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Abstract—In an ee′ experiment, the transverse and the longitudinal response function are measured
for the 2H nucleus at q = 1.05 fm−1, and their moments of orders −1, 0, 1, and 2 are obtained.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Present-day experiments studying electron scat-
tering on nuclei make it possible to determine trans-
verse and longitudinal response functions. Mea-
surements performed for nuclei of extremely light
elements revealed that, at 3-momentum transfers in
the region q > 1.5–2.0 fm−1, the relevant response
functions are determined primarily by quasielastic
electron–nucleon scattering treated within relatively
simple models of the nucleus [1]. As soon as the
momentum transfer falls below 1.5 fm−1, electron–
nucleus interaction becomesmore complicated, while
the response functions appear to be more sensitive, in
some aspects, to the structure of nuclei and to the
properties of the nucleon–nucleon interaction that
determine this structure. In this connection, we note
that, although the deuteron, which is the simplest
few-nucleon system, is one of the most promising
subjects for studying the intranuclear interaction of
nucleons, its response functions have been measured
only at high momentum transfers (q = 1.5, 2.0,
2.5 fm−1 [2]). The present study is aimed at extending
experimental explorations of response functions for
the 2Н nucleus to the model-dependent region of low
momentum transfers.

2. PROCEDURES FOR DETERMINING
RESPONSE FUNCTIONS

2.1. Measurements in ee′ experiments yield the
spectra of scattered electrons with respect to their
final energiesE′. Each such spectrum is usually mea-
sured at a single value of the initial electron energyE0

and a single value of the scattering angle θ. Upon the

1)Kharkov State University, pl. Svobody 4, 61077 Kharkov,
Ukraine.
1063-7788/02/6505-0753$22.00 c©
relevant normalization, the readings of the measur-
ing equipment used are transformed into the double-
differential cross section d2σ(θ,E0, E

′) for electron
scattering. This cross section can be expressed in
terms of some function Rθ(q, ω) that will be referred
to as the angular response function and which is
defined as

Rθ(q, ω) = d2σ(θ,E0, E
′)[σM(θ,E0)G2(Q2)]−1,

(1)

where σM(θ,E0) = {α cos(θ/2)/[4πE0 sin2(θ/2)]}2

is theMott cross section,G(Q2) = (1 +Q2/18.24)−2

is proton electric form factor, α is the fine-structure
constant, ω = E0 − E′ is the energy transfer to
the nucleus involved, and Q = (q2 − ω2)1/2 is the
4-momentum transfer in fm−1 units. In the case
of electron scattering on nuclei, the 3-momentum
transfer has the form

q =
√

4(E0 + Ee)[(E0 + Ee) − ω] sin2(θ/2) + ω2,

(2)

where
Ee = 4Zα/(3R) (3)

is a correction that takes into account the distortion of
the incident electron wave by the Coulomb field of the
nucleus characterized by the charge number Z and
the radiusR of the equivalent uniform distribution.

According to [3], the angular response function is
related to the transverse (T ) and the longitudinal (L)
response function [RT/L(q, ω)] by the equation

Rθ(q, ω) = λ2RL(q, ω) + (λ/2 + tan2(θ/2))RT (q, ω),
(4)

where λ = Q2/q2. From this equation, it can be seen
that, knowing two values of Rθ(q, ω) that correspond
to different values of θ, but identical values of q and ω,
2002 MAIK “Nauka/Interperiodica”
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one can easily determine RT (q, ω) and RL(q, ω). As
follows, however, from expression (2), two functions
Rθ(q, ω) measured at different angles but each with
its own initial electron energy that is constant for it
can have not more than one common point in the qω
plane of arguments. In order to obtain, from a limited
number of experimental angular functions, a set of
values of RT and RL, it is necessary to integrate and
partly to extrapolate the functions Rθ referring to the
same θ, whereupon it is possible to find, from two
functions Rθ1 and Rθ2 (θ1 �= θ2), which are contin-
uous in the variables q and ω, the values of RT and
RL over the entire region of the arguments that is
common to these functions.

2.2. A feature common to all experiments aimed
at determining response functions is that such ex-
periments require much expensive time of accelerator
operation. In this connection, the problem of opti-
mizing such measurements is of great practical im-
portance, and experience that we gained in exploring
this problem revealed that some of its solutions can
significantly reduce the costs of such investigations
and enhance their efficiency. Below, we consider two
aspects of this problem.

2.2.1. As was indicated above, the quantities RL

and RT are determined from the interpolation of the
experimental functions Rθ. The higher the accuracy
of the interpolation of data, the closer the behavior of
the functions Rθ along the line of interpolation to a
linear dependence. On this basis, it was shown (see,
for example, [4]) that, in the qω plane of arguments,
the family of lines

ωj = a + bjq
2, (5)

where a is a constant that is approximately equal
to the mean nucleon binding energy in the nucleus
being considered and bj is a variable that specifies the
jth line, determines the most convenient directions
for the interpolation—that is, the directions along
which the derivative of the functionRθ undergoes the
smallest changes.

For the purpose of interpolation, the data were
approximated by various functions. If the results ob-
tained from fits to the data in terms of a few functions
are such that the corresponding values ofχ2 are close,
the accuracy of the interpolation is characterized by
the amplitude of the scatter of these functions. If the
statistical uncertainties are preset, the scatter of the
approximating functions is not reduced considerably
upon increasing, above some value, the number of
points in the region where the fitting is performed.
It follows that, in the qω region being considered, a
reduction of the step between the points below some
value, which depends on the errors in Rθ(q, ω), does
not improve the accuracy of the interpolation.
P

By using some models for the functions Rθ, we
sampled versions of measurements with various steps
in the momentum transfer. As a result, we found that,
in the region around q ≈ 1 fm−1, it is meaningless
to reduce the momentum-transfer step below some
0.1 fm−1 for the functions Rθ measured at a single
value of the angle θ with the errors of ≥5%, since, in
this case, the approximating functions become indis-
tinguishable in terms of the χ2 criterion.

2.2.2. The errors in the functions RT/L are deter-
mined by the errors in measuring the functions Rθ; if
the latter are assumed to be statistical, it follows from
Eq. (4) that

∆SRT =
1

v2 − v1

√
(∆Rθ,1)2 + (∆Rθ,2)2, (6а)

∆SRL =
1
λ2

1
1 − v1/v2

(6b)

×
√

(∆Rθ,1)2 + (v1/v2)2(∆Rθ,2)2.

Here and below, the subscript 1 (2) labels quantities
measured at the smaller (larger) of the two scattering
angles; the subscript S indicates a statistical charac-
ter of the error; and vi = λ/2 + tan2(θi/2), i = 1, 2.
Expressions (6a) and (6b) demonstrate that, at given
values of ∆SRθ,i, the closer the angle θ1 to 0◦ and the
angle θ2 to 180◦, the smaller the errors in the response
functions. Under actual experimental conditions, the
minimum and the maximum value of θ for a given
value of q is determined by the accelerator energy
range and by the design of the experimental facility
used.

The statistical error in a measurement depends on
the number N of counts in the measuring equipment
over the exposure time. The quantity N is related to
the functionRθ by the equation

Rθ(q, ω) = cN [σM(θ,E0)G2(Q2)xt]−1. (7)

Here, c is a constant that characterizes the exper-
imental facility used; t is the exposure time; and x
is the product of quantities measured within a single
run,

x = τE′I, (7а)

where τ is the target thickness in the direction of
the electron flux I traversing it. According to the
Poisson distribution, we have ∆N =

√
N . Taking

this into account and using expressions (4), (6а),
(6b), and (7), we obtain the relative errors δSRT/L =
∆SRT/L/RT/L in the form

δSRT =
1
γ

1
v2 − v1

√
A1

t′1
+

x1

x2

σM,1
σM,2

A2

1 − t′1
(8а)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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×
√

c

RLσM,1G2(Q2)x1T
,

δSRL =
1
λ2

1
1 − v1/v2

(8b)

×

√
A1

t′1
+
(
v1

v2

)2 x1

x2

σM,1
σM,2

A2

1 − t′1

×
√

c

RLσM,1G2(Q2)x1T
,

where γ = RT /RL; Ai = λ2 + viγ; T = t1 + t2; t′1 =
t1/T ; and the factor√

c

RLσM,1 G2(Q2)x1T
, (9)

which appears in both expressions, can be considered
as a unit of measurement for δSRT/L. The values
of E0,i that correspond to given θi, ω, and q are
determined by Eq. (2). In order that expressions (8a)
and (8b) could be used in planning an experiment, it
is necessary to make a preliminary assumption con-
cerning the value of γ. In the case of quasielastic elec-
tron scattering on the nucleons of the 2H nucleus, the
approximation of scattering on free nucleons yields a
good approximation to γ; that is,

γ =
q2

2M2

(
µ2
p + µ2

n

)
, (10)

where M is the nucleon mass and µp and µn are,
respectively, the proton and the neutron magnetic
moment.

Since expressions (8а) and (8b) depend differently
on t′1, different values of t′1 correspond to minimal
values of δSRT and δSRL. From this, it follows that
the choice of t′1 is also dependent on which response
function is of prime interest in the experiment being
planned.

We will now show how one can use the above
expressions in choosing conditions in experiments of
the type being discussed.

In our experiment, the measurement at the small
angle of θ1 = 55◦ was ensured by the use of the new
gas target GM-2. For the measurements at a large
scattering, use could be made of GM-2 as well or
of the earlier gas-target version GM-1. Since the
features of these targets were different, we had to
assess two versions of the measurements:

(i) θ1 = 55◦ (GM-2), θ2 = 130◦ (GM-2);

(ii) θ1 = 55◦ (GM-2), θ2 = 160◦ (GM-1).

One gas target GM-2 is arranged and tuned in
order to perform an experiment according to version
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 20
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Fig. 1. Errors in the response functions versus the expo-
sure time t′1 at a small angle: (solid curves) δSRT (q, ω)
and (dashed curves) δSRL(q, ω). The figures 1 and 2 on
the curves indicate the version of measurement (see main
body of the text).

1. In the measurements, the advantage of GM-2 over
GM-1 consists in that the former is much less sensi-
tive to the background.

In version 2, a greater value of the angle θ2 is
achieved, while the effective target thickness τ of
GM-1 is approximately twice as large as that of GM-
2. At the same time, an experiment in that case is
complicated by the needed replacement of the tar-
gets in going over from the measurements at one
angle to the measurements at the other angle and
by additional tunings that are associated with this
replacement and which are more involved for GM-2,
requiring additional time of accelerator operation.

The result of the calculation by formulas (8a) and
(8b) for measurements in the region of the maximum
of the quasielastic-scattering peak (ω = q2/2M ) at
q = 1 fm−1 and I1 = I2 is displayed in Fig. 1 for the
remaining conditions specified as above. It can be
seen that, at the minimum of the functions δSRT (t′1),
version 2 yields a value that is one-half as large as that
in the case of version 1. This distinction means that,
in order to achieve identical statistical accuracies in
measuring the functions RT , the required time of
accelerator operation is four times smaller in the case
of version 2. This was a crucial argument in choosing
the latter.

The calculation of version 2 shows that the func-
tions δSRT (t′1) and δSRL(t′1) attain minima at t′1 =
0.03 and t′1 = 0.55, respectively. But in the case of
02
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Fig. 2. Layout of the gas targets GM-1 and GM-2.

t′1 = 0.3, each of the quantities δSRT and δSRL ex-
ceeds its minimum only by 15%. Since we are equally
interested both in the transverse and in the longitudi-
nal response function, this relationship between the
durations of the exposures was used in the measure-
ments.

3. DESCRIPTION OF THE EXPERIMENT
AND DATA PROCESSING

Measurements were performed in an electron
beam from the LUE-300 linear electron accelerator
installed at the Kharkov Institute for Physics and
Technology. With the exception of what is concerned
with the gas targets, the experimental facility and the
procedure of measurements were described in detail
elsewhere [4]. In the present article, we will therefore
only briefly touch upon the basic points of this part of
the investigation, but we will dwell at some length on
the design of the gas targets.

3.1. High-energy electrons were scattered on
2Н nuclei within gas targets and found their way
to a double-focusing magnetic spectrometer [5]; on
traversing it, they were recorded by an eight-channel
scintillation Cherenkov telescope [6].

The experiment employed two gas targets GM-1
and GM-2. Either target was rated to the pressure
P
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Fig. 3. Coordinates of the experimental spectra in the qω
plane for the measurements at the scattering angles of
(solid lines) θ = 160◦ and (dashed line) θ = 55◦. The dot-
ted line represents the coordinates of the sought functions
RT/L(q, ω).

of 100 atm at normal temperature for the gas under
study. The GM-1 target was intended for measure-
ments only at the scattering angle of θ = 160◦. The
operating range of GM-2 was 50◦–130◦. The layout
of the targets is displayed in Fig. 2.

The electron beam along the line 1 passes through
a high-pressure vessel (2), traversing the foils of the
inlet (3) and the outlet (4) window. Electrons that
were scattered by the gas over the segment τ (effec-
tive target thickness) arrived, through the foil of the
window (5) and a slit collimator (6), at the collimator
of a spectrometer (7). Electrons that were scattered
by the gas beyond the segment τ and by the foils of the
windows 3 and 4 are screened from the spectrometer
by a lead shield (8) in the case of GM-1 or by the
collimator 6 in the case of GM-2.

The basic design distinction between the targets
consists in the arrangement of their collimators: in
GM-1, the collimator is within the high-pressure
vessel and is tightly fixed in it, while the collimator of
GM-2 is arranged directly in the scattering chamber
and its position is fixed with respect to the spec-
trometer. In the last case, the spectrometer is rotated
together with the target collimator; this makes it pos-
sible to performmeasurements within the width of the
window 5.

The conditions under which the electrons traverse
the target are determined by the diameter of the pri-
mary electron beam; by the dimensions of the win-
dows 3, 4, and 5; by the radiation thickness of the foils;
and by the shapes and the material of the working
surfaces of the collimators 6.

In the experiment being described, the diame-
ter of the electron beam was 2–4 mm. The oval
window 5 of the GM-2 target had dimensions of
115 × 16 mm. All the remaining windows of both
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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targets were round and had a diameter of 20 mm.
The thicknesses of the titanium foils of the windows
were 0.15 and 0.3 mm. For electrons that entered the
spectrometer, the thickness of the target filled with
deuterium was 1.2 × 10−2 to 1.8 × 10−2 radiation-
length units. The radius of curvature of the working
surfaces of the lead collimators was 500 mm in GM-
1 and 1000mm inGM-2. In order to reduce boundary
effects, the convex surfaces of the collimators were
covered with a tungsten layer of thickness 0.3 mm.
Estimates show that, in structures like those that are
discussed here, the background from boundary effects
does not exceed 10−5 of the measured cross section.

3.2. In order to obtain each spectrum of the elec-
trons scattered on 2Н nuclei, we performed three
measurements under identical conditions:

(а) measurements of the background from an
empty gas target;

(b) measurements of elastic scattering on 4Не nu-
clei;

(c) measurements of scattering on 2Н nuclei.
At all stages of the measurements, we determined

the number of counts corresponding to random coin-
cidences in the detecting equipment. Their contribu-
tion did not exceed 1% of the size of the sought effect.

The scattering of the electrons from the halo of
the primary beam on the collar of the target inlet
window was the main source of the background from
the empty target. This background depended on the
quality of guiding the electron beam to the target
and on the efficiency of shielding from the scattered
halo electrons (the corresponding design elements in
Fig. 2 are the following: 8 for GM-1 and 6 for GM-2).
The ratio of the number of counts in the equipment
for the case of an empty target (background) to the
number of counts at the maximum of the quasielastic
peak was 0.1–2% at θ = 55◦ and 1–7% at θ = 160◦.
The distinction between the background conditions
of the measurements is explained by the fact that the
thickness of the collimator screening the spectrom-
eter of the GM-2 target was three times larger than
that of the shield of the GM-1 target.

3.3. Upon correcting the results of the mea-
surements for random coincidences, the background
from the empty target was subtracted, channel-
by-channel, from the spectra of 2Н and 4Не. The
resulting spectra were corrected for radiative effects
according to the calculations presented in [7].

We measured elastic scattering on 4Не nuclei in
order to obtain the absolute values of the cross sec-
tions for the spectra of 2Н. For a reference, we em-
ployed the form factor for the ground state of the 4Не
nucleus, representing it as

F 2(q) = (1 − (a2q2)6)2e−2b2q2 , (11)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 4. Experimental values of the response functions
for the 2Н nucleus at q = 1.05 fm−1: (closed circles)
RT (q, ω) and (open circles)RL(q, ω).

where the parameter values of a = 0.315 fm and b =
0.675 fm were borrowed from [8].

Thus, six functions Rθ were obtained as the result
of measurements at the scattering angle of θ = 160◦
for the initial electron energies ofE0 = 114, 126, 141,
and 158 MeV and at the scattering angle of θ =
55◦ for the initial electron energies of E0 = 230 and
260 MeV. From Fig. 3, it can be seen that, best of
all, the results of the measurements correspond to
determining the function RT/L for q = 1.05 fm−1.

The response functions RT (q, ω) ± ∆SRT (q, ω)
and RL(q, ω) ± ∆SRL(q, ω) found for this momen-
tum-transfer value are displayed in Fig. 4. The
quantities ∆SRT/L reflect the statistical errors in the
original spectra upon introducing radiative correc-
tions. The total error ∆RT/L includes, in addition
to ∆SRT/L, the uncertainty that stems from going
over to the absolute values of the experimental cross
sections. The latter consists of the error ∆elRT/L,
which is associated with statistics of a series of mea-
surements of the cross sections for elastic scattering
on 4He nuclei, and the error ∆FRT/L, which reflects
the uncertainty in the reference form-factor function
(11). Upon taking into account the different origins of
2
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the errors being considered, we obtain

∆RT/L =
√

(∆sRT/L)2 + (∆elRT/L)2 + ∆FRT/L.

(12)

The relative values of the errors ∆elR and ∆FR are
the following:

δelRT = 0.05 and δFRT = 0.02,

δelRL = 0.02 and δFRL = 0.02.

4. MOMENTS OF RESPONSE FUNCTIONS

4.1. Sum rules form a basis of one of the less
model-dependent computational approaches. As the
result of calculations based on sum rules, one obtains
moments of the response functions in the form

S
(k)
T/L(q, ωf ) =

ωf∫
ω+

RT/L(q, ω)ωkdω, (13)

where the symbol ω+ means that the lower limit of
the integral in Eq. (13) is equal to the energy transfer
corresponding to the peak of quasielastic electron
scattering on a nucleus; however, the integral receives
no contribution from the process itself. In the calcu-
lation of the moments, the upper limit of the integral
takes the value of ωf = q (photon point) or ωf = ∞.
In the last case, the moments are denoted by S(k)(q).

The data in Fig. 4 cover the main part of the area of
the quasielastic-scattering peak. However, the upper
limit of the integral on the right-hand side of Eq. (13)
lies beyond the range of actual measurements. For
this reason, the procedure for evaluating themoments
involves representing the response functions, up to
some valueωx of the energy transfer, by a set of exper-
imental valuesRexpt(q, ωi) and extrapolating them for
ω > ωx in terms of an analytic function Rtheor(q, ω)
whose explicit form follows from theoretical ideas of
the nucleus. Within this approach, expression (13)
takes the form

S
(k)
T/L(q, ωf ) = S

expt,(k)
T/L (q, ωx) + S

theor,(k)
T/L (q, ωx, ωf ),

(14)

where

S
expt,(k)
T/L (q, ωx) =

ωx∫
ω+

el

R
expt
T/L(q, ω)ωkdω, (14a)

S
theor,(k)
T/L (q, ωx, ωf ) =

ωf∫
ωx

Rtheor
T/L (q, ω)ωkdω. (14b)
P

4.2. An investigation of the asymptotic behavior
of the response functions in ω is a problem in itself,
which will be considered in a separate publication. In
order to evaluate their moments, we employ here the
expression that was proposed in [1, 9, 10] and which,
in the case of q = const, can be represented in the
form

Rtheor
q (ω) = Cqω

−α, (15)

where the parameter values found in the present study
are the following:

Cq,L = 123 ± 7 MeVαL−1 and αL = 2.82 ± 0.07

for the functionRL;

Cq,T = 35.4 ± 2.0 MeVαT −1 and αT = 2.93 ± 0.15

for the functionRT .
4.3. Substituting expression (15) into the integral

in Eq. (14b), we obtain

Stheor,(k)(q, ωx, ωf ) (16)

=
Cq

α− k − 1

(
ω−α+k+1
x − ω−α+k+1

f

)
.

According to (14), the statistical error for the mo-
ments has the form

∆SS
(k)(q, ωf ) (17)

=
√[

∆SSexpt,(k)(q, ωx)
]2 +

[
∆SStheor,(k)(q, ωx, ωf )

]2
.

The values found for the functions S
(k)
L (q) and

∆SS
(k)
L (q) with the aid of expressions (14), (16), and

(17) are displayed in Fig. 5 versus ωx. It can be seen
that, within the errors, the moments are independent
of ωx, but the errors in these momenta are minimal at
some values of this quantity. For the eventual values
of S(k)(q), we took those of them that correspond to
the smallest errors.

The results that we obtained here for the moments
of the response functions are quoted in Tables 1 and
2—specifically, the results in Table 1 correspond to
the nuclear reference frame comoving with the center
of mass of the nucleus and its fragments upon the
interaction (c.m.), while the results in Table 2 corre-
spond to the laboratory frame (lab). Here and below,
the moments in the c.m. and in the laboratory frame
are labeled with the symbols “ ˆ “ and “∼”, respec-
tively.

The data are given here in terms of the above two
reference frames because the results of relevant cal-
culations are quoted in the different reference frames
and because the relations between these different pre-
sentations of the moments are simple only for k = 0,
1 (in the case of k = 0, these quantities merely take
identical values in the two reference frames, and this
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 5. Values of (a) moments of the longitudinal re-
sponse function and (b) their errors versus the point
ωx at which the experimental data were matched with
the extrapolating function: (open boxes) S

(−1)
L (q) ×

5 and ∆SS
(−1)
L (q) × 5, (closed circles) S(0)

L (q) and

∆SS
(0)
L (q) × 5, and (open circles) S(1)

L (q) × 0.06 and

∆SS
(1)
L (q) × 0.05.

is the reason why they are not given in Table 2), the
relationships between the errors in the different refer-
ence frames being rather complicated for all values of
k �= 0.

The integral Stheor appearing in the definition (14)
of the moments is not, strictly speaking, an experi-
mental value because the integrand in (14b), albeit
containing parameters determined by experimental
data, is not known for ω → ∞—its behavior there is
hypothetical and by no means can be verified. In order
to display the contribution of the quantity Stheor to the
moments found here, the ratiosD(k) = Stheor,(k)/S(k)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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and the ratios∆SD
(k) = ∆SS

theor,(k)/S(k), which are
related to the statistical errors in measuring the pa-
rameters of expression (15), are quoted in the tables.

5. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

5.1. The calculations of the k = −1 response-
function moment that are known to the present au-
thors were performed within the Fermi gas model
[11] and within the hydrodynamic model [12]. Neither
of these is adequate to few-nucleon systems, but,
for want of other calculations, we used them for the
theoretical estimate ofS(−1)

L (q) for the 2Hnucleus. As
a result, it was found for the moment in question that,

at q = 1.05 fm−1, Ŝ
(−1)
L (q) = 0.045 MeV−1 in [11]

and Ŝ
(−1)
L (q) ≈ 0.09 MeV−1 in [12]—that is, these

estimates agree (with allowance for their scatter) with
the experimental values.

5.2. Some results of the calculations for the k =
0, 1 moments are quoted in Table 3, along with
their ratios to the experimental values. Here, the
theoretical values were obtained by interpolating the
numerical results from other studies. Since those
studies present the calculations for q = 1 fm−1 or
q = 200 MeV/с, the error of the interpolation to
q = 1.05 fm−1 is insignificant (about a few tenths of a
percent of the eventual values obtained).

5.2.1. Figure 6 displays the experimental results

for S(0)
L (q) and the result of the calculation from [13].

It can be seen that the value found for the zeroth
moment supplements data from [2] in the sense that it
lies beyond the region q > 1.5 fm−1, where the cross
section for electron scattering on a light nucleus is
2
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Table 1.Moments of the response functions S(k)
T/L(q, ωf ) for the 2Нnucleus at q = 1.05 fm−1 in the c.m. frame [the values

of the moments are supplemented with the total experimental error (first line) and its statistical component (second line)]

k ωf Ŝ
(k)
L (q, ωf ), MeVk ωx, MeV D ± ∆SD, % Ŝ

(k)
T (q, ωf ), MeVk ωx, MeV D ± ∆SD, %

−1 ∞ 0.090 ± 0.017 69 0.6 ± 0.2 0.027 ± 0.003 69 0.3 ± 0.2
± 0.015 ± 0.002

0 ∞ 0.771 ± 0.045 71 5.3 ± 1.7 0.217 ± 0.018 71 3.2 ± 2.2
± 0.025 ± 0.007

1 ∞ 18.5 ± 2.4 79 26 ± 10 3.99 ± 0.78 73 21 ± 16
± 2.0 ± 0.67

q 16.4 ± 1.6 77 18 ± 6 3.70 ± 0.54 71 15 ± 11
± 1.2 ± 0.42

2 q 676 ± 130 77 48 ± 16 128 ± 45 73 45 ± 31
± 116 ± 42

Table 2. Moments of the response functions S
(k)
T/L(q, ωf ) for the 2Н nucleus at q = 1.05 fm−1 in the laboratory frame

[the values of the moments are supplemented with the total experimental error (first line) and its statistical component
(second line)]

k ωf S̃
(k)
L (q, ωf ), MeVk ωx, MeV D ± ∆SD, % S̃

(k)
T (q, ωf ), MeVk ωx, MeV D ± ∆SD, %

−1 ∞ 0.029 ± 0.002 69 1.4 ± 0.3 0.0091 ± 0.0007 69 0.8 ± 0.6
± 0.001 ± 0.0002

1 ∞ 27.4 ± 2.8 79 19 ± 7 6.46 ± 0.93 71 14 ± 11
± 2.2 ± 0.74

q 25.3 ± 2.1 77 14 ± 4 6.20 ± 0.71 71 11 ± 7
± 1.5 ± 0.50

2 q 1172 ± 177 77 36 ± 12 244 ± 61 71 31 ± 22
± 151 ± 54

Table 3. Calculated values of the moments Stheor for k = 0, 1 and their ratios Stheor/Sexpt to the experimental values

S
(0)
L (q) S

(0)
T (q) S̃

(1)
L (q), MeV Ŝ

(1)
L (q),MeV S̃

(1)
T (q),MeV

Stheor 0.658 [13] 0.259 [14] 28.1 [15] 26.8 [14] 23.7 [13] 18.6 [10] 9.48 [14]
Stheor/Sexpt 0.85 ± 0.05 1.20 ± 0.10 1.03 ± 0.11 0.98 ± 0.10 0.87 ± 0.09 1.01 ± 0.11 1.47 ± 0.21
close to the sum of the cross sections for scattering
on its constituent nucleons:

S
(0)
L (q)/Z  1. (18)

Violation of the equality in (18) is a manifestation of
the nuclear structure; therefore, the value of the mo-
ment S(0)

L (q = 1.05 fm−1) is sensitive to distinctions
in its calculations. From Table 3, it can be seen that
the experimental values of S(0)(q) are poorly repro-
duced by the quoted theoretical values. In this con-
nection, it is interesting to note that the ratio γ(0) =
S

(0)
T (q)/S(0)

L (q) for the calculated values from [13, 14]
is 0.395, the experimental value being 0.281 ± 0.016;
at the same time, a simple calculation for electron
scattering on a free proton and a free neutron [see
Eq. (10)] yields 0.265. The agreement between the
last two values within the experimental error sug-
gests that, in the region q < 1.5 fm−1, the ratio γ(0)
P

is less dependent on the nuclear structure than the

quantities S
(0)
T (q) and S

(0)
L (q) taken separately. If

this is indeed so, expression (10) can be used as a

test of theoretical calculations of S(0)
T (q) and S

(0)
L (q)

for momentum-transfer values in the range q ≈ 1–
1.5 fm−1.

5.2.2. Let us now compare our result for the mo-

ment S
(1)
L (q) with data of other measurements and

with the results of theoretical calculations.

Figure 7 displays the result of our study for Ŝ(1)
L (q)

and the estimates of this moment from [16, 17], which
were obtained from measurements only at small an-
gles rather than within the usual procedure of sepa-
rating the functions RT and RL. In view of this, the
results presented in [16, 17] call for an additional dis-
cussion. By way of example, we indicate that all of the
measurements reported in [16] were performed at the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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same scattering-angle value of θ = 14◦. Under these
conditions, the contribution of the transverse com-
ponent to the angular response function is assumed
to be relatively modest, its major part being due to
scattering on the magnetic moments of the nucleons.
In order to eliminate the contribution from the proton
magnetic moment, the longitudinal response function
was determined in [16] as

RL(q, ω) = Rθ(q, ω)/up(θ, q), (19)

where the correction

up(θ, q) = 1 +
(

1
2

+ tan2 θ

2

)
µ2
p

q2

2M2
(20a)

was calculated in the approximation of electron scat-
tering on a free proton. In order to eliminate the
contribution from scattering on a neutron as well, the
data presented in [16] were rescaled in our study by
taking into account the correction

up+n(θ, q) = 1 +
(

1
2

+ tan2 θ

2

)(
µ2
p + µ2

n

) q2

2M2
.

(20b)

The functionup+n changes from 1.14 at q = 1.02 fm−1

to 1.38 at q = 1.71 fm−1. The data being considered
do not involve the extrapolation of the response
function; therefore, they represent, as was indicated in
[16], a lower bound on the first moment. According to
the present-day ideas of the behavior of the function
RL(q, ω → ∞), the inclusion of the extrapolation
increases them by 15 to 20%. The experimental

values of Ŝ(1)
L (q) from [16] [that is, those that include

the correction in (20a)] are represented by boxes in
Fig. 7; the values shown in this figure by open circles
were obtained by taking into account the correction
in (20b) and by multiplying the result by a factor of
1.15.

As to the value of Ŝ(1)
L (q = 1.5 fm−1) from [17],

we note that it was obtained from an interpolation
of measurements at two scattering-angle values of
θ = 77.5◦ and 84◦. This interpolation is not correct
since the angular factor in expression (4) is not fixed
in this case, so that the resulting function is not char-
acterized by a specific value of the scattering angle—
that is, it is not a function Rθ. The uncertainty in the
angle leads to an error in the moment value. In the
case being considered, this error can be estimated at
6%. The extrapolation of the function RL was taken
into account in [17] by calculating it on the basis of
the Durand model [18], but the correction for the con-
tribution of the function RT was not included there
(see the footnote on page 912 in [14]). The diamond

in Fig. 7 represents the value of Ŝ(1)
L (q = 1.5 fm−1) as

given in [17], while the triangle stands for this result
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Fig. 7. Ratio of the first moment of the longitudinal
response function to q2/(2M) (data and results of the
calculations are presented in the c.m. frame). The points
represent (open boxes) data from [16], (open diamond)
result from [17], (open circles and open triangle) same
data upon the introduction of corrections, and (closed
circle) value obtained in the present study. The solid, the
dashed, the dash-dotted, and the dotted curve depict the
results of the calculations performed in [15], [14], [13], and
[10], respectively.

corrected with allowance for (20b), the corresponding
correction being equal to 1.7 in this case. The relative
values of the experimental errors in the corrected data
are identical to those in [16, 17].

With allowance for the corrections introduced
above, Fig. 7 indicates that all experimental data
considered in this study are consistent and that the
general character of their dependence on the mo-
mentum transfer is similar to that which is predicted
by theoretical calculations.2) It can be seen that,
according to these data, the results of the calculations
performed in [13, 14], as well as those from [10], stand
out as those that are the closest to the experimental
data. In what is concerned with the last study, it
should be noted that, despite the good agreement
between the results of this study and experimental
data, its calculations at q = 2 and

√
10 fm−1 yield

Ŝ
(1)
L (q)[q2/(2ZM )]−1 = 0.43 and 0.15, respectively,

whereas the asymptotic behavior of this function
must lead to 0.5.

5.3. Let us summarize the basic results of this
study.

2)The calculations of S(1)
L (q) that are presented in [13–15]

were performed in the laboratory frame; in order to dis-
play their results in Fig. 7, they were rescaled to the c.m.
frame with the aid of the expression S̃(1)(q) = Ŝ(1)(q) +

q2/(2AM)S(0)(q). Since the values of A required for this
were borrowed from [13], the corresponding lines in the re-
gion q < 1.5 fm−1, where the zeroth moment is sensitive to
the choice of model, can deviate by a few percent from the
results quoted by the authors of [14, 15].
2
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(i) We have considered the problem of optimally
choosing conditions for measuring nuclear response
functions.

(ii) The gas target GM-2 has been created for the
measurements reported in this article.

(iii) The transverse and the longitudinal response
function for the 2H nucleus have been measured at
q = 1.05 fm−1 up to ω = 118 MeV.

(iv) The experimental values of the moments

S
(k)
L (q) and S

(k)
T (q) have been determined for k =

−1, 0, and 1. The values of S
(2)
L (q, ωf = q) and

S
(2)
T (q, ωf = q) have also been found.
The results of our measurements have revealed the

following:

(a) The experimental values of S(0)(q) differ from
the results of the calculations reported in [13, 14] by
2 to 3 values of ∆S(0)(q), but the experimental result
for the ratio S

(0)
T (q)/S(0)

L (q) is close to the result of
the calculation for electron scattering on the system
formed by a free proton and free neutron.

(b) The value obtained for S
(1)
L (q) complies with

data presented in [16, 17]; the entire body of experi-

mental values of S(1)
L (q) is compatible with the results

of the calculations from [13, 14].
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Abstract—The burning of radioactive waste is investigated. Targets from 241Am and 237Np were irradiated
with 0.66-GeV proton beams. The cross sections for the formation of 60 and 80 residual nuclei from 237Np
and 241Am are determined. The experimental results are compared with the theoretical cross sections
calculated by the cascade–evaporation model. c© 2002 MAIK “Nauka/Interperiodica”.
The present study was initiated by the promi-
nent scientist and outstanding personality
V.P. Dzhelepov. The preliminary results were
reported by him at the JINR Scientific Council.
This investigation is one of the last initiated by
V.P. Dzhelepov with great enthusiasm, but his
untimely death prevented him from seeing the
final results. The death of V.P. Dzhelepov is an
irreparable loss for Russian science and for all
those who knew him and worked with him.

1. INTRODUCTION

The transmutation of fission products and acti-
noids produced at atomic power stations has aroused
great interest in the last decade. Estimations made
by various groups [1, 2] indicate that, in the case of
transmutation of all transuranium elements (TUE),
radiation risk due to their leakage from deep-under-
ground storage systems must be compared with the
natural radioactivity of the uranium ore after 103 yr
and not after 5× 106 yr (as in the case of untreated
wastes). But in this case, treatment of TUE at all
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stages of the fuel cycle becomes a more difficult prob-
lem.

Estimations of radiation risk of spent nuclear
fuel show that, after the extraction of the uranium–
plutonium actinoid group and such fission products
as 90Sr and 137Cs, the main risk for the population
can be associated with 241Am and 237Np [3]. Among
actinoids, 241Am makes the greatest contribution.
The particularly hazardous effect of 237Np is due to
its mass predominance and a high migration ability,
which increases the probability of its penetration into
the human body through food chains [4].

Investigation of 237Np and 241Am transmutation
dynamics in the flow of thermal neutrons of vari-
ous densities shows that the higher the density of
neutrons, the smaller the number of various acti-
noids noticeably contributing to the radioactivity of
wastes [4]. For solving the problem of transmutation,
high-current proton accelerators must be used to
produce neutron fluxes of 1017 cm−2 s−1 for trans-
mutation purposes. In some recent publications, both
transmutation of actinoids under the effect of neutron
irradiation and their spallation and fission under the
effect of proton and ion beams are investigated [5].

The parameters of the hadron–nucleon cascade
form a basis for calculating electronuclear setups,
their targets, and the blanket effect. These parameters
are calculated with a number of codes using models
of different accuracies for the cascade approximation.
As is shown in [6], the best test for various codes
is a comparison of the calculated and experimental
yields of residual nuclei. From the experimental point
of view, a determination of the independent cross
sections for the yields of short-lived nuclear products
from a monoisotope target is the most important
2002 MAIK “Nauka/Interperiodica”
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Table 1. Characteristics of 237
93Np and 241

95Am targets

Target Half-life,
yr

Total mass-attenuation
coefficient for γ rays of
energy 300 keV, cm2/g

Density of
oxide,
g/cm3

Weight,
g

Thickness,
mm

Activity,
mCi

Beam
intensity,
1014 p/min

Irradiation
time, min

237
93Np 2.144(7)× 106 0.498 11.1 0.742 0.193 0.523 2.64 5

0.742 0.193 0.523 2.66 30
241
95Am 432.2(7) 0.508 11.7 0.177 0.043 601 2.72 5

0.183 0.044 621 2.58 30
for comparison [7]. The experimental cross sections
for residual nuclei in radioactive 241Am and 237Np
targets are undoubtedly important for the projects of
transuranium-waste transmutation in a direct proton
beam [8]. The present article deals with an investiga-
tion of the cross sections for the formation of residual
nuclei in 241Am and 237Np targets.

2. EXPERIMENTAL METHOD

The experiment was performed in an external
beam of the phasotron installed at the Laboratory of
Nuclear Problems at the Joint Institute for Nuclear
Research (JINR, Dubna). The beam current was
1.2 µA. Targets from NpO2(Np) and AmO2(Am)
were exposed to a 660-MeV proton beam. The target
and beam characteristics are presented in Table 1.
The irradiated target samples were hermetically
packed in aluminum capsules with a weight of 78.8 g
and the dimensions shown in Fig. 1.

A specific feature of such experiments is that the
high self-radiation of the targets used often produces
a background that makes it difficult to measure the
yield of product nuclei. For example, the activity of the
241Am target is about 600 mCi, while the intensity of
the γ radiation (Iγ) is distributed over energy (Eγ) in
such a way that

∑
Iγ(Eγ < 103 keV) :

∑
Iγ(103 <

Eγ < 400 keV) :
∑

Iγ(Eγ > 400 keV) is 0.392 :
0.831 × 10−4 : 0.912 × 10−5. The intensities Iγ are
given for the decay probability, and the remaining
60% occur through the electron-conversion chan-
nel. During the measurement, such a γ-radiation-
intensity distribution allowed the background from
the radioactive targets to be reduced with filters. We
used a 10-mm Pb + 2-mm Cd + 1-mm Cu filter
to increase the solid angle for 241Am by a factor of
about 700. For 237Np, the energy (Eγ) distribution
of the γ radiation (Iγ) differs from that for 241Am:∑

Iγ(Eγ < 100 keV) :
∑

Iγ(100 < Eγ < 400 keV) :∑
Iγ(Eγ > 400 keV) is 0.167 : 0.548 : 0.0168. But

we used the same filter for the 237Np target to
P

optimize the detector loading and the measurement
geometry. Figure 2 shows the efficiency curves for our
HPGe detector that were obtained with and without
the filter.

The self-absorption correction for the γ radiation
in the target (CA) was calculated with the density and
dimensions of the targets by the formula [9]

CA = (µD/(1 − e−µD))−1, (1)

where µ is the total attenuation coefficient for a given
γ ray in the source material andD is the target thick-
ness. This correction for γ rays of energy higher than
300 keV proved to be less than 1.5% in the 241Am
target and less than 5% in the 237Np target and may
be neglected. The profile and the position of the beam
during the irradiation of the targets were controlled by
a two-coordinate proportional chamber. To monitor
the beam, the reaction 27Al(p, 3pn)24Na was used.
In [10], the cross section for this reaction at a proton
energy of 660 MeV was found to be 10.8 ± 0.7 mb.
A further investigation of this reaction [11] yielded
new values of the reaction cross section at an energy
higher than 800 MeV, but, in our energy range, its
value did not change [12]. In our calculation, we used
the cross section for the reaction 27Al(p, 3pn)24Na
(see above). Aluminum foils of the same dimensions
as the targets were used for monitoring. The weight
of each aluminum foil was 99 mg. The targets were
irradiated in two steps: 5-min exposure for the mea-
surement of short-lived residual nuclides and 30-min
exposure for long-lived ones.

The induced activity of the targets was measured
by two detectors, an HPGe detector with an effi-
ciency of 20% and an energy resolution of 1.8 keV
(1332-keV 60Co) for the 241Am target and a Ge(Li)
detector with an efficiency of 4.8% and a resolu-
tion of 2.6 keV (1332-keV 60Co) for the 237Np tar-
get. The γ spectrum was recorded with the aid of a
high-ratemultichannel bufferMASTER 921 (241Am)
and a four-input multichannel buffer MASTER 919
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 1. Targets from 237
93Np and 241

95Am in an aluminum
capsule.

(237Np), which automatically determined the dead
time.

The measurement of the first targets (short ex-
posures) started 10 min after the end of irradiation.
These targets were measured 17 times for 17 h. The
measurement time varied from 5 min to 3 h, the
distances between the target and the detector be-
ing 150 cm for 241Am and 100 cm for 237Np. The
second targets (30-min exposures) were measured
11 times for 30 d with exposures from 5 to 50 h
and respective distances of 100 and 60 cm. The code
DEIMOS [13] was used in the interactive mode for
spectrum handling. This code determines the area Sγ
and the position Kγ of the peak and the upper limit
on the peak area Sγ(lim), which cannot be found at
the given background level. At the same time, the
exact energy Eγ and intensity Iγ of the peaks can
be obtained. When the spectrum handling had been
finished, the data were “cleaned” from background
lines and single and double escape peaks. The peak
intensities were corrected by subtraction of the single
and double escape peaks. The corrected line intensi-
ties were used to determine the half-life of each line,
including the complex (doublet) lines. The identifica-
tion of residual nuclei was based on their γ-transition
energies, intensities, and half-lives compared with the
data from [14]. A more detailed analysis and checking
of the data after identification of the residual nuclei
for the 241Am target were performed with a special
code. This analysis was based on a comparison of
the ratios of our experimental Iγ(lim) (< −Sγ(lim))
and published Iγ(lit) intensities of the transitions (in-
cluding unobserved ones) for each decaying identified
nucleus. Knowing the half-lives of the multiplet com-
ponents, we also analyzed such complex lines. We
found 1025 γ lines in 28 spectra measured for 241Am
targets; 166 of them had different energiesEγ . Deter-
mining the half-lives of those 166 lines, we found that
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 2. Detector-efficiency curves for the source-to-
detector distance of 25 cm: (•) without a filter and (�) with
a 1-mm Cd + 1-mm Cu + 10-mm Pb filter.

34 of them are doublets and 5 are triplets. A special
system of codes was created for a complex analysis
of the experimental data. This system is described in
detail in [15].

The cross sections for the formation of residual
nuclei a, σa(Eγ(j)), were determined for each line
in all of the measured spectra i = 1, 2, . . ., n with a
correction for the dead time [Eq. (2), Table 2],

σa(Eγ(j), i) = Si(Eγ(j)) (2)

× λa(t3(real, i)/t3(live, i))/[NpNtargεγ(Eγ(j))

× Ij(Eγ(j))(1 − e−λat1)e−λat2(i)(1− e−λat3(real,i))],

where Si(Eγ(j)) is the number of recorded photons
of energy Eγ(j) in the ith spectrum; λa [s−1] is the
decay constant for nucleus a;Np is the flux of particles
[s−1] on the target; Ntarg is the number of nuclei on
1 cm2 of the target surface; εγ(Eγ(j)) is the abso-
lute recording efficiency for photons with the energy
Eγ(j); Iγ(Eγ(j)) is the intensity per decay of γ rays of
energy Eγ(j); and t1, t2(i), t3(real, i), and t3(live, i)
are the exposure time, waiting time, real, and live time
of measurement, respectively.

The components of the doublet lines are geneti-
cally related (Gen = 1, decay of the parent nucleus a
and of the daughter nucleus b) or independent (Gen =
0, nuclei a′, b′). The number of γ rays from the decay
of nucleus b recorded in the ith measurement is

Si(Eγ(b)) =
{
Ae−λat2(i)

(
1− e−λat3(real,i)

)
(3)

+ Be−λbt2(i)
(
1− e−λat3(real,i)

)} t3(live, i)
t3(real, i)

.

Substituting the known λa and λb and the measured
values Si(Eγ(b)), t2(i), t3(real, i), and t3(live, i), we
2
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Table 2. Residual nuclei from the reactions 241Am(p, xpyn)X

Residual
nuclei

T1/2 Eγ , keV Iγ Cross section, mb Number of
measurements

48Sc 1.820(4) d c983.500(1) 1.0 1.35± 0.19 7
c1312.100(30) 0.975 1.04± 0.10 7

48V 15.970(10) d c983.50(3) 0.999 3.52± 0.17 7
c1312.00(3) 0.9739(20) 3.37± 0.14 7

52V 3.750(10)min 1434.100(10) 1.000(10) 2.3 ± 0.6 1
52Mn 5.590(10) d c744.233(13) 0.906(4) 1.81± 0.20 1

c935.544(12) 0.949(3) 1.9 ± 3.4 4
1434.090(17) 1.000(3) 1.71± 0.12 1

54Mn 312.5(5) d c834.830(21) 0.9998(2) 10.1± 0.4 9
56Mn 2.580(1) h 846.750(20) 0.9887(30) 6.7 ± 1.6 7
72Ga 14.100(11) h c834.030(30) 0.9563 1.5 ± 0.7 9
72As 1.080(5) d c833.990(30) 0.795 4.2 ± 0.5 8
76As 1.1000(30) d c559.10(5) 0.447(8) 4.5 ± 1.6 5
76Br 16.19(22) h c559.09(5) 0.740 0.6 ± 1.9 5
82Br 1.470(20) d c554.320(20) 0.706(4) 7.55± 0.30 5

c619.070(20) 0.431(5) 10.5± 0.9 10
c698.330(20) 0.279(4) 8.5 ± 0.9 2
c776.490(30) 0.834 8.68± 0.30 7
c827.810(30) 0.2419(25) 7.3 ± 0.6 5

c1043.970(30) 0.2736(33) 6.5 ± 0.6 5
c1317.47(5) 0.2694(33) 8.0 ± 0.4 5
1474.82(8) 0.1660(17) 8.6 ± 0.7 2

84Br 6.470(6) h c554.35(10) 0.624(8) 12 ± 5 5
c619.11(10) 0.380 6 ± 7 10
c698.37(10) 0.263(7) 2.5 ± 0.8 (fix.) 2
c776.52(10) 0.844 1.4 ± 1.7 7
c827.83(10) 0.210(6) 7 ± 11 5

c1044.08(10) 0.321 2.5 ± 0.4 (fix.) 5
c1317.43(10) 0.237(6) 10 ± 12 5

84Rb 32.77(14) d c881.610(3) 0.690(20) 6.9 ± 0.4 5
86Rb 18.82(2) d 1076.6(1) 0.0878 2.02± 0.30 1
89Rb 15.15(14)min c657.77(6) 0.0998(52) 4 ± 8 4

c947.73(7) 0.0922(46) 23 ± 6 1
1031.92(6) 0.58(3) 10.6± 0.8 4
1248.14(6) 0.423(23) 10.7± 1.4 3
2195.92(11) 0.1334(87) 23 ± 5 1

91Sr 9.52(6) h c555.60(10) 0.617(6) 0.9 ± 7.0 17
c1024.30(10) 0.334 15.0± 1.8 10

92Sr 2.710(10) h 1383.90(6) 0.9(1) 11.8± 0.5 12
93Sr 7.32(10)min 590.28(5) 0.665(18) 13.4± 2.7 3

875.73(6) 0.239(13) 7.1 ± 2.8 1
84mY 40(1)min 793.0(3) 0.986 3.1 ± 0.9 1
87Y 3.350(10) d 484.90(5) 0.922(10) 4.40± 0.29 6
88Y 106.6(4) d 898.021(19) 0.940(4) 6.6 ± 0.6 3

1836.01(4) 0.9936(2) 6.1 ± 0.5 3
91mY 49.71(4)min 555.57(10) 0.949(6) 14 ± 4 17
95Y 10.30(10)min 954.20(20) 0.19 18 ± 4 1
89Zr 3.270(10) d 909.20(10) 0.9987 3.79± 0.29 1
95Zr 63.98(6) d c724.23(4) 0.4444(60) 36.0± 2.0 4

756.74(4) 0.5486 38 ± 4 5
97Zr 16.90(5) h cd657.92(10) 0.9135(11) 20.7± 0.4 8

cd743.36(10) 0.9093(6) 19.5± 0.8 3
92mNb 10.15(2) d c935.44(10) 0.99 0.6 ± 0.4 4
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Table 2. (Contd.)

Residual
nuclei

T1/2 Eγ , keV Iγ Cross section, mb Number of
measurements

95Nb 33.15(5) d c765.83(4) 1.0 16.8± 2.1 8
96Nb 23.35(5) h 460.03(6) 0.276(11) 15 ± 2.0 3

568.86(6) 0.546(22) 12.5± 0.6 8
c719.56(15) 0.0713(4) 35 ± 18 4
c778.22(10) 0.950 13 ± 2 10
810.25(7) 0.0969(61) 15 ± 4 8

c849.90(10) 0.203(10) 13.2± 1.7 10
1091.31(6) 0.484(22) 13.8± 0.4 7
1200.19(6) 0.197(10) 14.7± 0.9 4

97Nb 1.200(12) h c657.92(10) 0.9834(11) 13.3± 0.8 17
98mNb 51.30(40)min c722.50(10) 0.707(65) 12.2± 0.7 17

787.20(10) 0.93(8) 15 ± 0.7 9
99Mo 2.750(8) d c739.500(15) 0.1219 44.1± 1.3 10
96Tc 4.30(10) d c778.22(4) 0.9976 2.71± 0.29 10

812.54(4) 0.820(35) 2.65± 0.14 6
c849.86(4) 0.976(38) 2.78± 0.19 10

104Tc 18.4(10)min 358.00(10) 0.89 28 ± 8 1
c884.40(10) 0.110(12) 14 ± 8 1

103Ru 39.35(5) d 497.080(13) 0.889(28) 63 ± 4 8
105Ru 40440(22) h 676.36(8) 0.157(5) 40 ± 4 6

c724.30(3) 0.473 33.0± 1.3 15
105Rh 1.470(1) d 318.90(10) 0.192 77 ± 13 2
106mRh 2.170(34) h 717.20(10) 0.294(34) 13.8± 2.5 2

748.50(10) 0.197(23) 21 ± 5 1
1529.40(10) 0.178(24) 17 ± 4 1

108Rh 5.90(20)min 581.10(20) 0.586 9.5 ± 1.9 1
c947.10(20) 0.4974 13.9± 1.9 1

112Pd 21.05(5) h cd617.40(20) 0.43(60) 18 ± 3 9
cd694.80(20) 0.0345(8) 41 ± 9 + e 8

106mAg 8.46(10) d c1045.83(8) 0.2955(96) 2.4 ± 0.4 5
1527.65(19) 0.163(13) 2.6 ± 0.5 1

110mAg 252.2(3) d c657.70(10) 0.947 21 ± 11 8
884.70(10) 0.729 11.2± 2.6 3

112Ag 3.140(20) h 617.40(20) 0.43(6) 20.4± 1.7 13
115cd 2.230(4) d 492.350(4) 0.0803(33) 18 ± 4 1

527.900(7) 0.274(11) 19.3± 0.9 7
117mcd 3.36(5) h c552.900(20) 0.997(10) 6.9 ± 0.7 15
116mIn 54.15(16)min 1097.30(20) 0.557(15) 13.5± 0.9 7

1293.54(15) 0.850(20) 17.3± 0.5 10
117mIn 1.940(12) h cd552.90(20) 0.469(50) 21.4± 1.0 15
118mIn 4.45(5)min 1050.8(5) 0.820(82) 6.8 ± 1.3 1

c1229.5(5) 0.96(10) 6.2 ± 1.3 2
116mSb 5.000(11) h 1050.8(5) 0.82(8) 7.0 ± 1.5 7

c1229.5(5) 0.96(10) 7.7 ± 0.6 8
120Sb 5.760(21) d c1023.3(4) 0.994(3) 10.8± 0.3 10

1171.7(3) 1.0 10.4± 2.0 10
122Sb 2.700(10) d 564.24(4) 0.7 14.0± 0.5 10
124Sb 60.200(30) d c602.72(4) 0.9792 10.1± 0.6 10

c1691.00(4) 0.4876(49) 10.2± 0.6 6
126Sb 12.40(10) d 414.80(20) 0.98 7.5 ± 0.9 2

c695.00(20) 0.997 6.84± 0.29 8
c697.00(20) 0.289(70) 12.1± 2.2 6
c720.50(20) 0.538(24) 10.9± 0.9 4
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Table 2. (Contd.)

Residual
nuclei

T1/2 Eγ , keV Iγ Cross section, mb Number of
measurements

856.70(20) 0.176(9) 6.5 ± 2.3 3
127Sb 3.85(50) d 473.0(4) 0.247(9) 7.4 ± 1.2 2

685.7(5) 0.353 7.2 ± 0.5 5
783.7(5) 0.145(5) 7.4 ± 0.9 2

128Sb 9.010(30) h c743.30(10) 1.00(5) 10.6± 1.1 9
754.00(10) 1.00(5) 1.8 ± 0.5 2

c813.60(20) 0.130(20) 11 ± 7 6
119mTe 4.69(5) d 1136.75(7) 0.0772(7) 4.7 ± 1.5 1

1212.73(7) 0.667 3.72± 0.15 6
121Te 16.78(35) d 573.139(11) 0.803(17) 5.3 ± 0.5 5
131mTe 1.25(80) d 782.49(4) 0.0778(12) 18 ± 4 3

822.78(4) 0.0612(8) 5.4 ± 1.2 1
132Te 3.260(34) d cd630.22(9) 0.137(6) 11.2± 0.9 3

cd667.69(8) 0.987(2) 7.1 ± 1.2 12
d772.60(8) 0.762(19) 6.2 ± 0.3 7

124I 4.180(21) d c602.72(4) 0.605 10.3± 0.3 10
c1691.02(4) 0.1041(12) 12.8± 0.8 6

126I 13.02(7) d 388.630(11) 0.340(7) 31 ± 10 4
c666.330(12) 0.330(7) 6.0 ± 1.9 6

130I 12.36(1) h 536.090(20) 0.99(2) 8.1 ± 0.6 14
c668.540(10) 0.961(25) 11.8± 0.6 4
c739.480(20) 0.823(23) 10.7± 3.0 17

131I 8.04(1) d 364.480(11) 0.812(16) 14.2± 0.9 6
636.793(20) 0.812(16) 13.5± 2.7 1

132I 2.2846(4) h 667.70(10) 0.99 8.3 ± 1.2 6
133I 20.80(10) h 529.872(11) 0.863(17) 9.3 ± 0.5 9
134I 52.6(4)min c847.025(25) 0.954(19) 2.7 ± 1.2 5

c884.090(25) 0.649(9) 5.2 ± 0.9 7
132Cs 6.48(2) d c667.5(1) 0.974 6.2 ± 1.8 7
136Cs 13.16(3) d 818.514(12) 0.997 6.01± 0.18 6

1048.070(20) 0.798(30) 7.16± 0.24 6
1235.360(23) 0.200(7) 9.2 ± 0.6 2

140Ba 12.74(5) d 537.274(20) 0.2439(21) 11.1± 2.5 + f 1
cd487.029(19) 0.459(4) 4.1 ± 0.5 6
cd815.780(30) 0.2364(17) 3.9 ± 0.6 4

cd1596.17(6) 0.9540(8) 3.4 ± 0.3 11
140La d 1.680(18) c487.029(19) 0.459(4) 9.3 ± 0.5 6

c815.780(30) 0.2364(17) 6.3 ± 0.6 4
c1596.17(6) 0.9540(8) 7.09± 0.27 11

135Ce 17.69(19) h 606.760(20) 0.1881(54) 17.0± 2.6 4
145Eu 5.93(5) d 893.738(24) 0.684 1.65± 0.20 4
146Eu 4.59(3) d 747.20(12) 0.98 1.16± 0.18 3
154Tb 21.4(5) h c536.25(10) 0.013 60 ± 40 14

c722.10(20) 0.058 13 ± 6 17
156Tb 5.35(10) d 534.29(6) 0.67(7) 1.8 ± 0.5 1
198Au 2.700(2) d 411.790(10) 0.955 1.33± 0.21 1
206Bi 6.240(3) d c537.50(5) 0.304 3.2 ± 0.7 + g 1

803.10(5) 0.989 1.33± 0.21 1
c881.01(5) 0.662(7) 0.5 ± 0.5 5

240Am 2.120(13) d 880.80(5) 0.251(4) 46.5± 1.1 10
987.76(6) 0.731(10) 44.7± 0.7 11

Note: The following notation is used here: (c) complex peak, (d) peak corresponding to the decay of daughter nuclei, (e) together with
112Ag, (f) admixture of 206Bi, and (g) admixture of 140Ba.
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Table 3. Formation of nuclei in the reactions 241Am(p, xpyn)X (complex peaks)

No. Gen Eγ , keV T1/2
Residual
nuclei

Cross section,
mb

Type of cross
section

χ2

1 1 487.029(19) 12.74 d 140Ba 4.1 ± 0.5 C 0.3

1 487.029(19) 1.68 d 140La 9.3 ± 0.5 I

2 0 536.090(20) 12.36 h 130I 8.1 ± 0.6 C 0.3

0 536.25(10) 21.40 h 154Tb 60 ± 40 C

3 1 552.900(20) 3.36 h 117mCd 6.9 ± 0.7 C 1.0

0 552.900(20) 1.94 h 117mIn 21.4± 1.0 C

4 0 554.320(20) 1.47 d 82Br 7.55± 0.30 I 0.3

0 554.35(10) 6.47 h 82mRb 12 ± 5 C

5 1 555.60(10) 9.52 h 91Sr 0.9 ± 7.0 C 2.4

1 555.57(10) 49.71min 91mY 14 ± 4 I

6 0 559.10(5) 1.10 d 76As 4.5 ± 1.6 C 0.9

0 559.09(5) 16.19 h 76Br 0.6 ± 1.9 C

7 0 602.72(4) 60.20 d 124Sb 10.1± 0.6 I 0.9

0 602.72(4) 4.18 d 124I 10.3± 0.3 I

8 1 617.40(20) 21.05 h 112Pb 18 ± 0.3 C 1.3

1 67.40(20) 3.14 h 112Ag 20.4± 1.7 I

9 0 919.070(20) 1.47 d 82Br 10.5± 0.9 I 2.9

0 619.11(10) 6.47 h 82mRb 6 ± 7 C

10 1 630.22(9) 3.26 d 132Te 11.2± 0.9 C 0.6

1 630.19(2) 2.30 h 132I − I

11 1 657.92(10) 16.90 h 97Zr 20.7± 0.4 C 2.2

1 657.92(10) 1.20 h 97Nb 13.3± 0.8 I

0 657.77(6) 15.15min 89Rb 4 ± 8 C

12 0 666.3(2) 12.40 d 126Sb − I 0.8

0 666.330(12) 13.02 d 126I 6.0 ± 1.9 I

13 1 667.69 3.26 d 132Te 7.1 ± 1.2 C 2.4

1 667.70(10) 2.28 h 132I 8.3 ± 1.2 I

0 667.5(1) 6.48 d 132Cs 6.2 ± 1.8 I

14 1s 694.80(20) 21.05 h 112Pd 41 ± 9 + e C 0.8

0 695.00(20) 12.40 d 126Sb 6.84± 0.29 I

15 0 698.330(20) 1.47 d 82Br 8.5 ± 0.9 I 1.2

0 698.37(10) 6.47 h 82mRb 2.5 ± 0.8(fix.) C

0 697.00(20) 12.40 d 126Sb 12.1± 2.2 I

16 0 719.56(15) 23.35 h 96Nb 35 ± 18 I 1.0

0 720.50(20) 12.40 d 126Sb 10.9± 0.9 I

17 0 722.50(10) 51.30min 98mNb 12.2± 0.7 I 1.7

0 722.10(20) 21.40 h 154Tb 13 ± 6 C

18 0 724.23(4) 63.98 d 95Zr 36.0± 2.0 C 0.9

0 724.30(30) 4.44 h 105Ru 33.0± 1.3 C

19 0 739.500(15) 2.75 d 99Mo 44.1± 1.3 C 1.3

0 739.480(20) 12.36 h 130I 10.7± 3.0 C
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Table 3. (Contd.)

No. Gen Eγ , keV T1/2
Residual
nuclei

Cross section,
mb

Type of cross
section

χ2

20 0 744.233(13) 5.59 d 52Mn 1.81± 0.20 C 1.2

0 743.36(10) 16.90 h 97Zr 19.5± 0.8 C

0 743.30(10) 9.01 h 128Sb 10.6± 1.1 C

21 0 776.490(30) 1.47 d 82Br 8.68± 0.30 I 1.5

0 776.52(10) 6.47 h 82mRb 1.4 ± 1.7 C

22 0 778.22(10) 23.35 h 96Nb 13 ± 2 I 2.3

0 778.22(4) 4.30 d 96Tc 2.71± 0.29 I

23 0 812.54(4) 4.30 d 96Tc 2.65± 0.14 I

0 813.60(20) 9.01 h 128Sb 11 ± 7 C

24 1 815.780(30) 12.74 d 140Ba 3.9 ± 0.6 C 1.8

1 815.780(30) 1.68 d 140La 6.3 ± 0.6 I

25 0 827.810(30) 1.47 d 82Br 7.3 ± 0.6 I 0.8

0 827.83(10) 6.47 h 82mRb 7 ± 11 C

26 0 834.830(21) 312.5 d 54Mn 10.1± 0.4 I 0.6

0 834.030(30) 14.10 h 72Ga 1.5 ± 0.7 C

0 833.990(30) 1.08 d 72As 4.2 ± 0.5 C

27 0 846.750(20) 2.58 h 56Mn 6.7 ± 1.6 C 2.0

0 847.025(25) 52.6min 134I 2.7 ± 1.2 C

28 0 849.90(10) 23.35 h 96Nb 13.2± 1.7 I 1.9

0 849.86(4) 4.30 d 96Tc 2.78± 0.19 I

29 0 881.610(30) 32.77 d 84Rb 6.9 ± 0.4 C 2.6

0 881.01(5) 6.24 d 206Bi 0.5 ± 0.5 C

30 0 884.40(10) 18.4min 104Tc 14 ± 8 C 1.9

0 884.090(25) 52.6min 134I 5.2 ± 0.9 C

31 0 935.544(12) 5.59 d 52Mn 1.9 ± 0.3 C 3.2

0 934.44(10) 10.15 d 92mNd 0.6 ± 0.4 I

32 0 983.500(10) 1.82 d 48Sc 1.35± 0.19 I 0.2

0 983.50(3) 15.97 d 48V 3.52± 0.17 C

33 0 1024.30(10) 9.52 h 91Sr 15.0± 1.8 C 1.7

0 1023.3(4) 5.76 d 120Sb 10.8± 0.3 I

34 0 1043.970(30) 1.47 d 82Br 6.5 ± 0.6 I 2.8

0 1044.08(10) 6.47 h 82mRb 2.5 ± 0.4fix C

35 0 1229.5(5) 4.45min 118mIn 6.2 ± 1.3 C

0 1229.5(5) 5.00 h 118mSb 7.7 ± 0.6 I

36 0 1312.100(30) 1.82 d 48Sc 1.04± 0.10 I 0.2

0 1312.00(3) 15.97 d 48V 3.37± 0.14 C

37 0 1317.47(5) 1.47 d 82Br 8.0 ± 0.4 I 1.5

0 1317.43(10) 6.47 h 82mRb 10 ± 12 C

38 1 1596.17(6) 12.74 d 140Ba 3.4 ± 0.3 C 5.2

1 1596.17(6) 1.68 d 140La 7.09± 0.27 I

39 0 1691.00(4) 60.20 d 124Sb 10.2± 0.6 I 1.1

0 1691.02(4) 4.18 d 124I 12.8± 0.8 I

Note: C is cumulative cross section, while I is independent cross section.
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Table 4. Cross sections for the formation of residual nuclei from a 237Np target

Residual
nuclei

Type of decay
and cross
section

Experimental
cross section,

mb

Theoretical
cross section,

mb

Residual
nuclei

Type of decay
and cross
section

Experimental
cross section,

mb

Theoretical
cross section,

mb

48Sc I(β−) 5.2± 1.5 − 122Sb C(β−, ε) 18.4± 1.7 13.75± 0.22
48V C(β+) 0.89± 0.2 − 124Sb C(β−) 16.68± 2.0 13.08± 0.22
56Mn C(β−) 25.35± 4.5 0.006± 0.006 126Sb C(β−) 13.91± 2.0 17.74± 0.22
74As I(β±) 3.58± 0.5 1.16± 0.09 127Sb C(β−) 14.74± 2.0 22.25± 0.22
83Rb C(ε) 6.13± 0.2 14.23± 0.1 128Sb C(β−) 90.2± 1.3 19.66± 0.52
84Rb C(β±) 13.33± 0.3 20.25± 0.69 132Te C(β−) 12.83± 3.0 3.2 ± 0.17
86Rb C(β−, ε) 17.72± 2.0 31.19± 0.56 133mTe C(β−) 18.44± 1.8 0.42± 0.006
85Sr C(ε) 9.6± 2.0 14.28± 0.18 124I I(β+, ε) 17.29± 2.0 19.65± 0.31
91Sr C(β−) 29.11± 3.0 25.02± 0.4 131I C(β−) 20.36± 1.9 30.55± 0.49
87Y C(β+, ε) 6.65± 0.1 7.04± 0.28 134I C(β−) 12.86± 1.5 2.04± 0.14
88Y C(β+, ε) 10.44± 0.9 17.7± 0.15 136Cs I(β−) 9.14± 0.4 3.57± 0.15
89Zr C(β+, ε) 4.62± 0.5 6.83± 0.19 138Cs C(β−) 14.93± 1.4 0.49± 0.03
95Zr C(β−) 59.24± 6.0 40.27± 0.07 131Ba C(β+, ε) 71.09± 13 16.82± 0.22
95Nb C(β−) 22.31± 2.0 49.25± 13 140Ba C(β−) 22.92± 2.0 0.28± 0.03
99Mo C(β−) 73.13± 6.0 36.33± 0.2 145Eu C(β+, ε) 0.83± 0.01 0.025± 0.01
95mTc C(β+, ε) 2.32± 0.15 0.63± 0.03 146Eu I(β+, ε) 4.2 ± 0.2 0.006± 0.006
96Tc C(β+, ε) 5.65± 0.9 1.73± 0.13 147Eu C(β+, ε) 1.93± 0.3 0.006± 0.006
103Ru C(β−) 62.91± 1.0 22.39± 0.16 146Gd C(β+, ε) 1.39± 0.02 -
105Ru C(β−) 19.63± 2.0 12.32± 0.01 152Tb C(β+, ε) 26.77± 3.0 -
106mRh I(β−) 55.32± 3.0 2.09± 0.05 171Lu C(β+) 2.41 -
106mAg Iβ+) 6.18± 0.8 0.82± 0.036 185Os C(ε) 2.76± 0.1 -
110mAg I(β−, ε) 17.97± 2.0 2.05± 0.1 188Pt C(ε) 0.46± 0.08 -
115gCd C(β−) 64.61± 6.0 3.14± 0.16 206Po C(ε) 3.78± 0.7 2.65± 0.1
117mCd C(β−) 17.44± 4.0 1.27± 0.11 230Pa I(ε) 1.6 ± 0.15 23.54± 0.19
125Sn C(β−) 6.59± 0.4 7.47± 0.22 234Np C(β+, ε) 2.21± 0.4 75.0± 1.16
118mSb I(β+, ε) 10.36± 1.3 9.04± 0.14 238Np C(β−) 15.77± 1.4 -
120Sb I(β+, ε) 14.71± 1.6 13.68± 0.04
calculate the coefficientsA andB by the least squares
method from several measurements i = 1, 2, . . . and
determine the cross sections for genetically related
residual nuclei as

σa = A
λa(λb − λa)

Kb(1− exp(−λat1))
, (4)

σb = B
λb

Kb(1− exp(−λbt1))
(5)
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+A
λ2
a

Kbλb(1− exp(−λat1))
,

where
Kb = NpNtargε(Eγ)Iγ(Eγ , b). (6)

If we replace the coefficientA byA′ and the coefficient
B byB′, Eq. (2) will be valid for the independent decay
of nuclei a′ and b′. Then, the cross sections for the
formation of residual nuclei can be found from the
2
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Table 5. Cross sections for the formation of residual nuclei from a 241Am target

Residual
nuclei

Type of decay
and cross
section

Experimental
cross section,

mb

Theoretical
cross section,

mb

Residual
nuclei

Type of decay
and cross
section

Experimental
cross section,

mb

Theoretical
cross section,

mb

48Sc I(β−) 1.11± 0.09 − 108Ph I(β−) 11.6± 1.5 6.0 ± 0.18
18V C(β+) 3.44± 0.11 − 112Pd C(β−) 21 ± 0.7 4.76± 0.20
52V C(β−) 2.3± 0.6 − 106mAg I(β+, β−) 2.5 ± 0.3 1.57± 0.05
52Mn C(β+, ε) 1.74± 0.11 − 110mAg I(β−, ε) 11.6± 2.4 3.86± 0.12
54Mn I(ε) 10.1± 0.4 − 112Ag I(β−) 20.4± 1.6 3.40± 0.26
56Mn C(β−) 6.7± 1.6 − 115Cd C(β−) 19.2± 0.9 6.70± 0.30
72Ga C(β−) 1.5± 0.7 0.38± 0.09 117mCd C(β−) 6.9 ± 0.7 2.66± 0.05
72As C(β+, ε) 4.2± 0.5 0.022 116mIn I(β−) 16.4± 0.8 5.44± 0.13
76As I(β−) 4.5± 1.6 1.45± 0.06 117mIn C(β−) 21.4± 1.0 9.87± 0.35
76Br C(β+) 0.6± 1.8 0.02± 0.01 118mIn I(β−) 6.5 ± 0.9 4.71± 0.21
82Br I(β−) 8.0± 0.3 4.79± 0.13 118mSb I(β+, ε) 7.6 ± 0.6 8.72± 0.09
84Br C(β−) 9.2± 1.4 1.16± 0.07 120Sb I(β+, ε) 10.8± 0.3 12.9± 0.6
84mBr I(β−) 2.7± 0.6 − 122Sb C(β−, ε) 14.0± 0.5 13.2± 0.1
82mRb C(β+, ε) 2.1± 1.0 1.84± 0.08 124Sb C(β−) 10.2± 0.4 13.4± 0.2
84Rb C(β+, β−) 6.9± 0.4 13.1± 0.2 126Sb C(β−) 7.3 ± 0.7 9.56± 0.23
86Rb C(β−) 2.02± 0.29 13.6± 0.1 127Sb C(β−) 7.3 ± 0.5 9.07± 0.19
89Rb C(β−) 11.1± 1.5 1.98± 0.13 128Sb C(β−) 3.3 ± 1.0 3.51± 0.08
91Sr C(β−) 15.0± 1.7 5.61± 0.20 119mTe I(β+, ε) 3.73± 0.15 11.2± 0.30
92Sr C(β−) 11.8± 0.5 3.03± 0.07 121Te C(β+, ε) 5.3 ± 0.5 29.3± 0.4
93Sr C(β−) 10.4± 2.2 1.09± 0.10 131mTe I(β−) 6.5 ± 1.1 3.18± 0.13
84mY I(β+, ε) 3.1± 0.9 − 132Te C(β−) 6.7 ± 0.5 1.30± 0.08
87Y C(β+, ε) 4.40± 0.27 9.22± 0.22 124I I(β+, ε) 10.6± 0.8 17.6± 0.2
88Y C(β+, ε) 6.2± 0.4 20.5± 2.4 126I I(β+, β−) 6.8 ± 1.8 20.6± 0.5
91mY C(β−) 14± 4 28.9± 5.0 130I I(β−) 10.0± 0.9 16.5± 0.5
95Y C(β−) 17.4± 3.6 3.69± 0.22 131I C(β−) 14.1± 0.9 20.2± 0.5
89Zr C(β+, ε) 3.79± 0.27 11.0± 0.4 132I I(β−) 8.3 ± 1.2 9.03± 0.14
95Zr C(β−) 36.3± 1.7 18.3± 0.4 133I C(β−) 9.3 ± 0.5 6.18± 0.14
97Zr C(β−) 20.4± 0.4 7.22± 0.32 134I C(β−) 4.3 ± 0.7 0.980± 0.07
92mNb I(β+, ε) 0.6± 0.4 9.42± 0.37 132Cs I(β+, β−) 6.2 ± 1.7 12.2± 0.4
95Nb C(β−) 16.8± 2.0 41.8± 0.5 136Cs C(β−) 6.6 ± 0.5 2.05± 0.04
96Nb I(β−) 13.6± 0.3 18.8± 0.4 140Ba C(β−) 3.64± 0.24 0.045± 0.03
97Nb C(β−) 13.3± 0.8 24.4± 0.5 140La I(β−) 7.4 ± 0.5 0.113± 0.03
98mNb I(β−) 13.9± 0.5 21.8± 0.4 135Ce C(β+, ε) 17.0± 2.5 3.75± 0.05
99Mo C(β−) 44.1± 1.3 42.2± 0.5 145Eu C(β+, ε) 1.65± 0.19 0.045± 0.02
96Tc C(β+, ε) 2.71± 0.28 3.40± 0.10 146Eu C(β+, ε) 1.16± 0.17 0.022± 0.01
104Tc C(β−) 22± 6 23.9± 0.3 154Tb C(β+, ε) 13 ± 6 −
103Ru C(β−) 62.9± 3.4 43.7± 0.5 156Tb C(ε) 1.7 ± 0.5 −
105Ru C(β−) 33.8± 1.2 29.0± 0.7 198Au C(β−) 1.33± 0.20 −
105Rh C(β−) 77± 13 36.8± 0.7 206Bi C(ε) 1.21± 0.25 1.19± 0.20
106mRh I(β−) 15.0± 2.3 27.9± 0.3 240Am I(ε) 45.3± 0.8 −
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relations

σa = A′ λa
Kb(1− exp(−λat1))

, (7)

σb = B′ λb
Kb(1− exp(−λbt1))

. (8)

We also obtained a similar equation for triplet lines.
The results of the analysis of the multiplet peaks are
presented in Table 3. In some cases, we performed the
fixed-value fitting of one of these cross sections (σa,
σb, or σc). Small values of χ2 prove correctness of the
analysis of complex lines for residual nuclei.

About 60 residual nuclei from the 237Np target and
80 residual nuclei from the 241Am target were found.
The results are demonstrated in Tables 4 and 5. The
errors in the tables are the largest deviation of the
given cross section from the average-weighted cross
section for several measurements.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The cross sections for the formation of nuclei from
the 231Np and 241Am targets are shown in Tables 4
and 5. The final results for the 241Am target are
presented in Table 5. For 44 nuclei, the cross sec-
tions were determined from several γ transitions: the
average-weighted value was found from two γ tran-
sitions in 33 cases, from three in seven cases, from
four in one case, and from six in three cases (Ta-
ble 2). Gamma transitions assigned to the decay of
the residual nuclei 7Be, 22Na, 24Na, 27Mg, and 28Al
were detected. The first three nuclei could be formed
in the p + 241Am and p + 27Al reactions (targets
packed in the aluminum capsule). If we assume that
they appear in the Al capsule, we obtain the following
cross sections for their formation: σ(7Be) = (5.5 ±
0.5) mb, σ(22Na) = (16.4 ± 1.4) mb, and σ(24Na) =
(12.3 ± 1.1)mb. These values agree within the errors
with the known values of the cross sections for the
formation of 7Be, 22Na, and 24Na nuclei on an Al
target exposed to 660-MeV protons [16]: σ(7Be) =
5.0mb, σ(22Na) = 15.0mb, and σ(24Na) = 10.8mb.
The residual nuclei 27Mg and 28Al could be pro-
duced in the (n, p) and (n, γ) reactions on an 27Al
target. Using the values presented in the literature for
these reactions, σ(Al(n, p)27Mg) = 52.5 mb [17] and
σ(al(n, γ)28Al) = (230± 5)mb [18], we can estimate
the flux of the secondary and background neutrons
in which the aluminum capsule finds itself (Fig. 1).
It is 4× 1012 n/min (En > 4.5 MeV) from the first
reaction and 2× 1011 n/min from the second one.
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The tables show not only the type of the cross
sections for the formation of the given residual nu-
cleus (I is an independent cross section, while C is a
cumulative cross section), but also the decay mode of
this nucleus (β− or β+ decay or electron capture). For
the sake of comparison, the theoretical cross sections
calculated on the basis of the cascade–evaporation
model are also presented [19].

The theoretical calculations were based on a simu-
lation of 106 events. Since the calculation yields only
independent cross sections for the residual nuclei, a
correction was introduced for the experimental cumu-
lative cross sections to make the comparison valid.
The isobar chain (A = const) of β-decaying n and
m residual nuclei, together with their isomers (one
nucleus is able to form more than one isomer), can
be represented as follows:
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where odd numbers denote the formation of isomeric
states of the residual nuclei whose ground states are
denoted by even numbers; νk,k+1, νk,k+2, and νk,k+3

are the branching ratios for the decay of the isomeric
state (k is odd); and νl,l+1 and νl,l+2 (l is even) are the
branching ratios for the decay of the ground states.
The cumulative yield of the nth residual nucleus is
calculated by the generalized formula that follows
from the physical interpretation of the independent
and cumulative yields:

σcum
n = σind

n +
n−1∑
m=1

Bmnσ
ind
m , (9)

Bmn = νmn +
n−1∑
l1>m

νml1νl1n

+
n−1∑
l2>l1

n−2∑
l1>m

νml1νl1l2νl2n + . . . .

Here, νmn ≡ 0 for oddm if n−m > 3 or for evenm if
n−m > 2. For even isobars, there exists a nucleus
g (and its isomer i) near the stability line that dis-
integrates through β− decay, β+ decay, and electron
capture. The formation of such nuclei is characterized
by independent cross sections. Tables 4 and 5 demon-
strate the theoretical cross sections for the ground
states of the residual nuclei. The calculation accuracy
parameter (deviation factor) could be the mean ratio
2
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Fig. 3.Dependence of the cross sections for the formation
of residual nuclei on the mass number of these nuclei
for the 237Np target. Points represent experimental da-
ta: (•) cumulative cross section, (◦) independent cross
section, and (�) isomeric cross section. The histogram
corresponds to the calculations based on the cascade–
evaporation model.

of the calculated cross section σcalc(i) to the experi-
mental cross section σexpt(i); that is,

〈H〉 = 10
√

〈(log[σcalc(i)/σexpt(i)])2〉, (10)

with the standard deviation being S(〈H〉) = 10
√
a,

where

a =

〈[∣∣∣∣log
(
σcalc(i)
σexpt(i)

)∣∣∣∣− log(〈H〉)
]2
〉
. (11)

On the basis of the data in Tables 4 and 5, we
obtain

237Np 〈H〉 = 12.1, S(〈H〉) = 7.6;
241Am 〈H〉 = 4.9, S(〈H〉) = 3.3.

Such a comparison with theoretical calculations
agrees with a similar one in [6]. We hope that our
experimental results will help to improve theoretical
models for such reactions.

Figures 3 and 4 show the cross sections for the
formation of residual nuclei versus their mass num-
ber. The residual nuclei are seen to be fission prod-
ucts [20]. However, the nuclei with A > 160, i.e.,
with mass numbers close to the target mass num-
ber, were formed only by spallation. As is seen from
Tables 4 and 5 and from the figures, residual nuclei
with a half-life from a few minutes to a few months
P
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Fig. 4.Dependence of the cross sections for the formation
of residual nuclei on their mass number for an 241Am tar-
get. Points represent experimental data: (�) independent
cross section, (�) isomeric cross section, and (•) cumu-
lative cross section. The histogram corresponds to the
calculations based on the cascade–evaporation model.

dominate. They decay to stable isotopes. The cross
sections for some residual nuclei—95mTc, 106mAg,
110mAg, and 118mSb—are small; that is why they
became an exception to the basic dependence. This
is due to the fact that only isomer states of these
residual nuclei were recorded. In [21], it was shown
that, for proton–nucleus reactions in a target from
tin isotopes, the isomeric ratio of the cross section for
high-spin-state formation to that for the formation of
a low-spin state depends on the number of emitted
neutrons and can be as large as 6 to 7. For example, it
is σ(95gTc(9/2+))/σ(95mTc(1/2−)) ∼ 7 for the 95Tc
nucleus. Therefore, we can conclude that the cross
sections for the isomeric nuclei dropping out of the
basic dependence (Figs. 3, 4) can be increased by
the cross section for the ground state; then, these
points could fall on the curve too. Analyzing the types
of formation of residual nuclei, we can see that the
experimental numbers of neutron-rich and neutron-
deficient nuclei are equal. Our results were compared
with the results of [5]. The comparison shows that,
because of the great intensity of our beam [three or-
ders of magnitude higher (1.3× 1016p/h)], the num-
ber of residual nuclei is larger than in [5].
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Abstract—In proton–nucleus reactions, the ratios of the cross sections for 18 isomeric pairs were
measured by the induced-activity method as functions of the initial-proton energy and of the number of
emitted nucleons. The isotopic effect and the cross sections for charge-exchange reactions are discussed.
The experimental values of the cross sections for disintegration reactions like (p, xpyn) are compared with
the theoretical values calculated on the basis of the cascade–evaporation model. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The present article reports on part of a series
of studies that we performed using 0.66-, 1-, and
8.1-GeV proton beams in irradiating targets from
enriched tin isotopes [1, 2]. The use of a high-
energy proton beam (Ep = 8.1 GeV) enabled us to
obtain new data on the mechanism of formation
of light (A < 40) and medium-mass (60 < A < 80)
nuclei. The formation of these nuclei is described by
the intranuclear-cascade model combined with the
statistical multifragmentation model (SSM) [1, 2].
Our experimental data are compared with the results
obtained on the basis of the cascade–evaporation
model [3] and on the basis of the SSM, where a
liquid–gas phase transition is taken into account for
a hot excited nucleus formed after the completion of
the cascade [4].
In addition to the formation of light and medium-

mass nuclei, these investigations recorded a large
number of nuclei featuring isomeric states. Such iso-
meric pairs obtained at high energies of incident par-
ticles were studied in [5–8]. In this article, we discuss
the energy dependence of the isomeric ratios of the
cross sections and their dependence on the number
of emitted nucleons.

2. EXPERIMENTAL PROCEDURE

Targets from the enriched tin isotopes 112Sn
(92.6%), 118Sn (98.7%), 120Sn (99.6%), and 124Sn
(95.9%) were irradiated by proton beams accelerated
to energies of 1 or 8.1 GeV at the synchrophasotron of
the Laboratory of High Energies at the Joint Institute

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia

2)Nuclear Physics Institute, CZ-25068 Řež, Czech Republic
1063-7788/02/6505-0776$22.00 c©
for Nuclear Research (JINR, Dubna). The beam in-
tensities amounted to 4.97 × 1012 or 2.27 × 1013 pro-
ton/h, respectively. The reaction 27Al(p, 3pn)24Na,
whose cross sections at the above energy values are
known to be 10.8 ± 0.8 mb [9] and 8.65 ± 0.05 mb
[10], is used to monitor the beams. After the lapse
of some time from irradiation, the γ activity induced
in the targets was measured by γ spectrometers
equipped with HpGe detectors, the source–detector
distances being 8, 15, and 26 cm in these measure-
ments. The regular measurements of the γ spectra
of the irradiated targets were performed for one year
in order to single out long-lived residual nuclei. The
residual nuclei were identified according to character-
istic γ lines and known half-lives [11]. The γ spectra
were processed by means of the DEIMOS code [12].
We obtained the production cross sections for

18 residual nuclei in the ground and in an isomeric
state. The results are quoted in the tables.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

For all four target species, Table 1 displays the
experimental values of the cross sections for residual
nuclei from 123Sn to 84Rb and the cross sections for
light isotopes 44Sc and 52Mn. For almost all residual
nuclei, we obtained the cross-section values at Ep =
1 and 8.1 GeV. Nuclei of the 44Sc and 52Mn isotopes
were formed only atEp = 8.1GeV, while the isomeric
state 52mMn (T1/2 = 21.1 min) was detected only
with the 118Sn target. The table gives types of cross
sections, the independent (I) and the cumulative (C)
one, along with the decay types (β−, β+) and spin–
parities (IP ). For the errors in the cross-section val-
ues, we took the largest deviation of the cross sections
2002 MAIK “Nauka/Interperiodica”
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124Sn

eV 1 GeV 8.1 GeV

Calc. Expt. Expt. Calc.

35 ± 1 52.7 ± 1.5

1.2 ± 0.1 2.4 ± 0.3

2.7 ± 0.3 4.4 ± 0.5

12 1.37 ± 0.20 1.9 ± 0.3

2 1.06 ± 0.15 1.2 ± 0.1

3

10 0.84 ± 0.14 0.44 ± 0.05

15

15 0.78 ± 0.08 0.62 ± 0.05

0 26.875 11 ± 1 12.6 ± 1.2 9.73

0 9.625 5.5 ± 1.0 3.6 ± 0.5 4.54

1 2.375 0.75 ± 0.06 0.40 ± 0.04 1.135

5 27 3.85 ± 0.40 10.4 ± 1.4 14.15

16 0.95 ± 0.20 1.20 ± 0.25

0 17.68 9.24 ± 0.70 10.1 ± 0.3 11.15

16.63 16.3 ± 1.5 15.3 ± 0.5 10.54

2 16.75 0.74 ± 0.06 0.75 ± 0.03 9.61

0 13.38 10.1 ± 1.0 6.5 ± 0.4 6.975

2 6.75 3.85 ± 0.30 2.6 ± 0.2 3.447

20 0.95 ± 0.20 1.10 ± 0.78

65 7.25 3.6 ± 0.2 2.60 ± 0.25 2.595

2 1.375 1.45 ± 0.20 0.72 ± 0.20 0.487

15 0.40 ± 0.08 0.28 ± 0.13

04 1 0.35 ± 0.10 0.487

26 9.375 3.4 ± 0.3 4.1 ± 0.5 8.8

22 1.13 ± 0.15 1.30 ± 0.15
Table 1. Cross sections for the formation of residual nuclei, σ (in mb), for 112,118,120,124Sn targets at Ep = 1 and 8.1 GeV

Residual
nucleus

Cross-
section
type

IP

112Sn 118Sn 120Sn

8.1 GeV 1 GeV 8.1 GeV 1 GeV 8.1 G

Expt. Calc. Expt. Expt. Calc. Expt. Expt.
123mSn I− 3/2+

123gSn I− 11/2−

124Sb I− 3−

122Sb I− 2−

120Sb I+ 8− 0.43 ± 0.40 1.10 ± 0.
118Sb I+ 8− 0.46 ± 0.03 1.4 ± 0.3 1.16 ± 0.10 1.9 ± 0.
117Sb I+ 5/2+ 2.7 ± 0.4 7.5 ± 1.5 22.6 2.2 ± 0.2 3.2 ± 0.
116mSb I+ 8− 1.00 ± 0.15 2.4 ± 0.2 7.447 1.15 ± 0.02 1.07 ± 0.
116gSb I+ 3+ 1.8 ± 0.2 4.6 ± 0.6 1.00 ± 0.15 1.00 ± 0.
115Sb I+ 5/2+ 2.2 ± 0.4 4.05 ± 0.25 8.766 2.0 ± 0.2 1.60 ± 0.
117mSn I 11/2− 16.3 ± 1.5 41.8 ± 2.5 0.847 11.5 ± 3.0 17.3 ± 2.
113gSn C+ 1/2− 9.2 ± 1.0 19 ± 2 2.275 10 ± 1 6.5 ± 1.
110Sn C+ 0+ 32.2 ± 2.0 43.47 2.7 ± 0.2 2.9 ± 0.3 4.4 1.7 ± 0.1 1.0 ± 0.
117gIn I− 9/2+ 8.3 ± 0.6 14.3 ± 1.0 5.398 5.5 ± 0.5 14.3 ± 0.
117mIn I− 1/2− 3.6 ± 0.2 6.0 ± 0.6 2.1 ± 0.3 2.36 ± 0.
116mIn I− 5+ 7.25 ± 0.70 13 ± 1 30.7 10 ± 1 11.4 ± 1.
114mIn I− 5+ 15.1 ± 1.5 31.2 ± 2.8 18.62 17.8 ± 0.4 16 ± 2
113gIn I 1/2− 1.8 ± 0.1 20.5 ± 0.15 18.55 1.2 ± 0.2 1.7 ± 0.
111In C+ 9/2+ 103.6 ± 10.0 63.38 18.6 ± 1.0 26.8 ± 2.0 14 16.1 ± 0.9 12.8 ± 2.
110gIn I+ 7+ 11.1 ± 1.0 34.23 7.2 ± 0.2 8.7 ± 0.5 10.53 6.5 ± 0.5 5.4 ± 0.
110mIn I+ 2+ 13.8 ± 1.0 1.8 ± 0.2 3.85 ± 0.30 2.1 ± 0.3 2.25 ± 0.
109In C+ 9/2+ 45.7 ± 2.0 32.95 10.2 ± 0.2 11.1 ± 0.9 7.175 7.3 ± 0.4 6.40 ± 0.
108mIn I+ 6+ 2.8 ± 1.0 10.85 3.6 ± 0.3 3.2 ± 0.4 1.9 3.03 ± 0.15 1.9 ± 0.
108gIn C+ 1− 12.9 ± 1.3 1.5 ± 0.2 1.02 ± 0.17 0.82 ± 0.08 0.58 ± 0.
107In C+ 9/2+ 17.5 ± 1.0 11.25 2.6 ± 0.2 2.3 ± 0.2 1.675 2.0 ± 0.1 1.20 ± 0.
117mCd C− 11/2− 1.9 ± 0.2 1.42 ± 0.
117gCd C− 1/2+ 0.93 ± 0.03 0.98 ± 0.
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124Sn

eV 1 GeV 8.1 GeV

Calc. Expt. Expt. Calc.

3 10.38 4.1 ± 0.4 4.5 ± 0.6 9.8

7 16.5 7.0 ± 0.7 5.5 ± 0.2 13.18

08 2.5 0.7 ± 0.2 0.48 ± 0.17 0.73

2 4.25 4.7 ± 0.5 5.7 ± 1.0 5.8

2 4.375 5.6 ± 0.8 (6.3 ± 0.7)a) 5.31

2 6.125 7.6 ± 0.8 9.1 ± 1.1 5.92

5 5.625 5.7 ± 0.7 5.1 ± 0.5 5.89

7 9.125 7.0 ± 0.5 4.9 ± 0.5 7.42

5 9.375 11.5 ± 1.0 7.8 ± 1.2 4.825

4 5.875 4.8 ± 0.2 2.8 ± 0.1 2.433

10 1.3 ± 0.3 1.0 ± 0.1

2 3.975 2.0 ± 0.25 1.68 ± 0.16 1.094

19 1.125 0.8 ± 0.1 1.7 ± 0.2 2.392

5 6.5 5.1 ± 0.8 3.8 ± 0.7 4.177

1 5.5 3.0 ± 0.3 1.48 ± 0.06 1.95

05 1.625 0.70 ± 0.08 0.23 ± 0.02 0.32

4 6.625 6.7 ± 0.7 3.4 ± 0.6 5.8

2 1.25 ± 0.20

8.35 6.3 ± 0.8 3.8 ± 0.5 6.2

4 4.6 ± 0.5 2.75 ± 0.30

70 7 7.2 ± 0.8 5.0 ± 0.5 4.42

5 7.125 4.94 ± 0.35 3.0 ± 0.2 2.76

13 0.9 ± 0.2 0.45 ± 0.04

2 2.75 3.3 ± 0.4 4.1 ± 0.4 3.57

0 13.125 8.8 ± 0.9 5.7 ± 0.4 7.02

20 2 1.34 ± 0.39 0.57 ± 0.20 1.1354

07 0.78 ± 0.22 0.65 ± 0.13 0.122
Table 1. (Contd.)

Residual
nucleus

Cross-
section
type

IP

112Sn 118Sn 120Sn

8.1 GeV 1 GeV 8.1 GeV 1 GeV 8.1 G

Expt. Calc. Expt. Expt. Calc. Expt. Expt.
115gCd C− 1/2+ 0.91 ± 0.90 1.26 ± 0.10 7.65 1.9 ± 0.1 2.8 ± 0.
111mCd I 11/2− 4.8 ± 0.3 7.5 ± 0.5 12.5 5.9 ± 0.4 7.1 ± 0.
104Cd C+ 0+ 10.5 ± 1.1 14.57 1.8 ± 0.2 1.71 ± 0.20 2.35 1.5 ± 0.3 0.94 ± 0.
1113Ag C− 1/2− (1.06 ± 0.13)a) 2.1 ± 0.
112Ag I− 2− 0.82 ± 0.08 0.5 ± 0.1 2.425 2.4 ± 0.6 2.6 ± 0.
111Ag I− 1/2− 4.7 ± 0.2 3.85 3.9 ± 0.4 4.8 ± 0.
110mAg I− 6− 1.6 ± 0.2 2.75 ± 0.30 3.975 3.7 ± 0.4 3.8 ± 0.
106mAg I+− 6− 3.75 ± 0.30 4.85 7.5 ± 0.7 8.4 ± 1.0 8.85 6.9 ± 1.0 6.5 ± 0.
105gAg C+ 1/2− 31.7 ± 0.3 10.55 21 ± 2 22.8 ± 1.0 9.65 18.6 ± 0.8 12.4 ± 1.
104gAg I+ 5+ 15.8 ± 1.0 8.875 9.0 ± 0.9 7.1 ± 0.3 5.4 7.9 ± 0.5 5.3 ± 0.
104mAg I+ 2+ 12.5 ± 1.2 2.75 ± 0.45 3.0 ± 0.3 3.2 ± 0.3 1.93 ± 0.
103Ag C+ 7/2+ 17.8 ± 2.0 13.2 7.0 ± 0.4 5.6 ± 1.0 4.725 5.5 ± 0.6 3.5 ± 0.
112Pd C− 0+ 0.27 ± 0.03 0.72 ± 0.10 0.4 1.94 ± 0.
101Pd C+ 5/2+ 12.0 ± 1.2 22.4 9.45 ± 0.80 10.0 ± 1.5 11.62 7.7 ± 1.0 4.9 ± 0.
100Pd C+ 0+ 12.1 ± 1.3 18.2 7.7 ± 0.8 6.4 ± 0.8 6.92 5.9 ± 0.3 3.9 ± 0.
99Pd C+ 5/2+ 1.2 ± 0.1 0.77 ± 0.08 2.17 1.18 ± 0.20 0.46 ± 0.
102gRh I+− 6+ (2.61 ± 0.39)a) 1.525 4.2 ± 1.2 5.8 ± 1.0 5.275 4.7 ± 0.
102mRh I+− 2− (1.0 ± 0.1)a) 1.4 ± 0.3 2.5 ± 0.7 1.9 ± 0.
101mRh I+ 9/2+ (13.4 ± 1.0)a) 5.275 6 ± 1 6.4 ± 0.7 8.325 9.2 ± 0.9 8 ± 1
101gRh I+ 1/2− (4.5 ± 0.5)a) 5.1 ± 0.6 5.26 ± 0.60 5.1 ± 0.6 4.1 ± 0.
100Rh I+ 1− (19.2 ± 2.0)a) 7.55 8.6 ± 1.4 8.7 ± 0.9 7.825 10.3 ± 1.3 6.26 ± 0.
99mRh I+ 9/2+ (14.9 ± 1.5)∗ 10.8 9.1 ± 1.0 8.4 ± 1.2 6.575 7.2 ± 0.4 5.5 ± 0.
99gRh I+ 1/2− 3.0 ± 0.4 1.48 ± 0.20 1.75 ± 0.30 2.0 ± 0.2 1.30 ± 0.
103Ru C− 3/2+ 0.34 ± 0.02 0.075 0.50 ± 0.05 0.86 ± 0.07 1.325 1.5 ± 0.1 1.5 ± 0.
97Ru I+ 5/2+ 18.0 ± 1.5 23.2 15.7 ± 2.0 10.0 ± 0.9 14.22 11.5 ± 2.1 9.9 ± 1.
95Ru C+ 5/2+ 5.14 ± 0.20 11.25 4.5 ± 0.3 1.66 ± 0.15 3.83 3.1 ± 0.4 1.44 ± 0.
94Ru C+ 0+ 3.6 ± 0.4 4.175 1.5 ± 0.3 1.2 ± 0.2 0.825 0.98 ± 0.03 0.71 ± 0.
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124Sn

.1 GeV 1 GeV 8.1 GeV

pt. Calc. Expt. Expt. Calc.

± 0.8 9.375 6.5 ± 0.6 4.4 ± 0.5 5.6
± 1.0 8.75 5.35 ± 0.30 5.88 ± 0.60 5.39
± 0.07 0.47 ± 0.05 0.47 ± 0.05
± 0.5 5.5 3.6 ± 0.4 3.2 ± 0.3 2.47
± 0.10 0.30 ± 0.05 0.28 ± 0.03
± 0.35 1.625 2.40 ± 0.35 1.6 ± 0.4 0.69

± 0.14 0.75 0.97 ± 0.10 1.0 ± 0.12 0.65
± 0.43 0.625 1.2 ± 0.2 1.6 ± 0.2 1.298

± 0.8 2.625 5.15 ± 0.35 6.6 ± 0.6 1.176
± 0.20 12.65 3.4 ± 0.3 2.93 ± 0.15 7.99
± 0.10 0.125 0.85 ± 0.15 0.85 ± 0.03 0.041
± 0.6 0.875 4.52 ± 0.50 0.81
± 0.2 0.625 1.12 ± 0.20 1.7 ± 0.1 0.081
± 0.6 9.125 5.17 ± 0.60 5.64
± 0.2 1.8 ± 0.2
± 0.25 2.36 2.0 ± 0.2 4.1 ± 0.2 1.014
± 0.2 0.74 ± 0.22 1.47 ± 0.12
± 0.15 4.5 2.23 ± 0.15 3.6
± 0.15 1.74 ± 0.20
± 0.33 1.04 ± 0.10

± 0.3 1.46 ± 0.20
± 0.1 0.69 ± 0.20
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Table 1. (Contd.)

Residual
nucleus

Cross-
section
type

IP

112Sn 118Sn 120Sn

8.1 GeV 1 GeV 8.1 GeV 1 GeV 8

Expt. Calc. Expt. Expt. Calc. Expt. Ex
96Tc I+ 7+ 3.86 ± 0.41 5.45 7.2 ± 0.8 8.4 ± 1.6 7.275 6.4 ± 0.8 5.6
95gTc I+ 9/2+ 10.6 ± 1.3 11.45 8.3 ± 0.6 10.6 ± 1.0 8.6 8.4 ± 0.6 7.5
95mTc I+ 1/2− 1.27 ± 0.17 1.05 ± 0.06 1.25 ± 0.04 0.98 ± 0.07 0.67
94mTc I+ 7+ 8.7 ± 0.9 11.325 7.14 ± 0.40 7.2 ± 0.7 5.9 6.4 ± 0.3 5.4
94gTc I+ 2+ 1.86 ± 0.22 1.4 ± 0.3 1.1 ± 0.1 0.76 ± 0.15 0.72
93gTc I+ 9/2+ 7.96 ± 0.60 7.25 5.14 ± 0.50 4.3 ± 1.0 2.625 4.6 ± 0.5 3.50
93mTc C+ 1/2− 2.1∗ 1.00 ± 0.25 0.6 ± 0.1
96Nb I− 7+ 0.41 ± 0.03 0.025 0.39 0.5 ± 0.07 0.35 0.46 ± 0.04 0.72
95gNb C− 9/2+ (0.13 ± 0.03)a) 0.1 0.72 ± 0.11 1.0 ± 0.1 0.825 0.84 ± 0.04 1.35
95mNb I− 1/2− (0.20 ± 0.02)a) 0.88 ± 0.15 0.80 ± 0.08
90Nb I+ 8+ 13 ± 1 6.225 9.5 ± 1.0 10.1 ± 1.1 2.95 9.1 ± 0.9 8.4
93mMo I+ 21/2+ 2.2 ± 0.1 15.05 3.8 ± 0.4 3.96 ± 0.20 13.425 3.56 ± 0.30 3.66
90Mo C+ 0+ 4.9 ± 0.5 1.321 2.1 ± 0.1 2.2 ± 0.2 0.275 1.54 ± 0.20 1.58
87Zr C+ 9/2+ (3.8 ± 0.5)a) 4.05 9.3 ± 1.1 1.6 5.2 ± 0.5 6.7
86Zr C+ 0+ 6.57 ± 0.60 1.725 2.7 ± 0.3 4.0 ± 0.2 0.525 2.0 ± 0.2 2.9
87mY I+ 9/2+ (14.3 ± 1.5)a)* 14.375 (9.9 ± 1.0)∗ 5.8 ± 0.8 10.6 4.1 6.4
87gY I+ 1/2− 5.55 ± 0.60 3.4 ± 0.6 1.2 ± 0.3 1.8
86mY I 8+ 5.65 ± 0.20 6.5 4.1 ± 0.4 5.8 ± 0.2 2.925 3.45 ± 0.20 5.17
86gY I+ 4+ 1.85 ± 0.25 1.2 ± 0.1 2.80 ± 0.38 1.17 ± 0.20 2.0
84mRb I 6− 2.725 1.45 ± 0.44 3.575 1.57
84gRb I+− 2− (1.4 ± 0.1)∗ 1.75 ± 0.53 1.57
52gMn I+ 6+ 1.95 ± 0.15 1.74 ± 0.20 1.33
52mMn I+ 2+ 0.41 ± 0.05
44mSc I+ 6+ 2.3 ± 0.2 1.95 ± 0.20 2.1
44gSc I+ 2+ 1.3 ± 0.3 0.93 ± 0.20 1.0

à) Ep = 0.66 GeV.
∗ Cumulative.
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Fig. 1. Cross sections for certain reactions versus the
proton energy: (•) 120mSb, (�) 106mAg, (�) 90Mo, (�)
116mIn, (�) 96Tc, and (×) 115Sb.

in various measurements of the γ spectra from the
mean cross section; these include statistical errors
in determining the efficiencies of the detectors, the
number of particles in the beam, and the number of
nuclei in the target.
We considered charge-exchange reactions of the

(p, xn) type that lead to the formation of Sb isotopes,
simple (p, 2N ) (N stands for nucleons) reactions, and
(p, xpyn) disintegration reactions. Our main objec-
tive was to obtain and to discuss the cross sections
for the formation of high-spin isomeric states and to
investigate the dependences of isomeric ratios on the
number of emitted nucleons. In order to determine
the independent values of the cross sections, we also
calculated the cross sections for the formation of par-
ent isotopes (the results are presented in Table 1). In
addition, we calculated the cross sections for the for-
mation of neutron-deficient and neutron-rich nuclei
(Table 1) in order to investigate the isotopic effect.
Charge-exchange reactions proceeding at the

proton energy of Ep = 0.66 GeV in targets from sep-
arated tin isotopes were discussed in detail elsewhere
[13]. By comparing the cross sections for the above
reactions at the three values of the proton energy, we
find that their energy dependence is weak. For some
reactions, the cross sections increase by a factor of
about 2 upon going over from Ep = 0.66 to 8.1 GeV,
while, for others, the cross sections decrease or
remain constant within the experimental errors (see
Table 1 and Fig. 1). In [13], the cross sections were
calculated on the basis of the model of quark–gluon
strings [14], which describes the fast stage of pSn
P
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Fig. 2. Cross sections for the formation of residual nuclei
versus the target mass number At (Ep = 8.1 GeV): (a)
nuclei undergoing β+ and β− decays [(•) 90Mo, (�)
104Cd,(�) 96Nb, (×) 112Ag, (�) 111Ag, and (�) 110mAg]
and (b) high- and low-spin nuclei [(•) 96Tc, (�) 106mAg,
(×) 93mMo, (�)90Nb, and (�) 99gRh].

interaction. Since a weak energy dependence was
observed, we can draw a conclusion about the char-
acter of emitted neutrons—namely, the formation of
(x− 1) neutrons in (p, xn) reactions is caused by the
evaporation mechanism [13].
As can be seen from Table 1, the cross sections

for the formation of product nuclei in disintegration
reactions are weakly dependent on energy. Using the
data from [8] at Ep = 0.66 GeV, we can compare the
cross sections at three values of the proton energy. In
some cases, the cross sections first decrease in going
over from Ep = 0.66 to 1 GeV and then slowly in-
crease upon going over toEp = 8.1GeV (Fig. 1). The
total cross sections for reactions induced by protons
in Cd isotopes exhibit such an energy dependence [15]
(mass region of tin nuclei). In many cases, the cross
sections first decrease and then remain constant.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 3. Isomeric ratios R of the cross sections versus
the numberXn of emitted neutrons (Ep = 8.1 GeV): (•)
117Cd, (◦) 117In, (�) 110In, (�) 108In, (♦) 95Tc, (�) 99Rh,
(�) 94Tc, (�) 86Y, (�) 95Nb, (�) 84Rb, and (×) 104Ag.

Now, we discuss the isotopic effect {the depen-
dence of the cross sections for the formation of resid-
ual nuclei on the third projection of the target isospin
[T3 = (Nt − Zt)/2] and on the third projection of the
residual-nucleus isospin [t3 = (N − Z)/2]}. Table 1
presents the values of the cross sections for 20 resid-
ual nuclei undergoing β− decay. As can be seen from
Fig. 2a and from Table 1, the cross sections for the
formation of these nuclei increase with increasing
number of neutrons in the target nucleus. On the
contrary, the cross sections decrease for all β+-active
nuclei. This means that the reaction cross sections
depend on the nucleonic content of the target nucleus
and residual nuclei. Figure 2b shows the cross sec-
tions for the formation of high-spin states of residual
nuclei versus the target mass number (that is, versus
the number of emitted neutrons). As can be seen
from this figure, the cross sections in question first
increase, attain a maximum, and then decrease; at
the same time, the cross sections for the formation
of low-spin nuclei decrease steadily with increasing
number of emitted neutrons (99gRh, I = 1/2−). The
initial increase in the cross sections for high-spin
states with increasing target mass number At can be
explained by an increase in the number of cascade
particles, so that the nucleus acquires a high angular
momentum upon their emission. As the number of
emitted neutrons increases, the fraction of evaporated
particles also grows. Together with photons emit-
ted in the deexcitation process, these particles lead
to a decrease in the probability of the formation of
high-spin states—that is, to the broadening of the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 4. Isomeric ratios R [for 44Sc(6+, 2+)] versus the
number ∆A of emitted nucleons according to data from
(•) [5], (�) [6], and (�) this study.

aftercascade spin distribution and, consequently, to
the smoothing of the spin dependence of the reaction
cross section. Furthermore, it is known that the re-
action cross sections decrease with increasing num-
ber of emitted particles. From Fig. 2b, it can also
be seen that the cross sections for the formation of
the 8+ state of a residual β+-active nucleus 90Nb
slowly decrease with increasing At (by a factor of 2 in
response to a change in At from 112 to 124), whereas
σ(99gRh(1/2−), β+) decreases by a factor of about
7 upon going over from the target nucleus of 112Sn
to that of 124Sn. In the case of 90Nb, the isotopic
effect is operative, and the character of the variation
in the cross section differs from that for other high-
spin nuclei.
In Table 2, the so-called isomeric ratios R =

σ(Ih)/σ(Il) of the cross sections for the formation
of high-spin and low-spin states are given for 18
isometric pairs. It can be noted that, for the majority
of nuclei of the Tc isotopes, the ratios R are great and
exhibit a strong dependence on the number of emitted
nucleons. This ratio increases by a factor greater than
2 upon going over the 112Sn to the 124Sn target
(see Table 2 and Fig. 3). For the neighboring 95Nb
nucleus, the isomeric ratio R is predominantly below
unity and is nearly invariable within the experimental
errors in passing from one target to another. The same
is true for 84Rb as well.
2
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112,118,120,124 i at Ep = 1 and 8.1GeV

124Sn

V 1 GeV 8.1 GeV

.41 3.00 ± 0.45 3.15 ± 0.50

.46 4.05 ± 0.990 8.67 ± 2.10

.19 2.17

.23 4.05 ± 0.91 2.36 ± 0.25

.93 3.65 ± 0.91 2.60 ± 1.39

.25 3.65 ± 0.88 2.80 ± 0.39

.33 3.69 ± 0.86 2.72 ± 0.60

.29 1.38 ± 0.23

.64 1.38 ± 0.25 6.6 ± 0.9

.2 5.44 ± 1.25 12.5 ± 1.87

11.37 ± 1.30

.3 (0.96 ± 0.17)a) 11.4 ± 1.6

12.0 ± 3.4

.53 2.87 ± 0.52

.30 2.7 ± 0.4

.14 2.7 ± 0.82 1.28 ± 0.13

.5 2.0 ± 0.6
Table 2. Isomeric ratios of the cross sections,R = σ(Ih)/σ(Il), for residual nuclei in reactions on Sn target nucle

residual
nucleus

112Sn 118Sn 120Sn

8.1 GeV 1 GeV 8.1 GeV 1 GeV 8.1 Ge

117Cd(11/2−, 1/2+) 2.04 ± 0.20 1.46 ± 0

117In(9/2+, 1/2−) 2.3 ± 0.3 2.34 ± 0.50 2.60 ± 0.47 6.00 ± 0

116Sb(8−, 3+) 0.56 ± 0.10 0.52 ± 0.08 1.15 ± 0.21 1.07 ± 0

110In(7+, 2+) 0.8 ± 0.1 3.9 ± 0.4 2.30 ± 0.22 3.1 ± 0.5 2.40 ± 0

108In(6+, 1−) 0.22 ± 0.13 2.40 ± 0.35 3.10 ± 0.64 3.7 ± 0.4 3.30 ± 0

104Ag(5+, 2+) 1.26 ± 0.15 3.27 ± 0.62 2.37 ± 0.35 2.45 ± 0.32 2.75 ± 0

102Rh(6+, 2−) 2.61 ± 0.39 3.00 ± 1.06 2.30 ± 0.75 2.47 ± 0

101Rh(9/2+, 1/2−) (2.94 ± 0.44)a) 1.20 ± 0.23 1.22 ± 0.24 1.8 ± 0.3 1.93 ± 0

99Rh(9/2+, 1/2−) (4.97 ± 0.80)∗ 6.15 ± 1.10 4.8 ± 1.1 3.6 ± 0.5 4.26 ± 0

95Tc(9/2+, 1/2−) 8.34 ± 1.49 7.90 ± 0.63 8.40 ± 0.96 8.6 ± 0.9 11.2 ± 1

95Nb(9/2+, 1/2−) 0.65 ± 0.12 0.82 ± 0.16 1.20 ± 0.25

94Tc(7+, 2+) 4.70 ± 0.73 5.1 ± 1.1 6.55 ± 0.80 8.4 ± 1.8 7.5 ± 1

93Tc(9/2+, 1/2−) 4.30 ± 1.46 7.67 ± 1.53

87Y(9/2+, 1/2−) 1.80 ± 0.27 1.8 ± 0.3 3.40 ± 0.76 3.55 ± 0

86Y(8+, 4−) 3.00 ± 0.43 3.42 ± 0.50 2.1 ± 0.3 2.95 ± 0.40 2.59 ± 0

84Rb(6−, 2−) 0.83 ± 0.35 0.96 ± 0

52Mn(6+, 2+) 4.24 ± 0.71

44Sc(6+, 2+) 1.77 ± 0.45 2.1 ± 0.5 2.1 ± 0

à) Ep = 0.66 GeV.
∗ Cumulative.
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Fig. 5. Results obtained by comparing the experimental
values of the cross section for the 124Sn target with
the results of the calculations based on the cascade–
evaporation model.

For the simple reactions 118Sn + p→116mSb + 3n,
112Sn + p → 110In + 2p+n, and 112Sn + p → 108In +
2p + 3n, the ratio R is less than unity. It grows as
the number of emitted neutrons increases and then
remains constant. This can be explained by the fact
that the emission of three neutrons or of two protons
and one neutron does not generate a high angular
momentum of the residual nucleus; as a result, a
high-spin state is formedwith a lower probability after
deexcitation than a low-spin state. As the number
of cascade nucleons increases, a higher angular
momentum is transferred to the residual nucleus,
with the result that the probability of the formation
of a high-spin state increases. The same is true for
the residual nucleus 117In as well. Although R > 1
for the simple reaction 118Sn(p, 2p)117In, this ratio
increases by a factor greater than 3 at Ep = 8.1 GeV
(see Table 2 and Fig. 3) for the reactions where a
larger number of neutrons is emitted from 124Sn.
Figure 3 displays R as a function of the number Xn

of emitted neutrons. It can be noted that, forXn ≥ 9,
the isomeric ratio remains constant for many isomeric
pairs [with the exception of 95Tc(9/2+, 1/2−) and
94Tc(7+, 2+)]. From the data presented in Table 2,
it follows that, within the experimental errors, R is
independent of energy. This is not so for the 117In
nucleus, in which case the ratio R increases for
the 120Sn and 124Sn targets upon going over from
Ep = 0.66 GeV [8] to Ep = 1 and 8.1 GeV (Table 2).

Relying on the experimental isomeric ratios of the
cross sections at the proton energy Ep = 0.66 GeV
from [8] and on the yields of photonuclear reactions
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 6. Ratios of the experimental values of the cross
sections for the 112Sn and 124Sn targets atEp = 8.1GeV
to the results of the calculations based on the cascade–
evaporation model versus the product T3t3/A of the third
projections of the nuclear isospins.

at Eγmax = 4.5 GeV [15] for the same enriched tin
isotopes, we can draw the following conclusions: (i)
In many cases, the isomeric ratios are almost equal
for proton–nucleus and photonuclear reactions; that
is, these ratios are independent of the projectile type,
but they depend on the individual properties of the
residual nucleus. (ii) The isomeric ratios of the cross
sections and of the yields remain constant with in-
creasing number of emitted neutrons (for Xn > 9).
This is true for almost all isomeric pairs, including
44Sc(6+, 2+) (except for the case where the residual
nuclei are those of Tc). For 44Sc nuclei formed in
proton–nucleus reactions at high proton energies,
the isomeric ratio R of the cross sections versus the
number of emitted nucleons is shown in Fig. 4 for a
wide region of target masses. It can be seen that R
first grows and then remains constant.
Thus, we have corroborated here the conclusions
2
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drawn in [8, 15], where the character of variations
of the isomeric ratios of the cross sections and
yields was discussed qualitatively. In other words,
we can state that the character of their variations
is associated with the presence of a neutron halo
in heavy tin isotopes (evaporation of neutrons from
the nuclear surface) and with the occurrence of the
absorption of negative secondary pions by the surface
quasideuterons (π− + d→ n+ n), along with the
cascade–evaporation process.
For the above disintegration reactions at Ep =

8.1GeV, we have calculated the cross sections on the
basis of the cascade–evaporation model [16]. For the
ground nuclear states, the results of the calculations
are in satisfactory agreement with the experimental
cross-section values. The results of the calculation
are presented in Table 1. In these calculations, 50 000
events were generated for each target. For the 124Sn
target, Fig. 5 shows the results obtained by compar-
ing the experimental cross-section values with the re-
sults of the calculations. We plot the ratio σexpt/σtheor

along the abscissa and the number of events along
the ordinate. A sharp peak in the region of unity
can be seen in this figure. In 25, 10, and 9 events
of the set of 53 events considered in our study, the
calculated values of cross sections differ from their
experimental counterparts within 25, 50, and 75%,
respectively. Although the agreement between the
experimental and the calculated values of the cross
sections is by and large satisfactory, we observed a
considerable discrepancy for some residual nuclei (see
Table 1). A clearer presentation of our results is given
in Fig. 6, which displays the ratios of the experimental
and theoretical values of the cross sections for the
112Sn and 124Sn targets versus T3t3/A, where T3

and t3 are, respectively, the third projection of the
target-nucleus isospin and the third projection of the
isospin of the residual nucleus whose mass number
is A. It can be seen that this ratio is close to unity
for many residual nuclei; however, there are many
cases where it is as large as 4 to 5. In the case
of the 124Sn target, the ratio σexpt/σtheor is greater
for nuclei undergoing β+ decay (90Nb, 90Mo, 94Ru,
86m,gY, etc.), while, in the case of the 112Sn target,
this ratio is greater primarily for nuclei undergoing
β− decay (103Ru, 96Nb, 95m,gNb, etc.). It is probable
that, within the cascade–evaporation model, it is nec-
essary to refine the dependence of the cross sections
on the nucleonic content of the target and of residual
nuclei.
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Abstract—By using a beam of fast reactor neutrons, the angular distributions of gamma radiation from the
(n,n′γ) reaction on 162Dy are measured with respect to the axis of this beam. The values of the multipole-
mixing parameter δ are found for many gamma transitions between levels whose spins and parities are
known. c© 2002 MAIK “Nauka/Interperiodica”.
For the 162Dy nucleus, the last review of data on
the energies of the levels and gamma transitions,
as well as on their features, was given in [1]. The
diagram of the levels and gamma transitions in
162Dy is well established up to an excitation energy
of 1.9 MeV; however, information about multipole
mixtures in gamma transitions between these levels
is scanty. The present study extends considerably our
knowledge in this realm.

Simple regularities in the behavior of the multi-
pole-mixing parameter δ as a function of the number
of neutrons were revealed in [2] for gamma transitions
from low-lying collective states in spherical even–
even nuclei. For nonspherical nuclei, an attempt was
made in [3] to associate a positive sign of δ with
the contribution of the two-quasiparticle proton state
(pð411 ↑ 411 ↓) to the relevant collective state. How-
ever, a further accumulation of information about
multipole mixtures in nonspherical nuclei is required
for establishing reliable dependences of the sign of δ
on the number of neutrons in such nuclei.

1. EXPERIMENTAL RESULTS

The spectra of gamma rays from the reaction
162Dy(n, n′γ) were measured in an extracted beam
of fast neutrons from the IR-8 reactor installed at
the Russian Research Centre Kurchatov Institute.
A 162Dy2O3 sample of mass 10 g and thickness
0.96 g/cm2 was enriched in 162Dy to 95.2% (the
content of the A = 161, 163, and 164 isotopes in
the sample was 0.95, 3.12, and 0.73%, respectively).
Gamma radiation was recorded by a germanium de-
tector that had an efficiency of 10% and a resolution of
2.1 keV at Eγ = 1.3MeV. In the measured γ spectra,

*e-mail: kurkin@polyn.kiae.su
1063-7788/02/6505-0785$22.00 c©
we were able to single out 270 γ lines associated with
162Dy. In order to find the angular distributions of
gamma rays, their spectrum was measured at angles
of θ = 90◦, 105◦, 115◦, 125◦, 142◦, and 150◦ with
respect to the neutron-beam axis. The 1195.109-
keV (1−–2+) transition, for which we adopted a
theoretical angular distribution with a2 = −0.016 and
a4 = 0, where a2 and a4 are the coefficients in the
expansion of the angular distribution in Legendre
polynomials, was used to normalize the intensities of
the gamma radiation in question at various angles.
A more detailed account of the procedure that we
employ here is given in the review article [4].

For gamma transitions in 162Dy, Table 1 presents
the energies for the angle of θ = 90◦ and the da-
ta on the relative intensities for the angle of θ =
125◦. The energies (Ei) of the levels from which
the above transitions proceed are given in the third
column of Table 1. At a reactor in Riga, the spec-
trum of gamma rays from the reaction 162Dy (n, n′γ)
induced by fast reactor neutrons was measured at
1.3 MeV with a resolution of 1.9 keV; the results of
these measurements were reported in [5]. The data
in Table 1 are sometimes at odds with those results.
At energies below 1.5 MeV, the spectrum that was
determined in our measurements shows almost all
gamma lines that Berzins et al. [5] attributed to
162Dy; however, these authors did not eliminate the
background gamma lines from the interaction of fast
neutrons with a germanium-detector material [for
these background lines, they observed an enhanced
intensity ratios in the reactions 162Dy(n, n′γ) and
161Dy(n, γ)162Dy] and the gamma lines correspond-
ing to the reactions 161,163,164Dy(n, n′γ) induced by
fast neutrons and to the reaction 162Dy(n, γ)163Dy
induced by intermediate-energy neutrons, which are
present in the neutron beam used (the 162Dy isotope
2002 MAIK “Nauka/Interperiodica”
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is characterized by a very large resonance integral).
In composing Table 1, we eliminated all of the afore-
mentioned gamma lines using the results of measure-
ments for a natural mixture of disprosium isotopes
and the results for the reaction 164Dy(n, n′γ) that
were reported in [6].

The spectrum of gamma rays from the (n, n′γ)
reaction on a natural mixture of isotopes receives
a significant contribution from the A = 161 and
163 isotopes, and this facilitated the elimination of
gamma lines of these isotopes from the spectrum
measured with a 162Dy sample containing admixtures
of these isotopes. For some reasons that we do
not understand, the gamma-ray spectrum that we
measured for energies in excess of 2.3 MeV differs
significantly from that presented in [5], but, as might
have been expected, it agrees with the data for the
reaction 161Dy(n, γ)162Dy [1] in what is concerned
with the γ-line energy. In view of discrepancies with
[5], we deemed it reasonable to present our data on
the gamma-ray spectrum of 162Dy in Table 1.

With the aid of our data, we composed the diagram
of energy levels and gamma transitions in 162Dy up to
an energy of 1.9MeV. The results are displayed in Ta-
ble 2, which presents the values of the coefficients a2

and a4 and the values that we found for the multipole-
mixing parameter δ or for the multipolarity ML, the
errors in a2, a4, and δ corresponding to a 68% con-
fidence level. The errors in the parameter δ and its
signs are given according to the system adopted in
the journal Nuclear Data Sheets [1]. In order to
determine the populations of magnetic substates of
levels, we used, as a rule, the angular distributions
for pure E2 or E1 transitions proceeding from the
same level (see [4]). In Table 2, the energies of the
first three levels were taken from the review article of
Helmer and Reich [1]; for higher levels, the energies
are given according to the data of the present study.
The features of the levels were also borrowed from the
aforementioned review article [1].

The deexcitation of levels at energies above
1.9 MeV is reflected in Table 1. Here, we used
levels found in the (d, p) and (d, t) reactions [5] and
established the diagrams of their deexcitation. For
this, it was assumed that the Eγ > 1.9 MeV γ lines
found in the gamma-ray spectra of nonspherical even
nuclei by studying the (n, n′γ) reaction induced in
these nuclei by fast reactor neutrons correspond, as a
rule, to transitions proceeding to the 0+, 2+, and 4+

levels of the rotational band built on the ground state.
This statement is suggested by the dependence of the
population of levels on their excitation energy [4].
P

2. DISCUSSION OF THE RESULTS

In Table 3, information aboutmultipolemixtures in
162Dy gamma transitions that was taken from various
sources (see [7–10]) is contrasted against the results
of our present study. In [7], the parameters |δ| were
estimated on the basis of the internal-conversion co-
efficients for gamma transitions associated with the
(n, γ) reaction. In [8], [9], and [10], the parameters δ
were found from data on the (n, γγ(θ)), (n, n′γ(θ)),
and (α, 2nγ) reactions, respectively. The adapted val-
ues of δ from [1] are quoted in the penultimate column
of Table 3, while our data are given in its last column.
Below, we comment on the values of δ for some

individual gamma transitions.
807.502-keV transition from the 2+ level at

888.156 keV. Indicating that δ < +∞ for this transi-
tion, we assume that the quantity δ may be very large,
but that it remains positive within the errors.
882.272-keV transition from the 3+ level at

962.932 keV. Data from [9], which are consistent
with our results, were ignored in [1]. For the value of
δ = +3.7, which was indicated in [1], our experiment
would have led to +0.32 for a2 rather than to 0.095.
Such a distortion of the angular distribution is not
expected. The value of a4 rules out the second, very
small, value of δ.
795.315-keV transition from the 4+ level at

1060.990 keV. The value of δ = −5.5 must corre-
spond to a2 = −0.28; at the same time, the exper-
iment yields a2 = −0.147(17). The second value of
δ = −0.85(5) has been ruled out on the basis of data
on the conversion coefficient found in [7].
917.089-keV transition from the 5+ level at

1182.743 keV. The second, very small, value of δ is
ruled out by a large value of a4.
634.15-keV transition from the 5+ level at

1182.743 keV.We discarded the second, small, value
of δ = −0.06(6), adopting the estimate obtained in [7]
for δ.
944.444-keV transition from the 3− level at

1210.093-keV. An admixture ofM2 radiation in this
transition was revealed more reliably than in [8].
1319.65-keV transition from the 0+ level at

1400.31 keV. In studying 162Ho decay, which is char-
acterized by the half-life of T1/2 = 15 min, the Jπ =
0+ level at 1400.2 keV was found on the basis of the
1319.6-keV gamma transition and of the 1400.3-keV
E0 transition (see [1]). In [3] and, later on, in the
review article of Helmer and Reich [1], the 1317.7-
keV gamma transition was used for the deexcitation
of this 0+ level, while the level itself was assigned the
energy of 1398.035 keV. We deem that this replace-
ment is erroneous. The isotropic angular distribution
of 1319.65-keV gamma rays and the population of the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 1. Energies and intensities of 162Dy gamma rays

Eγ , keV Iγ , arb. units Ei, kev Eγ , kev Iγ , arb. units Ei, keV

80.65(2) 62(3) 80.6 643.84(22) 0.29(5) 1826.6
114.0(4) < 0.50(9) 1297.0 647.53(3) 3.03(16) 1535.7
149.26(3) < 0.90(9) 652.1(3) 0.19(4)
185.001(4) 100(5) 265.7 654.1(4) 0.18(5)
212.96(6) 1.66(10) 1570.8 671.55(10) 0.83(6) 1634.5; 1886.8
220.08(24) 0.26(4) 678.05(13) 0.42(4) 1739.1; 1973.0
233.00(5) 0.18(6) (1530.0) 681.0(5) 0.18(5)
235.98(8) 1.41(9) 1297.0 684.8(2) 0.16(3) 1574.3; 2008.7
247.43(8) 0.60(10) 1210.1 694.19(16) 0.57(6)
258.17(5) 1.5(2) 1895.5 697.29(2) 5.3(3) 962.9
260.08(2) 17.9(9) 1148.2 711.69(13) 0.60(6) 2008.7
282.88(2) 15.5(8) 548.5 714.5(3) 0.40(5)
289.4(3) 0.16(4) 720.8(4) 0.09(3)
295.05(3) 2.86(15) 1570.8 728.40(13) 0.82(6) 1691.4
311.22(5) 1.20(8) 1669.1 747.24(13) 0.51(5) 1895.5; 2071.7
321.96(4) 1.37(8) 1210.1 748.96(13) 0.58(5)
329.7(3) 0.20(4) 765.3(4) 0.10(4) 1826.7
334.074(13) 5.97(30) 1297.0 770.96(22) 0.22(4) 2128.8
347.49(5) < 1.1(2) (1408.5)1530.0 775.93(6) 1.12(7) 1324.5
361.4(3) 0.19(4) 1570.8; 1637.3 779.57(19) 0.30(5) 1840.4
372.20(9) 1.65(10) 920.7 791.3(4) 0.29(4)
391.71(22) 0.57(5) 1574.3 795.315(10) 9.6(5) 1061.0
411.4(11) 0.09(3) 801.3(6) 0.12(4)
443.7(5) 0.17(5) 803.33(10) < 1.0(7) 1766.4
451.99(22) 0.33(4) 1634.5 807.502(10) 27.1(14) 888.2
489.08(20) 0.16(4) 812.8(3) 0.17(3)
523.5(3) 0.24(4) 815.8(5) 0.12(3)
529.19(12) 0.80(6) 1739.1; 1826.6 819.76(13) 0.40(10) 1782.7
542.1(5) 0.19(5) 834.2(4) 0.15(4) 1895.5
543.54(10) 1.12(8) 1691.4; 1840.3 842.27(7) 1.41(9) 1390.6
551.1(6) 0.27(4) 1910.2 849.50(25) 0.41(5) 1739.1; 1910.2
556.33(19) 0.45(5) 1766.4 853.8(4) 0.09(3)
565.77(22) 0.27(5) 857.54(6) 0.96(6) 1745.8
572.95(4) 2.03(11) 1634.5; 1535.7 863.77(13) 0.54(5) 1826.6
588.8(5) 0.12(5) 1863.8 867.93(13) < 0.70(5)
590.6(3) 0.28(5) 1739.1 872.7(4) 0.16(3)
610.93(22) < 0.39(5) 878.54(10) 0.84(6) 1766.4; 1840.6
616.2(5) 0.17(5) 882.272(10) 26.1(13) 962.9
618.3(3) 0.30(6) 1766.4 888.150(10) 24.4(12) 888.2
622.40(14) 0.38(4) 888.2 894.39(22) 0.35(5) 1782.8
630.48(22) < 0.48(5) 1840.0 900.80(19) 0.44(5) 1863.8
632.4(4) 0.22(5) 911.86(22) 0.31(4) 1973.0
634.15(6) 1.49(9) 1182.7 917.089(15) 5.41(28) 1182.7
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 1. (Contd.)

Eγ , keV Iγ , arb. units Ei, keV Eγ , keV Iγ , arb. units Ei, keV

923.8(3) 0.13(3) 1886.8 1217.76(13) 0.69(6)
932.5(3) 0.22(4) 1895.0 1219.94(4) 2.00(11) 1485.6
937.12(8) 0.80(6) 1485.6 1223.31(25) 0.26(5)
942.12(11) 0.51(5) 1490.6 1227.8(6) 0.21(8)
944.444(20) 3.94(20) 1210.1 1232.3(4) 0.11(3)
947.35(16) 0.51(5) 1910.2 1252.79(6) 1.44(8) 1518.4
951.8(5) 0.065(26) 1840.6 1257.3(9) 0.09(4)
956.0(3) 0.19(4) 1261.6(9) 0.09(4)
957.3(6) 0.13(4) 1267.6(6) 0.14(4)
969.74(10) 0.68(5) 1518.4 1276.56(2) 11.5(6) 1275.8; 1357.9
972.7(10) 0.056(28) 1284.6(5) 0.13(3)
975.64(6) 1.26(8) 1863.8 1297.9(3) 0.18(3)
980.352(20) 5.11(26) 1061.0 1308.64(6) 1.78(10) 1574.3
992.75(29) 0.15(4) 2053.5 1312.3(3) 0.28(4)

1007.0(4) 0.27(4) 1895.5 1317.3(5) 0.24(5)
1010.09(19) 0.51(5) 1973.0 1319.65(4) 2.44(14) 1400.3
1015.0(3) < 0.40(10) 1330.0(3) 0.15(4)
1017.7(3) 0.28(5) 1332.4(3) 0.20(4)
1022.07(16) 0.38(5) 1910.2 1342.56(19) 0.33(4)
1025.74(19) 0.39(5) 1574.3 1350.75(25) 0.23(4)
1041.6(5) 0.24(5) 1355.5(3) 0.23(4)
1047.0(3) 0.42(6) 1372.80(4) 3.50(18) 1453.4
1058.76(16) 0.59(5) 1324.4 1391.9(4) 0.21(5)
1073.2(4) 0.30(4) 1394.5(4) 0.34(5)
1079.1(5) 0.12(3) 1404.0(3) 0.31(4) 1669.1
1082.0(6) 0.07(3) 1428.1(5) 0.09(4)
1088.40(19) 0.45(5) 1636.9 1438.6(3) 0.28(4)
1092.23(2) 4.26(22) 1357.9 1462.92(13) 0.81(6) 1728.6
1107.8(4) 0.12(4) 2071.7 1464.7(5) 0.16(4)
1109.9(3) 0.12(4) 1468.9(15) 0.10(5)
1114.3(4) 0.23(4) 1473.40(19) 0.55(5) 1739.1
1124.95(3) 2.36(13) 1390.6 1483.2(5) 0.06(3)
1129.424(15) 6.7(3) 1210.1 1489.5(4) 0.20(4)
1134.2(3) 0.24(5) 1496.2(6) 0.10(4)
1141.94(25) 0.42(4) 1501.5(4) 0.09(3) 1766.4
1152.9(6) 0.19(4) 1516.6(3) 0.14(4) 1782.7
1166.2(5) 0.15(4) 1556.67(10) 1.65(9) 1637.3
1169.2(5) 0.13(4) 1574.82(25) 0.22(4) 1840.4
1173.6(6) 0.16(4) 1585.62(10) 1.09(7) 1666.3; 1851.3
1178.4(6) 0.20(4) 1602.1(3) 0.33(4)
1187.74(4) 2.52(13) 1453.4 1610.95(10) 0.99(7) 1691.4
1195.109(15) 9.0(4) 1275.8 1637.32(22) 0.40(4) 1637.3
1213.7(6) 0.07(3) 1647.90(10) 1.21(7) 1728.6
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 1. (Contd.)

Eγ , keV Iγ , arb. units Ei, keV Eγ , keV Iγ , arb. units Ei, keV
1658.5(3) 0.16(4) 1739.1 2361.7(8) 0.29(6) 2361.7
1665.29(10) 0.90(6) 1745.9; 1615.3 2369.4(6) 0.28(6) 2369.4
1684.1(5) 0.18(4) 2378.2(9) 0.22(7) 2458.9
1686.76(29) 0.35(5) 1951.6 2382.2(10) 0.21(7) 2382.2
1698.3(5) 0.057(27) 2394.8(10) 0.21(6) 2394.8
1702.08(19) 0.54(5) 1782.7; 1702.1 2399.4(6) 0.35(6) 2480.1
1708.3(10) 0.12(5) 1708.3 2406.8(7) 0.22(5) 2487.5
1710.4(13) 0.08(5) 2418.1(7) 0.16(6)
1716.0(7) 0.17(5) 1983.0 2425.6(12) 0.20(7)
1722.8(4) 0.20(5) 2429.6(10) 0.25(8) 2510.3
1728.58(19) 0.66(6) 1728.6 2438.4(6) 0.33(6) 2438.4
1735.7(4) 0.17(4) 1816.4 2442.4(10) 0.22(7) 2523.1
1757.3(6) 0.15(4) 1837.0 2448.4(6) 0.18(5) 2529.1
1759.63(26) 0.28(4) 1840.6; 1759.6 2455.3(10) 0.26(6) 2536.5
1767.9(7) 0.083(24) 2473.6(6) 0.53(7) 2554.3
1773.80(19) 0.46(5) 1773.8 2490.9(6) 0.43(6) 2571.6
1782.8(2) 0.61(6) 1782.7 2505.4(6) 0.44(6)
1787.56(22) 0.41(5) 2053.5 2519.7(5) 0.47(6) 2519.7
1798.2(4) 0.20(4) 1798.2 2532.3(12) 0.19(6)
1806.15(9) 1.29(8) 1886.8 2537.5(10) 0.23(7) 2536.5
1814.92(9) 1.22(8) 2080.6 2550.6(11) 0.21(7) 2550.6
1832.36(22) 0.19(5) 1832.4 2554.5(10) 0.25(7) 2554.3
1837.04(13) 0.31(4) 1837.0 2562.7(13) 0.14(5) 2643.4
1871.00(22) 0.31(4) 1951.6 2569.3(12) 0.16(6) 2569.3
1902.29(12) 1.09(7) 1983.0 2587.4(7) 0.30(5)
1918.80(13) 1.00(7) 1999.2 2628.9(10) 0.08(3) 2709.6
1940.3(5) 0.17(5) 2644.7(7) 0.31(5)
1943.7(6) 0.20(5) 2663.0(8) 0.13(4) 2663.0
1950.6(3) 0.38(4) (1951.6) 2669.4(15) 0.14(5) 2750.1
1982.55(13) 1.08(7) 1983.0;18O 2674.5(14) 0.16(6)
1992.0(10) 0.13(4) 2692.3(20) 0.11(6)
1999.98(16) 1.00(7) 1999.2; 2080.6 2697.4(11) 0.21(7) 2778.1
2022.1(3) 0.38(4) 2022.1 2721.3(9) 0.13(5) 2801.9
2047.79(19) 0.50(5) 2128.6 2734.3(10) 0.23(5)
2067.92(16) 0.56(5) 2745.0(12) 0.26(5)
2111.3(4) 0.28(4) 2192.0 2756.9(11) 0.22(5)
2124.1(4) 0.21(3) 2786.2(12) 0.12(5)
2135.8(4) 0.12(4) 2216.4 2788.6(8) 0.19(6) 2788.6
2233.3(5) 0.30(5) 2314.0 2803.2(8) 0.26(5) 2801.9
2240.4(4) 0.35(5) 2240.4 2821.1(16) 0.15(6) 2901.8
2274.7(12) 0.23(8) 2355.4 2829.0(13) 0.20(7) 2909.6
2290.4(7) 0.27(7) 2290.4 2840.2(10) 0.23(5) 2960.9
2305.9(8) 0.38(7) 2386.6 2902.1(6) 0.27(5) 2901.8
2310.4(4) 0.90(9) 2310.4 2929.2(10) 0.12(4) 2929.2
2315.1(12) 0.29(9) 2314.0; 2394.8 2945.3(9) 0.13(4)
2323.8(8) 0.22(6) 2323.8; 2404.5 2990.6(7) 0.23(4) 3071.3; 2990.6
2331.0(5) 0.33(6) 2999.1(14) 0.06(3)
2339.6(8) 0.17(6) 2339.6 3014.0(9) 0.27(5) 3014.0
2345.7(7) 0.28(6) 2345.7 3148.2(9) 0.10(3)
2349.7(7) 0.28(6) 2349.7
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Table 2.Diagram of levels and gamma transitions in 162Dy that manifest themselves in the (n, n′γ) reaction

Ei, keV Jπ
i K–Jπ

f K Eγ , keV Iγ , arb. units a2 a4 δ ± ∆δ; ML
80.6598 2+0–0+0 80.65 62

265.6628 4+0–2+0 185.061 100 +0.33(11) −0.19(11) E2
548.5184 6+0–4+0 282.88 15.5 +0.44(4) −0.07(6) E2
888.156(7) 2+2–0+0 888.150 24.4 +0.225(10) −0.043(15) E2

2+2–2+0 807.502 27.1 −0.035(12) −0.010(16) +57 +∞− 33
920.72(9) 8+0–6+0 372.20 1.65 +0.22(7) −0.14(10) E2
962.932(10) 3+2–2+0 882.272 26.1 +0.095(13) +0.107(17) +41 +34− 13

3+2–4+0 697.29 5.3 −0.197(23) +0.009(31) |δ| > 45
1060.990(8) 4+2–2+0 980.352 5.11 −0.340(29) −0.056(35) E2

4+2–4+0 795.315 9.6 −0.147(17) −0.097(24) +12 +18− 4
1148.24(3) 2−2–2+0 260.08 17.9 +0.20(6) −0.05(8) +0.04 +16− 11
1182.743(15) 5+2–4+0 917.089 5.41 +0.039(24) +0.21(3) +50 +50− 20

5+2–6+0 634.15 1.49 −0.05(8) +0.01(10) −7 +2− 20
1210.093(13) 3−2–2+0 1129.424 6.7 −0.16(3) +0.05(4) +0.05 + 5− 3

3−2–4+0 944.444 3.94 −0.007(34) +0.015(42) −0.10 + 3− 5
3−2–2+2 321.96 1.37 −0.215(30) −0.006(41) −0.01 ±3
3−2–3+2 247.43 0.60
3−2–4+2 149.26 < 0.90

1275.769(15) 1−0–0+0 1276.56 < 11.5
1−0–2+0 1195.109 9.0 −0.016(7) +0.002(11) 0.00 ± 4

1297.006(16) 4−2–3+2 334.074 5.97 −0.215(30) −0.01(4) −0.01 ± 3
4−2–4+2 235.98 1.41
4−2–5+2 114.0 < 0.50

1324.45(9) 6+2–4+0 1058.76 0.59
6+2–6+0 775.93 1.12

1357.89(2) 3−0–2+0 1276.56 < 11.5
3−0–4+0 1092.23 4.26 −0.020(21) −0.01(4) −0.07 ± 4

1390.61(3) 5−2–4+0 1124.95 2.36 −0.14(4) +0.03(6) +0.05 ± 5
5−2–6+0 842.27 1.41

1400.31(4) 0+0–2+0 1319.65 2.44 −0.006(33) −0.016(40) Isotropic
1408.48(5)? –4+0 1141.94 0.42

–4+2 347.49 < 1.1
1453.43(3) 2+0–2+0 1372.80 3.50 +0.34(3) −0.06(5) +0.40 ±15

or+1.25+ 5− 70
2+0–4+0 1187.74 2.52 +0.15(3) +0.04(3) E2

1485.60(4) 5−5–4+0 1219.94 2.00
5−5–6+0 937.12 0.80

140.63(11) 7+2–6+0 942.12 0.51
1518.43(6) 5−0–4+0 1252.79 1.44

5−0–6+0 969.74 0.67
1530.01(5) 6−2–5+2 347.49 < 1.1

6−2–4−2 233.00 0.18
1535.69(3) 4+4–2+2 647.53 3.03 +0.36(5) −0.08(7) E2

4+4–3+2 572.95 < 2.03
1570.83(3) 3−3–3−2 361.4 0.19

3−3–1−0 295.05 2.86 −0.10(5) −0.06(7) (E2 +M2)
3−3–3−0 212.96 1.66

1574.30(6) 4+0–4+0 1308.64 1.78 +0.35(6) +0.07(8) +0.04 +8− 10
4+0–6+0 1025.74 0.39
4+0–2+2 684.8 < 0.16
4+0–5+2 391.7 < 0.57

1634.48(10) 5+4–3+2 671.55 0.83
5+4–4+2 572.95 < 2.03
5+4–5+2 451.99 0.33
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Table 2. (Contd.)

Ei, keV Jπ
i K–Jπ

f K Eγ , keV Iγ , arb. units a2 a4 δ ± ∆δ; ML
1636.92(19) 7−1–6+0 1088.40 0.45
1637.33(10) 1−1–0+0 1637.32 0.40

1−1–2+0 1556.67 1.65 +0.05(5) 0.0 E1
1666.28(10) 0+0–2+0 1585.62 < 1.09
1669.11(5) 4−3–4+0 1404.0 0.31

4−3–3−0 311.22 1.20
1691.37(13) 2−1–2+0 1610.95 0.99 +0.20(14) −0.02(16) (E1)

2−1–3+2 728.40 0.82
2−1–2−2 543.30 < 1.12

1728.56(10) 2+0–0+0 1728.58 0.66

2+0–2+0 1647.90 1.21 +0.07(8) −0.08(10) −0.20 +15− 18
or+4.3 +57− 18

2+0–4+0 1462.92 0.81
1739.06(19) 3−1–2+0 1658.5 0.16

3−1–4+0 1473.40 0.55
3−1–4+2 678.05 0.42
3−1–2−2 590.6 0.28
3−1–3−2 529.19 0.80

1745.77(6) 1+1–2+0 1665.29 0.90 −0.03(6) 0.0 E1 orM1
1+1–2+2 857.54 0.96 −0.09(7) 0.0 E1 orM1

1766.44(19) 3−3–4+0 1501.5 0.09
3−3–2+2 878.54 < 0.84 +0.20(15) 0.0
3−3–3+2 803.33 < 1.0
3−3–2−2 618.3 0.30
3−3–3−2 556.33 0.45

1782.74(13) 2+1–0+0 1782.81 ≤ 0.61
2+1–2+0 1702.08 0.54
2+1–4+0 1516.6 0.14
2+1–2+0 894.39 0.35
2+1–3+0 819.76 0.40

1826.70(12) 4−3–3+2 863.77 0.54
4−3–4+2 765.3 0.10
4−3–5+2 643.84 0.29
4−3–4−2 529.19 < 0.80

1840.56(19) 3+1–2+0 1759.63 0.28
3+1–4+0 1574.82 0.22
3+1–3+2 878.54 < 0.84
3+1–4+2 779.57 0.30
3+1–3−2 630.48 < 0.48
3+1–4−2 543.54 < 1.12

1851.3(5) 4−1–4+0 1585.62 < 1.09
1863.80(7) 3−2–2+0 1782.81 < 0.61

3−2–2+2 975.64 1.25
3−2–3+2 900.80 0.44
3−2–1−0 588.8 0.12

1886.81(9) 4+0–2+0 1806.15 1.29 +0.38(5) +0.08(7) E2
4+0–3+2 923.8 0.13
4+0–3−2 671.55 < 0.83

1895.50(10) 2+–2+0 1814.92 ≤ 1.22
2+–2+2 1007.0 0.27
2+–4+2 834.2 0.15
2+–2−2 747.24 < 0.51
2+–1−1 258.17 1.5
Note: The errors are given in units of the last digit.
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level in the (n, n′) reaction comply well with the Jπ =
0+ spin–parity assignment for the 1400.31-keV level.
1372.80-keV transition from the 2+ level at

1453.43 keV. Two values of δ are quoted in Table 2.
By using the experimental value of the conversion
coefficient, α(expt.) = 0.0021(5) [1], it is impossible
to choose unambiguously a value of δ, since a contri-
bution from a E0 transition is expected here.
295.05-keV transition from the 3− level at

1570.83 keV. In the case of E2 radiation, a2 	 +0.3
is expected for the (3−3–1−0) transition, but the
observed value is a2 = −0.10(5). For this transition,
the conversion coefficient found experimentally is
αK(expt.) = 0.014 (20%), with the theoretical value
being αK(E2, theor.) = 0.00492 [5]. It follows that
the 295.05-keV transition involves a mixture of E2
and M1 radiations and that the spin–parity of the
1570.83-keV level is not 3− or that this is a mixture
of E2 andM3 multipoles. The latter cannot be ruled
out since it is assumed in [1] that ∆K = 3 for this
transition.
1308.64-keV transition from the 4+ level at

1574.30 keV. The smaller value of δ that is presented
in Table 2 was chosen because of the value of a4 =
+0.07(8)—for the second value of δ = +0.85(20), it
is expected that a4 = −0.08. The value of α(expt.) =
0.0023(6) [1] only makes it possible to suggest the
presence of a small admixture of theE0 transition.

1585.62-keV from the 0+ level at 1666.28 keV.
The angular distribution of gamma rays of this energy
is compatible with the Jπ = 0+ assignment for the
initial state in this transition.
1665.29- and 857.54-keV transitions from the

1+ level at 1745.77 keV. For both transitions, the
angular distributions rule out the Jπ = 2+ and 3−
spin–parity assignments for the initial state, but they
are compatible with J = 1. In Table 2, the value of a2

is indicated for a4 = 0.
Peak at 878.54 keV. This peak corresponds to two

transitions from the levels at 1766.44 keV (3−–2+)
and at 1840.56 keV (3+–3+). The E1 transition in
the first case must correspond to a2 = −0.20, while
theM1 transition in the second case must have a2 =
+0.26. In all probability, this peak, which exhibits the
value of a2 = +0.20(15), is associated predominantly
with the deexcitation of the level at 1840.5 keV.
1806.15-keV transition from the 4+ level at

1886.81 keV. For a reason that we do not understand,
this transition was not observed in [5] in the (n, n′γ)
and (n, γ) reactions. For this, comparatively intense,
transition, the angular distribution complies well with
that which is expected for a 4+–2+ transition.

1814.92-keV transition from the 2+ level at
1895.50 keV. Two different versions of placement
P

were used in [1] for this transition. The angular dis-
tribution for it is compatible with that for the 2+–0+

transition.
Level at 1408.48 keV? A low population for this

level in the (n, n′) reaction induced by fast reactor
neutrons rules out the J = 3, 4, and 5 assignments
for it. If the 347.49-keV transition is of the E1 type
[1], the spin value of J = 6 is ruled out as well. No
strong arguments in favor of the existence of this level
are given in the review article of [1].

3. COMPARISON OF THE VALUES OF δ
FOR 160Dy AND 162Dy

Among nonspherical nuclei, the 160Dy is a rara
avis in the sense that multipole mixtures in gamma
transitions between low-lying excited states have
been thoroughly explored for it. This was due to
the possibility of obtaining, upon neutron capture,
radioactive 160Tb, which has the half-life of T1/2 =
72 d and a well-ramified diagram of its beta decay
into 160Dy. The deexcitation of two isomers of 160Но
furnishes additional information [11]. The multipole
mixtures in gamma transitions between low-lying
states in dysprosium isotopes other than 160Dy and
162Dy have received virtually no study.
Table 4 displays the values of δ for the deexcita-

tion of some levels of γ- and β-rotational bands in
160,162Dy. First of all, the higher absolute values of δ
for the deexcitation of the γ-vibrational band in 162Dy
are worthy of note. This is due to the lower energies of
the levels in this band and, hence, to a higher degree
of its collectivization. That the signs of δ in the deex-
citation of 160Dy and 162Dy levels of the same origin
are opposite in the majority of the cases also attracts
attention. At the same time, the two-quasiparticle
structures of the 2+ and 0+ one-phonon excitations
in these nuclei do not show drastic distinctions [12].
Yet, the contribution of the (pp411 ↑ 411 ↓) state is
greater in 162Dy than in 160Dy (18% versus 15.9%).
In considering the signs of δ for transitions from the
levels of the β- and γ-rotational bands in even–even
nuclei to the levels of the rotational band built on the
ground state, it was previously found [3] that, as a
rule, the signs of the multipole-mixing parameter are
identical for 2+

γ –2+
g and 4

+
γ –4+

g transitions and are
opposite for (2+

γ –2+
g ) and (2

+
β –2+

g ) transitions. The
second rule, that of opposite signs in 160,162Dy, may
probably be due to a low degree of collectivization
of the β-vibrational state. This feature of 162Dy was
previously indicated in [5]. It is conceivable that the
reasons behind the distinctions between the signs of
the multipole-mixture parameter for similar transi-
tions in 160Dy and 162Dy could be established more
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Table 3. Comparison of experimental data on the parameter δ in 162Dy

Eγ ,
keV

Ei,
keV

Jπ
i –Jπ

f
δ ± ∆δ; ML

(n, γ)
[7]

(n, γγ(θ))
[8]

(n, n′γ(θ))
[9]

(α, 2nγ)
[10]

NDS
[1]

(n, n′γ(θ))
Our study

807.5 888 2+–2+ > 3 −8.3 > δ > +41 −2.9 > δ > +11 > 1.7 > 8.3 +57 + ∞− 33

882.3 963 3+–2+ > 3 +2.6 +53− 16 −6.3 > δ > +19 > 1.1 +3.7 +7− 7 +41+34− 13

697.3 963 3+–4+ E2 > 10.4 – – > 10.4 > 45

795.3 1061 4+–4+ > 3.9 −5.3 +2− 126 −0.4 > δ > +2.0 > 3.9 −5.5±15 +12 +18− 4

260.1 1148 2−–2+ E1 −0.03 ±16 – – E1 +0.04 +16− 11

917.1 1183 5+–4+ > 1 −62 > δ > +4.8 −2.7 > δ > +14 2 ± 1 > 14 +50 +50− 20

634.2 1183 5+–6+ > 0.8 +3.9 +41− 15 – < 1 +4 +4− 2 −7 +2− 20

1129.4 1210 3−–2+ < 0.22 – – E1 E1 +0.05 +5− 3

944.4 1210 3−–4+ < 0.26 −0.19 +14− 15 – – −0.19 ± 15 −0.10 +3− 5

322.0 1210 3−–2+ < 0.19 – – – E1 −0.01 ± 3

1195.1 1276 1−–2+ < 0.17 – – – E1 +0.01 ± 4

334.1 1297 4−–3+ E1 – – +0.02 ± 6 E1 +0.01 ± 4

1092.2 1358 3−–4+ < 0.27 −0.08 ± 12 −0.2 +5− 6 – E1 −0.07 ± 4

1124.9 1391 5−–4+ E1 – – E1 E1 +0.05 ± 5

1308.6 1574 4+–4+ E2 +M1 – – ≤ 1.0 M1 + E2 +0.04 + 8− 10

Note: The values of δ that are given without a sign correspond to the absolute value |δ|.
The errors are given in units of the last digit.

Table 4. Values of δ for 160Dy and 162Dy

Transition
Jπ

i K–Jπ
f K

160Dy 162Dy

Ei, keV Eγ , keV δ ± ∆δ Ei, keV Eγ , keV δ ± ∆δ

2+2–2+0 966.2 879.4 −16.6 ± 5 888.1 807.5 +57 + ∞− 33

3+2–2+0 1049.1 962.3 −13.8 ± 3 962.9 882.3 +47 + 34 − 13

3+2–4+0 1049.1 765.3 −13.8 ± 9 962.9 697.3 |δ| > 45

4+2–4+0 1155.8 872.0 −0.95 ±11 1061.0 795.3 +12 +18− 4

5+2–4+0 1288.7 1004.7 +7.1 + 8− 10 1182.7 917.1 +50 + 50 − 20

2+0–2+0 1349.6 1262.7 −1.5 + 7− 20 1453.4 1372.8 +0.40 ±15 or+1.25 + 5− 70
reliably by investigatingmultipolemixtures in gamma
transitions for a longer chain of dysprosium isotopes.
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Detection of Neutron-Spin Rotation in Neutron Scattering by 204Pb*
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Abstract—The effect of neutron-spin rotation due to the parity-nonconserving interaction of neutrons
with nuclei in a lead sample enriched in the 204Pb isotope had been measured up to the end of 1999. The
problem that initiated the experiment was the earlier observed effect of neutron-spin rotation in natural
lead and futile attempts at discovering this effect in isotopes constituting natural lead. At present, the final
data processing has been completed. A simple model of the experiment is proposed and considered. After
a careful consideration, some possibility of evaluating the instrumental error is revealed and successfully
used in the array of the data obtained. The result obtained for the neutron-spin-rotation angle in a lead
sample is (8± 2)× 10−5 rad/cm for lead containing 100% 204Pb. This value corresponds to the proposition
that the presence of 204Pb is responsible for the observed effect of neutron-spin rotation in natural lead.
c© 2002 MAIK “Nauka/Interperiodica”.
The idea to observe a parity-nonconservation
(PNC) effect in neutron optics was first discussed
by Michel in 1960 (see, for example, [1]). A coherent
effect generated by PNC weak interaction might be
revealed as neutron-spin rotation in a transversely
polarized neutron beam due to the fact that neutron
waves with different helicities (s · p), where s is the
neutron spin and p is the neutron momentum, have
different refraction coefficients n+ and n−. This is so
because the neutron–nucleus interaction has a weak
component depending on the neutron-spin direction.
Therefore, the spinor components receive different
phases and the spinor behind the sample is written
as

1√
2

exp(ikn+l)


 1

exp(−iϕ)


 ,

where ϕ = klRe(n+ − n−), k is the neutron wave
number, and l is the length of the sample. The result-
ing spinor corresponds to the spin rotated about the
momentum through the angle ϕ. This angle can have
a measurable value in elastic neutron scattering due
to the effect of dynamical amplification of parity non-
conservation in a nucleus if a P resonance is present
whose energy is sufficiently close to the energy of the
S resonance [2–4].

∗This article was submitted by the authors in English.
1)Hahn-Meitner-Institut, Glienecker Strasse 100, 14109

Berlin, Germany.
2)Los Alamos National Laboratory, PO Box 1663, Los

Alamos, NM 87545 USA.
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The preceding two measurements of spin rotation
were performed with a sample of natural lead. In the
first experiment [5], the rotation angle was found to be
ϕ = (2.24 ± 0.33) × 10−6 rad/cm. In the second one
[6], the angle ϕ = (3.53 ± 0.79) × 10−6 rad/cm was
observed. A direct measurement of the same effect in
a sample enriched in the 207Pb isotope gave the spin-
rotation angle in the region ϕ < 4.3 × 10−6 rad/cm
at a 90% C.L. [6]. In the situation where no theory
explaining the PNC effect in natural lead was sug-
gested, only the 204Pb isotope remained hopeful for
the existence of the P-odd effect. In this nucleus,
one may expect a mixture of opposite-parity nuclear
states [7]. That is why an experiment with 204Pb was
started at the BENSC reactor (Berlin, Germany) in a
polarized cold-neutron beam.

The experimental sample was enriched in 204Pb to
36.6% and had a length of 1.56 cm and a diameter
of 0.6 cm. The isotope content of the sample was by
chance so successful, as compared to natural lead
that, if an amplified parity-violating effect could be
observed in the sample, the whole effect of natural
lead would be attributed to 204Pb. If the PNC effect
in the sample is approximately the same, this means
that 206Pb is responsible for the effect of natural lead.

In the experiment, a horizontal neutron beam po-
larized along z axis enters the low-field region, where
B < 1 mG, through a special inlet coil operating like
a current sheet that ensures the nonadiabatic inlet of
the neutron spin (see figure). A cylindrical box shields
this region with a µ-metal double-layer wall. A so-
called π coil occupies the central part of the low-field
2002 MAIK “Nauka/Interperiodica”
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Simplified scheme of the experimental setup for neutron-
spin-rotation measurements.

zone. Its magnetic field is directed along or against
the z axis. The sample is placed on a holder. The
holder can be moved by a system of strings and a
special motor drive along channels in the supporting
plate between the front position (F ) and the back
position (B) in the neutron beam around the π coil.
If neutron transmission through the sample is depen-
dent on the neutron helicity, an effect that is similar
to neutron-spin rotation through some small angle
about the beam axis will be observed. This means
that, after neutron transmission through the sample,
there appears a y component of the neutron polar-
ization. The magnetic field of the π coil can rotate
the horizontal neutron-spin component through 180◦

about the coil axis if its current is adjusted carefully.
The exit of the low-field region is equipped with a rear
outlet coil that is similar to the front coil, but which
is rotated through 90◦ about the x axis to accept
the y component of neutron polarization. The rear
coil, together with an analyzer and a neutron counter,
formed a device for detecting neutron-spin rotation. A
detailed description of the setup was presented earlier
in [5, 6]. But it is important here to emphasize that
the residual magnetic fields before and behind the
π coil can differ from each other. The effect of the
distinction between scattering in the aforementioned
two sample positions is taken into account as will be
shown below.

To measure this spin-rotation angle, the current of
the rear coil (spin flipper) is switched from +I to −I
(I is the π-rotating value of the current) and from −I
to +I with a period of 2 s. Thus, a relative effect of the
well-known type can be measured as

A = (N+ −N−)/(N+ +N−). (1)

Here, N+ is the number of detector counts when
the rear-coil field is parallel to the y polarization
of the beam, while N− is the number of detector
PH
counts when the rear-coil field is antiparallel to the
y polarization of the beam. The sample position is
changed from “front” to “back” and to “front” again
with a period of about 140 s. It is very important to
ensure conditions for measuring a spurious rotation
effect caused by internal residual magnetic fields. In
pursuing this objective, the current J of the π coil is
changed during the measuring cycle, and three states
of it are possible in the experiment: J = +I (P+
state), J = 0 (P0 state), and J = −I (P− state). The
order of switching was the following as a rule:

(P+, P0, P−) for the sample in the front position
(F );

(P−, P0, P+) for the sample in the back position
(B).

The developed computer code provides conditions
to construct a measuring cycle where twelve average
numbers represent the situation with spin rotation in
the sample and in the residual magnetic field. They are

FNP+
+ , FNP+

− , FNP0
+ , FNP0

− , FNP−
+ , FNP−

− ;

BNP+
+ , BNP+

− , BNP0
+ , BNP0

− , BNP−
+ , BNP−

− ,

where F and B denote the front and back positions of
the sample.

The relative entities like A (1) (“Angles,” as is
quite clear) are constructed from the numbers above:

Ψ+
F ≡ FAP+,Ψ+

B ≡ BAP+,

Ψ−
F ≡ FAP−,Ψ−

B ≡ BAP−, (2)

Ψ0
F ≡ FAP0,Ψ0

B ≡ BAP0.

Taking into account the experimental scheme, one
can show that the contributions of the PNC angle
ΦPNC and the angles of rotation by the residual mag-
netic fields and by the apparatus deviations must be
included in the following way:

Ψ+
F = −ΦPNC − ΦM1 + ΦM2 + Φπ, (3a)

Ψ+
B = +ΦPNC − ΦM1 + ΦM2 (3b)

+ Φπ + 2(δ2 − δ1) + 2δπ,

Ψ0
F = +ΦPNC + ΦM1 + ΦM2, (4a)

Ψ0
B = +ΦPNC + ΦM1 + ΦM2 + 2(δ1 + δ2), (4b)

Ψ−
F = −ΦPNC − ΦM1 + ΦM2 − Φπ, (5a)

Ψ−
B = +ΦPNC − ΦM1 + ΦM2 (5b)

− Φπ + 2(δ2 − δ1) − 2δπ.

Here, ΦM1 and ΦM2 are the angles of rotation due to
the residual magnetic fields before (M1) and behind
(M2) the π coil, including (Mπ) the possible inaccu-
racy in the relative orientation of the inlet and outlet
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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coils; Φπ is the angle due to the effective longitudinal
field of the π coil; 2δ1 is the additional angle in theM1
zone due to the nonequivalence of the front and the
rear position of the sample (effective neutron trajec-
tories are different, and the effective magnetic fields in
the front and in the back position are slightly different
too); 2δ2 is the additional angle in theM2 zone due to
the same reason; and 2δπ is the additional angle in the
π zone.

The well-known way to eliminate the direct contri-
bution of the residual magnetic fields ΦM1 and ΦM2 is
to introduce so-called π numbers:
π+ = (Ψ+

B − Ψ+
F )/2 = +ΦPNC + (δ2 − δ1) + δπ,

(6а)

π0 = (Ψ0
B − Ψ0

F )/2 = (δ1 + δ2), (6b)

π− = (Ψ−
B − Ψ−

F )/2 = +ΦPNC + (δ2 − δ1) − δπ.
(6c)

From (6a)–(6c), the quantity (PNC) is traditionally
introduced as

(PNC) = (π+ + π−)/2 = ΦPNC + (δ2 − δ1). (7)

Thus, those six measured angles (2) are affected
by seven variables. This means that it is impossible to
determine ΦPNC exactly from Eqs. (3a)–(5b) without
an additional measurement where ΦPNC = 0 or where
this angle is well known to a high precision. But
this additional measurement was not foreseen by the
experimental program and techniques and could not
be performed.

Nevertheless, the difference (δ2 − δ1) can be evalu-
ated. As far as ΦPNC � (ΦM1 + ΦM2) (which is quite
clear after a preliminary data processing), the ratio
k̄ = (δ2 + δ1)/(ΦM1 + ΦM2) can be determined from
(4a) and (6b):

k̄ =
(δ2 + δ1)

ΦM1 + ΦM2
≈ π0

Ψ0
F

≈ δ1
ΦM1

≈ δ2
ΦM2

. (8)

It is evident from (3a)–(5b) that the instrumental
error (δ2 − δ1) can be estimated as

δ2 − δ1 = k̄[Ψ0
F /2 + (Ψ+

F + Ψ−
F )/4] (9)

− k̄

1 + 2k̄
[Ψ0

B/2 − (Ψ+
B + Ψ−

B)/4].

Thus, the difference (δ2 − δ1) can be estimated [as
is shown in Eqs. (8) and (9)] in each cycle. Therefore,
the linear fit of (PNC) versus (δ2 − δ1) will produce a
result for ΦPNC [see (7)].

Two experimental runs (a summer run and an
autumn run) were performed from the end of May
to the middle of December 1999. In the final data
processing, all cycles were combined into nine united
runs or nine integrated so-called “big points” (BP).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
Results for ΦPNC after a correlation analysis

Number
of big
points

Residual
number of

cycles

Angle of PNC
rotation, ΦPNC,
10−5 rad/cm

Standard error,
10−5 rad/cm

1 1239 7.2 7.3

2 3015 5.3 3.3

3 2236 1.4 4.0

4 2235 2.05 2.0

5 2138 6.5 1.9

6 631 3.76 3.6

7 1078 −2.35 5.4

8 450 15.2 8.6

9 3146 4.9 3.2

As a rule, each united run corresponds to a set of
diurnal runs between succeeding readjustments of the
setup. Those readjustments were initiated by repairs
of the sample moving system when the strings were
broken. The total numbers N of cycles at those BP
before the final round of data processing were the
following:N = 5812 for BP1, 8168 for (BP2 + BP3),
6532 for BP4, 6393 for BP5, 1592 for BP6, 2964 for
BP7, 1349 for BP8, and 4383 for BP9.

Parameters like M+ = (Ψ+
F + Ψ+

B)/2, M0 =
(Ψ0

F + Ψ0
B)/2, and M− = (Ψ−

F + Ψ−
B)/2 were used

to find “bad” cycles that differed from “good” cycles
by more than three standard deviations from the
mean value of each parameter. Sometimes, the reason
for this was the malfunction of the sample moving
system (most frequent situation). Sometimes, it was
the malfunction of the π-coil power scheme or some
perturbation of the outer magnetic field. All bad cycles
that we revealed were excluded. The numbers of
cycles shown above were obtained after the exclusion
of preliminary bad points.

Note that, for all cycles taken into consideration,
the averaging of (PNC) gave the weighted mean (6 ±
2) × 10−5 rad for BP1, BP2, and BP3 and (PNC) =
(4 ± 1) × 10−5 rad for BP4–BP9. But these values
are only upper limits on the PNC angle ΦPNC (7).

As is quite clear from expression (9), each cycle
should be controlled in the parameter k̄ for two rea-
sons. The first is that k̄ = −0.5 is a singular point of
(9). For the second reason, the definition of δ1 and δ2
means that δ1 � ΦM1 and δ2 � ΦM2, so that k̄ � 1.
That is why only the cycles with k̄ ≤ 0.3 were taken
into consideration. This exclusion of cycles is quite
natural if the presence of magnetic disturbances is
taken into account.
2
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After this procedure, the residual set ofN cycles in
each big run was subjected to a linear fit of the (PNC)
quantity versus (δ2 − δ1).

After all operations described above, an adequate
set of the experimental data was selected and the
values of ΦPNC were calculated. The results are listed
in the table. The weighted mean result is (4 ± 1) ×
10−5 rad with χ2/(n − 2) = 1.3, n = 9. This number
is the final result for the PNC effect in the sample of
length 1.56 cm. Taking into account the length of the
sample; the setup polarizing efficiency, which is equal
to P1P2 = 0.92; and the isotope content of the sample
(36.6% of 204Pb), we can show that, for a pure 204Pb
isotope sample, the final result for a specific rotation
angle is ΦPNC = (8 ± 2) × 10−5 rad/cm.

Thus, the effect of neutron-spin rotation in a sam-
ple enriched in 204Pb has been observed for the first
time. Our final result differs from the preliminary value
reported in [8]. It seems quite natural because we were
able to suppress the instrumental error. The PNC
angle of neutron-spin rotation in 204Pb is many times
greater than that in natural lead. Thus, it is possible
to conclude that 204Pb is responsible for the PNC
effect in natural lead. The experimental result that
we obtained here verified the prediction of [7] that
a negative-parity nuclear state (P state) of energy
close to the S resonance exists in the 204Pb nucleus.
It is important to emphasize that the accuracy in
determining ΦPNC can be improved after some mod-
ification of the experimental setup. This continuation
of the work may be very productive for improving pre-
cision and, afterward, obtaining hints as to detecting
a nuclear state of negative parity and energy in the
204Pb nucleus by other methods.

A nuclear state of this kind has been revealed for
the first time.
PH
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Abstract—A stochastic approach that treats fission dynamics on the basis of three-dimensional Langevin
equations is used to calculate the mass–energy distributions of fragments originating from the fission of
compound nuclei whose fissility parameter lies in the range Z2/A = 34–42. In these calculations, use
was made of the liquid-drop model allowing for finite-range nuclear forces and the diffuseness of the
nuclear surface in calculating the potential energy and a modified one-body mechanism of viscosity in
describing dissipation. The emission of light prescission particles is taken into account on the basis of the
statistical model. The calculations performed within three-dimensional Langevin dynamics reproduce well
all parameters of the experimental mass–energy distributions of fission fragments and all parameters of the
prefission-neutron multiplicity for various parameters of the compound nucleus. The inclusion of the third
collective coordinate in the Langevin equations leads to a considerable increase (by up to 40–50%) in the
variances of mass–energy distributions in relation to what was previously obtained from two-dimensional
Langevin calculations. For the parameters of the mass–energy distributions of fission fragments and the
parameters of the prefission-neutronmultiplicity to be reproduced simultaneously, the reduction coefficient
ks must be diminished at least by a factor of 2 (0.2 ≤ ks ≤ 0.5) in relation to that in the case of total one-
body viscosity (ks = 1). c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Over the past two decades, a stochastic approach

[1–4] based on a multidimensional Fokker–Planck
equation [5–8] or on the set of multidimensional
Langevin equations [9], which is equivalent to it, has
been successfully used to solve many problems of
collective nuclear dynamics in reactions induced by
heavy ions. In recent years, preference has been given
in theoretical calculations to Langevin equations,
since the Fokker–Planck equation is a partial differ-
ential equation, so that it can be solved only by apply-
ing cumbersome procedures and by invoking various
assumptions [5–8]; at the same time, Langevin
equations can be solved on the basis of conventional
numerical methods without recourse to additional as-
sumptions. However, the use of Langevin equations
also involves difficulties. In order to describe as great
a number of fission observables as is possible, one
should ever increase the number of collective vari-
ables characterizing nuclear shapes. However, each
new collective variable in Langevin equations renders
relevant calculations more lengthy and cumbersome.
For this reason, the calculations performed so far have
been predominantly one- or two-dimensional (see
[4, 10] or [11–17], respectively). One-dimensional
calculations can yield only the fission probability and
the multiplicities of evaporated particles. In addition
to this, two-dimensional calculationsmake it possible
1063-7788/02/6505-0799$22.00 c©
to obtain the mass distribution corresponding to the
most probable kinetic energy of fission fragments or
the energy distribution corresponding to symmetric
fission. Within one- or two-dimensional calculations,
it is impossible to obtain the two-dimensional mass–
energy distribution of fission fragments, which is
observed experimentally and which is then used
to deduce the one-dimensional mass and energy
distributions. Not only does an analysis of two-
dimensional mass–energy distributions provide the
possibility of performing a full adequate comparison
with experimental data, but it also enables one to
unveil correlations between the masses and energies
of fission fragments, these correlations carrying valu-
able information about scission configurations of a
nucleus undergoing fission.

A rather comprehensive analysis of two-dimen-
sional mass–energy distributions was first given by
Nix and Swiatecki [18], who relied on the zero-
viscosity dynamical model; later on, the problem was
considered in [6, 19], where it was treated within
the diffusion model based on the multidimensional
Fokker–Planck equation. In the present article,
we give an account of systematic calculations of
mass–energy distributions within three-dimensional
Langevin dynamics, where we also take into account
the evaporation of light prescission particles. Qualita-
tive and quantitative estimates of the effect of the third
2002 MAIK “Nauka/Interperiodica”
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collective coordinate (mass-asymmetry coordinate)
on the parameters of the energy distribution were
first presented in [3]. Our group also calculated
the mass–energy distributions [20] for the reaction
12C + 194Pt → 206Po at Elab = 99 MeV, but no
systematic investigation of two-dimensional mass–
energy distributions on the basis of three-dimensional
models with allowance for the evaporation of light
prescission particles has been performed so far.

For our analysis, we choose here reactions leading
to the formation of highly excited heavy compound
nuclei of temperature T in excess of 1.3 MeV. This
choice of the object of investigation was motivated
by the following considerations. For highly excited
nuclei, we can disregard the effect of shell corrections
in calculating the potential energy and the transport
coefficients in the Langevin equations. For heavy nu-
clei characterized by values of the parameter Z2/A in
the region Z2/A > 32, experiments revealed a con-
siderable growth of the variances of the mass and
energy distributions, which is not reproduced with-
in the statistical model of Fong [21] or within the
zero-viscosity dynamical model [18]. In the above
region of the parameterZ2/A, all highly excited nuclei
promptly undergo fission with a probability close to
unity; therefore, there is no need to consider a statis-
tical branch in performing calculations within multi-
dimensional Langevin dynamics [10, 22]. For lighter
nuclei, it is necessary to consider a transition into
this branch. The point is that, if the nuclear-fission
process is simulated in terms of Langevin equations
from the ground state, the nuclei being considered
execute small vibrations about a spherical shape for a
major part of the time, emitting light particles. In this
case, dynamical calculations will be extremely time-
consuming. In order to obtain a statistically signif-
P

icant result, a transition into the statistical branch
is performed at the initial stage of the simulation; if
it so happens that the nucleus does indeed undergo
fission, one goes over to a dynamical simulation, be-
ginning the calculation from the ridge that separates
the ground state of the nucleus and the valley of
separated fragments, the nucleus being forbidden to
return to region of the ground state [10, 22].

This article is aimed at investigating nuclear-
fission dynamics at the stage from the state of a sta-
tistically equilibrium nucleus formed to its separation
into fragments and at computing two-dimensional
mass–energy distributions and mean multiplicities of
light prescission particles. The main objective of this
study is to extract the nuclear viscosity from a com-
parison of the computed features of two-dimensional
mass–energy distributions and of the multiplicity of
prefission neutrons with experimental data.

2. DESCRIPTION OF THE MODEL USED

In our calculations, nuclear shapes were described
in terms of a modified version of the well-known
{c, h, α} parametrization [23, 24]. This parametriza-
tion was successfully used both in static and in dy-
namical calculations (see [23, 24] and [6, 13–15],
respectively). In [23, 24], it was shown that, within the
{c, h, α} parametrization, it is possible to reproduce
accurately the features of the saddle-point nuclear
configurations that were obtained on the basis of vari-
ational calculations [25] within the model represent-
ing a nucleus as a liquid drop with a sharp boundary,
where no constraint is imposed on the nuclear shape.

The equation of the nuclear surface in cylindrical
coordinates has the form [23, 26]
ρ2
s(z) =




c−2
(
c2 − z2

)(
Asc

2 + Bz2 +
α′z

c2

)
, B ≥ 0,

c−2
(
c2 − z2

)(
Asc

2 +
α′z

c2

)
exp(Bcz2), B < 0,

(1)

where z is the coordinate along the symmetry axis and ρs is the value of the coordinate ρ at the nuclear surface.
The quantities B and As are expressed in terms of the nuclear-shape parameters (c, h) as

B = 2h +
c− 1

2
, (2)

As =



c−3 − B

5
, B ≥ 0,

−4
3

B

exp(Bc3) + (1 +
1

2Bc3
)
√

−πBc3erf(
√

−Bc3)
, B < 0.
In Eqs. (1) and (2), c is the elongation parameter, h
 is a parameter that specifies the neck thickness at
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a given elongation, and α′ is the mass-asymmetry
parameter. Shapes that are symmetric with respect to
the z = 0 plane correspond to the case of α′ = 0.

The parametrization used in Eq. (1) differs from
the original {c, h, α} parametrization in that it in-
volves a new mass-asymmetry parameter related to
α by the scale transformation

α′ = αc3. (3)

The advantages of the parameter α′ over α were in-
dicated and discussed many years ago (see [27]). The
problem of choosing collective coordinates was inves-
tigated in [14], and it was shown there, on the basis
of two-dimensional calculations, that, in describing
the fission process, the coordinates (R,h) are prefer-
able to (c, h), where R is the distance between the
centers of mass of nascent fragments. Strutinsky [28]
proposed using, for a mass-asymmetry coordinate,
the quantity η instead of α, where η is the ratio of
the mass difference between the nascent fragments to
the total mass of the compound nucleus, and proved
that this choice is preferable. It should be noted that
(R, η) are the first two collective coordinates in the
scheme where the multipole moments of the nuclear
density are used as a basis for introducing collective
coordinates [29].

Although the coordinates (R, η) have a clear phys-
ical meaning, the use of these coordinates in three-
dimensional Langevin calculations leads to serious
computational problems, since it is impossible to find
explicitly the dependence of the shape parameters
(c, h, α′) on (R,h, η). For this reason, we have cho-
sen, for collective coordinates, the geometric param-
eters (c, h, α′) of the nuclear shape. If, however, we
assume that the nucleus being considered is split
into fragments by the z = 0 plane, the parameter α′

becomes proportional to η; that is,

η =
3
8
α′. (4)

Themost important advantage of using the parameter
α′ instead of α is that the mesh suitable for dynamical
calculations in the coordinates (h, α′) can be con-
siderably enlarged in relation to that for the original
{c, h, α} parametrization.

The evolution of a nucleus undergoing fission was
considered within the stochastic approach [1–9]. The
evolution of the collective coordinates was treated by
analogy with the motion of a Brownian particle placed
in a heat bath formed by all other degrees of freedom
of the nucleus. In the calculations, we used the set of
coupled Langevin equations

q̇i = µijpj, (5)

ṗi = −1
2
pjpk

∂µjk
∂qi

− ∂V

∂qi
− γijµjkpk + θijξj ,
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where q = (c, h, α′) are collective coordinates; p =
(pc, ph, pα′) are the momenta conjugate to them;mij

(‖µij‖ = ‖mij‖−1) is the tensor of inertia; γij is the
friction tensor; V is the potential energy of the nucleus
being considered; θijξj is a random force; θij is its
amplitude; and ξj is a random variable that possesses
the following statistical properties:

〈ξi〉 = 0, (6)

〈ξi(t1)ξj(t2)〉 = 2δijδ(t1 − t2).

The angular brackets in Eq. (6) mean averaging over
the statistical ensemble. Summation over dummy in-
dices from 1 to 3 is implied in Eqs. (5) and (6) and
below.

The random-force amplitudes are related to the
diffusion tensorDij as

Dij = θikθkj. (7)

The diffusion tensor in turn satisfies the Einstein re-
lation

Dij = Tγij. (8)

The random-force amplitudeswere found fromEqs. (7)
and (8) by using the Jacobi method [30].

The heat-bath temperature T used in the calcula-
tions was determined within the Fermi gas model as

T = (Eint/a(q))1/2, (9)

where Eint is the excitation energy of single-particle
degrees of freedom of the compound nucleus (inter-
nal energy) and a(q) is the level-density parameter,
which depends on the collective coordinates. Specifi-
cally, we take the level-density parameter in the form

a(q) = avA + asA
2/3Bs(q), (10)

where A is the mass of the compound nucleus and
Bs(q) is the dimensionless surface-energy functional
calculated in the model where a nucleus is repre-
sented as a liquid drop with a sharp boundary [23,
24]. The parameter values of av = 0.073 MeV−1 and
as = 0.095 MeV−1 were borrowed from [31].

As the nucleus moved toward the scission surface,
fulfillment of the energy-conservation law

E∗ = Eint + Ecoll(q,p) + V (q) + Eevap(t), (11)

where E∗ is the total excitation energy of the com-
pound nucleus (it is determined in the input reaction
channel from the energy of the projectile ion and
the mass difference between colliding nuclei and the

compound system), Ecoll(q,p) =
1
2
µij(q)pipj is the

kinetic energy of the collective motion of the nucleus,
and Eevap(t) is the nuclear excitation energy carried
away by evaporated particles by the instant t, was
2
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traced along the entire stochastic Langevin trajectory
in the space of collective coordinates.

The tensor of inertia was calculated in theWerner–
Wheeler approximation for the irrotational flow of an
incompressible liquid (a description of the method
can be found in [32]). In [33], it was shown that this
method makes it possible to calculate accurately the
components of the tensor of inertia for all shapes of
the nucleus undergoing fission, with the exception of
that which features a zero-thickness neck.

In order to describe the dissipation of the collective
kinetic energy into the internal energy, we have used
a modified version of one-body viscosity [34, 35], the
so-called surface-plus-window mechanism of dissi-
pation. In this case, the components of the friction
tensor are given by

γsw
ij =

1
2
ρmv̄

{
∂R

∂qi

∂R

∂qj
∆σ +

32
9

1
∆σ

∂V1

∂qi

∂V1

∂qj

+ ks

[
π

zN∫
zmin

(∂ρ2
s

∂qi
+

∂ρ2
s

∂z

∂D1

∂qi

)(∂ρ2
s

∂qj
+

∂ρ2
s

∂z

∂D1

∂qj

)

×
(
ρ2
s +

(1
2
∂ρ2

s

∂z

)2)−1/2
dz (12)

+ π

zmax∫
zN

(∂ρ2
s

∂qi
+

∂ρ2
s

∂z

∂D2

∂qi

)(∂ρ2
s

∂qj
+

∂ρ2
s

∂z

∂D2

∂qj

)

×
(
ρ2
s +

(1
2
∂ρ2

s

∂z

)2)−1/2
dz

]}
,

where ρm is the nuclear density; v̄ is the mean ve-
locity of intranuclear nucleons; ∆σ is the area of the
window—that is, the neck between the two would-
be fragments; D1 and D2 are the positions of their
centers of mass with respect to the center of mass of
the entire system; zmin and zmax are, respectively, the
left and the right boundary of the nuclear surface; zN
is the coordinate of the neck, which was chosen at the
PH
minimum of the function ρ2
s(z); and V1 is the volume

of one of the would-be fragments.

A quantum analysis of one-body dissipation re-
vealed [36] that the viscosity in a nucleus is only
about 10% of the value computed by the wall formula
[37, 38] [bracketed expression in (12)], but that the
functional dependence of the viscosity on the nuclear
shape is reproduced correctly by the wall formula. In
view of this, Nix and Sierk proposed a modified ver-
sion of one-body dissipation. In this version, referred
to as the surface-plus-window one, the contribution
of the wall formula to dissipation is reduced nearly by
a factor of 4 (the value of the reduction coefficient ks
was determined from an analysis of the experimental
widths of giant resonances; the result was ks = 0.27).
From a comparison of the calculated mean values of
the kinetic energies of fission fragments with experi-
mental data, it was found [35] that the reduction factor
ks lies in the range 0.2 < ks < 0.5. The value of ks =
1 corresponds to the total one-body viscosity. In the
following, we denote by γwij the friction-tensor com-
ponents computed by the wall formula. In the present
calculations, an additional term (second term in the
braced expression) that takes into account dissipation
associated with the change in the volumes of the
would-be fragments that results from the exchange of
nucleons between them [5, 39] is included in formula
(12). For the analysis of the formation of the mass
distribution to be adequate, the effect of this term
must be taken into account in dynamical calculations.

For nuclear shapes featuring no neck, the friction
tensor was calculated by the wall formula with the
reduction coefficient ks. As soon as a neck appeared
in the nuclear shape, we began smoothly (in just
the same way as was done in [40]) to switch on the
surface-plus-window viscosity mechanism in such
a way that there remained only the surface-plus-
window viscosity mechanism at zero neck thickness;
that is,
γij =



ksγ

w
ij for nuclear shapes featuring no neck,

ksγ
w
ij sin2(πRN/(2RL)) + γsw

ij cos2(πRN/(2RL))
for nuclear shapes featuring a neck,

(13)
where RN is the neck radius and RL is the maximum
value of the function ρs(z) for the smaller fragment.

The potential energy of the nucleus was com-
puted within the liquid-drop model taking into ac-
count finite-range nuclear forces and the diffuseness
of the nuclear surface [41, 42]. The parameters of
the model were set to the values used in [42]. The
potential energy was reckoned from that in a spherical
state of the nucleus with zero angular momentum.

As is well known [31, 43], it is a thermodynamic
potential (free energy [2] or entropy [4]), rather than
the potential energy, that must be used in calcu-
lating a conservative force in thermodynamic sys-
tems. For a long time, however, there had remained
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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an uncertainty in the temperature dependence of the
parameters of the model representing a nucleus as
a liquid drop with a sharp boundary [44–46]. Only
quite recently did there appear the article of Krappe
[47], who generalized the temperature dependence of
the entropy in the liquid-drop model taking into ac-
count finite-range nuclear forces and the diffuseness
of the nuclear surface. In our opinion, however, the
first full-scale three-dimensional Langevin calcula-
tions should be performed with the potential energy
in order that the results could be compared with
the results of previous calculations based on two-
dimensional models.

All transport coefficients appearing in the Langevin
equations were computed on an equidistant cubic
mesh containing 151 × 101 × 51 nodes; the collec-
tive variables changed within the following ranges:
c ∈ [0.7, 3.7], h ∈ [−0.6, 0.4], and α′ ∈ [−1, 1]. The
interpolation between the nodes was performed by
using the Lagrange formulas.

The initial conditions for the dynamical Eqs. (5)
were chosen as follows. The initial shape of the
nucleus was assumed to be spherical [q0 = (c =
1, h = 0, α′ = 0)], and the momentum distribution
was taken to be equilibrium. The angular-momentum
distribution was described by a function F (l) whose
explicit form was given in [4, 10]. Specifically, the
function F (l) represents the angular-momentum
distribution of compound nuclei produced in the
fusion process. The numerical procedure for fixing
the initial conditions relied on the Neumann method
involving the generating function

P (q0,p0, l, t = 0) (14)

∼ exp

{
− V (q0) + Ecoll(q0,p0)

T

}
δ(q − q0)F (l).

This choice of initial conditions implies that we con-
fine our consideration to the situation where the pro-
jectile particle and the target fuse completely, forming
a compound nucleus in a state of statistical equilib-
rium. Therefore, this formalism is inappropriate for
describing the quasifission process. It should be em-
phasized that, at high excitation energies and espe-
cially at high angular momenta, the traditional con-
cept of a compound nucleus becomes a rough ideal-
ization of an intricate actual situation.

The evaporation of light prefission particles was
simulated according to the following scheme. The
Langevin equations were integrated with a time step
τ by using the Hewn difference scheme [4, 12]. At
each step of the integration, we determined the par-
tial widths Γj (j = n, p, d, t, 3He, α, γ) with respect
to the decay of the compound nucleus through the
corresponding channel [48]. After that, their sum was
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
used to calculate the mean lifetime of the compound
nucleus prior to the emission of some particle: τtot =
�/
∑

j Γj . Given the integration step τ , one can deter-
mine the probability of evaporation of one particle or
another from the nucleus [49, 50]: for this, a uniformly
distributed random number ξ was sampled over the
segment [0, 1] and was then compared with the ratio
τ/τtot. Under the condition ξ < τ/τtot, it was as-
sumed that some light particle is emitted. The choice
of particle type was implemented through a Monte
Carlo procedure employing probabilities that are pro-
portional to the decay widths Γj . This evaporation
model makes it possible to describe discrete particle
emission (in contrast to a continuous simulation of
it in [11, 12]) and reproduces the law of radioac-
tive decay. During the simulation of particle evap-
oration, the functionals representing the Coulomb,
the nuclear, and the rotational energy and appearing
in the expression for the potential energy were not
rescaled. Only new values of relevant dimensional
factors were determined on the basis of new values of
A or Z (or both). Test calculations revealed that, even
upon the emission of several particles, the difference
of the precise value of the potential energy and its
value foundwithout rescaling the functionals does not
exceed 1 MeV. In the calculations, it was assumed
that the angular momentum of lj = 1, 1, 2, 1, 1, 2, 1
(in � units) is carried away by the jth evaporated
particle [22].

An important problem in performing calculations
within multidimensional Langevin dynamics is that of
choosing, in the space of collective coordinates, the
scission surface upon the intersection of which the
nucleus is thought to be split into fragments. This
surface can be chosen on the basis of various scission
criteria. The vanishing of the neck radius is one of the
simplest criteria for this. If, however, use is made the
model representing a nucleus as a liquid drop with a
sharp boundary, this condition becomes meaningless
as soon as the neck radius appears to be on the
same order of magnitude as the internucleon spacing.
The loss of stability of the nucleus to changes in the
neck thickness seems amore justifiable criterion from
the physical point of view. Within our problem, this
criterion can be expressed in the following way: the
nucleus loses stability once the relevant stochastic
Langevin trajectory intersects the surface specified by
the equation [6, 13, 23](∂2V

∂h2

)
c=const,α′=const

= 0. (15)

Upon taking the average over the ensemble of Lan-
gevin trajectories, this condition corresponds to nu-
clear shapes for which the neck radius is 0.3R0 [14,
23, 25]. A different physically acceptable criterion of
scission is based on the assumption that the nucleus
2
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Fig. 1. Contour plots of the mass–energy
distribution of fission fragments for the reaction
20Ne + 240Pu → 260Rf at two values of the excitation
energy: (а) results of our theoretical calculations with
ks = 0.1 at the excitation energy of Elab = 142 MeV,
(b) experimental data from [52] at the excitation energy
of Elab = 142 MeV, (c) results of our theoretical
calculations with ks = 0.1 at the excitation energy of
Elab = 174 MeV, and (d) experimental data from [52] at
the excitation energy of Elab = 174 MeV. The displayed
distributions are normalized to 200%, and the numbers
on the isolines indicate the yields of fission fragments (in
percent).

becomes unstable to the rupture of the neck when the
force of nuclear attraction between nascent fragments
is equilibrated by the force of the Coulomb repulsion
between them. It was shown in [51] that, in the region
of actinides, this condition corresponds to nuclear
shapes for which the neck radius is approximately
P

equal to 0.3R0 as well. On the basis of the above, we
assumed in our calculations that the nucleus is split
into fragments as soon as the neck radius becomes
equal to 0.3R0. This condition specifies the scission
surface in the space of collective coordinates.

3. RESULTS OF THE CALCULATIONS
AND DISCUSSION

The mass–energy distributions of fission frag-
ments were calculated here for the following reac-
tions:

12C + 194Pt → 206Po (Elab = 99 MeV) [52],
18O + 197Au → 215Fr

(Elab = 158.8 MeV) [53],
16O + 208Pb → 224Th

(Elab = 108 MeV) [54, 55],
20Ne + 209Bi → 229Np (Elab = 149 MeV) [56],
12C + 232Th → 244Cm (Elab = 97 MeV) [57],

18O + 238U → 256Fm (Elab = 158.8 MeV) [53],
20Ne + 240Pu → 260Rf

(Elab = 142 and 174 MeV) [52].

Indicated above for each reaction are the references
from which we borrowed experimental data. All these
reactions lead to the production of highly excited
heavy nuclei for which Z2/A = 34–42. Typical con-
tour plots of themass–energy distribution Y (EK ,M)
are shown in Fig. 1 for the example of the compound
nucleus 260Rf at two values of the excitation en-
ergy. First of all, it should be noted that the general
character of the contour-plot chart of the distribu-
tion Y (EK ,M) computed within three-dimensional
Langevin dynamics closely resembles the pattern of
the corresponding charts obtained from experimental
data.

From Fig. 1, it can be seen that the shape of
the contour lines is close to an ellipsoidal one near
the maximum of Y (EK ,M) and to triangles with
smoothed angles at small values of Y (EK ,M) and
that the width of the mass–energy distributions
increases with increasing excitation energy of the
compound nucleus. These contour-line charts fur-
nish compelling evidence in favor of the liquid-drop
correlation between the masses and kinetic energies
of fission fragments. It is also worthy of note that
the contour-plot charts presented in Fig. 1 for the
distribution Y (EK ,M) are similar to those obtained
in [18] on the basis of the zero-viscosity dynamical
model proposed in that study and to those computed
in [6, 19] on the basis of the diffusion model, although
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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the distribution Y (EK ,M) was calculated by three
different methods in the three cases in question.

The statistical uncertainty in the results presented
here does not exceed 3–7%, the relevant calculations
being performed in just the same way as in [58]. In
order to avoid encumbering the figures displayed in
this article, we therefore indicate here this uncertainty
only in some cases.

In the following, the entire body of informa-
tion about the characteristics of the distributions
Y (EK ,M) will be discussed in terms of the one-
dimensional mass and energy distributions and their
mean values and variances; also considered here
are correlations between different parameters of
Y (EK ,M). The one-dimensional mass and energy
distributions are obtained by integrating Y (EK ,M)
with respect to EK andM , respectively.

3.1. One-Dimensional Mass and Energy
Distributions

The one-dimensional mass and energy distribu-
tions calculated for the reaction

18O + 197Au → 215Fr (Elab = 158.8 MeV)

are displayed in Figs. 2 and 3. For the sake of com-
parison, the experimental distributions of the cor-
responding quantities are also shown in these fig-
ures. From Fig. 3, it can be seen that the energy
distribution computed here differs from a Gaussian
distribution: it has a kurtosis approximately equal
to unity and a nonzеro negative value of the asym-
metry factor. On the contrary, the mass distribution
has a nearly Gaussian shape (the kurtosis and the
asymmetry virtually vanish). Themean values and the
variances of the one-dimensional mass and energy
distributions are basic features of these distributions,
and the discussion of our results is performed, as a
rule, in terms of these quantities.

In the calculations presented in this article, it is as-
sumed that the kinetic energy of fission fragments is
the sum of the Coulomb repulsion energy VC, the nu-
clear energy Vn of the attraction of the fragments, and
the kinetic energy Eps of their motion, all terms being
calculated at the instant of scission. The expression
for the mean kinetic energy of fission fragments has
the form

〈EK〉 = 〈VC〉 + 〈Vn〉 + 〈Eps〉; (16)

that is, it is assumed in our calculations that part
of the Coulomb repulsion energy is expended into
overcoming the force of nuclear attraction between
the fragments. Simple estimates of this quantity as an
additional surface energy appearing upon the rupture
of the neck were obtained in [14, 59]. In the present
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
study, Vn and VC were computed within the liquid-
drop model taking into account finite-range nuclear
forces and the diffuseness of the nuclear surface. Nu-
merical methods were employed in evaluating rele-
vant integrals [60] and in calculating the potential
energy.

Our calculations revealed that the first and the
second moments of themass and energy distributions
are sensitive to the viscosity value used in the calcu-
lations and to the character of descent from the saddle
to the scission point. The parameters of the energy
distribution are also highly sensitive to the choice of
scission condition [37, 51].

The parameters of the energy distributions for var-
ious nuclei were explored in a great number of both
experimental and theoretical studies (see [57, 61, 62]
and [11–14], respectively). From an analysis of exper-
imental data, it was found that 〈EK〉 is virtually inde-
pendent either of the angular momentum or of the ex-
citation energy [61]. In addition, it was shown in [57,
61] that 〈EK〉 is not a linear function of the param-
eter Z2/A1/3, as is suggested by Viola’s systematics
[63]—if, in the entire body of experimental data, one
selects only those for rather hot nuclei, eliminating
low-energy fission and spontaneous fission, which
are strongly affected by shell effects, and quasifission,
there appears a break point at Z2/A1/3 ∼ 1000. From
Fig. 4a, it can be seen that the 〈EK〉 values obtained
in our calculations agree well with experimental data
and lie more closely to the systematics proposed in
[54] than to Viola’s systematics. It should be empha-
sized that the values of 〈EK〉 that are obtained in
our calculations decrease with increasing reduction
factor ks. A similar result was obtained in the two-
dimensional calculations performed by Nix and Sierk
[35], who took the vanishing of the neck radius for
the scission condition and who achieved the best
description of experimental data at ks approximately
equal to 0.3. In our calculations, the value of 〈EK〉
is not very sensitive to changes in ks; therefore, it
is difficult to draw conclusions about the viscosity
value on its basis. The fact that, in our calculations,
〈EK〉 virtually ceases to be dependent on ks is due
to taking into account the evolution of the nucleus
in the mass-asymmetry coordinate, in contrast to the
two-dimensional calculations of Nix and Sierk [35],
and to determining 〈EK〉 by integrating 〈EK(M)〉
with respect to M . In [3], it was shown that, for a
large value of friction, in which case the descent from
the saddle to the scission points proceeds slowly—
that is, Eps can be set to zero—〈EK〉3D, the mean
kinetic energy of fragments that is obtained in three-
dimensional calculations, is related to 〈EK〉2D, the
mean kinetic energy of fragments that is obtained in
2
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Fig. 2. Experimental data and results of the calculations for the reaction 18O + 197Au → 215Fr at Elab = 158.8 MeV: (а)
mass distribution {(thick solid line) experimental data from [53], (thin solid line) results of the calculations with ks = 0.25,
and (dashed line) results of the calculations with ks = 0.5} and neutron multiplicity versus the fragment mass {(closed
circles) experimental data from [53], (closed boxes) results of the calculations with ks = 0.25, and (open boxes) results of the
calculationswith ks = 0.5}; (b) neutron energy versus the fragment mass {(closed circles) experimental data from [53], (closed
boxes) results of the calculations with ks = 0.25, and (open triangles) calculated fission time versus the fragment mass}.
two-dimensional calculations, by the equation

〈EK〉3D = (1 − σ2
η)〈EK〉2D, (17)

where σ2
η is the variance of the mass coordinate η.

With increasing ks, σ2
η decreases, which naturally

leads to an increase in the parenthetical expression in
Eq. (17); on the contrary, 〈EK〉2D decreases. Upon
the multiplication of these two factors, 〈EK〉3D be-
comes less sensitive to ks than 〈EK〉2D.

From Fig. 4b, it can be seen that the sharp growth
of the experimental values of σ2

M in the region of heavy
nuclei can also be reproduced fairly well within our
stochastic approach. The results of our calculations
with ks = 1 virtually coincide with the results of the
calculations performed within the statistical model
used in [21]. The growth of σ2

M with decreasing ks can
P

be explained as follows: on one hand, the stiffness of
the potential energy in the mass-asymmetry coordi-
nate permanently increases as the nucleus descends
from the saddle to the scission point; accordingly, the
mass distribution becomes narrower. On the other
hand, the system retains memory of the previous,
larger, width of the distribution, since the descent
proceeds within a finite time interval. Obviously, the
faster the descent, the greater the values of the vari-
ance that are recalled. The velocity of the descent is
controlled primarily by the viscosity, whose value is
determined by the value of the coefficient ks. This
mechanism of formation of the mass distribution was
discussed in greater detail elsewhere [6, 19].

The values of σ2
EK

that are calculated for various
values of ks are shown in Fig. 4c. From this fig-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 3. Experimental data and results of the calculations for the reaction 18O + 197Au → 215Fr at Elab = 158.8 MeV:
energy distribution {(thick solid line) experimental data from [53], (thin solid line) results of the calculations with ks = 0.25,
and (dashed line) results of the calculationswith ks = 0.5} and neutronmultiplicity versus the fragment kinetic energy {(closed
circles) experimental data from [53], (closed boxes) results of the calculations with ks = 0.25, and (open boxes) results of the
calculations with ks = 0.5}.
ure, we can see that the calculations within three-
dimensional Langevin dynamics at ks ∼ 0.1–0.25
make it possible to reproduce fairly well the growth
of the experimental values of the variances with
increasing Z2/A1/3 at a quantitative level. The results
of the calculations at ks = 1 nearly coincide with the
results of the calculations performed on the basis of
the zero-viscosity dynamical model [18]. Our calcula-
tions revealed that the inclusion of the third collective
coordinate (mass-asymmetry coordinate) leads to
a considerable increase (by about 40%) in σ2

EK
in

relation to the calculations within two-dimensional
models [11–14] for symmetric fission. This result is in
agreement with the qualitative estimates presented in
[3], which predict that the width of the energy distri-
bution obtained in two-dimensional calculations for
symmetric fission increases upon taking into account
fluctuations of the mass-asymmetry coordinate.

Thus, we see that, from a comparison of the vari-
ances computed for various values of ks with experi-
mental data, one can conclude that, in order to repro-
duce the experimental values of the variances in the
region of the lightest nuclei considered here (206Po,
215Fr, 224Th), it is necessary that the calculations be
performed with value of ks ∼ 0.5; at the same time,
values in the range ks ∼ 0.1–0.2 are appropriate for
heavier nuclei.

At Z2/A values in the range being considered,
the sharp growth of the experimental values of σ2

EK
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
and σ2
M with increasing mass of fissile nuclei cannot

be described even qualitatively within the statistical
model of fission [21] or within the zero-viscosity
dynamical model [18]. Considerable advances in
describing the fissility-parameter dependence of the
variances σ2

EK
and σ2

M have been made within the
diffusion model [6, 19]; however, the calculations
within the diffusion model were performed without
taking into account the evaporation of light prescis-
sion particles. This effect has a strong impact on the
parameters of the mass–energy distributions [12],
since evaporated particles carry away a considerable
part of the excitation energy; accordingly, the vari-
ances of the mass and energy distributions decrease.

3.2. Multiplicities of Prescission Neutrons
and Fission Times

Among all particles evaporated from the nucleus,
a special role is played by neutrons [64], because the
number of neutrons evaporated in the fission pro-
cess is much greater than the number of evaporated
charged particles or photons. Moreover, the mul-
tiplicity of prefission neutrons, npre, appears to be
a peculiar kind of clock measuring the fission time
[53, 64].

The results of the calculations for the mean mul-
tiplicity of prefission neutrons, 〈npre〉, are presented
in Fig. 5 for ks = 1 and ks = 0.5. From this figure,
2
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systematics [63] [〈EK〉 = 0.1189Z2/A1/3 + 7.3 (MeV)].
(b, c) Computed variances of (b) the mass and (c) the
energy distributions along with experimental data: (open
squares) results of the calculations with ks = 0.25; the
rest of the notation is identical to that in Fig. 4а. The
compound nuclei formed in the reactions considered here
are displayed in Fig. 4b (below them, the corresponding
initial excitation energies are indicated parenthetically).
Arrows indicate the experimental and computed data for
relevant nuclei.

it can be seen that, for all nuclei undergoing fission,
with the exception of 260Rf, the experimental values of
〈npre〉 can be reproduced fairly well in the calculations
with ks ∼ 0.5. For the 260Rf nucleus, the calculations
failed to reproduce the experimental values of 〈npre〉
even at ks = 1. A similar result was obtained in [65],
PH
where, on the basis of studying reactions leading to
the production of heavy nuclei (whose mass numbers
lie in the region ACN > 260), it was shown that the
value of ks > 4 is necessary for reproducing the ex-
perimental values of 〈npre〉.

In the present study, we have explored the depen-
dences of the multiplicities of prescission neutrons on
themasses of fission fragments and their kinetic ener-
gies. These dependences are displayed in Figs. 2а and
3. In [53], it was shown that the number of evaporated
neutrons is greater in events of symmetric fission than
in events of asymmetric fission, the energies of evap-
orated neutrons being independent of the fragment
masses. This trend proved to be virtually independent
of the mass of the fissile compound nucleus. Three
hypothesis were proposed in [53] for explaining this
effect. The first relies on the fact that, at any instant of
time, the ensemble of nuclei undergoing fission con-
tains nuclei having different excitation energies since
different numbers of particles can be evaporated from
the nucleus in the course of the fission process. Thus,
we conclude that, if the nucleus possesses a high
excitation energy (a small number of particles have
been evaporated from it), it can overcome a higher
fission barrier at a higher mass asymmetry in relation
to a nucleus that has evaporated a greater number
of particles. Within the second hypothesis, it is as-
sumed that, during the descent from the saddle to the
scission point, the nucleus changes its mass asym-
metry only slightly; that is, nuclei that split with a
large mass asymmetry have fluctuated somewhere in
the region of large mass asymmetries over the entire
time of descent from the saddle to the scission point;
therefore, they have had a lower temperature and
evaporated a smaller number of particles in relation
to the case of nuclei undergoing symmetric fission.
Within the third hypothesis, it is assumed that the fis-
sion time decreases with increasing mass asymmetry;
therefore, the nucleus evaporates a smaller number
of neutrons in asymmetric fission than in symmetric
fission. It should be emphasized that, in [53], it is
implicitly assumed that, in the process of nuclear
fission, neutrons are evaporated predominantly from
the barrier top and during the descent from the saddle
to the scission point. It follows that, if one of the first
two hypotheses or their combination were correct,
then, as was indicated in [53], the energy of evap-
orated neutrons, 〈En(M)〉, would decrease with in-
creasing mass asymmetry. However, 〈En(M)〉 would
increase with increasing mass asymmetry if the third
hypothesis were correct. Therefore, the conclusion
drawn in [53] was that, for explaining the dependence
〈npre(M)〉, it is necessary to assume that all three
hypotheses are correct.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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compound nuclei formed are indicated in the figure; the
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low them.

The question of where neutrons are evaporated is
of fundamental importance in explaining the charac-
ter of the dependence npre(M). Our previous con-
clusion [17] that neutrons are predominantly evap-
orated from the ridge and in the course of descent
from the saddle to the scission point was unfortu-
nately incorrect because of the imperfections of the
two-dimensional model. In the present study, this
dependence has been explored in greater detail on
the basis of our three-dimensional model. Figure 6
shows the mean multiplicity 〈npre〉 as a function of
the elongation coordinate c for the 215Fr and 256Fm
nuclei. Our calculations reveal that a major part of
neutrons, as well as other particles, are evaporated
from the ground-state region: about 50 to 80% of
the total number of evaporated particles are emitted
before the saddle point, and about 10%, irrespective
of the final mass asymmetry, are emitted upon passing
saddle configurations. Of all nuclei considered in the
present study, only 256Fm and 260Rf emit a consid-
erable part of neutrons in the fission process at the
stage of descent from the saddle to the scission point.
Since the potential energy is weakly dependent on the
collective coordinates h andα′ in the ground-state re-
gion, Langevin trajectories can execute randomwalks
for a long time over a nearly flat (in the coordinates h
and α′) potential-energy surface, emitting meanwhile
light particles. The kinetic energies of particles that
are evaporated from the ground-state region will not
depend on the mass asymmetry in view of the weak
dependence of the potential energy on the coordinates
h and α′ in the ground-state region. Since walks of
Langevin trajectories in the space of collective co-
ordinates are random, different trajectories reach the
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ridge surface within different time intervals. Trajecto-
ries that reached the region of saddle configurations
within short times and, simultaneously, evaporated a
small number of neutrons retain a major part of the
excitation energy; therefore, they can reach fast the
scission surface, having a large mass asymmetry. On
the contrary, those trajectories whose evolution from
the ground-state region involves the emission of a
large number of neutrons lose a considerable part of
the excitation energy; upon passing the ridge surface,
they are therefore capable of only slowly descending
along the bottom of the liquid-drop fission valley at
a mass asymmetry approximately equal to zero, but
they are incapable of climbing the potential energy
surface in the region of large mass asymmetries. The
calculated values of the mean time it takes for the
2
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nuclei undergoing fission to reach the scission surface
are displayed in Fig. 2b versus the fragment masses.
As can be seen from this figure, the fission times for
the cases of the symmetric and the asymmetric split-
ting of a nucleus differ by nearly a factor of 2. Thus, we
can conclude that the final mass asymmetry and the
time of the fission of a nucleus depend on its preceding
evolution in the ground-state region. The smaller the
number of particles that have been evaporated from
the nucleus in the ground-state region, the higher the
probability for the nucleus to reach fast the scission
surface with a large mass asymmetry.

Within the two-dimensional model based on
classical Euler–Lagrange equations, an attempt was
made in [66] to describe theoretically the dependence
〈npre(M)〉 observed experimentally. In their calcu-
lations, the authors of [66] used a combination of
one-body and two-body viscosity and found that,
for reproducing, in the calculations, the dependence
〈npre(M)〉 observed experimentally, it is necessary
to reduce considerably the viscosity (a specific value
of this reduction depends of the mass-asymmetry
coordinate) by multiplying the components of the
friction tensor by exp(−K × α× α), where K =
161 ± 3. From Fig. 2a, it can be seen that our cal-
culations reproduce fairly well, at a quantitative level,
the dependence 〈npre(M)〉 observed experimentally
without including additional adjustable parameters in
the model.

The dependence 〈npre(EK)〉 observed experimen-
tally [67] exhibits a significant growth of 〈npre(EK)〉
with increasing EK . However, 〈npre(EK)〉 appears
to be virtually independent of EK upon applying,
to these results, the rescaling procedure that takes
into account recoil effects [53]. In our calculations,
〈npre(EK)〉 proved to be virtually independent of EK
within the errors; only in the region of small EK is
there a modest falloff in the dependence 〈npre(EK)〉.
This falloff can be explained by an ever increasing
contribution of events featuring large mass asym-
metry as EK decreases—this follows from a general
character of the two-dimensional mass–energy dis-
tribution.

In the present study, we have also calculated the
fission time tf . The results of these calculations are
displayed in Figs. 2b, 7, and 8. Figure 7 shows the
fission-time distribution of the trajectories versus ks
for the 215Fr nucleus. Figure 8 presents the mean fis-
sion time 〈tf 〉 as a function of the parameter Z2/A1/3.
In accord with the results of many previous cal-
culations (see, for example, [6, 12, 65, 68]), it was
found, for all reactions studied here, that the neutron
multiplicities and the mean times it takes for nuclei
undergoing fission to reach the scission surface grow
with increasing viscosity, the fission time being the
PH
quantity in our calculations that exhibits the highest
sensitivity to the value of viscosity. However, there
are no direct experimental data on fission times, and
their values are extracted from experimental data on
〈npre〉 by invoking model concepts. Depending on
the choice of model for neutron evaporation, fission
times can vary within one order of magnitude [53, 69].
In what is concerned with the fission times obtained
in the present calculations, we can only state that
they are about 10−19–10−20 s and that they decrease
with increasing Z2/A, which is in agreement with the
results of experimental investigations.

3.3. Correlations between the Parameters
of Two-Dimensional Mass–Energy Distributions

The correlation dependences 〈EK(M)〉, σ2
EK

(M),
and σ2

M (EK) carry additional information about the
scission configurations of nuclei undergoing fission.
The dependence 〈EK(M)〉 calculated in the present
study for the 260Rf nucleus is shown in Fig. 9. For a
first approximation, this dependence can be approxi-
mated by the parabola [6, 62]

〈EK(M)〉 = 〈EK(A/2)〉
(

1 − β
(

1 − 2M
A

)2)
. (18)

This approximation reflects the dependence of the
Coulomb energy of the repulsion of fission fragments
on the distance between their centers of mass. The
dependences 〈EK(M)〉 observed experimentally for
excitation energies E∗ in excess of 20 MeV corre-
spond to values in the region β < 1. It should be
noted that β depends on the excitation energy and
on the parameter Z2/A as well. The dependences
〈EK(M)〉 calculated in the present study correspond
to β values varying from β = 0.7 for 206Po to β = 1.6
for 260Rf . At these values of β, the calculated de-
pendences 〈EK(M)〉 fall off with increasing M faster
than in experimental data, as can be seen in Fig. 9 for
the example of the 260Rf nucleus. In all probability,
this discrepancy is due to choosing a specific scission
condition used in the present study.

The dependences σ2
EK

(M) and σ2
M (EK) are not

shown in the figures, because, in the Z2/A range
studied here, experimental data on these dependences
are scanty; moreover, their dependence on the reduc-
tion coefficient ks can be assessed on the basis of
the behavior of the variances of the one-dimensional
mass and the one-dimensional energy distribution. It
should only be noted that the qualitative behavior of
the dependences σ2

EK
(M) and σ2

M (EK) computed in
our study agrees well with the shapes of the experi-
mental dependences for close fissile nuclei.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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4. CONCLUSION

We have performed systematic dynamical calcu-
lations of the two-dimensional mass–energy distri-
butions of fragments originating from the fission of
excited compound nuclei. For the same processes, we
have also computed the multiplicities of light charged
particles. Our calculations have been performed with-
in three-dimensional Langevin dynamics by using
a modified version of one-body dissipation. In order
to calculate the potential energy, we have used a
macroscopic model that takes into account the finite
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experimental data from [52].

range of nuclear forces and the diffuseness of the
nuclear surface. Our calculations have revealed that
all features of the two-dimensional mass–energy dis-
tribution are sensitive to changes in nuclear viscosity.
The data on σ2

EK
and σ2

M can be employed, along with
the traditionally used data on 〈EK〉, to determine the
magnitude and the mechanism of nuclear viscosity.
From the analysis of all the computed features, we can
draw the following conclusion: for all of the features
of the mass–energy distributions studied here, the
best agreement between the results of our theoretical
2
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calculations and experimental data is attained at a
value of ks ∼ 0.5 for the 206Po, 215Fr, and 224Th nu-
clei; in dealing with heavier nuclei, a smaller value of
ks ∼ 0.2 is preferable. It should be emphasized that ks
is the only adjustable parameter in our calculations,
and the value of ks = 0.27, which was found from
an analysis of experimental giant-resonance widths
[35] independently of fission, falls within the interval
ks = 0.2–0.5.

For the heaviest nuclei considered in our study
(256Fm and 260Rf), the calculated values of the vari-
ances reproduce experimental data most closely at
ks ∼ 0.1, but, at this value of ks, the results of the
calculations for the neutron multiplicity are far be-
low the experimental multiplicities. The agreement
between the theoretical results and experimental data
on 〈npre〉 for these nuclei is better at ks = 1.0, but,
at this value of ks, the calculations are unable to
reproduce even qualitatively the observed values of
the variances. From our calculations, we can draw the
conclusion that, for reactions involving the formation
of 256Fm and 260Rf , it would be incorrect to begin
calculations from the statistically equilibrium ground
state of a nucleus—it is necessary to consider fission
dynamics with allowance for the entrance channel of
the fusion–fission reaction.
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8. F. Scheuter, C. Grégoire, H. Hofmann, and J. R. Nix,
Phys. Lett. B 149B, 303 (1984).
PH
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M. I. Sobel, Phys. Scr. 25, 517 (1982).

60. K. T. R. Davies and J. R. Nix, Phys. Rev. C 14, 1977
(1976).

61. M. G. Itkis and A. Ya. Rusanov, Fiz. Élem. Chastits
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Abstract—Basic properties of the ground states of spherical nuclei are investigated in a nonlocal extended
Thomas–Fermi approximation under the assumption of Skyrme forces. It is shown that, for nuclei
occurring near the β-stability line, the binding energies, the root-mean-square radii, and the density
distributions found on this basis agree well with experimental data. Binding energies, root-mean-square
radii, and density distributions are also calculated for the ground states of nuclei lying far off the β-
stability line and for superheavy elements. For the proton, the neutron, and the total particle density,
the thickness of the diffuse layer is investigated as a function of the number of neutrons in tin isotopes.
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1. INTRODUCTION

A description of the properties of nuclei in their
ground states and low-lying excited states is one of
the most important problems in nuclear physics. Over
the past decades, theoretical investigations aimed at
this have gained a new momentum in connection
with the development of phenomenological effective
nucleon–nucleon potentials that are expressed in a
simple mathematical form [1]. The use of effective
Skyrme forces [1] in investigating the properties of
nuclear systems facilitates relevant calculations con-
siderably. For the Skyrme forces, a few successful
parametrizations were constructed in [2–8], which
ensure a description of many nuclear properties to a
high precision.

The Hartree–Fock method underlies one of the
fundamental approaches to calculating the properties
of complex nuclei [2, 3, 5, 6, 8–12]. This quantum-
mechanical approach, combined with Skyrme forces,
makes it possible to describe well the properties of
the ground states of nuclei almost over the entire
periodic table of elements [2, 3, 5, 6, 8–10, 12]. Many
properties of nuclei were successfully described with-
in Fermi liquid theory [13, 14]. However, an imple-
mentation of the Hartree–Fock method and of cal-
culations within Fermi liquid theory in practice in-
volves considerable difficulties. In view of this, use
is frequently made of a semiclassical approach that
is referred to as the extended Thomas–Fermi ap-
proximation [15]. This method is simple, conceptually
clear, and rather accurate, which makes it possible

*e-mail: denisov@kinr.kiev.ua
1063-7788/02/6505-0814$22.00 c©
to apply it successfully to describing various physi-
cal systems [16]. There is yet another point in favor
of using the Thomas–Fermi approximation in cal-
culating basic properties of nuclei: although various
modern modifications of the Hartree–Fock approxi-
mation are quite fundamental conceptually and elab-
orate, the most precise description of experimental
nuclear masses is provided by simple macroscopic–
microscopic approximations [11, 12], which often em-
ploy the Thomas–Fermi approximation to calculate
the macroscopic part of the binding energy [12].

The extended Thomas–Fermi approximation has
been successfully used in atomic and nuclear physics
and, since more recent times, in investigations of the
properties of metal clusters [17]. Results obtained
with the aid of the variational extended Thomas–
Fermi approximation for proton-density distributions
in nuclei agree well with experimental data, showing
slight deviations from them only in the diffuse region
[15]. We note that, previously, many properties of
nuclei were studied in the local extended Thomas–
Fermi approximation [18]; in the nonlocal approxi-
mation, this was done by Brack et al. [15], whose
analysis also involved variations of the parameters in
trial functions for nucleon-density distributions.

Under the assumption of Skyrme forces, the non-
local extended Thomas–Fermi approximation imple-
mented to second-order terms in � [15] is used in the
present study to describe the properties of the ground
states of medium-mass and heavy spherical nuclei.
More specifically, this investigation is performed both
for nuclei occurring near the β-stability line and for
nuclei lying far off it, as well as for nuclei of su-
perheavy elements. An investigation of nuclei in the
2002 MAIK “Nauka/Interperiodica”
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vicinity of the presumed stability island around Z =
114, N = 182 [11, 19] is an especially topical issue,
since there have recently appeared reports on the ob-
servation of the Z = 114–116 and the Z = 104–112
nuclei (see [20] and [21], respectively). The equations
of the nonlocal extended Thomas–Fermi approxima-
tion for the case of Skyrme forces considered in the
present study are solved here numerically.

2. EXTENDED THOMAS–FERMI
APPROXIMATION

The equations

δE(ρn, ρp)
δρp

− λp = 0, (1)

δE(ρn, ρp)
δρn

− λn = 0 (2)

of the extended Thomas–Fermi approximation [15,
16] can be obtained from the variational principle
where the total energy of a nucleus is considered as
a functional E(ρn, ρp) of the neutron density ρn and
the proton density ρp. The possibility of constructing
such a functional follows from the Hohenberg–Kohn
theorem [22], which is valid for any multicomponent
system. The total-energy functional for a nucleus has
the form

E(ρn, ρp) =
∫
dr(τ + εpot + εСoul), (3)

where τ , εpot, and εCoul are the densities of, respec-
tively, the kinetic, the potential, and the Coulomb
energy. In Eqs. (1) and (2), λn and λp are Lagrange
multipliers that are chemical potentials for neutrons
and protons, respectively, and which are associated
with the conservation of the number of neutrons (N )
and the number of protons (Z) in a nucleus:∫

drρn(p)(r) = N(Z). (4)

Knowing the expressions for the kinetic, the potential,
and the Coulomb energy in (3), one can solve the set
of Eqs. (1) and (2) and find the distributions of the
neutron and the proton density.
To terms of second order in � [15], the kinetic-

energy density is given by

τ = τTF + τ2 (5)

(the sum of the densities of the kinetic energies of
protons and neutrons, τ = τp + τn), where

τTF,n(p) = kρ
5/3
n(p) (6)

is the density of the kinetic energy of neutrons
(protons) in the Thomas–Fermi approximation (k =
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
(5/3)(3π2)2/3) and τ2n(p) is the second-order gradi-
ent correction in � in the nonlocal case [15]. It has the
form

τ2q = b1
(∇ρq)2
ρq

+ b2∇2ρq + b3
(∇fq∇ρq)

fq
(7)

+ b4ρq
∇2fq
fq

+ b5ρq

(
∇fq
fq

)2

+ b6h
2
mρq

(
Wq

fq

)2

,

where q = p orn; b1 = 1/36, b2 = 1/3, b3 = 1/6, b4 =
1/6, b5 = −1/12, and b6 = 1/2 are numerical coeffi-
cients; and hm = �

2/(2m). The explicit expressions
for the functions fq and Wq are presented in the
Appendix. The last term in Eq. (7) takes into account
spin–orbit interaction.

In the case of Skyrme forces, the potential-energy
density has the form [1, 2, 10, 15]

εpot =
1
2
t0

[(
1 +

1
2
x0

)
ρ2 −

(
x0 +

1
2

)
(8)

× (ρ2
n + ρ2

p)
]

+
1
12
t3ρ

α

[(
1 +

1
2
x3

)
ρ2

−
(
x3 +

1
2

)(
ρ2
n + ρ2

p

) ]
+

1
4

[
t1

(
1 +

1
2
x1

)

+ t2

(
1 +

1
2
x2

)]
τρ+

1
4

[
t2

(
x2 +

1
2

)

− t1

(
x1 +

1
2

)]
(τnρn + τpρp)

+
1
16

[
3t1

(
1 +

1
2
x1

)
− t2

(
1 +

1
2
x2

)]
(∇ρ)2

− 1
16

[
3t1

(
x1 +

1
2

)
+ t2

(
x2 +

1
2

)]
× ((∇ρp)2 + (∇ρn)2)

+
1
2
W0[J∇ρ + Jn∇ρn + Jp∇ρp],

where t0, t1, t2, t3, x0, x1, x2, x3, α, and W0 are
the parameters of the Skyrme potential; ρ = ρn + ρp;
τ = τn + τp; J = Jn + Jp; and

Jn(p) = − hm
fn(p)

ρn(p)Wn(p). (9)

With allowance for the exchange term, the
Coulomb energy density is given by [15, 17]

εCoul =
1
2
e2ρp(r)

∫
dr′

ρp(r′)
|r − r′| (10)

− 3
4
e2
(

3
π

)1/3

ρ4/3
p (r).
2
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Table 1. Binding energies E, root-mean-square radii 〈r〉, and chemical potentials λ of β-stable nuclei (experimental
values Eexpt and 〈rp〉expt were borrowed from [24])

Nucleus Eexpt, MeV E, MeV 〈rp〉expt, fm 〈rp〉, fm 〈rn〉, fm λn, MeV λp, MeV

40Ca 342.1 340.7 3.450 3.186 3.230 −12.12 −10.61

48Ca 416.1 418.1 3.451 3.322 3.499 −6.14 −18.86

58Ni 506.45 506.1 3.769 3.560 3.617 −11.23 −11.53

90Zr 783.9 790.2 4.258 4.069 4.170 −8.62 −14.53

114Sn 971.6 982.6 4.602 4.389 4.491 −8.34 −14.41

140Ce 1172.7 1182.8 – 4.681 4.817 −6.59 −16.63

208Pb 1636.5 1639.8 5.503 5.330 5.486 −5.27 −17.45
Taking into account (3)–(10) and considering the
spherically symmetric case, we can recast Eqs. (1)
and (2) into the form

Ann∇2ρn +Anp∇2ρp +Bnn(∇ρn)2 (11)

+Bnp(∇ρp)2 +Dnp(∇ρn∇ρp) + Fn + λn = 0,

App∇2ρp +Apn∇2ρn +Bpp(∇ρp)2 (12)

+Bpn(∇ρn)2 +Dpn(∇ρp∇ρn) + Fp + C + λp = 0,

where A,B, C,D, and F are functions of the variable
r. The explicit expressions for them are presented in
the Appendix. The coefficient C in Eq. (12) stems
from taking into account the Coulomb interaction
between intranuclear protons.
The set of Eqs. (11) and (12) is a set of nonlinear

integro-differential equations in partial derivatives. In
order to solve it in a spherically symmetric case, we
make use of the method of successive approxima-
tions. The iterative process is continued until the
change in the chemical potential upon going over
from one iteration to the subsequent one becomes
small (specifically, δλq/λq ≤ 10−4).

For a zero approximation to the density distribu-
tion in the spherically symmetric case, we take the
form

ρq(r) = ρ0q/[1 + exp((r −R)/a)], (13)

where R = 1.2A1/3 fm, a = 0.6 fm, and ρ0q is the
normalization constant determined with the aid of
Eq. (4). If we assume that the proton and the neutron
density decrease at infinity according to the same law,
the large-r asymptotic behavior of the densities is
given by

ρq(r)|r→∞ = r−2 exp
(
−
√
|λq|/(hmb1)r

)
. (14)
PH
At the point r = 0, the proton and the neutron density
must be bounded.

Prior to proceeding to solve the set of Eqs. (11)
and (12) numerically, it is convenient to make the
change of variables ρq = yq/r, which simplifies these
equations somewhat. Since ρq is bounded at the point
r = 0, the function yq(r) satisfies the condition

yq(0) = 0. (15)

In order to solve the set of Eqs. (11) and (12) nu-
merically, use was made of the Numerov method in
the summed form [23], whereby the computational
scheme was stabilized to the maximum possible ex-
tent.

3. DISCUSSION OF NUMERICAL RESULTS

We begin the discussion of our numerical results
by considering the binding energies of spherical nu-
clei occurring in the β-stability valley, such as 40Ca,
48Ca, 58Ni, 90Zr, 114Sn, 140Ce, and 208Pb. In com-
puting the binding energies, we employed the SIII [3],
SkM∗ [5], T6 [7], SkP [6], and SLy4 [8] parametriza-
tions of the Skyrme forces. Figure 1 shows the relative
deviations (E −Eexpt)/Eexpt of the computed binding
energiesE from their experimental counterpartsEexpt
versus the number of nucleons in the nuclei being
considered. The experimental values of the nuclear
binding energies were borrowed from [24]. As can
be seen from Fig. 1, the calculations with the SkP
potential reproduce the experimental binding energies
most closely. For this reason, the computed bind-
ing energies, root-mean-square radii, and chemical
potentials are presented in Table 1 only for the SkP
parametrization.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 1. Relative deviations (E − Eexpt)/Eexpt of the com-
puted nuclear binding energies from their experimen-
tal counterparts for the (boxes) SIII, (inverted trian-
gles)SkM∗, (triangles) T6, (circles)SkP, and (diamonds)
SLy4 parametrizations of the Skyrme forces.

It should be noted that, for the majority of the
nuclei quoted in Fig. 1, the computed binding ener-
gies are slightly in excess of their experimental coun-
terparts. As a rule, the inclusion of shell corrections
[11] enhances this effect since, for the majority of the
spherical models considered in the present study, the
shell correction either increases the binding energy
or is close to zero [25]. It follows that, for the ma-
jority of the nuclei quoted in Fig. 1, the results that
the extended Thomas–Fermi approximation with the
SkP potential yields for the binding energies with
allowance for shell corrections will also be close to the
corresponding experimental values.
The values calculated here within the extended

version of the Thomas–Fermi approximation for the
binding energies and the root-mean-square radii
agree well with available experimental data (see
Table 1).
The binding energies, root-mean-square radii, and

chemical potentials computed here were obtained in
the nonlocal approximation. In the local approxima-
tion, the coefficients b2, b3, and b4 in Eq. (7) vanish;
that is, three gradient terms are discarded, which
leads to an additional contribution to the nuclear
binding energy. As a result, the nuclear binding en-
ergy computed in the nonlocal approximation differs
from that which was obtained in the local approxi-
mation by a few tenths of a megaelectronvolt in light
nuclei and by about 1 MeV in heavy nuclei.
In Fig. 2, the proton densities computed for 48Ca

and 208Pb are contrasted against their experimental
counterparts. Here and below, the experimental ra-
dial distributions of the charge density in nuclei were
taken from the analysis of inelastic electron scattering
on nuclei as given in [26]. From the results presented
in Fig. 2, it follows that the computed proton densities
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 2. Radial distributions of (dashed curves) the pro-
ton [ρp(r)] and (dotted curves) the neutron [ρn(r)] den-
sity according to the calculations within the extended
Thomas–Fermi approximation and (solid curves) exper-
imental proton densities in 48Ca and 208Pb. The experi-
mental charge densities were borrowed from [26].

agree well with the experimental densities in the inte-
rior of the nuclei, but that there are slight distinctions
in the diffuse region, especially in the region of the
distribution tail. These distinctions can be removed by
replacing the value of b1 = 1/36 by a greater value—
for example, by the quantum-mechanical value of
b1 = 1/9 [15]. This replacement improves consider-
ably the density profile, but it reduces significantly
the binding energy [15]. The fact that the descrip-
tion of the proton-density profile within the nonlo-
cal extended Thomas–Fermi approximation, which
takes into account �

2 terms in the kinetic-energy
functional, is insufficiently accurate affects the root-
mean-square radii as well, which appear to be slightly
underestimated (see Table 1).

Having demonstrated that, for spherical nuclei
from the region around the β-stability line, the
extended Thomas–Fermi approximation provides an
accurate description of their gross properties, we now
proceed to consider nuclei lying far off the stability
2
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Fig. 3. Radial distributions of the proton [ρp(r)] and
the neutron [ρn(r)] density according to the calcula-
tions within the extended Thomas–Fermi approximation,
(ρn(r) − ρp(r))r

2, and experimental proton densities for
nickel isotopes (data for 64Ni, 62Ni, 60Ni, and 58Ni are
represented by boxes, circles, triangles, and inverted tri-
angles, respectively). The experimental charge densities
were borrowed from [26]. The radial distribution of neu-
trons in 78Ni according to the calculations within the
relativisticHartree–Bogolyubov approximation (crosses)
was taken from [30].

line, such as 32,56Ca, 48,78Ni, and 100,132Sn. The
binding energies, root-mean-square radii, and chem-
ical potentials computed for these nuclei within the
extended Thomas–Fermi approximation are quoted
in Table 2. The experimental value of the binding
energy of the 100Sn isotope was taken from [27]; for
the remaining isotopes, the binding energies were
borrowed from [24]. We note that the 40,48Ca, 48,78Ni,
and 100,132Sn nuclei, for which some features are
presented in Tables 1 and 2 and in Figs. 1–4, are
doubly magic. The doubly magic nucleus 48Ni was
synthesized quite recently [28]. Our computed value
of 346.8 MeV for the binding energy of this nucleus
agrees well with the result (349.0 MeV) obtained in
[29] from a systematics of binding energies.
P

As can be seen from Table 2, the binding energies
calculated within the extended Thomas–Fermi ap-
proximation for nuclei lying far off the β-stability line
agree well with their experimental counterparts. This
indicates that the extended Thomas–Fermi approxi-
mation is a highly accurate method for computing the
ground-state properties of spherical nuclei.
For the nickel isotopes, the results of the cal-

culations for the density distributions are displayed
in Fig. 3, where we can see that, in the interior
of the 50Ni and 78Ni nuclei, the proton and neu-
tron densities differ considerably. In the surface layer,
there is an excess of proton density (proton skin)
in 50Ni; on the contrary, 78Ni has a neutron skin.
We note that the proton and the neutron density in
the interior of nuclei change considerably upon going
over from neutron-deficient to neutron-rich isotopes,
the total particle density at the center of a nucleus
remaining virtually unchanged. The results that we
obtained for the proton-density distributions agree
well with experimental data from [26], while our re-
sult for the neutron-density distribution in the 78Ni
nucleus comply with the results of microscopic cal-
culations performed within the relativistic Hartree–
Bogolyubov approximation [30].
For tin isotopes, the radial dependences of the

proton and neutron densities are displayed in Fig. 4.
The shapes of the densities for neutron-deficient and
neutron-rich tin isotopes are identical to those for
nickel isotopes.
From Figs. 3 and 4, it can be seen that the ra-

dial proton-density distributions computed in the ex-
tended Thomas–Fermi approximation comply well
with experimental data (for the Ni and Sn isotopes
presented in these figures) in the interior of the nuclei
and slightly differ from them in their surface regions.
Within the extended Thomas–Fermi approxima-

tion, it is possible to assess the position of the line of
neutron stability of the elements. As can be seen from
Fig. 5, the chemical potentials computed within the
extended Thomas–Fermi approximation for Ni and
Sn isotopes change smoothly in response to varia-
tions in the number of neutrons. The neutron number
at which the chemical potential changes sign from a
negative to a positive one corresponds to the bound-
ary of neutron stability of an element. The extended
Thomas–Fermi approximation is a macroscopic ap-
proach taking no account of either the shell structure
of the nucleus or pairing effects; therefore, it can yield
only an approximate position for the boundary of neu-
tron stability of the elements. Nonetheless, the value
computed here on this basis for tin isotopes (A =
162) is in satisfactory agreement with the value found
within the model proposed in [25] (A = 157). More-
over, our curves comply well with the results of cal-
culations within the relativistic Hartree–Bogolyubov
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 2.Binding energiesE, root-mean-square radii 〈r〉, and chemical potentials λ of neutron-rich and neutron-deficient
nuclei (the experimental values Eexpt were taken from [27] for 100Sn and from [24] for the remaining isotopes)

Nucleus Eexpt, MeV E, MeV 〈rp〉, fm 〈rn〉, fm λn, MeV λp, MeV

32Ca – 201.5 3.100 2.922 −22.470 −0.590

56Ca 449.6 456.0 3.447 3.754 −2.440 −25.248

48Ni – 346.8 3.433 3.328 −19.707 −2.521

50Ni 385.5 385.7 4.453 4.389 −17.643 −4.431

60Ni 526.9 528.9 3.589 3.670 −9.991 −13.153

62Ni 545.3 549.4 3.618 3.723 −8.854 −14.694

64Ni 561.8 567.6 3.646 3.774 −7.825 −16.184

78Ni 641.4 646.8 3.833 4.124 −2.572 −24.853

100Sn 825.8 819.7 4.243 4.247 −13.37 −7.84

124Sn 1049.4 1060.0 4.491 4.655 −5.702 −18.480

132Sn 1102.7 1104.0 4.568 4.783 −3.981 −21.352

Table 3. Binding energies E, root-mean-square radii 〈r〉, and chemical potentials λ computed for superheavy nuclei
within the extended Thomas–Fermi approximation and binding energies ETF obtained in the Thomas–Fermi approxi-
mation [32]

Z N E, MeV ETF, MeV 〈rp〉, fm 〈rn〉, fm λn, MeV λp, MeV

114 182 2121.6 2099.8 6.006 6.536 −4.777 −16.640

118 182 2132.1 2109.9 6.040 6.176 −5.418 −15.347

120 182 2134.9 2112.7 6.061 6.210 −6.064 −13.711

126 182 2134.2 2112.32 6.107 6.209 −6.692 −11.855

126 184 2149.4 2127.50 6.119 6.225 −6.482 −13.190

164 272 2667.9 – 6.686 7.012 −4.303 −15.003

164 318 2847.6 – 7.080 7.315 −1.716 −19.907
approximation [30] (see Fig. 5). For Ni isotopes, the
computed value of A = 90 agrees well with the value
obtained within the relativistic Hartree–Bogolyubov
approximation (A = 94) [30] and with the value found
in the three-dimensional Hartree–Fock–Bogolyubov
approximation [31].

Let us now proceed to investigate the ground-
state properties of superheavy elements in the region
of the possible stability island around Z = 114, N =
184. We will also consider the Z = 164, N = 272,
318 nuclei. It should be noted that the magic number
of Z = 114 was obtained within various models [11,
19]. The Z ≈ 114 and N ≈ 182 nuclei have a spheri-
cal shape or a shape close to it [19].
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
The stability of superheavy nuclei is associated
with the shell correction, owing to which there is a fis-
sion barrier in these nuclei [11, 19, 21]. However, the
effect of the shell correction on the density distribu-
tions in nuclei occurring close to the β-stability line
is insignificant. Moreover, it is necessary to know the
macroscopic binding energy in order to calculate the
total binding energy of nuclei by the shell-correction
method. Therefore, it is of great interest to investigate,
within the extended Thomas–Fermi approximation,
the density distributions in superheavy nuclei and
their macroscopic binding energies.
For the ground-state properties of the nuclei of

superheavy elements, the results of the calculations
2
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by circles and triangles, respectively). The experimental
charge densities were borrowed from [26].

with the SkP potential are presented in Table 3. The
results of the calculations with the SkM∗ and SLy4
potentials agree within 1% with the results quoted
in this table. In the region of the nuclei being con-
sidered, the Coulomb repulsion is so strong that the
binding energy of the nuclei changes only slightly
in response to an increase in the number of protons
at a fixed number of neutrons (N = 182). From the
values of λn quoted in Table 3, it can be seen that
the superheavy nuclei must be stable with respect to
neutron emission. For superheavy nuclei, Table 3 also
gives the binding energies that were obtained in the
Thomas–Fermi approximation for the case of finite-
range forces [32]. The parameters of these forces were
chosen in [32] in such a way as to reproduce the
experimental nuclear masses. From Table 3, it can be
seen that the binding energies computed for super-
heavy nuclei in the extended Thomas–Fermi approx-
PH
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results of the calculations within the relativistic Hartree–
Bogolyubov approximation [30] (circles) and the exper-
imental values of the neutron-separation energies [24]
(crosses) are also presented here for the sake of compari-
son.

imation with the SkP forces are greater than those
found in [32], this difference significantly exceeding
the typical value of the shell correction for these nuclei
[19, 21, 25, 32].
Figure 6 displays the distributions of the proton

and the neutron density for the 292,300
120X and 482

168X
nuclei. As can be seen from Fig. 6, the Coulomb
repulsion leads to a significant displacement of the
intranuclear protons to the periphery of the nuclei.
The proton density in the interior of the nuclei is lower
than at their surfaces and in the intermediate region
between the periphery and the interior.
We define the thickness of the diffuse layer, t, for

a density distribution as the distance over which the
density changes from 90 to 10% of its maximum
value. Figure 7 displays the thicknesses of the diffuse
layer for the proton (tp), the neutron (tn), and the total
particle (ttot) density versus the number of neutrons
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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in tin isotopes. The thicknesses of the diffuse layer
that are presented in Fig. 7 were computed within
the extended Thomas–Fermi approximation by using
the SLy4, SkP, and SkM∗ parametrizations of the
Skyrme forces. From Fig. 7, it can be seen that the
thickness of the diffuse layer increases with increasing
number of neutrons. A similar type of behavior of the
diffuse layer in these nuclei was also found within
microscopic calculations [33]. At the same time, the
quantity tp remains virtually unchanged, the growth
of ttot with increasing number of neutrons being due
to the growth of tn. This behavior of the neutron
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
density in various tin isotopes is expected to manifest
itself in nuclear reactions that are sensitive to the
distribution of neutrons.

4. CONCLUSION

It has been shown that the nonlocal extended
Thomas–Fermi approximation implemented for the
case of Skyrme forces appears to be a simple, fairly
accurate, and efficient means for studying the ground-
state properties of medium-mass and heavy nuclei,
both those occurring near the β-stability line and
those lying far off it. The calculated binding ener-
gies of stable and unstable nuclei closely reproduce
experimental data. A good description of the root-
mean-square charge radii has also been obtained.
The results of the calculations within the extended
Thomas–Fermi approximation for the radial distri-
butions of the proton densities agree well with the
experimental distributions in the interior of nuclei
and slightly deviate from them in the diffuse region.
The ground states of superheavy nuclei have been
considered. It has been found that, in the Z ≈ 114–
120 superheavy nuclei, there is a modest decrease in
the density at the center of a nucleus. The thicknesses
of the diffuse layer for the total particle density and for
the neutron density have been shown to increase with
increasing number of neutrons in nuclei.

ACKNOWLEDGEMENTS

We are grateful to Prof. D. Vretenar for kindly
placing at our disposal the results of numerical cal-
culations within the relativistic Hartree–Bogolyubov
method.

APPENDIX

The functions fp(n) and Wn(p) introduced in (7)
are given by

fn(p) = 1 + hm[(γ + β)ρn(p) + γρp(n)],

f ′np(pn) = hmγ, f ′nn(pp) = hm(γ + β),

Wn(p) =
W0

2
[2∇ρn(p) + ∇ρp(n)],

where

γ =
1
4

[
t1

(
1 +

1
2
x1

)
+ t2

(
1 +

1
2
x2

)]
,

β =
1
4

[
t2

(
x2 +

1
2

)
− t1

(
x1 +

1
2

)]
.

The coefficients in Eqs. (11) and (12) can be rep-
resented as

App =
2
hm

(
f ′pp(b2 − b3 + b4) − b1

fp
ρp

− Cpp
ρp
fp
2
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−C̄np
ρn
fn

)
+ 2hma2

9

(
4
ρp
fp

+
ρn
fn

)
− 2(a7 + a8),

Apn =
2
hm

(
f ′pn(b2− b3 + b4)−Cpn

(
ρp
fp

+
ρn
fn

))

− 2a7 + 4hma2
9

(
ρp
fp

+
ρn
fn

)
,

Bpp =
1
hm

(
b1
fp
ρ2
p

Fpp − Cpp
Fpp
fp

+ C̄npf
′
np

ρn
f2
n

)

+ hma
2
9

(
4
Fpp
fp

− f ′np
ρn
f2
n

)
,

Bpn =
1
hm

(
C̄pn

Fpp
fp

+ b1
f ′np
ρn

− Cnn
f ′np
f2
n

ρn

+ 2Cpnf ′pn
ρp
f2
p

− 2Cpn
Fnn
fn

)

+ hma
2
9

(
−Fpp
fp

+ 4
Fnn
fn

− 4f ′pn
ρp
f2
p

+ 4f ′np
ρn
f2
n

)
,

Dpn =
2
hm

(
−f ′pn

b1
ρp

+ Cppf
′
pn

ρp
f2
p

− C̄np
Fnn
fn

)

+ 2hma2
9

(
Fnn
fn

− 4f ′pn
ρp
f2
p

)
,

Fp =
k

hm

(
f ′ppρ

5/3
p +

5
3
fpρ

2/3
p + f ′npρ

5/3
n

)
+2a1(ρn + ρp)+2a2ρp+(α+ 2)a3(ρn + ρp)α+1

+ αa4(ρn + ρp)α−1(ρ2
n + ρ2

p) + 2a4ρp(ρn + ρp)α,

C = 2πe2


1
r

r∫
0

r′2ρp(r′)dr′ +

∞∫
r

r′ρp(r′)dr′




− e2
(

3ρp(r)
π

)1/3

,

where we have introduced the following notation:

Fnn(pp) = 1 − ρn(p)f
′
nn(pp)/fn(p),

Cnn(pp) = b5f
′2
nn(pp) + 4b6h2

ma
2
9,

Cnp(pn) = b5f
′
nn(pp)f

′
np(pn) + 2b6h2

ma
2
9,

C̄np(pn) = b5f
′2
np(pn) + b6h

2
ma

2
9,

Cnn = Cpp, Cnp = Cpn, C̄np = C̄pn,

a1 = 0.5t0(1 + 0.5x0), a2 = −0.5t0(x0 + 0.5),
a3 = t3(1 + 0.5x3)/12, a4 = −t3(x3 + 0.5)/12,
a7 = (3t1(1 + 0.5x1) − t2(1 + 0.5x2))/16,
a8 = −(3t1(0.5 + x1) + t2(0.5 + x2))/16,

a9 = 0.5W0.
P

The corresponding coefficients for Eq. (12) are
obtained upon the interchange of n and p.
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14. É. E. Sapershteı̆n and V. A. Khodel’, Izv. Akad. Nauk
SSSR, Ser. Fiz. 47, 907 (1983).

15. M. Brack, C. Guet, and H.-B. Hakanson, Phys. Rep.
123, 275 (1985).

16. M. Brack and R. K. Bhaduri, Semiclassical Physics
(Addison-Wesley, Reading, 1997).

17. M. Brack, Rev. Mod. Phys. 65, 677 (1993).
18. V. M. Kolomiets, Local-Density Approximation in

Atomic and Nuclear Physics (Naukova Dumka,
Kiev, 1990).

19. R. Smolanczuk, J. Skalski, and A. Sobiczewski,
Phys. Rev. C 52, 1871 (1995); R. Smolanczuk, Phys.
Rev. C 56, 812 (1997).

20. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 83, 3154
(1999); Yad. Fiz. 63, 1769 (2000) [Phys. At. Nucl.
63, 1679 (2000)]; Yad. Fiz. 64, 1427 (2001) [Phys. At.
Nucl. 64, 1349 (2001)].

21. G. Münzenberg, Rep. Prog. Phys. 51, 57 (1988);
S. Hofmann, Rep. Prog. Phys. 61, 373 (1998);
G. N. Flerov, I. Zvara, G.M. Ter-Akopyan, et al., Fiz.
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Abstract—We evaluate the temperature Tscis at the scission point and the saddle-to-scission time τscis
for the fission of heated nuclei. We use classical Lagrange-like equations of motion within the liquid-
drop model. The nuclear surface is parameterized by a two-parameter family of the Lawrence shapes.
Conservative forces are defined through the free energy of the nucleus at finite temperatures. We use
the friction tensor that is derived from the Navier–Stokes momentum-flux tensor and which takes into
account the boundary conditions at the nuclear surface. The scission line is determined from the instability
condition of the nuclear shape with respect to variations of the neck radius. A numerical solution to
the dynamical equations is obtained for the 236U nucleus. The viscosity coefficient µ is deduced from a
comparison of experimental data on the kinetic energy of fission fragments with the computed one. It is
found that µ obtained by using our approach deviates significantly from µ of the standard hydrodynamic
model. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many general features of nuclear dynamics can
be described on the basis of macroscopic models in
terms of collective variables. A few important degrees
of freedom are usually used to simplify a complex
dynamical problem of large-amplitude motion like
nuclear fission. An available approach to such large-
amplitude-motion problems is based on the standard
liquid-drop model (LDM). Up to now, the LDM has
been widely used to describe the main macroscopic
(that is, averaged over many quantum states) charac-
teristics of nuclear fission [1]. Within this model, one
starts with the classical equations of motion for col-
lective variables that describe the shape of the nuclear
surface. The conservative forces and the mass coeffi-
cients are derived from the LDM under the assump-
tion of the irrotational motion and incompressibility of
a nuclear liquid. The friction tensor is derived by using
the well-known Rayleigh function in the same way as
for infinite viscous matter.

In [2], the nuclear liquid-drop model was intro-
duced by combining the initial Navier–Stokes prob-
lem inside a nucleus and the boundary conditions at
the nuclear surface. The friction tensor was modified
by taking into account the finite size of the liquid drop.
In the present study, we solve the macroscopic equa-
tions of motion with the friction tensor of [2] and com-
pare the results of numerical calculations with those
obtained within the standard hydrodynamic model.

∗This article was submitted by the authors in English.
1063-7788/02/6505-0824$22.00 c©
2. MACROSCOPIC EQUATION OF MOTION

The motion of incompressible viscous and uni-
formly charged liquid can be described by the Navier–
Stokes equation

mρeq
∂

∂t
uα = − ∂

∂rβ
Παβ − ρp,eq

∂

∂rα
ϕ, (1)

where ρeq(r) is the equilibrium particle density,
ρp,eq(r) is the equilibrium charge density, m is
the nucleon mass, u(r, t) is the velocity field, and
ϕ(r, t) =

∫
ρp,eq(r′)|r − r′|−1dr′ is the Coulomb po-

tential (here, ϕ is time-dependent because of the time
dependence of the nuclear surface S). In Eq. (1) and
in the following expressions, summation is implied
over dummy Greek indices. The momentum-flux
tensorΠαβ(r, t) contains conservative and dissipative
parts. Below, we assume the potential motion of
fluid. Taking into account Eq. (1), one obtains the
momentum-flux tensor in the form (see also § 62 of
[3])

Παβ=
[
−mρeq

∂χ

∂t
− Ze

A
ρeqϕ

]
δαβ − 2µ

∂2χ

∂rα∂rβ
, (2)

where χ(r, t) is the potential of the velocity field (u =
∇χ), Z is the number of protons, e is the electron
charge, A is the number of nucleons in the nucleus,
and µ is the viscosity coefficient.

The potential χ(r, t) can be obtained from the
continuity equation

∆χ = 0. (3)
2002 MAIK “Nauka/Interperiodica”
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The equations of motion (1) and (3) must be com-
pleted with the boundary conditions. Under the
assumption of the sharp surface of a nucleus, the
boundary conditions at the moving surface are given
by (see § 61 of [3])

(n · u)|S = (n · ∇χ)|S = uS , (4)

Πnn(r, t)|S = PS , (5)

where n is a unit vector normal to the surface S,
Πnn(r, t) is the normal–normal component of the
momentum-flux tensor Παβ , uS is the velocity of the
surface S, and PS is the surface-tension pressure.
We indicate that the tensor Παβ contains both time-
reversible and viscous contributions [see Eq. (2)].

Let us introduce the displacement field w(r, t)
given by u(r, t) = ∂w(r, t)/∂t. It is convenient to
rewrite the boundary condition (5) in the form of the
variational problem (see [4], p. 195)

t1∫
t0

dt

∮
S

dSδwn[Πnn − PS ] = 0, (6)

where δwn(r, t0) = δwn(r, t1) = 0 for any variations
of the normal component wn of the displacement field
w(r, t). The variational problem (6) can be simpli-
fied [2] by parametrizing the liquid-drop surface S in
terms of the collective variables q(t) = q1, . . . , qN ,

δwn|S = ūiδqi, uS = ūiq̇i, χ = χ̄iq̇i. (7)

We will assume that the nuclear surface is created
by rotation of a certain profile function ρ = Y (z, t)
about the z axis in the cylindrical coordinates ρ, z, and
φ. The quantity ūi in Eq. (7) is then given by [2]

ūi =
1
Λ
∂Y

∂qi
, Λ =

√
1 +

(
∂Y

∂z

)2

. (8)

In order to define the quantity χ̄i in Eq. (7), we sub-
stitute Eq. (7) into Eqs. (3) and (4) and use Eq. (8).
We obtain

∆χ̄i = 0, (n · ∇χ̄i)|S =
1
Λ
∂Y

∂qi
. (9)

After substitution of Eqs. (2) and (6) into Eq. (7),
we finally obtain the basic macroscopic equations of
motion for the collective variables qi(t); that is,

Mij q̈j +
∂Mij

∂qk
q̇j q̇k = Ki − Zij q̇j, (10)

i = 1, 2, . . . , N,

where

Mij = mρeq

∮
S

dSūiχ̄j (11)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 20
is the inertia tensor determining the collective kinetic
energy Ekin. Namely, we have

Ekin =
1
2
mρeq

∫
V

u2dV (12)

=
1
2
mρeq

∮
S

dSχ(n · ∇χ) =
1
2
Mij(q)q̇iq̇j.

In Eq. (10), Zij is the friction tensor [2],

Zij = 2µ
∮
S

dSūi
∂2χ̄j
∂rα∂rβ

nαnβ. (13)

We indicate that the friction tensor (13) differs from
the friction tensor of the standard hydrodynamic
model [1] (see Appendix 1). In the case of a heated
system, the conservative forces Ki in Eq. (10) are
related to the free energy F as (see Appendix 2)

Ki = −
(
∂F

∂qi

)
V,T,q̇

, (14)

where T is the temperature of the system and q̇ ≡
q̇1, q̇2, . . . , ˙qN stands forN collective velocities.

The free energy of the nucleus at a finite tempera-
ture is given by

F = Ekin + FS + FC + F ∗. (15)

Here, FS and FC are the free surface and Coulomb
energies, respectively, and F ∗ is the internal free en-
ergy. The energies FS and FC are given by [5]

FS = σ(T )BS(q)γA2/3, γ = 1 − 1.78
[
N −Z
A

]2

,

(16)

FC = α(T )BC(q)
Z2

A1/3
,

where BS(q) and BC(q) are the deformation form
factors defined in [1] andN is the number of neutrons.
For numerical calculations, we assume here that the
surface and Coulomb parameters in Eq. (16) depend
on temperature as [6, 7]

σ(T ) = 17.94
(

1 − 5
2
T 2

T 2
C

)
(MeV), (17)

α(T ) = 0.7(1 − xCT
2) (MeV),

where the parameter xC was chosen to be xC =
0.76× 10−3 MeV−2 [6], and TC = 18MeV is taken as
the critical temperature for the infinite nuclear Fermi
liquid (T � TC) [7]. The internal free energy F ∗ in
Eq. (15) has the form

F ∗ = −aV T 2, (18)
02
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Fig. 1. Trajectories of descent from the saddle point of the
236U nucleus in the ζ0–ζ2 plane. Two parts of the figure
are given for two different values of the viscosity coeffi-
cient, µ = µ0 and µ = 2µ0 (µ0 = 10−23 MeV s fm−3).
The initial kinetic energy Ekin,0 and the initial temper-
ature T0 were taken to be Ekin,0 = 1 MeV and T0 =
2MeV. Curve 1 was obtained by using the friction tensor
(13) and the theory of potential for evaluating χ̄i (see
[2]). Curve 2 was obtained with the friction tensor of the
standard hydrodynamic model (A.7) within the Werner–
Wheeler method [1]. The dash-dotted curve is the scis-
sion line derived from the condition (29).

where aV = π2A/4εF is the volume contribution to
the level-density parameter and εF = 40 MeV is the
Fermi energy.

Using Eqs. (17) and (18), we can recast the free
energy (15) into the form

F = Ekin + U(q) − aT 2, (19)

whereU(q) is the potential energy of the cold nucleus,

U(q) = 17.94BS(q)γA2/3 (20)

+ 0.7BC(q)Z2/A1/3 (MeV),

and the level-density parameter a is given by
a(q) = aV + aS + aC (21)

with

aS(q) = 17.94
5

2T 2
C

BS(q)γA2/3, (22)

aC(q) = 0.7xCBC(q)
Z2

A1/3
.

PH
The deformation form factors BS(q) and BC(q)
in Eqs. (20) and (22) are normalized as BS(q) =
BC(q) = 1 for the spherical shape of the nucleus. The
system of macroscopic Eqs. (10) with the conser-
vative forces Ki (14) should be completed with the
condition for determining the temperature T along the
dynamical trajectory. In order to obtain this condition,
we consider the entropy S:

S = −
(
∂F

∂T

)
V,q,q̇

= 2a(q)T. (23)

The entropy S changes owing to the work of friction
forces,

TdS = Zij(q)q̇iq̇jdt. (24)

Using Eq. (23), we have

dS = 2
da(q)
dqi

dqiT + 2a(q)dT. (25)

By comparing Eqs. (24) and (25), one obtains the
equation for the temperature:

Ṫ =
1

2aT

[
Zij(q)q̇iq̇j − 2

da(q)
dqi

q̇iT
2

]
. (26)

We indicate that the same equation of motion for the
temperature can be obtained from the conservation
law for the total energy E = F + TS.

Thus, the closed system of equations for the vari-
ables q and T consists of Eq. (26) and the equation

Mij q̈j +
∂Mij

∂qk
q̇j q̇k = −

(
∂F

∂qi

)
V,T,q̇

− Zij q̇j, (27)

i = 1, 2, . . . , N.

3. NUMERICAL RESULTS

We consider the symmetric fission of an excited
nucleus 236U. We will neglect the q dependence of the
level-density parameter a(q), assuming the empirical
value a(q) = A/8 MeV−1.

We solved Eqs. (26) and (27) numerically us-
ing the two-parameter shape family in the Lawrence
parametrization [8]

Y 2(z) =
(ζ2

0 − z2)(ζ2
2 + z2)

ζ3
0 (ζ2

0/5 + ζ2
2 )

. (28)

Here and below, all quantities having dimensions of
length are expressed in units of the radius R0 of the
equivalent spherical shape. The parameter ζ0 in (28)
determines the general elongation of the figure, and
ζ2 is related to the neck radius. In our numerical
calculations, we used the deformation form factors
BS(q) and BC(q) from [5, 8]. We derived the scission
line from the condition of instability of the nuclear
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 2. Fission-fragment kinetic energy TKE and kinetic
energy Eps of a fissioning nucleus at the scission point
as functions of the viscosity coefficient µ (in units of µ0).
The calculationwas performed under the same conditions
as in Fig. 1. The dotted line is the empirical TKE [see
Eq. (30)] used to analyze experimental data.

shape with respect to variations of the neck radius;
that is,

∂2U(q)
∂ρ2

neck

= 0, (29)

where ρneck = ζ2/
√
ζ0(ζ2

0/5 + ζ2
2 ) is the neck radius

(in units of R0) [8].
The macroscopic equations of motion (26) and

(27) were solved for the initial conditions correspond-
ing to the saddle-point deformation, the initial kinetic
energy of Ekin,0 = 1 MeV (initial neck velocity ζ̇2 =
0), and the initial temperature of T0 = 2 MeV. To
solve the Neumann problem (9) for the velocity-field
potential, we have used the method based on poten-
tial theory [9]. For comparison, we have solved the
dynamical Eqs. (26) and (27) with the friction tensor
of the standard hydrodynamic model computed within
the Werner–Wheeler method [1] [see Appendix 1,
Eq. (A.7)].

The dynamical trajectories for various values of the
viscosity coefficient µ (in units of µ0 =
10−23 MeV s fm−3) are presented in Fig. 1, which
also shows the dependence of the neck parameter
ζ2 on the elongation ζ0 for a fissioning nucleus 236U
at two different values of the viscosity coefficient µ.
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Fig. 3. Time τscis of descent from the saddle to the
scission point and scission temperature Tscis versus the
viscosity coefficientµ (in units ofµ0). The calculationwas
performed under the same conditions as in Fig. 1.

Curve 1 was obtained by using the friction tensor of
Eq. (13) and theory of potential for the evaluation
of the fields χ̄i(r, q) (see [2]). Curve 2 corresponds
to the calculations with the friction tensor of the
standard liquid-drop model [see Eq. (A.7)] [1]. For
zero viscosity, curves 1 and 2 coincide. The scission
line (dash-dotted curve in Fig. 1) was obtained as
a solution to Eq. (29). We define the scission point
as the intersection point of the dynamical trajectory
with the scission line. As can be seen from Fig. 1,
viscosity hinders neck formation and leads to a more
elongated scission configuration. As the viscosity
coefficient µ grows, the difference between curves 1
and 2 increases. This demonstrates a high sensitivity
of dynamical calculations to the choice of friction
tensor.

To illustrate the effect of viscosity on observables,
we evaluated the translation kinetic energy (TKE)
of fission fragments at infinity and the prescission
kinetic energy Eps. The value of TKE is the sum of
the Coulomb interaction energy at the scission point,
VC,scis, and the prescission kinetic energy. Namely, we
have

TKE = VC,scis + Eps. (30)

After scission, fission fragments were described in
terms of two equal-mass spheroids (see [10]). We
2
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assumed that the distance between the centers of
mass, d, of two spheroids is equal to the distance
between the two halves of the fissioning nucleus at
the scission point:

d =
5
4
ζ0
ζ2
0 + 3ζ2

2

ζ2
0 + 5ζ2

2

∣∣∣∣∣
scis

. (31)

The corresponding velocity ḋ was obtained by differ-
entiating Eq. (31) with respect to time. The elonga-
tion c of both separated spheroids is defined by the
condition

2c + d = 2ζ0,scis, (32)

where ζ0,scis is the elongation of the nucleus at the
scission point. The collective parameters c and d and
the velocity ḋwere then used to evaluate the Coulomb
energy VC,scis (see [8], p. 121) and the prescission
kinetic energy Eps in Eq. (30).

Figure 2 shows the effect of viscosity on the
fission-fragment kinetic energy TKE and on the
prescission kinetic energy Eps. The dotted line in
Fig. 2 presents a fit to the experimental data for the
TKE from [1] in terms of the formula (see also [11])

TKE = 0.108
Z2

A1/3
+ 21.9 (MeV). (33)

The viscosity coefficients µ1 and µ2 are given by
the intersection of curves 1 and 2 with the dotted
line. The viscosity coefficient µ1 derived within our
approach (see Fig. 2) is 3 × 10−23 MeV s fm−3.
The value of µ2 ≈ 1 × 10−23 MeV s fm−3 corre-
sponds to the calculation with the friction tensor of
the standard liquid-drop model within the Werner–
Wheeler method [1]. Note that the improved value
obtained in [12] for the viscosity coefficient, µ ≈
1.9 × 10−23 MeV s fm−3, is smaller than our result
by a factor of about 1.5. We indicate, however, that
the use of our approach to describing the width of the
isoscalar giant multipole resonances (see [13]) leads
to better agreement with experimental data than the
analogous calculations within the Werner–Wheeler
method that are presented in [14].

Figure 3 illustrates the effect of viscosity on the
saddle-to-scission time τscis and on the tempera-
ture of the nucleus at the scission point Tscis. The
difference of our Tscis and τscis (see curve 1) from
those within the traditional Werner–Wheeler model
(curve 2) increases with growing viscosity.

4. SUMMARY

We have derived macroscopic equations of motion
for collective degrees of freedom from the variational
approach to macroscopic nuclear dynamics. In the
P

case of the heated nuclei, the conservative forces in
these equations are defined through the free energy
of the nucleus. We have used the friction tensor (13),
which is presented in [2] and which takes into ac-
count the boundary conditions at the nuclear surface.
Instead of applying the traditional Werner–Wheeler
method, we have solved the exact Neumann problem
for the incompressible, irrotational velocity field using
the theory of potential. The scission line has been de-
termined from the instability condition of the nuclear
shape with respect to variations of the neck radius.

Our numerical calculations have been performed
for the 236U nucleus. We obtained the viscosity de-
pendence of the fission-fragment kinetic energy TKE
and the prescission kinetic energyEps. Also, the effect
of viscosity on the saddle-to-scission time τscis and
on the scission temperature Tscis has been studied.
We have found a significant deviation of the results
obtained for Tscis and τscis with the friction tensor (13)
from the analogous results obtained with the friction
tensor of the standard hydrodynamic model [1].

APPENDIX 1

Friction Tensor

To clarify the origin of the friction tensor Zij (13),
we will evaluate the rate of change in the collective
liquid-drop energy. Multiplying Eq. (1) by u, inte-
grating it over the nuclear volume, and using Eqs. (4)
and (5), we derive the rate of change in the collective
energy Ecoll = Ekin + EC + ES of the nuclear liquid
drop as

dEcoll

dt
=

d

dt
(Ekin + EC + ES) = −Zij q̇iq̇j. (A.1)

Here, EC and ES are the Coulomb and the surface
energy, respectively, and we have used the following
expression for the rate of change in the surface energy
(see [4], p. 195):

dES
dt

=
∮
S

dS Πnnun. (A.2)

The friction tensor Zij in Eq. (10) is given by Eq. (13)
and can be recast into the form

Zij = µ

∮
S

dS
∂

∂n
(u(i)
n u(j)

n ), (A.3)

where u(i) = ∇χ̄i.
Expression (A.3) for the friction tensor Zij can

also be obtained from the Rayleigh function [2]

R = −1
2

∮
S

dS unΠ(dis)
nn = −1

2
Zij q̇iq̇j, (A.4)
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where Π(dis)
αβ is the dissipative part of the momentum-

flux tensor (2)

Π(dis)
αβ = −2µ

∂2χ

∂rα∂rβ
. (A.5)

We indicate that the Rayleigh function R (A.4) dif-
fers from that of infinite matter, which is used in the
standard hydrodynamic model [1]:

2R(stand) = µ

∫
d3r� u2 (A.6)

= −
∮
S

dSunΠ(dis)
nn −

∮
S

dSuτΠ(dis)
nτ .

Here, the index τ labels the tangential component.

The friction tensor Z(stand)
ij corresponding to the

Rayleigh function R(stand) is written as

Z
(stand)
ij = 2µ

∮
S

dSū(i)
α

∂2χ̄j
∂rα∂rβ

nβ (A.7)

= µ

∮
S

dS
∂(u(i) · u(j))

∂n
,

where

uα = ū(i)
α q̇i, ū(i)

α =
∂χ̄i
∂rα

. (A.8)

It should be noted that the deviation of the
Rayleigh function R from that of the standard hy-
drodynamic model, R(stand), is due to the fact that
R of Eq. (A.4) was obtained by using the boundary
conditions (4) and (5). In general, the Rayleigh
functions (A.4) and (A.6), as well as the friction
tensors (A.3) and (A.7), are different because the
normal–tangential component of the pressure tensor
Π(dis)
αβ does not vanish at the nuclear surface.

APPENDIX 2

Conservative Forces and Variational Principle

Here, we will prove expression (14) for the con-
servative forces Ki in the case of a heated system.
We start with the first law of thermodynamics. In
addition to the volume and entropy, the generalized
coordinates and velocities, qi and q̇i, determine the
thermodynamic state of a heated system. The first law
of thermodynamics takes the form (see [15], §15)

dE = TdS − PdV −Kidqi −Qidq̇i, (A.9)

where P = −(∂E/∂V )S,q,q̇ is the pressure and

Ki = −
(
∂E

∂qi

)
V,S,q̇

, Qi = −
(
∂E

∂q̇i

)
V,S,q

(A.10)
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are the generalized forces and the generalized mo-
menta, respectively. In many cases, it is more conve-
nient to use the temperature T instead of the entropy
S. Using the thermodynamic definition of the free
energy F = E − TS, we can write the generalized
forces Ki in the form (14) (see [15], §15); i.e., the
conservative forces Ki in equations of motion (27)
should be defined through the derivation of the energy
E or of the free energy F with respect to the shape
parameters qi at fixed entropy S or temperature T ,
respectively.

Below, we will also demonstrate the method that
allows us to derive the macroscopic equations of mo-
tion (26) and (27) from the minimal-action principle.

Let us write the minimal-action principle in the
form (see [4], p. 20)

δ

t2∫
t1

[Ekin + λ(Ekin + U + E∗ − E0)]dt = 0, (A.11)

where U is the potential energy of the cold nucleus
as given by (20), E0 is the initial total energy, λ
is the Lagrange multiplier taking into account the
conservation of the total energy E = Ekin + U + E∗,
and E∗ is the internal energy of the nuclear thermal
excitation [E∗ = E∗(S)]. We calculate the variation
in (A.11), assuming that, at the initial time instant t1,

δqi(t1) = 0, δq̇i(t1) = 0 (A.12)

and that, at the final time instant t2, the quantities δqi
and δq̇i are arbitrary.

It should be noted that the minimal-action prin-
ciple (A.11) is written for the kinetic energy Ekin,
provided that the total energy of the system (which
includes both the mechanical and thermal energies)
is constant. This form of the minimal-action principle
allows one to take into account friction forces in the
dynamical equation through the condition in (24).

We will consider the entropy S as a collective vari-
able that, together with the q and q̇, determines the
dynamical behavior of the system. From Eq. (A.11),
one obtains
t2∫
t1

(
∂F
∂qi

δqi +
∂F
∂q̇i

δq̇i +
∂F
∂S δS

)
dt + F|t2δt2 = 0,

(A.13)

where F = Ekin + λ(Ekin + U + E∗ − E0).
Using the thermodynamic definition of the tem-

perature, T = (∂E/∂S)V,q,q̇ , we have(
∂F
∂S

)
V,q,q̇

δS = λ

(
∂E

∂S

)
V,q,q̇

δS = λTδS, (A.14)
2
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where [see Eq. (24)]

TδS = Zij q̇iq̇jδt = Zij q̇jδqi. (A.15)

After substituting Eqs. (A.14) and (A.15) into
Eq. (A.13), we obtain

t2∫
t1

[
∂F
∂qi

− d

dt

(∂F
∂q̇i

)
+ λZij q̇j

]
δqidt (A.16)

+

[
− (2λ + 1)Ekin+λ(Ekin + U + E∗ − E0)

]
δt2 = 0.

The variations δqi and δt2 are independent, and
Eq. (A.16) takes the form

∂F
∂qi

− d

dt

(∂F
∂q̇i

)
+ λZij q̇j = 0, (A.17)

i = 1, 2, . . . , N,

−(2λ + 1)Ekin + λ(Ekin + U + E∗ − E0) = 0.
(A.18)

Using the condition Ekin + U +E∗ = E0, we obtain

λ = −1/2, F =
1
2

(Ekin − U −E∗), (A.19)

and Eq. (A.17) leads to Lagrange equations of motion
in the form

∂L
∂qi

− d

dt

(
∂L
∂q̇i

)
− Zij q̇j = 0 (A.20)

with the Lagrange function L = Ekin − U −E∗.
The Lagrange Eq. (A.20) can be rewritten as

Mij q̈j +
∂Mij

∂qk
q̇j q̇k = Ki − Zij q̇j, (A.21)

i = 1, 2, . . . , N,

where

Ki = −
(
∂E

∂qi

)
V,S,q̇

= −
(
∂F

∂qi

)
V,T,q̇

. (A.22)
P

The change in the temperature T with the time is
found from Eq. (26).
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Abstract—On the basis of the multiparticle theory of protonic decay, the angular distributions of protons
emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate
frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion.
It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation
is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and
that the angular distribution of protons in the laboratory frame does not coincide with that in the internal
coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the
semiclassical approximation are simultaneously valid. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable advances [1–3] in evolving exper-
imental procedures for investigating the angular
distributions of alpha particles emitted by nuclei
oriented in strong magnetic fields at ultralow tem-
peratures give reasons to hope that methods that
would make it possible to explore the protonic decay
of oriented nuclei will be developed in the near
future.

From the experimental point of view, the problem
of investigating the angular distributions of protons
emitted by an oriented nucleus is extremely difficult.
These difficulties are associated with the following
circumstances [4]: (i) Proton emitters are synthe-
sized in the fusion of multiply charged ions, which
is followed by the evaporation of several (up to six)
nucleons and which is characterized by small cross
sections (about 1 µb or even smaller). (ii) The life-
times of these emitters are rather short (from a few
seconds to a few microseconds). (iii) The most effi-
cient procedures for proton detection, which employ
strip detectors, are poorly suited to analyzing angular
distributions of protons. At the same time, it seems
that such problems can be solved since 189Bi, which
is one of the explored oriented alpha-decaying nuclei
[3], differs in composition only by four neutrons from
the 185Bi nucleus, which is capable of undergoing
protonic decay. That the aforementioned experiments
are feasible is additionally supported by recent mea-
surements [5] of the angular distributions of delayed
protons associated with the beta decay of oriented
nuclei.

The multiparticle theory of protonic decay—it was
developed in [6–10] for spherical nuclei and in [10–
13] for deformed nuclei—made it possible to solve
1063-7788/02/6505-0831$22.00 c©
successfully the problem of calculating the protonic
partial widths for transitions from ground and iso-
meric states of odd–even and odd–odd parent nuclei
to ground and excited states of daughter nuclei (the
existence of transitions to ground and excited states
of daughter nuclei leads to the emergence of a fine
structure in the proton spectra, which was first in-
vestigated in [14]). In view of this, the angular dis-
tributions of protons emitted by oriented nuclei were
analyzed in the laboratory frame [15] on the basis of
the theory in question, and it was demonstrated that
the shape of the above distributions is sensitive to
the structural features of parent and daughter nu-
clei.

Previously, the angular distributions of protons
emitted in the decay of a single-proton quasistation-
ary state in a deformed potential were investigated
in the intrinsic coordinate frame of this potential [16,
17]. More recently, these angular distributions were
identified with the angular distributions of protons
emitted by oriented deformed nuclei in the laboratory
frame.

The objective of the present study is to investigate
in detail the angular distributions of protons emitted
by oriented spherical and deformed nuclei in the lab-
oratory frame and to compare them with the anal-
ogous distributions in the internal coordinate frame
of nuclei for the protonic decay of deformed nuclei.
Special attention will be given to the analysis of the
conditions ensuring the applicability of the adiabatic
approximation [18, 19] and to a comparison of this
approximation with nonadiabatic approaches [11, 20,
21] to describing the angular distributions of protons
emitted by oriented deformed nuclei.
2002 MAIK “Nauka/Interperiodica”



832 KADMENSKY
2. ANGULAR DISTRIBUTIONS
OF PROTONS EMITTED BY ORIENTED

NUCLEUS

Our further analysis will be based on the methods
of the multiparticle theory of protonic decay [6, 7, 10,
11]. The wave function ψJMσ for a parent nucleus of
atomic weight A and charge Z in a quasistationary
state characterized by a spin J and its projection M
onto the laboratory axis z and other quantum num-
bers σ satisfies the Schrödinger equation

HAψ
JM
σ = EJ

σψ
JM
σ , (1)

where HA is the Hamiltonian of the A nucleus in its
c.m. frame and EJ

σ = (ReEJ
σ − iΓJσ/2) is a complex

energy; here, ΓJσ is the total decay width of the above
state of the A nucleus (this width is determined by
the sum of the partial widths with respect to decays
through all open channels). For the parent nucleus,
we will consider only decays through protonic chan-
nels; specifying a final state in such channels as that
which involves a daughter nucleus (A− 1)with a spin
J1, its projection M1, and other quantum numbers
σ1 and a proton with an orbital angular momentum
l with respect to the daughter nucleus and a total spin
j (j = l± 1/2), we denote the channels in question by
the symbols cjl = σ1J1jl. The wave function for the
daughter nucleus, ψJ1M1

σ1
, satisfies the Schrödinger

Eq. (1), where the Hamiltonian HA−1 and the energy
EJ1
σ1

are substituted for HA and EJ
σ , respectively. The

energy Qc, the velocity υc, and the wave vector kc
of the relative motion of the proton and the daughter
nucleus can be determined as

Qc = ReEJ
σ − ReEJ1

σ1
=

mcυ
2
c

2
=

�
2k2
c

2mc
, (2)

where mc = (mpMA−1)/MA is the reduced mass. Let
us introduce the orthonormalized channel function
UJM
cjl that, by construction, possesses correct trans-

formation properties with respect to time inversion
[22] (just as the wave functions for the parent and the
daughter nucleus do):

UJM
cjl = {ψJ1M1

σ1
ilΦjlm(Ω, α)}JM . (3)

Here, braces denote the vector coupling of the
angular momenta, and the function Φjlm(Ω, α) is the
proton spin–orbit function, with α being the relevant
spin variable. We have

Φjlm(Ω, α) = {Ylml
(Ω)χ 1

2
ms

(α)}jm, (4)

where the spherical harmonic Ylml
(Ω) corresponds

to the orbital motion of the proton and depends on
the solid angle Ω, which determines the direction of
the radius vector R = Rp − RA−1 in the laboratory
P

frame, Rp and RA−1 being the coordinates of, re-
spectively, the proton and the center of mass of the
daughter nucleus.

The wave functionψJMσ for the parent nucleus sat-
isfies the Gamow boundary condition in the external
region R ≥ Rcjl (Rcjl is the radius of the channel cjl)
[10], where the proton and the daughter nucleus inter-
act only through the long-range Coulomb potential
(Z − 1)e2/R; that is,

ψJMσ →
∑
cjl

UJM
cjl

(
Gcl(R) + iFcl(R)

R

)√
ΓJcjl
�υc

. (5)

Here Fcl(R) and Gcl(R) are, respectively, the regular
and the nonregular radial Coulomb functions, whose
asymptotic expressions for R → ∞ are

Fcl(R) → sin
[
kc − lπ/2 + δCoul

cl

]
, (6)

Gcl(R) → cos
[
kc − lπ/2 + δCoul

cl

]
, (7)

with δCoul
cl being the Coulomb phase shift for elastic

scattering.

Since the wave functions for the parent and the
daughter nucleus and the channel functions (3) pos-
sess correct transformation properties under time in-

version, the amplitude
√

ΓJσcjl of the partial width

with respect to the protonic decay of the parent nu-
cleus through the channel jl is invariant under time
inversion and is a real-valued quantity independent of
the projection M of the parent-nucleus spin J . Fur-
ther, it follows from the parity-conservation law that
the partial-width amplitude does not vanish, provided
that

π = π1(−1)l, (8)

where π and π1 are the parities of the parent and the
daughter nucleus, respectively.

Let us now consider the multiparticle density jJMσ
of the flux of decay fragments in the direction of the
radius vector R:

jJMσ =
i�

2mc

[
ψJMσ

d

dR

(
ψJMσ

)∗
(9)

−
(
ψJMσ

)∗ d

dR
ψJMσ

]
.

Further, we make use of the boundary condition in
(5) for R → ∞ and integrate jJMσ with respect to all
coordinates of the nucleusA, with the exception of the
radius vector R, considering that the functions ψJ1M1

σ1
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and χ1/2ms
(α) are orthonormalized. As a result, we

find that the proton-flux density jJMσ (R) is given by

jJMσ (R) =
1
R2

∑
c

AJMσc (Ω), (10)

where
AJMσc (Ω) (11)

=
∑
M1ms

∣∣∣∣∣∣
∑
jl

CJM
J1jM1mC

jm
1
2
lmsml

Ylml
(Ω)eiδ

Coul
cl

√
ΓJσcjl
�

∣∣∣∣∣∣
2

.

Let us now average expression (10) over the values
of the projection M of the nuclear spin J by using the
distribution function S(M). Suppose that protons are
recorded by a detector that is arranged orthogonally to
the radius vector R in the direction of the solid angle
Ω in the laboratory frame and that the area covered
by the detector is R2dΩ. The number dNJ

σ of protons
that this detector records per unit time is then given
by

dNJ
σ =

∑
M

S(M)
∑
c

AJMσc (Ω)dΩ. (12)

By integrating formula (12) over all directions of
the solid angle Ω, we find, as might have been ex-
pected, that the total number NJ

σ of protons emitted
by the decaying nucleus per unit time is

NJ
σ =

1
�

∑
cjl

ΓJσcjl =
1
�

∑
c

ΓJσc =
1
�
ΓJσ , (13)

where ΓJσc =
∑

jl Γ
J
σcjl. The angular distribution of

protons that is normalized to unity, dP J
σ (Ω)/dΩ, will

then have the form

dP J
σ (Ω)/dΩ =

1
ΓJσ

∑
M

S(M)
∑
c

AJMσc (Ω). (14)

It can be seen from (10) and (14) that, in the
laboratory frame, the interference between the groups
of protons corresponding to decay channels that pro-
duce daughter nuclei in states where c and M1 take
different values and protons in states where the spin
projections ms are different is not observed even if the
resolution of the detectors used is insufficient for sep-
arating the above groups of protons in the energy Qc.
The angular distribution in (14) can be represented in
the form

dP J
σ (Ω)
dΩ

=
∑
c

ΓJσc
ΓJσ

dP J
σc(Ω)
dΩ

, (15)

where, in the channel c, the angular distribution of
protons that is normalized to unity is given by

dP J
σc(Ω)
dΩ

=
1
ΓJσc

∑
M

S(M)AJMσc (Ω). (16)
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Distributions of the form (16) will be observed if
the energy resolution of the detectors makes it pos-
sible to separate well the groups of protons having
different energies Qc.

By using, instead of the functions UJM
cjl (3), the

new channel functions UJM
cIl ,

UJM
cIl =

{{
ψJ1M1
σ1

χ 1
2
ms

}
IMI

il Ylml
(Ω)

}
JM

, (17)

formula (11) can be considerably simplified. Since
the functions in (17) differ from the functions in (3)
only by the order in which the angular momenta are
coupled, these functions are related by the Racah
transformation [22]

UJ
cIl =

∑
j

UJ
cjl

√
(2j + 1)(2I + 1) (18)

×W (J1
1
2
Jl; Ij),

where W (J1
1
2Jl; Ij) are Racah coefficients. We can

now specify the new partial-width amplitudes
√

ΓJσcIl

that are related to the amplitudes
√

ΓJσcjl introduced

above by the equation√
ΓJσcIl =

∑
j

√
(2j + 1)(2I + 1) (19)

×W (J1
1
2
Jl; Ij)

√
ΓJσcjl,

which follows from the invariance of formula (5) under
the substitution of the channel functions (17) and the

amplitudes
√
ΓJσcIl for the channel functions (3) and

the amplitudes
√

ΓJσcjl, respectively. By virtue of the

fact that the Racah transformations are orthonormal-
ized [22], the following relation holds:∑

I

ΓJσcIl =
∑
j

ΓJσcjl. (20)

The formula in (11) can then be recast into the
form

AJMσc (Ω) (21)

=
∑
M1ms

∣∣∣∣∣
∑
Il

CIMI

J1
1
2
M1ms

CJM
IlMIml

Ylml
(Ω)eiδ

Coul
cl

√
ΓJσcIl

∣∣∣∣∣
2

.

By performing summation over M1 and ms and
by using the orthonormalization condition for the
Clebsch–Gordan coefficients, we can represent ex-
pression (21) as

AJMσc (Ω) (22)
2
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=
∑
IMI

∣∣∣∣∣
∑
l

CJM
IlMIml

Ylml
(Ω)eiδ

Coul
cl

√
ΓJσcIl

∣∣∣∣∣
2

.

By using now the multiplication theorem for spherical
harmonics [22],

Ylml
(Ω)Yl′ml

(Ω) =
(−1)ml

4π
(23)

×
√
(2l + 1)(2l′ + 1)

∑
L

CL0
ll′ml−ml

CL0
ll′00PL(cos θ),

where PL(cos θ) is a Legendre polynomial, and the
technique of Racah coefficients, we can recast (22)
into the form

AJMσc (Ω) =
1
4π

∑
LIll′

PL(cos θ)CJM
JLM0 (24)

× CL0
ll′00 cos(δ

Coul
cl − δCoul

cl′ )(−1)J−I

×
√

(2L+ 1)(2J + 1)(2l + 1)(2l′ + 1)

×W (JlJl′; IL)
√

ΓJσcIl

√
ΓJσcIl′ .

From the fact that the orbital angular momenta l
and l′ have the same parity in (24) by virtue of relation
(8) and from the properties of the coefficient CL0

ll′00, it
follows that L takes only even values: L = 0, 2, . . ..
Since the contribution to the integral of the angular
distribution (16) over the solid angle Ω comes only
from the L = 0 term in the sum over L in formula
(24), the value ΓJσc/(4π) of this term is consistent
with the condition in (13). If the spin of the parent
nucleus is J = 0 or J = 1/2, the Clebsch–Gordan
coefficient CJM

JLM0 in (24) does not vanish only forL =
0; therefore, the angular distribution (24) is isotropic
and is equal to 1/(4π).

In the case of an unoriented parent nucleus whose
spin J is greater than 1/2, in which case spin
projections M are equiprobable and the distribution
function has the form S(M) = 1/(2J + 1), we have∑

M S(M)AJMσc (Ω) = ΓJσc/(4π), so that the angular
distributions in (14) and (16) are also isotropic and
equal to 1/(4π). If the parent nucleus is completely
oriented by an external magnetic field directed along
the z axis in the laboratory frame, the distribution
function S(M) is equal to S(M) = δM,J or S(M) =
δM,−J for, respectively, positive or negative values of
the gyromagnetic ratio for this nucleus. Since the
Clebsch–Gordan coefficient CJM

JLM0 in formula (24)
does not change under the substitution of −M for
M at even values of L, we have AJJσc (Ω) = AJ−Jσc (Ω);
as a result, the proton angular distributions (16) for
oriented nuclei are independent of the sign of the
P

gyromagnetic ratio for the parent nucleus and are
given by

dP J
σc(Ω)
dΩ

=
1

ΓJσc(Ω)
AJJσc . (25)

We note that, for the protonic decay of oriented nuclei,
the proton angular distributions (25) have the same
mathematical form both for spherical and for de-
formed parent nuclei. Distinctions between the above
angular distributions arise only because of the differ-
ent structures of the amplitudes of the protonic partial
decay widths for these nuclei.

In the case where the protonic decay of an oriented
odd–even parent nucleus leads to the production of
an even–even daughter nucleus in the J1 = 0 ground
state (the index σ1 can then be replaced by 0), the
only partial width that is nonzero is the protonic one
ΓJσ00j0l0

, for which j0 = J and the value of l0 is deter-

mined from the conditions l0 = j0 ± 1/2 and (−1)l0 =
π. In this case, the proton angular distribution (25)
becomes independent of the protonic widths, acquir-
ing a universal character for spherical and deformed
nuclei [15]. By using formula (11) for M = J , the
distribution in question can be represented as

dP J
σ00(Ω)
dΩ

=
∑
msml

∣∣∣CJJ
1
2
l0msml

Yl0ml
(Ω)

∣∣∣2 . (26)

As was shown in [15], this distribution does not
depend on the parity of the parent nucleus or on the
orbital angular momentum l0 and has the form

dP J
σ00(Ω)
dΩ

=
∣∣YJ−1/2,J−1/2(Ω)

∣∣2 (27)

=
(2J)!

π · 4J+1/2[(J − 1/2)!]2
(sin θ)2J−1.

This distribution is symmetric with respect to the
angle θ = π/2; is zero at θ = 0 and θ = π; and has a
maximum at θ = π/2, the amplitude of this maximum
increasing fast with increasing J [15]. This means
that, by measuring the angular distribution (26), we
can determine the parent-nucleus spin J . Since the
spin J of the ground state of an odd–even nucleus is
equal to the spin jp of the odd proton for a spherical
nucleus or to the projection of the spin Kp of the odd
proton onto the symmetry axis of a deformed nucleus,
the known value of the spin J makes it possible to
obtain information about the deformation parameters
βλ and to establish thereby the shape of the decaying
nucleus. For transitions of oriented parent nuclei from
J > 1/2 states to J �= 0 states of daughter nuclei, the
proton angular distribution (25) becomes sensitive
to the structural features of the parent nucleus and
daughter nuclei. This was demonstrated in [15] by
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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considering the example of the angular distribution
of protons for the protonic transition of the oriented
deformed odd–even nucleus 131Eu (β2 = +0, 3) to
the excited Jπ1

1 = 2+ state of the deformed even–
even daughter nucleus 130Sm. As the subject for in-
vestigating the angular distributions of protons emit-
ted by oriented nuclei, I can propose the spherical
nucleus 53mCo, where the protonic decay from the
high-spin (J = 19/2−) isomeric state to the Jπ1

1 =
0+ ground state of the spherical daughter nucleus
52Fe was observed in [23], the half-life of this final
state being rather long (16 s). The protonic decay of
this nucleus was successfully described on the basis
of the multiparticle theory of protonic decay in [7]
as an example of an off-diagonal protonic transition.
For the transition under investigation, the ratio of
the values of the angular distribution (27) of protons
emitted by the oriented parent nucleus at angles of
θ = 75◦ and 90◦ is 0.54. That this value differs signifi-
cantly from zero gives sufficient grounds to hope for a
successful experimental measurement of this angular
distribution.

3. PARTIAL WIDTHS WITH RESPECT
TO PROTONIC DECAYS OF ORIENTED
SPHERICAL NUCLEI AND ANGULAR

DISTRIBUTIONS OF PROTONS
FROM SUCH DECAYS

Within the multiparticle theory of deep-subbarier
protonic decay [6, 10], the amplitude of the protonic
partial width can be generally represented as√

ΓJσcjl =
√
2π (28)

×
〈
Â

{
UJM
σcjl

F̃l(R)
R

∣∣∣∣
(
VA−1,p −

(Z − 1)e2

R

)∣∣∣∣
}
ψJMσ

〉
,

where Â is the operator executing the antisym-
metrization of the emitted proton and the nucleons
of the daughter nucleus, VA−1,p is the total potential
describing the interaction of the proton and the
daughter nucleus, and F̃l(R) is the regular radial
Coulomb function normalized to the δ function of
energy.

Let us consider the case of diagonal protonic tran-
sitions [6, 10], for which, in the spherical parent nu-
cleus, the structure of the state of all nucleons, with
the exception of the emitted one, is close to the struc-
ture of the state of the nucleons of the spherical
daughter nucleus. Such protonic transitions are sim-
ilar to favored alpha transitions in the theory of alpha
decay. The amplitude in (28) can then be recast into
the form √

ΓJσcjl =
√
2π

∫
F̃l(R) (29)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2
×
(
Vp(R)− (Z − 1)e2

R

)
χJσcjl(R)dR,

where Vp(R) is the spherical shell potential for a pro-
ton in the parent nucleus and χJσcjl(R) is the proton
form factor for the transition under investigation. This
form factor is introduced as

χJσcjl(R) = R
〈
Â
{
UJM
σcjlδ(R −R′)

}
|ψJMσ

〉
, (30)

where the integral is taken with respect to all coordi-
nates of the nucleus A, including the radius R′. For
diagonal transitions, this form factor can be approxi-
mated to a fairly high precision as [10]

χJσcjl(R) = ϕnj0l0(R)SJσcnj0l0δj,j0δl,l0, (31)

where ϕnj0l0(R) is the radial wave function for the
proton shell state nj0l0 in the parent nucleus and
SJσcnj0l0 is the amplitude of the spectroscopic factor
for the transition being considered. From expression
(31), it then follows that, for diagonal protonic tran-
sitions in spherical nuclei, only the partial protonic
width ΓJσcj0l0 is nonvanishing, in which case the pro-
ton angular distributions determined by formulas (16)
and (11) become, for the decay of oriented nuclei,
independent of the protonic partial width and take the
form

dP J
σc(Ω)
dΩ

=
∑
M1ms

∣∣∣CJJ
J1j0M1mC

j0m
1/2l0msml

Yl0ml
(Ω)

∣∣∣2

=
1
4π

J1+1/2∑
I=|J1−1/2|

∑
L

PL(cos θ)(−1)J−ICJJ
JLJ0C

L0
l0l000

×
√

(2L+ 1)(2J + 1)(2l0 + 1)2W (Jl0Jl0; IL)

× (2j0 + 1)(2I + 1) [W (J11/2Jl0|Ij0)]2 . (32)

In the decay of the ground and single-particle pro-
ton isomeric states of spherical odd–even nuclei, a
diagonal transition is realized for the ground states
of daughter nuclei, in which case J1 = 0 and σ1 is
denoted as 0. The distribution in (32) then reduces
to the distribution in (26). In the decay of the ground
and single-particle proton isomeric states of odd–odd
parent nuclei, a diagonal transition is realized for the
states of the even–odd daughter nucleus whose neu-
tron subsystem has the spin J1 coinciding with the
spin of the neutron subsystem of the parent nucleus
and whose proton subsystem has zero spin. By exper-
imentally investigating the angular distributions (32),
we can in principle determine the angular momenta
J, J1, j0, and l0; this is very important for obtaining
deeper insight into the structure of spherical odd–odd
nuclei.
002
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4. PARTIAL WIDTHS WITH RESPECT
TO PROTONIC DECAYS OF ORIENTED
DEFORMED NUCLEI AND ANGULAR

DISTRIBUTIONS OF PROTONS
FROM THESE DECAYS

Let us investigate protonic decay for the case
where the parent and the daughter nucleus have
identical axially symmetric deformed shapes. In the
strong-coupling approximation [22], the wave func-
tion ψJMKi

for the parent nucleus can then be repre-
sented as

ψJMKi
=

√
(2J + 1)

16π2(δKi,0 + 1)
(33)

×
{
DJ
MKi

(ω)χKi(q)+(−1)J+KiDJ
M−Ki

(ω)χK̄i
(q)

}
,

where DJ
MKi

(ω) is a generalized Wigner spherical
function [22] depending on the Euler angles (αβγ) =
ω , while χKi(q) and χK̄i

(q) are, respectively, the in-
ternal wave function for the parent nucleus having the
spin projection Ki > 0 onto the z axis in its internal
coordinate frame and its time conjugate. The wave
function ψJ1M1

K1
for the daughter nucleus takes the

analogous form upon substituting, in (33), J1 and
K1 for the variables J and Ki , respectively, and the
set of (3A− 9) internal coordinates q1 of the daughter
nucleus for the set of (3A − 6) internal coordinates q
of the parent nucleus.

For the sake of simplicity, our further consideration
will be performed for the example of the diagonal pro-
tonic decay of the ground or a single-particle proton
isomeric state of an odd–even parent nucleus whose
spin is J = Ki and whose proton and neutron sub-

systems have the spin projections of K(p)
i = Ki and

K(n) = 0, respectively. In this case, diagonal protonic
transitions occur to the K1 = 0, even-J1 levels of
the ground-state rotational band of the even–even
daughter nucleus. In the spin–orbit wave function
for the proton, Φjlm(Ω, α), we further go over to the
intrinsic coordinate frame of the parent nucleus by
means of the Wigner transformation [22]

Φjlm(Ω, α) =
∑
kj

Dj
mkj

(ω)Φjlkj
(Ω′, α′) (34)

and employ the multiplication theorem for D func-
tions [22]. As a result, we reduce the channel func-
tions (3) to the form

UJM
Ki0J1jl =

√
2J + 1
8π2

(35)

×
∑
K

DJ
MK(ω)C

JK
J1j0KΦjlK(Ω

′, α′)χ(1)
0 (q1) il,
P

where, instead of the indices σ and σ1 for the de-
formed parent and daughter nuclei, use is made of
the projections of their spins, Ki and K1 = 0. Just
like the original functions in (3), the channel func-
tions are orthonormalized in the space spanned by the
coordinates ω, Ω′, α′, and q1. In the case of diagonal

transitions, the internal wave functions χKi and χ
(1)
0

treated within the superfluid model of the nucleus [24]
for both the parent and the daughter nucleus satisfy
the relation [11]〈

χ
(1)
0 |χKi

〉
= fKi(R

′, α′)u(1)
Ki
, (36)

where the function fKi(R
′, α′) can be considered, to a

good approximation, as the shell wave function for the
proton in the nonspherical shell potential Vp(R′, α′),
the quantity Ki being a multi-index that includes, in
addition to the spin projectionKi, the Nilsson asymp-

totic quantum numbers [24], while the quantity u
(1)
Ki

coincides with a coefficient in the u–v Bogolyubov
transformation for an even–even daughter nucleus.
By substituting expressions (33)–(36) into formula
(28) for the amplitude of the protonic partial width,
we obtain√

ΓJKi0J1jl
= u

(1)
Ki

√
(2J1 + 1)
2(2J + 1)

CJKi
J1j0Ki

(37)

×
[√

ΓKijl + (−1)j+Ki

√
ΓK̄ijl

]
,

where
√
ΓKijl is the amplitude of the partial width

with respect to the decay of the single-particle shell
state fKi (36) through the decay channel described
by the function ΦjlKi

(Ω′, α′),√
ΓKijl =

√
2π

〈
ΦjlKi

(Ω′, α′) (38)

× il
F̃l(R)
R

∣∣∣∣
(
Vp(R′, α′)− (Z − 1)e2

R

)∣∣∣∣ fKi

〉
.

The amplitude
√

ΓK̄ijl is given by (38) with the
substitution of the functions ΦjlK̄i

and fK̄i
for ΦjlKi

and fKi , respectively. By using the relation between
the function fKi and its time conjugate fK̄i

, one can
obtain √

ΓK̄ijl
= (−1)j+Ki

√
ΓKijl, (39)

so that formula (37) takes the form [11]

√
ΓJKi0J1jl

= u
(1)
Ki

√
2(2J1 + 1)
(2J + 1)

(40)

× CJKi
J1j0Ki

√
ΓKijl(Qc),
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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where the dependence of the partial-width amplitude√
ΓKijl on the energy Qc (2) is indicated explicitly.

By substituting the partial-width amplitude (37) into
(14) and using (11), we find that, in the laboratory
frame, the angular distribution of protons emitted by
the oriented parent nucleus has the form

P J
Ki

(Ω)
dΩ

=
1

ΓJKi

∑
J1M1ms

∣∣∣∣∣
∑
jl

CJJ
J1jM1m (41)

×Cjm
1
2
lmsml

Ylml
(Ω)CJ10

Jj−KiKi
(−1)j+Ki

√
ΓJKijl

(Qc)

∣∣∣∣∣
2

.

5. ANGULAR DISTRIBUTIONS
OF PROTONS FROM THE DECAY

OF ORIENTED DEFORMED NUCLEI
IN THE INTERNAL COORDINATE FRAME

OF THE PARENT NUCLEUS

By using the channel function in the form (35),
we represent the asymptotic expression (5) for the
wave function describing an oriented deformed parent
nucleus in the form

ψJJKi
=

∑
J1Kksjl

√
2J + 1
8π2

DJ
JK(ω)C

JK
J1j0K (42)

× CjK
1
2
lkskl

Ylkl
(Ω′)ilχ(1)

0 (q1)χ 1
2
ks
(α′)

× Gcl(R) + iFcl(R)
R

√
ΓJKi0J1jl

�υc
,

where the solid angle Ω′(Ω, ω) is a function of the
solid angle Ω and the Euler angles ω. In order to ob-
tain the angular distribution of protons in the internal
coordinate frame of the parent nucleus, we place a
proton detector in this coordinate frame and use it to
measure the angular distribution of protons directly
as a function of the angleΩ′. In this case, the variables
ω and Ω′ in expression (42) can be considered to
be independent. Further, we employ the multiparticle
flux density (9), together with the asymptotic expres-
sion (42) for the wave function describing the parent
nucleus, and integrate it with respect to the variables
ω, q1 , and α′, taking into account the conditions of
ortonormality of the functions D [22]. For the single-
particle proton-flux density j̃JKi

(Ω′) in the intrinsic
coordinate frame of the parent nucleus, this yields

j̃JKi
(Ω′) =

1
R2

∑
Kks

∣∣∣∣∣
∑
J1jl

CJ10
Jj−KK (43)

× CjK
1
2
lkskl

Ylkl
(Ω′)(−1)j+K

√
ΓJKi0J1jl

eiδ
Coul
lc

∣∣∣∣∣
2

.
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The number of protons recorded per unit time by a
detector of area R2dΩ′ arranged orthogonally to the
radius vector R′ is then determined by the prod-
uct R2j̃JKi

(Ω′)dΩ′. The total number ÑJ
Ki

of protons
recorded by the detector over the total solid angle Ω′

is given by the integral
∫
R2j̃JKi

(Ω′)dΩ′, which, upon
the use of Eq. (43), becomes

1
�

∑
J1jl

ΓJKi0J1jl =
1
�

∑
J1

ΓJKi0J1
=

1
�
ΓJKi

.

This result coincides with the analogous result
(13) in the laboratory frame and corroborates the
correctness of formula (43). In the internal coordinate
frame of the parent nucleus, the angular distribution
of protons that is normalized to unity can be repre-
sented in the form

dP̃ J
Ki

(Ω′)
dΩ′ =

1
ΓJKi

∑
K

∣∣∣∣∣
∑
J1jl

CJ10
Jj−KK (44)

× CjK
1
2
lkskl

Ylkl
(Ω′)(−1)j+K

√
ΓJKi0J1jl

eiδ
Coul
cl

∣∣∣∣∣
2

.

A comparison of this distribution with the angular
distribution (41) of protons in the laboratory frame
shows that, if the energy resolution of the detectors
used is fairly high, these distributions are totally dif-
ferent. In the particular case where it is legitimate to
take into account, in (41) and (44), only the protonic
transition to the J1 = 0 ground state of the daugh-
ter nucleus, formula (41) reduces to formula (25),
which gives an anisotropic angular distribution in the
laboratory frame (it has a maximum in the direction
of the angle θ = π/2), while formula (44) leads to
an isotropic angular distribution of protons in the
intrinsic coordinate frame [it is equal to 1/(4π)].

6. ADIABATIC APPROXIMATION

In order to describe the structure of deformed nu-
clei in their interior, use is often made of the adiabatic
approximation, which is based on the fact that the
characteristic times of nucleon motion within the nu-
cleus are much shorter than the characteristic times
associated with the rotation of nuclei. This means that
the characteristic energy spacing ∆EN between the
single-nucleon levels having identical values of the
good quantum numbers is considerably greater than
the characteristic energy spacing between neighbor-
ing rotational levels, which is ∆Er ≈ �

2/2I0, where
I0 is the nuclear moment of inertia. In this approxima-
tion, the strong-coupling model is realized, and the
wave functions for deformed nuclei are constructed on
its basis.
2
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In the case of the deep-subbarrier protonic decay
of nuclei, the adiabatic approximation is not applica-
ble because the protonic partial widths with respect
to transitions to excited states of daughter nuclei
decrease sharply. This is the reason why it is so dif-
ficult to reveal the fine structure of proton spectra—
so far, it has been found only for one strongly de-
formed nucleus 131Eu [14]. Nevertheless, the angular
distributions of protons from the protonic decay of ori-
ented deformed odd–even nuclei will be investigated
here in the adiabatic approximation with the aim of
exploring the situation arising in the adiabatic limit.
For the adiabatic approximation to be applicable, two
conditions must be satisfied. First, one has to require
that the excitation energy (EJ1

0 )∗ of the J1 > 0 states
belonging to the ground-state rotational band of the
deformed even–even daughter nucleus be much lower
than the proton-separation energy Q00 for the tran-
sition to the ground state (J1 = 0) of the daughter
nucleus, so that one could neglect the effects of the
energies (EJ1

0 )∗ on the penetrability of the potential
barrier and also on the Coulomb phase shifts δCoul

cl
(this condition is more lenient); this would make it
possible to take, in the angular distributions (41) and
(44), all partial widths and Coulomb phase shifts at a
single energy value Q00. Second, the detectors used
must not distinguish in energy the groups of protons
corresponding to different spins J1 of the daughter
nucleus, in which case the interference between the
wave functions for these groups of protons arises in
the angular distribution (44). By taking into account
formula (40) and the relation∑

J1

CJ10
Jj−KKC

J10
Jj−KiKi

= δK,Ki, (45)

we can then recast the angular distributions (44) into
the form

dP̃ J
Ki

(Ω′)
dΩ′ =

1∑
jl

ΓKijl
(46)

×
∑
ks

∣∣∣∣∣
∑
jl

CjKi
1
2
lkskl

Ylkl
(Ω′)

√
ΓKijl e

iδCoul
cl

∣∣∣∣∣
2

,

where the energy Q00 has been employed for all terms
in the sums over j and l.

This distribution coincides with the angular dis-
tribution of protons in the internal coordinate frame
of the parent nucleus in the decay of a single-proton
shell state fKi in a nonspherical shell potential. It
is this distribution that was investigated in [16, 17]
and that was proposed for consideration as the an-
gular distribution of protons emitted by J = Ki ori-
ented nuclei in the laboratory frame. The argument
P

behind this statement is based on the fact that the
projection Ki of the spin J of a nucleus onto the z
axis in its internal coordinate frame coincides with
J for the ground or a single-particle isomeric state
of this nucleus. At the same time, the projection
M of the spin J of the oriented nucleus onto the z
axis of the laboratory frame is also equal to J . This
could seems to imply the coincidence of the z axes
in the laboratory frame and in the intrinsic coordinate
frame, with the result that the angular distributions
in these coordinate frames would also coincide. It is
obvious, however, that this statement is of a semiclas-
sical character. In order to prove this, we go over, in
the asymptotic expression for the wave function ψJJJ
describing the parent nucleus [formula (42)], to the
adiabatic limit. We have

ψJJJ →
√

2J + 1
16π2

(47)

×
∑
ksjl

[
DJ
JJ(ω)C

jJ
1
2
lkskl

+ (−1)j−JDJ
J−J(ω)C

j−J
1
2
lkskl

]

× Ylkl
(Ω′)χ(1)

0 (q1)χ 1
2
ks
(α′)

×
√

ΓJjl
�υ

Gl(R) + iFl(R)
R

il.

The normalized (to unity) angular distribution of
protons in the laboratory frame can then be repre-
sented in the form

dP J
J (Ω)
dΩ

=
1∑

jl

ΓJjl

(2J + 1)
16π2

(48)

×
∑
ks

∫ ∣∣∣∣∣∣
∑
jl

[
DJ
JJ(ω)C

jJ
1
2
lkskl

+ (−1)j−J

×DJ
J−J(ω)C

j−J
1
2
lkskl

]
Ylkl

[
Ω′(Ω, ω)

]√
ΓJjleiδ

Coul
cl

∣∣∣∣
2

dω,

where we have taken into account the dependence
of the angles Ω′ on the angles Ω and ω and where
dω = sin βdβdαdγ. Since the integrand on the right-
hand side of (48) is a function of only the angle θ′,
which is independent of the Euler angle γ , we can
perform integration with respect to the angle γ in this
formula, taking into account the explicit form of the
functions D,

DJ
JJ(ω) = eiJα(cos (β/2))2JeiJγ , (49)

DJ
J−J(ω) = eiJα(sin (β/2))2Je−iJγ ,

and using the orthogonality of the functions DJ
JJ(ω)

and DJ
J−J(ω) in the angle γ and formula (46). This
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yields

dP J
J (Ω)
dΩ

=
(2J + 1)
16π2

(50)

×
∫

dω
[∣∣DJ

JJ(ω)
∣∣2 + ∣∣DJ

J−J(ω)
∣∣2] dP̃ J

J (θ
′(Ω, ω))
dΩ′ .

According to formulas (49), the functions∣∣DJ
JJ(ω)

∣∣2 and
∣∣DJ

J−J(ω)
∣∣2 can be written as

(cos(β/2))4J and as (sin(β/2))4J , respectively; for
J � 1, they become close to δ(ξ − 1) and δ(ξ + 1),
respectively, where ξ = cos β . This indicates that the
orientation of the z axis of the intrinsic coordinate
frame of the parent nucleus is parallel or antiparallel to
the z axis of the laboratory frame. It then follows that
θ′ = θ or θ′ = π − θ. Since the angular distribution
dP̃ J

J (θ)/dΩ
′ does not change upon the substitution

of (π − θ′) for θ′, we can take this distribution outside
the sign of the integral with respect to ω in (50), re-
placing the angle θ′ by θ , whereupon the integration
of the resulting expression with respect to ω yields

dP JJ
J (θ)
dΩ

=
dP̃ J

J (θ
′)

dΩ′ . (51)

This means that, if use is made of the adiabatic
approximation, only in the semiclassical limit J � 1
does the angular distribution of protons emitted in the
decay of an oriented nucleus in the laboratory frame
coincide with that in the internal coordinate frame of
the parent nucleus.

Let us consider yet another particular case, that
which cannot be realized in the protonic decay of ori-
ented deformed nuclei, but which can be of use for ob-
taining deeper insights into different forms of nuclear
decays—for example, in investigating the nuclear-
fission process. Suppose that the angular distribu-
tion of protons, dP̃ J

J (Ω
′)/dΩ′ (46), in the internal

coordinate frame of the parent nucleus has the form
[δ(ξ′ − 1) + δ(ξ′ + 1)] /4π, where ξ′ = cos θ′ —that
is, it is oriented along or against the z axis in this
coordinate frame. This means that the radius vector
R′ is parallel or antiparallel to the z axis in this
coordinate frame; that is, the angle θ in the labora-
tory frame coincides with the Euler angle β or with
π − β . We can then replace [δ(ξ′ − 1) + δ(ξ′ + 1)]
by [δ(θ − β) + δ(θ − π + β)] and perform integra-
tion with respect to the Euler angles in (50). The
result is

dP J
J (Ω)
dΩ

=
(2J + 1)

8π
(52)

×
[∣∣DJ

JJ(ω)
∣∣2 + ∣∣DJ

J−J(ω)
∣∣2]

β=θ,α=0,γ=0
.
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This formula is analogous to the formula proposed
by A. Bohr [22] for describing the angular distribu-
tions of fragments originating from the fission of ori-
ented nuclei. From (49), it follows that, for J = 1/2,
the angular distribution (52) is isotropic and is equal
to 1/(4π) and that, for J = 3/2, it has the form

dP J
J (Ω)
dΩ

=
1
2
π
[
[sin(θ/2)]6 + [cos(θ/2)]6

]
and has the maximum value of 1/2π at θ = 0 and θ =
π and the minimum value of (1/2π · 1/4) at θ = π/2 .
For spin values of J � 1, this distribution takes the
delta-function form in the directions specified by the
angles of θ = 0 and θ = π.

7. CONCLUSION

The results obtained in this study make it possible
to describe the angular distributions of protons in
the protonic decay of oriented nuclei, both spherical
and deformed ones. Owing to the sensitivity of these
distributions to the features of parent and daughter
nuclei, their investigation is, in some cases, a unique
method for determining the shape and the structure
of nuclei lying off the proton drip line and, conse-
quently, near the boundary of the existence of nuclei
in nature. Hence, one can hope that experimentalists
will be able to develop procedures for obtaining the
aforementioned distributions in the near future.

Although the adiabatic approximation is unac-
ceptable in the case of deep-subbarier protonic decay,
this approximation and the mathematical scheme de-
veloped here in order to apply it to describing nuclear
decays seem very useful for understanding the fea-
tures of the spontaneous and the low-energy induced
fission of nuclei.
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Abstract—An explanation of the emergence of turbulence in nuclear collisions is proposed on the basis
of the assumption that, in an excited nucleus, there arise nonequilibrium steady-state distributions n(ε) of
occupation numbers. c© 2002 MAIK “Nauka/Interperiodica”.
Popular models of preequilibrium emission study
predominantly the hard (“nonevaporative”) part of
the energy spectrum of secondary particles, N(ε),
where there are strong deviations from the Maxwell
distribution. Under the assumption that statistical
relaxation is due exclusively to binary collisions of
on-shell nucleons, the time evolution of the occu-
pation numbers n(ε) was considered in [1–3]. Here,
we propose a competing mechanism of formation
of a power-law component of n(ε), assuming that
nonequilibrium steady-state distributions of n(ε) that
admit the existence of fluxes along the spectrum
appear in an excited nucleus. Such distributions are
intensively studied in the physics of weakly turbulent
plasma [4–6].

The decay of an input resonance (energy-contain-
ing region), which is the initial stage of the reactions
being considered, results in the population of single-
particle states of energies about ε (inertial interval
in terms of turbulence theory). The smallness of the
occupation numbers in the inertial interval makes it
possible to describe kinetics in this region on the basis
of the Boltzmann equation

∂n1

∂t
= −π

∑
234

|〈12|V |34〉|2 (1)

× δ(ε1 + ε2 − ε3 − ε4)(n1n2 − n3n4) = I(n),

where I(n) is the collision integral.

Multiplying this equation by the density of single-
particle states ρ(ε1) and summing it over the angular
quantum numbers m and l (averaging over these

†Deceased.
∗BorisAlekseevichRumyantsev (1944–1977)was one of the
most brilliant and talented theoretical nuclear physicists. The
editorial board of our journal has got one of his last articles
not published during his life.We deem it still interesting. The
article was prepared for publication by V.A. Khodel.
1063-7788/02/6505-0841$22.00 c©
numbers selects isotropic solutions that depend only
on energy ε), we recast Eq. (1) into the form

ρ(ε)
∂n(ε)
∂t

(2)

= −π
∫ ∫

ε′+ε′′>ε

dε′dε′′T (ε, ε′, ε′′, ε′ + ε′′ − ε)

×
(
n(ε)n(ε′ + ε′′ − ε) − n(ε′)n(ε′′)

)
,

where T ({ε}) is the result of averaging, over the
angular variables, the product of the squared modulus
of the matrix element 〈12|V |34〉 of the pair interaction
V and single-particle densities ρ(ε); here, T1234 =
T2134 = T4321.
By making a linear-fractional transformation

of the variables ε′ and ε′′ in (2) [6], we can find
power-law solutions to the time-independent Boltz-
mann equation (∂n1/∂t = 0) that are additional
to the Maxwell solution n(ε) ∼ exp((ε− µ)/T ). If
T ({ε}) is a homogeneous function whose homo-
geneity exponent is r [that is, T (λε1, λε2, λε3, λε4) =
λrT (ε1, ε2, ε3, ε4)], then

n(ε) ∼ εsi , s0 = −r + 3
2

, (3)

s1 = −r + 4
2

.

If |〈12|V |34〉|2 is independent of energy and if the
level density is ρ(ε) ∼

√
ε, we arrive at r = 2. For

the spectrum of the emitted nucleons, N(ε), we then
obtain

dN(ε)
dε

∼ n(ε)ε ∼
{
ε−3/2 for s = s0

ε−2 for s = s1.
(4)

These expressions are valid if the decrease in the
fluxes along the spectrum because of particle emis-
sion is disregarded. We note that our expression (4)
2002 MAIK “Nauka/Interperiodica”
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differs from the analogous expressions in the preequi-
librium-emission model, which are dominated by the
term dN(ε)/dε ∼ (ε− ε0)n0−2, where ε0 is the kine-
matical limit and n0 ≥ 3.
The physical meaning of power-law solutions to

Eq. (2) was analyzed in [5, 6]. In order to supple-
ment the definition of the solutions in (3), which are
singular (at zero or at infinity, depending on the sign
of si), it is necessary to introduce an external source
of particles and energy, as well as the region of their
removal that would ensure a steady-state character
of solutions featuring fluxes along the spectrum. The
decay of the input configuration and processes due
to the relaxation-induced rearrangement of the self-
consistent field [7] play the role of the above source.
The absorption is provided by particle emission and
by the heating of nucleons in the vicinity of the Fermi
sphere.
In contrast to a Maxwell distribution, which de-

pends on two parameters, T and µ, the solutions in (3)
are one-parameter solutions and are characterized by
one constant, the source power. Let us estimate the
parameterA in the solution n(ε) = Aεs1 . Solutions of
this type are expected in deep-inelastic processes [8],
where a strong dissipation creates an intense source
of the energy flux P1. In the inertial interval, we use
dimensional considerations for P1, which lead, in the
case being considered, to the exact exponent in n(ε).
As a result, we obtain

P1 =
∫
ε
∂n(ε)
∂t

dε ∼ ε2n(ε)
τ

, (5)

where
n(ε)
τ

∼
∫ ∫

dε1dε2T ({ε})n2(ε) ∼ T (ε)ε2n2(ε),

(6)

whence it follows that

n(ε) ∼
√
P1

T
ε−2. (7)

The parameter P1 can be related to physical quantities
by calculating the flux P1 in the energy-containing
region (εmax = ω). We have

P1 =

ω∫
0

n(ε)ρ(ε)γ(ε)εdε ∼ ωnωρ(ω)γ(ω)∆ε, (8)

where γ is the rate of population of single-particle
states and ∆ε ≤ γ(ω) is the width of the energy-
containing region. Combining (7) and (8), we finally
arrive at the expression

n(ε) ∼ ε−2γ(ω)
(
nωωρ(ω)
T ({ε})

)1/2

, (9)
P

which, at r = 2, is consistent with (4). In a similar
way, we can estimate the constant in the solution
n(ε) = εs0 , which corresponds to the particle flux

P0 =
∫
ρ(ε)

∂n(ε)
∂t

dε.

An important property of power-law distributions
like (3) is that they are local. Formally, this ensures
convergence of the integrals in Eq. (2). In our case,
the physical criterion of locality is that the contri-
butions from collisions of nucleons from the inertial
interval, where all energies are on the same order of
magnitude, with particles in the vicinity of the Fermi
sphere must be small. This ensures stability of the
power-law solution (3). In the region of low energies
(ω = 10–20 MeV), where we can neglect the energy
dependence of |〈12|V |34〉|2, the distributions in (3)
are nonlocal. Therefore, it is difficult to identify the
contribution in (4) against the background of the or-
dinary preequilibrium spectrum. With increasing en-
ergy of emitted particles (≥100MeV), the inertial in-
terval and the validity range of the Boltzmann Eq. (1)
both become wider. Assuming that the momentum p
is a good quantum number and isolating δ(p1 + p2 −
p3 − p4) in the matrix element 〈12|V |34〉, we find for
the exponent r in (3) that r = 1/2 + q, where q is the
exponent that determines the energy dependence of
dσ/dθ.
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Abstract—A method for estimating the systematic uncertainty associated with radon in the SAGE
experiment1) aimed at observing the solar-neutrino flux is described. For the gallium target used in this
experiment, the systematic uncertainty in the measured neutrino-capture rate of 75 SNU2) is below
0.3 SNU. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Radon and products of its decay appear to be one
of the main sources of background in experiments
aimed at detecting solar neutrinos and doubleβ decay
and at seeking dark matter and events of other rare
processes. Radon, a gaseous element of the chain
of 238U and 226Ra decays, can find its way into a
detector, and its decays mimic sought events.

Since 1990, the SAGERussian–American exper-
iment has been measuring the rate of solar-neutrino
capture in 50 t of liquid metal gallium. Neutrinos
interact with the target 71Ga isotope via the reaction
of inverse β decay: 71Ga (ν, e−) 71Ge. With the aid
of a special chemical procedure, the product 71Ge
atoms are extracted from the target at the end of
each exposure period (1–1.5 months); are converted
into the gaseous state of GeH4 (germane); and are
placed into the proportional counter, where the decays
of these atoms [T1/2(71Ge) = 11.4 d] are observed
over a period of 5 to 6 months. A detailed description
of the experiment, including the description of the
chemical procedures for extracting germanium from
the gallium target and procedures for counting 71Ge
decays and for analyzing the resulting data, is given
in [1, 2].

We subdivide radon into external and internal por-
tions according to the type of its effect. External

1)The SAGE experiment is being performed with the aid of
the gallium–germanium neutrino telescope (GGNT) at the
underground laboratory of the Baksan NeutrinoObservatory
of the Institute for Nuclear Research (Russian Academy
of Sciences) in the Republic of Kabardino-Balkaria (near
Elbrus). This underground laboratory is located at a distance
of 3.5 km from the entrance of the adit excavated into the
Mount Andyrchi. The rock thickness provides shielding from
cosmic muons corresponding to 4700 mwe.

2)1 SNU corresponds to one event of neutrino capture per
second in a target that contains 1036 atoms.
1063-7788/02/6505-0843$22.00 c©
radon is outside the counter in ambient air and is
recorded in the counter owing primarily to γ rays
from β-decay elements. External radon is displaced
from the environment of the counters by means of a
blow through with evaporating liquid nitrogen. The
residual activity of external radon is monitored by the
active-shield system. It is constant in time; therefore,
external radon affects only the background count-
ing rate, increasing the statistical uncertainty of the
measurements—there is no systematic bias of the
measurement results in this case.

Internal radon, admixed to the counter gas dur-
ing counter filling, has a totally different effect on
measurements. Here, the detection efficiency is con-
siderably higher than for external radon—almost all
decays of radon and of elements of its decay chain are
recorded. It is important to note that radon decays oc-
cur at the beginning of the exposure [T1/2(222Rn) =
3.8 d], increasing the measured number of 71Ge de-
cays. Thus, radon decays result in overestimating
the measured flux of solar neutrinos. In this article,
we assess this overestimation and indicate a possible
way to reduce the systematic uncertainty caused by
internal radon. The method used to estimate the sys-
tematic uncertainty is the following. Special features
of the formation of pulses from the decays of radon and
its daughter elements in the counter are determined
on the basis of measurements. Further, the spectra
of pulses for the decay of each radon-chain element
are simulated. Taking into account the data obtained
in solar-neutrino-run measurements and using the
SAGE method for determining radon decays, we ob-
tain the sought systematic uncertainty.

2. PROPORTIONAL COUNTERS
AND COUNTING SYSTEM

Quartz cylindrical proportional counters are used
in the SAGE experiment to detect 71Ge decays. The
2002 MAIK “Nauka/Interperiodica”
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Fig. 2. Spectrum of pulses coincident with signals from
NaI.

counter cathode manufactured from iron has an inner
diameter of 0.4 cm and a length of 5 cm, while the
anode is a tungsten wire of diameter 10–12 µm.
The counter gas is a mixture of xenon and germane
(GeH4) at a pressure of about 1 atm. Germane con-
stitutes up to 30% of the gas in volume and plays
the role of a quencher. The range of the pulse-height
measurement is 0.3–16 keV. The energy scale is lin-
ear over the entire range of measurements. The de-
tecting facility includes a system of anticoincidences
that is based on a NaI crystal and which plays the role
of an active shield. A digital oscilloscope is used in
the detecting facility to record the pulse shape; the
oscilloscope-frame duration is 1 µs, with the time
resolution being 1 ns. On the basis of the pulse shape,
the pulse rise time is determined, which permits sub-
P

dividing pulses into “pointlike” and “extended” ones
with respect to the track length of an ionizing parti-
cle in the counter gas. The decay of 71Ge proceeds
through electron capture followed by the emission
of 10.4-, 1.2-, and 0.1-keV Auger electrons (K, L,
andM modes, respectively). The energy range of the
detecting facility makes it possible to observe only
the K and L decays of 71Ge. The Auger electrons
lose energy in the gas near the production vertex and
are recorded as pointlike events—that is, as events
characterized by a short pulse rise time (TN ). Gamma
rays are not emitted in 71Ge decay. In order to reduce
the background counting rate, each pulse is tested for
complying with specific requirements on the detection
of germanium decays (1) in the amplitude, (2) in the
rise time, and (3) in the coincidence with pulses from
NaI. The pulse amplitude must be within the intervals
(windows) of theK and L peaks of 71Ge. The width of
the windows is ±2.36σ (σ is the standard deviation)
around the peak mean value and covers 98% events
under the peak.

3. MEASUREMENTS

Figure 1 displays the 222Rn decay chain. Its three
elements decay through the emission of α particles,
and two of them undergo β decay. The chain ends in
the 210Pb isotope, whose half-life (T1/2 = 22.3 yr) ex-
ceeds considerably the counting time of an individual
run. The total lifetime of all chain elements, with the
exception of the first one, is about 1 h.

In order to choose a correct model for describing
processes occurring in the counter upon radon decay,
measurements were performed with a large amount
of radon (about 3200 atoms) placed into the counter
gas. In processing the pulses, use was made of a
special procedure that relies on the method of re-
construction of primary-ionization tracks [3, 4] and
which makes it possible to study pulses in detail and
to determine the pulse amplitude on the basis of the
initial portion of the pulse [5]. In our case, the appli-
cation of this method enabled us to extend the range
of the energy measurement up to about 35 keV and to
reveal some special features of the radon-decay spec-
tra. Two spectra were obtained in the measurements:
(1) the spectrum of events coinciding with signals
from NaI (Fig. 2) and (2) the spectrum of events that
do not coincide with signals from NaI (Fig. 3). The
first is formed by 214Pb and 214Bi β decays, which
are accompanied by γ radiation. Here, the measure-
ments yield a descending spectrum without clear-
cut structures. The spectrum of events that do not
coincide with signals from NaI is more complicated:
a peak with a resolution of about 41% is observed in
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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the region around 14.2 keV (the counter resolution is
20% for the 5.9-keV line).

The pulses that form this spectrum are due to
α decays of the radon-chain elements in the cases
where β decays are not accompanied by signals from
NaI inclusive (the efficiency of NaI in detecting γ rays
produced in the counter is on average about 80%).
Since there is no indication of this peak in the first
spectrum, it can be attributed to α decays exclusively.
We associate this peak with the detection of recoil
nuclei produced in the α decays in question.

The energy transferred to recoil nuclei in the α
decays is 100–150 keV, about 10% of it going into
ionizing molecules of the counter gas. That the dis-
tribution of events versus the pulse rise times (Fig. 4)
that corresponds to pointlike events is narrow—that
is, the particles involved have a very small range—
is another piece of evidence for believing recoil nuclei
to be responsible for the events of this peak. Figure 4
shows that this distribution is even narrower than that
for the K peak of 71Ge. The peak in the vicinity of
14 keV is of importance for us, since part of it overlaps
the region corresponding to theK peak of 71Ge.

4. SIMULATION OF EVENT SPECTRA
FOR COUNTERS

In order to calculate the number of pulses orig-
inating from each element of the radon chain and
mimicking 71Ge decays, we determined the spectra
of pulses associated with the decays of these ele-
ments in the counter using the Monte Carlo method.
In doing this, we took into account the geometric
parameters of the counters and the properties of the
counter gas. We assumed that radon decays in the
counter gas and that the remaining elements of the
chain have sufficiently long lifetimes to be deposited
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 4. Distribution of events from the 14-keV peak ver-
sus the pulse rise time TN (1250 events). The analogous
distribution for events from the K peak of 71Ge is given
for the sake of comparison (dashed curve).

on the counter walls. It should be noted that they
are deposited predominantly on the cathode, because
some atomic electrons are stripped off their shells in
the α-decay process, so that the daughter element
arises in the form of a positively charged ion [6], which
is attracted to the cathode. This is also suggested by
the fact that the peak due to recoil nuclei has a rather
high resolution—if recoil nuclei were produced in the
vicinity of the anode, there would arise considerable
fluctuations of gas amplification. In the case of 222Rn
α decay, the emitted α particle and the resulting recoil
nucleus are both recorded. In the α decay of 218Po
and 214Po, either the α particle or the recoil nucleus
is recorded (the latter occurs if the α particle goes
away toward the counter wall). Because of a high
ionizing power of α particles, α decays are recorded
predominantly as saturated events—that is, events
corresponding to energy losses beyond the measure-
ment range (16 keV). Only an insignificant fraction
of α decays is recorded as “ordinary” events, in which
case the α-particle path in the gas is sufficiently short
for the ionization losses not to exceed 16 keV and the
recoil nucleus falls onto the wall. From our simula-
tion, it follows that the pulse spectrum of these events
is uniform and that their number does not exceed 5%
of the total number of α decays at the cathode. In
the case of 222Rn α decays in the counter gas, the
number of events that do not lead to results beyond
the scale is close to zero (their probability is below
10−4). Thus, the number of pulses from the α decays
that mimic 71Ge decays is proportional to the widths
of the energy windows of the L and K peaks of 71Ge.
Additionally, the K peak of 71Ge comprises α-decay
events in which the α particle goes away to the wall
and one records the pulse from the recoil nucleus.
2
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Fig. 5. Result of a Monte Carlo simulation for the inte-
grated spectrum of pulses from the decays of all elements
of the radon chain.

Since the α-particle range in the gas is too short
(below 0.35 mm) to produce a pulse that does not
go beyond the scale, these events can be considered
as pointlike ones; hence, the parameter TN (pulse
rise time) cannot be used as a selection criterion for
these pulses. A selection according to coincidences
with pulses from NaI is also impossible, because γ
radiation is not generated in α decays.

It is more difficult to simulate β than α decays.
Here, it is necessary to take additionally into account
the complex shape of the β-particle spectrum [7], the
energy losses of electrons by bremsstrahlung, and
changes in the direction of electron motion, as well
as nonuniform energy losses of electrons. Moreover,
part of the electrons that have gone away to the
counter wall return to the gas volume, increasing
the pulse energy [8, 9]. In β decay, a pulse in the
counter is formed owing to the ionization losses of
the β particle, which are calculated by thewell-known
Bethe formula (see, for example, [8]). It is difficult to
take directly into account changes in the direction
of electron motion and nonuniformity of the energy
losses by bremsstrahlung. Under our conditions (the
geometry of the counter and the working gas mix-
ture as described above), it is possible, however, to
use straight electron trajectories and the continuous
energy losses. The pulse spectra underwent virtually
no change upon applying a refined method for assess-
ing electron energy losses that employs information
about electron ranges and various versions of taking
into account changes in the direction of electron mo-
tion. (The change in the number of events that fell
within theK- and L-peak regions was always below
50%.) In view of this, we abandoned complicated
models and present here the results of the simulation
where the trajectories of the β particles in the gas are
straight and where their energy losses are continuous.
P

The fraction of the β particles that are reflected from
the wall of the iron cathode back into the counter-
gas volume is taken to be independent of the angle
of incidence and equal to 0.3. For the β particles, the
change in the energy due to reflection from the wall is
also taken into account [8].

Figure 5 shows the integrated spectrum of simu-
lated events associated with all elements of the radon
chain. Its shape reproduces that of the pulse spectrum
obtained in the measurements.

Given the spectra of the pulses in the counter that
are due to the decays of each element of the radon
chain, one can determine the probability for the pulses
from specific decays to fall within the energy region
of the L and K peaks of 71Ge. Additional selections
that are based on the pulse rise time TN and on the
coincidence with signals from NaI can be applied to
the pulses from the β decays. We use the intensity
of each γ line of 214Pb and 214Bi [10] and take into
account their detection efficiency in the NaI crystal
to obtain the probabilities of coincidences between β
decays and NaI signals. In our case, the β decays
of 214Pb are accompanied by signals from NaI in
50% of cases. For 214Bi, this value is greater (75%).
Thus, the measured spectrum of pulses coinciding
with signals from NaI (see Section 2) is the corre-
sponding sumof 214Pb and 214Bi decays. On the basis
of this spectrum, we determine the probability that
an event falling within the energy intervals of the L
and K peaks will be characterized by a value of TN
that corresponds to pointlike events (TN < 10 ns and
TN < 18.4 ns for the L and theK peak, respectively).
These probabilities are wL(TN < 10 ns) = 0.17 and
wK(TN < 18.4 ns) = 0.40.

We can apply only a selection in energy to the
pulses from α decays. These α decays are not accom-
panied by γ rays, and short tracks of the α particles
with pulses that do not go beyond the scale ensure
the pointlike character of these pulses.

The table gives the resulting values of the prob-
ability that, upon the decay of each element of the
radon chain, there appears an event mimicking 71Ge
decay. Here, it is considered that the α decay of 214Po
can be detected only if the preceding β decay of 214Bi
was not detected (the β particle falls onto the wall
and is not reflected from it). This is because the dead
time of the detecting facility (about 0.9 s) exceeds
significantly the half-life of 214Po (T1/2 = 164 µs).

The radon decay chain begins with 222Rn α decay
in the counter gas, the corresponding pulse almost al-
ways leading to results beyond the scale. This is taken
into account within the standard procedure adopted
by SAGE for analyzing detected pulses. Around each
saturated event that is not accompanied by a signal
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Probabilities of detecting the decays of the radon-chain elements at the L andK peaks of 71Ge

222Rn (α) 218Po (α) 214Pb (β) 214Bi (β) 214Po (α)
∑

L peak 0 4.2 × 10−3 1.1 × 10−2 7.2 × 10−3 1.6 × 10−3 0.024

K peak 4 × 10−5 4.9 × 10−2 6.1 × 10−3 1.8 × 10−3 1.86 × 10−2 0.076
fromNaI, the time interval from 15 min before detect-
ing this event to 3 h after it is declared to be a dead
time. The pulses that arrived from the counter within
this interval and the interval itself are eliminated from
the determination of the event-detection rate. In the
case where it is not radon decay but the decay of 218Po
that generates a saturated pulse, the above 15-min
period before this pulse must quench the contribution
to the probability of mimicking germanium decay by
the α particle from radon. As can be seen from the
table, it is very difficult to ensure fulfillment of this
condition; in all probability, it will not be used in
the future for this reason. In order to determine the
probability that 71Ge decay is mimicked by radon,
it is therefore necessary to find the number of the
decays of the radon-chain elements within 3 h after
the beginning of the initial α decay. This was done
with the aid of the Monte Carlo method. Only the
β decays of 214Pb and 214Bi and the α decays of
214Po are of importance here: 1.1% of 214Pb decays
and 3.5% of 214Bi and 214Po decays occur within
the interval of 3 h. By increasing the time interval
that is reckoned from a saturated pulse and which is
eliminated from the analysis, it is possible to achieve
a more pronounced reduction of the radon systematic
uncertainty: each additional hour reduces the system-
atic uncertainty about 3 times.

5. RESULTS

Considering that the time intervals associated
with detecting pulses yielding results beyond the
scale are removed from the analysis (see Section 4),
we have determined the probability of recording an
event that mimics 71Ge decay per event of the decay
of one radon atom in the counter gas. This has yielded
4.3 × 10−4 and 7.8 × 10−4 for the L and theK peak,
respectively.

In an individual run of SAGE measurements, we
record, on average, 2.1 and 2.5 events of 71Ge de-
cay at the L and at the K peak, respectively, and
7.7 saturated pulses attributed to radon decays. This
number of radon-decay events causes the appearance
of an additional signal: on average, 3.2 × 10−3 and
6.0 × 10−3 pulses at the L and at the K peak, re-
spectively, per individual run. This corresponds to the
relative uncertainty of 0.2% for both peaks and to
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
the uncertainty of 0.1 SNU at the measured solar-
neutrino-capture rate of 75 SNU.

It should be noted here that some counters used in
the solar-neutrino runs had a resolution lower than
that for which the spectra were calculated in Sec-
tion 3. A poorer resolution increases the width of the
time intervals in which amplitudes of the recorded
pulses were selected. In the case of the L peak, the
probability increases linearly despite the descending
character of the spectrum of the β pulses within this
range of amplitudes. In the case of the K peak, the
change in the probability of the detection of mim-
icking events from radon is nonlinear because of the
overlap of the amplitude intervals for recording theK
peak and the peak associated with recoil nuclei. As a
rule, the resolution of the counters used in the runs
of solar-neutrino measurements was below 25% for
the 5.9-keV line. This resolution is used to calculate
the eventual uncertainty. As a result, the uncertainty
increases by a factor of 1.3 at the L peak and by a
factor of 1.5 at the K peak. Finally, we find that the
systematic uncertainty is 0.2% (0.2 SNU) at the L
peak and 0.4% (0.3 SNU) at the K peak. The value
obtained for the K peak should be treated as the
integrated uncertainty, because SAGE statistics were
based primarily on 71Ge decays measured precisely at
theK peak [1].

The value of 0.3 SNU obtained here is an upper
limit on the systematic uncertainty associated with
radon. Its small value indicates that radon does not
contribute noticeably to the SAGE results.

ACKNOWLEDGMENTS

We are grateful to J.N. Abdurashitov, A.V. Ka-
likhov, and V.E. Yants for enlightening comments and
to all the members of the SAGE collaboration for
stimulating discussion.

REFERENCES
1. J. N. Abdurashitov et al., Phys. Rev. C 60, 055801

(1999).
2. V. N. Gavrin, Nucl. Phys. B (Proc. Suppl.) 91, 36

(2001).
3. J. N. Abdurashitov, T. V. Ibragimova, and A. V. Ka-

likhov, http://xxx.lanl.gov/physics/9908023.
2



848 GAVRIN et al.
4. J. N. Abdurashitov, T. V. Ibragimova, and A. V. Ka-
likhov, inProceedings of the X International School
“Particles and Cosmology,” Baksan, Russia, 1999,
p. 77.

5. V. V. Gorbachev, T. V. Ibragimova, and A. V. Ka-
likhov, inProceedings of the X International School
“Particles and Cosmology,” Baksan, Russia, 1999,
p. 81.

6. T. A. Carlson, Photoelectron and Auger Spec-
troscopy (Plenum, New York, 1975; Mashinostroe-
nie, Leningrad, 1981).
P

7. Beta Rays of Decay Products: A Handbook
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Abstract—The first experimental estimate of the diffractive-dissociation (DD) cross section for muon-
neutrino interaction with nuclei is presented. Eleven events that satisfy the DD criteria (xB < 0.1, ∆η >
2) are found among 207 events induced by neutrino interactions with Ag and Br nuclei of nuclear
photoemulsion and borrowed from the database of the E-564 experiment (FNAL). The ratio of the DD
cross section to the total deep-inelastic cross section for the charged current is 0.29 ± 0.09. Four of the 11
events proved to be candidates for events of coherent DD. c© 2002 MAIK “Nauka/Interperiodica”.
It was predicted theoretically in [1] that the cross
section for coherent diffractive dissociation (DD) in
neutrino interaction with a heavy nucleus can amount
to half the total deep-inelastic cross section for a colli-
sion between a neutrino and a heavy nucleus. Earlier,
it was shown in [2] that DD effects are significant in
photoproduction as well.

The experimental study of the DD phenomenon in
photoproduction became possible only upon the com-
missioning of the HERA electron–proton collider. In
particular, a comprehensive investigation of this phe-
nomenon by the H1 and ZEUS collaborations was
presented in [3, 4].

By using the database of the E-564 experiment
(FNAL) [5], we estimate here the DD cross section
for muon-neutrino interactions with Ag and Br nuclei
of photoemulsion. Of the total of 207 neutrino–
nucleus collisions involving silver and bromine, 179
were events associated with the charged current.
The distribution of these events with respect to the
Bjorken variable xB is displayed in Fig. 1, where the
number of events is plotted along the ordinate. An
analysis of data in terms of this variable is used in
[1, 2] to separate the DD effect. The quantity xB is
defined as

xB = Q2/(2mν),

where ν is the neutrino energy in the laboratory frame;
m is the nucleon mass; andQ2 = −q2, q being the 4-
momentum transfer to hadrons.

Of the aforementioned 179 events, 76 have a gap
in the pseudorapidity (∆η > 2), which is defined as

η ≈ − ln(tan(θ/2)),

*e-mail: egorov_o@vitep.itep.ru
1063-7788/02/6505-0849$22.00 c©
where θ is the hadron emission angle.
Figure 2 presents the distribution of these 76 events

with respect to the Bjorken variable xB. It is clear from
Fig. 2 that the range xB = 0–0.1 contains 11 events.
Those are the same events from the range 0–0.1
in Fig. 1. As can be seen from the figures, both
criteria select the same events. According to various
calculations, including those that were performed in
our laboratory [6], it is the range xB = 0–0.1 that
contains all DD events.

Figure 3 shows the distribution of the selected
11 events with respect to xB in the interval 0–0.1,
with themean value being 〈xB〉 = 0.048. At thismean
value of xB, the calculations performed on the ba-
sis of the procedure described in [7] (the results of
these calculations are illustrated in Fig. 4) predict
65 events. Quark–lepton interactions were generated
by the LEPTO code, version 4.3 [7]. However, the
code was adjusted to the kinematical conditions of the
experiment being studied; in particular, the cuts on
Q2 and W (W is the mass of the hadron final state)
were lowered down to 0.1 (GeV/c)2 and 1 GeV/c2,
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Fig. 1. Distribution of 179 charged-current events with
respect to xB for Ag and Br nuclei of photoemulsion.
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Fig. 4. Results of a Monte Carlo simulation of charged-
current events (distribution with respect to the Bjorken
variable).

respectively. According to the data of the E-531 ex-
periment [8, 9], which employed the same neutrino
beam as the E-564 experiment, these cuts left 98%
of the total number of events, events of cumulative
production being eliminated.

In order to estimate experimentally the ratio of the
DD cross section to the total deep-inelastic cross
section for neutrino interaction with a heavy nucleus
of photoemulsion, we must take into account the
efficiency of event detection in the photoemulsion
chamber. In order to accomplish this, we applied the
following procedure. In the E-564 experiment, the
efficiency of event detection is known as a function
PH
of the multiplicity of black and gray tracks in an
event. Assuming that the detection efficiency is the
same for detected and for undetected events, we can
determine it for each of the 11 detected events ac-
cording to the corresponding track multiplicity. We
weighted all these events in accordance with their
efficiencies. (By way of example, we indicate that, if
the detection efficiency for events featuring one black
track is 1/2, these events have a weight of 2.) The
procedure yielded 40 ± 8 events; for the cross-section
ratio, this leads to 0.22 ± 0.06. In all probability, this
is a lower bound on the cross-section ratio, because
the efficiency of event detection decreases fast with
decreasing particle multiplicity in an event.

A more reliable estimate of the efficiency can
be obtained by extracting, from the database of
neutrino–nucleus interactions, events found by trac-
ing along a track. Eighty-two events of this type
were among 179 charged-current events; of these, ten
events passed the DD criteria. The correction for the
efficiency of finding events by means of tracing along
the track versus xB can be taken from the data of
the E-531 experiment (see [9]). By formally applying
this criterion, we obtain the value of 0.19. If, however,
we take into account the distinction between the
efficiencies of finding low-multiplicity events in the E-
531 and E-564 experiments, the result for the ratio of
the cross sections becomes σDD/σtot = 0.29 ± 0.09.

Of 11 DD events found in the experiment, four
events can be considered as candidates for coherent
DD—that is, as events that do not involve either the
decay of the nucleus or the emission of any of its
constituents. In nuclear photoemulsion, such events
look like white stars (that is, stars not containing gray
or black tracks).

Among 79 white stars in the database of the E-
564 experiment, we found only four events that pass
the DD criteria. These events are presented in the
degree works by Moskvin [10] and Marikhin [11] per-
formed at the Institute of Theoretical and Experimen-
tal Physics (ITEP, Moscow) under the supervision of
the present author. By way of example, we indicate
that one event has ∆η = 2.2 and involves a muon
and a “jet” of four π mesons and that another event
is characterized by a rapidity gap of 3.0 and by the
presence of a muon and a “jet” of two π mesons. It is
such events that are considered here as events of co-
herent DD in muon-neutrino interaction with a heavy
nucleus of photoemulsion. These events correspond
to nuclear excitation energy below 5 keV. The relative
DD cross section estimated on the basis of these
four events is 0.18 ± 0.09. This estimate takes into
account the additional inefficiency associated with
finding white stars at low multiplicities of relativistic
particles in an event. However, this definition of co-
herent DD is open to criticism, if for no other reason
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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than the fact that, according to the model of free
nucleons, the proton momentum in a heavy nucleus
exceeds 250 MeV/c.

We consider the remaining seven events as events
of incoherent DD. These events have a pseudorapidity
gap in excess of 2 and Bjorken variable values in the
region xB < 0.1, but they involve black or gray tracks
of particles emitted from the nucleus; that is, these
events are characterized by a significant excitation
energy of the nucleus involved.
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Abstract—A new procedure for determining the energies of particles of primary cosmic radiation is
described. The procedure is based on measuring the spatial density of the flux of secondary particles
originating from the first event of nuclear interaction that have traversed a thin-converter layer. The use
of the proposed method makes it possible to create equipment of comparatively small mass and high
sensitivity. The procedure can be applied in balloon- and satellite-borne cosmic-ray experiments with
cosmic nuclei for all types of nuclei over a wide energy range between 1011 and 1016 eV per particle.
Physical foundations of the method, results of a simulation, and the applicability range are described.
c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigation of primary cosmic rays has been of
interest for astrophysics since the discovery of cosmic
rays. Processes occurring in the Milky Way Galaxy
and maybe beyond it are reflected in the chemical
composition of cosmic rays, in the energy spectra
of cosmic-ray components, and in their possible
anisotropy. The spectrum and the composition of
primary cosmic rays have been explored with the aim
of obtaining answers to the fundamental questions of
the origin of primary cosmic radiation, the mecha-
nisms of their acceleration, and their propagation in
the Milky Way Galaxy.

In the energy range 1011–1016 eV, which is usually
of prime interest, the energy spectrum of cosmic rays
behaves as follows. For 1011 < E < 3 × 1015 eV, it
can be approximated by a power-law function pro-
portional to E−γ with γ ∼ 1.7; at E ∼ 3 × 1015 eV,
the spectrum has a knee, becoming steeper, which
is described by a value of γ ∼ 2.2. There are a few
different interpretations of the knee phenomenon in
the spectrum of cosmic rays, but none of these has
been corroborated experimentally. This is because
there are no data from a direct investigation of the
chemical composition of primary cosmic rays in the
region E > 1015 eV; as to data in the energy region
immediately below the knee (E = 1014–1015 eV),
their statistical significance is insufficient. The knee
phenomenon was discovered by means of an indirect
procedure that employs extensive air showers and
which makes it possible to determine, to a rather
high degree of precision, the energy spectrum of the
sum of all cosmic-ray components over a wide energy
region (E > 1015 eV), but which cannot pinpoint the
1063-7788/02/6505-0852$22.00 c©
type of a primary particle. Results obtained by this
method for the chemical composition of primary cos-
mic radiation are still hotly debated [1]. In order to
explore the energy range E = 1014–1016 eV, which
is of crucial importance for the astrophysics of high-
energy cosmic rays, it is necessary to study directly
the composition of cosmic rays beyond the atmo-
sphere, which fully transforms the primary flux. This
requires deployment of large-area arrays and long
exposure times.

The main difficulty in directly investigating cosmic
rays over the aforementioned energy range is that,
of the entire toolkit of procedures that contempo-
rary experimental physics provides for simultaneously
measuring the energies of all types of Z = 1–26 nu-
clei (this is of paramount importance for determining
the relationship between the intensities of different
nuclei), only two can be applied in the case being
discussed. These are the magnetic-spectrometer and
the ionization-calorimeter procedure. However, the
potential of the first procedure is severely constrained
by the need for generating magnetic fields of enor-
mous strength beyond the atmosphere. In view of the
current state of the art in superconducting technolo-
gies, such investigations into the energy range above
1 TeV will become possible only in the future. Over
the past 30 years, the ionization-calorimeter proce-
dure has been themain tool in experiments with high-
energy cosmic rays. It furnished unique results in
experiments like PROTON [2] and SOKOL [3] and in
experiments where a modified ionization-calorimeter
procedure is implemented with the aid of a facil-
ity that employs x-ray emulsion chambers (JACEE
[4], MUBEE [5], RUNJOB [6]). Over the past two
2002 MAIK “Nauka/Interperiodica”
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decades, however, the experimental astrophysics of
cosmic rays has run into considerable difficulties,
since arrays having a weight of a few tons must be
placed beyond the atmosphere for a long time in order
extend investigations with ionization calorimeters to
energies in excess of 1014 eV. This obviously makes
such investigations extremely expensive. There are
also limitations on the use of the procedure based on
x-ray emulsion chambers: first, long-term exposures
(of duration in excess of 250 h) of nuclear emulsions
and x-ray films is impossible; second, treatment of
primary data requires painstaking efforts.

For performing investigations in the vicinity of the
knee in the spectrum of primary cosmic radiation, it is
crucial to create detecting equipment having a rela-
tively low weight and a high sensitivity and providing
the possibilities for long-term exposures and for ex-
plorations of cosmic rays by a single procedure over
a wide energy range (of a few orders of magnitude).
For this, it is necessary to develop new approaches
that would make it possible to determine the energies
of ultrahigh-energy particles without employing thick
absorbers.

A procedure that is a development of the well-
known and extensively used method for determin-
ing the primary-particle energy from the mean an-
gle of divergence of secondaries originating from an
inelastic-interaction event (Castagnoli’s method [8])
was proposed in [7] on the basis of experience gained
in previous investigations. This procedure, in con-
trast to that based on ionization calorimetry, does not
require a thick absorber of energy—a thin target of
depth about a few centimeters is sufficient. In the
following, we describe the physical foundations of the
method and present results obtained from a simula-
tion of it.

1. METHOD FOR DETERMINING
THE ENERGIES OF NUCLEI

FROM THE LATERAL DISTRIBUTION
OF THE DENSITY

OF THE SECONDARY-PARTICLE FLUX

The method due to Castagnoli [8] is based on
the assumption that secondary pions originating from
proton interactions are emitted isotropically in the
c.m. frame. By virtue of Lorentz transformations, the
mean value of ln tan θi in the laboratory frame (θi is
the emission angle of a secondary particle) is then
proportional to the logarithm of the primary energy
of the incident particle; that is, the lateral distribution
of secondaries, which is usually analyzed in terms
of the pseudorapidity η = − ln tan(θ/2), dN/dη, is
sensitive, under certain conditions, to the primary en-
ergy. This method was applied in experiments where
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
nuclear emulsions and spark chambers were em-
ployed for detectors and where secondary photons
from neutral-pion decays could not therefore be de-
tected, which resulted in the violation of the condition
of isotropy of charged-particle emission in the c.m.
frame of colliding protons, since these secondary pho-
tons carry away an uncontrollable momentum frac-
tion. This is not the whole story, however: in nucleon–
nucleus interactions, the left wing of the distribution
dN/dη is distorted by the contribution of slow par-
ticles produced in the subsequent interactions of the
incident nucleon with target nucleons; this leads to
the growth of fluctuations of 〈η〉 in individual events
and, as a consequence, to an increase in the error
in determining the energy. The aforementioned fac-
tors and experimental difficulties in detecting all slow
particles traveling within the backward cone were
the main reasons for a very large error in determin-
ing the energy by Castagnoli’s method in individual
events: 100–200% for energies in the range 0.1–
1 TeV. Methods for determining the energy that are
based on computing the maximum value of η, which
is also proportional to the logarithm of the primary-
particle energy, were developed in the RUNJOB ex-
periment [6], whereby the effect of slow particles was
eliminated [9]. For technical reasons, however, that
experiment measured only secondary photons rather
than charged particles.

Prior to demonstrating how the aforementioned
problems were sidestepped, we will dwell upon gen-
eral criteria for choosing the method. For a nuclear
interaction, it is necessary to find a parameter S (or
a set of parameters) that can easily be measured with
a specific array and which depends on the primary-
particle energy. Upon plotting the mean calibration
dependence 〈S〉(E), an energy value Emeas can be
associated with each individual event. The basic re-
quirements are the following: first, the mean calibra-
tion dependence must be linear or must be close to
a linear one, 〈S〉 ≈ kE (if the energy dependence of
〈S〉 is much weaker than a linear dependence, small
fluctuations in the measured parameter S would lead
to large errors in determining the energy); second, the
error in determining the energy, δ(Emeas/E), must
be independent of energy—otherwise, the measured
spectra of particles would differ considerably from the
true spectra [10].

Taking into account special features of the deter-
mination of energies from the emission angles of sec-
ondary particles and the aforementioned difficulties
in this determination, we propose using a combined
method that relies on a measurement of the emission
angles both for charged and for the fastest neutral
particles, on one hand, and which employs informa-
tion about the energies of secondaries, on the other
2
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Fig. 2. Schematic representation of the emission-angle
distribution of secondary particles (solid curves) before
and (dotted curves) after the converter for 1-, 10-, and
100-TeV protons.

hand. The layout of the proposed array is displayed in
Fig. 1.

The array in question consists of a target and
a converter of photons in the form of a thin lead
layer (h ∼ 1–2 cm) placed at a certain distance from
the primary-interaction vertex (H ∼ 20 cm). A layer
of coordinate-sensitive detectors that are capable of
recording the number and the coordinates of charged
particles (silicon microstrip detectors, which will be
discussed below, can be used for such detectors) is
proposed to be arranged underneath the converter.

A primary particle interacts in the target, where
there arise secondary photons (from the decays of
π0 and η mesons) and singly charged particles of
energy Ei. The converter transforms almost all sec-
ondary photons incident on this layer of matter into
a narrow electron beam owing to a cascade multi-
plication in lead. The number of product electrons
is proportional to (Ei)s (where s is the shower age,
which is a function of the depth h and the energy Ei;
s = 0.1–0.2 for h = 1–2 cm). Some of the charged
P

particles incident on the converter interact within a
thin lead layer, the multiplicity of secondaries from
these interactions being logarithmically dependent on
the energy Ei. As a result, the total number of singly
charged particles (electrons, pions, kaons) below the
converter, Nafter, appears to be considerably greater
than the number of particles before the converter,
Nbefore (Nafter ∼ Nbefore M(Ei, E,R)). The coefficient
of multiplication, M(Ei, E,R) proves to be depen-
dent on the primary-particle energy E and on the
energies Ei of secondary particles; it is also depen-
dent on the distance R from the shower axis, be-
cause the most energetic secondaries travel near the
shower axis. The multiplication of particles is more
intense at the center of a shower than at its periphery,
with the result that the spatial density of particles
changes upon traversing the converter. The mean
value of M increases from 3.5 at 100 GeV to 20 at
1000 TeV. Figure 2 shows schematically the variation
of the spatial density of secondaries, dN/dη, where
ηi = − ln tan(θi/2). The fastest particles, which carry
the bulk of the interaction energy and which, on
the pseudorapidity scale, occur on the right wing of
the distribution depicted in Fig. 2, have the largest
coefficient of multiplication. The contribution of fast
particles is emphasized by the converter, the shape
of the distribution dN/dη beginning to depend more
sharply on energy.

The parameter S characterizing the pseudorapid-
ity distribution of the density of the secondary-particle
flux was introduced as

S(E0) =
∑

η2
iNi,

where ηi = − ln tan(θi/2) ≈ − ln(ri/(H/2)); here, ri
is the distance between the shower axis and the ith
coordinate-sensitive detector, which recordedNi par-
ticles, while H is the distance between the plane of
the coordinates of the coordinate-sensitive detectors
and the particle-interaction vertex in the target. The
shower axis is found by determining the maximum
of the particle density. The parameter S suppresses
sizably the contribution of slow particles (owing to
the fact that the function in question is quadratic
in pseudorapidity) formed as the result of a cascade
process in the target nucleus, thereby remedying one
of the flaws in Castagnoli’s method.

Alternatively, S can be represented in the form

S =
∑

η2
iNi = 〈η2〉N,

where N is the total multiplicity and 〈η2〉 is related,
by definition, to the variance of the distribution as
σ2
η = 〈η2〉 − 〈η〉2. The following features of the pseu-

dorapidity distribution dN/dη before the converter are
known: the mean value 〈η〉 and the maximal value
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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ηmax (which is proportional to the distribution width
ση) grow logarithmically with increasing interaction
energy [9]. The value of S above the converter must
then depend on energy rather weakly, as ln3 E. How-
ever, the converter changes considerably the shapes
of the functions 〈η2〉(E) and 〈N〉(E) and, as a con-
sequence, the shape of 〈S〉(E). For primary protons
of energy in the range between 100 GeV and 1 PeV,
Fig. 3 shows the parameter S and the the total particle
multiplicityN versus energy before and after the con-
verter. It can be seen that, after the converter, the pa-
rameter S depends on the primary energy as a power-
law function over the entire energy range under in-
vestigation, the exponent in this dependence being
0.7 to 0.8. The errors in Fig. 3 represent the root-
mean-square deviation in determining the energy of
an individual event. As can be seen from Fig. 3 (and
as will be demonstrated below), it is virtually indepen-
dent of energy, amounting to about 60%. Attempts
at determining the energy by using only the energy
dependence of the total multiplicity N(E) yielded a
poorer result—the error proved to be about 100%.

It should be noted that the functions 〈S〉(E) and
〈N〉(E) are much more gently sloping before than af-
ter the converter—it is the application of the converter
that radically improves the result. Therefore, the pro-
posed method can be considered as a combination of
the kinematical and the burst method.

The method can be used to determine the energies
of nuclei. In doing this, it is necessary to take into
account some special features of nucleus–nucleus
collisions. In the interactions of an incident nucleus
having an atomic number À and an energy EA with a
target nucleus (carbon), only part of the nucleons of
the incident nucleus ,Nw, are involved in the interac-
tion. The pseudorapidity distribution of secondary pi-
ons in the forward cone can be represented as the sum
of the distributions for independent pC interactions at
energy EA/A (in accordance with the superposition
model). The parameter S(EA/A) for primary nuclei
will then differ fromS(E) for primary protons at a fixed
energy per nucleon only by the factorNw; that is,

SA(EA/A) = NwSp(Ep = EA/A).

However, part of the noninteracted nucleons of the
incident nucleus A,Nw, will be emitted in the form of
light fragments and spectator nucleons whose trans-
verse momenta are much lower than those of sec-
ondary pions. The spectator nucleons make a signif-
icant contribution to the right wing in the pseudora-
pidity distribution, but they cause virtually no change
in the energy dependence of S. It is more difficult
to estimate the contribution of fragments that have
not suffered interactions in the converter, since the
response of amicrostrip detector is proportional to the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 3. (a) Parameter 〈S〉(E) =
∑
η2

iNi and (b) total
multiplicity 〈N〉(E) versus the primary-proton energy
(closed boxes) before and (closed circles) after the con-
verter.

square of the charge of a particle that traverses the
detector. These effects can be taken into a account
through aMonte Carlo simulation. Relevant calcula-
tions will be described in the next section.

2. SIMULATION OF THE METHOD

The planned experiment was simulated with the
aid of the GEANT package, which includes codes de-
scribing electromagnetic processes. Various genera-
tors were applied to treat hadron interactions. Origi-
nally, the FLUKA model was used a basic generator.
Later on, this model was invoked only in describ-
ing hadron–nucleus interactions for energies below
50 GeV. High-energy hadron–nucleus and all kinds
of nucleus–nucleus interactions were treated on the
basis of the QGSJET model [11]. This code is tested
by contrasting its predictions against collider data at
laboratory energies up to about 500 TeV (the frag-
mentation region being excluded from this compar-
ison) and is widely used in describing extensive at-
mospheric showers. It should be noted that QGSJET
2
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(a) 1 and (b) 2 cm.

reproduces fairly well the experimental pseudorapid-
ity distributions of secondaries produced by collid-
ing proton and antiproton beams of energies up to
∼1015 eV, this energy value being rescaled to the
laboratory frame.

The QGSJET generator includes the production
of nuclear fragments having various masses. The
transverse momenta of these fragments were gen-
erated according to an exponential distribution, as
was proposed in [12]. This is consistent with modern
model concepts and available experimental data. In
performing our simulation, we traced the tracks of
electrons and photons whose energies were in excess
of 10 keV, the threshold for other particles being
60 keV. In the version of the calculations that is
described here, we chose the following values for the
parameters of the array: the thickness of the graphite
target was 10 cm, the converter thickness was 1 to
2 cm of lead, and the air gap between the target
and the converter was 20 cm. The calculation was
performed for the cases where protons, C nuclei,
and Fe nuclei were vertically incident on the target.
P

For a trigger, we took the requirement that more
than four charged particles be produced between
the target and the converter. The coordinates and
the charges of particles at the upper plane of the
converter and at the depths of 1 and 2 cm of lead
were recorded in a database. In all, we obtained
15 groups, each containing, on average, 400 events:
six groups of events for primary protons of energy
ranging between 1011 and 1016 eV (one group per
one order of magnitude of energy and analogously for
other primary-nucleus species), five groups of events
for carbon nuclei of energy 1011 to 1015 eV/nucleon,
and four groups of events for iron nuclei of energy 1011

to 1014 eV/nucleon.
As was indicated above, the parameter S(E) =∑
η2
iNi was proposed for determining the energy. In

this section, we consider a more general form of it,
S(E) =

∑
ηki , where k is varied from 1 to 4 and ηi

is the pseudorapidity of the ith secondary particle at
the level of detection; that is, we disregard the spatial
resolution of detectors in analyzing the potential of
the method. The calculations performed for various
values of k revealed that, in the energy range being
considered, an optimum reconstruction of energy on
the basis of the parameter S for all types of nuclei
simultaneously is accomplished at k = 2, provided
that the converter thickness is 1 or 2 cm of lead. The
dependences S(E) are displayed in Figs. 4a and 4b for
the converter thicknesses of 1 and 2 cm, respectively.

The accuracy of energy reconstruction is deter-
mined by the fluctuations of the parameter S used
and by the slope of its dependence. For the power-
law dependence 〈S〉 ∼ Eβ , the relative error of the
energy measurements is δE = (1/β)δS. At the con-
verter thickness of 2 cm, the slope exponent β proved
to be 0.80, 0.77, and 0.75 for incident protons, carbon
nuclei, and iron nuclei, respectively. At the converter
thickness of 1 cm, it appeared to be less by 0.1–
0.15 for all species of incident nuclei. The resulting
errors in determining the energy, δ(Emeas/E), in an
individual event are given in Table 1 for two versions of
the converter. They are close, on average, to 60% for
all nuclear species under investigation and are virtu-
ally independent of energy in the range 1011–1016 eV
per particle. No pronounced difference of these values
between the cases of h = 1 and 2 cm has been re-
vealed. The disintegration of heavy nuclear fragments
in the converter upon their interaction with matter
reduces fluctuations of the signal. In this respect, a
converter of thickness h = 2 cm is preferable. For h >
2 cm, however, the rate of photon multiplication in
lead is much greater than the rate of charged-particle
multiplication, in which case fluctuations associated
with masking the contribution of charged particles
may increase. In an actual array, we propose using a
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002



NEW METHOD FOR DETERMINING ENERGIES OF COSMIC-RAY NUCLEI 857
Table 1. Errors in determining the energy, δ(Emeas/E), versus the type of the primary nucleus, the energy, and the
converter thickness h

h, cm Type of nucleus
Energy of the primary nucleus, eV/nucleon

1011 1012 1013 1014 1015 1016

1 p 0.67 0.70 0.63 0.57 0.57 0.61

1 C 0.73 0.68 0.71 0.72

1 Fe 0.51 0.40 0.52 0.62

2 p 0.72 0.69 0.61 0.55 0.56 0.60

2 C 0.69 0.70 0.67 0.69

2 Fe 0.42 0.52 0.62 0.65
converter of thickness 1 cm; for particles arriving at
large angles, the effective thickness will then be about
2 cm.

An example of the distribution of events with re-
spect to the reconstructed energy,W (log(Emeas/E)),
is given in Figs. 5a and 5b for primary protons and
iron nuclei.

A feature peculiar to the method is that the dis-
tributions in question exhibit a pronounced asym-
metry. A significant contribution to the fluctuations
comes from the tail in the region of underestimated
values of Emeas. The distributions displayed in Fig. 5
were obtained at a fixed primary energy; that is, they
represent the probability W (E,Emeas) of assigning a
particle of energyE the energyEmeas. In this case, the
mean error in determining the energy on a logarithmic
scale is δ(log(Emeas/E)) = 0.46, 0.49, and 0.54 for
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Fig. 5. Distribution of events with respect to
log(Emeas/E) for (a) primary protons and (b) iron
nuclei at a converter thickness of 2 cm. The closed
and the open circles represent, respectively, the direct
distribution function W and the inverse distribution
function W ∗ that takes into account the a priori
spectrum of particles.
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protons, carbon nuclei, and iron nuclei, respectively.
In measuring power-law spectra of particles, the in-
verse distribution function W ∗(Emeas, E) defined as
the probability that, at a fixed measured energyEmeas,
the true particle energy isE is of importance. Accord-
ing to the Bayes theorem, the direct and the inverse
distribution function are related by the equation

W ∗(Emeas, E)

= W (E,Emeas)F (E)/
∫

W (E,Emeas)F (E)dE,

where F (E) is the a priori spectrum of hadrons. If
this a priori spectrum has a power-law form, F (E) =
E−γ , the contribution of small values of Emeas/E is
suppressed in proportion to (Emeas/E)γ−1. The in-
verse distribution function W* is represented by the
dotted curve in Fig. 5. It is much narrower than the
direct distribution functionW . The calculation by the
above formula at γ = 2.7 yields δ(log(Emeas/E)) =
0.22, 0.23, and 0.25 for protons, carbon nuclei, and
iron nuclei, respectively.

In measuring monotonic power-law spectra of
particles, the absolute error is not very important—
the energy independence of the errors is quite suffi-
cient [10]. In the case of uniform distribution func-
tions depending only on the ratio Emeas/E, the
measured spectrum is related to the true spectrum
by the equation F (Emeas) = 〈(Emeas/E)γ−1〉F (E)
[10]. If 〈Emeas/E〉 ∼ 1, the intensity of the measured
spectrum is always higher than the intensity of the
true spectrum.

A small error in determining the energy is neces-
sary if some structures are presumed in the measured
spectrum. In order to demonstrate measurements of a
peak in the particle spectrum and of the knee region in
the spectrum, the true particle spectra and the spectra
that are measured by our method are presented in
Figs. 6a and 6b with these features. For the sake
of visual convenience, the spectra are multiplied by
2
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Table 2. Errors in determining the energy, δ(Emeas/E),
versus the type and the energy of the primary nucleus with
allowance for the process of detection by strip detectors

Type
of
nucleus

Energy of the primary nucleus, eV/nucleon

1011 1012 1013 1014 1015 1016

p 0.77 0.71 0.62 0.62 0.54 0.54

C 0.75 0.69 0.72 0.78

Fe 0.45 0.77 0.78 0.81

E2.7. As can be seen from Fig. 6, the structures of
the spectra are reconstructed rather well. That the
intensity of the measured spectrum of particles is
higher by the factor 〈(Emeas/E)γ−1〉 leads to a shift of
the knee region and of the peak region—these effects,
which are associated with the presence of fluctua-
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PH
tions, can easily be taken into account in analyzing
experimental data.

3. POTENTIAL OF THE METHOD
WITH ALLOWANCE FOR DETECTION

PROCESSES

The above results refer to the case of an ideal
instrument that can measure the coordinates of all
secondary particles to as high a precision as is de-
sired. There is, however, the question of whether the
method is applicable in the case of actual instruments,
where the detection procedure has a finite spatial
resolution. The first question to be answered here
is that of how the calibration dependence and the
error in determining the energy change in this case.
In order to avoid technical details, we performed a
calculation for the case where the lateral distribu-
tion of secondaries is roughened to a considerable
extent. We assumed that, under the converter, there
are two layers of coordinate-sensitive detectors; that
these layers are oriented orthogonally to each other
in space; and that each of these consists of strips
that have a thickness of 50 µm and a length equal
to that of the entire array. The signal is read off each
strip. Thus, the total ionization is fixed in each strip
(as a matter of fact, it determines the number of
secondaries that fall within this strip); that is, the
lateral distribution of secondaries is integrated with
respect to x and y. On average, the distributions of
secondaries with respect to x and y are symmetric;
therefore, two detector layers yield two independent
measurements of the transverse density, whereby the
accuracy in determining the energy is improved.

For the case being considered, the parameter
S was modified: instead of the emission angle of

 

10

 

7

 

E

 

, eV10

 

15

 

10

 

5

 

10

 

3

 

10

 

13

 

10

 

11

 
〈

 
S

 

2

 
〉

Fig. 7. Dependence 〈S2〉 (E) for primary (open circles)
protons, (open boxes) carbon nuclei, and (open triangles)
iron nuclei that was obtained with allowance for the pro-
cess of detection by coordinate-sensitive detectors.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002



NEW METHOD FOR DETERMINING ENERGIES OF COSMIC-RAY NUCLEI 859
a secondary particle, we took its projection onto
the observation plane. Since ηi = − ln(tan(θi/2)) =
ln(2H/ri), whereH is the distance from the primary-
interaction vertex to the detector plane and ri is
the distance between the secondary particle and the
shower axis, the quantities φxi = ln(2H/xi) and φyi =
ln(2H/yi), where xi and yi stand for the distance from
the strip center to the shower axis along the respective
coordinate, were chosen for new variables. For the
analog of S, we can then take the parameter

S2 = frac12
(∑

φxiNi + φyiNi

)
,

where Nx
i and Ny

i represent the number of particles
that hit the strip (for each coordinate axis, the shower
axis is found as the line that breaks down the number
of particles into two equal parts). For the coordinate,
we used the position of the midpoint of the relevant
strip.

It turned out that the modified parameter S2 av-
eraged over the coordinates x and y is also a power-
law function of energy, 〈S2〉(E) ∼ Eβ . It is displayed
in Fig. 7 for various types of primary nuclei. The
exponents β in this power-law dependence proved
to be very close (β = 0.78 for protons, β = 0.79 for
carbon nuclei, and β = 0.71 for iron nuclei) to those
obtained previously for the case where the coordi-
nates of each secondary are recorded (β = 0.80 for
protons, β = 0.77 for carbon nuclei, and β = 0.75
for iron nuclei). The direct distributions with respect
to the energy reconstructed with the aid of the pa-
rameter S2, W (Emeas/E), also differ insignificantly
from the distributions in Fig. 5, which were obtained
without taking into account processes of detection by
coordinate-sensitive detectors. A characteristic tail in
the region of underestimated energies is present in
this case as well, but, as was shown in the preceding
section, it has only a modest effect on the actual
accuracy of the method. The resulting values of the
errors in determining the energy through the parame-
ter S2 are quoted in Table 2. On the logarithmic scale,
they are (for the case where the exponent of the a
priori spectrum is γ = 2.7) δ(log(Emeas/E)) = 0.22,
0.219, and 0.265 for protons, carbon nuclei, and iron
nuclei. This indicates that, within the method being
discussed themost pronounced fluctuations are asso-
ciated with the physical fluctuations of the production
of secondary particles in a nuclear interaction rather
than with the method of detection.

The effect that errors introduced by microstrip
detectors exert on the accuracy in determining the
primary-particle energy was investigated here by us-
ing part of the statistics presented in [13]. It turned
out that the calibration dependences 〈S2〉(E) and
the errors in determining the energy have undergone
virtually no changes. This can easily be understood by
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
comparing the errors of the measurements with fluc-
tuations of the multiplicities of secondary particles.
The fraction of nonrelativistic particles after 2 cm of
lead is still very small, so that the fluctuations that
they introduce in the total ionization are insignifi-
cant. The fluctuations of the ionization for relativistic
secondary particles can be estimated at 10 to 15%.
Fluctuations that are introduced by electronics and
detector noises are on the same order of magnitude.
Therefore, the total contribution of all fluctuations of
measurements does not exceed 20%; that is, it is
negligibly small in relation to multiplicity fluctuations
that are greater than 100% per strip.

4. APPLICABILITY RANGE
OF THE METHOD

The proposedmethod for determining the primary-
particle energy and the possible design of the respec-
tive array possess a fairly high potential for studying
primary cosmic radiation in space-vehicle-borne ex-
periments. Such an implementation of this procedure
could solve many topical problems of astrophysics
that have hitherto defied any attempt at tackling them
by means of modern technologies. The dependence
of a geometric factor on the weight of equipment
that we have described is much more favorable than
that in burst detectors of similar energy resolution.
By way of example, we indicate that (see [14]) an
array of weight 500 kg can have a geometric factor
of about 3, whereas a burst detector of the same
weight has a geometric factor that is approximately
ten times smaller than that. With respect to the
weight–aperture–dimension relationship, the equip-
ment constructed on the basis of the ideas developed
here would possess unique properties—none of the
facilities known to date would be able to compete
with it in what is concerned with detecting cosmic
rays of energy in excess of 1012 eV. Moreover, the
structure of the proposed equipment may admit its
design in the form of separate modules; that is, one
could construct a basic module of dimensions, say,
30 × 30 × 30 cm3 and weight about 40 to 50 kg and
take this module beyond the atmosphere, whereupon
the experiment in question would begin. Further,
advancements toward higher energies are accom-
plished along with a gradual increase in the number
of such modules in the orbit used. This principle of
designing equipment would make it possible to take
into account, to a maximum possible degree, the
structural features of the space vehicle used and to
facilitate the implementation of the respective cosmic
experiments as a whole.

To conclude this section, we address the question
of what the detectors of the proposed array would
record if multiparticle-production events undergo an
2
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abrupt change in the energy range 1015–1016 eV (this
hypothesis, which was put forth by S.I. Nikolsky,
has been discussed for many years in cosmic-ray
physics as the possible explanation of the knee in
the spectrum of extensive air showers with respect
to the number of electrons). As was suggested in
[15], the emergence of a considerable number (about
50%) of proton interactions in which the multiplicity
of charged secondary pions is 102 to 103 times greater
than the mean multiplicities predicted by currently
available models may be one of the possible scenar-
ios of the above changes in multiparticle-production
events. It is foreseen that the charge of a primary
particle would be determined, to a very high precision,
by silicon detectors positioned at the upper plane of
the target (see Fig. 1). In relation to what is observed
for heavy nuclei, which also generate events char-
acterized by a very high multiplicity, the lateral dis-
tribution of low-energy secondary pions produced in
proton interactions must be much narrower because
of the difference in the energy per nucleon. This class
of high-multiplicity events generated by a primary
particle of small charge is easily identifiable. If an ad-
ditional plane of strip detectors is arranged above the
converter, the fraction of neutral pions produced in an
anomalous nuclear-interaction event can be assessed
on the basis of the relation between the multiplicity of
secondaries above the converter and the multiplicity
of secondaries below it.

CONCLUSION

The proposed method for determining the energy
of particles of primary cosmic radiation on the basis
of the lateral distribution of the secondary-particle-
flux density makes it possible to construct arrays of
large area and high sensitivity at a comparatively
small weight of the array. The method is applicable to
all nuclei of primary cosmic rays over a wide energy
range (from 1011 to 1016 eV per particle). A fairly
small error in determining the energy in an individual
event [δ(log(Emeas/E)) ∼ 0.2–0.25 for a measure-
ment of power-law spectra of primary cosmic rays
with a slope exponent of γ ∼ 2.5–3.3] enables one
to resolve some features of the spectra of primary
cosmic rays (such as the presence of a knee in the
spectrum and the existence of peaks). The proposed
PH
design of the detector will make it possible to single
out the class of events that are characterized by an
anomalously high multiplicity.
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Abstract—Amethod is proposed for measuring energies of particles in the region above 1 TeV. The method
is based on detecting the greatest specific energy deposition in hadronic cascades propagating in dense
matter. This makes it possible to improve accuracy in measuring energy by thin calorimeters in studying
the energy spectra of high-energy cosmic rays at high altitudes. Attainable accuracies in measuring energy
are considered for protons and He nuclei. The results of a relevant simulation are compared with the results
of a satellite-borne experiment with Kosmos-1713 . c© 2002 MAIK “Nauka/Interperiodica”.
In the region of high energies (above 1 TeV), ion-
ization calorimetry is the main method for determin-
ing the energies of particles [1]. Since the method
requires large masses of absorbing substance, its ap-
plication in high-altitude and space experiments is
hindered. A common way to overcome this limitation
has become the use of thin calorimeters, where only
part of the hadronic cascade initiated by a primary
particle is detected within an absorber of moderate
dimensions [2]. In connection with advancements of
balloon- and satellite-borne experiments toward ever
higher energies, the problem of optimizing and refin-
ing the method remains important [3, 4].

A traditional approach to reconstructing the pri-
mary particle energy consists in measuring the en-
ergy Eb deposited in an absorber and in taking into
account, on the basis of model concepts, its ratio
to the primary energy, Kb = Eb/E. With allowance
for fluctuations, this makes it possible to relate the
required characteristics of the energy spectrum of
particles to the detected spectrum of energy deposi-
tions. There is, however, every reason to believe that,
if the quantityEb, which is expressed as an integral of
specific energy depositions detected in the absorber, is
strongly correlated with the extremal value of the spe-
cific energy deposition,Km = (dE/dX)max, the latter
can serve as a rather sensitive alternative measure of
the primary energy E.

Let us give a more precise definition of Km for
some particular cases. If the absorber thickness is
sufficiently large, the cascade curve of specific energy
depositions may have a few maxima owing to mul-
tiple inelastic particle interactions [5], which occur
more frequently in the case of heavier primary nuclei,

*e-mail: ant@eas.npi.msu.ru
1063-7788/02/6505-0861$22.00 c©
with a greater energy fraction being carried away by
spectator nucleons. By choosing the maximum cor-
responding to the highest specific energy deposition
in the case of cascade curves featuring many peaks,
one can reduce fluctuations in relation to fluctuations
of the inelasticity factor. If the absorber thickness is
limited, the greatest of the specific-energy-deposition
values realized in the absorber is taken forKm.

In order to investigate the energy deposition at the
cascade maximum and the possibility of employing
this quantity in measuring energies, we performed a
mathematical simulation of hadronic cascades ini-
tiated by protons and He nuclei in an iron and a
lead absorber, relying on the GEANT package [6]. A
comparative analysis of the results obtained with dif-
ferent codes generating inelastic hadron interactions
(GHEISHA [6, 7], FLUKA [6, 8, 9], and QGSM
[10, 11]) made it possible to assess the sensitivity of
the calculations to model concepts. The maximum
energy deposition is determined predominantly by the
electromagnetic component generated in an inelastic
interaction; the mean depth of the extremum in a
cascade increases slowly with increasing primary-
particle energy. In our analysis of cascade curves, a
segment of 17 cascade units after the first inelastic
interaction was traced in order to determine the max-
imum energy deposition. In studying the dependence
of accuracy in measuring energies on the cascade
depth, the segment under study was varied.

The mean values 〈Km〉 obtained as the result of
our simulation are displayed in Fig. 1 versus the
energy of particles [(a) protons and (b) He nuclei]
for an iron and a lead absorber. For the case of an
iron absorber, the data calculated on the basis of
a satellite-borne experiment that was implemented
at Kosmos-1713 with the Sokol-2 equipment [12,
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Mean specific energy deposition at the maximum
of the hadronic cascade, 〈Km〉 = 〈(dE/dX)max〉, versus
the primary-particle energy E for (a) protons and (b) He
nuclei in an iron and a lead absorber according to the
calculations on the basis of (solid lines) the FLUKA and
(dotted lines) the GHEISHA model (on the scale of the
figure, the QGSM data are indistinguishable from the
dependence computed with the aid of FLUKA). The dis-
played experimental points were obtained by processing
the data reported in [12, 13].

13], transition effects [14] caused by the structure of
the absorber being taken into account in this cal-
culation, are also given in this figure for the sake of
comparison. As can be seen from the data presented
in Fig. 1, the different model concepts used in the
calculations lead to close results, which agree with
the experimental data within the statistical errors of
the measurements. The dependence of (dE/dX)max
on the primary energyE for protons andHe nuclei can
be approximated by a linear (〈Km〉 = CE + c) or a
power-law (〈Km〉 = AEa) form, the fitted parameter
values being quoted in Table 1. The parameter values
were obtained for energies in the range 0.5–32 TeV.
These approximations can be used to determine the
primary energy by the formula E = (Km/A)1/a or by
the formulaE = (Km − c)/C.

Table 2 presents the values of the relative fluc-
tuation D(Km) = 〈(Km − 〈Km〉)2〉1/2/〈Km〉. They
are weakly dependent on energy, and this makes it
possible to compare Km distributions computed at
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Fig. 2. Distribution of events with respect to the specific
energy release Km/〈Km(E)〉 at the maximum of a cas-
cade initiated by (a) protons and (b) He nuclei according
to the calculations based on (solid-line histrograms) the
FLUKA, (dashed-line histogram) the GHEISHA, and
(dotted-line histogram) the QGSM generators. The ex-
perimental points were obtained by processing the data
reported in [12, 13].

a fixed energy with generalized experimental data for
a comparatively broad energy range. For an iron ab-
sorber, Fig. 2 displays theKm/〈Km(E)〉 distribution
for (à) primary protons or (b) primary He nuclei that
was obtained with the aid of experimental data re-
ported in [12, 13] and approximated by the expression
〈Km(E)〉 = AEa for E > 2.5 TeV. For the sake of
comparison, the relevant results of a simulation at an
energy of 8 TeV are displayed in the same figure.

From the data presented in Fig. 2, it follows that
the energy deposition at the cascade maximum ex-
hibits stronger fluctuations in lead than in iron. While
the mean inelasticity factors differ by not more than
10% (see Table 3), the fluctuations of the partial
inelasticity factorKγ show more pronounced distinc-
tions, which are due to a greater number of deep-
inelastic interactions in the case of heavier nuclei [8]
(a great many nucleons are involved, and the inelas-
ticity factor is much larger than the mean value).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 1. Fitted values of the parameters in the approximation 〈Km〉 = AEa or 〈Km〉 = CE + c of the mean energy
deposition at the cascade maximum [Km = (dE/dX)max, where E andKm are given in TeV and GeV/cm, respectively;
A is the mean energy deposition at E = 1 TeV]

Reaction Model A a C c

pFe FLUKA 22.9 0.941 19.4 2.7
GHEISHA 20.9 0.961 18.9 1.5
QGSM 23.6 0.938 19.9 2.8
Experiment 19.7 0.949 16.1 13.3

HeFe QGSM + FLUKA 20.4 0.937 17.1 2.4
Experiment 18.7 0.948 13.5 22.7

pPb FLUKA 49.6 0.952 43.5 4.5
GHEISHA 41.3 1.008 42.1 −0.5
QGSM 53.4 0.948 46.3 5.3

HePb QGSM + FLUKA 47.5 0.933 39.7 5.7

Table 2. Relative fluctuation of the energy deposition at the cascade maximum,D(Km)

Reaction Model E, TeV
0.5 2 8 32

pFe FLUKA 0.37 0.36 0.38 0.38
GHEISHA 0.41 0.40 0.40 0.39
QGSM 0.38 0.38 0.39 0.38

HeFe QGSM + FLUKA 0.30 0.30 0.30 0.29
pPb FLUKA 0.48 0.49 0.48 0.52

GHEISHA 0.56 0.62 0.63 0.63
QGSM 0.46 0.52 0.52 0.62

HePb QGSM + FLUKA 0.44 0.39 0.43 0.53

Table 3. Partial inelasticity factorKγ

Reaction Model E, TeV
0.125 0.5 2 8 32

pC FLUKA 0.182 0.182 0.179 0.194 0.194
GHEISHA 0.127 0.143 0.159 0.183 0.179
QGSM 0.166 0.173 0.175 0.175 0.178

pFe FLUKA 0.201 0.201 0.199 0.203 0.202
GHEISHA 0.140 0.152 0.178 0.187 0.196
QGSM 0.197 0.200 0.196 0.209 0.201

pPb FLUKA 0.207 0.203 0.203 0.209 0.214
GHEISHA 0.163 0.173 0.182 0.205 0.210
QGSM 0.226 0.233 0.226 0.230 0.233
In developing new ionization calorimeters, preference
should therefore be given to a combination of a light
target and a heavy absorber.

From Table 1, where the coefficients in the approx-
imation of the quantity 〈Km(E)〉 that were obtained
on the basis of experimental data reported in [12, 13]
are contrasted against the calculated values, we can
see that the distinctions between the respective re-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
sults are 15% for primary protons and 7% for primary
He nuclei. These distinctions are commensurate with
the errors in the experimental data from [13], which
are used here.

For primary protons and He nuclei, Fig. 3 shows
the energy spectra that were obtained from the data
of the Sokol-2 experiment both by the traditional
method on the basis of the total energy deposition
in an iron absorber of thickness 85 cm and by the
2
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Fig. 3. Energy spectra of (closed symbols) protons and
(open symbols) He nuclei as obtained by processing data
from [12, 13] on the total energy deposition (the trian-
gles and the solid line represent the experimental points
and their power-law approximation) and on the specific
energy deposition at the cascade maximum (the circles
and the dashed line represent the experimental points and
their power-law approximation).

proposed method on the basis of the specific energy
deposition at a maximum (the maximum was de-
termined over a segment of length 30 cm from the
primary-interaction vertex). An analysis reveals that,
within the statistical experimental errors, the two
methods yield close results.

It is advisable to compare the relative root-mean-
square deviation D(E) for the case where the energy
E was determined from the maximum energy deposi-
tion Km with that for the case where this energy was
determined from the total energy deposition Eb in an
absorber. Such a comparison is illustrated in Fig. 4,
where the quantities D(E) are displayed versus the
depth of a cascade initiated by protons or He nuclei of
energy 8 TeV in (a) an iron or (b) a lead absorber. We
can see that a determination of the energy E on the
basis of the quantityKm provides a higher accuracy at
small depths of the cascade, where it grows, while its
determination on the basis of the total energy release
Eb is more accurate at large cascade depths. In the
intermediate region, the methodological errors for the
case of primary protons become equal at the depth
of LFe = 30 cm (16.8 cascade units from the proton-
interaction vertex) in an iron absorber and at the
depth of LPb = 10 cm (17.7 cascade units) in a lead
absorber. The relative errors of DFe(E) = 0.40 and
DPb(E) = 0.50 in determining energy correspond to
these depths. For primary He nuclei, the correspond-
ing values are LFe = 35 cm (19.6 cascade units) and
LPb = 8 cm (14.2 cascade units), with the relative
errors beingDFe(E) = 0.30 andDPb(E) = 0.43. The
PH
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above intermediate region corresponds to the depth
of the cascade maximum and is weakly dependent on
the energy E.

The above description of the specific energy depo-
sition at the maximum of a hadronic cascade initiated
by high-energy particles, the results being slightly
dependent on the model of inelastic interaction and
being close (FLUKA, QGSM) to experimental data,
makes it possible to use this quantity as a basis in a
method for determining the energy of a primary par-
ticle in the region above 1 TeV to a precision higher
than that of the traditional method at a cascade depth
less than LFe. Owing to this, there arises the pos-
sibility of employing absorbers of smaller thickness
(and, hence, of smaller mass) at a given accuracy in
reconstructing the primary energyE. Another advan-
tage of the proposed method for reconstructing the
primary energy is that, in the case where the absorber
is thin, the maximum specific energy release can be
determined with one ionization detector arranged be-
low the absorber, provided that the interaction vertex
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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is determined, for example, in a thin target above the
absorber.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Yang Effect in Multiparticle Hadron Production at the HERA Collider
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Abstract—It is argued that the mean multiplicities in a deep-inelastic process that are measured at the
HERA collider grow with increasing photon virtuality at a fixed invariant mass of final hadron states. This
is yet another piece of experimental evidence in favor of the qualitative hypothesis put forth by C.N. Yang
and his colleagues and of the quantitative predictions obtained by the present authors on the basis of QCD.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, themultiparticle production of hadrons
in so-called hard scattering processes featuring
one or two leptons in the initial state is being
intensively investigated at modern colliders. The
process of e+e− annihilation into hadrons is the
simplest of such interactions. The total energy of
colliding leptons,

√
s, simultaneously specifies the

hardness (mass scale) of this collision, Q =
√
s.

Therefore, the dependence of the features of final
hadrons on the interaction-region dimension, which
is proportional to 1/Q, cannot be deduced unam-
biguously from the experimental observation that, in
e+e− annihilation, the hadron multiplicities and the
height of the hadron spectra grow with increasing√
s.

Deep-inelastic lepton–nucleon scattering is char-
acterized not only by the total energy W of the
final hadron system but also by the square of the
4-momentum transfer, Q2, from the lepton to this
hadron system. By changing Q2 at fixed W , one
can study the effect of the dimensions of the hard-
interaction region (in deep-inelastic scattering, they
are also specified by 1/Q) on the efficiency of hadron
production. Themean multiplicity of charged hadrons
in deep-inelastic scattering is the simplest and, at the
same time, an important feature here.

In 1969, Yang and his collaborators (see [1]), who
proceeded from the fragmentation pattern of high-
energy multiparticle hadron production, made the fol-
lowing qualitative prediction concerning the particle
yield (at fixed values of the energyW ): “for larger val-
ues of the momentum transfer t, the breakup process
favors larger multiplicities of hadrons.”

*e-mail: kisselev@mx.ihep.su
**e-mail: petrov@mx.ihep.su
1063-7788/02/6505-0866$22.00 c©
For the first time, a quantitative theoretical de-
scription supporting this hypothesis1) was presented
in [3, 4]. It was shown later that the calculations
within QCD that were performed in [5] are in good
agreement with the ЕМС experimental data from [6].

The objective of the present study is to apply the
theoretical formulas that we derived previously to
describing new data obtained by the H1 and ZEUS
collaborations at the HERA collider for the mean
multiplicities of charged hadrons in the current-
fragmentation region [7–9]. Among other things, it
will be demonstrated that these experimental data
are in accord with the Yang hypothesis [1] and with
our previous predictions for the dependence of the
number of hadrons in deep-inelastic scattering on the
momentum transfer (see the review article in [10]).

This article is organized as follows. In Section 2,
we give a survey of the measurements of the Q2 de-
pendence of the mean multiplicity of charged hadrons
by various groups of experimentalists and analyze the
properties of the spectra and multiplicities in various
reference frames. In Section 3, we present formulas
that relate the hadron multiplicity in deep-inelastic
scattering to the multiplicity of particles in e+e− an-
nihilation and which reflect the fact that the mecha-
nism of multiparticle hadron production is common
to these two hard processes. Section 4 is devoted to
describing quantitatively high-energy data from the
HERA collider in terms of QCD formulas. In the
Conclusion, we discuss our results.

1)Considering that the ideas underlying this hypothesis were
developed in various studies where Yang was always among
the authors (see, for example, [2]), we deemed it appropriate
to introduce the term “Yang effect.”
2002 MAIK “Nauka/Interperiodica”
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2. Q DEPENDENCE OF THE MEAN
MULTIPLICITY OF HADRONS

(EXPERIMENT)

The first measurements of the mean number of
charged hadrons, 〈n〉ch, in deep-inelastic e−p colli-
sions were performed 25 years ago by a group from
Cornell University [11], who discovered a modest de-
crease in 〈n〉ch with increasingQ2. We note, however,
that the energy W and the square of the momentum
transfer, Q2, were low (3 < W 2 < 14 GeV2, 1.4 <
Q2 < 8 GeV2) in that experiment.

Later, the quantity 〈n〉ch as a function of two
variables W and Q2 was measured in a number of
neutrino experiments [12]. Rather large errors gave no
way to draw definitive conclusions on whether there is
a growth of the mean multiplicity of hadrons in deep-
inelastic scattering (or there is no such growth).

A statistically significant effect of the growth of the
mean multiplicity of charged hadrons, 〈n〉ch(W , Q2),
in the variableQ2 at fixed values ofW was established
in ν(ν̄)p and µ+p deep-inelastic processes (see [13]
and [6], respectively). By fitting their data in terms of
a logarithmic dependence of the form

〈n〉ch(W,Q2) = a+ b lnW 2 + c lnQ2, (1)

the EМС collaboration obtained the following results
[6] (with χ2/NDF = 26.0/22):

a = −0.30 ± 0.16, b = 1.22 ± 0.03, (2)

c = 0.22 ± 0.06.

The growth with increasingQ2 at fixed energy val-
ues from the interval 4 < W < 20 GeV was observed
for the total multiplicity—that is, for the multiplicity
of hadrons emitted into the forward and into the back-
ward hemisphere in the c.m. frame of the final hadron
system:

p + q = 0. (3)

Here, p is the momentum of the target proton,
while q is the momentum of a virtual photon (Z0

boson).
A weak Q2 dependence of the mean multiplicity

of charged hadrons in deep-inelastic scattering that
travel along the current direction in the c.m. frame
was recently discovered in the energy range 7.5 <
W < 30 GeV at momentum-transfer-squared values
in the intermediate region 0.15 < Q2 < 20 GeV2 [14].

At energies of the HERA collider, the hadron mul-
tiplicity 〈n〉chF (W , Q2) in the current-fragmentation
region in the c.m. frame [see Eq. (3)] was measured
by the H1 collaboration [7]. The authors of [7] them-
selves indicated that, for the first time, they observed
a fast growth of the mean multiplicity of charged
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
hadrons traveling along the current direction. This ef-
fect is similar to the growth of the hadron multiplicity
in a quark jet from e+e− annihilation, whence one
can conclude that multiparticle hadron production in
the different hard processes is governed by similar
mechanisms.

That the H1 collaboration was the first, after
the aforementioned ЕМС experiments, who mea-
sured the mean multiplicity of charged particles as
a function of two variables is yet another important
result of [7]. Figure 1, borrowed from that study,
demonstrates the Q2 dependence of 〈n〉chF (W,Q2) as
obtained by integrating the spectrum with respect
to the pseudorapidity η∗ (−5 < η∗ < −1) for four
intervals ofW .

The authors of [7] concluded that the multiplicity
of particles in deep-inelastic scattering is independent
of Q2 at fixed W and presented fits to these data
in terms of constants. By using, however, the more
general phenomenological formula (1) to fit the H1
data, we obtained

a = −7.47, b = 1.44, c = 0.25. (4)

In this case, the value of χ2/NDF was as small as
2.72/13. The fit with the fixed value of c = 0 led to
a value that is about two times greater (χ2/NDF =
6.10/14).

We note that the value in (4) for the coefficient c,
which is a factor in front of lnQ2 in (1), appears to
be very close to that which was obtained previously
by the ЕМС collaboration at lower energies [see (2)].
The results of our fitting are shown in Fig. 1 by solid
curves. In this fit, we used the data from Table 1,
which were kindly placed at our disposal by the H1
collaboration.

In recent years, the results obtained by measur-
ing, in deep-inelastic scattering, the mean number
of hadrons in the current-fragmentation region are
commonly given in the Breit frame [8, 9, 15] (see
also the earlier studies in [16, 17]). In this frame, the
proton and virtual-photon 4-momenta can be repre-
sented as (the positive direction of the z axis coincides
with the direction of the target momentum p)

p = (Q/2x+M2x/Q, 0, 0, Q/2x), (5)

q = (0, 0, 0, −Q),

where M is the proton mass and x = Q2/(W 2 +
Q2 −M2) is the Bjorken variable. Hereafter, we use
the notationQ ≡

√
Q2.

As we can see, the knock-on quark has the mo-
mentum −Q/2 in the Breit frame; that is, it moves in
the direction of the current. At the same time, target
fragments travel in the same direction as the proton
2



868 KISSELEV, PETROV

 

11

9

7

5

11

9

7

5
10

 

1

 

10

 

2

 

10

 

3

 

10

 

1

 

10

 

2

 

10

 

3

 

Q

 

2

 

, GeV

 

2

 
〈

 
n

 
〉

 

80 <

 

 W

 

 < 115 GeV 115 <

 

 W

 

 < 150 GeV

185 <

 

 W

 

 < 220 GeV150 < W < 185 GeV

Fig. 1.Meanmultiplicity of charged hadrons as a function ofQ2 for various intervals ofW in the c.m. frame for pseudorapidities
in the region −5 < η∗ < −1: (points) data of the H1 collaboration [7] and (straight lines) results of fitting in terms of the
function in (1).
with momenta up to pmax
z>0 = Q(1 − x)/2x. However,

the cut pmax
z>0 = Q/2 [8, 9] is applied in experiments.

In the following, we analyze the c.m. spectra of
hadrons with respect to the rapidity, which we denote
henceforth by y∗. In the c.m. frame, the current region
for a particle of massmh is

−Y < y∗ < 0, (6)

where Y = ln(W/mh) is the maximum magnitude of
the rapidity. In the Breit frame, the current region is
specified by the inequalities

−Y < y∗ < −yB. (7)

The quantity

yB =
1
2

ln
(

1 + v

1 − v

)
(8)

is defined in terms of the velocity v at which the Breit
frame moves with respect to the c.m. frame:

v = |1 − 2x|. (9)

At low x typical of the H1 and ZEUS experiments
that measured the hadron spectra andmultiplicities in
deep-inelastic scattering, we can set

yB 	 1
2

ln
(

1
x

)
. (10)
PH
Thus, we can see that, in the Breit frame, the
current region lies entirely in the domain of negative
values of y∗ and, as follows from (7) and (10), occu-
pies the rapidity interval ∆y = ln(Q/mh).

As was noted above, the results on the mean
multiplicity of charged hadrons from deep-inelastic
scattering in the current region, 〈n〉DIS

F , at HERA
energies are predominantly presented in the Breit
frame versus the variable Q, often without indicating
the value of x, another kinematical variable, since the
dependence on it is assumed to be weak [8, 9]. The
resulting growth of the mean multiplicity 〈n〉DIS

F with
Q is compared with the growth of half the mean mul-
tiplicity of charged hadrons from e+e− annihilation,
(1/2)〈n〉e+e− , with increasing

√
s.

In such a comparison, it is implicitly assumed
that the Q dependence of 〈n〉DIS

F in the Breit frame
is analogous to the W dependence of 〈n〉DIS

F in the
c.m. frame, whence it would follow that such a growth
of the mean multiplicity of charged hadrons in the
current region reflects the growth of the number of
hadrons with energy in deep-inelastic scattering.

In this connection, we note that, if the spectrum of
hadrons from deep-inelastic scattering had the form
of a perfect plateau of height h, the mean “current”
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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multiplicity of hadrons would be equal to h ln(W/mh)
in the c.m. frame and to h ln(Q/mh) in the Breit
frame; that is, it would be given by the same ex-
pression apart from the substitution of Q for W (or
vice versa) . However, the actual spectrum has a
more complicated form. Moreover, both the position
of its maximum with respect to the point y∗ = 0 (see
Section 3) and the boundary of the current region in
the Breit frame, yB (7), depend on the kinematical
variables.

In Fig. 2, borrowed from [9], new ZEUS data
on the mean multiplicity of charged hadrons in the
current-fragmentation region are presented in the
Breit frame. For the sake of comparison, the results
of similar measurements in e+e− annihilation [18]
(divided by two) and the results obtained in deep-
inelastic scattering on a fixed target [19] are also
given in this figure. The data are corrected in such a
way as to take into account the contribution to the
multiplicity from the products ofK0

S and Λ decays [9].

In the region Q2 > 80 GeV2, there is reasonably
good agreement between the ZEUS data and data
obtained in e+e− annihilation. At lower values of Q2,
the hadron multiplicity measured by the ZEUS col-
laboration is lower than the multiplicity in e+e− anni-
hilation and the multiplicity in deep-inelastic scatter-
ing on the fixed target. We note that the data in Fig. 2
correspond to different values of the variable x.

Similar results were obtained by the H1 collabo-
ration [8]. They are presented in Fig. 3, along with the
ZEUS data of 1993 [17]. The values of the variable x
that correspond to the experimental points in question
were not indicated in the original study. The solid
curve in Fig. 3 represents a fit to a vast body of e+e−

data. Data on the number of hadrons in deep-inelastic
scattering and those in e+e− annihilation disagree in
the region Q2 < 100 GeV2. This disagreement can-
not be attributed to the different flavor compositions
in the two processes being considered—according to
the estimates presented by the H1 collaboration [8],
effects associated with a higher multiplicity in b-
quark jets do not exceed 3%, while, according to [17],
the contributions of heavy flavors lead to effects within
the measurement errors.

The above disagreement stems from the fact that,
in the process of e+e− annihilation into hadrons,
the growth of (1/2)〈n〉e+e− with increasing

√
s is a

dynamical effect (energy dependence of the particle
yield), while, in deep-inelastic scattering, the growth
of 〈n〉DIS

F withQ in the Breit frame has both a dynam-
ical and a kinematical origin (see above). Because
of this, a direct comparison of these two physical
quantities is not quite correct in our opinion.
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Table 1. Mean multiplicity of charged hadrons as a func-
tion of Q2 for various regions ofW in the c.m. frame at η∗

values from the interval −5 < η∗ < −1 (H1 data)

W ,
GeV

〈W 〉,
GeV

Q2,
GeV2

〈Q2〉,
GeV2

〈n〉 ± stat. ± syst.

80–115 96.9 10–12 13.9 6.63 ± 0.10 ± 0.53

20–40 27.6 6.68 ± 0.11 ± 0.40

40–80 55.0 6.24 ± 0.13 ± 0.46

200–1000 385.0 7.02 ± 0.22 ± 0.37

115–150 132.0 10–12 13.9 7.49 ± 0.09 ± 0.48

20–40 27.6 7.46 ± 0.11 ± 0.38

40–80 55.0 7.42 ± 0.15 ± 0.41

200–1000 385.0 8.00 ± 0.23 ± 0.46

150–185 166.8 10–12 13.9 7.92 ± 0.09 ± 0.43

20–40 27.6 8.05 ± 0.10 ± 0.53

40–80 55.0 8.08 ± 0.17 ± 0.56

200–1000 385.0 9.12 ± 0.33 ± 0.51

185–220 201.9 10–12 13.9 8.29 ± 0.11 ± 0.47

20–40 27.6 8.03 ± 0.15 ± 0.71

40–80 55.0 8.84 ± 0.22 ± 0.60

200–1000 385.0 10.04 ± 0.36 ± 0.59

In order to verify the universality of multiparticle
hadron production, it is necessary to measure the
multiplicity 〈n〉DIS

F (W,Q2) in the c.m. frame as a
function of two variables (at HERA energies, this was
done in [7]) and to compare (1/2)〈n〉e+e−(

√
s) and

〈n〉DIS
F (W,Q2) at W 2 = s for fixed values of Q2. It is

the quantity W (
√
s) that constrains the phase space

of the final states (at the same time, Q2 can have any
value in deep-inelastic scattering ).

3. SPECTRUM AND MULTIPLICITY
OF HADRONS IN QCD

According to the theorem of the factorization of
the inclusive spectrum in deep-inelastic scattering,
the spectrum of hadrons can be represented in the
form

dnDIS

dy
(W,Q2, y) (11)

=

1∫
x0

dz

z
w(x, z,Q2)

dn̂

dy
(Weff , y − y0) +

dn0

dy
,

where x0 = x+ (1− x)(mh/W ) exp(−y), y is the ra-
pidity of the detected hadron, dn̂/dy is the hadron
2
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current-fragmentation region in the Breit frame [9]. Open
symbols represent the results obtained in e+e− experi-
ments [18] and divided by two; also shown are data on
deep-inelastic scattering occurring on a fixed target (�).

spectrum in the parton subprocesses, and dn0/dy is
the spectrum of the fragments of the proton target. At
HERA energies, these fragments do not contribute
to the multiplicity in the current region. Hereafter,
the caret symbol “ ˆ ” labels quantities referring to the
parton subprocess. The quantities y0 andWeff will be
defined and discussed in detail below [see Eqs. (15),
(17)].

Accordingly, the mean multiplicity can be repre-
sented in the form

〈n〉DIS(W,Q2) (12)

=

1∫
x0

dz

z
w(x, z,Q2)〈n̂〉(Weff + 〈n0)〉.

At small values of x that are considered here, the
weight function w(x, z,Q2) appearing in (11) and
(12) has the form

w(x, z,Q2) = Dq
g

(x
z
,Q2, Q2

0

)
fg(z,Q2

0) (13)

×


 1∫
x0

dz

z
Dq
g

(x
z
,Q2, Q2

0

)
fg(z,Q2

0)
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Fig. 3. Mean multiplicity of charged hadrons in the
current-fragmentation region in the Breit frame: data
from (closed circles) [8] and (open boxes) [17]. The curve
represents a global fit to the entire body of e+e− data.

In (13),Dq
g denotes the distribution of the quark of

virtuality Q2 in the qluon of initial virtualityQ2
0, while

fg is the distribution of this gluon (it plays the role of a
target for the parton subprocess at low values of x) in
the proton (the relevant details can be found in [10]).

For hadrons produced in the parton subprocess,
the inclusive rapidity spectrum is symmetric in the
c.m. frame of this subprocess; that is,

zp + q = 0, (14)

where z is the target-proton-momentum fraction car-
ried away by the initial gluon (of virtualityQ2

0). This is
additionally corroborated by recent measurements of
final hadron states in diffractive deep-inelastic scat-
tering [20] versus the invariant mass of the diffracting
system in its c.m. frame.

The reference frame specified by Eq. (14) moves at
the rapidity

y0 = −1
2

ln
(

1 − x
1 − z

)
(15)

with respect to the reference frame specified by
Eq. (3). In the c.m. frame of deep-inelastic scattering
[see Eq. (3)], the rapidities of the hadrons produced in
the parton subprocess therefore fall within the interval

−Ŷ < y∗ − y0 < Ŷ , (16)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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where Ŷ = ln(Weff/mh) and the quantity

W 2
eff =

z − x
1 − xW

2 (17)

determines the square of the invariant mass available
for particle production in the parton subprocess.

Thus, the position of the maximum of the inclu-
sive rapidity spectrum of hadrons is controlled by
the mean value of y0. In turn, the quantity 〈y0〉 =
〈y0〉(Q2) is determined both by perturbative effects
associated with the emission of massive gluon jets
from the target parton before the hard interaction with
the photon and by nonperturbative effects associated
with the distribution of low-virtuality partons in the
nucleon [4].

At asymptotically high values ofQ2, we have [4]

〈y0〉(Q2 � Λ2) ∼ − 1
ln(lnQ2)

. (18)

Such a weak dependence of 〈y0〉 on Q2 is directly
related to a slow growth of theQCD evolution param-
eter

ξ =
2
β0

ln
(
αs(Q2

0)
αs(Q2)

)
, (19)

since the quantity 〈y0〉 [4] is expressed in terms of this
parameter [in (19), β0 = 11− 2Nf/3, whereNf is the
number of flavors, is the β function in the lowest order
in the coupling constant]. In the asymptotic regime,
we have ξ ∼ ln(lnQ2).

At moderate values of Q2, the Q2 dependence of
〈y0〉 is steeper. These circumstances are of impor-
tance for understanding the qualitative features of the
behavior of the mean multiplicity of hadrons emitted
into the backward hemisphere in the Breit frame (see
Figs. 2, 3).

As can be seen from (11) and (12), the inclusive
spectrum and multiplicity in the parton subprocess
depend on the effective energy Weff (17) but not on
W (the total energy of the final hadron system, which
includes the products of target disintegration). Ac-
cording to the estimates presented in [3, 4],

〈W 2
eff 	 κ(Q2)W 2. (20)

At available values of Q2, the factor κ(Q2) in (20)
is much smaller than unity; it increases slowly with
Q2, approaching unity only in the asymptotic limit.

That 〈W 2
eff〉 (20) depends on Q2 at a fixed value of

the energy W is an important circumstance, which
eventually leads to the aforementioned Q2 depen-
dence of the mean hadron multiplicity in the c.m.
frame of deep-inelastic scattering. Thereby, the hy-
pothesis of Yang et al. [1] that the particle yield grows
with increasing momentum transfer (at a fixed energy
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
of the process) is confirmed by QCD calculations [3–
5, 10].

The relationship between the total multiplicities
in the two hard processes was established in [3, 4,
21]—namely, the mean number of hadrons in deep-
inelastic scattering is given by the expression for the
mean number of hadrons in e+e− annihilation (apart
from corrections decreasing withQ2):

〈n̂〉(Ŵ ,Q2) 	 〈n〉e+e−(
√
s = Ŵ ). (21)

Formulas (12) and (21), which were obtained on
the basis of QCD, proved to be in perfect agree-
ment with data that the ЕМС collaboration presented
shortly afterward for the Q2 dependence of the mean
multiplicity of charged hadrons [6] and made it possi-
ble to describe successfully these data [5].

Concurrently, we made the following predictions
for the behavior of 〈n〉DIS(W,Q2) at high ener-
gies [10]:

(i) The growth of the mean multiplicity of hadrons
with W has the same physical nature as in e+e−

annihilation.
(ii) Owing to the smallness of the ratio Weff/W ,

the mean multiplicity in deep-inelastic scattering is
expected to vary in proportion to lnW 2 up to energies
of W ∼ 40–45 GeV. At higher energies, the mean
multiplicity 〈n〉DIS will begin to grow fast, precisely
in the same way as 〈n〉e+e− does at energies in the
regionW > 10 GeV.

(iii) The Q2 dependence of the mean multiplicity
〈n〉DIS will remain numerically weak at high energies
inclusive.

The predictions in items (i) and (ii) were recently
corroborated by the data obtained at the HERA col-
lider. In the experimental study reported in [7], it was
indicated that “the HERA data confirm, for the first
time in DIS lepton–proton scattering, the faster than
linear growth of 〈n〉 with lnW , a feature already well-
known from e+e− annihilation . . . and expected in
perturbative QCD.”

As to the Q2 dependence of the hadron yield in
deep-inelastic scattering, it was discussed in detail
in the preceding section. Although the authors of [7]
themselves assumed that their data can be described
in terms of constants, the results of fitting in (4) are
indicative of a slow growth of 〈n〉DIS

F with increasing
momentum transfer; numerically, this growth is very
close to that which was obtained by the EMC collab-
oration [formulas (1), (2)].

In the next section, we will demonstrate that our
theoretical formulas also make it possible to describe
the set of high-energy data presented by H1 [7] and
ZEUS [9].
2
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Table 2. Mean multiplicity of charged hadrons in the
current-fragmentation region in the Breit frame (ZEUS
data)

No. 〈Q2〉, GeV2 x 〈n〉 ± stat. ± syst.

1 14.0 (6.0–12.0) × 10−4 1.13 ± 0.01 ± 0.05

2 14.1 (1.2–2.4) × 10−3 1.18 ± 0.01 ± 0.04

3 27.9 1.70 ± 0.01 ± 0.07

4 55.3 2.27 ± 0.01 ± 0.07

5 28.0 (2.4–10.0) × 10−3 1.81 ± 0.01 ± 0.06

6 55.9 2.44 ± 0.01 ± 0.14

7 110.0 3.00 ± 0.01 ± 0.23

8 216.0 3.77 ± 0.02 ± 0.26

9 221.0 (1.0–5.0) × 10−2 3.98 ± 0.02 ± 0.37

10 443.0 4.59 ± 0.03 ± 0.40

11 863.0 5.26 ± 0.05 ± 0.39

12 1766.0 0.025–0.15 6.01 ± 0.05 ± 0.46

13 3507.0 0.05–0.25 7.10 ± 0.11 ± 0.69

4. HADRON MULTIPLICITY
IN THE CURRENT-FRAGMENTATION

REGION
In the parton subprocess, the parton spectrum D̄h

with respect to the variable

ζ = ln
(
W

Eh

)
, (22)

where Eh is the energy of the detected particle, was
calculated with allowance for nonleading corrections
in [22]. The result was

D̄h(W, ζ) =
N

σ
√

2π
exp

[
1
8
k +

1
2
sδ (23)

− 1
4

(2 + k)δ2 +
1
6
sδ3 +

1
24
kδ4
]
.

The quantity N in (23) is the normalization factor in
the variable ζ .

The mean value of ζ and its variance (which we
denote by ζ0 and σ, respectively) are given by [22]

ζ0 =
1
2
τ

(
1 +

ρ

24

√
48
β0τ

)(
1 − ω

6τ

)
, (24)

σ =
√
τ

3

(
β0τ

48

)1/4(
1 − β0

64

√
48
β0τ

)(
1 +

ω

8τ

)
,

where τ = ln(W/Λ) (Λ is the QCD parameter); we
also have

s = − ρ

16

√
3
τ

(
48
β0τ

)1/4 (
1 +

ω

4τ

)
, (25)
P

k = −27
5τ

(√
β0τ

48
− β0

24

)(
1 +

5ω
12τ

)
,

δ =
ζ − ζ0
σ

.

In (24) and (25), we have introduced the following
notation: ρ = 11 + 2Nf/27 and ω = 1 +Nf/27.

At ζ  Y , the variable ζ and the rapidity in the
c.m. frame are related as

y∗ 	 Y − ζ. (26)

Relying on the hypothesis of local parton–hadron
duality [23]—it was well justified by experiments—
and taking into account the aforesaid (see Section 3),
we find that the spectrum of hadrons in the parton
subprocess with respect to the rapidity in the c.m.
frame can be represented in the form

dn̂

dy∗
(Weff , y

∗) = ne
+e−(Weff)D̄h(Weff ), y∗ − y0),

(27)

where y0 and Weff are given by (15) and (17), re-
spectively. The spectrum in (27) is normalized to the
multiplicity of hadrons in e+e− annihilation according
to Eq. (21), which relates the hadron multiplicities in
the two hard processes.

Let us try to find out which qualitative predictions
for the Q and x dependences of the mean multiplicity
in the current region in the Breit frame can be made
without resort to specific expressions for the spectrum
on the right-hand side of (27).

We first fix x and assume that Q2 > Q1, in which
case W2 > W1; hence, the height of the spectrum is
greater in the first than in the second case. On the
other hand, the position of the center of the rapidity
spectrum is shifted, as was indicated in Section 3,
toward the point y∗ = 0. At high values of Q, this
effect is negligible [see (18)], and we have a growth
of the mean hadron multiplicity with Q because of
an increase in the energy W , this being in perfect
analogy with the growth of ne

+e−(Q).
At moderate values of Q, the shift of the spectrum

with respect to the point y∗ = 0 is more pronounced.
Since the boundary of the current region in the Breit
frame as given by (7) depends only on x [see Eq. (10)]
and is identical in the two cases, we conclude that,
in the second case, the shift of the spectrum reduces
the multiplicity (as if the spectrum moves upon the
point −yB). As a result, it is natural to expect a faster
decrease in the multiplicity nDIS

F in relation to the
behavior of ne

+e− in the region of intermediate and
low values of Q, and this is confirmed by the data
obtained at the HERA collider (see Figs. 2, 3).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 4. Mean multiplicity of charged hadrons in the current region in the c.m. frame as a function of Q2 for various intervals
of the energyW . The H1 data (closed circles) were taken from Table 1. The curves were obtained with the aid of the formulas
presented in the main body of the text.
We now fix Q and assume that x2 > x1, in which
case W2 < W1. This leads to a decrease in nDIS

F in
the second case. The position of the spectrum does
not change since it is determined by the variable Q2.
Further, it follows from (10) that y2

B < y
1
B. In other

words, the current region (that is, the rapidity region
over which we must integrate the spectrum in order
to determine nDIS

F ) becomes broader, which yields an
increase in the multiplicity.

Thus, there are two mechanisms affecting, at fixed
values of Q, the x dependence of the mean number
of hadrons in opposite directions. We can predict a
mutual compensation of these effects and, as a con-
sequence, a numerically weak growth of nDIS

F as the
kinematical variable x increases.

Experimental data confirm this. In Table 2, we
display the ZEUS data borrowed from Tables 1 and 2
of [9]. It is sufficient to compare, in a pairwise manner,
the following data sets characterized by nearly identi-
cal Q2 but different x: (1, 2), (3, 5), (4, 6), and (8, 9).
We can see that, at fixed Q2, the possible decrease
in the multiplicity with increasing x (that is, with
decreasing W ) is almost completely compensated by
its growth owing to the broadening of the current
region in the Breit frame.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
In order to describe quantitatively the experimen-
tal data, we need, in addition to relation (27), a specific
expression for the hadron multiplicity ne

+e−(
√
s), as

Table 3. Mean multiplicity of charged hadrons in the
current-fragmentation region in the Breit frame (the
ZEUS data from Table 2 are grouped according to the
intervals of the energyW )

No. W , GeV 〈W 〉,
GeV

〈Q2〉,
GeV2

〈n〉 ± stat. ± syst.

2 67.2–95.0 84.1 14.1 1.18 ± 0.01 ± 0.04
5 28.0 1.81 ± 0.01 ± 0.06
6 55.9 2.44 ± 0.01 ± 0.14
9 221.0 3.98 ± 0.02 ± 0.37
1 121.5–141.0 131.3 14.0 1.13 ± 0.01 ± 0.05
3 27.9 1.70 ± 0.01 ± 0.07
7 110.0 3.00 ± 0.01 ± 0.23

10 443.0 4.59 ± 0.03 ± 0.40
12 1766.0 6.01 ± 0.05 ± 0.46
13 3507.0 7.10 ± 0.11 ± 0.69
4 169.6–186.7 177.2 55.3 2.27 ± 0.01 ± 0.07
8 216.0 3.77 ± 0.02 ± 0.26

11 863.0 5.26 ± 0.05 ± 0.39
2
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Fig. 5.Mean multiplicity of charged hadrons in the current-fragmentation region in the Breit frame as a function of Q2. The
experimental points displayed here were borrowed from [9]. The curves represent our predictions based on the formulas given
in the main body of the text.
well as the quark distribution at low x and the distri-
bution fg(z,Q2

0) of a gluon of initial virtuality Q2
0 in

the proton [more precisely, the behavior of fg(z,Q2
0)

for z → 1 is of importance for our calculations].

For the quark distribution, it is convenient to
choose the analytic expression obtained in [24]; that
is,

Da
g(z,Q2) ∼ rI1(t) exp(−dξ/2), (28)

where I1 is a modified Bessel function of the first kind
and where the variable t is defined in terms of the
QCD evolution parameter ξ (19) as

t = 2

√
6ξ ln

(
1
z

)
. (29)

We have also introduced the following notation: r =
−t/(2 ln z) and d = β0 + 20Nf/27.

The parton distributions calculated in [24] satisfy
the ordinary evolution equations [25] and describe
well experimental data at low values of x over a broad
interval ofQ2.

For the initial gluon distribution in the proton for
z → 1, we choose the commonly accepted power-law
PH
behavior; that is,

fg(z,Q2
0)|z→1 = A(1 − z)ng , (30)

where A is an insignificant constant, which drops out
from the expression for the multiplicity.

For the meanmultiplicity of charged hadrons orig-
inating from e+e− annihilation, we use different ex-
pressions in the low- and the high-energy region.
This is because the mean value of the effective energy
Weff (20) can be small despite high values of the total
energy W . From early experiments that measured
the hadron multiplicity in e+e− annihilation, it is
well known that, for

√
s < 7–10 GeV, the multiplic-

ity 〈n〉e+e−(
√
s) grows logarithmically with

√
s. For√

s < 10 GeV, we therefore choose the fit from [26]:

〈n〉e+e−(
√
s) = 2.67 + 0.48 ln s. (31)

For
√
s > 10 GeV, we use the expression

〈n〉e+e−(
√
s) = −1.66 + 0.866 exp(1.047

√
ln s),

(32)

which was presented in [27] and which is based on
QCD calculations, because it describes well e+e−
data up to LEP energies.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 6. Mean multiplicity of charged hadrons in the
current-fragmentation region in the Breit frame. Exper-
imental data are represented by points: (closed circles)
ZEUS data [9] and (closed boxes) H1 data [8]. The
dashed, the solid, and the dotted curve depict the results
of our calculations at the energies of W = 84.1, 131.3,
and 177.2 GeV, respectively.

In our calculations, we corrected formula (31) by
taking into account the contribution from the prod-
ucts of the decays of short-lived particles K0

S and Λ.
Expression (32) was obtained with a correction for
such a contribution to the multiplicity.

In Fig. 4, our predictions for the Q2 dependence
of the mean multiplicity of charged hadrons in the
current region in the c.m. frame of deep-inelastic
scattering are shown by solid curves. These predic-
tions were obtained at the following parameter values
(see our recent study in [28]):

Λ = 0.25 GeV, Q2
0 = 0.96 GeV2, ng = 6.1.

(33)

The parameter value of ng = 6.1, which controls
the behavior of the input distribution for z → 1 [see
Eq. (30)], is close to the value of the analogous expo-
nent for one of the sets of the MRST parton distribu-
tions taken atQ2

0 = 1 [29].
The formulas presented in this article make it pos-

sible to describe data in the Breit frame as well. We
mean here the ZEUS data [9], where (in contrast
to the H1 data [8]) not only the mean values of Q2

but also the intervals of x values at which they were
measured are known (see Table 2). In Table 3, the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
experimental data are partitioned into three groups
corresponding to three intervals of energy of the final
hadron system.

In Fig. 5, the results of our calculations with
the same phenomenological parameters as those
in (33) are shown by solid curves. Finally, Fig. 6
displays the entire set of experimental points obtained
at the HERA collider. These data describe the Q2

dependence of the mean multiplicity of charged
hadrons in the current-fragmentation region in the
Breit frame [8, 9]. In Fig. 6, we also depicted the
theoretical curves for three midpoints of the intervals
of the energyW from Table 3 because different points
correspond to different values of the variable x (orW )
(some averaged values of x for the H1 data).

5. CONCLUSION

The above phenomenological and theoretical anal-
ysis based on QCD has revealed that the latest ex-
perimental data confirm the qualitative hypothesis of
Yang and his coauthors in [1] that the “productivity”
of multiparticle-production processes grows with in-
creasing momentum transfer and make it possible to
estimate this growth quantitatively. The weakness of
this effect is due to the composite (nonperturbative)
structure of the nucleon and to the slow Q2 depen-
dence of the QCD evolution parameter. However, the
effect in question is quite significant statistically.
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Abstract—By considering the example of five-dimensional spacetime, it is shown that the presence of extra
spacelike compact dimensions (in addition to common Minkowski space) does not lead to any changes in
the prerequisites for proving the Froissart–Martin bound. c© 2002 MAIK “Nauka/Interperiodica”.
Interest in the possible existence of rather large
spacelike compact extra dimensions (as large as
1 mm according to some estimations!) furnishes a
strong motivation for considering the problem of
extending the axiomatic approach within quantum
field theory to this case. There is also practical interest
associated with cosmic rays of ultrahigh energy [1]. A
cursory heuristic derivation of such an extension for
the Froissart–Martin theorem was given in [2]. In this
study, we analyze this problem more thoroughly.

We consider a free neutral scalar field Φ(X) of
massm in five-dimensional Minkowski spacetime,

Φ(X) =
∫ 4∏

i=1
dKi

(2π)4 · 2E(K)

×
[
eiKXA+(K) + e−iKXA(K)

]
,

[
A(K), A+(K ′)

]
= (2π)4 · 2E(K)δ(4)(K − K′),

K0 = E(K) =
√
m2 + K2.

We perform a conventional compactification of
the fourth spacelike dimension onto a circle of ra-
dius R. As a result, the field Φ(X) ≡ Φ(x, y) [x =
(x0,x), y ≡ X4] appears to be periodic in y,

Φ(x, y + 2πR) = Φ(x, y),

and integration with respect to the fifth component of
the 5-momentum reduces to a sum,∫

dK4

2π
→

∞∑
n=−∞

1
2πR

, K4 → n

R
.

We then have

Φ(x, y) =
∞∑

n=−∞

1√
2πR

eiyn/R

*e-mail: petrov@mx.ihep.su
1063-7788/02/6505-0877$22.00 c©
×
∫

d3k

(2π)3 · 2En(k)

[
eikxb+n (k) + e−ikxan(k)

]

=
∑
n

1√
2πR

eiyn/RΦn(x),

where En =
√
m2 + k2 + n2/R2;

an(k) = A
(
k,
n

R

)
/
√

2πR,

b+n (k) = A+
(
k,− n

R

)
/
√

2πR;[
an(k), a+

n′(k′)
]

= δnn′(2π)3 · 2Enδ(k − k′),[
bn(k), b+n′(k′)

]
= δnn′(2π)3 · 2Enδ(k − k′),

the remaining commutators being zero. Thus, we can
see that a free neutral scalar field in five-dimensional
spacetime with one compact spacelike dimension
is equivalent to an infinite set of complex scalar
fields featuring a conserved Kaluza–Klein quantum
number n = (0,±1, . . .) and the masses m2

n = m2 +
n2/R2 in a conventional four-dimensional Minkow-
ski spacetime. As far as the quantum number n is
concerned, it should be noted that, in those cases
where only one (gravitational) field can propagate
through the whole multidimensional space, with the
other fields being associated with four-dimensional
Minkowski space, so that translation symmetry in
extra dimensions is violated, the Kaluza–Klein quan-
tum number is not conserved.

Considering Φ(x) as an asymptotic field in five-
dimensional space, we obtain, after compactification,
an infinite set of asymptotic fields in four-dimensional
space.

From the standpoint of the axiomatic approach
formulated in [3], the S matrix in five-dimensional
space with a compact dimension,

S =
∑
N

1
N !

∫
(d4x1dy1) . . . (d4xNdyN ) (1)

× S(x1y1, . . . , xNyN ) : Φ(x1, y1) . . .Φ(xN , yN ) :,
2002 MAIK “Nauka/Interperiodica”
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can be recast into the ordinary four-dimensional form

S =
∑
N

∑
n1...nN

∫
d4x1 . . . d

4xN

× Sn1...nN
(x1, . . . , xN ) : Φn1(x1) . . .ΦnN

(xN ) : .

Suppose that the Bogolyubov microcausality
principle holds in five-dimensional space; that is,

δJ(x, y)
δΦ(x′, y′)

= 0,

(x0 − x′0) <
√

(x − x′)2 + (y − y′)2.

By virtue of the spacelike character of the compact
dimension, it follows from this principle that, for any
n and n′,

δJn(x)
δΦn′(x′)

= 0 for (x0 − x′0) < |x − x′|.

Thus, we have all conditions for the ordinary ax-
iomatic approach. Here, all “five-dimensional” am-
plitudes T̂MN for an arbitrary M → N reaction and
the amplitude TMN observed in four dimensions are
related by the equation

TMN = T̂MN/(2πR)
M+N

2
−1.

For binary processes (M = N = 2), this equation re-
duces to

T22 = T̂22/2πR.

Thus, we can employ well-known methods (see,
for example, [4]) and, for the amplitude of any 1 + 2 →
3 + 4 process, obtain a bound of the Froissart–Martin
type,

|Tn1,n2;n3,n4(s, t)|n1+n2=n3+n4
≤ πs

t(n1−n3)
ln2(s/s0),

where t(n1−n3) is the nearest singularity t in the chan-
nel featuring the quantum number n1 − n3. In the
case of n1 = n3, we have

|Tn1,n2;n1,n2(s, t)| ≤ πs

t0
ln2(s/s0), t0 = 4m2,

s� 4m2 +
(n1 + n2)2

R2
.

If n1 �= n3, then

|Tn1,n2;n3,n4(s, t)| ≤ πs
R2

R2t0 + (n1 − n3)2
P

× ln2(s/s0) ≈ πs
R2

(n1 − n3)2
ln2(s/s0), R2t0 � 1.

At n1 = n2 = n3 = n4 = 0, we have the ordinary
Froissart–Martine bound

|T00;00(s, t)| ≤ πs

t0
ln2(s/s0).

It is worth noting that, for R→ 0, all amplitudes
involving a nonzero transfer of the quantum number
n vanish. From crossing symmetry, it follows that,
for R→ 0, all amplitudes with the exception of the
neutral one, T00;00, vanish.

Thus, we have shown that, for R→ 0, the theory
transforms continuously into that of a neutral scalar
field in four-dimensional Minkowski spacetime. In
this study, we have assumed that there is a nonzero
lower bound on the masses involved. In the absence
of this “mass gap,” bounds for elastic scattering are
trivial; it is likely, however, that, even in this case,
nontrivial bounds can be derived for total inelastic
cross sections. This is so within the Regge eikonal
approach, but a rigorous proof has yet to be obtained.

In the future, I am going to consider this problem
for the case of compact multidimensional manifolds of
various topologies.
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Abstract—We present a comparative analysis of three different theoretical approaches to the production
of Bs and Bc mesons in high-energy hadron collisions. Our attention focuses on the azimuthal and
pseudorapidity correlations between Bs or Bc mesons and accompanying strange or charmed particles.
The corresponding kinematical distributions are found to exhibit a high sensitivity to details of the
productionmechanism and can therefore serve as indicators of interaction dynamics. c© 2002MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Heavy-flavor-production processes are rightfully
regarded as important tests of perturbative QCD.
A typical example of this kind is the production of
beauty hadrons. The production of b-flavored hadrons
containing another heavy flavor, such as Bs or Bc
mesons, may constitute an even more sensitive test
because these reactions are related to higher orders
of perturbation theory. At the same time, the in-
termediate position of s and c quarks on the mass
scale opens a wide field for theoretical models where
various perturbative and nonperturbative approaches
compete with one another.

The objective of this study is to compare the pre-
dictions of three commonly used popular models. One
of them [1–4], hereafter referred to as fixed-order
QCD, considers both quark pairs as those that are
produced perturbatively in a fourth-order hard gluon–
gluon interaction

g + g → Bq + b + q̄, q = s, c (1)

(examples of the corresponding Feynman diagrams
are shown in Fig. 1). The formation of heavy-quark
bound states is treated here within the nonrelativistic
approximation [5–8].

In a somewhat different scheme known as the
flavor-excitation mechanism [9–11], a certain part of
the relevant partonic subprocess is factored out, so
that b-flavored quarks are considered as sea partons.
They are excited from the sea via a hard interaction,
with an external gluon producing at the same time a
pair of additional quarks qq̄ (see Fig. 2),

g + b̄ → Bq + q̄, q = s, c. (2)

∗This article was submitted by the author in English.
**e-mail: baranov@sci.lebedev.ru
1063-7788/02/6505-0879$22.00 c©
Also possible is the excitation of lighter flavors g +
q → Bq + b, though it was found [11] to be of mi-
nor importance compared to the excitation of beauty.
The formation of final-state double-heavy hadrons is
treated within the same nonrelativistic approximation
as above.

As the consequence of the factorization hypoth-
esis, some interference terms are neglected here,
which are present in full O(α4

s) calculations of sub-
process (1). On the other hand, the flavor-excitation
approach efficiently includes higher order contribu-
tions, which are absorbed in the sea-quark evolution
equations.

The third approach to the production ofBsmesons
is given by the Lund model [12] as implemented
in the event-generator PYTHIA [13]. This approach
contains an essentially nonperturbative ingredient, an
algorithm of color string fragmentation. Here, only a
single bb̄ pair is thought to be produced perturbatively
in a hard parton interaction, while the pair of lighter
quarks originates from the color-string breakup.

Since the string stretched between the b quark and
a lighter quark also represents a kind of soft gluon-
exchange process, PYTHIA’s production mechanism
possesses some similarity to the fragmentation ap-
proach of [14, 15]. Note, however, that the fragmen-
tation functions in [14, 15] depend only on the longi-
tudinal momentum fraction z; therefore, the Bs or Bc
meson and the accompanying strange or charm parti-
cle both move exactly along the direction of the parent
b quark. On the contrary, the nonperturbative string
fragmentation in PYTHIA may cause the particles to
deviate significantly from that direction.

From a numerical comparison of all models, we
wish to see how large the effects due to different the-
oretical approximations can be. A comparison with
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Examples of fourth-order Feynman diagrams representing the production of Bc,s mesons in the gluon–gluon fusion
subprocess.
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Fig. 2. Feynman diagrams representing the production ofBc,s mesons in the flavor-excitation subprocess.
(the future) experimental measurements will be help-
ful in assessing the quality of the underlying theoret-
ical assumptions. Previously, a comparison between
fullO(α4

s) calculations and the factorization approach
was performed by other authors [16, 17]. The latter
was, however, restricted to the inclusive Bc distribu-
tions. A consideration of various kinds of correlations
is promising for revealing new interesting details.

2. DETAILS OF THE CALCULATIONS

Let us first consider the partonic subprocess (1).
We denote by k1 and k2 the 4-momenta of the in-
coming gluons; by pb, pq, and PB the momenta of
the b quark, the lighter antiquark, and the Bq meson;
and by mb,mq, and MB their respective masses. The
partonic cross section can then be parametrized in the
form [18]

dσ̂(g + g → Bq + b + q̄)
dt1ds2d cos θdφ

=
α4
sλ

1/2(s2,m
2
q ,m

2
b)

4ŝ2s2
(3)

× |Ψ(0)|2
MB

1
4

1
64

∑
spin

∑
color

|M|2,
P

where ŝ = (k1 + k2)2, t1 = (k1 − PB)2, s2 = (pq +
pb)2, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx,
and the angles θ and φ are the polar and azimuthal
angles of pq in the q̄b-pair rest frame (pq + pb = 0).
Averaging over the initial gluon spins and colors is
represented by the factors 1/4 and 1/64, respectively.
The full gauge-invariant set of matrix elements col-
lected in |M|2 comprises 36 Feynman diagrams. The
evaluation of these diagrams is performed by means
of the orthogonal-amplitude technique explained in
detail in [1].1)

For subprocess (2), we similarly have

dσ̂(g + b̄ → Bq + q̄)
d cos θ

=
2π2α3

sλ
1/2(ŝ,m2

q ,M
2
B)

ŝ2
(4)

× |Ψ(0)|2
MB

1
4

1
12

∑
spin

∑
color

|M|2,

where, now, ŝ = (k + pb)2, with k and pb being the
4-momenta of the initial gluon and the b antiquark,
respectively, and θ is the Bq meson azimuthal angle

1)A somewhat different computationalmethod was used in [2–
4], although all articles present consistent numerical results.
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Fig. 3. Kinematical correlations in the production ofBs mesons under Tevatron conditions: (a) distributions in the azimuthal-
angle difference ∆φ(Bs − s), (b) distributions in the azimuthal-angle difference ∆φ(Bs − b), (c) distributions in the pseu-
dorapidity difference ∆η(Bs − s), and (d) distributions in the variableR = [∆φ(Bs − s)2 + ∆η(Bs − s)2]1/2. Solid, dashed,
and dash-dotted histograms represent the results obtained on the basis of, respectively, fixed-order O(α4

s) calculations, the
flavor-excitationmodel, and the string-fragmentationmodel.
in the rest frame of colliding partons. The analytic ex-
pressions for |M|2 in (3) and (4) are too cumbersome
to be presented in this article.2)

According to the nonrelativistic formalism [5–
8], the probability of forming a bound quark system
is determined by the hadron wave function, which,
in the leading approximation, reduces to the single
parameter |Ψ(0)|2, the value of the wave function
at the origin of coordinate space. In the present
calculations, we use |ΨBs(0)|2 = 0.012 GeV3 and
|ΨBc(0)|2 = 0.12 GeV3. Both estimates were ob-

2)The FORTRAN codes both for fixed-order and for flavor-
excitation calculations are available from the present author
on request.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
tained from a simple power-law interpolation between
the known wave functions of Υ, J/ψ, and φ mesons.
We are not interested in more accurate estimates be-
cause the values of the wave functions are important
only for the total production rates, but they are not
important for the shape of kinematical correlations,
which is the purpose of the present study. Also, we
set αs = const = 0.25 for the sake of simplicity. For
the quark and meson masses, we adopt the values
of ms = 0.5 GeV, mc = 1.5 GeV, mb = 4.8 GeV,
MBs = mb + ms = 5.3 GeV, andMBc = mb + mc =
6.3 GeV.

To obtain the fully differential cross sections for
hadron–hadron collisions, expressions (3) and (4)
must be convoluted with proper parton distribution
2
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Fig. 4.Kinematical correlations in the productionofBs mesons under LHC conditions: (a) distributions in the azimuthal-angle
difference ∆φ(Bs − s), (b) distributions in the azimuthal-angle difference ∆φ(Bs − b), (c) distributions in the pseudorapidity
difference∆η(Bs − s), and (d) distributions in the variableR = [∆φ(Bs − s)2 + ∆η(Bs − s)2]1/2. Solid, dashed, and dash-
dotted histograms represent the results obtained on the basis of fixed-order O(α4

s) calculations, the flavor-excitation model,
and the string-fragmentationmodel.
functions:

dσ(AB → X) (5)

=
∫

Fa/A(x1)Fb/B(x2)dσ̂(ab → X)dx1dx2.

The GRV LO set [19] was used for all gluon and
quark distributions. Integration with respect to the
longitudinal-momentum variables x1 and x2 and over
the multidimensional phase space in (3) and (4) was
performed by means of the Monte Carlo technique by
using the VEGAS routine [20]. For the strange- and
charmed-quark fragmentation functions, we used the
parametrization due to Field and Feynman [21] with
a = 0.77 and the parametrization due to Peterson
et al. [22] with ε = 0.06, respectively.
P

3. NUMERICAL RESULTS

We start with the production properties of Bs
mesons under Tevatron conditions. Of various kine-
matical distributions, we concentrate on those that
show the highest sensitivity to details of the pro-
duction mechanism. The quantities of interest are
the azimuthal-angle difference between the momenta
of the Bs meson and the accompanying strange
particle, ∆φ(Bs − s); the azimuthal-angle differ-
ence between the momenta of the Bs meson and
the accompanying b-flavored particle, ∆φ(Bs − b);
the pseudorapidity difference ∆η(Bs − s); and the
variable R = [∆φ(Bs − s)2 + ∆η(Bs − s)2]1/2. It is
worth mentioning that the corresponding kinematical
distributions are rather insensitive to the b- and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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s-quark fragmentation functions. The reason may
be understood from the fact the above kinematical
variables are related only to the directions of the par-
ticle momenta and are therefore assumed to remain
intact in the fragmentation process. In order to make
perturbative calculations more credible, we applied
extra cuts on the Bs-meson and s-quark transverse
momenta: pT (Bs) > 3 GeV and pT (s) > 3 GeV.
These cuts are also helpful in avoiding the ambiguous
kinematical region, where the presence of beam
remnants may lead to unwanted contaminations and
induce serious distortions in event topology.

The calculations corresponding to the fixed-order
and flavor-excitation approaches were performed with
the model parameters specified in Section 2. The
event generator PYTHIAwas run with its default set-
ting, except for the quark masses, which were taken
to be equal to those used in perturbative calculations.
The numerical results are shown in Fig. 3.

The models considered here exhibit clearly differ-
ent types of behavior in azimuthal correlations. In
fixed-order perturbation theory, the events tend to
concentrate at ∆φ(Bs − s) ≈ π, as can be seen in
Fig. 3a; a smaller maximum is also seen at ∆φ(Bs −
s) ≈ 0. The contribution from the flavor-excitation
mechanism forms a delta function at ∆φ(Bs − s) =
π, which is a direct consequence of momentum con-
servation in two-body kinematics. One can expect
that, in a more realistic consideration taking into
account the initial-parton transverse momenta, this
delta function would transform into a smooth distri-
bution localized in the vicinity of ∆φ(Bs − s) ≈ π.
The nonperturbative string fragmentation predicts a
rather flat spectrum increasing toward ∆φ(Bs − s) =
0.

The distributions in the azimuthal-angle differ-
ence ∆φ(Bs − b) (Fig. 3b) look more or less sim-
ilar in the fixed-order calculations and in the frag-
mentation approach. In both cases, the distributions
decrease from ∆φ(Bs − b) = π to ∆φ(Bs − b) = 0,
thus demonstrating the tendency to preserve back-
to-back kinematics for the heaviest product parti-
cles. This contrasts with the flavor-excitation model,
where the spectator sea b quark is considered to be
totally disconnected from the hard subprocess, and
no correlation is therefore possible between this quark
and other particles.

The sensible difference in the pseudorapidity cor-
relations seen in Fig. 3c is closely connected with
the forward-backward asymmetry of the flavor exci-
tation (2): the Bs meson produced in this partonic
subprocess tends to follow the direction of the par-
ent b̄ antiquark. The two maxima seen in Fig. 3c
are due to the two possible configurations of parton
collisions: the initial b̄ antiquark can be picked up
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 5. Pseudorapidity correlations in Bs + s̄ production
under LHC conditions for (left column) the double differ-
ential distributions d2σ/dη(Bs)dη(s) and (right column)
for the inclusive distributions dσ/dη(Bs): (a) fixed-order
O(α4

s) calculations, (b) flavor-excitation model, and (c)
string-fragmentation model.

from either of the two protons (i.e., be moving forward
or backward), and the gluon comes from the other
proton. On the contrary, the other two production
mechanisms are connected with the gluon–gluon fu-
sion subprocess, and therefore possess no forward–
backward asymmetry. The distribution in the vari-
able R = [∆φ(Bs − s)2 + ∆η(Bs − s)2]1/2 accumu-
lates the differences seen in the azimuthal and pseu-
dorapidity correlations.

At higher energies, typical of planned LHC ex-
periments, the kinematical distributions (see Fig. 4)
generally reproduce the pattern that we have already
discussed for the Tevatron conditions. One can only
indicate that the peaks in the ∆φ(Bs − s) spectrum
predicted by perturbation theory become sharper.
The perturbatively calculated ∆φ(Bs − b) distribu-
2
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Fig. 6. Kinematical correlations in the production of Bc mesons under LHC conditions: (a) distributions in the azimuthal-
angle difference ∆φ(Bc − c), (b) distributions in the azimuthal-angle difference ∆φ(Bc − b), (c) distributions in the pseudo-
rapidity difference ∆η(Bc − c), and (d) distributions in the variableR = [∆φ(Bc − c)2 + ∆η(Bc − c)2]1/2. Solid and dashed
histograms represent the results obtained on the basis of fixed-orderO(α4

s) calculations and the flavor-excitationmodel.
tion also sharpens, though remains similar to the
predictions of the string-fragmentation model.

Some interesting features can be observed in
the double-differential pseudorapidity distributions
d2σ/dη(Bs)dη(s) displayed in Fig. 5 (for the LHC
conditions as well). In fixed-order perturbation theory,
events fill up an elongated ellipse oriented along the
principal diagonal of the plot. In the flavor-excitation
approach, the distribution shows two overlapping off-
diagonal maxima (each being connected with one of
the two initial parton configurations, as explained
earlier). Finally, in the string-fragmentation model,
events are again arranged along the principal diag-
onal. However, in fixed-order perturbation theory,
they tend to concentrate in the middle area around
η(Bs) = η(s) = 0, while, in the case of the fragmen-
P

tation approach, the distribution shows two separate
maxima at approximately η(Bs) = η(s) ≈ ±3. This
difference is also seen in the projections onto the
η(Bs) or η(s) axes, so that even the inclusive single-
particle pseudorapidity distributions demonstrate
different shapes.

The regularities being considered apply to the pro-
duction of Bc mesons as well (see Fig. 6). Here,
we restrict ourselves to the LHC conditions, be-
cause, at Tevatron energies, the production rate is
too low to obtain necessary experimental statistics.
Since PYTHIA does not produce charmed quarks in
fragmenting strings, one can use only the factoriza-
tion approach of [14, 15]. In the latter case, the Bc
meson and the accompanying charmed quark move
strictly along the direction of the parent b quark.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Since the corresponding kinematical correlations be-
come rather trivial [∆φ(Bc− c) = 0, ∆η(Bc− c) = 0,
∆φ(Bc − b) ≈ π], they are not shown in the figures.

4. DISCUSSIONS AND CONCLUSIONS

A number of conclusions can be drawn from the
results shown in the preceding section. First, one
can see the importance of nonfragmentation contri-
butions. The difference between the predictions of
full O(α4

s) calculations and the flavor-excitation ap-
proach shows that, even at LHC energies, the pro-
duction conditions are far from those assumed by the
factorization hypothesis. The reason may be under-
stood from the fact that the production cross section
is dominated by processes occurring at moderate pT ,
where themass of b-flavored particles is not negligible
in relation to a typical momentum transfer. A similar
conclusion was drawn in [16, 17], where the authors
considered the inclusive distributions in theBc trans-
verse momentum and in the energy-fraction variable
z = 2EBc/

√
s.

Nonperturbative effects associated with the
string-fragmentation algorithm in PYTHIA can
mimic, to some extent, the presence of interfer-
ence terms contributing to the intermediate region
of azimuthal angles [i.e., where the ∆φ(Bq−) and
∆φ(Bq − b) values are not close to π or to zero].
However, the character of the pseudorapidity corre-
lations shows that full O(α4

s) calculations and the
(nonperturbative) fragmentation approach do not yet
predict identical event topologies.

At the same time, the absolute size of the pro-
duction cross sections obtained within the flavor-
excitation approach shows the importance of higher
order contributions emerging from the evolution of
the sea-quark densities. In fact, there were no reasons
to expect that the perturbation expansion should just
terminate at the Born approximation. The very last
conclusion that we can draw on this topic is that the
theory of double heavy-flavor production is by far not
complete and that more efforts are needed from both
theoretical and experimental sides.
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Abstract—The azimuthal asymmetry of a minijet system produced at the early stage of nucleon–nucleon
and nuclear collisions in a central rapidity window is studied. We show that, in pp collisions, the minijet-
transverse-energy production in a central rapidity window is essentially unbalanced in azimuth because
of asymmetric contributions in which only one minijet hits the acceptance window. We further study the
angular pattern of the transverse-energy flow generated by semihard degrees of freedom at the early stage
of high-energy nuclear collisions and its dependence on the number of semihard collisions in the models
either including or neglecting soft contributions to the inelastic cross section at RHIC and LHC energies,
as well as on the choice of infrared cutoff. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Minijet physics is one of the most promising ap-
plications of perturbative QCD to the analysis of
processes involving multiparticle production. It ad-
dresses a crucial question of how many (semi)hard
degrees of freedom can be available in a given event.
The approach is based on the idea that some portion
of transverse energy is produced in a semihard form,
i.e., is perturbatively calculable because of relatively
high transverse momenta involved in the scattering
process, but, due to parametrically strong hadroniza-
tion effects, cannot be observed in the form of cus-
tomary well-collimated hard jets distinctly separable
from the soft background. This mechanism operates
at the early stage of the collision and, when rele-
vant, determines the characteristics of the primordial
transverse-energy flow.

The creation of many (semi)hard degrees of free-
dom corresponds to a new physical situation charac-
terized by nontrivial, possibly kinetic or even hydrody-
namic, phenomena occurring at the parton level at the
early stages of a high-energy collision. Of special rel-
evance here are ultrarelativistic heavy-ion collisions,
where one would expect that a dense system of (se-
mi)hard degrees of freedom in the volumemuch larger
than, e.g., the proton one can arise, which makes
natural the application of concepts borrowed from
macroscopic physics. A recent critical discussion of
this field can be found in [1].

Minijet physics is an actively developing field. Re-
views on the subject containing a large number of

∗This article was submitted by the authors in English.
1063-7788/02/6505-0886$22.00 c©
references can be found, e.g., in [2–4]. Several ap-
proaches have been considered with an aim of pro-
viding a quantitative description of the primordial
parton system produced at the earliest stage of, e.g.,
high-energy heavy-ion collisions. The conceptually
simplest one is based on the standard formalism of
collinearly factorized QCD at small parton densities
(see [5–9]). Here, one operates with a single hard
parton–parton scattering in a given hadron–hadron
collision, so that standard QCD structure functions
can be used in computing the probability of gen-
erating a pair of partons with specific kinematical
characteristics.

This approach has a natural generalization in
which multiple binary parton–parton collisions in the
given hadron–hadron one are considered, provided
some ad hoc distribution in the number of these col-
lisions is chosen (see, e.g., [10]). This also allows one
to construct a geometrically motivated scheme for
unitarizing the semihard contribution to the inelastic
cross section for hadron scattering as described, e.g.,
in [3].

Starting from [11], nonlinear QCD effects in
relation to describing the early stages of heavy-ion
collisions drew progressively more and more atten-
tion. New results were obtained within the approach
to minijet production based on the semiclassical
treatment of nuclear gluon distributions within the
McLerran–Venugopalan model [12] (see [13–17]).
First nonperturbative results on gluon production
are now available [18] (see also [19, 20]). Recently, a
nonperturbative model for gluon production in heavy-
ion collisions based on the physical concepts of the
2002 MAIK “Nauka/Interperiodica”
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McLerran–Venugopalan model and a correspond-
ing kinetic equation describing the evolution of the
primordial gluon system were discussed in [21]. For
pedagogical introduction to this rapidly developing
field, the reader is referred to the lectures in [22] and
in [23].

A notable feature of the physical phenomena re-
lated to the collective behavior of multiparton systems
is their genuine event-by-event nature, so that many
usual tools used in high-energy physics, such as in-
clusive distributions, become less helpful. Thus, the
analysis of event-by-event variations of the quantities
sensitive to the collective dynamics is very important
(see, e.g., [24–27] and references therein).

The description of the primordial parton configu-
ration should provide information on the event-by-
event pattern of the parton system—in particular, on
the number of perturbative parton-producing interac-
tions, which, to a large extent, determines the initial
parton density and other kinematical characteristics.
In particular, the discrete nature of parton production
in phase space, as described by finite-order QCD cal-
culations, can give rise to primordial event-by-event
angular asymmetries of the parton flow. The fate of the
primordial angular asymmetries depends on relevant
dynamics. (Is the evolution of the product system long
enough to wash them out? Can they be frozen and
directly relevant to the observed hadronic flow? There
are also some other related questions.) In any case,
the first problem to look at is to study the primordial
parton system before the reinteraction of partons sets
in.

The aim of this study is to analyze the character-
istics of the initial minijet-induced transverse-energy
flow in nucleon–nucleon and nucleus–nucleus col-
lisions within the minijet-production scenario based
on collinearly factorized QCD [5, 6]. In particular, we
will analyze the fluctuational azimuthal imbalance in
the minijet transverse-energy flow due to a discrete
nature of transverse-energy production through basic
QCD hard scattering. We can expect that the effect
will be essentially sensitive to the number of semihard
scatterings. In what follows, we will see that this is
indeed the case.

Below, we study event-by-event inhomogeneities
in the azimuthal distribution of minijets following
from the basic asymmetry of minijet transverse-
energy production into a finite rapidity window in
pp collisions. Nuclear collisions are described by a
geometric model [6] in which they are considered
as a superposition of basic nucleon–nucleon ones.
The azimuthal asymmetry of the minijet system
will be specified in terms of (transverse) momenta
exclusively, as calculated in the conventional S-
matrix field-theory formalism without referring to
the coordinates of partons and without making
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
assumptions on the structure of the contributions
of higher order in the QCD coupling constant in
describing the transverse-energy production in an
elementary nucleon–nucleon collision. This analysis
can be extended to the next-to-leading order (e.g.,
along the lines of [28]) due to the infrared stability of
the distributions being considered, which are of the
energy–energy correlation type.

The analysis of the event-by-event pattern of the
initial minijet-generated transverse-energy flow was
first presented in [29], where the list of partons that
was generated on the basis of HIJING [30] and which
possesses specified coordinates and momenta was
used to compute a coarse-grained energy density and
velocity field at the RHIC of energy

√
s = 200 GeV.

The resulting distributions proved to be highly irreg-
ular and similar to those occurring in turbulent flows.
Note that, besides the parton–parton scattering de-
scribed by collinearly factorized QCD considered in
the present study, HIJING makes explicit assump-
tions on the structure of higher order contributions
(unitarization), the contributions from initial- and
final-state radiation, and the structure of the parton
system in coordinate space (thus going beyond stan-
dard S-matrix formalism). The existence of asym-
metry due to unbalanced particle production from
minijets into a finite acceptance was mentioned in [3].

This article is organized as follows.
In Section 2, we analyze the basic mechanism

for producing azimuthally symmetric and asymmetric
configurations in the restricted phase-space domain,
which, in the case considered here, will be a unit cen-
tral rapidity window, in pp collisions. In the leading-
twist (lowest order in parton density) and leading-
order collinear factorization scheme, we calculate
the relative weights for symmetric (two-jet) and
asymmetric (one-jet) contributions to the transverse-
energy-production cross section for RHIC (

√
s =

200 GeV) and LHC (
√
s = 5500 GeV) for underlying

nucleon–nucleon collisions.
In Section 3, the computed contributions to az-

imuthally symmetric and asymmetric components of
the pp minijet-transverse-energy production into a
unit central rapidity window are used in calculating
the asymmetry of transverse-energy production in
heavy-ion collisions, where a nuclear collision is de-
scribed as a superposition of nucleon–nucleon ones
in the geometric approach of [6]. We study the az-
imuthal asymmetry at RHIC and LHC energies for
central collisions within two dynamical scenarios. In
the first scenario, transverse-energy production is
assumed to occur through two physically different
mechanisms, the soft one and the (semi)hard one.
Since our aim is to study the transverse-energy flow
at the early collision stage related to the semihard
2
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Fig. 1. One- and two-jet contributions to transverse-
energy production in pp collisions in a unit central rapidity
window at the RHIC energy of

√
s = 200 GeV.

degrees of freedom, the contribution of soft interac-
tions will be taken into account only in determining
the relative yield of the semihard contribution. In the
second scenario, which can become realistic at LHC
energies, all primordial transverse-energy production
is assumed to occur through the semihard mecha-
nism.

In the last section, we discuss the results and
formulate the conclusions.

2. AZIMUTHAL PATTERN OF MINIJET
PRODUCTION IN pp COLLISIONS

The mechanism responsible for transverse-energy
production in the leading order in perturbative QCD
is an elastic two-to-two parton–parton scattering.
Its cross section is given by the standard collinearly
factorized expression

dσ

dp2
⊥dy1dy2

= x1f(x1, p
2
⊥)

dσ̂

dp2
⊥
x2f(x2, p

2
⊥), (1)

where xf(x, p2
⊥) is the parton structure function,

x1,2 = p⊥(e±y1 + e±y2)/
√
s are the fractional longi-

tudinal momenta of the product partons, and dσ̂/dp2
⊥

is the differential cross section for elastic parton–
parton scattering. In the following, we will be specif-
ically interested in transverse-energy production into
some given (central) rapidity interval ymin < y1, y2 <
ymax. Operationally, the transverse energy E⊥ de-
posited in this window by the two scattered partons is
defined as1)

E⊥ = p1θ(ymin ≤ y1 ≤ ymax) (2)

+ p2θ(ymin ≤ y2 ≤ ymax).

1)In Eq. (2) and below, pi = |p⊥i|.
P
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Fig. 2. One- and two-jet contributions to transverse-
energy production in pp collisions in a unit central rapidity
window at the LHC energy of

√
s = 5500 GeV.

Let us emphasize that, while the expression for the
transverse energy in Eq. (2) is specifically taken to be
of the lowest order in αs, the quantity E⊥ refers to the
total transverse energy produced in a particular rapid-
ity interval in a semihard collision. In the following, we
will confine ourselves to considering the central rapid-
ity interval ymin = −0.5 < y < ymax = 0.5 and stay
at the leading-order (Born elastic scattering) level, so
that, in each collision, the transverse momenta of the
two product partons are equal, p⊥1 = p⊥2 = p. This
does not mean that these transverse momenta will be
balanced in the rapidity window under consideration;
therefore, the event space for transverse-energy de-
position can be summarized by

E⊥ =




0 if no particle gets into the gap

p if one particle gets into the gap

2p if two particles get into the gap.

(3)

In considering the transverse-energy production into
a given rapidity window in pp collisions, only the
second and third possibilities are relevant. To quantify
the computation of the contribution corresponding to
the second and third cases in (3), it is convenient to
introduce the integral operators

S1 =
∫

dy1dy2(θ(y1) + θ(y2) (4)

−2θ(y1)θ(y2)) · (. . . ),

S2 =
∫

dy1dy2(θ(y1)θ(y2)) · (. . . ), (5)

where θ(y1,2) = θ(ymin < y1,2 < ymax). Applying
these operators to the differential cross section (1),
we get the decomposition of the transverse-energy-
production cross section in a given rapidity window
into the separate one-jet and two-jet contributions
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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[second and third entries in the event list in Eq. (3)];
that is,

dσ

dE⊥
=

dσ1

dE⊥
+

dσ2

dE⊥
, (6)

where
dσ1

dE⊥
= S1 ·

(
dσ

dp

) ∣∣∣∣
p=E⊥

, (7)

dσ2

dE⊥
= 2S2 ·

(
dσ

dp

) ∣∣∣∣
p=E⊥/2

. (8)

On the event-by-event basis, these contributions
correspond to completely distinct possibilities of
having the azimuthally balanced symmetric or un-
balanced asymmetric transverse-energy flow in the
rapidity window under consideration.

We emphasize that the cross section in Eq. (2)
is an exclusive and infrared-stable quantity because
E⊥ is the total transverse energy deposited in a given
rapidity interval.

In Figs. 1 and 2, we plot the transverse-energy-
production cross sections (7) and (8) associated both
with gluon and with quark (with nf = 5) minijets for
the RHIC and LHC energies of

√
s = 200 GeV and√

s = 5500 GeV, where, for LHC, we have chosen the
energy to be available for protons in lead beams and
where we used the MRSG structure functions [31].

In Fig. 3, we also present the differential cross
sections for transverse-energy production into full ra-
pidity intervals available at RHIC and LHC energies,
which will be used in the next section to normalize
the differential cross sections for transverse-energy
production in pp collisions.

Information contained in Figs. 1 and 2 is summa-
rized in Table 1, where we show the fitted parameters
for the one-jet and two-jet spectra in Eqs. (7) and (8)
having the functional form c(E⊥/1 GeV)−α.

We see that, at RHIC energies, the one-jet asym-
metric contribution dominates at low transverse en-
ergies and that the two-jet symmetric contribution
takes over at E⊥ ∼ 4.5 GeV. At LHC energies, the
asymmetric contribution is clearly dominant in the
entire minijet-transverse-energy range.

3. AZIMUTHAL ASYMMETRY
OF MINIJET-TRANSVERSE-ENERGY FLOW

IN NUCLEAR COLLISIONS

In this section, we proceed to analyze the angu-
lar asymmetry of minijet-produced transverse-energy
flow in nuclear collisions induced by the fundamental
asymmetry in pp collisions described in the preceding
section. The translation of the features characterizing
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
Table 1

√
s, GeV

α1 α2 c, mb/GeV

1 jet 2 jets 1 jet 2 jets

200 5.09 4.53 173 77

5500 4.25 3.93 3099 819

particle production in pp collisions to those char-
acterizing nuclear ones is possible, e.g., in a geo-
metric model, where a nucleus–nucleus collision is
considered as a superposition of the proton–proton
ones (see, e.g., [5, 6]). At each value of the impact
parameter b, where b is the distance in the transverse
plane between the centers of the colliding nuclei, a
nucleus–nucleus collision is described as a Pois-
son superposition of nucleon–nucleon collisions such
that the probability of n pp collisions is given by

wn(b) =
1
n!
N̄n
AB(b)e−N̄AB(b), (9)

where N̄AB(b) is the average number of pp collisions
in the nucleus–nucleus one, which is thus described
as a specific superposition of multiple independent pp
collisions occurring with the weight given by Eq. (9).
Elementary pp collisions occur between some nu-
cleon belonging to the nucleusA located at the trans-
verse distance b1 from its center with the probability
given by the probability density ρA(b1) with the nor-
malization ∫

d2b1ρA(b1) = 1 (10)

and the nucleon from nucleus B located at the trans-
verse distance b2 from its center with the probability
given by the probability density ρB(b2) with the col-
lision probability P

(
b̄− b̄1 + b̄2

)
. Thus, the average
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Fig. 3. Transverse-energy production in pp collisions in
the entire rapidity interval at RHIC (

√
s = 200GeV, solid

curve) and LHC (
√
s = 5.5 TeV, dashed curve) energies.
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number of pp collisions characterizing the basic Pois-
son process [Eq. (9)] is given by

N̄AB(b) = AB

∫
d2b1d

2b2P
(
b̄− b̄1 + b̄2

)
(11)

× ρA(b1)ρB(b2),

where P (b) is a probability of an inelastic collision of
two nucleons initially separated by the transverse dis-
tance b̄− b̄1 + b̄2. For practical calculations, we use
the Woods–Saxon nuclear probability density [32].
The physical meaning of the collision probability P (b)
depends on the underlying physical mechanism re-
sponsible for inelastic transverse-energy production
in binary nucleon–nucleon collisions. Our discussion
is confined to minijets as providing such a source;
therefore, in our case, P (b) is the probability of a
minijet-producing inelastic nucleon–nucleon colli-
sion occurring at fixed impact parameter b. Let us
emphasize that the differential probability of minijet-
induced transverse-energy production depends on the
rapidity window under consideration. The usual as-
sumption about the impact-parameter dependence of
the probability P (b) of nucleon–nucleon collisions is
that the collisions are local in the impact-parameter
plane; i.e.,

P (b) = σminijet
pp (|∆y| ≤ y0)δ(2)(b). (12)

Let us now discuss in some detail the normalization of
the Poisson process (9) provided by the overall cross
section for minijet production into the rapidity win-
dow |∆y| ≤ y0, σ

minijet
pp (|∆y| ≤ y0). The overall mini-

jet contribution to the transverse-energy-production
cross section is given by the integral with respect to
E⊥ of the differential cross section (6). Because of
the singular behavior of the perturbative transverse-
energy-production cross section at low E⊥, the very
definition of the overall contribution of the minijet
mechanism to transverse-energy production requires
introducing a cutoff at low transverse energies,

σminijet
pp (|∆y| ≤ y0|E0) =

∫
E0

dE⊥
dσ

dE⊥
(∆y). (13)

We note that, for any rapidity interval,∫
E0

dE⊥
dσ

dE⊥
(∆y) ≤ σinel(∆y), (14)

where σinel(∆y) is the (experimental) inelastic cross
section in a given rapidity window ∆y. This shows
that the cutoff E0 is physically a function of the ra-
pidity interval being considered.

Another important issue related to the choice of
this cutoff is the possible contribution to the over-
all inelastic cross section for other mechanisms of
PH
transverse-energy production—e.g., for soft particle
production due to the decay of hadronic strings. The
restriction in Eq. (14) clearly refers only to that part
of the inelastic cross section which corresponds to
hard inelasticity—i.e., transverse-energy production
through semihard processes. The other part of the
inelastic cross section corresponds to soft mecha-
nisms of transverse-energy production, which do not
involve high momentum transfers. It is important to
note that the characteristic time scale of semihard
transverse-energy production is shorter than that for
the soft nonperturbative mechanism. At the early
stages of the collision process, the hard-parton skele-
ton is formed, which is then dressed by soft particle
production due to strings stretched between partons
originating from primordial processes characterized
by a high momentum transfer. This shows, in partic-
ular, that soft processes do not have, generally speak-
ing, an independent share of the overall inelasticity;
therefore, the naive additivity

dσ

dE⊥
=

dσminijet

dE⊥
+

dσsoft

dE⊥
(15)

is not valid in general. It could happen, e.g., that, with
growing collision energy, the yield of events with hard
initial inelasticity would be dominant or even cover
the whole event space (here, we refer to nondiffrac-
tive contribution). In this extreme scenario, the only
function of the soft mechanism is to stretch strings
between the hard initial partons. Here, it is important
to recall that the cross section for transverse-energy
production [see Eq. (6)] as computed within per-
turbative QCD is a so-called infrared-safe quantity
and is thus entirely determined by its early quark–
gluon stage—it does not depend on the late stages of
the process, including string formation between the
separated partons.

Let us emphasize once again that, in the present
study, we confine our consideration to analyzing the
angular pattern of the primordial transverse-energy
flow generated at the early stages of collisions by
semihard degrees of freedom (minijets). The analysis
of the effects related to the subsequent redistribution
of primordial transverse energy by soft interactions at
longer times will be discussed in the future publica-
tions [33].

The yield of the perturbative contribution as a
function of the c.m. energy is a crucial characteris-
tic of the inelastic cross section. Unfortunately, very
little can currently be said about its magnitude; this
results in the uncertainty in fixing the cutoff for the
perturbative contribution.

In view of this, we will fix the cutoff value E0
at a given collision energy as follows. To explore
the possible “window of opportunities” for the hard
minijet contribution as determined by the yield of
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 2
√
s, GeV σsoft, mb σhard, mb E0, GeV p1 σminijet

pp , mb σminijet
PbPb , mb

200 0 41.8 2.4 0.54 2.4 5336

32 9.8 3.5 0.48 0.54 4102

5500 0 66.3 6.9 0.65 2.8 5443

32 34.3 8.4 0.64 1.5 4970
independent soft particle production, we will discuss
two model scenarios—namely, in considering inelas-
tic particle production at all rapidities, we will either
assume the constant soft contribution σsoft(pp) =
32 mb, the inelastic cross section for pp scatter-
ing at intermediate energies universally present at all
c.m. energies (mixed scenario), or assume that, in all
collisions, the transverse energy is produced via the
early perturbative minijet stage—i.e., set σsoft(pp) =
0 (hard scenario). The cutoff E0 is thus determined
from the relation2)∫

E0

dE⊥
dσminijet

pp

dE⊥
= σhard (16)

=

{
σinel

exp , no soft contribution,

σinel
exp − 32 mb, a soft contribution of 32 mb,

where the transverse spectrum in Eq. (16) refers
to the full kinematic interval [see Fig. (3)]. Let
us emphasize that the differential cross section for
transverse-energy production that we use in Eq. (16)
is the result of the lowest order calculation from the
preceding section; the higher order effects, which can
phenomenologically be included within the geometric
unitarization scheme (see, e.g., [3]), are not included.
The numerical values of the cutoff that were found
by integrating the spectra shown in Fig. (3) are
given in Table 2. In the fifth column, we show the
overall probability of asymmetric one-jet contribution
p1(E0) calculated by using the differential transverse-
energy-production spectra in (6)–(8):

p1(E0) =


 ∞∫
E0

dE⊥
dσ1

dE⊥


/


 ∞∫
E0

dE⊥
dσ

dE⊥


 .

(17)

It was mentioned above that, although the differential
spectra describe transverse-energy production into
some given rapidity window, the value of the cutoff

2)The inelastic cross section is computed by using
the parametrization σinel(s) = σ0(s/s0)

0.0845(0.96 −
0.03 log(s/s0)), where s0 = 1 GeV and σ0 = 21.4 mb,
which provides a good description of the existing
experimental data [34] (see also the compilation in [3]).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
E0 will be determined below from Eq. (14) considered
for the full rapidity window kinematically available for
inelastic energy production at a given collision energy.
For a more accurate determination of the cutoff E0,
one would need experimental data on inelastic cross
sections in, e.g., the central rapidity window. Different
quantities have different sensitivities to the choice of
cutoff; in particular, the E0 dependence of p1(E0) in
Eq. (17) is quite weak. In the last column of Table 2,
we show the cross section for the production of at
least one minijet in lead–lead collisions, σminijet

PbPb :

σminijet
PbPb =

∫
d2b(1 −w0(b)) (18)

=
∫

d2b(1 − e−N̄AB(b)).

Here, w0(b) is the probability of having no minijet-
producing nucleon–nucleon collisions [cf. Eq. (9)].

Transverse-energy production in nucleus–nucleus
collisions is then described by the convolution of the
distribution in the number of pp collisions obtained
from Eq. (9) at a given impact parameter with the
distributions characterizing transverse-energy pro-
duction in pp collisions in Eqs. (7) and (8).

In practice, this convolution was realized by a
Monte Carlo procedure, where a large number (107)
of nucleus–nucleus collisions were generated, with
the number of pp collisions N being distributed ac-
cording to Eq. (9); the weight of one-jet asymmetric
(two-jet symmetric) pp collisions is equal to the prob-
ability p1 (1 − p1), with p1 being taken from Table 2.
More explicitly, this corresponds to a binomial distri-
bution in the number of asymmetric collisionsNa

w(Na) = CNa
N pNa

1 (1 − p1)N−Na ; (19)

the weight for E⊥ itself was in turn determined by
Eqs. (7) and (8) for asymmetric and symmetric con-
tributions, respectively. The azimuthal orientation of
jet(s) was determined at random in accordance with
a flat distribution in the azimuthal angle. For two-jet
events, the jets travel in opposite directions, so that
their azimuths differ by π.

Let us now perform a quantitative analysis of the
event-by-event asymmetry of the minijet-generated
transverse-energy flow. This will be done by using a
2
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Fig. 4. Probability distribution of the azimuthal asym-
metry δE in a unit central rapidity window at the RHIC
energy of

√
s = 200 GeV for central PbPb collisions,

σsoft = 0.

(normalized) difference of the transverse-energy flows
into the sectors that are characterized by opposite
azimuthal orientations and which have a specified an-
gular opening δϕ each and the rapidity window |y| <
0.5. Let us note that this quantity has an important
advantage of admitting a future next-to-leading order
analysis. For the sake of convenience, one can think
of the directions of these cones as being “up” and
“down,” which corresponds to some specific choice
of orientation of the system of coordinates in the
transverse plane. All our results are of course in-
sensitive to a particular choice. Let us denote by
E↑(δϕ) and E↓(δϕ) the transverse energies going
into, respectively, the “upper” and the “lower” cones
in a given event. The magnitude of the asymmetry in
transverse-energy production can then be quantified
by introducing the variable

δE = E↑(δϕ) − E↓(δϕ). (20)

Using the distribution in the number of asymmetric
collisions [see Eq. (19)] and considering that the event
space of asymmetric collisions is further subdivided
into two sets corresponding to nonzero energies E↑
and E↓ going into the upper and lower cone, we can
calculate the squared mean of δE(δφ) for the az-
imuthal openings δφ = π/2n being considered (n =
0, 1, 2):3)

√
〈δE2〉 =

1
2n/2

E0

√
p1N̄

α1 − 1
α1 − 3

. (21)

The values of α1 are given in Table 1. The quantity
δE(δφ) in Eq. (21) characterizes the magnitude of

3)It is easy to see that the distribution of δE is a so-called
multi-Poisson one.
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Fig. 5. As in Fig. 4, but for σsoft = 32 mb. The result of
smoothing appears as a Gaussian distribution shown in
the inset.

the disbalance in the minijet-generated transverse-
energy flow. Note that δE is highly sensitive to
the overall magnitude of the semihard (minijet-
generated) transverse-energy flow. In Eq. (21), this
is clearly seen from

〈
δE2

〉
∝ E2

0N̄ . The numerical
values of

√
〈δE2〉 are given below. From now on, we

confine our discussion to central PbPb collisions.
Figures 4–7 show the probability distribution of

δE in central PbPb collisions for two values of the
c.m. energy (200 GeV and 5.5 TeV) and two choices
of E0 corresponding to the mixed and the hard sce-
nario. The angular apertures were chosen to be π,
π/2, and π/4. From these figures, we see that, for
all types of collisions (except for Fig. 6), there ap-
pear peaks in the probability distribution at δE =
nE0. This is a reflection of a sharp cutoff adopted
in the model and of a fast decrease in the minijet
cross section with increasing E⊥. In the majority of
cases, this effect is seen only for small values of the
angular opening. A crucial parameter related to the
appearance of the peaks is in fact N̄ . The smaller N̄ ,
the more pronounced the peaks. One could expect
that hadronization and soft processes accompanying
minijet production smoothed out these peaks. Curves
that were initially smooth undergo the Gaussian law
with the variance

〈
δE2

〉
. Therefore, we can imagine

the appearance of curves with peaks that have, after
smoothing, a Gaussian shape with variances given by
Eq. (21). For Fig. 5, the result of such smoothing is
shown in the inset.

Another useful quantity is a normalized asym-
metry, on the contrary, which is insensitive to the
absolute magnitude of transverse energy flow,

r(δϕ) =
E↑(δϕ) − E↓(δϕ)
E↑(δϕ) + E↓(δϕ)

, (22)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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where r ∈ [−1, 1]. In particular, the normalized asym-
metry r simplifies a comparison of the asymmetries at
different c.m. energies. The values of r(δϕ) in different
collisions are characterized by the normalized proba-
bility distribution

p(r)|δϕ =
1
σ

dσ

dr

∣∣∣∣
δϕ

. (23)

To evaluate p(r), we use aMonte Carlo simulation
of the nuclear-scattering process as described above
for a generated ensemble of 107 PbPb collisions at
RHIC and at LHC energies. We have calculated the
asymmetry distributions p(r) for the central (zero im-
pact parameter, b = 0) collisions and cone apertures
of π, π/2, and π/4. The resulting probability distri-
butions are illustrated in Figs. 8–11 for the mixed
(σsoft = 32 mb) and the hard (σsoft = 0) scenario at
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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RHIC and LHC energies. Let us note that, in the
cases where the number of contributing collisions is
not large (RHIC), one encounters “singular” config-
urations for which r = −1, 1 and r = 0 correspond
to absolutely asymmetric and absolutely symmetric
events in PbPb collisions. These are events in which
only one one-jet event contributes to the given aper-
ture during the collision (r = −1, 1) or one two-jet
event contributes to r = 0. Their probabilistic weight
can be described by a δ-functional contribution to
p(r) at the “singular” points. Their yield in the minijet
event ensemble is given in Table 3 for the mixed
(σsoft = 32 mb) scenario at the RHIC energy (other
values are negligible).

In Fig. 9, these contributions would correspond to
infinitely narrow peaks; therefore, they are not shown.

The angular pattern of transverse-energy produc-
tion as characterized by the energy–energy azimuthal
2
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Fig. 11. As in Fig. 10, but for σsoft = 32 mb.

correlation probability distribution being considered
is conveniently described by the lowest moments of
p(r). In Table 4, we present, together with the numer-
ical values of the root-mean-square value

√
〈δE2〉

[cf. Eqs. (20) and (21)], the values of the standard
deviation a defined as

a2 =
∫

dr(r − r̄)2p(r), (24)

where 〈r〉 = 0 in our case.

Table 3

δϕ r = −1 r = 0 r = 1

π/2 1.3 × 10−3 1.6 × 10−2 1.3 × 10−3

π/4 2.5 × 10−2 1.2 × 10−1 2.5 × 10−2
P

Note that all the data presented in Table 4 include
contributions from the singular points r = −1, 0, 1.

Let us now proceed to analyze the results pre-
sented in Figs. 4–11 and in Tables 3 and 4. The
main goal is to understand the dependence of the
angular pattern of the transverse-energy flow on basic
parameters such as the infrared cutoff E0, the total
number N̄ of minijet-generating collisions, the yield
p1 of asymmetric pp collisions, and c.m. energy

√
s.

In the fourth column of Table 4, we show the
mean-square value

〈
δE2

〉
for the azimuthal opening

of δφ = π. The results agree with Eq. (21), so that the
average disbalance in the transverse energy is indeed
essentially determined by E0 and N̄ .

To understand the results for the normalized
asymmetry p(r), it is advisable to consider a simplified
model where elementary pp collisions can produce
only some given amount of transverse energy,(

dσ

dE⊥

)pp
= σhard(

√
s)δ(E⊥ − E0(

√
s)), (25)

so that all transverse energy is assumed to be pro-
duced exactly at the cutoff E0. Note that, except
for ascribing energy production to elementary pp
collisions, this model is very similar to the ex-
pected pattern of transverse-energy production in
the semiclassical approach based on the McLerran–
Venugopalan model (cf. [21]). For the azimuthal
apertures of δφ = π/2n(n = 0, 1, 2) considered here,
we find for the standard deviation a defined in Eq. (24)
that4)

a
(
δφ =

π

2n
)
≈
√

1
2n

p1

N̄

(
1 + O

(
1
N̄

))
. (26)

This shows that the width of the distribution p(r)
is determined by the ratio of the relative yield p1 of
asymmetric collisions to the mean number of colli-
sions. In Table 4, we compare the predictions of this
simple model with the values of standard deviation a
computed by using the differential spectra plotted in
Figs. 1 and 2 (for the reasons of space, only the results
for δφ = π are given in the fifth column) and observe
only a 10% difference. This shows that the results
obtained by using the continuous spectra in Figs. 1
and 2 are essentially determined by the contribution
at the cutoff energy E0.

From Fig. 9, we can see that, for a small number of
asymmetric collisions, the shape of p(r) has peculiar
sharp peaks at certain values of r. The origin of this
is in fact the growth of the differential cross section
for transverse-energy production at low E⊥ in pp
collisions (cf. Figs. 1 and 2). Indeed, we assume,

4)The details of this calculation can be found in the Appendix.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 4

σsoft, mb
√
s, GeV N̄PbPb

√
〈δE2〉, GeV

√
p1/N̄

a

δφ = π δφ = π/2 δφ = π/4

0 200 75.7 21 0.084 0.088 0.124 0.178

5500 87.4 84 0.086 0.094 0.133 0.189

32 200 17.1 14 0.168 0.177 0.259 0.387

5500 47.1 74 0.117 0.127 0.180 0.257
for simplicity, that each pp collision in the restricted
minijet ensemble can produce transverse energy only
exactly at the cutoff E⊥ = E0 [cf. Eq. (25)]. In this
case, we will have, in addition to the “true” singular
points r = −1, 0, 1, “semisingular” ones, so that, for
a particular event containing n minijets, with n1↑
being the number of “up-coming” one-jet events, n1↓
being the number of “down-coming” one-jet events,
and n2 = n− n1↑ − n1↓ being the number of two-jet
events, the following exact relation holds:

r =
n1↑ − n1↓

n
. (27)

Thus, the values of r belong to a set of rational
numbers in the interval [−1, 1] that are called here
“semisingular” points. Of course, the most spec-
tacular “semisingular” points are those with small
numerators and denominators, both due to a higher
frequency of events having a small number of minijets
and due to a smaller distribution width (deviation
from E⊥ = nE0) for events with a small number of
asymmetric collisions.

Let us note that the appearance of the singular
points −1, 0, and 1 is a consequence of calculat-
ing the cross sections for transverse-energy produc-
tion in the elementary hard block in the lowest order
of perturbation theory. In the next-to-leading order,
where transverse energy can be shared among three
(mini)jets, these singular points will become milder
singularities of p(r) at r = −1, 0, 1. This shows that
the calculation of the true shape of p(r) near the sin-
gular points requires, as usual, resumming all orders
of the perturbative contributions.

Physically, within the scheme adopted in this
study, the number of semihard collisions depends
on sharing inelasticity among the soft and hard
mechanisms of transverse-energy production. In
the mixed scenario, we assumed that 32 mb of the
inelastic cross section for pp collisions corresponds
to the soft production mechanism, while the rest
of the inelastic cross section is due to semihard
production. In the hard scenario, it is assumed that
semihard transverse-energy production saturates all
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
available inelasticity. It is expected that the distribu-
tions p(r) characterizing the azimuthal asymmetry
of transverse-energy production defined in Eq. (23)
will be wider in the mixed than in the hard scenario.
From Table 4, we can see that this is indeed so. At
RHIC energies, the standard deviation for the mixed
scenario is larger than that in the hard one, their ratio
being amixed

RHIC/a
hard
RHIC � 2.0–2.1. At LHC energies, the

effect is less pronounced; here, amixed
LHC /ahard

LHC � 1.3–
1.4. We see that, with increasing c.m. energy, the
angular pattern of the minijet-generated transverse-
energy flow becomes less sensitive to the relative
weight of the perturbative and nonperturbative con-
tributions to the inelastic cross section.

The dependence of the standard deviation a on the
aperture remains essentially the same for both c.m.
energies and values of the impact parameter consid-
ered here and is inversely proportional to the angular
opening:

aπ/2n � 2n/2aπ. (28)

This is consistent with the prediction of the sim-
ple model of transverse-energy production as given
by Eq. (26) and corresponds to a purely statistical
change in the standard deviation, where the shrinking
of the angular aperture by a factor of 2 enlarges the
standard deviation by a factor of

√
2.

4. CONCLUSIONS

The main results of our analysis can be formulated
as follows.

We have first discussed a basic asymmetry in
minijet-transverse-energy production in a restricted
rapidity window in pp collisions due to different
probabilities of having a “symmetric” two-jet or an
“asymmetric” one-jet contribution in the rapidity
interval under consideration. The cross sections for
symmetric and asymmetric contributions in pp colli-
sions for RHIC and LHC energies show that, while,
at the RHIC energy, the weights of the two configu-
rations are approximately equal, at the LHC energy,
the asymmetric contribution is clearly dominant.
2
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We have further considered a geometric model for
nuclear collisions in which they are described as an
incoherent superposition of nucleon–nucleon ones.
We have discussed two possible partitions of the in-
elastic cross section in terms of the soft and semihard
contributions and analyzed the angular pattern of the
minijet-generated energy flow for central and periph-
eral nuclear collisions at RHIC and LHC energies.
Specifically, we have considered the probability dis-
tributions for transverse-energy–transverse-energy
correlations in cones having opposite azimuthal ori-
entations and a varying aperture. We have shown
that the resulting distributions are highly sensitive to
the number of semihard collisions, which is in turn
dependent on the above-mentioned partition of the
inelastic cross section into contributions of different
types and on the (related) choice of infrared cutoff.
We have also shown that the results are very close
to the predictions of the simple model where all the
transverse energy is produced directly at the infrared
cutoff.

The approach developed in this study could be
further generalized to the analysis of the minijet-
generated background-oriented flow [35] (for the def-
inition of the oriented flow and a comprehensive dis-
cussion, see, e.g., [36]). In particular, since the impor-
tance of the minijet contribution is expected to grow
with energy, the presence of the background-oriented
flow of a purely fluctuational origin could increasingly
affect corresponding hadronic observables.

Another crucial issue is the dynamical evolution
of primordial partonic inhomogeneities in the course
of parton–hadron conversion. In [37], it was shown,
that the seed inhomogeneity in the initial condition
of the elliptic-flow type for the hadronic RQMD code
survives the freeze-out and is visible in final azimuthal
distributions. This question is surely the most impor-
tant and will be discussed in the forthcoming publica-
tion [33].
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APPENDIX

In this appendix, we present a derivation of the
formula for the standard deviation a (26). Let n be
the number of minijet-producing hadron–hadron col-
lisions in a given nucleus–nucleus collision charac-
terized by a Poisson distribution (9). Let us further
denote by n1 the number of those minijet-producing
hadron collisions inwhich only oneminijet hits the ra-
pidity window under consideration (asymmetric con-
tribution) and by n1↑ and n2↓ the numbers of such
single minijets propagating into, respectively, the up-
per and the lower of the two oppositely oriented cones.
In this appendix, we employ the model where the
minijet transverse energy hitting the acceptance win-
dow in a single hadron–hadron collision is fixed at the
cutoff valueE0 [cf. Eq. (25)]. Averaging over the event
ensemble must be performed in the order opposite to
that adopted in the Monte Carlo procedure. First, we
average over n1↑ at fixed n1 = n1↑ + n1↓:

〈
r2
〉
n1

=
n1∑

n1↑=0

1
2n1

C
n1↑
n1

(n1↑ − n1↓)2

n2
=

n1

n2
. (A.1)

Next, we average over n1 at fixed n according to the
binomial probability distribution (19):〈

r2
〉
n

=
p1

n
. (A.2)

Finally, we must average over the Poisson distribu-
tion (9). This yields

a2 =
〈
r2
〉

= e−N̄
∞∑
n=1

p1

n

N̄n

n!
(A.3)

= p1N̄e−N̄ F (1, 1; 2, 2; N̄ ) ≈ p1

N̄

(
1 + O

(
1
N̄

))
,

where F (1, 1; 2, 2; N̄ ) is a generalized hypergeometric
function.
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Abstract—The ground-state energy in the two-phase hybrid chiral fermion-bag model involving boson–
fermion interaction is studied in (1 + 1)-dimensional spacetime. A procedure for renormalizing the di-
vergent energy of the fermion sea is proposed. The procedure is based on the isolation of singular terms
and the subsequent absorption of these divergences in the redefined parameters of the input Lagrangian.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, a few methods have been developed
for calculating the Casimir energy of a system of
quantized fields satisfying nontrivial boundary con-
ditions [1–3]. The methods employed most exten-
sively are those of Green’s functions [2–5], ζ-function
regularization [6–11], contour integration [2, 12, 13],
multiple scattering [1, 14], and straightforward sum-
mation over modes by using a temperature regular-
ization [15–17]. These methods are often applied to
computing the ground-state energy in models of the
quark-bag type [1, 5, 8, 15, 18–22], where it is nec-
essary to take into account one-loop corrections from
the filled Dirac sea. Quantum corrections are known
to play a significant role in such models, ensuring
self-consistency of the theory; therefore, they must
be properly taken into account [23, 24]. However,
the results of calculations along these lines depend
crucially on the number of spacetime dimensions,
on boundary conditions, and on the geometry of the
system [7, 25, 26]. Moreover, one cannot rule out
the possibility that different methods applied to the
same systems would yield different results [3, 4, 27].
A commonly recognized approach to computing the
Casimir energy has yet to be developed.

From the physical point of view, summation over
modes with a temperature cutoff [15–17] is the most
natural method for computing the Casimir energy
problems of this type. However, a straightforward ap-
plication of this method is possible only if all eigenval-
ues ωn of the Hamiltonian are known exactly, but this

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

*e-mail: igorch@goa.bog.msu.ru;igorch@thsun1.jinr.
ru
1063-7788/02/6505-0898$22.00 c©
is so only for a rather narrow class of systems. In the
present study, the method for computing the fermion-
sea energy by means of summation over modes is
adapted to cases where the exact spectrum ωn of the
Hamiltonian is not known. However, the use of an
asymptotic expansion for ωn for n ≥ 1 [19] makes it
possible to isolate divergent terms unambiguously as
poles at the physical value of the regularization pa-
rameter [28] (this procedure is similar to the minimal-
subtraction scheme in quantum field theory), where-
upon the energy is renormalized via the absorption
of divergences in the bare coupling constants of the
input Lagrangian [5, 15, 20, 21]. An advantage of
this renormalization method over, for example, that
where, in order to determine the ground-state energy
of some configuration, one subtracts, from an infinite
sum corresponding to this energy, an infinitely large
energy of some other configuration is that our method
can be used to renormalize not only the energy but
also other observables of the theory.

The implementation of the proposed renormaliza-
tion procedure requires that some contact terms that
depend on the geometric parameters of the system in
the same way as the isolated divergent terms be in-
cluded in the “classical” expression for the energy [8,
18, 21]. By considering the example of the (3 + 1)-
dimensional fermion-bag model, it was shown [18],
among other things, that, upon the removal of regu-
larization, there inevitably remain singular terms pro-
portional to various powers of the bag radius. These
terms can be compensated only by redefining the
coupling constants that are defined as the coefficients
of the respective contact terms introduced in the clas-
sical expression for energy in an ad hocmanner. How-
ever, all such coupling constants do not have a clear
physical meaning—only the bag constant (vacuum
2002 MAIK “Nauka/Interperiodica”
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pressure), the constant of surface tension, and the
coefficient of the term independent of the geometric
parameters of the model admit a reasonable interpre-
tation. The values of these three constants must be
determined from experimental data [8, 18]. We can
avoid introducing these contact terms, assuming that
there are some additional external modes [21, 29] (as
in chiral bagmodels). In this case, it turns out that the
majority of the divergent terms are canceled. How-
ever, there is no rigorous proof of the statement that
such cancellations occur for any system. Moreover,
the existence of external modes cannot be justified in
many cases (the introduction of external modes in the
bag model is based on the hypothesis that quark–
gluon plasma exists, but the concept of a bag essen-
tially implies a perfect confinement). For this reason,
the inclusion of contact terms for implementing a
self-consistent renormalization procedure seems in-
evitable. It should be noted that, in the simple prob-
lems considered here, all contact terms introduced
have a clear physical meaning.

In this study, we develop a method for isolating
divergences and finite parts in a divergent sum over
the eigenenergies ωn in the case of unknown val-
ues of ωn, employing the exponential cutoff

∑
ωn →∑

ωne
−τωn or the ζ-function regularization

∑
ωn →

µ1+s
∑

ω−s
n . We demonstrate that both these meth-

ods yield identical results. By way of example, we
consider the (1 + 1)-dimensional MIT bag model in-
volving massive fermions and find an analytic expres-
sion for the ground-state energy. Next, we apply the
developed approach to the analysis of the ground-
state energy in the two-phase hybrid bag model fea-
turing chiral boson–fermion interaction in the interior
domain [19, 30, 31]. Making use of the self-consistent
solution found previously for a similar system [19],
we compute the Casimir energy to the leading terms
of the expansion in powers of the chiral coupling
constant mF . The total energy in this model with
allowance for the contribution of the scalar field is
analyzed as a function of the bag size.

2. COMPARISON OF TWO
REGULARIZATION METHODS

The ground-state energy of the fermion field is de-
fined as the vacuum expectation value of the Hamil-
tonian:

〈0|H|0〉 ≡ E0 = −1
2


∑
ωn>0

ωn −
∑
ωk<0

ωk


 . (1)

If the eigenvaluesωn are invariant under sign reversal,
ωn → −ωn, then the vacuum expectation value of the
Hamiltonian has the form

E0 = −
∑
ωn>0

ωn. (2)
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This sum is divergent, but it can be regularized, for
example, by applying an exponential cutoff, where-
upon the regularized expression for the vacuum en-
ergy becomes

Eexp
0 = lim

τ→0

(
−
∑
ωn>0

ωne
−τωn

)
(3)

= lim
τ→0

d

dτ

∑
ωn>0

e−τωn ,

where τ ∼ µ−1 and µ has dimensions of mass. This
method was in fact used to compute the Casimir
energy in some simple cases [1, 15–17], but it is
workable only when the eigenvalues ωn are known.
Let us now assume that, for n ≥ 1, the eigenvalues
ωn can be approximated by the asymptotic series [19]

ωn =
−∞∑
i=1

Ωin
i = Ω1n + Ω0 +

Ω−1

n
+ O

(
1
n2

)
. (4)

It is obvious that the first three terms in (4) specify
the divergences in the sum in (2). First, we consider
the auxiliary case where the expansion in (4) contains
only the first two terms (for example, this is the case
of a free massless field in a bag):

ω(1)
n = Ω1n + Ω0. (5)

The regularized energy then takes the form [15]

Eexp
1 = lim

τ→0

d

dτ

∑
n=1

e−τ(Ω1n+Ω0) − ω0 (6)

= lim
τ→0

d

dτ

(
e−τΩ0σ1(τ)

)
− ω0,

where

σ1(τ) =
∑
n=1

e−τΩ1n =
1

eτΩ1 − 1
. (7)

The term ω0 in (6) has been isolated because the
expansion in (4) does not apply to it. In what follows,
it will convenient to begin summation from n = 1.
Since

1
ex − 1

=
∑
k=0

Bk
k!
xk−1, (8)

where Bk are Bernoulli numbers, we obtain

Eexp
1 = − lim

τ→0

1
τ2Ω1

+
Ω1

12
+

Ω0

2
+

Ω2
0

2Ω1
− ω0. (9)

This expression involves the quadratic divergence

Equad(τ) = − 1
τ2Ω1

,

which depends on an arbitrary mass µ and on the
geometric parameters that enter into Ω1.
2
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Let us now consider the case where

ω(2)
n = Ω1n + Ω0 +

Ω−1

n
. (10)

The regularized energy then has the form

Eexp
2 = lim

τ→0

d

dτ
σ2(τ) − ω0, (11)

where

σ2(τ) =
∑
n=1

e
−τ
(

Ω1n+Ω0+
Ω−1

n

)
(12)

= e−τΩ0
∑
n=1

e−τΩ1ne−τΩ−1/n.

It can be seen that only the first and the second term
in the expansion of e−τΩ−1/n in powers of τ make a
nonvanishing contribution to Eexp

2 in the limit τ → 0.
Thus, we arrive at

σ2(τ) = e−τΩ0
∑
n=1

e−τΩ1n

(
1 − τΩ−1

n

)
(13)

+ O(τ2) = e−τΩ0σ1(τ) − τΩ−1e
−τΩ0

×
∑
n=1

1
n
e−τΩ1n +O(τ2),

where σ1(τ) is defined in (7). Using the relation∑
n=1

1
n
e−αn = − ln(1 − e−α),

we obtain
σ2(τ) = σ1(τ) (14)

+ τΩ−1e
−τΩ0

(
ln τΩ1 −

τΩ1

2

)
+ O(τ2).

Thus, the regularized energy takes the form

Eexp
2 = lim

τ→0

(
− 1
τ2Ω1

+ Ω−1 ln τµ
)

(15)

+ Ω−1 ln
Ω1

µ
+

Ω1

12
+

Ω0

2
+

Ω2
0

2Ω1
+ Ω−1 − ω0.

The contribution of the O(1/n2) terms (Efin) is finite
and can be found in each specific case. The divergent
parts

Equad(τ) = − 1
τ2Ω1

, Elog(τ) = Ω−1 ln τµ

must be removed by means of a relevant renormaliza-
tion procedure, but we will not construct this proce-
dure at this point.

We now consider another version of regularization,
that employing a ζ function. In this case, the regular-
ized expression for the energy has the form

Eζ
1 = −

∑
n

ωn → − lim
s→−1

µ1+s
∑
n

ω−s
n , (16)
P

where an arbitrary mass µ is introduced on the basis
of dimensional considerations. Without loss of gen-
erality, the value of µ in (16) can be set to that in the

preceding case. For ω(1)
n = Ω1n + Ω0, we obtain

Eζ
1 = − lim

s→−1
µs+1

∑
n=1

(Ω1n + Ω0)−s − ω0 (17)

= − lim
s→−1

z1(s|µ) − ω0,

where

z1(s|µ) = µs+1
∑
n=1

(Ω1n + Ω0)−s (18)

= µs+1
∑
n=1

1
(Ω1n)s

(
1 − sΩ0

Ω1n

+
s(s + 1)

2!

(
Ω0

Ω1n

)2

+ O(1/n3)

)
.

In the limit s → −1, the contribution of the O(1/n3)
terms vanishes; therefore, the regularized sum Eζ

1 is
completely determined by the first three terms of the
expansion in (18). We arrive at

z1(s|µ) = µs+1

(
Ω−s

1 ζ(s) − sΩ0

Ωs+1
1

ζ(s + 1) (19)

+
Ω2

0

2Ωs+2
1

s(s + 1)ζ(s + 2)
)
.

The values of the ζ(z) function continued to the ana-
lytically entire real axis are known to be [32]

ζ(0) = −1
2
, ζ(−1) = −B2

2
= − 1

12
. (20)

In the vicinity of unity, the function ζ(z) can be ap-
proximated as

lim
z→1

ζ(z) =
1

z − 1
+ C, (21)

where C = 0.5772156649 . . . is the Euler constant. In
the limit s → −1, we obtain

Eζ
1 =

Ω1

12
+

Ω0

2
+

Ω2
0

2Ω1
− ω0. (22)

This expression coincides with the finite part of ex-
pression (9). The absense of a divergent term is due
to the use of the analytic continuation of the function
ζ(z). Now, we address the case where ωn involves
the next term of the expansion in powers of 1/n [see
Eq. (10)]. We then have

Eζ
2 = − lim

s→−1
µs+1

∑
n=1

(
Ω1n+ Ω0 +

Ω−1

n

)−s
(23)

− ω0 = − lim
s→−1

z2(s|µ) − ω0,
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where

z2(s|µ) = z1(s|µ) − sΩ−1µ
s+1

Ωs+1
1

ζ(s + 2) (24)

(here, we retain only the terms that do not vanish in
the limit mentioned above). The second term in ex-
pression (24) can be calculated by using the property
in (21) and the expansion xε = 1 + ε lnx + O(ε2),
ε = s + 1, ε → 0. The result is

lim
s→−1

sΩ−1

(
µ

Ω1

)s+1

ζ(s + 2) (25)

= Ω−1 lim
ε→0

(−1 + ε)
(

1 − ε ln
Ω1

µ

)(
1
ε

+ C

)

= −Ω−1

(
lim
ε→0

1
ε
− 1 + C − ln

Ω1

µ

)
.

Thus, the regularized expression for the energy takes
the form

Eζ
2 =

Ω1

12
+

Ω0

2
+

Ω2
0

2Ω1
− ω0 (26)

+ Ω−1

(
ln

Ω1

µ
+ 1
)
− Ω−1

(
lim
ε→0

1
ε

+ C

)
,

which coincides with (15) (apart from the quadratic
divergence Equad

2 ), provided that

1
τ

= µγe1/ε, ln γ = C. (27)

In order to take into account the contribution of
the O

(
1/n2

)
terms in the expansion in (4), which do

not involve singularities after the removal of the reg-
ularization, it is necessary to subtract their sum Efin

from expressions (15) and (26). It can be concluded
that the Casimir energy computed for the (1 + 1)-
dimensional fermion bag by using the regularization
with an exponential cutoff coincides with that com-
puted on the basis of the ζ-function regularization.
This result is in fact more general, because it holds for
all cases where ωn can be represented in the form (4),
which is always true for a quasidiscrete spectrum.

Expressions (15) and (26) involve terms that are
divergent upon going over to the physical values of the
respective regularization parameters. For the sake of
definiteness, we will henceforth use formula (15), be-
cause the absence of the quadratic divergence in (26)
is an artifact of the analytic continuation of the ζ
function—it is not related to the physical content of
the problem under consideration. The singular terms
then have the form

Ediv(τ) = − 1
τ2Ω1

+ Ω−1 ln τµ. (28)

These divergences can be eliminated by redefining the
bare coupling constants in the input Lagrangian. By
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
way of example, we perform a renormalization in the
(1 + 1)-dimensional MIT bag model involving mas-
sive fermions [33, 34]. The Lagrangian of the model
has the form

LMIT = θ(|x| < R)(iψ̄∂̂ψ −mF ψ̄ψ −B) (29)

+ θ(|x| > R)(iψ̄∂̂ψ −MF ψ̄ψ),

where 2R is the length of a segment of the real axis,
mF (MF ) is the mass of an elementary fermion within
(outside) the bag, and B is the bag constant char-
acterizing the excess of the vacuum energy density
within the hadron in relation to the energy density
of the nonperturbative vacuum outside of the hadron
(the bag model is based on the assumption that there
exists such an excess). In the limit of an infinitely
large fermion mass outside of the bag,MF → ∞ (the
production of free fermions in the region |x| > R is
suppressed in this case), we arrive at a “bag” in the
form of the segment [−R,R] of the real axis. The
boundary conditions

(±iγ1 + 1)ψ(±R) = 0 (30)

lead to the exact eigenvalues

ωn =

√( π

2R
n +

π

4R

)2
+ m2

F . (31)

We assume that the elementary-fermion mass mF is
much smaller than the characteristic energy scale of
the problem, the mass parameter µ appearing in the
denominator of the argument of the cutoff exponential
function (3). This assumption is plausible because
bag models are constructed as effective theories of
the hadronic structure and can be applied only to
studying low-energy processes. ToO(m4

F ) terms, we
then obtain

ωn = (Ω1n + Ω0) +
m2
F

2(Ω1n + Ω0)
+ O(m4

F ), (32)

whereΩ1 = π/2R andΩ0 = π/4R. For n ≥ 1, we use
the expansion in (4), where

Ω−1 =
m2
F

2Ω1
=

m2
FR

π
, (33)

whereas, at n = 0, we have

ω0 = Ω0 +
m2
F

2Ω0
= Ω0 + 2Ω−1. (34)

The divergent part of the sea contribution (28) is

Ediv(τ |R) (35)

=
(
− 1
τ2π

+
m2
F

2π
ln τµ

)
· 2R = 2B′(τ)R.
2
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The renormalization procedure proposed in [5, 6, 8]
involves redefining the bag constant B, which enters
into the Lagrangian in (29):

B = B0 −B′(τ). (36)

All the remaining parts of the energy in (15) converge
and can be found explicitly. The contribution of the
O
(
n−2

)
terms in expansion (4) is determined by the

expression

Efin(R) = −m2
F

2

∑
n=1

(
1

Ω1n + Ω0
− 1

Ω1n

)
(37)

=
m2
F

2Ω1

∑
n=1

1
n(2n + 1)

=
2m2

FR

π
(1 − ln 2).

Thus, the renormalized energy of the fermion sea in
the (1 + 1)-dimensional massive MIT bag model as
a function of the bag size R, the elementary-fermion
mass mF within the bag, and the “running” bag
constant B0(µ) has the form [to O(m4

F ) terms of the
expansion in powers ofm2

F ]

EMIT(R) = 2B0(µ)R− π

48R
(38)

+
m2
FR

π

(
1 − 2 ln 2 + ln

π

2Rµ

)
+ O(m4

F ).

The logarithmic dependence of the bag constant on
µ implies that the renormalized total energy is in-
dependent of µ. In the limit of vanishing fermion
mass, mF → 0, formula (38) reproduces the well-
known result obtained in [34]. This configuration is
unstable, collapsing for R → 0. It can be stabilized,
for example, by adding one valence fermion occupying
the lowest level corresponding to n = 0. The energy is
then given by

ẼMIT(R) = 2B0R +
11
48

π

R
(39)

+
m2
FR

π

(
3 − 2 ln 2 + ln

π

2Rµ

)
+ O(m4

F ).

3. TWO-PHASE HYBRID BAG MODEL

Here, we consider yet another version of the hybrid
bag model, that where the fermion (“quark”) field
ψ(x) interacts with the boson (“meson”) scalar field
ϕ(x). In contrast to the three-phase model investi-
gated in [19], our version does not contain the domain
ofmassless quarks; therefore, it is referred to as a two-
phase model. The respective Lagrangian has the form

L = iψ̄∂̂ψ +
1
2
∂µϕ∂

µϕ (40)

− θ(|x| < R)
(

1
2
mF [ψ̄, eiγ5ϕψ] −B

)

P

−θ(|x| > R)
(
V (ϕ) +

1
2
MF [ψ̄, eiγ5ϕψ]

)
,

where V (ϕ) describes the nonlinear interaction of
the scalar field outside the bag. The commutator is
used in the terms bilinear in the fermion fields in
order to ensure charge-conjugation invariance. The
key distinction between the model specified by this
Lagrangian and the standard fermion–soliton bag
models [35–38] is that, here, the boson field ϕ(x),
which is responsible for the generation of the effective
fermion mass, differs from the field θ(x) forming the
bag.

For the sake of simplicity, we will use the mean-
field approximation (MFA) [30] for the scalar field
ϕ(x, t); that is, it is treated as a c function of the
spacetime coordinates. Moreover, we assume that it
is independent of time: ϕ(x, t) = ϕ(x).

One possible way to investigate theories involving
boson–fermion coupling is to employ an expansion in
the chiral coupling constant [39]. Here, we assume
that the fermionmassmF within the segment |x| < R
is small and that the massMF outside the bag (|x| >
R) is infinitely large. The fermion field for |x| > R
then disappears for dynamical reasons, and the set of
equations of motion for |x| < R takes the form

(i∂̂ −mF e
iγ5ϕ)ψ(x, t) = 0, (41)

ϕ′′ = i
mF

2
〈[ψ̄, γ5e

iγ5ϕψ]〉sea, (42)

where the vacuum expectation value of the axial cur-
rent on the right-hand side of (42) is evaluated in the
MFA. The behavior of the scalar field for |x| > R is
governed by the nonlinear equation

−ϕ′′(x) = V ′
ϕ(ϕ). (43)

We assume that the scalar field is an odd function and
that its behavior outside the bag (that is, for |x| > R)
has the form of the “Yukawa tail,”

ϕ(x) = π
(
1 −Ae−mx

)
, x > 0, (44)

where m is the meson mass; the behavior of the
field ϕ(x) at x < 0 is readily determined by its odd-
ness. The formulation of the problem must be supple-
mented with the boundary conditions for the fields:

(±iγ1 + eiγ5ϕ(x))ψ(±R) = 0, (45)

ϕ(±R± 0) = ϕ(±R ∓ 0),

ϕ′(±R± 0) = ϕ′(±R∓ 0).

The fermion spectrum is invariant under the trans-
formation ν → −ν, ν = ω − λ, which is associated
with the unitary transformations of the wave func-
tion, χ → iγ1χ (χ = eiγ5ϕ/2ψ). For this reason, the
vacuum expectation value of the axial current on the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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right-hand side of Eq. (42) vanishes and the linear
function ϕ(x) = 2λx is a solution to Eq. (42) (a self-
consistent solution for this system is considered in
detail in [19, 39]). The eigenvalues ωn are determined
from the equation(

1 − e2ikR
mF + i(ν + k)
mF + i(ν − k)

)
(46)

×
(

1 − e−2ikR

(
ν − k

ν + k

)
mF − i(ν + k)
mF − i(ν − k)

)

=
(

1 − e2ikR
mF − i(ν + k)
mF − i(ν − k)

)

×
(

1 − e−2ikR

(
ν − k

ν + k

)
mF + i(ν + k)
mF + i(ν − k)

)
,

where k2 = m2
F − ν2. With the proviso that the signs

of ωn and νn are identical at all n, the energy of
the filled sea of negative-energy states, ωn < 0, is
determined by expression (2) with the substitution
ωn → νn. For the sake of definiteness, we regularize
this expression using the exponential cutoff (3):

Eexp
0 = lim

τ→0

(
−
∑
νn>0

νne
−τνn

)

= lim
τ→0

d

dτ

∑
νn>0

e−τνn .

Equation (46) can be recast into the form

mF sin 2Rk + k cos 2Rk = 0. (47)

Expanding k in powers ofmF ,

k = k̃0 + mF k̃1 + m2
F k̃2 + O(m3

F ), (48)

we arrive at

ν = k̃0 + mF k̃1 + m2
F

(
k̃2 +

1
2k̃0

)
+O(m3

F ). (49)

Next, we solve Eq. (47) in each order of the expansion.
Neglecting O

(
m3
F

)
terms, we obtain

mF (sin 2Rk̃0 + 2RmF k̃1 cos 2Rk̃0) (50)

+ (k̃0 + mF k̃1 + m2
F k̃2)

([
1 − 1

2
(2Rk̃1mF )2

]

× cos 2Rk̃0 − 2R(mF k̃1 + m2
F k̃2) sin 2Rk̃0

)
= 0,

whence it follows that

νn =
π

2R
n +

π

4R
+

2
π
mF (1 + mFR) (51)

× 1
(2n + 1)

− 16Rm2
F

π3(2n + 1)3
+ O(m3

F ).
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
Further, we expand νn in powers of 1/n; that is,

νn = Ω1n + Ω0 +
Ω−1

n
+ O

(
1
n2

)
, (52)

where

Ω1 =
π

2R
, Ω0 =

π

4R
, (53)

Ω−1 =
mF

π
(1 + mFR).

This formula differs from that in the massive MIT bag
model by the termmF /π в Ω−1, which is independent
of the bag size R. For n = 0, we obtain

ν0 = Ω0 + 2Ω−1 −
16Rm2

F

π3
. (54)

Now, we can use the regularized expression (15) for
the energy. In order to perform a renormalization, we
must redefine the bag constant B (36) and the overall
factor Λ, which is independent of R and which does
not appear in (29) explicitly:

Λ = Λ0 −
mF

π
ln τµ. (55)

It only remains to find the contribution Efin from
O
(
1/n2

)
nonsingular terms. The result is

Efin = Ω−1

∑
n=1

1
n(2n + 1)

+
16Rm2

F

π3
(56)

×
∑
n=0

1
(2n + 1)3

= Ω−1 · 2(1 − ln 2) +
16Rm2

F

π3
A,

where A = 1.051799 . . . . Thus, the renormalized en-
ergy of the fermion sea as a function of the bag sizeR
has the form (it is assumed that Λ0 = 0)

E(R) = 2B0R− π

48R
+
mF

π
(1 + mFR) (57)

×
[
ln

π

2µR
+ 1 − 2 ln 2

]
+

16Rm2
F

π3
A.

The total energy of the system also involves the
contribution of the scalar field. In order to find it we
make use of the boundary conditions for the field ϕ
and its derivative (45). This yields

2λ =
πm

mR + 1
. (58)

Employing the virial theorem in the external domain
1
2
ϕ′2(x) = V (ϕ), we obtain the scalar-field energy in

the form

Eϕ(R) =
1
2

R∫
−R

dxϕ′2(x) (59)
2
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+


 −R∫
−∞

+

∞∫
R


 dxϕ′2(x) =

π2m

mR + 1
.

It should be recalled that the representation of the
scalar field in the form (44) is appropriate only at dis-
tances far exceeding the soliton size (which is about
m−1). The point is that the effective chiral Lagrangian
adequately describes the behavior of the meson (pion)
field and its interaction with baryons only at distances
much longer than the baryon radius R. At distances
shorter than R, the pion field cannot be treated as a
local field, but the interactions of the pion field can be
described in terms of the chiral Lagrangian only under
the condition of locality. Thus, the internal structure
of the pion can be neglected only in the case of long-
wave fields whose wavelength λ is much greater than
R [40]. Within the bag model, this gives rise to the
following constraint on the meson mass m and the
bag radius:

mR = Kπ,Kπ ≥ 1.

The behavior of the field ϕ(x) within the region
|x| < R does not affect the topological charge of a
given configuration—it is completely determined by
the asymptotic behavior ofϕ(x) at infinity. It is natural
to assume that the “meson” mass m outside the bag
is not a free parameter, but that it is determined by
the bag size. The contribution of the scalar field to the
energy of the bag is then given by

Eϕ(R) =
π2Kπ

(1 + Kπ)R
, (60)

while the total energy of this configuration is

Etot(m,R) = E(R) + Eϕ(R). (61)

Thus, the quantity obtained by renormalizing the total
energy in this model according to the above prescrip-
tion has a unique minimum. This indicates that there
is a stable state at some value of the parameter R.

Let us now clarify the role of the parameter µ in this
situation. The emergence of an arbitrary mass param-
eter upon renormalizing one-loop diagrams is well
known [18]. In the case being considered, however,
the parameter µ has also a different meaning. Since
the models under study are effective low-energy mod-
els, they are applicable to phenomena occurring at
energies lower than some specified value.Within both
regularization schemes used in the present study, the
main contribution to the sum over ωn comes from
ωn < µ terms, the contribution of other terms being
suppressed by the cutoff. Because of this, the mass
parameter µ can be interpreted, in either case, as the
energy scale specifying the domain of validity of the
method used. One can either introduce the running
bag constant B0(µ) in such a way that the total
P

energy would be independent of µ or consider µ as
a measurable quantity that determines the validity
range of our approach [18]. The former possibility was
realized in the present study.

4. CONCLUSION

It has been demonstrated directly that, in order to
calculate the finite energy of the filled sea of negative-
energy fermion states (Casimir energy), one can use a
renormalization procedure based on an analytic reg-
ularization of divergent sums (such as a temperature
regularization or a ζ-function regularization), the iso-
lation of singular terms in the form of poles at the
physical value of the regularization parameter, and the
absorption of divergences in the redefined bare con-
stants of the input Lagrangian. The singular terms
can be unambiguously isolated by using a scheme
that is similar to the minimal-subtraction scheme in
quantum field theory. Upon the removal of regular-
ization, the remaining terms are finite and have a
nontrivial dependence on the geometric parameters of
themodel (bag size). That all computations have been
performed analytically makes it possible to trace thor-
oughly the emergence of singular and regular con-
tributions in regularized sums. Unfortunately, many
attractive features of the proposed renormalization
scheme are peculiar only to the (1 + 1)-dimensional
case [41] and can hardly be extended to the four-
dimensional case. Nevertheless, problems associated
with such an extension will be discussed elsewhere.
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Abstract—For the three-string baryon model (Y configuration), the known exact solution to the classical
equations of motion that describes the rotational motion of the system at a constant speed is investigated for
stability. In the spectrum of small perturbations of this solution, modes growing exponentially with time are
found, whereby the instability of rotational motion is proven for the Y configuration. This result is confirmed
within an alternative approach that makes it possible to determine the classical motion of the system from
a specific initial position and initial velocities of string points. A comparison of the Y configuration with
the model of a relativistic string with massive ends, in which case rotational motion is stable in the linear
approximation, aids in revealing the most adequate string model from the point of view of describing baryon
excitations on Regge trajectories. c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

String models of baryons differ by the geometric
character of connection of three matter points repre-
senting quarks by relativistic strings. Four possible
configurations proposed for the first time in [1] are
shown in Fig. 1. These are (а) the quark–diquark
model q–qq [2], which coincides, at the classical level,
with the meson model of a relativistic string featuring
masses at its ends [3]; (b) the linear configuration
q–q–q [4]; (c) the three-string (star or Y ) configu-
ration [5–9]; and (d) the triangle model (∆ configu-
ration) [10, 11].

These string baryon configurations have not at-
tracted the attention of researchers to the same extent
(the greatest number of studies have been devoted to
the q–qq and Y models); however, the question of
which model is preferable remains open. In tackling
this problem, it is desirable to take into account some
considerations. In particular, the justifiability of one
configuration or another from the point of view of
QCD is of paramount importance. Within various
approaches, a validation of this type has been con-
ducted by various authors (who preliminarily chose,
as a rule, a baryon configuration they preferred) for
the quark–diquark model of baryons [12] (see also
the review articles quoted in [13]), as well as for the
three-string and triangle models. By way of example,
it can be recalled that, in [14], the lattice formulation
of QCD in the strong-coupling limit led to the Y
configuration for baryons. Moreover, the method of
vacuum correlation functions [15] lends additional
support to this model within QCD, the baryonWilson
loop having the Y configuration [16, 17]. At the same
time, Cornwall [18] argues that the ∆ configuration
1063-7788/02/6505-0906$22.00 c©
for the baryon Wilson loop should be preferred to the
Y configuration.

In order to choose the most adequate string model
of baryons, it is nevertheless necessary to compare the
predictions of the models being considered with data
of baryon spectroscopy. An analysis of this problem
reveals [19, 20] that, in terms of rotational motions,
one can describe, under specific assumptions, orbital
excitations of baryons on Regge trajectories within
each of the models specified in Fig. 1. Classical ro-
tational motion is a rotation of the system in a plane
at a constant speed, in which case relativistic-string
segments are rectilinear for the q–qq, q–q–q, and
Y configurations, but they appear to be hypocycloid
segments for the ∆ configuration [10, 11]. For all
of the aforementioned string models, the relationship
between the energy E and the angular momentum
J of rotational motion leads, within any methods for
taking into account spin corrections, to quasilinear
Regge trajectories whose high-J asymptotic behav-
ior is given by [19]

J � α′E2 − νE1/2
∑
i

m
3/2
i , J,E → ∞, (1)

where mi are the masses of the matter points sim-
ulating quarks. In the different models, the relation
between the slope α′ of the trajectory (and the coef-
ficient ν) and the string tension γ has different forms:
α′ = (2πγ)−1 for the q–q, q–qq, and q–q–q configu-
rations; α′ = 2/3(2πγ)−1 for the three-string model;
and α′ = 3/8(2πγ)−1 for so-called simple rotational
states of the ∆ configuration. It follows that only un-
der the assumption [19] that the effective string ten-
sion γ for the last two models differs from the corre-
sponding fundamental constant in the q–q and q–qq
2002 MAIK “Nauka/Interperiodica”
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models can the three-string and triangle configura-
tions be considered as candidates for describing lead-
ing Regge trajectories with slope α′ � 0.9 GeV−2.

The problem of stability of rotational motion within
the models depicted in Fig. 1 is yet another important
aspect that affects the choice of model. It should be
noted in this connection that, until recently, the linear
q–q–q configuration received virtually no study since
it was assumed in [2], on the basis of clear physical
ideas, that it is unstable with respect to a transition
into the quark–diquark (q–qq) configuration via a
displacement of the central quark. This assumption
was examined in [4], where it was shown that the
rotational motion of the q–q–q system is indeed un-
stable, but that, at the classical level, this system
does not undergo a transition into the quark–diquark
configuration.

The question of whether the rotational motions
of the other string configurations are stable (or not)
is equally important. Here, this question is investi-
gated in detail at the classical level for the three-
string model, both in the case where there are massive
points at the string ends and in the massless case.
An unexpected result of this analysis would be of
importance not only from the point of view of choos-
ing an adequate string model of baryons but also
for further advances in quantizing the systems being
considered. Difficulties involved in quantizing string
configurations with masses at the ends stem from
the fact that the boundary conditions on the world
lines of massive points are essentially nonlinear [3,
21]. These difficulties were usually sidestepped by
significantly constraining the class of motions being
considered—for example, via quantization of specific
motions of the three-string system [22] or within the
extensively used rectilinear-string ansatz [16, 17, 23,
24], which leads to an almost complete elimination
of string degrees of freedom. In this connection, it
should be noted that the spectrum of small oscillatory
perturbations for a rotating string with massive ends
was investigated in [25] without introducing con-
straints of the above types. This opens the possibility
for developing a quantum description of a sufficiently
broad class of states of the system in a linear vicin-
ity of rotational motion, provided that the motion in
question is stable.

The ensuing exposition is organized as follows.
The question concerning the character of analogous
(quasirotational) perturbations for the Y configura-
tion, which is a more complicated string model of
baryons—this question is closely related to that of
stability of its rotational motion—is analyzed in Sec-
tion 2, a comparison with the case of the q–q or
the q–qq configuration being drawn in the course of
this analysis. This is preceded by a description of the
dynamics of the three-string system in Section 1. In
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 1. String baryon models.

order to analyze the character of instability and to
include all physical motions in the proposed descrip-
tion, a method is developed for solving the initial-
and boundary-value problem for the Y configuration
(Section 3)—that is, for determining the classical
motion from the initial positions and initial velocities
of the points of the system. This approach makes it
possible to establish, among other things, that, in
order to describe all motions of the Y configuration,
it is necessary to parametrize the three-sheet world
surface in a form that is more general than that in [6,
7, 9], where only a narrow class of motions was con-
sidered.

1. DYNAMICS OF THE Y CONFIGURATION

In the three-string model (Y configuration), three
world sheets swept out by three segments of the rela-
tivistic string inD-dimensional Minkowski space are
parametrized by three functionsXµ

i (τi, σ), in which it
is convenient to use different symbols τ1, τ2, and τ3
for the time parameter [5]. As to space coordinates,
they will be denoted by a single symbol σ. The three
world sheets are connected along the node world line,
which, as will be demonstrated below, can be speci-
fied, without loss of generality, in the form σ = 0 on
each of the sheets.

In this notation, the action functional for the Y
configuration featuring matter points with massesmi

at the string ends has the form

S =−
3∑
i=1

∫
dτi


γ

σi(τi)∫
0

√
−gidσ+mi

√
ẋ2
i (τi)


 , (2)

where γ is the string tension, −gi = (Ẋi,X
′
i)

2 −
Ẋ2
i X

′
i
2, σ = σi(τi), and ẋµi (τi) = d

dτi
Xµ(τi, σi(τi))

is a vector tangential to the trajectory of the ith
matter point; here, Ẋµ

i = ∂τiX
µ
i , X

′µ
i = ∂σX

µ
i , and

(a, b) = aµb
µ. We use here the system of units where

the speed of light is set to unity (c = 1).
The action functional (2), which employs the

parametrization involving different τi, is a generaliza-
tion of the analogous expressions in [5, 6, 9] and in [7],
where the analyses were performed for, respectively,
the case ofmi = 0 and the case of a constrained class
of motions of the system withmi �= 0.
2
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The matching of the three sheets of the world
surface Xµ

i (τi, σ) on the node world line leads, at
each point of this line, to a relationship between the
parameters τi, which is specified here in the general
form

τ2 = τ2(τ), τ3 = τ3(τ), τ1 ≡ τ.

Thematching condition for the three strings at the
node is then given by

Xµ
1

(
τ, 0
)

= Xµ
2

(
τ2(τ), 0

)
= Xµ

3

(
τ3(τ), 0

)
. (3)

Varying the above action functional, we obtain the
equations of motion

∂

∂τi

∂
√−gi
∂Ẋµ

i

+
∂

∂σ

∂
√−gi
∂X ′µ

i

= 0, i = 1, 2, 3, (4)

and the boundary conditions on the trajectories of the
quarks1) and the node.

By using nondegenerate changes of parameters,
τi, σ → τ̃i, σ̃, and taking into account the invariance
of the action functional (2) under these changes [21],
we introduce, on each of the three sheets of the world
surface, coordinates (as before, we denote them by
τi, σ) in such a way as to ensure fulfillment of the
orthonormality conditions

Ẋ2
i + X ′2

i = 0, (Ẋi,X
′
i) = 0, i = 1, 2, 3. (5)

The matching condition (3), in contrast to the
more stringent condition τ1 = τ2 = τ3 on the node
line [6, 9], makes it possible to implement these
reparametrizations on each of the three sheets in-
dependently. However, the intrinsic equations of the
node line then take the form σ = σ0i(τi), which is
more general than that of σ = 0.

In terms of the coordinates satisfying the condi-
tions in (5), the equations of motion are linear; that
is,

Ẍµ
i −X ′′µ

i = 0. (6)

Concurrently, the boundary conditions at the node
and on the quark trajectories σ = σi(τi) take the form

3∑
i=1

[
X ′µ
i

(
τi(τ), σ0i(τi)

)
(7)

+ σ′0i(τi)Ẋ
µ
i

(
τi, σ0i(τi)

)]
τ ′i(τ) = 0,

mi
d

dτi
Uµ
i (τi) + γ

[
X ′µ
i + σ′i(τi)Ẋ

µ
i

]∣∣∣
σ=σi(τi)

= 0, (8)

i = 1, 2, 3,

1)For the sake of brevity, we will henceforth refer to the matter
point at the ends of the strings as quarks, bearing in mind,
however, that the spin and other quantum characteristics of
quarks cannot be described at the classical level.
P

where Uµ
i (τi) = ẋµi (τi)

/√
ẋ2
i (τi) is the unit vector

along the velocity of the ith quark. In the notation
σ′0i, σ

′
i, and τ

′
i , the prime on a function of one variable

hereafter denotes the derivative with respect to its

argument—for example, σ′i(τi) =
d

dτi
σi.

The orthonormality conditions (5) and, hence,
Eqs. (6), together with the corresponding boundary
conditions, remain invariant under reparametriza-
tions of the class

τ̃i ± σ̃ = fi±(τi ± σ), i = 1, 2, 3, (9)

where fi± are arbitrary smooth monotonic func-
tions [21]. By appropriately choosing the functions
fi±, we can fix, on all sheets of the world surface of
the Y configuration, the equations for the trajectories
of the node and the strings ends in the form

σ0i(τi) = 0, σi(τ) = π, 0 ≤ σ ≤ π, (10)

i = 1, 2, 3.

On each sheet individually, we can ensure fulfill-
ment of the node-line condition σ = 0 by choosing
the functions fi+(ξ) in (9) and fulfillment of the condi-
tion σi = const by making the additional substitution
fi+ = fi−, which leaves the equation σ = 0 invariant.
The constants σi are not bound to be equal to π—the
transformation in (9) with fi±(ξ) = ξ · const changes
their values.

In this study, we use a parametrization that sat-
isfies the conditions in (10) and (5). An alternative
approach is possible where the requirement τ1 = τ2 =
τ3 on the node line (3) is introduced along with the
condition σ0i = 0 (or σ0i = const). As was shown
in [5], however, the functions σi(τ) in the equations
for the quark trajectories are not equal to constants in
this case.

But if we require fulfillment of both the conditions
in (10) and the relations τ1 = τ2 = τ3 on the node
line (3), simultaneously preserving the orthonormal-
ized gauge (5)—this was done in [6, 7, 9]—the class
of motions of the system that are described by the
model will be constrained, since all physically pos-
sible motions will not meet the above conditions. In
order to prove this, we note that, upon imposing the
constraints in (5) and (10), there remains a class of
reparametrizations (9) such that they do not disturb
these constraints [26] and that the functions fi+(ξ) =
fi−(ξ) = fi(ξ) in (9) obey the requirements

fi(ξ + 2π) = fi(ξ) + 2π, f ′i(ξ) > 0. (11)

Functions belonging to this class can be rep-
resented in the form f(ξ) = ξ + φ(ξ), where φ(ξ +
2π) = φ(ξ) and φ′(ξ) > −1 [26], and possess, as can
easily be verified, the following properties: if f(ξ)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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and g(ξ) satisfy the conditions in (11), the inverse
function f−1(ξ) and the superposition f

(
g(ξ)

)
also

satisfy (11).
We require that the equalities τ̃2 = τ̃3 = τ̃1 on the

node line σ = 0 be the result of the transformations
specified by Eqs. (9) and (11). This leads to the rela-
tions

f2

(
τ2(τ)

)
= f3

(
τ3(τ)

)
= f1(τ),

which mean that, under the conditions in (5) and
(10), only in the case where the functions τ2(τ) and
τ3(τ) meet the conditions in (11) can the equalities
τ̃2 = τ̃3 = τ̃1 be satisfied at all values of τ̃ . The class of
motions that is constrained by this requirement is very
narrow—it does not exhaust all physically possible
motions. In Section 3 below, an arbitrary motion of
the three-string system is described in such a way
that unknown functions τi(τ) are determined from
the dynamical equations; also presented there is an
example of the evolution of the system where the
functions τi(τ) do not satisfy the conditions in (11).

Let us recast the boundary conditions (3), (7), and
(8) into a form that is convenient for the ensuing
analysis. We substitute the general solution

Xµ
i (τi, σ) =

1
2
[
Ψµ
i+(τi + σ) + Ψµ

i−(τi − σ)
]
, (12)

i = 1, 2, 3,

to Eqs. (6) on the world sheets into the boundary
conditions (8) on the trajectories of the string ends;
by using expressions (10), these boundary conditions
can be reduced to the form [4, 27]

dUµ
i

dτi
=

γ

mi

[
δµν − Uµ

i (τi)Uiν(τi)
]
Ψ′ν
i−(τi − π), (13)

Ψ′µ
i+(τi + π) = Ψ′µ

i−(τi − π) − 2miγ
−1U ′µ

i (τi), (14)

where δµν =

{
1, µ = ν,

0, µ �= ν.
The substitution of the so-

lution specified by (12) into the boundary conditions
(3) and (7) on the node line yields

d

dτ




Ψµ
1−(τ)

Ψµ
2−
(
τ2(τ)

)
Ψµ

3−
(
τ3(τ)

)


 (15)

=
1
3



−1 2 2

2 −1 2

2 2 −1


 d

dτ




Ψµ
1+(τ)

Ψµ
2+

(
τ2(τ)

)
Ψµ

3+

(
τ3(τ)

)


 .

The formulation of the boundary conditions in
terms of Eqs. (13)–(15) is convenient for solving the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
initial- and boundary-value problem in question (see
Section 3 below) and for analyzing the stability of the
rotational motion of the Y configuration.

For the three-string model, the best known exam-
ple of an exact solution is that which corresponds to
the case where three rectangular segments connected
at the node at angles of 120◦ execute a rotational
motion at a constant speed [5–9]. This solution can
be parametrized as

Xµ
i = Xµ

i(rot)(τi, σ) = Ω−1
[
θτie

µ
0 (16)

+ sin(θσ)eµ(τi + ∆i)
]
, σ ∈ [0, σi],

where τ1 = τ2 = τ3; e
µ
0 is a vector directed along the

center-of-mass velocity and subjected to the condi-
tion e20 = 1; the rotating vector

eµ(τ) = eµ1 cos(θτ) + eµ2 sin(θτ) (17)

is aligned with the first segment of the string, e2 = −1
and (e0, e) = 0; e0, e1, e2, and e3 is the orthonor-
malized vierbein in (3 + 1)-dimensional Minkowski
space; and θ, σi, and ∆i = 2π(i − 1)/(3θ) are con-
stants (i = 1, 2, 3). The parametrization in (16) sat-
isfies Eq. (6) and the conditions in (3), (5), (7), and (8)
if the angular frequency Ω of rotation, the parameters
θ and σi, and the constant velocities vi of the string
ends are related by equations [2, 19]

vi = sin(θσi) =
[(Ωmi

2γ

)2
+ 1
]1/2

− Ωmi

2γ
, (18)

i = 1, 2, 3.

In order to analyze the stability of the motion
specified by Eq. (16), we consider, in the next section,
small perturbations of this solution and of an analo-
gous solution in the string model of mesons.

2. QUASIROTATIONAL MOTIONS
AND ANALYSIS OF STABILITY

Before proceeding to analyze quasirotational sta-
tes of the three-string system—that is, small per-
turbations of the motion described by Eq. (16)—we
consider similar states of a relativistic string with
massive ends [3]. In this simpler model, the string part
of the action functional is equivalent to one term in
expression (2). A rotation of a rectangular string at a
constant velocity is a well-known rotational motion
of this system. It is widely used to describe orbital
excitations of mesons and, within the q–qq model,
baryons [2, 19, 20, 24] and can be parametrized in the
form

Xµ = Xµ
rot(τ, σ) = Ω−1

[
θτeµ0 (19)

+ cos(θσ + φ0)eµ(τ)
]
, σ ∈ [0, π],
2
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which is similar to that of (16). This solution to
Eqs. (6) satisfies the conditions in (5) and boundary
conditions of the form (8) for this model [3, 21]
(naturally, we suppress here the index i on Xµ) at
v1 = cosφ0, v2 = − cos(πθ + φ0), and miγ

−1Ω =
(1 − v2

i )/vi; here, m1 and m2 are the masses at the
string ends.

The question concerning small perturbations of
the motions described by Eq. (19) has long since
aroused interest [28] in connection with the need for
describing, within this model, hadron states inter-
preted as higher radial excitations in potential mod-
els [20]. One of the recent attempts of this type in [29]
does not seem successful because of an inappropriate
choice of gauge beyond (5)—this led to the compli-
cated nonlinear equations of the general form (4)—
and because of the disregard of the boundary con-
ditions (8) and resort to unjustifiable simplifying as-
sumptions. Not only were these drawbacks analyzed
in [25], but also an adequate method was proposed
there for describing arbitrary small perturbations of
the rotational motion given by (19). This method is
based on the fact that, if the orthonormality condi-
tions (5) are satisfied, the substitution of the gen-
eral solutionXµ(τ, σ) = 1

2

[
Ψµ

+(τ + σ) + Ψµ
−(τ − σ)

]
to the equations of motion (12) into the boundary
conditions reduces them to the form [26]

Ψ′µ
± (τ ± σi) (20)

= miγ
−1
[√

−U ′2
i (τ)Uµ

i (τ) ∓ (−1)iU ′µ
i (τ)

]
,

i = 1, 2,

which makes it possible to determine Ψµ
± and, hence,

the world surfaceXµ(τ, σ) by using the preset vector
function Uµ

1 (τ) or Uµ
2 (τ) (the unit vector of the veloc-

ity of a string end). Upon the substitution of expres-
sions (20) into the boundary conditions, there arises a
set of ordinary differential equations with a deviating
argument [26, 27]. In the particular case of m2 → ∞
(which is of importance for a comparison with the
Y configuration), this set of equations assumes the
form [25, 26]

U ′µ
1 (τ) =

[
δµν − Uµ

1 (τ)U1ν(τ)
]
(2eν0e0κ − δνκ) (21)

×
[√

−U ′2
1 (−)Uκ

1 (−) − U ′κ
1 (−)

]
,

where (−) ≡ (τ − 2π). In this case, the infinitely
heavy second end of the string is at rest: v2 = 0 and
Uµ

2 (τ) = eµ0 = const.
The vector function

Uµ
1(rot)(τ) = (1 − v2

1)−1/2
[
eµ0 + v1é

µ(τ)
]
, (22)

éµ(τ) = θ−1 d

dτ
eµ(τ),
PH
which corresponds to the rotational motion described
in (19), satisfies Eq. (21). In order to describe an
arbitrary motion close to a rotational one, we specify a
vector function Uµ

1 (τ) close to Uµ
1(rot) in the form [25]

Uµ
1 (τ) = Uµ

1(rot)(τ) + uµ(τ), |uµ| � 1, (23)

and substitute this expression into (21), omitting
second-order terms in the small perturbation uµ(τ).
For the resulting linearized set of equations, we seek
solutions in the form uµ = Aµe−iωτ , which exist
only in the case where ω = ωn is an eigenvalue
of some boundary-value problem [25]. An arbitrary
perturbation can be expanded in a series as [25, 26]

uµ(τ) =
∑
n

Aµn exp(−iωnτ). (24)

Upon the substitution into Eqs. (23) and (20), this
leads to the Fourier series

Xµ(τ, σ) = Xµ
rot(τ, σ) (25)

+
∞∑

n=−∞

{
eµ3αn cos(ωnσ + φn) exp(−iωnτ)

+ βn
[
eµ0f0(σ) + éµ(τ)f⊥(σ)

+ ieµ(τ)fr(σ)
]

exp(−iω̃nτ)
}
,

which describes an arbitrary small perturbation of the
motion (19) (quasirotational motion) of a string with
massive ends. Each term of this series corresponds
to a vibration of a rotating string in the form of a
standing wave that belongs to one of two types. This
is either a vibration in the direction of the vector eµ3
orthogonal to the plane of rotation, the frequency of
this vibration being proportional to the root ωn of the
equation2)

(ω2 −Q1Q2)
/[

(Q1 +Q2)ω
]

= cotπω, (26)

or a vibration in the plane of rotation spanned by
the vectors e1 and e2, its dimensionless frequency ω̃n
satisfying the equation

(ω̃2 − q1)(ω̃2 − q2) − 4Q1Q2ω̃
2

2ω̃
[
Q1(ω̃2 − q2) + Q2(ω̃2 − q1)

] = cotπω̃, (27)

where Qi = θvi/
√

1 − v2
i , qi = Q2

i (1 + v−2
i ), and the

root ω1 ∈ (0, 1) of Eq. (26) is equal to θ.

Expressions (25)–(27) are presented here for the
case of arbitrary masses m1 and m2. For m2 → ∞,

2)It is interesting to note that the same Eq. (26) describes
the spectrum of states of this string model for the case of
linearized boundary conditions [26].
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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the transcendental Eqs. (26) and (27) and the func-
tions appearing in series (25) become

ω

Q1
= cotπω,

ω̃2 − q1
2Q1ω̃

= cotπω̃, (28)

f0 = 2(θ2 − ω̃2
n) cos(ω̃nσ̃); f⊥ = (ω̃n + θ)2 sin(ω̃n −

θ)σ̃ − (ω̃n − θ)2 sin(ω̃n + θ)σ̃; fr = (ω̃n + θ)2 ×
sin(θ − ω̃n)σ̃ − (ω̃n − θ)2 sin(ω̃n + θ)σ̃, where σ̃ =
π − σ.

All the quantities ωn and ω̃n satisfying Eqs. (26),
(27) or (28) and appearing in expression (25) are real-
valued; therefore, the rotational motion (19) of a string
with massive ends is stable in the linear approxima-
tion.

Following the scheme outlined above, we will
now analyze stability of the rotational motion (16)
of the three-string model. We will consider that, as in
the case of the q–q model, the three world surfaces
Xµ
i (τi, σ) of the Y configuration can be expressed

in terms of the unit vectors Uµ
i (τi) of the velocity of

the massive string ends by using formulas of the type
in (20) that are derived from the conditions in (13) and
(14). Specifically, we have

Ψ′µ
i±(τi ± σi) (29)

= miγ
−1
[√

−U ′2
i (τi)U

µ
i (τi) ∓ U ′µ

i (τi)
]
.

By analogy with (22), we further represent the
above unit vectors Uµ

i and the functions Ψ′µ
i± for the

rotational motion (16) as

Uµ
i(rot)(τi) = Γi

[
eµ0 + vié

µ(τi + ∆i)
]
, (30)

Ψ′µ
i±(rot)(τi) = miγ

−1Qi

[
Γie

µ
0 (31)

+ Γiviéµ(τi + ∆i ∓ σi) ± eµ(τi + ∆i ∓ σi)
]
,

where Γi = (1 − v2
i )

−1/2, Qi = θΓivi, and éµ(τ) =
θ−1 d

dτ e
µ(τ) = eµ

(
τ + π/(2θ)

)
. The orthogonal vec-

tors eµ and éµ (17) form a movable basis in the
plane of rotation of the Y configuration. Below, we will
consider the case of m1 = m2 = m3, in which vi =
v1, Γi = Γ1, and Qi = Q1 for i = 2, 3, and choose the
constants σi in the form (10), σi = π.

If an arbitrary motion of the system is close to the
rotational motion given by Eq. (16), we will describe
it in terms of the unit vectors Uµ

i (τ) specified in the
form

Uµ
i (τi) = Uµ

i(rot)(τi) + uµi (τi), (32)

which is similar to that in (23). The perturbations
uµi (τi) are assumed to be small (|uµi | � 1), which
makes it possible to neglect second-order terms in ui.
Thereupon, we arrive at the conditions(

Ui(rot)(τi), ui(τi)
)

= 0, (33)
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which follow from the fact that Uµ
i and Uµ

i(rot) in (32)
are unit vectors.

By virtue of expressions (29), small perturbations
of the form (32) determine, in the linear approxima-
tion, the corresponding corrections for the functions
Ψ′µ
i± (31); that is,

Ψ′µ
i±(τi) = Ψ′µ

i±(rot)(τi) (34)

+ miγ
−1
[
Qiu

µ
i (τi ∓ π) ∓ u′µi (τi ∓ π)

+ Uµ
i(rot)(τi ∓ π)

(
e(τi + ∆i ∓ π), u′i(τi ∓ π)

)]
.

Considering that an arbitrary perturbation uµ for
a string with massive ends can be expanded in the
Fourier series (24), we will seek quasirotational mo-
tions in the form (32), where perturbations are repre-
sented as the harmonics

uµi (τi) =
[
A0
i e
µ
0 + Aie

µ(τi + ∆i) (35)

+ v−1
i A0

i é
µ(τi + ∆i) + Azi e

µ
3

]
exp(−iωτi).

The complex amplitudes A0
i , Ai, and A

z
i are as-

sumed to be small. The factor v−1
i A0

i in front of éµ is
determined by condition (33).

The dependence τi(τ) in the conditions given
by (3) is sought in the form

τi(τ) = τ + δi exp(−iωτ), (36)

|δi| � 1, i = 2, 3.

This leads to the expansions eµ(τi) � eµ(τ) +
θδié

µ(τ)e−iωτ in (30), (31), and (34).
We now substitute expressions (34), (35), and

(36) into the boundary conditions (15) at the node.
For the functions Ψ′µ

i±(rot)(τ) (31), they are satisfied
identically; in the first-order (linear) approximation
in the amplitudes A0

i , Ai, A
z
i , and δi, we obtain a

set of three vector equations. We further consider
their projections onto the basis vectors eµ0 , e

µ(τ − π),
éµ(τ − π), and eµ3 .

The projections of these equations onto the normal
eµ3 to the plane of rotation reduce to the form

(ωCω +Q1)(Az1 + Az2 + Az3) = 0, (37)

(Q1Cω − ω)(Az1 −Azi ) = 0, i = 2, 3,

where Cω = cotπω. These three equations, which in-
volve only the amplitudes Azi , form a closed sub-
set in the set of twelve projections being consid-
ered; therefore, orthogonal perturbations described by
these equations are independent of vibrations in the
plane of rotation, which are characterized by the am-
plitudesA0

i andAi. The set of Eqs. (37) has nontrivial
2
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solutions only in the case where the dimensionless
frequency ω satisfies one of the two equations

ω/Q1 = cotπω, ω/Q1 = −tanπω. (38)

Perturbations of the rotational motion (16) that
have the form

Xµ
i (τi, σ) = Xµ

i(rot)(τi, σ) (39)

+ |Azi |
√

1 + Q2
1/ω

2
ne
µ
3 sin(ωnσ) cos(ωnτ + φn),

where τi = τ and where the amplitudesAzi are related
by the equation Az1 +Az2 +Az3 = 0, correspond to the
roots ω = ωn (n = 1, 2, . . .) of the first of the above
two equations, which coincides with the first equation
in (28). Expression (39) describes small perturbations
of the rotating Y configuration whose node is at rest
in the c.m. frame that have the form of standing waves
with n antinodes and which are similar to quasirota-
tional states of a string with a fixed end [25], which
appears in the series in (25) with the factor eµ3 . The
frequencies of vibrations in these waves are Ωn =
Ωωn/θ (the minimum positive root ω1 is equal to θ).

For the standing waves corresponding to the roots
of the second equation in (38), the amplitudes satisfy
the equalities Az1 = Az2 = Az3 (the vibrations of the
three segments of the string are synchronous and
identical) and expression (39) is valid upon the sub-
stitution of cos(ωnσ) for sin(ωnσ). Thus, the node of
the Y configuration is involved in such vibrations in
the direction of eµ3 .

All roots of Eqs. (38) are real-valued; therefore, the
motion specified by Eq. (16) is stable with respect to
orthogonal perturbations in the linear approximation.

The pattern of perturbations in the plane of ro-
tation is of a different character. It is described by
the remaining nine linear equations of the afore-
mentioned set of twelve equations in eight unknown
complex-valued amplitudes A0

i , Ai, and δi. Upon
rather cumbersome transformations, these equations,
which include eight independent equations, can be
represented as

iω̃Γ1

[
Q1(Cω̃ + i)δi + Cω̃(A1 −Ai)

]
(40)

+ (Q−1
1 q1Cω̃ − ω̃)(A0

1 −A0
i ) = 0,

εiv1Γ2
1(ω̃2 − θ2)Ai + 2K1A

0
1 + (K1 − iεiK2)A0

i = 0,

2K1A1 + (K1 + iεiK2)Ai + εiK3A
0
i = 0,

iω̃Γ1(A1 + A2 + A3) + (Q−1
1 q1 + ω̃Cω̃)

× (A0
1 + A0

2 + A0
3) = 0,

K4

[
2ω̃A0

1 − (ω̃ − i
√

3θ)A0
2 − (ω̃ + i

√
3θ)A0

3

]
= 0,[

K4(ω̃2 − θ2) + 2iK1(ω̃2 + θ2)
]
(A0

2 −A0
3) = 0,
P

where q1 = Q2
1(1 + v−2

1 ); εi = (−1)i
√

3; in the first
three equations, the subscript i takes the values of
2 and 3;K1 = q1 − ω̃2 + 2Q1ω̃Cω̃;K2 = Γ1v1

[
(ω̃2 +

θ2)Cω̃ + 2Q1ω̃
]
; K3v1Γ2

1(ω̃2 − θ2) = K2
2 −K2

1 ; and
K4 = (q1 − ω̃2)Cω̃ − 2Q1ω̃.

Nontrivial solutions to this set of equations corre-
spond to the frequencies ω̃ obtained as the roots of the
characteristic equation

K1K4

[
K4(ω̃2 − θ2) + 2iK1(ω̃2 + θ2)

]
= 0. (41)

These solutions can be broken down into three
classes. Two of them are described by the equations
K1 = 0 andK4 = 0 or

ω̃2 − q1
2Q1ω̃

= cotπω̃,
ω̃2 − q1
2Q1ω̃

= −tanπω̃, (42)

which are similar to relations (38) and (28). The roots
of Eqs. (27) are real-valued, and the correspond-
ing vibrations of the segments of the strings in the
plane of rotation have the form of standing waves
of constant amplitude. The waves corresponding to
the first equation in (42) are symmetric since they
are determined by the equal amplitudes A1 = A2 =
A3 and A0

1 = A0
2 = A0

3 and coincide with analogous
vibrations of a string with a fixed end, which are char-
acterized by ω̃n obtained as the roots of the second
equation in (28).

However, the frequencies that are characteristic
of the third of the aforementioned classes and which
annihilate the third factor on the left-hand side of (41),
so that they are the roots of the equation

2
Q1ω̃(θ2 − ω̃2) − i(ω̃2 − q1)(ω̃2 + θ2)
(ω̃2 − q1)(ω̃2 − θ2) − 4iQ1ω̃(ω̃2 + θ2)

= cotπω̃,

(43)

are complex-valued (with the exception of the roots
ω̃ = ±θ). After the substitution ω̃ = Reω̃ + iImω̃ and
some transformations, an analysis of Eq. (43) reveals
that its roots form a countable set, ω̃ = ω̃n. The be-
havior of the real parts of these roots is similar to
the behavior of the roots of Eqs. (38) and (42)—
that is, Reω̃n ∈ (n− 1, n) for the corresponding num-
bering; at the same time, the imaginary parts ϑn =
Imω̃n possess the property ϑ−n = ϑn and, for n ≥ 1,
form an increasing sequence, its limit being given by
lim
n→∞

ϑn = π−1arctanh(1/2) � 0.1748. It is the most

important that the imaginary parts of the complex-
valued roots of Eq. (43) are positive. This leads to
an increase in the amplitude of these perturbations
owing to the presence of the factor

exp(−iω̃nτ) = exp(−iReω̃nτ + Imω̃nτ), (44)

Imω̃n > 0.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Exponentially growing modes are also present in
the spectrum of quasirotational states of the massless
version of the three-string model [1, 5, 6, 9]. If, in
the case of mi = 0 (which is equivalent to vi = 1 or
qi, Qi → ∞), Eqs. (38) and (42) lead to known inte-
gral and half-integer eigenfrequencies ωn and ω̃n [9],
Eq. (43) takes the form

−2i(4ω̃2 + 1)
/

(4ω̃2 − 1) = cotπω̃, mi = 0.

The complex-valued roots of this equation behave
in the same way as in the general case of (43).

An arbitrary perturbation of the form (16) imposed
on rotational motion in the three-string model can
be expanded in a Fourier series in harmonics of all
the above classes with frequencies determined by
Eqs. (38), (42), and (43) that is similar to that in
(24). Only in the case where all coefficients of the
harmonics belonging to the last class are zero (this
is realized only if there exist some special symmetries
of a perturbation that are peculiar to the remaining
classes) does the amplitude of this perturbation not
grow exponentially according to (44). Thus, we have
proven that, for the Y configuration, the classical
rotational motion specified by Eq. (16) is unstable;
this is so even in the linear approximation.

In order to explore the evolution of this instability
in the case where perturbations are not small, we
consider the initial- and boundary-value problem for
this model.

3. INITIAL- AND BOUNDARY-VALUE
PROBLEM FOR THE Y MODEL

The general formulation of the initial- and boun-
dary-value problem for the three-string system con-
sist in determining the motion of the system for preset
initial conditions—that is, in constructing the solu-
tion Xµ

i (τi, σ) to Eq. (6) that satisfies the orthonor-
mality conditions (5) and the boundary conditions (3),
(7), and (8). The initial conditions imply the preas-
signment of the initial position of the Y configuration
as three curves (initial curves) connected at the node
that are parametrized in the form ρµi (λ) with λ ∈
[0, λi] (i = 1, 2, 3) such that ρµ1 (0) = ρµ2 (0) = ρµ3 (0)
and ρ′i

2 < 0 and the preassignment of initial velocities
V µ
i (λ). The timelike vector V µ

i (λ) is defined apart
from an arbitrary positive scalar factor χ(λ).

In this study, the method developed for solving
the initial- and boundary-value problem within the
model of a relativistic string with massive ends [27]
and within the q–q–qmodel [4] is taken as a basis and
is applied to the more complicated system considered
here.
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Let us specify the intrinsic equations of the initial
curves on the world sheets,3)

τi = τ∗i (λ), σ = σ∗i (λ),

and the initial position of the Y configuration in the
form [27]

Xµ
i

(
τ∗i (λ), σ∗i (λ)

)
= ρµi (λ), (45)

λ ∈ [0, λi], i = 1, 2, 3,

where |τ∗′i | < σ∗′i , τ
∗
i (0) = σ∗i (0) = 0, and σ∗i (λi) =

π. By using the initial data, we determine the func-
tions Ψµ

i± appearing in (12) by the formulas [27]

d

dλ
Ψµ
i±
(
τ∗i (λ) ± σ∗i (λ)

)
(46)

=
[
1 ± (Vi, ρ′i)Gi

]
ρ′µi ∓Giρ

′2
i V

µ
i ,

where Gi(λ) =
[
(Vi, ρ′i)

2 − V 2
i ρ

′2
i

]−1/2. Expressions
(46) make it possible to find the functions Ψµ

i+ with-
in the initial segments Ii+ =

[
0, τ∗i (λi) + π

]
and the

functions Ψµ
i− within the segments Ii− =

[
τ∗i (λi) −

π, 0
]
. The constant of integration in (46) is deter-

mined from the initial condition (45).
A continuation of the functions Ψµ

i± as their
arguments grow indefinitely can be uniquely per-
formed with the aid of the boundary conditions (3),
(7), and (8), which were reduced above, for this
purpose, to the form (13)–(15). The set of Eqs.
(13) must be supplemented with the initial condi-

tions Uµ
i

(
τ∗(λi)

)
= V µ

i (λi)
/√

V 2
i (λi) (i = 1, 2, 3).

Expressing the functions Ψµ
i− in terms of Ψµ

i+ with
the aid of Eqs. (15) (initially within the segments
Ii+), integrating Eqs. (13) with the above initial
conditions, and using expressions (14) to determine
the functions Ψµ

i+ off the segments Ii+, we can
continue infinitely the functionsΨµ

i± beyond the initial
segments Ii±, provided that the functions τ2(τ) and
τ3(τ) are known. In order to find them, we use the
isotropy conditions Ψ′2

i± = 0, which follow from (5),
and the relations

[τ ′i(τ)]2
(
Ψ′
i+(τi),Ψ′

i−(τi)
)

=
(
Ψ′

1+(τ),Ψ′
1−(τ)

)
, (47)

i = 2, 3,

which were obtained with the aid of equalities (3) and
(12). Only if the conditions in (47) are satisfied does
the isotropy of the vector functions Ψ′µ

i− on the left-
hand side of (15) follow from the isotropy of the vector
functions Ψ′µ

i+ on the right-hand side of this equation.

3)There is arbitrariness in choosing the functions τ∗i (λ) and
σ∗

i (λ) that is associated with the freedom in choosing the
functions fi in (11).
2



914 SHAROV

 

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

 
y

 

–0.2 0 0.2

 

m

 

2

 

m

 

1

 

1
2

3

9

 

(

 
a

 

)
0.3

0.2

0.1

0

–0.1

–0.2

–0.3

 
y

 

–0.2 0 0.2

 

9

 

(

 

b

 

)

 

10

18

x

19

28

81

 

τ

 

(

 

e

 

)

12080400

120

80

40

(

 

c

 

)

(

 

d

 

)

 

x

 

τ

 

i

 

(

 

τ

 

)

 

5

Fig. 2. Example of the quasirotational motion of the Y configuration.
By substituting Ψ′µ
i− from (15) into (47), we obtain

the expressions

τ ′2(τ) =

(
Ψ′

1+(τ),Ψ′
3+(τ3)

)(
Ψ′

2+(τ2),Ψ′
3+(τ3)

) , (48)

τ ′3(τ) =

(
Ψ′

1+(τ),Ψ′
2+(τ2)

)(
Ψ′

2+(τ2),Ψ′
3+(τ3)

) ,
which make it possible to find τ2(τ) and τ3(τ) if
the functions Ψ′µ

i+ have been determined first within
the segments Ii+ by formulas (46) and then, in the
course of implementing the above procedure of their
continuation, beyond the segments Ii+.

Examples of solving the initial- and boundary-
value problem according to this scheme for the Y
string configuration were given in [25, 30], where nu-
merical methods were applied since analytic solutions
exist only for a bounded class of motions atmi = 0 [9]
andmi �= 0 [7].

For the system with m1 = m2 = m3 = 1 and γ =
1, Fig. 2 presents an example of a motion that is close
to a rotational motion and which was obtained as a
solution to the initial- and boundary-value problem
with the initial position of the three string segments
ρµi (λ) having the same length Ri = vi/Ω = 0.3 and
forming angles of 120◦ (position 1 in Fig. 2a) and the
P

initial velocities Vi(λ) =
[
Ω × ρi

]
+ δVi(λ), where

Ω satisfies relations (18). The exact solution (16) in
the form of rotational motion corresponds to case of
δVi = 0. For the motion in Fig. 2, the only nonvan-
ishing component of the perturbation is that which is
associated with eµ1 on the first segment of the string,
δV 1

1 (λ) = 0.05λ (0 < λ < λ1 = 1). Figures 2a–2d
show the successive positions of the system on the
xy or (eµ1e

µ
2 ) plane (sections t = const of the world

surface) at regular time intervals of ∆t = 0.15. The
numbers of these sections in the order of increasing
t are indicated near the position of the first massive
point.

An asymmetric distribution of the initial velocities
results in that, at some instant (position 5 in Fig. 2а),
the node begins to move. The distance from the node
to the center of rotation increases with time, while
the lengths of the string segments quasiperiodically
change in turn (Figs. 2b, 2c) until one of these lengths
vanishes (Fig. 2d).

In Fig. 2, the development of the instability at
the initial stage is consistent with the results of
the analysis performed in Section 2. According to
expression (44), the increment of the growth of
perturbations is determined by the imaginary parts
of the roots ω̃n of Eq. (43). For the parameters of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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the motion illustrated in Fig. 2, these roots are ω̃1 �
0.276 + 0.0297i, ω̃2 � 1.05 + 0.157i, ω̃3 � 2.027 +
0.17i, ω̃4 � 3.0183 + 0.173i, . . .. It can be seen that
the relevant increment is determined predominantly
by Imω̃1 � 0.0297 (recall that the frequencies nor-
malized to t are Ωn = Ωω̃n/θ; in the present case,
θ � 0.1595 and Ω � 1.6).

In Fig. 2e, the dependences (solid curve) τ2(τ)
and (dashed curve) τ3(τ) are shown for the motion in
question. The rate of passage of the time τi increases
as the corresponding segment of the string decreases.
The horizontal asymptotes of the curves in Fig. 2e can
be explained by the vanishing of the length of the first
string segment. As can be seen, the functions τ2(τ)
and τ3(τ) do not satisfy the periodicity conditions in
(11). This gives no way to describe this motion (and
an arbitrary motion in the general case) within the
parametrization [6, 9] with τ1 = τ2 = τ3. Along with
the justification of the last statement, it was shown in
[30] that this result of the development of instability of
the rotational motion specified by Eq. (16) is a feature
peculiar to the dynamics of the Y baryon configura-
tion. The amplitude of any asymmetric planar [δρi,
δVi in the (xy) plane] initial perturbation grows with
time, which inevitably leads to the fusion of one of the
massive points with the node.

CONCLUSION

It has been shown that the rotational motion (16)
in the three-string baryon model is unstable at the
classical level. In order to do this, two approaches
have been employed: that which is based on an anal-
ysis of the spectrum of small perturbations of the
motion being considered (Section 2) and that which is
based on the method proposed for solving the initial-
and boundary-value problem with general initial con-
ditions for the Y string configuration (Section 3).
Within the second approach, it has been established
that, because of the development of instability, an
arbitrary small asymmetric perturbation of a rotating
three-string configuration inevitably leads to the fu-
sion of the node and the massive point at the end of
one of three strings.

In Section 2, the fact that this instability is re-
alized for the three-string model with equal masses
at the ends has been proven by analyzing, in the
linear approximation, small perturbations of the mo-
tion described by Eq. (16). The exponentially growing
modes (44), which are associated with the complex
roots ω̃n of Eq. (43)—they are the frequencies of these
modes—have been found in the spectrum of these
perturbations. Their presence leads to the growth of
arbitrary asymmetric perturbations of the rotational
motion.
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It is useful to compare this behavior of the three-
string system with the result of a similar analysis of
quasirotational motions of a string with massive ends
in [25]. These motions can be represented in the form
of the series (25), which represents a superposition
of vibrational motions of a rotating string that have
the form of standing waves. Their frequencies that
are obtained as the roots of Eqs. (26) and (27) are
real-valued; therefore, the rotational motion (19) of
a string with massive ends is stable in the linear
approximation.

Expression (25) makes it possible to quantize
quasirotational states of a string with masses at its
ends in the linear vicinity of the stable solution (19).
We recall that the quantization method commonly
used in string theory [21] cannot be applied to the
system in question because of the nonlinearity of
the boundary conditions (8), which prevents a rep-
resentation of a general solution to the equations
of motion in the form of a series. Because of these
difficulties, approaches were developed to quantizing
such a system by constraining its dynamics by the
condition requiring that the string be rectilinear [23,
24, 28], whereby the majority of string degrees of
freedom were eliminated (in some cases, this reduced
to the introduction of a string term in the potential).

It should be noted in this connection that a quan-
tum description of the series in (25), which was ob-
tained without introducing the above constraint and
which takes into account all quasirotational states of
the string, does not lead to analogs of the Virasoro
conditions, since, by construction, this series satisfies
the orthonormality condition (5) in the linear approxi-
mation. The objective of this approach (its elaboration
is beyond the scope of the present study devoted to the
three-string model) is to describe not only orbital but
also other excitations of hadrons within the q–q and
q–qq string models.

As to the three-string model specified by the ac-
tion functional (2), the instability of its classical ro-
tational motion given by Eq. (16) presents difficul-
ties in applying the above approach to quantizing its
quasirotational states because this is possible only in
the linear vicinity of a stable solution. The same is true
for the q–q–q string baryon configuration [4]; at the
same time, so-called simple rotational motions in the
triangle model are stable [25].

The results of this study are of importance for
choosing the most adequate string configuration both
for describing baryon excitations on the Regge trajec-
tories (1) [19, 20] and for constructing more elaborate
baryon models on the basis of QCD.
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Moscow, 1987; World Sci., Singapore, 1990).

22. M. S. Plyushchaı̆, G. P. Pron’ko, and A. V. Razumov,
Teor. Mat. Fiz. 67, 396 (1986).

23. A. Y. Dubin, A. B. Kaidalov, and Yu. A. Simonov,
Phys. Lett. B 323, 41 (1994); Yu. S. Kalashnikova
and A. V. Nefediev, Yad. Fiz. 61, 871 (1998) [Phys. At.
Nucl. 61, 785 (1998)].

24. L. D. Solov’ev, Yad. Fiz. 62, 534 (1999) [Phys.
At. Nucl. 62, 491 (1999)]; hep-ph/9803483; Phys.
Rev. D 58, 035005 (1998); 61, 015009 (2000); hep-
ph/9907486.

25. G. S. Sharov, Phys. Rev. D 62, 094015 (2000); hep-
ph/0004003.

26. G. S. Sharov, Teor. Mat. Fiz. 107, 86 (1996);
V. P. Petrov and G. S. Sharov, Teor. Mat. Fiz. 109,
187 (1996).

27. B. M. Barbashov and G. S. Sharov, Teor. Mat. Fiz.
101, 253 (1994).

28. M. Ida, Prog. Theor. Phys. 59, 1661 (1978); D. La-
Course and M. G. Olsson, Phys. Rev. D 39, 2751
(1989); V. V. Nesterenko, Z. Phys. C 47, 111 (1990).

29. T. J. Allen, M. G. Olsson, and S. Veseli, Phys.
Rev. D 59, 094011 (1999); 60, 074026 (1999); hep-
ph/9903222.

30. G. S. Sharov, hep-ph/0001154.

Translated by A. Isaakyan
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002



Physics of Atomic Nuclei, Vol. 65, No. 5, 2002, pp. 917–924. From Yadernaya Fizika, Vol. 65, No. 5, 2002, pp. 949–955.
Original English Text Copyright c© 2002 by Narodetskii, Trusov.

ELEMENTARY PARTICLES AND FIELDS
Theory
Heavy Baryons in the Nonperturbative String Approach*

I. M. Narodetskii and M. A. Trusov
Institute of Theoretical and Experimental Physics,

Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117259 Russia
Received April 12, 2001

Abstract—We present some piloting calculations of the short-range correlation coefficients for light and
heavy baryons and of the masses of the doubly heavy baryons ΞQQ′ and ΩQQ′ (Q,Q′ = c, b) on the basis of
a simple approximation within nonperturbative QCD. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The observation of the B+
c meson by the CDF

collaboration [1] opens a new direction in the physics
of hadrons containing two heavy quarks. Presently,
at the LHC, B factories, and the Tevatron with high
luminosity, several experiments have been proposed
in which it is possible to identify and study hadrons
containing two heavy quarks, like doubly charmed
baryons (ccq) or baryons (bcq) with charm and
beauty.1) In the more distant future, next-generation
experiments with a high bottom-quark-production
rate will provide excellent possibilities for study-
ing bottom baryons and their decays. In view of
this project, it is important to have safe theoretical
predictions for heavy-baryon masses as a guide to
experimental searches for these hadrons.

A number of authors [2–12] have already con-
sidered baryons containing two heavy quarks in an-
ticipation of future experiments that may discover
these particles. In the majority of those studies, how-
ever, theoretical predictions are somewhat biased by
the introduction of additional dynamical assumptions
and supplementary dynamical parameters, like con-
stituent quark masses, in addition to the only one
parameter really pertinent to QCD—the overall scale
ΛQCD of the theory.

The purpose of this study is to calculate the
masses of heavy baryons in a simple approximation
within nonperturbative QCD developed in [13–16].
This method has already been applied to studying
baryon Regge trajectories [15] and, very recently, to
computing the magnetic moments of light baryons
[17]. The key point of this study is that it is very
reasonable that the same method should also hold

∗This article was submitted by the authors in English.
1)Here, and throughout this paper, q denotes a light quark u
or d.
1063-7788/02/6505-0917$22.00 c©
for hadrons containing heavy quarks. Here, we con-
centrate on the masses of doubly heavy baryons. As
in [17], we take, as the universal parameter, the QCD
string tension σ, fixed experimentally by the meson
and baryon Regge slopes. We also include the pertur-
bative Coulomb interaction with the frozen coupling
αs(1 GeV) = 0.39. The basic feature of this approach
is the dynamical calculation of the quark constituent
masses mi in terms of the quark current masses

m
(0)
i . This is done by using the einbein (auxiliary-

field) formalism, which is proven to be rather accurate
in various calculations for relativistic systems. The
einbeine are treated as variational parameters that
are to be found from the condition requiring that the
baryon eigenenergies be minimal [18].

2. DESCRIPTION OF FORMALISM

The starting point of the approach is the Feyn-
man–Schwinger representation of the 3q Green’s
function, where the role of “time” parameter along a
quark path is played by the Fock–Schwinger proper
time. The final step is the derivation of the c.m. ef-
fective Hamiltonian (EH) containing the dynamical
quark masses as parameters. For many details, the
reader is referred to the original studies reported in
[13–16].
Let us consider a baryon consisting of three quarks

of arbitrary massesmi, i = 1, 2, 3. In what follows, we
confine ourselves to a consideration of the ground-
state baryons without radial and orbital excitations,
in which case tensor and spin–orbit forces do not
contribute perturbatively. Then, only the spin–spin
interaction survives in the perturbative approxima-
tion. The EH has the form

H =
3∑
i=1

(
m

(0)2
i

2mi
+
mi

2

)
+H0 + V, (1)
2002 MAIK “Nauka/Interperiodica”



918 NARODETSKII, TRUSOV
where m(0)
i are the current quark masses and mi

are the dynamical quark masses to be found from
the minimum condition [see Eq. (2) below]. Since

mi � m
(0)
i for light quarks, butmi ∼ m

(0)
i for heavy

quarks, each light quark contributes to the baryon
mass an additional mass ∼mi/2 (not mi as in the
ordinary nonrelativistic quark model), whereas each
heavy quark contributes an additional mass of about
mi. The dynamical quark masses are evaluated from
the equations defining the stationary points of the
baryon massMB as a function ofmi:

∂MB(mi)
∂mi

= 0. (2)

Let ri be the quark coordinates. The kinetic-energy
operatorH0 in Eq. (1) takes the familiar form

H0 = − 1
2m1

∂2

∂r2
1

− 1
2m2

∂2

∂r2
2

− 1
2m3

∂2

∂r2
3

. (3)

The quantity V is the sum of the perturbative Cou-
lomb-like one-gluon-exchange potential and the
string potential. The Coulomb-like potential is given
by

VC = −2αs
3

∑
i<j

1
|rij |

, (4)

where the factor 2/3 is the value of the quadratic
Casimir operator for the group SUc(3). The string
potential was calculated in [15] as the static energy
of the three heavy quarks,

Vstring(r1, r2, r3) = σRmin, (5)

where Rmin is the sum of the three distances |ri|
from the string junction point, which, for the sake of
simplicity, is chosen to coincide with the center-of-
mass coordinateRc.m..

3. HYPERRADIAL APPROXIMATION

We use the hyperspherical-formalism approach
(for details, see the original studies in [19]). In the hy-
perradial approximation (HRA) corresponding to the
truncation of the wave function ψ({ri}) by the com-
ponent with grand-orbital momentum K = 0, the
three-quark wave function depends only on the hy-
perradiusR2 = ρ2 + λ2, where ρ and λ are the three-
body Jacobi variables,2) and does not depend on an-
gular variables. The confining potential (5) has a spe-
cific three-body character. However, this potential, as
well as the Coulomb potential in Eq. (4), is smooth
in the sense that the HRA (where only that part
of the potential which is invariant under rotations

2)For their definition, see the Appendix.
P

in the six-dimensional space spanned by the Jacobi
coordinates is taken into account) is already an ex-
cellent approximation. The HRA neglects the mixed-
symmetry components of the three-quark wave func-
tion, which appear in the higher approximations of
the hyperspherical formalism [19]. Introducing the
reduced function3) χ(R) = R5/2ψ(R) and averaging
V = VC +Vstring over the six-dimensional sphere, one
obtains the Schrödinger equation

d2χ(R)
dR2

+ 2µ
[
E −W (R) − 15

8µR2

]
χ(R) = 0, (6)

where µ is an arbitrary parameter that has dimensions
of mass and which drops out of the final expressions.
The last term in (6) represents the three-body cen-
trifugal barrier, andW (R) is the average of the three-
quark potentials over the six-dimensional sphere,

W (R) = 〈V 〉 = − a

R
+ bR (7)

with

a =
2αs
3

16
3π

∑
i<j

αij , b = σ
32

15π

∑
i,j

γij . (8)

The mass-depending constants αij and γij are de-
fined by Eqs. (A.2) and (A.13) in the Appendix.
It is convenient to introduce the variable x = R

√
µ

and to eliminate an artificial dependence of Eq. (6) on
µ, whereupon Eq. (6) becomes

χ′′(x) + 2
(
E − U(x) − 15

8x2

)
χ(x) = 0, (9)

where

U(x) = −
a
√
µ

x
+

b
√
µ
x. (10)

Since a ∼ 1/
√
µ and b ∼ √

µ [see Eqs. (A.2) and
(A.13)], the eigenvalueE in (6) does not depend on µ.

4. QUARK DYNAMICAL MASSES

Equation (9) when applied to the nucleon (m(0)
q ∼

0) yields the dynamical massmq of the light quark and
when applied to strange hyperons yields the strange-
quark mass ms. In the same manner, the application
of this equation to charm and beauty baryons yields
the constituent masses of the c and b quarks. In
our calculations, we use the same parameters as

in [20], namely, σ = 0.17 GeV, αs = 0.4, m(0)
q =

3)In what follows, we omit the value of K = 0 to avoid sub-
scripts. Note that the radially symmetric component with
K = 0 is a dominant one in the three-quark wave function.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 1. Constituent quark masses mi and ground-state
eigenenergies E0 (in GeV) for various baryon states (the
results obtained from the semiclassical and from the vari-
ational solution virtually coincide)

Baryon m1 m2 m3 E0

(qqq) 0.446 0.446 0.446 1.438

(qqs) 0.451 0.451 0.485 1.414

(qss) 0.457 0.490 0.490 1.392

(sss) 0.495 0.495 0.495 1.370

(qqc) 0.519 0.519 1.502 1.176

(qsc) 0.522 0.555 1.505 1.157

(ssc) 0.589 0.589 1.507 1.138

(qqb) 0.564 0.564 4.836 1.057

(qsb) 0.567 0.601 4.837 1.038

(ssb) 0.604 0.604 4.838 1.019

(qcc) 0.569 1.555 1.555 0.926

(scc) 0.604 1.557 1.557 0.908

(qcb) 0.606 1.616 4.866 0.783

(scb) 0.642 1.618 4.867 0.765

(qbb) 0.636 4.931 4.931 0.582

(sbb) 0.673 4.931 4.931 0.565

Table 2. Dynamical quark masses for the ground-state
(qc), (sc), (qb), and (sb) mesons [20] and for the corre-
sponding ground-state baryons

State mq ms mc mb

(qc) 0.529 1.497

(sc) 0.569 1.501

(qqc) 0.519 1.502

(qsc) 0.522 0.555 1.505

(qb) 0.619 4.84

(sb) 0.658 4.842

(qqb) 0.564 4.836

(qsb) 0.567 0.601 4.838

0.009 GeV, m(0)
s = 0.17 GeV, m(0)

c = 1.4 GeV, and
m

(0)
b = 4.8GeV.

We solve Eq. (9) using both semiclassical and
variational solutions. The first approach is based on
the well-known fact that the interplay between the
centrifugal term and the confining potential pro-
duces a minimum of the effective potential specific
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
to the three-body problem. The numerical solution
to Eq. (9) for the ground-state eigenenergy can be
reproduced at a percent level of accuracy by using
the parabolic approximation for the effective potential
[21, 22]. This approximation provides an analytic
expression for the eigenenergy. The potential Ũ(x) =
U(x) + 15/8x2 has the minimum at the point x = x0

that is defined by the condition Ũ ′(x0) = 0; that is,

b
√
µ
x3

0 + (a
√
µ)x0 − 15/4 = 0. (11)

Expanding Ũ(x) in the vicinity of x = x0, one obtains

Ũ(x) ≈ Ũ(x0) +
1
2
Ũ ′′(x0)(x− x0)2,

which is the potential of a harmonic oscillator with

frequency ω =
√
Ũ ′′(x0). Therefore, the energy eigen-

value is

E0 ≈ Ũ(x0) +
1
2
ω. (12)

Table 1 presents the dynamical masses mi and
the ground-state eigenvalues E0 for various baryons
according to the calculations based on the procedure
described above. Our values of the light-quark mass
mq agree qualitatively with the results obtained in [20]
from the analysis of the heavy–light meson ground
states, but they are about 60 MeV higher than those
of [15, 17]. This difference is due to the different
treatment of the Coulomb and spin–spin interac-
tions. In [15], neither interaction was included and
the light-quark mass was calculated from a fit to the
mass of ∆(1232), where the Coulomb-like potential
and the spin–spin interaction seem to balance each
other. In [17], the smeared spin–spin interaction for
the light quarks was included into Eq. (2) defining the
dynamical mass of the light quark. In our calculation,
as in [20], we include the Coulomb-like term, but we
neglect the spin–spin interaction.

There is no good theoretical reason for the dy-
namical quark masses to take identical values in dif-
ferent mesons and baryons. From the results given
in Table 1, we conclude that the dynamical masses
of the light quarks (u, d, or s) increased by about
100–150 MeV upon going over from light to heavy
baryons. For the heavy quarks (c and b), the variation
in the values of their dynamical masses is marginal. In
Table 2, we compare the quark masses in the ΛQ and
ΞQ baryons with those calculated in [20] in theD and
B mesons. One observes that the masses of the light
quarks in baryons are slightly smaller than those in
the mesons. Small variations in the values of mc and
mb are within the accuracy of our calculations.
2



920 NARODETSKII, TRUSOV
Table 3. Rijk in units of GeV3 and r̄ij =
√
〈r2

ij〉 in units of fm (the results were obtained from the trial functions (13)

with the variational parameters p0 given in units of GeV1/2 in the first column; the results for light baryons are presented
for the sake of completeness)

Baryon p0 R123 R231 R312 r̄12 r̄23 r̄31

(qqq) 0.472 0.00564 0.00564 0.00564 0.777 0.777 0.777

(qqs) 0.470 0.00567 0.00598 0.00598 0.775 0.762 0.762

(qss) 0.469 0.00600 0.00633 0.00600 0.760 0.747 0.760

(sss) 0.467 0.00636 0.00636 0.00636 0.746 0.746 0.746

(qqc) 0.454 0.00626 0.0113 0.0113 0.750 0.615 0.615

(qsc) 0.452 0.00656 0.0121 0.0113 0.738 0.601 0.615

(ssc) 0.451 0.00688 0.0121 0.0121 0.727 0.602 0.602

(qqb) 0.447 0.00681 0.0163 0.0163 0.729 0.545 0.545

(qsb) 0.446 0.00711 0.0176 0.0163 0.719 0.531 0.545

(ssb) 0.445 0.00742 0.0176 0.0176 0.708 0.531 0.531

(qcc) 0.439 0.0116 0.0296 0.0116 0.611 0.447 0.611

(scc) 0.438 0.0123 0.0294 0.0123 0.599 0.448 0.599

(qcb) 0.436 0.0123 0.0562 0.0166 0.599 0.361 0.541

(scb) 0.435 0.0130 0.0559 0.0178 0.587 0.361 0.529

(qbb) 0.438 0.0181 0.165 0.0181 0.527 0.252 0.527

(sbb) 0.437 0.0194 0.165 0.0194 0.515 0.252 0.515
5. CORRELATION FUNCTIONS
FOR BARYONS

For many applications, one needs the quantities
〈ψ|δ(3)(rj − ri)|ψ〉. To estimate effects associated
with the baryon wave function, we solve Eq. (9) by the
variational method. We introduce a simple variational
ansatz for χ(x),

χ(x) = 2
√

2p3x5/2e−p
2x2
, (13)

where p is the variational parameter, and the numer-
ical factor is chosen in such a way that

∫
χ2(x)dx =

1. The trial three-quark Hamiltonian admits explicit
solutions for the energy, the wave function, and the
density matrix; that is,

E0 ≈ min
p
E(p), (14)

where

E(p) = 〈χ|H|χ〉 = 3p2 − (a
√
µ)

3
4

√
π

2
p (15)

+ (b/
√
µ)

15
16

√
π

2
p−1.
P

The density matrix (correlation function) fijk(rij) in
a baryon {ijk} is defined as

fijk(rij) = α3
ij

∫
|ψ(αijrij,λij)|2dλij , (16)

so that ∫
fijk(rij)drij (17)

=
∫∫

|ψ(ρij ,λij)|2dλijd3ρij = 1.

For the trial function (13), fijk(rij) can be evalu-
ated explicitly. The result is

fijk(rij) =
(
ξij
π

)3/2

e−ξij |rij |2, (18)

where

ξij = 2p2
0µij. (19)

Here, µij is the reduced mass of the quarks i and j
and p0 must be found from the condition

dE

dp

∣∣∣∣
p=p0

= 0.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 4. Ratios of the squares of the wave functions de-
termining the probability of finding a light quark at the
location of the heavy quark inside a heavy baryon and the
correspondingmeson (the mesonwave functions are taken
from [20])

Rucd/Ruc Rscu/Rsc Rubd/Rb̄d Rsbu/Rsb

0.436 0.405 0.373 0.340

Table 5. Short-range correlation coefficientsRijk (shown
parenthetically are the corresponding quantities calculated
by using the power-law potential from [7]; in brackets, we
present the correlation coefficients calculated on the basis
of the nonrelativistic model featuring the Buchmüller–Tye
potential)

State R123 R231 R312

(ccq) 0.030 (0.039) [0.022] 0.012 (0.009) 0.012 (0.009)

(ccs) 0.030 (0.042) [0.022] 0.012 (0.019) 0.012 (0.019)

(bbq) 0.165 (0.152) [0.144] 0.018 (0.012) 0.018 (0.012)

(bbs) 0.165 (0.162) [0.144] 0.019 (0.028) 0.019 (0.028)

(bcq) 0.056 (0.065) [0.042] 0.012 (0.010) 0.017 (0.011)

(bcs) 0.056 (0.071) [0.042] 0.013 (0.021) 0.018 (0.025)

The expectation values fijk(rij) depend on the third
or spectator quark through the three-quark wave
function.

Let us define the quantities

Rijk = fijk(0) =
(
ξij
π

)3/2

. (20)

The corresponding quantity for a meson is denoted
by Rij . The results of the variational calculations are
given in Table 3, where, for each baryon, we show the
variational parameters p0, the quantitiesRijk (in units

of GeV3), and the average distances r̄ij =
√

〈r2
ij〉

(in fm). The variational estimates of E0 and quark
dynamical masses do not differ from those in Table 1.

Comparing the results given in Table 3 with those
from [20], we obtain (see Table 4)4)

Rijk <
1
2
Rij , (21)

Rijk � Rijl if mk ≤ ml. (22)

Note, however, that, if i and j are the light quarks and
if the quarks k and l are heavy, thenRijk ≈ Rijl (e.g.,

4)Inequalities (21) and (22) were first suggested in [23] from
the observed mass splitting in mesons and baryons.
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Rqqc ≈ Rqqb), which is in agreement with the limit of
heavy-quark effective theory.

Our estimates for the ratios Rijk/Rij agree with
the results obtained by using the nonrelativistic quark
model, the bag model [24–26], or QCD sum rules
[27], which are typically in the range 0.1–0.5. On the
other hand, our result for Λb disagrees with that ob-
tained by Rosner [28], who estimated the heavy–light
diquark density at zero separation in Λb from the ratio
of hyperfine splittings between the Σb and Σ∗

b baryons
and the B and B∗ mesons and found Rqbu/Rb̄d ∼
0.9 ± 0.1 if the baryon splitting is taken to bem2

Σ∗
b
−

m2
Σb

∼ m2
Σ∗

c
−m2

Σc
= (0.384 ± 0.035) GeV2 or even

Rubd/Rb̄d ∼ 1.8 ± 0.5 if the surprisingly small DEL-
PHI resultmΣ∗

b
−mΣb

= (56 ± 16) MeV, which has
not yet been confirmed, is used.

From the results of Table 3, it follows that the
correlation between two quarks depends on the third
one. It should also be noted that the wave function
calculated inHRA showsmarginal diquark clustering
in the doubly heavy baryons. This is basically a kine-
matical effect related to the fact that, in the HRA, the
difference between the different r̄ij in a baryon is due
to the factor

√
1/µij , which varies between

√
2/mi

formi = mj and
√

1/mi formi � mj .

In Table 5, we compare the short-range cor-
relation coefficients in doubly heavy baryons with
those calculated in [7] by using the pairwise quark
interaction represented by a power-law potential and
in [9] by using the nonrelativistic model involving the
Buchmüller–Tye potential.

6. MASSES OF DOUBLY HEAVY BARYONS

To calculate hadron masses we, as in [15], first
renormalize the string potential as

Vstring → Vstring +
∑
i

Ci, (23)

where the constants Ci take into account the residual
self-energy (RSE) of quarks. In principle, these con-
stants can be expressed in terms of two scalar func-
tions entering into covariant expansion of the bilocal
cumulants of gluonic fields in the QCD vacuum [14,
15]. In the present study, we treat them phenomeno-
logically. To find Ci in (23), we assume, first, that the
spin splittings of hadrons with a given quark content
arise from the color-magnetic interaction in QCD.
Indeed, for ground-state hadrons, the hadron wave
functions have no orbital angular momentum; there-
fore, tensor and spin–orbit forces do not contribute.
2
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Table 6.Masses of baryons containing two heavy quarks

State Present
study [7](a) [8](b) [10](c) [11] [12](d)

Ξ{qcc} 3.69 3.70 3.71 3.66 3.61 3.48

Ω{scc} 3.86 3.80 3.76 3.74 3.71 3.58

Ξ{qcb} 6.96 6.99 6.95 7.04 6.82

Ω{scb} 7.13 7.07 7.05 7.09 6.92

Ξ{qbb} 10.16 10.24 10.23 10.24 10.09

Ω{sbb} 10.34 10.30 10.32 10.37 10.19

(a) The additive nonrelativistic quark model with a power-law
potential.
(b) Relativistic quasipotential quark model.
(c) The Feynman–Hellmann theorem.
(d) Approximation of doubly heavy diquark.

The second assumption is that the color-magnetic
interaction can be treated perturbatively [29, 30]:

∆Espin =
16παs

9

∑
i<j

si · sj
mimj

Rijk. (24)

Because the color-magnetic interaction between two
quarks is in inverse proportion to the product of their
masses, the perturbative approximation is improved
with increasing quark mass. However, this approx-
imation may not be good for baryons containing
light quarks.5) In what follows, we adjust the RSE
constants Ci to reproduce the center of gravity for
baryons with a given flavor. To this end, we consider
the spin-averaged masses, such as

MN +M∆

2
= 1.085 GeV, (25)

MΛ +MΣ + 2MΣ∗

4
= 1.267 GeV,

and analogous combinations for qqc and qqb states.
Then, we obtain

Cq = 0.34 GeV, Cs = 0.19 GeV, (26)

Cc ∼ Cb ∼ 0.

We keep these parameters fixed to calculate the
masses given in Table 6, namely, the spin-averaged
masses (computed without the spin–spin term) of
the lowest doubly heavy baryons. Our results are very
similar to those obtained in [7] by using the pairwise
power-law potential.

5)Note that the 1/mimj dependence in Eq. (24), if treated
literally in the EH method, results in a collapse both in the
pseudoscalar qq̄ channel and in the proton. That may be a
signal of the Nambu–Goldstone phenomenon.
P

7. CONCLUSION

We have employed the general formalism for
baryons that is based on nonperturbative QCD and
where the only inputs are the string tension σ,
the strong coupling constant αs, and two additive
constants Cq and Cs (residual self-energies of light
quarks). We have presented some piloting calcu-
lations of the dynamical quark masses for various
baryons (see Table 1). The masses have been com-
puted solely in terms of σ and αs and depend on a
baryon.
The second important point of our investigation

is the calculation of the correlation functions for
baryons. They are given, among other things, in
Table 3. We have also calculated the spin-averaged
masses of baryons containing two heavy quarks.
One can see from Table 6 that our predictions are
especially close to those obtained in [7] by using
a version of the power-law potential adjusted to fit
ground-state baryons.
An evaluation of spin–spin interactions requires

the inclusion of the K = 2 hyperspherical compo-
nents and/or a more sophisticated treatment of the
color-magnetic interaction. We will present these
calculations in a forthcoming publication.
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APPENDIX

Let us consider three quarks of arbitrary masses
mi, i = 1, 2, 3, with coordinates ri. The problem is
conveniently treated by using the Jacobi coordinates
ρij and λij ,

ρij = αij(ri − rj), (A.1)

λij = βij

(
miri +mjrj
mi +mj

− rk

)
,

where

αij =
√
µij
µ
, βij =

√
µij,k
µ

. (A.2)

Here, µij and µij,k are the reduced masses:

µij =
mimj

mi +mj
, µij,k =

(mi +mj)mk

mi +mj +mk
. (A.3)
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Together with the center-of-mass coordinate Rc.m.,
the Jacobi coordinates determine completely the po-
sition of the system. The Jacobian of the transforma-
tion for the differential volume elements is equal to
unity; i.e.,

dρ12dλ12 = dρ32dλ32 = dρ13dλ13. (A.4)

The inverse transformations for the relative coordi-
nates rij = ri − rj and rk − Rc.m. are

rij =
1
αij

ρij, (A.5)

rk − Rc.m. = −
√

µ(mi +mj)
mk(m1 +m2 +m3)

λij.

The hyperradius R2 is defined as R2 = ρ2
ij + λ2

ij and
is independent of the order of quark numbering:

R2 = ρ2
12 + λ2

12 = ρ2
32 + λ2

32 = ρ2
13 + λ2

13. (A.6)

Written in terms of rij , Eq. (A.6) reads

R2 =
∑
i<j

mimj

µ(m1 +m2 +m3)
r2
ij . (A.7)

In the center-of-mass frame (Rc.m. = 0), the inva-
riant-kinetic-energy operator (3) is written in terms
of the Jacobi coordinates (A.1) as

H0 = − 1
2µ

(
∂2

∂ρ2
+

∂2

∂λ2

)
(A.8)

= − 1
2µ

(
∂2

∂R2
+

5
R

∂

∂R
+
K2(Ω)
R2

)
,

whereK2(Ω) is angular-momentum operator, whose
eigenfunctions (hyperspherical harmonics) are

K2(Ω)Y[K] = −K(K + 4)Y[K], (A.9)

with K being the grand-orbital momentum. In terms
of Y[K], the wave function ψ(ρ,λ) can be written
symbolically as

ψ(ρ,λ) =
∑
K

ψK(R)Y[K](Ω).

In theHRA, we haveK = 0 andψ = ψ(R). Note that
the centrifugal potential in the Schrödinger equation
for the radial function ψK(R) with a givenK,

(K + 2)2 − 1/4
R2

,

is not zero even for K = 0. For the reduced function
χ(R) = R5/2ψ(R), one obtains, after averaging the
interaction over the six-dimensional sphere, Eq. (6)
with

W (R) = 〈V (ρ,λ)〉 =
∫

(VC + Vstring)
dΩ
π3

. (A.10)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
One can easily see that the definition of 〈V (ρ,λ)〉
does not depend on the order of quark numbering.
In terms of the Jacobi coordinates, the Coulomb

and string potentials read

VC = −2
3
αs
∑
i<j

αij
|ρij |

, (A.11)

Vstring = σ
∑
i<j

γij |λij |, (A.12)

where

γij =

√
µ(mi +mj)

mk(m1 +m2 +m3)
. (A.13)

Using the relations [20]〈
1

|ρij |

〉
=

16
3π

1
R
, 〈|λij |〉 =

32
15π

R,

which are valid for any pair (ij), one obtains Eqs. (8).
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Abstract—The possibility of discovering QCD instantons in deep-inelastic scattering by analyzing corre-
lations in final states is studied. The correlation moments Fq andHq for instanton processes are calculated
at the parton and at the hadron level. Hadronization is taken into account by the Monte Carlo method. The
moments for instanton and for usual processes are found to behave differently, which can be used to identify
experimentally instantons. c© 2002 MAIK “Nauka/Interperiodica”.
Within four-dimensional non-Abelian gauge the-
ories, degeneracy of the vacuum state at the classical
level is one of the most important theoretical pre-
dictions [1]. Various minima of the potential energy
correspond to Chern–Simons integral numbers in
the gaugeAa0 = 0:

Ncs =
g2

16π2
(1)

×
∫
d3x εijk

(
Aai ∂jA

a
k +

g

3
εabcAaiA

b
jA

c
k

)
.

Here, g is a coupling constant and Aai are gauge
fields (the superscripts and the subscripts contain,
respectively, the group and the Lorentz indices). The
classical vacua are separated by potential barriers.
Instantons, which are topologically nontrivial finite-
action solutions to the classical field equations in
Euclidian space, can describe subbarrier tunneling
[2]. Allowances made for tunnel transitions (or in-
stantons) lead to new implications. By way of exam-
ple, we indicate that, in the Standard Model of elec-
troweak interactions, instantons induce processes in
which the baryon and lepton numbers [3] are not
conserved and which can be responsible for matter–
antimatter asymmetry in the visible part of the Uni-
verse [4]. Chiral-symmetry breaking is a similar effect
in QCD. It is worth noting that such phenomena are
impossible within usual perturbation theory, which
is constructed with respect to the classical vacuum,
whereNcs = 0, and which completely ignores tunnel-
ing. Therefore, an experimental corroboration of the

*e-mail: kashkan@dragon.bas-net.by
**e-mail: kuvshino@dragon.bas-net.by
***e-mail: shul@dragon.bas-net.by
1063-7788/02/6505-0925$22.00 c©
existence of instantons would be of importance for the
physics of fundamental interactions.
It is well known that the cross section for a spon-

taneous vacuum–vacuum instanton transition is very
small [3]:

σinst
|vac〉→|vac〉 ∼ exp

(
−16π2

g2

)
. (2)

This quantity is about 10−160 for electroweak inter-
actions and about 10−10 for QCD. This rules out the
possibility of experimentally observing the effect.
It was shown in the early 1990s [5] that the prob-

ability of instanton transitions can increase signifi-
cantly in collisions of particles whose total energy

√
s

is high; that is,

σinst(ε) ∼ exp
(

16π2

g2
F (ε)

)
, ε =

√
s

Esp
, (3)

F (ε) = −1 +
9
8
ε4/3 − 9

16
ε2 + . . . ,

where ε < 1, Esp is the so-called sphaleron energy
(the height of the energy barrier between the vacua),
and F (ε) is the “Holy Grail” function.
In 1993, Balitsky and Braun [6] showed that QCD

instantons can appear in deep-inelastic scattering as
a new channel (Fig. 1) and actually be identified at
the HERA accelerator (DESY, Hamburg). In this
case, it is convenient to use, in addition to the ordinary
kinematical variables Q2 = −q2 and x = Q2/(2Pq),
the quantitiesQ′2 = −q′2 and x′ = Q′2/(2pq′), which
characterize the instanton subprocess (a quark–
gluon collision producing secondary partons).
At the parton level, the instanton process is char-

acterized by the following specific features:
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Instanton channel of deep-inelastic scattering.
The following notation is used in the figure: e and e′ are,
respectively, the initial and the final electron; P , q, q′,
and p are the 4-momenta of the initial proton, the virtual
photon γ∗, the quark, and the gluon g, respectively; and
the letter I enclosed by a circle stands for the process of
instanton formation in a quark–gluon collision.

(i) a high multiplicity of secondary partons (about ten
[6, 7]); (ii) the isotropic “decay” of an instanton in its
rest frame [7]; (iii) the appearance of at least one quark
and one antiquark of each of the three flavors u, d, and
s in the chiral limit [3] in any instanton event; and (iv)
the presence of specific gluon correlations [8, 9].

There are also some signatures of instanton-
induced processes at the hadron level [7, 10], which
include special features of the final-particle spectra,
a high transverse momentum, and behavior of the
structure function F2(x,Q2).

According to theoretical estimates, the rela-
tive fraction of instanton events at HERA for x ≥
10−3, x′ ≥ 0.35, and Q′ ≥ 8 GeV [7, 10] can
amount to about 1%. The number of instanton events
accumulated over 1996 and 1997 is N = σinst

HERAL ∼
O(104), where the integrated luminosity is L ≈
30 pb−1 and the total cross section for instanton
processes is σinst

HERA ≈ 130 pb (at ΛQCD = 234MeV).

Despite this, the question of whether it is possible
to identify instantons at HERA is open, in particular,
owing to the uncertainty in ΛQCD = 234 ± 65 MeV;
this uncertainty leads to the uncertainty in the cross
section σinst

HERA ∼ 0–300 pb.

In this study, we propose employing the normal-
ized factorial moments and the moments Hq as ad-
ditional criteria for QCD instantons at HERA, along
with already known criteria.
P

We recall that the well-known definitions of the
moments are [11]

Fq =
1
n̄q

dqQ(z)
dzq

∣∣∣∣
z=1

, (4)

Kq =
1
n̄q

dq lnQ(z)
dzq

∣∣∣∣
z=1

, Q(z) =
∞∑
n=1

Pnz
n,

n̄ =
∞∑
n=1

nPn, Hq =
Kq

Fq
,

where Q(z) is the generation function, n̄ is the mean
multiplicity of secondaries, and Pn is the multiplicity
distribution.

The distribution with respect to the number of
gluons in instanton processes is given by

P (g)
n =

σ−1
tot

n!

∫
d4k1 . . . d

4kn

∣∣∣T (k1, . . . , kn)
∣∣∣2, (5)

where σtot is the total cross section and T (k1, . . . , kn)
is the amplitude for the production of gluons with
4-momenta k1, . . . , kn. The amplitude T (k1, . . . , kn)
can be calculated by applying the Lehmann–Syman-
zik–Zimmermann procedure to the Euclidian n-
particle Green’s function. In the semiclassical ap-
proximation, this Green’s function takes the form of
the path integral∫

DAe−S
e[A]AI a1µ1

(x1) . . . AI an
µn

(xn), (6)

where integration is performed only over field configu-
rations that link nonequivalent classical vacua,DA is
the integration measure, Se[A] is the Euclidian QCD
action functional, andAI aµ (x) are instanton solutions
[2]. In the Gaussian approximation, the Green’s func-
tion in (6) reduces to a known calculable integral.
Factorization in (6) leads to the Poisson multiplicity
distribution of gluons [7, 9]:

P (g)
n = e−n̄g

n̄ng
n!
, n̄g =

16π2

g2

(
1 − x′

x′

)2

, (7)

0.5 < x′ < 1.

In the chiral limit, the distribution with a fixed
multiplicity describes the quarkmultiplicity (only zero
quark modes are taken into account in the instanton
field) [3]; that is

P (q)
n = δ2nf ,n, (8)

where nf is the number of flavors of quarks that can
be considered to be massless (we assume that mu ≈
md ≈ ms ≈ 0).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 2. Normalized factorial moments for instanton-
induced parton processes at the mean gluonmultiplicities
of n̄g = (solid curve) 2 and (dashed curve) 8. The mo-
ments in (4) are defined only for integral q (here and in the
figures that follow, the points are connected by curves just
to guide the eye).

Taking into account both the quark and the gluon
multiplicity, we finally find, within the above approxi-
mations, that

P part
n =


e

−n̄g n̄
n−2nf
g

(n−2nf )! for n ≥ 2nf
0 for n < 2nf .

(9)

The generating function for instanton processes
at the parton level and the mean number of partons
are [12]

Qpart(z) =
∞∑

n=2nf

e−n̄g
n̄
n−2nf
g zn

(n− 2nf )!
(10)

= z2nf en̄g[z−1], n̄ = n̄g + 2nf .

The factorial moments Fq calculated for instanton
processes according to the definition in (4) with the
generating function (10) decrease with increasing q,
and satisfy the inequality Fq < 1 for q = 2, 3, . . . (see
Fig. 2). At the same time, perturbative QCD predicts
a strong increase in Fq with q, the resulting values
satisfying the inequality Fq > 1 for q = 2, 3, . . .
[11]. The moments Hq also behave very differently
in instanton and in ordinary (perturbative) processes.
The instanton distribution features a pronounced first
minimum ofHq at q = 2 and oscillations (see Fig. 3).
It is worth noting that, as was found earlier in [9],
the inclusion of the first quantum correction to the
gluon distribution in the instanton field also leads to
the appearance of the first minimum of Hq at q = 2.
In contrast to this, perturbative QCD predicts low-
frequency oscillations, the first minimum occurring at
q values between about 5 and 6 [11].
Let us now consider variations in the correlations

for ordinary and for instanton processes upon taking
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 3.MomentsHq of the instanton parton distributions
(n̄g = 2).

into account hadronization. Usual channels of deep-
inelastic scattering are characterized by a strong in-
crease in Fq (see Fig. 4) and by an oscillating form
of Hq with a pronounced minimum at q values of
about 6 to 7 (see Fig. 5). It can easily be seen that
hadronization does not lead to any significant quali-
tative changes in the behavior of the correlation mo-
ments for usual channels of deep-inelastic scattering.
For the instanton channel, the effect of the hadroniza-
tion stage is more significant: the moments Fq exhibit
a slow increase (see Fig. 4), while the moments Hq

oscillate with a lower frequency (see Fig. 5); however,
the main qualitative properties of the moments do not
change.
We used the QSDINS 2.0 package [10] to calcu-

late the correlation moments for the instanton chan-
nels. In these calculations, we used the distribu-
tion in (9) as a starting point in this generator. For
the hadronization model, we used JETSET [13] or
HERWIG [14]. We found that the values of the mo-
ments for instanton processes are virtually indepen-
dent of the choice of hadronization model. This con-
firms that our results are quite reliable. The moments
for ordinary (one- and two-jet) deep-inelastic scat-
tering at HERA were calculated by means of the
HERWIG code.
Nontrivial hadron correlations in the instanton

channels are associated with large numbers of soft
quarks and gluons (about 10) produced upon the
“decay” of instantons. The perturbative cascade
2
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Fig. 4. Moments Fq for (short-dashed curve) one-jet,
(dotted curve) two-jet, and (solid and long-dashed curves
corresponding to the HERWIG and JETSET hadroniza-
tion models, respectively) instanton channels of deep-
inelastic scattering.
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Fig. 5. As in Fig. 4, but for the momentsHq.

terminates very fast, so that it does not have time to
distort significantly the initial parton-multiplicity dis-
tribution (9). The hadronization stage does not lead to
significant variations in the behavior of moments (for
example, Dremin et al. [11] showed that themoments
Hq calculated on the basis of perturbative QCD
describe experimental data satisfactorily even without
invoking any model of hadronization). The contribu-
tion of the instanton subprocess can be mixed with
the contribution of the initial-proton remnant, with
the result that the moments for instanton processes
are somewhat distorted. Despite this, the moments
differ significantly from those for ordinary processes
and can therefore be used to identify instanton pro-
cesses experimentally.
It is worth noting that the cross sections for

instanton processes, their structure functions, and
other quantities used to identify instantons in [7, 10]
have a significant uncertainty in the low-x′ region.
At the same time, the correlation moments proposed
here as new identification criteria for QCD instantons
depend only on the multiplicity distribution, which
is determined primarily by a large fixed multiplicity
P

of quarks in final states. The quark multiplicity is
completely independent of x′, which makes it possible
to expect that our results are highly reliable in the
entire region of x′. In view of this property, we can
propose the following scenario for identifying QCD
instantons at HERA: six criteria developed by Ring-
wald, Schrempp et al. [7] are used to select instanton
events presumably, whereupon the moments Fq and
Hq are calculated for them. Should the calculated
moments agree with the theoretical predictions, this
would furnish stronger evidence than previously that
the instanton channel of deep-inelastic scattering
exists.
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(1967) [JETP Lett. 5, 24 (1967)].

5. A. Ringwald, Nucl. Phys. B 330, 1 (1990);
D. D’yakonov and V. Petrov, in Proceedings of
the XXVI Winter School of Leningrad Institute
of Nuclear Physics “Nuclear and Elementary
Particle Physics,” Leningrad, 1991, p. 8.

6. I. Balitsky and V. Braun, Phys. Lett. B 314, 237
(1993); Phys. Rev. D 47, 1879 (1993).

7. M. Gibbs, A. Ringwald, and F. Schrempp, in Pro-
ceedings of the Workshop on Deep Inelastic Scat-
tering and QCD, Paris, 1995, Ed. by J.-F. Laporte
and Y. Sirois, p. 341; hep-ph/9506392; S. Moch,
A. Ringwald, and F. Schrempp, Nucl. Phys. B 507,
134 (1997); A. Ringwald and F. Schrempp, Phys.
Lett. B 438, 217 (1998); 495, 249 (1999); J. Phys. G
25, 1297 (1999).

8. V. Kuvshinov and R. Shulyakovsky, Acta Phys. Pol. B
28, 1629 (1997).

9. V. Kuvshinov and R. Shulyakovsky, Acta Phys. Pol. B
30, 69 (1999).

10. T. Carli, J. Gerigk, A. Ringwald, and F. Schrempp,
in Proceedings of the Workshop on Monte Carlo
Generators for HERA Physics, Ed. by A. T. Doyle
et al. (DESY, Hamburg, 1998), p. 329.

11. I. M. Dremin, E. De Wolf, and W. Kittel, Usp. Fiz.
Nauk 163 (1), 3 (1993); I. Dremin, Phys. Lett. B 313,
209 (1993); in Proceedings of the 7th Workshop on
Multiparticle Production “Correlations and Fluc-
tuations,” Nijmegen, 1996 (World Sci., Singapore,
1997), p. 313.

12. V. Kuvshinov and R. Shulyakovsky, Nonlinear Phe-
nomenon in Complex Systems 2, 8 (1999).

13. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
14. G. Marchesini et al., Comput. Phys. Commun. 67,

465 (1992).
Translated by M. Kobrinsky
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002



Physics of Atomic Nuclei, Vol. 65, No. 5, 2002, pp. 929–942. Translated from Yadernaya Fizika, Vol. 65, No. 5, 2002, pp. 961–973.
Original Russian Text Copyright c© 2002 by Zinovjev, Molodtsov, Snigirev.

ELEMENTARY PARTICLES AND FIELDS
Theory
Quark Interaction with an Instanton Liquid

G. M. Zinovjev1), S. V. Molodtsov, and A. M. Snigirev2)

Institute of Experimental and Theoretical Physics,
Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117259 Russia

Received March 5, 2001

Abstract—The effect of quarks on an instanton liquid through the excitation of adiabatic phonon-like
modes in it is considered. An effective Lagrangian that includes a scalar color-singlet field interacting with
quarks is derived, and the relevant generating functional is estimated in the tadpole approximation. The
nature of this dynamical field as a mediator of interaction at soft momenta and its possible relationship with
unusual properties of the sigma meson are discussed. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It seems that there is presently every reason to
believe that the instanton-liquid model [1, 2] and
the chiral-symmetry-breaking mechanism based on
it [2] correctly describe light-quark physics at low
energies and serve as an appropriate basis for the
phenomenology of the QCD vacuum. This model
provides quantitatively correct results for the gluon
and the quark condensate, which are expressed in
terms of the instanton-medium parameters and,
eventually—as is well known—in terms of the renor-
malization constant ΛQCD. In particular, the result-
ing quark condensate is in accord with the well-
established phenomenological value of −i〈ψ†ψ〉 ∼
−(250 MeV)3; also, correct results are obtained for
the energy scale of the dynamical light-quark mass
(about 350 MeV) and for the pion-decay constant
(Fπ ∼ 100 MeV). Concurrently, a closed description
of the generating functional for the emerging effective
theory can be achieved via quite justifiable and con-
sistent simplifications in the original QCD functional.
Within this approach, the generating functional of the
theory reduces to the factorized form

Z = Zg · Zψ,

where the first and the second factor represent, re-
spectively, a gluon and a quark component. The for-
mer provides a nontrivial gluon condensate, while the
latter (fermion) component describes a chiral con-
densate in an instanton medium and its excitations.

1)Bogolyubov Institute for Theoretical Physics, National
Academy of Sciences of Ukraine, Metrologicheskaya 14b,
03143 Kiev-143, Ukraine.

2)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow 119899 Russia.
1063-7788/02/6505-0929$22.00 c©
It is assumed that, in Zg, there is a dominant vac-
uum configuration saturating the relevant path in-
tegral and that this configuration is represented as
a superposition of pseudoparticle fields obtained as
solutions to the Yang–Mills equations and referred to
as (anti)instantons. Specifically, they are given by

Aµ(x) =
N∑
i=1

Aµ(x; γi), (1)

where Aµ(x; γi) stands for the field of an individual
(anti)instanton in a singular gauge. For the SU(Nc)
group, it depends on 4Nc coordinates γ = (ρ, z, U),
where ρ is its size, z is the position of its center, and
U is its color orientation that appears in a nontrivial
block of theNc ×Nc color matrix for the field

Aµ(x; γ) =
η̄aµν
g

yν
y2

ρ2

y2 + ρ2
U †τaU, (2)

y = x− z, a = 1, 2, 3.

Here, τa are the Pauli matrices, η is the ’t Hooft
symbol [3], and g is the coupling constant; for an
(anti)instantanton, we have η̄ → η. In order to avoid
encumbering the presentation, we do not introduce
separate symbols for instantons (N+) and for anti-
instantons (N−), always considering a topologically
neutral instanton liquid (N+ = N− = N/2). With
the aid of the variational maximum principle [2], the

gluon component can be estimated as Zg 
 e−〈S〉,
the instanton-liquid action 〈S〉 having the form of the
2002 MAIK “Nauka/Interperiodica”



930 ZINOVJEV et al.
additive functional3)

〈S〉 =
∫
dz

∫
dρn(ρ)s(ρ). (3)

Integration is performed here over the volume V oc-
cupied by the liquid, the action functional per instan-
ton,

s(ρ) = β(ρ) + 5 ln(Λρ) − ln β̃2Nc (4)

+ βξ2ρ2
∫
dρ1n(ρ1)ρ21,

being averaged with the equilibrium size distribution
of instantons, which is given by

n(ρ) = Ce−s(ρ) = Cρ−5β̃2Nce−β(ρ)−νρ2/ρ2 , (5)

where ρ2 =
∫
dρρ2n(ρ)/n =

(
ν

βξ2n

)1/2

, n =

∫
dρn(ρ) =

N

V
, ν =

b− 4
2

, b =
11Nc − 2Nf

3
, andNf

is the number of flavors. The constantC is determined
self-consistently from the variational maximum prin-
ciple, while β(ρ) = 8π2/g2 = − lnCNc − b ln(Λρ)
(Λ = ΛMS = 0.92ΛPV), with CNc being dependent
on the normalization scale:

CNc ≈ 4.66 exp(−1.68Nc)
π2(Nc − 1)!(Nc − 2)!

.

The parameters β = β(ρ̄) and β̃ = β + lnCNc are
fixed at the characteristic scale ρ̄ (the mean size of

a pseudoparticle). The parameter ξ2 =
27
4

Nc
N2
c − 1

π2

characterizes pseudoparticle interaction. The equi-
librium state of the instanton liquid is described by
Eqs. (3)–(5). A slight modification of the variational
maximum principle (see Appendix) leads to an ex-
plicit formula to the mean pseudoparticle size, ρ̄Λ =
exp {−2Nc/(2ν − 1)} and, hence, to a direct deter-
mination of the parameters of the instanton liquid, in
contrast to what is done within the original variational
principle [2], where its parameters are determined by
numerically solving a transcendental equation.

3)We recall that the property of additivity is due to the pre-
sumed uniformity of the vacuum wave function in coordinate
space. Although formula (3) has a form that it could have
within classical physics, it describes, in fact, the ground
state of a quantum ensemble of instantons. Intuitively, it
is clear that this formula will also remain valid in the case
where the wave function for the ensemble in question fea-
tures inhomogeneities of scale much larger than the mean
instanton size—more precisely, larger than or on the order of
the mean size of the characteristic saturating configuration
(see below). In this case, each instanton-liquid fragment that
has the aforementioned characteristic size will make a partial
contribution dependent on the current state of the instanton
liquid.
PH
In evaluating the quark determinant Zψ, the
quark fields are considered to be affected by a pre-
set stochastic ensemble of pseudoparticles as given
by (1), the inverse effect of quarks on the instantons
being disregarded; that is,

Zψ 

∫
Dψ†Dψ〈〈eS(ψ,ψ† ,A)〉〉A,

where S(ψ,ψ†, A) is the QCD action functional for
massless quarks. Since the instanton liquid is dilute
(the characteristic packing parameter nρ̄4 is small),
correlations between pseudoparticles is usually dis-
regarded. Moreover, it is common practice to restrict
the analysis to the approximation of Nc → ∞, in
which case it is sufficient to take into account only
planar graphs in evaluating the path integral, and to
consider the action functional for fermion fields in the
approximation of zero modes Φ±(x− z), which are
solutions to the Dirac equation (i[D̂(A±) +m]Φ± =
0) in the (anti)instanton field A±,

[Φ±(x)]ic =
ρ√

2π|x|(x2 + ρ2)3/2

[
x̂

1 ± γ5
2

]
ij

εjdUdc.

Here, c and d are color indices, i and j are Lorentz
indices, ε is an antisymmetric tensor, and x̂ = xµγµ
(this notation is further used for all quantities con-
tracted with the Dirac γ matrices γµ, µ = 1–4). For
the particular case of Nf = 1, the quark determinant
has the form [2]

Zψ 

∫
Dψ†Dψ exp

{∫
dxψ†(x)i∂̂ψ(x)

}
(6)

×
(
Y +

V R

)N+
(
Y −

V R

)N−

,

Y ± = i
∫
dzdUdρn(ρ)/n

×
∫
dxdyψ†(x)i∂̂xΦ±(x− z)Φ†

±(y − z)i∂̂yψ(y),

whereR is a factor reducing the result to a dimension-
less form (it is determined by the method of steepest
descent) and where averaging over color orientations
is given by integration with respect to U . On the
basis of the exact Green’s function for quarks in the
ensemble of pseudoparticles [4, 5], a correct extension
of the generating functional beyond the chiral limit
was obtained in [6]; in doing this, it turned out that,
for low-energy phenomenology of light quarks to be
reproduced correctly at a quantitative level, it is suf-
ficient to take into account the contribution of zero
modes.

Thus, we see that the instanton-liquid model
where the inverse effect of quarks on the instanton
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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ensemble is disregarded is by and large reasonable—
it leads to a right form of the generating function
and correctly determines the functional dependence
on the parameters of the instanton liquid. In view
of this, we believe that the inverse effect of quarks
on the instanton liquid is rather weak and must be
treated by means of perturbation theory in terms of
small variations of the instanton-liquid parameters
δn and δρ in the vicinity of the equilibrium values n
and ρ̄. This can be done in a way similar to that used
to describe excitations of the chiral condensate. We
recall that a nontrivial evaluation of the path integral
in (6) (this evaluation takes into account the physics
content of zero modes in the quark determinant)
results in that the state of the instanton liquid is
encoded in this path integral only in terms of the
above two parameters, the instanton-liquid density
appearing in the theory in a combination like the
packing parameter nρ̄4 (this is also suggested by
a dimensional analysis); that is, the pseudoparticle
size remains the only free parameter. The present
article, which reports on a continuation of the studies
begun in [7], where it was shown that an instanton
liquid has phonon-like excitations associated with
adiabatic changes in the instanton size, is devoted
to a more detailed investigation into quark interaction
with an instanton liquid. Considering here only the
simplest case of a topologically neutral liquid, we will
demonstrate that it is natural to describe the inverse
effect of quarks on the instanton liquid in terms of
deformable field configurations that are similar to
those specified by Eq. (2) and which have the size
ρ dependent on x and z: ρ→ ρ(x, z).

The ensuing exposition is organized as follows.
In Section 2, we will discuss changes in evaluating
the quark determinant (at the minimum number of
flavors) that are introduced by deformable modes. On
the basis of an approximate calculation of the path
integral (in the tadpole approximation), we find, in
Section 3, the relevant equation within the saddle-
point method; in the same section, we further con-
struct an iterative procedure that makes it possible to
take into account the effect of quarks on the instanton
ensemble. After that, we generalize these results to
the case of many flavors in Section 4 and analyze
qualitatively the possible new physical implications of
the proposed approach in Section 5. In addition, the
article contains an Appendix, where we describe the
procedure that we use to determine the parameters of
the instanton liquid.

2. INCLUSION OF PHONON-LIKE
EXCITATIONS

Our personal view on the essence of the approach
proposed here is the following. An evaluation of the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
path integral by the saddle-point method implies the
use of the extremals of the action functional (solutions
to the classical field equations)—in the case being
considered, the action functional S[A,ψ†, ψ] con-
structed from the gluon fields A and the quark fields
ψ† and ψ—and of the extremals that are obtained by
simultaneously solving the set of the Yang–Mills and
Dirac equations. In the theory of an instanton liquid,
a superposition of (anti)instantons that is a solution
to only the Yang–Mills equations (without taking
into account the effect of quark fields) and which is
simultaneously an external field for the Dirac equation
is taken for a trial configuration. In our opinion, it is
advisable to choose saturating configurations in the
form of deformable (easily crumpled) (anti)instantons
A±(x; γ(x)), in which case there is the possibility of
varying the parameters γ(x) of the solutions to the
Yang–Mills equations with the aim of describing the
effect of the quark fields in terms of those variables
natural for the quark determinant that appear in the
final expression for it (in the case being considered,
in terms of the pseudoparticle size). Choosing the
action functional in the form S[A±(x, γ(x)), ψ†, ψ],
one can obtain, for the deformation field γ(x), the
corresponding variational equation that provides the
best (in the sense of an extremum of the action func-
tional) description of an (anti)instanton in nontrivial
external quark fields. In field theory, the scattering of
monopoles [8] and Abrikosov vortices [9] is described
in a similar way.

In the case of an instanton liquid, it turns out
that, if we restrict our consideration to long-wave
perturbations—that is, perturbations whose wave-
length λ is much greater than the characteristic in-
stanton size ρ̄—the problem is radically simplified,
since it reduces to finding the kinetic energy of the de-
formation fields4) (single-particle contributions) and
to taking into account the pair interaction of pseu-
doparticles, which, in the adiabatic regime, assumes
the form of a contact interaction [7].

We now recall changes that arise in evaluating
the path integral. In deriving expression (3), averag-
ing is performed over the positions of the instanton
in metric space. Obviously, it is necessary that the
characteristic linear size L of the domain that must
be taken into consideration in doing this be greater
than the mean instanton size ρ̄. At the same time,
this size must not be indefinitely large, since there
is no causal coupling between widely spaced frag-
ments of the instanton liquid. At this scale L ≥ R̄
(R̄ is the mean distance between pseudoparticles),

4)In calculating the action functional for a deformed instanton,
it is then legitimate to take the slowly varying deformation
field outside the integral sign.
2
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it is assumed that the ensemble wave function is
uniform (each pseudoparticle enters into the path
integral with a weight that is proportional to 1/V ,
where V = L4). A characteristic configuration that
saturates the path integral is chosen in the form of
a superposition of (anti)instantons that is specified
by Eq. (1), with N being equal to the number of
pseudoparticles in the volume V . It can easily be seen
that, owing to the additivity of the action functional,
expression (3) describes correctly even nonequilib-
rium states of the instanton liquid, in which case
the distribution n(ρ) does not coincide with the vac-
uum distribution in (5); moreover, it admits a gen-
eralization to the case of an inhomogeneous liquid,
provided that the size λ of the inhomogeneity satis-
fies the obvious requirement λ ≥ L > ρ̄. In particular,
this consideration is applicable to a saturating en-
semble that is formed by deformable pseudoparticles,
the deformation-field corrections gµν to the origi-
nal instanton fields Gµν being small (gµν � Gµν) for
long-wave excitations (at the instanton-size scale ρ̄),
|∂ρ(x, z)/∂x| � O(1). This condition, which ensures
the smoothness of changes suffered by the instan-
ton size, makes it possible to introduce yet another
important simplification and to use everywhere, for
a characteristic deformation field, the field at the in-

stanton center,
∂ρ(x, z)
∂x

∼ ∂ρ(x, z)
∂x

∣∣∣∣
x=z

. In general,

the instanton-field correction taking into account the
effect of quarks can be obtained with the aid of the
Green’s function for gluons in an instanton medium;
that is,

aaµ(x, z) =
∫
dξDabµν(x− z, ξ − z)Jbν(ξ − zψ), (7)

where Jbν is the current associated with the external
(quark) source, zψ lies in the region where the long-
wave perturbation is localized, andDabµν(x− z, ξ − z)
is the Green’s function for a pseudoparticle in an
instanton medium. Formally, the gluon Green’s func-
tion in the field of an individual instanton is poorly de-
fined [4]. In the approach developed here, one may ex-
pect that, for this Green’s function, there is a regular
expression, a nonsingular behavior of the propagator
in the region of soft momenta being controlled by the
mass gap in the spectrum of phonon-like excitations.
A more detailed treatment of these issues will be given
elsewhere, since the explicit form of the Green’s func-
tion is immaterial for the present purposes. Within the
the nonperturbative region, the Green’s function is
concentrated at the scale of the mean pseudoparticle
size; therefore, the integral in (7) can be estimated
as

aaµ(x, z) 
 D̄abµν(x− z)J̄bν(z − zψ). (8)
P

Here, the notation on the right-hand side implies that
integration was performed over a four-dimensional
domain of size ρ̄ with a nearly constant function J ,
where the dependence on the arguments is indicated
explicitly (the absolute value of the integral is im-
material). On the other hand, the explicit form of the
instanton in a singular gauge,

Aaµ(x, z) = − η̄aµν
g

∂

∂xν
ln
(

1 +
ρ2

y2

)
, y = x− z,

makes it possible to find straightforwardly that the
correction to instanton potential is given by

aaµ(x, z) = Haµν(x, z)
∂ρ

∂xν
, (9)

where Haµν(x, z) = − η̄aµν
g

2ρ
y2 + ρ2

; to the precision

adopted here, it is legitimate to set ρ(x, z) 
 ρ̄—
that is,Haµν(x, z) 
 Haµν(x− z). Comparing Eqs. (8)
and (9), we deduce that the deformation field ρν =
∂ρ/∂xν satisfies the equation

Haµν(x− z)
∂ρ(x, z)
∂xν

= D̄abµν(x− z)J̄bν(z − zψ).

Since the current J̄ can be taken to be constant in
the long-wave approximation (that is, its gradients
are negligible), we immediately obtain the estimate
|∂ρ(x, z)/∂x| 
 |∂ρ(z)/∂z| for the rate of deforma-
tion. This result seems quite natural, because, in the
adiabatic approximation, there are no other fields in
the problem. With allowance for the correction from
the pseudoparticle-deformation fields, the contribu-
tion of deformed (anti)instantons to the path integral
can then be estimated as [7]

〈S〉 

∫
dz

∫
dρn(ρ)

{
κ

2

(
∂ρ

∂z

)2

+ s(ρ)

}
, (10)

where κ is a kinetic coefficient calculated semiclassi-
cally. To the precision adopted in the present study,
the kinetic coefficient must be fixed at some char-
acteristic scale—for example, as κ ∼ κ(ρ̄). For this
coefficient, the estimations that we performed yield
κ ∼ cβ (a value on the order of the instanton ac-
tion functional), with the coefficient c whose spe-
cific value ranging between about 1.5 and 6 depends
on the ansatz adopted for the saturating configu-
ration. Although the kinetic term could in princi-
ple be introduced on a phenomenological basis as
well, we note, going somewhat ahead, that there is
no significant dependence on κ in the problem be-
ing considered. As a result, the action functional
per instanton is supplemented solely with a small
contribution that is caused by a scalar deformation
field and which is of the kinetic-energy type. Its ef-
fect on the preexponential factors can be disregarded
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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because of their logarithmic smallness. The inverse
effect is negligibly small as well. It is worth not-
ing here that the deformation fields associated with
the shear mode and with rotation in isotopic space
lead, respectively, to a trivial and to a singular ki-
netic coefficient [7]. In order to establish the mass
scale corresponding to these modes, it is therefore
necessary to invoke additional considerations that
are likely to be beyond the theory of instanton liquid
and the standard theory of chiral-symmetry break-
ing.

Within the approximation employed here, we fur-
ther retain only the second-order terms of small-
ness in the deviation from the point ds(ρ)/dρ|ρc

=
0, where the action functional attains a minimum,
making use of the approximate expression

s(ρ) 
 s(ρ̄) +
s(2)(ρ̄)

2
ϕ2, (11)

where s(2)(ρ̄) 
 d2s(ρ)/d2ρ
∣∣
ρc

= 4ν/ρ2 and where
the scalar field ϕ = δρ = ρ− ρc 
 ρ− ρ̄ is the field of
deviations from the equilibrium value ρc =

ρ̄

(
1 −

(
1
2ν

))1/2


 ρ̄. Comparing expressions (10)

and (11), one can easily see that the deformation field
is described in terms of the Lagrangian density

L =
nκ

2

{(
∂ϕ

∂z

)2

+M2ϕ2

}
,

whereM2 = s(2)(ρ̄)/κ = 4ν/(κρ2) is the mass gap in
the spectrum of phonon-like excitations;M ≈ 1.21Λ
for an instanton liquid in the “quenched” approxima-
tion with parameters Nc = 3, c = 4, ρ̄Λ ≈ 0.37, β ≈
17.5, and nΛ−4 ≈ 0.44 (more detailed data are quoted
in the tables given in the Appendix) [7].

Upon a change of variables, the gluon component
of the generating functional takes the form

Z ′
g ∼

∫
Dϕ

∣∣∣∣ δAδϕ · · ·
∣∣∣∣

× exp

[
−nκ

2

∫
dz

{(
∂ϕ

∂z

)2

+M2ϕ2

}]
,

where

∣∣∣∣ δAδϕ · · ·
∣∣∣∣ is the Jacobian for the transition to

new variables that describe the deformation fields.
We would like to qualify, from the outset, the above
notation as that which is not fully specified, since we
do not present the complete set of variables of the
transformation in question. As was indicated above,
however, the preexponential factor is a c number in
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
the adiabatic approximation, so that its contribution
can be disregarded.5)

Let us now analyze modifications arising in
the quark determinant Zψ (6). For this, we take into
account a variation of fermion zero modes that are as-
sociated with perturbations of the
instanton size, Φ±(x− z, ρ) 
 Φ±(x− z, ρc) +
Φ(1)
± (x− z, ρc)δρ(x, z), where Φ(1)

± (u, ρc) =
∂Φ±(u, ρ)/∂ρ|ρ=ρc ; in accordance with the adiabatic-
ity condition, we set here δρ(x, z) 
 δρ(z, z) = ϕ(z).
Additional contributions from scalar fields generate
corrections in the kernels of the factors Y ±; we will
consider these corrections in the linear approximation
in ϕ, setting everywhere ρc 
 ρ̄; that is

i∂̂xΦ±(x− z, ρ)Φ†
±(y − z, ρ)(−i∂̂y) (12)


 Γ±(x, y, z, ρ̄) + Γ(1)
± (x, y, z, ρ̄)ϕ(z),

where

Γ±(x, y, z, ρ̄) = i∂̂x

× Φ±(x− z, ρ̄)Φ†
±(y − z, ρ̄)(−i∂̂y),

Γ(1)
± (x, y, z, ρ̄) = i∂̂x

× Φ(1)
± (x− z, ρ̄)Φ†

±(y − z, ρ̄)(−i∂̂y)

+ i∂̂xΦ±(x− z, ρ̄)Φ†(1)
± (y − z, ρ̄)(−i∂̂y).

Here, the derivative (−i∂̂y) acts from the left, and the
gradients of the scalar fieldϕ can be disregarded in the
adiabatic approximation. It can easily be shown that,
in the momentum representation, the result obtained
by integrating the expression on the right-hand side
of (12) with respect to z and U generates, in for-
mula (6), the kernel

1
Nc

[
(2π)4δ(k − l)γ0(k, k) + γ1(k, l)ϕ(k − l)

]
, (13)

where k and l are the relevant momenta. At a fixed
value of the parameter ρ = ρ̄ (which is henceforth
omitted in order to avoid encumbering the presenta-
tion), the functions γ0 and γ1 are expressed in terms of

5)In general, the relationship between the deformation field
ρν and the variable aa

µ of integration in the path integral
involves the color-rotation matrix: ãa

µ = ΩabH
b
µν(x− z)ρν .

In the long-wave approximation, the function H can be
treated as a constant equal to Hb

µν(0) (x ∼ z). Choosing
further the rotation matrix Ω−1 in such a way that the color
field aµ = Ω−1ãµ would be associated with some specific
direction in isotopic space, one can see that, apart from loop
corrections, which can be disregarded, and this insignificant
rotation in isotopic space, the gluon-field vector az

µ and the
deformation-field vector ρν appear to be in one-to-one cor-
respondence and the Jacobian of the transformation reduces
basically to an insignificant constant.
2
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the functions G(k, ρ) = 2πρF (kρ/2) and G′(k, ρ) =
dG(k, ρ)/dρ as

γ0(k, k) = G2(k),

γ1(k, l) = G(k)G′(l) +G′(k)G(l);

F (x) = 2x[I0(x)K1(x) − I1(x)K0(x)]
− 2I1(x)K1(x),

where Ii and Ki(i = 0, 1) are modified Bessel func-
tions.

Further, we perform auxiliary integration with
respect to the parameter λ (see, for example, [2]),
whereupon the exponentiated path integral in (6)
taken with allowance for the phonon-like component
assumes the following form in the momentum repre-
sentation:6)

Zψ 

∫
dλ

2π
exp

{
N ln

(
N

iλV R

)
−N

}

×
∫
Dψ†Dψ exp

{∫
dkdl

(2π)8
ψ†(k)

[
(2π)4δ(k − l)

×
[
−k̂ +

iλ

Nc
γ0(k, k)

]
+
iλ

Nc
γ1(k, l)ϕ(k − l)

]
ψ(l)

}
.

We everywhere omit normalization factors that are
associated with the free Lagrangian and which are
irrelevant to our purposes. It can be seen that, as soon
as the scalar field is switched off, we arrive at the
result obtained by Diakonov and Petrov in [2]. In order
to avoid the emergence of a great many redundant
coefficients, we simplify the presentation by going
over to the dimensionless variables

kρ̄

2
→ k,

Mρ̄

2
→M, γ0 → ρ̄2γ0, (14)

1
(nρ̄4κ)1/2

γ1 → ρ̄γ1

for the momenta, masses, and vertices and the dimen-
sionless variables
ϕ(k) → (nκ)−1/2ρ̄3ϕ(k), ψ(k) → ρ̄5/2ψ(k), (15)

for the fields and by using the parameter µ =
λρ̄3/(2Nc) instead of λ. In terms of these variables,
the generating functional can be written as

Z 

∫
dµZ ′′

g

∫
Dψ†DψDϕ (16)

6)In coordinate space, we have the nonlocal
Lagrangian L =

∫
dxψ†(x)i∂̂xψ(x) −

∫
dz(nκ/2) ×{

(∂ϕ/∂z)2 + M2ϕ2(z)
}

+ (iλ±/Nc)
∫
dxdydzdUψ†(x)×

{Γ±(x, y, z, ρ̄) + Γ
(1)
± (x, y, z, ρ̄)ϕ(z)}ψ(y), which repre-

sents the interaction of the scalar field of phonon-like
deformations with quarks and which describes the physically
transparent phenomenon consisting in that the propagation
of quark fields through an instanton medium is accompanied
by its small deformation.
PH
× exp
{
−N lnµ−

∫
dk

π4

1
2
ϕ(−k)4[k2 +M2]ϕ(k)

}

× exp
{∫

dkdl

π8
ψ†(k)2

[
π4δ(k − l)

× [−k̂ + iµγ0(k, k)] + iµγ1(k, l)ϕ(k − l)
]
ψ(l)

}
,

where Z ′′
g is that part of the gluon component of

the generating functional which survives upon the
expansion of the action functional per instanton [see
Eq. (11)] in terms of a small deviation from its equi-
librium size. Now that indefinite forms have disap-
peared, the resulting functional, together with all con-
tributions involving the scalar field, provides a closed
description of an instanton liquid with allowance for
the effect of quarks on it (see also the Appendix). As
was indicated above, it is not expected that either
this effect or the inverse effect of phonon-like de-
formations on the quark determinant would strongly
change the parameters of the instanton-liquid model
or the parameters of chiral-symmetry breaking. The
free part of the Lagrangian associated with phonon-
like excitations characterizes the reaction of the in-
stanton liquid to an external long-wave perturbation
and is likely to be its general property, which is inde-
pendent of the character of fields that generate this
perturbation. The presence of a quark condensate
suggests a natural scheme for approximately calcu-
lating the generating functional; namely,

ψ†ψϕ = 〈ψ†ψ〉ϕ+ {ψ†ψ − 〈ψ†ψ〉}ϕ. (17)

3. TADPOLE APPROXIMATION

A formal integration with respect to the scalar
field leads to a four-fermion interaction, for which it
is impossible to calculate the path integral explic-
itly. On the basis of the theory of chiral-symmetry
breaking and under the assumption that the correc-
tions from the scalar field are small, it is possible,
however, to find an approximate form of the effective
Lagrangian by replacing one of the quark-field pairs
by its condensate value (see Fig. 1a): ψ†(k)ψ(l) →
〈ψ†(k)ψ(l)〉 = −π4δ(k − l) trS(k), where S(k) is the
Green’s function for quarks. In the lowest order of
perturbation theory in µ, the diagram with four ex-
ternal fermion legs reduces to a two-fermion diagram
of the tadpole type (because of two possible types of
quark-field pairing, there are two such contributions).
Specifically, we have

2(iµ)2
∫
dkdldk′dl′

π16
γ1(k, l)γ1(k′, l′)

× ψ†(k)ψ(l)ψ†(k′)ψ(l′)ϕ(k − l)ϕ(k′ − l′)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 1. Diagrams of the tadpole approximation that are
taken into account in deriving the equation of the saddle-
point method. The solid and the dashed lines represent,
respectively, the fermion and the phonon-like fields.
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Fig. 2. Function c(µ) at Nf = 1.


 4µ2

∫
dk

π4
γ1(k, k)ψ†(k)ψ(k)

×
∫
dl

π4
γ1(l, l)trS(l)D(0),

where we have introduced a natural definition for the
convolution of the scalar fields—namely, ϕ(k)ϕ(l) =
π4δ(k + l)D(k), with D(k) = 1/[4(k2 +M2)]. The
expression in front of the combination ψ†(k)ψ(k) can
be treated as an additional contribution to the dynam-
ical mass

m(k) = µγ1(k, k)(−2iµ) (18)

×
∫
dl

π4
γ1(l, l)trS(l)D(0).

We recall that, in the Lagrangian expressed in terms
of the dimensionless variables, the mass term involves
an additional factor of 2.

In deriving the equation of the saddle-point method
in the same order of perturbation theory, it is neces-
sary to take additionally into account the contribution
of the diagrams where all quark fields are paired
(see Fig. 1b),

−2µ2

[∫
dk

π4
γ1(k, k) trS(k)

]2

π4δ(0)D(0)
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= −µ
2

2
κ

ν

V

ρ̄4

[∫
dk

π4
γ1(k, k)trS(k)

]2

,

and the contribution of the diagram in Fig. 1c,

2µ2

∫
dkdl

π8
trγ1(k, l)γ1(l, k)S(k)S(l)D(k − l),

where use has been made of a natural regulariza-
tion of the delta function in terms of the dimen-

sionless variables: δ(0) =
1
π4

V

ρ̄4
, since δ

(
kρ

2

)
=

δ1(k)
ρ/2

· · · δ4(k)
ρ/2

, while δ1(0) · · · δ4(0) =
V

(2π)4
.

As a result, we reduce the generating functional to
the form

Z ∼
∫
dµ

∫
Dψ†Dψ exp

{
−N lnµ (19)

+
2N2

c

nρ̄4ν

V

ρ̄4
µ4c2(µ) − 2Ncµ2 V

ρ̄4

∫
dkdl

π8

× γ2
1(k, l)

(kl) − Γ(k)Γ(l)
(k2 + Γ2(k))(l2 + Γ2(l))

D(k − l)

+
∫
dk

π4
ψ†(k)2[−k̂ + iΓ(k)]ψ(k)

}

=
∫
dµ exp

{
−N lnµ+

2N2
c

nρ̄4ν

V

ρ̄4
µ4c2(µ)−2Ncµ2 V

ρ̄4

×
∫
dkdl

π8
γ2
1(k, l)

(kl)−Γ(k)Γ(l)
(k2 +Γ2(k))(l2 +Γ2(l))

D(k − l)

+
V

ρ̄4

∫
dk

π4
tr ln[−k̂ + iΓ(k)]

}
,

where we have defined the vertex
Γ(k) = µγ0(k, k) +m(k)

and have introduced the function

c(µ) = − i(nρ̄
4κ)1/2

2µNc

∫
dk

π4
γ1(k, k) trS(k),

which is convenient for the ensuing calculations. As
can be seen from (19), the Green’s function for the
quark fields is determined self-consistently from the
equation

2[−k̂ + iΓ(k)]S(k) = −1.

Seeking its solution in the form S(k) = A(k)k̂ +
iB(k), we can easily obtain

A(k) =
1
2

1
k2 + Γ2(k)

, B(k) =
1
2

Γ(k)
k2 + Γ2(k)

.

Using Eq. (18) and substituting the function B(k)
into the definition of Γ(k), we arrive at the closed
integral equation

Γ(k) = µγ0(k, k) +Nc
κ

ν
µ2γ1(k, k)
2
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Fig. 3.Dynamical massM at Λ = 280 MeV as a function
of kρ̄/2 (the dashed curve represents the result obtained
by Diakonov and Petrov [2]).

×
∫
dl

π4
γ1(l, l)

Γ(l)
l2 + Γ2(l)

,

whence we obtain a solution in the convenient form

Γ(k) = µγ0(k, k) +
Nc

(nρ̄4κ)1/2
κ

ν
µ3c(µ)γ1(k, k).

For the function c(µ) in turn, we can easily obtain

c(µ) =
(nρ̄4κ)1/2

µ

∫
dk

π4
γ1(k, k)

Γ(k)
k2 + Γ2(k)

.

Substituting Γ(k) into this expression, we can find
a closed integral equation for the function c(µ),7)

which is displayed in Fig. 2 at Nf = 1. We note
that the Nf dependence of the function c(µ) within
the range of significant values of µ, this dependence
being specified by the position of the saddle point for
the functional given by (19), can be disregarded to
the precision adopted in the present study. For the
additional contribution to the dynamical mass, one
can easily obtain

m(k) =
Nc

(nρ̄4κ)1/2
κ

ν
µ3c(µ)γ1(k, k). (20)

It is interesting to note that, in the tadpole approx-
imation, the dependence on the kinetic coefficient κ

7)In the range of µ values that is of prime interest to us, this
equation has a unique solution, but it should be noted that,
for µ greater than µc ∼ 4×10−2 , the number of branches
of c(µ) becomes greater. In principle, it would be of interest
to find out whether the equation of the saddle-point method
holds for these branches, but it is clear a priori that these
particles will be heavier than the mass scale of a few hundred
MeV, which follows from chiral-symmetry breaking. It is
conceivable, however, that, if such solutions exist, they can
be associated with some heavy particles.
PH
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Fig. 4. Correction m to the dynamical mass as a function
kρ̄/2.

is canceled in m(k), so that the exact value of this
coefficient is immaterial.

The saddle point of the functional specified by
Eq. (19) satisfies the equation∫

dk

π4

[Γ2(k)]′µ
k2 + Γ2(k)

(21)

−
∫
dkdl

π8

{
µ2γ2

1(k, l)[(kl) − Γ(k)Γ(l)]
(k2 + Γ2(k))(l2 + Γ2(l))

}′

µ

×D(k − l) +
Nc
nρ̄4ν

[µ4c2(µ)]′µ =
nρ̄4

2Ncµ
,

where a prime denotes differentiation with respect
to µ.

The equation for the saddle point is written under
the assumption that the parameters of the instanton
liquid do not change; however, this is not quite
correct, because it is necessary to take into account
effects caused by the quark-condensate-induced
change in the equilibrium instanton size. In the
perturbation-theory scheme specified by Eq. (17), the
first term, which is linear in the scalar field, causes a
small shift of the equilibrium instanton size (ρc ∼ ρ̄).
In the leading approximation, this shift, which is
represented by a simple diagram of the tadpole type,
is given by

2iµ
∫
dkdl

π8
γ1(k, l)(−π4)δ(k − l) (22)

× trS(k)ϕ(k − l) = ∆ · ϕ(0),

∆ = −2iµ
∫
dk

π4
γ1(k, k)trS(k) =

4Nc
(nρ̄4κ)1/2

µ2c(µ).

It should be recalled that ϕ = ρ− ρc and that ϕ(0) =∫
dzϕ(z) denotes the scalar field in the momentum

representation.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Table 1. Basic parameters of the theory of chiral-symmetry breaking

Nf

DP MSZ

µ M(0), MeV −i〈ψ†ψ〉, MeV3 µ M(0), MeV −i〈ψ†ψ〉, MeV3

0 5.68 × 10−3 341 −(301)3 5.68 × 10−3 341 −(337)3

1 5.24 × 10−3 361 −(337)3 4.98 × 10−3 377 −(326)3
This contribution can be taken into account by
supplementing the variational procedure for deter-
mining the saddle point of the functional in (19) with
the variation of the parameters of the instanton liquid
as functions of µ [in the case being considered, it is
the instanton-liquid density n(µ) that changes]. In
practice, it is quite acceptable to use a simple iterative
procedure where the first step consists in determining
the saddle point µ(ρ̄) without taking these changes
into account. The following steps involve determining
the new parameters of the instanton liquid (see Ap-
pendix) and solving anew the equation for the saddle
point, whereupon the procedure is repeated. It turns
out that, to the precision adopted in our calculations,
the results converge after five to six iterations. The
results of our numerical calculations (MSZ) at Nf =
0, 1 are quoted in Table 1, along with the results ob-
tained by Diakonov and Petrov in [2], who disregarded
the deformation of instantons. In the first row of this
table, we present the results for the case of Nf → 0,
which formally corresponds to the “quenched” ap-
proximation for the parameters of the instanton liquid.
Specifically, the table gives the calculated values of
the dynamical quark mass

M(0) = 2Γ(0)
(

1
ρ̄

)
[MeV]

and of the quark condensate

−i〈ψ†ψ〉 = i trS(x)|x=0 = −2Nc
∫
dk

π4

× Γ(k)
k2 + Γ2(k)

(
1
ρ̄

)3

[MeV3].

In the present study, the renormalization constant
ΛQCD is everywhere fixed at the scale of Λ =
280 MeV. The parameters of the instanton liquid
differ somewhat from the commonly accepted phe-
nomenological values of ρ̄ ∼ (600 MeV)−1 and R̄ ∼
(200 MeV)−1 (see the relevant tables in the Ap-
pendix). For the constant Λ, it is possible, however,
to choose a more appropriate value at which the
instanton-liquid parameters found by means of our
procedure would be close to the aforementioned
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
phenomenological values. As might have been ex-
pected, the changes in the parameters of the quark
condensate are insignificant, about a few MeV, which
makes it possible to introduce a new soft energy scale
caused by effects of quark propagation through an
instanton medium. For the sake of comparison, we
display, in Fig. 3, the function MDP(kρ̄/2) (dashed
curve) and the function MMZS(kρ̄/2) (solid curve)
and, in Fig. 4, the function m(kρ̄/2) at Nf = 1. As
might have been expected, the presence of an effective
attractive interaction, which appears in the system
owing to the scalar field, leads to an increase in the
dynamical quark mass. As to the inclusion of the
quark effect on the instanton liquid, it reduces to an
increase in its density (see Table 1A in the Appendix).
This also corresponds to an effective attraction that
arises in the system of pseudoparticles; in turn, the
attraction in question may obviously serve as a source
of inhomogeneity in the ensemble of instantons,
leading to the formation of pseudoparticle clusters.

4. GENERALIZATION TO THE CASE
OF MANY FLAVORS

Let us now proceed to consider the case ofNf > 1,
which is more important for phenomenological appli-
cations. The quark determinant then has the form [2,
10]

Zψ 

∫
Dψ†Dψ exp



∫
dx

Nf∑
f=1

ψ†
f (x)i∂̂ψf (x)




×
(
Y +

V RNf

)N+
(
Y −

V RNf

)N−

,

Y ± = iNf

∫
dzdUdρn(ρ)/n

×
Nf∏
f=1

∫
dxfdyfψ

†
f (xf )i∂̂xf

Φ±(xf − z)

× Φ†
±(yf − z)i∂̂yf

ψf (yf ).

The inclusion of the phonon-like component modi-
fies the kernels of the factors Y ± similarly to (13).
2
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Therefore, the well-known transformation that is ap-
plied to fermion fields and which reduces the factors
Y ± to a determinant form remains in force in our
case as well. Integration performed everywhere with
respect to z [in the adiabatic approximation, we have
ϕ(x, z) → ϕ(z)] leads to correct diagrams conserving
the momenta of interacting particles. As a result, we
find, in the leading order inNc, that

Y ± =
(

1
Nc

)Nf
∫
dz det

(
iJ±(z)

)
,

J±fg(z) =
∫
dkdl

(2π)8

[
ei(k−l)zγ0(k, l)

+
∫
dp

(2π)4
ei(k−l+p)zγ1(k, l)ϕ(p)

]
ψ†
f (k)

1 ± γ5
2
ψg(l).

In order to reduce the functional considered here to a
Gaussian form, it is necessary to perform, in addition
to integration with respect to the auxiliary parame-
ter λ, the bosonization transformation accompanied
by integration with respect to the auxiliary Nf ×Nf
matrix meson fields M [10]; that is,

exp
[
λdet

(
iJ

Nc

)]


∫
dM

× exp

{
itr[MJ ] − (Nf − 1)

(
det[MNc]

λ

) 1
Nf−1

}
.

As a result, the generating functional can be recast
into the form

Z 

∫
dλ

2π
Z ′′
g exp(−N lnλ) (23)

×
∫
Dϕ exp

{
−
∫

dk

(2π)4
nκ

2
ϕ(−k)[k2 +M2]ϕ(k)

}

×
∫
DML,R exp

{∫
dz

{
− (Nf − 1)

×
[(

det[MLNc]
λ

)1/(Nf−1)

+
(

det[MRNc]
λ

)1/(Nf−1)
]}}∫

Dψ†Dψ

× exp
{∫

dk

(2π)4
∑
f

ψ†
f (k)(−k̂)ψf (k)

+ i
∫
dz
(

tr[MLJ
+] + tr[MRJ

−]
)}
,

where ML and MR are meson fields interacting
with quark fields of specific helicity. Now, the scalar
field interacts with quarks of various flavors, but
the main contribution comes, as might have been
expected on the basis of the above consideration
PH
of the Nf = 1 case, from diagrams of the tadpole
type, with some pairs of the quark fields involved
being considered in the condensate approximation,
where ψ†

f (k)ψg(l) → 〈ψ†
f (k)ψg(l)〉 = −π4δfgδ(k −

l)trS(k). The condensate is obtained as a nontrivial
solution to the saddle-point equation for meson fields
of the diagonal form (ML,R)fg = Mδfg . In addition
to the transformations specified by Eqs. (14) and (15),
it is convenient to introduce dimensionless variables
as (M/2)ρ̄3 → µ and

(
λρ̄4/(2Ncρ̄)Nf

)1/(Nf−1) → g.
In terms of this notation, the effective action (Z 
∫
dgdµ exp{−Veff}) has the form

Veff = N(Nf − 1) ln g (24)

− V
ρ̄4

(Nf − 1)
2µNf /(Nf−1)

g
− V
ρ̄4

2N2
fN

2
c

nρ̄4ν
µ4c2(µ)

+2NcNfµ2 V

ρ̄4

∫
dkdl

π8
γ2
1(k, l)

× (kl) − Γ(k)Γ(l)
(k2 + Γ2(k))(l2 + Γ2(l))

D(k − l)

− 2NfNc
V

ρ̄4

∫
dk

π4
ln{k2 + Γ2(k)}.

The saddle-point equation can be represented as∫
dk

π4

[Γ2(k)]′µ
k2 + Γ2(k)

+
NfNc
nρ̄4ν

[µ4c2(µ)]′µ (25)

−
∫
dkdl

π8

{
µ2γ2

1(k, l)[(kl) − Γ(k)Γ(l)]
(k2 + Γ2(k))(l2 + Γ2(l))

}′

µ

×D(k − l) =
nρ̄4

2Ncµ
,

and formula (20) for the additional contribution to
the mass acquires the factor Nf since, in view of
the scalar nature of the phonon-like field, a tadpole
involving the condensate of quark fields of all Nf
possible flavors can be connected to each vertex:

m(k) =
NfNc

(nρ̄4κ)1/2
κ

ν
µ3c(µ)γ1(k, k).

As a supplement to Table 1, Table 2 illustrates the
results of our numerical calculations at Nf = 2, dis-
playing, among other things, data for the pion decay
constant Fπ [MeV] given by

F 2
π =

NcNf
2

∫
dk

π4

× Γ2(k) − (k/2)Γ′(k)Γ(k) + (k2/4)(Γ′(k))2

(k2 + Γ2(k))2

(
1
ρ̄

)2

,
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Table 2. Basic parameters of the theory of chiral-symmetry breaking atNf = 2

DP MSZ

µ M(0),
MeV

−i〈ψ†ψ〉,
MeV3

Fπ,
MeV

F
′

π,
MeV

µ M(0),
MeV

−i〈ψ†ψ〉,
MeV3

Fπ ,
MeV

F
′

π,
MeV

4.81 × 10−3 388 −(384)3 122 100 4.36 × 10−3 425 −(366)3 114 94
where Γ′(k) = dΓ(k)/dk, and for its approximate ex-
pression F

′
π[MeV],

F
′2
π =

NcNf
2

∫
dk

π4

Γ2(k)
(k2 + Γ2(k))2

(
1
ρ̄

)2

;

the condensate −i〈ψ†ψ〉 is presented there for quarks
of one of the flavors.

Expression (23), which was obtained in the present
study for the generating functional, makes it possible
to describe meson excitations of the quark condensate
by using the approach developed previously in [2] and
by taking into account the effect of the phonon-like
field within perturbation theory. An analysis along
these lines has revealed that the parameters of the
mesons do not change sizably—in particular, the pion
decay constant undergoes virtually no changes.

5. CONCLUSION

A simple scheme has been proposed for describing
quark interaction with an instanton liquid. This
scheme is based on a special choice of configurations
saturating the path integral that have the form of
deformable (easily crumpled) (anti)instantons whose
parameters γ(x) can be varied. In the present study,
we have varied the pseudoparticle size ρ(x, z). This
choice was motivated by the form of the quark
determinant, which, in the theory of chiral-symmetry
breaking, depends substantially only on the mean
instanton size. In the long-wave approximation,
the variational problem of optimally choosing de-
viation fields reduces to constructing the effective
Lagrangian that involves a scalar phonon-like field
coupled to quarks by a Yukawa interaction. As might
have been expected, the effect of quarks on the
parameters of the instanton liquid is insignificant. The
parameters of the theory of chiral-symmetry breaking
also change insignificantly—in particular, the scale
of corrections to the quark condensate is about a
few MeV. Within the pattern developed in this study,
the propagation of quark-condensate perturbations
through an instanton liquid resembles the situation
in the polaron problem, where it is necessary to take
into account the reaction of the medium in describing
elementary excitations.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
In the course of solving the problem, we have
been getting an ever clearer idea of the problem of
describing the penetration of gluon fields into a vac-
uum (their propagation over a vacuum). The situation
here is somewhat paradoxical. In the theory of an
instanton liquid, the constant β is determined self-
consistently. Its value is large (β ∼ 15–20) and, in
general, corresponds to the deconfining region—that
is, to the region where gluons are commonly thought
to be mediators of interaction. In the presence of a
gluon condensate, which is a vacuum proper in the
theory, this naive picture seems, however, unrealistic
in the region of soft momenta. Indeed, we have to
consider, each time, the gluon fields gµν against the
background of the instanton field Gµν—say, for the
sake of simplicity, in the form of the simple superpo-
sition G

′
µν = Gµν + gµν . The path integral admits a

straightforward calculation, which can be referred to,
by convention, as an exact calculation, in two limiting
cases. The first is that where Gµν � gµν and where
the gluon field gµν describes quantum corrections to
the instanton field, which are eventually reduced to
loop contributions, only the vacuum condensate sat-
urated by instantons appearing here as an observable.
The other limiting case is that of very strong gluon
fields, gµν � Gµν . In this case, which corresponds
to the region of hard momenta, we merely have free
gluon fields, with instanton fields being immaterial.
Figuratively, the gluon field is as if lost, in the first
case, against the background of the instanton field
because of averaging over the pseudoparticle posi-
tion. Within the scheme developed here for approx-
imately calculating the path integral, perturbations
of the quark condensate, pions being the lightest of
these, appear to be the source of long-wave phonon-
like excitations of the gluon condensate. Closely in-
specting the result obtained for the generating func-
tional within the approximation of chiral-symmetry
breaking, where the inverse effect of quarks on pseu-
doparticles is disregarded, one can see that, in the
nonperturbative region of soft momenta, the variable
mean pseudoparticle size ρ̄→ ρ̄+ δρ, which is the
only parameter involved in Zψ and which encodes
the state of the instanton liquid, is a convenient vari-
able that makes it possible to take this effect into
account. As a result, it turns out that a light particle
2
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possessing the properties of a scalar glueball is a
natural candidate for a mediator of the interaction.
Therefore, a color-singlet object is likely to be the
observable mediator of the interaction even in the
deconfining region (large β). The existence of such
a color-singet object can then be associated with
the unusual properties of the sigma meson [f0(400–
1200 MeV)], which is observed experimentally as
a broad resonance of width about 600–1000 MeV
and which is unsatisfactorily described in terms of a
quark–antiquark bound state.8)

Thus, it is urgently needed to investigate the
Green’s function for the mediator of the interaction
over the entire range of momenta. Its role is played
by a phonon-like excitation of the gluon condensate
in the region of soft momenta and by a gluon in
the region of hard momenta (at a scale smaller than
the mean instanton size). The same circumstance
dictates the rescaling of loop corrections in the theory.
In a sense, the use of a free gluon propagator is not
quite legitimate. The formulas must be corrected in
the region of soft momenta, but the large value of β
in the theory of an instanton liquid guarantees the
smallness of the relevant corrections.

Our calculations cannot be considered as abso-
lutely rigorous because, in a full theory, it is necessary
to take into account changes in the instanton pro-
file [11], to describe more realistically the interaction
of pseudoparticles (which is likely to be overesti-
mated), to go beyond the long-wave approximation
(for example, by taking into account the contribution
of the instanton Jacobian |δA/δϕ|), etc.
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8)For example, a Yukawa-type effective interaction Lagrangian
found in the present article makes it possible to assess the
presence of a bound state in the quark–antiquark system
within the naive relativistic approximation. The inequality
µγ0(0)

4πM

µ2γ2
1(0)

nρ̄4κ
≥ 2 serves as a criterion for the emergence

of a level. Our estimations yield an O(1) value for the expres-
sion on the left-hand side of it.
P

APPENDIX

The contribution of the quark determinant to the
action functional for an instanton liquid is represented
by the tadpole diagram [see Eq. (22)]. Upon go-
ing over to the dimensionless variables specified by
Eq. (15), it assumes the form

∆ϕ→ ∆
(nκ)1/2

ρ̄3
ϕ(0) = ∆(nρ̄4κ)1/2

×
∫
dρ
n(ρ)
n

∫
dz

ρ̄4
ρ(z) − ρc
ρ̄

.

The instanton-liquid action functional in Eq. (3) then
acquires an additional term, becoming

〈S〉 =
∫
dzn

{
〈s〉 −

〈
∆′ρ− ρc

ρ̄

〉}
,

where ∆′ =
4NcNf
nρ̄4

µ2c(µ). The mean action func-

tional per instanton is then given by

〈s1〉 =
∫
dρs1(ρ)n(ρ)/n,

where s1(ρ) = β(ρ) + 5 ln(Λρ) − ln β̃2Nc +
βξ2ρ2nρ2 − ∆′(ρ− ρc)/ρ̄. In order to find the equi-
librium parameters of the instanton liquid, we apply
the maximum principle

〈e−S〉 ≥ 〈e−S0〉e−〈S−S0〉,

employing its simplest version, where the approxi-
mating functional is trivial: S0 = 0.9) In the equi-
librium state, the size distribution of instantons,
n(ρ), must depend only on the instanton-liquid
action functional; that is, n(ρ) = Ce−s(ρ), where C
is a constant.10) Further, it is necessary to find the
maximum of the mean action functional per instanton
with respect to variations of the parameters of the
instanton liquid (for example, the mean instanton size
ρ̄). We assume that the corrections introduced by the

9)In principle, this choice of the approximating functional is ex-
pected to be somewhat poorer than the estimate of Diakonov
and Petrov [2]. Its advantage is that, in this case, one can
obtain explicit expressions for the parameters of the instan-
ton liquid instead of solving a complicated transcendental
equation.

10)This argument corresponds to the maximum principle [2].
In order to demonstrate this, we note that, if the action
functional in (3) is approximated by the local expression
〈s1〉 =

∫
dρs1(ρ)n(ρ)/n, where s1(ρ) = β(ρ) + 5 ln(Λρ) −

ln β̃2Nc + βξ2ρ2nρ2, this choice of the distribution func-
tion n(ρ) makes the problem self-consistent. Varying the
difference 〈s〉 − 〈s1〉 =

∫
dρ{s(ρ)− s1(ρ)}e−s(ρ)/n of the

functionals being considered with respect to s(ρ) and taking
into account arbitrariness in the choice of normalization, we
obtain s(ρ) = s1(ρ) + const.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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shear term are small and consider them in only in the
linear approximation in the deviation ∆, employing
the expansion

〈s1〉 =
〈(s + δ)e−s−δ〉

〈e−s−δ〉 
 〈se−s〉 + 〈δe−s〉
〈e−s〉 (A.1)

+
〈se−s〉〈δe−s〉 − 〈sδe−s〉〈e−s〉

〈e−s〉2 ,

where δ is a small shear contribution and s is the
action functional generated only by the gluon compo-
nent. The last term is much smaller than the first one
and will therefore be disregarded. From relation (A.1),
one can see that, in assessing the mean action func-
tional per instanton, it is legitimate to retain, in the
exponential, only the gluon-component contribution
s (the shear term δ can be disregarded). As a result,
we arrive at 〈s1〉 =

∫
dρs1(ρ)n0(ρ)/n0, where n0(ρ)

is the distribution function n without the inclusion
of the shear term.11) For the mean square of the
instanton size and for the instanton-liquid density, we
can obtain12)

r2ρ2 = ν
{

1 +
∆′

rρ̄

Γ(ν + 1/2)
2νΓ(ν)

}
(A.2)


 ν
{

1 + ∆′Γ(ν + 1/2)
2ν3/2Γ(ν)

}
,

n = CCNc β̃
2Nc

Γ(ν)
2r2ν

, (A.3)

where the parameter r2 is given by

r2 = βξ2nρ2. (A.4)

By using the expansion ln ρ = ln ρ̄+
ρ− ρ̄
ρ̄

+

1
2

(ρ− ρ̄)2
ρ̄2

+ . . . and relation (A.2), it can be shown

11)The shear term changes insignificantly the mass of the
phonon-like excitation. The equilibrium instanton size deter-
mined from the condition ds(ρ)/dρ|ρ=ρc

= 0 is then given

by ρc = (α + ∆′β)ρ̄, where α =

(
1 − 1

2ν

)1/2

and β =

1

4ν

{
1 − α

Γ(ν + 1/2)

ν1/2Γ(ν)

}
, the second derivative of the action

functional being s
′′
(ρc) =

4ν

ρ2

{
1 +

∆′

α
(1 − 2β)

}
∼ M−2.

The inclusion of a variation of the instanton profile in the de-
formation mode A → A + a, which can be introduced within
the superposition ansatz (1) with a subsequent change in the
quark zero mode [D(A+ a)ψ = 0], where the correction field
is a ∼ ∂ρ(x, z)/∂x|x=z, is yet another source of corrections
to the kinetic coefficient. Numerically, both corrections to the
kinetic term are small.

12)In order to avoid encumbering the displayed equations with
factors that reduce then to dimensionless forms and which
are proportional to powers of Λ, we omit them in the hope
that this will not lead to confusion.
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Table 1A. Instanton-liquid parameters

Nf
DP MSZ

ρ̄Λ n/Λ4 β ρ̄Λ n/Λ4 β

0 0.37 0.44 17.48 0.37 0.44 17.48

1 0.32 0.66 18.23 0.33 0.63 (0.71) 18.11

2 0.27 1.06 19 0.28 1.03 (1.37) 18.91

that ∫
dρn0(ρ) ln ρ∫
dρn0(ρ)

= ln ρ̄+ Φ1(ν),∫
dρn0(ρ)ρ∫
dρn0(ρ)

= ρ̄+ Φ2(ν),

where Φ1 and Φ2 are some functions of ν that are
independent of ρ̄. In addition, we note that, to the
precision adopted here, the mean square of the in-
stanton size satisfies the equality r2ρ2 = Φ(ν), with
Φ(ν) being a function of only ν. For the mean action
functional per instanton, we then have

〈s1〉 = −2Nc ln β̃ + (2ν − 1) ln ρ̄+ F (ν),

where F (ν) is again a function of only ν, its explicit
form being irrelevant here. Determining the maxi-
mum of the mean action functional per instanton with
respect to ρ̄, we obtain

ρ̄ = exp
{
− 2Nc

2ν − 1

}
, β =

2bNc
2ν − 1

− lnCNc .

From relations (A.2) and (A.4), we find that the
instanton-liquid density is given by

n = ν
exp

(
8Nc

2ν − 1

)
βξ2

{
1 + ∆′Γ(ν + 1/2)

2ν3/2Γ(ν)

}
.

Further, we determine the constant C using relation
(A.3). The parameters of the instanton liquid—they
are compiled in Table 1A forNf = 0, 1, 2 and Nc = 3
(the instanton-liquid density for ∆ �= 0 at the end of
the iteration process is given parenthetically)—prove
to be very close to the parameters of the Diakonov–
Petrov model [2]. It is interesting to note that, upon
taking into account the effect of quarks on the equilib-
rium state of the instanton liquid, its density becomes
higher.

Table 2A displays the calculated values of the mass
gap M and of the wavelength in the “time” direction
λ4 =M−1. Also given there for the sake of compar-
ison is the mean distance between pseudoparticles,
which gives sufficient grounds to believe that the
adiabatic approximation (λ ≥ L ∼ R̄ > ρ̄ with R̄ =
2
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Table 2A. Features of phonon-like excitations

Nf MΛ−1 λ4Λ M
′
Λ−1 λ′4Λ R̄Λ

0 1.21 0.83 0.99 1.01 1.23

1 1.34 0.75 1.09 0.92 1.12 (1.09)

2 1.45 0.69 1.18 0.85 0.99 (0.94)

n−1/4) is valid for long-wave perturbations of the
pion type. Unprimed (primed) parameters correspond
to the kinetic term κ = 4β (κ = 6β). The values in
parentheses are the distances between pseudoparti-
cles at the end of the iteration process.
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Abstract—The question is investigated of whether an azimuthal asymmetry in the hadron-jet spectra can
arise because of rescattering and energy losses of partons produced via hard processes in a dense quark–
gluon matter formed in the region of the initial nuclear overlap in collisions characterized by a nonzero value
of the impact parameter.Methods are discussed for determining the reaction-plane angle in ultrarelativistic
heavy-ion collisionswith the aid of the flux of semihard particles. c© 2002MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable advances recently made in a lattice
simulation of QCD systems with allowance for, in
particular, dynamical quarks have given sufficient
grounds to state that the deconfinement of hadronic
matter and the restoration of chiral symmetry must
occur at high temperatures of Tc ∼ 200 MeV [1]. An
experimental investigation of the properties of quark–
gluon plasma formed in ultrarelativistic nucleus–
nucleus collisions is one of the main objectives of
present-day high-energy physics (for an overview,
see, for example, [2–6]).

In recent years, much attention has been given
to investigating the potential of hard tests of quark–
gluon plasma, such as heavy quarkonia, hard hadrons,
jets, and dimuons of high invariant mass. Since
hard QCD scattering processes occur at the earliest
stage of a nucleus–nucleus collision, particles and
parton jets produced in such processes do not belong
to a thermalized system, so that they can carry
information about initial stages of its evolution. In
particular, the suppression of the yield of massive
vector mesons J/ψ and ψ′ because of the screening
of a cc̄ bound state (color dipole) in a plasma [7]
or because of dynamical dissociation on semihard
deconfined gluons [8] was proposed as one of themain
signals from the formation of quark–gluon plasma.
The observation of such an anomalous suppression
of ψ resonances in the most central PbPb collisions
at the Super Proton Synchrotron (SPS, CERN)
[9] does not comply with models of absorption in
cold nuclear matter and a hadronic gas and can
be interpreted as an effect due to the formation of
quark–gluon plasma [10]. For heavier bb̄ systems
(Υ resonances), a similar effect of suppression in
quark–gluon plasma is possible at temperatures that
are higher than those for cc̄ and which are expected
1063-7788/02/6505-0943$22.00 c©
to be achieved in heavy-ion collisions at RHIC and
especially at LHC.

Apart from the suppression of heavy quarkonia,
the propagation of hard jets of color-charged partons
through quark–gluon plasma, which are produced
in pairs at the earliest stage of the collision pro-
cess (τform ∼ 1/pT � 0.01 fm/c) in individual hard
nucleon–nucleon (parton–parton) scattering events,
may be yet another hard test of plasma formation.
Such jets propagate through dense quark–gluon
matter formed by a set of minijets over a large time
scale (�0.1 fm/c) and interact with matter con-
stituents, with the result that their original properties
are modified upon additional rescatterings. The inclu-
sive cross section for the production of hard hadron
jets [Q2 � 1 (GeV/c)2] is still too small for such
events to be analyzed at SPS energies, but it grows
fast with increasing energy of colliding nuclei. Hard
and semihard processes of parton–parton scattering
will play an important role at LHC energies,

√
s =

5.5 TeV per nucleon pair for PbPb collisions. Here,
changes in the behavior of a color charge (jet parton)
in dense QCD matter [11] that are associated with
medium-induced coherent gluon bremsstrahlung
[12–17] and with collision energy losses due to elastic
rescattering on medium constituents [18–20] present
a problem of paramount importance. Since the in-
tensity of rescattering grows sharply with increasing
temperature, the formation of a hot quark–gluon
plasma with an initial temperature of T0 ∼ 1 GeV at
LHC [21] is expected to be accompanied by hard-jet
energy losses that are much greater than those in the
case of cold nuclear matter or a hadronic gas [14, 15].

In order to implement experimental searches for
energy losses of hard quarks and gluons in dense
QCD matter and to perform a relevant analysis of the
2002 MAIK “Nauka/Interperiodica”
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properties of the medium formed in ultrarelativistic
nucleus–nucleus collisions, it was proposed to use
the suppression of the yield of hard dijets [20, 22],
the enhancement of the yield of single jets [23, 24]
produced in primary processes of hard parton–parton
scattering, and the disbalance of the transverse mo-
mentum in the production of a parton jet and a par-
ticle that does not undergo strong interaction (such
as a Z boson [25] or a high-energy photon [26]).
The above features can be investigated in heavy-ion
collisions [27] by using the compact-muon-solenoid
(CMS) detector, which is being constructed at LHC
and which can be optimized for precisely measuring
the characteristics of high-energy muons, photons,
electrons and hadron jets [28]. The distribution of
hard jets with respect to the impact parameter of
a nucleus–nucleus collision was considered in [29].
This distribution carries information about the depen-
dence of the parton energy losses on the distance that
partons travel in a dense medium (a coherent pattern
of medium-induced gluon bremsstrahlung can lead
to a nontrivial character of this dependence [14–16]).
Among other things, it was shown in [29] that parton
rescattering in a medium can modify the impact-
parameter distribution of jets, shifting its mean and
maximum values.

In the present study, we consider another aspect of
the problem of jet suppression in noncentral heavy-
ion collisions, that which is associated with the az-
imuthal asymmetry arising in the jet yield from semi-
central nucleus–nucleus collisions because of rescat-
tering and energy losses that partons from hard pro-
cesses suffer in the asymmetric dense-medium vol-
ume produced in the region of the initial overlap
of colliding nuclei. Investigation of the azimuthal-
angle distribution of jets seems promising from the
experimental point of view, since it does not require
a precise measurement of the initial jet energy (this
would present a rather difficult problem depending
on the algorithm for seeking jets and on the angle
of a jet cone [27])—it is only necessary to measure
the jet angle with respect to the reaction plane. It
should be emphasized that, while, in experiments that
are being currently performed, the reaction-plane az-
imuthal angle, which is formed by the directions of
the beam axis and the impact-parameter vector, is
measured primarily on the basis of the flux of soft
(pT ≤ 2 GeV/c) particles [30–32], at LHC energies,
it would become possible, in all probability, to deter-
mine this angle by using the flux of semihard (pT �
2 GeV/c) particles originating for the most part from
the fragmentation of gluons emitted in the asymmet-
ric volume [33, 34].

The ensuing exposition is organized as follows. In
Section 2, we give a brief account of the geometric
P

model for the production and propagation of hard par-
tons through dense matter formed in ultrarelativistic
nucleus–nucleus collisions. In Section 3, we present
the results obtained by calculating the azimuthal-
angle distributions of hard jets with allowance for
collision and radiative parton energy losses estimated
for PbPb collisions at the LHC energy. In Section 4,
we discuss the applicability of known methods for
determining the reaction-plane angle in heavy-ion
collisions at LHC on the basis of the flux of semihard
particles. In the Conclusion, we list the main results
of our study.

2. HARD-PARTON ENERGY LOSSES
IN AN ASYMMETRIC VOLUME OF A DENSE

MEDIUM

A simple geometric model describing the pro-
duction of hard partons in ultrarelativistic nucleus–
nucleus collisions and the propagation of these par-
tons through the dense medium formed was compre-
hensively investigated in [29]. Here, we briefly dwell
upon the basic points directly concerning the calcu-
lation of the azimuthal asymmetry of jets. The ini-
tial distribution of the jet-production vertex in the
nuclear-overlap region is azimuthally isotropic and
has the form

PAA(r, b) =
TA(r1)TA(r2)

TAA(b)
, (1)

where b is the impact parameter, r = r cosψ · ex +
r sinψ · ey is the vector drawn from the jet-production
vertex to the beam axis (z axis),

r1,2 =

√
r2 +

b2

4
± rb cosψ (2)

is the distance from the center of each nucleus to the
jet-production vertex,

TAA(b) =

2π∫
0

dψ

rmax∫
0

rdrTA(r1)TA(r2) (3)

is the nuclear-overlap function, and TA(r) =
A
∫ +∞
−∞ ρA(r, z)dz is the nuclear-thickness function

for the intranuclear-nucleon density ρA(r, z). The
quantity rmax is found by equating the greater value
of r1(r) and r2(r) to the nuclear radius RA; that is,

rmax = min

{√
R2
A − b2

4
sin2 ψ +

b

2
cosψ, (4)

√
R2
A − b2

4
sin2 ψ − b

2
cosψ

}
.

By way of example, we indicate that, for the uni-
form distribution of intranuclear nucleons, ρun

A (R) =
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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ρ0Θ(RA − |R|), which is used below for numeri-
cal estimates, the nuclear-overlap function has the

form T un
A (r) = 3A

√
R2
A − r2/(2πR3

A). The distribu-

tion P un
AA(r, b) is then given by

P un
AA(r, b) ∝

√
R2
A − r2

1(r, ψ, b)
√

R2
A − r2

2(r, ψ, b).
(5)

Traveling in a dense medium formed in the ini-
tial nuclear-overlap region, hard-jet partons undergo
rescattering and lose energy. In general, the energy
loss ∆E as a function of the initial energy E and the
distance L traveled in the medium can be described in
terms of the kinetic equation

∆E(L,E) =

L∫
0

dx exp (−x/λ(x))
dE

dx
(x,E), (6)

where dE/dx is the energy losses per unit length, λ =
1/(σρ) is the hard-parton range in the medium, ρ ∝
T 3 is the medium density at temperature T , and σ is
the cross section for parton interaction in themedium.
From geometric considerations, it is straightforward
to estimate the proper time τL = L (� = c = 1) over
which the jet resides within the dense region. 1) The
result is [29]

τL = min
{√

R2
A − r2

1 sin
2 φ− r1 cosφ, (7)

√
R2
A − r2

2 sin
2(φ− ϕ0)− r2 cos(φ− ϕ0)

}
,

where φ = ϕ∓ arccos {(r cosψ + b/2)/r1} is the az-
imuthal angle that is distributed isotropically and
which specifies the direction of jet motion with respect
to the vector r1, ϕ is the azimuthal angle between
the direction of jet motion and the impact-parameter
vector, and

ϕ0 = ± arccos
r2 − b2/4

r1r2
(8)

is the angle between the vectors r1 and r2. The plus
(minus) sign in (8) is taken for ψ > 0 (ψ < 0). From
(7), one can see that, in the case of a noncentral colli-
sion (b �= 0), themean value of τL depends onϕ: it has
a maximum value at ϕ = ±π/2 and a minimum value
at ϕ = 0 (see Fig. 1 for PbPb collisions at the impact-
parameter values of b = 0, 6, and 10 fm). Therefore,

1)In determining τL, we assume that a jet moves along a
straight line in the azimuthal direction; in fact, the initial
azimuthal direction of the jet differs, because of rescatterings,
from its final direction by ∆ϕ2 ∼ (µ2

D/E
2)(L/λ) (here, µD

is the Debye screening mass, which specifies a typical mo-
mentum transfer in a scattering event), but this quantity is
negligible for the parameter values used here.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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Fig. 1.Mean proper time 〈τL〉/RA of the escape of a hard
parton from dense matter as a function of the parton az-
imuthal angle with respect to the reaction plane for PbPb
collisions at the impact-parameter values of b = (solid
curve) 0, (dashed curve) 6, and (dotted curve) 10 fm.

the jet energy loss, which is an increasing function of
τL [29], also depends on the jet azimuthal angle with
respect to the reaction plane.

In order to illustrate the azimuthal asymmetry of
the parton energy loss, we consider the model pre-
sented in [29], where the evolution of quark–gluon
plasma formed at the initial stage of the reaction at
the instant τ0 in the nuclear-overlap region is consid-
ered within one-dimensional Lorentz-invariant hy-
drodynamics for the case where particles are pro-
duced at the hypersurface of the constant proper time
τ =

√
t2 − z2 [35]. In this model, collision and radia-

tive energy losses are associated with each scatter-
ing event in an expanding medium; interference ef-
fects in gluon bremsstrahlung are taken into account
by modifying the radiation spectrum as a function
of decreasing temperature [dE/dx(T )]. In the limit-
ing case of ∆E � E, the total hard-parton energy
loss in the transverse (with respect to the nuclear-
collision axis) direction—it depends on the azimuthal
angle ϕ—can be obtained on the basis of Eq. (6)
as the result of averaging over the production vertex
PAA(r, b) (1), over the square t of the momentum
transfer in a scattering event, and over spacetime
evolution. Specifically, we have

〈∆ET (b, ϕ)〉 =
2π∫
0

dψ

rmax∫
0

rdr
TA(r1)TA(r2)

TAA(b)
(9)
2
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×
τL(ϕ)∫
τ0

dτ

(
dErad

dx
(τ) + σ(τ)ρ(τ)ν(τ)

)
,

where τ0 is the proper time of medium formation.
At temperature T , the thermally averaged energy

loss ν of a hard parton of energy (effectivemass)m0 ∼
3T � E per event of elastic scattering on a medium
constituent can be estimated as

ν =

〈
t

2m0

〉
=

1
2

〈
1
m0

〉
〈t〉 (10)

� 1
4Tσ

3TE/2∫
µ2

D

dt
dσ

dt
t.

The energy spectrum of medium-induced coher-
ent gluon bremsstrahlung and the corresponding
dominant part of the radiative energy loss, dErad/dx,
were determined in [14, 15] for a massless quark
from an equation of the Schrödinger type with a
potential that is expressed in terms of the cross
section for single hard-parton scattering in amedium.
Specifically, we have

dE

dx

rad

=
2αsCR
πτL

E∫
ωmin

dω (11)

×
[
1− y +

y2

2

]
ln |cos (ω1τ1)|,

ω1 =

√
i

(
1− y +

CR
3

y2

)
κ̄ ln

16
κ̄
, (12)

κ̄ =
µ2

Dλg
ω(1− y)

,

where τ1 = τL/(2λg), αs is the QCD coupling con-
stant, y = ω/E is the hard-parton energy fraction
carried away by the gluon, and CR = 4/3 is the quark
color factor. By making the substitution CR = 3 and
by replacing the bracketed expression in Eq. (11)
by the result obtained in [14] for gluons, a similar
expression can be obtained for the gluon jet. In-
tegration in (11) is performed with respect to the
energy from the minimal gluon energy in the co-
herent Landau–Pomeranchuk–Migdal mode (QCD
analog of the Landau–Pomeranchuk–Migdal effect
in QED), ωmin = ELPM = µ2

Dλg (λg is the gluon
range), to the maximum possible energy value, which
is equal to the initial hard-parton energy E. We
note that coherent Landau–Pomeranchuk–Migdal
radiation causes a strong dependence of the jet energy
on the angular dimension of the jet cone; at the same
PH
time, the jet energy loss by collisions is virtually
independent of the angular dimension of the jet cone,
since thermal particles that elastically interacted with
a hard parton fly at rather large angles with respect to
the jet-axis direction [36].

In a superdense system (ρ1/3 � ΛQCD), where
color interaction is screened because of collective
effects, partons are asymptotically free. This makes
it possible to determine, on the basis of perturbative
QCD, the dominant contribution to the differential
cross section dσ/dt for hard-parton scattering. The
result is [13, 37]

dσab
dt

∼= Cab
2πα2

s(t)
t2

, (13)

where Cab = 9/4, 1, and 4/9 for gg, gq, and qq scat-
terings, respectively;

αs =
12π

(33 − 2Nf ) ln (t/Λ2
QCD)

(14)

is the running QCD coupling constant for Nf active
quark flavors; and ΛQCD is the QCD scale factor,
which is on the order of the critical temperature Tc.
The integrated cross section

σab =

m0(τ)E/2∫
µ2

D(τ)

dt
dσab
dt

(15)

is regularized at the lower limit by the square of
the Debye screening mass, µ2

D
∼= 4παsT 2(1+Nf/6),

in the high-temperature limit of perturbation theory
[38].

In our calculations, we used the Bjorken scaling
solution [35] for the energy density, the temperature,
and the density of quark–gluon plasma for T > Tc =
200 MeV,

ε(τ)τ4/3 = ε0τ
4/3
0 , (16)

T (τ)τ1/3 = T0τ
1/3
0 , (17)

ρ(τ)τ = ρ0τ0, (18)

and disregarded the possible insignificant contribu-
tion to the energy losses from the rescattering of
hard partons in cold nuclear matter having a much
lower density. For the sake of definiteness, we took
the initial conditions for the formation of gluon-rich
plasma that are expected for central PbPb collisions
at LHC [21]: τ0 ≈ 0.1 fm/c, T0 ≈ 1GeV,Nf ≈ 0, and
ρg ≈ 1.95T 3. The impact-parameter (b) dependence
of the initial energy density ε0 in the nuclear-overlap
region has the form [29]

ε0(b) ∝ TAA(b)/SAA(b), (19)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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Fig. 2. Mean (а) radiative and (b) collision energy
losses of a hard quark with the initial energy of Eq

T =
100 GeV versus the quark azimuthal angle for the
impact-parameter values of b = (solid curves) 0, (dashed
curves) 6, and (dotted curves) 10 fm .

ε0(b) = ε0(b = 0)
TAA(b)

TAA(b = 0)
SAA(b = 0)
SAA(b)

,

where the effective transverse area of the nuclear-
overlap region is

SAA(b) =

2π∫
0

dψ

rmax∫
0

rdr (20)

=
(
π − 2 arcsin

b

2RA

)
R2
A − b

√
R2
A − b2

4
.

That, in the nuclear-overlap region, the initial en-
ergy density ε0 (19) depends only slightly on the
impact parameter b (δε0/ε0 � 10%) up to b ∼ RA

and decreases fast for b � RA is an interesting result
obtained in [29]. At the same time, the quantity 〈τL〉
deduced by averaging, over all production vertices,
the time (7) of hard-parton escape from the dense
region decreases nearly in inverse proportion to in-
creasing b. This means that, for impact-parameter
values in the region b < RA—approximately 60% of
dijets are produced in events characterized by such
impact parameters—the difference in the intensity of
rescattering and in the corresponding energy loss is
determined almost completely by the different values
of the distance traveled in the dense medium, but not
by different values of ε0.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
Figure 2 shows the mean medium-induced (а)
radiative and (b) collision energy losses of a hard
quark of initial energy Eq

T = 100 GeV versus the
quark azimuthal angle with respect to the reaction
plane at the impact-parameter values of b = 0, 6,
and 10 fm. It should be noted that the initial-quark-
energy scale of Eq

T ∼ 100 GeV corresponds to the
threshold above which it becomes possible to single
out, in heavy-ion collisions at LHC, hard QCD jets
against the background of spurious jets (statistical
fluctuations of the transverse-energy flux that are
due to a formidable particle multiplicity in an event)
with a fairly high reconstruction efficiency [27]. As
might have been expected, the azimuthal asymmetry
of the energy losses becomes more pronounced with
increasing impact parameter b because the volume
becomes more asymmetric, although the mean value
of the losses decreases since the mean distance that
the jet travels in the medium becomes smaller (for b �
RA, the initial energy density of the medium begins
to decrease significantly). A nonuniform azimuthal-
angle dependence of the jet energy losses in semicen-
tral heavy-ion collisions must lead to an azimuthal
asymmetry of the spectrum of such jets.

3. AZIMUTHAL ASYMMETRY OF THE JET
SPECTRUM IN NONCENTRAL

NUCLEUS–NUCLEUS COLLISIONS

The azimuthal-angle distribution of the number
of ij dijets having transverse momenta pT1 and pT2

and originating from initial hard-scattering processes
in AA interactions at an impact parameter b can be
represented in the form

dNij

dpT1dpT2dϕ1dϕ2
(b) =

1
(2π)2

2π∫
0

dψ (21)

×
rmax∫
0

rdrTA(r1)TA(r2)
∫

dp2
T

dσij
dp2

T

× δ(pT1 − pT +∆Ei
T (r, ψ, ϕ1, b))

× δ(pT2 − pT +∆Ej
T (r, ψ, ϕ2, b)),

where the cross section dσij/dp
2
T for hard parton–

parton scattering in the c.m. frame was calculated
on the basis of the PYTHIA model [39] with the
structure function taken in the form of the STEQ2L
parametrization

dσij
dp2

T

= K

∫
dx1

∫
dx2

∫
dt̂fi(x1, p

2
T ) (22)

× fj(x2, p
2
T )

dσ̂ij

dt̂
δ(p2

T − t̂û

ŝ
).
2
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Fig. 3. Azimuthal-angle distribution of Ejet
T > 100 GeV

jets in the rapidity region |yjet| < 2.5 (а) with allowance
for collision and radiative energy losses and (b) with
allowance for only collision energy losses at b = (solid
lines) 0, (dashed-line histograms) 6, and (dotted-line his-
tograms) 10 fm.

Here, dσ̂ij/dt̂ is the differential parton–parton cross
section as a function of the kinematical Mandelstam
variables ŝ, t̂, and û; fi,j are the structure func-
tions for the i and j partons; x is the total-nucleon-
momentum fraction carried away by a given par-
ton; and the coefficient K takes into account higher
order corrections in αs (K ∼ 1 for pT ≥ 50 GeV/c
jets whose typical angular cone dimension is 0.3–
0.5 [29]). We note that the inclusion of the initial
bremsstrahlung from a hard parton within PYTHIA
results in that the jet azimuthal angles no longer
satisfy the simple relation ϕ1 + ϕ2 = π.

For the impact-parameter values of b = 0, 6, and
10 fm, Fig. 3 shows the azimuthal-angle (ϕ = ϕ1,2)
distribution of jets (а) for the case where both col-
lision and radiative energy losses are taken into ac-
count and (b) for the case where only collision energy
losses are taken into account. Only dijets for which
the transverse energy of each jet was greater than
100 GeV and the rapidity lay in the region |yjet| <
2.5 were selected. The distributions were normal-
ized to the initial azimuthal-angle distributions of
jets (without energy losses) in PbPb collisions. We
note that, in the kinematical range being considered,
approximately 60, 30, and 10% of jets are produced
in hard gluon–gluon scattering (gg → gg), quark–
PH
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Fig. 4. Jet elliptic-anisotropy coefficient 〈cos 2ϕ〉 with
allowance for collision and radiative energy losses as a
function of the impact parameter.

gluon scattering (qg → qg), and quark–quark scat-
tering and gluon–gluon annihilation into two quarks
(qq, gg → qq), respectively. We can see that the az-
imuthal asymmetry (the jet yield is maximal at ϕ = 0
and is minimal at ϕ = ±π/2) is enhanced upon going
over from central to semicentral collisions because
the volume becomes more asymmetric, although the
absolute value of the suppression of the jet yield de-
creases with increasing b. For jets of finite angular
dimension, it is natural to expect that the result would
be intermediate between that in case (а) and that in
case (b) because, as was mentioned in the preceding
section, the radiative loss is dominant at small an-
gular dimensions of the jet cone, θ0(→ 0), while the
relative contribution of the collision loss grows with
increasing θ0 [36].

In noncentral collisions, the ϕ distribution of jets
is well approximated by the dependence

dN

dϕ
= A(1 +B cos 2ϕ), (23)

where A = 0.5(Nmax +Nmin) and B = (Nmax −
Nmin)(Nmax +Nmin)−1 = 2〈cos 2ϕ〉. Themean value
of the cosine of 2ϕ for the particle flux is often referred
to as the elliptic-anisotropy coefficient v2 [30–34, 40].
Figure 4 displays the impact-parameter dependence
of the jet elliptic-anisotropy coefficient 〈cos 2ϕ〉 for the
case where both collision and radiative energy losses
are taken into account. Within the model used, the
azimuthal-asymmetry effect increases with b almost
linearly, reaching a maximum value at b ∼ 1.2RA =
8.2 fm, whereupon the jet elliptic-anisotropy coeffi-
cient decreases in the region of b values where the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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effect of the reduction of the jet energy loss due to
a decrease in the effective dimension of the dense
region and in the initial energy density of the medium
becomes crucial and is not compensated by the
increase in the degree of asymmetry of the volume.

The transverse-momentum (pT ) dependence of
the elliptic-anisotropy coefficient is yet another inter-
esting characteristic of the azimuthal asymmetry; its
behavior for the flux of particles within hydrodynamic
models [40] (linear or quadratic growth of v2 with
pT ) differs qualitatively from that within the models
where the elliptic flux stems from the fragmentation
of minijets losing energy in the asymmetric volume
[34] (reduction of v2 with increasing pT ). For the
impact-parameter values of b = 6 and 10 fm, the
elliptic-anisotropy coefficient 〈cos 2ϕ〉 as a function
of the initial transverse energy ET of a jet is shown
in Fig. 5 for the cases where collision and radiative
energy losses are taken into account. It can be seen
that, with increasing ET , the azimuthal asymmetry of
jets decreases (for collisions characterized by a higher
degree of centrality, this decrease is more gently slop-
ing). This can be explained by the fact that the energy
losses, which are weakly dependent onET , have a less
pronounced effect on the yield of jets with high values
of the initial energy.

To conclude this section, we note that the impact
parameter can be determined experimentally by mea-
suring the transverse-energy flux with the aid of the
calorimetric system of the facility used—for example,
to within 1 to 2 fm in PbPb collisions at LHC [27, 41].
Thus, the observation of the azimuthal asymmetry
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
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of jets in various intervals of the detected transverse
energy can carry information about the intensity of
parton rescattering in a medium and can serve as
a signal of the quark and gluon energy losses in an
asymmetric volume of quark–gluon plasma.

4. DETERMINATION
OF THE REACTION-PLANE ANGLE

FOR A NUCLEUS–NUCLEUS COLLISION
FROM THE FLUX OF SEMIHARD

PARTICLES

In order to perform an inclusive analysis of jet
production versus the azimuthal angle, it is neces-
sary to determine the reaction-plane angle in each
event. So far, the existing methods for determining
the reaction-plane angle, which were summarized in
[30], have been applied to heavy-ion collisions in order
to investigate the elliptic flux of soft particles (pT ≤
2 GeV/c) in experiments at SPS [31] and RHIC
[32]. The resulting pattern of the elliptic flux of soft
particles proved to be in qualitative agreement with
the predictions of hydrodynamic models [40].

It was shown in [30] that, if there are no cor-
relations between particles, the distribution in the
reaction-plane angle Ψn measured on the basis of
the nth harmonic of the particle flux (see below) with
respect to the true angle Ψ0 is independent of Ψ0 and
has the form

dN

d(nΨn)
=

1
2π

{
e−ξ

2/2 + ξ

√
π

2
cos(nΨn) (24)

×
[
e−ξ

2 sin2 (nΨn)/2
(
1 + erf

(ξ cos (nΨn)√
2

))]}
,

2
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where the dimensionless parameter ξ depending on
the multiplicity of particles and on the degree of their
anisotropy characterizes the precision in determining
the azimuthal reaction-plane angle: Ψn → 0 for ξ →
∞. Figure 6 shows the ratio of the “observed” jet
elliptic-anisotropy coefficient 〈cos 2ϕ〉 as a function
of the parameter ξ for n = 2 to the idealized value of
〈cos 2ϕ〉 for ξ → ∞.We note that this dependence has
a universal character for different absolute values of
the jet elliptic-anisotropy coefficient 〈cos 2ϕ〉; this can
be demonstrated analytically, provided that the ap-
proximation (23) of the azimuthal-angle distribution
of jets is valid (see also [30]). By way of example, we
indicate that the value of ξ = 2.5 leads to a decrease
in the observed effect of jet azimuthal asymmetry by
10% and that the value of ξ = 0.8 corresponds to a
50% reduction of the effect (see Fig. 6).

As was noted in the Introduction, jet production in
heavy-ion collisions can be analyzed in an experiment
with the CMS detector, which will be installed at
the LHC collider under construction at CERN and
which can be optimized, in particular, for precisely
measuring the properties of hard-hadron jets [27,
28]. The special features of CMS make it possible
to measure, to a fairly high precision, the momenta
of charged particles from heavy-ion collisions with
the aid of a tracking system only from relatively high
values of pT . Nevertheless, the reaction-plane angle
can be determined, in principle, on the basis of the
flux of such semihard particles (which do not belong
to hard dijets) owing to the following two factors: a
rather high multiplicity of these particles at the LHC
energy (it is commensurate with the multiplicity of
soft particles at the SPS energy) and the sensitiv-
ity of semihard particles, which originate predomi-
nantly from the fragmentation of gluons emitted in the
asymmetric volume, to the azimuthal asymmetry of
noncentral nucleus–nucleus interactions [33, 34].

For the nth harmonic, the azimuthal reaction-
plane angle Ψn can be derived from the equation [30]

tannΨn =

∑
i
ωi sinnϕi∑

i
ωi cosnϕi

, (25)

where ϕi is the azimuthal angle of the ith particle and
ωi is its weight, the sum being taken over all parti-
cles that are used to determine the reaction plane. It
should be noted that the weights are optimized in or-
der to achieve the highest precision in determining the
reaction-plane angle. Sometimes, this can be done
by choosing particles of a specific type or by using
the transverse momenta of particles as weights (see
[42] for details). We also note that the reaction-plane
angle Ψn determined by using the nth harmonic falls
within the range −π/n ≤ Ψn ≤ π/n.
P

In order to illustrate the applicability of the meth-
ods for determining the reaction-plane angle, we
employed the HIJING Monte Carlo model [43] for
nucleus–nucleus interactions, which is based on
combining the multiparticle production of minijets
within perturbative QCD with the scheme of soft
string interactions and hadronization of the Lund
type. The interaction of partons in dense matter is
simulated as constant energy losses per unit length
(dE/dx = 1GeV/fm for a quark and twice that value
for a gluon), which are accompanied by a collinear
splitting of the emitted gluon from the primary parton.

Since the distribution of semihard particles in the
HIJING model used here is elliptically anisotropic,
we determined the reaction-plane angle on the ba-
sis of the second harmonic—n = 2 in Eq. (25). An
equivalent method for determining the reaction-plane
angle consists in using the maximum principle for the
quantity

∑
i

p2
xi − p2

yi

p2
xi + p2

yi

=
∑
i

cos 2(ϕi −Ψ2) (26)

with respect to the angle Ψ2. For weights, we used
ωi = 1, ωi = pti, and ωi = p2

ti.

For the mean multiplicity of pT > 2 GeV/c, |η| <
2.4 charged particles (for the sake of definiteness, use
is made here of the estimate of the CMS acceptance),
the HIJING model predicts the value of 〈n±〉 ≈ 160
for semicentral PbPb collisions (b = 6 fm) at

√
s =

5.5 TeV per nucleon. The best precision in determin-
ing the reaction-plane angle in semicentral collisions
was achieved at the weights chosen to be ωi = pT i;
albeit not high, ξ ∼ 0.5, it is quite acceptable (see
Fig. 6). It can be hoped that this precision can be
improved by further optimizing the weights ωi. More-
over, the result that we obtained for ξ is nothing but
a lower bound, since the current version of HIJING
gives no way to increase the quark energy losses
above dE/dx = 1 GeV/fm. At the same time, much
higher values of the energy losses are expected at the
LHC energy (see, for example, [14, 16, 17, 24] and
Fig. 2 in the present study), and this would result
in the enhancement of the azimuthal anisotropy of
semihard particles and, hence, in the improvement of
the accuracy in determining the reaction-plane angle.

5. CONCLUSION

We have considered the emergence of the az-
imuthal asymmetry of the hadron-jet spectrum as a
possible signal of the rescattering and energy losses of
jet partons in an asymmetric volume of dense quark–
gluonmatter formed in the region of the initial nuclear
overlap in collisions with a nonzero impact parameter.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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In order to investigate the azimuthal-angle distribu-
tion of jets, it is sufficient to know the jet azimuthal
angle with respect to the reaction-plane angle—a
precise measurement of the primary jet energy is not
required. The elliptic-anisotropy coefficient 〈cos 2ϕ〉
for ET ≥ 100 GeV jets that was estimated in the
present article for semicentral PbPb collisions at the
LHC energy ranges between 0.01 and 0.16, depend-
ing on the mechanism of the energy losses and on
the angular dimension of the jet cone and becoming
somewhat less with increasing jet energy.

In order to perform the inclusive analysis of jet
production versus the azimuthal angle, it is necessary
to determine the reaction-plane angle in each event.
The existing methods that make it possible to do this
are based on the analysis of the elliptic flux of soft
particles (pT ≤ 2 GeV/c). We have shown that the
reaction-plane angle in semicentral PbPb collisions
at the LHC energy can in principle be determined by
using the flux of semihard particles (pT � 2 GeV/c).
This possibility is due to the sensitivity of semihard
particles, which are predominantly produced in the
fragmentation of gluons emitted in an asymmetric
volume, both to the azimuthal asymmetry of noncen-
tral nucleus–nucleus interactions and to a fairly high
multiplicity of these particles in an event.
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Abstract—Brody–Moshinsky coefficients of the axial type are introduced. It is shown that Brody–
Moshinsky coefficients represent a particular case of Petrauskas coefficients. Analytic expressions for some
sums of Petrauskas coefficients are obtained, and the examples of their application to calculating matrix
elements are given. A number of analytic expressions for axial Petrauskas coefficients are presented in the
Appendix. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Calculations dealing with the spectroscopy of
nuclei widely employ not only Brody–Moshinsky
coefficients [1] in translation-invariant bases of the
U(3(A − 1)) scheme [2, 3] (A is the number of
nucleons in a nucleus) and in allied models (the K-
harmonic method [4, 5], the method of generalized
hyperspherical harmonics [6], and so on) but also
their modifications and generalizations. In this article,
we give a review of all these coefficients. More
specifically, we present expressions for them, study
relationships between coefficients of different types,
find some of their sums, discuss the problem of phase
matching, and propose a terminology for coefficients
of various types.

This article is organized as follows. In Section 2,
we introduce Brody–Moshinsky coefficients of the
axial type and derive some expressions for them. In
Section 3, we present expressions for two types of
Petrauskas coefficients and show their relationship
with the corresponding Brody–Moshinsky coeffi-
cients. Using the bases of the U(3(A − 1)) scheme,
we calculate radial integrals for harmonic-oscillator
functions in the 3(A − 1)-dimensional system of
spherical coordinates {in the bases adapted to de-
scribing deformed nuclear states [3, 5] in (A− 1)-
1063-7788/02/6505-0953$22.00 c©
dimensional subspaces associated with the coordi-
nates x, y, and z}. Expansion of the above integrals
in terms of Talmi integrals (or Talmi-type ones) is
performed by using coefficients that were consid-
ered for the first time by A.K. Petrauskas and his
collaborators (it is natural to call them Petrauskas
coefficients). In Section 4, we obtain a number of
analytic expressions for Petrauskas coefficients and
for some sums of these coefficients and present a few
examples of their application (in particular, such sums
are employed in calculating matrix elements). In the
Appendix, analytic expressions for axial Petrauskas
coefficients are given for a number of cases frequently
occurring in spectroscopic calculations.

2. TYPES OF BRODY–MOSHINSKY
COEFFICIENTS

In representing radial integrals Iεlε′l′ that are cal-
culated for states of a three-dimensional harmonic
oscillator in terms of Talmi integrals,

Iεlε′l′ =
∑
p

〈εlε′l′|p〉Ip, (1)

we employ the well-known Brody–Moshinsky coeffi-
cients [1]
〈εlε′l′|p〉 = Γ(p+ 3/2) (2)

×
N,N ′∑
m,m′

(−1)p−(l+l′)2[N !N ′!Γ(N + l + 3/2)Γ(N ′ + l′ + 3/2)]1/2

(N −m)!(N ′ −m′)!m!m′!|Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)
.

Here,N = (ε− l)/2,N ′ = (ε′ − l′)/2, and the condi-
tion

m+m′ = p− (l + l′)/2 (3)
∗e-mail: fizkat@jtf.ku.lt
must be satisfied, which implies that summation is
actually performed over only one index. In (1), p takes

the following values: p = (l+ l′)/2, (l+ l′)/2 + 1, . . . ,
(ε+ ε′)/2.
2002 MAIK “Nauka/Interperiodica”



954 YANKAUSKAS
In bases that are adapted to describing deformed
nuclear states [3], we calculate integrals involving
functions of three one-dimensional (in subspaces as-
sociated with the axes x, y, and z) harmonic oscilla-
tors,

Iεε′ =
∫ ∞∫

−∞

∫ ∏
i

dρiHεi(ρi)O(cρ)
∏
i

Hε′i(ρi) (4)

(i = x, y, z).

Hereafter, vectors stand for triples of numbers—that
is, ε = (εxεyεz);Hεi(ρi) are Hermite polynomials; the
numbers εx, εy , and εz specify the distribution of
the oscillator quanta ε (ε = εx + εy + εz) among the
axes x, y, and z and characterize the separated-
quasiparticle functions depending on the Jacobi co-
ordinates ρi (ρ2 = ρ2x + ρ2y + ρ2z); O(cρ) is an arbi-
PH
trary translation-invariant one- or two-particle oper-
ator {c = −[(A− 1)/A] or c = 21/2 for one- or two-
particle operators, respectively}. In the expansion

Iεε′ =
∑
P

〈εε′|p〉Ip (5)

of the integrals in (4) in Talmi-type integrals

Ip =
∏
i′

2
Γ(pi′ + 1/2)a2pi′+1 (6)

×
∫ ∞∫

0

∫ ∏
i

dρiρ
2pi
i e

−ρ2i /a2O(cρ)

(here, a is a scale parameter), there appear the co-
efficients 〈εε′|p〉 of the Brody–Moshinsky type [7],
which are given by
〈εε′|p〉 =
∏

i=x,y,z

〈εiε′i|pi〉 =
∏
i

22pi−εi−ki

π1/2
Γ(pi + 1/2)[εi!(εi + 2ki)!]1/2(−1)εi−pi (7)

×
min([εi/2],εi+ki−pi)∑

si=max(0,εi−[εi/2]−pi)

1
s− i!(εi + ki − si − pi)!(εi − 2si)!(2pi + 2si − εi)!

,

where ε′i = εi + 2ki and the parameter pi can take
the values of pi = (εi + ε′i)/2, . . . , 1, or 0 (the symbol
[εi/2] stands for the integral part of εi/2). The coeffi-
cients given by (7) will be referred to as axial Brody–
Moshinsky coefficients. It is worth noting that the
phase of the coefficients (7) ismatched with that of the
axial Petrauskas coefficients DNlN′l′

p,α (see Section 3
below) and differs from the phase in (2.8) from [7] by
the factor (−1)ki . A set of analytic expressions for the
coefficients 〈εlε′l′|p〉 and 〈εε′|p〉 can be obtained by
means of a direct summation in (2) and (7) and can
be found in [3], along with tables of their numerical
values.

It can be shown that the axial Brody–Moshinsky
coefficients 〈εiε′i|pi〉 satisfy another formula, that
which is obtained from (2) upon replacing 3/2 by
1/2 in the arguments of Γ functions and making the
substitution l = l′ = lmin (lmin = 0 or 1 for even or
odd εi, respectively).

3. RELATIONSHIP BETWEEN PETRAUSKAS
AND BRODY–MOSHINSKY COEFFICIENTS

Petrauskas coefficients appear in the expansion of
radial integrals [calculated for the oscillator functions
depending on 3(A− 1)-dimensional distance ρ] in
terms of Talmi integrals and have the form [8]
D
NlKN

′l′K
p,α =

[Γ(N + lK + 3/2)Γ(N ′ + l′K + 3/2)N !N ′!]1/2

α!
(8)

× Γ((lK + l′K)/2 + 3/2) · Γ(p+ α+ 3/2)
Γ((lK + l′K)/2 − p)Γ(p + 3/2)

N,N ′,m+m′∑
m.m′,s

(−1)m+m′

× (m+m′)!Γ((lK + l′K)/2 − p+ s)
s!m!m′!(N −m)!(N ′ −m′)!Γ(lK +m+ 3/2)Γ(l′K +m′ + 3/2)

,

where N = (E −K)/2, N ′ = (E′ −K ′)/2, lK =
K + 3(A− 2)/2, l′K = K ′ + 3(A− 2)/2, and K ′ =
K + 2n (n = 0, 1, . . . ). Here, E and K are the
number of oscillator quanta and the multidimensional
YSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002



ON COEFFICIENTS OF THE BRODY–MOSHINSKY TYPE 955
angular momentum, respectively. These numbers
also label irreducible representations of the U(3(A −
1)) and O(3(A − 1)) groups, respectively. The Pe-
trauskas coefficients depend on two variables, p and
α. The integer-valued variables p and α can take
the following values: p = 0, 1, 2, . . . , (lK + l′K)/2 and
α = 0, 1, . . . , N +N ′. The constraint

m+m′ − s = α (9)

is imposed on summation in (8), so that it is actually
performed over two indices. The coefficients in (8)
obviously satisfy the symmetry relation

D
NlKN

′l′K
p,α = DN ′l′KNlK

p,α . (10)

In spectroscopic calculations employing bases
that are adapted to describing deformed nuclear
states [such as the generalized orthogonal scheme or
the SU(3) canonical basis of the unitary scheme]—
in particular, in equations for the SU(3)-irreducible
density matrix for excited U(3(A − 1)) states [3]—
use is made of the axial Petrauskas coefficients [3, 7]

DNlN′l′
p,α =

∏
i=x,y,z

D
NilKi

N ′
i l

′
Ki

pi,αi . (11)

The coefficients in (11) appear in the expansions of
the integrals in (5) [calculated with radial harmonic-
oscillator functions depending on multidimensional
distances ρx, ρy, and ρz in (A− 1)-dimensional sub-
spaces associated with the Jacobi coordinates X, Y ,
and Z] in terms of Talmi-type integrals. A formula

for the factors DNilKi
N ′

i l
′
Ki can be obtained from (8)

upon replacing 3/2 by 1/2 in the arguments of the Γ
functions involved and setting lKi = Ki + (A− 2)/2.

In spectroscopic calculations [for example, in cal-
culating the SU(3)-irreducible density matrix for ex-
cited U(3(A− 1)) states], it is often more convenient
to use the coefficients D̃pi,αi = NKiK ′

i
Dpi,αi , which

differ fromDpi,αi by the factor

NKiK ′
i

=
[Γ(lKi + 1/2)Γ(l′Ki

+ 1/2)]1/2

Γ((lKi + l′Ki
)/2 + 1/2)

. (12)

In the Appendix, analytic expressions for the co-

efficients D̃NilKi
N ′

i l
′
Ki are given at l′i = lKi , lKi + 2,

lKi + 4, and lKi + 6 for Ni +N ′
i ≤ 3. More complete

tables can be found in [3].
The coefficients Dp,α andDp,α represent a gener-

alization of the Brody–Moshinsky coefficients given
by (2) and (7). We will now show that expression (2)
for the Brody–Moshinsky coefficients is a particular
case of expression (8). For this, we consider that the
Petrauskas coefficients for p = pmax = (lK + l′K)/2
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 200
use pmax + α instead of α; upon introducing the no-
tation p for pmax + α and considering that, in the 3-
dimension case, K = l and K ′ = l′, we then indeed
obtain expression (2) from (8). Summation over s
is removed since, in the case of p = pmax + α, the
constraint in (3) for the coefficients in (2) leads to
m+m′ = α and s = 0.

Similarly, it can easily be shown that the axial
Brody–Moshinsky coefficients (7) represent a partic-
ular case of the coefficients in (11).

4. SOME SUMS OF PETRAUSKAS
COEFFICIENTS

In calculating matrix elements with allowance for
excited U(3(A − 1)) states, it is necessary to know
the sums ∑

α

D
NlKN

′l′K
p,α = S(NlKN ′l′K), (13)

∑
α

αD
NlKN

′l′K
p,α = S1(pNlKN ′l′K). (14)

The general form of the functions S and S1 is not
known. In contrast to the sum in (14), that in (13)
is independent of the parameter p. At lK = l′K , the
following equality (normalization condition) holds:

S(NlKN ′lK) = δ(N,N ′). (15)

In the cases of l′K = lK , lK + 2 andN ′ = N ,N ±
1, which are of importance for spectroscopic calcula-
tions, explicit expressions for the sums S and S1 can
be obtained by using the results presented in [3] (see
the table, where the subscript K on lK is suppressed
for the sake of simplicity).

Upon making the substitutions p→ pi − 1, l→
lKi − 1,N → Ni, l′ → l′Ki

− 1, andN → N ′
i , it turns

out that the formulas presented in the table are valid
for the sums

∑
αi
Dpi,αi and

∑
αi
αiDpi,αi of the co-

efficients D
NilKi

N ′
i l

′
Ki

pi,αi as well.
To exemplify the application of the formulas given

in the table, we consider the orthogonal scheme
described in [2]. For E > K excited U(3(A− 1))
states, the matrix elements of operators O involv-
ing r2 (mean-square radii, monopole and electric
quadrupole moments, transition probabilities, etc.)
can be directly expressed, within this scheme, in
terms of the matrix elements for E = K:

〈EKΓ0|O|E′K ′Γ′
0〉 (16)

= A(NlK , N ′l′K)〈KKΓ0|O|K ′K ′Γ′
0〉.

Here, Γ0 stands for the set of the remaining quantum
numbers that label the function of the orthogonal
scheme. Thematrix elements in (16) are nonzero only
2
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Table

NlN ′l′ S(NlN ′l′) S1(pNlN ′l′)

Nl N − 1 l 0 − (2p+ 3)
√

2N(2l+ 2N + 1)
2(2l+ 3)

Nl Nl 1
2(2p+ 3)N

2l+ 3

Nl N + 1 l 0 − (2p+ 3)
√

2(N + 1)(2l + 2N + 3)
2(2l+ 3)

Nl N − 2 l + 2 0
(2p+ 3)

√
N(N − 1)

2l+ 5

Nl N − 1 l + 2 −
√

2N
2l+ 2N + 3

− (2p+ 3)(2l+ 4N + 1)
2(2l+ 5)

√
2N

2l+ 2N + 3

Nl N l + 2
2l+ 3√

(2l + 2N + 3)(2l+ 2N + 5)
2(2p+ 3)N(2l+N + 4)

(2l + 5)
√

(2l+ 2N + 3)(2l+ 2N + 5)

Nl N + 1 l + 2
(2l + 3)

√
2(N + 1)√

(2l + 2N + 3)(2l+ 2N + 5)(2l+ 2N + 7)
− (2p+ 3)(2l+ 3)

√
2(N + 1)

2
√

(2l+ 2N + 3)(2l + 2N + 5)(2l + 2N + 7)
for E′ = E, E ± 2, in which case the factors A are
given by (see the Appendix)

A(NlK , N − 1lK) = −
√
N(lK +N + 1/2)
lK + 3/2

; (17)

A(NlK , N + 1lK + 2) = 0;

A(NlK , NlK) =
lK + 2N + 3/2
lK + 3/2

;

A(NlK , NlK + 2)

=

√
(lK +N + 5/2)(lK +N + 3/2)

(lK + 5/2)(lK + 3/2)
;

A(NlK , N + 1lK) = −
√

(N + 1)(lK +N + 3/2)
lK + 3/2

;

A(NlK , N − 1lK + 2)

= −
√

4N(lK +N + 3/2)
(lK + 5/2)(lK + 3/2)

;

A(NlK , N ′l′K) = 0, |N −N ′| > 1;

A(NlK , N − 2lK + 2) =

√
N(N − 1)
lK + 5/2

;

A(NlK , N ′lK + 2) = 0, N −N ′ > 2.
PH
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APPENDIX
Coefficients D̃NilKN ′

il′Ki at l′Ki
= lKi , lKi + 2, lKi + 4, lKi + 6 andNi +N ′

i ≤ 3 (to simplify the presentation, the indices
i andKi are suppressed; S is the sum of the relevant coefficients over α)

α D̃1l 0l
p,α α D̃1l 0l+2

p,α α D̃1l 0l+4
p,α

0
2p+ 1√
2(2l + 1)

0
2p− 1√
2(2l + 1)

0
2p− 3√
2(2l + 1)

1 − 2p+ 1√
2(2l + 1)

1 − 2p+ 1√
2(2l + 1)

1 − 2p+ 1√
2(2l + 1)

S 0 S −
√

2√
(2l + 1)

S − 2
√

2√
(2l + 1)

α D̃1l 0l+6
p,α α D̃0l 1l+2

p,α α D̃0l 1l+4
p,α

0
2p− 5√
2(2l + 1)

0
2p+ 3√
2(2l + 5)

0
2p+ 5

2
√

2(2l + 9)

1 − 2p+ 1√
2(2l + 1)

1 − 2p+ 1√
2(2l + 5)

1 − 2p+ 1
2
√

2(2l + 9)

S − 3
√

2√
(2l + 1)

S

√
2√

(2l + 5)
S

2
√

2√
(2l + 9)

α D̃2l 0l
p,α α D̃2l 0l+2

p,α α D̃2l 0l+4
p,α

0
(2p + 1)(2p + 3)

2
√

2(2l + 1)(2l + 3)
0

(2p + 1)(2p − 1)
2
√

2(2l + 3)(2l + 1)
0

(2p − 1)(2p − 3)
2
√

2(2l + 1)(2l + 3)

1 − (2p + 1)(2p + 3)√
2(2l + 1)(2l + 3)

1 − (2p + 1)2√
2(2l + 3)(2l + 1)

1 − (2p − 1)(2p + 1)√
2(2l + 1)(2l + 3)

2
(2p + 1)(2p + 3)

2
√

2(2l + 1)(2l + 3)
2

(2p + 1)(2p + 3)
2
√

2(2l + 3)(2l + 1)
2

(2p + 1)(2p + 3)
2
√

2(2l + 1)(2l + 3)

S 0 S 0 S
2
√

2√
(2l + 1)(2l + 3)

α D̃1l 1l
p,α α D̃1l 1l+2

p,α α D̃1l 1l+4
p,α

0
4l + 4p2 + 1

2(2l + 1)
0

4l + 4p2 + 1
2
√

(2l + 5)(2l + 1)
0

4l + 4p2 − 7
2
√

(2l + 1)(2l + 9)

1 −(2p + 1)2

(2l + 1)
1 − (2p + 1)2√

(2l + 5)(2l + 1)
1 − (2p + 1)2√

(2l + 1)(2l + 9)

2
(2p + 3)(2p + 1)

2(2l + 1)
2

(2p + 1)(2p + 3)
2
√

(2l + 5)(2l + 1)
2

(2p + 1)(2p + 3)
2
√

(2l + 1)(2l + 9)

S 1 S
2l + 1√

(2l + 5)(2l + 1)
S

2l − 3√
(2l + 1)(2l + 9)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 5 2002
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α D̃2l 0l+6
p,α α D̃0l 2l+2

p,α α D̃0l 2l+4
p,α

0
(2p − 3)(2p − 5)

2
√

2(2l + 1)(2l + 3)
0

(2p + 3)(2p + 5)
2
√

2(2l + 5)(2l + 7)
0

(2p + 5)(2p + 7)
2
√

2(2l + 9)(2l + 11)

1 − (2p+ 1)(2p − 3)√
2(2l + 1)(2l + 3)

1 − (2p + 1)(2p + 5)√
2(2l + 5)(2l + 7)

1 − (2p + 1)(2p + 7)√
2(2l + 9)(2l + 11)

2
(2p + 1)(2p + 3)

2
√

2(2l + 1)(2l + 3)
2

(2p + 1)(2p + 3)
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Comparative Analysis of Channels Involving the Formation of Three
α Particles and 12C Nuclei in 16Оp Collisions at 3.25 GeV/c per Nucleon

M. A. Belov1), K. G. Gulamov2), V. V. Lugovoi2), S. L. Lutpullaev2), V. D. Lipin2),
K. Olimov2), Kh. K. Olimov2), A. A. Yuldashev2), and B. S. Yuldashev1)

Received January 19, 2001
It is well known that light nuclei whose mass
numbers A (≤ 20) are integral multiples of 4 have
an α-cluster structure and that many of their prop-
erties are adequately described by models that take
this fact into account [1]. By studying the fragmen-
tation of relativistic oxygen nuclei interacting with
protons [2–7], our group revealed some features of
this phenomenon. In particular, it was shown that,
among multiply charged fragments, doubly charged
ones, which contain more than 80% 4He nuclei (α
particles), have the highest emission probability [3].
The breakup of relativistic oxygen nuclei into multiply
charged fragments whose total charge is equal to
the charge of the primary nucleus [5] is realized only
through the even-charge topologies of (224), (2222),
and (26), where the numbers in parentheses are the
charges of nuclear fragments. At the same time, the
(44), (35), and (233) channels were not observed
experimentally [if the two colliding nuclei are those of
8Be, their decay leads to the (2222) final state—the
combination of 9Be and 7Be was not found], which
may be due to a higher threshold energy required for
their realization.

The above experimental results show that the
structure of the primary nucleus manifests itself
significantly in peripheral collisions. In view of this,
we performed a comparative analysis of the properties
of the reactions

16O + p→ 3α+X, (1)
16O + p→ 12C +X, (2)

where X is an arbitrary singly charged fragment (pf ,
d, t) or a doubly charged fragment of mass number
A ≤ 3 (3He); in addition, there can appear charged
pions and a recoil proton (pr) if such a proton was not

1)Institute of Nuclear Physics, Uzbek Academy of Sciences,
pos. Ulughbek, Tashkent, 702132 Republic of Uzbekistan.

2)Institute for Physics and Technology, Fizika–Solntse Re-
search and Production Association, Uzbek Academy of Sci-
ences, ul. Timiryazeva 26, Tashkent, 700084 Republic of
Uzbekistan.
1063-7788/02/6505-0959$22.00 c©
involved in the charge-exchange process resulting in
the formation of a neutron and a π+ meson.

The experimental data are compared with the pre-
dictions of the cascade–fragmentation–evaporation
model (CFEM) [8]. The CFEM employs the intra-
nuclear-cascade model [9, 10] combined with a mod-
ification of the Fermi statistical model of multiparticle
production [11]. Within this model, the fragmenting
nucleus is assumed to consist of a perfect Fermi gas.
Once the intranuclear cascade has passed, a statis-
tically equilibrium state is established, in which the
probability of each channel is proportional to the rele-
vant phase space. In the case of the light nucleus 16O,
Fermi breakup (that is, the explosive disintegration
of nuclei) is considered as a dominant mechanism of
fragment formation in the model.

The experimental data that we consider here were
obtained from stereoscopic photographs of the 1-m
hydrogen bubble chamber installed at the Laboratory
of High Energies at the Joint Institute of Nuclear

Table 1. Mean multiplicities of charged secondaries and
fragments in reactions (1) and (2)

Particle
type

Mean multiplicity

16O + p→ 3α+X 16O + p→ 12C +X

π− 0.28 ± 0.03 0.31 ± 0.03

π+ 0.55 ± 0.04 0.50 ± 0.04

pr 0.55 ± 0.03 0.57 ± 0.03

pf 1.41 ± 0.06 1.46 ± 0.06

d 0.23 ± 0.02 0.23 ± 0.02

t 0.04 ± 0.01 0.05 ± 0.01

3He 0.03 ± 0.01 0.03 ± 0.01
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Table 2. Mean values of the total and transverse momenta (GeV/c) of charged secondaries and fragments in reactions
(1) and (2)

Particle type
16O + p→ 3α+X 16O + p→ 12C +X

〈P 〉 〈P⊥〉 〈P 〉 〈P⊥〉

π− 0.41 ± 0.03 0.19 ± 0.01 0.39 ± 0.03 0.21 ± 0.01

π+ 0.46 ± 0.02 0.24 ± 0.01 0.48 ± 0.02 0.23 ± 0.01

pr 2.34 ± 0.05 0.39 ± 0.02 2.28 ± 0.05 0.39 ± 0.02

pf 0.32 ± 0.01 0.24 ± 0.01 0.32 ± 0.01 0.25 ± 0.01

d 0.34 ± 0.02 0.26 ± 0.02 0.32 ± 0.02 0.25 ± 0.02
Research (JINR, Dubna) [12] and irradiated at the
JINR synchrophasotron by 16O nuclei accelerated
to a momentum of 3.25 GeV/c per nucleon and are
based on an analysis of 11 098 measured 16Op events.
It should be noted that the experimental conditions
made it possible to detect all charged secondaries,
to identify unambiguously their charges, to measure
the momenta of fragments to a high precision, and to
determine their masses.

The fragments were separated in mass according
to the measured momenta and charges. We consid-
ered fragments whose tracks were longer than 35 cm,
which was necessary for more reliably separating
them in mass and for analyzing their kinematical
features. For reactions (1) and (2), there remained,
respectively, 399 and 405 events satisfying these con-
ditions and selection criteria for charged secondaries
and fragments [3, 4]. Taking into account the loss of
events in the interaction of α particles and 12C over
the length of L = 35 cm in the sensitive volume of
the chamber, we finally find that the cross sections
for these reactions have the close value of σin(3α) =
25.7 ± 1.5 mb and σin(12C) = 22.8 ± 1.4 mb. The
corresponding CFEM values are σin(3α) = 6.2 ±
0.3 mb and σin(12C) = 11.5 ± 0.4 mb, which differ
from each other nearly by a factor of 2 and which differ
significantly from their experimental counterparts. In
all probability, this discrepancy between the model
results and the experimental data is due to the
disregard of the α-cluster structure of the primary
nucleus 16O in the CFEM.

The threshold energies for reactions (1) and (2)
differ by 7.3 MeV, the species of X particles and their
kinematical features being identical. This energy is
insufficient for the breakup of a residual nucleus of
mass number Af = 12 to occur through channels
other than that of reaction (1), which also includes
the cascade decay of excited nuclear states: 12C∗ →
8Be∗ + α, 8Be∗ → 2α. In view of this, many features
of reactions (1) and (2) are likely to be identical.
PH
Indeed, the data in Table 1 demonstrate that the ex-
perimental mean multiplicities of charged secondaries
and fragments from the two reactions agree within the
statistical errors. As to the results of the CFEM cal-
culation [8], the features of all particles and fragments,
with the exception of π+ mesons, are different in the
different reactions and deviate from the experimental
data.

The mean total (〈P 〉) and transverse (〈P⊥〉) mo-
menta of charged secondaries and fragments formed
in reactions (1) and (2) are displayed in Table 2. The
mean momenta of secondary particles and fragments
are given in the rest frame of the oxygen nucleus. It
can be seen that the mean momentum characteristics
of secondary particles and fragments in the two reac-
tions agree within the statistical errors. In the CFEM
[8], the momentum characteristics of secondary par-
ticles and fragments (except for those of deuterons)
are very close to their experimental values.

The agreement between the above experimental
features of reactions (1) and (2) suggests that these
processes proceed under close physical conditions,
the α-cluster structure of the 16O nucleus playing
a significant role here. All this indicates that the α-
cluster structure of light nuclei must be taken into
account in constructing a realistic model of their frag-
mentation at high energies.
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