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90th ANNIVERSARY OF I.I. GUREVICH’S BIRTHDAY
Isai Isidorovich Gurevich (July 13, 1912–December 6, 1992)
Nearly ten years has passed since the death of
I.I. Gurevich, a corresponding member of the Russian
Academy of Sciences, an eminent physicist, who had
a broad range of scientific interests and a profound
understanding of the essence of physical phenomena
that he studied. Gurevich mastered equally well the
subtleties of physics experiments and of their the-
oretical interpretation. He was the author of more
than 100 scientific studies, and some of them became
classic even during his life.

Gurevich was born on July 13, 1912, in Riga.
In 1934, he graduated from Leningrad State Univer-
sity. In the same year, he performed his first studies,
which were devoted to neutron physics. Of greatest
interest among the studies of this series were those
that explored the structure of levels in heavy nuclei
and which culminated in formulating the hypothesis
of phase transitions in nuclear matter. This hypoth-
esis was fully confirmed in the modern supercon-
ducting model of nuclear matter. During the same
early period of his scientific activities, Gurevich was
able to discover the effect of the cosmic-ray-induced
spallation of nuclei. As a matter of fact, this was the
1063-7788/02/6507-1153$22.00 c©
first study aimed at exploring the strong interaction of
ultrahigh-energy cosmic-ray particles.

From 1941 to 1948, Gurevich was involved in
the work on the physics of nuclear reactors. His
studies, performed together with Ya.B. Zeldovich,
I.Ya. Pomeranchuk, and Yu.B. Khariton, resulted
in the formulation of a qualitative theory of nuclear
reactors. Of particularly great importance were his
investigations into the theory of exponential exper-
iments with thermal neutrons and the theory that
he developed, together with Pomeranchuk, for the
phenomenon of resonance absorption in uranium–
moderator heterogeneous systems. It was precisely
this study that validated the possibility of creating
natural-uranium reactors. Gurevich took an active
part in the calculations of critical dimensions of the
first soviet nuclear reactor put into operation by
I.V. Kurchatov in 1946.

The approximate method for solving integral
equations that was developed by Gurevich formed the
basis of his doctoral dissertation that he defended in
1944.

Beginning in 1952, Gurevich performed studies
in nuclear, elementary-particle, and high-energy
physics, as well as in the physics of weak interaction.

By analyzing experimental data on nuclear reso-
nances in 1956 and 1957, Gurevich, together with
M.I. Pevzner, showed for the first time that the dis-
tribution of nuclear levels around a mean value is not
chaotic—that is, there is a repulsion between nuclear
levels, which is manifested in a low probability of very
closely spaced levels. This study initiated a whole
series of subsequent experimental and theoretical in-
vestigations.

In connection with the discovery of parity con-
servation in weak interaction, Gurevich and his col-
leagues performed investigations spanning the period
between 1958 and 1967 that were aimed at verifying
the V –A theory of weak interactions by the angular
asymmetry of electrons originating from muon de-
cays. These studies yielded the asymmetry-coefficient
value of a = 0.325 ± 0.005, which was the best one
in the world scientific literature and which was in
excellent agreement with theoretical predictions.

In 1964, Gurevich, together with V.M. Galitsky,
investigated theoretically coherent effects in brems-
strahlung from ultrarelativistic electrons. They dis-
covered the new effect of medium-induced brems-
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strahlung suppression due to photon absorption in
matter.

From 1968, Gurevich gave much attention to the
method developed in his laboratory for studying mat-
ter with the aid of positively charged muons. By ap-
plying this method, which is based on measuring
the precession and relaxation of the spin of polarized
muons, Gurevich and his colleagues were able to
discover the two-frequency precession of a hydrogen-
like muonium atom (discovery certificate) and the
subbarrier (quantum) diffusion of muons and to mea-
sure intrinsic magnetic fields in magnets and super-
conductors. The muonic method for studying matter
was recognized worldwide, along with other clas-
sic methods in solid-state physics, such as neutron
diffraction, Mössbauer effect, and nuclear magnetic
resonance. For work on evolving the new method for
studying matter with the aid of muons, the USSR
Academy of Sciences awarded Gurevich a Kurchatov
Gold Medal of 1980.

The development of nuclear physics is impossible
without creating complex experimental facilities and
without introducing methodological novelties. Gure-
vich devoted much time to this facet of scientific
activities. Among his methodological achievements,
of special note is the creation of a facility for gener-
ating strong pulsed magnetic fields, whose strength
in a volume of 1 l may reach 300 kOe within a few
milliseconds. Such pulsed magnetic fields are of great
value both for elementary-particle and for solid-state
physics. In particular, a series of experiments aimed
at searches for the Dirac monopole and an investi-
gation of the properties of superconducting materials
PH
in high-strength magnetic fields were performed with
the aid of pulsed magnetic fields.

In 1968, Gurevich was elected to corresponding
membership in the USSR Academy of Sciences. He
gave much of his time to teaching young scientists.
His disciples included Academician L.M. Barkov;
B.A. Nikolsky, corresponding member of the Russian
Academy of Sciences; and doctors and candidates of
sciences. Since 1946, Gurevich had been a professor
at the Department of Nuclear Physics at the Moscow
Engineering Physics Institute. His lecture courses,
highly pedagogical in form, always covered the most
topical problems of contemporary nuclear physics.
The monograph of Gurevich and L.V. Tarasov The
Physics of Low-Energy Neutrons, which appeared
in 1965 (and which was shortly afterward translated
into English), has been so far of great scientific and
pedagogical value.

For active and seminal research activity, Gurevich
was decorated with two Red Banner of Labor and two
Badge of Honor orders. In 1949, he was awarded a
USSR State Prize.

The blessed memory of Isai Isidorovich Gurevich,
an outstanding physicist and a charming personality,
will always be cherished by his numerous disciples
and by all those who had the privilege of experi-
encing his beneficial influence. His scientific legacy
will undoubtedly be studied by many generations of
physicists.

Editorial Board
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Abstract—This survey is devoted to describing the early studies of I.I. Gurevich on pion physics that
were performed by the photoemulsion method and the studies of the pion–pion interaction that were
made by his colleagues on the basis of the hydrogen-bubble-chamber and the magnetic-spectrometer
method (as well as on the basis of the photoemulsion method). Two approaches—an extrapolation of
experimental data from the physical region to the pion pole and a theoretical calculation based on the
Roy integral equations—are used to deduce information about the pion–pion interaction. The first results
obtained for pion–pion and pion–nucleus interactions in the experiments that are being currently performed
in Brookhaven and at CERN (ππ interaction) and at TRIUMF (Canada) and in Brookhaven (pion–
nucleus interaction) are presented, along with the existing theoretical concepts in these realms of physics.
c© 2002 MAIK “Nauka/Interperiodica”.
One of the authors of the present article
(K.N. Mukhin) had had a privilege to associate with
I.I. Gurevich (further I.I.) for about 45 years, not only
at the laboratory and at the seminars that he headed
but also during our mutual pedagogical activities
at the Moscow Engineering Physics Institute (we
delivered lectures in neighboring rooms and went
home together, visiting bookshops on the way), at his
home (editorship work), and even during vacations.
Of course, physics was one of the permanent topics
of our association. I.I. loved any kind of physics,
including so-called general physics, nuclear physics,
elementary-particle physics, and astrophysics. But
he was especially fond of nuclear physics, nourishing
tenderness, in particular, to the simplest version of
the nuclear reactor—namely, the uranium–graphite
reactor employing natural uranium. He used to say,
“Only imagine what a wonderful combination made it
a physical reality. If the cross section for 235U fission
induced by thermal neutrons and the number of
secondary neutrons formed had been slightly smaller
and if the cross section for resonance-neutron capture
by 238U had been slightly larger, the success could
not have been achieved.”
It is no wonder that the neutron was of course

his first love in elementary-particle physics. But when
the problem was by and large solved (owing, in par-
ticular, to a very serious contribution of I.I.), there
appeared his second love—the pion (after that, the
muon; then, the monopole; and, finally, the neutrino).
In the present article, we would like to tell how this
second love of I.I. began, how he could inspire this
feeling in the souls of some of his collaborators, and
how investigation with I.I. into the physics of pions
1063-7788/02/6507-1155$22.00 c©
and of pion–nucleus interaction made its first steps;
we will also list the results at which these lines of
investigation arrived today.
Apart from describing our studies, we will discuss,

in the last sections of this article, the currently pre-
vailing situation in the theoretical and experimental
physics of the pion–pion interaction—in particular,
the first results of unique experiments that are being
presently performed in Brookhaven and at CERN.
We will also give an account of intriguing data from
the latest experiments that studied pion-production
processes in pion–nucleus interactions.

1. STUDIES OF I.I. GUREVICH AND HIS
COLLEAGUES ON PION PHYSICS

As is well known, pions, which were predicted by
Yukawa as quanta mediating strong interaction, were
discovered in the composition of cosmic rays in 1947
by the photoemulsion method. Both these circum-
stances (the very fact of this discovery and the method
by which it was made) strongly affected the attitude
of I.I. to the pion as one of his favorite particles. As
soon as the synchrocyclotron of the Joint Institute
for Nuclear Research was commissioned at Dubna,
I.I. headed a group of his collaborators who began
conducting experiments devoted to pion physics by
using precisely the photoemulsion method.
I.I. had been acquainted with the photoemulsion

method for studying the properties of elementary par-
ticles since 1935, when, together with A.P. Zhdanov,
he tried to improve this method, which was first de-
veloped by L. Mysovskii and P. Chizhov in 1927 [1].
At the time that we are now describing (the late
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1940s and the early 1950s), I.I. continued intensively
developing this procedure, organizing, in his division,
a photoemulsion group headed by D.M. Samoilovich,
who evolved and fabricated special thick-layered nu-
clear photographic plates that were capable to de-
tect the tracks of singly charged elementary parti-
cles. In the same years, another collaborator of I.I.
(V.V. Alpers) developed the emulsion-chamber pro-
cedure (it employs stacks of emulsion layers without
glass, where, owing to the common coordinate grid, it
is possible to trace the tracks of particles that go over
from one layer to another) [2], which is more elaborate
than that based on photographic plates. It is precisely
these plates and chambers that were used in the pion-
physics studies that were performed by I.I. and his
colleagues and which are described below. (For purely
technical reasons, these studies were publishedmuch
later than they had been performed or have not been
published altogether.)

One of the first studies of I.I. and his colleagues
was devoted to determining the pion mass by the
photoemulsionmethod that involves counting the de-
veloped grains on the tracks of pions (π) and protons
(p). Negative pions were produced in the interaction
of 560-MeV alpha particles with lead nuclei in a spe-
cial device installed in the synchrocyclotron chamber
and, after being deflected by the magnetic field of the
accelerator, were incident on photographic plates at
sliding angles. The geometry of the experiment was
chosen in such a way that slow negative pions of
energy in the range 1–30 MeV hit the photographic
plates.

Horizontal tracks situated rather far off the emul-
sion surface and the glass were selected for viewing
and measurements. Grains were counted at a 2025
magnification by using a dedicated procedure for an-
alyzing the ends of the tracks, where the density of
the grains was so high that they formed so-called
conglomerations. The counting yielded the depen-
dences N(R), where N is the number of the grains
and R is the residual range (that is, the particle range
measured from the point of its stopping). From the
theory of the method, it follows that N = Rϕ(R/m);
that is, the pion mass can be estimated by comparing
Nπ(Rπ) and Np(Rp) at specific values of Rπ and Rp

(protons, whose mass is known, served as a refer-
ence).

For the negative-pion mass, the processing of
these data yielded the value

mπ− = (273.6 ± 2.9)me, (1)

which was the closest to the modern value
(∼273.1me) among all of the values obtained at that
time in other laboratories worldwide. Unfortunately,
we were unable to publish this study, and the traces
P

of it remain only in the form of a report in the archives
of our institute [3].
Within the same period (1950–1952), I.I. and his

collaborators performed investigations in which they
exposed nuclear photographic plates and emulsion
chambers to cosmic rays. The irradiation of pho-
tographic materials was implemented in balloon-
borne experiments (the balloons used were launched
in Dolgoprudnyı̆) performed by physicists from the
Research Institute of Physics (Moscow State Uni-
versity), who were directly involved in cosmic-ray
studies. Our efforts were aimed at discovering, in
cosmic rays, particles of mass that would have inter-
mediate values between the pion and the proton (this
was a popular topic of investigation at that time), but
our attempts proved to be futile [4, 5].
In 1952 and 1553, I.I. relaunched their investiga-

tions at the synchocyclotron, where they explored the
features of the production of slow charged pions on
photoemulsion nuclei exposed to 460-MeV protons
and to neutrons of 400-MeV effective energy [6].
Two photoemulsion chambers, each consisting of 20
photoemulsion layers and having a total thickness of
6 mm, were used in that study. One of the chambers
was exposed to an extracted beam of protons, while
the other was exposed to a neutron beam.
The use of the emulsion-chamber procedure en-

abled us to trace the entire path of charged pions from
the point of their ionization stopping to the produc-
tion vertex. This made it possible to observe a large
number of stars1) associated with the production of
charged pions and to construct angular and energy
distributions of product pions in the region of low
energies.
Inspecting the resulting curves, one can clearly see

that the energy spectra of negative and positive pions
are shifted with respect to each other by∆ ≈ 15MeV.
This shift is naturally explained by the effect of the
Coulomb barrier, whose mean height for photoemul-
sion nuclei with respect to singly charged particles
is 7.5 MeV. In addition, the cross sections for the
production of slow (0 < E < 40MeV) charged pions
were estimated at

σπ+ = (2.9 ± 0.9) × 10−27 cm2, (2)

σπ− = (1.3 ± 0.5) × 10−27 cm2,

σπ++π− = (4.2 ± 1.4)× 10−27 cm2,

and the ratio of the numbers of product positive and
negative pions was found to be

π+/π− = 2.5 ± 0.5. (3)

1)By a star, we mean a microphotograph of a particle–nucleus
interaction resulting in the formation of starlike rays of tracks
generated by charged particles emitted from the nucleus
involved.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Stars that are associated with the production of
unlikely charged pions as contrasted against meson-
less stars are also of interest in themselves from the
point of view of the theory of an intranuclear cascade.
In particular, a comparison of these two types of stars
revealed a considerable anisotropy of slow particles in
pion-production stars. This suggests the presence of
a large number of slow cascade particles, especially in
mesonic stars.2)

Also, the mean energy Ē deposited in a star was
calculated for mesonic stars and was proved to be
approximately equal to the incident-nucleon energy
ĒN = (460 + 400)/2 = 430MeV; that is,

Ēstar = 2(Ēch +QN̄ch) + Eπ (4)

= 2(104 + 9 · 4) + 160 = 440 MeV � ĒN ,

where Ēch is the mean total energy of charged par-
ticles outgoing from a star, Q is the nucleon bind-
ing energy in the nucleus involved, Nch is the mean
number of charged particles in the nucleus, Eπ is the
total energy of the pion, and the factor of 2 takes into
account the formation of neutrons in a star.
In 1954 and in 1955, investigation of the produc-

tion of slow charged pions on photoemulsion nuclei
was continued [7]. That time, use was made of a
chamber formed by 45 layers of more sensitive NIKFI
photoemulsion, its total thickness being 15 mm. The
chamber was exposed to a proton beam of energy
E = 660 ± 10MeV. A greater thickness of the emul-
sion chamber and a higher sensitivity of the emul-
sion used made it possible to analyze the pattern of
slow-pion production on photoemulsion nuclei. This
investigation resulted in obtaining the angular and
energy distributions of product positive and negative
pions. From the angular-distribution pattern, it fol-
lowed that the pion-production cross section depends
only slightly on the pion emission angle with respect
to the axis of the incident-particle beam. What was
observed for the energy distributions of product pi-
ons confirmed the distinction between the spectra of
positively and negatively charged pions that had been
observed at a lower proton energy in [6], although this
distinction became less pronounced. The ratio of the
numbers of the product positive and negative pions
proved to be

π+/π− = 2.3 ± 0.5, (5)

which, within the experimental errors, agrees with
the previous result obtained at a proton energy of
460 MeV. The cross sections for the production of
slow (0 < E < 40MeV) pions were found to be

σπ+ = (4.4 ± 15) × 10−27 cm2, (6)

2)A trivial verification shows that the anisotropy observed ex-
perimentally cannot be explained by the motion of the nu-
cleus involved.
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σπ− = (2.8 ± 1)× 10−27 cm2,

σπ++π− = (7.2 ± 1.8)× 10−27 cm2.

The experiments reported in [7] explored not
only the properties of product charged pions but
also the stars themselves. In particular, the an-
gular and energy distributions were obtained for
particles outgoing from stars of three types: those
that are associated with the production of posi-
tively charged pions, those that are associated with
the production of negatively charged pions, and
those that are mesonless. In analyzing mesonic
stars, the tracks of outgoing particles were traced
up to the point of their stopping in the emulsion
chamber or up to their escape from it. In the first
case, the particle energy was determined on the
basis of the curve E = f(R), where R is the ion-
ization particle range, while, in the second case,
this was done by using curves representing the
dependence of the energy on the grain density, E =
f(dN/dR). Mesonless stars were found by tracing
the tracks of primary protons from their entrance
to the emulsion chamber up to stars caused by
them.
As the result of this analysis, it was noticed that

mesonless stars are characterized by a comparatively
greater number of charged particles outgoing from
them and by a greater amount of kinetic energy
Ēch carried away by them, but this is quite nat-
ural for stars whose energy balance does not in-
clude expenditures for pion production. For mesonic
stars associated with the production of negatively
charged pions, a more copious generation of slow
(E < 100 MeV) particles was found in relation to
what was observed for positive-pion stars; this is
naturally explained by the distinction between the
changes in the charge of the nucleus in the two
cases: in the case of proton-induced production, the
nuclear charge does not change upon positive-pion
generation, but it changes by∆Z = 2 upon negative-
pion generation. The numbers of product fast (E >
100MeV) particles are approximately identical in the
two cases.
An investigation of the angular distribution of par-

ticles formed in stars revealed the presence of a for-
ward anisotropy, which survives down to the lowest
particle energies (although it became somewhat less
pronounced in relation to the results that had been
obtained in the previous study reported in [6]). For
fast particles, the asymmetry remained at the same
high level. Needless to say, it was verified that the
anisotropy in question cannot be due to the motion
of the nucleus as a discrete unit in that case as well.
Yet another result obtained in [7] refers to exper-

imentally estimating the mean range of 660-MeV
2
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protons with respect to inelastic interactions. It was
obtained by dividing the total length of the proton
tracks studied there (4360 cm) by the number of
inelastic interactions (123). This yielded the value

λ = 35.4 ± 3.1 cm, (7)

which agrees well with the average of two calculated
values (37.3 and 33.6 cm).

The experiments reported in [7] were the last pion-
physics studies in which I.I. participated directly. Af-
ter their completion, there was altogether a rather
long-term pause in the work devoted to these realms,
since there appeared a few new lines of investigation
in the division headed by Gurevich. One of these
(that in which the present authors were involved) was
aimed primarily at developing bubble-chamber pro-
cedures employing pulsed magnetic fields [8–10] and
semiautomated measuring devices for viewing and
processing photographs taken at these (and other)
chambers [11]. The created chambers were irradi-
ated at the accelerators installed at the Laboratory of
High Energies, Joint Institute for Nuclear Research
(JINR, Dubna), and at the Institute of Theoreti-
cal and Experimental Physics (ITEP, Moscow). A
propane chamber was exposed to a proton, a pion,
and a kaon beam from the LHE accelerator, where
investigations into the physics of protons [12], pions
[13] (the first study on pion physics after a long-term
pause), and kaons [14] (a continuation of searches for
new particles) were performed. At the ITEP accelera-
tor, a pion beam was created [15] and the efficiency of
a xenon chamber supplemented with a pulsed mag-
netic field of a record-breaking strength of 70 kG and
with a high-pressure (100 atm) gas hydrogen target
[16] was proven.

Concurrently (from the early 1970s), a continu-
ally expanding group of I.I.’s associates who worked
at chambers and measuring devices initiated a vast
series of investigations into pion physics (including
pion–pion interaction) [17–21] by using photographs
kindly placed at their disposal by colleagues from
ITEP [22].

As before, these new pion-physics studies (in the
next section of the article, we will describe them in
detail) were conducted in the division headed by I.I.,
but without his direct participation this time (he then
cherished his third love, the muon!). Eventually, the
appearance of new lines of investigation and of new
interests led, in 1977, to the separation of I.I.’s divi-
sion into three laboratories, including the Laboratory
of Pion Interactions (LPI), which arose from our pion
group and which embarked on continuing investiga-
tions into the pion–pion interaction, originally one
P

of the main lines of LPI activities.3) As a matter of
fact, our work along these lines has been continued,
with short pauses, up to the present moment [25–
43]. By convention, it can be divided into two stages.
At the first stage, we processed π±p→ ππN events
recorded with the aid of the ITEP hydrogen bubble
chamber, as well as with the aid of the photoemulsion
method; at the second stage, we treated similar events
recorded by the CHAOS facility at the TRIUMF
accelerator in Canada. A comparison with other data
is given in the review articles [30, 43] and in the
monograph [33]. In the sections of this article that
follow, we will describe those studies in detail and
outline the current situation around the problem of
the pion–pion interaction. To conclude this section,
it would be worthwhile to indicate that the aforemen-
tioned separation of Gurevich’s division into three
laboratories was of a purely formal character—by this,
we mean that, as a matter of fact, I.I. had continued
to supervise the activities of all three of these until his
death. At any rate, he always showed interest in and
lent support to our pion-physics studies, which were
conducted in close scientific contact with him.

2. INVESTIGATION OF THE PION–PION
INTERACTION BY THE METHOD

OF A HYDROGEN BUBBLE CHAMBER

2.1. Introductory Remarks

By the instant at which we embarked on our inves-
tigation into pion–pion interactions (1970), the fol-
lowing had been known. Since the pion is a quantum
mediating strong interactions, the effect of scatter-
ing of one quantum on another was expected to be
pronounced in hadron interactions—that is, the in-
teraction of pions may significantly affect the mecha-
nism of any reaction involving hadrons. It follows that
information about pion–pion interactions is required
for obtaining deeper insight into hadron physics. It
was (and it has remained) impossible to obtain this
information directly by studying the scattering of a
pion on a pion. But one can consider the inverse
problem: since the pion–pion interaction contributes
significantly to the mechanisms of reactions featur-
ing hadrons, an attempt can be made to extract, by
means of a theoretical analysis, information about the
pion–pion interaction from experimental data on such
reactions. This was precisely the idea of all theoreti-
cal methods developed by that time for studying the
pion–pion interaction [44–51].

3)Later on, there appeared, at LPI, a second main line that
consisted in the joint work with the Institute for Nuclear
Research (INR, USSR Academy of Sciences, Moscow)
and LHE on designing, manufacturing, and employing the
AMPIR universal detector equipped with a superconducting
radiation-transparent solenoid [23, 24].
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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In our investigations, we employed the method
that was proposed by Goebel [44] and by Chew and
Low [45] and which is based on the assumption that
one-pion-exchange (ОРЕ) processes play a domi-
nant role in the mechanisms of the reactions being
discussed. Under this assumption, the method makes
it possible to obtain the cross sections for pion–pion
scattering from πN → ππN cross sections, which
are accessible to a direct measurement. The rela-
tionship between these two types of cross sections is
given by the Chew–Low formula [45]

σππ(mππ) = lim
t→µ2

[
∂2σππN

∂t∂m2
ππ

2π
αf2

p2(t− µ2)2µ2

tmππk

]
,

(8)

where α is a numerical factor that is equal to unity
for the reactions π±p→ π±π0p and to two for the
reactions π±p→ π±π+n, f2 = 0.08 is the πN cou-
pling constant, pπ is the incident-pion momentum,
k = (m2

ππ/4− µ2)1/2 is the secondary-pion momen-
tum in the dipion rest frame, µ = mπ, and t is the 4-
momentum transfer inµ2 units.Within this approach,
the features of the pion–pion interaction (cross sec-
tions, phase shifts, scattering length) can be obtained
by fitting experimental results in the physical domain
or by extrapolating them to the pion pole.
A remarkable feature peculiar to the Goebel–

Chew–Low method is that it is possible in principle
to obtain all phase shifts for pion–pion scattering
at all values of the dipion mass mππ, provided that
use is made of various channels of the πN → ππN
reactions with various signs of incoming and outgo-
ing pions. Having such a possibility at our disposal,
we were able to obtain, by using a single method
within the same laboratory, self-consistent values
of five phase shifts for pion–pion scattering in the
elastic region, δ00 , δ

2
0 , δ

1
1 , δ

0
2 , and δ

2
2 , and of some

other parameters of the pion–pion interaction for
four charged channels (π−π+, π−π0, π+π0, and
π+π+). We note that each of a few experimental
studies that we know to have been performed prior
to our investigation [52–55] reported information
only about one of the properties of the pion–pion
interaction (for example, δ00 near the threshold [52]
and the parameters of the ρ resonance [53, 54]). But
later on (simultaneously with the commencement of
our activities in these realms), there began to appear
articles that reported on an investigation of the pion–
pion interaction by a method similar to that which we
adopted. In this connection, we would like to mention
the studies of Colton et al. [56] and of Protopoppescu
et al. [57], who showed that, for πN interactions,
the cross sections and angular distributions found
experimentally on themass shell agree with those that
were calculated by the Goebel–Chew–Low method,
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whence it follows that one-pion exchange makes a
dominant contribution to the mechanism of such
reactions. Between 1973 and 1979, the authors of
[58–61] reported on investigations of the pion–pion
interaction on the basis of high-statistics data sam-
ples; however, those authors explored predominantly
the region of large dipion masses (mππ > 1GeV).

2.2. Description of the Procedure

As was indicated above, reactions of the π±p→
ππN type were studied by using data obtained by
irradiating the 50-cm hydrogen bubble chamber in-
stalled at ITEP and placed in a magnetic field of
strength 20 kG [22]. The chamber was photographed
onto a 80-mm-wide photographic film by three pho-
tocameras. The films were viewed through projection
devices of the Mikrofot type with the aim of selecting
two-prong events characteristic of the reactions

π−p→ π−π+n, π−p→ π−π0p, (9)

π+p→ π+π0p, and π+p→ π+π+n,

and of the elastic-scattering processes

(π−p→ π−p)el and (π+p→ π+p)el, (10)

which were used not only to investigate elastic scat-
tering as such but also to perform a normalization.
In all, we viewed about 130 000 stereophotographs

obtained in exposing the chamber to negative pions
with a momentum of pπ− = 4.5 GeV/с and about
84 000 stereophotographs obtained in exposing the
chamber to positive pions with a momentum of pπ+ =
3.05 GeV/с and discovered on them, respectively,
19 000 and 18 000 two-prong events. These events
were then measured by the method of mismatched
points at a semiautomated facility of the stereocom-
parator type [11] and with a measuring microscope.
In order to reconstruct the precise spatial pattern

of an event, it is sufficient to measure two different
frames of the three that are taken; in order to achieve,
however, the preassigned accuracy of reconstruction,
this pair of frames was chosen from the three possible
combinations (the first and the second, the first and
the third, or the second and the third) according to a
specific criterion.
The two-prong events selected in this way were

processed on the basis of the ASP code [62], which
reconstructs the geometry of an event; calculates the
parameters of the track; and, with the aid of the χ2

criterion, hypothetically associates events with one of
the processes listed in (9) and (10). As an output, the
code yielded the momenta and the direction cosines
for all charged particles involved in the adopted hy-
pothesis, as well as the degree of primary-track ion-
ization (it is taken to be equal to unity) and the
2
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Table 1

Process
Primary-pion

momentum, GeV/c
Cross section, mb

(π−p→ π−p)el 4.5 6.21± 0.19

(π+p→ π+p)el 3.05 7.02± 0.23

π−p→ π−π+n 4.5 3.04± 0.20

π−p→ π−π0p 4.5 2.01± 0.16

π+p→ π+π0p 3.05 3.26± 0.24

π+p→ π+π+n 3.05 2.18± 0.16

predictions of the code for the degree of secondary-
particle ionization (it is different for a proton and a
pion of given momentum).
The correctness of identifying events was tested

by measuring the degree of ionization, which was
compared with that which was predicted by the above
code. A mismatch implied that a given event can be
associated with none of the types listed in (9) and
(10), but that it additionally involves one or a few
neutral pions [20, 28].
For each of the types listed in (9) and (10), a

few thousand correctly identified events were obtained
upon measuring and additionally viewing them for
ionization. These events were then processed by us-
ing dedicated codes, whereby it was possible to de-
duce values of the invariant dipion mass mππ, of the
invariant variable t, of the cosines of the angles of
divergence of the particles involved in the c.m. frame
and in the dipion rest frame, and of other relevant
variables. This information was sufficient for deriving
all of the aforementioned features of the pion–pion
interaction.

2.3. Results

The cross sections for the processes in (9) and (10)
were the first results obtained by studying the above
two-prong events. Of these cross sections, those for
the processes in (10) were used for normalization
purposes. In studying them, special attention was
therefore given to introducing corrections for losses
of events having short proton tracks (because of low
momenta or because of the coincidence of their di-
rection with that toward the photocameras used—for
details, see [20]). Similar azimuthal corrections were
also introduced for events of the reactions π±p→
π±π0p, which have proton tracks, but they were not
required for reactions like π±p→ π±π+n, since the
tracks of pions are much longer than the tracks of
protons.
PH
In calculating the cross sections, use was made
of the optical theorem. The resulting cross-section
values are quoted in Table 1.
The reactions π−p→ π−π+n and π±p→ π±π0p

may proceed through resonance states formed by two
pions or by a pion and a neutron—that is, through
the production of ρ0, ρ+, ρ−, f0, g−, g0, and ∆±

resonances. The cross sections for the production of
∆± resonances are rather modest at the energies con-
sidered here, but the reflections of these resonances
affect the distribution of events with respect to the
effective dipion mass mππ. This point was taken into
account by means of a dedicated calculation. By way
of example, the effective-dipion-mass (mππ) distribu-
tion of π−p→ π−π+n events is shown in Fig. 1 with
allowance for the contribution from the phase spaces
of the ρ0, f0, and g0 resonances and for the reflection
of ∆ resonances [32]. By investigating this distribu-
tion (and analogous distributions for other reactions),
it was possible to deduce the parameters of identified
dipion and∆ resonances and their cross sections (see
Table 2).
In order to prepare the data in question for a

partial-wave analysis, some cuts were imposed on
them, including a cut on t—specifically, the cut |t| ≤
0.3 (GeV/c)2 for the reaction π−p→ π−π+n and
the cut 0.1 ≤ |t| ≤ 0.5 (GeV/c)2 for the reactions
induced by incident positively charged pions. Upon
imposing all the cuts, the remaining number of events
was about 1100 to 3000 for the different reactions.
This made it possible to perform a reliable partial-
wave analysis in the dipion-mass range 320 ≤ mππ ≤
980 MeV for the reaction π−p→ π−π+n and in the
pion-mass range 387 ≤ mππ ≤ 1215MeV for the re-
actions π±p→ π±π0p and π+p→ π+π+n.
The cross section σππ for pion–pion scattering

and the angular distributions of secondary pions
formed the input data for the partial-wave analysis.
According to Eq. (8), σππ is obtained by extrapolating
the differential cross section for the πN → ππN
reactions to the pion pole. Usually, an extrapolation to
the pion pole is constructed for the auxiliary function

F (t,mππ) =
∂2σ

∂t∂m2
ππ

2πp2
π(t− µ2)2

αf2mππk
, (11)

where the notation is identical to that in Eq. (8). As a
result, σππ is obtained in the form

σππ(mππ) = lim
t→µ2

F (t,mππ)µ2/t. (12)

In the study that we now describe, use was made
of the pseudoperipheral approximation proposed by
Baton et al. [63]. This approximation employs the
additional assumption that F (0) = 0 and involves
constructing the auxiliary function F ′(t) = F (t)/t,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 1. Dipion-mass distribution of π−p → π−π+n
events (histogram). The dash-dotted curve corresponds
to the reflection of the ∆(1232) resonance (the relevant
values are magnified by a factor of 5). The dashed curve
represents the phase space. The solid curve is the sum
of the Breit–Wigner curves for the ρ0, f0, and g0 reso-
nances; the phase space; and the reflection of∆(1232).

which is precisely the function that is extrapolated
to the pion pole. For all charged states, the result-
ing cross sections σππ are displayed in Fig. 2. The
angular distributions of secondary pions were de-
scribed in terms of the averaged spherical harmonics
〈Y 0

L 〉(mππ), which were also extrapolated to the pion
pole.

The partial-wave analysis can be performed either
by the energy-independent method, in which case
solutions for the phase shifts and elasticity factors
are found individually for each interval ofmππ values,
or by the energy-dependent method, in which case
the behavior of the S-, P-, and D-wave phase shifts
is parametrized by different functions of mππ and
q. In our study, we employed both methods, which
yielded consistent results. By way of example, the
result obtained for the phase shift δ00 from the energy-
independent version of the calculation is presented
in Fig. 3. Here, attention is caught by the ambigu-
ous behavior of the phase shift δ00 (so-called “up–
down” problem, which has so far been the subject of
lively discussions—see, for example, [43]). Given the
phase shifts δI

l for pion–pion scattering, one can find
the corresponding scattering lengths by extrapolating
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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Fig. 2. Pion–pion cross sections σππ for various
charged channels: (a) π+π+ → π+π+, (b) π−π0 →
π−π0 (closed circles) and π+π0 → π+π0 (open circles),
and (c) π−π+ → π−π+. The inset shows σππ values
near the threshold that were obtained from the analysis
of photoemulsion data.

them to the threshold; that is,

aI
l = lim

q→0

δI
l (q)
q2l+1

, (13)

where q is the secondary-pion momentum in the dip-
ion rest frame.
It should be noted that the pion–pion scattering

lengths are very important quantities. They are pre-
dicted by a number of theoretical models. Moreover,
their values can in principle be deduced from data on
several processes, whereas all phase shifts for pion–
pion scattering over the entire region of the dipion
masses can be determined only from data on the
πN → ππN processes.
2
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Table 2

Resonance mππ, MeV Γ, MeV σ, mb p, GeV/c

ρ− 790± 15 180± 15 0.50± 0.04 4.5

ρ0 790± 10 170± 10 0.85± 0.05 4.5

ρ+ 780± 15 140± 15 1.07± 0.11 3.05

f0 1270± 20 200± 30 0.52± 0.04 4.5

g− 1680± 20 190± 25 0.03± 0.03 4.5

g0 1680± 20 190± 25 0.05± 0.03 4.5

∆± 1232 (fixed) 120 (fixed) 0.06± 0.02 4.5
Frequently, there arises the question of whether
the aforementioned extrapolation is reliable in the
physics of the pion–pion interaction. In our studies,
we had had to deal with this question in extrapo-
lating cross sections and spherical harmonics to the
pole. Here, we ran into it once again in studying the
scattering length. The point is that the real part of
the S-wave amplitude has, as theorists assumed (see,
for example, [64]) and as we confirmed experimen-
tally in our joint study with physicists from Dubna
[27], a subthreshold zero not far from the physical
region. In view of this, it was illegitimate to employ,
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Fig. 3. Two versions of the calculations for the phase shift
δ0
0 obtained by the energy-independentmethod from data
on the reaction π−p → π−π+n at pπ− = 4.5 GeV/с.
PH
in the case of the S wave, the familiar effective-
range approximation, which had been conventionally
used in constructing extrapolations from the region
mππ > 400 MeV, but which led in this case to an
overestimated value of the scattering length a0

0. In
[27], we sidestepped this difficulty by employing, for
extrapolation purposes, data in the threshold region
280 ≤ mππ ≤ 320 MeV that were obtained in [52]
by the photoemulsion method. The value of a0

0 =
(0.24 ± 0.07) µ−1 found in this way is consistent
with the value of a0

0 = (0.25 ± 0.05) µ−1, which was
calculated by means of extrapolation from the farther
region 280 ≤ mππ ≤ 700 MeV with the aid of the
Serebryakov formula [64], which takes into account
the existence of the subthreshold zero.
Apart from the extrapolationmethod for determin-

ing scattering lengths, which was described above,
we also employed, in our studies, the theoretical
method for computations that is based on the Roy
equations [65]. Roy derived exact equations by using
double-subtraction dispersion relations at a fixed
value of t and the analyticity and the crossing-
symmetry properties of the scattering amplitude.
These equations determine partial-wave amplitudes
in the region −4 ≤ s ≤ 60 (s = m2

ππ/µ
2), which

includes the unphysical part −4 ≤ s ≤ 4, in terms of
quantities in the physical region 4 ≤ s ≤ ∞. Supple-
mented with the unitarity relation, the Roy equations
form a set of nonlinear singular equations containing
all partial-wave amplitudes. This set of equations
makes it possible in principle to reconstruct part
of unknown partial-wave amplitudes on the basis
of their known components (e.g., to determine the
amplitudes in the low-energy region from their known
behavior at high energies); to evaluate the scattering
length; to determine the positions of subthreshold
zeros; and to resolve the up–down problem.
Here, we will not write here the complete set of Roy

equations, including integral equations with compli-
cated kernels (see, for example, [31, 32]), restricting
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



PION, PION–PION, AND PION–NUCLEUS INTERACTIONS 1163
ourselves to presenting the subtraction terms for the
S and P waves. These terms are explicitly expressed
in terms of the S-wave scattering lengths and are
given by

λ0
0(s) = a0

0 +
1
12

(2a0
0 − 5a2

0)(s − 4), (14)

λ2
0(s) = a2

0 −
1
24

(2a0
0 − 5a2

0)(s − 4),

λ1
1(s) =

1
72

(2a0
0 − 5a2

0)(s − 4).

We will not describe here the rather cumbersome
procedure of applying the Roy equations to studying
pion–pion interactions either. We only note that, in
using a general theoretical method for their analy-
sis, there arises an entire set of solutions. In order
to restrict their number, one has to impose specific
constraints known from experimental data (for exam-
ple, the conditions ensuring the existence of the rho
resonance in the P wave or the absence of resonances
in the I = 2waves formππ < 1GeV). But even in this
case, one does not arrive at a unique solution for a0

0

and a2
0; instead, there appears, in the (a

0
0, a

2
0) plane,

a so-called universal curve that represents the set of
correlated values of a0

0 and a
2
0. By using known exper-

imental data—the methods for obtaining such data
were described in the preceding section—as inputs
for the Roy equations, we were able to reduce, in [32],
the limits of the universal curve to the boundaries of a
rather small region of a0

0 and a
2
0, namely,

0.21µ−1 ≤ a0
0 ≤ 0.27µ−1, (15)

−0.04µ−1 ≤ a2
0 ≤ 0.00µ−1.

The same method was employed to determine the
positions of the subthreshold zeros of the S-wave
amplitudes near the physical region. The results are

s0 = −0.2, s2 = 2.4. (16)

To conclude our analysis of problems that are as-
sociated with the singularities in the behavior of the
partial-wave amplitudes for pion–pion scattering in
the low-energy region and which have been treated at
this stage of our work, we present the values obtained
for the scattering lengths a0

0, a
2
0, a

1
1, a

0
2, and a

2
2 by av-

eraging data from measurements of these quantities
by different methods:

a0
0 = (0.24 ± 0.03)µ−1, (17)

a2
0 = (−0.04 ± 0.04)µ−1,

a1
1 = (0.034 ± 0.003)µ−3,

a0
2 = (7.8± 6.0) × 10−4 µ−5,

a2
2 = (3.8± 1.4) × 10−4 µ−5.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
Since 1996 [36], we have repeatedly employed the
method of the Roy equations to process available
experimental results on the phase shifts for pion–pion
scattering.

3. INVESTIGATION OF THE REACTIONS
π±p→ ππN WITH THE CHAOS

SPECTROMETER AT THE TRIUMF
ACCELERATOR IN CANADA

Various calculations revealed that the method for
determining scattering lengths on the basis of dis-
persion relations (for example, the Roy equations) is
very sensitive to variations in experimental data near
the threshold. A particular interest in the threshold
region of energies is also associated with the fact
that the pion–pion scattering lengths vanish there
in the chiral limit; therefore, their precise experimen-
tal values furnish information about the degree of
chiral-symmetry breaking, eventually enabling one
to choose between the existing theoretical scenarios
of this symmetry breaking. At the same time, there
had been virtually no statistically reliable data on the
features of pion–pion scattering near the threshold.

This gap in studying the pion–pion interaction
was filled by an international collaboration that per-
formed experiments with the CHAOS spectrometer
[66] at the TRIUMF meson factory in Canada [40]
and which included some members of our group.

The layout of the CHAOS facility is shown in
Fig. 4. It includes a dipole magnet creating a field of
0.5 T, four concentric cylindrical wire chambers (two
proportional and two drift ones), and a set of plas-
tic scintillators equipped with lead-glass Cherenkov
counters. A liquid-hydrogen target (ø = 25.5 mm,
l = 50 mm, T = 18 K) was inserted at the center of
the magnet through a special hole. The solid angle
covered by the spectrometer was 324◦ in the horizon-
tal plane and ±7◦ in the vertical plane.

The experiment employed 223-, 243-, 264-, and
284-MeV pion beams at a resolution of ∆p/p =
0.01–0.05. A comparatively low energy of incident
pions made it possible to obtain the parameters of
pion–pion scattering directly in the threshold region
of energies. For each value of the charged-pion en-
ergy, the collected data sample included 10 000 π−π+

and 10 000 π+π+ events, which were distributed over
a 10× 10× 10 three-dimensional grid in terms of the
variablesm2

ππ, t, and cos θ. A general normalization of
the data on the reaction in question was performed by
comparing the measured values of the cross section
for elastic pion–proton scattering with known data
from other experiments.
2
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Fig. 4. Layout of the CHAOS facility.

The results obtained in this way were processed
by the Goebel–Chew–Low extrapolation method de-
scribed above, which was supplemented with the Ba-
ton pseudoperipheral approximation [63]. The possi-
bility of simultaneously using data obtained at differ-
ent incident-pion energies was an important feature
that was peculiar to the treatment of the experimental
data being discussed and which enabled one to exer-
cise an additional control over the correctness of the
adopted extrapolation procedure by requiring that the
cross section σππ(mππ) be independent of the total
energy of the process πN → ππN .
The resulting values of the cross sections forπ−π+

scattering near the threshold are shown in Fig. 5,
along with the data from the aforementioned pho-
toemulsion study in [52] and the results of the cal-
culations based on the Roy equations. From this
figure, it can be seen that the cross-section values
directly obtained from experiments in the threshold
region comply well with the results of the calculations
that employ data from the reactions πp→ ππN at a
higher incident-pion momentum. This suggests that
the Goebel–Chew–Low extrapolation procedure is
self-consistent; that is, it is equally applicable in the
case of low and in the case of high momenta of pions
inducing relevant reactions.
The cross sections for pion–pion scattering near

the threshold enabled us to determine the scattering
length a0

0 [40]. Its value was obtained directly from the
cross section for π−π+ scattering at the threshold,
where this cross section is associated primarily with
the S0 wave (for the π−π+ channel, the contribution
of the S2 wave is small). The resulting value of a0

0 is

a0
0 = [0.204 ± 0.014(stat.)± 0.008(syst.)]µ−1.

(18)

In order to check the correctness of this result,
the scattering length a0

0 was also estimated by a few
PHY
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Fig. 5. Cross section for pion–pion scattering near the
threshold: (closed boxes) results obtained by extrapo-
lating data on the reaction π−p → π−π+n from the
CHAOS facility, (open circles) data of the photoemulsion
study reported in [52], and (region between the dashed
lines) predictions of the calculations based on the Roy
equations.

other methods that yielded the following values (in
µ−1 units):

a0
0 = 0.229 ± 0.008

from a comparison with a1
1 according to the Basde-

want method [67],

a0
0 = 0.214 ± 0.011 (19)

from the preliminarily found value of the phase shift
δ00 ,

a0
0 = 0.223

+0.027
−0.023

from the substitution of the phase shift δ00 into the Roy
equations, and

a0
0 = 0.21± 0.02

from a comparison of the experimental threshold
value of the cross section for pion–pion scattering
with the cross section calculated on the basis of the
method proposed in [36].
Within the errors, all of them agree with the value

of a0
0 in (18); therefore, the value in (18) can be con-

sidered not only as a correct value, but also as the
value that is characterized by the highest statistical
significance. It should be noted, however, that this
statement is valid under the assumption that the one-
pion-exchange diagram is dominant. Unfortunately,
the modern theory is unable to assess the error stem-
ming from the possible contribution of background
diagrams.
SICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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4. CURRENT SITUATION
AROUND THE INVESTIGATION

OF THE PION–PION INTERACTION:
THEORY VERSUS EXPERIMENT

The current stage of the experimental investiga-
tion of the pion–pion interaction is characterized by
the endeavor to obtain very precise (approximately an
order of magnitude more precise than at present) val-
ues of the cross sections for pion–pion scattering and
of the relevant phase shifts and especially scattering
lengths. The need for such precise data is dictated by
the achievements of chiral perturbation theory, which
makes it possible to compute the characteristics of
low-energy processes involving pions [68–71]. The
structure of chiral perturbation theory is based on the
principle of spontaneous chiral-symmetry breaking,
whose scenario depends on important QCD param-
eters embedded in the theory, such as the quark con-
densate and the light-quark masses. The assump-
tion of a significant value of the quark condensate
(∼1 GeV) leads to so-called standard chiral pertur-
bation theory, while the assumption of its very small
value leads to generalized chiral perturbation theory.
Standard chiral perturbation theory and general-

ized chiral perturbation theory predict different values
of the pion–pion scattering length a0

0 (0.20µ
−1 and

0.27µ−1, respectively). Therefore, an experimental
corroboration of one of these would make it possible
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
to choose a version of the theory, whereby one could
draw definitive conclusions on the values of the afore-
mentioned QCD parameters.

Although the values of a0
0 that are predicted by

these two versions of chiral perturbation theory are
distinct, their difference is insufficient, at the current
level of errors in available experimental data, for de-
ciding on one of them, the more so as the accuracy
in some of them is considerably overrated, as follows
frommodern investigations of the correctness of solv-
ing data-analysis problems [43]. Moreover, the most
accurate value of a0

0 [see (18)] that we obtained in [40],
albeit being very close to that which is predicted by
standard chiral perturbation theory, takes no account
of the possible error associated with the contribution
of background diagrams, which is impossible to eval-
uate at the present stage of development of the theory.

Several different methods are used at the present
time in order to improve the accuracy of relevant
experimental results.

First, a global treatment of numerous data from
investigations of reactions like πN → ππN (includ-
ing the reaction π−p→ π0π0n, which is difficult for
observation, as well as some recent results obtained
for other channels near the threshold and the results
of polarization experiments) in terms of the Roy equa-
tions is being continued. For example, the database
2
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comprising the phase shifts for pion–pion scatter-
ing that were obtained from analyses of five charged
channels over the energy range from the threshold to
1 GeV of the dipion mass was used in [42]. For the
first time, this analysis employed experimental data on
both S-wave phase shifts near the threshold, which
have a decisive effect on the accuracy in solving the
Roy equations.
Figure 6 displays the entire body of experimental

data on the S- and P-wave phase shifts for pion–
pion scattering and their approximations by smooth
curves. These curves were introduced as inputs in
the Roy equations to determine solutions for the sub-
traction constants λ(s)—that is, in integrating the
Roy equations for each set of phase-shift values. The
values of the real parts of partial-wave amplitudes
were chosen at each point where there were experi-
mental data on phase shifts. It was shown that the
resulting values of λ(s) are indeed described well, as
follows from the structure of the Roy equations [see
Eqs. (14)], by linear functions of the dipion mass s;
that is, the procedure employed is self-consistent. On
the basis of the resulting dependences it was possible
to determine values of the S-wave scattering lengths
such that the principles of analyticity, unitarity, and
crossing symmetry are satisfied for the corresponding
partial-wave amplitudes and that they are consistent
with the available experimental values of the phase
shifts in terms of the χ2 criterion:

a0
0 = (0.240 ± 0.023)µ−1, (20)

a2
0 = (−0.034 ± 0.013)µ−1,

a1
1 = (0.0356 ± 0.0017)µ−3 .

The region of possible values of a0
0 and a

2
0 is shown in

Fig. 7.
Investigations of reactions like πN → ππN made

it possible to construct more precisely the phase-
shift curves from the threshold to the dipion-mass
value of about 1.2 GeV and to shrink the interval of
the possible scattering-length values [42]. Needless
to say, they could not remove the main qualification
P

concerning the analysis of πN → ππN data with the
aim of extracting information about the pion–pion
interaction—the results cannot be obtained in a com-
pletely model-independent way.

Second, an experiment studying Ke4 decay is
being presently performed in Brookhaven. This de-
cay (K+ → π+π−e+νe) is one of the most reliable
sources of information about low-energy pion–pion
interaction. It enables one to deduce, under minimal
model assumptions, information about the phase-
shift difference (δ00 − δ11) near the threshold. The
kinematical dependence of the amplitude due to weak
interaction is known rather well, and all deviations
observed experimentally are associated with strong
interaction, which causes the rescattering of final
pions. Since the dipion possesses a low energy in the
process being considered, it is legitimate to disregard
the effect of higher partial waves; in view of this,
the ∆I = 1/2 rule restricts the isospin structure
of the amplitude to I = 0, 1 states. Unfortunately,
Ke4 decay is a rare decay mode, its branching ratio
being 3.4 × 10−5, which severely complicates the
accumulation of statistics. This is the reason why
previous experiments were unable to yield results on
the phase shifts at the required level of precision.

A new experiment (Е865 [72]) has been performed
since 1993. Its layout is shown in Fig. 8. This exper-
iment employs a 6-GeV/c kaon beam, a 5-m decay
chamber, a magnet (D5) for separating positively
and negatively charged particles, and a triggering
hodoscope (A counter). Themomenta are determined
with the aid of proportional wire chambers (P1–
P4) and a second magnet (D6). The identification
of particles is performed by means of an electromag-
netic shower calorimeter, four gas Cherenkov coun-
ters (C1, C2), a stack of iron layers for measuring
the muon range, wire chambers, muon hodoscopes
(B andC counters), and a device measuring the beam
trajectory in the upper section of the decay chamber.

In planning this experiment, the accumulation of
enormous statistics of 3× 105 events for this very
rare channel of kaon decay was foreseen, which
would make it possible to determine a0

0 with a 5%
precision—that is, to select reliably one of the two
versions of the theory. At present, about 400 000
events have been selected and analyzed. According
to a preliminary report on the first results of this
experiment [73], this results in the a0

0 value

a0
0 = [0.228 (21)

± 0.012(stat.)± 0.003(syst.)]µ−1,

which does indeed have a 5% precision and which is
rather close to that which was found by processing
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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data on the reactions πN → ππN (see, for example,
[42]).
Third, the DIRAC experiment [74], which is aimed

at studying the properties of pionium, the exotic, un-
stable hydrogen-like π+π− atom, is being performed
at CERN. A theoretical analysis of this experiment
makes it possible to relate the ratio of the branch-
ing fractions for pionium decay through the 2π0 and
the 2γ channel to the scattering-length difference
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
squared (a0
0 − a2

0)
2. In order to achieve a 5% preci-

sion in determining (a0
0 − a2

0) and, hence, a
0
0, since

|a0
0| � |a2

0|, it is sufficient in this case to measure
the pionium lifetime with a 10% precision. Prelim-
inary results supporting the correctness of the idea
underlying the method were obtained in 1994 at the
Serpukhov accelerator [75].
The layout of the DIRAC (Dimeson Relativistic

Atom Complex) experiment is displayed in Fig. 9.
2
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The experiment employs a 24-GeV/c proton beam
from the PS accelerator and a few different targets;
of these, a tantalum target is thought to be optimal. It
is planned that the resolving power of the equipment
for recording pions will be about 1 MeV/c, which will
make it possible to see, at a high statistical level, an
excess of atomic pion pairs near zero relative momen-
ta in several ranges of its variation. The authors of this
project (physicists from JINR and some other institu-
tions) hope to obtain, within two to three years, about
20 000 atomic pairs from pionium disintegration with
a relativemomentum below 3MeV/c and the opening
angle smaller than 3 mrad.
More details on the two experiments in question,

on the current state of affairs in the physics of the
pion–pion interaction, and on the advances made in
these realms can be found in the review article [43].

5. INVESTIGATION OF (π, 2π)
PION-PRODUCTION PROCESSES

ON NUCLEI

In 1991, Chanfray et al. [76] predicted that, under
the effect of a nuclear medium, the yield of π−π+ pairs
having small invariant masses must be considerably
enhanced—that is, the pion–pion interaction in the
I = 0 channel becomes stronger in this case. Al-
though the authors later disavowed their prediction,
the value of it was in that they initiated experimental
investigations along these lines.
One relevant experiment [77] was performed at the

accelerator of the TRIUMF meson factory (in Cana-
da) with the CHAOS magnetic spectrometer [66],
which was described above. The first series of mea-
surements was performed in a 283-MeV pion beam,
which was focused at the center of the spectrometer,
where a solid nuclear or a liquid-hydrogen target was
placed. The experimentalists recorded in coincidence
two pions from each reaction in the following pairs:

π+ + d→ Xπ+π+ and π+ + d→ Xπ+π−, (22)

π+ +12 C→ Xπ+π+ and π+ +12 C→ Xπ+π−,

π+ +40 Ca→ Xπ+π+ and π+ +40 Ca→ Xπ+π−,

π+ +208 Pb→ Xπ+π+ and π+ +208 Pb→ Xπ+π−.

The sought events were identified by using in-
formation both from the wire chambers (the sign
of the charge and the momentum) and from the
telescopes formed by scintillation and Cherenkov
counters (separation of π from p and of π from e). The
relevant sample of experimental data included fully
reconstructed π+ → π+π− and π+ → π+π+ events,
whose numbers were 3690 to 7270 for the former and
310 to 1060 for the latter. In order to calculate the
double-differential cross sections, these events were
P

distributed over multidimensional shells and were
multiplied by a weight that corresponded to each cell
and which was obtained via aMonte Carlo simulation
with allowance for the rate of formation of relevant
events in the spectrometer. The measurement of the
kinetic energies and of the laboratory angles for both
final-state pions made it possible to calculate the
fivefold-differential cross section

d5σ/(dEdθ)π1(dEdθ)π2dφ, (23)

where φ is the zenith angle between the momenta of
the two pions; it could be measured in the range 0◦ ±
7◦ (or in the range 180◦ ± 7◦). All the required distri-
butions, including those with respect to the invariant
dipion mass, the kinetic energies of pions, and their
angles, were calculated on the basis of this differential
cross section. Figure 10 displays the graphs of the
function d3σ/dmππdΩdφ versus the dipion mass for
the reaction channels π+ → π+π− and π+ → π+π+.
From this figure, it can be seen that, in contrast to
what is observed for the channel π+ → π+π+, the
cross section for the interaction with nuclear targets
in the channel π+ → π+π− at near-threshold invari-
ant masses (from 2mπ to 310 MeV) shows distinct
peaks, which become more pronounced with increas-
ing atomic number of the target. It can also be seen
from the figure that there is no such effect for π+π+

pairs, which have I = 2.4)

Since the experiment resulted in an unambiguous
observation of the “predicted” effect, new theoretical
models were required for explaining it.
In 1999, Vicente-Vakas and Oset [79] presented

the results that they obtained by simulating (π, ππ)
processes on nuclei. They took into account the effect
of Fermi motion and rescattering effects and attained
good agreement with experimental data for processes
resulting in the production of π+π+ pairs, but they
were unable to reproduce data for π−π+ pairs without
introducing an arbitrary and large final-state interac-
tion for the isospin-zero channel. Also in 1999, Hat-
suda et al. [80] studied a variation of the pion–pion
interaction in the isospin-zero channel in response to
variations of the nuclear density under the conditions

4)Recently, the Crystall Ball collaboration reported its exper-
imental data obtained by studying the processes π−A →
π0π0A′ on H, 12C, 27Al, and 64Cu nuclei at the pion mo-
menta of 408 and 750 MeV/c [78]. From these data, it
also follows that the yield of π0π0 pairs is enhanced near
the threshold of 2mπ and that it increases with increasing
target mass number. Since this process involves the I = 0,
2 channels, the fact that the effect is qualitatively the same
as that which was observed at the CHAOS facility (where
I = 0, 1 could occur and where I = 2 was rejected because
of the absence of the effect in the π+π+ channel) leads to
the conclusion that, in all probability, the enhancement in
question is associated with the I = 0 channel.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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various nuclei.
of a partial restoration of chiral invariance. They pre-
dicted an enhancement of the pion–pion interaction
near the threshold. This explanation could be treated
as an example of manifestations of quark effects in
nuclear physics. Different explanations of the effect
had also been proposed. The situation around this
question had been such that a continuation of experi-
ments along these lines became mandatory.

For a further investigation of the observed effects,
measurements were performed for the reactions

45Sc(π+, π+π+)X and 45Sc(π+, π+π−)X (24)

at the incident-pion energies of 240, 260, 280, 300,
and 320 MeV [41]. The motivation of this experiment
was that, if the enhancement of the yield of pion pairs
near the threshold was due to final-state interaction,
the effect should be independent of the primary en-
ergy. But if it is new pion-production mechanisms
in a nuclear medium that are responsible for the
enhancement in question, the effect should depend
on the primary energy. Moreover, a scandium target
represents nuclei having incompletely filled shells, in
contrast to target nuclei used previously. Although
the dependence of the effect on the specificity of nu-
clear properties seemed improbable, it was desirable
to verify this possibility. Finally, the measurements of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
the features of the process within a single experiment
covered the case of a deuterium target as well.
The measurements demonstrated that the earlier

observation of a considerable enhancement of the
yield of π+π− pairs with near-threshold invariant
masses in the interaction of pions with nuclei is re-
produced at nearly the same level for all primary pion
energies. This result favors the explanation of the
observed effect as that which is due to the existence
of a strong final-state interaction in the I = 0 π+π−

channel (channel whose quantum numbers are those
of the sigma meson) in a nuclear medium.

6. CONCLUSION
At the beginning of the article, we talked about the

first studies in the region of pion physics, which were
performed in the late 1940s and in the early 1950s and
in which Gurevich participated directly. Some impor-
tant methodological and physical results concerning
pion physics and the physics of pion–nucleus interac-
tions were obtained in those early studies by the pho-
toemulsion method. Among other things, Gurevich
and his collaborators found the charged-pion mass.
Among the values found by that time, their result
proved to be the closest to the modern value.
The next step in studying the pion and the pion–

pion interaction was made by I.I.’s disciples, whom
2
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he actively supported. These investigations contin-
ued for many years by using various experimental
procedures based on hydrogen bubble chambers,
photoemulsions, and magnetic spectrometers and
various methods for data treatment and analysis.
They resulted in deducing self-consistent results
for four charged channels of pion–pion scattering,
precise values of the pion–pion cross sections near
the threshold, and scattering lengths. Also, a com-
plete database of the phase shifts for pion–pion
scattering was analyzed on the basis of dispersion
relations (the technique of Roy equations), and the
region of the S-wave scattering lengths was obtained
where the solutions to the dispersion equations for
the partial-wave pion–pion amplitudes are adequate
to experimental data and meet the requirements of
analyticity, unitarity, and crossing symmetry.

Considerable advances have been made in de-
termining the S0-wave scattering length a0

0, which
is of crucial importance for the theory. Two ver-
sions of modern chiral perturbation theory—standard
chiral perturbation theory and generalized chiral
perturbation theory—lead to different scenarios of
chiral-symmetry breaking. The values of a0

0 (0.20µ
−1

and 0.27µ−1, respectively) represent one of the
few experimentally verifiable consequences of these
theories. The value of a0

0 = [0.204 ± 0.014(stat.)±
0.008(syst.)]µ−1, which was obtained in [40], favors
the standard version of the theory and, hence, a strong
quark condensate, but, of course, the conclusive
choice would be premature at this stage.

In the last sections of the article, we tried to
demonstrate what has become of pion physics to-
day. Instead of counting grains in photoemulsions,
present-day experimentalist are taking readings of
a few tens of thousands of sensitive channels of
giant experimental facilities, studying the properties
of the unstable π+π− atom (DIRAC experiment),
and accumulating formidable statistics of millions
of events of Ke4 decay, whose branching ratio is as
small as 10−5! A systematic investigation of pion
interactions in a nuclear medium has been begun,
and an intriguing enhancement of the yield of pairs of
oppositely charged pions near the threshold has al-
ready been discovered. The origin of the effect has not
yet been clarified conclusively, but the very fact that
the problem of a partial restoration of chiral symmetry
in a nuclear medium (it is broken in a vacuum)—that
is, the problem of the manifestation of QCD effects in
nuclear physics—has been addressed demonstrates
the achieved level of development along these lines
of investigation. We are confident that, in the near
future, the concerted efforts of experimentalists and
theorists will lead to still more considerable advances
PH
in the understanding of pion physics, which Gurevich
loved so much!
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54. V. Auslander et al., Phys. Lett. B 25B, 433 (1967).
55. V. L. Auslender et al., Yad. Fiz. 9, 114 (1969) [Sov. J.

Nucl. Phys. 9, 69 (1969)].
56. E. Colton et al., Phys. Rev. D 7, 3267 (1973).
57. S. Protopoppescu et al., Phys. Rev. D 7, 1279 (1973).
58. B. Hyams et al., Nucl. Phys. B 64, 134 (1973).
59. P. Estabrooks and A. D. Martin, Nucl. Phys. B 95,

322 (1975).
60. W. Hoogland et al., Nucl. Phys. B 126, 109 (1977).
61. M. J. Corden et al., Nucl. Phys. B 157, 250 (1979).
62. F. M. Filler, Dokl. Akad. Nauk SSSR 177, 1058

(1967) [Sov. Phys. Dokl. 12, 1138 (1968)].
63. J. P. Baton, G. Laurens, and J. Reignier, Nucl. Phys.

B 3, 349 (1967).
64. V. V. Serebryakov and D. V. Shirkov, Phys. Lett. B

25B, 138 (1967).
2



1172 MUKHIN et al.
65. S. M. Roy, Phys. Lett. B 36B, 353 (1971).
66. G. R. Smith et al., Nucl. Instrum. Methods Phys.

Res. A 362, 349 (1995).
67. L. L. Basdewant, Nucl. Phys. B 72, 413 (1974).
68. S. Weinberg, Physica A (Amsterdam) 96, 327 (1979).
69. S. Weinberg, The Quantum Theory of Fields (Cam-

bridge Univ. Press, Cambridge, 1995), Vols. 1, 2.
70. J. Gasser and H. Leutwyler, Phys. Lett. B 125B, 325

(1983).
71. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465

(1985); 250, 517 (1985); 250, 539 (1985).
72. J. Lowe, Lect. Notes Phys. 513, 375 (1998).
73. P. Truol, in Proceedings of the 5th Workshop on

Heavy Quarks at Fixed Target (HQ2K), Rio de
PH
Janeiro, Brazil, 2000, Frascati Phys. Ser. 20, 49
(2001); hep-ex/0012012.

74. B. Adeva et al., CERN SPSLC Proposal (1994).
75. L. G. Afanasyev et al., Phys. Lett. B 308, 200 (1993).
76. G. Chanfray et al., Phys. Lett. B 256, 325 (1991).
77. F. Bonitty et al., Phys. Rev. Lett. 77, 603 (1996).
78. Crystall Ball Collab. (B.M. K. Nefkens and A. B. Sta-

rostin), πN-Newsletter 15, 78 (1999).
79. M. J. Vicente-Vakas and E. Oset, Phys. Rev. C 60,

64621 (1999).
80. T. Hatsuda, T. Kunihiro, and H. Shemizu, Phys. Rev.

Lett. 82, 2840 (1999).

Translated by A. Isaakyan
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



Physics of Atomic Nuclei, Vol. 65, No. 7, 2002, pp. 1173–1187. Translated from Yadernaya Fizika, Vol. 65, No. 7, 2002, pp. 1206–1219.
Original Russian Text Copyright c© 2002 by Mikaelyan.

90th ANNIVERSARY OF I.I. GUREVICH’S BIRTHDAY
Investigation of Neutrino Properties in Experiments at Nuclear Reactors:
Present Status and Prospects

L. A. Mikaelyan
Institute of General and Nuclear Physics, Russian Research Centre Kurchatov Institute,

pl. Kurchatova 1, Moscow, 123182 Russia
Received April 20, 2001; in final form, August 24, 2001
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the existence of physics beyond the Standard Model, is considered, along with their future prospects.
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INTRODUCTION

Presently, searches for neutrino oscillations and
a determination of the neutrino mass structure are
among the foremost lines of investigation in ex-
perimental particle physics. After a long period of
searches for neutrino oscillations in short-baseline
experiments, explorations at nuclear reactors have
entered a new phase. Investigations in these realms
are now being conducted at ever greater distances,
and, for the first time, the masses of the neutrinos
and their mixing are being investigated precisely in
those regions that are suggested by the observations
of atmospheric and solar neutrinos.

Specifically, we consider the following experiments
and projects:

(i) the CHOOZ experiment that had been per-
formed by a collaboration of laboratories from Italy,
France, Russia, and the United States of America
and which had been devoted to searches for antineu-
trino oscillations at long distances from the reactor
used (the experiment had been completed in 1999; the
results were published in [1]);

(ii) the Palo Verde reactor-based experiment that
had been performed by a collaboration of laboratories
from the United States of America and which had
been aimed at long-baseline searches for neutrino
oscillations (the measurements had been completed
by the middle of 2000; the results obtained in the
exposures of 1998 and 1999 were published in [2]);

(iii) the project of the Kr2Det experiment that will
seek oscillations at long distances from the reac-
tor used the project, which will pursue oscillations
characterized by rather small mixing angles, currently
being developed for the Krasnoyarsk underground
laboratory (600 mwe) [3] (it is foreseen that the de-
velopment of the project will have been completed by
2003);
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(iv) the KamLAND experiment that is being per-
formed at Kamioke by researchers from Japan and
the United States of America and which is devoted
to searches of neutrino oscillations at very long dis-
tances [4] (it is expected that the first results will have
been obtained in 2002).

The results of these laboratory experiments will
make it possible to reveal the role of electron neutrinos
in the anomalies of atmospheric neutrinos, to verify
the hypothesis of solar-neutrino oscillations, and to
establish the mass structure of the electron neutrino
within the model involving the mixing of three neutri-
nos.

By searches of oscillations at long distances, one
usually implies experiments in which detectors are
positioned at distances of about 1 km from the reactor
employed (long-baseline experiments). Experiments
where the reactor-to-detector distance is 100 km or
more are referred to as very long baseline ones. It
should be emphasized that it is owing to impres-
sive advances in developing procedures for reactor-
antineutrino detection that long-baseline and very
long baseline investigations became possible.

An extensive list of references on the problem of
neutrino oscillations from the studies of Pontecorvo
and his colleagues [5], an account of the theory and
of the phenomenology of this phenomenon, and a de-
scription of the experiments that had been performed
prior to 1997 can be found in the review articles [6, 7].

Another line of neutrino investigations at nuclear
reactors focuses on attempts at observing the neu-
trino magnetic moment. A discovery of the neutrino
magnetic moment at a level of 10−11µB (µB is the
Bohr magneton) in a laboratory experiment would be
of crucial importance for particle physics and neutrino
astrophysics [8, 9]. In order to explain so “large”
a value of the neutrino magnetic moment, it would
2002 MAIK “Nauka/Interperiodica”
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be necessary to introduce, in the theory of weak in-
teraction, the right-handed W boson in addition to
the left-handed one; moreover, the interaction of the
neutrino magnetic moment with the magnetic field in
the convective zone of the Sun could enhance νe →
νµ,τ transitions (spin–flavor precession) and lead to
the emergence of a correlation between the recorded
solar-neutrino flux and the magnetic activity of the
Sun. It should be noted that such a correlation was
indeed observed [10].

The experiments that were performed at the re-
actors in Rovno [11] and in Krasnoyarsk [12] (see
also the review article of Derbin [13]) yielded the
constraint µν ≤ 2× 10−10µB, which is still far from
the desired region of values. In Section 2, we consider
the attempts that are being undertaken at present
to improve the sensitivity of nuclear-reactor exper-
iments to the neutrino magnetic moment. Projects
that are based on the use of intense artificial sources
of neutrinos and antineutrinos and which seem rather
promising are beyond scope of this article.

1. SEARCHES OF ANTINEUTRINOS

1.1. Reactor Antineutrinos

A liquid organic scintillator serves as a target for
reactor antineutrinos in all experiments that are de-
voted to searches for neutrino oscillations and which
are considered here. Antineutrinos are recorded by the
products of the inverse-beta-decay reaction

ν̄e + p→ e+ + n, (1)

whose threshold is 1.804 MeV. The cross section for
reaction (1) can be represented as

σ(E) = 9.556 × 10−44(886/τn) (2)

× [(E −∆)2 −m2]1/2(E −∆)(1 + δ) (cm2),

where ∆ = 1.293 MeV, the incident-antineutrino en-
ergy E and the electron mass m are expressed in
MeV; the quantity δ � 1 takes into account recoil
and weak-magnetism effects and the radiative cor-
rection [14], and τn is the free-neutron lifetime ex-
pressed in seconds.

The positron kinetic energy T in reaction (1) is
related to the absorbed-antineutrino energy by the
equation

T ≈ E − 1.8 MeV. (3)

In the majority of the cases, photons arising in
positron annihilation are absorbed in the sensitive
volume, with the result that the recorded positron
energy increases by about 1 MeV in relation to than
in (3). In all experiments, use is made of the method
of delayed coincidences between the signals from
the positron and the neutron. In the CHOOZ and
PH
the Palo Verde experiment, neutrons are recorded by
the photon cascade having the total energy of about
8 MeV and arising upon neutron capture by gadolin-
ium nuclei that are introduced in the target scin-
tillator. Neither the KamLAND nor Kr2Det project
employs gadolinium—the neutron signal is generated
there by 2.2-MeV photons accompanying neutron
capture in hydrogen.

In order to analyze the results of relevant experi-
ments, it is of crucial importance to know the proper-
ties of a reactor as a source of antineutrinos. Per gi-
gawatt of thermal power, a nuclear reactor generates
more than 2× 1020 electron antineutrinos per second,
the majority of which originate from the beta decay of
nuclear fragments produced in the reactor core upon
the fission of uranium and plutonium isotopes; about
a quarter of these antineutrinos fall in the energy
region above the threshold for reaction (1). Since the
second half of the 1970s, it has been known that
the fragments of different fissile isotopes emit elec-
tron antineutrinos having noticeably different spectra.
For the fission of 235U, 239Pu, and 241Pu, the most
precise information about the spectra in the region
above 1.8 MeV was obtained at the Institute Laue–
Langevin (ILL, Grenoble) by the method of conver-
sion of the beta spectra measured for the mixture of
fragments [16]; for 238U, use is made of the calculated
value [17]. Data that concern the reactor power and
the current isotope composition of the burning nu-
clear fuel and which are necessary for computing the
flux and the spectrum of antineutrinos are presented
by the reactor personnel.

With the aim of obtaining a reference for nor-
malizing data from the CHOOZ experiment, which
had already been planned at that time, the collabora-
tion of College de France (Paris), Kurchatov Institute
(Moscow), and LAPP (Annecy) measured in 1992–
1994 the total cross section for reaction (1) at a dis-
tance of 15 m from the Bugey reactor, whose power is
2.8 GW. The result was [18]

σexpt = 5.750 × 10−43 cm2/(fission event)± 1.4%,
(4)

which is in good agreement with the cross section
σV −A calculated by taking the convolution of the
cross section from relation (2) and the spectrum of
reactor electron antineutrinos:

σexpt/σV −A = 0.987 ± 1.4% (expt.)± 2.7%(σV −A).
(5)

Thus, the cross section measured experimentally
is more accurate than the computed value and can
serve as a metrological reference for cross sections
in the absence of oscillations. It should be noted that
the fine features recently revealed in the emission of
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



INVESTIGATION OF NEUTRINO PROPERTIES 1175
reactor electron antineutrinos above the threshold for
reaction (1) increase the error in the cross section (4)
by about 0.5% [19]. This circumstance was taken into
account in determining the parameters of oscillations
in the CHOOZ experiment.

In the next section of the article, we will consider
the spectrum of reactor electron antineutrinos below
the threshold for reaction (1), because knowledge of
this spectrum is necessary for performing and inter-
preting experiments that seek the neutrino magnetic
moment.

1.2. Motivation

First of all, we recall basic relations that are valid in
the case of mixing of two neutrino-mass eigenstates
ν1 and ν2, with the corresponding masses being m1

andm2. We have

νe = cos θν1 + sin θν2. (6)

In this case, the survival probability P (νe → νe)—
that is, the probability that a neutrino that is produced
in the source used will retain its original nature at a
distance L (m) from the source—is given by

P (νe → νe) = 1− sin2 2θ sin2(1.27∆m2LE−1),
(7)

where sin2 2θ is the mixing parameter, ∆m2 ≡ m2
2 −

m2
1 (eV2) is the mass parameter, and E (MeV) is the

neutrino energy.
In experiments, oscillations are sought by a char-

acteristic distortion of the spectrum of electron an-
tineutrinos (positrons) and by the reduction of the
event-counting rate. For reactor electron antineu-
trinos, the relevant distortions of the spectrum and
the accompanying reduction of the counting rate are
maximal, provided that

∆m2L ≈ 5 eV2 m. (8)

Relations (7) and (8) demonstrate that, for example,
at a distance of 1 km from the reactor, the sensitivity
of the experiment being discussed is the highest at
∆m2 ≈ 5× 10−3 eV2 and that it becomes poorer fast
as ∆m2 decreases.

In the early 1990s, there appeared motivations
for seeking reactor-neutrino oscillations in the range
∆m2 = 10−2–10−3 eV2, which had not yet been
explored by that time. The investigation of atmo-
spheric neutrinos with the aid of the Kamiokande II
and IMB Cherenkov detectors in [20] revealed that
the ratio of the muon-neutrino flux to the electron-
neutrino flux is two-thirds as great as its com-
puted counterpart. This discrepancy, known as the
atmospheric-neutrino anomaly, could be explained
under the assumption that intense transitions occur
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
through the νµ ↔ νe channel, through the νµ ↔ ντ
channel, or through both these channels simulta-
neously. As to the mass parameter ∆m2

atm, it could
lie within a wide range of values between 10−1 and
10−3 eV2. At present, observations of atmospheric
neutrinos have yielded even more compelling grounds
to believe that neutrino oscillations do indeed exist.
If the SuperKamiokande data are analyzed under
the assumption that only the νµ ↔ ντ channel is
operative, the best description is obtained at the
following parameter values [21]:

∆m2
atm ≈ 3× 10−3 eV2 (9)

(the most probable value),

sin2 2θatm > 0.88.

It should be emphasized that the SuperKamiokande
data do not at all rule out a noticeable contribution
from the νe ↔ νµ channel [22].

For more than three decades, the deficit of solar
neutrinos in relation to the computed data has been
considered as a strong argument in favor of the ex-
istence of electron-neutrino oscillations. An analy-
sis of solar-neutrino data accumulated by 1998 and
the inclusion of the solar-matter effect, known as
the Mikheev–Smirnov–Wolfenstein (MSW) effect,
made it possible to find, in the (sin2 2θ, ∆m2) plane, a
few regions where parameter values ensure a solution
to the solar-neutrino problem [23]. According to [24],
the situation changed as soon as new data appeared
after the commissioning of the SuperKamiokande fa-
cility in 1998. At present, one of the solutions—it is
referred to as the Large Mixing Angle (LMA) MSW
solution—provides the best fit to the observation da-
ta. The most probable values of the parameters that
characterize this solution are

∆m2
sol ≈ 3× 10−5 eV2, sin2 2θsol ≈ 0.8. (10)

In the case where two mass eigenstates ν1 and
ν2 are mixed, there is obviously one mass parameter
∆m2 = m2

2 −m2
1. The mixing of at least three mass

eigenstates is necessary for two mass parameters
∆m2

atm and ∆m2
sol to exist. In the case where three

mass eigenstates ν1, ν2, and ν3 undergo mixing and
where three active neutrino flavors νe, νµ, and ντ
oscillate, there are generally three mass parameters:
∆m2

21 = m2
2 −m2

1, ∆m2
31 = m2

3 −m2
1, and ∆m2

32 =
m2

3 −m2
2. Of these, only two are independent, since

∆m2
21 ≡ ∆m2

31 −∆m2
32. According to (9) and (10),

one of these parameters is two orders of magnitude
greater than the other; therefore, we have

∆m2
sol = ∆m2

21 ≈ 3× 10−5 eV2, (11)

∆m2
atm ≈ ∆m2

31 ≈ ∆m2
32 ≈ 3× 10−3 eV2.
2
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Fig. 1. Layout of the CHOOZ detector (its description is
given in the main body of the text).

In the case of reactor neutrinos that is considered
here, there are two mixing parameters in the adopted
scheme. They are expressed in terms of the mixing-
matrix elements Uei appearing in the superposition
νe = Ue1ν1 + Ue2ν2 + Ue3ν3 (

∑
U2

ei = 1); that is,

sin2 2θLBL = 4U2
e3(1− U2

e3), (12)

sin2 2θVLBL = 4U2
e1U

2
e2,

where LBL and VLBL stand for, respectively, long-
baseline and very long baseline reactor-to-detector
distances.

Thus, long-baseline and very long baseline reactor
experiments make it possible to (i) study the role of
the electron neutrino in the region of atmospheric-
neutrino oscillations; (ii) verify whether the hypoth-
esis specified by (10) is valid for solar-neutrino os-
cillations; and (iii) obtain, within the model of three
neutrino flavors, the full pattern of the mass structure
of the electron neutrino.

The question of the number of neutrino flavors
that is greater than three is beyond the scope of the
present article. Yet, it is worth noting that, according
to the data of the LSND experiment (Los Alamos),
νµ → νe transitions, which are characterized by a
rather small mixing angle, are observed in the region
of large mass-parameter values of ∆m2

LSND ∼ 1 eV2

[25]. The existence of three mass parameters, ∆m2
sol,

∆m2
atm, and ∆m2

LSND, requires introducing, at least,
yet another mass eigenstate ν4 and one sterile neu-
trino νs (either sterile neutrinos do not interact with
P
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Fig. 2. Spectra of positrons in the CHOOZ experiment
during the reactor (closed circles) operating and (open
circles) shutdown periods.

other particle species at all, or the corresponding cou-
pling constant is much less than the Fermi constant).
The problem of sterile neutrinos has been discussed in
the literature since the first studies of Pontecorvo [5];
in recent years, interest in this problem has become
especially acute in connection with reports on the
LSND experiments (see, for example, [26, 27] and
references therein). The potential of nuclear reactors
for sterile-neutrino searches was schematically con-
sidered in [28].

1.3. Experiments and Projects

CHOOZ

The antineutrino detector used was constructed
in an underground (300 mwe) gallery at distances
of 1000 and 1100 m from two PWR reactors. The
total rated power of the reactors was 8.5 GW. The
detector (see Fig. 1) was formed by three concen-
tric spheres. The central zone, which contained 5 t
of a liquid organic scintillator with an addition of
gadolinium (about 1 g/l), served as a target for
electron neutrinos. The target was surrounded by a
liquid-scintillator layer (not containing gadolinium)
of thickness 70 cm followed by third layer (90 t of a
scintillator), which acted as a passive and an active
shielding of the detector. Two inner zones of the
detector were viewed by 192 eight-inch phototubes
mounted on a nontransparent screen. The second
zone (buffer volume), which absorbed annihilation
photons and photons arising upon neutron capture
in gadolinium that escaped from a comparatively
small target, improved considerably the calorimetric
properties of the detector.

The experiments was conducted from April 1997
to July 1998. This was the period within which the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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newly constructed reactors gradually approached the
rated mode of operation. This circumstance made it
possible to have sufficient time for performing mea-
surements during the operation of each of the two
reactors, with the other reactor being off; during the
simultaneous operation of the two reactors; and dur-
ing the period within which the reactors were both off
(see Table 1).

Neutrino events were required to satisfy the fol-
lowing selection criteria: (а) The energy of the first
(positron) event and the energy of the second (neu-
tron) event must lie within the ranges 1.3–8 and 6–
12 MeV, respectively. (b) The time interval between
the positron and the neutron event must be in the
range 2–100 µs. (c) The spatial conditions are such
that the distance between the phototube surface and
any event must not be less than 30 cm and that the
first and the second event must not be separated by
a distance longer than 100 cm. As soon as these se-
lection criteria are imposed, the efficiency of neutrino-
event detection becomes ε = (69.8 ± 1.1)%.

In all, about 2500 antineutrinos were recorded over
the time of measurements, with the measured count-
ing rate being 2.58 ν̄e/d per 1 GW of reactor power;
the typical event-to-background ratio was 10 : 1. The
positron spectra measured within the reactor oper-
ating and shutdown periods are displayed in Fig. 2.
The ratio Rmeas/calc of the measured neutrino events
to that which is expected in the absence of oscillations
proved to be

CHOOZ : Rmeas/calc (13)

= 1.01 ± 2.8% (stat.)± 2.7% (syst.).

In this result, the main contribution to the system-
atic error comes from the uncertainties in the reaction
cross section (1.9%—see Subsection 2.1 below), in
the efficiency of the neutrino-event detection (1.4%),
and in the number of target protons (0.8%).

Constraints on the oscillation parameters were
obtained by comparing the entire body of information
accumulated in the experiment with the values that
are expected in the absence of oscillations. The result
(the “CHOOZ” curve in Fig. 3) depends directly on
knowledge of the absolute values of the characteris-
tics of the neutrino flux and spectrum, on the cross
section for the inverse-beta-decay reaction, and on
the features of the detector. As can be seen from
Fig. 3, electron neutrinos do not show, at the achieved
level of accuracy, oscillations in the region ∆m2

atm:

sin2 2θCHOOZ ≤ 0.1, (14)

U2
e3 ≤ 2.5 × 10−2 (at ∆m2 = 3× 10−3 eV2).

The result presented in (14) establishes definitively
that νµ ↔ νe oscillations cannot play a decisive role
in the atmospheric-neutrino anomaly.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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Fig. 3. Constraints obtained for the oscillation param-
eters in the CHOOZ and Palo Verde experiments at a
90% C.L. and constraints expected in the Kr2Det and
KamLAND projects.

Searches for oscillations in long-baseline and very
long baseline experiments in ever lower fluxes of elec-
tron antineutrinos require drastically improving the
techniques for recording reactor neutrinos. The back-
ground level of about 0.25 event/d per 1 t of target
mass achieved in the CHOOZ experiment is nearly
1000 times lower than in any of the previous experi-
ments of this kind. In this connection, we would like
to note two key points. First, this is the underground
deployment of the experiment. Under a rock layer of
thickness 300 mwe, the muon flux, which is the main
source of a correlated background, decreases in rela-
tion to that at the Earth’s surface by a factor of about
300 down to a level of 0.4/m2s. The second point is
associated with the design of the detector. The intro-

Table 1. Modes of data accumulation in the CHOOZ
experiment

Reactor 1 Reactor 2 Time, d W , GW

+ 0 85.7 4.03

0 + 49.5 3.48

+ + 64.3 5.72

0 0 142.5 –
2
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duction of the buffer zone (see Fig. 1) reduces the level
of the random-coincidence background, shielding the
fiducial volume from the high natural radioactivity of
the phototube glass and structural materials.

Palo Verde

In the Palo Verde experiment, three PWR reac-
tors belonging to the same type and having the total
(thermal) power of 11.6 GW are at distances of 890,
890, and 750 m from a detector constructed in an
underground laboratory (32 mwe). Once a year, each
of the reactors is shut down for about 40 days, while
the other reactors continues operating over this time
interval.

The experiment being discussed employs a detec-
tor whose design is totally different from that of the
CHOOZ detector and uses more involved methods
for selecting neutrino events. These distinctions are
dictated by a much more intense muon flux to the de-
tector (about 20/m2 s) and by a less favorable sched-
ule of reactor operation. The electron-antineutrino
detector has the form of a 6× 11 matrix composed
of long sections whose dimensions are 12.7 × 25 ×
900 cm. The 7.4-m-long central part of each sec-
tion contains a liquid scintillator with an addition of
gadolinium; the endface parts of a section are filled
with mineral oil, each of such endface parts hous-
ing a phototube (see Fig. 4). The total mass of the
target scintillator is 12 t. From all sides, the tar-
get is surrounded by a purified-water layer (passive
shielding) followed by the scintillation sections of an
active shielding, which generate, in response to the
P

propagation of cosmic-ray muons through them, an-
ticoincidence signals, whose frequency is 2 kHz.

A preliminary selection of candidates for events
of reaction (1) is accomplished according to the
following criteria: (а) The positron event must be fast
(30 ns), and there must be a coincidence between
three sections, with the thresholds being 500 keV
(positron ionization) in one of them and 40 keV
(Compton electrons from annihilation photons) in the
other two. (b) The same conditions must hold for the
neutron event. (c) The expectation time for the second
event must be 450 µs, which is much longer than
the neutron lifetime in the scintillator (about 30 µs);
useful and background events are detected in the first
part of the interval, while the background of random
coincidences is recorded within its second part.
Events satisfying the above criteria were accumulated
and were subjected to additional amplitude and spa-
tial criteria in the course of a subsequent treatment.
Upon imposing all the selection criteria, the efficiency
of electron-antineutrino detection became 11% at the
effect-to-background ratio of 1 : 1.

The total time of data accumulation in 1998 and
1999 was about 202 days; for 59 days of these, two
of the three reactors operated. Two different methods
were applied to single out the neutrino signal. Of
these, one was the usual on–off method, which was
based on measuring the electron-antineutrino flux
within the shutdown period of one of the reactors,
in which case the electron-antineutrino flux from the
operating reactors was considered as a background
component. To the best of my knowledge, the other
method was applied for the first time. This method
made it possible to employ the entire body of accu-
mulated data and to separate the useful effect from
the background directly in these data. This method,
dubbed by the authors a swap method, relies on the
similarity of the amplitude spectra of the the first and
the second signal in time that stem from a back-
ground event and on their pronounced distinction in
the case of the positron and neutron originating from
reaction (1).

As a result, it was found that themeasured number
of neutrino events and that which was expected in the
absence of neutrino oscillations satisfy the relation

Palo Verde: Rmeas/calc (15)

= 1.04 ± 3% (stat.)± 8% (syst.).

In this result, the systematic uncertainty is pre-
sently three times as great as the analogous uncer-
tainty in the CHOOZ experiment [see relation (13)].
It is foreseen that a further data treatment will lead
to a reduction of the uncertainties (F. Boehm, private
communication). Figure 3 shows the constraints that
were obtained for the neutrino-oscillation parameters
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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by using the entire body of information accumulated
by the end of 1999 (Palo Verde curve).

Kr2Det project

The Kr2Det project is that of an experiment that
will seek oscillations in the region around ∆m2

atm ∼
3× 10−3 eV2, but which is expected to have a much
higher sensitivity to the mixing parameter than the
CHOOZ and the Palo Verde experiment. The im-
plementation of this project would make it possible
to measure the mixing-matrix element Ue3 or to set
a more stringent limit on it. It is interesting to note
that, if the LMA MSW version does indeed solve the
solar-neutrino problem, the analysis [29] shows that
the value of U2

e3 may be close to the limit that is set by
the current constraint U2

e3 ≤ 2.5 × 10−2.
The basic features of the experiment being dis-

cussed are the following:
(i) In order to achieve a higher rate of data accu-

mulation, the target mass is enhanced in relation to
that of the CHOOZ detector by nearly one order of
magnitude. For a target, use is made of an organic
scintillator of mass 45 t without gadolinium additions.

(ii) In order to eliminate the majority of method-
ological errors, measurements will be performed by
simultaneously using two identical spectrometers of
electron antineutrinos—a far and a near one that
are positioned at distances of, respectively, 1100 and
150 m from the reactor.

(iii) The experiment will be performed at a depth of
600 mwe, whereby the cosmic-ray component of the
background is suppressed down to a rather low level.

The detectors have a three-zone structure (see
Fig. 5). The phototubes used are mounted on a metal
sphere that separates zones 2 and 3 by light, which
are filled with nonscintillating mineral oil. The ex-
pected magnitude of a scintillation signal is 100 pho-
toelectrons per 1MeV of energy absorbed in the scin-
tillator. The energy resolution is σ ≈ 0.14

√
E(MeV).

Candidates for a neutrino event are required to
satisfy the following selection criteria: (a) The energy
of the first (positron) event and the energy of the
second (neutron) event must lie in the ranges 1.2–9.0
and 1.7–3.0 MeV, respectively. (b) The second event
must be recorded within the time window 5–500 µs.
(c) The spatial distances between the events must not
exceed 100 cm. The duration of an anticoincidence
signal is 1000 µs at a repetition frequency of about
10/s. Under these conditions, events of reaction (1)
are recorded with an efficiency 80%, the counting rate
in the far detector being Nν = 52ν̄e/d; the expected
background level is about 10% of the magnitude of
the useful effect.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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In the case where there are no oscillations, the ra-
tio Xf,n of the positron spectra measured in reaction
(1) simultaneously by the far (f ) and by the near (n)
detector,

Xf,n = C(1− sin2 2θ sin2 ϕf )(1 − sin2 2θ sin2 ϕn)−1

(16)

(ϕf,n = 1.27∆m2Lf,nE
−1, Lf,n = 1100, 150 m), is

independent of the positron energy. Searches for
nonzero values of the oscillation parameters sin2 2θ
and ∆m2 are based on an analysis of small deviations
of the ratio in (16) from a constant value. The
results of this analysis do not depend on precise
knowledge of the spectrum of reactor antineutrinos,
on the reactor power, on the number of protons in the
target, or on the detection efficiency. However, the
possible distinction between the spectral features of
the detectors used requires monitoring. A method is
being developed that would make it possible to reveal
this distinction and, if necessary, to introduce relevant
corrections. It is assumed that the corresponding
systematic uncertainty will not exceed a few tenths
of a percent. The expected constraints are displayed
in Fig. 3 (Kr2Det curve). It is foreseen that the
experiment will record 40000 electron antineutrinos.

KamLAND

The electron-antineutrino flux is 1000 times less
in this experiment than in the CHOOZ experiment.
Fifty reactors of an atomic power plant in Japan,
2
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Fig. 6. Layout of the KamLAND detector

which have a total thermal power of about 130 GW,
serve as a source of antineutrinos. The detector is
positioned at distances of about 100 to 800 km from
the reactors. About 70% of the electron-antineutrino
flux is generated by the reactors occurring at dis-
tances of 145 to 214 km from the detector. The flux
never decreases down to zero, but it undergoes sea-
sonal variations, changing by ±(10–15)% around its
mean-annual value.

The detector is being constructed at a depth of
2700 mwe in the cavern that previously housed the
Kamiokande facility. Phototubes that cover 30% of
the surface view, through the oil layer of the buffer
zone of thickness 2.5 m, a spherical target containing
1000 t of a liquid scintillator (see Fig. 6). In contrast
to the detectors described above, the outer layer is
filled with water here. In just the same way as in
the other cases, this zone plays the role of a passive
and an active shielding. The expected muon flux to
the detector is about 0.3/s. In order to reduce the
background associated with natural radioactivity, it is
proposed to purify the target scintillator from uranium
and thorium to a level of 10−16 g/g. Special measures
are taken to prevent the penetration of radon into
the scintillator. In addition to conventional criteria for
selecting neutrino events in amplitude, in time, and
in positron–neutron spacing, some additional criteria
PH
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Fig. 7. Positron spectra in the KamLAND experiment for
a few values of the mass parameter from the LMA MSW
region (calculation).

will be imposed to eliminate the background (for more
details, see [4]). At a 100% detection efficiency, the
neutrino-event counting rate computed in the ab-
sence of oscillations is about 800/yr, the event-to-
background ratio being not poorer than 10 : 1. How-
ever, it is indicated in the project that, in the positron-
energy region extending up to about 2.5 MeV, there
must be an irremovable background of so-called ter-
restrial antineutrinos originating from the chains of
uranium and thorium decays, its magnitude in this
energy region being commensurate with the signal
from the reactors used. In passing, we note that
problems associated with studying the antineutrino
activity of the Earth, which are of prime interest for
geology, were posed more than forty years ago [30].

In Fig. 7, the positron spectra expected in the
experiment are shown for a few values of ∆m2. It
is believed that measurements spanning a period of
three years will make it possible to establish with
confidence whether the electron neutrino oscillates
with parameters from the LMAMSW region (see the
KamLAND curve in Fig. 3).

2. SEARCHES FOR THE NEUTRINO
MAGNETIC MOMENT

2.1. Spectra and Cross Sections

Information presented in this section may be of
use in considering and planning reactor experiments
aimed at improving the sensitivity of searches for the
neutrino magnetic moment.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Electron-antineutrino scattering on free electrons

An antineutrino that possesses a magnetic mo-
ment µν can be scattered by an electron. The cross
section for magnetic scattering on a free electron at
rest, dσm/dT , is proportional to µ2

ν [31]; that is,

dσm/dT = πr20(µν/µB)2(1/T − 1/E), (17)

where πr20 = 2.495 × 10−25 cm2, E is the incident-
neutrino energy, and µB is the Bohr magneton.

The cross section for ν̄ee scattering associated
with weak interaction (see, for example, [8]) is given
by

dσw/dT = G2
F(m/2π)[4x4 + (1 + 2x2)2 (18)

× (1− T/E)2 − 2x2(1 + 2x2)mT/E2],

where x2 = sin2 θW = 0.232 is the Weinberg angle
and G2

F(m/2π) = 4.31 × 10−45 cm2/MeV.
For a given value of the incident-neutrino energy,

the kinetic energy of the recoil electron is constrained
by the condition

T ≤ Tmax = 2E2/(2E +m). (19)

An experiment consists in measuring the to-
tal spectrum of recoil electrons upon scattering
associated with weak and magnetic interaction,
Sw(T ) + Sm(T ). The spectra Sw(T ) and Sm(T )
(cm2 MeV−1 fission event−1) are represented as
the convolutions of the cross sections in (17) and
(18) with the reactor-antineutrino spectrum ν̄eρ(E)
(MeV−1 fission event−1). Here, scattering associated
with weak interaction—a process of importance in
its own right—plays the role of a background that is
correlated with the operation of the reactor used. As
the kinetic energy Ò of the recoil electron decreases,
the spectrum Sm(T ) grows indefinitely, whereas the
spectrum Sw(T ) tends to a constant limit (see Fig. 8).
The two spectra become equal at T = 300 (2.5) keV
for µν = 10−10µB (µν = 10−11µB).

In order to discover the magnetic moment at the
level of µν = 10−11µB, it is therefore necessary to
measure the recoil-electron spectra in the energy re-
gion below a value of about 10 keV. At such low val-
ues of the recoil energy, the differential cross sections
in (17) and (18) for the spectrum of reactor electron
antineutrinos assume the asymptotic form

dσm/dT = 2.495 × 10−47 cm2/T (20)

(for µν = 10−11µB),

dσw/dT = 10.16 × 10−45 cm2/MeV.

In this approximation, the recoil-electron spectra
Sm,w(T ) are independent of the details of the shape of
the spectrum ρ(E)—they are determined exclusively
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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by the total number of antineutrinos per fission event,
Nν =

∫
ρ(E)dE (fission event−1); that is,

Sm(T ) = 2.495 × 10−47Nν/T cm2 fission event−1

(21)

(for µν = 10−11µB),

Sw(T ) = 10.16 × 10−45Nν

cm2 MeV−1 fission event−1.

Spectrum of reactor antineutrinos
The reduction of the recoil-electron-detection

threshold increases the contribution that electron an-
tineutrinos from the region lying below the threshold
for inverse beta decay make to scattering associated
with magnetic and weak interaction; as was indicated
above, nearly the entire spectrum of electron an-
tineutrions comes into play as soon as the threshold
becomes less than some 15 keV.

Here, we would like to highlight the qualitative
features of the soft section of the reactor-antineutrino
spectrum that were revealed in recent years [32, 33].

About three-fourths of all electron antineutrinos
emitted by a reactor fall within the energy range 0–
2 MeV. A significant contribution to the spectrum in
this range comes from antineutrinos originating from
the beta decay of nuclei that are formed in the reactor
core upon radiative neutron capture. This contribu-
tion can be evaluated on the basis of the data given
in Fig. 9, which depicts a typical total spectrum of
electron antineutrinos and, separately, its component
associated with the beta decay of fission fragments.

The spectrum and the intensity of the electron-
antineutrino flux are not determined unambiguously
2



1182 MIKAELYAN

  

6

4

2

0 0.5 1.0 1.5
Antineutrino energy, MeV

All 

 

ν

 

–

 

e

 

ν

 

–

 

e

 

 only from fission

 
ρ

 
, MeV

 
–1

 
 fission event

 
–1

Fig. 9. Soft section of the spectrum of reactor electron
antineutrinos.

by the current reactor state, which is specified by the
preset power level and by the isotopic composition
of the burning nuclear fuel—they also depend on the
prehistory of this state. From the start of the reactor,
there begins a long-term process through which the
flux approaches its equilibrium value; after the reac-
tor shutdown, the flux begins to fall off slowly, and
this falloff does not have time to be completed by
the instant at which the next operating period starts
(see Fig. 10). In experiments of the type being dis-
cussed, the detector background is measured within
shutdown periods (that is, between two successive
operating periods), but, in such periods, there is, in
fact, a residual radiation of nuclear fuel occurring in
the shutdown reactor. The growth of the flux and its
falloff are accompanied by changes in the spectral
content of electron antineutrinos and, hence, in the
spectra of recoil electrons.

In order to describe accurately the total spectrum
of reactor antineutrinos, it will be necessary to re-
fine further available data on the contributions of its
individual components and their time dependences
and to make use of specific information about the
previous operation of the reactor used throughout 2 to
3 years. As a rule, such information can be provided
by the personnel of the corresponding atomic power
plant. The need for such refinements is dictated by the
demands of the experiments that are being performed
and planned.

Inelastic scattering on atomic electrons

As the energy lost by a neutrino in a collision
event decreases, effects associated with the binding
of atomic electrons become operative. In the case of
P
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inelastic scattering on an electron occurring in the
ith subshell, the energy transfer q from the electron
antineutrino is equal to the sum of the kinetic energy
of the knock-on electron and its binding energy εi in
this subshell; that is,

q = εi + T. (22)

The filling of the vacancy formed is accompanied by
the emission soft x-ray photons and Auger electrons
of total energy εi that is absorbed in a detector ma-
terial. As a result, the event energy observed in the
experiment being discussed coincides with the energy
transfer q in a collision. The differential cross sections
and spectra for inelastic scattering on an electron of
the ith shell due to magnetic and weak interaction
vanish for q ≤ εi.

To a precision of 2 to 3%, the results obtained by
numerically calculating the spectra for the magnetic-
interaction-induced (Sm

in ) and the weak-interaction-
induced (Sw

in ) inelastic scattering of reactor antineu-
trinos on the electrons of a iodine (Z = 53) and a ger-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Table 2. Binding energies (in keV) of the electrons in the iodine (Z = 53) and the germanium (Z = 32) atom

Z
1s1/2

K

2s1/2

LI

2p1/2

LII

2p3/2

LIII

3s1/2

MI

3p1/2

MII

3p3/2

MIII

3d3/2

MIV

3d5/2

MV

53 32.9 5.09 4.78 4.48 1.03 0.90 0.84 0.61 0.60

32 10.9 1.37 1.22 1.19
manium (Z = 32) atom can be approximated as [34]

S
m(w)
in (q) ≈

[
1
Z

∑
i

niθ(q − εi)
]
S

m(w)
free (q), (23)

where summation is performed over the subshells
of the atom involved; ni is the number of electrons
in the ith subshell; θ(q − εi) is the Heaviside step
function, which is equal to unity for q ≥ εi and to

zero for q < εi; and S
m,(w)
free (q) is the kinetic-energy

spectrum for magnetic-interaction-induced (weak-
interaction-induced) scattering on free electrons (see
above), in which case ε = 0 and q = T . It is worthy
of note that, in this approximation, the binding of
atomic electrons exerts the same effect on magnetic-
interaction-induced and weak-interaction-induced
scattering.

The calculated binding energies of electrons are
given in Table 2.

The actual calculations of inelastic scattering were
performed in the energy-transfer (q) range from 1–
1.5 to 200–300 keV for theK, L, andM shells of the
iodine atom and theK and L shells of the germanium
atom, the remaining electrons being considered to be
free.

Relation (23) can be formulated in the form of the
following rule:

In order to find the distribution of observed ener-
gies for the case of inelastic scattering on an atom
due to magnetic (weak) interaction, it is necessary to
compute the spectrum of kinetic energies for inelastic
scattering on a free electron due to magnetic (weak)
interaction and multiply the result by the response
function R,

R =
1
Z

∑
i

niθ(q − εi), (24)

which depends only on the binding energy of the
electrons in the atom.

As can be seen from relations (23) and (24) and
from Fig. 11, the spectra for elastic scattering do not
differ from the spectra for inelastic scattering if the
energy transfer exceeds the binding energy of a K
electron in the target atom. As the energy transfer
decreases, an ever greater number of internal atomic
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
electrons successively cease to take part in the scat-
tering process, with the result that the spectra for
inelastic scattering constitute an ever smaller fraction
of the spectra for elastic scattering. At the energy-
transfer value as low as 1 keV, the ratio of the spec-
trum for inelastic scattering to the spectrum for elas-
tic scattering reduces to 41/53 for iodine and to 22/32
for germanium.

The authors of [34] discussed the accuracy and the
applicability range for the recipe in (23) and presented
some examples where this recipe is hardly workable or
where it is not at all applicable.

2.2. Experiments

The experiments reported in [11, 12], as well as
the earlier experiment described in [35], were intended
for verifying theoretical predictions for the structure
of weak νee interaction. In practice, it turned out,
however, that the main problem that arises in de-
tecting single electrons from ν̄ee scattering is that of
the detector background, which could not be reliably
removed despite massive efforts mounted for many
years to solve this problem. As a result, it proved
to be impossible to test, in reactor experiments, the
Standard Model in the sector of first-generation lep-
tons, which is the clearest sector from the theoretical
point of view. The cross section for scattering due
to weak interaction was experimentally determined in
[11, 12] to a relative precision of 50%. Searches for
the neutrino magnetic moment involve still greater
difficulties.
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Table 3. Number of recoil electrons for a target exposure
of 1000 kg d that are associated with electron-antineutrino
scattering on free electrons due to weak (w) and magnetic
(m) (µν = 3× 10−11µB) interaction

Range of
recoil-electron
energies, keV

Bugey Krasnoyarsk

w m w m

1–4 11 122 6 67

4–16 43 120 24 66

16–60 140 100 77 55

60–250 360 90 200 50

250–1000 750 50 410 27

In this section, we will consider attempts at re-
ducing the limit on µν that are being undertaken
by the MUNU collaboration (Grenoble–Munster–
Neuchatel–Padova–Zurich) at the reactor in Bugey
[36] and by the Kurchatov Institute in a collaboration
with the Petersburg Nuclear Physics Institute at the
reactor in Krasnoyarsk [37]. Also, mention is briefly
made of new-type detectors developed at the Insti-
tute for Theoretical and Experimental Physics (ITEP,
Moscow) and at the Joint Institute for Nuclear Re-
search (JINR, Dubna). The expected event-counting
rates that are quoted in Table 3 give an idea of the
orders of magnitude of the quantities with which
one has to deal in experiments studying electron-
antineutrino scattering on electrons.

MUNU

TheMUNU collaboration has constructed a time-
projection chamber (TPC) of volume about 1 m3, the
chamber being filled with a CF4 gas. At a pressure
of 5 atm, the target mass is 18 kg. The chamber is
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Fig. 12. MUNU detector of ν̄ee scattering in Bugey.
PH
surrounded by a liquid scintillator (LS) playing the
role of an active and a passive shielding (see Fig. 12).
The gas circulates, passing through filters absorbing
oxygen. Since 1998, the detector has been arranged
at a distance of 18.6 m from the center of the Bugey
reactor. The structural materials of the reactor edifice
that are situated above the detector and which are
of thickness approximately equal to 20 mwe ensure
shielding from the hadronic component of cosmic
rays.

The experiment being discussed has measured the
energy and the angular distribution of electrons with
respect to the momentum of incident electron an-
tineutrinos. Within the reactor shutdown periods, it
was found that the distribution of background events
is nearly isotropic. However, the absolute value of the
background proved to be unacceptably large, and test
measurements were performed at a detection thresh-
old of 800 to 1000 keV. Investigations made it pos-
sible to establish the origin of the main background
sources. It turned out that the oxygen filter is a source
of radon and that the material of the chamber cathode
contains an admixture that emits beta particles with
an endpoint energy of about 1.2 MeV. The removal
of the filter and a replacement of the cathode reduced
considerably the background, whereupon the thresh-
old was lowered to 300 keV.

Krasnoyarsk

The detector is being arranged at a depth of
600 mwe in the new laboratory room, where the
flux of electron antineutrinos is about 40% less than
in the MUNU experiment. The target for electron
antineutrinos consists of 604 silicon crystal detectors
forming a compact assembly of four hexahedral
matrices, each containing 151 crystals. An individual
detector is made in the form of a cylinder of diameter
29 mm and height 100 mm. The total mass of silicon
is 80 kg. A HPGe detector of volume 116 cm3 is
positioned at the center of the assembly. The carrying
part of the matrices is manufactured from radiation-
pure fluoroplastic. The target is placed in a cooled
chamber with walls of oxygen-free copper. Signals
from individual crystals are transmitted through
stepwise channels to vacuum joints and, further, to
preamplifiers. The vacuum casing of the detector—
it is 64 cm in diameter and 62 cm in height and is
manufactured from titanium of thickness 4 mm—
protects the detector from the penetration of radon
(see Fig. 13). This casing is followed by a few layers
of a passive and an active shielding, the layer closest
to the chamber being made of lead.

It is planned that the detector will have been com-
missioned at the beginning of 2002. The electron-
detection threshold is presumed to be at a level of
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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50 keV. The sensitivity to be achieved in this exper-
iment will crucially depend on the level of the detector
background.

Large xenon chamber (ITEP)

A time-projection chamber filled with liquid xenon
whose total mass will be 750 kg is being presently
developed at ITEP [38]. A scintillation flash arising
in xenon upon antineutrino scattering on an electron
is fixed by photodetectors specifying the instant at
which ionization electrons begin to drift along the
electric field aligned with the chamber axis. After
that, the electrons are taken away into the gas phase,
where their energy and theirX and Y coordinates are
measured. In the total volume occupied by xenon, the
central part containing 150 kg of it will serve as a
target proper for antineutrinos, while the remaining
xenon, that which surrounds the target, will play the
role of a passive and an active shielding.

The threshold for scattering-event detection is
planned to be set at a level not exceeding 100 keV.
According to the estimate of the authors of the
project, a sensitivity in the range (3–5)× 10−11µB
will be achieved in the reactor-electron-antineutrino
flux of ν̄e 2× 1013/cm2 s.

At present, a detector prototype containing 150 kg
of xenon is being tested (A.G. Dolgolenko, private
communication).

Toward ultralow energies

As the threshold for recoil-electron detection is
decreased, events associated with scattering due to
magnetic interaction are concentrated in ever nar-
rower energy intervals (see Table 3). Not only does
this localization ofmagnetic-scattering events reduce
the background that is generated by events of scat-
tering due to weak interaction and which is correlated
with the reactor operation, but it also diminishes the
relative contribution to these intervals from the intrin-
sic detector background, which is the main obstacle
to advances toward the region of small magnetic mo-
ments.

Semiconductor ionization germanium detectors
make it possible to explore the region of ener-
gies much lower than those investigated in the
Bugey and Krasnoyarsk experiments. By using a
HPGe crystal of mass about 2 kg at the Gran
Sasso laboratory, which is situated at a depth of
3200 mwe, the Heidelberg–Moscow collaboration
demonstrated the possibility of achieving, in the range
11–30 keV, the background spectral density at a level
of 0.1/(keV kg d) [39]. To the best of my knowledge,
this is the best result in the region of low energies.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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The spectrometer GEMMA,which employs a ger-
manium crystal of mass 2 kg and a system of active
and passive shielding, has been created and is be-
ing tested at ITEP ([40] and A.S. Starostin, private
communication). It is expected that, at a detection
threshold of about 3 keV and a 20 mwe depth of
deployment, the spectrometer background will not
exceed 0.3/(keV kg d). A cryostat makes it possible to
increase the germaniummass up to 6 kg. It is planned
that the spectrometer will be installed at one of the
reactors of the atomic power plant in Kalinin. Ac-
cording to the estimate of the authors of the project,
the sensitivity to the value of µν there will be about
3× 10−11µB in a flux of 2× 1013ν̄e/s over two years
of data accumulation.

At present, low-background detectors are being
developed for measuring much lower energies (see
[41] and references therein). These are, first of all, a
silicon cryogenic detector that employs the effect of
ionization-to-heat transition, which was discovered
at JINR in the 1980s, and, then, a germanium de-
tector involving an internal amplification of ionization
signals (avalanche germanium detector, also known
as AGD). Employment of such detectors will further
expand the possibilities for seeking the neutrino mag-
netic moment. However, advances down the scale of
electron energies measured in reactor experiments are
hampered by the emergence of a new form of corre-
lated background, that which is associated with re-
coil nuclei from elastic neutrino–nucleus scattering.
Here, at the threshold of the absolutely unexplored
region, we conclude the section devoted to describing
2
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searches for the antineutrino magnetic moments in
reactor experiments.

CONCLUSION

Reactor experiments make it possible to explore
the masses of the neutrinos and their mixing in the
region of small mass parameters not presently acces-
sible to accelerator experiments. The CHOOZ exper-
iment established definitively that the νe → νx chan-
nel is not dominant in the oscillations of atmospheric
neutrinos. KamLAND may become the first experi-
ment that will employ terrestrial neutrino sources and
which will discover the phenomenon of oscillations,
determine the contributions of the masses m1 and
m2 to the electron neutrino, and find a solution to
the solar-neutrino problem. The Kr2Det experiment,
which is characterized by a high sensitivity to small
mixing angles, will probably be able to reveal the
contribution of the mass m3 to the electron neutrino
or to set a more stringent limit on its value. These
investigations rely on unprecedented improvements
in methods for detecting the inverse-beta-decay re-
action.

Searches for the neutrino magnetic moment that
are being performed at the reactors in Bugey and
Krasnoyarsk, an experiment that will employ a large
xenon chamber and which is being prepared at ITEP,
and a foreseen breakthrough into the region of low
and ultralow recoil-electron energies will presum-
ably permit going beyond the constraint µν ≤ 2×
10−10µB, which could not have been strengthened
for the three past years, and expanding the range of
searches toward a value of µν ∼ 10−11µB.

The metrological basis of these investigations has
become firmer. In particular, the features of the flux
and of the spectrum of reactor electron antineutrinos
are being refined, and a simple recipe has been found
that makes it possible to determine the cross sections
for the inelastic scattering of reactor electron antineu-
trinos on atomic electrons.
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Abstract—The field nowadays called “many-body quantum chaos” was started in 1939 with the article by
I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently,
both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear
physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up
from the factual material of nuclear physics; this enrichment still continues to take place. On the other
hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical
physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and
methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the
recent development is presented. c© 2002 MAIK “Nauka/Interperiodica”.
1. WHAT IS QUANTUM CHAOS?

According to conventional wisdom, quantum
chaos does not exist. One can speak only about quan-
tum signatures of classical chaos [1]. The latter is
well understood, at least with respect to one- or few-
body problems. The driving force of classical chaos
is the instability of phase-space trajectories against
small changes of initial conditions. This instability
leads to the exponential divergence of close trajec-
tories, dynamical unpredictability, and the need for
a statistical approach based on the ergodic covering
of an energy surface. In a quantum world, one cannot
define infinitesimally close trajectories in phase space.
Formally, in a closed quantum system, we deal with
the linear integrable dynamics of components of a
wave function, in fact the dynamics of phases. The
only possible question then is that of evidence of
classical chaos that still remains in an underlying
quantum system.

However, the opposite point of view is also possi-
ble. The transition to the classical limit, �→ 0, and
the long time evolution, t→∞, are noncommuta-
tive [2]. There exists a critical time t∗ beyond which
quantum spreading overshadows the classical diver-
gence of trajectories. Following this logic, one can say
that classical chaos is only a transient phenomenon,
although typical times t∗ in many cases can be ex-
tremely large. Below, I would prefer an unorthodox
viewpoint and discuss phenomena that can be at-
tributed to quantum chaos with no explicit referral to
a classical limit.

∗This article was submitted by the author in English.
1063-7788/02/6507-1188$22.00 c©
2. ONE- AND MANY-BODY
QUANTUM CHAOS

In a self-sustaining many-body quantum system,
such as a complex nucleus, one is usually far from the
classical domain. Important concepts as interference
of states, mixing, tunneling, isospin, parity, and so
on have no classical analogs. Only at the mean-
field level [3] can one hope to use periodic orbits or
Lyapunov exponents and find a similarity to well-
studied problems of billiards (or microwave cavities)
and Rydberg atoms [4]. This area can be naturally
termed one-body chaos.

For a many-body system, our main interest will
be located in the regions of relatively high excitation
energies, where, even in the mean-field approxima-
tion, the combinatorics of noninteracting particles
form a very high level density. Then, the residual
interactions prove to be effectively strong. Switching
on the interaction from zero to the actual strength λ
(in a finite system, this can be done continuously),
we get the many-body energy terms Eα(λ). Let us
consider a class of eigenstates |α〉 with fixed values
of exact constants of the motion, such as the total
angular momentum J and its projectionM in a finite
system. Depending on the approximation used for
the Hamiltonian H(λ), isospin and parity can also
be preserved. The flow of energy levels as a func-
tion of λ looks “turbulent” because of multiple level
crossings [5, 6]. Within a given symmetry class, all
crossings are avoided. Near the crossing point, the
levels repel each other, and the wave functions of
colliding states are fully mixed. After a few collisions,
the original configurations of independent particles
2002 MAIK “Nauka/Interperiodica”
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lose their identity, and the eigenstates acquire a very
complicated nature [7, 8, 5].

The emerging picture can be considered at differ-
ent scales. With a poor resolution, one has to operate
with statistical notions (level density, temperature,
average single-particle occupancies, strength func-
tions, and spreading widths). This is a traditional
picture of a compound nucleus. However, in meso-
scopic systems (complex atoms, molecules, atomic
clusters, solid-state microdevices), a complementary
view is possible. Such systems are sufficiently com-
plex to make a statistical description meaningful. At
the same time, one can still analyze, theoretically and
experimentally, individual quantum states. Neutron
resonances in complex nuclei reveal a situation where
a single nearly stationary compound wave function
can be studied experimentally [9, 10]. It is not acci-
dental that the fundamental relation between spectral
characteristics of a quantum systems and the ideas
of chaos was first demonstrated just with the help
of data on neutron resonances [11]. And one of the
brightest manifestations of quantum chaos—a strik-
ing enhancement of weak interactions—was found in
the same area (see below).

Looking through a magnifying glass, one can
study local fluctuations and correlations of individual
energy levels and wave functions in a nucleus in the
same way as for a single particle in a quantum billiard,
although the driving force for stochastization is the
interparticle interaction rather than the shape of the
billiard or symmetry (more precisely, its absence)
of the mean field. A picture combining different
viewpoints arises gradually from what can be loosely
called many-body quantum chaos.

As a working definition of complete quantum
chaos, one can choose random-matrix theory (RMT)
[9, 12, 13], in particular, a Gaussian orthogonal
ensemble (GOE) or ensembles of banded random
matrices [14]. The GOE extracts the most general
local properties of chaotic spectra and wave func-
tions that depend only on the symmetry class of the
Hamiltonian. Physically, this means the averaging
over all Hamiltonians of a given class, the next
step of generalization after averaging over many
close microscopic states that is performed in the
statistical Gibbs ensembles. Typical GOE matrices
have uncorrelated independent normally distributed
matrix elements that allow coupling between any two
configurations and look qualitatively the same in any
orthogonal basis. Banded randommatrices, which are
more appropriate for two-body interactions, assume
a physically motivated ordering of basis states and
contain, in such a basis, coupling between closely
located states.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
Such definitions are independent of the existence
of the classical limit. If it can be reached, it be-
comes possible, reversing the standard wording, to
look for manifestations of underlying quantum chaos
in the semiclassical region of parameters. Complex
nuclei and atoms provide a perfect example of many-
body quantum chaos [15, 16, 5, 8, 17]. Below, I give
examples, mostly dictated by personal interest, of
cross-fertilizing between nuclear physics and quan-
tum chaos; the references are incomplete being cho-
sen almost “at random.”

3. MANY-BODY HAMILTONIAN

An actual system is described by a single de-
terministic Hamiltonian. In practice, we are usually
limited by a mean field and two-body residual in-
teractions. Typically, the Hamiltonian matrix has a
quasibanded structure in the natural mean-field ba-
sis, and the nonzero off-diagonal elements are dis-
tributed [8, 5] like ∝ |H|q exp(−const · |H|) with a
parameter q on the order of unity rather than accord-
ing to the Gaussian law required by the GOE limit.
This generic distribution, valid also in the interacting-
boson model of nuclear collective motion, has not yet
been understood, although one can make plausible
conjectures [5]. Another major difference compared
to the GOE matrix comes from the limitations set by
the two-body character of the interaction. The matrix
is sparse since many configurations are not coupled
by a single-step process, and the same many-body
matrix elements are in fact repeated many times in
the matrix because a given two-body collision may
happen for several different states of the spectator part
of the system.
In spite of the non-Gaussian, basis-dependent,

sparse, and strongly correlated matrix, the properties
of local correlations and fluctuations of eigenvalues
and eigenfunctions prove to be rather close to those
of the GOE. The spectral statistics are insensitive to
the exact distribution of the matrix elements. Many
results for fixed realistic Hamiltonians agree with the
GOE predictions; owing to this, it is indeed possible
to take the GOE limit as a physical definition of quan-
tum chaos. To take into account correlations between
the many-body matrix elements due to the two-body
character of the forces [18], one can introduce random
ensembles different from the GOE [12, 18–20].

4. SPECTRAL STATISTICS

For a long time, the studies of chaotic quantum
systems were limited to the local level statistics. The
first analysis of the nearest level spacing distribu-
tion P (s) was performed by I.I. Gurevich more than
60 years ago [21] by using the spectroscopic data on
2
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heavy nuclei available at that time. Random-matrix
theory was developed [22, 23] mainly with the in-
put from nuclear and atomic spectroscopy [24, 25].
The generic nature of the GOE spectra was conjec-
tured [26] on the basis of data on neutron resonances.

Although the theoretical question of the onset of
chaos is still debatable [27], it is clear that, similar to
gas equilibration by collisions, multiple level cross-
ings rapidly mix the wave functions as soon as the
coupling between many-body states becomes com-
parable to their spacing. This process is nonuniform
since the density of states increases exponentially
with excitation energy due to the combinatorics of
energy sharing between simple configurations [9, 28].

The properties of spectral statistics that are typi-
cally used include the nearest level spacing distribu-
tion P (s) and the spectral rigidity ∆(L) (or the vari-
ance of the level number over some spectral interval).
In a regular (integrable) system, we expect the Pois-
son nearest level spacing distribution, P (s) = e−s,
where the spacings s are normalized to the average
local spacings. This distribution, similar to that of un-
correlated radioactive decays in time, was for the first
time used for nuclear spectra in the above-mentioned
paper by Gurevich [21]. Later Gurevich and Pevzner
showed [29] that, superimposing few-level sequences
for different sets of exact quantum numbers, which
are not mixed by the Hamiltonian, one rapidly comes
to the Poisson distribution. The Wigner distribution
P (s) = (π/2)s exp[−(π/4)s2] corresponds to a sin-
gle family of states (identical exact quantum num-
bers) that repel each other at short distances because
of mixing and, as a result, display a more or less
ordered ladder, a kind of an aperiodic crystal. The
spectral rigidity ∆(L) measures average deviations
from this periodicity for the spectral fragments includ-
ingL adjacent levels. These fluctuations grow linearly
with L for regular systems, but the level repulsion in
the chaotic case reduces them to a weak logarithmic
growth.

Because of the fast stochastization of pure mean-
field configurations of independent particles by the
residual interaction, P (s), ∆(L), and more detailed
characteristics such as the level-curvature distribu-
tion [6] converge to the GOE predictions even at an
interaction strength λ of about 0.2–0.3 of the realistic
value for nuclei [5]. Although the pairing, being the
most coherent part of the nuclear residual interaction,
by itself would lead [30] only to a moderate degree
of chaoticity in highly excited states, it changes sig-
nificantly the level density. As a result, the observed
chaotization of nuclear spectra [31, 32] is alleviated
by the compression of two-quasiparticle states above
the threshold of Cooper pair breaking.
P

In spite of the fact that the study of the spec-
tral statistics in realistic and model systems was the
favorite subject of many authors, there are still un-
resolved questions. Below, I list few examples. (i)
We do not know for sure what the actual path of
the Poisson-to-Wigner transition is as a function of
parameters [2, 5]. Several possible scenarios were
suggested, and the answer may be not universal. It
is hard to check numerically, with a good precision,
the small-s region, since, even in large-scale shell-
model calculations, level statistics at small s are not
sufficient. (ii) Another, even harder, problem is related
to the exact knowledge of the behavior of the realis-
tic P (s) at very small spacings. A quadratic rather
than linear behavior would be an indication of the
presence of terms in the Hamiltonian [24] that are
not invariant under time (T ) inversion (in this case,
it is impossible to select a pure real basis, and the
presence of complex mixing matrix elements makes
the level degeneracy much less probable, leading to
the quadratic repulsion at short distances). It is quite
remarkable that one can look for the most funda-
mental symmetries in nature by studying seemingly
irrelevant average features of spectra. Of course, this
is possible just because, here, one can get rid of all
accidental properties of the system, leaving only basic
symmetries. However, because of definite smallness
(or absence) of T violation in strong nuclear forces, a
practical search is difficult, requiring very rich statis-
tics [33]. (iii) In spite of the historic role of neutron
resonances in heavy nuclei for defining the paradigm
of RMT, the quality of available open data is not
satisfactory. For instance, there is still a controver-
sial situation with respect to K mixing [34]: we do
not know whether this geometric property, the axial
symmetry of the mean field, is destroyed at energies
around the neutron threshold.

5. CHAOTIC WAVE FUNCTIONS

The structure of the stationary states continues
to evolve as a function of the interaction strength λ
long after spectral statistics have reached the RMT
limit. For completely chaotic dynamics in a Hilbert
space of dimension N , one expects that generic wave
functions can be represented by unit vectors randomly
covering the surface of an N-dimensional sphere.
The complexity of the wave function can be quan-

tified by the moments of the amplitudes Cα
k of indi-

vidual eigenstates |α〉 =
∑

k Cα
k |k〉 in a suitable “un-

perturbed” basis |k〉 or by information (Shannon)
entropy [2, 35, 5], calculated in terms of the weights
wα

k = |Cα
k |2 according to Iα = −

∑
k wα

k lnwα
k . In-

formation entropy measures the numberNα of signif-
icant simple components |k〉 of the eigenstate |α〉 and
therefore characterizes delocalization with respect to
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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the basis |k〉, so that lα = exp(Iα) shows the delo-
calization length. A fully delocalized function would
have l→ N , the space dimension. Because of the
orthogonality constraints, the average value for the
GOE limit, when the amplitudes Cα

k are distributed
normally, is l̄α = 0.48N .
As can be seen from shell-model calculations [5],

lα of the eigenstates regularly increases with level
density toward the GOE limit (but it does not reach
this limit for a realistic self-consistent interaction
strength). Both lowest and highest (in energy) states
have reduced complexity. This can be understood
with the aid of perturbation theory by starting with
a noninteracting system and by switching on the in-
teraction. Even in the second order, the ground state
acquires a coherent mixing pushing its energy down.
The reduced local level density hinders further mixing,
which leaves information entropy at a relatively low
value, although even the ground state in shell-model
calculations, and from the electron scattering data,
is noticeably different from the simple Fermi occu-
pation. The fourth moment of amplitudes,

∑
k |Cα

k |4,
the so-called inverse participation ratio, can be used
for a complementary analysis. It is more sensitive
to large components of the wave function, whereas
information entropy emphasizes the presence of small
components.
Empirically, the distribution functions of the am-

plitudes can be probed by transition probabilities.
Thus, the neutronic decay of a neutron resonance
singles out the component of the complex wave func-
tion for the simple configuration ground state of the
target nucleus + slow neutron in the continuum.
The distribution of neutron widths is indeed close
to the Porter–Thomas (PT) distribution [24, 9]; this
immediately follows from the Gaussian distribution
of the amplitudes Cα

k . At lower excitation energies,
the deviations from the PT distribution are still con-
siderable [36]. A shell-model analysis [5] shows the
presence of correlations in the wave functions, while
the spectral statistics agree well with RMT. An in-
teresting example, with possible astrophysical impli-
cations, is given [37] by Gamow–Teller strengths,
which display a regular trend to growth with excita-
tion energy that cannot be explained for purely chaotic
wave functions, but which reflects the gross features
of nuclear interactions. Assuming the PT distribution
of the multipole strength and Wigner distribution of
spacings for states invisible in an experiment with an
insufficient resolution, one can perform a statistical
analysis and recover the missing strength [38].
With the length lα, or the corresponding number

Nα of principal components, taken as a measure for
the degree of complexity, a method for estimating the
matrix elements of simple, say, one-body, operators in
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
the region of chaotic dynamics was developed [10, 39].
Since typical components of a generic wave function
in the chaotic region of complexity N have a mag-
nitude |C| 
 1/

√
N , it is easy to show that matrix

elements between a simple state and a chaotic state
of complexity N , as well as matrix elements between
two complex states with approximately the same de-
gree of complexity, are scaled as N−1/2. This gives a
useful way to classify various processes. Specifically,
one can see that a perturbation that mixes chaotic
states at a high level density ρ = 1/D is statistically
enhanced by a factor N1/2 in relation to the mixing
by the same perturbation of simple states at a typical
spacing of about ND. The statistical enhancement
works as an amplifier of weak interactions, caus-
ing large effects of parity nonconservation in po-
larized neutron scattering [40] and neutron-induced
fission [41]. In the last case, the independence of
the parity-violating fragment asymmetry of the final
observables [42], such as the mass distribution or
kinetic energy distribution, confirms that the mixing
occurred at the stage of a “hot” compound nucleus.

The information entropy is representation-depen-
dent. In fact, it characterizes the degree of mixing
of basis states and therefore reflects the interrelation
between the eigenbasis and the reference basis. There
are attempts at finding invariant measures for the de-
gree of complexity. A useful tool is given by the corre-
lational (von Neumann) entropy defined [43] through
the response of the system to external noise. If a ran-
dom parameter η with a certain distribution function
is introduced in the Hamiltonian,H → H(η), one can
consider a given energy term Eα(η) and construct
the density matrix for this level |α〉 by averaging the
wave-function components over η, ρα

kk′ = Cα
k Cα∗

k′ .
Here, the phases of the components and, therefore,
correlations are taken into account. The invariant
von Neumann entropy is defined in a standard way
as Sα = −tr{ρα ln(ρα)}. One can start with a pure
function, when the density matrix is the projection
operator and has one eigenvalue equal to unity, while
all other eigenvalues are zeros; the entropy S of a
pure state vanishes. Addressing random noise, one
finds that each order of perturbation theory brings in
one new nonzero eigenvalue, increasing the value of
entropy [43]. Thus, we measure, in a sense, the num-
ber of mixed exciton classes instead of the number of
components. But the global behavior of Sα along the
spectrum is similar to that of the information entropy
Iα if the noise is reasonably weak in order to not
destroy the system. The correlational entropy is very
sensitive to the regions of parameter space where the
mean field undergoes strong changes, an analog of
macroscopic phase transitions [44].
2
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6. STRENGTH FUNCTIONS

A high information entropy does not prove the
chaotic character of wave functions. The function can
be coherent, as in the case of collective excitations.
However, the statistical weight of collective states is
low. They are seen as an excess of an amplitude for
a specific simple excitation mode in a given energy
region. The concentration of the collective strength
in some energy range resembles the phenomenon of
scars [45] studied in one-body chaos. The eigenstates
|α〉 are “scarred” by a simple mode |k〉 of the same
symmetry. A convenient tool for such studies is a
strength function of a simple mode |k〉, Fk(E) =∑

α wα
k δ(E − Eα). The strength function (local den-

sity of states in condensed matter physics) can be
defined in the same way for any simple state |k〉
regardless of its collectivity. This important concept
connects experimental data, which do not resolve
dense individual states, with the ideas of quantum
chaos.
The fragmentation patterns of individual states are

very different, but averaging over a few neighboring
states reveals [8, 5, 46] a generic shape of the strength
function in the region of chaotic dynamics. Corre-
sponding theory, going back to Wigner [47], can be
formulated in a language close to that of quantum
chaos [48, 49]. Two physically different limits are dis-
tinguished by the ratio of the spreading width Γ to the
energy interval ∆ of coupling of the original simple
state to the chaotic background. The interval ∆ is on
the order of the energy range of doorway states that
serve as an entrance step for the process of stochas-
tization (the bandwidth in the banded random-matrix
model).
As far as Γ/∆� 1, the standard model of the

strength function [9] leads to the Breit–Wigner
(BW) shape and the golden rule Γ = 2π〈V 2〉/D in
terms of the average coupling intensity 〈V 2〉 and the
background level spacing D. This expression alone
shows [50, 46] the stability of Γ with respect to the
process of stochastization: it is invariant under N
scaling. Therefore, the spreading width is expected to
be saturated as a function of excitation energy. This
is clearly seen for isobaric analog resonances [51].
The situation is more complicated for dipole giant
resonances (in fact, families of states built on different
fluctuating shapes of the mean field [52]). If Γ/∆ ≥ 1
(“strong coupling”), the standard model does not
work; the shape is different from BW; and the spread-
ing width is close [46] to 2σ, where σ is the energy
dispersion of the original state. Therefore, Γ can be
evaluated in both limits without a full diagonalization
of the Hamiltonian. The standard quadratic depen-
dence on the interaction strength λ converts into the
linear one at strong coupling, and the behavior Γ(λ)
P

can be parametrized [46] as Γ(λ) = aλ2/(1 + bλ)
with the parameters a and b predicted from the level
density and the average energy dispersion.

7. MULTIPLE GIANT RESONANCES

A bright example of application is given by mul-
tiple giant resonances (GR) observed in nuclei. Al-
though nuclear GRs are analogs of zero sound in a
Fermi liquid, there is a crucial physical difference. In
a macroscopic liquid, the energy �ω of a single sound
quantum is always small in relation to temperature T ,
and the wave is a classical packet of many quanta. In
the case of GRs, the situation is opposite, �ω/T � 1,
and a new interesting question arises: What is the
width Γn of the pure n-quantum state? Simple argu-
ments based on the standard model of strength func-
tions predict Γn/Γ1 = n, whereas experiments show
a narrower width of Γ2/Γ1 ≈ 1.5. This narrowing is
related to the deviations from the standard model and
BW shape [53, 54], which are amplified in the convo-
lution of the strength function for multiple sequential
excitations. The resulting strength functions is simi-
lar to the central limit theorem, close to the Gaussian,
in which case widths are added in quadrature. This is
in fact the same as the transition from a quadratic to a
linear dependence of Γ(λ); as a result, Γn/Γ1 →

√
n.

8. EXPONENTIAL CONVERGENCE

The topic of the localization of eigenstates in
Hilbert space recently attracted great attention [55,
56, 20], but the conclusions drawn are contradictory.
Shell-model studies [46] show that the remote wings
of the strength function of a generic state in the
region of high level density decrease exponentially
with the distance from the energy centroid, similarly
to the tails of the wave functions of spatially localized
states in disordered solids. There are also theoretical
arguments that relate the exponential wings to the
deviations from the exponential time-decay law at
short times after the creation of a nonstationary
simple state.
Considering the practical problem of diagonalizing

a large Hamiltonian matrix with chaotic eigenstates,
one can translate [57] the presence of an exponen-
tial tail of the strength function into exponentially
small contributions of remote basis states to a time-
independent wave function. The range of strong con-
tributions is given by the above-mentioned estimate
Γ ≈ 2σ. Therefore, large shell-model matrices can be
truncated [58], including, in the primary diagonaliza-
tion, configurations with centroids closer than, say,
3σ. Such a truncation already gives, as a rule, a good
estimate for the eigenvalue and a high overlap with
the exact eigenvector. After few steps of extending the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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matrix size by including the next configurations, the
rest of the matrix can be taken effectively into account
by an exponential extrapolation [57]. This procedure
was successfully tested and compared with an ex-
act diagonalization. The exponential convergence is
a useful practical tool; it works especially well for
collective states. Recently, it was used to calculate
masses of astrophysically interesting nuclei in the fp
shell [59].

9. CHAOS AND THERMAL EQUILIBRIUM

The degree of complexity of chaotic wave func-
tions, measured, for example, by the information en-
tropy, proves to be a smoothmonotonically increasing
(in practical shell-model calculations—to the middle
of the spectrum) function of the excitation energy.
Here, one can bridge the gap between the “static”
GOE limit (no spectral evolution, all eigenfunctions
equally complex), suitable only for describing local
fluctuative properties, and the realistic physics of
many-body systems; again, the nucleus provides an
appropriate testing ground. The information entropy
Iα, or the localization length lα, define the “comov-
ing” GOE frame. Owing to smooth changes along
the spectrum, such measures of complexity acquire
the properties of thermodynamic variables, and one
can introduce the related temperature scale [60, 5].
However, as discussed earlier, these measures of

the degree of complexity of individual wave functions
depend on the basis. In usual statistical mechanics,
the canonical ensemble is determined with the aid of
the density matrix Dkl = C∗

kCl with averaging over
the states of the environment (heat bath). The ther-
mal entropy Sth = −tr (D lnD) is basis-invariant. A
closed finite system, such as a nucleus, is described
by particle variables, where the role of a heat bath is
played [60, 5] by residual interactions (for a nucleus,
one can imagine averaging over meson or subnucleon
degrees of freedom). In the basis that separates, in
an optimal way, regular (mean-field) and incoherent
(collision) aspects, the information entropy properly
reflects the chaotic features of dynamics. The mean-
field basis is therefore singled out, as can be seen
from the alternative derivation of themean-field equa-
tions [61] with the aid of the explicit assumption of
the chaotic properties of intermediate states in exact
operator equations of motion. The density matrix D,
averaged over a few individual eigenstates |α〉, be-
comes diagonal in the mean-field basis without any
external decoherence. Thus, in such a self-consistent
basis, the information entropy is equivalent to the
basis-independent thermal entropy [60].
These conclusions can be valid only if the macro-

scopic properties of neighboring eigenfunctions are
similar. Only in that case will the coarse-grained
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observables not depend, after a short phase deco-
herence time, on the exact population of individual
eigenstates within a small energy interval, whereas
this independence is necessary to make a micro-
canonical description meaningful. The similarity of
adjacent functions [62] is achieved by chaotic mixing.
We arrive at a modified paradigm of the statistical
mechanics of closed systems where quantum chaos
plays a decisive role, uniformly mixing wave functions
of approximately the same energy.

10. FERMI LIQUID DESCRIPTION

Average single-particle occupation numbers for
mean-field orbitals determine the response of the
system to external fields. Analyses of nuclear and
atomic eigenfunctions in the chaotic domain invari-
ably show that the occupancies found for individual
states are smooth functions along the spectrum
that are uniquely related to the degree of com-
plexity. Even for a relatively small particle num-
ber, they tend to approach the Fermi–Dirac dis-
tribution [5, 49]. One can develop arguments [27]
showing the mechanism of this evolution in terms
of the strength functions of simple configurations.
This extends Fermi liquid theory beyond the re-
gion of its conventional validity to excitation en-
ergies where the lifetime of quasiparticles is short.
Again, chaotic mixing averages out accidental fea-
tures of eigenfunctions, revealing regular trends of
occupancies. It now becomes possible to use an-
other thermodynamic scale, namely, that which is
defined by the single-particle entropy of a Fermi
gas [60, 5]. For a self-consistent choice of mean-
field orbitals, this scale is virtually equivalent [5]
to those mentioned above, microcanonical thermal
or based on the information entropy. A significant
difference may arise at a very low excitation en-
ergy, where even the ground state should be char-
acterized by a nonzero single-particle tempera-
ture [61].

11. GEOMETRIC CHAOTICITY

Finite many-body systems allow one to study an
aspect of quantum chaos that was almost ignored
previously. Apart from energy, the total angular mo-
mentum J of a finite system is conserved. Chaotic
mixing respects rotational invariance and occurs sep-
arately in each block of states with a given value of
J . However, the fact that dynamics is governed by
the same two-body Hamiltonian inevitably induces
correlations between blocks. The signatures of these
correlations can be sought experimentally—for ex-
ample, as the similarity of mixing for close values of
J and, consequently, as a chance of the existence
2
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of compound rotational bands [63], in which case a
significant transition strength of a compound state
is directed to its single counterpart at a lower J
value, instead of being chaotically fragmented be-
tween different final states. A similar effect may occur
in consecutive pair transfers between the correspond-
ing states of neighboring nuclei (pairing rotation).
Within each shell-model partition of a suffi-

ciently high dimension, the orthogonality of dif-
ferent states with the same J based on the same
mean-field configuration requires fairly complicated
schemes of vector coupling of individual particle
spins to the total spin J. This implies a certain
degree of geometric chaoticity, which develops even
in a noninteracting system and leads to a specific
J dependence of the level density and to a very
complex structure of correct linear combinations
of m-scheme Slater determinants. For this rea-
son, almost all JT-projected states within a shell-
model partition have close values of the energy
variance σ, which was instrumental for the use of
exponential convergence. The random spin coupling
proceeds similarly to a random walk and can be
considered in a statistical manner [28]. In dynam-
ical problems, such as anharmonic couplings of
soft vibrational modes, dissipative effects, or large-
amplitude collective motions in general, the con-
servation of angular momentum is also associated
with geometric chaoticity of the response of inco-
herent excitations to such collective motions. It is
possible to base new nonperturbative approximate
methods on geometric chaoticity by using diagram-
matic techniques [64] analogous to those devel-
oped for disordered solids [65] or random matrices
[12, 13].

12. ORDER FROM RANDOM INTERACTIONS
The recent development revealed new and rather

unexpected features of random interactions. It was
discovered [19, 66] that some habitual features of
nuclear spectra, such as the predominance of the
ground-state spin J0 = 0 in even–even nuclei, which
is usually attributed to the strong attractive pairing
correlations of nucleons, are preserved up to some
extent for two-body interactions taken at random
(but still rotationally invariant). In fact, conclusions
of this type are quite insensitive to a specific choice
of random ensemble for the interaction. If matrix ele-
ments of the interaction independently take positive
and negative signs in each two-body channel, the
probability f0 for the ground state of a system with
an even particle number to have the total spin J0 = 0
is much higher than the statistical fraction of J = 0
states in the whole Hilbert space; typically, f0 reaches
a value around 60–70%. This phenomenon was re-
cently discussed by many authors, but the proposed
P

explanations either failed or just reformulated this
finding in different terms without shedding light on
the underlying physical mechanism.

As was shown in [67, 68], the predominance of
J0 = 0 in the ground state for a random rotationally
invariant shell-model Hamiltonian is determined, at
least partly, by the geometry of a finite Fermi sys-
tem and is therefore very stable with respect to the
variations of the Hamiltonian or random ensemble (or
both). The deep reason is related to the spontaneous
violation of time-reversal invariance by a ground state
with J0 �= 0. An explicit breaking of T symmetry by
an imaginary random interaction [69] does not help
since the effects expressed in terms of odd powers
of the imaginary part anyway are averaged out in a
random ensemble. However, spontaneous breaking
occurs owing to the degeneracy of the ground state
in the magnetic quantum numberM = Jz . The sym-
metry is restored by the rotation of the orientation as
a Goldstone mode.
We consider an aligned state M = J , limiting

ourselves, for the sake of simplicity, to the case of a
single-j level. Applying statistical arguments, we find
the single-particle occupation numbers nm for the
most probablemany-body state under the constraints
on the total particle number N =

∑
m nm and the

spin projection M =
∑

m mnm. This leads to the
Fermi–Dirac distribution with the corresponding
Lagrange multipliers of the chemical potential and
“magnetic field,” or rather cranking frequency around
the symmetry axis. The expectation value of the ran-
dom Hamiltonian for such a distribution of particles
gives, on average, an yrast line with a random sign
of the effective moment of inertia. We conclude that,
in this approximation, the ground state is expected to
have either zero spin, J0 = 0, or the maximum possi-
ble spin, J = Jmax, with the probability of 50% each.
In fact, additional dynamical and kinematical effects
(bosonic properties of fermionic pairs, correlations
between the occupation numbers nm, the uniqueness
of the maximum spin state, and so on) increase f0

and reduce fJmax in relation to the zero-order result
of 50%, although the probability of J = Jmax remains
enhanced as a rule.
The analysis of ground-state wave functions [67,

59] shows that, in contrast to the earlier statements
of [19, 66], these states do not carry significant collec-
tivity and agree with the random distribution of com-
ponents in the basis of noninteracting shell-model
states. In the same basis, the information entropy of
the eigenstates generated by a random interaction is
at the GOE level, except for very few edge states.
Small effective pairing effects emerge for the ground
state because of off-diagonal mixing matrix elements,
which are not averaged out in the second order. This
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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leads to the overwhelming fraction of the ground-
state spin J0 = 0 in a system of randomly interacting
fermions on many spin-1/2 levels where off-diagonal
processes prevail.

13. CONTINUUM EFFECTS

We discussed the chaotic dynamics of complicated
many-body states as if they were genuinely stable. In
reality, all excited states are quasistationary and have
a finite lifetime. Nuclear excited states emit gamma
rays, nucleons, or heavier fragments. We can say that
the system is open, and these states are coupled to
a continuum and can be seen as resonances in some
reactions. Does this fact change their chaotic prop-
erties? Until now, continuum effects [70] have not
been studied with the same degree of detalization as
chaotic properties of an idealized discrete spectrum.
However, they require particular attention, especially
as nuclear physicsmoves from the valley of stability to
short-lived and loosely bound nuclei, where coupling
to a continuum may be important even at rather low
excitation energies.
At a low level density, thewidths of quasistationary

states are small and the levels do not overlap. Here,
the characteristic width-to-spacing ratio κ = Γ/D is
small, and the spectrum looks like a comb of well-
isolated narrow resonances. However, even in this
case, the nearest level spacing distribution is modi-
fied [71, 72] at tiny spacings s < Γ, where the levels
cease to repel each other, and P (s)→ const �= 0. In
other words, with an extremely high resolution, one
can notice the energy uncertainty due to a finite life-
time. Assuming the GOE-type chaotic internal dy-
namics and uncorrelated decay amplitudes of intrinsic
states, one can predict [73, 71] the distribution of the
complex energies E = E − (i/2)Γ and the poles of the
scattering matrix in the complex plane. Up to now,
these predictions have been tested only in numerical
simulations because of the lack of empirical data of a
good quality.
As the overlap of resonances increases, high-order

effects of continuum coupling become strong and
lead to the effective interaction of intrinsic states
through common decay channels. This interaction
is energy-dependent and non-Hermitian. The anti-
Hermitian part comes from the singularities of the
effective propagator corresponding to the decay chan-
nels that are open at a given energy. The general
form of this part is dictated by unitarity [74, 71] and
can be represented in the factorized form Wαα′ =∑

c A
c
αA

c∗
α′ in terms of the energy-dependent ampli-

tudes Ac
α for decay from intrinsic states |α〉 to the

open channels c. At a certain value of the over-
lap parameter κ, a phase transition occurs with a
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
sharp redistribution of the widths [71]. The num-
ber of states that is equal to the number of open
channels accumulates a large fraction of the total
summed width of all interacting states, making the
remaining states short-lived. This can be interpreted
as the “self-organization” [75] of intrinsic dynam-
ics by a strong coupling through a continuum. For-
mally, we deal with the analog of superradiance in
optics [76], where a specific state in a system of
atoms coupled through the common radiation field
acquires a radiation width much larger than that
of an individual atom. From the “outside” point of
view in a nuclear reaction experiment, one will see
very narrow compound states on the smooth back-
ground of fast direct processes. Narrow resonances
of this type are experimentally known, for example,
in ∆–nucleus systems [77, 78]. Very rich physics
of collective motion in an open system with chaotic
intrinsic interactions [70, 79–81] still waits to be
studied. Open quantum dots should reveal similar
effects.
Many-body chaos in finite strongly interacting

quantum systems; the new approach to the thermo-
dynamics and statistical mechanics of small objects;
the interplay of collectivity, random interactions, and
geometry; the decay of chaotic systems; and other
exciting topics form a fresh and intriguing field for
future studies and applications, from details of nuclear
spectra to the stability of quantum computers.
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Abstract—We derive an exact semiclassical expression for the second inertial parameter B for superfluid
and normal phases. Interpolation between these limiting values shows that the function B(I) changes
sign at the spin Ic that is critical for the rotational spectrum. The quantity B proves to be a sensitive
measure of the change in static pairing correlations. The superfluid-to-normal transition reveals itself
in a specific variation of the ratio B/A versus the spin I with a plateau characteristic of the normal
phase. We find this dependence to be universal for normal deformed and superdeformed bands. A long
plateau with a small value of B/A ∼ A−8/3 explains the extreme regularity of superdeformed bands.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, phase transitions inmesoscopic systems
have been the subject of intense discussions in nu-
clear and solid-state physics. Isai Isidorovich Gure-
vich was the first to employ (in 1939) the concept of
a temperature phase transition in nuclear studies [1].
His prediction was based on the observation that the
level density of resonance states formed by thermal-
neutron capture is an unsteady function of the atomic
mass number with a maximum in rare-earth nuclei.

The problem of a rotation-induced transition from
a superfluid to a normal phase in nuclei has been
a foremost theme in high-spin spectroscopy since
Mottelson and Valatin [2] predicted a pairing collapse
in rapidly rotating nuclei. This effect can be under-
stood by analogy with a superconductor in amagnetic
field. In a deformed nucleus, a Cooper pair is formed
by two nucleons with opposite projections of single-
particle angular momenta. Being time-noninvariant
(as a magnetic field), the Coriolis force in a rotating
nucleus acts on both nucleons in opposite directions
and tries to decrease the spatial overlap of these
time-reversal states. The Coriolis force increases in
proportion to the spin of a band. Therefore, at some
critical spin, one may expect that all pairs are broken
and pairing correlations disappear completely. This
phenomenon can be observed by the crossing of the
ground-state superfluid band with the band based on
the normal state. Thus, the rigid-body moment of in-
ertia corresponding to the second band appears to be
an obvious signature of the pairing phase transition.

∗This article was submitted by the author in English.
1063-7788/02/6507-1198$22.00 c©
However, this regime of the transition to the nor-
mal phase is not realized in nuclei because they are
finite systems with a shell structure and a small num-
ber of nucleons involved in pairing correlations. The
Coriolis force in a rotating nucleus is proportional to
the single-particle angular momentum j of a nucleon.
Thus, the Coriolis antipairing effect is the strongest
for nucleons occupying the states of subshells with
the largest j. In the vicinity of the Fermi surface,
these so-called intruder orbitals arise from the j =
N + 1/2 subshell, where N is the principal quan-
tum number of the above shell. Therefore, they are
distinguished from other states of the partially filled
shell by parity. At normal deformations (ND), in-
truder states retain their quantum number j, while,
at superdeformations (SD), the j-subshell notation
becomes less appropriate because of mixing. Initially,
the Coriolis force breaks only that Cooper pair which
belongs to intruder orbitals, whereas the rest of the
pairs remain correlated. The band built on such a
two-quasiparticle excitation (the rotationally aligned
band) is characterized, due to the blocking effect,
by appreciably smaller pairing correlations than the
ground-state band. Having the largest moment of
inertia, the former crosses the ground-state band and
becomes the yrast band. The relevant phenomenon
is known as backbending. The subsequent breaking
of correlated pairs and their alignment make the in-
ternal structure of the yrast band nonhomogeneous
and the transition to the normal phase configuration-
dependent.

The standard definition of the phase transition
is based on the mean-field approximation, in which
2002 MAIK “Nauka/Interperiodica”
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different phases are distinguished by an order pa-
rameter, i.e., the static pairing gap ∆. However, the
mean-field approach to nuclear pairing correlations
faces a fundamental problem of quantum fluctuations,
which become quite strong for finite systems. The
fluctuating part δ∆ (dynamical pairing correlations)
of the order parameter is commensurate with ∆ in
the transition region. Fluctuations smear out a sharp
phase transition and make it a difficult issue to find an
experimental signature of the superfluid-to-normal
phase transition in rotational bands. For example, the
dependence of the kinematical [I(1)] or the dynamical
[I(2)] moment of inertia on the spin I is not a definitive
indicator of a phase transition. Usually, experimental
evidence of the pairing phase transitions has been
discussed in terms of the relative excitation spectrum.
As was shown in [3], the disappearance of static
pairing leads to a change in the excitation spectrum,
from a quasiparticle to a particle–hole spectrum. Un-
fortunately, the application of this criterion to ND
bands [3–5] shows that this method is not free from
ambiguities.

Meanwhile, it is well known that the change in the
internal structure of a system manifests itself in the
modification of its collective excitations. Examples
for finite quantum systems are numerous. A classical
one is the transition from deformed to spherical nu-
clei. In this case, the rotational–vibrational spectrum
transforms into a purely vibrational one. Analysis of
bifurcations in rotational spectra [6] shows an inti-
mate connection between internal and rotational mo-
tions. For example, angular-momentum alignment in
a band (a change in the coupling scheme) is observed
as an increase in the energy signature splitting [7].

The transition we study is more delicate. Let us
consider the simplest rotational sequence having the
parity and signature (πα) = (+0). The relevant en-
ergy spectrum can be parametrized as

E(I) = AI(I + 1) + BI2(I + 1)2, (1.1)

where A = �
2/2I(1) and B are the first two iner-

tial parameters. The spectrum in (1.1) undergoes a
noticeable modification if, for example, the second
inertial parameter changes sign at some spin Ic. For
I < Ic, the spectrum is compressed in relation to the
rigid-rotor spectrum because B is negative for low-
I states. However, the spectrum becomes extended
for I > Ic. The effect can be visualized by using the
I dependence of the ratio B/A. The main objective of
the present study is to analyze this dependence.

The parameters A and B are determined by the γ-
ray transition energies Eγ(I) = E(I + 2)− E(I) as
follows:

A(I) = 1
4(2I + 5)
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×
[
I2 + 7I + 13

2I + 3
Eγ(I)−

I2 + 3I + 3
2I + 7

Eγ(I + 2)
]
,

B(I) = 1
8(2I + 5)

[
Eγ(I + 2)
2I + 7

− Eγ(I)
2I + 3

]
. (1.2)

The coefficient B characterizes the nonadiabatic
properties of a band and is very sensitive to its internal
structure. It also realizes the relationship between
kinematical and dynamical moments of inertia. Using
the well-known expressions for these quantities (see,
for example, [8]) and the last formula (1.2), we get

B =
�

2

2(2I + 3)(2I + 7)

[
1

I(2)
− 2I
(2I + 5)I(1)

]
. (1.3)

Thus, the parameter B(I) is proportional to the
difference I(1) − I(2) in the high-I limit. The ratio
B/A also determines the convergence radius of the
rotational-energy expansion in terms of I(I + 1) [9].
A faster convergence is obtained with the Harris
formula

E(ω) = E0 +
1
2
αω2 +

3
4
βω4 + . . . , (1.4)

which is based on the fourth-order cranking expan-
sion with

α =
1
ω
tr(jxρ(1)), β =

1
ω3

tr(jxρ(3)), (1.5)

where ρ(n) is the nth correction to the nucleus den-
sity matrix; jx is the projection of the single-particle
angular-momentum operator onto the rotational axis
x, which is perpendicular to the symmetry axis z; and
ω is the rotational frequency. The latter depends on
the angular momentum of the system and is deter-
mined by

�

√
I(I + 1) = αω + βω3 + . . . . (1.6)

It follows from Eqs. (1.1), (1.4), and (1.6) that

α =
�

2

2A , β = −�
4B

4A4
. (1.7)

The problem of microscopically calculating the
parameter B for ND nuclei attracted considerable
attention (see the review article [10] and references
therein). It was shown that this quantity receives
contributions from four types of nonadiabatic effects:

(i) perturbation of quasiparticle motion by rotation
(quasiparticle alignment),

(ii) attenuation of pairing correlations by the Cori-
olis force (Coriolis antipairing effect),

(iii) a change in the deformation of a nuclear self-
consistent field (centrifugal stretching effect),

(iv) vibration–rotation interaction.
2
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Fig. 1. Relative deviation of energies E in the SD band
194Pb(1), the ground-state band of 238U and the ground-
state vibrational band of the H2 molecule. The deviation
was calculated by the formula (E − Erig)/Erig, where
Erig = AI(I + 1), the parameters A being found from
the energies Eγ(4) of the 6 → 4 transitions. The exper-
imental data were taken from [8, 14].

The first attempt at estimating B was made by
the present author together with Grin’ [11]. The
Green’s function formulation of the Hartree–Fock–
Bogoliubov (HFB) method was used to find the
expansion in (1.4) for an axially deformed oscillator
potential as a self-consistent field. It was shown
that the first and the second effect yield B/A ∼
A−4/3, while the centrifugal stretching contribution
is A2/3 times smaller for well-deformed nuclei.1) In
the subsequent study [12], I found that the vibration–
rotation contribution to the parameter B has the same
A2/3 fraction of the main effects. These results were
confirmed by the calculations of Marshalek [13] with
the more realistic Nilsson potential.

Thus, the first two effects are dominant for well-
deformed nuclei. Quasiparticle alignment depends
strongly on pairing correlations because the pairing
force tries to bind pairs of particles in time-reversal
states, reducing the ability of nucleons to carry an
angular momentum. Therefore, the parameter B is
very sensitive to the variation in pairing correlations
along a band.

One of the amazing features of SD bands is
the extreme regularity of their rotational spectra.
To demonstrate this feature, the rotational spectra
of different axial systems are compared in Fig. 1
with their rigid-rotor counterparts. This comparison
shows that the SD band 194Pb(1) is more regular
than the ND band of 238U and even the band of

1)We use the estimate A ∼ εFA
−5/3, where εF is the Fermi

energy andA is the mass number.
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the simplest H2 molecule [14]. Having the ratio
B/A ∼ 10−5, the 194Pb(1) band is not a champion
among SD bands. For 152Dy(1), the ratio is of the
order of 10−6, and this is 1000 times smaller than the
above estimate B/A ∼ A−4/3. Thus, an SD nucleus
is the best quantum rotor known in nature. Although
numerous theoretical calculations (see, e.g., [15–18])
successfully reproduce the measured intraband γ-ray
energies, the underlying microscopic mechanism of
this phenomenon has yet to be well understood.

In this study, we will reveal an interconnection be-
tween the extreme regularity and the transition from
the superfluid to the normal phase. The key to our
theoretical approach lies in calculating the second in-
ertial parameter. In comparison with ND bands, there
are two features of pairing correlations in SD bands
that prevent us from using the results of previous
theoretical calculations of the parameter B for su-
perdeformation. First, because of the large shell gap
stabilizing the SDminimum, the static pairing field∆
is small and can be commensurate with its fluctuation
δ∆. A qualitative conclusion concerning the role of
the static and dynamical pairing in SD bands is pre-
sented in [19]. Second, since intruder single-particle
states, which are unavailable at normal deformations,
appear near the Fermi surface in the case of superde-
formations, it is necessary to go beyond the com-
monly used monopole pairing force [20]. The gauge-
invariant pairing interaction expands the correlation
space and stabilizes the pairing field. The coordinate-
dependent (nonuniform) pairing is also crucial for
the conservation of a nucleon current in a rotating
nucleus [21].

To avoid calculating the parameter B in the tran-
sition region, where pairing fluctuations play an im-
portant role, an interpolation between Bs and Bn is
used. The former is associated with the superfluid
phase (where ∆� δ∆), while the latter is related to
the normal phase (∆ = 0). Thus, pairing fluctuations
are unessential for these regions, and we can use the
mean-field approach. In calculating Bs, the nonuni-
form pairing induced by rotation is taken into account
by using the method of [11]. It should be noted that
the quantity Bs found in that study is inapplicable to
superdeformation.

This article is organized as follows. In Section 2,
the basic equations of the cranked HFB theory are
presented within the Green’s function method. The
spinor form of the Gor’kov equations is used to sim-
plify calculations in higher orders of perturbation the-
ory. In Section 3, an exact expression for the second
inertial parameter in the superfluid phase is derived by
means of this technique in the semiclassical approx-
imation. The result is valid for an arbitrary nuclear
mean field. The exact analytic expression for Bs is
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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obtained in Section 4 in an axially deformed oscillator
potential. In that section, we also consider some lim-
iting cases for this quantity. Of special interest is the
limit of noninteracting nucleons. It is shown that the
relevant parameter Bn is positive and is smaller than
Bs. A comparison with available experimental data for
SD and ND bands is presented in Section 5. Sec-
tion 6 concludes and summarizes the article. Prelim-
inary results of this study were published in [22, 23].

2. GREEN’S FUNCTION FORMALISM
IN THE CRANKING

HARTREE–FOCK–BOGOLIUBOV METHOD
2.1. Cranked Gor’kov Equations

Our consideration is based on the shell-model
Hamiltonian consisting of the cranked one-body term

hω(r) = −
p2

2M
+ U(r)− ω · �, (2.1)

ω{ω, 0, 0}
(where p and M are the nucleon momentum and
mass, respectively) and the residual short-range in-
teraction, which is specified by the two-body delta-
function interaction

v(r, r′) = −gδ(r − r′), g > 0. (2.2)

For the sake of simplicity, we neglect spin in the
cranking term and consider only the orbital part �
of the angular momentum j. We will also neglect
the weak dependence of the self-consistent deformed
potential U on rotation (centrifugal stretching effect).

In the coordinate representation, the Gor’kov
equations [24] have the form

[ε− hω(r) + εF]G(r, r′, ε)

+ ∆̃(r)F+(r, r′, ε) = δ(r− r′),

[ε+ h+
ω (r)− εF]F+(r, r′, ε) (2.3)

+ ∆̃+(r)G(r, r′, ε) = 0,

∆̃∗(r) = g

∮
C

dε

2πi
F+(r, r, ε).

The functions G(r, r′, ε) and F+(r, r′, ε) are the
Fourier transforms of the Green’s functions
G(r, r′, t− t′) = −i(ΦN |T{ψ(r, t)ψ+(r′, t)}|ΦN ),

F+(r, r′, t− t′) (2.4)

= −i(ΦN+2|T{ψ+(r, t)ψ+(r′, t)}|ΦN )e−2iεFt,

where ΦN and ΦN+2 are the eigenfunctions of the
ground state of a system of N and N + 2 interacting
particles, ψ+ and ψ are creation and annihilation
operators in the Heisenberg representation, T is the
time-ordering operator, and εF is the Fermi energy
(the chemical potential of the system). The contour
C consists of the real axis and an infinite semicircle in
the upper half-plane.
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2.2. Properties

In deriving Eqs. (2.3), the particle-number-non-
conserving approximation was used. In the spirit of
the mean-field approach, we neglect the difference
between the functions ΦN and ΦN+2. Thus, the
Gor’kov equations describe a system with broken
gauge symmetry associated with the particle number.
However, the average particle number is fixed. This is
achieved by adding the term −εFN̂ to the Hamilto-
nian. The Lagrange multiplier εF is determined by the
equation

N =
∫
dr
∮
C

dε

2πi
G(r, r, ε). (2.5)

Equations (2.3) are also noninvariant under the
more general gauge transformation (local Galilean
transformation [25])

ψ(r, t)→ ψ(r, t)eiφ(r), (2.6)

where φ(r) is an arbitrary function of the space coor-
dinates. The quickest way to show this is to introduce
the vector potential A = [ω × r]/2 that allows us
to rewrite the Coriolis term V = −ω · � in the form
−2p ·A. It is seen that the Hamiltonian in (2.1) lacks
the term 2MA2, which is absolutely necessary for
the gauge invariance of Eqs. (2.3). However, since
the two-body interaction (2.2) is invariant under the
Galilean transformation, the conservation of the nu-
cleon current is ensured.

The current density is expressed in terms of the
Green’s functionG as [26]

j(r) = lim
r′→r

∮
C

dε

2πi
(2.7)

×
{
i�

2M
(�r −�r′)− [ω × r]

}
G(r, r′, ε).

With this definition, we find

div j(r) = lim
r′→r

∮
C

dε

2π�
(2.8)

× [hω(r)− h+
ω (r

′)]G(r, r′, ε).

Using the first of Eq. (2.3) and their complex conju-
gate

[ε− h+
ω (r

′) + εF ]G(r, r′, ε) (2.9)

+ ∆̃∗(r′)F (r, r′, ε) = δ(r− r′),

we finally obtain

div j(r) =
∮
C

dε

2π�
(2.10)

× [∆̃(r)F+(r, r, ε) − ∆̃∗(r)F (r, r, ε)].
2



1202 PAVLICHENKOV
The right-hand side of this equality vanishes by virtue
of the third Gor’kov equation. Because the latter is
derived under the assumption of a delta-function in-
teraction, we should conclude that the form of a two-
body interaction is of importance for obtaining cur-
rent conservation. In particular, the commonly used
monopole pairing interaction is not invariant under
the transformation of (2.6). Therefore, it does not con-
serve the current density in a rotating nucleus. The
case of an arbitrary pairing interaction is considered
in [25].

2.3. Matrix Form of the Gor’kov Equations
The two-dimensional form of the Gor’kov equa-

tions is very convenient to use in our calculations.
Let us introduce the second pair of Green’s functions
G+(r, r′, ε) and F (r, r′, ε). It can easily be proven [11]
that the four equations for these functions can be
written in the matrix form
 ∆̃∗ ε+ h+

ω − εF
ε− hω + εF ∆̃




 F G

G+ F+


 (2.11)

= 1̂δ(r− r′).

The operator hω involves the real (h) and the imag-
inary (V ) part. The former is the Hamiltonian of the
deformed mean field, whereas the latter stands for the
cranking term, V = −ω&x. Separating the quantity ∆̃
into real and imaginary parts,

∆̃ = ∆+ ∆̄, ∆̃∗ = ∆− ∆̄, (2.12)

we can rewrite Eq. (2.11) in the compact form

(ip̂ +∆− σ̂1V − σ̂3∆̄) (2.13)

× Ĝ(r, r′, p) = δ(r − r′),

where Ĝ is the matrix of the functions G and F
involved in Eq. (2.11), p̂ = σ̂1p+ σ̂2(h− εF ), σ̂α are
the Pauli matrices, and p = −iε. We omit the identity
matrices before the terms involving ∆ and δ(r− r′).
The functions G and F can be written as traces of Ĝ
in the following way:2)

G(r, r′, ε) =
1
2
Sp{(σ̂1 − iσ̂2)Ĝ(r, r′, p)},

F (r, r′, ε) =
1
2
Sp{(1 + σ̂3)Ĝ(r, r′, p)}. (2.14)

Therefore, the equation for ∆̃(r) is

∆̃(r) = g

∫
C′

dp

4π
Sp{(1 + σ̂3)Ĝ(r, r, p)}, (2.15)

2)We use the symbol tr in the space of single-particle states of
the Hamiltonian h, the symbol Sp in the spinor space, andTr
in the combined space.
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and the one-particle density matrix of the system is
given by the expression

ρ(r) =
∫
C′

dp

4π
Sp{(σ̂1 − iσ̂2)Ĝ(r, r, p)}, (2.16)

where the contour C ′ is obtained from C by rotation
through an angle of 90◦.

2.4. Perturbation Theory

We use the Green’s function method to calculate
the parameter B. As follows from Eqs. (1.5) and (1.7),
this requires perturbation theory of third order in the
cranking term V . According to [13], a considerable
computational effort is needed to produce the result
into a tractable form. The matrix representation of
the Gor’kov equations allows us to elaborate on the
elegant form of perturbation theory that considerably
simplifies the calculations.

We now proceed to treat Eq. (2.13) by the method
of successive approximations. Considering V as a
weak perturbation, we expand the Green’s function
and the self-consistent quantities ∆̃ and εF in the
powers of a small parameter:

Ĝ = Ĝ0 + Ĝ1 + Ĝ2 + Ĝ3 + . . . ,

∆̃ = ∆(0) + ∆̄(1) +∆(2) + ∆̄(3) + . . . , (2.17)

εF = ε
(0)
F + ε

(2)
F + . . . .

The nth-order corrections to the last two quantities
are determined by Eqs. (2.15) and (2.5), respectively.
Since V = −V ∗, the corrections of odd order to ∆̃ are
purely imaginary and those of even order are real. The
effect of the second-order correction to εF makes a
negligible contribution to the second inertial parame-
ter [13]. Thus, we will use the zero-order approxima-
tion for this quantity.

It is natural to work in the basis of the eigenfunc-
tions of the Hamiltonian in (2.1) without the cranking
term,

(h− εF)ϕν(r) = pνϕν(r), (2.18)

where pν is the energy εν of the single-particle state
ν relative to the Fermi energy, pν = εν − εF. In this
basis, the nth correction to the Green’s function has
the form

Ĝn(r, r′, p) =
∑
νν′

Ĝ
(n)
νν′(p)ϕν(r)ϕ∗

ν′(r′). (2.19)

First of all, we solve the unperturbed Eq. (2.13),

(ip̂+∆)Ĝ0(r, r′, p) = δ(r − r′), (2.20)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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with the constant pairing gap∆(0) = ∆. Substituting
Eq. (2.19) into (2.20), one finds

Ĝ
(0)
νν′(pν) = −

ip̂ν −∆
p2

ν +∆2
δνν′ , (2.21)

where pν(p, pν) is the two-dimensional vector and
p̂ν = σ̂1p+ σ̂2pν . The gap Eq. (2.15) takes the simple
form

1 = g
∑

ν

1
2Eν
|ϕν(r)|2, Eν =

√
p2

ν +∆2. (2.22)

This equation has the solution∆ = const for the self-
consistent potential with a flat bottom. In deriving
Eq. (2.22), as well as in subsequent calculations, it
is essential to compute the traces of the products of
the Pauli matrices. We can readily see that the trace
of an odd number of matrices σ̂1 and σ̂2 vanishes and
that the product of an even number is given by the
expressions

1
2
Sp(σ̂ασ̂β) = δαβ , (2.23)

1
2
Sp(σ̂ασ̂βσ̂γσ̂δ) = δαβδγδ − εαβεγδ , . . . ,

where ε̂ = iσ̂2 is a fully antisymmetric matrix.
In the first order, Eq. (2.13) involves the two per-

turbing terms V and ∆̄(1):

(ip̂ +∆)Ĝ1(r, r′, p) (2.24)

= [σ̂1V + σ̂3∆̄(1)]Ĝ0(r, r′, p).

This equation has the obvious solution

Ĝ1(r, r′, p) (2.25)

=
∫
Ĝ0(r,q, p)Ŵ (q)Ĝ0(q, r′, p)dq,

where the operator

Ŵ = σ̂1V + σ̂3∆̄(1) (2.26)

is introduced in order to represent the corrections
to the unperturbed Green’s function in the simple
symbolic form

Ĝ1 = Ĝ0Ŵ Ĝ0,

Ĝ2 = Ĝ0Ŵ Ĝ0Ŵ Ĝ0 − Ĝ0∆(2)Ĝ0,

Ĝ3 = Ĝ0Ŵ Ĝ0Ŵ Ĝ0Ŵ Ĝ0 (2.27)

− Ĝ0Ŵ Ĝ0∆(2)Ĝ0 − Ĝ0∆(2)Ĝ0Ŵ Ĝ0

+ Ĝ0σ̂3∆̄(3)Ĝ0.

Here, integration with respect to the intermediate co-
ordinates q is implied. Using these formulas, one can
prove by straightforward calculations the identities∫

C′

dp

2π
Sp{Ĝ2i+1(r, r′, p)} = 0,
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∫
C′

dp

2π
Sp{σ̂1Ĝ2i(r, r′, p)} = 0, (2.28)

∫
C′

dp

2π
Sp{σ̂2Ĝ2i+1(r, r′, p)} = 0,

∫
C′

dp

2π
Sp{σ̂3Ĝ2i(r, r′, p)} = 0.

In order to find a self-consistent solution, we have
to show how ∆̃(n) is obtained from Ĝn by using the
equation

∆̃(n)(r) = g

∫
C′

dp

4π
Sp{(1 + σ̂3)Ĝn(r, r, p)}. (2.29)

We will consider the unperturbed pairing gap ∆ as a
parameter of the theory. This allows us to eliminate
the interaction constant g. Multiplying the zero-order
Eq. (2.22) by ∆̃(n)(r), we write the result in the sym-
metric form

∆∆̃(n)(r) = g

∫
C′

dp

8π
Sp[Ĝ0(r, r, p), ∆̃(n)(r)]+,

(2.30)

where [. . .]+ is the anticommutator of the corre-
sponding operators. With this ansatz and (2.29), the
integral equation for even-order corrections is given
by ∫

C′

dp

2π
Sp{2∆Ĝ2i(r, r, p) (2.31)

− [Ĝ0(r, r, p),∆(2i)(r)]+} = 0,

while that for odd-order ones has the form∫
C′

dp

2π
Sp{2∆σ̂3Ĝ2i+1(r, r, p) (2.32)

− [Ĝ0(r, r, p), ∆̄(2i+1)(r)]+} = 0.

Similarly, eliminating g from the equations for ∆̄(n)

and∆(n−1) (n is odd) in the form of (2.29) yields∫
C′

dp

2π
Sp{∆̄(n)(r)Ĝn−1(r, r, p) (2.33)

−∆(n−1)(r)σ̂3Ĝn(r, r, p)} = 0.

In the same manner, with additional integration with
respect to r, we can obtain∫

C′

dp

2π
Tr{∆̄(n)σ̂3Ĝn−2(p) (2.34)

− ∆̄(n−2)σ̂3Ĝn(p)} = 0.
2
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Here, Tr refers to spinor and to single-particle spaces
simultaneously.

The solution to the HFB equations that is rep-
resented in the form of successive approximations
by formulas (2.21), (2.22), (2.27), (2.31), and (2.32)
takes into consideration nonuniform pairing correla-
tions induced by rotation. Nonuniform pairing orig-
inates in higher orders of perturbation theory, while
a nonrotating system is approximated by a constant
pairing field. In spite of an apparent eclecticism, our
solution does not violate the current-density conser-
vation, divj = 0. This is obvious in the zero-order
approximation. In even orders of perturbation theory,
divj(2i) vanishes by virtue of the first and the fourth
identity in (2.28). Odd corrections to the quantity
in (2.10) can be recast into the form

divj(2i+1)(r) (2.35)

=
i∑

l=0

∫
C′

dp

2π
Sp{∆̄(2l+1)(r)Ĝ2i−2l(r, r, p)

−∆(2l)σ̂3Ĝ2i−2l+1(r, r, p)},
which vanishes by virtue of Eq. (2.33). Thus, we have
found a consistent solution that is certainly more
general than the initially supposed one. It can be used
for an arbitrary single-particle potential without dan-
ger of arriving at a contradiction (see also [21]). We
will use this solution to calculate the second inertial
parameter.

Finally, the following identities are useful in the
calculations:

2∆
∫
C′

dp

2π
Tr{∆(2i)Ĝ2i(p)} (2.36)

=
∫
C′

dp

2π
Tr{∆(2i)[∆(2i), Ĝ0(p)]+},

2∆
∫
C′

dp

2π
Tr{∆̄(2i+1)σ̂3Ĝ2i+1(p)} (2.37)

=
∫
C′

dp

2π
Tr{∆̄(2i+1)[∆̄(2i+1), Ĝ0(p)]+}.

These identities are obtained by multiplying
Eqs. (2.31) and (2.32) by∆(2i)(r) and ∆̄(2i+1)(r), re-
spectively, and performing an integration with respect
to r.

3. CALCULATION OF THE SECOND
INERTIAL PARAMETER
3.1. General Expression

As follows from Eq. (1.7), the derivation of the
parameter B reduces to calculating β. This quantity
P

is convenient to deal with. The third-order correction
to the density matrix can be obtained fromEqs. (2.16)
and (2.27). If we take into account the third equation
in (2.28), substitute

σ̂1&x = − 1
ω
(W − σ̂3∆(1)), (3.1)

and use the identity in (2.34) with n = 3, we find, after
some simple algebra, that

βs =
1
ω3

tr{&xρ(3)} = − 1
ω4

∫
C′

dp

4π
Tr{Ŵ Ĝ3(p)}

(3.2)

+
1
ω4

∫
C′

dp

4π
Tr{∆(3)σ̂3Ĝ1(p)},

where the subscript s means that the relevant quan-
tity refers to the superfluid state. Here and below,
we will use ∆(2i+1) (i = 0, 1) instead of ∆̄(2i+1).
Fortunately, the terms involving ∆(3) are eliminated
from (3.2) after inserting expression (2.27) for Ĝ3.
The resulting formula involves only the corrections
∆(1) and ∆(2). It is convenient to transform the
terms with∆(2) into a quadratic form in this quantity.
Referring to the definition of the function Ĝ2 from
Eqs. (2.27), we find that the term involving ∆(2)

becomes∫
C′

dp

2π
Tr{∆(2)Ĝ0(p)Ŵ Ĝ0(p)Ŵ Ĝ0(p)} (3.3)

=
∫
C′

dp

2π
Tr{∆(2)Ĝ2(p)}

−
∫
C′

dp

2π
Tr{∆(2)Ĝ0(p)∆(2)Ĝ0(p)}.

With the help of identity (2.36), it is easy to show that
the first term on the right-hand side also transforms
into a bilinear form of ∆(2). Combining this result
with (3.2), we obtain the final expression for the pa-
rameter βs:

βs = −
1
ω4

∫
C′

dp

4π
Tr{Ŵ Ĝ0(p)Ŵ Ĝ0(p) (3.4)

× Ŵ Ĝ0(p)Ŵ Ĝ0(p)}+
1

ω4∆

∫
C′

dp

4π

×Tr{2∆∆(2)Ĝ0(p)∆(2)Ĝ0(p)+∆(2)[Ĝ0(p),∆(2)]+}.
This is an exact formula for calculating the second
inertial parameter. The first term describes the joint
effect of the Coriolis force and the nonuniform pairing
field ∆(1)(r) on independent quasiparticle motion. In
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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the limit of a monopole pairing interaction, which
corresponds to a uniform pairing field (∆(1) = 0), this
agrees with the term Bc found byMarshalek [13]. The
second term arises only because of the modification
of pairing. In the limit of uniform pairing, this term
describes the Coriolis antipairing effect (see Appen-
dix A).

3.2. Semiclassical Approximation

To proceed further, we should find the first- and
second-order corrections to the pairing field. As is
shown in Appendix A, the corresponding integral
equations have the solutions

∆(1)(r) =− i�ω
2∆

D1&̇x, ∆(2)(r) =
�

2ω2

4∆3
D2&̇

2
x, (3.5)

where D1 and D2 are the amplitudes that are found
in a self-consistent way. In order to learn more
about nonuniform pairing, we suppose that the self-
consistent potential of a deformed nucleus has the
form

U(ρ) = U

(
x2 + y2

a2
+
z2

b2

)
, (3.6)

where a and b are the semiaxes of a nuclear spheroid.
Then, we obtain

&̇x = y
∂U

∂z
− z ∂U

∂y
=
b2 − a2

a2b2
yzU ′(ρ). (3.7)

Thus, the rotation-induced pairing field is a function
of only the spatial coordinates. In the first order in
rotation, the nonuniform pairing field is proportional
to the spherical harmonic Y2±1. This was amotivation
for introducing quadrupole pairing (see [27] and ref-
erences therein). The second correction ∆(2) shows,
however, that higher multipoles are also involved in
nonuniform pairing.

Using the expression for ∆(1) and the obvious
formula for matrix elements �&̇xνν′ = i(pν − pν′)&xνν′ ,
we can represent each of 16 sums in the first term of
Eq. (3.4) in the general form

∑
&x12&

x
23&

x
34&

x
41

∫
C′

dp

2π
(3.8)

× Q4(p; p1, p2, p3, p4)
(p2

1 +∆2)(p2
2 +∆2)(p2

3 +∆2)(p2
4 +∆2)

,

where the summation indices 1, 2, 3, and 4 refer to
the single-particle states ν with the energy pν of the
Schrödinger equation (2.18) and Q4 is a polynomial
of the fourth power in (p, pν) and D1, which derives
from the calculation of the trace of the product of the
Pauli matrices and the factors (ip̂ν −∆).
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To evaluate this sum, we use the method proposed
byMigdal [21]. Let us first note that, for the fixed state
1, the indices 2, 3, and 4 take only a few values per-
mitted by the selection rules for the matrix elements
of the operator &x. After integration with respect to
p, we obtain a function of the variables p1, . . . , p4.
Considered as a function of the variable p1, it has,
for fixed differences p1 − p2, p1 − p3, and p1 − p4, a
sharp maximum at the Fermi surface with a width
∼∆. Since the average level spacing for ND nuclei,
δε ∼ εF/A, is very small in relation to∆ ∼ εF/A2/3, a
large number (∼ A1/3) of levels fall within the interval
∆. For this reason, we can make, with a semiclassical
accuracy, the following substitution in the sum (3.8):∫

C′

dp

2π
Q4(p; p1, p2, p3, p4)

(p2
1 +∆2)(p2

2 +∆2)(p2
3 +∆2)(p2

4 +∆2)

→ δ(ε1 − εF)
∫
dp1

2π
(3.9)

× Q4(p; p1, p2, p3, p4)
(p2

1 +∆2)(p2
2 +∆2)(p2

3 +∆2)(p2
4 +∆2)

.

Similarly, the second term in Eq. (3.4) can be approx-
imated by the expression

1
ω4

∑
|∆(2)

12 |2
∫
dp1

4π
(3.10)

× (p1 − p2)2 + 4∆2

(p2
1 +∆2)(p2

2 +∆2)
δ(ε1 − εF).

In calculating these integrals (dp1 = dpdp1), it is
convenient to use the method of Feynman covari-
ant integration [28] because a good convergence of
the integrals allows integration with respect to p1

to be extended over the region from −∞ to ∞. The
details of the calculations are given in Appendix B.
The integral in (3.9) depends on three independent
differences p1 − p2, p1 − p3, and p1 − p4. To represent
the final result of the semiclassical approximation in
a symmetric form, we introduce six energy differences
pνν′ = pν − pν′ , ν < ν ′. Collecting all the integrals of
the first and second terms in (3.4), we find

βs =
1

4∆2

∑
&x12&

x
23&

x
34&

x
41 (3.11)

× F (x12, x23, x34, x41;x13, x24)δ(ε1 − εF),
where the δ function means that summation over
the state 1 is replaced, according to the semiclassi-
cal approximation, by integration with respect to its
quantum numbers.

The function F , which depends on six dimension-
less differences xνν′ = (εν − εν′)/2∆, is broken down
into two parts:

F = f(x12, x23, x34, x41;x13, x24) (3.12)
2
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+ 8D2
2x12x23x34x41h(x13).

The first one is relevant to the first term in Eq. (3.4).
It is convenient to represent this function in the form

f = −(1 + P̂1 + P̂2 + P̂3)G+ (1 + P̂1)H, (3.13)

where

G =
g(x12)

x13x23x24x41

{
(1−D1x

2
12) (3.14)

×
[
1 + x2

12 + x23x41 −D1[x2
23(1− x12x24)

+ x2
41(1 + x12x13)]−D2

1x23x34x41(x23 + x41)

−D3
1x12x

2
23x34x

2
41

]
−D1(x34 −D1x12x23x41)

× (x34 + x12x13x24 −D1x12x23x41)}
and

H =
h(x13)

x12x23x34x41
(3.15)

×
[
1−D1(x2

12 + x2
23 + x2

34 + x2
41)

+ D2
1(x12x41 + x23x34)2

]
.

Here, the functions

g(x) =
arg sinh x
x
√
1 + x2

, h(x) = (1 + x2)g(x) (3.16)

are associated with theMigdal moment of inertia [21].
The amplitudes D1 and D2 of the nonuniform pair-
ing field are determined by Eqs. (A.4) and (A.8),
respectively. The operator P̂i permutes the indices ν of
single-particle states in all dimensionless differences
on which the functions G and H depend. Applying
this operator to xνν′ , we get

P̂ixν,ν′ = xν+i,ν′+i, (3.17)

subject to νmod4 = ν. It is easy to prove the following
symmetry properties of the function F :

P̂1F = P̂2F = P̂3F = F,

F (x12, x41, x34, x23;−x24,−x13) (3.18)

= F (x12, x23, x34, x41;x13, x24).

The above formulas give the semiclassical expres-
sion for the second inertial parameter in the superfluid
phase. The solution takes into account the effect of
rotation on Cooper pairs in a gauge-invariant form.
The result is expressed entirely in terms of matrix
elements and corresponding energy differences, pro-
vided that the constant pairing gap ∆ is fixed for a
nonrotating nucleus. It is valid for an arbitrary nuclear
mean field with a stable deformation. This allows
one to study the interplay between rotation, pairing
correlations, and mean-field deformations in ND and
SD bands.
P

We first estimate the quantity βs and find the small
parameter of perturbation theory we used. To get an
estimate of βs for ND bands, we observe that the ma-
trix element &xνν′ has two types of ν → ν ′ transitions:

(i) transitions within the N shell (close transi-
tions), for which the energy differences are pνν′ =
d1 ∼ εFA−2/3 and themaximum valueL of thematrix
element &xνν′ is related to a transition between states
of a j shell;

(ii) transitions between shells with major quan-
tum numbersN andN ± 2 (distant transitions) with
pνν′ = d2 ∼ εFA−1/3 and &xνν′ ∼ LA−1/3.

For state 1, there are three groups of terms in the
sum on the right-hand side of (3.11), which are clas-
sified according to different combinations of close and
distant transitions in the product of the four matrix
elements &xνν′ . Those involving four close transitions
have all dimensionless differences xνν′ ∼ 1 and, con-
sequently, F ∼ 1.3) Thus, the contribution of these
terms to the sum in (3.11) is of order L4. For terms
with four distant transitions (xνν′ ∼ A1/3), we have
F ∼ A4/3. However, this large factor is compensated
by the product of small matrix elements &xνν′ . The
same compensation occurs in the remaining terms
with two close and two distant transitions, for which
F ∼ A2/3. Therefore, the contributions of all terms in
the sum (3.11) being considered are of the same order
L4, and we can make the following estimation:

βs ∼
1

4∆2

∑
&x12&

x
23&

x
34&

x
41δ(ε1 − εF)

=
1

4∆2

∑
1

(&4x)11δ(ε1 − εF). (3.19)

A calculation of the last sum within the Thomas–
Fermi approximation gives

βs ∼
3M
20∆2

∫
n(r)p2

F(r)(y
2 + z2)2dr. (3.20)

In this calculation we used the procedure described
in [21], which includes averaging over the directions
of the nucleon momentum and the utilization of the
ansatz∑

1

ϕ∗
1(r)ϕ1(r)δ(ε1 − εF) =

3M
p2
F(r)

n(r), (3.21)

where n(r) = Cp3
F(r) (C = const) is the nucleon

density and pF(r) =
√
2M [εF − U(r)]. Compar-

ing (3.20) with the rigid-body moment of inertia

Irig =
∫
n(r)(y2 + z2)dr, (3.22)

3)The necessary estimate for the amplitudes of the uniform
pairing field, D1 ∼ D2 ∼ [ln (d2/∆)]−1 ∼ 1, can be ob-
tained from Eqs. (A.4) and (A.8).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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we obtain βs ∼ Irig(pFR/∆)2 ∼ Irig(�jF/∆)2,
where R is the rms radius of a nucleus and pF and
jF ∼ A1/3 are, respectively, the mean momentum
and the mean angular momentum of a nucleon at
the Fermi surface. Thus, the parameter βs is of
order �

4A11/3/ε3F. With these results, we can get,
from (1.4), the perturbation parameter, βsω

2/α ∼
(�ωjF/∆)2. The application of perturbation theory
implies that this value is small; i.e., the Coriolis
interaction is smaller than the two-quasiparticle ex-
citation energy. One can say that perturbation theory
is valid for adiabatic rotation. It is clear from Eq. (1.7)
that Bs ∼ εFA−3 and Bs/A ∼ A−4/3. The above
estimates refer to ND nuclei in the ground state,
where pairing correlations are reasonably strong,
∆ ∼ εFA−2/3.

4. MODEL OF AN ANISOTROPIC
OSCILLATOR POTENTIAL

In order to obtain quantitative results, we model
the actual self-consistent nuclear field as the axi-
ally deformed oscillator potential with frequencies ωz

along the symmetry axis and ωx in the perpendicular
plane:

Uosc(r) =
M

2
[ω2

x(x
2 + y2) + ω2

zz
2]. (4.1)

The use of this simplified model is justified by the
possibility of deriving an exact analytic expression for
the parameter βs. It is also known that the model
reproduces the experimental values of the rotational
constants A and B for ND bands. Therefore, we can
expect that the model would provide useful insights
into the rotational regime at superdeformation.

In an anisotropic oscillator potential, the matrix
element &xνν′ is nonzero for four transitions. Two close
transitions have the energy differences d1 = ±�(ωx −
ωz), whereas the distant ones have d2 = ±�(ωx +
ωz). The corresponding dimensionless parameters are

ν1,2 =
�(ωx ∓ ωz)

2∆
=

k ∓ 1
2ξk2/3

, ξ =
∆

�ω0
, (4.2)

where �ω0 = 41A−1/3 MeV. Hereafter, we use the
axis or the frequency ratio k = b/a = ωx/ωz and the
volume-conservation condition ω2

xωz = ω3
0. It is also

convenient to substitute the operator &x with its time
derivative

&̇x =M(ω2
x − ω2

z)yz, (4.3)

which obey the same selection rules.
For fixed state 1, the sum in (3.11) involves six

terms with four close transitions, six terms with four
distant transitions, and 24 terms with two close and
two distant transitions. The products of four matrix
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elements are equal to a semiclassical precision for all

36 terms of the sum, &̇x12&̇
x
23&̇

x
34&̇

x
41 ≈

1
36
(&̇4x)11. Sum-

mation of all these terms gives

βs =
�

4Φn(ν1, ν2)
18(2∆)6ν4

1

∑
1

(&̇4x)11δ(ε1 − εF). (4.4)

The function Φn is the sum of the functions F cor-
responding to all 36 combinations of the close and
distant transitions. The sum can be simplified by us-
ing the symmetry properties (3.18). It is convenient to
represent the resulting function in the form

Φn(ν1, ν2) = F(ν1, ν2) + 2D2
2H(ν1, ν2), (4.5)

where
F(ν1, ν2) = f(ν1,−ν1, ν1,−ν1; 0, 0) (4.6)

+ 2f(ν1, ν1,−ν1,−ν1; 2ν1, 0)

+ 2(ν1/ν2)2[2f(ν1, ν2,−ν2,−ν1; ν1 + ν2, 0)
+ 2f(ν1,−ν2, ν2,−ν1; ν1 − ν2, 0)

+ f(ν1, ν2,−ν1,−ν2; ν1 + ν2,−ν1 + ν2)
+ f(ν1,−ν2,−ν1, ν2; ν1 − ν2,−ν1 − ν2)]

+ (ν1/ν2)4[f(ν2,−ν2, ν2,−ν2; 0, 0)
+ 2f(ν2, ν2,−ν2,−ν2; 2ν2, 0)],

and the amplitude D1, the amplitude D2, and the
functions H are determined by Eqs. (A.5), (A.11),
and (A.12), respectively. The two terms in (4.5) de-
scribe the two distinct effects of the Coriolis force: the
rotation–quasiparticle interaction and the modifica-
tion of pairing.

In the Thomas–Fermi approximation, according
to the ansatz in (3.21); we have∑

1

(&̇4x)11δ(ε1 − εF) (4.7)

= 3CM
∫
&̇4x(r)

√
2M [εF − Uosc(r)]dr.

Combining the result of integration with expres-
sion (3.22) for the rigid-body moment of inertia and
the expression

ρF =
∫
dr
∑

1

ϕ∗
1(r)ϕ1(r)δ(ε1 − εF) (4.8)

= 3CM
∫ √

2M [εF − Uosc(r)]dr

for the mean level density near the Fermi surface, we
obtain ∑

1

(&̇4x)11δ(ε1 − εF) (4.9)

=
18(ωx − ωz)4(1 + k)4

5ρF(1 + k2)2
I

2
rig.
2
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Fig. 2.Comparison of the functions relevant to the second
inertial parameter for ND bands. Part (a) displays the
functions Φn (4.5) (solid curve) and Φnc (4.11) (dashed
curve) and their parts, the functions F (4.6) (dotted
curve) and Fc (4.12) (dash-dotted curve), which describe
the effect of rotation–quasiparticle interaction. Part (b)
is for the limit of close transitions. There, the function
Φnc (solid curve) and its constituents Fc (dashed curve)
and 2D2

2Hc (dotted curve) are shown for ∆(1) = 0. The
dimensionless quantity ν1 corresponding to the close
transitions is plotted along the abscissa, while that for the
distant ones is fixed by the representative value ν2 = 10
for all plots.

In the case of a normal deformation, the quantity
k is close to unity and, consequently, ν2 � ν1. Sub-
stituting (4.9) into (4.4) and using the above approx-
imations, we get, for ND bands,

βs(ND) =
I2

rigΦnc(ν1, ν2)
5ρF∆2

. (4.10)

The function Φnc approximates Φn in “the close-
transition limit”:

Φnc(ν1, ν2) = Fc(ν1, ν2) + 2D2
2Hc(ν2), (4.11)

where

Fc(ν1, ν2) = f(ν1,−ν1, ν1,−ν1; 0, 0) (4.12)

+ 2f(ν1, ν1,−ν1,−ν1; 2ν1, 0).

The function Φnc depends on ν2 only through the
amplitudesD1 andD2, and the function

Hc(ν2) = 8 + 8 ln 2ν2 + ln 4ν2. (4.13)
P

The level density near the Fermi surface can be ob-
tained by combining (4.8) with the number of nucle-
ons A =

∫
n(r)dr. The result, ρF = 3A/εF, depends

on the Fermi energy, which is found from the volume-
conservation condition a2b = R3. Expression (4.10)
was obtained in [11].

Figure 2a shows that Φnc approximates the exact
functionΦn very well. It also shows that the contribu-
tion of the rotation–quasiparticle interaction is small
in relation to that of the pairing modification. This
result is explained by the interference of two effects:
the Coriolis force and the nonuniform pairing field
∆(1). Neglecting the latter results in the commensu-
rate contributions of the two terms in Eq. (4.11) as is
seen from Fig. 2b. This result is consistent with the
Marshalek calculations [13].

For superdeformed nuclei, the parameters ν1 and
ν2 are both large, ∼A1/3. Thus, we should expect a
decrease in βs. It is convenient to rewrite Eq. (4.4) by
introducing, according to (4.2), the parameters ξ and
k instead of ν1 and ν2. We express the sum in (4.7)
in terms of the rigid-body moment of inertia and the
number of nucleons A:∑

1

(&̇4x)11δ(ε1 − εF ) (4.14)

=
24(ωx − ωz)4k2/3(1 + k)4

5(1 + k2)3A2
ω2

0I
3
rig.

Now, we have

βs(SD) =
k2/3(1 + k)4

15�2(1 + k2)3A2
I3

rigΦ(ξ, k), (4.15)

ξ2Φ(ξ, k) = Φn(ν1, ν2).

The function Φ, along with its limiting case of the
uniform pairing, is shown in Fig. 3. It can be seen that
nonuniform pairing reduced the quantity βs(SD) even
more than βs(ND).

Taking k = 2 and ∆ = 0.5 MeV (ξ = 0.065) as
representative parameters for SD bands, we find from
Fig. 3 that Φ ∼ 1. This yields the following estimate:
βs(SD) ∼ �

4(A/εF)3 ∼ βs(ND)A−2/3 and B/A ∼
A−2. The last estimate is correct for SD bands in
the A ∼ 190 mass region, where B/A ∼ 10−5. Yet,
it overestimates the experimental value for 84Zr(1)
(∼10−5) and for 144Gd(1) and 152Dy(1) (∼10−6). The
last two bands have the smallest value of this ratio
among all SDmass regions. Thus, a high deformation
and nonuniform pairing do not solve the problem of
the SD band regularity.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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4.1. Limiting Cases

The limiting cases that are of greatest interest to
us are those of strong pairing, uncorrelated nucleons,
and extremely large deformations. The limit of small
deformations was considered in [11].

For a very strong pairing (∆� �ω0), the size of
the Cooper pair, R�ω0/∆, becomes much less than
the nuclear radius R. The rotation of such a nucleus
is described by the hydrodynamic equations of an
ideal liquid [9], according to which the second inertial
parameter vanishes. In the ensuing analysis, nonuni-
form pairing is a key aspect. For strong pairing, the
quantities ∆(1) and ∆(2) are proportional to ∆ be-
cause, as follows from Eqs. (A.4) and (A.8),D1 ∼ ∆2

andD2 ∼ ∆4. Therefore, this limit is instructive since
it allows one to check the solution of the integral
equation for∆(2).4)

In the strong-pairing limit, the parameters ν1 and
ν2 are small. It is possible to simplify the function F
by expanding g(xνν′) and h(xνν′) in power series in
xνν′ and then by approximating it, with the required
accuracy, by

F = P2 +D1P4 +D2
1P4 +D3

1P6 +D4
1P8, (4.16)

where Pn is a polynomial of nth degree in xνν′ . Using
this function and performing a calculation similar to
that which resulted in obtaining Φn, we find the lim-
iting value

lim
∆→∞

Φn(ν1, ν2) = −
64
3

(
ωx − ωz

ωx + ωz

)2

. (4.17)

Combining this result with Eqs. (4.4) and (4.14), we
arrive at

βs ∼ −
I3

rig

(�A)2

(
b2 − a2

b2 + a2

)2(
�ω0

∆

)2

. (4.18)

Thus, the parameter βs vanishes in the strong-pairing
limit.

The rotation of a very elongated nucleus with k =
b/a� 1 exhibits some interesting physics. For this
limit, the parameters ν1 and ν2 are approximately
given by

ν1 = ν ± δν, ν =
ωx

2∆
, δν =

ωz

2∆
, (4.19)

where ν � 1 and δν/ν = a/b� 1. Nonuniform pair-
ing is important in this case as well, because the small
amplitudeD1 ≈ 1/ν2 is compensated by a large value
of ν2. As a result, the kinematical moment of inertia,
which is the sum of the standard cranking-model

4)The solution for ∆(1) was verified in [21] by obtaining the
hydrodynamic moment of inertia.
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Fig. 3. Plot of the functionΦ, to which the second inertial
parameter for SD bands is proportional [see Eq. (4.15)],
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exact value and the limit of uniform pairing, respectively.
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term and the Migdal one, is close to the rigid-body
value:

I(1) = Irig

[
1−
(a
b

)2 10
ν2

ln 2ν
]
. (4.20)

In the zeroth approximation ν1 = ν2, the function (4.5)
vanishes, Φn(ν, ν) = 0. The next term of its expan-
sion in δν gives an estimate of the second inertial
parameter, βs ∼ (a/b)2. We can say that a strongly
elongated nucleus in the superfluid phase has the
rotational regime that is close to a rigid-body rotation.
The deviation from this regime is of order (a/b)2.
The physical interpretation of this phenomenon is
straightforward: all nucleons of a needle-shaped
nucleus with exclusion of the small sphere of radius a
at its center are involved in rotational motion.

Let us now consider the normal phase. The right-
hand side of Eq. (3.11) vanishes in the limiting case
of∆ = 0. This result is an artifact of the semiclassical
approximation used in deriving expression (3.11). The
correct formula obtained from Eq. (3.4) with the lim-
iting values of the Bogoliubov amplitudes (uν = 0 and
vν = 1 for ρν = 1 and uν = 1 and vν = 0 for ρν = 0,
where ρν is the nucleon occupation numbers) is

β(sp)
n = −

∑
&x12&

x
23&

x
34&

x
41 (4.21)

×
3∑

i=0

P̂i

{
ρ1

(ε1 − ε2)(ε1 − ε3)(ε1 − ε4)

}
.

This expression describes the effect of the Coriolis
force on single-particle motion. It will be shown in
the next section that the cancellation of the leading
terms in the sum on the right-hand side of (4.21)
substantially reduces this quantity in relation to βs.
2
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4.2. Second Inertial Parameter for Uncorrelated
Nucleons

In this subsection, we estimate the parameter
β in the normal phase. In view of the cancellation
mentioned above, we have to take into account the
centrifugal-stretching effect, which appears to be on
the same order of magnitude as (4.21). As in the case
of a superfluid phase, we will use the Green’s function
technique.5) Our starting point is the equations in the
Hartree approximation,6)

[ε− hω(r)− V(r)]G(r, r′, ε) = δ(r− r′), (4.22)

where hω is the cranked single-particle Hamilto-
nian (2.1) with the oscillator potential (4.1) and

V(r) =
∫
dqvq(r,q)

∮
C

dε

2πi
G(q,q, ε) (4.23)

is the self-consistent potential. We assume that
the two-body residual interaction vq is an effective
quadrupole one,

vq(r, r1) = −
χ

2

∑
µ

(−1)µq2µ(r′′)q2−µ(r′′1), (4.24)

where the quadrupole moment q2µ is defined in terms
of the doubly stretched coordinates

r′′ = i
ωx

ω0
x+ j

ωy

ω0
y + k

ωz

ω0
z. (4.25)

The interaction strength χ is determined in a self-
consistent way as follows:

χ =
4πω2

0M

5tr{(r′′)2ρ} . (4.26)

This interaction provides a full self-consistency for
deformed nuclei [29].

As usual, we proceed to treat the cranking term V
by perturbation theory, expanding the Green’s func-
tion and the self-consistent potential in the series

G = G0 +G1 +G2 +G3 + . . . , (4.27)

V = V(0) + V(1) + V(2) + V(3) + . . . .

The unperturbed Green’s function is

G0(r, r1, ε) =
∑

ν

Gν(ε)ϕν(r)ϕ∗
ν(r1), (4.28)

5)There is an alternative method based on minimizing the
energy of the system in the rotating reference frame as a
function of the oscillator frequencies ωx, ωy, and ωz and the
rotational frequency ω under the constraint of a constant
volume. For fixed occupations of single-particle states, this
method gives the same result as that obtained below.

6)This approximation is adequate to a separable two-body
interaction that we will use.
P

Gν(ε) =
1

ε− εν + iδ(1 − 2ρν)
,

with δ → +0. The occupation numbers ρν refer to a
nonrotating nucleus. We may note that, under the
self-consistent condition

ωxΣx = ωxΣy = ωzΣz, (4.29)

Σx,y,z =
∑

ν

(nx,y,z + 1/2)νρν

(nx, ny, nz are the oscillator quantum numbers),
V(0) = 0. Thus, the average potential is modified only
by rotation.

There are no odd corrections to the self-consistent
potential, V(2i+1) = 0, because of the different sym-
metry properties of the operators q2µ and &x under the
time reversal. Consequently, the third-order correc-
tion to the Green’s function is expressed as

G3 = G0V G0V G0V G0 (4.30)

+G0V G0V(2)G0 +G0V(2)G0V G0.

The first term generates the interaction of rotation
with single-particle motion. It yields the quantity

β
(sp)
n (4.21). The last two terms are responsible for
the centrifugal-stretching effect, which is described
by the expression

β(str)
n = − 2

ω4
(4.31)

×
∮
C

dε

2πi
tr{V(2)G0(ε)V G0(ε)V G0(ε)},

where the correction to the mean potential V(2) is
obtained from the equation

V(2)(r) = −χ
∑
µ

(−1)µq2−µ(r)
∮
C

dε

2πi
(4.32)

× tr{q2µ[G0(ε)V G0(ε)V G0(ε) +G0(ε)V(2)G0(ε)]}.
This equation has the solution

V(2)(r) =−ω2
∑

µ

χ

1+χσµ
(−1)µQ(2)

2µ q2−µ(r), (4.33)

where

σµ =
∑
1,2

|(q2µ)12|2
ρ1 − ρ2

ε1 − ε2
, (4.34)

Q
(2)
2µ =

∮
C

dε

2πi
tr{q2µG0(ε)&xG0(ε)&xG0(ε)}.

The last quantity is the second correction to the nu-
clear quadrupole moment due to rotation. Its explicit
form is

Q
(2)
2µ =

∑
(q2µ)12&x23&

x
31 (4.35)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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×
2∑

i=0

P̂i

{
ρ1

(ε1 − ε2)(ε1 − ε3)

}
,

where the permutation of indices ν = 1, 2, 3 by the
operator P̂i is subject to the rule νmod3 = ν. It is
obvious that nonzero corrections have the µ = 0,±2
components. The denominator in the sum on the
right-hand side of (4.33) renormalizes the interac-
tion strength. A straightforward calculation of σµ and
the use of Eq. (4.26) with the zero-order density
matrix ρ gives χ/(1 + χσµ) = 2χ. Combining (4.31)
with (4.33), we have

β(str)
n =

16πM2ω2
0

15�ωzΣz

∑
µ=0,±2

Q
(2)
2µQ

(2)
2−µ. (4.36)

We can now calculate two contributions to the pa-
rameter βn by performing summation over the quan-
tum numbers nx, ny, and nz . The anisotropic oscil-
lator potential allows us to find an exact solution to
the problem. At first, we find the corrections to the
quadrupole moments

Q
(2)
20 =

√
5
64π

(4.37)

× �Σz

Mω2
0ωz(k2 − 1)

(2k4 − 15k2 + 1),

Q
(2)
2±2 =

√
5

128π
�Σz(1− 5k2)

Mω2
0ωzk2(k2 − 1)

.

By using (4.36), we then obtain the contribution of
the centrifugal stretching effect:

β(str)
n =

�Σz

3ω3
zk

4(k2 − 1)2
(4.38)

× (k8 − 15k6 + 76k4 − 15k2 + 1).

Finally, after some fairly tedious calculations of the
sum in (4.21), we get

β(sp)
n =

�Σz

2ω3
zk

4(k2 − 1)2
(4.39)

× (k8 − 10k6 − 14k4 − 10k2 + 1).

Adding the last two quantities gives us the parameter
β in the normal phase. We have

βn =
5Irig

6ω2
0

k4 − 10k2 + 1
k2/3(k2 + 1)

(4.40)

if we use the following formula for the rigid-body
moment of inertia:

Irig =
�Σz

ωzk2
(k2 + 1). (4.41)

The parameter βn is substantially reduced in relation
to βs, βn ∼ �

4A7/3/ε3F ∼ βs(SD)A−2/3. This can be
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
explained by the cancellation of the main terms in the
sums in (4.21) and (4.35). That is precisely why the

corresponding quantities β(sp)
n and Q(2)

2µ are propor-
tional to Σz . This result is predictable because the
Hamiltonian hω for an anisotropic harmonic oscilla-
tor can be diagonalized exactly [30]. Its eigenstates
are characterized by the number of rotating bosons.

To find β(sp)
n and Q(2)

2µ , we must calculate first the
expectation values of the operators &x and Q2µ in
this rotating basis. Then, these quantities must be
expanded in powers of ω. Because these operators
are represented by quadratic forms in rotating bosons,
their expectation values and, therefore, all the terms of
the series are proportional to the linear combination of
Σx, Σy, and Σz.

Another special feature of the solution in (4.40)
is that βn < 0 for prolate nuclei with 1 < b/a < 3.15,
whereas βs is always positive. The formal reason be-

hind this effect is a negative value of β(sp)
n and the in-

equality |β(sp)
n | > β

(str)
n > 0, which is satisfied for the

deformations indicated above. In the superfluid phase,
the term responsible for the rotation–quasiparticle
interaction may also be negative, but it never exceeds
the contribution of the pair-modification effect (see
Fig. 2a).

5. ANALYSIS OF EXPERIMENTAL DATA

We have shown in the preceding section that the
second inertial parameter B is negative in the su-
perfluid phase and is positive in the normal phase.
The two limiting cases allow us to reconstruct the
dependence B(I) for the parametrization (1.1) of a
rotational sequence with (πα) = (+0). Comparing
formulas (4.10) or (4.15) with (4.40), we conclude
that the ratio B/A must change sign with increas-
ing spin I in a band and approach its limiting value
Bn/An ∼ A−8/3 for high I.

The limiting ratio for an actual nucleus can be
obtained from Eqs. (4.40) and (4.41) if we suppose
that the root-mean-square radius and the deforma-
tion are exactly the same for the neutron (ν) and for
the proton (π) system. The first condition implies that
the oscillator frequencies of the neutron and proton
potentials satisfy the relation ω0τ = ω0(2Aτ/A) (τ =
π, ν and Aτ is the number of nucleons of a given
type). The second condition results in the identical
ratio of the frequencies along the principal axes for
both potentials:

ωxτ : ωyτ : ωzτ = m : m : l. (5.1)

For the integers m and l, the states with the same
number of quanta Nml = m(nx + ny) + lnz form a
deformed shell. Assuming that, for a given number of
2
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nucleons Aτ , allNml shells are filled, one can express
the sum Σzτ in the form

ωzτΣzτ =ω0τ (ΣxτΣyτΣzτ )1/3= ω0τ

(
A4

τ

32

)1/3

. (5.2)

The above formulas allow us to derive the ratio B/A
for a nucleus consisting of Z protons andN neutrons
in the normal state:

Bn

An
= −3.205(k

4 − 10k2 + 1)k2/3

(k2 + 1)3A8/3
(5.3)

×
[(

Z

A

)1/3

+
(
N

A

)1/3
]
.

This result holds for a nucleus with an arbitrary defor-
mation k = b/a = m/l.

We first concentrate on SD bands. Most of them
are not connected to lower lying states of known
excitation energy, spin, and parity. Thus, their exit
spins I0 are unknown. A tentative spin assignment
is used to take advantage of formulas (1.2) to find
the experimental ratio B/A. To analyze this quantity,
we will take into account two basic ingredients: shell
gaps, which stabilize the shape, and intruder orbitals
involved in alignment. The nucleon-configuration as-
signment of a band is generally based only on the
behavior of the dynamical moment of inertia and the
quadrupole moment in a given band. The last quan-
tity,

Q0 = (6.05 × 10−3)A2/3 k
2 − 1
k2/3

eb, (5.4)

remains remarkably constant as a function of spin
within a band. This proves that the deformation k
remains virtually unchanged as I increases. We use
the experimentally observed value of Q0 to find the
axis ratio b/a, which is required for calculating the
quantity in (5.3).

The ratios B/A extracted from the measured en-
ergy of γ transitions in the four SD bands of the
A = 150 mass region are shown in Fig. 4. The parity
and the signature of these bands are assumed to
be (+, 0). We also use the adopted spins for their
lowest levels. The 152Dy(1) band belongs to the dou-
bly magic nucleus with the Z = 66 proton and the
N = 86 neutron gaps in single-particle spectra at the
same deformation [31]. The gaps decrease the level
density and considerably reduce neutron and proton
pairing correlations. There is no direct experimental
indication of pairing correlations in this band. The-
oretical calculations show [32] that their inclusion
leads to a better description of the kinematical and
dynamical moments of inertia, pairing correlations
being more important in the low-spin part. The plot
PH
shows that there are two distinct regions in the vari-
ation of the ratio B/A versus I. The lower part of
the band exhibits a sharp increase in this quantity.
It then changes sign at the spin value of Ic = 36 and
approaches the plateau value of (5.3) at the top of the
band. This behavior of the ratio apparently shows that
static pairing correlations of neutrons and protons are
quenched simultaneously. This fact also proves that
most of the band belongs to the normal phase.

The band 144Gd(1) is one of the few examples of
SD bands that exhibits backbending. The π62 pair
alignment opens up the Z = 64 proton-shell gap at
the same deformation as the N = 80 neutron-shell
gap. Thus, we see that, above the backbending, this
band becomes similar to the doubly magic 152Dy(1),
except that the gap Z = 64 is less pronounced than
that at Z = 66. In addition, the N = 80 neutron gap
is somewhat smaller than N = 86. These factors en-
hance the level density and favor pairing correlations.
As can be seen in Fig. 4, the behavior of B/A for
this band in the low-I region is the same as that for
152Dy(1) if we scale the axis of ordinates by a factor of
2. Accordingly, the critical value is somewhat larger,
Ic = 38.

The features observed at low spins in the dynam-
ical moment of inertia of the 150Gd(1) band were
explained in terms of the consecutive alignments of
the ν72 and π62 pairs [31]. For the π62ν72 configu-
ration, all levels below the Z = 64 and N = 86 shell
gaps are occupied. The former is found at a slightly
smaller deformation than the latter. This factor dimin-
ishes the neutron gap and enhances neutron pairing.
The Woods–Saxon [31] and the relativistic mean-
field [33] calculations demonstrate that static proton
and neutron pairing exist at low spins, I < 48 (�ω <
0.55 MeV). In addition, the full self-consistent HFB
calculations with the particle-number projection [33]
show that the effect of pairing on the moments of
inertia in 150Gd(1) is about twice as important as in
152Dy(1). It is apparent from Fig. 4 that static pairing
correlations in the 150Gd(1) band are stronger than
in 144Gd(1). One should expect still stronger pairing
correlations in the newly discovered prolate deformed
band 154Er(2) [34], since the proton Fermi level at
Z = 68 lies in the region of a high level density above
the Z = 66 gap. The experimental dependence for
B/A in Fig. 4 is consistent with this prediction. It
is seen that this ratio does not exceed the value of
−5× 10−6 and does not show a plateau.7) The bump
seen at I = 44 (ω = 0.57 MeV) can be attributed to
the alignment of a pair of i13/2 protons in agreement

7)It is worth mentioning that the nonaxial band 154Er(1)
demonstrates the dependence of B/A with the critical spin
Ic = 31 and a long plateau.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 4. Ratio B/A versus spin for some SD bands of the A = 150 region. Expressions (1.2) are used to extract this ratio from
experimental data taken from [8, 34]. The error bars (if they are greater than symbol sizes) include only the uncertainties in the
γ-ray energies. The uncertainties in the spin assignment are immaterial for all bands [with the exception of 152Dy(1)], since
the spin variation in 2� would merely shift the curves along the abscissa. The experimental points for the 144Gd(1) band are
shown above the πi13/2 backbending. The solid straight line represents the ratio Bn/An (5.3) for the normal phase with the
deformation b/a found from the quadrupole moment (5.4).
with the calculations of [31]. Thus, the plots of Fig. 4
show the correlation of the spin dependence of the ra-
tio B/A with the level density near the Fermi surface:
the higher the level density, the stronger the pairing
correlations and the less pronounced the plateau.

The highly deformed (HD) bands in the A = 190
mass region are related to the Z = 80 and N = 112
shell gaps. The majority of these bands have similar
values of I(2), which exhibits a smooth rise as a func-
tion of the rotation frequency. This rise is attributed
to a gradual alignment, in the presence of static pair-
ing correlations, of i13/2 protons and j15/2 neutrons.
The calculations with pairing are able to reproduce
the general trend seen in experiments. The 194Hg(1)
and 194Pb(1) bands are of crucial importance be-
cause their spins, parities, and excitation energies are
known [35, 36]. The plots of Fig. 5 for these bands
demonstrate the gradual rise of the ratio B/A, which
confirms the presence of static pairing correlations.

We now consider ND bands. There are several
bands of Er, Yb, and Hf isotopes in which the static
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 20
neutron-pairing gaps are predicted to collapse. How-
ever, the proton system still has strong pairing cor-
relations. Accordingly, plot of B/A versus I for these
bands exhibits a sharp rise, but it does not approach
a plateau. The yrast band of 84Zr is an exception. Be-
cause, in this nucleus, protons and neutrons occupy
similar orbitals near the Fermi surface, quasiparticle
alignments and the elimination of pairing gaps occur
at similar spins. In addition, the deformed shell gaps
at Z = N = 38 and the low moment of inertia favor
a transition to the normal phase. The combination
of these factors makes the pairing properties of the
ND band of 84Zr similar to those of SD bands in
theA = 150mass region. The ratios B/A determined
for the ND and SD bands of this nucleus from the
data of [37] and [38], respectively, are shown in Fig. 6
versus the spin I. In the SD band 84Zr(1), static pair-
ing correlations are quenched completely because of
a high rotation frequency. This inference is supported
by the coincidence of experimental points with the
Bn/An plateau. It also becomes apparent from this
02
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Fig. 5. As in Fig. 4, but for the two HD bands of the
A = 190 region. Experimental data were taken from [8,
35, 36].

figure that, at high spins, the experimental ratio for
the ND band reaches the same plateau. The difference
in the limiting value of Bn/An due to the difference
in deformations (β = 0.43 and 0.55 for the ND and
SD bands, respectively) is insignificant. The low-spin
part (I < 18) of the ND band is compatible with the
transition nature of the γ-soft nucleus: small β and a
noticeable triaxiality. The alignment of the two g9/2

quasiprotons and the subsequent alignment of the
two g9/2 quasineutrons are clearly seen in Fig. 6 as
the humps A and B. Beyond the second alignment, a
striking change in deformation occurs in the interval
I = 18–22 of spins. After the spin I = 24, the rota-
tional behavior is compatible with the rigid rotation of
a HD axially symmetric nucleus [37].

The characteristic behavior of the ratio B/A with
the critical spin Ic and the pronounced plateau has
also been found in the SD bands of the A = 150
nuclei having configurations different from (+, 0).
The SD bands 152Tb(2) [the π[301]1/2 hole in the
152Dy SD core] and 153Ho(3) [the 152Dy SD core
coupled to the π[523]7/2 orbital] show a dependence
of B/A similar to that of the 152Dy(1) band. The
pair of identical bands 150Gd(2) and 151Tb(1) have
a dependence similar to that in 150Gd(1). All these
bands have somewhat higher values of B/A in the
low-I region than their (+, 0) counterparts. This
proves that an odd nucleon or a particle–hole ex-
citation reduces pairing correlations because of the
blocking effect. This phenomenon is characteristic of
the static-pairing regime [19]. Superdeformed bands
from different mass regions, 132Ce(1), 133Ce(1), and
60Zn(1), exhibit the same behavior of B/A. A strong
configuration-dependent effect is observed in bands
where an odd neutron is placed in the j15/2 intruder
PH
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Fig. 6. Ratio B/A versus spin for the (solid circles)
yrast ND band and the (open circles) SD band of 84Zr.
Experimental data were taken from [37, 38]. The solid
straight line represents the ratio Bn/An (5.3) relevant to
the deformation of the SD band.

orbitals. For such bands, the ratio B/A is positive for
all spins. Examples include the bands 149Gd(1) (con-
figuration π62ν71), 151Dy(1) (π64ν71), and 153Dy(1)
(π64ν73). A single-particle degree of freedom seems
to destroy the typical behavior of the ratio B/A. More
efforts are needed to explain this interesting feature.

These numerous examples prove the universality
of the transition from the superfluid to the normal
phase for SD and ND bands. This universality can
be represented, according to [6], by the effective ro-
tational Hamiltonian,

Heff = aI2 + (I/Ic − 1)bI4 + cI6, (5.5)

which describes the states of the (+, 0) band in the
transition region. The parameters a, b, and c and the
critical spin Ic are the subjects of a microscopic the-
ory that has to take into account static, dynamical,
and uniform pairing. Incorporating the critical spin,
which can be found from the experimental plot ofB/A
versus I, this concept of the superfluid-to-normal
transition is free from ambiguities characteristic of
the approach based on a change in the single-particle
spectra [4, 5].

Using the results of our analysis, we can now
explain why some SD bands have extremely regu-
lar rotational spectra. Figure 4 shows that the most
part of the 152Dy(1) and 144Gd(1) bands belongs to
the plateau with the inertial-parameter ratio B/A ∼
10−6, and so does the whole of the SD band 84Zr(1),
for which this ratio is ∼10−5. The plateau is a man-
ifestation of the normal phase with the anomalously
small ratio (5.3), Bn/An ∼ A−8/3. The above values
for the SD bands agree with this estimate. Therefore,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



SUPERFLUID-TO-NORMAL PHASE TRANSITION 1215
the extreme regularity is explained by the quenching
of static pairing correlations in the lower parts of these
bands. On the contrary, the transition in the yrast
band of 84Zr occurs in its upper part. Accordingly,
the top of the band has the same properties. It is
important to note that the bands in which the proton
and neutron pairing gaps are present [154Er(2) and all
the SD bands in the A = 190 mass region] and that
the ND bands with proton pairing alone [168Yb(yr)
and 186Hf(yr)] are regular to a lesser extent.

We would like to mention yet another feature that
requires a further investigation. The down-sloping
of the dependence of B/A is observed at the top of
152Dy(1), 84Zr(1), and other SDbands with extremely
high spins. Because the quantity Bn/An is a de-
creasing function of the deformation k, it would be
natural to explain this feature by an increase in the
nuclear elongation because of the enormous centrifu-
gal stretching at the end of these bands.

6. CONCLUSION

Despite the vast amount of data collected and var-
ious theoretical interpretations suggested, a detailed
understanding of many properties of SD bands has
yet to be achieved. Pairing correlations are just one
example of such properties. The presence of static
pairing in SD and ND bands is usually established
by studying the behavior of the dynamical moment
of inertia I(2) as a function of the rotation frequency
ω. A band crossing associated with a quasiparticle
alignment leads to an impressive decrease in I(2)

with ω or a hump in this dependence. This gives an
indication that static pairing correlations are present
in that part of a band where such irregularities occur.

In this article, the investigation of pairing correla-
tions is based on the spin dependence of the second
inertial parameter B. This quantity, which is pro-
portional to the difference I(1) − I(2) in the high-I
limit, proved to be a more sensitive measure of the
change in pairing correlations than I(2). The new
method requires spin–signature assignments of the
band states. However, it gives more definite infor-
mation about the superfluid-to-normal transition in
a band. The most important results obtained in this
study can be summarized as follows:

(i) The exact semiclassical expression for the sec-
ond inertial parameter in the superfluid phase has
been found by taking into account the effect of rota-
tion on Cooper pairs in a gauge-invariant form. The
presence of nonuniform pairing reduces the nonadia-
batic effect of rotation. Its influence increases strongly
in the case of superdeformation. Nonuniform pairing
allows one to find correctly interesting physical limits
for the second inertial parameter.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
(ii) The limit of zero static pairing is of special
interest. It permits the function B(I) to be recon-
structed by means of interpolation between the values
ofB in the superfluid and normal phases. Anisotropic-
oscillator-model calculations show that there are two
distinct regions in the variation of the ratio B/A with
I. The lower part of a band is characterized by a
gradual decrease in pairing. Accordingly, being neg-
ative, the ratio B/A exhibits a sharp increase. It then
changes sign at the spin value of Ic and approaches
the positive value characteristic of the normal phase.
The critical point Ic, B(Ic) = 0, is a signature of a
superfluid-to-normal transition. The transition man-
ifests itself in the modification of the rotational spec-
trum of a band.

(iii) The experimental spin dependence ofB/A is in
agreement with the theoretical prediction and demon-
strates the universality of the transition to the normal
state. This agreement is not a trivial fact because
our calculations are based on the simplest model of a
nuclear potential and do not take into account pairing
fluctuations in the normal phase. Nevertheless, the
agreement is not accidental because the universal
dependence of B/A on I has been observed for a large
number of SD bands and some ND ones.

(iv) The universal spin dependence of B/A ex-
plains the extreme regularity of some SD bands. The
characteristic feature of this dependence is a pro-
nounced plateau in the upper part of an SD band (I >
Ic) corresponding to the normal phase. The calculated
ratio in this part of a band is extremely small, B/A ∼
A−8/3. Thus, the closer the critical point Ic to the
exit spin I0, the more regular its rotational spectrum.
Spectacular examples are provided by the 144Gd(1)
and 152Dy(1) bands having B/A ∼ 10−6.

(v) Some new features have been observed in the
upper parts of SD bands. The investigation of this
region, which is free from pairing correlations, is ex-
tremely important for our understanding of the micro-
scopic structure at the superdeformed minimum.
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APPENDIX A

Solving the Integral Equations for the Nonuniform
Pairing Field

The effect of rotation on pairing correlations is de-
scribed by the first, ∆(1)(r), and the second, ∆(2)(r),
corrections to the pairing field, which enter into
Eq. (3.4). We have seen in Section 2 that the integral
2
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equations that have to be solved are of the general
form (2.31) and (2.32) for even and odd corrections,
respectively. It is convenient to introduce, in these
equations, the operator &̇x that is a function of only
the spatial coordinates.

We begin considering the equation for∆(1). Using
the relation �&̇x12 = i(p1 − p2)&x12, we find from (2.32)
for i = 0 that∑

1,2

∫
C′

dp

2π
1

(p2
1 +∆2)(p2

2 +∆2)
(A.1)

× [2i∆�ω&̇x12 + (p1 − p2)2∆
(1)
12 ]ϕ1(r)ϕ∗

2(r
′) = 0.

The equation is satisfied if we assume that

∆(1)(r) = −i �ω
2∆

D1&̇x, (A.2)

where the amplitude D1 is determined upon substi-
tuting (A.2) into Eq. (A.1) and performing integration
with respect to r:

D1 = 4∆2
∑
1,2

|&̇x12|2
∫
C′

dp

2π
(A.3)

× 1
(p2

1 +∆2)(p2
2 +∆2)

/[∑
1,2

|&̇x12|2

×
∫
C′

dp

2π
(p1 − p2)2

(p2
1 +∆2)(p2

2 +∆2)

]
.

The solution reduces to

D1 =

∑
1,2 |&̇x12|2g(x12)δ(ε1 − εF)∑

1,2 |&̇x12|2x2
12g(x12)δ(ε1 − εF)

(A.4)

in the semiclassical approximation. Summation over
the state 1 is to be understood as integration with
respect to its quantum numbers. For an anisotropic-
oscillator potential, the amplitude can be expressed in
the simple analytic form

D1 =
g(ν1) + g(ν2)

ν2
1g(ν1) + ν2

2g(ν2)
. (A.5)

The function g(x) and the parameters ν1 and ν2 are
determined by Eqs. (3.16) and (4.2), respectively.

Upon introducing &̇x, the equation for ∆(2)(r) be-
comes

∑
1,2,3


2�2ω2&̇x12&̇

x
23

∫
C′

dp

2π
(A.6)

× Q3(p; p1, p2, p3)
(p2

1 +∆2)(p2
2 +∆2)(p2

3 +∆2)
−∆(2)

12 δ23
PH
×
∫
C′

dp

2π
(p1 − p2)2 + 4∆2

(p2
1 +∆2)(p2

2 +∆2)


ϕ1(r)ϕ∗

2(r
′) = 0,

where the polynomial function Q3 of third degree in
(p, pν) also depends on the amplitude D1. We try to
solve this equation by making the substitution

∆(2)(r) =
�

2ω2

4∆3
D2&̇

2
x. (A.7)

Applying the same procedure as before, one can find
the amplitudeD2 in the semiclassical approximation;
that is,

D2 (A.8)

=

∑
1,2,3 &̇

x
12&̇

x
23(&̇

2
x)31φ(x12, x13, x23)δ(ε1 − εF)∑

1,2 |(&̇2x)12|2h(x12)δ(ε1 − εF)
,

where the function h(x) is determined by (3.16) and φ
has the form

φ(x, y, z) =
1

2x2y2z2
(A.9)

× [−xy(1−D1x
2)(1 + xy −D1z

2)g(x)

+ y2(1−D1x
2 −D1z

2)h(y)

− yz(1−D1z
2)(1 + yz −D1x

2)g(z)].

Their symmetry properties are
φ(z, y, x) = φ(x, y, z), (A.10)

φ(−x,−y,−z) = φ(x, y, z).

In the oscillator potential, the sum over states 2 and
3 in the numerator of (A.8) comprises 16 terms, in-
cluding four with two close transitions, four with two
distant transitions, and eight terms with one close and
one distant transitions. Performing summation in the
semiclassical approximation in the numerator and in
the denominator of (A.8), we find

D2 = [4φ(ν1, ν1 − ν2,−ν2) (A.11)

+ 4φ(ν1, ν1 + ν2, ν2) + φ(ν1, 2ν1, ν1)
+ φ(ν2, 2ν2, ν2) + 4φ(ν1, 0,−ν1)

+ 4φ(ν2, 0,−ν2)]H−1(ν1, ν2),

where
H(ν1, ν2) = 8 + 4h(ν1 − ν2) (A.12)

+ 4h(ν1 + ν2) + h(2ν1) + h(2ν2).

For the monopole pairing interaction, the pairing
field is uniform and the first correction ∆(1) vanishes.
The coordinate-independent solution for the correc-
tion∆(2) can be found from Eq. (A.6) after averaging
over r. The resulting expression may be written in
terms of the kinematical moment of inertia,

∆(2) =
ω2

2ρF

∂I(1)

∂∆
, (A.13)
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I
(1) =

∑
1,2

|&x12|2[1− g(x12)]δ(ε1 − εF),

in agreement with the result obtained by Mar-
shalek [13]. From the theoretical viewpoint, this
solution is not correct because it violates current
conservation.

APPENDIX B

Calculation of Integrals

In this appendix, we give a brief outline of the
technique used in calculating the integrals that are
necessary for obtaining the function F (3.12) and
for solving the integral equations (A.1) and (A.6).
All the relevant integrals can be evaluated exactly by
the method proposed by Feynman in QED [28]. The
method is based on the identity

1
a1a2 . . . an

= (n− 1)!

1∫
0

dt1

t1∫
0

dt2 . . . (A.14)

tn−2∫
0

dtn−1

[a1tn−1 + a2(tn−2 − tn−1) + . . .+ an(1− t1)]n
,

which is proved by a direct calculation.
The simplest integral is that which is involved in

the sum in (3.10). It is evaluated by using (A.14) as

J1 =
∫
dp1

2π
1

(p2
1 +∆2)(p2

2 +∆2)
(A.15)

=

1∫
0

dt

∫
dp1

2π
1

[p2
1 + p2

12Q(t)]2

=
1

2p2
12

1∫
0

dt

Q(t)
=

1
2∆2

g
(p12

2∆

)
,

where

Q(t) = −t2 + t+ δ2, δ = ∆/p12, p12 = p1 − p2.

Four integrals appear in the first sum of Eq. (A.6).
All those are of the same type. As an example, we
consider the term proportional to the square of the
amplitudeD1. The relevant integral is

J2 = ∆
∫
dp1

2π
(A.16)

× Q2(p; p1, p2, p3)
(p2

1 +∆2)(p2
2 +∆2)(p2

3 +∆2)

= ∆

1∫
0

dt1

t1∫
0

dt2

∫
dp1

2π
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× Q2(p; p1 + (t1 − t2)p12 + (1− t1)p13)
[p2

1 + p2
13Q(t1, t2)]3

,

whereQ2 = p2 + p1p2 − p1p3 + p2p3 +∆2,

Q(t1, t2) = −[(1− c2)t1 + c2t2 − 1]2

− (1− c2)t1 − c2t2 + 1 + δ2,

and c = p12/p13. By making the substitutions u1 =
(1− c)t1 + ct2 and u2 = t2, we find after integration
with respect to p1 that

J2 =
∆

2p13p23
(A.17)

×




1−c∫
0

du1

u1∫
0

du2 +

1∫
1−c

du1

u1∫
(u1−1+c)/c

du2




× (1− c)u1 − cu2 − 1 + c− 2δ2

[cu2 +Q1(u1)]2
,

whereQ1(u1) = −u2
1 + (1− c)u1 + δ2. A straightfor-

ward calculation of these integrals gives

J2 =
1

2∆x13
[x12g(x12) + x23g(x23)]. (A.18)

Finally, let us consider the integral in (3.9). It is
evaluated in the same manner as the preceding ones.
Upon using the identity in (A.14) and performing
integration with respect to p1, the substitutions t1 =
[u1 − (d− c)u2 − cu3]/(1− d), t2 = u2, and t3 = u3,
where c = p12/p14 and d = p13/p14, leads to four
triple integrals that can be taken without a problem.
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Phys. Lett. B 120B, 44 (1983).

28. R. P. Feynman, Phys. Rev. 76, 769 (1949).
29. H. Sakamoto and T. Kishimoto, Nucl. Phys. A 501,

205 (1989).
30. P. Ring and P. Schuck, The Nuclear Many-Body

Problem (Springer-Verlag, New York, 1980).
31. W. Nazarewicz, R. Wyss, and A. Johnson, Nucl.

Phys. A 503, 285 (1989).
32. N. El Aouad et al., Nucl. Phys. A 676, 155 (2000).
33. A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Nucl.

Phys. A 634, 393 (1998).
34. K. Lagergren et al., Phys. Rev. Lett. 87, 022502

(2001).
35. G. Hackman et al., Phys. Rev. Lett. 79, 4100 (1997).
36. K. Hauschild et al., Phys. Rev. C 55, 2819 (1997).
37. H. G. Price et al., Phys. Rev. Lett. 51, 1842 (1983).
38. H.-Q. Jin et al., Phys. Rev. Lett. 75, 1471 (1995).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



Physics of Atomic Nuclei, Vol. 65, No. 7, 2002, pp. 1219–1221. From Yadernaya Fizika, Vol. 65, No. 7, 2002, pp. 1251–1254.
Original English Text Copyright c© 2002 by Kozlov, Khaltourtsev, Machulin, A. Martemyanov, V. Martemyanov, Sabelnikov, Tarasenkov, Turbin, Vyrodov.

90th ANNIVERSARY OF I.I. GUREVICH’S BIRTHDAY
Neutrino-Induced Deuteron Disintegration in an Experiment
at the Krasnoyarsk Nuclear Reactor*

Yu. V. Kozlov , S. V. Khaltourtsev, I. N. Machulin , A. V. Martemyanov,
V. P. Martemyanov , A. A. Sabelnikov, V. G. Tarasenkov , E. V. Turbin, and V. N. Vyrodov**

Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
Received November 15, 2001

Abstract—The results of studying antineutrino interactions with deuterons (CCD and NCD reactions)
and hydrogen (CCP) at the Krasnoyarsk underground reactor with the Deuteron detector are presented.
The cross sections for NCD and CCD were measured with a precision of 9%. For CCP, the precision is
3%: σNCD

expt = (3.35± 0.31)× 10−44 cm2/fission 235U, σCCD
expt = (1.08± 0.09)× 10−44 cm2/fission 235U, and

σCCP
expt = (6.39± 0.19)× 10−43 cm2/fission 235U. The precision of the experimental results is close to the

theoretical one and is in good agreement with other experiments. The limit on the parameters of antineutrino
oscillations into the sterile state was obtained: ∆m2 ≤ 4.7× 10−2 eV2 for sin2(2θ) = 1.0 (68% C.L.).
A comparison of the measured and theoretical cross section gives us the neutron–neutron scattering
length of ann(S) = −17± 6 fm in the approach of zero momentum transfers. The weak neutral current
constant is in good agreement with the prediction of the Standard Model: GNC

A = GCC
A /0.932± 0.056.

c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This article presents the results of experiments
carried out at the neutrino underground laboratory of
the Krasnoyarsk nuclear plant.

The interaction of antineutrinos (ν̄e) with a deu-
teron occurs via two channels, neutral current on a
deuteron (NCD) and charged current on a deuteron
(CCD):

ν̄e + d→ p+ n+ ν̄ ′e (NCD), (1)

ν̄e + d→ n+ n+ e+ (CCD). (2)

These reactions were investigated in the experi-
ments reported in [1–4] and studied theoretically by
Gaponov [5].

The study of these reactions can give information
about (a) weak constants for charged and neutral
currents, (b) the neutron–neutron scattering length,
and (c) neutrino oscillations.

DETECTOR DESIGN

The modernized detector Deuteron (for details, see
[6]) is situated at an underground laboratory at a
distance of 34.0 m from the reactor; the neutrino flux
is about a few units of 1012 ν̄/cm2.

∗This article was submitted by the authors in English.
**e-mail: vyrodov@dnuc.polyn.kiae.su
1063-7788/02/6507-1219$22.00 c©
The target volume is 513 l of D2O(H2O) placed
in a stainless tank, which is surrounded by 30 cm
of Teflon for neutron reflection, 0.1 cm of Cd, 8 cm
of steel shots, 20 cm of graphite, and 16 cm of
boron polyethylene (CH2 + 3%B) for gamma and
neutron shielding. The whole installation is pierced
to make 169 holes (81 holes pass through the tank
and Teflon; the others pass through Teflon only).
These holes house 169 proportional 3He neutron
counters with a reduced intrinsic alpha background.
These counters are used to detect neutrons. They
are located in a square lattice with a side of 10 cm.
The active shielding covering the main assembly is
against cosmic muons.

The efficiency of the detector was calculated by
using Monte Carlo (MC) method both for the in-
verse beta-decay reaction and for the antineutrino–
deuteron reaction. The calculations were also per-
formed for a 252Cf source, and this result was checked
experimentally. The difference (less than 1%) be-
tween the results of the calculation and experimental
data shows a good reliability of MC calculations. To
make the MC calculation more confident, a special
calibration procedure was employed. Using a 238Pu–
Li neutron source, which has a neutron spectrum
that is very close to the one from CCD and NCD
reactions, we measured the spatial distribution in-
side the tank. From this distribution and from the
measured efficiency at the center of the detector, one
2002 MAIK “Nauka/Interperiodica”
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Table 1

Parameters Target

H2O D2O
Efficiency of one-neutron detection by tank counters only, % 27.5± 0.3 56.2± 0.1
Efficiency of double-neutron detection by all counters, % 9.9 ± 0.1 41.7± 0.1
Neutron lifetime, µs 138± 2 203± 2

Table 2

σ × 1044, cm2/fission
NCD CCD

Experiment for the actual mixture of the 235U, 249Pu, 238U fuel 3.38± 0.31 1.09± 0.09
Experiment corrected for 235U 3.35± 0.31 1.08± 0.09
Theory for the actual mixture of the 235U, 249Pu, 238U∗ fuel 3.20± 0.16 1.09± 0.06
Theory for 235U∗ 3.17± 0.16 1.08± 0.06
Theory for 235U∗∗ 3.16± 0.16 1.12± 0.06
Ratio (expt./theory)∗ 1.06± 0.11 1.0± 0.10

∗ Schreckenbach [7] antineutrino spectrum, Kubodera antineutrino–deuteron cross section [8].
∗∗ These are theoretical values of the cross sections from the article of Gaponov and Vladimirov [5] for the Schreckenbach [7] reactor

antineutrino spectrum.
can obtain the experimental efficiency for NCD and
CCD reactions. The neutron efficiency, the neutron
lifetime, and the measured efficiency for D2O and
H2O targets are shown in Table 1. Special atten-
tion was given to the correlated background for the
NCD channel from the antineutrino interaction with
a proton (H2 atoms), because the cross section for
this process is relatively large. The construction of
the detector allowed us to decrease the efficiency of
neutron detection from a boron polyethylene up to
0.003% (0.25 event/d). We estimate the correlated
background (Ncor) at 0.69 event/d due to the con-
centration of H2O (0.15%) in heavy water.

H2O TARGET

The reaction of inverse beta decay on a proton,

ν̄e + p→ n+ e+ (CCP), (3)

Table 3

ann(S), fm 〈σCCD〉 × 1044, cm2/fission

–16.6 1.077

–17.0 1.084

–18.5 1.112

–23.7(= anp) 1.179
P

is used to check and improve some parameters of
the detector. In this case, the detector was filled with
water (H2O). The exposure time is 115 × 105 s or
about 133 d. Four sets of measurement under different
background condition were made. As a result, the
CCP cross section was found to be

σCCP
expt = (6.39 ± 0.19) × 10−43 cm2/fission 235U.

This result is in good agreement with the theoretical
cross section of V –A theory. The ratio is (68% C.L.)

R =
σCCP

expt

σV −A(235U)
= 1.00 ± 0.04.

D2O TARGET

From the beginning of 1997 to February 2001,
experimental data were collected for 718.4 days dur-
ing the reactor operating period and for 208 days
during the reactor shutdown period. Fourteen sets of
measurements were performed. Different sets mean
different experimental conditions (some improvement
of the VETO system, increasing passive shielding,
or changing some counters). Taking into account
both the “wall” effect and time rejection for double-
neutron events and for amplitude selection, we have
the following neutron-detection efficiencies:

εCCD
2 = 0.354 ± 0.003,

εNCD
1 = 0.514 ± 0.005.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Limit on the neutrino oscillation parameters.

As a result, the experimental counting rate was (event
per 105 s)

NNCD = 20.0 ± 1.8, (4)

NCCD = 4.45 ± 0.36. (5)

Using information about the thermal reactor power,
the efficiency of the detector, and the distance be-
tween detector and the reactor, one can obtain the
cross section for both reactions:
σNCD

expt = (3.35 ± 0.31) × 10−44 cm2/fission 235U,

σCCD
expt = (1.08 ± 0.09) × 10−44 cm2/fission 235U.

These results are in good agreement with the theory
(Table 2).

nn SCATTERING LENGTH
The theoretical calculations of the CCD cross sec-

tion for various values of the neutron–neutron scat-
tering length (in the approach of zero momentum
transfers) are presented in Table 3. A comparison of
the measured and predicted values gives ann(S) =
−17± 6 fm, which is one standard deviation greater
than anp(S).

NEUTRAL WEAK CONSTANT
From the experimental ratio (σCCD

expt /σ
NCD
expt ), which

is proportional to

(GNC
A /GCC

A )2 = (cosΘC)−2,

it is easy to obtain the experimental value ofGNC
A . The

weak-neutral-current constant is in good agreement
with the prediction of the Standard Model:

GNC
A = GCC

A /0.932 ± 0.056.
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NEUTRINO OSCILLATIONS

The experimental data for NCD and CCD give the
unique possibility of obtaining a limit on the parame-
ters∆m2 and sin2(2θ) of neutrino oscillations into the
sterile state by using the ratio-of-ratios construction

R =
σCCD

expt /σ
NCD
expt

σCCD
theor/σ

NCD
theor

= 0.95 ± 0.11.

This is possible because the thresholds of the CCD
and NCD reactions are different (4.0 and 2.2 MeV, re-
spectively), and the NCD reaction is more sensitive to
oscillations of a neutrino with a lower energy, because
it has a lower threshold of the reaction. The limit
on the parameters of reactor-antineutrino oscillations
into the sterile state is presented in the figure. The
values of the parameters ∆m2 and sin2(2θ) to the
right of the curves are excluded. For the maximum
mixing angle of the neutrinos states,

sin2(2θ) = 1,

the following limit was obtained:

∆m2 ≤ 4.7× 10−2 eV2 (68% C.L.).
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Abstract—The cross section for the process e+e− → K0
LK

0
S is measured by using approximately 1000

events recorded by the CMD-2 detector at the VEPP-2M collider in the energy range from 1.05 to
1.38 GeV. c© 2002 MAIK “Nauka/Interperiodica”.
Dedicated to Isai Isidorovich Gurevich—
Teacher and marvelous man

1. INTRODUCTION

Investigation of the process e+e− → K0
LK

0
S pro-

vides important information about the internal struc-
ture of kaons.Moreover, measurement of the e+e− →
K0

LK
0
S cross section in the energy region above the φ

meson makes it possible to study the excited states of
the ρ(770), ω(782), and φ(1020) mesons [1]. Finally,
the cross section for the process e+e− → K0

LK
0
S is

used in calculating the contribution of vacuum polar-
ization by hadrons to the muon anomalous magnetic
moment (g − 2)µ [2].
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The e+e− → K0
LK

0
S cross section in the region

above the φ meson was measured in [1, 3, 4] with a
poor statistical accuracy, the systematic error in those
experiments being as large as a value of about 20%.
Considerable advances in this realm were made in the
experiment of M. Achasov et al. [5], who employed
the SND detector [6] at the VEPP-2M collider [7].
That study was based on the integrated luminosity of
6.3 pb−1; the systematic error in the measured cross
section was 10% in the energy region around 2E ≈
1040 MeV and 15% in the region of Ec.m. around
1380 MeV.
Here, we present the results obtained by inves-

tigating the process e+e− → K0
LK

0
S in the energy

range 1050–1380 MeV with the CMD-2 detector [8]
at the VEPP-2 collider. This investigation was based
on the integrated luminosity of 5.8 pb−1; the system-
atic error in the measured cross section was 5% in the
energy range 1050–1090 MeV and 10% at energies
around 1380 MeV.

2. KMD-2 DETECTOR

The CMD-2 detector is described in detail in [8].
Figure 1 shows schematically the longitudinal and
the transverse section of the detector.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Longitudinal and transverse sections of the CMD-2 detector: (1) vacuum chamber, (2) drift chamber, (3) Z chamber, (4)
main superconducting solenoid, (5) compensating solenoid, (6) endface calorimeter based on BGO, (7) cylindrical calorimeter
based on CsI, (8) flight system, (9) magnet yoke, and (10) quadrupole lenses.
The tracking system of the detector consists of
a cylindrical drift chamber (2) [9, 10] surrounding
the point of beam crossing. A proportional Z cham-
ber (3) [11, 12] positioned behind the drift chamber is
used to measure precisely the polar angles of particle
tracks; it is also used in the trigger. Both chambers
are placed within a thin (0.38X0) superconducting
solenoid (4) [13] generating a field of strength 1 T. A
cylindrical electromagnetic calorimeter (7) [14] based
on CsI crystals and a muon flight system (8) [15] are
arranged behind the solenoid outside the magnetic
field. An endface electromagnetic calorimeter (6) [16]
based on BGO crystals, which is also placed within
the solenoid, renders the detector virtually impenetra-
ble to photons emitted from the beam-crossing point.

3. DATA ANALYSIS

The detector records the process e+e− → K0
LK

0
S

by the decay of a short-lived kaon into a pair of
charged pions.
We selected candidate events according to the fol-

lowing criteria:
(i) An event contains two tracks issuing from

the vertex closest to the beam that are associ-
ated with particles of opposite electric charges. The
particle momenta in an event satisfy the condition
pmin(Ebeam)− 20.0MeV/c < p1,2 < pmax(Ebeam) +
20.0 MeV/c, where pmin and pmax are, respectively,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
the minimum and the maximum kinematically pos-
sible momenta of pions in the decay K0

S → π+π− at
the beam energy Ebeam.
(ii) Themaximum ionization loss of particles in the

drift chamber satisfies the condition
max(dE/dx1, dE/dx2) < 2.2(dE/dx)MIP, where
(dE/dx)MIP stands for the ionization loss of min-
imally ionizing particles. In this way, we suppress
events of the process e+e− → K+K− and events
of the beam background. Figure 2a presents the
max(dE/dx1, dE/dx2) distribution of experimental
events versus the invariant mass of two tracks under
the assumption that the tracks are associated with
pions. The horizontal line indicates the value chosen
for the selection criterion. It is clear from the figure
that the condition leaves useful events, significantly
suppressing the background.
(iii) The spatial angle between the tracks satisfies

the condition ψ > 0.5, while the angle that charac-
terizes the deflection of the tracks from collinearity in
the R–ϕ plane is within the interval 0.2 < |π − |ϕ1 −
ϕ2|| < 3.0. In this way, we suppress events involving
collinear particles.
(iv) The value of the coordinate Z of the vertex is

within the range |Zvrtx| < 7.0 cm, while the distance
from the vertex to the beam axis in the R–ϕ plane
satisfies the condition 0.07 < Rvrtx < 1.3 cm. In
this way, we suppress background events of nuclear
2
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Fig. 2. Experimental distributions used to isolate e+e− → K0
LK0

S events: (a) ionization loss of particles versus the invariant
mass of two tracks, (b) z coordinate of the vertex versus the distance from the vertex to the beam axis in the R–ϕ plane, (c)
number of events versus the missing momentum, (d) distribution of events with respect to the invariant mass of two tracks.
interaction between the particles involved and the
vacuum-chamber material and events where there
are tracks originating from the beam-crossing point.
Figure 2b shows the Zvrtx distribution of experimen-
tal events versus of the distance Rvrtx from the vertex
to the beam axis in R–ϕ plane. The lines correspond
to the selection criteria based on these parameters.
It is worth noting that, in the energy region above

the φ meson, the production of a K0
LK

0
S pair is often

accompanied by the emission of a hard radiative pho-
ton (“return to the φ-meson resonance”). Figure 2c
shows the distribution of experimental events with
respect to the missing momentum defined as

Pmis = −(p1 + p2),

where p1 and p2 is the pion momenta from the decay
of a K0

S meson. The left peak corresponds to events
involving the emission of a high-energy photon, while
the right peak corresponds to photonless events (for
the beam energy ofEbeam = 535MeV). In this study,
events featuring return to the resonance were elim-
inated from the analysis by subjecting the missing
mass Pmis to the selection criterion√

E2
beam −m2

K0 − 39.0 MeV/c < Pmis

<
√
E2

beam −m2
K0 + 39.0 MeV/c
P

(shown in Fig. 2c by vertical lines), where 39.0 MeV
corresponds to the experimental missing-mass reso-
lution multiplied by a factor of 5.
The number of the events associated with the

sought effect was estimated in fitting the distributions
over the invariant mass of two tracks at the vertex. For
the approximating function, we took the sum of two
Gaussian functions having equal mean values and
equal number N of events associated with the effect
and a smooth function that described the background
pedestal. The pedestal was due primarily to events
involving particle scattering by the vacuum-chamber
material. In order to determine the parameters of the
function that described the distribution of background
events, we combined data at a few energy points and
used the values obtained in fitting these combinations
to determine the number of events at each individual
energy value. In the same way, we determined the
widths of both Gaussian functions that described the
events associated with the effect. Figure 2d presents
an example of such a combination in the energy range
1050–1190 MeV.
Upon applying the above selection criteria and

subtracting the background, we obtained 948± 33
K0

LK
0
S events.

At each individual energy point the cross section
for the production of a neutral kaon pair was evaluated
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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by the formula

σ =
N

εrecεtrigεgeomL(1 + δrad)
, (1)

where N is the number of events; εrec is the event-
reconstruction efficiency; εtrig is the trigger efficiency;
εgeom is the geometric efficiency; L is the integrated
luminosity, which was determined from the events of
large-angle e+e− scattering by using the procedure
described in [17]; and (1 + δrad) is the radiative cor-
rection to the process e+e− → K0

LK
0
S due to photon

emission by incident particles {this correction was
calculated by formulas from [18]; on average, the re-
sult was (1 + δrad) ≈ 0.92}.
The trigger and the event-reconstruction effi-

ciency were determined from experimental data by
means of the procedure described in [19], while the
geometric efficiency was deduced from aMonte Carlo
simulation of relevant events. The energy-averaged
event-reconstruction, trigger, and geometric efficien-
cies were found to be

εrec = 0.955 ± 0.018,
εtrig = 0.981 ± 0.004,
εgeom = 0.130 ± 0.001.

The procedure described in [20] was used here to
determine the beam energy at each individual point
from the magnetic field in the bending magnets of the
collider. The systematic error in the energy value was
estimated on the basis of the results obtained in [17]
from an analysis of the long-term stability of the beam
energy. In this way, it was found that ∆E/E = 4×
10−4. The table presents the number of events and the
cross section for the process e+e− → K0

LK
0
S at each

individual energy value.
In Fig. 3, closed circles represent the results of

our analysis for the energy dependence of the cross
section in the energy range Ec.m. = 1050–1380MeV.
The data on the cross section in the energy range
1000–1040 MeV were taken from [21]. For the sake
of comparison, experimental data from [3–5] are also
displayed in Fig. 3. It can be seen that the results
of the present analysis are in satisfactory agreement
with the results of previous measurements.
The data on the cross section that were obtained

from our analysis and data from [21] were fitted on
the basis of the vector-dominance model (VDM) [22]
with allowance for the contributions from the ρ(770),
ω(782), and φ(1020) mesons. The explicit form of the
approximating expression was

σ(s) = σ0
q3(s)
q3(m2

φ)

m7
φΓ2

φ

s5/2

∣∣∣∣−Aρ +
1
3
Aω +Aφ

∣∣∣∣
2

, (2)
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Number of events and cross section for the process
e+e− → K0

LK
0
S at each individual energy value (the first

error in the cross section values is statistical, while the
second one is systematic)

√
s, MeV N σ, nb

1050.0 310.9± 17.8 17.44± 2.05± 0.85
1060.0 124.1± 11.3 11.61± 1.07± 0.57
1070.0 76.1± 8.9 7.10± 0.84± 0.35
1080.0 39.3± 6.6 5.27± 0.89± 0.26
1090.0 53.0± 7.5 5.08± 0.73± 0.25
1100.0 29.0± 5.5 4.23± 0.80± 0.21
1110.0 33.5± 6.1 3.49± 0.64± 0.29
1120.0 18.2+4.9

−4.2 2.75+0.74
−0.63 ± 0.23

1130.0 14.7+4.2
−3.6 2.20+0.63

−0.54 ± 0.18
1140.0 25.5+5.7

−5.0 2.74+0.61
−0.54 ± 0.23

1150.0 17.8+4.8
−4.1 2.71+0.73

−0.62 ± 0.22
1160.0 17.2+4.8

−4.1 1.54+0.43
−0.37 ± 0.13

1170.0 13.9+4.2
−3.5 1.96+0.59

−0.49 ± 0.16
1180.0 15.1+4.6

−3.9 1.39+0.42
−0.36 ± 0.12

1190.0 20.9+5.3
−4.6 1.68+0.43

−0.37 ± 0.14
1204.6 19.7+5.6

−4.9 0.84+0.24
−0.21 ± 0.07

1225.0 26.9+6.0
−5.3 1.11+0.25

−0.22 ± 0.11
1250.6 21.3+5.7

−5.3 0.56+0.15
−0.14 ± 0.05

1275.0 18.7+5.8
−5.0 0.54+0.17

−0.14 ± 0.05
1295.8 20.2+6.0

−5.2 0.48+0.14
−0.12 ± 0.05

1325.3 11.2+6.2
−5.4 0.18+0.10

−0.09 ± 0.02
1368.3 20.7+6.6

−5.9 0.25+0.08
−0.07 ± 0.02

where σ0 is the cross section at the peak of the
φ(1020) meson, q(s) = (s/4−m2

K0)1/2 is the neu-
tral-kaon momentum, and AV = 1/(s −m2

V +
i
√
sΓV (s)) is the amplitude of the vector meson V .

The energy dependence of the width of the vector
meson V was taken to be identical to that in [23]. The
masses and widths of all resonances were borrowed
from [24].

The fitted value of the cross section at theφ(1020)-
meson peak [parameter in the approximating expres-
sion (2)] proved to be

σ0(φ→ K0
LK

0
S) = 1376 ± 6± 23 nb, (3)

which is in good agreement with the result of the
analysis performed in [21]. The fitted curve is shown
in Fig. 3. It can be seen that, in the energy region
above 1130 MeV, the experimental points lie above
the predictions of the VDMallowing for the contribu-
tions of the ρ(770), ω(782), and φ(1020)mesons. The
observed excess can be due to the contributions of
2
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Fig. 3. Energy dependence of the cross section for the
process e+e− → K0

LK0
S in the energy range Ec.m. =

1000–1380 MeV according to data from various exper-
iments. The approximating curve follows the prediction of
the vector-dominance model with allowance for the con-
tributions from the ρ(770), ω(782), and φ(1020)mesons.

vector mesons heavier than 1.4GeV. This assumption
is supported by the results obtained by investigating
the process e+e− → K0

LK
0
S in the energy interval

1.4–2.18 GeV with the DM1 detector [1], which are
shown in Fig. 4 (triangles). The circles in this figure
represent the cross-section values obtained in the
present study. In order to describe the resonance be-
havior of the cross section in the energy region around
Ec.m. ∼ 1.6 GeV, we added the amplitude

AX =

M3
XΓX

m3
φΓφ

√
σ0

Xq
3(m2

φ)MX

σ0q3(M2
X)mφ

s−M2
X + i

√
sΓX

eiδX

to the amplitudes of the light vector mesons and fitted
the parameters σ0

X , MX , ΓX , and δX and the cross
section at the peak of theφmeson. For the parameters
of the additional resonance, this yielded the values

σ0
X = 0.78 ± 0.23 nb,

MX = 1624 ± 18 MeV/c2,
ΓX = 128 ± 40 MeV,
δX = (160 ± 42)◦.

Upon taking into account the contribution from the
additional resonance, the cross section at the peak of
the φ meson changed from 1376 to 1375 nb—that
is, by 0.07%, which corresponds to the estimate of
PH
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Fig. 4. Experimental data along with the predictions of
the vector-dominance model allowing for the contribu-
tions (solid curve) from the ρ(770), ω(782), φ(1020),
and X mesons and (dotted curve) only from the ρ(770),
ω(782), and φ(1020) mesons.

the systematic error associated with themodel depen-
dence of the cross section from [21]. The solid curve
in Fig. 4 represents the results of fitting. For the sake
of comparison, the VDM prediction allowing only for
the contributions from ρ(770), ω(782), and φ(1020)
is also displayed in Fig. 4 (dotted curve). It can be
seen that the description of the data is improved upon
adding the amplitude AX to the contributions of the
light vector mesons. As a candidate for resonances
contributing to the cross section in this energy region,
we can indicate, for example, φ(1680). However, a
comprehensive description of process dynamics will
require much more data in the energy region above
1.4 GeV and a simultaneous analysis of different
channels of e+e− annihilation. This will become pos-
sible upon the commissioning of the VEPP-2000
collider, which is now being constructed at the Bud-
ker Institute of Nuclear Physics (Siberian Division,
Russian Academy of Sciences, Novosibirsk).

With increasing energy, the systematic error
in measuring the cross section grows from 4.9%
at Ec.m. = 1050–1100 MeV to 9.6% at Ec.m. =
1270–1380 MeV. The main contribution to the sys-
tematic error (from 4.0 to 9.2%) comes from the
systematic uncertainty in background subtraction
and the uncertainty associated with the choice of
selection criteria. The systematic error in estimating
the detection efficiency is 1.9%.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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The systematic error in the luminosity (it is equal
to 2%) was performed in [17]. Procedures for esti-
mating other contributions to the systematic error in
measuring the cross section are described in [19].

4. CONCLUSION

By analyzing 948± 33 events of the process
e+e− → K0

LK
0
S , we have determined the cross sec-

tion for the production of a neutral-kaon pair in
the energy range Ec.m. = 1050–1380 MeV. We have
shown that the energy dependence of the cross sec-
tion in the energy region Ec.m. > 1130 MeV cannot
be described on the basis of the VDM allowing only
for the contributions from the ρ(770), ω(782), and
φ(1020) mesons.
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Abstract—Experiments are considered that are devoted to studying neutron-spin dynamics (that is,
neutron-spin rotation) in the resonance elastic scattering of polarized neutrons on nuclei of lead isotopes
and on their natural mixture. It is shown that the effect measured traditionally includes a true spin rotation
upon the transmission through a sample and some addition associated with the instrumental error of the
method. An estimate of this error and its validation, which were used, for the first time, to determine
the effect on 204Pb, are given. Some measures to refine and expand relevant experimental procedure are
proposed with the aim of performing a more thorough and a more diversified investigation of elastic neutron
scattering on a nucleus. A program of investigations for all lead isotopes is outlined. Such investigations are
of importance in connection with the possible existence of a previously unknown negative-energy P-wave
neutron resonance in neutron capture by a 204Pb nucleus. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

While a student at the Moscow Engineering
Physics Institute, I had the privilege of attending the
lectures of Isai Isidorovich Gurevich in experimen-
tal nuclear physics. Later on, the monograph The
Physics of Low-Energy Neutrons by I.I. Gurevich
and L.V. Tarasov was the first book recommended to
me by Yu.G. Abov, who supervised my work at the
Institute of Theoretical and Experimental Physics as
a graduate student of the fifth year. As my involve-
ment in the activities associated with the production
of ultracold neutrons and their application in nuclear-
physics experiments deepened with the passage of
time, I became a witness of the profound interest
that Gurevich showed in this topic at seminars held
at the Kurchatov Institute of Atomic Energy. Being,
in recent years, a member of a group that has been
conducting experiments aimed at discovering the
effect of neutron-spin rotation in elastic neutron
scattering on lead nuclei, I was surprised and pleased
to learn that, in the monograph Neutron Physics by
I.I. Gurevich and V.P. Protasov, there is the chapter
named “Coherent Parity Violation.” Thus, we can see
that Gurevich became a teacher for the community of
specialists in neutron physics, an explicit one for a few
of them who were lucky to have this privilege and an
implicit one for others, much more numerous mem-
bers of this community. Like no one other, he could
show them the beauty of the physical experiment.

Believing myself to be one of the numerous implicit
disciples of Gurevich and the admirers of his talent,
I took the responsibility of participating in this com-
memorative issue on their behalf.
1063-7788/02/6507-1228$22.00 c©
In this article, we will consider resonance elastic
neutron scattering on nuclei of lead isotopes with
special emphasis on neutron-spin dynamics. In doing
this, use is extensively made here of a vast body of
experimental data accumulated so far in one very
specific region. By this, I mean data from experiments
devoted to studying the rotation of the spins of neu-
trons longitudinally polarized with respect to their
momentum that undergo scattering on unpolarized
lead nuclei. For the sake of completeness and for con-
venience of the reader not directly involved in research
into this specific realm, we will follow the approach
adopted in the well-known monographs [1, 2], which
are characterized by the clarity of the presentation and
by a wide coverage of the topic, and include a brief
account of the relevant experimental procedure [3] in
our consideration. We also demonstrate the structure
of the measured effect and reveal the explicit contribu-
tion of the instrumental uncertainty. By considering
the example of the latest measurements [4, 5], we
discuss a method for estimating it. Additionally, the
most recent experimental results are presented, and,
after their brief analysis, the possible ways to solve
some of the problems of this method are proposed.

2. STRUCTURE OF THE MEASURED
EFFECT AND RESULT OBTAINED

ON THE 204Pb NUCLEUS

In substantiating experiments aimed at measuring
spin rotation, it is common practice to consider (see,
for example, [2]), the neutron-helicity dependence of
the amplitude for neutron interaction with a nucleus.
As was indicated by Michel as far back as 1964 [6],
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the experimental facility for observing neutron-spin rotation: (1) neutron polarizer, (2) guiding magnet,
(3) bismuth filter, (4) input coil (current-carrying “foil”), (5) π coil, (6) sample, (7) sample holder, (8) backward (output)
coil, (9) guiding magnet, (10) analyzer, (11) neutron detector (6Li-glass + phototube), and (12) magnetic screen.
a coherent effect that is caused by parity-violating
weak interaction could manifest itself as the effect
of neutron-spin rotation in a transversely polarized
neutron beam owing to the fact that neutron waves
characterized by opposite signs of the helicity (s · p),
where s and р are the neutron spin and the neu-
tron momentum, respectively, have different refrac-
tion factors n+ and n−. The reason is that, in the
Hamiltonian for neutron–nucleus interaction, there
is a weak-interaction component, which depends on
the direction of the neutron spin. If the neutron beam
used is polarized orthogonally to the momentum, the
spin wave function in the direction of the momentum

p = �k can be represented as the spinor
1√
2


 1

1


.

Upon the passage through a sample of length l, neu-
tron waves of opposite polarizations acquire the dif-
ferent phases ∆Φ± = kln±, which are proportional
to the sample length. Thus, the spinor components
acquire different phases, whence it follows that, upon
traversing the sample, the spinor in question can be
represented in the form

1√
2

exp(ikn+l)


 1

e−iϕ


 ,

where ϕ = klRe(n+ − n−) and k is the neutron wave
number. The above expression for the spinor corre-
sponds to a spin that is rotated about the momentum
through the angle ϕ.

The angle of neutron-spin rotation is measured
with the aid of the facility schematically shown in
Fig. 1. All explanations are given in the caption un-
der the figure. The simplified scheme of the rele-
vant experiment is depicted in Fig. 2. This scheme
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demonstrates that, if the primary beam is polarized
transversely with respect to the momentum directed
along the Z axis, the beam polarization along the Y
axis measures the spin-rotation angle. The so-called
π coil is tuned in such a way that, being switched on,
it rotates a horizontal spin through an angle of π.

In fact, three pairs of neutron-detector counts at
each of the two sample positions (see Fig. 2) are mea-
sured for the π coil switched on positively, switched
off, and switched on negatively (a rotation through an
angle of π in the opposite direction):

FNP+
+ , FNP+

− , FNP0
+ , FNP0

− , FNP−
+ , FNP−

− ;

BNP+
+ , BNP+

− , BNP0
+ , BNP0

− , BNP−
+ , BNP−

− .

Here, F and B denote the positions of the sample
(forward and backward, respectively), which is moved
from one position to the other, while the superscripts
P+, P0, and P− denote the regimes of the π coil,
with the signs +, –, and 0 indicating, respectively,
the field directions and the regime where the field is
switched off. The signs in the subscripts indicate the
direction of the field of the output coil 8, the plus (mi-
nus) sign corresponding to the spin direction along
(against) the field direction. Relative quantities of the
form A = (N+ −N−)/(N+ +N−) are composed of
the aforementioned six pairs of values and are asso-
ciated with asymmetries of the angles; that is,

Ψ+
F ≡ FA

P+, Ψ+
B ≡ BA

P+, Ψ−
F ≡ FA

P−,

Ψ−
B ≡ BA

P−, Ψ0
F ≡ FAP0, Ψ0

B ≡ BAP0.

The angle ΦPNC, which is due to the parity-noncon-
serving effect (or, more conservatively, an angle that
is associated with neutron transmission through the
sample) and the angles of spin rotation by magnetic
2
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Fig. 2. Simplified schematic representation of the experiment described in this article.
fields, as well as the contributions of angles that are
caused by instrumental effects, can be included in
the measured asymmetries (angles) by means of the
relations

Ψ+
F = −ΦPNC − ΦM1 + ΦM2 + Φπ, (1a)

Ψ+
B = +ΦPNC − ΦM1 + ΦM2 (1b)

+ Φπ + 2(δ2 − δ1) + 2δπ,

Ψ0
F = +ΦPNC + ΦM1 + ΦM2, (2a)

Ψ0
B = +ΦPNC + ΦM1 + ΦM2 + 2(δ1 + δ2), (2b)

Ψ−
F = −ΦPNC − ΦM1 + ΦM2 − Φπ, (3a)

Ψ−
B = +ΦPNC − ΦM1 + ΦM2 (3b)

− Φπ + 2(δ2 − δ1)− 2δπ,

where ΦM1 and ΦM2 are the angles of spin rotation
caused by the residual magnetic fields, respectively,
in front of (M1 zone) and behind (M2 zone) the π
coil (see Fig. 2), and Φπ is an angle that is due to the
irremovable longitudinal field of the π coil.

The angles 2δ1 and 2δ2 were introduced by the
authors of [5] in the analysis of experiments belonging
P

to the type being discussed. Here, we define these
angles as follows:

The angle 2δ1 is the additional angle that arises
in the M1 zone because of moving the sample to the
backward position (concurrently, the effective neutron
trajectory is shifted somewhat, with the result that, at
the corresponding segments of the shifted trajectory,
the effective magnetic field differs slightly from the
field for the forward position).

The angle 2δ2 is an additional angle that arises in
the M2 zone for the same reasons.

The angle 2δπ is the additional angle in the π zone.

Another reason for introducing the additional an-
gle 2δ2 is the same nonequivalence of the positions,
but, this time, from the point of view of the sam-
ple length; that is, the inaccuracy of the mechanical
system for moving the sample from one position to
the other may result in that the sample proves to
be inclined at a very small angle with respect to the
beam axis. At the different positions, these angles are
different, which can make a direct contribution to the
effect because of the resulting distinctions between
the effective lengths of the sample. This is especially
important in the case of a short sample. It should
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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be emphasized that we are dealing here with relative
effects on the order of 10−5.

The possible inaccuracy in the relative 90
◦

orien-
tation of the input and the output coil is included in
ΦM2.

In the eventual form, Eqs. (1a)–(3b) reduce to the
so-called π numbers; that is,

π+ = (Ψ+
B −Ψ+

F )/2 = +ΦPNC + (δ2 − δ1) + δπ,
(4а)

π0 = (Ψ0
B −Ψ0

F )/2 = (δ1 + δ2), (4b)

π− = (Ψ−
B −Ψ−

F )/2 = +ΦPNC + (δ2 − δ1)− δπ.
(4c)

Further, it is obvious that the quantity

πsum = ((Ψ+
B −Ψ+

F )/2 + (Ψ−
B −Ψ−

F )/2)/2 (5)

= ΦPNC + (δ2 − δ1)
is the closest to the effect associated with the sample.

The quantity (δ2 − δ1) is a manifest instrumental
uncertainty.

The statement that, upon averaging over a large
number of cycles, this difference vanishes to the
required precision—that is, 〈δ2 − δ1〉 = 0—has not
been confirmed. If, on the other hand, the sum 〈(δ1 +
δ2)〉 vanishes, this does not generally imply that
〈δ2 − δ1〉 = 0. The case of δ1 = δ2, whenever possible,
requires justification—that is, a dedicated measure-
ment at a higher level of precision. It is also obvious
that available data are insufficient for determining
ΦPNC from the set of Eqs. (1a)–(3b). In the case
where the effect is measured on the 204Рb isotope,
a possible way out can be an additional measurement
on a sample that is known from the point of view of
the effect and which has the same dimensions—for
example, on a sample from natural lead. However,
each reinstallment of the sample would lead to a
change in the aforementioned instrumental uncer-
tainty. One can hardly take this circumstance into
account; moreover, it is impossible to implement this
reinstallment with the required frequency because of
a long-term (about 120 s) measuring cycle on an
individual sample.

Nonetheless, there exists a method for estimating
the difference (δ2 − δ1) on the basis of available data
[5]. This method was first used in [5] with a qual-
ification, but without giving a validation. This will
be done here. In order to characterize the distinc-
tion between the neutron-spin-rotation angles that
is due to the displacement of the sample, one can
introduce the ratios k1 = δ1/ΦM1 and k2 = δ2/ΦM2

for the M1 and M2 zones. For a first approximation,
one can assume that the strength of the longitudinal
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
field increases quadratically with increasing distance
from some axis at which it is minimal. We then have
k1,2 ∼ ∆r1,2/r1,2, where ∆r1,2 characterizes the shift
of the trajectory and r1,2 is the distance from this
axis. Since the aforementioned shift of the trajectory
can be considered to be parallel, so that the relevant
trajectories are similar, we can set k1 = k2 = k̄. It
follows that k1,2 ≈ k̄, where k̄ = (δ1 + δ2)/(ΦM1 +
ΦM2). This might have been expected in the present
case, since the π coil is situated at the center of the
cylindrical screen of the magnetic shield and since the
neutron-beam axis coincides with the screen axis.

In any case, the question of how the residual lon-
gitudinal magnetic field is distributed along the tra-
jectories being investigated must be additionally ex-
plored in each series of measurements versus external
conditions. Some proposal along these lines will be
given below.

Since the relation ΦPNC 
 ΦM1 + ΦM2 holds,
which has become clear upon a preliminary treat-
ment of data from the latest series of measurements
for a 204Pb sample, but which is not inevitably so
in general, we can determine the ratio k̄ = (δ2 +
δ1)/(ΦM1 + ΦM2) from (1a) and (4b); that is,

k̄ ≈ π0/Ψ0
F . (6)

The next step consists in calculating δ2 and δ1 on the
basis of (1a)–(3b):

δ1 =
k̄

1 + 2k̄
[Ψ0

B/2− (Ψ+
B + Ψ−

B)/4], (7)

δ2 = k̄[Ψ0
F /2 + (Ψ+

F + Ψ−
F )/4]. (8)

This estimate of δ1 and δ2 fully takes advantage
of information obtained experimentally and highlights
the relationship between π0 and the instrumental un-
certainty. The difference (δ2 − δ1) can be computed in
each run of the measurements. Therefore, the linear
regression πsum as a function of (δ2 − δ1) according
to Eq. (5) will yield the result for the sought quantity
ΦPNC upon an interpolation to the point (δ2− δ1) = 0.

For the 204Pb isotope, this procedure yielded the
result reported in [5]. Upon rescaling to a 100%
content of the isotope in question, this result trans-
lates into the specific effect of ∆ΦPNC = (8± 2)×
10−5 rad/cm. For the sake of comparison, we note
that the effect obtained without taking into account
the difference (δ2 − δ1) is greater by about 25%, the
error in it being somewhat less (10%).
2
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Comparison of the results for different lead isotopes

Isotope (composition) ∆ΦPNC, rad/cm References

Pb (natural mixture) (2.24± 0.33)× 10−6 [7]

Pb (natural mixture) (3.53± 0.79)× 10−6 [8]
206Pb not measured
207Pb <4.3× 10−6 [8]
208Pb not measured
204Pb (8 ± 2)× 10−5 [5]
1.4% 204Pb (upon
rescaling to a natural
composition)

<2× 10−6

3. BRIEF ANALYSIS OF DATA ON
NEUTRON-SPIN ROTATION IN NEUTRON

SCATTERING ON LEAD

For the sake of comparison, the results obtained
for neutron-spin rotation in experiments with the
measured lead isotopes and with natural lead are
given in the table. From these data, it can be seen
that the achieved accuracy is insufficient for drawing
the conclusion that the effect on the 204Pb isotope [4,
5] fully accounts for the result obtained for a natural
mixture of lead isotopes, but that this cannot be ruled
out at a 90% confidence level. On the other hand,
the contribution of systematic errors of the (δ2 − δ1)
type was disregarded in earlier measurements, and
this could lead to an exaggerated result. It should be
emphasized that the revealed structure of the effect is
inherent in the facility used and, more generally, in the
method as it is (not in the last run exclusively). It is
necessary to perform such an analysis not only for the
experiment with 204Pb but also for all the preceding
experiments. Thus, the present method for measuring
the angle of neutron-spin rotation and the facility
implementing the method require a further refinement
for improving the accuracy and reliability of results.

In considering the content of the natural mixture of
lead isotopes and the available experimental results, it
becomes obvious that these data are insufficient for
drawing a definitive conclusion on the origin of the
effect. The 206Pb and 208Pb isotopes were rejected.
If, for some reason or another, the expected effect
on the 208Pb isotope is close to zero—for example,
two orders of magnitude less than the effect obtained
with a natural mixture of lead isotopes—this should
be corroborated experimentally. Such an experiment
with a “zero” result will provide a “zero” sample,
which is acutely needed for calibrating the facility.
PH
4. REFINEMENT OF THE PROCEDURE

The strengthening and improvement of the mag-
netic shielding in the region where samples are dis-
placed and where the π coil is arranged is a minimal
requirement on the facility [4, 5].

In imposing more stringent requirements on the
stability of external conditions and in order to reduce
the instrumental error, it is worthwhile to consider
modifications that could be introduced in the facility
without abandoning the basic approach to a determi-
nation of the effect. The existing instrumental error,
which was comprehensively explored and taken into
account in [5], stems to a considerable extent from
the distinction between the positions of the sample in
front of and behind the π coil, but it also receives con-
tributions associated with an insufficient reliability of
the system of tie-rods, springs, and guide bars along
which the sample holder moves (taken together, this
leads to variable shifts in this system).

It seems that the accuracy can be improved by
using a scheme where the sample is permanently at
rest in between two π coils. It should be recalled that
the current through a π coil is tuned in such a way
that, upon passing through the region of this coil,
a horizontally oriented neutron spin (the horizontal
component of the polarization) is rotated through an
angle of π.

We denote byM1,M2, andM3 the residual mag-
netic fields, respectively, in front of, in between, and
behind the π coils. Since any magnetic shielding
leaves small or very small magnetic fields, their pres-
ence can mimic the spin-rotation effect on the sam-
ple. We denote by ΦM1, ΦM2, and ΦM3 the spin-
rotation angles due to precession in these fields. Any
π coil, however correct and accurate its design, im-
plementation, and arrangement would be, generates
a longitudinal magnetic field. We denote it by Φπ1 for
the first coil and by Φπ2 for second coil.

Using the superposition principle, one can obtain
an expression for the angle through which the spin
of a neutron that traverses two differently connected
coils and the sample (playing the role of a target)
in between them is rotated. We denote the resulting
angle by Ψ(+, −) for the positive polarity of the first
coil and the negative polarity of the second coil; when
one of the coils is switched off, there appears a sym-
bol 0 at the corresponding position. Further, we also
employ a more complicated combination of simulta-
neously connected coils; that is, ΨS = (Ψ(+,+) +
Ψ(−,−))/2. We have

Ψ(0, 0) = +ΦM1 + ΦM2 + ΦPNC + ΦM3, (9а)

Ψ(+, 0) = −ΦM1 + Φπ1 + ΦM2 + ΦPNC + ΦM3,
(9b)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Ψ(−, 0) = −ΦM1 − Φπ1 + ΦM2 + ΦPNC + ΦM3,
(9c)

Ψ(0,+) = −ΦM1 − ΦM2 − ΦPNC + Φπ2 + ΦM3,
(9d)

Ψ(0,−) = −ΦM1 − ΦM2 − ΦPNC − Φπ2 + ΦM3,
(9e)

ΨS = +ΦM1 −ΦM2 −ΦPNC + ΦM3. (9f)

From this set of equations, it can be seen that it is
impossible to compute the angles ΦM2 and ΦPNC in-
dividually. It is precisely for the purpose of separating
these quantities that the sample is displaced from one
position to the other in the traditional facility. In the
new scheme, it is necessary to perform an experiment
without a sample. It can easily be seen that

ΦM2 + ΦPNC = (Ψ(+, 0)−Ψ(0,+) (10)

+ Ψ(−, 0)−Ψ(0,−))/4 ≡ A(1).

We then have ΦPNC = A(1)−A(0), where A(0) cor-
responds to a measurement without a sample and
A(1) is the relevant quantity in the measurement
where the sample is present. Thus, an experiment
involving the “sample–no-sample” sequence is in-
evitable. Obviously, the best situation is that where
A(0)/A(1) 
 1, in which case the experiment with-
out a sample will be merely a test one. When, how-
ever, we are dealing with effects at a level of 10−6, the
condition A(0)/A(1) 
 1 can hardly be guaranteed
at the stage of creating the facility to be used.

It seems that an experiment employing two π coils
and a sample placed in one position is clearer. At
least, the link between the effect and the sample will
become more obvious. Moreover, the result obtained
from a measurement according to the “sample–no-
sample” sequence directly determines ΦPNC without
any addition caused by magnetic fields, provided that
the external magnetic conditions are steady-state.
Within the proposed configuration, one can employ a
more precise mechanism for installing, replacing, or
displacing a sample—for example, a turret-type or a
drum-type precision mechanism.

The following argument can be the only objec-
tion to performing an experiment of the “sample–
no-sample” type. The effective neutron trajectory be-
tween the coils in the presence of a sample may differ
somewhat from the trajectory in the absence of a sam-
ple. This implies that the magnetic fields M2sample
andM2no-sample may be different. Here, we are dealing
with distinctions on the order of 10−6–10−5 between
the angles of precession.

If the source of this field is within the facility
proper, the transverse field gradient can be measured
with this precision by shifting the facility by a few
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hundredths of a millimeter. The point is that, as can in
fact be seen from expression (10), a polarized neutron
beam is used, in this case, as a means for measuring
weak magnetic fields. More precisely, the effective
magnetic field is measured, in the classical scheme,
over the flight base from the polarizer to the π coil
and from the π coil to the analyzer. With the aid of
two π coils, the regions over which the magnetic fields
are averaged are localized more precisely; at the same
time, the average values of the magnetic induction
over the gaps determined by the positions of the π
coils can be measured, provided that the spectrum of
neutrons is known or provided that the degree of beam
monochromaticity is sufficiently high. Moreover, the
distribution of the longitudinal magnetic field along
the trajectory in the absence of a sample (or in the
presence of a sample if its cross-sectional area is
much larger than that of the beam) can be measured
by displacing the two paired π coils along the neutron
beam or, as has already been said, across the beam.
By scanning, in this way, the magnetic field along
the longitudinal and along the transverse direction,
one can obtain its distribution, choose a right position
for the sample, and minimize the instrumental uncer-
tainty.

In the proposed scheme, the magnetic field is mea-
sured over a finite segment owing to the use of two
π coils; that is, the magnetic field is integrated in
the expression for the spin-rotation angle over a less
extended segment.

Thus, we can see that, in assessing the efficiency of
a multilayer external screen, a polarized neutron beam
measures a very low magnetic field.

As was discussed in Section 3, it would be opti-
mal to measure the magnetic field M2sample by using
a calibration sample that is close in density to the
sample used in the actual experiment and which is
identical to it in the technology of fabrication. In
measuring, for example, the parity-odd neutron-spin-
rotation effect on 204Pb, one can take, for a calibration
sample, that which is of the same dimensions as
the sample being actually explored and which was
prepared from natural lead according to the same
technology of casting and rolling or, say that which
contains about 100% 208Pb if the prediction of zero
effect for doubly magic nuclei comes true. Since the
effect on natural lead is known to a sufficiently high
precision, the effect due to spurious precession can
also be calculated by determining the total effect on
the basis of Eqs. (9a)–(9f).

These are advantages of an experiment in which
the sample used occupies a single position. By ex-
tending the problem to be addressed, it is possible,
however, to make use of yet another advantage offered
by the new experimental scheme.
2
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5. OTHER EFFECTS OF P-ODD
ASYMMETRY IN (n, n′) REACTIONS

A theoretical substantiation of the neutron-spin-
rotation effect in resonance elastic scattering [9–11]
employs the most general arguments concerning the
density of P- and S-wave neutron resonances, their
spacings, the relationships between theirs widths,
etc. Therefore, it is legitimate to assume that en-
hancement effects are operative for all spatial effects
associated with neutron emission.

On the other hand, the emergence of asymmetry
(parity-violation effect) is theoretically explained in
[10, 11] by the mechanism according to which neu-
tron capture by the target nucleus with the formation
of a compound state is accompanied, owing to the
universal weak interaction, by the transformation of
an S-wave neutron into a P-wave one [10]. This
hypothesis does not rule out the possibility of the
emission of a P-wave neutron whose spin projection
is opposite to the projection of the primary-neutron
spin. If this is indeed so, the effect of birefringence and
the effect asymmetric polarization may be superim-
posed in experiments as a neutron undergoes a tran-
sition through the compound state. Either effect can
be interpreted as neutron-spin rotation. In general,
this conclusion calls for an experimental verification.
The possibility of the interplay of the two effects has
not yet been subjected to experimental tests in a
transversely polarized beam.

In this connection, it would be worthwhile to con-
duct an experiment aimed at observing the polariza-
tion of the scattered wave. For example, the polar-
ization of the beam halo formed owing to forward
scattering at small angles could be measured with the
aid of the same traditional facility. In performing such
an experiment, it is sufficient to ensure that only the
beam halo arising because of scattering would arrive
at the analyzer and to measure its polarization sepa-
rately from the polarization of the beam propagating
without scattering. In that case, the sample used is
also at rest in the beam or is removed from the beam.
The ratio of the polarization of the beam scattered
on the sample to the polarization of the beam prop-
agating directly in the absence of a sample, PR =
P sample/P no-sample could be a measured quantity. It
should be recalled that we imply here the projection
of the polarization onto the y axis.

An observation of the asymmetry of neutron emis-
sion from the compound nucleus with respect to the
direction of the captured-neutron spin could be an-
other possibility for extending the range of parity-
violation effects. In all probability, one can assume
that a dynamical enhancement of a weak single-
particle effect of parity violation will lead to asymme-
tries at a level of 10−5–10−4 in this case as well.
P

It is advisable to measure a few parameters that
characterize the parity-violation process in (n, n′) re-
actions.

First, this is the relative asymmetry of neutrons
that are emitted along and against the original direc-
tion of the spin of the neutron captured in the com-
pound nucleus. It is quite conceivable that neutron
emission from the compound nucleus is characterized
by right–left asymmetry, or, to state it otherwise,
the amplitude of compound-nucleus decay depends
on the pseudoscalar quantity p′ · s, where p′ is the
momentum of the emitted (scattered) neutron and
s is the primary-neutron spin. In general, this rela-
tionship between the parameters of the initial and the
final state in the expression for the weak-interaction-
process amplitude is quite conventional.

In order to verify the above hypothesis, it is suffi-
cient to place two detectors of sufficient area on the
two sides (along and against the spin) of a trans-
versely polarized beam. By detecting neutrons emit-
ted by the nucleus in the direction that is orthogonal
to the primary-beam momentum and which is parallel
to the primary-neutron spin conceptually, this is in
line with the approach adopted in the first experiments
devoted to searches for parity violation in (n, γ) re-
actions [12], it is possible to measure the asymmetry
of the emission of resonantly scattered neutrons with
respect to the spin of primary-beam particles. It can
be conjectured that all the arguments put forth in
the aforementioned theoretical studies in favor of the
enhancement of P-odd effects remain in force for
(n, n′) reactions as well, with the exception of the
accumulation of the effect in response to an increase
in the sample length.

Second, it is possible to measure the polarization
of neutrons emitted orthogonally to the momentum–
spin plane in the direction of the primary momen-
tum—that is, to measure the polarization PX of neu-
trons emitted along and against the direction of the y
axis in the coordinate frame depicted in Fig. 2.

Third, it is interesting to measure, with a high
precision, the angular distribution of neutrons emitted
by a compound nucleus and to verify whether this
distribution is compatible with the presumed mixing
of the S and P waves. The one-position scheme is
preferable for such experiments as well.

Thus, the total scheme of the experimental facility
to be used must include, in addition to the aforemen-
tioned system for measuring the spin-rotation angle,
the system of detectors arranged crosswise in order
to record neutrons emitted by the sample. One pair
of detectors would record neutrons emitted by the
sample along and against the direction of the spin of
the incident (captured) neutron. The second pair of
detectors, which is equipped with analyzers, would
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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measure neutron counts in the orthogonal direction
and the neutron polarization PX (in order to measure
the “background” and its polarization). Test experi-
ments are obvious in the present case.

6. CONCLUSION

The development of studies aimed at observing the
rotation of the spin of neutrons incident on lead iso-
topes led to the theoretical prediction of a subthresh-
old neutron resonance of the P-wave character in
neutron capture by a 204Pb nucleus [10]. At the same
time, an analysis of relevant experimental data made
it possible to conclude that there is an instrumental
uncertainty in the structure of the effect and that it is
possible to assess this uncertainty quantitatively and
to take it into account. In this situation, it becomes
necessary to refine the procedure further in order to
improve its accuracy and to draw more definitive con-
clusions on the origin of the Ð-odd effect on a natural
mixture of lead isotopes. In addition, it is desirable
to perform experiments that would quantify the effect
arising on samples enriched in the 206Pb and 208Pb
isotopes. This information would become a necessary
test for corroborating the crucial role of the 204Pb
isotope.

On the other hand, the experimental method for
measuring spin rotation requires including new ap-
proaches in order to eliminate conventional sources
of systematic effects. In particular, it is proposed to
use a one-position method of measurements, which
enables a more straightforward interpretation of the
observed effect and a more clear-cut determination
of the contribution from the possible systematic er-
ror. Moreover, the one-position procedure can be ex-
tended to studying all facets of the parity-violation
phenomenon in (n, n′) reactions proceeding through
the formation of a compound nucleus. Among other
things, it is worthwhile to analyze and to verify ex-
perimentally the presumed effect of the asymmetry of
compound-nucleus decay through neutron emission.
Obviously, this effect is not associated with spin ro-
tation. However, it is possible to organize measure-
ments in such a way that these two effects, which are
so distinct, will be recorded simultaneously.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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Abstract—The radiative capture of ultracold neutrons traversing thin and thick homogeneous layers of
matter is analyzed. The applicability range of the formulas for the probabilities of reflection, transmission,
and capture in thick layers (under certain conditions, they admit a simple interpretation—it is often quoted
in the literature—that is based on the effective capture cross section, which is in inverse proportion to
the velocity of a neutron in matter) is investigated, along with the conditions under which there arises the
effective capture cross section. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Radiative capture is one of the channels through
which ultracold neutrons (UCN) can escape from
matter traps employed for their storage. In order to
reduce such losses, the trap walls are usually manu-
factured from weakly absorbing substances. The op-
posite case—that of UCN reflection from a surface of
a strongly absorbing medium—was first considered
by Gurevich and Nemirovsky [1].

Direct observations of radiative UCN capture by
the nuclei of medium atoms were performed quite
recently by the methods of (n, γ) spectroscopy (see
[2, 3]). In those experiments, the contributions of
different nuclei to neutron capture are separated by
the energy of emitted γ rays. Investigation of UCN
transmission through matter layers is less informative
in this sense—not only are such experiments unable
to distinguish between captures by different nuclear
species, but they also give no way to separate radia-
tive capture proper from other channels of losses (for
example, from inelastic scattering). Only in special
cases—such as that in [4], where the authors in-
vestigated the transmission of UCNs through layers
of matter containing strongly absorbing Gd nuclei—
does radiative capture obviously dominate over other
processes that lead to the removal of neutrons from
the beam entering the layer.

From the theoretical point of view, radiative cap-
ture is rather a simple phenomenon, in contrast to,
say, inelastic scattering (for more details on inelastic
scattering, see, for example, [5]). For this reason,
experimental results on radiative capture must admit
a simple interpretation. Indeed, it was found in [2] for
UCN interaction with stainless steel that the γ-ray
yield exceeds considerably the estimates obtained un-
der the assumption that various atoms entering into
1063-7788/02/6507-1236$22.00 c©
the composition of a sample are distributed uniformly
over its volume. This result was interpreted as an in-
dication of a significant nonuniformity of distribution
of steel elements over the steel volume. Discrepancies
between theoretical and experimental results were
observed in [4] as well. In that case, however, the rea-
sons behind the discrepancies have yet to be clarified:
only some plausible hypotheses were discussed in [4]
and in the comment given in [6]. In the present study,
we also indicate some features of radiative capture
that seem to have been disregarded in [4].

Experiments studying radiative UCN capture are
of great interest precisely because of their clarity from
the theoretical point of view. Let us consider, by way
example, the problem of inelastic UCN scattering for
UCN interaction with matter. In all probability, this
is the phenomenon that is responsible for anomalous
neutron losses [7], which are being widely discussed
at present, and for the recently discovered effects of
small heating and cooling of UCNs in matter traps
(see, for example, [8]). Data on radiative capture can
furnish quantitative information that concerns the
structure of surface layers and the concentration of
impurities and which is of importance for estimating
inelastic scattering. In particular, the detection of γ
rays emitted upon neutron capture by protons—this
was done in [9]—will make it possible to assess the
content of hydrogen at the surface of the trap walls
and, hence, to establish more reliably the role of hy-
drogen in inelastic UCN scattering.

In the simplest way, radiative capture is taken into
account in terms of the imaginary part of the potential
representing UCN interaction with matter (see, for
example, [10, 11]), this imaginary part being in di-
rect proportion to the imaginary part of the neutron–
nucleus scattering length. The total number of neu-
2002 MAIK “Nauka/Interperiodica”
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trons absorbed in matter is determined by the total
neutron flux through any closed surface surround-
ing the sample. For a planar homogeneous layer,
the problem is solved straightforwardly. At a small
thickness of a layer, the number of absorbed neu-
trons quickly oscillates as a function of the incident-
neutron energy exceeding the real part of the poten-
tial, these oscillations being due to the interference
of waves multiply reflected from the inner surfaces
of the layers. At large thicknesses, one can neglect
this interference and sum, instead of amplitudes, the
probabilities of capture from a primary beam, a singly
reflected beam, a doubly reflected beam, and so on
[12]. In this case, the quantum-mechanical problem
of neutron interaction with matter that is represented
by a specific potential cannot be solved completely.
Relevant calculations involve, first, the probabilities of
particle transmission and reflection at the boundary of
a half-space filled with matter and, second, the cross
section for capture by one nucleus, this cross section
being assumed to be in inverse proportion to the
neutron velocity in matter rather than in a vacuum.

This procedure for calculating the probability of
neutron transmission through a matter layer seems
reasonable, the results of such calculations being, as
a rule, in good agreement with experimental data.
This is apparently not so only for data reported in the
aforementioned article of Rauch et al. [4], who in-
vestigated the propagation of UCNs through strongly
absorbing layers. But even if there were no such ex-
ception, it would be of great interest, in our opinion, to
give a consistent validation of the procedure formu-
lated above. We were unable to find such a validation
in the literature. From our point of view, this is all
the more important since, in a consistent quantum-
mechanical approach, the probability of radiative neu-
tron capture in matter is determined by the sum of
the probabilities of capture on individual nuclei. But
these probabilities are proportional to the “true” cross
sections for capture by an individual nucleus—that is,
to the cross sections that are inversely proportional to
the neutron velocity in a vacuum. It would be intrigu-
ing to trace the way in which the true cross sections
for capture transform into effective cross sections that
are inversely proportional to the neutron velocity in
matter.

It is also of interest to investigate the probability
of neutron capture in a planar layer in addition to
the usually explored problem of neutron transmission
through a layer. With the aid of (n, γ) spectroscopy,
the capture probability can be measured directly by
the γ-ray yield. At the same time, the interpretation
of the transmission probability can be hindered by
the paucity of experimental data under the conditions
where reflection from the layer is not monitored or
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
where inelastic scattering is significant, along with
capture.

Here, we do not consider inelastic-scattering ef-
fects, assuming all nuclei of matter to be at rest.
The potential of UCN interaction with matter can be
represented as

U(r) = U ′(r) + iU ′′=
2π�

2

m

∑
ν

nν(r)βν , (1)

where m is the neutron mass, nν(r) is the concentra-
tion of nuclei of matter that belong to the ν species,
and βν = β′

ν + iβ′′
ν is the coherent scattering length

for neutron interaction with a nucleus of the ν species.
The imaginary part β′′ of the coherent scattering
length is negative; therefore, the imaginary part U ′′

of the potential is also negative according to (1).

2. RADIATIVE-CAPTURE PROBABILITY

The probability of radiative neutron capture in
matter can be calculated by two equivalent methods.

The first method follows from the definition of the
flux. Let us enclose the sample under investigation
by an arbitrary surface ∂Ω, which is the boundary of
some region Ω. The number of particles accumulated
within this surface per unit time is given by

dNc

dt
= −

∮
∂Ω

jds, (2)

where

j =
�

2mi
(ψ∗∇ψ − ψ∇ψ∗) (3)

is the flux density-vector and ds is an outward ori-
ented area element of the surface ∂Ω. By definition,
the cross section for radiative capture is

σc =
dNc/dt

j0
= − 1

j0

∮
∂Ω

jds, (4)

where j0 is the density of the incident-particle flux.
Everywhere below, we will assume that j0 = �k/m—
that is, the wave function for incident particles has the
form ψ0 = exp(ik · r), where k is the neutron wave
vector in a vacuum.

A transformation of formula (4) will lead us to
the second method for calculating the capture cross
section. In the time-independent case, the following
continuity condition can easily be obtained from the
Schrödinger equation with the complex-valued po-
tential (1):

|ψ|2U ′′ =
�

2
div j. (5)
2



1238 TUDOROVSKIY, BARABANOV
By transforming the surface integral appearing in (4)
into a volume integral and by using formulas (1) and
(5), we find

σc = −
∑

ν

∫
V

4π
k

β′′
ν |ψ(r)|2nν(r)dV. (6)

Integration in (6) is performed over the sample vol-
ume V .

This expression for the cross section describing
radiative neutron capture by matter can be recast into
the form

σc =
∑

ν

∫
V
σ(1)

ν |ψ(r)|2nν(r)dV, (7)

where

σ(1)
ν = −4π

k
β′′

ν (8)

is the true cross section for neutron capture by a
single isolated nucleus (see, for example, [11]) and
nν(r)dV is the number of nuclei in the volume dV .
Formula (7) has a clear physical meaning: the total
capture cross section is obtained by summing, over
all nuclei, the products of the cross section for capture
by an individual nucleus and the quantity |ψ(r)|2,
which is proportional to the probability of finding a
neutron near this nucleus. It is natural to refer to
the method of calculating the radiative-capture cross
section according to (6) and (7) as the method of
summation over nuclei.

The radiative-capture probability (coefficient of
losses) is expressed in terms of the capture cross
section as

wc =
σc

S⊥
, (9)

where S⊥ is the cross-sectional area of the sample in
a beam of incident neutrons.

3. HOMOGENEOUS HALF-SPACE
AND HOMOGENEOUS PLANAR LAYER

Let us consider the simplest case, that of neutron
capture in a homogeneous half-space. Suppose that
a particle is incident from a vacuum (x < 0) on the
half-space x > 0 filled with matter. The particle wave
function has the form

ψk(r) = eik‖ · r‖ ×




eik⊥x + re−ik⊥x, x < 0,

teik̄x, x > 0,
(10)

where k is the wave vector in a vacuum and k‖ and
k⊥ are its components that are, respectively, parallel
and orthogonal to the boundary of the half-space. The
P

normal component k̄ of the neutron wave vector in
matter is given by

k̄ =
√

k2
⊥ − u0, u0 =

2mU

�2
. (11)

The amplitudes r and t can be derived from the
matching conditions at the boundary x = 0:

r =
k⊥ − k̄

k⊥ + k̄
, t =

2k⊥
k⊥ + k̄

. (12)

The quantities

R = |r|2, T = 1− |r|2 (13)

determine, respectively, the probability of reflection
from the boundary of the half-space and the proba-
bility of penetration into the half-space.

Since U = U ′ + iU ′′, the quantities u0 = u′
0 + iu′′

0

and k̄ = k̄′ + ik̄′′ also have a real and an imaginary
part. By squaring the first formula in (11) and by
isolating, on the left- and on the right-hand side, the
imaginary parts, we derive the useful relation

2k̄′k̄′′ = −u′′
0 . (14)

We also note that, at any k⊥ > 0, the quantities k̄′ and
k̄′′ are positive and are determined by the formulas

k̄′2 =
1
2

(√
(k2

⊥ − u′
0)2 + u′′2

0 + (k2
⊥ − u′

0)
)

, (15)

k̄′′2 =
1
2

(√
(k2

⊥ − u′
0)2 + u′′2

0 − (k2
⊥ − u′

0)
)

. (16)

Following the first (standard) method for calcu-
lating the capture probability, we write the total flux
through an arbitrary plane x = x0 < 0 bounding the
half-space as∫

jds = −S �k⊥
m

(
1− |r|2

)
. (17)

Here, we assume that the area of the plane surface
separating matter from a vacuum, albeit being very
large (such that we can use the concept of a half-
space), is finite and is equal toS. We neglect boundary
effects. Substituting our result into (4) and (9) and
considering that S⊥ = Sk⊥/k, we arrive at the well-
known relation

wc = 1− |r|2. (18)

In this case, the absorption probability coincides with
the probability T of penetration into the half-space.

Let us now trace the procedure of summation over
nuclei. In accordance with (6) and (10), we have

σc = −S
∑

ν

2πnνβ
′′
ν |t|2

kk̄′′
. (19)
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Isolating the term u′′
0 = 4π

∑
ν nνβ

′′
ν on the right-

hand side and using Eq. (14), we recast the cross
section into the form

σc = S
k̄′|t|2
k

=
Sk⊥
k

(
1− |r|2

)
. (20)

Again, formula (18) follows from here in accordance
with (9). It should be emphasized that, for each indi-
vidual nucleus, we have used the true capture cross
section, which is inversely proportional to the neutron
velocity in a vacuum.

Let us now calculate the radiative-capture prob-
ability for the case where UCNs traverse a homoge-
neous planar matter layer of thickness a. In this case,
the neutron wave function has the form

ψk(r) = eik‖·r‖ (21)

×




eik⊥x + be−ik⊥x, x < −a/2,
feik̄x + ge−ik̄x, −a/2 < x < a/2,
ceik⊥x, x > a/2,

where the quantities k‖, k⊥, and k̄ are defined in the
same way as in (10). The amplitudes b, c, f , and g
are determined from the conditions of matching at the
boundaries of the layer and are given by

b = e−ik⊥a r(1− γ2)
1− r2γ2

, c = e−ik⊥a γ(1− r2)
1− r2γ2

,

(22)

f = e−ik⊥a/2 tγ1/2

1− r2γ2
, g = −rγf, (23)

where

γ = eik̄a = |γ|eik̄′a, |γ| = e−k̄′′a. (24)

At a sufficiently large value of the layer thickness
a, the parameter γ is always small in magnitude
for a subbarrier neutron (k2

⊥ < u′
0). For an above-

barrier neutron, two cases are possible, that of strong
absorption (k̄′′a� 1) and that of weak absorption
(k̄′′a� 1). In the former case, the parameter γ is
again small in magnitude, while, in the latter case,
the parameter γ oscillates as a function of the neutron
energy, the frequency of these oscillations becoming
higher with increasing layer thickness a.

We note that, in calculating the capture probability
by the first method—that is, in terms of the neu-
tron fluxes beyond the layer—one needs the explicit
expressions (22) for the amplitudes b and c. At the
same time, the method of summation over nuclei
employs the wave function that describes neutrons
within the layer and which is completely determined
by the amplitudes f and g (23). Of course, the results
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
are identical. The first method is, however, clearer.
Within it, we obtain

wc = 1− ρ− τ, (25)

where

ρ = |b|2 =
|r|2|1− γ2|2
|1− r2γ2|2 (26)

is the probability of reflection from the layer and

τ = |c|2 =
|γ|2|1− r2|2
|1− r2γ2|2 (27)

is the probability of transmission through it.
If the parameter γ is small in magnitude, the

quantities ρ, τ , and wc are smooth functions of the
incident-neutron energy. In the limit |γ| → 0, we
return to the case of a half-space,

ρ→ R, τ → 0, wc → T. (28)

We repeat that this case corresponds to subbarrier
neutrons at a sufficiently large layer thickness and
to above-barrier neutrons at a very strong absorption
in the layer (k̄′′a� 1). The fact that the reflection of
subbarrier neutrons is not small even at a very strong
absorption in matter was emphasized in [1].

But if a neutron is in the above-barrier region
(k2

⊥ > u′
0) and if the product k̄′′a is not overly large,

the parameter γ and the quantities ρ, τ , and wc,
together with it, oscillate as functions of the neu-
tron energy. As the neutron energy grows above the
barrier, the amplitudes of these oscillations decrease
because of the reduction of r.

4. THICK HOMOGENEOUS LAYER

Of particular interest is the case where a neutron
is in the above-barrier region and where oscillations
are well pronounced, but where the layer thickness a
is so large that high-frequency oscillations cannot be
experimentally resolved. A great many experiments
studying neutron transmission through layers were
performed precisely for such a relationship between
the parameters. It is intuitively clear that the above
oscillations arise because of the interference between
waves multiply reflected from the inner boundaries
of the layer. Hence, the smoothing of oscillations
corresponds to the disregard of the interference. In
this case, the probabilities of reflection, transmission,
and capture can be calculated by means of a mere
summation of the relevant probabilities [12].

Let us denote by α the probability that a neutron
traversing a layer is captured by none of matter nuclei.
We note that the probability of neutron reflection from
the inner boundary of a half-space can be obtained
from formulas (12) and (13) by means of the substi-
tutions k⊥ → k̄ and k̄ → k⊥. But this implies that the
2
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probability in question coincides with the probability
R of reflection from the outer boundary of the half-
space. Accordingly, the probability of escape from the
half-space, T = 1−R, is equal to the probability of
penetration into the half-space. For the probability of
reflection from the layer, we then obtain

ρ′ = R + T (αRα)T + T (αRα)(RαRα)T (29)

+ . . . = R

(
1 +

α2T 2

1− α2R2

)
.

In the same manner, the probability of transmission
through the layer is given by

τ ′ = TαT + Tα(RαRα)T + . . . =
αT 2

1− α2R2
.

(30)

The capture probability is calculated either from (25)
or directly:

w′
c = T (1− α) + T (αR)(1 − α) (31)

+ . . . =
T (1− α)
1− αR

.

For the quantity α, it is natural to use the representa-
tion

α = e−nσ
(1)
eff a, (32)

where n =
∑

ν nν is the total concentration of nuclei

in the sample being considered and σ
(1)
eff is the effective

cross section for the capture of a neutron by one
nucleus.

At the same time, formulas (25)–(27) determine
the exact expressions for the oscillating probabilities
of reflection, transmission, and capture in the layer.
The smoothing of the oscillations can be performed
as follows. The oscillations of the transmission prob-
ability τ are determined by the factor

1
|1− r2γ2|2 (33)

=
∞∑

l,m=0

r2l(r∗)2m|γ|2l+2me2i(l−m)k̄′a.

The smoothed (averaged with respect to oscillations)
part of this expression is determined by the sum of
m = l terms; that is,〈

1
|1− r2γ2|2

〉
=

1
1− |rγ|4 . (34)

The averaging of the factor〈
γ2

|1− r2γ2|2
〉

=
(r∗)2|γ|4
1− |rγ|4 , (35)
PH
which appears in the expression for the reflection
probability ρ, can be performed in a similar way. For
the averaged quantities 〈ρ〉 and 〈τ〉, we obtain

〈ρ〉 =
|r|2

(
1 + |γ|4 − 2|γ|4Re(r2)

)
1− |rγ|4 , (36)

〈τ〉 =
|γ|2|1− r2|2

1− |rγ|4 .

These formulas can be identically recast into the form

〈ρ〉 = R

(
1 +

|γ|4T 2

1− |γ|4R2
(1 + A)

)
, (37)

〈τ〉 =
|γ|2T 2

1− |γ|4R2
(1 + A) ,

where

A ≡
2
(
|r|2 − Re(r2)

)
(1− |r|2)2

=
k̄′′2

k̄′2
. (38)

Suppose that the energy of an above-barrier neu-
tron is much larger that the imaginary part of the
potential; that is, (k2

⊥ − u′
0)� |u′′

0 |. We then have
A� 1, and the averaged reflection and transmission
probabilities become

〈ρ〉 = R

(
1 +

|γ|4T 2

1− |γ|4R2

)
, (39)

〈τ〉 =
|γ|2T 2

1− |γ|4R2
.

Comparing these expressions with (29) and (30), we
obtain

α = |γ|2 = e−2k̄′′a. (40)

Further, we compare this result with (32) and employ
Eq. (14). In this way, we find that the effective cross
section for capture on one nucleus can be represented
in the form

σ
(1)
eff = −4π〈β′′〉

k̄′
, 〈β′′〉 =

∑
ν nνβ

′′
ν

n
. (41)

Thus, we conclude that, if (k2
⊥ − u′

0)� |u′′
0 |, the

effective cross section is indeed inversely proportional
to the real part of the neutron wave vector in a
medium—that is, to the group velocity of the neutron
wave in matter. It is for these values of k2

⊥ that the ap-

proximate equality k̄′ 

√

k2
⊥ − u′

0 follows from (15).

It should be noted that, in the small region 0 ≤
k2
⊥ − u′

0 ≤ |u′′
0 | of the above-barrier neutron energies,

the wave number k̄′ can no longer be considered as
a quantity that is proportional to the neutron veloc-
ity in matter. Strictly at the barrier top—that is, at
k2
⊥ = u′

0—we have k̄′ =
√
|u′′

0|/2 in accordance with
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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(15). In this case, the effective cross section (41) for
capture does not go to infinity, as would occur if it
were inversely proportional to the neutron velocity
in a medium; instead, this cross section takes some
finite value referred to in [1] as a saturation value.
Strictly speaking, this saturation should not be taken
too literally. It occurs only if u′

0 = 0, so that, in the
limit k⊥ → 0, we have

σ
(1)
eff → σ

(1)
eff,max = 2

√
2π|〈β′′〉|

n
. (42)

This is precisely the case that was considered in [1]
{formula (42) coincides with formula (18) from [1]}.
But if u′

0 > 0, it turns out that, upon the transition of
k2
⊥ to the region of subbarrier values (k2

⊥ < u′
0), the

quantity k̄′ continues decreasing according to the law
[see (14)–(16)]

k̄′ =
|u′′

0|
2k̄′′

, k̄′′ 

√

u′
0 − k2

⊥ �
√
|u′′

0 |, (43)

while the effective cross section accordingly contin-
ues growing. It is obvious, however, that this growth
is not at all associated with radiative capture. A de-
crease in the factor α = |γ|2, which is determined by
formulas (32) and (40), is due to the usual subbarrier
suppression of the wave function.

We also note that, immediately above the barrier—
that is, in the region 0 ≤ k2

⊥ − u′
0 ≤ |u′′

0 |, the factor
A (38) is on the order of unity, which increases the
transmission probability 〈τ〉 (37) in relation to that
which is expected on the basis of relations (30) and
(39). A treatment of experimental results without tak-
ing into account this fact may lead to underestimating
the effective capture cross section. It is interesting
to note that this occurred in the experiment reported
in [4]: as the incident-neutron velocity was reduced
down to a value close to the critical one (that is,
corresponding to the barrier top), the effective cap-
ture cross section as extracted from the transmission
probability according to (30) and (32) proved to be
smaller than that which is predicted by extrapolating
formula (41) to the region of low velocities.

It is intriguing that next to nothing changes for
the probability 〈ρ〉 (37) of reflection from a thick layer
upon taking into account the factor A. At sufficiently
high above-barrier energies, the factor A does indeed
tend to zero. At the same time, α = |γ|2 → 0 near the
barrier if |u′′

0 |a2 � 1, so that we have 〈ρ〉 → R.
In conclusion, we present a formula for the quan-

tity obtained by averaging, over oscillations, the prob-
ability of neutron capture in a layer:

〈wc〉 = 1− 〈ρ〉 − 〈τ〉 (44)

=
T (1− α)
1− αR

−A
αT 2

1− αR
.
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In just the same way as in the case of the probability
of reflection, the inclusion of an additional term that is
proportional to the factor A does not give anything for
a thick layer if |u′′

0 |a2 � 1. High above the barrier, we
haveA→ 0, while, near the barrier top,α = |γ|2 → 0,
so that 〈wc〉 → T .

The results obtained by numerically calculating
the capture probabilities for weakly and strongly ab-
sorbing substances are presented in [13]. These re-
sults provide an illustration of the above considera-
tions on well-resolved oscillations for thin and unre-
solved oscillations for thick layers.

5. CONCLUSION

This study has been devoted to analyzing the ra-
diative capture of UCNs traversing a homogeneous
layer of matter. The exact expressions for the proba-
bilities of the reflection, transmission, and capture of
neutrons in a layer oscillate as functions of the neu-
tron energy if this energy exceeds the real part of the
potential describing the UCN interaction with matter.
For thick layers, these oscillations are so frequent that
they cannot be resolved experimentally. Therefore, the
actually measured quantities appear to be the result of
averaging over these oscillations.

It has been shown that the expressions obtained
for the reflection, transmission, and capture proba-
bilities from exact formulas by averaging over os-
cillations admit a simple interpretation in terms of
the elementary probabilities R, T , and α, which is
often discussed in the literature. Here, R and T are
the probabilities of, respectively, reflection and trans-
mission through the layer boundary, while α is the
probability of transmission through the layer matter.
The quantity α is expressed in terms of the effective
cross section for neutron capture by one nucleus,
this cross section being in inverse proportion to the
neutron velocity in matter.

It should be emphasized that the effective capture
cross section differs from the true capture cross sec-
tion (8) appearing in the exact formula for the prob-
ability calculated for capture in matter by the method
of summation over nuclei. The effective capture cross
section appears only in analyzing observables in ex-
periments employing thick layers and only in the
above-barrier region (we note that only in the above-
barrier region can we use the notion of the neutron
velocity in matter). In the case of thin layers and
subbarrier energies, the notion of an effective capture
cross section inversely proportional to the neutron
velocity in matter is meaningless.

We have also demonstrated that, in the region
where the neutron energy exceeds only slightly the
barrier height, the approximate formulas for the
2
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reflection, transmission, and capture probabilities
should be treated with caution, because, near the
barrier top, the generally omitted corrections to these
formulas may become significant. This especially
concerns the probability of transmission through a
thick layer, since this probability vanishes very fast
as the energy of the neutron incident on the layer
decreases below the barrier height. The corrections
growing in response to the same change in the
incident-neutron energy can cause a considerable
deviation of the transmission probability from the
result obtained for it by a mere extrapolation from the
above-barrier region.
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Abstract—The validity of the local-potential approximation, whichwas proposed previously for the singlet-
pairing problem in semi-infinite nuclear matter, is investigated in the Bethe–Goldstone equation for the
BruecknerGmatrix. For this purpose, use is made of the method developed earlier for solving this equation
for a planar slab of nuclear matter in the case of a separable form of NN interaction. The 1S0 singlet
and the 3S1 + 3D1 triplet channel are considered. The complete two-particle Hilbert space is split into
a model and the complementary subspace that are separated by an energyE0. The two-particle propagator
is calculated precisely in the first subspace, and the local-potential approximation is used in the second
subspace.With an eye to subsequently employing theGmatrix to calculate the Landau–Migdal amplitude,
the total two-particle energy is fixed at E = 2µ, where µ is the chemical potential of the system under
consideration. Specific numerical calculations are performed at µ = −8MeV. The applicability of the local-
potential approximation is investigated versus the cutoff energy E0. It is shown that, in either channel
being considered, the accuracy of the local-potential approximation is rather high for E0 ≥ 10 MeV.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The microscopic theory of nuclear matter on the
basis of the Brueckner approach (see, for example,
the monographs [1, 2]) made considerable advances,
which were associated both with solving more pre-
cisely the Bethe–Goldstone equation, underlying
Brueckner theory, and with taking into account
various corrections to this approach [3, 4]. At the
same time, the applications of the Brueckner method
to finite nuclei were considered predominantly in the
standard local-density approximation.

This approximation is fairly accurate in calculating
the volume properties of nuclei, but it is absolutely in-
appropriate for describing their surface region, where
the density ρ(r) takes values at which nuclear mat-
ter is unstable. In particular, the scalar–isoscalar
Landau–Migdal amplitude f sharply changes in this
region from a strong attraction beyond a nucleus to a
virtually zero value in its interior [5]. At the surface,
there is therefore a region of ρ values at which the
Pomeranchuk stability condition is violated within
the local-density approximation [5, 6]. Since, with-
in the self-consistent theory of finite Fermi systems
[7, 8], it is the amplitude f that is responsible for
the formation of the main (central) part of the self-
consistent field in a nucleus, it is necessary to go

1)Istituto Nazionale di Fisica Nucleare, Sezione di Catania,
Corso Italia 57, I-95129 Catania, Italy.
1063-7788/02/6507-1243$22.00 c©
beyond the local-density approximation in order to
construct a consistent microscopic theory of nuclei.

In the past few years, a microscopic approach in
nuclear theory has been developed on the basis of
solving the Bethe–Goldstone equation and similar
equations of many-body theory without resorting to
the local-density approximation. The particular prob-
lem of microscopically calculating, within Brueckner
theory, the effective pairing interaction Veff in the
1S0 channel for the semi-infinite nuclear matter was
considered in [9, 10]. The effective interaction was
calculated for the case that is standard for nuclear
physics and which corresponds to the choice of model
subspace including all two-particle states formed on
the basis of single-particle states λ of negative en-
ergy ελ. In doing this, use was made of a separa-
ble representation of the NN potential—namely, the
separable form [11, 12] of the Paris potential [13]
(previously, this form was tested in calculations with-
in the Brueckner method for infinite nuclear mat-
ter [14, 15]). The effective pairing interaction obeys
an equation whose form is very close to that of the
Bethe–Goldstone equation. The use of a separable
NN potential made it possible to solve, by means
of the technique of a mixed coordinate–momentum
representation, this equation in a semi-infinite sys-
tem directly without resort to any additional approx-
imations. However, this required rather cumbersome
calculations. In order to simplify the calculations, a
2002 MAIK “Nauka/Interperiodica”
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new form of local approximations was found in [9, 10].
This form, called the local-potential approximation,
proved to be rather accurate everywhere, including
the surface region. The local-potential approxima-
tion is applied to calculating the two-particle prop-
agator that appears in the equation for the effective
interaction and which is determined in the subspace
complementary to the model subspace being consid-
ered. The local-potential approximation consists in
replacing the exact Bethe–Goldstone propagator in
a given nonhomogeneous system by a combination
of propagators for infinite nuclear matter that cor-
respond to various values of the depth of the self-
consistent mean field. Namely, the propagator taken
at a fixed value of the half-sumR = (R12 +R34)/2 of
the c.m. coordinates of two nucleons prior to and after
an interaction event is set to the propagator for infinite
nuclear matter placed in the constant-depth potential
V0 = V (R). A comparison of a direct calculation of
Veff and the results obtained within the local-potential
approximation revealed [9, 10] that, even in the sur-
face region, the accuracy of this approximation is not
poorer than a few percent. The technique of the mixed
representation and the method of the local-potential
approximation can be straightforwardly extended to
the more realistic case of a planar slab [16–18], and
it is precisely the case that will be considered in this
study.

The Landau–Migdal amplitude F , which deter-
mines the effective interaction of quasiparticles near
the Fermi surface, is a basic ingredient of the phe-
nomenological theory of finite Fermi systems. Within
Brueckner theory, it can be represented as

F(r1, r2, r3, r4) =
√
Z(r1)Z(r2)Z(r3)Z(r4) (1)

G(r1, r2, r3, r4;E = 2µ),

where Z(r) is a coordinate-dependent renormaliza-
tion factor in the Green’s function and the G ma-
trix is determined by solving the Bethe–Goldstone
equation. From the computational point of view, the
problem of calculating the amplitude F on the basis
of Eq. (1) is much more involved than the problem
of determining the effective pairing interaction. First
of all, we must consider at least one additional chan-
nel, the 3S1 triplet channel, which is coupled to the
3D1 channel and for which the calculations are more
complicated than for the 1S0 singlet channel. But
the most serious complication stems from the need
for taking into account nonvanishing values of the
total-momentum projection P⊥ onto the planar-slab
plane—one can obviously set P⊥ = 0 in the problem
of pairing, but, in calculating the amplitude F on the
basis of expression (1), there arises an integral with
respect to P⊥ over the region P⊥ ≤ 2kF, where kF
P

is the Fermi momentum within the planar slab. Al-
though it is possible, in principle, to construct a direct
numerical solution to the problem, this would require
very cumbersome calculations because of the com-
plications listed above. Therefore, the need for a suf-
ficiently accurate approximate method for calculating
theGmatrix is even more acute here than in the prob-
lem of pairing. For this purpose, it is natural to an-
alyze the local-potential approximation, which con-
siderably simplifies relevant calculations and which
yielded precise results in the close problem of mi-
croscopically calculating Veff . In the case of the 1S0

channel, the accuracy of the local-potential approxi-
mation in solving the Bethe–Goldstone equation for
the G matrix is nearly identical to that in calculating
the effective pairing interaction. Indeed, the effects
of superfluidity in the complementary subspace were
disregarded in [9, 10], as is usually done in the pairing
problem. This having been done, the corresponding
two-particle propagators in this subspace—and it is
the subspace where the local-potential approximation
is used—coincide for the two problems being con-
sidered. As to the triplet channel, it is not obvious in
advance whether the local-potential approximation is
applicable to this case, and it is the main objective of
the present study to explore precisely this question.
In the case of the Bethe–Goldstone equation, it

does not seem that there is any gain from introduc-
ing an effective interaction. Upon splitting the full
Hilbert space S into a model subspace S0 and the
complementary subspace S′, S = S0 + S′, it is more
natural to use the local-potential approximation in
the subspace S′ directly for the propagator. In accor-
dance with this splitting, the two-particle propagator
A in the Bethe–Goldstone equation is also repre-
sented as the sum A = A0 +A′. The propagator in
the model subspace,A0, must be calculated precisely,
while the second term A′ is assumed to be evalu-
ated within the local-potential approximation. It is
obvious that, in the propagator, quantum effects and
effects of finite dimensions are due to the contribution
of single-particle states near the Fermi surface. In
the propagator A, contribution is enhanced owing to
the smallness of the corresponding energy denomi-
nators. The contributions in question induce long-
range terms in A, and it is therefore necessary to
take them into account precisely. On the contrary,
the contribution of any individual term from states
occurring far off the Fermi surface is small and only
the sum of a large number of such terms is signifi-
cant. They induce short-range terms in A, and one
can try to use some forms of local approximations—
in particular, the local-potential approximation—in
order to calculate the contribution of these terms. It
is obvious that the applicability of the local-potential
approximation must depend on the choice of model
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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space S0. The vaster the subspace S0, the greater the
number of dangerous terms that are taken precisely
into account and, hence, the higher the accuracy of
the local-potential approximation. We use this simple
physical idea to establish the criterion of applicability
of the local-potential approximation. We will consider
a sequence of model subspaces S0(E0) depending on
the cutoff energy E0 and including all single-particle
states of energies ελ < E0. We note that the model
subspace the we used previously in the problem of
pairing corresponds to E0 = 0. The accuracy of the
local-potential approximation must become higher
with increasing cutoff energy E0. We will deem that
the local-potential approximation is workable from
the cutoff-energy value E0 if a further increase in
E0 would not change the G matrix within a preset
accuracy.
The ensuing exposition is organized as follows. In

Section 2, we present the Bethe–Goldstone equa-
tion for a planar slab of nuclear matter in the case
of separable NN forces. In Section 3, we consider
the splitting of the full Hilbert space into the model
subspace characterized by a cutoff energy E0 and the
complementary subspace. At a fixed value of E0, we
introduce the local-potential approximation in order
to calculate the Bethe–Goldstone propagator in the
complementary subspace. In Section 4, we analyze
the accuracy of the local-potential approximation di-
rectly in calculating the Bethe–Goldstone propaga-
tors versus E0. In Section 5, we explore the applica-
bility of the local-potential approximation in solving
the Bethe–Goldstone equation for the G matrix in
the 1S0 singlet channel at the same values of E0.
In Section 6, a similar analysis is performed for the
3S1 + 3D1 triplet channel. Section 7 contains general
conclusions and a brief summary.

2. BETHE–GOLDSTONE EQUATION
IN PLANAR-SLAB GEOMETRY

We consider the Bethe–Goldstone equation for a
planar nuclear-matter slab of thickness 2L in a one-
dimensional potential well V (x) symmetric with re-
spect to the point x = 0. This system is fairly simple,
but it represents a rather realistic model of heavy
nuclei. A specific form of the potential V (x) is im-
material for general relations. The use of a separable
form of a realistic NN potential is an approximation
that significantly simplifies the problem and makes it
possible to reduce the Bethe–Goldstone equation to a
set of one-dimensional integral equations. A method
for solving the Bethe–Goldstone equation for such
a model was developed in [18] by applying the tech-
nique of a mixed coordinate–momentum representa-
tion. Here, we will employ this method; therefore, we
present the majority of the equations in a condensed
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
symbolic form, referring the interested reader for de-
tails to [18]. Only some relations that are necessary
for understanding the results of the calculations will
be given in an expanded form.

As was mentioned in the Introduction, we will use
below the G matrix to calculate the Landau–Migdal
amplitude, which describes the effective quasiparticle
interaction near the Fermi surface. From the out-
set, we will therefore consider the Bethe–Goldstone
equation corresponding to the interaction of two nu-
cleons at the Fermi surface—that is, at the energies
ελ = µ, where µ is the chemical potential of the sys-
tem under consideration. In the symbolic form, this
equation can be written as

G(E) = V + VA(E)G(E), (2)

where V is the free NN potential, E = 2µ, and
A is the Bethe–Goldstone propagator. The propa-
gator is determined by the integral of the product
(Gp(E/2 + ε)Gp(E/2 − ε)) of two particle compo-
nents of the single-particle Green’s function with
respect to the relative energy ε. It is well known from
[1, 2] that the propagator A in the Bethe–Goldstone
equation does not involve the contribution (GhGh)
from the hole components of the Green’s functions.

The Bethe–Goldstone equation with realisticNN
potentials is characterized by a poor convergence of
relevant integrals with respect to intermediate mo-
menta because of the presence of a strong repulsive
core in these potentials. In order to improve the con-
vergence, it is useful to renormalize Eq. (2) with the
aid of the T matrix taken for free NN scattering off
the mass shell at the negative energy E = 2µ. The T
matrix obeys the Lippmann–Schwinger equation

T (E) = V + VAfr(E)T (E), (3)

where Afr(E) is the propagator for two free nucleons
whose total energy is E.

The renormalized Bethe–Goldstone equation has
the form

G = T + T (A−Afr)G. (4)

As in [18], we use the separable version introduced
in [11, 12] for the ParisNN potential [13]. For the 1S0

channel, it has the (3× 3) form

V(k,k′) =
3∑

i,j=1

λijgi(k2)gj(k′2). (5)

For the 3S1 + 3D1 triplet channel, there is a similar
4× 4 expansion, where the form factors gi become
operators in orbital-angular-momentum space. We
can formally employ the form (5) with the substitution
2
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gi(k2)→ ĝi(k2), where the column ĝi has two com-
ponents,

ĝi(k2) =
(
gL=0
i (k2)
gL=2
i (k2)

)
, (6)

with L being the relative orbital angular momentum
in the c.m. frame.
Now, we consider the S = 0 singlet channel in

more detail.
The separable form (5) of the NN potential in

Eqs. (2) and (3) leads to similar expansions for the
Gmatrix,

G(k2
⊥, k

′2
⊥,P⊥;x1, x2, x3, x4;E) (7)

=
∑
ij

Gij(X,X ′;E,P⊥)gi(k2
⊥, x)gj(k

′2
⊥, x

′),

and for the T matrix,

T (k2
⊥, k

′2
⊥ ,P⊥;x1, x2, x3, x4;E) (8)

=
∑
ij

Tij(X−X ′;E,P⊥)gi(k2
⊥, x)gj(k

′2
⊥, x

′).

Here, we have introduced the form factor gi(k2
⊥, x)

in the mixed representation. This form factor is de-
fined as the inverse Fourier transform of the quantity
gi(k2

⊥+k2
x) in the variable kx; the corresponding an-

alytic expressions can be found in [9] for the singlet
and in [17] for the triplet channel. In expressions (7)
and (8), use has been made of the obvious notation for
the c.m. coordinates and for the relative coordinates
in the x-axis direction. Of course, the coefficients
Tij in the T -matrix expansion depend only on the
difference t = X−X ′ of the c.m. coordinates. In the
direction orthogonal to the x axis, we have introduced
the total and the relative momentum ((P⊥) and (k⊥),
respectively).
The substitution of expansions (7) and (8) into

Eq. (4) leads to the set of the one-dimensional inte-
gral equations

Gij(X,X ′;E,P⊥) = Tij(X−X ′;E,P⊥) (9)

+
∑
lm

∫
dX1dX2Til(X −X1;E,P⊥)

× δBlm(X1,X2;E,P⊥)Gmj(X2,X
′;E,P⊥),

where

δBlm = Blm −Bfr
lm (10)

is the difference of the convolution Blm of the two-
particle propagator A with the form factors gl and
gm and the analogous convolution Bfr

lm for the free
propagator Afr. The explicit expression for Blm has
the form

Blm(X,X ′;E,P⊥) (11)
PH
=
∑
nn′

∫
dk⊥
(2π)2

(1− nλ) (1 − nλ′)
E − P 2

⊥/4m− εn − εn′ − k2
⊥/m

× glnn′(k2
⊥,X) gmn′n(k2

⊥,X
′).

Here, we have used the following condensed nota-
tion: λ = (n,p⊥), λ′ = (n′,p′

⊥), p⊥ = P⊥/2 + k⊥,
p′
⊥ = P⊥/2− k⊥, and nλ = θ(µ− ελ), where ελ =
εn + p2⊥/2m, εn standing for the eigenenergies of the
one-dimensional Schrödinger equation in a given po-
tential V (x). The corresponding eigenfunctions yn(x)
(they are chosen to be real-valued) appear in the
matrix elements of the form factors; that is,

gln,n′(k2
⊥,X) (12)

=
∫
dx gl(k2

⊥, x12) yn(X+x/2)yn′(X − x/2).

We note that, in fact, the symbolic sum over nn′ in
(11) includes both actual summation over discrete
states and integration over the continuous spectrum
with the standard substitution

∑
n →

∫
dp/2π.

In the singlet channel, the Bethe–Goldstone
equation for theGmatrix coincides with the equation
for the effective pairing interaction [9, 10]. Owing to
this, it can be solved by the methods developed in
[9, 10]. In particular, it is convenient to single out the
delta-function-like (in the variables X and X ′) Born
term V in theGmatrix; that is,

G = V + δG. (13)

From (2), it can straightforwardly be found that the
correlation part δG of the total G matrix satisfies the
equation

δG = VAV + VAδG. (14)

The Born term must similarly be isolated in the T
matrix:

T = V + δT. (15)

As a result, the renormalized Bethe–Goldstone
Eq. (4) takes the form

δG = F + T (A−Afr)δG, (16)

where the nonhomogeneous term can be represented
as

F = δT + T (A−Afr)V. (17)

For Eqs. (16) and (17), the explicit form similar
to (9) is quite obvious. For the planar-slab geome-
try being considered, the procedure for numerically
solving Eq. (16) can be simplified by using parity
conversation under the inversion x→ −x. The set
of single-particle eigenfunctions yn can be broken
down into the subset of even and the subset of odd
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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eigenfunctions (y+n and y
−
n , respectively). In the equa-

tions under consideration, the two-particle propaga-
tor therefore appears to be the sum

A = A+ +A− (18)

of even and odd components. The first term A+ arises
from those terms of the sum in (11) that involve
(λ, λ′) states of the same parity, while the second term
A− arises from opposite-parity states. Since theNN
potential V conserves parity, the propagators A+ and
A− are not mixed in the integral term of the Bethe–
Goldstone equation. Therefore, the correlation part
of the G matrix is also the sum of even and odd
components,

δG = δG+ + δG−, (19)

the equations for which decouple

δGπ = VAπV + VAπδGπ, (20)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
with π = +,−.

It is obvious that the integral Eqs. (20) can be
reduced to a form that involves only positive x, where-
by the relevant calculations are considerably reduced.
These equations must be solved for both values of
π, whereupon the total G matrix can be found from
relations (13) and (19).

Upon the substitution gi(k2)→ ĝi(k2), all of the
equations given above remain formally valid for the
S = 1 triplet channel. As a matter of fact, it is the
convolution integral (11) where the most pronounced
changes occur. For the triplet channel, it takes the
form
BS=1
lm (X,X ′;E,P⊥) =

∑
nn′

∫
dk⊥
(2π)2

(1− nλ) (1− nλ′)
E − P 2

⊥/4m− εn − εn′ − k2
⊥/m

(21)

×
(
g
(0)l
nn′ (k2

⊥,X) g(0)mn′n (k2
⊥,X

′) + g(2)lnn′ (k2
⊥,X) g(2)mn′n (k2

⊥,X
′)
)
.

We also note that, now, all multipole expansions of
the form (7) or (8) involve 2× 2 matrices. By way
of example, we present explicitly the components of
such an expansion for theGmatrix. We have

GLL′
(k2

⊥, k
′2
⊥,P⊥;x1, x2, x3, x4;E) (22)

=
∑
ij

Gij(X,X ′;E,P⊥)g(L)
i (k2

⊥, x)g
(L′)
j (k′2⊥, x

′),

where L and L′ are equal to 0 or 2.

3. CHOICE OF MODEL SPACE
AND LOCAL-POTENTIAL APPROXIMATION

FOR THE BETHE–GOLDSTONE
PROPAGATOR

Themost serious computational problems in solv-
ing the Bethe–Goldstone equation for inhomoge-
neous systems arise in calculating the propagators
given by (11) and (21). It is precisely in order to
simplify this calculation that the full Hilbert space
S is split into a model subspace S0(E0) and the
complementary subspace S′(E0) [S = S0 + S′], the
local-potential approximation being further used in
the complementary subspace. We briefly present ar-
guments in favor of the use of this approximation.
The subspace S0(E0) includes all two-particle (λ, λ′)
states, where the single-particle energies ελ and ελ′
are both small: ελ, ελ′ < E0.2) In the complementary
subspace S′(E0), at least one of these energies is
large: max(ελ, ελ′) > E0. In the case of the model
subspace, the contribution of each individual two-
particle (λ, λ′) state to the sum in (11) or in (21) is
enhanced in relation to the analogous contribution of
states from the complementary subspace owing to the
smallness of the energy denominator.

By an individual state, we mean here fixed values
of n and n′ and a narrow interval of integration with
respect to the variable k⊥. Such individual contribu-
tions induce long-range components of the propaga-
tors A in the Bethe–Goldstone equation [18]. These
components decrease slowly with increasing distance
between the points X and X ′, so that they must be
calculated precisely in the finite system being con-
sidered. On the contrary, no individual (λ, λ′) state is
insignificant by itself in the case of the complementary
subspace. Only the sum of a large number of such
states, which corresponds to integration over a wide
interval of k⊥, contributes noticeably toA. The corre-
sponding components of the Bethe–Goldstone prop-
agator have pronouncedmaxima at close values of the
nucleon coordinates and are determined primarily by

2)As a matter of fact, it is the differences ελ−µ and ελ′−µ
appearing in the denominators of the propagators in (11) and
(21) that are small at the total energy equal toE = 2µ.
2
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the local properties of the system under consideration
[17]. Therefore, it is reasonable to use some version
of local approximations in calculating these compo-
nents. In the case of the Bethe–Goldstone equation,
the use of the local-potential approximation seems
more natural than the use of the local-density ap-
proximation, since the Bethe–Goldstone propagator
in the vicinity of a given pointX is determined directly
by the potential well V (X) rather than by the density
ρ(X). At the same time, there is no simple local rela-
tion between ρ(X) and V (X) in the surface region.
The partition of the Hilbert space, S = S0 + S′,

leads to the representation of the Bethe–Goldstone
propagator as the sum

A = A0 +A′, (23)

where the term A0 involves all (λ, λ′) states that
belong to the model subspace, while A′ involves all
of the remaining states. In accordance with the above
qualitative analysis, we calculate the propagator A0

for the model subspace precisely and use the local-
potential approximation for the residual term A′. It
is obvious that the accuracy of the local-potential
approximation becomes higher as the model sub-
space S0 is expanded. Indeed, the local-potential ap-
proximation is obviously exact in the limit E0 →∞,
since all integrals in (11) and (21) converge. We will
say that the local-potential approximation has the
required accuracy at some value of E0 if the G matrix
does not change in response to a further increase in
E0.
Basically, the scheme of applying the local-poten-

tial approximation is the same for both channels be-
ing considered and is very close to that used in the
pairing problem, which was studied in [9, 10], where
use was made of the model subspace corresponding
to the choice of E0 = 0. At fixed values of the c.m.
coordinates X12 and X34, the convolution integral in
(11) for S = 0 [or in (21) for S = 1] is replaced by the
corresponding integral for nuclear matter placed in a
potential well of constant depth equal to V0 = V (X),
where X = (X12 +X34)/2, the latter integral being
dependent only on the difference t = X12 −X34 of the
c.m. coordinates; that is,

BLPA
lm (X12,X34;E,P⊥) (24)

= Binf
lm(V [X], t;E,P⊥).

In our specific calculations, we used the Woods–
Saxon potential having the depth of V0 = 50MeV, the
diffuseness of d = 0.65 fm, and the half-width of L =
8 fm, which are typical of heavy nuclei. In order to cal-
culate the propagators in the local-potential approxi-
mation at fixed values of the chemical potential µ, the
transverse momentum P⊥, and the cutoff energy E0,
we took the sequence of the potential depths Vn =
PH
δV ·(n− 1) with the step of δV = 2 MeV in depth.
For this set of Vn, we calculated the basis array of
the propagatorsBinf

lm([Vn], t; E = 2µ,P⊥) for nuclear
matter. For a fixed coordinate mesh Xk, the elements
BLPA

lm (Xi,Xk) of the propagator matrix in the local-
potential approximation were determined as follows.
First, we found the depth of theWoods–Saxon poten-
tial well, V (X0 = (Xi +Xk)/2). At fixed t = |Xi −
Xk|, we then constructed the propagator in the local-
potential approximation by means of linear interpo-
lation between two neighboring values Binf

lm([Vn], t;
E,P⊥) and Binf

lm([Vn+1], t;E,P⊥) under the condi-
tion that the inequality Vn < V (X0) < Vn+1 is sat-
isfied. By definition, the convolution integral Bfr

lm for
the free propagator Afr coincides with Binf

lm([V1 =
0], t;E,P⊥). A more detailed description of the com-
putational procedure based on the local-potential ap-
proximation is given in [9, 10, 18].

4. ANALYSIS OF THE ACCURACY
OF THE LOCAL-POTENTIAL

APPROXIMATION FOR
BETHE–GOLDSTONE PROPAGATORS

The total transverse momentum P⊥ appears as
a parameter in the general Bethe–Goldstone equa-
tions for a planar slab that were considered above.
As has already been mentioned, the dangerous terms
in the propagators [more precisely, the convolution
integrals in (11) and (21)] that belong to the model
subspace and which must be treated precisely arise
because of the smallness of the corresponding energy
denominators in the sums on the right-hand sides of
Eqs. (11) and (21). It is obvious that they become
more dangerous as the quantity P⊥ decreases. It fol-
lows that the case of P⊥ = 0 is the most critical from
the point of view of applicability of the local-potential
approximation. For this reason, we will investigate
precisely this case, which is the least favorable for
the application of the local-potential approximation.
We restrict our consideration to the single chemical-
potential value of µ = −8 MeV, which is character-
istic of β-stable nuclei. Thus, we set E = −16 MeV
and P⊥ = 0 (below, these parameters will be omitted,
as a rule) in all the equations of the preceding section.

As was mentioned above, Eq. (20) is solved in
practice at a fixed parity π, in which case this equation
involves the propagator Aπ whose parity π is also
fixed. As a matter of fact, we are dealing with a renor-
malized analog of Eq. (20) [according to (16)], where
there appears the difference (10) of the convolutions
of the exact [Blm(X,X ′)] and the free [Bfr

lm(X −X ′)]
propagator. This difference is more convenient for a
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 1. Even (dashed curve) and odd (dotted curve) profile
functions for the component b(Z)

11 (X) in the singlet chan-
nel at Z = 8 fm. The solid curve represents their sum.

graphical analysis as well, because very sharp max-
ima that are present in each individual convolution at
the coinciding pointsX = X ′ are compensated in it.

Let us begin our analysis by considering the S = 0
singlet channel. The general idea of the properties of
the propagator can be inferred from the profile func-
tions

b
(Z)
lm (X) = δBlm(X,X ′ = Z). (25)

As will be shown below, the profile functions exhibit
the most characteristic behavior if the variable Z is
taken near the planar-slab surface. By way of ex-
ample, the even [b+(X)] and the odd [b−(X)] pro-
file functions, along with their sum b(X) = b+(X) +
b−(X), are depicted in Fig. 1 for the lm = 11 compo-
nents at Z = 8 fm. The calculations were performed
for the model subspace corresponding to E0 = 0. The
functions b+ and b− both have pronounced max-
ima at X = Z. Obviously, they have the identical (in
absolute value) maxima at X = −Z. It is interest-
ing to note that the total profile function b(X) has
a pronounced maximum at X = −Z, although its
magnitude is somewhat less than the magnitude of
the main maximum at X = Z. Such behavior of the
propagator for a finite system at large |X − Z| has
nothing in common with the asymptotic reduction of
the propagator for an infinite system at large |X − Z|
[18]. In a finite system, the long-range interaction is a
purely quantum effect that is associated with the con-
tribution of states belonging to the model subspace.

We have calculated the propagators for a few val-
ues of the cutoff energy (E0 = 0, 10, 20 MeV) and
analyzed the dependence of the results on this param-
eter. From Fig. 1, we can see that, although there are
considerable numerical distinctions between the even
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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Fig. 2. Even profile functions for the propagators b
(Z)
lm (X)

in the singlet channel at Z = 0 for E0 = (dotted curves)
0, (dashed curves) 10, and (solid curves) 20 MeV.

and the odd profile functions, they display qualita-
tively similar types of behavior: they have pronounced
maxima atX = Z and oscillate, decreasing inmagni-
tude with increasing |X−Z|. In order to avoid encum-
bering the article with unnecessary details, we there-

fore present only the even profile functions b(Z)
lm (X)

of the propagators at Z = 0 and Z = 8 fm and only
at three “main” values lm = 11, 12, 22.3) These func-
tions are shown in Figs. 2 and 3.

For the purposes of a quantitative comparison of
the values of the propagator at different values ofE0, it
is useful to compute, in addition, the zeroth moments
of the difference propagator,

b̄lm(X) =

∞∫
−∞

dt δBlm(X,X + t). (26)

They are presented in Fig. 4 for the same three val-
ues of lm. An analysis of Figs. 2–4 reveals that the

3)It was shown in [16, 17] and will be discussed in Section 5
that, in the singlet channel, the components carrying the
subscript 3 are virtually insignificant.
2
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variations in the propagator are insignificant even
in response to increasing E0 from 0 to 10 MeV; аs
E0 is increased further up to 20 MeV, they become
nearly negligible. We can conclude that, for the sin-
glet channel, the local-potential approximation can
reliably be used from E0 = 10 MeV, but it must be
fairly accurate even at E0 = 0. We note that all these
conclusions are also valid for odd profile functions and
for “small” components carrying the subscript 3. A
more definitive conclusion on the degree of accuracy
of the local-potential approximation could be drawn
from an analysis of the Gmatrix (see next section).
Let us now proceed to consider the S = 1 triplet

channel. It will be shown in Section 6 that almost all
components of the propagator (there are now ten of
them) are equally important in this case. Neverthe-
less, we restrict ourselves to some typical components
in order to avoid encumbering the presentation. A few
profile functions (as before, only the even components
and at the same values of E0 as in the singlet case)
are shown in Figs. 5 and 6. For Z = 0, we present
only two components since, for all of the remaining
components, the situation is analogous: the distinc-
tions between all three curves corresponding to the
different values of E0 are negligible. In the case of
Z = 8 fm, the situation is more complicated—along
P
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Fig. 4. Zeroth moments b̄lm(X) of the difference propa-
gators at E0 = 0, 10, and 20 MeV (the notation for the
curves is identical to that in Fig. 2).

with the components for which the effect of E0 on the
profile function is also very small, there are such for
which the distinctions between the three curves are
significant. In Fig. 6, there are examples of both the
former and the latter. It can be seen, however, that,
in the worst case (lm = 23), where the distinction
between the profile functions at E0 = 0 and 10 MeV
is large, the further increase in the cutoff energy up to
E0 = 20 MeV leads to only an insignificant change
in b(X). We also note that even such noticeable
variations in the propagator with increasing E0 are
strongly leveled out in calculating the zeroth mo-
ments, which are given in Fig. 7 for five values of lm,
yet another “bad” value of lm = 22 being added here.
An analysis of the curves in Figs. 5–7 shows that,
just as in the singlet channel, one may hope for a high
precision of the local-potential approximation at the
cutoff energy E0 of 10 to 20 MeV. At the same time,
the applicability of the local-potential approximation
atE0 = 0 is questionable, in contrast to what we have
had in the singlet case. As in the case of the singlet
channel, only upon analyzing the G matrix, which is
directly related to physical observables of interest, can
one draw definitive conclusions on the degree of pre-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 5. As in Fig. 2, but for the triplet channel.

cision of the local-potential approximation. Indeed,
the variation of the propagator in response to changes
in E0 can either grow or decrease in solving Eq. (14)
for the correlation part of theGmatrix. As will be seen
below, it is rather the latter that occurs. An analysis
of the G matrix in the triplet channel is presented in
Section 6.

5. LOCAL-POTENTIAL APPROXIMATION
FOR THE G MATRIX

IN THE SINGLET CHANNEL

As was noted above, the Bethe–Goldstone
Eq. (14) for the correlation part of the G matrix
decouples in parity π = +,−. Therefore, we consider
Eq. (20), which is written for a preset value of π and
which is defined only for positive x. Upon finding
the convolution integrals (11) and the analogous
integrals for the free propagator Afr, the kernel of
Eq. (16) and the nonhomogeneous term (17) can be
determined by means of straightforward integration.
Further, we obtain a set of integral equations for six
independent components δGπ

ij(X,X
′) [analogous to

those in (9)]; these equations can be solved numer-
ically [9, 17]. Finally, the total correlation part of
the G matrix with the components δGij(X,X ′) is
derived from (19), while the total G matrix having
the components Gij(X,X ′) is found from (13). They
differ by a trivial delta-function term:

δGij(X,X ′) = Gij(X,X ′)− λijδ(X −X ′). (27)

Since the observables of interest involve the total
G matrix rather than its even or odd components
individually, it is natural to analyze precisely this
matrix and not its even components, as was done
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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channel.

in the case of the propagators. As to the delta-
function term (27), its removal makes the G matrix
more convenient for a graphical representation and
analysis. For this reason, we will usually consider the
correlation part of the G matrix rather than its total
form. Prior to proceeding to analyze the results of
the calculations, we would like to make yet another
comment. Following [9, 10], we changed the original
normalization [11, 12] of the expansion in (5) in such a
way as to ensure fulfillment of the equality gi(0) = 1.
In this case, the absolute values of the coefficients
λij provide direct information about the strength of
the corresponding terms in the NN potential. They
are as follows (in GeV fm3): λ11 = −3.659, λ12 =
2.169, λ22 = −1.485, λ13 = −0.0236, λ23 = 0.0576,
and λ33 = 0.0172. As we can see, the strength of
the “large” components, which involve only the
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subscripts i = 1, 2, is two orders of magnitude greater
than the strength of the “small” components, which
carry the superscript i = 3. The small components
are significant only at high momenta that implicitly
appear in the Bethe–Goldstone equation or in the
Lippmann–Schwinger equation because a relatively
large value of the form factor g3(k2) partly compen-
sates for the smallness of these components. Indeed,
this form factor grows with increasing k, while the
first two form factors decrease [11]. In calculating
the Landau–Migdal amplitude and other observable
nuclear features, there appear G-matrix elements at
relatively low momenta of k 
 kF. In this case, the
contribution of the small components is negligible. In
a qualitative analysis, we therefore focus on the large
components, but, of course, we take into account all
λik terms in our calculations.

We have calculated theGmatrix for the same val-
ues of the cutoff energy as above (E0 = 0, 10, 20MeV)
and analyzed the dependence of the G matrix on
this parameter. To present the results, we depict, as
was done in analyzing the propagators, the profile
functions for the correlation term in theGmatrix,

d
(Z)
ij (X) = δGij(X,X ′ = Z). (28)

By way of example, the profile function dZ=0
11 (X) is

displayed in Fig. 8 for the case of the model subspace
corresponding to the cutoff energy of E0 = 0. We can
see that, even upon the removal of the delta-function
Born term from the G matrix, the remaining part
has a sharp peak at the point X = Z. On the same
scale, the analogous curves obtained at E0 = 10 and
20 MeV will be virtually indistinguishable from the
curves plotted for E0 = 0. In order to make the dis-
tinctions visible, one must magnify the scale, cutting
off, if necessary, the central maximum. For the ij =
11, 12, 22 “large” components, the profile functions
magnified in this way are given in Fig. 9 forZ = 0 and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 9. Profile functions dZ=0
ij (X) in the singlet channel

at E0 = (dotted curves) 0, (dashed curves) 10, and (solid
curves) 20 MeV.

in Fig. 10 for Z = 8 fm. We can see that even the dis-
tinction between the curves obtained at E0 = 0 and
at 10 MeV is rather small. As to distinctions between
the shapes of the profile functions at E0 = 10 MeV
and E0 = 20MeV, they are virtually nonexistent.
In order to analyze the E0 dependence of the G

matrix at a more quantitative level, it is reasonable to
calculate, as in the case of the propagators, its zeroth
moments

Ḡij(X) =

∞∫
−∞

dtGij(X,X + t). (29)

Since it is obvious that the contribution of the
delta-function term to the integral in (29) is indepen-
dent of E0, it is reasonable to calculate the zeroth
moment of the total G matrix rather than that of
its correlated part. Although the absolute variation
of two such moments in response to a variation in
E0 will be identical, the relative variation is more
informative in the former case, because it is precisely
the total G matrix that appears in physical observ-
ables. The zeroth moments (29) calculated at various
values of E0 are shown in Fig. 11 for the same large
components and, as an example, for one of the small
components, ij = 13. We can see that there is an in-
significant distinction of about a few percent between
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
 

ï

 

, fm

 

d

 
(

 
Z

 
)

 

ij

 

(

 

X

 

), GeV fm

 

2

 

ij

 

 = 11

12

22

0

–0.1

–0.2

0.05

0

0

–0.1

–0.2

–0.3
6 8 10

–0.05

Fig. 10. As in Fig. 9, but for Z = 8 fm.

the curves computed at E0 = 0 and at 10 MeV; as
before, the further increase in E0 from 10 to 20 MeV
exerts virtually no effect on the results. This is so not
only for large but also for small components.
In order to characterize the G matrix in the 1S0

channel on average, we introduce (as was done for the
effective pairing interaction in [9, 10]) the quantity

〈GF〉S=0(X) (30)

=
∑
ij

Ḡij(X) gi(k2
F(X)) gj(k2

F(X)),

where the local Fermi momentum is kF(X) =√
2m(µ− V (X)) in the classically allowed region—

that is, at µ− V (X) > 0—and kF(X) = 0 beyond
this region. The quantity introduced in Eq. (30) has
the meaning of the intensity of the Gmatrix averaged
near the Fermi surface. An average of this kind arises
in calculating the Landau–Migdal amplitude in terms
of the Brueckner G matrix if we consistently use,
in doing this, the local-potential approximation [18].
Here, one comment is in order. Although the profile
functions d(Z)

ij (X) have a sharp maximum at the
point X = Z, the long-range tails, which are hardly
visible in Fig. 8, also make a noticeable contribution
to the zeroth moments in (29).4) These terms in the

4)This contribution depends on ij and, as a rule, does not
exceed 10–20%.
2
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Fig. 11. Zeroth moments Ḡij(X) in the singlet channel at E0 = (dotted curves) 0, (dashed curves) 10, and (solid curves)
20 MeV.
G matrix arise owing to the contribution of states
near the Fermi surface, and their contribution to the
integral in (29) was analyzed for the case ofE0 = 0 in
[18]. Since the Landau–Migdal amplitude is assumed
to be a local function of the coordinates [5], it is
natural, in calculating it, to cut off the G-matrix tails
being considered. In [18], we proposed a recipe for
averaging the G matrix near the Fermi surface [see
Eq. (30)] by using the zeroth moments subjected to a
cutoff that are determined by an integral that has the
same form as in (29), but which is taken within finite
integration limits: |t| < tc, where tc = 3 fm. It goes
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Fig. 12. Quantity 〈GF〉S=0(X) obtained by averaging,
near the Fermi surface, the G matrix in the singlet chan-
nel atE0 = (dotted curve) 0, (dashed curve) 10, and (solid
curve) 20 MeV and the T matrix averaged near the Fermi
surface (thin solid curve).
P

without saying that, in investigating the applicability
of the local-potential approximation, it is absolutely
immaterial which kind of zerothmoment is used in the
definition of the averagedGmatrix (30). Nevertheless,
we will use the same recipe as in [18], since it seems
more physically justified. The quantity obtained by
averaging the G matrix in the 1S0 channel according
to this recipe is presented in Fig. 12 for the above
three values of the cutoff energy E0, along with
the off-mass-shell T matrix averaged in the same
manner, that is,

〈TF〉S=0(X) (31)

=
∑
ij

T̄ij(E = 2µ) gi(k2
F(X)) gj(k2

F(X)),

where the zeroth moments T̄ij of the T -matrix com-
ponents are defined in a way similar to that in (29).
Of course, their values do not depend on X. In the
case of theT matrix, the cutoff introduced at tc = 3 fm
induces virtually no changes in the zeroth moments,
but, here, we also use the recipe with a cutoff for the
sake of uniformity.

Again, the distinction between the averaged G
matrices at E0 = 10 and at 20 MeV is negligible.
They both differ only slightly from the G matrix at
E0 = 0 everywhere, with the exception of the surface
region. It should be noted that the averaged Gmatrix
differs insignificantly from the T matrix. This property
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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was previously discovered in [16, 17] for the effective
pairing interaction in the 1S0 channel.
An analysis of Figs. 9–12 leads to the conclu-

sion that, in the S = 0 singlet channel, the local-
potential approximation works well for E0 = 10–
20 MeV. Moreover, this approximation is accurate at
E0 = 0 to within a few percent. The last statement is
consistent with the results of the analysis performed
in [9, 10], where the local-potential approximation
was considered for the first time in calculating the
effective pairing interaction in the 1S0 channel.

6. LOCAL-POTENTIAL APPROXIMATION
FOR THE G MATRIX IN THE TRIPLET

CHANNEL

By and large, the computational scheme for the
3S1 + 3D1 triplet channel is similar to that outlined
above for the singlet channel. However, specific cal-
culations become more cumbersome. For example,
there arise ten independent components Gij(X,X ′)
of the G matrix and, respectively, ten integral equa-
tions of the type in (9) for them instead of six equa-
tions in the singlet case. Apart from this, the evalu-
ation of the integral in (21)—the convolution of the
propagator with the form factors—is more involved
than in the singlet case. For this reason, the problem
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
 

d

 
(

 
Z

 
)

 

ij

 

(

 

X

 

), GeV fm

 

3

 

ij

 

 = 11

12

23

6

 

ï

 

, fm

–0.05

0.05

–0.5

0.5

0

–1.0

0.1

0

–0.1

–0.2

0.10

0

8 10

Fig. 14. As in Fig. 9, but at Z = 8 fm for the triplet
channel.

of simplifying the calculations is more acute here than
in the singlet channel.
In contrast to the singlet case, it is difficult here to

break downmultipole terms into large and small ones.
As in the singlet channel, we have changed the origi-
nal normalization [11] of the expansion coefficients in
(5) and (6) in such a way as to ensure fulfillment of the
equality gL=0

i (0) = 1 [we note that the second com-
ponents of all form factors issue from zero: gL=2

i (0) =
0]. The renormalized coefficients regain the absolute
meaning of the intensity of the corresponding terms
in the NN potential. They have the following values
(in GeV fm3 units): λ11 = −1.618, λ12 = −1.296,
λ13 = 0.8921, λ14 = 0.04271, λ22 = 0.7848, λ23 =
1.394, λ24 = −0.786, λ33 = −0.745, λ34 = −0.5723,
and λ44 = 1.865. We can see that, although these
coefficients show wide variations, only one of them—
namely, λ14—is two orders of magnitude smaller than
the maximum ones. For this reason, almost all terms
make commensurate contributions to observables. In
order to avoid encumbering the presentation with a
large number of figures, we chose, as was done in
analyzing the propagators, a few typical components
in order to illustrate the results of the calculations.
The profile functions and the zeroth moments are

presented in Figs. 13–15. The distinctions between
2
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all curves for the cutoff-energy values of E0 = 0 and
10 MeV become more pronounced in relation to the
singlet channel, especially in the surface region. At
the same time, a further increase in E0 up to 20 MeV
leads to virtually no changes in the G matrix—the
maximum distinctions between the corresponding
curves at E0 = 10 and at 20 MeV are about a few
percent. Again, we can therefore conclude that the
local-potential approximation has a sufficient accu-
racy if the model subspace is chosen to correspond
to cutoff-energy (E0) values of 10 to 20 MeV. In
contrast to the singlet case, the accuracy of the
local-potential approximation is not high, however,
for E0 = 0. This fact can be understood rather easily
if we consider that, in the surface region, the G
matrix asymptotically goes over into the free off-
mass-shell T matrix. The latter has a pole at low
energies, which is virtual in the singlet channel and
is real in the triplet case. In order to describe correctly
the behavior of the G matrix near the pole of the T
matrix, it is necessary to take into account, to a fairly
high precision, the contribution of single-particle
states of low energy, including states that belong
PH
to the continuous spectrum. Therefore, such states
must be included in the model subspace S0. This
occurs at cutoff energies of E0 ≥ 10 MeV; however,
the situation is different at E0 = 0. In principle, this
argument refers to both channels being considered,
but the energy E = 2µ = −16 MeV, at which we
calculate the G matrix, is noticeably closer to the
pole of the T matrix in the triplet than in the singlet
case. Hence, the effect being considered is stronger in
the triplet case. A comparison of the profile functions
for the G matrix in the triplet channel with the
corresponding profile functions for the propagators
(see Figs. 5 and 6) shows that the local-potential
approximation is more accurate for theGmatrix than
for the propagators. In other words, integration of the
propagators in Eq. (14) somewhat levels out, as we
assumed, their variations caused by changes in E0.

Let us now proceed to consider theGmatrix aver-
aged near the Fermi surface in the triplet channel. In
contrast to the singlet case, it is now a 2× 2 matrix
in the space of the total orbital angular momentum L;
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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that is,

〈GF〉LL′
S=1(X) (32)

=
∑
ij

ḠS=1
ij (X) g(L)

i (k2
F(X)) g(L

′)
j (k2

F(X)),

where L,L′ = 0, 2. Just as in the singlet case, the
quantity Ḡij in (32) stands for the zeroth moment
subjected to a cutoff. In Fig. 16, the components of
this matrix are presented at all three values of the
cutoff energy E0. As can be seen from this figure, the
component 〈GF〉00S=1 is considerably larger than all
the remaining components, especially in the surface

region, because the form factor g(2)i vanishes in the
classically forbidden region,. Again, all components
of the averaged G matrix at E0 = 10 MeV nearly
coincide with the corresponding components at E0 =
20 MeV. At the same time, both these curves differ
significantly from the analogous curve calculated at
E0 = 0.

7. CONCLUSION

The present article reports on a continuation of
a series of studies where a microscopic method for
describing finite nuclear systems was developed with-
out using the standard local-density approximation,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
which is not appropriate for describing the nuclear
surface. In considering the problem of microscopi-
cally calculating the effective pairing interaction in
the 1S0 channel for semi-infinite nuclear matter, an
alternative version of a local approximation, the local-
potential approximation, was proposed previously in
[9, 10]. For the pairing problem, this approximation
proved to be sufficiently precise everywhere, including
the surface region. In the present study, we have
investigated the applicability of the local-potential
approximation in solving the Bethe–Goldstone equa-
tion for the Brueckner G matrix. We have employed
the method developed in [18] for solving the Bethe–
Goldstone equation for a planar slab of nuclear mat-
ter. Themethod is based on the technique of themixed
coordinate–momentum representation for the case
of a separable NN potential. As in [9, 10, 18], we
have relied on the separable representation [11, 12]
of the Paris potential. In such a system, the Bethe–
Goldstone equation is solved for the G matrix in the
two channels (the 1S0 singlet and the 3S1 + 3D1

triplet channel) that make a dominant contribution
in calculating the Landau–Migdal amplitude on the
basis of Eq. (1) [18].
The full Hilbert space is split into two subspaces

separated by a cutoff energy E0. The model subspace
S0(E0) includes all two-particle states in which both
single-particle energies ελ and ελ′ are less than this
cutoff energy E0. The contribution of such individual
states to the propagator for the Bethe–Goldstone
equation is enhanced owing to the smallness of the
energy denominator; therefore, it must be calculated
precisely. In the complementary subspace S′(E0), at
least one of these energies is greater than E0, so that
all the energy denominators in the Bethe–Goldstone
propagator are large. Therefore, the contribution of
each individual state to this propagator is negligible—
only the sum of a large number of such states may
be of importance. It is proposed to use the local-
potential approximation for the corresponding part of
the Bethe–Goldstone propagator. A priori, it is obvi-
ous that the higher the energy E0, the higher the ac-
curacy of the local-potential approximation, since the
approximation becomes exact in the limit of infinitely
large E0. This fact is used to establish the criterion
of applicability of the local-potential approximation:
the approximation is taken to be justified at a given
value ofE0 if a further increase inE0 leads to virtually
no changes in the G matrix. A qualitative analysis
has revealed that the conditions of applicability of
the local-potential approximation become more fa-
vorable with increasing total transverse momentum
P⊥, which is a parameter in the Bethe–Goldstone
equation for the planar slab. Therefore, the analysis
in the present study has been performed only for the
most dangerous case of P⊥ = 0.
2
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For the two channels being considered, the G
matrix has been computed at a few values of the
cutoff energy E0. It has appeared that, in response to
changes inE0 fromE0 = 10 to 20MeV, the properties
of the G matrix vary by not more than a few percent
for each of the above channels. Thereby, it has been
demonstrated that the local-potential approximation
can be used to calculate the Brueckner G matrix at
E0 ≥ 10 MeV. In the singlet channel, the conditions
of applicability of the local-potential approximation
are somewhat more favorable, and the accuracy of
this approximation is rather high even at E0 = 0. The
last result is in accord with the conclusion drawn in
[9, 10], where the local-potential approximation was
investigated in solving the problem of singlet pairing
in semi-infinite nuclear matter. At the same time, the
accuracy of the local-potential approximation in the
triplet channel is not high at E0 = 0.
In this study, we have performed our analysis for

the single chemical-potential value of µ = −8 MeV,
which is typical of β-stable nuclei. For nuclei near the
nucleon-stability boundary, which are characterized
by small values of µ, the conditions of applicability of
the local-potential approximation are somewhat less
favorable. It should be noted that nuclei from this
region cannot be considered as isosymmetric sys-
tems. In particular, it must be considered that µn �=
µp—specifically, the chemical potential of one of the
subsystems (as a rule, µn) vanishes at the stability
boundary, while the chemical potential of the other
subsystem (µp) remains on the same order of magni-
tude as in stable nuclei. In the triplet channel, which
corresponds to the isospin of T = 1, the G matrix
will then depend on the energyE = µn + µp, which is
close to that considered here. As to the singlet case,
it is necessary to consider the pp and the nn chan-
nel individually. In the former case, it is the energy
E = 2µp that appears in the G matrix, whence we
conclude that the results of the above analysis remain
valid. Only in the two-neutron channel is the energy
E = 2µn appearing in theGmatrix close to zero, and
the applicability of the local-potential approximation
must in principle be explored anew. Estimations have
shown that the accuracy of the local-potential ap-
proximation is fairly high at E0 = 10–20 MeV in the
last case inclusive, but it is of course illegitimate to
employ this approximation at E0 = 0.
PH
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Abstract—We consider particle production by charged and rotating black holes. A simple derivation is
presented for the leading term (n = 1) in the Schwinger formula for pair creation by a constant electric
field. The same approach is then applied to charged-particle production by a charged black hole. The effect
is due to the tunneling of created particles through an effective Dirac gap. Nonthermal radiation from a
rotating black hole can also be explained in an analogous way. In the leading semiclassical approximation,
this approach is applicable to bosons as well. c© 2002 MAIK “Nauka/Interperiodica”.
Dedicated to the memory
of Isai Isidorovich Gurevich, a remarkable

physicist and marvelous personality

1. INTRODUCTION

Particle production by charged (Reissner–Nord-
strem) and rotating (Kerr) black holes was predicted
simultaneously with or even somewhat earlier than
famous thermal radiation. Although the problems of
nonthermal particle creation are rather old, there are
some aspects of them that were elucidated only re-
cently. These aspects are discussed in the present
article.

The problem of particle production by the electric
field of a black hole was repeatedly discussed [1–
7]. The probability of this process was estimated in
[1–6] by using, in some way or another, the result
obtained previously [8–10] for the case of an electric
field constant over the entire space. This approxima-
tion might look quite natural with regard to suffi-
ciently large black holes, for which the gravitational
radius significantly exceeds the Compton wavelength
of the particle, λ = 1/m. (We use the system of units
where � = 1 and c = 1; the Newtonian gravitational
constant k is written explicitly.) However, it will be
demonstrated below that, in fact, the constant-field
approximation is generally inadequate to the present
problem and does not reflect some of its significant
features. A consistent semiclassical solution to the
problem was given in [11].

The investigation of particle production by Kerr
black holes started with the prediction [12, 13] of

∗This article was submitted by the author in English.
**e-mail: khriplovich@inp.nsk.su
1063-7788/02/6507-1259$22.00 c©
the amplification of an electromagnetic wave upon
the reflection from a rotating black hole, so-called
superradiation. The effect was studied in detail in [14,
15] for electromagnetic and gravitational waves. It
looks rather obvious that, if the amplification of a wave
upon reflection is possible, then its generation by a
rotating black hole is also possible. Indeed, a direct
calculation [16] demonstrated that the nonthermal
radiation under discussion does exist, and not only for
bosons, photons and gravitons, but also for neutrinos.
The last result looks rather mysterious since there is
no superradiation for fermions.

In [17], nonthermal radiation fromKerr black holes
was considered from another point of view: as tun-
neling of quanta being created through the Dirac
gap. Certainly, this approach by itself can be valid
only for fermions. It is clear, however, that, in the
leading semiclassical approximation, the production
of fermions and bosons is described by the same, apart
from the statistical weight, relations.

Let us note that, in [18], an analogous mech-
anism was considered in order to describe friction
experienced by a body rotating in a superfluid liquid
at T = 0: the quantum tunneling of quasiparticles to
the region where their energy in the rotating frame is
negative.

2. RADIATION FROM CHARGED BLACK
HOLES

2.1. Particle Production by Constant Electric Field

It is convenient to start the discussion just from
the problem of particle production by a constant elec-
tric field. We restrict ourselves to the consideration
of the production of electrons and positrons, primar-
ily because the probability of the emission of these
2002 MAIK “Nauka/Interperiodica”



1260 KHRIPLOVICH

 

+
 

m

–m

Fig. 1. Dirac gap.

lightest charged particles is the maximum.Moreover,
the picture of the Dirac sea allows one, in the case
of fermions, to dispense with the second-quantization
formalism, with the result that the consideration be-
comes most transparent. To calculate the main, ex-
ponential dependence of the effect, it is sufficient to
restrict oneself to a simple approach due to [8] (see
also [19, 20]). In the potential −eEz of a constant
electric field E, the usual Dirac gap (Fig. 1) tilts (see
Fig. 2). As a result, a particle of negative energy in the
absence of a field can now tunnel through the gap (see
the horizontal dashed line in Fig. 2) and go to infinity
as a usual particle. The hole created in this way is
nothing but an antiparticle. The exponential factor in
the probability of particle creation obviously depends
on the action only within the barrier. This action does
not change under a shift of the dashed line in Fig. 2,
up or down, i.e., under a shift by∆E of the energy E of
the created particle. Being obviously an integral of the
motion, E is also the energy of the initial particle of the
Dirac sea. If we set, for instance, E = −m, so that the
particle enters the barrier at z = 0, the squared four-
dimensional momentum

(E − eφ)2 − p2 = m2

becomes

(−m+ eEz)2 − p2 = m2.

For the time being, we assume that the trans-
verse particle-momentum component p⊥ = (px, py),
which is also an integral of the motion, is equal to
zero. Within the barrier, the modulus of the momen-
tum p(z) = pz(z) is

|p(z)| =
√
m2 − (m− eEz)2.

The action within the barrier is

S =

2m/eE∫
0

dz|p(z)| = πm2

2eE
.

Finally, the exponential factor in the probability W
is [8]

W ∼ exp(−2S) ∼ exp(−πm2/eE). (1)

One can easily take into account, in the exponent
in (1), the transverse momentum p⊥. This integral
of the motion will clearly enter into all the preceding
formulas only in the combinationm2 + p2⊥. Therefore,
PH
Fig. 2. Dirac gap in electric field.

expression (1) requires, in this case, the substitution
m2 → m2 + p2⊥, changing thus to

W ∼ exp[−π(m2 + p2⊥)/eE]. (2)

Let us now calculate the preexponential factor
in the probability of particle creation, as was done
in [21]. The exponential in (2) is the probability that
a particle of the Dirac sea approaching the potential
barrier from the left (see Fig. 2) will tunnel through it
to the right, thus becoming a real electron. To obtain
the total number of pairs created per unit volume per
unit time, the exponential in (2) should be multiplied
by the current density of the particles of the Dirac sea,

jz = ρvz. (3)

For the velocity, we use the general relation

vz =
∂E
∂p

(the subscript z on the longitudinal momentum p is
again omitted here and below). The particle density is
as usual

ρ = 2
d2p⊥dp

(2π)3
, (4)

the factor of 2 being due to two possible orientations
of the electron spin.

For a fixed coordinate z and fixed p⊥, we have the
identity

∂E
∂p
dp = dE . (5)

On the other hand, it is obvious that the interval dE
of energies of tunneling particles is directly related
to the interval dz of longitudinal coordinates of the
points where the particles enter the barrier: dE =
eEdz (apart from an immaterial sign). Being inter-
ested in the probability per unit volume, in general,
and per unit longitudinal distance, in particular, we
should delete the thus arising factor dz in calculating
the effect. Thus, the total number of pairs created per
unit volume per unit time is

W1/2 = 2eE
∫
d2p⊥
(2π)3

exp[−π(m2 + p2⊥)/eE]. (6)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Now, a trivial integration with respect to the trans-
verse momenta yields the final result

Wl/2 =
e2E2

4π3
exp(−πm2/eE). (7)

The quantity W in the above formulas is equipped
with the subscript 1/2 to indicate that the result refers
to particles of spin one-half. Obviously, the notion
of the Dirac sea and, hence, the above derivation by
itself do not apply to boson-pair creation. However,
in the semiclassical approximation, the creation rate
for particles of spin zero is almost the same. The only
difference is that, since these particles do not have two
polarization states, the rate is two times smaller than
that in (7):

W0 =
e2E2

8π3
exp(−πm2/eE). (8)

The corresponding exact results for a constant
electric field are [10]

W1/2 =
e2E2

4π3

∞∑
n=1

1
n2

exp(−nπm2/eE), (9)

W0 =
e2E2

8π3

∞∑
n=1

(−1)n−1

n2
exp(−nπm2/eE). (10)

Obviously, the inclusion of higher terms, with n ≥ 2,
in the sums in (9) and (10) is meaningful only for very
strong electric fields, for eE ∼ m2. For smaller fields,
when eE � m2, the simple formulas (7) and (8) are
correct quantitatively.

The above straightforward derivation clearly ex-
plains some important properties of the phenomenon.
First of all, the action within the barrier does not
change under a shift of the dashed line in Fig. 2, up or
down. Owing to this property alone, expressions (1)
and (7) are independent of the energy of created par-
ticles. Then, for the external field to be considered as
a constant one, it should change weakly along the
path within the barrier. Obviously, the length of this
path, l ∼ m/eE, differs significantly from the Comp-
ton wavelength λ = 1/m of the particle. The ratio l/λ
is on the same order of magnitude as the action S
within the barrier; therefore, it should be large for the
semiclassical approximation to be applicable at all.

The case of a constant electric field has one more
special feature. The same criterion of the semiclassi-
cal approximation, l/λ	 1, also means that the tilt of
the Dirac gap is very small. Therefore, the vicinity of
the turning point, where the classical picture is inap-
plicable, is anomalously large in the (formally) clas-
sically accessible region. That is why the formation
length for electron–positron pairs is, in this case, not
m/eE, as one may expect naively, but a much larger
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
quantity,m/eE(m2/eE)1/2, as was demonstrated by
direct calculations in [21, 22].

2.2. Particle Production by Charged Black Holes:
Exponential Dependence

It is clear now that, generally speaking, the
constant-field approximation is not applicable to the
problem of radiation from a charged black hole and
that the probability of particle production in this
problem is strongly energy-dependent. The explicit
form of this dependence will be found below.

We begin solving the problem by calculating the
action within the barrier. The metric of a charged
black hole is well known to be

ds2 = fdt2 − f−1dr2 − r2(dθ2 + sin2 θdφ2), (11)

where

f = 1− 2kM
r

+
kQ2

r2
, (12)

M and Q being, respectively, the mass and charge
of the black hole. The equation for the particle 4-
momentum in these coordinates is

f−1

(
ε− eQ

r

)2

− fp2 − l
2

r2
= m2. (13)

Here, ε and p are, respectively, the energy and the
radial momentum of the particle. We assume that the
particle charge e is of the same sign as the charge of
the hole Q, assigning the charge −e to the antiparti-
cle.

Clearly, the action within the barrier is minimal
for the vanishing orbital angular momentum l. It is
therefore rather evident (and will be demonstrated
below explicitly) that, after summation over l, it is
precisely the s state that defines the exponential in the
total probability of the process. Therefore, we restrict
ourselves, for the moment, to the case of a purely
radial motion. The equation for the Dirac gap for l = 0
is

ε±(r) =
eQ

r
±m

√
f, (14)

which is presented in Fig. 3. It is known [23] that,
at the horizon of a black hole, for r = r+ = kM +√
k2M2 − kQ2, the gap vanishes. Then, as r is in-

creased, the lower boundary ε−(r) of the gap de-
creases monotonically, tending asymptotically to−m.
In general, the upper branch ε+(r) first increases and
then decreases, tending asymptotically tom.

It is clear from Fig. 3 that those particles of the
Dirac sea whose coordinate r exceeds the gravita-
tional radius r+ and whose energy ε belongs to the
interval ε−(r) > ε > m tunnel through the gap to
infinity. In other words, a black hole loses its charge
2
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Fig. 4. Dirac gap for extremal black hole.

because of the discussed effect, by emitting particles
with the same sign of the charge e as the sign of Q.
Clearly, the phenomenon takes place only under the
condition

eQ

r+
> m. (15)

For an extremal black hole, with Q2 = kM2, the
Dirac gap looks somewhat different (see Fig. 4): when
Q2 tends to kM2, the location of the maximum of the
curve ε+(r) tends to r+, and the value of the max-
imum tends to eQ/r+. It is obvious, however, that
this does not change the situation qualitatively. Thus,
although an extremal black hole has zero Hawking
temperature and, accordingly, gives no thermal radi-
ation, it still creates charged particles owing to the
above effect.

In the general case of Q2 ≤ kM2, the doubled
action within the barrier entering into the exponential
for the radiation probability is

2|S| = 2

r2∫
r1

dr|p(r, ε)| (16)
P

= 2

r2∫
r1

drr

r2 − 2kMr + kQ2

×
√
−p20r2 + 2(εeQ− km2M)r − (e2 − km2)Q2.

Here, p0 =
√
ε2 −m2 is the momentum of the emit-

ted particle at infinity and the turning points r1,2 are
as usual the roots of the quadratic polynomial in the
radicand; we are interested in the energy intervalm ≤
E ≤ eQ/r+. Of course, the integral can be found
explicitly, although this requires somewhat tedious
calculations. However, the result is sufficiently sim-
ple:

2|S| = 2π
m2

(ε+ p0)p0
[eQ− (ε− p0)kM ]. (17)

(Previously, this exponent was obtained in [7] from
the solution to the Klein–Gordon equation in the
Reissner–Nordstrem metric.) Certainly, expression
(17), as distinct from the exponent in formula (1),
depends on energy quite significantly.

Let us note that the action within the barrier does
not vanish even for the limiting value of the energy
εm = eQ/r+. For a nonextremal black hole, it is clear
already from Fig. 3. For an extremal black hole, this
fact is not so obvious. However, due to the singularity
in |p(r, ε)|, the action within the barrier is finite for
ε = εm = eQ/r+ for an extremal black hole as well.
In this case, the exponential factor in the probability
is

exp[−π(
√
km/e)kmM ]. (18)

Due to the extreme smallness of the ratio√
km

e
∼ 10−21, (19)

the exponent here is large only for a very heavy black
hole, with a mass M exceeding that of the Sun by
more than five orders of magnitude. Since the total
probability, integrated over energy, is dominated by
the energy region ε ∼ εm, the semiclassical approach
is applicable in the case of extremal black holes only
for these very heavy objects. Let us also note that, for
particles emitted by an extremal black hole, typical
values of the ratio ε/m are very large:

ε

m
∼ εm
m

=
eQ

kmM
=

e√
km
∼ 1021.

In other words, an extremal black holemainly radiates
highly ultrarelativistic particles in any case.

Let us return to nonextremal holes. In the nonrela-
tivistic limit, where eQ/r+ → m and, accordingly, the
particle velocity tends to zero (v → 0), the exponen-
tial is of course very small:

exp(−2πkmM/v). (20)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Therefore, we will consider mainly the ultrarela-
tivistic limit, where the exponential is

exp[−π(m2/e2)eQ]. (21)

Of course, the energies ε ∼ εm ∼ eQ/kM are also
significant here, so that the ultrarelativistic limit cor-
responds to the condition

eQ > kmM. (22)

But then the semiclassical result (21) is applicable
(i.e., the action within the barrier is large) only under
the condition

kmM > 1. (23)

This last condition means that the gravitational ra-
dius of the black hole (r+ ∼ kM ) is much larger
than the Compton wavelength of the electron (1/m).
In other words, the result in (21) refers to macro-
scopic black holes. Combining (22) with (23), we
arrive at one more condition for the applicability of
formula (21):

eQ	 1. (24)

We shall return to this relation later.
Let us note that, in [4], the action within the bar-

rier was calculated under the same assumptions as
formula (21). However, the result presented in [4],
2|S| = πm2r2+/eQ, is totally independent of energy
[and corresponds to formula (2), which refers to the
case of a constant electric field]. Obviously, this can-
not be correct for the integral under discussion in the
general case of ε �= εm.

2.3. Particle Production by Charged Black Holes:
Preexponential Factor

Now, the radiation intensity is conveniently cal-
culated in the following way. For r→∞, the radial
current density of free particles in the energy interval
dε is

jr(ε, l)dε = 2
∑ d3p

(2π)3
∂ε

∂pr
(25)

= 2
∑

l

2π(2l + 1)dpr

(2π)3r2
∂ε

∂pr
.

Summation over the directions of the angular mo-
mentum reduces in fact to multiplication by the num-
ber 2l+ 1 of possible projections of the orbital angular
momentum l onto the z axis and to integration with
respect to the azimuthal angle of the vector l (this
gives 2π). By means of the identity

∂ε

∂pr
dpr = dε,
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we eventually find that the total flux of free particles
for r →∞ is

4πr2jr(ε, l) =
2(2l + 1)

π
. (26)

One can easily see that, in our problem, the total flux
of radiated particles differs from the last expression
only by the barrier-penetration factor. Thus, the num-
ber of particles emitted per unit time is

dN

dt
=

2
π

∫
dε
∑

l

(2l + l) exp[−2|S(ε, l)|]. (27)

In the most interesting, ultrarelativistic, case,
dN/dt can be calculated explicitly. Let us consider
the expression for the momentum in the region within
the barrier for l �= 0:

|p(ε, l, r)| = f−1

√(
m2 +

l2

r2

)
f +

(
ε− eQ

r

)2

.

(28)

The main contribution to the integral with respect to
energies in formula (27) comes from the region ε→
εm. In this region, the functions f(r) and ε− eQ/r
entering into expression (28) are small and change
quickly. As to the quantity

µ2(r, l) = m2 + l2/r2, (29)

one can substitute in it for r its average value, which
lies between the turning points r1 and r2. In the limit
ε→ εm, which is discussed here, the near turning
point obviously coincides with the horizon radius,
r1 = r+. The expression for the distant turning point
in this limit is

r2 = r+

[
1 +

2µ2

ε2 − µ2

√
k2M2 − kQ2

r+

]
. (30)

Assuming that, for estimates, one can set r ∼ r+ in
formula (29), one can easily show that the correction
to 1 in the square brackets is bounded by the ratio
l2/(eQ)2. Assuming that this ratio is small (we will
see below that this assumption is self-consistent),
we arrive at the conclusion that r2 ≈ r+; hence, µ2

can be considered to be independent of r: µ2(r, l) ≈
m2 + l2/r2+. As a result, we obtain

2|S(ε, l)| = πeQ

(
m2

ε2
+

l2

r2+ε
2

)
. (31)

Now, we easily find

dN/dt = m

(
eQ

πmr+

)3

exp(−πm2r2+/eQ). (32)

Let us note that the range of orbital angular momenta
contributing to the total probability (32), is effectively
2



1264 KHRIPLOVICH
bounded by the condition l2 <∼ eQ. Since eQ	 1,
this condition allows one to go over from summa-
tion over l in formula (27) to integration. On the
other hand, this condition justifies the approximation
µ2(r, l) ≈ m2 + l2/r2+ used.

2.4. Applicability of the Semiclassical Approximation

However, up to now, we have not considered one
more condition necessary for the derivation of for-
mula (32). We mean the applicability of the semi-
classical approximation to the left of the barrier, for
r+ ≤ r ≤ r1. This condition has the usual form

d

dr

1
p(r)

< 1. (33)

In other words, the minimum size of the initial wave
packet should not exceed the distance from the hori-
zon to the turning point. Using the estimate

p(r) ∼ r+(eQ− εr+)
(r − r+)(r − r−)

for the momentum in the most important region, one
can check that, for an extremal black hole, the condi-
tion in (33) is valid owing to the constraint eQ	 1. In
a nonextremal case, for r+− r− ∼ r+, the situation is
different: the condition in (33) reduces to

ε <
eQ− 1
r+

∼ eQ
r+
. (34)

Thus, for a nonextremal black hole, the condition
of the semiclassical approximation does not hold in
the most important region ε→ εm. Nevertheless, the
semiclassical result (32) remains true qualitatively,
apart from a numerical factor in the preexponential.

Some comments on the radiation of light charged
black holes, for which kmM < 1—i.e., for which the
gravitational radius is less than the Compton wave-
length of the electron—are in order now. In this case,
the first part,

ε <
eQ− 1
r+

,

of inequality (34), which guarantees the localization
of the initial wave packet in the region of a strong field,
means, in particular, that

eQ = Zα > 1 (35)

(we have introduced here Z = Q/e). It is well known
(see, e.g., [24, 25]) that the vacuum for a pointlike
charge with Zα > 1 is unstable, so that such an
object loses its charge by emitting charged particles.
It is quite natural that, for a black hole whose gravita-
tional radius is smaller than the Compton wavelength
of the electron, the condition of emitting a charge is
P

the same as in the pure QED. {Let us note that 1 on
the right-hand side of (35) should not be taken too
literally: even in QED, where the instability condition
for the vacuum of spin-1/2 particles is just Zα > 1
for a pointlike nucleus, for a finite-size nucleus, it
changes [24, 25] to become Zα > 1.24. On the other
hand, the instability condition is Zα > 1/2 for the
vacuum of scalar particles in the field of a pointlike
nucleus [26, 27].} As was mentioned above, for a light
black hole, with kmM < 1, the condition eQ > 1 be-
ing discussed leads to a small action within the barrier
and to the inapplicability of the semiclassical approxi-
mation used in the present article. The problem of the
radiation from a charged black hole with kmM < 1
was investigated numerically in [28].

2.5. Discussion of Previous Results:
Comparison with the Hawking Radiation

The exponential

exp(−πm2r2+/eQ)

in our formula (32) coincides with the expression
arising from formula (1), which refers to a constant
electric field E if one substitutes for this field its value
Q/r2+ at the black hole horizon. An approach based
on formulas for a constant electric field was used
in [1–6]. Thus, our result for the main, exponential
dependence of the probability integrated with respect
to energies coincides with the corresponding result of
those articles. Moreover, our final formula (32) agrees
with the corresponding result of [6], apart from an
overall factor of 1/2. (This difference is of no interest
by itself: it was noted above that, for a nonextremal
black hole, the semiclassical approximation cannot
guarantee an exact value of the overall numerical
factor.)

As to the corresponding result of [7] [see for-
mula (36) in [7]], the exponential therein is
exp[−4π(kmM)2/eQ] instead of exp(−πm2r2+/eQ),
and the preexponential factor is proportional to
(eQ)2/kM instead ofm(eQ/mr+)3.

We believe that our analysis of the phenomenon,
which demonstrates its significant distinctions from
particle production by a constant external field, is
useful. First of all, it follows from this analysis that the
probability of particle production by a charged black
hole has an absolutely nontrivial energy spectrum.
Then, in no way are real particles produced by a
charged black hole over the entire space: for a given
energy ε, they are radiated by a spherical surface of
radius r2(ε), this surface being close to the horizon
for the maximum energy. {It follows from this, for
instance, that the derivation of the aforementioned
result of [6] for dN/dt has no physical grounds: this
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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derivation reduces to substituting E = Q/r2 into the
Schwinger formula (7), obtained for a constant field,
with subsequent integration over the entire space
outside the horizon.}

Let us now compare the radiation intensity I due
to the effect discussed with the intensity IH of Hawk-
ing thermal radiation. Introducing additional weight
ε in the integrand on the right-hand side of (27), we
obtain

I = πm2

(
eQ

πmr+

)4

exp(−πm2r2+/eQ). (36)

As to the Hawking intensity, the simplest way to
estimate it is to use dimensional arguments—that is,
just to divide the Hawking temperature

TH =
r+ − r−
4πr2+

by a typical classical time of the problem, r+. Thus,
we have

IH ∼
l

4πr2+
. (37)

A more accurate result for IH differs from this esti-
mate by a small numerical factor of about 2× 10−2,
but one can neglect this distinction for qualitative
estimates. The intensities in (36) and (37) become
equal for

eQ ∼ π
6

(mr+)2

lnmr+
∼ π

6
(kmM)2

ln kmM
. (38)

{One cannot agree with the condition eQ ∼ 1/(4π)
for the equality of these intensities, derived in [6] from
the comparison of εm = eQ/r+ with TH = (r+ −
r−)/(4πr+).}

2.6. Change in the Horizon Area

To conclude this section, we consider the change
in the horizon surface of a black hole and, hence,
in its entropy due to the nonthermal radiation being
discussed. To this end, it is convenient to introduce,
as in [29], the so-called irreducible massM0 of a black
hole:

2M0 = M +
√
M2 −Q2; (39)

here and below, we set k = 1. This relation can also
be conveniently rewritten as

M =M0 +
Q2

4M0
. (40)

Obviously, r+ = 2M0, so that the horizon surface and
the black hole entropy are proportional toM2

0 .
When a charged particle is emitted, the charge

of a black hole changes by ∆Q = −e and its mass
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changes by ∆M = −eQ/r+ + ξ, where ξ is the de-
viation of the particle energy from the maximum one.
Using relation (40), one can easily see that, as the
result of the radiation, the irreducible mass M0 and,
hence, the horizon surface and entropy of a nonex-
tremal black hole do not change if the particle en-
ergy is the maximum, eQ/r+. In other words, such a
process, which is the most probable one, is adiabatic.
For ξ > 0, the irreducible mass, horizon surface, and
entropy increase.

As usual, an extremal black hole, with M = Q =
2M0, is a specific case. Here, for the maximum energy
of an emitted particle, εm = e, we have ∆M = ∆Q =
−e, so that the black hole remains extremal after radi-
ation. In this case, ∆M0 = −e/2; i.e., the irreducible
mass and the horizon surface decrease. In the more
general case of ∆M = −e+ ξ, the irreducible mass
changes as

∆M0 = −e− ξ
2

+

√(
M0 −

e

2
+
ξ

4

)
ξ. (41)

It is clear that, in the case of an extremal black hole of
large mass, the square root dominates this expression
even for a small deviation ξ of the emitted energy
from the maximum one, so that the horizon surface
increases.

3. RADIATION FROM ROTATING BLACK
HOLES

3.1. Scalar Field

We will start the discussion of radiation from ro-
tating black holes with a problem that is of method-
ological rather than of direct physical interest, with
the radiation of scalar massless particles.

The semiclassical solution to the problem started
from the Hamilton–Jacobi equations for the motion
of a massless particle in a Kerr field (see, for in-
stance, [30]):(

∂Sr(r)
∂r

)2

= −κ
2

∆
+

[(r2 + a2)ε− alz]2
∆2

, (42)

(
∂Sθ(θ)
∂θ

)2

= κ2 −
(
aε sin θ − lz

sin θ

)2

. (43)

Here, Sr(r) and Sθ(θ) are the radial and angular
actions, respectively;

∆ = r2 − rgr + a2; rg = 2kM ;

a = J/M is the angular momentum of the black hole
in units of its massM ; and lz is the projection of the
particle angular momentum onto a.

In the spherically symmetric limit a→∞, the
constant κ2 of the separation of variables is equal to
2
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Fig. 5. Gap for l = 1.

the particle angular momentum squared l2 [l(l + 1)
in quantum mechanics]. The influence of black-hole
rotation—i.e., of the finite a—upon κ2 is taken into
account by means of perturbation theory applied to
Eq. (43). The result is [14]

κ2 = l(l + 1)− 2ωαlz (44)

+
2
3
ω2α2

[
1 +

3l2z − l(l + 1)
(2l − 1)(2l + 3)

]
.

Here and below, we use the dimensionless variables
ω = εkM , x = r/kM , and α = a/kM . Let us recall
that, in the semiclassical approximation, one must
make the substitution

l(l + 1)→ (l + 1/2)2.

It should also be noted that, in the exact quantum-
mechanical problem, the reduction of the radial wave
equation to the canonical form

R′′ + p2(r)R = 0

results in that the expression for p2(r) develops addi-
tional [in relation to the right-hand side of Eq. (42)]
nonclassical terms that should be, strictly speaking,
included for l � 1. For the sake of simplicity, however,
we neglect here and below these nonclassical correc-
tions to p2(r), which should not have a qualitative
effect on the results obtained.

The dependence of the classically inaccessible re-
gion, where the radial momentum squared p2 is nega-
tive, on the distance x is presented for various angular
momenta in Figs. 5 and 6. At the horizon, the gap
vanishes [23]. For r →∞, the boundaries of the clas-
sically inaccessible region behave as±(l+ 1/2)/r. In
other words, the centrifugal term for massless parti-
cles plays, in a sense, the role of a mass squared. Let
us note that, for l > 1, both branches of the equation
p2(r) = 0 are descending, but, for l = 1, one branch
near the horizon grows, while the other descends.
Thus, the radiation mechanism consists in tunneling,
i.e., in the escape of particles from the dashed region
to infinity.
PH
 

0.8

0.4

0

–0.4

3 4 5

(

 

l 

 

+ 1/2)/

 

x

–

 

(

 

l 

 

+ 1/2)/

 

x

 
ω

 

x

 

21

1.2

Fig. 6. Gap for l > 1.

One should note the analogy between the emission
of charged particles by a charged black hole and the
effect discussed. In the first case, the radiation is due
to Coulomb repulsion, while, in the second case, it is
due to the repulsive interaction between the angular
momenta of the particle and black hole [31].

The action within the barrier for the radial Eq. (42)
is

|Sr| =
∫
dx

√
k2

(x− 1)2
− [ω(x2 + 1)− lz]2

(x− 1)4
, (45)

where the integral is taken between two turning
points. For the sake of simplicity, we confine our-
selves, for the time being, to the case of an extremal
black hole, a = kM . Let us note that, due to a
singular dependence of p on x, the action within the
barrier does not vanish at l > 1 even for the maximum
energy ω = lz/2. So much the more, it remains finite
at l = 1 (compare Figs. 5 and 6).

The repulsive interaction is proportional to the
projection lz of the particle angular momentum and
enters into the tunneling probability in the exponent,
but the barrier depends on the orbital angular mo-
mentum l itself. Therefore, the main contribution to
the effect will obviously come from particles with lz
close to l. A numerical calculation demonstrates that
the contribution of the lz �= l states can be neglected
completely.Moreover, since the action within the bar-
rier decreases with growing energy, the main contri-
bution to the effect comes from particles with energies
close to a maximum.

Unfortunately, an analytic calculation of the action
within the barrier is hardly possible even for an ex-
tremal black hole. In order to get a qualitative idea of
the effect, we will therefore use a simplified expression
for κ2:

κ2 = l2 + l − 2ωl + ω2. (46)

[The results of a more accurate numerical calcula-
tion with expression (44) will be presented below.]
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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In this approximation, one can obtain a simple an-
alytic formula for the action within the barrier for
all angular momenta but l = 1. Let us assume that
ω = (1− δ)l/2 with δ � 1; just this range of energies
dominates the radiation. Then, the turning points of
interest to us, which are situated to the right of the
horizon, are

x1,2 = 1 +
2δ

2±
√

1 + 4/l
. (47)

Now, one easily finds

|San| =
πl

2

(
2−

√
3− 4

l

)
. (48)

One can see from this equation that the term l (fol-
lowing l2) in formula (46) is quite important even for
large angular momenta: it generates the terms 4/l in
formulas (47) and (48), thus enhancing |S| for l 	 1
by π/

√
3. Correspondingly, the transmission factor

D = exp(−2|S|) becomes about 40 times smaller. Let
us note that even the transition in κ2 from l(l + 1) to
(l + 1/2)2 makes the effect considerably smaller for l
commensurate with unity; however, this suppression
dies out for large angular momenta.

It follows from formula (48) that the action within
the barrier is large; it increases monotonically with l,
starting from |S| = π for l = 2. As to l = 1, one can
see, by comparing Figs. 5 and 6, that, here, the barrier
is wider than for l = 2; therefore, the action should be
larger. Indeed, the numerical calculation of the action
within the barrier, |S|, with κ2 given by formula (44)
confirms these estimates. Its results are presented in
Table 1, where, for the sake of comparison, we also
present the analytic estimates |San|with formula (46).
By the way, this comparison demonstrates that the
approximate analytic formula (46) works very well.
The numbers presented in Table 1 refer to an extremal
black hole and the maximum energy of emitted parti-
cles. It is clear, however, that the transition to nonex-
tremal black holes, lower energies, and larger l will
result in the growth of the action within the barrier.
Since, here, it proves to be always considerably larger
than unity, the use of the semiclassical approximation
within the barrier is quite reasonable.

Let us check now whether it applies to the left
of the barrier. Here, near the horizon, one can ne-
glect, in the expression for the momentum p, the
term associated with the centrifugal barrier, so that
condition (33) becomes

d

dx

1
p(x)

≈ d

dx

(x− 1)2

ω(x2 + α2)− αl . (49)
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Table 1. Action within the barrier for scalar particles

l |S| |San|
1 3.45

2 3.15 3.14

3 3.33 3.34

One can easily see that, for not very large l, which are
of importance in our case, this expression is commen-
surate with unity and condition (49) does not hold.
Despite this circumstance and despite the disregard
of the nonclassical corrections to p2(x) that were
mentioned above, the results of the semiclassical cal-
culation, which are presented below, should be correct
at least qualitatively.

Let us return to the calculation of the radiation in-
tensity. The line of reasoning used previously demon-
strates that, here, the total flux of free particles for
r →∞ is

4πr2jr(ε, l) = 4πr2
∑
lz

2π
(2π)3r2

→ 1
π
. (50)

Again, the total flux of radiated particles differs from
this expression only by the barrier-penetration factor.
Thus, in our semiclassical approximation, the loss of
mass by a black hole per unit time is given by

dM

dt
= − 1

π

∞∑
l=1

εmax∫
0

ε exp(−2|S(ε, l)|)dε. (51)

Here, the maximum energy of radiated quanta is

εmax =
al

r2h + a2
, (52)

where rh = km+
√
k2M2 − a2 is the radius of the

horizon of a Kerr black hole. The analogous expres-
sion for the loss of the angular momentum is

dJ

dt
= − 1

π

∞∑
l=1

εmax∫
0

l exp(−2|S(ε, l)|)dε. (53)

The results obtained by numerically calculating,
with formulas (51) and (53), the loss by a black hole
of its mass and angular momentum for various values
of the rotation parameter α are presented in Table 2.
We present here and below, for spinning particles,
the results of calculations only for sufficiently rapid
rotation, α ≈ 1. The point is that, as α decreases
further, not only the thermal radiation grows fast, but
the effect discussed decreases faster. For smaller α,
this effect becomes much smaller than the thermal
one; therefore, its consideration there does not make
much sense.
2
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Table 2. Loss of mass (in units of 10−3 πM2) and angular
momentum (in units of 10−3 πM ) due to the radiation of
scalar particles

α |dM/dt| |dJ/dt|
0.999 2.6 6.4

0.9 0.19 0.77

As one can see from Table 2, the rate of loss of the
angular momentum is higher, in comparable units,
than the rate of loss of mass. In fact, this follows im-
mediately from expression (52). From this expression
alone, one can see that, even for the maximum pos-
sible energy, the ratio of the corresponding numbers
is 2 : 1. The actual ratios are even larger. Hence, an
important conclusion follows: extremal black holes do
not exist. Even if an extremal hole is formed somehow,
it loses the extremality immediately in the process of
radiation.

3.2. Radiation of Photons and Gravitons

We begin investigating the radiation of real par-
ticles with an electromagnetic field. A photon has
two modes of opposite parities: a so-called electric
mode, with l = j ± 1, and a magnetic one, with l = j
[19]. It follows from the duality invariance that the
radiation intensities for these two modes are equal.
Thus, one can confine oneself to solving the problem
for a magnetic mode and then just double the result.

One can demonstrate that the situation with grav-
itational waves is analogous. Again, there are two
modes that, because of special duality, contribute
equally to the radiation, and l = j for one of these
modes.

For a l = j mode, the radial equation in the semi-
classical approximation is obviously the same as for
the scalar field, but with a different value of κ2. This
can also be demonstrated by proceeding from the so-
called Teukolsky equation [32] [by neglecting again
nonclassical corrections to p2(r)]. The corresponding
eigenvalues of the angular equation for particles of
spin s, found again in perturbation theory, are [14]

κ2 = j(j + 1) +
1
4
− 2αωjz −

2αωjzs
j(j + 1)

(54)

+ α2ω2

{
2
3

[
1 +

3j2z − j(j + 1)
(2j − 1)(2j + 3)

]

− 2s2

j(j + 1)
3j2z − j(j + 1)

(2j − 1)(2j + 3)

+ 2s2
[

(j2 − s2)(j2 − j2z )
j2(2j − 1)(2j + 1)
P

Table 3. Action within the barrier for photons and gravi-
tons

s = 1 s = 2

j 1 2 2 3

|S| 1.84 2.17 1.0 1.7

Table 4. Loss of mass (in units of 10−3 πM2) and angular
momentum (in units of 10−3 πM ) due to the radiation of
photons and gravitons

s = 1 s = 2

α |dM/dt| |dJ/dt| |dM/dt| |dJ/dt|
0.999 16.5 (9.6) 39 (24) 66 (228) 148 (549)

0.9 0.72 (2.26) 2.8 (8.2) 0.58 (12.9) 2 (48)

− ((j + 1)2 − j2z )((j + 1)2 − s2)
(j + 1)3(2j + 1)(2j + 3)

]}
.

In this expression, we have included the term 1/4,
which is necessary for the correct semiclassical de-
scription. Let us note that, as follows from the con-
sideration of the helicity of a massless particle, the re-
striction j ≥ s holds. Accordingly, j ≥ 1 for a photon
and j ≥ 2 for a graviton. As well as in the scalar case,
the main contribution to the radiation comes from the
states with the maximum projection of the angular
momentum, jz = j.

Let us first discuss whether the semiclassical ap-
proximation is applicable here. As to the situation to
the left of the barrier, it does not differ qualitatively
from the scalar case. The situation within the bar-
rier is different. As one can see from Eq. (54), the
presence of spin makes κ2 smaller and, accordingly,
makes smaller the centrifugal repulsion. As a result,
the barrier and the action within it both decrease.
This qualitative argument is confirmed by a numerical
calculation of |S| for photons and gravitons with the
maximum projection of the angular momentum jz =
j and maximum energy for the case of an extremal
black hole (see Table 3). Therefore, one should expect
in the present case that the accuracy of semiclassical
results is lower than in the scalar case.

The semiclassical formulas for electromagnetic
and gravitational radiation differ formally from the
corresponding scalar formulas (51) and (53) only
by the extra factor of 2, which reflects the existence
of two modes. The results of this calculation are
presented in Table 4, where, for the sake of com-
parison, we indicate, in parentheses, the results of
the complete quantum-mechanical calculation [16]
which also takes into account thermal radiation.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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It is clear from Table 4 that, even for α = 0.999, in
which case the thermal radiation is negligibly small,
our semiclassical calculation agrees only qualitatively
with the complete calculation. This is quite natural if
one recalls that the semiclassical action in the present
problem exceeds unity not by much, if at all. This
explanation is supported by the fact that, for a pho-
ton, where |S| is considerably larger (see Table 3),
the semiclassical calculation agrees better with the
complete calculation.

3.3. Radiation of Neutrinos

Let us at last consider the radiation of neutrinos
by a rotating black hole, which are massless particles
of spin 1/2. The wave function of a two-component
neutrino is written as (see, for instance [16])

ψ = exp(−iεt+ ijzφ)


R1 S1

R2 S2


 . (55)

It is of importance that the wave equations for a neu-
trino in the Kerr metrics also admit the separation of
variables [32]. The radial equations in dimensionless
variables are

dR1

dx
− iω(x2 + α2)− jzα

∆
R1 =

κ√
∆
R2, (56)

dR2

dx
+ i
ω(x2 + α2)− jzα

∆
R2 =

κ√
∆
R1.

The angular equations are

dS1

dθ
+
(
ωα sin θ − jz

sin θ

)
S1 = κS2, (57)

dS2

dθ
−
(
ωα sin θ − jz

sin θ

)
S2 = −κS1.

For κ2, the same formula (54) holds, but now of
course with s = 1/2. Just as for bosons, it is sufficient
in practice to consider jz = j states.

It is important that R1 corresponds at infinity, for
x→∞, and at the horizon, for x→ 1, to a wave
traveling to the right and thatR2 corresponds for x→
∞ and for x→ 1 to a wave traveling to the left. [For
this classification, it is convenient to use the so-called
“tortoise” coordinate ξ(x); ξ ≈ x→ +∞ for x→∞,
and ξ ≈ ln(x− 1)→ −∞ for x→ 1.] It is therefore
quite natural that, here, the radial current density is

jr = |R1|2 − |R2|2.

We are interested in the barrier-penetration factor
for the state that is an outgoing wave at infinity. For
a neutrino or an antineutrino, such a state has a fixed
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Table 5. Loss of mass (in units of 10−3 πM2) and angular
momentum (in units of 10−3 πM ) due to the radiation of
neutrinos

α |dM/dt| |dJ/dt|
0.99 4.4 (2.1) 11 (5.65)

0.9 0.7 (1) 2.7 (3.25)

helicity, but it does not have a definite parity. Mean-
while, the potential barrier depends, roughly speak-
ing, on the orbital angular momentum in our problem;
therefore, it is much more transparent to l = j − 1/2
states than to l = j + 1/2 states. (These states of
given l have definite parity and are superpositions of
a neutrino and an antineutrino.) Moreover, at l = j −
1/2 for small j, which make the main contribution to
the radiation, the action has no imaginary part at all or
its imaginary part is small, so that our above approach
is inapplicable. Therefore, we will solve numerically
the exact problem of neutrino radiation.

Technically, it is convenient to find the reflection
coefficient R in the problem of neutrino scattering off
a black hole and then use the obvious relation for the
transmission coefficient D:

D = 1−R.
Here, the expressions for the loss of mass and angular
momentum by a black hole are

dM

dt
= − 1

π

∞∑
j=1/2

εmax∫
0

εD(ε, j)dε; (58)

dJ

dt
= − 1

π

∞∑
j=1/2

εmax∫
0

jD(ε, j)dε; (59)

εmax =
aj

r2h + a2
. (60)

The results obtained by numerically solving the sys-
tem of radial Eqs. (56) are given in Table 5. In paren-
theses, we present the results of [16], which include
the Hawking radiation contribution. For a black hole
close to an extremal one, at α = 0.99, where the ther-
mal radiation is virtually absent, our results are about
twice as large as previous ones.
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Some Odd Bits for I.I. Gurevich’s Biography
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After graduating from Leningrad State University,
I.I. Gurevich came to work at the Radium Institute.
Soon after the start of the Great Patriotic War, the
institute was evacuated to Kazan. There, Gurevich
was recruited for the Soviet atomic project, headed
by I.V. Kurchatov. By that time, Gurevich had carried
out a number of research studies in neutron physics.
While in Kazan, he defended his doctoral dissertation
in that field. Alongwith Ya.B. Zeldovich, I.Ya. Pomer-
anchuk, and Yu.B. Khariton, Gurevich developed in
the Soviet Union the theory of neutron moderation,
without which nuclear reactors would have been im-
possible. He continued his studies in neutron physics
in subsequent years too.
At the end of the war, when the LIPAN, or the

USSR Laboratory of Measuring Instruments (later
to become the Kurchatov Institute of Atomic En-
ergy and, presently, the Russian Research Centre
Kurchatov Institute ) was already in place, Gurevich
came back to Leningrad for a few months. There, he
married Tat’yana Borisovna Stroeva, whom he had
known since the 1930s and loved to the end of his
life. They moved to Moscow on May 9, 1945, Victory
Day. It was, of course, pure coincidence, yet somehow
symbolic.
TheMoscow district of Shchukino, the Kurchatov

institute’s location, was a suburb at that time; it was
not until 1947 that it became part of the city. It inher-
ited its name from a local village. The neighborhood
included a military camp, barracks, huts, dachas, etc.
There were also a few apartment houses owned by
the Ministry of Defense and some other government
departments, e.g., theGamaleya Institute ofMicrobi-
ology and Epidemiology, which had been there since
before the war.
Many employees of the LIPAN lived on its premi-

ses. Isai Isidorovich and Tat’yana Borisovna were
given an apartment in the institute’s main building;
afterward, of course, such apartments were converted
into service rooms. It was there that their eldest son,
Aleksandr (the present writer) was born. As there
was no physical distance between home and work,
and also by virtue of his hospitality, Isai Isidorovich
customarily brought home in the evening one col-
league or another. Tat’yana Borisovna usually had
no objections, but there were occasions when there
1063-7788/02/6507-1271$22.00 c©
was nothing in the way of food at home, for those
were hard times. Our housemaid was particularly dis-
pleased. (It should be noted that security regulations
notwithstanding, institute employees were allowed to
hire domestic help, who, after clearance by security
services, received a pass to the institute territory.)
I believe that Isai Isidorovich was visited more fre-
quently than most of his colleagues.
Starting in 1947, LIPAN employees began to

move to new houses outside the institute premises.
At that time, Isai Isidorovich became one of Kurcha-
tov’s deputies and received an apartment in the first
new building. L.A. Artsimovich, S.Yu. Luk’yanov,
M.S. Kozodaev, and L.M. Nemenov moved into
apartments in the same section. At a later date, two-
story cottages were built nearby, and Gurevich was
offered one, but he refused for fear that housekeeping
concerns would divert him from science. After the
move, Isai Isidorovich and Tat’yana Borisovna had
their youngest son, Mikhail. Isai Isidorovich lived in
that apartment to the end of his life, and Tat’yana
Borisovna and Mikhail, together with his wife, are
still living there.
The standard of living of LIPAN employees was by

far above the Moscow average, let alone the country.
But then, they worked at full stretch, as the saying
goes. Their families’ way of life somewhat resembled
that of prerevolutionary intelligentsia. They all knew
and visited each other, and were very inventive in
their joint celebrations. Here, Isai Isidorovich was
irreplaceable, being a rare wag. However, he could go
too far in making fun of someone, and then his wife
Tat’yana took him to task. He adored her, calling her
fondly “Tse-eM,” a Russian abbreviation standing for
the “hub of the universe.”
In the first postwar decade, many LIPAN em-

ployees spent even summers together. For several
consecutive years, many of them, including Gurevich,
rented a summer cottage in the village of Stepanovka
near Moscow and, later on, in the famous Nikolina
Gora. That isolated community survived until the late
1950s. By the 1960s, there had been built numerous
apartment houses in the vicinity, most of which had
no relation either to the Kurchatov Institute or any
other nuclear physics institutes. Shchukino became
just another Moscow district.
2002 MAIK “Nauka/Interperiodica”
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In 1955, Gurevich resigned his office, only keeping
for himself a research sector, in order to get rid of
administrative duties and dedicate himself fully to
science. Thereafter, in addition to neutron physics,
he was engaged in the physics of positive muons
and muonium. He discovered the two-frequency pre-
cession of muonium. Gurevich also obtained impor-
PH
tant results inK0-meson oscillations and researched
other elementary particles.

My brother Mikhail, who was psychologically
closer to Isai Isidorovich than I was, is better qualified
to describe him as a personality.

Translated by E. Azgal’dov
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



Physics of Atomic Nuclei, Vol. 65, No. 7, 2002, pp. 1273–1274. Translated from Yadernaya Fizika, Vol. 65, No. 7, 2002, pp. 1306–1308.
Original Russian Text Copyright c© 2002 by Gurevich.

90th ANNIVERSARY OF I.I. GUREVICH’S BIRTHDAY
Toward I.I. Gurevich’s Psychological Portrait

M. I. Gurevich
Received November 21, 2001
Remembrances of a member of the family of any
outstanding person always have a serious flaw—the
point of observation is too close, so that trivial details
tend to obscure key traits; you cannot see the forest
for the trees. Fully realizing this danger, I shall not
try to make a complete description of my father’s
personality and shall limit myself to several aspects.

One of his chief properties was that he managed
to preserve many traits of a child, if not of a preschool
age, at least not a year older than 10, i.e., a harmo-
nious personality open to the world. Here are a few
illustrative examples.

It is common knowledge that a son of an outstand-
ing father will usually be somewhat suppressed by his
powerful personality; Freud’s relations with his son
are a classical example. I have witnessed this phe-
nomenon among my friends. Yet, I never experienced
anything like this myself, even though I am not a
particularly strong character. The reason is that my
father, like a harmonious child, in his association with
people did not play the absurd game of who is the
smartest. He simply did not bother about it—what
he was after was new ideas and impressions, which
he soaked in with complete trust in the world that
generated them. The keyword here is the world, not
any particular source of information, for father was
neither a fool nor an overly naive person.

His perception of the new was like a child’s in
yet another respect—there was no self-interest in it,
not only in a narrow pecuniary sense, but also in
the sense of “personality development,” “enrichment
with achievements of world culture,” etc.

His interest in the world, which he maintained
even in his latter years, when he was very ill, I would
call curiosity in its best, childish sense, rather than
inquisitiveness, because the latter term carries some
snobbish differentiation of “high” and “low” informa-
tion.

This is not to say, of course, that father’s curiosity
was omnivorous—he was more interested in some
fields than others, while still others did not interest
him at all—but this division was not speculative,
superficial, for it sprang from his very being and was
in full harmony with his personality.
1063-7788/02/6507-1273$22.00 c©
For example, father took little interest in individu-
als as such—he was more absorbed in ideas and their
destinies; therefore, his interest in people was rather
selective, and many quite worthy men bored him.

His natural way of perception of the world was
mirrored in his reading—fromworks on general ques-
tions of world view to adventure novels.

One cannot say that father did not change with
age. Somewhere after turning 70, he began to give
more thought to philosophy, religion, and generally
universal questions of human life, but his harmonious
perception was unchanged.

It would be in order to mention his attitude to
the game. Among all the people of his generation
I have known, he was perhaps the most capable of
apprehending Johann Heusinga’s view of the game
as the driving force of human progress. Being a man
of his time, he did not, of course, put scientific study
on the same plane with games, but he treated games
rather seriously and liked playing them. He played
chess, Erudite, mahjongg, and other board games.
He was a permanent member of a company of vint
players, which was organized by A.M. Andriyanov. (It
is to be regretted that this Russian game, beloved by
many luminaries of Russian culture, has completely
gone to seed and been ousted by bridge.)

Speaking of the gaming aspects of science, it
should be noted that they are usually interpreted as
exclusively agonistic (competitive). This, to my mind,
is a big fallacy, which stems from the unconscious
substitution of “competitive game” for “game.” It
may be that there cannot be a game in sport that
is not competitive, but the games children play are
not necessarily competitive, at any rate, not zero-sum
ones. In science, the most important gaming element
is not to be the first to say “mew,” but the joint solving
of riddles. To participate in “free scientific gabbing,”
so necessary for the progress of science, one must be
quick to take an interest in a problem and make an
active contribution to attempted solutions. It comes
natural to a child but by no means always so to an
adult. Well, I have not known anyone better equipped
for “scientific gabbing” than my father. I even regard
myself as rather spoilt by my opportunity of many
years to have had such a person to talk to.
2002 MAIK “Nauka/Interperiodica”
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My father’s attitude to the issue of superiority was
yet another proof of his integrity. It is not as if he was
quite indifferent to how people saw him, but father
only set store by those evaluative parameters of his
personality he himself had chosen: I play these games,
but I do not and will not play those. For instance,
while he had his driver’s license, he did not like driv-
ing, and was not in the least concerned about his skill
in that area.

The last, and perhaps the most important, thing
that must be mentioned is that my father had the
capacity for being joyful—not to be merry at all times,
but to feel those small joys of life that so often are left
unnoticed. He could become animated even when he
was in a hospital, where he suffered very much. Father
used to say, “Happiness is enjoying going to work and
enjoying going home.”

The second thing I wanted to speak about is my
father’s intuition. It was extremely powerful, and he
could hear it. On several occasions, I was amazed at
the accuracy of his forecasts and estimates in matters
where he seemed to be relatively incompetent. Yet,
the strength of his intuition surpassed his ability to
P

hear it, or at least to be aware of his hearing. Not
infrequently, he tried to rationalize his vision, and that
rationalization could yield in accuracy to his vision.

In the 1940s and the early 1950s, one of my
father’s important functions in the atomic project
was to coordinate experimental and theoretical work.
Though I have no right to pass final judgment, I can
suppose that this function could only be performed
by someone with a rich rather than narrowly directed
intuition.

Here, I should like to note once again the absence
of narrowness, which was not merely intuitive but
also conscious—my father was very annoyed by any
kind of fanaticism. Yet, we are all human, and I have
an a propos anecdote to tell. One day, my father
complained that I had not chosen to become a pure
mathematician or physicist, to which I replied, “Your
father was an engineer and your uncles too. Are you
sure they were more stupid than you?” Father was
silent for a while, then admitted that I had him there.

Translated by E. Azgal’dov
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90th ANNIVERSARY OF I.I. GUREVICH’S BIRTHDAY
Uncle Sanya

L. B. Okun
Institute of Theoretical and Experimental Physics,

Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117218 Russia
Received November 19, 2001
I saw Isai Isidorovich Gurevich for the first time
in the fall of 1951, when he started to deliver a year’s
course of lectures to us, fifth-year students at the
Moscow Mechanical Institute, which was to become
theMoscow Engineering Physics Institute (MEPhI).
He introduced us to the foundations of theoretical nu-
clear physics; the subject was codified in our timetable
as Course no. 7, for theMoscowMechanical Institute
belonged to the Ministry of Medium Machine Build-
ing and was thus secret.
Isai Isidorovich was so easy-tempered and benev-

olent and so lucid and detailed in his lectures that
each of his listeners has kept most pleasant memories
of him. When I found myself at the Institute of The-
oretical and Experimental Physics in 1954, I realized
that not only his students were warmly disposed to-
ward Isai Isidorovich, but so were all the collaborators
of I.Ya. Pomeranchuk, who lovingly called him Uncle
Sanya behind his back.
Various episodes come back to memory.
In the fall of 1956, I went by train to Tbilisi to

attend a conference on cosmic rays. It was nighttime
when I finally reached my hotel, where I discovered
that they had accommodated me in the same room
with Isai Isidorovich. He met me in his sleeping paja-
mas and said, “There is no plug in the bathtub. Use
my shaving-brush instead it and take a bath after
your long travel.” It was at that conference that we
first heard about the work of Lee and Yang on parity
nonconservation. Precision measurements of parity
nonconservation in muon decay were to become the
main focus of activity of Gurevich and his team for
many subsequent years.
In September 1957, Gurevich was allowed to at-

tend a conference in Padua and Venice. On the night
1063-7788/02/6507-1275$22.00 c©
before his departure, I brought to his place my re-
port, “Some Comments on the Composite Model of
Elementary Particles,” where I generalized the Saka-
ta model and applied it to weak interactions. Isai
Isidorovich put my paper in his suitcase and read it in
Italy on my behalf. It was published in the conference
proceedings.
From 1968, when Gurevich was elected to cor-

responding membership to the USSR Academy of
Sciences, we regularly met at meetings and sessions
of theDepartment of Nuclear Physics.We often spoke
on the phone. Nearly always, he started the conver-
sation with a flowery Oriental greeting, “I kiss the
footprints of the fleas of my master’s dog.”Very rarely,
I had the opportunity of taking over these “footprints
of the fleas.”

In the late 1960s, I organized annual sessions of
the Department of Nuclear Physics at MEPhI during
the winter vacation. In a few years’ time, I was able to
convince Gurevich to head the organizing committee
of these sessions.

Gurevich often fell sick in the 1980s. Igor’ Kobza-
rev and I visited him at the hospital, after he had had
a pacemaker implanted. On that occasion, he talked
much of poetry and gave us a photocopy of Georgii
Ivanov’s poems that had just appeared in a periodical.

I remember my visit, by train and on a bicycle, to
the summer cottage that his wife and he rented in
Snegiri near Moscow.We hadmade arrangements for
that visit in advance: lunch and a kind and intelligent
host were waiting for me. At the end of the day, Isai
Isidorovich saw me off to the field road. . .

Translated by E. Azgal’dov
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Abstract—Data on a direct determination of systematic uncertainties caused by the background pro-
duction of germanium isotopes in the radiochemical SAGE experiment measuring the solar-neutrino flux
are analyzed. The result obtained for the rate of 68Ge production is 6.5(1± 1.0) times greater than the
expected one; the rate of 69Ge production does not exceed preliminary estimates. The above result for 68Ge
corresponds to the systematic uncertainty that is caused by the interaction of cosmic-raymuons and which
is equal to 5.8% (4.5 SNU) at a solar-neutrino-capture rate of 77.0 SNU. An experiment is proposed that
would test the effect of cosmic-ray muon influence on the SAGE systematic uncertainty and which would
be performed at the location of the underground scintillation telescope facilities of the Baksan Neutrino
Observatory (Institute for Nuclear Research, Russian Academy of Sciences). c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The possibility of directly determining systematic
uncertainties is attractive in any experiment. In this
article, we describe a determination of some system-
atic uncertainties in the radiochemical SAGE experi-
ment.
Since 1990, the Russian–American (previously,

Soviet–American) gallium experiment (SAGE) has
been measuring the solar-neutrino-capture rate in
about 60 tons of liquid metal gallium. Neutrinos in-
teract with the 71Ga isotope of the target through
the inverse-beta-decay reaction: 71Ga(νe, e−)71Ge.
By using a special chemical procedure, product 71Ge
atoms are extracted from the target at the end of
each exposure run (1–1.5 months); are transformed
into a gaseous state of GeH4 (germane); and are
placed into a proportional counter, where the decay of
these atoms is observed for 5 to 6 months. A detailed
description of the experiment, including an account of
the chemical procedures used to extract germanium
from the gallium target, counting of 71Ge decays, and
data analysis, is presented in [1, 2].
The eleven years of observation resulted in ob-

taining the solar-neutrino-capture rate of 77.0+7.1
−6.9

SNU2)—that is, about 60% of 129 SNU predicted

1)University of Washington, Box 351560, Seattle, WA 98195-
1560, USA.

2)1 SNU is one neutrino-capture event per 1036 target atoms
per second.
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by the standard solar model for a gallium target [3, 4].
The discrepancy between the observed and expected
neutrino fluxes is widely known as the solar-neutrino
problem. In this connection, accuracy in measuring
the neutrino flux is of great importance, and it is
the need for precisely estimating the errors in such
measurements that motivated the present study.

The 71Ge isotope, whose production rate is used
to determine the solar-neutrino flux, can also be gen-
erated in a gallium target under the effect of cosmic
rays and environmental radioactivity. Together with
71Ge, other germanium isotopes—68Ge and 69Ge—
are produced in a gallium target. The known relations
between the rates of production of the three isotopes
in various processes make it possible to determine
the 71Ge background production rate by measuring
68Ge and 69Ge [5]. A long period over which the
SAGE measurements have been performed enables
us to determine the systematic uncertainty associated
with the background production of the germanium
isotopes directly on the basis of searches for 68Ge
and 69Ge events in analyzing the accumulated exper-
imental data of solar-neutrino measurements.

For this purpose, we will first briefly consider the
system counting 71Ge decays and discuss the possi-
bilities for extracting 68Ge and 69Ge events from the
total data sample. Having determined the efficiency
of the procedures used to seek germanium events, we
apply these procedures to the accumulated data and
2002 MAIK “Nauka/Interperiodica”
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obtain the sought rate of germanium-isotope produc-
tion in the gallium target.

2. SYSTEM COUNTING 71Ge DECAYS

The decay of 71Ge (T1/2 = 11.4 days) proceeds
via electron capture with the emission of 10.4-,
1.2-, and 0.1-keV Auger electrons (K, L, and M
modes, respectively). Short tracks of these electrons
in the counter gas result in a fast rise time of the
proportional-counter pulses—such events are re-
ferred to as pointlike ones, in contrast to extended
events associated with long tracks.
The system counting 71Ge decays indicates the

time of pulse arrival; a digital oscilloscope records
the shape of each pulse, and this shape is used to
assess, in the off-line mode, the energy and the pulse
rise time. An active shield based on a NaI crystal
selects pulses accompanied by γ emission. The dy-
namical range of energy measurements between 0.3
and 16 keV enables us to record the K and L decays
of 71Ge. Thus, events that are candidates for 71Ge de-
cay are selected according to three signatures: (1) the
pulse height falls within theK- and L-peak windows,
(2) the pulse rise time is short (pointlike event), and
(3) there is no accompanying γ emission.
After counting 71Ge decays in the proportional

counter for 5 to 6 months, the time analysis of se-
lected events is performed: by using the maximum-
likelihood method, 71Ge decays are separated from
background pulses, recorded at a constant rate, by
an excess of the counting rate at the beginning of the
counting time [6].
Figure 1 shows the schemes of 68Ge and 69Ge de-

cays. In the case of 68Ge, the counter records two de-
cays: 68Ge decay (T1/2 = 271 d) is indistinguishable
from 71Ge decay, and the subsequent decay of 68Ga
(T1/2 = 68.3 min) occurs via the emission of a β+

particle in 90% of events and via electron capture in
10% of events. As to 69Ge (T1/2 = 39.1 h), it decays
via electron capture (64%) or by β+ mode (36%) to
excitation levels of 69Ga, the pulses from these decays
being accompanied by γ emission of various energies.

3. 68Ge PRODUCTION RATE

3.1. Selection of 68Ge Events

In the SAGE gallium target, nuclei of the 68Ge
isotope are produced predominantly by the interac-
tions of cosmic-ray muons. The 68Ge production rate
obtained by means of calculations and indirect ex-
periments [5, 7, 8] is given in [1]. This rate is equal
to 0.026 ± 0.015 68Ge atoms per day in 60 tons of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
gallium. We will compare the results of our analysis
with this value.
Candidate events for 68Ge decay were selected by

a pulse pair. The first pulse was selected according to
the criteria of a 71Ge event, while the second pulse
was selected according to its coincidence with the
1022-keV γ line. Figure 2 shows the energy spectrum
of events that were recorded in the NaI crystal in
coincidence with proportional-counter pulses during
measurements with the counter containing a large
amount of 68Ge introduced in the counter gas. The
1022-keV line corresponds to recording two anni-
hilation photons in the NaI detector. Figure 2 also
shows the spectrum of pulses in NaI that were co-
incident with counter pulses and which were accu-
mulated in solar-neutrino measurements from Au-
gust 1996 to December 2000. The analysis of both
spectra presented in that figure permits one to se-
lect the energy range for NaI over which the prob-
ability of random coincidences is minimal, with the
detection efficiency being sufficiently high for events
corresponding to 68Ge. About 50% of 68Ge decays
counted by the NaI detector and 10% of events from
the coincidence spectrum for the solar measurements
fall within this range.
We used two methods for restricting the time in-

terval ∆t between the pulses of the pair. In the first
method, ∆t < 2T1/2(68Ga) = 137 min. In this case,
the effect, which is the number of 68Ge decays, is
estimated as the difference of the number of recorded
pulse pairs and the expected mean number of random
coincidences. In the second method,∆t < 1 d. In this
case, we used the time analysis similar to that of 71Ge
pulses—that is, the maximum-likelihood method for
68Ga decay at a constant background of random co-
incidences. There, the background of random coin-
cidences is not averaged over all measurements, but
it is associated with an individual measurement. If
the results obtained by the two methods agree, this
will suggest that, in selecting 68Ge candidates, the
background is entirely due to random coincidences.

3.2. Efficiency of Selection of 68Ge Events

The number nc of recorded 68Ge events is related
to the number n0 of 68Ge atoms produced in the
target by the equation nc = n0ε. The efficiency ε is
the product of the efficiency of germanium extraction
from the target after the solar exposure (εext ∼ 0.9),
the efficiency of counting 71Ge decays in the pro-
portional counter (εcnt ∼ 0.6), the probability of 68Ge
decay within the actual time of counting (εt ∼ 0.23),
the probability of 68Ga decay within the time interval
∆t (see subsection 3.1) (ετ = 0.75 for ∆t = 137 min
2
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Fig. 1. Decay scheme of germanium isotopes [7].
and 1.0 for ∆t = 1 d), and the efficiency of recording
68Ga decays (εg); that is, ε = εextεcntεtετεg. In turn,
the efficiency of recording 68Ga decays, εg, is the
product of the probability of recording a β+ particle in
the proportional counter and the probability of record-
ing two annihilation photons within the energy range
chosen for NaI. The former probability is εβ ∼ 0.65,
because the decay occurs at the counter wall and
because, of half of the particles going to the wall, 30%
return into the gas volume. The latter probability is
εγ ∼ 0.90 · 0.95 · 0.50 ∼ 0.4; here, we have considered
that β+ particles are emitted in 90% of 68Ga decays,
that the probability of detection of at least one photon
by the NaI detector is 0.95, and that 50% of events
coinciding with NaI signals fall within the chosen
energy range. Therefore, the total efficiency of the
procedure for seeking 68Ge events is ε about∼2.7%.
Thus, we conclude that, if N 68Ge events were‘

found in k solar runs, then the 68Ge production rate
per target-mass unit is (we assume that this rate is
constant)

ṅ = λN/
k∑

i=1

(1− e−λθi)miεi,

where λ is the 68Ge-decay constant, (1− e−λθi) is
the “saturation factor” (the fraction of the 68Ge atoms
P

accumulated in the target over the exposure time θi),
mi is the gallium mass used in the ith exposure, and
εi is the efficiency ε of the ith measurement.

3.3. Random Coincidences

The number of random coincidences that can be
observed if use is made of the abovemethod for identi-
fying the 68Ge events depends on the rate of counting
pulses in the proportional counter that are coincident
with NaI signals and on the number of pulses selected
according to the 71Ge criteria.

For a single event selected according to the 71Ge
criteria, the probability of random coincidences is
P = 1− e−a, where a = Λ∆t is the Poisson distri-
bution parameter, Λ being the mean rate of counting
pulses coinciding with theNaI signals within the cho-
sen energy range. In our measurements, Λ = 0.06 ±
0.01 d−1 and P = 5.5 × 10−3 for∆t = 137min.

3.4. Results

For the present analysis, we can use the data
accumulated since August 1996. Within this period,
the gain has not changed in the NaI channel; there-
fore, we can use fixed boundaries of the energy range
chosen in the NaI for selecting 68Ga events.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 2. Spectra of events in the NaI detector that are coincident with proportional-counter pulses. The dark line with points
represents the spectrum of 68Ge decays; the gray line corresponds to the spectrum of events accumulated in solar runs. The
vertical rectangle shows the boundaries within which 68Ge events were selected.
To avoid uncertainties in estimating the efficien-
cies, we eliminated tail portions of duration ∆t from
all actual-time intervals of counting in determining
the first pulse in a pair of 68Ge events. In 32 solar
runs, nine pair pulses for 68Ge were found under the
aforementioned conditions for ∆t = 137 min. At the
expected mean number of random coincidences that
is equal to 4.5± 0.1, 4.5(= 9− 4.5) events should be
associated with 68Ge decay. This value corresponds
to the 68Ge production rate of 0.17(1± 0.82) d−1 in
the 60-t gallium target (we obtained the total uncer-
tainty by combining squares of the individual relative
uncertainties). This rate is 6.5 (1± 1.0) times higher
than the expected one.

In an alternative data processing with ∆t = 1 d,
the time analysis associated 4.7+3.6

−3.1 events of 55 pair
events with 68Ge decay; this result agrees with that
obtained in processing mean values.

The natural radioactive series of uranium and tho-
rium can be a source of pair events that we associate
with 68Ge decay. Among decay pairs, we sought those
in which the second events were accompanied by γ
emission with Eγ > 850 keV (in this case, it was
possible to detect photons within the energy range
chosen for NaI). Our analysis revealed that the ra-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 20
dioactive series cannot explain the result obtained
above.
We also analyzed data obtained in counting so-

called secondary extractions (these are test extrac-
tions that are periodically performed after germanium
extraction from the gallium reactors upon the com-
pletion of a solar exposure). The amount of germa-
nium resulting from the secondary extraction is about
20–30 times less than that in primary ones. The 68Ge
isotope was not found in secondary extraction.
Thus, the results of our analysis suggest that

the observed events are associated with 68Ge decay.
However, an approximation of the time intervals
between the pulses in the observed pairs yielded a
decay curve characterized by a half-life of (27+30

−12)
min, which is nearly one-half as great as that of 68Ge.

4. 69Ge PRODUCTION RATE

4.1. Selection of 69Ge Events

According to the estimates from [1, 5], the produc-
tion of 69Ge in the SAGE gallium target is due to the
effect of solar neutrinos (5.8 SNU, which corresponds
to the 69Ge production rate of 0.156 69Ge atoms per
day in the 60-t target), cosmic-ray muons (0.036
02
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69Ge atoms per day), and the neutron and α activity
of surrounding materials (0.015 69Ge atoms per day).
The total 69Ge production rate from all sources is 0.21
69Ge atoms per day in 60 tons of gallium.

In order to single out pulses associated with 69Ge
decay, we used a method based on the coincidence
of the electron-capture mode of 69Ge decay and the
1106-keV γ line. Proportional-counter pulses were
selected by the pulse height and by the rise time
in accordance with the selection criteria for 71Ge.
The time analysis based on the maximum-likelihood
method was applied to the selected events—that is,
those of 69Ge decay (T1/2 = 39.1 h) with a constant
background-counting rate.

4.2. Efficiency of Selection of 69Ge Events

The 69Ge production rate in the 60-t gallium tar-
get is ṅ = λ(ni/εi)(60/mi), where λ is the 69Ge de-
cay constant, ni is the number of 69Ge decays that
was measured in the ith run, εi is the efficiency of
recording 69Ge decays, and mi is the gallium mass
used in the ith measurement. In turn, the efficiency
of recording 69Ge decays is, just like that for 68Ge,
the product of the efficiency of germanium extraction
from the target after a solar exposure (εext ∼ 0.9), the
efficiency of counting 71Ge decays in the proportional
counter (εcnt ∼ 0.6), the probability of 69Ge decay
within the actual counting time (ετ ∼ 0.5), and the
probabilities of the emission of 1106-keV photons
and their recording in the NaI detector (εn ∼ 0.27 ×
0.67 = 0.18). Therefore, we have ε = εextεcntεnετ (1−
e−λθ). At an exposure time of θ ∼ 30 d, the saturation
factor (1− e−λθ) is equal to unity. Thus, the total
efficiency of recording 69Ge atoms is about 5%.

4.3. Results

For our analysis, we have used the same data as
those for determining the 68Ge production rate—that
is, data accumulated from August 1996 to December
2000. Nineteen pulses corresponding to the 69Ge se-
lection were found in 32 solar measurements. On the
basis of the time analysis, all selected pulses were as-
sociated with the uniformly distributed background.
The 69Ge production rate in the 60-t gallium target is
≤0.49 69Ge atoms per day at a 68% confidence level.
This constraint does not rule out the possibility

that the rate of production of this isotope under the
effect of cosmic-ray muons can be higher than the
predicted one; this is suggested by the analysis of
68Ge events.
P

5. POSSIBILITY OF TEST MEASUREMENTS:
AN EXPERIMENT AT THE UNDERGROUND

SCINTILLATION TELESCOPE

The results of the analysis of solar-run measure-
ments aimed at determining the rate of germanium-
isotope production in a gallium target demonstrate
that we may underestimate the background associ-
ated with the interactions of cosmic-ray muons. The
estimated amount of 68Ge complies with the 71Ge
production rate of 0.08 71Ge atoms per day in the
muon-induced reactions—that is, 5.8% (4.5 SNU)
of the measured neutrino-capture rate of 77 SNU.
Moreover, the time analysis aimed at identifying 71Ge
decays against a constant background associates up
to 10% of 68Ge decays with 71Ge decays, and this
leads to an additional systematic overestimation of
the measured solar neutrino flux; it can reach approx-
imately 0.1 pulse (71Ge)/run over a 30-d exposure at
a production rate of 0.17 68Ge atoms per day (that is,
up to 2% of the measured value).

The result of the above analysis has a large sta-
tistical uncertainty. In order to assess the effect of
cosmic-ray muons on the measured solar-neutrino
flux to a high precision, it is reasonable to perform
an additional direct experiment that would study the
muon effect on gallium measurements.

The Baksan Neutrino Observatory (BNO) pro-
vides quite favorable conditions for such an ex-
periment. The underground scintillation telescope
(UST) and the gallium–germanium neutrino tele-
scope (GGNT), which is the location of the SAGE
experiment, belong to the complex of the under-
ground low-background BNO laboratories of the
Institute for Nuclear Research (Russian Academy of
Sciences). TheUST depth is sufficient for eliminating
all components of cosmic rays, with the exception
of muons. The muon flux at UST was measured to
a high precision and is equal to 4.35 × 10−6 (cm2

s)−1 [9]; that is, it is about 1000 times greater
than that in the GGNT chamber {3.03(1± 0.03) ×
10−9 (cm2 s)−1} [10]). While the 68Ge production
rate is 0.026 68Ge atoms per day in 60 tons of
gallium in GGNT, its expected value in UST is
0.026(4.35 × 10−6)/(3.03 × 10−9)(145/381)0.73 =
18.4 68Ge atoms per day. It has been considered here
that muon interactions are proportional to the mean
muon energy raised to the power 0.73 [11]; the mean
muon energy is 145 GeV in UST and 381 GeV in
GGNT. Thus, we can see that, by using only part of
the gallium (for instance, 7 t), the 68Ge production
rate in muon interactions can be measured at UST
to a precision of 10% in the course of two six-month
exposures.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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6. CONCLUSION

The above analysis of the data from solar measure-
ments has revealed that the 68Ge production rate in
the SAGE gallium target exceeds the value obtained
in indirect experiments and preliminary calculations
by a factor of 6.5(1± 1.0). According to the data from
the solar-run analysis, the 69Ge production rate is
consistent with preliminary estimates. These results
demonstrate that an error in estimating the system-
atic uncertainty in measurements of solar muon flux
may arise because of the possible underestimation of
the effect of cosmic-ray muons. In this connection,
it is desirable to perform direct measurements of the
rate of germanium-isotope production at a higher
muon flux. Two six-month exposures of 7 t of gallium
in the UST of the BNO would make it possible to
measure the 68Ge production rate to a precision better
than 10%.
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Abstract—A consistent theoretical analysis of elastic α6He scattering is performed with allowance for the
correctionassociated with the exchange of a dineutron cluster. It is shown that the inclusion of the exchange
mechanism, along with that of potential scattering, makes it possible to reproduce the measured cross
section over the entire range of the 6He scattering angle. Concurrently, one can also obtain information
about the spatial distribution of the dineutron cluster and the α particle in the ground state of the 6He
nucleus. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of light neutron-rich nuclei in the
reactions with radioactive beams has recently become
one of the topical problems in contemporary nuclear
physics. Extensive searches for hydrogen and lithium
isotopes involving a large neutron excess (about 4 to
5 neutrons) and a detailed exploration of their spec-
troscopy were performed in [1, 2]. Some shapes of
the spatial distribution of nucleons in neutron-rich
nuclei were determined in the experiments reported
in [1], which were based on some sophisticated cor-
relation methods. However, even the simplest nuclei
involving only two extra neutrons have not yet re-
ceived adequate study, either from the point of view
of their spectroscopy or from the point of view of the
topology of the spatial arrangement of the neutrons
and the remaining virtual cluster. The arrangement of
the deuteron with respect to the α-particle cluster in
the 6Li nucleus was investigated theoretically in [3,
4] on the basis of microscopic models allowing for
the lowest two values of the relative orbital angular
momentum (Λ = 0, 2) in the α–d system (the states
associated with these values of the orbital angular
momentum were specified differently in [3] and in [4]:
Kukulin et al. [3] used the principal quantum number
N = 2 of two 1p nucleons in the three-body model,
whereas Zhukov et al. [4], who relied on the method
of K harmonics, took into account not only Kmin
but also Kmin + 2). Allowance for two values of Λ
enhances the number of admissible topologies of the
6Li nucleus; as a result, a whole series of configu-
rations involving a nonstandard arrangement of the
proton and the neutron with respect to the α particle
becomes possible (borromean nuclei, in terms of the
authors of [4]), apart from the conventional αd cluster

*e-mail: wg2@anna19.npi.msu.su
1063-7788/02/6507-1282$22.00 c©
configuration. As to the 6He nucleus, detailed micro-
scopic calculations for it were performed in [5]. These
calculations predict that the 6He wave function has
two strongly different spatial components. The first
corresponds to the configurations where there are two
closely spaced neutrons whose center of mass lies at
a considerable distance from the α particle (dineutron
cluster). The second is characterized by cigar shape,
with the distance between the neutrons being large
and the distance between the center of mass of the
two neutrons and the α particle being small.
The existence of a dineutron configuration in the

6He nucleus may have a pronounced effect on elastic
α6He scattering—in particular, at large scattering
angles. Indeed, the cross section for elastic back-
ward scattering must develop maxima upon taking
into account cluster exchange (see [6]). Elastic α6He
scattering for angles of up to 160◦ was studied ex-
perimentally in Dubna by using a beam of 15-MeV
6He ions. According to [7], a satisfactory description
of data from that experiment can be obtained under
the assumption that the 6He nucleus has a dineutron
cluster configuration.
Recently, experimental groups from Leiden and

Brussels Universities [8] obtained new data on the
differential cross sections for elastic α6He scattering
at moderate energies up to the largest angles. Here,
we analyze these data within the microscopic ap-
proach proposed in [6]. This approach is based on tak-
ing into account, along with potential scattering, ex-
change processes associated with the dissociation of
the 6He nucleus. In contrast to [6], however, we con-
sider here exchange processes within the three-body
problem, applying the DWBAwith finite-range inter-
actions (DWBAFR) [9]. In the case of elastic scatter-
ing, the amplitude of exchange processes can be con-
sidered as the simplest many-body (more precisely,
2002 MAIK “Nauka/Interperiodica”
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three-body) correction to the optical-model potential.
It is rather difficult to substantiate this statement rig-
orously, but, if one is dealing with reactions like that
being considered, which involve strongly absorbing
particles and many open channels, the introduction
of exchange processes as a correction to potential
scattering seems reasonable. Moreover, the unitarity
of the total S matrix, which is determined both by
elastic scattering and by exchange processes, offers
an independent check upon the validity of our con-
cept.
The ensuing exposition is organized as follows. In

Section 2, we present general formulas for calculating
the amplitudes for the elastic scattering of particles
with allowance for exchange processes. The matrix
element for exchange processes is computed by the
distorted wave method for finite-range interaction [9],
the basic formulas of the method being simplified
by using the identity of the input and the output
channel of the reaction being considered. The cal-
culated angular distributions of elastically scattered
6He ions and the structure of the wave function for
the relative motion of the α cluster and the center of
mass of the dineutron are discussed in Section 3. The
respective reflection coefficients (the absolute value
of the S matrix) are presented in Section 4, where
they are also compared with the predictions of various
phenomenological models.

2. CALCULATION
OF THE ELASTIC-SCATTERING

AMPLITUDE
The well-known optical model provides a con-

ventional approach to describing elastic scattering of
composite particles. The distorted wave of the relative
motion of scattered particles is expanded in partial
waves of orbital angular momentum L, which are de-
termined from the Schrödinger equation with a phe-
nomenological optical potential. However, this ap-
proach gives no way to derive the angular distribution
over the entire range of scattering angles; in particu-
lar, it cannot reproduce maxima in the cross section
for backward scattering. This is because potential
scattering does not exhaust processes contributing
to the elastic scattering of composite particles, es-
pecially at large scattering angles. It is necessary
to take into account various inelastic processes—in
particular, exchange processes associated with the
dissociation of the target nucleus into two fragments.
In this case, the total amplitude for the elastic scat-
tering of composite particles x and A is expressed in
terms of the amplitude fopt(θ) for optical-potential
scattering and the exchange correction∆f(θ) as

f(θ) = fC(θ) +
1

2ik

∞∑
L=0

(2L + 1)e2iσL (1)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
× (Sopt
L + aL − 1)PL(cos θ),

where θ is the scattering angle; k is the wave vector
of the relative motion of particles x and A; PL(cos θ)
are Legendre polynomials; fC(θ) and σL are, respec-
tively, the Coulomb amplitude and phase shift; Sopt

L
are the S-matrix elements for potential scattering in
the optical model,

fopt(θ) = fC(θ) +
1

2ik

∞∑
L=0

(2L + 1)e2iσL (2)

× (Sopt
L − 1)PL(cos θ);

and the coefficients aL, which depend only on L,
determine the contribution of exchange processes to
the total S matrix. The coefficients aL are defined as
the coefficients in the expansion of the exchange cor-
rection∆f(θ) in a series in Legendre polynomials; the
exchange correction is related to the matrix element
Mif for the exchange process by the equation

∆f(θ) = − µxA

2πh2
Mif , (3)

where µxA is the reduced mass of the colliding parti-
cles.
The matrix element Mif for dineutron exchange

is calculated here by the distorted-wave method for
finite-range interaction [9].
Within this method, our nuclear reaction is con-

sidered in the three-body approximation and, in the
case of elastic scattering, proceeds as follows:

x + A→ x + (C + x′) (4)

→ x′ + (x + C)→ x′ + A, x′ = x.

It should be noted that, usually, one must perform
summation over spin variables characterizing inter-
mediate states (difference of particle spins, total spin
in each isolated channel, spin transfer, etc.). In the
case of elastic scattering, however, these spin vari-
ables vanish because of the identity of the initial and
final states.
Let us denote the spin, the orbital angular momen-

tum, the total angular momentum, and its projection
of particleA(x) by SA(x), LA(x), JA(x), andMA(x), re-
spectively. In the case of elastic scattering, the matrix
element for exchange processes is then calculated by
the formula

Mif =
∑
MA

(−1)Jx+Mx
∑
Λ

ΘΛ
JA

βΛ, (5)

whereΛ is the orbital angular momentum in the decay
vertices and ΘΛ

JA
is the structure factor related to the

reduced width ΘA→C+x
ΛLASA

by the equation

ΘΛ
JA

=
1√

2Jx + 1

∑
LASA

(−1)Λ+LA−SA+JA (6)
2
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Optical-potential parameters for elastic α6He scattering

UR, MeV RV , fm aV , fm W , MeV WD, MeV RW , fm AW , fm RC, fm

200 1.3 0.6 10 0 2 0.6 1.4
× 1√
2Λ + 1

(ΘA→C+x
ΛLASA

)2.

The kinematical integral βΛ is expressed in terms
of the form factor FL

Λ (r, r′) and the distorted waves
χin

L (kr) and χout
L (kr′) in the input and output chan-

nels as

βΛ =
4
√

2π
k2

∑
L

(−1)LPL(cos θ)(2L + 1) (7)

×
∫

χin
L (kr)FL

Λ (r, r′)χout
L (kr′)rr′drdr′.

For the invariant form factor, we use the standard
definition

FL
Λ =

1√
(2L + 1)(2Λ + 1)

∑
µ,m

(−1)µIL, (8)

IL =
∫

Ψ2
Λµ(r)V YLm(r)YLm(r′)dΩrdΩr′ ,

where ΨΛµ(r) is the wave function describing the
relative motion of clusters x and C in nucleus A with
the orbital angular momentum Λ (the invariant form
factor depends on the squared wave function, because
the decay vertices for elastic scattering are identical)
and V is the potential of xC interaction.

Formulas (5)–(8) arise upon applying the
DWBAFR to the particular case of the elastic channel
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where A = B and x = y and where the orbital-
angular-momentum transfer is l = 0.
A comparison of formula (3) with (5)–(8) makes

it possible to derive explicit expressions for the coeffi-
cients aL,

aL ≈ (−1)L(2L + 1)ΘΛ
JA

ILβΛ(cos θ), (9)

which determine the exchange correction to the scat-
tering amplitude.

3. COMPUTATION OF ANGULAR
DISTRIBUTIONS FOR ELASTIC α6He

SCATTERING

We have performed calculations for the elastic
scattering of an α particle by a 6He nucleus at Elab =
19.6 MeV (Ec.m. = 11.6 MeV), taking into account
exchange corrections calculated by formulas (1)–(9).
The total differential cross section for elastic scatter-
ing, the differential cross section for potential scatter-
ing, and the contribution of the exchange correction
to the differential cross section are shown in Fig. 1
(solid, dashed, and dash-dotted curves, respectively).
The parameters of the optical potential taken here in
the standard Woods–Saxon form that were used in
our calculations are presented in the table.
It should be noted that the optical potential en-

suring the best fit to the experimental data with al-
lowance for the exchange correction is expected to
differ from the analogous optical potential in the case
of potential scattering, because the latter takes these
corrections into account implicitly. In general, the
calculated cross sections are stable to variations in
the optical-potential parameters. The angular distri-
butions show the highest sensitivity to variations in
the depth and the radius of the real part of the po-
tential [provided that URRn

V = const, RV = rV A1/3,
n = 2 (continuous ambiguity)].
As can be seen from Fig. 1, the angular distribu-

tion in the range from 0◦ to 60◦ is controlled by po-
tential scattering. At larger angles, the contribution of
dineutron exchange becomes dominant. Thesemech-
anisms interfere either constructively or destructively
(approximately at 70◦).
Our calculation of the contribution of exchange

processes to the cross section for elastic α6He scat-
tering made it possible to extract the ground-state
wave function for the relative motion of the dineu-
tron and α-particle cluster in the 6He nucleus. As
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 2.Probability density rΨΛ(r) for the 6Hewave func-
tion versus r in the alpha–dineutron channel at Λ = 0.

was shown in [5], the nucleus 6He can be in either
of two states having different topologies. These are
that which is associated with the dineutron config-
uration proper (Rα,2n = 4 fm, Rn,n = 1 fm), which
makes a substantial contribution to the ground-state
wave function, and that which is associated with
a cigar configuration (Rα,2n = 1 fm, Rn,n = 4 fm),
which plays an important role in the excited state
of the 6He nucleus and in the elastic scattering of
these ions at high energies (about 100 MeV). The
geometric configuration of the sought wave function
was determined by using the WDP procedure [10] to
fit the depth of the potential for preassigned values of
the binding energy of the 6He nucleus, the number of
nodes of the wave function, and the geometric param-
eters of the potentialU(r) = 1/(1 + exp(r− r0)/a) of
the alpha–dineutron interaction.
The quantity rΨΛ(r) characterizing the relative

motion of the dineutron and theα particle in theΛ = 0
wave is shown in Fig. 2 at r0 = 2.7 fm and a = 0.7 fm.
It can be seen that the calculated value of Rα,2n is
about 4 fm; that is, the dineutron structure of the
6He nucleus is realized in elastic α6He scattering at
moderate energies.

4. BEHAVIOR OF THE S MATRIX
FOR ELASTIC α6He SCATTERING
AT THE NUCLEAR PERIPHERY

Thus, the dineutron configuration of the wave
function withRα,2n = 4 fm is realized in elastic α6He
scattering at moderate energies of 6He ions. In other
words, dineutron exchange occurs at the nuclear pe-
riphery, thereby reducing the absorption of this cluster
at the nuclear surface. There are phenomenological
approaches where such a reduction of absorption is
introduced in one model-dependent way or another.
By way of example, we indicate that, in the Regge
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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pole model, the growth of the cross section at large
scattering angles is ensured by introducing a reso-
nance dependence of the S matrix on L at L = Lcr. In
the potential approach, singularities in the S matrix
are obtained by modifying optical potentials. For
example, the imaginary part of the optical potential
in the model where this imaginary part depends on L
is chosen in the form

W (L) = W [1 + exp(L− L0)/∆L]−1.

This choice of potential reflects the fact that heavy
ions of high L cannot be captured by the target nu-
cleus, so that absorption must decrease with increas-
ing L. The reduction of absorption in the model with
an L-split potential is ensured by sign-alternating
corrections to the optical potential. The phases of
these corrections are (−1)L, which coincide with the
phases of Legendre polynomials at an angle of 180◦

in expansion (1), giving rise to a sharp growth of the
cross section as the scattering angle tends to 180◦.
All phenomenological models give a nonmono-

tonic dependence of the S matrix on L in the sur-
face region of the nucleus. Such a nonmonotonic
dependence is reproduced upon taking into account
exchange processes.
Indeed, exchange processes proceed through pro-

jectile interaction with individual clusters of the target
nucleus. For this reason, the overlap of the bound-
cluster and projectile wave functions is small both
in the interior of the nucleus and at large distances.
As a consequence, the exchange correction to the S
matrix has a maximum (or maxima) in the surface
region of the nucleus. The dependence of the total S
matrix on L also becomes nonmonotonic; that is, the
2
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introduction of the exchange correction is equivalent
to employing the Regge pole model.
The nonmonotonic, resonance, dependence of the

total S matrix on L is conveniently illustrated in
Fig. 3, which displays the reflection coefficients ηL =
|SL| and ηopt

L and the exchange corrections |aL| ver-
sus L, and in Fig. 4 by the Argand plot for the real
and imaginary part of the S matrix [11]. Each loop on
the Argand plot corresponds to an extremum of the S
matrix for a given value of L.
As can be seen from Figs. 3 and 4, the exchange

correction gives rise to a nonmonotonic dependence
of the S matrix on L both at small values of L and at
the boundary of the nucleus, where L � 6. The total
reflection coefficient approaches unity more steeply
than the reflection coefficient in the potential model. It
is natural to assume that this is due to the use of the
phenomenological model featuring an L-dependent
imaginary part of the optical potential.
From (9), it follows that the sign of the corrections

àL coincides with the sign of (−1)L; that is, the phe-
nomenological model with an L-split potential can be
reproduced by adding the exchange correction to the
S matrix.
Thus, the inclusion of the exchange correction

to potential scattering makes it possible to obtain,
within a unified theoretical approach, a detailed de-
scription of the behavior of the reflection coefficients
postulated in various phenomenological models.
Moreover, none of the phenomenological models

can yield such rich information about the behavior
of the S matrix near the surface of the nucleus (and
thereby about the behavior of the cross section at
P

large angles) as the microscopic approach that takes
into account exchange processes does.

CONCLUSION

It has been shown that the inclusion of the
dineutron-exchange correction in studying elastic
α6He scattering makes it possible to match the the-
oretical cross section with the experimental data over
the entire range of 6He scattering angles. Moreover,
this has enabled us to estimate the mean distance
Rα,2n between the virtual dineutron cluster and the α
particle in the ground state of the 6He nucleus.
The behavior of the S matrix in the surface region

of the nucleus permits an independent derivation of
Rα,2n. At c.m. energies of up to 20MeV, the boundary
value of L � 5 corresponds to Rα,2n � 4 fm, which
agrees well with microscopic computations of the
wave function for this nucleus in the dineutron con-
figuration.
That the virtual dineutron has appeared as a

rather stable configuration of the 6He nucleus in
reactions with other particles of moderate energies
is of course unexpectable. Experimental data from
[12] show that the momentum distribution of the
neutron that has escaped scattering on the target
nucleus in the 6He + 12С fragmentation reaction
at high energies (0.8 GeV/nucleon) corresponds
to a cigar configuration of the 6He nucleus [5]. In
other words, different configurations of this nucleus
manifest themselves differently, depending on the
energy of the system. This fact indicates that the wave
functions forA = 6 are rather complicated and that it
is necessary to study them comprehensively in order
to reveal the existence of dineutron configurations in
the neutron-rich nuclei with a neutron excess greater
than three.
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Abstract—Analytic expressions for the amplitudes of elastic nucleus–nucleus scattering for various
collision regimes are derived within the Glauber–Sitenko approach. The procedure used to do this employs
an extended optical potential of the Woods–Saxon type and takes into account the deflection of trajectories
by a strongCoulomb field. A comparison of the analytically calculated cross sections with numerical results
and experimental data shows that the approach in question can be successfully used in the energy range
from 10 to 100 MeV per nucleon. It is demonstrated that, for a preset potential, it is possible to find angular
ranges dominated by specific patterns of scattering, such as classical or rainbow scattering and Fresnel or
Fraunhofer diffraction. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The character of heavy-ion scattering by nuclei is
associated, to a considerable extent, with the spe-
cial features of the potential at its periphery, where a
strong, but weakly changing, Coulomb potential and,
on the contrary, the sharply changing, potential of
nuclear forces both play a significant role. It is of im-
portance here that use is made of extended optical po-
tentials of theWoods–Saxon type, which have a large
interaction range. It should be noted that, at present,
there exist efficient codes for computing differential
cross sections for scattering. However, it is advisable
to consider problems associated with the physical
pattern of processes on the basis of analytic meth-
ods for calculating and analyzing relevant amplitudes.
Such methods make it possible to understand why
the character of angular distributions changes with
increasing scattering angles, how angular distribu-
tions depend on energy and on the set of colliding
nuclei, what one can expect from changes in the input
parameters of the problem being studied, etc. Such
approaches were developed primarily for diffraction
scattering models, where fits to the experimental data
were constructed by varying the parameters of the
scattering Smatrix whose formwas preassigned phe-
nomenologically (see [1–4]). The angular distribu-
tions of elastically scattered nuclei were interpreted
in terms of the physical language borrowed from the
description of optical interference and diffraction.

At the same time, actual analyses of experimen-
tal data are based, most frequently, on the potential

*e-mail: lukyanov@thsun1.jinr.ru
1063-7788/02/6507-1288$22.00 c©
approach where optical potentials are preset phe-
nomenologically or where their real part is calculated
as the folding of nuclear-matter-density distributions
and effective nucleon–nucleon forces. In addition, al-
lowances are made there for exchange effects, for the
density dependence ofNN forces, and for some other
relevant phenomena [5–8]. In relation to the diffrac-
tion approach, the potential approach provides a more
profound physical basis for understanding both the
scattering mechanism proper and the manifestations
of the special features of nuclear structure—for ex-
ample, the neutron and the proton halo at the far pe-
riphery of some light nuclei and the excess of neutrons
near the nuclear surface.

In this connection, it is of interest to develop
analytic methods for calculating amplitudes namely
within the potential approach both for a qualitative
investigation of the scattering pattern and for quan-
titative calculations aimed at reproducing precise
numerical solutions for the same potential. For this
purpose, we consider here heavy-ion scattering at
rather high energies of about 10 to 100 MeV per
nucleon, in which case the following conditions are
satisfied: E � V , where E is the collision energy and
V is the interaction potential, and the wavelength is
much smaller than the characteristic parameters of
the potential, such as its range R and the thickness
a of its surface layer. Under these conditions, one
can adopt, for a basis, the eikonal Glauber–Sitenko
approach [9, 10], where we have, at our disposal,
an explicit analytic expression for the amplitude of
scattering at small angles of ϑ <

√
2/kR (k is the

collisionmomentum). This approach is widely applied
2002 MAIK “Nauka/Interperiodica”
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to hadron–nucleus scattering, where Gaussian dis-
tributions are usually chosen for the potential or for
the target-nucleus density. Integration in the phase
along the straight-line trajectory of the motion can
then be performed explicitly, and one can sometimes
obtain an explicit expression even for the amplitude.
As to nucleus–nucleus scattering, a microscopic
approach was developed for it in [11–14] on the basis
of a generalization of the Glauber–Sitenko theory for
multiple diffractive scattering. The optical approxi-
mation, which is a simplified version of this approach,
leads to the eikonal phase in the form of a folding inte-
gral of the product of the two-dimensional densities of
nucleons in colliding nuclei and the Fourier transform
of the amplitude for nucleon–nucleon scattering.
This amplitude is known from experimental data as a
complex-valued function of the momentum transfer.
From the phase constructed in this way, one can in
principle obtain the complex potential of nucleus–
nucleus interaction by applying the inverse Fourier
transformation (see, for example, [15]). However, it is
difficult to implement this procedure in practice. For
this, it is necessary, above all, to obtain an explicit
expression for the eikonal phase, but this has been
achieved so far only forGaussian density distributions
or for density distributions expanded in series in
Gaussian functions (see, for example, [16, 17]). There
is in addition the problem of taking into account
the distortion of the straight-line trajectory of the
motion within the Glauber–Sitenko approach. For
heavy-ion scattering, where the role of the periphery
is significant, Gaussian functions unfortunately do
not ensure the required level of precision, and one
has to use, for potentials and densities, more realistic
forms that have exponential behavior near the nuclear
surface.
Thus, phenomenological optical potentials or, as

was stated above, complex-valued potentials whose
real part is calculated by the folding method and
whose imaginary part is specified phenomenologically
(see, for example, [18]) have still been traditionally
used to describe quantitatively heavy-ion scattering.
Since the range of such nucleus–nucleus potentials,
which is equal to the sum of the radii of colliding
nuclei, is large, their shapes belong to the extended
type of Woods–Saxon potentials. For these, however,
no explicit form of the eikonal phase was found until
recently, which prevented the development of ana-
lytic methods for calculating scattering amplitudes.
And only in [19] was an approximated expression
for the eikonal phase obtained for the symmetrized
Woods–Saxon potential. This expression faithfully
reproduces the behavior of the phase determined by
means of a numerical integration, making it possi-
ble, owing to this, to obtain differential cross sec-
tions that comply with the results of precise cal-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
culations. In turn, the availability of an explicit ex-
pression for the eikonal phase in the case of a re-
alistic nuclear potential enables one to adapt known
asymptotic methods for estimating rapidly oscillating
integrals to the specific problem of calculating the
amplitudes for nucleus–nucleus scattering. This was
the objective of the present study, where, within the
Glauber–Sitenko approach, we obtain explicit ex-
pressions for the amplitudes corresponding to various
regimes of heavy-ion scattering in certain angular
intervals. We take into account and discuss effects
of the Coulomb distortion of the trajectory of the
motion, whereby we expand the applicability range of
the approach. The accuracy of the analytic estimates
obtained here is tested by direct computer calcula-
tions of relevant angular distributions. A comparison
with experimental data is also performed.

2. THE METHOD

In the Glauber–Sitenko approach, the scattering
amplitude has the form [9, 10]

f(q) = −ik
∞∫
0

J0(qb)
[
eiχ(b) − 1

]
bdb, (1)

where q = 2k sin(ϑ/2) is the momentum transfer, ϑ is
the scattering angle, the eikonal phase is given by

χ(b) = − k

2E

∞∫
−∞

V (
√
b2 + z2) dz, (2)

and b is the impact parameter. The interaction poten-
tial includes the nuclear and the Coulomb term:

V (r) = VN (r) + VC(r). (3)

As usual, the nuclear potential is taken in the form of
the optical Woods–Saxon potential

VN (r) = (V0 + iW0)uF(r), (4)

uF(r) =
(
1 + exp

r −R
a

)−1

.

The Coulomb potential is chosen in the traditional
form

VC(r) =
VB

2

(
3− r2

R2
C

)
Θ(RC − r) (5)

+
VB

r
RCΘ(r −RC),

VB =
Z1Z2e

2

RC
,

which corresponds to the interaction of the charge
Z1e with the charge Z2e uniformly distributed over a
sphere of radius RC.
2
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By virtue of the condition kb� 1, the integral in
amplitude (1) strongly oscillates. This enables us to
use asymptotic methods for estimating it. In doing
this, the Bessel function is replaced by its asymp-
totic expression J0(x) =

√
2/πx cos(x− π/4) (x�

1). Additionally, it is sufficient to take into account
only the first term in (1) in considering scattering at
angles ϑ �= 0. We then have

f(q) = f(+) − f(−), (6)

f(±) = −
1

4 sin(ϑ/2)

√
q

π
(1± i)t(±),

t(±) =

∞∫
0

√
bdbexp[ig(±)(b)], (7)

g(±)(b) = ±qb+ χ(b), χ(b) = χN (b) + χC(b),
(8)

where χN (b) and χC(b) are, respectively, the nuclear
and the Coulomb phase shift, which are computed by
formula (2) with the corresponding potentials (4) and
(5). The amplitudes f(−) and f(+) are referred to as
the far-side and the near-side amplitude, respectively;
in the semiclassical limit, they are associated with
trajectories that have passed the near side and the far
side of the scatterer, respectively.
Methods for computing integrals involving quickly

oscillating functions in the integrands—such as the
pole, the saddle-point, and the stationary-phase
method—require the assumed phases χ(b) in an
explicit analytic form. The phase shifts χ(b) [see
Eq. (2)] are also the integrals of the potential along
the straight-line trajectory of themotion of nuclei. For
the Coulomb potential, the phase shift in question is
calculable explicitly [20]. The result is

χC(b) =
η

RC

{[
−8
3
ξ +

2b2

3R2
C

ξ (9)

+ 2RC ln(k(RC + ξ))
]
Θ(RC − b)

+ 2RC ln(kb)Θ(b−RC)
}
,

where ξ =
√
R2

C − b2 and η = Z1Z2e
2k/2E is the

Sommerfeld parameter. As to the nuclear Woods–
Saxon potential (4), it is hardly possible to obtain
the analytic expression for the phase shift χN in this
potential. In order to solve this problem anyway, one
can approximate the potential by the sum of Gaussian
functions, fitting the corresponding parameters in the
sum (see, for example, [16]). The profile integral in the
phase shift (2) is then taken explicitly. This method is
PH
inconvenient because, for each new set of the param-
eters of theWoods–Saxon potential, the adjusted po-
tential must be fitted anew. But if, one fits a Gaussian
potential to reproduce only the exponential tail of the
Woods–Saxon potential [17], which plays the main
role in nucleus–nucleus scattering, this would lead to
a sharp distinction between its normalization and the
normalization of the corresponding Fermi function,∫∞
0 uF(r)dr � R [21].
An alternative method for calculating the profile

integral in (2) was proposed in [19]. This method is
based on an approximate separability of the variables
b and z in the integrand. The distribution function of
the potential was taken in the more realistic form of
the symmetrized Fermi function

uSF(r) =
sinhC

coshC + cosh(r/a)
, C = R/a, (10)

which coincides with uF in the region r > 0 for ex-
tended nuclei, when R� a. In contrast to the func-
tion uF, its first derivative vanishes at r = 0, owing
to which it is more convenient in analytic calculations
than the Fermi function [21]. The above method made
it possible to find that the eikonal phase for scattering
in the field of the symmetrized Woods–Saxon poten-
tial can be represented in the explicit analytic form
[19]

χN (b) = −kR
V0 + iW0

E
P (1, C)uSF(b), (11)

where

P (1, C) =
1
C

[
2.489453 + 0.34597C − 0.0046C2

]
.

In the peripheral region of the potential, b ∼ R, ex-
pression (11) for 5 ≤ C ≤ 20 faithfully reproduces the
behavior of the phase shift obtained by means of
numerical integration in expression (2). Moreover, a
comparison revealed [19] that the elastic-scattering
differential cross section calculated with the phase
shift found numerically and that calculated with the
phase shift in the form (11) agree well over the entire
range of applicability of the Glauber–Sitenko ap-
proach.
Below, we develop approximate methods for com-

puting scattering amplitudes using the analytic ex-
pressions (9) and (11) for the phase shifts. In the
case of nucleus–nucleus scattering considered here,
we have qb � qR� 1, which makes it possible to
use the asymptotic stationary-phase method. For this
purpose, the exponents g(±) in (7) must be expanded
in Taylor series in the vicinity of the saddle points
bsn , which determine the regions that make the main
contribution to the integral. We then have

g(±)(b) = g(±)(bsn) + g
′
(±)(bsn)(b− bsn) (12)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



DESCRIPTION OF ELASTIC HEAVY-ION SCATTERING 1291
Parameters of the potentials used to describe the elastic scattering of 17O on 208Pb, 120Sn, 90Zr, and 60Ni [24, 25] and
the scattering of 32S on 27Al [26]

Reaction Ec.m.,MeV V0, MeV W0,MeV R, fm a, fm RC, fm
17O + 208Pb 1327 50 47.1 9.286 0.727 10.196
17O + 120Sn 1257 50 45.0 8.171 0.706 9.0
17O + 90Zr 1207 50 37.1 7.666 0.697 8.463
17O + 60Ni 1118 50 39.5 6.823 0.754 7.783
32S + 27Al 55 100 48.76 7.428 0.5 7.428
+
g′′(±)(bsn)

2
(b− bsn)

2 + ....

From the condition requiring the vanishing of the
first derivatives, g′(±)(bsn) = 0, we derive the following
equations for the saddle points:

±q + χ′N (bsn) + χ
′
C(bsn) = 0. (13)

At W0 = 0,1) solving Eq. (13) leads to a real-valued
function q = q(b). In general, it appears that the so-
lution to the equation for g(+) yields a stationary point
that lies off the interval of integration. In (6), the term
f(+) can therefore be disregarded, whereupon the
scattering amplitude f(q) is determined by the term
f(−) exclusively. For it, the corresponding equation in
(13) gives two solutions—that is, two saddle points
bs1 and bs2 . If they are widely spaced,

2) their contri-
butions to f(−) can be considered to be independent.
Substituting expression (12) with g′(−)(bsn) = 0 into

(7), taking the slowly varying factor
√
b at the saddle

point outside the integral sign, and making the limits
of integration on the left and on the right of bsn tend
to infinity, we can evaluate the integral in (7) explicitly,
whereupon the amplitude assumes the form

f(−) = −
1

4 sin(ϑ/2)

√
q

π
(1− i)

∑
n=1,2

t(−),n, (14)

1)In the final expressions given below, we will replace V0 by
V0 + iW0, which is correct for W0 � V0. In the peripheral
region, b ∼ R1 + R2, and the region of classical scattering
angles, ϑ < |V |/E, this leads to a modest renormalization of
the particle flux by the factor (1−W0/4E) (see, for example,
[22]). For the more general case of complex-valued variables,
the stationary-phase method was developed in [23] for the
diffractive-scatteringmodel.

2)These two points are first-order saddle points because
g′′
(−)(bsn) �= 0.
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where

t(−),n =
√
bsn

√
2π

g′′(−)(bsn)
exp[i(g(−)(bsn) + π/4)].

(15)

Figure 1 shows the behavior of the saddle points—
that is, the deflection function q = q(b)—versus the
impact parameter for 17O scattering on 208Pb at
Ec.m. = 1327 MeV. (The parameters of the poten-
tial are given in the table.) The dash-dotted curve
represents its behavior for the Coulomb scattering
of pointlike charges, in which case the phase shift
is χC = 2η ln(kb). The dotted curve shows the small
deflection that arises if the charge Z1e is scattered
in the field of the charge Z2e uniformly distributed
over a sphere of radius RC [see Eq. (5)]. The long-
dashed curve corresponds to a numerical solution
to Eq. (13) for the case where the Coulomb and
the nuclear potential are taken into account and
where the corresponding phase shifts χC and χN

are given by expressions (9) and (11). This curve
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Fig. 1. Impact-parameter dependence of the deflection
function constructed on the basis of the eikonal phase
for 17O + 208Pb scattering (Ec.m. = 1327 MeV). The
parameters of the potential are presented in the table, and
the eikonal phases are taken in the form (9) and (11). A
detailed description of the figure is given in the main body
of the text.
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Fig. 2. Ratio of the differential cross sections dσ for
elastic scattering in the 17O + 208Pb reaction atEc.m. =
1327MeV to the corresponding Rutherford cross section
dσR. The parameters of the potential are the same as in
Fig. 1. The solid curve represents the results of precise
numerical calculations with W0 �= 0. The dashed curves
were computed by the stationary-phase method (short
dashes) without (W0 = 0) and (long dashes) with (W0 �=
0) allowance for absorption.

nearly coincides with the solid curve obtained if,
instead of the total Coulomb phase shift (9), its
asymptotic part χC = 2η ln(kb), which coincides
with the phase shift for the scattering of pointlike
charges, is used for all values of b. This feature is
peculiar to precisely nucleus–nucleus scattering. The
replacement of the total Coulomb phase shift by the
simpler phase shift for pointlike charges considerably
simplifies the ensuing analytic calculations. By and
large, we can see from Fig. 1 that the deflection
function q(b) has a characteristic maximum qmax ≡
qr = q(br) in the interaction-surface region, which
is precisely the region that determines the main
features of the scattering pattern. In this region,
it is convenient to represent the impact-parameter
dependence of the classical momentum transfer, q(b),
in the logarithmic-parabola form [27]

q = qr − ρ
[
ln
b− b1
br − b1

]2

, (16)

where the parameters br, qr, b1, and ρ are determined
by fitting this parabola to the exact curve q(b) ob-
tained, for example, by numerically solving Eq. (13).
It is of paramount importance to ensure the high-
est possible degree of precision in this fitting. For
example, methodological calculations show that an
error of about 0.5 fm in determining the position of
br leads to an order of magnitude change in the cross
section. Under such conditions, it is also important to
retain the necessary precision in deriving the explicit
dependence of the parabola parameters on the input
geometric and strength parameters of the nucleus–
P

nucleus potential. For this purpose, we developed a
method where the derivative of the function q(b) was
first approximated by a polynomial of third degree
in the region of its maximum, whereupon its roots
yielded explicit solutions for br, qr, b1, and ρ (see
Appendix). In this way, we completely determined
the parabola in (16) and two solutions for the saddle
points from it in turn. The results are

bs1 = b1 + (br − b1) exp
{
−
√
(qr − q)/ρ

}
, (17)

bs2 = b1 + (br − b1) exp
{
+
√
(qr − q)/ρ

}
.

This approximation of the function q(b) by a log-
arithmic parabola is shown in Fig. 1 by short dashes.
We note that the parameter b1 in formula (16) stands
for the point at which the curve representing the
deflection momentum q(b) intersects the b axis on the
left, while the quantities br and qr are the coordinates
of the points corresponding to the limiting value of
the classical momentum transfer (large asterisk in
Fig. 1). One can see that the parabola faithfully re-
produces the region of the maximum and the left wing
of the deflection function calculated numerically (it is
the region where the saddle points bs1 lie). On the
right, the true function q(b) is well approximated by
the saddle-point curve 2η/q for the Coulomb phase
shift corresponding to pointlike charges. Thus, the
behavior of the true deflection-momentum function is
simulated by choosing

bs1 = b1 + (br − b1) exp
{
−
√
(qr − q)/ρ

}
, b < br,

bs2 = 2η/q, b > br. (18)

In Fig. 1, the positions of these points are indicated
by asterisks.

3. CLASSICAL AND QUANTUM REGIONS
OF SCATTERING

At angles in the region ϑ < ϑr ( q < qr ), scat-
tering occurs in the classically allowed region. Here,
at every angle 9, there are two trajectories of the
motion that are associated with the different impact
parameters bs1 and bs2 . In Fig. 2, the results obtained
by numerically calculating the ratio of the elastic-
scattering cross section to the Rutherford cross sec-
tion, dσ/dσR, are compared to the results of our ana-
lytic calculations.3) The amplitude f(q) is determined
by formulas (6) and (15). Absorption is taken into ac-
count via changing the real potential by the complex
one in the final expression for the amplitude. It can

3)In these calculations and everywhere below, we take into
account the Coulomb distortion of the trajectory. In Sec-
tion 6, these effects will be discussed separately.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 3. Cross-section ratio dσ/dσR in the rainbow-angle region for (a) 17O + 208Pb scattering at Ec.m. = 1327 MeV and
(b) 32S + 27Al scattering at Ec.m. = 55 MeV: (solid curves) results of the exact numerical calculation at W0 �= 0, (dashed
curves) results of the calculations by the stationary-phase method by using (20), and (dotted curve) results for the case of two
closely lying points on the basis of (22). The parameters of the potentials are quoted in the table.
be seen that the results of our analytic calculations
comply well with the numerical results. This is not so
in the region of angles close to ϑr, which corresponds
to an extremum of the deflection-momentum function
q(b). In the limit ϑ→ ϑr, the cross section tends
to infinity since the second derivative g′′(−)(br) in the
denominator on the right-hand of (15) vanishes.

Oscillations of the cross-section ratio dσ/dσR
about unity occur because of the interference between
the nuclear and the Coulomb amplitude, which are
determined by the different saddle points bs1 and
bs2 . They have the different phase shifts g(−)(bs1)
and g(−)(bs2), respectively, with the result that the
squared modulus of the amplitude,

|f(q)|2 = |f [bs1(q)]|2 + |f [bs2(q)]|2

+
2k2

q2

√
qπbs1bs2

g′′(−)(bs1)g′′(−)(bs2)

× cos[g(−)(bs1)− g(−)(bs2)],

involves an oscillating interference term. At small an-
gles ϑ < ϑr � |V |/E, the nuclear amplitude f [bs1(q)]
is always small compared to the strong Coulomb
amplitude and thus manifests itself only through the
interference. For ϑ→ 0, the oscillations are com-
pletely suppressed by Rutherford scattering. The in-
clusion of nonzero W0 leads to the absorption of
particles, with the natural result that the oscillations
are smoothed. This scattering pattern corresponds to
Fresnel diffraction at the edge of a screen in optics.
As the saddle points bs1 and bs2 approach the point

br, which fixes the limiting classical angle, ϑ � ϑr, the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
regions around the points b � bs1 and b � bs2 , which
make a dominant contribution to the corresponding
part of the amplitude, begin to overlap. In this case,
the estimation of the integrals in (15) near br and the
assumption that their contributions to the amplitude
in (12) are independent both become meaningless.
The problem can be resolved either by adding the
next terms in the expansion (12) of the phase shift
g(−)(b) or by modifying the stationary-phase method,
for example, as was proposed in [28]. In the next
section, this case will be considered in detail.
The behavior of the amplitude for angles ϑ > ϑr,

which are far off the classical-scattering region, can
be understood on the basis of qualitative arguments
by using the same parametrization of q(b) employed
in the region of classical angles. For q > qr, we obtain√
qr − q = i

√
q − qr from (17). Here, only the saddle

point bs1 , which determines the exponential decay of
the amplitude f(−) ∼ exp−(qImbs1) and the corre-
sponding scattering cross section (see dashed curves
in the region ϑ > ϑr in Fig. 2), remains physically
justified. This behavior is also corroborated by nu-
merical calculations (solid curve). It is typical and is
observed experimentally.

4. REGION OF THE COULOMB RAINBOW
(RAINBOW SCATTERING)

Let us consider the angular region around ϑr.
Here, experimental data display a broad maximum
in the angular distribution for scattering, which, by
analogy with a rainbow arising in nature because of
the interference between the refracted and the re-
flected ray of light in a water drop, is referred to as
2
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rainbow scattering. In our case, this is the interfer-
ence of two amplitudes associated with two saddle
points on the right and on the left of br and which are
associated with two close trajectories passing near
the limiting classical trajectory of the motion. Thus,
we consider themechanism of scattering in the region
ϑr � |Vmax(r � RC)|/E, where the saddle points bs1

and bs2 merge (Fig. 1), and there arises a higher order
saddle point.

In order to obtain the scattering amplitude in
this region, we first expand the function g(−) in a
power series near the rainbow point b ∼ br. Since
g′′(−)(br) = 0, we must retain the third-order terms in
this expansion. Considering that g′(−)(br) = −q + qr
and g(3)

(−)(br) = χ(3)(br), we arrive at

g(−)(b) = −qbr + χ(br) (19)

− (q − qr)(b− br) +
χ(3)(br)

6
(b− br)3 + ... .

In this case, the result that the stationary-phase
method yields for the integral in (7) is

t(−) = 2π
[

2
χ(3)(br)

]1/3√
br (20)

× exp[ig(−)(br)]Ai(σ),
PH
where the Airy function is defined as

Ai(σ) =
1
2π

∞∫
−∞

exp[i(σz + z3/3)]dz, (21)

σ = (q − qr)
[
−2

χ(3)(br)

]1/3

.

This approximation is traditionally used in diffrac-
tion models. As in the case of Fresnel diffraction,
rainbow scattering is determined exclusively by the
near-side component f(−) of the amplitude. Because
of the characteristic behavior of the Airy function,
oscillations of the cross section are observed on the
illuminated side (ϑ < ϑr), decaying fast as we move
apart from the angle ϑr; on the dark side (ϑ > ϑr),
the cross section decreases fast. The maximum of
the angular distribution occurs on the illuminated
side and corresponds to the maximum of the Airy
function (wave rainbow), where σ = −1. In this case,
the limiting angle ϑr determines the position of the
classical (geometric) rainbow.
In Fig. 3, the results of the numerical and ana-

lytic calculations of the cross section for scattering
near the rainbow angle are compared both at high
(Fig. 3а) and at low (Fig. 3b) energies for various
pairs of interacting nuclei. We can see that the cal-
culation within the stationary-phase method in the
traditional Airy approximation as specified by Eq. (20)
(dashed curves) is unable to describe satisfactorily
nucleus–nucleus scattering. In either case, the curve
obtained from the analytic calculations passes signif-
icantly lower than that computed numerically. In all
probability, the reason is that the expansion (19) of the
function g(−) to the third-order terms is insufficient.
By way of example, we indicate that, in the case
of scattering of 17O on 208Pb (Fig. 3a), the results
obtained on the basis of the expansion of g(−) in
the form (19) agree with the results of the numerical
calculations only in the region b = br ± 0.5 fm—this
corresponds to scattering in a very narrow angular
interval. The inclusion of absorption by means of the
substitution of V0 + iW0 for V0 leads to a still greater
discrepancy.
In order to obtain an adequate description of

rainbow nucleus–nucleus scattering, we invoked the
method applied to the case where two saddle points
are closely spaced [28]. Its special feature is that
the phase shift g(±)(b) in (7) is expanded not in the
vicinity of the second-order stationary point but in the
vicinity of the midpoint between bs1 and bs2 , which,
in the limiting case, goes over into a higher order
point. Evaluating the integral in (7) by this method,
we obtain

t(−) = πσ1/4
(
h1

√
bs1 + h2

√
bs2

)
eia0Ai(σ), (22)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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where

h1,2 =

√
∓2

g′′(−)(bs1,2)
, (23)

a0 =
1
2
[
g(−)(bs1) + g(−)(bs2)

]
,

σ =
[
3
4
(g(−)(bs1)− g(−)(bs2))

]2/3

.

For bs1 → bs2 , we have g
′′
(−)(bs1,2)→ 0. In this limit-

ing case, we arrive at

h1 = h2 =


 −2
g
(3)
(−)(br)




1/3

, bs1 = bs2 = br.

For the saddle point bs2 ∼ br, one should take the
expression for it from (17).
The cross sections calculated by (22) are shown in

Fig. 3 by the dotted curves. It is seen that they are in
a good agreement with the cross sections computed
numerically on the left of the limiting classical angle
ϑr up to the region of angles where the wave rain-
bow forms the maximum of the cross-section ratio
dσ/dσR. It was shown above that, at larger and at
smaller angles with respect to the specific rainbow
angular interval, the cross section can be interpreted
in terms of Fresnel diffraction.

5. PATTERN OF FRAUNHOFER
SCATTERING

Let us dwell at some length on the behavior of
the cross section for elastic scattering at angles ϑ >
ϑr—that is, in the region forbidden for classical scat-
tering. We have seen that the Fresnel pattern de-
scribes well the classical region and that, for ϑ > ϑr,
the cross section decreases exponentially. However,
experiments often yield patterns where, against the
background of the general exponential decrease, there
arise oscillations of the cross section, which are char-
acteristic of Fraunhofer diffraction in optics. The use
of an optical potential that has both a real and an
imaginary partmakes it possible to explainmany sub-
tle details in the behavior of the cross section in this
angular region. The fact that, both for the near-side
(f(−)) and for the far-side (f(+)) component of the
total amplitude f(q), there are now stationary points
bsn falling within the integration interval (Re bsn > 0)
is a new theoretical aspect. These points are shifted
to the complex plane of the impact parameter b to
the region where there occur the poles r±p (ε) = ±R+
εiπa(2p − 1) (p = 1, 2, 3..., ε = ±1) of the nuclear-
phase-shift function uSF(b). Previously, an attempt
was made in [29] to determine the explicit form of the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
profile integral
∫∞
−∞ uF(

√
b2 + z2)dz (which involves

the Fermi function in the integrand) in the phase
shift (2) through continuing into the complex plane.
The result was expressed in terms of the sum of the
residues at the poles of the Fermi function, r±p = R±
iπa(2p − 1) (p = 1, 2, 3...). In the limit b→ 0, this
sum yielded, however, zero instead of the true value
�2R. Eventually, an ansatz was proposed in the form

χN (b) = −kR
V0 + iW0

E
(24)

×
[
1− iπ a

R

∑
p

(
r+p

λ
(+)
p

+
r−p

λ
(−)
p

)]
,

where λ
(±)
p =

√
(r±p )2 − b2 and the condition

Imλ(±)
p ≥ 0 must be satisfied. A numerical test

revealed that, even if a few hundred terms are retained
in the sum, this approximation does not ensure the
required accuracy on the real axis in the region b > R;
however, it faithfully reproduces the behavior of the
profile integral in the complex plane near the poles
that are the closest to the real axis of b. The last
circumstance can be used in deriving asymptotic
estimates for the amplitudes in the case where the
saddle points are complex-valued and are situated
in the region of the extrema of the phase shift—
here, these are poles of χN (b). In our case, the main
contribution to the amplitude at q � qr comes from
the saddle points near two poles closest to the real
axis, the inclusion of each next pair introducing a
lower order correction, proportional to exp (−πaq).
Within a more consistent procedure, one would
avoid discarding p ≥ 1 poles in (24), in contrast to
what was done, for example, in [30], and simulate
the total contribution of the remaining terms of the
sum in the region of the poles r±1 = R± iπa by a
smooth function ∆(b) [31]. It is this modified two-
pole approximation that is used here for the nuclear
phase shift:

χN (b) = −kR
V0 + iW0

E
(25)

×
[
1− iπ a

R

(
r+1

λ
(+)
1

+
r−1

λ
(−)
1

)
+
∆(b)
2R

]
.

The expression for the correcting function ∆(b) =
∆R(b) + i∆I(b), where b = b1 + ib2, is presented in
[31]. For the Coulomb phase shift, we take, as previ-
ously, the asymptotic value 2η ln(kb).
In seeking stationary points in the region where

the phase shift changes sharply, we can neglect small
contributions from the derivatives of the smooth func-
tions χC(b) and ∆(b). Since the saddle points occur-
ring in the first and the second quadrant of the com-
2
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Fig. 5. Regions where various scattering mechanisms are operative for the examples of elastic 17O scattering on (а) 208Pb
(Ec.m. = 1327 MeV), (b) 120Sn (Ec.m. = 1257 MeV), (c) 90Zr (Ec.m. = 1207 MeV), and (d) 60Ni (Ec.m. = 1118 MeV): (I)
Fresnel diffraction pattern of scattering, (II) region of rainbow scattering, (III) region where the near amplitude contributes at
ϑ > ϑr , and (IV) region of Fraunhofer scattering. The solid curves correspond to a precise numerical calculation, while the
remaining curves were calculated within the stationary-phase method by (short dashes) formula (15), (long dashes) formula
(20), and (dotted curves) formula (22). The dash-dotted curves are described in the main body of the text (see Section 5). The
parameters of the potentials are quoted in the table.
plex plane of b are associated with the near-side and
the far-side amplitudes, we can retain, in the saddle-
point equation, only the first term in parentheses in
(25) for f(+) and the second term for f(−) (see [32]).
Thus, we generalized the approach developed in [30]
for hadron–nucleus scattering, where only one pole
in the first quadrant was taken into account. Now, the
saddle-point equation has the form

g′(±)(b) = ±q + ᾱ
r±1 b(
λ

(±)
1

)3 = 0, (26)

where

ᾱ = −πak |W0| − i|V0|
E

= |α|eiβα , (27)

βα = 2π − arcsin 1√
1 + (W0/V0)

2
. (28)
PH
For the sake of convenience, we use the representa-
tion

r±1 = R± iπa = |r±| eiβ
(±)
r , (29)

β(+)
r = arcsin

πa√
π2a2 +R2

� πa

R
, (30)

β(−)
r = 2π − β(+)

r .

According to the method proposed in [30], we seek
solutions to Eq. (26) near the poles r±1 in the form

b(±)
s = r±1 + δ(±). (31)

By using the condition |δ(±)| � |r±1 |, we can then
reduce Eq. (26) to a cubic equation for the quantity
λ(±) and find its roots,

λ(±)
n = |λ| eiβ

(±)
λ , |λ| =

[
|α||r±|2
q

]1/3

, (32)

β
(±)
λ =

π

3

[
2n+

1
2
± 1
2

]
+
1
3
βα +

2
3
β(±)

r , (33)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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for which Imλ(±)
n ≥ 0 and solutions b(±)

s fall with-
in quadrants I and IV [32]. By using the condition
|δ(±)| � |r±1 |, we now obtain

λ(±)
n =

√
(r±1 + b(±)

sn )(r±1 − b
(±)
sn ) (34)

�
√
−2r±1 δ

(±)
n

and, from (32), then derive the final expression

δ(±)
n = −1

2
|λ|2

|r(±)
1 |

eiβ
(±)
δ , (35)

β
(±)
δ =

2
3
π(2n + 1) +

2
3
βα ±

1
3
β(+)

r .

The behavior of the saddle points in the complex
plane of b, which were obtained on the basis of the
approximate formulas (31) and (35), is illustrated
in Fig. 4. The sum of the near and the far ampli-
tude calculated by using these points determines the
Fraunhofer-type diffraction pattern of the scattering.
It is discussed in detail below (see Section 6).

6. DISCUSSION OF RESULTS.
INCLUSION OF THE COULOMB
DISTORTION OF TRAJECTORY

For the example of elastic 17O scattering on 208Pb,
120Sn, 90Zr, and 60Ni, we show in Fig. 5 that different
scattering mechanisms operate in different regions of
the angular distribution.
For ϑ < ϑr (regions I and II), the scattering pro-

cess is determined by the sum of two near-side am-
plitudes and each of them, at the same momentum
transfer, is specified by its own impact parameter (bs1

and bs2). Thus, there are two trajectories in the range
of action of the Coulomb potential and the tail of
the nuclear potential that provide scattering at the
same angle ϑ. At very small angles, the contribution
of the nuclear trajectory is insignificant because of
the strong absorption of particles at small bs1 . In this
case, the scattering process is determined primarily
by the second, Coulomb, trajectory characterized by
a large impact parameter bs2 , in which case the ratio
dσ/dσR is close to unity. As the angle ϑ increases, the
saddle points on the “nuclear” slope q(bs1) are shifted
to the region of larger b values at the periphery of the
tail of the nuclear potential, where absorption is weak
and where the role of its real part, which is responsible
for refraction, becomes more important. As a result,
the interference pattern of the angular distribution in
region I becomes more pronounced. It is common
practice to associate it with Fresnel diffraction.
The existence of the limiting scattering angle ϑr,

near which the classical trajectories are bunched, is
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
a feature peculiar to the angular distribution in re-
gion II. Just for this reason, one can draw an analogy
with the optical interference of the refracted and the
once reflected rays of light in a water drop (rainbow
scattering).

For ϑ < ϑr, it is possible to distinguish clearly
regions I and II and to determine the point at which
the analytic expressions for the corresponding scat-
tering amplitudes are matched. For example, one can
see from Fig. 5 that, in region I, the results of the
calculation of classical scattering by formula (15)
(short dashes) is in good agreement with the pre-
cise numerical integration of the initial amplitude (1)
(solid curves) up to angles at which a broadmaximum
begins to manifest itself. Further, up to the limiting
classical scattering angle (region II), the exact nu-
merical results are reproduced by formula (22) for
rainbow scattering (dotted curves). The positions of
the maxima in the angular distributions of dσ/dσR

correspond to the maximum of the function Ai(σ)
in expression (22) at σ = −1. If σ < −1 at a given
angle ϑ, one should take expression (20) for the am-
plitude; otherwise, it is necessary to use formula (22).
It should be noted that the results of the calculation
by the traditional formula (20) for rainbow scattering
(long dashes) are much lower and are at odds with
the results of numerical computations. The classically
allowed region of scattering shrinks for the interaction
of lighter nuclei at the same energy.

In the quantum region of scattering (ϑ > ϑr),
the stationary points occur in the complex plane.
The experimental cross sections for ϑ > ϑr typically
show an exponential decrease without oscillations
(region III) or with oscillations (region IV). In the
first case (region III), only the near-side amplitude
featuring a single complex stationary point bs1 [ex-
pression (17) for q > qr] makes a leading contribution
to the amplitude (short dashes). In region IV, the
oscillations of the cross section are due to the sum-
mation of the near-side and the far-side amplitude
of Fraunhofer scattering (dash-dotted curve). In
calculating these amplitudes, the saddle points were
determined in the complex plane with allowance for
absorption. Here, in contrast to the classical region,
the choice of the matching point is rather arbitrary. In
this study, the solutions corresponding to regions III
and IV go over to each other at their intersection point
closest to ϑr on the right. It should be noted that,
as the ratio of the Coulomb barrier to the collision
energy, VB/E, decreases, the Fraunhofer character of
scattering in the quantum region becomes ever more
pronounced.

Let us consider the problem of the Coulomb dis-
tortion of the trajectory. Under the effect of strong
Coulomb repulsion, the trajectory of heavy ions is
2
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lation with allowance for deflection (ac �= 0). The curves
were calculated under the same assumptions as in Fig. 5.

strongly deflected from a straight line, and this no-
ticeably affects the behavior of the cross section. The
distortion in question can be taken into account [24]
if, from the outset, we replace, in the nuclear phase
shift (2), the impact parameter b by the distance bc of
closest approach of nuclei; that is,

χN (b)→ χN (bc), bc = ac +
√
b2 + a2

c , (36)

where ac = η/k is the half-distance of closest ap-
proach in the Coulomb field Z1Z2e

2/r for a head-on
collision. It is obvious that the substitution b→ bc
complicates the form of the corresponding derivatives
of χN with respect to b; however, it is possible, even
after this, to derive explicit expressions for the limiting
classical momentum transfer qmax ≡ qr and for the
stationary points.
In Fig. 6, we present the results of the (solid

curves) numerical and (dashed and dotted curves)
analytic calculations of the ratio dσ/dσR for elastic
32S scattering on 27Al atEc.m. = 55MeV. The curves
on the left and on the right of the figure were calcu-
lated, respectively, without (ac = 0) and with (ac �= 0)
allowance for the Coulomb distortion of the trajec-
tory. It can be seen that the distortion strongly shifts
the pattern of the angular distribution, the results
of the analytic calculations being in good agreement
with the numerical results. As was mentioned above,
the cross section is very sensitive to the position of
the maximum in the deflection-momentum function.
Even if ac is small, it is of crucial importance to
P

determine precisely the quantities qr and br now with
allowance for the Coulomb deflection in the original
phase shift χN .
In considering Fraunhofer scattering, we have

seen that the stationary points bs are complex-valued.
In this case, the distortion was taken into account
by making, for bs in the nuclear phase in the final
expression for the amplitude, the substitution

bs → b̃s = ac +
√
b2s + a2

c . (37)

Experience gained in our calculations reveals that this
substitutionmust bemade for Coulomb barrier values
of VB > 0.04E.
In Fig. 7, the results of the calculations by the

analytic formulas are compared with experimental
data from [25] (asterisks). The curves corresponding
to different scattering mechanisms are matched at
their intersection points. The Coulomb distortion of
the trajectory is taken into account according to the
scheme outlined above. It can be seen that the calcu-
lations reproduce the observed pattern of the differen-
tial cross sections, reflecting the main features of their
behavior in different regions of the scattering angle.
Small shifts of the theoretical curves with respect to
the experimental data are obviously associated with
the need for refining the mechanism of taking into
account the distortion of the trajectories due to both
the Coulomb and the nuclear field, especially in the
region of Fraunhofer diffraction, where the analysis is
performed in the complex plane of the impact param-
eter.
By and large, we can conclude that the Glauber–

Sitenko approximation is quite applicable to analyz-
ing nucleus–nucleus collisions at energies from 10 to
100MeV per nucleon. The region of its applicability in
the scattering angles expands owing to the Coulomb
shift of the trajectory of the motion of a projectile
ion by ϑc � |Vmax(r ∼ R)|/E. Thus, there appear the
classical and the quantum scattering-angle region,
ϑ < ϑc and ϑc < ϑ < ϑc +

√
2/kR, which are sepa-

rated by a boundary whose choice involves some de-
gree of arbitrariness and which display their own spe-
cial interference and diffraction features. The use of
an explicit form of the eikonal phase for the extended
optical Woods–Saxon potential makes it possible to
develop asymptotic methods for calculating eikonal
amplitudes in this energy region and to describe the
pattern of nucleus–nucleus scattering in terms of the
diffraction models. It turned out that both the compu-
tational methods and the scattering amplitudes ob-
tained within these methods are highly sensitive to
the behavior of the potential in a rather narrow region
of its periphery. Taking into account these special
features, we have been able not only to understand the
scattering mechanism at a qualitative level but also
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 7.Results of analytic calculations of the ratio dσ/dσR along with experimental data for elastic 17O scattering on (а) 208Pb

(Ec.m. = 1327MeV), (b) 120Sn (Ec.m. = 1257MeV), (c) 90Zr (Ec.m. = 1207MeV), and (d) 60Ni (Ec.m. = 1118MeV). The
experimental data (asterisks) were borrowed from [25]. The curves represent the results of the analytic calculations performed
for the cross sections associated with the effect of various scatteringmechanisms andmatched in accordancewith the partition
into the regions in Fig. 5. The parameters of the potentials are identical to those in Fig. 5.
to describe quantitatively the main regularities in the
differential cross sections measured experimentally.
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APPENDIX

Coefficients in the Logarithmic Parabola
in Terms of the Input Parameters of the Reaction

According to (13), the deflection-momentum
function has the form

q = χ′N + χ′C. (A.1)

Substituting χN from (11) and χC = 2η ln(kb) into
(A.1), we obtain

q =
2η
b
+ γN · 2RP (1, C)u′SF(b), (A.2)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
where γn = −
k

2E
(V0 + iW0). From this equation, it

is impossible to find the explicit dependence b = b(q),
which determines stationary points. For this reason,
the right-hand side of (A.2) is approximated by the

logarithmic parabola (16) q = qr − ρ
[
ln
b− b1
br − b1

]2

in the region near the maximum of the deflection-
momentum function (qmax = qr = q(br)). In this
approximation, stationary points are found in the
explicit form (17). In constructing the above approx-
imation, it is necessary to determine the position of
the maximum to a high precision; that is, qr and br
are the main parameters of the logarithmic parabola.
To do this, we proceed in the following way: at the
point br, the derivative of expression (A.2) vanishes,
which yields the equation

−2η
b2r

+ γN · 2RP (1, C)u′′SF(b) = 0. (A.3)

The most appropriate way to solve this equation ex-
plicitly is to reduce it to a cubic equation. The cubic
2
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equation has at least one real solution, and it is the so-
lution that determines the position of the maximum.
In the case of three real roots, that which is the closest
to nuclear-potential rangeR from the right will be the
required root br.
In order to obtain the coefficients in the polyno-

mial of third degree whose graph passes through the
zero of expression (A.3), four points xn (n = 0, 1, 2, 3)
at the nuclear-potential tail in the region where the
maximum of q(b) is formed are chosen as follows:4)

uF(x0) = 0.005, uF(x1) = 0.01, (A.4)

uF(x2) = 0.02, uF(x3) = 0.05.

It is straightforward to express these points in terms
of the geometric parameters of the potential; that is,

x0 = R+ a ln 199, x1 = R+ a ln 99, (A.5)

x2 = R+ a ln 49, x3 = R+ a ln 19.

Between the points in (A.5), we construct an interpo-
lating Newton polynomial [33]:

φ(b) = φ(x0) + (b− x0)φ(x0, x1) (A.6)

+ (b− x0)(b− x1)φ(x0, x1, x2)
+ (b− x0)(b− x1)(b− x2)φ(x0, x1, x2, x3),

where φ(xn) stands for the values of expression (A.3)
at the points xn, and φ(x0, ..., xn) are divided differ-
ences of nth order that are given by

φ(x0, x1) =
φ(x0)− φ(x1)
x0 − x1

,

φ(x0, x1, x2) =
φ(x0, x1)− φ(x1, x2)

x0 − x2
,

φ(x0, x1, x2, x3) =
φ(x0, x1, x2)− φ(x1, x2, x3)

x0 − x3
.

Removing the parentheses in (A.6) and collecting the
coefficients at the same powers of b, we obtain a cu-
bic equation whose real-valued solution determines
br, while qr is obtained by direct substitution of br
into (A.2).
In order to determine b1, we approximate the func-

tion q(b) by a parabola with the vertex at the point
(br, qr); that is, q(b) = qr −A(b− br)2. From the re-
quirement that the parabola pass through a point (for
example, x3) on the left branch of q(b), we find the
coefficient A. We then have b1 = br −

√
qr/A.

The coefficient ρ is determined from the condition
requiring that the logarithmic parabola be coincident
with the function q(b) (A.2) at an arbitrary point of the
interval [b1; br]. We choose it to be (b1 + br)/2.

4)For the explicit determination of the points to be as simple
as is possible, we use here uF instead of uSF, since these
functions coincide at real b > 0.
P

The proposed method disregards the deflection of
the trajectory under the effect of the Coulomb field.
This effect can be taken into account if we again use
the condition in (A.4), but now for the function uF(x̃),
where x̃ = ac +

√
x2 + a2

c . We note that the substi-
tution of x̃ for x in (A.1) leads to more cumbersome
expressions for the derivatives in (A.2) and (A.3), but
this does not change the above scheme for deriving br,
qr, b1, and ρ.
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Abstract—Searches for invisible axions emitted in the electromagnetic transitions of isomeric nuclei are
continued. It is found experimentally that the probability of axion emission in anM1 transition in 125mTe is
less than 8.5× 10−6 (90% C.L.). c© 2002 MAIK “Nauka/Interperiodica”.
Theoretical models of the invisible axion with an
arbitrary scale of symmetry breaking up to the Planck
mass serve as a basis for experimental searches for
a pseudoscalar particle that interacts weakly with
matter and whose mass ranges from 10−12 eV to tens
of keV [1–5]. Although the limits on the axion mass
that were obtained from astrophysical estimates [6,
7] span almost the entire scale of possible masses,
direct laboratory experiments give an upper limit of
6 keV for the axion mass [8]. Models that include the
interactions of particles from a mirror world found a
new window for the axion mass (∼ 1 MeV) that is not
excluded by astrophysical data [9].

A new possibility for axion searches is opened up
by the method of missing γ ray in nuclear magnetic
transitions [10, 11]. Assume an “ideal” detector that
detects the energy of all photons and electrons arising
from the decay of a nucleus. In this case, the energy
spectrum must consist of one peak only with the
shape defined by the response function. Meanwhile
the invisible axion leaves the detector without inter-
actions. Therefore, this emission will be accompa-
nied by a shift of the total energy spectrum by an
amount equal to the transition energy. A study of
magnetic transitions in isomeric nuclei is preferable
[11] because there is no uncertainty associated with
the emission of a neutrino for nuclei undergoing β and
electron-capture decay.

In the present study, we continued measuring the
energy spectrum of photons and electrons arising
from the decay of the 125mTe nucleus. This isomeric
nucleus undergoes 109.3-keV M4 γ transitions and
35.5-keV M1 γ transitions [12]. For the latter, there
is a small admixture of an E2 transition (E2/M1 =
0.029). An excited tellurium nucleus interacts with an

∗This article was submitted by the authors in English.
**e-mail: derbin@mail.pnpi.spb.ru
1063-7788/02/6507-1302$22.00 c©
atomic shell, each decay of a nucleus being accom-
panied by a cascade of γ and x rays and conversion
and Auger electrons. The scheme of 125mTe decay is
shown in Fig. 1. The types of particles produced and
the energy and probability of appearance per decay are
also shown.

As a model of an “ideal” detector, we used two
cylindrical planar HPGe detectors butted together at
their end gold surfaces. A small hollow 0.5 mm deep
and 3 mm in diameter was ground out at the center of
the surface of one of the detectors. The 125mTe source
was placed in this hollow. This construction was used
to measure the energy spectrum of 125mTe decay.

A sample of tellurium of high-radiation-purity
grade was specially prepared for this experiment using
the method described earlier in [11]. A tin strip of foil
with a mass of 0.1 g was irradiated in a reactor for one
month in a flux of 1013 neutron/(cm2 s). The process
of production of 125mTe is shown below:

n + 124Sn → 125Sn(β−, T1/2 = 9.7 d)

→ 125Sb(β−, T1/2 = 2.7 yr) → 125mTe.

After radiochemical purification, a drop of sulfuric
acid solution was placed in the hollow with gold coat-
ing of the HPGe detector. Tellurium was deposited by
electrolysis, forming a spot about 3 mm in diameter.

The sensitive volume of each detector was 40 mm
in diameter and 7 mm thick. The absorption of the
35-keV γ ray inside this operating volume of the two
detectors was more than 10−14. The absorption of
the 109-keV γ rays in the detectors was 97%. It
increased the background near 100 keV due to the
backscattering of γ rays by the detector holder.

Before the deposition of 125mTe on the surface
of the germanium detectors, their characteristics
were tested in a separate cryostat. The upper limit
on the electron energy losses in the gold coating
2002 MAIK “Nauka/Interperiodica”
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(30 µg/cm2) and in the insensitive layer of the
detector was determined with a 207Bi source. For a
481.7-keV electron incident along the normal, these
losses did not exceed 0.2 keV. This indicates that the
detector could detect the L-series x rays of tellurium,
which have an average energy of 4 keV, with an
efficiency of 95%. If it is assumed that the coefficient
of the backscattering of electrons from the detector
surface is 0.3 for the configuration employed, then it
can be expected that the loss of 30-keV electrons as
the result of multiple backscattering will not exceed
10−5. Like Auger L electrons, 4-keV conversion
electrons are absorbed in the dead layer of the detector
and do not contribute to the total energy release.

After tellurium was deposited on one of the detec-
tors, the detector was placed on the beryllium window
of a spectrometer with a Si(Li) detector. The x-ray
spectrum obtained in the decay of 125mTe was mea-
sured with a resolution of 160 eV (Fig. 2) to determine
the probability of the emission of Auger L electrons.
This value is of fundamental importance for the pro-
posed method because it permits us to distinguish the
emission of an axion from the absorption of a photon
or an electron in the dead layer of the detector. The
probability of absorption in it is higher for a 27-keV
x-ray (or 30-keV electron) than for a 35-keV x-ray
(or 34-keV electron). At that time, L x rays accom-
panying such transitions are detected with nearly a
100% efficiency. It will give rise to an additional in-
tensity in the line shifted to higher energies by 4 keV.
According to the decay scheme in Fig. 1, two peaks
at energies of 104.5 and 108.3 keV and an intensity
ratio of 2.9 should be observed in the total spectrum
when an axion is emitted in an M1 transition. If the
losses of energy are associated with the absorption of
particles in the dead layer of the detector, the ratio of
the intensities of the above peaks will decrease to 2.2.
This difference can be a criterion of a positive result of
an observation.

After the measurements described above had
been performed, the HPGe detectors were placed up
against each other in a cryostat and cooled to liquid-
nitrogen temperature. The detectors had individual
bias voltages of 1200 and 900 V, which were applied
to the n+ contact. The potential of their common
p contact was zero. The two detectors had similar
spectrometric channels: a preamplifier with a resistive
feedback and an uncoiled FET and an amplifier with
the shaping time of 2 µs and a 4096-channel ADC.
The resolution measured with respect to the 122-
keV γ line of 57Co was 1.9 keV. The two channels
were summed and the total signal was processed
in an additional ADC. The total energy spectrum
from both detectors, the total spectra from each
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Fig. 1. Main modes of 125mTe decay. Two γ transitions
are shown; e are conversion electrons; XK, XL, and XM
are characteristic x rays from, respectively, the K, L, and
M atomic shells; eK, eL, and eM are Auger electrons. The
upper value is the particle energy, while the lower value is
the probability of emission per one decay of 125mTe.

detector, and four spectra corresponding to coinci-
dences and anticoincidences of the detectors were
stored in the computer memory. The two-dimensional
energy spectrum was also stored in order to seek the
optimum background-to-effect ratio.

A total of 3.5× 108 decays of 125mTe were detected
over 150 h of measurements. A typical spectrum
from one detector for one series of measurements is
shown in Fig. 3. The spectrum contains 29 peaks
corresponding to different modes of 125mTe decay and
satellites associated with the escape of germanium
x rays from the detector. The numbers 1 and 2 label
the two main peaks at energies of 27.4 (Kα1,α2) and
104.5 keV (e104, e77 +Kα). Peak 3 corresponds to
the monochromatic 77-keV electron line. The reso-
lution of the HPGe detector measured according to
this line was 2.1 keV. The shift of the position of the
peak as determined according to the energy calibra-
tion by x-ray lines of tellurium and germanium was
320 eV. This means that the average energy losses
in the insensitive layer of the detector were 700 eV
for electrons of energy 30 keV. Lines 4, 5, and 6 are
shifted by 12, 8, and 4 keV, respectively, to the left of
the total-absorption peak (144.8 keV). This is due to
the loss of an x ray, a conversion electron, or an Auger
electron.

The total spectrum from the two detectors is
shown in Fig. 4. As might have been expected, the
maximum of the peak corresponding to the total
detected energy is at 132 keV and not at 144.8 keV.
2
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L electrons or one 4-keV conversion electron. Since
the resolution for the total spectrum is 1.5 times
poorer, the right-hand edge of the peak possesses a
profiled shape corresponding to unresolved peaks at
energies of 136, 140, and 144 keV. The background
level near 104 keV was equal to 3.5× 105 keV−1

and was determined by the tails of the electron lines
associated with the multiple reflections of electrons
from the surface of the detectors.

The maximum-likelihood method was used to find
P

the intensities of the lines at energies of 104.5 keV and
108.3 keV. The likelihood function was found from
the assumption that the number of counts in each
channel has a normal distribution and is a sum of
an exponential function chosen to describe the back-
ground and the response function for the electrons,
which is determined from the total spectrum. The re-
sponse function was represented as a Gaussian peak,
whose variance was determined by the resolution of
the composite detector, and an exponential tail of area
40%.
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The value obtained for the ratio of the intensity
of axion radiation to the total intensity was Ia/Iγ =
(4.5± 2.5)× 10−6. It corresponds to an upper limit on
the probability of axion emission in theM1 transition
of 125mTe, Ia/Iγ ≤ 0.85 × 10−5 at the 90% C.L.

Let us compare this result with theoretical es-
timates. The residual neutron–proton interaction in
nuclei featuring two particles of one kind above a
magic core and half-filled shell of particles of the
other kind leads to the nuclear spectra containing
low-lying intruder states in addition to the single-
particle states of a spherical nucleus. According to
the data from stripping and pickup nuclear reactions,
the lowest levels 1/2+, 3/2+, and 11/2− in 125Te
are largely single-particle levels [13]. Their energies
can be explained by the presence of a small negative
deformation, ε ≈ −0.1.

The standard long-wave approximation for point-
like nucleons can be used to determine the probabil-
ities ωγ and ωa of nuclear electromagnetic and axion
transitions, respectively, in the energy region studied.
If the nuclear transition is determined by the change
in the state of a single nucleon and if this nucleon is
a neutron [µ1(n) = 0], the axion transition operator
can be related, in the single-particle approximation,
to the magnetic transition operator having the same
multipolarity by the equation

T̂ (AL) = 2
g0
a − g1

a

eµs(n)
T̂ (ML), (1)

where g0
a and g1

a are the isoscalar and the isovec-
tor parameter of the axion–nucleon interaction and
µs(n) = −3.827 is the spin gyromagnetic ratio of the
neutron. Taking into account Eq. (1) and the pos-
sibility of an admixture of an E2 transition, we find
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
that the ratio of the axion- and magnetic-transition
probabilities can be represented as

ωa

ωγ
=

2(g0
a − g1

a )2E3
a

(1 + δ2)e2µ2
s(n)E3

γ

, (2)

where E2
a = E2

γ −m2
a. For the axion–nucleon cou-

pling constants, we employ the values obtained in
[14–16]; that is,

g0
a = −1.77× 10−5 ma

1 keV
(1 + 2.94S),

g1
a = −2.72× 10−5 ma

1 keV
, S = 0.68,

where ma is given in keV units. The dependence of
ωa/ωγ onma reaches a maximum value of 2.8× 10−6

atma = 22 keV. Therefore, our theoretical estimate is
three times lower than our experimental estimate. For
this reason, we cannot set a limit on the axion mass
in the range 0–35 keV.

The sensitivity of our method of missing γ ray can
be increased. At first, the background near 104 keV
must be reduced. The background level is determined
mainly by the tails of the electron lines produced by
the backscattering of electrons from the surface of
the detectors. The thickness of the dead layer of the
detector and the thickness and the atomic number of
the conducting coating must be decreased. The con-
tribution of natural radioactivity to the background is
almost an order of magnitude less, but the use of a
passive and active shielding can decrease it further.
Increasing the measurement time and improving the
resolution by using cooled FET in the preamplifiers
open up additional possibilities. All of these measures
will make it possible to reach the sensitivity to the
axion mass at a level of 1 keV.
2
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Abstract—With the aid of the 2-m liquid-hydrogen bubble chamber constructed at the Institute of
Theoretical and Experimental Physics (ITEP, Moscow), 4Hep interactions are studied at primary alpha-
particle momenta of 2.7 and 5 GeV/c (the respective kinetic energies of primary protons in the 4He rest
frame are Tp = 220 and 620 MeV). The effective-mass spectra of two nucleons from the reactions 4Hep→
dppn and 4Hep→ pppnn are analyzed. The effective-mass spectrum of the two-proton system produced
in the quasielastic-charge-exchange reaction p4He→ nF (pp)d at Tp = 620 MeV (here, nF stands for the
fast neutron in the 4He rest frame) shows a narrow peak, which is indicative of the existence of a dibaryon
whose mass and width areM2p = 2008± 13MeV and Γ2p = 20± 5MeV, respectively. In the mass spectra
of the two-proton system from the reactions p4He→ nF (pp)d and p4He→ pF (pp)(nn), narrow threshold
peaks are also found at a mass ofM2p � 1878–1879MeV. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The question of whether dibaryons exist has so
far been one of the most intriguing and controver-
sial questions in nuclear physics. This problem has
been explored in a great number of theoretical and
experimental studies (see, for example, the article of
Tatischeff et al. [1], who presented a review of mod-
ern experiments devoted to searches for dibaryons).
The overwhelming majority of indications of the ex-
istence of narrow dibaryons (of width Γ ≤ 50 MeV)
have been obtained in bubble-chamber experiments.
At the same time, the results of some other stud-
ies, both those that employ the same experimental
procedure [2] and those that invoke electronics (see
[1]), show no evidence of the existence of resonances.
It should be noted that the majority of experiments
seeking dibaryons were performed in studying lepton
and hadron interactions with extremely light nuclei
(d, 3He,4He).

Previously, systematic searches for dibaryon res-
onances in 3Hp and 3Hep interactions at intermedi-
ate energies were conducted within an ITEP exper-
iment that studied nuclear reactions in few-nucleon
systems by means of liquid-hydrogen bubble cham-
bers [3–6]. The mass spectra of NN and NNπ sys-
tems, characterized by various isospin projections
were analyzed. In the mass spectra of the pp, pn,

*e-mail: Blinov@itep.ru
1063-7788/02/6507-1307$22.00 c©
nn, pnπ+(n∆++), and ppπ+(p∆++) systems no evi-
dence of dibaryon-resonance production was found in
the energy range from 1.88 to 2.5 GeV.

In the present study, we use the 2-m liquid-
hydrogen bubble chamber constructed at the In-
stitute of Theoretical and Experimental Physics
(ITEP, Moscow) to seek dibaryon production in 4Hep
interactions at primary alpha-particle momenta of
2.7 and 5 GeV/c (the respective kinetic energies of
primary protons in the 4He rest frame are Tp = 220
and 620 MeV). It is worth noting that the first pieces
of evidence of narrow-dibaryon production in 4Hep
interactions were obtained in experiments where
the 1-m liquid-hydrogen bubble chamber installed
at the Joint Institute for Nuclear Research (JINR,
Dubna) was exposed to the beam of 8.6-GeV/c alpha
particles [7].

In what is concerned with searches for dibaryons,
4Hep interactions should obviously be preferred to the
interactions of other light nuclei (d, 3H, 3He) with
protons, because the internucleon distances are rel-
atively shorter in the 4He nucleus, with the result that
the probability of the possible existence of multiquark
states with hidden color is higher in this nucleus.

Earlier, narrow peaks were observed in analyzing
the mass spectra of two protons in hadron–nucleus
and nucleus–nucleus interactions in the mass region
near 2mp [8–10]. In [9, 10], they were interpreted
as a manifestation of the effect associated with the
2002 MAIK “Nauka/Interperiodica”
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Cross sections for the reactions 4Hep→ dppn and 4Hep→ pppnn at primary momenta of 2.7 GeV/c (Tp = 220 MeV)
and 5 GeV/c (Tp = 620 MeV)

Momentum,
GeV/c

Reaction channel Number of events Cross section, mb

2.7 4Hep→ dppn
Direct 2345 3494 21.4± 0.4

Charge exchange 1149
4Hep→ pppnn 1620 9.9± 0.2

5 4Hep→ dppn
Direct 1894 2567 21.2± 0.4

Charge exchange 673
4Hep→ pppnn 1394 11.5± 0.3
final-state interaction of protons (so-called Migdal–
Watson effect). Data on the mass spectra of the 2p
system near the threshold (in this region, these data
are equivalent to the relative-momentum distribu-
tion) can be used to obtain two-proton correlation
functions in order to determine the spacetime dimen-
sion of the particle-emission region in the nuclear
reactions [11–13]. In the present study, we analyze
in detail the mass spectra of two protons from 4Hep
interactions in the threshold region.

2. DESCRIPTION OF THE EXPERIMENT

The 2-m ITEP liquid-hydrogen bubble chamber
was exposed to separated beams of 2.7- and 5-GeV/c
4He nuclei. The chamber was placed in a magnetic
field of strength 0.92 T. Background particles in the
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primary beam (predominantly deuterons) were reli-
ably separated by track ionization.We obtained about
60 000 and 120 000 photographs at 2.7 and 5 GeV/c,
respectively, at an average counting intensity of about
5–8 particles per chamber width. The total number
of measured interaction events was about 18 000–
19 000 for either value of the primary momentum.
A more detailed account of the procedures used in
the present measurements and in subsequent data
processing is given in [14]. It should be noted that our
experimental procedure makes it possible to analyze
data on the reactions in question under the conditions
of 4π coverage.

The total cross section for 4Hep interaction was
estimated by using the standard procedure of count-
ing the number of events within a specific chamber
volume [14]. This yielded 109.4 ± 1.8 and 121.5 ±
2.9 mb for, respectively, 2.7 and 5 GeV/c (the quoted
errors are purely statistical). The systematic error
in the absolute normalization of the cross sections
amounted to about 3%.

The results presented in this article are based on
the analysis of our data on the reactions

4Hep→ dppn, (1)

4Hep→ pppnn. (2)

In order to identify particles in three-prong αp in-
teractions, we applied the standard bubble-chamber-
experiment procedure of sampling mass hypothe-
ses with allowance for data on visible ionization of
secondary-particle tracks. Events of reaction (1),
where there was only one neutral particle in the final
state, were subjected to the procedure of kinematical
balancing. Events of reaction (2), where there were
two neutral particles, were not balanced. It is worth
noting that at a primary momentum of 2.7 GeV/c
(Tp = 220 MeV)—that is, below the threshold for
pion production in an elementaryNN collision—pion
production in 4Hep interaction is almost completely
suppressed.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 2. Effective-mass distributions of two slow nucleons (in the 4He rest frame) for the (thin-line histograms) direct channel
of the reaction p4He → pF (pn)d and (thick-line histograms) quasielastic-charge-exchange channel p4He → nF (pp)d at
Tp = (a) 220 and (b) 620 MeV [pF (nF ) is the fast proton (neutron) in the 4He rest frame]: (solid curve in Fig. 2b) fit to the
experimental data in the interval 1.88 < MNN < 2.12 GeV in terms of the sum of the exponential background and the Breit–
Wigner function with parameters M2p = 2008 ± 7 MeV and Γ2p = 46 ± 14 MeV and (dotted straight lines) exponential fit
to the experimental data in the intervals (a) 1.88 < MNN < 1.97 GeV and (b) 1.88 < MNN < 2.12 GeV (for the case of the
quasielastic-charge-exchange channel at Tp = 620 MeV, we fitted the data beyond the interval 1.96 < MNN < 2.06 GeV).
Figure 1 presents the distributions in the missing
mass squaredMM2 for unbalanced events of reaction
(1), as well as for events of the reaction 4Hep→
dppnπ0 at 5-GeV/c momentum that were not sub-
jected to fitting. The distributions correspond to about
80% of the total statistics. TheMM2 distribution for
reaction (1) has a Gaussian form with a mean value
close to the neutron mass squared m2

n � 0.88 GeV2.
The region where the channels with and without a
neutral pion overlap (shaded region in Fig. 1) contains
≤1% of the total number of events of reaction (1).
In channel (2) at a momentum of 5 GeV/c, there is
obviously an admixture of events associated with the
channel 4Hep→ pppnnπ0 (we estimate it at about
5%).

It is natural to break down the set of events of
channel (1) into two classes associated with the
fastest secondary nucleons in the 4He rest frame—
specifically protons (direct channel) and neutrons
(quasielastic charge exchange). The cross sections
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
for the reactions under consideration and the numbers
of events in them are given in the table for the
above two values of the primary momentum. We note
that there is an admixture (about 10%) of events of
reaction (1) where the deuteron formed by the pickup
mechanism is the fastest particle in the 4He rest
frame. In analyzing the effective-mass distributions,
such events, where all three secondary nucleons are
spectators, are of course taken into account in one
class of events or the other.

3. RESULTS AND CONCLUSIONS

Figure 2 displays the effective-mass distribu-
tions for two spectator nucleons from (thin-line his-
tograms) the direct channel of the reaction p4He→
pF (pn)d and (thick-line histograms) the quasielastic-
charge-exchange channel p4He→ nF (pp)d at Tp =
(a) 220 and (b) 620 MeV [pF (nF ) means the fast
proton (neutron) in the 4He rest frame]. There are no
special features in the mass spectra of two spectator
2
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Fig. 3. Effective-mass distribution of two protons from the reaction p4He → pF (pp)(nn) at (а) Tp = 220 MeV and (b)
620 MeV that are slow in the 4He rest frame (pF is the fast proton in this reference frame). The dotted lines correspond to
an exponential fit to experimental data in the intervals 1.88 < Mpp < 1.97 GeV and 1.88 < Mpp < 2.12 GeV for cases (a)
and (b), respectively.
nucleons from the direct channel of the reaction at
considered energies or from the charge-exchange
channel at Tp = 220MeV. The dotted lines in Figs. 2a
and 2b represent an exponential fit to the data in
the intervals 1.88 < MNN < 1.97 GeV and 1.88 <
MNN < 2.12 GeV, respectively. The mass spectrum
for the charge-exchange channel at Tp = 620 MeV
exhibits a pronounced peak (at the maximum, the
enhancement amounts to 3.1 standard deviations).
A fit to the experimental data within the interval
1.88 < MNN < 2.12 GeV in terms of the sum of
an exponential background and the Breit–Wigner
function with parameters M2p = 2008 ± 7 MeV and
Γ2p = 46 ± 14 MeV (χ2/NDF = 7.6/8) is shown in
Fig. 2b by the solid line (in this case, the dotted line
in Fig. 2b corresponds to an exponential fit to the
data beyond the interval 1.96 < MNN < 2.06 GeV).
It should be noted that the purely exponential fit to
the experimental dependence over the entire interval
under consideration, without including the Breit–
Wigner function, yields the value of χ2/NDF =
21/10, which is not satisfactory from the statistical
point of view.
PH
The basic results of our analysis of the experimen-
tal distributions in Fig. 2 are the following.

(i) The position and width of the peak observed in
the mass spectrum of the 2p system in the present
experiment are close to those found earlier in [15]
(M2p = 2007± 15MeV, Γ2p = 39± 17MeV), as well
as to those from other experiments (see [1]).

(ii) A comparative analysis of the mass spectra
for the charge-exchange channel at the above two
energy values enables us to conclude that the ob-
servable peak can be tentatively associated with the
excitation of nonnucleonic degrees of freedom in the
reaction under consideration (this conclusion is sup-
ported, in particular, by the proximity of the posi-
tion of the observed peak to the summed mass of
two free nucleons and the pion) and that it can be
hardly interpreted within theoretical models taking
into account only nucleonic interaction mechanisms
(multiple-scattering model, pole model, etc.).

(iii) If the peak observed in the charge-exchange
channel is caused by the excitation of dibaryons of
isospin I = 1, then it comes as no surprise that sim-
ilar structures are not observed in the direct channel,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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of the two-body phase space.
since the background conditions in the quasielastic-
charge-exchange reaction are more favorable than
those in the direct channel. In order to determine
the mass and the width of the dibaryon proper in
fitting the data, the Breit–Wigner function modified
in such a way as to take into account the experimental
resolution of the facility was used in the form (see, for
example, [15])

BW(M) =
1

(2π)1/2
(3)

×
∫

BW(m)
σ(m)

exp
[
−(M −m)2

2σ2(m)

]
dm,

where σ(m) is the experimental error in determining
M2p.

As a result, we obtained the following results
of the hypothesized dibaryon: the mass is M2p =
2008 ± 13 MeV and the width is Γ2p = 20± 5 MeV
(χ2/NDF = 7.9/8), which is in excellent agree-
ment with the values of M2p = 2009 ± 15 MeV and
Γ2p = 16 ± 19 MeV found in [15]. The cross section
for dibaryon production amounts to about 0.45 ±
0.06 mb.

In order to observe similar structures in other
channels of 4Hep interaction, we have studied the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
mass spectra of two nucleons from reaction (2) where
the total accumulated statistics is sufficient for analy-
sis. Figure 3 shows the distributions in effective mass
of two spectator protons from the reaction p4He→
pF (pp)(nn) at Tp = (a) 220 and (b) 620 MeV (here,
pF is the fast proton in the 4He rest frame). There
are no any pronounced features in these spectra. A
small enhancement of data over the exponential back-
ground (dotted lines) atMpp ∼ 2008 MeV in Fig. 3b
(indicated by an arrow) is not statistically significant.

In analyzing the mass spectra of the two-proton
system from the reaction p+ n→ p+ p+ π− (back-
ward) at 1.98 GeV/c in the mass region close to
2mp, a narrow peak was previously observed at a
mass value of 1877.5± 0.5MeV, with the width being
2.0 ± 0.5 MeV [10]. For masses close to 2mp, Fig. 4
shows the effective-mass distributions of two protons
that originate from the reaction p4He→ nF (pp)d at
Tp = (a) 220 and (b) 620 MeV and from the re-
action p4He→ pF (pp)(nn) at Tp = (c) 220 and (d)
620 MeV and which are slow, in each case, in the
4He rest frame. In the mass interval between 1877
and 1878 MeV, one can see narrow peaks of width 3
to 5 MeV. The solid curves in Fig. 4 represent a fit
to the experimental data in terms of the sum of the
2
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function F (2) describing the two-body phase space
and a function of the Breit–Wigner type. The function
F (2) is taken in the form (see, for example, [16])

F (2)(m2p) ∼ const (4)

× (m2p − 2mp)1/2(mmax −m2p)α,

where α = 2 and mmax = 2.0233 (2.3304) GeV at
Tp = 220 (620) MeV for reactions (1) and α = 7/2
and mmax = 2.0211 (2.3282) GeV at Tp =
220 (620) MeV for reaction (2). [The dotted curves
correspond to the pure contribution of the two-
particle phase space according to Eq. (4).] This
fit is only one of the possible descriptions of this
structure. In the above form, the best fit to the data
in Fig. 4 is obtained at the following peak parameters:
M2p = 1878.8 ± 0.4 MeV and Γ2p = 3.7± 1.3 MeV
at χ2/NDF = 13.2/16 (see Fig. 4c).

As was mentioned above, the observed features in
the ppmass spectrum near the threshold can be used
to determine the spacetime dimension of the emission
region in nuclear reactions. We are going to perform
such an analysis in a dedicated publication.

In conclusion, we would like to formulate the basic
results of the present study.

An analysis of the mass spectra of two spectator
protons from the quasielastic-charge-exchange re-
action p4He→ nF (pp)d at Tp = 620 MeV has re-
vealed a peak that may serve as an indication of the
existence of a two-proton resonance of mass M2p =
2008 ± 13 MeV and width Γ2p = 20± 5 MeV. At
the maximum, the enhancement over the background
amounts to 3.1 standard deviations. The position and
the width of the peak observed in the present experi-
ment are close to those observed earlier in [15] and in
some other experiments (see [1]).

In the mass spectra of the 2p system from the re-
actions p4He→ nF (pp)d and p4He→ pF (pp)(nn),
we have observed narrow peaks near M2p = 1878–
1879 MeV. The parameters of these peaks can be
used to deduce information about the dimension of
the particle-emission region in 4Hep interactions.
PH
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Abstract—Results of a global analysis of data from the Yakutsk array and AGASA are presented. The
zenith-angle dependences ρs,600(θ) and ρµ,600(θ) of the densities of all charged particles and muons (the
threshold energy isEµ ≈ 1.0 · sec θ GeV) at a distance of 600 m from the axis of giant air showers (GAS) of
energiesE0 ≥ 1019 eV are considered. These dependences are comparedwith the results of the calculations
based on the QGSJET model and performed for the case of primary protons. The results of the calculations
within this model agree well with data from both arrays at E0 ≤ 2× 1018 eV, but they are in a glaring
contradiction with GAS data. The experiments indicate that the lateral structure of showers changes at
E0 ≥ (3–5)× 1018 eV. In all probability this is due to some new processes accompanying their evolution.
The neglect of this fact can lead to considerably overestimating the GAS energy (by a factor of 1.5–2.5).
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Even first observations of extensive air showers
(EAS) at the largest world arrays Volcano Ranch
(USA) [1], Haverah Park (England) [2], SUGAR
(Sydney University Giant Air Shower Recorder) [3],
and Yakutsk [4] made it possible to discover giant
air showers (GAS) of energies E0 > 1019 eV. After
discovering relic radiation, it was shown that the flux
of primary protons and nuclei must abruptly decrease
at E0 > 3× 1019 eV [5, 6] because of their interac-
tion with this radiation. However, the observations of
GASs with estimated energies of up to about (1–3)×
1020 eV at various arrays [7–10] contradict this pre-
diction made by Greisen, Zatsepin, and Kuz’min.
In order to investigate the problem of the end-

point of the GAS energy spectrum, arrays are con-
structed that are larger than those mentioned above.
The AGASA (Akeno Giant Air Shower Array) fa-
cility of area about 100 km2 [11] continues operat-
ing now and has detected six new GASs with E0 >
1020 eV [12]. Giant arrays having areas of about
1000–5000 km2 and a spacing between individual
detectors of 1–1.5 km [13–15] are being designed and
built.
There is no doubt that giant arrays will greatly

increase GAS statistics. In our opinion, however, the
answer to the question of the endpoint energy of cos-
mic rays should be sought, first of all, by investigating

1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia
*e-mail: a.v.glushkov@ikfia.ysn.ru
1063-7788/02/6507-1313$22.00 c©
the structure of GASs in greater detail. Experimental
data obtained at the Yakutsk array [16–22] showed
that the pattern of shower development in the region
E0 > (3–5)× 1018 eV differs from that at lower ener-
gies.
In this study, we display new data on GASs de-

tected at the Yakutsk array over the period from 1974
to 1999. These data are compared with the results of
our calculations based on the QGSJET model [23],
which reproduces well a vast set of EAS experimental
data for E0 ≤ (2–3)× 1018 eV [16–22, 24]. The in-
vestigation performed in [25] revealed that, in a sense,
this model is the best one in the energy region around
106 GeV, because, in analyzing different experimental
features of EASs, it leads to the same estimates of
the mass composition of cosmic rays in the knee
region of the primary energy spectrum. Our results
were supplemented with the AGASA experimental
data from [26, 27], and this enabled us to get a clearer
and a more comprehensive idea of new details in GAS
evolution.

2. FEATURES UNDER INVESTIGATION

Below, we consider primarily the zenith-angle de-
pendences ρµ,600(θ) and ρs,600(θ) of the densities of
muons (the threshold energy isEµ ≈ 1.0 · sec θ GeV)
and of all charged particles (electrons and muons,
which can be measured by sea-level scintillation de-
tectors) at the distance ofR = 600m from the shower
core. The parameter ρs,600(θ) is of crucial importance
because it provides some kind of a measure of the
2002 MAIK “Nauka/Interperiodica”
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primary-particle energy. At the Yakutsk array (the
atmosphere depth isXY = 1020 g/cm2), E0 is deter-
mined from the relations

E0 = (4.8 ± 1.6) × 1017(ρs,600(0◦))1.0±0.02 [eV],
(1)

ρs,600(0◦) = ρs,600(θ) exp((sec θ − 1)XY/λρ) [m−2],
(2)

λρ = (450 ± 44) + (32 ± 15) log(ρs,600(0◦)) [g/cm2],
(3)

which were obtained by the calorimetric method [28,
29]. At the AGASA (the atmosphere depth is XA =
920 g/cm2), this is done on the basis of the relations
[26]

E0 = 2.0× 1017(ρs,600(0◦))1.0 [eV], (4)

ρs,600(0◦) = ρs,600(θ) exp((sec θ − 1)XA/500 (5)

+ (sec θ − 1)2XA/594) [m−2],

which were found as an average from various models
of EAS evolution.
The experimental data in question are compared

with the results of calculations performed within the
QGSJET model for the case of primary protons. In
these calculations, we set the atmosphere depths to
XY and XA and took into account the actual fea-
tures of the experiments at the two arrays. The lat-
eral distributions of all charged particles were found
as the sum of the densities of Ee ≥ 1.0 MeV elec-
trons and Eµ ≥ 0.01GeVmuons; that is, ρch = ρe(≥
1.0MeV) + ρµ(≥ 0.01 GeV).

3. RESULTS AND DISCUSSION

The analysis of data from the Yakutsk array in-
volves information about showers arriving at zenith
angles of θ ≤ 60◦. The parameters ρs,600(θ) and
ρµ,600(θ) were found from the average lateral distri-
butions that were constructed as in [21] by dividing
the entire set of showers into groups with a step
∆ cos θ = 0.1, ∆ logE0 = 0.2 and by averaging the
showers within each group individually.
The QGSJET model considered here yields the

following dependences for estimating E0 (in eV) from
the parameters ρch,600(0◦) and ρµ,600(0◦) in vertical
showers:

E0 = 3.48 × 1017(ρch,600(0◦))1.0±0.01, (6)

E0 = 2.4× 1018(ρµ,600(0◦))1.08±0.01 (7)

for the Yakutsk array and

E0 = 2.04 × 1017(ρch,600(0◦))1.04±0.01, (8)
PH
E0 = 2.5× 1018(ρµ,600(0◦))1.14±0.02 (9)

for the AGASA.
It can be seen that, in relation to (6), formula (1)

leads to E0 values overestimated by a factor of about
1.4 and that (4) and (8) are in fairly good agreement
with each other. Because the distinction between (1)
and (6) requires a dedicated investigation, we have
used here relation (6) to calculate E0 in this study.
This approach does not remove the problem of cor-
rectly estimating GAS energies as such, but it en-
ables us to consider the experimental data from the
two arrays on the basis of a unified model of EAS
evolution.
Figure 1 shows the experimental lateral distribu-

tions of all charged particles and muons in E0 = 2×
1018 eV, cos θ ≥ 0.95 EASs according to the (closed
circles) Yakutsk and (open circles) AGASA data. The
curves represent the calculated lateral distributions
in these showers for the atmosphere depths (solid
curves) XY and (dashed curves) XA. It can be seen
that the results of the calculations are compatible
with the measured lateral distributions for both EAS
components.

Figure 2 displays the zenith-angle dependences
ρs,600(θ) and ρµ,600(θ) for E0 = 2× 1018 eV EASs.
Here, we present the experimental data (solid cir-
cles) and the calculated solid curves referring to the
Yakutsk array for (1) all charged particles, (2) muons,
and (3) electrons. The experimental values of ρe were
found as the difference ρe = ρs − k(θ)ρµ(Eµ ≥ 1.0 ·
sec θ GeV). The factor k(θ) = 1.25–1.4 was taken
from the QGSJET calculations for the passage to
the muon density with the threshold energy of Eµ ≥
0.01 GeV. Figure 2 also gives the AGASA exper-
imental data (open circles) for ρs,600(θ) that were
found in [26] by the equal-intensity-cut method and
for ρµ,600(θ) with the threshold energy of Eµ ≈ 1.0 ·
sec θ GeV [30].
Here, there is also satisfactory agreement between

the theory and the experiment for all three EAS com-
ponents. Furthermore, it can be seen that the density
ρµ,600(θ) is independent of the atmosphere depth for
θ ≤ 50◦ and is a convenient parameter for estimating
E0 at arrays occurring at different altitudes above sea
level.
There is no such agreement forGASs. The Yakutsk

data show that the measured densities ρs,600(θ) at
E0 = 1019 eV are higher than the calculated values
by a factor of about 1.25 (Fig. 3a). The densities
ρµ,600(θ) (dash-dotted curve), which coincide with
ρs,600(θ) in inclined events (θ ≥ 52◦), undergo more
pronounced changes. In the AGASA data, there is,
on the contrary, an indication that the experimental
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 1. Average lateral distributions of (•, ◦) all charged
particles and (�) muons with a threshold energy of
Eµ ≈ 1.0 · sec θ GeV in E0 = 2 × 1018 eV, 〈cos θ〉 =
0.98 showers: (•, �) Yakutsk data and (◦) AGASA data
[30]. The solid and dashed curves were calculated on the
basis of the QGSJET model for the case of primary pro-
tons for, respectively, the Yakutsk array and the AGASA.

densities ρs,600(θ) are underestimated by a factor of
about 1.25 in the zenith-angle range 35◦–50◦.
The above anomaly in GAS evolution grows fast

with increasing energy of primary cosmic rays. This
can be clearly seen in Fig. 3b for E0 = 3× 1019 eV
showers. All experimental data totally contradict the
predictions of the QGSJET model. This contradic-
tion is not associated with relatively low statistics of
events.
In analyzing the data in Fig. 3b, there arises the

following picture. The trend in the Yakutsk data to-
ward a variation in ρµ,600(θ) (dash-dotted curve 2)
becomes more pronounced, leading to a nearly three-
fold increase in relation to the results of the calcula-
tions at θ ≥ 35◦. The experimental densities ρs,600(θ)
in GASs whose axes deviate only slightly from the
vertical direction are higher than the calculated ones
by a factor of about 1.4 and agree with ρµ,600(θ) for
θ ≥ 45◦. The values of ρs,600(θ) that were measured
at the AGASA for θ ≤ 30◦ exceed the results of the
calculations by a factor of about 1.4 as well. In more
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
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AGASA data from (◦) [26] and (�) [30]. The solid and
dashed curveswere calculated according to the QGSJET
model for the case of primary protons for the Yakutsk array
and the AGASA, respectively.

inclined showers, the analogous experimental values
decrease fast, lying below the calculated values by
a factor of about 1.4 for θ ≥ 37◦; for θ ≥ 45◦, they
become commensurate with the Yakutsk data.
From this analysis, it follows that, for θ ≥ 45◦, only

Eµ ≥ 1.5 GeV muons are detected in these showers
at the above distance from the core. Here, there are no
softer muons and, the more so, electrons, as was ob-
served in the analogous inclined EASs whose primary
energies lie in the region E0 ≤ 2× 1018 eV (Fig. 2).
Not only do the electron-flux densities ρe,600(θ) de-
crease anomalously fast with increasing zenith angle
(dash-dotted curves 3 in Fig. 3b), but they also ex-
ceed the calculated values (solid curve 3) in the nearly
vertical GASs (θ ≤ 20◦) by a factor of about 1.4.
The above trend is likely to become more pro-

nounced as the GAS energy approaches the limiting
value. The disregard of this circumstance and the
formal use of relations (1)–(9) may lead to large errors
in estimating E0.
The asterisk in Fig. 3b shows the density

ρs,600(58.7◦) ≈ ρµ,600(58.7◦) = 54m−2 of the largest
shower detected at the Yakutsk array [8]. The arrow
indicates the rescaling of this density to the vertical
direction with the absorption range equal to λρ =
530 g/cm2 according to (3). According to (1), the
energy of this shower is estimated at E0 = 1.55 ×
1020 eV.
In fact, the energy of this GAS is much lower. If

we consider that the measured value of ρs,600(θ) for
sec θ ≈ 1.9 in Fig. 3b is greater than the calculated
value by a factor of about 2.5 (the corrected density is
2
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Fig. 3. Density ρ600 of (1) all charged particles, (2)
muons, and (3) electrons as a function of sec θ at (a)
E0 = 1019 and (b) 3 × 1019 eV. In Fig. 3b, the closed
and open inverted triangles represent the experimental
values of ρe,600 = ρs,600 − k(θ)ρµ,600, while the asterisk
and crosses show ρs,600(θ) inE0 ≥ 1020 eV showers ac-
cording to the data of the Yakutsk array and the AGASA
[27, 30], respectively. The dash-dotted curves connecting
experimental dots were drawn in order to illustrate more
clearly their anomalous behavior. The rest of the notation
is analogous to that in Fig. 2.

54/2.5 = 21.6m−2) and if we rescale this value to the
vertical direction according to the theoretical curve 1
(ρs,600(0◦) = 172 m−2) and additionally use relation
(6), the result will be E0 ≈ 6× 1019 eV. From the
value of ρµ,600(58.7◦) (the refined value is 54/2.3 =
23.5 m−2) and relation (7), it follows that E0 ≈ 5.6 ×
1019 eV.
The crosses in Fig. 3b show the values of ρs,600(θ)

for seven E0 ≥ 1020 eV GASs according to the
AGASA data from [27]. It is intriguing that these
events are observed for sec θ ≤ 1.22 (θ ≤ 35◦), where
ρs,600(θ) has a relative peak (open circles). A nonran-
dom nature of this distribution is corroborated by the
histogram of 48 E0 ≥ 4× 1019 eV, θ ≤ 45◦ GASs in
Fig. 4a from the AGASA data [27]. Events (N ) were
taken in the intervals ∆ cos θ = 0.1 and were divided
by cos θ. This representation provides their identical
significance within each interval∆ cos θ.
We note that E0 ≥ 1019 eV GASs at other ar-

rays have similar zenith-angle distributions. Volcano
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Fig. 4. Zenith-angle distributions of GASs according to
(a) AGASA [27], (b) Volcano Ranch [7], (c) Haverah
Park [7], and (d) SUGAR [31] data. The shaded regions
correspond to showers whose axes fall within the array.

Ranch data from [7] (44 events) are shown in Fig. 4b.
This array is deployed at an altitude of 834 g/cm2. The
majority of the showers have fallen at its boundary. If
only those of them are taken into consideration whose
axes are within this array, there remain nine events
with θ ≤ 36◦ (shaded histogram).
Figure 4c shows the distribution of 144 Haverah

Park GASs [7], which resembles the preceding distri-
bution. The Haverah Park array is located at sea level
and employs detectors of a different type (Cherenkov
water tanks) that recorded a relatively large contri-
bution of muons in the total detector response. The
detectors themselves are much more widely spaced.
It is noteworthy that, for θ ≤ 45◦, all three arrays
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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yield similar distributions, although event statistics
are insufficient everywhere. It can be conjectured that
this form of the distributions has a common origin
in the anomalous GAS evolution considered above
(Fig. 3).

Figure 4d displays data from the SUGAR array
[31], which detected showers by muons with thresh-
old energy Eµ ≈ 0.75 · sec θ GeV. The shaded his-
togram corresponds to 35 E0 ≥ 5× 1019 eV events,
while the open histogram includes events whose en-
ergies fall within the range 1.5× 1019 ≤ E0 < 5×
1019 eV. Here, we can clearly see the growth of the
number of showers with increasing zenith angle. This
agrees with our conclusion that the relative contri-
bution of muons to the structural modifications of
inclined showers increases.

4. CONCLUSION

From the above and from the results presented
in [16–21], there emerges the following picture. In
the energy regionE0 ≤ 2× 1018 eV, the experimental
data from the Yakutsk array and from the AGASA
are compatible with the results calculated on the
basis of the QGSJET model for the case of primary
protons. For E0 ≥ (3–5)× 1018 eV, EASs evolve in
a different way. With increasing energy, their lat-
eral structure changes significantly, and the fraction
of muons increases markedly in the inclined events
(θ > 35◦–40◦), as can be seen from Fig. 3. Here,
the muon component changes more pronouncedly,
which cannot be explained in terms of the QGSJET
model; therefore, different concepts of GAS evolution
are required.

It can be assumed that this anomaly has a thresh-
old character in energy and that it is caused by new
processes of nuclear interactions; this threshold may
be at about (2–3)× 1018 eV. Above this energy,
cosmic-ray interactions produce exotic secondaries
(one or a few of them), which determine entirely a
further evolution of GASs.
The above GAS anomalies can be associated not

only with changes in the character of nuclear in-
teraction nature but also with a radical change in
the composition of primary particles. An analysis of
Yakutsk data from [32–35] showed that the directions
of the arrival of E0 ≥ (8–10) × 1018 eV EASs have
a statistically significant (∼4σ) positive correlation
with the Supergalaxy plane. There is no such corre-
lation with the Galaxy plane. In all probability, this
supports the hypothesis that cosmic rays of such
energies are predominantly of an extragalactic origin
and gives grounds to believe that primary particles
must be electrically neutral in this case.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
It is improbable that these are neutrons. At E0 ∼
1019 eV, their Lorentz factor is about 1010, so that
they can travel a distance of about 100 kpc prior to
undergoing decay, but this is much smaller than the
Supergalaxy size (about 50 Mpc). It is more likely
that these are some other stable neutral particles.
We cannot rule out the possibility that these are

neutrinos. The calculations performed in [36] show
that, under certain conditions of growth of the cross
section for neutrino–nucleon interaction (σνN ), the
formation of the EASs that are similar to GASs is
possible in the region of extremely high energies.
In our opinion, however, the existence of cosmic

rays of energyE0 ≈ 1020 eV has yet to be proven con-
clusively. An increase in the number of such events
owing to longer exposures of the operating arrays or
owing to building arrays of giant areas (about 1000–
5000 km2) and arrays with a detector spacing of
1–1.5 km [13–15] can be irrelevant to solving the
problem of GAS endpoint energies. No extrapolations
of either experimental dependences or calculated data
[available for E0 ≤ (2–3)× 1018 eV] into this region
are legitimated. They can lead to large errors in es-
timating the primary-particle energy. Here, it is nec-
essary to investigate individually the lateral distribu-
tions of charged particles and muons at arrays with a
detector spacing not larger than 200–300 m.
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119, 1029 (2001) [JETP 92, 887 (2001)].

34. A. V. Glushkov and M. I. Pravdin, Pis’ma Astron. Zh.
27, 577 (2001) [Astron. Lett. 27, 493 (2001)].

35. A. V. Glushkov, Pis’ma Zh. Éksp. Teor. Fiz. 73, 355
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Abstract—A numerical value for the running electromagnetic-coupling constant in the MS scheme
is calculated at a low-energy normalization scale equal to the τ-lepton mass Mτ . This low-energy
boundary value is used for running the electromagnetic coupling to larger scales, where high-precision
experimental measurements can be performed. Particular scales of interest are the b-quark mass for
studying Υ-resonance physics and the Z-boson massMZ for high-precision tests of the Standard Model
and for the determination of the Higgs boson mass from radiative corrections. A numerical value of the
running electromagnetic-coupling constant at MZ in the on-shell renormalization scheme is also given.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Adimensional regularization of divergent integrals
related to Feynman diagrams of perturbation theory
(PT) and renormalization by a minimal subtraction
of singularities are convenient technical tools for
calculations in particle phenomenology [1, 2]. In
the leading order of PT, dimensional regularization
does not give any decisive computational advantage.
However, high-order many-loop PT calculations
are rather involved, and, in practice, only the use
of a dimensional regularization supplemented with
recurrence relations based on the integration-by-
part technique [3] allowed one to obtain analytically
new theoretical predictions for a number of pro-
cesses (see, e.g., [4]). Minimal subtraction, being
a simple method for renormalizing dimensionally
regularized PT diagrams, also provides a natural way
to parametrize theoretical calculations in terms of
couplings and masses defined in the MS scheme [5].
The renormalization in the MS scheme is mass-
independent, which allows an efficient computation
of renormalization-group (RG) functions describing
the evolution of MS parameters. However, the mass
independence of the renormalization procedure is
physically inconvenient because the decoupling of
heavy particles is not automatic [6]. The physical
property of decoupling is restored within an effective-
theory approach with an explicit separation of differ-
ent mass scales such that the parameters of neigh-
boring effective theories (couplings, masses, etc.)

∗This article was submitted by the author in English.
1063-7788/02/6507-1319$22.00 c©
should be sewed (matched) near the point where a
new scale appears. This machinery, developed up to
the three-loop order in PT, allows one to compare
theoretical results in the MS scheme for a variety
of scales with a uniform control over the precision
of PT calculations. In particular, this technique
allows one to compare theoretical quantities extracted
from low-energy data with results of Z-boson-peak
analyses within the Standard Model (SM) of particle
interactions. The high-precision tests of the SM
at the Z-boson peak showed good agreement with
theoretical results obtained from low-energy data.
For new-physics searches and further tests of the SM
at the next level of precision, computations for many
observables at theZ-boson peak should be performed
with a two-loop accuracy, which presently is an actual
calculational task. Because of the computational
advantage of dimensional regularization for various
many-loop calculations, high-order PT results for
theoretical amplitudes at the Z-boson peak tend to
be obtained in terms of the MS-scheme param-
eters, which are natural quantities emerging from
the minimally subtracted dimensionally regularized
diagrams. It was found that the use of the running
electromagnetic (EM) coupling normalized atMZ in
the MS scheme makes PT expansions near the Z-
boson peak reliable and corrections small. However,
the running EM coupling in the MS scheme has no
immediate physical meaning, and its numerical value
is not well known. At the same time, QED, being
an old part of the SM, is well tested at low energies,
where the fine-structure constant α is a natural
2002 MAIK “Nauka/Interperiodica”
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interaction parameter defined in a physical manner by
subtraction on the photon mass shell. The numerical
value of the fine-structure constant is accurate, which
would make it a natural reference parameter for
high-precision tests of the SM. However, because
of a huge numerical difference between the values
of the photon and Z-boson masses, the use of the
fine-structure constant as an expansion parameter
for PT calculations at the Z-boson peak generates
large corrections in higher orders. For applications
to high-precision tests of the SM with observables
near the Z-boson peak [7], one should transform α
into a proper high-energy parameter, i.e., into the
electromagnetic-coupling constant at a scale of the
Z-boson mass MZ (see, e.g., [8, 9]). Then, large PT
corrections are hidden (renormalized) in a numerical
value of this new parameter, which is more suitable
for describing the Z-boson-peak observables in the
PT framework than α. Therefore, a numerical value
of the running EM coupling constant atMZ is a new
important number that was chosen for a standard ref-
erence parameter [10]. The difference of the numerical
value of this parameter and α−1 = 137.036 . . . should
be theoretically calculated by using the RG tech-
nique [11–13]. Because the fine-structure constant
is defined at a vanishing momentum, it is an infrared-
sensitive quantity and the contribution of strong
interactions to its RG evolution cannot be com-
puted perturbatively: the infrared region is a strong-
coupling domain that requires a nonperturbative
(non-PT) treatment. The contribution of the infrared
(IR) region is usually taken into account within
a semiphenomenological approximation through a
dispersion relation with direct integration of low-
energy data. There has been a renewal of interest in
a precise determination of the hadronic contribution
to the electromagnetic-coupling constant atMZ over
the last years in connection with the constraints on
the Higgs boson mass from radiative corrections in
the SM [14]. Some recent references giving a state-
of-the-art analysis of this contribution are [15–18]. A
quasianalytic approach was used in [19], where some
references to earlier articles can be found (see also [20,
21]). A thorough data-based analysis is given in [22].
However, a virtual lack of data for energies higher
than 15–20 GeV makes it unavoidable to use the-
oretical formulas in the dispersion relation at high
energies. Fortunately, theoretical results necessary
for electromagnetic-current correlation functions
(the photon vacuum polarization function) are known
in high orders of PT and are reliable at high energies
because of the property of asymptotic freedom in
QCD. Therefore, the real value of dispersion relations
is to find a boundary condition for the running EM
coupling at a low-energy normalization scale, where
data are accurate. If this low-energy normalization
P

scale is sufficiently large for strong interaction PT
to be applicable, then the RG can be used to run
the initial value to any larger scale with a very
high precision. The running of the electromagnetic-
coupling constant can be defined in different ways
depending on the renormalization procedure chosen.
The evolution can be described in both the on-shell
and theMS schemes: the corresponding β functions
are available with a high precision within PT. The
recent calculation of the numerical value for the
running EM coupling at MZ with evolution in the
MS scheme is presented in [23].

In the present study, I calculate a low-energy
boundary value for the running EM coupling in the
MS scheme using almost no experimental data but
masses of ground states in the ρ- andϕ-meson chan-
nels. A necessary IR modification of the light-quark
spectrum is determined by consistency with operator-
product expansion (OPE). Theoretical parameters
of the calculation are the strong-coupling constant
αs(Mτ ), the strange-quark mass ms(Mτ ), and the
gluon and quark vacuum condensates. Numerical
values for these parameters accumulate a lot of in-
formation about the low-energy data contained in the
rate R(s) of e+e− annihilation into hadrons. There-
fore, the present calculation compresses low-energy
data into numerical values of several key theoretical
parameters; this allows one to perform an analysis
of the IR domain necessary for determining a low-
scale boundary value for running the EM coupling.
The evolution to larger scales is straightforward and
very precise within perturbation theory.

2. BASIC RELATIONS

The relation between the running EM coupling
constant ᾱ(µ) in the MS scheme (µ is the usual
normalization point) and the fine-structure constant
α are well known and can be obtained by considering
the photon vacuum polarization function. The corre-
lation function for the EM currents jEMµ ,

12π2i
∫
〈TjEMµ (x)jEMν (0)〉eiqxdx (1)

= (qµqν − gµνq
2)Π#(q2),

is defined with a generic scalar function Π#(q2).
The particular scalar functions Π(µ2, q2) and Πos(q2)
(subscript “os”means “on-shell”) are defined through
the correlation function for electromagnetic currents
in (1) [and the generic function Π#(q2)] but with
different subtraction procedures to remove ultraviolet
divergences. The first function Π(µ2, q2) is renor-
malized in the MS scheme, and the second function
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Πos(q2) is renormalized by subtraction on the pho-
ton mass shell q2 = 0, which implies a normaliza-
tion condition Πos(0) = 0. Note that, for the actual
calculation of Πos(q2), one can use a dimensional
regularization and the MS scheme in cases where
Π(µ2, 0) has no IR singularities in PT (for instance,
for massive quarks):

Πos(q2) = Π(µ2, q2)−Π(µ2, 0).

The relation between the couplings and polarization
functions in the different schemes reads

3π
ᾱ(µ2)

+ Π(µ2, q2) =
3π
α

+Πos(q2). (2)

In the limit q2 → 0, one finds
3π

ᾱ(µ2)
+ Π(µ2, 0) =

3π
α
. (3)

Equation (2) is related to the Coulomb law for
charged particles. For the potential of the EM inter-
action of two charged leptons, one finds in the MS
scheme that

V (q2) = −4πᾱ(µ
2)

q2

[
1 +

ᾱ(µ2)
3π

Π(µ2,q2)
]−1

. (4)

This expression is µ-independent because of RG
invariance. Being expressed in terms of the fine-
structure constant α, the Coulomb potential reads

V (q2) = −4πα
q2

[
1 +

α

3π
Πos(q2)

]−1
(5)

with Πos(0) = 0. The limit of long distances,

4πα = − lim
q2→0

q2V (q2), (6)

gives the fine-structure constant. In the Coulomb
law [Eqs. (4) and (5)], q = (0,q) and q2 = −q2. This
makes q2 in Eq. (2) essentially Euclidean. We retain
the notation q2 for a positive number to stress the cal-
culation in the Euclidean domain. Equation (3) is just
a relation between schemes of a finite renormalization
of the EM couplings.

Taking the limit q2 → 0 in Eq. (2) requires a spe-
cial analysis for light quarks because of IR singu-
larities. The polarization function Π(µ2, 0) cannot be
calculated in PT if strong interactions are included
because the light quarks (u, d, s) are essentially
massless.

In addition to the MS running coupling constant
ᾱ(µ), an on-shell running coupling αos(q2) can also
be used inZ-boson-peak analyses. The on-shell run-
ning coupling is defined by the relation

αos(q2) = α
/[

1 +
α

3π
Πos(q2)

]
, αos(0) = α.

(7)
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The numerical value for the on-shell running coupling
αos(q2) can be found from Eq. (2) if ᾱ(µ) is known
and if Π(µ2,q2) is calculable for a given q2.

In the present study, I calculate a low-energy
boundary condition for the running EM coupling in
the MS scheme, i.e., the value ᾱ(µ0) at some µ0. A
convenient numerical value for the low-energy scale
µ0 is the τ-leptonmassMτ , which is sufficiently large
for strong-interaction PT to work, µ0 = Mτ . The
low-energy coupling ᾱ(Mτ ) can be evolved to other
scales with the RG equation. The particular scales of
interest are the b-quark mass mb for Υ-resonance
physics and MZ for high-precision SM tests and
Higgs-boson searches. The RG functions in theMS
scheme are known with a very high accuracy, which
makes the running precise numerically.

3. LOW-ENERGY NORMALIZATION:
FORMULAS

In order to determine a numerical value for the
running EM coupling ᾱ(µ0) by using Eq. (3), one
has to compute the polarization function Π(µ20, q

2) at
q2 = 0. There are lepton and quark contributions to
the EM current (see a note about the W bosons be-
low). Because decoupling is not explicit, one counts
only the contributions of particles that are considered
to be active for a given scale.

3.1. Leptons

For a lepton l with the pole mass Ml, we retain
masses that makeΠ(µ2, 0) directly computable in low
orders of PT, where strong interactions are absent.
The matching condition reads

Πl(µ2, 0) = ln
µ2

M2
l

(8)

+
ᾱ(µ2)
π

(
45
16

+
3
4
ln

µ2

M2
l

)
+O(ᾱ2).

Note that O(α2) corrections are also available [24],
but they are totally negligible numerically for our
purposes. With an accuracy of order α, there is no
numerical difference between the fine-structure con-
stant α and the running coupling constant ᾱ(µ2) on
the right-hand side of Eq. (8). For numerical es-
timates, we substitute α. For µ = Ml, the lepton l
decouples completely in the leading order (which is
the case for the τ lepton). Because the fine-structure
constant α is small numerically, we do not resum the
expression on the right-hand side of Eq. (8). With an
O(α) accuracy, expression (8) can be used at any µ
(see below). In this sense, the matching for leptons
can be performed just at any scale of interest with
2
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the same accuracy by using the explicit result given
in Eq. (8), for instance, at µ = MZ . To calculate the
polarization function for leptons, we use the polemass
Ml, which is well known numerically. Equation (8)
gives a leptonic part of the finite renormalization be-
tween the running and the fine-structure constant in
Eq. (3). In Eq. (8), we neglect strong interactions
(quark contributions), which appear in the α2 order. If
strong interactions are included, then one cannot use
PT expressions with such a low scale as the electron
or muon mass, and the full IR analysis analogous to
that done for light quarks (see below) is necessary.
Equation (8) solves the lepton part of the normaliza-
tion condition for the running EM coupling.

3.2. Light Quarks

For the hadronic part of the vacuum polarization
function, we first consider the contribution of light
quarks. For the light (massless) quarks, the limit
q2 → 0 in Eq. (2), which is necessary for relating the
running EM coupling to the fine-structure constant,
cannot be reached in PT. This is, however, an IR
problem which is unsolved in QCD within PT. In
QCD with massless quarks, the low-energy domain
is not described by PT, and PT expressions should be
modified for the limit q2 → 0 in Eq. (2) to exist. Such
a modification must not change an ultraviolet (UV)
structure of the correlation functions because RG
invariance should be respected. Therefore, it is conve-
nient to perform an IR modification by using disper-
sion relations, which make contributions of different
energy ranges separately. There are three potentially
IR-dangerous contributions made by the light quarks
u, d, and s. For matching the contributions of light
quarks, we work in nf = 3 effective theory, i.e., in
QCD with three active light quarks.

A note about the notation is in order. We consider
a generic light-quark correlation function normalized
at the parton level to unity (as for its asymptotic
spectral density). Then, we add necessary factors to
take into account the color or the charge structure (or
both). Thus, for the u quark, for instance, we have

Πu(q2) = Nce
2
uΠ

light(q2), (9)

where eu = 2/3 is a u-quark EM charge and Nc = 3
is a number of colors.

For light quarks, the PT part of the correlation
function is calculable for large q2 and, in the MS
scheme, reads (e.g., [25])

Πlight(µ2,q2) = ln
µ2

q2
+
5
3

(10)

+ as

(
ln

µ2

q2
+
55
12
− 4ζ(3)

)

P

+ a2s

(
9
8
ln2

µ2

q2
+
(
299
24
− 9ζ(3)

)
ln

µ2

q2

+
34525
864

− 715
18

ζ(3) +
25
3
ζ(5)

)
,

where as = αs/π. Equation (10) is written for nf = 3
active light quarks with the nf = 3 effective coupling

as ≡ a
(3)
s (µ). The limit q2 → 0 cannot be reached in

Eq. (10) because there is no scale for light quarks and
because no PT expression like Eq. (8) is available.
Because singularities at low momenta are related to
IR problems, it suffices tomodify only the IR structure
of the correlation function Πlight(µ2,q2). It is conve-
nient to modify just the contribution of low-energy
states to the correlation function, and this can be done
through a dispersion relation. The dispersion relation
reads

Πlight(q2) =

∞∫
0

ρlight(s)ds
s+ q2

, (11)

where a dimensional regularization is implied for
ρlight(s). In fact, Eq. (11) can be used for the bare
quantities Πlight(q2) and ρlight(s). The limit q2 → 0
on the right-hand side of Eq. (11) is IR-singular and
cannot be reached if the PT expression for the spectral
density ρlight(s) is used. Therefore, one should modify
the low-energy behavior of the spectrum, where PT
is not applicable. If such a modification is local
[has only a finite support in the energy variable s in
Eq. (11)], then it does not affect any UV properties
(µ2 dependence) of Πlight(µ2,q2) that are important
for the RG. A low-energy modification is inspired
by an experiment: at low energies, there is a well-
pronounced bound state as the result of strong
interaction between quarks. We therefore adopt a
model of IRmodification according to which the high-
energy tail of the integral in Eq. (11) is computed in
PT (duality arguments) that retains the RG structure
of the result, while, in the low-energy domain, there is
a contribution of a single resonance. An IR modifica-
tion is performed for the contributions of the u, d, and
s quarks. The massless u and d quarks interact with
photons through the isotopic combinations I = 1
(ρ-meson channel) and I = 0 (ω-meson channel).
For our purposes, these two channels are completely
degenerate and are treated simultaneously. The s-
quark contribution is considered separately because
of its nonvanishing (small) massms.

For a generic light-quark correlation function in
the massless PT approximation, one introduces the
IR modification

ρlight(s)→ ρlightIRmod(s) (12)

= FRδ(s −m2
R) + ρlight(s)θ(s− s0),
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where FR,mR, and s0 are IR parameters of the spec-
trum. Note that they are not necessarily the numbers
determined directly from experimental data. Substi-
tuting the IR-modified spectrum (12) into Eq. (11),
one finds

ΠlightIRmod(µ
2, 0) =

FR

m2
R

+ ln
µ2

s0
+
5
3

(13)

+ as

(
ln

µ2

s0
+
55
12
− 4ζ(3)

)
+ a2s

(
9
8
ln2

µ2

s0

+
(
299
24
− 9ζ(3)

)
ln

µ2

s0
+
34525
864

− 715
18

ζ(3) +
25
3
ζ(5)− 3π2

8

)
.

We identify mR with the mass of the lowest reso-
nance, which is the only input giving a scale to the
problem. The IR-modifying parameters FR and s0 are
fixed from the quark–hadron duality arguments.

Notice the difference in the a2s order between
Eq. (10) and Eq. (13): in Eq. (13), there is the
new term −3π2/8. This is a so-called π2 correction
(e.g., [26]). It can be rewritten in terms of ζ(2) =
π2/6.

To describe the IR structure of the correlation
function in the representation given by Eq. (13),
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
we use an OPE with power-law corrections that
semiphenomenologically encode information about
the low-energy domain of the spectrum through the
vacuum condensates of local gauge-invariant oper-
ators [27]. The OPE for the light-quark correlation
function reads

ΠOPE(µ2,q2) = Πlight(µ2,q2) (14)

+
〈O4〉
q4

+O
(
〈O6〉
q6

)
.

The quantities 〈O4,6〉make the non-PT contributions
of dimension-four and dimension-six vacuum con-
densates. These contributions are UV-soft (they do
not change short-distance properties) and are related
to the IR modification of the spectrum. For the pur-
poses of fixing the numerical values of the parameters
FR and s0, which describe the IR modification of
the spectrum, one needs only the first two power-
law corrections 1/q2 and 1/q4; the coefficient of the
1/q2 correction vanishes because there are no gauge-
invariant dimension-two operators in the massless
limit. Computing the IR-modified polarization func-
tion and comparing it with the OPE expression, we
find finite-energy sum rules (FESR) for fixing the
parameters FR and s0 [28]. The system of sum rules
has the form
FR = s0

{
1 + as + a2s

(
β0 ln

µ2

s0
+ k1 + β0

)}
+O(a3s), (15)

FRm
2
R =

s20
2

{
1 + as + a2s

(
β0 ln

µ2

s0
+ k1 +

β0
2

)}
− 〈O4〉+O(a3s),
where β0 = 9/4 and

k1 =
299
24
− 9ζ(3).

We treat 〈O4〉 as a small correction and take its
coefficient function to be a constant (the total con-
tribution is RG-invariant). Equations (15) fix FR and
s0 through m2

R and 〈O4〉. Using higher order terms
in the OPE expansion (for instance, 〈O6〉/q6), one
can avoid substituting m2

R from experimental data
because, within the IR modification given in Eq. (12),
the IR scale is determined by the dimension-six vac-
uum condensate 〈O6〉 [28]. We do not do this because
the primary purpose of the present analysis is to find
the low-scale normalization for the EM coupling and
not to describe the spectrum in the low-energy do-
main. The use of the experimental value for the reso-
nance mass m2

R makes the calculation more precise
because the numerical value for the 〈O6〉 condensate
is not known well (cf. [29]).
The leading-order solution to Eqs. (15) (upon ne-
glecting PT and non-PT corrections) is given by the
partonic-model result s0 = 2m2

R, FR = s0 = 2m2
R,

which is rather precise. This solution was used to
predict masses and residues of the radial excitations
of vector mesons within the local-duality approach
when the experimental spectrum is approximated
by a sequence of infinitely narrow resonances [30].
Such an approximation for the experimental spec-
trum is justified by theoretical considerations in the
large-Nc limit [31] and by the exact solution to
two-dimensional QCD [32]. For the experimental
spectrum of infinitely narrow resonances, the local-
duality approach means the averaging over the en-
ergy interval around a single resonance [30]. It is
expected to be less precise than the global-duality
method in which averaging is performed over the
entire spectrum. However, within the global-duality
approach, only the total contribution of all hadronic
states can be studied, while local duality can be used
2
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even for the first few resonances, allowing one to
predict characteristics of individual hadronic states.
P

An accurate treatment of Eqs. (15) gives the solu-
tion
s0 = 2m2
R

(
1 +

β0
2
a2s

)
+
〈O4〉
m2

R

(1− as), (16)

FR

m2
R

= 2
{
1 + as + a2s

(
β0 ln

µ2

2m2
R

+ k1 +
3
2
β0

)}
+
〈O4〉
m4

R

.

In the solution given by Eqs. (16), only linear terms in
the non-PT correction 〈O4〉 are retained. This is well
justified numerically. The a2s〈O4〉 terms are neglected
because the coefficient function for the condensate
〈O4〉 is not known to this precision. In Eq. (13), the
scale parameter is s0, while the system of Eqs. (16)
is solved in terms of mR, which we identify with the
resonance mass and take from experimental data.
Therefore, we express the PT scale s0 in terms of
mR according to the solution given by Eqs. (16). The
expansion of the log-term in Eq. (13) reads

ln
µ2

s0
= ln

µ2

2m2
R

− β0
2
a2s −

〈O4〉
2m4

R

(1− as).

With these results, one finds an expression for the IR-
modified polarization function for light quarks at the
origin:

ΠlightIRmod(µ
2, 0)

= 2
{
1+as+a2s

(
β0 ln

µ2

2m2
R

+k1+
3
2
β0

)}
+
〈O4〉
m4

R

+ ln
µ2

2m2
R

− β0
2
a2s −

〈O4〉
2m4

R

(1− as) +
5
3

+ as

(
ln

µ2

2m2
R

− 〈O4〉
2m4

R

+
55
12
− 4ζ(3)

)

+ a2s

(
9
8
ln2

µ2

2m2
R

+
(
299
24
− 9ζ(3)

)
ln

µ2

2m2
R

+
34525
864

− 715
18

ζ(3) +
25
3
ζ(5)− 3π2

8

)
.

Here, the second line gives the resonance contribu-
tion, while the rest is the high-energy tail (continuum
contribution), which is computed in PT. Finally, we
obtain

ΠlightIRmod(µ
2, 0) (17)

=2
{
1+as+a2s

(
β0 ln

µ2

2m2
R

+k1+
3
2
β0

)}
+
〈O4〉
m4

R

+ ln
µ2

2m2
R

− β0
2
a2s +

5
3

+ as

(
ln

µ2

2m2
R

+
55
12
− 4ζ(3)

)

+ a2s

(
β0
2
ln2

µ2

2m2
R

+ k1 ln
µ2

2m2
R

+
34525
864

− 715
18

ζ(3) +
25
3
ζ(5)− 3π2

8

)
.

Equation (17) gives ΠlightIRmod(µ
2, 0) as an explicit

function of the non-PT scale mR (to be taken from
experiments) and the theoretical quantities as and
〈O4〉. The choice of numerical value for as is dis-
cussed in detail later.

The condensate of dimension-four operators for
light quarks is given by

〈O4〉 =
π2

3

(
1 +

7
6
as

)〈αs

π
G2
〉

(18)

+ 2π2
(
1 +

1
3
as

)
(mu +md)(〈ūu〉+ 〈d̄d〉).

The PT correction to the gluon condensate was com-
puted in [33]. We retain small corrections proportional
to the light-quark masses and treat them in the ap-
proximation of isotopic symmetry for the light-quark
condensates 〈ūu〉 = 〈d̄d〉, which is rather precise for u
and d quarks. The quark-condensate part of Eq. (18)
is given by the relation of partial conservation of axial
current (PCAC) for the π meson,

(mu +md)〈ūu+ d̄d〉 = −f2πm2
π.

Here, fπ = 133 MeV is a charged-pion decay con-
stant and mπ = 139.6 MeV is the charged-pion
mass. For the standard numerical value of the gluon
condensate, 〈(αs/π)G2〉 = 0.012 GeV4 [27], and
as = 0.1, one finds

〈O4〉 =
π2

3

(
1 +

7
6
as

)
〈αs

π
G2〉 (19)

− 2π2
(
1 +

1
3
as

)
f2πm

2
π = 0.037 GeV4.

For themost important contribution of u and d quarks
(the u-quark contribution is enhanced by a factor of
4 because of its doubled electric charge in relation
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to the other light quarks), the relation s0 = 2m2
ρ,

where mρ = 768.5 MeV is the mass of the lowest
(ρ-meson) resonance in the nonstrange isotopic I =
1 vector channel, is rather precise numerically. The
gluon condensate generates a small correction to the
basic duality relation for the light quarks, s0 = 2m2

R.
Note that we do not identify FR with the experimental
number available from the analysis of the ρ-meson
leptonic width, but we treat it as an IR-modifying
parameter that should be fixed from the requirement
of consistency with OPE. It is close numerically to
its experimental counterpart because it is known that
OPE provides a rather accurate description of the
low-energy physical spectrum if vacuum condensates
are included. In the present study, we stick to a
theoretical description of the IR domain and use the
lowest resonance mass as the only input for the IR
modification. The same is true for the I = 0 channel,
where the lowest resonance is the ω meson with mass
mω = 781.94 MeV. We do not distinguish these two
channels. We consider the parameters FR and s0 as
the IR modifiers fixed theoretically through OPE and
do not attempt to substitute them from experimental
data (using leptonic decay widths for FR and the
shape of the spectrum for s0).
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Note that the IR parameters FR, mR, and s0 of
the spectrum are µ-independent. This can be seen
explicitly from (15).

The nf = 3 effective theory is valid only up to
q2 ∼ m2

c , and, formally, there are corrections of order
q2/m2

c [34]. However, these corrections are small in
the case of current correlation functions [35, 36].

For the s quark, there are also corrections due to
the strange-quark mass ms, which change slightly
the shape of the spectrum and the consistency equa-
tions for the IR modifiers. We consider ms as an
additional IR modifier that does not affect UV prop-
erties (renormalization in the MS scheme is mass-
independent) and treat it as a power-law correction.
We write the OPE for the s quark in the form

ΠOPE,s(µ2,q2) = Πlight(µ2,q2)

− 6m2
s

q2
+
〈Os
4〉

q4
+O

(
〈O6〉
q6

)
.

The system of equations for fixing the parameters FRs

and s0s reads
FRs + 6m2
s = s0s

{
1 + as + a2s(β0 ln

µ2

s0s
+ k1 + β0)

}
+O(a3s), (20)

Fsm
2
Rs =

s20s
2

{
1 + as + a2s

(
β0 ln

µ2

s0s
+ k1 +

β0
2

)}
− 〈Os

4〉+O(a3s).

Here,

〈Os
4〉 =

π2

3

(
1 +

7
6
as

)〈αs

π
G2
〉
+ 8π2

(
1 +

1
3
as

)
ms〈s̄s〉

is a dimension-four contribution in the strange channel. One finds a solution to Eqs. (20) in the form

s0s = 2m2
Rs

(
1 +

β0
2
a2s

)
+
〈Os
4〉

m2
Rs

(1− as)− 6m2
s, (21)

FRs

m2
Rs

= 2
{
1 + as + a2s

(
β0 ln

µ2

2m2
Rs

+ k1 +
3
2
β0

)}
+
〈Os
4〉

m4
Rs

− 12
m2

s

m2
Rs

.

The correction due to m2
s is not large. Instead of

Eq. (17), one has

Πlight-sIRmod(µ
2, 0) = ΠlightIRmod(µ

2, 0) − 9
m2

s

m2
Rs

, (22)

and mRs = mϕ and 〈Os
4〉 should be used in the first

term of Eq. (22) instead ofmρ and 〈O4〉. Here,mϕ =
1019.4 MeV is the mass of the ϕ meson, which is the
lowest resonance in the strange channel. A numerical
value for 〈Os

4〉 is obtained as follows. We use the
relation (e.g., [37])

2ms

mu +md
= 25.0

and the phenomenological result 〈s̄s〉 = (0.8± 0.2)×
〈ūu〉 [38] to find

ms〈s̄s〉 = 12.5 · 0.8 · (mu +md)〈ūu〉 (23)

= −5.0f2πm2
π = −0.0017 GeV4.

One could also use the PCAC relation for the K
2
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meson,

(ms +mu)〈s̄s+ ūu〉 = −f2Km2
K +O(m2

s),

with fK = 1.17fπ and mK = 493.7 MeV. Note that
the PCAC relation in the strange channel is valid only
up to terms of order m2

s, which are not completely
negligible numerically in relation to the pion case [39].
Therefore, we use the result given in Eq. (23). For the
standard value of 〈(αs/π)G2〉 = 0.012 GeV4 [27] and
as = 0.1, one finds

〈Os
4〉 =

π2

3

(
1 +

7
6
as

)〈αs

π
G2
〉

(24)

+ 8π2
(
1 +

1
3
as

)
(−5.0f2πm2

π) = −0.0965 GeV4.

The correction due to ms〈s̄s〉 is dominant in the
dimension-four contribution in the strange case. Be-
cause the dimension-four terms represent only small
corrections to the leading results for the correlation
functions in Eqs. (17) and (22), the precision with
which they are calculated suffices for our purposes.

For the absolute value of ms to be substituted
into the m2

s correction, we use the results of recent
analyses [40] and take ms(Mτ ) = 130± 27expt ±
9theor MeV. FormRs = mϕ = 1019.4MeV, one finds

m2
s

m2
ϕ

= 0.0163,

which is a small expansion parameter that justifies the
treatment of the m2

s contribution as a small correc-
tion.

Note that there are attempts at using the con-
stituent masses for the light quarks and at estimating
the polarization functions in the way this is done for
leptons or heavy quarks. Apart from being ad hoc
(and not supported by experimental data), this IR
modification of the light-quark correlation functions
contradicts OPE or local duality (or both) over the
energy interval between the origin and 1 to 2 GeV.

Thus, Eqs. (13) and (17) represent a semiphe-
nomenological subtraction for the light-quark cor-
relation function at q2 = 0 based on the IR modifi-
cation of the spectrum consistent with OPE. Some
mismatch with OPE in orders higher than O(1/q4),
which is possible because of the simplicity of the IR
modification, is neglected. This is justified because we
need only the integral characteristics of the spectrum
for calculating ΠlightIRmod(µ

2, 0), but we are not inter-
ested in the pointwise behavior of the spectral func-
tion ρlightIRmod(s), which is used as an auxiliary quantity
in this particular instance.
P

3.3. Heavy Quarks

Matching heavy quarks is straightforward and is
similar to that of leptons. It is performed within PT.
For a heavy quark q with a pole mass mq � ΛQCD,
one has

Πq(µ2, 0) = Nce
2
qΠ
heavy(µ2, 0),

where Πheavy(µ2, 0) is a generic contribution of a
heavy quark to the vacuum polarization function [41],

Πheavy(µ2, 0) = ln
µ2

m2
q

(25)

+ e2q
α

π

(
45
16

+
3
4
ln

µ2

m2
q

)
+ as

(
15
4
+ ln

µ2

m2
q

)

+a2s

(
41219
2592

− 917
1296

nl +
(
4 +

4
3
ln 2− 2

3
nl

)
ζ(2)

+
607
144

ζ(3) +
(
437
36
− 7
9
nl

)
ln

µ2

m2
q

+
(
31
24
− 1
12

nl

)
ln2

µ2

m2
q

)
+O(α2, α3s).

Here, nl is the number of quarks that are lighter
than the heavy one, and as = αs/π is the strong-
coupling constant in the effective theory with nl + 1
active quarks normalized at the scale µ. The numbers
in Eq. (25) are given for the pole mass of the heavy
quark. We neglect the (known) EM contribution of
order α2 because it is smaller than the unknown term
of order α3s . The contribution of order ααs is also
neglected. Equation (25) represents a contribution of
the corrected partonic model, i.e., that with a heavy-
quark loop in the leading approximation. There is also
the contribution of heavy-quark loops to the light-
quark vacuum polarization function that should be
taken into account in constructing the effective theory
with a decoupled heavy quark. This contribution is
small. It reads [42]

Πlight–heavy(µ2, 0) = a2sNc

(
nl∑

i=1

e2i

)
(26)

×
(
295
1296

− 11
72

ln
µ2

m2
q

− 1
12

ln2
µ2

m2
q

)
.

The contribution of the gluonic condensate is ne-
glected (see [23]). Equations (25) and (26) are used
for the c and b quarks. Note that these formulas
cannot be used for the s quark. Indeed, because of
αs corrections, the PT scale in Eq. (25) is effectively
equal tomq and is too small for PT to be applicable in
the case of the strange quark sincems ∼ ΛQCD.
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4. LOW-ENERGY NORMALIZATION:
NUMERICS

In the preceding sections, the contributions of
fermions to the photon vacuum polarization func-
tion have been presented. We are not going to con-
sider scales larger than MZ ; therefore, bosonic con-
tributions to the EM current and polarization func-
tion (namely, W -boson loops) are not taken into
account. The above equations describe an effective
theory withoutW bosons, which decouple at energies
smaller than MZ and which should be added sepa-
rately for the Z-boson-peak tests.

A numerical value of the strong coupling at low
energies is rather important for the whole analy-
sis. Estimates of a numerical value for the strong
coupling at low scales are usually based on the τ-
lepton-decay data. Within the contour-resummation

technique [43, 44], the value obtained is α(3)s (M2
τ ) =

0.343 ± 0.009expt . Within a renormalization scheme-
invariant treatment of [45], a slightly different value
of α

(3)
s (M2

τ ) = 0.318 ± 0.006expt ± 0.016theor was
recently found. The uncertainty is due to the exper-
imental error and due to the truncation of the series,
which is estimated within an optimistic scenario that
higher order terms of PT are still small and exhibit no
explicit asymptotic growth. Even for the optimistic
scenario with a reduced theoretical error in relation
to the conservative estimates, the theoretical error
dominates the total uncertainty of the numerical value
for the strong coupling. Note that a numerical value
for the strong coupling obtained with the well-known
contour-improved techniques is based on a special
resummation procedure for treating contributions
generated by the running, which does not necessarily
improve results, but which definitely changes them
in relation to finite-order estimates at the present
level of precision. The change is still within the error
bars, which makes two procedures for extracting
the numerical value for the strong coupling, finite-
order PT and contour resummation, consistent. We
use the value of α(3)s (M2

τ ) = 0.318 ± 0.017 as our
basic input for the low-energy strong coupling. The

central value of α
(3)
s (M2

τ ) = 0.318 corresponds to

α
(5)
s (MZ) = 0.118 when it is evolved with a four-loop

β function and three-loop matching at themc andmb

thresholds.
First, we calculate the numerical value of the run-

ning EM coupling constant at µ = Mτ , which is a
convenient low-scale normalization point. Note that
the numerical value of the c-quark pole mass is rather
close to Mτ . In fact, the recent estimate is mc =
1.8 ± 0.2 GeV, and we take mc = Mτ = 1.777 GeV
as a central value, i.e., mc = Mτ ± 0.2 GeV. Thus,
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the low-energy normalization value ᾱ(4)(Mτ ) is com-
puted with three active leptons and four active quarks.

4.1. Leptons
The lepton contribution is calculated with lepton

masses Me = 0.5110 MeV, Mµ = 105.66 MeV, and
Mτ = 1777 MeV [10]. These values are extremely
precise; therefore, we use them as exact and assign no
errors to them. We neglect the difference between the
running EM coupling ᾱ and fine-structure constant
α in corrections [which results in aO(α2) shift that is
numerically negligible]. We use α−1 = 137.036. Ac-
cording to Eq. (8), leptons yield

∆lept(M2
τ ) =

∑
l=e,µ,τ

Πl(M2
τ , 0) (27)

=
(
1 +

3
4
α

π

)(
ln

M2
τ

M2
e

+ ln
M2

τ

M2
µ

+ ln
M2

τ

M2
τ

)

+
135
16

α

π
= 21.953 + 0.058 = 22.011,

where the first number is obtained in the limit α = 0.
The α correction is almost negligible for the normal-
ization at the scaleMτ . Note that the τ lepton makes
no logarithmic contribution at the scale µ = Mτ .

TheO(ᾱ2) correction for the lepton contribution in
theMS scheme is also available [24]. This correction
is parametrically small, and there are no unexpectedly
large numerical coefficients (in fact, they are also
small), which makes the parametric estimate based
on the counting of powers of α rather precise. The
sum of the contributions of three leptons in the ᾱ2 or-
der is completely negligible, and we treat the leptonic
contribution in Eqs. (8) and (27) as exact.

4.2. Light Quarks
From Eq. (17) with mR = mρ for the u and d

quarks and with mR = mϕ for the s quark, one finds
for the total light-quark contribution∆uds(M2

τ ) that

∆uds(M2
τ ) = ∆u(M2

τ ) + ∆d(M2
τ ) + ∆s(M2

τ )

= ∆ρ(M2
τ ) + ∆ω(M2

τ ) + ∆ϕ(M2
τ )

=
4
3
∆light(M2

τ ) +
1
3
∆light(M2

τ ) +
1
3
∆light−s(M2

τ )

=
5
3
∆light(M2

τ ) +
1
3
∆light−s(M2

τ )

= 9.13662 + 5.32853as + 24.9086a2s
= 9.13662 + 0.53937 + 0.25521 = 9.9312.

Because the calculation is explicit, we can give this
result in more detail, showing all different contribu-
tions:

∆uds(M2
τ ) = 9.11165 + 0.539367

( as

0.101

)
(28)
2
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+ 0.2552
( as

0.101

)2
+ 0.08865

(
〈O4〉

0.037 GeV4

)

− 0.0488
( ms

130 MeV

)2
+ 0.0149

(
〈Os
4〉

0.0965 GeV4

)
.

The IR part of the spectrum (resonances) and the
partonic quark approximation make a dominant
contribution. The QCD perturbative corrections and
power-law corrections due to ms and the 〈O4〉 con-
densates are small. The error is

δ∆uds(M2
τ ) = 10.5δas + 0.09

δ〈O4〉
〈O4〉

(29)

− 0.1
δms

ms
− 0.015

δ〈Os
4〉

〈Os
4〉

.

The variations δ〈Os
4〉 and δ〈O4〉 are not completely

independent—both quantities contain a variation of
the gluon condensate. Also, the error of as and that
of the gluon condensate are correlated (see, for in-
stance, [46]). In order to estimate the total error of
∆uds(M2

τ ) in terms of less correlated quantities, one
could rewrite power-law corrections in Eq. (28) in
the basis of the gluon and strange quark conden-
sates [47]. Because the correlation is not well es-
tablished numerically, we neglect the effects of the
correlation. We consider the errors of the strong cou-
pling as, of the gluon condensate for δ〈O4〉, of the
strange-quark mass ms, and of the strange-quark
condensate 〈s̄s〉 for δ〈Os

4〉 as independent quantities
and use δas = 0.017/π = 0.0054, δ〈O4〉/〈O4〉 = 1/2
due to the gluon condensate, and δms/ms = 0.28,
δ〈Os

4〉/〈Os
4〉 = 1/4 due to 〈s̄s〉. With these (conser-

vative) estimates of uncertainties, one finds

δ∆uds(M2
τ ) = ±0.057|as ± 0.045|〈O4〉

± 0.028|ms ± 0.004|〈Os
4〉.

The dominant error is due to δas. The gluon conden-
sate gives a sizable error because it is enhanced by
the charge structure of light (mainly u) quarks and
because its uncertainty is taken to be very conserva-
tive to compensate for the possible correlation with
as. The strange channel is suppressed by a factor of
1/3 in the total sum of light-quark contributions, and
its specific features only slightly affect the result. The
total error for the light-quark contributions added in
quadrature reads

δ∆uds(M2
τ ) = ±0.078.

The final result for the contribution of the light quarks
to the low-energy normalization of the running EM
coupling is

∆uds(M2
τ ) = 9.9312 ± 0.078. (30)

We retain some additional digits at intermediate
stages just for computational purposes.
PH
4.3. Contribution of the c Quark

For the c quark, we use Eqs. (25) and (26). The
strong-coupling constant in nf = 4 effective theory
is found by matching the strong-coupling constant in
nf = 3 and nf = 4 effective theories.

Matching at the pole-mass scale mP for the
strong coupling has the form [48]

a(nl)
s (m2

P ) = a(nl+1)
s (m2

P ) (31)

×
(
1+C2a

(nl+1)
s (m2

P )
2+C3a

(nl+1)
s (m2

P )
3+O(a4s)

)
,

where

C2 = −
7
24

, (32)

C3 = −
80507
27648

ζ(3)− 2
9
ζ(2)(ln 2 + 3) (33)

− 58933
124416

+
nl

9

(
ζ(2) +

2479
3456

)
.

We solve (invert) Eq. (31) perturbatively and find the
expression

a(nl+1)
s (m2

P ) (34)

= a(nl)
s (m2

P )
{
1− C2a

(nl)
s (m2

P )
2 − C3a

(nl)
s (m2

P )
3
}
,

which is used to determine the couplings in the
neighboring effective theories at their boundary scale
that is chosen to be the pole mass of a heavy quark.
Matching at mc = Mτ = 1.777 GeV (we remind
the reader that the numerical value of the c-quark
mass is chosen to be mc = Mτ ± 0.2 GeV) with

α
(3)
s (M2

τ ) = 0.318 gives a
(4)
s (m2

c = M2
τ ) = 0.102 or

α
(4)
s (m2

c = M2
τ ) = 0.320. This value for the strong

coupling is used in Eq. (25) to calculate the c-quark
contribution to the finite renormalization of the EM
coupling. Note that, although one computes with

a
(4)
s (M2

τ ), it can well be identified numerically with

a
(3)
s (M2

τ ): the change due to matching is tiny and is

much smaller than the error of a(3)s (M2
τ ).

Using Eqs. (25) and (26), one finds

∆c(M2
τ ) = Πc(µ2 = M2

τ , 0) = 0.00387 (35)

+ 0.00474 + 0.51001 + 0.32817 = 0.84679,

where the first term is a EM contribution, the sec-
ond one is a loop contribution [Eq. (26)], and the
last two terms give the PT expansion of the direct
contribution [Eq. (25)]. One sees that the EM and
loop contributions are much smaller than the direct
contribution. The convergence of PT series for the
direct contribution is not fast.

The uncertainty of the c-quark contribution is
straightforward to estimate. The main error comes
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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from the uncertainty in the c-quark mass. In the next-
to-leading order (NLO), one finds from Eq. (25) that

δ∆c(M2
τ ) = −

4
3
(1 + as)

2δmc

mc
(36)

= −8
3
(1 + as)

δmc

mc
= ±0.330

for mc = Mτ ± 0.2 GeV and as = 0.1. This is a
very large uncertainty. The contribution ∆c(M2

τ )
in Eq. (35) is small because the c quark almost
decouples, but the uncertainty of ∆c(M2

τ ) is large.
The uncertainty is mainly given by the variation
of ln(M2

τ /m
2
c) in Eq. (25), which is independent

of the absolute value of the contribution. For the
central value mc = Mτ , one would find a vanishing
contribution in the leading order, but its uncertainty
would remain almost unchanged and equal to 0.330.
Also, the c-quark mass is not very large, and the
convergence of the PT expansion in Eqs. (25) and
(35) is slow.

Note that, in order to estimate the uncertainty of
the c-quark contribution, we do not take into account
the uncertainty in the coupling as. The reason is that
the uncertainties in the quark mass mc and coupling
as are correlated. Indeed, to the leading order, one
can find, from Eq. (25), the uncertainty due to an
independent variation of as in the form

δΠheavy(M2
τ , 0) =

15
4
δas. (37)

However, Eq. (25) can be rewritten in terms of the
running mass m̄c(µ2). To the first order in as, the
relation between masses reads

mc = m̄c(µ2)
{
1 + as(µ2)

(
ln

µ2

m̄2
c(µ2)

+
4
3

)}
,

(38)

which leads to the change in Eq. (25):

ln
µ2

m2
c

+ as

(
15
4
+ ln

µ2

m2
c

)

→ ln
µ2

m̄2
c(µ2)

+ as

(
13
12
− ln

µ2

m̄2
c(µ2)

)
.

The NLO result for the polarization function in terms
of the running mass now reads

Πheavyrun.mass(µ
2, 0)

= ln
µ2

m̄2
c(µ2)

+ as

(
13
12
− ln

µ2

m̄2
c(µ2)

)
.

This expression leads to the uncertainty

δΠheavyrun.mass(M
2
τ , 0) =

(
13
12
− ln

M2
τ

m̄2
c(µ2)

)
δas,
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which is smaller numerically than the preceding result
given in Eq. (37). The rest of the uncertainty is now
in the relation between the pole and running masses
given in Eq. (38), which represents a regular change
of variables in the finite-order PT and is under a rather
strict control. We work with the pole mass and as-
sume that the uncertainty in the polarization function
at the origin is saturated by the uncertainty of the pole
mass. It is also assumed that the uncertainty in the
pole mass is estimated in such a way that it includes
the uncertainty in as.

4.4. Running EM Coupling atMτ in nf = 4
Effective Theory

The total finite renormalization between the fine-
structure constant and theMS-schemeEMcoupling
atMτ is given by

∆(4)(M2
τ ) = ∆lept(M2

τ ) + ∆uds(M2
τ ) (39)

+∆c(M2
τ ) = 22.0109 + 9.9312 + 0.8468 = 32.7889,

which leads to
3π

ᾱ(4)(M2
τ )

=
3π
α
−∆(4)(M2

τ ) =
3π
α
− 32.7889. (40)

The low-energy normalization value for the EM cou-
pling in theMS scheme reads

1
ᾱ(4)(M2

τ )
= 133.557. (41)

We now consider the uncertainty in this central value.
The lepton contributions are treated as exact ones, so
that the number in Eq. (27) has no errors. The errors
due to the light quarks are given in Eq. (30). Note
that one could reduce the sensitivity of ∆uds(M2

τ ) to
as, whose error dominates the total error in Eq. (30),
by taking FR from experimental data through the
leptonic decay width of the ρmeson (and of the ω and
ϕ mesons in other light-quark channels). Then, the
resonance contribution FR/m

2
R does not depend on

as. The first duality relation fixes s0 immediately by
using the fact that the power-law correction of order
1/q2 is absent in the OPE expression for the corre-
lation function. However, this procedure introduces
an experimental error due to the uncertainty in the
numerical value of the leptonic decay width of the ρ
meson,

Γρ
ee = 6.77 ± 0.32 keV.

This uncertainty leads to almost the same error for
the final quantity ∆uds(M2

τ ) as the uncertainty in as.
This seems natural. Indeed, the strong coupling at
low energies is extracted from τ data, in which the
ρ-meson contribution constitutes a significant part.
2
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This example shows how the coupling constant en-
codes information about experimental data. Another
point about the use of Γρ

ee for the lowest resonance
contribution is that the consistency with OPE is less
strict for such a procedure (no dimension-four opera-
tors participate). Still having in mind the possibility
of a further improvement of the accuracy through
experimental data, we consider our estimate of the
error given in Eq. (30) as a rather conservative one.

The uncertainty in the c-quark contribution is
given in Eq. (36). Collecting all together, one finds the
final prediction

∆(4)(M2
τ ) = 32.7889 ± 0.078light ± 0.330c (42)

and

3π
ᾱ(4)(M2

τ )
=

3π
α
−∆(4)(M2

τ ) (43)

=
3π
α
− (32.7889 ± 0.078light ± 0.330c).

Equation (43) is the main result for the low-energy
normalization of the running EM coupling. For the
coupling itself, it reads

1
ᾱ(4)(M2

τ )
= 133.557 ± 0.0083light ± 0.0350c (44)

and

ᾱ(4)(M2
τ ) = 1.0261α.

The value ᾱ(4)(M2
τ ) [or, equivalently, ∆(4)(M2

τ )] rep-
resents the boundary (initial) condition for the evo-
lution of the running EM coupling. With this value
known, the EM coupling can be run to other scales.
The final goal is MZ = 91.187 GeV, where high-
precision tests of the SM are done. As will be seen
later, the running itself is very precise numerically
and the main uncertainty in the running EM cou-
pling at larger scales is due to the boundary condi-
tion [Eq. (44)]. The boundary condition of Eq. (44)
has a rather large uncertainty mainly because of the
error in the c-quark mass. The uncertainty due to
the light-quark contribution is reasonably small. It
is dominated by the error in as(Mτ ), which is mainly
theoretical; i.e., it is associated with the truncation of
PT series used to describe τ-lepton decay data. The
uncertainty in as(Mτ ) can be reduced if some other
sources for its determination are used in addition to
the τ system. Reducing the uncertainty in c-quark
pole mass requires a more accurate treatment of the
threshold region of cc̄ production, which is a rather
challenging problem in QCD.
P

5. RG EVOLUTION OF THE EM COUPLING
IN THE MS SCHEME

With the boundary value known at a sufficiently
large scale, where the PT expression for the EM β-
function is applicable, one can run the EM coupling to
larger scales. The final goal is the determination of a
numerical value for the EM coupling atMZ in order to
perform high-precision tests of the SM. The running
itself (as a functional) is extremely precise because
β functions are very well known. The precision of
running is affected by the initial value of as, which is

chosen to be a(3)s (M2
τ ), and by the b-quark massmb.

5.1. Basic Relations for the RG Evolution
For the evolution between the τ-lepton mass

Mτ = 1.777GeV (numerically,mc = Mτ ) andMZ =
91.187GeV, the number of active quarks is either four
or five and only one threshold at mb is encountered.
The evolution equation (running) is written in the
form

−µ2 d

dµ2

(
3π

ᾱ(µ2)

)
= 3

(
1 +

3
4
ᾱ

π

)
(45)

+
(
10
3
+
1
3
θb

)
+
(
17
18

+
1
36

θb

)
ᾱ

π

−
(
34
27

+
1
27

θb

)
ᾱ

4π
as + ash

QCD(as),

where hQCD(as) describes effects of strong interac-
tions. Here, θb is a parameter for the b-quark pres-
ence, nf = 4 + θb. From Mτ to mb, one has nf = 4
and θb = 0, while, frommb toMZ , one has nf = 5 and
θb = 1. In Eq. (45), the strong coupling as(µ2) obeys
the RG equation

µ2
d

dµ2
as(µ2) = β(as(µ2)) + a2s

ᾱ

8π

(∑
q

e2q

)
, (46)

with
β(as) = −a2s(β0 + β1as (47)

+ β2a
2
s + β3a

3
s) +O(a6s)

being the strong-interaction β function. In QCD, one
has

hQCD(as) =
(
10
3
+
1
3
θb

)
(48)

×
{
1 + as

(
287
144
− 11
72

θb

)
+ a2s

(
38551
15552

− 7595
7776

θb −
77
3888

θ2b −
55
54

ζ(3)(1 + θb)
)}

+ a2s

(
2
3
− 1
3
θb

)2(55
72
− 5
3
ζ(3)

)
,
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where the first three lines give the “direct” contribu-
tion and the fourth line gives the light-by-light con-
tribution, which is written separately because of its
different color structure. This result is obtained from
the photon renormalization constant given in [25] and
explicitly written in [42, 49]. It was used in [23] to
calculate the evolution of the EM coupling constant.
Numerically, one finds

hQCD(as) =
(
10
3
+
1
3
θb

)
(49)

× (1 + as(1.993 − 0.153θb)

+ a2s(1.26 − 2.20θb − 0.02θ2b )
)

+ a2s(−0.55 + 0.55θb − 0.14θ2b ).

The coefficients of the EM β function are small, which
makes the convergence of PT series for the evolution
rather fast. Equations (45) and (46) should be solved
simultaneously. However, the EM coupling ᾱ(µ) is
small; therefore, we neglect its running in the cor-
rections and substitute there the value numerically
equal to the fine-structure constant α. Then, one
has to integrate the trajectory of the strong coupling
as(µ), which is given by the solution to the RG equa-
tion (46). The α correction in the strong-coupling
β function is numerically of order a2s and formally
should be retained if a4s terms in the β function are re-
tained. However, themain contribution to the running
comes from the partonic part of the EM β function in
Eq. (45); i.e., it is independent of both EM and strong
couplings. Other terms give only small corrections.
As for practical calculations, one can do everything
numerically; however, it happens that the two-loop
running gives almost the same result as an exact
treatment. With the two-loop accuracy, integration
can be done analytically in a simple form. Indeed, for
β(as) = −β0a2s − β1a

3
s , one finds

µ2
2∫

µ2
1

as(ξ)d ln ξ =
1
β0

ln
(
β0/as(µ22) + β1
β0/as(µ21) + β1

)
, (50)

µ2
2∫

µ2
1

as(ξ)2
dξ

ξ
= − 1

β1
ln
(
β0 + β1as(µ22)
β0 + β1as(µ21)

)
,

where the NLO solution for the running coupling
as(µ) is given by

ln
(
µ2

Λ2

)
= Φ(as) =

as∫
dξ

−ξ2(β0 + β1ξ)
(51)

=
1

asβ0
+

β1
β20

ln
(

asβ
2
0

β0 + asβ1

)
.
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Here, Λ is the usual RG scale of QCD. In the order
that is next to the NLO (NNLO), it is also possible to
perform integration along the RG trajectory explicitly,
but the results are too awkward to be presented here.
In fact, the NLO integration as given in Eqs. (50)
and (51) is rather precise numerically and can be used
for preliminary estimates. However, we avoid any ap-
proximation of this sort (cf. [23]) and give numbers for
a direct numerical treatment of RGEqs. (45) and (46)
with the four-loop strong-coupling β function from
Eq. (47) and the function hQCD from Eq. (48).

The solution to the RG equation can be used for
the range of µ where the corresponding effective the-
ory (with a given number of active leptons and quarks)
is valid. Because decoupling is not automatic, one
should explicitly take into account thresholds.

5.2. Running tomb

The first scale of interest is mb, which is relevant
to describing the physics of bb̄ production near the
threshold and accurate data on Υ resonances (note
that the real threshold energy is in fact 2mb, but
the matching is defined at mb). We use mb = 4.8 ±
0.2 GeV as determined in [50].

In the approximation where the EM coupling is
taken to be constant in the correction, the contribu-
tion of leptons is given by

∆leptτb (m2
b) = 3

(
1 +

3
4
α

π

)
ln

m2
b

M2
τ

(52)

= 3
(
1 +

3
4
α

π

)
· 1.98738 = 5.9725.

The hadronic part is more involved. In the energy
range from Mτ to mb, the number of active quarks is
four or θb = 0. The partonic part of the quark contri-
bution reads

∆(0)τb (m
2
b) = Nc

∑
q

e2q

(
1 + e2q

3
4
ᾱ

π

)
ln

m2
b

M2
τ

(53)

=
(
10
3
+
17
18

α

π

)
ln

m2
b

M2
τ

= 6.62896,

where we use ᾱ = α. The result is independent of
the strong-coupling constant (the parton-model re-
sult without real QCD interaction). The quark part
beyond the partonic approximation requires integrat-
ing the evolution trajectory of the strong coupling in
nf = 4 effective theory. The initial value of the strong

coupling is a
(4)
s (M2

τ ) = 0.102001, as was obtained
from matching atM2

τ for the c-quark contribution. In
the NLO, one still finds the sizable contribution

∆(1)τb (m
2
b) =

(
10
3
− 17
54

α

π

)
I
(1)
τb = 0.54878. (54)
2
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TheNNLO contribution proportional to a2s in Eq. (45),

∆(2)τb (m
2
b) =

10
3
287
144

I
(2)
τb = 0.091848, (55)

and the NNNLO (next to the NNLO) contribution
proportional to a3s in Eq. (45),

∆(3)τb (m
2
b) =

(
200675
23328

− 335
81

ζ(3)
)
I
(3)
τb (56)

= 3.63085I(3)τb = 0.0042699,

give only small corrections. Here, we have

I
(n)
τb =

m2
b∫

M2
τ

(a(4)s (s))n
ds

s
.

The total correction to the parton-model result (i.e.,
QCD contribution)

∆had.corτb (m2
b) = ∆(1)τb (m

2
b) + ∆(2)τb (m

2
b) (57)

+∆(3)τb (m
2
b) = 0.644899

is much smaller than the leading partonic result

∆(0)τb (m
2
b). For the EM coupling atmb, one finds

3π
ᾱ(4)(m2

b)
=

3π
ᾱ(4)(M2

τ )
(58)

− (5.9725 + 6.6290 + 0.6449)

=
3π

ᾱ(4)(M2
τ )
− 13.2464.

The lepton and parton contributions dominate. Col-
lecting all together, one finds

3π
ᾱ(4)(m2

b)
=

3π
ᾱ(4)(M2

τ )
− 13.2464 (59)

=
3π
α
− (32.7889 + 13.2464) =

3π
α
− 46.0353.

And finally, we have
1

ᾱ(4)(m2
b)

= 132.152 (60)

or

ᾱ(4)(m2
b) = 1.037α. (61)

This number can be used to analyze Υ-resonance
physics.

Because decoupling is not explicit in mass-inde-
pendent renormalization schemes, there is another
EM coupling parameter related to the scalemb. Upon
changing the number of active quarks to nf = 5, one
obtains

3π
ᾱ(4)(m2

b)
=

3π
ᾱ(5)(m2

b)
+ Πbfull(µ2 = m2

b , 0). (62)
P

The polarization function Πbfull(µ2 = m2
b , 0), which

gives a corresponding shift for the EM constant
is written in terms of the effective strong-coupling

constant a(5)s (m2
b). A numerical value for a(5)s (m2

b) is
obtained throughmatching the strong coupling at the

scale mb. The running of the coupling a
(4)
s (M2

τ ) =
0.102 to mb = 4.8 GeV gives a

(4)
s (m2

b) = 0.06851
(α(4)s (m2

b) = 0.2152). Then, matching at mb results

in a
(5)
s (m2

b) = 0.06869. With this number, the result
of matching for the EM constant is

∆b(m2
b) = Πbfull(µ2 = m2

b , 0) (63)

= Πbdir(µ2 = m2
b , 0) + Πbloop(µ2 = m2

b , 0)
= 0.00024EM + 0.00358loop + 0.08587

+ 0.03437 = 0.1241.

The EM contribution is totally negligible. The loop
contribution is rather small. The PT convergence of
the direct contribution is not fast and is similar to the
c-quark case. One has

∆b(m2
b) = 0.1241. (64)

Finally, the EM couplings of nf = 4 and nf = 5 ef-
fective theories in the vicinity ofmb are related by the
equation

3π
ᾱ(5)(m2

b)
=

3π
ᾱ(4)(m2

b)
−∆b(m2

b) (65)

=
3π

ᾱ(4)(m2
b)
− 0.1241.

Explicitly, one finds

ᾱ(5)(m2
b) =

1
132.138

= 1.0001ᾱ(4)(m2
b).

This difference can be safely neglected in applications
toΥ-resonance physics.

The uncertainty due tomb is tiny. Indeed, the error
in the b-quark mass leads to the uncertainty

δ∆b(m2
b) = −

1
3
(1 + a(5)s (m2

b))
2δmb

mb
(66)

= −2
3
(1 + a(5)s (m2

b))
δmb

mb
= ±0.030.

There are two reasons for this smallness in relation to
the c-quark case: the electric charge of the b quark,
|eb|, is two times smaller than |ec|, and the relative
uncertainty in the b-quark mass mb (δmb/mb) is
much smaller than that of the c-quark mass. Note
that, because the contribution ∆b(m2

b) itself is small,
the relative uncertainty δ∆b(m2

b)/∆
b(m2

b) is huge.
However, one cannot use it here. Even for∆b(m2

b) =
0, the uncertainty δ∆b(m2

b) is basically 0.030.
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5.3. Running frommb toMZ

In this subsection, we describe the evolution of the
EM coupling constant ᾱ(5)(m2

b) from mb = 4.8 GeV
to MZ = 91.187 GeV. Various contributions accord-
ing to Eqs. (45) and (48) are the following:

the leptonic contribution

∆leptbZ = 3
(
1 +

3
4
α

π

)
ln

M2
Z

m2
b

= 17.6966; (67)

the leading quark-partonic as-independent con-
tribution

∆(0)bZ =
(
11
3
+
35
36

α

π

)
ln

M2
Z

m2
b

= 21.6048; (68)

the NLO contribution with a(5)s (m2
b) = 0.06869 as

an initial value for the evolution trajectory,

∆(1)bZ =
(
11
3
− 35
108

α

π

)
I
(1)
bZ = 1.0780; (69)

the NNLO contribution proportional to a2s ,

∆(2)bZ =
11
3
265
144

I
(2)
bZ = 0.10213; (70)

and the NNNLO contribution proportional to a3s,

∆(3)bZ =
(
257543
46656

− 620
81

ζ(3)
)
I
(3)
bZ (71)

= −3.68089I(3)bZ = −0.002954.
Here, we have

I
(n)
bZ =

M2
Z∫

m2
b

(a(5)s (s))n
ds

s
.

The total QCD correction to the partonic result

∆had.corbZ = ∆(1)bZ +∆(2)bZ +∆(3)bZ = 1.1772 (72)

is small in relation to the leading quark-partonic as-
independent contribution given in Eq. (68). The total
effect of running over the interval frommb toMZ ,

∆leptbZ +∆(0)bZ +∆had.corbZ (73)

= 17.6966 + 21.6048 + 1.1772 = 40.479,

is dominated by leptons and by the quark-partonic
contribution. We find the EM coupling at MZ ex-
pressed in terms of the EM coupling atmb in the form

3π
ᾱ(5)(M2

Z)
=

3π
ᾱ(5)(m2

b)
− 40.479. (74)

This equation gives the relation between the running
EM couplings necessary for applications in b- and Z-
physics.
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Table 1. Leptonic contributions

Range 0–Mτ Mτ –mb mb–MZ Total

∆lept 22.011 5.973 17.697 45.681

Collecting together Eqs. (40), (58), (64), and (74),
we find the absolute value of the running EM cou-
pling at MZ expressed in terms of the fine-structure
constant α,

3π
ᾱ(5)(M2

Z)
=

3π
α
− 32.7889(match Mτ ) (75)

− 13.2464(runmc2mb)− 0.1241(match mb)

− 40.479(runmb2MZ) =
3π
α
− 86.6384

and
1

ᾱ(5)(M2
Z)

=
1
α
− 86.6384/(3π) (76)

= 137.036 − 9.1926 = 127.843.

The result can be written as a relation between the
running EM coupling and the fine-structure con-
stant:

ᾱ(5)(M2
Z) = 1.0719α. (77)

This number can be used for a Z-boson-peak analy-
sis.

6. SUMMARY OF THE RESULTS

In this section, we give a brief summary of the
calculation, paying attention to uncertainties in the
results (see Tables 1–4).

The uncertainty in the low-energy normalization
value at the τ mass is given in Eqs. (42)–(44). It is
largely dominated by the uncertainty due to the c-
quark contribution. Adding uncertainties

δ∆(4)(M2
τ ) = ±0.078light ± 0.330c

in quadrature, one finds

δ∆(4)(M2
τ ) = ±0.339

and

0.339/(3π) = 0.036.

Finally, one finds for the low-energy normalization
value of the running EM coupling that

1
ᾱ(4)(M2

τ )
= 133.557 ± 0.036. (78)

The total error is dominated by the uncertainty due to
the c-quark matching contribution, which is mainly
given by the uncertainty in the c-quark mass.
2
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Table 2. Matching at various scales

Matching ∆uds(Mτ ) ∆c(Mτ ) ∆b(mb)

Value 9.9312± 0.078 0.8468± 0.330 0.1241± 0.030

Table 3. Running of powers of as

Power Mτ –mb mb–MZ Total

∆(0) ∼ a0
s 6.6290 21.605 28.234

∆(1) ∼ a1
s 0.5488 1.078 1.627

∆(2) ∼ a2
s 0.0918 0.102 0.194

∆(3) ∼ a3
s 0.0043 −0.003 0.001

Total sum 7.2739 22.782 30.056

∆had.cor 0.6449 1.177 1.822

Table 4. Quantity I
(1)
τb from Eq. (54) in different orders

of the strong β function and with or without the EM
contribution to the strong β function

Order I
(1)
τb with EM I

(1)
τb without EM

LO 0.169104 0.169100

NLO 0.165542 0.165538

NNLO 0.164938 0.164934

NNNLO 0.164671 0.164667

For the scales mb and MZ , the errors due to run-
ning, which arise basically because of the uncertainty
in the coupling constant as, should be included. The
running itself is precise because the β functions in
Eqs. (45) and (46) are computed up to a high order
of PT and because the coupling constant as is rather
well known. The dominant contribution comes from
leptons and partonic quarks and is independent of
the genuine QCD interaction (see Tables 1, 3). The
EM terms give a tiny correction. Table 4 presents the

quantity
∫m2

b

M2
τ
as(s)ds/s with running for as(s) in dif-

ferent orders and with or without the EM contribution
to the strong β function. The inclusion of EM terms
slows down the decrease in the strong coupling, and
the integrals are slightly larger; still, it is completely
negligible numerically. In the leading order, we have
the uncertainty in the integrals due to errors in the
initial value of the strong coupling,

δI
(1)
ab =

Lab

1 + asβ0Lab
δas (79)

with Lab = ln(µ2b/µ
2
a). This equation suffices for esti-
PH
mating the error of the QCD contribution to running.
The NNLO and NNNLO terms give only small cor-
rections. One can also find the uncertainty in the run-
ning by varying the initial value of as in the numerical
evaluation of the evolution. The results obtained are
close numerically to the estimate given in Eq. (79).
However, Eq. (79) has an advantage of being analytic
and simple, which makes the evaluation of the error
more transparent.

At mb (and MZ), errors due to running and due
to matching the light-quark contribution at Mτ are
not independent: both are determined mainly by the
uncertainty in as. Therefore, these errors should be
added linearly.

For the interval from Mτ to mb one finds from
Eq. (79) that

δ∆had.cor
τb |as = 4.56δas = 0.025,

and the total error (with linearly added errors for
matching the light-quark contribution at Mτ and
running) is

δ∆(5)(m2
b) = ±(0.078 + 0.025)light+run ± 0.330c

± 0.030b = ±0.103light+run ± 0.330c ± 0.030b.

Adding independent errors in quadrature, one has

δ∆(5)(m2
b) = ±0.347

and
0.347/(3π) = 0.0368.

Finally, one finds that the uncertainty for the EM
coupling atmb is

1
ᾱ(4)(mb)

≈ 1
ᾱ(5)(mb)

=
1
α
−∆(5)(m2

b) (80)

= 137.036 − (4.89766 ± 0.0368)
= 132.138 ± 0.0368.

For the scale MZ , the error due to running is esti-
mated at

δ∆had.corτZ |as =
11
3
δI
(1)
τZ (as(m2

b)) = 13.6δas = 0.074,

which leads to

δ∆(5)(M2
Z) = ±0.078light ± 0.330c ± 0.030b (81)

± 0.074run = ±0.152light+run ± 0.330c ± 0.030b.

Adding independent errors in quadrature, one has

δ∆(5)(M2
Z) = ±0.3646

and
0.3646/(3π) = 0.0387.

These estimates give the error for the coupling atMZ :
1

ᾱ(5)(M2
Z)

= 127.843 ± 0.039. (82)
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Equation (82) is the final result for the running EM
coupling atMZ . However, it cannot be directly com-
pared with the results of the standard analyses be-
cause the quantity in Eq. (82) is defined in a different
scheme. We consider the uncertainty in Eq. (82) as
rather conservative.

7. COMPARISON WITH OTHER SCHEMES

With the number from Eq. (82), one can find the
on-shell parameter αos atMZ using the relation

3π
αos(q2)

=
3π
α

+Πos(q2) (83)

=
3π

ᾱ(5)(µ2)
+ Π(5)(µ2,q2).

In addition, one has to compute Π(5)(µ2,q2) in nf =
5 effective theory at the point q2 ∼M2

Z . We have re-
stored the notation q2: the new variable q2 will be used
in the Minkowskian domain. In order to compute
the leading part of Π(5)(µ2,q2) in the kinematical
range µ2 ∼ q2 ∼M2

Z , one can consider all five active
quarks (u, d, s, c, b) and all three leptons as massless
and use Eq. (10) with the only change because of a
different number of active quarks, which is now five
instead of three. This change affects only a2s order
in Eq. (10) and changes nothing for leptons in the
NLO approximation. For light quarks, the generic
polarization function is given by

Πlight−nf (µ2,q2) = ln
µ2

q2
+
5
3

(84)

+ as

(
ln

µ2

q2
+
55
12
− 4ζ(3)

)

+ a2s

{
β0(nf )

2
ln2

µ2

q2
+
(
365
24
− 11
12

nf

− 4β0(nf )ζ(3)) ln
µ2

q2
+
41927
864

− 3701
1296

nf

−
(
829
18
− 19

9
nf

)
ζ(3) +

25
3
ζ(5)

}

with β0(nf ) = (11− (2/3)nf )/4. For a more accu-
rate evaluation of Π(5)(µ2,q2) at the scale MZ , we
retain the leading corrections due to the b- and c-
quark masses and the τ-lepton mass and the leading
correction due to the t-quark contribution. One finds

Π(5)(µ2,q2) = 3Πlight-lept(µ2,q2) (85)

+
11
3
Πlight-quark(µ2,q2)−

(
1
3

)
6m2

b

q2

−
(
4
3

)
6m2

c

q2
− 6M2

τ

q2
+∆(t)Π

(5)(µ2,q2).
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Note that the power-law correction due to a quark
mass is exact up to the a2s order when expressed in
terms of the pole mass. The corrections due to the t-
quark contribution, ∆(t)Π(5)(µ2,q2), for the quantity
Π(5)(µ2,q2) at q2 ≈M2

Z can be computed as a power
series in q2/m2

t ; the expansion parameter q2/m2
t is

small at the point q2 = M2
Z for mt = 175 GeV. In-

deed, retaining only the leading term and the first
corrections, one has

∆(t)Π
(5)(M2

Z ,q
2) (86)

= − 4
15

q2

m2
t

{
1 +

410
81

a(5)s (M2
Z)−

3
28

q2

m2
t

}
.

A typical expansion in Eq. (86) reads

∆(t)Π
(5)(M2

Z ,M
2
Z) = −0.0724 (87)

− 0.0138as + 0.0021MZ
= −0.0841

with the obvious notation indicating the origin of
different contributions. We do not take into account
bosons, andW -boson loops should be analyzed sep-
arately.

To calculate the on-shell coupling αos(q2) at the
scale MZ by using Eq. (83), one can use either q2 =
M2

Z (Euclidean definition) [51] or q2 = −q2 = M2
Z

with taking the real part of the correlation function
(Minkowskian definition). The Minkowskian defini-
tion is usually discussed in the literature. Note that
we calculate not the e+e−-scattering amplitude at the
total energy MZ (q2 = M2

Z), which definitely should
be taken at a physical point on the cut in the case
of cross-section calculations, but the coupling con-
stant, which parametrizes this amplitude at the scale
MZ . Within the RG approach, the scale of the pa-
rameters of an effective theory valid in a given energy
range should not coincide with any actual physi-
cal value of the energy or momentum squared (see,
e.g., [52]).

First, we use the Euclidean definition for the
on-shell coupling, which is consistently perturba-
tive and requires computing the correlation func-
tion Π(5)(M2

Z ,q
2) in a deep Euclidean domain for

q2 = M2
Z . Using Eqs. (85) and (86), one finds the

expansion

Π(5)(M2
Z ,M

2
Z) = 11.1111 − 0.03097as (88)

+ 0.00112a2
s
− 0.00168EM − 0.00554b

− 0.00304c − 0.00228τ − 0.0841t

= 11.0796 − 0.01086bcτ − 0.0841t.

Note that the EM correction is numerically of or-
der a2s . Still, these corrections are very small. From
2
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Eq. (83), we find
3π

αos(M2
Z)

=
3π

ᾱ(5)(M2
Z)

+ Π(5)(M2
Z ,M

2
Z)

=
3π
α
−86.6384+11.0796−0.01086bcτ −0.0841t

=
3π
α
− 75.5588 − 0.01086bcτ − 0.0841t.

For the sake of clarity, we retain the contribution of
power-law corrections separately for a further com-
parison with the results in the Minkowskian domain.
One has numerically

1
αos(M2

Z)
=

1
α
− (75.5588 + 0.01086bcτ

+ 0.0841t)/(3π) = 137.036 − 8.0271 = 129.009.

Because the error estimate in Eq. (82) is not affected
by this change of the scheme (overly small and rather
precise contributions are added), the final result for
the on-shell coupling within the Euclidean definition
reads

1
αos(M2

Z)
= 129.009 ± 0.039. (89)

However, the reference values for the on-shell cou-
pling available in the literature are given in the
Minkowskian domain for q2 = −q2 = M2

Z , i.e., for
the real part of the correlation function Π(5)(M2

Z , q
2)

computed on the physical cut. Within the approx-
imation used, going to the Minkowskian domain
of momenta q2 changes only the term of order a2s
and power-law corrections in Eq. (88). Indeed, in
Eq. (84), the only term that is numerically affected
by the transition to the Minkowskian domain is
ln2(µ2/q2), with the following change in relation to
the Euclidean result:

Re
{
ln2
(

µ2

−M2
Z

)}
= ln2

(
µ2

M2
Z

)
− π2. (90)

Instead of Eq. (88), one finds

Re
{
Π(5)(M2

Z ,−M2
Z)
}

(91)

= 11.0796 − 0.04893π2 + 0.01086bcτMink

+ 0.08828tMink = 11.1298

and

Re
1

αos(−M2
Z)

= 137.036

− (86.6384 − 11.1298)/(3π) = 129.024.

The final result for the on-shell coupling with the
Minkowskian definition is

Re
1

αos(−M2
Z)

= 129.024 ± 0.039. (92)
P

The difference between the central numerical val-
ues for the couplings in Eq. (89), which gives the
Euclidean definition, and in Eq. (92), which gives
the Minkowskian definition, is 0.015. Note that the
Euclidean definition was considered in [51], where
the numerical difference of about 0.02 from the
Minkowskian definition was found from a rather
simplified treatment. It is close to the present, more
accurate result 0.015. Note that the point MZ is safe
for the PT calculation in the Minkowskian domain
for the approximation used (no singularities of the
spectrum near this point). At other points, this is
not so even in the approximation in which we work.
For instance, if the Υ-resonance mass mΥ is taken
as a reference scale, then the Euclidean definition is
equally applicable at this point being still perturbative,
while the Minkowskian definition faces the problem
that the polarization function on the cut is not
smooth. A phenomenological approach based on a
direct integration of data fails because of the fast
change in the spectrum at the location of the Υ res-
onance, which makes integration with the principal-
value prescription for regularizing the singularities
ill-defined. A theory-based approach within PT fails
at the point mΥ because PT calculations for the
correlation function near the threshold on the physical
cut (mΥ ∼ 2mb) are not reliable. Therefore, the
Minkowskian definition is not uniformly applicable
at any scale.

The result given in Eq. (92) differs from some re-
cent determinations based on the use of experimental
data for performing integration over the low-energy
region. For the result of [16],

Re
1

αos(−M2
Z)

= 128.925 ± 0.056, (93)

the number obtained in the present study and given
in Eq. (92) almost touches the reference value in
Eq. (93) within 1σ (σ is a standard deviation). The
results of some other groups are concentrated around
the same central value as in Eq. (93) but with much
smaller errors. For a further comparison, we use the
result

Re
1

αos(−M2
Z)

= 128.927 ± 0.023, (94)

which was presented in [17].
The difference between the value from Eq. (92)

and the reference result in Eq. (94) is 129.024 −
128.927 = 0.097, which constitutes (2–4)σ and can
be significant. Therefore, we discuss the difference in
more detail.

The usual parametrization of the fermionic contri-
butions to the on-shell running EM coupling at MZ

reads

Re
1

αos(−M2
Z)
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=
1
α

(
1−∆αlep −∆α

(5)
had −∆αtop

)

(note that

Re
(

1
αos(−M2

Z)

)
�= 1

Reαos(−M2
Z)

,

although the difference is tiny). The total leptonic
contribution to the EM coupling constant at MZ

given in the last column of Table 1 reads

∆lept(M2
Z) = 45.681.

The leptonic part of Π(5)(M2
Z ,−M2

Z) reads

Re
{
Π(5)lept(M2

Z ,−M2
Z)
}

= 3Re
(
Πlight-lept(M2

Z ,−M2
Z)
)
+
6M2

τ

M2
Z

= 4.9988 + 0.0023 = 5.0011.

The leading-order contribution is equal to five, while
the EM and τ-lepton-mass corrections are small.
For the total leptonic contribution to the on-shell
coupling in the Minkowskian domain, one finds

∆αlept =
α

3π
(45.681 − 5.001) = 314.974 × 10−4,

which is close to the value

∆αlept|ref = (314.19 + 0.78) × 10−4

= 314.97 × 10−4,

which is quoted in [17].
For the top contribution in the Minkowskian do-

main, one finds from Eq. (86) [see also Eq. (91)] that

∆αtop =
α

3π
(−0.0883) = −0.68× 10−4,

while the value that the authors of [17] obtained,
taking more accurately into account higher order cor-
rections, is

∆αtop|ref = −0.70× 10−4.

The difference is small and is neglected. From the
numerical value given in Eq. (92), the total contri-
bution of fermions to the shift of the EM coupling is
determined to be

∆αlep +∆αtop +∆α
(5)
had

= 1− α(129.024 ± 0.039) = 0.0584664 ± 0.000285.

Taking ∆αlept and ∆αtop as exact quantities (no
errors), one finds the following numerical value for

∆α
(5)
had:

∆α
(5)
had = (0.0584664 ± 0.000285) − 0.031497 (95)

+ 0.000068 = (270.37 ± 2.85) × 10−4.
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At the same time, the result of [17] is

∆α
(5)
had

∣∣∣
1
= (277.45 ± 1.68) × 10−4, (96)

and the number of [16] is

∆α
(5)
had

∣∣∣
2
= (277.6 ± 4.1) × 10−4. (97)

The difference between the central values given in
Eq. (95) and Eqs. (96) and (97) is about (2–4)σ
depending on the numerical value of the error quoted:

277.45 − 270.37 = 7.08 ≈ 2.5 · 2.85
≈ 4.3 · 1.68 ≈ 1.7 · 4.1.

This difference can be significant. Therefore, we dis-
cuss the sensitivity of our prediction in (95) [and of
Eq. (82), from which it is uniquely obtained] to the
numerical values of the parameters used in the theo-
retical calculation of the present study. Ifms = 0, then
the ρ and ϕ channels should be theoretically degener-
ate because there is no reason for them to be different.
This means that, in addition to annihilating explicit
corrections due tom2

s in Eq. (22), one should identify
mRs with the resonance in the nonstrange channel,
i.e., numerically substitute mRs = mρ into the solu-
tion for the IR-modifying parameters in Eqs. (20).
With such changes, one finds the result for∆uds(M2

τ )
in the form

∆uds(M2
τ ) |ms=0 = 10.23, (98)

which generates a numerical shift of about 0.3 in the
value of ∆uds(M2

τ ) in relation to the result for the
nonvanishing strange-quark mass in Eq. (30). Note
that, if the direct integration of the low-energy data is
used, then the full dependence of the results onms is
lost. Only the PT high-energy tail depends explicitly
on ms, but this dependence is weak. The change in

∆α
(5)
had corresponding to the result in Eq. (98) is

∆α
(5)
had |ms=0 −∆α

(5)
had = 0.3

α

3π
= 0.000232 = 2.3 × 10−4.

The use of the numerical value of mc = 1.6 GeV for
the c-quark mass instead ofmc = 1.777 GeV gener-
ates a 0.33 shift in the value of the matching quan-
tity ∆c(M2

τ ), which leads to the following change in

∆α
(5)
had:

∆α
(5)
had

∣∣∣
mc=1.6

−∆α
(5)
had = 0.33

α

3π
= 0.000256 = 2.6 × 10−4.

Note that this change cannot be found if the contribu-
tions of actual charmonium resonances are calculated
directly. The total shift of∆α

(5)
had in relation to Eq. (95)
2
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because of the change in numerical values of the
theoretical parametersms andmc reads

∆α
(5)
had

∣∣∣
ms=0,mc=1.6

(99)

= (270.37 + 2.3 + 2.6± 2.85) × 10−4

= (275.27 ± 2.85) × 10−4.

The change in the numerical value of the strong-
coupling constant αs from αs(M2

τ ) = 0.318 to
αs(M2

τ ) = 0.335 gives a 0.152 shift in ∆(5)(M2
Z)

[according to our error estimates in Eq. (81)] to end
up with

∆α
(5)
had

∣∣∣
ms=0,mc=1.6,αs=0.335

(100)

= (270.37 + 2.3 + 2.6 + 1.2 ± 2.85) × 10−4

= (276.47 ± 2.85) × 10−4.

This result agrees with other estimates within 1σ.
The set of numerical values for the relevant param-
eters used in Eq. (100) is rather close to the set
used to obtain the value in Eq. (95) [ms = 130 MeV,

mc = 1.777 GeV, α(3)s (M2
τ ) = 0.318]. The total shift

in ∆α
(5)
had for the new set of parameters in Eq. (100)

is larger than the total error given in Eq. (95) because
the total error is computed in quadrature, while the
change in the spectrum due toms = 0 (which makes
all three light-quark channels degenerate) has not
been included in the total error. To distinguish defini-
tively between the results in Eq. (100) and Eq. (95),
one needs more precise numerical values of theoreti-
cal parameters.

Within the present approach, we use virtually no
real data on cross sections, but we rely on the nu-
merical values of a few theoretical parameters which
are extracted from such data. These parameters are
the strong-coupling constant, the quark masses, and
the vacuum condensates. It is generally believed that
the actual data can be properly described with these
parameters if theoretical formulas are sufficiently ac-
curate. In the case of computing the hadronic con-
tribution to the photon vacuum polarization function
in the Euclidean domain, a theoretical description is
pretty accurate because PT is applicable and very
precise—in fact, the PT results in this area are almost
the best ones available among all PT calculations. An
additional reason for such a high theoretical precision

is that, in order to calculate ∆α
(5)
had in the Euclidean

domain, one extracts only very general information
encoded in the data—just the integral over the en-
tire spectrum with a smooth weight function and no
details of the behavior over specific energy regions.
This is the situation where global duality, which is
exact by definition (the hadron and quark descriptions
P

are supposed to be exactly equivalent in principle), is
applicable and is under a strict control numerically
within PT. However, our calculation shows that, at
the present level of precision, the result for ∆α

(5)
had

is rather sensitive to the numerical values of the pa-
rameters mc and as which should be fixed from the
data. The uncertainties in these parameters can be
reduced both with better data and with better the-
oretical formulas for extracting numerical values for
these parameters from experimental data (especially
mc), while the theoretical framework for calculating
the hadronic contribution itself is already very precise.
Using the result given in Eq. (95) and the formulas
for the radiative corrections to the Weinberg angle
from [53] (assuming the Minkowskian definition for
the on-shell coupling), we find that the central value
of the Higgs boson mass moves from the reference

value of MH = 100 GeV for ∆α
(5)
had = 280.0 × 10−4

toMH = 191GeV for the value of∆α
(5)
had = 270.37×

10−4 found in the present study.

8. CONCLUSION

The technique of calculating ∆α
(5)
had within a di-

mensional regularization and a minimal subtraction
is straightforward in PT. It heavily relies on the renor-
malization group, which is the most powerful tool
of modern high-precision analyses in particle phe-
nomenology. Because PT is not applicable only at
low energies, one should modify only the IR region
of integration for light quarks: a numerical integra-
tion of data at energies higher than 2 to 3 GeV is
equivalent to the theoretical calculation in PT if both
data and theory are properly treated. The present
calculation uses virtually no explicit scattering data
but the values of the lowest resonance masses for
the light-quark vector channels. Other experimental
information is encoded through the numerical values
of the coupling constant, quark masses, and some
vacuum condensates.

The Minkowskian definition of the on-shell cou-
pling constant is deficient and not applicable at some
points. Both the MS and the on-shell coupling con-
stants in the Euclidean domain can be reliably deter-
mined by using theoretical formulas already estab-
lished in high orders of PT. In view of future high-
precision tests of the SM atMZ and two-loop calcu-
lations for observables in this region, it seems that the
parametrization of the theory with the running EM
coupling in theMS scheme is the most promising.

The main uncertainty in the hadronic contribution
to the running EM coupling constant at MZ comes
from the error in the numerical value of the c-quark
massmc. The uncertainty in as is less important. Un-
fortunately, the c-quark mass is a quantity that is very
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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complicated to study. The reason is that its numerical
value is close to the strong-interaction scale on the
order of the ρ-meson or the proton mass. Therefore,
mc should be treated exactly in theoretical formulas—
virtually no simplifying approximation is applicable in
the kinematical range of energies of order mc. The
presence of a mass usually makes loop calculations
within PT more difficult technically. Near the cc̄ pro-
duction threshold, where the mass is significant and
where its numerical value can be reliably extracted
from accurate experimental data, the Coulomb in-
teraction is enhanced, which requires taking it into
account exactly, while the c-quark mass is too small
for nonrelativistic QCD to work well. Finally, non-
PT corrections due to the vacuum condensates within
OPE are important numerically in this energy range,
but they are not well known because they are given
by gluonic operators [54]. Although the coefficient
functions for the relevant operators up to dimension
eight were calculated in [55], the numerical values of
their vacuum condensates are poorly known. These
reasons make an accurate determination of the c
quark mass difficult. The uncertainty related to the
contribution of the c quark to the hadronic vacuum
polarization is additionally enhanced because of the
large electric charge of the c quark. For the b quark,
for instance, all the above problems are much less
severe. Therefore, c-quark physics plays a significant
part in Higgs boson searches through radiative cor-
rections.
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Nucl. Phys. B 505, 40 (1997).

42. K. G. Chetyrkin, J. H. Kühn, and M. Steinhauser,
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Abstract—We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into
quarks, leptons, and the lightest supersymmetric particles (LSP) in models with effective supersymmetry,
where the third generation of squarks is relatively light, whilst the first two generations of squarks are
heavy. We consider the general case of nonuniversal gaugino masses. The visibility of a signal through an
excess over Standard Model background in (n ≥ 2) jets + (m ≥ 0) leptons + Emiss

T events depends rather
strongly on the relation between the LSP, second-neutralino, gluino, and squarkmasses and decreaseswith
increasing LSP mass. We find that, for a relatively heavy gluino, it is very difficult to detect a SUSY signal
even for light third-generation squarks (mq̃3 ≤ 1 TeV) if the LSP mass is close to the third-generation
squark mass. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the large hadron collider (LHC) super-
goals is the discovery of supersymmetry. In par-
ticular, it is very important to investigate ways to
discover strongly interacting superparticles (squarks
and gluino). In [1] (see also [2]), the squark and gluino
discovery potential of the LHCwas investigated with-
in minimal supergravity—the minimal supersymmet-
ric extension of the Standard Model (mSUGRA–
MSSM) framework [3], where all sparticle masses are
determined mainly by two parameters: m0 [common
squark and slepton mass at Grand Unified theory
(GUT) scale] and m1/2 (common gaugino mass at
the GUT scale). The signature used in investigating
squarks and gluino observability at LHC is (n ≥
2) jets + (m ≥ 0) leptons + Emiss

T events. The con-
clusion of [1] is that the LHC is able to detect squarks
and gluino with masses up to 2–2.5 TeV. In [4], the
supersymmetry (SUSY) discovery potential of the
LHC was investigated for the case of nonuniversal
gaugino masses with universal squark masses for the
first, second, and third generations. The conclusion
of [4] is that the visibility of a signal by an excess
over the Standard Model (SM) background in (n ≥
2) jets + Emiss

T events depends rather strongly on the
relation between the lightest supersymmetric particle
(LSP), gluino, and squark masses and decreases

∗This article was submitted by the authors in English.
1)Institute for Nuclear Research, Russian Academy of
Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow,
117312 Russia.
1063-7788/02/6507-1341$22.00 c©
with increasing LSP mass. For a relatively large
LSP mass, close to squark or gluino masses, and
for (mq̃,mg̃) ≥ 1.5 TeV, the signal is too small to be
observable.
In this article, we investigate squark- and gluino-

pair production at LHC for the compact muon
solenoid (CMS) with subsequent decays into quarks,
leptons, and LSP in models with effective super-
symmetry [5], where the third generation of squarks
is relatively light, while the first two generations of
squarks are heavy.2) Models with effective supersym-
metry solve, in a natural way, problems associated
with flavor-changing neutral currents, lepton-flavor
violation, the electric dipole moments of the electron
and the neutron, and proton decay. In such models,
there are two mass scales: the gauginos, higgsinos,
and third-generation squarks are rather light (to
stabilize the electroweak scale), while the first two
generations of squarks and sleptons are heavy, with
masses in the range between about 5 and 20 TeV.
We investigate the general case where the relation
between the gaugino masses is arbitrary. We study
the detection of supersymmetry using the classical
signature (n ≥ 2, 3, 4) jets + (m ≥ 0) leptons +
Emiss

T . We find that the SUSY discovery potential
depends rather strongly on the relation between
squarks, gluino, LSP, and second-neutralino masses,
and it decreases with increasing LSP mass. For
relatively heavy gluinos, it would be very difficult or
even impossible to detect a SUSY signal even for
light third-generation squarks (mq̃3 ≤ 1 TeV) if the

2)Preliminary results of this study were reported in [6].
2002 MAIK “Nauka/Interperiodica”
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LSP mass is close to the third-generation-squark
mass. It should be noted that, in [7], the ATLAS
detector potential for the discovery of SUGRA–
MSSM focusing on effective supersymmetry for
tan β = 10 and µ < 0 was studied for the signature
n ≥ 2 jets + 1 isolated lepton + Emiss

T . In [8], the
signature “2b 2W ” resulting from the gluino decay
into g̃ → 2b+ 2W + . . . was used to detect the signal
in such models.

2. SPARTICLE DECAYS

The decays of squarks and gluinos depend on
the relation between the squark and gluino masses.
For mq̃ > mg̃, squarks decay mainly into gluino and
quarks,

q̃ → g̃q,

while the gluino decays mainly into a quark–anti-
quark pair and a gaugino,

g̃ → qq̄χ̃0
i ,

g̃ → qq̄′χ̃±
1 .

For mq̃ < mg̃, the gluino decays mainly into squarks
and quarks,

g̃ → q̄q̃, q ¯̃q,

whereas the squarks decay mainly into quarks and a
gaugino,

q̃ → qχ̃0
i .

q̃ → q′χ̃±
1 .

The lightest chargino χ̃±
1 has several leptonic de-

cay modes giving a lepton and missing energy:
the three-body decay

χ̃±
1 −→ χ̃0

1 + l± + ν

and the two-body decays

χ̃±
1 −→ l̃±L,R + ν,

−→ χ̃0
1 + l±

χ̃±
1 −→ ν̃L + l±,

−→ χ̃0
1 + ν

χ̃±
1 −→ χ̃0

1 +W±.

−→ l± + ν

The leptonic decays of χ̃0
2 give two leptons and

missing energy:
the three-body decays

χ̃0
2 −→ χ̃0

1 + l+l−,
PH
χ̃0
2 −→ χ̃±

1 + l∓ + ν,

−→ χ̃0
1 + l± + ν

and the two-body decay

χ̃0
2 −→ l̃±L,R + l∓.

−→ χ̃0
1 + l±

As the result of chargino and second neutralino lep-
tonic decays, apart from the classical signature

(n ≥ 2, 3, 4) jets+ Emiss
T ,

signatures such as

(n ≥ 2, 3, 4) jets+ (m ≥ 1) leptons+ Emiss
T

with leptons and jets in the final state arise. As was
mentioned above, these signatures were used in [1]
to investigate LHC (CMS) potential for squark and
gluino discovery within the SUGRA–MSSMmodel,
where the gaugino masses mχ̃0

1
and mχ̃0

2
are essen-

tially determined by a common gaugino mass m1/2,
withmχ̃0

2
≈ 0.9m1/2 andmχ̃0

1
≈ (1/2)m1/2.

The cross section for the production of strongly
interacting superparticles,

pp→ g̃g̃, q̃g̃, q̃q̃, (1)

depends on the gluino and squark masses. Within the
SUGRA–MSSMmodel, the sparticle masses satisfy
the approximate relations

m2
q̃ ≈ m2

0 + 6m2
1/2, (2)

mχ̃0
1
≈ 0.45m1/2, (3)

mχ̃0
2
≈ mχ̃±

1
≈ 2mχ̃0

1
, (4)

mg̃ ≈ 2.5m1/2. (5)

Despite the simplicity of the SUGRA–MSSM
framework, it is a very particular model. Themass for-
mulas for sparticles in the SUGRA–MSSM model
are derived under the assumption that, at the GUT
scale (MGUT ≈ 2× 1016GeV), soft-supersymmetry-
breaking terms are universal. However, we can in
general expect that the actual sparticle masses can
differ in a drastic way from the SUGRA–MSSM
sparticle mass pattern for many reasons (see, for
instance, [9–13]). It is thus appropriate to investi-
gate the LHC SUSY discovery potential in a model-
independent way.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Table 1. Two sets (a and b) of cuts used in the study

Number of cut ET1 ET2 ET3 ET4 Emiss
T

Cuts (a)
1 40.0 40.0 40.0 40.0 200.0
2 100.0 100.0 100.0 100.0 200.0
3 100.0 150.0 150.0 150.0 200.0
4 50.0 100.0 100.0 100.0 200.0
5 200.0 200.0 200.0 200.0 400.0
6 200.0 300.0 300.0 300.0 400.0
7 100.0 200.0 200.0 200.0 400.0
8 300.0 300.0 300.0 300.0 600.0
9 300.0 450.0 450.0 450.0 600.0

10 150.0 300.0 300.0 300.0 600.0
11 400.0 400.0 400.0 400.0 800.0
12 400.0 600.0 600.0 600.0 800.0
13 200.0 400.0 400.0 400.0 800.0
14 500.0 500.0 500.0 500.0 1000.0
15 500.0 750.0 750.0 750.0 1000.0
16 250.0 500.0 500.0 500.0 1000.0
17 600.0 600.0 600.0 600.0 1200.0
18 600.0 900.0 900.0 900.0 1200.0
19 300.0 600.0 600.0 600.0 1200.0

Cuts (b)
1 40.0 40.0 40.0 40.0 200.0
2 100.0 125.0 150.0 150.0 200.0
3 166.7 208.3 250.0 250.0 200.0
4 233.3 291.7 350.0 350.0 200.0
5 300.0 375.0 450.0 450.0 200.0
6 100.0 125.0 150.0 150.0 400.0
7 166.7 208.3 250.0 250.0 400.0
8 233.3 291.7 350.0 350.0 400.0
9 300.0 375.0 450.0 450.0 400.0

10 100.0 125.0 150.0 150.0 600.0
11 166.7 208.3 250.0 250.0 600.0
12 233.3 291.7 350.0 350.0 600.0
13 300.0 375.0 450.0 450.0 600.0
14 100.0 125.0 150.0 150.0 800.0
15 166.7 208.3 250.0 250.0 800.0
16 233.3 291.7 350.0 350.0 800.0
17 300.0 375.0 450.0 450.0 800.0
18 100.0 125.0 150.0 150.0 1000.0
19 166.7 208.3 250.0 250.0 1000.0
20 233.3 291.7 350.0 350.0 1000.0
21 300.0 375.0 450.0 450.0 1000.0
22 100.0 125.0 150.0 150.0 1200.0
23 166.7 208.3 250.0 250.0 1200.0
24 233.3 291.7 350.0 350.0 1200.0
25 300.0 375.0 450.0 450.0 1200.0

Note:E is in GeV.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Table 2.The discovery potential of CMS for different values. (Here,+(−)means that signal is detectable (nondetectable).
All masses are in GeV. The parameterm03 is the soft supersymmetry breaking mass of the 3rd-generation squarks. It is
equal to squark mass before electroweak symmetry breaking.)

mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l
m03 = 900,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,

tanβ = 35, σ = 0.067 pb, L = 104 pb−1

m03 = 700,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,
tanβ = 35, σ = 0.49 pb, L = 104 pb−1

150, 1800 + + – – – – 116, 1800 + + – – – –
450, 1800 – – – – – – 350, 1800 – – – – – –
675, 1800 – – – – – – 525, 1800 – – – – – –
810, 1800 – – – – – – 630, 1800 – + – – – –
150, 450 – – – – – – 116, 350 + + – – – –
150, 675 + + – – – – 116, 525 + + – – – –
450, 675 – – – – – – 350, 525 + + – – – –
675, 810 – – – – – – 525, 630 – – – – – –
mq̃3 = 800,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,

tanβ = 5, σ = 0.12 pb, L = 104 pb−1

mq̃3 = 700,mq̃1,2 = 1550,mg̃ = 600, µ = 1800,
tanβ = 5, σ = 10 pb, L = 104 pb−1

133, 1800 + + – – – – 100, 570 + + + + + +

400, 1800 – – – – – – 300, 570 + + – – – –
600, 1800 – – – – – – 450, 570 + + – – – –
720, 1800 – – – – – – 540, 570 + + – – – –
133, 266 – – – – – – m03 = 700,mq̃1,2 = 1550,mg̃ = 600, µ = 1800,
133, 600 + – – – – – tanβ = 35, σ = 10 pb, L = 104 pb−1

400, 720 – – – – – – 100, 570 + + + – – –
450, 540 – – – – – – 300, 570 + + – – – –

450, 570 + + – – – –
540, 570 + + – – – –

m03 = 800,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,
tanβ = 35, σ = 0.18 pb, L = 104 pb−1

mq̃3 = 600,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,
tanβ = 5, σ = 0.77 pb, L = 104 pb−1

133, 1800 + + – – – – 100, 1800 + + – – – –
400, 1800 – – – – – – 300, 1800 + + – – – –
600, 1800 – – – – – – 450, 1800 – – – – – –
720, 1800 – – – – – – 540, 1800 – – – – – –
133, 266 – – – – – – 100, 300 + + – – – –
133, 600 + + – – – – 100, 450 + + – – – –
400, 720 – – – – – – 300, 450 – – – – – –
450, 540 – – – – – – 450, 540 – – – – – –
mq̃3 = 700,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,

tanβ = 5, σ = 0.28 pb, L = 104 pb−1

m03 = 600,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,
tanβ = 35, σ = 2.1 pb, L = 104 pb−1

116, 1800 + + – – – – 100, 1800 + + – – – –
350, 1800 – – – – – – 300, 1800 – + – – – –
525, 1800 – – – – – – 450, 1800 – + – – – –
630, 1800 – – – – – – 540, 1800 – + – – – –
116, 350 + – – – – – 100, 300 + + – – + +

116, 525 + + – – – – 100, 450 + + – – – –
350, 525 – – – – – – 300, 450 – – – – – –
525, 630 – – – – – – 450, 540 – – – – – –
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Table 2. (Contd.)

mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l
mq̃3 = 500,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,

tanβ = 5, σ = 2.2 pb, L = 104 pb−1

mq̃3 = 1000,mq̃1,2 = 3800,mg̃ = 1750, µ = 1800,
tanβ = 5, σ = 0.032 pb, L = 105 pb−1

83, 1800 + + – – – – 170, 1800 + + – – – –
250, 1800 + + – – – – 500, 1800 – – – – – –
375, 1800 – + – – – – 750, 1800 – – – – – –
450, 1800 – – – – – – 900, 1800 – – – – – –
83, 250 + + – – – – 170, 330 + – – – – –
83, 375 – + – – – – 170, 750 + – – – – –
250, 375 – + – – – – 500, 900 + – – – – –
375, 450 – + – – – – 750, 900 – – – – – –

mg̃ = 3500,mq̃1,2 = 3800, µ = 1800, L = 105 pb−1

mχ̃1 ,mχ̃2 tanβ Incl. No lept. l± l+l− l±l± 3l
166, 1800 5 mq̃3 = 1000 + + – – – –
mq̃3/6,1800 5 mq̃3 = 1100 – – – – – –
mq̃3/6,1800 5 mq̃3 = 1200 – – – – – –
m03/6,1800 35 m03 = 1000 + – – – – –
m03/6,1800 35 m03 = 1100 – – – – – –
m03/6,1800 35 m03 = 1200 – – – – – –
mq̃3 = 1200,mq̃1,2 = 3800,mg̃ = 1500, µ = 1800,

tanβ = 5, σ = 0.017 pb, L = 105 pb−1

mq̃3 = 1000,mq̃1,2 = 3800,mg̃ = 1500, µ = 1800,
tanβ = 5, σ = 0.036 pb, L = 105 pb−1

200, 1800 + + – – – – 166, 1800 + + – – – –
600, 1800 + – – – – – 500, 1800 + + – – – –
900, 1800 – – – – – – 750, 1800 – – – – – –
1080, 1800 – – – – – – 900, 1800 – – – – – –
200, 400 + – – – – – 166, 332 + – + – – –
200, 600 + – – – + – 166, 750 + + + – + –
600, 900 + – – – – – 500, 900 + + – – – –

750, 900 – – – – – –
m03 = 1200,mq̃1,2 = 3800,mg̃ = 1500, µ = 1800,

tanβ = 35, σ = 0.018 pb, L = 105 pb−1

mq̃3 = 1000,mq̃1,2 = 3800,mg̃ = 1250, µ = 1800,
tanβ = 5, σ = 0.075 pb, L = 105 pb−1

200, 1800 + + – – – – 166, 1800 + + + + + –
600, 1800 + – – – – – 500, 1800 + + – – + –
900, 1800 – – – – – – 750, 1800 + – – – + –
1080, 1800 + + – – – – 900, 1800 – – – – – –
200, 400 + – – – – – 166, 332 + + – – + –
200, 600 + – + – + – 166, 750 + + + + + +
600, 900 + – – – – – 500, 900 + + – – – –
900, 1080 – – – – – – 750, 900 + + – – + –
mq̃3 = 1000,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,

tanβ = 5, σ = 0.027 pb, L = 105 pb−1

m03 = 1000,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,
tanβ = 35, σ = 0.030 pb, L = 105 pb−1

170, 1800 + + – – – – 166, 1800 + – – – – –
500, 1800 – – – – – – 500, 1800 – – – – – –
750, 1800 – – – – – – 750, 1800 – – – – – –
900, 1800 – – – – – – 850, 1800 – – – – – –
170, 330 – – – – – – 166, 322 – – – – – –
170, 750 + + – – – – 166, 750 + – – – – –
500, 900 – – – – – – 500, 750 – – – – – –
750, 900 – – – – – – 500, 900 – – – – – –

750, 900 – – – – – –
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Table 2. (Contd.)

mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l
mq̃3 = 1000,mq̃1,2 = 3800,mg̃ = 2000, µ = 500,

tanβ = 5, σ = 0.027 pb, L = 105 pb−1

m03 = 900,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,
tanβ = 35, σ = 0.071 pb, L = 105 pb−1

170, 1800 + – – + – + 150, 1800 + + – – – –

500, 1800 – – – – – – 450, 1800 – – – – – –

750, 1800 – – – – – – 675, 1800 – – – – – –

900, 1800 – – – – – – 750, 1800 – – – – – –

170, 330 – – – – + + 150, 300 – – – – + –

170, 750 + – – – + + 150, 675 + + – – – –

500, 900 – – – – – – 450, 675 – – – – – –

750, 900 – – – – – – 450, 810 – – – – – –

675, 810 – – – – – –
m03 = 1000,mq̃1,2 = 3800,mg̃ = 2000, µ = 500,

tanβ = 35, σ = 0.031 pb, L = 105 pb−1

mq̃3 = 900,mq̃1,2 = 3800,mg̃ = 2000, µ = 450,
tanβ = 5, σ = 0.057 pb, L = 105 pb−1

170, 1800 + – – – – + 150, 1800 + + – + – +

500, 1800 – – – – – – 450, 1800 – – – + – –

750, 1800 – – – – – – 675, 1800 – – – – – –

900, 1800 – – – – – – 810, 1800 – + – – – –

170, 330 – – – – + + 150, 450 + – – – + –

170, 750 + – – – + + 150, 675 + – – – + +

500, 900 – – – – – – 450, 675 – – – – + –

750, 900 – – – – – – 675, 810 – – – – + –
mq̃3 = 1000,mq̃1,2 = 3800,mg̃ = 2000, µ = 800,

tanβ = 5, σ = 0.026 pb, L = 105 pb−1

m03 = 900,mq̃1,2 = 3800,mg̃ = 2000, µ = 450,
tanβ = 35, σ = 0.063 pb, L = 105 pb−1

170, 1800 + + – – – – 150, 1800 + – – + + +

500, 1800 – – – – – – 450, 1800 – – – – – –

750, 1800 – – – – + – 675, 1800 + – – – – –

900, 1800 – – – – – – 810, 1800 – – – – – –

170, 330 – – – – + – 150, 450 + – – – + +

170, 750 + – – – – – 150, 675 + – – + + +

500, 900 – – – – – – 450, 675 – – – – + –

750, 900 – – – – – – 675, 810 – – – – – –
m03 = 1000,mq̃1,2 = 3800,mg̃ = 2000, µ = 800,

tanβ = 35, σ = 0.031 pb, L = 105 pb−1

m03 = 900,mq̃1,2 = 3800,mg̃ = 2000, µ = 2mχ0
1
,

tanβ = 35, σ = 0.071 pb, L = 105 pb−1

170, 1800 + + – – – – 150, 1800 + + – – + +

500, 1800 – – – – – – 450, 1800 – – – – – –

750, 1800 – – – – – – 675, 1800 – – – – – –

900, 1800 – – – – – – 150, 450 + – – – + +

170, 330 – – – – + + 150, 675 + + – + + +

170, 750 + + – – – – 450, 675 – – – – – –

500, 900 – – – – – – 675, 810 – – – – – –

750, 900 – – – – – –
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



LHC (CMS) DISCOVERY POTENTIAL 1347
Table 2. (Contd.)

mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l
mq̃3 = 800,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,

tanβ = 5, σ = 0.12 pb, L = 105 pb−1

m03 = 800,mq̃1,2 = 3800,mg̃ = 1500, µ = 1800,
tanβ = 35, σ = 0.18 pb, L = 105 pb−1

133, 1800 + + – – + – 133, 1800 + + – – + –
400, 1800 + + – – – – 400, 1800 + + – – – –
600, 1800 – – – – – – 600, 1800 – – – – + –
720, 1800 – – – – – – 720, 1800 + + – – – –
133, 266 – – – – + – 133, 266 + + + + + +
133, 600 + + – – – – 133, 600 + + + + + +
400, 720 + + – – – – 400, 600 + + – – + –
450, 540 – – – – – – 400, 720 + – – + + +

600, 720 + – – + + +
mq̃3 = 800,mq̃1,2 = 3800,mg̃ = 1500, µ = 1800,

tanβ = 5, σ = 0.13 pb, L = 105 pb−1

m03 = 800,mq̃1,2 = 3800,mg̃ = 2000, µ = 1800,
tanβ = 35, σ = 0.23 pb, L = 105 pb−1

133, 1800 + + + + + + 166, 1800 + + – – – –
400, 1800 + + – + + + 400, 1800 – – – – – +
600, 1800 + + – – + + 600, 1800 – – – – – –
720, 1800 + + – – – – 720, 1800 – – – – – –
133, 266 + + + + + – 166, 333 + + – – – –
133, 600 + + + + + + 166, 600 + + – – – –
mq̃3 = 800,mq̃1,2 = 3800,mg̃ = 1000, µ = 1800,

tanβ = 5, σ = 0.14 pb, L = 105 pb−1 400, 600 – – – – – –

133, 1800 + + + + + + 400, 720 – – – – – –
400, 1800 + + + – + + 600, 720 – – – – – –

600, 1800 + + – – + –
mq̃3 = 750,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,

tanβ = 5, σ = 0.19 pb, L = 105 pb−1

720, 1800 + + – – + – 125, 1800 + + – – + –
133, 266 + + + + + + 375, 1800 – + – – + +
133, 600 + + + + + + 560, 1800 – – – – – –
400, 720 + + – – + + 675, 1800 – – – – – –
600, 720 + + – – + – 125, 250 – – – – + –
m03 = 800,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,

tanβ = 35, σ = 0.18 pb, L = 105 pb−1 125, 560 + – – – + +

133, 1800 + + – – – – 375, 675 – – – – – –
400, 1800 – – – – – – 560, 675 – – – – – –

600, 1800 – – – – – –
mq̃3 = 700,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,

tanβ = 5, σ = 0.28 pb, L = 105 pb−1

720, 1800 + + + – – – 117, 1800 + + – – – –
133, 266 – – – – + + 350, 1800 + + – – – –
133, 600 + + – + + + 525, 1800 – – – – – –
400, 600 – – – – – – 630, 1800 – – – – – –
400, 720 – – – – – – 117, 234 – – – + – –
450, 540 – – – – + + 117, 525 + + – – – –
m03 = 800,mq̃1,2 = 3800,mg̃ = 1000, µ = 1800,

tanβ = 35, σ = 0.47 pb, L = 105 pb−1 350, 525 – – – – – –

133, 1800 + + + + + + 350, 630 – – – – – –
400, 1800 + + + + + – 525, 630 – – – – – –

600, 1800 + + – – + –
m03 = 650,mg̃ = 3500,mq̃1,2 = 3800, µ = 1800,

tanβ = 35, σ = 0.94 pb, L = 105 pb−1

720, 1800 + + + + + + 108, 1800 + + – + – –
133, 266 + + + + + + 325, 1800 + + + + – –
133, 600 + + + + + + 487, 1800 + + + + – –
400, 600 + + + + + + 585, 1800 + + + + – –
400, 720 + + + + + – 108, 216 – – – + + +

108, 487 + + – + – +
487, 585 + + + + – +
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Table 2. (Contd.)

mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l mχ̃1 ,mχ̃2 Incl. No lept. l± l+l− l±l± 3l
mq̃3 = 650,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,

tanβ = 5, σ = 0.48 pb, L = 105 pb−1

mq̃3 = 600,mq̃1,2 = 3800,mg̃ = 3500, µ = 1800,
tanβ = 5, σ = 0.77 pb, L = 105 pb−1

108, 1800 + + – – – – 100, 1800 + + – – – –

325, 1800 + + – – – – 300, 1800 + + – – – –

490, 1800 – – – – – – 450, 1800 – + – – – –

585, 1800 – – – – – – 540, 1800 – – – – – –

108, 216 + + + + + + 100, 200 – – – – – –

325, 490 – – – – – – 100, 450 + + + – – –

325, 585 + + – – – – 300, 540 + + – – – –

490, 585 – – – – – – 450, 540 – – – – – –

108, 490 + + – – – – 20, 1800 + + + – – –
3. SIMULATION OF THE DETECTOR
RESPONSE

Our simulations are performed at the particle level
with parametrized detector responses based on de-
tailed detector simulations. To be specific, our esti-
mates were obtained for the CMS detector. The fast
simulation program CMSJET 4.701 for the CMS
detector [14] was used. Themain aspects of CMSJET
relevant to our study are the following.
Charged particles are tracked in a 4-T magnetic

field. A 90% reconstruction efficiency per charged
track with transverse momenta of pT > 1GeV within
the pseudorapidity interval |η| < 2.5 is assumed.
The geometric acceptances for µ and e are |η| <

2.4 and 2.5, respectively. The lepton momentum is
smeared according to parametrizations obtained from
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Fig. 1. Dependence of the pp → squarks, gluino + . . .
cross section on the third-generation soft-breaking mass
m03 formg̃ = 2000 GeV andmq̃1,2 = 3800 GeV and for
two values of tan β.
PH
full GEANT.3) For a 10-GeV lepton, the momentum
resolution∆pT /pT is better than 1%over a full η cov-
erage. For a 100-GeV lepton, the resolution becomes
about (1–5)× 10−2, depending on η. We assumed
a 90% triggering-plus-reconstruction efficiency per
lepton within the geometric acceptance of the CMS
detector.
The electromagnetic calorimeter of CMS ex-

tends up to |η| = 2.61. There is a pointing crack
in the ECAL barrel/endcap transition region be-
tween |η| = 1.478–1.566 (6 ECAL crystals). The
hadronic calorimeter covers |η| < 3. The very forward
calorimeter extends from |η| > 3 to |η| < 5. Noise
terms were simulated with Gaussian distributions,
and zero suppression cuts were applied.
The developments of e/γ and hadron showers are

taken into account by parametrizing the lateral and
longitudinal profiles of the showers. The starting point
of a shower is fluctuated according to an exponential
law.
For jet reconstruction, we used a modified UA1 Jet

Finding Algorithm, with a cone size of∆R = 0.8 and
a 25-GeV transverse energy threshold for jets.

4. BACKGROUNDS AND SUSY KINEMATICS

All SUSY processes with a full particle spectrum,
couplings, the production cross section, and decays
are generated with ISAJET 7.42, ISASUSY [15].
The Standard Model backgrounds are generated by
PYTHIA 5.7 [16]. We used STEQ3L structure func-
tions.

3)Detector Description and Simulation Tools. CERNProgram
Library LongWriteupW50013, CERN, Geneva, 1993.
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LHC (CMS) DISCOVERY POTENTIAL 1349

PHY
 

100
0

200
300
400

200

0

400

600

250
0

500
750

1000

200

0

400

600

400 800 1200

ID
Entries
Mean
RMS

1
13659
418.0
217.4

 
m

 
~

 

g

 
 = 1500, 

 
m

 
~

 

q

 

3

 
 = 800, tan

 
β

 
 = 5Events

 

m

 

χ

 

1

 

 = 133

ID
Entries
Mean
RMS

1
13666
246.5
166.3

ID
Entries
Mean
RMS

1
13657
201.6
194.7

ID
Entries
Mean
RMS

1
13656
289.6
167.4

 

E

 

miss

 

T

 

 before any cuts, GeV

 

~

 

m

 

χ

 

1

 

 = 600

 

~

 

m

 

χ

 

2

 

 = 1800

 

~

 

m

 

χ

 

1

 

 = 720

 

~

 

m

 

χ

 

2

 

 = 1800

 

~

 

m

 

χ

 

1

 

 = 133

 

~

 

m

 

χ

 

2

 

 = 266

 

~

 

m

 

χ

 

2

 

 = 1800

 

~

Fig. 2. Emiss
T distribution before any cuts on different masses of χ̃0

1 and χ̃0
2.
The following SM processes make the main con-
tribution to the background: W + jets, Z + jets, tt̄,
WZ,ZZ, bb̄, and QCD (2→ 2) processes.

As was mentioned above, we consider, as sig-
natures, (n ≥ m) jets + (m ≥ k) isolated leptons +
Emiss

T , wherem = 2, 3, 4 and k = 0, 1, 2, 3. Explicitly,
we have considered the following signatures:

(n ≥ m)jets+ Emiss
T ,

(n ≥ m)jets+ Emiss
T + no isolated leptons,

(n ≥ m)jets+ Emiss
T + 1 isolated lepton,

(n ≥ m)jets+ Emiss
T + l+l− pair of isolated leptons,

(n ≥ m)jets+ Emiss
T + l±l± pair of isolated leptons,

(n ≥ m)jets+ Emiss
T + 3 isolated leptons.

For leptons, we use the cut PlT ≡
√
p2

l1 + p2
l2 ≥

PlT0 = 20 GeV. Our definition of an isolated lepton
coincides with the definition used in the CMSJET
code [14]. We use two sets of cuts (a and b) for
the transverse missing energy EmissT and transverse
jet energy ETk (k = 1, 2, 3, 4). Cuts (a) and (b) are
shown in Table 1. We have calculated the SM back-
grounds for various values of ET1, ET2, ET3, ET4,
SICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
and Emiss
T using PYTHIA 5.7 [16]. We have consid-

ered two values of tan β = 5 and tan β = 35 (tan β ≡
〈Ht〉/〈Hb〉). We have analyzed both the case of a
heavy and the case of a relatively light gluino. We
have considered different values of LSP and the
ratio χ̂0

2/χ̂
0
1. In our calculations, we took mq̃1,2 =

3800 GeV for the masses of the first and second
squark generations, but the results are virtually in-
dependent of the value ofmq̃1,2 formq̃1,2 ≥ 2500 GeV.

5. RESULTS

The results of our calculations are shown in Ta-
bles 2 and in Figs. 1–4. Note that there is a cru-
cial difference between a “future” experiment and the
“real” experiment [17]. In the “real” experiment, the
total number of events Nev is a given number, and
we compare it with the expected Nb when we test
the validity of standard physics. Under the condition
of a “future” experiment, we know only the average
number of background events, Nb, and the aver-
age number of signal events, Ns; therefore we have
to compare the Poisson distributions P (n,Nb) and
P (n,Nb +Ns) to determine the probability of finding
new physics in a future experiment. According to
the general definition, the discovery potential for new
physics corresponds to the case where the probability
2
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Fig. 3. pjet
T distribution before any cuts on different masses of χ̃0

1 and χ̃0
2.
that the background can mimic the signal is less than
∆ = 5.6 × 10−7. This means that the signal with a
background has a 5σ excess over a pure background
in terms of standard deviations. Thus, we require that
the probability β(∆) of background fluctuations for
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Fig. 4. Dependence of the number of signal events on
the LSP mass for mq̃3 = 900 GeV, mq̃1,2 = 3800 GeV,
µ = 1500 GeV, tan β = 5, mχ̃0

2
= 1800 GeV, and L =

105 pb−1 for cut 10b (Table 1) and njet ≥ 4.
P

n > n0(∆) be less than∆, namely,

β(∆) =
∞∑

n=n0(∆)+1

P (n,Nb) ≤ ∆.

The discovery probability 1− α(∆) that the num-
ber of signal events will be larger than n0(∆) is equal
to

1− α(∆) =
∞∑

n=n0(∆)+1

P (n,Nb +Ns).

We suppose that the signal is detectable if 1−
α(∆) ≥ 0.5 andNs/Nb ≥ 0.25.
It follows from our results that, for fixed values

of the squark and gluino masses, the visibility of the
signal decreases with increasing LSP mass. This fact
has a trivial explanation. Indeed, in the rest frame of
the squark or the gluino, the jet spectrum becomes
softer with increasing LSP mass. Furthermore, pair-
produced squarks and gluino are produced with total
transverse momentum close to zero in the parton
model. For large LSP masses, the missing transverse
momenta from two LSPs partly cancel.
Note that, for the case of relatively light third-

generation squarks, b quarks dominate in the final
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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state. In our calculations, we have not used b tagging
to suppress the background and to make the signal
more observable.

6. CONCLUSION

We have presented the results of an investiga-
tion of the LHC (CMS) SUSY discovery potential
for models with effective supersymmetry. We have
considered the general case of nonuniversal gaug-
ino masses. We have found that the visibility of
a signal through an excess over SM backgrounds
in jets + isolated leptons + Emiss

T events depends
rather strongly on the relation between the LSP,
second-neutralino, gluino, and third-generation-
squark masses, and it decreases with increasing
LSP mass. For a relatively heavy gluino, it would
be very difficult, or even impossible, to detect a
SUSY signal even for light third-generation squarks
(mq̃3 ≤ 1 TeV) if the LSP mass is close to the third-
generation squark mass.
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Abstract—The single-spin and double-spin asymmetries in pp −→ (γ∗, Z) +X processes induced by
collisions of polarized protons are investigated on the basis of QCD and electroweak interaction by using
the method of helicity amplitudes. Analytic expressions for the single-spin (AL) and double-spin (ALL)
asymmetries are obtained, and their dependence on the dilepton transverse momentum is investigated at
three values of the dilepton invariant mass. The results obtained in this study make it possible to explore
the spin structure of the proton. c© 2002 MAIK “Nauka/Interperiodica”.
Since the appearance of the data obtained in the
EMC experiment [1], many studies have been devoted
to the spin structure of the proton. In the lowest order
of perturbative QCD, the spin of the proton can be
represented as the sum of three terms; that is,

Sp = Sq + Sg + 〈Lz〉,
where Sq and Sg are, respectively, the quark and the
gluon contribution to the proton spin and 〈Lz〉 is the
contribution of the orbital angular momentum of the
quarks and gluons.

The experimental results reported in [2–4] suggest
that the gluon spin and orbital interaction contribute
significantly to the proton spin. Naturally, these ex-
perimental results call for a theoretical explanation.

Gehrmann [5] calculated O(αs) corrections to the
xF and y distributions of dileptons produced in col-
lisions of longitudinally polarized hadrons. He also
showed that measurement of the longitudinally po-
larized cross section for the Drell–Yan process would
make it possible to investigate the distribution of po-
larized sea quarks in hadrons.

In [6], the longitudinal–transverse spin asymme-
tries ALT in Drell–Yan processes were calculated in
the leading order for nucleon–nucleon collisions at
RHIC and HERA energies. It was shown thatALT is
much less than the respective transverse–transverse
asymmetry ATT .

The Drell–Yan process at high transverse mo-
menta of the dilepton was studied in [7], where the
effect of γZ interference was also taken into consid-
eration. Both single-spin and double-spin asymme-
tries were investigated there. It was shown that the
double-spin asymmetry at small invariant masses of
the lepton pair and the single-spin asymmetry at the
Z peak become significant.
1063-7788/02/6507-1352$22.00 c©
Collisions of polarized hadrons are among pro-
cesses of greater importance for studying the spin
structure of the proton and for calculating the distri-
butions of polarized quarks in the proton.

In the present study, single-spin and double-spin
asymmetries in pp −→ (γ∗, Z) + X processes in-
duced by collisions of polarized hadrons are analyzed
on the basis of QCD and electroweak interaction.
This analysis is performed in the reference frame
comoving with the center of mass of primary particles.
In order to describe experiments that study the
scattering of polarized particles, it is necessary to
specify a helicity basis. Here, we use the method of
helicity amplitudes. It should be noted that, in [5, 6],
the asymmetries were studied with allowance for the
polarizations of primary particles. Here, we consider
asymmetries, taking into account the polarizations
of all particles that participate in the reaction under
study. We begin our analysis by introducing the
subprocesses

g + q −→ l+l− + q, (1)

q + q −→ l+l− + g.

The Feynman diagrams of the pp→ l+l− + X
subprocess are shown in Fig. 1.

The matrix elements for subprocesses (1) with
allowance for a virtual photon and a Z boson can be
represented as

Mγ = −ie2gst
a
ik

[
v(p4, s4)γµu(p3, s3)

]

× gµν

q2
u(p2, s2)ε̂

f̂1 + m

f2
1 −m2

γνu(p1, s1),

MZ = − ig2gst
a
ik

4 cos2 ΘW
2002 MAIK “Nauka/Interperiodica”
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×
[
v(p4, s4)γν(gVe + gAeγ5)u(p3, s3)

]

× gµν

q2 −M2
Z + iMZΓZ

u(p2, s2)

× ε̂
f̂1 + m

f2
1 −m2

γν(gVq + gAqγ5)u(p1, s1);

Mγ = −ie2gst
a
ik

[
v(p4, s4)γµu(p3, s3)

]

× gµν

q2
u(p2, s2)γν

f̂2 + m

f2
2 −m2

ε̂u(p1, s1),

MZ = − ig2gst
a
ik

4 cos2 ΘW

×
[
v(p4, s4)γµ(gVe + gAeγ5)u(p3, s3)

]

× gµν

q2 −M2
Z + iMZΓZ

u(p2, s2)

× γν(gVq + gAqγ5)
f̂2 + m

f2
2 −m2

ε̂u(p1, s1);

Mγ = −ie2gst
a
ik

[
v(p4, s4)γµu(p3, s3)

]
(2)

× gµν

q2
u(p2, s2)ε̂

f̂3 +m

f2
3 −m2

γνu(p1, s1),

MZ = − ig2gst
a
ik

4 cos2 ΘW

×
[
v(p4, s4)γµ(gVe + gAeγ5)u(p3, s3)

]

× gµν

q2 −MZ + iMZΓZ
u(p2, s2)ε̂

× f̂3 + m

f2
3 −m2

γν(gVq + gAqγ5)u(p1, s1);

Mγ = −ie2gst
a
ik

[
v(p4, s4)γµu(p3, s3)

]

× gµν

q2
u(p2, s2)γν

f̂4 + m

f2
4 −m2

ε̂u(p1, s1),

MZ = − ig2gst
a
ik

4 cos2 ΘW

×
[
v(p4, s4)γµ(gVe + gAeγ5)u(p3, s3)

]

× gµν

q2 −M2
Z + iMZΓZ

u(p2, s2)

× γν(gVq + gAqγ5)
f̂4 + m

f2
4 −m2

ε̂u(p1, s1),
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Fig. 1. Feynman diagrams for pp −→ l+l− + X process.

where taik = λa
ik/2 are the Gell-Mann matrices, gs is

the strong-interaction coupling constant,

f1 = p1 − q, f2 = p1 + p2,

f3 = p1 − q, f4 = p1 − p5.

The helicity amplitudes are denoted by
M(λ1, λ2;λ3, λ4, λ5), where λ1 and λ2 are the helic-
ities of the initial partons, λ3 and λ4 are the helicities
of two leptons, and λ5 is the helicity of the final-state
parton:

M(λ1, λ2;λ3, λ4, λ5) (3)

=




M(λ1, λ2;λ3,−λ3, λ2)

for g + q −→ l+l− + q

M(λ1,−λ1;λ3,−λ3, λ5)

for q + q −→ l+l− + g.

Positive- and negative-helicity states are denoted by
|A±〉; they have the following properties:

(1 + γ5)|A±〉 = 0,
|A+〉c = −|A−〉,

〈A∓|B±〉 = −〈B∓|A±〉, (4)

〈A+|γµ|B+〉 = 〈B−|γµ|A−〉.

Making use of the Fierz identities, we obtain

〈A+|γµ|B+〉〈C−|γµ|D−〉 = 2〈A+|D−〉〈C−|B+〉,
(5)

〈A−|B+〉〈C−|D+〉
= 〈A−|D+〉〈C−|B+〉+ 〈A−|C+〉〈B−|D+〉.

The spinors u±(p) and v±(p) describing a particle
of momentum p and helicity λ = ±1 satisfy the rela-
tions

p̂u(p) = p̂v(p) = u(p)p̂ = v(p)p̂, p2 = 0, (6)

(1± γ5)v± = (1∓ γ5)u±
= u±(1± γ5) = v±(1∓ γ5) = 0,

u±(p)γµu±(p) = v±(p)γµv±(p) = 2pµ.
2
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Here and below, we use the conventional notation

u±(p) = v∓(p) = |p±〉, (7)

ū±(p) = v∓(p) = 〈p±|,
〈p−|q+〉 = 〈pq〉 = −〈qp〉,
〈q+|p−〉 = 〈pq〉∗ = −〈qp〉∗,

|〈pq〉|2 = 2p · q.

The gluon helicities are defined as follows:

ε±1 = ±
√

2
〈p∓5 |p±1 〉

[
|p∓1 〉〈p∓5 |+ |p±5 〉〈p±1 |

]
(8)

for g + q −→ l+l− + q,

ε±5 = ±
√

2
〈p∓1 |p±5 〉

[
|p∓5 〉〈p±1 |+ |p±1 〉〈p±5 |

]
(9)

for q + q −→ l+l− + g.

The Lagrangian describing interactions of funda-
mental fermions with gauge bosons has the form

L =
e

2
(Jγ

µAµ + JZ
µ Zµ), (10)

where

J i
µ = Ψfγµ

[
gi
Lf

(1 + γ5) + gi
Rf

(1− γ5)
]
Ψf ,

and gi
Lf
and gi

Rf
are the chiral coupling constants for

the interaction of the fermion f with gauge bosons i
(i = γ, Z). These chiral coupling constants are given
by

gγ
Lf

= gγ
Rf

= Qf , (11)

gZ
Lf

=
2

sin 2ΘW
(I3f −QfXW),

gZ
Rf

=
2

sin 2ΘW
(−QfXW),

where XW = sin2 ΘW is the Weinberg angle and Qf

and I3f are, respectively, the charge of the fermion f
and the third component of its weak isospin.
The Mandelstam invariant variables for the sub-

process under study are defined as

ŝ = (p1 + p2)2, t̂ = (p5 − p2)2 = (Q− p1)2, (12)

û = (p5 − p1)2 = (Q− p2)2.

Let us consider the reference frame comoving with
the center of mass of primary particles, where the
momenta of primary hadrons are given by

P1 =
√
s

2
(1, 0, 0, 1), P2 =

√
s

2
(1, 0, 0,−1), (13)

p1 = x1P1, p2 = x2P2,

pµ
5 = pµ

1 + pµ
2 −Qµ,
PH
Qµ = pµ
3 + pµ

4 ,

qµ = pµ
3 − pµ

4 ;

p5 is the momentum of the outgoing hadron. The
momenta of the two leptons and of the final-state
parton are taken to be [8]

pµ
3 =

1
2
(E′ − q′ cosα, q′ sin θ (14)

− q sinα cosβ cos θ − E′ cosα sin θ,

−q sinα sin β, q′ cos θ − E′ cosα cos θ
+ q sinα cos β sin θ),

pµ
4 =

1
2
(E′ + q′ cosα, q′ sin θ

+ q sinα cosβ cos θ + E′ cosα sin θ,

q sinα sin β, q′ cos θ + E′ cosα cos θ
− q sinα cos β sin θ),

p5 = (q′,−q sin θ, 0,−q′ cos θ),

where E′ =
ŝ + q2

2ŝ
and q′ =

ŝ− q2

2ŝ
.

We now proceed to computing the square of the
matrix element, taking into account all helicity states
of the particles.

(i) The diagrams in Figs. 1a and 1b yield

|M(++;+−+)|2 =

[
2g2

sg
4g2

Rq
g2
Le

[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

(15)

+
8g2

se
4Q2

q

q4
+

8g2
se

2g2QqgRqgLe(q2 −M2
Z)

q2[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

]

×
{

2π
ŝ
t̂2 +

π

ŝ
t̂û+ πû+ 2πQ2

+
π

ŝ
û2 +

π(Q2t̂− ŝû)
3ŝû(ŝ−Q2)

× (ŝt̂û + Q2ŝt̂− ŝ2û− ŝû2 −Q2ût̂−Q2t̂2)

+
4π
3

Q2(t̂2 + ût̂− ŝt̂)
(ŝ2 −Q2)

}
,

|M(++;−+ +)|2 = |M(++;+ −+)|2,

|M(+−; +−−)|2 =

[
2g2

sg
4g2

Lq
g2
Le

[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

(16)

+
8g2

se
4Q2

q

q4
+

8g2
se

2g2QqgLqgLe(q2 −M2
Z)

q2[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

]

×
{
−πQ2

ŝû
(t̂ + û+ 2Q2)2 − πQ2

3ŝû(ŝ −Q2)2
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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× (Q2t̂+ Q2û− ŝt̂− ŝû)2
}
,

|M(+−;−+−)|2 = |M(+−; +−−)|2

for gRe ←→ gLe .

(ii) The contribution of the diagrams in Figs. 1c
and 1d is

|M(+−; +−+)|2 =

[
2g2

sg
4g2

Lq
g2
Le

[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

(17)

+
8g2

se
4Q2

g

q4
+

8g2
se

2g2QqgLqgLe(q2 −M2
Z)

q2[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

]

×
{
πQ2 t̂

û
+
π

3
Q2(Q2û− ŝt̂)2

ût̂(ŝ−Q2)2
+

4π
3

Q4ŝ

(ŝ −Q2)2

}
,

|M(+−;−+ +)|2 = |M(+−; +−+)|2

for gRe ←→ gLe ,

|M(+−; +−−)|2 =

[
2g2

sg
4g2

Lq
g2
Le

[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

(18)

+
8g2

se
4Q2

g

q4
+

8g2
se

2g2QqgLqgLe(q2 −M2
Z)

q2[(q2 −M2
Z)2 + M2

ZΓ2
Z ]

]

×
{

2π
3

(Q2t̂− ŝû)2

û(ŝ−Q2)2
+
π

3
ŝ(Q2t̂− ûŝ)2

ût̂(ŝ−Q2)2

+
4π
3

Q2ŝt̂

(ŝ−Q2)2
+

4π
3

Q2ŝ2

(ŝ −Q2)2

− 2πû− 2πQ2 − π
ŝû

t̂
− 2πQ2 ŝ

t̂

}
,

|M(+−;−+−)|2 = |M(+−; +−−)|2

for gRe ←→ gLe .

All scalar products pi · pj can be expressed in terms of
the Mandelstam variables [9]

s12 = ŝ, (19)

s13 = 2p1p3 =
1
2
(Q2 − t̂)− Q2û− ŝt̂

2(ŝ −Q2)
cosα

−
√
Q2ŝt̂û

ŝ−Q2
sinα cos β,

s14 = 2p1p4 =
1
2
(Q2 − t̂) +

Q2û− ŝt̂

2(ŝ −Q2)
cosα

+

√
Q2ŝt̂û

ŝ−Q2
sinα cos β,

s15 = 2p1p5 = −û,

s23 = 2p2p3 =
1
2
(Q2 − û)− Q2t̂− ŝû

2(ŝ −Q2)
cosα
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
+

√
Q2ŝt̂û

ŝ−Q2
sinα cos β,

s24 = 2p2p4 =
1
2
(Q2 − û) +

Q2t̂− ŝû

2(ŝ −Q2)
cosα

−
√
Q2ŝt̂û

ŝ−Q2
sinα cos β,

s25 = 2p2p5 = −t̂,
s34 = 2p3p4 = Q2,

s35 = 2p3p5 = − û+ t̂

2
(1− cosα),

s45 = 2p4p5 = − û+ t̂

2
(1 + cosα).

Integration over the final states in phase space can
be simplified by employing the relation

1
(2π)9

d3p3

2E3

d3p4

2E4

d3p5

2E5
δ(p1 + p2 − q − p5) (20)

=
1

(2π)9
1
16

dΩπδ(ŝ + t̂ + û−Q2)
dQ2dt̂dû

ŝ
.

The effective cross section for pp −→ l+l− + X pro-
cesses can be represented in the form [10]

E
dσ

dQ2d3p
=

1∫

xmin
1

1∫

xmin
2

dx1dx2G
A(x1)GB(x2) (21)

× ŝ

π

dσ̂

dQ2dt̂dû
δ(ŝ + t̂ + û−Q2),

πE
dσ

d3p
=

dσ

dydp2
T

,

where y is the rapidity of the lepton pair, pT is its
transverse momentum, and GA(x1) and GB(x2) are
the distributions of the partons in the proton. From
expression (21), it follows that, in the double-spin
case, the correlation effective cross section has the
form

d∆σ

dQ2dydp2
T

=

1∫

xmin
1

1∫

xmin
2

dx1dx2 (22)

×∆GA(x1)∆GB(x2)ŝ
d∆σ̂

dQ2dt̂dû
δ(ŝ + t̂ + û−Q2),

d∆σ =
1
2
(dσ(++) − dσ(+−)),

whereas, in the single-spin case, we obtain

d∆σ

dQ2dydp2
T

=

1∫

xmin
1

1∫

xmin
2

dx1dx2 (23)
2
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×∆GA(x1)∆GB(x2)ŝ
d∆σ̂

dQ2dt̂dû
δ(ŝ + t̂+ û−Q2),

d∆σ = dσ(+) − dσ(−) =
1
2
(dσ(++)

+ dσ(+−) − dσ(−+) − dσ(−−));
ŝ = x1x2s,

t̂ = x1t + (1− x1)Q2, (24)

û = x2u + (1− x2)Q2,

t = Q2 −mT

√
se−y,

u = Q2 −mT

√
sey,

where Q2 is the invariant mass of the lepton pair and
mT is the transverse mass, which is given by m2

T =
Q2 + p2

T

x1 =
x2
√
s
√
Q2 + p2

T e
y −Q2

x2s−
√
s
√
Q2 + p2

T e
−y

; (25)

x2 =
x1
√
s
√
Q2 + p2

T e
−y −Q2

x1s−
√
s
√
Q2 + p2

T e
y

;

xmin
1 =

−u
s+ t−Q2

=

√
s
√
Q2 + p2

T e
y −Q2

s−√s
√
Q2 + p2

T e
−y

; (26)

xmin
2 =

−t
s + t−Q2

=

√
s
√
Q2 + p2

T e
−y −Q2

s−√s
√
Q2 + p2

T e
y

.

In order to compute single- and double-spin
asymmetries, we introduce the quantities

dσ̂(++) ± dσ̂(+−) ∼
{

(|M(++;+−+)|2 (27)

+ |M(++;− + +)|2 ± |M(+−; + −−)|2

± |M(+−;−+−)|2)± (|M(+−; + −+)|2

+ |M(+−;− + +)|2 + |M(+−; + −−)|2

+ |M(+−;−+−)|2)
}
,

dσ̂(+) ± dσ̂(−) ∼
{

(|M(++;+−+)|2 (28)

+ |M(++;− + +)|2 + |M(+−; + −−)|2

+ |M(+−;− +−)|2 ± |M(−+;+ −+)|2

± |M(−+;− + +)|2 ± |M(−−; + −−)|2

± |M(−−;−+−)|2) + (|M(+−; + −+)|2
P
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Fig. 2. Single-spin asymmetry in pp −→ l+l− + X pro-
cesses as a function of the dilepton transverse momen-
tum

√
s = 500 GeV, the dilepton invariant mass of Q =

10GeV, and the rapidity of y = 0. Shown in the figure are
the results obtained on the basis of the CLW model with
(curve 1) set I and (curve 2) set II and on the basis of the
GRSV model with (curve 3) set I and (curve 4) set II.

+ |M(+−; + −−)|2 + |M(+−;− + +)|2

+ |M(+−;− +−)|2 ± |M(−+;+ −−)|2

± |M(−+;+ −+)|2 ± |M(−+;− + +)|2

± |M(−+;−+−)|2)
}
.

For this purpose, we also use the well-known ex-
pressions

AL

(
dσ(+)/dQ2dydp2

T

)
−
(
dσ(−)/dQ2dydp2

T

)
(
dσ(+)/dQ2dydp2

T

)
+
(
dσ(−)/dQ2dydp2

T

) ,
(29)

ALL (30)

=

(
dσ(++)dQ2dydp2

T

)
−
(

dσ(+−)

dQ2dydp2
T

)

(
dσ(++)/dQ2dydp2

T

)
+
(
dσ(+−)/dQ2dydp2

T

) .
In order to compute single- and double-spin

asymmetries numerically, we employ two functions
that describe the distribution of polarized quarks
which were proposed by Cheng et al. [11] (the CLW
model) and by Glück et al. [12] (the GRSV model).
We use two sets of parameters for each function.
For unpolarized quarks the distribution function was
found by Martin et al. [13].

The dependences of the single- (AL) and double-
spin (ALL) asymmetries on the dilepton transverse
momentum were performed at

√
s = 500 GeV for

various values of the invariant mass of the lepton pair:
Q = 10, 60GeV, andMZ .
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Fig. 3. As in Fig. 2, but forQ = 60GeV.

The single-spin asymmetry in pp −→ l+l− + X
processes as a function of the transverse momentum
of the lepton pair is shown in Figs. 2–4 at

√
s =

500 GeV for three values of the dilepton invariant
mass. The single-spin asymmetry AL as a func-
tion of the dilepton transverse momentum pT is pre-
sented in Fig. 2 at the dilepton invariant mass ofQ =
10 GeV and the rapidity of y = 0. It can be seen that,
for the single-spin asymmetry AL, the result within
the CLW model differs substantially from that within
the GRSV model. As the transverse momentum pT

varies within the range ∼10–110 GeV/c, the single-
spin asymmetry in the CLW model exhibits a smooth
increase, whereas the single-spin asymmetry in the
GRSV model remains constant. At the values of the
dilepton invariant mass between Q = 60 GeV and
Q = MZ , the single-spin asymmetry slowly increases
both in the CLW and in the GRSV model. As the
dilepton mass varies from Q = 10 GeV to Q = MZ ,
the single-spin asymmetry can take either positive
or negative values. It should be noted that, over the
entire invariant-mass range under consideration, the
single-spin asymmetries in the GRSV model are vir-
tually independent of the choice of the set of partons.
The double-spin asymmetry in pp −→ l+l− + X

processes as a function of the dilepton transverse
momentum at the rapidity of y = 0 and the energy
of
√
s = 500 GeV is illustrated in Figs. 5–7 for

three values of the dilepton invariant mass: Q = 10,
60 GeV, andMZ . For all values of the dilepton invari-
ant mass, the double-spin asymmetry is greater than
the single-spin asymmetry for pT values considered
in these figures. The double-spin asymmetries in the
GRSV model are also shown in these figures. For
all values considered in this study for the dilepton
invariant mass and transverse momentum, they are
virtually indistinguishable. In the case of the CLW
model, these asymmetries show a slow decrease.
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Fig. 5.Double-spin asymmetry in pp −→ l+l− + X pro-
cesses as a function of the dilepton transverse momen-
tum at

√
s = 500 GeV, the dilepton invariant mass of

Q = 10 GeV, and the rapidity of y = 0. Shown are the
asymmetries obtained on the basis of theCLWmodel with
(curve 1) set I and (curve 2) set II and on the basis of the
GRSV model with (curve 3) set I and (curve 4) set II.

In the present study, we performed a numerical
analysis of single- and double-spin asymmetries for
pp −→ (γ∗, Z) + X processes using the method of
helicity amplitudes. Asymmetries were explored in
the domain of high momentum transfers at RHIC
energies. We employed the distributions of polarized
partons within the CLW [11] and the GRSV [12]
model. Both sets (CLW and GRSV) were obtained
in the second order of perturbation theory. The dis-
tribution of unpolarized partons was taken from [13].
In general, the distinction between the single-spin
asymmetries AL for the two sets of partons in the
CLW model is greater than that in the GRSV model.
These asymmetries generally increase as the dilepton
mass approaches the Z-boson mass. The distinction
between the two sets in the GRSV model is small.
At a fixed value of pT , the double-spin asymmetries
ALL are on the same order of magnitude at the three
2
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Fig. 7. As in Fig. 5, but forQ = MZ .

values of Q. At various values of pT , the difference
between the asymmetries for the two sets of partons
in the CLW model is greater than that in the GRSV
model. The difference of the asymmetries for the two
sets in the GRSVmodel is nearly constant. Note that
these asymmetries are virtually independent ofQ.
The contribution of the Z boson processes to

polarized particles, in general, and to the single-
P

spin parity-violating asymmetries, in particular, is
significant. The single-spin asymmetries become
large, both in the CLW and in the GRSV models, as
the dilepton invariant mass approaches the Z-boson
mass. Over the range of pT under study, the double-
spin asymmetry is greater than the single-spin asym-
metry for all values of the dilepton mass. Therefore,
measurement of the single-spin asymmetry may aid
in studying the spin structure of the proton.

It should be noted that Leader and Sridhar [7]
considered pp −→ l+l− + jet processes and obtained
similar results. This study was based on taking into
account O(αs) tree Feynman diagrams at the par-
ton level. The calculation of one-loop radiative QCD
corrections to the subprocesses involving polarized
partons presents a challenge and has yet to be per-
formed. It is worth noting that, at the energies under
consideration, the O(α2

s) polarization corrections to
the cross section for the Drell–Yan process amount
to about 10%.
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Abstract—The problem of interpreting experimental data on quasielastic electron scattering on nuclei
in A(e, e′p)(A− 1) reactions is considered. It is shown that the existing discrepancies in experimental
data on the reaction 4Не(e, e′p)Т are associated with the fact that the residual-nucleus momentum pm as
determined from the law of energy–momentum conservation cannot be treated as that which is equal to the
momentum p of the primary intranuclear nucleon. Under the assumption that the momentum transferred
from the electron to the intranuclear nucleon is redistributed during the divergence of the products of the
(e, e′p) reaction in question, the method for extracting p is modified by introducing a kinematical correction,
whereby the situation is considerably improved. For a first approximation, the correction can be evaluated
on the basis of data on A(e, e′) inclusive reactions. The argument behind this evaluation is illustrated by
considering the example of the reaction 4Не(e, e′p)Т. c© 2002 MAIK “Nauka/Interperiodica”.
The reactions of quasielastic scattering on nuclei
have been considered as a promising tool for studying
the structure of nuclei since the very beginning of in-
vestigations into such reactions. By way of example,
we indicate that, owing to the fact that the electro-
magnetic interaction of a scattered particle with nu-
cleons is relatively weak and is well understood, both
from the experimental and from the theoretical point
of view, quasielastic electron scattering immediately
made it possible to draw specific conclusions on the
momentum distributions of intranuclear nucleons (for
an overview, see [1]).

At same time, there arose difficulties in interpret-
ing new data obtained upon the elaboration of ex-
perimental equipment and the improvement of the
experimental precision. For example, themost precise
experimental results known to date for the reaction
4Не(e, e′p)Т, which were reported in [2, 3], present
considerable difficulties not only for a global analysis
of these data but also for an analysis of data from each
individual study. These difficulties can be summarized
as follows.

Upon the elimination of known dependences, the
results of an investigation of (e, e′p) reactions with-
in the plane-wave impulse approximation (PWIA),
which underlies the simplest approach, yield the mo-
mentum distribution of intranuclear nucleons. It is
usually assumed that the momentum of the nucleon
on which the incident electron was scattered is equal
to the recoil momentum pm of the residual nuclear
system. However, the results reported in [2, 3] re-
vealed that, within this approach, it is impossible,

*e-mail: svod_2000@rambler.ru
1063-7788/02/6507-1359$22.00 c©
not only in the plane-wave impulse approximation
but also upon the inclusion of final-state interaction,
to match data measured under different kinematical
conditions in such a way as to obtain a smooth de-
pendence (see below for details).

The obvious dependence of the result on kine-
matical conditions casts some doubt on whether the
plane-wave impulse approximation is applicable and
onwhether these results can in principle furnish infor-
mation about the momentum distribution of intranu-
clear nucleons. At the same time, the measurements
lead to momentum distributions that are by and large
close to the calculated ones, thereby lending support
to the plane-wave impulse approximation. Moreover,
the simplicity and the physical clarity of the approach
based on the plane-wave impulse approximation and
the possibility of directly comparing the experimen-
tal momentum density with the results of theoretical
calculations employing this approach furnish a suffi-
cient motivation for adhering to the ideas underlying
the plane-wave impulse approximation. The desire to
preserve the plane-wave impulse approximation calls
for clarifying the nature of the observed dependence
of data on kinematics and finding, if this is possible,
a means for eliminating this dependence. Although
much time has passed since the appearance of data
from [2, 3], the problem in question is still pressing.

That some correction may be necessary is sug-
gested by the results presented in [4, 5], where, by
studying inclusive (e, e′) reactions, it was shown that
the shift of the quasielastic-peak maximum can be
kinematically corrected by changing the effective mo-
mentum transfer from the electron to the nucleon.
On this basis, it is proposed below to normalize the
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Simplest diagram describing quasielastic electron scattering and (b) corresponding diagram of 3-momenta.
situation by somewhat redefining the intranuclear-
nucleon momentum, which, in general, proves to be
different from pm. Concurrently, this would also be a
check upon the conclusions drawn in [4, 5].

1. In (e, e′p) reactions, an electron of 4-momentum
K = (k, k) is scattered by a nucleus of mass MA

into a final state with a 4-momentum K ′ = (k′, k′)
at an angle θ in the solid-angle element d2Ωe and
is detected in coincidence with a proton (its mass is
denoted byM ) knocked out from the nucleus into the
solid-angle element d2Ωp, the 4-momentum of the
knocked-out proton being P ′ = (p′, E′) = P +Q,
where P = (p, E) and Q = (q, ω) are, respectively,
the 4-momentum of the intranuclear nucleon in-
volved and the 4-momentum transfer from the elec-
tron. If the process being considered is quasielastic—
that is, if the plane-wave impulse approximation is
applicable to this process—it can be described in
the first approximation by the diagram in Fig. 1a.
Under the kinematical conditions corresponding to
the experiments that yielded data analyzed here, this
diagram is dominant [2, 3]. The cross section for the
process in question is given by

d6σ

dk′d2ΩedT ′
pd

2Ωp
= p′E′σep(k, k′, θ) (1)

× S(Em, p)δ(−Em − ω + T ′
p + TR),

where σep(k, k′, θ) is the cross section for elastic
electron–proton scattering (hereafter, we set k = |k|,
k′ = |k′|, p = |p|, etc.) and S(Em, p) is the spectral
function for the primary nucleus. This spectral func-
tion depends on the following arguments: T ′

p, which
is the kinetic energy of the knock-on nucleon; Em,
which is the energy of nucleon separation from the
nucleus with the formation of the residual nuclear
system of massMA−1,

Em = M +MA−1 −MA; (2)

p, which is the absolute value of the intranuclear-
nucleon momentum; and TR, which is the kinetic
energy of the above nuclear residue. As a matter of
P

fact, the above spectral function is the form factor
for the vertex where the primary nucleus dissociates
into a proton and the residual nuclear system (see
Fig. 1a). In the impulse approximation, S(Em, p) is
the momentum distribution of intranuclear nucleons
in the system formed by a nucleon and the nuclear
residue, the relevant binding energy being−Em.

In the particular case of proton knockout from a
4Не nucleus, the only existing state of the residual
nuclear system is that of the tritium nucleus, the
nucleon-separation energy being Em = 19.8 MeV.

The kinematics of the process is determined by the
law of energy–momentum conservation; that is,

ω +MA = E′ + EA−1 (3)

=
√

(p′)2 +M2 +
√

p2
m +M2

A−1,

p′ = q− рm, (4)

where q = k− k′ and ω = k− k′ are, respectively, the
3-momentum transfer and the energy transfer from
the electron; p′ is the 3-momentum of the knock-on
nucleon; and рm is the 3-momentum of the residual
nucleus. Since there are only two particles in the final
state, Eqs. (3) and (4) make it possible to reconstruct
themissingmomentum рm of the undetected particle,
provided that ω, q, and p′ are preset.

In order to define completely the kinematical con-
ditions and to be able to specify the intranuclear-
nucleon momentum in S(Em, p), the following nat-
ural assumption is usually made. As is well known,
events of nucleon interaction are quite rare, whence it
follows that intranuclear nucleons can be treated as
(quasi)free particles for most of the time—an argu-
ment in support of this is that the applications of the
nuclear model of independent particles were more or
less successful. As a matter of fact, it is the quasifree
character of intranuclear-nucleon motion that vali-
dates the plane-wave impulse approximation for the
case being considered. Similarly, it is believed that
the knock-on nucleon also has virtually no time to
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 2. Spectral functionSexp(Em, pm) for the 4Не nucleus under the kinematical conditions I, II, and A–H [2] (see Appendix,
Tables 1–3) for pm = 15–205, 115–345, and 100MeV/c, respectively, and for pm = 30, 90, and 190MeV/c [3] (see Appendix,
Table 4). The curves represent the results of the theoretical calculations for a model employing the Urbana V14NN potential
[6]. The results are presented on (a) a linear and (b) a logarithmic scale along the ordinate. The points correspond to (open
circles) kinematics I [2], (closed circles) kinematics II [2], (closed triangles) kinematics A–H [2], and (open boxes) the results
calculated with the data taken from [3].
undergo interaction with the nuclear residue. There-
fore, one can assume that, with a high probability, the
nuclear residue, which is a spectator, does not change
momentum. From the fact that the primary nucleus is
at rest in the laboratory frame, we then immediately
obtain (see Fig. 1b)

p = −pm. (5)

Taking into account relation (5) and performing in
(1) integration with respect to T ′

p, we arrive at

d5σ

dk′ · d2Ωe · d2Ωp
(6)

= p′E′ ∂T
′
p

∂Em
σep(k, k′, θ)S(Em, pm).

Equality (6) is a basis for extracting, within the
above assumptions, the spectral function S(Em, pm)
from experimental data.

2. Let us now proceed to consider relevant exper-
imental data (see Fig. 2). The values of the spec-
tral function Sexpt(Em, pm) for the 4Не nucleus that
were measured under various kinematical conditions
are displayed in Fig. 2 versus the missing momen-
tum pm. The data reported in [2] (see Table 2 in
[2]) that were measured at values of the parameter
pm in the ranges 15 ≤ pm ≤ 205 and 115 ≤ pm ≤
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
345 MeV/c are shown by, respectively, open (kine-
matics I, q = 431 MeV/c) and closed (kinematics
II, q = 250 MeV/c) circles, whereas the data mea-
sured at the fixed value of pm = 100 MeV/c (kine-
matics A–H ; see Table 4 in [2]) are represented by
closed triangles. The values of Sexp(Em, pm) that
were calculated on the basis of data presented in [3]
and measured at three values of pm = 30, 90, and
190 MeV/c are shown by open boxes. The values of
pm at each experimental point are given in Tables 1–
4 (see Appendix). The values of Sexpt(Em, pm) that
were extracted from the data of Ducret et al. [3] and
which are presented in the graph are explained in the
notes to Table 4 in the Appendix.

The curve in Fig. 2 represents the single-particle
momentum distribution of nucleons that was calcu-
lated for the proton–tritium system bound into a 4Не
nucleus. This calculation was performed on the basis
of a model employing the Urbana V14NN potential
[6]. In order to be able to consider the data both at low
and at high values of pm, they are shown on (Fig. 2a)
a linear and (Fig. 2b) a logarithmic scale along the
ordinate.

From Fig. 2, it can be seen that, by and large, the
model calculation of the momentum distribution of
intranuclear nucleons in the 4Не nucleus reproduces
fairly well the experimental data quoted. At the same
2
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time, there are significant discrepancies—namely,
the points obtained at the constant 3-momentum-
transfer values of q = 250 and 431 MeV/c describe
two smooth branches of the dependence Sехpt(Em,
pm) that do not coincide in the region of their overlap
(115 ≤ pm ≤ 205 MeV/c), where the mean value of
their ratio is r = 1.7± 0.1, with the mean relative
error of measurements being about 0.2 [2]. In just
the same way, points that were obtained at constant
values of pm and must in principle yield the close
values of Sexpt(Em, pm) at each value of pm show
a significant scatter that exceeds considerably the
errors of the measurements. In particular, for each se-
ries of pm = 30, 90, and 100 MeV/c, the ratios of the
maximum values to the minimum ones are r = 1.5
at pm = 30 MeV/c, with the maximum relative error
being 0.2, and r = 1.7 at pm = 90 and 100 MeV/c,
with themaximum relative errors being 0.25 and 0.02,
respectively.

Attempts of the authors of [2] at explaining this
irregular behavior of experimental data by final-state
interaction—in particular, by the distortion of the
waves involved—did not result in matching the data.
A unified dependence Sexpt(Em, pm) could not be
obtained, nor did it prove possible to describe both
branches within a single approach even for kinemati-
cal conditions I and II exclusively [2]. On this basis,
the authors of [2] argued that the values of Sexpt

depend on the kinematical conditions under which
these values were obtained.

Thus, the observed behavior of experimental points
is at odds either with the impulse approximation
as such, within which expressions (1) and (6) for
the reaction cross section were obtained, or with
its part that states that the intranuclear-nucleon
momentum is equal to the recoil momentum pm of
the A− 1 residual nucleus. But it has already been
said in connection with Fig. 2 that there is fairly
good overall agreement in absolute value between
the experimental momentum distribution and the
results of the theoretical calculation. Moreover, it is
well known that A(e, e′) reactions, which are of the
P

same nature, can be satisfactorily described within
the plane-wave impulse approximation, apart from
a modest shift of the maximum of the calculated
quasielastic peak with respect to its experimental
position.

The aforesaid gives sufficient grounds to hope that
the impulse approximation can be kept, which would
be highly desirable, as was indicated above. But in
this case, the correctness of the statement specified
by Eq. (5) should be questioned, and there is indeed
some motivation for this.

Let us consider this point in some detail. Although
the argument that has led to Eq. (5) seems natural,
neither this argument nor Eq. (5) itself takes into
account the fact that the nucleons constituting the
nucleus are off the mass shell in the initial state. If,
for example, we consider the reaction 4Не(e, e′p)Т,
proton knockout must result in that both particles
(the proton and the triton) simultaneously go over
to the mass shell. But in the above argument, it is
assumed that a virtual photon is entirely absorbed by
the proton, in which case only the proton can go over
to the mass shell upon the energy transfer ω from the
electron, with the triton state remaining completely
unaffected by this. Since the free-triton mass appears
in Eq. (3), it is assumed that the triton is already
on the mass shell. But this assumption is difficult to
validate, and it is desirable to dispense with it.

In other words, we arrive at the conclusion that
a transition of final particles to the mass shell must
inevitably proceed through their interaction. In the
diagram in Fig. 3a, the aforesaid is represented as
virtual-photon absorption by a nucleon within the
nucleus, which is depicted by convention as a shaded
circle. It is obvious that, at this stage, the process
has the same character as that represented by the
diagram in Fig. 1а. To state this otherwise, the elec-
trodynamics of the process essentially remains the
same, whence it follows that no changes are required
in expressions (1) and (6). Upon the escape of the
proton from the nucleus, both the proton and the
nuclear residue become free, so that their kinematical
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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features obey Eqs. (3) and (4). Within this pattern,
the escape of the proton from the nucleus can be
accompanied by a process where the 3-momentum
transfer q is redistributed among the final particles, in
just the same way as the redistribution of the energy
transfer ω accompanies the transition of particles to
the mass shell. As a result, the proton acquires the
momentum

р′ = p + q′, (7)

where

q′ = q + q∗, (8)

while the nuclear residue acquires the momentum

рm = −(p + q∗). (9)

The above is illustrated by the diagram in Fig. 3b.
As can be seen, the transformations in (7)–(9) do not
disturb the momentum-conservation law (4).

Thus, the kinematics of the process would be com-
pletely specified if the momentum q∗ that the particles
escaping from the nucleus (that is going over to the
mass shell) exchange were known.

Here, we do not aim at theoretically calculating
q∗. In order to solve the problem that we address,
it is sufficient to obtain an experimentally justified
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
estimate of q∗ and to assess the effect that it exerts
on the situation being considered.

It should be noted that a similar renormaliza-
tion of the momentum transfer was previously per-
formed in treating elastic electron scattering on nuclei
in the one-photon approximation, in which case it
is sometimes necessary to introduce the so-called
Coulomb correction stemming from the fact that the
effective energy of the initial (final) electron proves
to be keff = k − VC (k′eff = k′ = VC), where VC is the
Coulomb potential of the nucleus involved. As a re-
sult, themomentum transfer q undergoes a renormal-
ization; that is, q → qeff = keff− k′eff = q−VC(k/k−
k′/k′). Such a renormalization was applied, for ex-
ample by Zghiche et al. [7], who studied quasielastic
electron scattering on a 208Pb nucleus [below, we
will discuss the study of those authors in connection
with the analysis that they performed for the reaction
4Не(e, e′)].

In the case considered here, the renormalization
of q arises because of the unspecified interaction be-
tween the knock-on nucleon and the nuclear residue.
This interaction cannot be specified in detail.

3. Let us now proceed to consider inclusive (e, e′)
reactions [which are of the same nature as (e, e′p)
reactions]. Their cross section is equal to the integral
2
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of the cross section (1) over all knock-on nucleons;
that is,

d3σ

dk′d2Ωe
= N(k, k′, θ)(zσep + (A− z)σen)F (y),

(10)

where z and (A− z) are, respectively, the number of
protons and the number of neutrons in the nucleus;
σep(n) is the cross section for elastic electron scatter-
ing on a proton (neutron); N is a known kinematical
factor (we do not describe in detail this known func-
tion); and F (y) is a scaling function that is symmetric
with respect to the value of y = 0. Its specific form is

F (y) =

∞∫
|y|

ρ(p)pdp, (11)

where ρ(p) is the momentum distribution of nucleons,
its role in (1) and (6) being played by S(Em, p). Since
ρ(p) ≥ 0 by definition, it is obvious from (11) that
F (y) has a maximum at y = 0.

The parameter y = p′ − q is the q projection of
the minimum momentum рmin of the nucleon with
which an electron can interact. Since рmin is collinear
to q (at given p′ and q, the minimal value of р is
achieved when р′ and q are parallel), then pmin = |y|,
whereas the parameter y itself can take either positive
or negative values, depending on whether the vectors
рmin and q are parallel (y > 0; that is, p′ − q > 0) or
antiparallel (y < 0; that is, p′− q < 0). The parameter
y obeys the equation

ω +MA =
√

(q + y)2 +M2 +
√
y2 +M2

A−1, (12)

which reflects the energy-conservation law at the
lower limit of integration in (11).

Since σep(n) and N (k, k′, θ) are slowly varying
functions of ω at fixed values of the scattering angle
and the initial electron energy, it follows from (10) that
the maximum of the cross section at the quasielastic
peak must be attained at y(q, ωmax) = 0. At the same
PH
time, it is well known that, at the maximum of the
experimental quasielastic peak (that is, at ω = ωmax),
y often takes negative values ymax. In particular, such
a situation was observed in studying the inclusive
reactions of quasielastic electron scattering on 4Не
and 12С nuclei [4, 5]. The observed shift of the maxi-
mum of the quasielastic peak to the region of negative
values of y could not be due (at least in the case of
4Не) to the opening of a competing channel since
the two-body disintegration of 4Не into a proton and
a triton (or into a neutron and 3Не) proceeds with
a separation energy Em (= 20 MeV/c) below which
there are no open channels.

The data of Zghiche et al. [7], who studied electron
scattering in the inclusive (e, e′) reaction on a 4Не
nucleus in the quasielastic region (see Fig. 4), also
exhibit indications of the shift of the maximum of
FL(y) to the region y < 0. For four values of the
momentum transfer, Fig. 4 shows the values of FL(y)
that were obtained for the 4Не nucleus by means of
separating down experimental cross sections of the
form (10) into the longitudinal and the transverse
component. For individual graphs, the positions of the
maxima are shown by vertical lines. From the graphs,
it can be seen that negative values of ymax correspond
to all of the measured distributions FL(y).

In order to restore a correct position of F (y), we
can proceed as follows. Redefining y as

y → ymax + y, (13)

where ymax is found, for example, from experimental
data, we can recast Eq. (12) into the form

ω +MA =
√

(q′ + y)2 +M2 (14)

+
√

(y − ymax)2 +M2
A−1.

It is clear that, upon this substitution, the value
of y = 0—that is, the maximum of F (y)—will cor-
respond to the maximum of the cross section (max-
imum of the quasielastic peak) at ω = ωmax. The no-
tation q′ = q + ymax is used in Eq. (14). In the last
equality, q′ can formally be treated as the effective
momentum transfer to the nucleon whose final mo-
mentum is p′.

The substitution in (13) and the values of ymax that
were found experimentally from the spectra measured
for q > 400 MeV/cwere used to determine the exper-
imental scaling functions for the 4Не [4] and 12С [5]
nuclei. By moving in the opposite direction and by us-
ing Eq. (10) and the single function F expt(y) for each
nucleus, all of the spectra measured for each of these
nuclei were reconstructed to a high precision in those
studies. A successful description of the experimental
spectra of electrons scattered quasielastically by 4Не
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Fig. 6. As in Fig. 2, but versus the nucleon momentum p corrected by modifying the momentum transfer.
and 12С gave sufficient grounds to conclude that the
formally admissible combination q′ = q + ymax has a
physical meaning and can be interpreted as the actual
change of ymax in the momentum transfer from the
electron to the nucleon upon the escape of the latter
from the nucleus. In a vector form, this statement can
be formulated as follows:

q′ = q + ymaxq/q. (15)

Comparing (15) with (8), we can see that the second
term on the right-hand side of Eq. (15) is analogous
to the addition q∗ in (8); that is,

q∗ = ymaxq/q. (16)

In generalizing this result to (e, e′p) reactions, it
is natural to assume that relations (15) and (16) are
valid in the case of the knockout of nucleons from a
nucleus that have an arbitrary momentum р greater
than or equal to the minimal one (p ≥ pmin). Since the
correction q∗ essentially depends only on the quantity
ymax, whose values can be found at least from exper-
imental data, it is clear that the problem at hand has
become solvable. Thus, we can see that, in interpret-
ing data on (e, e′p) reactions according to relations
(7)–(9), there arises the possibility of determining,
on the basis of the behavior of the maximum of the
quasielastic peak in (e, e′) reactions, the kinematical
correction q∗, with which one will probably be able
to reconstruct the nucleon momentum р within the
nucleus.

The experimental values of ymax that were deter-
mined on the basis of data reported in [7] are dis-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
played in Fig. 5. They describe the smooth depen-
dence of ymax on q and agree fairly well with the results
presented in [4], where it is shown, to a precision
achieved there (in [4]), that the values of ymax can be
treated as those that depend only on the momentum
transfer q. The approximating curve (solid curve in
Fig. 5) enables one to assess ymax(q) over the entire
range of momentum transfers at which the measure-
ments in [2, 3] were performed.

4. We have formulated above the approach to
quasielastic-scattering kinematics on the basis of
Eqs. (7)–(9) for A(e, e′p)(A− 1) exclusive reactions
and on the basis of Eq. (15) for A(e, e′) inclusive
reactions. A crucial further step is to identify the
equalities in (8) and (15), according to which the
quantity q∗ = ymaxq/q (16) is just the momentum
that the particles flying apart in the two reactions
upon the breaking of the bond between them (that
is, at the transition to the mass shell) exchange. The
point is that the momentum q′ in (15) carried away by
a nucleon in (e, e′) reactions can be treated, by virtue
of the cylindrical symmetry of the process with respect
to q, as an effective one in the sense that it is averaged
over the azimuthal angle. But in (e, e′p) reactions,
there is no such averaging since the reaction plane
is fixed by the experimental conditions. Thus, it
follows from the presumed identity of equalities (8)
and (15) that only the disturbing momentum q is
redistributed between the reaction products. This is
a strong statement that requires a test, at least an
experimental one.
2
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Here, we would like to emphasize yet another
point. Since, in the diagrams in Figs. 1а and 3а,
the part that contains the vertex where the nucleus
dissociates into a nucleon and a nuclear residue co-
incides with the part that contains the vertex where
photon absorption occurs, it is natural to assume that
the reaction cross sections in the two approaches
corresponding to the two diagrams must coincide.
This assumption is supported by the fact that (see
above) the experimental cross sections for inclusive
(e, e′) reactions are accurately described (apart from
a modest shift in y) in the plane-wave approximation.
In other words, the redistribution of the momentum
transfer q from the electron in A(e, e′p)(A− 1) and
A(e, e′) reactions is not accompanied by changes in
the cross section.

Leaving aside the possible mechanisms of the re-
distribution of the disturbingmomentum q among the
reaction products, we only state that the diagram in
Fig. 3а represents schematically precisely this situa-
tion.

In this case, the distinction between the ap-
proaches is entirely concentrated in the difference of
the kinematical parameters. In other words, the graph
of the experimental dependence Sexpt(Em, p = pm)
in Fig. 2 (where pm = |p′ − q|) must be recast into
the form of the dependence on the corrected nucleon
momentum p = |p′ − q′|, where q′ is the modified
momentum transfer (15).

The approach developed above makes it possible
to calculate, according to (7) and (15), the corrected
values of the intranuclear-proton momenta. It is as-
sumed that these corrected values must correspond
to the experimental points. Numerical values for this
transition from the momentum pm to the corrected
proton momentum p are given in Tables 1–4 (see
Appendix). The result of this transition is illustrated in
Fig. 6, which displays the same points as in Fig. 2, but
versus p = |p′ − q′|. It can be seen that the situation
improved considerably in relation to what occurs in
Fig. 2. The two branches of experimental points for
q = 250 and 431 MeV/c [2] became matched to-
gether and now describe a smooth unified dependence
Sexpt(Em, p). Almost all points measured at fixed pm

(pm = 30, 90, and 100MeV/c [2, 3]) comply well with
this curve; for some unknown reason, only one point
at p = 185 MeV/c (pm = 190 MeV/c [3]) does not fit
in the observed dependence.

Thus, points that were measured over a wide re-
gion of kinematical conditions and that were obtained
in different studies with different experimental facili-
ties are matched with one another in such a way that
they display a unified dependence S(Em, p) that is
consistent, in the region 20 < p < 190 MeV/c, with
the theoretical prediction based on the single-particle
PH
momentum distribution of protons in the 4Не nu-
cleus (needless to say, this distribution has suffered no
changes, since it is independent of any assumptions
made). Thereby, the hypotheses used as a basis in
our calculations have been justified to a considerable
extent.

Quite unexpectedly, the above modification of the
method for extracting the intranuclear-nucleon mo-
mentum p from reaction kinematics revealed that
the points obtained on the basis of data from [3] at
pm = 30 MeV/c exhibit a trend toward the reduc-
tion of Sexpt values for p < 30 MeV/c. If we believe
that the observed reduction is not a consequence of
some experimental error (which is highly improba-
ble in the opinion of the present author), it implies
either a suppression of the cross section (e.g., as a
result of the final state interaction) or the presence
of a considerable number of nucleons with a nonzero
orbital angular momentum in the 4Не nucleus. Either
possibility calls for an additional investigation.

Summarizing the results of this study, we can say
the following. On the basis of simple and experi-
mentally justifiable assumptions, it has proven to be
possible to develop a method for extracting, from the
kinematics of (e, e′p) reactions, amomentum that can
be interpreted as the momentum of an intranuclear
nucleon. As a result, there has appeared the pos-
sibility of matching, within a unified approach, data
from experimental investigations of the momentum
distribution of nucleons in the 4Не nucleus without
resort to explaining individual groups of experimen-
tal points. Moreover, it has become clear that the
effect of the final-state interaction on the reaction
cross section is much weaker than it was assumed
previously. It follows that, if we take into account
the proposed correction, the plane-wave impulse ap-
proximation becomes quite applicable to describing
(e, e′p) reactions in the momentum-transfer region
250–600 MeV/c.

Our empirical result consisting in that the mo-
mentum transfer in A(e, e′p)(A− 1) and A(e, e′) re-
actions is redistributed when the bond between the
reaction products is broken and in that this redis-
tribution does not affect the reaction cross section
is of fundamental importance for understanding and
interpreting data obtained by studying the aforemen-
tioned and, possibly, other direct reactions that in-
volve systems consisting of a few particles, where
kinematical relations play an important role. At the
same time, the mechanism behind the observed kine-
matical properties has yet to be clarified. Moreover,
further experimental investigations into the region
of intranuclear-nucleon momenta close to zero are
required for disclosing the reasons for the observed
reduction of the momentum density in this region.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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Table 1. Kinematics I [2] (q = 431 MeV/ñ, ymax =
−11 MeV/c)

p′ pm α p p′ pm α p

430 15 1.99 24 423 115 15.44 113

25 3.33 31 125 16.80 122

35 4.66 39 135 18.16 132

45 5.99 48 145 19.52 142

55 7.32 57 155 20.89 152

65 8.66 66 165 22.25 161

427 65 8.67 65 417 155 20.98 151

75 10.02 75 165 22.36 161

85 11.36 84 175 23.75 170

95 12.70 94 185 25.13 180

105 14.05 104 195 26.52 190

115 15.40 113 205 27.92 200

APPENDIX

Here, we are going to present the values of the
kinematical parameters that are required for analyz-
ing experimental data reported in [2, 3]. All these
parameters are compiled in Tables 1–4. All of the
quantities in the tables that have dimensions of mo-
mentum (q, p′, pm, ymax, p) are expressed in MeV/c
units, while the angle α between the vectors q and p′

is given in degrees. The notation for the parameters
is identical to that in the main body of the text: q is
the 3-momentum transfer from the electron, p′ is the
recoil-proton momentum beyond the nucleus, pm is
the momentum of the residual nuclear system, and
ymax is the q projection of the momentum q∗ that
the reaction products exchange in going over to the
mass shell. The values of these parameters are used in
calculating the final result—that is, the momentum p
of the primary proton within the nucleus.

From the outset, we note that, from Figs. 1b and
3b, we can see that, of all the parameters associated
with the electron, only the momentum-transfer value
is of importance for analyzing the kinematics that
is of interest to us. Since the exact values of q, p′,
and α were not presented for each individual point
in kinematics I and II [2], it is only possible in those
cases to make use of the estimated values of q and
p′. An analysis of this situation has revealed that all
uncertainties associated with inaccurate knowledge
of the input parameters q, p′, and α can be com-
pensated by calculating the angle α corresponding
to the estimated values of q and p′ and, additionally,
the individual value of pm. Within this procedure, the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
Table 2. Kinematics II [2] (q = 250 MeV/c, ymax =
−37 MeV/c)

p′ pm α p p′ pm α p

382 115 0* 152 359 235 40.67 241

125 0* 162 245 42.96 250

135 5.25 171 255 45.26 258

145 11.14 178 265 47.55 267

155 15.11 185 275 49.84 275

165 18.43 192 285 52.14 284

376 155 16.93 183 347 275 51.80 273

165 20.01 190 285 54.12 281

175 22.85 198 295 56.45 290

185 25.52 205 305 58.80 299

195 28.09 213 315 61.16 307

205 30.58 221 325 63.55 316

368 195 29.66 211 334 315 63.38 305

205 32.08 219 325 65.81 314

215 34.47 227 345 70.76 332

225 36.82 235

235 39.15 243

245 41.46 252

Table 3. Kinematical parameters at constant pm =
100 MeV/c [2]

Kinematics q p′ α ymax p

A 416 313 0 –21 82

B 538 434 0 –11 93

C 262 361 2.63 –35 135

D 385 484 1.87 –24 124

E 400 308 6.40 –23 79

F 400 380 14.44 –23 95

G 400 442 12.39 –23 109

H 400 498 2.55 –23 123

uncertainty in the extracted value of p proves to be
commensurate with the error in determining ymax, the
estimated value of the latter being ±3 MeV/c.

As such, the method for calculating p is straight-
forward and is clear from Fig. 3b. First, the angle α
between the vectors q and p′ was calculated, where
2
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Table 4. Collinear kinematics (α = 0) [3]

Kinematics q p′ pm Sexp ymax p

1 299 269 30 111± 5.8 −30 0

2 380 350 30 133± 10.7 −22 8

3 421 391 30 150± 8.2 −19 11

4 650 620 30 173± 40.2 −6 24

5 299 389 90 47.3± 2.7 −30 120

6 380 290 90 85.5± 4.8 −22 68

7 544 454.6 90 100± 5.6 −10 80

8 572 482 90 108± 5.7 −9 81

9 650 560 90 107± 5.8 −6 84

10 680 490 190 22.4± 1.3 −5 185

this was possible (see explanations to Table 2), for
each point on the basis of the estimated values of q
and p′ and the value of pm, whereupon the quantity
q′ = q + ymax was found according to (15). After that,
the quantity p was determined, at the resulting value
of α, from the equality

p = |p′ − q′|. (A.1)

In the case of collinear kinematics, where α = 0,
Eq. (A1) reduces to the following simplified equalities
for determining p:

p = |pm − ymax| (q < p′), (A.2)

and

p = |pm + ymax| (q > p′). (A.3)

Table 1 gives kinematical parameters for the data from
[2], which were measured in the orthogonal kinemat-
ics I at the momentum transfer of q = 431 MeV/c.
According to the graph in Fig. 5, the value of ymax =
−11 MeV/c corresponds to this momentum trans-
fer. In Table 1, the first, the second, the third, and
the fourth column present, respectively, the estimated
values of the recorded-proton momentum p′, the val-
ues of the residual-nucleus momentum pm from [2],
the corresponding values of the angle α between the
vectors q and p′, and the values of the nucleon mo-
mentum p in the 4Не nucleus.

From Table 1, it can be seen that, owing to the
comparatively small value of ymax = −11 MeV/c
corresponding to q = 431 MeV/c and owing to the
smallness of α, which corresponds to a nearly right
angle between q and p (or pm), the values of p differ
insignificantly from the values of pm.
PH
Table 2 corresponds to measurements in kinemat-
ics II [2] at the momentum transfer of q = 250 MeV/c
and the value of ymax = −37MeV/c corresponding to
it. The structure of Table 2 is identical to the structure
of Table 1.

In what is concerned with the first two rows in
Table 2 at p′ = 382 MeV/c, the following comment
is in order. The point is that, at the estimated val-
ues of q = 250 MeV/c and p′ = 382 MeV/c and the
above values of pm = 115 and 125 MeV/ñ, the vector
diagram of the momenta cannot be closed (for the
reasons indicated above) at any value of α, since p′ >
pm + q, the difference of the right-hand and the left-
hand side of the inequality being 17 MeV/c at the
first point. In this situation, α was set to zero (in
Table 2, these values were labeled with an asterisk),
and p was determined from Eq. (A.2), without using
the values of q and p′, which are not matched with pm.
From Fig. 6, it can be seen that this procedure did not
lead to inconsistencies between the first two and the
remaining points associated with kinematics II.

Since the measurements in kinematics II were
performed at a sizably lower momentum transfer (ac-
cordingly, ymax = −37 MeV/c), the distinctions be-
tween the values of p and pm that are presented in
Table 2 are more pronounced than in Table 1.

Data in Table 3 correspond to the measurements
under the kinematical conditions A–H [2] at pm =
100 MeV/c. The first, the second, and the third col-
umn of the table display, respectively, the notation for
kinematics, the estimated values of the momentum
transfer q, and the estimated value of the recorded-
proton momentum p′ [2]. The fourth, the fifth, and
the six column give, respectively, the values of the
angle α between the vectors q and p′, the values of
ymax corresponding to q, and the values of the nucleon
momentum p in the 4Не nucleus.

Table 4 presents the values of the kinematical
parameters corresponding to the conditions of the
measurements that were reported in [3] and which
were performed in collinear kinematics (α = 0). The
labels of the kinematical conditions in the first column
of this table correspond to the labels in Table 2 in [3],
with the only exception of kinematics 10, which has
label 11 in [3]. The parameters q, p′, pm, ymax, and
p included in Table 4 (columns 2–4, 6, and 7) have
already appeared in the preceding tables; therefore,
they require no special comment.

In what is concerned with the fifth column in Ta-
ble 4, it is worthwhile to note the following. In [3],
the values of the spectral function were presented
separately for the transverse and for the longitudinal
component of the cross section (6) (Sexpt

L and Sexpt
T ,

respectively). If the values of Sexpt
L (Sexpt

T ) are plotted
YSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002
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on a graph like that in Fig. 2 or in Fig. 6, they will
prove to be systematically underestimated (overesti-
mated) in relation to the data from [2], which were ob-
tained without a separation into the longitudinal and
the transverse component. This is because the values
of Sexpt

T proved to be, for some reasons that have re-
mained unknown to date, 30–40% greater (this is far
beyond the corridor of the experimental errors) than
the values of Sexpt

L . By the way, a similar distinction
was also observed between the longitudinal [FL(y)]
and the transverse [FT (y)] scaling function measured
in inclusive A(e, e′) reactions—in particular, in the
reaction 4Не(e, e′) [7]. In order to avoid this underes-
timation (overestimation) and to have the possibility
of directly comparing the results from [3] with those
from [2], it was decided that it would be advisable
to take, from [3], the experimental cross sections of
the form (6) that were measured at forward electron-
scattering angles (see Table 3 in [3]) that were close
to those at which the measurements were performed
in [2] and to calculate, on the basis of these data,
the unseparated values of the spectral function Sexpt.
The resulting values of Sexpt in (GeV/c)−3 units are
given in the fifth column of Table 4. In extracting the
values of the unseparated spectral function Sexpt from
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
the experimental cross sections according to Eq. (6),
the cross section σcc1 [8] for electron scattering on
a nucleon occurring off the mass shell was taken for
σep, in just the same way as in [2, 3]. It is precisely
these values of Sexpt(p) that were plotted in Figs. 2
and 6.
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On October 20, 1927, the article “World Con-
stants and Limiting Transition” [1] of Georgii Anto-
novich Gamow (1904–1968), Dmitrii Dmitrievich
Ivanenko (1904–1994), and Lev Davidovich Landau
(1908–1968) was submitted to the journal Zhurnal
Russkogo Fiziko-Khimicheskogo Obshchestva
pri Leningradskom Universitete: Chast’ Fizika
(Journal of the Russian Physicochemical Society
at the Leningrad University: Section Physics) (the
table of contents of the journal also contained the
German title of the article: “Über die Weltkonstanten
und den Grenzübergang”). The article was written
as a humorous present to a female student that the
three young friends courted (shortly before Ivanenko
passed away, I had asked him, in a telephone con-
versation, about the history of creation of the article;
however, he could not, or he did not want to, recall
the name of that student). In the following years, the
paths of the authors parted, but none of them had ever
referred to the article in question in his subsequent
publications; nor was it included in the collection of
Landau’s works in two volumes [2]. The initials of
Mr. Tompkins, a hero of some science fiction books
written by Gamow, were the only trace that the world
constants c,G, and h had left in the legacy of Gamow.

But the article, which the authors themselves con-
sidered as a trifle, contained quite serious ideas that
had profound historical roots, ideas that had a strong
impact on the development of fundamental physics
and which have been hotly debated in the community
of professional theoretical physicists to date.

George Johnston Stoney (1826–1911), a famous
Irish physicist, who had been Secretary of the Irish
Royal Society for many years, was the first to indicate

*e-mail: okun@heron.itep.ru
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the importance of world constants. He coined the
term “electron,” introduced it in physics, and mea-
sured the magnitude of the elementary electric charge
e. By using this quantity and the known values of the
speed of light c and of the gravitational constant G,
Stoney proposed [3] natural units of length, time, and
mass (that is, those that are given by nature itself):

lS = e
√
G/c2, tS = e

√
G/c3, and

mS = e/
√
G.

The expression for mS was obtained by equating the
Coulomb and the Newtonian potential:

e2

r
= G

m2
S

r
.

The expression for lS was derived on the basis of
dimensional considerations by equating the so-called
“maximum kinetic energy” mSc

2 and the Coulomb
energy e2/lS. As to tS, it is obviously equal to lS/c.
It is interesting to note that the expression for energy
in the form mc2 had appeared long before the advent
of the theory of relativity (as a matter of fact, it was
implicitly present in the discussion of black holes by
Laplace [4]).

On discovering, in 1899, the constant h1), Max
Planck (later on, this constant was named after him)
introduced [5] four natural world units for length,
time, mass, and temperature. In the present-day no-
tation, they are given by

lP = �/(mPc), tP = �/(mPc
2), mP =

√
�c/G,

TP = mPc
2/k.

1)In the following, we will use � = h/2π.
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Here, k is the known Boltzmann constant,

k � 8.6 × 10−5 eV/K,

K being a Kelvin degree.
In all probability, Planck was unaware of Stoney’s

units, which, as can easily be verified, differ from
Planck’s units by a factor

√
α, where α = e2/(�c) �

1/137. A. Eddington [6] was a steadfast partisan
of Planck’s units. On the contrary, P. Bridgman [7]
deemed that these units have nothing to do with
the physics of real world. A further development of
physics has revealed that it was Eddington who was
right.

In [1], the authors of the article return from
Planck’s units to the universal world constants c, G,
and � and discuss the logical structure of a future
theory in terms of these constants. The ideas of
Gamow, Ivanenko, and Landau were adopted and
developed in a number of studies by their friend
Matvei Petrovich Bronshtein (1906–1938), who was
executed during the years of Stalin’s repressions.
Bronshtein represented his classification of physical
theories in a graphical form on a plane [8–10]. His
graphical representation was similar to the develop-
ment of a cube. For the first time, the spatial picture of
such a cube was given by A. Zel’manov [11, 12] and
was discussed by G. Gorelik [13] and by the present
author [14].

If c (more precisely, 1/c), �, and G are plotted
along three orthogonal axes, the vertices at (000),
(c00), (0�0), (c�0), and (c0G) can be associated with,
respectively, nonrelativistic mechanics, the special
theory of relativity, nonrelativistic quantum mechan-
ics, quantum field theory, and the general theory
of relativity. The c�G vertex, which corresponds to
relativistic quantum gravity, is of greatest interest.
It is the realm that attracts the attention of those
numerous theoretical physicists who try to construct
the so-called theory of everything (TOE). They hope
that, within such a theory, they would be able to
develop a fundamental approach to superstrings and
to calculate many fundamental parameters of the
Standard Model (such as gauge coupling constants
like α and ratios of the lepton and quark masses; see,
for example, [15, 16]).

In recent years, Jurg Martin Frölich, a renowned
German theoretical physicist, independently arrived
at the idea of a cube. He put forth his consideration
in the lecture that he delivered on the occasion of the
investiture of him with the Max Planck medal [17].
In contrast to the aforementioned studies, Frölich
supplements the cube of theories with the fourth di-
mension (for the Boltzmann constant k) and refers to
the resulting construction as Planck’s hypercube. It
is the opinion of the present author that, in modern
physics, the status of k differs drastically from the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 200
status of c, �, or the Planck mass. According to
statistical mechanics, temperature is themean energy
of an ensemble of particles. Therefore, k is the factor of
rescaling from electronvolt or Joule units into Kelvin
degrees. Needless to say, c, G, and � also play the
role of scaling factors, but this role is of secondary
importance for them. Themain role of c is that it is the
limiting velocity of signal propagation in a vacuum.
When the velocity of a particle is close to c, its behav-
ior is governed by the special theory of relativity. The
role of the quantum � of action or angular momentum
is that, when these quantities are close to �, quantum
mechanics comes into play. At an energy of order
mPc

2, quantum relativistic effects in gravity become
significant. As to k, there is no physical quantity of
dimension k such for which k would be a critical
value. Planck included k in the set of four fundamental
constants since it appears in the ratio �ω/kT on equal
terms with � and since neither quantum mechanics
nor the theory of relativity was known a century ago.

In conclusion, I would like to dwell upon yet an-
other important point associated with the article by
Gamow, Ivanenko, and Landau. The reader that has
deeply thought over its content would have never
agreed with the point of view according to which the
international system of units SI [18–21] must serve
as a basis for teaching physics (see critical comments
on this system in [22–24]).
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KEY PROBLEMS IN FUNDAMENTAL PHYSICS
World Constants and Limiting Transition*

G. Gamow, D. Ivanenko, and L. Landau
§ 1. In constructing a system of units in physics,
there exist two basic methods for choosing units of
any new quantity:
(i) One merely specifies an arbitrary standard of

measure (this is the way in which one introduces the
usual definitions of, say, gram or ohm).
(ii) By employing some law—we denote it by A—

that relates the quantity in question to those that are
known and which involves a numerical coefficient,
one chooses a satndard in such a way as to reduce this
coefficient to unity (this is exemplified by the definition
of a charge unit in terms of the Coulomb law).
Technical difficulties apart, one can always make

use of either method of the above two.1) In the first
case, we have a new arbitrary satndard; that is, we
increase the number of units forming the basis of
the theory of dimensions. Moreover, the coefficient in
the law A then takes a specific numerical value that
appears to be a new world constant.
In the second case, both the number of basic arbi-

trary standard and the number of world constants re-
main unchanged; for measuring the quantity in ques-
tion, we only obtain a unit that is natural with respect
to preceding ones. This unit will change in response
to changes in basic standard. The character of this
variation is studied within a dimensional analysis that
introduces the concept of dimensions of a given phys-
ical quantity.
Constants of zero dimensions are independent of

the choice of basis units and can therefore be treated
as mathematical constants (numbers). One can hope
that all these numerical constants can be obtained
theoretically. Within a given system of dimensions,
world constants from which one can compose a com-
bination of zero dimension must therefore obey a
mathematical relation, so that they are not indepen-
dent.
From the aforesaid, it follows that we can always

reduce the number of basic standard (number of di-
mensions) using one of the world constants for this
and setting it to unity. Below, this process, which is

∗Translated from the Journal of Russian Physicochemical So-
ciety, Ser. Phys., LX, 13 (1928).

1)Of course, this is so if there is a law that relates the new
quantity being considered to some known previously.
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equivalent to going over from the first definition to the
second one, will be referred to as a reduction.
For a complete reduction (that is, a reduction to

the number of standard that is equal to zero) to be
possible, it is necessary that the number of indepen-
dent constants not be less than the number of dimen-
sions forming the basis of the system of units being
considered. Obviously, the number of independent
constants cannot be greater than the number of basic
independent basic units in our system of dimensions.
For example, only the reduction to two units was

possible in Newtonian mechanics, since, in the pres-
ence of three basic dimensions of T , L, andM , there
was only one law featuring a world constant; that is,

f = χ
mm′

r2
.

A second constant, which enables a reduction to one
dimension is introduced by the special theory of rela-
tivity via the relation

xi = ict.

Finally, the last missing constant h appears in the
framework of quantum mechanics:

ϕ =
2πW
h

(this is the expression for the phase ϕ in terms of the
actionW ).
Usually, we are dealing with the case where the

number of constants known from experiments and
not yet reduced to a smaller number by establish-
ing mathematical relations is much greater than the
adopted number of basic units. In this case, it is
advisable to choose the most general constants for
performing complete reduction.
The quartic system CGS1◦ is employed in mod-

ern experimental physics. In technologies, however,
practical considerations dictate the use of a much
greater number of standards (cm, g, s, 1◦, Ω, A, . . . );
there, one adopts some CGS1◦Ω . . . system.
Yet another example of choosing a basic system is

provided by Planck’s natural system of units (c, χ, h,
k).
§ 2. We have seen above that each constant is

a representative of a physical law (theory), a world
2002 MAIK “Nauka/Interperiodica”



1374 GAMOW et al.
constant symbolizing the generality of a law. More
universal constants correspond to more general laws
(theories)—to illustrate, one can compare the Ryd-
berg constant with the Planck constant �. The in-
troduction of new constants and their reduction to
a smaller number were reflected in the history of
physics as a changeover of theories and their gradual
unification.2) By way of example, we can indicate the
introduction of the constant � and the reduction of the
Rydberg constant. Fixing the number of dimensions
as above, we thereby constrain the number of genuine
constants: among the available constants, we take
n ones (n is equal to the number of dimensions)
for basic ones, reducing the remaining to genuine
(that is, independent) ones. From the point of view
of reduction, it obviously does not matter which con-
stants are taken for basic ones. Here, however, we are
guided by two heuristic principles. The first of these
is that which is based on the degree of generality of
the theory that these constants represent: it is nat-
ural to reduce the Rydberg constant to the Planck
constant, but not vice versa, because the theory of
atomic spectra is obviously of lower order with respect
to the general theory of atoms. The other principle
tests a constant for a limiting transition (see below).
By way of example, we will trace the history of the
constant h (that is, the development of the quantum
theory from the point of view of the introduction of
this constant). Classical mechanics and electrody-
namics can be considered as an initial stage. Bohr’s
theory (old quantum mechanics) introduced h as an
empirical constant in its equations, pursuing only ad
hoc purposes: h symbolized discontinuity, jumps, etc.
Only in Schrödinger–Heisenberg wave mechanics
did h appear quite naturally as a constant associated
with dimension. No requirements of discontinuity are
introduced, and the empirical significance of h is clar-
ified only a posteriori. We are inclined to deem the
theory of the constant h completed. Imagine a com-
pleted (!) physics. We will construct it on the basis
of n dimensions; there will obviously remain n world
constants in it that appear in a natural way—that
is, as mere dimensional rather than empirical coeffi-
cients. All extra constants will be reduced. As to the
world constants in question, we can set them to unity
according to the proposal of Planck, whereby we go
over to physics without dimensions. Let us construct
a physics system that is in a limiting relation to the
above completed physics. To do this, we apply the
limiting-transition method, making the world con-
stant in question tend to zero (of course, such a con-
stant must first be introduced if it was initially equal to

2)In a sense, one can associate each new law with a new
irreducible constant, introducing the corresponding new di-
mension.
P

unity). The theory obtained via this limiting transition
will be referred to as a classical theory with respect
to the world constant being considered. For example,
conventional mechanics is classical with respect to
h, while wave mechanics is completed in the above
sense; as to Bohr’s theory, with its h introduced in
an ad hoc manner, it can be called a vulgar theory. In
the same way, the theory of relativity is a completed
theory with respect to 1/c (1/c appears in the metric
as a dimensional coefficient); for a limiting theory,
we have here conventional mechanics, as in the pre-
ceding case, and nonrelativistic quantum mechanics.
It should be emphasized that, for a genuinely basic
constant in the sense of the limiting transition, we
have here 1/c rather than c, since it is the former that
is made to tend to zero. As to theories that are vulgar
with respect to 1/c, these include a number of pre-
relativistic formulations of electrodynamics. Further,
geometric optics is a classical theory with respect
to the constant of wavelength (λ0 → 0), while wave
optics is a completed theory. From this point of view,
the Fresnel theory of diffraction is a vulgar theory.
On the basis of this method, we can construct new
classical theories by introducing new constants and
making them tend to zero. Such classical theories can
be doubly, triply, etc., limiting ones (rank of a classi-
cal theory). For example, conventional mechanics is
triply limiting—with respect to quantum theory, the
special theory of relativity, and the theory of grav-
ity (the corresponding constants are h, 1/c, and χ).
Since a combination of constants is also a constant,
there arises the question of elementary constants.
We have seen that a normal course of the develop-

ment of a theory was from a limiting through a vul-
gar to a completed one. Having constructed parallel
schemes, we notice gaps—some theories skipped a
“vulgar” period, while, in the history of others, there
were no limiting case. Historically, we have the L,
M , T system of dimensions (temperature apart) and,
hence, three genuine world constants. According to
the aforesaid, the choice of the three dimensions was
accidental from the lofty point of view; as to the choice
of “genuine” constants, we may heuristically follow
the generality of theories and the limiting-transition
principle. From both points of view, one is led to adopt
h, 1/c, and χ for “genuine” constants (all three of
them represent the most advanced theories, and all
three meet the limiting-transition test).
§ 3. If, following the aforesaid, we lay the basic

constants h, 1/c, and χ in the foundation of the
theory of dimensions, we can obtain “natural units”
for all other physical quantities, including mass and
electric charge. The charge and mass units deduced
in this way do not coincide with “elementary” val-
ues obtained for these quantities experimentally (the
charges and masses of the electron and of the proton).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 7 2002



WORLD CONSTANTS 1375
However, this coincidence could hardly be ex-
pected because the mass of the electron differs from
the mass of the proton—it would have been strange if
one of them had proved to be a basic one.
The only thing that is natural to expect is that

either of these masses will be expressed, in one way
or another, in terms of the “natural unit” of mass. The
origin of two mass values (m+, m−) may be that the
equation from which they will be determined has two
different roots corresponding to two charge values
(+e, −e).
Not yet having the theory of the electron at our

disposal, we may deduce, however, some conclusions
about the character of this theory from a dimensional
analysis. Let us find the dimensions of charge and
mass in terms of our basic dimensions [h], [1/c], and
[χ]. After some simple algebra, we obtain

[e] =
√

[h] · [c]; [m] =

√
[h] · [c]

[χ]
;
[ e
m

]
=
√

[χ]

or

e = λ
√
h · c; m = ν

√
hc

χ
,

where λ and ν are numerical constants that are differ-
ent for the proton and for the electron. (It is obvious
that λ− = −λ+.)
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The above formulas for the dimensions may also
furnish valuable guidelines in constructing the theory
of the electron on the basis of an incomplete system
of theoretical physics where some world constants are
set to zero.

It can easily be seen that the only incomplete
system leading to finite values of charge and mass is

{
h = 0;

1
c

= 0; χ �= 0
}

;

that is, this is a nonquantum, nonrelativistic, gravi-
tating electron. In this case, the electron charge be-
comes a new world constant.

As to other incomplete systems, they lead to indef-
initely small (or indefinitely large) charges or masses.
In particular, frequent attempts at constructing a the-
ory of a nonquantum electron in the general theory of
relativity cannot be successful (h = 0, c �=∞, χ �= 0,
whence it follows that e = m = 0).

Leningrad.
October 20, 1927

Translated by A. Isaakyan
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