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Abstract of the Dissertation
Elucidating lithosphere-mantle coupling by modeling the Earth’s
lithospheric stress field and plate motions

by
Attreyee Ghosh
Doctor of Philosophy
in
Geosciences
Stony Brook University
2008

Even after the establishment of the plate tectonic theory nearly four decades ago, some
fundamental questions have still not been satisfactorily answered. What drives the Earth’s
plates? Are plates and mantle coupled, and if so, what is the nature of that coupling? What
is the role of density buoyancy-driven flow in driving the plates? These are some of the
guestions we try to address in our study through a joint modeling of lithosphere dynam-
ics and mantle convection. If the initial coupling model is correct, the predicted stresses
will match the observed deformation along the plate boundary zones and the predicted ve-
locities will match the observed plate motions. We model the lithospheric deviatoric stress
field from gravitational potential energy (GPE) differences and compare our modeled stress
tensor field with velocity gradient tensor field along the Earth’s deforming plate boundary
zones (from GSRM). The deviatoric stresses due to active basal tractions acting at the base
of the lithosphere, arising from density buoyancy-driven mantle convection, are also com-
pared with the strain rate tensor dataset from GSRM. We find that the combined stresses
from lithosphere and mantle buoyancies yield the best fit to the deformation indicators,
especially in areas of continental deformation. This is most likely due to driving shear trac-
tions induced by the surrounding mantle, related to the history of subduction in those areas.
We also generate plate motions in our convection models by incorporating lateral viscosity
variations generated by major geological features of the Earth, such as the continent-ocean
divide, the presence of cratonic roots as well as age differences in the oceanic lithosphere.
For each structure, we predict the deviatoric stress field, the pattern of poloidal and toroidal
flow and the partitioning ratio between toroidal/poloidal velocities. The predicted devia-
toric stress field is added to the deviatoric stresses generated by lithosphere buoyancies and



the total stress field is compared with strain rate tensor information from GSRM. The best-
fit model has to satisfy both the constraints of matching the plate motions and the deviatoric
stress field simultaneously. By using both these constraints, we are able to eliminate several
types of models and narrow down significantly the set of models that fit the observations.
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Introduction

After decades of studies and observations, the plate tectonic theory was finally estab-
lished by middle to late 1960’s. Because of its power in explaining a diverse array of
puzzling features on the Earth, it has sometimes been hailed as “the grand unifying the-
ory of the earth sciences”. The phenomenon of plate tectonics also distinguishes the Earth
from the other planets of the solar system, as none of them are recognized to demonstrate
the plate tectonic phenomenon. Although some of the important tenets of the theory, such
as rigid plates surrounded by narrow deforming plate boundaries, have been modified to
account for more complex phenomena, like the wide, diffuse deformation along the con-
tinental margins, the basic theory has endured the test of time. However, there are still
certain aspects of the theory that are not fully explained, and one such aspect is the plate-
mantle coupling problem, which in turn has important implications in addressing the issue
of driving mechanism behind plate tectonics.

The coupling problem, in simpler terms, can be restated as the interaction between
plates and the convective mantle. A coupled plate-mantle system would imply that stresses,
generated by sub-lithospheric density buoyancies, are transmitted to the overlying litho-
sphere and influence the motion and deformation of the plates. A decoupled plate-mantle
system would prevent transmission of such stresses and the mantle would play no active
role in the motion and deformation of the lithosphere. This would imply that the plates are
self-driving. Indeed, there have been two different schools of thought regarding the role
of mantle in influencing the plate motions and the deformation of the lithosphere. Studies,
such agrorsyth and Uyedd1975),Harper (1975), Lister (1975), Solomon et al(1975),
Richardson et al(1979),Sandiford and CobleniA994), have concluded that mantle con-
vection plays a negligible role in the process of plate tectonics; the most important factor
influencing the plate tectonic process is the lithosphere itself. The ridge-push force, arising
from gravity acting on density variations in the oceanic lithosphere, and slab-pull force,
which is the downward pull of the slabs at subduction zones, are thought to be the dom-
inant forces behind plate tectonics. On the other hand, plate tectonics has been regarded

solely as a fluid dynamical process by several authors, startingTrwootte and Oxburgh



(1967), followed byZhong and Gurni§1996),Bercovici(1998),Tackley(1998), Trompert

and Hansen1998), Bercovici and Ricard2000), Tackley(2000) andBercovici(2003),
amongst others, who have attempted to model plate tectonics and mantle convection as a
single system.

However, none of the above studies have been able to fully explain all the observations
predicted by the plate tectonic theory. In recent years, studies have been undertaken that
take into account the contribution of both lithosphere dynamics and mantle convection in
explaining the various observabldda| et al, 1992;Bird, 1998; Steinberger et a].2001;
Lithgow-Bertelloni and Guynr2004;Ghosh et al.2008). Such studies have attempted to
evaluate the role of mantle by comparing their model predictions with observations on the
Earth.

The various observables that can constrain this coupling issue are the Earth’s long wave-
length geoid, dynamic topography, plate motions, and the lithospheric stress field. The last
two are the most definitive of the above-mentioned constraints. The constraint of plate
motions can be subdivided into the poloidal and the toroidal components. The former is
the vertical component of the convective flow, responsible for upwelling along the mid-
oceanic ridges, and downwelling in subduction zones. The latter causes strike-slip motion
along transform fault boundaries. The ratio of the magnitudes of these two types of mo-
tion can also provide a significant constraint in addressing this coupling problem. The
toroidal/poloidal ratio on Earth has been observed to be close to unity for each degree of
spherical harmonicHager and O’Connell1979) and historically it has been extremely
difficult to match this observed ratio in models of mantle convection.

In this dissertation | investigate the plate-mantle coupling problem by employing the
constraints of lithospheric stress field, plate motions, and the toroidal-poloidal velocity ratio
for the first time, through a joint modeling of lithosphere dynamics and mantle convection.
| use the velocity gradient tensor field along the Earth’s deforming plate boundary zones as
a proxy or indicator for the lithospheric stress field. The additional dataset of the earthquake
moment tensor field is also used to constrain the modeled stress field. | use both the pattern
and magnitude of the poloidal and toroidal velocity fields to constrain the predicted plate

motions from our models.



The dissertation is organized in the following way. It consists of an Introduction (Chap-
ter 1) and Conclusion chapters (Chapter 7) and five main chapters that have either been
previously published or are to be submitted for publication. Chapter 2 deals with the con-
tributions of lithospheric density buoyancies on the lithospheric stress field. It discusses
the method of predicting a global deviatoric stress field from gravitational potential en-
ergy differences per unit area (GPE) from the Crust 2.0 dataset and the geoid. Chapter
2 also discusses the significance of using a correct reference level for GPE calculations
and gives a quantitative comparison with the velocity gradient tensor field along the plate
boundary zones. Additionally, chapter 2 gives the methodology for treating the spherical
equations. This work is in preparation to be submitted taJtin@nal of Geophysical Re-
search Chapter 3 is also related to the contribution of lithospheric density buoyancies to
the global deviatoric stress field, but is confined to the analysis of the Indian plate where |
demonstrate the need for additional contribution of sub-lithospheric density buoyancies to
drive India into Eurasia, and thus explain the excess GPE of the Tibetan Plateau. It is pub-
lished inGeologyby Ghosh et al(2006). Chapter 4, submitted @eophysical Research
Letters and currently under revision, deals with the contribution of both lithospheric and
sub-lithospheric density buoyancies. However, it concentrates only on the poloidal com-
ponent of the total flow field. Chapter 4 clearly demonstrates quantitatively the need for
lithospheric coupling with deeper mantle density buoyancy-driven flow to explain the litho-
spheric deviatoric stress field. Chapter 4 also contains important benchmarking exercises,
where | show that the thin sheet method that | employ is capable of recovering the litho-
spheric deviatoric stress field. Chapter 5 investigates a best-fit coupling model by using the
additional constraints of plate motions and the toroidal-poloidal velocity ratio. Chapter 6
is essentially related to Chapter 5, in that it details the methodology used in computing the
solutions in Chapter 5. These last two chapters are also in preparation for submission to

theJournal of Geophysical Research
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Contribution of gravitational potential energy differences to the global
stress field

Abstract

Modeling the lithospheric stress field has proved to be an efficient means of determining
the role of lithospheric vs sublithospheric buoyancies and also of constraining the driving
forces behind plate tectonics. Both these sources of buoyancies are important in gener-
ating the lithospheric stress field. However, these sources and the contribution that they
make are dependent on a number of variables, such as the role of lateral strength variation
in the lithosphere, the reference level for computing the gravitational potential energy per
unit area (GPE) of the lithosphere, and even the definition of deviatoric stress. For the
mantle contribution, much depends on the mantle convection model, including the role of
lateral and vertical viscosity variations, the spatial distribution of density buoyancies, and
the resolution of the convection model. Because of its importance in the total contribution
of stresses to the plates, this study isolates only the contribution of crust and upper mantle
buoyancies, from the surface down to a constant reference level (100 km below sea-level).
Deficiencies in this contribution provide insight into the necessity and role of deeper mantle
density buoyancies in affecting the lithospheric stress field. Buoyancy distributions used
to calculate GPE differences within the layer considered are inferred from the Crust 2.0
dataset. We show that the GPE differences within this top layer alone are not sufficient
to match all the directions of principal strain rate axes and relative magnitudes of these
principal axes (style of faulting), as inferred from the comparison of our depth integrated
deviatoric stress tensor field with the velocity gradient tensor field within the Earth’s plate
boundary zones. The EGM96 geoid dataset is also used as a rough proxy for GPE val-
ues in the lithosphere. However, the GPE differences from the geoid fail to yield depth
integrated deviatoric stresses than can provide a good match to the deformation indicators.
GPE values inferred from the geoid have significant shortcomings when used on a global
scale due to the role of dynamic support of topography. Other important factors in estimat-

ing the depth integrated deviatoric stresses are (1) use of the correct level of reference in



calculating GPE, where that level of reference must be the base of the layer of depth inte-
gration and (2) correct treatment of dynamic topography. We also elucidate the importance
of understanding the reference pressure for calculating deviatoric stress and show that over-
estimates of deviatoric stress may result from either simplified 2-D approximations of the

thin sheet equations or the assumption that the mean stress is equal to the vertical stress.

2.1 Introduction

Since the advent of plate tectonics there have existed considerable controversies re-
garding the nature, magnitude, and source of the forces that drive tectonic plates. The
lithospheric stress field serves as an important indicator of these plate-driving forces. Lat-
eral density variations within the lithosphere have been shown to be a major factor influenc-
ing the global stress field~tank, 1972;Artyushkoy 1973;Fleitout and Froidevoux1982,
1983;Fleitout, 1991;Coblentz et al.1994;Coblentz and Sandiford 994;Sandiford and
Coblentz 1994;Coblentz et al.1995). Lithospheric deformation is not confined along nar-
row plate boundaries. Rather, deformation within many plate boundary zones is distributed
(McKenzie 1972;Molnar and Tapponnierl975;England and McKenzjel982;Molnar,
1988;England and Jacksqri989;England and Molnar1997b;Flesch et al. 2000), with
the bulk of crustal strain accommodated along major fault zoHe# &nd Haines 1995;

Holt et al, 2000; Thatcher 2007;Meade 2007). In present-day modeling of the tectonic
stresses, the notion of rigid plates has been replaced by the notion of the continental litho-
sphere behaving as a continuous medi@mgland and Jacksqri989). The importance of

this is the recognition that resulting crustal thickening and thinning leads to important in-
ternal lateral and vertical density variations; these lateral and vertical variations profoundly
influence the deviatoric stress field in the lithosphere. Furthermore, it has also been recog-
nized that horizontal dimensions of deformation far exceed the thickness of the lithosphere,
and in this regard lithospheric deformation has been quantified in terms of a thin viscous
sheet in order to solve for the depth averaged or depth integrated deviatoric stresses within
the lithosphere over large scaldsngland and McKenzjel982;Houseman and England

1986;England and Jacksqri989;England and Molnar1997b;Flesch et al.2001;Ghosh



et al, 2006). The assumption that goes with the thin sheet approximation is that the gra-
dients of shear tractions at the base of the plate are negligibly small compared to the force
of gravity acting on density. Hence, the sources of these driving stresses can be divided
into two main categories: (1) gravity acting on density variations within the thin sheet
and (2) gravity acting on density variations deeper than the thin sheet, related to density
buoyancy-driven convective circulation of the mantle. In this paper, we use the thin sheet
approximation to quantify the first of these two sources. These lateral density variations
mentioned above manifest, in part, as varying crustal thicknesses, which, together with
topography, cause variations in gravitational potential energy per unit area (GPE). Differ-
ences in GPE contribute to the deviatoric stress field in the lithosphere. This deviatoric
stress field is calculated and compared quantitatively with stress observations, such as the
World Stress Map (WSM) or strain rate tensor field in the earth’s plate boundary zones (this
study).

We calculate depth integrated deviatoric stresses, where the depth of integration is from
the surface down to a constant reference level of 100 km below sea-level. This incorporates
the lithosphere for most parts of the Earth. However, under the assumption that there is
no buoyancy-driven mantle convection, no dynamic topography, and hence, equal vertical
stress at the depth of the deepest continental keels, one can integrate to a deeper depth in
order to account for deeper density buoyancies associated with continental keels. Although
neglecting the above factors represents an oversimplified approximation, we nevertheless
explore the influence of integrating to the base of the deepest continental keels in order to
guantify differences with our standard reference level of 100 km.

We also investigate the role of lateral strength variations in the lithosphere. We calcu-
late the depth integrated deviatoric stresses on a one-plate planet of uniform lithospheric
viscosity, in addition to stress calculations on an Earth-like planet with weak plate bound-
aries. We show how the consideration of laterally variable viscosities in the lithosphere
enable the calculated deviatoric stresses to have a better match with stress and strain rate
observations.

Calculation of GPE requires a level of reference. When the vertical stress is laterally

variable at the base of the depth of integration the choice of reference level has important



dynamic implications. In this paper, we discuss the reference level problem in calculating
GPE, and show that for a thin sheet calculation in which the vertical stress varies beneath
topography along the base of the depth of integration, there is only one correct level of
reference. In particular, we show that for such cases, the shallow density anomalies have
a more dominant effect on the depth integrated deviatoric stresses than the deeper anoma-
lies. Another important aspect of our study is to bring forward the substantial changes in
stress magnitudes that arise by solving the full 3-D force-balance equations instead of the
2-D equations, and also the importance of using a correct definition of deviatoric stress.
Although the total forces driving lithospheric deformation are a combination of the two
sources mentioned above, arising from density variations both within and below the thin
sheet Lithgow-Bertelloni and Guynri2004), our study focuses only on quantification of

the lithospheric contribution. Our confidence in the magnitude and distribution of GPE
variations far exceeds our confidence in the magnitude and distribution of basal tractions
associated with mantle convection. Nevertheless, if the contribution from GPE differences
can be correctly quantified, then the misfit of the associated depth integrated deviatoric
stress field with stress tensor indicators holds promise for constraining the remaining con-
tribution associated with basal tractions. Therefore, it is important to isolate the contribu-
tion of GPE differences to depth integrated deviatoric stresses because they calibrate the

absolute magnitudes of deviatoric stresses acting within the lithosphere.

2.2 The Force Balance Equations and Validity of the Thin
Sheet Approximation

The force balance equations, which state that gradients of stresses are balanced by the
force of gravity per unit volume, are given by
00ij
— i=0 1
0x| + PYi 1)
(England and Molnar1997b), where;; is theij" component of the total stress tensqr,

is the jt" coordinate axisp is the density andj is thei™ component of the acceleration



due to gravity. The above equations use summation notation, whakes the values of
X,y andz and the repeated indgxepresents the summation owey andz. For clarity we
show the cartesian form of (1). However, we solve the spherical form of (1) in our global
calculations (see Appendix).

We explore next the conditions under which the thin sheet approximation is valid. The
basis of the thin sheet approach is that because the horizontal distance scales are large in
comparison with the thickness of the lithosphere, we can take depth integrals of the force
balance equations down to a constant reference level, and then solve these equations for
the depth integrals of deviatoric stress within that layer. Expanding the z-equation from (1)

and then integrating from the surface to the base of a uniform referencelleyadlds

o [t ol rt o L .
&[/_hOXZ(Z)dZ} oy /_hOyZ(Z)dZ] +a—z[/_hozz(2)dz} :—/_hpgzdz )

The approximation in the thin sheet approach is that

o rt o rL L
&/_hoxz(Z)dz+ a//hoyz(z)dz<< _/—hpgzdz’ 3)

such that, from (2) we have

0242 = [ pa(?)o? @

Assuming thaby,(z) andoy,(z) are linear, from zero at the surfacedg,(L) andoy,(L) at

the base, then the question is how large can the gradients of shear tractions be in order for
(3) to hold ? Using 300Ky/m? for an average density of the lithosphere and a 100 km thick
lithosphere, we find that horizontal gradients in shear tractions applied to the base of the
lithosphere at depth 100 km would have to be as high as 6 MPa/10 km in order for the left
hand side of (3) to be 1% of the magnitude of the right hand side of (3), the vertical stress at
depthL. This is at least an order of magnitude higher than horizontal variations of tractions
from large scale mantle circulatioBteinberger et al2001;Becker and O’'Connegl2001),

and is likely to be much larger than the most extreme gradients in tractions that might
occur beneath subduction zones. Therefore, the 'thin sheet’ approximation in (3) is valid,

in which case we can use the relation in (4) for the vertical stress, and use only the two
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horizontal force balance equations to investigate depth integrals of horizontal deviatoric
stress.

Substituting into (1) for the total stresses via the relationshiips 0jj — %okkéi j» where
1jj is theij'" component of the deviatoric stress tengqris the Kronecker delta, angby
is the mean total stress, and integrating (1) over the thickness of the lithosphere, we arrive
at the full horizontal force balance equations, neglecting flexangland and McKenzje
1982;England and Housemani986;England and Molnar1997b;Flesch et al. 2001):

0l 0Tz n 0y _ 007
ox ox dy  OX

+Tyo(L) %)

0Tyx + 0Tyy _ 0Tz B 0077
ox dy oy oy

+ 1'yz( L), (6)

where the over bars represent depth integration. The two terms on the right hand sides of
equations (5) and (6) constitute body-force-like terms. The first terms on the right side of
(5) and (6) represent horizontal gradients in GPE per unit area, whegéasandty,(L)

are the tractions, arising from density buoyancy-driven mantle convection, applied at the
base of the thin sheet at defthWe do not quantify the contributions of,(L) andty,(L)

here, but have addressed them elsewh@&reéh et al.2008).

The thin sheet approximation also implicitly assumes that vertical variations in hori-
zontal velocity are small, or that one of the principal axes of the stress or strain rate tensor
is close to vertical. The presence of a basal traction boundary condition in (5) and (6), as-
sociated with a deeper mantle density buoyancy contribution, calls for the need to evaluate
the validity of this assumption. If one principal axis is close to vertical, then depth integrals
of shear stress should be small in comparison with depth integrals of horizontal deviatoric
stress. Using 5 MPa fawy,(L), and assuming a linear gradient@f;(L), such that it is
zero at the surface, the depth integralogf(z) are 25 x 10' N/m. This is about 10% of
the magnitude of the depth integral of horizontal deviatoric stress in the lithosibieost{
et al, 2008). Therefore, even in the presence of basal tractions of significant magnitude,
the assumption that one of the principal axes is near-vertical appears to be valid.

The forcing terms in (5) and (6) are constrained by observations. For example, GPE per

11



unit area is constrained by topography and seismically-defined crustal thicknesses (Crust
2.0 [G. Laskeetal., Crust 2.0: A new global crustal model ak2 degrees, 2002, available

at http://mahi.ucsd.edu/Gabi/rem.html]) and tractions can be constrained by self-consistent
circulation models that match plate motion, dynamic topography, and geoid\ergand
Anderson 1997b). Depth integration over the entire plate thickness is indicated by bars
over the total stress and deviatoric stress temgsandTij, respectively. The vertically

integrated vertical stressy,, which is the negative of GPE per unit area is given by

6= [ pdrgz|az=- [ (L-2p(2)gdz @

(Jones et al.1996), based on a reference level of ddpthlere,p(z) is the densityi. is the
depth to the base of the thin sheets the topographic elevation, agds the acceleration

due to gravity.

2.3 Method for Solving the Force Balance Equations

The deviatoric stress field solution that we obtain is the mathematically unique solution
that both balances the body force distribution (GPE differences) and provides a global min-
imum in the second invariant of stress (followiRtesch et al(2001)). We also take into
account weak plate boundaries and strong plates, as discussed later. Solutions to (5) and

(6) for Ti; can be obtained, given distributions%Z and agfz with Txz(L) andty,(L) set to

zero (e.gFlesch et al. 2001;Ghosh et al.2006). Alternatively, solutions can be obtained
given distributions oftyA(L), Ty,(L), with gradients in GPE set to zero. The contribution
from basal traction can simply be added to the contribution from GPE differences in order
to obtain the full stress field. This motivates our study to correctly quantify the global solu-
tion associated with GPE distributions in order to better understand the full global solution,
which has contributions from density variations at all depths.

Previously, most authors had used the geoid surface (sea-level) as the reference level
for calculating GPEKleitout, 1991;Coblentz et al.1994;Jones et al.1996;Zoback and
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Mooney 2003), in which case,

L —
&= [ p()gzdz= Gt LozL). ®)

Thus, for areas in whiclo,L) is a constant, the choice of reference level is irrelevant
(Haxby and Turcottel978). However, this reference level yields significantly different val-
ues from that obtained using (7) when the pressm£l ), at the reference levélis non-
uniform, as we discuss in a later section. We use both the Crust 2.0 dataset and the EGM96
geoid model (available from NIMA at http://164.214.2.59/GandG/wgs-84/egm96.html) to
calculate GPE. We show that the latter can only be used as a proxy for GPE if the pressure
or vertical stress at the base of the layer of integration is uniform globally.

We use a finite element method to solve the three-dimensional force balance equations
over a global grid of ° x 2.5° for the spherical case, neglecting basal tractions, to quantify
the contributions to deviatoric stresses that are intrinsic to the lithosphere. We minimize
the functional (afteFlesch et al(2001)):

[ ' )+ 202
| = /Sn[TaBTaB+TW]dS+/SZ)\G[6_XB(TGB+6GBTW)+ 0Xa ]dS ©)

whereptis the relative viscosityi,g is the vertically integrated horizontal deviatoric stress,
Tyy = Txx+ Tyy, Aq is the horizontal component of the Lagrange multiplier for the constraint

to satisfy the two force balance differential equationms,is the vertically integrated ver-

tical stress (GPE per unit area), aBdepresents area on the entire Earth’s surface. In
Flesch et al(2001),1 was assigned a value of 1. We assign variable valugsnoorder

to approximate weak plate boundary zones and strong plates. This is done in two ways.
In the first case, an inverse relationship between strain rates Kreemer et al(2003))

and relative viscositieg, is assumed (Figure 1a). The relative viscosities of the deforming
plate boundary regions are obtained by assigning a reference viscosity to the moderately

straining region in western North America with a strain rate 6410 //yr via the rela-

1 1 E?
S= 1 (-1 e (10)
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wherepief is the viscosity corresponding to the above-mentioned &ea; 2(£3,+ €3, +
€2+ Exxyy), Wheregyy, Eyy andéyy are the strain rates froreemer et al(2003), ancEZ ¢
is the reference value fdE2, corresponding to the value fpres. The lowest viscosities
occur along the mid-oceanic ridges, whereas relatively higher viscosities occur in the de-
forming continental areas (Figure 1a). The rigid plates (blank regions) have the highest
viscosities with gu value of 1. We try different values for the reference viscositys,
such as 1/3, 1/30, 1/300 and 1/3000, where the reference region in western North America
is 3, 30, 300 and 3000 times weaker than the plates, respectively. The viscosity structure
giving rise to the deviatoric stress field that matches the deformation indicators best is cho-
sen. Taking into account the above viscosity variations yields a focusing of stresses within
the plates and fits well the observ8#,ax orientations in most places within the plates
(Zoback 1992).

The second way takes into account the dependence of effective viscosities on litho-
spheric thickness in addition to strain rates (Figure 1b). The viscqéjtin this case is
given by:

/ l L 1 !
W= 1—00/_h hdz= oL+, (11)

wherel’ + h is the thickness of the lithospher€dgnrad and Lithgow-Bertelloni2006)

andp are the strain rate dependent viscosities. Note thatlHéseno longer constant; the
variable base of the lithosphere is taken into account. In the case where GPE is calculated
with a reference level of 100 km, the maximum value_bfs fixed at 100 km. Therefore,

in this case, our depth integrals do not encompass the deeper lithospheric keels, but take
into account the variable depths of the oceanic lithosphere. However, we do address a case
wherel’ = 270 km, a depth great enough to include the keels. Note, in (11) the lithosphere
thickness is normalized by a reference thickness of 100 km. Areas deforming at the same
rate will have different viscosities based on lithospheric thickness: thicker lithosphere will
be stronger than lithosphere that is less thick.

We minimize (9) with respect togg using the variational principleMorse and Fesh-
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Figure 1:Logarithm of relative viscosity distribution for all the plates based on a) strain rates from
GSRM and b) both strain rates and lithospheric thickness. The white areas represent intra-plate
regions with relative viscosity 1. A reference viscosityppf; ~ 3—10 is chosen at the moderately
fast straining western North America.blx 10~//yr). Areas with higher viscosities thanes are
deforming at a slower rate.

bach 1953), which then yields the relation

Here,T_aB has the same relation with the vector of Lagrangian multipliers as does the strain
rate, €, to the velocity vector. Substituting,g from (12) into theJ functional below

(Flesch et al. 2001) and then minimizing the functionadlwith respect to the Lagrange
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multipliers yields the force balance equations that the Lagrange multipliers have to satisfy.

T
Txx CDQES Txx CDQES
— = _ obs v/ 1 = _ obs
J= /S Tyy Pyy v Tyy Pyy s  (13)
Ty oS Txy s

whereTyy, Tyy andTyy are the vertically integrated deviatoric stresses that we are solving
for, V=1 is the covariance matrix (see Appendig)s = ®%PS= —15,, and ®LS = 0.
Minimizing J with respect to the Lagrange multipliers provides a unique solution to the
force balance equations that corresponds to the global minimum in the second invariant of

deviatoric stressHlesch et al, 2001).

2.4 GPE from Crust 2.0

We use the crustal thicknesses and densities from the Crust 2.0 dataset to calculate GPE
per unit area. For the oceanic regions, we use the cooling plate model based on ocean floor
age dataNluller et al, 1997) and with revised parameters fr@tein and Steif1992) to
define densities there. The densities of the last layer of the crustal model are replaced by
an upper mantle density of 3300 kgiimeneath the continental lithosphere. The reference
level, L, is chosen as 100 km (aftdones et al(1996)) in this particular case. We also
use a deeper reference level in order to take into account the density buoyancies associated
with cratonic roots, which we discuss in a later section. Since water and ice are unable
to transmit significant tectonic shear stresses, effects of ice and water layers are excluded
from our GPE calculation. However, we take into account the pressure exerted by water
and ice layers, which constitutes a boundary condition in the computation of the GPE inte-
gral (equation (7)). The GPE calculated from crustal thickness estimates of Crust 2.0 show
high values occurring at high elevation regions like the Andes, western North America,
eastern Africa, Tibetan plateau, as well as at the mid-oceanic ridges, with the maximum
GPE at the Tibetan plateau (Figure 2). Lower elevation regions like the ocean basins and

topographically low continental areas exhibit low GPE. The resultant depth integrated devi-
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Figure 2: Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from the uncompensated Crust 2.0 data.

Tensional deviatoric stresses are shown by red arrows while compressional deviatoric stresses are shown by black arrows. Length of the arrows are
proportional to the magnitude of stresses. Strike-slip regions are indicated by one tensional and one compressional pair of arrows. Areas :m<___@/@ high
GPE are in deviatoric tension while areas having low GPE are in deviatoric compression. GPE on scalebar is in Newtons/meter and corresponds to

the depth integral ofi,, from the Earth’s surface to the reference levelt 100 km below sea-level.
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Figure 3:Global distribution of vertically integrated horizontal deviatoric stresses and GPE calcu-
lated from Crust 2.0, compensated by elevation adjustment. The range of GPE values, as well as
the absolute magnitudes of deviatoric stresses, decrease compared to the uncompensated (in figure
2) as well as the other compensated case (figure 3), but the overall pattern remains similar to that
in figures 2 and 3. Because compensation is achieved via elevation adjustment, figure 4 is the theo-
retical response of lithosphere from internal buoyancies, with the influence of dynamic topography
removed.

atoric stress magnitudes (Figure 2) show a maximum depth integrals of deviatoric extension
at the Tibetan plateau(3 x 102 N/m) and compressional deviatoric stresses in the oceans
and low elevation continental regions. The mid-oceanic ridges are in deviatoric extension
(~ 1—1.5x 102 N/m) as are topographically high areas that have higher GPE values.
Moreover, the depth integrated deviatoric stresses for the Indo-Australian plate agree with
the SHnaxdirections of the WSMZoback 1992;Reinecker et a).2005) and those derived

by Sandiford et al(1995).

The Crust 2.0 model is not compensated. In order to investigate the effect of com-
pensation, an isostatic solution was computed by compensating our model (equal pressure,
ffh pgdz= 0z4L), at the reference levél). The concept of isostatic equilibrium dates
back to the 1% century. The Airy model of isostatic compensatidiry, 1855) involves a
constant density layer with variable thickness while the Pratt mdttakt, 1855) is based
on a constant thickness layer of variable density. What occurs on Earth is perhaps a com-

bination of these two end-members, with different regions exhibiting each mechanism in
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Figure 4:Same as Figure 2, but with laterally uniform lithospheric viscosity. Note that significant
changes occur in deviatoric stress orientations in many of the plate boundary zones (western N.
America, Mediterranean, southeast Asia) as well as within the Indo-Australian plate region.

varying degrees. The vertical stress at the reference levislgiven by:

0zAL) = / th(Z)gdz (14)

can be equilibrated either by adjusting the density of the upper malitle or by adjusting

the elevationh, of the crustal blocks. In the latter case, the adjustment constitutes the
removal of the inferred dynamic topography that has resulted from radial tractions applied
at the reference level, (which is the inferred source of the variable valuesgfL)).

Upper mantle densities are adjusted with respect to an average verticalosi{éss
for the continents and oceans. Although the resultant GPE and deviatoric stress solutions
(Figure 3) provide values that are £20% lower than the uncompensated case, the overall
style of deviatoric tension and compression remain unchanged, with the maximum devia-
toric tension & 2.5 x 1012 N/m).

In the second method, compensation is achieved by adjusting the elevations based on
an average vertical stress;, (L), for the continents and oceans, while keeping the den-
sities of the mantle constant. Thus, elevations of the crustal blocks are lowered or raised
according to whether the actual vertical stress at referencellesgjreater or less than the

average vertical stress there. Both the GPE and deviatoric stress magnitudes show similar
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pattern as before (Figure 4), with the maximum deviatoric tension Bf 102 N/m oc-

curring at the Tibetan Plateau. Compensation by density adjustment does not acknowledge
the existence of dynamic topography (discussed later), whereas in the later case, the entire
deviation from an isostatic solution is attributed to the existence of dynamic topography.
The deviatoric stress field in Figure 4, therefore, represents the theoretical contribution
of lithosphere buoyancies alone, with dynamic topography removed under the assumption
that all variations in vertical stress at the reference level are due to dynamic topography.
What occurs on Earth is a combination of these two end-members. On comparing the GPE
differences and deviatoric stress magnitudes for the two compensated cases (Figures 3 and
4), we find that magnitudes of both are reduced considerably in the latter case (compen-
sation by elevation adjustment). Due to increasing density moment as a function of mass
anomalies considered at increasing distances away from the referencé J¢dedcussed

in detail in section 2.7), near-surface densities have a greater impact on the change in GPE
than do deeper density variations. This means that adjustment of elevation has a greater
impact on GPE change, and associated deviatoric stress magnitudes, than the adjustment
of density in the mantle. Another way of interpreting this result is that, assuming flexure

to be negligible at long wavelengths, if horizontal variationgjgL), are inferred to be
associated with mantle flow or dynamic support, then the resulting dynamic topography is

a major factor contributing to lithospheric GPE differences.

As a way of investigating the role of weak plate boundaries, we also compute devia-
toric stresses with a uniform lithospheric viscosity<1 in (9)) based on an uncompen-
sated Crust2.0 model. The resultant deviatoric stresses (Figure 5) have magnitudes similar
to those in the uncompensated case. However, the plate boundaries, in this uniform vis-
cosity case, have higher stresses as compared to the plate boundaries in all the other cases
(cases with lateral viscosity variations). When compared with the uncompensated result
with lateral viscosity variations, the stress patterns appear similar in a few areas, but dif-
fer substantially in many regions, particularly in the continents. Furthermore, the arcuate
feature of compressive deviatoric stresses throughout the Indo-Australian plate boundary
regions (observed in the WSM) is only achieved when lateral viscosity variations in the

lithosphere are taken into consideration (refer to Figure 5 and compare with Figures 2-4,
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Figure 5:Same as Figure 3, but compensated at the depth of the deepest lithospR&tekm).

and 6). Lateral strength variations, with weak zones corresponding to location of today’s
plate boundary zones, and stronger zones corresponding to position of the plates, therefore,

plays a profoundly important role in affecting the deviatoric stress field.

2.5 Deeper Lithospheric Density Buoyancies

As mentioned earlier, we perform depth integrals to 100 km, which is sometimes as-
sumed to approximate the boundary between the non-convecting lithosphere and the con-
vecting mantle. However, the base of the lithosphere is variable in depth due to continental
keels, depth variations for different aged oceans, etc. Accounting properly for this vari-
able depth involves sophisticated methods that we do not attempt in this paper. One can
approximate the influence of variable bottom lithosphere, however, by integrating down to
a constant reference level, equal to the depth of the deepest lithosphere. However, this can
only be achieved under the assumption that there is no buoyancy-driven mantle convection
acting on the variable base of lithosphere, and no dynamic topography. This implies total
compensation; that is, equal vertical stress at the depth of the reference level (bottom of the
deepest lithosphere).

In order to take into account the effects of the deeper density buoyancies associated

with the lithosphere, the reference levk),is extended to a greater depth. Based on the
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lithospheric thickness model @onrad and Lithgow-Bertellonj2006), we takd. to be

at the depth of the deepest lithosphexe270 km). Integrating to a depth ef 270 km
captures a significant portion of the asthenosphere. However, a constant asthenospheric
density outside of the very deep cratonic areas makes no contribution to the deviatoric
stress field.

In order to achieve compensationlatwe adjust the densities of the subcrustal layer
(layer between the base of the crust and the base of the lithosphere) with respect to an
average vertical stress at 270 km depth for continents and oceans. The asthenosphere layer
(layer between the base of the lithosphere and the referencellpi®hssigned a constant
density of 330kg/m°. Based on these adjusted densities, the GPE and the corresponding
deviatoric stress field are calculated with viscosities varying as a function of both strain
rates (Figure 1a) and combined strain rates and lithospheric thickness (Figure 1b).

The absolute GPE values naturally increase whes at a greater depth (Figure 6).
However, the GPE differences, and consequently the deviatoric stress magnitudes, are
lower than the corresponding model compensated at 100 km (Figure 3). The overall depth
integrated deviatoric stress pattern (Figure 6) is similar to the previous cases (Figures 2-
4). The lower deviatoric stress magnitudes may indicate the influence of a lower density
(less than 330@g/m°) subcrustal lithospheric layer used in most of the regions to achieve

compensation.

2.6 GPE from Geoid

We also calculate GPE from the EGM96 geoid dataset. Geoid anomalies have been
used to calculate GPE bgoblentz et al(1994); Sandiford and Coblent1994); Flesch
et al. (2000, 2001)Coblentz et al(1994) calculated geoid anomaly as

AN = —=—"AU (15)
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(Turcotte and Schubertl982) whereG is the universal gravitational constarmt,is the

acceleration due to gravity addl is the GPE from geoid given by

L
AU, = _/o Ap(z)gzdz= —% (16)

However, this relationship is true only if isostatic compensation prevails everywhere at
the reference level (Haxby and Turcotte1978). Otherwise, significant errors will be
introduced if the geoid is used to infer GPE and dynamic topography is present. Moreover,
the geoid anomalies, and hence the computed GPE values, are also sensitive to the filtering
techniques. Note that the integral in (16) is not equivalent to the vertical integral of vertical

stressg,,, or GPE, which is correctly shown in equation (7). Instead,

/L p(2)gzdz= Lo, —/O p(z)zgdz+ L/L p(z)gdz a7)
0 “ h ~h

(Flesch et al,2007). Hence, the geoid can only be used as a proxy for GPE if the right most
integral in (17) is a constant at reference ddptmeaning there is no dynamic topography
(Flesch et al. 2007). Note that if the last term in (17), the pressure at reference tdepth
varies over long wavelengths, then the geoid can be used as a proxy for GPE over length
scales where those lateral variations in pressure are small. For example, for regional scale
models such as North America, it may be appropriate to use the geoid as a proxy for GPE
(Humphreys and Coblent2007).

For comparison purposes, we evaluate the deviatoric stress field associated with GPE
inferred from the geoid in order to quantify the differences from a solution directly inferred
from crustal structure. We use the EGM96 geoid model in order to approximate the GPE,
with reference to a mid-oceanic ridge column of lithosphere (&telentz et al(1994)).

Like Flesch et al(2001), andlones et al(1996) before them, we filter the geoid such that
terms below degree and order 7 are removed with a cosine taper to degree and order 11.
A constant crustal and mantle density of 2828 kyand 3300 kg/rd are assumed (after
Flesch et al.(2001)). The deviatoric stresses are computed in the same way as from the
Crust 2.0 dataset.
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Figure 6: Global distribution of vertically integrated horizontal deviatoric stresses and GPE in-
ferred from the EGM96 geoid dataset.

There are many differences between the deviatoric stresses calculated from the geoid
dataset and those from the Crust 2.0 dataset. Both GPE differences and the deviatoric
stress field (Figure 7) are in general lower than those from the Crust 2.0 solutions. The
deviatoric tension in western North America does not show up in the geoid solution. For the
geoid solution, deviatoric compression in northern Europe, the South-east Asian subduction
zone, and the North American continent change to deviatoric tension, or strike-slip style of
deformation, with the highest deviatoric tensienZ x 102 N/m) occurring at the Tibetan
plateau. The mid-oceanic ridges in the geoid case constitute a much weaker signal than
in the Crust 2.0 solutions. The matching of deviatoric stresses for the Indo-Australian
plate with theSHyax directions of the WSM is considerably poorer for the geoid case.
Similar differences exist between the geoid and uncompensated solution (Figure 2), with

the differences in magnitudes being greater.

2.7 Reference Levels

Choice of reference level for the calculation of GPE has significant impact on the in-
ferred deviatoric stresses associated with internal density buoyancy distributions in the

lithosphere for the uncompensated case. Gravitational potential energy values must be
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computed with respect to some reference level and, depending on which reference level is
chosen, the calculated GPE, and the associated deviatoric stresses, will change if the to-
pography is uncompensated. Historically, there has been a precedence of calculating GPE
with the surface of the geoid (sea-level) as the reference |&¥eit@ut and Froidevoux
1982;Fleitout, 1991;Coblentz et al.1994;Jones et al.1996;Zoback and Moongy003).

Fleitout (1991) gave the “moment law”:

/O " Ao, (2)dz= Smgd (18)

which states that the influence of an intralithospheric mass anomaly is proportional to its
moment, the product of its amplitudeng and depthd. This means that the greater the
depth of the mass anomaly, the larger the impact on the GPE and the associated stress field.

If the surface is treated as reference level, the above relation can be re-written as

L L
/Aczz(z)dz: g/ Ap(z)zdz (19)
0 0

However, this moment law is based on treating the sea-level as the level of reference. On
the other hand, if we consider a constant depth levél efhich is the maximum depth of

integration, as the reference level, then the moment equation will be modified to

/OLAozz(z)dz: /OL [/OzAp(z’)gdi] dz= /OL (L—2)Ap(2)gdz=3dmglL—2)  (20)

This implies that the near-surface density anomalies will have a greater effect on GPE,
and the corresponding deviatoric stress field, than deeper anomalies within the portion of
the lithosphere considered in the depth integrals. However, the differences in reference
level are only relevant when topography is uncompensated. In the compensated case, the
term in (20),0,4L), is a constant and the remaining terjéf,zAp(z)gdzis identical to

that in (19), where the reference level is sea-level. Although the inferred value of GPE
is different, depending on whether (18) or (20) is used, because deviatoric stress depends
only on the gradient in GPE, (18) and (20) yield the same result wh#h) is a constant.

When vertical stress;,(L) varies at the reference levél, however, use of (18) and (20)
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Figure 7: Global distribution of dynamic topography. The red areas indicate positive dynamic
topography while the blue areas indicate negative dynamic topography. The maximum dynamic
topography~ 3.5 km occurs in central East Africa. Topography on scalebar is in meters.

will yield different estimates of deviatoric stress. Recall that the thin sheet equations arise
from depth integration of the full three dimensional force balance equations, with limits
of integration from the surface, down to the reference ldvelThe GPE term thus arises
from the depth integration of the vertical stress;. To remain consistent with the thin
sheet approach, the only appropriate form for GPE is therefore equation (20), where the

reference level is at depth

2.8 Dynamic Topography

We define dynamic topography as the topography that arises from sub-lithospheric den-
sity anomalies that drive mantle flow. The radial component of mantle figyv ¢auses
vertical displacements of the lithosphere producing dynamic topography. These kinds of
topographical features are in contrast to those created by density variations within the litho-
sphere, which might be called static topography. The total topography that we observe on
the surface of the Earth is the net sum of these static and dynamic parts. Isolation of this
dynamic topography provides a constraint on the lithospheric contribution of topography.
Thus, one aim of our study is to distinguish between these two types of topographies by es-

timating the styles and magnitudes of dynamic topography from our crustal solutions. Esti-
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mates of global dynamic topography have been provideddmer et al.(1985);Cazenave
et al.(1989);Panasyuk and HaggR000);Steinberger et al2001) and.ithgow-Bertelloni
and Guynn(2004).Cazenave et a[1989) andPanasyuk and HaggR000) calculated dy-
namic topography by removing the effects of isostatic topography from the observed to-
pography, the same way as we do heB¢einberger et al(2001) andLithgow-Bertelloni
and Guynn(2004) used mantle flow field whilldager et al.(1985) used geoid anomalies
in order to calculate dynamically induced topography.

GPE values from the uncompensated model contain the influence of dynamic topogra-
phy as well. The weight of the lithospheric colunm3;(L), at reference depthis given by
oz4L) = [5,p(Z)9(Z)dZ = 02L) + 1,4L), in the presence of dynamic topography. This
formulation ignores any contribution from flexure. Hetg,(L) is the reference stress,
while 1,(L) is the radial traction at reference ledebssociated with deeper mantle flow
that is responsible for producing dynamic topography. In order to remove the dynamic
topography contribution, an isostatically compensated solution (uniform vertical stress at
depthl) is calculated. One way of compensating our solution, as stated before, is by ad-
justing the elevations of the crustal blocks. Accordingly, areas with lower than average
vertical stress at reference depthet elevated in order to achieve uniform vertical stress at
reference level while those with higher than average vertical stress atldepghlowered
in elevation. Thus, the difference between the compensated topography and observed to-
pography should provide an estimate of the magnitude of dynamic topography. The highest
magnitude dynamic topography 3.5 km) occurs in eastern Africa (Figure 8)ithgow-
Bertelloni and Silver 1998). Other areas of positive dynamic topography are northern
Atlantic near Greenland and parts of western North America. Somewhat lower magnitude
positive dynamic topography occurs along the mid-oceanic ridges. These are the possi-
ble areas of upwelling, while areas of negative dynamic topography include eastern North
America, parts of western Europe, and the deeper oceans. Our results bear considerable
similarities to that ofPanasyuk and Hageg{2000) who computed dynamic topography in
the above procedure; the only difference is that they used a less fine crustal dataset than we
have. There might be possible errors in our estimates of dynamic topography magnitudes

due to uncertainties in the upper mantle densities. However, this will not have any consid-
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erable effect on the styles of dynamic topography. This result indicates the significance of

dynamic topography in understanding the global distribution of deviatoric stresses.

2.9 Deviatoric Stress Magnitudes

We argue that many previous calculations of depth integrals or depth averages of devi-
atoric stress magnitudes in Tibet as well as in the mid-oceanic ridges, have been overesti-
mated Ghosh et al.2006). Maximum difference in depth integrals of deviatoric stress be-
tween Tibet and surrounding lowlands,(Tibet— Txx/lowlandd) iS around 35— 4 x 10N /m,
which is about a factor of two lower than previous estimates of deviatoric stress difference
(~ 6— 7 x 102 N/m) there Molnar and Lyon-Caen1988;:Molnar et al, 1993). Also, the
ridge-push force, or the vertically integrated deviatoric stress magnitudes associated with
the mid-oceanic ridges in our solutior (.5 x 102 N/m), is lower than previous estimates
of ridge-push £ 3 x 102 N/m) (Harper, 1975;Lister, 1975;Parsons and Richter1980).

This difference in deviatoric stress magnitudes from previous estimates can be attributed
to two factors: (i) either a two dimensional approximation of the thin sheet applied along a
single profile and/or (ii) the form assumed for the hydrostatic state of stress, ofadth (
mayrac and Molnar1981;Molnar and Lyon-Caenl1988). We use the term hydrostatic
stress to refer to the reference pressiesubtracted from the total stress to obtain the
deviatoric stresstj; = gj; — P9;jj. If P is assumed to be the lithostatic or vertical stress,
02z then the deviatoric stress is definedigs= oijj — 0:0i; (which we call 2-D definition

of deviatoric stress). Such an assumption implies the vertical component of the deviatoric
stress,T,, to be equal to 0, which is entirely a special case, and is unlikely to be appli-
cable in many area€fgelder 1994). IfP is defined as the mean stress, then deviatoric
stress becomas; = 0ij — $01kdij (Which we call a 3-D definition of deviatoric stress), with

the constraintyx+ Tyy + T2z = 0 (Flesch et al, 2001). The largest estimates of deviatoric
stresses have resulted from solutions to simplified 2-D thin sheet equations, applied along
a single profile, along with the assumption that hydrostatic siPeésequal to the vertical

stress, and,;= 0. In that case, the two horizontal force balance equations reduce to a
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Figure 8:Global distribution of vertically integrated horizontal deviatoric stresses, calculated from

an uncompensated Crust 2.0 dataset, based on a 2-D definition of deviatoric stress (equations (24)-
(26)). The stress magnitudes are a factor of two higher than all our previous solutions, calculated
using a 3-D definition.

single equation:
00xx
ox

=0, (21)

which, after using a 2-D definition of deviatoric stress, givgs= —0,-+ a constanC
as a solution to the depth integrated force balance equation. That is, the depth integrated
deviatoric stress magnitude equals GPE. On the other hand, using the same force balance
equation, but a definition of hydrostatic stress as the mean stress, @jgids—%c?zﬁ a
constantC, a magnitude of a factor of two lower than the previous case. The reason for
lower stresses using the 3-D definition of deviatoric stress is that some of the potential
energy differences get absorbed in the vertical tegpwhich is zero in the case with the
2-D definition.

Using the 3-D force balance equations, one of the horizontal deviatoric stresses, say
Txx, Can be given as:

D

1
T2 = Oxx— L—,)(Oxx+ Oyy+ 0z) (22)

and

Tax = Oxx— Ozz, (23)

according to the 3-D and the 2-D definitions of deviatoric stress, respectively. From this,
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the relation between the 2-D and the 3-D deviatoric stresses can be written as:

To = 2 + Ty, (24)
and similarly,
2D _ »=3D , =3D
Tyy = 2Ty + Ty (25)
Ty =Ty - (26)

The reason for still lower stresses by using the full 3-D equations is the presence of the
horizontal termgyy andtxy which are absent in the 2-D case. Solutions using the full 3-D
force balance equations, but a 2-D definition of deviatoric stress, yield deviatoric stress
magnitudes a factor of two or more higher than our previous 3-D solutions (Figure 9). The
Tibetan plateau, for example, exhibits deviatoric tensior &fx 1012 N/m, while the mid-
oceanic ridges show deviatoric tension-oP — 2.5 x 102 N/m, similar to the deviatoric
stress magnitudes given previously for Tibet Mplnar and Lyon-Caer{1988); Molnar

et al.(1993), and for the mid-oceanic ridges Hgrper (1975);Lister (1975);Parsons and
Richter(1980).

One importance of evaluating the correct magnitude of deviatoric stresses lies in the
fact that the onset of deformation of the Indian ocean lithosphere has been explained by
the high deviatoric stress magnitude § x 10'2N/m) in that area associated with the large
GPE differences between Tibet and the Indian Océdolr{ar et al, 1993). According
to Molnar et al. (1993), a sediment laden oceanic lithosphere would be capable of buck-
ling at a deviatoric stress magnitude -of4.4 x 10°N/m. We do not disagree with this.
However, the vertically integrated deviatoric stress magnitude in that area, associated with
the large GPE differences between Tibet and surrounding Indian Ocean, is nhot more than
~ 1.5 x 10'?N/m. Therefore, deviatoric stresses to produce buckling must arise from addi-
tional sources other than GPE differences alone. Moreover, the magnitude of the ridge-push
force has been used to constrain the intra-plate stress magnitude of the Indo-Australian
plate Reynolds et al.2002) and to infer the degree of slab-plate coupling for the Java

and Sumatra slabsandiford et al.2005). However, the ridge-push force magnitude falls
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short of balancing the- 3 x 102N/m NNW-SSE oriented deviatoric tension at the Tibetan
plateau Ghosh et al.2006). Since the total depth integrated deviatoric stress acting on the
lithosphere can be attributed to stress related to (1) GPE differences and (2) basal tractions
arising from deeper density buoyancies, the insufficiency of the ridge-push force in balanc-
ing the deviatoric tension at the Tibetan plateau calls for additional deviatoric stresses of
magnitude~ 3 x 10'?N/m associated with driving shear tractions at the base of the litho-
sphere in the Indian plate region. The density buoyancy distribution giving rise to these
driving tractions is likely related to the long history of subduction of the Indian and Aus-

tralian platesl(ithgow-Bertelloni and Richard4995;Wen and Andersqri997b).

2.10 Comparison of Calculated Deviatoric Stresses with
the Strain Rate Tensor Field in the Plate Boundary

Zones

We introduce a quantitative way of testing our modeled deviatoric stresses with strain
rate information from the Global Strain Rate Mdfréemer et al.2003;Holt et al., 2005).
The Global Strain Rate Map (GSRM) model is a velocity gradient tensor field solution for
the entire Earth’s surface. It is a high resolution dataset along the Earth’s diffuse plate
boundary zones. The GSRM model is based on 5170 GPS stations as well as Quarternary
fault slip rate data. Our calculated deviatoric stress tensor is scored with the strain rate
tensor from GSRM and we seek to match direction of principal axes as well as style of

faulting. We define a correlation coefficief¢sch et al. 2007)

-1< Y (e-T)AS/( S (E)0sS | S (TZ)AS) <1 (27)

areas areas areas

whereE = \/ €2, + €2+ £2,+ €2, + €2, = \/ 262+ 28y + 2623, + 262,

T = [T+ T+ 15,4+ 15+ 1= \/ 2%+ 2TuxTyy + 215, + 215,
ande - T = 2&xxTxx+ ExxTyy + EyyTxx + 28yyTyy + 265y Txy.

E andT are the second invariants of strain rate and deviatoric stress respedciivelg
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f 1 1 1 1
Region of Number Href ~ 3 Href ~ 35 Href ~ =55 Href ~ =070

interest ofareass U CD CE| U CD CE| U CD CE| U CD CE
Western 132 |0.39 0.66 0.74053 0.72 0.750.44 0.68 0.790.45 0.70 0.74
N. America

Andes 89 0.14 0.60 -0.040.25 0.69 0.060.15 0.54 -0.040.22 0.67 O

Eastern Africa 164 |0.40 0.09 0.100.31 -0.04 -0.060.38 0.16 0.060.40 -0.01 0.04

Mediterranean 83 0.52 0.44 0.490.55 0.52 0.500.55 0.54 0.490.50 0.48 0.4¢

Central Asia 187 |0.26 0.33 0.140.32 0.41 0.320.31 0.42 0.300.30 0.38 0.27

Indo-Australian 174 |0.68 0.71 0.700.69 0.77 0.740.64 0.61 0.670.60 0.70 0.67
plate boundary

Mid-oceanic ridges 292 |0.82 0.86 0.870.79 0.85 0.870.77 0.83 0.840.66 0.76 0.7¢
Western Pacific 109 |0.48 0.62 0.560.51 0.60 0.530.42 0.58 0.420.46 0.57 0.52
South East Asia| 167 [0.48 0.62 0.590.61 0.68 0.650.54 0.66 0.58 0.55 0.65 0.61
Total 1944 |0.51 0.57 0.510.54 0.60 0.520.50 0.58 0.490.50 0.56 0.49

Table 1: Correlation coefficients obtained from a comparison between different deviatoric stress
models with the strain rate tensor field from the GSRM model (see equation (27)) with reference
level, L = 100 km and viscosities varying as a function of strain rates only (Figure 1a). The abbre-
viations U, CD and CE denote models that are uncompensated, compensated by density adjustment
and compensated by elevation adjustment respectively.

strain rates fronKreemer et al(2003),AS s the grid area ant; are the calculated ver-

tically integrated deviatoric stresses. Normalizatiore of by E and T in equation (27)
ensures that the correlation coefficient has no dependence on stress or strain rate magni-
tudes. The correlation coefficient only depends on a match of the deviatoric stress tensor
to the inferred style of faulting (relative magnitude of extensional and compressional strain
rate principal axes) and the match to the directions of principal axes between the stress and
the strain rate tensors. A maximum correlation coefficient of +1 indicates perfect fit. That
is, the stress tensor and the strain rate tensor are exactly the same in terms of style and di-
rection of principal axes, while a coefficient of -1 indicates anti-correlation. For example,

if the observed strain rate shows thrust faulting in an area, while our calculated deviatoric
stress predicts normal faulting in the same area, then the correlation coefficient will predict
a value of -1. A value of O will imply that the stress and the strain are uncorrelated. That
is, for example, our modeled stresses predicting strike-slip faulting in an area of thrust or
normal faulting, where the compressional and extensional principal axes differ from those
in the GSRM by 45.
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f 1 1 1 1
Region of Number Href ~ 3 Href ~ 35 Href ~ =55 Href ~ =070

interest ofareag U CD CE| U CD CE| U CD CE| U CD CE
Western N. America 132 [0.47 0.65 0.710.56 0.69 0.720.52 0.69 0.750.44 0.66 0.68
Andes 89 |0.48 0.83 0.3§0.51 0.86 0.370.44 0.84 0.240.41 0.83 0.23

Eastern Africa 164 |0.20 -0.31 -0.270.08 -0.35 -0.320.24 -0.17 -0.170.30 -0.3 -0.14
Mediterranean 83 |0.44 040 044052 048 0.510.55 0.52 0.490.50 0.43 0.49
Central Asia 187 |0.25 0.33 0.200.33 0.40 0.360.37 0.46 0.390.29 0.37 0.33
Indo-Australian 174 |0.65 0.75 0.700.60 0.75 0.680.61 0.72 0.690.56 0.68 0.62
plate boundary zon
Mid-oceanic ridgeg 292 |0.70 0.81 0.810.63 0.78 0.780.65 0.76 0.76§0.53 0.64 0.65
Western Pacific 109 |0.56 0.63 0.610.58 0.60 0.590.57 0.61 0.570.53 0.58 0.571
South East Asia | 167 |0.57 0.61 0.610.66 0.68 0.680.63 0.68 0.660.61 0.66 0.64
Total 1944 10.50 0.53 0.490.50 0.54 0.500.52 0.57 0.510.48 0.51 0.471

D

Table 2:Same as Table 1 but with viscosities varying as a function of both strain rates and litho-
sphere thickness (Figure 1b).

Region of interest Number of areag et =1
Western N. America 132 0.08
Andes 89 -0.20
Eastern Africa 164 0.63
Mediterranean 83 0.33
Central Asia 187 0.10
Indo-Australian plate boundary zone 174 0.30
Mid-oceanic ridges 292 0.78
Western Pacific 109 0.09
South East Asia 167 0.08
Total 1944 0.31

Table 3: Correlation coefficients obtained from comparison between deviatoric stress field from
an uncompensated Crust 2.0 dataset with the strain rate tensor field from the GSRM model with
laterally uniform viscosity in the lithosphere.

Region of interest | Number of areaq pret ~ 3 | Hef ~ 35 | Href ~ 355 | Href ~ 7050
Western N. America 132 0.44 0.57 0.50 0.50
Andes 89 0.21 0.35 0.22 0.30
Eastern Africa 164 0.45 0.40 0.45 0.43
Mediterranean 83 0.51 0.54 0.53 0.48
Central Asia 187 0.24 0.27 0.26 0.26
Indo-Australian 174 0.74 0.77 0.72 0.73

plate boundary zone

Mid-oceanic ridges 292 0.86 0.84 0.82 0.73
Western Pacific 109 0.52 0.53 0.45 0.49
South East Asia 167 0.61 0.66 0.61 0.63
Total 1944 0.55 0.58 0.54 0.54

Table 4: Correlation coefficients obtained from a comparison between different deviatoric stress
models with the strain rate tensor field from the GSRM model with reference lexe270 km and
viscosities varying as a function of strain rates only.
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Region of interest | Number of areag pret ~ 3 | Href ~ 35 | Href ~ 355 | Href ~ 2050
Western N. America 132 0.52 0.60 0.56 0.47
Andes 89 0.56 0.60 0.54 0.51
Eastern Africa 164 0.26 0.13 0.27 0.28
Mediterranean 83 0.43 0.50 0.51 0.48
Central Asia 187 0.24 0.29 0.32 0.25
Indo-Australian 174 0.69 0.67 0.70 0.62

plate boundary zone

Mid-oceanic ridges 292 0.76 0.69 0.69 0.58
Western Pacific 109 0.57 0.58 0.56 0.54
South East Asia 167 0.61 0.69 0.68 0.65
Total 1944 0.53 0.54 0.55 0.50

Table 5:Same as Table 4, but with viscosities varying as a function of both strain rates and litho-
sphere thickness.

The different stress models from two different datasets (Crust 2.0 and EGM96 Geoid)
are compared with the strain rate tensor field from GSRM. Such a comparison provides a
guantitative means of evaluating the contribution that the lithospheric component of buoy-
ancies make to the total stress tensor field within the plate boundary zones. A poor match,
for example, highlights regions where additional stress component associated with deeper
density buoyancies, and associated tractions, are necessary to explain the deformation in-
dicators, and hence total deviatoric stress field. Higher correlation coefficients indicate a
closer match between the stress tensor and strain tensor fields. Amongst the different mod-
els that we test, the best fit to the deformation indicators is given by the one calculated
from Crust2.0 dataset, compensated by density adjustment at 100 km, and with viscosities
dependent only on strain rates (with reference viscositl/30). The overall correlation
for this model is 0.60 (Table 1, Figure 10c). Nevertheless, individual regions react differ-
ently to different models. For example, for a 100 km reference level, the uncompensated
model provides the best fit in areas like Eastern Africa and the Mediterranean (Tables 1 and
2, Figures 10a and 10b), whereas in regions like Andes, Central Asia and to some extent
in Western Pacific, Indo-Australian plate boundary zone and South East Asia, the best fit
is given by a model compensated by density adjustment (Tables 1 and 2, Figures 10c and
10d). A model compensated by adjusting the topography, on the other hand, gives the best
fit to the strain rate tensor data in western North America, as well as in the mid-oceanic
ridges (Tables 1 and 2, Figures 10e and 10f).
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Region of interest | Number of areag pret ~ 3 | Href ~ 35 | Href ~ 355 | Href ~ 2050

Western N. America 132 -0.31 -0.20 -0.20 -0.22
Andes 89 -0.32 -0.31 -0.30 -0.34
Eastern Africa 164 -0.03 -0.06 -0.03 -0.04
Mediterranean 83 0.15 0.32 0.32 0.22
Central Asia 187 0.24 0.34 0.36 0.28
Indo-Australian 174 0.29 0.46 0.41 0.35

plate boundary zone
Mid-oceanic ridges 292 0.81 0.81 0.76 0.62
Western Pacific 109 -0.06 -0.07 -0.09 -0.13
South East Asia 167 0.20 0.23 0.19 0.17
Total 1944 0.17 0.22 0.21 0.15

Table 6: Correlation coefficients obtained from a comparison between different deviatoric stress
models from the Geoid dataset with the strain rate tensor field from the GSRM model with viscosi-
ties varying as a function of strain rates only.

Models with viscosities varying as a function of both strain rates and lithosphere thick-
ness fare worse when the overall fit is considered (Table 2, Figures 10b, 10d and 10f), with
a highest correlation coefficient of 0.57 (with reference viscosity/300). The overall
poor fit could potentially arise from errors in the lithosphere thickness model. However,
areas, in particular, Andes and to a certain extent Central Asia, Southeast Asia and Western
Pacific exhibit improved fit when viscosities along plate boundaries are allowed to vary
with lithospheric thickness as well. A lithospheric model with a laterally uniform viscosity
structure provides a poor fit to the strain rate tensor data (Table 3) with an overall correla-
tion coefficient of 0.31.

For models inclusive of deeper density buoyancy within the keels, the only region that
undergoes a considerable improvement in fitting is Eastern Africa (Tables 4 and 5, Figures
10g and 10h). For all the other areas the fit either degrades or stays unchanged.

The Geoid model displays a poor fit in almost all the areas (Figures 10i and 10j, Tables
6 and 7). The mid-oceanic ridges exhibit a substantially better fit compared to all the other
areas for the geoid model. However, the fit to the mid-oceanic ridges is still worse than
in the Crust 2.0 case. In fact, the mid-oceanic ridges show high correlation for both the
Crust2.0 and the EGM96 models. The failure of the Geoid model to match the observed
deformation in the plate boundaries could be associated with the sensitivity of the geoid

anomalies, and consequently the GPE values, to the filtering techniques. Calculation of
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Region of interest | Number of areag pret ~ 3 | Href ~ 35 | Href ~ 355 | Href ~ 2050

Western N. America 132 -0.33 -0.20 -0.19 -0.20
Andes 89 -0.27 -0.24 -0.27 -0.32
Eastern Africa 164 -0.11 -0.19 -0.10 -0.09
Mediterranean 83 0.17 0.31 0.27 0.19
Central Asia 187 0.25 0.36 0.38 0.31
Indo-Australian 174 0.26 0.47 0.45 0.36

plate boundary zone
Mid-oceanic ridges 292 0.74 0.69 0.68 0.50
Western Pacific 109 -0.01 0 -0.04 -0.10
South East Asia 167 0.27 0.29 0.24 0.19
Total 1944 0.17 0.22 0.21 0.15

Table 7:Same as Table 6, but with viscosities varying as a function of both strain rates and litho-
sphere thickness.

GPE from geoid anomalies also assumes no dynamic topography, as mentioned earlier
in section 2.6. The assumptions embedded in the use of geoid as a proxy for GPE may
therefore only be appropriate for regional scale modeling (Bigmphreys and Coblentz
(2007)), but on a global scale are problematic due to the importance of dynamic topography.
The low to moderate values of correlation coefficients in many areas imply the inad-
equacy of lateral density variations within the lithosphere alone to satisfy the observed
deformation. Stresses, arising from density buoyancy-driven basal tractions are required in

order to explain the observed deformation along the plate bound@fessh et al.2008).

2.11 Conclusions

The two main factors controlling lithospheric stress field are (1) gravitational poten-
tial energy differences arising from lateral density variations within the lithosphere and
(2) basal tractions arising from mantle convection, which are coupled to the base of the
lithosphere. In this study, we quantify only the first of the above two factors. A correct
guantification of (1) will enable us to estimate the bounds on the magnitude of the basal
tractions associated with lithospheric coupling, associated with deeper mantle circulation.
We calculate GPE from the Crust2.0 and the EGM96 geoid dataset using both uniform
lithospheric viscosity and varying viscosities for plate boundaries as well as intraplate re-

gions and show that laterally varying lithospheric strength is required to match the observed
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stress and strain rate pattern. We take into account deeper density buoyancies associated
with cratonic roots. We find that inclusion of deeper lithospheric density buoyancies has lit-
tle effect on the style and direction of the deviatoric stress field. Moreover, consideration of
these deeper density buoyancies in the keels is based on the premise that there is no buoy-
ancy driven mantle convection and no dynamic topography. A simpler model excluding the
deeper keels fits the deformation indicators better. We clarify the usage of a correct level of
reference (maximum depth of integration) for a thin sheet approach and show that GPE and
associated deviatoric stresses calculated from geoid do not fit the observed deformation in
the Earth’s deforming plate boundary zones. We also demonstrate how a 2-D definition
of deviatoric stress, along with 2-D force balance equations, can yield overestimates of
the depth integrals of the deviatoric stress magnitudes. We calculate both compensated
and uncompensated solutions and estimate dynamic topography by adjusting elevations of
lithospheric blocks, based on an average pressure for oceans and continents. Finally, we
introduce a quantitative way of testing our stress models with strain rate information from
Global Strain Rate Map. The stress models indicate that GPE differences are an impor-
tant component of the total stress field. However, GPE differences by themselves are, in
general, insufficient to explain the total deviatoric stress field, particularly in areas such as
Eastern Africa, Andes, and Central Asia; an added contribution from basal tractions is re-
quired to explain the observed discrepancies between the models and obserGttiosts (

et al, 2008).
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Figure 9: Correlation coefficients between observed strain rate tensors from the Global Strain
Rate Map and deviatoric stress tensors, varying as a function of strain rates only, arising from GPE
differences from a) an uncompensated Crust 2.0 model (Figure 2), ¢) a Crust 2.0 model compensated
by density adjustment (Figure 3), €) a Crust 2.0 model compensated by elevation adjustment (Figure
4), g) a Crust 2.0 model compensated at a deptk 870 km (Figure 6) and i) an EGM96 Geoid
model (Figure 7). b), d), f), h) and j) are the same as a), c), €), g) and i), but with viscosities varying
as a function of both strain rates and lithospheric thickness.
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Appendix

Spherical Treatment

In spherical coordinates, they and z directions of cartesian coordinates change to
the @, 8 andr (radial) components, respectively. The deviatoric stress tensor in the radial
direction is

1

Trr = Opr — éokk, (A1)

whereoy, is the total stress tensor in the radial direction émjk is the mean total stress.

The total stress tensasi; = Tjj + %okkéi j» then becomes
Oij = Tij +8ij (Orr — Trr), (A2)

wheredjj represents the Kronecker delta. The force balance equation (1) can be written in

spherical coordinates as

1 9/, 1 90/, 0 /(3 _
@%O oqxp) +m%(r o(peco§9) +a<r cn,,) =0 (A3)
1 0 2 10 2 1 0 2 0 3 —
—coseap<r o(p@))—l-é%(r [Oee+0qxp]>+ma—e(r co§6[099—ow])+§(r Ogr | =0
(A4)
1 00y 1 o0 1 00y _
rcose a(p + rcosG%(COSGoer) +F<20-rr _O-qxp_o-ee) + ar _pg_o (A5)

Vertically integrating (A3) and (A4) yields

10 /mrzo dr +ii /mrzo drcog0 ) +r3og (ro) — 1o (r.) =0
cos8oQ\ Jr, co2B00\ Jr, ¥ ceTe
(A6)

and

—cosﬁap(/n r gw)+§%< /r r co§6[099—0(p(p]>

L

/rorz[o + 0o 4L 9
" 0T Rl | T 202600

-H(S)Uer(ro) - rEOGr(rL) =0 (A7)
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whererg is the radius from the center of the Earth to the surfaceranslthe radius from

the center to the base of the lithosphere. Substituting (A2) in (A6) and (A7), we arrive at

1 0( [ 1 0[5, 1 9 o
coseacp</rL ' TWdr) coseacp</rL ' T"dr)+co§(9¢3e<(:0§e/rL rT@dr)

1 0 fo
+COSG%</r rzorrdr> _rETqX(rL):O "
L
and
1 9 o 10 0 5 /roz 0 /roz
Cosea(p(/rl_ r -[(pedr) +209</rL r“teedr + " r T(p(pdr 0\ /., r“terdr

1 0 0 5 ) 0 ([ [ 3 _
+200§909(C0526[/r,_ r>Togdr /rL r T(p(per +69</rL r Orrdr> r2ter(r) =0,
(A9)
which are equivalent to equations (5) and (6) in text. Notedidiro) andog (ro) are zero.
For a thin sheet, the gradientsaf andag, are negligibly small (see text) . Moreover, the

term%(Zorr — Ogp — Oge) is small compared tpg. Hence, (A5) can be approximated as

00y
or

—pg=0 (A10)

which implies
r
on=— [ pgdr (A11)

r

so that the GPE equation (7) in spherical coordinates is equivalent to

r r r r
/Orzorrdr:—/Orz[/opgdr’}dr:—/opg[
o . r .

r’ o1
/rzdr]dr’:—/ ~pg(r®—rd)dr

o o 3
(A12)
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Substituting’ = rg — Z, andr. =rg — L, we have

%(r’f“—rf) = %((rE—iF—(rE—L)s) (A13)
- r%(L—z’)—rE(Lz—z’z)—i—%(LS—z’?’) (A14)
= r¢(L-2) 1—£(L+z’)+i2(L2+Lz’+z’2) (A15)

e SrE

whererg is the constant radius of the Earth dntb the depth to the base of the lithosphere.
Equation (A15), therefore, provides the magnitude of error in GPE introduced by the flat-
Earth approximation.

Let us denote GPE with the correct level of reference at the base of the lithosphere as
a23se (equation (7) in text), and let GPE with the sea-level or geoid as reference level be

0929 (equation (8) in text). From equations (7) and (8),

—geoid __ ~base L L d Al6
07z =0z + 7hp(z)g Z ( )

which in spherical coordinates can be written as

r r r r
/Orzorrdr-i—/ErzPLdr = —/O}pg(rs—rf)dH—/OEpg(rE—rE)dr(Al?)
o ro ro 3 ro 3
ol 3 3
= / —pg(rg —r>)dr (A18)
. 3
1 5 3 1.4 3 2 2 123
5( T ):é(rE—(rE—z) )=rgz—rg +§ (A19)

whereP. = frrLO pgdr, is the pressure at the base of the lithosphere. The first term on the left
hand side of (A17) is the GPE term in (A12).

Thel functional in equation (9) is given by
1 — —
I://ﬁ[fzw+2f2<p9+fge+(Tw+Tee)2 cosfdgdd

1 0Tgp . 1 0 — _ 1 9 - L
+//{2)\(P[C059 FI) +Cose§p<qup+Tee)+CO§ _e(cogeT(pe)—i_@&po”

D
(7]
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(Too + Top) + Flgea%(cosze[r_ee—r_w]) aae ]}cos@d(pde
(A20)

1 0. 30
coshap ® " 238

+2\g

whereT;j are the vertically integrated deviatoric stressas,is the vertically integrated
vertical stress, or GPB,, Ag represent the horizontal components of the Lagrange multi-
pliers, anduis the relative viscosity.

TheJ functional in equation (13) can be written in spherical coordinates as

T

'F(p(p cDobs 'F(p(p cDobs
J= / / %o | - cpobs V| T |- cpobs cosBdgds
g Pge g0 Pge
(A21)
where
_ 1 dAg
qup = u(@a—(p - )\etan9> B (A22)
_ g
=p=2 A2
Too = K3 (A23)
_ ufy 1 dAg
L Aotand A24
9 = 2(69+cosea(p+ otan (A24)
2 10
\7—1=%1 120 (A25)
00 2
and
(DS, LS, DT = —ﬁ —ﬁ 07 (A26)

The relation between 2-D and 3-D stresses (equations (24)-(26) in text) is given by

Tas = 2136 +Teq (A27)
Top = Too + 2Tgg (A28)
Top = Top (A29)



Chapter 3

Gravitational Potential Energy of the
Tibetan Plateau and the Forces Driving
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Gravitational potential energy of the Tibetan Plateau and the forces
driving the Indian plate
A. Ghosh, W. E. Holt, A. J. Haines and L. M. Flesch
(Published inGeology, 34, 321-324, 2006)

Abstract

We present a study of the vertically integrated deviatoric stress field for the Indian plate
and the Tibetan Plateau associated with gravitational potential energy (GPE) differences.
Although the driving forces for the Indian plate have been attributed solely to the mid-
oceanic ridges that surround the entire southern boundary of the plate, previous estimates
of vertically integrated stress magnitudesof — 7 x 102 N/m in Tibet far exceed those of
~ 3 x 1012 N/m associated with GPE at mid-oceanic ridges, calling for an additional force
to satisfy the stress magnitudes in Tibet. We use the Crust 2.0 data set to infer gravitational
potential energy differences in the lithosphere. We then apply the thin sheet approach in
order to obtain a global solution of vertically integrated deviatoric stresses associated only
with GPE differences. Our results show large N-S extensional deviatoric stresses in Tibet
that the ridge-push force fails to cancel. Our results calibrate the magnitude of the basal
tractions, associated with density buoyancy driven mantle flow, that are applied at the base
of the lithosphere in order to drive India into Tibet and cancel the N-S extensional stresses
within Tibet. Moreover, our deviatoric stress field solution indicates that both the ridge-
push influence 1 x 1012 N/m) and the vertically integrated deviatoric stresses associated
with GPE differences around the Tibetan PlateauB(x 102 N/m) have previously been
overestimated by a factor of two or more. These overestimates have resulted from either
simplified two-dimensional approximations of the thin sheet equations, or from an assump-

tion about the mean stress that is unlikely to be correct.
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3.1 Introduction

The driving mechanism for the Indian plate has been a source of controversy since the
advent of the plate tectonic theory. The Indian plate’s velocity relative to Eurasia slowed
from 10 cm yr ! to roughly 5 cm yr! upon impact with Eurasia roughly 50 million years
ago Molnar and Tapponnierl975;Molnar et al, 1993). The Indian plate continues its
northward movement relative to Eurasia at a present-day rate305 cm yr! (Kreemer
et al, 2003). The Tibetan plateau, which formed as a result of the collision between India
and Eurasia, has the largest gravitational potential energy (GPE) signal on earth. However,
there exists no complete dynamic explanation for this large GPE of the Tibetan plateau and
the relatively fast movement of the Indian plate. There is no apparent downgoing slab at-
tached to the Indian plate that might assist in driving the plate into Eurasia through the slab
pull mechanismGripp and Gordon1990). Because the plate is surrounded along its entire
southern margin by mid-oceanic ridges, the motion of the Indian plate has been attributed
to the ridge-push force, the deviatoric stress that results from differences in vertically inte-
grated vertical stresses between elevated ridge and older oceanic litho$picbegdson
1992; Cloetingh and Wortegl1985, 1986;Sandiford et al. 1995; Coblentz et al. 1998).
However, the ridge-push, or vertically integrated deviatoric stress magnitude, which is of
order 3x 102 N/m (Richardson 1992;Harper, 1975:Lister, 1975;Parsons and Richter
1980), is not sufficient to satisfy inferred stress magnitudes-o7 & 102 N/m that result
from GPE differences between the Tibetan plateau and the surrounding lowlolds
and Lyon-Caen1988). An additional force is required to explain the disparity between the
excess GPE of Tibet relative to that of the mid-oceanic ridges.

Lithospheric density variations associated with the support of the high topography of
the Tibetan plateau give rise to lithospheric body forces and hence stresses. Although the
sources of stress that drive plate motions have been ascribed to many paraRoesgth (
and Uyeda, 1975), from the point of view of stress continuity and force balance, the stresses
that drive lithospheric motion arise from two sources: (1) gravity acting on density varia-
tions within the lithospheric shell on the earth and (2) gravity acting on density variations

deeper than the lithospheric shell. The latter gives rise to tractions (radial and tangen-
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tial) that act on the base of the lithosphere, affecting the stress field of the lithosphere and
producing dynamic topography. The former involves density variations associated with
support of non-dynamic components of topography. The goal of this paper is to quantify
the first of these in order to understand the role of density buoyancy variations within the
lithosphere in driving India into Eurasia. This is important because such a calculation of
the role of lithospheric sources calibrates the magnitude of a density buoyancy driven flow
below the lithosphere. Moreover, if ridge-push is the only driving force for India’s motion,
then the distribution of stresses associated with the high GPE of Tibet together with the
GPE of ridges and surrounding ocean basins should explain the entire lithospheric stress

field across Tibet and surrounding collision zodeljack 1992).

3.2 Method

Plate tectonics enables us to approximate the upper 100-125 kilometers of the earth as
a thin shell. A thin sheet approach has been used by many previous alhgtand and
McKenzie 1982;England and Housemari986; England and Molnar 1997b;Lithgow-
Bertelloni and Guynn2004) to solve for the stresses associated with internal horizontal
density variations within this thin shell (e.g., crustal thickness contrasts, elevation differ-
ences, cooling of oceanic lithosphere, etc.). We also take the thin sheet approach to solve
for the stresses associated with density variations intrinsic to the lithosphere. In order to
avoid boundary condition problems we compute stress response for the entire earth’s sur-
face using a global grid of.3° x 2.5° resolution. We incorporate weak plate boundaries
by assigning relative viscosities to plate boundary zones. These viscosities are inversely
proportional to the rate of strailKfeemer et al. 2003). We make the plates 2 orders of
magnitude higher viscosity than that of a mid-oceanic ridge with a moderate spreading rate
(eg., the Indian ocean). A model with 3 orders of magnitude strength contrast between
plates and plate boundary zones was also investigated (see supplementary section).

We use a finite element method to solve the three-dimensional force balance equations
for vertically integrated deviatoric stress for the spherical case. Aftsch et al(2001),

the deviatoric stress field solution is the mathematically unique solution that both balances
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the body force distribution (GPE differences) and provides a global minima in the second
invariant of stress. For this methodology, the magnitudes of deviatoric stresses depend on
the magnitudes of the body force distributions and relative viscosity contrasts; the devia-
toric stress magnitudes are independent of absolute magnitudes of viscosity. We calculate

the vertically integrated vertical stress,§), which is the negative of GPE per unit area as

Ozz= —/_Lh [/_th(i)gdi} dz= —/_Lh(L—Z)p(Z)gdz

(Jones et a].1996), where(2) is the densityL is the depth to the base of the thin sheet
taken to be 100 knh is the topographic elevation amgds the acceleration due to gravity.

We calculate GPE using the Crust 2.0 dataset (G. Laske et al., Crust 2.0: A new global
crustal model at 2x 2 degrees, 2002, available at http://mahi.ucsd.edu/Gabi/rem.html).

We neglect the basal traction terms in the force balance equations for now in order to

guantify only the contributions to deviatoric stresses that are intrinsic to the lithosphere.
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Figure 1:Gravitational potential energy (GPE) dis- . :
tribution for Indian and Eurasian plates. Topograpﬁpecnve of whether the model is com-

ically high areas like Tibet and mid-oceanic ridggsensated or not. However, the uncom-
have higher GPE than other areas. ) o

pensated model provides deviatoric stress
magnitudes that are everywhere 10-20% higher than for the compensated model (see sup-
plementary document). Cooling of the oceanic lithosphere is introduced by incorporating
the plate model into our calculation, based on ocean floor age dataMiglier et al.

(1997), using the revised parameters giversigin and Stei1992).
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3.3 Results

The force balance associated with the global GPE distribution (Fig. 1) yields deviatoric

S e O e R extension along the mid-oceanic ridges
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Figure 2. Distribution of vertically integrated |ow-elevation regions in our compensated
horizontal deviatoric stresses for the Indian and

i K . 2 . .
Eurasian plates. Extensional stresses are shdWfdel is~ 2.5x 10'* N/m while the mid-
by white arrows while compressional stresses Aeeanic ridges exert a force of only
shown by black arrows. Length of the arrows are

proportional to the magnitude of deviatoric stressekx 10'2 N/m. Moreover, our results show
Strike-slip regions are indicated by one tensional

and one compressional pair of arrows. Areas ha%_predomlnant N-S deviatoric extension

ing high GPE are in deviatoric extension, like Tiat the Tibetan plateau, in addition to a
bet and the mid-oceanic ridges, while those hav- ) _ o
ing low GPE are in deviatoric compression like th&uch lower E-W deviatoric extension, in
rest of the oceans. The plate boundaries are g a5t to active faulting patterns that al-
signed variable viscosities depending on their rel-

ative strengths, inferred to be inversely proportioniw only for E-W extension. Our re-
to strain rate (Kreemer et al., 2003). A reference

viscosity of 0.01 is used for the moderately spreaal—JItS for the Indo-Australian plate are in

ing mid-Indian ridges while the plates have a vigigreement with th&Hnay directions of
cosity of 1. The profile in Fig. 3 is taken along the
N-S running red line. Topography is in meters.  the World Stress MagZoback 1992) and

those derived bpandiford et al(1995).
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3.4 Discussion and Conclusion

Our results indicate that the vertically integrated deviatoric stresses associated with el-
evated ridge and cooling of the lithosphere 1 x 102 N/m) are not sufficient to cancel
the large N-S extensional deviatoric stresse2(5x 10% N/m) associated with the large
GPE contrasts of Tibet and the surrounding regions. It is clear that something is miss-
ing as a driving force that does not have its source within the lithospheric shell. Ideas,
like substantial focusing of the ridge-push torque along the northern collisional boundary
(Coblentz et a].1998; Sandiford et al. 1995), have been proposed to support the ridge-
push theory as the sole mechanism for driving the Indian plate. However, our results show
that such focusing, while important for defining stresses within the Indo-Australian plate,
is not enough to cancel out the N-S deviatoric extension in TiBandiford et al(1995),
suggested that the excess potential energy of the Platead &m elevation England and
Molnar, 1997a) provides the right magnitude of the potential energy that can be supported
by the ridge-push force, as there occurs a transition from reverse to normal faulting at that
elevation. However, the normal faulting observed at an elevation greatertdakm in-
volves E-W extensionMolnar et al, 1993), whereas our calculations demonstrate that a
N-S extension would be expected if GPE is the only source of deviatoric stress operating on
the lithosphere. Therefore, an additional long-wavelength N-S compressive stress of order
~ 2 —3x 10 N/m is required in our model to cancel out these north-south extensional
deviatoric stresses in Tibet (leaving only E-W extensidil¢gch et al. 2001).

The most compatible driving mechanism that would explain such a long wavelength
compressional intraplate stress field distribution is the driving shear tractions associated
with coupling of density buoyancy driven flow (egithgow-Bertelloni and Guyn(2004)).

These tractions arise due to the ’slab suction’ force induced by the surrounding mantle on
the base of the surface platéqnrad et al, 2004). The contribution to lithospheric stresses

associated with these shear tractions inferred from self-consistent mantle circulation mod-
els can be added to the deviatoric stress field shown in Fig. 2 to obtain the full stress
field solution. Therefore, one important result in our study is the absolute magnitudes

of deviatoric stresses associated with GPE differences (Fig. 2) because they calibrate the
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magnitudes of deviatoric stresses 2 — 3 x 1012 N/m) associated with the driving trac-
tions applied to the base of the lithosphere in the Indian plate region. The density buoyancy
distribution responsible for these driving tractions is most likely related to the long history
of subduction of the Indian and Australian plategi{gow-Bertelloni and Richard4.995;
Wen and Andersqri997b).

Our calculations show vertically integrated deviatoric stress magnitudes a factor of two
lower than that proposed bMolnar and Lyon-Caer§1988) andMolnar et al. (1993) for
Tibet as well as for the mid-oceanic ridgé&&¢hardson1992;Harper, 1975;Lister, 1975;
Parsons and Richterl980). We argue that deviatoric stress magnitudes resulting from
ridge GPE as well as those calculated at the Tibetan plateau have previously been over-
estimated. Previous overestimates arise from two factors: (1) a two dimensional approxi-
mation of the thin sheet equations, applied along a single profile and, or (2) a two dimen-
sional definition of deviatoric stress, as opposed to a three dimensionaDairagyrac
and Molnar, 1981;Molnar and Lyon-Caen1988). A 2-D definition of deviatoric stress,
Tjj = 0jj — 02Qij, as opposed to a 3-D ong; = 0jj — %Okkaij, replaces the “three dimen-
sional” constrainttyy + Tyy+ Tz = 0 with the constraint,, = 0 (Flesch et al, 2001). As
pointed out byEngelder(1994), in the 2-D definition, the lithostatic stresg,, is set equal
to the mean streségkk. This is entirely a special case, unlikely to apply in many regions.

The relationship between the 2-D and the 3-D stresses are given by:

72D =3D |, ¥3D
Tix = 2Txx + Ty 1)
72D =3D |, ¥3D
Tyy = 2Ty + Tix 2
=2D __ 73D
Ty =Ty 3)

where the bars indicate depth integration over the entire plate thickness. We use horizontal
deviatoric stresses projected along a N-S profilg) (of 83.75°E to demonstrate how the

different ways of solving the force balance equations as well as the usage of different def-
initions of deviatoric stress have led to different results, and possible misunderstandings,

for deviatoric stress magnitudes (Fig. 3). This profile is chosen because it passes through
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the Tibetan plateau, the deeper Indian ocean, and the mid-oceanic ridge. The largest esti-
mates of deviatoric stresses arise from solving simplified 2-D thin sheet equations, applied
along a single profile, along with the use of the 2-D definition of deviatoric stress. As
such, the horizontal force balance equations redug%i{o: 0, which givestyy = -0+ a
constant, as a solution to the force balance equation. With a 2-D definition of deviatoric

stress, vertically integrated
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Figure 3:Comparison of different methods of solving the forcg;uces these stress magnitudes
balance equations along a N-S profile passing througf838. in half (dashed line in Fig. 3),
The x-y axes show vertically integrated deviatoric stress magni- . .

tudes projected along the y-axis,f) and latitude respectively.aS predicted by equation (2).
The solid line indicates our results. A reference GPE equalhl%ne solves the full 3-D thin
the GPE at sea-level has been subtracted from the actual GPE

values. sheet equations for vertically

integrated deviatoric stresses,

but uses the 2-D definition of deviatoric stress, stress magnitudes (dash-dotted line, Fig.
3) are slightly lower than the solution computed for a single profile (with the two dimen-
sional definition of deviatoric stress) because some of the potential energy differences are
absorbed into other non-zero terntsy, Tyy. The smallest magnitudes are obtained for
solutions to 3-D force balance with three dimensional definition of deviatoric stress (this
paper, solid line in Fig. 3) because differences in GPE are absorbed not only into all of the
horizontal terms, but,, as well.

Our calibration of the vertically integrated deviatoric stress magnitudes and directions

associated with GPE variations has other implications as védinar et al, 1993) argued
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that the rapid uplift of Tibet around 10-11 million years ago resulted in an increased GPE
of Tibet that produced increased compressional stresses in the Indian @c8an1Q'?

N/m), which was hypothesized to be sufficient to buckle the lithosphere there. These esti-
mates are based on a 2-D approximation of the thin sheet equations, applied along a single
profile, with the 2-D definition of deviatoric stress. We show here that deviatoric stresses
associated with GPE differences between the elevated ridges, the deeper Indian Ocean, and
the elevated Tibetan plateau are much lower thtmtnar et al. (1993)’s prediction, sug-
gesting that the uplift of Tibet is unlikely to be the single factor for the onset of folding and

reverse faulting that is now occurring in the Indian Ocean.

53



Appendix

Methodology with variable relative viscosities

The functional that is minimized in the methodFesch et al(2001) is :

I —/Sﬁ[TaBTaB-i-TW]dS—i-/SZ)\a[%(TGB-I-Q,(BTW)-F e ]dS (A1)

wherey is the relative viscosityiqg is the vertically integrated horizontal deviatoric stress,
Tyy = Txx+ Tyy, Aq IS the horizontal component of the Lagrange multiplier for the force bal-
ance differential equation constraimt; is the vertically integrated vertical stress defined

in the main paper an8 represents area on the entire Earth’s surf&tesch et al(2001)
assumed a constaptequal to 1. In this paper we use a variable valug tof approximate

weak plate boundary zones and strong plates. We assume an inverse relationship between
strain rates and relative viscositigs, We obtain the relative viscosities of the deforming

plate boundary regions, such as the mid-oceanic ridges and subduction zones, by assigning

a reference viscosity to the moderately straining mid-Indian ridge, using the relation:

1 1) E? (A2)

et/ \[EZ;

ref

c=14(

wherepes is the reference viscosity corresponding to a mid-oceanic ridge with a moderate
spreading rate, such as the Indian océ#h= 2(£5, + &5, + £50 + Eqotes), Whereggg, Eqy

andéqp are the strain rates froiireemer et al(2003), andEZ is the reference value for

E2, corresponding to the value fores. A plot of relative viscosities (Fig. A2) shows the
lowest viscosities along the mid-oceanic ridges and higher viscosities in the deforming con-
tinents, while the blank areas (the plates) hayevalue of 1. We try reference viscosities

of 0.01, in which the mid-oceanic ridges are 100 times weaker than the plates (Fig. A3 and
the solution in the main paper), and also 0.001, in which the mid-oceanic ridges are 1000
times weaker than the plates. We show the global stress solutions for three cases: the case
wherep = 1 everywhere (Fig. A1) and cases in whigkaries according to the inverse of

strain rate (Figs. A3 and A4). The solutions with reference viscosities of 0.01 and 0.001
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respectively yield a focusing of stresses within the plates and fits well with the observed
SHnaxorientations Zoback 1992) in most places (Figs. A3 and A4). Moreover, solutions
with weak plate boundaries provide agreemen$bi,ax for Indo-Australian plate region
(Sandiford et al.1995). However the N-S deviatoric extension in Tibet remains as a promi-
nent feature in the global solution. We also considered a special case in which the Tibetan
Plateau and the Himalayas were assigned viscosities equal to the rigid plate interiors (Fig.
A5). Although there occurs a marginal reduction in the N-S deviatoric stresses within the
Tibetan Plateau for this case (Fig. A6), such a strong resistant plate boundary is insufficient
to focus deviatoric stresses to cancel large N-S deviatoric extension associated with excess
GPE of Tibet. Moreover, the assumption of plate-like strength of this plate boundary zone

is not reasonable, given the high rates of deformation occurring there (see Fig. A2).

Dynamic topography

Actual topography, in some places, already contains a contribution from dynamically
induced radial tractions. We argue here that GPE values from the uncompensated model
(Fig. A7) contain the influence of dynamic topography. In the presence of dynamic to-
pography, the weight of the lithospheric colunui®'®, at reference depth is o' =
fl‘h p(r)g(r)dr = oy + T (note: this ignores the contribution from flexure), whefeis
a reference stress, ang is the radial traction associated with deeper mantle flow that is
responsible for dynamic topography. The physical effect of this dynamic topography is
therefore taken into account already in the GPE calculations that are uncompensated (Fig.
A7), since these involve the vertical integral @f (r) down to the depth.. In order to
remove the contribution from dynamic topography, an isostatically compensated solution
(uniform pressuregy,, at depthL) was calculated by adjusting the densities of the sub-
crustal part (upper mantle) of each lithospheric column. The GPE and the resulting stresses
were then calculated as usual. Compensation can also be achieved by adjusting the eleva-
tion of each column instead of adjusting the density. However, since greater uncertainty
lies in the values of densities of the upper mantle than in the values of the crustal thick-

ness, compensation obtained by density adjustment seems to be more reasonable than that
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obtained by adjusting the elevation. As stated earlier, the uncompensated solution only
contributes 20% higher stresses. The Tibetan plateau shows vertically integrated deviatoric
extension of the order 3x 1012 N/m. The ridge-push force magnitude~sl — 1.5 x 1012

N/m, which, again falls short of providing the right magnitude of vertically integrated de-
viatoric stress for supporting the Tibetan plateau. The large N-S deviatoric extension in
Tibet calls for an additional N-S compressional force-a x 102 N/m that can cancel the
deviatoric extension. The stress magnitudes for Tibet as well as the ridge-push force are a

factor of two lower that what was proposed in previous studies.
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Figure Al: Global distribution of vertically integrated horizontal deviatoric stresses with a uniform viscosity distribptierd) for both plate
boundaries and plate interiors. Topography is in meters. Besides the solution in Fig. A7, all the other solutions are compensated.
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Figure A2:Relative viscosity distribution for all the plates. The white areas represent intra-plate regions with reference viscosity 1. The deforming

areas are assigned viscosities inversely proportional to the strain rate. A reference viscagity=09.01 is chosen at the moderately spreading A

mid-oceanic ridge in the Indian Ocean. Places with higher viscositiegthaare deforming at a slower rate.



-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

60



Figure A3:Global distribution of vertically integrated horizontal deviatoric stresses. The plate boundaries are assigned variable viscosities based on
their strain rates. A reference viscosiiys; of 0.01 is used for the mid-Indian ridges. This compensated solution corresponds to the c:ooch:mwﬂwa
solution in Fig. A7. Topography is in meters.
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Figure A4: Global distribution of vertically integrated horizontal deviatoric stresses. The plate boundaries are assigned variable viscosities gmmo_
on their strain rates. A reference viscosjiy of 0.001 is used for the mid-Indian ridges. Topography is in meters.
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Figure A5: Relative viscosity distribution for all the plates. The white areas represent high viscosity intra-plate regions. The difference with mﬁ
A2 is that Tibet and the Himalayas are assigned viscosities equal to the undeforming plate interiors.



-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

66



Figure A6:Global distribution of vertically integrated horizontal deviatoric stresses. The plate boundaries are assigned variable viscosities based on
their strain rates, except the Tibetan Plateau and the Himalayas which are assigned a viscosity equal to the undeformed plate interiors. A re@rence
viscosity of 0.01 is used for the mid-Indian ridges.



-180 -160 -140 -120 -100 -80 -60 -40 -20 20 40 60 80 100 120 140 16
| . | . L | | | | | .

| ] . l . | . | . | ) | . . . . . . .
_ BRI e R Mwwmwy e uw%wn“w”n““mmwmwwwwwpﬁmmmmmwmwmmmwwww
8986888 ¢ OB P ¢
: : /

TE 5
o & = G G PD D - s A 2D G NSO DD # B 5
mo 3 2 ey 23 : %ﬁﬁﬂmwnmmwm 3 A m ///xxxx B j\\W\ M W%
% ; FEEEYEE: .ﬁ%mmmﬁs eaem TRININISIINONN XXX X ¥ g
< saxsasss Vo Ay 9E%eed NN X F) o g or 1
A ~ Ceeongy Resnds s @ 1088 S 5 VAR ¥ 4
,\ mm,ﬁ . a%ﬂ@smpﬁ/ S //1/ X o o
N N 37 o © - BRI > 3 O 7
60 o 7 56+ BN 00 - % A : = ////J%_rf
&« R e Y S s IO XX\
PRI eeivRyd AL X NN S ik
Y 2 XMNRKRN % . AN N A R
|+ ®HPH T § XK : i (¥ Ve s k3
L1 ®®e e ¥ ; RN KEARNY b4 %%
£ X Filio®esy NS SY 7 ’xX,”\dJ zme
2 A1 eeRusn e\ Q NXXXt 2 A ¢ .
A.O P e = e b 3 D+ AR NN BE J '
YA L R L N e NN RS W a e e
1. T 0 e i dr e 4 B B ES RN Y X SVt raemwRy
5 A A i A+ B 2D BDIHRANKMRE KN s o £ adrRRy R e e atme
;1 #, i X £ 22 DH e L NEXNXNRN 7 0 E s e AR o, B e v M an s
itk r a1 ) Y ANNY KA X\ Laand A EL R N B Y e R AA bt
Gtk feo e o LR RR SN 128K R R B S e e e
lotdftowe t PYNIANV YO Yy 0y * Ny LY 8 NN~k
NO 7% Aot g fless I ENNANNL 404 AN VEEY
QLA FHILL A oo L EXANN S omY AN LA AR
NEast AN s I ia [ NN 5§8nacrhrid
41 P AR A L h s w0 i fHia r,N s 1 £
tave 7 5 YTRREZE! flitidgs M 3 b
[t ot e 2 b 2 L CEEE-RY P e mee s van v F P LA IXNEN B rARD 4 &
PSSP S LR R e L. L e R R N IR I R ] L SR AR TR
R e LR Ya e R R I IR IR YR YA ¥ Narsca@Se s VLV Po -
»a%@@@@ e e s BT AANY AN=e @Bt Y]
EY-) ww.ﬂ/%, Vs BRNNNRS b el FRL I ; Fdwsonwos gty L]
# DBDPN Y AVN PRt e LR TN RXNR SRR O s s s s AANKY v drsemma b} 1)
FE 8B S SRt e e 4 2 ) EXRNNNE S s s e r N AR B 0 e . Smo v s RXE IR
Priayes FEXKRNS « O A T T ST DG A\
IR Rt o L SN Y o@s.&u&. T R RN S 2 1 X
IEERES T P A R R Ve codpT o e A RXXXX L I XX
IR RN RN RN Sttt # e e e TS ~imeadaswwvX Y EIXX
LT Y L5 ot 0 S bt e 054 S + = mmsrara % § & @ oottt = A\s $ G 4 4 0T T Y cmaEsangruwnXAE AN,
HES R R U 400 e S ORISR D D SEIIFIMPED S 99PN 143 B D N N 5 %)
B B P I i O e B G B D R 2 N R S S
B OBDDBDDD S S S0 b L RN FOL NN e 2 0 L N A e 0|8 860 HDBBE - SN NN s - asm B RRIRN NN
ERR R R RS TR R I 2 R BB SO anbe St N b L AT IRt St L LA T L L LN
PR R R R R SN e 22 +688PSe=n O BE s A mHDN o s s SN TS SDET IS E -
e et b P FANNfE R R I L I I R N S Y AR BB
R 2y TR T R R e I R e A L e SR R IR
h.o T P R D R R R R R X ¥ L A T R R R B R e o kS S S E s ST
= DRI - AN \\\\\lxao.een.._;...\\\\\\\\l.ll.l;wms.u.:////ﬁlw.znmmmwma‘4:'\\\\§I/frxxk\6/1.lll..,.
R R 2 5 e R R R I Y S S L R L R R L RN B o ESENESEE o - w - PP . - E\
Frva-as by G e i SREANEN ¢ = A ALKS X e v & B0 REE DN FOver v 1 FEBs 800060088 8 88 2 ¢ e swreapmm—
FEYALY s R S N Y L L R R R TR TS BOOS NN 520 d00P0COESE P+ ¢ 4 09 6 6 mmme i ~ 5 S0
FEYVNN e sBBs R~ mr = WKy } 7 ¢« B o ir D o wr c s ~ B A OB 2000420 0al e s 09 s t v mm—r N ASANANNRRN 2 s (S PN EEE 0220580 @ 0D+t § GO}
Priiiddae B Y I D O R L L N e e R T T E R SN T E L R R R S O 00000 E FET T Y SUINNNNG: S 0 A4
AAMANR AR 680088 R0ORRFOR o bR A AR 22 Do s s 8 X NN\ > » —wrff :::.«.x,;v: 14 XN RNRN KRS~ 5 ¢ 6 P DG D G it
|®O ANV VNN s 9966865600 -2@DURRGrRBan ABDD A\ porys vieid AR XNN NN~ n 6 SP PO R 6w
oo RPN NN e TR m / PR R Rk e P N o R ]
peadem TRYAA v s e ey M DEIANNNNNNN SN ot 6 O FH
@ B B TYRV R b ¢ o n oK IR & £) IEEET A
LA IR EL 4 +¥5x)) § Frredoses s/ DPPP FEYAAAANY AL, . s
TR R} KXRXRY AN N 2 et s e aRRRBD e e ] | R Ry
HEALL 3 RS B L R L R R L I R O R s e R R 5%
L L) \ 1 A R R R o D N NN S T R L R R LR 3 5%
|mo BB T £ HDEH SR X R ASCRANANN S 5 5 8 FHGD 6 b ¢ S DBDIGHTHH G x5O e w0 v 1 1 2o B BRSBTS S P E S S E 55086 6%
A ot A P X EEFFENFSOSSE6000008mUUTCHSORBY T INIIFIR RS 826464 s
m 22 & ‘una%%%%mmmmmmsa¢¢©©§%%%$%%%mmm%%%%%%%%% .W.Wa
28 Ty SN veANE NS NNANSNOTN SN RN NSIN SR SIUSE, z

I I I I I I
-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

68



Figure A7:Global distribution of vertically integrated horizontal deviatoric stresses in the uncompensated case corresponding to the compensated
case in Fig. A3. The plate boundaries are assigned variable viscosities based on their strain rates. A referenceixisob§ifyl is used for the 3

mid-Indian ridges.
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Chapter 4

Joint Modeling of Lithosphere and
Mantle Dynamics Elucidating

Lithosphere-Mantle Coupling
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Joint modeling of lithosphere and mantle dynamics elucidating
lithosphere-mantle coupling
A. Ghosh, W. E. Holt, L. Wen, A. J. Haines and L. M. Flesch

(Geophysical Research Lettetsider revision)

Abstract

We provide new insights into the lithosphere-mantle coupling problem through a joint
modeling of lithosphere dynamics and mantle convection and through comparison of model
results with the high resolution velocity gradient tensor dataset along the Earth’s plate
boundary zones. Using a laterally variable effective viscosity lithosphere model, we first
compute vertically integrated deviatoric stresses associated with gravitational potential en-
ergy (GPE) differences. In many areas, deviatoric stresses from GPE differences alone
provide a good fit to the observed strain rate tensors. However, in some areas, mostly in
areas of continental deformation, GPE differences fall short of predicting the observed de-
formation styles and principal axes orientations. When deviatoric stresses from horizontal
basal tractions, associated with deeper density buoyancy-driven convective circulation of
the mantle, are added to those from GPE differences, the fit to the observed velocity gradi-
ent tensors improves dramatically in most areas. We find that the stresses induced by the
horizontal tractions arising from deep mantle convection contribute approximately 50% of
the magnitude of the Earth’s deviatoric lithospheric stress field. We also demonstrate that
lithosphere-asthenosphere viscosity contrasts play an important role in generating the right
direction and magnitude of tractions that yield an optimal match to the observed stress

pattern.

4.1 Introduction

The lithosphere-mantle coupling problem has been a controversial issue in geodynam-

ics for the past few decades. The question that has divided the earth science community
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is the degree of coupling between deeper density buoyancy-driven mantle circulation and
the lithosphere, and whether such coupling has a role to play in lithosphere dynamics. The
methods for tackling this problem consist of either predicting the velocities of the sur-
face plates or modeling the lithospheric stress field. If the initial plate-mantle coupling
model is correct, then the predicted velocities will match the observed plate motions and
the modeled stress field will match the stress observations. Here, we investigate the prob-
lem of lithosphere-mantle coupling by modeling the lithospheric stress field and comparing
our results with strain rate tensor observations from the Global Strain Rate Map (GSRM)
(Kreemer et al.2003).

We address two principal sources of stress within the lithosphere : (1) internal buoyancy
forces arising from lateral density variations within the lithosphere (lithosphere buoyancy)
and (2) basal tractions associated with large-scale mantle convection arising from deeper
density buoyancies below the lithosphere (mantle buoyancy). Most of the early attempts to
model lithospheric stress field addressed either lithosphere buoyancy alone or lithosphere
buoyancy with tractions acting at the base of the lithosphere playing a role in torque balance
(Solomon et a).1975;Richardson et a).1979). However, in those models, tractions associ-
ated with model estimates of mantle density buoyancy-driven flow were not specifically put
in. Mantle density buoyancy estimates, on the other hand, have mostly been used to model
plate velocities, geoid, and topographyager, 1984;Hager et al, 1985; Richards and
Hager, 1984;Gable et al, 1991;Forte et al, 1993;Wen and Andersqri997b,c;Becker
and O’Connel] 2001).Bai et al.(1992),Bird (1998), and more recentlyteinberger et al.
(2001) andLithgow-Bertelloni and Guyni§2004), have modeled the lithospheric stress
field by combining the above two sources. In most of these studies the modeled stress
field was compared with stress observations from the World Stress Map (WRMack
1992;Reinecker et a].2005). One of the factors that distinguishes our study is a quantita-
tive comparison of the modeled deviatoric stress tensor field with the GSRM'’s horizontal
deformation tensor field within the Earth’s plate boundary zones as well as a sensitivity
analysis on the role of lithosphere-asthenosphere viscosity contrasts in generating the op-
timal wavelength and magnitude of tractions applied to the base of the lithosphere. In this

paper we use a long-wavelength traction field generated by a simple convection model.
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The aim of our study is to investigate the joint contribution of internal lithospheric density
buoyancies and these long-wavelength tractions. The tractions are applied to the base of a
thin sheet model possessing lateral viscosity variations due to weak plate boundaries and

strong plates.

4.2 Method

Internal buoyancy sources within the lithosphere influence the lithospheric stress field
(Artyushkoy 1973;Fleitout and Froidevoux1982;Fleitout, 1991;Coblentz et al.1994)
by giving rise to gravitational potential energy (GPE) differences, which in turn produce
deviatoric stresses. Density buoyancy-driven mantle convection gives rise to basal tractions
that act upon the base of the lithosphere to yield a contribution to deviatoric stresses. We use
the thin sheet approximation to solve for vertically integrated deviatoric stresses associated
with both of these effects. This involves vertically integrating the force-balance equations

from a reference level at radius (usually the base of the lithosphere) to the Earth’s surface,

radiusrg;
2 0 ( ['s, 1 0 (s, 1 9 'S 2
ool ) + ol [, 1) + ogpap (070 [ )
1 o TS, 3
and

1 a rsz 36 rsz rsz
cosG@cp(/rL rtwdr)+zae(/rL rteedH—/rL r T(p(pdr)

_1 9 'S 2 _ [ _ 0 ([ 3
+200§969<C0526[/r|_ r“Toedr /rL r qupdr]> = 09</rL r Grrdr) +riter(rL),
2

whereTtgy, Tgs andTe are deviatoric stresses, which are vertically integratgdr,) and

Tor(rL) are tractions applied at the base of the thin sheet at depéndoy, is the vertical
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stress that is vertically integrated to give:

rs rs rs rs r'
/ rlodr = —/ rz[/ p(r’)gdr’}dr:—/ p(r’)g[/ rzdr]dr’
re re r re o

= - [*3pe(e - rd)ar, ©

L

which is equal to the negative of GPE. Hepds the densityg is the gravitational acceler-
ation, andr_ is taken to be a constant depth of 100 km below the sea-level. The viscosity
variations deeper than the reference level, including possible deeper extension of cratonic
roots, are treated in the convection calculations. Noterkaaries in continents due to
variable surface topography, whereas in ocegm®nstitutes the sea level and is thus con-
stant.

Solutions to equations (1) and (2) for the vertical integralsgfteg and Ty can be
obtained given GPE differences §£( rrLSrzorrdr) andg—e(j}’frzorrdr) (e.g.Flesch et al,
2001;Ghosh et al.2006). Density buoyancy-driven mantle convection also produces ra-
dial and horizontal tractions that act at the bottom of the lithosphere. The radial tractions
yield dynamic topography at the Earth’s surface. The influence of this dynamic topography
(or radial traction) on lithospheric stress can be dealt with in two ways. First, because the
present-day topography already contains the dynamic contribution related to deep mantle
convection, one can calculate the depth integrals of vertical stresses (equation (3)) using
the present-day topography and density structures in the lithosphere (the crustal and upper
mantle structure in the top 100 km of the Earth). The depth integrals of vertical stresses
following this procedure should be viewed as the summation of two components, with one
contributed by the lithosphere buoyancies and the other by the radial tractions acting at
the base of the lithosphere from the deep mantle density buoyancies. Such an approach
does not address the consistency problem between the observed and predicted dynamic
topography \Men and Andersqri997c). In the present case, the densities in the litho-
sphere are obtained from the seismically inferred crustal structures (e.g., Cru§&.2.0 |
Laske et al.Crust 2.0: A new global crustal model at2 2 degrees, 2002, available at
http://mahi.ucsd.edu/Gabi/rem.html]). Alternatively, one can directly compute the corre-

sponding deviatoric stresses in the lithosphere from the predicted dynamic topography or
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radial tractions from the convection models. These deviatoric stresses are then added to
those associated with a compensated lithosphere model. In such a treatment, the surface
topography used to calculate the GPE differences in the lithosphere model is the compen-
sated component based on the density buoyancies in the lithosphere. The deviatoric stress
field produced by the compensated lithosphere model represent the contributions from the
density buoyancies in the lithosphere. If a convection model is self-consistent, that is, it
predicts dynamic topography that matches, in both pattern and magnitude, the observed
residual topography (total observed topography minus the compensated component), the
above two approaches should yield same results. In this study, we adopt the first approach
and address the self consistency of predicting dynamic topography in future studies.

In order to obtain the deviatoric stresses associated with the horizontal tractions that are
generated by density-buoyancy driven mantle flow, solutions to (1) and (2) can be calcu-
lated given distributions of-T¢ (1), —Ter(rL). The solution from horizontal tractions is
then added to the solution from GPE differences described above to obtain the total devia-
toric stress field.

In our global model, we solve equations (1) and (2) on® 2 2.5° global grid using
a finite element techniqué&lesch et al. 2001) such that the deviatoric stress field solution
provides a global minimum in the second invariant of deviatoric stress (Appendix B).

We calculate GPE (equation (3)) from the crustal thickness and density dataset, Crust
2.0. The cooling plate model based on ocean floor age déiler et al., 1997) with re-
vised parameters fro®tein and Stei(iL992) is used to define densities for oceanic regions.
The plate boundary zones are assigned variable viscosities (Appendix B) based on strain
rates from the GSRMKreemer et al.2003), where the rapidly straining areas (e.g., sub-
duction zones, narrow mid-ocean ridges for rapidly spreading plates) have lower viscosities
compared to more slowly deforming regions, while the plate interiors have the highest con-
stant relative viscosity. A best fit is obtained with plates having an effective viscoSty
times higher than that of a relatively rapidly deforming region in western North America
with a reference strain rate of8lx 10~ //yr (Figure B1 in Appendix). The Crust 2.0 is an
uncompensated model. We calculate GPE and the associated deviatoric stresses from the

uncompensated Crust 2.0 model, which incorporates the contribution from radial tractions
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(dynamic topography) in addition to the contribution from lithosphere buoyancy sources.
The termsty (r.) andte (rL) in equations (1) and (2) are derived from a convection
model byWen and Anderso(L997b) on solving the conservation equations of mass and
momentum, using the constitutive equation between stress and strain rate with free slip
boundary conditions, by a standard propagator matrix technique. Our mantle convection
model is a whole mantle (WM) model with radially variable viscosities, the lower mantle
being 10 times more viscous than the upper mantle. Unlika and Andersof1997b), we
do not consider lateral viscosity variations within the lithosphere in our simple convection
models. The density anomalies in the upper mantle are inferred by adjusting the relative
weights of density anomalies related to subducting sl&en(and Andersqri995) and
residual tomographyWen and Andersqri997a), on the basis of fitting the geoid. The
density structure in the lower mantle was derived from a seismic tomographic ngdel (
et al, 1994). The detailed information for the density model and the velocity density scal-
ings were presented Wen and Anderso(l997b). The contributions that the horizontal
tractions make on the lithospheric deviatoric stress field are computed using the thin sheet
model with laterally variable viscosity. These horizontal tractions, or body force equiv-
alents, are applied at the base of the thin sheet as a boundary condition (see Appendix
A). The contribution from the basal tractions is then added to the contribution from GPE

differences to determine a total deviatoric stress field.

4.3 A Quantitative Comparison with Deformation Indica-

tors at Plate Boundary Zones

We test our modeled deviatoric stresses quantitatively with stress tensor indicators from
the GSRM Kreemer et al.2003). GSRM is a high resolution model based on 5170 GPS
stations and Quarternary fault slip data, confined along the deforming plate boundary zones.
The modeled deviatoric stress tensors are scored with the strain rate tensors in GSRM, and

we seek to match direction of principal axes as well as style of faulting inferred from the
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strain rate tensors. We define a correlation coefficielgsch et al. 2007):

1<y (s-r)AS/( > (E?as+ |5 (TZ)AS) <1 (4)

areas areas areas

whereE = \/squp+ €50+ €7 +Ep T €5 = \/Zsqup+ 2eqggEop + 250+ 2€5,

T= \/Tz(p(p—l- o +T7 + 159+ 15, = \/2'[2(”—1- 2T gqTan + 2Tgg + 215

ande - T = 2€qTop+ Egplon + E00Tgp+ 2£00Tep + 2E¢aT 0.

E andT are the second invariants of strain and strggsre strain rates froiireemer et all.
(2003),ASis the grid area, antjj are the calculated deviatoric stresses. Normalization
by E andT ensures that the correlation coefficient depends only on the inferred style of
faulting embedded in the deviatoric stress and strain rate tensors as well as the direction
of principal axes of strain rate and stress tensors; there is no dependence on magnitude
of stress or strain rate. The maximum correlation coefficient of +1 indicates a perfect fit
between the directions of principal axes of deviatoric stress and directions of principal axes
of strain rate as well as a perfect fit between expected styles of faulting associated with
the deviatoric stress and strain rate tensors. The minimum coefficient of -1 indicates anti-
correlation. A value of O implies no fit, including, for example, predicted strike-slip style

of deviatoric stress, where the compressional and tensional principal axes differ from those
in the GSRM by 48.

4.4 Results

4.4.1 Deviatoric Stress from GPE Differences

There occurs a positive correlation between higher elevation areas and areas of high
GPE, such as Andes, western North America, and the Tibetan Plateau. These high GPE
areas are also in deviatoric tension. Topographically low areas and older oceans exhibit
low GPE and consequently are in deviatoric compression (Figure 1). The Tibetan Plateau,
with a very large crustal thickness and high elevation, shows large N-S deviatoric tension

(~ 3x 102 N/m), associated with large GPE contrasts with the surrounding regions, which

78



the ridge-push force fails to cancé&ljosh et al.2006). It is clear that an additional N-S

compressive driving force that does not have its origin within the lithospheric shell needs to
be accounted for in order to cancel out the N-S deviatoric tension in Tibet. As we will see
next, this additional force is provided by basal tractions associated with density buoyancy-

driven mantle convection.
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Figure 1: Global distribution of vertically integrated horizontal deviatoric stresses and GPE (on
scale bar) calculated from the Crust 2.0 data with viscosities varying as a function of strain rates
(Figure B1 in Appendix) where a reference viscogity; is chosen such that a moderately straining
region in western North America (with a strain rate d & 10~/yr) has an effective viscosity 30

times lower than the plates. Tensional deviatoric stresses are shown by red arrows while compres-
sional deviatoric stresses are shown by black arrows. Length of the arrows are proportional to the
magnitude of stresses. Strike-slip regions are indicated by one tensional and one compressional pair
of arrows. Areas having high GPE are in deviatoric tension while those having low GPE are in
deviatoric compression.

Comparison of modeled stresses from GPE differences to the deformation indicators
in GSRM indicates an excellent fit along the mid-oceanic ridges and the Indo-Australian
boundary zone. Areas of continental deformation, such as western North America, Andes
and central Asia, exhibit a poor fit (Figure 4a, Table 1), clearly indicating that at least in

those areas, lateral variations in GPE are not sufficient to explain the observed deformation.
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4.4.2 Total Deviatoric Stress Field from Combined GPE Differences

and Mantle Buoyancies

In the mantle convection models used to generate basal traction estimates, we test a
range of lithosphere viscosities from slightly strong«(50?! Pa-s) to very strong (109
10?1 Pa-s) (Figure 2). The asthenosphere viscosity is also varied by 4 orders of magnitude,
from 108 to 10?1 Pa-s. Amongst the various models of radially symmetric viscosity struc-
tures that we test, the ones marked within the ellipse generate deviatoric stresses, which
when added to the deviatoric stresses from GPE differences (Figure 1), yield global corre-
lation coefficients with GSRM of 0.65 and above. One aspect common to all these models is

the need for a strong viscosity contrast

10 — between the lithosphere and the astheno-
08 s %E% | | | | sphere (100-10,000 times stronger litho-
éoﬁ’m sphere). All successful models (1-9)
g yield a consistent long-wavelength pat-
€0 | temofbodyforce equivalents g and
00-2* ****** “ ****** —Tgr) (See Appendix, Figure C1). These
ol . 777777 optimal models involve mantle flow ve-
' n l\ggcosnylcggt?ast 10000 00000 dev0s locities that are generally greater at

Figure 2: Viscosity contrast between lithosphergepth than at the base of the plates in re-
and asthenosphere vs. correlation coefficients. The

different symbols indicate lithosphere of differerions such as the Indo-Australian plates,

strengths. Thg models within the e“'p?e y|e_|_d CONazca and South American plates, and
relation coefficients greater that 0.65. Viscosities are

given in Pa-s. Eastern North America (Figure C1 in
Appendix). The downwelling flow in

these areas is generated by deeper density anomalies of ancient subducted lithosphere. The

deviatoric stress result, associated with these horizontal tractions, yields compression over

these downwelling zones, whereas tension occurs in areas of upwelling or divergent flow,

such as eastern Africa and the Pacific. Viscosity models 2-5, which have strong astheno-

sphere (18 Pa-s), along with model 1, which has no asthenosphere, yield tractions that

are of magnitude 3-6 MPa (Figure C2 in Appendix). The resultant stresses from models
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Figure 3:Global distribution of vertically integrated horizontal deviatoric stresses from GPE differ-
ences (Figure 1) and horizontal tractions combined, plotted on topography. The mantle convection
model is a radially variable viscosity model with a strong lithospherex(0°! Pa-s) and a weak
asthenosphere (3DPa-s) (model 8).

1-5 dominate the deviatoric stresses from GPE differences (Figure C3a in Appendix). Al-
though not obvious from examination of global average correlation coefficients, models 1-5
produce tractions that are apparently too large. For example, Tibet shows more dominant
thrust faulting than strike-slip in models 1-5. Parts of the Lake Baikal region become more
dominantly thrust in these models with larger traction magnitudes. Furthermore, models 1-
5 yield no tension in Basin and Range and much less tension in parts of the Aegean region
compared to models 6-9.

Viscosity models 6-9, on the other hand, with a weak asthenosphefeRa6s), yield
deviatoric stress magnitudes closer to stress magnitudes from GPE differences (Figure C3b
in Appendix) and provide a more favorable match to deformation indicators in the above
mentioned regions. Models 6-9 are our preferred models. The traction magnitudes for 6-
9 range between 1-2.5 MPa (Figure C1 in Appendix). We show the combined deviatoric
stress response from GPE differences and horizontal tractions (Figure 3) and also the score
with the strain rate information (Figure 4b) for model 8 (Figure 2). Deviatoric stresses from
the combined sources of GPE differences and horizontal tractions from mantle buoyancies
show improvement of fitting in all areas, particularly in regions of continental deforma-

tion (Figure 4b, Table 1). A major change takes place in the Tibetan Plateau, where the
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Figure 4:Correlation coefficients between observed strain rate tensors from the Global Strain Rate
Map and deviatoric stress tensors arising from a) GPE differences from the Crust 2.0 model (Figure
1), and b) combined deviatoric stresses from GPE differences and mantle buoyancies (Figure 3).

dominantly N-S deviatoric tension from GPE differences is replaced by a mixed strike-
slip style of deviatoric stress, in accord with a larger percentage of the deformation style
there. This improvement can again be explained by addition of the influence of deeper
subduction-related density buoyancies within the mantle. However, in some areas, such as
New Zealand and parts of Asia, the fit degrades. Considering all the areas simultaneously,
stresses from GPE differences yield an overall correlation coefficient of 0.54, whereas those
from combined GPE differences and horizontal tractions produced by the mantle buoyan-
cies yield an overall coefficient of 0.69 (Table 1).

A qualitative comparison of our deviatoric stresses with the style and direction of prin-
cipal axes of stresses in the WSM reveals a good match, particularly in areas like the Indo-
Australian plate, most of central Asia, and North America.

It is also necessary to have lateral viscosity variations in the lithosphere in the thin sheet
model for the stresses to match deformation indicators. A test with no lateral variations in
the lithosphere in the thin sheet model still improves the fit to the strain rate tensor infor-
mation when the mantle contribution is added to the lithospheric contribution. However,
the overall fitis much lower than when lateral variations are present (Table 1).

Viscosity models with too small a contrast between the lithosphere and asthenosphere
(models outside the ellipse) yield a poor fit to the deformation indicators (Figure 2). The
effective body force distribution (negative of the tractions) for these models (Figure C4

in Appendix) are different to those from models of large viscosity contrasts (within the
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Region Numben GPE differences |GPE differences GPE differenceg GPE differences
of of with plus with plus
interest areas |rheological variations basal tractions constant viscosity basal tractions
W. North America| 132 0.53 0.64 0.08 0.11
Andes 89 0.24 0.84 -0.20 0.78
Eastern Africa 164 0.32 0.76 0.63 0.81
Mediterranean 83 0.55 0.57 0.33 0.39
Central Asia 187 0.33 0.57 0.10 0.29
Indo-Australian 174 0.69 0.76 0.30 0.31
plate boundary zone
Mid-oceanic ridgeg 292 0.80 0.85 0.78 0.76
Western Pacific 109 0.51 0.63 0.08 0.61
South East Asia | 167 0.61 0.66 0.08 0.34
Total 1944 0.54 0.69 0.31 0.48

Table 1: Correlation coefficients obtained from a comparison between different deviatoric stress
models with the strain rate tensor field from the GSRM model (see equation (4)). The mantle
viscosity model considered is model 8. The viscosities in the lithosphere of the thin sheet model
vary as function of strain rates (Figure B1 in Appendix) for columns 3 and 4, whereas for the last
two columns, the lithosphere in the thin sheet model has uniform viscosity.

ellipse). For instance, these forces vary over much smaller wavelengths than for optimal

models 6-9.

4.5 Discussion and Conclusion

Our results show that deviatoric stresses from GPE differences alone are not able to
match the direction of principal axes and style of faulting in many of the deformation zones
of the Earth’s surface, particularly within the continental zones of deformation; horizontal
basal tractions arising from mantle convection are also required to match the deformation
indicators. These horizontal basal tractions that are coupled to the base of the lithospheric
plates arise from mantle flow induced by current and past subducted lithosphere in the
areas (e.g., the Indian plate, Andes, Figure C1 in Appendix). An aspect that is of prime
importance is the viscosity contrast between the lithosphere and the asthenosphere, where
a sufficiently large contrast (100-10,000 times) is required for the effective body forces as-
sociated with horizontal tractions to have the right directions and magnitudes. Although a
wide range of models involving viscosity contrasts between lithosphere and asthenosphere

appear to adequately match the global GSRM data (models 1-9), our preferred models are
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those in which horizontal tractions and GPE differences (produced by the lithosphere buoy-
ancies and the radial tractions) contribute approximately equally to the deviatoric stress
field. These models (6-9) involve a weak asthenosphere fR&-s, horizontal traction
magnitudes of 1-2.5 MPa, and vertically integrated compressional deviatoric stress mag-
nitudes ranging between-14 x 1012 N/m, consistent with deviatoric stress magnitudes
obtained byRichardson1992).
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Appendix
Appendix A: Spherical Treatment

In spherical coordinates, they andz directions of Cartesian coordinates change to
the @, 8 andr (radial) components, respectively. The deviatoric stress tensor in the radial
direction is

1
Trr = Opr — éokka (A1)

whereoy, is the total stress tensor in the radial direction émjk is the mean total stress.
This is the 3-D definition of deviatoric stress, discussed~l®sch et al.(2001); Ghosh

et al. (2006). The total stress tensor; = Tjj + %okkéi j» then becomes
Oij = Tij + &ij (Orr —Trr). (A2)
whered;j represents the Kronecker delta. The force balance equation is:
0-0+pg=0, (A3)

whereg is a vector in the negative radial direction. (A3) can be written in spherical coordi-

nates as
1 0/, 1 9/, 9 [ 4 -
cosd 0<p<r 0“’“’) " CoF6 00 (r O COS 9) Tor (r %r) =0 (A4)
1 0(> 10 [, 1 0/, o (s )
00596<P<r 0“) 269<r [099+°"""])+2co§eae<r cos'6[oes %(p]>+ar (r %r | =0
(A5)

rcosd 0@ T cos0 08 (COSGOSr> tr (20” ~ Ogop— 099) +5, —PI=0 (AB)

Vertically integrating (A4) and (A5) yields

1 0 r's 2 1 0 r's 2 3 _
COSG%(er r qupdf> +@a_e</r|_ r Utpedf00§9> rLO-WrL_O A7)

and

r's 10
2
r“ogdr | + =—
/rL “‘9> 209(

r
/ “r2co20[0gg — gy dr)
r

L

r's 1 o0
2 - =
v/n_ r [O’ee+0<p(p]dr)+zco§eae(

—riogr.=0 (A8)

19
cosB 0@
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wherergis the radius from the center of the Earth to the surface of variable topography and
r_ is the radius from the center to the base of the lithosphere. Substituting (A2) in (A7) and
(A8), we arrive at equations (1) and (2) in the text. For a thin sheet, the gradieogs of
andaog, are negligibly small. Moreover, the terﬂﬁrQZcrrr — Ogp— Ogg) is small compared to

pg. Hence, (A6) can be approximated as

00y
or

—-pg=0 (A9)

which implies
;
Orr = — Spgdrl (A10)

r

which is used to provide the GPE equation (3) in text. Substitutiagrg — 7, andr, =

re — L, we have

) = LD e 1) (aa)
= RU-D)re(lP- )4 (152 (A12)
= R(L-2)|1- L4+ L2117+ 2)|  (A13)

e SrE

wherelL is the depth to the constant reference level, or base of the lithosphere. Equation
(A13), therefore, provides the magnitude of error in GPE introduced by the flat-Earth ap-
proximation in comparison with the exact spherical case.

In order to compute deviatoric stresses from mantle buoyancy sources, the horizontal
tractions are first calculated from the mantle convection model. WdB positive north

latitude, the equivalent expressions fgy andtg, in Wen and Anderso(1997b) can be

written as:
0 0
LT /N0 = 2" 55 Ym(6.9) + 26" 35 Yim(6,0) (A14)
0 1 0
r'LTer/No = Z4 29 Yim(8,9) — ZG @% Yim(8, ®) (A15)

wheren is the reference viscositgy™ andZ{" are the spherical harmonic coefficients for
the poloidal and toroidal components of stregs(0, @) is the surface normalized spherical
harmonic of degrek whose maximum value is 12 in this study, and omtieFor a radially

symmetric viscosity structure, t@m terms are zero.
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Appendix B: Variable Viscosities

The functional that is minimized in the methodklesch et al(2001) is :

1 _
I://ﬁ[fzw+2fz(pe+f§e+(tw+tee)2 cos9dgde

1 T, 10 19 g
+//{2}\ [cose 0@ cosﬁacp(TW+Tee) Szeae(coszenpe) 0SB 0@ _r"%r(r")]

+2)\|: 1 aT(pe 30

1 0 _ _
0 cosf a(p 269(T99+ (P(P) 2C0§9%(C0§9[T99_Tw]) r|_09r(r|_)

} cosBdqdd
(B1)

00,
69

whereTgy, Tog andTge are the vertically integrated deviatoric stressigsis the vertically
integrated vertical stresBq, Ag represent the horizontal components of the Lagrange multi-
pliers, anduis the relative viscosity, which in this case varies laterdthgsch et al(2001)
assumed a constapiequal to 1. In this paper, we use a variable valug tf approximate

weak plate boundary zones and strong plates. We assume an inverse relationship between
strain rates and relative viscositigs, We obtain the relative viscosities of the deforming

plate boundary regions, such as the mid-oceanic ridges and subduction zones, by assigning
a reference viscosity to a moderately deforming region in western North America with a
strain rate of 15 x 10~ “/yr , using the relation:

L_ll 1 (i 1), /5 (B2)

ref

wherepes is the reference viscosity corresponding to the above mentioned area in western
North America,E? = 2(5; + £5,+ £ + Egeen), Whereggg, £y andéep are the strain rates

from Kreemer et al(2003), an(E - IS the reference value fdE2, corresponding to the
value forpes. A plot of relative viscosities (Figure B1) shows the lowest viscosities along
the mid-oceanic ridges, relatively higher viscosities in the deforming continents, while the
blank areas (the plates) have the highest viscosities witkaue of 1. We try reference
viscosities of 1/3, in which our reference area in western North America is 3 times weaker
than the plates, 1/30 (Figure B1 and the solution in the main paper), 1/300 and also 1/3000;
the viscosity structure yielding deviatoric stress field that matches the deformation indica-

tors best is chosen.
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Figure B1:Logarithm (log 10) of relative viscosity distribution for all the plates in the lithosphere
model. The white areas represent intra-plate regions with reference viscosity 1. The deforming
areas are assigned viscosities inversely proportional to the strain rates from GSRM (equation B2).
A reference viscosity ofies ~ 3—10 is chosen at the moderately straining western North America
(1.5 x 10~ ’/yr). Places with viscosities higher thag are deforming at a slower rate.

We minimize a second functiondlwith respect to\, andAg that when minimized

satisfies the force-balance equatioRkeéch et al. 2001),

T
Too PpS Too DS
=[] Too |~ | o5 | | V| | T || @8 | | {cossdgue
'F(pe CDO(pgs 'F(pe CDO(pgs
(B3)
where
_ 1 0\
Tq’xp - u<@a—(p - )\etan9> 3 (B4)
_ oA
Tgg = Ha—ee, (BS)
%= 2( 50 " cosd ag 0™ (B9
210
~ 1
V’lzﬁ 12 0|, (B7)
0 0 2

88



O _On

(956 986 9%)" = (— 3~ 30) =
for the GPE case, and
ZImYI Zle| T
(P59 P8 Poe) " = ( 3 =, 3 =,0) (B9)

for the traction case. Minimizing is equivalent to minimizing in (B1) (see proof in
Flesch et al(2001)) and provides a vertically integrated deviatoric stress field that balances
the body force inputs and is also a global minimum in the second invariant of deviatoric

stress (for given distribution of relative effective viscosities).
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Appendix C
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Figure C1:Global distribution of effective horizontal body forces, which are the negative of the
tractions e, Tre (€quations (A14) and (A15)), applied at the base of the lithosphere (100 km depth).
The tractions are generated by a convection model (model 8) with radially variable viscosity struc-
ture, a weak asthenosphere (with viscosity d°Ia-s) and a stronger lithosphere (with viscosity of

50x 10?1 Pa-s). A site of upwelling or divergence is beneath Eastern Africa, as well as beneath parts
of Pacific and beneath mid-oceanic ridges, whereas areas of convergence or downwelling are mid-
dle North America, South America, Central and eastern Asia and the Southeast Asian subduction
zones.
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Figure C2:Same as Figure C1, but for viscosity model 2, with stronger asthenosphé?é¢Le).
Note the large traction magnitudes, which are about a factor of 2 larger than for optimal models 6-9.
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Figure C3:Contour maps of ratiol;/T,, whereT is the second invariant of the deviatoric stress

field. Ty is predicted by mantle buoyancies afgis predicted by lithospheric GPE differences
(Figure 1). a) is for model 1, with strong lithosphere and no asthenosphere. Note that ratios here
indicate that tractions from this model generate deviatoric stresses that are on average 3-5 times
larger than the deviatoric stresses associated with GPE differences. b) is for model 8, with a weak
asthenosphere of 3)Pa-s. Note that the ratios in b) generally show that the contribution of devi-
atoric stresses from tractions are the same magnitude as stresses from GPE differences. Areas of
strong upwelling and downwelling in (b), however, have larger stresses from tractions. White areas
are where the ratio is out of range (greater than 8).
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Figure C4:Same as Figure C1, but for a viscosity model with lithosphere viscosit{ &* Pa-

s and asthenosphere viscosity of:280° Pa-s, which yields a viscosity contrast of 20. Note
that the effective force distribution is very different from Figures C1 and C2, and of much smaller
wavelength. This traction field provides a very poor fit to the GSRM stress tensor indicators.
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Appendix D: Benchmarking

We discuss the suitability of the thin sheet approximation in its ability to recover the
depth integrals of deviatoric stress in the presence of large-scale three dimensional flow.
That is, we intend to test whether the vertically integrated horizontal deviatoric stresses
from the thin sheet model can recover the horizontal deviatoric stress field from the 3-D
convection modelWen and Andersqri997b). For this test we use two models of radially
variable viscosity structures: 1) one with no lithosphere (an isoviscous model) and 2) one
with a strong lithosphere (a lid model). The lithosphere in the thin sheet model is assumed
to be with no lateral viscosity variations. The density buoyancy distributions for the con-
vection models used here to generate 3-D flow and 3-D stress are the same as for models

described in the text.
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Figure D1: Deviatoric stress field, computed via the thin sheet method for an isoviscous case.
The stresses are produced by horizontal tractions, which are generated by a 3-D convection model,
output at 100 km depth, and applied to the base of the thin sheet.

The vertical and horizontal components of the three-dimensional convective flow in the
mantle generate radial and horizontal tractions. The radial tractions are responsible for
producing dynamic topography. In this section, we will show that the combined deviatoric
stress field, from radial and horizontal tractions, computed via the thin sheet method, is
able to match the deviatoric stress field predicted by the full 3-D convection model. The

radial and horizontal tractions are generated by a 3-D convection model. We first consider
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Figure D2:GPE , or depth integral af,; (on scalebar), and deviatoric stress field, computed via
the thin sheet method, for an isoviscous case. The GPE is calculated from dynamic topography
predicted by the 3-D convection model. The radial component of the 3-D mantle flow gives rise to
the dynamic topography.

an isoviscous case.

The horizontal tractions generated by the 3-D convection model, output at 100 km
depth, are applied to the base of the thin sheet, and the deviatoric stresses are then com-
puted using the thin sheet method (Figure D1). These stresses associated with horizontal
tractions produce deviatoric tension in areas of convergence (central Asia, southeast Asian
subduction zone, south America) and deviatoric compression in areas of divergence (east-
ern Africa). Next, the dynamic topography, predicted by the isoviscous convection model,
is used to calculate depth integrals @f, assuming PREM as the background density
model. The resultant GPE differences are only due to the presence of dynamic topography.
From these GPE differences, the deviatoric stress field (Figure D2) is computed via the thin
sheet method. The resultant deviatoric stresses show convergence over areas of negative
dynamic topography, and divergence over areas of positive dynamic topography, such as
eastern Africa and the Pacific. In other words, the deviatoric stresses from radial tractions
are opposite in sign to the deviatoric stresses from horizontal tractions for the isoviscous
case (Figure D1). These stresses from radial tractions are then added to the stresses from
horizontal tractions in order to produce an estimate of the depth integral of the total de-

viatoric stress field (Figure D3). The two stress fields nearly cancel each other, but the
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Figure D3: Total depth integral estimate of the deviatoric stress field, obtained from combining
both the contributions to deviatoric stresses associated with horizontal (Figure D1) and radial trac-
tions (Figure D2), via the thin sheet method, for an isoviscous case.

resultant deviatoric stresses show that the influence of radial tractions is dominant in most
areas, such that there is deviatoric compression over most areas of mantle downwelling and
tension above regions of mantle upwelling (Figure D3).

When the combined stress field obtained above is compared to the deviatoric stress
field computed directly from the full 3-D convection model (Figure D4), we see a sig-
nificant match for almost all regions. We compute the ratio of the second invariant of

stress tensors for the respective stress fielgs], (Figure D5a), wherdl is given by

T= \/Tz(p(p—l—'[ge—l—'[rzr +15+T5, = \/ZTZW—I— 2Tgglon + 2159 + 2150, Tij being the devia-

toric stresses. We also calculate correlation coefficients between the two deviatoric stress
fields (Figure D5b), given by equation (6) in text. Here, the strain rate tensor is replaced
by the second deviatoric stress tensor. The rdi@]l,, yields a measure of the match

in magnitude for the two deviatoric stress fields, whereas the correlation coefficient mea-
sures the match in direction and style of the two stress fields. Hence, a value of 1 for both
would indicate that the two stress fields are of exactly the same magnitude and style. For
the isoviscous case, in most regions the magnitudes are close to exact agreement (Figure
D5a) and the styles and directions (Figure D5b) are also close to exact agreement. Most of

the differences occur in the crossover areas, where a transition takes place from deviatoric
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Figure D4: Deviatoric stress field obtained from the full 3-D convection model for an isoviscous
case. Note the similarity with Figure D3, which is obtained using the thin sheet approximation .

tension to compression, or vice-versa. The reason is most likely due to the fact that two
large stress fields - one from radial tractions (Figure D2), and the other from horizontal
tractions (Figure D1) - nearly cancel each other, yielding a much smaller total deviatoric
stress field (Figure D3). In the crossover areas, where the stresses are even smaller, this
cancellation has to be exact. The tractions generated from the convection model are aver-
aged and mapped onto thésX 2.5 degree grid of the thin sheet model in order to calculate
the deviatoric stresses via the thin sheet method. A slight error in averaging could cause
misfits between the two stress fields (Figure D5a,b), particularly in the crossover regions.
Moreover, the deviatoric stress field computed via the thin sheet method is the vertically
integrated horizontal stress field, whereas for the 3-D convection model we have only out-
put the horizontal deviatoric stress field close to the surface of the lithosphere. This could
account for additional differences. In summary, we have shown that the thin sheet approx-
imation method that we use has done a remarkably good job of recovering the stress field
from a full 3-D, degree 12 convection model with an isoviscous structure.

We next test a lid model for the compatibility between the thin sheet and convection
methods. The deviatoric stress field calculated via the thin sheet method (Figure D6) from
horizontal tractions shows expected style of stresses: compression over areas of conver-

gence and tension over areas of divergence. Deviatoric stresses computed from radial trac-
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Figure D5:a) Contour map of ratiol; /T, between the two deviatoric stress fields for the isovis-

cous model.T; is the second invariant of deviatoric stress field predicted by the thin sheet model
(Figure D3), wherea$; is the second invariant of deviatoric stress field output by the 3-D convec-
tion model (Figure D4). White areas indicate that values are out of range (greater than 2.4). These
areas normally correspond to the crossover areas, mentioned in text, where the deviatoric stresses
are switching from tension to compression, and vice-versa. b) Correlation coefficients between the
two deviatoric stress fields for the isoviscous model.

tions (Figure D7) act in the same direction as stresses from horizontal tractions. The com-
bined stress field (Figure D8) from the two components, when compared to the deviatoric
stress field from a full 3-D convection model (Figure D9), shows a nearly exact match. The
guantitative comparison between the two stress fields (Figure D10a,b) shows only minor
differences in magnitude and style in a few regions.

What we demonstrate in this section is the ability of the thin sheet model to repro-
duce the same stresses as predicted by a full 3-D convection model. This has important

implications regarding the validity of the thin sheet method that we use.
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Figure D6: Vertically integrated deviatoric stresses, calculated using the thin sheet method, as-
sociated with basal tractions. The basal tractions are generated by a 3-D convection model with
a higher viscosity lid. Note that in contrast to the isoviscous case (Figure D1) the tractions from

the lid model yield a pattern opposite to the isoviscous case - compression over downwellings and
extension over upwellings.
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Figure D7:Vertically integrated deviatoric stresses, calculated via the thin sheet method associated
with lateral variations in the depth integral of radial stresg,(or GPE). The lateral variations in

GPE are associated with dynamic topography produced by radial tractions in a full 3-D mantle
circulation model with a high viscosity lid (same as Figure D6). Note the similarity with isoviscous
case (Figure D2).
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Figure D8: Total depth integral of horizontal deviatoric stresses produced by adding solutions in
Figures D6 and D7.
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Figure D9:Horizontal deviatoric stress field obtained from the full 3-D convection model for the
lid case. Note the similarity with calculations in Figure D8, obtained using the thin sheet approxi-
mation.
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Figure D10:a) Contour map of ratioJ1/T,, between the two deviatoric stress fields for the lid
model.T; is the second invariant of deviatoric stress field predicted by the thin sheet model (Figure
D8), wheready is the second invariant of deviatoric stress field output by the 3-D convection model
(Figure D9). b) Correlation coefficients between the two deviatoric stress fields for the lid model.
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Chapter 5

Predicting the Lithospheric Stress Field
and Plate Motions by Joint Modeling of
Lithosphere and Mantle Dynamics
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Predicting the lithospheric stress field and plate motions by joint
modeling of lithosphere and mantle dynamics

Abstract

The way in which basal tractions, associated with density buoyancy-driven mantle con-
vection, affect lithospheric deformation is a fundamental problem in geodynamics. The
goal of the present study is to achieve a best-fit lithosphere-mantle coupling model for the
Earth. That is, we seek to estimate a model with appropriate radial and lateral viscosity
variations that would successfully predict not only plate motions, but also deformation in-
dicators along the Earth’s plate boundaries. The convection model used is a whole mantle
model driven by density buoyancies within the mantle with free slip boundary conditions
at the surface and at the core-mantle boundary. We test viscosity structures by incorporat-
ing lateral viscosity variations in the lithosphere, as well as by varying the thickness and
viscosity of the asthenosphere layer. We introduce lateral viscosity variations generated by
major geological features of the Earth, such as the continent-ocean divide, the presence of
cratonic roots, and age differences in the oceanic lithosphere. For each structure, we predict
the deviatoric stress field, the pattern of poloidal and toroidal flow, and the toroidal/poloidal
partitioning ratio. The deviatoric stresses are computed for the entire lithosphere using the
thinsheet method, with laterally variable effective viscosity. The tractions from the 3-D
convection model are output at 100 km depth and applied to the base of the thinsheet as a
boundary condition. The predicted deviatoric stress field, associated with these tractions, is
added to the deviatoric stresses generated by lateral variations in the depth integral of radial
stress (lateral variations in gravitational potential energy per unit area or GPE), calculated
based on the Crust 2.0 dataset. The combined, depth integrated deviatoric stress field is
compared with velocity gradient tensor field along the Earth’s deforming plate boundary
zones from the Global Strain Rate Map (GSRM), as well as with earthquake moment tensor
data. The best-fit model has to satisfy both the constraints of matching the plate motions
and the deviatoric stress field simultaneously. We find that models, dominated by strong

viscosity contrasts between the oceanic and continental lithosphere, and a weak (low vis-
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cosity) asthenosphere, are able to match plate motions, the observed toroidal/poloidal ratio,

and the strain rate tensor data from GSRM.

5.1 Introduction

The plate-mantle coupling problem has been one of the central problems in present-day
geodynamics. It refers to the way deeper, density buoyancy-driven basal tractions affect
lithospheric deformation. This coupling problem has implications on the age-old ques-
tions of what drives the Earth’s tectonic plates; what role does mantle convection play
and what is the nature of coupling between plates and deep mantle flow? Many studies
have attempted to model plate tectonics (through the torque balance method or through
calculating the lithospheric stress field) as a mere lithospheric process, independent of ac-
tive deeper density buoyancy-driven convective flow in the ma&ttdofnon et a).1975;
Richardson et a).1979;Sandiford and CoblentA994). On the other hand, various other
studies have considered mantle convection and plate tectonics as a single system in order
to explain the plate tectonic phenomend@hg¢ng and Gurnisl996;Bercovici 1995, 1998;
Tackley 1998, 2000:Trompert and Hanserl998) or to explain observables such as the
geoid, dynamic topography, and plate motioHager, 1984;Hager et al, 1985;Richards
and Hager 1984;Gable et al, 1991;Forte et al, 1993;Wen and Andersqri997b;Becker
and O’Connel] 2001). However, the problem with directly relating mantle convection with
plate tectonics is that the latter is not strictly a fluid dynamical process, as evident from the
existence of nearly rigid plates. In this paper, we seek to address the role and nature of
lithosphere-mantle coupling by performing a joint modeling of lithosphere dynamics and
mantle convection. The two most important observations that are sensitive to the nature
of plate-mantle coupling are the lithospheric deviatoric stress field and plate motions. If
the initial coupling model is correct, the predicted deviatoric stress tensor field will match
deformation indicators, and the predicted plate motions will also match the observed plate
motions. However, use of either one of these constraints, by itself, leads to non-unique
inferences about the plate-mantle coupling system. That is, a particular coupling model

may satisfy one constraint but not the other. Hence, both of these constraints are necessary
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to delineate a coupling model for the Earth.

The prediction of the Earth’s lithospheric stress field, as well as its plate motions, is
largely influenced by the distribution of density buoyancies as well as radial and lateral
variation of viscosities in the lithosphere and the mantle. In the past, there have been
studies that investigated this lithosphere-mantle coupling probBanef al, 1992;Bird,

1998; Steinberger et al.2001;Lithgow-Bertelloni and Guynri2004;Ghosh et al.2008)

by jointly modeling lithosphere and mantle dynamics and predicting the lithospheric stress
field. Bai et al.(1992) were the first to perform such a joint modeling. They used the
intraplate stress field to evaluate their models. However, they failed to achieve a good
correlation between their predicted stresses and observed stress dire&iah$1998)
utilized a thin sheet method with faults at plate boundaries and temperature dependent
viscous rheology in his approach to model the lithospheric stress field. He concluded that
basal driving tractions were necessary to match the observed stresStettherger et al.
(2001) computed the global stress field from mantle convection based on global seismic
tomography and added it to the contribution from intra-lithospheric sources. They, on
the other hand, found that predicted stress directions with or without mantle flow matched
stress observations equally well. They also predicted plate motions in addition to predicting
the intraplate stress fieldlithgow-Bertelloni and Guyn(2004) performed a joint modeling

of lithospheric and mantle sources of stress and explored the effects of radial changes in
viscosity in the mantle. Lik&ird (1998), they too argued for importance of basal tractions
and concluded that the stress field is significantly affected by lateral viscosity variations
that leads to varying degrees of coupling between the lithosphere and the ntzimtigh

et al. (2008) performed similar joint modeling using a thin sheet approach to model the
stress field from lithosphere and mantle buoyancies. They found that stresses from basal
tractions, arising due to density buoyancy-driven mantle convection, when added to stresses
from intra-lithospheric sources, yield a better fit to deformation indicators along the Earth’s
plate boundary zones. They also tested the sensitivity of different radially variable viscosity
structures and argued for strong lithosphere-asthenosphere viscosity contrasts. Excluding
the first and last-mentioned study, all the other studies used the World Stress Map (WSM)
(Zoback 1992;Reinecker et al.2005) to constrain their modeled lithospheric stress field.
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Ghosh et al(2008), on the other hand, used the velocity gradient tensor field along the
deforming plate boundary zones from the Global Strain Rate Map (GSRidgner et al.

2003) to constrain their predicted stresses. None of the above studies, however, looked at
the specific nature of coupling between the lithosphere and the mantle. That is, whether
lateral variation in lithosphere and asthenosphere viscosity is important in influencing the
lithospheric stress field. In order to investigate this problem, lateral viscosity variations in
the lithosphere and/or asthenosphere are required to be incorporated in models of mantle
convection. The addition of lateral variation of viscosity also enables one to adequately
predict plate motions. Lateral variation in lithosphere and asthenosphere viscosity will also
profoundly influence the mantle flow, plate coupling, and the lithospheric stress field. It is
thus important to satisfy both the deformation constraint and the plate motion constraint in
order to delineate the best plate-mantle coupling model.

In this study we compute the lithospheric stress field from sources within the lithosphere
and from a full 3-D mantle flow field, driven by density buoyancies within the mantle,
that includes both poloidal and toroidal components. The poloidal component is associ-
ated with upwelling (divergence) in mid-oceanic ridges and downwelling (convergence) in
subduction zones, whereas the toroidal component is related to strike-slip faulting along
transform fault boundaries. We generate plate motions self-consistently from our convec-
tion models, instead of placing them as a priori boundary conditions. The combination of
predicting lithospheric stress field and plate motions enables us to investigate the nature of
plate-mantle coupling. Another important contribution of the present study is the matching
of the relative toroidal and poloidal flow magnitudes. Matching the toroidal/poloidal ve-
locity ratio has proved to be a difficult problem in studies of mantle convection (discussed
in section 4.2). In this study, we not only match the direction of plate velocities, but also
their relative magnitudes via the computation of the toroidal/poloidal velocity ratio. A very
important consequence of using all the three constraints of lithospheric stress field, plate
motions and the toroidal/poloidal velocity ratio is the elimination of a wide range of viscos-
ity models that fail to satisfy these constraints simultaneously. As mentioned before, these
constraints, individually, are non-unique. However, when considered simultaneously, these

constraints are able to narrow down a range of viscosity models that can explain observa-
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tions. Another aspect of our study is the usage of velocity gradient tensor field from GSRM
as well as earthquake moment tensor data for observations to be fitted by our depth inte-
grals of deviatoric stress. A qualitative matching of our predicted stresses with the stresses
from the WSM provides a further constraint, in addition to the quantitative matching with

the strain rate tensor information in GSRM and the moment tensor data.

5.2 Method

On a longer timescale, plates behave as viscous bodies and flow horizontally under
their own weight.Frank (1972) drew the analogy of the Earth’s lithospheric motion to the
flow in glaciers. Lateral density variations within the lithosphere, along with varying crustal
thickness and topography, give rise to gravitational potential energy per unit area (GPE) dif-
ferences. A higher elevation column of lithosphere stores more GPE than a lower elevation
column of the same density. The horizontal gradients in GPE produce deviatoric stresses
that give rise to horizontal flow from points of high GPE to points of low GPE. Effects
of these density variations within the lithosphere have been studiédtipyshkoy1973);
Fleitout and Froidevoux1982, 1983)fleitout (1991);Richardson1992);Coblentz et al.
(1994). On the other hand, mantle convection can be envisaged as a fluid dynamical process
whereby the flow is driven by sources of buoyancy deep into the mantle (mostly subducting
slabs). These buoyancy sources stir the mantle and set up convective flow that gives rise to
basal tractions, which, acting at the base of the lithosphere, contribute to the lithospheric

stress field.

5.2.1 Thin Sheet Approximation for Estimating Depth Integrals of
Deviatoric Stress

We use the thin sheet approximation to solve for the stresses associated with density
heterogeneities both within and below the lithosphere. The force balance equations, in

spherical coordinates, are given as:

1 0/, 1 0/, o (5 \_
cosGdcp(r oqxp)—l-COSZeae <r o(pecosze) + 5 (r cn,,) =0 (1)
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(Ghosh et al.2008), where is the radius of the Eartlp,is the densityg is the gravitational

accelerationgjj are the total stresse8,is the latitude andp, the longitude. Vertically
integrating (1) and (2) and substituting the total stress tewggrby the deviatoric stress

tensory;j, viagijj = Tj; + %O'kkaij , we arrive at
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Here,rg is the radius from the centre of the Earth to the surfacés the radius from the
centre to a constant reference level, &ydis the Kronecker delta. Because horizontal
tractions at the surface are zero, the last integral yields the horizontal tractions acting at the
reference levelr,, ity (r) andrite (rL). Density buoyancy driven mantle convection
plays a fundamental role in generating these tractions. As long as the depth integral of
horizontal tractions is small in comparison with the depth integrals of horizontal deviatoric
stress, it is appropriate to use the thin sheet approach. The first two terms on the right hand
side of equations (4) and (5) represent horizontal gradients in the depth integrals of vertical
stress, or GPE, while the second two terms are depth integrals of horizontal tractions acting
within the lithosphere. As such, the positive gradients in GPE and the negative of the
tractions constitute body-force-like terms, and are constrained by observations: GPE by
gravity and seismically defined crustal thickness dataset (Crust 2.0), and tractions by a

self-consistent circulation modéMen and AndersqQri997aGhosh et al.2008) that match
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plate motions and geoid.
For a thin sheet, the gradients@jf andag, are negligibly small as is the terf;r(Zorr —
Ogp— Oge) COmpared teg. Hence, (3) can be approximated as

fo
O = — padr, (6)

r

so that the GPE equation is given by
r’ o1
2 / 13 3 !
redr|dr :—/ —pg(r—rg)dr
/I’L :| . 3pg( L)

r r r r
/Orzorrdr:—/Orz[/opgdr’}dr:—/Opg[
o . r .
()

based on a reference level at depthWe taker_ to be 100 km below sea-level, coinciding

with a generalized base of lithosphere. In the estimation of lithosphere GPE we do not take
into account deeper lithospheric buoyancies arising from cratonic roots; instead, they are
considered part of the convection problem. In order to consider these deeper lithospheric
buoyancies in the lithospheric calculation of GPE, a variable base lithosphere needs to be
accounted for, which involves sophisticated methods that are beyond the scope of this paper.
In oceansyg constitutes sea-level and hence is constant, whereas it varies in continents
in accordance with varying topography. Given the GPE differences, solutions to (4) and
(5) can be obtained withy andtg, set to zero. Alternatively, given the basal tractions,
gradients in GPE (equation (7)) can be set to zero in order to compute the stress response
from basal tractions. The two contributions from each set of forcings can simply be added
to obtain the total lithospheric stress field. We use a finite element techrkitpselj et al.

2001) on a global grid of B° x 2.5° such that the deviatoric stress field solution provides a
global minimum in the second invariant of deviatoric stress, taking into account rheological
variations due to strong plates and weak plate boundaries. Based on the strain rates from

GSRM, the plate boundaries are assigned variable viscosities using the metGbhdsbf

et al. (2008),
1 1 =
—=1+(—-1)/ =, 8
H <uref ) EI%f (®)

where E? = 2(&3, + éz(p(p-i— éz(pe + Egotop), and £gg, Egp and £gp are the strain rates from

Kreemer et al(2003). A reference viscosity is assigned to a moderately straining region in
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western North America (straining at a rate 05 % 10~’/yr) having an effective viscosity
~ 30 times lower than the non-deforming intraplate regioﬁfg,f is the reference value for
E2 corresponding to the value fores.

The GPE in equation (7) is calculated from the crustal thickness and density dataset in
Crust 2.0 (5. Laske et al.Crust 2.0: A new global crustal model at22 degrees, 2002,
available at http://mahi.ucsd.edu/Gabi/rem.html]; the densities in the oceanic lithosphere
are defined by the cooling plate model based on ocean floor ageMidtar(et al., 1997)

with revised parameters froBtein and Stei(1992).

5.2.2 Mantle Convection Treatment

The basal tractions are obtained from a convection model using the methodology of
Wen and Andersofi1997b), assuming an incompressible Newtonian viscous fluid with

zero Reynold’s number. The governing equations are the equation of continuity,
0-U =0, 9)
U being the surface velocity, the equation of motion,
O-1+6pg =0, (20)
and the constitutive equation between stress and strain rate,
T=—-p+2ne. 11

Heret is the stress tensodp the density anomalyg the acceleration due to gravitp,

the pressurer the viscosity anc the strain rate tensor. The variables are expanded

in terms of spherical harmonics. For a radially symmetric viscosity structure, poloidal-
poloidal, poloidal-toroidal, and toroidal-toroidal equations are decoupled at every spheri-
cal harmonic degree and ordé&gula, 1975;Hager and O’Conne)l1981). For a laterally
variable viscosity structure, poloidal and toroidal equations are coupled at each degree and
order. If the coefficients are truncated at a certain spherical harmonic degree, the above

equations can be reduced to a set of linear equations and can be solved in 3 dimensions
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using a semi-spectral iterative methdh(pychev and FleitoytLl996). The boundary con-
ditions are free-slip at the surface and at CMB. Our mantle convection models include both
radial and lateral variations of viscosity, with the lower mantle being 10 times more viscous
than the upper mantle. The density anomalies in the upper mantle are inferred by adjusting
the relative weights of density anomalies related to subducting slabs and residual tomog-
raphy (Wen and Andersqri997a) on the basis of fitting the geoid. The density structure

in the lower mantle was derived from a seismic tomographic mcelekg al, 1994). With

latitude® as positive north latitude, the basal tractions can be given as:

1 0 0
rL(Ttpr)/rlozthm@ap\ﬁm(e,@)‘Fzém% im(6, ®) (12)
r (T AN S LN SR AVIN: 13

L(Ter)/No =24 3 im(8, ) — Zg c0sB 30 im(8, ) (13)

(Ghosh et al. 2008) whereng is the reference viscosit;Zl{“ and Zg“ are the spherical
harmonic coefficients for the poloidal and toroidal components of stigs&, @) is the
surface normalized spherical harmonic of dedraad ordem, whose maximum value is

12 in this study. The horizontal velocities are given by:

_ ~Im Im Im
=08 0p T o6 14
Yim(6, ) 1 9Yim(6,9)
_ ZImYImY% %) —oim Im
Yo=22—"58 %5 0B 09 (15)

whereZ, andZs are the poloidal and toroidal components of velocity, expressed as di-
vergence [(-U) and vorticity (O x U, U being the velocity). It should be noted that the
calculation of the tractions and the deviatoric stresses are derived from two separate mod-
els. The convection model, from which the tractions are derived using the methodology
of Wen and Anderso(1997b), is a degree 12 model that also predicts plate motions and
the toroidal and poloidal velocities. Using a solution method described below, the tractions
are applied to a constant reference layebelow a laterally variable lithosphere of much
higher resolution (& x 2.5 degree) to yield estimates of the depth integral of deviatoric
stress associated with the tractions.

We experiment with various radially symmetric, as well as laterally variable viscosity
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structures (Table 1). Note that the truncation degree is quite low in our dted$Z) and
hence, small scale features are missing in our convection model. We are therefore investi-
gating the contribution of long-wavelength components of density buoyancy-driven mantle
flow, which generates basal tractions at the reference kgyeds well as the prediction

of long wavelength components of lithosphere motion. The lateral viscosity variations in
the lithosphere model, in which the depth integral predictions of deviatoric stress are per-
formed, is of much higher resolution.&x 2.5 degree). The main goal of the study is to
explain the first order features of generating plate motion and lithosphere deviatoric stress
by a simple model, and not to match all the detailed features of these, which would require
much higher resolution and sophisticated models for both the mantle flow and lithosphere

stress predictions.

5.2.3 Solving the Thin Sheet Equations

Our solution provides depth integrals of deviatoric stress that both balance the body
force distributions and simultaneously constitute a global minimum of the second invariant
of deviatoric stress. This is accomplished through minimization of the following functional
(Flesch et al, 2001):

1 — —
I://ﬁ[fz‘l""_'_ﬁztpe'*'fge"‘(Tcpcp'*'Tee)z cosBdqde

1 0Tp 1 0 _ _ . 1 9 1 06y 4
Jr//{2}\“’[cose FI) Jrcose<3cp(T""p+Tee)+co§eae(coszet“’e)Jrcose FI) L0 (1)

101749 30 _—

+2\g [— ——+ = —(Tep+Tqp)

9 _ _ . 05w 4
cosh 00 T 206 (cOS B[Tep — Tq]) + —=p- rLoer(rL)”cosed(pde

1
T 2cog600 30

(16)
(Flesch et al. 2001;Ghosh et al. 2006, 2008) where, Tgs andTe are the vertically
integrated deviatoric stresseg; is the vertically integrated total vertical strexg, Ag rep-
resent the horizontal components of the Lagrange multipliers for the force balance equation
constraint, anglis the relative viscosity, which varies laterally in order to take into account
weak plate boundaries and strong plates in the lithosphere ntetdekf et al.2008). The
body force equivalents that go into making up the potentials are distributions of GPE and

distributions of the negative of the tractions. Optimizing equation 16 yields a relation be-
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tween the deviatoric stressegg, and the Lagrange multipliera, andAg (Flesch et al.
2001):

_ 1 g
T([(p = u<@a—(p - )\etan9> B (17)
_ oA
Too = Ha—ee, (18)
Tgp = > <—09 + o 09 +Aptand |, (29)

Note that the relation betweenand the Lagrange multiplierd,, Ag, is identical to the
relation between strain rate and velocities. Substitution of 17-1%igtoge andTyg in the
following J functional, and then minimization af with respect to\y, andAg provides a
solution to the force balance equations in (4) and (5), whése

T

Too PpS Too BPs
=[] Too |~ | o35 [ | V| | T || o= | |} cosodode.
Tgo CDO(pgS Tgo (Do(pgs

(20)
Here, Ty, Top andiyp are the depth integrated deviatoric stresses we are solving%frﬁbggs
andCDO(p.E’S are the potentials consisting of horizontal integrals of the body force equivalents
andV is the variance-covariance matrix (see Appendix Bimosh et al(2008)). For cal-

culation of the depth integrals of deviatoric stress, we solve equations (4) and (5) , given

distributions of GPE% ag_g anda%, and given distributions of the negative of the trac-

tions, —r2og (L) and—r3og (r ), obtained from mantle convection models.

5.2.4 Treatment of the Radial Tractions

The tangential tractionsg andtg, in equations (12) and (13), arise from the horizontal
component of the 3-D convective flow. The vertical componggf,that gives rise to dy-
namic topography, could potentially play an important role in affecting the total deviatoric
stress field. In this section, we will discuss ways of incorporating these radial tractions in
our calculation.

There are two ways of dealing with the radial tractioBh@sh et al.2008). One way

is to calculate them as part of the lithospheric contribution. The other way is to predict
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them from the mantle convection models. We will first discuss the method that treats radial
tractions as part of the lithospheric contribution. The observed topography is a combination
of both static and dynamic parts. The former is generated by shallow density buoyancies
within the lithosphere, whereas the latter is produced by deeper density buoyancies within
the mantle. Hence, the depth integraloogf for the observed topography, down to a con-
stant reference level (approximated base of the lithosphere), already contain contributions
from both static and dynamic parts. In this case, the density variations are obtained from a
seismically constrained crust and upper mantle structure that is uncompensated. Although
the contribution from dynamic topography is not explicitly known, it is implicitly included

in the calculation of the depth integral of; .

The second way is to treat the radial tractions as part of the convection problem. From
the dynamic topography predicted by the respective convection models, the GPE differ-
ences and the associated deviatoric stress field can be calculated. This stress field is the
response of the radial tractions. These stresses can then be added to the stresses obtained
from tangential tractions;r andtgy, in order to obtain the total stress field produced by
the convection model. This combined stress field is then added to the deviatoric stresses
from a compensated (equal pressure at the reference teyéthosphere model in order
to obtain a total lithospheric deviatoric stress field. The lithosphere model must be com-
pensated via elevation adjustment of the crustal columns (removal of dynamic topography)
such that after the adjustment, the pressure at the referencerlevslconstant. Hence,
this method deals with the additional step of compensating the Crust 2.0 model.

Although the second method is a more self-consistent way of treating the radial com-
ponent of the mantle flow field, there are other problems involved in this methodology.
First, the compensation of the crustal model is likely to introduce errors. For complete self-
consistency, the dynamic topography predicted by the convection model should be identical
to the dynamic topography computed through compensation of the Crust 2.0 model via el-
evation adjustment. This is difficult to achieve, mainly because of differences in resolution
between the convection and the Crust 2.0 models. Moreover, the radial tractions are found
to be insensitive to the changes in convection models. That is, while the tangential tractions

and the associated deviatoric stresses are very sensitive to the different viscosity structures,
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the radial tractions do not vary much, irrespective of the viscosity model used. Hence, in
the investigation of a best-fitting viscosity model, incorporation of the radial tractions via
the second method does not add a significant constraint. Although we have tried both meth-
ods, we prefer the first method, in which the contribution of radial tractions is assumed to
be embedded in the total depth integrabgf, from surface topography to reference level,

r_. In this paper, therefore, we will only present results that are obtained by using the first

method.

5.3 GPE Differences

We calculate the depth integral of, down to a constant reference level, in order
to calculate GPE. Based on these GPE differences, the deviatoric stress field is calculated
through optimization of equation (20) (Figure 1). We compare the style and direction of
our modeled stresses with strain rate tensor information from GSRM along the Earth’s
deforming plate boundary zones. A correlation coefficient is defined, whose value lies
between -1 and +1. A higher value indicates a better match between our modeled deviatoric
stresses and the deformation indicators. The method of this quantitative comparison is
explained in detail ifFlesch et al(2007) andShosh et al(2008). The moment tensor data
from Harvard CMT catalogue (1976-2007) is also used as an additional constraint. This
dataset is based on more than 13,000 events occurring between 0-30 km depth, and we
perform a Kostrov?) moment tensor summation so that comparisons between the seismic
strain tensors and the deviatoric strain tensors can be made.

We use the Crust 2.0 dataset to calculate GPE. We take the referencelgvetqua-
tion (7) as 100 km below the sea level. A fixed mantle density of R§0®® is assumed
from the crustal base to the depth We do not take into account density variations due
to continental roots below old cratons as part of the lithosphere model; they are instead
included as part of the convection model. The cooling plate model based on ocean floor
age dataNiluller et al., 1997) with revised parameters frdatein and Stei(1992) is used
to define densities for oceanic regions. The Crust 2.0 model is not compensated (unequal

pressure at the reference leve), and we assume the depth integrals ofogf down to

114



Figure 1:Global distribution of vertically integrated horizontal deviatoric stresses and GPE (on scalebar) calculated from the uncompensated Crust
2.0 data. Tensional deviatoric stresses are shown by red arrows while compressional deviatoric stresses are shown by black arrows. Lengtfof the

arrows are proportional to the magnitude of vertically integrated stresses. Strike-slip regions are indicated by one tensional and one compreSsional
pair of arrows. High GPE areas are in deviatoric tension while low GPE ares are in deviatoric compression.



-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160 N/m
N R R —

g0 JETFEE T L re s 2 e e e e T 1.6e+14
b N R R e T e T R . A N : e | 1.58e+14
\\\M\ ” www A - 1.56e+14

- 1.54e+14

QL
%
e

5
¥

- 1.52e+14

R .

s @

N TR

-

NS

L S S IR IR
2
&

X
XX

®

i

@ @ e o \
B e

-9»8.*«

fedoe @ vy

\vg/jx\
R
NSRS -
8+ & 9
t
X
\’;30‘
% 8 8 &
o
—t
N+
~,

*
S
8
=

- 1.5e+14

7N X XX

=X | & o % F5R

Rl
S efmfis
2

&
=

N

% 2o N\NX

- F

- 1.48e+14

- 1.46e+14

RSX
r’*g%z’i\ﬂk X
®
N X
¢ o ¢ F
e § @
0o
D6
.
K-+
£ 7
X
-
(9
s @ 6 3

&
S

- 1l.44e+14

ivs e =28 =

S (o XY

1.42e+14

116



-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160
| | | | | | | | | |

| |

f T T T T T T T T T T T T T T T T T T T 1
-1.0-09-08-0.7-0.6-05-04-03-0.2-01 00 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0
-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 16

! !

) -1‘.0 -6.9 -6.8 -6.7 -6.6 -6.5 -6.4 -6.3 -6.2 -d.l 0.‘0 0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.‘6 0.‘7 0.‘8 0.‘9 110
Figure 2: Correlation coefficients between deviatoric stress tensors arising from GPE differences
from the Crust 2.0 model and a) observed strain rate tensors from the Global Strain Rate Map and

b) moment tensor data from Harvard CMT catalogue.

reference level, already contain the contribution from the radial tractions responsible for
dynamic topography. The deviatoric stress field from GPE differences shows deviatoric
tension in areas such as Andes, western North America, eastern Africa, Tibetan plateau,
and the mid-oceanic ridges, whereas older oceanic areas and majority of the continents
show low GPE and deviatoric compression (Figure 1). The Tibetan plateau shows large
N-S deviatoric tension~ 3 x 1012 N/m), associated with large GPE contrasts with the
surrounding regions. We will later show that this N-S component of deviatoric tension is

cancelled out by a compressive stress associated with basal tractions, generated by large
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scale density buoyancy-driven mantle circulation.

The comparison of the deviatoric stress field associated with GPE differences with
strain rate tensor data in GSRM shows good fitting in mid-oceanic ridges and a moderate fit
in Indo-Australian plate boundary zone and Southeast Asia (Figure 2a, Table 2). However,
areas of continental deformation exhibit a poor fit with the deformation indicators. Con-
sidering all the areas together, the overall correlation coefficient for the GPE distribution
is 0.54. For the moment tensor data, a smoothing kernel is applied to the strain rates, in
which smoothing over one grid radius is applied. For this data set, parts of Asia, Australia,
as well as Africa show a high correlation (Figure 2b). Comparison with Figure 2a shows
that in some areas, the correlation is high for the strain rate data, but poor for the moment
tensor data. This is particularly true for some areas of the mid-oceanic ridges. This arises
mainly because of the dominance of some big strike-slip type earthquakes at the transform
fault boundaries connecting ridge segments, and a relative paucity of moment release in
normal fault earthquakes along the ridges themselves. The GSRM tensor field, on the other
hand, possesses a dominant signal associated with the spreading process at the mid-oceanic
ridges, in agreement with the dominant tension at the mid-oceanic ridges associated with
GPE differences (Figure 2a).

5.4 Mantle Buoyancies
5.4.1 Lateral Viscosity Variations

The convection model is based on the model\Vdgn and Andersofil997b). In a
previous paper, we have discussed the sensitivity of different radially symmetric viscosity
models in influencing the lithospheric stress fiehpsh et al. 2008). Since one of the
goals of the present paper is to predict plate motions as well, and since lateral viscosity
variations are necessary to generate plate motions, we restrict our discussion to models of
laterally variable viscosity structures only.

We introduce lateral viscosity variations in our convection model on the basis of the ma-
jor geological features (Figures 3-6). The continent-ocean divide has already been argued

to be a major cause of viscosity differences within the lithospherd/ey and Anderson
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(1997b). The cold roots of continental cratons are also thought to be one of the principal
causes of lateral viscosity variations in the shallow mantle. These high seismic velocity
areas, seen in seismic tomography images, have been attributed to a chemically different
composition, having a much higher viscosity than the surrounding mantle at the same depth
(Jordan 1978, 1988Rudnick and Nybladel999). Age differences in the oceanic litho-
sphere can also be a major factor in giving rise to lateral viscosity differences. As the
thickness of the oceanic lithosphere varies with age, the mantle close to the ridges can be
expected to be weaker than that under old oceans. We consider these first order features to
introduce lateral viscosity variations in both the lithosphere and the asthenosphere of the
convection models.

The lower mantle is assigned a viscosity 10 times higher than the upper mantle and the
lateral changes in viscosity are confined within the top 400 km. The viscosity changes due
to the ocean-continent divide, as well as due to strength differences between old and young
oceans, are confined within the lithosphere (top 100 km), whereas the viscosity changes
arising due to cratonic keels are extended to depths below 100 km. Within each category,
we test different lateral viscosity contrasts (from 1 to 100). Finally, these three categories
are combined in order to yield mixed viscosity structures.

For each viscosity structure, we generate plate motions and compare them with present-
day plate motions. The toroidal/poloidal velocity ratio is also computed and based on the
match with the deformation indicators and plate motions, we delineate a range of viscosity
models that satisfy both these constraints.

In order to obtain the deviatoric stress field associated with mantle convection, we cal-
culate the tangential tractions for each viscosity model, which are used as a boundary con-
dition at the reference level beneath a lithosphere model of much higher resolution. This
deviatoric stress field from tangential tractions is then added to the deviatoric stresses from
lateral variations in depth integrals @f; in the uncompensated crustal model to obtain the
total lithospheric deviatoric stress field. This total deviatoric stress field is then compared
with the velocity gradient tensor field from GSRM. Viscosity models yielding a correlation
coefficient of 0.65 and above are considered as yielding a good fit to the strain rate tensors.

The moment tensor data set is used as an additional constraint.
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5.4.2 Generation of Toroidal Flow

As mentioned earlier, the convective flow of the Earth has a toroidal component in addi-
tion to a poloidal one, which is responsible for the strike-slip motion along transform fault
boundaries. The generation of this toroidal motion is, however, somewhat enigmatic. An
incompressible Boussinesq fluid can only give rise to a toroidal flow field in presence of
lateral viscosity variations. Moreover, it has been showrdager and O’Connel(1979)
that there occurs an equipartitioning of the Earth’s poloidal and toroidal energy at each
degree of spherical harmonic expansion. Toroidal flow cannot arise in 2-D models of man-
tle convection and hence only 3-D models of mantle convection can attempt to generate
toroidal flow.

In the past, a number of studies have attempted to generate toroidal motions in 3-D
models of mantle convectioRicard and Vigny1989) created toroidal flow in their carte-
sian model by imposing plate geometries as well as by determining plate motions through
a torque balance metho@able et al(1991) also generated toroidal motion by imposing a
hybrid stress and velocity boundary conditions in their models of spherical geometry. Both
the above studies ignored lateral viscosity variations. The first study to generate toroidal
flow in a dynamically self-consistent way was @ristensen and Hardegf1991). How-
ever, because of small lateral viscosity variations in their model, they were able to generate
only a very small percentage of the observed toroidal veloRitye(1992) included lateral
viscosity variations in the lithosphere of his thin viscous shell and was able to give rise
to a substantial toroidal flow fieldBercovici(1995), on the other hand, employed spe-
cial rheology in order to generate sufficient toroidal flathang and Christensef1993)
used a temperature dependent Newtonian viscosity model, as well as strain-rate dependent
non-Newtonian model, to generate toroidal motion in a dynamically self-consistent way.
However, they failed to achieve the required toroidal/poloidal partitioning raten and
Anderson(1997b) generated toroidal motion self-consistently in their convection model
by taking into account lateral viscosity variations in the lithosphere between continents
and oceans. They found that a relative lateral viscosity difference of a factor of 30, along

with a weak asthenosphere, were able to generate a flow field that matched the observed
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toroidal/poloidal ratio as well as the observed plate motions. They concluded that it was
the viscosity difference between oceans and continents, and not that between weak plate
boundaries and plates, that controls plate motions. In the following section, we discuss the
various types of viscosity structures and we explore which models yield a good match to

both the plate motion and deformation indicator data.

5.5 The Viscosity Models
5.5.1 Old oceans

The ocean floor age data bfiller et al. (1997) is used to introduce lateral viscosity
variations in the lithosphere (Figure 3); oceans older than 70 my are assigned higher vis-
cosities than younger oceans. The thickness and viscosity of the asthenosphere is varied
from 100 km to 300 km and from 1®Pa-s to 18! Pa-s. The old oceanic lithosphere is as-
signed viscosities between 00?1 Pa-s and 2% 10?1 Pa-s (green areas in Figure 3). The
white regions in Figure 3 are assigned a constant viscosity 0fR&-s. For this category
of models, all the viscosity structures tested yield a very poor match to the plate motions,
especially because of their inability to generate sufficient toroidal motion. The predicted
deviatoric stresses also fail to match the deformation indicators. That is, the global correla-
tion coefficient between the predicted combined deviatoric stress tensors and the strain rate

tensors from GSRM is much lower than 0.65 for all models tested.

5.5.2 Continental Keels

We use the keel model &/en and Andersofl997a) (henceforth called as keel model
A, Figure 4a) and a modified lithosphere thickness model fl@omrad and Lithgow-
Bertelloni(2006) (henceforth called as keel model B, Figure 4b) to introduce strong keels
within the continents. The lithosphere thickness modelofirad and Lithgow-Bertelloni
(2006) shows very thick lithosphere below the Tibetan plateau, which is likely to be an
artifact of the seismic model use@(ng et al, 2003) to calculate the lithosphere thickness
and is absent in local tomographic studies of the arkaa(ig and Zhap2006). We have,

therefore, removed the cratonic root beneath Tibet and have assigned a normal thickness
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Figure 3:Distribution of old ocean floors. The green areas are more than 70 miviélte( et al.,

1997) and are assigned higher viscosities. The white regions are assigned a constant viscosity of
107! Pa-s.

(100 km) to the lithosphere there (Figure 4b). We vary the viscosity of the keels fréin 10
Pa-s to 18° Pa-s. Hence, in Figure 4a, the cratonic areas (blue) are assigned higher vis-
cosities compared to the rest of the Earth (white areas in map), which are given a constant
viscosity of 161 Pa-s. In Figure 4b, the areas with thickness greater than 150 km are as-
signed higher viscosities compared to the rest of the areas. We test models where the keels
are just confined to the top 100 km of the lithosphere, as well as models in which the keels
extend to deeper depths (between 200-400 km depth). That is, we introduce lateral vis-
cosity variations in both the lithosphere and within asthenosphere equivalent depths. The
asthenosphere viscosity is varied fromd@a-s to 18! Pa-s and its thickness from 100

km to 300 km.

When the keels are confined to the lithosphere, they fail to match both the deformation
indicators and the plate motion data. Some of the viscosity structures where the keels
extend below 100 km do a moderate job of of fitting plate motions. However, when the
deviatoric stresses from these models are compared to the deformation indicators, they fail,
yielding correlations with GSRM of far less than 0.65. Therefore, none of the keel models
described are able to match the constraints of lithospheric stress field and plate motions

simultaneously. The results for both the keel models A and B are found to be very similar.
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Figure 4:a) Distribution of cratonic areas based on keel model A. The blue regions are assigned
higher viscosities than the surrounding white regions, which are given a constant viscosity value of
10?1 Pa-s. b) Lithosphere thickness model modified fréonrad and Lithgow-Bertellonj2006).

Areas greater than 150 km thickness are assigned higher viscosities.

5.5.3 High viscosity continents

We then consider the influence of the higher viscosity continents with respect to the
oceans on the lithospheric stress field and plate motions. The continents are assigned dif-
ferent viscosity contrasts, from 10 to 100 (2A00x 10?1 Pa-s) while the entire oceanic
lithosphere is assigned a uniform viscosity value ef30 x 10°! Pa-s. The asthenosphere
viscosity is also varied from #8to 10?1 Pa-s and its thickness varied from 100-300 km.

A strong asthenosphere (of viscosity?3®a-s) or no asthenosphere (of viscosit§10

Pa-s) viscosity model fails to yield stresses that can match the deformation indicators.
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These models are also unable to match plate motions. The same is true for an astheno-
sphere with smaller thickness 300 km). Amongst those models with a sufficiently thick
asthenosphere(300 km) with viscosity 18° Pa-s, models with moderate to high lateral
viscosity variations (18- 100x 10°! Pa-s) in the lithosphere, due to higher viscosity con-
tinents, are able to generate deviatoric stresses, which when combined with the deviatoric
stress field from GPE differences, match deformation indicators (models 1-5 in Table 1).
These viscosity models are also able to match plate motions, achieving an almost equiparti-
tioning of the toroidal/poloidal velocity ratio. However, as the viscosity difference between
the continents and the oceans is increased, the fit to the deformation indicators improves
slightly (from 0.66 to 0.68), but the toroidal/poloidal velocity ratio (T/P) for degrees 4 and 5
are over-predicted (models 2-5), indicating that the models are predicting too much toroidal

motion.

5.5.4 Combined models

Various paired combinations of the above viscosity structures are tested against the
constraints of strain rate tensor information, plate motions and toroidal/poloidal velocity
ratio. We first test models with lateral variations due to continent-ocean divide combined
with lateral variations due to old oceans (Figure 5a). The continents (red) and the old
oceans (green) are made stronger{1M0x 10?1 Pa-s) compared to the rest of the Earth
(white). The asthenospheric viscosity and thickness are varied as before, ffom 1!

Pa-s, and from 100-300 km respectively.

For the above case, models with sufficient viscosity contrasts (models 6-9 in Table
1) yield a good match to the observed plate motions, as well as to the strain rate tensor
information. However, the match to the toroidal velocity pattern is not as good as those
with only strong continents (models 1-5). Amongst models 6-9, model 7, with very strong
continental lithosphere and moderately strong old oceanic lithosphere, gives the closest
match to the toroidal velocity pattern. It also yields a good fit to the strain rate tensor
information (0.68).

Next, models with lateral strength variations due to continental regions and cratonic

keels (Figure 5b) are considered. In this case, again, the colored regions (red and blue) are
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Figure 5:Distribution of a) old ocean floors (green), and continents (red), b) cratonic areas (blue)
and continents (red). Higher viscosities are assigned to the blue, green and red areas, whereas the
white areas are given a constant viscosity df.10a-s.

assigned higher viscosities (20100x 10%! Pa-s) compared to the white regions. These
white areas are given a constant viscosity value ét Ba-s. The continental keels are also
allowed to go deeper, which means that there are lateral viscosity variations in the depth
range of 200-400 km. The viscosity of the remaining non-keel parts of the asthenosphere
is allowed to vary between 3®— 10?1 Pa-s. The asthenosphere thickness is also varied
between 100 and 300 km.

Viscosity structures caused by a combination of higher viscosity continental lithosphere
and high viscosity continental keels yield a good match with the divergence and vorticity

patterns and also generate sufficient toroidal velocity, as long as the lateral variations are
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Figure 6:a) Distribution of old ocean floors (green) and cratonic areas having a very thick litho-
sphere (blue). b) Viscosity structures combining all three factors of lateral strength variations. Red
areas are the continental regions, blue are cratons, whereas green indicate old oceanic lithosphere.

confined to the top 100 km and there exist strong lateral variations in the top 100 km
of the lithosphere (models 10-14 in Table 1). The most favorable model in this group is
model 11, in which the lateral variations are caused by high viscosity continents and higher
viscosity cratonic keels (keel model B). This viscosity structure yields a good match with
the deformation indicators (0.67) in addition to matching the poloidal and toroidal pattern,
as well as generating sufficient toroidal velocity. Note, however, that models with high
viscosities for the keels (12-14) predict too much toroidal motion for degrees 4 and 5.
Next, the keel models are combined with old oceanic lithosphere (Figure 6a). Cratonic

areas (blue) and old oceans (green) are given higher viscosity values compared to the white
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regions in the map, which are assigned a constant value?sfPds. We test models with

both uniform asthenosphere (when cratons are confined to the top 100 km) and laterally
variable asthenosphere (when cratonic roots are allowed to go deeper, between 200 and
400 km depths). The viscosity and the thickness of the asthenosphere are varied as before.

Keel model A, combined with old ocean model, is able to match both plate motions
and stress indicators only when there exists a very strong lateral variation in the top 100
km of the lithosphere on top of a weak and thick asthenosphere (model 17 in Table 1).
Keel model B, on the other hand, does not require such strong lateral variations in order
to yield a good fit to the strain rate tensor information and plate motions (models 15 and
16 in Table 1). The asthenosphere needs to be wedR Pis) and thick~ 300 km) in
both keel cases. Within this particular group, model 16 does the best job in matching the
constraints, although its degree 4 toroidal/poloidal ratio (T/P) is somewhat low.

Finally, all the three features including ocean-continent divide, young-old oceans, and
cratonic keels are considered simultaneously (Figure 6b). The colored areas are assigned
higher viscosities as compared to the white regions in the map. Red areas are the continental
regions, whereas blue areas are cratonic regions. The old oceanic floor is indicated by
green. Once again, the viscosities in each of these regions are varied froffl0DX 10%!

Pa-s, with the cratonic areas being assigned the highest strength. White regions in the map
have a constant viscosity of 40Pa-s. Both uniform asthenosphere10 10?1 Pa-s) and
laterally variable asthenosphere are considered, with its thickness varying from 100-300
km.

Structures 18-20 in Table 1 are able to satisfy the observational constraints. These
models incorporate lateral strength variations only in the top 100 km of the lithosphere due
to these major geological features. The asthenosphere for these successful models, once
more, is uniformly weak (1 Pa-s) and thick- 300 km). Amongst all these models,
model 19 is the most favorable, with a fit of 0.68 to the stress indicators and an almost
equipartitioning of the toroidal/poloidal velocity ratio for degree 3 and above. The match
to the divergence and vorticity pattern is also good for model 19. Structures with lateral vis-
cosity variations below 100 km depth fail to match the constraints; the fit of the deviatoric

stress tensor field to the strain rate tensor field fails when a laterally variable asthenosphere
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Table 1:Results from our successful viscosity models (1-20) and two unsuccessful models (21 and 22). The three columns under Viscosity denote
the depth of occurrence of lateral viscosity variations (between 0-400 km). k, o, ¢ and lith stand for continental keels (k), old oceanic lithosphere (0),
normal continental lithosphere (c) and normal oceanic lithosphere (lith). The reference viscostyRa&0 Hence, a value of 10 would mean an

absolute viscosity of 18 10?1 Pa-s. A value of 0 would mean no viscosity variation due to that particular feature. The letter B following some of

the viscosity values under keels indicate that the keel model B is used. The two columns next to Viscosity indicate correlation coefficients beffeen
strain rate tensor field from GSRM and predicted deviatoric stress fields from tractions and combined GPE plus tractions. The P/P and T/P<Under
Plate motions denote the correlation coefficients between the predicted and observed patterns of divergence and vorticity, respectively. T/P denotes
the ratio of the magnitudes of the toroidal and poloidal velocities. The numbers 2-6 indicate spherical harmonic degrees. For example, the first row
denotes that the lateral viscosity variations in the top 100 km is only due to the presence of higher viscosity continents. From below 100 km up to
400 km, there is no lateral variation in viscosity, but a weak asthenosphere of strehyfrai€



Viscosity Corr. Corr. Plate motions
Model 0-100 100-200200-400(trac- (GPE + P/P TIT T/P
k o c lithhk asth k asth|(ions)tractong)2 3 4 5 6|2 3 4 5 6|2 3 4 5 6
1 0O O 10 1(0 0.01j0 0.010.60 0.66 |0.780.44 0.41 0.31 -0.1M56 0.21 0.260.280.5m210.420.82 1.2 0.69
2 O O 30 1/0 0.01j0 0.010.58 0.66 |0.800.43 0.11 0.09 -0.0@69 0.49 0.370.360.55310.701.371.800.80
3 O O 70 1/0 0.01j0 0.010.58 0.67 |0.810.40-0.14-0.06-0.(m72 0.63 0.420.400.58400.921.641.890.88
4 0O O 100 1/0 0.01j0 0.010.59 0.68 |0.800.38-0.23-0.12-0.(@71 0.67 0.440.410.5844 1.0 1.7 1.9 0.90
5 0O O 100100 0.01j0 0.0110.61 0.68 |0.800.46 0.11 0.12 -0.1M62 0.34 0.350.290.48320.521.131.630.76
6 0O 10 30 1/0 0.03j0 0.0110.61 0.68 |0.820.51 0.43 0.45 -0.Z257 0.04 0.420.570.71.360.450.96 1.07 0.68
7 0 10 100 1/0 0.01j0 0.010.60 0.68 |0.820.47 0.22 0.25 -0.2859 0.33 0.420.550.8W440.671.221.180.74
8 0O 30 30 1/0 0.01j0 0.0110.61 0.68 |0.830.55 0.47 0.54 -0.2m50-0.110.450.620.7B400.480.84 0.850.67
9 0 100 10 1/0 0.01j0 0.010.61 0.66 |0.840.61 0.60 0.67 -0.XB53 0.11 0.530.690.1®300.560.700.550.76
10 {30 O 10 1/0 0.01/0 0.01j0.60 0.67 |0.790.47 0.39 0.23 0.02.61 0.30 0.280.260.51250.561.031.290.72
11 (30B 0 10 1|0 0.01/0 0.01j0.60 0.67 |0.800.450.28 0.20 0/0.60 0.46 0.420.330.11210.701.081.670.7Y8
12 | 70 0 30 1|0 0.01/0 0.010.58 0.66 |0.800.46 0.08 0.04 0/0.72 0.53 0.340.380.4r330.781.531.680.78
13 {100 O 30 1|0 0.01/0 0.01)0.58 0.66 |0.800.46 0.06 0.04 0.00.73 0.53 0.340.370.60340.82 1.6 1.680.80
14 (100B 0 30 1|0 0.01/0 0.010.60 0.66 |0.820.450.01 0.02 -0.(172 0.62 0.490.420.62281.021.531.960.91
15 (30B 10 O 1|0 0.01/0 0.01j0.62 0.66 |0.790.39 0.40 0.39 0.26.67 0.43 0.200.350.(08130.730.460.841.04
16 [(30B 30 O 1|0 0.01/0 0.010.62 0.68 |0.810.44 0.40 0.51 0.20.75 0.33 0.220.570.181160.950.450.811.05
17 {100 100 O 1j0 0.01/0 0.01/0.56 0.67 |0.860.66 0.61 0.66 0.08.27 0.50 0.310.520.52420.510.610.55 1,0
18 | 30 10 10 1|0 0.01/0 0.01j0.60 0.67 |0.820.54 0.55 0.57 -0.AM57 0.05 0.410.550.¢1290.380.730.790.66
19 {100 10 30 1j0 0.01/0 0.01j0.60 0.68 |0.830.53 0.40 0.40 -0.¥%®59 0.15 0.400.560.121380.571.061.110.71
20 | 100 30 30 1/0 0.01j0 0.01/0.60 0.68 |0.830.56 0.44 0.51 -0.1B®50 0 0.420.610.78.440.560.910.890.71
21 | 100 30 30 110 0.040 0.01/0.09 0.54 |0.820.53 0.37 0.35-0.X¥64 0.18 0.390.540.11.390.581.081.110.74
22 | 1 1 30 1/100.0110 0.01-0.46 0.26 |0.820.45 0.03 0.07 -0.1%174 0.52 0.260.320.456350.781.301.680.92
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Figure 7: Global distribution of horizontal body forces at the reference levgll00 km depth)

based on a convection model with laterally variable viscosity structure in the lithosphere and a
weak asthenosphere (with viscosity of'@Pa-s) (model 19 in Table 1). These effective body
forces are exerted on the lithosphere from below and are equivalent to the negative of tractions,
Trg, Tre (€Quations (12) and (13)), as defined in our coordinate system.

is considered, yielding correlation coefficients close to 0, or sometimes even negative.

5.6 Deviatoric Stress Field and Plate Motions from the
Successful Models

All the models that yield a good fit to both the constraints of plate motions and deforma-
tion indicators display a similarity in the long-wavelength pattern of body force equivalents,
which are the negative of the tractionst(y , —Tgr, €quations (12) and (13)) (Figure 7), and
are applied to the base of the thin sheet at 100 km. The tractions are associated with the
density buoyancy-driven mantle convection. These models show greater flow velocities at
depth compared to the reference leye areas of downwelling flow, such as central Asia,
southeast Asian subduction zone, South America, and eastern North America. The same
depth dependence of flow velocity magnitudes applies to upwelling regions, such as East
Africa and the Pacific. The flow velocity directions at greater depth will be in the direc-
tion of the effective body forces<ty, —1gr) shown in Figure 7. The traction magnitudes
range from - 2.5 MPa. The downwelling flow is caused by deeper density buoyancies of

old subducted lithosphere. Similarity in the magnitude and distribution of the body force
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Figure 8:Global distribution of vertically integrated horizontal deviatoric stresses from mantle buoyancies based on body forces in Figure 7 fbm
model 19 (Table 1). Note the compressive deviatoric stresses in areas of convergence and the tensional deviatoric stresses in areas of divergehce.
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Figure 9:Global distribution of vertically integrated horizontal deviatoric stresses from both GPE differences (Figure 1) and basal tractions (Figire
8). —
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equivalents for all successful models also means similarity in the resultant deviatoric stress
pattern (Figure 8). The poloidal and toroidal velocities for the successful models also bear
much similarity with each other. Hence, here we present the results of one of our success-
ful models (model 19 in Table 1). The combined stress field (from GPE differences and
basal tractions) (Figure 9), as well as the correlation coefficients with the strain rate tensor
information (Figure 10a, Table 2), are also shown for this particular model. The viscosity
model that generates the tangential tractions and plate motion predictions combines all the
three features of continent-ocean divide, continental cratons, and old vs. young oceanic
lithosphere (model 19 in Table 1, Figure 6b).

Figure 7 shows strong convective downwelling (convergence) occurring in areas such as
central Asia, southeast Asian subduction zone, Andes, and eastern North America. Strong
upwelling (divergence) is seen in eastern Africa and mild upwelling in the Pacific, in accor-
dance with the low seismic velocity zones in those areas. The mid-oceanic ridges also show
mild upwelling beneath them. The deviatoric stress field from these tangential tractions
exhibit deviatoric compression in areas of convergence and deviatoric tension in areas of
divergence (Figure 8). The stress magnitudes from tractions, which range frénx 1012
N/m (Figure 8), are comparable to those from lithospheric GPE differences (Figure 1). The
total depth integrated deviatoric stress field (Figure 9), which is the combined deviatoric
stress field from lithospheric GPE differences (Figure 1) and mantle convection (Figure
8), shows significant changes from both Figures 1 and 8. The magnitudes of total depth
integrated deviatoric stresses range from&x 102 N/m (Figure 9) for most areas, which
are consistent with deviatoric stress magnitudes obtaineRlidlyardson(1992). Also, it
should be mentioned that the deviatoric stress magnitudes do not depend on absolute vis-
cosity values, but are only dependent on relative viscosity variations. This is true for both
the lithosphere model and for the convection model. The deviatoric stresses from basal
tractions are dependent on the magnitudes of the tractions (Figure 7), which in addition to
being dependent on the density model, are a function of the relative viscosity distribution.
Likewise, the magnitudes of deviatoric stress from lithospheric GPE differences (Figure 1)
is dependent on present-day topography, crustal structure, crustal and mantle densities used

for those structures, and the relative viscosity variations for lithosphere, not the absolute
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values of viscosity for the lithosphere.

There occurs large deviatoric tension in Eastern Africa, while the tension in the vicinity
of the Andes largely vanishes for the total field. Deviatoric compression in the northern part
of the North American continent is replaced by strike-slip style of deformation, whereas in
the southern part of North America the style is deviatoric compression. The boundary zone
between the Indian and Australian plates shows more deviatoric tension on the western
side of the plate boundary zone, with dominant compression mixed with strike-slip on
the east. A major change takes place in the Tibetan plateau, where the dominantly N-S
deviatoric tension from GPE differences is replaced by strike-slip type of deformation, as
per observations.

Comparison of the deviatoric stress tensor from the combined influence of lithospheric
GPE and mantle circulation (Figure 9) with the strain rate tensors in the plate boundary
zones (GSRM) shows an improvement in fitting in most of the areas, especially in areas of
continental deformation (Table 2, Figure 10a). Andes and Africa show a dramatic improve-
ment in fitting. Some areas, such as the mid-oceanic ridges and the Mediterranean undergo
moderate to slight improvement. Comparison with the moment tensor data also show sig-
nificant improvement in Andes, eastern Africa, central Asia, and the Indo-Australian plate
boundary region (Figure 10b). The fit, however, degrades in areas such as Baikal in Asia,
New Zealand, Hawaii (for the moment tensor data) and also in a few areas of the mid-
oceanic ridges (south of Africa). The overall fit for the combined case is 0.68 for model 19
(Tables 1 and 2) as opposed to a much lower 0.54 from GPE differences only (Table 2).

The above results show the importance of density buoyancy-driven basal tractions in
explaining the deformation in the Earth’s plate boundary zones. Addition of basal tractions
marks a substantial improvement in fitting, especially in areas of continental deformation.
Tractions, coupled to the base of the plates are generated by mantle flow induced by current
and past subducted lithosphere in the areas such as the Indian plate, North America, and
Andes.

We do a qualitative comparison between the most compressive principal axes direction
of our predicted deviatoric stresses from our best fitting combined model and the orientation

of the horizontal most compressive principal axes from the stresses in the World Stress
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Figure 10:Correlation coefficients between deviatoric stress tensors arising from combined GPE
differences and basal tractions (Figure 9) and a) observed strain rate tensors from the Global Strain
Rate Map and b) moment tensor data from Harvard CMT catalogue.

Map (WSM) Zoback 1992;Reinecker et al.2005). WSM is a compilation of measured
principal stress directions based on earthquake focal mechanisms, borehole breakout data
and Quarternary fault slip directions. We use the WSM data interpolated on a grid used by
Lithgow-Bertelloni and Guyn(2004) (Figure 11a). This interpolated dataset is compared
with the most compressive principal axes of deviatoric stress from GPE differences (Figure
11b) and from GPE differences and tractions (from model 19) combined (Figure 11c).

A qualitative comparison shows large swathes of regions which demonstrate an excellent

match. That is, in those areas, the difference in most compressive principal axes directions
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Figure 11:Most compressive principal axes orientation of the deviatoric stresses from a) the World Stress Map interpdliteivyBertelloni o
and Guynn(2004), b) GPE differences and c) combined GPE differences and tractions from model 19. Red indicates normal faulting, blue indi€ates
thrust faulting and green indicates strike-slip regime.
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between our predicted stresses and those from WSM is less tRaifliése areas are the
entire North and Central America, mid-Atlantic ridge, parts of central Africa, westernmost
part of Europe, Mediterranean, Caspian Sea region, eastern Asia, India, as well as the
Indo-Australian boundary zone and the southeast Indian ridge. The above fit is true for
both the combined case (Figure 11c) and the case with GPE differences only (Figure 11b).
Areas that yield a moderate fit (most compressive principal axes directions varying between
20° — 30°) are the southwest and central Indian ridges and southeast Asia. Central Australia
yields a poor fit (most compressive principal axes directions varying between BIF)
for both cases. In some of the regions, the fit improves for the combined case compared
to the GPE case, such as Andes, central America, parts of eastern and southern Africa,
and the southern part of the East Pacific Rise. A few areas such as central Pacific, part of
southwest Indian ridge below Africa, central Europe, however, fare better for the GPE case
as compared to the combined case. The above comparison is based only on the principal
axes directions and not on their styles. In general, the misfit between our predicted most
compressive principal axes and those in WSM do not vary largely between the two cases
(deviatoric stresses from GPE differences and combined deviatoric stresses). This is where
the GSRM can yield valuable information, since, while comparing to GSRM, we consider
the full stress and strain rate tensors instead of only the most compressive principal axes.
The surface plate velocities from model 19 are presented here in terms of divergence
(Figure 12c) and vorticity (Figure 12d). When compared with the observed divergence and
vorticity on Earth (Figure 12a,b), they appear similar on a large scale. The main differences
occur in the positions of the most prominent highs and lows, especially for the poloidal
case. The zone of high divergence to the southwest of North America is displaced towards
the west, instead of occurring exactly over the mid-oceanic ridges. The low divergence
zone observed along the Southeast Asian subduction region is centered slightly to the north
of the main subduction area. In the case of vorticity, as well, there occurs some differences
between the observed and the predicted velocities. We are over-predicting the left-lateral
shear to the south of India and under-predicting the right lateral shear in western North
America. Moreover, there are some extra centers of left-lateral shear occurring at the far

south, which are absent in the observed vorticity map.
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Figure 12: Observed (a and b) and predicted (c and d) divergence (top) and vorticity (bottom).
The predicted result is from one of our successful models (model 19 in Table 1) that also produces
deviatoric stresses, which yield a high correlation with the GSRM model (Table 2, Figure 10).
Contour interval is 5 10~° rad/yr.

Region of interest [Number of areas GPE |[Combined GPE Diﬁerenc}es
Differences plus Basal Tractions
Western North Ameriga 132 0.53 0.63
Andes 89 0.24 0.79
Eastern Africa 164 0.32 0.70
Mediterranean 83 0.55 0.57
Central Asia 187 0.33 0.52
Indo-Australian 174 0.69 0.75
plate boundary zong

Mid-oceanic ridges 292 0.80 0.86
Western Pacific 109 0.51 0.62
South East Asia 167 0.61 0.65
Total 1944 0.54 0.68

Table 2:Correlation coefficients obtained from a comparison between the deviatoric stress tensors
from one of our successful models (model 19 in Table 1) and strain rate tensors from the GSRM
model.

143



-180 -160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160
n L

n L | n L n L n | n L n L n L n L n L n L n | n
LELZL T VS KSSNSINNANANYNYY VYV PP PP PF

L | L
R ERREREEX) Ll
80 <~ >=>ranx \H ZAAENEES = e e NN T srLL 2
- SRR AR A b it
Bt 2 NN SR NN 3
60 v “u EE
A by, J- P "y p A TSN
-+ (AR ! Q
" CRENEY
4 ) ewed
|- A e

4445
.

- < v A N4>

Ao . aa P e
7//“~—___ % >
=77 W2\ 277777 N2 L
’7/ﬂ, u‘“\--,/////un\\“- e =

Rawr s ~- s> ewwwr 2,
.60 NOPRREE S ¥ I RS N NN RS
60 SRR YIS S

I R R R R R R R R R R R e atatatal e u rP P I

Figure 13:Same as Figure 7, but for model 21.
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Figure 14:Same as Figure 8, but for model 21.
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Figure 15:Same as Figure 9, but for model 21.
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Figure 16:Same as Figure 7, but for model 22.

We would also like to discuss the combined lateral viscosity models where only the
keels are allowed to reach depths of 200 km with a 200 km thick asthenosphere below
them. The areas outside the cratonic regions are underlain by an asthenosphere that is 300
km thick. The effective body forces (Figure 13) from one such case (model 21) shows a
very different pattern compared to the successful models. The magnitudes of these effective
body forces are also smaller. The resultant deviatoric stresses from this model (Figure
14) also exhibits a completely different style and reduced magnitudes. This arises due

to the fact that lateral viscosity variations below 100 km induces a flow pattern in which
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the lithosphere in some regions leads the mantle, as opposed to the mantle leading the
lithosphere for the successful models. These stresses combined with the deviatoric stresses
from GPE differences only show the dominant effect of the latter (Figure 15). The fit to the
strain rates from GSRM is poor (Table 1, model 21).

We also test a viscosity structure in which we consider only the ocean-continent divide
in the top 100 km with the keels reaching a depth of 400 km (model 22 in Table 1). In areas
where there are no keels, the asthenosphere is 300 km thick and is assigned a viscosity of
109 Pa-s. We only show the traction field (Figure 16) for that model. The pattern is exactly
opposite to that from our successful models with the lithosphere leading the flow in areas of
high density anomalies. The fit to the GSRM is even worse than model 21. The results for
this model are shown in Table 1 (model 22). Clearly an asthenosphere is needed beneath
the keels, and the best match to stress occurs where the keels have no presence below 100

km (uniform asthenopshere).

5.7 Alternative Method: Radial Tractions from Mantle
Convection

As discussed in section 2.4, there are two ways of dealing with the radial tractions. Our
preferred way is to treat them as part of the lithospheric contribution, the results of which
we have presented so far. In this section, we demonstrate the results of calculating radial
tractions from mantle convection models.

We choose a viscosity model that yields a good fit to plate motions but fits the strain
rate data poorly (Table 3). This viscosity structure takes into account the ocean-continent
divide in the top 100 km with continents 30 times stronger than the oceans. It also contains
high viscosity keels (18 Pa-s) reaching to a depth of 200 km with a weak asthenosphere
(10'° Pa-s) elsewhere. The asthenosphere between 200-400 km is slightly strorfer (10
Pa-s). From the dynamic topography predicted by the particular convection model (Figure
17a), the GPE differences and the associated deviatoric stress field (Figure 17b) is calcu-
lated. Areas of positive dynamic topography have higher GPE and are in deviatoric tension,

whereas those of negative dynamic topography have low GPE and are in deviatoric com-
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Figure 17:Prediction from radial tractions of the convection model described in section 5.7. a)
Dynamic topography predicted by the radial tractions. b) GPE differences and associated deviatoric
stresses computed from the dynamic topography in a). Areas of negative dynamic topography are
in deviatoric compression, whereas those of positive dynamic topography are in deviatoric tension.

pression. This deviatoric stress field is the response of the radial tractions. The deviatoric
stresses from tangential tractions (Figure 18b) for the same model shows opposite sense to
the deviatoric stresses from radial tractions. The two stress fields are then added together
to generate a combined deviatoric stress field, which is the total deviatoric stress response
from the convection model (Figure 19a). The fit to the strain rate data from GSRM for
each of the above cases (Figures 18, 19) is also calculated (Table 3). Finally, these devi-
atoric stresses from convection model are added to those from a compensated lithosphere

model in order to yield a total lithospheric deviatoric stress field (Figure 19b). Table 3 lists
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Figure 18:a) Global distribution of horizontal body forces at the reference IgvEél00 km depth)
from the convection model described in section 5.7. b) Deviatoric stress field associated with hor-
izontal tractions in a). Note that the deviatoric stresses in most areas are opposite in sense to the

deviatoric stresses in Figure 17b.

the global correlation coefficients between the strain rates from GSRM and the deviatoric
stresses from different components of the same model. When the radial tractions are dealt
with as part of the lithosphere model, the fit to the strain rates is very poor (-0.02 in Table
3). When the radial tractions are dealt with as part of the convection model, the overall
fit improves dramatically (0.66 in Table 3). Hence, if using the former method, we would
reject this model on the grounds that it fails to fit the deformation indicators. On the other
hand, if we use the alternative method, we would accept this model as a successful one as it

yields a good fit to both deformation indicators and plate motions. The deviatoric stresses
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Figure 19: a) Total deviatoric stress field from the convection model in section 5.7 by adding
stresses due to radial (Figure 17b) and horizontal (Figure 18b) tractions. b) Total lithospheric de-
viatoric stress field obtained by combining stresses from convection model (Figure 19a) and those
from GPE differences from a compensated lithosphere model.

associated with dynamic topography thus dominate the solution and compensate for the
inadequacy of the horizontal tractions. The dominance of the radial traction solution may
indicate that we are not adequately removing the influence of dynamic topography from
the Crust 2.0 model. The uncertainty in how the Crust2.0 model is compensated in order
to remove the dynamic topography signal from it, leads us to prefer the use of the uncom-
pensated model for GPE calculations. For such cases, we assume that the depth integrals

of vertical stress already contain the signal from dynamic topography.
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Models Correlation coefficients

Horizontal tractions -0.53
(from Figure 18b)

Combined horizontal tractions
plus GPE differences -0.02
from uncompensated Crust 2.0

Horizontal plus radial tractions 0.53
(from Figure 19a)

Combined tractions
plus GPE differences 0.66
from compensated Crust 2.0
(from Figure 19b)

Table 3:Comparison of global correlation coefficients between strain rate tensors from the GSRM
model and deviatoric stress tensors from the viscosity model described in section 5.7 that yields
a good fit to the plate motion data. Note, that the addition of radial tractions improves the fit
dramatically.

5.8 Discussion and Conclusion

The principal aim of this study is to delineate the nature of lithosphere-mantle coupling
and to test whether major geological features such as the continent-ocean divide, presence
of cratonic roots, and age differences in the oceans, are capable of generating stresses that
match the present-day deformation in the Earth’s plate boundary zones and are also able
to predict the observed plate motions. The results show that these first order features can
indeed satisfy these two constraints. All these three factors are found to play important roles
in matching the constraints. However, the lateral variation due to continent-ocean divide is
the only model that is capable of satisfying the constraints by itself (models 1-5), as long as
sufficient strength contrast exists between the oceans and continents. The common feature
for all the successful models, besides models 15-17, is the presence of this continent-ocean
divide. Hence, this feature is likely playing the dominant role in generating the optimum
pattern and magnitude of stresses and plate motions.

From Table 1, it is clear that a weak asthenosphere of viscosi/P@s with a thick-
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ness of~ 300 km is required for a model to be successful. The low viscosity of the astheno-
sphere is necessary to generate sufficient toroidal motion so that the T/P ratio approaches
unity. Such asthenospheric properties are also required for the convection model to gener-
ate the right kind of traction field, which would produce deviatoric stress field that matches
deformation indicators. Many studies have argued for the existence of a low viscosity
channel below the lithosphere. In fact, the plate motions predictetfdrtyand Anderson
(1997b) with a uniform low viscosity asthenosphere in their convection model, matched the
observed plate motions quite well. This study has shown that such a viscosity model also
does a very good job of matching the strain rate tensor information along the deforming
plate boundary zones. Hence, it is of primary importance to take into account both these
constraints when drawing inferences about the Earth’s viscosity structure.

We also see from our results that models where the keels reach depths below 100 km,
are unable to match the observational constraints, especially the fit to the deformation in-
dicators. In these types of models, the flow velocities near the surface in many regions are
larger than those at depthSliosh et al.2008), indicating that, for these particular models,
the lithosphere leads the mantle. Hence, the body-force distribution, and the resultant de-
viatoric stress pattern, are opposite to those of the successful models. The implications of
this are potentially enormous, and may indicate that seismic velocity variations at depths
below 100 km may not be associated with lithospheric “keels”, but may instead reflect
variations in seismic properties in the upper mantle that is still rheologically equivalent to
asthenosphere in behavior.

Another significance of this study is the generation of toroidal velocity. As mentioned
earlier, it has been extremely difficult to incorporate high orders of lateral viscosity varia-
tions, and hence generate sufficient toroidal motion in models of mantle convection. Here,
with sufficient strength contrasts in the lithosphere of the convection models, we are able
to generate a high enough toroidal velocity that satisfies the observed equipartitioning of
toroidal-poloidal motion. We believe that we have constrained the relative viscosities of
the lithosphere and asthenosphere in order to delineate a best-fit coupling model. We have
shown that contribution of density buoyancy-driven basal tractions are extremely impor-

tant, not only to match the present-day deformation of the lithosphere, but also to fit the
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pattern and magnitude of the plate velocities. We have also demonstrated the importance
of the ocean-continent difference in controlling the plate motions and the toroidal/poloidal
velocity ratio.

An important aspect of our study is constraining the deviatoric stress magnitudes. The
magnitudes of depth integrals of compressive deviatoric stress from the combined GPE dif-
ferences and convection models are @x 102 N/m, the largest stresses occurring within
the Indo-Australian plate and southeast of South America in the Atlantic. The stress mag-
nitudes in most parts are consistent with stress magnitudes of earlier stdikarfison
1992). In other parts, our stress magnitudes are larger by a factor of 2. These areas of
large stress magnitudes are outside the deforming plate boundary zones in the GSRM. Our
stresses in the Indo-Australian plate are about 4-5 times smaller than th@$eetihgh
and Wortel(1986), who calculated stresses of several kilobars in the Indo-Australian plate.
However,Coblentz et al(1998) predicted stress magnitudes about a factor of 2 smaller
than ours in the Indo-Australian plate. Deviatoric stresses at the Tibetan Plateau are be-
tween 2— 3 x 1012 N/m. The stress magnitudes in continental Europe are larges 102
N/m, whereas those in North America are between3x 102 N/m. It should be men-
tioned that these stress magnitudes are mostly dependent on the density models and to some
extent on the relative viscosity distributions. They are independent of absolute viscosities.

We also calculate the vertical averages of rheology of the deforming lithosphere by
computing the vertically integrated differential stregféh(ol —03)d2). The differential
stress is calculated according to the fault styl€keif et al, 2008). The vertically inte-
grated differential stress will provide an idea about the maximum strength in a deforming
region. The deforming areas along the plate boundary zones are chosen from GSRM. The
computed differential stress shows strength ef @x 1012N/m or 20-80 MPa in most of
the continental regions (Figure 20). We compare these differential stresses with those of
Sonder and England1986). Assuming a fixed strain rate and Moho temperature, they
calculated the vertically integrated differential stress. Our calculated differential stress
in Tibet is 4— 7 x 102 N/m compared to % 102 N/m of Sonder and EnglanL986).

Our strength in San Andreas ranges from 8 x 1012 N/m, which is consistent with the

4 % 1012 N/m magnitude determined I8onder and Englan¢L986). Our values in Zagros
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Figure 20:Distribution of vertically integrated strength of the Iithosphq?_%h(ol —03)dz in the
deforming areas. The scalebar is in N/m.

are larger (5- 7 x 1012 N/m) compared to the 2 1012 N/m computed by them, whereas in
the Aegean our values are the same as theixsl(@? N/m).

We achieve the highest correlation coefficient of 0.68 between our predicted deviatoric
stresses and the deformation indicators (Tables 1 and 2). There still exists some misfit
between our predictions and the observed plate motions and deformation indicators. The
remaining misfit for the deviatoric stress field and the plate motions might arise from a
number of different factors. For example, although our lithosphere model is a high resolu-
tion one (25 x 2.5 degree), the convection model is of much lower resolution (degree 12).
The misfit could be due to the lower resolution of the convection model. Increasing the
degree of the model could substantially improve the fit to the observations. There occurs
substantial viscosity differences between the weak plate boundaries and the more rigid
plate interiors. These variations might play an important role. Although, our thin sheet
lithosphere model takes into account these viscosity variations, they are not incorporated in
our convection model. However, in order to consider these weak, narrow plate boundaries,
it is necessary to use a much higher resolution convection model.

In the present study, we have used the lithospheric stress field and plate motions to

constrain possible viscosity structures for the Earth. We have demonstrated that both these
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constraints are crucial in delineating a best-fit viscosity model. We have successfully nar-
rowed down a set of viscosity structures that satisfy both stresses and plate motions. In
order to fine-tune our models, additional constraints such as geoid and dynamic topogra-
phy could be used. An accepted model would be one that is capable of matching all the

four constraints of deviatoric stress field, plate motions, geoid, and topography.
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Chapter 6

Mathematical Treatment for Obtaining
Deviatoric Stress Field for the Thin sheet
Approach
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Mathematical treatment for obtaining deviatoric stress field for the
thin sheet approach

This chapter describes the methods used to calculate the depth integrated deviatoric
stresses within the lithosphere using the thin sheet method, given a distribution of forcing
terms. The mathematical treatment of the methods are described and tested.

The vertically integrated force-balance equations in spherical coordinates are:

1 0 fo 2 1 0 fo 2 0 fo 3 _
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Then the depth integrals, from to ro, of the force-balance equations ((1) and (2)) can be

written as:
cosd 0@ +C0§e%(o¢eco§6)+f¢—0 (10)
and
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where

n)?
fo=—"Louls (12)

0
and

3
i
(UD rLZ) Ol (13)
0

whered |, andaogy |y, are the tractions applied at a constant reference lavelet

o

1_ _
Op = §[0w+ O, (14)
Oap = 50([3 — 00 (15)

ap are the dilational terms an@i, are the shear terms agg = —Ggp. Substituting the
above into equations (10) and (11) yields

1 aa'([(p 1 1 600 —

g (G40 COS B) +

cosd 9¢ * 02600 cosd d@ +lp=0 (16)
and
1 aﬁ(pe 1 0 . 0o0g -— _
cosB a(p —Coge%((jwcoge)'i‘a—e-f-fe—o (17)

Only the dilational term is affected by the conversion from total to deviatoric stresses.

Substitutingtg = op — Gyr, equations (16) and (17) become

Colsﬁatc;y((pp(p+ 00260;09(6‘9900526)+$%+F¢:O (18)
and i
colse agc(ppe B co;(aa%(a‘”cosz 6) + % +Fe=0 (19)
where -
Fo=fo+ é a(;;(g (20)
Fo = f_e+a§9”. (21)

The second terms of the effective body fordgsandFg in (20) and (21) are the horizontal
gradients of GPE, or the horizontal gradients of the depth integral of total radial styess,
We solve the force-balance equations in response to the negative of the tracﬁ@mm

fo (see (12) and (13)) separately from the response to the GPE differences. Although this

157



chapter deals primarily with solution methods to the force-balance equations associated
with the response to mantle flow-related tractiofig {g), we point out that the solution
form for the response to GPE differences is the same as the solution form for the response

to poloidal flow. Equations (18) and (19) can be rewritten as

Fo= o 0p co26 360w cos'e) - cosd 0¢ (22)
and
_ 1 06'(‘)9 1 0 . J7p
Fo=—Cosd ¢ * co§66—9(0“"p $6) - 00 (23)

Recall that we minimize the | functional below in order to solve the above equations, given
estimates of, andFg, where that solution provides a minimum of the second invariant of

deviatoric stress:
=3 / / [ T0+20(p(p+20(p9] cosddqde

1 ao-qxp 1 6 ~ 1 aTO
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1 00¢p 1 0 JTp
+)\9[C0 $ 39 cog 0 (GppCOSF) + 8 +F9] cosBdqds. (24)

Optimizing thisl functional with respect tog, Gyp, Ogp respectively yields

%‘[0 cosd — %" — 66_9 (Agcosd) =0, (25)
25409 - %+ 020 (Lge) —o, (26)
Eo(pe cosh — coszeae ( 2‘;) — C%? =0. (27)
Hence, i
To= g [%%—; + %aa—e (Ne cose)_ (28)
Boo= g[éa%’ cosﬁa% (Cz‘)—';e) (29)
oot ()L
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which leads to

— o 1 0Ag
T([XP = H(T0+ Gw) = u.(@a—(p - )\etan9> (31)
— . oA
Too = H(To— Ogp) = a—ee (32)
Tgo = H(Ggp) = (ae +— coH 99 + Aptand (33)

Note that (31), (32) and (33) have the same form as deviatoric stress on a sphere, where
the Lagrange multipliersyy andAg hold the same position as the horizontal velocitigs,

ug, respectively. The one exception is that there is no term equivalenftdn (31) and

(32), as this term is expected to be small and is therefore not dealt with here. Recall that we
actually minimize the) functional in order to solve the force-balance equations, and doing

S0 is equivalent to minimizing thefunctional and satisfying the conditions within the

functional Flesch et al, 2001). If we substitute (31)-(33) into tleunctional,

Too PpS Too DS
J= / / Tog | — cbggs v Teo | — cbggs cosOdedd
'F(pe qJO(p.E)S 'F(pe qJO(p.E)S

(34)
(seeFlesch et al.(2001) and Appendix B irGhosh et al.(2008)) and minimize) with

respect to\g, Ag, we have the following:

ot 50 0~ S+ oz 75 (16— 65T 0030) + s Lito -1 =0 (35)
and
%aa [ ~0bs} co§6009([ S]COSZ )+ 0 TO 69 =0 (%)
where
TS = %(To(p(?)s—i- 309 (37)
o8 — 1985 §,5T00S. (38)
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The potentialsb3hs, ®g3°, and®3fin theJ functional are:

(Dobs i T&%S
¢obs —V | 1gs (39)
®3gs 2198°
where
=K
V=| -1 3 o0 (40)
o 0 3
Equating terms in (35) and (36) to terms in the force balance equations, (22) and (23), we
see that: . aéobs L . arobs
Fo= ~ oo acp co§969(00‘pgsc 0s'6) - cosd agp ’ (41)
~0bs
Fo = _00156 63$ * coize 666( o C 529) ag(;bs (42)

Note that33hs, 6%, andt§* are potentials, which through (37), (38), (39) and (40) define
DS, dYES, d)o(pgsln theJ functional . Our procedure consists of the following. We first find
solutions to the potentials that satisfy (41) and (42). Once the potentials are obtained, equa-
tions (37)-(40) are used to calculate mﬁbs potentials. These potentials are substituted
into theJ functional and thd functional is optimized over a2 x 2.5 degree grid to define
one self-consistent deviatoric stress field that satisfies the force-balance equations. The re-
sultant deviatoric stress field constitutes a global minimum of the second invariant of stress
that balances the body force inputs. The potentials that satisfy equations (41) and (42) are
non-unique, whereas the resultant deviatoric stress field, obtained from the minimization
of the J functional, is unique. Below we will show two different ways of obtaining solu-
tions to (41) and (42) to define the potentials, and we will demonstrate that as long as these
potentials are well-behaved at the poles, the deviatoric stress solutions are unique.

The above equations are solved in either of two ways:
(1) takingtg = 0 while 64y andGyp are non-zero (Case I), or
(2) takingTg to be non-zero whil&yy, = dg = 0 (Case ).

Although the forms of the potentials are very different, we obtain identical stress fields
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from them when appropriate conditions are used.

For Case |, let

Ogp = G COS 6; O = G3§°C0S
so that
1 00gy 1 1 00
Fom — - 4
®~ cosD dp co2O6 coLB 06 ’ (43)
1 0oy 1 1 dog
o= 2026 9  co6cosd 0 (44)
This implies that
1 00gy 00gs
co§9F(p——Cose 50 08 (45)
and
0 0
coZory = 2200 1 9% (46)

00 cosB do
If we switch from latitude, to colatitudep, then co® becomes sif, Fg becomesky

and% becomesg%. Hence, (45) and (46) can be rewritten as:

o= 1 do 00¢
SinfOFy = — s 47
®= "Sine 0p 9@ 47
o= ofo] 1 00
SifOFg = — 2 48
= 30 T sine g (48)
Let
Opp= Y  Z{TYim=Z{Vm (49)
I=0,m=0
and
0= Z{3¥im=Z3Nim, (50)
1=0,m=0

whereY, is the surface normalized spherical harmonic of degraed ordem, andZ'lnl1

andz|y are coefficients. Hence,
Sin’6Fp = ~ZyT¥im + Z15 iy (51)

sinBFp = Z{TYin + ZY3Yor, (52)

161



where

0Yim
yio_ Z1m
Im ae
and
o1_ L1 OYim
Im ™ Sing ag
Therefore,
Zm = [ [sirfBFgY0 — sif BF,Y Y| dS (53)
Zim / [sin?BF;Y0L + sir? BF, 19| ds (54)

where from (12) and (13);, andFg are given as:

r 3
F(p = _rl(;—z.[(ﬂ'hl = [Z Im ((pa 9) ZlelO((pa 9):| ) (55)
r3 L3 Imy,/10 m
Fo=-Fo= ro? Torlr, = 2 Zi™i(9,0) + ZE™0(9,8) |, (56)

whereZ™ andZI™ are the poloidal and toroidal coefficients from the mantle convection
model andv1% andY?! are defined as aboveen and Andersori997b). Therefore, given
distributions of the effective body forcey, Fg, defined in the circulation model, the co-
efficients can be obtained from (53) and (54) and then used in (49) and (50) to yield the

potentials. In this case, the potentials in (39) are given as:
(09 0355 068 = (5252 ~53825%87)" )

The potentials have a singularity problem at the poles onlyrfer 0 andm = 1; there is
no singularity at the poles fan> 2.

Case Il is only possible if there are no toroidal components in the flow model. If toroidal
flow exists, then, this method for Case Il will only yield the poloidal part of the total solu-
tion associated with mantle flow. The toroidal part of the solution can be calculated using
a methodology that we discuss later. This method of Case Il avoids singularity problems at

the poles. For Case Il, the poloidal componentEgoandFg (from (41) and (42)) are:

__roge n? rLS[ i) (58)

*~ " cosd g __@T(pr‘“ ro2 | cosf™ g
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Figure 1: Global distribution of the observed potentiaﬁ%gs, aggs, from tractions calculated by
Case | form > 2, for an isoviscous case.

aTObs I’|_3 r|_3 0Y|
Fo=——0 =_—— =—— |zZn=_m 59
0 ae rOZTGI’ o r02 [ -4 ae :| ( )
A solution that works is
3
r

To= # 4™im(6,0) (60)

Hence, the potentials in (39) are

To To \T

(D% P PRI = (5, .0) - (61)

3°3

Note that for dealing with GPE differences (see equations (18)-(21)) the potentials in (61)
will also work, wheretg = —ayr, the negative of the depth integrated total radial stress, or
GPE (see equations (20) and (21)).

In absence of toroidal flow, Cases | and Il should yield the same answer. However, the
first method fails to yield proper results since at ordaes 0 andm= 1, 6&?,3 andfr(‘;gs be-
come infinitely large at the poles (discussed later). Hence, only the second approach (Case
Il, T8 # 0,8%9°= 635°= 0) is the valid approach for the poloidal only case, irrespective
of values ofm. Form> 2, both methods yield identical results.

We demonstrate that the two methods yield identical results for values>ef2 in
absence of toroidal flow and we use two examples in order to demonstrate that. The first

example is that of an isoviscous case, the second is that of one of our best-fitting poloidal
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Figure 2: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 1.

cases, with strong lithosphere and weak asthenosphere. We first calculate the deviatoric
stress response (Figures 2 and 14) from potentials (Figures 1 and 13) calculated using Case
| (to = 0) for m> 2 for an isoviscous case and our best-fitting poloidal case, respectively.
We compare these stress results with deviatoric stresses from potentials (Figures 3 and 15)
computed by Case Iit§ # 0) for m> 2 values (Figures 4 and 16). The deviatoric stress
fields for the two cases are identical, as expected. The potentials (Figures 5 and 17) and
the resultant deviatoric stresses (Figures 6 and 18), for Caserh fo0, 1, demonstrate

the singularity phenomenon at the poles, which is absent in Case Il (Figures 7, 8 and 19,
20). The deviatoric stresses calculated by Case | and Case I, oy aHow substantial
differences between the two stress results in a number of areas (Figures 10, 12 and 22, 24),
especially at the poles where the deviatoric stresses for the former case are much larger.
Differences also exist in eastern and northern North America, east Pacific as well as large
parts of Asia. These differences arise because of differences in deviatoric stresses for orders
m= 0,1 for the two approaches. For Case I, the potentials blow up at the poles, whereas
for Case I, the potentials are well-behaved at the poles. The potentials fofalthe two

cases are shown in Figures 9, 11 and 21, 23. In summary, for poloidal flow only, Case |
can only be used fan> 2. Case Il can supply the remaining potentialsrfoe 0, m= 1.

Alternatively, Case Il can be used for alifor the poloidal case only.
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Figure 3: Global distribution of the observed potentialgg™ (61), from tractions calculated by
Case Il form > 2, for an isoviscous case.

When toroidal flow is present, potentials from Case | will yield the total (both poloidal
and toroidal) deviatoric stress field. However, as discussed earlier, Case | yields infinitely
large potentials at the poles for= 0, 1 and hence, cannot be used to compute the deviatoric
stresses from the total flow field (for afl). It is necessary, therefore, to find a method to
supply potentials fom= 0, m= 1, for the toroidal case. The following section discusses
the method (denoted as Case lll) in dealing with the toroidal terms of the deviatoric stress
field.

Presuming that the ternigy, 8, andtg have been Fourier transformed so that they

have apdependence of the foref™®, (41) and (42) can be rewritten as

im 1 0 im
Fo=—— 092~ 538%c06) — — 18 62
= " 080® " cog6 a8 0% )~ o™ (62)
im 0 0120s
Fo=———§98 — (6%5cogB) — —2 63
®= TCosp ® +co§909( @ ) 06 63)
Defining the following:
OocpgS: T8bs—|— ao(pgs T8bs 2( o(pgs_l_ 099
008> = G%° GopS = 2(0&?,5 odh
b bs_ ~ob ~obs b
Oge =10 " — Ogp Ogp°= Ogp
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Figure 4: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case Il, based on potentials in Figure 3. Note that this stress field is identical with the
stress field in Figure 2, generated using Case I.

(62) and (63) yield

_ im obs 1 0 obs
Fo=— 0% co§969(0“’9 cos0) (64)

sin6 obs im ~obs 1 0 obs

Fo=~Co%® ~ Cos°® s 3g 0% O0%)- (63)
A solution that satisfies (64) and (65) is
obs __ 1 ® § ; obs
Ogp = ﬁ/w2 [Fpcos 8 +imag,°cost]| de (66)
1 )
08" = ~ocg s [Focosd+imFycosdsin® + (1 — nP)agh°sinB] db — imagf®sin®
(67)

Once again, presuming that the terms hawedependence of the fored™®, the poloidal

components oF, andFg can be written as

im oJa
Fo— =
*= coso™ °= %0’

wherea = —Zl{“Y|m(9, @) (Ghosh et al.2008), so that equations (62) and (63) become

obs __ im 0

0% = ~codB 2 [acosB+ oo(p(?,scose} de (68)
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Figure 5: Global distribution of the observed potentia&??ugs, 60@5’5, from tractions calculated by
Case | fom= 0,1 for an isoviscous case. Note the large potentials at the poles.

0
038 = _é / / [g—g cos — mPasin®+ (1— n?)o?;,;Ssine] d6 —imoggssin®  (69)
—T1/2
0
= —a-— % / {(1— m?)a sin® -+ (1— n?)o&?,ssine] d6 —imogg’sin®  (70)
—T1/2

A solution that always works is%°= —a, in which cases(g®= 0,083°= —a. This is

the “1g solution” (equation (60), Case I1). Note that the’/ro? term for Fo, Fo (equations

(58) and (59)) has been dropped here in this notation, but this factor is included in the
calculations.

Similarly, the toroidal tractions can be written as

op E im

"= %0 ?= " cos

wherep = —Z{{"Y|m(6, @), such that (66) and (67) become

1 % ToB :
obs _ “P obs
0%® = —co§6/_n/z [aecos?e—l-lm%(p cosB|do
0
= B~ o0, BN+ mofircosd]de (71)
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Figure 6: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 5. Note the large stresses at the poles.

0% = —% /_en/z [—imB—l—im% cosBsing+ (1— nP)aga’sind | d6 — imagg®sin®
= —imBsine—é _en/z[—im[3(1+cos$)+(1—mz)0°(pgssin9}d6—imoo(pgssine
= —% en/z [—imB(1+cos®) + (1— n?)o&%ssine]de
+imcsci;ee _en/z [Bsin 20+ ima22%coss] e (72)

Note that for (71) and (72) the values fofs, og6®, andoc‘;gs are found for all andm,

An infinite number of possible solutions exist for the potentiadg, 0gg andogs. How-
ever, it can be shown that the potentiatgy, 0gg andag satisfy (62) and (63) and provide
a unique solution to the deviatoric stresses when substituted intd finectional (equa-
tion 34). Care must be taken so that these integrals do not become infinitely large at the
poles. This situation arises wheigg or ogg are odd functions. When these are odd, the
integrals become significantly non-zero for latitudes near the p8lesr(/2). Division by
cost (6 ~ 11/2), then makes the values ofy andogg infinitely large at the poles. Hence,
for these cases, the functions within the integrals should be chosen carefully so that the
integrals are well behaved at and near the poles (thﬁf]’{éz =0).

We need to consider 2 cases for solutions involig@ndFg:

1) Fy is even andrg is odd { +m= odd). In this case, the problem lies in the integral
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Figure 7:Global distribution of the observed potentia}s$s, from tractions calculated by Case I
for m= 0,1 for an isoviscous case. Note that the potentials are well-behaved at the poles.

for oo(pgs, which is an odd function, and therefor%gs within the integral in (71) must be
carefully chosen so that the integral from pole to pole goes to zero.
2) Fy is odd andFg is even [+ m= even). In this case, the problem lies in the integral

for 0°b3 and againo®sin the integral in (72) and must be chosen with caution such that

0.0
fT[/Z -0
-1/2 "

Casel: Fyis evenandFg is odd (I + m= odd, 02,25_ even, OObS_ odd,o98S= even)

Form+ 0, the constraint on the even functlm&Ps, in addition to being bounded, can
take either of the following forms.
(A) Form involvingFy = B in equation (71) we want:

/ 2 [% co€ 8 +imo2LScoss]do = / ° [G_B cos0+ |m0°bscose} de=0, (73)
o 08 i /2 -00

Choosingmaogss= —g—g’ cos9 satisfies (73) and give%gsz 0

(B) Form involving in (71) we want:

/2 0
| [Bsin®-+imogrcoss]de— [ [Bsin2-+imaZiicost]de—0  (74)
0 w —11/2 w
Choosing
28 . 2B
obs__ <P e
Ogp = P sin@ - sin@ (75)
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—B

(77)

f—niBsinze} do

[—ZimB-l—

/_e

1
cosP

obs
Ogg =

/2

odd)

obs _
Jata)

even,o

odd, o’

even,gos =
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1
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Figure 8: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
Case2: Fyisodd,Fgiseven(l + m

calculated by Case Il, based on potentials in Figure 7 (CaseH0,1).
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Figure 9: Global distribution of the observed potentiaﬁ%gs, 60(”5’5, from tractions calculated by
Case | for allm for an isoviscous case. Note the influence of large potentials at and near the poles
fromm=0,m= 1 terms.

(B) Form involving only in (72) we want:
/2
—imB(1+cos®) + (1 — n?)o25sin6] de
00
0
0
=/ / [—imB(1+ cos®) + (1 — mP)a22sing]do = 0
—T11/2

so that
(1—nP)o%essin® = imB(1+ cos B) (79)

Multiplying (78) by 2 and subtracting (79) yields

Rgobs— M g _imP
(1—nP)oge’= <ingP(1—cos®) — 2im-¢ cosd. (80)
Hence,
gobs_ 1 2imBsine—2im@ cosh (81)
® " (1—nP) 06 ’
0355 = im(B — Oge) SiNG (82)
and

obs__ [(1+mP 1 0 .
%90 = _<1—m2)B_ (A= )5028 |n, PN 10 (53)

The above potentials are calculated for each valua ahd for each value df> 2.

The solutions obo(p?f, 0885 and oo(pgs for a given value of andm are either completely
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Figure 10:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case |, based on potentials in Figure 9. Note the large deviatoric stresses near the
poles.

real ((76) and (83)) or completely imaginary ((75), (77), (81) and (82)) and do not combine

real and imaginary parts. Let us denote the potentials for a @jmm&?ﬁ, 0885 andcggs as
ol =AM10 (84)
for those with only real parts, and

o= 0+iB"™ (85)

for those with only imaginary parts. In that case, the complete potential for the forms in

(84) can be written, after taking only the real part of the Fourier sum, as

N N .
oﬁbsz >y A"m(Zg’m’Coscosm(p—kZ'G’m’s'”sinrrxp) (86)
m=0|=|m|
and those for the forms in (85) can be written as
b A I I,m,sin I,m,cos_:
oS = Z Z B"M(Zg " cosmp— ZZ " sinmp) (87)

m=0|=|m|

whereZi ™" andzy™**are the sine and cosine components of the toroidal coefficient for

the tractions in the equivalent body forcs, that we obtain from the convection model.
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Figure 11:Global distribution of the observed potentia¢sd™, from tractions calculated by Case
Il for all mfor an isoviscous case.

Like the poloidal case, we once more demonstrate that this treatment of the toroidal
terms (Case lll) yield deviatoric stress solutions that are the same as those obtained by Case
| for m> 2 (Figures 26 and 28). We compute the deviatoric stress resutts$d, 1 for the
two toroidal cases (Cases | and IIl) and show how the potentials for Case | (Figure 29) blow
up at the poles, whereas for Case lll, the potentials are well-behaved at the poles (Figure
31). This singularity problem at the poles therefore disappears for the new treatment, Case
lll. Likewise, the deviatoric stresses for Case | foe= 0,1 are large at the poles (Figure
30), whereas they are well-behaved for Case Il at the poles (Figure 32). A comparison
of results form > 2 for both Cases | and 11l for the toroidal case yields identical results
(Figures 26 and 28).

In summary, it is possible to use Case | for both poloidal and toroidal fields for2.
Form=0,1, Case Il can be used when there is poloidal flow and Case Il can be used when
toroidal flow is present. On the other hand, Case Il can be used forfal poloidal flow
and Case Il for alin for toroidal flow. We have chosen this condition of using both Case

Il and Case lll for allmfor poloidal and toroidal flows, respectively.
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Figure 12:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 11. Differences from Figure 10 are due to large
potentials fom=0,m=1in Case I.
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Figure 13:Global distribution of the observed potentlatfg,@S 0°b5 from tractions calculated by
Case | fom > 2, for our best-fitting poloidal model.
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Figure 14:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 13.
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Figure 15:Global distribution of the observed potentia%sgbs, from tractions calculated by Case
Il for m> 2, for our best-fitting poloidal model.
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Figure 16:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case Il, based on potentials in Figure 15. Note the similarity with Figure 14, calculated
by Case I.
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Figure 17:Global distribution of the observed potentiaﬁrﬁ’,gs, 60@95, from tractions calculated by
Case | fom= 0,1 for our best-fitting poloidal model. Note the large potentials near the poles.
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Figure 22:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
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Figure 26:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 25.
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part) based on the same toroidal modelrfor 2.
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Figure 28:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 27 (case
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Il for poloidal, case lll for toroidalm > 2. Note that this deviatoric stress field is similar to the field

in Figure 26 (case m> 2).
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Figure 29:0bserved potentials calculated by Case | based on the toroidal modeHd, 1.
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Figure 30:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 29.
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Figure 31: Observed potentials calculated by Cases Il and Il based on the toroidal model for

m= 0, 1. Note that potentials are well-behaved near the poles.
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Figure 33:0Observed potentials calculated by Case | based on the toroidal modelror all
184



-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160 m
P TR N N T R

80 = ‘ — 8000
Tk e T o 4 - 6000
;}é EB D NN A (XN :
Y ST i G cam e 1 8 8 8 ¥ S
,7‘%% A .‘1-’— e E A ERERER S Ty 3
i/ ek 1400 pra i ol by | |- 4000
[ % % X e | Fo o s P i st O
! G & 117 1o gz 7 B St f f
11 1R 11 7 #pr v s iz . i ) PS4 £ [
)‘ \ = A| 111 174« remmererdex q St t 4 [ ] - 2000
“ %} PEEFPIerers 174 1l - pommtox X : ol Rl
} 2 @’ e @ 04
{14 Pl LR e - Sl
% x t i RAREXATT WAL - Ry s
(R4 xx by = NRXHI s~ =& kRS . ; g o - 0
A+ KOOSR X N\ \ Al S e a \%k)\{k—rao A Sz SRR
T X A2 =X X w Ny e o pS - S
T I NN i i S i s V3 3 BEAWN
NN b e ki 7% R A v BRI --2000
. i X ‘(‘ z AV 17# ‘ ii
N RS — = LN SSS 3 +
-40 X NN ARNREESESS ook \ ﬁ
£ 3O ANOEN R AR DN o A \ ¥ x| --4000
1 % ROy N A W)X
-60 1 7; \ﬁ\ A‘IV{II%%/);
7 7 --6000
-80 f 1el2 N/m
—--8000

Figure 34:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 33.

-160 -140 -120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160 m
| |

: S EETTETT T =i ‘ ‘ L oL —1 8000
80 % 2 ._ﬁ_,kzz’ ;
bl . i
60 %i; ] i T 6000
1 % AX X et
40 —%\%}f‘f SN iy - 4000
L= SN '\\ = S
AN RN : Y L 2000
2R IS\
TNXX < R\ 11,7~
AN fo > =, o
VBN AR R e -~ ‘ -
S QO TAA . 2
o \ {X—-—\ W =p=
20 T i NNV ; /9; - | 000
3; N BTTENN : 3 i X////':///Z?;
40 R Faaas s oxEEAgeY
&S ; x‘,r,rx’//*)‘;)" 22 na f l--4000
= u{kwu///fx _ 1
-60 *:§\ \ XN%NC‘W@%**’, } ~ = v :’
’.aaa-f:.\—-—— > l-6000
80 -f A FF P b b o i
- R PSS PO VYIS SN EE R LT
A TIPS Y I T L1 5000

Figure 35:0bserved potentials calculated by Cases Il and 11l based on the toroidal model for all
m. Note that potentials are well-behaved near the poles.
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Figure 36:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 35.
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Chapter 7

Conclusions

187



Conclusions

In this dissertation | investigate the problem of how mantle flow interacts with the litho-
sphere in order to produce the observed lithospheric deformation. This is achieved through
a global joint modeling of lithosphere dynamics and mantle convection. The lithospheric
stress field is used to constrain the role of mantle convection on surface deformation. |
first calculate the contribution of the gravitational potential energy per unit area (GPE) dif-
ferences on the lithospheric deviatoric stress field. | perform a quantitative comparison of
these predicted stresses with the velocity gradient tensor field along the deforming plate
boundary zones from GSRM. Such a comparison shows that, although the deviatoric stress
field generated by the buoyancy sources within the lithosphere is able to provide a good
match to the strain rate observations in many areas, in certain regions, especially in regions
of continental deformation, this stress field falls short of explaining the total field of ob-
served deformation. This is also found to be true in the case of the Indian plate, where
the ridge-push force, which has been invoked as the sole mechanism behind the present
stability of the Tibetan Plateau, is unable to cancel out the large deviatoric N-S tension
at the Tibetan Plateau that is generated by lithospheric GPE differences, as is shown in
chapter 3. An additional source of stress, originating from basal tractions generated by
sub-lithospheric density buoyancies is found to be necessary to explain the observed defor-
mation.

| discuss the validity of the thinsheet method in chapter 2. | show that horizontal gra-
dients in shear tractions applied to the base of the lithosphere at 100 km depth have to be
much higher than 6MPa/10 km for them to be significant enough such that: (1) they ap-
proach values greater than one percent of magnitugeyoéind hence (2) the thin sheet
approach becomes less valid because horizontal gradients in tractions cannot be ignored.
This value for gradient in tractions is much higher than horizontal gradients in tractions
that are observed for long-wavelength convection models, and is likely to be higher than
what may occur over short length scales within subduction zones. In the same chapter, |
discuss the importance of choosing the reference level for calculating GPE differences and

demonstrate that the only correct level of reference to calculate the depth integralof
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the base of the lithosphere. | also talk about the assumptions involved in using the geoid
dataset for calculating GPE differences and demonstrate that the geoid data can only be
used under the assumption of equal pressure everywhere at the base.

A separate model of mantle convection is used to calculate the tractions acting at the
base of the lithosphere. Using simple poloidal flow models, | show that addition of this
component of deviatoric stress from basal tractions improves the fit to the observed de-
formation indicators. The poor fit in the continental deformation areas provided by GPE
differences undergoes a substantial improvement when this sub-lithospheric component is
considered, in addition to the contribution from lithospheric GPE differences, as | show
in chapter 4. | also test the sensitivity of different radially variable viscosity models and
show that those with strong (100-10,000 times) viscosity contrasts between the lithosphere
and asthenosphere are required in order to fit the strain rate tensor information in GSRM.
Amongst these models, those with a weak asthenosphet® Pa0s) yield smaller basal
tractions, which yield deviatoric stresses that are comparable in magnitude to those associ-
ated with GPE differences. Models where contribution from GPE differences are compa-
rable to the contribution from basal tractions perform better at predicting stresses in sensi-
tive areas such as Baikal region in Asia, Tibetan Plateau, western North America, and the
Aegean region. Also, in chapter 4 | perform important benchmarking exercises. | generate
a deviatoric stress field directly from the convection modge and Andersqri997b),
based on a simple viscosity structure, and compare it with the deviatoric stress field com-
puted by the thinsheet technique. The two stress fields are found to be very similar, further
justifying the suitability of the thinsheet methodology.

In chapters 2 and 4, | demonstrate the importance of lateral strength variations in the
lithosphere of the thinsheet model. Comparison of deviatoric stress results from a uniform
lithosphere and a laterally variable lithosphere show that the latter provides a much better
fit to the deformation indicators.

| generate plate motions self-consistently in the convection models by introducing lat-
eral viscosity variations, based on major geological features of the Earth, such as the
continent-ocean divide, strength variations between old and young oceans, and the high

viscosity continental keels. | test a number of viscosity structures, and using both the
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constraints of plate motions and the lithospheric stress field, delineate a narrow range of
viscosity structures that match both these constraints. The toroidal-poloidal velocity ratio
is also used as an additional constraint. Structures with strong lateral viscosity variations
within the lithosphere and a uniformly weak ¢P@Pa-s) asthenospheric channel are neces-
sary to yield a good fit to both the observed deformation and plate motions as demonstrated
in chapter 5. The lateral viscosity variation due to the continent-ocean divide is found to
play the dominant role in producing the right kind of deviatoric stresses and plate motions
that match observations. The stress magnitudes associated with mantle density buoyancy
generated basal tractions for the successful models are found to be comparable to the stress
magnitudes from GPE differences, indicating that the relative contribution of lithosphere
and mantle buoyancy sources on the lithospheric deviatoric stress field are about equal.

| also discuss at length the two new treatments developed to compute deviatoric stresses
from the toroidal component of the mantle flow field in chapter 6. For spherical harmonic
order 2 or greater the two methods yield similar results. However, for order 0 and 1, the
deviatoric stresses become infinitely large for one method, whereas they are stable for the
other. The comparison of the two different methodsrfor 2 confirms that the method
| use is able to recover a unique solution for deviatoric stress, given properly constructed
potentials. Furthermore, | show in this chapter that care must be taken near the poles to
make sure that potentials do not blow up there. This chapter shows that as long as the
potentials are well behaved at the poles, the calculated deviatoric stress should be stable

and uniquely determined for a given set of tractions.
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