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Abstract—The intensities of the transitions to the ground-state and the first excited level of 201Hg in 201Tl
decay and the values of the constant log ft are estimated on the basis of an analysis of the relative intensities
of the mercuryM4N6,7N6,7 Auger electron line induced by ε capture and the mercury conversion O3 line
caused by the 1.56-keV nuclear transition. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Four low-lying excited levels in the daughter nu-
cleus 201Hgwere revealed experimentally in the decay
201Tl ε−→ 201Hg [1, 2]. The results of previous studies
can be found in the articles quoted in the list of ref-
erences in [3]. The first excited level has an excitation
energy of about 1.56 keV. The properties of the transi-
tion in the 201Hg nucleus from the first excited to the
ground state were explored in [4], where the values
of 1564.8 ± 1.0 eV and δ2γ(E2/M1) = (2.10+0.55

−0.40) ×
10−4 were obtained for the energy of the transition to
the ground state and themultipole-mixing parameter,
respectively. A close proximity of the first excited level
to the ground state generates difficulties in assessing
their population in the decay process. At present, only
data on the sum of the intensities of the transitions to
these two levels are available. It is (43 ± 2)% [3].

By using the relative intensities of the mercury
conversion O3 line (caused by the 1.56-keV nuclear
transition in the daughter nucleus 201Hg) and the
mercuryM4N6,7N6,7 Auger electron line (initiated in
the ε-capture process), we were able here to obtain
information needed for extracting data for estimating
the intensities of the transitions to the first excited and
the ground-state level of 201Hg in the decay of the
parent nucleus 201Tl.

2. DESCRIPTION OF THE EXPERIMENT

The spectrum-measuring apparatus and the pro-
cedures used to prepare samples, perform measure-
ments, and process experimental data were similar to
those described in [4]. The electron spectra were mea-
sured by a Hewlett–Packard HP5950A electrostatic
x-ray-electron spectrometer [5]. The instrument is
intended for measuring the spectra of electrons ex-
cited in the sample under study by the photoeffect
process induced by the monochromatic 1486.6-eV
1063-7788/02/6508-1377$22.00 c©
Al Kα1,2 radiation. The parameters of the HP5950A
spectrometer suit the investigation of the conversion
spectra of soft nuclear transitions (up to 3 keV). At
the radioactive-source dimensions of 1 × 5 mm2, the
spectrometer resolution estimated by the experimen-
tal conversion spectra is about 1.1 eV in the mode of
conversion measurements.

The calibration of the scale of electron kinetic
energies (with respect to the vacuum level for the
sample) was performed according to the expression

Ei = 1486.6 eV− εi + ∆Ei − ϕs, (1)

where 1486.6 eV is the energy of Al x-ray Kα1,2

photons, εi is the electron binding energy in the ith
subshell with respect to the Fermi level, ∆Ei is the
experimental difference of the kinetic energies of the
conversion and x-ray-electron lines corresponding to
the ith subshell, and φs is the work function for elec-
tron emission from the sample. The value of φs was
assumed to be equal to 4.0 eV.

In measuring the conversion and Auger electron
spectra, it is necessary to fix the sample position. In
practice, the sample position was made to be coinci-
dent with the standard position of the x-ray-irradiated
square (1 × 5 mm2) in the x-ray-electron mode of
instrument operation, and the fixing of this position
ensured a precision, in measuring the relative position
of intense lines, not poorer than 0.2 eV. Throughout
the measurements, the calibration of the instrument
energy scale was monitored by the position of the x-
ray-electron C1s line of the oil vapors of a rough-
vacuum pump, which were sorbed on the sample
surface, and by the x-ray-electron lines of substrate
platinum, as well as by the valence-zone edge (Fermi
level).

The 201Tl isotope (supplied by the Izotop com-
pany) in the form of awater solution of its chloride was
used to prepare the working sample. The total amount
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectrum of lines of conversion electrons of the mercury O3 subshell and mercuryM4N6,7N6,7 Auger electrons per
single energy window. The thick solid lines represent fits obtained by the maximum-likelihood method. The dashed lines
illustrate the behavior of the background under the peaks.
of provided activity was 3600 MBq. Radionuclide ad-
mixtures in the solution, like 200Tl, 202Tl, and 203Pb,
had virtually no effect on the results of the measure-
ments, since there are no low-energy transitions in
their decay chains. The admixtures can influence the
chemical state of the sample and reduce the rate of
spectrum taking because of a decrease in the partial
density of the 201Tl isotope in the sample volume.

The working sample was prepared by means of
201Tl electrolytic deposition from the solution onto
the platinum substrate. This method appeared to be
successful in similar studies with the 99mTc isomer
(see [6–8]). It ensures the accumulation of the de-
posited substance on the substrate; its purification
from admixtures, which were contained in the original
product; and its uniform distribution over the sub-
strate in accordance with the requested geometry. The
actual amount of the substance deposited on the sub-
strate is between a few tens of nanograms and a few
micrograms. Therefore, it is necessary to monitor the
chemical purity of the equipment and the reagents.

The electrolytic cell was a polytetrafluoroethylene
(PTFE) cylinder with sealing rings. It was 3.5 cm
high, and its inner diameter was 1.5 cm. The working
sample was covered with a PTFE mask having a
window of required size cut in it (1× 5 mm2) and was
fastened in the lower part of the cylinder by means
of a clamping ring. Electrolysis was performed in
three steps. The first two steps were used to purify
the original solution, and only at the third step was
P

electrolysis performed onto the working substrate.
The external voltage applied to the cell was varied
between 10 and 20 V. A single electrolysis step took
approximately one hour. The thallium content in the
electrolyte and on the substrate and thallium losses
were monitored by γ radiation with a dose meter. At
all stages of the work, measures were taken to reduce
the possible contamination of the prepared sample by
admixtures. The activity of the prepared samples was
about 300 MBq.

The spectra were processed by using the SPRO
code [9].

3. RESULTS AND DISCUSSION

The procedure used to determine the intensities of
the transitions to the 201Hg ground-state and first ex-
cited levels in decay 201Tl ε−→ 201Hgwas based on the
concurrent detection of the mercury conversion O3

line (caused by the 1.56-keV nuclear transition in the
daughter nucleus 201Hg) and mercury M4N6,7N6,7

Auger electron line (induced by the ε-capture process
and subsequent fluorescent transitions). This proce-
dure relates the intensity of the M4N6,7N6,7 line of
mercury Auger electrons to the intensity of the decays
of the parent nucleus 201Tl, on one hand, and to
the intensity of the 1.56-keV conversion transition in
201Hg, on the other hand.

Figure 1 shows the electron spectrum of the
lines of the O3-subshell conversion electrons and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 1. Probability of the observedM4N6,7N6,7 Auger transition with respect to conversion in the O3

I(M4N6,7N6,7)/I(O3) χ ω(M4N6,7N6,7)/ω(O3)

0.86 ± 0.24 0.718± 0.171 0.62 ± 0.23
M4N6,7N6,7 Auger electrons obtained in a single
energy window. The curves fitted to the experimental
data (thick solid lines in Fig. 1) were obtained by the
maximum-likelihood method with the SPRO code
[9]. The above lines were chosen for the following
reason. On one hand, theM4N6,7N6,7 Auger electron
line is one of the most intense Auger electron lines of
mercury within the energy range of our instrument; on
the other hand, this line is located off the energy range
of cascade Auger processes and is the most distinct
in the electron spectrum. The mercury conversion O3

line in the electron spectrum is sufficiently intense
for performing a quantitative analysis and is closer
in kinetic energy to the mercury M4N6,7N6,7 Auger
electron line than other lines. Owing to the latter, both
lines can be recorded within a single energy window.

The conversion O3 line was identified by using
the tabular x-ray-electron data from [10] and the re-
sults of our measurements of reference samples. The
M4N6,7N6,7 Auger electron line was identified by the
tabular theoretical and experimental data on Auger
transitions from [11, 12].

The first column of Table 1 presents the intensity of
the observed Auger electron line with respect to the
conversion line. In order to go over from the relative
line intensities to the experimental relative probabil-
ities of the processes, it is necessary to introduce
some corrections associated with the spectrometer
transmission and the elastic and inelastic scattering
of electrons in the substrate (in the layer of the ra-
dioactive source deposited by electrolysis and in the
substrate material) and in the sorbed surface layer
of hydrocarbons and oxygen. It is difficult and am-
biguous to take into account these corrections if they
are introduced directly as an overall quantity, since
their values are affected by the effective thickness of
the prepared source of conversion electrons and by
the thickness of the sorbed layer, these thicknesses
being unknown to the required precision. Therefore, a
dedicated approach was developed here for introduc-
ing such corrections. Let us find the total value of all
corrections in the following manner. As follows from
the results that our group obtained in [4] by studying
the spectrum of conversion electrons of the 1.56-
keV nuclear transition in 201Hg [4], I(O2)/I(N2) =
0.247 ± 0.051 for the relative intensities in theO2 and
N2 subshells. Using the relation

ω(O2)
ω(N2)

=
I(O2)
I(N2)

χ(∆E), (2)
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where ω is the theoretical value of the conversion
probability in the corresponding subshell and χ(∆)
is the correction factor, which, to a first approxi-
mation, depends on the difference ∆E of the ki-
netic energies of electrons of two subshells (∆E =
597.1 eV for the O2 and N2 subshells [10]), and tak-
ing into account the theoretical internal-conversion
coefficients for the subshells in question, we obtain
χ(597.1 eV) = 0.745 ± 0.154 [13]. Using this value
and considering that χ(0) = 1, we introduce the cor-
rection factor for the ratio of the intensities of the
M4N6,7N6,7 Auger electron line and the conversion
O3 line by the linear-extrapolation method (the use
of an exponential extrapolation leads to nearly identi-
cal results). Taking into account the value of ∆E =
660.1 eV (the difference of the kinetic energies of
theM4N6,7N6,7 Auger electrons and conversion elec-
trons of theO3 subshell), we obtain the relative prob-
ability of these processes (Table 1). Here, we assume
that the behavior of χ(∆E) does not change in re-
sponse to a shift of 700 eV toward higher kinetic
energies of electrons.

Let us now estimate the number of holes produced
in the mercury M4 subshell per 100 decays of 201Tl.
In doing this, we must take into account only those
cases of hole production in theM4 subshell in which
there are no holes in other subshells, because, in the
presence of additional holes, the Auger electron lines
are shifted and smeared over a wide region. The pro-
duction of a single hole in theM4 subshell is due pri-
marily to electron capture from theK and L subshells
and internal conversion in these subshells that is fol-
lowed by fluorescent transitions involving the emis-
sion of x-ray photons. The remaining processes that
also lead to hole production in theM4 subshell have a
low probability and are insignificant. The production
of holes through internal conversion in deep subshells
can easily be estimated if the nuclear-transition en-
ergies and multipole-mixing parameters are known,
along with the populations of three high-lying 201Hg
levels (with respect to the first excited level) [3], and if
the tables of internal-conversion coefficients [14] are
used. The number of holes produced upon ε capture is
determined by using the electron-capture tables from
[15] and the energy properties of the decay 201Tl ε−→
201Hg [3]. Further, we find the number of holes in the
M4 subshell per 100 decays of the parent nucleus by
using the available tables of the fluorescent yields and
the probabilities of radiative transitions (see [16]). The
2
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Table 2.Number of holes formed in the subshells of a 201Hg atom per 100 decays of the parent nucleus 201Tl

Subshell N0 Transition N1 Transition
∑
N(M4)

K 97.28
K– L2(0.275)∗

9.48
K–L3(0.463)

L2 3.42 30.17 L2– M4(0.276)

L3 ∼ 0.2 45.24 L3– M4(0.0255)

Note: Here, N0 is the total number of primary holes produced as the result of electron capture and subsequent internal conversion in
deep inner subshells; N l is the number of holes in the L subshells with allowance for fluorescent transitions;

∑
N(M4) is the total

number of holes in theM4 subshell; an asterisk labels the type of fluorescent transition; and the values in parentheses stand for the
probability of the decay of a single hole through the channel of the indicated fluorescent transition.
second column of Table 2 presents the total numbers
of holes produced in themercury subshells both as the
result of electron capture and as the result of subse-
quent conversion. The types of fluorescent transitions
and their probabilities in the total number of decays
of primary holes are given in the third and the fifth
columns, respectively. The fourth and the last column
display, respectively, the total numbers of holes in
various subshells upon the corresponding fluorescent
transitions and the total number of holes in the M4

subshell per 100 201Tl decays. Table 2 gives the num-
bers of holes only in those mercury subshells from
which there occur fluorescent transitions making a
noticeable contribution to hole production in the M4

subshell. It is precisely for this reason that the L1

subshell is not indicated in Table 2. Finally, we have
found that 9.48 holes are produced in theM4 subshell
of mercury per 100 decays of the parent nucleus 201Tl.

It should be noted that, according to our analy-
sis, ε capture produces many more holes in the M4

subshell than internal conversion does. Moreover, it
follows from the theoretical calculations presented in
[17] and from a series of experimental studies [18–
20] that the kinetic energy of Auger electrons ini-
tiated in the ε-capture process is 7–15 eV greater
than the kinetic energy of electrons caused by the
internal-conversion process. This is because of the
presence of an “extra” electron in the valence shell
of the daughter atom upon ε capture (the time of
Auger electron cascades is much less than the time
it takes for an extra electron to leave the daughter
atom). Thus, themercuryM4N6,7N6,7 Auger electron
line initiated by conversion falls within the region of
inelastic losses and processes of multiple ionization
for the Auger electrons of theM4N6,7N6,7 line caused
by ε capture, the former line being separated from the
latter in energy.

Let us proceed to determine the intensities of the
transitions to the 1.56-keV level in 201Tl decays. For
this purpose, we consider that, according to [21], the
PH
filling of holes in the M4 subshell occurs through
the M4N6,7N6,7 Auger transition with a probability
of 33.6% of the total number of hole decays in the
M4 subshell. The ratio of the probability of the total
conversion of the 1.56-keV nuclear transition to the
conversion probability in the mercuryO3 subshell can
be straightforwardly assessed by using the theoreti-
cal values of the internal-conversion coefficients from
[13] and the value of the multipole-mixing parameter
for this transition (δ2γ(E2/M1) = 2.10 × 10−4) from
[4]. The ratio of the probabilities is 15.943. Now, we
have the entire body of information needed for obtain-
ing the intensities of the transitions to the first excited
level in 201Hg. For this purpose, we use the expression

Iε (1.56 keV ) = 9.48K (3)

× 0.336
ω(O3)

ω(M4N6,7N6,7)

∑
ωe

ω(O3)
− 12.9,

where Iε is the intensity of the transitions to the
1.56-keV level (per 100 201Tl decays); 9.48 is the
total number of holes produced in the M4 subshell
per 100 201Tl decays due to both ε capture and in-
ternal conversion in lower lying subshells; K is the
correction coefficient equal to the fraction of vacan-
cies produced in the M4 subshell due to ε capture
(K = 0.729); 0.336 is the fraction of those decays
of vacancies in the M4 subshell that are associated
with theM4N6,7N6,7 Auger electron line; the next two
factors represent, respectively, the relation between
the probabilities of conversion in the O3 subshell and
the observed M4N6,7N6,7 Auger transition and the
relation between total conversion and conversion in
the O3 subshell; and 12.9 is the number of transitions
to the 1.56-keV level from higher lying levels in the
201Hg nucleus [3].

In order to calculate the uncertainty in the total
number of holes in the M4 subshell, we took into
account the uncertainty in the production of primary
holes via ε capture and subsequent fluorescent tran-
sitions. In determining the total uncertainty in the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 2. Section of the 201Tl
ε−→ 201Hg decay scheme, along with the values of nuclear features. The quoted intensities are

those per 100 decays of the parent nucleus 201Tl.
intensity of the transitions, we took into account the
uncertainty in each factor in expression (3).

We have obtained Iε(1.56 keV) = 46.8± 22.7 (per
100 primary decays of 201Tl). Using this intensity of
201Tl decays to the first excited level of 201Hg and
the tabular data from [15], we find for the constant
log ft that log ft = 6.45−0.21

+0.32. As was mentioned in
the Introduction, only data on the total intensity of
the transitions to the ground-state and first-excited
levels of 201Hg are available at present. According
to [3], it is (43 ± 2)%, which is less than the value
that we obtained for the intensity of the transitions to
the first excited level of 201Hg. Using the value of the
total intensity of the transitions to the ground-state
and first-excited levels (with allowance for the uncer-
tainty indicated in [3]) and our value of the intensity
of the transitions to the first-excited level (with the
uncertainty indicated above), we can obtain an upper
limit on the intensity of the transitions to the 201Hg
ground-state level in the decay and a lower limit on
the constant log ft. These are Iε(0.0 keV) < 20.9 per
100 201Tl decays and log ft > 6.80.

Figure 2 shows a section of the 201Tl decay
scheme, along with the transition energies and the
multipole-mixing parameters obtained previously in
[4]. Also given in this figure are the estimates obtained
here for the intensities of the transitions to the first
excited and the ground-state level and for log ft.

The nuclear data obtained in the present study
supplement our knowledge of the decay 201Tl ε−→
201Hg.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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NUCLEI
Experiment
Cross Sections for 209Bi, 232Th, 235U, 238U, and 237Np Fission Induced
by Intermediate-Energy Protons and Deuterons
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Abstract—The cross sections for 209Bi, 232Th, 235U, 238U, and 237Np fission induced by protons of energy
in the range 1.0–3.7 GeV and by deuterons of energy 1.0 GeV were measured. The results are compared
with data from other experiments, with available estimates, and with the predictions of theoretical models.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The fission reaction is one of the main channels
of inelastic hadron interaction with extremely light
nuclei in the energy range 0.1–10 GeV. Despite the
long history of experimental and theoretical investi-
gations into the fission process, the problem of ob-
taining reliable data on the cross sections for the fis-
sion of various nuclides at intermediate energies and
of constructing their adequate theoretical description
remains, however, pressing. As the projectile energy
is increased in the region around 1 GeV, there oc-
curs a fast growth of the cross sections for target-
fragmentation and target-disintegration reactions re-
sulting in the formation of various nuclear fragments,
which is accompanied by the emission of a large num-
ber of nucleons. The presence of several competing
channels through which the nuclear system formed
in a collision process may decay generates severe
problems both for experimental and for theoretical
investigations into the fission of heavy nuclei in this
energy range.

A detailed analysis of data on nuclear fission in-
duced by intermediate-energy protons and neutrons
was recently performed in the original studies [1–4]
and in the review article of Obukhov [5].

The objective of this study was to measure the
fission cross sections for 209Bi, 232Th, 235U, 238U,
and 237Np nuclei in an extracted beam of protons
and deuterons from the synchrophasotron of the Joint
Institute for Nuclear Research (JINR, Dubna) in the
energy region E ≥ 1 GeV, which is the most difficult
for investigations. The results obtained in this experi-
ment are compared with the experimental data from

1)Khlopin Radium Institute, Vtoroi Murinskiı̆ proezd 28,
St. Petersburg, 194021 Russia.

*e-mail: yurevich@sunhe.jinr.ru
1063-7788/02/6508-1383$22.00 c©
[6–17], which are the most reliable in our opinion;
with the predictions of existing model calculations;
and with the available model estimates of the depen-
dence of the cross sections for nuclear fission on the
projectile-proton energy [4, 18].

2. EXPERIMENTAL PROCEDURE

In our experiment, fission fragments were recorded
by solid-state nuclear track detectors (SSNTD)
based on a 6-µm film from Dupont polyester fiber (its
commercial name is Dacron), which were adjacent to
fissile layers. After etching in a KOH alkali solution,
the tracks from fission framents were counted with
the aid of information readout by a spark track
counter [19]. The efficiency of the detection of fission
fragments escaping from a thin layer and having an
isotropic angular distribution was estimated by using
a 252Cf source. The resulting efficiency value of η =
0.515 corresponds to the critical fission-fragment-
detection angle of θ = 29◦.

Fissile layers of thickness 1 mg/cm2 were de-
posited onto an aluminum substrate of diameter
11.3 mm. Actinide layers were prepared by means
of coating that was repeated many times and then
followed by annealing, whereas bismuth layers were
manufactured via the thermal evaporation of bismuth
from a tantalum substrate in a vacuum. In either case,
the error in determining the mass of a layer was 2 to
3%, while the nonuniformity of the layer thickness did
not exceed 10%.

Fission fragments escaping from a thin fissile layer
possess optimum features for detecting them with
polymer SSNTDs. Our measurements revealed that
the threshold of sensitivity to the charge of a nuclear
fragment for Dacron is Zthr = 5, which agrees well
with data of other authors [20]. The threshold charge
value is well below the charges of fission fragments;
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of irradiation: (1) substrate carrying a fissile layer; (2) SSNTD; (3) polyethylene screen; (Al) aluminum
monitoring disk; (F , B) assemblies that contain identical layers and which are oriented, respectively, along and against the
beam direction; and (S1–S4) assemblies for different fissile nuclides.
therefore, it is assumed here that, for all fissile nu-
clides investigated in our study and for all energies of
projectile protons and deuterons, the features of fis-
sion fragments remain optimal for detecting them by
the method that we use. The total methodological er-
ror in determining the number of fission fragments—
it is associated with the uncertainty in knowledge of
the etching parameters, the uncertainty in film thick-
ness, and the error of the method for track counting—
ranges between 6 and 8%.

The reliability of the results of our experiment cru-
cially depends on the estimate of the contribution to
the number of tracks from other nuclear fragments
of a nonfission origin that emerge from the inelastic
interactions of high-energy particles with target nu-
clei and with nuclei of structural materials and on the
minimization of this background effect at the stage
of planning the experiment. The majority of light nu-
clear fragments arising in a thin target layer owing to
the fragmentation reaction have kinetic energies such
that dE/dx < (dE/dx)thr; therefore, they cannot be
recorded by the method used. At the same time, heavy
nuclear fragments and residual nuclei formed in the
disintegration of target nuclei may possess features
required for detection—in particular, their range in
the SSNTD may be longer than 5 µm. An analysis
of data available in the literature revealed that, in the
disintegration of nuclei whose mass numbers lie in
the regionA > 200, residual nuclei possessing kinetic
energies sufficient for detection canmake a significant
contribution to the number of counts at projectile-
proton energies higher than approximately 1.5 GeV.

In order to estimate the contribution of nuclear
fragments to detector readings and to optimize the
design of the irradiated assembly of fissile layers and
track detectors with the aim of reducing background
effects, we have performed additional investigations
in a proton beam from the JINR synchrophasotron.
We have studied experimentally the sensitivity of the
method to nuclear fragments escaping from the target
in the mass-number range 9 < A < 207, from the
aluminum substrate, and from the polyethylene disk
and have also measured the number of background
P

counts of the SSNTD itself. The proton-beam energy
was varied between 0.2 and 3.7 GeV. The investiga-
tions revealed that the number of recorded fragments
depends greatly on the target material, the proton
energy, and the orientation of the target–SSNTD
assembly. By way of example, we indicate that, in the
energy region above 1 GeV, the number of recorded
fragments originating from the disintegration of A <
200 nuclides in the forward direction (along the beam
axis) exceeds the number of fragments escaping in
the opposite direction by a factor greater than 10. The
maximum contribution of fragments to the total num-
ber of recorded tracks from fission fragments (forward
and backward) was obtained for a thin bismuth layer
at the highest proton energy of 3.7 GeV (it was 15%).
The choice of target-substrate material for minimiz-
ing background counts depends on the energy region
being studied. At proton energies above 600 MeV, it
is necessary to use extremely light materials, such
as beryllium and aluminum. The number of counts
from an aluminum substrate depends only slightly
on the proton energy and contributes about 4% for
a bismuth target and 0.6–1.0% for actinide targets.
The intrinsic background counts of the SSNTD, to-
gether with the contribution from the polyethylene
disks (screens) arranged on the two sides of the SS-
NTD, are negligible.

3. MEASUREMENTS

The layout of irradiation and the design of the as-
semblies consisting of fissile layers, the SSNTD, the
polyethylene screens, and the aluminum monitoring
disks are shown in Fig. 1. The assemblies containing
232Th, 235U, 238U, and 237Np layers and the assem-
blies containing 209Bi layers were irradiated with a
proton beam in different experimental runs. The iso-
lation of bismuth layers into an individual assembly is
explained by the need for ensuring, in order to obtain
optimal statistics of about 3000–4000 cm−2, approx-
imately five times more beam protons incident on the
target than in the case of the nuclides entering into
the composition of the first assembly. In a deuteron
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 1.Measurements performed in proton and deuteron beams

Beam Energy, GeV Target
Uncertainty in monitoring,

%

p 1.0 232Th, 235U, 238U, 237Np 10

p 1.0 209Bi 20

p 2.0 209Bi 10

p 2.55 232Th, 238U, 237Np 9

p 2.55 209Bi 9

p 3.17 209Bi 8

p 3.65 209Bi 10

d 1.0 209Bi, 232Th, 238U, 237Np
beam, we performed only one experiment in which
the layers of bismuth and actinides were irradiated
simultaneously. In the experiments for each nuclide,
we used six targets; in three of these, the fissile layer
faced incident beam protons, the remaining three be-
ing oriented inversely. In this way, fission fragments
were recorded for the angular regions θ > 119◦ and
θ < 61◦ for, respectively, the first and the second case
of fissile-layer orientation. The track detectors were
positioned between the fissile layers and the polyethy-
lene disks 0.1 mm thick, which were used to screen
the SSNTD from other assembly materials capable
of producing additional background counts. The list
of the irradiation runs performed is given in Table 1.

The number of protons that traversed the fissile
layers was determined with the aid of the reaction
27Al(p,X)24Na. In order to ensure beam monitoring,
aluminum disks of thickness 3.0 mm and diameter
11.3 mm (which is identical to that of the fissile lay-
ers) were arranged at either endface of the irradiated
assembly. The monitoring disks and the fissile targets
were placed on the same axis coincident with the
beam axis. In the energy range under investigation,
the cross section for the monitoring reaction is known
to a precision not poorer than 5%; it was taken to be
10.8 mb at the proton energy of 1.0 GeV and 10.0 mb
for higher energies. Only relative measurements were
performed for a deuteron beam of energy 1.0 GeV.

The position and the transverse dimension of the
beam were measured by using a doublet of multiwire
proportional chambers.

4. RESULTS OF THE MEASUREMENTS

In order to obtain the cross section for the nuclear-
fission process, it is necessary to integrate the an-
gular distribution of fission fragments over the entire
range of emission angles; at the same time, fission
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
fragments were recorded in our measurements within
bounded angular intervals. In the case of an isotropic
distribution of fission fragments, the total number
of fission reactions per 1 mg of the sample can be
determined by the formula

N = (NF +NB)/2η = 0.971(NF +NB),

where NF and NB are the numbers of fragments
recorded in the angular regions θ < 61◦ and θ > 119◦,
respectively. The angular dependence of the yield of
fission fragments was studied with the aid of the
ratio NF/NB . The results obtained in a deuteron
beam of energy 1.0 GeV and in proton beams of
energies 1.0 and 2.55 GeV are given in Table 2.
The angular distributions of fragments originating
from 232Th fission induced by protons, deuterons, and
alpha particles of various energies—in particular, by
1.0-GeV protons and deuterons—were measured
directly in [14]. The NF /NB values computed on
the basis of these data agree with the results of
our measurements for either projectile type. It was
shown in [14] that, with increasing energy (above
about 140 MeV for protons and from about 500 MeV
for deuterons), the angular distributions become
isotropic in the c.m. frame. This corresponds to an
angular distribution that, in the laboratory frame,
is slightly stretched in the forward direction; all the
aforesaid is direct proof of the applicability of the
method used here to go over from a bounded angular
interval to a full solid angle by means of the above
formula, where, instead of the factor 0.971, we took
the value of 0.93 ± 0.04 in order to take into account
the angular-anisotropy effect. This procedure for data
processing assumes the emission of two fragments
in a fission event—this assumption is legitimate by
virtue of the smallness of the cross section for ternary
fission.

The eventual values of the measured fission cross
sections including corrections for the detection of
2
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Table 2.Measured values of the ratiosNF /NB for fission fragments

Beam Energy, GeV 209Bi 232Th 238U 237Np

p 1.0 1.36 ± 0.20 1.23 ± 0.10 1.09 ± 0.09 1.00 ± 0.09

p 2.55 1.24 ± 0.20 1.34 ± 0.09 1.21 ± 0.08 1.14 ± 0.08

d 1.0 1.37 ± 0.17 1.24 ± 0.08 1.23 ± 0.08 1.13 ± 0.07

Table 3. Fission cross sections measured in a proton beam (mb)

Energy, GeV 209Bi 232Th 235U 238U 237Np

1.0 216 ± 49 996± 110 1282± 141 1364± 150 1736± 195

2.0 219 ± 33

2.55 215 ± 26 909± 131 1213± 184 1393± 236

3.17 199 ± 24

3.65 180 ± 24
nuclear fragments of a nonfission origin are given in
Table 3.

5. DISCUSSION OF THE RESULTS

In order to compare the experimental data with
theoretical predictions for actinides, we have esti-
mated the cross section for the fission of excited nuclei
that arise upon the completion of the cascade stage
of high-energy proton–nucleus interactions in the
energy range 0.1–5.0 GeV. The cross section for the
fission of these nuclei was computed by using the
relation

σf = σinelNf/Ninel,

where σf and σinel are the fission cross section and
the inelastic-interaction cross section, respectively,
and Nf is the number of nuclear-fission events per
Ninel in inelastic interactions. In order to calculate
the inelastic-interaction cross section, we used da-
ta from [21]. In these calculations, we did not take
into account the trailing effect—that is, a change
(decrease) in the number of intranuclear nucleons at
the cascade state of interaction. The fission widths
were determined by the same method as in [22–25]
with the aid of the Cameron formula [26]. We took
into account shell-model even–odd corrections. In
the calculations, we relied on the model of a nucleus
with a diffuse boundary. The nucleon density in a
nucleus was described by the Woods–Saxon distri-
bution. In each intranuclear nucleon–nucleon and
pion–nucleon collision, we took into account the laws
of energy–momentum conservation. For the fission
P

and evaporation processes, the level-density param-
eter in a nucleus was taken in the form af = an =
aA (MeV−1), where a = 0.1 did not include correc-
tions for the shell structure of the decaying nucleus
and did not depend on the excitation energy.

The results of our measurements were also com-
pared with experimental data from [6–17], which are
the most reliable in our opinion. As can be seen from
Figs. 2–4, the fission cross sections found in the
present study are in good agreement with those mea-
sured at a proton energy of 1.0 GeV for 209Bi, 232Th,
235U, and 238U [12–14,16] and in the region 2.5–
3.0 GeV for 209Bi, 232Th, and 238U [8, 9, 12, 15]. We
also note that, for 235U, 238U, and 237Np, the results
obtained with 1.0-GeV protons agree, to within 10%,
with cross sections measured for fission induced by
0.8-GeV neutrons [27, 28]. Data from [6], which
were measured at proton energies below 0.66 GeV,
comply well with the aforementioned results for all
targets, with the exception of 232Th, in which case
the fission cross sections seem underestimated. The
results of the calculation describe quite satisfactorily
the dependence of the fission cross sections on the
incident-proton energy and agree, to within 10–20%,
both with the results of our measurements and with
the majority of other experimental data. The best
agreement is observed for 237Np. According to the
calculated dependences, the cross sections for the
fission of actinide nuclei change only slightly in the
energy range 0.1–1.0 GeV.

This character of the theoretical curves complies
with the behavior of the cross sections for uranium
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 2. Cross section for 232Th,235U, and 237Np fission
induced by protons of energy above 0.1 GeV: (•) our
present data, (solid curves) results of the calculation, and
(dashed curves) estimate from [4]; the remaining symbols
represent experimental data from (◦) [6, 7], (�) [13], (�)
[14], (×) [15], and (�) [16].

and neptunium fission induced by neutrons of en-
ergies up to 0.8 GeV [27, 28]. In the energy re-
gion around 1 GeV, the theoretical model predicts
a change in the character of the dependences: the
fission cross sections decrease monotonically with
increasing proton energy. On the basis of the qualita-
tive pattern of target-nucleus disintegration induced
by intermediate-energy protons, where the fragmen-
tation and splitting reactions begin to play an ever
more important role with increasing energy, one could
expect a reduction of the contribution from the fission
reaction. In view of the paucity of reliable data, a
large scatter of measured cross sections, and rela-
tively large experimental uncertainties, it does not
seem possible to study in greater detail the character
of the energy dependence of the fission cross sections
for actinide nuclei over the energy region under inves-
tigation by relying only on experimental results. How-
ever, experiments yield a smoother variation of the fis-
sion cross sections in the region around Ep ∼ 1 GeV
than what is predicted by the calculation. All experi-
mental results for thorium and uranium (especially for
235U) fall systematically short of the calculated values
at proton energies below 1 GeV; at the same time,
there is good agreement between the experimental
data and the results of the calculation in the energy
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Fig. 3.Cross sections for 238U fission induced by protons
of energy above 0.1 GeV: (•) our present data, (solid
curve) result of the calculation, and (dashed curve) es-
timate from [4]; the remaining symbols represent exper-
imental data from (◦) [6, 7], (�) [8], (�) [9], (�) [10, 11],
(�) [12], (�) [13], and (�) [17].

region around 2 to 3 GeV. Measurements performed
for 238U with Ep > 5 GeV protons demonstrate that
the decrease in the fission cross section is terminated
at higher energies. For all actinides, the estimation
performed in [4] on the basis of experimental data
yields a smooth decrease in the fission cross section
with increasing proton energy (see Figs. 2 and 3).
The data were approximated with the aid of a com-
paratively simple expression that was not intended for
describing a detailed energy dependence of the fission
cross sections in the range 0.1–10.0 GeV. It can be
seen from the figures that, in the range 1–3 GeV,
our results and experimental data from other studies
lie systematically higher than the estimates from [4].
For 209Bi, Fig. 4 also shows, in addition to our data
and the results from [6–13, 17], the estimated proton-
energy dependences of the fission cross section from
[4, 18]. The cross-section values measured in the
present study are in good agreement with data of
other authors, showing a slight decrease in the prob-
ability of the nuclear-fission process as the energy is
increased in the energy region above 2.5 GeV. The
cross section for bismuth fission grows as the en-
ergy is increased up to about 0.6 GeV, whereupon it
reaches a maximum and, as that for actinide nuclei,
then decreases smoothly as the energy is increased up
to about 5.0 GeV, remaining approximately constant
at higher energies. For 1.0-GeV protons, the estima-
tion performed in [18] yields a fission-cross-section
value close to that measured in the present study. At
the same time, the estimation from [4] led to values of
the bismuth-fission cross section in the region Ep ≥
1.0 GeV that are smaller than those determined in
our measurements and in other experimental studies
discussed here.
2
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Fig. 4. Cross sections for 209Bi fission induced by pro-
tons of energy above 0.1 GeV: (•) our present data and
(solid curve) estimate from [18]; the rest of the notation is
identical to that in Fig. 3.

For collisions of protons with 209Bi and 238U nu-
clei, Fig. 5 displays the energy dependences of the
ratios of the fission cross sections to cross sections for
inelastic interactions. For bismuth, this cross-section
ratio is about 10% at proton energies above 0.15 GeV,
reaching a maximum of about 12% in the region 0.6–
2.0 GeV. For uranium, the fission cross section dom-
inates the cross section for inelastic interaction up to
an energy of 1.0 GeV. As the energy grows further,
the cross-section ratio in question tends to 40%. The
calculation predicts approximately the same value of
the cross-section ratio σf/σinel for other actinide nu-
clei.

In the measurements performed in a 1.0-GeV
deuteron beam, only the relative probabilities of
nuclear fission were determined for want of data
on the number of beam particles incident on the
target throughout the irradiation time. For 209Bi,
232Th, 238U, and 237Np, the resulting numbers of
nuclear-fission events per 1 mg of target matter were
803 ± 90, 3622 ± 360, 4410 ± 440, and 4429 ± 440,
respectively. For the nuclear species in question, the
relative fission probabilities determined from these
values are in the ratio 1 : 5.04 : 6.28 : 6.29. In the
literature, there are virtually no data on nuclear fission
induced by deuterons of energy in the range being
investigated. For 238U fission induced by 1.0-GeV
deuterons, the calculations performed in [29] yielded
the cross section of 1540 mb. If this value is used to
normalize our experimental data, the cross section for
232Th fission will be 1236 ± 173 mb, which is in good
agreement with the result from [14] (1350 ± 135 mb).
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Fig. 5. Ratio of the fission cross section to the total
inelastic-interaction cross section for 209Bi and 238U in
the region of proton energies above 0.1 GeV: (•) our
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Fig. 3.

6. CONCLUSION

New data on the cross sections for the proton- and
deuteron-induced fission of 209Bi, 232Th, 235U, 238U,
and 237Np have been obtained in the energy range
1.0–3.7 GeV. The results are in good agreement with
experimental data from [6–17]. The cross-section
values calculated on the basis of the theoretical model
developed at JINR [22–25, 29] also reproduce satis-
factorily our experimental results. An analysis of the
character of the energy dependence of the nuclear-
fission cross section at proton energies above 0.1GeV
has revealed that, for 209Bi, the ratio of the fission
cross section to the cross section for inelastic interac-
tion reaches a maximum of about 12% in the energy
range 0.6–2.0 GeV and tends to a constant value of
about 10% as the energy is increased further. With
increasing proton energy, the fission cross section
for actinide nuclei decreases, approaching a level of
about 40% of the inelastic interaction cross section
at Ep ∼ 10 GeV.
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Abstract—The angular distributions of fragments originating from the binary decay of oriented spherical
and deformed nuclei are investigated with allowance for correct transformation properties of wave functions
under time inversion. It is shown that, as in the case of protonic decay, the adiabatic approximation for
collective rotational degrees of freedom of the systems under investigation is inapplicable in describing
the angular distributions of fragments of the deep-subbarrier alpha and cluster decays of nuclei. It is
demonstrated that this approximation is justified in describing spontaneous and induced low-energy
nuclear fission. The dependence of partial fission widths on the orientation of intrinsic axes, spins, and
projections of spins and relative orbital angular momenta of fission fragments is analyzed by using
the formalism of the unified theory of nuclear reactions and the theory of open Fermi systems. It is
shown that the adiabatic approximation leads to the coherent interference between the wave functions
for the relative motion of fragments, whereby the universal angular distributions of fission fragments of
oriented nuclei is formed. Deviations from the A. Bohr formula are investigated for these distributions.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A number of studies [1–5] based on either the
use of the R-matrix theory of nuclear reactions [6]
or the non-R-matrix versions of the theory of nuclear
decays [4, 7] were devoted to theoretically describing
the angular distributions of alpha particles emitted
by oriented spherical and deformed nuclei. A method
for calculating the angular distributions of fragments
originating from the fission of oriented and polarized
nuclei was proposed in [8–14] on the basis of the
A. Bohr concept [8] of the role of transition states in
the nuclear-fission process. In [15, 16], the angular
distributions of protons emitted by oriented spherical
and deformed nuclei were investigated on the basis
of the multiparticle theory of protonic decay [17–
19], and the possibility of using the adiabatic and
the semiclassical approximation to describe the an-
gular distributions of protons was analyzed in [16] for
the case of deformed decaying nuclei. However, the
angular distributions of clusters emitted by oriented
nuclei undergoing cluster decays have not yet been
explored.

A general approach to describing the structure of
nuclei and nuclear reactions was formulated in [20]
on the basis of the method of nonorthogonal varia-
tions. This approach is so general that the authors of
[20] also employed it to describe some properties of
such a complicated phenomenon as nuclear fission.
With the aid of the method of projection operators
and the theory of open Fermi systems, the approach
proposed in [20] was generalized in [21] in order to
1063-7788/02/6508-1390$22.00 c©
take more consistently into account the effects of
antisymmetrization and fragmentation in nuclear re-
actions and was used to describe the decay widths of
nuclei.

On the basis of a development of the methods
proposed in [16, 20, 21], we analyze here the angular
distributions of fragments originating from the alpha
and cluster decays and from the fission of oriented nu-
clei. In this analysis, special attention is given to in-
vestigating the problem of oriented-nucleus fission; in
doing this, we explicitly consider the coherent prop-
erties of this process on the basis of the adiabatic ap-
proximation, using directly the quantum-mechanical
theory of resonance nuclear reactions [6, 20, 21] and
the formalism of fission widths.

2. ANGULAR DISTRIBUTIONS
OF FRAGMENTS ORIGINATING

FROM THE DECAY AND FISSION
OF ORIENTED NUCLEI

IN THE LABORATORY FRAME

In order to describe the protonic, alpha, and cluster
decays of nuclei and their binary fission, we consider,
in the c.m. frame, the general case of the spontaneous
decay of an isolated quasistationary state of a parent
nucleus having an atomic weight A and a charge Z
into two fragments whose atomic weights are A1 and
A2 = A−A1 (A1 ≥ A2) and whose charges are Z1

and Z2 = Z − Z1. The wave function ψJM
σ describ-

ing the decaying parent-nucleus state characterized
by the spin J ; its projection M onto the Z axis in
2002 MAIK “Nauka/Interperiodica”
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the laboratory frame; and other quantum numbers
σ, including the parity π, satisfies the Schrödinger
equation

HAψ
JM
σ = EJ

σψ
JM
σ , (1)

where HA is the Hamiltonian for the A nucleus in
the c.m. frame, EJ

σ = (ReEJ
σ − iΓJ

σ/2) is the com-
plex energy, and ΓJ

σ is the total decay width of the
nucleus A (it is equal to the sum of the partial decay
widths through all open decay channels, including,
in general, protonic, alpha-particle, cluster, fission,
radiative, and β-decay channels).

That the state of the decaying nucleus is qua-
sistationary and isolated means that the total decay
width ΓJ

σ of this state is much less than the energies
Qc of the relative motion of decay fragments in all
open channels and than the energy spacings between
the neighboring levels of the nucleus characterized
by fixed values of the spin J and parity π. Among
all channels of nuclear decay, we single out those—
we label them with the indices cIl = σ1J1σ2J2Il—
that correspond to the emergence of the A1 and A2

fragments in the states specified by the wave func-
tions ψJ1M1

σ1
and ψJ2M2

σ2
, the channel spin I, and the

relative orbital angular momentum l. We denote by
ΓJ

σcIl the partial width of the A nucleus with respect
to the decay through such a channel. The decay-
fragment wave functions ψJ1M1

σ1
and ψJ2M2

σ2
satisfy the

Schrödinger Eq. (1), where the Hamiltonian HA is
replaced by the Hamiltonians HA1 and HA2 and the
energy EJ

σ is replaced by the energies EJ1
σ1

and EJ2
σ2

for the first and the second fragment, respectively. We
introduce the energyQc, the velocity υc, and the wave
vector kc of the relative motion of the fragments. We
have

Qc = ReEJ
σ − ReEJ1

σ1
− ReEJ2

σ2
=

�
2k2

c

2m
=

mυ2
c

2
,
(2)

where m = (MA1MA2)/MA is the reduced mass of
the fragments. The decay-fragment wave functions
ψJ1M1

σ1
and ψJ2M2

σ2
are constructed in such a way that

they have correct transformation properties under
time inversion [6]; this means that, under the action
of the time-inversion operator T , these functions
transform as

TψJ1M1
σ1

= (−1)J1+M1ψJ1−M1
σ1

. (3)

Following [6], we define the orthonormalized channel
function UJM

cIl possessing correct transformation
properties under time inversion as

UJM
cIl =

{{
ψJ1M1

σ1
ψJ2M2

σ2

}
IMI

ilYlml
(Ω)

}

JM
, (4)

where braces denote the vector coupling of the an-
gular momenta and where the spherical harmonic
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Ylml
(Ω), which corresponds to the relative orbital

motion of the decay fragments, depends on the solid
angle Ω specifying the direction of the radius vector
R = RA2 − RA1 in the laboratory frame, RA1 and
RA2 being the coordinates of the centers of mass
of these fragments. In the external region R ≥ Rcl,
where Rcl is a point that occurs to the right of the
maximum of the potential barrier for the decay frag-
ments (in this region, the interaction of the fragments
is determined exclusively by the Coulomb poten-
tial V C

0 (R) = Z1Z2e
2/R of the respective pointlike

charge), the parent-nucleus wave function ψJM
σ

satisfies the Gamow condition [7]

ψJM
σ =

∑

cIl

Â

{

UJM
cIl

1
R
(Gcl(R) (5)

+ iFcl(R))
√
ΓJ

σcIl/�υce
iδpot

cl

}

,

where Â is the antisymmetrization operator and
Fcl(R) and Gcl(R) are, respectively, the regular and
the irregular radial Coulomb function. For R → ∞,
the asymptotic expressions for these functions are

Fcl(R)→ sin
(
kcR− lπ/2 + δC

cl

)
, (6)

Gcl(R)→ cos
(
kcR− lπ/2 + δC

cl

)
,

where δC
cl and δpot

cl are the Coulomb and the nuclear
phase shift for the potential elastic scattering of the
fragments on each other. When used to determine
the wave functions possessing correct transformation
properties under time inversion, the partial-width

amplitude
√
ΓJ

σcjl is real-valued and is independent

of the projectionM of the parent-nucleus spin [6]. By
virtue of the law of parity conservation in the decay

process, the quantity
√
ΓJ

σcIl does not vanish under

the condition

(−1)l = ππ1π2, (7)

where π, π1, and π2 are the parities of the parent-
nucleus and decay-fragment states. We now consider
the multiparticle density jJM

σ of the decay-fragment
flux in the direction of the radius vectorR forR → ∞:

jJM
σ =

i�

2m

[

ψJM
σ

d

dR
(ψJM

σ )∗ − (ψJM
σ )∗

d

dR
ψJM

σ

]

.

(8)

Let us perform integration in (8) over all coordinates
of the parent nucleus, with the exception of the
coordinate R, by using the orthonormality of the
decay-fragment wave functions and the asymptotic
representation (5). For the density jJM

σ (R) of the flux
of light decay fragments A2 in the direction specified
by the solid angle Ω, we then obtain
2
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jJM
σ (R) =

1
R2

∑

c

∑

M1M2

∣
∣
∣
∣
∣
∣

∑

IlMIml

CIMI
J1J2M1M2

CJM
IlMIml

Ylml
(Ω)

√
1
�
ΓJ

σcIle
iδ̄cl

∣
∣
∣
∣
∣
∣

2

, (9)

where the phase shift δ̄cl is given by δ̄cl = (δC
cl + δ

pot
cl ). For the density of the flux of heavy decay fragments A1,

we have a formula of the type in (9), where R must be replaced by (−R). As will be shown below, expression
(9) is invariant under this replacement; therefore, the heavy-fragment-flux density is also given by (9).

Performing summation in (9) with the aid of the orthonormality properties of the Clebsch–Gordan
coefficients CIMI

J1J2M1M2
, we obtain

jJM
σ (R) =

1
R2

∑

c

J1+J2∑

I=|J1−J2|

∑

MI

∣
∣
∣
∣

∑

lml

CJM
IlMIml

Ylml
(Ω)

√
1
�
ΓJ

σcIle
iδ̄cl

∣
∣
∣
∣

2

. (10)
Averaging the flux density (10) over the projections
M of the parent-nucleus spin J and using the
distribution function S(M) satisfying the condition∑

M S(M) = 1, we arrive at

jJ
σ (R) =

∑

M

S(M)jJM
σ (R). (11)

Suppose that decay fragments are recorded by a
detector that is arranged orthogonally to the radius
vector R, the detector area being R2dΩ, and which
fixes only the mass A2 of a fragment, its charge Z2,
and the energy Qc. The number dNJ

σ of decay frag-
ments A2 that is recorded by this detector per unit
time is then given by

dNJ
σ (Ω) =

∑

M

S(M)jJM
σ (R)R2d(Ω). (12)

Performing integration in (12) over all directions of
the radius vector R by using formula (10), we find,
as might have been expected, that the total number
NJ

σ (Ω) ofA2 fragments emitted by the parent nucleus
per unit time is

NJ
σ =

1
�
ΓJ

σ =
1
�

∑

c

ΓJ
σc =

1
�

∑

cIl

ΓJ
σcIl. (13)

The total angular distribution dP J
σ (Ω)/dΩ of decay

fragments that is normalized to unity can be repre-
sented as
dP J

σ (Ω)
dΩ

=
dNJ

σ (Ω)
dΩ

1
NJ

σ

=
∑

c

ΓJ
σc

ΓJ
σ

dP J
σc(Ω)
dΩ

, (14)

where the normalized (to unity) angular distribution
dP J

σc(Ω)/dΩ of decay fragments in the c channel then
has the form

dP J
σc(Ω)
dΩ

=
1
ΓJ

σc

∑

M

S(M) (15)

×
J1+J2∑

I=|J1−J2|

∑

MI

∣
∣
∣
∣
∣
∣

∑

lml

CJM
IlMIml

Ylml
(Ω)eiδ̄cl

√
ΓJ

σcIl

∣
∣
∣
∣
∣
∣

2

.

P

As can be seen from (14), there is no interference
between different decay channels in the total angular
distributions, so that the angular distributions for the
channels are merely summed, the relative weights of
these channels being taken into account in this sum-
mation. Formula (15) can also be used to describe the
angular distributions of fragments in the case where
the detectors recording fragments have a poor energy
resolution that gives no way to separate specific decay
channels c in energies Qc.

By using the multiplication theorem for spherical
harmonics [9],

Ylm(Ω)Y ∗
l′m(Ω) =

(−1)m
4π

×
∑

L

√
(2l + 1)(2l′ + 1)CL0

ll′00C
L0
ll′m−mPL(cos θ),

where PL(cos θ) is a Legendre polynomial, and the
formalism of Racah coefficients [9], we can recast
expression (15) into the form

dP J
σc(Ω)
dΩ

=
1
4π

1
ΓJ

σc

∑

M

S(M) (16)

×
∑

ILll′

√
ΓJ

σcIl

√
ΓJ

σcIl′(−1)
J−ICJM

JLM0C
L0
ll′00

×
√
(2l + 1)(2l′ + 1)(2L+ 1)(2J + 1)

× cos(δ̄cl − δ̄cl′)W (lJl′J ; Il)PL(cos θ),

whereW (lJl′J ; Il) are Racah coefficients.
From the fact that the orbital angular momenta

l and l′ in (15) have the same parity by virtue of
condition (7) and from the properties of the Clebsch–
Gordan coefficient CL0

ll′00, it follows that L takes only
even values, so that the angular distribution (16) is
symmetric with respect to the angle θ = π/2; that is,
it does not change upon the substitution of (π − θ)
for θ. The L = 0 term in the sum in (16) has the
value of 1/4π, which is consistent with the normal-
ization of the angular distribution (15) to unity. For
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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the parent-nucleus spins of J = 0 and J = 1/2, the
Clebsch–Gordan coefficient CJM

JLM0 does not vanish
only at L = 0; therefore, the angular distribution (15)
becomes isotropic and takes the value of 1/4π.

If the parent nucleus is not oriented, all the pro-
jections M of its spin J are equiprobable, so that the
distribution function has the form S(M) = 1/(2J +
1). In this case, the angular distribution (15) again
becomes isotropic and equal to 1/4π.

But if the parent nucleus is completely oriented at
ultralow temperatures by a strong external magnetic
field directed along the Z axis in the laboratory frame,
the distribution function S(M) is S(M) = δM,J or
S(M) = δM,−J at, respectively, a positive or a neg-
ative value of the gyromagnetic ratio for the par-
ent nucleus. Since the Clebsch–Gordan coefficient
CJM

JLM0, which specifies theM dependence of angular
distribution (16), possesses the property CJ−M

JL−M0 =
CJM

JLM0 at even values of L, the angular distribution
(16) for an oriented parent nucleus is independent
of the sign of the gyromagnetic ratio and can be
represented in the form (16) with the substitution of
δM,J for S(M).

Formulas (14)–(16) are of a universal charac-
ter and are valid for decay and fission processes in-
volving both spherical and deformed parent nuclei
and daughter nuclear fragments, the shapes of the
daughter nuclei not being necessarily coincident with
the shapes of the parent nuclei. The structure of the
above nuclei affects the angular distributions (14)–
(16) through specific values of the partial-width am-
plitudes. Formulas of the type in (16) were previ-
ously used in [1–5] to describe the angular distri-
butions of alpha particles emitted by oriented alpha-
decay spherical and deformed nuclei. In a number of
studies—for example, in [4]—the phase-shift combi-
nation (δ̄cl − δ̄cl′) in (16) was replaced by the com-
bination (δ̄cl − lπ/2− δ̄cl′ + l′π/2), which arises if, in
formula (5), one substitutes, for the channel functions
UJM

cIl (4), the channel functions differing from those
in (4) by the absence of the factor il and disregards,
in calculating the partial widths, the requirements
associated with time inversion.

3. STRUCTURE OF WAVE FUNCTIONS,
AND PARTIAL WIDTHS

WITH RESPECT TO THE DECAY
AND FISSION OF NUCLEI

In general, the wave function (5) for a decaying
nucleus can be represented in the form [7, 21]

ψJM
σ =

(
ψJM

σ

)
sh
+
(
ψJM

σ

)
clust

, (17)
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where the function
(
ψJM

σ

)
sh

differs from zero in that
region of the parent nucleus where the decay frag-
ments have not yet been formed and is constructed
on the basis of the multiparticle shell model with
allowance for normal and superfluid nucleon–nucleon
correlations and for both rotational and collective
modes of motion that are associated with variations
in nuclear-deformation parameters, for example, in
describing the nuclear-fission process. The cluster
wave-function component

(
ψJM

σ

)
clust

in (17) corre-
sponds to the fully formed nuclear-decay fragments
and can be written as [21]

(
ψJM

σ

)
clust

=
∑

cIl

�
2kc

2mc
UJM

cIl (18)

×
∫

R′dR′ [gcl(R>) + ifcl(R>)]

× fcl(R<)
〈
UJM

cIl |VA1A2 |
(
ψJM

σ

)
sh

〉
,

where the operators Â of antisymmetrization between
decay fragments are omitted to simplify the presen-
tation, R> (R<) is the larger (smaller) value of R
and R′, and VA1A2 is the multiparticle potential of
the interaction between the fragments. The functions
fcl(R) and gcl(R) are, respectively, the regular and
the irregular solution to the radial Schrödinger equa-
tion describing the relative motion of the fragments
with the energy Qc. In combinations of the form
Â
{
UJM

cIl fcl(R)/R
}
, these functions are orthogonal

to the basis shell-model functions used in construct-
ing the wave functions (ψJM

σ )sh; for R → ∞, their
asymptotic expressions are

fcl(R)→ sin(kcR− lπ/2 + δC
cl + δpot

cl ), (19)

gcl(R)→ cos(kcR− lπ/2 + δC
cl + δpot

cl ).

In the external region R ≥ Rcl, the function(
ψJM

σ

)
clust

then has the behavior corresponding to
the correct asymptotic expression (5) for the function(
ψJM

σ

)
(17) with the partial-decay-width amplitude

given by [21]
√
ΓJ

σcIl (20)

=
√
2π

〈

Â

{
f̃cl(R)
R

UJM
cIl

∣
∣
∣
∣VA1A2

} ∣
∣
∣
∣
(
ψJM

σ

)
sh

〉

,

where the function f̃cl(R) differs from the functions
fcl(R) (19) by the fact that it is normalized to a δ
function of energy.

For deep-subbarrier protonic, alpha, and cluster
decays, in which case the condition |Fcl(R)| 	
|Gcl(R)|, under which the process is of a subbarrier
character, is satisfied for R > Rcl, we can neglect the
2
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function Fcl(R) and the potential phase shift δpot
cl in

formula (5) and represent the asymptotic condition
(5) in the form

(
ψJM

σ

)0
=
∑

cIl

Â

{

UJM
cIl

Gcl(R)
R

√
ΓJ

σcIl/�υc

}

.

(21)

Over the entire internal region R ≤ Rcl, the qua-
sistationary wave function ψJM

σ for the parent nu-
cleus then reduces to the time-independent function
(
ψJM

σ

)0
, which obeys the Schrödinger Eq. (1) with

the real-valued energy ReEJ
σ and satisfies the bound-

ary condition (21).

In this case, the set of functions
(
ψJM

σ

)
0
can

be used in the internal region R ≤ Rcl as the R-
matrix basis of functions XJM

σ [6], for which the
boundary condition (21) coincides with the natural
boundary condition requiring that the shift of the
resonance energy in the S matrix with respect to
the energy ReEJ

σ be zero and that the phase shift
δpot
cl = − arctan(Fcl(Rcl)/Gcl(Rcl)) for potential nu-
clear scattering at |Fcl(Rcl)| 	 |Gcl(Rcl)| be much
less than unity. As was shown by considering the
examples of deep-subbarrier protonic [17], alpha [7],
and cluster [22] decays of nuclei, the amplitude of
the partial-decay width can then be represented in a
form that is different from that in (20), but which is
equivalent to it and which can be used in concrete
calculations; specifically,
√
ΓJ

σcIl =
√
2π

〈

Â

{
F̃cl(R)
R

UJM
cIl

∣
∣
∣
∣(VA1A2 (22)

− V C
0 (R))

} ∣
∣
∣
∣
(
ψJM

σ

)0
〉

,

where F̃cl(R) is the regular radial Coulomb function
normalized to a δ function of energy.

It was shown in [17] that, for deep-subbarrier
protonic decay, the main contribution to the partial-
width amplitude (22) comes from the shell-model
component

(
ψJM

σ

)
sh

of the wave function (17) for the
decaying nucleus. As to the case of deep-subbarrier
alpha and cluster decays, it was shown in [7, 22]
that the cluster component

(
ψJM

σ

)
clust

of the wave
function (17) makes a dominant contribution to the
amplitude in (22). For this reason, it is more appropri-
ate to use formula (20) for alpha and cluster decays.

In the case of an isolated quasistationary state of
a decaying nucleus, one can also use, for the ampli-
tude of the partial-decay width, theR-matrix formula,
P

which has the form [6]

√
ΓJ

σcIl =

√
�2kc

2mc
Pcl (23)

×
〈

Â
{
UJM

cIl Rδ(R −Rcl)
}
∣
∣
∣
∣X

JM
σ

〉

,

where Pcl =
[
F 2

cl(Rcl) +G2
cl(Rcl)

]−1 is the pene-
trability factor and the function XJM

σ is the R-
matrix basis time-independent wave function for
the parent nucleus in the internal region R ≤ Rcl.
It obeys the Schrödinger Eq. (1) with the real
energy EJ

σ and, at R ≈ Rcl, satisfies the natural
boundary condition obtained by replacing the func-

tion [Gcl(R) + iFcl(R)] eiδpot
cl in (5) by its modulus

|Gcl(R) + iFcl(R)|.
If a representation similar to that in (17) is used

for the function XJM
σ , it can be seen that, in order to

find the partial width (23), one must know the clus-
ter component

(
XJM

σ

)
clust

of this function. Although
formula (23) is equivalent to formulas (20) and (22), it
is therefore preferable to use (20) and (22) to describe
nuclear decay, because, in these formulas, there is
no problem of defining specific values of the channel
radii Rcl. This is especially important in the case of
deformed decaying nuclei.

4. ADIABATIC APPROXIMATION
AND DESCRIPTION OF ALPHA

AND CLUSTER DECAYS
OF DEFORMED NUCLEI

In order to understand the structure of the angular
distributions of protons in the protonic decay of
oriented deformed nuclei, use was made in [16] of
the adiabatic approximation [9]. This approximation
is widely employed to describe collective modes of
motion in spherical and deformed nuclei in their
interior region and is based on the fact that the
characteristic times of nucleon motion in nuclei are
much shorter than the characteristic times associated
with the above collective modes. This means that
the characteristic energy spacing ∆EN between
single-nucleon levels having identical values of good
quantum numbers is considerably greater than the
characteristic energy spacing between neighboring
collective rotational and vibrational levels of a nu-
cleus. The strong-coupling model and the potential
describing the deformation of nuclei are constructed
in the adiabatic approximation [9].

Let us consider the possibility of using the adia-
batic approximation to describe the widths and the
angular distributions of decay fragments of oriented
deformed nuclei. Our consideration will be restricted
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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to the case where fragments arising from the decay
of an axisymmetric nucleus also have axially sym-
metric shapes. This means that, in the scission of
the parent nucleus into fragments, torsion [23], which
is a form of motion where the emerging fragments
can acquire nonaxial shapes with nonzero values of
the γ deformation, is insignificant. For the adiabatic
approximation to be applicable, it is then required that
the following conditions be satisfied.

(i) It is necessary that, up to the instant of the
scission of a nucleus into two fragments A1 and A2,
the shell-model component

(
ψJM

σ

)
sh

of the decaying-
nucleus wave function (17) have fixed values of the
Euler angles {α, β, γ} = ω specifying the orientation
of the intrinsic coordinate axes of the nucleus with
respect to the axes of the laboratory frame. It was
indicated in [8] that, in the case of fission, this con-
dition is satisfied if the time it takes for the nucleus
to go over from a compact bound state at the saddle
point to the state corresponding to its scission into
two fragments is much shorter than the characteristic
times of nuclear rotations determining time variations
of the Euler angles ω.

(ii) At all attainable values of the fragment spin J1

for a fixed value of its projection K1 onto the intrin-
sic fragment symmetry axis, the excitation energies(
EJ1

K1

)∗
of the levels of the rotational band of the

heavy fragment A1 must be negligible in relation to
the kinetic energy Ekin

c of the relative motion of the
fragments A1 andA2 for the observed channels c over
the entire region where these fragments exist. The
analogous condition must be satisfied for the second
decay fragment A2 as well if this fragment is a suffi-
ciently heavy axisymmetric deformed nucleus. In this
case, we can neglect the effect of the energies (EJ1

K1
)∗

and (EJ2
K2
)∗ on the radial wave functions fcl(R) and

gcl(R) for the relative motion of the fragments and,
hence, on the partial widths (20) and the potential
phase shifts δ̄cl.

(iii) It is necessary that detectors recording de-
cay fragments not fix the fragment spins J1 and J2,
and, at the same time, have a poor energy resolution
∆Ed [(∆Ed � (EJ1

K1
)∗(EJ2

K2
)∗)], which gives no way

to separate fragments in their spins J1 and J2 if the
energy scale is used. In this case, one can observe the
interference between the wave functions for the rela-
tive motion of the fragments for the decay channels c,
with the result that there can arise coherent effects in
the fragment angular distributions.

The angular distributions of protons emitted by
oriented spherical and deformed nuclei undergoing
protonic decay were analyzed in [15, 16], and it
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was demonstrated in [16] that, because of the deep-
subbarrier character of protonic decay, the second
condition is not realized in this case; therefore, the
adiabatic approximation is not applicable to describ-
ing the above angular distributions.

The results obtained in [16] for protonic decay are
generalized to the case of the deep-subbarrier alpha
and cluster decays of spherical and deformed nuclei,
where the adiabatic approximation is also inappli-
cable. In order to describe the angular distributions
of alpha particles and clusters emitted by oriented
spherical and deformed nuclei, we can therefore use
formulas (14)–(16), which were obtained above. It
should be noted that these formulas remain in force
if there are distinctions between the shapes of the
parent and daughter nuclei; this is characteristic of
cluster nuclear decays, which are considered here.

5. ADIABATIC APPROXIMATION
FOR NUCLEAR FISSION

The spontaneous and low-energy induced fission
of axisymmetric deformed parent nuclei is described
on the basis of the mechanism proposed in [8]. This
mechanism employs the concept of fission channels
or transition states. We will describe these transition
states in terms of the wave functions ψJM

t , which
include not only the initial multiparticle shell-model

functions
(
ψJM

t

)0 specified by the symmetry and de-
formation parameters of the parent nucleus at the
saddle points of the nuclear-deformation potential but
also the shell-model wave functions corresponding to
different values of the nuclear deformation parameters
and describing the evolution of the nucleus from the
saddle points to the point of its scission into two
fission fragments. If, in (20), the function ψJM

t is
used instead of the nuclear shell-model wave func-
tion

(
ψJM

σ

)
sh
, the partial-fission-width amplitudes

√
ΓJ

tcIL can be obtained in considering the evolu-

tion of the nucleus from its initial transition state
specified by the function

(
ψJM

t

)0. If we assume that

the functions
(
ψJM

t

)0
orthonormalized for different

values of the quantum numbers JMt appear with the
amplitudes αJ

σt in the total shell-model wave function(
ψJM

σ

)
sh

of the parent nucleus, the partial fission
width for the fission channel cIl is given by

ΓJ
σcIl =

∑

t

(
αJ

σt

)2
ΓJ

tcIl, (24)

where ΓJ
tcIl is the partial fission width for the JMt

transition state.
2
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In order to simplify the calculations, we go over
from the channel function UJM

cIl (4) to the channel
function UJM

cjl that is defined as

UJM
cjl =

{
ψJ1M1

σ1

{
ψJ2M2

σ2
Ylml

(Ω)
}

jmj

}

JM
· il (25)

and which is related to the channel function UJM
cIl (4)

by the Racah transformation as [9]

UJM
cIl =

∑

j

√
(2j + 1)(2I + 1)W (J1J2Jl; Ij)UJM

cjl .

(26)

The asymptotic expression (5) for the parent-nucleus
wave function then remains unchanged upon replac-
ing the sum over I by the sum over j, the channel
function UJM

cIl by the function UJM
cjl , and the partial-

width amplitude
√
ΓJ

σcIl by the amplitude
√
ΓJ

σcjl. In

this case, the amplitude
√
ΓJ

tKicjl
of the partial width

with respect to nuclear decay from the JMt transition
state through the channel cjl is given by the formula
√
ΓJ

tcjl =
√
2π

〈

Â

{

UJM
cjl

f̃lc(R)
R

∣
∣
∣
∣VA1A2

} ∣
∣
∣
∣ψ

JM
t

〉

,

(27)

which follows from (20).
All the above three conditions necessary for the

adiabatic approximation to be valid in describing the
angular distributions of fission fragments are satis-
fied, in all probability, for the spontaneous or induced
low-energy fission of deformed axisymmetric nuclei.

Prior to considering in detail these conditions,
we will dwell upon yet another condition, the fourth
one, relevant to the efficiency of the adiabatic ap-
proximation in describing the nuclear-fission pro-
cess. We require that, in all observable fission chan-
nels c, the centrifugal potential V cf

cl (R) = �
2l(l +

1)/(2mR2) for the relativemotion of fission fragments
be much less than the kinetic energy Ekin

c (R) =
�

2kc(R)/(2m) of the relative motion of the fragments
in the regionR ≥ |Rscl|, where the radius vector Rscl

specifies the nonspherical surface of scission of a
parent nucleus into two fragments. If this condition
is satisfied, we can eliminate the centrifugal potential
from the equations for the radial functions fcl(R),
thereby making the function fcl(R) and, hence, the
partial fission width (27), along with the potential
phase shift δ̄cl, independent of the orbital angular
momentum l. It is clear that this condition is al-
ways satisfied at large values of R, in which case
the centrifugal potential V cf

cl (R) tends to zero and
Ekin

c (R)→ Qc. Therefore, it is necessary to ensure
P

fulfillment of this condition at R ≈ |Rscl| in the
vicinity of the point of scission of the parent nucleus
into fission fragments. The semiclassical estimate
lm ≈ kc(Rscl)d, where d is the diameter of the neck
that arises before the scission of the parent nucleus
into fragments, was used in [13] for the maximum
value lm of l. In this case, the ratio of the maximum
value of the centrifugal potential V cf

cl (|Rscl|) to the
kinetic energy Ekin

c (Rscl) is equal to (d/|Rscl|)2. If
the quantity |Rscl| is estimated at 20 fm and if the
neck diameter d is set to 2 fm, this ratio proves to be
(1/100), which immediately ensures fulfillment of the
fourth condition.

Let us dwell at some length on corollaries from the
second condition of applicability of the adiabatic ap-
proximation. This condition implies that, at all values
of R corresponding to the region where fission frag-
ments exist, the kinetic energyEkin

c (R) of the relative
motion of these fragments must satisfy the condition
Ekin

c (R)� (EJ1
K1
)∗, (EJ2

K2
)∗; that is, it must be pos-

itive and sufficiently large in magnitude. If Ekin
c (R)

is expressed through the energy-conservation law as
Ekin

c (R) = Qc − V C
c (R) − V nucl

c (R), where V C
c (R)

and V nucl
c (R) are the nonspherical Coulomb and nu-

clear (with allowance for effects associated with the
fragment polarizability) potentials of the interaction
of fission fragments, then the second condition means
that, at all pointsR of the region where the fragments
exist, the quantity Qc exceeds the sum V C

c (R) +
V nucl

c (R); that is, the fission process is of the above-
barrier character with respect to these potentials. This
statement corresponds to a physically clear pattern
of fission, where an axisymmetric parent nucleus in
the space of the deformation variables βλ(λ = 2, 4, ...)
evolves, undergoing shape variations, up to the in-
stant of the scission of the nucleus into two frag-
ments, in which case the deformation parameter β2

develops very large values of (β2 ≈ 0, 8); in the space
of the variables R, they correspond to the above-
barrier motion of the fragments.

Before final fragments find their way to detectors
recording them, primary fragments arising at the first
stage of the fission process undergo rearrangement,
deexcite completely via the emission of prompt neu-
trons and photons, and go over to the ground states
or long-lived isomeric states of final fission fragments.
Therefore, the above detectors are unable in principle
to resolve individual states of the rotational bands of
primary fission fragments, so that the third condition
of adiabaticity can also be thought to be satisfied for
fission.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002



DECAY AND FISSION OF ORIENTED NUCLEI 1397
6. PARTIAL FISSION WIDTHS
IN THE ADIABATIC APPROXIMATION
In describing the angular distributions of frag-

ments emitted in the spontaneous fission of oriented
nuclei, use is presently made of the A. Bohr formula
[8]

dP J
JKi
(Ω)

dΩ
=
2J + 1
8π

(28)

×
[
|DJ

JKi
(ω)|2 + |DJ

J, −Ki
(ω)|2

]
|β=θ,

where DJ
MKi

(ω) is a generalized spherical Wigner
function depending on the Euler angles
{α, β, and γ} ≡ ω, which characterize the orientation
of the parent-nucleus axes with respect to the axes of
the laboratory frame; Ω is the solid angle characteriz-
ing the direction of the radius vector R in the labora-
tory frame (the angles θ and ϕ appear in the definition
of this solid angle); andM andKi are the projections
of the spin J of the parent axisymmetric nucleus
onto, respectively, the Z axis in the laboratory frame
and the symmetry axis of the parent nucleus. This
formula was obtained on the basis of the qualitative
physical assumption that fission fragments escape
from the parent nucleus only along or against its
symmetry axis. According to this assumption, the an-
gular distribution of fission fragments in the intrinsic
coordinate frame of the parent nucleus as a function
of the angles Ω′ characterizing the direction of the
radius vector R in this frame is of a strictly delta-
function character. From the quantum-mechanical
uncertainty relation for the relative orbital angular
momentum l of fission fragments and the quantities
ξ′ = cos θ′ and ϕ′ appearing in the definition of the
solid angle Ω′, it follows, however, that the delta
function δ(ξ′ ± 1), which specifies the fixed angular
values of θ′ = 0 and π, can arise only in the case where
l is completely undetermined, which corresponds to
the set of values l ≤ ∞. Since this result cannot in
principle reflect a real experimental situation, it is
clear that formula (28) is only of an approximate char-
acter. Our further investigation is aimed at obtaining
the conditions under which formula (28) can be
deduced and at deriving deviations from this formula.

In the strong-coupling approximation [9], the
wave function describing the transition state of the
parent nucleus and possessing correct transformation
properties under time inversion can be represented as

ψJM
tKi

=

√
2J + 1
16π2

[

1 + δKi,0

(
1√
2
− 1

)]

(29)

×
{

DJ
MKi

(ω)χtKi(q(ω))

+ π(−1)J+KiDJ
M−Ki

(ω)χtKi
(q(ω))

}

,
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where χtKi(q(ω)) is its intrinsic wave function de-
pending on the set of coordinates q(ω) of the nucleus
in its intrinsic coordinate frame, and χtKi

(q(ω)) is
the function obtained from the preceding one by time
inversion.

The fission-fragment wave functions ψJ1M1
σ1K1

(ω1)
and ψJ2M2

σ2K2
(ω2) appearing in the definition of the

channel function (25) will also be represented in the
form (29), where one must replace Ki by K1 and K2,
M byM1 andM2, J by J1 and J2, π by π1 and π2, t by
σ1 and σ2, and the set of intrinsic coordinates q(ω) by
the sets q1(ω1) and q2(ω2). It follows that the channel
function UJM

cjl (25), together with the radial function
for the relative motion of the fragments, depends
on the (3A − 3) coordinates R, ω1, ω2, q1(ω1), and
q2(ω2). At the same time, the function in (29) also
depends on the (3A− 3) coordinates ω and q(ω). If,
among the (3A− 6) intrinsic coordinates q(ω) of the
parent nucleus, we single out the (3A− 9) coordi-
nates q1(ω), q2(ω), andR corresponding to the fission
fragments, there will remain, among the coordinates
q(ω), three coordinates that can be represented as the
set of three Euler angles ω′ characterizing the relative
orientation of the intrinsic fragment axes described
by the intrinsic coordinates q1(ω) and q2(ω). Since
the orientation of the intrinsic axes of the set of
coordinates q1(ω) and q2(ω) is close to the orientation
of the intrinsic axes of the parent nucleus, the wave
function ϕ(ω′) depending on the Euler angles ω′ can
be approximately considered as a δ function of the
angles ω′.

Among the intrinsic coordinates q1(ω1) and q2(ω2)
of fission fragments, one can also single out co-
ordinates that are associated with the deformation
parameters βλ1 and βλ2 (λ = 2, 4, ...) of these frag-
ments. At the same time, the effective deformation
parameters β0

λ1 and β0
λ2 characterizing deviations of

the nuclei of would-be fission fragments from a spher-
ical shape can also be singled out for the set of coordi-
nates q1(ω) and q2(ω) corresponding to the intrinsic
coordinates of the fission fragments in the parent
nucleus.

In the channel function (25), we now go over to
the intrinsic coordinate frame of the parent nucleus
by means of the Wigner transformation [9]

DJ1
M1K1

(ω1) =
∑

K ′
1

DJ1

M1K ′
1
(ω)DJ1

K ′
1K1
(ω′

1), (30)

Ylml
(Ω) =

∑

kl

Dl
mlkl

(ω)Ylkl
(Ω′),

where ω′
1 are Euler angles that characterize the ori-

entation of the intrinsic axes of the A1 fragment with
respect to the intrinsic axes of the parent nucleus.
2
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In this case, the channel function (25) becomes a
function of four angular sets ω, ω′

1, ω
′
2, and Ω

′.
We further introduce the orthonormalized general-

ized channel function ŪJM
cjl , adding the functionϕ(ω′)

to the channel function (25) and considering the Eu-
ler angles ω, ω′ and ω′

1, ω
′
2 as independent variables.

Substituting the function ŪJM
cjl for the channel func-

tion UJM
cjl (25) in formula (27), we can introduce the

concept of the amplitude of the generalized partial-

fission width,
√
Γ̄J

tKicjl
(ω′

1, ω
′
2). Upon integration in

(27) with respect to the complete set of coordinates
of the parent nucleus, including the Euler angles ω
and ω′, the above amplitude of the generalized partial
width will depend on the Euler angles ω′

1 and ω′
2

as on parameters. This dependence can be written
explicitly, if we consider that the definition of the

amplitude
√
Γ̄tKicjl(ω

′
1, ω

′
2) involves an integral with

respect to the intrinsic coordinates q1 and q2 of the
fission fragments that has the form

D(ω, ω1, ω2, ω
′,R′) (31)

= 〈χσ1K1(q1(ω1))χσ2K2(q2(ω2))
× |VA1A2|χtKi(q(ω))〉 ,

where the set of intrinsic variables q(ω) of the parent
nucleus includes, as was mentioned above, the coor-
dinates R′ and ω′ along with the coordinates q1(ω)
and q2(ω). This integral takes the maximal absolute
value if the intrinsic axes of fission fragments coin-
cide with the intrinsic axes of the parent nucleus and
decreases fast as the deviations of the Euler angles
ω1 and ω2 from the angles ω increase. The integral in
(31) can then be approximately represented as

D(ω, ω1, ω2, ω
′,R′) (32)

= δ
1/2
∆ (ω′

1)δ
1/2
∆ (ω′

2)D(ω, ω, ω, ω
′,R′),

where δ∆(ω′
1) is a δ function smeared over a rather

narrow interval∆ in the vicinity of ω′
1 = 0.

Owing to a strong semiclassical character of the
fission process, the main contribution to the integral
in (31) comes from the region of values of the radius
R that are close to the points Rsc of scission of the
parent nucleus into two fragments. From this and
from formula (31), it follows that the deformation
parameters βλ1 and βλ2 of the fission fragments in
the region of their formation must be close to the
deformation parameters β0

λ1 and β0
λ2 of the nuclei of

these fragments in the parent nucleus near the point
of its scission into fragments; all this corresponds to
the ideas developed in [23]. As a matter of fact, these
conclusions are in line with the conjecture that the ef-
fects of bending and torsion [24] play an insignificant
P

role in the scission of the parent nucleus into fission
fragments.

The use of formula (32) in determining the gener-
alized partial-fission width and the asymptotic behav-
ior of the wave function for the transition state in the
form (5) leads to the conclusion that, at small values
of ∆, the generalized channel function ŪJM

cjl can be

replaced by the modified channel function ŨJM
cjl de-

fined by formula (25) where ω1 = ω2 = ω.
We note that the condition ω1 = ω2 = ω means

that there exists a strong correlation between the
WignerD functions describing the rotational states of
a light and the complementary heavy fission fragment.
If use is made of the adiabatic approximation, this
correlation leads to the coherent interference between
the wave functions for the relative motion of the
fragments for different values of the fragment spins
J1 and J2.

Using formula (30) at ω′
1 = ω′

2 = 0 and the mul-
tiplication theorem for D functions [9], we obtain the
modified channel function in the form

ŨJM
cjl =

1
16π2

√
(2J + 1)(2j + 1) (33)

×
∑

Kkl

DJ
MK(ω)Ylkl

(Ω′)(−1)j−l

× {(−1)K2CJ1−K1

Jj −K(K−K1)

× CJ2−K2

jl(K1−K)kl
χσ1K1(q1)χσ2K2(q2)

+ (−1)J1+K1+K2CJ1K1

Jj −K(K+K1)

× CJ2−K2

jl(−K−K1)kl
χσ1K1

(q1)χσ2K2(q2)

+ (−1)J2CJ1−K1

Jj −K(K−K1)

× CJ2K2

jl(K1−K)kl
χσ1K1(q1)χσ2K2

(q2)

+ (−1)J1−J2+K1CJ1K1

Jj −K(K+K1)

× CJ2K2

jl(−K−K1)kl
χσ1K1

(q1)χσ2K2
(q2)},

By way of example, we have presented here the case
where π = π1 = π2 = (+1),K1 �= 0, andK2 �= 0.

Let us now consider the structure of the partial-

fission-width amplitudes
√
ΓJ

tKicjl
, which are deter-

mined, apart from the constant a arising because of
the need for preserving the correct number of integra-
tion variables, by formula (27) if the channel functions
UJM

cjl (25) are replaced by the modified channel func-

tions ŨJM
cjl (33). Let us investigate the properties of

the function AtKiσ1K1σ2K2(Ω
′) which appears in the

definition of the partial-fission-width amplitude (27)
and which has the form

AtKiσ1K1σ2K2(Ω
′) =

√
2π (34)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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×
〈
1
R
f̃c(R)χσ1K1(q1)χσ2K2(q2)

∣
∣
∣
∣VA1A2

∣
∣
∣
∣χtKi(q)

〉

,

where integration is performed with respect to all the
intrinsic variables q(ω) of the parent nucleus, with
the exception of the angles Ω′. We now make use of
the idea that the Bohr formula (28) is approximately
valid—that is, fission fragments are emitted from the
parent nucleus predominantly in the direction that is
parallel or antiparallel to the symmetry axis of this
nucleus.

Using the completeness and orthonormality of the
basis of spherical harmonics, we can introduce, in the
intrinsic coordinate frame of the parent nucleus, the
δ functions normalized to unity over the entire space
(−1 ≤ ξ′ ≤ 1 and 0 ≤ ϕ′ ≤ 2π) of the solid angle Ω′,
whose element dΩ′ is given by dΩ′ = dξ′dϕ′, where
ξ′ = cos θ′. As a result, we have

1
2π

δ(ξ′ ∓ 1) (35)

=
∑

lm

Ylm(ξ
′, ϕ′)Y ∗

lm(±1, ϕ
′
0).

Since Y ∗
lm
(ξ′, ϕ′) = Yl0(±1)δm,0 at ξ′ = ±1 and since

this spherical harmonic is independent of the az-
imuthal angle ϕ′, the function in (35) can be recast
into the form

1
2π

δ(ξ′ ∓ 1) =
∑

l

Yl0(ξ′)Yl0(±1) (36)

=
∑

l

Pl(ξ′)
(2l + 1)
4π

(±1)l.

We note that, in the sums over l in formulas (35) and
(36), the quantity l takes values in the region 0 ≤
l ≤ ∞—this reflects the quantum-mechanical un-
certainty relation between the values of orbital angu-
lar momentum l and the angle θ′.

Adopting the assumption that the Bohr formula
(28) is valid approximately, taking into account the l
independence of the radial function f̃l(R), and using
the parity-conservation law, we represent the function
in (34) in the form

AtKiσ1K1σ2K2(Ω
′) (37)

= Flm(θ
′)BtKiσ1K1σ2K2,

where the functionFlm(θ
′) is expressed in terms of the

amplitudes of smeared δ functions of the form (36) as

Flm(θ
′) =

[
δ̃1/2(ξ′ − 1) (38)

+ππ1π2 δ̃1/2(ξ′ + 1)
] 1√

4π
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= b(lm)

{
lm∑

l=0

Yl0(ξ′)Yl0(1)
[
1 + ππ1π2(−1)l

]
}

.

Here, the constant b(lm) is found from the normaliza-
tion condition
∫

F 2
lm(θ

′)dΩ′ =
∫ [

δ̃(ξ′ − 1) + δ̃(ξ′ + 1)
] dΩ
4π

= 1.

(39)

The result is

b(lm) =

{
lm∑

l=0

(2l + 1)
2π

[1 + ππ1π2(−1)l]
}−1/2

.

(40)

The representation in (37) preserves azimuthal sym-
metry for the directions of fission-fragment emission
since the spherical harmonics Yl0(ξ′, ϕ′) do not de-
pend on the azimuthal angle ϕ′. Formulas (37) and
(38) involve the maximal value lm of the relative or-
bital angular momentum l of fission fragments. The
greater this value, the closer the function δ̃(ξ′ − 1) to
an exact δ function—that is, the smaller the angle θ′

between the directions of the fission-fragment emis-
sion and the symmetry axis of the parent nucleus. In
other words, rather high values of lm are required for
the Bohr formula (28) to be fairly accurate. At the
same time, the values of l must not be overly high in
order that one could neglect the effect of the centrifu-
gal potential V cf

cl (R) on the radial functions fcl(R)
and on the phase shifts δ̄cl for potential scattering
(see above). Thismeans that deviations from the Bohr
formula (28) for the angular distributions of fission
fragments cannot be very small; therefore, one can
hope to discover them experimentally.

Considering that integration in (27) with respect
to ω with the aid of formulas (33) and (29) leads to the
coincidence of the quantityK appearing in the sum in
formula (33) with the quantities ±Ki and taking into
account the relation

∫
Y ∗

lkl
(Ω′)Yl0(Ω′)dΩ′ = δkl,0, we

can see that the partial-fission-width amplitude (27)
receives contribution from three types of channels c
labeled with the index r, where the values of r =
1, 2, and 3 correspond to the K1 +K2 = Ki chan-
nel, theK1 −K2 = Ki channel forK1 > K2, and the
Ki = K2 −K1 channel for K2 > K1. With the aid
of formula (37), the partial-fission-width amplitude√
ΓJr

tKiσ1K1J1σ2K2J2jl (27) for these channels can be

represented as
√
ΓJr

tKiσ1K1J1σ2K2J2jl (41)

= aΘ(l − lm)

√
2j + 1
8π2

√
2l + 1
4π

b(lm)
2
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× 2[1 + (−1)lππ1π2]M
(r)
σtKiσ1K1J1σ2K2J2

,
 where Θ(x) is the sign function and
M
(1)
tKiσ1K1J1σ2K2J2

= (−1)j+l+K2CJ1−K1

Jj−Ki(Ki−K1)
CJ2−K2

jl(K1−Ki)0
BtKiσ1K1σ2K2 ; (42)
M
(2)
tKiσ1K1J1σ2K2J2

(43)

= (−1)J2CJ1K1

JjKi(K1−Ki)
CJ2−K2

jl(Ki−K1)0
BtKi σ1K1σ2K2

,

M
(3)
tKiσ1K1J1σ2K2J2

(44)

= (−1)J2CJ1−K1

JjKi(−Ki−K1)
CJ2K2

jl(K1+Ki)0
BtKiK1σ1K2σ2

.

As can be seen from formulas (41)–(44), which deter-
mine the dependence of the partial-fission widths on
the channel indices J1, J2, j, and l, this dependence is
of a dynamical character, stems predominantly from
the Clebsch–Gordan coefficients, and differs signifi-
cantly from the analogous dependence of these widths
that is obtained by using various statistical assump-
tions [12].

7. ANGULAR DISTRIBUTIONS
OF FRAGMENTS ORIGINATING

FROM THE FISSION OF ORIENTED
NUCLEI

Let us consider the asymptotic expression for the
parent-nucleus wave function ψJM

σ (5) for R → ∞.
We have

ψJM
σ =

∑

A1Z1tσ1K1J1σ2K2J2rjl

ŨJM
σ1K1J1σ2K2J2jl (45)

× eikcR

R
eiδ̄σ1K1σ2K2αJ

σt

√
ΓJr

tKiσ1K1J1σ2K2J2jl

�υc
.

Substituting expression (33) for the channel function
ŨJM

σ1K1J1σ2K2J2jl into (45) and using the representa-
tion in (41) and formulas of the type

∑

J1

CJ1K1
JjKiK1−Ki

CJ1K1
JjKK1−K = δK,Ki , (46)

we recast the asymptotic expression (45) into the
form

ψJM
σ =

∑

A1Z1tσ1K1σ2K2rj

ãαJ
σt (47)

×
√
2J + 1
16π2

[DJ
M, −Ki

(ω)χσ1K1(q1)χσ2K2(q2)

+ (−1)J+KiDJ
M−Ki

(ω)χσ1K1
(q1)

× χσ2K2
(q2)](2j + 1)

× Flm(θ
′)B(r)

tKiσ1K1σ2K2

eik̄cR

R
eiδ̄σ1K1σ2K2

√
1

�υc
,

PH
where

ã = a
1√
2

1√
8π2

. (48)

Using now the wave function (47) to determine the
multiparticle density jJM

σ (8) of the fission-fragment
flux and integrating this density with respect to the
coordinates ω, q1, and q2 with allowance for the or-
thonormality of the functions χσ1K1 and χσ2K2 , we
obtain the following expression for the single-particle
density jJM

σ (R) of the fragment flux in the direction
of the radius R in the laboratory frame:

jJM
σ (R) =

1
R2

∑

A1Z1tσ1K1σ2K2rj

ã2
∣
∣αJ

σt

∣
∣2 (49)

×
∫

dω
(2J + 1)
16π2

[
|DJ

MKi
(ω)|2 + |DJ

M, −Ki
(ω)|2

]

×




∑

j

(2j + 1)





2

F 2
lm(θ

′)
∣
∣
∣B

(r)
tKiσ1K1σ2K2

∣
∣
∣
2 1

�
.

In the channel σ1k1σ2k2r, the total number of light
and heavy fission fragments that is recorded per unit
time by detectors ensuring a 4π coverage will then be
equal to the integral of the corresponding term of the
sum in formula (46) with respect to Ω′; that is,

NJM
σA1Z1σ1K1σ2K2r (50)

=
∑

t

∣
∣αJ

σt

∣
∣2 · |ã|2




∑

j

(2j + 1)





2

×
∣
∣
∣B

(r)
tKiσ1K1σ2K2

∣
∣
∣
2 1

�
=
1
�
ΓJ

σA1Z1σ1K1σ2K2r,

where ΓJ
σA1Z1σ1K1σ2K2r is the fission width of the

parent nucleus in the channel A1Z1σ1K1σ2K2r. In
the form normalized to unity, the angular distribution
of fragments originating from the fission of an ori-
ented parent nucleus (M = J) through the channel
A1Z1σ1K1σ2K2r is then given by the universal for-
mula

dP J
σKiA1Z1σ1K1σ2K2r(Ω)

dΩ
=
(
2J + 1
16π2

)

(51)

×
∫

dω
[∣
∣DJ

JKi
(ω)
∣
∣2 +

∣
∣DJ

J, −Ki
(ω)
∣
∣2
]
F 2

lm(θ
′),

which does not depend on the channel indices
A1Z1σ1K1σ2K2r or on the structure of the transition
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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states t. This result is caused by the use of the
adiabatic approximation, which leads to a coherent
mixing of the wave functions for the relative motion
of fragments for channels characterized by different
values of J1, J2, and j at fixed indices tσ1K1σ2K2r. It
is the reason why, in studying even–even and odd (the
latter are associated with parity-nonconservation ef-
fects) correlations in the fission experiments [13, 25],
one observes coherent effects universal for all fission
fragments.

For lm → ∞, the function F 2
lm
(θ′) · 2π reduces to

the true delta function δ(ξ′ − 1), which is equivalent
to a delta function of the form δ(ξ − ξβ), where ξ =
cos θ and ξβ = cos β, since, in the case where fission
fragments fly out in the direction coincident with the
symmetry axis of the parent nucleus, the angle θ
characterizing the direction in which the fragments fly
out in the laboratory frame coincides with the Euler
angle β between the Z axis of the laboratory frame
and the Z ′ axis of the intrinsic coordinate frame of the
parent nucleus. Upon taking into account the fact

that the expression
[
∣
∣DJ

JKi
(ω)
∣
∣2 +

∣
∣
∣DJ

J, −Ki
(ω)
∣
∣
∣
2
]

remains invariant under the substitution of (π − β)
for β in performing integration with respect to ω,
formula (51) for the angular distribution then reduces
to the Bohr formula (28).

In conclusion, we will assess the dependence of
the angle between the direction of fission-fragment
emission and the symmetry axis of the parent nucleus
on the maximum value lm of the orbital angular mo-
mentum of the relative motion of fragments. For this
purpose, we will investigate the lm dependence of the
FWHM∆θ′ (in radians) of the distribution F 2

lm
(θ′) in

the vicinity of the point θ′ = 0. In the case of ππ1π2 =
+1 and even l and in the case of ππ1π2 = −1 and odd
l, the quantity ∆θ′ is independent of the parity of l
and is approximately equal to∆θ′ = 1.5/lm, provided
that lm > 10. In the case of lm ≈ 30, the angle ∆θ′
therefore takes a value of ∆θ′ ≈ 0.05, which, in units
of angular degree, corresponds to∆θ′ = 3◦.

The value of lm can be estimated on the basis of
data from experiments that studied correlations be-
tween the direction of the emission of prompt photons
from fission fragments and the directions along which
the fission fragments in question move [26]. In those
experiments, the mean values of the fission-fragment
spins J1 and J2 are 〈J1,2〉 = 6–8 (in � units), whence,
for lm values satisfying the condition lm � J , one can
obtain the estimate lm ≈ Im, where Im is the max-
imum value of the total spin I of fission fragments;
this maximum spin value can be estimated as Im =
(J1)m + (J2)m. If (J1)m and (J2)m are estimated at
10 to 15—this corresponds to the doubled value of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
the mean spins J1 and J2 of the fission fragments—
lm proves to be close to 20–30. As was shown above,
this value of lm leads to ∆θ′ ≈ (3−5)◦. It should be
noted that values in the range lm ≈ (20–30) can be
obtained on the basis of the above estimate lm ≈
kc(Rscl)d for Ekin

c (Rscl) > 100 MeV at d = 2 fm. In
all probability, so large a value of Ekin

c (Rscl) requires
changing the estimate of the neck diameter d to-
ward considerably greater values. In order to estimate
the neck diameter correctly, it is necessary to take
additionally into account a strong nonsphericity of
the Coulomb and nuclear potentials describing the
interaction of fission fragments.

8. CONCLUSION

Our analysis of the angular distributions of frag-
ments originating from the protonic, alpha, and clus-
ter decays of oriented nuclei has demonstrated that
the adiabatic approximation is inapplicable to their
description. At the same time, the use of this ap-
proximation has proved to be an appropriate means
for studying the fission widths of oriented nuclei and
angular distributions of fission fragments originating
from them. The methods developed in this study for
analyzing fission widths and fission-fragment angu-
lar distributions may greatly contribute to obtaining
deeper insights into various fission processes and cor-
relations both between fission fragments and between
these fragments and their decay products, as well as
to exploring various forms of ternary nuclear fission.

ACKNOWLEDGMENTS

I am grateful to V.E. Bunakov, G.A. Petrov,
W.I. Furman, and A.L. Barabanov for stimulating
discussions and valuable advice.

This work was supported by INTAS (grant no. 99-
00229) and the program “Universities of Russia”
(grant no. UR-01.01.011).

REFERENCES
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Moscow, 1985).

8. A. Bohr, in Proceedings of the United Nations In-
ternational Conference on Peaceful Uses of Atomic
Energy (United Nations, New York, 1956), Vol. 2,
p. 151.

9. A. Bohr and B. Mottelson, Nuclear Structure (Ben-
jamin, New York, 1969, 1975), Vols. 1, 2.
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Abstract—On the basis of data obtained by the incomplete fusion reactions 7Li(43AMeV) + 232Th and
14N(34AMeV) + 197Au, the energy dependence of the variance (σ2

M ) of the fragment mass in fission of
highly heated nuclei has been investigated for total excitation energiesE∗

tot ranging from 50 up to 350MeV.
The dependence σ2

M (E∗
tot) shows some unexpected features when E

∗
tot exceeds a value of about 70 MeV.

After this value, the steady increase of σ2
M expected from its temperature dependence changes to some kind

of plateau between 100 and 200 MeV. Further on, at E∗
tot in excess of about 250 MeV, the variance is found

to increase again sharply. In order to analyze this behavior quantitatively, a dynamical stochastic model has
been developed. The model employs the one-body dissipation mechanism and describes the decay of highly
excited and rotating nuclei by fission and light-particle evaporation. It satisfactorily explains the measured
prior-to-scission neutron multiplicities and the experimental mass variances up toE∗

tot
∼= 250MeV, but the

stochastic treatment does not reveal any increase in σ2
M at higher excitation energies in contradiction with

the data. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The fission fragment mass distribution was re-
peatedly measured for total excitation energies (E∗

tot)
smaller than 100 MeV (see, e.g., [1] for a review).
Several measurements performed at higher E∗

tot were
published in [2–4].

It is well known that, at E∗
tot larger than 50 MeV,

the fission fragment mass distribution has a symmet-
rical (Gaussian-like) shape. The mean value of this
distribution does not contain any information about
the dynamics of fission, since it depends only upon the
mass loss due to particle evaporation both from the
fissioning compound system and from flying-away
fragments. The variance of mass distribution (σ2

M )
reflects the dynamics of the mass-asymmetry degree
of freedom, since it is being formed up to the scission
point.

It has been shown in [1] that, for fixed values ofE∗
tot

as well as of the angular momentum (L), the function
σ2

M (Z2
/
A) has a broad and flat minimum located

in the region 31 ≤ Z2
/
A ≤ 37. In that work, it has

also been found that σ2
M increases with L for fixed

∗This article was submitted by the authors in English.
1)Forschungszentrum Rossendorf, Institute of Nuclear and
Hadron Physics, Dresden, Germany.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.
1063-7788/02/6508-1403$22.00 c©
Z2
/
A andE∗

tot of the compound nucleus. Concerning
the function σ2

M (E∗
tot), the linear dependence of σ

2
M

on the temperature (T ) at the saddle point has been
established for E∗

tot ≤ 100MeV (cf. Fig. 4 of [1]).
The last observation supports the expectation that

σ2
M is governed by a Brownian collective motion. For
a Brownian oscillator, the equilibrium variance of its
coordinate is defined by the temperature and the stiff-
ness. In fission, the stiffness (QM ) is supposed to refer
to the mass-asymmetry degree of freedom. The exact
definition of QM is given in [1]. The observation just
discussed is, therefore, in agreement with the simple
formula

σ2
M =

T

QM
. (1)

In the present work, we made an effort to explore the
behavior of σ2

M (E∗
tot) at energies E

∗
tot up to 350 MeV.

The main difficulties one meets in such kind of inves-
tigation are connected with the facts that
(i) the fission yield resulting from complete fusion

becomes rather small and
(ii) the angular momentum brought to the com-

pound nucleus increases with increasing incident en-
ergy.
The σ2

M data used in this work were extracted for
fission after incomplete fusion reaction, i.e., after in-
complete transfer of the linear momentum of the pro-
jectile. This enabled us to increase both the statistics
2002 MAIK “Nauka/Interperiodica”
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of fission events under investigation and E∗
tot without

substantial increase in the angular momentum.

2. EXPERIMENTAL DATA

The fission fragment data analyzed in the present
work have been measured at the 4π fragment spec-
trometer FOBOS [5] using the incomplete fusion re-
actions 7Li(43A MeV) + 232Th and
14N(34A MeV) + 197Au [6, 7]. Details of these
measurements and the procedures applied for data
processing, as well as other experimental results,
were published earlier in [5, 8–12]. The total exci-
tation energy (E∗

tot) of the intermediate compound-
like system was estimated by means of the massive
transfer approach. This method allows us to select
systems with different average E∗

tot out of the variety
of nuclei produced in the incomplete fusion reaction.
The recently published analysis [13] of the fission

delay time was based on the 7Li(43AMeV) + 232Th
measurement [6] alone. In that work, the energy in-
terval E∗

tot = 57–205MeV is considered, and the first
conclusions have been drawn with respect to the
influence of the cooling down of the heated nuclear
system on the mass variance in binary fission. The
present work aims to give a dynamical description
of the mass variance in fission of hot nuclei taking
into consideration the interplay with the evaporation
of light particles.

3. THE MODEL

A detailed description of our dynamical stochastic
model developed for modeling the fission accompa-
nied with the emission of light particles (neutrons,
protons, deuterons, α particles, and also giant dipole
γ quanta) was published recently in [14]. A short
sketch of the model is given in the following. The
model is realized in a computer code that is the suc-
cessor of the code DESCEND [15]. It is based on the
stochastic differential equations of Langevin type

p
(n+1)
i = p

(n)
i −

[
1
2

{
∂qi

(
m−1

)
jk

}(n)
p
(n)
j p

(n)
k (2)

+ γ
(n)
ij

(
m−1

)(n)

jk
p
(n)
k −K

(n)
i

]

τ + g
(n)
ij w

(n)
j

√
τ ,

q
(n+1)
i = q

(n)
i + (m−1)(n)

ij p
(n)
j τ,

where qi (i = 1, 2) are the collective coordinates q1 =
c, q2 = α in a (c, h, α) parametrization of the shape
of the fissioning nucleus (cf. [16]), mij and γij are

the inertia and friction tensors, p(n)
i are the collective

momenta after n time steps τ ,K(n)
i denote the regular
P

forces, and w(n)
j denote random numbers which are

distributed normally with variance 2.
Since a fully three-dimensional calculation in the

phase space of (c, h, α) is extremely computer-time
and computer-memory consuming, the simulations
of the fission fragment mass distribution were made
in the (c, α) subspace along the bottom of the fission
valley which was determined before in the (c, h, α =
0) subspace. Such a method, unfortunately, restricts
the calculated mass distribution, representing only
fission events of most probable total kinetic energies
(TKE).
Among previous works only that of [17] mentioned

a three-dimensional calculation of the fragment mass
distribution, but no comparison with experimental
data was presented. Dynamical Langevin calcula-
tions of the mass distribution of fission have recently
been published in [18], but neither presaddle dynam-
ics nor particle emission was included, which makes
the results obtained questionable. Hence, our model
can be considered as the first attempt at an intrinsi-
cally consistent systematic dynamical description of
the width of the fragment mass distribution of fission
that includes particle evaporation.3) One important
ingredient for such calculations is the multidimen-
sional potential (deformation) surface energy (V (q))
of the fissioning nucleus. We define V (q) as the min-
imum energy that the system can possess at fixed
deformation q. The energy V (q) enters the calculation
in two different ways:
(i) It defines the intrinsic excitation energy (E∗(q))

and, consequently, the temperature (T ) via the energy
conservation law.
(ii) It defines the regular (driving) forces.
In this work, V (q) is calculated by means of the

liquid-drop model of [19]. This model was used earlier
in the works reviewed in [20] and with slightly cor-
rected coefficients also in [21].
It is well known that the regular forces acting in

a thermodynamical system must be calculated from
a thermodynamical potential (which we henceforth
call the “driving potential”) but not from the bare
potential energy V (q). In the present work (as well
as in [15]), the regular forces are calculated via the
entropy (S) by

Ki = T

(
∂S

∂qi

)

E∗
tot

. (3)

3)Note added in proof. In their recent article, Karpov
et al., Phys. Rev. C 63, 054610 (2001), presented three-
dimensional Langevin calculations of the mass–energy dis-
tribution of fission fragments. In calculating the driving
forces, they employed, however, a bare potential energy (not
a thermodynamic potential) despite the use of a deformation-
dependent level-density parameter.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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The entropy calculated in the framework of the Fermi
gas model reads

S(q, p) = 2
√
a(q)

[
E∗
tot − V (q) − Ekin(q, p)

]
, (4)

where Ekin is the kinetic energy of collective motion.
The single-particle level density parameter a(q) will
be discussed below. The temperature of the fissioning
nucleus given,

T (q, p) =

√
E∗
tot − V (q) − Ekin(q, p)

a(q)
, (5)

defines the magnitudes (gij) of the fluctuation forces
via the Einstein relations

∑
gikgkj = Tγij. (6)

It is worthwhile to note that only the bare potential
V (q) must be used in Eqs. (4) and (5), and not any
kind of “generalized” potential like, e.g., the free en-
ergy.
The particle emission is simulated discretely, as

was first proposed in [22]. In this approach, it is
supposed that the small probability (dP) of emitting
a particle is proportional to the time step (τ ) of the
simulation:

dP =
Γtotτ

�
. (7)

Here, Γtot denotes the total statistical emission width
of a particle. Equation (7) is a direct consequence of
the radioactive decay law, or, in other words, it results
from the fact that the decay rate is constant and the
time step of simulations is small enough.
According to the classical equipartition theorem,

the average energy of the collective subsystem must
be of the order of T . Consequently, the fissioning
nucleus can spend a very long time moving near the
ground state provided its excitation energy, which
initially was very high, became, due to particle evap-
oration, only slightly larger than the fission barrier.
The trajectories corresponding to the so-called long-
lifetime fission events cannot be treated dynamically.
Therefore, an additional contrivance is needed for
switching over to the statistical regime.
The prescription for the switching over applied in

this work was already used in [22]. We start each
trajectory dynamically from the ground state with
zero collective momenta. The switching over to the
statistical branch of the model is carried out provided
three conditions are fulfilled:
(i) The trajectory is still running in the vicinity of

the ground state; i.e., the saddle point has not yet been
passed.
(ii) The difference between the values of the

entropy at the ground state and at the saddle point
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
(BS = Sgs−Ssd; gs—ground state, sd—saddle point)
is larger than some certain value (we chose BS ≥ 2).
(iii) The trajectory was running in the dynamical

branch of the model at least for τd = 50 zs (1 zs =
10−21 s).
All three conditions are of the same strength.
In the statistical branch, we calculate the proba-

bility for the system to disintegrate by fission or to
emit particles by means of the usual hit-and-miss
Monte Carlo procedure. The statistical fission rate is
calculated by

Rf =
ωK
2π

(8)

×




Tsd det {msd}

∣
∣
∣det

{
S

′′
gs

} ∣
∣
∣

Tgs det
{
mgs

}
det
{
S

′′
sd

}





1/2

exp (−BS) ,

where det{m} denotes the determinant of the inertia
tensor and det{S

′′
} is the determinant of the second

derivatives of the entropy. According to the equiparti-
tion theorem for two degrees of freedom, the Sgs and
Ssd are calculated for Ekin = T . In Eq. (8), ωK is the
so-called Kramers frequency that is the only positive
root of the equation

det
{
ω2
Km+ ωKγ + S

′′
T
}

= 0. (9)

All deformation-dependent quantities in (9) are cal-
culated at the saddle point, and the entropy is taken
again at Ekin = 〈Ekin〉 = T .
The single-particle level-density parameter (a) is

also an important ingredient of any statistical calcu-
lation. It was proved (cf. [23]) that a is deformation-
dependent and reads

a(q) = avA+ asA
2/3Bs(q), (10)

where the dimensionless surface-energy coefficient
(Bs) is shape-dependent and equals unity for a
sphere. Among the variety of sets of coefficients
av and as, those of [23] (av = 0.073 MeV−1, as =
0.095 MeV−1) were selected for use in the present
work. The arguments in favor of this set are given in
[24].
The inertia parameters are calculated using Wer-

ner–Wheeler approximation [25] to incompressible
and approximately irrotational flow. The friction pa-
rameters are calculated in the framework of the one-
body dissipation model of [26].
Provided a nucleus happened to fission, after being

in the statistical branch the corresponding trajectory
returns to the dynamical branch of the model. The
initial collective coordinates and momenta are then
chosen to be the equilibrium ones at the ridge line,
where such collective momenta driving the nucleus
2
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Comparison of the calculated fission fragment mass variances (σ2
M (calc.)) and prior-to-scission neutron multiplicities

(npre (calc.)) with experimental values from [1]

Reaction Z2/A
σ2

M (exp.),
(amu)2

σ2
M (calc.),
(amu)2

npre (syst.) npre (calc.) Nf , 103

18O(159MeV) + 169Tm → 187Ir 31.7 219 213 3.7 4.0 1.1

4He(80MeV) + 197Au → 201Tl 32.6 159 159 3.0 2.0 0.4

16O(128MeV) + 183W → 199Pb 33.8 211 180 3.3 3.4 1.2

12C (97MeV) + 206Pb → 218Ra 35.5 203 234 2.3 2.8 1.2

16O(128MeV) + 197Au → 213Fr 35.5 256 258 3.7 3.6 1.3

16O(128MeV) + 206Pb → 222Th 36.5 296 282 3.2 2.9 1.2

Note: The calculations were performed with spin distributions according to the recipe of [15] and with level-density parameters of [23].
The values of npre (syst.) from [1] were obtained on the basis of some systematics proposed in [27]. The number of available fission
events (Nf ) is presented in the last column.
back to the ground-state region are rejected. This
procedure allows one to account for the motion of
the nucleus towards the scission line. Since during
the descent phase additional light particles can be
emitted, the final mass asymmetry of the fission frag-
ments is formed at this stage. Note that in [18] only
the descent stage of fission has been considered but
without taking into account particle emission.
The calculation of each fission trajectory is ter-

minated when the scission condition was reached.
For this condition, we require the radius of the neck
between the two future fragments to be equal to zero.
Note that the scission condition is mostly important
for the TKE distribution of the fission fragments,
while the fragment mass distribution is less sensitive
to the condition.

4. COMPARISON OF MODEL
CALCULATIONS WITH EXPERIMENTAL

DATA

4.1. Fission after Complete Fusion

The reliability of our model calculations for low
energy was proved in [14] by comparison with the
fusion–fission data obtained in [1]. Among numerous
reactions investigated, we selected six given in the
table. The values of the Coulomb parameter (Z2/A)
of the fissioning nuclei, the measured as well as cal-
culated fission fragment mass variances, and the cor-
responding neutron multiplicities are also presented
in the table.
Agreement of the calculated variances with the

data of [1] has been obtained within an uncertainty
P

of about 10%. Furthermore, the calculated vari-
ances show the same dependence on Z2/A as the
measured ones. Agreement of the calculated prior-
to-scission neutron multiplicities (npre) with those
given in [1] is also observed except for the reac-
tion 4He(80 MeV) + 197Au. It must, however, be
mentioned that the neutron multiplicities given in
[1] are not experimental ones but are taken from the
systematics proposed in [27].

Note that the values of Z2/A of the compound
nuclei formed in the reactions of the table cover
the region for those nuclei which are expected to
be produced by the incomplete fusion reactions
7Li(43AMeV) + 232Th and 14N(34AMeV) + 197Au
considered in the following.

4.2. Fission from 7Li(43AMeV ) + 232Th

Since in the incomplete fusion reaction no large
angular momentum of the fissioning nuclei is ex-
pected, all calculations have been performed for L =
0. On the other hand, the variance of the fragment
mass distribution does not show substantial depen-
dence upon angular momentum up to L ≈ 25�.
The main uncertainty for any comparison between

measured data and model calculations is related to
the definition of the fissioning nucleus. We, there-
fore, performed calculations for both nuclei 235Np and
236Th, which represent the most and the least fissile
nuclides, respectively, formed in the incomplete fusion
reaction considered.
The calculated fission fragment mass variances

are compared with the experimental values obtained
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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for the reaction 7Li(43A MeV) + 232Th [13] in
Fig. 1a. As is expected from the data of the table,
the values of σ2

M calculated for 235Np (Z2/A = 36.8)
are substantially larger than those for 236Th (Z2/A =
34.3). The satisfactory agreement in the latter case
allows us to conclude that, obviously, 236Th repre-
sents the most probable fissioning nucleus in these
reactions.
The saturation-like behavior of σ2

M (E∗
tot) observed

at E∗
tot ≈ 100–180 MeV [13] can be explained in the

following way. With increasing E∗
tot (or T ), the av-

erage time for neutron emission (τn) decreases. This
decrease is approximately described by the expression

τn ∼ exp (Bn/T )
T 2

, (11)

where Bn is the neutron binding energy. Note that
this expression supersedes the estimation given in
[13]. Retarded by the dissipation, the Brownian col-
lective motion of the system is slow enough to let
the system cool down by particle emission. Since
the system loses a substantial fraction of its initial
intrinsic excitation energy, the magnitude of mass-
asymmetry mode fluctuations becomes smaller, re-
sulting in a narrower fragment mass distribution than
actually expected from Eq. (1). It has already been
shown in [28] that, as a general feature, the scission
of the nucleus into the two fragments occurs at ap-
proximately 70 MeV, irrespective of its initial excita-
tion energy. Our experimental as well as theoretical
results (Fig. 1a) are qualitatively in accordance with
this finding; i.e., σ2

M does not increase anymore with
increasing E∗

tot.
We proved the reliability of our calculations by

comparing the obtained average fragment masses
(〈M〉) with the experimental ones (Fig. 1b). The mea-
sured 〈M〉 are below the calculated values in both
cases because postscission particle emission is not
included in the calculations. It is interesting that the
values of 〈M〉 calculated for fission of 236Th and 235Np
are very close to each other. This is, however, not the
case for the prior-to-scission neutron multiplicities
(Fig. 1c). The excess of 〈npre〉 observed for fission of
236Th reflects the isospin dependence of the neutron
binding energy.

4.3. Fission from 14N (34AMeV) + 197Au

The situation in the case of the reaction
14N(34A MeV) + 197Au is more complicated
(Fig. 2a). In the region of excitation energies of
E∗
tot ≈ 100–180 MeV, the plateau-like behavior of
the fragment mass variance is observed as for the
reaction 7Li(43A MeV) + 232Th (cf. Fig. 1a). At
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Fig. 1. The fragment mass variances (σ2
M in units of

(amu)2) (a), the average fragment masses (〈M〉 in units
of amu) (b), and prior-to-scission neutron multiplicities
(npre) (c) are shown versus the excitation energy (E∗

tot).
Experimental data (full circles) are presented for the in-
complete fusion reaction 7Li(43AMeV) + 232Th. Their
uncertainties are those of [13] and are not presented here
so as to not clutter up the figure. The calculations have
been performed for 4n + 232Th → 236Th (up triangles)
and 3p + 232Th → 235Np (down triangles). The errors
of the calculated values are given by the statistics of the
simulations and do not exceed the size of the symbols
used in the panels (b) and (c).

larger values of E∗
tot, however, the variance starts to

rise steeply (from ≈ 250 (amu)2 at E∗
tot ≈ 180 MeV

up to ≈ 370 amu2 at E∗
tot ≈ 270 MeV ). A hint for

such behavior seems to have already been found in
[4], but it is difficult to make any definite conclusion
from the data of this work because of the rather
large experimental errors. Evidence of this trend
can, however, also be seen in the measured data
represented in Fig. 1a at E∗

tot ≈ 200MeV.

From a rather simple analysis [29] of the shape of
the fragment mass distribution with increasing E∗

tot,
it has been suggested that a different reaction mecha-
2
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nism than ordinary fission becomes possible at higher
excitation energies. Since such mechanism should be
characterized by a broader fragment mass distribu-
tion extending to very asymmetric mass splittings,
this process is supposed to be faster than ordinary
fission. Therefore, it was conditionally named “binary
fragmentation” [29]. The separation of the fragments
originating from these superimposing disintegration
processes bymeans of conventional multidimensional
analysis procedures, however, turned out to be diffi-
cult.

Recently, a new method for heavy-ion induced
reaction data analysis has been developed, which is
based on the consideration of the excitation energy
sharing between the binary fragments [30]. By ap-
plying this method to binary-decay data obtained
for the reactions 14N(53A MeV) + 197Au [31],
14N(53A MeV) + 232Th [12], 40Ar(36A MeV) +
P

248Cm [12, 32], and 40Ar(36A MeV) + natAg [12,
32], it could be clearly demonstrated for the first time
that several reaction mechanisms contribute to the
final fragment mass distributions [30, 33, 34]. For the
case of binary fragmentation, it was indeed found that
a nonequilibrium excitation energy sharing occurs
[34, 35].
Concerning the fragment mass variance from the

reaction 14N(34AMeV ) +197 Au (Fig. 2a), the steep
rise of σ2

M observed at high E∗
tot is, therefore, likely

to result from another disintegration process. Since
our dynamical stochastic model is confined to the
description of ordinary fission, we shall ignore it in the
following considerations referring to a forthcoming
paper [35].

The calculations performed for σ2
M from

14N(34A MeV) +197 Au (see Fig. 2a) also concern
two extreme cases. Namely, if all the protons of the
projectile are transferred to the composite system,
we have to consider fission of a hot 204Rn nucleus
(Z2/A = 36.3), and contrary to that, if all neutrons of
the projectile are transferred, the fissioning nucleus is
204Au (Z2/A = 30.6). With reference to the findings
of [1], one can expect that neither of them provides
the lowest limit of σ2

M because the dependence of the
mass variance on Z2/A shows a broad minimum in
the region of 31 ≤ Z2/A ≤ 37. However, as shown in
Fig. 2a, our calculations underestimate the measured
data.
The first extreme assumption (with all the pro-

tons transferred) completely disagrees with the ex-
perimental data and can be excluded. It is inter-
esting that this case is excluded for the reaction
14N(34A MeV) + 197Au because the calculated
values of σ2

M are definitely below the measured data,
whereas they are definitely above the data for the
reaction 7Li(43AMeV) + 232Th (cf. Fig. 1a).
Somewhat better agreement between calculations

and measurement can be observed for the fissioning
nucleus assumed to be 204Au. The large error bars
at the calculated values are in this case caused by
the very small fission probability of 204Au (typically
≈ 0.5%) resulting in moderate statistics of the sim-
ulations carried out. For the same reason, calcula-
tions at energies below 140 MeV could not have
been performed. Since a variety of composite systems
can be produced by the incomplete fusion reaction
considered, the resulting σ2

M is, of course, formed by
their initial partitions.
Recalling binary fragmentation, the influence of

such a process should generally lead to an en-
largement of the average fragment mass variance
finally observed, and so even below that value of E∗

tot
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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where it eventually becomes dominating. Evidence
of such influence in the energy region where σ2

M
shows a plateau-like behavior has already been found
in [29]. Furthermore, it was shown in [30] that
very asymmetric binary disintegrations also occur
after semiperipheral collisions, which do not proceed
via an equilibrated compound-like system but are
known as PLF–TLF formation (PLF—projectile-
like fragments, TLF—targetlike fragments). Hence,
some contribution to the fragment mass variance
from binary disintegration processes other than or-
dinary fission might possibly explain that the cal-
culated values are mostly below the measured ones.
This effect should also be stronger for the reaction
14N(34A MeV) + 197Au than for 7Li(43A MeV) +
232Th, where fissile Th-like nuclei are produced.

Since processes other than ordinary fission are out
of the scope of our model, a more detailed investiga-
tion of the behavior of σ2

M at E∗
tot > 200 MeV needs

a proper separation of all contributing reaction types.
Such an attempt was made by means of a noncon-
ventional analysis [30] in [35].

The average fission fragment masses and the
prior-to-scission neutron multiplicities calculated for
the reaction 14N(34A MeV) + 197Au are given for
completeness in Figs. 2b and 2c, respectively.

5. SUMMARY

The fragment mass variances measured for fis-
sion of hot compound systems created in the in-
complete fusion reactions 7Li(43A MeV) + 232Th
and 14N(34A MeV) + 197Au can be rather well
described up to excitation energies of about 200 MeV
by a recently developed dynamical stochastic model
of fission and light-particle emission. The plateau-
like behavior of the fragment mass variance observed
at excitation energies larger than about 100 MeV is
connected with the decrease in the average neutron
emission time. The relatively slow Brownian collec-
tive motion of the compound nucleus governed by
large one-body friction enables the system to con-
siderably cool down by light-particle emission before
fission.

The model does not predict any rapid increase of
the fragment mass variance observed at energies in
excess of 200 MeV. This fact might indicate that,
starting from an initial excitation energy of about
200 MeV, ordinary fission stops being a dominating
decay process, and the binary disintegration becomes
governed by nonequilibrium reaction mechanisms.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Abstract—Within a model of a nonaxial even–even nucleus soft in β vibrations, the shape parameters
of the 154Gd, 156,158,160Dy, 164,168Er, 168Yb, 176Hf, and 180W nuclei are calculated in the quadrupole
approximation as functions of the excited-state spin. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microscopic models of nuclear systems are still
unable to predict satisfactorily the values of some
physical variables characterizing the nucleus and nu-
clear interactions. This is one of the reasons why
much attention is given to creating and developing
phenomenological models that make it possible to
describe quite simply and clearly a broad variety of
nuclear properties. A comparison of quantities cal-
culated on the basis of such models with those mea-
sured experimentally enable one to determine model
parameters of the nucleus, feasible modes of the mo-
tion, and their interplay for specific nuclei and nuclear
reactions.
A model of a nonaxial deformed even–even nu-

cleus soft with respect to β vibrations of the surface
(the Davydov–Chaban model [2], below referred to as
the DChM) underlies one of such approaches based
on the use of the A. Bohr Hamiltonian [1]. Just like
other models of this class, it implies that there is a
relation between the sequence of the spin values of
excited nuclear states and the dependence of their en-
ergy spectrum on the shape parameters of the nucleus
involved; all this enables one to determine the type of
collective mode (a rotational, a vibrational, or a mixed
one).
A systematic analysis of the energy spectrum and

of the electromagnetic structure of nuclei on the basis
of available experimental data (see, for example, [3, 4])
revealed general regularities both in the classification
of the nuclei according to their excitation mode and
in the behavior of their model parameters versus the
nucleonic composition of nuclei and the quantum
numbers of their states. This made it possible to de-
termine, on the basis of the identification of nuclear
states, the disposition of their energy bands in accor-
dance with the SU(3) symmetry group.

*e-mail: odavi@kinr.kiev.ua
1063-7788/02/6508-1411$22.00 c©
A feature peculiar to even–even nuclei is that
levels that are observed in their excitation spectra
and which belong to the ground-state and the β-
rotational band do not satisfy the rule of I(I + 1)
intervals for a spin I. The deviation from this rule
becomes more pronounced with increasing nonaxi-
ality parameter γ. Within the vibrational–rotational
model of Greiner [5], this effect is considered as a
consequence of the centrifugal tension of a nucleus,
while, within the DChM involving a quadrupole de-
formation, it is taken into account by the parameter
µβ of nuclear softness with respect to longitudinal β
vibrations of the surface. The inclusion of nuclear-
surface γ vibrations [6] generates additional energy
bands featuring their own sets of quantum numbers
for both positive- and negative-parity states.
The structure of nucleus excitations can be de-

scribed in various ways. Within models employing
the Bohr Hamiltonian (for example, in the DChM),
excited states are considered as eigenfunctions of
this Hamiltonian, while, within the interacting-boson
model [7], the excited states are treated as ground-
state excitations. However, many relations obtained
within different approaches agree well with one an-
other and are quite appropriate for revealing gen-
eral regularities in the phenomenology of the nu-
clear structure [8, 9]. In particular, a variation of
the Hamiltonian parameters in the interacting-boson
model leads to a change (a smooth or a sharp one)
in the equilibrium shape of the nucleus [10]; that is,
the shape parameters may depend not only on the
nuclear-deformation parameters, but also on the spin
variable I of an excited state. Nuclear features ex-
tracted from available data on reduced E2-transition
probabilities B(E2; I → I − 1) indicate that nuclear
softness may increase with increasing spin of the
state [11]. Our results obtained within the DChM
also confirm that the calculated energies of excited
nuclear states agree worse with experimental data
2002 MAIK “Nauka/Interperiodica”
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as the spin increases. This suggests that it is nec-
essary either to introduce additional compensation
terms in the DChM Hamiltonian or to assume that
the model shape parameters of the nuclei for which
this is observed depend on the spin of their state. This
assumption seems more appropriate since the model
remains associated with the Bohr Hamiltonian. The
explicit form of these dependences can be found from
an analysis of relevant experimental energy spectra of
nuclear excitations, and this is precisely the objective
of the present study.

2. FUNDAMENTALS OF THE MODEL
OF A SOFT NUCLEUS

Any collective nuclear model based on the Bohr
Hamiltonian [1] must include various pure modes of
motion and their mixtures. The choice of the DChM
for analyzing the energy spectra of excited even–
even nuclei seems quite reasonable since this model
implies the presence of various rotational–vibrational
states in the form of bands whose disposition on the
energy scale correlates with a specific nuclear shape
and with its dynamics. For the model Hamiltonian,
use is made of the expression

Ĥ = T̂β +
�

2

4Bβ2
T̂rot + V (β). (1)

In the four-dimensional space spanned by the Euler
angles θ̂ = {θ1, θ2, θ3} and the total deformation β,
individual terms characterize, respectively, the kinetic
energy of longitudinal β vibrations, rotation, and the
potential energy of the deformed nucleus at a fixed
value of the variable γ = γeff, which is an effective
parameter of its nonaxiality. Specifically, we have (see
[2, 3])

T̂β = − �
2

2Bβ3

∂

∂β

(

β3 ∂

∂β

)

, (2)

T̂rot =
1
2

3∑

λ=1

sin−2

(

γ − 2π
3
λ

)

Î2
λ, (3)

V (β) =
1
2
Cβ (β − β0)

2 , (4)

where β0 is the parameter of the longitudinal defor-
mation of the nucleus in the ground state; B and
Cβ are, respectively, the mass parameter and the
elasticity of the nucleus with respect to longitudinal
vibrations; and Îλ are the projections (in units of �) of
the total angular momentum of the nucleus onto the
axes of its intrinsic coordinate frame.
If we take into account the effect of nuclear tension

due to its rotation and associate the softness of the
P

nucleus with respect to longitudinal spinless vibra-
tions with the energy �ω0(DChM), we arrive at the
Schrödinger equation with the operator in (1) for the
wave function

ΨIMτ (β, θ̂) = FIτ (β)ΦIMτ (θ̂), (5)

provided that β vibrations are independent of the Eu-
ler angles θ̂. Each of the factors in (5) satisfies the
relevant equation; that is,

[ T̂rot − εIτ ] ΦIMτ (θ̂) = 0, (6a)

[

T̂β + V (β) +
�

2

4Bβ2
εIτ − EIτ

]

FIτ (β) = 0, (6b)

where EIτ and εIτ are, respectively, the energies of
nuclear states with allowance for β vibrations of the
nuclear surface and the dimensionless eigenvalues of
the operator in (3).

Solutions to Eqs. (6) depend on the parameters
γeff and µβ and on the energy factor �ω0, which are
determined numerically by fitting the chosen basic
set of calculated excited states to experimental data
on energy levels [12]. The choice of the quantum-
number set (τ is the number of states for the spin
value of I, while nβ is the ordinal number of the
β band) for characterizing nuclear states or the in-
clusion of additional numbers—for example, nγ (the
number of the γ band)—leads to different values of
the model parameters for each specific set of basic
states. This effect is also confirmed by previous stud-
ies aimed at determining γeff by using various ratios
of energy levels—in particular, (a) E(2+

2 )
/
E(2+

1 ) and
(b) E(4+

1 )
/
E(2+

1 ) yield γeff(a) < γeff(b) [12].

In order to explore this situation further, we
have calculated, on the basis of the DChM, energy
spectra of the even–even nuclei 154Gd, 156,158,160Dy,
164,168Er, 168Yb, 176Hf, and 180W for the ground-
state rotational band (nβ = 0, nγ = 0, τ = 1), the β
rotational band (nβ = 1, nγ = 0, τ = 1), and the first
anomalous γ band (nβ = nγ = 0). While, in previous
studies (see, for example, [3]), the spin independence
of the parameters µβ , γeff, and �ω0 was assumed,
the existence of such a spin dependence induced
by pairing in the nuclear system [13] or by phase
transitions for its states [14] is admitted here.

According to the fundamentals of the DChM (see
[2, p. 116]), the value of the β deformation depends on
the quantum numbers τ and I—that is, β = βIτ —
while the parameter µβ is functionally related, by
definition, to B, Cβ , and β0 by the equation

µβ = β−1
0 [ �

2
/
(BCβ) ] 1/4, (7a)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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which can be rewritten in terms of the eigenvalues of
the operator in (3) as

µβ =
{
2 (βIτ/β0)

3 [(βIτ/β0) − 1] ε−1
Iτ

}
1/4. (7b)

As to the behavior of the nonaxiality parameter γeff
in the DChM, we can state [6] that, similarly to β
vibrations, γ vibrations lead to a transverse softness
of the nucleus with the corresponding consequences
in the spin dependence of the parameter γeff.

3. THEORETICAL ANALYSIS
OF THE ENERGY SPECTRUM
OF AN EVEN–EVEN NUCLEUS
ON THE BASIS OF THE DChM

In the absence of γ vibrations, a state of an
even–even nucleus with allowance for rotational–
vibrational coupling within the DChM has the ex-
citation energy [3]

∆EthIτnβ
= �ω0

{(

νIτnβ
+

1
2

)√

4 − 3
pIτ

(8)

+
εIτ

4

(
µβ

pIτ

)2
[

1 +
εIτ

2

(
µβ

pIτ

)4
]

− ν0 −
1
2

}

,

where pIτ controls the increase in the equilibrium de-
formation β0 of the ground state of the nucleus upon
its transition to the state |I, τ〉 and is independent of
the quantum number nβ and νIτnβ

and ν0 are para-
metric zeros of the parabolic-cylinder functions for
the excited and the ground state, respectively. These
zeros are found as solutions to the equation

Dν

[
−
√

2µ−1
β pIτ

(
4 − 3p−1

Iτ

)1/4
]

= 0 (9)

in ν for the equilibrium value of the longitudinal de-
formation βIτ .
Numerical values of the parameters µβ , γeff, and

�ω0 were determined by minimizing the mean-square
deviation of experimental data (expt) on the energy
levels from those calculated according to (8) (calc),

minχ2 (10)

= min

{
1
N

N∑

i=1

[(
E
expt
i − ∆Etheori

)/
E
expt
i

]2
}

,

whereN is the number of nuclear levels for which the
model energies ∆Etheori of the levels are fitted to the
experimental valuesEexpti . The parameters µβ and γeff
were varied independently, while the factor �ω0, which
controls the energy scale (see [2, p. 136]), was found
by minimizing the functional in (10).
In [3], the levels of the ground-state rotational

band (nβ = 0, τ = 1, I = 2, 4, 6, . . .) and of the
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state of an even–even nucleus within the model of a
nonaxial rotator soft with respect to β vibrations.

anomalous γ band (nβ = 0, I = 2, 3, 4, . . ., τ = 1, 2)
were chosen as basic ones in determining the nuclear-
shape parameters within the DChM. The parameters
µβ and γeff obtained in this way describe the positions
of the energy levels much better than the results
obtained within the model of a hard nonaxial nucleus
(Davydov–Filippov model, also known as DFM)
[2], where the absence of nucleus softness is partly
compensated by a larger nonaxiality parameter γeff
than in the DChM, since an increase in µβ leads to an
increase in the difference ∆γ ≡ γDFM − γDChM > 0.
For example, we have µβ = 0.199, γDChM = 11.7◦

[3], and γDFM = 14.8◦ [12] for the 160Dy nucleus and
µβ = 0.378, γDChM = 13.7◦ [3], and γDFM = 23.6◦

[12] for 156Dy. Hence, the parameters γeff and µβ can
be treated, to some extent, as correlated ones. This
fact is illustrated by the above example of the calcu-
lation within models assuming the spin independence
of their parameters.
TheDChMcalculation including only states char-

acterized by a fixed value of the spin I (see Table 1,
column 2) yields different parameter values in each
specific case (see columns 3–5), which, in the lin-
ear approximation, can be described by the functions
µβ(A) and γeff(A) (column 6), where A ≡ I(I + 1).
At I = 0, these dependences agree well with the re-
sults presented in [3].
As to the factors �ω0(I) for excited states that

are not presented in Table 1, column 2, they can
be calculated by fitting the experimental energies of
the levels of the ground-state rotational band at the
2
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Table 1. Results obtained by fitting the DChM parameters γeff, µβ , and �ω0 of even–even nuclei to the energies of levels
for states characterized by the same value of the spin I and their approximation as functions of the variableA ≡ I(I + 1)

Nucleus Iπ γeff, grad µβ �ω0, MeV Approximation of the functions γeff(A), µβ(A)

1 2 3 4 5 6
154Gd 2 + 12.38 0.423 0.6373

γeff = 12.6 − 0.059A
µβ = 0.380 + 0.0064A4+ 11.25 0.503 0.5339

6+ 10.18 0.662 0.4392
156Dy 2 + 13.09 0.407 0.6350

γeff = 13.3 − 0.047A
µβ = 0.364 + 0.0069A4+ 12.37 0.498 0.5410

6+ 11.38 0.655 0.4521
158Dy 2 + 12.29 0.300 0.9747

γeff = 12.5 − 0.0186A
µβ = 0.288 + 0.00233A4+ 12.24 0.337 0.8737

6+ 11.65 0.384 0.7501
160Dy 2 + 11.44 0.243 1.2615

γeff = 11.4 − 0.0031A
µβ = 0.242 + 0.0000345A4+ 11.32 0.242 1.2702

6+ 11.31 0.244 1.2665
164Er 2 + 12.38 0.253 1.2048

γeff = 12.42 − 0.0073A
µβ = 0.241 + 0.00145A4+ 12.28 0.264 1.1168

6+ 12.12 0.287 0.9844
168Er 2 + 11.99 0.238 1.2145

γeff = 12.0 + 0.0229A
µβ = 0.226 + 0.0021A4+ 12.71 0.270 1.1146

6+ 12.85 0.313 0.9412
168Yb 2 + 11.34 0.256 1.1533

γeff = 11.4 + 0.0093A
µβ = 0.245 + 0.0021A4+ 11.85 0.292 1.0470

6+ 11.72 0.332 0.8947
176Hf 2 + 9.60 0.260 1.1469

γeff = 9.99 − 0.0148A
µβ = 0.247 + 0.0024A

4+ 9.99 0.300 1.0331

6+ 9.54 0.341 0.8853

8+ 8.80 0.423 0.7056
180W 2 + 13.81 0.338 0.8659

γeff = 13.7 − 0.0056A
µβ = 0.315 + 0.0025A

4+ 13.52 0.359 0.7981

6+ 13.37 0.409 0.7041

8+ 13.39 0.507 0.6022
parameters µβ(A) and γeff(A) set to the values in

Table 1 (column 6). The results of this analysis for

the function �ω0(I) are shown in the figure by broken

lines for each of the nuclei considered; they can be
P

approximated by the function

�ω0(I) = exp

{
M∑

m=0

CmI
m

}

, (11)

where the coefficientsCm are determined by fitting the
energy levels of the ground-state rotational band. By
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 2. Experimental values of the excitation energies of the 164Er nucleus along with theoretical values calculated on
the basis of the DChM in various approximations

I nβ , τ

Parameters Energy level, MeV

γeff(I),
grad

µβ(I) �ω0(I),
MeV

experiment theory, DChM

[15] table 1 [3]

1 2 3 4 5 6 7 8

2 0, 1 12.38 0.253 1.203 0.09139 0.0913 0.091

4 0, 1 12.28 0.264 1.108 0.29946 0.297 0.299

6 0, 1 12.12 0.287 0.978 0.6144 0.610 0.617

2 0, 2 12.38 0.253 1.203 0.8603 0.859 0.858

3 0, 1 12.35 0.257 1.161 0.9463 0.938 0.946

8 0, 1 11.90 0.328 0.838 1.0246 1.033 1.032

4 0, 2 12.28 0.264 1.108 1.0583 1.047 1.068

5 0, 1 12.22 0.274 1.046 1.1975 1.178 1.211

0 1, 1 12.43 0.248 1.242 1.2459 1.242

2 1, 1 12.38 0.253 1.203 1.3145 1.310

6 0, 2 12.12 0.287 0.978 1.3588 1.350 1.401

4 1, 1 12.28 0.264 1.108 1.4696 1.450

10 0, 1 11.63 0.394 0.709 1.5180 1.553 1.533

7 0, 1 12.02 0.305 0.908 1.5451 1.531 1.587

6 1, 1 12.12 0.287 0.978 1.7066 1.693

8 0, 2 11.90 0.328 0.838 1.7446 1.771 1.861

12 0, 1 11.30 0.497 0.604 2.0827 2.110 2.110

14 0, 1 10.90 0.650 0.529 2.7025 2.665 2.760

16 0, 1 10.45 0.867 0.490 3.4112 3.261 3.478

18 0, 1 9.93 1.166 0.495 4.1212 3.845
way of example, we indicate that, for the 164Er nu-
cleus, we used the following values of the coefficients
in (11): C0 = 0.21672, C1 = −2.0962 × 10−3, C2 =
−7.06921 × 10−3, C3 = 7.50317 × 10−5, and C4 =
9.24518 × 10−6.
For the 164Er nucleus taken as an example, the

values of the parameters µβ(I) and γeff(I) and of the
energy factor �ω0(I) calculated according to (11) are
quoted in Table 2 along with the energies of the levels,
both the experimental ones from [15] and their the-
oretical counterparts calculated with the parameters
from Table 1 and the parameters from [3].

4. DISCUSSION

Table 2 shows that the results of the model cal-
culations of the excited-state energies of the 164Er
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
nucleus agree well with experimental data. It is of im-
portance that the description of many energy levels is
based on employing the spin-dependent parameters
γeff(I) and µβ(I) and the factor �ω0. It can be seen
from the figure that, for the nuclei investigated here
(with the exception of the 160Dy nucleus), the factor
�ω0 decreases with increasing spin, which anticorre-
lates with the behavior of the parameter µβ(I).

The description of the spectrum of several energy
bands reveals their common nature. Moreover, it has
been found that, upon the inclusion of the spin de-
pendence of the nuclear-shape parameter, the DChM
enables us to describe the states of the ground-state
rotational band even in that region of spin values
(I > Icrit) where backbending occurs. The standard
version of the DChM can only specify the value Icrit
2
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[16] at which the agreement with experimental data
becomes sharply poorer.
Our results on the spin dependence of the param-

eters γ and µ agree well with the predictions obtained
on the basis of the cranking model [14] in studying
the properties of the deformed nucleus 164Er in the
Hartree–Fock–Bogolyubov approximation. Even if,
in the cranking model, these dependences differ from
those that we have obtained, the very fact of the spin
dependence is present, which is the most important
point. It can be seen from the figure that the spin
dependences �ω0(I) are similar for all the nuclei con-
sidered here and that, within our approach, this factor
is related to the energy of spinless β vibrations rather
than equal to it.
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1. INTRODUCTION
Throughout the last few years, the effective field

theory (EFT) has extensively been used for the study
of nucleon—nucleon (NN) interactions. The activity
in this field was inspired by the Weinberg proposal
[1] that the EFT approach could be useful in low-
energy nuclear physics. Since Weinberg’s original
paper, many aspects of this problem have been dis-
cussed [2].

Contrary to more phenomenological models of
hadron interactions, EFT, which is based on the
separation of light and heavy hadronic scales, allows
for systematic expansion of the scattering amplitude
order by order and the possibility of estimating a
priori the anticipated errors at each order of the
expansion using power-counting rules. Moreover,
the EFT method offers a consistent way to avoid
the otherwise uncontrollable uncertainties related to
off-shell ambiguities. These ambiguities can, at least
in principle, be eliminated in the EFT approach by
having the freedom to work in different low-energy
representations of the underlying QCD. The typical
expansion parameter of EFT is the ratio p/Λ, where
p and Λ are the generic low- and high-energy scales
of the problem. However, while applied to the two-
nucleon systems, EFT encounters a serious difficulty
due to the existence of the extremely large S-wave
scattering length (compared to the pion Compton
wavelength). Thus, it turns out that the EFT de-
scription of the NN forces must be nonperturbative
to incorporate this large scale. In the original work
[1], Weinberg proposed applying counting rules to
irreducible diagrams in order to construct the effective
potential to be iterated in the Lippmann–Schwinger
(LS) equation. It differs from the standard approach
of chiral perturbation theory, where counting rules
are applied to the whole scattering amplitude. In

∗This article was submitted by the authors in English.
1063-7788/02/6508-1417$22.00 c©
the case of the NN interactions, the effective poten-
tial consists of pointlike interactions and standard
meson-exchange contributions. The leading order
(LO) effective potential in the Weinberg approach is
given by pointlike interactions without derivatives,
and the one-pion-exchange term is assumed to be
of order O(p0). One notes that on the level of the
scattering amplitudes, the possibility of a consistent
chiral counting is lost. Immediately one can see a
complication. The corresponding effective potential
is highly singular. The origin of this singularity is the
local nature of the NN coupling. In order to obtain
finite physical observables, one needs to carry out
the procedure of regularization and renormalization.
The issue of renormalization is much more involved
in the case of the NN interaction as compared to
the standard perturbative situation, where the renor-
malization can be carried out for a set of individual
Feynman diagrams using the standard textbook
methods. For the problem at hand, nonperturbative
renormalization is required so that at every order the
divergences of the whole nonperturbative amplitude
must be subtracted.

A somewhat different way of constructing the EFT
of the NN forces was proposed some time ago by
Kaplan, Savage, and Wise (KSW) [3]. The idea was
to sum up a certain subclass of LO diagrams, given
by the lowest order contact interactions. In the KSW
approach, the LO amplitude is assumed to be of
order O(p−1). The rest, including the higher order
contact interactions and graphs with pions, can then
be treated perturbatively. This approach is systematic,
chirally symmetric, and is formulated in such a way
that chiral counting rules can be applied directly to
the NN scattering amplitude. The leading nonpertur-
bative amplitude can be calculated in analytic form,
allowing for the renormalization to be carried out in
an explicit and transparent way. The renormalization
2002 MAIK “Nauka/Interperiodica”
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of the perturbative corrections can be performed using
the standard methods of dealing with divergencies of
Feynman diagrams. However, the perturbative “pio-
nic part” of this approach seems to show a rather slow
convergence in some particular channels [4], making
practical use of this approach somewhat problematic.

In the Weinberg approach, pion effects are treated
to all orders. At very low energies, when pion de-
grees of freedom can safely be integrated out, the
scattering amplitude can be derived analytically and
so no problem with the renormalization arises. In the
more general case of a potential consisting of the
contact terms and a long-range one-pion-exchange
(OPEP) contribution, the analytic solution of the
three-dimensional LS equation is no longer possible
and the problem must be treated numerically. How-
ever, it is not at all clear how to carry out the renor-
malization in such a nonperturbative case. One notes
that it is not enough to regularize the integral part of
the LS equation by imposing a simple cutoff or using
form factors. In this case, one is still left with bare
couplings and the physical amplitude may strongly
depend on the value of the cutoff parameter. It con-
tradicts the renormalization group requirements, ac-
cording to which [5] the physical NN amplitude must
be cutoff-independent (at least up to the order one
is dealing with). To remove the unwanted cut-off de-
pendence, one needs to switch to renormalized effec-
tive couplings. However, this is difficult to implement
in the situation where the analytical solution is not
known.

In this paper, we propose an approximate method
of how to carry out the renormalization if an exact
solution of the LS equation is not possible. Namely,
we propose using the approximate analytical solution,
which can be obtained if we represent the pionic
part of the effective Lagrangian by a sum of separa-
ble terms. In this case, the integral equation can be
transformed into a matrix equation and an analytical
solution becomes possible. Then the renormalization
can be carried out by subtracting the loop integrals at
some fixed kinematical point p2 = −µ2 and by replac-
ing the bare constants with running ones, depending
on the point of subtraction.

2. MODEL

We start from the standard nonrelativistic effective
Lagrangian

L = N †i∂tN −N †∇2

2m
N − 1

2
C(N †N)2 (1)

− 1
2
C2(N †∇2N)(N †N) + Lπ + h.c.+ . . .

Here, Lπ is the pionic part of the effective chiral La-
grangian,m is the mass of a nucleon, and the nucleon
P

field is denoted by N . This Lagrangian leads to the
following effective potential for the 1S0 NN scattering
[1]:

V (p, p′) = C ′ + C2(p2 + p′2) + Vπ(p, p′), (2)

where

C ′ = C +
g2A
2f2

π

; Vπ(p, p′) = − απ

q2 +m2
π

; (3)

απ =
g2Am

2
π

2f2
π

,

q = p− p′, gA = 1.25, and fπ = 132 MeV are the
axial and pion decay constants, respectively. As men-
tioned above, the consistent numerical realization of
the renormalization program in the nonperturbative
situation is a very difficult task [6]; therefore, we adopt
the strategy of an approximate analytic solution of the
LS equation allowing for the explicit realization of the
renormalization procedure. To achieve this goal, we
represent the OPEP contribution by a sum of separa-
ble terms. As we shall henceforth limit our discussion
to S waves only, the matrix elements are functions of
the magnitudes of the momenta only. We write

Vπ(p, p′) =
n∑

j=1

αjηj(p)ηj(p′). (4)

One notes that, in principle, Vπ(p, p′) can be paramet-
rized with arbitrary accuracy, but in this short letter
we would rather like to emphasize the issues related to
renormalization in the effective description of the NN
interaction. So, in practice, we retain only one term in
a separable expansion. This turns out to be enough
to illustrate the main features of our approach. Of
course, this is quite a crude description of the OPEP,
which approximates the exact pionic part of the effec-
tive Lagrangian with an average error of about 10–
12% in the momentum region 0.4 < p < 1.4 fm−1.
We postpone detailed analysis of the NN observables
in the different partial waves and spin–isospin chan-
nels to a future publication.

After the separable approximation is substituted,
the effective potential can be represented in the fol-
lowing matrix form:

V eff(p, p′) =
∑

ij

gi(p)Mijgj(p′), (5)

where

g(p) =








1

p2

η1(p)








and M =








C ′ C2 0

C2 0 0

0 0 α1







. (6)
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The solution of the LS equation can be represented as

T (p, p′;E) = gi(p)τij(E)gj(p′). (7)

We denote by τ the 3 × 3 matrix containing the loop
integrals Iij(E), given by

τ(E) = [1 −M I(E)]−1M, (8)

where

Iij(E) =

∞∫

0

dqq2

2π2

gi(q)gj(q)
E + iε− E(q)

. (9)

Here, we define E(q) = q2/m. The matrix τ(E) con-
tains convergent and divergent integrals; therefore
regularization and renormalization must be carried
out. We use a subtraction scheme similar to the one
suggested in [7]. Namely, all loop integrals are sub-
tracted at some kinematical point p2 = −µ2. The
renormalized T matrix is

TReg(p, p′;E) = gi(p) τ
Reg
ij (E)gj(p′). (10)

In the following, we will omit the superscript
“Reg,” implying that we always work with the
renormalized amplitude. One notes that the choice
of the subtraction point is, in principle, arbitrary
and the physical amplitude, being an observable,
cannot depend on it. According to the standard
rules of quantum field theory, the dependence of the
regularized amplitude on the subtraction point is
compensated if the fixed bare coupling constants are
replaced by the running µ-dependent renormalized
ones. The concrete form of this dependence is fixed
by the Renormalization Group (RG) equation. The
whole procedure is analogous to that commonly used
in the standard chiral perturbation theory, when the
perturbative expansion is applicable. Requiring that
dT/dµ = 0 and using the expression for the T matrix,
one obtains the following RG equations for the LO
coupling C:

∂C(µ)
∂µ

=
(

C +
g2A
2f2

π

)2
m

4π
(11)

− 2απη
2
1(µ)

(

C +
g2A
2f2

π

)
m

4π
.

Neglecting the term with the form factors ηi(p), we
arrive at the variant of the RG equations first derived
by Kaplan et al. [3], where pions were included per-
turbatively. In the region where the second term be-
comes nonnegligible, the pionic effect must be treated
in a nonperturbative manner.
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Numerical results for the phase shifts δ(1S0) in degrees
obtained within the separable approximation to the OPEP
compared to the results from the Nijmegen phase-shift
analysis (Tlab is given in MeV and p in fm−1)

Tlab p δsep pot δNijm

20 0.48 46.9 53.6

50 0.77 43.6 40.1

70 0.91 40.1 34.3

90 1.02 34.7 29.1

110 1.13 26.8 24.6

130 1.24 17.6 20.6

150 1.32 10.0 16.9

170 1.41 2.6 13.6

3. NUMERICAL RESULTS

We used an exponential form for the separable
form factors to parametrize the one-pion exchange
potential

η1(p) = exp(−βp). (12)

The cutoff parameter β and strength parameter α
are taken to be 0.78 fm and 1.73 fm2, respectively.
It provides a rather crude fit of the pionic part of
the effective potential in the relevant energy region.
However, as already mentioned, the purpose of this
paper is rather to formulate a consistent renormaliza-
tion procedure in the nonperturbative situation when
an exact solution is not possible. A detailed com-
parison to the experimental phase shifts in different
channels using a better fit with several separable
terms will be reported elsewhere. The values of the
effective constants used to calculate the phase shifts
are C(mπ) = −3.2 fm2 and C2(mπ) = 2.5 fm4. Their
numerical values were fixed so as to reproduce phase
shifts at low energies (p < 10 MeV/c). These values
are to be compared with the chiral counting rules,
according to which the effective couplings C2n(µ) ∼
4π/(MΛnµn+1), where Λ is the scale where chiral
perturbation theory breaks down and n = 0, 1, 2 . . ..
Assuming Λ ∼ 300–400 MeV, one finds that the val-
ues of the effective constants are indeed consistent
with the counting rules, although somewhat lower
than those obtained in [3]. One notes that it is hard to
compare the effective constants obtained in different
regularization schemes, since the coupling is known
to be a scheme-dependent quantity.

Nonperturbative corrections due to a separable
potential with a form factor η1(p) become noticeable
at p ∼ 100 MeV/c. This agrees with the estimates
obtained in [8]. Of course, the precise region where
2
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pions become nonperturbative may somehow depend
on concrete form factors used, but the general ten-
dency of the pion effects becoming too strong to be
treated perturbatively at p > 0.5 fm−1 seems quite
robust, making the whole problem much more com-
plicated.

As already mentioned in this paper, we focus on
the 1S0 channel and calculate observables up to next-
to-leading order. The main goal was to develop a
reasonable calculation scheme with consistent renor-
malization procedure so that we retain only one term
in the separable expansion of the OPEP contribution.
Of course, this gives only a crude parametrization
of the long-range part of the effective Lagrangian so
that our comparison of the theoretical results with the
experimental phase shifts has a somewhat illustra-
tive character for demonstrating the feasibility of the
method proposed. The results obtained are shown in
the table.

The deviation from the Nijmegen phase shifts [9]
is about 12–15% on average in the kinematical re-
gion 0.4 < p < 1.35 fm−1. At lower momenta, the
pionic effects can either be integrated out or safely
treated perturbatively. At larger momenta, the next-
next-to-leading order corrections, such as two-pion-
exchange or O(p4) contact terms, become more and
more important and must be taken into account. The
errors of the theoretical analysis are comparable with
those introduced by the separable representation of
the effective potential, so no significant additional
uncertainties are introduced by the loop integration.
Therefore, one could hope that taking into account
a few more terms in the separable expansion of the
effective potential will bring the theoretical results
into better agreement with the experimental phase
shifts. Work in this direction is in progress.

In summary, we have analyzed the problem of
renormalization in the effective theory of NN in-
teraction when the perturbative chiral expansion is
not valid. In Weinberg’s approach, where pions are
treated nonperturbatively, the scattering amplitude
P

can be found only numerically, making the procedure
of consistent renormalization difficult to implement.
On the other hand, in the approach proposed by KSW,
pions are treated perturbatively, so that renormaliza-
tion can be carried out in the standard way. The latter
approach, however, shows rather slow convergence
in some channels. The procedure we propose is based
on an approximate but nonperturbative treatment of
pionic effects based on a separable expansion of the
long-range part of the effective potential and allowing
for the renormalization to be carried out in an analytic
form. Our method gives a reasonable description of
the 1S0 NN phase shifts in the laboratory-energy
region up to Tlab ∼ 140 MeV.
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Abstract—The problem of ultraviolet divergences that arise in describing low-energy nucleon dynamics is
analyzed. By considering some examples of exactly solvable models, it is shown that, upon renormalization,
the interaction that governs nucleon dynamics appears to be nonlocal in time. The effect of this nonlocality
on the character of the dynamics of a nucleon system is investigated. It is shown that the time nonlocality of
nucleon–nucleon interactions leads to an anomalous off-shell behavior of two-nucleon amplitudes and this
anomalous behavior can significantly affect the dynamics of multinucleon systems. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

Investigations aimed at assessing the extent to
which quarks and gluons bound in hadrons can affect
low-energy nucleon dynamics are of great importance
for obtaining deeper insights into the nature of strong
interactions. These fundamental degrees of freedom
manifest themselves, for example, as symmetries in
low-energy nucleon–nucleon interaction (NN ) that
are compatible with QCD symmetries. In the most
natural way, the symmetries in question are taken into
account within an effective field theory [1], which is
extensively used at present in describing low-energy
nucleon dynamics. Quark and gluon degrees of free-
dom also manifest themselves in that the interaction
of nucleons must be nonlocal in time because of the
presence of these intrinsic degrees of freedom. Ac-
cordingly, the effective potentials of NN interaction
must be energy-dependent. The possibility of using
such potentials in describing hadron–hadron inter-
actions at low and intermediate energies was exten-
sively discussed in the literature [2]. It may seem that
this time nonlocality of the effective operator of NN
interaction is not compatible with an effective field
theory, which is a local theory. However, this is not
so. Indeed, an effective field theory leads to effective
NN-interaction operators whose ultraviolet behavior
is “bad”; that is, matrix elements as functions of
momenta decrease at infinity insufficiently fast for the
Schrödinger and Lippmann–Schwinger equations to
be meaningful. For this reason, it is necessary to
regularize these equations and to renormalize the po-
tentials. Ultraviolet divergences stem from locality of
the theory; that is, they are due to the disregard of the
fact that NN interaction cannot be local because of
1063-7788/02/6508-1421$22.00 c©
the presence of intrinsic quark and gluon degrees of
freedom.

As a matter of fact, we run here into the same
problem as in quantum field theory: locality of the the-
ory leads to ultraviolet divergences, but the introduc-
tion of a nonlocal form factor in the Hamiltonian or in
the interaction Lagrangian violates the covariance of
the theory. The reason behind this is quite obvious.
The Schrödinger equation is local in time, and the
Hamiltonian describes an instantaneous interaction;
in relativistic theory, a process that is local in time
must be local in space as well. For the introduction
of a nonlocality in a theory to be self-consistent, it is
necessary to extend quantum dynamics to the case of
the evolution of quantum systems whose dynamics is
governed by an interaction that is nonlocal in time.
For the first time, this problem was solved in [3],
where it was shown that the simultaneous use of
basic principles of the canonical and the Feynman
formulation of quantum theory opens the possibility
for generalizing quantum dynamics in this way. The
generalized dynamical equation derived in [3] by using
only generally accepted principles of quantum theory
makes it possible to describe the evolution of quan-
tum systems not only for the case where the funda-
mental interaction is instantaneous (it then reduces to
the Schrödinger equation) but also in the case where
the interaction is nonlocal in time. It was shown
in [3] that generalized quantum dynamics developed
in this way opens new possibilities for solving the
problem of ultraviolet divergences in quantum field
theory. An exactly solvable model was constructed in
[4, 5] for investigating the character of the dynamics of
quantum systems controlled by an interaction that is
nonlocal in time and was used, by way of example [3],
to show that there is a one-to-one correspondence
2002 MAIK “Nauka/Interperiodica”
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between the ultraviolet behavior of the model form
factors and the nonlocality of the interaction. If the
high-momentum behavior of the form factors satisfies
the usual requirements of the Hamiltonian formalism,
the interaction in the system is inevitably local, but,
if this is not so (that is, the behavior of the form
factors leads to ultraviolet divergences inHamiltonian
dynamics), the interaction in the system can only be
nonlocal. In the latter case, the form of the nonlocal
interaction operator is unambiguously determined by
the asymptotic high-momentum behavior of the form
factors, the dynamics of the system not being Hamil-
tonian here.

In connection with the fact that effective field
theories lead to models where the effective poten-
tials of NN interaction exhibit a “bad” ultravio-
let behavior (see above), interest in studying such
models—in particular, in their regularization and
renormalization—has been quickened in recent years.
For example, the problem of a dimensional regular-
ization of the Lippmann–Schwinger equation was
studied in [6] by considering the example of a model
where NN interaction is described by a separable
potential featuring a form factor that leads to a
logarithmic singularity. In that study, the application
of the regularization and renormalization procedure
to the coupling constant made it possible to obtain
the Ò matrix that coincides with the Ò matrix of the
nonlocal model proposed in [4, 5] for the correspond-
ing form factor. Thus, it was found that, upon the
renormalization, the effective NN interaction, which
governs the dynamics of the system being considered,
becomes nonlocal in time, the evolution of the system
being described by a dynamical equation that is not
equivalent to the Schrödinger equation, but which is
an equation of the type associated with generalized
quantum dynamics. It should be emphasized that,
in the case being discussed, generalized quantum
dynamics permits treating the evolution of the system
as rigorously as this is done in the case where
the ultraviolet behavior of the form factors is such
that the dynamics of the system is Hamiltonian. A
construction of the model in question by applying
the renormalization method only makes it possible to
determine the two-nucleon T matrix, but it gives no
way to derive an equation that would describe nucleon
dynamics. The latter in turn prevents the use of these
results in describing the dynamics of multinucleon
systems. At the same time, the theory of renormal-
izations can provide the possibility of constructing, on
the basis of an effective field theory, an effectiveNN-
interaction operator that is nonlocal in time and which
is compatible with its symmetries. This operator
can then be employed to describe nucleon dynamics
in terms of the dynamical equation of generalized
quantum dynamics. This may open new possibilities
PH
for developing the theory of NN interactions that is
based on the effective field theory. Needless to say, re-
alistic models to which the effective field theory must
lead will be more involved than the model considered
in [4, 5]. As we have already mentioned, this exactly
solvable model reflects, however, a crucial feature
of the NN interaction—namely, the bad ultraviolet
behavior of matrix elements as functions of momenta,
which takes place if the interaction is nonlocal in
time. In the present study, we address the problem
of assessing the extent to which the nonlocality of
theNN interaction in time can affect the character of
nucleon dynamics. We will show that this nonlocality
of the NN interaction leads to an anomalous off-
shell behavior of two-nucleon amplitudes, which has
a pronounced effect on the dynamics of multinucleon
systems.

2. GENERALIZED QUANTUM DYNAMICS
It is well known that, in the canonical formulation

of quantum theory, states and observables of a quan-
tum system are represented by, respectively, vectors
and operators in Hilbert space. This fact, together
with the way in which these vectors and operators are
related to observables, is reflected in postulates that
define quantum statics. In the canonical formulation,
these postulates are used in combination with the dy-
namical postulate according to which the evolution of
the system is described by the Schrödinger equation.
In [3], it was shown that, in describing quantum dy-
namics, one can dispense with this postulate, which,
by virtue of the locality of the Schrödinger equation,
admits only an instantaneous interaction for a fun-
damental interaction in the system; instead, one can
use, along with the postulates of quantum statics, the
basic postulate of Feynman’s formulation—that is,
the statement that the amplitude of the probability of
any event is the sum of the amplitudes of alternative
probabilities through which this event may be real-
ized. From the postulates of the canonical formula-
tion, it follows that the evolution of the system can be
described in terms of the evolution operator U(t2, t1),
which must be unitary,

U+(t2, t1)U(t2, t1) = U(t2, t1)U+(t2, t1) = 1, (1)

and which must satisfy the composition law

U(t2, t1)U(t1, t0) = U(t2, t0), U(t0, t0) = 1. (2)

At the same time, the basic postulate of Feynman’s
formulation implies that, in the interaction represen-
tation, the evolution operator can be written as

〈ψ2|U(t, t0)|ψ1〉 = 〈ψ2|ψ1〉 (3)

+

t∫

t0

dt2

t2∫

t0

dt1〈ψ2|S̃(t2, t1)|ψ1〉,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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where 〈ψ2|S̃(t2, t1)|ψ1〉 is the amplitude of the prob-
ability that, if, for t→ −∞, the state of the system
was |ψ1〉, the interaction in the system will begin at
the instant t1 and terminate at the instant t2, with
the result that, for t→ ∞, the system will be found
in the state |ψ2〉. The first term on the right-hand
side of (3) corresponds to an evolutionary path along
which the system undergoes no interaction at any
instant of time. In order to illustrate this statement,
we note that, according to the basic postulate of
Feynman’s formulation, the amplitude of the prob-
ability of the event described by the matrix element
〈ψ2|U(t, t0)|ψ1〉 can be represented as the sum of the
contributions of all alternative possibilities of the real-
ization of the relevant evolutionary process. For such
alternatives, we can consider processes where the
instants of the commencement and of the termina-
tion of the interaction processes are strictly specified,
with the amplitudes 〈ψ2|S̃(t2, t1)|ψ1〉 determining the
contributions to the amplitude 〈ψ2|U(t, t0)|ψ1〉 from
these alternatives. For closed systems, the operator
S̃(t2, t1) (more precisely, this is an operator-valued
distribution of the the variables t1 and t2 [3]) can be
represented in the form S̃(t2, t1) = exp(iH0t2)T̃ (t2 −
t1) exp(−iH0t1), whereH0 is the free Hamiltonian.

It was shown in [3] that, for the evolution operator
specified by Eq. (3) to satisfy the unitarity condition
and the composition law, the operator S̃(t2, t1) must
satisfy the equation

(t2 − t1)S̃(t2, t1) (4)

=

t2∫

t1

dt4

t4∫

t1

dt3(t4 − t3)S̃(t2, t4)S̃(t3, t1).

Equation (4) makes it possible to determine the
amplitudes 〈ψ2|S̃(t2, t1)|ψ1〉 for any instants t1 and
t2, provided that the amplitudes 〈ψ2|S̃(t′2, t

′
1)|ψ1〉

are known for infinitely short interaction times τ =
t′2 − t′1. It is natural to assume that, in the limit of
an infinitely short interaction time, t2 → t1, the main
contribution to the evolution operator comes from
processes that can be associated with the fundamen-
tal interaction in the system being considered. If this
contribution is denoted by Hint(t2, t1), the operator
S̃(t2, t1) can be represented as

S̃(t2, t1) = Hint(t2, t1) + S̃1(t2, t1), (5)

where S̃1(t2, t1) is that part of the operator S̃(t2, t1)
whose contribution to the evolution operator is negli-
gible, in the limit t2 → t1, in relation to Hint(t2, t1).
We will assume that the operator Hint(t2, t1) con-
tains the entire body of dynamical information that
is necessary for constructing the evolution operator.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 20
From the mathematical point of view, this require-
ment means that the operator Hint(t2, t1) must have
a form such that Eq. (4) has a unique solution whose
behavior near the point t2 = t1 is given by

S̃(t2, t1) −→
t2→t1

Hint(t2, t1) + o(τ ε), (6)

where τ = t2 − t1 and where ε depends on the form of
the operatorHint(t2, t1).

The operatorHint(t2, t1) plays the role that the in-
teraction Hamiltonian in conventional quantum the-
ory does; that is, it generates dynamics in the system.
This operator may be considered as a generalization
of the interaction Hamiltonian; therefore, it is referred
to as the generalized interaction operator. Given the
form of the generalized interaction operator, one can
obtain the operator S̃(t2, t1) on the basis of Eq. (4).
With the aid of the representation in (3), it is then
possible to construct the evolution operator U(t2, t1)
for any t1 and t2. Thus, Eq. (4) can be considered
as the equation of motion for states of a quantum
system; in generalized quantum dynamics, it is used
as a basic dynamical equation.

Equation (4) is equivalent to the differential equa-
tion

dT (z)
dz

= −
∑

n

T (z)|n〉〈n|T (z)
(z − En)2

(7)

for the operator T (z) whose matrix elements are de-
fined as

〈n2|T (z)|n1〉 (8)

= i

∞∫

0

dτ exp(izτ)〈n2|T̃ (τ)|n1〉,

where |n〉 are eigenvectors of the free Hamiltonian,
H0|n〉 = En|n〉, which form a complete system of
vectors in the space of free states, and n represents
the set of discrete and continuous parameters fully
characterizing the state |n〉. According to (6) and (8),
the boundary condition for Eq. (7) has the form

〈n2|T (z)|n1〉 −→
|z|→∞

〈n2|B(z)|n1〉 + o(|z|−β), (9)

where β = 1 + ε and

B(z) = i

∞∫

0

dτ exp(izτ)H(s)
int (τ) (10)

with H(s)
int (τ) = exp(−iH0t2)Hint(t2, t1) exp(iH0t1).

The operator B(z), which was called the effective
interaction operator, must be so close to the sought
solution to Eq. (7) in the limit |z| → ∞ that this
differential equation has a unique solution with the
asymptotic behavior specified by Eq. (9).
02
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The dynamics described by Eq. (4) is equivalent to
Hamiltonian dynamics if the generalized interaction
operator has the form [3]

Hint(t2, t1) = −2iδ(t2 − t1)HI(t1), (11)

where HI(t1) is the interaction Hamiltonian in the
interaction representation. In this case, Eq. (4) re-
duces to the Schrödinger equation. The presence of
the delta function δ(τ) in (11) indicates that the fun-
damental interaction is instantaneous in this case.
Thus, the Schrödinger equation is obtained from the
generalized Eq. (4) of motion in the case where the
interaction that generates the dynamics in the system
being considered is instantaneous. At the same time,
Eq. (4) admits a generalization to the case where the
operator Hint(t2, t1) does not have a delta-function
singularity at the point t2 = t1. In that case, the
fundamental interaction generating the dynamics of
a quantum system is nonlocal in time: the evolution
operator is specified by the generalized interaction
operatorHint(t2, t1) treated as a function of the inter-
action time τ = t2 − t1. Below, we will demonstrate
this by considering some examples of exactly solvable
models.

3. MODEL FEATURING A NONLOCAL
INTERACTION IN TIME AND NUCLEON

DYNAMICS

Let us consider the problem of describing the dy-
namics of two nucleons in the c.m. frame that have a
specific relative momentum p and the reduced mass
µ = M/2, where M is the nucleon mass. Suppose
that, in the Schrödinger representation, the general-
ized interaction operator has the form

〈p2|H(s)
int (τ)|p1〉 = ψ(p2)ψ∗(p1)f(τ), (12)

where f(τ) is a function of the interaction time τ . We
are interested in the high-momentum asymptotic be-
havior of the form factorsψ(p). Suppose, for example,
that ψ(p) has the form

ψ(p) = |p|−α + g(p), (13)

and that, in the limit |p| → ∞, the function g(p) has
the asymptotic behavior g(p) = o(|p|−δ), where δ >
α and δ > 3/2. The solution 〈p2|T (z)|p1〉 will have
the separable form

〈p2|T (z)|p1〉 = ψ(p2)ψ∗(p1)t(z).

From (7), we then obtain the equation

dt(z)
dz

= −t2(z)
∫

d3k
|ψ(k)|2

(z − Ek)2
(14)

with the boundary condition

t(z) −→
z→−∞

f1(z) + o(|z|−β), (15)
PH
where f1(z) = i
∫∞
0 f(τ) exp(izτ)dτ and where the

parameter β is dependent on the form of the general-
ized interaction operator and is defined in such a way
that the differential equation in question has a unique
solution.

Equation (14) has a unique solution upon im-
posing a boundary condition that specifies the value
of the function t(z) at some point a ∈ (−∞, 0). For
example, the solution to Eq. (14) with the boundary
condition t(a) = ga, where ga is a constant, has the
form

t(z) = ga (16)

×
(

1 + (z − a)ga
∫

d3k
|ψ(k)|2

(z −Ek)(a− Ek)

)−1

.

If α > 1/2, in which case the form factors ψ(p)
satisfy the usual requirements of quantum mechan-
ics, the function t(z) tends to a constant for |z| → ∞,

t(z) −→
|z|→∞

λ; (17)

that is, f1(z) = λ. From the definition of f1(z), it
follows that this implies that, in the vicinity of the
point τ = 0, the function f(τ) must involve a delta-
function singularity, f(τ) = −2iδ(τ) + f ′(τ). From
this, it follows in turn that the generalized interaction
operator must have the form

〈p2|H(s)
int (τ)|p1〉 = −2iλδ(τ)ψ(p2)ψ∗(p1); (18)

therefore, the dynamics generated by this operator is
local and is equivalent to the dynamics described by
the Schrödinger equation with the separable potential
〈p2|V |p1〉 = λψ(p2)ψ∗(p1). Solving Eq. (14) with
the boundary condition (17), one does indeed easily
obtain the well-known expression for the T matrix in
the model with the above separable potential:

〈p2|T (z)|p1〉 (19)

= λψ(p2)ψ∗(p1)
(

1 − λ
∫

d3k
|ψ(k)|2
z − Ek

)−1

.

Standard quantum mechanics gives no way to
generalize this model to the case where the behav-
ior of the form factors ψ(p) is “bad” in the limit
|p| → ∞ [α ≤ 1/2 in (13)]. Indeed, the integral on the
right-hand side of (19) diverges for such form factors.
We will now demonstrate how generalized quantum
dynamics makes it possible to extend the model to
the case of −1/2 < α ≤ 1/2. We specify the class
of functions f1(z) and, accordingly, the values of β
in such a way that, for them, Eq. (14) has a unique
solution that exhibits the analytic behavior specified
by Eq. (15). In the case of α ≤ 1/2, the function t(z)
tends to zero for |z| → ∞; that is,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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t(z) −→
|z|→∞

b1(α)(−z)α− 1
2 + b2(α)(−z)2α−1 + o(|z|2α−1), −1/2 < α < 1/2;

t(z) −→
|z|→∞

b1(1
2) ln−1(−z) + b2(1

2 ) ln−2(−z) + o(ln−2(−z)), α = 1/2,
(20)

where 




b1(α) = −1
2

cos(απ)π−2(2µ)α−
3
2 ;

b2(α) = b1(α)|a| 12−α − b21(α)(M(a) + g−1
a ), −1/2 < α < 1/2;

b1(
1
2
) = −(4πµ)−1, b2(

1
2
) = b1(

1
2
) ln(−a) − b21(

1
2
)(M(a) + g−1

a ),

(21)

M(a) =
∫ |ψ(k)|2 − |k|−2α

a− Ek
d3k. (22)
It should be emphasized that, in conventional quan-
tum mechanics, the vanishing of the T matrix at in-
finity implies the vanishing of the potential. From the
point of view of standard theory, this case is therefore
trivial: there is no scattering in the system. On the
other hand, we have shown above that, in the case
of α ≤ 1/2 in (13), Eq. (14) has a nontrivial solution
that tends to zero for |z| → ∞, the dynamics here
being governed by the character of the vanishing of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
the T for |z| → ∞ rather than by its value at infinity.
It can easily be proven that all integral curves of
the differential Eq. (14) have the same asymptotic
behavior specified byEq. (20) with the same first term,
differing only by the values of the parameter b2(α).
In order to obtain a unique solution to Eq. (14), we
therefore have to determine the first two terms in the
asymptotic expansion of t(z) for |z| → ∞, whence it
follows that the function f1(z) must have the form





f1(z) = b1(α)(−z)α− 1
2 + b2(α)(−z)2α−1, −1/2 < α < 1/2;

f1(z) = b1(
1
2
) ln−1(−z) + b2(

1
2
) ln−2(−z), α = 1/2,

where b1(α) is given by (21) and where only the parameter b2(α) is arbitrary. If, however, there is a bound state
in the system, like that in the 3S1 channel of theNN system, this parameter is determined by the energy Ec of
this bound state. Indeed, the fact that the T matrix then has a pole at z = Ec—that is, [t(Ec)]−1 = 0—can be
used as the boundary condition for Eq. (14), in which case Eq. (16) yields

[t(z)]−1 = (z − Ec)
∫

d3k
|ψ(k)|2

(z − Ec)(Ec − Ek)
. (23)

In this case, the parameter b2(α) will accordingly have the value





b2(α) = b1(α)(−Ec)
1
2
−α − b21(α)M(Ec), −1/2 < α < 1/2;

b2(
1
2
) = b1(

1
2
) ln(−Ec) − b21(

1
2
)M(Ec).

Considering that f(τ) =
i

2π
∫∞
−∞ exp(−izτ)f1(z)dz, we obtain the generalized interaction operator in the

form 




〈p2|H(s)
int (τ)|p1〉 = ψ(p2)ψ∗(p1)

(
a1τ

−α− 1
2 + a2τ

−2α
)
, −1/2 < α < 1/2;

〈p2|H(s)
int (τ)|p1〉 = ψ(p2)ψ∗(p1)

i

2π

∞∫

−∞
exp(−izτ)





b1(

1
2
)

ln(−z) +
b2(

1
2
)

ln2(−z)




 dz, α = 1/2,

(24)

where a1 = −ib1(α)Γ−1(1/2−α) exp[i(−α
2

+
1
4
)π] and a2 = b2(α)Γ−1(1− 2α) exp(−iαπ).By usingEq. (16),

it can easily be proven that the relevant solution for the T matrix has the form
〈p2|T (z)|p1〉 = N(z)ψ(p2)ψ∗(p1), (25)
2
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where





N(z) = b21(α)
(
−b2(α) + b1(α)(−z) 1

2
−α +M(z)b21(α)

)−1
, −1/2 < α < 1/2;

N(z) = b21(
1
2
)
(

−b2(
1
2
) + b1(

1
2
) ln(−z) +M(z)b21(

1
2
)
)−1

, α = 1/2.
Considering that the T matrix is related to the evolu-
tion operator by the equation [3]

U(t, t0) = 1 +
i

2π
(26)

×
∞∫

−∞

dx
exp[−i(z −H0)t]

(z −H0)
T (z)

exp[i(z −H0)t0]
(z −H0)

,

where z = x+ iy and y > 0, we can find for the evo-
lution operator that

〈p2|U(t, t0)|p1〉 = 〈p2|p1〉 +
i

2π
(27)

×
∞∫

−∞

dx
exp[−i(z − Ep2)t] exp[i(z − Ep1)t0]

(z − Ep2)(z − Ep1)

×N(z)ψ(p2)ψ∗(p1).

By using (27), we can then construct a vector repre-
senting the state of the system at any instant of time
t. It can be shown that the evolution operator (27) is
unitary if the parameter b2(α) is real-valued and that
it satisfies the composition law.

It should also be noted that there is a one-to-one
relationship between the behavior of the form factors
ψ(p) for |p| → ∞ and the character of dynamics:
if the form factors satisfy the usual requirements of
quantum mechanics [for α > 1/2 in the asymptotic
expression (13)], the generalized interaction operator
must have the form (18). In this case, the fundamental
interaction is instantaneous. At α ≤ 1/2, in which
case the high-momentum behavior of the form factors
in Hamiltonian dynamics leads to ultraviolet diver-

gences, the only possible form ofH(s)
int (τ) is that which

is given by (24); that is, the fundamental interaction
that generates dynamics in the quantum system be-
ing considered is nonlocal in time.

We have shown that generalized quantum dynam-
ics makes it possible to describe, in a natural way,
the evolution of quantum systems where the interac-
tion leads to ultraviolet divergences in Hamiltonian
dynamics. It was indicated above that, in effective
field theories, one has to deal with precisely such
interactions, with the result that it becomes neces-
sary to invoke various regularization and renormal-
ization procedures. In [6], this problem was inves-
tigated for the example where the NN interaction
P

is described by the separable potential 〈p2|V |p1〉 =
λψ(p2)ψ∗(p1) with form factor ψ(p) = (d2 + p2)−

1
4 .

The parameter α, which determines the asymptotic
behavior of the form factor, is 1/2, and the rele-
vant solution to the Lippmann–Schwinger equation,

t(z) =
(
λ−1 − J(z)

)−1, where J(z) =
∫
d3k

|ψ(k)|2
z − Ek

,

has an ultraviolet logarithmic singularity. A dimen-
sional regularization was used in [6] to render the
Lippmann–Schwinger equation meaningful. In mo-
mentum space of dimension D = 3 − ε, the solution
to this equation has the form

[tε(z)]
−1 = λ−1

ε − Jε(z), (28)

where Jε(z) =
∫
d3−εk

|ψ(k)|2
z − Ek

. Prior to making ε

tend to zero, it is necessary to renormalize the cou-
pling constant. For the 3S1 channel of the NN sys-
tem, the value of the coupling constant λε must be
chosen in such a way as to ensure the existence of a
bound state atEc = −2.2246 MeV in this channel, in
which case the T matrix must have a pole at z = Ec.
Thus, the following condition must be satisfied:

λ−1
ε = Jε(Ec). (29)

The substitution of (29) into (28) then yields

[tε(z)]−1 = Jε(Ec) − Jε(z)

= (z − Ec)
∫

d3−εk
|ψ(k)|2

(z − Ek)(Ec − Ek)
.

It can easily be proven that, upon going over to
the limit ε→ 0 in this expression, we arrive at for-
mula (23), which was previously obtained for the
T matrix; that is, the above renormalization proce-
dure leads to the dynamics described by the inter-
action that is specified by Eq. (24) and which is
nonlocal in time. Let us now consider this situa-
tion from the point of view of Hamiltonian dynam-
ics. In the limit ε→ 0, the renormalized coupling
constant λε and, hence, the renormalized Hamilto-
nian tend to zero, while the T matrix (25) does not
satisfy the Lippmann–Schwinger equation; therefore,
the dynamics in question is not described by the
Schrödinger equation. Thus, we see that, although
each of the set of dynamics that correspond to the
dimensionality D = 3 − ε for ε > 0 is a Hamiltonian
dynamics, we have a non-Hamiltonian dynamics in
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 1. Phase shift δ(E) for proton–neutron scattering as
a function of the laboratory energy for the 1S0 channel.
Experimental data from [8] are shown by points. The
results of the calculation with the generalized interaction
operator (24) are represented by the solid curve. Also
given for the sake of comparison are the results of the
calculationwith the Yamaguchi potential (dashed curve).

the limiting case D = 3. This situation is typical of
any theory where a renormalization procedure is re-
quired to remove ultraviolet divergences. At the same
time, the T matrix satisfies Eq. (7), which is one of
the possible forms of the master dynamical Eq. (4)
of generalized quantum dynamics. But Eq. (4) leads
to the Lippmann–Schwinger equation only in the
particular case whereHint(t2, t1) has the form (11)—
that is, in the case of an instantaneous interaction.
The dynamics of a renormalized theory is nonlocal
in time; that is, it belongs to the class of dynamics
that can be described only on the basis of general-
ized quantum dynamics. For the renormalized model
considered here, the generalized interaction operator
is given by (24). This operator can then be used in
a dynamical equation to describe the dynamics of
systems featuring an arbitrary number of nucleons.

4. ANOMALOUS OFF-SHELL BEHAVIOR
OF TWO-NUCLEON AMPLITUDES

Thus, we have shown that the regularization of
the Schrödinger and Lippmann–Schwinger equa-
tions, which is necessary in using effective interaction
operators constructed within effective field theories,
results in that the interaction generating nucleon dy-
namics appears to be nonlocal in time. The evolution
of systems governed by such interactions is described
in a natural way, by generalized quantum dynamics
and by models constructed on its basis [4, 5]. In [5],
the NN interaction was described on the basis of the
model where the generalized interaction operator has
the form (24) with form factor ψ(p) = gY(p) − φ(p),
where gY(p) is the Yamaguchi form factor [7], which,

in the S channel, is given by gY(p) =
λ

b2 + p2
, and
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Fig. 2. Phase shift δ(E) for proton–neutron scattering as
a function of the laboratory energy for the 3S1 channel.
Experimental data from [8] are shown by points. The
results of the calculation with the generalized interaction
operator (24) are represented by the solid curve.

φ(p) = (d2 + p2)−α/2 with−1
2
< α <

1
2
; that is, φ(p)

is the form factor whose ultraviolet behavior corre-
sponds to an interaction that is nonlocal in time. The
parameters of the model were determined from the
best fit to the experimental values [8] of the phase
shift for nucleon–nucleon scattering at low energies.
For the 1S0 and the 3S1 channel, the quality of our
fits to the experimental values of the phase shifts for
nucleon–nucleon scattering is illustrated in Figs. 1–
3. The parameters of themodel are quoted in the table.
For the sake of comparison, the energy dependence of
the phase shift for nucleon–nucleon scattering is also
displayed in Fig. 1. From this figure, it can be seen
that, in the Yamaguchi model, the main flaw, which
consists in its inability to reproduce the reversal of
the sign of the phase shift in the 1S0 channel, can be
removed by generalizing this model to the case where
the interaction is nonlocal in time.
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Fig. 3. Phase shift δ(E) for proton–proton scattering as
a function of the laboratory energy in the 1S0 channel.
Experimental data from [8] are shown by points. The
results of the calculation with the generalized interaction
operator (24) are represented by the solid curve.
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Parameters of the generalized interaction operator (24), ρ = 1 MeV−1

Channel α λ b · ρ d · ρ b2 · ρ1−2α

3S1(np) 0.499 133.5 × 102 433.8 766.2 1.696 × 10−7

1S0(np) 0.499 131.8 356.3 3.651 × 106 1.694 × 10−7

1S0(pp) 0.499 320.0 371.7 6.763 × 105 1.695 × 10−7
Needless to say, the NN-interaction potential
constructed in this study is nothing but a model-
dependent quantity. A realistic effectiveNN-interac-
tion operator that takes into account QCD symme-
tries must be derived within an effective field theory
by using a renormalization procedure. However, our
exactly solvable model can be employed the study
the effect of the nonlocality of NN interaction on
the character of nucleon dynamics. Among data
from two-nucleon physics, information about the
off-shell behavior of two-nucleon amplitudes is of
great importance, since it substantially affects the
dynamics of three-nucleon and multinucleon systems
[9]. Let us consider the effect of nonlocality of the
NN interaction on this behavior of two-nucleon
amplitudes. First of all, we consider the behavior of
f(z) = 〈p2|T (z)|p1〉 as a function of z at fixed p1 and
p2. It is well known that, for |z| → ∞, the solutions
〈p2|T (z)|p1〉 to the Lippmann–Schwinger equation
tend to 〈p2|V |p1〉, where V is the potential.

Thus, we see that, in the case where the NN
interaction is described by some potential—that is,
this interaction is local in time—the two-nucleon
amplitude 〈p2|T (z)|p1〉 tends to a nonzero constant
for |z| → ∞. At the same time, 〈p2|T (z)|p1〉 taken
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Fig. 4. Behavior of the two-nucleon amplitude f(z) =
〈p2|T (z)|p1〉 at the fixed momenta |p2| = |p1| =

500 MeV in the 3S1(np) channel. The solid curve rep-
resents the results of the calculations based on the model
involving the generalized interaction operator (24), whose
parameters are quoted in the table. Also given for the sake
of comparison are the results obtained on the basis of the
Yamaguchi model (dashed curve).
PH
at fixed p1 and p2 always tends to zero for |z| → ∞
in the case of an interaction that is nonlocal in time.
Indeed, we have already indicated that, in the nonlocal

case, H(s)
int (τ) does not have a delta-function singu-

larity at the point τ = 0, whence one can immediately
conclude that B(z), which is defined by the relation
(10), tends to zero for |z| → ∞. According to (9), it
immediately follows that, in this limit, 〈p2|T (z)|p1〉
also tends to zero. For our nonlocal model, as well
as for the Yamaguchi model, Fig. 4 illustrates the
behavior of the function f(z) in the 3S1(np) channel.
It is obvious that this anomalous behavior of two-
nucleon amplitudes, which is due to the nonlocality
of theNN interaction in time, can significantly affect
the dynamics of multinucleon systems.

As was shown above, the generalized interaction
operator can be nonlocal in time only if its matrix

elements 〈p2|H(s)
int (τ)|p1〉 as functions of momenta

have an ultraviolet behavior that leads to divergences
in Hamiltonian dynamics. Accordingly, the T -matrix
elements 〈p2|T (z)|p1〉 as functions of p1 and p2 will
not decrease at infinity as fast as is required in Hamil-
tonian dynamics. This brings about the question of
how this circumstance can affect the character of
nucleon dynamics. The importance of the off-shell
behavior of the two-nucleon T matrix is associated
with the fact that it appears in the Faddeev equation
for the three-nucleon T matrix. It can straightfor-
wardly be shown, however, that, if 〈p2|T (z)|p1〉 does
not decrease sufficiently fast in the high-momentum
limit, then the Schmidt norm for the kernel of the
Faddeev equation does not exist at any value of z.
Thus, we see that, in the case of an interaction that
is nonlocal in time, the off-shell behavior of two-
nucleon amplitudes is anomalous, which results in
that the Faddeev equation is not well defined. That ef-
fective field theories lead to a Faddeev equation whose
kernel decreases at infinity insufficiently fast for this
equation to be well-defined is one of the most serious
problems in such theories [6]. It is important that gen-
eralized quantum dynamics admits a generalization
to the case where the Faddeev equation, as well as
Lippmann–Schwinger equation, is not well defined.
One must then directly use the dynamical Eq. (4) or
(7).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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In our above analysis, we have considered the case
where the interaction is nonlocal in time and is de-
scribed by the interaction operator in the form (24). At
the same time, it was shown in [5] that the generalized
interaction operator may have the form

Hint(t2, t1) = Hnon(t2, t1) (30)

− 2iδ(t2 − t1)HI(t1),

where the first term on the right-hand side,
Hnon(t2, t1), describes the nonlocal part of the inter-
action, while the second term describes its instan-
taneous part. This form of the interaction operator
seems natural in the case of NN interactions. In-
deed, it is well known that, at long and intermediate
distances, the NN interaction is well approximated
by realistic NN potentials based on the concept of
meson exchange. This part of the NN interaction
is described by the second term on the right-hand
side of (30). At the same time, there is every rea-
son to believe that a nonlocal interaction operator
offers a natural way to treat the short-range part of
the interaction, where quark and gluon degrees of
freedom are expected to manifest themselves. From
the above analysis, it follows that the asymptotic
high-momentum behavior of the matrix elements
〈p2|Hint(t2, t1)|p1〉 of the interaction operator (30)
is controlled by the nonlocal term Hnon(t2, t1). Even
if this term makes a negligible contribution to two-
nucleon phase shifts at low energies, it changes
qualitatively the off-shell behavior of two-nucleon
amplitudes and, hence, affects substantially three-
nucleon data. This highlights the importance of
taking into account nonlocality effects in describing
the short-range part of the NN interaction. The use
of nonlocal interaction operators for the short-range
part of the NN interaction, along with realistic NN
employed at present, may lead to a better description
of three-nucleon and multinucleon data. We hope
that it will be possible to construct such operators—
that is, those nonlocal interaction operators that
would describe the short-range part of the NN
interaction—on the basis of effective field theories.

5. CONCLUSION

By considering the example of an exactly solv-
able model, we have shown that, upon the appli-
cation of regularization and renormalization proce-
dures, the dynamics of a nucleon system governed
by an interaction that involves ultraviolet divergences
is not Hamiltonian—it is described by the dynamical
Eq. (4) featuring a generalized interaction operator
that is nonlocal in time. Here, we are dealing with dy-
namics that can be consistently described only with-
in generalized quantum dynamics. Thus, generalized
quantum dynamics opens new possibilities for solving
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
problems associated with the fact that effective field
theories lead to effective nucleon–nucleon interaction
operators involving ultraviolet divergences. It can be
expected that nucleon dynamics to which effective
field theories must lead will be described by some
generalized interaction operator that is nonlocal in
time. If, within an effective field theory, one will be able
to construct such an operator, which will then respect
QCD symmetries, it will be possible to use Eq. (4)
to describe nucleon dynamics. For the example of the
aforementioned model, we have shown that such an
operator can be constructed. We have investigated
the effect of the nonlocality ofNN interaction in time
on the character of nucleon dynamics. Our analysis
has revealed that these effects lead to an anoma-
lous off-shell behavior of two-nucleon amplitudes: the
two-nucleon amplitudes 〈p2|T (z)|p1〉 at fixed mo-
menta vanish for |z| → ∞ and, treated as functions
of p1 and p2, decrease insufficiently fast at infinity
for the Faddeev equation to be well defined. This
may substantially affect the dynamics of multinucleon
systems. As we have shown, the nonlocal interaction
operator constructed here can be used for the nonlocal
part of the NN-interaction operator. At the same
time, realistic NN potentials can be taken for its
instantaneous part describing the NN interaction at
intermediate and long distances. The introduction of
such nonlocal corrections to realistic NN potentials
may significantly improve the description of three-
nucleon and multinucleon data, which is one of the
challenging problems in nucleon physics.
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Abstract—Results are presented that were obtained by calculating various properties of nuclei occurring
in the vicinity of the doubly magic neutron-deficient nuclide 100Sn, which are being intensively studied at
present. The calculated features include the masses of 25 nuclei and the properties of excited states of the
magic nuclide and of nuclei belonging to the magic core plus two quasiparticles type. The problems of
effective quadrupole charges and of the renormalization of the weak axial constant in nuclei lying in the
vicinity of 100Sn are considered. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Theoretical investigations were previously per-
formed for nuclei that lie in the vicinity of the doubly
magic nuclide 208Pb [1, 2] and for nuclei that occupy
remote positions in the new magic regions around
132Sn and 78Ni, but which are nevertheless stable
with respect to nucleonic-decay modes (see [3–
8]). At the same time, a theoretical analysis was
performed in [9] for nuclides of ultimately high neu-
tron deficit in the region of the hypothetical doubly
magic nucleus 164Pb, which lies beyond the region
of nucleonic stability, but which has, only owing to
the Coulomb barrier, a lifetime of about 10−12 s with
respect to proton emission, a value that is rather
large on the nuclear scales. For nuclei close to 132Sn
and, partly, for nuclides from the region around 78Ni,
experimental information about the nuclear masses,
as well as about the properties of their excited states
and about their decay characteristics, has already
been obtained; on the contrary, nuclei close to 164Pb
can hardly become the subject of such investigations
in the near future because it is difficult to obtain
them in experiments and because their lifetimes are
short. At the same time, a different region of magic
neutron-deficient nuclei with N ∼ Z—that which
occurs in the vicinity of the doubly magic nuclide
100Sn, which is more stable than 164Pb—is being
intensively studied in present-day experiments. Since
currently available experimental information about
nuclei from this region is scanty, one can adopt an
alternative way to assess their properties, that of

1)Ioffe Institute for Physics and Technology, Russian Academy
of Sciences, Politekhnicheskaya ul. 26, St. Petersburg,
194021 Russia.
1063-7788/02/6508-1431$22.00 c©
theoretical calculations; a version of such calculations
is proposed in this article. Since basic formulas of
the computational scheme used here were presented
previously, we will quote here predominantly our
numerical results, supplementing them, when nec-
essary, with brief explanations.

2. DETERMINATION OF THE “MASS
RELIEF” FOR THE SET OF NUCLIDES

IN THE VICINITY OF THE 100Sn NUCLEUS

In order to determine the masses of nuclei from
the region around the doubly magic nuclide 100Sn,
we employed two methods, that which is based on
the multiparticle shell model and that which based on
self-consistent calculations.

The calculationswithin the shell model rely (see [6,
9]) on the concept of a mean field that generates a
single-particle spectrum and the concept of an ef-
fective interaction between valence nucleons. Since
there are no detailed experimental data on the spec-
trum of single-particle states in odd nuclei neighbor-
ing 100Sn (available extrapolations from the region
of nuclei less remote from the drip line can be found
in [10], while fragmentary data for nuclei having a
somewhat greater number of neutrons are quoted
in [11]), the choice of an appropriate phenomenolog-
ical mean-field potential that can faithfully reproduce
relevant experimental data in other magic regions is
an important ingredient of the calculations. For this,
we took the potential

U(r, σ̂) =
U0

1 + exp[(r −R)/a]
(1)

+ Ulsr
2
0

1
r

d

dr

[
1

1 + exp[(r −R)/a]

]

l̂ · ŝ,
2002 MAIK “Nauka/Interperiodica”
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where

U0 = V0

(

1 +
1
2
β
N − Z

A
τ3

)

,

Uls = Vls

(

1 +
1
2
βls

N − Z

A
τ3

)

,

R = r0A
1/3, and τ3 = 1 for protons and τ3 = −1 for

neutrons (for protons, we added the potential of a
uniformly charged sphere of radius Rc = r0cA

1/3).
The parameters appearing in (1) were evaluated

in [8] by fitting the single-particle energies for nuclei
in the vicinity of known magic nuclei; the results
proved to be the following: V0 = −51.8 MeV, Vlsr

2
0 =

35.9 MeV fm2, β = 1.33, βls ∼ −0.6, r0 = 1.27 fm,
and r0c = 1.25 fm. The values obtained for the dif-
fuseness parameter a showed a wider scatter, chang-
ing, for various nuclei, between 0.55 and 0.66 fm.

Our effective interaction has the form
ϑ = (V + Vσσ1 · σ2 + VTS12 (2)

+ Vττ1 · τ2 + Vστ (σ1 · σ2)(τ1 · τ2)

+ VτTS12τ1 · τ2) exp
(

− r2

r2
00

)

(in the case of two protons, we added the pair
Coulomb potential). The parameters appearing in (2)
were also determined in previous studies and were
successfully used to describe a wide set of experimen-
tal data around the doubly magic nuclei 78Ni, 132Sn,
and 208Pb [1–6]. Their values are the following (all
V terms are in MeV units): V = −9.95, Vσ = 2.88,
VT = −1.47, Vτ = 5.90, Vστ = 4.91, VτT = 1.51, and
r00 = 1.8 fm.

Another important idea of shell-model calcula-
tions consists in the use of the ground state of a
doubly magic nucleus for a vacuum; with respect
to this vacuum, all nuclei close to the magic nu-
clide in question are few-quasiparticle systems. In the
representation of Hartree–Fock eigenfunctions, the
Hamiltonian of such a nucleus can then be written as

H = E0 +
∑

α

εαN(a+
α aα) (3)

+
1
4

∑

α,β,γ,δ

a〈αβ|ϑ|γδ〉aN(a+
αa+

β aδaγ),

where the single-particle orbitals |α〉were determined
from a self-consistent procedure of the Hartree–Fock
type for the core nucleus, E0 is the vacuum energy
(sign-reversed binding energy of the ground state of
themagic nucleus), andN(. . .) is an operator product
normally ordered with respect to the chosen vacuum.
In the shell-model calculations, use was made of
a Hamiltonian in the form (3) with interaction (2)
P

and with the substitution of the orbitals associated
with the mean field (1) for self-consistent orbitals. In
implementing this procedure, all energies are defined
apart from an unknown quantity E0, which does not
appear, however, in the decay energies, which are of
prime interest to us. For the cases of two-, three-,
and four-quasiparticle nuclei, formulas for calculating
the quantity ∆B = B(Z,N) −B(core) can be found
in [6, 9]. The calculations were performed in the
matrix representation.

Since the nuclei that are investigated here are
characterized by a large neutron deficit, far extrapo-
lations of phenomenological parameters that, in the
shell-model approach, define the mean field and the
residual interaction may prove to be hazardous. In
order to determine the masses in the vicinity of 100Sn,
we have therefore performed, in addition, fully self-
consistent calculations, relying on the combination of
the Hartree–Fock and Bardeen–Cooper–Schrieffer
methods (HF + BCS method) and using an inter-
action of the Skyrme III type; we have also added a
contact pairing in order to take into account pairing
correlations. In this approach, the total ground-state
energy E of the nucleus being considered can be
represented in the form (see [12–15])

E = 4π

∞∫

0

H(r)r2dr −
∆2

p

Gp
− ∆2

n

Gn
. (4)

Pair correlations in the modified Hartree–Fock en-
ergy density H(r) were taken into account by intro-
ducing the orbital-occupation numbers v2 in single-
particle matter densities, in kinetic-energy densities,
and in spin densities. After that, the Hartree–Fock
problem with the densities modified in this way
was solved in the coordinate representation, while
a simultaneous solution to the equations of the
HF + BCS method was constructed by applying an
iterative procedure. In performing the self-consistent
calculations, we took into account all terms in the
energy functional that contribute to the spin–orbit
splitting, including terms depending on the spin
density. As to the exchange Coulomb interaction, it
was treated in the Slater approximation. The details
of the computational scheme used can be found
in [9]. In the calculations, we employed the values
ofGp = 23/AMeV and Gn = 21/AMeV.

The calculations were performed for 25 nuclides,
including the 100Sn nucleus and its nearest neigh-
bors. For the ground states of the nuclei, the results
of the calculation of the differences of the binding
energies, ∆B, are quoted in Table 1, along with the
relevant systematics (given for the sake of compar-
ison) from [16–18] for the binding energies. The
results of the shell-model calculations in Table 1
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 1. Mass relief for nuclei in the vicinity of 100Sn: Values of ∆B = B(Z,N) −B(100Sn) (in MeV) for the ground
states of the nuclei from [16–18] and values computed in the present study (for details, see main body of the text)

Nucleus
∆B(syst.)

Jπ ∆B(theor.)

[16] [17] [18] sh.m. av.sh.m. (σn−1) HF+ BCS
96
48Cd48 −31.48(0.66) −31.40(1.36) −31.31 0+ -35.79 −35.44(1.65) −34.14
97
48Cd49 −18.91(0.59) −18.59(1.35) −17.83 9/2+ -20.59 −20.26(1.21) −19.88
98
48Cd50 −3.98(0.48) −3.57(1.37) −3.14 0+ -4.67 −4.60(0.86) −4.36
99
48Cd51 6.48(0.48) 7.16(1.36) 7.48 5/2+ 5.84 6.00(0.95) 4.82
100
48 Cd52 19.08(0.44) 19.75(1.38) 19.83 0+ 18.17 18.22(1.16) 16.18
97
49In48 – −32.65(1.35) −32.34 9/2+ -34.35 −34.14(1.36) −33.47
98
49In49 −18.42(0.66) −18.55(1.44) −18.26 0+ -18.29 −18.14(0.81) −18.79
99
49In50 −3.24(0.66) −3.20(1.40) −2.70 9/2+ -3.13 −3.08(0.45) −2.79
100
49 In51 8.05(0.57) 8.46(1.43) 8.62 6+ 8.48 8.50(0.57) 6.75
101
49 In52 20.40(0.52) 21.03(1.37) 21.09 9/2+ 21.09 20.98(0.87) 18.50
98
50Sn48 – −31.89(1.42) −31.18 0+ -32.41 −32.06(1.08) −31.67
99
50Sn49 – −17.47(1.41) −16.82 9/2+ -17.15 −16.99(0.54) −16.47
100
50 Sn50 0.0(0.43) 0.0(1.08) 0.0 0+ 0.0 0.0 0.0
101
50 Sn51 10.77(0.66) 11.66(1.49) 11.44 5/2+ 11.78 11.56(0.43) 10.05
102
50 Sn52 24.03(0.59) 25.04(1.47) 24.65 0+ 25.20 24.87(0.83) 22.18
99
51Sb48 – −35.57(1.51) – 5/2+ -36.15 −36.01(1.23) −36.12
100
51 Sb49 – −20.22(1.51) – 6+ -19.75 −19.65(0.67) −20.65
101
51 Sb50 – −2.77(1.44) – 5/2+ -2.43 −2.32(0.21) −3.71
102
51 Sb51 – 10.58(1.53) 10.15 1+ 11.13 11.09(0.37) 6.89
103
51 Sb52 22.34(0.66) 24.24(1.51) 23.48 5/2+ 24.00 23.82(0.62) 19.65
100
52 Te48 – −37.59(1.64) – 0+ -38.38 −38.18(1.32) −38.87
101
52 Te49 – −22.23(1.61) – 9/2+ -21.68 −21.51(0.79) −22.80
102
52 Te50 – −4.00(1.52) – 0+ -3.63 −3.43(0.38) −5.39
103
52 Te51 – 9.62(1.51) – 5/2+ 9.48 9.51(0.20) 5.95
104
52 Te52 – 25.08(1.66) 24.24 0+ 23.77 23.60(0.77) 19.23

Note: Values of Jπ correspond to the theoretical predictions for the ground states of the nuclei.
for the binding-energy differences ∆B(sh.m.) were
obtained with the mean-field-potential and effective-
interaction parameters set to the values indicated
above and with ap = an = 0.60 fm. As to the values
∆B(av.sh.m.) “averaged” over the parameters of the
shell model, they are the binding-energy differences
averaged over various combinations of the diffuseness
parameters (a = 0.55, 0.60, 0.66 fm) for protons and
neutron independently, as well as over some other
mean-field potentials that we used previously. Of
course, the calculations by the HF+ BCS method—
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
their results are given in the last column of Table 1—
also yield the 100Sn binding energy, 824.16 MeV,
which is to be compared with the data of the sys-
tematics from [16], 824.88(±0.43) MeV, and with the
experimental result from [19], 825.78(±0.95) MeV.
At the same time, the calculations performed within
relativistic mean-field theory [20] lead to an exag-
gerated value of about 833 MeV for this binding
energy. As to the energies of nucleon separation
from 100Sn, our results are qualitatively consistent
with those presented in [20], although they show a
2
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Fig. 1. Proton (closed circles) and neutron (open circles)
densities in the neutron-deficient nucleus 100Sn (〈rn〉 =
4.388 fm, 〈rp〉 = 4.464 fm, 〈rm〉 = 4.426 fm).
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Fig. 2. Proton (closed circles) and neutron (open cir-
cles) densities in the neutron-rich nucleus 132Sn (〈rn〉 =
4.905 fm, 〈rp〉 = 4.724 fm, 〈rm〉 = 4.837 fm).

somewhat weaker binding of protons and neutrons in
the core nucleus than that in [20]. Figure 1 displays
the distributions of the proton and neutron densities
in the 100Sn nucleus. It can be seen that the densi-
ties become lower toward the center of the nucleus
and that the root-mean-square radius of the proton
distribution is somewhat greater than that of the
neutron distribution. This result (∆rp,n = 0.076 fm)
is nearly coincident with that obtained in [21], where
the calculations were performed within the theory
of finite Fermi systems, and is somewhat less than
that in [20]. For the sake of comparison, similar
results for the doubly magic neutron-rich isotope
132Sn are presented in Fig. 2. The spectrum of single-
particle states in the vicinity of 100Sn is given in
Table 2 according to our shell-model calculation
and according to the calculations from some other
studies. The energy gaps between the filled and the
free neutron and proton shells are rather wide, with
the result that there are no pairing correlations in the
P

core nucleus either in the approximation of constant
pairing or in the approximation where the interaction
of the form (2) is used in the pairing channel.

3. PROPERTIES OF A = 100 ISOBARIC
NUCLEI

Here, we will consider the results of the calcula-
tions for the spectra of the 100In and 100Sn nuclei,
whose properties are likely to be investigated earlier
than the properties of other A = 100, Z ∼ 50 isobars.

The 100In nucleus was considered within the
theoretical scheme that is based on the particle–hole
random-phase approximation (RPA) in the charged
channel and which was used previously in [1, 4]
to study the 208Bi, 208Tl, 132Sb, and 132In nuclei,
the interaction used here, that which is specified
by Eq. (2), being coincident with the interaction in
the quoted studies. As was noted above, there are
presently no experimental data about the energies
of single-particle states in the vicinity of 100Sn—
available information comes only from extrapolations
of the corresponding energies from the region of more
stable nuclei featuring greater numbers of neutrons.
In view of this and in view of some uncertainty in
the mean-field parameters, the calculations were per-
formed with single-particle energies that correspond
to a potential belonging to the type in (1) and having
various values of the diffuseness parameter a. The
computed spectrum of the levels in 100In is given
in Table 3, which shows that low-lying levels of this
nuclide are weakly mixed two-quasiparticle states
corresponding to the isospin value of T = 1. It can
be seen that the 6+ state is the lowest one, in contrast
to the prediction of [22], where this was the 7+ state
and where a shell-model calculation was performed
for various versions of the interaction, but with a
rather small single-particle basis. At the same time,
our prediction for the quantum numbers of the 100In
ground state agrees with the result obtained in [23]
within the fermion–boson–fermion model, where the
1+ level has, however, an overly low energy of about
1 MeV.

Addressing the core nucleus 100Sn, we note from
the outset that there is presently no information about
the spectrum of its excited states. Before relevant
experiments are performed, information about its
properties can only be deduced from theoretical
calculations—in particular, from those presented be-
low. With the aim of achieving the highest predictive
power, these calculations were performed within the
theoretical scheme that is based on the particle–
hole RPA formalism in the neutral channel without
pairing and which was successfully used earlier (see
relevant equations in [5]) to describe the properties
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 2. Energies of single-particle levels (in MeV) in the vicinity of 100Sn: Results of our calculation with the
phenomenological potential (sh.m.) at ap = an = 0.60 fm, along with the data from the systematics reported in [10]
and the results of the calculation from [21]

nlj
Protons Neutrons

syst. [10] sh.m. theor. [21] syst. [10] sh.m. theor. [21]

1h11/2 – 4.79 5.63 −8.6 −8.66 −8.23
2d3/2 – 5.18 4.84 −9.2 −8.89 −8.83
3s1/2 – 4.50 4.68 −9.3 −9.40 −8.99
1g7/2 3.90 3.29 4.65 −10.93 −11.09 −9.20
2d5/2 3.00 2.43 2.90 −11.13 −11.78 −11.10
1g9/2 −2.92 −3.13 −2.85 −17.93 −17.15 −16.96
2p1/2 −3.53 −3.89 −3.82 −18.38 −19.03 −18.16
2p3/2 −6.38 −5.50 −5.21 – −20.59 −19.68
1f5/2 −8.71 −6.36 −5.69 – −21.28 −19.91
1f7/2 – −10.58 – – −25.17 –

Table 3. Energies E of the levels in the 100In nucleus of isospin T = 1 at various values of the diffuseness parameter
ap = an = a (in fm), the corresponding computed values of∆B = B(100In; g.s.) −B(100Sn; g.s.) being 8.13, 8.48, and
8.90 MeV

Level Leading configuration E, MeV

a = 0.55 a = 0.60 a = 0.66
1+(∗) ν1g7/2π1g9/2 + . . . 2.240 2.657 3.310
2+(∗) 0.93ν2d5/2π1g9/2+ 0.36ν1g7/2π1g9/2+ . . . 0.590 0.677 0.714
2+(∗∗) −0.36ν2d5/2π1g9/2+ 0.93ν1g7/2π1g9/2+ . . . 1.168 1.492 1.903
3+(∗) ν2d5/2π1g9/2 + . . . 0.223 0.219 0.218
3+(∗∗) ν1g7/2π1g9/2 + . . . 0.665 1.076 1.518
4+(∗) ν2d5/2π1g9/2 0.097 0.100 0.101
4+(∗∗) ν1g7/2π1g9/2 + . . . 0.566 0.971 1.411
5+(∗) ν2d5/2π1g9/2 + . . . 0.080 0.078 0.077
5+(∗∗) ν1g7/2π1g9/2 + . . . 0.426 0.839 1.285
6+(∗) ν2d5/2π1g9/2 + . . . g.s. g.s. g.s.

6+(∗∗) ν1g7/2π1g9/2 + . . . 0.463 0.874 1.317
7+(∗) 0.99ν2d5/2π1g9/2− 0.13ν1g7/2π1g9/2+ . . . 0.212 0.232 0.235
7+(∗∗) 0.13ν2d5/2π1g9/2+ 0.99ν1g7/2π1g9/2+ . . . 0.385 0.777 1.222
8+(∗∗) ν1g7/2π1g9/2 + . . . 0.795 1.211 1.660
1− 0.89ν2d5/2π2p3/2+ 0.32ν1h11/2π1g9/2+ . . . 2.663 2.957 3.575
2− 0.98ν2d5/2π2p1/2 + 0.19ν2d5/2π2p3/2 + . . . 0.855 1.151 1.519
3− 0.98ν2d5/2π2p1/2− 0.14ν2d5/2π2p3/2 + . . . 0.836 1.132 1.500
4− ν1g7/2π2p1/2 + . . . 0.885 1.598 2.411
5− 0.83ν1h11/2π1g9/2− 0.49ν1g7/2π2p3/2+ . . . 2.632 3.186 3.479
of 208Pb and 132Sn also on the basis of the effec-
tive interaction (2). As before, the basis employed
included one shell above the Fermi energy and one
shell below it for both neutrons and protons in the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
core nucleus. The results of the calculations for the
spectrum of levels in 100Sn are quoted in Table 4. It

can be seen that the 3− level at an energy of about
3 MeV is the lowest excitation, the explicit form
2
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Table 4. Energies E of the levels in the core nucleus 100Sn at various values of the diffuseness parameter ap = an = a
(in fm) (for each excitation, the probability fraction of the T = 0 or the T = 1 component is indicated in the table)

Level Leading configuration, T
E, MeV

a = 0.55 a = 0.60 a = 0.66

1+ 1g7/21g9/2, 99.9% T = 0 7.317 7.339 7.314

1+(∗) 1g7/21g9/2, 99.9% T = 1 8.203 8.222 8.196

2+ 2d5/21g9/2, 99.98% T = 0 4.217 3.788 3.278

2+(∗) 2d5/21g9/2 + 1g7/21g9/2, 99.9% T = 1 6.456 6.191 5.729

2+ 1g7/21g9/2, 99.7% T = 0 6.543 6.487 6.462

2+(∗∗) 1g7/21g9/2 + 2d5/21g9/2 + . . . , 99.7% T = 1 7.134 7.067 7.004

3+ 2d5/21g9/2, 99.6% T = 0 5.543 5.119 4.611

3+(∗) 2d5/21g9/2, 99.6% T = 1 6.146 5.724 5.234

3+ 1g7/21g9/2, 98.3% T = 0 6.308 6.329 6.305

3+(∗∗) 1g7/21g9/2, 98.3% T = 1 6.657 6.666 6.627

4+ 2d5/21g9/2 + 3s1/21g9/2, 99.9% T = 0 5.043 4.638 4.138

4+(∗) 2d5/21g9/2, 99.97% T = 1 6.025 5.610 5.114

4+ 1g7/21g9/2 + 2d5/21g9/2, 98.9% T = 0 6.072 6.067 6.022

4+(∗∗) 1g7/21g9/2, 98.9% T = 1 6.562 6.567 6.332

5+ 2d5/21g9/2, 98.8% T = 0 5.748 5.332 4.815

5+(∗) 2d5/21g9/2, 98.8% T = 1 6.013 5.591 5.111

5+ 1g7/21g9/2, 97.6% T = 0 6.066 6.082 6.059

5+(∗∗) 1g7/21g9/2, 97.6% T = 1 6.431 6.441 6.406

6+ 2d5/21g9/2 + 1g7/21g9/2 + . . . , 99.5% T = 0 5.247 4.909 4.435

6+(∗) 2d5/21g9/2, 99.9% T = 1 5.862 5.512 5.020

6+ 1g7/21g9/2 + 2d5/21g9/2 + . . . , 99.2% T = 0 5.936 5.803 5.739

6+(∗∗) 1g7/21g9/2, 99.4% T = 1 6.463 6.474 6.439

7+ 2d5/21g9/2 + . . . , 90.9% T = 0 5.902 5.602 5.067

7+(∗) 2d5/21g9/2 + 1g7/21g9/2+ . . . , 91.3% T = 1 6.048 5.744 5.285

7+ 1g7/21g9/2 + 2d5/21g9/2 + . . . , 98.6% T = 0 6.144 5.939 5.916

7+(∗∗) 1g7/21g9/2, 98.4% T = 1 6.376 6.377 6.344

8+ 1g7/21g9/2+ 1h11/21f5/2+ · · · , 99.9% T = 0 4.704 4.721 4.691

8+(∗∗) 1g7/21g9/2 + . . . , 99.95% T = 1 6.774 6.793 6.767

1− Mixed config., 96.7% T = 0 6.336 6.198 6.027

1− Mixed config., 98.9% T = 0 7.565 7.240 6.861

1− Mixed config., 74.8% T = 0 8.831 8.489 7.964

1− 2d5/22p3/2 + 1h11/21g9/2 + . . . , 69% T = 1 8.949 8.685 8.478

2− Mixed config., 73.1% T = 0 6.415 6.262 6.091

2− Mixed config., 95% T = 0 6.950 6.904 6.827

2− Mixed config., 60% T = 1 7.671 7.531 7.368
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 4. (Contd.)

Level Leading configuration, T
E, MeV

a = 0.55 a = 0.60 a = 0.66

2− Mixed config., T mixing 8.055 7.898 7.714

3− Mixed config., 99.2% T = 0 3.141 3.076 2.949

3− Mixed config., 82% T = 0 6.168 6.139 6.062

3− Mixed config., T mixing 6.925 7.049 7.058

3− Mixed config., T mixing 7.421 7.323 7.353

3− Mixed config., T mixing 7.811 7.831 7.671

4− Mixed config., 62% T = 0 6.820 7.105 7.337

4− Mixed config., 78% T = 0 7.565 7.557 7.565

4− Mixed config., T mixing 7.903 8.117 7.903

4− Mixed config., T mixing 8.262 8.190 8.018

4− 2d5/21f5/2 + . . . , T mixing 8.382 8.567 8.458

5− Mixed config., 97% T = 0 6.673 6.659 6.522

5− Mixed config., 68% T = 0 7.990 7.962 7.633

5− Mixed config., 72% T = 0 8.591 8.421 8.391

5− Mixed config., T mixing 8.705 8.684 8.766

Note: Asterisks label levels appearing to be isobaric analogs of the states of 100In that are presented in Table 3.
of the amplitude of this excited state suggesting a
strong configuration mixing; the results obtained by
projecting this amplitude onto the T = 0 and T = 1
components indicate that the T = 0 components
(which are symmetric in coordinate–spin space and
antisymmetric in isospin space) contribute about 99%
to this level in probability. The 2+ level at an energy in
the interval between 3 and 4 MeV, the specific value
of this energy being dependent on the version of the
mean field, is the next excited level, which is close
to that mentioned immediately above; the 2+ level is
also predominantly an isoscalar one, but it is a two-
quasiparticle level featuring nearly identical fractions
of proton and neutron particle–hole components. The
diagram of 100Sn levels that was obtained in the
present study resembles, to some extent, the spectra
of the 208Pb and 132Sn nuclei and differs from the
predictions of [22], where the 2+ or the 8+ is the
lowest excited state and where the 3− level occurs
considerably higher. The last circumstance stems
from the use of a rather narrow basis in [22], where
only the 2p1/2 state was taken into account among
negative-parity levels belowN = 50.

Within the RPA method, we have also calculated
the probabilities of electromagnetic transitions be-
tween the levels of 100Sn. Here, we would like to
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
note that, since the diagrams determining the phonon
structure in the core nucleus are identical to those
that determine the probability of phonon decay, the
quantities B(Eλ;λ → g.s.) must be calculated with
the bare effective charges (ep = 1, en = 0). This leads
to B(E3; 3−1 → g.s.) = 28 W.u. and B(E2; 2+

1 →
g.s.) = 2.6 W.u. However, the basis that we have
used (one shell above the Fermi energy and one
shell of opposite parity below it) may prove to be
insufficient for describing the probabilities of positive-
parity E2 transitions. In view of this, there arises the
need for introducing the effective charges ep and en

corresponding to a nuclear medium. In the case ofEλ
transitions between isoscalar levels of Z = N nuclei,
the dependence of B(Eλ) on the effective charges is
reflected by the factor (ep + en)2, which has a value
of about (2.5)2 for E2 transitions; we have used the
experimental values of the quadrupole charges in the
vicinity of 208Pb. The resulting value of B(E2; 2+

1 →
g.s.) ∼ 16W.u. is an upper bound on the probability of
thisE2 transition; it corresponds to the coherent con-
tribution of the E2 matrix elements of the non-spin-
flip proton and neutron 2d5/2 → 1g9/2 transitions.
As to transitions between excited one-phonon (two-
quasiparticle) states, they must be calculated with
2
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renormalized (effective) charges because, for the core
nucleus, the RPA method does not take into account
admixtures of, say, two particles plus hole type to
single-particle states entering into the phonon basis.
Here, the analytic dependence ofB(Eλ) on the effec-
tive charges for transitions between isoscalar levels
also has the form indicated above. The calculations
yield B(E2; 4+

1 → 2+
1 ) = 0.22 W.u., B(E2; 6+

1 →
4+
1 ) = 0.17 W.u., B(E2; 8+

1 → 6+
1 ) = 0.043 W.u.,

and B(E2; 5−1 → 3−1 ) = 0.046 W.u. (these numerical
results correspond to that version in Table 4 in which
the diffuseness parameter is set to a = 0.60 fm). The
above values of B(E2) were obtained with the bare
charges, but they can easily be rescaled to different
charge values.

Among the levels given in Table 4, we would like
to highlight T = 1 states, which are isobaric analogs
of the 100In levels indicated in Table 3. That the levels
in question are analogous is manifested both in the
similarity of the state amplitudes, which differ only
by a rotation in isotopic space, and in the similarity
of the disposition of all these levels on the energy
scale. By way of example, we indicate that, upon
taking into account the computed data on the binding
energies—these data are partly presented (for a =
0.60 fm) in Table 1—the quantity obtained by averag-
ing the difference of the total energies of the isobaric
analogous states in the 100Sn and 100In nuclei over
all values of the parameter a and over all individ-
ual (Jπ, T = 1) states presented in Tables 3 and 4
amounts to 14.019 ± 0.067 MeV. That the depen-
dence of the aforementioned (Coulomb) difference on
the diffuseness parameter is very weak (in contrast to
what is observed for the energies of individual levels)
stems from the fact that, at ap = an, themean nuclear
potential conserves isospin (a smooth Coulomb field
apart). At the same time, the Coulomb energy taken
in the approximation of a uniformly charged sphere of
radius Rc = r0cA

1/3 is the sum of the direct and the
exchange (according to Slater) term:

ECoul =
3
5

e2

r0c

Z2

A1/3
− 3

(
3

16π

)2/3 e2

r0c

Z4/3

A1/3
. (5)

At the value of r0c = 1.25 fm, which we used in the
potential (1), this yields the difference∆ECoul(Z,Z −
1) = 14.18MeV, which is in good agreement with the
Coulomb shift value obtained on the basis of RPA
calculations.

4. BETA DECAY OF THE 100Sn GROUND
STATE

Since the weak axial current is not conserved,
we have gA = −1.24gV even for a free nucleon. In
P

a nucleus, gA can suffer an additional renormaliza-
tion caused by the admixture of nonnucleonic de-
grees of freedom (see, for example, [24–26]); however,
an experimental determination of this renormaliza-
tion requires theoretically calculating a matrix ele-
ment of the Gamow–Teller type with a reliable inclu-
sion of nucleonic degrees of freedom, the use of sum
rules [27] in this calculation being highly desirable.
Such a calculation is possible in principle for the
β+ decay of Z > N nuclei, in which case a reso-
nance of the Gamow–Teller type may be excited in
the daughter nucleus. Here, however, the “window”
accessible in an experiment for the excitation energies
of the daughter nucleus may not cover all the com-
ponents of the aforementioned resonance. Relevant
experiments were performed only for light nuclei. The
result was |gA/gV | ∼ 1.0 [28]. Investigation of the β−

decay of nuclei is a means for studying the Gamow–
Teller resonance in N > Z nuclei. In this case, how-
ever, the accessible energy “window” in the daugh-
ter nucleus is even considerably smaller, as a rule.
In actual practice, relevant experiments are therefore
performed for a direct charge-exchange (p, n) reac-
tion at zero angle and at an appropriate energy by
using the similarity of the amplitude of this reaction
and the amplitude for a β decay of the Gamow–
Teller type. The results of such experiments and their
treatment yielded |gA/gV | ∼ 0.8–0.9 [29–31]. At the
same time, the treatment in [32] led to a value of
|gA/gV | ∼ 1.0. A third means to find the value of gA is
to determine it from experimental and computational
data for nuclei close to filled shells or well-separated
subshells, where the calculations are themost reliable
and where the experimental probabilities of Gamow–
Teller transitions are rather high. Actually, use was
made in the experiments and the computations of the
situation in nuclei around the 146Gd nucleus, which
has the Z = 64 (sub)shell, where the spin-flip β+

π1h11/2 → ν1h9/2 transitions manifest themselves
by virtue of the neutron deficit. Here, experimental
results and their theoretical treatment [33, 34] yielded
|gA/gV | ∼ 0.7–0.9. Finally, we note that investiga-
tions into β+ transitions between light odd mirror
nuclei, along with data on “isoscalar” magnetic mo-
ments of the aforementioned nuclides, led to the value
of |gA/gV | ∼ 1.12 [35]. In this connection, we will
consider the situation in nuclei around 100Sn for the
most interesting example.

According to data presented in [36], the half-
life of the 0+ ground state of the 100Sn nucleus
with respect to the weak transition through the
β+-channel is 0.94(+0.54

−0.27) s. The final state of this
transition is that of the daughter nucleus 100In at
2760 keV, its quantum numbers (spin–parity) be-
ing presumably 1+. Our calculations by the RPA
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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method in the charged particle–hole channel predict
the spin–parity of Jπ = 6+ for the ground state of
100In and the presence of a 1+ level in the energy
range between 2.2 and 3.3 MeV, its specific position
being dependent on the choice of mean-field version
(see Table 3). It is of importance that, according to the
calculations, there are no 1+ levels other than that
indicated above in the energy interval extending up
to several MeV units. At the same time, conceivable
0+ → 0+ beta transitions of the Fermi type from the
ground (T = 0) state of the 100Sn nucleus to levels of
100In, where T ≥ 1, are forbidden by isospin selection
rules. In view of the aforesaid, the allowed 0+ → 1+

Gamow–Teller transition to the level at 2760 keV
is the only real possibility for the deexcitation of
the 100Sn ground state. As can be seen from Ta-
ble 3, the leading configuration in the amplitude of
the states forming this level has a structure of the
ν1g7/2(π1g9/2)−1 type, so that the relevant beta-
decay process proceeds through a single-particle
spin-flip transformation of the π1g9/2 → ν1g7/2
type, in which case the Gamow–Teller matrix ele-
ment is great. It is of importance that the initial proton
orbital π1g9/2 is completely filled and that the final
neutron state ν1g7/2 is absolutely free. As a result,
the reduced Gamow–Teller transition probability
B(GT; 0+ → 1+) corresponding to the above single-
particle transformation takes the value of 160/9 ≡
17.(7) for the example of the multiparticle shell model
without mixing. Allowances for weak configuration
mixing and, predominantly, for ground-state corre-
lations (that is, for the distinctions between the shell
model involving mixing and the RPA method) reduce
slightly the above value, so that, for the mean-field
version corresponding to the diffuseness-parameter
value of a = 0.60 fm, in which case the energy of
the relevant 1+ level is 2.657 MeV, the reduced
probability in question is B(GT; 0+ → 1+) = 14.8,
changing only slightly upon going over to different
versions and to other reasonable effective forces. We
emphasize here that the difference “sum rule” [27] is
satisfied exactly in the theoretical method used. It is
worth noting that qualitatively similar conclusions on
the distribution ofB(GT) in the decay of 100Sn follow
from the calculations presented in [37]. So large a
value of B(GT), which is reliably determined from
theoretical calculations, is unique and can be used for
an adequate determination of the quantity |gA/gV | in
nuclear matter.

Recalling the known formulas for the probability
of the allowed Gamow–Teller decay through the β+

channel and taking into accountK capture, we arrive
at the expression [38, 39]

(gA/gV )2 (6)
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Fig. 3. Experimental and computed spectrum of levels in
the 98Cd nucleus. In the calculation by the quasiparticle
RPA (QPRPA)method, there arise two extra (2+ and 3−)
states that are close in properties to the corresponding
particle–hole excitations of the core.

=
6163

T1/2(GT)
[π

2
Φ0E2

ν + f0(Qβ+ , Z)
]
B(GT)

,

where f0 is the integrated Fermi function for the al-
lowed β+ decay of the (Z,N) nucleus,Qβ+ = B(Z −
1, N + 1) −B(Z,N) + mp −mn −Eexc(Z − 1, N +
1) −me is the corresponding decay energy, Eν =
Qβ+ + 2me − |ε1s| is the neutrino energy in K cap-
ture, ε1s is the 1s-electron energy, and Φ0 is the den-
sity of K electrons at the origin. By using the values
of Φ0 and f0 from [39] and the results of our averaged
shell-model calculation of the binding-energy differ-
ence ∆B, we obtain |gA/gV | = 0.77

(
+0.34
−0.21

) (
+0.14
−0.16

)
,

where the figures in the first parentheses reflect the
uncertainties in ∆B, while the figures in the second
parentheses correspond to the uncertainties in deter-
mining T1/2. At the same time, the result obtained on
the basis of data from the systematics of the bind-
ing energies B [16] is |gA/gV | = 1.00

(
+0.40
−0.27

) (
+0.18
−0.20

)
.

Experimental data presented in [19] correspond to
Qβ+ = 3.102± 1.0MeV,where themain contribution
2



1440 ISAKOV, EROKHINA
to the root-mean-square error comes from the statis-
tical uncertainty in determining the mass of 100Sn; as
a result, we obtain |gA/gV | = 1.28

(
+1.08
−0.56

) (
+0.24
−0.26

)
. All

of the above values are consistent with one another;
however, the errors are overly large to determine the
ratio gA/gV to the required degree of precision. They
stem primarily from the uncertainty in the nuclear
masses, which manifests itself in the very sharp (f0 ∼
Q5

β) dependence of the quantity being determined
on the masses of the nuclides involved. Therefore,
improvements in the accuracy of experimental data,
predominantly those on nuclear masses, would pro-
vide a clue to solving the problem.

To conclude this section, we note that, according
to our calculations, the fraction of K capture in the
decay of 100Sn is 7–14%, which is to be compared
with the experimental result presented in [36], where
it is less than 17%. So small a fraction ofK capture is
associated with a high transition energy.

5. TWO-QUASIPARTICLE EVEN–EVEN
NUCLIDES IN THE VICINITY OF 100Sn

Experimental information about the properties of
98Cd and 102Sn, which are characterized by the high-
est stability among nuclei belonging to the type in-
dicated above and lying in the vicinity of 100Sn, is
presently available [40, 41]. We have investigated
theoretically both these nuclei on the basis of the
RPA method in the particle–particle channel with-
out pairing, employing an effective interaction and
the mean field whose parameters are quoted above.
The results concerning 102Sn were presented in an
earlier article of our group (see [42]). In the case of
98Cd, positive-parity low-lying levels form a multi-
plet of states where the leading components of state
vectors correspond to the (π1g9/2)−2 configuration.
These levels were reproduced both in our calculation
(see Fig. 3) and in the calculations reported in [43],
which were based on the idea of the 100Sn nucleus
as a doubly magic nucleus and which were performed
with the shell-model basis including the π1g9/2 and
π2p1/2 single-particle states. In other studies (see,
for example, [44]), the spectra of even–even neutron-
deficient nuclei with N = 50 were considered within
the multiparticle shell model by using a wider basis
and an interaction expressed in terms of theGmatrix,
but the 100Sn nucleus was also taken there for the
core.

In the case of 98Cd, the problem of effective
quadrupole charges is of greatest interest. As fol-
lows from [40], the corresponding charge determined
on the basis of data on the 8+

1 → 6+
1 transition in

98Cd [the half-life with respect to this transition
P

is T1/2(8
+
1 ) = 0.48(±0.16) µs, which corresponds

to B(E2; 8+
1 → 6+

1 ) ≈ 12.0|e|2 fm4] by using our
estimates concerning the structure of the states
involved proved to be 0.85(+0.20

−0.10)|e|. Our calcula-
tions lead to a close effective-quadrupole-charge
value of 0.88(+0.20

−0.12)|e|, which is also less than unity.
Here, we would like to mention the results obtained
in [42], where the neutronic two-quasiparticle nuclei
130Sn and 134Sn were studied both theoretically and
experimentally and where it was shown that, for
loosely bound particle states (in 134Sn), the electric
quadrupole charge for neutrons is about 0.7|e|, which
is much less than its value for deeper hole orbitals in
130Sn (∼ 0.9|e|). This fact has the following natural
explanation: as the binding energy of a neutron
decreases when we approach the neutron drip line,
its effective charge tends to the bare value, which is
equal to zero for a free neutron. A similar effect must
also occur in neutron-deficient nuclei in the vicinity
of 100Sn, but for protons, whose effective charges for
loosely bound states must decrease in this region, in
relation to, for example, their value in the region of the
neutron-rich nucleus 132Sn, where ep ∼ 1.85|e| [45],
and in relation to the value of ep ∼ 1.6|e| in the region
of the stable nucleus 208Pb. However, the effective
quadrupole charge for protons cannot become less
than the bare value, which is equal to unity.

Leaving aside the question of a fairly large un-
certainty in experimental data, we will try to give a
possible explanation of the above effect. For this, we
will analyze the structure of the (π1g9/2)n multi-
plet in the even–even nuclei 92Mo, 94Ru, 96Pd, and
98Cd (n = 2, 4, 6, and 8, respectively); information
about the energies and lifetimes of the 8+

1 levels being
considered can also be found in [40]. Relevant data
are quoted in Table 5, along with the results of our
analysis. It can be seen that, in the experiments, the
dependence of B(E2; 8+

1 → 6+
1 ) on the number n of

valence protons occupying the π1g9/2 subshell is
very strong, whereas the dependence of the energies
of the levels in question on n is very weak. Both
dependences can be qualitatively explained within
the diagonal approximation of the multiparticle shell
model if we assume that the structure of all states is
described in terms of the |(π1g9/2)nJ, s = 2〉 config-
uration.Within this model, we performed calculations
on the basis of the technique of fractional-parentage
expansions [46] by using either the interaction given
above (version A) or the interaction (version B) that
also has the form (2), but whose parameters are set
to V = −16.65, Vσ = 2.33, VT = −3.00, Vτ = 3.35,
Vτσ = 4.33, VτT = 3.00 (all these values are given in
MeV units), and r00 = 1.75 fm. The latter version was
used in [47] to describe the spectra of odd–odd nuclei
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 5. Energies of low-lying levels (in MeV), reduced transition probabilities B(E2; 8+
1 → 6+

1 ) (in |e|2 fm4), and
quadrupole moments Q8+

1
(in |e| fm2 units) in N = 50 isotones according to the calculations performed with two sets

of the interaction parameters (A and B; see main body of the text) at ep = 1 and en = 0

Jπ Eexpt Esh.m.(A) Esh.m.(B) EQPRPA(A) EQPRPA(B)
92Mo:Bexpt = 31.0,Bsh.m. = 16.0,BQPRPA(A) = 3.74,BQPRPA(B) = 2.57,QQPRPA(B) = −9.88

8+ 2.760 0.969 1.257 1.728 2.629

6+ 2.612 0.926 1.208 1.686 2.567

4+ 2.282 0.855 1.109 1.562 2.380

2+ 1.509 0.661 0.816 1.114 1.508
94Ru: Bexpt = 0.091,Bsh.m. = 1.8,BQPRPA(A) = 0.20,BQPRPA(B) = 0.064,QQPRPA(B) = −1.52

8+ 2.645 0.968 1.257 1.598 2.471

6+ 2.499 0.929 1.213 1.550 2.406

4+ 2.187 0.851 1.105 1.405 2.206

2+ 1.431 0.662 0.818 0.903 1.308
96Pd: Bexpt = 9.10,Bsh.m. = 1.8,BQPRPA(A) = 1.12,BQPRPA(B) = 1.34,QQPRPA(B) = 7.23

8+ 2.530 0.945 1.225 1.578 2.407

6+ 2.424 0.909 1.183 1.537 2.338

4+ 2.099 0.833 1.079 1.392 2.145

2+ 1.415 0.665 0.807 0.885 1.314
98Cd: Bexpt = 12.2,Bsh.m. = 16.0,BQPRPA(A) = 6.68,BQPRPA(B) = 6.85,QQPRPA(B) = 16.3

8+ 2.431 0.946 1.226 1.674 2.426

6+ 2.283 0.904 1.178 1.626 2.355

4+ 2.083 0.838 1.084 1.504 2.190

2+ 1.395 0.653 0.805 1.091 1.534

Note: For the quantities being considered, the results of the calculations are independent (in the case of the shell-model and RPA
calculations) or are virtually independent (in the case of the QPRPA calculations) of en; therefore, they can easily be rescaled to other
values of the quadrupole charge ep.
in the vicinity of 132Sn. For particles of the same type,
this version coincides with that of the effective forces
employed in [7, 48] to describe the excited states of
N = 82 even–even nuclei that are close to and those
that are far off filled proton shells. It should be empha-
sized that the strong dependence of the probabilities
of Eλ transitions on the number of valence particles
in the subshell being considered (strong suppression)
is characteristic [49] of transitions between states in-
volving identical numbers of quasiparticles in systems
with fully developed pairing; the last circumstance is
reflected in the appearance of the factor (uu′ − vv′) in
front of the transition matrix element 〈j||m(Eλ)||j′ 〉.
Therefore, we have also performed our calculations
within the RPA method with pairing (QPRPA) [7,
50] using a unified interaction in the form (2) in the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
particle–particle, the particle–hole, and the pairing
channel. The results of these calculations are also
illustrated in Table 5 and in Fig. 3. It can be seen that,
for the 92Mo, 96Pd, and 98Cd nuclei, the experimental
results can be reproduced upon the introduction of the
effective proton charge, whose value is greater than
unity, this charge being ep = 1.35|e| in the case of
the 98Cd nucleus, which is of greatest interest. These
results fit in the systematics of the dependence of
ep on the binding energy of valence protons. As to
94Ru, the factor (uu′ − vv′) is close to zero here and
the results of the calculations greatly depend on the
single-particle scheme and on the interaction used.

Addressing the spectra of levels in Fig. 3, we can
see that the RPA and the QPRPA method yield close
results for the 98Cd nucleus. At the same time, the
2
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latter is more general, since, in 98Cd, it has also
enabled us to reproduce extra 2+ and 3− levels, which
are predominantly of the particle–hole nature and
which are close in properties to the corresponding
excitations in the core nucleus. It should be noted,
however, that the application of the QPRPA method
without taking into account the blocking effect in
98Cd, which differs from a magic nucleus by only
two nucleons, may prove to be quite hazardous; this
would be justified if the proton subsystem of 100Sn
exhibited (in contrast to the predictions based on
the single-particle scheme used here) some proper-
ties of superfluidity characterized by weak pairing. If,
nonetheless, the experimental data on the quantity
B(E2; 8+

1 → 6+
1 ) in 98Cd are confirmed, they may

suggest that the Z = 50 proton shell in the 100Sn nu-
cleus is rather weak. This will possibly lead to a mod-
ification of the core-nucleus spectrum, where the 2+

1
state may become the lowest excitation, occupying a
lower position on the energy scale than that which
is dictated by the data in Table 4. In this case, the
T = 0 8+

1 and 6+
1 levels with T = 0, which originally

occur at an energy of about 4.5MeV (see Table 4) and
for which B(E2; 8+

1 → 6+
1 ) = 1.2(ep + en)2 |e|2 fm4,

would also descend. It can be seen that, if the lowest
8+
1 and 6+

1 states in 98Cd are interpreted as core
excitations, the experimental data on the lifetime of
the 8+ level at 2.431MeV can also be explained on the
basis of standard ideas of the effective charges. Both
possibilities are realized in the case where the 100Sn
nucleus is not magic. However, investigation of this
scenario is beyond the scope of the present study.
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40. M. Görska, M. Lipoglavšek, H. Grawe, et al., Phys.
Rev. Lett. 79, 2415 (1997).
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Abstract—The elastic scattering of spinless charged particles on nuclei is considered within the strong-
absorption model proposed by Ericson for the S matrix in the angular-momentum representation. Our
analytic method for summing partial-wave amplitudes, which is based on a generalization of the Abel–
Plana formula, makes it possible to take into account the contributions from the possible singularities of
the Smatrix in the right-hand half-plane of the complex-valued variable l. The uniform asymptotic behavior
obtained in the present study for the scattering amplitude offers a fresh view on the origin of the diffraction
patterns in the angular distributions of elastically scattered heavy particles. Special attention is given to
Coulomb–nuclear interference (in particular, to refraction phenomena) in the case of scattering into the
classically allowed region (illuminated region) and the classically forbidden region (shadow region). In
contrast to other analytic results, our solutions to the diffraction problem within the Ericson model do not
give grounds whatsoever to draw profound analogies either with Fresnel diffraction in optics or with the
phenomenon of rainbow scattering in classical mechanics. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The existing descriptions of hadron–nucleus and
nucleus–nucleus collisions at intermediate energies
(for example, the scattering of heavy ions of energies
ranging between a few MeV units to about ten MeV
per nucleon) always take into account, in one way
or another, nuclear absorption and refraction. These
features of nuclear interaction may be reflected either
in the properties of the real and imaginary parts of the
optical potentials used or in models of the scattering
matrix that satisfy some analytic requirements [1].
One of such models, that which was formulated by
Ericson [2] for the S matrix that describes the elas-
tic scattering of strongly absorbed particles, played
an important role in the development of nuclear-
diffraction theory.

Along with other studies that explored these
realms [3–6], the applications of this theory (see,
for example, [7]) formed a basis for obtaining qual-
itative insights into diffraction patterns found in the
scattering of extremely light nuclei and heavy ions at
collision energies above the Coulomb barrier. Above
all, we mean applications to analyzing the effect
of Coulomb–nuclear interference on the formation
of the angular distributions of scattered particles
and to drawing analogies between various modes of
nuclear diffraction, on one hand, and the phenomena

1)Kharkov Institute for Physics and Technology, Akademich-
eskaya ul. 1, Kharkov, Ukraine.
1063-7788/02/6508-1444$22.00 c©
of Fresnel and Fraunhofer diffraction in optics and
of rainbow scattering in classical mechanics, on the
other hand. A comprehensive review of these issues
can be found in [8] (see also references therein).

Owing to a simple dependence of partial elements
of the model S matrix in the angular-momentum
representation on physical parameters, it is possible
to obtain closed analytic expressions for the scatter-
ing amplitude (see, for example, [1]). In practice, one
has to invoke various approximations, retaining only
the “leading” terms in these expressions, where the
interplay of basic physical ingredients is reflected only
partly. It is obvious that such a partition into leading
and nonleading contributions is a delicate point in
solving the diffraction problem, which involves several
characteristic quantities. These quantities specify the
relation between the radius R of nuclear-interaction
(strong-absorption) region and the de Broglie wave-
length λ in the input scattering channel and the rela-
tion between R and the thickness of the surface layer
of this region, where there occurs a smooth transition
from the transmission of incident partial waves with-
out distortions to their complete absorption. In the
case of charged-particle scattering, it is of paramount
importance to single out correctly Coulomb repulsion
effects, whose relative role is controlled by the Som-
merfeld parameter.

In our opinion, available analytic results for diffrac-
tive scattering in the Ericson model are not free
from drawbacks. Here, we mean, above all, not the
2002 MAIK “Nauka/Interperiodica”
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methods for deducing these results but misleading
conclusions drawn from formulas whose applicability
range is rather limited.
The objective of this article is to present new cal-

culations of the elastic-scattering amplitude within
this popular model and, then, to propose a possible
interpretation of specific diffraction patterns in nu-
clear scattering (for example, owing to the refraction
of incident waves). The analyses performed in [9, 10]
for alpha-particle and pion scattering on nuclei in the
energy region around 1GeV furnished additional mo-
tivation to this study. The relevant expressions for the
scattering amplitudes disregard some exponentially
small contributions that cannot be ignored for not
overly small values of the scattering angle. A detailed
discussion of these contributions can be found in
[11, 12].
Our further consideration will rely on previous the-

oretical elaborations [13] and on experience gained
in deriving uniform asymptotic expansions [14] for
typical diffraction integrals (Section 2). Section 3 is
devoted to constructing an alternative description of
oscillations of the Fresnel (or rainbow) type in the
angular dependence of the ratio of the cross section
for elastic scattering to the Rutherford cross section,
σ(θ)/σR(θ), for scattering angles in the illuminated
region (θ < θC, where θC is the Coulomb angle cor-
responding to the motion of a charged particle in the
Coulomb field of a force center along the grazing
trajectory for which the distance of closest approach
to this center is equal to R. In the same section,
we formulate conditions under which there appears
a dip in regular Fraunhofer-type oscillations of the
elastic-scattering cross section σ(θ) for angles θ >
θC (shadow region). Within the method of complex
angular momenta, this phenomenon was explained
many years ago in [15].

2. CALCULATION OF THE AMPLITUDE
FOR THE SCATTERING OF STRONGLY

ABSORBED PARTICLES
2.1. Ericson Model and Related Quantities

In the model proposed in [2], the S-matrix ele-
ments appearing in the expansion

f(θ) =
1

2ik

∞∑

l=0

(2l + 1)(Sl exp[2iσl] − 1) (1)

× exp [− (l + 1/2) γ]Pl(cos θ)

of the amplitude for the elastic scattering of spinless
charged particles (here, σl is the Coulomb phase shift
and k is the wave number) are approximated by the
Fermi-like distribution

Sl ≡ ηl exp[2iδl] =
[

1 + exp
l̄0 − l

∆

]−1

, (2)
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l̄0 = l0 + ilI ,

where l̄0 and ∆ are model parameters. From this
relation, we find the absorption coefficient

ηl ≡ |Sl| =
1 − ηF(l)

[1 + 4∆DF(l) sin2(lI/(2∆))]1/2
(3)

and the “nuclear” phase shift

δl ≡
1
2

argSl (4)

= −1
2
arctan






ηF(l)

1 − 2ηF(l) sin2 lI
2∆

sin lI/(∆)




 ,

where we have used the notation2) ηF(l) = [1 +
exp((l − l0)/∆)]−1 for the Fermi distribution and

DF(l) ≡ dηF(l)
dl

= −1 − ηF(l)
∆

ηF(l) (5)

for the corresponding absorptive shape function
(compare with [16]).
Here, it is reasonable to introduce a nuclear (quan-

tum) deflection function

ΘN (l) ≡ 2
dδ(l)
dl

(6)

=
1 − ηF(l)

∆
ηF(l)

1 + 4∆DF(l) sin2 lI/(2∆)
sin

lI
∆

.

The quantities Sl satisfy the unitarity condition

|Sl| ≤ 1 (l = 0, 1, 2, ...), (7)

so that

cos
lI
∆

≥ 0. (8)

We recall that the grazing angular momentum l0 is
determined by the semiclassical relation

l0 + 1/2 ≡ L = kR
√

1 −B/E (9)

= kR

√

1 − 2n
kR

,

where B = Z1Z2e
2/R is the height of the Coulomb

barrier at the nuclear-interaction boundary, E is the
collision energy, and k = λ−1 is the correspond-
ing wave number. The Sommerfeld parameter n =
Z1Z2e

2/µk (Coulomb parameter) depends on the
charges Z1 and Z2 of colliding particles and on their
reduced mass µ.

2)It is implied that, for the function gl specified at nonnegative
integral values of l, an analytic continuation g(l) to the com-
plex plane of l is implemented by substituting any complex
values of l in formulas of the type (2)–(4).
2
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Fig. 1. Absorption coefficient η(l), phase-shift func-
tion δ(l), and total quantum deflection function Θq(l) ≡
ΘN(l) + θC(l) in the Ericson model for two parameter
sets: (i) l0 = 25, n = 20, ∆ = 1.00, and lI = 0 (solid
curve in Fig. 1a) and (ii) l0 = 25.45, n = 20, ∆ = 1.20,
and lI = −1.50 (dashed curves). The solid curve in
Fig. 1c represents the l dependence of the Coulomb de-
flection function θC(l) = 2arctan[n/(l + 1/2)].

By definition, the Coulomb scattering angle θC is
given by

θC = 2arctan
n

L
, (10)

so that n = Ltan(θC/2).
As can be seen from Fig. 1, the coefficient η(l)

(which is sometimes referred to as a profile function)
increases monotonically from small values to unity.
This growth occurs over a characteristic interval ∆
of l values in the vicinity of l0. Strong absorption can
be defined as the situation where

∆ � l0. (11)

Together with the other strong inequality

l0 ∼ kR 
 1, (12)

which is the short-wavelength condition, this idea,
which was put forth a priori and which was then
corroborated by numerical calculations, proved to be
very seminal for developing various analytic methods.
We can see that, in the three-parameter strong-

absorption model under consideration, the neces-
P

sary element of description of potential scattering—
namely, the refraction of incident waves in nuclear
matter—is introduced by replacing the grazing an-
gular momentum l0 in this model without refraction
(at δl ≡ 0) by the complex value l̄0 = l0 + ilI . Not
only does this replacement cause the emergence of an
additional phase shift δl, but it also modifies the factor
ηl. This seems reasonable from the physical point of
view since scattering on the real and imaginary parts
of the nuclear potential must be reflected simultane-
ously in the absorptive and refractive properties of the
S matrix. Similarly, there is no precise separation of
nuclear and Coulomb effects whatsoever (in particu-
lar, the corresponding contributions to the total phase
shift are not additive). In this context, the nuclear
phase shift δl characterizes the deflection of this phase
shift (see Fig. 1) from the phase shift σl for Coulomb
(Rutherford) scattering:

exp[2iσl] =
Γ(l + 1 + in)
Γ(l + 1 − in)

. (13)

It is obvious that, under condition (11), the behavior
of δl for peripheral values of l ≥ l0 
 1 [in fact, only
in the relatively narrow transition region l0 −∆ ≤ l ≤
l0 + ∆, because, for high values of l, the centrifugal
barrier suppresses the phase shift (δl → 0)] becomes
especially important.

In this connection, we emphasize that the l depen-
dences of the absorption coefficient and of the phase
shift in Fig. 1 are typical of other strong-absorption
models (compare with, for example, [3]) and are cor-
roborated by calculations based on the optical model
(see, for example, [17]) that include a larger number
of parameters. Hence, the Ericson model involving
three parameters ensures a plausible and economical
description of the S-matrix properties that satisfies
the necessary physical requirements.

We also note that, in the Glauber–Sitenko ap-
proach, the profile function SF(b) has a similar be-
havior versus the impact parameter b = (l + 1/2)/k
(compare with a smooth variation in |SF(b)| from zero
to unity with increasing b in Fig. 5 of [18] ). Indeed,
we have SF(b) = exp[−γt(b)], where the quantity γ
having Re γ > 0 depends on the properties of the am-
plitude for projectile interaction with a target nucleon
and t(b) > 0 is determined by the Glauber integral
of the nuclear density. For a standard density of the
Woods–Saxon type in the peripheral region b > R,
where R is the nuclear radius, one can see that t(b)
decreases exponentially; that is, t(b) → 0 as b tends
to infinity.

Since the nuclear phase shift does not take very
large values for peripheral collisions, the unitarity of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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the S matrix constrains [see the inequality in (8)] the
possible values of the parameter lI :

|lI |
∆

≤ π

2
. (14)

Indeed, it follows from (4) that

δ(l0) = −1
4
lI
∆

. (15)

In the case of motion along a grazing trajectory, the
angle of nuclear deflection is given by

θN ≡ ΘN(l0) =
1

2∆
tan

lI
2∆

= − 1
2∆

tan[2δ(l0)].

(16)

For this angle to be negative, it is therefore necessary
that lI be negative. This yields a positive nuclear
phase shift corresponding to a grazing trajectory.
Along with the ratios l0/∆ and |lI |/∆, there are

also two important quantities l0θ and ∆θ. The first of
these characterizes oscillations of the cross sections
for diffractive scattering, while the second determines
the slope of the envelopes of the diffraction maxima
toward the interior of the illuminated region (θ < θC)
and of the shadow region (θ > θC).
The values of the diffuseness parameter (as a rule,

empirical ones) depend on the type of colliding par-
ticles and on collision energies (by way of example,
we indicate that, for pion–nucleus scattering at in-
termediate energies, the authors of [10] established
the dependence∆ � ka, where the parameter a char-
acterizes the smearing of the nuclear density at the
boundary of the strong-interaction region). In any
case, we assume that

∆ � 1. (17)

Prior to presenting the results of our calculations
within the Ericson model, we note that the cutoff
factor exp[−γ(l + 1/2)] with γ > 0 was introduced in
[13] in order to ensure the convergence of series (1)
in the presence of long-range Coulomb interaction.
Of course, it is necessary to specify the meaning of
this convergence. This subtle question of scattering
theory was the subject of thorough investigations in
the 1970s (see, for example, [19], where it was shown
that such expansions must be considered as distribu-
tions). Without going into details, we note that the
parameter γ must be made to tend to zero only at the
end of the calculations.

2.2. Summation of Partial-Wave Amplitudes: Typical
Diffraction Integrals

In the region of scattering angles that are not very
close to zero or π, where, under the condition

Lθ 
 1, (18)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
the Legendre polynomials can be replaced by their
asymptotic expressions,

Pl(cos θ) ∼
√

2
π(l + 1/2) sin θ

cos
[
(l + 1/2) θ − π

4

]
,

(19)

it can be shown with the aid of formula (6) from [13]
(compare with [14]) that

f(θ) =
1
ik

1√
2π sin θ

{
Ī+(θ)e−iπ/4 (20)

+ Ī−(θ)eiπ/4 + C̄+(θ) exp
[
iL̄θ − i

π

4

]

+ C̄−(θ) exp
[
−iL̄θ + i

π

4

]}
,

Ī±(θ) =

∞∫

L̄

√
t expφ±(t)dt, (21)

φ±(t) = 2iσ (t− 1/2) ± iθt,

C̄±(θ) =

∞∫

0

{√
L̄ + t exp

[
2iσ
(
L̄− 1/2 + t

)
(22)

± iθt] −
√

L̄− t exp
[
2iσ
(
L̄− 1/2 − t

)
∓ iθt

]}

× dt

exp(t/∆) + 1
,

where σ ≡ σl is the Coulomb phase shift and L̄ =
l̄0 + 1/2 = L + ilI . Among important elements in our
derivation of expression (20), we would like to indicate
the relation

∞∫

0

exp(−vs)
1 + exp((L̄− s)/∆)

ds = π∆
exp(−L̄v)
sin(π∆v)

(23)

+
∆ exp(−L̄/∆)

∆v − 1
×F (1, 1 − ∆v; 2 − ∆v;− exp(−L̄/∆)) (Rev > 0)

and the recipe [14] that makes it possible to establish
close links with the analysis of diffractive scattering
in a strong-absorption model for the case of a sharp
edge,

Sl = Θ(l − l0) =

{
0 (l < l0)
1 (l ≥ l0),

(24)

where integrals of the type in (23) arise upon substi-
tuting l0 for complex-valued L̄ in formulas (21) and
(22).
We note that formula (23) follows from the integral

representation of the Gauss hypergeometric function
F (a, b; c; z) {see [20], p. 124, formula (15)} and one of
2
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the Kummer relations {see [20], p. 116, formula (2)}
for the analytic continuation of the hypergeometric
series on the right-hand side of (23) (see also [21],
where a similar relation was used in calculating elas-
tic and inelastic nuclear form factors).
The representation in (20) is accurate to terms

of two types: those of order exp(−L/∆) and those
of order exp[−(π∆ − |lI |)(2π − θ)]. The latter type
characterizes the contribution of the line of poles lk =
l̄0 + i(2k − 1)π∆ (k = 0,±1,±2, ...). Owing to the
unitarity of the Ericson model, the distance π∆ − |lI |
of the pole l1 from the real axis in the l plane cannot be
less than (π/2)∆. It should be emphasized that, even
if the strong inequalities

exp
(

−L

∆

)

� 1 (25)

and

exp
[
−π

2
∆(2π − θ)

]
� 1 (26)

are satisfied, the disregard of these exponentially
small contributions is not always justified against
the background of retained contributions of order
exp[−π∆(θ ± θC)], which are given below (compare
with the thorough investigation of this issue in
[11, 12]).
By analogy with the Coulomb angle θC, we now

introduce the complex critical angle θ̄C as

ncot
θ̄C

2
= L̄ or cot

θ̄C

2
= cot

θC

2
+ i

lI
n
. (27)

For this angle, we have

θ̄C = −i ln
cot(θ̄C/2) + i

cot(θ̄C/2) − i

= θC − 2i
lI
n

sin2(1/2)θC + O(n−2).

To terms of order of n−2 and for L 
 n, this yields

θ̄C = θC + i
|lI |
L

sin θC. (28)

By using the Stirling asymptotic expression for
the gamma function, we find for complex values of t
(|t| 
 1) that

φ±(t) = t ln
t + in

t− in
+ in ln(t2 + n2) (29)

± iθt− 2in +
i

4
n

t2 + n2
+ O(|t|−3).

Experience gained in solving the nuclear-diffrac-
tion problems makes it possible to write, to a good
approximation, the relation (see [13])

C̄±(θ) = i
√

L̄ exp
[
2iσ
(
L̄− 1/2

)]
(30)
P

×
{

π∆
sinh[π∆(θ̄C ± θ)]

− 1
θ̄C ± θ

}

.

By means of integration by parts, we can derive the
expansions

Ī±(θ) = i
√

L̄ exp
[
2iσ
(
L̄− 1/2

)] exp(±iL̄θ)
θ̄C ± θ

(31)

×
{

1 + 2i
sin2(θ̄C/2)
n(θ̄C ± θ)2

+ ...

}

.

Under the condition

sin2(θC/2)
n|θ̄C − θ|2 � 1, (32)

we can retain only the first term in (31), so that we
have

Ī±(θ) = i
√

L̄
expφ±(L̄)
θ̄C ± θ

. (33)

However, the inequality in (32) can be violated at
angles θ close to θC, in which case expression (33)
becomes invalid for Ī−(θ). This is associated with the
fact that, at such scattering angles, the integral Ī(θ)
can receive contributions not only from the vicinity
of the end point t0 = L̄ but also from the vicinity of
the stationary point ts = Ls, which is specified by the
relation φ′

−(Ls) = 0; that is,

Ls = ncot
θ

2
+ O

(
1
n

)

. (34)

In order to obtain the asymptotic expression for Ī−(θ)
uniform with respect to θ → θC, we can use (as was
done in [14]) themethod developed in [22]. As a result,
we have

Ī−(θ) = i

√
2πLs

φ′′
−(Ls)

Ḡ1(θ) exp[φ−(Ls)] (35)

+ i
√

L̄
exp[φ−(L)]

θ̄C − θ
,

Ḡ1(θ) = Ḡ(θ) − exp(−τ2)
2
√
πτ

, (36)

Ḡ(θ) = 1/2
[

1 − 2√
π

Erf(τ)
]

, (37)

and

τ = [φ−(Ls) − φ−(L̄)]1/2. (38)

Simple calculations involving (29) yield

φ′′
−(Ls) = −2i

n
sin2 θ

2
. (39)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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To terms of order n−1, we then obtain

τ2 = iL̄(θ − θ̄C) + 2in ln
sin(θ̄C/2)
sin(θ/2)

, (40)

where it is assumed that, for |Ls − L̄| � 1, we must
set τ � [−φ′′

−(Ls)/2]1/2(L̄−Ls) and take the princi-
pal value of the square root.

Combining all the above results, we find that the
scattering amplitude within the Ericson model can be
represented as

f(θ) = fas
R (θ)

[

Ḡ(θ) − exp(−τ2)
2
√
πτ

]

(41)

+ f̄ (+)(θ) + f̄ (−)(θ),

where

f̄ (±)(θ) =
π∆
k

[
L̄

2π sin θ

]1/2 exp[φ±(L̄) ∓ iπ/4]
sinh[π∆(θ̄C ± θ)]

,

(42)

f̄ (+)(f̄ (−)) being the “far-side” (“near-side”) branch
of the amplitude in terms of the geometric theory of
diffraction [23], and

fas
R (θ) = (2ik)−1e−2inn1+2in

(

sin
θ

2

)−2−2in

(43)

is the asymptotic form of the Rutherford scattering
amplitude for n 
 1.
For the characteristic cross-section ratio

σ(θ)/σR(θ) = |f(θ)|2/|fR(θ)|2, we thus obtain
σ(θ)
σR(θ)

(44)

=

∣
∣
∣
∣
∣
Ḡ(θ) − exp(−τ2)

2
√
πτ

+
f̄ (+)(θ) + f̄ (−)(θ)

fas
R (θ)

∣
∣
∣
∣
∣

2

,

considering that |fR(θ)| = |fas
R (θ)|, where fR(θ) is

the exact amplitude for Rutherford scattering.

3. REFRACTION PHENOMENA IN VARIOUS
MODES OF NUCLEAR DIFFRACTION

Figures 2 and 3 illustrate the angular dependence
of the elastic-scattering cross section under consid-
eration and the accuracy of asymptotic expressions
that were obtained with and without allowance for the
nuclear phase shift on the basis of the Ericson model.
In order to facilitate a comparison with known results,
we reproduce here the calculations (see Fig. 1 in [14])
according to the asymptotic formula

σsco(θ)
σR(θ)

=
∣
∣
∣
∣G(θ) + sgn(θC − θ) (45)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
× exp(−ix− iπ/4)
2(πx)1/2

+
f (+)(θ) + f (−)(θ)

fas
R (θ)

∣
∣
∣
∣

2

,

where σsco is the cross section computed on the basis
of the absorption model with of a sharp cutoff,

G(θ) =
1
2

[1 + 2π−1/2sgn(θC − θ)Erf(
√
ix)], (46)

x = n





(θ − θC)cot(θC/2) + 2 ln

sin
θC

2
sin(θ/2)





, (47)

f (±)(θ) = (2k)−1(L/(2π sin θ))1/2 (48)

× e2iσ(l0−1/2) exp(±il0θ ∓ iπ/4)
sin[(θC ± θ)/2]

.

This approximate solution to the diffraction problem
involving a sharp cutoff can be obtained from formula
(41) by replacing L̄ by L (θ̄C by θC)3) and the factors
π∆/sinh[π∆(θ̄C ± θ)] by [2 sin((θC ± θ))]−1.
The dashed curve in Fig. 2 was calculated by the

formula
σsco(θ)
σR(θ)

(49)

= |G(θ)|2 = 1/2
{

[1/2 + sgn(θC − θ)C(x)]2

+ [1/2 + sgn(θC − θ)S(x)]2
}
,

where

C(x) =
1√
2π

x∫

0

cos t√
t
dt, S(x) =

1√
2π

x∫

0

sin t√
t
dt

are the Fresnel integrals. The angular dependence of
the factor |G(θ)|2 gives (upon appropriately redefining
physical parameters) the Fresnel law for the angular
distribution of the intensity of light scattered by the
edge of an infinite half-plane.
This analogy between nuclear diffraction and

Fresnel diffraction in optics was first drawn by Frahn
and Venter (see, for example, [24]) and is often used
in interpreting data on the elastic scattering of heavy
ions. As was previously indicated in [8, 14] (compare
with the critical comments in [25]), the argument of
these authors is not, however, compelling, because
they assumed that the approximate expression (49)
is accurate in the illuminated region (θ < θC). But
in fact, a thorough investigation revealed [14] that
formula (49) is valid apart from quickly oscillating
terms of order n−1/2 only in the penumbra region
(θ � θC), which shrinks to θC in accordance with (32)

3)We neglect the difference between θ0 = 2arctan(n/l0) and
θC = 2arctan(n/L).
2
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Fig. 2. Ratio of the elastic-scattering cross section in
the strong-absorption model with a sharp cutoff (l0 =
25, n = 20) to the Rutherford cross section. The solid
and the dashed curve were calculated by formulas (45)
and (49), respectively. Points represent the results of a
numerical summation of the partial-wave amplitudes.

(with θC instead of θ̄C), following the n−1/2 law—that
is, in the region where there are no oscillations of the
Fresnel type.
We note that very good agreement between the

analytic and numerical results in Figs. 2 and 3 is
not exceptional. It is not destroyed by variations of
the physical parameters within reasonable limits. This
creates reliable basis for subsequent qualitative con-
clusions.

3.1. Coulomb–Nuclear Interference for θ < θC

Pursuing further the analysis of diffraction pat-
terns generated by the amplitude in (41), we consider
scattering angles not very close to θC such that

|τ | 
 1. (50)

We then have [26, p. 152]

Erf(τ) ∼
√
π

2

[

sgn(Reτ) − exp(−τ2)√
πτ

]

, (51)

so that the amplitude can be represented as

f(θ) = Θ(−Reτ)fas
R (θ) (52)

+ f̄ (+)(θ) + f̄ (−)(θ).

Moreover, it can be shown that, for angles θ satisfying
the inequality

|θ − θC| 

sin(θC/2)√

n
, (53)
P
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Fig. 3. Comparison of the results of the calculations by
formula (44) (solid curves) with the results of numerical
calculations (points) for two parameter sets indicated in
the caption under Fig. 1.

the following relation holds to a good approximation:

Reτ =
√

x

2
sgn(θ − θC). (54)

Here, we imply the principal value of the square root
of the positive-definite quantity x. The nonnegativity
of x, x = x(θ) ≥ 0, for 0 ≤ θ ≤ π follows from

dx

dθ
= n(cot

1
2
θC − cot

1
2
θ)

and
d2x

dθ2
=

1
2

n

sin2(θ/2)
.

We then haveΘ(−Reτ) = Θ(θC − θ), and the ampli-
tude in (52) takes the form

f(θ) = Θ(θC − θ)fas
R (θ) + f̄ (+)(θ) + f̄ (−)(θ). (55)

In the illuminated region, we therefore have

f(θ) = fas
R (θ) + f̄ (+)(θ) + f̄ (−)(θ), (56)

and the ratio we are interested in has the form

σ(θ)
σR(θ)

=

∣
∣
∣
∣
∣
1 +

f̄ (+)(θ) + f̄ (−)(θ)
fas
R (θ)

∣
∣
∣
∣
∣

2

; (57)

that is, its deviation from unity is determined by
the interference between the amplitude of purely
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002



DIFFRACTIVE SCATTERING IN THE ERICSON MODEL 1451

 
σ
 

(
 

θ
 

)/
 

σ
 

R

 
(

 
θ

 
)

 

θ

 

, deg
10 30 50 70 90

(

 

a

 

)

(

 

b

 

)

1.5

1.0

0.5

0
1.5

1.0

0.5

0
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under Fig. 1, (dashed curve) results of the calculations
by formula (44) for the parameter set (ii) from the caption
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respectively.

Coulomb scattering and the branches f̄ (±)(θ) of the
Fraunhofer type. Owing to the attenuation factors
π∆/sinh[π∆(θ̄C ± θ)], these branches behave differ-
ently within the illuminated region. In particular, one
can set

σ(θ)
σR(θ)

=

∣
∣
∣
∣
∣
1 +

f̄ (−)(θ)
fas
R (θ)

∣
∣
∣
∣
∣

2

(58)

for θ rather far from θC. In order to isolate nuclear-
refraction effects more explicitly, we transform (42) by
expanding the Coulomb phase shift in the function φ±
[see formula (21)] as

2iσ(L̄− 1/2) � 2iσ(L− 1/2) (59)

+ 2σ′(L− 1/2)|lI | = 2iσ(L − 1/2) + |lI |θC,

whence it follows that

f̄ (±)(θ) = M±(θ)e|lI |(θC±θ)f
(±)
0 (θ), (60)

M±(θ) =
sinh[π∆(θC ± θ)]
sinh[π∆(θ̄C ± θ)]

,

where f
(±)
0 (θ) stands for the Fraunhofer branches in

the case where the nuclear phase shift is switched off;
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
 
η

 

1.0

0.5

0

(

 

a

 

)

(

 

b

 

)

(

 

c

 

)

1.0

0.5

0

 

Θ

 

q

 

2.5

1.5

0.5
10 20 30 40

 

l

 

δ

Fig. 5. As in Fig. 1, but for the parameter sets employing
the identical values of l0 = 25.45, n = 20, and∆ = 1.20
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of rainbow-type scattering.

that is,

f
(±)
0 (θ) = f̄ (±)(θ)|lI=0. (61)

Further, setting

sinh[π∆(θ + θC)] � 1/2 exp[π∆(θ + θC)],

we obtain

M+(θ) = exp[π∆(θC − θ̄C)] (62)

= exp
[

−i
π∆
L

|lI | sin θC

]

.

As we move away from θC, in which case

exp[−π∆|θ − θC|] � 1, (63)

we then arrive at

M−(θ) = exp
[

−i
π∆
L

sgn(θC − θ)|lI | sin θC

]

. (64)

By using these relations, we obtain the following ex-
pression for the Fraunhofer component of the ampli-
2
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Fig. 6. Enhancement of the swing of oscillations of the
elastic-scattering cross section due to nuclear refraction.
Curves correspond to various values of the parameter lI
in the Ericson model: (solid curve) lI = 0, (dashed curve)
lI = −0.5, and (dotted curve) lI = −(π/2)∆.

tude in the illuminated region:

fFr ≡ f̄ (+)(θ) + f̄ (−)(θ) =
∆
k

[
2πL
sin θ

]1/2

(65)

× e2iσ(L−1/2) exp
[

−i
π∆
L

|lI | sin θC

]

×
{
e−(π∆−|lI |)(θC+θ) exp

[
iLθ − i

π

4

]

+ e−(π∆−|lI |)(θC−θ) exp
[
−iLθ + i

π

4

]}
.

It follows that the inclusion of the refraction of waves
in nuclear matter enhances the “asymmetry” between
the positive and the negative branch: the amplitude
f̄ (+)(θ) (f̄ (−)(θ)) increases (decreases) in relation to
f

(+)
0 (θ) (f (−)

0 (θ)). This results in the enhancement
of the swing of oscillations of σ/σR at scattering-
angle values in the region θ < θC. It is obvious that
this effect is especially pronounced in the region of
the first, highest, maximum in these oscillations (see
Fig. 4a).
Such an enhancement effect is associated by some

authors with the phenomenon of rainbow scattering
in classical mechanics (see, for example, [25] and ref-
erences therein). Recall that rainbow scattering cor-
responds to the situation where Θ′

q(lr) = Θ′
N (lr) +

Θ′
C(lr) = 0; in this case, the classical deflection func-

tion Θcl(b) has an extremum at the impact parameter
value br = (lr + 1/2)/k, whence it follows that the
scattering cross section is σcl(θr) = ∞, where the
rainbow-scattering angle is given by θr ≡ Θcl(br) at
θr �= 0, π. In other words, the classical cross section
σcl(θ) becomes very large near θr. In the Ericson
model, the equation

Θ′
N (l) + Θ′

C(l) = 0 (66)
P

is equivalent to the equation

− 1
2∆

ΘN (l)η2(l)[1 − e−2(l−l0)/∆] (67)

=
n

(l + 1/2)2 + n2
.

Solutions to this equation, if they exist,4) are the
values lr > l0; that is, lr = l0 + ε (ε > 0). It can be
shown that, in a typical situation where there are two
solutions (it is shown by the dotted curve in Fig. 5c),

the shift ε1 of the value l
(1)
r closest to l0 is

ε1 = −∆2

n

sin2(θC/2)
θNη2(l0)

, (68)

η2(l0) =
[

2
(

1 + cos
lI
∆

)]−1

. (69)

To a high precision, the corresponding rainbow-
scattering angle is given by

θ(1)
r ≡ Θq(l0 + ε1) � θC + θN . (70)

For the limiting value of |lI | = (π/2)∆, we have θN =
−1/(2∆), so that the angle θ(1)

r corresponds to scat-
tering into the interior of the region if the diffuseness
parameter is∆ � 1.
Without explicitly presenting the second solu-

tion l
(2)
r , we note that, although it corresponds to

more peripheral collisions, l(2)r > l
(1)
r , we have θ

(2)
r �

θC(l(2)r ) > θ
(1)
r because of the nonmonotonicity of the

function Θq(l). All these properties inherent in the
Ericson model are shown in Fig. 5.
It should be emphasized that the above trends in

the diffraction patterns manifest themselves not only
in the cases where the quantum deflection function
Θq(l) has one or a few extrema but also in the case
where it has no extrema (compare the dashed and
the dotted curves in Fig. 6). Similar qualitative vari-
ations in the angular dependence of the cross sec-
tions for diffractive scattering due to nuclear refrac-
tion are observed both near the classical scattering
angle θr and far from them. Our uniform asymptotic
expression, which is valid over a broad angular in-
terval, differs from those that are obtained by using
different asymptotic methods for calculating typical
diffraction integrals (see [27] and references therein).
The corresponding analytic expressions yield angular
dependences of the Airy type, which, in our opinion,
have nothing to do with nuclear-diffraction problems.
To complete this discussion of the effect of nuclear

refraction in the illuminated region, we demonstrate

4)It can easily be seen that, at preset values of n and l0 (n <
l0), Eq. (67) has no solution in the interval of interest 0 ≤ l <
∞ in the case of sufficiently weak refraction, |lI | � ∆.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002



DIFFRACTIVE SCATTERING IN THE ERICSON MODEL 1453
the interference of the negative branch f̄ (−)(θ) (scat-
tering by the “near” side of the strong-interaction
region) and the Rutherford scattering amplitude
(Coulomb repulsion). As can be seen from Fig. 4b,
this interference cannot reproduce the behavior of
σ/σR at all θ < θC. We draw attention to this point
because, in some approaches (see [7, 28]) where
the negative branch is calculated by the method of
complex angular momenta that takes into account
the contribution of the S-matrix pole that lies in
the first quadrant of the l plane and which is the
closest to the real axis, it is usually assumed that the
approximate relation (58) is well justified.

3.2. Dip Phenomenon in the Elastic-Scattering
Cross Section in the Shadow Region (θ > θC)

At θ > θC, it follows from (55) that

f(θ) = fFr(θ) = f̄ (+)(θ) + f̄ (−)(θ), (71)

f̄ (±)(θ) =
∆
ik

[
2πL
sin θ

]1/2

e2iσ(L−1/2)F±(θ) (72)

× exp
[

±i

(

Lθ +
π

4
− π∆

L
|lI | sin θC

)]

,

F±(θ) = exp[−(π∆ ∓ |lI |)(θ ± θC)], (73)

whence we obtain

σ(θ) = |fFr(θ)|2 =
8πL
k2

∆2F+(θ)F−(θ)
sin θ

(74)

×
{

cos2

[

Lθ +
π

4
− π∆

L
|lI | sin θC

]

+ sinh2ξ(θ)
}

,

ξ(θ) = −1/2 ln
F+(θ)
F−(θ)

= π∆θC − |lI |θ. (75)

From formula (74), it follows that, if the function ξ(θ)
also has a zero in the vicinity of the angle θ = θdip,
at which the cosine on the right-hand side of (74)
vanishes, the cross section becomes very small near
this angle (dip effect). One can see that, in the Ericson
model, this angle is given by

θdip =
π∆
|lI |

θC. (76)

Owing to the constraint in (14), the minimal value of
this angle is θmin

dip = 2θC at a preset value of θC.

It goes without saying that, at not very small val-
ues of the Coulomb angle θC such that

exp(2π∆θC) 
 1, (77)

the purely Fraunhofer pattern of oscillations does not
have time to develop, with the result that, in the
shadow region, the cross section decreases exponen-
tially as exp(−2π∆θ) without oscillations (so-called
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
Coulomb damping), and the possibility of such a phe-
nomenon disappears together with these oscillations.
Within strong-absorption models involving

smooth cutoff, the dip angles in the diffractive-
scattering cross section were considered in [15].
Later in [7] (compare with [14]), the condition of the
dip in the cross section within the Ericson model
was formulated in studying the elastic scattering of
heavy ions. The authors of [7] explain the appear-
ance of the corresponding angle in the classically
forbidden region by a Coulomb–nuclear interference
of the rainbow type at large scattering angles. In
our opinion, this interpretation can be misleading.
Most probably, we deal here with a specific refractive
phenomenon that can manifest itself in the shadow
region even in the case of a weak refraction of waves
owing to Coulomb repulsion and nuclear attraction.
As was emphasized in [15], the presence of the dip

angle can be used in estimating the nuclear phase
shift for grazing trajectories.

4. CONCLUSION

Relying on the Ericson model for the S matrix in
the angular-momentum representation, we have in-
vestigated the concerted effect of Coulomb repulsion
and nuclear interaction (Coulomb–nuclear interfer-
ence) on the formation of typical diffraction patterns
in the elastic scattering of particles strongly inter-
acting with nuclei (these may be, for example, pions,
antiprotons, alpha particles, and heavy ions). Not only
does this model reflect the most important condition
of nuclear diffraction—almost complete absorption of
a large set of incident waves having angular momenta
that span the region from zero to values close to the
grazing angular momentum—but it also takes into
account refraction of waves in a nuclear medium, a
phenomenon that is accompanied by a fast change
in the nuclear phase shift in the region of grazing
trajectories.
In the present study, emphasis has been placed not

on describing experimental data by fitting three model
parameters (grazing angular momentum, width of
the transition region near this value of the angular
momentum, and parameter whose nonzero value is
responsible for the emergence of an imaginary part
in the nuclear S matrix)—fitting of this type can
always be performed with the aid of computers with-
out elaborating relevant theories further—but on de-
riving accurate analytic expressions for the elastic-
scattering amplitude over wide angular intervals, the
conditions specifying the applicability ranges of these
expressions being dependent on the above three pa-
rameters and on the Sommerfeld parameter n. As we
have seen, our approach, which is based on a gener-
alization of the Abel–Plana summation formula (its
2
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derivation can be found in [13]; see also [20, p. 38]),
makes it possible to reduce this problem for not overly
large scattering angles to considering two integrals
along the real axis in the complex plane of the variable
l. These integrals can be evaluated in a compact form
by combining the procedure of integration by parts
with the method of steepest descent.
Thus, it is sufficient to know the behavior of the

S matrix near the real axis, the analytic properties of
partial-wave amplitudes near its poles playing only a
secondary role in this approach because of a strong
suppression of the contribution from the entire line
of these poles in the right-hand half-plane of the
complex variable l. Herein lies the main distinction
of this approach from the method of complex angular
momenta that is based on the Watson–Sommerfeld
transformation [29] and where it is necessary to sum
residues at all poles of this line for scattering into the
illuminated region (θ < θC), the scattering amplitude
in the shadow region (θ > θC) being determined by
the residues at the two poles closest to the real axis.
As was shown in Subsection 2.2, the required am-

plitude can be represented as the sum of the Ruther-
ford scattering amplitude multiplied by a damping
factor and two diffraction branches f (±)(θ) of the
Fraunhofer type. At large values of the Sommerfeld
parameter n, this damping factor reduces (apart from
additive corrections of order n−1 ) to the Fermi step
Θ(θC − θ) everywhere, with the exception of a narrow
interval of width about n−1/2 in the vicinity of the
Coulomb angle (penumbra region). In the extreme
case where n → ∞ and θC = const—that is, in the C
limit, according to the terminology adopted in [24]—
this region shrinks to θC, so that the analogy with the
Gibbs phenomenon in approximating discontinuous
functions by continuous ones suggests itself. There-
by, we single out the effect of a sharp boundary in the
diffractive scattering of charged particles.
In the illuminated region, the contribution of

Rutherford scattering interferes with the oscillat-
ing diffraction contributions f (±)(θ), whose rela-
tive importance is controlled by the exponentials
exp[−π∆(θC ± θ)], so that the characteristic devi-
ations from unity (purely Rutherford scattering) are
observed in the angular dependence of the cross-
section ratio σ(θ)/σR(θ). As was shown in Section 3,
there is only an apparent similarity between this
angular dependence and the Fresnel law of diffrac-
tion in optics. In the Ericson model, Fraunhofer
oscillations superimposed on a comparatively smooth
dependence fR(θ) lead to a typical pattern of nuclear
diffraction for angles in the region θ < θC.
In the shadow (classically forbidden) region, where

θ > θC, the contribution of Rutherford scattering dies
out fast, but Coulomb effects are still present in the
PH
negative [f (−)(θ)] and the positive [f (+)(θ)] branch,
which interfere with each other. Their competition
is determined by the interplay of the suppression
factors F−(θ) and F+(θ) [see formula (73)], which de-
crease exponentially toward the interior of this region.
Indeed, the ratio F+(θ)/F−(θ) = exp[−2π∆θC +
2|lI |θ] ceases to depend on the scattering angle
upon switching nuclear refraction off (lI = 0), so
that Coulomb repulsion enhances the contribution
of diffractive scattering off the near side of the nuclear
surface over the entire region θ > θC. If the strong in-
equality in (77) is satisfied, this contribution becomes
dominant, with the result that Fraunhofer oscillations
cease to be visible against the background of the
exponential decay of the cross section σ(θ). The
refraction of waves that is due to nuclear attraction
compensates for this Coulomb damping to such an
extent that, even under the condition in (77), the
contributions f (±)(θ) can be commensurate; as a
result, the cross section will oscillate with the period
L/π from θ � 2θC. Yet, it should be borne in mind
that, for such scattering angles, other exponentially
small terms associated with nondiffractive scattering
can contribute to the amplitude within the shadow
region (see [11, 12]). In the Ericson model, this issue
deserves a dedicated consideration.

It has been demonstrated how the phenomenon of
a dip in the dependence σ(θ) in the shadow region—
the emergence of one or a few neighboring min-
ima that are much deeper than those in the regu-
lar pattern of cross-section oscillations without nu-
clear refraction—can be explained within the Ericson
model.

Our analytic results are valid over a broad angular
interval. The uniformity of the asymptotic expressions
that we have obtained ensures reliable solutions to
the diffraction problem in the case where model pa-
rameters are needed to be varied within broad ranges.
Combined with the adiabatic approximation, these
expressions can be used in describing diffraction phe-
nomena in the inelastic scattering of nuclei.
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1. INTRODUCTION

The doorway states for one-nucleon transfer re-
actions are eigenstates of a nucleon in the static
field of a nucleus which is the convolution of the
free-space nucleon–nucleon forces with the nucleon
density distributions in the nucleus [1]. They are
model-independent quantities because (i) the free-
space NN forces are independent of nuclear medium
effects and (ii) the nucleon density distributions are
deduced from the electron–nucleus [2] and proton–
nucleus [3] elastic scattering data. The corresponding
eigenvalue problem is that of a nucleon in a central
field which can be solved with any desired accuracy.
For these reasons, the doorway states can be used as
a very trustworthy test for current nuclear models.

Let us discuss some results of [1] from this point of
view.
1. The nuclear relativity within the Walecka [4]

model is confirmed to be an actually existing phe-
nomenon.
2. The dominant contribution to the isovector part

of the static field arises from the many-particle NN
forces because the ρ-meson (vector–isovector) and δ
meson (scalar–isovector) fields arising from the two-
particle forces nearly cancel each other. At the same
time, the isovector nuclear potential is exclusively of
the ρmeson origin within the quantum hadrodynam-
ics [5, 6]. The reason for this wrong QHD result is
the neglect of the δ-meson field in spite of the fact
that both ρ- and δ-meson exchanges are taken into
account in the two-particleNN forces [7–9].
3. The contributions from the two, three, and four-

particle forces to the isoscalar part of the static field

∗This article was submitted by the authors in English.
**e-mail: birbrair@thd.pnpi.spb.ru
1063-7788/02/6508-1456$22.00 c©
are found to beU2 ≈ −80MeV,U3 ≈ +96MeV,U4 ≈
−104MeV. This is in conflict with such leading prin-
ciples of the effective field theory as naive dimensional
analysis (NDA) and naturalness [10, 11]. Indeed, the
values of the forces which are estimated according to
the above principles are [12]

V2 ≈ 30 MeV, V3 ≈ V 2
2

m
≈ 1 MeV, (1)

V4 ≈ V 3
2

m2
≈ 0.03 MeV

(m is themass of nucleon), and therefore the expected
relation between U2, U3, and U4 is |U2| : |U3| : |U4| ≈
1 : 10−3/2 : 10−3. In fact, it is 1 : 1.2 : 1.3, thus sug-
gesting that there is something wrong with the nat-
uralness. Discussion of this point is continued in the
next section.

2. NONLINEARITY AS A SOURCE
OF MANY-PARTICLE FORCES

As discussed in [1], the isoscalar part of the static
field may contain contributions from higher (five-
particle, six-particle, etc.) many-particle forces. They
could be taken into account by increasing the number
of terms in the power series expansion

Um(r) =
∞∑

n=2

anρ
n(r) (2)

for the static field [1] (ρ(r) is the nucleon density dis-
tribution), thus introducing an indeterminate num-
ber of additional adjustable parameters. Instead, we
use the fact that ultimately the underlying reason for
many-particle forces is the nonlinearity of strong in-
teraction. We introduce an auxiliary scalar–isoscalar
field φ with the Lagrangian density

L =
1
2
∂µφ∂

µφ− U(φ) − gψ̄ψφ, (3)
2002 MAIK “Nauka/Interperiodica”
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U(φ) =
1
2
Λ2φ2 +

1
3
λ3φ

3 +
1
4
λ4φ

4, (4)

thus obeying the following equation:

Λ2φ+ λ3φ
2 + λ4φ

3 = −gρs + ∆φ, (5)

where ρs(r) = 〈A0|ψ̄(r)ψ(r)|A0〉 is the nuclear scalar
density (〈A0| is the ground state of nucleus A). As
discussed in [1], the many-particle forces of all ranks
are taken into account in this way.
The field φ contains the “two-particle” component

φ2 obeying the equation

Λ2φ2 = −gρs + ∆φ2. (6)

This component must be eliminated because the two-
particle contribution to the static field is determined
by the free-space two-particle forces [8, 9]. So, the
many-particle contribution to the scalar–isoscalar
field is

W (r) = g(φ(r) − φ2(r)). (7)

Let us analyze this expression disregarding for a
moment the Laplace terms of (5) and (6) which are
responsible for the finite range of the forces, although
these terms are included in the actual calculations.
But as demonstrated in [13], they are of little impor-
tance, thus not affecting the results of the below anal-
ysis. As demonstrated in [1], the radial dependence of
W (r) has the form which is schematically shown in
the figure. As seen from the figure, it is negative at
r < r1, positive at r > r1 with a maximumWm in this
region, and vanishing at r = r1. Without the Laplace
terms,

W (r) = −gλ4

Λ2
φ2(r)

(
λ3

λ4
+ φ(r)

)

. (8)

So,

φ(r1) = −λ3

λ4
. (9)

But as follows from (6) and (7),

φ(r1) = − g

Λ2
ρs(r1), (10)

and therefore
λ3

λ4
=
gρ1

Λ2
, (11)

where ρ1 = ρs(r1). Let us introduce the dimension-
less quantities y(r) and y2(r),

φ(r) = − g

Λ2
ρ1y(r), φ2(r) = − g

Λ2
ρ1y2(r). (12)

In these units,

W (r) = −g
4ρ3

1

Λ8
y2(r)(1 − y(r))λ4. (13)
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The maximumWm occurs at y = 2/3, so

λ4 = −27Λ8Wm

4g4ρ3
1

, λ3 = −27Λ6Wm

4g3ρ2
1

. (14)

The parameter λ4 is negative sinceWm > 0 (see fig-
ure). The parameter λ3 is negative too, provided the
coupling constant g is positive. Actually, the sign of
g is insignificant since the physical field is gφ, thus
being expressed through g2.
The potential energy of the scalar field is also of the

form (4) within the relativistic mean-field approach
(RMF) [14, 15], the parameters λ3 and λ4 being neg-
ative too. In this way, the sign of the RMF parameters
is confirmed. It should bementioned that the values of
the RMF parameters are determined from the exper-
imental data which include the important correlation
effects (binding energies, density distributions, low-
energy spectra, etc.), and therefore they are model-
dependent (the model-independent treatment of the
correlations does not exist). In contrast, our parame-
ters are determined from the doorway state energies,
thus being model-independent.
In terms of the y and y2 quantities, the contri-

bution to the scalar–isoscalar field from the many-
particle forces is

W (r) = −9xWm

4
(y(r) − y2(r)) (15)

+
1
2
β
(
ρ−s (r)

)2
,

x =
4g2ρ1

9Λ2Wm
, ρ−s (r) = ρsn(r) − ρsp(r), (16)

where ρsn and ρsp are neutron and proton scalar
densities, respectively. The second term on the right-
hand side of (15) arises from the symmetry energy.
The quantities y(r) and y2(r) obey the equations

y(r) +
3
x
y2(r)(1 − y(r)) =

ρs(r)
ρ1

+
1
Λ2

∆y(r),

(17)
2
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y2(r) =
ρs(r)
ρ1

+
1
Λ2

∆y2(r). (18)

The details of calculations will be described in a
forthcoming publication. The resulting values of the
parameters are found to be

ρ1 = 0.146 fm−3, Wm = 11.393 MeV, (19)

x = 16.004, Λ = 986.64 MeV, β = 5.583 fm5.

The NDA prescription [10, 11] for the scalar field
potential energy is [16]

U(φ) = f2
πΛ2

∞∑

n=2

κn

n !

(
φ

fπ

)n

, (20)

where fπ = 93MeV. According to the concept of nat-
uralness, all the coefficients κn must be of the order of
unity. Comparison between (20) and (4) together with
(14) and (16) gives

κ2 = 1, κ3 =
2fπ

Λ2
λ3 = −4Λ

fπ

xρ1

(
ρ1

xWm

)1/2

,

(21)

κ4 =
6f2

π

Λ2
λ4 = −8Λ2 f2

π

x2ρ1Wm
.

As follows from the values (19) of the parameters
κ3 = −1.6 and κ4 = −20.5, the concept of natural-
ness thus not being confirmed.
As demonstrated by the calculations for the few-

nucleon systems, the effect of many-particle forces
is relatively small [12]. This result is confirmed, but
the underlying physical reason is different from that
provided by the effective field theory. According to
P

the latter, the strength of the forces decreases with
increasing rank of the interaction [see Eq. (1)]. As
follows from above, this scenario does not hold: the
actual reason is the cancellation of the contribu-
tions frommany-particle forces of different ranks (the
physics is believed to be the same for complex nuclei
and few-nucleon systems).
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Abstract—The dynamics and the mechanisms of preequilibrium-light-particle formation in nucleus–
nucleus collisions at low and intermediate energies are studied on the basis of a classical four-body model.
The angular and energy distributions of light particles from such processes are calculated. It is found that,
at energies below 50 MeV per nucleon, the hardest section of the energy spectrum is formed owing to the
acceleration of light particles from the target by the mean field of the projectile nucleus. Good agreement
with available experimental data is obtained. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The formation of preequilibrium light particles

(n, p, d, t, α) in nucleus–nucleus collisions is de-
termined by the evolution that the nuclear system
involved in the reaction being considered undergoes
at the initial reaction stage. It is well known that
the cross section for light-particle yield from heavy-
ion collisions constitutes a significant part of the
total reaction cross section even at low energies
of about 10 MeV per nucleon; that is, the for-
mation of light particles is peculiar to all nuclear
reactions featuring heavy ions. This implies that
investigation of the mechanism of formation of such
particles may furnish direct information both about
the dynamics of the initial stage of the reaction
and about the potential and dissipative forces of
nucleus–nucleus interaction. Basic regularities in the
behavior of the angular and energy distributions of
light particles—in particular, the presence of high-
energy components in them—cannot be described
within the usual statistical model of excited-nucleus
decay [1–16]. A large number of theoretical ap-
proaches considering various mechanisms of fast-
light-particle formation have been proposed in re-
cent years. These include the moving-source model
[3], the hot-spot model [17], the model of disinte-
gration and incomplete fusion [18–21], the model
of dissipative disintegration accompanied by the
massive-transfer process [22, 23], and the fermion-
jet model and models close to it in spirit [24–29].
A detailed survey of experimental and theoretical
studies devoted to this problem can be found in
[30].

In view of a considerable improvement of the
technical characteristics of measuring equipment,
1063-7788/02/6508-1459$22.00 c©
it became possible to measure precisely the angu-
lar and energy spectra of light particles. The most
recent experiments discovered preequilibrium light
particles whose velocities are more than twice as
great as the velocity of beam particles [11–14].
This sparked anew the interest of researchers in
the problem and reinforced motivations behind the
hypothesis that nucleon–nucleon collisions play a
dominant role in the formation of ultrafast light
particles.

In the present study, the role of nucleon–nucleon
collisions and of mean nuclear fields in the forma-
tion of the spectra of preequilibrium light particles
is investigated in detail on the basis of the four-
dimensional classical model of nucleus–nucleus
collisions. Among other things, it is shown that
the effect of mean nuclear fields is crucial at beam
energies in the region E0 < 50 MeV per nucleon.
The ensuing exposition is organized as follows. In
Section 2, we give an account of the model that
underlies the present analysis of the methods used
here to calculate the differential cross sections for
light particles formed in nucleus–nucleus collisions
and the multiplicities of these particles. In Section 3,
we consider various mechanisms of preequilibrium-
light-particle formation that are realized in the model
developed here. In Section 4, the results of our cal-
culations for the above cross sections are compared
with experimental data. In Section 5, we investigate
the dependence of our results on physical model pa-
rameters, such as potentials of fragment interaction
and forces of nuclear friction. In the last section, we
formulate basic conclusions that can be drawn from
our study.
2002 MAIK “Nauka/Interperiodica”
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2. FOUR-BODY MODEL
OF NUCLEUS–NUCLEUS COLLISIONS

In studying the mechanisms of light-particle for-
mation in nucleus–nucleus collisions, we rely here
on a semiclassical four-body model that makes it
possible to establish explicitly the role of mean nu-
clear fields and the role of nucleon–nucleon collisions.
Within this model, the projectile (P ) and the target
(T ) nucleus are taken in the form of two-particle
subsystems; that is, P = (A + a) and T = (B + b),
where A and B stand for heavy nuclear cores, while a
and b represent light fragments (n, p, d, t, α).

Introducing six pair interaction potentials V (rij)
(where the subscripts i and j correspond to particles
A,B, a, and b and where rij = |ri − rj | is the distance
between particles i and j), we specify theHamiltonian
for the system being considered as

H =
∑

i

p2
i

2mi
+
∑

ij,i�=j

V (rij). (1)

The potentials taken to represent the heavy-core in-
teraction with light particles are chosen here in the
Woods–Saxon formwith the parameters correspond-
ing to optical potentials constructed on the basis of
an analysis of elastic-scattering data [31]. The in-
teraction between cores A and B is chosen in the
form of the Coulomb potential energy and the nuclear
interaction simulated by either the proximity potential
from [32] or the Woods–Saxon potential. Coupling
to reaction channels that are not taken explicitly into
account within the four-body model was described in
terms of dissipative forces introduced with the aid of
the corresponding dissipative function D. In order to
solve numerically the set of equations of motion

dri

dt
=

∂H

∂pi
;

dpi

dt
= −∂H

∂ri
− ∂D

∂νi
, (2)

where pi and νi are the vectors of, respectively, the
momentum and the velocity of particle i, it is nec-
essary to preset boundary conditions for the vectors
ri and pi. The internal spatial configuration of the
projectile nucleus is completely determined by the
vector rAa of the relative distance between the projec-
tile fragments, the energy EAa of their relative motion
(that is, the projectile binding energy), and the vector
lAa of the orbital angular momentum associated with
the relative motion of these particles. The compo-
nents of the vector rAa(t = 0) are chosen via their
generation at random on the basis of some spatial-
distribution function. Our calculations revealed that
the form of the radial dependence of this distribution
affects only slightly the final result. This is explained
by the specificity of the classical model, where, as the
time of approach of the nuclei involved increases, any
P

initial distribution tends to a purely classical distri-
bution, in which case the particle resides for a longer
time in the vicinity of the external turning point. At
the same time, a decrease in the time of approach
entails an increase in the computational error. In the
case being considered, the relative position of parti-
cles A and a was chosen to be equiprobable in the
energetically allowed region of space. In order to de-
termine the relative momentum pAa unambiguously,
it is necessary to fix, in addition to the relative en-
ergy EAa, the distance |rAa| between the fragments,
and the orbital angular momentum |lAa|, one of the
components of the vector lAa as well (this is also
done via a generation at random). Applying the same
procedure to the target nucleus and specifying the
relative motion of the centers of mass of the target
and the projectile nucleus in accordance with a given
reaction, we fully define boundary conditions that are
necessary for solving the set of Eqs. (2).

The functionD in Eqs. (2) is an ordinary Rayleigh
dissipative function that describes the dissipation of
energy and of the angular momentum of the rela-
tive motion of the nuclei involved. In the case where
fragments a and b are much lighter than cores A
and B, it is assumed that the friction forces act only
between the cores. In terms of spherical coordinates,
the Rayleigh function then has the diagonal form

D =
1
2
f(r)

(
γr ṙ

2 + γθr
2θ̇2 + γϕr

2 sin2 θϕ̇2
)
,

γt = γθ = γϕ, (3)

where γr and γt are, respectively, the radial and the
tangential coefficient of friction; f(r) is the radial
form factor for dissipative forces; and r = rA − rB ≡
{r, θ, ϕ} is the vector of the relativemotion of particles
A and B. In choosing the coefficients γr and γt and
the form factor f(r), we followed [33].

Thus, we have a set of 24 coupled classical differ-
ential equations of motion [set of Eqs. (2)]; we con-
struct here its numerical solutions directly in the lab-
oratory frame using Cartesian coordinates. By per-
forming a numerical integration of Eqs. (2) with re-
spect to time for different initial conditions, we arrive
at various output channels. It can easily be shown
that, within the four-body model used, there are 15
output reaction channels. These are scattering chan-
nels, channels involving the breakup of the projectile
or the target (or both), particle-transfer channels, and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002



COMPARATIVE ANALYSIS OF THE MECHANISMS 1461
channels of complete and incomplete fusion:

P + T ≡ (Aa) + (Bb) →






(Aa) + (Bb),
A+ a+B + b,

. . .

(Ab) + (Ba),
(Aab) +B,

. . .

(ABb) + a,

(AaBb).

(4)

Here, parentheses enclose bound states of two or
more fragments.

In describing the relative motion of particles (a +
B) and (b +À), the differential cross sections for
various channels can be estimated more correctly in
terms of the probability of their absorption. We define
this probability P abs

ij as

P abs
ij = 1 − exp

(

− sij

λij

)

(5)

≡ 1 − exp



−
∫

tr

2Wij(r′)dr′

�νij(r′)



 ,

where sij is the distance that particle i travels in nu-
cleus j, λij is the corresponding mean range, Wij(r)
is the imaginary part of the optical potential (it de-
scribes absorption in the case of the elastic scattering
of particle i by nucleus j), and νij is their relative
velocity. Integration in (5) is performed along the
actual trajectory of the fragments.

In classical dynamics, the relative energy of two
particles in a bound state can take any admissible
value—in particular, collapse onto the potential-well
bottom is possible. In studying the formation of bound
states of two or more particles in output channels, it is
therefore necessary to check additionally their relative
energy in order to eliminate unphysical events where
the energy of the fragments is below the experimental
energy of their bound state.

For any reaction channel in (4), the differential
cross section is calculated by the formula

d2σµ

dEdΩ
(E, θ) (6)

=

∞∫

0

2πρdρ
[
∆Nµ(ρ,E, θ)

Ntot(ρ)
1 − Pµ(ρ)

2π sin θ∆θ∆E

]

,

where ∆Nµ(ρ,E, θ) is the number of events in which
the system goes over into the channel µ at a given
value of the impact parameter ρ, Ntot(ρ) is the total
number of simulated events for a given value of ρ, and
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
Pµ(ρ) is the probability of absorption in this channel.
The bracketed factor in the integrand on the right-
hand side of (6) is the partial differential multiplicity
for the event type being considered. Upon individually
integrating this factor with respect to the impact pa-
rameter, we would obtain the differential multiplicity,
which is a quantity often measured in experiments
instead of the corresponding cross section.

Themain contribution to the soft section of the en-
ergy spectrum of light particles comes from the evap-
oration of particles from excited reaction products. As
a rule, the multiplicity of evaporated light particles
considerably exceeds the multiplicity of preequilib-
rium particles in this energy range. In the proposed
model, evaporation processes are taken into account
in the following way. The introduction of phenomeno-
logical forces of friction in the equations of motion
(2) leads to a dissipation of part of the kinetic energy,
whereby it is converted into the excitation energy
of heavy fragments. Since the problem of how the
excitation energy is shared among colliding nuclei has
not yet been solved conclusively, we describe here the
evaporation section of the spectrum, assuming that
the total excitation energy is shared among colliding
nuclei according to the simplest mechanism of equal-
ity of their temperatures, in which case the excitation
energy is shared in proportion to the masses of the
colliding nuclei. In the source rest frame, evaporated
particles have a Maxwell distribution with respect to
energy and an isotropic angular distribution. In the
laboratory frame, the energy distribution of light frag-
ments evaporated from the ith source has the form

fi(ρ,E, θ, ϕ) =
1

2(πTi(ρ))3/2

√
E − VC (7)

× exp
(
−(E − VC + εi(ρ)

− 2
√

(E − VC)εi(ρ) cos θ′)/Ti(ρ)
)
.

Here, E is the laboratory energy of the light particle;
VC is the height of the Coulomb barrier for this
particle in escaping from a heavy fragment; εi(ρ) =
mν2

i (ρ)/2, where m is the mass of the emitted light
particle and νi is the laboratory velocity of the ith
emitted fragment; Ti(ρ) =

√
E∗

i (ρ)/ai is its temper-
ature, where E∗(ρ) is the fragment excitation energy;
ai is the level-density parameter in the correspond-
ing nucleus; and cos θ

′
= sin θ sin θi(cosϕ cosϕi +

sinϕ sinϕi) + cos θ cos θi, with (θi, ϕi) and (θ, ϕ)
being the spherical angles of emission of, respectively,
the ith hot fragment and the evaporated particle in
the laboratory fragment. The quantities εi and Ti,
as well as the angles θi and ϕi, are functions of the
impact parameter ρ and are calculated by performing
averaging over the total number of events at given ρ
2
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that have resulted in the formation of the ith fragment.
The averaging of the function fi(ρ,E, θ, ϕ, θi, ϕi)
over the azimuthal angle ϕi can be performed analyti-
cally, whereupon the dependence on the light-particle
emission angle ϕ also disappears. In general, averag-
ing over the polar angle θi of the heavy fragment can
be performed only numerically.

Within the model used here, three types of evapo-
rated fragments can be formed. These are a projectile-
like fragment (PLF), a targetlike fragment (TLF), and
a compound nucleus (CN). In general, we therefore
obtain three evaporation components of the energy
spectrum of light particles. Within the model pro-
posed here, the double-differential cross section for
the formation of evaporated light particles is calcu-
lated by the formula

d2σEV

dEdΩ
(E, θ) =

ρmax∫

0

2πρdρ[PCN(ρ)CCNfCN (8)

+ (1 − PCN(ρ))(CPLFfPLF + CTLFfTLF)],
PH
where PCN(ρ) is the probability of the formation of
a compound nucleus in a collision occurring at an
impact parameter ρ and Ci are constant normaliza-
tion factors. These factors were introduced in order
to normalize correctly the evaporation spectrum to
experimental data; as a matter of fact, they are pro-
portional to the measured value of the multiplicity of
evaporated particles. The experimental normalization
of the evaporation section of the spectrum of light
particles makes it possible to single out their relative
contribution to the total cross section, whereupon we
can focus on preequilibrium light particles, which are
the subject of our main interest.

3. MECHANISMS
OF PREEQUILIBRIUM-LIGHT-PARTICLE

FORMATION

Within the proposed model, there are eight reac-
tion channels contributing to the total cross for the
formation of preequilibrium light particles. These are
(Aa) + (Bb) →






A+B + a+ b

(Bb) +A + a

(Aa) +B + b





complete and incomplete breakup,

(Ab) +B + a

(Ba) +A + b

}

break–transfer process,

(AB) + a+ b

(ABa) + b

(ABb) + a





incomplete fusion.

(9)
Our calculations revealed that, even at beam energies
of about 30 MeV per nucleon, the main contribution
to the cross section for light-particle formation comes
from the breakup and breakup–transfer channels.
Channels featuring a bound state of the heavy cores
(ABx) contribute significantly only at low energies
(E0 ≤ 20 MeV per nucleon).

From the scheme given by (9), it can be seen that
the set of preequilibrium light particles can be broken
down into two subsets including particles emitted
from the projectile (particle a) and particles emitted
from the target (particle b). Thus, three evaporation
components of the energy spectrum of light particles
are supplemented with two components of preequi-
librium light particles. In just the same way as in the
case of the evaporation spectra of light particles, it is
necessary to introduce constant normalization factors
for the preequilibrium target and the preequilibrium
projectile component, since, in the four-body model
used here, the multiplicity is always less than or equal
to two. The values of these factors were chosen in
such a way that the calculated cross sections at the
tails of the energy distributions would coincide in am-
plitude with experimental cross sections, since, in this
region of the spectrum, only preequilibrium particles
contribute.

As a first example, we applied the proposed model
to studying the properties of neutrons emitted in
20Ne + 165Ho → n+X reactions at a beam energy
of E0 = 20 MeV per nucleon. In this case, the target
and the projectile nucleus are both represented as a
bound state of a core and a neutron: 20Ne = 19Ne +
n and 165Ho = 164Ho + n. The binding energies of
these systems were chosen on the basis of experimen-
tal data. Figure 1 shows the results of our calculations
for the (a) angular and (b) energy distributions of
neutrons for the above reactions. Curve 1 corresponds
to equilibrium neutrons evaporated from PLF, TLF,
and CN fragments of the reactions. Curves 2 and
3 represent the contributions of preequilibrium neu-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 1.Differential multiplicity of neutrons produced in 20Ne(20AMeV) + 165Ho → n+X reactions versus (a) the neutron
emission angles and (b) the neutron energy. Curves 1 represent the total contribution of evaporated neutrons, while curves 2
and 3 depict the contributions of preequilibrium neutrons emitted the projectile and the target, respectively.
trons emitted from the projectile (particle a) and from
the target (particle b), respectively.

In plotting the angular distribution displayed in
Fig. 1a, integration of the differential multiplicity
d2Mn/(dEdΩ) with respect to energy was performed
with the energy spectrum cut off in the low-energy
section (En > 5 MeV). It can be seen that the
evaporation component is dominant over the entire
angular range, both preequilibrium components be-
ing forward directed to a considerable extent.

As can be seen from Fig. 1b, it is the preequi-
librium components (curves 2 and 3) that make a
dominant contribution to the energy distribution at
high neutron energies (at their velocities higher than
the velocity of beam particles). That the hardest part
of the spectrum corresponds to neutrons emitted from
the target nucleus (and not from the projectile nu-
cleus, as has usually been assumed so far) is a re-
markable fact, which could not be anticipated from
the outset. There is a simple explanation of this phe-
nomenon, which is quite unusual at first glance.

Under the assumption that the core masses are
much greater than the neutron mass, we will now
calculate the maximum possible values that kinemat-
ics allows for the energy of neutrons emitted from
the projectile and from the target. In doing this, we
disregard the neutron–neutron interaction and the
distortion of the trajectories of the heavy fragments
A and B. The velocity of the projectile neutron in the
laboratory frame (see Fig. 2a) is equal to the sum
of the beam-particle velocity ν0 (E0 = mnν

2
0/2) and

the velocity of the internal motion of the neutron in
the mean field νn of the projectile nucleus (in the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
case of a square well, we havemν2
n/2−U0 = −Esep).

Thus, the projectile nucleon emitted from a nucleus–
nucleus collision has the energy

En =
(m

2
(ν0 + νn)2 − U0

)∣
∣
∣
νn = vF, θn=0◦

(10)

=
m

2
(
ν2
0 + 2ν0νF

)
− Esep,

where m is the neutron mass, U0 is the depth of the
mean field VAa,Esep is the neutron-separation energy,
and νF is the Fermi velocity of projectile nucleons. If,
for example, ν0 ∼ νF and E0 � Esep, the maximum
energy of the emitted nucleon is Emax

n ∼ 3E0. This
mechanism of fast-light-particle formation was com-
prehensively investigated in [25, 29].

The mechanism responsible for the formation of
high-energy neutrons from the target is more com-
plicated. The main role in this process is played by
the potential of the interaction between the projec-
tile nucleus A and the target neutron b. Let us first
consider a simplified model where the interaction VAb

is replaced by the interaction of neutron b with an
infinitely heavy moving wall. Suppose that b moves
at a velocity νn toward the core A, which, in turn, has
a velocity ν0 directed oppositely. In their c.m. frame,
the neutron velocity is (ν0 + νn); after an elastic col-
lision, the neutron acquires the velocity –(ν0 + νn),
which corresponds to the velocity νout = (2ν0 + νn)
in the laboratory frame. Under the condition that the
internal-motion velocity of the target neutron, νn, is
equal to the Fermi velocity νF, its asymptotic energy
is

En|νn=νF,θn=0◦ =
m

2
(2ν0 + νF)2 − U0 (11)
2
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Fig. 2. Schematic representation of preequilibrium-nucleon formation in a nucleus–nucleus collision: (a) emission of a
nucleon from the projectile, (b) acceleration of a nucleon under the conditions of orbiting in the projectile field (this is equivalent
to scattering on a moving reflecting wall), and (c) general case of nucleon emission from the target in projectile rest frame (for
the notation, see main body of the text).
= 2m
(
ν2
0 + ν0νF

)
− Esep,

where U0 is the depth of the mean field VBb and Esep

is the energy of target-neutron separation. At ν0 ∼ νF
and E0 � Esep, the maximum energy is thusEmax

n ∼
8E0, which is 2.5 times as great as the corresponding
limit for neutrons emitted from the projectile.

The elastic scattering of neutrons at an angle
of θc.m. = −180◦ in the attractive mean field of the
projectile nucleus is kinematically equivalent to their
reflection from a repulsive wall (see Fig. 2b). The
scattering of neutrons at such large angles (θc.m. ≤
−180◦), which is actually an orbiting process, is pos-
sible only at comparatively low neutron energies. At
c.m. energies of E0 ≥ AEF ≈ 40A MeV, neutrons
can be deflected by the mean field (U0 ≈ 50 MeV) by
not more than at a limiting negative angle θR that is
referred to as the rainbow-scattering angle. By virtue
of this, the maximum energy of neutrons emitted from
the target depends strongly on the projectile energy,
on the interaction potential VAb, on the neutron bind-
ing energy in the target, and on the friction forces.
Disregarding the effect of neutrons on the motion of
heavy fragments, assuming that the neutron acquires
themaximum energy upon scattering by the projectile
at the angle θR in the neutron–projectile c.m. frame
(see Fig. 2c), and setting the initial neutron velocity
in the target to the relevant Fermi velocity, we can
estimate the asymptotic neutron energy (at νn = νF)
as

En = m
(
ν2
0 + ν0νF cosα (12)

+ ν0 cos β
√
ν2
0 + ν2

F + 2ν0νF cosα
)
−Esep,

where α is the angle at which the neutron is incident
on the target in the reference frame comoving with the
target and β is the emission angle in the same refer-
ence frame (see Fig. 2c). The two angles are related to
P

each other through the nuclear-rainbow-scattering
angle, for which there is the empirical relation [34]

θR =
(
VC − 0.56U0

√
RV /aV

)
/Ec.m., (13)

where VC is the height of the Coulomb barrier (it is
equal to zero for a neutron), whileU0,RV , and aV are,
respectively, the depth, the range, and the diffuseness
of the interaction potential VAb. It turned out that
the empirical formula (13), with the coefficient 0.56,
agrees poorly with the exact classical calculation of
the angle θR for the scattering of light particles (such
as a proton or a neutron) on nuclei; therefore, we use
here the coefficient 0.7. It can be seen that, at α =
β = 0 (that is, at θR = −180◦), formula (12) reduces
to (11).

Themaximum energies of preequilibriumneutrons
originating from (solid curves) 20Ne + 165Ho and
(dashed curves) 165Ho + 165Ho interactions are dis-
played in Fig. 3 versus the beam energy E0. Curves 1
correspond to the results obtained by calculating, on
the basis of (10), the maximum energy of neutrons
emitted from the projectile; curves 2 represent the
energies of neutrons emitted from the target, their
values being calculated by formula (12). From Fig. 3,
it can be seen that, at energies below 100 MeV per
nucleon, the fastest neutrons are emitted from the tar-
get and that, upon going over to the heavier projectile,
the maximum energy of the emitted neutron becomes
higher. This is because the range of the potential VAb
increases, which entails an increase in the absolute
value of the rainbow-scattering angle θR [see (13)].

Thus, an experimental investigation of reactions
where projectiles different in mass are incident on
the same target may be one of the tests of validity
of conclusions that we have drawn. For nucleons
emitted from the target and the projectile to be unam-
biguously identified, it is necessary that the spectrum
of the projectile nucleons change insignificantly upon
going from one system to another. In this case, the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 3. The maximum energy Emax
n of preequlibrium

neutrons as a function of the incident-beam energy E0

for (solid curves) 20Ne + 165Ho → n+X and (dashed
curves) 165Ho + 165Ho → n+X according to the cal-
culations based on formulas (10) and (12). Curves 1
correspond to the maximum energy of neutrons emitted
from the projectile, while curves 2 represent the energies
of neutrons emitted from the target.

distinction between the distributions of preequilib-
rium nucleons will be determined completely by the
yield of precisely target nucleons. In order to ensure
the invariability of the spectra of preequilibrium nu-
cleons emitted from the projectile, it is necessary to
select projectile nuclei with similar features (such as
the angular momentum of valence nucleons and the
energies of their separation).

Figure 4 shows the measured differential multi-
plicities of protons originating at an angle of θlab =
51◦ from 40Ar + 51V → p+X, 132Xe + 51V →
p+X, and 132Xe + 197Au → p+X interactions
at a beam energy of 44 MeV per nucleon [16]. It
can be seen that, upon going over from the projec-
tile nucleus of 40Ar to the heavier species of 132Xe,
the slope of the proton spectrum decreases, which
corresponds to an increase in the yield of fast light
particles. On the contrary, the replacement of the
target nucleus causes virtually no changes in the
energy distribution of protons. The change in the
character of the spectra in response to going over from
one projectile-nucleus species to another can hardly
be explained by different properties of the projectile
species, because the internal structure of the projec-
tile (the height of the Coulomb barrier, the binding
energy, shell effects, etc.) does not have a significant
effect on the properties of preequilibrium protons at
the high beam energies considered here. Moreover,
the mechanism of light-particle emission from the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Fig. 4. Measured differential multiplicities of protons
emitted at an angle of θlab = 51◦ in (open boxes)
40Ar + 51V → p+X, (open circles) 132Xe + 51V →
p+X, and (closed triangles) 132Xe + 197Au → p+X
interactions at a beam energy of 44MeVper nucleon [16].

projectile nucleus is independent of its mass—only
the multiplicity of light particles (that is, the absolute
normalization of their spectrum) depends on it. The
effect of dissipative forces, which directly depend on
the target-nucleus mass, leads to a moderation of
protons emitted from the projectile nucleus. It fol-
lows that the use of a heavier target nucleus would
lead to a decrease in the yield of fast protons (be-
cause of the intensification of dissipative processes)
if they were formed only via stripping from the tar-
get. However, a comparison of the data presented in
Fig. 4 for 132Xe (44AMeV)+ 51V, 197Au interactions
does not reveal any significant change in the proton
spectra. Nonetheless, the above mechanism of the
acceleration of target nucleons in the mean field of
the projectile is very sensitive to the geometric dimen-
sions of the the projectile (that is, to its mass). Thus,
we can conclude that the main contribution to the
high-energy section of the spectra displayed in Fig. 4
comes precisely from protons emitted from the target
and accelerated by the mean field of the projectile.
The conclusion that the energy spectrum of protons
depends weakly on the choice of target nucleus also
follows from the data presented by Jasak et al. [10],
who studied the target-mass dependence of the yields
of various products (including protons) from the re-
actions induced by 40Ar + 197Au and 40Ar + 40Ca
collisions at an energy of E0 = 42 MeV per nucleon.

Within our model, we will now consider the effect
of nucleon–nucleon collisions on the formation of
fast light particles. Suppose that, in the laboratory
2
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Fig. 5.Maximum energy of preequilibriumneutrons orig-
inating from 20Ne + 165Ho → n+X reactions as a
function of the beam energy. Curves 1 and 2 represent the
data analogous to those depicted by the corresponding
curves in Fig. 3. Curve 3 corresponds to the maximum
energy acquired by the neutron upon an elastic nucleon–
nucleon collision in the mean field of the relevant dinu-
clear system [according to the calculation by formula (14)
not allowing for the Pauli exclusion principle]. The points
represent the results obtained with allowance for the Pauli
exclusion principle (for details, see main body of the text).

frame, a target nucleon has a velocity νj prior to a
collision event; the velocity of a projectile nucleon is
equal to the sum of the beam-particle velocity ν0 and
the nucleon velocity νi within the projectile. One of
the nucleons can acquire the maximum velocity if,
upon the collision event, it carries away the entire
amount of the relative-motion energy. In this case the
maximum energy of the emitted nucleon is (i = a, b)

Emax
i

=
m

2

(
ν2

b + (ν0 + νa)
2
)
−
mν2

i

2
− Esep

i . (14)

From (14), it follows that, if ν0 ∼ νi ∼ νF, then
Emax

i ∼ 4E0. For 20Ne + 165Ho → n+X reactions,
Fig. 5 displays the maximum neutron energy as a
function of the beam energy according to the calcula-
tions based on formulas (curve 1) (10), (2) (12), and
(3) (14). It can be seen that, over the entire energy
range, nucleon–nucleon collisions in this reaction
can in principle lead to the formation of yet more
energetic light particles in relation to the first two
mechanisms considered above.

In actual experiments, the boundaries depicted by
the curves in Fig. 5 will be smeared because of the
high-energy component of the momentum distribu-
tions in the projectile and the target nucleus (νn >
νF); in the case corresponding to curve 3, there is also
the contribution to this smearing from the Pauli ex-
clusion principle, which forbids nucleons that suffered
P

a collision to occur in states already occupied by other
intranuclear nucleons, with the result that the proba-
bility of the acceleration of nucleons to the maximum
possible degree is considerably suppressed.

Let us introduce a nucleon–nucleon interaction
featuring a repulsive core at short distances. Solv-
ing the set of Eqs. (2) for initial conditions chosen
at random, we can determine numerically the maxi-
mum energy acquired by a nucleon upon a nucleon–
nucleon collision in the mean field of the relevant
dinuclear system. Testing, in the output channels,
the binding energy of the recoil nucleon, we can
also take into account the Pauli exclusion principle
in our calculations. The results of our calculations
for 20Ne + 165Ho → n+X reactions versus E0 are
shown in Fig. 5 by points. It can be seen that, at
low initial energies (E0 ∼ 20 MeV per nucleon), the
Pauli exclusion principle has a crucial effect on the
formation of fast preequilibrium neutrons in nucleon–
nucleon collisions. In this case, the energy of the
emitted particles does not exceed 3.5Å0. At higher
values of the beam energy Å0, the discrepancy be-
tween the predictions of formula (14) and the results
of the calculation decreases gradually. It should be
noted that the maximum energy of neutrons was cal-
culated with allowance for dissipative forces acting
between the heavy cores and exerting, as will be
shown below, a pronounced effect on the spectra of
preequilibrium light particles. The dissipative forces
moderate the projectile nucleus; that is, they reduce
the velocity ν0. This leads to an additional decrease
in the quantity Emax

n in nucleon–nucleon collisions.
With increasing initial energy E0, the effect of dis-
sipative forces becomes less pronounced, since the
valence nucleon does not have time to “experince”
the moderating influence of the projectile mean field.
Thus, we can conclude that, up to beam energies
of E0 ∼ AEF, the role of nucleon–nucleon collisions
is less significant than the role of the mean fields.
At higher beam energies, the maximum energy ac-
quired by nucleons as the result of nucleon–nucleon
collisions becomes greater than the energy of target
nucleons accelerated by the projectile mean field.

4. COMPARISON WITH EXPERIMENTAL
DATA

In order to verify the qualitative conclusions drawn
in the preceding section, we have analyzed the dif-
ferential cross sections for the yield of neutrons and
protons from a few nuclear reactions and performed a
comparison with available experimental data.

The double-differential cross sections measured in
[15] for the yield of neutrons from 36Ar(35A MeV) +
107Ag → n+X reactions are displayed in Fig. 6a,
along with the results of the relevant calculations.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 6. (a) Measured and calculated differential cross sections for neutron formation in 36Ar(35AMeV) + 107Ag → n+X
reactions: (points) experimental data from [15], (dash-dotted curves) contribution of evaporated neutrons, (dashed curves) total
contributionof preequilibriumneutrons emitted from the projectile and the target, and (solid curves) sum of the evaporation and
the preequilibrium component; (b) theoretical results for the single angle of θlab = 15◦ that are basically the same as in Fig. 6a,
except that the contribution to the differential cross section from neutrons emitted (curve 1) by the projectile and (curve 2) by
the target are shown individually instead of their total contribution.
The dash-dotted, the dashed, and the solid curve rep-
resent, respectively, the evaporation component, the
preequilibrium component, and their sum. The equi-
librium part of the spectrum receives contributions
from neutrons evaporated by a targetlike fragment
(this is the isotropic low-energy component com-
pletely saturating the evaporation spectrum at large
angles) and from neutrons evaporated by a projectile-
like fragment, the maximum in the distribution corre-
sponding to forward angles and energies close to the
beam energy.

Figure 6b gives a more detailed pattern for the
contribution of preequilibrium neutrons emitted from
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
(curve 1) the projectile and (curve 2) the target at
an angle of θlab = 15◦. The solid and the dash-dotted
curve are identical to their counterparts in Fig. 6a. It
can be seen that the hardest section of the spectrum
is associated with neutrons emitted from the target
nucleus. For intermediate values of the emission an-
gle (θlab < 90◦), this trend is conserved; only in the
region of large angles are the contributions of the two
preequilibrium components approximately equal.

Figure 7a displays experimental data from [16]
on the differential multiplicity of protons emitted in
132Xe(44A MeV) + 197Au → p+X reactions. In
that figure, the solid curves represent the calculated
2
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Fig. 7. a Comparison of (points) the measured [16] and (solid curves) the calculated differential multiplicity of preequilibrium
protons formed in 132Xe (44A MeV) + 197Au → p+X reactions. The dashed and the dash-dotted curve represent the
contributions of preequilibrium protons emitted at an angle of θlab = 14◦ from the target and the projectile, respectively.
The contribution of evaporated protons is not shown. (b) Calculated differential multiplicities of protons emitted at an angle
of θlab = 51◦ in (solid curve) 132Xe + 197Au → p+X, (dashed curve) 132Xe + 51V → p+X, and (dash-dotted curve)
40Ar + 51V → p+X reactions at the beam energy of 44 MeV per nucleon.
energy distribution of preequilibrium protons; shown
additionally for the emission angle of θlab = 14◦ are
the contributions of protons escaping from (dashed
curve) the target and (dash-dotted curve) the pro-
jectile. The contribution of evaporated protons is not
presented. The theoretical results for the proton spec-
trum at θlab = 14◦ noticeably underestimate the ex-
perimental cross section in magnitude, but they re-
produce quite well the behavior of experimental data.
On the contrary, the theoretical curves in the region
of backward angles (θlab = 129◦, 160◦) lie somewhat
above the experimental data on the differential mul-
tiplicity of preequilibrium protons. This is because
the evaporation component must be dominant in this
region. We can see that, despite the use of quite a
simple semiclassical model, the agreement with ex-
perimental data is by and large satisfactory.

Figure 7b shows the computed energy distribu-
tions of preequilibrium protons emitted at an angle of
θlab = 51◦ in (solid curve) 132Xe + 197Au → p+X,
P

(dashed curve) 132Xe + 51V → p+X, and (dash-
dotted curve) 40Ar + 51V → p+X reactions at a
beam energy of 44 MeV per nucleon. It can be seen
that, in the region of high energies, the spectrum of
product protons is harder for the heavier projectile of
132Xe than for the lighter projectile of 40Ar owing to
particles emitted from the target nucleus. No such
effect arises upon replacing the target nucleus by a
heavier one. Comparing the curves in Fig. 7bwith the
experimental data in Fig. 4, we can see that the agree-
ment between the results of the theoretical calcula-
tions and the experimental data is quite satisfactory.

In Fig. 8a, the double-differential cross section
measured in [4] for proton formation in
16O(20A MeV) + 197Au → p+X reactions is
contrasted against the results of the theoretical cal-
culations based on the model employed here. The
solid curves correspond to the total contribution
of preequilibrium protons emitted from the target
and the projectile. The dash-dotted curves represent
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 8. (a) Measured and calculated double-differential cross sections for proton production in 16O(20A MeV) + 197Au →
p+X reactions and (b) measured and calculated differential multiplicity of neutrons from 20Ne(30A MeV) + 165Ho →
n+ ER (θER = 5.6◦) reactions: (solid curves in Figs. 8a and 8b) computed distributions of preequilibrium protons and
neutrons, respectively; (dash-dotted curves) contribution to the distributions from evaporated light particles; and (points)
experimental data. In Fig. 8а, the contributions of preequilibrium protons emitted from the projectile and from the target at
an angle of θlab = 20◦ are shown individually by long and short dashes, respectively.
the contribution of evaporated protons. For protons
emitted at an angle of θlab = 20◦, more detailed
dependences are shown individually for protons es-
caping from (long dashes) the projectile and (short
dashes) the target. The cross sections calculated for
the reactions in question agree well with experimental
data at small and intermediate values of the emission
angle. As in the preceding case, however, the cross
section is overestimated at large values of the proton
emission angle.

In [8], the differential multiplicity was measured
for neutron formation in coincidence with the evap-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
oration residue in the reaction 20Ne(30A MeV) +
165Ho → n+ ER(θER = 5.6◦). Within the model
used here, we can calculate the differential multiplic-
ity of neutrons in coincidence with the evaporation
residue, taking, however, no account of its emission
angle θER. This limitation is due to the fact that we
can only roughly estimate the contribution of evapo-
ration processes to the cross section for the formation
light fragments; in doing this, we underestimate the
multiplicities of preequilibrium particles, so that we
cannot calculate precisely the emission angle for the
evaporation residue. In Fig. 8b, the multiplicities
2
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calculated in the present study are contrasted against
the experimental data from [8]. In that figure, the
dash-dotted curve represents the total contribution
of evaporated neutrons, while the solid curve cor-
responds to the total distribution of preequilibrium
neutrons. At some values of the emission angle,
there is a sizable discrepancy between the results of
theoretical calculations and experimental data in the
region of high energies. In all probability, this is due to
imperfections of the model in dealing with correlation
experiments, which require a precise treatment of the
statistical decay of an excited nucleus.

By and large, we can state that, despite the sim-
plicity of the proposed model, there is good agree-
ment, in the energy range being considered, between
the calculated cross sections for the yield of light par-
ticles from nucleus–nucleus collisions and relevant
experimental data.

5. DYNAMICS OF LIGHT-PARTICLE
FORMATION AND ROLE OF DISSIPATIVE

FORCES

In treating the dynamics of nucleus–nucleus col-
lisions on the basis of the semiclassical approach
involving two-particle interactions, there remains an
ambiguity in choosing the parameters of these inter-
actions. In assessing the parameters of the potentials
that simulate the interaction between a light particle
and a heavy fragment, we relied here on experimental
data obtained by exploring elastic scattering and on
PH
the results of their treatment within the optical model
[31]. It is well known, however, that the optical model
leads to a discrete and a continuous ambiguity in
the potential parameters. In the present calculations,
these parameters were therefore varied within 10–
20% in order to determine the stability of the results of
these calculations and conclusions drawn from them.
In particular, the potentials VAa and VBb (that is, the
interaction of a valence nucleon with a nuclear core)
chosen in theWoods–Saxon form had the parameters
of U0 = 50–60 MeV, r0 = 1.15–1.25 fm, and aV =
0.45–0.6 fm. Variations of these parameters in the
above ranges do not have a strong effect on the an-
gular and energy distributions of preequilibrium light
particles.

The potentials VAb and VBa play a much more
significant role. As was shown above, the former is
responsible for the acceleration of the target valence
nucleon and, as a consequence, for the formation of
the spectrum of preequilibrium light particles emitted
from the target. The latter determines the angular
distribution of light particles emitted by the projec-
tile. The parameters of the potential VAb specify the
rainbow-scattering angle in (13), which sets a kine-
matical limit on the energy of the emitted light particle
b. In the calculations, the parameters of these poten-
tials for various nuclei were taken in the following
ranges: U0 = 45–55 MeV, r0 = 1.15–1.25 fm, and
aV = 0.45–0.65 fm.

In addition to the real parts of the potentials
VAb and VBa, we also introduced imaginary parts
(see Section 2). It turned out that these imaginary
parts, which determine the absolute values of the
cross sections, have virtually no effect on other
observables, such as the slope of the spectrum and
the position of the maximum. In the case being
considered, the imaginary parts of the potentials VAb
and VBa were chosen in theWoods–Saxon form with
parameters W0 ≤ 20 MeV, r0 = 1.2–1.35 fm, and
aW = 0.5–0.8 fm.

The potential VAB simulating the nucleus–nuc-
leus interaction plays a significant role in the forma-
tion of light particles at low beam energies of E0 <
20 MeV per nucleon, but it becomes less important
as the beam energy increases. The potential VAB

determines the trajectories of the projectile, which
is responsible for the acceleration of target nucle-
ons. That the projectile moves along trajectories not
coinciding with a straight line smears the region of
forward angles in the spectrum of the fastest light
particles. Such particles are produced in peripheral
collisions characterized by impact-parameter values
close to that of tangential collision. Figure 9 shows
the differential distribution of the cross section with
respect to energy for preequilibrium neutrons origi-
nating from 36Ar(35A MeV) + 107Ag interactions
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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at impact-parameter values from various ranges. The
dashed curve represents the results for impact pa-
rameters satisfying the condition ρ < 4 fm, while the
solid curve corresponds to ρ values between 4 and
9 fm. In the case of a tangential collision, the impact
parameter is about 8.5 fm. From Fig. 9, it can be
seen that the main contribution to the cross section
comes from events where the impact parameter is
large (solid curve). Therefore, the cross section for the
yield of the most energetic light particles from nuclear
reactions is governed primarily by the dynamics of
peripheral collisions, which in turn depends on the
nuclear component of the interaction potential VAB.

As was demonstrated above, the relative velocity
of the light particle from the target and the heavy
projectile core determines the maximum angle [see
Eq. (13)] at which the light particle can be scattered
and, hence, the maximum energy of this particle. At
beam energiesE0 of about the Fermi energy, the rela-
tive velocities are so great that the angle at which the
light particle is scattered is small, and so is therefore
its energy. On the other hand, it is well known from
experiments that, in the hard section of the spectrum,
the energy of light particles can be as large as about
4E0 to 6E0. The inclusion of nuclear friction in the
model being considered is a mechanism that could
ensure the reduction of the relative velocity in the
scattering of the light fragment b on the projectile
coreA. As was indicated above, we introduce only the
forces of friction between the cores of the projectile
and the target. The form factor of dissipative forces
is not known precisely; therefore, use was made here
of a phenomenological form factor of the Fermi type
both for the radial and for the tangential component.
In [33], it was indicated that, at the same values of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
the coefficient of friction, a form factor of this type
leads to identical friction between two light and two
heavy nuclei at equal distances between their sur-
faces. This means that, in this case, the coefficients of
frictionmust depend on themasses of colliding nuclei;
therefore, one cannot expect that there exist universal
values of these coefficients for any nuclear system.

For preequilibrium neutrons originating from
36Ar(35A MeV) + 107Ag → n+X reactions, we
have calculated the formation cross sections at var-
ious values of the radial coefficient of friction. In
Fig. 10, the results of these calculations are presented
individually for neutrons emitted by (а) the projectile
and (b) the target. From Fig. 10а, it can be seen
that nuclear friction exerts the strongest effect on the
cross section for the yield of projectile neutrons. The
dissipation of energy leads to a decrease in the relative
velocity ν0 of the nuclei and, hence, to a reduction
of the maximum energy of neutrons emitted by the
projectile [see Eq. (10)]. For particles emitted from the
target, an increase in the coefficients of friction leads,
however, to an increase in their maximum energy (by
10 to 15 MeV in the case being considered) owing to
a decrease in the energy of the relative motion of the
target neutron and the projectile and, consequently,
owing to the growth of the angle of rainbow neutron
scattering in the field of the projectile [see Eqs. (12),
(13)]. That the form of the energy spectrum of neu-
trons escaping from the target shows a relatively
weak dependence on dissipative nuclear forces is
explained predominantly by the peripheral character
of processes leading to neutron emission. Needless to
say, an indefinite increase in the coefficient of friction
would not lead to a steady growth of the maximum
energy of neutrons escaping from the target—in other
2
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Parameters of dissipative forces

Reaction
γr,

10−22 MeV s fm−2
γt,

10−22 MeV s fm−2 Rfr, fm Afr, fm

132Xe (44AMeV) + 197Au 45 0.4 13.1 0.7
20Ne (30AMeV) + 165Ho 15 0.1 9.4 0.7
36Ar (35AMeV) + 107Ag 10 0.1 9.3 0.7
16O (20AMeV) + 197Au 6 0.05 9.2 0.7
words, there is a maximum in the γr dependence of
Emax

n .

Fixing the initial configurations of the projectile
and the target nucleus, the collision energy E0, and
the impact parameter ρ, we can single out, from the
entire set of events, the following two subsets: one
comprising events where the light particle is emitted
from the projectile and the other comprising events
where the light particle is emitted from the target.
The initial parameters can be chosen in such a way
that the process of light-particle formation in each
of these subsets would be affected predominantly by
any mechanism of those that were described in Sec-
tion 3. By varying the parameters of nuclear friction
for each of these event types, one can investigate their
effect on collision dynamics and on the properties
of the emitted light particle—that is, on its energy
and emission angle. Such an analysis was performed
in this study for preequilibrium neutrons originating
from 36Ar(35A MeV) + 107Ag interaction. As was
anticipated, the asymptotic energy of target neutrons
accelerated by the mean field of the projectile nucleus
grows as the coefficient γr is increased up (15–20) ×
10−22 MeV s fm−2. A further increase in γr leads to
a fast reduction of the neutron energy. The neutron
emission angle in the laboratory frame decreases with
increasing radial coefficient of friction. Thus, we can
state that small friction as if focuses preequilibrium
light particles from the target in the beam direction
and leads to the growth of their energy.

With increasing γr, the energy of a neutron emit-
ted by the projectile nucleus decreases monotonically,
while its emission angle grows in absolute value,
remaining negative. This means that, when the ve-
locity of the relative motion of the nuclei involved is
reduced because of the effect of dissipative forces,
the projectile neutron is subjected, for a longer time,
to the effect of the attracting target field, which, as
the coefficient γr is increased, distorts its trajectory
ever more strongly and which, in the case of strong
nuclear friction, can even lead to neutron capture
by the target. Therefore, the effect of the growth of
dissipative forces on light particles emitted from the
PH
projectile is opposite to the effect of the analogous
growth on target light particles.

We also note that the introduction of a small fric-
tion does not affect the total cross section (that is, the
total multiplicity) for the production of preequilibrium
light particles, changing only the character of the
differential cross section as a function of energy and
emission angle; that is, this leads to a redistribution of
emitted light particles in terms of the coordinates En

and θn. And only in the case of large dissipative forces
does the multiplicity of preequilibrium light particles
decrease significantly.

We can see that the properties of the angular and
the energy distributions of light particles are sensitive
to the form of dissipative nuclear forces; therefore,
valuable information about the magnitude of the co-
efficients of nuclear friction and about other parame-
ters of the dissipative function—in particular, about
their dependence on the masses of colliding nuclei
and on energy—can be extracted from an analysis
of a vast body of experimental data on the yields
of fast preequilibrium particles. By way of example,
the friction-parameter values used in calculating the
cross sections for the formation of light particles in
Section 4 are given in the table. In each case, we have
chosen a radial form factor of the Fermi type; its radius
Rfr and its diffuseness parameter afr are also quoted in
the table.

6. CONCLUSION

In order to study intermediate-energy (E0 <
100 MeV per nucleon) heavy-ion collisions leading
to the production of fast light particles, we have
proposed a classical four-body model. Within this
model, projectile and target nuclei are represented as
two-particle subsystems, each consisting of a heavy
core and a light fragment (for example, a proton, a
neutron, an alpha particle, etc.).

The proposed approach has been used to study
in detail the dynamics and the mechanisms of for-
mation of preequilibrium light particles originat-
ing from 20Ne(20, 30A MeV) + 165Ho → n+ ER,
16O(20A MeV) + 197Au → p+X,
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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36Ar(35A MeV) + 107Ag → n+X,
40Ar(44A MeV) + 51V → p+X, and
132Xe(44A MeV) + 51V, 197Au → p+X reactions
treated by way of example. Our theoretical estimates
agree well with experimental data.

The role of two-body interactions in the process
of light-particle formation has been investigated in
detail, and the main mechanisms of this process have
been determined. It has been shown that the high-
energy component in the spectrum of neutrons and
protons from these reactions corresponds to preequi-
librium particles emitted both by the projectile and
by the target nucleus. It has has been found that the
yield of ultrafast preequilibrium light particles from
the target nucleus exceeds the yield of light parti-
cles from the projectile nucleus, almost completely
saturating the hardest section of their energy spec-
trum. The process of target-nucleon acceleration by
the projectile mean field plays a dominant role here.
Nucleon–nucleon collisions are insignificant in this
respect at energies below 50 MeV per nucleon. With
increasing projectile energy, the effect of the mean
fields weakens, whereas nucleon–nucleon collisions
become a dominant process in the formation of the
hard section of light-particle spectra.

It has been revealed that nuclear-friction forces
strongly affect the character of the angular and en-
ergy distributions of preequilibrium light particles. At
high energies, the introduction of dissipative forces
leads, among other things, to a moderation of the
projectile, with the result that the mean fields exert
a more pronounced effect on the nucleons of colliding
nuclei. The forces of friction reduce the yield of fast
particles from the projectile nucleus, but they increase
the maximum energy of light particles emitted by
the target nucleus. More detailed information about
the character and the magnitude of dissipative nu-
clear forces would be deduced from a comprehensive
analysis of extensive experimental data on the cross
sections for light-particle formation within this ap-
proach.

The proposed new mechanism of preequilibrium-
light-particle formation (acceleration of target nucle-
ons in the projectile mean field) is indirectly confirmed
by experimental data. In order to obtain more com-
pelling pieces of evidence in favor of the existence of
this mechanism, one could, for example, study the
spectra of neutrons or protons emitted in collisions of
two different projectile species with the same target
nucleus. In doing this, it is necessary to select the
combinations of projectiles and targets in such a way
that one could separate light particles emitted by the
projectile nucleus from those emitted by the target
nucleus. For this, it is required that the spectrum of
light particles originating from the projectile change
insignificantly upon going over from one projectile
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
species to another. In this case, the change in the
observed distribution of preequilibrium light particles
will be completely determined by the change in the
distribution of light particles emitted by the target.
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Heavy-Nucleus Multifragmentation Induced by Coherent Bremsstrahlung
Photons with Endpoint Energy Emax
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Abstract—New experimental data are presented that were obtained by studying the multifragmentation
of 197Au, 209Bi, 238U, and 243Am nuclei in a coherent bremsstrahlung-photon beam with an endpoint
energy of 4.1 GeV from the Erevan Synchrotron. For the first time, four or more fragments are observed.
For all the nuclei studied here, the respective production cross sections are about (1–3) × 10−3 of the
total inelastic photon–nucleus cross section. The fragment yields are isotropic. c© 2002 MAIK “Nau-
ka/Interperiodica”.
Experimental results obtained by studying heavy-
nucleus fragmentation caused by bremsstrahlung
photons whose endpoint energy is 1.85 GeV were
presented in [1]. The emerging fragments were recor-
ded with amultiwire proportional low-pressure cham-
ber. Within a solid angle of 0.3π sr, the measured
fraction of three or more fragments for a 243Am target
was about 10−3 of the events involving the production
of fragments; for 208Pb, 209Bi, 235U, 238U, and 239Pu,
this fraction was about 10−4. The experiment was
performed in order to study the mechanism of the
breakup of a highly excited nucleus. In addition to
evaporation and fission occurring at low excitation
energies (of about 1 MeV/A), there is a new deex-
citation mechanism that has been widely discussed
in the past few years. This is multifragmentation
involving the breakup of a nucleus into three or more
fragments of mass numbers A ≥ 10 and energies
about a few tens of MeV. Multifragmentation may
proceed through a process where a liquid–gas phase
transition in highly excited nuclear matter [2] of
excitation energy 3–6 MeV/A is followed by cooling
[3, 4].

Within the statistical-multifragmentation model,
the probability of the production of three or more frag-
ments depends only on the excitation energy of the
nucleus involved [4]. The nuclei that we study receive
approximately the same amount of excitation energy
in the bremsstrahlung beam [5], but it was found in [1]
that, for 208Pb, 209Bi, 235U, 238U, and 239Pu nuclei,

1)Universidade de São Paulo, CP 66318, BR-05389-970 São
Paulo, SP, Brazil.

*e-mail: mat@jerewan1.yerphi.am
1063-7788/02/6508-1474$22.00 c©
the probabilities of the production of three or more
fragments are different, and so are the yields of binary
fission. This behavior conforms to the predictions of
the cascade model of ternary fission [6]. This model
assumes that the initial nucleus undergoes binary
fission followed by the fission of daughter nuclei.

The experiment reported in [1] established an up-
per limit of 10−4 of the total inelastic-interaction
cross section on the cross section for the production
of four or more fragments. A similar pattern was also
observed in [7], where the multifragmentation process
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was studied in the annihilation of 1.2-GeV antipro-
tons in heavy nuclei (U, Au, Ho). In that case, the
processes of fission and evaporation were dominant
in nuclear-fragment production, just as in the case
of the interaction of bremsstrahlung photons whose
endpoint energy is 1.85 GeV with heavy nuclei.

Here, we present new results on multiparticle
fragment production in a beam of coherent brems-
strahlung photons with an endpoint energy of
4.1 GeV. These data were obtained in the experiment
performed simultaneously with an experiment that
studied deuteron photodisintegration [8]. The peak
energy of coherent-bremsstrahlung photons was in
the range between 0.9 and 1.8 GeV. Figure 1 shows
a typical spectrum of coherent-bremsstrahlung pho-
tons with a peak energy of 1.25 GeV. The product
fragments were recorded by a detector formed by
four identical proportional low-pressure chambers
ensuring an overall coverage of 0.3π sr. The beam of
coherent-bremsstrahlung photons was incident on a
target mounted in the detector. The beam diameter
on the target position was about 10 mm, and the
geometry and the size of the detector were given in [1].

The multiwire proportional low-pressure cham-
bers (LPC) [9] were filled with a hexane vapor at a
pressure of about 20 torr.

In the chosen operation mode of the detector
within the range 600–800 V, fission fragments were
recorded with an efficiency of about 100%. As voltage
increased above 700 V, fragments lighter than those
from the fission were also recorded efficiently. Frag-
ments havingmass numbers in the regionA ≥ 20 and
energies of about a few tens of MeV were recorded
with a probability close to 100%, since their ionization
losses were close to the ionization losses of the fission
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Fig. 2. Production yields of two or more fragments (in
relative units) versus the detector voltage (U) for (�)
238U, (◦) 209Bi, (�) 197Au, and (�) 243Am targets.
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Thickness of the targets used (Tt) and their substrates (Ts)

Nucleus Tt, mg/cm2 Ts, mg/cm2

197Au 1.16 1.8
209Bi 1.30 3.4
238U 1.00 94.5
243Am 0.01 27.0

fragments. However, this detector is insensitive to
relativistic particles. In the chosen operation mode
of the detector (780 V), the probability of recording α
particles was not greater than 1% for the 243Am tar-
get having natural α radioactivity. Thus, this detector
permits one to study the multiparticle production of
fragments withmass numbers ofA ≥ 20 and energies
of about a few tens of MeV in intense photon beams.

The signal wires of each detector plane were com-
bined into separate independent channels. Informa-
tion from all the planes was gated by a 2.5-ms syn-
chronized accelerator pulse, the beam-spill time and
the ejection frequency being 1.5 ms and 50 Hz, re-
spectively. An additional gating pulse of the same du-
ration with a delay of 7.5 ms was used to initiate sig-
nals associated with information about events of de-
tector actuation in the time lapse between two beam
bunches. The gated pulses were then transferred to
the majority coincidence schemes with a time reso-
lution of about 20 ns to determine the multiplicities
of coincidences from one to four. This corresponds
to recording two to five or more nuclear fragments,
because the geometry of the detector allows one to
record only forward-emitted fragments in the angular
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Fig. 3. As in Fig. 2, but for the case of the yields of three
or more fragments.
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Fig. 4. As in Fig. 2, but for the case of the yields of four or
more fragments.

range of 10◦–48◦ with respect to the photon-beam
direction. Thus, the detection of one fragment by the
detector operated at up to 700 V is due primarily to
target-nucleus fission into two fragments, since, at
the momentum transfer to the target nucleus in the
range 0–3.5 GeV/c, the opening angle for binary-
fission fragments varies between 140◦ and 180◦ in
the laboratory frame. Similarly, the detection of two
fragments by the detector is due to ternary fission, etc.
With increasing voltage supplied to the detector, the
efficiency of light-fragment detection becomes higher.

Another low-pressure chamber involving a 238U
target 1.01 mg/cm2 thick was used as a monitor. The
chamber was operated in themode that allowed one to
record only heavy fission fragments. Since the fissility
of a 238U nucleus in a photon beam whose energy
is not less than 40 MeV is close to 100% [10–12],
the monitor counts corresponded to the number of
inelastic photon interactions with 238U.

The efficiencies of the monitor of the fragment
detector were tested continuously throughout the ex-
perimental run by an additional plane in the detectors.

We used 209Bi, 238U, and 243Am targets deposited
onto an aluminum substrate and a 197Au target de-
posited onto aMylar substrate. The thicknesses of the
targets and the substrates are given in the table.

In order to determine the contribution from the
substrates of the 238U and 243Am targets, the mea-
surements were also performed for the inverted ar-
rangement of the target–substrate pair, in which case
fission fragments from the targets being studied were
absorbed in the substrates, so that only fragments
originating from the fission of the substrate mate-
rial were recorded; the direct measurements record
both fragments produced in the target and in the
P
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Fig. 5.Ratio of the yield from the fragmentation into three
or more fragments to that from the fragmentation into two
or more fragments as a function of the detector voltage.
The notation is identical to that used in Fig. 2.

substrate because of a small target thickness. The
substrates of the 209Bi and 197Au targets were thin;
therefore, fragments produced in those targets could
penetrate through them in the measurements for the
inverted positions of the target and substrate. For
these targets, the substrate contribution was taken
to be equal to the detector background level without
targets, which was also measured at regular time
intervals throughout the experiment.

The procedure for data processing was described
in [1]. Figures 2–4 show the production yields for
two or more fragments (S2), three or more fragments
(S3), and four or more fragments (S4); these yields
are given in relative units; that is, they are normalized
to the yield from 238U fission in the monitor. The
indicated uncertainties are purely statistical.

At low voltages, in which case only heavy frag-
ments are recorded, the ratio of the yields of two or
more fragments for 197Au, 209Bi, and 238U nuclei
(Fig. 2) corresponds to the known cross sections
for the fission of these nuclei. The ratio determined
for 238U and 243Am nuclei shows that, in the co-
herent bremsstrahlung beam used, the yields S2 are
identical for them. As can be seen from Fig. 2, S2
increases for 197Au and 209Bi nuclei as the detector
voltage increases, which improves the efficiency of
light-fragment detection. Obviously, this increase
is caused by evaporation processes associated both
with the primary nucleus and with daughter nuclei
produced in primary-nucleus fission, because the
primary-nucleus excitation energy is shared among
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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the daughter nuclei in the course of fission. A slight
increase in S2 for 238U and 243Am nuclei is due to
their high fissility (about 100%).

Figure 5 shows the ratio of the production yield of
three or more fragments to that of two or more frag-
ments (S3/S2) as a function of the detector voltage.
These ratios are about (2–5) × 10−4 for 197Au, 209Bi,
and 238U and about 10−3 for 243Am if only heavy
fission fragments are recorded; these results agree
with those obtained in the bremsstrahlung beam with
an endpoint energy of 1.85 GeV. According to the
calculation from [13], fission into three or four frag-
ments of equal masses is more favorable energetically
for 243Am nuclei than fission into two fragments;
this can result in a larger cross section for the di-
rect production of three or more fragments [14]. As
voltage is increased up to 760–780 V, in which case
light fragments are also recorded, the ratio of the
production yields of three or more fragments to that
of two or more fragments is identical for all the nuclei
studied here, with the exception of 243Am, and is
about 7× 10−4. For 238U, this ratio is about 4× 10−4

in the bremsstrahlung beam with an endpoint energy
of 1.85 GeV.

In this experiment, in contrast to the previous
one, we also recorded the production of four or more
fragments (the results are presented in Fig. 4). In
principle, four or more fragments can be produced
through a sequential (cascade) fission of daughter
fragments [6] or through themechanism of fission and
evaporation. Within the sequential-fission model, the
ratio presented in Fig. 5 is equal to the probability of
the fission of daughter nuclei. For the nuclei stud-
ied here, the fission fragments are characterized by
Z2/A = 15–20; their fission probabilities are about
(2–4)× 10−3 at the excitation energies being consid-
ered [15]. With allowance for the detector acceptance,
the expected yield of four or more fragments that is
due to the cascade-fission mechanism is ≤ 10−7 for
nuclei with a fissility of about 100% and is ≤ 10−8

for 197Au and 209Bi. However, the experimental result
is about 10−5 for 238U at the detector voltage of
≥ 740 V (Fig. 4) and is about 3 × 10−6 for 197Au
and 209Bi. The geometric probability of recording four
or more fragments is about 3 × 10−3; therefore, the
probability of such production is about 3× 10−3 of the
total interaction cross section for 238U and is about
10−3 for 197Au and 209Bi. For the probability of the
production of four or more fragments on heavy nuclei
with close mass numbers, such values are expected
within the statistical multifragmentation model, ac-
cording to which the probability of multifragmenta-
tion depends only on the excitation energy of nuclei
[4]. The distinction between the mass numbers of
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Fig. 6. Yields of three or more fragments for an Au tar-
get as a function of the detector voltage for (•) ∆θ =
10◦–48◦ and (�) ∆θ = 132◦–170◦.

the nuclei studied here is ≤20%; therefore, they re-
ceive approximately equal excitation energies [5] and
participate in the multifragmentation process with
approximately identical probabilities. The probability
of the production of four or more fragments and the
probability of the fission of daughter nuclei are on
the same order of magnitude; hence, the observed
increase in S3 (Fig. 3) and S3/S2 (Fig. 5) with
increasing fragment-detector voltage is due both to
cascade fission and to multifragmentation.

For 197Au and 243Am nuclei, we have also per-
formed measurements with the detector rotated
through 180◦, in which case it records fragments
produced in the angular range of 132◦–170◦. Figure 6
shows the yields of three or more fragments within the
angular ranges 10◦–48◦ and 132◦–170◦. It is evident
from the figure that the yields of fragments within
these two ranges are identical. The fragmentation
yields of two or more fragments and of four or
more fragments behave similarly. The distribution
of fragments is isotropic within the errors; this is
indicative of the production of an excited intermediate
compound nucleus and its subsequent decay.

ACKNOWLEDGMENTS

We are grateful to the directorate of the Yerevan
Physics Institute for their support of our study and
interest in it, to the staff of the accelerator of this
institution, and to Professor G.A. Vartapetyan for
repeated discussions on our results.
2



1478 BAYATYAN et al.
REFERENCES
1. E. A. Arakelyan, G. L. Bayatyan, G. S. Vartanyan,
et al., Yad. Fiz. 58, 263 (1995) [Phys. At. Nucl. 58,
219 (1995)].

2. A. Mekjian, Phys. Rev. Lett. 38, 640 (1977).
3. J. P. Bondorf, R. Donangelo, H. Schulz, et al., Phys.

Lett. B 162B, 30 (1985).
4. D. H. E. Gross, Zhang Xiao-ze, and Xu Shu-yan,

Phys. Rev. Lett. 56, 1544 (1986).
5. V. S. Barashenkov, F. G. Gereghi, A. S. Iljinov, et al.,

Nucl. Phys. A 231, 4 (1974).
6. Yu. A.Muzychka, Yu. Ts.Oganesyan, B. I. Pustyl’nik,

and G. N. Flerov, Yad. Fiz. 6, 306 (1967) [Sov. J. Nucl.
Phys. 6, 222 (1967)].

7. U. Jahnke, W. Bohne, T. von Egidy, et al., Phys. Rev.
Lett. 83, 4959 (1999).

8. F. Adamian, A. Aganiants, Yu. Borzunov, et al., Eur.
Phys. J. A 8, 42 (2000).
P

9. E. A. Arakelyan, G. L. Bayatyan, N. K. Grigoryan,
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Abstract—Azimuthal correlations between protons and between pions have been investigated in central
CNe, MgMg, CCu, and OPb collisions at an energy of 3.7 GeV/nucleon. Negative (back-to-back)
correlations have been observed for protons in CNe, CCu, and for π−mesons in CNe andMgMg collisions.
For π− mesons, positive (side-by-side) azimuthal correlations have been observed for heavy systems of
CCu and OPb. The Quark–Gluon String Model satisfactorily describes the experimental results both for
protons and π− mesons. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Relativistic nucleus–nucleus collisions are very
well suited for investigation of excited nuclear matter
properties, which are the subject of intense stud-
ies, both experimentally and theoretically. Theoreti-
cal models predict the formation of exotic states of
nuclear matter, for example, the phase transition to
a quark–gluon plasma [1, 2]. One of the main goals
of relativistic heavy-ion-collision experiments is to
study nuclear matter under extreme conditions of
high densities and temperatures. Themost impressive
results of high-energy heavy-ion research so far are
new collective phenomena that have been discov-
ered in these reactions. The study of multiparticle
correlations offers unique information about space–
time evolution of the collective system. During re-
cent years, an intensive analysis of experimental data
has been carried out using collective variables, which
depend on the momentum of all secondary particles,
to reveal nontrivial effects in nucleus–nucleus colli-
sions.
The experimental discovery of such transitions is

impossible without an understanding of the mecha-
nism of collisions and a study of the characteristics
of multiparticle production in nucleus–nucleus inter-
actions. Multiparticle correlations were investigated
for the first time at BEVALAC more than ten years
ago [3].

In this article, we present the results of an anal-
ysis of multiparticle correlations in central CNe,
MgMg, CCu, and OPb collisions at an energy of
3.7 GeV/nucleon. Azimuthal correlations between
protons and pions and the dependence of these

∗This article was submitted by the authors in English.
1063-7788/02/6508-1479$22.00 c©
correlations on the projectile (AP ) and target (AT )
nucleus have been investigated.

2. EXPERIMENT

Data were obtained using a 4π SKM-200–GIBS
spectrometer (JINR, Dubna, Russia) [4, 5]. The
SKM-200-GIBS setup consists of a 2-m streamer
chamber with a fiducial volume of 2 × 1 × 0.6 m,
placed in a magnetic field of ∼0.8 T (∼0.9 T for
MgMg), and a triggering system. The streamer
chamber was exposed to beams of C, O, and Mg
nuclei accelerated in the synchrophasotron up to an
energy of 3.7 GeV per incident nucleon. Solid targets
in the form of thin discs with thicknesses of 0.2–
0.5 g/cm2 (the thickness of Mg was 1.5 g/cm2;
neon-gas filling of the chamber also served as a
nuclear target) were mounted inside the chamber
at a distance of 70 cm from the entrance window
and at a height of 8 cm above the middle electrode.
Photographs of the events were taken using an optical
system with three lenses. The experimental setup and
the logic of the triggering system are presented in
Fig. 1. The triggering system allowed selection of
inelastic and central collisions.
The “inelastic” trigger, consisting of two sets of

scintillation counters mounted upstream (S1–S4)
and downstream (S5, S6) the chamber, selected all
inelastic interactions of incident nuclei on a target.
The “central” triggering system consisted of the

same upstream part as in the inelastic system and
of scintillation veto counters (Sch, Sneu), to reject a
projectile and its charged and neutral spectator frag-
ments, in the downstream part. All counters were
made from plastic scintillators and worked with PM-
30 photomultipliers. TheS1 counter with a scintillator
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental setup. The trigger and trigger distances are not to scale.
of 20 × 20 × 0.5 cm worked in the amplitude regime
and identified the beam nuclei by their charge. The
nuclei from the beam, heading to the target, were
selected using the profile counters S2, S3 with plas-
tic of 0.15-mm diameter and 3-mm thickness and a
"thin" counter S4 (15 mm and 0.1 mm, correspond-
ingly). The Sch counters (two counters with plastic
40 × 40 × 0.5 cm in size) were placed at a distance
of 4 m downstream from the target and registered
secondary charged particles emitted from the tar-
get within a cone of half-angle θch = 2.4◦ or 2.9◦.
The Sneu counters registered the neutrons emitted
from the target in the same solid angle θneu = 2.4◦
or 2.9◦. The Sneu telescope consisted of counters
40 × 40 × 2 cm in size, layered by 10-cm-thick iron
blocks. The central trigger selected events defined as
those with no charged projectile spectator fragments
and spectator neutrons (p/Z > 3 GeV/c) emitted at
angles of θch = θneu = 2.4◦ or 2.9◦ (∼ 4 msr). The
trigger efficiency was 99 and 80% for charged and
neutral projectile fragments, respectively. The trigger
mode for each exposure is defined as Tr(θch, θneu)
(θch and θneu are expressed in degrees and rounded
to the closest integer value). Thus, nucleus–nucleus
interactions obtained with this setup correspond to
the following Tr(θch, θneu) triggers: CNe—Tr(2, 0),
MgMg—Tr(2, 2), CCu—Tr(2, 0) and Tr(3, 3), and
OPb—Tr(2, 0).
P

Biases and correction procedures were discussed
in detail in [4, 5]. The ratio σcent/σinel (which char-
acterizes the centrality of selected events) is (9± 1)%
for CNe and (21 ± 3)% for CCu; the fraction of cen-
tral MgMg events is ≈ 4 × 10−4 among all inelastic
interactions. Average momentum measurement er-
rors 〈∆p/p〉 = 8–10% for protons and 5% for pions;
the corresponding errors of the production angles
are ∆θ = (1–2)◦ and 0.5◦ (for π− mesons in MgMg
interactions, 〈∆p/p〉 = 1.5%,∆θ = 0.3◦).

3. QUARK–GLUON STRING MODEL

Several theoretical models of nucleus–nucleus
collisions at high energy were proposed in [6, 7].
These models allow one to test various assumptions
concerning the mechanism of particle production at
extreme conditions achieved only in nucleus–nucleus
collisions. TheQuark–GluonStringModel (QGSM)
has been used for the comparison with our exper-
imental results. The QGSM is presented in detail
in papers [8, 9]. The QGSM is based on the Regge
and string phenomenology of particle production in
inelastic binary hadron collisions. For the description
of the evolution of the hadron and quark–gluon
phases, a coupled system of Boltzmannlike kinetic
equations is used. Nuclear collisions are treated as a
mixture of independent interactions of the projectile
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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and target nucleons, stable hadrons, and short-lived
resonances. The QGSM includes low-mass vector
mesons and baryons with 3/2 spin, mostly ∆(3/2,
3/2) via resonant reactions. Pion absorption by NN
quasideuteron pairs is also taken into account. The
coordinates of nucleons are generated according to a
realistic nuclear density. The sphere of the nucleus is
filled with the nucleons under the condition that the
distance between them is greater than 0.8 fm. The
nucleon momenta are distributed in a range of 0 ≤
p ≤ pF. The maximum nucleon Fermi momentum is

pF = (3π2)1/3hρ1/3(r), (1)

where h = 0.197 fm GeV/c, ρ(r) is nuclear density.
The procedure of event generation consists of

three steps: the definition of configurations of col-
liding nucleons, production of quark–gluon strings,
and fragmentation of strings (breakup) into observed
hadrons. The model includes also the formation time
of hadrons. The QGSM has been extrapolated to the
range of intermediate energy (

√
s ≤ 4 GeV) to use it

as a basic process during the generation of hadron–
hadron collisions. Masses of “strings” produced
at

√
s = 3.6 GeV were small (usually not greater

than 2 GeV), and they fragmented mainly (≈ 90%)
through two-particle decays. For the main NN and
πN interactions, the following topological quark dia-
grams [7] were used: binary, “undeveloped” cylindri-
cal, diffractive, and planar. The binary process makes
themain contribution, which is proportional to 1/plab.
It corresponds to quark rearrangement without direct
particle emission in the string decay. This reaction
predominantly results in the production of resonances
(for instance, p+ p → N + ∆++), which are the main
source of pions. Comparable contributions to the
inelastic cross section, which decreases however with
decreasing plab, come from diagrams corresponding
to the undeveloped cylindrical diagrams and from
the diffractive processes. Transverse momenta of
pions produced in quark–gluon string fragmentation
processes are the product of two factors: string
motion on the whole as a result of transverse motion
of constituent quarks and qq̄ production in string
breakup. The transverse motion of quarks inside
hadrons was described by the Gaussian distribution
with a variance of σ2 ≈ 0.3 (GeV/c)2. Transverse
momenta kT of the produced qq̄ in the c.m.s. of the
string follow the dependence

W (kT ) = 3B/π(1 + Bk2
T )4, (2)

where B = 0.34 (GeV/c)−2.
The cross section of hadron interactions were

taken from experiments. Isotopic invariance and
predictions of the additive quark model [10] (for
meson–meson cross sections, etc.) were used to
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
avoid data deficiency. The resonance cross sections
were assumed to be identical to the stable particle
cross sections with the same quark content. For the
resonances, tabulated widths were used.
The QGSM simplifies the nuclear effects. In par-

ticular, coupling of nucleons inside the nucleus is ne-
glected, and the decay of excited recoil nuclear frag-
ments and coalescence of nucleons are not included.
We have generated CNe, CCu, OPb, and MgMg

interactions using the COLLI Monte Carlo gener-
ator [11], which is based on the QGSM and then
traced through the detector and trigger filter. In the
COLLI generator, there are two possibilities to gen-
erate events: (i) at unfixed impact parameter b̃ and (ii)
at fixed b. From the impact parameter distributions,
we obtained a mean value of 〈b〉 = 2.2, 1.3, 2.7, and
3.7 fm for CNe,MgMg,CCu, andOPb collisions. For
the obtained values of 〈b〉, we generated a total sample
of events 6270, 9320, 2430, and 6200, respectively.
The QGSM overestimates the production of low-

momentum protons with p < 0.2 GeV/c, which are
mainly the target fragments and were excluded from
the analysis. From the analysis of the generated
events, protons with deep angles greater than 60◦
were excluded because in the experiment, the reg-
istration efficiency of such vertical tracks is low.

4. AZIMUTHAL CORRELATIONS
BETWEEN PROTONS AND BETWEEN

PIONS

In [12, 13], a procedure for studying the correla-
tion between groups of particles has been developed.
The azimuthal correlation function was defined by the
relative opening angle between the transverse mo-
mentum vector sums of particles emitted forward and
backward with respect to the rest frame of the target
nucleus (a rapidity of y0 = 0.2).
We applied this method to our data, but the anal-

ysis was carried out in the central rapidity region
instead of the target rapidity range of [12, 13]. The
analysis was performed event by event; in each event
we denote the vectors

QB =
∑

yi<〈y〉
PT i (3)

and

QF

∑

yi≥〈y〉
PT i, (4)

where 〈y〉 is the average rapidity in each event.
Then, the correlation function C(∆ϕ) was con-

structed as follows:

C(∆ϕ) = dN/d∆ϕ, (5)
2
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Table 1. The number of π+ and π− mesons and their average kinematical characteristics in CNe and CCu collisions after
the identification of protons and π+ mesons

APAT Particle Nπ 〈nπ〉 〈pT 〉, GeV/c 〈p〉, GeV/c
CNe π+ 3089 4.26 ± 0.06 0.234 ± 0.003 0.600± 0.009

π− 3120 4.31 ± 0.07 0.226 ± 0.005 0.612± 0.009
CCu π+ 3713 5.74 ± 0.09 0.222 ± 0.003 0.522± 0.008

π− 3635 5.68 ± 0.10 0.213 ± 0.005 0.508± 0.009

Table 2. The number of experimental events (Nevent) and participating protons (Np), the asymmetry coefficient (ξ), the
strength of the correlation (ζ), and the mean rapidity (〈y〉) of protons

APAT Nevent Np ξ ζ 〈y〉
CNe 723 9201 −0.23± 0.05 0.63 ± 0.09 1.07 ± 0.07
CCu 663 12715 −0.35± 0.05 0.48 ± 0.06 0.73 ± 0.05
where ∆ϕ is the angle between the vectors QB and
QF :

∆ϕ = arccos(QB · QF )/(|QB ||QF |). (6)

Essentially, C(∆ϕ) measures whether the parti-
cles in the backward and forward hemispheres are
preferentially emitted back-to-back (∆ϕ = 180◦) or
side-by-side (∆ϕ = 0◦) [12]. The protons from CNe
and CCu collisions were analyzed using this method.
For the analysis, it is necessary to perform an

identification of π+ mesons, the admixture of which
amongst the charged positive particles is about 25–
27%. The statistical method was used for identifica-
tion of π+ mesons. The main assumption is based on
the similarity of spectra of π− and π+ mesons (nπ,
pT , pL). A two-dimensional distribution of (pT , pL)
variables was used for identification of π+ mesons.
The whole plane is divided into seven zones. For
example, for CNe collisions,
1) pL > 2.5GeV/c or pT > 0.9 GeV/c;
2) 0 ≤ pL ≤ 1.4 GeV/c and pT ≤ 0.7 GeV/c

(PMAX);
3) 0 ≤ pL ≤ 1.4GeV/c and pT > 0.7GeV/c;
4) 1.4 < pL < 2.5 GeV/c;
5)−0.2 ≤ pL ≤ 0GeV/c and pT ≤ 0.3 GeV/c;
6)−0.2 ≤ pL ≤ 0GeV/c and pT > 0.3 GeV/c;
7) pL < −0.2GeV/c.
Zone 2 of maximal overlap—PMAX—in its turn,

is divided into 7 × 7 = 49 cells. The probability of
hitting each zone and, respectively, the cell by π−

mesons and charged positive particles are defined,
and the relative probability of hitting π− mesons is
calculated as a result. The admixture of π+ mesons
in zone 1 is negligible. The procedure of dividing the
PH
(pT , pL) plane into cells allows one to simplify the
mathematical algorithm and improves the accuracy
of identification. It was assumed that π+ and π−

mesons hit a given cell with equal probability (equal
probability densities for π+ and π− were assumed).
The identification, in fact, is equal to summing the

hitting probabilities into each cell and, when the sum
reaches the critical value, the particle is considered as
a π+ meson. The rest of the particles are assumed
to be protons. For each proton and π+ meson, the
sign is recorded on Data Summar Tape (DST), which
indicates to which zone of the (pT , pL) plane the
given particle belongs and what the probability is.
Particles with pT > 0.9GeV/c or pL > 2.5GeV/c are
unambiguous protons with a probability equal to 1.

After identification of π+ mesons in the event, the
difference of π+ and π− mesons ∆n is determined.
If |∆n| > 2, in the PMAX region, the identification
π+ ↔ proton is interchanged and for that reason
particles with smaller probability are chosen. If the
condition of approachment of multiplicities is not ful-
filled, then in this case, information of the event such
a sign is recorded into the “head,” which allows one
to exclude the given event from further analysis.
After identification is performed, the admixture of

π+ mesons amongst the protons does not exceed 5–
7%. The mean values of multiplicity, momentum, and
transverse momentum for π+ and π− mesons are
presented in Table 1. One can see that the average
kinematical characteristics of π+ and π− mesons co-
incide satisfactorily within the errors.
The numbers of events for CNe and CCu collisions

and the mean rapidities of the analyzed protons 〈y〉
are listed in Table 2. Figure 2 shows the experimental
correlation function C(∆ϕ) for protons from central
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 2. The correlation function C(∆ϕ) for protons from
(◦) CNe and (�) CCu collisions; (×) represent the
QGSMdata. Dashed curves are the results of the approx-
imation of the data (see text).

CNe and CCu collisions. One can observe from Fig. 2
a clear correlation for protons (correlation increases
with ∆ϕ and reaches maximum at ∆ϕ = 180◦). To
quantify these experimental results, the data were
fitted by

C(∆ϕ) = 1 + ξ cos(∆ϕ). (7)

The results of the fitting are listed in Table 2. The
strength of the correlation is defined as

ζ = C(0◦)/C(180◦) = (1 + ξ)/(1 − ξ). (8)

As can be seen from Table 2, the asymmetry coef-
ficient ξ < 0 and, thus, the strength of correlation
ζ < 1 for protons in both CNe and CCu interactions,
meaning the negative correlations of back-to-back
preferential emission of protons. Absolute values of
ξ increase, and of ζ decrease, when the target mass
increases.
A similar negative (back-to-back) correlation was

observed by Plastic Ball collaboration at BEVALAC
between the slow (40 < E < 240MeV) and fast (E >
240 MeV) fragments for symmetric (40Ca +40 Ca,
93Nb +93 Nb) and asymmetric (20Ne +93 Pb) pairs of
nuclei in an energy interval of 0.4 to 1-GeV/nucleon
[14, 15] and also between protons in pAu collisions
at an energy of 4.9 GeV/nucleon [12, 13]. The inves-
tigation of large-angle two-particle correlations [16]
was carried out at Dubna for collisions of 4He and 12C
with different nuclear targets (27Al, 64Cu, and 93Pb)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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�) are the QGSM data. Solid and dashed curves are the
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at an energy of 3.6 GeV/nucleon. For protons and
deuterons, negative (back-to-back) correlation was
observed for all targets. In CC inelastic interactions
at a momentum of 4.2 GeV/c per nucleon in the
2-m Propan Bubble Chamber of JINR [17], back-
to-back azimuthal correlations between the groups
of the particles (protons) emitted in the forward and
backward hemispheres in the c.m.s. of the collisions
(see Fig. 5a in [17]) were obtained. Protons showed a
typical back-to-back (negative) correlation in the p-,
O-, and S-induced reactions on different nuclei (Au,
Ag, Al, C) at the CERN-SPS (WA80 collaboration)
at an energy of 60 and 200 GeV/nucleon [12, 13].
Azimuthal correlations in a target rapidity range of
0.1 ≤ y0 ≤ 0.3were obtained, and within these limits,
no significant change of the correlation functions was
observed. We studied the strength of the correlation
2
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Table 3. Values of the asymmetry coefficient (ξ) for protons in CNe and CCu collisions for different intervals of emission
angle (θ) and rapidity (y0)

θ, deg y0 CNe CCu

Central region 0.5–2.5 −0.23 ± 0.05 −0.35 ± 0.05
10–180 0.2 – −0.22 ± 0.05

0.3 −0.11 ± 0.03 −0.27 ± 0.05
20–180 0.2 – −0.13 ± 0.05

0.3 – −0.19 ± 0.05
30–180 0.2 – −0.07 ± 0.01

0.3 – −0.09 ± 0.02

Table 4. The number of experimental events (Nevent) and π− mesons (Nπ− ), the asymmetry coefficient (ξ), the strength
of the correlation (ζ), and the mean rapidity (〈y〉) of π− mesons ("*" denotes that π+ mesons are also included)

APAT Nevent Nπ− ξ ζ 〈y〉
CNe 723 6209∗ −0.08 ± 0.02 0.85 ± 0.08 1.17 ± 0.06
MgMg 6239 50775 −0.09 ± 0.02 0.84 ± 0.09 1.23 ± 0.07
CCu 1866 12390 0.12 ± 0.03 1.29 ± 0.27 0.93 ± 0.06
OPb 732 7023 0.23 ± 0.05 1.61 ± 0.35 0.73 ± 0.07
functions in central CNe andCCu collisions for differ-
ent rapidities (y0) and emission-angle (θ) intervals in
the laboratory system (see Table 3). One can see from
the Table 3 that the absolute values of the asymmetry
coefficient decrease from the central rapidity region to
the target fragmentation range.

The back-to-back (negative) emission of protons
can be understood as resulting from (local) total mo-
mentum conservation [13]. This behavior is in a good
agreement with the collective nuclear matter flow
concept [16].

In view of the strong coupling between the nu-
cleons and pions, it is interesting to know the origin
of correlations between pions. The π− mesons in our
experiment were identified nearly unambiguously, and
the admixture of e−, p̄, and K− mesons is almost
negligible [4]. We also studied correlations between
π− mesons. For CNe interactions, π+ mesons were
also included into the analysis in order to increase
the multiplicity in each event. Correlation functions
for π− mesons in CNe, MgMg, CCu, and OPb in-
teractions are presented in Fig. 3. One can observe
from Fig. 3a clear back-to-back (ξ < 0, ζ < 1, i.e.,
negative) correlations for pions for a light system of
CNe (similar to for the protons in CNe collisions).
Study of interactions of the symmetric pair of nuclei
MgMg (6239 collisions, 50775 π− mesons) gives the
possibility of a better manifestation of nuclear effects
than for the asymmetric pairs of nuclei. For MgMg
PH
collisions, back-to-back pion correlations were ob-
tained only for the events with amultiplicity of n− > 7
and no correlations for n− ≤ 7 (Fig. 3a).
For heavy asymmetric pairs of CCu and OPb nu-

clei, the side-by-side (ξ > 0 and ζ > 1, i.e., positive)
correlations of pions can be seen fromFig. 3b. Similar
side-by-side correlations of pions have been observed
in pAu collisions at BEVALAC (4.9 GeV/nucleon)
and CERN-SPS (60 and 200 GeV/nucleon) ener-
gies [12, 13]. These results agree with that of [18,
19]. Large-angle two-particle correlations carried
out at energy of 3.6 GeV/nucleon at JINR [18] for
4He and 12C beams showed negative (back-to-back)
pion correlations for the light target (Al) and positive
(side-by-side) correlations for the heavy target (Pb)
(no correlation for the medium target Cu).
One can see from Tables 2 and 4 that the absolute

values of the asymmetry coefficient (| ξ |) increase
and the strength of correlations (ζ) decreases, while
the target mass increases for both proton and pion
back-to-back (negative) correlations, in contrast to
the results of [13], where back-to-back asymmetry of
protons tends to vanish with an increase of the target
mass in proton-induced reactions at 200 GeV/c (see
Fig. 4 in [13]). For side-by-side (positive) correlations
of pions in CCu and OPb collisions, ξ and ζ increase
with the target mass due to the increasing amount of
matter in their path.
The reason for the observed difference behavior

between protons and pions comes from the pion ab-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 4. The correlation function C(∆ψ) in CCu colli-
sions for (a) protons and (b) π− mesons: (◦) for particles
emitted in the backward hemisphere, (�) for particles
emitted in the forward hemisphere; (×) are the QGSM
data. Curves are the results of the approximation of the
data by first-order polynomials.

sorption in the excited target matter (π +N → ∆ and
∆ + N → N + N ) [12, 13]. While the back-to-back
emission of protons can be understood as resulting
from transverse momentum conservation, the pion
correlations show, in the data, an opposite behavior.
The side-by-side correlation of pions can naturally be
explained based on the picture that pions, which are
created in collision at an impact parameter b �= 0 fm,
either suffer rescattering or even complete absorption
in the target spectator matter. Both processes will
result in a relative depletion of pions in the geo-
metrical direction of the target spectator matter and,
hence, will cause an azimuthal side-by-side (positive)
correlation as observed in the experimental data. This
picture is further supported by calculations within the
framework of the RQMD model [20], which includes
pion absorption by excited nuclear matter based on
experimentally measured cross sections.
The QGSM yields significant azimuthal correla-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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tions that follow trends similar to the experimental
data (Figs. 2, 3).

To be convinced that the azimuthal correlations in
Figs. 2, 3 (for both experimental and QGSM data)
between protons and between pions are due to cor-
relations between these particles and cannot be the
result of detector biases or finite-multiplicity effects,
we obtained data for the dependence of C(∆ψ) on
ψ for secondaries, where ψ is the angle between the
transverse momentum of each particle emitted in the
backward (forward) hemisphere andQB (QF ) vector,
respectively. One can see from Fig. 4 that there is
no correlation for CCu interactions, both for protons
(Fig. 4a) and for pions (Fig. 4b). Similar results were
obtained for CNe collisions, too.
As obtained in our previous articles [21–23], the

dependence of the mean transverse momentum in the
reaction plane 〈PX〉 on the normalized rapidity y/yp

in the laboratory system showed the typical S-shape
behavior in CNe and CCu collisions for protons and
pions. For CNe collisions, 〈PX〉 for pions is directed in
the same direction as for protons, i.e., flows of protons
and pions are correlated, while for CCu interactions,
the 〈PX〉 of π− mesons is directed oppositely to that
of the protons (antiflow) (see Fig. 1 in [22]). InMgMg
central collisions [24], for π− mesons with a multi-
plicity of n− > 7, the dependence of 〈PX(Y )〉 on Y
exhibits an S-shape behavior similar to the form of
the 〈PX〉 spectra for protons and pions in central CNe
collisions.
2
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In order to extend these investigations, we ob-
tained the relation between 〈PX〉2 and the angle ϕ,
where ϕ is the opening angle between QB and QF

vectors. One can see from Fig. 5 that for protons in
CNe and CCu collisions, the distributions show an
S-shape behavior and slopes of distributions increase
with target mass. One can see from Fig. 5 that at
ϕ = 90◦ the values of 〈PX〉 not depend on AT .

5. CONCLUSION

Azimuthal correlations between protons and be-
tween pions in central CNe, MgMg, CCu, and OPb
collisions have been studied. The results can be sum-
marized as follows:
(i) For protons, back-to-back (negative) correla-

tions have been observed in CNe and CCu interac-
tions. The asymmetry coefficient ξ(ξ < 0) increases,
and the strength of correlation ζ(ζ < 1) decreases
with an increase of the target mass.
(ii) Back-to-back pion correlations have been ob-

tained for light symmetric pairs of nuclei (CNe and
MgMg), where the parameters ξ and ζ have the same
behavior as protons.
(iii) For heavy pairs of nuclei (CCu and OPb),

side-by-side (positive) pion correlations have been
observed. The asymmetry coefficient (ξ > 0) and the
strength of correlations (ζ > 1) increase with an in-
crease of the projectile (AP ) and target (AT ) mass.
(iv) The dependence of the square of the mean

transverse momentum in the reaction plane, 〈PX〉2,
on ϕ (the angle between the vector sums of the for-
ward and backward emitted particles) shows an S-
shaped behavior. Slopes of distributions increase with
the target mass.
(v) The QGSM satisfactorily describes azimuthal

correlations of protons and π− mesons for all pairs of
nuclei.
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Abstract—For various kinematical domains, the cross section for the diffractive photoproduction of D∗

mesons at the HERA ep collider is calculated within a model based on perturbation theory. The results ob-
tained by using different models of the Pomeron are compared. c© 2002 MAIK “Nauka/Interperiodica”.
From experimental data obtained at the HERA
ep collider [1, 2], it can be seen that the charm-
production model proposed in [3] (hereafter, it is re-
ferred to as the BKL model) describes fairly well
the inclusive photoproduction and the deep-inelastic
production of D∗±(2010) mesons,3) as well as the
inclusive photoproduction of Ds mesons over a wide
range of kinematical variables.
The problem of describing diffractive charm pho-

toproduction on the basis of the BKL model is now of
topical interest in view of the appearance of prelimi-
nary ZEUS data on the diffractive photoproduction of
D∗ mesons [4].
Let us outline the basic features of the BKLmodel.

In this model, the production ofD∗ mesons proceeds
as follows: a c quark and a d̄ antiquark, which are then
to become valence quarks in the product meson, are
first produced perturbatively and after that undergo
hadronization through a soft process, forming the
meson in question. If these c and d̄ are in the singlet
state, the hadronization process is described by the
expectation value

〈O(1)〉 =
1

12MD∗

(

−gµν +
pµ

D∗pν
D∗

M2
D∗

)

(1)

× 〈D∗(pD∗)|(c̄γµd)(d̄γνc)|D∗(pD∗)〉,
where pD∗ and MD∗ are the D∗-meson momentum
and mass, respectively. In the nonrelativistic potential
model, this expectation value is equal to the square of
the wave function at the origin: 〈O(1)〉|NR = |Ψ(0)|2.
The hadronization process in the octet state is de-
scribed by the expectation value of a similar operator:

〈O(8)〉 =
1

8MD∗

(

−gµν +
pµ

D∗pν
D∗

M2
D∗

)

(2)

1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

2)Institute for High Energy Physics, Protvino,Moscow oblast,
142284 Russia.

3)In what follows, theD∗±(2010) mesons are denoted byD∗.
1063-7788/02/6508-1487$22.00 c©
× 〈D∗(pD∗)|(c̄γµλ
ad)(d̄γνλ

bc)|D∗(pD∗)〉δ
ab

8
.

It should be noted that the BKL model is based
on the parton concept of the hadron structure. In the
parton model, the valence-quark structure functions
in the infinite-momentum frame are given by

f v
c (x, pT ) = fc(x, pT ) − fc̄(x, pT ), (3)

f v
d̄ (x, pT ) = fd̄(x, pT ) − fd(x, pT ),

where pT is the parton transverse momentum in
the hadron and x is the hadron-momentum fraction
carried away by the parton. The mean hadron-
momentum fractions carried away by the valence
quarks are given by

〈xv
c〉 =

∫

d2pTdx x · f v
c (x, pT ) ≈ mc

MD∗
, (4)

〈xv
d̄〉 =

∫

d2pTdx x · f v
d̄ (x, pT ) ≈ Λ̄

MD∗
,

where 〈xv
c〉 + 〈xv

d̄
〉 ≈ 1 and Λ̄ is the binding energy

of the quarks in the meson. In the BKL model, we
neglect the dispersion of the velocities of the valence
quarks and set them equal to each other: vc = vd̄; we
also take the effective light-quark mass md, which
plays the role of an infrared cutoff, equal to Λ̄. As a
result, we arrive at

〈xv
c〉 = xv

c =
mc

MD∗
, (5)

〈xv
d̄〉 = xv

d̄ =
md

MD∗
.

The above means that the BKL provides an exten-
sion of the parton model to the case of final hadrons in
the valence-quark approximation.
This distinguishes the BKL model from the per-

turbative computations [5–7] based on the frag-
mentation model of hadronization, where a single
c quark produced perturbatively undergoes subse-
quently hadronization at large distances, transferring,
2002 MAIK “Nauka/Interperiodica”
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to the meson, the fraction z of its transverse mo-
mentum kT with the probability determined by the
fragmentation functionDc→D∗(z, µ) according to the
formula

d2σD∗

dzdpD∗
T

=
dσ̂cc̄(kT , µ)

dkT

∣
∣
∣
∣
kT =

pT
z

Dc→D∗(z, µ)
z

, (6)

where Dc→D∗(z, µ) is the fragmentation function
normalized to the probability w(c → D∗) measured
in [8] that the c quark produced in e+e− annihilation
transforms into a D∗ meson [w(c → D∗) = 0.22 ±
0.014 ± 0.014] and the cross section dσ̂cc̄/dkT for
the production of a cc̄ pair is estimated perturbatively
within the parton model at the scale µ.

It is evident that the hadronization of a c quark
due to its interaction with the quark sea in the initial
hadron (recombination) cannot be taken into con-
sideration in the fragmentation approach; therefore,
it must be included within some additional model.
In the BKL approach, both the fragmentation and
the recombination mechanism are considered in a
natural way through a unified set of gauge-invariant
diagrams. Fully in accord with the factorization the-
orem, the fragmentation mechanism is dominant at
high transverse momenta of the D∗ meson. At low
transverse momenta, the main contribution to meson
production comes from the recombination process in
which the c quark involved merges with a light quark
from the sea in the initial hadron. It should be noted
that the recombination contribution to the cross sec-
tion is the highest twist correction to the transverse-
momentum distribution; hence, it decreases with in-
creasing the transverse momentum much faster than
the fragmentation contribution.

According to experience gained in many studies
on the fragmentation model, the results of the cal-
culations do not greatly depend on the form of the
fragmentation function. The majority of the studies
employed the Peterson fragmentation function [9]

D(z) = N
1

z

(

1 − 1
z
− ε

1 − z

)2 , (7)

where N is a normalization factor and ε is a free
phenomenological parameter depending on the scale
µ. However, the basic result does not change signif-
icantly if, instead, use is made of the Kartvelishvili–
Likhoded–Petrov fragmentation function [10]

D(z) = Nz−αc(1 − z)γ−αd , (8)

where αc = −3, αd = 1/2, and γ = 3/2.

In the BKLmodel, the cross section forD∗-meson
production at high transverse momenta (pD∗

T >
P

20 GeV) can be obtained with the aid of the frag-
mentation formula (6) by using, for the fragmentation
function, the perturbatively motivated expression [11]

Dc→D∗(z) =
8α2

s〈Oeff〉
27m3

d

rz(1 − z)2

(1 − (1 − r)z)6
(9)

× [2 − 2(3 − 2r)z + 3(3 − 2r + 4r2)z2

− 2(1 − r)(4 − r + 2r2)z3

+ (1 − r)2(3 − 2r + 2r2)z4],

where r = md/(md +mc) and

〈Oeff〉 = 〈O(1)〉 +
1
8
〈O(8)〉. (10)

That meson production in e+e− annihilation is due
exclusively to the fragmentation mechanism makes it
possible to express 〈Oeff〉 in terms of w(c → D∗) and
the quark masses by using the equation

w(c → D∗) =

1∫

0

Dc→D∗(z)dz (11)

=
α2

s(µ)〈O(1)(µ)〉
m3

d

I(r),

where the function I(r) was defined in [3].
The function w(c → D∗) is known from experi-

mental data; given md, mc, and µ, we can therefore
find 〈Oeff〉. If, for example, we have

µ = mD∗ , (12)

md = 0.3 GeV,

mc = 1.5 GeV,

w(c → D∗) = 0.22,

then

〈Oeff (mD∗)〉 = 0.25 GeV3.

Within this approach, the best description of the
data on the photoproduction and deep-inelastic pro-
duction of charm at the HERA collider is achieved at
〈O(8)〉/〈O(1)〉 = 1.3.
In contrast to the fragmentation model, which is

applicable only at high transverse momenta (accord-
ing to our estimates at pD∗

T > 20 GeV), the BKL
model works well at low transverse momenta as well.
At the above values of the parameters of the BKL
model, we have also computed the cross section for
diffractive D∗-meson photoproduction, choosing the
parametrization of the Pomeron flux factor in the pro-
ton in the simplest form [12]

fP/p(xP, t) =
1
2

1
2.3

1
xP

(13)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 1. Predictions of the BKL model for the differential
cross sections describing the diffractive photoproduction
of D∗ mesons in the kinematical domain specified by the
inequalities 130 < W < 280GeV,Q2 < 1 GeV2, pD∗

T >

2 GeV, |ηD∗ | < 1.5, and 0.001 < xP < 0.018 [shown are
the results obtained with (solid-line histograms) a hard
and (dashed-line histograms) a soft Pomeron]: (a) pD∗

T

distribution of the cross section, (b) ηD∗
distribution of

the cross section, (c)MX distribution of the cross section,
and (d) xP distribution of the cross section.

×
[
6.38e−8|t| + 0.424e−3|t|

]
,

where t is the square of the momentum transfer at
the proton vertex and xP is the proton-momentum
fraction carried away by the Pomeron.

Assuming that the Pomeron involves only gluons,
we used two forms of the gluon distribution G(β) in
the Pomeron,

βG(β) =

{
6β(1 − β), hard Pomeron;
6(1 − β)5, soft Pomeron,

(14)

where β is the Pomeron momentum fraction carried
away by a gluon.

We also assumed that the photon and gluon mo-
menta are parallel to the beam axis; this means that,
in calculating the amplitude for the photon interaction
with the gluon from the Pomeron in the vertex, we
neglected the photon, gluon, and Pomeron transverse
momenta.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
 

10

 

–1

 

(

 

a

 

) (

 

b

 

)

(

 

c

 

) (

 

d

 

)

 
d

 
σ

 
/

 
dp

 

T
D

 
*
 
, nb/GeV
 

d
 

σ
 

/
 

d
 

η
 

 
D

 
*

 
, nb

 

d

 

σ

 

/

 

dM

 

X

 

, nb/GeV

 

d

 

σ

 

/

 

dx

 

P

 

, nb

 

x

 

P

 

M

 

X

 

, GeV

 

p

 

T
D

 

*

 

, GeV

 

η

 

 
D

 

*

 

10

 

0

 

2 4 6 –1

3

2

1

0
0 1

0.08

0.06

0.04

0.02

0
15 20 25 30

60

40

20

0 0.10 0.20

8

Fig. 2. Predictions of the BKL model for the differential
cross sections describing the diffractive photoproduction
of D∗ mesons in the kinematical domain specified by the
inequalities 130 < W < 280 GeV,Q2 < 1 GeV2, pD∗

T >

2 GeV, |ηD∗ | < 1.5, and 0.001 < xP < 0.2 [shown are
the results obtained with (solid-line histograms) a hard
and (dashed-line histograms) a soft Pomeron]: (a) pD∗

T

distribution of the cross section, (b) ηD∗
distribution of

the cross section, (c)MX distribution of the cross section,
and (d) xP distribution of the cross section.

The parameters appearing in (12), which are in-
volved in the calculation of the photon–gluon inter-
action in the BKL model, were set to values identical
to those in [3], where the cross section forD∗-meson
photoproduction was evaluated beyond the diffraction
approach.

The differential cross sections calculated on the
basis of the BKL model are shown in Fig. 1 versus
(a) the transverse momentum, (b) the pseudorapidity,
(c) the invariant mass MX of the diffraction system,
and (d) xP. These calculations were performed for
the cases of a hard and a soft Pomeron for the kine-
matical domain investigated by the ZEUS collabora-
tion [4] and specified by the inequalities 130 < W <

280 GeV, Q2 < 1 GeV2, pD∗
T >2 GeV, |ηD∗ | < 1.5,

and 0.001 < xP < 0.018, where W is the invariant
mass of the photon–proton system, Q2 is the photon
virtuality, and ηD∗

is the pseudorapidity of theD∗me-
son. The pseudorapidity ηD∗

is expressed in terms of
2
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the angle θ between the initial-protonmomentum and
theD∗±-meson momentum as ηD∗

= −ln(tanθ/2).
The transverse-momentum distribution shows

that a soft Pomeron yields a faster decrease in the
cross section with increasing transverse momentum.
As can be seen from the pseudorapidity distri-

butions, the cross section for the production of a
D∗ meson with momentum parallel to the primary-
proton momentum in the model of a hard Pomeron is
substantially larger than that in the model of a soft
Pomeron. In the case of backward production, the
predictions of the two models are close to each other.
Themodel of a hard Pomeron leads to an invariant-

mass distribution having a maximum at small values
of MX , the cross section becoming smaller with
increasing MX . The distribution in the case of a soft
Pomeron peaks atMX of about 15 GeV.
In the case of a hard Pomeron, the cross section

decreases monotonically with increasing xP over the
entire range of xP under investigation. Conversely,
this cross section increases with this variable in the
case of a soft Pomeron.
The values of the total cross section that were

evaluated within the BKL model for the different
Pomerons are

σBKL =

{
0.77 ± 0.02 nb, hard Pomeron;
0.56 ± 0.03 nb, soft Pomeron.

Since the ZEUS collaboration is going to con-
tinue studying the diffractive production ofD∗mesons,
we predict total and differential cross sections over the
range 0.001 < xP < 0.2 (Fig. 2):

σBKL =

{
1.64 ± 0.02 nb, hard Pomeron;
5.45 ± 0.02 nb, soft Pomeron.

We also predict the total cross sections over the range
0.001 < xP < 0.1:

σBKL =

{
1.51 ± 0.03 nb, hard Pomeron;
3.56 ± 0.03 nb, soft Pomeron.

Over the above intervals of xP values, the differ-
ence between the cases of a soft and a hard Pomeron
is much more pronounced than the analogous dif-
ference over the range 0.001 < xP < 0.018, the cross
section in the case of a soft Pomeron being much
larger than the cross section in the case of a hard
Pomeron.
PH
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Abstract—The reaction pp→ pπ+π+π−n at the incident proton momentum of Plab = 70 GeV/c, where
candidates for an exotic baryon were found, is analyzed in the model involving a double exchange of a
Reggeized π meson. The model is tested by using available data on the above reaction at Plab = 6.92 and
19 GeV/c. The model provides a satisfactory description of the energy dependence of the reaction cross
section. At the same time, it fails to explain the experimentally observed fact that, at Plab = 70GeV/c, the
mass spectrum of the∆++π+ system has peaks at 1.42 and 1.64 GeV/c2 in the Feynman variable interval
0.5 < xF(pπ+π+) < 0.8. On the basis of the model in question, upper limits on the cross sections for the
production of candidates for the exotic baryon E55 were estimated at σ1.42 ≈ 2.3 µb and σ1.64 ≈ 1.0 µb.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The most interesting problems in modern elemen-
tary-particle physics include searches for exotic
hadrons—that is, particles whose quark is not that
involving two quarks for mesons or that involving
three quarks for baryons. At the moment, the ex-
istence of exotic baryons has not yet been proven
conclusively, but there are a great many candidates.
The E55 baryon, which has been sought in a number
of experiments (for an overview, see [1]) is one of the
candidates in open exotic states. However, the results
of these experiments have insufficient statistical sig-
nificance and often contradict one another. The state
in question was sought in the effective-mass spectra
of the pπ+π+ and nπ−π− systems in the reactions

π+p→ pπ+π+π−, pp→ pπ+π+π−π−p,

π−p→ nπ+π+π−π−,

π−d→ nπ−π−π+ps, π+d→ pπ+π+π−ns,

K−d→ nπ−π−π+K̄0ps,

π+p→ π−(MM)+++, np→ nπ+π+π−π−p,

np→ nπ+π+π−π−pπ0

and in the reaction

pp→ pπ+π+π−n, (1)

which is considered below.

*e-mail: tarasov@vxitep.itep.ru
1063-7788/02/6508-1491$22.00 c©
TheE55 baryon decays predominantly through the
∆π channel. It is worth noting that the state char-
acterized by the isospin projection 5/2 involves two
identical π mesons, in which case the mass spectrum
of theNππ system can develop a maximum owing to
the kinematical domain where the effective masses of
the systems formed by a nucleon with each of two pi-
ons fall within the region of the∆ isobar. It is in terms
of precisely this effect that the structure observed in
the mass spectrum at M(pπ+π+) ≈ 1520 MeV/c2
was explained in [2].
The distributions suggesting the possible produc-

tion of the five-quark E55 baryon in the reaction

pBe → pπ+π+ +X (2)

at the proton-beam momentum of Plab = 70 GeV/c
were presented in [1]. The main contribution to pro-
cess (2) (with allowance for the trigger used) comes
from the reaction

pp→ pπ+π+π−n(+mπ0) (m = 0, 1, 2, . . .). (3)

Other reactions were suppressed by the experimental
trigger that required the presence of three “fast” and
not more than one “slow” charged particle. The pos-
sible mechanisms of the production of theE55 baryon
in reaction (1) can be represented by the Feynman
diagrams in Fig. 1.
It was shown in [3–14] that πp and pp interactions

that produce less than five particles in the final state
are satisfactorily described by the model involving
2002 MAIK “Nauka/Interperiodica”
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Fig. 1.Mechanisms that can be responsible for the production of theE55 baryon in reaction (1).
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Fig. 2. Three-vertex diagrams involving double pion exchange and contributing to reaction (1).
the t-channel exchange of one Reggeized pion up to
rather high energies. It is natural to assume that reac-
tion (1) at Plab = 70 GeV/c also receives a dominant
contribution from pion-exchange diagrams. Analysis
of such diagrams must answer whether they can pro-
duce a maximum in the mass spectrum of the ∆π
system near the threshold (Deck effect) and whether
a maximum can appear owing to the production of
ρ(770) and f(1270) mesons in the ππ system with a
large cross section.
In this study, we explore reaction (1) in the model

of the Reggeized one-pion exchange.

2. FORMULATION OF THE MODEL
The model of Reggeized one-pion exchange was

formulated for the reaction pp→ pnπ+ [3]. Later,
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P

this model and its modifications were used to de-
scribe the features of the processes pn→ ppπ−,
π−p→ π+π−n, π−p→ π−π+π−p, pp→ ppπ+π−,
and π+p→ π+π−π+p [4–10]. An analysis of multi-
particle pion production inNN collisions and a qual-
itative analysis of the inclusive spectra of secondaries
from πN and NN collisions were also performed
within this conceptual framework. The inclusive
spectra in pp collisions and some other relevant
quantities were computed in [11]. The calculations
in [3–11] employed two-vertex diagrams. Only in
[12] was use made of three-vertex diagrams involving
double pion exchange. As is illustrated in Fig. 2, such
exchanges contribute to reaction (1).

Owing to the presence of identical π+ mesons, the
diagram in Fig. 2a actually represents two diagrams
rather than one and so does the diagram in Fig. 2c.
Allowance for the symmetry of the colliding particles
yields five more diagrams. Therefore, we obtain ten
diagrams involving the exchange of two pions. A
general Feynman diagram of double pion exchange
is shown in Fig. 3, which also indicates physical
variables used in the calculations. With allowance for
factorization, the matrix element for this diagram can
be represented in the form

M =
G
√

2
t1 − µ2

ū(p1)γ5u(P1) (4)

× Tπ+
1 π−(s23, t1, t2, t3)F1(t1, s123, s23, t2, . . .)

× Tpπ+
2
(s45, t3, t4)F2(s2345, s23, s45, t3, . . .)

1
t3 − µ2

,

HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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where P1 and P2 are the colliding-proton 4-momenta;
p1, p2–p4, and p5 are the 4-momenta of the produced
neutron, pions, and proton, respectively; and

S = (P1 + P2)2, t1 = (P1 − p1)2, (5)

t2 = (P1 − p1 − p2)2, t3 = (P2 − p4 − p5)2,

t4 = (P2 − p5)2, s23 = (p2 + p3)2,

s123 = (p1 + p2 + p3)2, s45 = (p4 + p5)2,

s2345 = (P1 + P2 − p1)2 = (p2 + p3 + p4 + p5)2.

In (4), G is the coupling constant in the πNN ver-
tex (G2/4π = 14.6); Tππ and Tπp are the ππ and πp
scattering amplitudes, respectively; F1 and F2 are the
form factors that take into account the Reggeization
of the pion propagators and off-shell effects in the
vertex πNN and the amplitudes Tππ and Tπp; µ is the
pion mass; and ū(p1) and u(P1) are the nucleon wave
functions (4-spinors).
The ππ and πN scattering amplitudes were set to

their on-shell values, apart from the contribution of
the vacuum pole P to them. The contributions of the
vacuum pole to these amplitudes involve an additional
dependence on the masses of virtual πmesons, which
is not contained in the form factors F1 and F2; that is,

TP
ππ(s23, t1, t2, t3) (6)

= exp[R2
p(t1 + t3 − 2µ2)]TP

ππ(s23, µ2, t2, µ
2),

TP
πN (s45, t3, t4) (7)

= exp[R2
p(t3 − µ2)]TP

πN (s45, µ2, t4).

In presenting the on-shell ππ and πN scattering
amplitudes at high masses [M(ππ) > 1.4 GeV/c2,
M(πN) > 2 GeV/c2], we employed the Regge para-
metrization involving the P , P ′ and ρ poles (see [14]);
in the low-mass region, we relied on the results of the
partial-wave analysis.
In the linear approximation for the pion trajectory

[απ(t) = α′
π(t− µ2)], the form factors were taken in

the form

F1 = exp[(R2
1 + α′

π ln(s123κ2/s0s23))(t1 − µ2)], (8)

κ2 =

{
p2

T2 + µ2 − C(t1 − µ2) (pL3 < pL2)
p2

T3 + µ2 − C(t1 − µ2) (pL2 < pL3);

F2 = exp[(R2
2 + α′

π ln(s2345κ2
1κ

2
2/s0s23s45)) (9)

× (t3 − µ2)],

κ2
1 =

{
p2

T2 + µ2 − C(t3 − µ2) (pL2 < pL3)
p2

T3 + µ2 − C(t3 − µ2) (pL3 < pL2),

κ2
2 = p2

T4 + µ2 − C(t3 − µ2)
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Fig. 4. Cross section for reaction (1) versus the incident-
proton momentum: (•) experimental data from [15] and
(∗) results of the calculations based on the model pre-
sented in the main body of the text.

(s0 = 1 GeV/c2). By pT and pL, we have denoted,
respectively, the transverse and the longitudinal com-
ponent of the pion momenta in the c.m. frame of
reaction (1), with the z axis being directed along
the beam momentum P1. The condition pL3 < pL2 in
expressions (8) and (9) separates the configuration
where the pion of momentum p2 is faster than the pion
of momentum p3 from the configuration where the
inverse relation holds (pL2 < pL3). The form factors
F1 and F2 have different forms in these configura-
tions [14].1)

3. MODEL PARAMETERS

From the above expressions, it follows that, with-
in the model of Reggeized one-pion exchange, it is
necessary to know the parameters R2

1, R
2
2, α

′
π, R

2
p,

and C in order to describe reaction (1) proceeding
via double pion exchange. In contrast to three- and
four-particle reactions considered in [4–10], the block
of ππ scattering in reaction (1) involves two virtual
incoming pions. Therefore, we can assume that the
quantitiesR2

1 andR
2
2 defined in the quoted articles are

inappropriate for describing the process being studied
and must be treated as free parameters of the model.
In addition, processes proceeding via pion exchange
are known to receive a significant contribution from
rescattering. In [13], the slope of the pion trajec-
tory was determined in the pole version [α

′
π = 1.11 ±

1)Expressions (8) and (9) for the form factors F1 and F2 were
obtained in [14] from an analysis of the regions of two- and
three-Reggeon kinematics in exclusive reactions involving
the production of, respectively, one pion and two pions.
2
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0.14 (GeV/c)−2] and with allowance for branch points
(α′

π = 0.4 ± 0.1 (GeV/c)−2).

Taking into consideration the aforesaid, we chose
the value of α′

π = 0.5 (GeV/c)−2 for our calcula-
tions. The values of R2

p = 1.3 (GeV/c)−2 and C =
0.08 (GeV/c)−2 were taken from [14]. Since there is
no argument on whether one of the parameters R2

1 or
R2

2 stands out, we changed their values presented in
[14] by the same factor in such a way as to describe
the absolute value of the cross section for reaction
(1). This was achieved at R2

1 = 0.4 (GeV/c)−2 and
R2

2 = 0.16 (GeV/c)−2.
PH
4. COMPARISON WITH EXPERIMENTAL
DATA

Figure 4 displays the cross section for reaction (1)
versus the incident-proton momentum. Experimental
data on the cross section were taken from [15]. Our
model calculations were performed with the parame-
ter values given in the preceding section. From Fig. 4,
we can see that themodel whose parameters are set to
values that we found above satisfactorily describes the
energy dependence of the cross section for reaction
(1) in the primary-momentum range 7–30 GeV/c.

Unfortunately, data on reaction (1) are scanty. We
have compared our model predictions for the absolute
cross section with the most complete set of experi-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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mental data obtained at the incident-proton momenta
of 6.92 [16] and 19 GeV/c [17].

Figure 5 presents the experimental and the cal-
culated effective-mass spectra of the pπ+ and nπ−

systems. It can be seen from this figure that the
model describes satisfactorily the mass spectrum of
the pπ+ system, but that it fails to reproduce themass
spectrum of the nπ− system in the mass region of
the ∆− isobar. We recall that, in the process being
considered, a ∆− isobar cannot be produced through
the pion-exchange mechanism.2) It is produced ow-
ing to pion–baryon exchange and the s-channel pro-
duction of the N∗ isobar of mass in the range 1.66–
1.69 GeV/c2. The relevant processes are represented
by the diagrams in Fig. 6.

Figure 7 displays the distributions with respect to
the cosine of the secondary-particle emission angle in
the c.m. frame of reaction (1) at a primary momentum
of 6.92 GeV/c. It can be seen from the figure that the
model qualitatively reproduces the data. However, the
calculated distributions are sharper than the experi-
mental ones.

2)It was indicated by G.A. Leksin that, in themodel being con-
sidered, the ∆− isobar could have been produced if we had
additionally taken into account π−n final-state interaction
(FSI). In this study, however, we did not include FSI effects
remaining within the model allowing only for pole diagrams.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
Figure 8 presents the calculated distributions with
respect to the proton Feynman variable xF(p) for vari-
ous intervals of the neutron variable xF(n) in the c.m.
frame of reaction (1) at an incident-proton momen-
tum of 19 GeV/c. A comparison with the data shows
that the contribution of pion exchange is small in the
region 0 < xF(n) < 0.4. The model reproduces the
data in the interval 0.4 < xF(n) < 0.8. In the interval
0.8 < xF(n) < 1, the position of the maximum in the
calculated distribution with respect to xF(p) agrees
with that in the experimental one, but the model over-
estimates the number of fast neutrons approximately
by a factor of 2. Therefore, we can conclude that, at
Plab = 19 GeV/c, a significant contribution to reac-
tion (1) comes from the processes that are different
from pion exchange and which were indicated above.
Concluding this section, we emphasize that the

model considered here provides a qualitatively correct
description of many features of reaction (1). The ap-
plication of the model can be of use in pinpointing
kinematical regions where mechanisms other than
those involving pion exchange are significant in the
reaction being considered.

5. INVESTIGATION OF REACTION (1)
AT Plab = 70 GeV/c

Having tested themodel, we now address the main
goal of our study—that of clarifying the question of
2
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in the c.m. frame of reaction (1) at a primary momentum of 19 GeV/c [17]. The curves represent the results of the model
calculations.
whether the proposed model approach can reproduce
the results obtained in [1] for effective-mass distri-
bution of the pπ+π+ system. We begin by making a
few introductory comments. We have calculated the
contributions of various diagrams to the cross section
for reaction (1) at a momentum of 70 GeV/c and
found that the main contribution to the cross section
(about 87%) comes from the diagram in Fig. 2a.
The contributions of the diagrams in Figs. 2b and 2c
proved to be about 11.5 and 1.5%, respectively. The
interference fraction (we took into account only the
permutations of identical π+ mesons) was about 6%
of the total cross section for reaction (1). For the total
reaction cross section with and without allowance
for the interference, we obtained 0.95 (Fig. 4) and
0.90 mb, respectively.

The facility at which the experimental data sub-
jected to the present analysis were obtained imposes
a number of geometric and kinematical restrictions,
which must be taken into account in order to compare
correctly the experimental and the calculated distri-
butions. For example, the calculations must take into
account the following conditions of the “on-line” and
P

the “off-line” trigger for the detection of the pπ+π+

system:
(i) There are only three positively charged particles

and no negative particles within the angle 20 mrad
around the beam direction.
(ii) The proton momentum exceeds 8GeV/c (con-

dition of a reliable identification).
(iii) The momentum of a π+ meson exceeds

3 GeV/c (slower particles are deflected by the mag-
netic field).
Under these conditions, the calculated integrated

efficiency of the facility with respect to the cross sec-
tion was about 2.5%.
It turned out that, according to condition (ii), the

spectrometer did not detect events described by the
diagrams featuring a proton in the lower vertex (tar-
get fragmentation), because, in this case, the proton
momentum in the model varies within the interval 0–
4.5 GeV/c, its distribution having a maximum close
to zero. For the remaining diagrams, the momentum
spectrum of pions in the model peaks near zero, has
a shape close to that of a hyperbola, and extends
to approximately 50–55 GeV/c; 40 to 50% of their
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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tracks have momenta below 3.5 GeV/c and are not
detected by the facility according to condition (iii). For
the remaining five diagrams, the momentum distri-
bution of protons also has the shape of a hyperbola;
it begins approximately from 14 GeV/c, grows to a
maximum at about 66–67 GeV/c, and then abruptly
tends to zero. Owing to the addition of the positive
longitudinal components of the π+ momenta to the
longitudinal momentum of the proton, the resulting
distribution with respect to the variable xF of the
pπ+π+ system is sharper and is concentrated more
closely to the edge xF = 1. Figure 9a displays the
xF(pπ+π+) distribution calculated within the model
on the basis of five diagrams (with allowance for
interference) for 4π geometry. Upon taking into ac-
count the event-detection and event-processing con-
ditions [conditions (i), (ii), and (iii)], the distribution
changes significantly. As can be seen from Fig. 9b,
all this results in that the spectrum xF(pπ+π+) is
entirely concentrated in the narrow interval 0.9 <
xF(pπ+π+) < 1.
Table 1 presents results of our model calculations

for the cross section describing the production of the
pπ+π+ system in the mass interval 1.3–3.2 GeV/c2

for various intervals of the variable xF(pπ+π+), the
mass of the pπ+ system being selected in the region
of the ∆ isobar (1.17–1.27 GeV/c2). For the same
kinematical regions, Table 2 gives the experimental
numbers of respective events (no absolute normaliza-
tion of the cross sections is imposed).
A comparison of the data in the two tables shows

that the experimental dependence of the cross section
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
on the variable xF(pπ+π+) differs significantly from
the model dependence. The model cross section cal-
culated with allowance for the trigger decreases fast
with decreasing xF and virtually vanishes in the inter-
val 0.5–0.8. Owing to the multiperipheral character
of the model, the calculated cross section is exponen-
tially suppressed by the form factors (8) and (9) in
this region. At the same time, the experimental de-
pendence of the cross section on xF(pπ+π+) is rather
weak. A significant part of the experimental cross
section is concentrated in the interval 0.5–0.8; this
suggests the existence of other particle-production
mechanisms.

We recall that the experimental mass spectrum
of the ∆++π+ system [1] featured an excess of
events above the polynomial background curve. Fig-
ure 10 displays this mass spectrum for the interval
0.5 < xF(pπ+π+) < 0.8 of the Feynman variable
of the pπ+π+ system. The smooth solid curve in
Fig. 10 corresponds to a description of the spec-
trum by the background and two resonances, while
the dashed curve represents the background. The
parameters of the enhancements are M1 = 1.42 ±
0.14 GeV/c2, Γ1 = 0.064 ± 0.02 GeV/c2, M2 =
1.64± 0.02GeV/c2, andΓ2 = 0.025± 0.016GeV/c2.
The excess of the number of events over the back-
ground curve is above eight standard deviations in
the band 1.38–1.46 GeV/c2 and above four standard
deviations in the band 1.60–1.66 GeV/c2. This result
was interpreted as an observation of candidates for
five-quark states.
2
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Table 1. Results of the model calculations for the cross sections (mb) describing the production of the pπ+π+ system in
reaction (1) at Plab = 70GeV/c within various kinematical regions

Interval of
xF(pπ+π+)

∆(pπ+
f ) ∆(pπ+

s ) ∆(pπ+
f ) + ∆(pπ+

s )

4π geometry trigger+ se-
lections

4π geometry trigger+ se-
lections

4π geometry trigger+ se-
lections

0.5–0.7 9.8 × 10−4 8.8 × 10−24 2.6 × 10−3 1.6 × 10−26 3.58 × 10−3 8.8 × 10−24

0.7–0.8 6.1 × 10−4 1.5 × 10−9 2.2 × 10−3 1.7 × 10−9 2.81 × 10−3 3.2 × 10−9

0.8–0.85 3.4 × 10−4 3.5 × 10−7 1.9 × 10−3 4.1 × 10−7 2.24 × 10−3 7.6 × 10−7

0.85–0.9 5.3 × 10−4 2.0 × 10−5 3.1 × 10−3 2.8 × 10−5 3.63 × 10−3 4.8 × 10−5

0.9–0.95 1.3 × 10−3 3.4 × 10−4 5.9 × 10−3 4.4 × 10−4 7.2 × 10−3 7.8 × 10−4

0.95–1.0 7.45 × 10−3 6.3 × 10−3 2.14 × 10−2 8.3 × 10−3 2.89 × 10−2 1.46 × 10−2

Note: ∆(pπ+
i ) columns present the cross sections for the case where the mass is selected in the region of the ∆ isobar, 1.17 <

M(pπ+
i ) < 1.27 GeV/c2;∆(pπ+

f ) + ∆(pπ+
s ) column contains the sum of the results for the∆(pπ+

f ) and∆(pπ+
s ) bands.
Of course, a kinematical maximum in the effective-
mass spectrum of the ∆++π+ system can arise
owing to the presence of two identical π+ mesons
and the choice of narrow bands in the effective-
mass spectra of pπ+

f - and pπ+
s systems. In order

to explore this kinematical region, we have con-
structed the experimental distribution (see Fig. 11)
with respect to the effective mass M(∆++π+) for
events where both M(pπ+

f ) and M(pπ+
s ) fall within

the band of the ∆ isobar (1.17–1.27 GeV/c2). The
mean mass of the pπ+π+ system proved to be
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PH
M = 1.508 ± 0.011 ГэВ/c2 in this case. This value,
which is associated with the effect of the overlap
of ∆ bands, agrees with the mean mass for the
excess of events in the mass spectrum of the∆++π+

system in the range 0.95 < xF(pπ+π+) < 1 (see
Fig. 12a). In Fig. 12a, the histogram represents
the experimental data, along with statistical errors,
while the dashed curve corresponds to the polynomial
background. In the low-mass region in Fig. 12a,
there is a significant excess of the number of events
above the background curve. In order to describe the
experimental spectrum, we added a Breit–Wigner
distribution. The solid curve in Fig. 12a represents
the results of a fit to the data by using a superposition
of the background and a Breit–Wigner curve. The
widths of the mass spectrum M(∆++π+) in Fig. 11
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Fig. 11.Effective-mass distribution of the pπ+π+ system
for the simultaneous selection of the effective masses
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f and pπ+
s systems in the ∆-isobar band 1.17–

1.27 GeV/c2 {reaction (3) at a primary momentum of
70 GeV/c [1]}. The solid curve represents a Gaussian fit
to the experimental spectrum.
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Fig. 12.Mass spectrum of the∆++π+ system for the interval 0.95 < xF(pπ+π+)< 1. The histograms represent experimental
data on reaction (3) at a primary momentum of 70 GeV/c [1]. The solid curve in Fig. 12a illustrates an approximation of the
data by a polynomial background and a Breit–Wigner resonance, the background contribution being shown individually in
this panel by the dashed curve. The dashed curve in Fig. 12b represents the results of our model calculations.
and of the excess of events (over the background) in
Fig. 12a are also commensurate with each other. For
example, the width in the case of the overlap of the ∆
bands in Fig. 11 is Γ = 0.078 ± 0.064 GeV/c2; that
for the excess of events in Fig. 12a is Γ = 0.067 ±
0.039 GeV/c2. There is a similar correspondence for
the number of events: 80 events occur in the overlap
of the ∆ bands, and 78 events correspond to the
excess in the mass spectrum of ∆++π+ in the range
0.95 < sF(pπ+π+) < 1. The model gives a similar
distribution for the case of the overlap of the∆ bands:
M ≈ 1.510 GeV/c2 and Γ ≈ 0.110 GeV/c2.
We have compared the model prediction with the

experimental data in the Feynman variable interval
0.95 < xF < 1 for the pπ+π+ system, where pion ex-

Table 2. Number of events of reaction (3) at Plab =
70 GeV/c that were observed experimentally for various
selections

Interval of
xF(pπ+π+) ∆(pπ+

f ) ∆(pπ+
s )

∆(pπ+
f ) +

∆(pπ+
s )

0.5–0.7 193 380 573

0.7–0.8 180 329 509

0.8–0.85 139 187 326

0.85–0.9 171 239 410

0.9–0.95 199 349 538

0.95–1.0 277 362 639
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 20
change must be dominant. Figure 12b displays the
experimental mass spectrum M(∆++π+) (identical
to that in Fig. 12a) and themodel distribution (dashed
curve) normalized to the area below the experimental
histogram. It can be seen from the figure that, by and
large, the model distribution is concentrated in the
low-mass region and completely covers the experi-
mental spectrum in the mass region M(∆++π+) <
1.8 GeV/c2. Therefore, it is meaningless to con-
sider the excess of events in the mass region around
1.5 GeV/c2. We deem that this is a nice illustration
of usefulness of model calculations, although their
agreement with experimental data is not sufficiently
good. There are two reasons to be emphasized: the
statistical significance of the experimental data is in-
sufficient, and themodel involves nomechanisms that
could produce N∗ isobars decaying through three-
particle channels, for example, into ∆π and Nρ sys-
tems.
Assuming that, in the range 0.95 < xF(pπ+π+) <

1, our model describes the absolute values of the
reaction cross section, we used this cross section as a
normalization to estimate the contributions of other
physical mechanisms in the reaction being studied.
By estimating the absolute normalization of an indi-
vidual event in this way, we have obtained an upper
limit on the production cross section for the experi-
mentally observed structures (Fig. 10): σ1.42 ≈ 2.3 µb
and σ1.64 ≈ 1.0 µb. These values may be overesti-
mated, and we consider them as upper limits. Indeed,
in considering the data on reaction (1) at 19 GeV/c
(Section 4), we have already emphasized the possible
02
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existence of reaction mechanisms other than those
represented by the diagrams in Fig. 2. Therefore, our
normalization of the model to the total cross sections
for reaction (1) (see Fig. 4) means that the contribu-
tion to the cross section from the diagrams in Fig. 2
may be overestimated: these diagrams correspond to
the peripheral part of the process—that is, to a smaller
cross section.

6. CONCLUSION

For the first time, we have applied the model of
Reggeized one-pion exchange to describing reac-
tion (1). Here, we formulate the results of our study.
The model describes satisfactorily the energy

dependence of the cross section for reaction (1) at
incident-proton momenta in the range 7 < Plab <
30GeV/c and qualitatively reproduces many features
of the reaction at Plab = 6.92 and 19 GeV/c.
The model can be used as a background to study

other physical mechanisms in reaction (1).
In the interval 0.95 < xF(pπ+π+) < 1, the model

reproduces qualitatively the behavior of the spec-
trum of the ∆++π+ system that originates from re-
action (3) at a primary momentum of 70 GeV/c,
yielding a peak in the cross section near the mass
value of about 1.5 GeV/c2 (Fig. 12b). Thus, there
are no grounds to interpret this peak as that which
is associated with a candidate for an exotic baryon.
Despite the intense production of the ∆++ isobar

and of ρ(770) and f0(1270) mesons owing to pion
exchange, the model fails to explain the narrow
structures in the mass spectrum of the ∆++π+

system (Fig. 10), which were observed experimentally
at a primary momentum of 70 GeV/c in the Feyn-
man variable range 0.5 < xF(pπ+π+) < 0.8. This
might have been expected since the model involves
no mechanisms that could lead to the resonance
production of the pπ+π+ system. Moreover, the
model makes a very small contribution to the cross
section in this region (for the specific experiment with
its specific geometric and triggering conditions and
specific physical selections) and does not describe
the background contribution, which is relatively large
in the experiment being discussed (see the dashed
curve in Fig. 10). All this is a consequence of a
multiperipheral character of the model.
The model provides a reasonable description of

the data in the range 0.95 < xF(pπ+π+) < 1 at a
primary momentum of 70 GeV/c; in this region, we
can estimate the absolute normalization of the cross
section for experimental events. In this way, themodel
has been used to estimate upper limits on the cross
sections for the production of candidates for exotic
E55 baryons (excesses of events over the background
P

curve in Fig. 10). They proved to be σ1.42 ≈ 2.3 µb
and σ1.64 ≈ 1.0 µb.
Of course, the discovery of an exotic baryon would

be an important milestone in the understanding of
elementary-particle physics.

ACKNOWLEDGMENTS

We are grateful to A.B. Kaidalov, V.Z. Kolganov,
G.A. Leksin, G.S. Lomkatsi, and V.T. Smolyankin for
stimulating discussions.

REFERENCES
1. A. F. Nilov, Preprint No. 63-95, ITEP (Institute
of Theoretical and Experimental Physics, Moscow,
1995).

2. M. Yu. Bogolyubski et al., Preprint No. 86-219,
IHEP (Institute for High Energy Physics, Protvino,
1986).

3. K. G. Boreskov, A. B. Kaı̆dalov, V. I. Lisin, et al.,
Yad. Fiz. 15, 361 (1972) [Sov. J. Nucl. Phys. 15, 203
(1972)].

4. K. G. Boreskov, A. P. Gasparyan, A. B. Kaı̆dalov,
et al., Yad. Fiz. 15, 557 (1972) [Sov. J. Nucl. Phys.
15, 309 (1972)].

5. K. G. Boreskov, A. B. Kaı̆dalov, and L. A. Ponomarev,
Yad. Fiz. 17, 1285 (1973) [Sov. J. Nucl. Phys. 17, 669
(1973)].

6. A. F. Nilov, T. A. Garanina, G. S. Lomkatsi, and
L. A. Ponomarev, Yad. Fiz. 22, 583 (1975) [Sov. J.
Nucl. Phys. 22, 302 (1975)].

7. A. N. Kamalov and L. A. Ponomarev, Yad. Fiz. 23,
1072 (1976) [Sov. J. Nucl. Phys. 23, 566 (1976)].

8. K. G. Boreskov, A. B. Kaidalov, and L. A. Ponomarev,
in Elementary Particles: Proceedings of the First
ITEP School in Physics (Atomizdat, Moscow, 1973),
Vol. 2, p. 94.

9. L. A. Ponomarev, Yad. Fiz. 22, 807 (1975) [Sov. J.
Nucl. Phys. 22, 418 (1975)].

10. K. G. Boreskov, V. V. Glagolev, V. N. Emel’yanenko,
et al., Preprint No. R1-8164, OIYaI (Joint Inst. for
Nuclear Research, Dubna, 1974).

11. K. G. Boreskov, A. A. Grigoryan, and A. B. Kaı̆dalov,
Yad. Fiz. 24, 789 (1976) [Sov. J. Nucl. Phys. 24, 411
(1976)].

12. A. F. Nilov, Preprint No. 173-87, ITEP (Institute
of Theoretical and Experimental Physics, Moscow,
1987).

13. V. M. Guzhavin, M. S. Dubovikov, A. V. Lebedev, and
A. F. Nilov, Yad. Fiz. 19, 401 (1974) [Sov. J. Nucl.
Phys. 19, 199 (1974)].
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in the high-energy limit of QCD (gluodynamics) and XXX Heisenberg chains with noncompact spins to
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1. INTRODUCTION

In Regge theory the high-energy asymptotic be-
havior of the hadron–hadron scattering amplitudes
are determined by singularities of partial waves in
the complex angular momentum plane. It was ob-
served [1] that the regularity of quantum mechanics,
which relates high-energy scattering amplitudes to
the singularities of the partial waves in the complex
angular momentum plane, is valid for quantum field
theory as well. Namely, in Regge kinematics

s � −t ∼ M2, (1)

where M is a characteristic hadronic mass scale, s
and t are famous Mandelstam variables, s = (p1 +
p2)2 is the energy of the scattered particles in the
center-of-mass system, and t = p− p′1 is the mo-
mentum transferred, the hadron-hadronic scattering
amplitude A(s, t)

A(s, t) = is

ε+i∞∫

ε−i∞

dJ

2πi

( s

M2

)J
f(J, t) (2)

is governed by singularities of the partial waves
f(J, t), by Regge poles and Regge cuts. Among
the Regge singularities, there is one with vacuum
quantum numbers, the so-called Pomeron, which
provides the dominant contribution to the scattering
amplitude. The bootstrap conjecture has been pro-
posed, according to which all particle-like excitations
correspond to some Regge singularity and are related
to each other via unitarity of the S matrix and sum
rules.

However, the program of building the axiomatic
quantum field theory from assumptions of only uni-
tarity and analyticity of the S matrix failed, because

∗This article was submitted by the authors in English.
1)Erevan Physics Institute, Armenia.
2)Naturwissenschaftlich-Theoretisches Zentrum und Institut

für Theoretische Physik, Universität Leipzig, Germany.
1063-7788/02/6508-1501$22.00 c©
Regge theory itself does not allow one to calculate
the positions of these singularities. Now, QCD as
a theory of strong interaction is called to describe
the Regge behavior of the scattering amplitudes [2].
V.N. Gribov proposed the conjecture that Reggeons
form new collective excitations and QCD in the high-
energy limit can be replaced by an effective Reggeon
theory [3]. This has been confirmed in a series of
works, initiated by Lipatov [4]. It was shown that, in
the leading logarithmic approximation (LLA), which
is the natural approximation in the Regge limit of
QCD, A(s, t) can be expressed as a sum of Feyn-
man diagrams describing the multiple exchange of
Reggeized gluons in the t channel. The perturbative
expressions for corresponding Feynman diagrams
including large logarithmic factors αn logm s (m =
n, n− 1, . . .) have to be resummed to all orders in
αs (α is the strong coupling constant), because bare
gluons and quarks are not a good approximation in
the Regge limit. The leading contribution (m = n)
comes from ladder diagrams, corresponding to the
exchange of n Reggeons in t channel. Being built
from an infinite number of perturbative gluons, the
Reggeons carry the quantum numbers of the gluon
and become a new collective excitation in the Regge
limit (1). It is well known that the LLA results in
an asymptotic behavior that violates the Froissart
bound. Unitarity is restored by taking into account
subleading contributions as well. In the generalized
LLA (GLLA) some minimal set of nonleading terms
is included to restore unitarity [5]. The interaction of
the Reggeons is determined by LLA.

In LLA, the dominant contribution to the partonic
scattering amplitude comes from the soft gluons and
this leads to the gluon Reggeization property. It can
be shown that infrared divergences are canceled for
colorless external states due to gauge invariance.

Of course the distribution of partons inside the
hadron is described by the nonperturbative wave
function of the hadron. The nonperturbative ef-
fects can be taken into account in the approach
2002 MAIK “Nauka/Interperiodica”
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of constructing the high-energy effective action [6].
However, the perturbative investigation of high-
energy QCD makes sense as a first approximation to
begin with. In particular, the results obtained in the
BFKL (Balitskii, Fadin, Kuraev, Lipatov) Pomeron
approximation are in a good agreement with exper-
imental data of semihard processes and especially
of deep-inelastic scattering at small x. Then, some
information about nonperturbative corrections can
be extracted from analyzing the behavior of the
perturbative series in the infrared region [7].

2. HIGH-ENERGY QCD
AS AN INTEGRABLE MODEL

As mentioned above, the high-energy asymptotic
behavior of the scattering amplitude in LLA is de-
termined by the contribution of diagrams describing
two-Reggeon exchange in the t channel. It is a result
of summing up an infinite number ladder diagrams [4]
and corresponds to the exchange of the Pomeron.
Contributions of diagrams with three (Odderon) and
more Reggeized gluons can be considered as higher
corrections. Pomeron contribution corresponds to
elastic scattering. Diagrams with Odderon exchange
describe processes with the exchange of negative-
charge parity.

The dominating contribution in LLA comes from
the multi-Regge kinematics:

s = (pA + pB)2 ≈ 2pA · pB , (3)

si = (ki + ki+1)2 ≈ 2ki · ki−1,

i = 1, . . . , n + 1, k0 = pA,

ki = qi+1 − qi, kn+1 = pB,

s � si �| qi |2,

s1s2 · · · sn+1 = s

n∏

i=1

(−k2
⊥i),

k1 · pA � k2 · pA � . . . � kn · pA,
k1 · pB � k2 · pB � . . . � kn · pB ,

where pA and pB are momenta of initial particles,
while ki, i = 1, . . . , n, are momenta of final ones, and
k⊥ is defined by the Sudakov decomposition

kµ =
k · pA
pA · pB

pµB +
k · pB
pA · pB

pµA + kµ⊥.

Owing to this decomposition, the scattering ampli-
tudes in the Regge limit exhibit the remarkable sep-
aration of the longitudinal and transverse directions
with respect to the plane spanned by the momenta of
the initial particles.

In the GLLA, the interaction between Reggeons
is elastic and pairwise. We shall restrict ourselves
P

to the case where the number of Reggeons in the t
channel N is conserved. For a given N the Reggeon
Green’s function f{ik}, describing the elastic scatter-
ing of N Reggeons, satisfies the Bethe–Salpeter-like
equation [5]

ωf{ik} = f
(0)
{ik} +

∑

i<j

H(i,j)
{ik},{jk}f{jk}, (4)

where f
(0)
{ik} correspons to the free propagation of N

Reggeons in the t channel.
The set {ik} = (i1 . . . ir) labels the Reggeons, i =

G stands for gluon, and i = F or i = F̄ stands for
Reggeized quarks of corresponding helicity. The par-
tial wave f carries also an indexαi, labeling the gauge
group representation of the corresponding Reggeons,
and depends on their transverse momenta k⊥i or their
impact parameters xi.

The r-Reggeon contribution to the partial wave
is obtained by contracting the r-Reggeon Green’s
function with the parton distribution functions of the
scattered particles. The angular momentum is

J = 1 + ω − rf
2
, (5)

where rf is the number of exchanged fermions. The
pairwise interaction of the Reggeons is described by
the Hamiltonian

H(i,j)fi1...i...ir =
g2

(2π)3
(6)

×
∫

dk′idk
′
jδ(ki + kj − k′i − k′j)

× [(Ti ⊗ Tj)HHi,jfi1...i...j...ir
+ (Ti ⊗ Tj)GGijfi1...i...j...ir ];

T ai , a = 1, . . . , n, is SU(n) generators in representa-
tion of i Reggeon. The first term in the square brack-
ets corresponds to the interaction via an s-channel
gluon:

(Ti ⊗ Tj)H{αk,α′
k
}

(7)

=
r∏

k 	=i,j
δαk ,α

′
k
(T a)αiα′

i
(T a)αjα′

j
;

therefore, the gauge group matrix is obtained from the
generators by summing over the gluon color states
a. The second one corresponds to the interaction via
an s-channel fermion, and the gauge group matrix is
obtained by summing over the fermion color state α
(say, if i = G and j = F ):

(Ti ⊗ Tj)G{αk,α′
k
}

(8)

=
r∏

k 	=i,j
δαk ,α

′
k
(Tα

′
i)αiα(T

αj )αα′
j
.
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The explicit expressions for H and G are given below.
The overall group state in the t channel has to be the
gauge singlet.

While the longitudinal part of the scattering
amplitude is extracted as a kinematical factor, the
transverse dynamical part can be described by simple
Feynman rules, corresponding to the multi-Reggeon
effective action [6]. These graphical rules allow the
simple derivation of the interaction kernels in Eq. (6).
As operators in impact space, these kernels take the
following form

HGG = HG + H∗
G, (9)

Hω
F F̄ = Hω

F + P12H
∗(ω)
F P12,

HFF = HG + H∗
F ,

HFG = HG + P12H
∗
FP12,

GFG = (x∗12∂
∗
2)−1,

where
HG = −2ψ(1) + ∂−1

1 log x12∂1 (10)

+ ∂−1
2 log x12∂2 + log ∂1∂2,

Hω
F = −2ψ(1) + ∂

−1+ω/2
1 log x12∂

1−ω/2
1

+ ∂
−ω/2
2 log x12∂

ω/2
2 + log ∂1∂2,

and ψ(1) = −γ is the Euler number, derivatives are
defined over impact space parameters x1 and x2, “∗”
stands for complex conjugation, and P12 represents
the operator permuting the Reggeons 1 and 2.

Lipatov [8] solved equations for wave functions of
compound states of n Reggeized gluons using the
quantum inverse-scattering method. The eigenvalue
problem related to the operators (10) arises because
the position of the singularities in ω of the t-channel
partial wave f{ik} is determined by their eigenvalues.

Lipatov proposed to diagonalize the problem of
N-Reggeon exchange by establishing the corre-
spondence between the operators (10) and the XXX
Heisenberg model. He noticed that the operator HG
has two equivalent representations:

HG = ∂−1
1 log x12∂1 + ∂−1

2 log x12∂2 (11)

+ log ∂1∂2 − 2ψ(1) = x12 log ∂1∂2x
−1
12

+ 2 log x12 − 2ψ(1),

and therefore the transposed operator can be repre-
sented in two different ways as follows:

(HG)T = ∂1 log x12∂
−1
1 + ∂2 log x12∂

−1
2 (12)

+ log ∂1∂2 − 2ψ(1) = ∂1∂2HG(∂1∂2)−1.

On the other hand, we have

(HG)T = x−1
12 log ∂1∂2x12 (13)

+ 2 log x12 − 2ψ(1) = x−2
12 HGx

2
12.
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Then, we can deduce

[HG; C00] = 0, C00 = x2
12∂1∂2. (14)

This equation expresses the fact of conformal in-
variance of HG. Indeed, this operator coincides with
Casimir operator of SL(2) of zero conformal weights
C00. Then it is reasonable to denote HG as H00.

The Hamiltonian

H123 = H00
12 + H00

23 + H00
31 (15)

= ∂−1
1 log x31x12∂1 + ∂−1

2 log x12x23∂2

+ ∂−1
3 log x23x31∂3 + 2 log ∂1∂2∂3 − 6ψ(1)

= x12 log ∂1∂2x
−1
12 + x23 log ∂2∂3x

−1
23

+ x31 log ∂1∂3x
−1
31 + 2 log x12x23x31 − 6ψ(1)

corresponds to the exchange of three Reggeized glu-
ons (Fig. 1).

The transposition gives

(H123)T = ∂1∂2∂3H123(∂1∂2∂3)−1 (16)

= (x12x23x31)−1H123x12x23x31;

i.e., it commutes with the operator A3:

[HG;A3] = 0, A3 = x12x23x31∂1∂2∂3. (17)

Notice that operator A3 is the commutator of partial
Casimir operators of the chain links:

A3 = [C00
12 , C00

31 ] = [C00
23 , C00

12 ] = [C00
31 , C00

23 ]. (18)

Therefore, Eq. (17) is a consequence of (18) and
the Jacobi identity. It is easy to check that the N-
Reggeon Hamiltonian

HN =
N∑

i=1

Hi,i+1, HN,N+1 ≡ HN,1, (19)

commutes with

AN =

(
N−1∏

i=1

xi i+1

)


N∏

j=1

∂j



 . (20)

It can be checked also that HN commutes with CN ,

CN =
∑

1≤i<j≤N
x2
ij∂i∂j . (21)
2
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The eigenvalue problem:

ÃΨ∆(x1, x2, x3) = ãΨ∆(x1, x2, x3), (22)

C̃Ψ∆(x1, x2, x3) = ∆(1 − ∆)Ψ∆(x1, x2, x3);

here, ∆ stands for the total conformal weight of
Reggeon state under consideration. The set of equa-
tions above can be considered instead of the original
eigenvalue problem:

H̃123Ψ∆(x1, x2, x3) = Ẽ123Ψ∆(x1, x2, x3), (23)

which looks to be much more complicated.
The eigenproblem CNΨN = DNΨN expresses the

conformal invariance of the N-Reggeon system and
suggests the connection with the isotropic sl(2)
Heisenberg model with N sites and cyclic boundary
conditions, because CN can be identified with the
Casimir operator of this symmetry algebra.

Lipatov has related to each site of the Heisenberg
chain the following Lax operator

Li =




λ + S0

i S−
i

−S+
i λ− S0

i



 , (24)

where the sl(2) spin operators Sai
[S0
i ;S

±
j ] = ±δijS±

i , [S+
i ;S−

j ] = −2δijS0
i (25)

are represented as differential operators

S+
i = x2

i ∂i + 2∆ixi, (26)

S0
i = xi∂i + ∆i, S−

i = ∂i,

and λ is the spectral parameter. The Lax operator (21)
satisfies the Yang–Baxter equation. Therefore, the
trace of the monodromy matrix

T (λ) =
N∏

i=1

Li(λ) (27)

is the generating function for the set of N mutually
commuting differential operators Qk:

Qk =
∑

i1<i2<...<ik

xi1i2xi2i3 . . . xiki1∂i1∂i2 . . . ∂ik . (28)

Now, it is plausible enough that all operators Qk
commute with the Hamiltonian and the latter can
be represented as a function of Qk. Explicit calcula-
tions for low-N cases and additional mathematical
arguments [9] confirm this. Moreover, the relation
between the high-energy QCD kernels and the XXX
Heisenberg spin chains turns out to be much deeper.
Namely, this connection can be extended to the case
where fermions are incorporated. The ideas of con-
formal symmetry in Regge asymptotic behavior [10]
have been developed in application to the fermion
exchange in [11].
P

3. REVIEW OF INTEGRABLE CHAINS

Let us review the main facts of the theory of in-
tegrable systems concerning the XXX Heisenberg
magnet. In our review, we shall follow Sklyanin’s
work [12]. The phenomenon of the integrability of
quantum systems can be understood by means of
their relation to linear ones via separation of variables.
Namely, a quantum system is integrable if its non-
linear equations of motion can be represented as the
zero-curvature conditions of some integrable linear
system [13]. Physically this means that the inter-
action of such systems reduces to elastic scattering
and the only result of it consists in the exchange of
quantum numbers (momenta, etc.) of the scattered
particles. Accordingly, the S matrix of the theory is
factorized into the product of blocks, corresponding
to 2 → 2 scattering and also 1 → 1 in the presence of
a boundary [14].

A set of (annihilation) operators Za(λ) satisfying
the Zamolodchikov algebra

Za(λ)Zb(µ) = Sab,cd(λ− µ)Zd(µ)Zc(λ), (29)

where S is an n2 × n2 matrix, has been proposed for
an algebraic description of the factorizable scatter-
ing. The consistency condition of this system, which
follows from the associativity property of the triple
product Za1(λ1)Za2(λ2)Za3(λ3), is the Yang–Baxter
equation for the S matrix:

Sajak
(λj − λk)Sajal

(λj − λl)Sakal
(λk − λl) (30)

= Sakal
(λk − λl)Sajal

(λj − λl)Sajak
(λj − λk).

Extending this algebra by adding n conjugated (cre-
ation) operators Z†

a(µ), one gets the Zamolodchikov–
Faddeev algebra

Za(λ)Z†
b (µ) = δabδ(λ− µ) (31)

+ Z†
c (µ)Ŝac,bd(λ− µ)Zd(λ),

or, in matrix notation,

A(λ) ⊗A(µ) ≡ A1(λ)A2(µ) (32)

= S12(λ− µ)A2(µ)A1(λ),

A†
1(λ)A†

2(µ) = A†
2(µ)A†

1(λ)S†
21(µ− λ),

A1(λ) ⊗A†
1(µ) = I1δ(λ− µ)

+ A†
2(µ)Ŝ12(µ− λ)A2(λ),

where A(λ) and A†(µ) are the column (Z1(λ), . . . ,
Zn(λ))t and the row (Z†

1(µ), . . . , Z†
n(µ)), correspond-

ingly; subscripts refer to the corresponding isotopic
spaces C

n ⊗ C
n ≡ V1V2 and S21 = PS12P, Ŝ12 =

PS12; and P is the permutation operator in C
n ⊗ C

n.
The complete scattering matrix S({λk}) of the M
particles is then factorized into the ordered product
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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of M(M − 1)/2 two-particle S matrices (29). For
example, the S matrix of the jth particle on the
other M − 1 particles is given by t(λj; {λm}), i.e.,
the particular value of the transfer matrix for λ = λj :

t(λ; {λm}) = traT (λ; {λm}) (33)

≡ tra
∏

k

Sak(λ− λk).

The trace in this expression is taken over the auxiliary
space Va, while the transfer matrix acts in the quan-
tum space ⊗Mk=1Vk. In the framework of the quantum
inverse-scattering method (QISM) [12, 15], instead
of the original nonlinear problem, the auxiliary linear
one is considered:

d

dx
T (λ, x) = L(λ, x)T (λ, x) (34)

or

T (n+ 1, λ) = Ln+1(λ)T (n, λ)

in the discrete case. This is the Lax operator of the
QISM [16]. The solution of (34),

T (λ, x) = P exp





x∫

L(λ, y)dy



 (35)

or

T (n, λ) = Ln(λ)Ln−1(λ) . . . L1(λ)

in the discrete case, defines the monodromy matrix
T (λ). Its entries are the new variables (the quantum
scattering data), whose commutation relations are
defined by

n∑

j1,j2=1

Ri1i2,j1j2(λ− µ)Tj1k1(λ)Tj2k2(µ) (36)

=
n∑

j1,j2=1

Ti2j2(µ)Ti1j1(λ)Rj1j2,k1k2(λ− µ).

We see that integrable systems are specified by the
R matrix, which acts on C

n ⊗ C
n and satisfies the

Yang–Baxter equation
n∑

j1,j2,j3=1

Ri1i2,j1j2(λ)Rj1i3,k1j3(λ + µ) (37)

×Rj2j3,k2k3(µ) =
n∑

j1,j2,j3=1

Ri2i3,j2j3(µ)

×Ri1j3,j1k3(λ + µ)Rj1j2,k1k2(λ).

In general, the R matrix depends on the spectral
parameter λ and other parameters. Although there
is no complete mathematical theory of the Yang–
Baxter equation, a variety of solutions are known as
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
well as different fields of their application. They are
classified by the Lie algebra, its irreducible repre-
sentations, and the spectral parameter dependence:
rational, trigonometric, and elliptic ones [17]. Given
a solution R(λ), one can define the quadratic algebra
TR of n× n matrix elements Tij , which is generated
by Eq. (36). The associative algebra TR realizes the
representation space of a quantum integrable sys-
tem. The commutative integrals of motion are t(λ) =
trT (λ), which follows from (36), taking the trace of
T1T2 = R−1

12 T2T1R12. The algebra TR possesses the
comultiplication property: If T1(λ) and T2(λ) are two
representations of TR in the quantum spaces V1 and
V2, then the matrix

Tik(λ) = T1,ij(λ)T2,jk(λ) (38)

is a representation of TR in the tensor product V1 ⊗
V2. This property allows one to represent T (λ) as a
product of elementary representations, the so-called
Lax operators Li(λ). The Lax operator makes a shift
by one step along the chain:

Ln(λ)ψn = ψn+1.

Hence, the full product T (λ) =
∏N
n=1 LN+1−n(λ) de-

fines the full monodromy along the closed chain. It
follows from sl(2) symmetry of the R matrix that an
arbitrary constant d× d matrix K provides the sim-
plest representation of the algebra TR. This algebra
has a central element, the quantum determinant of
T (λ):

∆(λ) ≡ detqT (λ) = D(λ + η/2) (39)

×A(λ− η/2) −B(λ− η/2)C(λ + η/2)
= A(λ− η/2)D(λ + η/2) − C(λ− η/2)
×B(λ + η/2) = A(λ + η/2)D(λ − η/2)
−B(λ + η/2)C(λ− η/2) = D(λ + η/2)
×A(λ− η/2) − C(λ + η/2)B(λ − η/2).

Here, η is some model parameter and we used the
representation of the monodromy matrix as a block
matrix

T (λ) =



A(λ) B(λ)

C(λ) D(λ)





in order to define the quantum determinant which has
the following remarkable properties:

detqT1(λ)T2(λ) = detqT1(λ)detqT2(λ) (40)

and

detqK = detK. (41)

The next representation is given by the Lax op-
erator, mentioned above, which takes an especially
2
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simple form for the XXX spin chain:

L(λ) = λ + η
3∑

α=1

Sασα (42)

=




λ + ηS0 ηS−

−ηS+ λ− ηS0



 ,

where operators Sα belonging to some irreducible
representation of sl(2) have commutation relation (26).
Note that the R matrix itself can be chosen as a Lax
operator if the auxiliary space is two-dimensional. We
have

detqL(λ) = λ2 − η2(C + 1/4), (43)

C = (S0)2 − 1
2
(S+S− + S−S+).

Since the L(λ) operator, being the elementary rep-
resentation of TR, satisfies the Yang–Baxter relation
and the R matrix depends only on the difference of
the spectral parameters, the shift L(λ) → L(λ− ω)
defines an automorphysm in TR:

R(λ− ω1 + Sα1 σα)(λ− ω2 + Sβ2 σβ) (44)

= (λ− ω2 + Sβ2 σβ)(λ− ω1 + Sα1 σα)R.

Separating the terms linear in λ in this equation, one
deduces that the R matrix is sl(2)-invariant,

[R;Sα1 + Sα2 ] = 0, (45)

and depends only on difference ω12 = ω1 − ω2. The
sl(2) invariance implies that the R matrix has to have
the form

R =
∑

ρj(ω12)Pj , (46)

where Pj are the projectors corresponding to the de-
composition of the tensor product of two initial repre-
sentations into the sum of irreducible representations
labeled by spin j.

Furthermore, after separating the λ dependence in
Eq. (44), the terms which contain no λ are combined
into an equation which gives the recurrence relation
for ρj(ω12):

ρj+1(ω12) =
ω12 + η(j + 1)
ω12 − η(j + 1)

ρj(ω12), (47)

which determines R up to a scalar factor.
Particular solutions of the Yang–Baxter equation

have properties that are important for different appli-
cations, but which are not necessarily valid for a given
solution. These are the property of regularity,

R(0) = ρ(0)1/2P12;

the property of P symmetry,

PR12(λ)P ≡ R21(λ) = R12(λ);
PH
the property of T symmetry,

Rt1t212 (λ) = R12(λ);

the property of unitarity,

R12(λ) = R21(−λ) = ρ(λ)I;

the property of crossing symmetry,

R12(λ) = V(1)R
t2
12(−λ− η)V −1

(1) ;

and the semiclassical property,

R(λ, η) = I + ηr(λ) + O(η2).

Here, the superscript ti denotes matrix transposition
in space Vi, r(λ) is the classical R matrix, ρ(λ) is an
even scalar function, η is the crossing parameter, and
V determines the crossing matrix M ≡ V tV = M t.
The quasiclassical property gives rise to the direct
connection of the quantum model to the correspond-
ing classical one. Many R matrices have only the
combined PT symmetry: Rt12(λ) = R21(λ). The reg-
ularity is used to extract from t(λ) the local integrals
of motion.

Thus, the general solution to (44) is given by

T (λ,ω) (48)

= KLN (λ− ωN ) . . . L2(λ− ω2)L1(λ− ω1)

=




A(λ) B(λ)

C(λ) D(λ)



 .

It can be easily checked step by step using (44)
because any permutation of the multipliers gives the
equivalent result in the algebra TR. Notice that the
L operator is nothing else than an R matrix, acting
in auxiliary and quantum spaces C

2 ⊗ Vi: Li(λ) ≡
Rai(λ).

The corresponding quantum determinant is

∆(λ) = detqT (λ) (49)

= detK
N∏

i=1

((λ− ωi)2 − η2(Ci + 1/4)).

Now, it follows from

R12(λ− µ)T (1)(λ,ω)T (2)(µ,ω) (50)

= T (2)(µ,ω)T (1)(λ,ω)R12(λ− µ)

that

[t(λ,ω); t(µ,ω)] = 0, (51)

where t(λ,ω) = trT (λ,ω), The trace is taken over
the auxiliary space.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Among the integrals of motion (51), we look for
local ones, i.e., quantities H(k), k = 1, 2, 3, . . ., which
can be expressed as the sum of local operators,

H(k) =
N∑

i=1

H
(k)
i, i−1...i−k+1. (52)

The periodicity of the spin chain, N + 1 ≡ 1, is sup-

posed. The local densities H
(k)
i, i−1...i−k+1 should in-

volve only k adjacent spins Si, Si+1, . . . , Si−k+1. An
important case when such local integrals exist is
that of the homogeneous spin chain, corresponding
to equal spins ∆i = ∆ and zero shifts ω = 0. It has
the important property of translational invariance.
The corresponding R matrix is regular. The similarity
transformation has the form

USαi U
−1 = Sαi+1, USNU

−1 = K1S1K−1
1 , (53)

where K permutes with the boundary matrix K and
with the Lax operator L1: KL1(λ) = K−1L(λ)KK.
This transformation generalizes the ordinary trans-
lation for the periodic chain (K = 1) to the twisted
periodic boundary condition, specified by the ma-
trix K and UN �= 1 in contrast to the case K = 1,
when operator U takes the especially simple form
U = P12P23 . . .PN−1N . The unitarity of U allows one
to represent it in exponential form

U = eiP , (54)

where operator P has the physical meaning of the
total momentum of the chain. The Hamiltonian of the
model then acquires the form

H =
d

dλ
t(λ)|λ=0 =

N∑

i=1

d

dλ
Pi i+1Ri i+1(λ)|λ=0. (55)

Faddeev and Korchemsky have shown [9] that the
N-Reggeon Hamiltonian which is a direct extension
of (15), corresponding to the homogeneous chain,
can be obtained in this manner. Unfortunately, the
R matrix, corresponding to the inhomogeneous chain
(see below), possesses no regularity property and the
corresponding Hamiltonian cannot be related to the
derivative of the transfer-matrix in a simple way.

The analysis of the integrable systems is modified
upon considering the open chains, i.e., when bound-
ary conditions different from the periodic ones are
imposed. This case is related to the factorizable scat-
tering of particles with internal degrees of freedom
on a half-line [18]. The algebraic description via ZF
algebra [19] includes then the new object—boundary
operator B:

Za(λ)B = Kab(λ)Zb(−λ)B, (56)
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where Kab is some nondegenerate “constant” matrix.
Then, the two-particles’ factorizability gives rise to
the reflection equation [compare (29)]:

S12(λ− µ)K1(λ)S21(λ + µ)K2(µ) (57)

= K2(µ)S12(λ + µ)K1(λ)S21(λ− µ)

in addition to the Yang–Baxter equation (30). The
reflection matrix has the same properties as the R
matrix, i.e., regularity: K(0) = I, unitarity: K(λ) ×
K(−λ) = I, T symmetry: Kt(λ) = K(λ); the cross-
ing symmetry is more elaborated and it involves the S
matrix as well [19].

Then the boundary operator B can be constructed
by

B = exp
(∫

φ(λ)dλ
)

(58)

from the combination
φ(λ) = Za(−λ)Kab(λ)Zb(−λ), (59)

which is a “local” field φ(λ): [φ(λ);φ(µ)] = 0. Due to
the sl(2) symmetry of the S matrix, the corresponding
K matrix can be transformed, K → K ′ = GKG−1

with arbitrary G, and the general solution of the re-
flection equation (57) for the rational case, which we
are interested in, is

K(λ) = ξI + λE, E2 = I. (60)

The reflection equation has an important covariance
property: if T (λ) is defined as an ordered operator
along the chain product of the R matrices and if
K(λ) defined above satisfies relations (37) and (57),
then K ′(λ) = T (λ)K(λ)T (−λ)−1 is also a solution
to (79) (see below), provided that the entries of K(λ)
and T (λ) commute, [Kab(λ), Tcd(λ)] = 0. The proof
follows easily by the substitution of K ′(λ) into (79)
and by using the fundamental Yang–Baxter relation
in the different form

T−1
(2) (−µ)R12(λ + µ)T(1)(λ)

= T−1
(1) (λ)R12(λ + µ)T(2)(−µ).

If the matrix T (λ) is constructed as an ordered
product of N independent Lax operators, then K ′(λ)
can be interpreted as the monodromy matrix of the
N-site lattice model with a boundary interaction
described by the operator-valued reflection matrix
K(λ). It is called Sklyanin’s monodromy matrix. The
corresponding transfer matrix is defined as the trace

t(λ) = trK̄(λ)T (λ)K(λ)T−1(−λ),

where the matrix K̄(λ) is any solution of (57) corre-
sponding to the other boundary, which is commuta-
tive [12]

[t(λ), t(µ)] = 0.
2
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In the context of the Heisenberg chain Eq. (57)
takes the form:

R12(λ− µ)K−
(1)(λ)Rt1t212 (λ + µ)K−

(2)(µ) (61)

= K−
(2)(µ)R12(λ + µ)K−

(1)(λ)Rt1t212 (λ− µ),

R12(−λ + µ)(K+
(1)

)t1(λ)M−1
(1)

(62)

×Rt1t212 (−λ− µ− 2η)M(1)(K
+
(2))

t2(µ)

= (K+
(2))

t2(µ)M(1)R12(−λ− µ− 2η)

×M−1
(1) (K

+
(1))

t1(λ)Rt1t212 (−λ + µ),

where M is crossing matrix defined above. In prac-
tice, if K−(λ) is a solution of (61), then K+(λ) =
(K−(−λ− η))tM is a solution of (62). Equation (57)
has an important covariance property: if T (λ,ω) and
K±(λ) satisfy the relations (37) and (61), (62), then
Sklyanin’s monodromy matrix

U(λ,ω) = T (λ,ω)K−(λ)T̃ (λ,ω), (63)

where T̃ (λ,ω) = RNa(λ− ωN ) . . . R2a(λ− ω2) ×
R1a(λ− ω1) [cf. with (48)], satisfies the relation

R12(λ−µ)U(1)(λ,ω)Rt1t212 (λ+µ)U(2)(µ,ω) (64)

= U(2)(µ,ω)R12(λ + µ)U(1)(λ,ω)Rt1t212 (λ− µ).

Indeed, we note that unitarity and crossing symmetry
together imply the relation

M(1)R
t2
12(−λ− η)M−1

(1)R
t2
12(λ− η) = ρ(λ). (65)

Futhermore, we see that unitarity implies T (λ,ω) ×
T̃ (−λ,ω) =

∏
ρ(λ− ωi). Therefore, up to a scalar

factor, T̃ (−λ,ω) is the inverse of T (λ,ω).
The commutativity of the transfer matrix t(λ,ω)

implies integrability of the open quantum spin chain
with the Hamiltonian [12]:

H =
N−1∑

i=1

Hii+1 + 1/2(K(1)
− )t (66)

+
tr0K

(0)
+ (0)HN0

trK+(0)
,

whose two-site terms are given by

Hii+1 =
d

dλ
Pii+1Rii+1(λ)|λ=0 (67)

in the standard fashion.

4. CLOSED XXX HEISENBERG CHAIN

There are two ways of including fermions. The
first corresponds to considering closed Heisenberg
chains with different spins, i.e., chains containing the
operators GFG and HF together with HG. This case
PH
arises in amplitudes with the exchange of two ad-
joint fermions and one gluon. The same Hamiltonian
also describes the exchange of three fermions in the
fundamental representation of SU(3), unless all three
helicities are the same. In the first case, the Regge
singularity is placed near j = 0 and, in the second, is
placed near j = −1/2. The second way of including
fermions will be considered in the next section.

We consider the conformally covariant operator
obtained from Hω

F by substituting ω = 0,

H0 1
2 = ∂−1

1 log x12∂1 + log x12 (68)

+ log ∂1∂2 − 2ψ(1) == x12 log ∂1x
−1
12

+ log ∂2 + 2 log x12 − 2ψ(1)

with ∆1 = 0, ∆2 = 1/2 and the conjugated operator

H
1
2
0 = ∂−1

2 log x12∂2 + log x12 (69)

+ log ∂1∂2 − 2ψ(1) = x12 log ∂2x
−1
12

+ log ∂1 + 2 log x12 − 2ψ(1)

with ∆1 = 1/2, ∆2 = 0. We also have H̃F , which
should be denoted by

H
1
2

1
2 = 2 log x12 + log ∂1∂2 = x−1

12 H
00x12 (70)

with the weights ∆1 = ∆2 = 1/2. We have used the
identity

(x12∂2)−1 = ∂−1
2 log x12∂2 − log x12.

The operator H
1
2

1
2 is selfconjugated:

(H
1
2

1
2 )T = H

1
2

1
2 , (71)

and for H0 1
2 we have

(H0 1
2 )T = ∂1 log x12∂

−1
1 + log x12 (72)

+ log ∂1∂2 − 2ψ(1) = ∂1H
0 1

2∂−1
1

= x−1
12 log ∂1x12 + log ∂2 + 2 log x12

− 2ψ(1) = P12x
−1
12 H

0 1
2x12P12.

Therefore,

[H0 1
2 ;P12x12∂1] = 0. (73)

Taking into account that

(P12x12∂1)2 = P12x12∂1P12x12∂1 (74)

= x21∂2x12∂1 = −C0 1
2

and comparing with the general expression

C∆1∆2 = (S1 + S2)2 = x2
12∂1∂2 (75)

+ 2x12(∆1∂2 − ∆2∂1) + (∆1 + ∆2)(1 − ∆1 − ∆2),

we can conclude that, indeed, under conformal trans-
formations the operator H0 1

2 transforms covariantly
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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with weights 0, 1
2 . Consider first the homogeneous

closed chain, which consists of three fermions (see
Fig. 2). The corresponding Hamiltonian is given by

H
1
2

1
2

1
2

123 = H
1
2

1
2

32 + H
1
2

1
2

21 + H
1
2

1
2

13 (76)

= 2 log x12x23x31 + 2 log ∂1∂2∂3.

Conjugation arguments, as described above, give
nothing for H

1
2

1
2 , while the commutators of particular

Casimir operators provide us with two conserved
currents:

D
(3)
1
2

1
2

1
2

= x12x23x31∂1∂2∂3 (77)

+
1
2
(x23(x31 − x12)∂2∂3

+ x12(x23 − x31)∂1∂2 + x31(x12 − x23)∂3∂1)

− 1
2
(x12∂3 + x23∂1 + x31∂2)

is a third order differential operator and

D
(2)
1
2

1
2

1
2

= (x2
12∂1∂2 + x2

23∂2∂3 + x2
31∂3∂1) (78)

+(x31 − x12)∂1 + (x12 − x23)∂2 + (x23 − x31)∂3

is a second-order one. The latter reflects the confor-
mal symmetry of the system. The relations

[

H
1
2

1
2

1
2

123 ,D
(2)
1
2

1
2

1
2

]

= 0 (79)

and [

H
1
2

1
2

1
2

123 ,D
(3)
1
2

1
2

1
2

]

= 0 (80)

can be checked by direct calculations. These con-
served currents can be also obtained in a more regular
way. They appear as coefficients in front of λ1 and λ0

in the monodromy matrix expansion t(λ), where

t(λ) = tr(L1/2
1 (λ)L1/2

2 (λ)L1/2
3 (λ)) (81)

= D
(3)
1
2

1
2

1
2

+ λD
(2)
1
2

1
2

1
2

+ λ3 + 1/4,

and the Lax operators L∆
i (λ) are defined in (24).

Let us consider now the inhomogeneous closed
chain, which consisits of one fermion and two gluons
(see Fig. 3). The corresponding Hamiltonian is

H̃
1
2
00

123 = H00
32 + H

0 1
2

21 + H
1
2
0

13 (82)
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= 2 log x12x23x31 + 2 log ∂1∂2∂3

+ ∂−1
3 (x−1

23 − x−1
31 ) + ∂−1

2 (x−1
12 − x−1

23 ).

Transposition arguments do not work here. However,
for closed chains with three sites there is always a
third-order differential operator, commuting with op-
erator of total spin of chain C. Indeed, the result for the
commutator

[C∆1∆2
12 ; C∆3∆1] = [x2

12∂1∂2 (83)

+ 2x12(∆1∂2 − ∆2∂1);x2
31∂3∂1

+ 2x31(∆3∂1 − ∆1∂3)] = x12x23x31∂1∂2∂3

+ ∆3x12(x23−x31)∂1∂2 +∆2x31(x12−x23)∂3∂1

+ ∆1x23(x31 − x12)∂2∂3 − 2(∆2∆3x23∂1

+ ∆3∆1x31∂2 + ∆1∆2x12∂3) ≡ D
(3)
∆1∆2∆3

is symmetric under cyclic permutation of indices

(123). Therefore its commutator with D
(2)
∆1∆2∆3

≡
C∆1∆2

12 + C∆2∆3
23 + C∆3∆1

31 vanishes due to the Jacoby

identity. However, the Hamiltonian H̃
1
2
00

123 , while com-

muting with D
(2)
1
2
00

, does not commute with D
(3)
1
2
00

:

[H̃123,D
(3)] (84)

=
[
(2 log x12x23x31 + 2 log ∂1∂2∂3

+ ∂−1
3 (x−1

23 − x−1
31 ) + ∂−1

2 (x−1
12 − x−1

23 )),
(
x12x23x31∂1∂2∂3 +

1
2
(x2

12 − x2
31)∂2∂3

)]

=
1
2
∂−1

3 x2
12x

−2
31 ∂2 −

1
2
∂−1

2 x2
31x

−2
12 ∂3.

The operators D(2),D(3) also appear as coeffi-
cients in front of λ1 and λ0 in the monodromy matrix
2
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expansion t(λ), where

t(λ) = tr(L1/2
1 (λ)L0

2(λ)L0
3(λ)) (85)

= D(3) + λD(2) + λ2(2λ− 1).

The next inhomogeneous chain (see Fig. 4) is the one
with one gluon and two fermions.

The corresponding Hamiltonian commutes with
the Casimir operator,

[(x12∂1x12∂2 + x23∂3x23∂2 (86)

+ x31∂1∂3x31); (2 log x12x23x31

+ 2 log ∂1∂2∂3 + ∂−1
2 (x−1

12 − x−1
23 )] = 0,

and does not commute with the next current,
[(

x23∂3x31∂1x12∂2 −
1
2
x31∂1∂3x31

)

; (87)

(2 log x12x23x31 + 2 log ∂1∂2∂3

+ ∂−1
2 (x−1

12 − x−1
23 )
]

=
1
2
∂−1

2 x31(x−2
23 ∂1 − x−2

12 ∂3)x31.

The same happens for the longer closed chains. The
Hamiltonians for those chains commute only with the
first current, the Casimir operator. This means that,
in order to describe the integrable model, the cor-
responding Hamiltonian should be modified. Indeed,
the inhomogeneous chains (Figs. 3, 4) have to be
considered as the chains with impurity. Probably, the
expression for H0 1

2 has to be changed slightly.

5. XXX HEISENBERG CHAIN WITH OPEN
BOUNDARY

The second way of including fermions is to build an
open chain with the fermions (now in the fundamental
gauge group representation) at the ends. This open
chain corresponds to the Regge exchange with meson
quantum numbers in the t channel.

Let us consider the Hamiltonian corresponding to
the chain depicted in Fig. 5:

H
1
2
00

123 = H00
32 + H

0 1
2

21 (88)

= log x12 + ∂−1
2 log x32x21∂2 + log ∂1∂

2
2∂3

+ ∂−1
3 log x32∂3 = log ∂1 + x32 log ∂2∂3x

−1
32

+ x21 log ∂2x
−1
21 + 2 log .x21x32.
PH
The transposed Hamiltonian has the form

(H
1
2
00

123 )T = ∂2∂3H123∂2∂3 (89)

= P123(x32x21)−1H123x32x21P123.

Then, H commutes with

A
1
2
00

123 = P123x32x21∂2∂3P123. (90)

The permutation operator P123 maps the sites 1, 2, 3
of the chain into the sites 3, 2, 1, correspondingly.

In a similar way, the conserved operator of the
highest order in the derivatives can be obtained for
the open chain with N − 2 gluonic operators and
fermions of opposite spin at the ends:

H
1
2
0...0

12...N = ∂−1
2 log x21∂2 (91)

+ log x21 + log ∂2∂1 +
N−1∑

i=2

H00
ii+1

commutes with the charge operator

A12...N = P12...NxNN−1 . . . x21∂N∂N−1 . . . ∂2. (92)

For simplicity, we set the reflection matrices K±

equal to unity. From Eq. (56), one can see that this
implies the transfer matrix to be an even function of
the spectral parameter. In our case, we obtain up to
insignificant numerical terms

t(λ) = (4λ2 − 1)
(
D

(4)
1
2
00

− ω2D
(3)
1
2
00

(93)

− (λ2 − ω2
2)D

(2)
1
2
00

+ (λ2 − ω2
2)

2
)
,

where D(3)
1
2
00

and D
(2)
1
2
00

are the same as in (38) for the

closed chain and

D
(4)
1
2
00

= x2
12x

2
23∂1∂2 + x12x23(x12 − x23)∂1

+ x12x
2
23∂2 + x23(x12 − x23)∂2∂3.

It coincides with the square of the operator (75),
obtained above using transposed operator.

Setting here ω2
3 = ω2

2 = ω2
1 + 3/4, one notices

that second-order operatorD(2) coincides with C0 1/2.
Now, the operator D(2) commutes with the Hamil-
tonian. Thus, for the open chain (Fig. 5), described
by the Hamiltonian H123, as in Eq. (67), the eigen-
problem here can be replaced by the one with the
same Casimir operator and with the fourth-order
differential operator D(4) instead of D(3) = Ã as for
the closed chain.

So, we see that for the open chains we are able to
find a sufficient amount of conserved currents to solve
the eigenproblem for QCD Reggeon interactions.
Moreover, for the open chain Fig. 6 with one fermion
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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inside again, everything is all right. The Hamiltonian
and transfer matrix are given by

H
0 1

2
0

312 = H
0 1

2
31 + H

1
2
0

12 = 2 log x12x31 (94)

+ 2 log ∂2
1∂2∂3 + ∂−1

2 log x12 − ∂−1
3 log x31,

t(λ) = 4λ(λ + 1)x31∂1x
2
12∂1x31∂2∂3 (95)

+ 4λ2(λ + 1)2(x23∂2∂3

+ x31∂1x31∂3 + x12∂1x12∂2).

The case of the open chain with two fermions and
one gluon can be considered as well. For the chain
depicted in Fig. 7, we have two conserved currents:

[x12x23∂1∂2∂3x12x23∂2; (2 log x12x23 (96)

+ log ∂1∂
2
2∂3 + ∂−1

2 (x−1
12 − x−1

23 ))] = 0,

[(x12∂1x12∂2 + x23∂3x23∂2 + x31∂1∂3x31); (97)

(2 log x12x23 + log ∂1∂
2
2∂3 + ∂−1

2 (x−1
12 − x−1

23 ))] = 0.

Another chain with two fermions and one gluon is
shown in Fig. 8. One has the following relations for
this chain:

[x12∂2x23∂3x23∂2x12∂1; (2 log x12x23 (98)

+ log ∂1∂
2
2∂3 − ∂−1

1 x−1
12 )] = 0,

[(x12∂2x12∂1 + x23∂2∂3x23 + x31∂3x31∂1); (99)

(2 log x12x23 + log ∂1∂
2
2∂3 − ∂−1

1 x−1
12 )] = 0.

For completeness we consider also the open chain
with three fermions, shown in Fig. 9:

[(∂1x12∂2x23∂3x23∂2x12 (100)

+ x12∂2x23∂3x23∂2x12∂1);

(2 log x12x23 + log ∂1∂
2
2∂3)] = 0,

[(x12∂1∂2x12 + x23∂3∂2x23 + x31∂1∂3x31); (101)

(2 log x12x23 + log ∂1∂
2
2∂3)] = 0.

Thus, all possible open chains with three sites corre-
sponding to gluonic or fermionic Reggeons are inte-
grable. The conserved currents can be derived from
the transfer matrix with boundaries represented by
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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unity reflection matrices. The Hamiltonians are con-
structed from the QCD kernels given above and com-
mute with these two conserved currents given by
the second- and fourth-order differential operators,
respectively. We believe that integrability is an impor-
tant intrinsic property of high-energy limit of QCD
and holds for the longer open chains too.

6. CONCLUSIONS

The examples considered above, except for the
difficulties with the inhomogeneous closed chains, are
good evidence of the validity of Lipatov’s conjecture
about the deep connection between the kernels of
high-energy gluodynamics scattering amplitudes and
the exactly solvable two-dimensional models in the
case, when fermions are present as well. In the pure
gluonic case this connection context has already been
used for the solution of the Odderon problem [20]. The
case of open chain differs from the closed-chain case
by the higher order of nontrivial conserved charge; the
fourth order appears instead of the third.

Recently, it has been shown that the considered
integrable structures appear also in hard (exclusive
and deep-inelastic) scattering [21], corresponding to
a different limiting region of high-energy scattering
amplitudes in QCD.
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Abstract—We calculate the effective vertices for the quark–antiquark and the quark–antiquark–gluon
production in the virtual-photon–Reggeized gluon interaction. The last vertex is considered at the Born
level; for the first one the one-loop corrections are obtained. These vertices have a number of applications;
in particular, they are necessary for calculation of the virtual photon impact factor in the next-to-leading
logarithmic approximation. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of processes with Pomeron ex-
change remains one of the important problems of
high-energy physics. Special attention is attracted
by so-called semihard processes, where large values
of typical momentum transfersQ2 give a possibility of
using perturbative QCD for their theoretical descrip-
tion. The most common basis for such description is
given by the BFKL approach [1]. It became widely
known after the discovery at HERA of the sharp rise
of the proton structure function upon a decrease in the
Bjorken variable x (see, for example, [2]). Recently,
the total cross section of the interaction of two highly
virtual photons was measured at LEP. This process,
being a one-scale process, seems to be even more
natural for the application of the BFKL approach than
the two-scale process of the deep-inelastic scattering
at small x, since here the evolution in x described
by the BFKL equation does not interfere with the
evolution inQ2 described by the DGLAP equation.

For a consistent comparisonwith the experimental
data, the theoretical predictions must be obtained
in the next-to-leading approximation (NLA), where,
together with the leading terms (αs ln(s))n, the terms

∗This article was submitted by the authors in English.
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630090 Russia.

2)Institute of Mathematics, Siberian Division, Russian
Academy of Sciences, Universitetskiı̆ pr. 4, Novosibirsk,
630090 Russia.

3)Regensburg University, Germany.
4)Istituto Nazionale di Fisica Nucleare, Gruppo collegato di
Cosenza, Arcavacata di Rende, Italy
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***e-mail: d-ivanov@math.nsc.ru

****e-mail: M.I.Kotsky@inp.nsk.su
1063-7788/02/6508-1513$22.00 c©
αs(αs ln(s))n are also resummed. The radiative cor-
rections to the kernel of the BFKL equation were
calculated several years ago [3–8], and the explicit
form of the kernel of the equation in the NLA is known
now [9, 10] for the case of forward scattering. But
the problem of calculation in the NLA of the so-
called impact factors, which describe the coupling
of the Pomeron to the scattering particles, remains
unsolved.

Let us recall (see, for example, [11] for details)
that, in the BFKL approach, the relevant to the irre-
ducible representation R of the color group in the t-
channel part (AR)A

′B′

AB of the scattering amplitude for
the process AB → A′B′ at large c.m.s. energy

√
s →

∞ and fixed momentum transfer q ≈ q⊥ (⊥ means
transverse to the initial particle momenta plane) is
expressed in terms of the Mellin transform of the
Green’s function of the two interacting Reggeized

gluons G(R)
ω and of the impact factors of the colliding

particles Φ(R,ν)
A′A and Φ(R,ν)

B′B :

Ims (AR)A
′B′

AB =
s

(2π)D−2
(1.1)

×
∫

dD−2q1

q2
1(q1 − q)2

∫
dD−2q2

q2
2(q2 − q)2

×
∑

ν

Φ(R,ν)
A′A (q1,q, s0)

×
δ+i∞∫

δ−i∞

dω

2πi

[(
s

s0

)ω

G(R)
ω (q1,q2,q)

]

× Φ(R,ν)
B′B (−q2,−q, s0),

where Ims means the s-channel imaginary part, the
vector sign is used for denotation of the transverse
2002 MAIK “Nauka/Interperiodica”
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components, ν enumerates the states in the repre-
sentation R, D = 4 + 2ε is the spacetime dimension
different from 4 to regularize both infrared and ultra-
violet divergences, and the parameter s0 is artificial
and is introduced for convenience. While the Green’s
function obeys the generalized BFKL equation [11]

ωG(R)
ω (q1,q2,q) = q2

1(q1 − q)2δ(D−2)(q1 − q2)
(1.2)

+
∫

dD−2k

k2(k− q)2
K(R)(q1,k,q)G(R)

ω (k,q2,q)

with the NLA kernel K(R) and is completely defined
by this equation, the impact factors should be cal-
culated separately. The definition of the NLA impact
factors is given in [11]; in the case of definite colors
of c and c′ of the Reggeized gluons, the impact factor
has the form [12]

Φcc′
AA′(q1,q, s0) (1.3)

=
(
s0

q2
1

)ω(−q2
1)/2( s0

(q1 − q)2

)ω(−(q1−q)2)/2

×
∑

{f}

∫
dκ

2π
θ(sΛ − κ)dρf Γc

{f}A

(
Γc′
{f}A′

)∗

− 1
2

∫
dD−2k

k2(k − q)2
Φc1c′1(Born)

AA′ (k,q, s0)

×
(
KBorn

r

)c′1c′

c1c
(k,q1,q) ln

s2
Λ

s0(k− q1)2
,

where ω(t) is the Reggeized gluon trajectory and the
intermediate parameter sΛ should go to infinity. The
integration in the first term of the above equality is
carried out over the phase space dρf and over the
squared invariant mass κ of the system {f} produced
in the fragmentation region of the particle A, Γc

{f}A
are the particle–Reggeon effective vertices for this
production, and the sum is taken over all systems
{f} that can be produced in the NLA. The second
term in Eq. (1.3) is the counterterm for the LLA part
of the first one, so that the logarithmic dependence
of both terms on the intermediate parameter sΛ →
∞ disappears in their sum; KBorn

r is the part of the
leading-order BFKL kernel related to the real gluon
production (see [12] for more details). It was shown in
[13] that definition (1.3) guarantees infrared finiteness
of the colorless-particle impact factors.

It is clear from the above that, for a complete NLA
description in the BFKL approach, one needs to know
the impact factors; analogously, as in the DGLAP
approach one should know not only the parton dis-
tributions, but also the coefficient functions.

This paper is an extended version of the short
note [14], which can be considered as the first step
P

in the calculation of the virtual-photon impact factor
in the NLA. We calculate here the virtual photon–
Reggeon effective vertices which enter the definition
(1.3) in the case when the particleA is the virtual pho-
ton. In the NLA, the states that can be produced in
the Reggeon–virtual-photon collision are the quark–
antiquark and the quark–antiquark–gluon ones. In
the next section, we present the effective vertices for
production of these states in the Born approximation.
This approximation is sufficient to find, in the NLA,
the contribution to the virtual-photon impact factor
from the quark–antiquark–gluon state. In the case
of the quark–antiquark state, we need to know the
effective production vertex with one-loop accuracy.
Sections 3–5 are devoted to the calculation of the
one-loop corrections. In Sections 3 and 4, we con-
sider the two-gluon- and the one-gluon-exchange
diagrams, respectively; in Section 5 the total one-loop
correction is presented. The results obtained are dis-
cussed in Section 6. Some details of the calculation
are given in the Appendix.

In the following, the photon–Reggeon effective
vertices presented in this paper will be used for the
calculation of the photon impact factor. But they
could have many other applications, for example, in
the diffractive production of quark jets and so on.

2. THE BORN INTERACTION VERTICES

In this section, we present the vertices for the
qq̄ and the qq̄g production in the Reggeon–virtual-
photon collision in the Born approximation for the
case of completely massless QCD. These vertices can
be obtained from the high-energy amplitudes with the
octet color state and the negative signature in the t
channel for collision of the virtual photon with any
particle if the corresponding system is produced in the
virtual-photon fragmentation region. For simplicity,
we always consider collision of the virtual–photon
with the momentum pA and the quark with the mo-
mentum pB. We use everywhere below the Feynman
gauge for the gluon field; the Sudakov decomposition
of momenta

p = βp1 + αp2 + p⊥, α =
p2 + p2

sβ
, p2

1 = p2
2 = 0,

(2.1)

s = 2p1p2 → ∞, p2 ≡ −p2
⊥,

with the lightcone basis in the longitudinal space
defined by

pA = p1 −
Q2

s
p2, p2

A = −Q2, (2.2)

pB = p2, p2
B = 0 ;
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 1. The lowest order Feynman diagrams for the pro-
cess γ∗Q→ (qq̄)Q.

and the usual trick of retaining only the first term in
the decomposition of the metric tensor

gµν =
2pµ

2p
ν
1

s
+

2pµ
1p

ν
2

s
+ gµν

⊥ → 2pµ
2p

ν
1

s
(2.3)

in the numerator of the gluon propagator connecting
vertices µ and ν with momenta predominantly along
p1 and p2, respectively. The virtual-photon polariza-
tion vector e is taken in the gauge ep2 = 0, so that

e = e⊥ +
2ep1

s
p2. (2.4)

Then the polarization vector ẽ in the usual gauge
ẽpA = 0 is

ẽ = e +
ep1

Q2
pA, (2.5)

so that, in the case of the longitudinal polarization,
when ẽ2

L = 1, we have eLp1 = Q.
Let us start with the calculation of the quark–

antiquark production vertex. The diagrams of the pro-
duction process contributing to the Regge asymp-
totic behavior are shown in Fig. 1.

As was already mentioned, the quark–antiquark
pair is produced in the photon fragmentation region,
so that the invariant mass

√
κ of the pair is of the order

of typical transverse momenta and does not grow
with s. The Regge form of the production amplitude

A(0)
Qγ∗→Qqq̄ is

A(0)
Qγ∗→Qqq̄ = Γc(0)

γ∗qq̄

2s
t

Γc(0)
QQ , (2.6)

where t = q2 and Γc(0)
γ∗qq̄ and Γc(0)

QQ are corresponding
particle–Reggeon effective vertices in the Born ap-
proximation. Let us note that the amplitude of Fig. 1
has automatically only the octet color state and the
negative signature in the t channel, so that it is not
necessary here to perform any projection. The nota-
tion for all momenta is shown in Fig. 1. The quark–
Reggeon vertex is known up to NLA accuracy, and its
Born part is

Γc(0)
QQ = gtcB′BūB′

� p1

s
uB , (2.7)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Fig. 2. Schematic representation of the vertex Γ
c(0)
γ∗qq̄ .

where g is the coupling constant, tc are the color
group generators in the fundamental representation,
and u is a quark spinor wave function. Then, com-
paring Eqs. (2.6) and (2.7) with the explicit form of
the amplitude given by the diagrams of Fig. 1, one

can easily obtain for Γc(0)
γ∗qq̄ the diagrammatic repre-

sentation of Fig. 2 (see [13]), where the zigzag lines
represent the Reggeon with the momentum

q = −κ + Q2 + q2

s
p2 + q⊥,

t = q2 = q2
⊥ = −q2, (2.8)

and the color index c. The lowest order effective ver-
tices for interaction of the Reggeon with quarks and
gluons are defined in Fig. 3 (see [13]).

The vertex Γc(0)
γ∗qq̄ can be obtained from the dia-

grams of Fig. 2 by the usual Feynman rules as the
amplitude of the quark–antiquark production in col-
lision of the virtual photon with the Reggeon. This
procedure gives us the result

Γc(0)
γ∗qq̄ = −eqfgt

c
i1i2 ū1

(
Γ̂1

t1
− Γ̂2

t2

)
� p2

s
v2 (2.9)

= −eqfgt
c
i1i2

([

ū1
Γ̂1

t1

� p2

s
v2

]

− [1 ↔ 2]

)

,

where eqf is the electric charge of the produced quark;
i1 and i2 are the color indices of the quark and anti-
quark, respectively; v is the spinor wave function of
the produced antiquark; and

Γ̂1 =
1
x1

(2x2(ek1) − � e⊥ � k1⊥) , (2.10)

Γ̂2 =
1
x2

(2x1(ek2) − � k2⊥ � e⊥) ,

ti = (pA − ki)2 = −k2
i + x1x2Q

2

xi
,

with the variables xi defined by the Sudakov de-
compositions of the produced quark and antiquark
momenta

ki = xip1 +
k2

i

sxi
p2 + ki⊥, k2

i = 0 , i = 1, 2.

(2.11)
2
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Fig. 3. The quark–quark–Reggeon and the gluon–gluon–Reggeon effective vertices. T c is the color group generator in the
adjoint representation.
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c(0)
γ∗qq̄g .
The substitution 1 ↔ 2 in Eq. (2.9) means replace-
ment quark ↔ antiquark, i.e., x1 ↔ x2 ,k1 ↔ k2

together with replacement of the polarizations. The
validity of the second equality in (2.9) can be easily
verified using the charge conjugation matrix. We will

need later the Born effective vertex Γc(0)
γ∗qq̄ also in the

helicity representation for the case of the spacetime
dimension D equal 4. To obtain it, we use the polar-
ization matrix

ρ̂ ≡ (v2ū1) =
1√
x1x2

1
4

(2.12)

×
[(

x2k1 + x1k2 − κ
p2

s

)µ
− 2iξeµνσρk2νk1σ

p2ρ

s

]

× γµ (1 − ξγ5) ,

where
e0123 = 1, γ5 = iγ0γ1γ2γ3, (2.13)
P

and ξ = ±1 is a double helicity of the produced quark.
The polarization matrix satisfies the evident relations

� k2ρ̂ = ρ̂� k1 = (1 − ξγ5) ρ̂ = ρ̂ (1 + ξγ5) = 0.
(2.14)

For the virtual photon polarization vector, we also use
the helicity representation

eµ(λ) =
1√
−2t

[

(δλ,1 + δλ,−1) (2.15)

×
(
qµ
⊥ + 2iλeµνσρqνp1σ

p2ρ

s

)
.

+ δλ,0

√
−2tQ2

2pµ
2

s

]

, λ = 0,±1.

Using Eqs. (2.9)–(2.15), we get

Γc(0)
γ∗qq̄ = −

2eqfgt
c
i1i2√

−2tx1x2

([
x2

t1

{

δλ,0

√
2qQx1x2 (2.16)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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− (k1 · q + iλP ) (x2δλ,−ξ − x1δλ,ξ)
}]

− [1 ↔ 2]
)

=
2eqfgt

c
i1i2√

−2tx1x2

[

δλ,0

√
2qQx1x2

×
(
x1

t2
− x2

t1

)

+ (x2δλ,−ξ − x1δλ,ξ)

×
(
x2

t1
(k1 · q + iλP ) +

x1

t2
(k2 · q− iλP )

)]

,

where q = |q|,

P = 2eµνσρk1µk2νp1σ
p2ρ

s
, (2.17)

with the property P 2 = k2
1 · k2

2 − (k1 · k2)2, and the
replacement (1 ↔ 2) is x1 ↔ x2, k1 ↔ k2, ξ ↔ −ξ.

Next, we perform the calculation of the quark–
antiquark–gluon production effective vertex Γc(0)

γ∗qq̄g.
It can be obtained through the usual Feynman rules
with the elementary Reggeon vertices defined in
Fig. 3 as the amplitude of the quark–antiquark–
gluon production in the virtual-photon–Reggeon
collision represented by the diagrams of Fig. 4, where
the denotations of momenta are presented. The color
indices of the Reggeon and the emitted gluon are c
and b, respectively. The Reggeon momentum is given
by Eq. (2.8), where κ now is the quark–antiquark–
gluon squared invariant mass. The vertex Γc(0)

γ∗qq̄g

obtained in this way is invariant with respect to the
gauge transformations of the emitted-gluon polar-
ization vector eg and can be simplified by appropriate
choice of the gauge. We use the axial gauge

egp2 = 0, eg = −
2(eg⊥k⊥)

sβ
p2 + eg⊥, (2.18)

where β is defined by k = βp1 + k2/(sβ)p2 + k⊥.
In this gauge, the last nonlocal term in the expression
for the gluon–Reggeon interaction vertex of Fig. 3b
disappears and we obtain

Γc(0)
γ∗qq̄g(eqfg

2)−1 = 〈1|tbtc|2〉 (2.19)

×
[

ū1

{
1

(pA − k1)2(k2 + q)2

× � e(� pA−� k1) � e∗g(� k2+� q)
� p2

s

+
1

(k + k1)2(pA − k2)2

× � e∗g(� k+� k1)
� p2

s
(� pA−� k2) � e

− 1
(k + k1)2(k2 + q)2

× � e∗g(� k+� k1) � e× (� k2+� q)
� p2

s

PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
+
(
γµ(� pA−� k2)� e
(pA − k2)2

− � e(� pA−� k1)γµ

(pA − k1)2

)

× 1
(k + q)2

(

βe∗µg − pµ
2

s
(2qe∗g)

)}

v2

]

+ 〈1|tctb|2〉 [1 ↔ 2]

= 〈1|tbtc|2〉
[

ū1

{
1

(pA − k1)2(k2 + q)2

× � e(� pA−� k1) � e∗g(� k2+� q)
� p2

s

+
1

(k + k1)2(pA − k2)2

× � e∗g(� k+� k1)
� p2

s
(� pA−� k2) � e � e

− 1
(k + k1)2(k2 + q)2

× � e∗g(� k+� k1) � e(� k2+� q)
� p2

s

+
(
γµ(� pA−� k2) � e

(pA − k2)2
− � e(� pA−� k1)γµ

(pA − k1)2

)

× 1
(k + q)2

(

βe∗µg − pµ
2

s
(2qe∗g)

)}

v2

]

+ 〈1|tctb|2〉
[

ū1

{
1

(pA − k2)2(k1 + q)2

× � p2

s
(� k1+ � q) � e∗g(� pA− � k2) � e

+
1

(k + k2)2(pA − k1)2

× � e(� pA−� k1)
� p2

s
(� k+� k2) � e∗g

− 1
(k + k2)2(k1 + q)2

× � p2

s
(� k1+ � q) � e(� k+� k2) � e∗g

+
(
� e(� pA−� k1)γµ

(pA − k1)2
− γµ(� pA−� k2) � e

(pA − k2)2

)

× 1
(k + q)2

(

βe∗µg − pµ
2

s
(2qe∗g)

)}

v2

]

.

3. THE ONE-LOOP CORRECTION:
THE TWO-GLUON EXCHANGE DIAGRAMS

In this section, we consider the contribution of the
two-gluon-exchange diagrams to Γc

γ∗qq̄. There are six
diagrams of such kind for the process we consider;
they are shown in Fig. 5.

Now, we have to perform the projection on the
negative signature and the octet color state in the t
channel. This is done by the following replacement
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Fig. 5. The two-gluon-exchange Feynman diagrams for the process γ∗Q→ (qq̄)Q.
of the color factor of the lowest line of diagrams from
Fig. 5:

(tbta)B′B → 1
2

(
tbta − tatb

)

B′B
=

1
2
T c

abt
c
B′B . (3.1)

Then, we obtain

A(2g)(8,−)(1)
Qγ∗→Qqq̄ =

1
4
Ntci1i2t

c
B′B {[(D1 + D2) (3.2)

− (1 ↔ 2)] − [s ↔ −s]} ,
where N is the number of colors, D1 is the amplitude
represented by the diagram of Fig. 5(1) with omitted
color generators on any vertex, and 2D2 is such am-
plitude for the diagram of Fig. 5(2).

The calculation of D1 is quite straightforward.
Note here that, since our final goal is the virtual-
photon impact factor in physical spacetime and since
the integration over the quark–antiquark states in
Eq. (1.3) is not singular, we need to retain in the
vertex Γc

γ∗qq̄ and, consequently, in the amplitude

A(2g)(8,−)(1)
Qγ∗→Qqq̄ only the terms which do not vanish at

ε → 0. Therefore all one-loop results are presented in
this paper with such accuracy. In a convenient form
for us, we have

(D1 −D1(1 ↔ 2)) − (s ↔ −s) (3.3)

= (−1)
4
N

gūB′
� p1

s
uBeqfgū1

(
Γ̂1

t1
− Γ̂2

t2

)

PH
× � p2

s
v2

s

t
ω(1)(t)

(

ln
(

s

−t

)

+ ln
(
−s

−t

))

+ 4gūB′
� p1

s
uB

2s
t
eqfg

3 Γ(2 − ε)
(4π)2+ε

1
2ε

×
{[

ū1
Γ̂1

t1

� p2

s
v2 (2(−t)ε

×
(

1
ε

+ 1 + 2(1 + ε) lnx2 + ε− 5εψ′(1)
)

+

1∫

0

dy

(−(1 − y)t− yt1)
1−ε

× 2(1 + ε) (t− 2(t− t1)yε))
]

− [1 ↔ 2]
}

,

where the first term is responsible for the Reggeiza-

tion of the amplitude A(8,−)
Qγ∗→Qqq̄ with ω(1) being the

one-loop Reggeized gluon trajectory,

ω(1)(t) = −g2N
Γ(1 − ε)
(4π)2+ε

(
q2
)ε Γ2(ε)

Γ(2ε)
, (3.4)

and Γ(z) and ψ(z) are the Euler Γ function and its
logarithmic derivative, respectively. The calculation of
D2 is more complicated, and we present some details
of it in the Appendix. Here, we write only the result
(D2 −D2(1 ↔ 2)) − (s ↔ −s) = 4gūB′
� p1

s
uB

2s
t
eqfg

3 Γ(2 − ε)
(4π)2+ε

1
2ε

×
{[

ū1

1∫

0

1∫

0

dy1dy2

[(1 − y2) (−(1 − y1)t− y1t2) + y2 (−(1 − y1)t1 + y1Q2)]2−ε

×
(
yε−1
1 (1 − y1)y−ε

2

(
xε

1x
−ε
2 − 2ε2ψ′(1)

)
2tΓ̂1 + (1 − y1)4t(ek1) (3.5)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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PHYSICS OF ATOM
+
(
yε
1y

−ε
2 xε

1x
−ε
2 − 1

)
4x2t(ep1)

) � p2

s
v2

]

− [1 ↔ 2]
}

.

Note that the imaginary parts of D2 (in the
(pB′ + k2)2 channel) and D2(1 ↔ 2) (in the (pB′ +
k1)2 channel) which would destroy the Reggeization

cancel in the amplitude A(8,−)
Qγ∗→Qqq̄. Although in the

NLA BFKL approach there is no requirement of the
Reggeization of full amplitudes (the Reggeization of
their real parts is sufficient), we see that nevertheless
the Reggeization also holds without omitting any
imaginary part for the process Qγ∗ → Qqq̄.

The amplitude AQγ∗→Qqq̄ with the octet color
state and the negative signature in the t channel has
the following Reggeized form:

A(8,−)
Qγ∗→Qqq̄ = Γc

γ∗qq̄

s

t

×
[(

s

−t

)ω(t)

+
(
−s

−t

)ω(t)
]

Γc
QQ

≈ Γc(0)
γ∗qq̄

2s
t

Γc(0)
QQ + Γc(0)

γ∗qq̄

s

t
ω(1)(t) (3.6)

×
[

ln
(

s

−t

)

+ ln
(
−s

−t

)]

Γc(0)
QQ

+ Γc(0)
γ∗qq̄

2s
t

Γc(1)
QQ + Γc(1)

γ∗qq̄

2s
t

Γc(0)
QQ .

Let us now split the one-loop contributions to this
amplitude and both of the effective vertices according
to the three sets of one-loop diagrams for AQγ∗→Qqq̄:
the two-gluon exchange diagrams, the t-channel
gluon self-energy diagrams, and the one-gluon-
exchange diagrams

A(2g)(8,−)(1)
Qγ∗→Qqq̄ + A(se)(8,−)(1)

Qγ∗→Qqq̄ + A(1g)(8,−)(1)
Qγ∗→Qqq̄

=
{

Γ(2g)c(1)
γ∗qq̄

2s
t

Γc(0)
QQ + Γc(0)

γ∗qq̄

2s
t

Γ(2g)c(1)
QQ

+ Γc(0)
γ∗qq̄

s

t
ω(1)(t)

[

ln
(

s

−t

)

+ ln
(
−s

−t

)]

Γc(0)
QQ

}

(3.7)

+
{

Γ(se)c(1)
γ∗qq̄

2s
t

Γc(0)
QQ + Γc(0)

γ∗qq̄

2s
t

Γ(se)c(1)
QQ

}

+
{

Γ(1g)c(1)
γ∗qq̄

2s
t

Γc(0)
QQ + Γc(0)

γ∗qq̄

2s
t

Γ(1g)c(1)
QQ

}

,

where the self-energy diagrams and one-gluon ex-
change diagrams have automatically only the octet
color state and negative signature in the t channel,
so that

A(se)(8,−)(1)
Qγ∗→Qqq̄ ≡ A(se)(1)

Qγ∗→Qqq̄, (3.8)
IC NUCLEI Vol. 65 No. 8 200
A(1g)(8,−)(1)
Qγ∗→Qqq̄ ≡ A(1g)(1)

Qγ∗→Qqq̄.

We recall that, in our case of completely massless
quantum field theory, the contribution from the renor-
malization of the external lines is absent in the dimen-
sional regularization. Now, from the representations

of Eqs. (3.7) and (3.8), it is easy to see that Γ(1g)c(1)
γ∗qq̄

is given by the radiative corrections to the amplitude
of the quark–antiquark production in collision of the
virtual photon with the gluon having momentum q,
color index c, and polarization vector−pµ

2/s, whereas

Γ(1g)c(1)
QQ is defined by the radiative corrections to the

vertex of interaction of this gluon with the quark Q.
In both cases, the gluon self-energy is not included
in these corrections; it is divided into equal parts

between Γ(se)c(1)
γ∗qq̄ and Γ(se)c(1)

QQ . For the two-gluon-
exchange contributions, we have the relation

Γ(2g)c(1)
γ∗qq̄

2s
t

Γc(0)
QQ + Γc(0)

γ∗qq̄

2s
t

Γ(2g)c(1)
QQ (3.9)

= A(2g)(8,−)(1)
Qγ∗→Qqq̄ − Γc(0)

γ∗qq̄

s

t
ω(1)(t)

×
[

ln
(

s

−t

)

+ ln
(
−s

−t

)]

Γc(0)
QQ ,

which shows that we need to know the correction
Γ(2g)c(1)

QQ . This correction can be obtained from the
two-gluon contribution to the Qq elastic-scattering
amplitude with the color octet and the negative signa-
ture in the t channel in the Regge kinematical region.
From Eq. (3.9) with the replacements

Γ(2g)c(0,1)
γ∗qq̄ → Γ(2g)c(0,1)

qq , (3.10)

A(2g)(8,−)(1)
Qγ∗→Qqq̄ → A(2g)(8,−)(1)

Qq→Qq ,

denoting

Γ(2g)c(1)
qq = δ(2g)(t)Γc(0)

qq , Γ(2g)c(1)
QQ = δ(2g)(t)Γc(0)

QQ ,

(3.11)

we get

δ(2g)(t) =
t

4sΓc(0)
qq Γc(0)

QQ

{
A(2g)(8,−)(1)

Qq→Qq (3.12)

− Γc(0)
qq Γc(0)

QQ

s

t
ω(1)(t)

[

ln
(

s

−t

)

+ ln
(
−s

−t

)]}

.

The value A(2g)(8,−)(1)
Qq→Qq is given by the contribution of

two diagrams of Fig. 6 through the same procedure
(3.1) for the lowest line of these diagrams to project
2
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Fig. 6. The two-gluon exchange Feynman diagrams for
the process qQ→ qQ.

on the negative signature and the color octet in the t
channel. In this way, one gets

A(2g)(8,−)(1)
Qq→Qq (3.13)

=
1
4
N〈1′|tc|1〉〈B′|tc|B〉 (D3 −D3(s ↔ −s)) ,
P

whereD3 is the amplitude represented by the diagram
of Fig. 6a with omitted color factors. The calculation
of this diagram is quite simple, and we do not present
any details here. The result for δ(2g) can be obtained
in an exact form without ε expansion,

δ(2g)(t) =
1
2
ω(1)(t)

×
[
1
ε

+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)
]

(3.14)

≈ −g2N
Γ(2 − ε)
(4π)2+ε

1
ε

(−t)ε
(

1
ε

+ 1 + ε− 4εψ′(1)
)

,

where the last approximate equality shows the re-
sult expanded in ε, which is sufficient for our pur-
poses. Now, using Eqs. (2.7), (2.9), (3.2)–(3.5),
(3.9), (3.11), and (3.14), we obtain
Γ(2g)c(1)
γ∗qq̄

(

eqfg
3Ntci1i2

Γ(2 − ε)
(4π)2+ε

1
2ε

)−1

(3.15)

=
[

ū1

(

2(−t)ε
(
2(1 + ε) lnx2 − εψ′(1)

) Γ̂1

t1
+

1∫

0

dy

(−(1 − y)t− yt1)
1−ε

× 2(1 + ε) (t− 2yε(t− t1))
Γ̂1

t1
+

1∫

0

1∫

0

dy1dy2

(−y1y2κ− t− y2(t1 − t) − y1(t2 − t))2−ε

×
{
yε−1
1 (1 − y1)y−ε

2

(
xε

1x
−ε
2 − 2ε2ψ′(1)

)
2tΓ̂1 + (1 − y1)4t(ek1)

+
(
yε
1y

−ε
2 xε

1x
−ε
2 − 1

)
4x2t(ep1)

}
)
� p2

s
v2

]

− [1 ↔ 2] .
The last equality gives the integral representation
for the one-loop two-gluon-exchange part of the
Reggeon–virtual-photon effective vertex for the
quark–antiquark production. Although all the inte-
grals in (3.15) can be expressed in terms of elemen-
tary functions and dilogarithms with the necessary
accuracy in ε expansion, it seems more convenient
to leave the result in such an unintegrated form in
order to have the possibility of using usual Feynman
parametrization and to change orders of integra-
tions over all Feynman parameters at a subsequent
calculation of the impact factor. Performing the
integrations in Eq. (3.15), one loses this possibility
and has to do a step back to an unintegrated result
to restore it. Let us finally note that the method

of extraction of Γ(2g)c(1)
γ∗qq̄ from the corresponding

part of the amplitude we used here is absolutely
equivalent to the one proposed in [13] and gives
the same result that has been checked by direct
comparison.
4. THE ONE-LOOP CORRECTION:
THE ONE-GLUON EXCHANGE DIAGRAMS

In this section, we consider the contribution of the
one-gluon-exchange diagrams to the vertex Γc

γ∗qq̄. It
is presented by the diagrams of Fig. 7 with the gluon
polarization vector equal to −pµ

2/s, as was already
explained in the previous section. Calculating the
color factors of the diagrams, one can easily obtain
the representation

Γ(1g)c(1)
γ∗qq̄ = Ntci1i2

{[

−2CF

N
(R1 + R2) (4.1)

+
N − 2CF

N
(R3 + R4) + R5 + R̃6

]

− [1 ↔ 2]
}

,

with the usual notation

CF =
N2 − 1

2N
(4.2)

and the notation 2R1, ..., 2R4,−2R5, and 4R̃6 for the
amplitudes represented by the diagrams of
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 7. The diagrams corresponding to the correctionΓ
(1g)c(1)
γ∗qq̄ .
Figs. 7(1),..., (4), (5), and (6), respectively, with omit-
ted color generators on any vertex and the external
virtual gluon polarization vector equal to pµ

2/s. While
the definition of R1, ..., R4 is absolutely clear, R5 and
R̃6 are not well defined by the above prescription
because of the presence of three-gluon vertices in
the corresponding diagrams, Figs. 7(5) and 7(6). To
complete their definition, we have indicated explicitly
the momenta and vector indices for the three-gluon
vertex for which the following expression should be
used after the omission of color generators:

γλνµ(−k − q, k) = ig [−gλν(2k + q)µ (4.3)

+ gλµ(k + 2q)ν + gνµ(k − q)λ] .

The calculation of R1, R2, R3, and R5 is simple,
and we present here only the list of the results in
integral form without any details:

R1 = −eqfg
3 Γ(2 − ε)

(4π)2+ε

1
2ε

ū1 (4.4)
CS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
×
1∫

0

dy

((1 − y)Q2 − yt1)
1−ε

×
{
(1 + 2ε)

Q2

t1
Γ̂1 + 2ε(ep1)

+ y
[
(1 − 2ε)

(
Q2

t1
+ 1

)

Γ̂1

+ 2(2 − ε)(ek1)
]} � p2

s
v2, (4.5)

R2 = −eqfg
3 Γ(2 − ε)

(4π)2+ε

1
2ε

ū1
Γ̂1

(−t1)
1−ε

� p2

s
v2,

R3 = eqfg
3 Γ(2 − ε)

(4π)2+ε

1
2ε

ū1

×
1∫

0

dy

(−(1 − y)t− yt1)
1−ε

{

(1 + 2ε)
t

t1
Γ̂1 (4.6)

+ y

[

(1 − 2ε)
(

t

t1
− 1

)
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× Γ̂1 + (2 − ε)x2

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)]} � p2

s
v2,

R5 = eqfg
3 Γ(2 − ε)

(4π)2+ε

1
2ε

ū1 (4.7)

×
1∫

0

dy

(−(1 − y)t− yt1)
1−ε

×
{

−(1 − 2ε)
t

t1
Γ̂1 − (2 + ε)Γ̂1 + (1 + 2ε)x2

×
(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)
+ y

[(
t

t1

− 1
)

Γ̂1 − (1 + ε)x2

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)]} � p2

s
v2.
P

The calculation of R4 and R̃6 is, actually, also
quite straightforward, although it is very tedious. To
simplify the representation of the results, we split
the corresponding diagrams into two parts: infrared
divergent part and convergent part. For the first part,
we present results in the spinor representation and,
for the other part, in the helicity representation with
the use of the definitions of Eqs. (2.12) and (2.15). In
addition, instead of the result for R̃6, we present the
result forR6,

R̃6 =
1
2

(R6 −R6(1 ↔ 2)) , (4.8)

which can evidently be used in (4.1) instead of R̃6.
The results for the singular parts are
R
(s)
4 = eqfg

3 Γ(2 − ε)
(4π)2+ε

ū1

×
1∫

0

1∫

0

1∫

0

dzdy1dy2θ (1 − y1 − y2) z1+εκ

[zy1y2 (−κ− iδ) + (1 − z) (y1Q2 − y2t− (1 − y1 − y2)t1)]
2−ε (4.9)

×
[
(1 − y1 − y2)

(
(1 − z(1 − y2))x2

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)
− Γ̂1

)

− 2y1(1 − zy1)(ek1)]
� p2

s
v2,

R
(s)
6 = eqfg

3 Γ(2 − ε)
(4π)2+ε

1
2ε

1∫

0

1∫

0

dy1dy2(1 − y1)
(−y1y2κ− t− y2(t1 − t) − y1(t2 − t))2−ε (4.10)

× ū1

{
2(t2 − t)

(
Γ̂1 + 2y1(ek1)

)
− x1((1 − y1)t1 − y1Q

2)
(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)} � p2

s
v2.

The results for the regular parts are

R
(r)
4 =

eqfg
3

(4π)2
2

√
2x1x2q2

(4.11)

×
1∫

0

1∫

0

1∫

0

dzdy1dy2θ (1 − y1 − y2) z
[zy1y2 (−κ− iδ) + (1 − z) (y1Q2 − y2t− (1 − y1 − y2)t1)]

2

×
{[

(1 − z)
(
y1Q

2 − y2t− (1 − y1 − y2)t1
)
− zy1y2κ

]

×
[
((1 − y2)(k1 · q + iλP ) − y2x1q2)zx2δλ,−ξ −

(
(1 − zy1)

(
x1q2 + k1 · q + iλP

)

+ (1 − z)x2q2
)
x1δλ,ξ

]
+ y1x2κ

[
(1 − z(1 − y2)) x1(

√
2qQx1δλ,0

− (k1 · q + iλP )(δλ,ξ + δλ,−ξ)) − zy2x1q2δλ,−ξ

]
+ (1 − z)

[
(1 − y1 − y2)

((
x2q4

+ ((k1 − k2) · q)(k2 · q − iλP )
)
x1δλ,ξ + x2k2

1 · q2(δλ,−ξ − δλ,ξ)
)

+ y2x1q2
(
x2q2δλ,−ξ

− (k2 · q− iλP )δλ,ξ)
]
+ (1 − z) (y1x1 + (1 − y2)x2)

×
[
(x1(k2 · q− iξP ) − zy1(k1 · q− iξP − x1t1))

√
2qQδλ,0 + z(1 − y1 − y2)

×
((

k2
1 · q2 − x1t1(k1 · q + iλP )

)
(δλ,−ξ − δλ,ξ) + 2(k1 · k2 − x1x2Q

2)

× (k1 · q + iλP )δλ,−ξ − (k1 · q− iξP − x1t1)
√

2qQx2δλ,0) + zy2q2
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×
(
(k1 · q + iλP − x1t1)(δλ,−ξ − δλ,ξ) − 2(k1 · k2 − x1x2Q

2)δλ,ξ

)]}

and

R
(r)
6 =

eqfg
3

(4π)2
√

2x1x2q2

1∫

0

1∫

0

dy1dy2

(−y1y2κ− t− y2(t1 − t) − y1(t2 − t))2
(4.12)

×
(

y1δλ,0

√
2qQx1

{(
x1x2Q

2 − k1 · k2 − iξP
)
(1 − 3x2) + 2x2(t2 − t)

}
+ (1 − y1)

×
{

[2 (−y1y2κ− t− y2(t1 − t) − y1(t2 − t)) + y1(t2 − t− κ)] x1x2

×
(
(δλ,−ξ + δλ,ξ)(k1 · q + iλP ) − δλ,0

√
2qQx1

)

+ [2x1t1 + 2x2t2 − 2t− y2x2(t2 − t− κ)]

×
(
δλ,0

√
2qQx1x2 − δλ,−ξx2(k1 · q + iλP ) − δλ,ξx1(k2 · q− iλP )

)

−
[
t (2x1δλ,ξ + 3x2δλ,−ξ) + y1x1

(
tδλ,−ξ − δλ,0

√
2qQx1

)]

×
(
x1x2Q

2 − k1 · k2 − iξP
)

+
[
3
(
x2

2t2δλ,−ξ − x2
1t1δλ,ξ

)
+ y1x1x2 (t2δλ,−ξ − t1δλ,ξ)

− y1x1Q
2δλ,ξ

]
(k1 · q + iλP ) + x1t

[
3x2

2Q
2δλ,−ξ

− 3k2
1δλ,ξ + y1x1Q

2 (δλ,−ξx2 + δλ,ξx1) + 2y2x2κδλ,ξ

]}
)

.

The result for the correction Γ(1g)c(1)
γ∗qq̄ is obtained

now by Eq. (4.1) with the replacement

R̃6 → R6, (4.13)

whereR1, R2, R3, andR5 are presented by Eqs. (4.4),
(4.5), (4.6), and (4.7), respectively, andR4 and R6 are
given by Eqs. (4.9)–(4.12) and by the relation

R4,6 = R
(s)
4,6 + R

(r)
4,6. (4.14)

5. THE TOTAL ONE-LOOP CORRECTION

There is one more one-loop contribution to the
vertex Γc

γ∗qq̄ related to the t-channel gluon self-
energy. It is given by the half of the amplitude
schematically represented in Fig. 8 with the gluon
polarization vector equal to −pµ

2/s, as was already

explained in Section 3. To find the correction Γ(se)c(1)
γ∗qq̄ ,

one should only know the one-loop gluon vacuum
polarization and the Born Reggeon–virtual-photon
vertex. We obtain

Γ(se)c(1)
γ∗qq̄

(

eqfg
3Ntci1i2

Γ(2 − ε)
(4π)2+ε

1
2ε

)−1

(5.1)

=
[

ū1 (−t)ε
{

5
3
− 2

3
nf

N

+ ε

(
4
9
nf

N
− 16

9

)}
Γ̂1

t1

� p2

s
v2

]

− [1 ↔ 2] ,
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where nf is the number of quark flavors.
We present the total one-loop correction to the

vertex of the quark–antiquark production in the
virtual-photon–Reggeized-gluon collision in the
form

Γc(1)
γ∗qq̄ = Γ(sing)c(1)

γ∗qq̄ + Γ(reg)c(1)
γ∗qq̄ , (5.2)

with

Γ(reg)c(1)
γ∗qq̄ (5.3)

= Ntci1i2

{[
N − 2CF

N
R

(r)
4 + R

(r)
6

]

− [1 ↔ 2]
}

,

where R
(r)
4 and R

(r)
6 are given by Eqs. (4.11) and

(4.12), respectively, and

Γ(sing)c(1)
γ∗qq̄ = Γ(2g)c(1)

γ∗qq̄ + Γ(se)c(1)
γ∗qq̄ (5.4)
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c
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Fig. 8. Schematic representation of the correction
Γ

(se)c(1)
γ∗qq̄ .
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+ Ntci1i2

{[

−2CF

N
(R1 + R2) +

N − 2CF

N

×
(
R3 + R

(s)
4

)
+ R5 + R

(s)
6

]

− [1 ↔ 2]
}

,

P

where Γ(2g)c(1)
γ∗qq̄ ,Γ(se)c(1)

γ∗qq̄ , R1−R3, R5, R
(s)
4 , and R

(s)
6

are defined in Eqs. (3.15), (5.1), (4.4)–(4.6), (4.7),
(4.9), and (4.10), respectively. Using the last set of
relations, one can easily obtain
Γ(sing)c(1)
γ∗qq̄

(

eqfg
3Ntci1i2

Γ(2 − ε)
(4π)2+ε

1
2ε

)−1

(5.5)

=
[

ū1

(

(−t)ε
{

5
3
− 2

3
nf

N
+ 4(1 + ε) lnx2 + 2ε

(
2
9
nf

N
− 8

9
− ψ′(1)

)}
Γ̂1

t1

+
2CF

N

Γ̂1

(−t1)
1−ε +

2CF

N

1∫

0

dy

((1 − y)Q2 − yt1)
1−ε

×
{

(1 + 2ε)
Q2

t1
Γ̂1 + 2ε(ep1) + y

[

(1 − 2ε)
(
Q2

t1
+ 1

)

Γ̂1 + 2(2 − ε) (ek1)
]}

+
1
N

1∫

0

dy

(−(1 − y)t− yt1)
1−ε

{

2 ((1 + 3ε)N − (1 + 2ε)CF )
t

t1
Γ̂1

− (2 + ε)N Γ̂1 + (1 + 2ε)Nx2

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)
− yε4(1 + ε)N

(
t

t1
− 1

)

Γ̂1

+ y

[

2 ((1 − ε)N − (1 − 2ε)CF )
(

t

t1
− 1

)

Γ̂1 + ((1 − 2ε)N

− 2(2 − ε)CF )x2

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)]}
+

N − 2CF

N

×
1∫

0

1∫

0

1∫

0

dzdy1dy2θ (1 − y1 − y2) z1+ε2εκ
[zy1y2 (−κ− iδ) + (1 − z) (y1Q2 − y2t− (1 − y1 − y2)t1)]

2−ε

×
[
(1 − y1 − y2)

(
(1 − z(1 − y2))x2

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)
− Γ̂1

)

− 2y1(1 − zy1) (ek1)] +

1∫

0

1∫

0

dy1dy2

(−y1y2κ− t− y2(t1 − t) − y1(t2 − t))2−ε

×
{
yε−1
1 (1 − y1)y−ε

2

(
xε

1x
−ε
2 − 2ε2ψ′(1)

)
2tΓ̂1 +

(
yε
1y

−ε
2 xε

1x
−ε
2 − 1

)
4x2t(ep1)

+ (1 − y1)
[
2(t2 − t)Γ̂1 − x1t1

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)
+ 4t(ek1)

]

+ y1(1 − y1)
[
4(t2 − t)(ek1) + x1(t1 + Q2)

(
Γ̂1 + Γ̂2 − 2(e⊥q⊥)

)]}) � p2

s
v2

]

− [1 ↔ 2] .
Relations (5.2), (5.3), and (5.5), together with
Eqs. (4.11) and (4.12), present the one-loop correc-
tion to the γ∗R → qq̄ vertex.

6. DISCUSSION
In this paper, we have calculated the effective

vertices for the Reggeon–virtual-photon interaction.
Starting from already known expressions (2.9) and
(2.10) for the qq̄-production vertex in the Born
approximation, we have represented this vertex in
the helicity basis (2.16) and then have obtained in
the same approximation the vertex (2.19) for the
qq̄g production. Most of the paper is devoted to the
calculation of the one-loop corrections for the qq̄-
production vertex, which are presented in Eqs. (5.2),
(5.5), (5.3), (4.11), and (4.12). In order to simplify the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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presentation, the last three results are given in the
helicity basis, that caused the representation in this
basis also of the Born qq̄-production vertex (2.16).

The obtained results can be used for theoretical
analysis of a number of processes related to the
quark–antiquark production in the photon fragmen-
tation region. In particular, they are necessary for
calculation of the virtual-photon impact factor at
the next-to-leading order [see Eq. (1.3)]. We have
used the integral representation for a part of the one-
loop corrections to the qq̄-production vertex since it
is convenient for further calculation of the virtual-
photon impact factor in the next-to-leading order.

Note that everywhere in the paper g is the un-
renormalized coupling constant, so that the one-loop
correction contains the ultraviolet singularities in ε.
In order to remove them one should only express g
in terms of the renormalized coupling constant g(µ).
After the renormalization, there still remain the in-
frared singularities, which must cancel in physical
quantities (in the virtual-photon impact factor they
cancel [13] with corresponding terms in the contribu-
tions from the additional gluon emission and from the
counterterm [see Eq. (1.3)].

Recently, an independent calculation of the γ∗ →
qq̄ vertex was reported in [15]. The results of [15]
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
are presented in the form where all integrations are
performed. At the moment, we can only say that these
results are very long and complicated. Some time is
definitely needed to make a comparison between our
and their results.
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APPENDIX

In this section, we explain very briefly important
steps for calculation of the most complicated diagram
D2 [Fig. 5(2)] to make our results checkable step by
step. According to its definition, we obtain from the
corresponding diagram
D2 =
−ieqfg

4

2(2π)D

∫
dDkū1γ

µ ( � k+� pA−� k2) � e (� k− � k2) γλv2ūB′γρ (� k+� pB′) γνuBgµνgλρ

[(k + pB′)2 + iδ] [(k + pA − k2)2 + iδ] [(k − k2)2 + iδ] [k2 + iδ] [(k + q)2 + iδ]
. (A.1)

It was explained in detail in [13] that the negative t-channel signature combination of the two pentagon
diagrams of Fig. 5, or, what is the same, the s ↔ −s antisymmetric part of the D2, gets the contribution
only from the integration region where

q2 ∼ k2 ∼ |kp1| � |kp2| ∼ s, (A.2)

and therefore we can replace from the beginning
1

(k + pB′)2 + iδ
→ P

1
2kp2

(A.3)

and understand this singularity in a sense of the principal value everywhere below. In order to simplify also
the numerator of D2, we use the familiar replacement (2.3) for the t-channel gluon propagators. These
simplifications lead to the following representation forD2:

D2 = −2ieqfg
4sūB′

� p1

s
uB

∫
dDk

(2π)D
(A.4)

× 1
[(k + pA − k2)2 + iδ] [(k − k2)2 + iδ] [k2 + iδ] [(k + q)2 + iδ]

× ū1

{

� e ( � k−� k2) + ( � k+� q)� e +
s

2kp2
(x1� e ( � k−� k2) − x2 (� k+� q) � e)

}
� p2

s
v2.
Since the structure ofD2 is like the box diagram with
two massive external lines in opposite corners, it is
convenient to perform the Feynman parametrization
joining first the pairs of propagators which meet at

each of the vertices with massless external lines, and
then to join two denominators obtained in this way
2
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using the third Feynman parameter. Doing so, we
naturally get the result of momentum integration in
the form where the dependence on the third Feynman
PH
parameter factorizes and the integration over this pa-
rameter can be performed straightforwardly. So, we
use in Eq. (A.4) the representation
1
[(k + pA − k2)2 + iδ] [(k − k2)2 + iδ] [k2 + iδ] [(k + q)2 + iδ]

(A.5)

= 6

1∫

0

d3yy3(1 − y3)
[k2 + 2k ((1 − y3)(q + y1k1) − y3y2k2) + (1 − y3) ((1 − y1)t + y1t2) + iδ]4

.

For the term with 1/(2kp2) in Eq. (A.4), we use the relation

1
a4b

= 4

∞∫

0

du

(a + bu)5
, (A.6)

which leads, together with Eq. (A.5), to the expression

D2 = −12ieqfg
4sūB′

� p1

s
uBū1

1∫

0

d3yy3(1 − y3)
∫

dDk

(2π)D

{
� e ( � k− � k2) + (� k+ � q) � e

[(k + p)2 − y3(1 − y3)b2 + iδ]4
(A.7)

+ 4

∞∫

0

du
s (x1 � e ( � k−� k2) − x2 ( � k+� q)� e)

[(k + p + up2)2 − y3(1 − y3)b2 − su ((1 − y3)y1x1 − y2y3x2) + iδ]5






� p2

s
v2,
where the notation

p = (1 − y3)(q + y1k1) − y2y3k2, (A.8)

b2 = (1 − y2) (−(1 − y1)t− y1t2)

+ y2

(
−(1 − y1)t1 + y1Q

2
)

has been introduced.
Now the k integration and then the integration

over u are immediately performed. The result is

D2 = gūB′
� p1

s
uB

2s
t
eqfg

3 Γ(2 − ε)
(4π)2+ε

tū1 (A.9)

×
1∫

d2y

(b2)2−ε P

1∫
dy3

[y3(1 − y3)]
1−ε
× {(� q− � p) � e− � e ( � k2+ � p)

+
x2 ( � q−� p)� e + x1� e ( � k2+� p)
x1 ((1 − y3)y1 − zy3y2)

}
� p2

s
v2,

with

z = x2/x1. (A.10)

After some simplifying algebra with the use of the fact
thatD2 enters into our result for the vertex only in the
antisymmetric combination under the replacement
1 ↔ 2 [see Eq. (3.2)] we come to the representation
0 0

D2 = 2gūB′
� p1

s
uB

2s
t
eqfg

3 Γ(2 − ε)
(4π)2+ε

(A.11)

× ū1t
� p2

s

1∫

0

1∫

0

dy1dy2

[(1 − y2) (−(1 − y1)t− y1t2) + y2 (−(1 − y1)t1 + y1Q2)]2−ε

×



1 − y1

x1
(2x2(k1⊥e⊥)−� e⊥ � k1⊥) P

1∫

0

dy3y
ε−1
3 (1 − y3)ε

((1 − y3)y1 − zy3y2)

+ x2(ep1) P

1∫

0

dy3y
ε−1
3 (1 − y3)ε−1

((1 − y3)y1 − zy3y2)
+

2
ε

((ek1) (1 − y1) − x2(ep1))
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and, finally, the relations

P

1∫

0

dy3y
ε−1
3 (1 − y3)ε

((1 − y3)y1 − zy3y2)
(A.12)

=
1
ε

(
1 − 2ε2ψ′(1)

)
z−εyε−1

1 y−ε
2

and

P

1∫

0

dy3y
ε−1
3 (1 − y3)ε−1

((1 − y3)y1 − zy3y2)
(A.13)

=
1
ε

(
1 − 2ε2ψ′(1)

)
z−ε

(
yε−1
1 y−ε

2 − z2ε−1yε−1
2 y−ε

1

)
,

which are valid with sufficient accuracy for us in the ε
expansion, lead to the result (3.5).
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and V. S. Fadin, Zh. Éksp. Teor. Fiz. 71, 840 (1976)
[Sov. Phys. JETP 44, 443 (1976)]; Zh. Éksp. Teor.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Analysis of the φ → γπηφ → γπηφ → γπη and φ → γπ0π0φ → γπ0π0φ → γπ0π0 Decays*
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Abstract—We study interference patterns in the φ→ (γa0 + π0ρ) → γπη and φ→ (γf0 + π0ρ) → γπ0π0

reactions. Taking into account the interference, we fit the experimental data and show that the background
reaction does not distort the π0η spectrum in the decay φ→ γπη everywhere over the energy region and
does not distort the π0π0 spectrum in the decay φ→ γπ0π0 in the wide region of the π0π0-system invariant
mass,mππ > 670MeV, or when the photon energy is less than 300MeV.We discuss the details of the scalar
meson production in the radiative decays and note that there are reasonable arguments in favor of the one-
loop mechanism φ→ K+K− → γa0 and φ→ K+K− → γf0. We also discuss distinctions between the
four-quark, molecular, and two-quark models and argue that the Novosibirsk data give evidence in favor of
the four-quark nature of the scalar a0(980) and f0(980)mesons. c© 2002MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As was shown in a number of papers (see [1–6]
and references therein), the study of the radiative de-
cays φ→ γa0 → γπη and φ→ γf0 → γππ can shed
light on the problem of the scalar a0(980) and f0(980)
mesons. These decays have been studied not only
theoretically but also experimentally. At the present
time, there have already been published the data ob-
tained in Novosibirsk with the detectors SND [7–10]
and CMD-2 [11], which give the following branching
ratios: BR(φ→ γπη) = (0.88 ± 0.14 ± 0.09) × 10−4

[9], BR(φ→ γπ0π0) = (1.221 ± 0.098 ± 0.061) ×
10−4 [10] and BR(φ→ γπη) = (0.9 ± 0.24 ± 0.1) ×
10−4, BR(φ→ γπ0π0) = (0.92± 0.08± 0.06)× 10−4

[11].

These data give evidence in favor of the four-
quark (q2q̄2) [1, 12–16] nature of the scalar a0(980)
and f0(980) mesons. Note that the isovector a0(980)
meson is produced in the radiative φ meson decay
as intensively as the well-studied η′ meson involving
essentially strange quarks ss̄ (≈ 66%) responsible for
the decay.

As was shown in the papers [1, 3, 17], the
background situation for studying the radiative de-
cays φ→ γa0 → γπ0η and φ→ γf0 → γπ0π0 is
very good. For example, in the case of the decay
φ→ γa0 → γπ0η, the process φ→ π0ρ→ γπ0η is
the dominant background. The estimation for the

∗This article was submitted by the authors in English.
**e-mail: achasov@math.nsc.ru
***e-mail: gubin@math.nsc.ru
1063-7788/02/6508-1528$22.00 c©
soft, by strong interaction standard, photon energy,
ω < 100 MeV, gives BR(φ→ π0ρ0 → γπ0η, ω <
100 MeV) ≈ 1.5 × 10−6. The influence of the back-
ground process is negligible, providedBR(φ→ γa0 →
γπ0η, ω < 100 MeV) ≥ 10−5. In this paper, in Sec-
tion 2, we calculate the expression for the φ→ γπ0η-
decay amplitude taking into account the interference
between the φ→ γa0 → γπ0η and φ→ π0ρ0 →
γπ0η processes. We show that, for the obtained
experimental data, the influence of the background
processes is negligible everywhere over the photon
energy region.

The situation with φ→ γf0 → γπ0π0 decay is
not much different. As was shown in [1, 3, 17], the
dominant background is theφ→ π0ρ0 → γπ0π0 pro-
cess with BR(φ→ π0ρ0 → γπ0π0, ω < 100 MeV) ≈
6.4 × 10−7. The influence of this background process
is negligible, provided BR(φ→ γf0 → γπ0π0, ω <
100 MeV) ≥ 5 × 10−6.

The exact calculation of the interference patterns
between the decays φ→ γf0 → γπ0π0 and φ→
π0ρ→ γπ0π0, which we present in this paper in
Section 3, shows that the influence of the background
in the decay φ→ γπ0π0 for the obtained experimental
data is negligible in the wide region of the π0π0

invariant mass, mππ > 670 MeV, or in the photon
energy region ω < 300 MeV.

In Section 4, we discuss the mechanism of the
scalar-meson production in the radiative decays and
show that experimental data obtained in Novosi-
birsk give reasonable arguments in favor of the
one-loop mechanism, φ→ K+K− → γa0 and φ→
2002 MAIK “Nauka/Interperiodica”
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K+K− → γf0, of these decays. In the same place,
we also discuss distinctions between the four-quark,
molecular, and two-quark models and explain why
these data give evidence in favor of the four-quark
nature of the scalar a0(980) and f0(980) mesons.

2. INTERFERENCE
BETWEEN THE φ→ γa0 → γπ0η
AND φ→ π0ρ0 → γπ0η DECAYS

As was shown in the papers [1, 3], the background
process e+e− → φ→ π0ρ0 → γπ0η is dominant be-
tween the other background processes. The ampli-
tudes of the processes e+e− → ρ0(ω) → ηρ0(ω) →
γπ0η are much less than the amplitudes of the
e+e− → ρ0(ω) → π0ω(ρ0) → γπ0η processes. In turn,
the amplitudes of the e+e− → ρ0(ω) →
π0ω(ρ0) → γπ0η processes are much less than the
amplitudes of the e+e− → φ→ π0ρ0 → γπ0η pro-
cesses. The amplitude of the e+e− → φ→ ηφ→
γπ0η process is also much less than the amplitude
of e+e− → φ→ π0ρ0 → γπ0η process.

The amplitude of the background process φ(p) →
π0ρ0 → γ(q)π0(k1)η(k2) is

MB =
gφρπgρηγ

Dρ(p− k1)
φαk1µpνεδ (1)

× (p− k1)ωqεεαβµνεβδωε,

where φα and εδ are the polarization vectors of the φ
meson and photon. The inverse propagator of the ρ
meson Dρ is defined below. For the amplitude of the
signal φ→ γa0 → γπ0η, we use the model suggested
in [1], in which the one-loop mechanism of the decay
φ→ K+K− → γa0 is considered:

Ma = g(m)
ga0K+K−ga0πη

Da0(m)

(

(φε) − (φq)(εp)
(pq)

)

, (2)

where m2 = (k1 + k2)2 and the function g(m) is de-
termined in [1, 3]. The mass spectrum is

dΓ(φ→ γπη)
dm

=
dΓa0

dm
+
dΓback(m)
dm

± dΓint(m)
dm

,

(3)

where the mass spectrum for the signal is

dΓa0

dm
=

2
π

m2Γ(φ→ γa0(m))Γ(a0(m) → πη)
|Da0(m)|2 (4)

=
2|g(m)|2pπη(m2

φ −m2)

3(4π)3m3
φ

∣
∣
∣
ga0K+K−ga0πη

Da0(m)

∣
∣
∣
2
.

Accordingly, the mass spectrum for the back-
ground process φ→ π0ρ→ γπ0η is

dΓback(m)
dm

(5)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
=
(m2

φ −m2)pπη

128π3m3
φ

1∫

−1

dxAback(m,x),

where

Aback(m,x) =
1
3

∑
|MB |2 =

1
24

(m4
ηm

4
π (6)

+ 2m2m2
ηm

2
πm̃

2
ρ − 2m4

ηm
2
πm̃

2
ρ − 2m2

ηm
4
πm̃

2
ρ

+ 2m4m̃4
ρ − 2m2m2

ηm̃
4
ρ + 2m4

ηm̃
4
ρ

− 2m2m2
πm̃

4
ρ + 4m2

ηm
2
πm̃

4
ρ +m4

πm̃
4
ρ

+ 2m2m̃6
ρ − 2m2

ηm̃
6
ρ − 2m2

πm̃
6
ρ + m̃8

ρ

− 2m4
ηm

2
πm

2
φ − 2m2m2

ηm
2
φm̃

2
ρ

+ 2m2
ηm

2
πm

2
φm̃

2
ρ − 2m2m2

φm̃
4
ρ

+ 2m2
ηm

2
φm̃

4
ρ − 2m2

φm̃
6
ρ +m4

ηm
4
φ

+m4
φm̃

4
ρ)
∣
∣
∣
gφρπgρηγ

Dρ(m̃ρ)

∣
∣
∣
2

and

m̃2
ρ = m2

η +
(m2 +m2

η −m2
π)(m2

φ −m2)

2m2
(7)

−
(m2

φ −m2)x
m

pπη,

pπη =

√
(m2 − (mη −mπ)2)(m2 − (mη +mπ)2)

2m
.

The interference between the background-process
amplitude and the signal amplitude is written in the
following way:

dΓint(m)
dm

=
(m2

φ −m2)pπη

128π3m3
φ

1∫

−1

dxAint(m,x), (8)

where

Aint(m,x) =
2
3
Re
∑

MaM
∗
B (9)

=
1
3

(

(m2 −m2
φ)m̃2

ρ +
m2

φ(m̃2
ρ −m2

η)2

m2
φ −m2

)

× Re
{
g(m)ga0K+K−ga0πηgφρπgρηγ

D∗
ρ(m̃ρ)Da0(m)

}

.

The inverse propagator of the a0 meson, Da0(m),
is presented in the papers [1, 3]. The inverse propaga-
tor of the ρmeson has the following expression:

Dρ(m) = m2
ρ −m2 − im2 g

2
ρππ

48π

(

1 − 4m2
π

m2

)3/2

.

(10)

We use the coupling constant gφK+K− = 4.68 ±
0.05 obtained form the decay φ→ K+K− [18] and
2
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Fig. 1. Fitting of dBR(φ→ γπη)/dm× 104 with the
background is shown with the solid curve and the signal
contribution is shown with the dashed curve.

the coupling constant gρηγ = 0.572 ± 0.08 GeV−1

obtained from the decay ρ→ ηγ [19], with the help
of the following expressions:

Γ(φ→ K+K−) (11)

=
g2φK+K−

48π
mφ

(

1 − 4m2
K

m2
φ

)3/2

,

Γ(ρ→ ηγ) =
g2ρηγ

96πm3
ρ

(m2
ρ −m2

η)
3.

The coupling constant gφρπ = 0.811 ± 0.081 GeV−1

is obtained using the data on the decay φ→ ρπ →
π+π−π0 [18] with the help of the formulas from the
paper [20].

The fit of the experimental data from the SND
detector [9], taking into account the relation ga0πη =
0.85ga0K+K− resulting from the q2q̄2 model [1],
chooses the constructive interference and gives

ma0 = 985.51 ± 0.8 MeV, (12)

ga0K+K− = 2.747 ± 0.428 GeV,

g2a0K+K−

4π
= 0.6 ± 0.015 GeV2,

χ2/NDF = 3.1/6.

The total branching ratio, taking into account
the interference, is BR(φ→ (γa0 + π0ρ) → γπη) =
(0.79 ± 0.2) × 10−4; the branching ratio of the signal
is BR(φ→ γa0 → γπη) = (0.75 ± 0.2) × 10−4; and
the branching ratio of the background is BR(φ→
π0ρ0 → γπ0η) = 3.43 × 10−6. So, the integral part
of the interference is negligible. The influence of the
interference on the mass spectrum of the πη system
is also negligible (see Fig. 1).

The difference of the obtained parameters (12)
from the parameters found in [9], which are ma0 =
PH
994+33
−8 MeV, g

2
a0K+K−/4π = 1.05+0.36

−0.25 GeV
2, is due

to the fact that in [9] a more refined fitting was per-
formed considering the event distribution inside of
each bin. Notice that this difference is less than two
standard deviations.

Let us specifically emphasize that the value
g2a0K+K−/4π = 0.6 ± 0.015 GeV2 obtained by us
on no account points to the possibility of the KK̄
molecule description [2] of the a0 meson. In theKK̄-
molecule model, the imaginary part of the K+K−

loop is dominant because the real part of the K+K−

loop is suppressed by the wave function of the
molecule [4] (see also Section 4). Due to this fact,
we have BR(φ→ γa0 → γπη) ≈ 1.5× 10−5 [4] in the
KK̄-molecule model at the same coupling constant
and ma0 = 985 MeV, which is almost six times
less than the experimental value BR(φ→ γπη) =
(0.88± 0.14± 0.09)× 10−4 [9]. The divergence is five
standard deviations! Besides, in the case of molecule,
the bump in the spectrum of the πη system is much
narrower than the experimentally observed one (see
[4], see also Section 4).

3. INTERFERENCE
BETWEEN THE φ→ γf0 → γπ0π0

AND φ→ π0ρ→ γπ0π0 DECAYS

When analyzing the φ→ γf0 → γπ0π0 decay, one
should take into account the mixing of the f0 meson
with the isosinglet scalar states. The whole formalism
of the mixing of two scalar f0 and σ mesons was
considered in [3]. In this paper, we consider only
expressions in regard to the interference with the
background reactions.

As was shown in [1, 3], the dominant background
is the e+e− → φ→ π0ρ→ γπ0π0 reaction. The am-
plitude of the e+e− → ρ→ π0ω → γπ0π0 reaction
is much less than the amplitude of the e+e− →
φ→ π0ρ→ γπ0π0 reaction. In turn, the amplitude
of the e+e− → ω → π0ρ→ γπ0π0 reaction is much
less than the amplitude of the e+e− → ρ→ π0ω →
γπ0π0 reaction.

The amplitude of the background decay φ(p) →
π0ρ→ γ(q)π0(k1)π0(k2) is written in the following
way:

Mback = gφρπ0gρπ0γφαpνεδqεεαβµνεβδωε (13)

×
(

k1µk2ω

Dρ(q + k2)
+

k2µk1ω

Dρ(q + k1)

)

.

The amplitude of the signal φ→ γ(f0 + σ) →
γπ0π0 takes into account the mixing of f0 and σ
mesons (see [3]),
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Mf0 = g(m)eiδB

(

(φε) − (φq)(εp)
(pq)

)

(14)

×
(∑

R,R′

gRK+K−G−1
RR′gR′π0π0

)

,

where R,R′ = f0, σ. The matrix of inverse propaga-
tors GRR′ is defined in [3]. The phase of the sig-
nal amplitude is formed by the phase of the triangle
diagram (φ→ K+K− → γR) and by the phase of
ππ scattering. In turn, the phase of ππ scattering is
defined by the phase of the f0–σ complex and by the
phase of the elastic background of ππ scattering, δB
(see details in [6, 3, 13]).

The mass spectrum of the process is

dΓ(φ→ γπ0π0)
dm

(15)

=
dΓf0

dm
+
dΓback(m)
dm

± dΓint(m)
dm

,

where the mass spectrum of the signal has the form

dΓf0

dm
=

|g(m)|2
√
m2 − 4m2

π(m2
φ −m2)

3(4π)3m3
φ

(16)

×

∣
∣
∣
∣
∣
∣

∑

R,R′

gRK+K−G−1
RR′gR′π0π0

∣
∣
∣
∣
∣
∣

2

.

The mass spectrum for the background process
φ→ π0ρ→ γπ0π0 is

dΓback(m)
dm

=
1
2

(m2
φ −m2)

√
m2 − 4m2

π

256π3m3
φ

(17)

×
1∫

−1

dxAback(m,x),

where

Aback(m,x) =
1
3

∑∣
∣Mback

∣
∣2 (18)

=
1
24
g2φρπ0g

2
ρπ0γ

{
(m8

π + 2m2m4
πm̃

2
ρ − 4m6

πm̃
2
ρ

+ 2m4m̃4
ρ − 4m2m2

πm̃
4
ρ + 6m4

πm̃
4
ρ + 2m2m̃6

ρ

− 4m2
πm̃

6
ρ + m̃8

ρ − 2m6
πm

2
φ − 2m2m2

πm̃
2
ρm

2
φ

+ 2m4
πm̃

2
ρm

2
φ − 2m2m̃4

ρm
2
φ + 2m2

πm̃
4
ρm

2
φ

− 2m̃6
ρm

2
φ +m4

πm
4
φ + m̃4

ρm
4
φ)

×
(

1
|Dρ(m̃ρ)|2

+
1

|Dρ(m̃∗
ρ)|2

)

+ (m2
φ −m2)

× (m2 − 2m2
π + 2m̃2

ρ −m2
φ)(2m2m2

π
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+ 2m2
πm

2
φ −m4)

1
|Dρ(m̃∗

ρ)|2

+ 2Re
(

1
Dρ(mρ)D∗

ρ(m̃∗
ρ)

)

(m8
π −m6m̃2

ρ

+ 2m4m2
πm̃

2
ρ + 2m2m4

πm̃
2
ρ − 4m6

πm̃
2
ρ

− 4m2m2
πm̃

4
ρ + 6m4

πm̃
4
ρ + 2m2m̃6

ρ − 4m2
πm̃

6
ρ

+ m̃8
ρ +m2m4

πm
2
φ − 2m6

πm
2
φ + 2m4m̃2

ρm
2
φ

− 4m2m2
πm̃

2
ρm

2
φ + 2m4

πm̃
2
ρm

2
φ −m2m̃4

ρm
2
φ

+ 2m2
πm̃

4
ρm

2
φ − 2m̃6

ρm
2
φ −m4

πm
4
φ −m2m̃2

ρm
4
φ

+ 2m2
πm̃

2
ρm

4
φ + m̃4

ρm
4
φ)
}

and

m̃2
ρ = m2

π +
(m2

φ −m2)

2

(

1 − x
√

1 − 4m2
π

m2

)

, (19)

m̃∗2
ρ = m2

φ + 2m2
π −m2 − m̃2

ρ.

The interference between the amplitudes of the
background process and the signal has the form

dΓint(m)
dm

=
1√
2

√
m2−4m2

π

256π3m3
φ

1∫

−1

dxAint(m,x), (20)

where

Aint(m,x) =
2
3
Re
∑

MfM
∗
back (21)

=
1
3
Re

{

g(m)eiδBgφρπ0gρπ0γ

×
(
∑

R,R′

gRK+K−G−1
RR′gR′π0π0

)

×
(

(m̃2
ρ −m2

π)2m2
φ − (m2

φ −m2)2m̃2
ρ

D∗
ρ(m̃ρ)

+
(m̃∗2

ρ −m2
π)2m2

φ − (m2
φ −m2)2m̃∗2

ρ

D∗
ρ(m̃∗

ρ)

)}

.

The factor 1/2 in (17) and the factor 1/
√

2 in (20)
take into account the identity of pions. In (16), the
identity of pions is taken into account by the definition
of the coupling constant gRπ0π0 = gRπ+π−/

√
2. For

the fitting of the experimental data, we use the model
of ππ scattering considered in [3]. The phase of the
elastic background of ππ scattering is taken in the
form δB = b

√
m2 − 4m2

π, where b is a constant. We
fit simultaneously the phase of ππ scattering and the
experimental data on the decay φ→ γπ0π0.
2
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Fig. 2. Fitting of dBR(φ→ γπ0π0)/dm× 104 with the
background is shown with the solid curve, and the signal
contribution is shown with the dashed curve. The dotted
curve is the interference term. The data are from the SND
detector.

The value gρπ0γ = 0.295 ± 0.037 GeV−1 is ob-
tained from the data on the ρ→ π0γ decay [19] with
the help of the following expression:

Γ(ρ→ π0γ) =
g2ρπ0γ

96πm3
ρ

(m2
ρ −m2

π)3. (22)

The fit of the experimental data [10], obtained using
the total statistics of SND detector, and the data on
the ππ scattering phase [21–25] give the constructive
interference and the following parameters:

gf0K+K− = 4.021 ± 0.011 GeV, (23)

gf0π0π0 = 1.494 ± 0.021 GeV,

mf0 = 0.996 ± 0.0013 GeV, gσK+K− = 0,
gσπ0π0 = 2.58 ± 0.02 GeV,

mσ = 1.505 ± 0.012 GeV,

b = 75 ± 2.1 (1◦/GeV),

C = 0.622 ± 0.04 GeV2,

g2f0K+K−/4π = 1.29 ± 0.017 GeV2.

The constant C takes into account effectively the
contribution of multiparticle intermediate states in
the f0 ↔ σ transition in theGRR′ matrix (see [3]), and
incorporates the subtraction constant for the R→
(0−0−) → R′ transition. We treat this constant as a
free parameter.

The total branching ratio, with interference be-
ing taken into account, is BR(φ→ (γf0 + π0ρ) →
γπ0π0) = (1.26 ± 0.29) × 10−4; the branching ratio
of the signal is BR(φ→ γf0 → γπ0π0) = (1.01 ±
P
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Fig. 3. Fitting of the phase δ00 of ππ scattering.

0.23) × 10−4; the branching ratio of the background
is BR(φ→ π0ρ0 → γπ0π0) = 0.18 × 10−4. The re-
sults of fitting are shown in Figs. 2 and 3, where the
mass distribution dBR/dm and the scalar isoscalar
phase δI=0

S=0 are depicted.

Note, that for our aim the phase in the region
mππ < 1.1 GeV is important.

The authors in the paper [10] fit the data taking
into account the background reaction φ→ π0ρ0 →
γπ0π0. The parameters found are mf0 = 0.9698 ±
0.0045 GeV, g2f0K+K−/4π = 2.47+0.73

−0.51 GeV2, and

g2f0π+π−/4π = 0.54+0.09
−0.08 GeV

2 [10]. They are different
from the parameters found in our fitting. The differ-
ence is due to the fact that we perform the simulta-
neous fitting of the data on the decay φ→ γπ0π0 and
the data on the S-wave phase of ππ scattering, taking
into account the mixing of f0 and σ mesons.

Besides, in the paper [10], the interference be-
tween the background and signal is found from the
fitting; meanwhile, in our paper, the interference is
calculated. The branching ratio of the background
BR(φ→ π0ρ0 → γπ0π0) = 0.12 × 10−4 used in [10]
is taken from the paper [17], in which the coupling
constant gρ0π0γ is less by 25% than the one resulting
from the experiment. In our paper, the background is
calculated on the basis of the experiment and is ac-
cordingly larger, BR(φ→ π0ρ0 → γπ0π0) = 0.18 ×
10−4. Note that in [10], in contrast to us, the fitting is
performed taking into account the event distribution
inside each bin.

The fitting of the experimental data of the CMD-2
detector [11] and the data on the ππ scattering phase
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 4. Fitting of dBR(φ→ γπ0π0)/dm× 104 with the
background is shown with the solid curve, and the signal
contribution is shown with the dashed curve. The dotted
curve is the interference term. The data are from the
CMD-2 detector.

[21–25] gives the constructive interference and the
following parameters:

gf0K+K− = 3.874 ± 0.17 GeV, (24)

gf0π0π0 = 0.536 ± 0.03 GeV,

mf0 = 1.0019 ± 0.002 GeV, gσK+K− = 0,
gσπ0π0 = 2.61 ± 0.1 GeV,

mσ = 1.585 ± 0.015 GeV,

b = 70.7 ± 2.0(1◦/GeV),

C = −0.593 ± 0.06 GeV2,

g2f0K+K−/4π = 1.19 ± 0.03 GeV2.

The total branching ratio taking into account
the interference is BR(φ→ (γf0 + π0ρ) → γπ0π0) =
(0.98 ± 0.21) × 10−4, the branching ratio of the sig-
nal is BR(φ→ γf0 → γπ0π0) = (0.74± 0.2)× 10−4,
and the branching ratio of the background is BR(φ→
π0ρ0 → γπ0π0) = 0.18 × 10−4. The results of fitting
are shown in Figs. 4 and 5.

The parameters found in [11], which are mf0 =
0.969± 0.005GeV, g2f0K+K−/4π = 1.49± 0.36GeV2,

and g2f0π+π−/4π = 0.4 ± 0.06 GeV2, are different
from the parameters found in our fitting. The differ-
ence is due to the fact that we perform the simulta-
neous fitting of the data on the decay φ→ γπ0π0 and
the data on the S-wave phase of the ππ scattering,
taking into account the mixing of f0 and σ mesons
and taking into account the background reaction
φ→ π0ρ0 → γπ0π0.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Fig. 6. Diagrams of theK+K−-loop model.

One can see from Figs. 2 and 4 that the influence
of the background process on the spectrum of the
φ→ γπ0π0 decay is negligible in the wide region of
the π0π0 invariant mass, mππ > 670 MeV, or when
photon energy is less than 300MeV.

In the meantime, the difference from the ex-
perimental data is observed in the region mππ <
670MeV.We suppose this difference is due to the fact
that in the experimental processing of the e+e− →
γπ0π0 events the background events e+e− → ωπ0 →
γπ0π0 are excluded with the help of the invariant
mass cutting and simulation. In so doing, part of the
e+e− → φ→ π0ρ→ γπ0π0 events are excluded as
well.

It should be noted that the SND and CMD-2
data on the branching ratios of the φ→ γπ0π0 decay
are quite consistent. In the meantime, the SND and
CMD-2 data on the shapes of the spectra of the π0π0

invariant mass are rather different. TheCMD-2 shape
is noticeably narrower (compare Figs. 2 and 4). This
difference reflects on the coupling constant gf0π0π0

and the constant C, which are quite different [see
Eqs. (23) and (24)]. In all probability, this difference
will disappear when the CMD-2 group processes the
total statistics.
2



1534 ACHASOV, GUBIN
4. CONCLUSION

The experimental data give evidence not only in
favor of the four-quark model but also in favor of
the dynamical model suggested in [1], in which the
discussed decays proceed through the kaon loop, φ→
K+K− → γf0(a0).

Indeed, according to the gauge-invariance con-
dition, the transition amplitude φ→ γf0(a0) is pro-
portional to the electromagnetic tensor Fµν (in our
case to the electric field). Since there are no pole
terms in our case, the function g(m) in (2) and (14)
is proportional to the energy of photon ω = (m2

φ −
m2)/2mφ in the soft photon region. To describe the
experimental spectra, the function |g(m)|2 should be
smooth (almost constant) in the rangem ≤ 0.99GeV
[see Eqs. (4) and (16)]. Stopping the function ω2 at
ω0 = 30MeV, using the form factor of the form 1/(1 +
R2ω2), requires R ≈ 100 GeV−1. It seems to be in-
credible to explain the formation of such a huge radius
in hadron physics. Based on the large, by hadron
physics standard, R ≈ 10 GeV−1, one can obtain an
effective maximum of the mass spectra under discus-
sion only near 900MeV. In the meantime, theK+K−

loop (see Fig. 6) gives the natural description to this
threshold effect (see Fig. 7).

To demonstrate the threshold character of this ef-
fect we present Figs. 8 and 9, in which the function
|g(m)|2 is shown in the case whenK+ meson mass is
25 and 50 MeV less than in reality. One can see from
Figs. 8 and 9 that the function |g(m)|2 is suppressed
by the ω2 low in the region 950–1020 and 900–
1020 MeV, respectively. In the mass spectrum this
suppression is increased by one more power of ω (see
Eqs. 4 and 16), so that we cannot see the resonance
in the region 980–995 MeV. The maximum in the
spectrum is effectively shifted to the region 935–950
and 880–900 MeV, respectively. In truth this means
that a0(980) and f0(980) resonances are seen in the
radiative decays of the φmeson owing to theK+K−-
intermediate state, otherwise the maxima in the spec-
tra would be shifted to 900 MeV.

It is worth noting that the K+K−-loop model is
practically accepted by theorists (compare, for exam-
ple, [26] with [27]; true there is an exception [28]). The
authors of [28] use the amplitude of the φ→ γ(f0 +
background) → γπ0π0 decay, which does not vanish
when ω → 0, i.e., which does not satisfy the gauge in-
variance condition. This amplitude is not adequate to
the physical problem since the mass spectrum under
discussion should have the behavior ω3 at ω → 0 and
not ω as in [28]. With the same result, one can study
the electromagnetic form factor of the π meson in the
P
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Fig. 7.The function |g(m)|2 is drawnwith the solid curve.
The contribution of the imaginary part is drawn with the
dashed curve. The contribution of the real part is drawn
with the dotted curve.

e+e− → π+π− reaction near the threshold consider-
ing that the cross section of the process is propor-
tional to the momentum of the π meson while the
cross section is proportional to the momentum in the
third power. After our criticism in hep-ph/0101024,
the authors, correcting some typos and undoing
some references in [28], inserted a crazy common
factor Fthresh(ω) =

√
1 − exp {−(ω/36 MeV)2} in

the φ→ γ(f0 + background) → γπ0π0 amplitude
without any explanations {see Eq. (39) in [28]} to
provide the spectrum behavior ω3 at ω → 0. But
the real trouble is that the calculation in [28] is not
gauge invariant. The calculation of the φ→ qq̄ → γf0
amplitude requires a gauge-invariant regularization
(for example, the subtraction at ω = 0) in spite of
the integral convergence. A textbook example of
such a kind is γγ → e+e−(or qq̄) → γγ scattering.
The authors of the paper under discussion obtained
Aφ→γf0 = (in our symbols) g(m)(gf0K+K−/e) �= 0
at ω = (m2

φ −m2)/2mφ = 0 (Aφ→γf0 does not de-
pend on m at all); see Eq. (30) in [28]. This means
that the authors created the false pole in the in-
variant amplitude free from kinematical singularities:(
eAφ→γf0/

(
m2

φ −m2
))

(φµpν − φνpµ) × εµqν−
ενqµ; compare with Eq. (9) in [28]. So, once again,
the calculation of [28] is not adequate to the physical
problem!

It was noted already in [1] that the imaginary
part of the K+K− loop is calculated practically in a
model-independent way making use of the coupling
constants gφK+K− and ga0(f0)K+K− due to Low’s
theorem [29] for photons with energy ω < 100 MeV,
which is soft by the standard of strong interaction.
In the same paper, it was noted that the real part
of the loop (with accuracy up to 20% in the width
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Fig. 8. The function |g(m)|2 formK = 469MeV is drawn
with the solid curve. The contribution of the imaginary
part is drawn with the dashed curve. The contribution of
the real part is drawn with the dotted curve.

of the φ→ γf0(a0) decay) is hardly different for the
pointlike particle and the compact hadron with form
factor which has the cutting radius in the momen-
tum space about the mass of the ρ meson (mρ =
0.77 GeV). In contrast to the four-quark state which
is the compact hadron [12], the boundKK̄ state is the
extended state with the spatial radius R ∼ 1/

√
mKε,

where ε is the binding energy. The corresponding
form factor in the momentum space has a radius of
the order of

√
mKε ≈ 100 MeV for ε = 20 MeV. The

more detailed calculation [2] gives for the radius in
the momentum space the value p0 = 140 MeV. As
a result, the real part of the loop of the bound state
is negligible [4]. It leads to a branching ratio much
less than the experimental one, as was noted above.
Besides, the spectrum is much narrower in the KK̄-
molecule case that contradicts the experiment; see
the behavior of the imaginary part contribution in
Fig. 7 and in corresponding figures in [4]. Unfortu-
nately, in the interesting paper [30], the potential in
the momentum space was taken as the momentum
distribution in the molecule instead of the wave func-
tion in the momentum space. But the momentum
distribution radius of the potential is 5–8 times as
large as the one of the wave function, which the rea-
son for the misleading conclusion on the possibility
of explaining the Novosibirsk results in the molecule
case.

Of course, the two-quark state is as compact as
the four-quark one. The question arises, Why is the
branching ratio in the two-quark model suppressed
in comparison with the branching ratio in the four-
quark model? There are two reasons. First, the cou-
pling constant of two-quark states with the KK̄
channel is noticeably less [3, 13], and, second, there
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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with the solid curve. The contribution of the imaginary
part is drawn with the dashed curve. The contribution of
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is the Okubo–Zweig–Iizuka (OZI) rule that is more
important really.

If the isovector a0(980) meson is the two-quark
state, it has no strange quarks. Hence [1, 3, 15], the
decay φ→ γa0 should be suppressed according to the
OZI rule. On the intermediate-state level, the OZI
rule is formulated as compensation of the different
intermediate states [31–33]. In our case, these states
are KK̄, KK̄∗ + K̄K∗, K∗K̄∗, and so on. Since,
due to the kinematical reason, the real intermediate
state is the only K+K− state, the compensation in
the imaginary part is impossible and it destroys the
OZI rule. The compensation should be in the real
part of the amplitude only. As a result, the φ→ γa0

decay in the two-quark model is mainly due to the
imaginary part of the amplitude and is much less
intensive than in the four-quark model [1, 3]. Besides,
in the two-quark model, the a0(980) meson should
appear in the φ→ γa0 decay as a noticeably narrower
resonance than in other processes (see the behavior of
the imaginary part contribution in Fig. 7).

As regards the isoscalar f0(980) state, there are
two possibilities in the two-quark model. If the
f0(980) meson does not contain strange quarks, all
the above-mentioned arguments about suppression
of the φ→ γa0 decay and the spectrum shape are
also valid for the φ→ γf0 decay. Generally speaking,
there could be the strong OZI violation for the
isoscalar qq̄ states (mixing of the uū, dd̄, and ss̄
states) with regard to the strong mixing of the quark
and gluon degree of freedom which is due to the
nonperturbative effects of QCD [34]. But an almost
exact degeneration of the masses of the isoscalar
f0(980) and isovector a0(980) mesons excludes such
a possibility. Note also, the experiment points directly
2



1536 ACHASOV, GUBIN
to the weak coupling of f0(980) meson with gluons,
BR(J/ψ → γf0 → γππ) < 1.4 × 10−5 [35].

If the f0(980) meson is close to the ss̄ state [15,
36], there is no suppression due to the OZI rule.
Nevertheless, if a0(980) and f0(980) mesons are the
members of the same multiplet, the φ→ γf0 branch-
ing ratio, BR(φ→ γπ0π0) = (1/3)BR(φ → γππ) ≈
1.8 × 10−5, is significantly less than that in the four-
quark model due to the relation between the coupling
constants with the KK̄, πη and KK̄, ππ channels
inherited in the two-quark model (see [1, 3]). Besides,
in this case there is no natural explanation of the f0
and a0 mass degeneration.

Only in the case when the nature of the f0(980)
meson is in no way related to the nature of the a0(980)
meson (which, for example, is the four-quark state)
could the branching ratio of the experimentally ob-
served φ→ γf0 be explained by the ss̄ nature of the
f0(980) meson. But, from the theoretical point of
view, such a possibility seems awful [15].
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Abstract—The differential and total cross sections for the pair production of doubly heavy diquarks are
calculated analytically within the diquark model. The cases of electron–positron and quark–antiquark
annihilation are considered. The ratios of the total cross sections to the corresponding cross sections for
annihilation into two heavy quarks are estimated numerically. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High luminosities of B factories and hadron col-
liders make it possible to observe experimentally the
doubly heavy baryons ΞQQ′ and ΩQQ′. This possibil-
ity generates interest in theoretically studying such
particles—in particular, in analyzing their spectra ei-
ther on the basis of model potentials [1] or on the basis
of QCD sum rules [2], their lifetimes and inclusive
decay modes [3], the productionmechanisms in deep-
inelastic collisions, and the rate of their production at
accelerators [4].

In the present study, we show that the cross sec-
tion for pair production is rather large only in the
energy region close to the reaction threshold.

The method that we use in our calculations
provides a reliable approximation for doubly heavy
baryons, because the dimension of a heavy diquark is
much less than the radius of light-quark confinement
in theQQ′q system. We believe that, first, it is neces-
sary to calculate the cross section for the production
of heavy diquarks, whereupon one can apply models
describing their fragmentation into a baryon [5].

In [6], the differential and total cross sections for
exclusivemeson-pair production in e+e− annihilation
were obtained within the constituent quark model.
These calculations were performed for the reaction
whose energy is close to the threshold value, in which
case pairs of both pseudoscalar and vector particles
appeared in the final state. By using the same pro-
cedure, we consider the processes e+e− → dd̄ and
qq̄ → dd̄, where d and d̄ are, respectively, a diquark
and an antidiquark (in the calculations, we neglect the
masses of annihilating particles).

We have calculated the differential and total cross
sections for the exclusive production of diquark pairs
occurring in axial–axial, axial–scalar, and scalar–
scalar states and consisting of nonidentical quarks.
We also consider annihilation into two axial vector
1063-7788/02/6508-1537$22.00 c©
diquarks containing identical quarks. Processes in-
volving the production of diquarks in pseudoscalar
and vector states do not contribute to the leading
order of 1/m expansion; since such processes are
higher order effects, we do not discuss them here. If
we assume that the product diquarks fragment into
doubly heavy baryons, the resulting formulas can be
used in calculating the cross sections for the pair
production of baryons.

The ensuing exposition is organized as follows.
In Section 2, we describe the fundamentals of the
constituent quark model. In Sections 3 and 4, we
present the matrix elements and the differential and
total cross sections for e+e− and qq̄ annihilation into
diquark pairs. In Section 5, we give relevant numer-
ical estimates. In the Conclusion, we summarize the
basic results of our study.

2. FUNDAMENTALS OF THE MODEL

In this study, we rely on the constituent quark
model [6], which involves only quark masses and lep-
tonic constants for input parameters.

Accordingly, the mass of the diquark d = (Q1Q2)
is the sum of the masses of the quarks constituting it;
that is,

M = m1 + m2.

Their 4-momenta can be written as

kQ1 =
m1

M
P + q,

kQ2 =
m2

M
P − q,

where P is the diquark 4-momentum and q is the 4-
momentum of the relative motion of the quarks.

In order to represent a state of a diquark containing
two nonidentical quarks, the principle of superposi-
tion of wave packets characterized by the momentum
2002 MAIK “Nauka/Interperiodica”
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Fig. 1.Diagrams describing e+e−(qq̄) annihilation into a pair of doubly heavy diquarks through one photon (gluon).
distributions Ψ(q) is used in Fock space. Thus, we
have

|Si
d〉 =

εijk√
2

∫
d3q

(2π)3
Ψs(q) (1)

×
∑

λ1λ2

(Ψ†
λ1
Ĉγ5Ψλ2)

∗
√

2
âj+

λ1
b̂k+
λ2

|0〉

for a scalar diquark and

|Ai
d〉 =

εijk√
2

∫
d3q

(2π)3
Ψa(q) (2)

×
∑

λ1λ2

(Ψ†
λ1
ĈγµΨλ2)

∗
√

2
eµâ

j+
λ1

b̂k+
λ2

|0〉

for an axial diquark. In these expressions, Ĉ is the
charge conjugation matrix; i and j are color indices;
ê = eµγµ, where eµ is the polarization vector of the
axial diquark; â+ and b̂+ are the quark creation op-
erators; Ψa and Ψs are the wave functions for the
orbital motion of the quarks in the axial and in the
scalar diquark, respectively; and Ψλ stands for the
bispinors of the quarks constituting a diquark. From
formulas (1) and (2), it can easily be seen that, in Fock
space, these wave functions are normalized as

〈Si
d(P)|Sj

d(P
′)〉 = (2π)3δijδ(P − P′), (3)

〈Ai
d(P, λ)|Aj

d(P
′, λ′)〉 = (2π)3δijδλλ′δ(P − P′), (4)

where λ and λ′ are the diquark polarization indices.

In the case of two heavy identical quarks, it is
necessary to take into account the Pauli exclusion
principle. Therefore, the above formulas for the wave
functions must be divided by

√
2 and antisymmetrized

with respect to permutations of the operators â+ and
b̂+ in order to preserve normalization.

The quark propagator can be represented as

S(k) = (kµγµ + m)D(k),

where

D−1(k) = k2 −m2.
P

3. AMPLITUDES AND CROSS SECTIONS
FOR e+e− ANNIHILATION

In this section, we consider electron–positron an-
nihilation followed by the production of a diquark–
antidiquark pair. The diagrams corresponding to this
process in the leading order are shown in Fig. 1. Their
color factor is

Colorij = −2
3
δij ,

where i and j are diquark and antidiquark color in-
dices.

3.1. Annihilation into a Pair of Scalar Diquarks

The matrix element for the pair production of
scalar diquarks has the form

Mss = −i
64π2

3
fss

s2
δij |Ψs(0)|2(P ′

µ − Pµ)lµ, (5)

where

fss = M

(

αs

(
m2

1

M2
s

)
q2

m2
1

(6)

+ αs

(
m2

2

M2
s

)
q1

m2
2

)

αem (s) − 2M3

s

×
(

αs

(
m2

1

M2
s

)
q2m2

m3
1

+αs

(
m2

2

M2
s

)
q1m1

m3
2

)

αem (s) ,

and where we have introduced the following notation:
lµ is the vector leptonic current; Ψs(0) is the wave
function for the relative motion of the quarks in the
scalar diquark at the origin in its rest frame; P ′ and
P are the 4-momenta of the scalar diquark and the
scalar antidiquark; q1 and q2 are the electric charges
of the quarks Q1 and Q2, respectively.

After some simple algebra, we find that the differ-
ential cross section can be represented as

dσss

d cos θ
= 64π3 f

2
ss

3s3
|Ψs(0)|4 (7)

×
(

1 − 4M2

s

)3/2

(1 − cos2 θ),
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002



PAIR PRODUCTION OF DOUBLY HEAVY DIQUARKS 1539
where θ is the angle between the 3-momenta of the
incoming lepton and the outgoing diquark.

From (7), we obtain the total cross section for the
exclusive pair production of heavy scalar diquarks in
e+e− annihilation, that is,

σss = 256π3 f
2
ss

9s3
|Ψs(0)|4

(

1 − 4M2

s

)3/2

. (8)

3.2. Annihilation into a Scalar and an Axial Diquark

For the production of a pair of diquarks in a scalar
and an axial state, the matrix element can be repre-
sented as

Mas =−128π2

3s3
δijfasΨ∗

s(0)Ψa(0)εµαβγeαPβqγlµ, (9)

where

fas =M3

(

αs

(
m2

1

M2
s

)
q2

m3
1

−αs

(
m2

2

M2
s

)
q1

m3
2

)

αem (s) ,

Ψa(0) is the wave function for the relative motion of
the quarks in the axial diquark at the origin in its rest
frame, and q = P + P ′.

Upon performing similar algebraic calculations,
we obtain the differential cross section in the form

dσas

d cos θ
= 64π3 f

2
as

3s4
|Ψs(0)Ψa(0)|2 (10)

×
(

1 − 4M2

s

)3/2

(2 − sin2 θ).

Accordingly, the total cross section for the exclu-
sive production of heavy scalar and axial diquarks in
e+e− annihilation is given by

σas = 512π3 f
2
as

9s4
|Ψs(0)Ψa(0)|2

(

1− 4M2

s

)3/2

. (11)

In all the formulas given in this section, we neglect
the difference of the masses of the axial and scalar
diquark.

3.3. Annihilation into a Pair of Axial Diquarks

For the pair production of heavy axial diquarks in
e+e− annihilation, the matrix element has the form

Maa = −i
128π2

3s3
δij |Ψa(0)|2 (12)

×
(
f [1]

aa (P ′
µ−Pµ)(e′∗e)+f [2]

aa ((e′∗q)eµ− (eq)e′∗µ )
)
lµ,

where f [1]
aa and f

[2]
aa are defined as

f [1]
aa = M3

(

αs

(
m2

1

M2
s

)
q2m2

m3
1

(13)
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+ αs

(
m2

2

M2
s

)
q1m1

m3
2

)

αem (s) ,

f [2]
aa = M4

(

αs

(
m2

1

M2
s

)
q2

m3
1

(14)

+ αs

(
m2

1

M2
s

)
q1

m3
2

)

αem (s) .

For the differential cross section, we obtain the ex-
pression

dσaa

d cos θ
=

512π3

3s5
|Ψa(0)|4

(

1 − 4M2

s

)3/2

× (A− B cos2 θ),

where we have introduced (in order to simplify the
representation) the quantities A and B defined as

A = (f [1]
aa )2(8 + (η − 2)2)

− 2f [1]
aa f

[2]
aa η(η − 2) + (f [2]

aa )2(η2 + 2η),

B = (f [1]
aa )2(8 + (η − 2)2)

− 2f [1]
aa f

[2]
aa η(η − 2) + (f [2]

aa )2(η2 − 2η)

and where η = s/M2 is a quantity that depends only
on the velocity of the final diquarks.

From the above relations, we find that the to-
tal cross section for the exclusive pair production
of heavy axial diquarks in e+e− annihilation can be
represented as

σaa =
1024π3

9s5
|Ψa(0)|4

(

1− 4M2

s

)3/2

(3A− B). (15)

It can easily be seen from this formula that, at high
energies, the cross section in question behaves as
σaa ∼ 1/s3.

3.4. Diquark Involving Two Identical Quarks

In the case of the production of a diquark con-
taining two identical quarks, the above formula must
be modified. Obviously, we must consider only axial
diquarks because a scalar diquark consisting of two
identical quarks cannot exist by virtue of the Pauli
exclusion principle.

Accordingly, all the above formulas for annihila-
tion in two axial diquarks remain valid if we take into

account a correction in the form factors f [1]
aa and f

[2]
aa ,

whereupon they become

f [1]
aa = 2qαs(M2)Mαem (s) , (16)

f [2]
aa = 4qαs(M2)Mαem (s) , (17)

where q is the quark charge.
2
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Fig. 2. Diagram describing qq̄ annihilation into diquarks
through the vertex of three-gluon interaction.

4. AMPLITUDES AND CROSS SECTIONS
FOR qq̄ ANNIHILATION

In this section, we consider qq̄ annihilation fol-
lowed by the production of a diquark–antidiquark
pair. In the leading order, diagrams corresponding to
this process are shown in Figs. 1–3. It should be
noted that the diagram in Fig. 2 does not contribute in
our approximation, since the quarks are on the mass
shell.

The color factor of the diagrams in Fig. 1 is

Color[1]
(ij)(lm) =

1
3
taijt

a
lm,

wherem and l are the color indices of the annihilating
quark and antiquark, respectively. It can easily be

seen that Color[1](ij)(lm) corresponds to an octet state.

The color factor of the diagrams in Fig. 3,

Color[2]
(ij)(lm) =

5
12

taijt
a
lm − 1

9
δijδlm,

is a mixture of the octet and the singlet color state.

4.1. Annihilation into a Pair of Scalar Diquarks

For the pair exclusive production of scalar di-
quarks, the matrix element has the form

Mss =
32π2i

s2
|Ψs(0)|2

(

f̃ [1]
ss

2taif t
a
lm

3
P ′

µ (18)

− f̃ [2]
ss

(5taif t
a
lm

6
− 2δif δlm

9

)
(p, P ′ − P )

s
Pµ

)

lµ,

where

f̃ [1]
ss =M




αs

(
m2

1
M2 s

)

m2
1

+
αs

(
m2

2
M2 s

)

m2
2



αs (s) (19)

− 2M3

s

(

αs

(
m2

1

M2
s

)
m2

m3
1

+αs

(
m2

2

M2
s

)
m1

m3
2

)

αs(s) ,

f̃ [2]
ss =

M5

m3
1m

3
2

αs

(
m2

1

M2
s

)

αs

(
m2

2

M2
s

)

(20)
PH
and p is the 4-momentum of the annihilating quark.
After some simple algebra, we obtain the differen-

tial cross section in the form
dσss

d cos θ
=

8π3

81s3
|Ψs(0)|4 (21)

×





(

2f̃ [1]
ss +

5
4
f̃ [2]

ss

√

1 − 4M2

s
cos θ

)2

+
(f̃ [2]

ss )2

2

(

1 − 4M2

s

)

cos2 θ

)

×
(

1 − 4M2

s

)3/2

(1 − cos2 θ).

From (21), we find that the total cross section for the
exclusive pair production of heavy scalar diquarks in
qq̄ annihilation can be represented as

σss =
8π3

81s3
|Ψs(0)|4

(

1 − 4M2

s

)3/2

(22)

×
(

16
3

(f̃ [1]
ss )2 +

11
20

(

1 − 4M2

s

)

(f̃ [2]
ss )2

)

.

4.2. Annihilation into a Scalar and an Axial Diquark

For the production of a diquark pair in a scalar and
an axial state, the matrix element can be written as

Mas =
32π2

s3
Ψ∗

s(0)Ψa(0) (23)

×
(

−f̃ [1]
as

2taif t
a
lm

3
εµαβγPβeαqγ

− f̃ [2]
as

(5taif t
a
lm

6
− 2δif δlm

9

)

εµναβqαeβpν

)

lµ,

where

f̃ [1]
as = M3







αs

(
m2

1

M2
s

)

m3
1

−
αs

(
m2

2

M2
s

)

m3
2





αs(s),

(24)

f̃ [2]
as = αs

(
m2

1

M2
s

)

αs

(
m2

2

M2
s

)
M5(m2 −m1)

m3
1m

3
2

. (25)

For the differential cross section dσas/d cos θ, we ob-
tain the expression

dσas

d cos θ
=

64π3

81s4
|Ψs(0)Ψa(0)|2

√

1 − 4M2

s
(26)

×
(

(f̃ [1]
as )2

2

(

1 − 4M2

s

)

(1 + cos2 θ) +
33(f̃ [2]

as )2

16
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Fig. 3. Diagrams for the two-gluon annihilation of light quarks into a pair of doubly heavy diquarks.
×
(

1+
s−4M2

8M2
sin2 θ

)

+
5
2
f̃ [1]

as f̃
[2]
as

√

1− 4M2

s
cos θ

)

.

Accordingly, the total cross section for the exclusive
production of a heavy scalar and a heavy axial diquark
in qq̄ annihilation is given by

σas =
64π3

243s4
|Ψs(0)Ψa(0)|2

√

1 − 4M2

s
(27)

×
(

4(f̃ [1]
as )2

(

1− 4M2

s

)

+
33(f̃ [2]

as )2

8

(
2+

s

4M2

)
)

.

In these calculations, we have also neglected the dif-
ference of the axial- and the scalar-diquark mass.

4.3. Annihilation into a Pair of Axial Diquarks

For the pair production of heavy axial diquarks in
qq̄ annihilation, the matrix element has the form

Maa =
32π2i

3
αs(4m2

1)αs(4m2
2)

m3
1m

3
2s

3
M5|Ψa(0)|2 (28)

×
{(

(−Pe′∗)((pP ′)(le) + (lP ′)(pe))
)

+ (−P ′e)

×
(
(Pp)(le′∗) + (lP )(pe′∗)

)
+ (ee′∗)

(
(lP )(pP ′)

+ (lP ′)(pP )
)

+
s

2
(
(pe)(le′∗) + (le)(pe′∗)

)

×
(

taif t
a
lm − 4

15
δif δlm

)

+
(
f̃ [2]

aa

(
(el)(Pe′∗)

−(P ′e)(e′∗l)
)

+ f̃ [1]
aa (Pl)(ee′∗)

)
(taif t

a
lm)
}
.

Accordingly, the differential cross section is given
by

dσaa

d cos θ
=

200π3

81
α2

s(4m
2
1) (29)

× α2
s(4m

2
2)

M10

m6
1m

6
2s

7
|Ψa(0)|4

√

1 − 4M2

s

× (a4 cos4 θ + a3 cos3 θ + a2 cos2 θ + a1 cos θ + a0).

From here, it follows that the total cross section for
the exclusive pair production of heavy axial diquarks
SICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
in qq̄ annihilation can be written as

σaa =
200π3

81
α2

s(4m
2
1)α

2
s(4m

2
2)

M10

m6
1m

6
2s

7
(30)

× |Ψa(0)|4
√

1 − 4M2

s

(
2
5
a4 +

2
3
a2 + 2a0

)

,

where the following notation has been introduced in
order to simplify the presentation:

f̃ [1]
aa = − αs (s)

αs(4m2
1)αs(4m2

2)
8m3

1m
3
2

5M2

×
(
αs(4m2

1)m2

m3
1

+
αs(4m2

2)m1

m3
2

)

,

f̃ [2]
aa =

αs (s)
αs(4m2

1)αs(4m2
2)

4m3
1m

3
2

5M

×
(
αs(4m2

1)
m3

1

+
αs(4m2

2)
m3

2

)

,

a4 =
99
400

s2(s− 4M2)2,

a3 =
1
8

s3

M2

(
2f̃ [2]

aa s+ f̃ [1]
aa (6M2 +s)

)(

1−4
M2

s

)3/2

,

a2 =
1

16M4
s(s− 4M2)

{

4f̃ [1]
aa f̃

[2]
aa s(s− 2M2)

+ (f̃ [1]
aa )2(12M4 − 4M2s + s2)

+ s

(
33
25

(12M6 −M4s) + 4(f̃ [2]
aa )2(s− 2M2)

)}

,

a1 = − s2

8M2

√

1 − 4
M2

s

(
2f̃ [2]

aa s(s + 4M2)

+ f̃ [1]
aa (−24M4 + 2M2s + s2)

)
,

a0 = − s

16M4

(
4f̃ [1]

aa f̃
[2]
aa s

(
8M4 − 6M2s + s2

)

+ (f̃ [1]
aa )2

(
−48M6 +28M4s−8M2s2 +s3

)

+ 2s
(

33
25

M4s(4M2 + s)

+ f̃ [2]
aa (−16M4 − 4M2s + 2s2)

))
.

2
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Fig. 4. (a) Ratio of the total cross sections for the exclusive production of pairs of bc diquarks to the cross section for
cc̄-pair production in e+e− annihilation versus the c.m. particle energy, the cases of the production of two axial diquarks
[R = σaa(s)/σcc̄(s)], an axial and a scalar diquark [R = 15σas(s)/σcc̄(s)], and two scalar diquarks [R = 400σss(s)/σcc̄(s)]
being represented by the solid, the dashed, and the dotted curve, respectively. (b) Ratio of the total cross section for the
exclusive production of pairs of bb diquarks to the cross section for bb̄-pair production and ratio of the cross section for the
exclusive production of pairs of cc diquarks to the cross section for cc̄-pair production in e+e− annihilation versus the c.m.
particle energy, the cases of the production of ññ diquarks [R = σcc(s)/σcc̄(s)] and bb diquarks [R = 30σbb(s)/σbb̄(s)] being
represented by the solid and the dashed curve, respectively. (c) Ratio of the total cross section for the exclusive production of
pairs of bc diquarks to the cross section for cc̄-pair production in qq̄ annihilation versus the c.m. particle energy, the cases of
the production of two axial diquarks [R = σaa(s)/σcc̄(s)], an axial and a scalar diquark [R = 5σas(s)/σcc̄(s)], and two scalar
diquarks [R = 100σss(s)/σcc̄(s)] being represented by the solid, the dashed, and the dotted curve, respectively. (d) Ratio of
the total cross section for the exclusive production of pairs of bb diquarks to the cross section for bb̄-pair production and ratio
of the total cross section for the exclusive production of pairs of cc diquarks to the cross section for cc̄-pair production in qq̄
annihilation versus the c.m. particle energy, the cases of the production of cc diquarks [R = σññ(s)/σcc̄(s)] and bb diquarks
[R = 30σbb(s)/σbb̄(s)] being represented by the solid and the dashed curve, respectively.
4.4. Diquark Involving Two Identical Quarks

In this section, we consider qq̄ annihilation into
a pair of diquarks consisting of two identical heavy
quarks. As in the case of e+e− annihilation, the cal-
culation must be performed only for the production of
two axial vector states.

The amplitude can be written as

Maa =
512π2i

3
α2

s(M
2)

Ms3
|Ψa(0)|2 (31)

×
{ (

(−Pe′∗)
(
(pP ′)(le) + (lP ′)(pe)

)

+ (−P ′e)
(
(Pp)(le′∗) + (lP )(pe′∗)

)

+ (ee′∗)
(
(lP )(pP ′) + (lP ′)(pP )

)

+
s

2
(
(pe)(le′∗) + (le)(pe′∗)

) }

×
(

taif t
a
lm − 4

15
δif δlm

){
f̃ [2]

aa

(
(el)(Pe′∗)
PH
−(P ′e)(e′∗l)
)

+ f̃ [1]
aa (Pl)(ee′∗)

) (
taif t

a
lm

)}
.

The expression for the differential cross section has
the form

dσaa

d cos θ
= 211 25π3

81
α4

s(M2)
M2s7

(32)

× |Ψa(0)|4
√

1 − 4M2

s

× (a4 cos4 θ + a3 cos3 θ + a2 cos2 θ + a1 cos θ + a0).

The total cross section for exclusive production as a
function of energy is given by

σaa = 211 25π3

81
α4

s(M
2)

M2s7
|Ψa(0)|4 (33)

×
√

1 − 4M2

s

(
2
5
a4 +

2
3
a2 + 2a0

)

,
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where we have used the notation

f̃ [1]
aa = − αs (s)

αs(M2)
M2

5
, (34)

f̃ [2]
aa =

αs (s)
αs(M2)

M2

5
. (35)

5. NUMERICAL ESTIMATES

The energy dependences of the ratios of the cross
sections for the exclusive production of heavy-diquark
pairs to the cross section for the production of the
relevant two heavy quarks in e+e− annihilation,

σ(e+e− → QQ̄) =
4πα2

emq2
Q

s

√

1−
4m2

Q

s

(

1+
2m2

Q

s

)

,

are shown in Figs. 4а and 4b.
The corresponding energy dependences of the ra-

tios of the cross sections for the exclusive production
of heavy-diquark pairs to the cross section for the
production of two heavy quarks in qq̄ annihilation,

σ(qq̄ → QQ̄) =
8πα2

s

27s

√

1 −
4m2

Q

s

(

1 +
2m2

Q

s

)

,

are given in Figs. 4c and 4d.
Figures 4а and 4c show the results for the case

of diquarks involving different quarks, while Figs. 4b
and 4d correspond to the case of diquarks containing
identical quarks. In the calculations, we have used the
following values of the quark masses and ΛQCD:

mc = 1.55 GeV,

mb = 4.9 GeV,

ΛQCD = 0.2 GeV.

The values of the wave functions for the diquarks at
the origin is the diquark rest frame were calculated
in [1].

The displayed graphs give reason to believe that,
at B factories, the production of cc diquarks will be
dominant in relation to other doubly heavy diquarks
and that, at a sufficiently high luminosity, it will be
possible to obtain a few thousand pairs of doubly
charmed baryons.

We also note that, in the process of qq̄ annihilation
in inelastic hadron collisions, the pair production of cc
baryons constitutes about 10−5 of the charm yield at√
s < 100 GeV.
At threshold energies, diquarks can be produced

as discrete units. However, a consideration of an ex-
otic bound diquark–antidiquark state (dd̄) assumes
the simulation of its wave function and spectral fea-
tures. Here, the contribution of Coulomb-like inter-
actions of two nonlocal objects will be significant. The
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
contribution of such exotic hadrons is considerable in
a narrow energy region near the production thresh-
old, δE ∼ α2

smd ∼ 0.1 GeV. Therefore, the foregoing
consideration is valid slightly above the threshold en-
ergy, E > 2m + δE.

6. CONCLUSION

The exclusive pair production of doubly heavy di-
quarks in axial–axial, scalar–scalar, and axial–scalar
states has been considered on the basis of the con-
stituent quark model. Also, the matrix elements and
the differential and total cross sections for e+e− and
qq̄ annihilation have been presented, and calcula-
tions have been performed for the pair production of
diquarks involving two identical heavy quarks. The
formulas obtained here can be used in calculating the
cross sections for electron–positron annihilation and
inelastic proton–antiproton collisions followed by the
production of doubly heavy baryons, provided that one
assumes diquark fragmentation into a baryon.

On the basis of the expressions that we have ob-
tained for cross sections, it can be concluded that
the yield of pairs of doubly heavy baryons can be
as high as 103 events per year in e+e− annihila-
tion implemented at B factories of luminosity L =
1034 cm−2 s−1, 103 events per year in hadronic ex-
periments with a fixed target at a luminosity of L =
1031 cm−2s−1 (HERAB), and 106 events per year in
the CHARM experiment employing extracted beams
of the Tevatron at FNAL.
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Abstract—Recently [see V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000)], the K-matrix solutions for the
wave IJPC = 00++ were obtained in the mass region 450–1900 MeV, where four resonances f0(980),
f0(1300), f0(1500), f0(1750) and the broad state f0(1530+90

−250) are located. Based on these solutions,
partial widths are determined for scalar–isoscalar states decaying into the channels ππ,KK̄, ηη, ηη′, ππππ
and corresponding decay couplings. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1], the combined K-matrix analysis was per-
formed for the meson partial waves IJPC = 00++,
10++, 02++, 12++ on the basis of GAMS data on
π−p → π0π0n, ηηn, ηη′n [2], BNL data on π−p →
KK̄n [3], and Crystal Barrel data on pp̄ (at rest) →
π0π0π0, π0ηη, π0π0η [4]. The positions of amplitude
poles (physical resonances) were determined together
with the positions of theK-matrix poles (bare states)
and bare-state couplings to the two-meson channels.
The nonet classification of the bare qq̄ states was
suggested, and the possibilities for the location of
the lightest scalar glueball in the mass region 1200–
1700 MeV were discussed.

TheK-matrix technique has an advantage of tak-
ing account of the unitarity condition constraints and,
in this way, of a correct incorporation of threshold
singularities into the scattering amplitude. Since the
search for resonances is always related to the inves-
tigation of analytical structure of the amplitude in the
complex-mass plane by using data at real masses, it
is important to perform analytical continuation of the
amplitude into the lower half-plane of the complex
mass, with correctly taken singularities on the real
axis.

However, the K-matrix amplitude does not in-
clude resonance parameters in an explicit form, so ad-
ditional calculations are needed to determine masses
and couplings of real resonances. In paper [1], the
pole positions have been found for the considered
partial wave amplitudes (i.e., masses and total widths
of resonances were found), but more complicated
calculation of couplings has not been done yet. The

∗This article was submitted by the authors in English.
1063-7788/02/6508-1545$22.00 c©
decay coupling constants are to be determined as
residues of the pole singularities of the multichannel
amplitude. In the present paper, we calculate cou-
pling constants to the channels ππ,KK̄, ηη, ηη′, and
ππππ for the resonances f0(980), f0(1300), f0(1500),
f0(1750), f0(1530+90

−250). This procedure provided us
with partial widths for the decays of these resonances.
The choice of the scalar–isoscalar sector for primary
study follows from the interest in pursuing the destiny
of the lightest scalar glueball after its mixing with
neighboring states; one needs knowledge of the cou-
plings f0 → ππ, KK̄, ηη, ηη′ for all resonances over
the mass region 1000–1800 MeV.

The paper is organized as follows.

In Section 2, the coupling constants are presented
for the decays f0 → ππ, KK̄, ηη, ηη′, ππππ, and
partial widths for the mesons f0(1300), f0(1500),
f0(1750), and f0(1530+90

−250) are determined.

In Section 3 the resonance f0(980) is considered
in detail: the results of the analysis [1] tell us that
standard formulas for the description of resonances,
such as Breit–Wigner or Flatté ones, in the case of
f0(980) are unable to give simultaneously the values
of the decay coupling constants and the position of the
amplitude pole.We suggest an alternative form of res-
onance amplitude for f0(980) in which the important
role is played by the prompt transition ππ → KK̄. In
this section another low-mass state, namely, the σ
meson, is also discussed.

The results are summarized in the Conclusion.
2002 MAIK “Nauka/Interperiodica”
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Table 1. Partial widths of scalar–isoscalar resonances (in MeV) in hadronic channels ππ, KK̄, ηη, ηη′, and ππππ for
differentK-matrix solutions of [1]

ππ KK̄ ηη ηη′ ππππ Pole position Solution

f0(980) 71 13 – – 6 1006− i45 I

56 10 – – 2 1020− i34 II-1

64 12 – – 3 1015 − i39.5 II-2

f0(1300) 75 13 8 – 180 1303− i138 I

38 2 2 – 192 1311− i117 II-1

39 2 2 – 193 1304− i118 II-2

f0(1500) 33 8 3.7 0.3 73 1496− i59 I

39 6 4 0.1 77 1500− i63 II-1

39 6 4 0.1 77 1505− i63 II-2

f0(1750) 45 28 6 4 29 1775− i56 I

66 1.5 5 2.5 89 1814− i82 II-1

64 1.5 5 2.5 87 1809− i80 II-2

f0(1530+90
−250) 406 186 45 2 881 1670− i760 I

393 204 40 1 452 1470− i545 II-1

387 202 39 1 451 1420− i540 II-2
2. DECAY COUPLINGS AND PARTIAL
DECAY WIDTHS

We determine the coupling constants and par-
tial decay widths using the following procedure. The
00++ amplitude for the transition a → b,

Aa→b(s), a, b = ππ,KK̄, ηη, ηη′, ππππ, (1)

is considered as a function of the invariant energy
squared s in the complex-s plane near the pole related
to the resonance n. In the vicinity of the pole, the
amplitude reads

Aa→b(s) =
g
(n)
a g

(n)
b

µ2
n − s

eiθ
(n)
ab + Bab. (2)

Here, µn is the resonance complex mass µn = Mn −
iΓn/2; g

(n)
a and g

(n)
b are the couplings for the transi-

tions f0 → a and f0 → b. The factor exp (iθ(n)
ab ) is due

to a background contribution which can be the non-
resonance terms or tails of neighboring resonances.
We also write down in (2) the nonpole background
term Bab.

The partial width for the decay f0 → a is deter-
mined as a product of the coupling constant squared,

g
(n)2
a , and phase space, ρa(s), averaged over reso-
PH
nance density:

Γa(n) = Cn

∫

s>sth

ds

π

g
(n)2
a ρa(s)

(Reµ2
n − s)2 + (Imµ2

n)2
. (3)

Following [1], we write down the phase-space factor
as follows:

ρa(s) =
2ka√

s
, (4)

where ka is the relative momentum of mesons in
the decay channel (for example, for the ππ channel
ρππ(s) =

√
(s− 4m2

π)/s). For the ππππ channel,
the phase-space factor was chosen in [1] to be the
same as for the two-ρ-meson state at s < 1 GeV2

or be equal to 1 at s ≥ 1 GeV2. The integration
over s in (3) is carried out in the region above
the a-channel threshold, s > sth (for the ππ chan-
nel it is s > 4m2

π). The resonance density factor,
(
(Reµ2

n − s)2 + (Imµ2
n)2
)−1, guarantees rapid con-

vergence of the integral (3). The normalization con-
stant Cn is determined by the requirement that the
sum of all hadronic partial widths is equal to the total
width of the resonance:

Γ(n) =
∑

a

Γa(n). (5)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Table 2. Coupling constants squared (in GeV2) of scalar–isoscalar resonances to hadronic channels ππ, KK̄, ηη, ηη′,
and ππππ for differentK-matrix solutions of [1]

Resonance ππ KK̄ ηη ηη′ ππππ Solution

f0(980) 0.076 0.180 0.075 – 0.009 I

0.076 0.186 0.072 – 0.004 II-1

0.076 0.186 0.072 – 0.004 II-2

f0(1300) 0.050 0.015 0.012 – 0.124 I

0.026 0.002 0.003 – 0.132 II-1

0.026 0.002 0.003 – 0.132 II-2

f0(1500) 0.032 0.010 0.005 0.012 0.070 I

0.038 0.009 0.007 0.006 0.074 II-1

0.038 0.009 0.007 0.006 0.074 II-2

f0(1750) 0.039 0.029 0.007 0.030 0.025 I

0.086 0.003 0.009 0.028 0.117 II-1

0.086 0.003 0.009 0.028 0.117 II-2

f0(1530+90
−250) 0.329 0.229 0.061 0.022 0.764 I

0.304 0.271 0.062 0.016 0.382 II-1

0.304 0.271 0.062 0.016 0.382 II-2
In paper [1], three solutions for the wave IJPC =
00++ have been found; they are labeled as I, II-1, and
II-2 (see Tables 4 and 5 in [1]). In practice, solutions
II-1 and II-2 give the same physical parameters of
resonances, though they differ from parameters found
for the K-matrix elements. In particular, in solu-
tion II-2, the state fbare

0 (1600) may be identified as
a gluonium, for the decay couplings satisfy all the
requirements inherent to glueball state; in solution
II-1, such a state is fbare

0 (1230). For solution I, the
same bare state, fbare

0 (1230), should be considered as
a gluonium.

In Table 1, we show the values of partial widths for
the resonances f0(980), f0(1300), f0(1500), f0(1750)
and broad state f0(1530+90

−250). Partial widths for
f0(1300), f0(1500), f0(1750), f0(1530+90

−250) are cal-
culated within standard formulas for the Breit–
Wigner resonances (3), (4), and (5). The resonance
f0(980), being located near the strongKK̄ threshold,
needs a special consideration that is presented below.

The decay coupling constants squared, g(n)2
a , are

shown in Table 2 for a = ππ,KK̄, ηη, ηη′, ππππ.
The couplings are determined with the normalization
of the amplitude used in [1]: for example, we write
the ππ-scattering amplitude (2) as Aππ→ππ(s) =
(η0

0 exp (2iδ0
0) − 1)/2iρππ(s), where η0

0 and δ0
0 are the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
inelasticity parameter and phase shift for the 00++

ππ wave. The coupling constants g
(n)
a are found by

calculating the residues of the amplitudes ππ → ππ,
KK̄, ηη, ηη′, ππππ. Also, we check the factorization
property for the pole terms by calculating residues for
other reactions, such asKK̄ → KK̄.
The position of poles in the complex-M plane

(M ≡
√
s) is illustrated by Fig. 1. The complex-M

area, where the K-matrix fit [1] may reliably repro-
duce analyticity of the amplitude, is inside a semicircle
depicted by dashed line. The poles which are a subject
of the K-matrix analysis and correspond to f0(980),
f0(1300), f0(1500), f0(1750), f0(1530+90

−250) are lo-
cated on the third, fourth, fifth, and sixth sheets of the
complex-M plane. The resonance f0(980) is located
near the strong KK̄ threshold; therefore, two poles
are related to f0(980): the nearest one is on the third
sheet (M � 1014 − i39 MeV), and a remote pole is
on the fourth sheet (M � 936− i238MeV). Coupling
constants for f0(980) are determined as residues of
the nearest pole (on the third sheet). The ηη′ threshold
is weak for f0(1500), and because of that µ2

n for the
positions of poles on the fifth and sixth sheets are
practically the same (note that couplings related to
these poles nearly coincide).
TheK-matrix fit [1] has been carried out in a broad

mass interval, 450 ≤ M ≤ 1900 MeV. This very fact
2
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Fig. 1. Pole positions (closed circles) in the complex-M plane (M ≡
√
s). Solid lines stand for cuts related to the threshold

singularities (ππ, ππππ, KK̄ , ηη, and ηη′). Two poles, which correspond to f0(980), are shown: on the third and fourth
sheets. On the fifth sheet the poles for f0(1300), f0(1500), and broad state f0(1530+90

−250) are located (for the broad state
the pole stands at 1420 − i540 MeV, which is the mass for solution II-2 of the fit [1]). On the sixth sheet, there is a pole for
f0(1750). The dashed semicircle restricts the area where the K-matrix fit [1], which was carried out on the real axis in the
interval 450 ≤M ≤ 1900MeV, can give a reliable reconstruction of analytical amplitude.
allows us to believe that we deal with a successfully
reconstructed analytical amplitude which goes rather
deeply into the lower half-plane M , and this area
is restricted by the dashed line in Fig. 1. It is of
crucial importance that the pole of the broad state
f0(1530+90

−250) is inside this area, for this broad state
plays a key role in a mixing of qq̄ mesons with the
lightest glueball (see [5, 6] for details).

3. THE LOW-MASS MESONS: f0(980) AND σ

The two low-mass mesons, f0(980) and σ meson,
need special consideration and comments.

The analysis [1] shows us that f0(980) cannot be
described either by the standard Breit–Wigner for-
mula or its modification for the case of the nearly lo-
cated strongKK̄ threshold, that is, the Flatté formula
[7]. Here, we suggest another resonance formula for
f0(980) which agrees with the results of [1].

In the compilation of Particle Data Group [8], the
σ meson is denoted as f0(400 − 1200) that reflects
a cumulative result obtained in a number of papers
where the mass of σ was found in this region or even
higher. However, the analysis [1] definitely demon-
strates the absence of poles in the 00++ amplitude
at 600 ≤ ReM ≤ 1200 MeV, with an exception of
poles for f0(980)—we will discuss the situation with
σ meson in this section later on.

3.1. Description of f0(980)

For f0(980), the K-matrix fit [1] gives us the po-
sition of the pole and coupling constant values (see
Tables 1 and 2). These parameters are sufficient to
P

reconstruct the Breit–Wigner resonance amplitude.
However, in case of f0(980), there exists a strong
KK̄ threshold near the pole, so the resonance term
in the amplitude (2) should be suggested not as the
Breit–Wigner pole but in a more complicated form.
For the ππ → ππ and KK̄ → KK̄ transitions near
f0(980), the following resonance terms can be writ-
ten instead of the Breit–Wigner pole term R

(ab)
n =

g
(n)
a g

(n)
b /(µ2

n − s) entering Eq. (2):

R
(ππ,ππ)
f0(980)

=



G2 + i

√
s− 4m2

K

m0
F



 1
D

, (6)

R
(KK̄,KK̄)
f0(980)

=
(
G2

KK̄ + iF
) 1
D

,

where
F = 2GGKK̄f + f2(m2

0 − s), (7)

D = m2
0 − s− iG2 − i

√
s− 4m2

K

m0

(
G2

KK̄ + iF
)
.

Here, m0 is the input mass of f0(980), G and GKK̄
are coupling constants to pion channels (ππ + ππππ)
andKK̄. The dimensionless constant f stands for the
prompt transition KK̄ → ππ: the value f/m0 is the
“transition” length which is analogous to the scat-
tering length of the low-energy hadronic interaction.
The constants m0, G, GKK̄ , f are parameters which
are to be chosen to reproduce the f0(980) charac-
teristics (position of pole s � (1.015 − i0.040)2 GeV2

and couplings to the channels ππ and KK̄, g2
ππ �

0.076 GeV2 and g2
KK̄

� 0.184 GeV2—see Tables 1
and 2).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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The ππ-scattering amplitude in the f0(980) region
is now defined as

Aππ→ππ = eiθR
(ππ,ππ)
f0(980) + ei θ

2 sin
θ

2
, (8)

where θ is a parameter of the reaction. This for-
mula may be compared with Eq. (2): the background
term in (8) is fixed by the requirement that the ππ-
scattering amplitude below the KK̄ threshold has
the standard form, exp (iδ) sin δ, where δ is the phase
shift in the IJPC = 00++.

At f → 0 the resonance factors (6) turn into the
Flatté formula [7], which is used rather often for the
description of f0(980). Still, it happened that the po-
sition of the pole (complexmass value) and the ampli-
tude residue in the pole, which have been determined
in [1] and shown in Tables 1 and 2, do not obey the
Flatté formula but require f 	= 0.

We obtained two sets of parameters, with suffi-
ciently correct values of the f0(980) pole position and
couplings. They are equal (in GeV) to

Solution A : m0 = 1.000, f = 0.516, (9)

G = 0.386, GKK̄ = 0.447,
SolutionB : m0 = 0.952, f = −0.478,

G = 0.257, GKK̄ = 0.388.

The above parameters provide us with a reasonable
description of the ππ-scattering amplitude. The
phase shift δ0

0 and inelasticity parameter η
0
0 are shown
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
in Fig. 2; the angle θ for the background term in
Solutions A and B, determined as

θ = θ1 +
(√

s

m0
− 1
)

θ2, (10)

is numerically equal to

Solution A : θ1 = 189◦, θ2 = 146◦, (11)

SolutionB : θ1 = 147◦, θ2 = 57◦.

Solutions A and B give significantly different predic-
tions for η0

0 ; however, the existing data [9, 10] do not
allow us to discriminate between them.
Partial widths of f0(980) are calculated with an

expression similar to (3), with the replacement of the
integrand denominator as follows:

(Reµ2
n − s)2 + (Imµ2

n)2 → |D|2. (12)

For both sets of parameters (9), the calculated partial
widths are close to each other. For example, using
solution II-2 and the A set of parameters, we have
Γππ = 62 MeV, ΓKK̄ = 14 MeV, while for solution
II-2 and the B set of the parameters one has Γππ =
66MeV, ΓKK̄ = 10MeV. The values of partial widths
for f0(980) averaged over solutions A and B are pre-
sented in Table 1.
The total hadron width of f0(980) is defined in

the same way as for the other f0 mesons, namely, by
using the position of pole in the complex-M plane: the
imaginary part of the mass is equal to a half-width of
the resonance. For the Breit–Wigner resonance, this
2
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Fig. 3. The magnitudes |A(ππ,ππ)

f0(980) |
2ρπ(s) (solid curve), |A(KK̄,KK̄)

f0(980) |2ρK(s) (dashed curve), and g2
ππΓtot/|D(s)|2 (where

g2
ππΓtot = 0.006 GeV2) for the parameter setsA andB. Visible peaks in the ππ spectra (a, b) have the total widths∼60MeV
(setA) and ∼45MeV (set B); visible total widths of the peaks are (c, d)∼55 MeV (set A) and∼45 MeV (setB).
definition is in accordance with what is observed from
the resonance spectrum (provided there is no interfer-
ence with the background). If the resonance is located
in the vicinity of a strong threshold, the observed
resonance width can differ significantly from what is
given by the pole position. In Fig. 3, one can see

the magnitudes |R(ππ,ππ)
f0(980)

|2ρπ(s), |R(KK̄,KK̄)
f0(980) |2ρK(s),

and g2
ππΓtot/|D(s)|2 for the parameter sets A and B:

the width of peaks does vary, being less than the value
determined by the complex mass of the resonance.

The only objective characteristic of the total
hadron width is the position of pole in the complex-
M plane; due to this reason, we employ such a
definition of total hadron width. Multiple variations
of total width in the compilation [8] are just due to the
absence of a proper definition of Γtot for resonances
near the strong threshold.

3.2. The Light σMeson

The light σ meson reveals itself as a pole on the
second sheet: it is shown in Fig. 1 at M = 431 −
i325 MeV (or, in terms of s, which is a more appro-
priate variable for light particles, at s = (4− i14)m2

π),
P

which corresponds to the magnitude obtained in [11].
Although this pole does not appear in the area of
complex M , where the K-matrix fit [1] reconstructs
the amplitude rather reliably, it still deserves detailed
comments.
The situation with the σ meson is as follows.

TheK-matrix representation allows us to reconstruct
correctly the analytical structure of the partial am-
plitude in the physical region, at s ≥ 4m2

π, by taking
account of the threshold and pole singularities. The
singularities related to forces (or left singularities,
at s ≤ 0) are not included directly in the K-matrix
machinery. This does not allow us to be quite sure
about the results of the K-matrix approach at s �
4m2

π . Concerning the low-mass region, an impor-
tant result of the K-matrix fit [1] is the absence of
the pole singularity in the 00++ amplitude at 500–
800 MeV. Here, the ππ-scattering phase δ0

0 increases
smoothly, reaching 90◦ at 800–900 MeV. A straight-
forward explanation of such a behavior of δ0

0 could
consist in the existence of a broad resonance, with
the mass about 600–900 MeV and width ∼800MeV
(for example, see discussion in [12, 13] and references
therein). However, as was stressed above, the K-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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Resonance Γππ ΓKK̄ Γηη Γηη′ Γππππ Γtot/2

f0(980) 64 ± 8 12 ± 1 – – 4 ± 2 40 ± 5

f0(1300) 52 ± 12 6 ± 3 5 ± 2 – 177 ± 10 120 ± 10

f0(1500) 37 ± 2 6 ± 2 4 ± 1 0.2 ± 0.1 77 ± 6 62 ± 3

f0(1750) 64+15
−30 11+17

−9 5 ± 1 3 ± 1 77+30
−60 80+20

−40

f0(1530+90
−250) 390 ± 15 200 ± 10 40 ± 5 1 ± 1 529+260

−125 580+120
−200
matrix amplitude does not contain pole singularities
at 500 ≤ ReM ≤ 900 MeV: the K-matrix amplitude
has a low-mass pole only, which is located near the
ππ threshold or below it. In [1], the presence of the
pole near the ππ threshold was not emphasized, since
the K-matrix solution does not guarantee a reliable
reconstruction of the amplitude at s ∼ 4m2

π. In [11],
in order to restore analytical structure at s ∼ 4m2

π , the
left-hand-side singularities were accounted for on the
basis of the dispersion relation N/D method. The ππ
scattering N/D amplitude was represented at M ≤
900 MeV being sewed with theK-matrix solution [1]
at 450 ≤ M ≤ 900 MeV. TheN/D amplitude recon-
structed in this way has a pole near the ππ threshold,
thus proving that qualitatively the results of [1] are
also valid for the region s ∼ 4m2

π. The σ meson pole
of theN/D amplitude [11] is shown in Fig. 1.

It is worth mentioning that the low-mass loca-
tion of the σ-meson pole was also obtained in a
set of papers, where the low-energy ππ amplitude
has been investigated by taking into account the
left-hand cut as a set of meson exchanges. These
papers include (i) dispersion relation approach, s �
(0.2 − i22.5)m2

π [14]; (ii) meson-exchange models,
s � (3.0 − i17.8)m2

π [15], s � (0.5 − i13.2)m2
π [16],

s � (2.9 − i11.8)m2
π [17]; (iii) linear σ model, s �

(2.0 − i15.5)m2
π [18]. At the same time, in [19–24]

the pole position was found in the region of higher
s, at s > 7m2

π, which reflects the ambiguities of ap-
proaches which treat the left-hand cut as a known
quantity.

As to finding the location of the σ meson on the
basis of the available experimental data, one should
make a general remark. Since the width of the σ
meson is rather large, it is necessary to fit to data in
an energy interval which is much larger than the total
width of the σ meson. For example, to speak about
a σ meson with a mass Mσ ∼ 900 MeV and half-
width Γ/2 � 400 MeV, one should fit to data in the
interval 300 � M � 1400 MeV and at the same time
take a correct account of the nearest singularities,
which are poles corresponding to f0(980), f0(1300),
and presumably f0(1500) as well as threshold singu-
larities ππ, KK̄, ηη′, and ππππ. Concerning ππππ,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 20
one should have in mind that the contribution of this
channel is significant starting from 1300 MeV, so
this channel is absolutely necessary. Such demands
towards the fit of experimental data have been fulfilled
in no paper under discussion, with an exception for
[1, 10].

4. CONCLUSION

We have obtained partial decay widths for five
scalar–isoscalar states f0(980), f0(1300), f0(1500),
f0(1750), f0(1530+90

−250) by calculating the decay
couplings as residues of pole singularities in the
K-matrix amplitude [1]: positions of poles in the
complex-M plane are shown in Fig. 1. The pole which
corresponds to the light σ meson is also shown in
Fig. 1: it was not included in theK-matrix calculation
procedure directly, being close to the left-hand cut;
the discussion of its status can be found in [11] and
references therein.
The results of our calculations of partial decay

widths are presented in the table above (the magni-
tudes are given in MeV).
The values shown for partial widths as well as

decay coupling constants of Table 2 need some com-
ments.
The comparison of the hadron decays f0(980) →

KK̄ and f0(980) → ππ points to a large ss̄ com-
ponent in f0(980). The analysis of radiative decays
φ(1020) → γf0(980) and f0(980) → γγ [25] shows
also that the ss̄ component in f0(980) is large: with
the f0(980) flavor wave function written as nn̄ cosϕ+
ss̄ sinϕ, the radiative decay widths give either ϕ �
−48◦ or ϕ � 86◦ (solution with negative ϕ is more
preferable). When the decay processes are switched
off, f0(980) transforms into fbare

0 (720 ± 100), with
ϕbare � −70◦ (corresponding pole trajectory in the
complex-M plane is shown in Fig. 10 of [1]). We see
that the decay processes and related change of the
state do not diminish the ss̄ component strongly.
An opposite situation takes place with f0(1750).

After switching off the decay channels, this reso-
nance transforms into fbare

0 (1810 ± 30), which is
dominantly ss̄: ϕbare � 90◦ for solution I and ϕbare �
02
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−60◦ for solution II. However, partial decay widths
of f0(1750) (or decay coupling constants given in
Table 2) unambiguously prove that the ss̄ component
in f0(1750) decreased strongly due to a mixing with
other states after the onset of the decay processes.
It is possible to guess that this ss̄ component has
flown into the broad state f0(1530+90

−250): the ratio
ΓKK̄/Γππ for f0(1530+90

−250) does not contradict such
an assumption. Such a scenario looks rather intrigu-
ing, in particular when taking account of the fact that
the broad state f0(1530+90

−250), according to [1], is a
descendant of a pure glueball (see also [5, 26, 27]).
However, the study of the mixing of qq̄ state with the
glueball is beyond the frame of this article; it will be
investigated elsewhere.

For f0(980), the obtainedmagnitudes for the com-
plex mass and decay couplings g2

π and g2
K demon-

strate a failure of the Flatté formula. We suggest an
alternative description of f0(980) which explores, as
an addition to the pole term, the amplitude for the
prompt transition ππ → KK̄.
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Abstract—Darboux transformations and a factorization procedure are presented for a system of coupled
finite-difference Schrödinger equations. The conformity between generalized Darboux transformations and
the factorizationmethod is established. Factorization chains and consequences of Darboux transformations
are obtained for a system of coupled discrete Schrödinger equations. The proposed approach permits
constructing a new series of potential matrices with known spectral characteristics for which coupled-
channel discrete Schrödinger equations have exact solutions. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Darboux transformations [1], the factorization
technique [2, 3], the supersymmetry method [4], and
Bargmann transformations [5] in quantum mechan-
ics are closely related to one another [6–11]. The
supersymmetry method is based on the factorization
procedure, while Bargmann transformations can be
obtained by means of a superposition of Darboux
transformations, which in turn are related to for-
mulas of the Schrödinger factorization method. The
Darboux and Bargmann transformations are widely
applicable to quantum-mechanical problems [12–
15], as well as to nonlinear integrable systems [16–
19]. If these methods are generalized to a number
of wave-function components larger than one, the
sphere of possible applications of these methods
increases considerably to include multidimensional,
few-particle, and multiparticle objects.

A matrix generalization of Darboux transforma-
tions (without thresholds) was described in [20]. Ma-
trix Darboux and Bargmann transformations with
thresholds were considered in [21–23] and, in a more
general form, in [10] for the case of variable val-
ues of energy and angular momentum and in [8] for
Schrödinger equations with a right-hand side. The
foundation for developing algebraic transformations

∗This article was submitted by the author in English.
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Group Theoretical Methods in Physics, Dubna, July 31–
August 5, 2000 (see Yad. Fiz. 64, No. 12 (2001) [Phys. At.
Nucl. 64, No. 12 (2001)].

2)Institute of Radiation Physics and Chemistry Problems,
Byelorussian Academy of Sciences, Minsk, Belarus.

**e-mail: suzko@thsun1.jinr.ru
1063-7788/02/6508-1553$22.00 c©
in finite differences for coupled-channel and two-
dimensional cases was laid by Berezanskii [24], who
developed the theory of orthogonal polynomials for
the infinite Jacobi matrix. It is known [24–27] that
spectral problems for finite-difference equations have
much in common with the theory of orthogonal poly-
nomials and that the latter is related to the method of
Darboux transformations [28–30].

In the present paper, matrix discrete Darboux
transformations are constructed for a coupled system
of discrete Schrödinger equations. The relationships
are established between Darboux transformations,
the factorization method, and the supersymmetry
method. The factorization method is based on gen-
eralizing, to a system of m coupled-channel discrete
Schrödinger equations, Christoffel [28] and Geron-
imus [29] single-channel transformations, which
are discrete analogs of Darboux transformations
for differential equations. Under the corresponding
generalized transformations, the spectrum of a given
Hamiltonian changes in a simple controllable way,
namely, by removing or adding a bound state without
modifying other energy levels of the spectrum. This
approach also allows one to construct completely
isospectral operators if the spectra of two Hamilto-
nians H and H̄ coincide. The generalized Darboux
transformations can be applied repeatedly to obtain
new matrix potentials and corresponding solutions.
Therefore, the approach provides a powerful tool
for performing spectral transformations with desired
controllable modifications of the bound spectrum.
Factorization chains for a system of coupled discrete
Schrödinger equations are generated. The derived
generalized transformations reduce to simpler ones
for a single discrete Schrödinger equation.
2002 MAIK “Nauka/Interperiodica”
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2. MATRIX DARBOUX TRANSFORMATION
AND FACTORIZATION METHOD

Let us consider the discrete Schrödinger equation
in the Hermitian form

(HΨ)n = A(n)Ψ(n− 1) (1)

+A(n+ 1)Ψ(n + 1) + V (n)Ψ(n) = λΨ(n),

where A(n) and V (n) are m×m real symmetric
discrete potential matrices, a solution Ψ(n) can be
either a column vector or a matrix, and λ is a spectral
parameter. In the ordinary one-channel case consid-
ered (atm = 1),A(n) and V (n) are discrete potential
coefficients. Here, we use the language of nonrel-
ativistic quantum mechanics. In principle, the dis-
crete index n can vary either from −∞ to ∞ (this
corresponds to the problem on a line) or from 0 to
∞ (the problem on a half-line); when 0 ≤ n ≤ N ,
it is a special class of restricted problems. For the
sake of definiteness, we consider the case on the half-
line −1 ≤ n <∞. If we set Ψ(−1) = 0, the action of
the Schrödinger discrete operator H on the vector
Ψ = {Ψ(0),Ψ(1),Ψ(2), ...,Ψ(n), ...}† is represented
by the action of the Jacobi block matrix J on Ψ:

(JΨ)n =














V0 A1 0 0 0 ... 0

A1 V1 A2 0 0 ... 0

0 0 0 . . . 0

. . . 0 An Vn An+1

. . . . . . .
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From the Jacobi blockmatrix (2), which is tridiagonal
in the variable n, it is seen that matrix solutionsΨ(n)
are connected at the neighboring points n and n± 1.
It follows that, if the matrix coefficients A(n) and
V (n) are known and if two boundary conditions are
given at one end of the tested interval −1 ≤ n ≤ N ,
one can obtain solutions on the whole interval by
moving in subsequent steps from that end.

For the system of Eqs. (1), let us define auxiliary
matrix solutionsΦ(λ, n) satisfying the boundary con-
ditions

Φ(λ,−1) = 0, Φ(λ, 0) = 1; (3)
P

that is, Φms(−1) = 0 and Φms(0) = δms. Since the
matrix Eq. (1) is tridiagonal in the coordinate vari-
able n and owing to the boundary conditions (3), the
matrix solutions Φ(λ, n) in the spectral parameter λ
are polynomials of the nth degree with matrix coef-
ficients that can be orthogonalized in their spectral
measure [24].

The aim of this section is to giveDarboux transfor-
mations and a factorization procedure for the system
of coupled Eqs. (1) and to apply them to construct
new potential matrices Ṽ (n) and Ã(n), along with
the corresponding polynomial matrix solutions Φ̃(n),
by using the solutions Φ(n) of (1) appropriate for
the known old potentials V (n) and A(n). Our next
purpose is to create factorization chains with conse-
quences of the Darboux transformations.

We define the discrete Darboux transformation op-
erator L̂ in the general form

L̂Φ̃(λ, n) = Φ(λ, n) (4)

= T (n)Φ̃(λ, n) − C(n− 1)Φ̃(λ, n − 1)

with some unknown matrix coefficients T (n) and
C(n− 1), which have to be defined. It is some analog
of the Geronimus transformation [29] for polynomials
P (λ, n),

P (λ, n) = P̃ (λ, n) + C(n− 1)P̃ (λ, n − 1), (5)

which satisfy, instead of (1), the three-term recur-
rence relation taken in the non-Hermitian form

anP (λ, n− 1) + vnP (λ, n) (6)

+ P (λ, n + 1) = λP (λ, n).

We choose the symmetric form (2) of the discrete
Schrödinger Eqs. (1) to have opportunities of estab-
lishing connections with formulas of the spectral in-
verse problem [15, 30] which is usually formulated for
self-adjoint Hamiltonians. The next complication, in
contrast to (5) and (6), is that we are dealing with the
matrix Eqs. (1) and (4). The matrices of the solutions
Φ(λ, n) and Φ̃(λ, n) are polynomials in λ of the same
degree but with different matrix coefficients. Since
Darboux transformations can be applied repeatedly,
we will consider a chain of transformations (4). Itera-
tion of (4) leads to a family of orthogonal polynomial
matrices Φt(λ, n) depending on a discrete parameter
t = 0,±1,±2, ... with the shift t+ 1 → t defined as

L̂tΦt+1(λ, n) = Φt(λ, n) (7)

= Tt(n)Φt+1(λ, n) − Ct(n− 1)Φt+1(λ, n − 1).

The inverse transformation R̂t from polynomial ma-
trices Φt(n) to Φt+1(n) can be defined as

(λ− µt)−1R̂tΦt(λ, n) = Φt+1(λ, n) (8)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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= (λ− µt)−1[Kt(n+ 1)Φt(λ, n+ 1)
−Nt(n)Φt(λ, n)],

whereKt(n+ 1) andNt(n) are also unknown matrix
coefficients and µt is a spectral parameter. Transfor-
mation (8) can be considered as a matrix generaliza-
tion of the Christoffel transformation [28]

Pt+1(λ, n) (9)

= (λ− µt)−1[Pt(λ, n+ 1) +Nt(n)Pt(λ, n)].

Geronimus and Christoffel transformations for dis-
crete Eq. (6) play a role of Darboux transformations
for ordinary differential equations.

2.1. Construction of an Initial HamiltonianHt
in a Factorized Form

Let us find the conditions for potential matrices
Vt(n), At(n) and Vt+1(n), At+1(n) under which
the corresponding matrix functions Φt(λ, n) and
Φt+1(λ, n) defined by (7) and (8) satisfy the system of
Eqs. (1). For this purpose, we transform relation (7)
by substituting Φt+1(n) and Φt+1(n− 1) from (8),

Φt(n) = (λ− µt)−1[Tt(n)Kt(n+ 1)Φt(n + 1) (10)

− Tt(n)Nt(n)Φt(n) − Ct(n− 1)Kt(n)Φt(n)
+ Ct(n− 1)Nt(n− 1)Φt(n− 1)].

Rewriting (10) as

(λ− µt)Φt(n) = Tt(n)Kt(n+ 1)Φt(n+ 1) (11)

− [Tt(n)Nt(n) + Ct(n − 1)Kt(n)]Φt(n)
+ Ct(n − 1)Nt(n− 1)Φt(n− 1)

and performing a comparison with the Schrödinger
Eqs. (1), we immediately have

Tt(n)Kt(n+ 1) = At(n+ 1), (12)

Ct(n− 1)Nt(n− 1) = At(n) (13)

and
Vt(n) = µt − [Tt(n)Nt(n) + Ct(n− 1)Kt(n)]. (14)

It is understood that this procedure corresponds to
factorization of an initial HamiltonianHt,

Ht = L̂tR̂t + µt. (15)

Now, it is necessary to find the matrix coefficients
Tt, Ct,Kt, andNt. If we require that Φt(λ, n) 
= 0 ∀n
in the limit λ→ µt, then it follows from (8) that

Nt(n)Ψt(n) = Kt(n+ 1)Ψt(n+ 1), (16)

where Ψt(n) = Φ(µt, n)Mt, Mt being a matrix con-
stant independent of n. Expressing Tt(n) from (12)
andNt(n) from (16) as

Tt(n) = At(n + 1)K−1
t (n+ 1), (17)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
Nt(n) = Kt(n+ 1)Ψt(n+ 1)Ψ−1
t (n) (18)

and taking into account (18) in (13), we obtain

Ct(n− 1) = At(n)N−1
t (n − 1) (19)

= At(n)Ψt(n− 1)Ψ−1
t (n)K−1

t (n).

One can see from (17)–(19) that, of four sought
matrices Tt, Nt, Ct, and Kt in generalized Darboux
transformations (7) and (8), three are expressed in
terms of the known solutions Ψt(n), the potentials
At(n), and one unknown matrix Kt(n), which is still
to be determined. Substituting (17)–(19) into (14),
we find that the potential matrix satisfies the relation

Vt(n) = µt − [At(n+ 1)Ψt(n+ 1)Ψ−1
t (n) (20)

+At(n)Ψt(n− 1)Ψ−1
t (n)].

From (20), it immediately follows that

At(n)Ψt(n− 1) + Vt(n)Ψt(n) (21)

+At(n+ 1)Ψt(n+ 1) = µtΨt(n);

that is, Ψt(n) is a solution of the finite-difference
Eq. (1) for some fixed eigenvalue µt. Fulfillment of
the condition Ψt(n) 
= 0 at all n implies that µt is
the lowest eigenvalue. If we take into account (17)
and (19) for Tt(n) and Ct(n− 1), the matrix function
Φt(λ, n) at arbitrary λ determined by (7) is recognized
as

Φt(n) = At(n+ 1)K−1
t (n + 1)Φt+1(n) (22)

−At(n)Ψt(n− 1)Ψ−1
t (n)K−1

t (n)Φt+1(n− 1)

≡ L̂tΦt+1(n).

At the same time, the matrix function Φt+1(n) speci-
fied by (8) withNt(n) from (18) is written as

Φt+1(n) = (λ− µt)−1Kt(n+ 1)[Φt(n+ 1) (23)

− Ψt(n + 1)Ψ−1
t (n)Φt(n)] ≡ (λ− µt)−1R̂tΦt(n).

As a result, the Darboux transformations (7) and (8)
for general solutions Φt and Φt+1 reduce to rela-
tions (22) and (23), respectively, expressed in terms of
the solutions Ψt(n) and the potentials At(n). As one
can see from (20), the initial potential Vt(n) is also
represented in terms of Ψt(n) and At(n).

It is convenient to introduce them×mmatrices

Wt(n) = Ψt(n− 1)Ψ−1
t (n), (24)

which can naturally be called superpotential ones
by analogy with supersymmetric quantum mechan-
ics [23]. Then, Eqs. (20), (22), and (23) can be rewrit-
ten as

Vt(n) = µt −At(n+ 1)W−1
t (n+ 1) (25)

−At(n)Wt(n),

Φt(n) = At(n+ 1)K−1
t (n + 1)Φt+1(n) (26)
2
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−At(n)Wt(n)K−1
t (n)Φt+1(n− 1) ≡ L̂tΦt+1(n),

Φt+1(n) = (λ− µt)−1Kt(n+ 1)[Φt(n+ 1) (27)

−W−1
t (n+ 1)Φt(n)] ≡ (λ− µt)−1R̂tΦt(n).

As the result of generalized Darboux transforma-
tions, the original Hamiltonian Ht is represented in
the factorized form (15), while the potential matrix Vt

and general solutions Φt and Φt+1 are expressed in
terms of the discrete superpotential matrices Wt(n),
which are related to the factorization solutions Ψt(n)
fixed by the spectral parameter µt.

In the next section, we determine, for the potential
matrices Vt+1 and At+1, conditions under which the
functions specified by relations (23) or (27) will satisfy
the system of discrete Schrödinger Eqs. (1).

2.2. Construction ofHt+1 in a Factorized Form

Let us now seek the partner Hamiltonian Ht+1 to
Ht determined by (15) as

Ht+1 = R̂tL̂t + µt. (28)

For this purpose, we perform transformations similar
to the previous ones with the difference that, now, (26)
is inserted into (27). As a result, we obtain

(λ− µt)Φt+1(n) = Kt(n+ 1)At(n+ 2) (29)

×K−1
t (n + 2)Φt+1(n+ 1) −Kt(n+ 1)

×
{
W−1

t (n+1)At(n+1)+At(n+1)Wt(n+1)
}

×K−1
t (n + 1)Φt+1(n) +Kt(n+ 1)W−1

t (n+ 1)

×At(n)Wt(n)K−1
t (n)Φt+1(n− 1).

In accordance with the Schrödinger Eqs. (1), we have

At+1(n+1) =Kt(n+1)At(n+2)K−1
t (n+2); (30)

At+1(n) = Kt(n+ 1)W−1
t (n + 1) (31)

×At(n)Wt(n)K−1
t (n);

Vt+1(n) = µt −Kt(n+ 1)
{
W−1

t (n+ 1) (32)

×At(n+ 1)+ At(n +1)Wt(n +1)
}
K−1

t (n+1)

= µt −Kt(n+ 1)
{
Ψt(n+ 1)Ψ−1

t (n)At(n+ 1)

+At(n+ 1)Ψt(n)Ψ−1
t (n+ 1)

}
K−1

t (n+ 1).

According to (25) for Vt(n), the potential Vt+1(n) can
be represented as

Vt+1(n) = Kt(n+ 1)
{
A−1

t (n+ 1)Vt(n) (33)

×At(n + 1) +A−1
t (n+ 1)At(n)Wt(n)At(n+ 1)

−At(n+ 1)Wt(n+ 1)
}
K−1

t (n+ 1)
PH
or in the alternative form

Vt+1(n) = Kt(n+ 1){Vt(n + 1) (34)

+At(n+ 2)W−1
t (n+ 2)

−W−1
t (n+ 1)At(n+ 1)}K−1

t (n+ 1).

In fact, we have already obtained the matrix discrete
Darboux transformations with the relationships be-
tween old and new potentials (30)–(34) and solu-
tions (26) and (27). Nevertheless, the formulas con-
tain yet unknown matrix functionsKt(n).

To determineKt(n), we expressAt+1(n) from (30)
and (31) and equate the right-hand sides of them. As
a result, we obtain

Kt(n)At(n + 1)K−1
t (n+ 1) (35)

= Kt(n+ 1)W−1
t (n+ 1)At(n)Wt(n)K−1

t (n).

We further introduce Bt(n) as

Bt(n) = At(n+ 1)K−1
t (n+ 1)Kt(n) (36)

and perform transformations by multiplying (35) by
K−1

t (n) from the left and by Kt(n) from the right.
Then, Bt(n) is expressed in terms of the known po-
tentials At and superpotentialsWt:

Bt(n)Bt(n) = At(n+ 1) (37)

×W−1
t (n+ 1)At(n)Wt(n).

Now, (36) gives the recurrence formulas for determin-
ing Kt(n). By using definition (36) in (30) and (37)
in (31), we can represent At+1(n) and At+1(n+ 1) in
the same symmetric form; that is,

At+1(n) = Kt(n)Bt(n)K−1
t (n), (38)

At+1(n+ 1) = Kt(n+ 1)Bt(n+ 1)K−1
t (n+ 1).

According to (37) and (24), the potentials At+1(n) in
(38) are defined as

At+1(n) = Kt(n)
(
At(n+ 1)W−1

t (n+ 1) (39)

× At(n)Wt(n))1/2K−1
t (n)

= Kt(n) (At(n + 1) Ψt(n+ 1)Ψ−1
t (n)

× At(n)Ψt(n− 1)Ψ−1
t (n)

)1/2
K−1

t (n).

Relations (24)–(27) and (32)–(39) provide a
complete description of Darboux transformations
for the system of coupled discrete Eqs. (1). As a
result, whenever the system of Eqs. (1) is exactly
solvable or solutions are known numerically, the
Darboux transformations give new Hamiltonians
with potentials determined by (32) and (39) and
solutions (27), which are determined analytically
or numerically in terms of the known old solu-
tions. Moreover, the successive application of these
transformations allows us to generate a hierarchy
YSICS OF ATOMIC NUCLEI Vol. 65 No. 8 2002
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of new potentials and corresponding solutions. As
one can see from (24), (20), (32), and (39), the
potentials Vt(n), Vt+1(n), and At+1(n) are singular
when det Ψt(n) has zeros. To avoid this situation, the
matrix Ψt(n) = {ψ1

t (n), ψ2
t (n), ..., ψM

t (n)} has to be
chosen in such a way that the columns ψi

t(n) of Ψt

are linearly independent.
Before completing this subsection, it should be

noted that, as the result of Darboux transformations,
the factorization of Hamiltonians Ht and Ht+1 was
obtained. In the next section, the connection be-
tween Darboux transformations and the factorization
method will be established in the opposite direction:
from the factorization of Hamiltonians to generalized
Darboux transformations.

3. FACTORIZATION CHAIN
AND INTERTWINING RELATIONS

Summarizing all the above, we can say that the
operators R̂t and L̂t of Darboux transformations con-
stitute the generalized factorization of the second-
order Hamiltonians Ht and Ht+1 for the system of
coupled Eqs. (1) as products of the first-order oper-
ators

L̂tR̂t = Ht − µt, R̂tL̂t = Ht+1 − µt. (40)

Consequences of the factorization procedure are the
following:

(i) Relations (40) can be rewritten as the factoriza-
tion chain

R̂tL̂t + µt = L̂t+1R̂t+1 + µt+1. (41)

As in the single-channel case, one can also show that
(ii) The factorization relations (40) are equivalent

to the intertwining relations

R̂tHt = Ht+1R̂t, L̂tHt+1 = HtL̂t. (42)

Let us assume that Ψ̃t and Ψ̃t+1 are matrix (or vector)
solutions of (1) corresponding to Ht and Ht+1 with
the eigenvalues νt and νt+1, respectively; that is,

HtΨ̃t = νtΨ̃t, (43)

Ht+1Ψ̃t+1 = νt+1Ψ̃t+1. (44)

Applying the operator R̂t to Eq. (43) and using (40),
we deduce the simple relations

R̂tHtΨ̃t = R̂t(L̂tR̂t + µt)Ψ̃t = Ht+1R̂tΨ̃t. (45)

Then, owing to R̂tµt = µtR̂t, we arrive at the first
equation from (42). In the same manner, applying
L̂t to (44) and using (40), we can easily obtain the
second equation from (42):

L̂tHt+1Ψ̃t+1 (46)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
= L̂t(R̂tL̂t + µt)Ψ̃t+1 = HtL̂tΨ̃t+1.

If L̂t and R̂t are taken as in (26) and (27), the
factorization chain (41) leads to the set of finite-
difference equations

µt −Kt(n+ 1)
{
W−1

t (n+ 1)At(n+ 1) (47)

+At(n+ 1)Wt(n+ 1)
}
K−1

t (n+ 1) = µt+1

−
{
At+1(n+ 1)W−1

t+1(n+ 1) +At+1(n)Wt+1(n)
}

and to relations (30) and (31) connecting At and
At+1 with each other, whence relations (39) follow.
From (40) and (47), relations (33) or (34) between
Vt and Vt+1 follow too. The factorization-chain con-
ditions (47), (39), and (33) [or (34)] are the gen-
eralization to the coupled system of m equations
of the factorization-chain conditions for the discrete
Schrödinger equation withm = 1 [3, 25].

One can easily see that the operators R̂t and L̂t

provide transformations from the solutions of Ht to
the solutions of Ht+1, and vice versa, from the solu-
tions of Ht+1 to solutions of Ht. From (40) and (44),
it indeed follows that

R̂tL̂tΨ̃t+1 = (Ht+1 − µt)Ψ̃t+1 (48)

= (νt+1 − µt)Ψ̃t+1.

Applying L̂t to it and using (46) and (40), we get

L̂tR̂tL̂tΨ̃t+1 = (Ht − µt)L̂tΨ̃t+1

= (νt+1 − µt)L̂tΨ̃t+1;

i.e., HtL̂tΨ̃t+1 = νt+1L̂tΨ̃t+1. A comparison of the
latter with (43) gives

Ψ̃t = L̂tΨ̃t+1, (49)

and νt+1 is the energy eigenvalue of not only Ht+1

but also Ht, νt+1 = νt, except for the case where
L̂tΨ̃t+1 = 0. At last, setting L̂tΨ̃t+1 = Ψ̃t in (48)
yields

Ψ̃t+1 = (νt+1 − µt)−1R̂tΨ̃t. (50)

At the operator level, relations (49) and (50) obtained
from the factorization of Ht and Ht+1 coincide with
the Darboux transformations (26) and (27).

Here, it should be noted that (42) ambiguously de-
termines the relations between Ψ̃t and Ψ̃t+1. Actually,
it is easy to obtain from (42) the relations

Ψ̃t+1 = R̂tΨ̃t, Ψ̃t = (λ− µt)−1L̂tΨ̃t+1 (51)

instead of (49) and (50). Indeed, if we start from

L̂tR̂tΨ̃t = (Ht − µt)Ψ̃t = (νt − µt)Ψ̃t (52)

and apply R̂t to it

R̂t(L̂tR̂t)Ψ̃t = (Ht+1 − µt)R̂tΨ̃t = (νt − µt)R̂tΨ̃t,
2
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we have

Ht+1R̂tΨ̃t = νtR̂tΨ̃t. (53)

A comparison of this with (44) leads to the first equa-
tion in (51) and to the coincidence of Ht eigenvalues
with Ht+1 ones, νt+1 = νt, except for the case where
R̂tΨ̃t = 0. The substitution of Ψ̃t+1 = R̂tΨ̃t into (52)
yields the second equation in (51).

It is evident now that the spectrum ofHt coincides
with the spectrum ofHt+1 except for the cases where
R̂tΨ̃t = 0 or L̂tΨ̃t+1 = 0. Let us consider these cases.

(i) Whenever R̂tΨ̃t = 0 holds for a bound state Ψ̃t

ofHt, then the use of (52) yields

L̂tR̂tΨ̃t = (Ht − µt)Ψ̃t = (νt − µt)Ψ̃t = 0,

which implies that νt = µt and Ψ̃t coincides with the
bound-state function Ψt, determining the Darboux
transformations specified by Eqs. (22) and (23). In
this case, Ht+1 has no bound state with νt+1 = µt.
The spectrum of Ht+1 contains one level less than
that of Ht; i.e., the procedure of Darboux transfor-
mations removes one level from the spectrum of Ht.
The procedure corresponds to the undressing one for
the single-channel case. If µt = νmin

t is chosen and
if Ψt is a ground-state wave function, then Darboux
transformations remove the lowest level.

(ii) Whenever L̂tΨ̃t+1 = 0 holds for a bound state
Ψ̃t+1 ofHt+1, then the use of (48) leads to

R̂tL̂tΨ̃t+1 = (Ht+1 − µt)Ψ̃t+1

= (νt+1 − µt)Ψ̃t+1 = 0.

This implies that the eigenvalue of Ψ̃t+1 is νt+1 = µt,
and this level is absent from the spectrum ofHt (since
Ψ̃t = L̂tΨ̃t+1 = 0). In this case, µt < νmin

t , and Ψt

in (22) and (23) is not a bound-state matrix function
of Ht, but it is a general solution of (1) with Ht at
the energy λ = µt. This means that the spectrum of
Ht+1 contains one level more than that of Ht. The
procedure corresponds to the dressing one for the
single-channel case. The term “dressing” was intro-
duced by Zakharov and Shabat [31]. There also exists
a situation where µt < νmin

t , but where neitherHt nor
Ht+1 has bound states at µt and the spectra of Ht

andHt+1 coincide exactly; i.e.,Ht andHt+1 are com-
pletely isospectral operators. In quantum mechanics,
this case is known as broken supersymmetry.

Thus, with this section and with due regard for
the preceding section, where the factorization of the
Hamiltonians was obtained as the result of Darboux
transformations, one can conclude that the factor-
ization method and Darboux transformations for the
system of discrete coupled equations are equivalent
to each other.
PH
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The exclusive reactions of quasielastic proton
knockout from a nucleus by a proton, (p, 2p), or
by an electron, (e, ep), of energy of about a few
hundred MeV have been studied by many authors
[1]. Such reactions make it possible to determine
reliably the momentum distributions of protons in
orbitals of given binding energy Ebind. In contrast
to conventional photon–proton reactions, (γ, p), the
above reactions allow one to explore the entire range
of momenta of a virtual proton in the nucleus involved
from zero value. The virtual-proton momentum can
be determined by using the coincidence technique
and the energy–momentum conservation law (this is
a great advantage of the processes being discussed)

E0 = E1 + E2 + Ebind, (1)

p0 + q = p1 + p2,

where q is the momentum of the knock-on virtual
particle, the rest of the notation being obvious. The
energy resolution of the relevant experiment is ∆E ≈
1 MeV. The quasielastic knockout of composite
particles (clusters) from a nucleus, which have pro-
nounced features, is also of considerable interest [2].
Similar investigations are being performed in atomic,
molecular, and solid-state physics by using (e, 2e)
reactions [3, 4] at beam energies of a few keV for gas
targets and of 20 to 50 keV for solid films, the energy
resolutions being ∆E ≈ 0.1 eV and ∆E ≈ 0.5 eV,
respectively.

In the present article, we call the attention of
researchers to the possibility of studying pionic de-
grees of freedom in nuclei by using (e, eπ) reactions
of quasielastic pion knockout from a nucleus by an
electron of energy of about a few GeV.

The problem of injecting pions into the ground
state of a nucleus has been discussed in the literature
since the appearance of the articles of Migdal and his
disciples [5, 6]. In Migdal’s concept, this injection is
indirect: the pion condensate is in fact the conden-
sate of configurations of the ∆-particle–nucleon-
hole type, the interaction in this condensate being
mediated by pion exchange. However, the estimates
presented in [6, 7] revealed that the actual density
1063-7788/02/6508-1560$22.00 c©
ρnucl of nucleons in a nucleus is two to three times less
than that required for the formation of the condensate.
In the past decade, Preparata and his clleagues [8]
found an important new mechanism of pion injection
into the ground state. This mechanism is associated
with Dicke superradiation [9], which has been known
in physics for several decades. This phenomenon is
based on a coherent emission of photons by iden-
tical atoms. The intensity of such photon emission
is proportional to N2/4, where N is the number of
atoms. This gives rise to a superstrong interaction
of the photon field with the atoms (there is no such
interaction in the case of an individual atom). This
concept was extended in [8] to the nucleon system. In
this case, N (∆) corresponds to the ground (excited)
state of an atom, while the pion field corresponds to
the photon field. The estimates given by Preparata
and his collaborates show that, although as great an
amount of energy as 300 MeV is required for exciting
∆ particle, the strong interaction between theN–π–
∆ subsystems effectively increases the binding en-
ergy ∆Å by about 10 MeV/nucleon. The coherence
region where this interaction occurs comprises some
70 nucleons. According to [8], this new mechanism
of pion-condensate generation results in that, even
at the actual nucleon density, a nucleus appears to
be in a superradiation state with respect to the pion
mode, where the momentum q is determined from the
formula

√
q2 +m2

π = m∆ −mN , q ≈ 0.3 GeV. (2)

The number per nucleon of collective pions of the
same type i (π+, π−, or π0) in an N = Z nucleus
that have the above momentum q (ni,coll/A) is about
0.1 [8]. This is greater than the respective number of
pions with momenta, for example, in the range k =
(1 ± 0.2)q in the virtual pion cloud of an individual
nucleon (we mean here the P-wave pion state in the
channel p→ nπ+ or n→ pπ− [10, 11]).

This raises the question of experimentally verifying
the occurrence of this mechanism in a nucleus. To
provide an answer to this question, we propose inves-
tigating quasielastic pion knockout from a nucleus.
2002 MAIK “Nauka/Interperiodica”



POSSIBILITIES OF INVESTIGATING PIONIC DEGREES OF FREEDOM 1561
It turns out that the momentum distribution of pions
knocked out from a free nucleon differs substantially
from themomentum distribution of pions knocked out
from a nucleus (according to the Preparata mecha-
nism). Let us dwell on this point at some length. For
the sake of simplicity, we assume that the domain of
coherence for collective pions extends over the entire
nucleus and that the radial pion wave function has the
simplest standing-wave (p-wave) form (we consider
here the case where the A nucleus involved does not
change parity upon pion knockout, implying transi-
tions like 0+ → 1+ and 1+ → 1+) [8]

Φ(r) = cj1(q · r) for |r| ≤ R (3)

Φ(r) = 0 for |r | > R,

where R is the radius of the nucleus corresponding to
A = 70 and N = Z and the constant ñ is determined
by the normalization of the wave function to the above
value ni,coll common to all i (c = 0.027). At a large
number of pions, the function in (3) can be interpreted
as a classical field.

Making the Fourier transformation, we derive the
momentum distribution shown in the figure (it is nor-
malized to one nucleon; to obtain the momentum dis-
tribution for an A nucleus, it should be multiplied by
A). It has a pronounced peak at k = q, which means
that this momentum distribution is close to that for
a plane wave and that it differs substantially from the
momentum distribution that we reconstructed [10] for
pions in a nucleon (dashed curve) on the basis of
experimental data from [11] by employing the con-
cept of quasielastic knockout in the physics of pion
electroproduction. Our analysis revealed that this ex-
periment was performed in quasielastic kinematics
(there, the square of the virtual-photon mass was as
large as 1 to 3 GeV2). In that analysis, performed in
the laboratory frame, we relied on the relativistic pole
approximation, taking into account the Z diagram.
The momentum distribution is isotropic (independent
of the direction of the momentum q) because it is
an average over the magnetic quantum numbers of a
pion in the p orbit in a nucleus.

Of crucial importance is the fact that the recoil
momentum due to the knockout of collective pions
is transferred to the nucleus as a discrete unit. Since
A = 70–80, the recoil energy Erec ≈ q2/2AMN is
very small (the resolution in the experiments being
discussed is sufficiently high: ∆E ≈ 10 MeV). This
physics conforms well to the pattern where a pion in
a nucleus is described by the simplest single-particle
wave function (3), where spatial pion–nucleon cor-
relations are neglected and where the recoil nucleus
involves no internal excitations (in experiments char-
acterized by a resolution of ∆E ≈ 10 MeV, this rad-
ical oversimplification is relaxed, since many excited
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 8 200
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Momentum distribution of pions (solid curve) for the case
of collective pions in the A = 70–80 nucleus (Preparata
model) and (dashed curve) for the case of pions in a free
nucleon [10].

states of the final nucleus are summed via a kind of a
sum rule).

On the other hand, the knockout of a virtual pion
having a high momentum q = 0.3 GeV/c (the main
peak is shown by the solid curve in the figure) from
the meson cloud of an individual nucleon results in
the transfer of the kinetic energy Eind ≈ q2/2MN ≈
50 MeV to only one nucleon (we mean here numerous
and loosely bound nucleons of the external shell). In a
double-coincidence experiment, such an event looks
as follows: the final spectator nucleus receives not
only the recoil momentum –q but also an excitation
energy of about 50 MeV. Thus, we conclude that, at
a resolution of 10 MeV, the knockout of a “collective”
pion is clearly distinguished from the knockout of an
“individual” pion not only by the form of the momen-
tum distribution but also by the recoil energy (there is
an analogy here with the Mössbauer effect).

It is worthwhile to study experimentally, with a
resolution of ∆E ≈ 10 MeV, the (e, e′π−) process
on an A ≈ 70–80 odd–odd nucleus having a large
number (about 30 to 40) of nucleons in the external
shell (of course, more neutrons than protons) and
a high level density in the external shell at low ex-
citation energies (summation over these levels is to
be performed according to the above sum rule). A
clear-cut maximum in the momentum distribution
at k ≈ 0.3 GeV/c (see solid curve in the figure)—it
is associated with the aforementioned plane wave—
would be the main signal indicating the presence of
collective pions in a nucleus, provided that the coin-
cidence scheme is tuned, to within the experimental
resolution ∆E, to zero excitation energy E∗ of the re-
coil nucleus. AtE∗ ≈ 50 MeV, there must not be such
a peak. Note that small values of k in the figure are not
informative because, in this domain, one can hardly
2
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decide whether the recoil momentum is transferred to
a nucleon or the nucleus as a discrete unit.

The expressions for the cross sections involving
the above momentum distributions are presented in
[10]. These expressions correspond to the plane-wave
approximation. A transition to distorted waves has
virtually no effect on the shape of the abovemain peak,
but this reduces the cross section by a factor of 3 to 5.
It should be noted that the energy of knock-on pions
must be greater than 1 GeV for ∆-isobar production
in the final state to be ruled out (otherwise the pro-
posed description would be drastically complicated).

Information about the quasielastic pion knockout
in (π, 2π) processes at these energies (the respec-
tive experimental studies have begun [12], but the
energies of knock-on pions are still comparatively
small) may be of interest for the above consideration
because such processes have a large cross section
due to strong interactions and receive a contribution
from the π0 collective component; however, pions in
this reaction are knocked out mainly from the surface
region of the nucleus since high-energy pions are
substantially absorbed by nuclei [13]. This point can
be taken into account by using distorted waves for
initial or final pions, whereupon the interpretation of
experimental data becomes less clear. It can also be
included (see above) in the quantitative description
of (e, eπ) processes, which are much less sensitive
to the distortion of pion waves (because they involve
one pion wave instead of three). It is worth noting
that pion knockout from a nucleus in (γ, π) processes
is being extensively studied, but it does not furnish
direct information about the momentum distributions
of pions because the interference of amplitudes asso-
ciated with several diagrams is operative in that case
[14].

In conclusion, we note that the cross section for
the quasielastic knockout of ∆ isobars by the elec-
trons or protons of energy about 1 GeV provides a
good means for testing a high concentration of ∆
isobars in a nucleus. The quasielastic knockout of ∆
isobars can easily be identified in triple-coincidence
experiments involving, for example, the production of
a correlated pπ pair.
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