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Abstract of the Dissertation

Elucidating lithosphere-mantle coupling by modeling the Earth’s

lithospheric stress field and plate motions

by

Attreyee Ghosh

Doctor of Philosophy

in

Geosciences

Stony Brook University

2008

Even after the establishment of the plate tectonic theory nearly four decades ago, some

fundamental questions have still not been satisfactorily answered. What drives the Earth’s

plates? Are plates and mantle coupled, and if so, what is the nature of that coupling? What

is the role of density buoyancy-driven flow in driving the plates? These are some of the

questions we try to address in our study through a joint modeling of lithosphere dynam-

ics and mantle convection. If the initial coupling model is correct, the predicted stresses

will match the observed deformation along the plate boundary zones and the predicted ve-

locities will match the observed plate motions. We model the lithospheric deviatoric stress

field from gravitational potential energy (GPE) differences and compare our modeled stress

tensor field with velocity gradient tensor field along the Earth’s deforming plate boundary

zones (from GSRM). The deviatoric stresses due to active basal tractions acting at the base

of the lithosphere, arising from density buoyancy-driven mantle convection, are also com-

pared with the strain rate tensor dataset from GSRM. We find that the combined stresses

from lithosphere and mantle buoyancies yield the best fit to the deformation indicators,

especially in areas of continental deformation. This is most likely due to driving shear trac-

tions induced by the surrounding mantle, related to the history of subduction in those areas.

We also generate plate motions in our convection models by incorporating lateral viscosity

variations generated by major geological features of the Earth, such as the continent-ocean

divide, the presence of cratonic roots as well as age differences in the oceanic lithosphere.

For each structure, we predict the deviatoric stress field, the pattern of poloidal and toroidal

flow and the partitioning ratio between toroidal/poloidal velocities. The predicted devia-

toric stress field is added to the deviatoric stresses generated by lithosphere buoyancies and
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the total stress field is compared with strain rate tensor information from GSRM. The best-

fit model has to satisfy both the constraints of matching the plate motions and the deviatoric

stress field simultaneously. By using both these constraints, we are able to eliminate several

types of models and narrow down significantly the set of models that fit the observations.
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Introduction

After decades of studies and observations, the plate tectonic theory was finally estab-

lished by middle to late 1960’s. Because of its power in explaining a diverse array of

puzzling features on the Earth, it has sometimes been hailed as “the grand unifying the-

ory of the earth sciences”. The phenomenon of plate tectonics also distinguishes the Earth

from the other planets of the solar system, as none of them are recognized to demonstrate

the plate tectonic phenomenon. Although some of the important tenets of the theory, such

as rigid plates surrounded by narrow deforming plate boundaries, have been modified to

account for more complex phenomena, like the wide, diffuse deformation along the con-

tinental margins, the basic theory has endured the test of time. However, there are still

certain aspects of the theory that are not fully explained, and one such aspect is the plate-

mantle coupling problem, which in turn has important implications in addressing the issue

of driving mechanism behind plate tectonics.

The coupling problem, in simpler terms, can be restated as the interaction between

plates and the convective mantle. A coupled plate-mantle system would imply that stresses,

generated by sub-lithospheric density buoyancies, are transmitted to the overlying litho-

sphere and influence the motion and deformation of the plates. A decoupled plate-mantle

system would prevent transmission of such stresses and the mantle would play no active

role in the motion and deformation of the lithosphere. This would imply that the plates are

self-driving. Indeed, there have been two different schools of thought regarding the role

of mantle in influencing the plate motions and the deformation of the lithosphere. Studies,

such asForsyth and Uyeda(1975),Harper (1975),Lister (1975),Solomon et al.(1975),

Richardson et al.(1979),Sandiford and Coblentz(1994), have concluded that mantle con-

vection plays a negligible role in the process of plate tectonics; the most important factor

influencing the plate tectonic process is the lithosphere itself. The ridge-push force, arising

from gravity acting on density variations in the oceanic lithosphere, and slab-pull force,

which is the downward pull of the slabs at subduction zones, are thought to be the dom-

inant forces behind plate tectonics. On the other hand, plate tectonics has been regarded

solely as a fluid dynamical process by several authors, starting fromTurcotte and Oxburgh
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(1967), followed byZhong and Gurnis(1996),Bercovici(1998),Tackley(1998),Trompert

and Hansen(1998),Bercovici and Ricard(2000),Tackley(2000) andBercovici (2003),

amongst others, who have attempted to model plate tectonics and mantle convection as a

single system.

However, none of the above studies have been able to fully explain all the observations

predicted by the plate tectonic theory. In recent years, studies have been undertaken that

take into account the contribution of both lithosphere dynamics and mantle convection in

explaining the various observables (Bai et al., 1992;Bird, 1998;Steinberger et al., 2001;

Lithgow-Bertelloni and Guynn, 2004;Ghosh et al., 2008). Such studies have attempted to

evaluate the role of mantle by comparing their model predictions with observations on the

Earth.

The various observables that can constrain this coupling issue are the Earth’s long wave-

length geoid, dynamic topography, plate motions, and the lithospheric stress field. The last

two are the most definitive of the above-mentioned constraints. The constraint of plate

motions can be subdivided into the poloidal and the toroidal components. The former is

the vertical component of the convective flow, responsible for upwelling along the mid-

oceanic ridges, and downwelling in subduction zones. The latter causes strike-slip motion

along transform fault boundaries. The ratio of the magnitudes of these two types of mo-

tion can also provide a significant constraint in addressing this coupling problem. The

toroidal/poloidal ratio on Earth has been observed to be close to unity for each degree of

spherical harmonic (Hager and O’Connell, 1979) and historically it has been extremely

difficult to match this observed ratio in models of mantle convection.

In this dissertation I investigate the plate-mantle coupling problem by employing the

constraints of lithospheric stress field, plate motions, and the toroidal-poloidal velocity ratio

for the first time, through a joint modeling of lithosphere dynamics and mantle convection.

I use the velocity gradient tensor field along the Earth’s deforming plate boundary zones as

a proxy or indicator for the lithospheric stress field. The additional dataset of the earthquake

moment tensor field is also used to constrain the modeled stress field. I use both the pattern

and magnitude of the poloidal and toroidal velocity fields to constrain the predicted plate

motions from our models.

3



The dissertation is organized in the following way. It consists of an Introduction (Chap-

ter 1) and Conclusion chapters (Chapter 7) and five main chapters that have either been

previously published or are to be submitted for publication. Chapter 2 deals with the con-

tributions of lithospheric density buoyancies on the lithospheric stress field. It discusses

the method of predicting a global deviatoric stress field from gravitational potential en-

ergy differences per unit area (GPE) from the Crust 2.0 dataset and the geoid. Chapter

2 also discusses the significance of using a correct reference level for GPE calculations

and gives a quantitative comparison with the velocity gradient tensor field along the plate

boundary zones. Additionally, chapter 2 gives the methodology for treating the spherical

equations. This work is in preparation to be submitted to theJournal of Geophysical Re-

search. Chapter 3 is also related to the contribution of lithospheric density buoyancies to

the global deviatoric stress field, but is confined to the analysis of the Indian plate where I

demonstrate the need for additional contribution of sub-lithospheric density buoyancies to

drive India into Eurasia, and thus explain the excess GPE of the Tibetan Plateau. It is pub-

lished inGeologyby Ghosh et al.(2006). Chapter 4, submitted toGeophysical Research

Letters, and currently under revision, deals with the contribution of both lithospheric and

sub-lithospheric density buoyancies. However, it concentrates only on the poloidal com-

ponent of the total flow field. Chapter 4 clearly demonstrates quantitatively the need for

lithospheric coupling with deeper mantle density buoyancy-driven flow to explain the litho-

spheric deviatoric stress field. Chapter 4 also contains important benchmarking exercises,

where I show that the thin sheet method that I employ is capable of recovering the litho-

spheric deviatoric stress field. Chapter 5 investigates a best-fit coupling model by using the

additional constraints of plate motions and the toroidal-poloidal velocity ratio. Chapter 6

is essentially related to Chapter 5, in that it details the methodology used in computing the

solutions in Chapter 5. These last two chapters are also in preparation for submission to

theJournal of Geophysical Research.
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Chapter 2

Contribution of Gravitational Potential

Energy Differences to the Global Stress
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Contribution of gravitational potential energy differences to the global

stress field

Abstract

Modeling the lithospheric stress field has proved to be an efficient means of determining

the role of lithospheric vs sublithospheric buoyancies and also of constraining the driving

forces behind plate tectonics. Both these sources of buoyancies are important in gener-

ating the lithospheric stress field. However, these sources and the contribution that they

make are dependent on a number of variables, such as the role of lateral strength variation

in the lithosphere, the reference level for computing the gravitational potential energy per

unit area (GPE) of the lithosphere, and even the definition of deviatoric stress. For the

mantle contribution, much depends on the mantle convection model, including the role of

lateral and vertical viscosity variations, the spatial distribution of density buoyancies, and

the resolution of the convection model. Because of its importance in the total contribution

of stresses to the plates, this study isolates only the contribution of crust and upper mantle

buoyancies, from the surface down to a constant reference level (100 km below sea-level).

Deficiencies in this contribution provide insight into the necessity and role of deeper mantle

density buoyancies in affecting the lithospheric stress field. Buoyancy distributions used

to calculate GPE differences within the layer considered are inferred from the Crust 2.0

dataset. We show that the GPE differences within this top layer alone are not sufficient

to match all the directions of principal strain rate axes and relative magnitudes of these

principal axes (style of faulting), as inferred from the comparison of our depth integrated

deviatoric stress tensor field with the velocity gradient tensor field within the Earth’s plate

boundary zones. The EGM96 geoid dataset is also used as a rough proxy for GPE val-

ues in the lithosphere. However, the GPE differences from the geoid fail to yield depth

integrated deviatoric stresses than can provide a good match to the deformation indicators.

GPE values inferred from the geoid have significant shortcomings when used on a global

scale due to the role of dynamic support of topography. Other important factors in estimat-

ing the depth integrated deviatoric stresses are (1) use of the correct level of reference in
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calculating GPE, where that level of reference must be the base of the layer of depth inte-

gration and (2) correct treatment of dynamic topography. We also elucidate the importance

of understanding the reference pressure for calculating deviatoric stress and show that over-

estimates of deviatoric stress may result from either simplified 2-D approximations of the

thin sheet equations or the assumption that the mean stress is equal to the vertical stress.

2.1 Introduction

Since the advent of plate tectonics there have existed considerable controversies re-

garding the nature, magnitude, and source of the forces that drive tectonic plates. The

lithospheric stress field serves as an important indicator of these plate-driving forces. Lat-

eral density variations within the lithosphere have been shown to be a major factor influenc-

ing the global stress field (Frank, 1972;Artyushkov, 1973;Fleitout and Froidevoux, 1982,

1983;Fleitout, 1991;Coblentz et al., 1994;Coblentz and Sandiford, 1994;Sandiford and

Coblentz, 1994;Coblentz et al., 1995). Lithospheric deformation is not confined along nar-

row plate boundaries. Rather, deformation within many plate boundary zones is distributed

(McKenzie, 1972;Molnar and Tapponnier, 1975;England and McKenzie, 1982;Molnar,

1988;England and Jackson, 1989;England and Molnar, 1997b;Flesch et al., 2000), with

the bulk of crustal strain accommodated along major fault zones (Holt and Haines, 1995;

Holt et al., 2000;Thatcher, 2007;Meade, 2007). In present-day modeling of the tectonic

stresses, the notion of rigid plates has been replaced by the notion of the continental litho-

sphere behaving as a continuous medium (England and Jackson, 1989). The importance of

this is the recognition that resulting crustal thickening and thinning leads to important in-

ternal lateral and vertical density variations; these lateral and vertical variations profoundly

influence the deviatoric stress field in the lithosphere. Furthermore, it has also been recog-

nized that horizontal dimensions of deformation far exceed the thickness of the lithosphere,

and in this regard lithospheric deformation has been quantified in terms of a thin viscous

sheet in order to solve for the depth averaged or depth integrated deviatoric stresses within

the lithosphere over large scales (England and McKenzie, 1982;Houseman and England,

1986;England and Jackson, 1989;England and Molnar, 1997b;Flesch et al., 2001;Ghosh

7



et al., 2006). The assumption that goes with the thin sheet approximation is that the gra-

dients of shear tractions at the base of the plate are negligibly small compared to the force

of gravity acting on density. Hence, the sources of these driving stresses can be divided

into two main categories: (1) gravity acting on density variations within the thin sheet

and (2) gravity acting on density variations deeper than the thin sheet, related to density

buoyancy-driven convective circulation of the mantle. In this paper, we use the thin sheet

approximation to quantify the first of these two sources. These lateral density variations

mentioned above manifest, in part, as varying crustal thicknesses, which, together with

topography, cause variations in gravitational potential energy per unit area (GPE). Differ-

ences in GPE contribute to the deviatoric stress field in the lithosphere. This deviatoric

stress field is calculated and compared quantitatively with stress observations, such as the

World Stress Map (WSM) or strain rate tensor field in the earth’s plate boundary zones (this

study).

We calculate depth integrated deviatoric stresses, where the depth of integration is from

the surface down to a constant reference level of 100 km below sea-level. This incorporates

the lithosphere for most parts of the Earth. However, under the assumption that there is

no buoyancy-driven mantle convection, no dynamic topography, and hence, equal vertical

stress at the depth of the deepest continental keels, one can integrate to a deeper depth in

order to account for deeper density buoyancies associated with continental keels. Although

neglecting the above factors represents an oversimplified approximation, we nevertheless

explore the influence of integrating to the base of the deepest continental keels in order to

quantify differences with our standard reference level of 100 km.

We also investigate the role of lateral strength variations in the lithosphere. We calcu-

late the depth integrated deviatoric stresses on a one-plate planet of uniform lithospheric

viscosity, in addition to stress calculations on an Earth-like planet with weak plate bound-

aries. We show how the consideration of laterally variable viscosities in the lithosphere

enable the calculated deviatoric stresses to have a better match with stress and strain rate

observations.

Calculation of GPE requires a level of reference. When the vertical stress is laterally

variable at the base of the depth of integration the choice of reference level has important

8



dynamic implications. In this paper, we discuss the reference level problem in calculating

GPE, and show that for a thin sheet calculation in which the vertical stress varies beneath

topography along the base of the depth of integration, there is only one correct level of

reference. In particular, we show that for such cases, the shallow density anomalies have

a more dominant effect on the depth integrated deviatoric stresses than the deeper anoma-

lies. Another important aspect of our study is to bring forward the substantial changes in

stress magnitudes that arise by solving the full 3-D force-balance equations instead of the

2-D equations, and also the importance of using a correct definition of deviatoric stress.

Although the total forces driving lithospheric deformation are a combination of the two

sources mentioned above, arising from density variations both within and below the thin

sheet (Lithgow-Bertelloni and Guynn, 2004), our study focuses only on quantification of

the lithospheric contribution. Our confidence in the magnitude and distribution of GPE

variations far exceeds our confidence in the magnitude and distribution of basal tractions

associated with mantle convection. Nevertheless, if the contribution from GPE differences

can be correctly quantified, then the misfit of the associated depth integrated deviatoric

stress field with stress tensor indicators holds promise for constraining the remaining con-

tribution associated with basal tractions. Therefore, it is important to isolate the contribu-

tion of GPE differences to depth integrated deviatoric stresses because they calibrate the

absolute magnitudes of deviatoric stresses acting within the lithosphere.

2.2 The Force Balance Equations and Validity of the Thin

Sheet Approximation

The force balance equations, which state that gradients of stresses are balanced by the

force of gravity per unit volume, are given by

∂σi j

∂x j

� ρgi 
 0 (1)

(England and Molnar, 1997b), whereσi j is thei j th component of the total stress tensor,x j

is the jth coordinate axis,ρ is the density andgi is the ith component of the acceleration
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due to gravity. The above equations use summation notation, wherei takes the values of

x � y andz and the repeated indexj represents the summation overx � y andz. For clarity we

show the cartesian form of (1). However, we solve the spherical form of (1) in our global

calculations (see Appendix).

We explore next the conditions under which the thin sheet approximation is valid. The

basis of the thin sheet approach is that because the horizontal distance scales are large in

comparison with the thickness of the lithosphere, we can take depth integrals of the force

balance equations down to a constant reference level, and then solve these equations for

the depth integrals of deviatoric stress within that layer. Expanding the z-equation from (1)

and then integrating from the surface to the base of a uniform reference level,L, yields

∂
∂x

���
L� h

σxz � z� dz� � ∂
∂y

���
L� h

σyz � z� dz� � ∂
∂z

���
L� h

σzz� z� dz� 
�� � L� h
ρgzdz (2)

The approximation in the thin sheet approach is that

∂
∂x

�
L� h

σxz � z� dz
� ∂

∂y

�
L� h

σyz � z� dz ��� � � L� h
ρgzdz� (3)

such that, from (2) we have

σzz� z� 
�� � z� h
ρg � z��� dz� (4)

Assuming thatσxz � z� andσyz � z� are linear, from zero at the surface toσxz � L � andσyz � L � at

the base, then the question is how large can the gradients of shear tractions be in order for

(3) to hold ? Using 3000kg� m3 for an average density of the lithosphere and a 100 km thick

lithosphere, we find that horizontal gradients in shear tractions applied to the base of the

lithosphere at depth 100 km would have to be as high as 6 MPa/10 km in order for the left

hand side of (3) to be 1% of the magnitude of the right hand side of (3), the vertical stress at

depthL. This is at least an order of magnitude higher than horizontal variations of tractions

from large scale mantle circulation (Steinberger et al., 2001;Becker and O’Connell, 2001),

and is likely to be much larger than the most extreme gradients in tractions that might

occur beneath subduction zones. Therefore, the ’thin sheet’ approximation in (3) is valid,

in which case we can use the relation in (4) for the vertical stress, and use only the two

10



horizontal force balance equations to investigate depth integrals of horizontal deviatoric

stress.

Substituting into (1) for the total stresses via the relationship,τi j 
 σi j � 1
3σkkδi j , where

τi j is thei j th component of the deviatoric stress tensor,δi j is the Kronecker delta, and13σkk

is the mean total stress, and integrating (1) over the thickness of the lithosphere, we arrive

at the full horizontal force balance equations, neglecting flexure (England and McKenzie,

1982;England and Houseman, 1986;England and Molnar, 1997b;Flesch et al., 2001):

∂τ̄xx

∂x � ∂τ̄zz

∂x
� ∂τ̄xy

∂y 
�� ∂σ̄zz

∂x
� τxz � L � (5)

∂τ̄yx

∂x
� ∂τ̄yy

∂y � ∂τ̄zz

∂y 
�� ∂σ̄zz

∂y
� τyz � L ��� (6)

where the over bars represent depth integration. The two terms on the right hand sides of

equations (5) and (6) constitute body-force-like terms. The first terms on the right side of

(5) and (6) represent horizontal gradients in GPE per unit area, whereasτxz � L � andτyz � L �
are the tractions, arising from density buoyancy-driven mantle convection, applied at the

base of the thin sheet at depthL. We do not quantify the contributions ofτxz � L � andτyz � L �
here, but have addressed them elsewhere (Ghosh et al., 2008).

The thin sheet approximation also implicitly assumes that vertical variations in hori-

zontal velocity are small, or that one of the principal axes of the stress or strain rate tensor

is close to vertical. The presence of a basal traction boundary condition in (5) and (6), as-

sociated with a deeper mantle density buoyancy contribution, calls for the need to evaluate

the validity of this assumption. If one principal axis is close to vertical, then depth integrals

of shear stress should be small in comparison with depth integrals of horizontal deviatoric

stress. Using 5 MPa forσxz � L � , and assuming a linear gradient ofσxz � L � , such that it is

zero at the surface, the depth integrals ofσxz � z� are 2 5 ! 1011 N/m. This is about 10% of

the magnitude of the depth integral of horizontal deviatoric stress in the lithosphere (Ghosh

et al., 2008). Therefore, even in the presence of basal tractions of significant magnitude,

the assumption that one of the principal axes is near-vertical appears to be valid.

The forcing terms in (5) and (6) are constrained by observations. For example, GPE per
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unit area is constrained by topography and seismically-defined crustal thicknesses (Crust

2.0 [G.Laskeetal., Crust 2.0: A new global crustal model at 2! 2 degrees, 2002, available

at http://mahi.ucsd.edu/Gabi/rem.html]) and tractions can be constrained by self-consistent

circulation models that match plate motion, dynamic topography, and geoid (e.g.Wen and

Anderson, 1997b). Depth integration over the entire plate thickness is indicated by bars

over the total stress and deviatoric stress terms,σi j andτi j , respectively. The vertically

integrated vertical stress,̄σzz, which is the negative of GPE per unit area is given by

σ̄zz 
�� � L� h

�"�
z� h

ρ � z� � gdz� � dz 
�� � L� h
� L � z� ρ � z� gdz (7)

(Jones et al., 1996), based on a reference level of depthL. Here,ρ � z� is the density,L is the

depth to the base of the thin sheet,h is the topographic elevation, andg is the acceleration

due to gravity.

2.3 Method for Solving the Force Balance Equations

The deviatoric stress field solution that we obtain is the mathematically unique solution

that both balances the body force distribution (GPE differences) and provides a global min-

imum in the second invariant of stress (followingFlesch et al.(2001)). We also take into

account weak plate boundaries and strong plates, as discussed later. Solutions to (5) and

(6) for τ̄i j can be obtained, given distributions of∂σ̄zz
∂x and ∂σ̄zz

∂y with τxz � L � andτyz � L � set to

zero (e.g.Flesch et al., 2001;Ghosh et al., 2006). Alternatively, solutions can be obtained

given distributions ofτxz � L � , τyz � L � , with gradients in GPE set to zero. The contribution

from basal traction can simply be added to the contribution from GPE differences in order

to obtain the full stress field. This motivates our study to correctly quantify the global solu-

tion associated with GPE distributions in order to better understand the full global solution,

which has contributions from density variations at all depths.

Previously, most authors had used the geoid surface (sea-level) as the reference level

for calculating GPE (Fleitout, 1991;Coblentz et al., 1994;Jones et al., 1996;Zoback and
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Mooney, 2003), in which case,

σ̄ �zz 
 � L� h
ρ � z� gzdz
 σ̄zz

�
Lσzz� L �# (8)

Thus, for areas in whichσzz� L � is a constant, the choice of reference level is irrelevant

(Haxby and Turcotte, 1978). However, this reference level yields significantly different val-

ues from that obtained using (7) when the pressure,σzz� L � , at the reference levelL is non-

uniform, as we discuss in a later section. We use both the Crust 2.0 dataset and the EGM96

geoid model (available from NIMA at http://164.214.2.59/GandG/wgs-84/egm96.html) to

calculate GPE. We show that the latter can only be used as a proxy for GPE if the pressure

or vertical stress at the base of the layer of integration is uniform globally.

We use a finite element method to solve the three-dimensional force balance equations

over a global grid of 2 5o ! 2  5o for the spherical case, neglecting basal tractions, to quantify

the contributions to deviatoric stresses that are intrinsic to the lithosphere. We minimize

the functional (afterFlesch et al.(2001)):

I 
 �
S

1
µ $ τ̄αβτ̄αβ

� τ̄2
γγ % dS

� �
S
2λα & ∂

∂xβ
� τ̄αβ

� δαβτ̄γγ � � ∂σ̄zz

∂xα ' dS� (9)

whereµ is the relative viscosity,̄ταβ is the vertically integrated horizontal deviatoric stress,

τ̄γγ 
 τ̄xx
� τ̄yy, λα is the horizontal component of the Lagrange multiplier for the constraint

to satisfy the two force balance differential equations,σ̄zz is the vertically integrated ver-

tical stress (GPE per unit area), andS represents area on the entire Earth’s surface. In

Flesch et al.(2001),µ was assigned a value of 1. We assign variable values toµ in order

to approximate weak plate boundary zones and strong plates. This is done in two ways.

In the first case, an inverse relationship between strain rates (fromKreemer et al.(2003))

and relative viscosities,µ, is assumed (Figure 1a). The relative viscosities of the deforming

plate boundary regions are obtained by assigning a reference viscosity to the moderately

straining region in western North America with a strain rate of 1 5 ! 10
� 7/yr via the rela-

tionship:
1
µ 
 1

�)( 1
µre f

� 1* E2

E2
re f

� (10)
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whereµre f is the viscosity corresponding to the above-mentioned area,E2 
 2 � ε̇2
xx
� ε̇2

yy
�

ε̇2
xy
� ε̇xxε̇yy� , whereε̇xx � ε̇yy andε̇xy are the strain rates fromKreemer et al.(2003), andE2

re f

is the reference value forE2, corresponding to the value forµre f . The lowest viscosities

occur along the mid-oceanic ridges, whereas relatively higher viscosities occur in the de-

forming continental areas (Figure 1a). The rigid plates (blank regions) have the highest

viscosities with aµ value of 1. We try different values for the reference viscosity,µre f ,

such as 1/3, 1/30, 1/300 and 1/3000, where the reference region in western North America

is 3, 30, 300 and 3000 times weaker than the plates, respectively. The viscosity structure

giving rise to the deviatoric stress field that matches the deformation indicators best is cho-

sen. Taking into account the above viscosity variations yields a focusing of stresses within

the plates and fits well the observedSHmax orientations in most places within the plates

(Zoback, 1992).

The second way takes into account the dependence of effective viscosities on litho-

spheric thickness in addition to strain rates (Figure 1b). The viscosity,µ� , in this case is

given by:

µ� 
 1
100

�
L +� h

µdz 
 1
100 � L � � h� µ � (11)

whereL � � h is the thickness of the lithosphere (Conrad and Lithgow-Bertelloni, 2006)

andµ are the strain rate dependent viscosities. Note that hereL � is no longer constant; the

variable base of the lithosphere is taken into account. In the case where GPE is calculated

with a reference level of 100 km, the maximum value ofL � is fixed at 100 km. Therefore,

in this case, our depth integrals do not encompass the deeper lithospheric keels, but take

into account the variable depths of the oceanic lithosphere. However, we do address a case

whereL � 
 270 km, a depth great enough to include the keels. Note, in (11) the lithosphere

thickness is normalized by a reference thickness of 100 km. Areas deforming at the same

rate will have different viscosities based on lithospheric thickness: thicker lithosphere will

be stronger than lithosphere that is less thick.

We minimize (9) with respect tōταβ using the variational principle (Morse and Fesh-
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Figure 1:Logarithm of relative viscosity distribution for all the plates based on a) strain rates from
GSRM and b) both strain rates and lithospheric thickness. The white areas represent intra-plate
regions with relative viscosity 1. A reference viscosity ofµre f

� 1
30 is chosen at the moderately

fast straining western North America (1� 5 � 10� 7/yr). Areas with higher viscosities thanµre f are
deforming at a slower rate.

bach, 1953), which then yields the relation

τ̄αβ 
 1
2
( ∂λα

∂xβ

� ∂λβ

∂xα
*  (12)

Here,τ̄αβ has the same relation with the vector of Lagrangian multipliers as does the strain

rate, ε̇αβ, to the velocity vector. Substitutinḡταβ from (12) into theJ functional below

(Flesch et al., 2001) and then minimizing the functionalJ with respect to the Lagrange
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multipliers yields the force balance equations that the Lagrange multipliers have to satisfy.

J 
 �
S

,---.0/1112 τ̄xx

τ̄yy

τ̄xy

3�4445 � /1112 Φobs
xx

Φobs
yy

Φobs
xy

3�4445
687779 T :

V
� 1

,---.0/1112 τ̄xx

τ̄yy

τ̄xy

3�4445 � /1112 Φobs
xx

Φobs
yy

Φobs
xy

3�4445
687779 dS� (13)

whereτ̄xx, τ̄yy and τ̄xy are the vertically integrated deviatoric stresses that we are solving

for,

:
V
� 1 is the covariance matrix (see Appendix),Φobs

xx 
 Φobs
yy 
;� 1

3σ̄zz and Φobs
xy 
 0  

Minimizing J with respect to the Lagrange multipliers provides a unique solution to the

force balance equations that corresponds to the global minimum in the second invariant of

deviatoric stress (Flesch et al., 2001).

2.4 GPE from Crust 2.0

We use the crustal thicknesses and densities from the Crust 2.0 dataset to calculate GPE

per unit area. For the oceanic regions, we use the cooling plate model based on ocean floor

age data (Müller et al., 1997) and with revised parameters fromStein and Stein(1992) to

define densities there. The densities of the last layer of the crustal model are replaced by

an upper mantle density of 3300 kg/m3 beneath the continental lithosphere. The reference

level, L, is chosen as 100 km (afterJones et al.(1996)) in this particular case. We also

use a deeper reference level in order to take into account the density buoyancies associated

with cratonic roots, which we discuss in a later section. Since water and ice are unable

to transmit significant tectonic shear stresses, effects of ice and water layers are excluded

from our GPE calculation. However, we take into account the pressure exerted by water

and ice layers, which constitutes a boundary condition in the computation of the GPE inte-

gral (equation (7)). The GPE calculated from crustal thickness estimates of Crust 2.0 show

high values occurring at high elevation regions like the Andes, western North America,

eastern Africa, Tibetan plateau, as well as at the mid-oceanic ridges, with the maximum

GPE at the Tibetan plateau (Figure 2). Lower elevation regions like the ocean basins and

topographically low continental areas exhibit low GPE. The resultant depth integrated devi-
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Figure 3:Global distribution of vertically integrated horizontal deviatoric stresses and GPE calcu-
lated from Crust 2.0, compensated by elevation adjustment. The range of GPE values, as well as
the absolute magnitudes of deviatoric stresses, decrease compared to the uncompensated (in figure
2) as well as the other compensated case (figure 3), but the overall pattern remains similar to that
in figures 2 and 3. Because compensation is achieved via elevation adjustment, figure 4 is the theo-
retical response of lithosphere from internal buoyancies, with the influence of dynamic topography
removed.

atoric stress magnitudes (Figure 2) show a maximum depth integrals of deviatoric extension

at the Tibetan plateau (< 3 ! 1012 N/m) and compressional deviatoric stresses in the oceans

and low elevation continental regions. The mid-oceanic ridges are in deviatoric extension

( < 1 � 1  5 ! 1012 N/m) as are topographically high areas that have higher GPE values.

Moreover, the depth integrated deviatoric stresses for the Indo-Australian plate agree with

theSHmaxdirections of the WSM (Zoback, 1992;Reinecker et al., 2005) and those derived

by Sandiford et al.(1995).

The Crust 2.0 model is not compensated. In order to investigate the effect of com-

pensation, an isostatic solution was computed by compensating our model (equal pressure,= L� h ρgdz 
 σzz� L � , at the reference levelL). The concept of isostatic equilibrium dates

back to the 19th century. The Airy model of isostatic compensation (Airy, 1855) involves a

constant density layer with variable thickness while the Pratt model (Pratt, 1855) is based

on a constant thickness layer of variable density. What occurs on Earth is perhaps a com-

bination of these two end-members, with different regions exhibiting each mechanism in
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Figure 4:Same as Figure 2, but with laterally uniform lithospheric viscosity. Note that significant
changes occur in deviatoric stress orientations in many of the plate boundary zones (western N.
America, Mediterranean, southeast Asia) as well as within the Indo-Australian plate region.

varying degrees. The vertical stress at the reference level,L, is given by:

σzz� L � 
 � L� h
ρ � z� gdz (14)

can be equilibrated either by adjusting the density of the upper mantle,ρ � z� , or by adjusting

the elevation,h, of the crustal blocks. In the latter case, the adjustment constitutes the

removal of the inferred dynamic topography that has resulted from radial tractions applied

at the reference level,L, (which is the inferred source of the variable values ofσzz� L � ).
Upper mantle densities are adjusted with respect to an average vertical stressσzz� L �

for the continents and oceans. Although the resultant GPE and deviatoric stress solutions

(Figure 3) provide values that are 10� 20% lower than the uncompensated case, the overall

style of deviatoric tension and compression remain unchanged, with the maximum devia-

toric tension (< 2  5 ! 1012 N/m).

In the second method, compensation is achieved by adjusting the elevations based on

an average vertical stress,σzz� L � , for the continents and oceans, while keeping the den-

sities of the mantle constant. Thus, elevations of the crustal blocks are lowered or raised

according to whether the actual vertical stress at reference levelL is greater or less than the

average vertical stress there. Both the GPE and deviatoric stress magnitudes show similar
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pattern as before (Figure 4), with the maximum deviatoric tension of< 2 ! 1012 N/m oc-

curring at the Tibetan Plateau. Compensation by density adjustment does not acknowledge

the existence of dynamic topography (discussed later), whereas in the later case, the entire

deviation from an isostatic solution is attributed to the existence of dynamic topography.

The deviatoric stress field in Figure 4, therefore, represents the theoretical contribution

of lithosphere buoyancies alone, with dynamic topography removed under the assumption

that all variations in vertical stress at the reference level are due to dynamic topography.

What occurs on Earth is a combination of these two end-members. On comparing the GPE

differences and deviatoric stress magnitudes for the two compensated cases (Figures 3 and

4), we find that magnitudes of both are reduced considerably in the latter case (compen-

sation by elevation adjustment). Due to increasing density moment as a function of mass

anomalies considered at increasing distances away from the reference level,L, (discussed

in detail in section 2.7), near-surface densities have a greater impact on the change in GPE

than do deeper density variations. This means that adjustment of elevation has a greater

impact on GPE change, and associated deviatoric stress magnitudes, than the adjustment

of density in the mantle. Another way of interpreting this result is that, assuming flexure

to be negligible at long wavelengths, if horizontal variations inσzz� L � , are inferred to be

associated with mantle flow or dynamic support, then the resulting dynamic topography is

a major factor contributing to lithospheric GPE differences.

As a way of investigating the role of weak plate boundaries, we also compute devia-

toric stresses with a uniform lithospheric viscosity (µ =1 in (9)) based on an uncompen-

sated Crust2.0 model. The resultant deviatoric stresses (Figure 5) have magnitudes similar

to those in the uncompensated case. However, the plate boundaries, in this uniform vis-

cosity case, have higher stresses as compared to the plate boundaries in all the other cases

(cases with lateral viscosity variations). When compared with the uncompensated result

with lateral viscosity variations, the stress patterns appear similar in a few areas, but dif-

fer substantially in many regions, particularly in the continents. Furthermore, the arcuate

feature of compressive deviatoric stresses throughout the Indo-Australian plate boundary

regions (observed in the WSM) is only achieved when lateral viscosity variations in the

lithosphere are taken into consideration (refer to Figure 5 and compare with Figures 2-4,
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Figure 5:Same as Figure 3, but compensated at the depth of the deepest lithosphere (� 270 km).

and 6). Lateral strength variations, with weak zones corresponding to location of today’s

plate boundary zones, and stronger zones corresponding to position of the plates, therefore,

plays a profoundly important role in affecting the deviatoric stress field.

2.5 Deeper Lithospheric Density Buoyancies

As mentioned earlier, we perform depth integrals to 100 km, which is sometimes as-

sumed to approximate the boundary between the non-convecting lithosphere and the con-

vecting mantle. However, the base of the lithosphere is variable in depth due to continental

keels, depth variations for different aged oceans, etc. Accounting properly for this vari-

able depth involves sophisticated methods that we do not attempt in this paper. One can

approximate the influence of variable bottom lithosphere, however, by integrating down to

a constant reference level, equal to the depth of the deepest lithosphere. However, this can

only be achieved under the assumption that there is no buoyancy-driven mantle convection

acting on the variable base of lithosphere, and no dynamic topography. This implies total

compensation; that is, equal vertical stress at the depth of the reference level (bottom of the

deepest lithosphere).

In order to take into account the effects of the deeper density buoyancies associated

with the lithosphere, the reference level,L, is extended to a greater depth. Based on the
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lithospheric thickness model ofConrad and Lithgow-Bertelloni(2006), we takeL to be

at the depth of the deepest lithosphere (< 270 km). Integrating to a depth of< 270 km

captures a significant portion of the asthenosphere. However, a constant asthenospheric

density outside of the very deep cratonic areas makes no contribution to the deviatoric

stress field.

In order to achieve compensation atL, we adjust the densities of the subcrustal layer

(layer between the base of the crust and the base of the lithosphere) with respect to an

average vertical stress at 270 km depth for continents and oceans. The asthenosphere layer

(layer between the base of the lithosphere and the reference level,L) is assigned a constant

density of 3300kg� m3. Based on these adjusted densities, the GPE and the corresponding

deviatoric stress field are calculated with viscosities varying as a function of both strain

rates (Figure 1a) and combined strain rates and lithospheric thickness (Figure 1b).

The absolute GPE values naturally increase whenL is at a greater depth (Figure 6).

However, the GPE differences, and consequently the deviatoric stress magnitudes, are

lower than the corresponding model compensated at 100 km (Figure 3). The overall depth

integrated deviatoric stress pattern (Figure 6) is similar to the previous cases (Figures 2-

4). The lower deviatoric stress magnitudes may indicate the influence of a lower density

(less than 3300kg� m3) subcrustal lithospheric layer used in most of the regions to achieve

compensation.

2.6 GPE from Geoid

We also calculate GPE from the EGM96 geoid dataset. Geoid anomalies have been

used to calculate GPE byCoblentz et al.(1994);Sandiford and Coblentz(1994);Flesch

et al. (2000, 2001).Coblentz et al.(1994) calculated geoid anomaly as

∆N 
�� 2πG
g2 ∆Ul (15)

23



(Turcotte and Schubert, 1982) whereG is the universal gravitational constant,g is the

acceleration due to gravity and∆U is the GPE from geoid given by

∆Ul 
�� � L

0
∆ρ � z� gzdz
�� ∆Ng2

2πG
(16)

However, this relationship is true only if isostatic compensation prevails everywhere at

the reference levelL (Haxby and Turcotte, 1978). Otherwise, significant errors will be

introduced if the geoid is used to infer GPE and dynamic topography is present. Moreover,

the geoid anomalies, and hence the computed GPE values, are also sensitive to the filtering

techniques. Note that the integral in (16) is not equivalent to the vertical integral of vertical

stress,σzz, or GPE, which is correctly shown in equation (7). Instead,�
L

0
ρ � z� gzdz
 Lσ̄zz � � 0� h

ρ � z� zgdz
�

L

�
L� h

ρ � z� gdz (17)

(Flesch et al., 2007). Hence, the geoid can only be used as a proxy for GPE if the right most

integral in (17) is a constant at reference depthL, meaning there is no dynamic topography

(Flesch et al., 2007). Note that if the last term in (17), the pressure at reference depthL,

varies over long wavelengths, then the geoid can be used as a proxy for GPE over length

scales where those lateral variations in pressure are small. For example, for regional scale

models such as North America, it may be appropriate to use the geoid as a proxy for GPE

(Humphreys and Coblentz, 2007).

For comparison purposes, we evaluate the deviatoric stress field associated with GPE

inferred from the geoid in order to quantify the differences from a solution directly inferred

from crustal structure. We use the EGM96 geoid model in order to approximate the GPE,

with reference to a mid-oceanic ridge column of lithosphere (afterCoblentz et al.(1994)).

Like Flesch et al.(2001), andJones et al.(1996) before them, we filter the geoid such that

terms below degree and order 7 are removed with a cosine taper to degree and order 11.

A constant crustal and mantle density of 2828 kg/m3 and 3300 kg/m3 are assumed (after

Flesch et al.(2001)). The deviatoric stresses are computed in the same way as from the

Crust 2.0 dataset.
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Figure 6: Global distribution of vertically integrated horizontal deviatoric stresses and GPE in-
ferred from the EGM96 geoid dataset.

There are many differences between the deviatoric stresses calculated from the geoid

dataset and those from the Crust 2.0 dataset. Both GPE differences and the deviatoric

stress field (Figure 7) are in general lower than those from the Crust 2.0 solutions. The

deviatoric tension in western North America does not show up in the geoid solution. For the

geoid solution, deviatoric compression in northern Europe, the South-east Asian subduction

zone, and the North American continent change to deviatoric tension, or strike-slip style of

deformation, with the highest deviatoric tension (< 2 ! 1012 N/m) occurring at the Tibetan

plateau. The mid-oceanic ridges in the geoid case constitute a much weaker signal than

in the Crust 2.0 solutions. The matching of deviatoric stresses for the Indo-Australian

plate with theSHmax directions of the WSM is considerably poorer for the geoid case.

Similar differences exist between the geoid and uncompensated solution (Figure 2), with

the differences in magnitudes being greater.

2.7 Reference Levels

Choice of reference level for the calculation of GPE has significant impact on the in-

ferred deviatoric stresses associated with internal density buoyancy distributions in the

lithosphere for the uncompensated case. Gravitational potential energy values must be
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computed with respect to some reference level and, depending on which reference level is

chosen, the calculated GPE, and the associated deviatoric stresses, will change if the to-

pography is uncompensated. Historically, there has been a precedence of calculating GPE

with the surface of the geoid (sea-level) as the reference level (Fleitout and Froidevoux,

1982;Fleitout, 1991;Coblentz et al., 1994;Jones et al., 1996;Zoback and Mooney, 2003).

Fleitout (1991) gave the “moment law”:�
L

0
∆σzz� z� dz 
 δmgd� (18)

which states that the influence of an intralithospheric mass anomaly is proportional to its

moment, the product of its amplitudeδmg and depthd. This means that the greater the

depth of the mass anomaly, the larger the impact on the GPE and the associated stress field.

If the surface is treated as reference level, the above relation can be re-written as�
L

0
∆σzz� z� dz 
 g

�
L

0
∆ρ � z� zdz (19)

However, this moment law is based on treating the sea-level as the level of reference. On

the other hand, if we consider a constant depth level ofL, which is the maximum depth of

integration, as the reference level, then the moment equation will be modified to�
L

0
∆σzz� z� dz 
 � L

0

� �
z

0
∆ρ � z��� gdz� � dz 
 � L

0 > L � z� ∆ρ � z� gdz 
 δmg� L � z� (20)

This implies that the near-surface density anomalies will have a greater effect on GPE,

and the corresponding deviatoric stress field, than deeper anomalies within the portion of

the lithosphere considered in the depth integrals. However, the differences in reference

level are only relevant when topography is uncompensated. In the compensated case, the

term in (20),σzz� L � , is a constant and the remaining term,
= L
0 z∆ρ � z� gdz is identical to

that in (19), where the reference level is sea-level. Although the inferred value of GPE

is different, depending on whether (18) or (20) is used, because deviatoric stress depends

only on the gradient in GPE, (18) and (20) yield the same result whenσzz� L � is a constant.

When vertical stressσzz� L � varies at the reference level,L, however, use of (18) and (20)
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Figure 7: Global distribution of dynamic topography. The red areas indicate positive dynamic
topography while the blue areas indicate negative dynamic topography. The maximum dynamic
topography� 3 � 5 km occurs in central East Africa. Topography on scalebar is in meters.

will yield different estimates of deviatoric stress. Recall that the thin sheet equations arise

from depth integration of the full three dimensional force balance equations, with limits

of integration from the surface, down to the reference level,L. The GPE term thus arises

from the depth integration of the vertical stress,σ̄zz. To remain consistent with the thin

sheet approach, the only appropriate form for GPE is therefore equation (20), where the

reference level is at depthL.

2.8 Dynamic Topography

We define dynamic topography as the topography that arises from sub-lithospheric den-

sity anomalies that drive mantle flow. The radial component of mantle flow (τrr ) causes

vertical displacements of the lithosphere producing dynamic topography. These kinds of

topographical features are in contrast to those created by density variations within the litho-

sphere, which might be called static topography. The total topography that we observe on

the surface of the Earth is the net sum of these static and dynamic parts. Isolation of this

dynamic topography provides a constraint on the lithospheric contribution of topography.

Thus, one aim of our study is to distinguish between these two types of topographies by es-

timating the styles and magnitudes of dynamic topography from our crustal solutions. Esti-
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mates of global dynamic topography have been provided byHager et al.(1985);Cazenave

et al.(1989);Panasyuk and Hager(2000);Steinberger et al.(2001) andLithgow-Bertelloni

and Guynn(2004).Cazenave et al.(1989) andPanasyuk and Hager(2000) calculated dy-

namic topography by removing the effects of isostatic topography from the observed to-

pography, the same way as we do here.Steinberger et al.(2001) andLithgow-Bertelloni

and Guynn(2004) used mantle flow field whileHager et al.(1985) used geoid anomalies

in order to calculate dynamically induced topography.

GPE values from the uncompensated model contain the influence of dynamic topogra-

phy as well. The weight of the lithospheric column,σzz� L � , at reference depthL is given by

σzz� L � 
 = L� h ρ � z� � g � z� � dz� 
 σo
zz� L � � τzz� L � , in the presence of dynamic topography. This

formulation ignores any contribution from flexure. Here,σo
zz� L � is the reference stress,

while τzz� L � is the radial traction at reference levelL associated with deeper mantle flow

that is responsible for producing dynamic topography. In order to remove the dynamic

topography contribution, an isostatically compensated solution (uniform vertical stress at

depthL) is calculated. One way of compensating our solution, as stated before, is by ad-

justing the elevations of the crustal blocks. Accordingly, areas with lower than average

vertical stress at reference depthL get elevated in order to achieve uniform vertical stress at

reference level while those with higher than average vertical stress at depthL are lowered

in elevation. Thus, the difference between the compensated topography and observed to-

pography should provide an estimate of the magnitude of dynamic topography. The highest

magnitude dynamic topography (< 3  5 km) occurs in eastern Africa (Figure 8) (Lithgow-

Bertelloni and Silver, 1998). Other areas of positive dynamic topography are northern

Atlantic near Greenland and parts of western North America. Somewhat lower magnitude

positive dynamic topography occurs along the mid-oceanic ridges. These are the possi-

ble areas of upwelling, while areas of negative dynamic topography include eastern North

America, parts of western Europe, and the deeper oceans. Our results bear considerable

similarities to that ofPanasyuk and Hager(2000) who computed dynamic topography in

the above procedure; the only difference is that they used a less fine crustal dataset than we

have. There might be possible errors in our estimates of dynamic topography magnitudes

due to uncertainties in the upper mantle densities. However, this will not have any consid-
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erable effect on the styles of dynamic topography. This result indicates the significance of

dynamic topography in understanding the global distribution of deviatoric stresses.

2.9 Deviatoric Stress Magnitudes

We argue that many previous calculations of depth integrals or depth averages of devi-

atoric stress magnitudes in Tibet as well as in the mid-oceanic ridges, have been overesti-

mated (Ghosh et al., 2006). Maximum difference in depth integrals of deviatoric stress be-

tween Tibet and surrounding lowlands (τ̄xx ? Tibet � τ̄xx ? lowlands) is around 3 5 � 4 ! 1012N � m,

which is about a factor of two lower than previous estimates of deviatoric stress difference

( < 6 � 7 ! 1012 N/m) there (Molnar and Lyon-Caen, 1988;Molnar et al., 1993). Also, the

ridge-push force, or the vertically integrated deviatoric stress magnitudes associated with

the mid-oceanic ridges in our solution (< 1  5 ! 1012 N/m), is lower than previous estimates

of ridge-push (< 3 ! 1012 N/m) (Harper, 1975;Lister, 1975;Parsons and Richter, 1980).

This difference in deviatoric stress magnitudes from previous estimates can be attributed

to two factors: (i) either a two dimensional approximation of the thin sheet applied along a

single profile and/or (ii) the form assumed for the hydrostatic state of stress, or both (Dal-

mayrac and Molnar, 1981;Molnar and Lyon-Caen, 1988). We use the term hydrostatic

stress to refer to the reference pressure,P, subtracted from the total stress to obtain the

deviatoric stress:τi j 
 σi j � Pδi j . If P is assumed to be the lithostatic or vertical stress,

σzz, then the deviatoric stress is defined asτi j 
 σi j � σzzδi j (which we call 2-D definition

of deviatoric stress). Such an assumption implies the vertical component of the deviatoric

stress,̄τzz, to be equal to 0, which is entirely a special case, and is unlikely to be appli-

cable in many areas (Engelder, 1994). If P is defined as the mean stress, then deviatoric

stress becomesτi j 
 σi j � 1
3σkkδi j (which we call a 3-D definition of deviatoric stress), with

the constraint̄τxx
� τ̄yy

� τ̄zz 
 0 (Flesch et al., 2001). The largest estimates of deviatoric

stresses have resulted from solutions to simplified 2-D thin sheet equations, applied along

a single profile, along with the assumption that hydrostatic stressP is equal to the vertical

stress, andτzz 
 0. In that case, the two horizontal force balance equations reduce to a
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Figure 8:Global distribution of vertically integrated horizontal deviatoric stresses, calculated from
an uncompensated Crust 2.0 dataset, based on a 2-D definition of deviatoric stress (equations (24)-
(26)). The stress magnitudes are a factor of two higher than all our previous solutions, calculated
using a 3-D definition.

single equation:
∂σxx

∂x 
 0 � (21)

which, after using a 2-D definition of deviatoric stress, givesτ̄xx 
@� σ̄zz
�

a constantC

as a solution to the depth integrated force balance equation. That is, the depth integrated

deviatoric stress magnitude equals GPE. On the other hand, using the same force balance

equation, but a definition of hydrostatic stress as the mean stress, yieldsτ̄xx 
A� 1
2σ̄zz

�
a

constantC, a magnitude of a factor of two lower than the previous case. The reason for

lower stresses using the 3-D definition of deviatoric stress is that some of the potential

energy differences get absorbed in the vertical termτ̄zz, which is zero in the case with the

2-D definition.

Using the 3-D force balance equations, one of the horizontal deviatoric stresses, say

τ̄xx, can be given as:

τ̄3D
xx 
 σxx � 1

3 � σxx
� σyy

� σzz� (22)

and

τ̄2D
xx 
 σxx � σzz� (23)

according to the 3-D and the 2-D definitions of deviatoric stress, respectively. From this,
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the relation between the 2-D and the 3-D deviatoric stresses can be written as:

τ̄2D
xx 
 2τ̄3D

xx
� τ̄3D

yy � (24)

and similarly,

τ̄2D
yy 
 2τ̄3D

yy
� τ̄3D

xx (25)

τ̄2D
xy 
 τ̄3D

xy  (26)

The reason for still lower stresses by using the full 3-D equations is the presence of the

horizontal terms̄τyy andτ̄xy which are absent in the 2-D case. Solutions using the full 3-D

force balance equations, but a 2-D definition of deviatoric stress, yield deviatoric stress

magnitudes a factor of two or more higher than our previous 3-D solutions (Figure 9). The

Tibetan plateau, for example, exhibits deviatoric tension of< 5 ! 1012 N/m, while the mid-

oceanic ridges show deviatoric tension of< 2 � 2  5 ! 1012 N/m, similar to the deviatoric

stress magnitudes given previously for Tibet byMolnar and Lyon-Caen(1988);Molnar

et al.(1993), and for the mid-oceanic ridges byHarper (1975);Lister (1975);Parsons and

Richter(1980).

One importance of evaluating the correct magnitude of deviatoric stresses lies in the

fact that the onset of deformation of the Indian ocean lithosphere has been explained by

the high deviatoric stress magnitude (< 8 ! 1012N/m) in that area associated with the large

GPE differences between Tibet and the Indian Ocean (Molnar et al., 1993). According

to Molnar et al. (1993), a sediment laden oceanic lithosphere would be capable of buck-

ling at a deviatoric stress magnitude of< 4  4 ! 1012N/m. We do not disagree with this.

However, the vertically integrated deviatoric stress magnitude in that area, associated with

the large GPE differences between Tibet and surrounding Indian Ocean, is not more than< 1  5 ! 1012N/m. Therefore, deviatoric stresses to produce buckling must arise from addi-

tional sources other than GPE differences alone. Moreover, the magnitude of the ridge-push

force has been used to constrain the intra-plate stress magnitude of the Indo-Australian

plate (Reynolds et al., 2002) and to infer the degree of slab-plate coupling for the Java

and Sumatra slabs (Sandiford et al., 2005). However, the ridge-push force magnitude falls
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short of balancing the< 3 ! 1012N/m NNW-SSE oriented deviatoric tension at the Tibetan

plateau (Ghosh et al., 2006). Since the total depth integrated deviatoric stress acting on the

lithosphere can be attributed to stress related to (1) GPE differences and (2) basal tractions

arising from deeper density buoyancies, the insufficiency of the ridge-push force in balanc-

ing the deviatoric tension at the Tibetan plateau calls for additional deviatoric stresses of

magnitude< 3 ! 1012N/m associated with driving shear tractions at the base of the litho-

sphere in the Indian plate region. The density buoyancy distribution giving rise to these

driving tractions is likely related to the long history of subduction of the Indian and Aus-

tralian plates (Lithgow-Bertelloni and Richards, 1995;Wen and Anderson, 1997b).

2.10 Comparison of Calculated Deviatoric Stresses with

the Strain Rate Tensor Field in the Plate Boundary

Zones

We introduce a quantitative way of testing our modeled deviatoric stresses with strain

rate information from the Global Strain Rate Map (Kreemer et al., 2003;Holt et al., 2005).

The Global Strain Rate Map (GSRM) model is a velocity gradient tensor field solution for

the entire Earth’s surface. It is a high resolution dataset along the Earth’s diffuse plate

boundary zones. The GSRM model is based on 5170 GPS stations as well as Quarternary

fault slip rate data. Our calculated deviatoric stress tensor is scored with the strain rate

tensor from GSRM and we seek to match direction of principal axes as well as style of

faulting. We define a correlation coefficient (Flesch et al., 2007)� 1 B ∑
areas

� ε C τ � ∆S� (ED ∑
areas

� E2 � ∆S F D ∑
areas

� T2 � ∆S* B 1 (27)

whereE 
HG ε2
xx
� ε2

yy
� ε2

zz
� ε2

xy
� ε2

yx 
AG 2ε2
xx
�

2εxxεyy
�

2ε2
yy
�

2ε2
xy,

T 
AG τ2
xx
� τ2

yy
� τ2

zz
� τ2

xy
� τ2

yx 
HG 2τ2
xx
�

2τxxτyy
�

2τ2
yy
�

2τ2
xy

andε C τ 
 2εxxτxx
� εxxτyy

� εyyτxx
�

2εyyτyy
�

2εxyτxy  
E andT are the second invariants of strain rate and deviatoric stress respectively,εi j are
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Region of Number µre f I 1
3 µre f I 1

30 µre f I 1
300 µre f I 1

3000
interest of areas U CD CE U CD CE U CD CE U CD CE
Western 132 0.39 0.66 0.74 0.53 0.72 0.75 0.44 0.68 0.75 0.45 0.70 0.73

N. America
Andes 89 0.14 0.60 -0.04 0.25 0.69 0.06 0.15 0.54 -0.04 0.22 0.67 0

Eastern Africa 164 0.40 0.09 0.10 0.31 -0.04 -0.06 0.38 0.16 0.06 0.40 -0.01 0.04
Mediterranean 83 0.52 0.44 0.49 0.55 0.52 0.50 0.55 0.54 0.49 0.50 0.48 0.46
Central Asia 187 0.26 0.33 0.14 0.32 0.41 0.32 0.31 0.42 0.30 0.30 0.38 0.27

Indo-Australian 174 0.68 0.71 0.70 0.69 0.77 0.74 0.64 0.61 0.67 0.60 0.70 0.67
plate boundary

Mid-oceanic ridges 292 0.82 0.86 0.87 0.79 0.85 0.87 0.77 0.83 0.84 0.66 0.76 0.76
Western Pacific 109 0.48 0.62 0.56 0.51 0.60 0.53 0.42 0.58 0.42 0.46 0.57 0.52
South East Asia 167 0.48 0.62 0.59 0.61 0.68 0.65 0.54 0.66 0.58 0.55 0.65 0.61

Total 1944 0.51 0.57 0.51 0.54 0.60 0.52 0.50 0.58 0.49 0.50 0.56 0.49

Table 1: Correlation coefficients obtained from a comparison between different deviatoric stress
models with the strain rate tensor field from the GSRM model (see equation (27)) with reference
level,L � 100 km and viscosities varying as a function of strain rates only (Figure 1a). The abbre-
viations U, CD and CE denote models that are uncompensated, compensated by density adjustment
and compensated by elevation adjustment respectively.

strain rates fromKreemer et al.(2003),∆S is the grid area andτi j are the calculated ver-

tically integrated deviatoric stresses. Normalization ofε C τ by E andT in equation (27)

ensures that the correlation coefficient has no dependence on stress or strain rate magni-

tudes. The correlation coefficient only depends on a match of the deviatoric stress tensor

to the inferred style of faulting (relative magnitude of extensional and compressional strain

rate principal axes) and the match to the directions of principal axes between the stress and

the strain rate tensors. A maximum correlation coefficient of +1 indicates perfect fit. That

is, the stress tensor and the strain rate tensor are exactly the same in terms of style and di-

rection of principal axes, while a coefficient of -1 indicates anti-correlation. For example,

if the observed strain rate shows thrust faulting in an area, while our calculated deviatoric

stress predicts normal faulting in the same area, then the correlation coefficient will predict

a value of -1. A value of 0 will imply that the stress and the strain are uncorrelated. That

is, for example, our modeled stresses predicting strike-slip faulting in an area of thrust or

normal faulting, where the compressional and extensional principal axes differ from those

in the GSRM by 45J .
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Region of Number µre f I 1
3 µre f I 1

30 µre f I 1
300 µre f I 1

3000
interest of areas U CD CE U CD CE U CD CE U CD CE

Western N. America 132 0.47 0.65 0.71 0.56 0.69 0.72 0.52 0.69 0.75 0.44 0.66 0.68
Andes 89 0.48 0.83 0.36 0.51 0.86 0.37 0.44 0.84 0.24 0.41 0.83 0.23

Eastern Africa 164 0.20 -0.31 -0.270.08 -0.35 -0.320.24 -0.17 -0.170.30 -0.3 -0.18
Mediterranean 83 0.44 0.40 0.44 0.52 0.48 0.51 0.55 0.52 0.49 0.50 0.43 0.49
Central Asia 187 0.25 0.33 0.20 0.33 0.40 0.36 0.37 0.46 0.39 0.29 0.37 0.33

Indo-Australian 174 0.65 0.75 0.70 0.60 0.75 0.68 0.61 0.72 0.69 0.56 0.68 0.62
plate boundary zone
Mid-oceanic ridges 292 0.70 0.81 0.81 0.63 0.78 0.78 0.65 0.76 0.76 0.53 0.64 0.65

Western Pacific 109 0.56 0.63 0.61 0.58 0.60 0.59 0.57 0.61 0.57 0.53 0.58 0.57
South East Asia 167 0.57 0.61 0.61 0.66 0.68 0.68 0.63 0.68 0.66 0.61 0.66 0.64

Total 1944 0.50 0.53 0.49 0.50 0.54 0.50 0.52 0.57 0.51 0.48 0.51 0.47

Table 2:Same as Table 1 but with viscosities varying as a function of both strain rates and litho-
sphere thickness (Figure 1b).

Region of interest Number of areas µre f K 1
Western N. America 132 0.08

Andes 89 -0.20
Eastern Africa 164 0.63
Mediterranean 83 0.33
Central Asia 187 0.10

Indo-Australian plate boundary zone 174 0.30
Mid-oceanic ridges 292 0.78

Western Pacific 109 0.09
South East Asia 167 0.08

Total 1944 0.31

Table 3: Correlation coefficients obtained from comparison between deviatoric stress field from
an uncompensated Crust 2.0 dataset with the strain rate tensor field from the GSRM model with
laterally uniform viscosity in the lithosphere.

Region of interest Number of areas µre f I 1
3 µre f I 1

30 µre f I 1
300 µre f I 1

3000
Western N. America 132 0.44 0.57 0.50 0.50

Andes 89 0.21 0.35 0.22 0.30
Eastern Africa 164 0.45 0.40 0.45 0.43
Mediterranean 83 0.51 0.54 0.53 0.48
Central Asia 187 0.24 0.27 0.26 0.26

Indo-Australian 174 0.74 0.77 0.72 0.73
plate boundary zone
Mid-oceanic ridges 292 0.86 0.84 0.82 0.73

Western Pacific 109 0.52 0.53 0.45 0.49
South East Asia 167 0.61 0.66 0.61 0.63

Total 1944 0.55 0.58 0.54 0.54

Table 4: Correlation coefficients obtained from a comparison between different deviatoric stress
models with the strain rate tensor field from the GSRM model with reference level,L � 270 km and
viscosities varying as a function of strain rates only.
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Region of interest Number of areas µre f I 1
3 µre f I 1

30 µre f I 1
300 µre f I 1

3000
Western N. America 132 0.52 0.60 0.56 0.47

Andes 89 0.56 0.60 0.54 0.51
Eastern Africa 164 0.26 0.13 0.27 0.28
Mediterranean 83 0.43 0.50 0.51 0.48
Central Asia 187 0.24 0.29 0.32 0.25

Indo-Australian 174 0.69 0.67 0.70 0.62
plate boundary zone
Mid-oceanic ridges 292 0.76 0.69 0.69 0.58

Western Pacific 109 0.57 0.58 0.56 0.54
South East Asia 167 0.61 0.69 0.68 0.65

Total 1944 0.53 0.54 0.55 0.50

Table 5:Same as Table 4, but with viscosities varying as a function of both strain rates and litho-
sphere thickness.

The different stress models from two different datasets (Crust 2.0 and EGM96 Geoid)

are compared with the strain rate tensor field from GSRM. Such a comparison provides a

quantitative means of evaluating the contribution that the lithospheric component of buoy-

ancies make to the total stress tensor field within the plate boundary zones. A poor match,

for example, highlights regions where additional stress component associated with deeper

density buoyancies, and associated tractions, are necessary to explain the deformation in-

dicators, and hence total deviatoric stress field. Higher correlation coefficients indicate a

closer match between the stress tensor and strain tensor fields. Amongst the different mod-

els that we test, the best fit to the deformation indicators is given by the one calculated

from Crust2.0 dataset, compensated by density adjustment at 100 km, and with viscosities

dependent only on strain rates (with reference viscosity< 1� 30). The overall correlation

for this model is 0.60 (Table 1, Figure 10c). Nevertheless, individual regions react differ-

ently to different models. For example, for a 100 km reference level, the uncompensated

model provides the best fit in areas like Eastern Africa and the Mediterranean (Tables 1 and

2, Figures 10a and 10b), whereas in regions like Andes, Central Asia and to some extent

in Western Pacific, Indo-Australian plate boundary zone and South East Asia, the best fit

is given by a model compensated by density adjustment (Tables 1 and 2, Figures 10c and

10d). A model compensated by adjusting the topography, on the other hand, gives the best

fit to the strain rate tensor data in western North America, as well as in the mid-oceanic

ridges (Tables 1 and 2, Figures 10e and 10f).
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Region of interest Number of areas µre f I 1
3 µre f I 1

30 µre f I 1
300 µre f I 1

3000
Western N. America 132 -0.31 -0.20 -0.20 -0.22

Andes 89 -0.32 -0.31 -0.30 -0.34
Eastern Africa 164 -0.03 -0.06 -0.03 -0.04
Mediterranean 83 0.15 0.32 0.32 0.22
Central Asia 187 0.24 0.34 0.36 0.28

Indo-Australian 174 0.29 0.46 0.41 0.35
plate boundary zone
Mid-oceanic ridges 292 0.81 0.81 0.76 0.62

Western Pacific 109 -0.06 -0.07 -0.09 -0.13
South East Asia 167 0.20 0.23 0.19 0.17

Total 1944 0.17 0.22 0.21 0.15

Table 6: Correlation coefficients obtained from a comparison between different deviatoric stress
models from the Geoid dataset with the strain rate tensor field from the GSRM model with viscosi-
ties varying as a function of strain rates only.

Models with viscosities varying as a function of both strain rates and lithosphere thick-

ness fare worse when the overall fit is considered (Table 2, Figures 10b, 10d and 10f), with

a highest correlation coefficient of 0.57 (with reference viscosity< 1� 300). The overall

poor fit could potentially arise from errors in the lithosphere thickness model. However,

areas, in particular, Andes and to a certain extent Central Asia, Southeast Asia and Western

Pacific exhibit improved fit when viscosities along plate boundaries are allowed to vary

with lithospheric thickness as well. A lithospheric model with a laterally uniform viscosity

structure provides a poor fit to the strain rate tensor data (Table 3) with an overall correla-

tion coefficient of 0.31.

For models inclusive of deeper density buoyancy within the keels, the only region that

undergoes a considerable improvement in fitting is Eastern Africa (Tables 4 and 5, Figures

10g and 10h). For all the other areas the fit either degrades or stays unchanged.

The Geoid model displays a poor fit in almost all the areas (Figures 10i and 10j, Tables

6 and 7). The mid-oceanic ridges exhibit a substantially better fit compared to all the other

areas for the geoid model. However, the fit to the mid-oceanic ridges is still worse than

in the Crust 2.0 case. In fact, the mid-oceanic ridges show high correlation for both the

Crust2.0 and the EGM96 models. The failure of the Geoid model to match the observed

deformation in the plate boundaries could be associated with the sensitivity of the geoid

anomalies, and consequently the GPE values, to the filtering techniques. Calculation of
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Region of interest Number of areas µre f I 1
3 µre f I 1

30 µre f I 1
300 µre f I 1

3000
Western N. America 132 -0.33 -0.20 -0.19 -0.20

Andes 89 -0.27 -0.24 -0.27 -0.32
Eastern Africa 164 -0.11 -0.19 -0.10 -0.09
Mediterranean 83 0.17 0.31 0.27 0.19
Central Asia 187 0.25 0.36 0.38 0.31

Indo-Australian 174 0.26 0.47 0.45 0.36
plate boundary zone
Mid-oceanic ridges 292 0.74 0.69 0.68 0.50

Western Pacific 109 -0.01 0 -0.04 -0.10
South East Asia 167 0.27 0.29 0.24 0.19

Total 1944 0.17 0.22 0.21 0.15

Table 7:Same as Table 6, but with viscosities varying as a function of both strain rates and litho-
sphere thickness.

GPE from geoid anomalies also assumes no dynamic topography, as mentioned earlier

in section 2.6. The assumptions embedded in the use of geoid as a proxy for GPE may

therefore only be appropriate for regional scale modeling (e.g.Humphreys and Coblentz

(2007)), but on a global scale are problematic due to the importance of dynamic topography.

The low to moderate values of correlation coefficients in many areas imply the inad-

equacy of lateral density variations within the lithosphere alone to satisfy the observed

deformation. Stresses, arising from density buoyancy-driven basal tractions are required in

order to explain the observed deformation along the plate boundaries (Ghosh et al., 2008).

2.11 Conclusions

The two main factors controlling lithospheric stress field are (1) gravitational poten-

tial energy differences arising from lateral density variations within the lithosphere and

(2) basal tractions arising from mantle convection, which are coupled to the base of the

lithosphere. In this study, we quantify only the first of the above two factors. A correct

quantification of (1) will enable us to estimate the bounds on the magnitude of the basal

tractions associated with lithospheric coupling, associated with deeper mantle circulation.

We calculate GPE from the Crust2.0 and the EGM96 geoid dataset using both uniform

lithospheric viscosity and varying viscosities for plate boundaries as well as intraplate re-

gions and show that laterally varying lithospheric strength is required to match the observed
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stress and strain rate pattern. We take into account deeper density buoyancies associated

with cratonic roots. We find that inclusion of deeper lithospheric density buoyancies has lit-

tle effect on the style and direction of the deviatoric stress field. Moreover, consideration of

these deeper density buoyancies in the keels is based on the premise that there is no buoy-

ancy driven mantle convection and no dynamic topography. A simpler model excluding the

deeper keels fits the deformation indicators better. We clarify the usage of a correct level of

reference (maximum depth of integration) for a thin sheet approach and show that GPE and

associated deviatoric stresses calculated from geoid do not fit the observed deformation in

the Earth’s deforming plate boundary zones. We also demonstrate how a 2-D definition

of deviatoric stress, along with 2-D force balance equations, can yield overestimates of

the depth integrals of the deviatoric stress magnitudes. We calculate both compensated

and uncompensated solutions and estimate dynamic topography by adjusting elevations of

lithospheric blocks, based on an average pressure for oceans and continents. Finally, we

introduce a quantitative way of testing our stress models with strain rate information from

Global Strain Rate Map. The stress models indicate that GPE differences are an impor-

tant component of the total stress field. However, GPE differences by themselves are, in

general, insufficient to explain the total deviatoric stress field, particularly in areas such as

Eastern Africa, Andes, and Central Asia; an added contribution from basal tractions is re-

quired to explain the observed discrepancies between the models and observations (Ghosh

et al., 2008).
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Figure 9: Correlation coefficients between observed strain rate tensors from the Global Strain
Rate Map and deviatoric stress tensors, varying as a function of strain rates only, arising from GPE
differences from a) an uncompensated Crust 2.0 model (Figure 2), c) a Crust 2.0 model compensated
by density adjustment (Figure 3), e) a Crust 2.0 model compensated by elevation adjustment (Figure
4), g) a Crust 2.0 model compensated at a depth of� 270 km (Figure 6) and i) an EGM96 Geoid
model (Figure 7). b), d), f), h) and j) are the same as a), c), e), g) and i), but with viscosities varying
as a function of both strain rates and lithospheric thickness.
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Appendix

Spherical Treatment

In spherical coordinates, thex � y and z directions of cartesian coordinates change to

theφ, θ andr (radial) components, respectively. The deviatoric stress tensor in the radial

direction is

τrr 
 σrr � 1
3

σkk � (A1)

whereσrr is the total stress tensor in the radial direction and1
3σkk is the mean total stress.

The total stress tensor,σi j 
 τi j
� 1

3σkkδi j , then becomes

σi j 
 τi j
� δi j � σrr � τrr �#� (A2)

whereδi j represents the Kronecker delta. The force balance equation (1) can be written in

spherical coordinates as

1
cosθ

∂
∂φ
(
r2σφφ * � 1

cos2 θ
∂

∂θ
(
r2σφθ cos2θ * � ∂

∂r
(
r3σφr * 
 0 (A3)

1
cosθ

∂
∂φ
(
r2σφθ * � 1

2
∂

∂θ
(
r2 L σθθ

� σφφ M * � 1
2cos2θ

∂
∂θ
(
r2cos2 θ L σθθ � σφφ M * � ∂

∂r
(
r3σθr * 
 0

(A4)
1

r cosθ
∂σφr

∂φ
� 1

r cosθ
∂

∂θ
(

cosθσθr * � 1
r
(
2σrr � σφφ � σθθ * � ∂σrr

∂r � ρg 
 0 (A5)

Vertically integrating (A3) and (A4) yields

1
cosθ

∂
∂φ
( � r0

rL

r2σφφdr * � 1
cos2 θ

∂
∂θ
( � r0

rL

r2σφθdrcos2 θ * � r3
0σφr � r0 � � r3

Lσφr � rL � 
 0

(A6)

and

1
cosθ

∂
∂φ
( � r0

rL

r2σφθ * � 1
2

∂
∂θ
( � r0

rL

r2 L σθθ
� σφφ M * � 1

2cos2θ
∂

∂θ
( � r0

rL

r2cos2θ L σθθ � σφφ M *�
r3
0σθr � r0 � � r3

Lσθr � rL � 
 0 (A7)
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wherer0 is the radius from the center of the Earth to the surface andrL is the radius from

the center to the base of the lithosphere. Substituting (A2) in (A6) and (A7), we arrive at

1
cosθ

∂
∂φ
( � r0

rL

r2τφφdr * � 1
cosθ

∂
∂φ
( � r0

rL

r2τrr dr * � 1
cos2θ

∂
∂θ
(

cos2θ
�

r0

rL

r2τφθdr *� 1
cosθ

∂
∂φ
( � r0

rL

r2σrr dr * � r3
Lτφr � rL � 
 0 (A8)

and

1
cosθ

∂
∂φ
( � r0

rL

r2τφθdr * � 1
2

∂
∂θ
( � r0

rL

r2τθθdr
� � r0

rL

r2τφφdr * � ∂
∂θ
( � r0

rL

r2τrr dr *� 1
2cos2 θ

∂
∂θ
(

cos2θ
� �

r0

rL

r2τθθdr � � r0

rL

r2τφφdr �N* � ∂
∂θ
( � r0

rL

r2σrr dr * � r3
Lτθr � rL � 
 0 �

(A9)

which are equivalent to equations (5) and (6) in text. Note thatσφr � r0 � andσθr � r0 � are zero.

For a thin sheet, the gradients ofσφr andσθr are negligibly small (see text) . Moreover, the

term 1
r � 2σrr � σφφ � σθθ � is small compared toρg. Hence, (A5) can be approximated as

∂σrr

∂r � ρg 
 0 (A10)

which implies

σrr 
�� � r0

r
ρgdr (A11)

so that the GPE equation (7) in spherical coordinates is equivalent to�
r0

rL

r2σrr dr 
O� � r0

rL

r2
� �

r0

r
ρgdr� � dr 
P� � r0

rL

ρg

� �
r +

rL

r2dr � dr � 
O� � r0

rL

1
3

ρg > r � 3 � r3
L Q dr �

(A12)
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Substitutingr � 
 rE � z� , andrL 
 rE � L, we have

1
3 > r � 3 � r3

L Q 
 1
3 > � rE � z� � 3 �R� rE � L � 3 Q (A13)
 r2
E � L � z� � � rE � L2 � z� 2 � � 1

3 � L3 � z� 3 � (A14)
 r2
E � L � z� � � 1 � 1

rE
� L � z� � � 1

3r2
E
� L2 � Lz� � z� 2 �S� (A15)

whererE is the constant radius of the Earth andL is the depth to the base of the lithosphere.

Equation (A15), therefore, provides the magnitude of error in GPE introduced by the flat-

Earth approximation.

Let us denote GPE with the correct level of reference at the base of the lithosphere as

σ̄base
zz (equation (7) in text), and let GPE with the sea-level or geoid as reference level be

σ̄geoid
zz (equation (8) in text). From equations (7) and (8),

σ̄geoid
zz 
 σ̄base

zz
�

L

�
L� h

ρ � z� gdz� (A16)

which in spherical coordinates can be written as�
r0

rL

r2σrr dr
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rL

r2PLdr 
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rL

1
3
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 �
r0

rL

1
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1
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 1
3 > r3

E �T� rE � z� 3 Q 
 r2
Ez � rEz2 � 1

3
z3 (A19)

wherePL 
 = r0
rL

ρgdr, is the pressure at the base of the lithosphere. The first term on the left

hand side of (A17) is the GPE term in (A12).

The I functional in equation (9) is given by

I 
 ��� 1
µ

�
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φφ
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where τ̄i j are the vertically integrated deviatoric stresses,σ̄rr is the vertically integrated

vertical stress, or GPE,λφ, λθ represent the horizontal components of the Lagrange multi-

pliers, andµ is the relative viscosity.

TheJ functional in equation (13) can be written in spherical coordinates as

J 
 ��� YZZZZ[ ZZZZ\
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(A21)

where
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3
� � σ̄rr

3
� 0� T (A26)

The relation between 2-D and 3-D stresses (equations (24)-(26) in text) is given by
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τ̄2D
φφ 
 τ̄3D

θθ
�

2τ̄3D
φφ (A28)

τ̄2D
φθ 
 τ̄3D

φθ (A29)
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Gravitational Potential Energy of the

Tibetan Plateau and the Forces Driving
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Abstract

We present a study of the vertically integrated deviatoric stress field for the Indian plate

and the Tibetan Plateau associated with gravitational potential energy (GPE) differences.

Although the driving forces for the Indian plate have been attributed solely to the mid-

oceanic ridges that surround the entire southern boundary of the plate, previous estimates

of vertically integrated stress magnitudes of< 6 � 7 ! 1012 N/m in Tibet far exceed those of< 3 ! 1012 N/m associated with GPE at mid-oceanic ridges, calling for an additional force

to satisfy the stress magnitudes in Tibet. We use the Crust 2.0 data set to infer gravitational

potential energy differences in the lithosphere. We then apply the thin sheet approach in

order to obtain a global solution of vertically integrated deviatoric stresses associated only

with GPE differences. Our results show large N-S extensional deviatoric stresses in Tibet

that the ridge-push force fails to cancel. Our results calibrate the magnitude of the basal

tractions, associated with density buoyancy driven mantle flow, that are applied at the base

of the lithosphere in order to drive India into Tibet and cancel the N-S extensional stresses

within Tibet. Moreover, our deviatoric stress field solution indicates that both the ridge-

push influence (< 1 ! 1012 N/m) and the vertically integrated deviatoric stresses associated

with GPE differences around the Tibetan Plateau (< 3 ! 1012 N/m) have previously been

overestimated by a factor of two or more. These overestimates have resulted from either

simplified two-dimensional approximations of the thin sheet equations, or from an assump-

tion about the mean stress that is unlikely to be correct.
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3.1 Introduction

The driving mechanism for the Indian plate has been a source of controversy since the

advent of the plate tectonic theory. The Indian plate’s velocity relative to Eurasia slowed

from 10 cm yr
� 1 to roughly 5 cm yr

� 1 upon impact with Eurasia roughly 50 million years

ago (Molnar and Tapponnier, 1975;Molnar et al., 1993). The Indian plate continues its

northward movement relative to Eurasia at a present-day rate of< 3  5 cm yr
� 1 (Kreemer

et al., 2003). The Tibetan plateau, which formed as a result of the collision between India

and Eurasia, has the largest gravitational potential energy (GPE) signal on earth. However,

there exists no complete dynamic explanation for this large GPE of the Tibetan plateau and

the relatively fast movement of the Indian plate. There is no apparent downgoing slab at-

tached to the Indian plate that might assist in driving the plate into Eurasia through the slab

pull mechanism (Gripp and Gordon, 1990). Because the plate is surrounded along its entire

southern margin by mid-oceanic ridges, the motion of the Indian plate has been attributed

to the ridge-push force, the deviatoric stress that results from differences in vertically inte-

grated vertical stresses between elevated ridge and older oceanic lithosphere (Richardson,

1992;Cloetingh and Wortel, 1985, 1986;Sandiford et al., 1995;Coblentz et al., 1998).

However, the ridge-push, or vertically integrated deviatoric stress magnitude, which is of

order 3 ! 1012 N/m (Richardson, 1992;Harper, 1975;Lister, 1975;Parsons and Richter,

1980), is not sufficient to satisfy inferred stress magnitudes of 6� 7 ! 1012 N/m that result

from GPE differences between the Tibetan plateau and the surrounding lowlands (Molnar

and Lyon-Caen, 1988). An additional force is required to explain the disparity between the

excess GPE of Tibet relative to that of the mid-oceanic ridges.

Lithospheric density variations associated with the support of the high topography of

the Tibetan plateau give rise to lithospheric body forces and hence stresses. Although the

sources of stress that drive plate motions have been ascribed to many parameters (Forsyth

and Uyeda, 1975), from the point of view of stress continuity and force balance, the stresses

that drive lithospheric motion arise from two sources: (1) gravity acting on density varia-

tions within the lithospheric shell on the earth and (2) gravity acting on density variations

deeper than the lithospheric shell. The latter gives rise to tractions (radial and tangen-
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tial) that act on the base of the lithosphere, affecting the stress field of the lithosphere and

producing dynamic topography. The former involves density variations associated with

support of non-dynamic components of topography. The goal of this paper is to quantify

the first of these in order to understand the role of density buoyancy variations within the

lithosphere in driving India into Eurasia. This is important because such a calculation of

the role of lithospheric sources calibrates the magnitude of a density buoyancy driven flow

below the lithosphere. Moreover, if ridge-push is the only driving force for India’s motion,

then the distribution of stresses associated with the high GPE of Tibet together with the

GPE of ridges and surrounding ocean basins should explain the entire lithospheric stress

field across Tibet and surrounding collision zone (Zoback, 1992).

3.2 Method

Plate tectonics enables us to approximate the upper 100-125 kilometers of the earth as

a thin shell. A thin sheet approach has been used by many previous authors (England and

McKenzie, 1982;England and Houseman, 1986;England and Molnar, 1997b;Lithgow-

Bertelloni and Guynn, 2004) to solve for the stresses associated with internal horizontal

density variations within this thin shell (e.g., crustal thickness contrasts, elevation differ-

ences, cooling of oceanic lithosphere, etc.). We also take the thin sheet approach to solve

for the stresses associated with density variations intrinsic to the lithosphere. In order to

avoid boundary condition problems we compute stress response for the entire earth’s sur-

face using a global grid of 2 5o ! 2  5o resolution. We incorporate weak plate boundaries

by assigning relative viscosities to plate boundary zones. These viscosities are inversely

proportional to the rate of strain (Kreemer et al., 2003). We make the plates 2 orders of

magnitude higher viscosity than that of a mid-oceanic ridge with a moderate spreading rate

(eg., the Indian ocean). A model with 3 orders of magnitude strength contrast between

plates and plate boundary zones was also investigated (see supplementary section).

We use a finite element method to solve the three-dimensional force balance equations

for vertically integrated deviatoric stress for the spherical case. AfterFlesch et al.(2001),

the deviatoric stress field solution is the mathematically unique solution that both balances
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the body force distribution (GPE differences) and provides a global minima in the second

invariant of stress. For this methodology, the magnitudes of deviatoric stresses depend on

the magnitudes of the body force distributions and relative viscosity contrasts; the devia-

toric stress magnitudes are independent of absolute magnitudes of viscosity. We calculate

the vertically integrated vertical stress (σ̄zz), which is the negative of GPE per unit area as

σ̄zz 
�� � L� h

�"�
z� h

ρ � z� � gdz� � dz 
�� � L� h
� L � z� ρ � z� gdz

(Jones et al., 1996), whereρ � z� is the density,L is the depth to the base of the thin sheet

taken to be 100 km,h is the topographic elevation andg is the acceleration due to gravity.

We calculate GPE using the Crust 2.0 dataset (G. Laske et al., Crust 2.0: A new global

crustal model at 2! 2 degrees, 2002, available at http://mahi.ucsd.edu/Gabi/rem.html).

We neglect the basal traction terms in the force balance equations for now in order to

quantify only the contributions to deviatoric stresses that are intrinsic to the lithosphere.
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Figure 1:Gravitational potential energy (GPE) dis-
tribution for Indian and Eurasian plates. Topograph-
ically high areas like Tibet and mid-oceanic ridges
have higher GPE than other areas.

Since radial tractions applied to the base

of the lithosphere affect topography, they

also influence GPE. We have therefore

calculated GPE distributions and associ-

ated stress field solutions for a compen-

sated model (uniform pressure at the base

of lithosphere)(see supplementary mate-

rials for details). The conclusions drawn

for the Indian plate are the same irre-

spective of whether the model is com-

pensated or not. However, the uncom-

pensated model provides deviatoric stress

magnitudes that are everywhere 10-20% higher than for the compensated model (see sup-

plementary document). Cooling of the oceanic lithosphere is introduced by incorporating

the plate model into our calculation, based on ocean floor age data fromMüller et al.

(1997), using the revised parameters given byStein and Stein(1992).
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3.3 Results

The force balance associated with the global GPE distribution (Fig. 1) yields deviatoric

-60

-40

-20
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60 80 100 120 140 160

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

0 00 0
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0 0

Figure 2: Distribution of vertically integrated
horizontal deviatoric stresses for the Indian and
Eurasian plates. Extensional stresses are shown
by white arrows while compressional stresses are
shown by black arrows. Length of the arrows are
proportional to the magnitude of deviatoric stresses.
Strike-slip regions are indicated by one tensional
and one compressional pair of arrows. Areas hav-
ing high GPE are in deviatoric extension, like Ti-
bet and the mid-oceanic ridges, while those hav-
ing low GPE are in deviatoric compression like the
rest of the oceans. The plate boundaries are as-
signed variable viscosities depending on their rel-
ative strengths, inferred to be inversely proportional
to strain rate (Kreemer et al., 2003). A reference
viscosity of 0.01 is used for the moderately spread-
ing mid-Indian ridges while the plates have a vis-
cosity of 1. The profile in Fig. 3 is taken along the
N-S running red line. Topography is in meters.

extension along the mid-oceanic ridges

and compressional deviatoric stresses in

lower elevation regions of the oceans as

well as the continents (Fig. 2). For the

compensated model, the vertically inte-

grated stress field in the Indian plate is

dominated by NE-SW deviatoric com-

pression of roughly 2c 5 d 3 e 1012 N/m

close to the collisional boundary. How-

ever, these compressional stresses de-

crease in magnitude further to the south.

The magnitude of stresses associated

with GPE differences between Tibet and

low-elevation regions in our compensated

model isf 2.5 e 1012 N/m while the mid-

oceanic ridges exert a force of onlyf
1 e 1012 N/m. Moreover, our results show

a predominant N-S deviatoric extension

at the Tibetan plateau, in addition to a

much lower E-W deviatoric extension, in

contrast to active faulting patterns that al-

low only for E-W extension. Our re-

sults for the Indo-Australian plate are in

agreement with theSHmax directions of

the World Stress Map (Zoback, 1992) and

those derived bySandiford et al.(1995).
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3.4 Discussion and Conclusion

Our results indicate that the vertically integrated deviatoric stresses associated with el-

evated ridge and cooling of the lithosphere (f 1 e 1012 N/m) are not sufficient to cancel

the large N-S extensional deviatoric stresses (f 2.5 e 1012 N/m) associated with the large

GPE contrasts of Tibet and the surrounding regions. It is clear that something is miss-

ing as a driving force that does not have its source within the lithospheric shell. Ideas,

like substantial focusing of the ridge-push torque along the northern collisional boundary

(Coblentz et al., 1998;Sandiford et al., 1995), have been proposed to support the ridge-

push theory as the sole mechanism for driving the Indian plate. However, our results show

that such focusing, while important for defining stresses within the Indo-Australian plate,

is not enough to cancel out the N-S deviatoric extension in Tibet.Sandiford et al.(1995),

suggested that the excess potential energy of the Plateau atf 4 km elevation (England and

Molnar, 1997a) provides the right magnitude of the potential energy that can be supported

by the ridge-push force, as there occurs a transition from reverse to normal faulting at that

elevation. However, the normal faulting observed at an elevation greater thanf 4 km in-

volves E-W extension (Molnar et al., 1993), whereas our calculations demonstrate that a

N-S extension would be expected if GPE is the only source of deviatoric stress operating on

the lithosphere. Therefore, an additional long-wavelength N-S compressive stress of orderf 2 d 3 e 1012 N/m is required in our model to cancel out these north-south extensional

deviatoric stresses in Tibet (leaving only E-W extension) (Flesch et al., 2001).

The most compatible driving mechanism that would explain such a long wavelength

compressional intraplate stress field distribution is the driving shear tractions associated

with coupling of density buoyancy driven flow (eg.,Lithgow-Bertelloni and Guynn(2004)).

These tractions arise due to the ’slab suction’ force induced by the surrounding mantle on

the base of the surface plate (Conrad et al., 2004). The contribution to lithospheric stresses

associated with these shear tractions inferred from self-consistent mantle circulation mod-

els can be added to the deviatoric stress field shown in Fig. 2 to obtain the full stress

field solution. Therefore, one important result in our study is the absolute magnitudes

of deviatoric stresses associated with GPE differences (Fig. 2) because they calibrate the
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magnitudes of deviatoric stresses (f 2 d 3 e 1012 N/m) associated with the driving trac-

tions applied to the base of the lithosphere in the Indian plate region. The density buoyancy

distribution responsible for these driving tractions is most likely related to the long history

of subduction of the Indian and Australian plates (Lithgow-Bertelloni and Richards, 1995;

Wen and Anderson, 1997b).

Our calculations show vertically integrated deviatoric stress magnitudes a factor of two

lower than that proposed byMolnar and Lyon-Caen(1988) andMolnar et al. (1993) for

Tibet as well as for the mid-oceanic ridges (Richardson, 1992;Harper, 1975;Lister, 1975;

Parsons and Richter, 1980). We argue that deviatoric stress magnitudes resulting from

ridge GPE as well as those calculated at the Tibetan plateau have previously been over-

estimated. Previous overestimates arise from two factors: (1) a two dimensional approxi-

mation of the thin sheet equations, applied along a single profile and, or (2) a two dimen-

sional definition of deviatoric stress, as opposed to a three dimensional one (Dalmayrac

and Molnar, 1981;Molnar and Lyon-Caen, 1988). A 2-D definition of deviatoric stress,

τi j g σi j d σzzδi j , as opposed to a 3-D one,τi j g σi j d 1
3σkkδi j , replaces the “three dimen-

sional” constraint̄τxx h τ̄yy h τ̄zz g 0 with the constraint̄τzz g 0 (Flesch et al., 2001). As

pointed out byEngelder(1994), in the 2-D definition, the lithostatic stress,σzz, is set equal

to the mean stress,1
3σkk. This is entirely a special case, unlikely to apply in many regions.

The relationship between the 2-D and the 3-D stresses are given by:

τ̄2D
xx g 2τ̄3D

xx h τ̄3D
yy (1)

τ̄2D
yy g 2τ̄3D

yy h τ̄3D
xx (2)

τ̄2D
xy g τ̄3D

xy (3)

where the bars indicate depth integration over the entire plate thickness. We use horizontal

deviatoric stresses projected along a N-S profile (τ̄yy) of 83c 75oE to demonstrate how the

different ways of solving the force balance equations as well as the usage of different def-

initions of deviatoric stress have led to different results, and possible misunderstandings,

for deviatoric stress magnitudes (Fig. 3). This profile is chosen because it passes through
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the Tibetan plateau, the deeper Indian ocean, and the mid-oceanic ridge. The largest esti-

mates of deviatoric stresses arise from solving simplified 2-D thin sheet equations, applied

along a single profile, along with the use of the 2-D definition of deviatoric stress. As

such, the horizontal force balance equations reduce to∂σyy
∂y g 0, which gives̄τyy g d σ̄zzh a

constantC, as a solution to the force balance equation. With a 2-D definition of deviatoric
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Figure 3:Comparison of different methods of solving the force
balance equations along a N-S profile passing through 83i 75oE.
The x-y axes show vertically integrated deviatoric stress magni-
tudes projected along the y-axis (τ̄yy) and latitude respectively.
The solid line indicates our results. A reference GPE equal to
the GPE at sea-level has been subtracted from the actual GPE
values.

stress, vertically integrated

deviatoric stress magnitudes

are 6 d 7 e 1012 N/m for

the Tibetan plateau and 3d
4 e 1012 N/m for the mid-

oceanic ridge (dotted line in

Fig. 3), which were predicted

by Molnar and Lyon-Caen

(1988). Usage of the 3-D def-

inition of deviatoric stress re-

duces these stress magnitudes

in half (dashed line in Fig. 3),

as predicted by equation (2).

If one solves the full 3-D thin

sheet equations for vertically

integrated deviatoric stresses,

but uses the 2-D definition of deviatoric stress, stress magnitudes (dash-dotted line, Fig.

3) are slightly lower than the solution computed for a single profile (with the two dimen-

sional definition of deviatoric stress) because some of the potential energy differences are

absorbed into other non-zero terms,τ̄xx j τ̄xy. The smallest magnitudes are obtained for

solutions to 3-D force balance with three dimensional definition of deviatoric stress (this

paper, solid line in Fig. 3) because differences in GPE are absorbed not only into all of the

horizontal terms, but̄τzz as well.

Our calibration of the vertically integrated deviatoric stress magnitudes and directions

associated with GPE variations has other implications as well. (Molnar et al., 1993) argued
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that the rapid uplift of Tibet around 10-11 million years ago resulted in an increased GPE

of Tibet that produced increased compressional stresses in the Indian Ocean (f 8 e 1012

N/m), which was hypothesized to be sufficient to buckle the lithosphere there. These esti-

mates are based on a 2-D approximation of the thin sheet equations, applied along a single

profile, with the 2-D definition of deviatoric stress. We show here that deviatoric stresses

associated with GPE differences between the elevated ridges, the deeper Indian Ocean, and

the elevated Tibetan plateau are much lower thanMolnar et al. (1993)’s prediction, sug-

gesting that the uplift of Tibet is unlikely to be the single factor for the onset of folding and

reverse faulting that is now occurring in the Indian Ocean.
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Appendix

Methodology with variable relative viscosities

The functional that is minimized in the method ofFlesch et al.(2001) is :

I glk
S

1
µ m τ̄αβτ̄αβ h τ2

γγ n dShok
S
2λα p ∂

∂xβ
� τ̄αβ h δαβτ̄γγ � h ∂σ̄zz

∂xα q dS (A1)

whereµ is the relative viscosity,ταβ is the vertically integrated horizontal deviatoric stress,

τ̄γγ g τ̄xx h τ̄yy, λα is the horizontal component of the Lagrange multiplier for the force bal-

ance differential equation constraint,σ̄zz is the vertically integrated vertical stress defined

in the main paper andS represents area on the entire Earth’s surface.Flesch et al.(2001)

assumed a constantµ equal to 1. In this paper we use a variable value ofµ to approximate

weak plate boundary zones and strong plates. We assume an inverse relationship between

strain rates and relative viscosities,µ. We obtain the relative viscosities of the deforming

plate boundary regions, such as the mid-oceanic ridges and subduction zones, by assigning

a reference viscosity to the moderately straining mid-Indian ridge, using the relation:

1
µ g 1 har 1

µre f
d 1s E2

E2
re f

(A2)

whereµre f is the reference viscosity corresponding to a mid-oceanic ridge with a moderate

spreading rate, such as the Indian ocean,E2 g 2 � ε̇2
θθ h ε̇2

φφ h ε̇2
φθ h ε̇φφε̇θθ � , whereε̇θθ j ε̇φφ

andε̇φθ are the strain rates fromKreemer et al.(2003), andE2
re f is the reference value for

E2, corresponding to the value forµre f . A plot of relative viscosities (Fig. A2) shows the

lowest viscosities along the mid-oceanic ridges and higher viscosities in the deforming con-

tinents, while the blank areas (the plates) have aµ value of 1. We try reference viscosities

of 0.01, in which the mid-oceanic ridges are 100 times weaker than the plates (Fig. A3 and

the solution in the main paper), and also 0.001, in which the mid-oceanic ridges are 1000

times weaker than the plates. We show the global stress solutions for three cases: the case

whereµ g 1 everywhere (Fig. A1) and cases in whichµ varies according to the inverse of

strain rate (Figs. A3 and A4). The solutions with reference viscosities of 0.01 and 0.001
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respectively yield a focusing of stresses within the plates and fits well with the observed

SHmax orientations (Zoback, 1992) in most places (Figs. A3 and A4). Moreover, solutions

with weak plate boundaries provide agreement ofSHmax for Indo-Australian plate region

(Sandiford et al., 1995). However the N-S deviatoric extension in Tibet remains as a promi-

nent feature in the global solution. We also considered a special case in which the Tibetan

Plateau and the Himalayas were assigned viscosities equal to the rigid plate interiors (Fig.

A5). Although there occurs a marginal reduction in the N-S deviatoric stresses within the

Tibetan Plateau for this case (Fig. A6), such a strong resistant plate boundary is insufficient

to focus deviatoric stresses to cancel large N-S deviatoric extension associated with excess

GPE of Tibet. Moreover, the assumption of plate-like strength of this plate boundary zone

is not reasonable, given the high rates of deformation occurring there (see Fig. A2).

Dynamic topography

Actual topography, in some places, already contains a contribution from dynamically

induced radial tractions. We argue here that GPE values from the uncompensated model

(Fig. A7) contain the influence of dynamic topography. In the presence of dynamic to-

pography, the weight of the lithospheric column,σtotal
rr , at reference depthL is σtotal

rr gt L� h ρ � r � g � r � dr g σo
rr h τrr (note: this ignores the contribution from flexure), whereσo

rr is

a reference stress, andτrr is the radial traction associated with deeper mantle flow that is

responsible for dynamic topography. The physical effect of this dynamic topography is

therefore taken into account already in the GPE calculations that are uncompensated (Fig.

A7), since these involve the vertical integral ofσrr � r � down to the depthL. In order to

remove the contribution from dynamic topography, an isostatically compensated solution

(uniform pressure,σo
rr , at depthL) was calculated by adjusting the densities of the sub-

crustal part (upper mantle) of each lithospheric column. The GPE and the resulting stresses

were then calculated as usual. Compensation can also be achieved by adjusting the eleva-

tion of each column instead of adjusting the density. However, since greater uncertainty

lies in the values of densities of the upper mantle than in the values of the crustal thick-

ness, compensation obtained by density adjustment seems to be more reasonable than that
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obtained by adjusting the elevation. As stated earlier, the uncompensated solution only

contributes 20% higher stresses. The Tibetan plateau shows vertically integrated deviatoric

extension of the orderf 3 e 1012 N/m. The ridge-push force magnitude isf 1 d 1 c 5 e 1012

N/m, which, again falls short of providing the right magnitude of vertically integrated de-

viatoric stress for supporting the Tibetan plateau. The large N-S deviatoric extension in

Tibet calls for an additional N-S compressional force off 3 e 1012 N/m that can cancel the

deviatoric extension. The stress magnitudes for Tibet as well as the ridge-push force are a

factor of two lower that what was proposed in previous studies.
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Joint modeling of lithosphere and mantle dynamics elucidating

lithosphere-mantle coupling

A. Ghosh, W. E. Holt, L. Wen, A. J. Haines and L. M. Flesch

(Geophysical Research Letters, under revision)

Abstract

We provide new insights into the lithosphere-mantle coupling problem through a joint

modeling of lithosphere dynamics and mantle convection and through comparison of model

results with the high resolution velocity gradient tensor dataset along the Earth’s plate

boundary zones. Using a laterally variable effective viscosity lithosphere model, we first

compute vertically integrated deviatoric stresses associated with gravitational potential en-

ergy (GPE) differences. In many areas, deviatoric stresses from GPE differences alone

provide a good fit to the observed strain rate tensors. However, in some areas, mostly in

areas of continental deformation, GPE differences fall short of predicting the observed de-

formation styles and principal axes orientations. When deviatoric stresses from horizontal

basal tractions, associated with deeper density buoyancy-driven convective circulation of

the mantle, are added to those from GPE differences, the fit to the observed velocity gradi-

ent tensors improves dramatically in most areas. We find that the stresses induced by the

horizontal tractions arising from deep mantle convection contribute approximately 50% of

the magnitude of the Earth’s deviatoric lithospheric stress field. We also demonstrate that

lithosphere-asthenosphere viscosity contrasts play an important role in generating the right

direction and magnitude of tractions that yield an optimal match to the observed stress

pattern.

4.1 Introduction

The lithosphere-mantle coupling problem has been a controversial issue in geodynam-

ics for the past few decades. The question that has divided the earth science community
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is the degree of coupling between deeper density buoyancy-driven mantle circulation and

the lithosphere, and whether such coupling has a role to play in lithosphere dynamics. The

methods for tackling this problem consist of either predicting the velocities of the sur-

face plates or modeling the lithospheric stress field. If the initial plate-mantle coupling

model is correct, then the predicted velocities will match the observed plate motions and

the modeled stress field will match the stress observations. Here, we investigate the prob-

lem of lithosphere-mantle coupling by modeling the lithospheric stress field and comparing

our results with strain rate tensor observations from the Global Strain Rate Map (GSRM)

(Kreemer et al., 2003).

We address two principal sources of stress within the lithosphere : (1) internal buoyancy

forces arising from lateral density variations within the lithosphere (lithosphere buoyancy)

and (2) basal tractions associated with large-scale mantle convection arising from deeper

density buoyancies below the lithosphere (mantle buoyancy). Most of the early attempts to

model lithospheric stress field addressed either lithosphere buoyancy alone or lithosphere

buoyancy with tractions acting at the base of the lithosphere playing a role in torque balance

(Solomon et al., 1975;Richardson et al., 1979). However, in those models, tractions associ-

ated with model estimates of mantle density buoyancy-driven flow were not specifically put

in. Mantle density buoyancy estimates, on the other hand, have mostly been used to model

plate velocities, geoid, and topography (Hager, 1984;Hager et al., 1985;Richards and

Hager, 1984;Gable et al., 1991;Forte et al., 1993;Wen and Anderson, 1997b,c;Becker

and O’Connell, 2001).Bai et al.(1992),Bird (1998), and more recentlySteinberger et al.

(2001) andLithgow-Bertelloni and Guynn(2004), have modeled the lithospheric stress

field by combining the above two sources. In most of these studies the modeled stress

field was compared with stress observations from the World Stress Map (WSM) (Zoback,

1992;Reinecker et al., 2005). One of the factors that distinguishes our study is a quantita-

tive comparison of the modeled deviatoric stress tensor field with the GSRM’s horizontal

deformation tensor field within the Earth’s plate boundary zones as well as a sensitivity

analysis on the role of lithosphere-asthenosphere viscosity contrasts in generating the op-

timal wavelength and magnitude of tractions applied to the base of the lithosphere. In this

paper we use a long-wavelength traction field generated by a simple convection model.
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The aim of our study is to investigate the joint contribution of internal lithospheric density

buoyancies and these long-wavelength tractions. The tractions are applied to the base of a

thin sheet model possessing lateral viscosity variations due to weak plate boundaries and

strong plates.

4.2 Method

Internal buoyancy sources within the lithosphere influence the lithospheric stress field

(Artyushkov, 1973;Fleitout and Froidevoux, 1982;Fleitout, 1991;Coblentz et al., 1994)

by giving rise to gravitational potential energy (GPE) differences, which in turn produce

deviatoric stresses. Density buoyancy-driven mantle convection gives rise to basal tractions

that act upon the base of the lithosphere to yield a contribution to deviatoric stresses. We use

the thin sheet approximation to solve for vertically integrated deviatoric stresses associated

with both of these effects. This involves vertically integrating the force-balance equations

from a reference level at radiusrL (usually the base of the lithosphere) to the Earth’s surface,

radiusrS:

2
cosθ

∂
∂φ w k rS

rL

r2τφφdr x h 1
cosθ

∂
∂φ w k rS

rL

r2τθθdr x h 1
cos2 θ

∂
∂θ w cos2 θ k rS

rL

r2τφθdr x
g d 1

cosθ
∂

∂φ w k rS

rL

r2σrr dr x h r3
Lτφr � rL � (1)

and
1

cosθ
∂

∂φ w k rS

rL

r2τφθdr x h 3
2

∂
∂θ w k rS

rL

r2τθθdr hok rS

rL

r2τφφdr xh 1
2cos2θ

∂
∂θ w cos2θ y k rS

rL

r2τθθdr d k rS

rL

r2τφφdr z x g d ∂
∂θ w k rS

rL

r2σrr dr x h r3
Lτθr � rL � j

(2)

whereτφφ j τθθ andτφθ are deviatoric stresses, which are vertically integrated,τφr � rL � and

τθr � rL � are tractions applied at the base of the thin sheet at depthrL, andσrr is the vertical
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stress that is vertically integrated to give:k rS

rL

r2σrr dr g d k rS

rL

r2 y k rS

r
ρ � r {�� gdr{|z dr g d k rS

rL

ρ � r {�� g y k r }
rL

r2dr z dr {g d k rS

rL

1
3

ρ � r {�� g ~ r { 3 d r3
L � dr { j (3)

which is equal to the negative of GPE. Here,ρ is the density,g is the gravitational acceler-

ation, andrL is taken to be a constant depth of 100 km below the sea-level. The viscosity

variations deeper than the reference level, including possible deeper extension of cratonic

roots, are treated in the convection calculations. Note thatrS varies in continents due to

variable surface topography, whereas in oceansrS constitutes the sea level and is thus con-

stant.

Solutions to equations (1) and (2) for the vertical integrals ofτφφ j τθθ andτφθ can be

obtained given GPE differences of∂
∂φ � t rS

rL
r2σrr dr � and ∂

∂θ � t rS
rL

r2σrr dr � (e.g.Flesch et al.,

2001;Ghosh et al., 2006). Density buoyancy-driven mantle convection also produces ra-

dial and horizontal tractions that act at the bottom of the lithosphere. The radial tractions

yield dynamic topography at the Earth’s surface. The influence of this dynamic topography

(or radial traction) on lithospheric stress can be dealt with in two ways. First, because the

present-day topography already contains the dynamic contribution related to deep mantle

convection, one can calculate the depth integrals of vertical stresses (equation (3)) using

the present-day topography and density structures in the lithosphere (the crustal and upper

mantle structure in the top 100 km of the Earth). The depth integrals of vertical stresses

following this procedure should be viewed as the summation of two components, with one

contributed by the lithosphere buoyancies and the other by the radial tractions acting at

the base of the lithosphere from the deep mantle density buoyancies. Such an approach

does not address the consistency problem between the observed and predicted dynamic

topography (Wen and Anderson, 1997c). In the present case, the densities in the litho-

sphere are obtained from the seismically inferred crustal structures (e.g., Crust 2.0 [G.

Laske et al.,Crust 2.0: A new global crustal model at 2e 2 degrees, 2002, available at

http://mahi.ucsd.edu/Gabi/rem.html]). Alternatively, one can directly compute the corre-

sponding deviatoric stresses in the lithosphere from the predicted dynamic topography or
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radial tractions from the convection models. These deviatoric stresses are then added to

those associated with a compensated lithosphere model. In such a treatment, the surface

topography used to calculate the GPE differences in the lithosphere model is the compen-

sated component based on the density buoyancies in the lithosphere. The deviatoric stress

field produced by the compensated lithosphere model represent the contributions from the

density buoyancies in the lithosphere. If a convection model is self-consistent, that is, it

predicts dynamic topography that matches, in both pattern and magnitude, the observed

residual topography (total observed topography minus the compensated component), the

above two approaches should yield same results. In this study, we adopt the first approach

and address the self consistency of predicting dynamic topography in future studies.

In order to obtain the deviatoric stresses associated with the horizontal tractions that are

generated by density-buoyancy driven mantle flow, solutions to (1) and (2) can be calcu-

lated given distributions ofd τφr � rL � , d τθr � rL � . The solution from horizontal tractions is

then added to the solution from GPE differences described above to obtain the total devia-

toric stress field.

In our global model, we solve equations (1) and (2) on a 2c 5o e 2 c 5o global grid using

a finite element technique (Flesch et al., 2001) such that the deviatoric stress field solution

provides a global minimum in the second invariant of deviatoric stress (Appendix B).

We calculate GPE (equation (3)) from the crustal thickness and density dataset, Crust

2.0. The cooling plate model based on ocean floor age data (Müller et al., 1997) with re-

vised parameters fromStein and Stein(1992) is used to define densities for oceanic regions.

The plate boundary zones are assigned variable viscosities (Appendix B) based on strain

rates from the GSRM (Kreemer et al., 2003), where the rapidly straining areas (e.g., sub-

duction zones, narrow mid-ocean ridges for rapidly spreading plates) have lower viscosities

compared to more slowly deforming regions, while the plate interiors have the highest con-

stant relative viscosity. A best fit is obtained with plates having an effective viscosityf 30

times higher than that of a relatively rapidly deforming region in western North America

with a reference strain rate of 1c 5 e 10
� 7/yr (Figure B1 in Appendix). The Crust 2.0 is an

uncompensated model. We calculate GPE and the associated deviatoric stresses from the

uncompensated Crust 2.0 model, which incorporates the contribution from radial tractions
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(dynamic topography) in addition to the contribution from lithosphere buoyancy sources.

The termsτφr � rL � andτθr � rL � in equations (1) and (2) are derived from a convection

model byWen and Anderson(1997b) on solving the conservation equations of mass and

momentum, using the constitutive equation between stress and strain rate with free slip

boundary conditions, by a standard propagator matrix technique. Our mantle convection

model is a whole mantle (WM) model with radially variable viscosities, the lower mantle

being 10 times more viscous than the upper mantle. UnlikeWen and Anderson(1997b), we

do not consider lateral viscosity variations within the lithosphere in our simple convection

models. The density anomalies in the upper mantle are inferred by adjusting the relative

weights of density anomalies related to subducting slabs (Wen and Anderson, 1995) and

residual tomography (Wen and Anderson, 1997a), on the basis of fitting the geoid. The

density structure in the lower mantle was derived from a seismic tomographic model (Su

et al., 1994). The detailed information for the density model and the velocity density scal-

ings were presented inWen and Anderson(1997b). The contributions that the horizontal

tractions make on the lithospheric deviatoric stress field are computed using the thin sheet

model with laterally variable viscosity. These horizontal tractions, or body force equiv-

alents, are applied at the base of the thin sheet as a boundary condition (see Appendix

A). The contribution from the basal tractions is then added to the contribution from GPE

differences to determine a total deviatoric stress field.

4.3 A Quantitative Comparison with Deformation Indica-

tors at Plate Boundary Zones

We test our modeled deviatoric stresses quantitatively with stress tensor indicators from

the GSRM (Kreemer et al., 2003). GSRM is a high resolution model based on 5170 GPS

stations and Quarternary fault slip data, confined along the deforming plate boundary zones.

The modeled deviatoric stress tensors are scored with the strain rate tensors in GSRM, and

we seek to match direction of principal axes as well as style of faulting inferred from the
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strain rate tensors. We define a correlation coefficient (Flesch et al., 2007):d 1 � ∑
areas

� ε � τ � ∆S� wE� ∑
areas

� E2 � ∆S � � ∑
areas

� T2 � ∆Sx � 1 (4)

whereE gH� ε2
φφ h ε2

θθ h ε2
rr h ε2

φθ h ε2
θφ ga� 2ε2

φφ h 2εφφεθθ h 2ε2
θθ h 2ε2

φθ,

T gA� τ2
φφ h τ2

θθ h τ2
rr h τ2

φθ h τ2
θφ gA� 2τ2

φφ h 2τφφτθθ h 2τ2
θθ h 2τ2

φθ

andε � τ g 2εφφτφφ h εφφτθθ h εθθτφφ h 2εθθτθθ h 2εφθτφθ c
E andT are the second invariants of strain and stress,εi j are strain rates fromKreemer et al.

(2003),∆S is the grid area, andτi j are the calculated deviatoric stresses. Normalization

by E andT ensures that the correlation coefficient depends only on the inferred style of

faulting embedded in the deviatoric stress and strain rate tensors as well as the direction

of principal axes of strain rate and stress tensors; there is no dependence on magnitude

of stress or strain rate. The maximum correlation coefficient of +1 indicates a perfect fit

between the directions of principal axes of deviatoric stress and directions of principal axes

of strain rate as well as a perfect fit between expected styles of faulting associated with

the deviatoric stress and strain rate tensors. The minimum coefficient of -1 indicates anti-

correlation. A value of 0 implies no fit, including, for example, predicted strike-slip style

of deviatoric stress, where the compressional and tensional principal axes differ from those

in the GSRM by 45o.

4.4 Results

4.4.1 Deviatoric Stress from GPE Differences

There occurs a positive correlation between higher elevation areas and areas of high

GPE, such as Andes, western North America, and the Tibetan Plateau. These high GPE

areas are also in deviatoric tension. Topographically low areas and older oceans exhibit

low GPE and consequently are in deviatoric compression (Figure 1). The Tibetan Plateau,

with a very large crustal thickness and high elevation, shows large N-S deviatoric tension

( f 3 e 1012 N/m), associated with large GPE contrasts with the surrounding regions, which
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the ridge-push force fails to cancel (Ghosh et al., 2006). It is clear that an additional N-S

compressive driving force that does not have its origin within the lithospheric shell needs to

be accounted for in order to cancel out the N-S deviatoric tension in Tibet. As we will see

next, this additional force is provided by basal tractions associated with density buoyancy-

driven mantle convection.
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Figure 1: Global distribution of vertically integrated horizontal deviatoric stresses and GPE (on
scale bar) calculated from the Crust 2.0 data with viscosities varying as a function of strain rates
(Figure B1 in Appendix) where a reference viscosity,µre f is chosen such that a moderately straining
region in western North America (with a strain rate of 1i 5 � 10� 7/yr) has an effective viscosity� 30
times lower than the plates. Tensional deviatoric stresses are shown by red arrows while compres-
sional deviatoric stresses are shown by black arrows. Length of the arrows are proportional to the
magnitude of stresses. Strike-slip regions are indicated by one tensional and one compressional pair
of arrows. Areas having high GPE are in deviatoric tension while those having low GPE are in
deviatoric compression.

Comparison of modeled stresses from GPE differences to the deformation indicators

in GSRM indicates an excellent fit along the mid-oceanic ridges and the Indo-Australian

boundary zone. Areas of continental deformation, such as western North America, Andes

and central Asia, exhibit a poor fit (Figure 4a, Table 1), clearly indicating that at least in

those areas, lateral variations in GPE are not sufficient to explain the observed deformation.
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4.4.2 Total Deviatoric Stress Field from Combined GPE Differences

and Mantle Buoyancies

In the mantle convection models used to generate basal traction estimates, we test a

range of lithosphere viscosities from slightly strong (5e 1021 Pa-s) to very strong (100e
1021 Pa-s) (Figure 2). The asthenosphere viscosity is also varied by 4 orders of magnitude,

from 1018 to 1021 Pa-s. Amongst the various models of radially symmetric viscosity struc-

tures that we test, the ones marked within the ellipse generate deviatoric stresses, which

when added to the deviatoric stresses from GPE differences (Figure 1), yield global corre-

lation coefficients with GSRM of 0.65 and above. One aspect common to all these models is

0.0

0.2

0.4

0.6

0.8

1.0

1 1010 100 1000 10000 100000 1e+06
Viscosity contrast

C
or

re
la

tio
n 

co
ef

fic
ie

nt
s 

100e21
50e21
30e21
10e21
5e21

1 2 3

4

5

6

7 8 9	

Figure 2: Viscosity contrast between lithosphere
and asthenosphere vs. correlation coefficients. The
different symbols indicate lithosphere of different
strengths. The models within the ellipse yield cor-
relation coefficients greater that 0.65. Viscosities are
given in Pa-s.

the need for a strong viscosity contrast

between the lithosphere and the astheno-

sphere (100-10,000 times stronger litho-

sphere). All successful models (1-9)

yield a consistent long-wavelength pat-

tern of body force equivalents (d τφr andd τθr ) (see Appendix, Figure C1). These

optimal models involve mantle flow ve-

locities that are generally greater at

depth than at the base of the plates in re-

gions such as the Indo-Australian plates,

Nazca and South American plates, and

Eastern North America (Figure C1 in

Appendix). The downwelling flow in

these areas is generated by deeper density anomalies of ancient subducted lithosphere. The

deviatoric stress result, associated with these horizontal tractions, yields compression over

these downwelling zones, whereas tension occurs in areas of upwelling or divergent flow,

such as eastern Africa and the Pacific. Viscosity models 2-5, which have strong astheno-

sphere (1020 Pa-s), along with model 1, which has no asthenosphere, yield tractions that

are of magnitude 3-6 MPa (Figure C2 in Appendix). The resultant stresses from models
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Figure 3:Global distribution of vertically integrated horizontal deviatoric stresses from GPE differ-
ences (Figure 1) and horizontal tractions combined, plotted on topography. The mantle convection
model is a radially variable viscosity model with a strong lithosphere (50� 1021 Pa-s) and a weak
asthenosphere (1019 Pa-s) (model 8).

1-5 dominate the deviatoric stresses from GPE differences (Figure C3a in Appendix). Al-

though not obvious from examination of global average correlation coefficients, models 1-5

produce tractions that are apparently too large. For example, Tibet shows more dominant

thrust faulting than strike-slip in models 1-5. Parts of the Lake Baikal region become more

dominantly thrust in these models with larger traction magnitudes. Furthermore, models 1-

5 yield no tension in Basin and Range and much less tension in parts of the Aegean region

compared to models 6-9.

Viscosity models 6-9, on the other hand, with a weak asthenosphere (1019 Pa-s), yield

deviatoric stress magnitudes closer to stress magnitudes from GPE differences (Figure C3b

in Appendix) and provide a more favorable match to deformation indicators in the above

mentioned regions. Models 6-9 are our preferred models. The traction magnitudes for 6-

9 range between 1-2.5 MPa (Figure C1 in Appendix). We show the combined deviatoric

stress response from GPE differences and horizontal tractions (Figure 3) and also the score

with the strain rate information (Figure 4b) for model 8 (Figure 2). Deviatoric stresses from

the combined sources of GPE differences and horizontal tractions from mantle buoyancies

show improvement of fitting in all areas, particularly in regions of continental deforma-

tion (Figure 4b, Table 1). A major change takes place in the Tibetan Plateau, where the
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Figure 4:Correlation coefficients between observed strain rate tensors from the Global Strain Rate
Map and deviatoric stress tensors arising from a) GPE differences from the Crust 2.0 model (Figure
1), and b) combined deviatoric stresses from GPE differences and mantle buoyancies (Figure 3).

dominantly N-S deviatoric tension from GPE differences is replaced by a mixed strike-

slip style of deviatoric stress, in accord with a larger percentage of the deformation style

there. This improvement can again be explained by addition of the influence of deeper

subduction-related density buoyancies within the mantle. However, in some areas, such as

New Zealand and parts of Asia, the fit degrades. Considering all the areas simultaneously,

stresses from GPE differences yield an overall correlation coefficient of 0.54, whereas those

from combined GPE differences and horizontal tractions produced by the mantle buoyan-

cies yield an overall coefficient of 0.69 (Table 1).

A qualitative comparison of our deviatoric stresses with the style and direction of prin-

cipal axes of stresses in the WSM reveals a good match, particularly in areas like the Indo-

Australian plate, most of central Asia, and North America.

It is also necessary to have lateral viscosity variations in the lithosphere in the thin sheet

model for the stresses to match deformation indicators. A test with no lateral variations in

the lithosphere in the thin sheet model still improves the fit to the strain rate tensor infor-

mation when the mantle contribution is added to the lithospheric contribution. However,

the overall fit is much lower than when lateral variations are present (Table 1).

Viscosity models with too small a contrast between the lithosphere and asthenosphere

(models outside the ellipse) yield a poor fit to the deformation indicators (Figure 2). The

effective body force distribution (negative of the tractions) for these models (Figure C4

in Appendix) are different to those from models of large viscosity contrasts (within the
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Region Number GPE differences GPE differences GPE differences GPE differences
of of with plus with plus

interest areas rheological variations basal tractions constant viscosity basal tractions
W. North America 132 0.53 0.64 0.08 0.11

Andes 89 0.24 0.84 -0.20 0.78
Eastern Africa 164 0.32 0.76 0.63 0.81
Mediterranean 83 0.55 0.57 0.33 0.39
Central Asia 187 0.33 0.57 0.10 0.29

Indo-Australian 174 0.69 0.76 0.30 0.31
plate boundary zone
Mid-oceanic ridges 292 0.80 0.85 0.78 0.76

Western Pacific 109 0.51 0.63 0.08 0.61
South East Asia 167 0.61 0.66 0.08 0.34

Total 1944 0.54 0.69 0.31 0.48

Table 1: Correlation coefficients obtained from a comparison between different deviatoric stress
models with the strain rate tensor field from the GSRM model (see equation (4)). The mantle
viscosity model considered is model 8. The viscosities in the lithosphere of the thin sheet model
vary as function of strain rates (Figure B1 in Appendix) for columns 3 and 4, whereas for the last
two columns, the lithosphere in the thin sheet model has uniform viscosity.

ellipse). For instance, these forces vary over much smaller wavelengths than for optimal

models 6-9.

4.5 Discussion and Conclusion

Our results show that deviatoric stresses from GPE differences alone are not able to

match the direction of principal axes and style of faulting in many of the deformation zones

of the Earth’s surface, particularly within the continental zones of deformation; horizontal

basal tractions arising from mantle convection are also required to match the deformation

indicators. These horizontal basal tractions that are coupled to the base of the lithospheric

plates arise from mantle flow induced by current and past subducted lithosphere in the

areas (e.g., the Indian plate, Andes, Figure C1 in Appendix). An aspect that is of prime

importance is the viscosity contrast between the lithosphere and the asthenosphere, where

a sufficiently large contrast (100-10,000 times) is required for the effective body forces as-

sociated with horizontal tractions to have the right directions and magnitudes. Although a

wide range of models involving viscosity contrasts between lithosphere and asthenosphere

appear to adequately match the global GSRM data (models 1-9), our preferred models are
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those in which horizontal tractions and GPE differences (produced by the lithosphere buoy-

ancies and the radial tractions) contribute approximately equally to the deviatoric stress

field. These models (6-9) involve a weak asthenosphere of 1019 Pa-s, horizontal traction

magnitudes of 1-2.5 MPa, and vertically integrated compressional deviatoric stress mag-

nitudes ranging between 1d 4 e 1012 N/m, consistent with deviatoric stress magnitudes

obtained byRichardson(1992).
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Appendix

Appendix A: Spherical Treatment

In spherical coordinates, thex j y andz directions of Cartesian coordinates change to

theφ, θ andr (radial) components, respectively. The deviatoric stress tensor in the radial

direction is

τrr g σrr d 1
3

σkk j (A1)

whereσrr is the total stress tensor in the radial direction and1
3σkk is the mean total stress.

This is the 3-D definition of deviatoric stress, discussed byFlesch et al.(2001);Ghosh

et al. (2006). The total stress tensor,σi j g τi j h 1
3σkkδi j , then becomes

σi j g τi j h δi j � σrr d τrr � c (A2)

whereδi j represents the Kronecker delta. The force balance equation is:

∇ � σ h ρg g 0 j (A3)

whereg is a vector in the negative radial direction. (A3) can be written in spherical coordi-

nates as
1

cosθ
∂

∂φ w r2σφφ x h 1
cos2 θ

∂
∂θ w r2σφθ cos2θ x h ∂

∂r w r3σφr x g 0 (A4)

1
cosθ

∂
∂φ w r2σφθ x h 1

2
∂

∂θ w r2 � σθθ h σφφ � x h 1
2cos2θ

∂
∂θ w r2cos2 θ � σθθ d σφφ � x h ∂

∂r w r3σθr x g 0

(A5)
1

r cosθ
∂σφr

∂φ h 1
r cosθ

∂
∂θ w cosθσθr x h 1

r w 2σrr d σφφ d σθθ x h ∂σrr

∂r
d ρg g 0 (A6)

Vertically integrating (A4) and (A5) yields

1
cosθ

∂
∂φ w k rS

rL

r2σφφdr x h 1
cos2 θ

∂
∂θ w k rS

rL

r2σφθdrcos2θ x d r3
Lσφr rL g 0 (A7)

and

1
cosθ

∂
∂φ w k rS

rL

r2σφθdr x h 1
2

∂
∂θ w k rS

rL

r2 � σθθ h σφφ � dr x h 1
2cos2θ

∂
∂θ w k rS

rL

r2cos2 θ � σθθ d σφφ � dr xd r3
Lσθr rL g 0 (A8)
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whererS is the radius from the center of the Earth to the surface of variable topography and

rL is the radius from the center to the base of the lithosphere. Substituting (A2) in (A7) and

(A8), we arrive at equations (1) and (2) in the text. For a thin sheet, the gradients ofσφr

andσθr are negligibly small. Moreover, the term1r � 2σrr d σφφ d σθθ � is small compared to

ρg. Hence, (A6) can be approximated as

∂σrr

∂r
d ρg g 0 (A9)

which implies

σrr g d k rS

r
ρgdr{ (A10)

which is used to provide the GPE equation (3) in text. Substitutingr { g rE d z{ , andrL g
rE d L, we have

1
3
~ r { 3 d r3

L � g 1
3
~ � rE d z{�� 3 d � rE d L � 3 � (A11)g r2

E � L d z{ � d rE � L2 d z{ 2 � h 1
3 � L3 d z{ 3 � (A12)g r2

E � L d z{�� y 1 d 1
rE
� L h z{�� h 1

3r2
E
� L2 h Lz{ h z{ 2 � z (A13)

whereL is the depth to the constant reference level, or base of the lithosphere. Equation

(A13), therefore, provides the magnitude of error in GPE introduced by the flat-Earth ap-

proximation in comparison with the exact spherical case.

In order to compute deviatoric stresses from mantle buoyancy sources, the horizontal

tractions are first calculated from the mantle convection model. Withθ as positive north

latitude, the equivalent expressions forτφr andτθr in Wen and Anderson(1997b) can be

written as:

rLτφr � η0 g Zlm
4

1
cosθ

∂
∂φ

Ylm � θ j φ � h Zlm
6

∂
∂θ

Ylm � θ j φ � (A14)

rLτθr � η0 g Zlm
4

∂
∂θ

Ylm � θ j φ � d Zlm
6

1
cosθ

∂
∂φ

Ylm � θ j φ � (A15)

whereη0 is the reference viscosity,Zlm
4 andZlm

6 are the spherical harmonic coefficients for

the poloidal and toroidal components of stress,Ylm � θ j φ � is the surface normalized spherical

harmonic of degreel , whose maximum value is 12 in this study, and orderm. For a radially

symmetric viscosity structure, theZlm
6 terms are zero.
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Appendix B: Variable Viscosities

The functional that is minimized in the method ofFlesch et al.(2001) is :

I g�k�k 1
µ
y τ̄2

φφ h 2τ̄2
φθ h τ̄2

θθ h�� τ̄φφ h τ̄θθ � 2 z cosθdφdθ

h�k�kV� 2λφ y 1
cosθ

∂τ̄φφ

∂φ h 1
cosθ

∂
∂φ � τ̄φφ h τ̄θθ � h 1

cos2 θ
∂

∂θ � cos2 θτ̄φθ � h 1
cosθ

∂σ̄rr

∂φ
d r3

Lσφr � rL � zh 2λθ y 1
cosθ

∂τ̄φθ

∂φ h 3
2

∂
∂θ � τ̄θθ h τ̄φφ � h 1

2cos2 θ
∂

∂θ � cos2 θ m τ̄θθ d τ̄φφ n � h ∂σ̄rr

∂θ
d r3

Lσθr � rL �Sz�� cosθdφdθ

(B1)

whereτ̄φφ, τ̄θθ andτ̄φθ are the vertically integrated deviatoric stresses,σ̄rr is the vertically

integrated vertical stress,λφ, λθ represent the horizontal components of the Lagrange multi-

pliers, andµ is the relative viscosity, which in this case varies laterally.Flesch et al.(2001)

assumed a constantµ equal to 1. In this paper, we use a variable value ofµ to approximate

weak plate boundary zones and strong plates. We assume an inverse relationship between

strain rates and relative viscosities,µ. We obtain the relative viscosities of the deforming

plate boundary regions, such as the mid-oceanic ridges and subduction zones, by assigning

a reference viscosity to a moderately deforming region in western North America with a

strain rate of 1c 5 e 10� 7/yr , using the relation:

1
µ g 1 h r 1

µre f
d 1s E2

E2
re f

(B2)

whereµre f is the reference viscosity corresponding to the above mentioned area in western

North America,E2 g 2 � ε̇2
θθ h ε̇2

φφ h ε̇2
φθ h ε̇φφε̇θθ � , whereε̇θθ j ε̇φφ andε̇φθ are the strain rates

from Kreemer et al.(2003), andE2
re f is the reference value forE2, corresponding to the

value forµre f . A plot of relative viscosities (Figure B1) shows the lowest viscosities along

the mid-oceanic ridges, relatively higher viscosities in the deforming continents, while the

blank areas (the plates) have the highest viscosities with aµ value of 1. We try reference

viscosities of 1/3, in which our reference area in western North America is 3 times weaker

than the plates, 1/30 (Figure B1 and the solution in the main paper), 1/300 and also 1/3000;

the viscosity structure yielding deviatoric stress field that matches the deformation indica-

tors best is chosen.
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Figure B1:Logarithm (log 10) of relative viscosity distribution for all the plates in the lithosphere
model. The white areas represent intra-plate regions with reference viscosity 1. The deforming
areas are assigned viscosities inversely proportional to the strain rates from GSRM (equation B2).
A reference viscosity ofµre f � 1

30 is chosen at the moderately straining western North America
(1 i 5 � 10� 7/yr). Places with viscosities higher thanµre f are deforming at a slower rate.

We minimize a second functionalJ with respect toλφ and λθ that when minimized

satisfies the force-balance equations (Flesch et al., 2001),

J g k�k ������ �����
�����a����� τ̄φφ

τ̄θθ

τ̄φθ

������ d ����� Φobs
φφ

Φobs
θθ

Φobs
φθ

������
 8¡¡¡¢ T £

V � 1

�����a����� τ̄φφ

τ̄θθ

τ̄φθ

������ d ����� Φobs
φφ

Φobs
θθ

Φobs
φθ

������
 8¡¡¡¢
¤¥����¦����§ cosθdφdθ

(B3)

where

τ̄φφ g µ w 1
cosθ

∂λφ

∂φ
d λθ tanθ x j (B4)

τ̄θθ g µ
∂λθ
∂θ j (B5)

τ̄φθ g µ
2 w ∂λφ

∂θ h 1
cosθ

∂λθ
∂φ h λφ tanθ x j (B6)£

V � 1 g 1
µ

����� 2 1 0

1 2 0

0 0 2

� ���� j (B7)
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� Φobs
φφ j Φobs

θθ j Φobs
φθ � T g ~ d σ̄rr

3 j d σ̄rr

3 j 0� T (B8)

for the GPE case, and� Φobs
φφ j Φobs

θθ j Φobs
φθ � T g ~ Zlm

4 Ylm

3 j Zlm
4 Ylm

3 j 0� T (B9)

for the traction case. MinimizingJ is equivalent to minimizingI in (B1) (see proof in

Flesch et al.(2001)) and provides a vertically integrated deviatoric stress field that balances

the body force inputs and is also a global minimum in the second invariant of deviatoric

stress (for given distribution of relative effective viscosities).
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Appendix C
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Figure C1:Global distribution of effective horizontal body forces, which are the negative of the
tractions,τrφ ¨ τrθ (equations (A14) and (A15)), applied at the base of the lithosphere (100 km depth).
The tractions are generated by a convection model (model 8) with radially variable viscosity struc-
ture, a weak asthenosphere (with viscosity of 1019 Pa-s) and a stronger lithosphere (with viscosity of
50 � 1021 Pa-s). A site of upwelling or divergence is beneath Eastern Africa, as well as beneath parts
of Pacific and beneath mid-oceanic ridges, whereas areas of convergence or downwelling are mid-
dle North America, South America, Central and eastern Asia and the Southeast Asian subduction
zones.

90



-80

-60

-40

-20

0

20

40

60

80

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160

0.25e7 N/m^2

Figure C2:Same as Figure C1, but for viscosity model 2, with stronger asthenosphere (1020 Pa-s).
Note the large traction magnitudes, which are about a factor of 2 larger than for optimal models 6-9.
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Figure C3:Contour maps of ratio,T1 © T2, whereT is the second invariant of the deviatoric stress
field. T1 is predicted by mantle buoyancies andT2 is predicted by lithospheric GPE differences
(Figure 1). a) is for model 1, with strong lithosphere and no asthenosphere. Note that ratios here
indicate that tractions from this model generate deviatoric stresses that are on average 3-5 times
larger than the deviatoric stresses associated with GPE differences. b) is for model 8, with a weak
asthenosphere of 1019 Pa-s. Note that the ratios in b) generally show that the contribution of devi-
atoric stresses from tractions are the same magnitude as stresses from GPE differences. Areas of
strong upwelling and downwelling in (b), however, have larger stresses from tractions. White areas
are where the ratio is out of range (greater than 8).

91



-80

-60

-40

-20

0

20

40

60

80

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160

0.25e7 N/m^2

Figure C4:Same as Figure C1, but for a viscosity model with lithosphere viscosity 5� 1021 Pa-
s and asthenosphere viscosity of 25� 1019 Pa-s, which yields a viscosity contrast of 20. Note
that the effective force distribution is very different from Figures C1 and C2, and of much smaller
wavelength. This traction field provides a very poor fit to the GSRM stress tensor indicators.
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Appendix D: Benchmarking

We discuss the suitability of the thin sheet approximation in its ability to recover the

depth integrals of deviatoric stress in the presence of large-scale three dimensional flow.

That is, we intend to test whether the vertically integrated horizontal deviatoric stresses

from the thin sheet model can recover the horizontal deviatoric stress field from the 3-D

convection model (Wen and Anderson, 1997b). For this test we use two models of radially

variable viscosity structures: 1) one with no lithosphere (an isoviscous model) and 2) one

with a strong lithosphere (a lid model). The lithosphere in the thin sheet model is assumed

to be with no lateral viscosity variations. The density buoyancy distributions for the con-

vection models used here to generate 3-D flow and 3-D stress are the same as for models

described in the text.
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Figure D1: Deviatoric stress field, computed via the thin sheet method for an isoviscous case.
The stresses are produced by horizontal tractions, which are generated by a 3-D convection model,
output at 100 km depth, and applied to the base of the thin sheet.

The vertical and horizontal components of the three-dimensional convective flow in the

mantle generate radial and horizontal tractions. The radial tractions are responsible for

producing dynamic topography. In this section, we will show that the combined deviatoric

stress field, from radial and horizontal tractions, computed via the thin sheet method, is

able to match the deviatoric stress field predicted by the full 3-D convection model. The

radial and horizontal tractions are generated by a 3-D convection model. We first consider
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Figure D2:GPE , or depth integral ofσrr (on scalebar), and deviatoric stress field, computed via
the thin sheet method, for an isoviscous case. The GPE is calculated from dynamic topography
predicted by the 3-D convection model. The radial component of the 3-D mantle flow gives rise to
the dynamic topography.

an isoviscous case.

The horizontal tractions generated by the 3-D convection model, output at 100 km

depth, are applied to the base of the thin sheet, and the deviatoric stresses are then com-

puted using the thin sheet method (Figure D1). These stresses associated with horizontal

tractions produce deviatoric tension in areas of convergence (central Asia, southeast Asian

subduction zone, south America) and deviatoric compression in areas of divergence (east-

ern Africa). Next, the dynamic topography, predicted by the isoviscous convection model,

is used to calculate depth integrals ofσrr , assuming PREM as the background density

model. The resultant GPE differences are only due to the presence of dynamic topography.

From these GPE differences, the deviatoric stress field (Figure D2) is computed via the thin

sheet method. The resultant deviatoric stresses show convergence over areas of negative

dynamic topography, and divergence over areas of positive dynamic topography, such as

eastern Africa and the Pacific. In other words, the deviatoric stresses from radial tractions

are opposite in sign to the deviatoric stresses from horizontal tractions for the isoviscous

case (Figure D1). These stresses from radial tractions are then added to the stresses from

horizontal tractions in order to produce an estimate of the depth integral of the total de-

viatoric stress field (Figure D3). The two stress fields nearly cancel each other, but the
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Figure D3: Total depth integral estimate of the deviatoric stress field, obtained from combining
both the contributions to deviatoric stresses associated with horizontal (Figure D1) and radial trac-
tions (Figure D2), via the thin sheet method, for an isoviscous case.

resultant deviatoric stresses show that the influence of radial tractions is dominant in most

areas, such that there is deviatoric compression over most areas of mantle downwelling and

tension above regions of mantle upwelling (Figure D3).

When the combined stress field obtained above is compared to the deviatoric stress

field computed directly from the full 3-D convection model (Figure D4), we see a sig-

nificant match for almost all regions. We compute the ratio of the second invariant of

stress tensors for the respective stress fields,T1 � T2 (Figure D5a), whereT is given by

T g � τ2
φφ h τ2

θθ h τ2
rr h τ2

φθ h τ2
θφ g � 2τ2

φφ h 2τφφτθθ h 2τ2
θθ h 2τ2

φθ, τi j being the devia-

toric stresses. We also calculate correlation coefficients between the two deviatoric stress

fields (Figure D5b), given by equation (6) in text. Here, the strain rate tensor is replaced

by the second deviatoric stress tensor. The ratio,T1 � T2, yields a measure of the match

in magnitude for the two deviatoric stress fields, whereas the correlation coefficient mea-

sures the match in direction and style of the two stress fields. Hence, a value of 1 for both

would indicate that the two stress fields are of exactly the same magnitude and style. For

the isoviscous case, in most regions the magnitudes are close to exact agreement (Figure

D5a) and the styles and directions (Figure D5b) are also close to exact agreement. Most of

the differences occur in the crossover areas, where a transition takes place from deviatoric
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Figure D4:Deviatoric stress field obtained from the full 3-D convection model for an isoviscous
case. Note the similarity with Figure D3, which is obtained using the thin sheet approximation .

tension to compression, or vice-versa. The reason is most likely due to the fact that two

large stress fields - one from radial tractions (Figure D2), and the other from horizontal

tractions (Figure D1) - nearly cancel each other, yielding a much smaller total deviatoric

stress field (Figure D3). In the crossover areas, where the stresses are even smaller, this

cancellation has to be exact. The tractions generated from the convection model are aver-

aged and mapped onto the 2c 5 e 2 c 5 degree grid of the thin sheet model in order to calculate

the deviatoric stresses via the thin sheet method. A slight error in averaging could cause

misfits between the two stress fields (Figure D5a,b), particularly in the crossover regions.

Moreover, the deviatoric stress field computed via the thin sheet method is the vertically

integrated horizontal stress field, whereas for the 3-D convection model we have only out-

put the horizontal deviatoric stress field close to the surface of the lithosphere. This could

account for additional differences. In summary, we have shown that the thin sheet approx-

imation method that we use has done a remarkably good job of recovering the stress field

from a full 3-D, degree 12 convection model with an isoviscous structure.

We next test a lid model for the compatibility between the thin sheet and convection

methods. The deviatoric stress field calculated via the thin sheet method (Figure D6) from

horizontal tractions shows expected style of stresses: compression over areas of conver-

gence and tension over areas of divergence. Deviatoric stresses computed from radial trac-
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Figure D5:a) Contour map of ratio,T1 © T2, between the two deviatoric stress fields for the isovis-
cous model.T1 is the second invariant of deviatoric stress field predicted by the thin sheet model
(Figure D3), whereasT2 is the second invariant of deviatoric stress field output by the 3-D convec-
tion model (Figure D4). White areas indicate that values are out of range (greater than 2.4). These
areas normally correspond to the crossover areas, mentioned in text, where the deviatoric stresses
are switching from tension to compression, and vice-versa. b) Correlation coefficients between the
two deviatoric stress fields for the isoviscous model.

tions (Figure D7) act in the same direction as stresses from horizontal tractions. The com-

bined stress field (Figure D8) from the two components, when compared to the deviatoric

stress field from a full 3-D convection model (Figure D9), shows a nearly exact match. The

quantitative comparison between the two stress fields (Figure D10a,b) shows only minor

differences in magnitude and style in a few regions.

What we demonstrate in this section is the ability of the thin sheet model to repro-

duce the same stresses as predicted by a full 3-D convection model. This has important

implications regarding the validity of the thin sheet method that we use.
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Figure D6: Vertically integrated deviatoric stresses, calculated using the thin sheet method, as-
sociated with basal tractions. The basal tractions are generated by a 3-D convection model with
a higher viscosity lid. Note that in contrast to the isoviscous case (Figure D1) the tractions from
the lid model yield a pattern opposite to the isoviscous case - compression over downwellings and
extension over upwellings.
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Figure D7:Vertically integrated deviatoric stresses, calculated via the thin sheet method associated
with lateral variations in the depth integral of radial stress,σrr (or GPE). The lateral variations in
GPE are associated with dynamic topography produced by radial tractions in a full 3-D mantle
circulation model with a high viscosity lid (same as Figure D6). Note the similarity with isoviscous
case (Figure D2).
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Figure D8:Total depth integral of horizontal deviatoric stresses produced by adding solutions in
Figures D6 and D7.
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Figure D9:Horizontal deviatoric stress field obtained from the full 3-D convection model for the
lid case. Note the similarity with calculations in Figure D8, obtained using the thin sheet approxi-
mation.
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Figure D10:a) Contour map of ratio,T1 © T2, between the two deviatoric stress fields for the lid
model.T1 is the second invariant of deviatoric stress field predicted by the thin sheet model (Figure
D8), whereasT2 is the second invariant of deviatoric stress field output by the 3-D convection model
(Figure D9). b) Correlation coefficients between the two deviatoric stress fields for the lid model.
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Chapter 5

Predicting the Lithospheric Stress Field
and Plate Motions by Joint Modeling of
Lithosphere and Mantle Dynamics
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Predicting the lithospheric stress field and plate motions by joint

modeling of lithosphere and mantle dynamics

Abstract

The way in which basal tractions, associated with density buoyancy-driven mantle con-

vection, affect lithospheric deformation is a fundamental problem in geodynamics. The

goal of the present study is to achieve a best-fit lithosphere-mantle coupling model for the

Earth. That is, we seek to estimate a model with appropriate radial and lateral viscosity

variations that would successfully predict not only plate motions, but also deformation in-

dicators along the Earth’s plate boundaries. The convection model used is a whole mantle

model driven by density buoyancies within the mantle with free slip boundary conditions

at the surface and at the core-mantle boundary. We test viscosity structures by incorporat-

ing lateral viscosity variations in the lithosphere, as well as by varying the thickness and

viscosity of the asthenosphere layer. We introduce lateral viscosity variations generated by

major geological features of the Earth, such as the continent-ocean divide, the presence of

cratonic roots, and age differences in the oceanic lithosphere. For each structure, we predict

the deviatoric stress field, the pattern of poloidal and toroidal flow, and the toroidal/poloidal

partitioning ratio. The deviatoric stresses are computed for the entire lithosphere using the

thinsheet method, with laterally variable effective viscosity. The tractions from the 3-D

convection model are output at 100 km depth and applied to the base of the thinsheet as a

boundary condition. The predicted deviatoric stress field, associated with these tractions, is

added to the deviatoric stresses generated by lateral variations in the depth integral of radial

stress (lateral variations in gravitational potential energy per unit area or GPE), calculated

based on the Crust 2.0 dataset. The combined, depth integrated deviatoric stress field is

compared with velocity gradient tensor field along the Earth’s deforming plate boundary

zones from the Global Strain Rate Map (GSRM), as well as with earthquake moment tensor

data. The best-fit model has to satisfy both the constraints of matching the plate motions

and the deviatoric stress field simultaneously. We find that models, dominated by strong

viscosity contrasts between the oceanic and continental lithosphere, and a weak (low vis-
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cosity) asthenosphere, are able to match plate motions, the observed toroidal/poloidal ratio,

and the strain rate tensor data from GSRM.

5.1 Introduction

The plate-mantle coupling problem has been one of the central problems in present-day

geodynamics. It refers to the way deeper, density buoyancy-driven basal tractions affect

lithospheric deformation. This coupling problem has implications on the age-old ques-

tions of what drives the Earth’s tectonic plates; what role does mantle convection play

and what is the nature of coupling between plates and deep mantle flow? Many studies

have attempted to model plate tectonics (through the torque balance method or through

calculating the lithospheric stress field) as a mere lithospheric process, independent of ac-

tive deeper density buoyancy-driven convective flow in the mantle (Solomon et al., 1975;

Richardson et al., 1979;Sandiford and Coblentz, 1994). On the other hand, various other

studies have considered mantle convection and plate tectonics as a single system in order

to explain the plate tectonic phenomenon (Zhong and Gurnis, 1996;Bercovici, 1995, 1998;

Tackley, 1998, 2000;Trompert and Hansen, 1998) or to explain observables such as the

geoid, dynamic topography, and plate motions (Hager, 1984;Hager et al., 1985;Richards

and Hager, 1984;Gable et al., 1991;Forte et al., 1993;Wen and Anderson, 1997b;Becker

and O’Connell, 2001). However, the problem with directly relating mantle convection with

plate tectonics is that the latter is not strictly a fluid dynamical process, as evident from the

existence of nearly rigid plates. In this paper, we seek to address the role and nature of

lithosphere-mantle coupling by performing a joint modeling of lithosphere dynamics and

mantle convection. The two most important observations that are sensitive to the nature

of plate-mantle coupling are the lithospheric deviatoric stress field and plate motions. If

the initial coupling model is correct, the predicted deviatoric stress tensor field will match

deformation indicators, and the predicted plate motions will also match the observed plate

motions. However, use of either one of these constraints, by itself, leads to non-unique

inferences about the plate-mantle coupling system. That is, a particular coupling model

may satisfy one constraint but not the other. Hence, both of these constraints are necessary
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to delineate a coupling model for the Earth.

The prediction of the Earth’s lithospheric stress field, as well as its plate motions, is

largely influenced by the distribution of density buoyancies as well as radial and lateral

variation of viscosities in the lithosphere and the mantle. In the past, there have been

studies that investigated this lithosphere-mantle coupling problem (Bai et al., 1992;Bird,

1998;Steinberger et al., 2001;Lithgow-Bertelloni and Guynn, 2004;Ghosh et al., 2008)

by jointly modeling lithosphere and mantle dynamics and predicting the lithospheric stress

field. Bai et al. (1992) were the first to perform such a joint modeling. They used the

intraplate stress field to evaluate their models. However, they failed to achieve a good

correlation between their predicted stresses and observed stress directions.Bird (1998)

utilized a thin sheet method with faults at plate boundaries and temperature dependent

viscous rheology in his approach to model the lithospheric stress field. He concluded that

basal driving tractions were necessary to match the observed stress field.Steinberger et al.

(2001) computed the global stress field from mantle convection based on global seismic

tomography and added it to the contribution from intra-lithospheric sources. They, on

the other hand, found that predicted stress directions with or without mantle flow matched

stress observations equally well. They also predicted plate motions in addition to predicting

the intraplate stress field.Lithgow-Bertelloni and Guynn(2004) performed a joint modeling

of lithospheric and mantle sources of stress and explored the effects of radial changes in

viscosity in the mantle. LikeBird (1998), they too argued for importance of basal tractions

and concluded that the stress field is significantly affected by lateral viscosity variations

that leads to varying degrees of coupling between the lithosphere and the mantle.Ghosh

et al. (2008) performed similar joint modeling using a thin sheet approach to model the

stress field from lithosphere and mantle buoyancies. They found that stresses from basal

tractions, arising due to density buoyancy-driven mantle convection, when added to stresses

from intra-lithospheric sources, yield a better fit to deformation indicators along the Earth’s

plate boundary zones. They also tested the sensitivity of different radially variable viscosity

structures and argued for strong lithosphere-asthenosphere viscosity contrasts. Excluding

the first and last-mentioned study, all the other studies used the World Stress Map (WSM)

(Zoback, 1992;Reinecker et al., 2005) to constrain their modeled lithospheric stress field.
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Ghosh et al.(2008), on the other hand, used the velocity gradient tensor field along the

deforming plate boundary zones from the Global Strain Rate Map (GSRM) (Kreemer et al.,

2003) to constrain their predicted stresses. None of the above studies, however, looked at

the specific nature of coupling between the lithosphere and the mantle. That is, whether

lateral variation in lithosphere and asthenosphere viscosity is important in influencing the

lithospheric stress field. In order to investigate this problem, lateral viscosity variations in

the lithosphere and/or asthenosphere are required to be incorporated in models of mantle

convection. The addition of lateral variation of viscosity also enables one to adequately

predict plate motions. Lateral variation in lithosphere and asthenosphere viscosity will also

profoundly influence the mantle flow, plate coupling, and the lithospheric stress field. It is

thus important to satisfy both the deformation constraint and the plate motion constraint in

order to delineate the best plate-mantle coupling model.

In this study we compute the lithospheric stress field from sources within the lithosphere

and from a full 3-D mantle flow field, driven by density buoyancies within the mantle,

that includes both poloidal and toroidal components. The poloidal component is associ-

ated with upwelling (divergence) in mid-oceanic ridges and downwelling (convergence) in

subduction zones, whereas the toroidal component is related to strike-slip faulting along

transform fault boundaries. We generate plate motions self-consistently from our convec-

tion models, instead of placing them as a priori boundary conditions. The combination of

predicting lithospheric stress field and plate motions enables us to investigate the nature of

plate-mantle coupling. Another important contribution of the present study is the matching

of the relative toroidal and poloidal flow magnitudes. Matching the toroidal/poloidal ve-

locity ratio has proved to be a difficult problem in studies of mantle convection (discussed

in section 4.2). In this study, we not only match the direction of plate velocities, but also

their relative magnitudes via the computation of the toroidal/poloidal velocity ratio. A very

important consequence of using all the three constraints of lithospheric stress field, plate

motions and the toroidal/poloidal velocity ratio is the elimination of a wide range of viscos-

ity models that fail to satisfy these constraints simultaneously. As mentioned before, these

constraints, individually, are non-unique. However, when considered simultaneously, these

constraints are able to narrow down a range of viscosity models that can explain observa-
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tions. Another aspect of our study is the usage of velocity gradient tensor field from GSRM

as well as earthquake moment tensor data for observations to be fitted by our depth inte-

grals of deviatoric stress. A qualitative matching of our predicted stresses with the stresses

from the WSM provides a further constraint, in addition to the quantitative matching with

the strain rate tensor information in GSRM and the moment tensor data.

5.2 Method

On a longer timescale, plates behave as viscous bodies and flow horizontally under

their own weight.Frank (1972) drew the analogy of the Earth’s lithospheric motion to the

flow in glaciers. Lateral density variations within the lithosphere, along with varying crustal

thickness and topography, give rise to gravitational potential energy per unit area (GPE) dif-

ferences. A higher elevation column of lithosphere stores more GPE than a lower elevation

column of the same density. The horizontal gradients in GPE produce deviatoric stresses

that give rise to horizontal flow from points of high GPE to points of low GPE. Effects

of these density variations within the lithosphere have been studied byArtyushkov(1973);

Fleitout and Froidevoux(1982, 1983);Fleitout (1991);Richardson(1992);Coblentz et al.

(1994). On the other hand, mantle convection can be envisaged as a fluid dynamical process

whereby the flow is driven by sources of buoyancy deep into the mantle (mostly subducting

slabs). These buoyancy sources stir the mantle and set up convective flow that gives rise to

basal tractions, which, acting at the base of the lithosphere, contribute to the lithospheric

stress field.

5.2.1 Thin Sheet Approximation for Estimating Depth Integrals of
Deviatoric Stress

We use the thin sheet approximation to solve for the stresses associated with density

heterogeneities both within and below the lithosphere. The force balance equations, in

spherical coordinates, are given as:

1
cosθ

∂
∂φ w r2σφφ x h 1

cos2 θ
∂

∂θ w r2σφθ cos2θ x h ∂
∂r w r3σφr x g 0 (1)
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1
cosθ

∂
∂φ w r2σφθ x h 1

2
∂

∂θ w r2 � σθθ h σφφ � x h 1
2cos2θ

∂
∂θ w r2cos2 θ � σθθ d σφφ � x h ∂

∂r w r3σθr x g 0

(2)
1

r cosθ
∂σφr

∂φ h 1
r cosθ

∂
∂θ w cosθσθr x h 1

r w 2σrr d σφφ d σθθ x h ∂σrr

∂r
d ρg g 0 (3)

(Ghosh et al., 2008), wherer is the radius of the Earth,ρ is the density,g is the gravitational

acceleration,σi j are the total stresses,θ is the latitude andφ, the longitude. Vertically

integrating (1) and (2) and substituting the total stress tensor,σi j , by the deviatoric stress

tensor,τi j , via σi j g τi j h 1
3σkkδi j , we arrive at

1
cosθ

∂
∂φ w k r0

rL

r2τφφdr x d 1
cosθ

∂
∂φ w k r0

rL

r2τrr dr x h 1
cos2θ

∂
∂θ w cos2θ k r0

rL

r2τφθdr x
g d 1

cosθ
∂

∂φ w k r0

rL

r2σrr dr x d r3
0τφr � r0 � h r3

Lτφr � rL � (4)

and

1
cosθ

∂
∂φ w k r0

rL

r2τφθdr x h 1
2

∂
∂θ w k r0

rL

r2τθθdr h k r0

rL

r2τφφdr x h ∂
∂θ w k r0

rL

r2τrr dr x
h 1

2cos2 θ
∂

∂θ w cos2θ y k r0

rL

r2τθθdr d k r0

rL

r2τφφdr z x g d ∂
∂θ w k r0

rL

r2σrr dr x d r3
0τθr � r0 � h r3

Lτθr � rL �
(5)

Here,r0 is the radius from the centre of the Earth to the surface,rL is the radius from the

centre to a constant reference level, andδi j is the Kronecker delta. Because horizontal

tractions at the surface are zero, the last integral yields the horizontal tractions acting at the

reference level,rL, r3
Lτφr � rL � and r3

Lτθr � rL � . Density buoyancy driven mantle convection

plays a fundamental role in generating these tractions. As long as the depth integral of

horizontal tractions is small in comparison with the depth integrals of horizontal deviatoric

stress, it is appropriate to use the thin sheet approach. The first two terms on the right hand

side of equations (4) and (5) represent horizontal gradients in the depth integrals of vertical

stress, or GPE, while the second two terms are depth integrals of horizontal tractions acting

within the lithosphere. As such, the positive gradients in GPE and the negative of the

tractions constitute body-force-like terms, and are constrained by observations: GPE by

gravity and seismically defined crustal thickness dataset (Crust 2.0), and tractions by a

self-consistent circulation model (Wen and Anderson, 1997a;Ghosh et al., 2008) that match
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plate motions and geoid.

For a thin sheet, the gradients ofσφr andσθr are negligibly small as is the term1r � 2σrr d
σφφ d σθθ � compared toρg. Hence, (3) can be approximated as

σrr g d k r0

r
ρgdrj (6)

so that the GPE equation is given byk r0

rL

r2σrr dr g d k r0

rL

r2 y k r0

r
ρgdr{ z dr g d k r0

rL

ρg y k r }
rL

r2dr z dr { g d k r0

rL

1
3

ρg ~ r { 3 d r3
L � dr {

(7)

based on a reference level at depthrL. We takerL to be 100 km below sea-level, coinciding

with a generalized base of lithosphere. In the estimation of lithosphere GPE we do not take

into account deeper lithospheric buoyancies arising from cratonic roots; instead, they are

considered part of the convection problem. In order to consider these deeper lithospheric

buoyancies in the lithospheric calculation of GPE, a variable base lithosphere needs to be

accounted for, which involves sophisticated methods that are beyond the scope of this paper.

In oceans,r0 constitutes sea-level and hence is constant, whereas it varies in continents

in accordance with varying topography. Given the GPE differences, solutions to (4) and

(5) can be obtained withτφr andτθr set to zero. Alternatively, given the basal tractions,

gradients in GPE (equation (7)) can be set to zero in order to compute the stress response

from basal tractions. The two contributions from each set of forcings can simply be added

to obtain the total lithospheric stress field. We use a finite element technique (Flesch et al.,

2001) on a global grid of 2c 5o e 2 c 5o such that the deviatoric stress field solution provides a

global minimum in the second invariant of deviatoric stress, taking into account rheological

variations due to strong plates and weak plate boundaries. Based on the strain rates from

GSRM, the plate boundaries are assigned variable viscosities using the method ofGhosh

et al. (2008),
1
µ g 1 h0r 1

µre f
d 1s E2

E2
re f
j (8)

whereE2 g 2 � ε̇2
θθ h ε̇2

φφ h ε̇2
φθ h ε̇φφε̇θθ � , and ε̇θθ j ε̇φφ and ε̇φθ are the strain rates from

Kreemer et al.(2003). A reference viscosity is assigned to a moderately straining region in
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western North America (straining at a rate of 1c 5 e 10� 7/yr) having an effective viscosityf 30 times lower than the non-deforming intraplate regions.E2
re f is the reference value for

E2 corresponding to the value forµre f .

The GPE in equation (7) is calculated from the crustal thickness and density dataset in

Crust 2.0 [G. Laske et al.,Crust 2.0: A new global crustal model at 2e 2 degrees, 2002,

available at http://mahi.ucsd.edu/Gabi/rem.html]; the densities in the oceanic lithosphere

are defined by the cooling plate model based on ocean floor age data (Müller et al., 1997)

with revised parameters fromStein and Stein(1992).

5.2.2 Mantle Convection Treatment

The basal tractions are obtained from a convection model using the methodology of

Wen and Anderson(1997b), assuming an incompressible Newtonian viscous fluid with

zero Reynold’s number. The governing equations are the equation of continuity,

∇ � U g 0 j (9)

U being the surface velocity, the equation of motion,

∇ � τ h δρg g 0 j (10)

and the constitutive equation between stress and strain rate,

τ g d p h 2ηε c (11)

Here τ is the stress tensor,δρ the density anomaly,g the acceleration due to gravity,p

the pressure,η the viscosity andε the strain rate tensor. The variables are expanded

in terms of spherical harmonics. For a radially symmetric viscosity structure, poloidal-

poloidal, poloidal-toroidal, and toroidal-toroidal equations are decoupled at every spheri-

cal harmonic degree and order (Kaula, 1975;Hager and O’Connell, 1981). For a laterally

variable viscosity structure, poloidal and toroidal equations are coupled at each degree and

order. If the coefficients are truncated at a certain spherical harmonic degree, the above

equations can be reduced to a set of linear equations and can be solved in 3 dimensions
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using a semi-spectral iterative method (Karpychev and Fleitout, 1996). The boundary con-

ditions are free-slip at the surface and at CMB. Our mantle convection models include both

radial and lateral variations of viscosity, with the lower mantle being 10 times more viscous

than the upper mantle. The density anomalies in the upper mantle are inferred by adjusting

the relative weights of density anomalies related to subducting slabs and residual tomog-

raphy (Wen and Anderson, 1997a) on the basis of fitting the geoid. The density structure

in the lower mantle was derived from a seismic tomographic model (Su et al., 1994). With

latitudeθ as positive north latitude, the basal tractions can be given as:

rL � τφr �ª� η0 g Zlm
4

1
cosθ

∂
∂φ

Ylm � θ j φ � h Zlm
6

∂
∂θ

Ylm � θ j φ � (12)

rL � τθr �ª� η0 g Zlm
4

∂
∂θ

Ylm � θ j φ � d Zlm
6

1
cosθ

∂
∂φ

Ylm � θ j φ � (13)

(Ghosh et al., 2008) whereη0 is the reference viscosity,Zlm
4 and Zlm

6 are the spherical

harmonic coefficients for the poloidal and toroidal components of stress,Ylm � θ j φ � is the

surface normalized spherical harmonic of degreel and orderm, whose maximum value is

12 in this study. The horizontal velocities are given by:

Uφ g Zlm
2

1
cosθ

∂Ylm � θ j φ �
∂φ h Zlm

5
∂Ylm � θ j φ �

∂θ
(14)

Uθ g Zlm
2

∂Ylm � θ j φ �
∂θ

d Zlm
5

1
cosθ

∂Ylm � θ j φ �
∂φ

(15)

whereZ2 andZ5 are the poloidal and toroidal components of velocity, expressed as di-

vergence (∇ � U ) and vorticity (∇ e U , U being the velocity). It should be noted that the

calculation of the tractions and the deviatoric stresses are derived from two separate mod-

els. The convection model, from which the tractions are derived using the methodology

of Wen and Anderson(1997b), is a degree 12 model that also predicts plate motions and

the toroidal and poloidal velocities. Using a solution method described below, the tractions

are applied to a constant reference levelrL below a laterally variable lithosphere of much

higher resolution (2c 5 e 2 c 5 degree) to yield estimates of the depth integral of deviatoric

stress associated with the tractions.

We experiment with various radially symmetric, as well as laterally variable viscosity
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structures (Table 1). Note that the truncation degree is quite low in our study (l g 12) and

hence, small scale features are missing in our convection model. We are therefore investi-

gating the contribution of long-wavelength components of density buoyancy-driven mantle

flow, which generates basal tractions at the reference levelrL, as well as the prediction

of long wavelength components of lithosphere motion. The lateral viscosity variations in

the lithosphere model, in which the depth integral predictions of deviatoric stress are per-

formed, is of much higher resolution (2c 5 e 2 c 5 degree). The main goal of the study is to

explain the first order features of generating plate motion and lithosphere deviatoric stress

by a simple model, and not to match all the detailed features of these, which would require

much higher resolution and sophisticated models for both the mantle flow and lithosphere

stress predictions.

5.2.3 Solving the Thin Sheet Equations

Our solution provides depth integrals of deviatoric stress that both balance the body

force distributions and simultaneously constitute a global minimum of the second invariant

of deviatoric stress. This is accomplished through minimization of the following functional

(Flesch et al., 2001):

I g k�k 1
µ
y τ̄2

φφ h 2τ̄2
φθ h τ̄2

θθ h�� τ̄φφ h τ̄θθ � 2 z cosθdφdθ

h k�k � 2λφ y 1
cosθ

∂τ̄φφ

∂φ h 1
cosθ

∂
∂φ � τ̄φφ h τ̄θθ � h 1

cos2 θ
∂

∂θ � cos2 θτ̄φθ � h 1
cosθ

∂σ̄rr

∂φ
d r3

Lσφr � rL � zh 2λθ y 1
cosθ

∂τ̄φθ

∂φ h 3
2

∂
∂θ � τ̄θθ h τ̄φφ � h 1

2cos2 θ
∂

∂θ � cos2 θ m τ̄θθ d τ̄φφ n � h ∂σ̄rr

∂θ
d r3

Lσθr � rL � z�� cosθdφdθ

(16)

(Flesch et al., 2001;Ghosh et al., 2006, 2008) wherēτφφ, τ̄θθ and τ̄φθ are the vertically

integrated deviatoric stresses,σ̄rr is the vertically integrated total vertical stress,λφ, λθ rep-

resent the horizontal components of the Lagrange multipliers for the force balance equation

constraint, andµ is the relative viscosity, which varies laterally in order to take into account

weak plate boundaries and strong plates in the lithosphere model (Ghosh et al., 2008). The

body force equivalents that go into making up the potentials are distributions of GPE and

distributions of the negative of the tractions. Optimizing equation 16 yields a relation be-
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tween the deviatoric stresses,ταβ, and the Lagrange multipliers,λφ andλθ (Flesch et al.,

2001):

τ̄φφ g µ w 1
cosθ

∂λφ

∂φ
d λθ tanθ x j (17)

τ̄θθ g µ
∂λθ
∂θ j (18)

τ̄φθ g µ
2 w ∂λφ

∂θ h 1
cosθ

∂λθ
∂φ h λφ tanθ x j (19)

Note that the relation betweenτ and the Lagrange multipliers,λφ j λθ, is identical to the

relation between strain rate and velocities. Substitution of 17-19 intoτ̄φφ j τ̄θθ andτ̄φθ in the

following J functional, and then minimization ofJ with respect toλφ andλθ provides a

solution to the force balance equations in (4) and (5), whereJ is:
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τ̄θθ

τ̄φθ

� ���� d ����� Φobs
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θθ
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  ¡¡¡¢
¤¥����¦����§ cosθdφdθ c

(20)

Here,τ̄φφ j τ̄θθ andτ̄φθ are the depth integrated deviatoric stresses we are solving for,Φobs
φφ j Φobs

θθ

andΦobs
φθ are the potentials consisting of horizontal integrals of the body force equivalents

and

£
V is the variance-covariance matrix (see Appendix B inGhosh et al.(2008)). For cal-

culation of the depth integrals of deviatoric stress, we solve equations (4) and (5) , given

distributions of GPE, 1
cosθ

∂σ̄rr
∂φ and ∂σ̄rr

∂θ , and given distributions of the negative of the trac-

tions, d r3
Lσφr � rL � and d r3

Lσθr � rL � , obtained from mantle convection models.

5.2.4 Treatment of the Radial Tractions

The tangential tractions,τφr andτθr in equations (12) and (13), arise from the horizontal

component of the 3-D convective flow. The vertical component,τrr , that gives rise to dy-

namic topography, could potentially play an important role in affecting the total deviatoric

stress field. In this section, we will discuss ways of incorporating these radial tractions in

our calculation.

There are two ways of dealing with the radial tractions (Ghosh et al., 2008). One way

is to calculate them as part of the lithospheric contribution. The other way is to predict
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them from the mantle convection models. We will first discuss the method that treats radial

tractions as part of the lithospheric contribution. The observed topography is a combination

of both static and dynamic parts. The former is generated by shallow density buoyancies

within the lithosphere, whereas the latter is produced by deeper density buoyancies within

the mantle. Hence, the depth integrals ofσrr for the observed topography, down to a con-

stant reference level (approximated base of the lithosphere), already contain contributions

from both static and dynamic parts. In this case, the density variations are obtained from a

seismically constrained crust and upper mantle structure that is uncompensated. Although

the contribution from dynamic topography is not explicitly known, it is implicitly included

in the calculation of the depth integral ofσrr .

The second way is to treat the radial tractions as part of the convection problem. From

the dynamic topography predicted by the respective convection models, the GPE differ-

ences and the associated deviatoric stress field can be calculated. This stress field is the

response of the radial tractions. These stresses can then be added to the stresses obtained

from tangential tractions,τφr andτθr , in order to obtain the total stress field produced by

the convection model. This combined stress field is then added to the deviatoric stresses

from a compensated (equal pressure at the reference level,rL) lithosphere model in order

to obtain a total lithospheric deviatoric stress field. The lithosphere model must be com-

pensated via elevation adjustment of the crustal columns (removal of dynamic topography)

such that after the adjustment, the pressure at the reference level,rL, is constant. Hence,

this method deals with the additional step of compensating the Crust 2.0 model.

Although the second method is a more self-consistent way of treating the radial com-

ponent of the mantle flow field, there are other problems involved in this methodology.

First, the compensation of the crustal model is likely to introduce errors. For complete self-

consistency, the dynamic topography predicted by the convection model should be identical

to the dynamic topography computed through compensation of the Crust 2.0 model via el-

evation adjustment. This is difficult to achieve, mainly because of differences in resolution

between the convection and the Crust 2.0 models. Moreover, the radial tractions are found

to be insensitive to the changes in convection models. That is, while the tangential tractions

and the associated deviatoric stresses are very sensitive to the different viscosity structures,
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the radial tractions do not vary much, irrespective of the viscosity model used. Hence, in

the investigation of a best-fitting viscosity model, incorporation of the radial tractions via

the second method does not add a significant constraint. Although we have tried both meth-

ods, we prefer the first method, in which the contribution of radial tractions is assumed to

be embedded in the total depth integral ofσrr , from surface topography to reference level,

rL. In this paper, therefore, we will only present results that are obtained by using the first

method.

5.3 GPE Differences

We calculate the depth integral ofσrr down to a constant reference level,rL, in order

to calculate GPE. Based on these GPE differences, the deviatoric stress field is calculated

through optimization of equation (20) (Figure 1). We compare the style and direction of

our modeled stresses with strain rate tensor information from GSRM along the Earth’s

deforming plate boundary zones. A correlation coefficient is defined, whose value lies

between -1 and +1. A higher value indicates a better match between our modeled deviatoric

stresses and the deformation indicators. The method of this quantitative comparison is

explained in detail inFlesch et al.(2007) andGhosh et al.(2008). The moment tensor data

from Harvard CMT catalogue (1976-2007) is also used as an additional constraint. This

dataset is based on more than 13,000 events occurring between 0-30 km depth, and we

perform a Kostrov (?) moment tensor summation so that comparisons between the seismic

strain tensors and the deviatoric strain tensors can be made.

We use the Crust 2.0 dataset to calculate GPE. We take the reference level,rL, in equa-

tion (7) as 100 km below the sea level. A fixed mantle density of 3300kg« m3 is assumed

from the crustal base to the depthrL. We do not take into account density variations due

to continental roots below old cratons as part of the lithosphere model; they are instead

included as part of the convection model. The cooling plate model based on ocean floor

age data (Müller et al., 1997) with revised parameters fromStein and Stein(1992) is used

to define densities for oceanic regions. The Crust 2.0 model is not compensated (unequal

pressure at the reference levelrL), and we assume the depth integrals of ofσrr down to
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Figure 2:Correlation coefficients between deviatoric stress tensors arising from GPE differences
from the Crust 2.0 model and a) observed strain rate tensors from the Global Strain Rate Map and
b) moment tensor data from Harvard CMT catalogue.

reference levelrL already contain the contribution from the radial tractions responsible for

dynamic topography. The deviatoric stress field from GPE differences shows deviatoric

tension in areas such as Andes, western North America, eastern Africa, Tibetan plateau,

and the mid-oceanic ridges, whereas older oceanic areas and majority of the continents

show low GPE and deviatoric compression (Figure 1). The Tibetan plateau shows large

N-S deviatoric tension (¬ 3 ­ 1012 N/m), associated with large GPE contrasts with the

surrounding regions. We will later show that this N-S component of deviatoric tension is

cancelled out by a compressive stress associated with basal tractions, generated by large
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scale density buoyancy-driven mantle circulation.

The comparison of the deviatoric stress field associated with GPE differences with

strain rate tensor data in GSRM shows good fitting in mid-oceanic ridges and a moderate fit

in Indo-Australian plate boundary zone and Southeast Asia (Figure 2a, Table 2). However,

areas of continental deformation exhibit a poor fit with the deformation indicators. Con-

sidering all the areas together, the overall correlation coefficient for the GPE distribution

is 0.54. For the moment tensor data, a smoothing kernel is applied to the strain rates, in

which smoothing over one grid radius is applied. For this data set, parts of Asia, Australia,

as well as Africa show a high correlation (Figure 2b). Comparison with Figure 2a shows

that in some areas, the correlation is high for the strain rate data, but poor for the moment

tensor data. This is particularly true for some areas of the mid-oceanic ridges. This arises

mainly because of the dominance of some big strike-slip type earthquakes at the transform

fault boundaries connecting ridge segments, and a relative paucity of moment release in

normal fault earthquakes along the ridges themselves. The GSRM tensor field, on the other

hand, possesses a dominant signal associated with the spreading process at the mid-oceanic

ridges, in agreement with the dominant tension at the mid-oceanic ridges associated with

GPE differences (Figure 2a).

5.4 Mantle Buoyancies

5.4.1 Lateral Viscosity Variations

The convection model is based on the model byWen and Anderson(1997b). In a

previous paper, we have discussed the sensitivity of different radially symmetric viscosity

models in influencing the lithospheric stress field (Ghosh et al., 2008). Since one of the

goals of the present paper is to predict plate motions as well, and since lateral viscosity

variations are necessary to generate plate motions, we restrict our discussion to models of

laterally variable viscosity structures only.

We introduce lateral viscosity variations in our convection model on the basis of the ma-

jor geological features (Figures 3-6). The continent-ocean divide has already been argued

to be a major cause of viscosity differences within the lithosphere byWen and Anderson
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(1997b). The cold roots of continental cratons are also thought to be one of the principal

causes of lateral viscosity variations in the shallow mantle. These high seismic velocity

areas, seen in seismic tomography images, have been attributed to a chemically different

composition, having a much higher viscosity than the surrounding mantle at the same depth

(Jordan, 1978, 1988;Rudnick and Nyblade, 1999). Age differences in the oceanic litho-

sphere can also be a major factor in giving rise to lateral viscosity differences. As the

thickness of the oceanic lithosphere varies with age, the mantle close to the ridges can be

expected to be weaker than that under old oceans. We consider these first order features to

introduce lateral viscosity variations in both the lithosphere and the asthenosphere of the

convection models.

The lower mantle is assigned a viscosity 10 times higher than the upper mantle and the

lateral changes in viscosity are confined within the top 400 km. The viscosity changes due

to the ocean-continent divide, as well as due to strength differences between old and young

oceans, are confined within the lithosphere (top 100 km), whereas the viscosity changes

arising due to cratonic keels are extended to depths below 100 km. Within each category,

we test different lateral viscosity contrasts (from 1 to 100). Finally, these three categories

are combined in order to yield mixed viscosity structures.

For each viscosity structure, we generate plate motions and compare them with present-

day plate motions. The toroidal/poloidal velocity ratio is also computed and based on the

match with the deformation indicators and plate motions, we delineate a range of viscosity

models that satisfy both these constraints.

In order to obtain the deviatoric stress field associated with mantle convection, we cal-

culate the tangential tractions for each viscosity model, which are used as a boundary con-

dition at the reference levelrL beneath a lithosphere model of much higher resolution. This

deviatoric stress field from tangential tractions is then added to the deviatoric stresses from

lateral variations in depth integrals ofσrr in the uncompensated crustal model to obtain the

total lithospheric deviatoric stress field. This total deviatoric stress field is then compared

with the velocity gradient tensor field from GSRM. Viscosity models yielding a correlation

coefficient of 0.65 and above are considered as yielding a good fit to the strain rate tensors.

The moment tensor data set is used as an additional constraint.
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5.4.2 Generation of Toroidal Flow

As mentioned earlier, the convective flow of the Earth has a toroidal component in addi-

tion to a poloidal one, which is responsible for the strike-slip motion along transform fault

boundaries. The generation of this toroidal motion is, however, somewhat enigmatic. An

incompressible Boussinesq fluid can only give rise to a toroidal flow field in presence of

lateral viscosity variations. Moreover, it has been shown byHager and O’Connell(1979)

that there occurs an equipartitioning of the Earth’s poloidal and toroidal energy at each

degree of spherical harmonic expansion. Toroidal flow cannot arise in 2-D models of man-

tle convection and hence only 3-D models of mantle convection can attempt to generate

toroidal flow.

In the past, a number of studies have attempted to generate toroidal motions in 3-D

models of mantle convection.Ricard and Vigny(1989) created toroidal flow in their carte-

sian model by imposing plate geometries as well as by determining plate motions through

a torque balance method.Gable et al.(1991) also generated toroidal motion by imposing a

hybrid stress and velocity boundary conditions in their models of spherical geometry. Both

the above studies ignored lateral viscosity variations. The first study to generate toroidal

flow in a dynamically self-consistent way was byChristensen and Harder(1991). How-

ever, because of small lateral viscosity variations in their model, they were able to generate

only a very small percentage of the observed toroidal velocity.Ribe(1992) included lateral

viscosity variations in the lithosphere of his thin viscous shell and was able to give rise

to a substantial toroidal flow field.Bercovici (1995), on the other hand, employed spe-

cial rheology in order to generate sufficient toroidal flow.Zhang and Christensen(1993)

used a temperature dependent Newtonian viscosity model, as well as strain-rate dependent

non-Newtonian model, to generate toroidal motion in a dynamically self-consistent way.

However, they failed to achieve the required toroidal/poloidal partitioning ratio.Wen and

Anderson(1997b) generated toroidal motion self-consistently in their convection model

by taking into account lateral viscosity variations in the lithosphere between continents

and oceans. They found that a relative lateral viscosity difference of a factor of 30, along

with a weak asthenosphere, were able to generate a flow field that matched the observed
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toroidal/poloidal ratio as well as the observed plate motions. They concluded that it was

the viscosity difference between oceans and continents, and not that between weak plate

boundaries and plates, that controls plate motions. In the following section, we discuss the

various types of viscosity structures and we explore which models yield a good match to

both the plate motion and deformation indicator data.

5.5 The Viscosity Models

5.5.1 Old oceans

The ocean floor age data ofMüller et al. (1997) is used to introduce lateral viscosity

variations in the lithosphere (Figure 3); oceans older than 70 my are assigned higher vis-

cosities than younger oceans. The thickness and viscosity of the asthenosphere is varied

from 100 km to 300 km and from 1019 Pa-s to 1021 Pa-s. The old oceanic lithosphere is as-

signed viscosities between 10­ 1021 Pa-s and 25­ 1021 Pa-s (green areas in Figure 3). The

white regions in Figure 3 are assigned a constant viscosity of 1021 Pa-s. For this category

of models, all the viscosity structures tested yield a very poor match to the plate motions,

especially because of their inability to generate sufficient toroidal motion. The predicted

deviatoric stresses also fail to match the deformation indicators. That is, the global correla-

tion coefficient between the predicted combined deviatoric stress tensors and the strain rate

tensors from GSRM is much lower than 0.65 for all models tested.

5.5.2 Continental Keels

We use the keel model ofWen and Anderson(1997a) (henceforth called as keel model

A, Figure 4a) and a modified lithosphere thickness model fromConrad and Lithgow-

Bertelloni(2006) (henceforth called as keel model B, Figure 4b) to introduce strong keels

within the continents. The lithosphere thickness model ofConrad and Lithgow-Bertelloni

(2006) shows very thick lithosphere below the Tibetan plateau, which is likely to be an

artifact of the seismic model used (Gung et al., 2003) to calculate the lithosphere thickness

and is absent in local tomographic studies of the area (Huang and Zhao, 2006). We have,

therefore, removed the cratonic root beneath Tibet and have assigned a normal thickness
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Figure 3:Distribution of old ocean floors. The green areas are more than 70 my old (Müller et al.,
1997) and are assigned higher viscosities. The white regions are assigned a constant viscosity of
1021 Pa-s.

(100 km) to the lithosphere there (Figure 4b). We vary the viscosity of the keels from 1021

Pa-s to 1023 Pa-s. Hence, in Figure 4a, the cratonic areas (blue) are assigned higher vis-

cosities compared to the rest of the Earth (white areas in map), which are given a constant

viscosity of 1021 Pa-s. In Figure 4b, the areas with thickness greater than 150 km are as-

signed higher viscosities compared to the rest of the areas. We test models where the keels

are just confined to the top 100 km of the lithosphere, as well as models in which the keels

extend to deeper depths (between 200-400 km depth). That is, we introduce lateral vis-

cosity variations in both the lithosphere and within asthenosphere equivalent depths. The

asthenosphere viscosity is varied from 1019 Pa-s to 1021 Pa-s and its thickness from 100

km to 300 km.

When the keels are confined to the lithosphere, they fail to match both the deformation

indicators and the plate motion data. Some of the viscosity structures where the keels

extend below 100 km do a moderate job of of fitting plate motions. However, when the

deviatoric stresses from these models are compared to the deformation indicators, they fail,

yielding correlations with GSRM of far less than 0.65. Therefore, none of the keel models

described are able to match the constraints of lithospheric stress field and plate motions

simultaneously. The results for both the keel models A and B are found to be very similar.
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Figure 4:a) Distribution of cratonic areas based on keel model A. The blue regions are assigned
higher viscosities than the surrounding white regions, which are given a constant viscosity value of
1021 Pa-s. b) Lithosphere thickness model modified fromConrad and Lithgow-Bertelloni(2006).
Areas greater than 150 km thickness are assigned higher viscosities.

5.5.3 High viscosity continents

We then consider the influence of the higher viscosity continents with respect to the

oceans on the lithospheric stress field and plate motions. The continents are assigned dif-

ferent viscosity contrasts, from 10 to 100 (10® 100 ­ 1021 Pa-s) while the entire oceanic

lithosphere is assigned a uniform viscosity value of 1® 30 ­ 1021 Pa-s. The asthenosphere

viscosity is also varied from 1019 to 1021 Pa-s and its thickness varied from 100-300 km.

A strong asthenosphere (of viscosity 1020 Pa-s) or no asthenosphere (of viscosity 1021

Pa-s) viscosity model fails to yield stresses that can match the deformation indicators.
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These models are also unable to match plate motions. The same is true for an astheno-

sphere with smaller thickness (¯ 300 km). Amongst those models with a sufficiently thick

asthenosphere (¬ 300 km) with viscosity 1019 Pa-s, models with moderate to high lateral

viscosity variations (10® 100 ­ 1021 Pa-s) in the lithosphere, due to higher viscosity con-

tinents, are able to generate deviatoric stresses, which when combined with the deviatoric

stress field from GPE differences, match deformation indicators (models 1-5 in Table 1).

These viscosity models are also able to match plate motions, achieving an almost equiparti-

tioning of the toroidal/poloidal velocity ratio. However, as the viscosity difference between

the continents and the oceans is increased, the fit to the deformation indicators improves

slightly (from 0.66 to 0.68), but the toroidal/poloidal velocity ratio (T/P) for degrees 4 and 5

are over-predicted (models 2-5), indicating that the models are predicting too much toroidal

motion.

5.5.4 Combined models

Various paired combinations of the above viscosity structures are tested against the

constraints of strain rate tensor information, plate motions and toroidal/poloidal velocity

ratio. We first test models with lateral variations due to continent-ocean divide combined

with lateral variations due to old oceans (Figure 5a). The continents (red) and the old

oceans (green) are made stronger (10® 100 ­ 1021 Pa-s) compared to the rest of the Earth

(white). The asthenospheric viscosity and thickness are varied as before, from 1019 ® 1021

Pa-s, and from 100-300 km respectively.

For the above case, models with sufficient viscosity contrasts (models 6-9 in Table

1) yield a good match to the observed plate motions, as well as to the strain rate tensor

information. However, the match to the toroidal velocity pattern is not as good as those

with only strong continents (models 1-5). Amongst models 6-9, model 7, with very strong

continental lithosphere and moderately strong old oceanic lithosphere, gives the closest

match to the toroidal velocity pattern. It also yields a good fit to the strain rate tensor

information (0.68).

Next, models with lateral strength variations due to continental regions and cratonic

keels (Figure 5b) are considered. In this case, again, the colored regions (red and blue) are
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Figure 5:Distribution of a) old ocean floors (green), and continents (red), b) cratonic areas (blue)
and continents (red). Higher viscosities are assigned to the blue, green and red areas, whereas the
white areas are given a constant viscosity of 1021 Pa-s.

assigned higher viscosities (10® 100 ­ 1021 Pa-s) compared to the white regions. These

white areas are given a constant viscosity value of 1021 Pa-s. The continental keels are also

allowed to go deeper, which means that there are lateral viscosity variations in the depth

range of 200-400 km. The viscosity of the remaining non-keel parts of the asthenosphere

is allowed to vary between 1019 ® 1021 Pa-s. The asthenosphere thickness is also varied

between 100 and 300 km.

Viscosity structures caused by a combination of higher viscosity continental lithosphere

and high viscosity continental keels yield a good match with the divergence and vorticity

patterns and also generate sufficient toroidal velocity, as long as the lateral variations are
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Figure 6:a) Distribution of old ocean floors (green) and cratonic areas having a very thick litho-
sphere (blue). b) Viscosity structures combining all three factors of lateral strength variations. Red
areas are the continental regions, blue are cratons, whereas green indicate old oceanic lithosphere.

confined to the top 100 km and there exist strong lateral variations in the top 100 km

of the lithosphere (models 10-14 in Table 1). The most favorable model in this group is

model 11, in which the lateral variations are caused by high viscosity continents and higher

viscosity cratonic keels (keel model B). This viscosity structure yields a good match with

the deformation indicators (0.67) in addition to matching the poloidal and toroidal pattern,

as well as generating sufficient toroidal velocity. Note, however, that models with high

viscosities for the keels (12-14) predict too much toroidal motion for degrees 4 and 5.

Next, the keel models are combined with old oceanic lithosphere (Figure 6a). Cratonic

areas (blue) and old oceans (green) are given higher viscosity values compared to the white
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regions in the map, which are assigned a constant value of 1021 Pa-s. We test models with

both uniform asthenosphere (when cratons are confined to the top 100 km) and laterally

variable asthenosphere (when cratonic roots are allowed to go deeper, between 200 and

400 km depths). The viscosity and the thickness of the asthenosphere are varied as before.

Keel model A, combined with old ocean model, is able to match both plate motions

and stress indicators only when there exists a very strong lateral variation in the top 100

km of the lithosphere on top of a weak and thick asthenosphere (model 17 in Table 1).

Keel model B, on the other hand, does not require such strong lateral variations in order

to yield a good fit to the strain rate tensor information and plate motions (models 15 and

16 in Table 1). The asthenosphere needs to be weak (1019 Pa-s) and thick (¬ 300 km) in

both keel cases. Within this particular group, model 16 does the best job in matching the

constraints, although its degree 4 toroidal/poloidal ratio (T/P) is somewhat low.

Finally, all the three features including ocean-continent divide, young-old oceans, and

cratonic keels are considered simultaneously (Figure 6b). The colored areas are assigned

higher viscosities as compared to the white regions in the map. Red areas are the continental

regions, whereas blue areas are cratonic regions. The old oceanic floor is indicated by

green. Once again, the viscosities in each of these regions are varied from 10® 100 ­ 1021

Pa-s, with the cratonic areas being assigned the highest strength. White regions in the map

have a constant viscosity of 1021 Pa-s. Both uniform asthenosphere (1019 ® 1021 Pa-s) and

laterally variable asthenosphere are considered, with its thickness varying from 100-300

km.

Structures 18-20 in Table 1 are able to satisfy the observational constraints. These

models incorporate lateral strength variations only in the top 100 km of the lithosphere due

to these major geological features. The asthenosphere for these successful models, once

more, is uniformly weak (1019 Pa-s) and thick (¬ 300 km). Amongst all these models,

model 19 is the most favorable, with a fit of 0.68 to the stress indicators and an almost

equipartitioning of the toroidal/poloidal velocity ratio for degree 3 and above. The match

to the divergence and vorticity pattern is also good for model 19. Structures with lateral vis-

cosity variations below 100 km depth fail to match the constraints; the fit of the deviatoric

stress tensor field to the strain rate tensor field fails when a laterally variable asthenosphere
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Figure 7: Global distribution of horizontal body forces at the reference levelrL (100 km depth)
based on a convection model with laterally variable viscosity structure in the lithosphere and a
weak asthenosphere (with viscosity of 1019 Pa-s) (model 19 in Table 1). These effective body
forces are exerted on the lithosphere from below and are equivalent to the negative of tractions,
τrφ ± τrθ (equations (12) and (13)), as defined in our coordinate system.

is considered, yielding correlation coefficients close to 0, or sometimes even negative.

5.6 Deviatoric Stress Field and Plate Motions from the
Successful Models

All the models that yield a good fit to both the constraints of plate motions and deforma-

tion indicators display a similarity in the long-wavelength pattern of body force equivalents,

which are the negative of the tractions (® τφr ² ® τθr , equations (12) and (13)) (Figure 7), and

are applied to the base of the thin sheet at 100 km. The tractions are associated with the

density buoyancy-driven mantle convection. These models show greater flow velocities at

depth compared to the reference levelrL in areas of downwelling flow, such as central Asia,

southeast Asian subduction zone, South America, and eastern North America. The same

depth dependence of flow velocity magnitudes applies to upwelling regions, such as East

Africa and the Pacific. The flow velocity directions at greater depth will be in the direc-

tion of the effective body forces (® τφr ² ® τθr ) shown in Figure 7. The traction magnitudes

range from 1® 2 ³ 5 MPa. The downwelling flow is caused by deeper density buoyancies of

old subducted lithosphere. Similarity in the magnitude and distribution of the body force
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equivalents for all successful models also means similarity in the resultant deviatoric stress

pattern (Figure 8). The poloidal and toroidal velocities for the successful models also bear

much similarity with each other. Hence, here we present the results of one of our success-

ful models (model 19 in Table 1). The combined stress field (from GPE differences and

basal tractions) (Figure 9), as well as the correlation coefficients with the strain rate tensor

information (Figure 10a, Table 2), are also shown for this particular model. The viscosity

model that generates the tangential tractions and plate motion predictions combines all the

three features of continent-ocean divide, continental cratons, and old vs. young oceanic

lithosphere (model 19 in Table 1, Figure 6b).

Figure 7 shows strong convective downwelling (convergence) occurring in areas such as

central Asia, southeast Asian subduction zone, Andes, and eastern North America. Strong

upwelling (divergence) is seen in eastern Africa and mild upwelling in the Pacific, in accor-

dance with the low seismic velocity zones in those areas. The mid-oceanic ridges also show

mild upwelling beneath them. The deviatoric stress field from these tangential tractions

exhibit deviatoric compression in areas of convergence and deviatoric tension in areas of

divergence (Figure 8). The stress magnitudes from tractions, which range from 1® 4 ­ 1012

N/m (Figure 8), are comparable to those from lithospheric GPE differences (Figure 1). The

total depth integrated deviatoric stress field (Figure 9), which is the combined deviatoric

stress field from lithospheric GPE differences (Figure 1) and mantle convection (Figure

8), shows significant changes from both Figures 1 and 8. The magnitudes of total depth

integrated deviatoric stresses range from 2® 6 ­ 1012 N/m (Figure 9) for most areas, which

are consistent with deviatoric stress magnitudes obtained byRichardson(1992). Also, it

should be mentioned that the deviatoric stress magnitudes do not depend on absolute vis-

cosity values, but are only dependent on relative viscosity variations. This is true for both

the lithosphere model and for the convection model. The deviatoric stresses from basal

tractions are dependent on the magnitudes of the tractions (Figure 7), which in addition to

being dependent on the density model, are a function of the relative viscosity distribution.

Likewise, the magnitudes of deviatoric stress from lithospheric GPE differences (Figure 1)

is dependent on present-day topography, crustal structure, crustal and mantle densities used

for those structures, and the relative viscosity variations for lithosphere, not the absolute
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values of viscosity for the lithosphere.

There occurs large deviatoric tension in Eastern Africa, while the tension in the vicinity

of the Andes largely vanishes for the total field. Deviatoric compression in the northern part

of the North American continent is replaced by strike-slip style of deformation, whereas in

the southern part of North America the style is deviatoric compression. The boundary zone

between the Indian and Australian plates shows more deviatoric tension on the western

side of the plate boundary zone, with dominant compression mixed with strike-slip on

the east. A major change takes place in the Tibetan plateau, where the dominantly N-S

deviatoric tension from GPE differences is replaced by strike-slip type of deformation, as

per observations.

Comparison of the deviatoric stress tensor from the combined influence of lithospheric

GPE and mantle circulation (Figure 9) with the strain rate tensors in the plate boundary

zones (GSRM) shows an improvement in fitting in most of the areas, especially in areas of

continental deformation (Table 2, Figure 10a). Andes and Africa show a dramatic improve-

ment in fitting. Some areas, such as the mid-oceanic ridges and the Mediterranean undergo

moderate to slight improvement. Comparison with the moment tensor data also show sig-

nificant improvement in Andes, eastern Africa, central Asia, and the Indo-Australian plate

boundary region (Figure 10b). The fit, however, degrades in areas such as Baikal in Asia,

New Zealand, Hawaii (for the moment tensor data) and also in a few areas of the mid-

oceanic ridges (south of Africa). The overall fit for the combined case is 0.68 for model 19

(Tables 1 and 2) as opposed to a much lower 0.54 from GPE differences only (Table 2).

The above results show the importance of density buoyancy-driven basal tractions in

explaining the deformation in the Earth’s plate boundary zones. Addition of basal tractions

marks a substantial improvement in fitting, especially in areas of continental deformation.

Tractions, coupled to the base of the plates are generated by mantle flow induced by current

and past subducted lithosphere in the areas such as the Indian plate, North America, and

Andes.

We do a qualitative comparison between the most compressive principal axes direction

of our predicted deviatoric stresses from our best fitting combined model and the orientation

of the horizontal most compressive principal axes from the stresses in the World Stress
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Figure 10:Correlation coefficients between deviatoric stress tensors arising from combined GPE
differences and basal tractions (Figure 9) and a) observed strain rate tensors from the Global Strain
Rate Map and b) moment tensor data from Harvard CMT catalogue.

Map (WSM) (Zoback, 1992;Reinecker et al., 2005). WSM is a compilation of measured

principal stress directions based on earthquake focal mechanisms, borehole breakout data

and Quarternary fault slip directions. We use the WSM data interpolated on a grid used by

Lithgow-Bertelloni and Guynn(2004) (Figure 11a). This interpolated dataset is compared

with the most compressive principal axes of deviatoric stress from GPE differences (Figure

11b) and from GPE differences and tractions (from model 19) combined (Figure 11c).

A qualitative comparison shows large swathes of regions which demonstrate an excellent

match. That is, in those areas, the difference in most compressive principal axes directions
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between our predicted stresses and those from WSM is less than 15o. These areas are the

entire North and Central America, mid-Atlantic ridge, parts of central Africa, westernmost

part of Europe, Mediterranean, Caspian Sea region, eastern Asia, India, as well as the

Indo-Australian boundary zone and the southeast Indian ridge. The above fit is true for

both the combined case (Figure 11c) and the case with GPE differences only (Figure 11b).

Areas that yield a moderate fit (most compressive principal axes directions varying between

20o ® 30o) are the southwest and central Indian ridges and southeast Asia. Central Australia

yields a poor fit (most compressive principal axes directions varying between 50o ® 70o)

for both cases. In some of the regions, the fit improves for the combined case compared

to the GPE case, such as Andes, central America, parts of eastern and southern Africa,

and the southern part of the East Pacific Rise. A few areas such as central Pacific, part of

southwest Indian ridge below Africa, central Europe, however, fare better for the GPE case

as compared to the combined case. The above comparison is based only on the principal

axes directions and not on their styles. In general, the misfit between our predicted most

compressive principal axes and those in WSM do not vary largely between the two cases

(deviatoric stresses from GPE differences and combined deviatoric stresses). This is where

the GSRM can yield valuable information, since, while comparing to GSRM, we consider

the full stress and strain rate tensors instead of only the most compressive principal axes.

The surface plate velocities from model 19 are presented here in terms of divergence

(Figure 12c) and vorticity (Figure 12d). When compared with the observed divergence and

vorticity on Earth (Figure 12a,b), they appear similar on a large scale. The main differences

occur in the positions of the most prominent highs and lows, especially for the poloidal

case. The zone of high divergence to the southwest of North America is displaced towards

the west, instead of occurring exactly over the mid-oceanic ridges. The low divergence

zone observed along the Southeast Asian subduction region is centered slightly to the north

of the main subduction area. In the case of vorticity, as well, there occurs some differences

between the observed and the predicted velocities. We are over-predicting the left-lateral

shear to the south of India and under-predicting the right lateral shear in western North

America. Moreover, there are some extra centers of left-lateral shear occurring at the far

south, which are absent in the observed vorticity map.
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Figure 12: Observed (a and b) and predicted (c and d) divergence (top) and vorticity (bottom).
The predicted result is from one of our successful models (model 19 in Table 1) that also produces
deviatoric stresses, which yield a high correlation with the GSRM model (Table 2, Figure 10).
Contour interval is 5µ 10¶ 9 rad/yr.

Region of interest Number of areas GPE Combined GPE Differences
Differences plus Basal Tractions

Western North America 132 0.53 0.63
Andes 89 0.24 0.79

Eastern Africa 164 0.32 0.70
Mediterranean 83 0.55 0.57
Central Asia 187 0.33 0.52

Indo-Australian 174 0.69 0.75
plate boundary zone
Mid-oceanic ridges 292 0.80 0.86

Western Pacific 109 0.51 0.62
South East Asia 167 0.61 0.65

Total 1944 0.54 0.68

Table 2:Correlation coefficients obtained from a comparison between the deviatoric stress tensors
from one of our successful models (model 19 in Table 1) and strain rate tensors from the GSRM
model.
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Figure 13:Same as Figure 7, but for model 21.
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Figure 14:Same as Figure 8, but for model 21.
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Figure 15:Same as Figure 9, but for model 21.
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Figure 16:Same as Figure 7, but for model 22.

We would also like to discuss the combined lateral viscosity models where only the

keels are allowed to reach depths of 200 km with a 200 km thick asthenosphere below

them. The areas outside the cratonic regions are underlain by an asthenosphere that is 300

km thick. The effective body forces (Figure 13) from one such case (model 21) shows a

very different pattern compared to the successful models. The magnitudes of these effective

body forces are also smaller. The resultant deviatoric stresses from this model (Figure

14) also exhibits a completely different style and reduced magnitudes. This arises due

to the fact that lateral viscosity variations below 100 km induces a flow pattern in which
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the lithosphere in some regions leads the mantle, as opposed to the mantle leading the

lithosphere for the successful models. These stresses combined with the deviatoric stresses

from GPE differences only show the dominant effect of the latter (Figure 15). The fit to the

strain rates from GSRM is poor (Table 1, model 21).

We also test a viscosity structure in which we consider only the ocean-continent divide

in the top 100 km with the keels reaching a depth of 400 km (model 22 in Table 1). In areas

where there are no keels, the asthenosphere is 300 km thick and is assigned a viscosity of

1019 Pa-s. We only show the traction field (Figure 16) for that model. The pattern is exactly

opposite to that from our successful models with the lithosphere leading the flow in areas of

high density anomalies. The fit to the GSRM is even worse than model 21. The results for

this model are shown in Table 1 (model 22). Clearly an asthenosphere is needed beneath

the keels, and the best match to stress occurs where the keels have no presence below 100

km (uniform asthenopshere).

5.7 Alternative Method: Radial Tractions from Mantle
Convection

As discussed in section 2.4, there are two ways of dealing with the radial tractions. Our

preferred way is to treat them as part of the lithospheric contribution, the results of which

we have presented so far. In this section, we demonstrate the results of calculating radial

tractions from mantle convection models.

We choose a viscosity model that yields a good fit to plate motions but fits the strain

rate data poorly (Table 3). This viscosity structure takes into account the ocean-continent

divide in the top 100 km with continents 30 times stronger than the oceans. It also contains

high viscosity keels (1022 Pa-s) reaching to a depth of 200 km with a weak asthenosphere

(1019 Pa-s) elsewhere. The asthenosphere between 200-400 km is slightly stronger (1020

Pa-s). From the dynamic topography predicted by the particular convection model (Figure

17a), the GPE differences and the associated deviatoric stress field (Figure 17b) is calcu-

lated. Areas of positive dynamic topography have higher GPE and are in deviatoric tension,

whereas those of negative dynamic topography have low GPE and are in deviatoric com-
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Figure 17:Prediction from radial tractions of the convection model described in section 5.7. a)
Dynamic topography predicted by the radial tractions. b) GPE differences and associated deviatoric
stresses computed from the dynamic topography in a). Areas of negative dynamic topography are
in deviatoric compression, whereas those of positive dynamic topography are in deviatoric tension.

pression. This deviatoric stress field is the response of the radial tractions. The deviatoric

stresses from tangential tractions (Figure 18b) for the same model shows opposite sense to

the deviatoric stresses from radial tractions. The two stress fields are then added together

to generate a combined deviatoric stress field, which is the total deviatoric stress response

from the convection model (Figure 19a). The fit to the strain rate data from GSRM for

each of the above cases (Figures 18, 19) is also calculated (Table 3). Finally, these devi-

atoric stresses from convection model are added to those from a compensated lithosphere

model in order to yield a total lithospheric deviatoric stress field (Figure 19b). Table 3 lists
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Figure 18:a) Global distribution of horizontal body forces at the reference levelrL (100 km depth)
from the convection model described in section 5.7. b) Deviatoric stress field associated with hor-
izontal tractions in a). Note that the deviatoric stresses in most areas are opposite in sense to the
deviatoric stresses in Figure 17b.

the global correlation coefficients between the strain rates from GSRM and the deviatoric

stresses from different components of the same model. When the radial tractions are dealt

with as part of the lithosphere model, the fit to the strain rates is very poor (-0.02 in Table

3). When the radial tractions are dealt with as part of the convection model, the overall

fit improves dramatically (0.66 in Table 3). Hence, if using the former method, we would

reject this model on the grounds that it fails to fit the deformation indicators. On the other

hand, if we use the alternative method, we would accept this model as a successful one as it

yields a good fit to both deformation indicators and plate motions. The deviatoric stresses
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Figure 19: a) Total deviatoric stress field from the convection model in section 5.7 by adding
stresses due to radial (Figure 17b) and horizontal (Figure 18b) tractions. b) Total lithospheric de-
viatoric stress field obtained by combining stresses from convection model (Figure 19a) and those
from GPE differences from a compensated lithosphere model.

associated with dynamic topography thus dominate the solution and compensate for the

inadequacy of the horizontal tractions. The dominance of the radial traction solution may

indicate that we are not adequately removing the influence of dynamic topography from

the Crust 2.0 model. The uncertainty in how the Crust2.0 model is compensated in order

to remove the dynamic topography signal from it, leads us to prefer the use of the uncom-

pensated model for GPE calculations. For such cases, we assume that the depth integrals

of vertical stress already contain the signal from dynamic topography.
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Models Correlation coefficients

Horizontal tractions -0.53
(from Figure 18b)

Combined horizontal tractions
plus GPE differences -0.02

from uncompensated Crust 2.0

Horizontal plus radial tractions 0.53
(from Figure 19a)

Combined tractions
plus GPE differences 0.66

from compensated Crust 2.0
(from Figure 19b)

Table 3:Comparison of global correlation coefficients between strain rate tensors from the GSRM
model and deviatoric stress tensors from the viscosity model described in section 5.7 that yields
a good fit to the plate motion data. Note, that the addition of radial tractions improves the fit
dramatically.

5.8 Discussion and Conclusion

The principal aim of this study is to delineate the nature of lithosphere-mantle coupling

and to test whether major geological features such as the continent-ocean divide, presence

of cratonic roots, and age differences in the oceans, are capable of generating stresses that

match the present-day deformation in the Earth’s plate boundary zones and are also able

to predict the observed plate motions. The results show that these first order features can

indeed satisfy these two constraints. All these three factors are found to play important roles

in matching the constraints. However, the lateral variation due to continent-ocean divide is

the only model that is capable of satisfying the constraints by itself (models 1-5), as long as

sufficient strength contrast exists between the oceans and continents. The common feature

for all the successful models, besides models 15-17, is the presence of this continent-ocean

divide. Hence, this feature is likely playing the dominant role in generating the optimum

pattern and magnitude of stresses and plate motions.

From Table 1, it is clear that a weak asthenosphere of viscosity 1019 Pa-s with a thick-
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ness of¬ 300 km is required for a model to be successful. The low viscosity of the astheno-

sphere is necessary to generate sufficient toroidal motion so that the T/P ratio approaches

unity. Such asthenospheric properties are also required for the convection model to gener-

ate the right kind of traction field, which would produce deviatoric stress field that matches

deformation indicators. Many studies have argued for the existence of a low viscosity

channel below the lithosphere. In fact, the plate motions predicted byWen and Anderson

(1997b) with a uniform low viscosity asthenosphere in their convection model, matched the

observed plate motions quite well. This study has shown that such a viscosity model also

does a very good job of matching the strain rate tensor information along the deforming

plate boundary zones. Hence, it is of primary importance to take into account both these

constraints when drawing inferences about the Earth’s viscosity structure.

We also see from our results that models where the keels reach depths below 100 km,

are unable to match the observational constraints, especially the fit to the deformation in-

dicators. In these types of models, the flow velocities near the surface in many regions are

larger than those at depths (Ghosh et al., 2008), indicating that, for these particular models,

the lithosphere leads the mantle. Hence, the body-force distribution, and the resultant de-

viatoric stress pattern, are opposite to those of the successful models. The implications of

this are potentially enormous, and may indicate that seismic velocity variations at depths

below 100 km may not be associated with lithospheric “keels”, but may instead reflect

variations in seismic properties in the upper mantle that is still rheologically equivalent to

asthenosphere in behavior.

Another significance of this study is the generation of toroidal velocity. As mentioned

earlier, it has been extremely difficult to incorporate high orders of lateral viscosity varia-

tions, and hence generate sufficient toroidal motion in models of mantle convection. Here,

with sufficient strength contrasts in the lithosphere of the convection models, we are able

to generate a high enough toroidal velocity that satisfies the observed equipartitioning of

toroidal-poloidal motion. We believe that we have constrained the relative viscosities of

the lithosphere and asthenosphere in order to delineate a best-fit coupling model. We have

shown that contribution of density buoyancy-driven basal tractions are extremely impor-

tant, not only to match the present-day deformation of the lithosphere, but also to fit the
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pattern and magnitude of the plate velocities. We have also demonstrated the importance

of the ocean-continent difference in controlling the plate motions and the toroidal/poloidal

velocity ratio.

An important aspect of our study is constraining the deviatoric stress magnitudes. The

magnitudes of depth integrals of compressive deviatoric stress from the combined GPE dif-

ferences and convection models are 2® 8 ­ 1012 N/m, the largest stresses occurring within

the Indo-Australian plate and southeast of South America in the Atlantic. The stress mag-

nitudes in most parts are consistent with stress magnitudes of earlier studies (Richardson,

1992). In other parts, our stress magnitudes are larger by a factor of 2. These areas of

large stress magnitudes are outside the deforming plate boundary zones in the GSRM. Our

stresses in the Indo-Australian plate are about 4-5 times smaller than those ofCloetingh

and Wortel(1986), who calculated stresses of several kilobars in the Indo-Australian plate.

However,Coblentz et al.(1998) predicted stress magnitudes about a factor of 2 smaller

than ours in the Indo-Australian plate. Deviatoric stresses at the Tibetan Plateau are be-

tween 2® 3 ­ 1012 N/m. The stress magnitudes in continental Europe are large,¬ 6 ­ 1012

N/m, whereas those in North America are between 3® 5 ­ 1012 N/m. It should be men-

tioned that these stress magnitudes are mostly dependent on the density models and to some

extent on the relative viscosity distributions. They are independent of absolute viscosities.

We also calculate the vertical averages of rheology of the deforming lithosphere by

computing the vertically integrated differential stress (· L¸ h � σ1 ® σ3 � dz). The differential

stress is calculated according to the fault styles (Klein et al., 2008). The vertically inte-

grated differential stress will provide an idea about the maximum strength in a deforming

region. The deforming areas along the plate boundary zones are chosen from GSRM. The

computed differential stress shows strength of 2® 8 ­ 1012N/m or 20-80 MPa in most of

the continental regions (Figure 20). We compare these differential stresses with those of

Sonder and England(1986). Assuming a fixed strain rate and Moho temperature, they

calculated the vertically integrated differential stress. Our calculated differential stress

in Tibet is 4 ® 7 ­ 1012 N/m compared to 7­ 1012 N/m of Sonder and England(1986).

Our strength in San Andreas ranges from 1® 5 ­ 1012 N/m, which is consistent with the

4 ­ 1012 N/m magnitude determined bySonder and England(1986). Our values in Zagros
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Figure 20:Distribution of vertically integrated strength of the lithosphere,¹ L¶ h º σ1 » σ3 ¼ dz, in the
deforming areas. The scalebar is in N/m.

are larger (5® 7 ­ 1012 N/m) compared to the 2­ 1012 N/m computed by them, whereas in

the Aegean our values are the same as theirs (2­ 1012 N/m).

We achieve the highest correlation coefficient of 0.68 between our predicted deviatoric

stresses and the deformation indicators (Tables 1 and 2). There still exists some misfit

between our predictions and the observed plate motions and deformation indicators. The

remaining misfit for the deviatoric stress field and the plate motions might arise from a

number of different factors. For example, although our lithosphere model is a high resolu-

tion one (2³ 5 ­ 2 ³ 5 degree), the convection model is of much lower resolution (degree 12).

The misfit could be due to the lower resolution of the convection model. Increasing the

degree of the model could substantially improve the fit to the observations. There occurs

substantial viscosity differences between the weak plate boundaries and the more rigid

plate interiors. These variations might play an important role. Although, our thin sheet

lithosphere model takes into account these viscosity variations, they are not incorporated in

our convection model. However, in order to consider these weak, narrow plate boundaries,

it is necessary to use a much higher resolution convection model.

In the present study, we have used the lithospheric stress field and plate motions to

constrain possible viscosity structures for the Earth. We have demonstrated that both these
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constraints are crucial in delineating a best-fit viscosity model. We have successfully nar-

rowed down a set of viscosity structures that satisfy both stresses and plate motions. In

order to fine-tune our models, additional constraints such as geoid and dynamic topogra-

phy could be used. An accepted model would be one that is capable of matching all the

four constraints of deviatoric stress field, plate motions, geoid, and topography.
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Chapter 6

Mathematical Treatment for Obtaining
Deviatoric Stress Field for the Thin sheet
Approach
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Mathematical treatment for obtaining deviatoric stress field for the

thin sheet approach

This chapter describes the methods used to calculate the depth integrated deviatoric

stresses within the lithosphere using the thin sheet method, given a distribution of forcing

terms. The mathematical treatment of the methods are described and tested.

The vertically integrated force-balance equations in spherical coordinates are:

1
cosθ

∂
∂φ ½¿¾ r0

rL

r2σφφdr ÀÂÁ 1
cos2 θ

∂
∂θ ½¿¾ r0

rL

r2σφθ cos2 θdr ÀÂÁ ∂
∂r ½¿¾ r0

rL

r3σφrdr À�Ã 0 (1)

1
cosθ

∂
∂φ ½ ¾ r0

rL

r2σφθdr À�Á 1
2

∂
∂θ ½ ¾ r0

rL

r2 Ä σθθ Á σφφ Å dr ÀÁ 1
2cos2 θ

∂
∂θ ½ ¾ r0

rL

r2cos2 θ Ä σθθ ® σφφ Å dr À Á ∂
∂r ½ ¾ r0

rL

r3σθrdr À Ã 0 (2)

1
r cosθ ¾ r0

rL

∂σφr

∂φ
dr Á 1

r cosθ
∂

∂θ ½ cosθ ¾ r0

rL

σθrdr À Á 1
r ¾ r0

rL ½ 2σrr ® σφφ ® σθθ À drÁ ¾ r0

rL

∂σrr

∂r
dr ® ¾ r0

rL

ρgdr Ã 0 (3)

Let us assume that

r2
0σ̄rr Ã ¾ r0

rL

r2σrr dr (4)

r2
0σ̄φφ Ã ¾ r0

rL

r2σφφdr (5)

r2
0σ̄φθ Ã ¾ r0

rL

r2σφθdr (6)

r2
0σ̄θθ Ã ¾ r0

rL

r2σθθdr (7)

r2
0 f̄θ Ã�® � rL � 3σθr (8)

r2
0 f̄φ Ã�® � rL � 3σφr ³ (9)

Then the depth integrals, fromrL to r0, of the force-balance equations ((1) and (2)) can be

written as:
1

cosθ
∂σ̄φφ

∂φ
Á 1

cos2 θ
∂

∂θ � σ̄φθ cos2 θ �ÆÁ f̄φ Ã 0 (10)

and
1

cosθ
∂σ̄φθ

∂φ
Á 1

2
∂

∂θ Ç σ̄θθ Á σ̄φφ È Á 1
2cos2θ

∂
∂θ � Ç σ̄θθ ® σ̄φφ È cos2 θ �ÉÁ f̄θ Ã 0 (11)
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where

f̄θ Ã�® � rL � 3
r2
0

σθr Ê rL (12)

and

f̄φ Ã�® � rL � 3
r2
0

σφr Ê rL (13)

whereσφr Ê rL andσθr Ê rL are the tractions applied at a constant reference level,rL. Let

σ0 Ã 1
2 Ç σ̄φφ Á σ̄θθ È ² (14)

σ̃αβ Ã σ̄αβ ® δαβσ0 (15)

σ0 are the dilational terms and̃σαβ are the shear terms andσ̃θθ ÃH® σ̃φφ. Substituting the

above into equations (10) and (11) yields

1
cosθ

∂σ̃φφ

∂φ
Á 1

cos2θ
∂

∂θ � σ̃φθ cos2θ �ÉÁ 1
cosθ

∂σ0

∂φ
Á f̄φ Ã 0 (16)

and
1

cosθ
∂σ̃φθ

∂φ
® 1

cos2 θ
∂

∂θ � σ̃φφ cos2θ �ÉÁ ∂σ0

∂θ
Á f̄θ Ã 0 (17)

Only the dilational term is affected by the conversion from total to deviatoric stresses.

Substitutingτ0 Ã σ0 ® σ̄rr , equations (16) and (17) become

1
cosθ

∂σ̃φφ

∂φ
Á 1

cos2θ
∂

∂θ � σ̃φθ cos2 θ �ÆÁ 1
cosθ

∂τ0

∂φ
Á Fφ Ã 0 (18)

and
1

cosθ
∂σ̃φθ

∂φ
® 1

cos2θ
∂

∂θ � σ̃φφ cos2θ �ÉÁ ∂τ0

∂θ
Á Fθ Ã 0 (19)

where

Fφ Ã f̄φ Á 1
cosθ

∂σ̄rr

∂φ
(20)

Fθ Ã f̄θ Á ∂σ̄rr

∂θ
³ (21)

The second terms of the effective body forces,Fφ andFθ in (20) and (21) are the horizontal

gradients of GPE, or the horizontal gradients of the depth integral of total radial stress,σ̄rr .

We solve the force-balance equations in response to the negative of the tractions inf̄φ and

f̄θ (see (12) and (13)) separately from the response to the GPE differences. Although this
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chapter deals primarily with solution methods to the force-balance equations associated

with the response to mantle flow-related tractions (fφ ² fθ), we point out that the solution

form for the response to GPE differences is the same as the solution form for the response

to poloidal flow. Equations (18) and (19) can be rewritten as

Fφ Ã�® 1
cosθ

∂σ̃φφ

∂φ
® 1

cos2θ
∂

∂θ � σ̃φθ cos2θ �Ë® 1
cosθ

∂τ0

∂φ
(22)

and

Fθ Ã�® 1
cosθ

∂σ̃φθ

∂φ
Á 1

cos2θ
∂

∂θ � σ̃φφ cos2θ �Ì® ∂τ0

∂θ
(23)

Recall that we minimize the I functional below in order to solve the above equations, given

estimates ofFφ andFθ, where that solution provides a minimum of the second invariant of

deviatoric stress:

I Ã 1
2 ¾�¾ 1

µ Í 23τ2
0 Á 2σ̃2

φφ Á 2σ̃2
φθ Î cosθdφdθÁ ¾�¾VÏ λφ Í 1

cosθ
∂σ̃φφ

∂φ
Á 1

cos2 θ
∂

∂θ Ð σ̃φθ cos2 θ ÑÒÁ 1
cosθ

∂τ0

∂φ
Á Fφ ÎÁ λθ Í 1

cosθ
∂σ̃φθ

∂φ
® 1

cos2θ

∂
∂θ � σ̃φφ cos2θ �ÆÁ ∂τ0

∂θ
Á Fθ Î cosθdφdθ ³ (24)

Optimizing thisI functional with respect toτ0 ² σ̃φφ ² σ̃φθ respectively yields

2
3µ

τ0cosθ ® ∂λφ

∂φ
® ∂

∂θ Ð λθ cosθ Ñ Ã 0 ² (25)

2
µ

σ̃φφ cosθ ® ∂λφ

∂φ
Á cos2θ

∂
∂θ ½ λθ

cosθ
À Ã 0 ² (26)

2
µ

σ̃φθ cosθ ® cos2θ
∂

∂θ ½ λφ

cosθ
À ® ∂λθ

∂φ
Ã 0 ³ (27)

Hence,

τ0 Ã µ
2 Í 1

cosθ
∂λφ

∂φ
Á 1

cosθ
∂

∂θ Ð λθ cosθ Ñ Î (28)

σ̃φφ Ã µ
2 Í 1

cosθ
∂λφ

∂φ
® cosθ

∂
∂θ ½ λθ

cosθ
À Î (29)

σ̃φθ Ã µ
2 Í cosθ

∂
∂θ ½ λφ

cosθ
À�Á 1

cosθ
∂λφ

∂φ Î ² (30)
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which leads to

τ̄φφ Ã µ � τ0 Á σ̃φφ �EÃ µ ½ 1
cosθ

∂λφ

∂φ
® λθ tanθ À (31)

τ̄θθ Ã µ � τ0 ® σ̃φφ �ÒÃ µ
∂λθ
∂θ

(32)

τ̄φθ Ã µ � σ̃φθ �EÃ µ
2 ½ ∂λφ

∂θ
Á 1

cosθ
∂λθ
∂φ

Á λφ tanθ À ³ (33)

Note that (31), (32) and (33) have the same form as deviatoric stress on a sphere, where

the Lagrange multipliers,λφ andλθ hold the same position as the horizontal velocities,uφ,

uθ, respectively. The one exception is that there is no term equivalent tour « r in (31) and

(32), as this term is expected to be small and is therefore not dealt with here. Recall that we

actually minimize theJ functional in order to solve the force-balance equations, and doing

so is equivalent to minimizing theI functional and satisfying the conditions within theI

functional (Flesch et al., 2001). If we substitute (31)-(33) into theJ functional,

J Ã ¾�¾
ÓÔÔÔÔÕ ÔÔÔÔÖ
×ØØØÙaÚÛÛÛÜ τ̄φφ

τ̄θθ

τ̄φθ

Ý�ÞÞÞß ® ÚÛÛÛÜ Φobs
φφ

Φobs
θθ

Φobs
φθ

Ý�ÞÞÞß
à8áááâ T ã

V
¸ 1

×ØØØÙaÚÛÛÛÜ τ̄φφ

τ̄θθ

τ̄φθ

Ý�ÞÞÞß ® ÚÛÛÛÜ Φobs
φφ

Φobs
θθ

Φobs
φθ

Ý�ÞÞÞß
à8áááâ
ä¥ÔÔÔÔåÔÔÔÔæ cosθdφdθ

(34)

(seeFlesch et al.(2001) and Appendix B inGhosh et al.(2008)) and minimizeJ with

respect toλφ ² λθ, we have the following:

1
cosθ

∂
∂φ
Ä σ̃φφ ® σ̃obs

φφ Å Á 1
cos2 θ

∂
∂θ Ð Ä σ̃φθ ® σ̃obs

φθ Å cos2θ ÑÒÁ 1
cosθ

∂
∂φ Ç τ0 ® τobs

0 È Ã 0 (35)

and

1
cosθ

∂
∂φ
Ä σ̃φθ ® σ̃obs

φθ Å ® 1
cos2 θ

∂
∂θ Ð Ä σ̃φφ ® σ̃obs

φφ Å cos2 θ ÑÒÁ ∂
∂φ Ç τ0 ® τobs

0 È Ã 0 (36)

where

τobs
0 Ã 1

2 Ð τobs
φφ Á τobs

θθ Ñ (37)

σ̃obs
αβ Ã τobs

αβ ® δαβτobs
0 ³ (38)
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The potentialsΦobs
φφ ² Φobs

θθ , andΦobs
φθ in theJ functional are:ÚÛÛÛÜ Φobs

φφ

Φobs
θθ

Φobs
φθ

Ý�ÞÞÞß Ã ãV ÚÛÛÛÜ τobs
φφ

τobs
θθ

2τobs
φθ

Ý�ÞÞÞß (39)

where ã
V Ã ÚÛÛÛÜ 2

3 ® 1
3 0® 1

3
2
3 0

0 0 1
2

Ý ÞÞÞß ³ (40)

Equating terms in (35) and (36) to terms in the force balance equations, (22) and (23), we

see that:

Fφ Ã�® 1
cosθ

∂σ̃obs
φφ

∂φ
® 1

cos2θ
∂

∂θ � σ̃obs
φθ cos2θ �Ë® 1

cosθ
∂τobs

0

∂φ ² (41)

Fθ Ã�® 1
cosθ

∂σ̃obs
φθ

∂φ
Á 1

cos2 θ
∂

∂θ � σ̃obs
φφ cos2 θ �Ì® ∂τobs

0

∂θ
(42)

Note thatσ̃obs
φφ ² σ̃obs

φθ , andτobs
0 are potentials, which through (37), (38), (39) and (40) define

Φobs
φφ ² Φobs

θθ ² Φobs
φθ in theJ functional . Our procedure consists of the following. We first find

solutions to the potentials that satisfy (41) and (42). Once the potentials are obtained, equa-

tions (37)-(40) are used to calculate theΦobs
i j potentials. These potentials are substituted

into theJ functional and theJ functional is optimized over a 2³ 5 ­ 2 ³ 5 degree grid to define

one self-consistent deviatoric stress field that satisfies the force-balance equations. The re-

sultant deviatoric stress field constitutes a global minimum of the second invariant of stress

that balances the body force inputs. The potentials that satisfy equations (41) and (42) are

non-unique, whereas the resultant deviatoric stress field, obtained from the minimization

of theJ functional, is unique. Below we will show two different ways of obtaining solu-

tions to (41) and (42) to define the potentials, and we will demonstrate that as long as these

potentials are well-behaved at the poles, the deviatoric stress solutions are unique.

The above equations are solved in either of two ways:

(1) takingτ0 Ã 0 while σ̃φφ andσ̃φθ are non-zero (Case I), or

(2) takingτ0 to be non-zero whilẽσφφ Ã σ̃φθ Ã 0 (Case II).

Although the forms of the potentials are very different, we obtain identical stress fields
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from them when appropriate conditions are used.

For Case I, let

σφφ Ã σ̃obs
φφ cos2 θ; σφθ Ã σ̃obs

φθ cos2 θ

so that

Fφ Ã�® 1
cosθ

∂σφφ

∂φ
1

cos2θ
® 1

cos2θ
∂σφθ

∂θ ² (43)

Fθ Ã 1
cos2 θ

∂σφφ

∂θ
® 1

cos2 θ
1

cosθ
∂σφθ

∂φ
³ (44)

This implies that

cos2 θFφ Ã�® 1
cosθ

∂σφφ

∂φ
® ∂σφθ

∂θ
(45)

and

cos2θFθ Ã ∂σφφ

∂θ
® 1

cosθ
∂σφθ

∂φ
(46)

If we switch from latitude,θ, to colatitude,̄θ, then cosθ becomes sin̄θ, Fθ becomes -Fθ̄

and ∂
∂θ becomes -∂∂θ̄ . Hence, (45) and (46) can be rewritten as:

sin2 θ̄Fφ Ã�® 1

sinθ̄
∂σφφ

∂φ
Á ∂σφθ

∂θ̄
(47)

sin2 θ̄Fθ̄ Ã ∂σφφ

∂θ̄
Á 1

sinθ̄
∂σφθ

∂φ
(48)

Let

σφφ Ã ∞

∑
l ç 0 èmç 0

Zlm
11Ylm Ã Zlm

11Ylm (49)

and

σφθ Ã ∞

∑
l ç 0 èmç 0

Zlm
12Ylm Ã Zlm

12Ylm ² (50)

whereYlm is the surface normalized spherical harmonic of degreel and orderm, andZlm
11

andZlm
12 are coefficients. Hence,

sin2 θ̄Fφ Ã�® Zlm
11Y01

lm Á Zlm
12Y10

lm (51)

sin2 θ̄Fθ Ã Zlm
11Y10

lm Á Zlm
12Y01

lm ² (52)
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where

Y10
lm Ã ∂Ylm

∂θ̄
and

Y01
lm Ã 1

sinθ̄
∂Ylm

∂φ
³

Therefore,

Zlm
11 Ã ¾ Ä sin2 θ̄Fθ̄Y

10
lm ® sin2 θ̄FφY

01
lm Å dS (53)

Zlm
12 Ã ¾ Ä sin2 θ̄Fθ̄Y

01
lm Á sin2 θ̄FφY

10
lm Å dS (54)

where from (12) and (13),Fφ andFθ̄ are given as:

Fφ Ãé® rL
3

r0
2 τφr Ê rL Ã�® rL

3

r0
2 Í Zlm

4 Y01
lm � φ ² θ̄ �Ì® Zlm

6 Y10
lm � φ ² θ̄ � Î ² (55)

Fθ̄ Ã�® Fθ Ã rL
3

r0
2 τθ̄r Ê rL Ã rL

3

r0
2 Í Zlm

4 Y10
lm � φ ² θ̄ �ÆÁ Zlm

6 Y01
lm � φ ² θ̄ � Î ² (56)

whereZlm
4 andZlm

6 are the poloidal and toroidal coefficients from the mantle convection

model andY10
lm andY01

lm are defined as above (Wen and Anderson, 1997b). Therefore, given

distributions of the effective body forces,Fφ ² Fθ, defined in the circulation model, the co-

efficients can be obtained from (53) and (54) and then used in (49) and (50) to yield the

potentials. In this case, the potentials in (39) are given as:� Φobs
φφ ² Φobs

θθ ² Φobs
φθ � T Ã Ð σ̃obs

φφ ² ® σ̃obs
φφ ² σ̃obs

φθ Ñ T ³ (57)

The potentials have a singularity problem at the poles only form Ã 0 andm Ã 1; there is

no singularity at the poles form ê 2.

Case II is only possible if there are no toroidal components in the flow model. If toroidal

flow exists, then, this method for Case II will only yield the poloidal part of the total solu-

tion associated with mantle flow. The toroidal part of the solution can be calculated using

a methodology that we discuss later. This method of Case II avoids singularity problems at

the poles. For Case II, the poloidal components ofFφ andFθ (from (41) and (42)) are:

Fφ Ã�® 1
cosθ

∂τobs
0

∂φ
Ã�® rL

3

r0
2 τφr Ê rL Ã�® rL

3

r0
2 Í 1

cosθ
Zlm

4
∂Ylm

∂φ Î ² (58)

162



-80

-60

-40

-20

0

20

40

60

80

-160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000
m

1e12 N/m

Figure 1: Global distribution of the observed potentials,σ̃obs
φφ ± σ̃obs

φθ , from tractions calculated by
Case I form ë 2, for an isoviscous case.

Fθ Ã�® ∂τobs
0

∂θ
Ã�® rL

3

r0
2 τθr Ê rL Ã�® rL

3

r0
2 Í Zlm

4
∂Ylm

∂θ Î ³ (59)

A solution that works is

τ0 Ã rL
3

r0
2 Zlm

4 Ylm � θ ² φ � (60)

Hence, the potentials in (39) are� Φobs
φφ ² Φobs

θθ ² Φobs
φθ � T Ã Ð τ0

3 ² τ0

3 ² 0Ñ T ³ (61)

Note that for dealing with GPE differences (see equations (18)-(21)) the potentials in (61)

will also work, whereτ0 Ã0® σ̄rr , the negative of the depth integrated total radial stress, or

GPE (see equations (20) and (21)).

In absence of toroidal flow, Cases I and II should yield the same answer. However, the

first method fails to yield proper results since at ordersm Ã 0 andm Ã 1, σ̃obs
φφ andσ̃obs

φθ be-

come infinitely large at the poles (discussed later). Hence, only the second approach (Case

II, τobs
0 ìÃ 0 ² σ̃obs

φφ Ã σ̃obs
φθ Ã 0) is the valid approach for the poloidal only case, irrespective

of values ofm. Form ê 2, both methods yield identical results.

We demonstrate that the two methods yield identical results for values ofm ê 2 in

absence of toroidal flow and we use two examples in order to demonstrate that. The first

example is that of an isoviscous case, the second is that of one of our best-fitting poloidal
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Figure 2: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 1.

cases, with strong lithosphere and weak asthenosphere. We first calculate the deviatoric

stress response (Figures 2 and 14) from potentials (Figures 1 and 13) calculated using Case

I (τ0 Ã 0) for m ê 2 for an isoviscous case and our best-fitting poloidal case, respectively.

We compare these stress results with deviatoric stresses from potentials (Figures 3 and 15)

computed by Case II (τ0 ìÃ 0) for m ê 2 values (Figures 4 and 16). The deviatoric stress

fields for the two cases are identical, as expected. The potentials (Figures 5 and 17) and

the resultant deviatoric stresses (Figures 6 and 18), for Case I, form Ã 0 ² 1, demonstrate

the singularity phenomenon at the poles, which is absent in Case II (Figures 7, 8 and 19,

20). The deviatoric stresses calculated by Case I and Case II, for allm, show substantial

differences between the two stress results in a number of areas (Figures 10, 12 and 22, 24),

especially at the poles where the deviatoric stresses for the former case are much larger.

Differences also exist in eastern and northern North America, east Pacific as well as large

parts of Asia. These differences arise because of differences in deviatoric stresses for orders

m Ã 0 ² 1 for the two approaches. For Case I, the potentials blow up at the poles, whereas

for Case II, the potentials are well-behaved at the poles. The potentials for allm for the two

cases are shown in Figures 9, 11 and 21, 23. In summary, for poloidal flow only, Case I

can only be used form ê 2. Case II can supply the remaining potentials form Ã 0, m Ã 1.

Alternatively, Case II can be used for allm for the poloidal case only.
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Figure 3: Global distribution of the observed potentials,1
3τobs

0 (61), from tractions calculated by
Case II form ë 2, for an isoviscous case.

When toroidal flow is present, potentials from Case I will yield the total (both poloidal

and toroidal) deviatoric stress field. However, as discussed earlier, Case I yields infinitely

large potentials at the poles form Ã 0 ² 1 and hence, cannot be used to compute the deviatoric

stresses from the total flow field (for allm). It is necessary, therefore, to find a method to

supply potentials form Ã 0, m Ã 1, for the toroidal case. The following section discusses

the method (denoted as Case III) in dealing with the toroidal terms of the deviatoric stress

field.

Presuming that the terms̃σφφ ² σ̃φθ and τ̄0 have been Fourier transformed so that they

have aφ dependence of the formeimφ, (41) and (42) can be rewritten as

Fφ Ã�® im
cosθ

σ̃obs
φφ ® 1

cos2θ
∂

∂θ � σ̃obs
φθ cos2θ �Ì® im

cosθ
τobs

0 (62)

Fθ Ã�® im
cosθ

σ̃obs
φθ Á 1

cos2θ
∂

∂θ � σ̃obs
φφ cos2θ �Ì® ∂τobs

0

∂θ
(63)

Defining the following:

σobs
φφ Ã τobs

0 Á σ̃obs
φφ τobs

0 Ã 1
2 � σobs

φφ Á σobs
θθ �

σobs
φθ Ã σ̃obs

φθ σ̃obs
φφ Ã 1

2 � σobs
φφ ® σobs

θθ �
σobs

θθ Ã τobs
0 ® σ̃obs

φφ σ̃obs
φθ Ã σobs

φθ ²
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Figure 4: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 3. Note that this stress field is identical with the
stress field in Figure 2, generated using Case I.

(62) and (63) yield

Fφ Ã�® im
cosθ

σobs
φφ ® 1

cos2θ
∂

∂θ � σobs
φθ cos2θ � (64)

Fθ Ãé® sinθ
cosθ

σobs
φφ ® im

cosθ
σ̃obs

φθ ® 1
cosθ

∂
∂θ � σobs

θθ cosθ �#³ (65)

A solution that satisfies (64) and (65) is

σobs
φθ Ã�® 1

cos2 θ ¾ θ¸ π í 2 Ä Fφ cos2 θ Á imσobs
φφ cosθ Å dθ (66)

σobs
θθ Ã�® 1

cosθ ¾ θ¸ π í 2 Ä Fθ cosθ Á imFφ cosθsinθ Á � 1 ® m2 � σobs
φφ sinθ Å dθ ® imσobs

φθ sinθ

(67)

Once again, presuming that the terms have aφ dependence of the formeimφ, the poloidal

components ofFφ andFθ can be written as

Fφ Ã im
cosθ

α ² Fθ Ã ∂α
∂θ ²

whereα Ã�® Zlm
4 Ylm � θ ² φ � (Ghosh et al., 2008), so that equations (62) and (63) become

σobs
φθ Ãé® im

cos2 θ ¾ θ¸ π í 2 Ä αcosθ Á σobs
φφ cosθ Å dθ (68)
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Figure 5: Global distribution of the observed potentials,σ̃obs
φφ ± σ̃obs

φθ , from tractions calculated by
Case I form î 0 ± 1 for an isoviscous case. Note the large potentials at the poles.

σobs
θθ Ãé® 1

cosθ ¾ θ¸ π í 2 Í ∂α
∂θ

cosθ ® m2αsinθ Á � 1 ® m2 � σobs
φφ sinθ Î dθ ® imσobs

φθ sinθ (69)Ãé® α ® 1
cosθ ¾ θ¸ π í 2 Í � 1 ® m2 � αsinθ Á � 1 ® m2 � σobs

φφ sinθ Î dθ ® imσobs
φθ sinθ (70)

A solution that always works isσobs
φφ Ã)® α, in which caseσobs

φθ Ã 0 ² σobs
θθ ÃA® α. This is

the “τ0 solution” (equation (60), Case II). Note that therL
3 « r0

2 term forFφ ² Fθ (equations

(58) and (59)) has been dropped here in this notation, but this factor is included in the

calculations.

Similarly, the toroidal tractions can be written as

Fφ Ã ∂β
∂θ ² Fθ Ã�® im

cosθ
β ²

whereβ Ã�® Zlm
6 Ylm � θ ² φ � , such that (66) and (67) become

σobs
φθ Ã ® 1

cos2 θ ¾ θ¸ π í 2 Í ∂β
∂θ

cos2θ Á imσobs
φφ cosθ Î dθÃ ® β ® 1

cos2θ ¾ θ¸ π í 2 Ä βsin2θ Á imσobs
φφ cosθ Å dθ (71)
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Figure 6: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 5. Note the large stresses at the poles.

σobs
θθ Ã ® 1

cosθ ¾ θ¸ π í 2 Í ® imβ Á im
∂β
∂θ

cosθsinθ Á � 1 ® m2 � σobs
φφ sinθ Î dθ ® imσobs

φθ sinθÃ ® imβsinθ ® 1
cosθ ¾ θ¸ π í 2 Ä ® imβ � 1 Á cos2θ �ÉÁ � 1 ® m2 � σobs

φφ sinθ Å dθ ® imσobs
φθ sinθÃ ® 1

cosθ ¾ θ¸ π í 2 Ä ® imβ � 1 Á cos2θ �ÉÁ � 1 ® m2 � σobs
φφ sinθ Å dθÁ im

sinθ
cos2 θ ¾ θ¸ π í 2 Ä βsin2θ Á imσobs

φφ cosθ Å dθ (72)

Note that for (71) and (72) the values forσobs
φφ ² σobs

θθ , andσobs
φθ are found for alll andm.

An infinite number of possible solutions exist for the potentials,σφφ ² σθθ andσφθ. How-

ever, it can be shown that the potentials,σφφ ² σθθ andσφθ satisfy (62) and (63) and provide

a unique solution to the deviatoric stresses when substituted into theJ functional (equa-

tion 34). Care must be taken so that these integrals do not become infinitely large at the

poles. This situation arises whenσφθ or σθθ are odd functions. When these are odd, the

integrals become significantly non-zero for latitudes near the poles (θ ¬ π « 2). Division by

cosθ (θ ¬ π « 2), then makes the values ofσφθ andσθθ infinitely large at the poles. Hence,

for these cases, the functions within the integrals should be chosen carefully so that the

integrals are well behaved at and near the poles (that is,· π í 2¸ π í 2 Ã 0).

We need to consider 2 cases for solutions involvingFφ andFθ:

1) Fφ is even andFθ is odd (l Á m Ã odd). In this case, the problem lies in the integral
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Figure 7:Global distribution of the observed potentials,1
3τobs

0 , from tractions calculated by Case II
for m î 0 ± 1 for an isoviscous case. Note that the potentials are well-behaved at the poles.

for σobs
φθ , which is an odd function, and therefore,σobs

φφ within the integral in (71) must be

carefully chosen so that the integral from pole to pole goes to zero.

2) Fφ is odd andFθ is even (l Á m Ã even). In this case, the problem lies in the integral

for σobs
θθ and againσobs

φφ in the integral in (72) and must be chosen with caution such that· π í 2¸ π í 2 Ã 0.

Case1: Fφ is evenandFθ is odd(l Á m Ã odd,σobs
φφ Ã even,σobs

φθ Ã odd,σobs
θθ Ã even)

For m ìÃ 0, the constraint on the even function,σobs
φφ , in addition to being bounded, can

take either of the following forms.

(A) Form involvingFφ Ã ∂β
∂θ in equation (71) we want:

¾ π í 2
0

Ä ∂β
∂θ

cos2θ Á imσobs
φφ cosθ Å dθ Ã ¾ 0¸ π í 2 Ä ∂β

∂θ
cos2 θ Á imσobs

φφ cosθ Å dθ Ã 0 ² (73)

Choosingimσobs
φφ Ã�® ∂β

∂θ cosθ satisfies (73) and givesσobs
φθ Ã 0.

(B) Form involvingβ in (71) we want:

¾ π í 2
0

Ä βsin2θ Á imσobs
φφ cosθ Å dθ Ã ¾ 0¸ π í 2 Ä βsin2θ Á imσobs

φφ cosθ Å dθ Ã 0 (74)

Choosing

σobs
φφ Ã�® 2β

im
sinθ Ã 2iβ

m
sinθ (75)
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Figure 8: Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 7 (Case II,m î 0 ± 1).

satisfies (74) and gives

σobs
φθ Ã�® β (76)

and

σobs
θθ Ã�® 1

cosθ ¾ θ¸ π í 2 Í ® 2imβ Á 2i
m

βsin2 θ Î dθ (77)

Case2: Fφ is odd,Fθ is even(l Á m Ã even,σobs
φφ Ã odd,σobs

φθ Ã even,σobs
θθ Ã odd)

The constraint on the odd functionσobs
φφ , in addition to being bounded, can take either

of the following forms:

(A) Form involving ∂β
∂θ andβ in (72) we want:

¾ π í 2
0

Ä ® imβ Á im
∂β
∂θ

cosθsinθ Á � 1 ® m2 � σobs
φφ sinθ Å dθÃ ¾ 0¸ π í 2 Ä ® imβ Á im

∂β
∂θ

cosθsinθ Á � 1 ® m2 � σobs
φφ sinθ Å dθ Ã 0

so that � 1 ® m2 � σobs
φφ sinθ Ã imsinθβ ® im

∂β
∂θ

cosθsinθ (78)
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Figure 9: Global distribution of the observed potentials,σ̃obs
φφ ± σ̃obs

φθ , from tractions calculated by
Case I for allm for an isoviscous case. Note the influence of large potentials at and near the poles
from m î 0, m î 1 terms.

(B) Form involving onlyβ in (72) we want:

¾ π í 2
0

Ä ® imβ � 1 Á cos2θ �ÉÁ � 1 ® m2 � σobs
φφ sinθ Å dθÃ ¾ 0¸ π í 2 Ä ® imβ � 1 Á cos2θ �ÆÁ � 1 ® m2 � σobs

φφ sinθ Å dθ Ã 0

so that � 1 ® m2 � σobs
φφ sinθ Ã imβ � 1 Á cos2θ � (79)

Multiplying (78) by 2 and subtracting (79) yields� 1 ® m2 � σobs
φφ Ã im

sinθ
β � 1 ® cos2θ �Ë® 2im

∂β
∂θ

cosθ ³ (80)

Hence,

σobs
φφ Ã 1� 1 ® m2 � Í 2imβsinθ ® 2im

∂β
∂θ

cosθ Î ² (81)

σobs
θθ Ã im � β ® σφθ � sinθ (82)

and

σobs
φθ Ã�® ½ 1 Á m2

1 ® m2 À β ® 1� 1 ® m2 � cos2θ ¾ θ¸ π í 2 Ä βsin2θ Å dθ (83)

The above potentials are calculated for each value ofm and for each value ofl ê 2.

The solutions ofσobs
φφ ² σobs

θθ andσobs
φθ for a given value ofl andm are either completely
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Figure 10:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 9. Note the large deviatoric stresses near the
poles.

real ((76) and (83)) or completely imaginary ((75), (77), (81) and (82)) and do not combine

real and imaginary parts. Let us denote the potentials for a givenl ² m, σobs
φφ ² σobs

θθ andσobs
φθ as

σobs
i j Ã Al èm Á 0 (84)

for those with only real parts, and

σobs
i j Ã 0 Á iBl èm (85)

for those with only imaginary parts. In that case, the complete potential for the forms in

(84) can be written, after taking only the real part of the Fourier sum, as

σobs
i j Ã N

∑
mç 0

N

∑
l çðïmï Al èm � Zl èmè cos

6 cosmφ Á Zl èmè sin
6 sinmφ � (86)

and those for the forms in (85) can be written as

σobs
i j Ã N

∑
mç 0

N

∑
l çðïmï Bl èm � Zl èmè sin

6 cosmφ ® Zl èmè cos
6 sinmφ � (87)

whereZl èmè sin
6 andZl èmè cos

6 are the sine and cosine components of the toroidal coefficient for

the tractions in the equivalent body forces,Z6, that we obtain from the convection model.
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Figure 11:Global distribution of the observed potentials,1
3τobs

0 , from tractions calculated by Case
II for all m for an isoviscous case.

Like the poloidal case, we once more demonstrate that this treatment of the toroidal

terms (Case III) yield deviatoric stress solutions that are the same as those obtained by Case

I for m ê 2 (Figures 26 and 28). We compute the deviatoric stress results form Ã 0 ² 1 for the

two toroidal cases (Cases I and III) and show how the potentials for Case I (Figure 29) blow

up at the poles, whereas for Case III, the potentials are well-behaved at the poles (Figure

31). This singularity problem at the poles therefore disappears for the new treatment, Case

III. Likewise, the deviatoric stresses for Case I form Ã 0 ² 1 are large at the poles (Figure

30), whereas they are well-behaved for Case III at the poles (Figure 32). A comparison

of results form ê 2 for both Cases I and III for the toroidal case yields identical results

(Figures 26 and 28).

In summary, it is possible to use Case I for both poloidal and toroidal fields form ê 2.

Form Ã 0 ² 1, Case II can be used when there is poloidal flow and Case III can be used when

toroidal flow is present. On the other hand, Case II can be used for allm for poloidal flow

and Case III for allm for toroidal flow. We have chosen this condition of using both Case

II and Case III for allm for poloidal and toroidal flows, respectively.
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Figure 12:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 11. Differences from Figure 10 are due to large
potentials form î 0, m î 1 in Case I.
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Figure 13:Global distribution of the observed potentials,σ̃obs
φφ ± σ̃obs

φθ , from tractions calculated by
Case I form ë 2, for our best-fitting poloidal model.
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Figure 14:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 13.
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Figure 15:Global distribution of the observed potentials,1
3τobs

0 , from tractions calculated by Case
II for m ë 2, for our best-fitting poloidal model.
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Figure 16:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 15. Note the similarity with Figure 14, calculated
by Case I.
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Figure 17:Global distribution of the observed potentials,σ̃obs
φφ ± σ̃obs

φθ , from tractions calculated by
Case I form î 0 ± 1 for our best-fitting poloidal model. Note the large potentials near the poles.
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Figure 18:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 17. Note the large stresses near the poles.
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Figure 19:Global distribution of the observed potentials,1
3τobs

0 , from tractions calculated by Case
II for m î 0 ± 1 for our best-fitting poloidal model.
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Figure 20:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 19 (m î 0, m î 1).
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Figure 21:Global distribution of the observed potentials,σ̃obs
φφ ± σ̃obs

φθ , from tractions calculated by
Case I for allm for our best-fitting poloidal model. Note the large values for potentials contributed
by m î 0, m î 1 terms near the poles.
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Figure 22:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case I, based on potentials in Figure 21.
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Figure 23:Global distribution of the observed potentials,1
3τobs

0 , from tractions calculated by Case
II for all m for our best-fitting poloidal model.
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Figure 24:Global distribution of vertically integrated horizontal deviatoric stresses from tractions
calculated by Case II, based on potentials in Figure 23. Differences are due to potentials that blow
up at the poles for case I.
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Figure 25: Global distribution of the observed potentials,σφφ ± σφθ, from tractions calculated by
Case I form ë 2 for one of our toroidal models.
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Figure 26:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 25.
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Figure 27:Observed potentials calculated by Case II (for poloidal part) and Case III (for toroidal
part) based on the same toroidal model form ë 2.
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Figure 28:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 27 (case
II for poloidal, case III for toroidal,m ë 2. Note that this deviatoric stress field is similar to the field
in Figure 26 (case I,m ë 2).
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Figure 29:Observed potentials calculated by Case I based on the toroidal model form î 0 ± 1.
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Figure 30:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 29.
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Figure 31: Observed potentials calculated by Cases II and III based on the toroidal model for
m î 0 ± 1. Note that potentials are well-behaved near the poles.
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Figure 32:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 31.
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Figure 33:Observed potentials calculated by Case I based on the toroidal model for allm.
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Figure 34:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 33.
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Figure 35:Observed potentials calculated by Cases II and III based on the toroidal model for all
m. Note that potentials are well-behaved near the poles.
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Figure 36:Vertically integrated horizontal deviatoric stresses based on potentials in Figure 35.
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Conclusions
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Conclusions

In this dissertation I investigate the problem of how mantle flow interacts with the litho-

sphere in order to produce the observed lithospheric deformation. This is achieved through

a global joint modeling of lithosphere dynamics and mantle convection. The lithospheric

stress field is used to constrain the role of mantle convection on surface deformation. I

first calculate the contribution of the gravitational potential energy per unit area (GPE) dif-

ferences on the lithospheric deviatoric stress field. I perform a quantitative comparison of

these predicted stresses with the velocity gradient tensor field along the deforming plate

boundary zones from GSRM. Such a comparison shows that, although the deviatoric stress

field generated by the buoyancy sources within the lithosphere is able to provide a good

match to the strain rate observations in many areas, in certain regions, especially in regions

of continental deformation, this stress field falls short of explaining the total field of ob-

served deformation. This is also found to be true in the case of the Indian plate, where

the ridge-push force, which has been invoked as the sole mechanism behind the present

stability of the Tibetan Plateau, is unable to cancel out the large deviatoric N-S tension

at the Tibetan Plateau that is generated by lithospheric GPE differences, as is shown in

chapter 3. An additional source of stress, originating from basal tractions generated by

sub-lithospheric density buoyancies is found to be necessary to explain the observed defor-

mation.

I discuss the validity of the thinsheet method in chapter 2. I show that horizontal gra-

dients in shear tractions applied to the base of the lithosphere at 100 km depth have to be

much higher than 6MPa/10 km for them to be significant enough such that: (1) they ap-

proach values greater than one percent of magnitude ofρg, and hence (2) the thin sheet

approach becomes less valid because horizontal gradients in tractions cannot be ignored.

This value for gradient in tractions is much higher than horizontal gradients in tractions

that are observed for long-wavelength convection models, and is likely to be higher than

what may occur over short length scales within subduction zones. In the same chapter, I

discuss the importance of choosing the reference level for calculating GPE differences and

demonstrate that the only correct level of reference to calculate the depth integral ofσrr is
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the base of the lithosphere. I also talk about the assumptions involved in using the geoid

dataset for calculating GPE differences and demonstrate that the geoid data can only be

used under the assumption of equal pressure everywhere at the base.

A separate model of mantle convection is used to calculate the tractions acting at the

base of the lithosphere. Using simple poloidal flow models, I show that addition of this

component of deviatoric stress from basal tractions improves the fit to the observed de-

formation indicators. The poor fit in the continental deformation areas provided by GPE

differences undergoes a substantial improvement when this sub-lithospheric component is

considered, in addition to the contribution from lithospheric GPE differences, as I show

in chapter 4. I also test the sensitivity of different radially variable viscosity models and

show that those with strong (100-10,000 times) viscosity contrasts between the lithosphere

and asthenosphere are required in order to fit the strain rate tensor information in GSRM.

Amongst these models, those with a weak asthenosphere (1019 Pa-s) yield smaller basal

tractions, which yield deviatoric stresses that are comparable in magnitude to those associ-

ated with GPE differences. Models where contribution from GPE differences are compa-

rable to the contribution from basal tractions perform better at predicting stresses in sensi-

tive areas such as Baikal region in Asia, Tibetan Plateau, western North America, and the

Aegean region. Also, in chapter 4 I perform important benchmarking exercises. I generate

a deviatoric stress field directly from the convection model (Wen and Anderson, 1997b),

based on a simple viscosity structure, and compare it with the deviatoric stress field com-

puted by the thinsheet technique. The two stress fields are found to be very similar, further

justifying the suitability of the thinsheet methodology.

In chapters 2 and 4, I demonstrate the importance of lateral strength variations in the

lithosphere of the thinsheet model. Comparison of deviatoric stress results from a uniform

lithosphere and a laterally variable lithosphere show that the latter provides a much better

fit to the deformation indicators.

I generate plate motions self-consistently in the convection models by introducing lat-

eral viscosity variations, based on major geological features of the Earth, such as the

continent-ocean divide, strength variations between old and young oceans, and the high

viscosity continental keels. I test a number of viscosity structures, and using both the
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constraints of plate motions and the lithospheric stress field, delineate a narrow range of

viscosity structures that match both these constraints. The toroidal-poloidal velocity ratio

is also used as an additional constraint. Structures with strong lateral viscosity variations

within the lithosphere and a uniformly weak (1019 Pa-s) asthenospheric channel are neces-

sary to yield a good fit to both the observed deformation and plate motions as demonstrated

in chapter 5. The lateral viscosity variation due to the continent-ocean divide is found to

play the dominant role in producing the right kind of deviatoric stresses and plate motions

that match observations. The stress magnitudes associated with mantle density buoyancy

generated basal tractions for the successful models are found to be comparable to the stress

magnitudes from GPE differences, indicating that the relative contribution of lithosphere

and mantle buoyancy sources on the lithospheric deviatoric stress field are about equal.

I also discuss at length the two new treatments developed to compute deviatoric stresses

from the toroidal component of the mantle flow field in chapter 6. For spherical harmonic

order 2 or greater the two methods yield similar results. However, for order 0 and 1, the

deviatoric stresses become infinitely large for one method, whereas they are stable for the

other. The comparison of the two different methods form ñ 2 confirms that the method

I use is able to recover a unique solution for deviatoric stress, given properly constructed

potentials. Furthermore, I show in this chapter that care must be taken near the poles to

make sure that potentials do not blow up there. This chapter shows that as long as the

potentials are well behaved at the poles, the calculated deviatoric stress should be stable

and uniquely determined for a given set of tractions.
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