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In this thesis, a unique landmark identification and matching method is proposed 

for identifying and matching distinguishable landmarks for 3D Visual Simultaneous 

Localization and Mapping (SLAM) in unknown cluttered Urban Search and Rescue 

(USAR) environments. The novelty of the method is the utilization of both 3D (i.e., depth 

images) and 2D images. By utilizing a Scale Invariant Feature Transform (SIFT) -based 

approach and incorporating 3D depth imagery, more reliable and robust recognition and 
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matching of landmarks from multiple images for 3D mapping of the environment is 

achieved. Landmarks are determined effectively within the images utilizing a 

combination of SIFT keypoints, depth segmentation, edge detection and morphological 

techniques and a convex hull algorithm. These landmarks are matched through out the 

scene and used by the proposed Visual SLAM methodology for 6 degrees-of-freedom 

robot localization and for creation of a 3D virtualized map of USAR environments with 

respect to a world frame. Experiments presented herein utilizing the proposed 

methodology verify: (i) its ability to identify clusters of SIFT keypoints in both 3D and 

2D images for representation of potential landmarks in the scene, and (ii) the use of the 

identified landmarks in constructing a 3D map of unknown cluttered USAR 

environments. Furthermore, conclusions on the proposed methodology, highlighting the 

contributions and future work are presented. 
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Chapter 1 Introduction 

1.1 Motivation 

The catastrophic earthquakes that hit northern and southern California in 1989 and 

1994, Kobe, Japan in 1995 and the Izmit region in Turkey in 1999, and the terrorist 

attacks on the World Trade Centers in 2001 have clearly demonstrated the need for 

specially trained resources to respond to incidents of partial or complete structural 

collapse caused by these types of major disasters. Urban search and rescue (USAR) is 

defined to be the emergency response function which deals with the collapse of man-

made structures [1]. It involves the location, rescue, and initial medical stabilization of 

victims trapped in confined spaces which are quite dusty and dark. Structural collapse by 

natural disasters and human-caused accidents is most often the cause of victims being 

trapped, but victims may also be trapped in transportation accidents, mines and collapsed 

trenches. In both human-caused and natural disasters, the fundamental tasks at hand are: 

(i) to find and rescue victims in the rubble or debris as efficiently and safely as possible, 

and (ii) not to further endanger the survivors or put human rescue workers’ lives at great 

risk. With the advancement of robotic research in recent years, rescue robots have been 

developed to address these particular conundrums and to lessen the burden on the rescue 
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workers. Rescue robotics has been identified by both the National Research Council 

(NRC) [2] and the Computing Research Association [3] as a critical technology. 

One of the first publicized use of USAR robots occurred after the World Trade 

Center (WTC) disaster, where six small robots were utilized to enter the scene through 

voids too small or deep for a person [4]. Furthermore, the robots were used to survey 

larger voids that people were not permitted to enter due to fire or structure instability. The 

various robots carried cameras and thermal imagers into the interior of a rubble pile. Due 

to environmental limitations, in particular the challenging terrain and the high heat 

sources within the rubble piles, the robots were very restricted in the tasks that they could 

accomplish. Nonetheless, this deployment demonstrated the potential of utilizing robots 

in USAR environments and the need for advanced technologies to aid in this robotic 

application. 

1.2 Research Problem Statement 

There are a number of challenges that roboticists must face in designing a USAR 

robot: (i) locomotion, (ii) sensing, (iii) power, and (iv) size [1]. The majority of USAR 

robots are far from being autonomous, they are tethered to a power supply and are tele-

operated by humans with minimal sensory information. In particular, major advances are 

needed in sensor techniques and sensor information interpretation for two main tasks: (i) 

victim identification, and (ii) navigation of the robot. The objective of this research work 

is to address the aforementioned sensory needs by proposing the development and 

integration of a sensory system for robot-assisted 3D mapping of USAR environments. 



3 

Prior to a more detailed description of the research problem at hand, a brief review 

of the pertinent literature is provided. 

1.3 Literature Review 

The pertinent literature is reviewed herein in two main parts: (i) Rescue Robots and 

(ii) 3D Range Sensors. 

1.3.1 Rescue Robots 

Rescue robots for USAR environments have the ability to navigate through tightly 

confined spaces which people or dogs cannot access easily. They can be risked in 

searching for survivors in unstable structures and confined spaces which allow them to 

assess structural damage in remote locations. They can map the area and identify the 

location of victims to direct the rescue workers, guide the insertion of tools to aid 

extrication and shoring, and identify the location of limbs to prevent workers from 

damaging a victim’s arm or leg with rescue equipment [4]. With their potential abilities, 

rescue robots can serve as a resource to the rescue workers and keep them out of harms 

way. Rescue robots have varying size, shape, weight, mobility, communication, power 

needs and sensing capabilities. This section provides a general introduction of rescue 

robots categorizing them based on their mobility techniques. 

Wheeled-Robots 

Figure 1-1(a) illustrates the Scout robot, a wheeled-robot developed by University 

of Minnesota, [5]. The Scout robot is a specialized robot capable of carrying out low-
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level, usually parallel tasks. Scouts can include simple sensory units or varying 

locomotion units. The original Scout, Figure 1-1 (a) has a body approximately 11cm long, 

and 4cm in diameter (the special foam wheels can expand to 5cm in diameter). This body 

fits snugly inside a protective covering called a Sabot that absorbs much of the impact 

during the launch, and allows the Scout to even break through a glass window and land 

safely and ready to begin its mission. The Actuating Wheel Scout in Figure 1-1 (b) 

improved upon the original mechanical design to allow the robots actuators to range from 

3.9 cm to 12 cm in diameter. 

 

 

 

 

 

Fig. 1-1 (a): UMN Scout Robot [5].         Fig.1-1 (b): Actuating Wheel Scout [5]. 

This robot is one example of many wheeled robots that exist today. This vehicle-

like robot is easy to design and implement, but may have problems to climb over big 

obstacles in cluttered environments. 

Tracked-Robots 

The Packbot is a wireless, suitcase-sized, tracked vehicle shown in Figure 1-2 [4]. 

The sensor suite consists of an 84-degree field of view low light camera, 118-degree field 

of view color CCD camera, and an optional Indigo Alpha FLIR. The Packbot is 

waterproof up to 3m depth and is self-right-able with fippers. The fippers also provide the 

ability to increase the height of the camera on top of the robot and provide better mobility. 
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Fig. 1-2: The Packbot by iRobot [4]. 

Another tracked robot is the Micro-VGTV (Variable Geometry Tracked Vehicle), 

shown in Figure 1-3, which can alter its shape during operation [4]. The tracks, in their 

lowered configuration, take the shape of conventional crawler tracks. When the geometry 

is varied to the point where the vehicle is in its raised configuration, the tracks take the 

shape of a triangle. The Micro-VGTV remains fully operational throughout these shape 

alterations and as a result, can continue to travel and maneuver while its configuration is 

being changed. This unique feature allows the vehicle to negotiate obstacles and operate 

in confined spaces and over rough terrain. The complete system is easily transported and 

managed by a single operator [4]. 

 

Fig. 1-3: Inuktun’s Micro-VGTV [4]. 

However, the robots are not energy efficiency and are relatively large leading to 

mobility problems in cluttered environments. 
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Serpentine Robots 

A serpentine robot is a relatively new kind of robotic mechanism, which may be 

able to provide a solution for inspections and surveillance in USAR environments. The 

University of Michigan has developed a snake-like robot “OmniTread” [6] shown in 

Figure 1-4 that conquers obstacles. It is composed of 5 segments of 8-inch diameter each 

and weighs 26 pounds. It is currently piloted by a human operator. And it can maneuver 

in extremely rugged terrain, climbing stairs and pipes. This kind of serpentine robot is 

slender, multi-segmented vehicles designed to provide greater mobility than conventional 

wheeled or tracked robots. The OmniTread serpentine robot was tested at the Small 

Robotic Vehicle Test Bed at Southwest Research Institute (SwRI). 

 

Fig. 1-4: University of Michigan’s OmniTread Serpentine Robot [6]. 

Another wheeled-snake combined robot by Carnegie Mellon University [4] shown 

in Figure 1-5 has many more degrees of freedom than conventional robots and rescue 

machinery; while at the same time having a small cross-sectional area. These many 

degrees of freedom enable snake robots to thread through tightly packed volumes 

reaching locations otherwise inaccessible to conventional robots and people, while at the 
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same time, not disturbing the surrounding areas. This is critical in search and rescue 

operations where large pieces of debris become fragile. 

 

Fig. 1-5: CMU’s Snake Robot with wheels [4]. 

Snake-like robots have a lot of flexibility and easy to move in cluttered 

environments filled with many rocks and dusts. Their size is relatively small, which 

enables them to enter holes where wheeled-robots and tracked-robots cannot fit. However, 

all the segments of a snake robot have to carry their own computers and batteries. They 

are radio-controlled since addressing autonomous control is very difficult for these types 

robot.  

1.3.2 Current Sensors for Providing 3D Range Information 

Most robots’ relationship to their environments is limited by sensor technologies 

and cost, where their location in the environment, the layout of the environment, and the 

presence of victims is usually extracted from a single 2D video camera [1]. Furthermore, 

all robots that operate in USAR environments do not have any a priori information about 

landmarks in the scene and due to the nature of the surroundings cannot employ GPS. A 

robot operator in USAR environments faces the important tasks of remembering, 
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recognizing and diagnosing a scene and how the robot and its camera are positioned and 

oriented within the scene merely from this camera. Often times, this leads to 

disorientation, the robot getting stuck, and not being able to identify victims that are 

present in the scene. 

Since sensing is always a big issue for search and rescue robots, different kinds of 

sensory system using different types of sensors have been proposed to utilize in USAR 

environments. Stereovision is probably the most studied method [7] among all the 

existing sensory techniques; 3D cameras based on time-of-flight technologies are quite 

compact and real-time to use; laser scanner consists of using a laser light source that 

sweeps a thin laser stripe across a scene. However, it is slow and requires a lot of time for 

scanning in spite of the fact that it could be quite accurate. This section gives a brief 

literature review for current sensors for providing range information. 

Stereovision 

Among all the existing sensory techniques that can be potentially used for mapping, 

stereovision is probably the most studied method. A stereo camera is the prime example 

of a passive optical triangulation system. Traditional stereovision methods estimate shape 

by establishing spatial correspondence of pixels in a pair of stereo images. Determining 

the correspondences between left and right view by means of image matching, however, 

is a slow process. Furthermore, for 3D reconstruction, passive stereovision techniques 

depend heavily on cooperative surfaces, mainly on the presence of surface textures, and 

on ambient light [7]. Such texturing is absent in USAR environments where the 

surroundings are dark and covered in gray dust. Recently, Zhang et al., [8] developed a 

new concept called spacetime stereo, which extends the matching of stereo images into 
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the time domain. By using both spatial and temporal appearance variations, it was shown 

that matching ambiguity could be reduced and accuracy could be increased. As an 

application, Zhang et al. demonstrated the feasibility of using spacetime stereo to 

reconstruct the shapes of small dynamically changing objects. The shortcoming of 

spacetime stereo is again the requirement of the time-consuming task of matching of 

stereo images. Therefore, it is difficult to reconstruct high-resolution 3D shapes from 

stereo images in real-time. 

3D Cameras 

Recently, 3D cameras based on time-of-flight technologies have also been 

developed for the gathering of 3D data, [9-11]. The camera systems mainly consist of a 

modulated light source, in most cases infrared or near infrared [9,10] and a CMOS/CCD 

image sensor. However, the pixel array size of these systems are limited and hence the 

resolution of both the 3D depth and 2D grey-scale images can be low, where in particular: 

(i) in the 3D images (sporadic) noise can be easily detected and can also increase as the 

distance from the camera to the scene increases, and (ii) nonlinear distortions caused by 

lens effects can be present, making it difficult to distinguish different objects in the scene. 

In order to utilize 3D cameras in USAR environments, changes to the current hardware 

and software components of the system would be required to minimize image corruption 

and hence increase accuracy [12]. 

Laser Scanners 

Laser scanning technology consists of using a laser light source that sweeps a thin 

laser stripe across a scene. Simultaneously, a light sensor, i.e. camera, acquires the scene, 
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where the surface of the scene is measured via triangulation, [i.e., 13] or time-of-flight, 

[i.e., 14]. The main disadvantage of using these systems for robotic 3D mapping of 

USAR environments is that they are slow and require a lot of time for scanning, due to 

the fact that the laser stripe has to be physically moved across the scene to digitize the 

surface, and hence cannot provide real-time range data acquisition. Other disadvantages 

of laser scanners are that they are expensive due to the high cost for production of their 

hardware components (i.e., costs are in the range of several tens of thousands), they are 

bulky and heavy for a small robot, and they can produce a variety of wrong points in the 

vicinity of edges due to the fact that when the laser hits an object edge, only a part of it 

will be reflected there and the rest may be reflected from adjacent or rear surfaces or may 

not reflect when no other object is present within the possible range of the scanner. 

1.4 Proposed Methodology and Research Tasks 

The overall proposed methodology comprises the following components with 

corresponding reference to the Dissertation Chapters: 

1. 3D sensory system for robotic mapping and localization 

In Chapter 2, a detailed literature review of the two main research topics of this 

work is presented: (i) current sensing technologies for USAR environments and (ii) 

3D Simultaneous Localization and Mapping (SLAM) in cluttered unknown 

environments. The first application of using a 3D sensory system for sequential map 

building within 3D Visual SLAM framework will be described in detail. 
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2. Landmark Identification and Matching 

When traveling in 3D cluttered environments, data association (i.e., landmark 

identification and matching) becomes a pertinent problem.. In Chapter 3, the 

developed SIFT-based landmark identification and matching techniques will be 

described in regards to: (i) 3D image conditioning, and (ii) SIFT-Based Recognition 

of Landmarks. 

3. 3D Visual SLAM 

Visual SLAM is implemented for creation of a 3D virtualized map of USAR 

environments with respect to a world frame. In Chapter 4, both the proposed 3D 

SIFT-based: (i) 6 DOF ego-motion methodology for robotic localization, and the (ii) 

Iterative Closest Point (ICP) 3D mapping method utilized for stitching of 3D images 

of the USAR scene are described. 

4. Implementation 

Chapter 5 will present all the experimental results utilizing the proposed methods 

in USAR-like environments. The 2D and 3D images for this system are generated by 

a structured light based sensor. 

 

Finally, Chapter 6 presents conclusions on this research work, highlighting its 

contributions and future work. 
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Chapter 2   Literature Review 

2.1 Sensing for Urban Search and Rescue (USAR) 

The majority of USAR robots are far from being autonomous for the reasons that 

they are tethered to a power supply and are tele-operated by humans with minimal 

sensory information. One of the biggest issues is sensing especially in our USAR 

environments. Major advances are needed in sensor techniques and sensor information 

interpretation for two main tasks: (i) victim identification, and (ii) navigation of the robot. 

Most robots’ relationship to their environments is limited by sensor technologies and cost. 

Furthermore, all robots that operate in USAR environments do not have any a priori 

information about landmarks in the scene and due to the nature of the surroundings 

cannot employ GPS. While chapter 1 compares three general sensing techniques for 3D 

range information, this section presents the sensory systems that have been developed or 

applied to USAR applications. 

2.1.1 2D Laser Range Finder 

A hand full of research projects have been proposed for the development of laser 

range finders for cluttered USAR environments. In [15], Kurisu et al. proposed the use of 

two different laser range finders for 3D mapping of rubble: (i) a ring of laser beam 
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module and an omnivision CCD camera, (ii) and an infrared laser module with a CCD 

camera to capture the laser image and another camera for capturing the texture. The 

optimal range of this system was determined to be 300 mm. There are two main 

limitations to these types of sensors: (i) they do not address real-time range data 

acquisition, and (ii) their reliance on robot internal sensors for mapping, in particular they 

can only measure in the x,y plane, the z-direction measurement for the 3D information is 

based on the robot’s inaccurate internal sensors. 

The integration of sonar and 2D laser range finder has been utilized for robot 

mapping, collision avoidance and path planning in USAR environments, i.e., Aboshosha 

et al. [16]. In this work, an electrostatic sonar transducer was used because of its 

advantages such as low cost, small size, and low power consumption. In addition, a SICK 

LMS 200 laser scanner mounted on a robot has been used to gather the odometric data of 

an environment by 2D slice scanning. The 2D laser scanner could get consistent high 

precision maps with low memory requirements with the vector mapping algorithm to. 

The generated maps then were used as a base for an autonomous path planning algorithm 

depending on the straight line navigation (SLN) algorithm. The main objective of the 

integration of these sensors is to reinforce the robustness of the overall system, overcome 

the sensors’ disadvantages, and improve the performance of the overall system. The 

algorithms have been verified by simulation and real experiments. The method has a 

small storage size and high precision compared with the traditional mapping algorithms. 

It improved the performance of the overall system compared with previous similar 

methods, but no real USAR environments have been utilized to verify the effectiveness of 

this sensory integration system. 
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2.1.2 3D Cameras 

Recently, 3D range cameras based on the time-of-flight technologies have also 

been developed for the gathering of 3D data, [9-11]. The camera systems mainly consist 

of a modulated light source, in most cases infrared or near infrared [9,10] and a 

CMOS/CCD image sensor. These 3D cameras have been preliminary tested for USAR 

environments. In Murphy et al. [12], a Canesta EP200 series of range camera was used at 

the University of South Florida’s robot test bed to obtain depth images of a USAR-like 

scene. The camera provides a 64-by-64 pixel range map and corresponding black and 

white image in real time with the size of 12.7cm wide × 5.08cm tall × 5.08cm deep. The 

maximum unambiguous range (resolvable distance) of the camera is 11.5m. The 

maximum depth resolution is approximately 5mm and is achieved with the minimum 

unambiguous range of 1.44m. Their results presented three main limitations for this type 

sensor: (i) over saturation of the CCD in direct sunlight, (ii) inability to detect certain 

materials, and (iii) sporadic noise when used in indirect sunlight. The third can be solved 

by using image processing methods, while the first two require hardware improvements. 

Ellekilde et al. [17] also utilized a 3D camera, the Swiss Ranger SR-2 range camera, to 

provide visual information of an indoor USAR environment. In general, current 3D 

cameras are found to be low resolution, too noisy and subject to substantial changes in 

illumination as the camera pose changes. Filters and image processing methods are 

needed for further application. 
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2.1.3 Integration of Various or Multiple Sensors 

Various types of sensors can be implemented for robotic USAR environments for: 

(i) obstacle avoidance, (ii) location estimation, and (iii) victim detection. Pissokas et al. 

[18] present an overview of the sensing techniques that can be used for the 

aforementioned tasks. The feasibility of the sensors was tested at the RoboCup Rescue 

2001 competition. In particular, ultrasonic range sensors and bumpers were used for 

obstacle avoidance; for location estimation wheel encoders and a magnetic compass were 

utilized to provide translational and orientation information; and a pyroelectric sensor 

was utilized for body heat detection and a microphone for voice detector. This 

preliminary work lacks large scale simulation or experiments in real USAR environments 

where noise and clutter are a major issue. 

The utilization of multiple sensors for a team of robotic platforms and sensor 

agents for Robot-Sensor Networks has been explored, i.e., Reigh et al. [19]. In this work, 

a team of heterogeneous agents are considered in which a potentially very large number 

of small, simple, sensor agents with limited mobility are deployed by a smaller number of 

larger robotic agents with limited sensing capabilities but enhanced mobility. The sensor 

agents provide the robots with target information. The key challenge is to reconfigure the 

network automatically, as robots move around and sensors are deployed within a 

dynamic, potentially hazardous environment, while focusing on the two high-level goals: 

(i) to map the space in three dimensions using a local, relative coordinate frame of 

reference; and (ii) to identify targets within that space. Maintaining information flow 

throughout the robot-sensor network is vital. In addition, the size of sensors within the 

network and the processing rate of sensing information is an important factor for practical 
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use. A network routing scheme is utilized to route the system’s communications and the 

movement of its mobile components via a Distributed Vector (DV) routing algorithm for 

2D mapping of obstacles in the environment. 

2.2 Simultaneous Localization and Mapping (SLAM) for 

USAR 

In order to map its environment, the robot must be able to determine where it is in 

relation to its surroundings. Due to the increase in uncertainty over time, robot sensors 

such as odometers are not sufficient for such a task. In indoor environments, usually the 

robot is mapping scenes in which known landmarks exist; hence the location of these 

landmarks can be utilized in order to localize the robot. In outdoor environments, 

accurate sensors such as GPS can be utilized to determine the location of the robot. 

However, all robots that operate in USAR environments do not have any a priori 

information about landmarks in the scene and cannot employ GPS or radio positioning 

due to the nature of the surroundings (i.e., inside cluttered collapsed buildings). 

Furthermore, what make USAR environments even more unique are the characteristics of 

the uneven terrain. Hence, a localization algorithm is crucial while mapping the unknown 

site. The simultaneous localization and map building (SLAM) problem addresses the 

question: Is it possible for an autonomous vehicle to start in an unknown location in an 

unknown environment and then incrementally build a map of this environment while 

simultaneously using this map to compute absolute vehicle location. A number of 

different solutions have been developed in order to address the SLAM problem, (i) 
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Extended Kalman Filter (EKF) based methods [20], (ii) Particle Filter methods, such as 

FASTSLAM and DP SLAM [21], and (iii) Submap based methods [22]. 

Some attempts have been made to directly formulate SLAM for rescue 

environments, [23,24]. However, there are still a number of issues that need to be 

addressed in order to effectively implement these methods in 3D unknown cluttered 

environments. In [23], Ishida et al. utilized a 2D laser scan matching-based SLAM 

method. A robot using a rotating 2D laser range finder is assumed to explore an 

environment with flat ceilings. Sphere digital elevation maps (SDEM) are used to 

represent local maps from the sensor information. A global map is then created using 

several SDEMs and the relative locations among them. The orientation of the robot is 

determined from the relationship of the angles to the normal vector of the robot’s altitude 

plane. The robot’s yaw orientation is extremely difficult to estimate based on this normal 

vector, hence leading to errors in localization. Furthermore, the assumption of the 

environment having a flat ceiling limits the method’s application. In [24], Yokokohji et al. 

have conducted some preliminary work on 3D SLAM assuming known data association. 

Two different laser range finders have been utilized for mapping rubbles. The first laser 

range finder consists of a ring of laser beam module and an omnivision CCD camera. The 

second sensor utilizes an infrared laser module with a CCD camera to capture the laser 

image and another camera for capturing the texture. There are two main limitations to 

these types of sensors: (i) they do not address real-time range data acquisition, and (ii) 

they rely on robot internal sensors for mapping, in particular they can only measure in the 

x,y plane, the z-direction measurement for the 3D information is based on the robot’s 

inaccurate internal sensors. Based on robot accelerations and 2D range measurements 
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from the laser range finders, an EKF is utilized for system state estimation. Herein, due to 

the nature of the range sensor, only 2D positions of the landmarks can be measured, thus, 

relying on inaccurate robot sensory information for the third coordinate. In simulations, 

the utilized algorithm has proven to be quite sensitive to measurement and initial errors. 

Only recently interest has increased in utilizing cameras for SLAM applications, 

known as Visual SLAM [25]. Cameras are more affordable and compact than their laser 

counterparts and can be used to provide 3D range information. Furthermore, they have a 

higher rate of acquisition and high angular resolution. The disadvantage of utilizing 

stereovision is that matching of stereo images is usually time-consuming, hence making it 

difficult to reconstruct a 3D map in real-time for USAR environments. 

Recently, attempts have also been made in the literature to develop methods for 

identifying distinctive invariant features from images that can be used to perform 

matching of objects from different views. One particular method is Scale Invariant 

Feature Transform (SIFT) developed by Lowe in [26]. This approach transforms an 

image into a large collection of local feature vectors, each of which is invariant to image 

translation, scaling, and rotation, and partially invariant to illumination changes and 

affine or 3D projection. The resulting feature vectors are called SIFT keys. This method 

has been utilized effectively on 2D grayscale images to identify and match invariant 

features. Moreover, it works efficiently for object recognition problems where a training 

image of the object of interest is given. In [27], Se et al. have proposed a vision-based 

SLAM method by tracking SIFT keys on 2D images and building a 3D map 

simultaneously utilizing a trinocular stereo system for an indoor environment, where the 

robot moves in an approximate 2D planar motion. In [17], Miro et al. proposed a 
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stereovision based EKF SLAM algorithm utilizing features extracted on 2D images from 

SIFT in indoor scenes. 

2.3 Human-Robot Interface 

In difficult USAR environments, it is not yet possible to create a fully autonomous 

search and rescue robot to completely take the place of a human rescue worker. In fact, 

most USAR robots that are sent into disaster zones are tele-operated. For this application, 

operators must have a good understanding of their surroundings, yet it is difficult to 

obtain situation awareness due to disorientation, the robot getting stuck, and not being 

able to identify victims that are present in the scene. Many researchers have attempted to 

improve user interfaces for robot operators for effective human-robot interaction. An 

example of an interface developed by Baker et al. [28] is shown in Figure 2-1. This 

interaction can be utilized with robots containing numerous sensors such as described by 

Pissokas et al. [18]. Even though the utilization of these interfaces can assist in aiding the 

human operator, their use does not address the robot autonomy problem which is one of 

the main contributions of this thesis. 
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Fig. 2-1: Baker’s interface for their robotic system. 

2.4 USAR Simulated Environments 

USAR researchers build simulated challenging and reproducible environments to 

evaluate mobile robot capabilities and behaviors. NIST’s Reference Test Arenas for 

Autonomous Mobile Robots [29] is one of the most impressive USAR environments in 

the world. There are three separate indoor arenas, each labeled by a color, forming a 

continuum of difficulty for robots. The Yellow arena is the easiest to traverse (Figure 2-

2): it consists of a plane maze with a variety of passages. It has doors, blinds, and simple 

collapses to block passages during missions, specifically mapping and localization 

algorithms. The Orange arena provides more difficult challenges for both sensing and 

agility (Figure 2-3): it consists of an elevated floor section where the only way to get to it 
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is via ramp, stairs, or ladder. Holes in the elevated flooring provide negative obstacles to 

avoid. The Red arena provides the least structure and the most challenge to robot agility 

(Figure 2-4): it consists of a rubble pile with assorted debris, i.e., steel wire, gravel, 

plastic bags, pipes, throughout the arena. The long-term plan or future work of this 

research is to potentially test our developed system in this arena. All the proposed 

methodologies of this thesis are developed keeping in mind the nature of these types of 

environments. 

 

 

 

 

Fig. 2-2: The Yellow Arena. 

 

Fig. 2-3: The Orange Arena. 

 

Fig. 2-4: The Red Arena. 
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Chapter 3 Landmark Identification and 

Matching 

When traveling in 3D cluttered environments, data association (i.e., landmark 

identification and matching) becomes a pertinent problem. In particular, there could exist 

many repetitive features. As the robot moves, it must be able to determine whether 

different sensor measurements correspond to the exact same landmark in its environment. 

In most cases presented in the literature, the SLAM problem has been addressed under 

known data association [30]. However, in most situations this is definitely not the case. 

Furthermore, incorrect data association can induce extreme errors in SLAM solutions. By 

incorporating 3D grayscale depth imagery, we will be able to use more reliable and 

robust recognition and matching between landmarks from different images, therefore 

minimizing false matches. If an object in the foreground of an image is similar in 

intensity to the background, it is difficult to determine its boundaries. The use of depth 

images solves this problem, since a foreground object will always be at a closer depth, 

and can therefore be easily detected and identified as a potential landmark. A real-time 

structured light 3D shape measurement system [31] based on a digital fringe projection 

and phase shifting technique is utilized to obtain the depth images shown in this chapter. 

A DLP projector projects fringe patterns with the frequency of 360Hz, and the B/W high 
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speed CCD camera synchronized with the DLP captures the fringe images at the 

frequency of 90Hz. Each frame of the 3D shape is reconstructed using three consecutive 

fringe images. Together with the fast 3D reconstruction algorithms and parallel 

processing software, high-resolution real-time 3D grayscale depth imagery is realized at a 

frame rate of up to 30 3D frames per second and a resolution of 532×500 points per 

frame. In this section the main components of the proposed landmark identification and 

matching are described. 

3.1 Image Conditioning 

3.1.1 Background Subtraction 

The objective of background subtraction is to eliminate background noise in the 

images to better define edges of the foreground landmarks of the scene. As is noted in 

Figure 3-1(a), foreground objects in the 3D grey-scale depth image are presented in 

lighter gray shades, whereas background objects or noise is presented in darker shades. 

Our objective is to determine and extract the boundaries of the foreground objects. The 

advantage of using background subtraction over other boundary extraction methods such 

as edge detection is that continuous boundaries can be easily defined. Background 

subtraction regenerates the 3D grayscale image into a binary image in which 1 represents 

the foreground objects (defined as white objects in Figure 3-1 (b)) and the background is 

represented by 0 (defined as the black region in Figure 3-1 (b)) in black. [32]. 

In order to determine what objects in the scene should be considered as the 

required foreground information, a threshold depth value can be set to separate these 
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objects from the background in the 3D image. The depth value of the threshold is 

determined based on the environment of interest. 

 
  Fig. 3-1 (a): Grey-scale depth image            Fig. 3-1 (b): Binary image. 
 

3.1.2 Edge Detection 

There are many edge detection algorithms to determine potential boundaries of 

objects in the scene. Algorithms including Prewitt, Roberts, LoG and Canny-Deriche 

methods have been tried to select an optimal one for our application. 

The Prewitt method finds edges using the Prewitt approximation to the derivative. 

It returns edges at those points where the gradient intensity of the input image is 

maximum [33]. The Roberts method finds edges using the Roberts approximation to the 

derivative. It returns edges at those points where the gradient intensity of the input image 

is maximum [33]. The Laplacian of Gaussian (LoG) method finds edges by looking for 

zero crossings after filtering the input image with a Laplacian of Gaussian filter [33]. 
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The Canny-Deriche method finds edges by looking for local maxima of the 

gradient of the input image. The gradient is calculated using the derivative of a Gaussian 

filter. The method uses two thresholds, to detect strong and weak edges, and includes the 

weak edges in the output only if they are connected to strong edges. This method is 

therefore less likely than the others to be "fooled" by noise and more likely to detect true 

weak edges [33]. Figure 3-2(a)-(d) shows the 3D image of a scene and its object 

boundaries obtained using different edge detection methods including Prewitt, Roberts, 

Log, and Canny-Deriche algorithms. In relation to other edge detection algorithms, the 

Canny-Deriche method has shown to be the most optimal for our work. Figure 3-3(a)-(b) 

shows the original 3D grey-scale depth image and the edge image after background 

subtraction and edge detection algorithms. 

 

 

 

 

 

 

 

 

Fig. 3-2 (a): Prewitt method        Fig. 3-2 (b): Roberts method 
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Fig. 3-2 (c): LoG method      Fig. 3-2 (d): Canny-Deriche method 
 

Fig. 3-3 (a): Grey-scale depth image            Fig. 3-3 (b): Edge image 
 

3.1.3 Dilation and Thinning 

Even though edge detection results can be quite good at determining edges of 

objects, one shortcoming is their inability at times to produce continuous edges. The two 

morphological methods of dilation and thinning are further utilized in order to address 
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this limitation. The dilation technique is a binary method utilized to enlarge the boundary 

region of an object, in order to make the detected broken edges continuous. The manner 

and extent of this “thickening” of the edge is achieved via a structuring element [32]. The 

set-theoretic relationship of dilation is presented as follows: 

{ }∅≠∩=⊕ ABzBA z)ˆ(
,       (1) 

where A is the Canny-Deriche edge detection image, B is the structuring element, B̂ is 

the reflection of all elements of B about the origin of this set, z is a set of points, zB)ˆ(  is 

the translation of the origin of  B̂  to point z. In this work, a 3x3 square structuring 

element is utilized and repeated until all holes within a region of interest shrink via the 

thickening of the edge pixels. Figure 3-4 illustrates the principle of dilation with the 3x3 

square structuring element. Edge pixels are represented as 1, and non-edge pixels are 

represented as 0 accordingly. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Fig. 3-4 (a): Edges before dilation. 
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1 1 1
1 1 1
1 1 1

 
Fig. 3-4 (b): The structuring element. 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Fig. 3-4 (c): Edges after dilation. 

 

After connecting the edges using the dilation technique, the boundaries of the 

objects are once again “thinned” back to their original one pixel width via the following 

thinning method: [32]  

{ } ))...))((...(( 21 nBBBABA ⊗⊗⊗=⊗   ,      (2) 

where { } },...,,{ 21 nBBBB =   is a sequence of structuring elements. Figure 3-5 (b) shows the 

effect of the edges after dilation, and Figure 3-5 (c) shows the edges after the “thinning” 

operation. 
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Fig. 3-5 (a): Original edge image. 

Fig. 3-5 (b): Edges after dilation.           Fig. 3-5 (c): Edges after thinning. 

3.1.4 Remove Non-Connecting 

There exists such possibility that the iterations for dilation and thinning are not 

proper so that there are some little pieces of edges which locate inside some potential 

object instead of the real edges of potential landmarks. These are not helpful at all 

because in the following steps when we test the vector connecting two SIFT keypoints, 
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these useless edge pixels will block the way and conclude to wrong judgments. Thus, 

these “little pieces” which are called “Non-Connecting” have to be removed. 

“Non-Connecting” refers to two kinds of edge pixels: one is an isolated edge pixel 

which has no edge pixel in its 8 neighbor pixels; the other is an edge pixel which has only 

one edge pixel in its neighbors. The first kind of “Non-Connecting” is easy to understand, 

since isolated edge pixels do not belong to any edge loops, so there is no reason for them 

to exist. Edge pixels which have only one neighbor edge pixel should also be deleted for 

the reason that if such kind of an edge pixel is part of some edge loop, then it should have 

at least two neighbor edge pixels in the sense of 8-connectivity. The following steps 

outline the remove non-connecting algorithm: 

Step 1: For every edge pixel, calculate the number N of neighbor edge pixels. If N 

is equal to 0, delete the edge pixel, and change the property of the original pixel from 

“edge” to “non-edge”. If N is greater than 1, just keep the edge pixel, because it has at 

least two neighbor edge pixels. 

Step 2: If N is equal to 1, figure out the location of the neighbor edge pixel, delete 

the edge pixel, change the property of the original pixel from “edge” to “non-edge”, and 

mark the location of this neighbor edge pixel. 

Step 1 and Step 2 are repeated until there is no edge pixel which has 0 or 1 

neighbor edge pixel. 

Figure 3-6 shows the effect after removing Non-Connecting. As is seen, the ends of 

edge loops are deleted. Although there are still some edges which seem unnecessary, we 

strictly follow the results from the program. Experiments verify that the edge image and 
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corresponding matrix is good enough to be used for the following search and convex hull 

algorithms. 

 
Fig. 3-6 (a): Edges before “remove”.     Fig. 3-6 (b): Edges after remove Non-Connecting. 
 
 

3.2 SIFT-Based Recognition of Landmarks 

For Visual SLAM in USAR environments we propose the utilization of Scale 

Invariant Feature Transform (SIFT) features for identifying and matching of non a priori 

landmarks. This SIFT-based approach transforms an image into a large collection of local 

feature vectors, each of which is invariant to image translation, scaling, and rotation, and 

partially invariant to illumination changes and affine or 3D projection. The resulting 

feature vectors are called SIFT keypoints. The SIFT keypoints provide information that is 

utilized to extract strong evidence in discontinuity between multiple objects detected in a 

scene in order to locate large distinguishable landmarks in a cluttered environment for 3D 

mapping of the environment. The first step of our landmark identification method 

consists of determining the keypoints of an image and their dimensional descriptors. In 
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our proposed work, this will consist of two stages, finding the keypoints and descriptors 

for the 2D image and corresponding 3D depth image utilizing the four stage procedure of 

the SIFT algorithm. Both keypoints and descriptors are then stored for the two images, 

Table 1. Figure 3-7 shows keypoints that have been found on 2D and 3D images of a 

rubble-like environment with same size objects, and a large distinguishable object. 

Table 1: Step 1 of algorithm: Keypoint parameter matrix A. 

Keypoint 
# 

x position y position Depth Scale Orientation 

1 80.13 259.74 162 27.14 -1.357 
2 373.37 115.63 123 18.89 -1.751 
3 316.39 528.41 97 21.67 -1.57 
4 504.38 328.62 121 7.4 0.767 
5 54.61 221.26 93 2.97 1.222 
6 41.46 457.03 89 1.49 1.8 
7 562.92 329.69 138 2.36 -0.007 
8 264.1 493.26 121 9.21 -1.277 
9 480.45 311.58 138 6.82 0.335 

 

 

 

 

 

 

Fig. 3-7: (a) 2D image, (b) 3D image of landmarks. 

 
The SIFT approach consists of four main stages [34]: 

(i) Scale-Space Extrema Detection: The first stage of keypoint detection is to 

identify locations and scales that can be repeatedly assigned under differing views of the 

same object. Potential interest points are selected by scanning the image over location 

and scale, by constructing a Gaussian pyramid and searching for local peaks in a series of 

difference-of-Gaussian (DoG) images which are invariant to scale and orientation. 

(a) (b)

(c) (d) 
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(ii) Keypoint Localization: At each candidate location, a detailed model is fit to 

determine location and scale. Keypoints are selected based on measures of their stability, 

therefore, points are rejected if they are sensitive to noise or are poorly localized along an 

edge. 

(iii) Orientation Assignment: Based on the local image gradient directions, one or 

more orientations are assigned to each keypoint location. From hereon all operations are 

performed on image data that has been transformed relative to the assigned orientation, 

scale, and location for each feature, thereby providing invariance to these transformations. 

(iv) Keypoint Descriptor: The descriptor for each keypoint is made based on the 

image gradient magnitudes and orientations that are determined in its surrounding region. 

Orientation histograms are then created over 4x4 sample regions based on this 

information. Furthermore, there are eight directions for each orientation histogram at 45 

degree intervals. This leads to a 4×4×8=128 dimensional descriptor vector also known as 

the SIFT key. After normalization, this feature vector is stored in a database with the 

keypoint for subsequent recognition. 

As previously mentioned, SIFT features have several advantages, they are invariant 

to image scaling, translation, and rotation, hence, making SIFT descriptors robust to 

small geometric distortions and small errors in the detection region. Furthermore, when 

compared with other types of descriptors, SIFT-based descriptors were found to perform 

the best [35]. This makes them a strong candidate for landmark detection in USAR 

environments. 

The overall proposed method will be discussed herein outlining its most pertinent 

stages: (i) identifying keypoints, (ii) identifying clusters, and (iii) matching of clusters. 
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3.2.1 Keypoint Identification 

3D Image Analysis 

Keypoints that are determined in the 3D image are grouped together based on 

grayscale depth information into depth clusters, where they represent the cluster 

boundaries for the keypoints in the 2D image. The depth grayscale is determined from 0 

to 255. 

Initially, each keypoint is specified by 5 parameters: x location, y location, depth, 

scale and orientation, and stored in the matrix lnA , where l represents the number of 

keypoints and n represents the number of parameters, i.e., Table 1. 

Utilizing the keypoint information matrix A, we check every keypoint: if the 

keypoint falls into the background area we generated in the step of background 

subtraction, it is discarded from the matrix A; if its location belongs to the object area, we 

continue keeping it. After this operation, only the keypoints in the potential object areas 

are prepared for the following steps. 

3.2.2 Keypoint Clustering 

The clustering of keypoints is not only important in defining landmarks but also in 

reducing the number of keypoints of interest. The keypoints are denoted as green circles. 

In general due to shadowing effects and texture changes, a number of keypoints can be 

identified in the 2D images. Fig. 3-6 (c) shows the keypoints (green circles) found on a 

box in an environment, with multiple keypoints on the flat surfaces of the box. In the 3D 

(i.e., depth) image, Fig. 3-6 (d), we can see that the keypoints on the flat surfaces are no 
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longer present due to the fact there is no significant change in depth on these surfaces. 

We can analyze and cluster the keypoints we found in the 2D image based on the 

keypoints found in the depth image in which for the latter image shadowing and texture 

effects are not present. The 2D and 3D images have a one-to-one correspondence. Mainly, 

if a keypoint does not exist in the same pixel in the 3D image, then the keypoint is 

assumed to be due to image shadowing and texture effects. Clusters are bound in the 

regions where a large number of keypoints in the 3D image do not exist, i.e., they have 

considerably the same depth information. These clusters can then be used to represent 

large distinguishable landmarks in the scene. Hence, we can identify a cluster of 

keypoints in the 2D image by bounding them by keypoints in the 3D image. 

Search Region 

A nearest neighbor search algorithm is proposed, herein, that defines regions in the 

3D images containing keypoints that may potentially represent various landmarks in the 

scene. The search algorithm utilizes information from both the edge detection algorithm 

and the deformation matrix in order to estimate these regions of interest. The following 

steps outline the search algorithm: 

Step 1: Random starting points, ijp , for the algorithm is chosen on the image.  

Step 2: A square of side length 2r is drawn symmetrically around ijp  to search for 

its nearest neighbor keypoints, Figure 3-8. If no keypoints are initially found, r is 

continuously incremented until keypoints are detected. Each detected keypoint and its 5 

parameters are stored in a temporary matrix pnB  for evaluation, where p represents the 



36 

number of detected keypoints. For the initial point, only the portion of the square that 

encompasses the image is searched, i.e., the red square in Figure 3-8. 

Step 3: A vector is drawn from ijp  to every keypoint in matrix B. The nearest 

neighbor keypoints are determined to be the keypoints for which the vector connecting 

them to ijp  does not cross edge pixels. All pixels for which the vector crosses are 

sampled for edge information. 

Steps 2 and 3 are repeated until all vectors found for each starting point cross edge 

pixels. 

 

 

 

 

 

 

 

 
Fig. 3-8: The growing square region. 

Clustering 

Keypoints in each region of interest are ordered and connected to their nearest 

neighbors in order to define the respective boundaries for potential landmarks. Depth 

sampling method and convex hull method are utilized to obtain the clusters. Comparison 

between these two methods will be represented in the next section. 

r 
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Depth Sampling Method 

A vector is drawn from an initial keypoint, which is defined as the closest keypoint 

to the initial starting point, keypoint11 to every keypoint in matrix B. N number of points 

on each vector are sampled for depth information, samplepointi, where i=1,2,…,N, Figure 

3-9. The nearest neighbor keypoint, keypoint12 is determined to be the keypoint with the 

minimum change in depth information from keypoint11 and whose corresponding sample 

points have the smallest variation in depth from itself (i.e. keypointq, where q=1,…,p-1,p) 

and keypoint11: 
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The objective of sampling multiple points between the keypoints is to ensure that 

boundaries of objects are not crossed. If a situation arises where a vector path from a 

keypoint to its nearest neighbor must cross an already existing vector, this latter vector 

must follow a different path. The most optimal path for clustering would be to follow 

along the edge, in order to provide the maximum surface area. 

Steps 1 to 3 for search region are repeated until all keypoints in the corresponding 

cluster are identified. The sample points from previous keypoints in the cluster are stored 

with their corresponding keypoints and this information is used along with sample points 

determined for the keypoint of interest in deciding whether the keypoint belongs to the 

cluster and its order within the cluster:  
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],)(,)int 1)1( jmkimikj intkeypontsamplepoiintsamplepo[(fkeypo ++ = ,                       

where m = 1,…, k-1, k.  For every keypoint that is added to the cluster, its A matrix 

information is updated with the following additional parameters: order in the cluster, 

number of connections to other keypoints, depth information stored from sample points. 

In order for a keypoint to be considered a part of the cluster, it must have a minimum of 

two connections to other keypoints in the cluster. 

Once all keypoints are determined in a particular cluster, a new matrix with all the 

corresponding keypoint information is defined for that cluster. 

 

 

 

 

 

   Fig. 3-9: Depth sampling method. 

Depth sampling method works well when the shape of potential landmarks is like a 

circle or a rectangular. But in USAR environments, potential landmarks for rescue robots 

can be of any shape. Besides, it always happens that the vector between two SIFT 

keypoints in one cluster crosses edges. Therefore, Convex Hull method is proposed to 

overcome this kind of difficulties. 

Convex Hull Method 

A convex hull method is used, herein, to generate the boundaries of each of the 

defined clusters which represent potential landmarks. The convex hull of a geometric 

Connectio
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object, which is defined as a point set or a polygon, is the smallest convex set containing 

that object.  As is shown in Figure 3-10, a set is considered to be convex if whenever two 

points P and Q are inside the set, then the whole line segment PQ is also inside the set.

 In our case, our point set is defined by a group of SIFT keypoints which will be 

utilized to define the boundaries of our clusters, which will in turn provide us with 

information about the landmarks. Given the SIFT keypoints in the 3D depth images, 

optimal cluster sizes need to be defined in order to represent the maximum surface area 

on the landmarks. This will allow for the inclusion of more SIFT keypoints in the 

corresponding 2D image for matching; A two dimensional finite set is utilized in this 

work, for which the convex hull can be defined as a convex polygon.  

 

 

 

 

 

Fig. 3-10: Convex and Non Convex. 

In this work, we will utilize the Gift Wrapping algorithm [36] due to its simplicity 

in implementation and its favorable computational complexity (i.e., )(nhO [36]) for our 

purposes. n is the number of SIFT keypoints in the cluster and h is the number of sides 

defined by the line segments of the final generated convex polygon. The following steps 

were utilized to implement the Gift Wrapping convex hull algorithm shown in Figure 3-

11: 

P 

Q

Convex

P

Q

Non Convex
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Step 1: Set the index 0=i , where i = 0 to h, Rh∈ and is defined as the number of 

iterations. Find a keypoint 0p known to be on the convex hull, e.g., the leftmost keypoint 

in the cluster. 

Step 2: Select the next keypoint 1+ip such that all remaining keypoints are to the 

right of the line 1+ii pp . 

Step 3: Let 1+= ii , and repeat Step 2 until 0pph = which yields the convex hull in h  

iterations. 

 

 

 

 

 

 

 

 

Figure 3-11: Gift Wrapping algorithm. 

Several different cases have been considered in the proposed method. For example, 

when the convex hull has only one or two vertices, the method determines one line 

between the two vertices and reports that a cluster cannot be generated for this case. 

When three or more points are collinear, the method does not consider the middle points. 

The method has been successful implemented and tested for these different conditions. 

Experiments presented in the next section verify the method’s robustness to such cases. 
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3.2.3 2D Image Analysis 

Once all depth clusters in the 3D image have been identified, they can be used to 

identify their corresponding keypoints in the 2D image. Each depth cluster represents the 

boundary conditions for the 2D keypoints. Since there exists a one-to-one correspondence 

between the 3D and 2D images, the boundaries can be superimposed on the 2D image. 

Herein, cluster boundaries are represented by the connection vectors between the 

keypoints in the depth clusters. Based on the pixel occupancy of the boundaries, 2D 

keypoints that are located within these boundaries are identified and stored in the cluster 

matrix. Each cluster is defined to represent a landmark in the environment, Figure 3-12. It 

is important to note that this clustering method does not attempt to represent the shape of 

the landmark in the environment; it merely identifies detectable regions that can represent 

a portion of a true landmark and that can be matched in successive images with different 

viewpoints.  

 

 

 

 

 

 

 

 

Fig. 3-12: Cluster results: (a) 3D image, and (b) 2D image. 
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(b) 
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3.2.4 Matching of Clusters 

Matching of clusters relies on finding the same clusters in consecutive images by 

matching keypoints from the clusters from previous frames (as defined in our database) 

with ones in the new cluster of the current frame, we utilize the matching method 

proposed by Lowe, in [34], known as the Best-Bin-First (BBF) method. Herein, this can 

be achieved in terms of matching the key descriptors of the keypoints which can 

correspond to finding a set of nearest neighbors (NN) to a query point. The advantage of 

this method is its ability to handle high-dimensional spaces, i.e., the 128 dimensional 

descriptor vectors. Since individual SIFT keypoints are easily distinguishable, they can 

be matched correctly with an exception of a few false matches. Figure 3-13 illustrates 

matching between two clusters determined in two different viewpoints of a scene. The 

blue lines represent the keypoints that were matched within the two images. The 

effectiveness of the method is shown in Figure 3-13, where the majority of the matches 

made are correct matches. 

 

 

 

 

 

 

 

 

Fig. 3-13:  Matching of clusters in different images. 
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Chapter 4 Simultaneous Localization and 

Mapping (SLAM) 

The previous Chapter outlines the proposed SIFT-based procedure for identifying 

3D distinguishable non a priori landmarks for a robot to detect as it moves in the 

environment in order to create a 3D global map of its environment. The matching stage of 

the SIFT method is able to bring consecutive images into close alignment for 3D 

reconstruction of the environment. However, in order to build the 3D map in world 

coordinates, the robot must be able to localize itself utilizing these determined landmarks. 

This can be achieved by stitching consecutive 3D range information corresponding to the 

landmarks. This chapter outlines the proposed SLAM-based techniques for creation of a 

3D virtualized map of the disaster environment with respect to a world frame in which 

victims can be found. Section 4.1 describes the proposed 3D SIFT-based ego-motion 

methodology for robotic localization and Section 4.2 defines the Iterative Closest Point 

(ICP) –based method utilized for stitching of 3D images of the USAR scene in order to 

generate a 3D map of the environment. 
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4.1 Robot Localization 

In order for the mobile robot to localize itself accurately and effectively within its 

environment, it must know its pose relative to a pre-defined world coordinate frame. In 

our proposed methodology, a SIFT-based ego-motion approach is proposed for robot 

localization. 

4.1.1 3D Sensory System Calibration 

In order to determine the ego-motion transformations effectively and accurately, 

the visual sensory system utilized in the application must be calibrated with respect to the 

environment. Herein, the calibration procedure utilized to identify the relationship 

between the 3D mapping sensor and the scene of interest is presented. Similar calibration 

techniques for other sensory systems that can be utilized, i.e., 3D cameras, can be 

implemented. 

Calibration Procedure 

A checkerboard placed on top of a sub-micron motion control system is utilized to 

determine the 3D transformation, c
mT , between the camera coordinate frame, cF , and the 

motion control system frame, mF , Figure 4-1. The calibration procedure is outlined below: 

Step 1: Identify N corner points on the checkerboard. The value of the sub-pixel 

coordinates of the N points in the 2D image taken by the sensory system is determined by 

using the Matlab camera calibration toolbox [37]. Locate the corresponding 3D 

coordinates of the N points, i.e., ][ iii zyx ΔΔΔ where i=1,2,3,…,N, in the point cloud, to 

determine their corresponding locations in the camera coordinate frame. 
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Step 2: Move the motion control system by [ ]ZYX ΔΔΔ  while tracking the N 

points both in the 2D image and corresponding 3D point cloud. Repeat this step for P 

positions. After each new position, the motion control system should be homed. 

Step 3: Determine c
mT  utilizing the coordinate information of the N points: 

[ ] [ ]T
1211109

8765

4321

T 1

1000

1 iii
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aaaa
aaaa
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⎡

=ΔΔΔ

444 3444 21

       (8) 

where iii zyx ΔΔΔ ,,  are the averages of iii zyx ΔΔΔ ,, . 

For P=8 experiments, the optimized c
mT  was determined to be: 

c
mT =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0.0151-0.05750.7313-0.0184
0.2937-0.1385-0.2782-0.8932-
0.9070-1.04720.05730.0694-

. 

Since the surface of the flat board is very smooth, the measurement noise is 

mainly due to the sensory system itself, where the RMS (Root-Means-Squared) error of 

the 3D range data is determined to be approximately 0.05mm for a measurement area of 

260 × 244 mm [38]. This RMS error is acceptable for our application, since we do not 

require high precision. 

 
 
 
 
 
 
 
 
 
 

Fig. 4-1: Calibration Set-up. 
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4.1.2 Ego-motion 

The 3D range information of the landmarks is provided by the 3D sensor via a 

point cloud with respect to the camera coordinate frame. This information corresponds to 

the pixels the landmark occupies in the 2D image. Hence, by identifying the location of 

the SIFT keypoints representing one landmark in the 2D image, its 3D range information 

in the camera coordinate frame can be determined. The 3D coordinates of the same SIFT 

keypoints (SIFT pairs) in different images can be utilized to solve for the 6 DOF ego-

motion parameters (i.e., ΔX, ΔY, ΔZ, Δα, Δβ, Δγ). At least three pairs of SIFT keypoints 

are needed to estimate the ego-motion transformation iTj, Figure 4-2. Since the position 

of the camera relative to the robot’s coordinate frame is known, the transformation riTrj 

between the robot at two different locations can be determined. By utilizing this 

information and the localization information from the previous position wTri, the robot’s 

location can be estimated. Furthermore, once the alignment of the same landmarks is 

determined between different visual sensor locations, the corresponding 3D range 

information of the scene can be stitched together for reconstruction of the USAR 

environment. 

Once a potential ego-motion transformation has been calculated, it is verified by 

determining how many additional SIFT pairs support this particular transformation. The 

following ranking scheme is utilized: r = l/m, where r, l  and m represent the rank, the 

number of matched SIFT pairs that confirm the transformation and the total number of 

SIFT pairs, respectively. If r is greater than a certain threshold b, then we assume we 

have the most accurate ego-motion transformation. 
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Fig. 4-2:  Transformations for localization of the robot. 

 

4.2 3D Mapping 

3D map building in this research work will be achieved utilizing a 3D surface 

registration method. The most popular registration methods include Schwartz and 

Sharir’s curvature extrema method [39], Kamgar-Parsi et al.’s method [40], Szeliski’s 

method [41] to create a method for estimating the motion of the observer between two 

range image frames of the same terrain, and Besl and McKay’s ICP algorithm [42].  

Schwartz and Sharir developed a solution to the freeform space curve matching 

problem by utilizing a non-quaternion approach to compute the least squares rotation 

matrix. The method works well with reasonable quality curve data but has difficulty with 

very noisy curves because the method uses arclength sampling of the curves to obtain 

corresponding point sets. 

Kamgar-Parsi et al. propose a method for the registration of multiple overlapping 

range images. Firstly the inputs used for local registration are contours of constant range 

represented by means of a modified chain code method. All best matches of pairs of 

contours are considered tentative until their geometrical implications are evaluated. Then 

a cost function is constructed and minimized to do global registration. Terms contributing 
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to the cost include violation of local matches as well as compression and bending in 

range images. In cases where there is no appreciable compression and bending in the 

images, the proposed global scheme could improve the quality of local registration by 

enforcing consistency among them. This method works very well using the level sets of 

2.5-D range data but is essentially restricted to the three degrees of freedom in the plane 

since the work was addressed toward piecing together terrain map data. 

Szeliski’s method applied a smoothness assumption to create a smoothing spline 

approximation of the points given the set of points from one frame. Then, a conventional 

steepest descent algorithm is used to rotate and translate the second data set so that it 

minimizes the sum of the covariance-weighted z differences between the points and the 

surface. This work presents some interesting ideas, but the experimental results are 

unconvincing for practical applications. This is because his experiments did involve 6 

DOF estimation, but the test object is a very simple shape. 

The Iterative Closest Point (ICP) algorithm is a reliable and popular method 

utilized for point cloud registration. If a priori information about the point-to-point 

correspondence of two point clouds is provided, then the ICP can iteratively recover the 

relative transformation of the point clouds. It converges monotonically to a local 

minimum, which may or may not be the global minimum. The closest point of a point in 

a point cloud in terms of Euclidean distance is assumed to be its corresponding point. It 

was first developed by Besl and McKay [42], and modified by Chen and Medioni [43] 

and optimized by Zhang [44]. The concept and procedure were proposed and 

convergence theorem is proved in [41] and [42]. The optimized version of the ICP 

algorithm proposed by Zhang works well in registering two partly overlapping surfaces. 
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It converges to the closest local minimum efficiently with a complexity of )log( NNO in 

the most expensive computation. k-D trees are utilized to speed up computation time. 

Zhang’s optimized algorithm is capable of dealing with gross outlines in the data, 

appearance and disappearance in which curves in one set do not appear in the other set, 

and occlusion. 

In addition to the aforementioned advantages, ICP is utilized in this work due to its 

robustness to noise and outliers. It is also the basic algorithm on which a number of 

existing stitching methods have been based on to achieve fine alignment. Since ICP is a 

local optimization method, the initial parameters for the algorithm are provided from the 

6 DOF transformations determined by the proposed ego-motion technique. These 

transformations bring two point clouds in close proximity and hence, assist in allowing 

ICP to converge to an optimal solution. By utilizing the ICP method and taking 

advantage of the redundancy from observing the same landmarks multiple times, the 

localization errors inherent to the vision system can be minimized. 

4.2.1 ICP Algorithm 

The ICP algorithm is a highly effective local optimization algorithm. However, the 

algorithm does not guarantee that it will achieve global alignment. We address this issue 

by utilizing the SIFT method proposed above to initially align two sets of 3D points of 

interest, Pi and Pj, before implementing the ICP algorithm for fine alignment. The ICP 

can then be used to align the data sets from this initial registration utilizing a nonlinear 

optimization procedure. The two sets of 3D points correspond to a single landmark 

expressed in the different reference frames. The objective is to find the 3D 
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transformation, cjTci

, which, when applied to Pj, minimizes the distance between the two 

point sets. It can be said that for each point pi from the set Pi, there exists at least one 

point, termed the closest point, on the surface of Pj that is closer to pi than all other points 

in Pi. The ICP algorithm repeatedly computes the closest points between data sets and 

computes the transformation to register the data, until a minimum tolerance on a mean 

square distance metric between the surfaces is obtained. The following simple procedure 

is implemented herein utilizing the SIFT keypoints as inputs into the ICP algorithm: 

Step 1: Given two sets of 3D point clouds, three matched pairs of SIFT keypoints 

from the point clouds are chosen accordingly.  

Step 2: The three pairs are utilized as the initial registration data into the ICP 

algorithm, which is then implemented.  

Step 3: Once all point clouds have been stitched. Generate the mesh and surface 

model of the scene. 

In Besl and McKay [42], ICP requires every point in one surface to have a 

corresponding point on the other surface. In our application, the surfaces to be registered 

are partly overlapped with each other, which means not all points in set Pi have their 

counterparts in set Pj. Only points in the overlapping area should have reasonable closest 

point in the other surface. Based on the fact that it is not reasonable for the distance 

between a point pair to be too large, a distance value threshold maxD  can be set. If the 

distance between a point pair exceeds maxD , this pair is discarded. Every time the 

transformation is applied, the average distance between point pairs is calculated, and 

maxD is updated. If the transformation draws the point pairs closer to each other, we set a 

smaller maxD . In this way, maxD  is dynamically updated based on the statistical 
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information of point pairs. 

Monotonic convergence to a local minimum has been proven for the ICP algorithm 

based on two key ideas [44]: (i) Least squares registration utilized in the algorithm 

generically reduces the average distance between corresponding points during each 

iteration; and (ii) The closest point determination generically reduces the distance for 

each point individually. The optimized approach has increased the rate of convergence: in 

which a coarse estimation utilizing only one sample point for a group of five points is 

implemented during the first few iterations instead of all sample points, and only for the 

latter iterations are all sample points used to obtain a precise estimation. Zhang’s 

experiments verify the effectiveness of the optimized approach for convergence. 

4.2.2 Stitching of Point Clouds 

Herein, the optimized ICP [44] algorithm is utilized as the registration algorithm. 

We implement the algorithm in two different approaches: utilizing Besl and McKay’s 

approach [42] and by utilizing the ICP algorithm in GSI Studio [45] to implement 3D 

stitching. Figure 4-3 represents two sets of initial point clouds before stitching. The 

following simple procedure is implemented herein utilizing the SIFT keypoints as inputs 

into the ICP algorithm: 

Step 1: Given two sets of 3D point clouds, three matched pairs of SIFT keypoints 

from the point clouds are chosen accordingly. 

  Step 2: The three pairs are utilized as the initial registration data into the ICP 

algorithm, which is then implemented.  
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Step 3: Once all point clouds have been stitched. Generate the mesh and surface 

model of the scene.  

Figure 4-4 (a) shows the merging details of the two sets of point clouds after 

running ICP, and Figure 4-4 (b) gives the final result of the overall mapping. 

Fig.4-3: Two sets of point clouds before stitching. 

 

 

 

 

 

 

 

 

Fig.4-4: The final mapping result. 

(a) 
(b) 
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Chapter 5 Experiments 

Several preliminary experiments were conducted to verify the proposed landmark 

identification and 3D Visual SLAM methods. Herein, the 3D and 2D images were 

provided by the structured light vision system proposed in [31]. This chapter outlines the 

experimental set-up, procedure and results. 

5.1 System Components 

5.1.1 System Hardware 

The sensory system consists of a DLP projector, in particular the PLUS U5-632 

Digital projector with 1024×768 resolution and 3000 lumens light output and the Dalsa 

CA-D6-0512 B/W high speed CCD camera (resolution 532×500), as shown in Figure 5-1. 

The effective range of measurement of the system has been determined to be 0.7~1.4m, 

with the current lens configuration of the camera and projector. Utilizing the sensory 

system, both 2D and 3D images can be provided in real-time. In addition to these types of 

images, 3D range information stored in point cloud formation is also provided by the 

sensor. This sensory information is utilized by the proposed landmark identification and 

matching, and Visual SLAM algorithms. 
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Fig. 5-1: The sensory system. 

5.1.2 Software 

The software for the proposed landmark identification and matching and 3D Visual 

SLAM methodology is written in Matlab 7 R14 and implemented on a Pentium IV 3.0 

GHz 1.0G RAM personal computer. Figure 5-2 illustrates the different modules of the 

software. 

5.2 Experiments 

Preliminary experiments were implemented utilizing the aforementioned software 

and hardware components. Two types of experiments were implemented: (i) in a 

controlled setting, where the sensor remained static and the scene was moved using a 

high precision motion control system and (ii) where the sensory system was placed on top 

of a robotic platform and moved in a static scene. In general, the overall proposed 

methodology took at most 60 seconds of CPU time. 
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Fig. 5-2: The software architecture. 
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shapes of objects and also the small variation in color of the scene. The objects were 

placed on top of a high precision motion control system as shown in Figure 5-3. Two sets 

of experiments were performed. The objective of these experiments is to utilize identified 

and matched landmarks in a controlled scene to localize the robot and generate a 3D map. 

 

 

 

 

 

Fig. 5-3: The motion control system with the USAR simulated scene. 

Experimental Procedure 

1) 3D and 2D images are taken by the structured light sensor. 

2) SIFT keypoints are found on the 2D and 3D image of the scene. 

3) Image analysis on the 3D image is performed by eliminating keypoints in background 

using background subtraction. 

4) Edges of the foreground objects are determined utilizing the Canny-Deriche edge 

detection method and the morphological methods of dilation and thinning. 

5) Utilizing the edge information and SIFT keypoint locations within the 3D image, 

keypoints are grouped together. 



57 

6) These keypoints are then utilized via the convex hull Gift Wrapping algorithm to 

determine cluster boundaries. 

7) These cluster boundaries are superimposed on the one-to-one correspondent 2D 

image to group 2D keypoints into clusters that can represent potential landmarks. 

8) Matching using the BBF method is implemented using consecutive 2D images of the 

scene. 

9) 3D Visual SLAM is performed, in which matched 2D SIFT pairs and the point cloud 

information provided by the sensor are utilized to determine 6 DOF ego-motion of the 

motion control system and generate a map of the scene. 

Experimental Results and Discussions 

Figure 5-4 presents the results for the USAR simulated scene with cardboard boxes 

and foam at two different robot poses. An average of 269 and 1074 keypoints were 

determined in the 3D and 2D images, respectively. 7 clusters were found and matched at 

two different robot poses. The clusters that had more than 3 correct keypoint matches 

were recognized to be the same landmark in the scene. 5 (1,3,4,5,7) of the 7 matched 

clusters were matched effectively in this experiment. The matched keypoint pairs of these 

clusters and their corresponding 3D range information were utilized to estimate the 

ego-motion parameters via the Levenberg-Marquadt nonlinear solver: i.e., ΔX=30.04 mm, 

ΔY=10.20 mm, ΔZ=-15.21 mm, Δα=14.98o, Δβ=0.1o, Δγ=0.01o. The true ego-motion 

parameters determined by the high-precision motion control system are: ΔX=30.00 mm, 
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ΔY=10.00 mm, ΔZ=-15.00 mm, Δα=15.00o, Δβ=0.00o, Δγ=0.00o. 

Figure 5-5 presents the results for the USAR simulated scene in which, in addition 

to the boxes and foam, a human face mask potentially representing a victim is presented. 

An average of 177 and 766 keypoints were determined in the 3D and 2D images, 

respectively. 9 clusters were found and matched at two different robot poses. The clusters 

that had more than 3 correct keypoint matches were recognized to be the same landmark 

in the scene. 4 of the 9 matched clusters were found to represent the same landmarks.. 

The matched keypoint pairs of these clusters and their corresponding 3D range 

information were utilized to estimate the ego-motion parameters via the 

Levenberg-Marquadt nonlinear solver: i.e., ΔX=19.93 mm, ΔY=30.00 mm, ΔZ=20.17 mm, 

Δα=-9.97o, Δβ=-0.66o, Δγ=0.18o. The true ego-motion parameters determined by the 

high-precision motion control system were: ΔX=20.00 mm, ΔY=30.00 mm, ΔZ=20.00 

mm, Δα=-10.00o, Δβ=0.00o, Δγ=0.00o. In a real setting, a thermal camera would be 

utilized to identify the landmark associated with the face mask as a potential victim in the 

scene. 
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Fig. 5-4: Experimental results in USAR simulated scene. 
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Fig. 5-5: Experimental results in USAR simulated scene 
with a human face mask. 
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5.2.2 Experiments #2: A More Natural Scene 

Experimental Set-up 

The experimental set-up in these sets of experiments consists of placing the 3D 

sensory system on top of an all terrain six-wheeled robot that is navigated through a 

scene, Figure 5-6. The robot is defined to navigate small-sized obstacles and carry heavy 

loads including people. The environment utilized in these experiments consists of 

minimal lighting and rubble piles containing pipes, wood, rocks and paper covered with a 

gray dust. In this particular experiment, the proposed methodology’s robustness to 

identifying and matching clusters within these types of scenes is tested. 

 

 

 

Fig. 5-6: The system on a mobile robot. 

For these experiments, several brown cardboard boxes, foam and a human mask 

were utilized to mimic a USAR environment in the sense that they represent different 

shapes of objects and also the small variation in color of the scene. The objects were 

placed on top of a high precision motion control system as shown in Figure 5-3. Two sets 

of experiments were performed. The objective of these experiments is to utilize identified 

and matched landmarks in a controlled scene to localize the robot and generate a 3D map. 
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Experimental Procedure 

1) The robot fist moves to one position, and 3D and 2D images are taken by the 

structured light sensor on the robot. Then the robot moves to another position and 

takes another set of 3D and 2D images. During this process, the robot’s position 

changes in 6 DOF. 

2) SIFT keypoints are found on the 2D and 3D image of the scene. 

3) Image analysis on the 3D image is performed by eliminating keypoints in background 

using background subtraction. 

4) Edges of the foreground objects are determined utilizing the Canny-Deriche edge 

detection method and the morphological methods of dilation and thinning. 

5) Utilizing the edge information and SIFT keypoint locations within the 3D image, 

keypoints are grouped together. 

6) These keypoints are then utilized via the convex hull Gift Wrapping algorithm to 

determine cluster boundaries. 

7) These cluster boundaries are superimposed on the one-to-one correspondent 2D 

image to group 2D keypoints into clusters that can represent potential landmarks. 

8) Matching using the BBF method is implemented using consecutive 2D images of the 

scene. 

9) 3D Visual SLAM is performed, in which matched 2D SIFT pairs and the point cloud 

information provided by the sensor are utilized to determine 6 DOF ego-motion of the 
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robot and generate a map of the scene of the robot. 

Experimental Results and Discussions 

For this experiment, an average of 197 and 1124 keypoints were determined in the 

3D and 2D images, respectively. Figure 5-7 depicts the 3D and 2D images provided by 

the structured light sensor at two different robot poses. 6 distinguishable clusters were 

found at each pose. The clusters that had more than 3 correct keypoint matches were 

recognized to be the same landmark in the scene. 4 (#2,3,4,5) out of the 6 clusters were 

matched effectively between the two poses. It is important to note that even though 

cluster #3 encompasses two objects in the scene, only keypoints on the lower object were 

matched. The ego-motion parameters were determined to be: ΔX=-25.03 mm, ΔY=-9.77 

mm, ΔZ=51.21 mm, Δα=-10.62o, Δβ=-11.68o, Δγ=10.73o, respectively. 
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Fig. 5-7: Experimental results in a more natural USAR scene. 
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Chapter 6 Conclusions 

6.1 Summary of Contributions 

The primary contributions of this work are summarized below. 

6.1.1 Landmark Identification and Matching 

Chapter 3 presents a unique SIFT-based methodology to identify and match 

landmarks in unknown cluttered environments utilizing 3D and 2D images of a scene. 

Boundaries for landmarks are determined in the 3D images using the following 

techniques: Background subtraction, Edge Detection, the Morphological techniques of 

Dilation and Thinning and a Convex Hull geometric technique. The first application of 

using such a geometric technique for clustering of SIFT keypoints in the 3D images is 

proposed in this work. These boundaries are then superimposed on the 2D images for 

identification of large distinguishable landmarks as defined by clusters of 2D SIFT 

keypoints. Reliable matching of landmarks in the 2D images is proposed using the cluster 

information. 

6.1.2 3D Visual SLAM 

The identified landmarks are utilized for 3D Visual SLAM. In particular, an 
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ego-motion based method is proposed for localization of the robot using matched clusters 

of 2D keypoints and the 3D point cloud information provided by the sensor. In addition, 

an Iterative Closest Point (ICP) method is proposed for stitching of 3D information of the 

scene, where the initial input to the ICP algorithm is given by the clustered 2D keypoints 

and 3D information from the sensor. A map of the environment can be built by stitching 

numerous different views of the scene together. 

6.1.3 Implementation 

Several preliminary experiments were conducted to verify the overall methodology. 

Chapter 5 describes the sensory system in detail including a DLP projector and a high 

speed CCD camera. While the robot navigated through an environment, 2D and 3D 

images were taken in real-time. Utilizing the images taken by the sensor, the landmark 

identification and matching, and Visual SLAM algorithms were implemented. For these 

experiments, the clusters that had more than 3 correct keypoint matches were recognized 

by the algorithm to be the same landmark in the scene. Three sets of experiments were 

conducted. Experiment set #1 includes a USAR simulated scene in a controlled 

environment. Experiment set #2 contains a more USAR-like scene with the environment 

consisting of minimal lighting, rubble piles, pipes, wood, rocks and paper covered with a 

gray dust. These experiments have shown the efficiency of the proposed methodology for 

USAR use. 
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6.2 Discussion and Future Work 

In the experiments presented, the effects of dusty environments have been 

considered and the sensory system was able to generate 2D and 3D images of the scene. 

However, the overall system will need to be tested in more harsh environments which 

include smoke and fire. Appropriate hardware changes will have to be considered. 

The overall proposed methodology took at most 60 seconds of CPU time in Matlab 

on a Pentium IV 3.0 GHz 1.0G RAM system. Although it is efficient, it still can be 

optimized. The most time-consuming portion of the algorithms is the morphological 

processing step in image conditioning. The proposed algorithms can be implemented in a 

real-time programming language such as C++ and tested for optimization. 

All three experiments are implemented in lab simulated USAR scenes. Future work 

consists of testing and evaluating the overall system in simulated or real USAR test 

environments, including the National Institute of Standards and Technology (NIST) Test 

Arenas. 

6.3 Final Concluding Statement 

In this thesis, the development of a unique SIFT-based landmark identification and 

matching method as well as a 3D Visual SLAM approach for cluttered USAR 

environments is proposed. The novelty of the method is the utilization of both 3D (i.e., 

depth images) and 2D images. Landmarks are determined effectively within the images 



68 

utilizing a combination of SIFT keypoints, depth segmentation, edge detection and 

morphological techniques and a convex hull algorithm for the construction of a 3D map 

of the environment. Experiments show the potential of the proposed methodology in 

USAR-like environments. Future work will include the adaptation of the system for harsh 

environments, time optimized implementation and testing in real USAR environments. 
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