
the distributions in the projectile [23]. The inelastic
scattering of 6,8He, 11Li, and 14Be were measured
at low and high energies [14–16, 24–29] for light
and heavy targets. For light targets, the experiments
confirmed the existence of the known 2+ state in 6He
[16, 24] and predicted new resonances in 8He [14, 25]
and a new three-body resonance at E∗ = 1.25 MeV
in 11Li [15], which can be a candidate for a neutron
halo excitation. The existence of such a state was
confirmed later in a different experiment [30]. Note
that, in the case of 6He, theoretical calculations pre-
dict more three-body resonances at higher energies
(see [31] and references therein), but the statistics of
experimental data at high excitation energies limit the
sensitivity of the data to these structures.
In general, there are many reaction mechanisms

leading to the inelastic scattering of halo nuclei on
light and heavy targets and a very complicated four-
body problem must sometimes be solved in order to
incorporate them properly in a theory. In [32], it was
shown that, within some reasonable approximations,
this problem can be solved and that the results for
the high-energy inelastic scattering of 6He are in
good agreement with the experimental data reported
in [24].
However, there is one special feature of halo

systems that makes it possible to treat the inelastic
scattering of these systems on heavy targets in a
simpler way. Looking only at neutron-halo nuclei,
one can expect a rather large difference between the
positions of the charge and mass centers in the body-
fixed frame. This will lead to large matrix elements for
electromagnetic dissociation (in particular, for theE1
transition). All experiments employing heavy targets
PH
clearly showed [24–29] that the electromagnetic-
dissociation (EMD) cross sections (mainly for an E1
transition) are much larger for neutron-halo nuclei
(per unit charge) than for stable nuclei. Moreover,
EMD (mainly through an E1 transition) is a dom-
inant process for heavy targets that is characterized
by large cross sections. The theory of Coulomb disso-
ciation for high-energy projectiles on a heavy target
is well known [33], and the differential cross section
dσ/dE is then obtained by multiplying the electro-
magnetic (E1) strength function dBE1(E)/dE by the
virtual-photon spectrumNE1(E) [33]:

dσ

dE
∼NE1(E)

dBE1(E)
dE

, (1)

SNEW
clus =

3
4π
Z2
c e

2〈r2c 〉,

where Zc is the core charge. The function
dBE1(E)/dE can be extracted from experimental
data and can be obtained theoretically from the
calculated ground state 0+ and continuum 1− wave
functions. Another important characteristic is theE1
non-energy-weighted cluster sum rule SNEW

clus (1) [34,
35], which is the integral of the strength function
with respect to energy.3) As can be seen from (1),
SNEW

clus contains very important information about
the geometry of the ground-state wave function—
namely, the distance rc between the center of mass of
the core and the center of mass of the entire nucleus.
Very recently, the three-body breakup process

(inelastic scattering) 6He →4 He + n+ n was stud-
ied experimentally by using a 6He beam of energy
240 MeV per nucleon incident on a lead target [24].
The E1-strength distribution deduced from electro-
magnetic cross sections is shown in Fig. 2 along
with theoretical predictions. Despite rather large
errors, the experimental strength function clearly
demonstrates a large E1 strength at low energies,
which leads to a very large electromagnetic cross
section of about 500 mb. The three-body calculations
performed in [31, 36] also predict a concentration
of the strength at low energies. However, these
calculations lead toE1-strength functions with max-
ima and more pronounced concentration at lower
energies than that found experimentally. This fact
should be comprehended, and improvements in these
calculations are needed. In [24], the value of SNEW

clus
was obtained by integrating the experimental E1
strength function (Fig. 2) up to the excitation energy
of 10 MeV, whereby the experimental value of rc =
1.12 ± 0.13 fm (for 6He) was deduced. This distance
is in very good agreement with the theoretical results
from few-body calculations [6].

3)Note that we discuss here only cluster strength functions.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 4 2002
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Fig. 2. Experimentally derived E1-strength distribution for 6He [24] (solid curve) with the errors shown (shaded band). The
theoretical distributions were borrowed from (dotted curve) [36] and (dashed curve) [31]. The excitation energy E∗ minus the
two-neutron-separation energyEth, its experimental value being 0.975 MeV, is plotted along the abscissa.
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Fig. 3. Longitudinal-momentum distributions of 14C fragments from one-neutron removal (experimental points and curves
calculated theoretically). Closed circles represent experimental data from [39] without identification of a 14C state, while open
circles [46] correspond to excited fragment states. In both panels, the solid curve is the momentum distribution for 1s1/2-
neutron removal accompanied by the production of ground-state fragments. The dashed (dotted) curve in Fig. 3a corresponds
to the momentum distribution calculated for 0p1/2-neutron removal with the production of fragments in 1− and 0− states by
using black-disk (realistic) profile functions, while the dashed and the dotted curve in Fig. 3b depict the distributions that are
analogous to those in Fig. 3a, but which were obtained for neutron removal with the production of fragments in all final states.
2.3. One-Nucleon-Removal Reactions

One-nucleon-removal reactions usually have
large cross sections and provide information on both
the spatial structure and the features of the interaction
process (see, for example, [37–39]). For few-neutron-
halo nuclei, this process bears very important infor-
mation about continuum states in the subsystems
(see, for example, [25, 28, 40]).
To simplify the discussion, we will concentrate
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 4 200
below only on one-neutron-halo nuclei. Generally,
the momentum distribution of a heavy fragment from
the neutron-removal reaction is determined by the
Fourier transform of the function that describes the
neutron–fragment relative-motion wave and which is
corrected for fragment and nucleon interactions with
the target nucleus. From the theoretical point of view,
one expects that the longitudinal-momentum distri-
bution is less perturbed by reaction mechanisms than
2
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the transverse-momentum distribution. Thus, inves-
tigation of longitudinal-momentum distributions is a
powerful tool for exploring both the spatial structure
(in particular, for halo nuclei) and nuclear-reaction
mechanisms.
Treatment of experimental data has usually been

based on the assumption that the core of a halo
nucleus (a heavy fragment) is an inert spectator of
neutron removal. The corresponding theoretical ap-
proaches have achieved a good description of the
shape and width of momentum distributions. How-
ever, there remain some open questions in describing
the high-momentum part of the distributions and
total cross sections. It appears that, apart from a pro-
cess of valence-neutron removal, there are additional
mechanisms capable of contributing to the yield of
core fragments, such as (i) the removal of a neutron
from states admixed to the s-wave component of
the ground state of a halo nucleus [41, 42] and (ii)
the removal of a neutron from the core nucleus with
the production of excited core fragments and with
the sequential deexcitation of core fragments through
photon emission.
Recently, new experiments measuring longitudi-

nal-momentum distributions of the heavy fragment
from the one-neutron-removal channel were per-
formed. Also, γ rays from the deexcitation of the
heavy fragment were measured in [43, 44]. This
made it possible to separate and to evaluate the
contributions of core fragments in various excited
states and to extract the momentum distributions
that correspond to neutron removal from individual
core states. These data also provide spectroscopic
information about halo nuclei. The theoretical anal-
ysis [44, 45] of experimental data on the reaction
9Be(11Be, 10Be + γ) induced by a 60-MeV/nucleon
11Be beam is consistent with the experimental finding
[44] that about 22% of the one-neutron-removal cross
section corresponds to the production of 10Be in low-
lying excited states.

There is another light nucleus (15C) that is of
particular interest in connection with the appearance
of the halo phenomenon [39, 41]. In a preliminary ex-
perimental analysis of one-neutron removal from this
nucleus, [9Be(15C, 14C+ γ)] at an incident energy
of 83 MeV/nucleon [46], it was found that, for 14C
formation in excited states, the cross section is about
25% of the total one-neutron-removal cross section.
In [47], a theoretical analysis of this reaction was
performed in the eikonal approximation. Both themo-
mentum distributions and the cross sections for 14C
production in various excited states were calculated.
Figure 3 shows some results of these studies. As can
be seen from Fig. 3a, the longitudinal-momentum
distributions of 14C fragments are described correctly
P

by the calculations. The inclusion of one-neutron re-
moval from the core improves the agreement of the
theoretical results with the experimental data in the
high-momentum part (Fig. 3b) of the longitudinal-
momentum distribution of 14C fragments.

3. CONCLUSION

Instead of discussing all reactions that involve halo
nuclei and which are used to extract the properties of
these exotic systems, we have concentrated here on a
few selected reactions that have large cross sections
and which provide a bulk of information about the
structure of halo nuclei. The quantities discussed in
this report have been chosen as the best illustrations
of dominant few-body features of the structure and
reactions. However, a number of other observables
related to two- and three-body halos have also been
studied—e.g., in transfer reactions, fusion, charge
exchange reactions, and beta decay, which all sub-
stantiate the overall picture discussed in the present
article.
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