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Abstract of the Dissertation

Geometry Discovery with Connectivity Information and
Applications in Sensor Networks

by

Yue Wang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

Wireless sensor networks are tightly associated with the underlying environment in

which the sensors are deployed. The global geometry and topology of the network

is of great importance to both sensor network applications and the implementation

of networking functionalities. In this thesis, we contribute a comprehensive frame-

work for the discovery of sensor network geometry based only on connectivity in-

formation, and apply it to several challenging problems: Boundary Recognition,

Homology Computation, Layout Recovery and Localization

We develop a distributed algorithm to detect the nodes on the boundaries in a

sensor network by using only connectivity information. Our algorithm is motivated

by an observation that holes in a sensor field create irregularities in hop count dis-

tance. Inner holes of the sensor field disrupt the natural flow of the shortest path

tree. We then exploit special structure of the shortest path tree to detect the exis-

tence of holes. We also connect those boundary nodes into meaningful boundary

cycles and obtain the medial axis of the sensor field as a byproduct. We show by

extensive simulation that our boundary detection algorithm gives good results even

for networks with low density. The correctness of the algorithm for a continuous

geometric domain bounded by polygonal obstacles is proved rigorously as well.
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We introduce a new quantity, called homotopy feature size (hfs), for bounded

domains. It measures half the length of the shortest loop through point x in domain

X . The resort to an intrinsic metric makes this feature size rather insensitive to the

local geometry of the domain. Therefore, hfs can lead to a reduced number of sam-

ples which still capture the topology of X . We propose algorithms for estimating

the hfs, selecting a landmark set of sufficient density, and computing the homol-

ogy of domain X using the geodesic witness complex�W
X (L) and a relaxed version

�
W
X ,ν(L). We also present some practical simulations in the context of sensor net-

works that corroborate our theoretical results.

We propose a distributed algorithm to discover and recover the layout of a

large sensor network. We select landmarks on network boundaries with sufficient

density, construct the landmark Voronoi diagram and its dual combinatorial Delau-

nay complex on these landmarks. The key insight is that when the landmarks are

dense enough to capture the local geometric complexity, the combinatorial Delau-

nay complex is globally rigid and has a unique realization in the plane. Moreover,

an embedding by simply gluing the Delaunay triangles properly derives a faithful

network layout, which consequently leads to a practical and sufficiently accurate

localization algorithm. We also prove the global rigidity of the combinatorial De-

launay complex in the case of a continuous geometric region.

A limitation of our original layout discovery algorithm is its reliability of

boundary detection result. As a follow up to the previous algorithm, we develop a

new landmark selection algorithm with incremental Delaunay refinement. The new

algorithm does not assume any knowledge of the network boundary and runs in a

distributed manner to select landmarks incrementally until both the global rigid-

ity property (the Delaunay complex is globally rigid and thus can be embedded

uniquely) and the coverage property (every node is not far from the embedded De-

launay complex) are met. The new algorithm improves the robustness and applica-

bility of the original localization algorithm substantially.
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Chapter 1

Introduction

In this chapter, we first give a background review of geometry discovery in

sensor network, the core problem of our work. We then summarize our main con-

tributions. At last, we briefly introduce contents of each chapter, and the overall

organization of the thesis.

1.1 Background review

1.1.1 Problem statement

Wireless sensor networks are tightly coupled with the geometric environment

in which they are deployed. On one hand, sensor network applications such as envi-

ronment monitoring and data collection require sufficient coverage over the region

of interest. On the other hand, the global geometry and topology of a wireless sensor

network plays an important role in the design of basic networking functionalities,

such as point-to-point routing and data gathering mechanisms.

In this thesis, the first problem we will study is an important property of the

global geometry in sensor networks, which is nodes detection on the boundaries

(both inner and outer boundaries). The viewpoint we take is to regard the sensor

network as a discrete sampling of the underlying geometric environment. This is

motivated by the fact that sensor networks are to provide dense monitoring of the

underlying space. Thus, the shape of the sensor field, e.g., the boundaries, indicates

1



CHAPTER 1. Introduction 2

important features of the underlying environment. These boundaries usually have

physical correspondences, such as a building floor plan, a map of a transportation

network, terrain variations, and obstacles (buildings, lakes, etc). Holes may also

map to events that are being monitored by the sensor network. If we consider the

sensors with readings above a threshold to be “invalid”, then the hole boundaries

are basically iso-contours of the landscape of the attribute of interest. Examples

include the identification of regions with overheated sensors or abnormal chemical

contamination. Holes are also important indicators of the general health of a sensor

network, such as insufficient coverage and connectivity. The detection of holes

reveals groups of destroyed sensors due to physical destruction or power depletion,

where additional sensor deployment is needed.

Besides the practical scenario mentioned above, understanding the boundary

of the sensor field is of great importance in the design of basic networking opera-

tions. For example, in the sensor deployment problem, if we want to spread some

mobile sensors in an unknown region formed by static sensor nodes, knowing the

boundary of the region allows us to guarantee that newly added sensors are de-

ployed only in the expected region. A number of networking protocols also exploit

geometric intuitions for simplicity and scalability, such as geographical greedy for-

warding [17, 64]. Such algorithms based on local greedy advances would fail at

local minima if the sensor networks have non-trivial topology. Backup methods,

such as face routing on a planar subgraph, can help packets get out of local min-

ima but create high traffic on hole boundaries and eventually hurt the network life-

time [17, 64]. This artifact is not surprising, since any algorithm with a strong use

of geometry, such as geographical forwarding, should adhere to the genuine shape

of the sensor field. Recently, there are a number of routing schemes that address

explicitly the importance of topological properties and propose routing with virtual

coordinates that are adaptive to the intrinsic geometric features [19, 37]. The con-

struction of these virtual coordinate systems requires the identification of geometric

features first.

Besides boundary detection, another interesting question related the global ge-

ometry of sensor network is can we capture the topology of space X using as few

as possible samples? Specifically, motivated by landmarking strategy and manifold
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sampling technique, which are extensively used in geometric data analysis recently,

several questions arise naturally: (1) how many landmarks are necessary to capture

the invariants of a given object X at a given scale? (2) what data structures should be

built on top of them? (3) Can we find a homology of the original space X? Actually,

these questions are meaningful to a lot of situations where a topological domain or

space X is known to us only through a finite set of samples. Understanding global

topological and geometric properties of X through its samples is important in a

variety of applications, including surface parametrization in geometry processing,

non-linear dimensionality reduction for manifold learning, routing and information

discovery in sensor networks, etc. In this thesis, we only focus on understanding

topological equivalence of sensor network.

Till now, our emphasis is to identify large topological features such as coverage

holes, boundaries, topology equivalence. However, there is still an unclosed gap

in the loop, as Funke and Milosavljevic spotted [47], in that the identification of

boundary nodes or holes numbers still has not produced a global picture of the

sensor field layout. Or, we know which are the boundary nodes and how many

holes there are but we have no idea how they are laid out in the domain. This

is the most challenging problem we will solve in this thesis: with connectivity

information only, can we recover the global layout of the network? Furthermore,

can we discover the true node location with the help of the identification of the

network geometric features?

The physical location of sensor nodes in a network is critical for network op-

eration and data interpretation. It is motivated by sensor network applications in

remote areas or indoor/underwater environments in which GPS or explicitly placed

anchor nodes are not available or too costly. Unfortunately, as sensor networks scale

in size, retrieving the locations of the nodes becomes even more challenging. The

difficulty is not only due to the network scale, error accumulation, and the increase

to both the communication and computation load, but also due to the fact that large

deployments of sensor nodes are more likely to have irregular shape as obstacles

and terrain variations inevitably come in to the picture. Although most localization

algorithms work reasonably well for uniform and dense sensor deployments, they

often run into serious trouble when the network layout has complicated geometric
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features. The prominent difficulty is the rigidity issue and the problem of resolving

incorrect flips. To give an intuitive example, Figure 1 illustrates that with only net-

work connectivity information (and/or distance information), one is unable to tell

the “flip” of triangle �bcd relative to triangle �abc locally. When the network is

large, this flipping ambiguity issue can be so severe that many optimization-based

approaches easily get stuck at local minima corresponding to configurations far

from the ground truth.
b

a c

d c
a

b
d

Figure 1: A connectivity graph with two distinct embeddings having the s set of edge

lengths.

The network layout is of great help for large-scale network localization and

also interesting on its own. For example, greedy routing with imperfect geographi-

cal locations that differ from their true locations can still achieve high success deliv-

ery rate [80], if there are no global flips. To give an intuitive feeling, Figure 2 shows

the real deployment of sensor nodes (left) and two possible embedding results that

may have similar quality measured by the absolute location error. The middle one

that does capture the most essential feature of the network layout (5 point star with

no hole), is far better than the more devastating embedding to the right, in which

part of the network incorrectly folds on top of the other.

Figure 2: Left to right: the ground truth; one possible embedding; a more devastating

embedding.
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1.1.2 Prior and related work

1.1.2.1 Boundary recognition

Existing work on boundary recognition can be classified into three categories

by their major techniques: geometric methods, statistical methods and topological

methods.

Geometric methods for boundary detection use geographical location informa-

tion. The first paper on this topic, by Fang et al. [36], assumes that the nodes know

their geographical locations and that the communication graph follows the unit-disk

graph assumption, where two nodes are connected by an edge if and only if their

distance is at most 1. The definition of holes in [36] is intimately associated with

geographical forwarding such that a packet can only get stuck at a node on hole

boundaries. Fang also proposed a simple algorithm that greedily sweeps along hole

boundaries and eventually discovers boundary cycles.

Statistical methods for boundary detection usually make assumptions about

the probability distribution of the sensor deployment. Fekete et al. [40] proposed a

boundary detection algorithm for sensors (uniformly) randomly deployed inside a

geometric region. The main idea is that nodes on the boundaries have much lower

average degrees than nodes in the “interior” of the network. Statistical arguments

yield an appropriate degree threshold to differentiate boundary nodes. Another sta-

tistical approach is to compute the “restricted stress centrality” of a vertex v, which

measures the number of shortest paths going through v with a bounded length [39].

Nodes in the interior tend to have a higher centrality than nodes on the boundary.

With a sufficiently high density, the centrality of the nodes exhibits bi-modal be-

havior and thus can be used to detect boundaries. The major weakness of these two

algorithms is the unrealistic requirement on sensor distribution and density: the av-

erage degree needs to be 100 or higher. In practice the sensors are not as dense and

they are not necessarily deployed uniformly randomly.

There are also topological methods to detect insufficient sensor coverage and

holes. Ghrist [52] proposed an algorithm that detects holes via homology with no
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knowledge of sensor locations; however, the algorithm is centralized, with assump-

tions that both the sensing range and communication range are disks with radii care-

fully tuned. Kröller [68] presented a new algorithm by searching for combinatorial

structures called flowers and augmented cycles. They make less restrictive assump-

tions on the problem setup, modeling the communication graph by a quasi-unit disk

graph, with nodes p and q definitely connected by an edge if d(p,q) ≤ √
2/2 and

not connected if d(p,q) > 1. The success of this algorithm critically depends on

the identification of at least one flower structure, which may not always be the case

especially in a sparse network.

Towards a practical solution, Funke [44] developed a simple heuristic with

only connectivity information. The basic idea is to construct iso-contours based

on hop count from a root node and identify where the contours are broken. Under

the unit-disk graph assumption and sufficient sensor density, the algorithm outputs

nodes marked as boundary with certain guarantees. Specifically, for each point on

the geometry boundary, the algorithm marks a corresponding sensor node within

distance 4.8, and each node marked as boundary is within distance 2.8 from the

actual geometry boundary [45]. The simplicity of the algorithm is appealing; how-

ever, the algorithm requirement of the algorithm is also rather high; in order to

obtain good results, the average degree generally needs to be at least 15.

1.1.2.2 Homology computation

In order to capture the topology of an unknown manifold from a finite set of

sampling, several geometric tools or concepts, such as landmark, manifold sam-

pling are the good start. Given a point cloud W sampled from a hidden domain or

space X , the idea is to select a subset L ⊂ W of landmarks, on top of which some

data structure is built to encode the geometry and topology of X at a particular scale.

Examples in data analysis include the topology estimation algorithm of [30] and the

multi-scale reconstruction algorithm of [14, 57]. Both algorithms rely on the struc-

tural properties of the witness complex, a data structure specifically designed by

de Silva [29] for use with the landmarking strategy. Examples in sensor networks

include the GLIDER routing scheme and its variants [37, 38]. The idea underlying
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Figure 3: Two Lipschitz domains with very different weak feature sizes (wfs), but similar

homotopy feature sizes(hfs).

these techniques is that the use of sparse landmarks at different density levels en-

ables us to reduce the size of the data structures, and to perform calculations on the

input data set at different scales.

Manifold sampling issues have been intensively studied in the past, indepen-

dently of the context of landmarking. The first results in this vein were obtained by

Amenta, Bern, and Eppstein, for the case where X is a smoothly-embedded closed

curve in the plane or surface in 3-space [2,3]. Their bound on the landmark density

depends on the local distance to the medial axis of R 2 \X (the local feature size),

and the data structure built on top of L is the so-called restricted Delaunay trian-

gulation. Several extensions of their results have been proposed, to deal with noisy

data sets [31], sampled from closed manifolds of arbitrary dimensions [14, 26],

smoothly or non-smoothly embedded in Euclidean spaces [15]. In parallel, others

have focused on unions of congruent Euclidean balls and their topological invari-

ants, which can be computed via the dual complex – known as the Čech complex.

In a seminal paper [77], Niyogi et al. proved that, if X is a smoothly-embedded

closed manifold and L a dense enough sampling of X , then, for a wide range of

values of r, the union of the Euclidean open balls of radius r about the points of L

deformation retracts onto X .

The above results hold only for closed manifolds. The presence of boundaries

(like the scenario in sensor network) brings in some new issues and challenges. An

interesting class of manifolds with boundaries is the one of bounded domains in

R n. These naturally arise in the configuration spaces of motion planning problems

in robotics, in monitoring complex domains with sensor networks, and in many

other contexts where natural obstacles to sampling certain areas exist. By studying
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the stability of distance functions to compact sets in Rn, Chazal and others have ex-

tended the results of Niyogi et al. to a larger class of objects, including all bounded

domains X with piecewise-analytic boundaries [24]. Their bound on the landmark

density depends on the so-called weak feature size of X , defined as the smallest pos-

itive critical value of the Euclidean distance to ∂X . This mild sampling condition

makes the results of [24] valid in a very general setting. However, in many cases the

weak feature size is small compared to the size of the topological features of X , as

illustrated in Figure 3 (right). As a result, many sample points are wasted satisfying

the sampling condition of [24], when very few could suffice to capture the topology

of X . In practice, this results in a considerable waste of memory and computation

power.

The case of bounded domains suggests the use of an intrinsic metric on the do-

main, instead of the extrinsic metric provided by the embedding. This is essential

for certain classes of applications, such as sensor networks, where node location in-

formation may not be available and only the geodesic distance can be approximated

via wireless connectivity graph distances. Intrinsic metrics have been studied in the

context of Riemannian manifolds without boundary [71] and, from a more compu-

tational point of view, in the context of the so-called intrinsic Delaunay triangula-

tions (iDT) of triangulated surfaces without boundary [13]. 2-D triangle meshes in

3-D that happen to coincide with the iDT of their vertices are known to have many

attractive properties for PDE discretization [41], and generating such iDT meshes

is a topic of considerable interest in geometry processing [32].

1.1.2.3 Layout recovery and localization

For layout and localization problems of sensor network, Many localization

algorithms have been proposed in the past few years [35,53–55,74,75,79,82,84,86,

87], yet there is still no universally recognized localization algorithm that produces

accurate location information with small overhead [76,91]. As we have pointed out

earlier, a major challenge in network localization is to resolve flip ambiguities and

the rigidity issue. Two triangles sharing an edge can be embedded in two possible

ways, with the two triangles on the same side, or on opposite sides of the common

edge. In general, whether a graph has a unique embedding or not is investigated
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in graph rigidity theory [56]. A graph is rigid in 2D if a realization of the graph

in the plane cannot be continuously deformed without changing the lengths of the

edges. A graph is globally rigid if it has a unique embedding in the plane given

the edge lengths. Graph rigidity in 2D has been relatively well understood. Both a

combinatorial characterization of globally rigid graphs and polynomial algorithms

for testing such graphs are known [10, 60]. It is however not trivial to apply these

rigidity results in the development of efficient localization algorithms. Given a

graph with the edge lengths specified, finding a valid graph realization in R
d for

a fixed dimension d is an NP-complete problem [6, 8, 85]. Even if we know that

a graph is globally rigid in 2D, there is no known efficient algorithm to find the

realization of the graph with the given edge lengths.

The pioneer work of using rigidity theory in network localization [5,11,35,53,

54, 74, 87] focuses on identifying special graphs that do admit efficient localization

algorithms. The first idea is to use trilateration graphs [35, 53, 54, 74]. A trilatera-

tion graph is defined recursively. It is either a triangle or a trilateration graph with

a trilateration extension, defined as adding an additional vertex with three edges

to existing vertices. If the network contains a trilateration graph, one can exhaus-

tively search for the ‘seed’ triangle in the graph and greedily find the trilateration

extensions. Thus an incremental algorithm can be adopted to find the realization

of the network. A trilateration graph is a stronger condition than global rigidity

(i.e., there are globally rigid graphs that are not trilateration graphs), and thus may

require more edges than necessary to uniquely embed the graph. The second idea

is to examine d-uniquely localizable graphs. A graph with known edge lengths is

called uniquely d-localizable if there is a unique realization of the graph in R
d and

there is no non-trivial realization in R
k with k > d. For example, a generic simplex

of d + 1 vertices is uniquely d-localizable. For uniquely d-localizable graphs, So

and Ye [11, 87] have shown that a semi-definite program is able to find the realiza-

tion. It is not known whether d-localizability is a generic property and it is not clear

whether there is a combinatorial characterization of graphs that are d-localizable.

Both approaches require that the network has sufficiently many edges to be globally

rigid.

An approach on anchor-free localization with only network connectivity is to
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Figure 4: Embedding of the double star. Left: multi-dimensional scaling; Right: rubber-

band representation.

use global optimization such as multi-dimensional scaling (MDS) [86]. MDS takes

an inter-distance matrix on n nodes and extracts the node location in R
n. For 2D

embedding, the locations are taken as the largest 2D linear projection. Figure 4

(left) shows an example. Intuitively, MDS tries to stretch the network out in every

direction. For well-connected dense network it gives ok localization result. But it

does not have any notion of rigidity and may produce results with global flips. See

more examples in Figure 36 of Chapter 4.

Aside from localization algorithms, recently there is a growing interest in the

study of global topology of a sensor field, and its applications in point-to-point

routing and information discovery. Actually, our first two problems to be solved

in this thesis belong to this category. The focus is to identify high-order topolog-

ical features (such as holes) from network connectivity [39, 40, 44, 45, 68, 89] and

the construction of virtual coordinate systems with which one can route around

holes [19, 37, 38, 46, 47]. These virtual coordinates are by no means close to the

real node coordinates – they are not meant to be close. Therefore, there is still an

interesting question: Can we discover the true node location if we can identify some

network geometric features (network boundaries, holes, etc)? One such work is to

use the rubberband embedding, by Rao et al. in [80] and by Funke and Milosavl-

jevic in [47]. The idea is to fix the network outer boundary on a rectangle and then

each internal node iteratively takes the center of gravity of its neighbors’ locations

as its own location. The rubberband relaxation converges to what is called the rub-

berband representation. With the identification of the network outer boundary, this

method does give a layout without incorrect folds, but unfortunately induces large
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distortion as holes are typically embedded much larger than they are. An example is

shown in Figure 4 (right). In the literature [47, 80] the rubberband representation is

mainly used in assigning virtual coordinates to the nodes for geographical routing

purposes.

1.2 Our contributions

Our main contributions in this thesis are as follows.

1. We develop a practical distributed algorithm for boundary detection in sensor

networks, using only the communication graph (i.e., connectivity informa-

tion), and not making unrealistic assumptions. We do not assume any location

information, angular information or distance information. More importantly,

we do not require that the communication graph follows the unit disk graph

model or the quasi-unit disk graph model. Our methods also readily provide

other topological and geometric information, such as the number of holes

(genus), the nearest hole to any given sensor, and the sensor field’s medial

axis (the collection of nodes with at least two closest boundary nodes) [89].

2. We introduce a new quantity, called the homotopy feature size, or hfs for

short. hfs depends essentially on the global topology of domain X , and it is

rather insensitive to the local geometry. As a result, it enables to have very

sparse sets of landmarks L, which makes it a convenient theoretical tool for

geometric data analysis. We also prove that the geodesic Delaunay triangu-

lation DX(L) of L is homotopy equivalent to X . With more practical applica-

tions in mind, we have focused on the geodesic witness complex�W
X (L) and

its relaxed version �W
X ,ν(L), proving that these two complexes sandwich the

geodesic Delaunay triangulation DX (L) under some conditions. We then es-

timate the homology of X from L without actually building DX(L) explicitly,

by constructing �W
X (L) and �W

X ,ν(L) and computing their persistent homol-

ogy [50].

3. We propose an efficient and distributed algorithm to discover and recover the

sensor network layout. The novelty of our scheme is to extract high-order
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topological information to solve the notoriously difficult problem of resolv-

ing flip ambiguities in localization algorithms. We take samples on the net-

work boundaries with sufficient density and denote select nodes as landmarks.

We then construct the Voronoi diagram and its dual combinatorial Delaunay

complex on these landmarks. We prove in the case of a continuous geometric

domain that when the landmarks are sufficiently dense, the induced Delau-

nay graph is rigid and there is a unique way to embed these ‘solid’ Delaunay

triangles in the plane. With the landmarks localized and the network layout

successfully recovered, the landmarks serve as ‘anchor’ nodes such that each

additional node can localize itself by using trilateration [70].

4. As a follow-up of [70], in which the dependency on the boundary detection

algorithm puts limitations on the applicability of the localization algorithm,

we propose an incremental landmark selection algorithm that does not as-

sume knowledge of the network boundary. In particular, we start with no

knowledge of the network topology (whether there are holes or how many

there are, etc.) and develop local conditions to test whether a node should

be included as a new landmark. The landmarks selected naturally adapt to

the local geometry of the network, with a higher density of landmark nodes

selected in regions with more detailed and complex features. This new algo-

rithm greatly enhances the robustness of our algorithm in cases of extremely

sparse or even non-rigid networks, or networks with very complicated shapes

that are challenging for boundary detection algorithms [90].

1.3 Thesis organization

This thesis is organized in the following fashion. In Chapter 2, we begin with

an introduction on our boundary recognition problem. We prove the correctness

of our algorithm for a continuous geometric domain bounded by polygonal obsta-

cles. Extensive simulation is also followed which shows our algorithm indeed gives

good results even for networks with low density. Chapter 3 describes the homotopy

feature size, geodesic Delaunay triangulation, witness complex and the main prop-

erties of these concepts. We give our algorithms for sampling Lipschitz domains
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in the plane, estimating their homotopy feature size, and computing their homol-

ogy. These algorithms are adapted to the sensor networks setting. In Chapter 4, we

present our layout discovery and localization algorithm. We prove the rigidity of

the Delaunay complex when landmarks are sufficiently dense in the case of a con-

tinuous domain. Corresponding simulation results are presented as well. Chapter 5

is a follow up work to Chapter 4. We develop a new landmark selection algorithm

with incremental Delaunay refinement. The new algorithm does not assume any

knowledge of the network boundary which greatly enhances the robustness of the

algorithm. Finally we summarize our work, and give future research directions in

Chapter 6.



Chapter 2

Boundary Recognition in Sensor

Networks By Topological Methods

2.1 Introduction

In this chapter, we introduce our boundary recognition algorithm in sensor net-

work. Our method only requires connectivity information. It does not assume any

knowledge of the node locations or inter-distances, nor does it enforce that the com-

munication graph follows the unit disk graph model. Indeed, actual communication

ranges are not circular disks and are often quite irregularly shaped [49]. Algorithms

that rely on the unit disk graph model fail in practice (e.g., the extraction of a pla-

nar subgraph by the relative neighborhood graph or Gabriel graph [65]). While

the unit (or quasi-unit) disk graph assumption is often useful for theoretical anal-

ysis, it is preferable to consider algorithms that do not rely on this assumption or

that degrade gracefully as the ground truth deviates only modestly from the model.

Therefore, we do not put a hard restriction on the communication model in our

algorithm. Rather, we use a loose notion of locality in wireless communications:

Nearby nodes can communicate directly, and faraway nodes generally do not.

Our boundary detection algorithm is motivated by an observation that holes in

a sensor field create irregularities in hop count distances. Simply, in a shortest path

tree rooted at one node, each hole is “hugged” by the paths in a shortest path tree.

We identify the “cut”, the set of nodes where shortest paths of distinct homotopy

14
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types1 terminate and touch each other, trapping the holes between them. The nodes

in a cut can be easily identified, since they have the property that their common

ancestor in the shortest path tree is fairly far away, at the other side of the hole. The

detection of nodes in a cut can be performed independently and locally at each pair

of adjacent nodes.

When there are multiple holes in the network (indicated by multiple branches

of the cut), we can explicitly remove all of the nodes on cut branches except one,

thereby connecting multiple holes into one. Our algorithm then focuses on finding

the inner and outer boundaries of the network, which, with the cut nodes put back,

will give the correct boundary cycles. In a network with only one hole (and one

cut branch), one can easily find a hole-enclosing cycle. Indeed, for a pair of nodes

that are neighbors across a cut (a “cut pair”), the concatenation of the paths from

each node in a cut pair to their common ancestor gives such a cycle. This “coarse”

boundary cycle is then refined to bound tightly both the inner boundary and outer

boundary. In addition to discovering boundary nodes, we also obtain their relative

position information, so that we can connect them into a meaningful boundary.

We show by simulation that our algorithm correctly identifies meaningful

boundaries for networks with reasonable node density (average degree 6 and above)

and distribution (e.g., uniform). The algorithm also works well for non-uniform

distributions. The algorithm is efficient. The entire procedure involves only three

network flooding procedures and greedy shrinkage of paths or cycles. Further, as

a theoretical guarantee, we prove that for a continuous geometric space bounded

by polygonal obstacles – the case in which node density approaches infinity – the

algorithm correctly finds all of the boundaries.

2.2 Topological boundary recognition

Suppose a large number of sensor nodes are scattered in a geometric region

with nearby nodes communicating with each other directly. Our goal is to discover

1Two paths have distinct homotopy types if one cannot be “continuously deformed” into the
other.
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the nodes on the boundary of the sensor field, using only local connectivity infor-

mation. We propose a distributed algorithm that identifies boundary cycles for the

sensor field.

The basic idea is to exploit special structure of the shortest path tree to detect

the existence of holes. Intuitively, inner holes of the sensor field “disrupt” the nat-

ural flow of the shortest path tree: Shortest paths diverge prior to a hole and then

meet after the hole. This phenomenon is also understood in terms of the continu-

ous limit, when the shortest path tree becomes the “shortest path map”, which we

discuss in Section 2.3. We first outline the algorithm and then explain each step in

detail.

1. Flood the network from an arbitrary node, r. Each node records the minimum

hop count to r. This implicitly builds a shortest path tree rooted at r. We

generally prefer to select r as a node on the outer boundary of the sensor

field.

2. Determine the nodes that form the cut, where the shortest paths of distinct

homotopy type meet after passing around holes. Informally, the nodes of a

branch of the cut have their least common ancestor (LCA) relatively far away

and their paths to the LCA well separated. See Figure 5(ii-iv). If there are

multiple branches of the cut, corresponding to multiple holes, delete nodes on

branches of the cut in order to merge holes, until there is only one composite

hole left in the sensor field.

3. Determine a shortest cycle, R, enclosing the composite hole; R serves as a

coarse inner boundary. See Figure 5(v).

4. Flood the network from the cycle R. Each node in the network records its

minimum hop count to R. See Figure 5(vi).

5. Detect “extremal nodes” whose hop counts to R are locally maximal. See

Figure 5(vii).

6. Refine the coarse inner boundary R to provide tight inner and outer bound-

aries. These boundaries are in fact cycles of shortest paths connecting adja-

cent extremal nodes. See Figure 5(viii).

7. Undelete the nodes of the removed cut branches and restore the real inner

boundary locally.
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 5: Boundary detection algorithm for an example with one concave hole. The aver-

age degree is about 20. (i) The sensor nodes; (ii) The shortest path tree T (green), rooted

at the black node; (iii) The zoomed-in portion (within the loop of (ii)) of the tree where the

shortest paths meet; (iv) The marked cut nodes (red); (v) The course inner boundary formed

by shortest paths from a pair of cut nodes to their least common ancestor; (vi) The nodes

colored by hop count (giving iso-contours) in a flooding from the coarse inner boundary;

(vii) The nodes (red) with locally maximum hop count (extremal points) from the coarse

boundary; (viii) The refinement of the coarse inner boundary, giving tight inner and outer

boundaries; (ix) The medial axis nodes of the sensor field, obtained as a by-product of

boundary detection.
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8. At this stage we have a set of cycles corresponding to the boundaries of the

inner holes and the outer boundary. As a byproduct, we can compute the

medial axis of the sensor field. See Figure 5(ix).

2.2.1 Build a shortest path tree

The first step of the algorithm is to flood the network from an arbitrary root

node r. For example, we can select r to be the node with smallest ID. This can

be performed in a distributed fashion as follows. First, each sensor node p sets

a timer with a random remaining time. Ties are broken by the unique IDs of the

sensor nodes. When the timer of p reaches 0, the node p will begin to flood the

network and build a shortest path tree T (p). The message sent out by p contains

the ID of p and the initial timer p chooses. The tree with a timer of minimum

value starts first and suppresses the construction of other trees. When the frontier of

T (p) encounters a node q, there are two cases: (i) If q does not belong to any other

tree, then q is included in the tree T (p) and q will broadcast the packet; or, (ii) If

q is already included in another tree T (p′), then the start time of T (p) and T (p′)
are compared. Only when the start time of T (p) is earlier than that of T (p′), the

message from p will be broadcast. Eventually the tree with earliest starting time

will dominate and suppress the construction of other trees, and the packet from

the node with minimum initial timer will cover the whole network. Each node in

the network records the minimum hop count from this root. We denote by T the

shortest path tree constructed.

When the network size is unknown, the flooding step provides a good approxi-

mation to the network diameter. By triangle inequality, the diameter of the network

is at most 2d, where d is the distance between the root r and the deepest node in T .

d can be used to generate a reasonable threshold for the minimum size of the holes

we aim to discover.

2.2.2 Find cuts in the shortest path tree

Hints about the presence of holes are hidden in the structure of the shortest

path tree T . The “flow” of T forks near a hole, continues along opposite sides of
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the hole and then meets again past the hole. We detect where the shortest paths meet

and denote those nodes as “cut” nodes (e.g., the red nodes in Figure 5(iv)). Nodes

of the cut form cut branches and cut vertices, where three or more cut branches

come together; cut branches are the discrete analogue of bisectors in the (contin-

uous) “shortest path map” and cut vertices are the discrete “SPM-vertices”, see

Section 2.3 for these concepts in detail. Figure 7 shows the tree T for a network

with 3 holes. In this case, we detect 3 groups of cut nodes (3 cut branches). In gen-

eral, as will be proved later in the continuous case, if the sensor field has k interior

holes and m cut vertices, there are exactly k +m cut branches in the network.

Intuitively, the nodes in a cut are the neighboring pairs, (p,q), in the commu-

nication graph whose least common ancestor, LCA(p,q), in the shortest path tree

T is “far” from p and q, with paths from LCA(p,q) to p and to q “well separated.”

More formally,

Definition 1 A cut pair (p,q) is a pair of neighboring nodes in the network sat-

isfying the following conditions: (i) The (hop) distance between p or q and

y =LCA(p,q) is above a threshold δ1; and, (ii) The maximum (hop) distance be-

tween a node on the path in T from p to y and the path in T from q to y is above a

threshold δ2 (See Figure 6). The cut is the union of nodes that belong to a cut pair.

Each connected component of the cut is a subgraph which, when thinned, is a cut

tree; the nodes of degree greater than 2 in this tree are cut vertices, and the paths

of degree-2 vertices, and their neighboring (non-cut-vertex) cut nodes, form the cut

branches.

q
≥ δ2

≥ δ1

cut pair

y=LCA r

p

Figure 6: Definition of a cut pair (p,q).

The two parameters in the definition of a cut pair, δ1 and δ2, specify the min-

imum size of the holes we want to detect. Typically, we choose them as some

constant fraction of the diameter of the sensor field (e.g., experiments reported in
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this thesis use δ1 = δ2 = 0.18d). The condition on whether a node belongs to a cut

can be checked locally. Alstrup et al. gave a distributed algorithm to compute the

LCA [1]. The idea is to label the nodes of a rooted tree with O(logn) bits such that

by using only the labels of two nodes one can calculate the label of their LCA. With

this labeling, each pair of neighbors in the network check for their common ances-

tors. If the LCA is more than distance δ1 away, we check if two shortest paths from

these two neighbor nodes to their LCA satisfy the second condition in the definition

above. This can be implemented by a local flooding from each node in the cut pair

up to distance δ2. Nodes that satisfy both conditions mark themselves as being in

the cut.

The nodes in the cut will then connect themselves into connected components.

Furthermore, each connected component agrees on the node closest to the root (ties

are broken by the smaller ID). Specifically, each node u in the cut keeps its current

knowledge of the ID of the node with smallest distance to the root. If a cut node u

receives a message from its neighboring cut node about a closer node, u updates its

knowledge and sends the change to its neighboring cut nodes. Eventually, the cut

nodes connect themselves into connected components with each cut identified by

the ID of the closest node. If there is no hole in the network, there will be no cut,

then no connected components correspondingly. By simulation we find that this

algorithm correctly finds all the cuts when the sensor field has a reasonable density

(e.g., when the average degree is about 7 or more).

Figure 7: The cut pairs in a multi-hole example. 4050 nodes and the average degree is 10.
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When there are multiple holes and multiple cuts in the network, we artificially

merge the holes by removing nodes on cut branches, until there is only one compos-

ite hole left. As will be clear later, the real boundary cycles can be easily restored

by undeleting the removed cut nodes. We remove all of the nodes on cut branches

except the one branch furthest away from the root. The interior holes either con-

nect to themselves or connect to the outer boundary. That is, the multi-hole case

is turned into a single hole scenario. Thus, in the following steps, we focus on the

single hole case.

2.2.3 Detect a coarse inner boundary

With the cut nodes detected, we would like to find a coarse inner boundary R

that encloses the (composite) interior hole. R is then refined to provide tight inner

and outer boundaries.

Definition 2 A coarse inner boundary R is a shortest cycle enclosing the interior

hole in the sensor field.

Recall that we have turned any multi-hole sensor field into a single composite

hole sensor field by removing all cut branches except one. All the nodes in the

unique cut branch have the ID of the node closest to the root. Thus, the closest node

p, together with its partner q in the cut pair, will find the shortest paths between

them that do not go through any cut node. This can be implemented in two ways.

An obvious way is to use any shortest path algorithm to find this path. In order

to prevent the path from going through any cut nodes, we remove all the edges

between cut pairs. Alternatively, we can use the two shortest paths from p and q

to LCA(p,q). Together with the edge pq, we obtain a cycle that encloses the hole.

This cycle is not necessarily the shortest cycle. But we can greedily shrink it to be

as tight as possible, by the following k-hop shrinking process. For any two nodes

that are within k hops on the cycle, we check whether there exists a shorter path

between these two nodes. If so, we use the shorter path to replace the original

segment on the cycle and shorten the total length. For example, a 2-hop shrinking

check, for every three adjacent nodes on the cycle, say x,y,z, whether (x,z) is an
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edge. If so, we shrink the cycle by excluding y. In a sensor field with reasonable

density, the greedy process stops at the shortest cycle so that no more improvement

is made. For a sensor field with only one convex shape hole, the coarse inner

boundary actually is the real inner boundary, as in Figure 8(i). If the graph has a

concave hole (Figure 5(v)), the coarse inner boundary R will be a shortest circuit

containing this concave hole and, thus, approximates its convex hull. A multi-hole

example is shown in Figure 8(ii). Notice that this coarse inner boundary provides a

consistent ordering of the nodes on this cycle.

We note that the shortest paths from a cut pair to their LCA do not go through

any cut nodes, as proved later (Section 2.3). Thus, the removal of cut nodes in a

multi-hole scenario is not a problem for the discovery of the coarse inner boundary

by the greedy shrinking scheme.

(i) (ii)

Figure 8: The coarse inner boundary for (i) a convex hole scenario; (ii) a multi-hole sce-

nario with all but one cut branch removed, one interior hole connected to the outer boundary.

2.2.4 Find extremal nodes

The coarse inner boundary R is not tight in the case of a concave hole. Also, we

have no idea about the outer boundary. Next, we refine the coarse inner boundary to

provide tight cycles for both inner and outer boundaries. This refinement is through

finding what are called “extremal nodes” with respect to R.
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Definition 3 An extremal node is a node whose minimum hop count to nodes in R

is locally maximal

To discover extremal nodes, we have the nodes on R synchronize among them-

selves and start to flood the network at roughly the same time [34] [48]. Each node

in the network records the minimum hop count to nodes in the coarse inner bound-

ary R. This is as if we merge the nodes in R to a dummy root σ, and build a shortest

path tree T (σ), rooted at σ for the whole network. The extremal nodes are the ones

with locally maximum distance to R. Each extremal node can detect itself by check-

ing its direct neighbors. Intuitively, the extremal nodes are on the outer boundary

or are the ridges on the real inner boundary of a concave hole (Figure 5(vii)).

With the extremal nodes identified, we also need to know their relative order-

ings to connect them to a consistent boundary. This ordering can be derived from

the ordering of the nodes on R. Specifically, for each node on R, we assign a label

in [0,L] that indicates its position on R. A node u that is k hops away from R may

have multiple neighbors (k− 1) hops away from R. Thus, the label of u, �(u), is

taken as the average of the labels of all of its neighbors that are (k−1) hops away

from R. Each node in the network records the distance to R as well as its label. The

relative ordering of extremal nodes is decided by their labels.

When there are many extremal nodes and some of them have similar labels,

we would like to eliminate some of them and take a few representative nodes for

the next step. The goal for this clean-up is to take sampled extremal nodes so that

we can easily sort them. We first find the connected components for all extremal

nodes, denoted as extremal connected components (ECC). These can be done with

the same distributed strategy as used to find connected components for the cuts.

Next, we select at most two nodes as the representatives for each ECC (an ECC

may contain only one node). These two nodes have the greatest distance between

them in their affiliated ECC. These nodes will be connected according to their labels

to refine inner and outer boundaries.
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2.2.5 Find the outer boundary and refine the coarse inner

boundary

With the extremal nodes and a linear ordering of them, we would like to con-

nect them into a cycle consistent with this ordering. Notice that here we only

consider the case with one inner hole, since we have removed the cuts to connect

multiple holes into a composite hole. If this composite hole is convex, then all ex-

tremal nodes belong to the outer boundary. If the composite hole is concave, as in

the multi-hole case, there will be two types of extremal nodes, those on the outer

boundary and those on the interior of R. We use the following rule to differentiate

extremal nodes on different sides of R.

The removal of R, together with all of the 1-hop neighbors of R, partitions the

network into several connected components Ci, i = 1, . . . ,w. Now we would like

to connect the extremal points into extremal paths in each connected component,

which will then be further connected into boundary cycles. We first focus on a

particular connected component and describe how an extremal path is constructed.

Specifically, all of the nodes that are 2 hops away from R will connect themselves

through local flooding. This results in a path (or a cycle) Pj with a corresponding

maximum index and minimum index along R. Now we would like to refine this path

Pj so as to force it to go through the extremal nodes in this connected component

as well as the two nodes on Pj with maximum and minimum indexing. Notice that

each extremal node has shortest paths from some nodes on R. Now we connect

two extremal nodes with adjacent ordering by the shortest path between them. To

find the shortest path between two extremal points, again we can either use any

shortest path algorithm or a greedy approach. For the latter, we notice that there

is a natural path between any two extremal nodes u,v, composed by the shortest

path from u to its closest point on Pj, the shortest path from v to its closest point

on Pj and a segment of Pj between the correspondences of u,v. The shortest paths

from extremal points to Pj can be found by following the parent pointer towards R

(in the tree T (σ)). Then, we can greedily refine this path and find the shortest path

between u and v.

By the above procedure, the extremal nodes are connected into a path Pj, in
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each connected component. If one of the paths is actually a cycle, then it is already

a boundary cycle. If there are paths that are not connected into cycles, then we tour

the coarse boundary R and connect them into boundary cycles. In particular, we

start from anywhere on R and tour along R; when there is a neighboring node (in

2 hops) who is on an extremal path Pj, then we branch on Pj. This will eventually

come back and close a cycle. Then, we tour R again, from a node that is not on

the first cycle, and branch on extremal paths as long as we can. This will generate

another cycle. So far, we classify extremal nodes and connect them into two cycles,

corresponding to the inner and outer boundary. Figure 9 shows the results for two

examples after this stage.

(i) (ii)

Figure 9: The outer boundary and the refined inner boundary. (i) 2-hole example; (ii)

multi-hole example.

As will be shown in Section 2.3, in the continuous case all of the boundary

points are identified as extremal points. However, in a discrete network, the shortest

path is computed on a combinatorial graph. Thus, not all of the boundary nodes are

identified as extremal nodes. The boundary refinement can be performed in an

iterative fashion such that we flood from the current boundary cycle and identify

more extremal points until the boundary cycle is sufficiently tight.

2.2.6 Restore the inner boundary

The final step of our method is to recover the inner holes in the sensor field and

find their boundaries. We undelete the cut nodes we removed earlier and restore the

correct inner boundary. For each cut, we find a cut pair (p,q) such that the inclusion
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of edge pq in the refined inner boundary R partitions the inner boundary into two

boundary cycles. If p,q are by themselves not on the refined inner boundary R,

then we do a local search from p,q to discover nodes on R. The two new boundary

cycles will share nodes p,q. Then, we shrink the cycles locally to make them tight.

Here, the shrinking procedure has a restriction that the shrunk path still has to pass

through the extremal nodes. Thus, we partition the refined inner boundary into a

number of cycles, each representing the boundary of an inner hole. Figure 10 shows

our final results for two examples.

(i) (ii)

Figure 10: The boundary cycles created by the connection of nodes: (i) 2-hole example;

(ii) multi-hole example.

2.2.7 The medial axis of the sensor field

The boundaries of the sensor field capture the global geometric shape informa-

tion, and thus can be used to generate other structures related to the global geometry.

For example, we can define the quasi-Voronoi diagram for the boundaries such that

sensor nodes are classified by their closest boundary. In another example, we can

compute the medial axis of the sensor field. The medial axis is defined as the set

of nodes with at least two closest boundary nodes2. The medial axis can be used

to generate virtual coordinates for efficient greedy routing [19]. Both the quasi-

Voronoi diagram and the medial axis can be discovered by a simple flooding from

the boundary cycles. Figure 11 shows the results for our 3-hole face example.

2Since hop counts are discrete, we allow a node on the medial axis with two closest boundary
nodes that differ by 1 in hop count.
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With our boundary information, we start from all boundary nodes and flood

the network simultaneously. Each node thus records its closest boundary. All of the

nodes with the same closest boundary are naturally classified to be in the same cell

of the quasi-Voronoi diagram. Further, the nodes at which the frontiers collide be-

long to the medial axis. Specifically, the detection of nodes on the medial axis can

be done locally. Denote the boundary cycles by Ri, i = 1, . . . ,k. During the flood-

ing from the boundaries, each node in the boundary sends out a packet containing

the boundary containing it, its position based on the originator boundary, and the

number of hops this packet has traveled, as denoted by a tuple (i, �i(v),hi(v)). A

node, upon receiving a packet (i, �i(v), hi(v)), does one of the following things. If

a node has not received earlier packets with smaller hop counts to boundaries, it

records (i, �i(v), hi(v)), where hi(v) is the minimum hop count distance to the orig-

inator of the packet, drops earlier tuples with larger hop counts, and re-transmits

the packet. In the end, each node only contains the tuples with the minimum hop

count distance. There are three possible cases: (1). Only one minimum hop count

tuple is left for the node, so the node is not a medial axis node. (2). More than one

minimum hop count tuple is left, and these tuples are generated by different bound-

ary cycles, which means the node has more than one closest boundary node, so the

node is on the medial axis. (3). More than one minimum hop count tuple is left,

and these tuples are generated by the same boundary cycle, so we need to compare

the � values in these tuples; if they differ a lot, then the node is on the medial axis.

This case corresponds to an inward convex (reflex) segment in the boundary.

(i) (ii)

Figure 11: (i) A quasi-Voronoi diagram; (ii) the medial axis diagram.
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2.3 Proof of correctness in the continuous case

In this section we prove rigorously that the algorithm will correctly detect all

the inner and outer boundaries in a continuous domain with polygonal boundaries.

(The results apply also to non-polygonal domains, since they are approximated by

polygons.) Let F be a closed polygonal domain in the plane, with k simple polyg-

onal obstacles inside; F is a simple polygon P, minus k disjoint polygonal holes.

We refer to F as the free space and its complement, O, as the obstacle space. O
consists of k open, bounded simple polygonal holes and an unbounded complement

of the simple polygon P. Denote by V the set of all vertices of F .

For any two points p,q ∈F , we denote by g(p,q) the geodesic shortest path in

F between p,q. The Euclidean length of g(p,q) is denoted by d(p,q). The shortest

path g(p,q) is not necessarily unique. In fact, our algorithm aims to detect points

with one or more shortest paths to the root. Rigorously, given a root r ∈ F , the

shortest path tree at r is the collection of shortest paths from each point in F to r. A

geodesic shortest path is a polygonal path with turn points at vertices of F [28]. We

say that a vertex s∈V is a parent of a point p∈F if for some geodesic shortest path

g(r, p), s is the last vertex along the path g(r, p) \ {p} at which g(r, p) turns. If the

geodesic path is a straight line from r to p, then r is the parent of p. The free space

F can be partitioned to maximal regions, called cells, such that all the points in the

same cell have the same parent or set of parents. This partition is called the shortest

path map, SPM(r) (see Figure 12). We define the bisector, C (vi,v j), of two vertices

vi,v j as the set of points in F with the set of parents {vi,v j}. A point in F with

three or more parents is called an SPM-vertex. The union of all bisectors and SPM-

vertices, B , is often called the cut locus. Our boundary detection algorithm makes

use of the properties of the shortest path map. We list below the useful properties

that are proved in [72].

Lemma 4 ( [72]) Given a closed polygonal region F in the plane, with k simple

polygonal obstacles inside. The shortest path map at an arbitrary root r ∈ F has

the following properties.

1. Each bisector is the union of a finite set of closed subarcs of a common

hyperbola (a straight line is a degenerate case of a hyperbola).
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r r

R

(i) (ii)

Figure 12: (i) A shortest path map SPM(r) for F with k = 8 obstacles (blue), showing the

bisector set B (red), which has one SPM-vertex, 7 connected components, and 9 arcs. (ii)

The shortest path map SPM(r), and R is the shortest cycle corresponding to the red bisector

arc. Other bisector arcs are blue, having become part of the obstacle set for F′.

2. The collection of bisectors and SPM-vertices, denoted by B , forms a forest.

3. There is at least one bisector point on the boundary of each obstacle.

4. F \B is simply connected.

Lemma 5 For a region F with k polygonal holes inside and m SPM-vertices, there

are exactly k +m bisector arcs.

Proof. This follows from the fact that a tree of v vertices has v−1 edges, where,

here, v = k +1+m since the bisector arcs connect the k obstacle boundaries, the m

SPM-vertices, and the 1 outer boundary.

In fact, our boundary detection algorithm finds the bisector arcs. For complete-

ness, we re-state the outline of the boundary detection algorithm for the continuous

case. The focus is on the correctness of the algorithm so we explain it in a central-

ized setting. The boundary detection algorithm for F works as follows.

1. Find the bisectors and SPM-vertices; each of them has at least two geodesic

shortest paths to the root r.

2. Delete bisector arcs until there is only one bisector arc left. Correspondingly,

we connect k−1 holes into one composite hole. This results in a new domain

F ′ with only one interior hole O′ and one bisector arc.
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3. Find the shortest cycle R in F ′ enclosing the inner hole O′.
4. Refine R to find both the inner boundary and outer boundary of F ′. In partic-

ular, we use the following algorithm for boundary refinement.

1. Compute the Voronoi diagram of R in F ′. Find the extremal points,

defined as the points that do not stay on the interior of any shortest paths

from points of F ′ to its closest point on R, denoted by E. Furthermore,

we find for each extremal point the closest point(s) on R.

2. Order the extremal points by the sequence of their closest point(s) on

R. The extremal points are naturally connected into paths or cycles.

Tour the coarse boundary R and replace the segments of R by their cor-

responding extremal paths. Touring the boundary twice will come up

with two cycles that correspond to the inner and outer boundaries.

3. Undelete the removed bisector arcs. Restore the boundaries of interior holes

and the outer boundary.

Next we will prove that this algorithm correctly finds all the boundaries of F .

The proof consists of a number of lemmas.

Lemma 6 The domain F ′ has one interior polygonal hole.

Proof. This is due to the fact in Lemma 4 that F \B is simply connected. Thus,

by removing all but one bisector arc and all SPM-vertices, we obtain a polygonal

region F ′ with one interior hole.

Now we focus on F ′ and argue that we indeed find the correct outer and inner

boundaries of F ′ by the iterative refinement. We only prove for the outer boundary

R+; the correctness of the inner boundary R− can be proved in the same way. By

the refinement algorithm, we can find the Voronoi diagram of R by a wavefront

propagation algorithm (e.g., [59]). The extremal points are the points that do not

stay on the interior of any shortest paths from points of F ′ to its closest point on

R. Due to the properties of wavefront propagation, the extremal points must be

either on the boundary or on the medial axis, where wavefronts collide [61, 72].

However, since cycle R is a shortest path cycle surrounding the hole, we argue that

the extremal points on the exterior of R must stay on the boundary of F ′.
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Lemma 7 The extremal points are exactly the boundary points of F ′.

Proof. First we argue that all the inward concave vertices of R must be on the

outer boundary of F ′. By the properties of geodesic shortest paths [73], all the

vertices of R must be vertices of F ′. If an inward concave vertex is a vertex of the

inner hole, then we can move the concave vertex outward and shrink the cycle R,

as shown in Figure 13(i) (the vertex of the inner hole w can not be on R). This is a

contradiction.
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Figure 13: (i) All the inward concave vertices of R must be on the outer boundary of F′.
(ii) The dark cycle is the coarse inner boundary R. The cycles in blue and (dashed) red are

inner and outer boundaries.

Thus, the removal of cycle R partitions the space F ′ into disjoint components

{Cj}. Correspondingly, we denote by R j the segment of R that bounds the compo-

nent Cj. By the above argument, each boundary segment R j is inward concave. The

wavefront propagation of R is actually composed of Voronoi wavefront propagation

of each segment of R j to its bounded region C j. Since each segment is concave and

the Cj’s are disjoint, the wavefront propagation does not collide. All the extremal

points can only happen at wavefront-boundary collision. In fact, all the boundary

points collide with the wavefront propagation and thus are considered as extremal

points.

At this point we can consider R to be a coarse approximation to the outer (and

inner) boundary. By the refinement algorithm we will improve the approximation

and obtain the correct outer boundary. Specifically, the removal of R from F ′ parti-

tions the space F ′ into disjoint components {C j}, j = 1, . . . ,w. For each connected
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component Cj, the extremal points connect themselves into either a path (with open

endpoints) or a cycle Pj.

• If w = 1, the extremal points form a cycle. R is already the inner boundary.

All the extremal points are on the outer boundary.

• If w ≥ 2 and one of Pj is a cycle, this cycle is the outer boundary. The rest

of the extremal points refine R to the inner boundary. Specifically, we replace

the segments on R by their extremal paths.

• Otherwise, we will tour R and discover the inner and outer boundaries.

Specifically, we travel along R and always prefer to branch on an extremal

path. When we close the cycle, we obtain a boundary cycle R1. Then we visit

R again, starting at an extremal point that is not on R1. Again we prefer to

branch on extremal paths. This will give a different cycle. The two cycles are

inner and outer boundaries. For an example, see Figure 13 (ii).

With the correct inner and outer boundaries of F ′, we are now ready to recover

the real boundaries of F . We simply put back the deleted bisectors. Indeed, the

boundaries of F ′ are the boundaries of F plus all the bisectors and SPM-vertices.

Thus we remove the bisectors from the boundaries of F ′ and obtain k + 1 cycles

that are the real boundaries.

Theorem 8 Given a closed polygonal domain F in the plane, with k simple polyg-

onal obstacles inside, the boundary detection algorithm will find the boundary of

the region correctly.

2.4 Simulations

We performed extensive simulations in various scenarios, with the goal to eval-

uate the performance of the algorithm with respect to the network topology, node

density and distribution, etc. We particularly note that our method works well even

in cases of very low average degree, such as less than 10, or even as low as 6 in

some models. Degree 6 has been shown to be optimal for mobile networks [81].
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2.4.1 Effect of node distribution and density

For each figure in this part, we show a pink circle in the upper left corner to

illustrate the communication range of the sensor field.

2.4.1.1 Random distribution of sensors

In this group of experiments, we randomly place, according to a uniform dis-

tribution, 3500 nodes in a square region with one hole. The average degree of the

graph is varied by adjusting the communication radius. Figure 14 shows the results

using our method. As expected, as the average degree of the network increases, the

performance of the algorithm improves.

The unsatisfactory result in Figure 14(i) is due to insufficient connectivity.

The average degree is 7; however, the random distribution tends to have clustered

nodes and holes. Thus, in sparse regions some nodes are incorrectly judged to

be extremal, and the final outer boundary is then required to pass through these

mistaken extremal nodes. When the average degree reaches 10, the communication

graph is better connected, and the results improve.

For comparison, SHAWN [68] did not find a starting solution (a “flower”) for

cases (i) and (ii); it found apparently correct boundaries for cases (iii) and (iv), in-

distinguishable from our results. The method of Funke and Klein [45] had difficulty

with all 4 cases; see Figure 15(i), (ii).

Connectivity is necessary for computing the shortest path tree and determining

cuts, etc. In fact, this low-degree graph with insufficient connectivity is the major

troubling issue for prior boundary detection methods. Since our method only re-

quires the communication graph, we can apply some simple strategies to increase

artificially the average degree. For a disconnected network, we use the largest con-

nected component of the graph to build our shortest path tree. Then we artificially

enlarge the communication radius by taking 2-hop/3-hop neighbors as “fake” 1-hop

neighbors. In this way, the connectivity of the graph will be ameliorated and the

results will be improved correspondingly. Figure 16 shows the improvement by

this simple strategy. The result using 3-hop neighbors has fewer incorrectly marked

extremal nodes, and the final boundary is in good shape except that the boundary
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cycle is not very tight. This is understandable since we make the communication

range artificially larger, so that more nodes are “on” the boundary now.

(i) (ii) (iii) (iv)

Figure 14: Uniformly distributed sensor field. (i) the average degree is 7; (ii) the average

degree is 10; (iii) the average degree is 13; (iv) the average degree is 16.

(i) (ii) (iii) (iv)

Figure 15: Results of [45]: (i) uniform distribution, average degree 7; (ii) uniform, average

degree 16; (iii) perturbed grid, average degree 8; (iv) sparse example (842 nodes), average

degree 7.

(i) (ii) (iii)

Figure 16: Using 2-hop/3-hop neighbors as fake 1-hop neighbors to improve the perfor-

mance in the low average degree case. (i) based on the original neighbors; (ii) using 2-hop

neighbors as fake 1-hop neighbors; (iii) using 3-hop neighbors as fake 1-hop neighbors.
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2.4.1.2 Grid with random perturbation

In this simulation, we put about 3500 nodes on a grid and then perturbed each

point by a random shift. In particular, for each original grid node we create two

random numbers modulo the length and the width of each block of the grid, the

use these two small numbers to perturb the positions of the nodes. This distribution

may be a good approximation of manual deployments of sensors; it also gives an

alternative means of modeling “uniform” distributions, while avoiding clusters and

“holes” that can arise from the usual continuous uniform distribution or Poisson

process. Refer to Figure 49. Our method gives very good results for graphs with

average degree 6 or more.

SHAWN [68] found good boundaries for (ii)-(iii), but did not find a starting

solution for (i). The method of Funke and Klein [45] did well for case (iii) but less

well for the lower degree cases; see Figure 15(iii).

(i) (ii) (iii)

Figure 17: Results for randomly perturbed grids. (i) the average degree is 6; (ii) the average

degree is 8; (iii) the average degree is 12.

2.4.1.3 Low density, sparse graphs

In this group of experiments (Figure 18), we scatter nodes in a square region

with one hole. In order to guarantee good connectivity, the nodes are distributed on

a randomly perturbed grid. The leftmost image of Figure 18 has about 3500 nodes;

then, from left to right, each example has about 1000 fewer nodes, becoming more

and more sparse. Our experiments show that if we fix the communication radius,

and decrease the density of nodes, our method performs well, even for low density

or sparse graphs (Figure 18(iv)), as long as the average degree is at about 7 or more.
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SHAWN [68] did not find a starting solution for case (iv); it found good bound-

aries for cases (i)-(iii). The method of Funke and Klein [45] also performs well

in cases (i)-(iii), but it performs less well in the lowest-degree case (iv); see Fig-

ure 15(iv).

(i) (ii) (iii) (iv)

Figure 18: Results when the density of the graph decreases. (i) 3443 nodes and the average

degree is 35; (ii) 2628 nodes and the average degree is 25; (iii) 1742 nodes and the average

degree is 16; (iv) 842 nodes and the average degree is 7.

2.4.2 More examples

In Figure 19, we illustrate more results for a variety of more intricate geome-

tries, including a spiral shape, a floorplan, etc.

(i) (ii) (iii) (iv)

Figure 19: Results for more interesting examples. (i) A spiral shape with 5040 nodes and

the average degree is 21; (ii) A building floor shape with 3420 nodes and the average degree

is 20; (iii) A cubicle shape in an office with 6833 nodes and the average degree is 17; (iv)

A double star shape with 2350 nodes and the average degree is 17.
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2.4.3 Further discussion

While our new boundary detection algorithm provably finds boundaries in the

continuous case (Section 2.3), in discrete sensors networks several implementation

issues arise.

First, even for a given homotopy type, there need not be a unique shortest

path between two nodes. Thus, the boundary cycle discovered by our algorithm, as

shown in the simulations, may not tightly surround the real boundaries. Currently,

we have two approaches to improve it. One is to make use of the fact that the nodes

with lower degree are more likely to be on the boundary; thus, we implemented a

preferential scheme for low-degree nodes when computing shortest paths. Another

approach is to use an iterative method to find more extremal nodes, and then refine

the boundary; this can also help to address the issue that several extremal points may

have the same positions because we use hop counts to approximate true distances.

Second, deciding the correct orderings of the extremal nodes requires some

care. In the continuous case, extremal nodes project to their nearest node in the

rough inner boundary, resulting in a consistent ordering of extremal nodes, as shown

in Section 2.3. In the discrete case, since we use hop count to approximate the true

distance, it is possible that different extremal points are mapped to the same posi-

tion on the inner boundary, obscuring their ordering. Again, by using an iterative

procedure, we delete all the extremal nodes with duplicate positions except one and

then iteratively find more extremal points and refine the boundary gradually.

In practice, the sensor nodes often know some partial location information or

relative angular information. Such positional information can help to improve the

performance of our boundary detection algorithm. For example, if the nodes have

knowledge of a universal north direction, it is easier to distinguish the extremal

nodes in the interior and exterior of rough boundary. Also, if we have estimated

distance or other rough localization information, other than pure hop count, the

procedure to find shortest paths will become more reliable.

Finally, our method discussed until now assumes a sensor field with holes. We

remark that the case with no holes can be solved as well. If a network has no hole,

we discover this fact, since the network has no cut. In addition, the rough inner

boundary degenerates to the root node. Then, we can discover the extremal nodes
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and connect them to find the outer boundary.

2.5 Conclusion

We propose a simple and distributed topological approach to recognize the

boundaries of a sensor field using only their communication graph. We not only

discover boundary nodes but we also connect them in a meaningful way. In ad-

dition, we can distinguish between inner boundaries and the outer boundary. We

prove that the algorithm works correctly in a continuous domain and demonstrate

the effectiveness via extensive simulation for various networks with different den-

sity and topology.



Chapter 3

Geodesic Delaunay Triangulations

and Witness Complexes in the Plane

3.1 Introduction

In the chapter we focus on the special case of bounded domains in the plane –

a setting which already raises numerous questions and finds important applications

in sensor networks. We make the novel claim that resorting to an intrinsic metric

instead of the Euclidean metric can result in very significant reductions in terms of

the number of samples required to recover the homotopy type of a bounded domain

– an especially appealing fact in the context of resource-constrained nodes used in

sensor networks. To this end, we introduce a new quantity, called the homotopy

feature size, or hfs for short, which measures the size of the smallest topological

feature (hole in this case) of the considered planar domain X . Specifically, given

a point x ∈ X , hfs(x) is defined as half the length of the shortest loop through x

that is not null-homotopic in X – see Figure 3 for an illustration. In particular,

hfs(x) is infinite whenever x lies in a simply connected component of X . In contrast

with previous quantities, hfs depends essentially on the global topology of X , and

it is only marginally influenced by the local geometry of the domain boundary.

Under the assumption that X has Lipschitz boundaries (the actual Lipschitz constant

being unimportant in our context), we show that hfs is well-defined, positive, and 1-

Lipschitz in the intrinsic metric. Moreover, if L is a geodesic εhfs-sample of X , for

39
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some ε < 1
3 , then the cover of X formed by the geodesic Voronoi cells of the points

of L satisfies the conditions of the Nerve theorem [16, 92], and therefore its dual

Delaunay complex DX (L) is homotopy equivalent to X . By geodesic εhfs-sample

of X , we mean that every point x ∈ X is at a finite geodesic distance to L, bounded

from above by ε hfs(x). In the particular case when X is simply connected, our

sampling condition only requires that L have at least one point on each connected

component of X , regardless of the local geometry of X . In the general case, our

sampling condition can be satisfied by placing a constant number of landmarks

around each hole of X , and a number of landmarks in the remaining parts of X that

is logarithmic in the ratio of the geodesic diameter of X to the geodesic perimeter

of its holes. This is rather independent of the local geometry of the boundary ∂X

and can result in selecting far fewer landmarks than required by any of the earlier

sampling conditions that guarantee topology capture.

The homotopy feature size is closely related to the concept of normal injec-

tivity radius in Riemannian geometry. We stress this relationship in the chapter, by

showing that, for all point x ∈ X , hfs(x) is equal to the geodesic distance from x

to its cut-locus in X . This result also suggests a simple procedure for estimating

hfs(x) at any point x ∈ X . Using this procedure, we devise a greedy algorithm for

generating εhfs-samples of any given Lipschitz planar domain X , based on a pack-

ing strategy. The size of the output lies within a constant factor of the optimal,

the constant depending on the doubling dimension of X . Our algorithm relies on

two oracles whose actual implementations depend on the application considered.

We provide some implementations in the context of sensor networks, based on pre-

existing distributed schemes [37, 89].

Finally, we focus on the structural properties of the so-called geodesic witness

complex, an analog of the usual witness complex in the intrinsic metric. In many ap-

plications, computing DX(L) can be hard, due to the difficulty of checking whether

three or more geodesic Voronoi cells have a common intersection. This is especially

true in sensor networks, where the intersections between the Voronoi cells of the

landmarks can only be sought for among the set of nodes W , due to the lack of fur-

ther information on the underlying domain X . Therefore, it is convenient to replace

DX(L) by the geodesic witness complex �W
X (L), whose computation only requires
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us to perform geodesic distance comparisons, instead of locating points equidistant

to multiple landmarks. Assuming that the geodesic distance can be computed ex-

actly, we prove an analog of de Silva’s theorem [29], which states that �W
X (L) is

included in DX (L) under some mild sampling conditions. We also prove an analog

of Lemma 3.1 of [57], which states that a relaxed version of �W
X (L) by allowing a

simplex to be ν-witnessed by w if its vertices belong to the ν+1 nearest landmarks

of w, denoted by�W
X ,ν(L), contains DX(L) under similar conditions. Unfortunately,

as pointed out in [57], it is often the case that neither of them coincides with DX(L).
However, taking advantage of the fact that DX(L) is sandwiched between �W

X (L)
and�W

X ,ν(L), we show that computing the persistent homology between�W
X (L) and

�
W
X ,ν(L) gives the homology of DX(L). This allows to retrieve the homology of X

without computing DX(L) in practice. Similar results have been proved for other

types of filtrations [25, 27] and used in the context of sensor networks [52]. How-

ever, to the best of our knowledge, our result is the first one of this type for the

witness complex filtration.

3.2 The intrinsic metric

Let I = [0,1]. The ambient space is R 2, endowed with the Euclidean met-

ric, noted dE . Given a subset X of R 2, X̊ , X , and ∂X , stand respectively for the

interior, closure, and boundary of X . Given x ∈ R 2 and r ∈ R+, BE(x,r) denotes

the Euclidean open ball of radius r about x. Finally, S1, R ×{0}, and R 2
+, denote

respectively the unit circle, the abcissa line, and the closed upper half-plane in R 2.

Paths and loops. Given a topological space X , a path in X is a continuous map

I → X . For all a,b ∈ I (a ≤ b), we call γ|[a,b] the path s �→ γ(a + s(b− a)), which

can be viewed as the restriction of γ to the segment [a,b]. In addition, γ̄ denotes

the inverse path s �→ γ(1− s). Given another path γ′ : I → X such that γ′(0) = γ(1),
we call γ · γ′ their concatenation, defined by γ · γ′(s) = γ(2s) for 0 ≤ s ≤ 1

2 and

γ · γ′(s) = γ′(2s−1) for 1
2 ≤ s ≤ 1. Given a point x ∈ X , a loop through x in X is a

path γ in X that starts and ends at x, i.e. such that γ(0) = γ(1) = x. For simplicity,

we write γ : (I,∂I)→ (X ,x). Note that γ can also be seen as a continuous map from

the unit circle to X , and we write γ : (S1,1) → (X ,x) to specify that γ(1) = x.
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To any loop γ : S1 → S1 corresponds a unique integer degγ ∈ Z, called the

degree of γ, such that degγ = 0 if γ is a constant map S1 → {x}, and deg(γ · γ′) =
degγ + degγ′ for any loop γ′ : S1 → S1 satisfying γ′(0) = γ(1). Moreover, it can

be proved that degγ = degγ′ iff γ and γ′ are homotopic in S1 [58, Thm. 1.7], so

that degγ is a unique descriptor of the homotopy class of the loop γ. A similar

concept exists for loops in the plane. Given γ : S1 →R 2 and x∈R 2\γ(S1), consider

the map γx = πx ◦ γ : S1 → S1, where πx : R 2 \ {x} → S1 is the radial projection:

πx(y) = y−x
‖y−x‖ . Since πx is continuous over R 2 \ {x}, γx is a continuous loop in

S1. We then define the degree (aka winding number) of γ with respect to x as:

degx γ = degγx. If Γ : S1 × I → R 2 \ {x} is a homotopy between two loops γ,γ′ in

R 2 \ {x}, then πx ◦Γ is a homotopy between πx ◦ γ and πx ◦ γ′ in S1, and therefore

we have: degx γ = deg(πx ◦ γ) = deg(πx ◦ γ′) = degx γ′. As a result,

Corollary 9 For any point x ∈ R 2 and any loops γ,γ′ : S1 → R 2 \ {x} that are

homotopic in R 2 \{x}, we have degx γ = degx γ′. In particular, if γ or γ′ is constant,

then degx γ = degx γ′ = 0.

Length structures and Lipschitz planar domains. A good introduction to length

spaces can be found in [20, Chap. 2]. Every subset X of R 2 inherits a length

structure from R 2, where admissible paths are all continuous paths I → X , and

where the length of a path γ is defined by: |γ| = sup{∑n−1
i=0 dE(γ(ti),γ(ti+1)), n ∈

N , 0 = t0 ≤ t1 ≤ ·· · ≤ tn = 1}, the supremum being taken over all decompositions

of I into an arbitrary (finite) number of intervals. We clearly have |γ̄|= |γ|. However,

|γ| is not always finite. Take for instance Koch’s snowflake, a fractal curve defined

as the limit of a sequence of polygonal curves in the plane. It can be easily shown

that, at each iteration of the construction, the length of the curve is multiplied by 4
3,

so that the length of the limit curve is infinite. We say that γ : I → X is a rectifiable

path if its length |γ| is finite.

We make X into a length space by defining an intrinsic (or geodesic) metric dX

as follows: ∀x,y ∈ X , dX(x,y) = inf{|γ|, γ : I → X , γ(0) = x, γ(1) = y}, the infimum

being taken over all paths from x to y in X . Clearly, dX(x,y) = +∞ whenever x,y

belong to different path-connected components of X . However, the converse is not

always true. Take for instance a domain X made of two disjoint disks connected by



CHAPTER 3. Geodesic Delaunay Triangulations and Witness Complexes in the Plane 43

Koch’s snowflake: if x,y belong to different disks, then all curves connecting x and y

go through Koch’s snowflake and therefore have infinite length. As a consequence,

the intrinsic topology induced by dX on X can be different from the Euclidean topol-

ogy induced by dE . This is a critical issue because the geodesic Voronoi diagram

is bound to the intrinsic metric, whereas our goal is to retrieve the homotopy type

of X in the extrinsic metric. Another issue is that not all pairs of points x,y ∈ X

with dX(x,y) < +∞ may have a shortest path in X , i.e. a path γ : I → X such that

γ(0) = x, γ(1) = y, and |γ| = dX(x,y). Take for instance two diametral points on

the boundary of the unit closed disk, to which the closed disk of radius 1
2 has been

removed. These issues lead us to consider the special case of Lipschitz domains:

Definition 10 A Lipschitz domain in the plane is a compact embedded topological

2-submanifold of R 2 with Lipschitz boundary. Formally, it is a compact subset X

of R 2 such that, for all point x ∈ ∂X, there exists a neighborhood Vx in R 2 and a

Lipschitz homeomorphism φx : R 2 → R 2, such that φx(0) = x, φx(R ×{0})∩Vx =
∂X ∩Vx, and φx(R 2

+)∩Vx = X ∩Vx.

Observe that, for any neighborhood V ′
x ⊆Vx, we also have φx(0) = x, φx(R ×{0})∩

V ′
x = ∂X ∩V ′

x , and φx(R 2
+)∩V ′

x = X ∩V ′
x . Therefore, Vx can be assumed to be

arbitrarily small. Moreover, since φx(0) = x and φx is continuous, φ−1
x (Vx) is a

neighborhood of the origin in R 2, hence it contains an open Euclidean disk B about

the origin. By taking φ(B) as the new neighborhood Vx, we ensure that φ−1
x (X ∩Vx)

is the intersection of R 2
+ with the open disk B, and therefore that it is convex.

Note that the actual Lipschitz constants of the charts φx in Definition 10 are

unimportant: only the fact that the φx are Lipschitz counts. This makes the class of

Lipschitz planar domains quite large: in particular, it contains all planar domains

with piecewise-analytic boundaries. Moreover, the pathologies described above

cannot occur on a Lipschitz domain, by the following theorem:

Theorem 11 If X is a Lipschitz domain in the plane, then:

(i) the intrinsic topology coincides with the Euclidean topology on X;

(ii) every sequence of paths with uniformly bounded length contains a uniformly

converging subsequence; therefore, all points x,y ∈ X such that dX(x,y) < +∞
have a shortest path in X;
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(iii) for any path γ : I → X and any real number ε > 0, there exists a rec-

tifiable path γε : I → X, homotopic to γ relative1 to ∂I in X, such that

maxs∈I mint∈I dX(γε(s),γ(t)) < ε.

The proof of the theorem is given in the full version of this work [51]. It relies

on the following facts: given a point x ∈ X̊ , there is a small convex neighborhood

Vx ⊆ X inside which any given arc can be continuously deformed into a rectifiable

arc. Now, given a point x ∈ ∂X , there is no such neighborhood as above. However,

Definition 10 provides us with a neighborhood Vx and a Lipschitz homeomorphism

φx such that φ−1
x (Vx ∩X) is convex. Then, inside φ−1

x (Vx ∩X), we can deform any

given arc into a rectifiable arc, whose image through φx is rectifiable and included

in X .

3.3 The homotopy feature size

Definition 12 Given a Lipschitz planar domain X and a point x ∈ X, the ho-

motopy feature size of X at x is the quantity: hfs(x) = 1
2 inf{|γ|, γ : (S1,1) →

(X ,x) non null-homotopic in X}.

As illustrated in Figure 3, the resort to the intrinsic metric makes the homotopy

feature size rather insensitive to the local geometry of the domain X . We will prove

in Section 3.5.1 that hfs(x) equals the geodesic distance from x to its cut-locus in

X , thus showing the relationship that exists between the homotopy feature size and

the concept of normal injectivity radius in Riemannian geometry.

Lemma 13 Let X be a Lipschitz domain in the plane.

(i) Given a point x ∈ X, if the path-connected component of X that contains x is

simply connected, then hfs(x) = +∞. Else, hfs(x) < +∞, and there exists a non

null-homotopic rectifiable loop γ : (S1,1)→ (X ,x) such that hfs(x) = 1
2 |γ|> 0.

(ii) The map x �→ hfs(x) is 1-Lipschitz in the intrinsic metric. As a consequence,

it is continuous for the Euclidean topology, by Theorem 11, and hfs(X) =
inf{hfs(x), x ∈ X} is positive.

1This means that the homotopy between γε and γ is constant over ∂I = {0,1}.
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The proof of assertion (i) considers an arbitrary sequence of non null-homotopic

rectifiable loops through x, whose lengths converge towards 2 hfs(x), and it applies

Theorem 11 (ii) to this sequence. The proof of assertion (ii) takes two points x,y

lying in a same path-connected component of X that is not simply connected, and

it considers the non null-homotopic loop γx through x provided by assertion (i), as

well as a shortest path γ from y to x. Then, γy = γ · γx · γ̄ is a non null-homotopic

rectifiable loop through y, of length |γy| = 2 hfs(x) + 2 dX(x,y). It follows that

hfs(y) ≤ 1
2 |γy| = hfs(x)+dX(x,y).

Lemma 14 Let X be a Lipschitz domain in the plane. For all point x ∈ X, every

loop inside the geodesic open ball BX(x,hfs(x)) is null-homotopic in X.

Intuitively, a geodesic ball of center x and radius less than hfs(x) cannot enclose any

hole of X , therefore every loop inside such a ball must be null-homotopic in X . A

formal proof is given in the full version of the work [51]. Note that Lemma 14 does

not imply that BX(x,hfs(x)) itself is contractible. This fact is true nevertheless, but

its proof requires some more work.

3.4 Structural results

Given a Lipschitz domain X in the plane, and a set of landmarks L ⊂ X that is

dense enough with respect to the homotopy feature size of X , we show in Section

3.4.1 that the geodesic Delaunay triangulation DX(L) has the same homotopy type

as X (Theorem 15). Furthermore, for any set of witnesses W ⊆ X that is dense

enough compared to L, we prove in Section 3.4.2 that DX(L) is sandwiched between

the geodesic witness complex �W
X (L) and its relaxed version �W

X ,ν(L) (Theorems

20 and 21).

3.4.1 Geodesic Delaunay triangulation

Consider a domain X ⊆ R 2 and a finite set of sites L ⊂ X . The geodesic

Voronoi cell of a site p is the locus of the points x ∈ X satisfying dX(x, p)≤ dX(x,q)
for all q ∈ L. The geodesic Voronoi diagram of L in X , or VX(L) for short, is
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the cellular decomposition of X formed by the geodesic Voronoi cells of the sites.

The nerve of VX(L) is called the geodesic Delaunay triangulation of L in X , noted

DX(L). The face of VX(L) dual to a given simplex σ ∈ DX(L) is noted VX(σ).
Consider now a Lipschitz planar domain X , and a finite set of sites L ⊂ X

that is a geodesic εhfs-sample of X , for some ε < 1
3 . This means that, for all point

x ∈ X , the geodesic distance from x to L is finite and at most ε hfs(x). Note that L

has at least one point in every path-connected component of X , because geodesic

distances to L are required to be finite. We will see how to generate such point sets

in Section 3.5.2.

Theorem 15 If X is a Lipschitz domain in the plane, and if L is a geodesic εhfs-

sample of X, for some ε < 1
3 , then DX (L) and X are homotopy equivalent.

The rest of Section 3.4.1 is devoted to the proof of Theorem 15, which uses the

Nerve theorem:

Theorem 16 (from [16,92], see also Thm. 10.7 of [12]) Let U be a finite closed

cover of X, such that the intersection of any collection of elements of U is either

empty or contractible. Then, the nerve of U is homotopy equivalent to X.

In our case, we set U to be the collection of the geodesic Voronoi cells: U =
{VX(p), p ∈ L}. The nerve of this collection is precisely the geodesic Delaunay

triangulation DX(L). Thus, Theorem 16 reduces the proof of Theorem 15 to show-

ing that the intersection of any arbitrary number of cells of VX(L) is empty or

contractible. We first show that the geodesic Voronoi cells are contractible:

Lemma 17 Under the hypotheses of Theorem 15, every cell of VX(L) is con-

tractible.

Proof. Let p ∈ L. We first show that VX(p) is path-connected. Let x ∈ VX(p),
and let γ : I → X be a shortest path from p to x in X . Such a path γ exists by

Theorem 11 (ii), since x and p lie in the same path-connected component of X ,

dX(x, p) being finite due to the fact that L is a geodesic εhfs-sample of X . We

will show that γ(I) ⊆ VX(p). Assume for a contradiction that γ(s) /∈ VX(p) for

some s ∈ I. This means that there exists a point q ∈ L\{p} such that dX(γ(s),q) <



CHAPTER 3. Geodesic Delaunay Triangulations and Witness Complexes in the Plane 47

dX(γ(s), p). By the triangle inequality, we have dX(q,x)≤ dX(q,γ(s))+dX(γ(s),x),
where dX(q,γ(s)) < dX(p,γ(s)) ≤ |γ|[0,s]| and dX(γ(s),x) ≤ |γ|[s,1]|. Hence, we have

dX(q,x) < |γ|[0,s]|+ |γ|[s,1]| = |γ| = dX(p,x), which contradicts the assumption that

x ∈ VX(p). Therefore, γ(I) ⊆ VX(p), and x is path-connected to p in VX(p). This

shows that VX(p) is path-connected.

Assume now for a contradiction that VX(p) is not simply connected. Then,

since VX(p) ⊆ X is a bounded subset of R 2, its complement in R 2 has at least two

path-connected components, only one of which is unbounded, by the Alexander

duality – see e.g. [58, Thm. 3.44]. Let H be a bounded path-connected component

of R 2 \VX(p). H can be viewed as a hole in VX(p). We claim that H is included in

X . Indeed, consider a loop γ : S1 →VX(p) that winds around H – such a loop exists

since H is bounded by VX(p). Take any point x ∈ VX(p). For all y ∈ VX(p), we

have dX(x,y)≤ dX(x, p)+dX(p,y)≤ ε hfs(x)+ε hfs(y), which is at most 2ε
1−εhfs(x)

since hfs is 1-Lipschitz in the intrinsic metric (Lemma 13 (ii)). Thus, VX(p) is

included in the geodesic closed ball BX(x, 2ε
1−ε hfs(x)), where 2ε

1−ε < 1 since ε < 1
3 .

Therefore, γ : S1 →VX(p) is null-homotopic in X , by Lemma 14. Let Γ : S1×I → X

be a homotopy between γ and a constant map in X . For any point z ∈ H, we have

degz γ �= 0 since the loop γ winds around H. If z did not belong to Γ(S1× I), then Γ
would be a homotopy between γ and a constant map in R 2 \{z}, thus by Corollary

9 we would have degz γ = 0, thereby raising a contradiction. Hence, Γ(S1 × I)
contains all the points of hole H, which is therefore included in X .

As a consequence, the hole is caused by the presence of some sites of L \
{p}, whose geodesic Voronoi cells form H. Assume without loss of generality

that there is only one such site q. We then have VX(q) = H, and ∂H = VX(q)∩
VX(p). Consider the Euclidean ray [p,q), and call x its first point of intersection

with ∂H beyond q. The line segment [q,x] is included in H ⊆ X , therefore we

have dX(x,q) = dE(x,q), which yields: dX(x, p) ≥ dE(x, p) = dE(x,q)+dE(q, p) =
dX(x,q)+ dE(q, p) > dX(x,q). This contradicts the fact that x belongs to ∂H and

hence to VX(p). Thus, VX(p) is simply connected. Since it is also path-connected,

it is contractible.

By very similar arguments, we can prove that the union of any two intersecting
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cells of VX(L) is contractible. It follows then from Lemma 17 and from the follow-

ing classical result of algebraic topology that their intersection is also contractible:

Lemma 18

(i) The intersection of any k simply connected subsets of R 2 is either empty or

simply connected.

(ii) If X ,Y are path-connected subsets of R 2 such that X ∪Y is simply connected,

then X ∩Y is either empty or path-connected.

We will now extend the above results to the intersections of arbitrary numbers of

cells of VX(p), thereby concluding the proof of Theorem 15:

Lemma 19 Under the hypotheses of Theorem 15, for any k sites p1, · · · , pk ∈ L, the

intersection VX(p1)∩· · ·∩VX(pk) is either empty or contractible.

Proof. The proof is by induction on k. Cases k = 1 and k = 2 have just

been proved. Assume now that the result is true up to some k ≥ 2, and consider

k + 1 sites p1, · · · , pk+1 ∈ L such that VX(p1)∩ · · · ∩VX(pk+1) �= /0. Notice first

that VX(p1)∩ · · · ∩VX(pk+1) is the intersection of
⋂k

i=1 VX(pi) with VX(pk+1),
which by the induction hypothesis are simply connected. Hence, their intersection

VX(p1)∩· · ·∩VX(pk+1) is also simply connected, by Lemma 18 (i). Observe now

that
(⋂k

i=1 VX(pi)
)
∪ VX(pk+1) can be rewritten as

⋂k
i=1 (VX(pi)∪VX(pk+1)).

By the induction hypothesis (more precisely, according to the case k = 2), every

VX(pi)∪VX(pk+1) is simply connected, hence so is
⋂k

i=1 (VX(pi)∪VX(pk+1)),
by Lemma 18 (i). It follows then from Lemma 18 (ii) that the intersection

VX(p1)∩ · · · ∩VX(pk+1) is path-connected, since by induction both
⋂k

i=1 VX(pi)
and VX(pk+1) are, and since their union is simply connected.

3.4.2 Geodesic witness complex

Consider a domain X ⊆ R 2, as well as two finite subsets L and W . Given a

point w ∈W and a simplex σ = [p0, · · · , pl] with vertices in L, w is a witness of σ if

for all i = 0, · · · , l, dX(w, pi) is finite and bounded from above by dX(w,q) for every

q ∈ L\{p0, · · · , pl}. Observe that w may only witness simplices whose vertices lie
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Figure 20: The size of {q1, · · · ,qk} is k
2 times that of {p, p′}, although both are sparse

hfs-samples.

in the same path-connected component of X . The geodesic witness complex of L

relative to W , or �W
X (L) for short, is the maximal abstract simplicial complex with

vertices in L, whose faces are witnessed by points of W . The fact that �W
X (L) is an

abstract simplicial complex means that a simplex belongs to the complex only if all

its faces do. In the sequel, W will be referred to as the set of witnesses, and L as the

set of landmarks.

Our first result is an analog of de Silva’s theorem [29] in the intrinsic metric.

The proof uses the same machinery as in [7], and it relies on the intuitive fact that,

when the set L is a geodesic εhfs-sample of X , the geodesic distances between a

point x ∈ X and its k nearest landmarks in the intrinsic metric are at most 4kε hfs(x),
the exponent coming from the fact that hfs is 1-Lispchitz.

Theorem 20 Let X be a Lipschitz domain in the plane, and L a geodesic εhfs-

sample of X. If ε ≤ 1
4k+1 , for some integer k ≥ 0, then the k-skeleton of �W

X (L) is

included in DX (L) for all W ⊆ X.

Our next result is an analog of Theorem 3.2 of [57], whose proof relies on a simple

packing argument. It involves a relaxed version of the witness complex, defined as

follows. Given an integer ν ≥ 0, a simplex σ is ν-witnessed by w ∈W if the vertices

of σ belong to the ν+1 landmarks closest to w in the intrinsic metric. The geodesic

ν-witness complex of L relative to W , or�W
X ,ν(L) for short, is the maximum abstract

simplicial complex made of ν-witnessed simplices. Its dimension is at most ν.
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The theorem assumes that L is a ε
1+εhfs-sparse geodesic εhfs-sample

of X , which means that every pair of landmarks p,q satisfies: dX(p,q) ≥
ε

1+ε min{hfs(p),hfs(q)}. The bound on ε depends on the doubling dimension of

(X ,dX), defined as the smallest integer d such that every geodesic closed ball can

be covered by a union of 2d geodesic closed balls of half its radius. The doubling

dimension measures the shape complexity of X , and it can be arbitrarily large. An

example is given in Figure 20, where the k geodesic balls BX(qi,1) are included

in their respective branches, and therefore are disjoint. Moreover, they are packed

inside the ball BX(p,3), which therefore requires at least k geodesic unit balls to be

covered, by a result of [67]. It follows that the doubling dimension of X is at least
1
2 log2 k, which can be made arbitrarily large.

Theorem 21 Let X be a Lipschitz domain in the plane, of doubling dimension d.

Let W be a geodesic δhfs-sample of X, and L a geodesic εhfs-sample of X that is

also ε
1+εhfs-sparse. If ε+2δ < 1, then, for any integer ν ≥ 2d+1 (1+δ/ε)(1+ε)

1−ε−2δ , DX(L)
is included in �W

X ,ν(L).

Combining Theorems 20 and 21, we get that, whenever L and W are dense enough,

DX(L) is sandwiched between �W
X (L) and �W

X ,ν(L), provided that ν is chosen suf-

ficienly large. Our simulation results – see Section 3.6 – suggest that even small

values of ν are sufficient in practice.

3.5 Algorithms

In this section, we describe high-level procedures for computing hfs, for gener-

ating geodesic εhfs-samples, and for computing the homology of a Lipschitz planar

domain. Our algorithms rely essentially on two oracles, whose implementations

depend on the application considered. Section 3.6 will be devoted to the implemen-

tation of such oracles on a sensor network.

3.5.1 Computing the homotopy feature size

The homotopy feature size is closely related to the concept of cut-locus. Given

a path γ : I → X , we call trajectory of γ the set γ(I). If γ is a shortest path between
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x = γ(0) and y = γ(1), then γ(I) is called a shortest trajectory between x and y.

Given a point x ∈ X , the cut-locus of x in X , or CLX(x) for short, is the locus of the

points of X having at least two distinct shortest trajectories to x in X . The geodesic

distance from x to its cut-locus is denoted by dX(x,CLX(x)).

Lemma 22 If X is a Lipschitz domain in the plane, then ∀x ∈ X, hfs(x) =
dX(x,CLX(x)).

The proof is given in the full version of this work [51]. Lemma 22 suggests a

simple way of computing hfs: given a point x ∈ X , grow a geodesic closed ball B

about x, starting with a radius of zero and ending when B covers the path-connected

component Xx of X containing x. Meanwhile, focus on the wavefront ∂B as the

radius of B increases – this wavefront evolves as the iso-level sets of the map y �→
dX(x,y). If at some stage the wavefront self-intersects, i.e. if there is a point y ∈
∂B with two or more distinct shortest trajectories to x, then interrupt the growing

process and return the current value of the radius of B. Else, stop once B covers Xx

and return +∞.

By detecting the first self-intersection event in the growing process, the pro-

cedure finds a point of CLX(x) closest to x in the intrinsic metric, and therefore it

returns dX(x,CLX(x)), which by Lemma 22 is equal to hfs(x). The procedure relies

on two oracles: the first one detects whether B covers Xx entirely; the second one

detects whether the wavefront self-intersects at a given value r of the radius of B,

or rather, between two given values r1 < r2 of the radius of B.

3.5.2 Generating geodesic εhfs-samples

Given a Lipschitz planar domain X and a parameter ε > 0, we use a greedy

packing strategy to generate geodesic εhfs-samples of X . Initially, our algorithm

selects an arbitrary point p ∈ X and sets L = {p}. It also assigns to p the geodesic

open ball Bp of center p and radius ε
1+ε hfs(p), where hfs(p) is estimated using

the procedure of Section 3.5.1. If hfs(p) = +∞, then Bp coincides with the path-

connected component of X containing p. Then, at each iteration, the algorithm

selects an arbitrary point q ∈ X \⋃
p∈L Bp, and it inserts this point in L. It also
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assigns a geodesic open ball Bq to q, as detailed above for p. The process stops

when X \⋃
p∈L Bp = /0.

The algorithm uses a variant of an oracle of Section 3.5.1, which can tell

whether a given union of geodesic balls covers X , and return a point outside the

union in the negative. Upon termination, every point x ∈ X lies in some closed ball

Bp, and we have dX(x,L) ≤ dX(x, p) ≤ ε
1+ε hfs(p), which is at most ε hfs(x) since

hfs is 1-Lipschitz in the intrinsic metric. Moreover, dX(x, p) is finite because Bp

is included in the path-connected component of X containing p. Therefore, L is a

geodesic εhfs-sample of X . Furthermore,

Lemma 23 For all ε ∈ [0,1], the algorithm terminates, and the size its output is

within 2d 3+3ε+2ε2

1−ε times the size of any geodesic εhfs-sample of X, where d is the

doubling dimension of X.

The proof, given in the full version of this work [51], relies on a simple packing

argument. The influence of the doubling dimension d of X is illustrated in Figure

20. In this example, for all point x ∈ X , hfs(x) is at least half the perimeter of a

hole, namely 2+ 2
2k−1 . Hence, P = {p, p′} and Q = {q1, · · · ,qk} are geodesic hfs-

samples of X . Although Q is hfs-sparse, its size is |Q| = k
2 |P|, where k is of the

order of 2d , as noted in Section 3.4.2.

3.5.3 Computing the homology of a Lipschitz domain

Given a geodesic εhfs-sample L of a Lipschitz planar domain X , a variant

of the procedure of Section 3.5.1 can be used to build DX(L): grow geodesic balls

around the points of L at same speed, and report the intersections between the fronts.

The homology of DX(L) gives then the homology of X , by Theorem 15. However,

in many practical situations, X is only known through a finite sampling W , which

makes it hard to detect the intersections between more than two fronts. In this type

of discrete setting, it is relevant to replace the construction of DX(L) by the ones of

�
W
X (L) and�W

X ,ν(L), which only require to compare geodesic distances at the points

of W . The homology of DX(L) can then be computed via the persistent homology

between �W
X (L) and�W

X ,ν(L).
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More precisely, we use simplicial homology with coefficients in a field, which

in practice will be Z/2 – omitted in our notations. The inclusion map i :�W
X (L) ↪→

�
W
X ,ν(L) induces a homomorphism i∗ : HΔ

k (�W
X (L)) → HΔ

k (�W
X ,ν(L)). By applying

the persistence algorithm [94] to the filtration �W
X (L) ↪→�

W
X ,ν(L), we can compute

the rank of i∗. Thus, the goal is to relate rank i∗ to dimHΔ
k (DX(L)), the kth Betti

number of DX(L). We know from Theorems 20 and 21 that �W
X (L) ⊆ DX(L) ⊆

�W
X ,ν(L) under some sampling conditions, which will we assume from now on. The

inclusion maps j :�W
X (L) ↪→ DX (L) and j′ : DX(L) ↪→�W

X ,ν(L) induce homomor-

phisms j∗, j′∗ on the homology groups, such that i∗ = ( j′ ◦ j)∗ = j′∗ ◦ j∗. It follows

that dimHΔ
k (DX(L)) ≥ rank j′∗ ≥ rank i∗, which means that every k-cycle that per-

sists between �W
X (L) and �W

X ,ν(L) is a non-trivial k-cycle of DX (L). In fact, we

even have:

Theorem 24 Assume that the hypotheses of Theorems 20 and 21 are satisfied, with

k = ν, L ⊆ W, and with hfs replaced by min{hfs,dM}, where dM is the Euclidean

distance to the medial axis M of R 2 \X. Then, the range space of i∗ is isomorphic

to HΔ
k (DX(L)). Equivalently, rank i∗ = dimHΔ

k (DX(L)).

This theorem guarantees that the persistent homology between�W
X (L) and�W

X ,ν(L)
gives the homology of DX(L). The bounds on the densities of landmarks and wit-

nesses depend on dM, which requires that M∩X = /0. This is true if X has smooth

boundaries, but also if ∂X only has corners oriented outwards. The fact that hfs

and dM are both 1-Lipschitz in the intrinsic metric2 implies that the densities deep

inside the domain X can be small, although they have to be large near ∂X .

The proof of Theorem 24 proceeds in two steps: first it shows that j ′∗ is in-

jective, then it shows that j∗ is surjective. It follows from the injectivity of j ′∗ that

dimHΔ
k (DX(L)) = rank j′∗, which is equal to rank i∗ by the surjectivity of j∗.

3.6 Application to sensor networks and simulations

We have implemented the algorithms of Section 3.5 in the context of sensor

networks, where the nodes do not have geographic locations, and where the intrinsic
2Since dM is 1-Lipschitz in the Euclidean metric, it is also 1-Lipschitz in the intrinsic metric,

because dE ≤ dX .



CHAPTER 3. Geodesic Delaunay Triangulations and Witness Complexes in the Plane 54

metric is approximated by the shortest path length in the connectivity graph G =
(W,E), which is assumed to comply with the geodesic unit disk graph model. This

means that each node has a geodesic communication range of µ, so that two nodes

w,w′ ∈W are connected in the graph iff dX(w,w′)≤ µ. All edges have a unit weight,

and we denote by dG the associated graph distance – also called hop-count distance.

This geodesic unit disk graph model is the analog of the standard Euclidean unit

disk graph model in the intrinsic metric.

Lemma 25 Assume that W is a geodesic δ-sample of X, with δ < µ
2 . Then, for all

nodes w,w′ ∈W, we have:

dX(w,w′)
µ

≤ dG(w,w′) ≤ dX(w,w′)
µ

(
1+

4δ
µ

+
µ

dX(w,w′)

)

Proof. Let w,w′ ∈ W be two nodes of the graph. We first give an upper bound

on dG. Consider a shortest path ζ from w to w′ inside X . We have |ζ| = dX(w,w′).
Let 0 = t0 ≤ t1 ≤ ·· · ≤ tm−1 ≤ tm = 1 be distributed along I in such a way that

dX(ζ(ti),ζ(ti+1)) = µ−2δ for all i = 0, · · · ,m−2, while dX(ζ(tm−1),ζ(tm)) ≤ µ−
2δ. Clearly, we have m =

⌈
dX (w,w′)

µ−2δ

⌉
. For all i, let wi be a point of W closest

to ζ(ti) in the intrinsic metric. Since W is a geodesic δ-sample of X , we have

w0 = ζ(t0) = w, wm = ζ(tm) = w′, and dX(wi,ζ(ti)) ≤ δ for any other i. It follows

from the triangle inequality that: dX(wi,wi+1) ≤ dX(wi,ζ(ti))+dX(ζ(ti),ζ(ti+1))+
dX(ζ(ti+1),wi+1) ≤ µ. Therefore, [wi,wi+1] is an edge of the communication graph

G, and thus to ζ corresponds a path γ in G. Both ζ and γ connect w to w′ and are

made of m pieces stitched together. Hence, dG(w,w′) ≤ m =
⌈

dX (w,w′)
µ−2δ

⌉
, which is

bounded from above by:
⌈

dX(w,w′)
µ

(
1+

4δ
µ

)⌉
≤ dX(w,w′)

µ

(
1+

4δ
µ

)
+1 =

dX(w,w′)
µ

(
1+

4δ
µ

+
µ

dX(w,w′)

)
.

Let us now give a lower bound on dG. Let γ be any path from w to w′ in the

communication graph G. For any consecutive nodes wi,wi+1 along the path, we

have dX(wi,wi+1) ≤ µ since [wi,wi+1] is an edge of G. Therefore, by the triangle

inequality, γ must have at least
⌈

dX (w,w′)
µ

⌉
edges. Since this is true for any path γ
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from w to w′ in G, dG(w,w′) ≥
⌈

dX (w,w′)
µ

⌉
≥ dX (w,w′)

µ .

Assume now that L is a ε
1+εsfs-sparse geodesic εsfs-sample3 of X . Suppose

that δ << µ << ε << 1. Given a witness w ∈ W , every landmark p ∈ L that is not

its closest landmark satisfies: dX(w, p) = Ω(ε) >> µ, which implies that dG(w, p)
is an accurate approximation to dX (w,p)

µ , by Lemma 25. If now p is the landmark

closest to w, then we may as well have dX(w, p) << µ, but in this case we also have

dX(w, p) << dX(w,q) for all q ∈ L \ {p}, which implies that dG(w, p) < dG(w,q).
As a result, dG may change the order of the distances between the landmarks and w,

but interverted distances must have similar values. In this respect, we can say that

dX is a faithful approximation to dX , as it is known that the persistent homology of

the family of ν-witness complexes is stable under such small perturbations [23].

Homotopy feature size computation. Given a node x, we estimate the geodesic

distance of x to its cut-locus, which by Lemma 22 is equal to hfs(x). In Chapter 2,

we have proposed a distributed algorithm for detecting the cut-locus, which works

as follows: the node x sends a flood message with initial hop count 1; each node

receiving the message forwards it after incrementing the hop count. Thus, every

node learns its minimum hop count to the node x. Then, each pair of neighbors

check whether their least common ancestor (LCA) is at hop-count distance at least

d. If so, then they also check whether their two shortest paths to the LCA contain

nodes at least d away from each other (by looking at the d
2 -ring neighborhoods of

the nodes of the paths). Every pair satisfying these conditions is called a cut pair. As

proved in Chapter 2, every hole of perimeter greater than d yields a cut pair. Then,

every cut node checks its neighbors, and if it has the minimum hop count, then it

reports back to x with the hop count value. Thus, x gets a report from one node on

each connected component of the cut-locus, and learns the homotopy feature size

as the minimum hop value. For a weighted graph, the operation is similar.

Landmark selection and witness complex computation. The landmark selec-

tion implements the incremental algorithm of Section 3.5.2 in a distributed manner.

A node has two states, covered and uncovered. A covered node lies inside the

3One may as well assume that L is an ε-sparse geodesic ε-sample of X , in a uniform version of
the setting.
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geodesic ball of some landmark. Initially, all the nodes are uncovered. They wait

for different random periods of time, after which they promote themselves to the

status of landmark. Each new landmark floods the network, computes its homotopy

feature size, and informs all the nodes within its geodesic ball to be covered. Thus,

every node eventually becomes covered or a landmark itself.

The witness complex is computed in a similar way as in [37]. The selected

landmarks flood the network, and every node records its minimum hop counts to

them. With this information, it determines which simplices it witnesses. A round of

information aggregation collects all the simplices and constructs the witness com-

plex. In a planar setting, where only the Betti numbers β0 and β1 are non-zero, we

only need to build the 2-skeleton of the witness complex. Therefore, each node may

store only its three nearest landmarks, and it may avoid forwarding messages from

other landmarks. This reduces the message complexity drastically.

Simulation results and discussion. In this section, we present some simulation

results, and we evaluate the dependency of the landmark selection and homology

computation on various parameters. The simulations are conducted in a sensor net-

work setting. We consider n sensor nodes randomly distributed in a Lipschitz planar

domain. Two nodes within unit Euclidean distance of each other are connected. The

resulting average node degree is noted d. The intrinsic metric is approximated by

the graph distance in the connectivity network, where each edge can be either un-

weighted (hop-count distance) or weighted by its Euclidean length (weighted graph

distance). Figure 21 shows a typical example, with ε = 0.5 (a) and ε = 0.25 (b).

In both cases, only the genuine 3 holes persist and are therefore identified as non-

trivial 1-cycles in the geodesic Delaunay triangulation.

• Node density. We vary the number of nodes from 217 to 355. The average degree

remains the same. The result is shown in Figure 22. Again, the persistent homol-

ogy between the witness complex and its relaxed version gives the homology of

the domain. Thus, only the intrinsic geometry of the domain matters, not the

scale of the network, as long as the latter remains dense enough.

• Landmark density. Figure 23 shows our results on the same setup as above, with

ε = 0.85 (a) and ε = 0.15 (b). In the first case, only two holes are captured,

because of the low landmark density. In the second case, three non-genuine
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(a) n = 217, d ≈ 7.66, ε = 0.5, ν = 2, weighted graph distance.

(b) n = 217, d ≈ 7.66, ε = 0.25, ν = 2, weighted graph distance.

Figure 21: From left to right: witness complex, relaxed witness complex, persistence bar-

codes of the filtration.

(a) n = 353, d ≈ 7.66, ε = 0.5, ν = 2, weighted graph distance.

(b) n = 353, d ≈ 7.66, ε = 0.25, ν = 2, weighted graph distance.

Figure 22: Same setting as above, with same average degree but a higher node density.
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(a) n = 353, d ≈ 7.66, ε = 0.85, ν = 2, weighted graph distance.

(b) n = 353, d ≈ 7.66, ε = 0.15, ν = 2, weighted graph distance.

(c) n = 353, d ≈ 7.66, ε = 0.15, ν = 4, weighted graph distance.

(d) n = 353, d ≈ 7.66, ε = 0.25, weighted graph distance. Left: witness complex; Middle:

ν = 2; Right: ν = 11.

Figure 23: Same setting as above, effect of varying parameter ν, versus landmark density.
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holes are not destroyed in the relaxed witness complex, because the value of

the relaxation parameter ν is too small given the relatively low node density.

Increasing ν from 2 to 4 produces the correct answer (c). But setting ν to too

high a value (ν = 11, ε = 0.25) destroys some of the genuine holes (d).

Throughout our experiments, the algorithm produced correct results with small

values of ν (ν ≤ 4), provided that the nodes and landmarks sets were reason-

ably dense. This demonstrates the practicality of our approach, despite the large

theoretical bounds stated in Theorems 20, 21 and 24.

• Weighted graph distance vs. hop-count distance. Since the hop-count distance is

a poor approximation to the geodesic distance, the range of values of ε that work

fine with it is reduced. In Figure 24 for instance, the scheme works well with

ε = 0.5, but not with ε = 0.25, in contrast with the results of Figure 21.

• Packing strategy. Figure 25 shows some of our sampling results. It appears

that different packing strategies can produce samples of very different sizes, as

predicted by Lemma 23. Maximizing the ratio dX (q,L)
hfs(q) at each iteration seems to

be a very effective strategy in practice, but its is also time-consuming.

(a) n = 217, d ≈ 7.66, ε = 0.5, ν = 2, hop-count distance.

(b) n = 217, d ≈ 7.66, ε = 0.25, ν = 2, hop-count distance.

Figure 24: Same setting as above, with the weighted graph distance replaced by the hop-

count distance.
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(a) ε = 1
3 , random landmark selection outside

⋃
p∈L Bp.

(b) ε = 1
3 , insertion of node q that maximizes dX (q,L)

hfs(q) outside
⋃

p∈L Bp.

Figure 25: Landmark sets obtained by two different packing strategies, and their geodesic

witness complexes.

3.7 Conclusion

We have introduced a new quantity, called the homotopy feature size, and

showed that it is well-suited for the sampling and analysis of Lipschitz domains in

the plane. In particular, given a domain X and a landmark set L that is sufficiently

densely sampled from X , the bound on the density depending on the homotopy

feature size of X , we have proved that the geodesic Delaunay triangulation of L

is homotopy equivalent to X . The homotopy feature size depends essentially on

the global topology of X , and it is rather insensitive to the local geometry. As a

result, it enables to have very sparse sets of landmarks, which makes it a convenient

theoretical tool for geometric data analysis.

With more practical applications in mind, we have focused on the geodesic
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witness complex and its relaxed version, proving that these two complexes sand-

wich the geodesic Delaunay triangulation under some conditions. As an applica-

tion, we have shown that it is possible to estimate the homology of a Lipschitz

planar domain X from a finite set of landmarks L without actually building DX(L)
explicitly, by constructing �W

X (L) and �W
X ,ν(L) and computing their persistent ho-

mology. To give theoretical guarantees to this approach, we proved that the per-

sistent homology between �W
X (L) and �W

X ,ν(L) coincides with the homology of

DX(L), yet under some fairly stringent sampling conditions. Our practical exper-

iments in the context of sensor networks suggest that milder conditions should be

sufficient.

This work can be generalized in several ways. In a near future, we intend to

look at possible extensions for bounded domains in higher-dimensional Euclidean

spaces, with applications in robotics and geometric data analysis. Also, it would

be relevant to generate homology bases whose elements isolate the various holes of

X . There exists some work along this line, but for a slightly different context [42].

Finally, in order to make the approach fully practical, it would be necessary to

devise distributed variants of the procedures that build the simplicial complexes

and compute the persistent homology. Whether such variants exist is still an open

question at this time.



Chapter 4

Discovery of Sensor Network Layout

using Connectivity Information

4.1 Introduction

In the chapter, we present our method to recover the global network layout and

the core of our localization algorithm. We assume the sensor nodes are embedded in

a geometric region or on a terrain possibly with holes (corresponding to obstacles).

The nodes nearby can directly communicate with each other but far away nodes

can not. We do not use anything beyond the network connectivity information

and do not assume the neighbors can measure their inter-distances, although such

information can certainly help and further improve the localization accuracy.

The algorithm can be explained in four steps as shown in Figure 26. Suppose

the network boundaries (both the outer boundary and inner hole boundaries) have

been discovered (say with any of the algorithms in [39, 40, 44, 45, 68, 89]). We take

samples on the network boundaries and call them landmarks. Each node in the net-

work records the closest landmark in terms of network hop distance. The network

is then partitioned into Voronoi cells, each of which consists of one landmark and

all the nodes closest to it (Figure 26(i)). The Delaunay graph, as the dual of the

Voronoi diagram, has two landmarks connected by a Delaunay edge if their corre-

sponding Voronoi cells are adjacent (or share some common nodes) (Figure 26(ii)).

We can prove that the Delaunay complex is rigid when landmarks are sufficiently

62
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(i) (ii) (iii) (iv)

Figure 26: Anchor-free localization from network connectivity, on a double star shape. The

number of nodes is 2171. The connectivity follows a unit disk graph model with average

node degree 10. (i) The Voronoi cells of the landmarks (black nodes are on the Voronoi

edges); (ii) The Delaunay edges extracted from the Voronoi cells of the landmarks; (iii)

Our embedding result of the extracted Delaunay complex; (iv) Our localization result of the

entire network.

dense in the case of a continuous domain (i.e., corresponds to the sensor density

approaching infinity).

Now, here is the key insight: given two Delaunay triangles sharing a com-

mon edge, there is only one way to embed them. Thus there is no flip ambiguity

any more! This is because the Delaunay triangles are induced from the underlying

Voronoi partitioning so intuitively we can think them as ‘solid’ triangles, which,

when embedded, must keep their interiors disjoint (the case in Figure 1 left cannot

happen). In this thesis we make this intuition rigorous. We prove in the case of a

continuous geometric domain when the landmarks are sufficiently dense (with re-

spect to the local geometric complexity), the induced Delaunay graph is rigid. In

addition, the Delaunay complex (with high-order simplices such as Delaunay trian-

gles) is globally rigid, i.e., there is a unique way to embed these ‘solid’ Delaunay

triangles in the plane.

The identification of the Delaunay triangles and more importantly the way

to embed them relative to each other remove a major hurdle towards anchor-free

localization. We use an incremental algorithm to glue the triangles one by one.

Each Delaunay edge is given a length equal to the minimum hop count between the

two landmarks. Since the hop count is only a poor approximation of the Euclidean

distance, we use mass-spring relaxation to improve the quality of the embedding

and balance the error distribution (Figure 26 (iii)). In practice, to achieve lower
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overhead we can also only embed the boundary nodes using trilateration and then

perform a rubberband relaxation scheme on the remaining nodes. This is actually

what we did in our simulations.

4.2 Theoretical foundations

In this section we introduce notations and the theoretical foundation of our

algorithm ideas, in particular, the density requirement for landmarks to guarantee

the global rigidity of the combinatorial Delaunay complex.

4.2.1 Medial axis, local feature size and r-sample

We consider a geometric region R with obstacles inside. The boundary ∂R
consists of the outer boundary and boundaries of inner holes. For any two points

p,q ∈ R , we denote by |pq| their Euclidean distance and d(p,q) the geodesic dis-

tance between them inside R , i.e., the length of the shortest path avoiding obstacles.

In a discrete network we can use the minimum hop length between two nodes as

their distance, whose analog in the continuous case is the geodesic distance. In this

chapter all the distances are by default measured by the geodesic distances unless

specified otherwise. A ball centered at a point p of radius r, denoted by Br(p),
contains all the points within geodesic distance r from p.

Definition 26 The medial axis of R is the closure of the collection of points, with

at least two closest points on the boundary ∂R .

The medial axis of ∂R consists of two components, one part inside R , called

the inner medial axis, and the other part outside R , called the outer medial axis.

See Figure 27. In this chapter we only care about the inner medial axis.

We remark that the standard definition of medial axis for curves in the plane

measures the Euclidean distance of two points. When we change from Euclidean

measure to geodesic measure one may wonder how that changes the inner medial

axis. Luckily this is not a big issue as it is not difficult to prove that the inner medial

axis under the two measures are the same.
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Observation 27 The inner medial axis of R measured in terms of Euclidean dis-

tance is the same as that measured in terms of geodesic distance.

Proof. Take the maximum size ball centered at a point p on the medial axis under

Euclidean distance measure. This ball touches two or more points on the boundary

and has no boundary points in its interior. Thus the geodesic distances from p to the

tangent points are the same as the Euclidean distances. In other words, a point p is

on the medial axis under the Euclidean distance is also on the medial axis under the

geodesic measure.

On the other hand, take a maximum size ball centered at a point p on the medial

axis under the geodesic distance measure and its tangent points on ∂R . We argue

that the geodesic shortest path from p to its tangent point must be a straight line. If

otherwise it can only bend at a point q on the boundary ∂R . This means q is a closer

boundary point than the tangent point, which contradicts with the assumption. Thus

the point p is also on the medial axis under the geodesic distance measure.

Now we are ready to explain how to measure the local geometric complexity

of R , which determines the sampling density. An example is shown in Figure 27.

ILFS(p)

∂R

p

Figure 27: The region R ’s boundary is shown in dark curves. The medial axis and land-

marks selected on the boundaries. Point p ∈ ∂R has a landmark within distance ILFS(p).

Definition 28 The inner local feature size of a point p ∈ ∂R , denoted as ILFS(p),
is the distance from p to the closest point on the inner medial axis. The local feature

size of a point p∈ ∂R , denoted as LFS(p), is the distance from p to the closest point

on the medial axis (including both the inner and outer medial axis).
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Definition 29 An r-sample of the boundary ∂R is a subset of points S on ∂R such

that for any point p ∈ ∂R , the ball centered at p with radius r · ILFS(p) has at least

one sample point inside.

Landmark density criterion. Our algorithm selects the set of landmarks as an

r-sample, with r < 1 and selects at least 3 landmarks on each boundary cycle. We

will show that these landmarks capture important topological information about the

network layout and can be used to reconstruct the network layout.

4.2.2 Landmark Voronoi diagram and combinatorial Delaunay

graph

We take some points in R and denote them as landmarks S. Construct the

landmark Voronoi diagram V (S) as in [37]. Essentially each point in R identifies

the closest landmark in terms of geodesic distance. The Voronoi cell of a landmark

u, denoted as V (u), includes all the points that have u as a closest landmark:

V (u) = {p ∈ R |d(p,u) ≤ d(p,v),∀v ∈ S}.

Each Voronoi cell is a connected region in R . The union of Voronoi cells covers the

entire region R . A point is said to be on the Voronoi edge if it has equal distance to

its two closest landmarks. A point is called a Voronoi vertex if its distances to three

(or more) closest landmarks are the same. A Voronoi edge ends at either a Voronoi

vertex or a point on the region boundary ∂R . The Voronoi graph is the collection

of points on Voronoi edges. The combinatorial Delaunay graph D(S) is defined as

a graph on S such that two landmarks are connected by an edge if and only if the

corresponding Voronoi cells of these two landmarks share some common points.

See Figure 28 for some examples.

We state some immediate observations about the Voronoi diagram and the cor-

responding combinatorial Delaunay graph below.

Observation 30 A point on the Voronoi edge of two landmarks u,v certifies that

there is a Delaunay edge between u,v in D(S). A Voronoi vertex of three landmarks

u,v,w certifies that there is a triangle between u,v,w in D(S).
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∂R ∂R

(i) (ii)

Figure 28: (i) The Voronoi graph (shown in dashed lines) and the Delaunay graph/complex

for a set of landmarks that form an r-sample with r < 1. (ii) When the set of landmarks is

not an r-sample (with r < 1), the combinatorial Delaunay graph may be non-rigid.

In the case of a degeneracy, four landmarks or more may become cocircular

and thus share one Voronoi vertex. See the left top corner in Figure 28 (i). We will

capture these high-order features by defining the Delaunay complex in the notion

of abstract simplicial complex [33]. The notion of abstract simplicial complex is

defined in a completely combinatorial manner and is described in terms of sets.

Formally, a set α is an (abstract) simplex with dimension dimα = |α|−1, i.e., the

number of elements in α minus 1. A finite system A of finite sets is an abstract

simplicial complex if α ∈ A and β ⊆ α implies β ∈ A. That is, each set α in A has all

its subsets in A as well. In our setting, we construct an abstract simplicial complex

from the Voronoi diagram, named the abstract Delaunay complex, by taking the

Cěch complex of the Voronoi cells, defined below.

Definition 31 The (abstract) Delaunay complex is the collection of sets

DC(S) = {α ⊆ S |
⋂
u∈α

V (u) �= /0}.

In other words, a set α ⊆ S is a Delaunay simplex if the intersection of the Voronoi

cells of landmarks of α is non-empty. The dimension of the Delaunay simplex α is

the cardinality of α minus 1.

Thus a landmark vertex is a Delaunay simplex of dimension 0. A Delaunay

edge is a simplex of dimension 1. A Delaunay triangle is a simplex of dimension
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2 (intuitively, think of the triangle as a ‘solid’ triangle with its interior filled up).

In case of a degeneracy, k landmarks are co-circular and their Voronoi cells have

non-empty intersection. This corresponds to a simplex of dimension k − 1. The

rightmost 4 landmarks in Figure 28 (ii) form a dimension-3 simplex (again, in-

tuitively think the simplex as a solid object). We drew the Delaunay complex as

shaded regions.

The definition of an abstract simplicial complex is purely combinatorial, i.e.,

no geometry involved, thus the name of ‘abstract’ complex. We can talk about an

embedding or realization of an abstract simplicial complex (without geometry) in

a geometric space as a simplicial complex (with geometry). A simplicial complex

is geometric and is embedded in a Euclidean space. We give the definitions below.

In this chapter, we take the abstracted Delaunay complex from the network connec-

tivity graph, and find the geometric realization of the abstract Delaunay complex

as a simplicial complex in the plane, thus recovering the global shape of the sensor

network.

A finite set of points is affinely independent if no affine space of dimension

i contains more than i + 1 of the points, for any i. A k-simplex is the convex hull

of a collection of k +1 affinely independent points S, denoted as σ = convS. The

dimension of σ is dimσ = k. Figure 29 shows 0, 1, 2, 3-simplex in R
3.

Figure 29: 0, 1, 2, 3-simplex in R
3.

The convex hull of any subset T ⊆ S is also a simplex. It is a subset of convS

and called a face of σ. For example, take the convex hull of three points in a 3-

simplex, it is a 2-simplex (a triangle). A simplicial complex is the collection of

faces of a finite number of simplices such that any two of them are either disjoint or

meet in a common face. A geometric realization of an abstract simplicial complex

A is a simplicial complex K together with a bijection ϕ of the vertex set of A to the
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vertex set of K, such that α ∈ A if and only if convϕ(α) ∈ K [33]. Of course the

ambient space in which the simplicial complex is embedded has to have dimension

at least equivalent to the highest dimension of the simplex in A. In our case, when

there is degeneracy theoretically we will have to embed in a space with dimension

higher than 2. We will discuss how to get around this problem in the next section

after the discussion of rigidity. In the rest of the chapter, when we say the Delaunay

graph, we refer to the Delaunay edges and vertices. When we say the Delaunay

complex, we also include the higher order simplices such as Delaunay triangles and

tetrahedrons.

4.2.3 Global rigidity of combinatorial Delaunay complex

The property of the combinatorial Delaunay graph clearly depends on the se-

lection of landmarks. The goal of this section is to show that the Delaunay graph

is rigid when there are at least 3 landmarks on each boundary cycle and they form

an r-sample of ∂R with r < 1. In addition, and the Delaunay complex is globally

rigid (i.e., it admits a unique 2D realization). An example when the combinatorial

Delaunay graph is not rigid due to insufficient sampling is shown in Figure 28 (ii).

Now we prepare to prove the rigidity results by first showing that the Voronoi graph

(collection of points on Voronoi edges) is connected within R . In this subsection

we assume that the landmarks are selected according to the landmark selection cri-

terion mentioned above.

We prove an important Lemma about the inner local feature size first. This

Lemma and its proof are motivated by [3] and will be useful for other proofs in this

subsection.

Lemma 32 Given a disk B containing at least two points on ∂R , for each con-

nected component of B∩R , either it contains a point on the inner medial axis, or

its intersection with ∂R is connected.

Proof. We take one connected component C of B∩R and assume that it does not

contain a point on the inner medial axis and intersects ∂R in two or more connected

pieces. Now we take a point u in C but u is not on ∂R . Now take u’s closest point
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on C∩∂R . If the closest point is not unique, then u is on the inner medial axis and

we have a contradiction. Now the closet point p stays on one connected piece of

C∩∂R . We take u’s closest point on a different piece of C∩∂R , denoted as q. See

Figure 30.

p
B

x q
u

Figure 30: Each connected component of B∩R either contains a point on the inner medial

axis or its intersection with ∂R is connected.

Now as we move a point x from u to q along the geodesic path between u and

q, x’s closest point on C∩∂R starts with p and eventually becomes q. So at some

point x the closest point changes. That point x is on the inner medial axis. This

leads to a contradiction, and hence the claim is true.

Observation 33 Two Voronoi vertices connected by a Voronoi edge correspond to

two Delaunay triangles sharing an edge.

Proof. Recall that each Voronoi vertex x certifies a Delaunay triangle of three

landmarks u,v,w. First we argue that the points on the Voronoi edge connecting

Voronoi vertices x and y must have their two closest landmarks among u,v,w. Cer-

tainly if one point on the Voronoi edge has one of its closest landmark to be p and

p is not any of u,v,w, then this point is a Voronoi vertex. Without loss of gener-

ality, we assume that y has three closest landmarks u,v,z. Thus the corresponding

Delaunay triangles of x,y are �uvw and �uvz sharing an edge uv.

Lemma 34 For any two adjacent landmarks u,v on the same boundary cycle, there

must be a Voronoi vertex inside R whose closest landmarks include u,v.
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Proof. We take two adjacent landmarks u,v and consider the set of points in R
with equal distance from u,v. The mid-point on the geodesic path connecting u,v,

denoted by x, is at an equal distance from u,v. We take a disk through u,v centered

at x and move the disk while keeping it through u,v. Its center will trace a curve

called C(u,v) with all the points on C(u,v) having equal distances from u,v. C(u,v)
has two endpoints p,q with q on the boundary segment in between u,v and p also

on the boundary. Take r = d(p,u) = d(p,v). See Figure 31.

C(u,v)

u v

p

q

p

u vq

(i) (ii)

B′

u v

p

q

B′

u v

p

q

(iii) (iv)

Figure 31: u,v are two adjacent landmarks. The point p on the boundary has its closest

landmarks as u,v. (i)-(iv) four possible cases.

We claim that there must be a Voronoi vertex on C(u,v) that involves u,v and

we prove this claim by contradiction. Otherwise, p’s two closest landmarks are u,v

— the ball Br(p) centered at p with radius r contains no other landmark inside. We

take r− = r− ε with ε → 0. Thus Br−(p) contains no landmark. Now we see that

this will violate the sampling condition if we can show that there is a point on the

inner medial axis inside Br−(p) (meaning that r− ≥ ILFS(p)).
We take the connected component of Br−(p) ∩ R that contains the curve
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C(u,v), denoted by F . By Lemma 32, if F does not contain a point on the in-

ner medial axis, then its intersection with the boundary ∂R is connected. Now we

do a case analysis depending on how the boundary curve goes through u and v.

In Figure 31 (i) & (ii), the ε-neighborhood of the boundary at u, v also intersects

Br−(p)∩R . In (i), F ∩ ∂R has two connected pieces, thus leading to a contra-

diction. In (ii), the boundary between u,v through p is completely inside Br−(p),
which has no other landmark inside. In this case there are only 2 landmarks, namely

u,v, on the boundary cycle containing p. This contradicts our sampling condition.

If the boundary at v (or u, or both) is only tangent to Br−(p)∩R (meaning that

Br−(p) does not contain any ε-neighborhood of v, see Figure 31 (iii) & (iv)), we

argue that F contains a point on the inner medial axis. To see that, we take the ball

Br(p) tangent at v with v’s ε-neighborhood outside the ball. Now we shrink it while

keeping it tangent to v until it is tangent to two points on the boundary of F . Now

the center of the small ball B′ is on the inner medial axis, which is inside Br−(p).
Thus we have the contradiction. The claim is true.

Lemma 34 implies that the Delaunay graph has no node with degree 1 – since

every node is involved in 2 triangles with its adjacent 2 nodes on the same boundary.

Lemma 35 If there is a continuous curve C that connects two points on the bound-

ary ∂R such that C does not contain any point on Voronoi edges, then C cuts off a

topological 1-disk1 of ∂R with at most one landmark inside.

Proof. Without loss of generality we assume that C has no other boundary points

in its interior. Assume C connects two points p,q on the boundary. Since C does

not cut any Voronoi edges, C must stay completely inside the Voronoi cell of one

landmark say u. Without loss of generality assume that u is to the right of boundary

point q. See Figure 32(i).

Now the boundary of Voronoi cell of u is partitioned by the curve C, with

one part completely to the left of C. Consider one of the intersections between the

Voronoi cell boundary of u with the region boundary ∂R , say p′. We consider the

ball Br(p′) with r = d(p′,u). The point p′ has two closest landmark, with one of

1Intuitively, a topological 1-disk can be continuously deformed into a straight unit length line
segment, without any cutting or gluing operations.



CHAPTER 4. Discovery of Sensor Network Layout using Connectivity Information 73

C

q

w p

uv

x

p′

q′

C

q

w p

uv

x

p′

q′

(i) (ii)

Figure 32: (i) C is inside the Voronoi cell of landmark u to the right of C. (ii) the curve C

cuts off a segment of ∂R with no other landmark inside.

them as u and the other to the left of C, denoted as w. Now, this ball cannot contain

any other landmark besides u,w. We argue by Lemma 32 that the component of

Br(p′)∩R containing p′ intersects ∂R in a connected piece. Otherwise Br(p′)
contains a point on the inner medial axis, which means r > ILFS(p′). Thus by the

sampling condition there must be a landmark inside Br(p′).
Now, since the component of Br(p′)∩R containing p′ intersects ∂R in a con-

nected piece, this intersection is a continuous segment between u and w on ∂R ,

completely inside Br(p′), by using the same argument as in the previous lemma;

see Figure 32 (ii). In this case, the curve C cuts off a segment of ∂R with at most

one landmark inside. The claim is true.

Corollary 36 The Voronoi graph V (S) is connected.

Proof. This follows immediately from Lemma 34 and Lemma 35, although

Lemma 35 is stronger. Specifically if V (S) is not connected, we are able to find

a curve C that cuts R into two pieces each containing some landmarks and some

Voronoi edges, with C not intersecting with the Voronoi graph.

Now we are able to show that the combinatorial Delaunay graph is rigid. In

other words, given a realization of D(S) in the plane, one cannot deform its shape

in the plane without changing the lengths of the edges. To prove this, we use a

seminal result about graph rigidity [by G. Laman in 1970], known as the Laman

condition. It states that generically rigid graphs in 2D can be classified by a purely



CHAPTER 4. Discovery of Sensor Network Layout using Connectivity Information 74

combinatorial condition. A graph is called a Laman graph if it has n vertices, 2n−3

edges and any subset of k vertices spans at most 2k−3 edges.

Theorem 37 (Laman condition [69]) A graph G with n vertices is generically

rigid 2 in 2 dimensions if and only if it contains a Laman graph on n vertices.

Theorem 38 The combinatorial Delaunay graph D(S) is rigid, under our sampling

condition.

Proof. In this proof we assume without loss of generality that there is no degen-

eracy, i.e., four or more landmarks are not co-circular. Indeed degeneracy will only

put more edges to the combinatorial Delaunay graph, which only helps with graph

rigidity.

From the Voronoi graph V (S), we extract a subgraph V ′ that contains all

Voronoi vertices and the Voronoi edges that connect these Voronoi vertices. Some

Voronoi edges end at points on the boundary ∂R and we ignore those. By Corol-

lary 36 this graph V ′ is connected. Now we find a spanning tree T in V ′ that con-

nects all Voronoi vertices. Take the corresponding subgraph D′ of the combinatorial

Delaunay graph D(S) such that an edge exists between two landmarks in D′ if and

only if there is a point in T that certifies it. D′ is a subgraph of D(S). Now we argue

that D′ is a Laman graph.

First the number of landmarks is n. We argue that the number of edges in D′

is 2n− 3. Assuming the number of Voronoi vertices is m, T has m− 1 Voronoi

edges. We start from a leaf node on T and sweep along the edges on T . Each

time we add one new vertex that is connected to the piece that we have explored

through an edge. During the sweep we count the number of landmarks and the

number of Delaunay edges that we introduce. To start, we have T ′ initialized with

one Voronoi vertex, thus we have three landmarks and three Delaunay edges. The

new Voronoi vertex x we introduce is adjacent to one and only one vertex in T ′—if

x is adjacent to two vertices in T ′, then there is a cycle since T ′ is connected. This

will contradict with the fact that T is a tree. Thus in each additional step we will

2Intuitively, generic rigidity means that almost all (except some degenerate cases) realizations of
the graph in the plane are rigid. Generic rigidity is a graph property. However, a generically rigid
graph may have some degenerate assignment of edge lengths such that the realization is not rigid.
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introduce one Voronoi vertex that is connected to T ′ through one Voronoi edge.

This will introduce one new landmark and two new Delaunay edges. When we

finish exploring all Voronoi vertices we have a total of 3 + (m− 1) = m + 2 = n

landmarks, and 3+2(m−1) = 2n−3 Delaunay edges between them. Thus D′ has

n landmarks and 2n−3 edges.

With the same argument we can show that any subgraph of D′ with k land-

marks, denoted by S′, has at most 2k− 3 edges. This is because a Delaunay edge

is certified by a Voronoi edge. Thus we take the Voronoi edges of T whose cor-

responding landmarks all fall inside S′. These Voronoi edges span at most a tree

between Voronoi vertices involving only landmarks in S ′, because they are a subset

of a tree T . By the same argument there are at most 2k− 3 edges between land-

marks in S′. Thus the graph D′ is a Laman graph. By the Laman condition the

combinatorial Delaunay graph D(S) is rigid.

The above theorem shows the rigidity of the combinatorial Delaunay graph,

but not the global rigidity yet—there might be several different realizations of the

graph in the plane. Indeed for an arbitrary triangulation one may flip one triangle

against another adjacent triangle one way or the other to create different embed-

ding. However, this is no longer possible if we embed the combinatorial Delaunay

complex, induced from the Voronoi diagram V (S). The intuition is that when the

triangles are ‘solid’ and two triangles cannot share interior points there is only one

way to embed the Delaunay complex. In the following theorem we show that there

can only be a unique way to embed the abstract Delaunay complex. Thus the re-

covered Delaunay complex does reflect the true layout of the sensor field R .

Recall that we want to find an embedding of the abstract Delaunay complex

in 2D. That is, we want to find a mapping ϕ of the vertices in the plane such that

any abstract simplex σ ∈ DC(S) is mapped as a simplex convϕ(σ) ∈ R
2. Notice

that in the case of degeneracy there are high-order k-simplices, k ≥ 3, for which

a geometric realization requires embedding into a space of dimension k or higher.

However, this is not really a problem if we force the dimension to be 2. Indeed,

look at all the edges of a k-simplex, k ≥ 3, they form a complete graph of k +1 ≥ 4

vertices. Thus it is a 3-connected graph and redundantly rigid (a graph remains

rigid upon removal of any single edge). Existing results in rigidity theory [10, 60]
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show that a graph is globally rigid (uniquely realizable) in 2D under edge lengths

constraints if and only if it is tri-connected and is redundantly rigid. Thus all high-

order simplices have unique embedding in the plane (up to global translation and

rotation). In this chapter, we find a geometric realization of the abstract Delaunay

complex in the plane. For all the simplices with dimension 2 or smaller, they are

mapped to simplices in the plane. For simplices of dimension 3 or higher, the

induced graph is globally rigid and subject to a unique embedding, as explained

above.

Now the Delaunay complex is composed of a set of Delaunay triangles (2-

simplices) and high-order simplices (and their sub-simplices, of course). We al-

ready know that the high-order simplices are embedded in the plane as globally

rigid components. The Delaunay 2-simplices/triangles are embedded as a geomet-

ric complex, i.e., the geometric realization of the abstract Delaunay complex. What

is left is to show that given two Delaunay triangles �uvw and �uvp sharing an

edge, there is only one way to embed them in the plane as required by the definition

of simplical complex—that is w and p are on opposite sides of the shared edge uv,

as in Figure 33(i).
p

w
v

u p

w

v

u

p
w

v

u

(i) (ii) (iii)

Figure 33: Two Delaunay triangles �uvw and �uvp sharing an edge. (i) is the only valid

embedding with the two triangles not sharing any interior points.

Otherwise, w and p are embedded on the same side of uv. Then either w is

inside �uvp (as in Figure 33 (iii)), or p is inside �uvw, or two edges intersect at a

non-vertex point (as in Figure 33 (ii)). This will violate the properties of a simplicial

complex that any two simplices are either disjoint or meet at a common face. If w is

inside �uvp, then the two simplices, a 0-simplex w and a 2-simplex �uvp intersect

at a vertex w which is not a face of �uvp. In the other case, if two edges intersect

at a non-vertex point, this intersection is not a face of either edge.

Now we can conclude with the main theoretical result:
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Theorem 39 Under our landmark selection criterion, the combinatorial Delaunay

complex DC(S) has a unique embedding in the plane up to a global translation and

rotation.

4.2.4 Topological equivalence

Our sampling condition aims to capture the geometric complexity of the region

R . A related question may ask whether the constructed geodesic Delaunay complex

is homotopy equivalent3 to the region R . Homotopy equivalence intuitively says

that the number of holes and how they are connected in the Delaunay complex are

the same as those in R . Our current sampling condition, unfortunately, can not

guarantee the homotopy equivalence. A bad example is shown in Figure 34. To

see why this is bad note that, the Voronoi edge of the two landmarks x,y is not

simply connected, with two components, one above the small hole in the middle

and one below the small hole. Thus the small Delaunay triangle �xyz sticks out

of the chapter and can not be embedded in the plane. There is no valid geometric

realization in the plane without violating the properties of a simplicial complex.

The investigation of the sampling condition to guarantee the homotopy equivalence

of the geodesic Delaunay complex with the region R is the topic of Chapter 3 [50],

in which homotopy feature size and sampling methods to guarantee the topological

equivalence are proposed.

With our sampling condition we can still deal with this problem in the follow-

ing way. As will be shown in the next section, we are able to detect that whether

the Voronoi edges adjacent to one Voronoi cell is connected or not. As the follow-

ing theorem shows, as long as the Voronoi edge/vertex set of any k landmarks is

either empty or contractible4, the homotopy equivalence is established. Thus we

can check locally whether the conditions are satisfied.

3Two maps f and g from X to Y are homotopic if there exists a continuous map H : X × [0,1] �→Y
with H(x,0) = f (x) and H(x,1) = g(x). Two spaces X and Y have the same homotopy type if there
are continuous maps f : X �→ Y and g : Y �→ X such that g ◦ f is homotopic to the identity map
of X and f ◦ g is homotopic to the identity map of Y . In other words, the maps f and g define a
one-to-one correspondence of the topological features such as connected components, cycles, holes,
tunnels, etc., and how these features are related.

4A set in R
d which can be reduced to one of its points by a continuous deformation is

contractible.
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Figure 34: A nasty example with no valid embedding of the Delaunay complex.

Theorem 40 If the Voronoi cell/edge/vertex set of any k landmarks is either empty

or contractible, the Delaunay complex has the same homotopy type as the region

R .

Proof. As the combinatorial Delaunay complex is the Cěch complex of the

Voronoi cells, the theorem follows immediately from the Cěch Theorem [18]. Re-

call the definition of the Cěch complex. Given a collection of sets U = {V (u) ,∀u ∈
S}, the Cěch complex is the abstract simplicial complex whose k-simplices corre-

spond to nonempty intersections of k+1 distinct elements of U. The Cěch Theorem

says that if the sets and all non-empty finite intersections are contractible, then the

union ∪uV (u) has the same homotopy type as the Cěch complex. In our case, the

Cěch complex is the Delaunay complex DS(S), the union of the Voronoi cells is R .

Thus the claim is true.

In case of a bad scenario, for our application we can still embed the Delau-

nay complex in the following way. The embedding would theoretically violate the

simplicial complex definition but in practice would be perfectly fine. One thing we

notice is that we do know how to embed the triangle �xyz in Figure 34 because the

Voronoi vertex of �xyz is connected through a Voronoi edge to the Voronoi vertex

q below it. Thus we will embed �xyz so that it is disjoint from the dual simplex
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of q. But �xyz can and does overlap with the dual simplex of p, since p is not

directly connected through a Voronoi edge to the Voronoi vertex of �xyz. In other

words, we embed the simplices with guidance from the connectivity of the Voronoi

vertices that certify them. This is also what we use in the algorithm below.

4.3 Algorithm description

We assume a large number of sensor nodes scattered in a geometric region.

In general nearby nodes can directly talk to each other and far away nodes can not

but the algorithm does not strictly enforce a unit disk graph model. The algorithm

basically realizes the landmark selection and embedding described in the previous

section. Thus we will not re-iterate many things said already and instead focus on

the implementation and robustness issues, for the geodesic distance is only poorly

approximated by the minimum hop count between two nodes.

We first outline the algorithm and explain each step in detail.

Select landmarks. Nodes on the network boundaries are identified and con-

nected into boundary cycles surrounding inner holes and the outer face by a bound-

ary detection algorithm in Chapter 2 [89]. The inner medial axis is also identified

during this process. Along the boundary, landmarks are selected with sufficient

density such that for any node p on the boundary, there is a landmark within the

inner local feature size ILFS(p) of p, that is, the distance from p to its closest node

on the inner medial axis.

Compute landmark Voronoi diagram. The landmarks flood the network and

each node records the closest landmark. This generates the Voronoi diagram of the

landmarks in a distributed fashion.

Extract the combinatorial Delaunay complex. Nodes on the Voronoi

edges/vertices report to their corresponding landmarks. Thus landmarks learn their

adjacent Delaunay simplices. Equivalently, this procedure identifies the combina-

torial Delaunay complex G. A total of k landmarks are included in a Delaunay

simplex if their Voronoi cells share a common node; See Figure 26(i).

Embed the combinatorial Delaunay complex. We apply an incremental al-

gorithm to embed the combinatorial Delaunay complex by gluing these simplices
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together. We also use mass spring relaxation to improve the embedding result by

smoothing out noise in the input.

Network localization. With the embedding of the landmarks we can easily

embed the rest of the nodes by trilateration with hop count distances to 3 embedded

landmarks.

4.3.1 Select landmarks

We use a distributed boundary detection algorithm that identifies nodes on

both outer and inner boundaries and connects them into boundary cycles [89]. With

the boundary detected we can identify the medial axis of the sensor field, defined

as the set of nodes with at least two closest boundary nodes [19]. The boundary

nodes flood inward at roughly the same time [34, 48]. The flooding messages are

suppressed by the hop count to the boundary nodes to reduce message complexity.

Specifically, each node records the minimum hop count from the boundary nodes.

If a node receives a message containing a hop count no smaller than what it has

stored already, the message will be discarded. Otherwise the minimum hop count

to the network boundary is updated and the message is further forwarded. Each

node learns its closest boundary node. The nodes at which the flooding frontiers

collide are nodes on the inner medial axis.

In a discrete network, the medial axis may contain a lot of noises due to the

discrete hop count values. For example, a node that is a neighbor of adjacent two

boundary nodes is identified to be on the medial axis according to the definition, and

is clearly not what we want. There are a number of heuristic algorithms in the past

literature to ‘clean up’ the medial axis of a discrete network [19, 93]. The idea is

to take the nodes with two or more closest intervals on the network boundary [93].

A node having its closest points on the boundary in a consecutive interval is not

identified as the medial axis node.

With the boundary and medial axis identified, we select landmarks from

boundary nodes such that for any node p on the boundary, there is a landmark

within distance ILFS(p), where ILFS(p) is the inner local feature size of p defined
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as the hop count distance from p to its closest node on the inner medial axis. In or-

der to find the local feature size of each node on the boundary, nodes on the medial

axis flood the network at roughly the same time with proper message suppression.

Each boundary node learns its local feature size as the hop count to its closest node

on the medial axis.

Now, landmark selection can be performed by a message traversing along the

boundary cycles and select landmarks along the way in a greedy fashion to guar-

antee the sampling criterion. For each boundary cycle, a node (say the one with

minimum ID) marks itself as a landmark and sends a message along the bound-

ary cycle. The message goes as far as possible until for some boundary node p,

the message has walked ILFS(p) hops along the boundary from the previously se-

lected landmark. At that point p is marked as a landmark. Keep on going along the

boundary cycle until the message comes back to the start node. In this way, land-

marks are selected with the desired density. Alternatively, we can let each boundary

node p wait for a random period of time and select itself as a landmark. Then p

sends a suppression message with TTL as ILFS(p) to adjacent boundary nodes. A

boundary node receiving this suppression message will not further select itself as

landmarks. Thus landmarks are selected with the required density.

4.3.2 Compute Voronoi diagram and combinatorial Delaunay

complex

The landmark Voronoi diagram is computed in a distributed way as in [37]. Es-

sentially all the landmarks flood the network simultaneously and each node records

the closest landmark(s). Again a node p will not forward the message if it carries

a hop count larger than the closest hop count p has seen. Thus the propagation

of messages from a landmark � is confined within �’s Voronoi cell. All the nodes

with the same closest landmark are naturally classified to be in the same cell of the

Voronoi diagram. Nodes with more than one closest landmarks stay on Voronoi

edges or vertices.

Unlike the Euclidean case that there is always a point with equal distance to

any two or three landmarks, when we adopt the integer hop count measurement as
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the distance metric, there may not be a point with equal distance to two or three

landmarks. Thus we re-define Voronoi vertices in the discrete setting.

Definition 41 An interior node is a node p with distance to its closest landmark

strictly smaller than its distances to all the other landmarks. A border node is a

node that is not an interior node.

Figure 26 (i) is an example of the landmark Voronoi diagram with different Voronoi

cells colored differently. Border nodes are colored black. We group these border

nodes into Voronoi edges and vertices, i.e., the k-witnesses of (k−1)-simplices.

Definition 42 A k-witness is a border node which is within 1-hop from interior

nodes of k different Voronoi cells. The border nodes that witness the same set of

Voronoi cells are grouped into connected clusters.

One subtle robustness issue, due to the discreteness of sensor nodes, is that

there might not be a node that qualifies for the witness defined above (especially for

high-order simplices). Thus we propose a merge operation: For two clusters A and

B that are both k-witnesses, if there exists a node p in cluster A, or there exists a node

q in cluster B, and all nodes in cluster B are neighbors of p or all nodes in cluster

A are neighbors of q, then we merge cluster A and B into one cluster that certifies

the union of their corresponding landmarks. The benefit of doing so is to generate

high order Delaunay simplices even when there are no corresponding witnesses due

to the discrete resolution. The above algorithm to identify the abstract Delaunay

complex is a heuristic algorithm that uses the intuition from the continuous case.

Alternatively we can use the notion of the witness complex [22,29]. This is explored

in Chapter 3 [50].

The witnesses certify the existence of Delaunay simplices and by definition

can be identified locally. A k-witness node w, after it identifies itself, reports to the

corresponding landmarks. Such a report contains the IDs of the landmarks involved

in this dimension k− 1 Delaunay simplex, together with the distance vector from

the witness node w to each of the k landmarks. Remember that nodes in a Voronoi

cell store their minimum hop count distances to their home landmark. Thus, the

report just follows the natural shortest path pointer to the landmarks involved (so



CHAPTER 4. Discovery of Sensor Network Layout using Connectivity Information 83

routing is simple). It can happen that multiple witnesses certify the same Delaunay

simplex (say, in the case of a Delaunay edge) and they individually report to the

same landmark. These report messages are again suppressed during routing. If a

node sees a report about a previously received Delaunay simplex, it will not forward

it. Naturally the report from the witness with the smallest hop count to its landmarks

will arrive the earliest. With these reports, a landmark learns the combinatorial

Delaunay simplices it is involved in, and in addition, an approximate hop count to

the other landmarks in those simplices through the distance vectors carried in the

reports. In particular, a landmark p estimates the hop count distance to landmark q

as the minimum of the sum of distances from the witness node to p and q, over all

reports received with q involved. This distance estimation can be directly used to

embed the Delaunay simplices. Alternatively, if the minimum hop count distances

between neighboring landmarks are desired, one can let the messages initiated by

the landmarks travel to the adjacent Voronoi cells. Thus each landmark learns the

minimum hop count to all neighboring landmarks.

We remark that in the protocol we aggressively use message suppression to

reduce the communication cost. With reasonable synchronization most of the flood

messages are pruned and the average number of messages transmitted by each node

is within a small constant. We also remark that local synchronization (with possi-

ble global clock drifts) is sufficient as message suppression occurs mostly among

neighboring landmarks.

4.3.3 Embed Delaunay complex

Now we are ready to glue the simplices together to embed the landmarks and

generate the network layout. Since there is only one way to glue two adjacent sim-

plices (to keep their interiors disjoint, as shown by Theorem 45), the embedding is

unique. We first embed one simplex S1 arbitrarily. Then we can embed its neigh-

bor S2 as follows: Let �1 and �2 be the landmarks they share in common. Since

S1 and S2 are adjacent, such landmarks must exist. For each landmark �i in S2 not

yet embedded, we compute the 2 points that are with distance d(�1, �i) from �1 and
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d(�2, �i) from �2, where d(·, ·) is the hop-count distance between landmarks, esti-

mated in the previous section. Among the two possible locations we take the one

such that the orientation of points {�1, �2, �i} is different from the orientation of

{�1, �2, �r}, where �r is any landmark of S1, other than �1 and �2. Thus �i and �r lie

on opposite sides of edge �1�2.

In some cases one landmark may have two or more neighboring simplices that

are already embedded and is thus given multiple coordinate assignments. A natural

solution is to take � at the centroid of the different positions. After we have a rough

embedding of the entire Delaunay complex, we apply a mass-spring algorithm [43,

62, 63, 66, 78] to “smooth out” the disfigurements caused by the conflicting node

assignments. It is important to recognize however, that mass-spring plays a minor

role in our algorithm and its utility is only apparent here because we initially start

with topologically correct landmarks positions, i.e., no global flips. Without this

initial configuration with good layout a naive mass-spring algorithm can easily gets

stuck at local minima, as observed by many [66, 78].

Briefly, the idea of mass-spring embedding is to think of the landmarks as

masses and each edge as a spring, whose length is equal to the estimated hop count

distance between two landmark nodes. The springs apply forces on the nodes and

make them move until the system stabilizes. The objective is to have the measured

distances (based on their current locations) between landmarks match as closely as

possible the expected distances (indicated by hop count values). For landmark �i

we let pi designate its current position, and let d(i, j), r(i, j) be the estimated and

measured distance between �i and � j, respectively. Each edge creates a force F =
(d(i, j)− r(i, j))/d(i, j) along the direction pi p j. So the total force on landmark

�i is Fi =
∑

Fi j for all neighbors � j. And the total “energy” of the network is

E =
∑

(d(i, j)− r(i, j))2. We iteratively modify the node positions, based on the

forces acting upon them, until the energy of the system ceases to decrease.

We remark that this heuristic embedding algorithm only guarantees that ad-

jacent Delaunay triangles are embedded ‘side-by-side’. It does not prevent two

chains of triangles from wrapping around and overlapping each other. In fact, given

a planar graph with specified edge lengths, it is a NP-hard problem to find a planar

embedding [9,21]. Our problem is more difficult as we only have approximate edge
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lengths. It remains as future work to develop efficient approximation algorithms to

embed a planar graph with approximate edge lengths.

Figure 35: Left: before the mass-spring relaxation algorithm is applied; Right: after mass-

spring relaxation.

In a distributed environment the embedding of the Delaunay simplices can be

done incrementally with message passing. Alternatively, the combinatorial Delau-

nay complex can be collected at a central station where the embedding is performed

and disseminated to the remaining nodes. As the number of landmarks is only de-

pendent on the geometric complexity of the sensor field, it is much smaller than

the total number of nodes. Thus a centralized collection and dissemination of the

landmark positions is manageable.

Recall that after the witnesses report to the relevant landmarks, the landmarks

have the information about the Delaunay simplices they are involved in. Thus each

landmark can embed its adjacent Delaunay simplices in a local coordinate frame.

Then one landmark can initiate a message carrying the partially embedded Delau-

nay complex to its neighboring landmark. As this message is passed around, more

simplices are glued together. Remember there is no ambiguity of how two simplices

should be assembled even when the assembly is performed separately at different

landmarks. At the end of the message passing mass spring relaxation can be per-

formed to improve the quality.

4.3.4 Network localization

With the global network layout faithfully recovered, embedding of the rest

of non-landmark nodes is easy. Since the locations of the landmarks are known,
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each non-landmark node just runs a tri-lateration algorithm to find its location (e.g.,

the atomic trilateration in [82]) by using the hop count estimation to 3 or more

landmarks. We also performs a couple rounds of rubberband relaxation to further

improve the localization quality for the remaining nodes. An even simpler scheme

is to align the boundary nodes along the boundaries of the embedded combinatorial

Delaunay complex and perform a rubberband relaxation for the rest of the nodes.

4.4 Simulations

We conducted simulations on various network topologies and node densities

to evaluate our algorithm and compare with existing solutions.

4.4.1 Simulation setup and models

In the simulations we use three different models for the network connectivity.

1. Unit disk graph model: two nodes are connected by an edge if and only if the

Euclidean distance between them is no greater than 1.

2. Quasi-unit disk graph model: two nodes are connected by an edge if the

Euclidean distance between them is no greater than a parameter α, α < 1,

and are not connected by an edge if the Euclidean distance is larger than 1.

If the Euclidean distance d is in the range (α,1], there may or may not be an

edge between them. We include this edge with probability (1−d)/(1−α).

3. Probabilistic connectivity model: with unit disk graph model, we additionally

remove each edge with probability q.

The nodes are distributed according to a perturbed grid distribution. Each node

is perturbed from the grid point with a uniform distribution. That is, for any node

p(x,y) on the grid, we created two random numbers rx and ry between 0 and the

grid width. Then we use (x + rx,y + ry) as the node position. We then control the

communication range to vary the average node degree.

To vary the network “shape”, We tried different network topologies by includ-

ing single or multiple holes, convex or concave holes, and some difficult cases such
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as a U-shape or a Sprial-shape. The network setup and parameters are shown in the

caption for each topology.

4.4.2 Algorithms in comparison

Since most localization algorithms assume node inter-distance measurements

and/or anchor nodes, to make a fair comparison we only compare with two algo-

rithms that also use network connectivity information only:

Multi-dimensional scaling (MDS). Multidimensional scaling has been used by

Shang et al. [86] for sensor network localization with connectivity information only.

It is also the only anchor-free localization algorithm so far using connectivity infor-

mation. For n nodes, the input to MDS is the pairwise distance estimation of size

O(n2). If the inter-node Euclidean distances are known exactly, then MDS would

precisely determine the coordinates of the points (up to global transformations). In

this case, since only rough hop-count distances are known, MDS has trouble cap-

turing a twist within the graph, making a long narrow graph not differentiable from

a spiral-shaped graph. In addition, MDS is a centralized algorithm and can not be

executed in sensor nodes with limited resources. At the heart of MDS is singular

value decomposition (SVD) which has a time complexity of O(n3). In our simula-

tion we tested MDS in two cases, once on all the nodes and once on the landmarks

only. They produce similar layout results. MDS on all nodes is very slow. For some

experiments with 5000 nodes the matrix operation involved in MDS requires more

than 1GB memory. This computation is only feasible on powerful nodes such as

the base station.

Rubberband representation. In rubberband embedding [47, 80], first the perime-

ter nodes are fixed to a square, for instance. Then each non-perimeter node, v, re-

peatedly updates its coordinates (xv,yv) as the average of the locations of its neigh-

bors. The process stabilizes at the rubberband representation. While the rubberband

representation is able to avoid global flips if the outer boundary is detected correctly,

the shape of the sensor field is wildly distorted. In our experiments the rubberband

representation does not give enlightening results on the network layout. Examples

are given in Figure 4 (ii) and Figure 37.
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(i) (ii) (iii) (iv)

Figure 36: From left to right, we have: (i) the true sensor locations and extracted combi-

natorial Delaunay complex; (ii) embedding of the combinatorial Delaunay complex; (iii)

localization of all nodes by our algorithm; (iv) the results produced by MDS on all nodes

in the network. The connectivity network is generated with unit disk graph model on nodes

placed at perturbed grid points. First row: Cactus, 1692 nodes with average degree of 6.9.

Second row: Ginger man, 2807 nodes with average degree of 10. Third row: Pretzel, 2993

nodes with average degree of 9.1. Fourth row: Smiley face, 2782 nodes with average degree

of 9.5. Fifth row: Spiral in a box, 2910 nodes with average degree of 9.5. Sixth row: Square

with a concave hole, 2161 nodes with average degree of 10.4.
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(i) (ii) (iii) (iv)

Figure 37: Rubberband algorithm results for (i) face (ii) spiral in a box (iii) square with a

concave hole (iv) U shape.

4.4.3 Simulation results

The objective of the following simulations is to evaluate our algorithm and

compare with MDS or rubberband representations. In particular, we would like to

investigate how does the algorithm performance depend on different factors such as

the network shape, the node density, landmark density, and communication models.

4.4.3.1 Influence of network shapes

We applied our algorithm to a number of networks with different layouts, or

“shapes”. We observed that the performance of our algorithm is fairly stable for

all kinds of shapes, but the performance of MDS depends a lot on the shape of the

sensor field. We thus include here a few representative pictures in Figure 36.

Figure 36 (ii), (iii) shows the results of our algorithm for both the embedding

of the combinatorial Delaunay complex and the localization result for all nodes. We

put on the side the embedding results by MDS in Figure 36 (iv). MDS gives rea-

sonable results for some cases (the 1st and 2nd example) but performs quite poorly

when the real network has curved pieces (like spirals), and may even introduce an

incorrect global flip, as in the 5nd and 6th examples. For a qualitative measure, We

have computed the average distance error between the true location and our local-

ization result and that of MDS, scaled by the communication range5. In all cases

5For alignment, we take three arbitrary landmarks and compute a rotation matrix for both results.
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we are consistently better. In some cases when MDS does not produce the correct

network layout, we are 4 ∼ 7 times better as shown in Table 1.

Topology concave face man pretzel spiral cactus star

Our Alg 1.88 0.91 1.94 0.95 1.11 2.39 2.16

MDS 4.42 2.78 3.24 1.45 7.10 2.82 3.24

Table 1: Average location error, scaled by communication range.

4.4.3.2 Influence of network communication models

(i) (ii) (iii) (iv)

Figure 38: Embedding the landmarks under challenging network conditions. The first row

shows the ground truth; the second row our embedding of the landmark nodes. From left

to right the models depicted are (i) 3443 nodes, avg. degree 10.66. only keep α edges and

delete (1-α) edges randomly. α= 0.9. (ii) 3443 nodes, avg. degree 11.95. α = 0.8 (iii) 3443

nodes, avg. degree 9.58. quasi-UDG model: We assume that for two nodes whose distance

d is between α and 1, there is an edge with probability (1-d)/(1-α). If d < α, there must be

an edge between them. α = 0.8 (iv) 3443 nodes, avg. degree 7.57. α = 0.6.

We tested our algorithm on different communication models. The observation

is that the embedding result heavily depends on the performance of the boundary
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detection algorithm. If the boundary detection algorithm faithfully detected the

network boundary, the embedding result is satisfactory as well. If the boundaries

detected have local deficiencies, then the embedding may have local errors or flips.

We show some representative cases in Figure 38. Figure 38 (i) and (ii) show what

happens when a percentage of the links are broken. In (i) a fraction q of the edges

in the unit disk graph, randomly selected, are deleted, for q = 0.1 and (ii) q = 0.2.

In (iii) a quasi-UDG model is used: for two nodes whose distance d is between α
and 1, there is an edge with probability (1-d)/(1-α). If d < α, there must be an edge

between them. α = 0.8 in this case. In (iv), we use a quasi-UDG model with α
= 0.6. As you can see (ii) and (iv) give poor results. The problem in these cases

is that the network boundary was not detected accurately. Whenever the boundary

deviates from the real network boundary, we discovered that the embedding of the

Delaunay triangles may incur local flips (such as the left top corner in (ii) and the

right bottom corner in (iv)), as the information carried by the landmarks and the

Delaunay triangles on these landmarks is now misleading.

4.4.3.3 Influence of node density

As node density goes higher, the performance of our algorithm improves.

There are two reasons for this. One is that the boundary detection algorithm works

better with higher node density. The second is that the hop-count distance between

nodes is a better approximation of the geodesic distance between them.

The simulations in Figure 39 show the results of networks having increasingly

denser nodes from left to right with the same communication range. Networks with

higher density normally perform better than lower density networks. Specially, if

the average degree is below 7, the boundary detection step fails to faithfully recover

the boundary causing the rest of the algorithm performs not good as well.

4.4.3.4 Influence of landmark density

The theoretical results in the previous section gives a lower bound on the land-

mark density to ensure the rigidity of the Delaunay complex. One can certainly

select much more landmarks than that. In general, a higher density of landmarks
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(i) (ii) (iii) (iv)

Figure 39: Effect of node density/average degree on the embedding, the node densities

increase from left to right and the communication ranges are the same for all networks. (i)

677 nodes, avg. degree 5.59 (ii) 840 nodes, avg. degree 6.56 (iii) 1162 nodes, avg. degree

9.2 (iv) 1740 nodes, avg. degree 14.57.

(i) (ii) (iii) (iv)

Figure 40: Effect of landmark density. All figures with 3443 nodes and avg. degree 11.95.

(i) decrease the number of landmarks (ii) standard number of landmarks as we described

in algorithm section (iii) increase the number of landmarks (iv) increase the number of

landmarks even more
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may allow for a slightly better embedding of the network since bends and corners of

the network can be captured more accurately. With a very sparse set of landmarks

the distance between 2 neighboring landmarks can be grossly exaggerated because

the multi-hop path may need to get around a corner. But a denser set of landmarks

means that the mass spring embedding of the Delaunay complex runs on a larger set,

increasing the computation and communication cost of the algorithm. As shown in

Figure 40, the result of the algorithm is fairly stable with different landmark density.

Thus the benefit of using a denser set of landmarks may not outweigh the increased

cost of doing so.

4.4.3.5 Error accumulation

(i) (ii) (iii)

Figure 41: Possible error accumulation in networks with an elongated shape. In column (i)

3297 nodes, avg. degree 3297. We show a U-shaped graph properly embedded with minor

distortion due to the use of hop-count distances. In (ii), 5028 nodes, avg. degree 14.9. The

embedded network with a ‘C’ shape endures higher distortion. In (iii), 3910 nodes, avg.

degree 15. Error accumulation causes the spiral to overlap on itself.

Recall that the algorithm uses the hop count distance between landmarks to
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approximate their geodesic distance. Thus we may observe error accumulation in

the embedding when the network has an elongated shape as shown in Figure 41. In

these examples, the embedded shape is distorted and may have self-overlap (as in

example (iii)), due to error accumulation.

4.4.4 Further discussion

Multidimensional scaling is a standard statistical approach that takes the all

pairs proximity and recovers a 2D embedding of the vertices with linear projec-

tion methods such as principle component analysis (PCA). To better understand

why MDS introduces incorrect flips, the intuition behind it is that the network hole

causes the hop count distances to be not necessarily a good estimation of the Eu-

clidean distance of the nodes. For example, the node at the tip of the spiral has

a fairly long network distance to the opposite node ‘across the lake’. MDS has

no way of distinguishing this imprecise and misleading measurements from other

good distance estimates. In fact, the misleading measurements seem to ‘outweigh’

the good measurements and MDS eventually chooses to flip the spiral over. Our

other examples also show that the MDS tends to enlarge the hole in the middle.

Another limitation is that MDS behaves more or less like a blackbox and it is not

easy to interpret the results and not to mention improving it.

On a different note, we remark that using multi-dimensional scaling on the

shortest path distance matrix in a unit-disk graph setting is essentially the same al-

gorithm as in Isomap [88], proposed by Tenenbaum, de Silva and Langford, for

non-linear dimension reduction for high-dimensional data embedded in a low di-

mensional manifold. The famous result tested in Isomap is a 2D swiss roll shape

manifold in 3D. With shortest path distance metric instead of the Euclidean metric

in the ambient space, Isomap is able to ‘flatten up’ the swiss roll and recover the

non-linear manifold. If the points are embedded on a 2D manifold but with possi-

bly holes, i.e., a slice of Swiss cheese rolled up in 3D, our algorithm will recover a

much more faithful representation of the unfolded 2D manifold. The fundamental

idea here of using carefully selected short distances and patching up the local sim-

plices suggests a generic rule of recovering the inherent topology and geometry of
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data points in an ambient space. This is one direction we will explore further. In a

general setting, it requires both the understanding of topological features inherent

in the geodesic distances and rigidity results in higher dimensions, both of which

are not trivial.

4.5 Conclusion

In this chapter, we proposed an anchor-free localization algorithm for large-

scale sensor deployment with holes and complex shape. The novelty of our local-

ization scheme is to extract high-order topological information to solve the noto-

riously difficult problem of resolving flip ambiguities. Geometric information of

sensor nodes (e.g. node locations) has been recognized as an important character in

sensor networks. The global topology of the sensor field is shown in this chapter to

be helpful in recovering the network geometry.



Chapter 5

Sensor Network Localization with

Incremental Delaunay Refinement

5.1 Introduction

As we have discussed in Chapter 4, the location of sensor nodes is an in-

dispensable component for both network operation and sensor data integrity. We

proposed an algorithm for landmark selection to guarantee that the generated com-

binatorial Delaunay complex is globally rigid and admits a unique realization in

the plane. This leads to an algorithm to put together the Delaunay triangles in an

incremental manner which helps localize the rest of the nodes in the network.

One property of our algorithm in Chapter 4 is to select landmarks first using a

boundary detection algorithm [39,40,44,45,68,89] to identify the network boundary

nodes and then selects the landmarks to be a γ-sample with γ < 1. Specifically,

every boundary node has a landmark within its inner local feature size, defined

as the distance to the closest node on the medial axis (which is the collection of

nodes with two or more closest nodes on the boundary). The dependency on the

boundary detection algorithm puts limitations on the applicability of the localization

algorithm as all known boundary detection algorithms do not work well in the case

of extremely low density networks. Examples of some of these cases were shown

in Chapter 4.

96
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The main contribution in this chapter is an incremental landmark selection al-

gorithm that does not assume knowledge of the network boundary. In particular, we

start with no knowledge of the network topology (whether there are holes or how

many there are, etc.) and develop local conditions to test whether a node should

be included as a new landmark. The landmarks selected naturally adapt to the lo-

cal geometry of the network, with a higher density of landmark nodes selected in

regions with more detailed and complex features. This new landmark selection

algorithm greatly enhances the robustness of our algorithm in cases of extremely

sparse or even non-rigid networks, or networks with very complicated shapes that

are challenging for boundary detection algorithms. We are not aware of any other

localization algorithms using only connectivity information with comparable per-

formance. We demonstrate the improved performance of our algorithm in various

network settings in the simulation section.

5.2 Localization by Delaunay complex

In this section we use a continuous setting to go though the framework of net-

work localization by the combinatorial Delaunay complex and provide the theoret-

ical foundation of the incremental Delaunay refinement algorithm. The algorithm

implementation in the network setting is elaborated on in the next section.

We firstly recall some assumptions and concepts which we have described

in Chapter 4. The sensor field is assumed to be a continuous domain R ∈ R
2

with perhaps some interior holes. For any two points p,q ∈ R , we denote by |pq|
their Euclidean distance and d(p,q) the geodesic distance (shortest path distance)

between them inside R . The geodesic distance is an analog of the minimum hop

count distance in the discrete setting. A ball centered at a point p of radius r,

denoted by Br(p), contains all the points within geodesic distance r from p.

The boundary of R is denoted as ∂R and may have multiple cycles. The inner

medial axis of R is the collection of points in R that have two or more closest points

on the boundary ∂R . The inner local feature size of a point p ∈ ∂R , denoted by

ILFS(p), is the distance from p to the inner medial axis of R . A set of landmarks
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L on the boundary ∂R is called a γ-sample1 if for any point p ∈ ∂R , there is at least

one landmark within distance γ · ILFS(p) from p.

Suppose L is a set of landmarks on the domain boundary ∂R , the Voronoi cell

of a landmark u, denoted as V (u), includes all the points that have u as a closest

landmark:

V (u) = {p ∈ R |d(p,u) ≤ d(p,v),∀v ∈ L,v �= u}.
The collection of Voronoi cells is denoted as the landmark Voronoi diagram V (L)
for the set L of landmarks. A point is called a Voronoi vertex if it has equal distance

to at least three landmarks. The Voronoi vertices inside R are called the inner

Voronoi vertices. A ball Br(p) centered at an inner Voronoi vertex p with radius r

equivalent to the distance from p to the closest landmarks is called a Voronoi ball.

∂R

Figure 42: Left: The Voronoi graph (shown in dashed lines) and the Delaunay complex for

a set of landmarks on the boundary ∂R . The Delaunay simplices (vertices, edges, triangles,

tetrahedrons) are shaded. Right: The union of Voronoi balls approximately covers the

domain R .

The combinatorial Delaunay complex of the landmarks L, denoted by DC(L),
is the collection of sets

DC(L) = {α ⊆ L | ∩u∈α V (u) �= /0}.

In other words, a set α ⊆ L is a Delaunay simplex if the intersection of the Voronoi

cells of landmarks of α is non-empty. The Delaunay complex has naturally 0-

dimensional simplices such as the landmarks, 1-dimensional simplices such as De-

launay edges, and 2-dimensional simplices such as Delaunay triangles, and possibly

1Notice that the definition of γ-sample is different from the typical definition in geometric pro-
cessing [3, 4] where the local feature size is used. The medial axis for a domain R has two parts,
one inside R and one outside R . For our setting we do not have access to the part of the medial axis
outside of R and we can only use the inner local feature size.
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higher order simplices such as tetrahedrons. See Figure 42 for an example.

5.2.1 γ-sample, rigidity and coverage

In our previous work in Chapter 4 [70], we show a framework for network lo-

calization by embedding the Delaunay complex DC(L) extracted from the network

connectivity. The main result in Chapter 4 is a proof that when the landmarks are

selected as a γ-sample of the domain R with γ < 1, the Delaunay complex DC(L) is

globally rigid and thus admits a unique realization in the plane. This establishes the

foundation of the localization algorithm as we can now embed the Delaunay com-

plex incrementally and then localize the entire network with the Delaunay complex

as a structural skeleton.

For localization, we also want that the Delaunay complex provides good ‘cov-

erage’ of the sensor field in the sense that every node is not very far from the Delau-

nay complex, so that the Delaunay complex faithfully represents the network shape.

In particular, we take B to denote the union of all the Voronoi balls, and U the shape

of the union of these balls. As we will prove later, the γ-sample guarantees that the

union of Voronoi balls is a good approximation of R and the approximation is im-

proved as the density of landmarks increases. See Figure 42 (ii) for an example.

Rigorously, we define that the Delaunay complex DC(L) δ-covers R if every point

x ∈ R will be within distance (1+δ) · r from the center p of a Voronoi ball Br(p),
where r is the radius of this Voronoi ball.

Using the union of the Voronoi balls to approximate the shape R was initially

proposed in geometric processing and computer graphics [4]. It has been shown

that the errors in the position and normal of the surface of U with R is bounded

everywhere, given sufficiently dense samples on the ∂R . However, we cannot di-

rectly apply the results in [4] as there are a couple of differences with our setting.

First, the metric we are working with is the geodesic shortest path metric, instead of

the Euclidean metric used in [4]. In addition, as we only have sensors in the interior

of R , we do not have access to the part of medial axis that is outside R and we are

only able to use the inner local feature size to define the γ-sample.

Before we prove the coverage theorem, let us first understand the boundary of
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the union of balls U. The boundary of U contains some circular arcs from the balls

in B . We first characterize what arc can possibly stay on the boundary of U. Each

Voronoi edge in V (L) has two endpoints, being either a Voronoi vertex or a point

on the boundary ∂R . A Voronoi edge with two Voronoi vertex endpoints is called

an inner edge. A Voronoi edge with two endpoints on the boundary is called an

outer edge. A Voronoi edge with both a Voronoi vertex and a point on the boundary

is called a mixed edge. For each Voronoi ball B, the three landmarks partition its

boundary ∂B into three circular arcs. We label the arc between two landmarks u,v

with the label of the Voronoi edge of u,v as either inner, outer, or mixed. We now

claim that only mixed arcs can possibly appear on ∂U. First realize that the interior

points of an inner arc cannot stay on the boundary of U, since the arc is enclosed

inside the union of the two Voronoi balls that go through u,v. Second if we choose

γ < 1, then the Voronoi diagram inside R is connected as proved in Corollary 35

in Chapter 4. Thus there cannot be an outer edge in V (L), since this edge will be

disconnected from the rest of the Voronoi diagram. Now for a Voronoi ball Br(p)
with a mixed edge between landmarks u,v we define a pie as the set of points in

R bounded by the boundary segment between u,v and the shortest paths from p to

u,v. Only the points inside a pie with a mixed arc can possibly stay outside U. See

Figure 43. Notice that in the case of a degeneracy, a Voronoi ball can have four or

more landmarks. The classification of edges and the proof later are the same in that

case.

Lemma 43 (Lipschitz continuity) The inner local feature size of any shape R ⊆
R

2 is 1-Lipschitz: ILFS(x) ≤ ILFS(y)+d(x,y) for any x,y ∈ R
2.

Proof. The proof follows from triangle inequality. Suppose that point p is the

closest point of y on the inner medial axis of R . Then d(p,y) = ILFS(x). Thus,

ILFS(x) ≤ d(p,x) ≤ d(p,y)+d(x,y) = ILFS(y)+d(x,y).

Theorem 44 For a connected region R ⊆R
2, we select landmarks L as a γ-sample

on the region boundary ∂R with γ < 1. Then the Delaunay complex δ-covers R ,

with δ = 2γ/(1− γ).

Proof.
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u v

p

r

x

y

Figure 43: Any x is within distance δ · r from a Voronoi ball. A pie between a mixed arc ûv

is shown in shade.

We first prove the claim for points on ∂R .

Consider a point x on ∂R in between two landmarks u,v, as shown in Fig-

ure 43. Lemma 33 in Chapter 4 says that there is a Voronoi vertex p with u,v as two

closest landmarks and the Voronoi edge with respect to u,v is a mixed edge. With-

out loss of generality we assume that x’s closest landmark is u. By the γ-sample

property, d(u,x) ≤ γ · ILFS(x).
Now we assume by contradiction that d(p,x) > (1+δ)r. Thus γ · IFLS(x) ≥

d(u,x) ≥ d(p,x)− d(p,u) > (1 + δ)r − r = δr by the triangle inequality. Thus

ILFS(x) > δr/γ.

We also know that the inner local feature size is a 1-Lipschitz function with

proof in Lemma 43. That is, ILFS(x) ≤ ILFS(u) + d(u,x). As we know that

the Voronoi ball Br(p) touches three landmarks and contains at least one point on

the medial axis in R , ILFS(u) ≤ 2r. Thus we have, ILFS(x) ≤ 2r + γ · ILFS(x).
Combining the inequalities, we have δr/γ < IFLS(x) ≤ 2r/(1− γ). That gives us

δ < 2γ/(1− γ), a contradiction.

If the claim is true for all points on ∂R , it is true for all points in R . Suppose

otherwise, then there is a point y in the interior of R that is not δ-covered. y can

only possibly stay inside a pie, as shown in Figure 43. Then there must be another

point x ∈ ∂R such that y stays on the geodesic shortest path from p to x. Thus y is

covered by Br(p), the same Voronoi ball that covers x.
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5.2.2 Landmark selection for both rigidity and coverage

Based on the previous discussion, there are two desirable criteria, namely,

global rigidity and coverage, for the final Delaunay complex. In this subsection

we investigate local conditions for landmark selection to guarantee both rigidity

and good coverage of the induced Delaunay complex:

1. Local Voronoi edge connectivity: The Voronoi edges for each landmark u

form a connected set.

2. Local Voronoi ball coverage: Each node x inside a Voronoi cell V (u) is δ-

covered by a Voronoi ball Br(p), where p is a Voronoi vertex with landmark

u.

We first show that if both conditions are satisfied for a set of landmarks L,

then the Delaunay complex DC(L) satisfies both the global rigidity and coverage

property. This is relatively straightforward. After this, we examine how to design a

landmark selection algorithm to meet these conditions.

5.2.2.1 Rigidity of the Delaunay complex

When the local Voronoi edge connectivity condition is met, we argue that the

Delaunay complex is globally rigid. To do that, we will make use of a theorem

proved in Chapter 4:

Theorem 45 [Global Rigidity] If V (L) is connected inside R , the Delaunay com-

plex DC(L) is globally rigid.

The local Voronoi edge connectivity immediately implies the global Voronoi edge

connectivity. If otherwise, there must be one landmark whose Voronoi edges have

two or more connected components, since the union of all the Voronoi cells is R .

Thus the local Voronoi edge connectivity condition implies the global rigidity of

DC(L).

5.2.2.2 Coverage of the Delaunay complex

If the local Voronoi ball coverage condition is met for every Voronoi cell, then

the coverage property of the Delaunay complex follows directly.
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5.2.2.3 Incremental Delaunay refinement algorithm

Since both conditions can be tested locally, we naturally have the following

incremental landmark selection algorithm: for each Voronoi cell V (u),

1. If the first condition is not met, the Voronoi edges with u have two or more

connected components. Since each Voronoi edge has either a Voronoi vertex

or a point on ∂R as endpoints, we select, among all the endpoints of Voronoi

edges of u on ∂R , the one that is furthest from u as a new landmark.

2. If the first condition is met, we check the second condition. Among all the

points that violate the local Voronoi ball coverage condition, we select the

one that is least covered as a new landmark: maxx minBr(p){δ′ |d(x, p) = (1+
δ′)r}. That is, for each such point x, we choose the Voronoi ball Br(p) with

p such that d(x, p) = (1 + δ′)r with smallest possible δ′. And we select the

point x with the largest such δ′.

This landmark selection algorithm always selects landmarks on the network

boundary2 but it does not require the detection of the network boundary, nor does it

require the knowledge of the medial axis and local feature size, whose computation

is sensitive to noise. New landmarks in different Voronoi cells can be inserted

in parallel as the algorithm executes locally inside each Voronoi cell. Thus the

new landmark selection method is more robust and practical compared with the γ-

sampling used in our previous algorithm. Of course when the algorithm terminates,

it produces a set of landmarks L so that the Delaunay complex DC(L) has both the

global rigidity and the coverage property. Next, we show the algorithm terminates

and has bounded landmark density.

5.2.2.4 Landmark density by incremental refinement

Here we show that every landmark q added by the incremental algorithm is not

sufficiently covered by existing landmarks, i.e., the distance to its closest landmark

is at least γ · ILFS(q) for an appropriate parameter γ < 1/3. If a point x ∈ ∂R is

2Landmarks added by condition 1 will be on ∂R for sure. For the landmarks added by the 2nd
condition, by the same argument as in Theorem 44 the points outside the Voronoi balls must be
inside the pies. And the least uncovered point stays on the region boundary ∂R .
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within γ · ILFS(x) from any landmark, we say x is γ-covered.

We first state a useful Lemma.

Lemma 46 [Lemma 32 in Chapter 4] Given a disk B containing at least two points

on ∂R , for each connected component of B∩R , either it contains a point on the

inner medial axis, or its intersection with ∂R is connected.

Lemma 47 If a Voronoi cell V (u) violates the local Voronoi edge connectivity

condition, the new landmark q selected is not covered by any landmark within

γ · ILFS(q), for any γ < 1/3.

Proof. Since the boundary of the Voronoi cell V (u) is composed of segments on

∂R and the Voronoi edges u, V (u) must have two or more connected components

on the domain boundary ∂R as well. Take a Voronoi edge endpoint p that stays on

a different boundary segment with u. d(u, p) ≤ d(u,q) since q is the furthest such

endpoint. See Figure 44.

r

u

p q

Figure 44: The new landmark q is not γ-covered for γ < 1/3.

We take a ball Br(p) with r = d(u, p). Br(p) intersects the boundary ∂R in

two or more connected pieces, since both u and p are inside. By Lemma 46 there is

a point on the inner medial axis inside Br(p). That means ILFS(p) < d(u, p). Since

IFLS is 1-Lipschitz, ILFS(u)≤ IFLS(p)+d(u, p) < 2d(u, p). Apply this again we

get ILFS(q) ≤ IFLS(u)+d(u,q) < 3d(u,q). Thus the claim is proved.

Lemma 48 If a Voronoi cell V (u) for a landmark u violates the local Voronoi ball

coverage condition, the new landmark q selected is not covered by any landmark

within γ · ILFS(q), γ = δ/(2+δ).
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Proof. If q is selected as the new landmark, d(u,q) > (1 + δ)r for any Voronoi

vertex p of the landmark u, r = d(p,u) is the radius of the Voronoi ball at p. Now we

have by triangle inequality d(q,u) ≥ d(p,q)−d(p,u) > δr. That is, r < d(q,u)/δ.

Similar to the argument in Theorem 44, ILFS(q)≤ d(q,u)+2r < (1+2/δ)d(q,u).
Thus, d(q,u) > γ · ILFS(q) with γ = δ/(2+δ).

The above results show that our local conditions do identify points on the

boundary that need to be γ-covered for γ < 1/3. If the inner local feature size for

any point x ∈ ∂R is at least ε for some fixed ε, then the incremental Delaunay

refinement algorithm will eventually terminate, as every new landmark included

covers at least an interval of length 2ε centered at itself. This procedure cannot go

on indefinitely.

r

u v

p

Figure 45: The landmark set may not be a γ-sample of ∂R . The local feature size for points

on the segments between u,v is smaller than the distance to u or v.

We remark that the algorithm will certainly terminate when the landmark set

is a γ-sample for any γ < 1, but it may also terminate before that if both the rigidity

and coverage conditions are met, as shown in Figure 45. This can be understood

in terms of our algorithm picking up the major geometric features and ignoring

the noisy features of R . The rigidity and coverage properties guarantee that the

reconstructed Delaunay complex will approximate R and are what we really care

about in our localization algorithm. The γ-sample for R can be much denser than

what is needed in practice.

Last we show that the landmark set generated by the incremental algorithm

has bounded density.



CHAPTER 5. Sensor Network Localization with Incremental Delaunay Refinement 106

Theorem 49 Suppose L is the generated landmark set by the incremental algo-

rithm. If any landmark from L is removed, then it is not a γ ′-sample of ∂R , with

γ′ = γ/(1+ γ), γ < max(1/3,δ/(2+δ)).

Proof. For the last landmark q inserted, by Lemma 47 and Lemma 48, it is not

within distance γ · ILFS(q) of any existing landmark. Since γ > γ′ the claim is true

for q.

For any landmark q′ added before q, we know d(q,q′) > γ · ILFS(q), since

q is added with q′ already present in the current landmark set. Since IFLS is 1-

Lipschitz, we have IFLS(q′)≤ IFLS(q)+d(q,q′) < (1+1/γ) ·d(q,q′). Therefore,

d(q,q′) > γ′ · IFLS(q). Notice that this argument is true for any pair of landmarks

q,q′ with q added after q′. Thus for q′, the distance to any landmark in L is at least

greater than γ′ · IFLS(q′). The claim is true.

5.3 Incremental Delaunay refinement

5.3.1 Algorithm description

Suppose a large number of sensor nodes are scattered in a geometric region,

where nearby nodes can directly communicate with each other. Similar to our pre-

vious work in Chapter 4, we do not enforce that the communication graph follows

the unit disk graph model (in our simulations we use both a quasi-UDG model and a

probabilistic radio model), nor do we assume any knowledge of the node locations

or inter-distances. Our goal is to discover the location of the nodes in the sensor

field, using the local connectivity information alone.

The basic idea is to select landmarks incrementally in the network until both

the global rigidity and the coverage property are satisfied as described in Sec-

tion 5.2. The biggest difference between this chapter and Chapter 4 is that the

new landmark selection algorithm does not depend on the success of boundary de-

tection or the knowledge of the local feature size. Thus the new algorithm is more

robust in practice, and yet still captures the geometry of the network. Next we will

explain each step of the algorithm in detail. Unless specified otherwise, all the dis-

tances are by default measured by the geodesic distance, which is approximated by
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(i) (ii) (iii) (vi) (v)

Figure 46: Step by Step Incremental Delaunay Refinement Method. The number of nodes

is 3887. The connectivity follows a unit disk graph model with average node degree 7.5.

(i) Start with two landmarks on the boundary arbitrarily. (ii) The final Voronoi diagram

when the algorithm stops. (iii) The Delaunay edges extracted from the Voronoi cells of the

landmarks. (iv) Embedding Result. (v) All nodes localized.

the minimum hop count between two nodes.

5.3.1.1 Select initial landmarks

We start with two landmarks arbitrarily selected on the boundary. In order to

guarantee these two starting landmarks are definitely on the boundary, we flood the

network from a random node r and find the farthest node p from r, p must be on

the network boundary. Then we flood from p and find the farthest node q from p. q

will be on the boundary as well. We use p and q as our two initial landmarks. See

Figure 46(i)

5.3.1.2 Compute Voronoi diagram

Once we have some landmarks, we calculate the landmark Voronoi diagram

in a distributed way. Each landmark learns of its closest landmark(s) and all the

nodes with the same closest landmark are naturally classified to be in the same

Voronoi cell. Recall that the landmarks are included incrementally. A new landmark

initiates a flood message which is propagated only inside its Voronoi cell—when a

node receiving this message sees that its hop count to some preexisting landmark

is equal or smaller, then the message is dropped. As more landmarks are included,

the size of Voronoi cells decreases, and so does the communication cost.

Nodes with more than one closest landmarks lie on a Voronoi edge or vertex.
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Although the straightforward definition of Voronoi vertex is a node with equal dis-

tance to at least three landmarks, one robustness concern is that there may not be a

node that qualifies for this definition by the discrete network hop count measure. In

Chapter 4, we proposed a merging heuristic to get Voronoi vertices. Here we refine

this process with rigor and propose the following witness definition to guarantee

the existence of Voronoi vertices.

Definition 50 A node p is called a 2-witness for a pair of landmark {u,v}, if

d(p,u),d(p,v) are among the top m smallest hop count distances from landmarks

to p and these hop count distances differ at most by β2. β2 is called the relaxation

parameter for 2-witnesses.

In other words, we denote by �i(p) the set of landmarks with the i-th smallest

distance to p and di(p) the i-th smallest distance from landmarks to p. Then a node

p is the 2-witness for all pairs of landmarks in L2 = ∪m
i=1�i(p) such that dm(p)−

d1(p) ≤ β2 and dm+1(p)−d1(p) > β2. We call L2 the 2-witness landmark set for

p. p witnesses every pair in L2.

The boundary of a Voronoi cell of a landmark u is the collection of 2-witnesses

with u in their landmark set. With the 2-witnesses we will detect 3-witnesses for

triples of landmarks, a.k.a. the Voronoi vertices, by properly merging neighbor-

ing 2-witnesses with different landmark sets. In general we define a k-witness as

follows, for k ≥ 3.

Definition 51 A node p is called a k-witness for a tuple of k landmarks, if p is

a k − 1-witness and the k landmarks are among the top m closest landmark set

Lk = ∪m
i=1�i(p) with dm(p)− d1(p) ≤ β3, dm+1(p)− d1(p) > β3. βk is called the

relaxation parameter for k-witnesses. Lk is called the k-witness landmark set for p.

The parameters βk are appropriately chosen as explained below. By the analog

of the continuous case, the 2-witnesses correspond to the 1-dimensional Voronoi

edges. The k-witnesses for k ≥ 3 correspond to 0-dimensional Voronoi vertices.

Thus we hope that the collection of 2-witnesses for each landmark (i.e., its Voronoi

edges) is connected, and that the k-witnesses with k ≥ 3 for different k-tuples form
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isolated connected components that separate 2-witness groups with different land-

mark set.

To show this we first give a number of observations.

Lemma 52 If βk ≥ 1, there cannot be two neighboring k-witnesses p,q such that

the landmark sets they witness do not share any common landmark.

Proof. We will just prove this for β2 as the proof is the same for other k. Assume

by contradiction that the set of landmarks p witnesses L2(p) and the set L2(q) that q

witnesses do not share any common landmark. We take u1 ∈ �1(p) and u2 ∈ �1(q).
We have d(q,u2) + 1 ≥ d(p,u2), since p,q are neighboring nodes. Also since u2

is not among L2(p), we have d(p,u2) > d(p,u1)+ β2. With similar argument we

have
d(q,u2)+1 ≥ d(p,u2) > d(p,u1)+β2

≥ d(q,u1)−1+β2 > d(q,u2)+2β2−1.

Thus β2 < 1. This shows a contradiction.

Now we examine what nodes among the 2-witnesses are selected to be 3-

witnesses. The Voronoi boundary of each landmark is required to be connected,

therefore, we group the 2-witnesses for each landmark u by the set of landmarks

they witness. Adjacent 2-witnesses that witness different landmark sets will be

selected as 3-witnesses with a properly selected relaxation parameter β3. We choose

β2 = 1.

Lemma 53 If there are two neighboring 2-witness nodes p,q that witness different

landmark set, i.e., L2(p) �= L2(q), and β3 = 2β2 +2, p,q are both 3-witnesses of the

landmarks in L2(p)∪L2(q).

Proof. By Lemma 52, there is a landmark u such that u ∈ L2(p)∩L2(q). Choose

u2 ∈ L2(p)\L2(q) and u3 ∈ L2(q)\L2(p). Now we have,

d(p,u3) ≤ d(q,u3)+1 ≤ d(q,u1)+β2 +1

≤ d(p,u1)+β2 +2 ≤ d1(p)+2β2 +2.
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Thus u3 ∈ L3(p). With a symmetric argument u2 ∈ L3(q). Therefore both p and q

are 3-witnesses of the landmarks in L2(p)∪L2(q).

Therefore, the Voronoi boundary of a landmark will have connected com-

ponents of 2-witnesses (with the same witness landmark set) connected by 3-

witnesses. Intuitively, this corresponds to Voronoi edges connected by Voronoi

vertices. We will perform this witness selection operation further so that among the

3-witnesses, neighboring nodes with different witness landmark sets will be iden-

tified as 4-witnesses, if β4 = 2β3 + 2. Each connected component of k-witnesses

with the same landmark set will generate the corresponding Delaunay simplices.

The witness identification procedure continues until the groups of k-witnesses with

the same witness landmark set are isolated components.

The witness identification algorithm only uses local information. With the

witnesses identified, we can output the combinatorial Delaunay complex as we will

explain later.

5.3.1.3 Select more landmarks incrementally

With the Voronoi diagram from the initial 2 landmarks, we then select more

landmarks incrementally. Corresponding to Section 5.2, for each landmark u and

its Voronoi cell V (u), we check:

• If the 2-witnesses (a.k.a. Voronoi edges) of u are not connected (this can be

checked by having each connected component of the union of u’s Voronoi

edges send a message to u), we choose among all nodes that are endpoints

of Voronoi edges lying on the network boundary3 and select the one furthest

from u as a new landmark.

• If the 2-witnesses of u are connected, we check each point p in Voronoi cell

V (u) and any Voronoi vertex v associated with u. We select point p as the

new landmark if p is furthest away from any relaxed Voronoi ball B(1+δ)r(v)
among all points that are not yet δ-covered by Voronoi balls of u. Here r is

the hop-count distance between u and v.

3Notice that we can discover such nodes as each Voronoi edge is a connected set of 2-witnesses
with the same landmark set, whose endpoints are either 3-witnesses or nodes on the network
boundary.
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As the conditions are local, new landmarks can be selected in different Voronoi

cells in parallel. The Voronoi diagram is then updated until no more landmarks are

selected.

Figure 46 (ii) is the final Voronoi diagram when the landmark selection stops.

The Delaunay edges extracted from the final Voronoi diagram are shown in Figure

46 (iii). When the algorithm stops, both the global rigidity and good coverage are

guaranteed.

5.3.1.4 Extract Delaunay complex

When all the landmarks are in place and the final Voronoi diagram is com-

puted, using the witnesses we identified earlier, each connected component of k-

witnesses with the same landmark set will generate a corresponding Delaunay sim-

plex. In particular, for each k-witness p, k ≥ 3, we output for each k-tuple in the

witness landmark set Lk(p) a k − 1-dimensional simplex that implicitly includes

all its faces. These simplices are collected to be embedded in the next step. The

embedding of the Delaunay complex is the only centralized operation in the algo-

rithm. Once the Delaunay complex is embedded, its realization is disseminated to

the entire network to localize the rest of the nodes. Notice that since the Delau-

nay complex is a compact structure whose size depends on the network geometric

complexity, and since only Voronoi nodes are involved in embedding it, the cost of

collection and dissemination is substantially smaller than the cost of collecting the

entire connectivity graph for any centralized localization algorithm.

5.3.1.5 Embed Delaunay complex

In brief, we choose one simplex, embed it as a starting point, and then embed

each neighboring simplex side-by-side to the one already embedded. As mentioned

earlier, two k-witnesses (k ≥ 3) with different landmark sets are connected through

m-witnesses with 2 ≤ m < k. Thus each simplex we extract must share an edge

with a neighboring simplex and the 2 simplices cannot overlap, so the embedding

is unambiguous. For example, suppose a simplex S is already embedded, and we

want to embed a neighboring simplex (triangle) S′ that shares a common edge with
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S. We use bilateration to find the 2 possible positions for the third landmark of S ′

that has not yet been embedded and choose the one that does not cause S and S′ to

overlap.

Since we ran our new algorithm on more complicated topologies than what our

original algorithm was capable of, we encountered many high dimensional sim-

plices (see for example the sun shape in Figure 50). In this case we embed each

high-dimensional simplex using multi-lateration to the other landmarks of the sim-

plex that are already embedded, in order to take advantage of all known distance

measurements. Since we only have estimated distances, we solve the optimization

problem of minimizing the mean square error among the distances as described

in [83]. And as another optimization, we run a mass-spring relaxation on the sim-

plex in order to smooth out the distance errors.

We remark that our embedding algorithm only makes sure that adjacent Delau-

nay triangles are embedded ‘side-by-side’, thereby allowing us to get a very good

embedding of the network. However, it does not guarantee a planar embedding—

one part of the network can still curve around and intersect with another part of the

network. It is an NP-hard problem to find a planar embedding given a planar graph

with specified edge lengths. A particularly challenging scenario is when embedding

a network with a hole and we want to connect the loop of simplices cycling back

to itself. One approach we use to prevent one simplex from landing atop another is

by setting some boundary lines defined by the first embedded simplex that no other

simplex may cross. If a landmark goes over this line, it is embedded to the line.

This works well in many cases, and is what we used to get the result in Figure 49.

If a landmark should receive more than one coordinate assignment (arising from

two simplices coming around the hole), we simply embed it at the centroid of its

different assignments. However the above steps do not ensure planarity, and can

even introduce flipped simplices, as can be seen in the flower and music images

of Figure 50, and elsewhere. We emphasize that our algorithm guarantees correct

orientation of the simplices, but once other heuristics are applied, the guarantees

no longer hold. It still remains for future work to develop efficient approximation

algorithms with theoretical guarantees for planar graph embedding.
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5.3.1.6 Network localization

When the Delaunay complex is embedded and disseminated to all the nodes,

each non-landmark node uses its hop count estimation to 3 (or more) landmarks to

trilaterate its own location (as in the atomic trilateration in [82]).

5.4 Simulation

We conducted extensive simulations under various scenarios to evaluate how

well our algorithm extracts the network topology and how performance is affected

by different factors such as node density, or communication model (quasi-UDG,

probabilistic model, etc.). Typically our examples have an average node degree

of around 10, but we also get good performance for average degree as low as 6.

We also demonstrate a good result for a special case where nodes are aligned on a

perfect grid having an average degree of 4. We evaluate the communication cost of

our algorithm at the end.

Influence of node density. Theoretically, our algorithm performs better under

higher node density since the hop-count distance between nodes is a better approx-

imation of the geodesic distance between them.

Figure 47 shows the results of networks with different densities but with the

same communication range. Notice that when the average degree is below 7, not all

selected landmarks are on the boundary, as Voronoi edges may be broken at small

holes in the network. The performance deteriorates when the average degree drops

below 6, when error accumulation by using hop-count distance becomes too large

to use for an accurate embedding.

Influence of network communication models. We also evaluate our algorithm on

connectivity models other than unit disk graph model, in particular, quasi-unit disk

graph model (quasi-UDG) and probabilistic connectivity model. In quasi-UDG,

two nodes are connected by an edge if the Euclidean distance between them is no

greater than a parameter α, α≤ 1, and are not connected by an edge if the Euclidean

distance is larger than 1. If the Euclidean distance d is in the range (α,1], we include

this edge with probability (1−d)/(1−α). In the probabilistic connectivity model,
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(i) (ii) (iii) (iv)

Figure 47: The embedding results for networks of different node densities. The commu-

nication ranges are the same for all 4 networks. The first row shows the ground truth; the

second row shows our embedding of the landmark nodes. From left to right the models

depicted have (i) 3887 nodes, avg. degree 10.28. (ii) 3044 nodes, avg. degree 7.6. (iii)

2680 nodes, avg. degree 6.3. (iv) 2320 nodes, avg. degree 5.7.

we start with the unit disk graph model and remove each edge with probability

1−β.

We show some representative cases in Figure 48. (i) and (ii) use the quasi-

UDG model. (iii) and (iv) use the probabilistic model. We have good embedding

results even when α or β = 0.6 with an average degree of around 6. When α or

β = 0.5, the algorithm starts to deteriorate.

Comparison with our previous work in Chapter 4. Since the new algorithm does

not depend on boundary detection, it not only avoids the computationally expensive

operation of detecting the network boundary, but can work under conditions where

the boundary detection would give poor results, causing an unsatisfactory outcome.

Figure 49 is a network with nodes laid out on a perfect grid with an average degree

of only around 4. This is an example that will not work using our previous algorithm

as boundary detection will fail. As far as we know, no known boundary detection

algorithm can work on networks with such low average degree. Figure 49(i)(ii)

shows the ground truth and embedding result of the new algorithm. Note the low
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(i) (ii) (iii) (iv)

Figure 48: Effect of network communication models on the embedding. The first row

shows the ground truth; the second row is our embeddings of the landmark nodes. All

the networks have 3887 nodes and the same communication range. From left to right the

models depicted are (i) quasi-UDG model, avg. degree 6.4, α = 0.6 (ii) quasi-UDG model,

avg. degree 5.6, α = 0.5 (iii) delete each edge with probability 1−β. β = 0.6, avg. degree

6.2 (iv) Same model as (iii), β = 0.5, avg. degree 5.0.

(i) (ii) (iii) (iv)

Figure 49: A perfect grid network. 3388 nodes, avg. degree 3.87. (i) the Delaunay complex

extracted from the Voronoi cells of the landmarks using the new algorithm. (ii) the embed-

ding result. (iii) the boundary detection result. (iv) the Delaunay complex result using the

previous algorithm.
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degree does cause some locally inaccurately embedded pieces. At two top corners,

the triangles are degenerate as the hypotenuse has exactly the same length as the

other 2 sides measured by hop-count in the grid network. Nevertheless we still

capture the topology and the global geometry rather faithfully. Figure 49(iii) is the

boundary detection result using the method in [89], which generates a Delaunay

Complex that does not capture the network geometry (Figure 49(iv)).

We do not explicitly compare with other localization algorithms with network

connectivity information only, for example, multi-dimensional scaling (MDS) [86].

There is already a thorough comparison of MDS with our previous algorithm in

Chapter 4.

Different network topology. We show more results using our algorithm for a num-

ber of networks with convoluted shapes in Figure 50.

Communication cost of the algorithm. In the execution of the incremental land-

mark selection algorithm, the new landmarks in different Voronoi cells are selected

in parallel and each new landmark only floods locally in its Voronoi cell. In one

iteration, many Voronoi cells can be refined and new landmarks selected. We use

the number of nodes in each Voronoi cell to evaluate the communication cost in-

curred by adding each new landmark. In Figure 51, we run our algorithm on a group

of networks with the same shape (similar to Figure 46), the same communication

range and different node densities. We calculate the average number of nodes in

each Voronoi cell in each iteration. The communication cost drops dramatically

after a couple of iterations and the algorithm typically stops after a small constant

number of iterations.

5.5 Conclusion

This chapter is a follow-up work of Chapter 4 [70] solving the localization

problem using connectivity information only. We develop a new landmark selection

algorithm using incremental Delaunay refinement method in a distributed manner.

The new algorithm keeps the good properties (global rigidity and coverage) needed

for localization, and yet is not dependent on network boundary detection. This

allows for a more robust algorithm, less sensitive to the noisy results of boundary
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(i) (ii) (iii)

Figure 50: Running our algorithm on different topologies. The first row is windows shape,

6495 nodes, avg. degree 9.97. The second row is sun shape, 5217 nodes, avg. degree 10.3.

The third row is flower shape, 8350 nodes, avg. degree 9.14. The fourth row is music shape,

6176 nodes, avg. degree 10.2. Columns: (1) the ground truth. (2) the embedded landmark

nodes. (3) all the nodes embedded using multi-lateration to the closest landmark nodes.
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Figure 51: The average size of the Voronoi cell in each iteration until the algorithm stops.

The size of the network varies from 2680 to 4361.

detection and avoids its high computation cost. Thus our new algorithm is more

applicable in practice, performing well in networks with low average degree and

complex shapes.



Chapter 6

Conclusions and Future Work

In this thesis, we contribute a comprehensive framework for discovery of

sensor network geometry and topology, apply it to several challenging problems:

Boundary Recognition, Homology Computation, Layout and Localization. Specif-

ically, this thesis involves the following works: 1). to develop a simple, distributed

algorithm to detect the nodes on the boundaries in a sensor network by using only

connectivity information. We can connect those boundary nodes into meaningful

boundary cycles and obtain the medial axis of the sensor field as a byproduct. 2).

to introduce a new feature size for bounded domains, which measures the size of

the smallest topological feature of the domain. From this feature size, combined

with the concepts of geodesic Delaunay triangulations and witness complexes, we

can compute a homology of the original domain. 3). to propose a distributed algo-

rithm to discover and recover the layout of a large sensor network having a complex

shape, avoid global flips where a part of the network folds on top of another. Based

on the layout, we will also get a practical and accurate localization algorithm for

large networks, with only network connectivity information. 4). to develop a new

landmark selection algorithm with incremental Delaunay refinement as a follow up

to the previous algorithm. The new algorithm does not assume any knowledge of

the network boundary and runs in a distributed manner to select landmarks incre-

mentally until both the global rigidity property and the coverage property are met.

All of our works have the following properties: Only connectivity information is

required. They do not depend on Unit Disk Graph model. All methods will work

119
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even for networks with low degree and low density. These properties reflect the

requirements from practical scenario.

There are lots of potential working directions as follow-up of our works in the

field of geometry and topology discovery based only on connectivity information.

1. Our current works only consider static scenario, one direction of future works

is to extend them to mobile sensor networks such as applying current bound-

ary detection algorithm to mobile scenarios, then we can make mobile nodes

map an unknown environment.

2. All our current works are limited in planar graph. A natural idea is to in-

vestigate the possible solutions for these problems in 2-Dimension manifold

or 3-Dimension. Some ideas in this thesis also can be applied on Surface

Reconstruction problem in Graphics area.

3. There are more theoretical works to be done. For both our boundary detec-

tion work as well as layout and localization work, we proved rigorously the

correctness of the algorithms for a continuous geometric domain case. One

of the future works is to give a theoretical performance guarantee for the dis-

crete network under mild assumptions of node density and communication

models.

4. How to improve the performance of our results for very sparse network? Our

methods will work very well for the network with average degree around

6 or higher, which is the most preferred average degree in practical network.

However, there are still a lot of real scenarios which could have lower average

degree in sparser network. No known efficient ways to solve geometry and

topology discovery problems in very sparse networks yet.
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[46] S. Funke and N. Milosavljević. Guaranteed-delivery geographic routing un-

der uncertain node locations. In INFOCOM ’07: Proceedings of the 26th

Conference on Computer Communications, pages 1244–1252, 2007.

[47] S. Funke and N. Milosavljevic. Network sketching or: “how much geometry

hides in connectivity? - part II”. In SODA ’07: Proceedings of 18th ACM-

SIAM Symposium on Discrete Algorithms, pages 958–967, 2007.

[48] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sen-

sor networks. In SENSYS ’03: Proceedings of the 1st international conference

on Embedded networked sensor systems, pages 138–149, 2003.

[49] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.

Complex behavior at scale: An experimental study of low-power wireless sen-

sor networks. Technical Report UCLA/CSD-TR 02-0013, UCLA, 2002.

[50] J. Gao, L. Guibas, S. Oudot, and Y. Wang. Geodesic delaunay triangulation

and witness complex in the plane. In SODA ’08: Proceedings of 19th ACM-

SIAM Symposium on Discrete Algorithms, pages 571–580, 2008.

[51] J. Gao, L. Guibas, S. Oudot, and Y. Wang. Geodesic delaunay triangulations

in bounded planar domains. In special issue of Transactions on Algorithms on

SODA’08, to appear.



BIBLIOGRAPHY 127

[52] R. Ghrist and A. Muhammad. Coverage and hole-detection in sensor networks

via homology. In IPSN ’05: Proceedings the 4th International Symposium on

Information Processing in Sensor Networks, pages 254–260, 2005.

[53] D. Goldenberg, P. Bihler, M. Cao, J. Fang, B. D. Anderson, A. S. Morse, and

Y. R. Yang. Localization in sparse networks using sweeps. In MOBICOM ’06:

Proceedings of the 12th annual International Conference on Mobile Comput-

ing and Networking, pages 110–121, 2006.

[54] D. Goldenberg, A. Krishnamurthy, W. Maness, Y. R. Yang, A. Young, A. S.

Morse, A. Savvides, and B. Anderson. Network localization in partially local-

izable networks. In INFOCOM ’05: Proceedings of the 24th Conference on

Computer Communications, pages 313–326, 2005.

[55] C. Gotsman and Y. Koren. Distributed graph layout for sensor networks. In

GD ’04: Proceedings of the International Symposium on Grpah Drawing,

pages 273–284, September 2004.

[56] J. E. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Graduate

Studies in Math., AMS, 1993.

[57] L. G. Guibas and S. Y. Oudot. Reconstruction using witness complexes. In

SODA ’07: Proceedings of 18th ACM-SIAM Symposium on Discrete Algo-

rithms, pages 1076–1085, 2007.

[58] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[59] M. Held. Voronoi diagrams and offset curves of curvilinear polygons. Com-

puter Aided Design, 30(4):287–300, Apr. 1998.

[60] B. Hendrickson. Conditions for unique graph realizations. SIAM Journal on

Computing, 21(1):65–84, 1992.

[61] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths

in the plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.



BIBLIOGRAPHY 128

[62] A. Howard, M. Mataric, and G. Sukhatme. Relaxation on a mesh: a formalism

for generalized localization. In IROS ’01: In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 1055–1060,

2001.

[63] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31(1):7–15, 1989.

[64] B. Karp and H. Kung. Gpsr: Greedy perimeter stateless routing for wireless

networks. In MOBICOM ’00: Proceedings of the 6th annual International

Conference on Mobile Computing and Networking, pages 243–254, 2000.

[65] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made

practical. In NSDI ’05: Proceedings of the 2nd USENIX/ACM Symposium on

Networked System Design and Implementation, pages 217–230, May 2005.

[66] S. G. Kobourov, A. Efrat, D. Forrester, and A. Iyer. Force-directed approaches

to sensor network localization. In ALENEX ’06: 8th Workshop on Algorithm

Engineering and Experiments, pages 108–118, 2006.

[67] A. Kolmogorov and V. Tikhomirov. ε-entropy and ε-capacity of sets of func-

tions. Translations of the AMS, 17:277–364, 1961.
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