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Abstract of the Dissertation 

Experimental Evolution of rutabaga Suppression 
 

by 

Michael Jason Cressy 
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In 
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2011 

 

 

One of the challenges to understanding the relationship between genotype and 

phenotype is that complex phenotypes, such as learning and memory, emerge from 

interactions amongst groups of genes.  Despite its widespread relevance, the nature of 

multi-gene interactions are ill understood, in part, because most genetic studies are 

limited to pair-wise studies.  To investigate this question, a novel approach was 

developed and implemented in Drosophila, using the biologically important and clinically 

relevant cAMP pathway as a model.  I used selective breeding to evolve combinations 

of alleles capable of suppressing the learning defect of mutations in the rutabaga 

adenylyl cyclase gene.  Unlike a classical suppressor screen, the use of experimental 

evolution allowed me to explore the potential impact of gene interactions among more 

than two loci.  And unlike a classical selective breeding experiment, the genetic 
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variability was constrained to a set of 23 known loci, providing access to the underlying 

causal alleles.  After 41 generations a clear response to selection was observed.  

Remarkably, selected groups had performance at levels approaching that of wild-type 

despite the fact that all animals were homozygous for a null allele of rutabaga.  High 

throughput genotyping and multivariate analyses lead to identification of loci underlying 

the selection response.  Using independent genetic experiments, I then exhaustively 

tested the effects of each of the identified loci as well as of all di-allele combinations. 

One of the 8 loci partially but significantly suppressed rutabaga on its own. Simulations 

of the lab evolution experiment indicate that combinations of up to 5 loci could feasibly 

have been selected. Interactions involving 6 or more loci likely could not.  Taken 

together, the findings in this thesis support the idea that multiple combinations among 

even a limited set of loci are capable of bypassing the requirement for a central player 

such as rutabaga.  This speaks to the remarkable flexibility of gene networks.  

Understanding how gene networks are modified in response to a selective pressure can 

help to model complex phenotypes, including those associated with human disease. 
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Introduction 

 

Historical Perspective on genetics of traits  

 Understanding phenotype to genotype relationships is a fundamental goal in the 

study of genetics.  Gregor Mendelʼs studies on pea plants established the laws of 

segregation and independent assortment, and helped to model a basic understanding of 

the patterns of gene inheritance (Hartwell et al. 2000).    

 In the early 1900ʼs Thomas Morgan Hunt established the fruit fly Drosophila 

melanogastor as a model to study the Mendelian model of inheritance. The first 

mutation (white,w),  was discovered serendipitously, and was later found to be a 

spontaneous sex-linked mutation in the w gene giving the flies white eyes (Hartwell et 

al. 2000).  Studying the pattern of inheritance in w mutants emphasized how mutations 

could give us the necessary insight on how a single gene can affect a phenotype.  Over 

the next hundred years the large-scale induction of mutations would be the standard 

procedure for identifying genotype to phenotype relationships.  

 

Forward mutagenesis to identify genotype to phenotype relationships  

Forward mutagenesis has been the workhorse for identifying large numbers 

mutations is genes that have substantial phenotypic effects. The first mutagen that was 

widely used was X-rays.  H.J. Muller, a student in Morganʼs lab was the first to show 

that X-rays can cause mutations in genes (Muller 1927).  Mutations that had a large 

phenotypic effect were uncovered using this method.  This approach of mutating the 

genome is effective, however a drawback of this approach is that it causes large 
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deletions and chromosome rearrangements, making it difficult to identify the causal 

gene.  It wasnʼt until much later that chemical mutagenesis was perfected, giving 

scientists the ability to lesion single genes.  Saturation mutagenesis screens were able 

to identify mutations every gene in the genome at least once.  In practice, it is unlikely 

that for a given screen all genes were uncovered that affect the phenotype of interest, 

but it was a huge step forward in high through-put identification of mutations with 

importance to a given phenotype.  

The early chemical mutagenesis screens were done using Ethyl methane 

suplhonate (EMS), an alkylating agent that induces point mutations (Lewis 1968).  In the 

early 1980ʼs Christiane Nusslein-Volhard and Eric Wieschaus performed the most 

exhaustive and informative saturation forward mutagenesis screen using EMS. This 

screen was remarkable because it attempted to identify all genes necessary for the 

development of the Drosophila embryo (Nusslein-Volhard and Wieschaus 1980).  By 

looking at segmentation defects in the larvae of Drosophila, genes were identified that 

could be parsed into a distinct hierarchical pathway, reviewed in (St Johnston and 

Nusslein-Volhard 1992).  In the fertilized Drosophila egg the maternal genes bicoid and 

hunchback express mRNAʼs in a gradient from anterior to posterior and mRNAʼs from 

the genes caudal and nanos are expressed in a gradient from posterior to anterior.  The 

expression pattern of these maternal effect genes activates gap genes that have 

expression patterns in broad segments in the developing embryo.  The broad pattern of 

the gap genes set up the more specific expression pattern of the pair-rule genes.  The 

pair-rule genes express in a 7-stripe pattern in the embryo.  Finally, the segment polarity 

genes are the last genes to be expressed in segmentation, and have a 14-stripe 
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pattern.  Importantly, this screen highlighted that the gene requirement for this intricate 

process is relatively small, and it is possible to construct this process using forward 

mutagenesis to identify the necessary components.   

In parallel with the above saturation screen for developmental biolgy, a similar 

approach was used to dissect behavior. An EMS screen was done in the lab of 

Seymour Benzer, using an olfactory learning paradigm where flies were conditioned to 

associate an odor with an electric shock.  Known as the Quinn Harris Benzer (QHB) 

assay, it was used to uncover X chromosome mutations that had learning defects 

(Quinn et al. 1974).   This screen isolated mutations in genes of the cAMP cascade, the 

canonical pathway to memory in Drosophila (discussed below).  Central components of 

this pathway, dunce(dnc) and rutabaga(rut), later identified as a type IV phospo-

diesterase and a Ca++ responsive adenlyl cyclase respectively, were the first genes 

identified (Dudai et al. 1976; Livingstone et al. 1984).  This was the first screen for 

individual genes that have a role in learning and memory in Drosophila.  One limitation 

to EMS mutagenesis screens is that molecular identification of the causal loci is very 

labor intensive.  

Subsequently, transposon insertion mutagenesis was developed in part to 

facilitate cloning of the affected loci.  The p-element is a transposable element that has 

been engineered to lack mobilization in our strains.  When transposase, the protein that 

induces mobilization is introduced, the p-element can mobilize “jump” randomly into the 

genome.  This method of mutagenesis is elegant because unlike EMS, the engineered 

p-element has a mini-white gene that when inserted into the genome of a white-eyed fly 

will be expressed and easily tracked.  Therefore only novel mutants will be tested for the 
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phenotype of interest.   Another advantage of this approach is that with the sequencing 

of the Drosophila genome the precise location of the insertion of the P-element can be 

identified, simplifying the ability to track the allele (Searles et al. 1982).   

Over the next 20 years several additional screens were done to uncover genes 

involved in learning and memory (Boynton and Tully 1992; Dura et al. 1993; Kamyshev 

et al. 2002; Dubnau et al. 2003).  The largest, (the Hartford screen) was a near 

saturation mutagenesis screen performed in the lab of Tim Tully in the 1990ʼs to identify 

autosomal mutations that have a role in memory.  The screen used a modified version 

of the QHB assay (see below), and identified over 55 new mutations (Dubnau et al. 

2003).  A subset of these mutations will form the core of this thesis. 

The first screens identified the cAMP pathway as the canonical pathway for 

learning and memory in Drosophila, however, most of the alleles identified in the 

Hartford screen are not part of this pathway.  This makes it difficult to place this network 

of alleles important for learning and memory, into a mechanistic context.  Typically, 

scientists have relied on epistasis to discover how genes interact. 

Uncovering genotype to phenotype relationships has long been the motivation for 

geneticists from Mendel to Benzer.  Over the course of the last 100 years many genetic 

tools have been used to tease apart these relationships.  Genetic screens have proven 

to be the one of the most influential tools in modern genetics, and have identified many 

genes important in phenotypes ranging from genes involved in memory to pathways 

important for human disease.     

Forward genetic screens have been essential for identifying genes important for 

a phenotype, but a limitation of this approach is that it can only identify individual genes.  
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Understanding the role of individual genes for simple traits is helpful, but understanding 

the role of a gene in a mechanistic sense by definition involves understanding gene 

interaction.  Uncovering gene interactions can provide us with an understanding of the 

mechanisms of both biochemical pathways and the inheritance of complex traits.      

 

Enhancer suppressor screens and epistasis   

Enhancer/Suppressor screens have been essential in finding interacting genes 

and also in identifying biochemical pathways in Drosophila.   One classic example is the 

set of experiments done in the lab of Gerry Rubin to identify genes in the Ras pathway 

(Gaul et al. 1993; Karim et al. 1996; Chang and Rubin 1997; Therrien et al. 1998; Karim 

and Rubin 1999; Rebay et al. 2000; Therrien et al. 2000).  The Drosophila compound 

eye has a stereotypical ordered ommatidial structure.  Each ommatidium consists of 

eight photoreceptors, four cone cells, and a bristle. The last photoreceptor to 

differentiate is dependent on the receptor tyrosine kinase (RTK) sevenless (sev), as well 

as the ligand bride of sevenless (boss) (Simon 1994).  Studies have shown signaling 

cascades to function downstream of RTKʼs (see (Margolis and Skolnik 1994) for 

review).  A mutation in sev or in boss results in flies that a rough eye phenotype.  The 

rough eyed phenotype was utilized to identify genes that interact downstream of sev.  

This approach would identify alleles that interact with sev by affecting the roughness of 

the eye.  Using a gain of function allele of sev as the background, a second site 

mutagenesis screen was done to identify alleles that interact with sev.  Alleles that 

suppress the rough-eyed phenotype would yield eyes that revert to a more wild-type 

appearance.  Alleles that enhance the phenotype would give the eyes a more rough 
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appearance (Simon 1994).  There were several downstream genes that were identified 

in this screen including the Ras1, a gene that encodes for a small GTPase.  The Ras 

pathway plays a pivotal role in many biological processes in organisms across phyla.  

Disruptions in the Ras pathway can lead to many different diseases including cancer in 

humans (Aoki et al. 2008)   

Subsequently the group took an activated form of Ras1 expressed in the eye, 

and performed a series of screens to identify dominant downstream components of the 

pathway (Karim et al. 1996; Chang and Rubin 1997; Therrien et al. 1998).  The 

identified genes included the downstream components Raf, the first kinase in the MAP 

kinase cascade as well as other genes in this pathway.  Using pair-wise interactions, 

and the effect these interactions had on the roughness of the eye, a biochemical 

pathway was assembled.  This technique was remarkable in identifying the constituents 

of this linear pathway, yet some complex traits are likely to involve many genes that 

interact in networks of activity, and not necessarily in a linear fashion.  Identifying 

interactions in a network of genes may be difficult to obtain by studying pair-wise 

interactions.  A classic modifier screen approach does not fully model the complexity of 

the gene interactions. 

 Epistasis is a genetic feature that has historically had several definitions, but has 

been difficult to study in the context of population genetics.  What role does epistasis 

play in natural selection and evolution? The idea of epistasis goes back over 100 years 

when the term was first defined by Bateson in his book describing Mendelʼs work 

(Bateson 1909), and since then the term has been used generally to explain interactions 

between genes. The various definitions have been categorized into three main ʻtypesʼ of 
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epistasis reviewed by (Phillips 2008).  Functional epistasis explains protein-protein 

interactions, and compositional epistasis explains the effect genetic background has on 

a given allele. The final type of epistasis is statistical epistasis, this is the type of 

epistasis that was first described by (Fisher 1918) which describes any interaction that 

is non-additive. This statistical definition of epistasis is the form that I will discuss and 

apply in this thesis.  An important aspect of epistasis for the purpose of this thesis is that 

non-additive interactions can skew the expected phenotypic output outside the expected 

range (Dubnau and Tully 1998). 

A study by Bruno van Swinderin and Ralph Greenspan helped to further the 

understanding of how epistatic multi gene interactions can affect a phenotype.  They 

tested multi gene interactions in the context of a specific behavior (van Swinderen and 

Greenspan 2005).  A mutation in the gene syntaxin1A causes flies to display a bottom 

dwelling phenotype when heated to 39 degrees (Littleton et al. 1998).  A collection of 

EP lines was then crossed to the syx1A mutant to measure how trans heterozygous 

interactions affect the bottom dwelling phenotype.  EP lines contain a P-element 

transposon with a constitutive promoter that expresses the immediate downstream gene 

of where it inserts.  From this small scale screen a network of 16 genes were identified 

to interact with syx1A.  This network was then tested in the presence and absence of 

syx1A.  The results from this experiment suggest that even from a small network of 16 

genes, epistasis is prevalent.  All possible effects on the stability of a given gene 

interaction were observed.  There are interactions that are unchanged in the presence 

or absence of syx1A and there are also interactions that completely change sign.  

Negative interactions become positive and vice versa.  These experiments suggest that 
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networks are extremely flexible.  Perturbations cause the network to shift and 

compensate for the absence of an important gene.  What non-additivity says about the 

underlying variation is that interactions of genes in different contexts can result in 

profound phenotypic changes.  This ʻcryptic variationʼ may underlie the flexibility in gene 

networks.     

In the lab we artificially substitute alleles and measure phenotypes, however in 

natural populations there may be thousands of allelic variants in a population and how 

these different alleles interact may have an impact on evolution.  If an epistatic 

interaction gives an organism a selective advantage it is likely that it would become 

pervasive in populations.  In this thesis, I exploited variation and the flexibility of gene 

networks to compensate for the loss of a canonical learning and memory mutant. 

 

Artificial bidirectional selection for quantitative traits   

 Another method scientists have used to identify genotype to phenotype 

relationships is by performing artificial selection experiments.  Selection has been used 

for tens of thousands of years to domesticate plants and animals.  In a Ralph 

Greenspan review on selection, he makes a compelling argument that almost any 

quantitative trait can be altered in either direction (Greenspan 2003).  In one of the first 

screens using Drosophila, F.E. Lutz used selection to screen for differences in wing vein 

morphology (Lutz 1911).  In 1927, Robert Tryon started his landmark experiments on 

maze learning in rats (Tryon 1940).  This was one of the first experiments that used bi-

directional selection for learning.  Tryon used a food reward assay to measure maze 

“bright” and maze “dull” pure breeding lines.   Rats were placed in a seventeen choice 
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blind T-maze and each rat was tested in the maze 19 times.  Rats were scored on the 

amount of wrong choices made until they eventually traversed the maze to get to the 

food reward.   After each of the trials “bright” rats were mated with “bright” rats and “dull” 

rats the same.  The less times a rat entered the blind alley the “brighter” the rat.  The 

selection was carried on for 18 generations and at the end, the two strains of rats had a 

score consistent with what their respective “genotype” inferred.  

In the 1950ʼs, Jerry Hirsch would start one of the longest selection experiments 

to date.  Drosophila melanogastor are negatively geotactic, having a tendency to run 

against the force of gravity.  Hirsch and a constant rotation of undergraduate students 

took a heterogeneous population of flies and selected for high and low geotactic 

behavior for over 500 generations, spanning over 35 years (Ricker and Hirsch 1985).   

During the first 50 generations of selection the two lines started to deviate from the 

mean of the ancestral population. Between generations 50 and 100 the two lines 

reached asymptotic levels.  The levels were at the extremes of the geotactic assay.  

During the course of the experiment there were periods of time where selection was 

relaxed, and during these times the scores of the lines would start to regress back to the 

score of the founding population.  When selection was restarted the lines quickly 

returned to asymptotic levels.  These results indicate that even though the separate 

lines had already reached asymptote there was enough heterogeneity present to bring 

the populations back to wild-type, and also that this heterogeneity is likely involving 

interactions amongst heterozygotes.   

These observations imply that after hundreds of generations the necessary 

genetic elements for geotaxis had not yet reached fixation, and for what may seem to 
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be a simple behavior, the genetic requirement is complex.  For example, the fact that it 

required approximately 100 generations to reach fixation indicates that multiple loci are 

involved.  But because the underlying variants are not known one cannot identify the 

structure of the gene interactions. 

There are important observations that can be made from pre-genomic selection 

experiments.  First, genetics underlies complex behavioral phenotypes, and multiple 

gene interactions are driving the selection response.  It also seems to be that epistasis 

is not the exception but more likely the rule.  An important limitation should also be 

mentioned.  One cannot even start to understand the mechanisms of gene interactions 

because these experiments cannot identify the causal genes. 

In the era of genomics two methods have been used to attempt to identify the 

causal genes in multi-generation selection experiments.  The first is quantitative trait loci 

(QTL) mapping.  In QTL analysis a reference strain with many genetic markers is 

established.  A series of crosses are then made between the strains that have the 

phenotype of interest to the reference strain. Markers of interest are identified that 

segregate with the phenotype.  It must be noted that the resolution of this method is 

limited by recombination to narrow down the region that is statistically associated with 

the trait.  In practice, this can identify chromosomal regions, but rarely leads to 

identification of the causal gene.  This method was used in a study by Trudy Mackay to 

identify loci important for longevity.  The results of this study identified no less than 11 

QTLʼs as important for longevity.  This indicates that longevity is a complex quantitative 

trait, but there is still difficulty in identifying single causal genes (Mackay 2002). 
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With the advent of genome sequencing, a second method attempting to identify 

genes in multi-generation selection studies was used.  Micro-arrays are a platform that 

can measure expression differences in individual genes covering most of the genome.   

RNA is isolated from tissue and hybridized to a cDNA platform that contains most if not 

all genes in the genome.  This method of detecting expression differences could be 

used to determine differential expression patterns in selected lines (Toma et al. 2002; 

Dierick and Greenspan 2006; Edwards et al. 2006).   

Simultaneously, in two labs (Dierick and Greenspan 2006; Edwards et al. 2006) 

this method of identifying genes was implemented in a selection experiment done 

looking at aggression.  I will detail one of them, done in the lab of Ralph Greenspan.  

Drosophila like many organisms display aggression when competing for a food source 

or a mate (Baker 1983).  Defending these scarce resources in the wild gives the 

aggressor a better chance of passing on its genes to the next generation.   

The selection was done much the same way as classical selection experiments.  

Four populations of flies were used in this selection, two controls and two populations 

selected for increased aggression.  Males that displayed increased aggression in the 

two experimental populations were the flies used to seed the next generation.  In 21 

generations the flies in the experimental populations showed a significantly higher level 

of aggression than the unselected flies.  This was measured with a variety of aggression 

assays, including frequency of fighting, the latency of fighting, and also the intensity of 

fighting.  These results are not surprising given the history of selection experiments.  

What was exciting about this selection was with the advent of sequencing and micro-

array technology these populations could be assayed to determine if there are gene 
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expression differences comparing the aggressive populations to the control populations.  

This is precisely what was done in this selection.  RNA from the heads from control and 

experimental populations were isolated and assayed for expression levels.  One gene 

Cyp6a20, a cytochrome gene, was found to have an increased expression level in the 

selected populations.  When this gene was tested on its own the flies had an increased 

level of fighting frequency.  Unlike past selection experiments, this selection was 

important because it was one of the first attempts to identify what gene or genes were 

contributing to the response to selection.  However, an important limitation is that this 

identified transcriptional changes, but not genotype changes.  Therefore, the identified 

genes could be and likely are responses to the genotype, not the selected alleles 

themselves.  These results are very important in the search for gene interactions 

contributing to selection.  Identifying individual genes that have a clear role in the 

selected behavior is important but identifying how multi-gene interactions evolve to do 

this is still not well understood.  

Selection experiments have had a profound impact on the way we think about 

phenotypes.  The fact that almost any trait can be bi-directionally selected lends 

credence to the flexibility of gene networks.  Also, phenotypic extremes outside of the 

normal range hint at the vast genetic variability in populations.  Uncovering these 

variations has been a difficult task.  In this thesis I attempted to identify gene 

interactions in a constrained network of genes important for learning and memory.  

 

Learning and Behavior in drosophila 

 Seymour Benzer showed great insight in believing that by mutating individual 
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genes we can determine the genetic requirements for behavior.  His use of mutagenesis 

(see above) was an important step in building a foundation for the modern study of 

learning and memory in Drosophila. In 1985, in the lab of Chip Quinn, Tim Tully and 

Quinn developed the T-maze (TQ), a Pavlovian associative conditioning assay that is a 

modification, but much more robust version of the QHB assay (see above)(Tully and 

Quinn 1985).  In the TQ t-maze, flies are tested 100 at a time.  They are presented with 

an odor, the conditioned stimulus (CS+) paired with an electric shock, the unconditioned 

stimulus (US).  After a brief period of rest flies are presented with a second odor in the 

absence of an electric shock (CS-).  Flies that learn this association when given a 

choice between the two odors will avoid the CS+.  

 Genetic dissection has suggested the existence of four mechanistically distinct 

stages of memory consolidation.  There are two phases that are measured after 1 

training session. Short-term memory (STM) and Middle term memory (MTM), which are 

tested 2 minutes and 3 hours after training respectively. There are also two forms of 

consolidated memory measured 24 hours after training.  The protocol for this training is 

slightly different than what is used for STM and MTM. Long-term memory training (LTM) 

and anesthesia resistant memory (ARM) (Quinn and Dudai 1976; Folkers et al. 1993; 

Tully et al. 1994a; Tully et al. 1994b; Dubnau et al. 2003; Chen et al. 2008), makes use 

of automated training machines.  

 The first two STM mutants uncovered were dnc and rut, both of these mutants 

display defects when tested in the T-maze at two minutes after training.  It is worth 

noting that neither of these mutants is totally devoid of STM.  They perform in the TQ 

assay at a level about 50% of wild-type.  For review see (Dubnau and Tully 1998).  
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 LTM is protein synthesis dependent and is only induced with repetitive spaced 

training.  Spaced training consists of 10 repeated training sessions with a 15-minute rest 

interval between trainings, and lasts for up to 7 days.  LTM can be disrupted by feeding 

flies cyclohexamide, a protein synthesis inhibitor (Tully et al. 1994b).  Several mutations 

that affect learning and memory can be parsed into one or more of these 

mechanistically distinct pathways.    

 Consolidated memory has 3 phases, acquisition, consolidation, and retrieval.   

When considering the Pavlovian conditioning paradigm using the T-maze, acquisition is 

the phase in which the flies learn an association of the odor with a foot shock.  During 

the consolidation phase the flies are storing this associative memory and it is protein 

synthesis dependent.  Retrieval is important when recalling the memory after training.  

 

The role of the cAMP pathway in learning and memory 

 Work in several labs over the past 3 decades has assembled a canonical pathway 

to learning and memory in Drosophila.  The first mutation characterized in the Benzer 

screen was dnc, a mutation that had a defect in cAMP phosphodiesterase activity 

(Byers et al. 1981; Davis and Kiger 1981).  The cAMP signaling pathway was 

established in mammals and reverse genetics could be used to identify the homologous 

Drosophila proteins.  This is precisely what was done to identify rut as being defective in 

the cAMP pathway.  The experiments done on rut revealed that it was defective in 

adenylyl cyclase activity(Livingstone et al. 1984).  Moreover, rut is the only calmodulin/ 

Ca++ stimulated adenlyl cyclase in Drosophila.  Further work showed that this mutation 

was caused by a point mutation in the catalytic portion of the protein (Levin et al. 1992).   



 15 

 These discoveries of cAMP components in Drosophila being necessary for 

learning and memory are convergent with work in other model organisms.  The sea slug 

Aplysia californica served as one of the organisms that would further our understanding 

of the importance of cAMP as it pertains to learning and memory.  Non-associative and 

associative forms of memory, as well as both short and long term plasticity, have been 

thoroughly studied in Aplysia (reviewed in (Alberini 1999)).  This work in Aplysia 

identified important components of the cAMP pathway.  Because of the importance of 

the cAMP pathway, subsequent reverse genetic manipulations were used to establish 

roles for each additional components of this pathway.   

 Putting together the findings from Aplysia with those from Drosophila, the following 

model emerges.  The pathway starts with a g-protein coupled receptor, in the aversive 

Pavlovian assay in flies, this is thought to be the dopamine receptor (Han et al. 1996; 

Kim et al. 2003).  Upon activation of the DA1 receptor and a simultaneous influx of 

calcium into the cell (driven by odors), the adenlylyl cyclase (rut, in Drosophila) is 

activated.  Rut will sequester ATP and convert it to cAMP, a secondary messenger.  

cAMP can either be degraded by dnc (phosphodiesterase), or signal downstream.  

cAMP and PKA can have local signaling consequences resulting in short term 

plasticity/memory.  Or cAMP signaling can activate transcription in the nucleus, thought 

to be involved in LTM. An elevated level of cAMP in the cell causes a localization of the 

catalytic sub unit of protein kinase A (PKA) into the nucleus.  This translocation of the 

PKA catalytic sub unit activates the transcription factor cAMP response element 

(CREB). CREB has a well documented role in memory in animals across phyla (Lonze 

and Ginty 2002).   
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 Work in several labs has identified a role for many of these proteins in learning and 

or memory.  For this thesis I will focus on the adenylyl cyclase rut.  The role of rut in 

learning and memory has been well characterized (Margulies et al. 2005; Blum et al. 

2009). However, rut animals in the T-maze have a performance index (PI) that is about 

50% of wild-type.  Rut is a null mutant, but it does not abolish STM.  This indicates that 

there is a component to STM that is rut independent.  Finding components of the rut 

independent pathway has been difficult, although recent work in the lab of Ron Davis 

has identified Gilgamesh (gish), which encodes a casein kinase, as a required 

component (Tan et al. 2010) and work in the Dubnau lab suggests that the NR1 subunit 

of the NMDA-receptor also supports rut independent memory (Qin and Dubnau, 2010).  

The cAMP signaling pathway has been localized anatomically to the mushroom bodies 

(MB), a neuropil structure located in the dorsal posterior region of the Drosophila brain.  

 

Neural Circuits for Olfactory Memory 

 The corpora pedunculata, or Mushroom Bodies (MB) are the anatomical structure 

essential for olfactory learning and memory.  This role was first identified in honeybees, 

(for review see (Menzel et al. 1996).  The importance of the MB in Drosophila for 

learning and memory has been extensively studied.  In response to an odor, two 

sensory organs, the antennae and maxillary palps send a signal through sensory 

neurons to the antennal lobes.  Projection neurons are than relayed from the antennal 

lobes to the mushroom bodies.  Projection neurons synapse onto a region of the 

mushroom body called the calyx.  Each hemisphere of the calyx contains about 2500 

neurons referred to as Kenyon cells (Strausfeld et al. 1998; Jefferis et al. 2002).  
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Kenyon cells send axonal projections into 5 lobes consisting of 3 cell types.  All axonal 

projections are tightly bundled in the peduncle.  Gamma neurons form gamma lobes 

that project horizontally.  Alpha/beta neurons have two branches, the alpha branch 

forms the alpha lobes, and the beta branch forms the beta lobes.  The alpha and beta 

prime lobes wrap around the alpha and beta lobes but are developmentally distinct from 

the alpha beta lobes (Lee et al. 1999).  Some of the initial experiments in Drosophila 

identified mutants that have structural defects in the MB (Heisenberg et al. 1985).  In 

that study, two mutants were identified mushroom body miniature (mbm) and mushroom 

body deranged (mbd).  These structural mutants had severe axonal projection defects, 

and failed to associate an odor with a shock.  Although learning is abolished, flies can 

discriminate odors normally.  The results from this study implicate the MB as the site for 

learning and memory, however these mutants also have defects on other brain regions.  

Therefore, a more specific manipulation of the MB is necessary.   

 This was accomplished first by chemical ablation.  During development feeding the 

flies hydroxyurea at a specific developmental time when only mushroom body 

neuroblasts are dividing, causes defects in the formation of the MB.  Flies that have 

been fed hydroxyurea are devoid of learning and memory when measured using the T-

maze (de Belle and Heisenberg 1994).  These two studies pinpoint the MB as the 

learning and memory center of the Drosophila brain.   

 The two previous sections have described the cAMP pathway as being necessary 

for learning and memory as well as the MB as the anatomical site of those behaviors.  

The following set of studies used manipulations of individual genes in the MB required 

for normal cAMP signaling.  
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 The cAMP pathway relies on the activation of a G-coupled protein receptor 

(discussed above).   In (Connolly et al. 1996) they took a constitutively activated form of 

the GαS subunit of the G-coupled protein receptor and expressed it specifically in the 

MB using the Gal4 UAS system.  Expressing GαS in the MB completely abolishes 

learning.  These experiments led to testing the downstream components of GαS One of 

the downstream components in the pathway is rut.  The requirement of rut has been 

localized to specific regions of the MB (Zars et al. 2000).  In that study, a panel of Gal4 

strains with specific lobular expression of rut was used, and the requirement for rut for 

STM was localized to the gamma lobes of the MB.  Further manipulations or rut 

identified that the specificity changes from gamma lobes in STM to the alpha beta lobes 

in LTM (Blum et al. 2009).  These experiments were extremely insightful in the 

understanding of the specificity of individual genes requirement for memory.  

 The MB have a distinct role in learning and memory.  A large number of single 

gene mutants have been identified.  A few of these have been assembled into a 

pathway -- the cAMP-signaling pathway.  But the majority of genes are not assigned to 

a network or pathway.  

  

Summary  

 

 Over the past 150 years understanding genotype to phenotype relationships have 

been at the core of genetic studies.  Forward mutagenesis has uncovered tens of 

thousands of genes that have distinct roles in every imaginable phenotype. Pathways 

have been dissected using enhancer/suppressor screens, and selection experiments 
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have been used to select extremes for a myriad of phenotypes including every 

measurable quantitative trait.  Yet our understanding of how multi-gene higher order 

interactions contribute to phenotype is poorly understood.  This is especially the case 

when it comes to human disease.  

 To investigate the role of multi gene interactions in learning and memory I 

developed and implemented a novel approach in Drosophila using the cAMP pathway 

as a model.  I modeled an enhancer/suppressor screen but unlike a classic screen I 

used selective breeding to evolve combinations of alleles capable of suppressing the rut 

adenlyl cyclase gene.  And unlike a classical selective breeding experiment, the genetic 

variability was constrained to a set of 23 molecularly characterized loci with known 

involvement in memory. This strategy models the multi-gene interactions that influence 

naturally occurring variation in complex phenotypes, but also makes it feasible to fully 

genotype the causative loci across multiple animals.  

 Using this experimental design, a large-scale artificial selection was completed 

that spanned 41 generations.  A robust response to selection was observed, resulting in 

dramatic improvement in learning performance despite the fact that all animals remain 

null mutant for rut.  It is demonstrated using control populations that the selection 

response requires the presence of the characterized genetic variants indicating that 

heterogeneity at these 23 loci drive the response, highlighting the flexibility of gene 

networks. 

 I also genotyped 288 animals from each replicate population at two different 

generation time-points. Multivariate analysis of the high dimensional genotype data set 

identified alleles at 8 loci that explain much of the phenotypic effect.   Using 
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independent genetic experiments, I tested the effects on the rut learning defect with 

each of these 8 alleles in isolation, as well as each of the 28 di-allele combinations and 

several three-way combinations among them.  Remarkably, only one of the identified 

loci significantly suppresses the rutabaga learning defect on its own, and none of the 

possible 2-way combinations yields significant suppression.  I also tested a permissive 

allele hypothesis (Chapter 3) that did not yield suppression.  
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Chapter 2 

Suppressor screening by selective breeding: the evolution of adenylyl cyclase 

independent learning in Drosophila 

 

 

 

 

 This chapter is very similar to a manuscript in preparation for submission for 

publication.  Partha Mitra and Dan Valente made contributions to all sections, but made 

large contributions specifically in the sections containing statistical and multi-variate 

analysis.  

 

Introduction 

Natural populations of animals exhibit remarkably narrow ranges of phenotypic 

variation relative to the extent of underlying genetic heterogeneity.  The phenotypic 

effects of this hidden genetic variation can be revealed, however, in response to 

selective pressure, environmental stress or the presence of strong deleterious 

mutations.  The clinical severity of Mendelian genetic disorders, for example, can be 

modulated by variation at additional loci that on their own would have little clinical 

consequence. To investigate the modulatory impact of such cryptic genetic variation on 

a Mendelian trait, we used selective breeding over the course of more than 40 
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generations to evolve nearly normal levels of Pavlovian learning in fruit flies that carry 

null mutations in the rutabaga adenylyl cyclase. We constrained the starting genetic 

variability to a set of 23 loci with known impact in the learning assay, which provided a 

means to track the underlying genotypic response. We identified 8 out of 23 loci that 

appear to drive the selection response.  By testing the effects of each of the 8 loci and 

all di-allele combinations among them, we demonstrate that at least one locus can 

partially suppress the rutabaga learning defect on its own.  Our findings also support the 

conclusions that multiple genetic solutions underlie the selected suppression of 

rutabaga and that typical solutions involve interactions among several genes. 

The cAMP pathway is a conserved signaling mechanism known to underlie many 

forms of memory and learning (Alberini 1999; Heisenberg 2003; Davis 2005). Mutations 

in rut, the Drosophila calcium responsive adenylyl cyclase, result in severely reduced 

olfactory memory (Heisenberg 2003; Davis 2005; Margulies, Tully et al. 2005; Keene 

and Waddell 2007). We first established a selection procedure based on this learning 

assay that is capable of fractionating higher performing individuals from a genetically 

heterogeneous population (Fig. 2.1). We next applied this fractionation procedure to a 

multi-generational selection experiment to suppress the rut1 memory defect with 

combinations of alleles that had been identified in a forward screen (Dubnau, Chiang et 

al. 2003).   
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Materials and Methods 

 

Construction of starting populations: 

 As a starting point for this selection experiment, we created a founding population of 

animals in which the genetic variation was constrained to 23 transposon insertion derived 

alleles identified in a screen for mutants with memory defects (Dubnau, Chiang et al. 2003). 

The construction of the founder populations was guided by a theoretical analysis of the 

population heterozygosity. The number of possible genotypes with N loci grows 

exponentially with the number of loci.  Therefore, the entire genotype space cannot be 

realistically tested for as many loci as are examined in this study (N=23).  With a properly 

chosen founder population, however, it is possible to sample a large volume of genotype 

space in a realistic number of generations.  Because the number of generations in our 

study is small compared to the effective population size, our calculations show that use of 

founding animals that are homozygous for the mutant alleles at between 3 and 4 of the 23 

loci gives a marked increase in diversity over the case where each animal has just 1, while 

remaining within tractable experimental population sizes. 

Based on this analysis, we first created a series of 7 input strains in which each animal 

is homozygous for the rut1 null allele and homozygous for between 3 and 4 of the 23 

transposon alleles.  To minimize the effects of linkage between loci in the initial 

population, we selected the transposon-populated loci in each founding fly to be as far 

apart as possible (Dubnau, Chiang et al. 2003), maximizing the rate at which 

equilibration is expected to occur during the course of the experiment.  All 7 input 

strains were generated on the same inbred isolate (Wiso[CJ1]) from the standard 
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Canton S strain (Dubnau et al., 2003).  For construction of the 7 “3-mer” and “4-mer” 

strains (Table 2.1) each of the 23 P-element mutations (Dubnau et al., 2003) first were 

backcrossed for 5 generations to our wild type reference strain (w1118(isoCJ7) (Dubnau, 

Chiang et al. 2003). This strain was derived as an isogenic isolate from Canton Special 

(Tully, Cambiazo et al. 1994).   The 3-mer and 4-mer combinations (Table 2.1) then 

were assembled along with the rut1 homozygous mutant using standard genetic 

approaches.   Unlinked loci were selected for each of these 7 strains (each was 

confirmed with PCR, data not shown). 

The 8 populations were established as follows:  The two isogenic rut1 mutant 

populations were constructed by placing the X-linked rut1 allele into the w1118(isoCJ7) 

strain using Chromosome II and III balancers. The six populations with genetic 

heterogeneity were established by mixing the 7 rut1 mutant 3-mer and 4-mer strains 

(Table 2.1) in equal proportions. These were interbred for one generation with no 

selection.  After one generation of inter-breeding, six replicate populations were 

established from 200 breeding pairs in custom designed cressy population cages 

(CPCs).  Each was homozygous for rut1 and heterozygous for up to 8 of the 23 alleles. 

These populations were further divided into two experimental groups. Three (Morgan, 

Muller and Lewis) were subjected to experimental selection, and 3 (Sturtevant, Bridges 

and Dobzhansky) served as unselected experimental controls.  

 

Prediction of relaxation to linkage equilibrium 

The disequilibrium Dij between any pair of loci i and j is expected to exponentially 

decrease according to 
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where t is the generation number and rij is the recombination rate between the two loci 

(Mackay and Falconer 1996).  In addition, if one defines the homozygosity as the 

complement of the heterozygosity, ĤE = 1−HE, it can be shown that the two-loci 

homozygosity (in which an organism is considered homozygous only if each of two loci 

are homozygous themselves), also exhibits exponentially decaying behavior according 

to the equation 
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where 0ˆ
EH  denotes the initial two-loci homozygosity, and i

EĤ  and j
EĤ  denote the 

homozygosity for individual loci.  These measures taken together suggest that as 

generational time proceeds, equilibrium between any two loci is approached according 

to rij and heterozygosity between these two loci will increase according to the 

recombination rate as well.  Figure 2.2 shows a histogram of the relaxation times to 

equilibrium for all pairs of alleles on chromosomes II and III for the mutants which are of 

interest to this study.  The unselected lines will reach equilibrium in approximately 20 

generations.  Selection will, of course, modify this outcome. 
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Experimental Design: Theory 

 The creation of the founder populations was guided by a theoretical analysis of 

the population heterozygosity.  The number of possible genotypes with N loci grows 

exponentially with the number of loci.  Therefore, the entire genotype space cannot be 

realistically tested for as many loci as are examined in this study (N=23).  With a 

properly chosen founder population, however, it is possible to sample a large volume of 

genotype space in a realistic number of generations.  Because the number of 

generations in our study is small compared to the effective population size (and 

therefore small compared to the expected times to fixation), we can estimate the 

diversity of the population for the unselected case assuming Hardy- Weinberg 

equilibrium. Note that selection can in general be assumed to reduce this diversity, so 

the unselected or neutral considerations provide an upper bound for the expected 

genotypic diversity in the population. In the absence of linkage, two measures of 

population diversity can be defined: heterozygosity and entropy.  The heterozygosity, 

HE, is the expected probability that a given individual will be heterozygous at any given 

locus and is given by  
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where ( p1, p2, ... , pN ) is the allelic frequency distribution over the loci and qi = 1− pi.  
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Using the notion of ‘typicality’ in an information theoretical sense, the entropy can be 

used to describe the size of the population in which a ‘typical’ fly is represented once on 

average; this size is given by 2S.  

In the founding population, let each fly have k loci populated with transposons, in a 

homozygous or heterozygous manner. It follows that pi=k/N for homozygotes and 

pi=k/2N for heterozygotes. Both measures quickly increase for low values of k, 

suggesting that a more diverse population can be obtained with a founding population in 

which each fly has greater number of populated loci.  Our calculations show that choice 

of founding members with k=3 or k=4 gives a marked increase in diversity over k=1, 

while remaining within tractable experimental population sizes  (S=4.17, H= 0.017 for 

k=1; S=10.12, H=0.049 for k=3 ; S=12.65, H=0.064 for k=4). Note however that this 

design introduces linkages between loci in the initial population; we selected the 

transposon-populated loci in each founding fly to be as far apart as possible, 

maximizing the rate at which equilibration is expected to occur during the course of the 

experiment. 

 

Selection 

 

Each population consisted of approximately 200 breeding pairs, enough to give 

rise to > 5000 progeny. During the course of 41 generations, approximately 2000 

females and 2000 males were collected from the each of 4 selected populations (Mor, 

Mul, Lew and the rut1 isogenic selected population). These flies were trained in groups 

of 100 in a standard Pavlovian olfactory learning assay, and then fractionated in a T-
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maze choice between the paired (CS+) and unpaired (CS-) odor ((Tully and Quinn 

1985); see below). With each group of 100, flies that chose correctly were collected and 

pooled. These pooled flies were iteratively trained and tested until approximately 200 

males and 200 females that consistently chose correctly had been selected from the 

original 4000. These flies then were used to seed the next generation in the CPCs. For 

unselected populations (Bri, Dob, Stu and the rut1 isogenic unselected control), 

approximately 200 males and 200 females were randomly chosen to seed the next 

generation. During generations 1-20, all females that were processed through selection 

were collected as virgins.  After generation 20, this was relaxed (approximately 0-2 day 

old) animals were used to bias towards virgin females.  In order to control for odor bias 

selection, the odors used as CS+ and CS- were alternated from one generation to the 

next.  For all groups, 3-octanol (OCT) was used as the CS+ during even generations, 

and 4-methyl-cyclohexanol (MCH) for odd numbered generations. At each generation, 

an additional 800 animals from each of the 8 populations were used to quantify the 

mean learning performance for each population at each generation time point (see 

Pavlovian learning procedure below).  In addition, approximately 288 animals per 

population were frozen for genotyping after each generation (see genotyping below).  

 

Pavlovian learning procedure: 

 

 2-3 day old flies were trained and tested for 2-minute memory performance using a 

standard Pavlovian olfactory conditioning paradigm(Tully and Quinn 1985). The animals 

were trained and tested in groups of 100.  Each group was sequentially exposed to one 
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odor (the conditioned stimulus (CS+); either 3-octanol or 4-methyl-cyclohexanol) which 

was paired with a 60-volt electric shock and then a second odor (either 3-octanol or 4-

methyl-cyclohexanol) without shock.  Within 2 minutes after training, animals were 

transferred to the choice point in a radial T-maze, where they were given 2 minutes to 

choose between the CS+ and CS- odors. For all cases where performance indices were 

calculated, the learning protocol was repeated with a separate group of flies using the 

reciprocal odor as the CS+.  A half performance index was calculated for each of the 

two groups by dividing the number of flies that chose correctly, minus the flies that 

chose incorrectly by the total number of flies in the experiment.  A final performance 

index then was calculated by averaging both reciprocal half-performance indexes..  

 

 

Single allele effects on rutabaga performance 

 

 Effects on rut1 performance of individual alleles was tested by crossing 

homozygous mutant rut1 virgin females to homozygous mutant males. Male progeny 

were hemizygous for rut1 and heterozygous for one mutant allele. Females were 

heterozygous for rut1 and heterozygous for one mutant allele.  

 

 

Multi-allele tests 

 Di-allele heterozygous combinations were generated by crossing flies that were 

homozygous both for rut1 and for one additional allele with flies that were homozygous 



 30 

for rut1 and for a second allele. All progeny were homozygous (or hemizygous) for rut1 

and heterozygous for each of the 2 mutant alleles. Tri-allele heterozygous combinations 

were generated by crossing flies that were homozygous for rut1 and for one mutant 

allele with flies that were rut1 mutant and homozygous for each of 2 alleles. Male 

progeny were hemizygous for rut1 and heterozygous for all three mutant alleles. 

Conceptually similar crossing schemes were used to generate animals that had 

combinations of homozygosity and heterezygosity at more than one locus.  In each 

case, memory performance was measured using the Pavlovian conditioning assay(Tully 

and Quinn 1985).  

 

Statistical analyses of behavioral experiments: 

 The behavioral data from this paradigm were normally distributed and thus could 

be analyzed by analysis of variance (ANOVA). JMP software was utilized to perform 

Tukey-Kramer honestly significant difference tests, with comparisons made between all 

genotypes. Statistical significance in the figures represents a difference in performance 

in comparison to mutant male control levels with p < 0.05.  Error bars represent 

standard error of the mean. 

 

 

High-Throughput Genotyping 

Each of the 23 alleles corresponds to an insertion of a P-element transposon at a 

defined chromosomal locus.  Using the BioTrove OpenArray platform, the two alleles for 

a given locus were detected by ‘taqman probes’ carrying different fluorescent tags (FAM 
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for wild type, VIC for mutant) in a duplex PCR reaction.  288 flies from each of the six 

experimental populations (Selected Lines: MOR, MUL, LEW; Unselected Lines: BRI, 

DOB, STU) were genotyped at the 23 loci in duplicate runs.  Genotyping was performed 

at two generations: generation 11 and generation 25.  Design of primer and probe 

sequences used for PCR genotyping are shown (Table 2.2).  A proof of concept for the 

fidelity of this genotyping platform was developed using control DNAs of known 

genotypes and mixtures of such DNA samples (Table 2.3). 

For each probe, a scatter plot was produced from the intensities of the FAM and 

VIC channels in each sample (not shown).  The genotype at the probe-defined locus 

was determined by the presence of clusters in the scatter plot corresponding to 

homozygous wildtype (FF), homozygous mutant (VV), and heterozygous (VF) flies.  The 

clusters were conservatively and visually determined at BioTrove in comparison to a 

cluster depicting the no template controls, and each sample was assigned a genotype 

(‘called’) according to which cluster it belonged. Because the experiments were done in 

duplicate, a genotype was only verified if the calls of each replicate were in agreement. 

The analysis described henceforth is based only on this quality-checked consensus 

data. 

 

The Genotype Matrix  

The genotype-calling phase resulted in a 3456 x 23 matrix (288 flies in 6 

populations at 2 generations; Table 2.4) containing the P-element dosages: 0 for wild-

type homozygous, 1 for heterozygous, 2 for mutant homozygous, and NC for No Call.  

Each row of this matrix corresponds to the full genotype of a single fly.  Each column 



 32 

can be considered an ‘allelic profile’, since it depicts the allele dosages present at this 

loci under all experimental conditions. 

 Approximately 1% of the entries in this matrix were ‘No Call’ (NC).  The quality 

control step determined that the largest source of NC was from failed samples and the 

occasional failed probe (not shown).  The rest of the failed reactions appeared to be 

randomly distributed.  For the analysis, samples with more than 30% failed reactions 

were discarded.  Values for the remaining missing data were assigned by calculating 

empirical genotype distributions of the valid calls at each locus in each population and 

drawing from these distributions to ‘impute’ the matrix. This procedure (imputation) was 

repeated 100 times to ensure an accurate depiction of the allele frequencies. The allele 

frequencies showed little variance over the 100 imputations (data not shown), as did the 

results from the SVD/LDA analysis (described below). Note that the imputation changes 

the number of samples analyzed in each population due to the 30% criteria; that is, 

each population does not contain an equal number of samples.  Nevertheless, this does 

not significantly change results—the sample sizes remained large enough to accurately 

depict the allele frequencies. 

 

Singular Value Decomposition    

The imputed genotype matrix describes the data in a 23-dimensional ‘genotype 

space’.  To reduce the dimensionality and look for any higher-order structure 

attributable to the different experimental conditions, the matrix was de-meaned and a 

singular value decomposition (SVD) was performed. 



 33 

SVD is a technique commonly used for dimensional reduction and can be 

considered a generalized version of Principal Components Analysis (PCA) (Strang 

2006); however, the SVD is a matrix factorization technique that need not be interpreted 

in statistical terms (as in PCA). The SVD provides orthonormal bases for both the 

column space and the row space of the original data matrix. In our case, we used SVD 

as a signal finder to obtain a ‘genotype space’ effectively describing the genotypes of 

typical fly and an ‘allele space’, effectively describing the relevant allelic contributions. 

The row and column means were removed from the data matrix.  First, the 

column means were subtracted from each entry, giving a matrix whose entries 

described the deviation of each locus in each fly from the average dosage at that locus 

across all flies in the experiment.  Then, the row means of this deviation matrix (the 

average deviation of each fly’s genotype) were subtracted from the subsequent entries.  

Thus, the final matrix is centered around the average allelic profiles and around each 

fly’s average allelic deviation.   The removal of the mean allele frequency across all 

populations highlights the loci where allele frequencies showed significant variation 

across populations (as opposed to loci which did not vary between selected and 

unselected lines). 

 The singular values of the first two modes showed a deviation from an otherwise 

linear decay (Fig. 2.3), suggesting that these two modes would be descriptive in a 

dimensional reduction. There was little variation in the singular values over the 100 

imputations, as can be seen by the spread of points at each mode.  Although the first 

two modes accounted for only ~29% of the variance in the original matrix, projection of 

the data onto these modes in the sample space showed a clear separation between 
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selected and unselected groups in generation 25 (Fig 2.3C), in agreement with the 

behavioral separation measured (Fig 2.4A).   While two modes appeared to be sufficient 

for discriminant analyses, the third mode was also used in discriminant analyses to 

account for slightly more variation in the data.  Together, the first three modes explained 

~38% of the variance in the original matrix. The choice of three modes was 

conservatively made to avoid the risk of overfitting in the subsequent discrimination 

analysis and to ensure that the results were not corrupted by noise in the original matrix.   

 

Discrimination Analysis 

 

Although the SVD provides orthogonal directions that span both the genotype 

space and the allele space that explain the variance in the data, the direction of 

separation between experimental groups need not be along one of these axes, and in 

fact, it was not (Fig 2.3C).  Having obtained the descriptive vector spaces from SVD, 

linear discriminant analysis (LDA;(Duda 2000) was used to find the direction of 

separation between selected and unselected populations in the genotype space in both 

generation 11 and generation 25.   This vector, w, pointed in the same direction 

between generations (a 16.7° mean difference across imputations), although was on 

average 1.7 times longer in generation 25 than generation 11.  This suggests that the 

genotypic difference relevant to the phenotype was already present in the populations at 

generation 11 and increased in magnitude by generation 25.   

Because the discrimination direction was so similar between generations, an 

LDA between selected and unselected groups over the entire experiment (i.e. on both 
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generations together) was ultimately used to discover which alleles were responsible for 

the group separation.   Projection of w onto allele space resulted in a vector that could 

be interpreted as a list of weights describing the contribution of each allele to the 

phenotypic effect (Fig 2.3D). Positive weights suggest alleles beneficial to the memory 

task, negative weights suggest alleles detrimental to memory. Neither the SVD nor LDA 

showed significant differences over the 100 imputations (data not shown), lending 

support to the robustness of the method.  The top alleles were then experimentally 

tested for epistasis with rutabaga and for epistasis amongst themselves. 

 

Cross-validation 

In order to assess the stability of the discrimination vector (the direction between 

populations in each generation, as well as the order of the loci sorted by contribution), a 

number of cross-validation procedures were performed. 

First, the selection and generational labels were shuffled (Table 2.5) and the LDA 

was repeated between selected and unselected groups.  A second shuffling method 

was performed in which the generational structure was maintained, but the selection 

labels were randomized.  In each case, with 1000 random shuffling, the discrimination 

vectors in generations 11 and 25 were, approximately, perpendicular to each other (as 

would be expected for randomly drawn vectors from a high dimension space), rather 

than being approximately parallel, and were also an order of magnitude smaller than in 

the unshuffled case (Table 2.5) These results support the conclusion that in the 

unshuffled case, the identified loci are contributing to the separation between selected 

and unselected groups and not to some other grouping of the data. 
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As a second test of the robustness of the discrimination vector, a fixed 

percentage of randomly chosen samples were dropped from the data set.  The angle 

between vectors, relative magnitudes, and order of contribution were remarkably stable 

to this procedure.  Even with as many as 90% of the points discarded, the variation in 

the discrimination vector was minimal, suggesting a high degree of within-group 

similarity, and of across-group dissimilarity (Fig. 2.5). 

We then assessed the impact of individual populations on the discrimination by 

discarding one population at a time from the analysis as well as by analyzing single 

populations against all opposing populations (e.g. a single selected population against 

the three unselected populations).  With each of these tests, the angle between vectors, 

the relative magnitudes, and the order of contribution were stable, suggesting that no 

single population was overtly responsible for our observations (Table 2.6).  This lends 

further support to the hypothesis that the increase in amplitude of the positively 

contributing alleles is a property of the selection procedure and not solely due to drift or 

other random effects.  

 

Selection Simulation 

 Independent populations representing both selected and unselected experiments 

were simulated.  Populations were initiated with genotypes containing transposon counts at 

23 independently segregating loci, randomly distributed amongst individuals, each at a 

frequency of 1/7.  At each generation, 10,000 genotypes were created by the union of 

‘gametes’ from a randomly selected pair of parents.  To constitute the first generation, 

parents were randomly selected in both types of experiment.  Thereafter, in unselected 



 37 

populations, 400 of the 10,000 starting genotypes were randomly selected to seed the next 

generation and in selected populations 4,000 were chosen for iterative selection. A single 

round of the iterative selection process consisted of assigning to each fly a random choice, 

either correct or incorrect, pulled from a binomial distribution with probability determined by 

the fly’s genotype.  The flies that chose correctly were passed to the next round of 

selection.  This processed was repeated until 400 or fewer flies remained, and these flies 

were randomly paired and mated to produce the next generation.  The probability of a 

correct choice by an individual fly was calculated as 0.7 + sC, the sum of 0.7 (the 

probability of a rut fly choosing correctly) and the rescue provided by the fly’s genotype 

(product of the rescue size, s, and the binary variable C indicating presence or absence of 

a rescuing genotype).  We used s=0.28 to approximate full rescue for all simulations. 

 

Results 

 

We chose to use a standard Pavlovian learning assay (Tully and Quinn, 1985) as 

a behavioral trait for several reasons.  First, performance of wild type flies in this assay 

is quite robust (Heisenberg 2003; Davis 2005; Margulies, Tully et al. 2005; Keene and 

Waddell 2007). Second, this learning procedure has been used for high-throughput 

forward mutagenesis screens (Dudai, Jan et al. 1976; Duerr and Quinn 1982; Boynton 

and Tully 1992; Dura, Preat et al. 1993; DeZazzo, Sandstrom et al. 2000; Dubnau, 

Chiang et al. 2003; Ryder, Blows et al. 2004).  As a result, many single gene mutations 

have been identified that have strong impact on performance after this conditioning 

procedure.  Memory performance in this assay is normally measured by allowing a 
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population of genetically homogeneous animals to choose between two odors, one of 

which has been previously paired with an electric shock reinforcement.  We established 

a selection procedure based on this learning assay that is capable of fractionating 

higher performing individuals from a genetically heterogeneous population (Fig. 2.1). 

We next applied this fractionation procedure to a multi-generational selection 

experiment to suppress the rut1 memory defect with combinations of alleles that had 

been identified in a forward screen (Dubnau, Chiang et al. 2003).   

 

Design of starting populations: 

As a starting point for this selection experiment, we created a founding population of 

animals in which the genetic variation was constrained to 23 transposon insertion derived 

alleles identified in a screen for mutants with memory defects (Dubnau, Chiang et al. 2003). 

The construction of the founder populations was guided by a theoretical analysis of the 

population heterozygosity (see additional methods). The number of possible genotypes 

with N loci grows exponentially with the number of loci.  Therefore, the entire genotype 

space cannot be realistically tested for as many loci as are examined in this study (N=23).  

With a properly chosen founder population, however, it is possible to sample a large 

volume of genotype space in a realistic number of generations.  Because the number of 

generations in our study is small compared to the effective population size, our calculations 

show (see additional methods) that use of founding animals that are homozygous for the 

mutant alleles at between 3 and 4 of the 23 loci gives a marked increase in diversity over 

the case where each animal has just 1, while remaining within tractable experimental 

population sizes. 
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Based on this analysis, we first created a series of 7 input strains in which each 

animal is homozygous for the rut1 null allele and homozygous for between 3 and 4 of the 23 

transposon alleles.  To minimize the effects of linkage between loci in the initial population, 

we selected the transposon-populated loci in each founding fly to be as far apart as 

possible (Dubnau, Chiang et al. 2003), maximizing the rate at which equilibration is 

expected to occur during the course of the experiment (See Additional Methods; Fig. 2.2). 

All 7 input strains were generated on the same inbred isolate (Wiso[CJ1]) from the standard 

Canton S strain (Dubnau et al., 2003).   To create a founding population for artificial 

selection, each of the 7 input strains were mixed in equal proportions. The 7 strains were 

allowed to inter-breed for one generation and the progeny were used to seed population 

cages. At this stage, each animal is heterozygous for between 6 and 8 of the 23 alleles.  

 

Experimental evolution of nearly normal learning in rut mutants: 

 Using the above design, we created 6 identical populations with heterogeneity at the 

23 defined loci of interest.  Three of these (Morgan, Muller and Lewis) were subjected to 

selection and 3 (Dobzhansky, Sturtevant and Bridges) were not selected for learning ability. 

These served as controls for effects of drift, natural selection for fecundity, viability, 

developmental time, etc.  In addition to the above 6 populations, two additional control 

populations were established that did not contain any of the 23 transposon alleles and were 

homozygous for the rut1 null allele in the same inbred background as the other populations.  

One of these “isogenic controls” underwent selection, the other was not selected for 

learning ability. These last two populations were designed to control for contribution of any 

unknown or de-novo alleles segregating in the inbred background.  Importantly, these 
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control strains did not respond to selection over 41 generations (see below). 

For the first 14 generations, the performance levels of the selected and unselected 

populations were indistinguishable.  In fact, seasonable and other experimental variation 

was well controlled because the week-to-week fluctuation in performance was highly 

correlated across populations, which were always trained and tested in parallel in an 

experimenter blind manner.   Between the 14th and 41st generations, a clear response to 

selection was observed in all three selected groups that contained genetic diversity.  By 

generation 41, the performance of Morgan, Muller and Lewis (selected groups) approached 

the maximal levels of short-term memory normally seen only in wild type animals (Fig. 2.4 

A,B, D).  No effects were seen on levels of long-term memory fecundity, longevity, 

generation time (Fig. 2.5).  The suppression of the learning defect is striking given the fact 

that all animals in these populations are homozygous for a rut1 null allele (confirmed by PCR 

genotyping of the rut1 allele with multiple animals, not shown).  In contrast, we did not 

observe a response to selection in the control isogenic strain that lacked variability at the 23 

loci. The fact that learning performance did increase in each of the replicate populations that 

contained variability at the 23 loci (Fig. 2.4 A,B, D), but not in the inbred control population 

(Fig. 2.4C), strongly supports the conclusion that the 23 loci are causal of the selection 

response.  We cannot rule out contributions of trans-generational epigenetics or of de-novo 

mutations [which have been estimated to occur in drosophila at a rate of 8.0 x 10-6 per locus 

per generation] (Drake, Charlesworth et al. 1998). To the extent that such rare events 

impact our selection, however, they nevertheless would need to act in concert with the 23 

controlled loci. 
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Genotyping and multivariate analysis: 

288 flies in each of 6 populations at generations 11 and 25 were genotyped at 

the 23 loci (Table 2.4). Genotyping resulted in a 3456 x 23 matrix containing the P-

element dosages: 0 for wild-type homozygous, 1 for heterozygous, 2 for mutant 

homozygous (Fig. 2.3A).  Each row of this matrix corresponds to the full genotype of a 

single fly, and thus, the genotype matrix defines flies in a 23-dimensional space.  Each 

column can be considered an ‘allelic profile,’ since it depicts the allele dosages present 

at this locus under all experimental conditions.  

What genotypic differences between selected and unselected lines are 

responsible for the observed phenotypic response to selection? In statistical terms, this 

corresponds to characterizing the differences between the corresponding genotype 

distributions. There are 3^23 possible genotypes, whereas each population is sampled 

only 288 times (assuming each fly presents an independent sample). Therefore, it is not 

possible to characterize the full distributions (curse of dimensionality). Following 

standard practice, we can characterize the first and second moments of the 

distributions, and characterize the differences between the distributions using 

discriminant analysis.  

The first moments, or means, are given by the average P-element dosages as a 

function of loci.  These form 6 vectors of length 23 each (three selected and three 

unselected), corresponding to the means of each population. These are displayed in 

(Figs. S4,S5), and show significant differences in loci (Fig. 2.6, Tables 2.7,2.8). Note 

however that in this analysis, each locus is treated independently and the covariance 

structure is not accounted for. There are 23x22/2 = 253 entries to the covariance matrix, 
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and only 288 samples – in addition there are missing data. Thus there are not enough 

degrees of freedom to estimate each element of the covariance matrix independently. 

We therefore use standard dimensionality reduction methods by performing an SVD of 

the imputed data matrix containing all 6 populations  

The three leading components capture 38% of the variance, and we restrict our 

subsequent analysis to projections onto these components (eigen genotypes). For ease 

of visualization, the genotype data projected onto the first two components (29% of the 

variance) is shown in Fig. 2.3C. Direct visual examination shows that the distributions 

corresponding to selected and unselected lines are displaced from each other in a 

systematic way. Note that although this is a “linear” technique, there is no strong 

evidence in the figure that a non-linear separation surface is required, and given the 

paucity of data we keep to linear separating hyperplanes. Nonlinear regression methods 

did not significantly change the results (data not shown). 

 We performed linear discriminant analysis (LDA) in this reduced three-

dimensional space to determine the direction of strongest separation between selected 

and unselected lines in genotype space. This vector is found to be similar to the 

difference in the means (first moments), but shows some differences for the loci with 

smaller weights (Fig. 2.8). The robustness of the discrimination vector was confirmed 

through a number of bootstrap cross-validation procedures (Fig 2.9).  We projected this 

discrimination vector into allele space, resulting in a list of weights describing the 

relative contribution of each allele to the phenotypic effect.  The top 8 alleles identified 

by the SVD/LDA were D0077, E3272, E3945, C0113, E1023, E4299, E3145, and 

D0940. 
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One of the 8 identified loci significantly suppresses rut: 

We tested the effects of each of the 8 individual loci as heterozygotes on the rut1 

mutant learning levels as well as on learning in rut+ animals (Figs. 2.10, 2.11).  One of 

these, E3272 (nord), which contains a P-element transposon insertion in a gene 

(CG30418) with fibronectin type III domain homology, is capable of partially but 

significantly (N = 17, Tukey HSD) suppressing the learning performance of rut1- on its 

own when present as a heterozygote (Figs. 2.10, 2.11). It is worth note that this effect is 

non-linear with respect to the dosage of E3272 because it only is observed when E3272 

is heterozygous.  In contrast, E3272 had no effect on the rut defect when E3272 

homozygous (Fig. 2.12). We also tested the effects of E1847, which was identified in 

the SVD/LDA as opposing the selection response.  Performance of rut1; E1847/+ 

animals was indistinguishable from that of rut1 mutants  (Fig. 2.11D).   

 To our knowledge, E3272 is the first case of a genetic suppressor of any learning 

mutant, although rut was shown to be a suppresser of dnc in a measure of terminal 

varicosities and branches in larval motor neurons (Zhong, Budnik et al. 1992).  The 

identification of an individual suppressor gene is gratifying, however, given the E3272 

effect size and allele frequency, this effect alone cannot explain the magnitude of the 

observed population level response to selection (Fig. 2.13). In fact even for the extreme 

scenario where a suppressing genotype confers maximal performance (equivalent to 

the wild type rutabaga+ genotype), 55% of the animals in a mixed population would 

need to contain suppressing genotypes to cause the observed performance at 

generation 41 (Fig. 2.13).  The required fraction of animals with suppressing genotypes 
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logically increases as the effect size of the typical suppressing genotype decreases 

(Fig. 2.13).  Thus the observed performance improvement would require either few high 

frequency genotype solutions or many rare solutions.  

 

Two-way interactions among the identified 8 loci do not explain the selected rut 

suppression: 

 

We next tested the effects of each of the double heterozygous combinations (Fig. 

2.10B).  For each of the 28 possible di-allele combinations among the 8 identified loci, 

learning performance was measured in males that were rut1 hemizygous and 

heterozygous for two of the 8 loci.  None of these di-allele combinations yielded 

significant suppression of rut.  9 of the 28 di-allele combinations actually reduce the 

learning performance of rut- (Fig. 2.10D). In order to ask whether interactions between 

the E3272 suppressor and loci not identified by the SVD/LDA might be involved, we 

tested for significant co-occurrence in the genotype data of E3272 with each of the other 

22 loci segregating in the experiment.  For the E3272-D0940 combination, we do 

observe a significantly higher than expected frequency (Table 2.9), however this double 

combination does not yield suppression (Fig. 2.10D). Taken together, these findings 

indicate that two-way heterozygous combinations are not likely to drive the selected 

suppression. We cannot rule out a role for 2-way interactions among loci in the 

homozygous state, however, we observe little homozygosity in the genotype data set in 

any of the replicate populations (Table 2.4).  Moreover, in the few cases where we have 

examined effects in homozygotes we do not observe suppression (Data not shown).   
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Additive effects of top three alleles: 

We wondered whether each of these loci might contribute a small additive effect.  

In this case, the contribution of each allele in isolation might be below detection 

threshold in our behavioral assay.  To test this, we constructed animals that were 

heterozygous for all of the three top identified loci  (D0077, E3272, E3945; Fig 2.10C). 

This triple-heterozygote did not significantly suppress the rut1 defect. Thus small 

additive effects are not detected among the three loci with highest amplitude 

contribution to the separation between selected and unselected groups as detected by 

the SVD/LDA analysis. 

 

Selection response likely involves combinations of between 3 and 5 loci: 

 

In order to explore the genetic landscape more systematically, we used 

simulations to examine the potential for higher order gene networks to contribute, under 

known constraints of our experimental design (See methods above).  The simulation 

used a population size of 200 breeding pairs, 23 unlinked loci with 2 alleles each and 

started with allele frequencies of 1/7. In a model of drift, we observed as expected from 

theoretical arguments, that on average, alleles remain present at around the starting 

frequency but also can be randomly lost from the population (Fig. 2.14).  We next 

conferred a selective advantage to the heterozygous state for a single locus.  The 

simulated selective force drives the allele frequency to 0.5 with the time-course 

dependent on the selective advantage.  
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 We next used simulations to model the involvement of multi-locus genotypic 

solutions.  In order to simplify the simulations, we first considered the case where only a 

single fully heterozygous allele combination confers selective advantage. When 

selection is maximally strong, such suppressing combinations appear and reach optimal 

frequency (0.5 for each of the underlying loci) within 40 generations for combinations of 

less than 6 loci (Fig. 2.15). With genetic solutions involving 6 loci, the underlying alleles 

do not reach frequency of 0.5 within the time-course of our experiment and for 

combinations involving 7 or more loci, solutions are never found within 40 generations 

(with 10,000 simulated populations).  This upper bound on the complexity of possible 

solutions most likely is due both to the exponential expansion of genotype space for 

higher order combinations and to the opposing action of drift, which can eliminate 

individual alleles from a population before selection has a chance to act.  

 

Conclusions 

 

Several key insights stem from this study.  First, our selection demonstrates a 

remarkable flexibility in the gene network underlying memory and learning [see (van 

Swinderen and Greenspan 2005; Greenspan 2009)]. Even with a relatively small set of 

23 loci and two alleles/locus, there is sufficient combinatorial potential to select for high 

levels of learning that is independent of the canonical rut adenylyl cyclase-mediated 

cAMP signaling pathway. This by definition invokes non-additive epistasis because 

each of the alleles that we supplied to the population were identified in screen for 

reduced memory and learning (Dubnau et al. 2003).  Second, our experimental findings 
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together with the outcome of simulations strongly support the hypothesis that the typical 

genetic solution involves combinatorial action of several genes.  Although we did 

identify one single-locus suppressor, it’s quantitative impact on the phenotype can only 

explain a small fraction of the population level response.  Third, because of the high 

degree of genotype heterogeneity in all selected populations, even the more prominent 

genotypes are present in a relatively small fraction of animals. It follows that the 

observed population level suppression relies on multiple genetic solutions within each 

replicate population. 

Cryptic genetic variation (Gibson and Dworkin 2004) has potentially broad impact 

on traits with complex inheritance but also influences phenotypic severity (penetrance) 

of traits with apparently simple inheritance.  In the case of Mendelian human genetic 

disorders, for example, clinical severity can be dramatically modulated by additional loci 

that have no clinical impact on their own e.g. (Petrij, Giles et al. 1995; Merlo and Boyle 

2003; Duclot, Jacquet et al. 2010) 

Linkage and GWA studies have successfully identified genetic variants that are 

associated with human disease, although for GWA, these typically have relatively small 

effect sizes and explain only a small fraction of the heritability for a given disorder 

(Manolio, Collins et al. 2009; Eichler, Flint et al. 2010).  The sources of this ‘missing 

heritability’ are currently unknown, but in principle could involve types of genetic 

variation that are not sampled by current methods, trans-generational epigenetic effects, 

over-estimates of heritability, gene by environment interaction or gene epistasis that 

would be difficult to detect.   Because of the highly constrained nature of our selection 

experiment, we can all but rule out the impact of rare un-sampled variants, 
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environmental variation and trans-generational epigenetics.  We nevertheless observe a 

high degree of ‘missing heterability’ even though our experiment includes a relatively 

small number of segregating loci.  This outcome seems most compatible with a model in 

which phenotypic modification of the rut -learning defect involves a diverse set of 

genotypes that typically include several different interacting loci.   
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Figures and Legends 

 

 

 

Figure 2.1. Proof of principle for learning selection: Groups of white-eyed rut+ and 

red-eyed rut1 mutant animals were mixed in equal proportions and trained in the 

olfactory learning assay (see Methods). This mixed population was trained and tested in 

the standard T-maze (Tully and Quinn 1985); see methods).  The fraction of animals 

that avoided the CS+ odor was then re-trained and re-fractionated at the choice point of 

the T-maze.  This fractionation procedure was iterated, and the ratio of white (wild type, 

high learning) versus red-eyed (rut1 mutant, low learning) animals was determined after 

each round.  Using this procedure, we are able to enrich for rut+ flies so that after just 4 

choices, 85% of the animals are rut+. Proportions of red- and white-eyed individuals are 
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shown after one, two, three or four choices. The number of animals at start of each 

experiment was 200 (1 choice), 400 (2 choices), 800 (3 choices) and 2000 (4 choices). 
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Figure 2.2  Relaxation times (to 1/e)  for all pairs of loci on chromosomes II and III 

in the collection of 60 mutants described in the screen by Dubnau (2003).  The 

median is 20.95 generations. Relaxation times are calculated as τ = 1−rij where rij = 

4nfd, nf is the proportional fraction of females in the population, and d is the distance 

between i and j in centimorgans. 

 

 

 

 



 52 

 

A                                                                    B 

                   

     

C                                                                    D       

 

Figure 2.3.  Genotype data and Multivariate analyses identify 8 loci underlying 

selection response.  (A) Heat map of genotypes are shown for flies sampled from all 

populations at generations 11 and 25.  Individual samples are arranged by population 

on the Y-axis with selected groups (Mor, Mul and Lew) and unselected (Dob, Stu and 

Bri).  Each of the 23 loci are shown on the Y axis.  Black ticks denote homozygosity for 

the wild type allele.  Yellow ticks denote heterozygosity.  Red denotes homozygosity for 

the mutant allele. Missing data values were ‘filled in’ by imputation (see methods).  
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Shown is the result of a single imputation. (B) Difference between mean dosages in 

selected and unselected groups.  Error bars are 95% confidence intervals obtained from 

a combination jackknife/bootstrap procedure to account for group substructure.   

 (C) SVD analysis (see methods) of individual fly genotypes found in (A). Selected flies 

in (blue) and unselected in (red) are plotted by principle component 1 (PC1) on the X-

axis, and principle component 2 (PC2) on the Y- axis. Again, data are from a single 

imputation (corresponding to the matrix in A) (D) Plot of the discrimination vector with 

the alleles (X-axis) sorted by contribution (Y- axis). Mean dosages for each loci in each 

population.  Error bars are bootstrapped 95% confidence intervals. 
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Figure 2.4.  Multi-generational selection of improved learning in rut1 mutants.  6 

populations (A,B) are rut1 homozygous mutant- and heterogeneous at 23 loci (see text).  

Three of these (MOR, MUL, LEW) underwent selection, three (BRI, DOB and STU) 

were allowed to drift. Two control populations are rut- and do not contain any of the 23 

transposon insertions (C).  All populations are in the same inbred bacground (methods).  

(A) Learning Performance Index (PI) of individual selected populations [Morgan (dark 

blue), Lewis (teal), Muller (light blue)] and individual unselected populations [Bridges 

(light red), Dobzhansky (dark red), and Sturtevant (orange)]. N=4 PI measurements per 

population at each time-point.  (B) Mean Performance Index of 3 selected populations 

Morgan, Muller, Lewis (blue) and 3 unselected populations Dobzhansky, Sturtevant, 

Bridges (red). (C) Performance indices of selected (blue) and unselected (Red) controls 

on an inbred background. (N = 4 PI measurements per group).  
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Figure 2.5  Selected improvement in short-term memory does not impact long-

term memory performance. 

Consolidated long-term memory was tested for one of the selected populations by 

testing performance 24 hours after a standard 10X spaced training procedure 

(reference Tully et al., 1994; Dubnau et al., 2003).   Memory performance of Morgan 

was compared with that of rut+ wild type control and of rut1 mutant animals. 

Performance of Morgan is not significantly different from that of rut1  (Tukey HSD). 
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Figure 2.6.  Loci Dosage by Populations at Generation 11. 

Mean dosage vs. loci, with standard errors, sorted by mean dosage for each of the six 

populations in generation 11 (Selected - MOR11, MUL11 LEW11, Unselected - BRI11, 

DOB11, STU11).  All populations show significant differences across many loci (see 

Table 2.7) 

Selected, Gen 11 

Unselected, Gen 
11 
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 Figure 2.7.  Loci Dosage by Populations at Generation 25. 

Mean dosage vs. loci, with standard errors, sorted by mean dosage for each of the six 

populations in generation 25 (Selected - MOR25, MUL25 LEW25, Unselected - BRI25, 

DOB25, STU25).  All populations show significant differences across many loci (see 

Table 2.8). 

Selected, Gen 25 

Unselected, Gen 25 
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Fig 2.8.  Singular values as obtained from the SVD.  The spread in data points at 

each mode are the singular values obtained from each of 100 imputations.  The small 

variation suggests that the imputation method does not significantly affect the 

decomposition results.  
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Figure 2.9.  Discriminant vector is robust to dropping samples. 

 

(A) Heat-map displays the frequency with which the amplitude ranking for each allele is 

the same is in the original discrimination vector (Fig 2.3C) when 90% of the points are 

.0242 .0147 21.4 90 

.0046 .0027 17.00 50 

.0026 .0015 16.54 10 

|w25| |w11| θ11‐25 % 
dropped 
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dropped.  (B) Effect of dropping 10%, 50% or 90% of samples on the direction and 

length of the discriminant vector. The angle θ11-25 is the direction between the vector w 

discriminating selected vs. unselected populations in generations 11 and 25 and |w11|, 

|w25| are the lengths of the discrimination vectors in generation 11 and 25 respectively. 

The values in the table are averages over 100 imputations of the genotype matrix. 
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D0077 E3272 E3945 C0113 E1023 E4299 E3145 D0940

D0077

E3272 0.544

E3945 0.371

C0113

E1023

E4299 0.487 0.628 0.468

E3145

D0940 0.488 0.474 0.611 0.56
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Figure 2.10.  Effects on rut1 memory performance single, double and triple 

heterozygous combinations among alleles identified in by SVD/LDA. Memory 

performance of animals that are hemizygous for the rut1 mutation and heterozygous for 

E3272 or D0077 (A) or E3945 (B) relative to performance of rut1 hemizygous or rut+ 

males.  E3272, but not D0077 or E3945, yields a partial but significant (N = 17, Tukey 

HSD) suppression of the rut1 memory defect. Animals that were rut1 hemizygous and 

D0077/+, E3272/+, E3945/+ triple heterozygous exhibit memory performance that is not 

significantly different from that of rut1 (C). Effects on the rut1 memory levels of each of 

the 28 heterozygous di-allele combinations amongst top 8 alleles also were tested for 

memory performance (D). In 19 di-allele combinations, no significant impact on the 

memory performance of rut1 was observed (yellow boxes in top half matrix).  9 

combinations significantly enhanced the learning  defect  of rut1 (blue), i.e. they 

exhibited lower levels of learning [Tukey HSD]. These effect sizes are shown in the 

bottom half matrix as a fraction of rut1 performance levels. 
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Figure 2.11.  Effects on rut1 memory performance of single alleles identified in by 

SVD/LDA. Effects are shown for the 5 single alleles identified by the SVD/LDA that 

were not tested in Fig.3, as well as for E1847, whose amplitude opposed the separation 

between groups (Fig. 2C).  These 5 loci and E1847 showed no effects on performance 
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of rut1 heterozygous females or rut1  hemizygous males (Tukey HSD). rut1 hemizygous 

performance is shown for comparison. N >7 for all groups.  
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Figure 2.12.  Effects on rut1 memory performance E3272 homozygote. rut1; E3272 

double homozygous animals exhibit no difference in  short term memory performance 

(Tukey HSD) than rut1. N = 6 for all groups. 



 67 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.13.  Percentage of suppressed genotypes necessary to explain 

population level response to selection.  Percentage of genotypes necessary for 

observed response to selection at generation 41 shown as a function of the 

performance of a suppressing genotype (blue curve).  Vertical dashed lines indicate the 

mean performance (42.0) of unselected populations, the mean performance (52.0) of 

E3272/rut trans-heterozygous crosses, and the mean performance (66.9) of selected 

populations at generation 41.  The horizontal line indicates mean frequency of E3272 

alleles in selected populations.  The blue curve was calculated by keeping mutant 

performance (Xmut) constant at .42, keeping the overall performance level constant at 

66.9, and solving for the necessary suppressing genotypes (Xsup). This allowed us to 

determine the necessary suppressing genotypes as Xsup ranged from 55% to 100%. 

PI Unselected 

E3272 Suppression 

PI of Selected Gen. 41 

Mean frequency of E3272 Hets 
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Figure 2.14.  Selection model validation.  Monte Carlo simulation provides a realistic 

model of selection experiments.  When the model is initialized with no selective 

pressure, alleles behave as expected for a model of drift (A). In some cases, allele 

frequencies drift to 0 (example shown in black), while most alleles fluctuate around the 

starting frequency 0.14 (examples shown in red, green, and blue). When selective 

advantage is given to the heterozyote at a single locus (B), the allele frequency reaches 

an optimum 0.5 with a timecourse dependent on selective advantage.  With selective 

advantage of 0.01 (blue curve, mean across populations  1 s.d.), 0.05 (green curve), or 

0.28 (red curve), frequency reaches 0.5 in approximately 90, 20, and 2 generations 

respectively.  A combination of 1 homozygous allele with 2 heterozygous alleles given 

an advantage of 0.28 behaves as expected (C).  The homozygous allele frequency 

goes to fixation at 1 (blue curve), while the frequency of the heterozygous alleles is 

maintained around 0.5 (green curve).  All simulations model population size (200 

breeding pairs), number of loci (23), and starting allele frequencies (0.14) of the 

experimental selection (see methods).  N = 103 populations for all simulations shown. 
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Figure 2.15.  Numerous combinations of 3 to 5 loci must contribute to selection 

response.  Simulated selection experiments, using parameters similar to biological 

selection experiments, estimate that up to 6 heterozygous loci, working in combination, 

contribute to the observed selection response.  (A) A clear response to selection in 

simulated populations (N = 104 populations, for each N-mer combination) is observed 

within 40 generations for fully-rescuing heterozygous combinations of less than 7 loci.  

Selected alleles (red, mean frequency  1 s.d. of all N selected alleles from all 

populations) reach a frequency in the population of 0.5 within 40 generations for N-mer 

combinations of N < 6.  When N = 6, selected allele frequencies have not reached 0.5 in 

most populations, though it is possible.  Unselected alleles in the same populations are 
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subject to random drift (black, mean frequency  1 s.d. of all 23 - N alleles).  (B) The 

probability of an individual population converging on a solution of N heterozygous loci is 

estimated as the proportion of simulated populations that reached a mean frequency of 

selected alleles  0.48 over generations 38 - 40.  For N = 2,3, p = 1.  For N = 4, p = 

0.8605.  For N = 5, p = 0.4067.  For N = 6, p = 10-4.  For N = 7…10, p < 10-4. 
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Strain Allele 1 Allele 2 Allele 3 Allele 4 
1 D0177 D0753* E3947 E4294* 
2 D0361 D0417 E1023 E 4299 
3 A0023 C0015 D0940 E1715 
4 E3945 C0113 E4294* D0753* 
5 E0391 E3145 D0077   
6 E0602 E1847 A0563   
7 E0511 E1654 E3272   

  
Table 2.1.  Starter Strains .1-7 (Column 1), each contain between 3 and 5 of the 23 

alleles (Columns 2-5). *these alleles were present in more than one strain.  Genomic 

insertion sites of all 23 transposons are described elsewhere (Dubnau et al., 2003). 
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Table 2.2.  Sequences used to make probes and primers for genotyping of P-

element insertion alleles. The locus for which primers and probes were designed are 

in Column 1 (ABI)_ [Column 2 shows the sequence to which gene specific primers were 

designed (ABI). The location of the P-element insertion is denoted with a “P” (Table 

Attached) 
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Table 2.3.  Genotype proof of principle. A two flourophore assay was developed in 

which FAM (F) detects wild type and VIC (V) detects mutant. DNA was extracted from 

homozygote mutant animals and from wild-type animals. “Heterozygote” animals were 

mimicked by mixing wild-type and mutant animals in a 50/50 mixture.  

The results for 10 alleles are shown in column 1. Column 2 shows genotype calls for a 

wild type animal. Wild type FAM fluorphores “FF” are detected at all 10 loci.  Odd 

columns 3-21 show genotype calls for animals that were homozygous for a single allele. 

For mutant animals the VAM fluorophore “VV” is detected using the allele specific 

probes and primers and the wild-type FAM fluorophore “FF” at the other 9 loci. 

Genotype calls for DNA samples from mixed “heterozygous” DNA’s are shown in even 

numbered columns 4-22. For these simulated heterozygote animals, both fluorophores 

“VF” are detected for the locus in question only. Genotype calls identified “FF” (Table 

Attached). 
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Table 2.4.  Raw genotype data.  -1: No Call.  0: Homozygous Wildtype.  1: 

Heterozygous.  2: Homozygous mutant (Table Attached). 
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Condition 
 

θ11-25 
 

|w11| 
 

|w25| 
 

Original 
 

16.5 
 

0.0013 
 

0.0023 
 

All labels shuffled 
 

90.0 
 

9.42e-5 
 

9.14e-5 
 

Maintain generations, 
shuffle selection labels 
 

90.0 
 

1.11e-4 
 

8.5e-5 
 

 
 
 

Table 2.5.  Effect of shuffling labels on the properties of the discrimination vector 

w. θ11-25 is the direction between the vector w discriminating selected vs. unselected 

populations in generations 11 and 25 and |w11|, |w25| are the lengths of the 

discrimination vectors in generation 11 and 25 respectively.  The values in the table are 

averages over 100 imputations of the genotype matrix. 
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Population dropped 
 

θ11-25 
 

|w11| 
 

|w25| 
 

MOR 
 

13.95 
 

0.0015 
 

0.0027 
 

MUL 
 

8.65 
 

0.0025 
 

0.0030 
 

LEW 
 

33.57 
 

0.0013 
 

0.0028 
 

BRI 
 

15.52 
 

0.0014 
 

0.0032 
 

DOB 
 

40.4 
 

0.0016 
 

0.0025 
 

STU 
 

30.4 
 

0.0018 
 

0.0031 
 

 
 

Table 2.6.  The effect of dropping single populations from the data set on the 

robustness of the discrimination vector w. θ11-25 is the direction between the vector 

w discriminating selected vs. unselected populations in generations 11 and 25 and 

|w11|, |w25| are the lengths of the discrimination vectors in generation 11 and 25 

respectively.  The values in the table are averages over 100 imputations of the 

genotype matrix 
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Table 2.7.  Generation 11.  Number of loci with a significantly lower mean than the 

listed allele, as determined from a 1-way ANOVA within each population. 
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Table 2.8.  Generation 25.  Number of loci with a significantly lower mean than the 

listed allele, as determined from a 1-way ANOVA within each population 
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Table 2.9.  Co-occurrence of E3272 with each of the other 22 loci.   The 

expected frequencies [P(X), row 1) are calculated as the product of E3272 and a 

given second allele’s frequency.  The observed frequency [P(X I E3272) is shown 

in row 2.   A chi-square test was used to identify significant effects (chi-squared 

value assuming chi-squared distribution with 1 degree of freedom shown in row 

3), the p-value based on this chi-square value is shown in row 4.  To account for 

multiple (22) comparisons, Bonferonni correction was used.  A difference is 

significant only if it has a p-value of less than .0023.  Significantly "Higher" or 

"Lower" combinations are shown (Row label “SIGNIFICANT’). (Table Attached) 
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Chapter 3 

 
 Genetic tests for interactions with loci not identified by the SVD/LDA 

 
 

Introduction 
 

 There have been numerous attempts to uncover functional gene networks. 

(Milo et al. 2002; Alon 2007).   Often, understanding the components of the network is 

of main interest in these studies.   Less emphasis has been placed on the interactions 

between multiple genes in these networks.  This can attributed to the complexity of the 

networks, and also the lack of experimental knowledge of gene networks.  For example, 

the cAMP pathway has been identified as the canonical pathway for learning and 

memory in Drosophila, yet there are on the order of 100 genes not implicated in the 

cAMP pathway that also have a role in learning and memory.  It has been difficult  

placing these 100 genes into a functional gene network (Davis 2005; Margulies et al. 

2005; McGuire et al. 2005).   

In an attempt to identify complex gene interactions capable of suppressing the 

learning and memory mutant rutabaga, I used a novel strategy to uncover and model 

higher order gene interaction in Drosophila (Chapter 2).  Genotyping, followed by multi-

variate analysis comparing selected and unselected populations identified 8 alleles from 

a collection of 23, which appear to be contributing to the response to selection.  The 8 

alleles were identified and hypothesized to have an instructive role in the selection 

response when comparing selected and unselected populations.  These 8 alleles were 

exhaustively crossed in single and di-allele combinations in an attempt to identify 

interactions capable of suppressing the mutant phenotype of rut (Fig 2.6-2.9).  One mild 

suppressor of rut was identified (E3272), yet could not account for the separation 
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observed in (Fig 2.6), and none of the di-allele combinations had suppressed the mutant 

phenotype of rut.   

These results taken together with computer simulations suggest several different 

possibilities. The first and most likely are that higher order interactions between 3 and 5 

of the 8 identified alleles are likely responsible for the selection response, yet to 

experimentally test all possible combinations of 3-5 alleles would be a monumental task.  

A second possibility is that de novo mutations are suppressing the mutant phenotype of 

rut.  This seems unlikely unlikely to be the case because a response is not observed in 

controls that do not have variation at 23 loci (Fig 2.4).  A third possibility is that 

additional alleles from the 23 are interacting with the 8 alleles to suppress the mutant 

phenotype of rut.  This chapter describes an attempt to identify these alleles.  

Selection for learning can have a fitness cost (Mery and Kawecki 2003).  

Selected populations in my study likely had decreased fitness as a result of increased 

learning.  Alleles may increase fitness by suppressing pleiotropic effects on fecundity, or 

other traits not being experimentally selected for.  This in turn would increase the 

frequency of these alleles in selected populations.  To test if alleles other than the 8 

increased in selected populations, multi-variate analysis comparing generations 11 and 

25 was performed.  My data shows that two alleles, D0753 and E4294, have 

frequencies that increase over generational time in both the selected and unselected 

populations.  This is consistent with the idea that they may play a permissive role in the 

response to selection by improving general aspects of fitness that may be needed for 

improved memory to be manifested.  e.g. maybe rut has an adverse effect on the health 

of flies. 
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These 2 alleles were tested in heterozygous combinations with 5 of the top 8 

alleles identified in the study in Chapter 2.  A third allele D0361 was also tested, this 

allele was present in a large number of flies in both selected and unselected populations 

(Fig 2.5A). The hypothesis being tested is that these 3 alleles are playing a permissive 

role.  These 3 alleles are being positively selected for in selected populations to curb a 

decrease in fitness associated with an increase in learning.  They in turn are interacting 

with the 8 alleles identified in the study in Chapter 2 in a permissive way to suppress the 

learning phenotype in rut mutants.  

 

Materials and Methods 

 

Singular Value Decomposition and Linear Discrimination Analysis 

 See Chapter 2 Data analysis (pp 10-11). 

 

 

 

Permissive allele crosses 

 

 Permissive allele crosses were generated by crossing flies that were both 

homozygous for rut1 and homozygous for 1 of 5 alleles (E3272, D0077, E3945, E4299 

and D0940) to flies that were homozygous for D0753, E4294 or D0361.  All progeny 

tested were hemizygous for rut1 and heterozygous for each of the 2 mutant alleles (only 

males were tested). 
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Results 

 

Genotyping and multi-variate analysis: 

 288 animals from each of 6 populations were fully genotyped at 23 loci for 

generations 11 and 25. Genotyping resulted in a 3456 x 23 matrix containing the P-

element dosages: 0 for wild-type homozygous (black, 1 for heterozygous (yellow), 2 for 

mutant homozygous (red) (Fig 2.5A).  Based on these numerical values a Singular 

Value Decomposition (SVD) was performed to determine if there are alleles that 

increase in selected populations from generation 11 to generation 25 (data not shown).  

The rationale in this experiment is that the frequency of permissive alleles will increase 

in selected populations over the course of the selection.  The next step analysis was to 

take these two clouds of genotype data and perform a Linear Discriminant Analysis 

(LDA). The LDA takes the mean vector of these two clouds in genotype space and 

projects it into allele space to identify alleles contributing to the separation of the clouds.  

A linear discriminant analysis (LDA) was performed on the (SVD) comparing selected 

populations from generations 11 and 25.  2 alleles (D0753, and E4294) were identified 

to be contributing to the separation (Fig 3.1).  These alleles were further tested to 

determine if they were contributing to the selection response. 

 

Test of Permissive role for 3 identified loci 

 The two alleles (D0753, and E4294) identified in the LDA and a 3rd allele, D0361 

identified by visual inspection of Fig 2.5A were crossed (see methods above) to animals 
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that were homozygous mutant for rut1 and also homozygous mutant for 1 of 5 from the 

top 8 alleles identified in the (LDA) comparing selected and unselected (Figs 3.2A,B, 

2.5C). None of these crosses had performances that were significantly higher than rut1.  

 

Conclusions 

 The genotyping of populations from the selection (Fig2.2A) helped to develop a 

hypothesis that the response to selection seen was a result of interactions between and 

or amongst the top 8 alleles along with some combination of 3 proposed permissive 

alleles.  The first two alleles D0753 and E4294 were tested because of their 

identification by the (LDA) (Fig 3.1).  Also, a 3rd allele (D0361) was chosen because of 

its presence in all populations (selected and unselected).  This was an attempt to 

identify higher order interactions contributing to selection, but these experiments did not 

provide evidence that these 3 alleles act as permissive alleles in di-allele combinations 

with 5 of the top 8 alleles.  This does not however rule out the possibility that other multi 

locus effects are contributing to the response to selection. This in fact it seems likely 

(see chapter 4). 
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Figures and legends 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.1 Linear Discriminant Analysis (LDA). Plot of the discrimination vector with 

the alleles (X-axis) sorted by contribution (Y- axis). Mean values of the 100 imputations. 
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Figure 3.2. Effects on rutabaga (rut) memory performance of permissive alleles 

crossed to 5 of top 8 single alleles identified in by SVD/LDA.  Wild type (rut+) is 

   A                                                                  B 

C 
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shown in (black bars).  Effects of each double heterozygote (A-C) are shown in (blue 

bars).  rut- mutant performance (red bars) is shown for comparison.  In each case, 

performance of animals that were rut+ and heterozygous for one of the identified hub 

alleles crossed to rut-; allele(s) was not significantly different from that of rut+ animals  

(A-C, black bars).   D0753/+, E4294/+, D0361/+ ; E4299/+, D0940/+, D0077/+, E3945/+ 

and E3272/+ double heterozygotes have no effect on performance levels relative to  rut- 

(A,B,C).  Performance N of >6 for all groups.  
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Chapter 4 

Conclusions and Perspectives 

A fundamental challenge in genetics is identifying genotype to phenotype 

relationships.  In model organisms, this has typically been accomplished using  

mutagenesis to identify a single locus,  then testing the causal relationship between 

these individual genes and phenotypic traits.  Saturation mutagenesis screens make 

use of this approach to attempt to identify most of the genes whose function is essential 

to a phenotype.  By itself, this approach can reveal a framework for the organizational 

structure of a biological process, but insight into the underlying molecular and cellular 

mechanisms usually requires the use interaction screens, fir example, yeast 2 hybrid, or 

chromosome immuno-precipitation, identifies physically associated proteins.  Enhancer 

suppressor screens can identify second site mutations capable of suppressing or 

enhancing effects of mutations found in a mutagenesis screen.  These approaches are 

informative for dissecting linear signaling pathways, but components of more complex 

networks are not easily identified.   

Together, molecular and genetic approaches have been informative for 

dissecting complex biological systems in a few model organisms.  This single gene 

approach also has provided the dominant conceptual basis for attempts to understand 

gene action in the context of human genetic disease.  Linkage studies have successfully 

discovered common genetic variants underlying many disorders that have a simple 

Mendelian pattern of inheritance.  In the case of complex traits, GWA studies have 

identified many statistically associated genetic variants, although typically these have 

relatively small effect sizes and explain only a small fraction of the heritability for a given 
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disorder.    As a result, dissecting the genetic architecture of quantitative traits with 

complex patterns of inheritance remains challenging, especially for disorders where the 

population of affected individuals has diverse underlying genetic causes.   

In some cases it is thought that the underlying genetic cause will involve single 

loci with large effect sizes.  These cases could be missed by GWA studies either 

because the causal gene variant is rare or de-novo or of a form that is not identified by 

SNP analyses (e.g. copy number variants).  With autism, for example, there is evidence 

that single locus de novo copy number variants may contribute large effect sizes 

(although many linked genes may be affected).  On the other hand, examples where 

multi-locus epistasis predominates are not readily accessible to these commonly used 

identification techniques 

Although the prevalence of epistasis in both complex traits as well as in human 

genetic disorders is not yet known, nor is the complexity of the typical gene interaction, 

several types of studies suggest that higher order epistasis is widespread.  In the case 

of pair-wise epistasis, the evidence is clear both from classical suppressor/enhancer 

screens as well as from higher-throughput di-allele crossing schemes (Karim et al. 

1996; Brem and Kruglyak 2005; Storey et al. 2005).  Higher order gene interactions 

have been experimentally more difficult to study.  As a general rule, experimental 

selection experiments have revealed the existence of multi-locus effects (Tully and 

Hirsch 1982; Toma et al. 2002; Carlborg et al. 2006; Dierick and Greenspan 2006; 

Edwards et al. 2006). The vast genetic heterogeneity within the starting outbred 

populations within most of these studies provides an opportunity to select for higher-

order gene interactions, but the contributions of individual loci are not easily identified.  
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These studies nevertheless have generally supported the view that epistasis is 

widespread within genetic systems, a view that is parsimonious with evolutionary 

biologists attempts at modeling the effects of drift, selection and migration on gene 

networks (Gavrilets and de Jong 1993; Gravner et al. 2007). 

The experimental paradigm and data set described in this thesis provide several 

different levels of insight.  First, my data indicate that the gene network governing 

learning is sufficiently flexible that even a relatively small collection of two alleles at 

each of 23 loci provides sufficient genetic variation to select for learning in the absence 

of the canonical rut adenylyl cyclase mediated cAMP signaling pathway.  This is quite 

interesting given that each of the alleles that I supplied to the population first were 

identified in a loss of function screen for reduced memory and learning (Dubnau et al., 

2003).  This finding in itself speaks to the flexible nature of genetic networks (van 

Swinderen and Greenspan 2005). 

A second novel aspect of this thesis is that E3272 was found to be a mild 

suppressor of the rut adenylyl cyclase.  To my knowledge this is the first case of a 

suppressor of a learning and memory mutant.   This finding may establish an entry point 

to identify rut independent learning.   

A third novel aspect of this thesis derives from the constrained genetic 

heterogeneity in the starting populations. This has permitted high-throughput genotyping 

of multiple animals sampled from each replicate population during the course of 

selection.  This genotype data set identified 8 loci that together contribute to the 

separation between selected and unselected groups.  This feature of this experimental 

design enabled me to exhaustively test the single and double combinations (di-alleles) 
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among the 8 loci.  The absence of suppression with each of these di-allele combinations 

strongly argues that the typical selected genotype involves interactions among 3 or 

more loci. 

The landscape of higher order gene interactions underlying complex traits, 

including disease, have been vastly understudied in mechanistic genetic studies, but 

have been of fundamental concern to evolutionary biologists and quantitative geneticists 

for decades.  A great deal of theoretical work has dealt with the problem of how fitness 

can be maintained in a genetically heterogeneous population (Wright 1932; Gravner et 

al. 2007).  This problem is particularly relevant it seems to cases where fit genotypes 

involve heterozygosity at multiple loci because fit parents have low probability of 

passing their allele combinations to offspring.  This problem is apparent in this data set 

where it is likely that multiple genotype solutions exist, each of which likely consists of 

more than 3 loci (mostly heterozygous).  These findings appear to be consistent with the 

notion that high fitness is maintained across many of the possible combinations of a 

shared core group of alleles (Gavrilets and Gravner 1997; Gravner et al. 2007).   

I exhaustively tested all of the single and double-heterozygous combinations 

among the 8 loci, and also 3 alleles not identified by the SVD/LDA.  These 3 alleles 

appeared to play a permissive role in suppression of rut mutant memory.  With the 

exception of E3272, individual loci and simple combinations among them do not explain 

the suppression of rut.  Taken together, the findings of this thesis place a lower bound 

on the complexity of genetic interactions that underlie suppression of the rut mutant.. 
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The genotype data also supported the possibility of permissive alleles being 

necessary for suppression.  I failed to find evidence that permissive alleles play a role in 

suppression, however this cannot be ruled out (Chapter 3).  

There are 2 other types of higher order interactions that could possibly be 

contributing to the response to selection seen in Chapter 2.  The first possibility is that 

there are additional alleles among the 23 that are contributing.  This is unlikely given 

that it is not supported by the raw genotype data or the multi-variate analysis.  A second 

possibility is that de novo mutations are contributing to the response.  This too is 

unlikely given that there is no response seen in selected controls.  A more viable but 

also unlikely version of this possibility is that a de novo mutation is interacting with a 

combination of the 23 alleles in selected populations.  The reason this is unlikely to be 

the case is that a response to selection is observed in each of 3 selected populations.  

This would mean that either the same de novo mutation would have to appear in each 

of the 3 populations, or 3 different new mutations would have to appear, 1 in each 

population.  All of these would have to interact with the 23 alleles in a way that 

suppresses the mutant phenotype of rut.  This seems like an improbable set of 

circumstances to have happened, moreover it would be extremely difficult to identify 

them if it did.   

All of these data combined support the claim that higher-order interactions are 

likely the cause for the response to selection but such complex interactions are not 

easily identified because of the huge amount of possible combinations that exist. 

In the future, I propose two experiments that would attempt to identify complex 

genotypes causing suppression of the rut mutant phenotype.  The first would be a 
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similar selection as in this thesis, but would constrict the genetic variability even further.  

One could make 2 strains of flies, each homozygous  mutant for rut, and homozygous 

mutant for 4 of the 8 alleles. Therefore, the variability would be restricted to only the 8 

alleles that are contributing to the selection response in this thesis. This construction of 

populations would fully explore the genotype space.  Unlike variability at 23 loci, if one 

had variability at 8 loci there would be 38 or (6561) possible genotypes (if you ignore 

cis/trans phasing).  This would dramatically increase the likelihood that genotypes 

responsible for the selection would be uncovered.  Also, unlike the selection in this 

thesis, a response should be observed much faster.   

A second proposed experiment would be to utilize the Drosophila toolbox to 

uncover gene interactions.  Balancer chromosomes have been used ubiquitously in 

Drosophila to track mutations.  Balancer chromosomes have a series of inversions and 

rearrangements that prevent recombination.  This allows for chromosomes to be 

maintained and kept in a steady state.  The idea would be to take the two individual 

strains (discussed above).  These two strains crossed together will have F1 progeny 

that are trans-heterozygous for the 8 alleles contributing to the response to selection 

identified in Chapter 2.  These F1ʼs can be subsequently crossed taking the 

heterogeneous population of F2 and subject them to iterative fractionation in the T-

maze as in chapter 2.  I would then cross them to balancer strains to "capture" 

chromosomes for later study.  These ʻcapturedʼ chromosomes can be genotyped, and 

then further tested to determine the specific effect they have on learning.  Individual 

strains will be crossed to rut homozygote animals, these crosses would give rise to 

strains consisting of male progeny hemi-zygous for rut and heterozygous for this 
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ʻcapturedʼ chromosome.  The females would be heterozygous for rut and therefore 

learning will be normal.  These strains would be tested for learning, only measuring 

male performance.  Presumably if the required genetic architecture necessary for rut 

suppression consists of combinations amongst these 8 alleles, this method would 

isolate them.  These two approaches, although similar have separate advantages and 

disadvantages, which I will now outline.  The first approach has the advantage of 

mimicking the selection in this thesis, in which a robust response to selection was 

observed.  Another advantage is that the genetic variation will only consist of alleles 

predicted to be contributing to rut suppression.  One disadvantage of this approach is 

the amount of work that a selection entails.  This will be decreased as compared to the 

selection here but remains an arduous task.   Another disadvantage is that if there are 

an intractable amount of solutions to rut mutant suppression consisting of many 

combinations of the 8 alleles, it will be extremely difficult to test experimentally. 

The second approach has the advantage of not having to select for multiple 

generations.  Also, this method would identify individual flies that have the genotypic 

requirement for rut suppression.  Unlike a selection where alleles necessary for 

suppression are inferred from genotype frequencies, this method would be able to 

identify actual individual genotypes.  The disadvantages to this approach are the same 

as the 1st experiment, and also a disadvantage to any approach looking for these types 

of interactions.  If there are a few solutions necessary for suppression they will be easily 

identified, however if there are many solutions it will be impossible to identify all of them.   

These two approaches combined should sample the entire genotype space 

necessary for rut suppression.   If higher order interactions are identified, the next 
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logical course of study would be to perform a more detailed network analysis.  For 

example, if 5 higher order interactions from amongst the 8 alleles were identified that 

can suppress rut mutant learning, these 5 interactions can be placed into a network.  

Further analysis of the alleles and how they interact genetically and bio-chemically will 

give insight into the mechanisms of suppression.  An understanding of the flexibility of 

gene networks will increase our understanding of the inheritance of complex traits, and 

with hope can help to understand the inheritance of genetic disorders. 

In the next few paragraphs I will discuss each of the hypotheses that could 

explain the observed response to selection.  Categorically, there are three possibilities, 

hypotheses that have been completely ruled out, hypotheses that cannot be ruled out, 

but are unlikely, and finally a hypothesis that I view as the most likely explanation for the 

observed response. 

Hypotheses that can be ruled out are single locus suppressors with a large effect, 

pair-wise interactions amongst the top eight alleles, a single “magic” genotype, and also 

combinations of greater than 5 interacting loci.  With the exception of E3272 (which has 

a minor effect) there are no single loci that can account for the striking difference in 

performance between the selected and unselected populations.  I also can rule out pair-

wise combinations among the top 8 alleles identified by the SVD/LDA, because I tested 

all 28 possible pair-wise combinations behaviorally.  None of these pairwise 

combinations suppressed the mutant effect of rutabaga, but 9 of the 28 enhanced the 

phenotype (worse learning).  I can also rule out that the idea that there is a single 

genotype that has a large effect, because Looking I genotyped 288 animals per 

population at generations 11 and 25.  No single genotype is present in all selected 
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populations, and no one genotype is detected in more than a few animals within a given 

population.  I also modeled the contribution of suppressing genotype to the mean of the 

populations as a function of its frequency and effect size, and determined that between 

55 and 100% of animals would need to contain a suppressing genotype (Fig 2.13).  The 

simulations shown in (Fig 2.15) demonstrate that the chances of identifying interactions 

among greater than 5 loci is exceedingly low.  Combinations of greater than 5 alleles 

are never observed in the simulations, because of genetic drift. 

There are several types of explanations that I view as unlikely although I cannot 

formally rule them out.  First, epigenetic trans-generational effect is a mechanism that 

has rarely been demonstrated, and to my knowledge has never been shown for learning 

and memory.  It would nonetheless have to also act in concert with the 23 loci in our 

populations.  The second unlikely explanation that cannot be formally ruled out is de 

novo mutations.  In Drosophila, these mutations occur at a rate of 8.0 x 10-6 per locus 

per generation, and over the course of 41 generations it is unlikely that de novo 

mutations occurred in all three populations.  And like epigenetic trans-generational 

effects would need to act in concert with the 23 loci.  

The final hypothesis that I view as unlikely but cannot rule out is a pure additive 

effects model.  I tested the additive effects of all pair-wise combinations among the top 

identified 8 loci, and also the 3-way effect of the top 3.  None of these combinations 

showed suppression (Fig 2.9).  Also, combinations of up to 5 loci, including both top loci 

identified by SVD/LDA as well as loci not identified by SVD/LDA (Fig 3.2).   

In the literature there are cases where  pure additive effects have been simulated, 

specifically in (Barton and Keightley 2002). In this review, an additive effects simulation 
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modeled selection on 10 unlinked large effect loci (effect size = 0.5 of a standard 

deviation of the behavioral trait).  They also  varied the starting frequencies of the alleles, 

from 0.01 to > 0.5.  For comparison, the starting frequency  of each locus in this thesis 

was 0.14 (see methods of Chapter 2).  Barton and Keightley (2002) found that even 

when a large effect locus is present at a frequency of just .01 it reaches fixation in less 

than 20 generations. In the selection experiment reported in this thesis, 0.5 of the 

standard phenotypic deviation is approximately 5 PI points, and the observed response 

to selection is approximately 25 points.  Thus if the observed response were driven by 

purely additive effects divided equally amongst 5 alleles, these alleles would have 

reached fixation in less than 20 generations.  This is not what we found in our high-

throughput genotyping.  Even at generation 25 there are no alleles that have reached 

fixation in any of the three selected lines.  Taken together with the experimental tests 

that failed to detect additive effects among pair-wise combinations and even some 

three-way combinations, this argues strongly that a pure additive model is unlikely to 

explain the observed selection response.  However, simulations more closely modeling 

the population sizes and starting frequencies of my populations could be done to 

cement this conclusion. 

 The experimental findings of this thesis together with the outcome of the 

simulations shown in Chapter 2 as well as the simulations shown in (Barton and 

Keightley 2002) support the hypothesis that the typical genetic solution involves 

combinatorial and probably non-additive interactions among between 3 and 5 loci.  The 

observed frequency distribution of genotypes and modeling of the impact on population 
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mean of individual suppressing genotypes further supports the conclusion that multiple 

such genetic solutions underlie the observed response to selection. 

  



  99 

Single locus 
suppressors with large 
effect 

Ruled out. With the exception of E3272 (which has a 
minor effect), no other single allele has a large 
suppressive effect. 

Pair-wise combinations 
among top identified 
alleles 

Ruled out. All 28 pair-wise combinations amongst the 
top 8 alleles were tested behaviorally and none had a 
suppressive effect.   

Additive effects Additive effects cannot be ruled out, but appear unlikely 
because the combination of the top 3 loci has no effect. 

One genotype with 
large effect 

Ruled out. No single genotype is abundant in any 
population. 

Complex genotypes 
among > 5 loci 

Ruled out. Combinations of loci greater than 5 are 
never identified in simulations. 

Epigenetic Trans-
Generational effect 

Cannot be ruled out, but such a mechanism has rarely 
been demonstrated and would nonetheless need to act 
in concert with the 23 loci. 

de novo mutations Cannot be ruled out, but unlikely because the mutation 
rate in drosophila is estimated to be just 8.0 x 10-6 per 
locus per generation, and would also need to act in 
concert with the 23 loci. 

Multiple genetic 
solutions, each 
involving 3-5 loci 

The most likely explanation for the observed 
response to selection. 

 

 

 
 Table 4.1 Hypotheses that could explain observed suppression 
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