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Abstract of the Dissertation

OS-level Virtualization and Its Applications

by
Yang Yu

Doctor of Philosophy
in

Computer Science

Stony Brook University

2007

OS-level virtualization is a technology that partitions the operating system to
create multiple isolated Virtual Machines (VM). An OS-level VM is a virtual execu-
tion environment that can be forked instantly from the base operating environment.
OS-level virtualization has been widely used to improve security, manageability
and availability of today’s complex software environment, with small runtime and
resource overhead, and with minimal changes to the existing computing infrastruc-
ture.

A main challenge with OS-level virtualization is how to achieve strong isolation
among VMs that share a common base OS. In this dissertation we study major OS
components of Windows NT kernel, and present a Feather-weight Virtual Machine
(FVM), an OS-level virtualization implementation on Windows platform. The key
idea behind FVM is access redirection and copy-on-write, which allow each VM
to read from the base environment but write into the VM’s private workspace. In
addition, we identify various communication interfaces and confine them in the
scope of each individual VM. We demonstrate how to accomplish these tasks to
isolate different VMs, and evaluate FVM’s performance overhead and scalability.

We present five applications on the FVM framework: secure mobile code exe-
cution service, vulnerability assessment support engine, scalable web site testing,
shared binary service for application deployment and distributed Display-Only File
Server. To prevent malicious mobile code from compromising desktop’s integrity,
we confine the execution of untrusted content inside a VM. To isolate undesirable
side effects on production-mode network service during vulnerability scans, we
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clone the service to be scanned into a VM, and invoke vulnerability scanners on the
virtualized service. To identify malicious web sites that exploit browser vulnerabili-
ties, we use a web crawler to access untrusted sites, render their pages with browsers
running in VMs, and monitor their execution behaviors. To allow Windows desktop
to share binaries that are centrally stored, managed and patched, we launch shared
binaries in a special VM whose runtime environment is imported from a central bi-
nary server. To protect confidential files in a file server against information theft by
insiders, we ensure that file viewing/editing tools run in a client VM, which grants
file content display but prevents file content from being saved on the client machine.
In this dissertation, we show how to customize the generic FVM framework to ac-
commodate the needs of these applications, and present experimental results that
demonstrate their performance and effectiveness.
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Chapter 1

Introduction

1.1 Overview of Virtual Machine
Virtual Machine (VM) is a software implementation of a real machine or exe-

cution environment that enables multiple virtual environments on a single physical
machine. Each of the VMs is isolated from one another and the underlying physical
machine, and gives users the illusion of accessing a real machine directly. Virtual
machines have been widely used in the following applications:

• Server consolidation. Consolidate multiple under-utilized server machines
into fewer physical machines by installing servers in VMs. This deployment
scheme can greatly save the hardware expense and maintenance cost.

• Intrusion and fault tolerance. Isolate the execution of untrusted programs
inside VMs to protect the integrity of physical machine resources. This is
particularly useful in creating a secure computing environment for end users
or a honeypot environment to catch malware or attacks.

• System migration. As a software implementation of a real machine, a VM
can be migrated easily from one physical machine to another, thus reducing
the down time due to hardware failure.

• Virtual appliance. Package the applications, and possibly its operating envi-
ronment together and allow mobile users to carry their computing environ-
ment with portable storage device.

• Debugging and testing. Set up a test-bed with multiple VMs on the devel-
oper’s physical machine to speed up the debugging and testing.

1
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Figure 1.1: The OS-level virtualization vs the hardware-level virtualization.

To support virtual environments with software approaches, a virtualization layer
must be placed at certain levels along the machine stack. This virtualization layer
thus partitions physical machine resources and maps the virtual requests from a
VM to physical requests. The virtualization can take place at several different lev-
els of abstractions, including the Instruction Set Architecture (ISA), Hardware Ab-
straction Layer (HAL), operating system level and application level. ISA-level
virtualization emulates the entire instruction set architecture of a VM in software.
HAL-level virtualization exploits the similarity between the architectures of the
guest and host machine, and directly execute certain instructions on the native CPU
without emulation. OS-level virtualization partitions the host OS by redirecting I/O
requests, system calls or library function calls. Application-level virtualization is
typically an implementation of a virtual environment that interprets binaries. Dif-
ferent levels of virtualization can differ in isolation strength, resource requirement,
performance overhead, scalability and flexibility. In general, when the virtualiza-
tion layer is closer to the hardware, the created VMs are better isolated from one
another and better separated from the host machine, but with more resource require-
ment and less flexibility. As the virtualization layer is moved up along the machine
stack, the performance and scalability of created VMs can be improved.

1.2 OS-level Virtualization
OS-level virtualization partitions the physical machine’s resources at the operat-

ing system level. This means all the OS-level VMs share a single operating system
kernel. Figure 1.1 compares the virtualization layers of OS-level virtualization and
hardware-level virtualization.
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1.2.1 Motivation
The isolation among multiple VMs and between a VM and the host environment

make virtual machines an effective platform to support fault-tolerant and intrusion
tolerant applications. When applying virtual machine technology to such applica-
tions, a common requirement is to execute a potentially malicious transaction in a
specially created VM, which is an instance of the host operating environment. One
can satisfy this requirement by creating a traditional hardware-level VM [1, 2, 3],
and duplicating the host environment to the new VM. However, the physical-to-
virtual conversion is not efficient and takes nontrivial time to complete. The reason
is that hardware-level VMs are fully isolated and each of them runs a separate oper-
ating system kernel. Initializing such a VM incurs large overhead in terms of both
resource requirement and startup delays.

In contrast, all the OS-level VMs on the same physical machine share a single
operating system kernel. Additionally, its virtualization layer can be designed in a
way that allows processes in VMs to access as many resources of the host machine
as possible, but never to modify them. In other words, a VM can share the execution
environment of the host machine, but any state changes in the VM are confined in
the VM’s local environment. Therefore, such a VM has minimal startup/shutdown
cost, low resource requirement, and high scalability. Moreover, for an OS-level
VM, it is possible for the VM and the host environment to synchronize state changes
when necessary. For example, the legitimate state changes in a VM can be easily
committed to the host environment, while patches or new configurations of the host
environment can be visible immediately to all the VMs. Essentially, the OS-level
virtualization allows users to quickly spawn or destroy new isolated instances of the
current operating environment on inexpensive commodity hardware. Therefore, it
is particular useful to fault-tolerant and intrusion-tolerant applications that require
frequent invocation and termination of disposable VMs.

1.2.2 Virtualization Approach
The basic idea to support OS-level virtualization is to redirect and confine the

access requests from a VM to its local resource partition on the physical machine.
For example, if a process in one VM (say vm1) tries to access a file named “/a/b”,
the virtualization layer can redirect the access to a file named “/vm1/a/b”. When
a process in another VM (say vm2) accesses “/a/b”, it can be redirected by the
virtualization layer to access a different file “/vm2/a/b”, which is different from the
file “/a/b” in vm1. Such a virtual-to-physical mapping is transparently performed
inside the virtualization layer, which can be at the system call interface, system
library interface, or filter driver interface. The process accessing the file “/a/b”
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cannot observe that it is in fact accessing a different file. This approach is similar
to the chroot mechanism on UNIX-like systems.

However, duplicating common resources to each VM’s partition obviously in-
curs significant resource cost on the physical machine, and also increases a VM’s
initialization and termination overhead. Therefore, OS-level VMs typically share
most resources with the host environment, and create private resource copies in a
VM when they are to be modified by the VM. The access redirection logic in the
virtualization layer also follows such a copy-on-write scheme to redirect a process
to access the correct resource, which can be inside a VM or on the host environment.

1.3 Dissertation Overview
A main technical challenge with OS-level virtualization is how to achieve strong

isolation among VMs that share a common base OS. In this dissertation, we study
major OS components of Windows NT kernel, and present a Feather-weight Vir-
tual Machine (FVM), an OS-level virtualization implementation on Windows plat-
form. The key idea behind FVM is access redirection and copy-on-write, which
allow each VM to read from the base environment but write into the VM’s private
workspace. As a result, multiple VMs can physically share resources of the host
environment but can never change resources visible to other VMs. In addition to
this basic redirection mechanism, we identify various communication interfaces,
especially the Windows inter-process communication interfaces, and confine them
in the scope of each individual VM. This allows the FVM layer to achieve strong
isolation among different VMs. We demonstrate how to accomplish these tasks to
isolate different VMs, and evaluate FVM’s performance overhead and scalability.

The resource sharing design greatly reduces a VM’s startup and shutdown cost,
and thus provides a flexible platform for fault-tolerant and intrusion-tolerant appli-
cations that require frequent invocation and termination of disposable VMs. More-
over, each new VM environment can be simply a clone of the current host envi-
ronment, and there is no need to change the existing computing infrastructure. The
current hardware-level virtual machines do not have such flexibilities due to the full
isolation they have achieved.

Most complete OS-level virtualization implementations are for UNIX-based
OS, such as FreeBSD Jails [4], Linux VServer [5] and Solaris Containers [6]. How-
ever, most end users machines use Windows OS as the operating platform. There
have been increasing demands of virtualizing the Windows environment for var-
ious applications. Some Windows-based virtualization implementation, such as
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PDS [7], Softricity [8] and Virtuozzo [9] have made successful progress in this di-
rection. However, their virtualization environments are mainly used to support cer-
tain specific applications, or are not as complete as FVM in terms of the isolation
strength. We hope our work on FVM can provide researchers and developers a clear
picture of how a comprehensive OS-level virtualization can be accomplished on the
Windows platform, and can promote more novel applications on this virtualization
framework.

This dissertation also presents five complete applications on the basic FVM
framework: secure mobile code execution service, vulnerability assessment support
engine, scalable web site testing, shared binary service for application deployment
and distributed Display-Only File Server. The former three applications require
isolation of the execution of untrusted code from the host environment, and the
latter two applications require separation of application program, configuration or
I/O data from the host environment.

To prevent malicious mobile code from compromising an end user machine’s
integrity [10], we confine the execution of untrusted content inside a VM by run-
ning web browsers, email clients and downloaded programs in the VM. We design
a system call logging and analysis module that can log selected system calls and
extract high-level behaviors from the system call logs. Therefore, we can recog-
nize the exact scope of contamination in a VM, and allow state changes that are
absolutely legitimate to be committed to the host environment.

To isolate undesirable side effects on production-mode network services when
these services are scanned by vulnerability scanners [11], we clone the service to
be scanned into a VM, and invoke vulnerability scanners on the virtualized service.
The VM environment is identical to the host environment so the same set of vulner-
abilities can be exploited. As a result, even if a vulnerability scanner is intrusive to
the target service, the original production-mode network services are not affected.

To identify malicious web sites that exploit browser vulnerabilities, we need a
virtual machine technology to isolate the potential malignant side effects of browser
attacks from the underlying host environment. FVM’s small VM startup and shut-
down overhead are perfect match for this application. We use a web crawler to ac-
cess untrusted sites, render their pages with browsers running in VMs, and monitor
their execution behaviors. The experiment result shows that FVM-based scanning
significantly improve the throughput of web site testing systems.

To support shared binary service, which requires an end user machine to fetch
all its application binaries from a central server, we need to provide applications
installed on a shared binary server but executed on a client machine rather than a
server execution environment. All the application’s registry entries, configuration
files, DLLs and COM objects physically reside on the binary server. FVM’s OS-
level virtualization technique can be easily tailored to this application, and makes it
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possible to reap the performance benefit of client-server computing and the central-
ized management benefit of thin-client computing.

Display-Only File Server (DOFS) [12] is an information protection technology
that guarantees bits of confidential documents never leave a protected file server
after being checked in. Because DOFS is based on the thin client computing archi-
tecture, it faces both application compatibility and scalability problems. Distributed
DOFS, which attempts to extend the control of the central DOFS server to individ-
ual clients, leverages FVM to run a special VM in each client machine that is con-
sidered as a logical extension of the central DOFS server. As a result, distributed
DOFS successfully eliminates the compatibility/scalability problems of centralized
DOFS while retaining its effectiveness of protecting confidential documents against
information theft.

In this dissertation, we show how to customize the generic FVM framework to
accommodate the needs of these applications, and present experimental results that
demonstrate their performance and effectiveness.

1.4 Contributions
In summary, this dissertation and the research work it is based on make the

following contributions:

• We built a comprehensive OS-level virtualization framework on the Windows
NT kernel. Each VM on this framework has minimal resource usage (zero for
a new-created VM) and negligible startup/shutdown latency (less than 2 sec-
onds on average) in comparison with most hardware-level VMs. Compared
with most existing OS-level virtualization work on the Windows platform,
FVM presents a more complete application virtualization framework that al-
lows clones from a base Windows environment, confinement of IPCs through
Windows GUI components, fine-grained resource control, and process be-
havior logging/analysis.

• We resolved the safety problem of running vulnerability assessment scanners
on production-mode network services. The problem is that every existing
network-based vulnerability scanner has the risk of compromising the sys-
tems and services being scanned. The approach we use is to scan cloned
network services in FVM.

• We improved the scanning throughput of a web sites testing system by using
FVM to host and monitor web browsers visiting untrusted web sites. Un-
der one common testing condition, the FVM-based testing system achieves a
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throughput of 50,000 to 70,000 URLs per day per machine, while a testing
system based on hardware-level VMs typically scans less than 10,000 URLs
per day per machine.

• We proposed a shared binary service for application deployment on Windows
desktop environment. Binary servers have been widely used on UNIX-like
systems, but not on Windows systems before due to complicated dependency
requirements of Windows applications.

• We distributed the server-based computing architecture of an existing infor-
mation theft prevention solution (DOFS) by confining information accesses
inside a client VM.

• We plan to open-source the FVM prototype, which currently works on Win-
dows 2000 and Windows XP. We believe the source of FVM will benefit the
research community as well as many industry partners on OS-level virtual-
ization. In addition, the API and system call interception mechanisms used
by FVM can be easily extended to support other applications that aim at cus-
tomizing close-source Windows program behaviors.

1.5 Dissertation Organization
The rest of this dissertation is organized as follows: Chapter 2 summarizes re-

lated work on hardware-level virtual machine, OS-level virtualization, and differ-
ent levels of Windows interception technologies. Chapter 3 presents the design and
implementation of the FVM virtualization layer. We describe the general rule of
namespace virtualization, copy-on-write and communication confinement in FVM,
and discuss the implementation of each virtualization component. Chapter 4 evalu-
ates the FVM’s isolation strength, performance overhead and scalability. In Chap-
ter 5, we present five complete applications on the FVM framework: secure mobile
code execution service, vulnerability assessment support engine, scalable web site
testing, shared binary service for application deployment and distributed Display-
Only File Server. Finally we discuss FVM’s future work and conclude the disser-
tation in Chapter 6. In the appendix of the dissertation is an introduction of FVM’s
source code organization.



Chapter 2

Related Work

2.1 Hardware Level Virtualization
Hardware-level virtualization technologies simulate the complete or a subset of

hardware to run unmodified guest OS, or modify the guest OS to utilize the underly-
ing physical hardware. Examples of the hardware-level virtualization technologies
are Bochs, VMware, Virtual PC, Xen, and etc.

2.1.1 Full System Simulation
Full system simulations emulate the entire instruction set architecture in soft-

ware, so they can support an unmodified guest OS for the same or different archi-
tecture. The emulator executes instructions from a virtual machine by translating
them to a set of native instructions and then executing them on the native hardware.
Bochs [1] is x86 emulator that runs on many platforms and supports different guest
OS, including DOS, Windows and Linux. It emulates the Intel x86 CPU, com-
mon I/O devices and a custom BIOS. Another example of full system simulation is
the Mac version of Virtual PC [13]. Because every instruction of the guest system
needs to be interpreted by the emulator software, full system simulations usually
have significant performance overhead.

2.1.2 Native Virtualization
Native virtualization simulates a complete hardware environment to support an

unmodified guest OS for the same type of CPU. It intercepts and simulates privi-
leged instructions, and allows certain un-privileged instructions to be executed di-
rectly on the physical hardware. This reduces the overhead of emulating certain in-
structions and thus improves the VM’s performance. VMware [2, 14] and Microsoft

8
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Virtual PC [3] are examples of native virtualization technologies. They virtualize
common PC hardware such as processor, memory and peripheral I/O devices and
support different type of guest OS on a single physical x86 machine. Native virtu-
alization have used the virtualization extensions in recent x86 processors [15, 16]
to improve their performance.

2.1.3 Paravirtualization
The paravirtualization technologies provide special interfaces, called hypercall,

for the guest OS to achieve high performance that is close to the performance of na-
tive executions. However, to support paravirtualization, the guest operating systems
are usually required to be modified. Examples of paravirtualization technologies are
Xen [17], Denali [18] and User-Mode Linux (UML) [19]. Xen is a virtual machine
monitor for multiple architectures, and allows both Windows and Linux guest OS
to run with the Linux-based host OS (Domain 0). With the assistance of hardware
virtualization technologies, it is possible that the guest OS does not need to be mod-
ified to run within Xen virtual machines.

Full system simulation, native virtualization and paravirtualization all place the
virtualization layer at a level close to the hardware. The advantage of these tech-
nologies is the full isolation between different VMs and the host machine. However,
some of these technologies are involved with large resource requirement, high per-
formance overhead and poor scalability. Although paravirtualization and hardware-
supported virtualization can improve the runtime performance to almost native
speed and can achieve large scalability, they are still not as flexible as operating-
system level VMs when used for applications that require frequent invocation and
termination of disposable VMs. In addition, deploying these hardware-level vir-
tualizations requires end users to change their existing computing infrastructure,
such as installing the Virtual Machine Monitor (VMM) and performing physical-
to-virtual conversions. Finally, in some stand-alone VMM implementation such
as VMware ESX server, the hardware compatibility is always a concern because
the VMM sits on the bare hardware and thus needs to provide device drivers for
hardware access.

2.2 OS-level Virtualization
We present related works on server virtualization, application virtualization,

versioning file system and compatibility layers in the following. All of these tech-
nologies create virtual views or environments on top of a single OS kernel. The
OS-level virtualization layer can be at system library APIs, system call interface or
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file system driver stack. Please note that the difference between server virtualization
and application virtualization is, the former usually creates complete virtual oper-
ating environments (including private user accounts and management utilities), that
can support server consolidations, while the latter is usually a subset or a particular
application of a complete virtualization, such as sandboxing untrusted application
programs.

2.2.1 Server Virtualization
To partition a physical machine environment into multiple OS-level VMs, the

first step is to create a separate file system name space for each VM. The Unix
chroot() system call sets the root directory of the calling process and its child pro-
cesses. This set of processes therefore establish their own file system name space
and cannot look up files outside of the new root. Many Unix-like OS-level virtual-
ization systems base on this system call to virtualize their file system name space.
The FreeBSD Jail [4] facility creates OS-level VMs called jails, each of which has
its own file system root, processes, IP address and user accounts. Processes in a
jail cannot access directories outside of that jail. This is implemented by leverag-
ing chroot() and preventing ways to escape from chroot(). Activities that cannot be
contained inside a jail, such as modifying kernel by direct access or loading kernel
modules, are prohibited for all jailed processes. Moreover, several types of inter-
actions between processes inside and outside of the jail, such as delivering signals,
are prevented. With these isolations and protections, Jail can be used in the web
service provider environment, to protect the provider’s own data and services from
their customers, as well as protecting data of one customer from others, by host-
ing each customer in a separate jail. However, virtualization of file system name
space is not enough to create isolated OS-level VMs for a Windows desktop envi-
ronment, where many other types of name spaces than files, such as registry and
kernel object exist. In terms of storage utilization, creating a jail requires system
libraries and data files to be duplicated under that jail’s root directory. In contrast,
FVM virtualizes major types of non-file name spaces in a Windows environment,
and implements a special copy-on-write mechanism to share system resources as
much as possible, therefore minimizing the resource requirements when multiple
VMs coexist.

The Linux-VServer [5] is a more advanced Jail-like implementation on Linux.
It partitions a Linux machine into multiple security contexts, each of which sup-
ports an OS-level VM, called a Virtual Private Server(VPS). Besides isolating the
file system name space, the Linux-VServer isolates shared memory and other IPCs
among different VPSs. By implementing context capabilities, context accounting
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and context resource limits, it provides more control to processes in a VPS. As a re-
sult, processes in a VPS may not perform a denial-of-service attack on other VPSs
on the same physical machine. An extension to the original Linux-VServer project,
called FreeVPS, supports similar isolation functionalities. To reduce the overall
storage usage, the Linux-VServer does not duplicate common files, for example,
shared libraries, in each of the VPSs. Instead, each VPS can create hard links to
common files. To prevent modifications to these files by a VPS from affecting other
VPSs, but still to allow file updates in each VPS, these shared files are given special
attributes to make them immutable but unlinkable. Therefore, a process in a VPS
cannot modify the file data but can still remove the link and create a new version.
However, the Linux-VServer must identify the common files and prepare them with
the special attributes in a process called unification, to initialize the file system name
space of every VPS. In comparison, the FVM implementation does not require such
a process because each VM is created with the identical environment as the base
environment of the host, and its private states are constructed dynamically with the
copy-on-write scheme.

Solaris 10 from Sun Microsystems allows multiple OS-level VMs, called zones,
to be created on top of one Solaris OS kernel [6]. Every zone can share portions
of the file system data with other zones and the host environment (called global
zone) to reduce the amount of disk space. This file system model in a VPS is
called sparse-root. Unlike the Linux-VServer, file sharing in a sparse-root zone
is implemented by using the read-only loopback file system (lofs) to mount the
shared directories from the host environment. Since most kernel and core system
components are shared, patching to these files from the host affects all the zones
automatically. However, processes writing to some shared directories, such as an
installer process, may not proceed in a sparse-root zone. To resolve such problems,
a zone may be configured to duplicate a portion of or even entire file system data
with private disk space. Resource usage in a zone can be flexibly controlled using
mechanisms like fair-share scheduling, which ensures each zone to get an equal
share of CPU usage. With the resource management facility, a zone is also referred
to as a Solaris container. FVM uses the Windows job object to implement similar
resource control mechanisms for each of its VMs, and its copy-on-write scheme
further minimizes the time taken to create every new VM.

OpenVZ [20] is another OS-level virtualization project for Linux and is the basis
of the Virtuozzo [9] server virtualization product from SWsoft. It not only provides
comprehensive isolations and resource management, but also allows checkpoint-
ing processes in a VPS and live migration to a different physical server without
noticeable delays or downtime. Virtuozzo even supports Windows VPSs on the Mi-
crosoft Windows 2003 OS and is therefore close to the FVM implementation. The
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main difference between Virtuozzo for Windows and FVM is the resource shar-
ing mechanism. For file system sharing, a Virtuozzo VPS is created with a tree of
copy-on-write symbolic links pointing to the real files on the host. This mechanism
is slightly different from FVM because the directory hierarchy still needs to be du-
plicated and links with the same file name be created in a VPS, and is similar to the
unification process of the Linux-VServer. With respect to Windows registries, Vir-
tuozzo statically duplicates all the registry data used by the OS and the applications
into the VPS without sharing, but FVM only copies a portion of registry entries
from the host registry into a VM at the time when processes in the VM intends to
update them.

2.2.2 Application Virtualization
Application virtualization creates isolated virtual environments on a host OS

to sandbox the deployment and execution of selected application programs. Such
virtual environments are mainly used for four purposes: resolving application con-
flicts, migrating running processes, isolating untrusted programs, and supporting
portable application environments.

To resolve conflicts between applications, an application is not physically in-
stalled on the desktop. Instead, its runtime environment is packaged into a OS-level
VM, which is then shipped from a central server to the desktop as data on demand.
Maintenance and updates of the application are performed on the central server,
turning software as a service. The execution of the packaged application on the
client is confined within the VM via redirection techniques. Thinstall [21] com-
presses all the files and registry settings of an application into a single executable
file by logging the application’s installation on a clean machine. The generated
executable is self-contained, responsible for decompressing the entire runtime en-
vironment, loading proper libraries into the memory and redirecting file or registry
requests. However, the size of the packaged executable can be rather large, depend-
ing on the complexity of the containing applications. Similary, Altiris [22] places
application installations or data into managed virtual software packages, which can
be delivered to end user machines in various ways. To reduce application startup
overhead, many other similar techniques, such as the Progressive Deployment Sys-
tem [7], Microsoft SoftGrid [8], AppStream [23] and Citrix Streaming Server [24],
organize an application’ runtime environment into separate components, which are
shipped gradually to the client on demand of the actual execution flow. This im-
provement allows almost immediate startup of a packaged application that resides
on a central server, and is referred to as application streaming. The redirections
and isolations on the client environment are achieved by implementing a program
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loader at the user level [21], intercepting Win32 APIs [7] or intercepting kernel sys-
tem services [23]. However, the isolations are mostly targeted at files and registries.
IPCs are generally not confined within a VM, as what FVM has implemented. This
is because application streaming technique is a new software deployment scheme
rather than a desktop security solution. The same application encapsulation idea is
also implemented by Trigence AE [25] and Meiosys [26] on Linux/Solaris.

To effectively support process migrations from one machine to another, a virtu-
alization layer must be introduced to preserve the consistency of resource naming
scheme before and after the migration. Zap [27] uses private namespaces to pro-
vide processes to be migrated a host-independent virtualized view of the OS on
Linux. It virtualizes process IDs and IPCs by system call interpositions, and vir-
tualizes file systems by chroot system call. Common files are shared and mounted
from an NFS server. Zap also develops techniques similar to NAT to maintain
open connections of networked applications before and after the migration. [28]
uses system call interpositions and file system stacking to further restrict virtual
resources a Zap process can access if it is untrusted. MobiDesk [29] extends the
Zap idea to the server-based computing environment and implements a Linux ter-
minal server where each computing session is separated from other sessions and
can be migrated to other servers to ensure high availability. Since these technolo-
gies are mainly developed to support process migrations, they do not perform file
copy-on-write to protect the host system’s integrity. The current FVM virtualization
does not supports process migration, but we can allow simple cold migration of an
FVM state by moving persistent state changes and restarting FVM processes on a
new host. Process migrations on the Windows platform have been discussed in the
papers of checkpoint facility on NT [30] and vOS [31]. In general, process states
in user space, such as thread context, heap and static data, are easy to capture at
the checkpoint time. However, to restore system states associated with the check-
pointed process on Windows, we need to record system calls before the checkpoint
time and then re-invoke the system calls at the restore time.

Alcatraz [32] implements a one-way isolation idea for safe execution of un-
trusted programs on Linux. Untrusted processes are confined in an isolated en-
vironment with read-access to the host environment, and their write attempts are
redirected into the isolated environment. Alcatraz provides isolated executions by
system call interposition to redirect file modifications made by untrusted processes
to a dedicated area of the host file system, called modification cache. Read opera-
tions from these processes are also modified to incorporate updates in the modifi-
cation cache. A summary of the file modifications are presented to the user on the
termination of a process, and users can decide whether to commit or discard. One
problem with it is its high performance overhead due to its system call intercep-
tion mechanism, which is completely at the user level with a monitoring process.
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Safe Execution Environment (SEE) [33] extends Alcatraz by moving the redirection
logic into OS kernel at the Linux VFS layer. Besides copy-on-write to regular files,
it also supports copy-on-write on directories using a shallow copy operation, which
copies a directory but leaves its directory entries pointing to the original files on
the host. These improvements make its performance overhead to be typically less
than 10%. Moreover, SEE restricts access to device special files, network access,
and IPCs, and designs a systematic approach to resolve conflicts on committing file
modifications. Finally, SUEZ [34] extends SEE on a single host to multiple net-
worked hosts to isolate any effects of client-server applications. All these projects
are very similar to our FVM approach with respect to the motivation and applica-
tion scenarios. However, FVM must take care of various types of name spaces and
communications on the close-source Windows OS. This makes the FVM implemen-
tation more challenging. In addition, FVM provides virtual machines management
with VM states, resource restrictions and VM operations, and its commit opera-
tion is not focusing on detecting conflict but on automatically detecting malicious
behaviors.

GreenBorder [35] creates a special OS-level VM on Windows called a Desktop
DMZ in which internet content is executed but isolated from the host environment.
Web browsers and email client programs run inside the virtual environment. Mal-
ware coming from the web or email attachments only affects the virtualized system
state, and can be easily eliminated as the VM is reset. It also creates another type
of VM called Privacy Zone, where sensitive online transactions can be performed
but isolated from other untrusted environments. A similar idea is implemented in
the security wrappers for Windows NT/2000 [36], which virtualizes operations of
MS Office, Outlook and Internet Explorer that violate security rules. This virtu-
alization ensures processes run under their prescribed security policy without the
user’s intervention. Windows Vista also provides a built-in file/registry virtualiza-
tion feature [37]. This feature helps to resolve the potential conflict between Vista’s
user account control mechanism and legacy applications that require an adminis-
trator’s privilege. When such an application try to update protected directory, the
updates will be redirected to a virtualized directory. These systems and features
minimize the potential damages caused by malware execution without interfering
with legitimate application behaviors, and therefore are more user-friendly than be-
havior blocking approaches. Compared with these systems, FVM is a more general
OS-level virtualization technique that can execute arbitrary Windows applications
within multiple isolated Windows environments, without conflicts among applica-
tion instances.

MojoPac [38] and Ceedo [39] allows users to carry virtual application environ-
ments in portable storage devices, such as an iPod or a USB drive. Different from
Moka5 [40] or VMware ACE [41], their virtualization layers are at the user level



15

and do not require a VMM to be installed on the connected host machine. They
provide their own shell, file manager and window desktop with similar look-and-
feel to a standard Windows OS. Application files and configurations are installed
within the portable devices. When users plug the portable device into a PC running
Windows OS, they can launch any applications carried by the device, or launch
applications on the connected machine with customized settings carried by the de-
vice. The executions of the carried application are confined in the virtual file system
and registry inside the device. The overall architecture is similar to Thinstall and
SoftGrid, except that applications are pre-loaded into the portable device instead
of being downloaded from a streaming server. The U3 smart drive [42] and the U3
specification enables a similar virtual application environment on a USB flash drive,
but the USB drive is specially formatted and applications may need to be modified
to be fully U3 compliant.

2.2.3 File System Versioning
File system versioning [43, 44] allows multiple versions of a file to coexist and

thus provides the flexibility to undo changes to the file system. Intrusion recovery
systems [45, 46] use extensive file system logging and versioning to automatically
repair a compromised network file server. Transactional file system [47] groups file
updates into a transaction and hides all the updates from applications outside the
transaction until they are committed. Many of the versioning file systems use block-
based versioning rather than file-based versioning to avoid duplication of common
file blocks. The FVM virtualization is similar to versioning of various system re-
sources plus visibility control. Each VM starts with a base version of files and
registries stored on the host and gets a separate new version at the first write at-
tempt. In particular, to generate a new version of file into a VM, the FVM’s file
virtualization module performs copy-on-write on the entire file instead of affected
file blocks. This approach introduces some additional overhead on both disk space
and execution time, but simplifies the implementations in handling multiplexing
logic and memory-mapped file I/O.

2.2.4 Compatibility Layer
Finally, many techniques try to create a compatibility layer at the OS-level to

emulate the execution of binaries for other OSes. Examples of such projects include
Wine [48] and its descendants, which emulates Windows applications on a Unix-
like OS, and Interix (Microsoft Windows Services for UNIX) [49], which emulates
a Unix environment subsystem on a Windows NT kernel. These techniques imple-
ments all the system libraries that translates system calls of the emulated application
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into system calls supported by the host OS, and maps name spaces of the emulated
application to completely different name spaces of host OS.

2.3 Interception Technique on Windows
To insert additional code in order to modify the program logic, we can either

modify and recompile the program’s source code, or intercept the program’s exe-
cution at certain OS interfaces. When an application’s source code is not available,
especially on the Windows environment, interception is main technique to change
the application’s default behavior. Interceptions can be at the user level or the kernel
level. We discuss common interception techniques on Windows OS in the follow-
ing.

2.3.1 User-level Interception
The Windows OS provides a set of standard APIs, based on which user pro-

cesses request OS services. These APIs are implemented in system libraries such
as kernel32.dll and user32.dll, and are the most common interception points at the
user level. To intercept a target API function, we can either modify the API func-
tion’s address saved within some tables of the calling process, or rewrite the API
function’s instruction bytes in the target DLL in memory.

A Win32 executable uses Portable Executable (PE) file format to organize its
code sections, data sections and other control data structures. In memory, its image
content follows the same PE format. The process usually relies on a special data
structure called Import Address Table (IAT) to make an API call in a DLL. The
IAT is a table of function addresses, which are filled by the OS loader when the
corresponding DLL is loaded. With the filled IAT, calling an API function is an
indirect call to the function address saved in an IAT entry. Therefore, intercepting
an API function can be achieved by locating the IAT in the process address space
and modifying the function address in the IAT to our own function(how and when
to modify the IAT will be explained later).

Although IAT modification can intercept API functions in most cases, it cannot
intercept functions if they are not called via an IAT entry. For example, an applica-
tion program can specify the delay-load option at compile time so the target DLL
is not loaded until a function in the DLL is called. Another example is that a pro-
cess can explicitly load a DLL and obtain the address of an API function in that
DLL. In both examples, the process uses LoadLibrary() and GetProcAddress() API
without accessing any IAT entry. Moreover, it is also possible for an unfriendly
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process to use some hard-coded addresses to call certain API functions directly, be-
cause Windows loads some system DLLs at the same base address per Windows
version. Therefore, a more reliable interception approach is to directly rewrite the
API function’s instruction bytes in the target DLL in memory.

The Detours [50] library replaces the first few instructions of the target API
function with an unconditional jump to the user-provided function, called a detour
function. The replaced instructions from the target function are saved in a tram-
poline function, with an unconditional jump to the rest code of the target function.
Therefore, a process’s call to a target API is routed to the detour function, which
can call its trampoline function when it requests service from the original target API
function. This code rewriting approach is more effective than the IAT modification
approach because the target function is always intercepted no matter how the pro-
cess makes the function call. However, it also has a drawback: the contents of the
physical page to be modified in the target DLL are copied to a new physical page
due to copy-on-write protections, thus processes sharing the same target DLLs con-
sume more physical memory, especially when many functions in different DLLs
are to be intercepted. Rewriting the DLL file on disk statically avoids this problem,
but it compromises the integrity of OS system files and is often prohibited by the
OS. For example, the Windows File Protection (WFP) prevents user processes from
overwriting Windows system files.

In order to modify the IAT or rewrite the target function’s instructions, a user-
provided DLL is injected into the target process’s address space. When this DLL is
being loaded, its initialization routine is invoked to perform the IAT modification or
function rewriting. This DLL provides the intercepting function that has the same
function signature as the target function and is called when the target function is
called. There are several ways to inject a user-provided DLL into the address space
of another process, as follows:

• Add the DLL name (e.g. hook.dll) into the Windows AppInit DLLs registry
key. The hook.dll will be loaded automatically into all the processes that are
loading user32.dll.

• Use the SetWindowsHookEx API to register a message handler for windows in
other processes. This message handler is provided by a DLL (e.g. hook.dll),
which will be loaded automatically into all the processes with access to that
type of window messages.

• Create a remote thread running in the address space of specified target pro-
cess. The thread simply invokes the LoadLibrary API to load a DLL (e.g.
hook.dll), whose name is written to the target process memory in advance.
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• Create a process in the suspended state and then modify its IAT to include the
DLL name before resuming the process’s execution.

• Create a process in the suspended state, and then replace the instructions at the
program entry point with the instructions of LoadLibrary. Once the process
resumes execution, the specified DLL is loaded and the original instructions
at the program entry point are restored.

Another user-land interception technique is to statically modify the Export Ad-
dress Table (EAT) of the target DLL file. The EAT of a DLL contains the addresses
of its exported API functions. When a process is loading a DLL, the OS loader fills
the corresponding IAT entry of the process according to the DLL’s EAT. All the
addresses saved in the EAT are relative to the DLL’s image base. Therefore, we can
modify the DLL file by appending an additional code section containing the inter-
cepting function, and replacing the relative address of the target function in the EAT
with the address of the intercepting function. In this way, the OS loader fills the cor-
responding IAT entry with the address of the intercepting function. The problem
with this approach is still the integrity issue of system files, and the compatibility
issue across all Windows versions.

DLL forwarding technique renames a target DLL to be intercepted, and con-
structs a proxy DLL with the same name and the same set of exported functions as
the target DLL. Only interesting API functions to be intercepted are handled by the
proxy DLL code. All the other exported functions in the proxy DLL simply use an
unconditional jump to invoke the corresponding functions in the target DLL. Be-
cause system DLLs usually export a large number of functions, it is time-consuming
to manually input the source code for the proxy DLL. Therefore, an automatic tool
should be used to traverse the target DLL’s EAT to generate a template of the source
code that compiles to the proxy DLL.

A Layered Service Provider (LSP) [51] is a DLL that uses Windows socket
APIs to insert itself into the TCP/IP stack. It intercepts all the Winsock commands
before they are processed by the underlying Winsock library, such as binding to
certain network address. LSP is a documented interception technique that has been
used for content filtering, QoS and other applications.

User-level interceptions can be at higher level than the system libraries. For ex-
ample, window subclassing is used to intercept the message handling of specified
application window, and application-specific plug-ins are used to customize appli-
cation behavior, such as extension handlers for Windows Explorer, Browser Helper
Objects for Internet Explorer, etc. These techniques are out of the scope of this
report.
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Part of the FVM virtualization layer is at the user level through IAT modifica-
tions that provides virtualizations to window message, window visibility and dae-
mon processes, and a LSP DLL that virtualizes the network interface. Details about
the user-level virtualization layer is presented in Chapter 3.

2.3.2 Kernel-level Interception
A process makes system calls to request OS services, and the system calls may

deliver the user requests to certain device drivers, which process the requests and
return the result to the caller. Therefore, we can intercept system calls or driver
functions to change the system behavior. Compared with user-land interceptions,
interception at kernel level is more reliable because it cannot be bypassed by user
application processes.

To make a system call on Windows NT kernel, a process loads the EAX register
with the ID of the system call and executes INT 2E or SysEnter instruction. This
causes the calling thread to transit to kernel mode and to execute the system call
dispatch routine. The despatch routine locates the address of the system call stored
in the Windows system call table, called System Service Dispatch Table (SSDT),
and then starts execution of the system call. The SSDT stores the addresses of all
the Windows system calls, indexed by the system call ID. To intercept a system
call, we replace the system call’s SSDT entry with the address of our own func-
tion, which can call the original system call function plus pre and post-processing.
There are three issues with modification of the SSDT. First, the SSDT resides in
kernel memory, so a kernel driver is usually loaded in order to modify the SSDT.
Second, the SSDT is write-protected in Windows XP and later version of Windows,
so methods to turn off the page protection on the fly should be used, such as mod-
ifying the write protect (WP) bit in the CR0 control register. Third, the SSDT is
prevented from modification on more recent Windows kernel on x64 platform. The
prevention mechanism is called PatchGuard [52], which periodically verifies the
integrity of critical kernel data structures and sensitive register contents. To modify
the SSDT on such kernels, PatchGuard needs to be bypassed in advance. Although
system call interception is often used in security-related projects, Microsoft does
not support it due to integrity concerns, especially on newer Windows OS. In prac-
tise, alternative approaches such as filter drivers for different system components
are more promising in the long run.

A system call usually delivers the user request to the responsible device drivers
in the format of I/O Request Packet (IRP), which are processed by the IRP handler
functions of each related driver. The addresses of all the handler functions provided
by a driver are also stored in a function table. Therefore, we can locate the function
table and replace certain function addresses in the table in the same way as the
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SSDT modification. Another interception approach is based on the layered driver
architecture, under which a middle layer driver can be inserted into the original
driver chain to modify the behavior of its lower-level driver. This middle layer
driver is called a filter driver, which observes all the I/O requests routed to the
driver below it. The filter driver provides all the IRP functions supported by its
underlying driver. Before an I/O request is passed to the underlying driver, the
filter driver’s handler routine is invoked first. It passes the modified request to the
underlying driver or even processes it without passing the request down. The most
frequently-used filter driver is the file system filter driver, which is used for file
content encrytion/compression/scannning. Filter drivers for Windows registry is
supported by Windows XP and newer version of Windows via RegistryCallback.

The FVM virtualization layer is mainly a kernel driver that intercepts Windows
NT system calls manipulating file, Windows registry and kernel objects. In newer
version of Windows OS, part of the virtualization layer can also be implemented
using filter drivers.



Chapter 3

Feather-weight Virtual Machine

3.1 System Overview
An execution environment can be described as a set of user-mode processes

that access the underlying hardware through multiple interfaces at different lev-
els: system library, OS system call, device driver and I/O instruction. To support
multiple execution environments, or VMs, on one physical machine without inter-
ference with each other, one of these interfaces should be modified so that the same
access requests from different VMs can be mapped or converted to requests to dif-
ferent OS objects. The modified interface, called virtualization layer, determines
the VM’s scalability, runtime performance and degree of isolation. In general, when
the virtualization layer is close to the hardware, a VM can be completely isolated
from other VMs, but its scalability and performance suffer. This is because many
system resources are duplicated without sharing, and because some hardware has
to be emulated.

The Feather-weight Virtual Machine (FVM) project is designed to facilitate
sharing (OS kernel, file system, hardware) in order to improve the scalability and
runtime performance, while still maintaining a certain degree of isolation. The vir-
tualization layer in FVM is at the OS’s system call interface, as shown in Figure 3.1.
All the VMs share the host OS’s kernel-mode components, such as OS kernel and
device driver. Moreover, critical system daemons and the file system image are
also shared by default. Each new VM starts with exactly the same operating en-
vironment as the current host OS. Therefore, both the startup delay and the initial
resource requirement for a VM are minimized. The virtualization is performed by
renaming system call arguments instead of device emulation or instruction inter-
pretation. Therefore an application’s runtime performance in a VM may also be
improved.

21
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Figure 3.1: The FVM virtualization layer supports multiple VMs by namespace
virtualization and copy-on-write. The FVM management console allows users to
perform FVM operations on specified VM.

The FVM virtualization layer observes all the access requests from user-mode
processes. As a result, it can redirect access to the same OS object from different
VMs to requests against different versions of the same OS object. FVM uses names-
pace virtualization and resource copy-on-write to implement the access redirection
and isolation between different VMs. When a new VM (say vm1) is created, it
shares all the system resources (disk files, system configurations, etc) with the host
machine. Later on, when different types of requests from a process p in the VM
pass through the FVM layer, these requests can be redirected as follows:

• If p attempts to create a new file /a/b, the FVM layer redirects the request
to create a new file vm1/a/b.

• If p attempts to open an existing file /a/b, the FVM layer redirects the re-
quest to open a file vm1/a/b. If file vm1/a/b exists, no further processing
is made in the FVM layer; otherwise, the FVM layer checks the access flag
of the open request. If the access is “open for read”, the request will go to the
original file /a/b; if it is “open for write”, the FVM layer copies /a/b to
vm1/a/b, and then redirects the request to open vm1/a/b again.

• If p attempts to read or write an existing file, the FVM layer passes the request
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through without additional processing, because read/write request is based on
a file handle, which is returned by a previous open request. If the open request
has been redirected, all the subsequent read/write requests on the same file
handle are redirected inherently.

• If p attempts to delete an existing file /a/b, the FVM layer only marks the
file as deleted by adding its name /a/b to a per-VM log. The file /a/b is not
deleted from the file system.

• If p attempts to make any types of interprocess communications, such as
sending window message, to another local process, the FVM layer examines
the two processes and blocks the communications unless they are running in
the same VM.

• If p attempts to access and communicate with certain devices, the FVM layer
denied the access unless it is permitted by a policy.

We only list a few access requests in the above example to explain the basic
redirection mechanisms implemented in the FVM layer. There are many other ac-
cess requests the FVM layer must intercept to guarantee the consistency of the
application semantic in a VM. In addition, there are various types of OS objects on
Windows, such as file, registries and kernel objects. A fundamental issue with FVM
design is to identify all these objects that should be virtualized in order to isolate
different VMs. First, file and registry represent persistent data and system settings
and thus must be virtualized. Second, Windows applications can use kernel objects
and window managing mechanisms to synchronize with each other. For example,
many application programs (e.g. Microsoft Office) allow only one instance of itself
to be started on the same machine at one time. In other words, no matter how many
files the program are opening simultaneously, there is at most one process of the
program on the same machine. This instance restriction can be implemented by
checking the existence of certain kernel objects, which share a single namespace;
or by broadcasting window message to other existing windows, which make replies
to declare its existence. Therefore, to break the instance restriction and enable mul-
tiple instances of the same application program to run independently of each other
in different VMs, kernel objects must be virtualized, and many Windows-specific
IPCs such as window message should be confined. Third, a process can access and
communicate with some devices, whose device drivers are responsible for handling
requests from the process. To prevent the drivers from modifying system state out-
side of the VM, device access should be confined based on policies. Fourth, many
network server applications (e.g. Apache) start as daemon processes, which are
managed by a special system daemon called Service Control Manager. To enable
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multiple instances of the same network server application to run in different VMs,
the daemon process management mechanism should be virtualized. Finally, the
network address should be virtualized as well so each server application instance
can start successfully by listening on the same port but at a different IP address.

Once all these types of OS objects and IPCs are virtualized, the FVM virtual-
ization layer is able to allow multiple isolated VMs to coexist on the same physical
machine. To prevent a VM from exhausting the whole system’s resource, each VM
is accompanied with a set of resource restriction policies, such as disk space and
CPU time. To manage different VM configurations or to migrate a VM to the same
or different physical machine, a user-level FVM management console is provided.
This management console keeps track of the FVM states, associates a process with
a particular VM, and performs various FVM operations. Finally, the FVM virtu-
alization layer must protect itself against malicious processes that attempt to break
out of the VM resource boundary.

3.2 FVM States
Under the FVM architecture, the state of a VM is defined as follows:

• A virtual machine identifier,

• A set of processes running within the VM,

• A root file directory containing file updates by the VM,

• A root registry key containing registry updates by the VM,

• A root object directory containing object updates by the VM,

• A log of files and registry entries deleted/renamed by the VM,

• An IP address,

• A set of policies regarding to resource quota, device access and network ac-
cess.

The virtual machine identifier is a unique number representing a VM. It is allo-
cated when the VM is created. A VM is always started with a root process. When a
descendant processes of the root process starts to run, it is associated with the same
VM context.

Three types of directories are created at the VM creation time. They are the
private workspace containing copy-on-write version of files, registries and objects
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of the VM. These workspace directories themselves are created within the host
directory namespace but only visible to the VM itself. They are named by the VM
identifier, so different VMs have different workspace directories.

Deleting or renaming a file by a VM process should not affect the file on the
host environment. Therefore, a per-VM log is introduced containing the names of
all the deleted/renamed files as well as registries. When the VM is stopped, the log
data is dumped into a file as part of the VM state.

An IP address can be assigned to a VM when the VM is created. Having a
separate IP address allows multiple instances of the same network server application
to coexist on the same host machine. Each of the applications runs in a different
VM and binds to different IP address.

To prevent Denial-Of-Service in a VM due to the execution of unfriendly pro-
cesses, a set of policies regarding to resource quota and network access can be
specified when a VM is created. These policies set limits to the system resource the
VM processes can consume, such as disk space, physical memory, etc. To prevent
processes in a VM from accessing devices to affect the host environment, a device
access policy can also be specified. A process in a VM cannot access a device
unless the device is included in the device access policy.

When a VM is stopped, all of its processes are terminated and its persistent
states are kept on the disk. A VM’s persistent states include the VM ID, the
workspace directories for files and registries, the delete log, the IP address and
the VM policy. Because FVM currently does not support process checkpoint and
restart, the running state of all the processes in a VM, including kernel objects
opened by those processes, are not maintained when a VM is stopped.

Essentially, a VM is a virtual execution environment that tightly depends on the
host system but does not alter the host system’s state. The execution environment
of a VM consists of the depending host environment, the FVM virtualization layer
and the VM state. The file system image visible to a VM should be the union of
the VM’s workspace directory and the current host directory, minus the files whose
name appear in the VM’s delete log. The same semantic applies to a VM’s registry
and kernel object images. Consequently, when a process in the VM queries its cur-
rent execution environment, e.g. using Dir command to list a directory’s entries, the
FVM virtualization layer is responsible for producing a complete and correct image
of its environment. Another fact with the VM’s execution environment is that some
updates to the host environment can be immediately reflected in the VM environ-
ment. This is one advantage of OS-level virtualization: when OS and application
security patches are applied to the host environment, all of the VMs on the same
host can also be patched because the patched system files and libraries are usually
shared by the host and the VMs.
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3.3 FVM Operations
The FVM management console provides a comprehensive set of operations for

users to manipulate VMs. A VM’s state information is maintained inside the FVM
virtualization layer. Therefore, to support operations that update a VM’s state, the
management console typically use DeviceIoControl API to send commands to and
exchange data with the FVM layer. The FVM operations are defined as follows:

CreateVM creates a new VM whose initial state is identical to the host environ-
ment at the time of creation. The new VM starts a VM shell process, which is a file
browser similar to the Windows explorer process. A unique VM identifier is allo-
cated to the VM, and its private workspace directories for file, registry and objects
are created. Users can start arbitrary processes under the VM shell by clicking a file
icon or typing a command. The ID of the VM shell process is associated with the
VM ID. All the descendant processes of the VM shell are associated with the same
VM.

CopyVM creates a new VM whose initial state is duplicated from another VM.
The copy operation copies the VM’s private workspace directories and state files. If
a remote physical machine has all the environment settings (files, registries, etc) of
the current host environment, users can use this operation to copy a stopped VM to
the remote machine and start the VM there, thus enabling cold migration of a VM.

ConfigureVM creates a new VM with an initial state that users can configure
explicitly. This operation allows one to limit the visibility of a new VM to part of
the host environment. This can prevent untrusted processes from accessing sensitive
information on the host environment. For example, one can initiate a new VM
configuration that restricts the VM’s read access to a protected directory on the
host.

StartVM starts a stopped VM, initializes it with the saved VM state and launches
a VM shell process.

StopVM terminates all the active processes running in a VM, saves the VM’s
state on the disk and renders it inactive.

SuspendVM suspends threads of all the processes in a VM. In addition, for each
process in the VM, it sets the working set size to zero and makes all windows of the
process invisible. As a result, all the processes in the suspended VM stop utilizing
CPU and physical memory, and the system resource held by the VM is minimized.
However, the VM is not really suspended. Its process states are not checkpointed
and cannot be live-migrated to a different environment. Process checkpoint and
restart will be available in the future work. This special “suspend” implementation
simply makes the VM appear to be suspended.

ResumeVM is the reverse operation of SuspendVM. It resumes threads of all
the processes in a VM, restores the working set size of each process in the VM to
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normal and renders all the process windows visible.
DeleteVM deletes a VM and its state completely. All the files and registries in

its private workspace are deleted.
CommitVM merges file and registry state of a stopped VM to the host machine

and then deletes the VM. It overwrites files and registries on the host environment
with files and registries in the VM’s private workspace, and deletes files and reg-
istries on the host environment that are in the VM’s delete log. The effect of this
operation is that the processes in the VM have been running on the host environ-
ment directly. This can help users to try out untrusted application programs in a
VM before install them permanently on the host environment.

There are three issues with the commit operation. First, committing a VM’s
state cannot be completed successfully if the target file or registry on the host en-
vironment is being accessed by other processes. To resolve this access conflict, the
FVM management console finds out which process in which VM is locking the file
or registry, and gives users suggestions on either terminate that process or wait for
some time before committing again. Second, committing a VM’s state may not be
completed correctly if the target file or registry on the host have been modified by
a host process since the VM’s private copy is created. If the target file or registry
is overwritten by the VM’s private copy, a host process depending on the file or
registry may suffer from inconsistency. FVM should compare the creation time of
the private copy with the last modified time of the host copy, and leave the commit
decision to the user if the creation time is earlier than the last modified time.

The third issue with the commit operation is that committing a VM’s state may
not be safe, especially when untrusted or vulnerable processes have been running in
the VM. Although users can manually examine the VM’s private workspace or scan
the VM’s private workspace with anti-virus tools, it is still difficult to be sure that
the private workspace contains no malware, especially zero-day malware that has
not been recognized before. To facilitate the user’s decision on whether to commit
or not, the FVM management console monitors selected file and registry locations,
such as all the Auto-Start Extensibility Points (ASEP) [53]. ASEP is a set of OS and
application configurations that can be modified to enable auto-start of programs
without explicit user invocation. It is the common targets of infection for most mal-
ware. If the FVM management console detects suspicious states in FVM’s private
workspace, e.g. a few updates to the ASEP, it disables the commit operation unless
users explicitly request and confirm the commit. To identify a VM’s process behav-
iors more completely in order to provide more accurate commit decisions, FVM
also supports logging of security-related system calls made by processes running in
a VM, and analyzing the system call logs to derive a process’s high-level behaviors,
thus providing a useful execution environment for malware analysis. We will dis-
cuss the design and implementation of system call logging and analysis under FVM
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in Section 3.6.

3.4 Design of Virtualization Layer
The FVM virtualization layer is responsible for mapping access requests in a

VM’s namespace to access requests in the host namespace. The virtualization layer
must be comprehensive: it should virtualize all types of OS objects to ensure the
isolation between VMs. The virtualization layer must also be efficient: it should
minimize the runtime overhead due to access redirections. Finally, the virtualization
layer must be secure: it should not be bypassed or subverted by processes running
in VMs.

3.4.1 Software Architecture
The FVM virtualization layer is inserted at the OS system call interface by sys-

tem call interceptions. The Windows system calls are exposed to user applications
through a set of user-level Dynamic Link Libraries(DLL). We prefer kernel-level
interceptions because it is possible for a user process to bypass the system library
interface and to make system calls directly. Filter drivers are another candidate to
place the virtualization logic. However, existing filter driver interfaces are only for
file access, registry access or network access, respectively. There are other types of
OS objects that should be virtualized, such as kernel objects and window manage-
ment. As a result, we choose the system call interface as the virtualization layer.

On NT-based Windows, basic OS services, such as file I/O, registry access and
kernel object operation, are implemented in NT kernel. These system calls are well
documented in [54], and their addresses are stored in the System Service Dispatch
Table(SSDT). To virtualize file I/O, registry access and kernel object operation,
the FVM virtualization layer can be implemented as a kernel driver that modifies
SSDT to intercept these system calls. However, some OS services cannot be in-
tercepted easily through SSDT modifications. These OS services include network
access, window management and daemon process management. Network access on
Windows goes through the Windows socket library, which invokes device-control
system call with undocumented parameters. Window management are supported
by system calls implemented in win32k.sys. At the time of FVM development,
these system calls have no clear documentation. The daemon process management
is completely under the Win32 subsystem using Win32 APIs. Each daemon con-
trol API can invoke a few NT system calls, which are difficult to correlate together.
As a result, the part of FVM virtualization layer that intercepts network access,
window management and daemon process management was moved to user-level
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Figure 3.2: The current prototype of FVM virtualization layer consists of a kernel-
mode component and a user-mode component.

interception. Network access is intercepted with a Layered Service Provider (LSP)
DLL. Window management and daemon process management are intercepted with
a DLL that modifies the Import Address Table (IAT) of processes in a VM. The cur-
rent prototype of FVM virtualization layer consists of a kernel-mode component
and a user-mode component, as shown in Figure 3.2.

3.4.2 Renaming of System Call Argument
On a system without multiple execution environments, processes accesses files,

registries or other OS objects using names that are under global namespaces. When
two processes use the same name to access the same type of OS objects, they are
essentially accessing the same OS object. However, when a process in a VM ac-
cesses an OS object, the name it uses is under the VM’s private namespace. To
redirect the access to the real OS object, the FVM virtualization layer renames the
name argument passed to a system call to the name under the global namespace.

There are mainly three types of OS objects a process can access: files, registries
and kernel objects. Files refer to both regular files and device files; registries are
the Windows configuration database containing the system-wide and per-user set-
tings; kernel objects refer to all other named objects in memory that is used for
synchronization and communication, such as mutant, semaphore, event, etc. All
these types of objects are organized by a tree-style structure. To provide a full ex-
ecution environment, each VM should have its private files, registries and kernel
objects. Therefore, when a VM is created, three workspace directories are created
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Type Naming Style Workspace
Directory

Original
Access

Re-directed Access

File dir→file|dir e:\fvm\VMId\ c:\f.doc e:\fvm\VMId\c\f.doc
Registry key→value|key reg\fvm\VMId\ reg\user\app reg\fvm\VMId\reg\user\app

Kernel
Object

dir→obj|dir obj\fvm\VMId\ mutex0 obj\fvm\VMId\mutex0

Table 3.1: Example of renaming system call argument. VMId is a string converted
from the unique VM identifier.

on the host OS to contain the VM’s private files, registries and kernel objects, re-
spectively. When a process in a VM makes a system call, the FVM virtualization
layer renames the name argument to a name under the workspace directories. Table
1 lists the three types of OS Objects on Windows, their naming styles, examples of
the three workspace directories and their renaming approaches.

A process typically use two forms of system calls to access files, registries and
other OS objects:

• Name-based system calls, e.g. syscall (IN name, OUT handle, · · ·). Given
an object name, these system calls look up the object and return a handle
representing the object.

• Handle-based system calls, e.g. syscall (IN handle, · · ·). These system calls
operate the object represented by the given handle. The handle is obtained
from the result of previous name-based system calls.

Because the target object of handle-based system calls is determined by the ob-
ject handle, which is determined by the name of previous name-based system calls,
the FVM virtualization layer only needs to intercept name-based system calls in or-
der to redirect the access. However, implicitly renaming the system call argument
has the potential risk of violating the application’s execution semantic. One exam-
ple is that a process may query the object name with a handle-based system call.
If the handle is the result of a name-based system call whose argument has been
renamed, the process gets a name under the host namespace and thus detects incon-
sistent behaviors. To make up for the renaming fix and guarantee the execution’s
consistency, some handle-based system calls must be intercepted as well to return
the correct information.
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3.4.3 Copy-On-Write
Renaming the system call argument to access a VM’s private workspace is the

first step to isolate access requests from a VM. The next question is how to redirect
the access to the real OS object. A simple method is to duplicate all the files and
registries from the host environment to the VM’s workspace directories when the
VM is created. However, this method requires large amount of disk space and
memory for each VM in order to contain the VM’s private file and registry copies,
thus wasting system resources and compromising the scalability. Because most files
and registry entries are not written during the normal execution of the processes in
a VM, the FVM virtualization layer choose to share all the files, registry entries and
other objects among all VMs, and to perform copy-on-write when a VM updates its
file or registry state.

We use file object as an example to explain the copy-on-write approach in the
FVM virtualization layer. After a VM is created, its private workspace directories
are empty. A process’s access to an existing file is always passed to the file on
the host environment without renaming until the first “open-for-write” access to the
file. Whenever a process in the VM attempts to open the file for write access, the
FVM virtualization layer makes a copy of the file under the VM’s file workspace
directory. From then on, all types of access to this file from processes in the VM
are redirected to the workspace copy. If a process in the VM attempts to create
a new file, the new file is always created under the VM’s private workspace. As a
result, updates to file objects (as well as other types of objects) by a VM never affect
other VMs or the host environment, and therefore most OS objects can be shared
by multiple VMs and the host environment without compromising the system’s
integrity.

When the FVM virtualization layer copies an OS object on the host environment
to a VM’s private workspace, it does not change the security context of the thread
making the system call. As a result, if the object’s access control setting does not
allow the thread to read the object, the copy operation will fail. Since no private
copy of the object is created, FVM denied the “open-for-write” access. This copy-
ing strategy usually does not incur problems because it is uncommon that an object
is writable but not readable. Even when such access control settings do exist on
certain objects, the FVM virtualization layer can still invoke kernel-mode routines
to copy the objects directly, bypassing security validations.

A side effect of copy-on-write is that a VM’s files, registry entries and other OS
objects are distributed under two locations: the host environment and the VM’s pri-
vate workspace. When a process in a VM enumerates OS objects under a particular
directory, it should see a union view from the two locations. As a result, the system
call used to make directory queries should be intercepted to return the union object
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set.

3.4.4 Communication Confinement
Through namespace virtualization and copy-on-write, the FVM virtualization

layer guarantees that all the write operations made by processes in a VM are con-
fined within the VM’s workspace. However, a process can communicate with other
processes or even the OS kernel. If the communications are not confined properly,
processes outside of the VM or the OS kernel can modify other VMs or the host en-
vironment as the result of the communication, thus breaking the isolation property
of a VM.

A user process generally has two forms of communication channels: inter-
process communications (IPC) with other processes and device I/O controls with
device drivers. IPC on Windows OS is usually implemented by using synchroniza-
tion object, shared memory, named pipe, socket and window message. To confine
all the IPCs of a process in a VM under the scope of the VM, we need to block
IPCs between the process and any other processes on the host or other VMs. For
IPCs through named kernel object, FVM renames the name argument of system
calls that create or open the object. Because the renaming pattern is based on the
VM’s unique ID, processes running in different VMs cannot establish connections
based on a common name. Thus their communications are blocked. We will discuss
various IPC mechanisms and their confinement issues in detail in Section 3.5.3 to
3.5.5.

However, confining IPCs of a process should not break its desirable execution
semantic. There are many system daemon processes running on the host environ-
ment since the system boots, such as the Windows RPC server daemon. From the
above design, the IPC between a process in a VM and those daemon processes
should be blocked. This can obviously disturb the process’s execution if the pro-
cess relies on those daemon processes to proceed. We have designed a virtualization
approach to install certain daemon processes directly in a VM and executes them
in the VM’s context. This is discussed in Section 3.5.6. For other system daemons
that cannot be duplicated in a VM, we need to identify the communication objects
they create, and to allow these objects to be accessible by processes in all VMs.

When a process in a VM uses device I/O control to communicate with a device
driver, FVM is facing the same problem as it is communicating with system dae-
mons. A conservative approach for the isolation purpose is to disable I/O controls
to all the devices except the FVM device, if the I/O controls are from a process in a
VM. A more practical approach is to provide a device access policy that grants nec-
essary device accesses in order not to disrupt the process’s execution. For example,
to grant the network access to the Intercept Explorer in a VM, the \Device\TCP,
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\Device\IP and \Device\Afd should be accessible at least by the Internet Explorer.

3.5 Implementation of Virtualization Components
The FVM virtualization layer supports virtualization of file, Windows registry,

kernel object, network subsystem and daemon process, and confinement of inter-
process communications. In the following sections, we describe implementation of
each of the components, and implementation of resource constraint in a VM.

3.5.1 File Virtualization
A normal file on standard Windows file system has two names by default: a

regular name (long name) and a DOS 8.3 name (short name). The DOS 8.3 name is
preserved merely for backward compatibility. It allows a maximum of 8 characters
for the file name portion and a maximum of 3 characters for the file extension
portion. Certain application processes occasionally access a file or directory with
the DOS 8.3 style of file path. Before renaming the file path argument of name-
based system calls, the FVM virtualization layer checks each portion of the file path,
and converts the portion to a long name if it is a DOS 8.3 name. This guarantees
that the FVM’s renaming and copy-on-write operate on a uniform file path without
introducing inconsistencies.

FVM performs copy-on-write when a process in a VM attempts to write a file
on the host environment. Please note that the FVM’s copy approach is not really
the copy-on-write, because a file is copied to the VM’s workspace when a process
in the VM attempts to open the file for write access. It is not exactly at the write
time. Consequently, if a process in the VM opens a file for write but eventually
never writes into it, this copy operation is wasted. In addition, because the copy
operation happens on a file open request, the copy operation has to copy the whole
file content. If a process opens a large file but only writes a few bytes into it, this
copy approach is definitely inefficient. In fact, intercepting file write system call to
copy only affected file blocks can avoid copying unnecessary file bytes.

The reasons we use “copy-on-open-for-write” in the FVM design are: (1) The
FVM virtualization layer should be as simple as possible, since it adds additional
instructions to frequently-used OS system calls. A complicated virtualization layer
leads to poor runtime performance. Implementing “copy-on-write” requires inter-
cepting the file write system call, which needs to maintain a mapping between file
handles, and to maintain metadata about file block updates. This also brings more
overhead on subsequent read system calls against this file. In contrast, file copying
at the open time only happens the first time when this file is opened for write. Once
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the file is copied to the VM’s workspace, the FVM layer adds neglectable overhead
for all future accesses to the file. (2) The FVM virtualization layer should support
memory-mapped file I/O, in which case file contents are mapped into a process ad-
dress space, and no file read or write system calls are made by the process to read
or write the file data. Since intercepting file write system call does not help, the file
copying has to be made at the open time.

A normal file is copied to a VM’s workspace directory when it is “opened for
write”. Here the “open-for-write” access not only includes data modification, at-
tribute update and file delete, but also include “open-for-read-exclusively”. If a
process in a VM opens a file for read but does not allow sharing access, subse-
quent access to the same file fails until the opened file is closed. Because we can
start multiple VMs concurrently, exclusive access to a file shared by multiple VMs
should be prevented.

A directory is copied to a VM’s workspace directory when it is opened for
write, e.g. attribute update. In addition, when any file entry under a directory
is to be created or modified for the first time, the directory is also copied to the
workspace. In another words, a private file copy in a VM’s workspace is stored
under the same directory structure as the the copy on the host environment. Copying
a directory only creates a directory using the renamed file path. Because file entries
under the directory are not copied, subsequent directory query system calls against
this directory are intercepted to return the “union” result from the two directory
branches in the workspace and on the host. A process queries a directory’s entries
by making one or more directory query system calls (NtQueryDirectoryFile). How
many times the system call is made on a particular directory query depends on the
number of file entries, required file name mask and the system call’s output buffer
size. The basic algorithm to generate the “union” result for a directory query is as
follows:

1. A directory query system call against a private directory is executed. If it
is invoked the first time on the directory, a mapping between the directory’s
handle and the file name mask is saved. If it is completed successfully, keep
the returned file names in an ordered list associated with the directory’s han-
dle and return to the caller. If no directory entries are returned, go to Step
2.

2. Open the corresponding base directory on the host, and save a mapping be-
tween handles of the VM private directory and the host directory. Execute the
directory query system call on the host directory handle with the previously
saved file name mask. If it is completed successfully, traverse the returned file
name and remove entries that appear in the delete log (a per-VM log keeping
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file names the VM has attempted to delete or rename), and entries that have
been returned by previous directory queries in Step 1. Return to the caller.

3. Once Step 2. has been reached, subsequent directory query system calls on
the private directory handle are executed on the corresponding host directory
handle. Again, if it is completed successfully, remove the duplicated file
entries or entries in the delete log.

4. When a process finishes the directory query on the private directory han-
dle, it closes the directory handle with NtClose system call. FVM intercepts
NtClose, closes the corresponding host directory handle and frees all the al-
located buffers.

When a normal file or directory is copied to a VM’s workspace, the file attributes
and security settings are also set according to the original file on the host.

One question resulted from the copy-on-write approach is that, when a process
attempts to open a file, how do we know whether this file should be accessed from
the host environment, or a private copy has been made and the file should be ac-
cessed from the VM’s private workspace. A straightforward method is to keep all
the names (including hard links, if any) of the files that have been copied in the
kernel memory. Another method is to always check the existence of the file in the
VM’s workspace directory. If the file exists in the workspace, then the file is ac-
cessed from the workspace; otherwise the file may be accessed from the host. This
method keeps away from large kernel memory overhead. However, it needs an ad-
ditional system call to check the existence of a file. For I/O intensive applications
that read large number of files without ever writing to them, such as a compiler
or compression program, most of the file existence checking system call will miss,
and FVM will have to redirect the file access back to the host. This can lead to
large performance overhead. We implemented both methods in the current FVM
virtualization layer. We use a binary tree to keep the file names under a VM’s pri-
vate workspace in memory. Each node in the binary tree stores a directory or file
name. The right child of a node stores the name of its next sibling under the same
parent directory, and the left child of a node stores the name of its first child. The
nodes under the same directory level are sorted by the file name. We will give the
performance evaluation to the above approaches in Chapter 4.

In addition to the above basic designs, the FVM virtualization layer needs to
deal with a few issues specifically on NTFS file system. NTFS is the standard file
system on Windows NT and later versions of Windows. It provides a few features
based on normal files and directories. Although these features are rarely used by
current Win32 applications, the FVM virtualization layer still needs to take care of



36

them when performing copy-on-write in order to ensure file operation’s consistency.
These NTFS features are discussed as follows.

NTFS provides alternate data streams (ADS) and allows a file to be associated
with additional named data streams besides its main data stream. This feature is
also called file system forks. Every alternate data stream is named with the pattern
of “[file name]:[stream name]”. Alternate data streams are essentially a special type
of file attributes with variable sizes. When a process in a VM opens a file or one
of its alternate data stream for write, the FVM virtualization layer queries the file’s
stream information (FILE STREAM INFORMATION), and then copies the entire
file to the VM’s workspace, including the main stream and all the alternate streams.

Hard links are directory entries for a file. A file can have more than one hard
links. When FVM copies a file named by one hard link from the host environment
to a VM’s workspace, other hard links of the file should also be created under the
VM’s workspace. Otherwise, a subsequent read access to the file using a different
hard link will be directed to the file on the host, causing inconsistent result. In
NTFS, the hard links of a file are stored in the file’s metadata as additional file
names, which are similar to the DOS 8.3 file name of the file. To support hard links
in FVM, we need to query all the hard links of a file (FILE LINK INFORMATION)
when the file is copied, rename all the hard links to the names under the VM’s
workspace, and set up the renamed hard links on the private copy of the file.

Volume mount points, directory junctions and symbolic links are implemented
by the same technique in NTFS, called reparse points, which allows a file system
name lookup to be handled specially. A volume mount point is an empty directory
under which a file system volume is attached. A directory junction is an empty
directory pointing to another directory. A symbolic link is a file containing a sym-
bolic path pointing to another file. Symbolic links are not supported on Windows
versions before Windows Vista. When the FVM copies a file that is a symbolic
link, the file system name lookup resolves the path of the target file. Thus a copy
of the link target file is created into the VM’s workspace, and the original target file
is not touched. When a volume mount point or a directory junction is copied into
a VM’s workspace, information about the target of the mount point or junction is
not propagated onto the new private directory of the VM. This is because when a
directory read cannot be satisfied by the VM’s private directory, the directory read
will go to the directory on the host environment, which still carries the mount point
or junction information. As a result, volume mount points, directory junctions and
symbolic links need no special handling in the FVM copy-on-write scheme.
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3.5.2 Windows Registry Virtualization
The Windows registry is a database where the operating system settings and per-

user settings are stored. Registry data is saved statically in a set of disk files, and
is loaded into the kernel memory at the time of system boots and user logins. The
registry is organized with a tree-style structure that is comparable to a disk drive. It
consists of a few root keys, which are comparable to directories. Under each key,
there are other keys (called subkeys) and values, which are comparable to files. Each
registry value stores one type of data, such as a string, a number, a buffer of binary
data, etc. The registry key and registry value follow the same naming convention
as the file system. Since a process often modifies the registry settings during its
execution, the registry access must be virtualized to isolate registry changes by
processes in different VMs.

FVM uses the same approach as file virtualization to virtualize the registry ac-
cess. The FVM virtualization layer intercepts name-based system calls on registry
key access, and renames the registry key name argument to a key name under the
VM’s workspace. A VM’s registry workspace is embedded in the host machine’s
registry. More concretely, the root key of a VM is a subkey under the VM owner’s
per-user registry setting. When a process in a VM creates a new key or opens an
existing key in order to modify certain values, the FVM layer performs copy-on-
write to copy the key into the VM’s workspace. Different from directory copying
in file virtualization, whenever a key is copied, its immediate children (subkeys and
values) are also copied. Please note that the copying is not recursive and stops at
the immediate children of the copied registry key. Because the memory used by all
the immediate children of a key is usually small, this copying approach introduces
neglectable runtime overhead. However, all the immediate subkeys of the created
key copy in the VM’s workspace are dummy keys containing no children. When a
process in the VM accesses these dummy keys later on, the FVM layer populates
them with their immediate children from the host environment. With this copying
approach, it is straightforward for a process in a VM to enumerate entries under a
key in the VM’s workspace, and the cost to perform a union operation that is usually
required by a directory querying is saved.

3.5.3 Kernel Object Virtualization
Processes on the Windows OS are allowed to use certain named objects for inter-

process synchronization and communication. We refer to these named objects as
kernel objects in this paper. There are many different types of kernel objects. The
most frequently-used kernel object types are mutex, semaphore, event and timer.
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Windows keeps all the kernel objects in kernel memory. Similar to file and reg-
istry, kernel objects are also organized with a tree-style structure: there are object
containers, called object directory, which contains child objects and other object
sub-directories. By default, all these objects are created under the global names-
pace on a physical machine, and are shared by all the processes. Processes usually
operate on kernel objects in the following way: the first process creates an object
with an object name, and other processes can later on open the same object with
the object name to test the object state. This mechanism allows multiple processes
to synchronize or communicate with each other according to this object’s state.
When two processes are running in different VMs, however, such synchronizations
or communications should not happen because these processes should appear like
running on different physical machines.

Accesses to kernel objects start with opening the object with a specified name.
Therefore, the FVM virtualization layer intercepts name-based system calls that
create or open a named object, and renames the object name argument. As a re-
sult, a process in a VM can only create or open kernel objects under the VM’s
object workspace. Similar to registry virtualization, FVM creates a sub-object di-
rectory in the object directory tree of the host environment as the root object direc-
tory of the VM’s workspace. Through this renaming approach, FVM resolves the
single-instance-restriction problem under FVM for many Windows applications, as
mentioned in Section 3.1, and enables a difference process instance of the same
application program in each of the VMs.

As discussed in Section 3.4.4, the above renaming approach may occasionally
disturb the execution of a process in a VM, when the process must synchronize or
communicate with a system daemon process via certain kernel objects the system
daemon creates. These kernel objects are residing on the host environment, be-
cause the daemon processes creating them are not running within the VM. To avoid
breaking the execution of the process, the FVM layer must be aware of these kernel
objects and stop renaming in the system calls made by the process to access these
objects. One clue FVM uses to identify the names of these objects comes from the
fact that more and more Windows applications are terminal-service-enabled. The
Windows terminal server supports separation of kernel object namespace inherently
in order to execute application programs in a terminal server environment. Applica-
tions running in a terminal session have their private object space for kernel objects.
When such applications request accesses to global objects created by system dae-
mons, the convention is for them to use an object name prefixed by “Global” so the
object name lookup is performed in the global namespace instead of the terminal
session namespace. Accordingly, in system calls accessing a kernel object with the
“Global” prefix, FVM does not rename the object name and directs the access to
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the host environment. This approach ensures the desired behavior for many ap-
plications under FVM. Essentially, this is a policy-based solution and is a tradeoff
between the desired semantic of an application and the isolation of the VM.

3.5.4 Network Subsystem Virtualization
The purpose of network subsystem virtualization under FVM is to enable cer-

tain network applications, such a web server, to execute in one or multiple VMs
without interference with each other. A network server application starts by creat-
ing a socket and making a bind() call to specify the local IP address and local port
number for the socket. In order to have multiple instances of the same network
server application to start successfully in multiple VMs, the network interface must
be virtualized because the OS does not allow more than one process to bind to the
same IP address and port number pair.

The FVM management console allows users to specify a different IP address for
each VM when the VM is created, and then uses IP aliasing to assign the VM’s IP
address to the physical network interface: when the VM is started, its IP address is
added to the host machine’s physical network interface as an IP alias; when the VM
is stopped, its IP address is removed from the physical network interface. Similarly,
a DNS record can also be added for each VM so a remote client can use the domain
name to communicate with the VM.

However, IP aliasing itself does not segregate network packets destined to dif-
ferent VMs. For example, when port 80 is not active in a VM, a packet destined to
port 80 of this VM can still be delivered to a server process that listens on port 80
at a wildcard IP address(INADDR ANY) in another VM. To resolve this problem,
FVM intercepts the socket bind call made by a process running in a VM, and re-
places the original IP address argument in the bind call with the VM’s IP address.
The original IP address argument in a bind call can be a wildcard IP address, an
explicit IP address, or an IP address in network 127.0.0.0/8 such as 127.0.0.1. Re-
gardless of which of the three types the IP address belongs to, FVM simply makes
the network application bind to the IP address of the VM. In this way, processes in
one VM can neither receive packets destined to other VMs nor spoof other VM’s
IP address when sending packets. Essentially, this is still a renaming approach sim-
ilar to file virtualization but under the address family namespace. To allow client
processes running in the same VM to communicate with the network server pro-
cess, the connect and sendto calls are also intercepted. If the original IP address
argument in these calls are the IP address of the physical machine or the loopback
address, it is replaced with the VM’s IP address. The FVM virtualization layer uses
a “Layered Service Provider (LSP)” DLL to intercept these socket library calls.
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Currently FVM does not intercept the bind call made by a server process run-
ning on the host machine. If such a process binds its socket to a port with a wild-
card IP address (INADDR ANY), the operating system will not allow this port to be
reused by any other processes, even if they are running in a VM and binding to a
different IP address. A simple solution to this problem is to apply the special socket
option SO REUSEADDR to all the network server processes running in VMs.

3.5.5 IPC Confinement
A process can use many interprocess communication mechanisms to commu-

nicate with other processes. To isolate one VM from other VMs, FVM requires
that a process running in one VM not to communicate with processes running in
other VMs or in the host environment, unless it needs to communicate with a dae-
mon process on the host environment, or to communicate with another physical
machine.

Common IPC mechanisms on Windows include named pipe, mailslot, synchro-
nization object, shared memory, local procedure call, Windows socket, etc. In addi-
tion, there are a few Windows-specific IPC mechanisms, such as window message
and clipboard. All of these IPC mechanisms and their confinement techniques un-
der FVM are listed in Table 3.2.

A named pipe or a mailslot is a pseudofile in memory. A process can access
named pipes or mailslots with a specified name in the same way as normal file ac-
cess. Therefore, the FVM layer uses the same system call argument renaming ap-
proach as file virtualization to virtualize named pipes and mailslots. Virtualization
of synchronization objects and network address have been discussed in previous
two sections.

Shared memory on Windows is implemented with section objects. A section
object is always backed by certain files: when it connects to a normal file, it allows
memory-mapped file I/O; when it connects to an executable, it allows the image
loader to map the executable image in a copy-on-write scheme; when it connects
to the paging file, it provides shared memory. A process accesses shared mem-
ory by opening the corresponding section object with the object name. Therefore,
the renaming approach still applies here to isolate shared memory by processes in
different VMs. Similarly, the local procedure call, or local RPC, is implemented
with port objects, which is a named object and supports high-speed message pass-
ing. Renaming the port object access at the system call interface confines the LPC
within the same VM.

A process running in one VM should not be able to share the address space of
processes in other VMs. Usually, a process has a private address space that is pro-
tected from being accessed by other processes. However, there are two approaches
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Common IPC IPC Confinement Approaches under FVM FVM level
Named pipe Rename the named pipe when creating it or con-

necting to it.
Kernel

Mailslot Rename the mailslot when creating it or connect-
ing to it.

Kernel

Mutex Rename the mutex when creating it or opening it. Kernel
Semaphore Rename the semaphore when creating it or open-

ing it.
Kernel

Event Rename the event when creating it or opening it. Kernel
Timer Rename the timer when creating it or opening it. Kernel
Shared memory Rename the section object when creating it or

opening it.
Kernel

Local Procedure
Call

Rename the LPC port object when creating it or
connecting to it.

Kernel

Socket Assign an IP address to a VM by IP aliasing and
associate the VM’s IP address with a socket.

User (LSP)

Window class Make a window class associated with a VM pro-
cess invisible to other VMs.

User

Window message Block window message when the sender and the
receiver are in different VMs.

User

Clipboard Store the VM ID when writing to clipboard and
check the VM ID when reading from clipboard.

User

User-level hooks Prohibit setting system-wide hooks or writing to
other process’s address space.

User

Table 3.2: Common inter-process synchronization and communication, and their
confinement approaches under FVM.
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to bypass this protection. One is to use shared memory; the other is to create a
shared data section in certain executable file, such as a program image or a DLL.
Such a data section is shared among all the processes that map the executable file
containing the data section. When a process modifies the data section, the standard
copy-on-write protection does not occur. Instead, every process that maps the data
section can see the change. To prevent address space sharing among processes in
different VMs, FVM must understand the two approaches and disable them. We
have discussed how to isolate shared memory in the last paragraph. For the other
approach, when an executable file on the host environment is to be mapped into
the address space of a process in a VM, FVM has to check the header of each data
section of the executable. If any data section is marked as shared, the executable
file should be copied into the VM’s file workspace. In this way, the sharing only
applies to processes in this particular VM.

Window message allows a process to send various types of messages to any
window on the same desktop, including windows of different processes. An exam-
ple of window message is the Dynamic Data Exchange (DDE) message, which is
a broadcast message sent by the Windows shell in order to check whether a pro-
cess instance of certain applications is running. Under the FVM design, window
messages should be restricted in the scope of each VM. Therefore, FVM intercepts
all the window message APIs. Before a message can be sent, FVM obtains the
sender’s process ID and the receiver’s window handle. It then queries the VM ID
of the receiver process and compares it with the VM ID of the sender process. The
message is dropped unless the sender and receiver processes are running in the same
VM or in the host environment. Window message confinement, plus kernel object
virtualization, enables many applications such as Microsoft Office to start a separate
process instance in each VM.

The visibility of windows whose processes run in a VM should be restricted
because processes in one VM are not supposed to see windows of processes in
other VMs. Each window is created with a static window name and a static class
name. A process can enumerate all the windows on the desktop and check their
window name or class name. This allows a process to quickly find out whether
certain process instances with a particular window name or class name are running.
FVM intercepts the window enumeration API, and fails the enumeration result if
the enumerated window and the calling process belong to different VMs. Window
visibility confinement, plus kernel object virtualization, enables more applications
such as Adobe Acrobat Reader to start a separate instance in each VM. To make
users recognize that a process is running in a particular VM, the title of any window
belonging to this process is appended with the VM ID.

The Windows clipboard enables a process to share data in various format with
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all other processes. The copy-and-paste and drag-and-drop GUI operations are im-
plemented by the clipboard. On the Windows OS, all processes associated with the
same window station share a common clipboard, and can write or read data with a
set of clipboard APIs. For isolation purpose, processes in one VM should not share
clipboard with processes in other VMs. Therefore, the FVM virtualization layer
intercepts clipboard read and write APIs. Whenever a process in a VM writes data
into the clipboard, FVM records the VM ID in a shared memory area to associate
the VM with the current clipboard data. Later on, when processes in other VMs try
to read the clipboard data, FVM compares the process’s VM ID with the recorded
VM ID in the shared memory area, and rejects the clipboard access unless the two
VM IDs are equal. In addition to this simple isolation, FVM can further completely
separate the clipboard for different VMs by intercepting the same clipboard access
APIs and maintaining the raw clipboard data by itself with shared memory. More
concretely, when a process in a VM attempts to write data into the clipboard, FVM
redirects the data to shared memory maintained by FVM itself instead of the origi-
nal Windows clipboard. As a result, such data is not accessible by other processes
with a different VM ID.

Finally, a process running in one VM should not be able to modify the address
space of processes in other VMs, using hooks or direct modifications. A hook is a
point during message handling where a callback is invoked by the system to monitor
or modify the message traffic. A process is allowed to install a system-wide hook
for certain types of messages. The hook usually provides the callback routine in
a DLL, which is loaded by the system into all the processes with access to that
type of messages. When the DLL is being loaded into a process, it can modify the
process’s address space. In addition to hooks, a privileged process is allowed to
open a process and directly modify the process’s address space. To prevent hooks
and direct modifications from within a VM, FVM ensures that one process in a VM
cannot open other processes’ address space unless they are in the same VM. With
the help of Windows job object, FVM further restricts the system-wide hook under
the scope of the VM where the hook is installed.

3.5.6 Daemon Process Virtualization
A daemon is a process running in the background without interacting with users.

On Windows OS, a daemon process is called a service, and is managed by a system
process called Service Control Manager (SCM). The SCM maintains a database
where names, image paths, and start parameters of all the daemons are stored. In
order to run as a daemon process, a daemon program must use specific Win32 APIs
to register with the SCM and to keep its state running. Users can also install new
daemons by adding the daemon’s name and its program image path into the SCM
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database. To start a daemon process, users must invoke specific Win32 APIs that
request the SCM to create the daemon process.

FVM associates a new non-daemon process with a VM if the process is the de-
scendant of the VM shell process. Different from a non-daemon process, the parent
of a daemon process is always the SCM. The SCM is a critical system process with
tight communications with other OS components, and thus cannot be duplicated in
each VM. Therefore, the FVM layer needs a special mechanism to place a daemon
process in a VM’s context. Meanwhile, all the daemon processes, regardless of
running on the host or in a VM, have to communicate with a single SCM and SCM
database.

The basic technique to place a daemon process in a VM is as follows:

1. Reinstall the daemon in the VM using daemon installation API. The daemon
installation API is intercepted to install the daemon with a different name
containing the VM ID. Moreover, the daemon’s image file is copied to the
VM’s workspace, and its image path to be stored in the SCM database is also
renamed to the path containing the VM’s root directory. For example, if the
daemon named S with a program image path /a/b.exe is to be installed
in a VM (say vm1), the actual daemon’s name and image path added to the
SCM database will be S-vm1 and vm1/a/b.exe, respectively. In addition,
the image file is also copied from /a/b.exe to vm1/a/b.exe. Without
changing the daemon’s name or the image path name in the SCM database,
SCM will not allow multiple daemon processes of the same program to be
installed or started in different VMs.

2. Start the daemon process from the VM using the daemon opening API. This
API takes a daemon’s name as the argument. FVM intercepts this API and
renames the requested daemon name argument from S to S-vm1. The SCM
will then starts the daemon whose name is S-vm1.

3. The kernel-mode FVM layer monitors the creation of every process. Once
FVM detects that a process is to be created by the SCM and its image file is
under a VM’s workspace, such as vm1/a/b.exe, FVM can infer that the
process is a daemon process which should be associated with a VM’s context.
The target VM ID can be obtained from the path of the image file. Then the
ID of the new process is associated with the VM ID, and the daemon process
is placed in the VM.

With the above renaming technique, FVM is able to virtualize a number of dae-
mon processes such as Apache and MySQL. With the help of the network isolation
component, FVM can start one instance of Apache or MySQL server in each of the
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VMs. However, such renaming technique introduces inconsistency for some dae-
mon programs, because the daemon’s original name still exists within some dae-
mon’s program code or certain registry settings. Although renaming the daemon’s
name has no problem at the daemon’s installation time, it can cause inconsistency
that breaks the daemon process at run time. There is no generic solution to resolve
all the inconsistency issues due to renaming a daemon’s name in the SCM database.
Our future goal is to try to emulate the SCM by intercepting and modifying the en-
tire daemon control library. In this way, FVM does not need to rely on the Windows
SCM to support daemon processes in multiple VMs.

3.5.7 Process-VM Association
When a VM is started, there is only one process, the VM shell process associated

with the VM context. All the descendant processes of the VM shell process should
be associated with the same VM. To dynamically maintain a mapping between the
VM ID and a process ID, we register a process creation call-back routine (PsSetCre-
ateProcessNotifyRoutine) through the FVM kernel driver. The call-back routine is
invoked when a process is created but before the process starts execution, receiving
the process ID and its parent process ID. We look up the VM ID associated with
the parent process ID, and then associate the new process ID with the same VM ID
in the kernel. In this way, given an access request, the FVM layer can look up the
requesting process’s VM ID, based on which it renames the system call argument
accordingly. In addition, the FVM layer does sanity checks on a process’s VM ID
and its access request to ensure that a process running in a VM cannot access other
VM’s private workspace for files, registries and kernel objects in any way.

3.5.8 Resource Constraint
FVM allows users to specify certain policies to restrict the system resources

used by a VM, because processes in all VMs are running on the same OS kernel.
Without resource constraint, a malicious process in one VM can consume large
amount of disk space or physical memory, leading to poor performance or even no
access in other VMs and the host environment.

To control the memory usage and scheduling priority of each VM, FVM utilizes
the Windows job object, which is a container of a group of processes. A job object
allows these processes to be managed as a unit. A set of constraint on resource
usage can be set on a job object, which enforces the constraint to every process
associated with the job. The FVM management console associates each new VM
with a job object, and initialize the job attributes with the resource constraint poli-
cies specified by the user. FVM also ensures that all the processes created in the
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VM are associated with the job object. To control the disk space and registry size
of a VM, the FVM management console periodically calculates usage of these re-
sources and compares it with the maximum allowed size. When any type of the
resource usage exceeds its limit, the VM is suspended for inspection by users. Al-
though not implemented, FVM can further restrict the network traffic of a VM to
stop worms or spam generators running in the VM.

The current resource usage constraints on a VM include the following:

• Maximum size of a VM’s private file workspace.

• Maximum size of a VM’s private registry workspace.

• Maximum size of committed memory of all processes in a VM.

• Maximum working set size of each process in a VM.

• Scheduling priority of all processes in a VM.

• Maximum number of concurrent processes in a VM.

Besides resource constraints, a VM’s job object can also prevent processes in
the VM from the following operations:

• Modify the VM’s resource constraint settings.

• Modify system settings of the physical machine, such as screen settings,
icons, fonts, mouse speed, power settings, etc.

• Broadcast window message to windows outside of the VM.

• Install hooks on processes outside of the VM.

• Log off the current session.

• Shut down or restart the physical machine.

3.5.9 System Call Interception
The FVM virtualization layer at the kernel-mode is a kernel driver, which is

installed and loaded by the FVM management console. In contrast, the FVM layer
at the user-mode is a DLL, which is loaded into each process’s address space by
the FVM management console. To guarantee the isolation of processes running in
different VMs, all the access requests from all the processes in VMs must pass the
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FVM layer at any time. In another words, the FVM layer should be in place when
a process in a VM starts execution. The kernel-mode FVM layer always fits this
requirement because the FVM driver is loaded and the system call table is patched
before a VM is created. However, the user-mode FVM layer relies on the IAT
modification in a process’s address space. It must be loaded at the right time: after
all the modules’ IATs of the process have been filled by the OS loader, and before
the execution of the process. Currently FVM intercepts the process creation flow
in the kernel, notifies the FVM management console to modify instructions at the
program entry point, and then forces the process to load the FVM layer after the
IATs’ initialization and before the process execution.

Within an intercepted system call, the FVM layer usually calls the original sys-
tem call function with a renamed argument. This is straightforward in user-level
interception, but when intercepting system calls at the kernel level, it requires spe-
cial handling to the renamed argument: the renamed argument should be stored in
a separate buffer that is allocated from the calling process’s address space (using
ZwAllocateVirtualMemory). It cannot be allocated from kernel memory. This is
because we directly invoke the original system call function, which always checks
the previous processor mode to find out where the system call is invoked: from user
mode or from kernel mode. If it is originated from a user process, it assumes all the
buffers of arguments reside in the user space. The system call function code vali-
dates all the input buffers and fails the request with access violation if it recognizes
a buffer is in the kernel memory.

Table 3.3 lists all the system calls and Win32 APIs intercepted by the FVM
virtualization layer. The interception mechanism in FVM is designed to be exten-
sible so that it can serve as a reusable framework for other projects that require
system call interceptions. Initially the FVM prototype was implemented and tested
on Windows 2000 Professional, Service Pack 4. We have recently ported and tested
FVM on 32-bit Windows XP, and we expect FVM to run on 32-bit Windows Server
2003, and even 32-bit Windows Vista with moderate changes. However, x64-based
Windows kernel for XP, 2003 and Vista utilize PatchGuard [52] to prevent patching
to critical kernel structures, including the system call table. To support virtualiza-
tion on these Windows kernels, FVM needs to either disable the PatchGuard with
unfriendly approaches, or move the virtualization layer to other interface, such as
filter drivers. The current FVM prototype intercepts 40 out of 248 system calls on
Windows 2000/XP and additional 21 Win32 API calls, with around 10,000 lines
of C code in kernel, and an equal amount of user-level C/C++ code. We plan to
open-source most FVM code by the end of this year.
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Category Intercepted System Calls and Win32 APIs by FVM
File NtCreateFile, NtOpenFile, NtQueryDirectoryFile, NtQueryAt-

tributesFile, NtQueryFullAttributesFile, NtQueryInformation-
File, NtQueryVolumeInformationFile, NtSetInformationFile,
NtDeleteFile, NtClose

Registry NtCreateKey, NtOpenKey, NtQueryKey, NtEnumerateKey, Nt-
DeleteKey

Synchronization
Object

NtCreateMutant, NtOpenMutant, NtCreateSemaphore,
NtOpenSemaphore, NtCreateEvent, NtOpenEvent, NtCre-
ateTimer, NtOpenTimer, NtCreateIoCompletion, NtOpenIo-
Completion, NtCreateEventPair, NtOpenEventPair

Special File NtCreateNamedPipeFile, NtCreateMailslotFile, NtCreateFile,
NtOpenFile

Shared Memory NtCreateSection, NtOpenSection
LPC NtCreatePort, NtCreateWaitablePort, NtConnectPort, NtSecure-

ConnectPort
Socket bind, connect, sendto
Device NtCreateFile, NtOpenFile
Window Message SendMessage, SendMessageTimeout, SendNotifyMessage,

SendMessageCallback, PostMessage, PostThreadMessage,
GlobalAddAtom, DdeCreateStringHandle

Window Visibility FindWindow(Ex), EnumWindows
Clipboard GetClipboardData, SetClipboardData
Normal Process NtResumeThread, PsSetCreateProcessNotifyRoutine
Daemon Process CreateService, OpenService, StartServiceCtrlDispatcher, Regis-

terServiceCtrlHandler(Ex), NtResumeThread
FVM Protection NtLoadDriver, NtUnloadDriver, NtCreateFile, NtOpenFile,

NtOpenProcess, NtProtectVirtualMemory

Table 3.3: System calls or Win32 APIs intercepted for virtualization. Functions
whose name starts with “Nt” are NT system calls.
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3.6 System Call Log Analysis for CommitVM
In addition to access redirections and communication confinement, the FVM

layer has the ability to log system calls or API calls to derive high-level behaviors
of processes running in a VM. The logging and analysis modules allow FVM to
monitor untrusted programs in a VM, to recognize the scope of each potential com-
promise by malicious programs, and finally to selectively commit only legitimate
state changes.

3.6.1 Introduction
When processes inside a VM modify files or registry entries, these modifica-

tions are confined under the VM’s workspace. By looking for updates to sensitive
registry and file locations in the VM’s workspace, we can detect if certain pro-
cesses have made potentially malicious changes in the VM environment. When
such changes are found, we discourage users from committing these changes to the
host environment. However, examining permanent state changes confined inside a
VM is not sufficient to detect all the suspicious behaviors or to recognize the exact
scope of the attack due to malware execution. For instance, a mass mailing worm
can simply collect email addresses by reading the Windows address book, and then
send itself to every email address it finds. Because it does not attempt to modify
any permanent state, we cannot detect such behavior by monitoring the VM’s pri-
vate workspace. Moreover, even after we detect a few malicious state changes by
some processes, we cannot find out who they are and what other changes they have
made in the VM’s workspace. To identify all the state changes by suspicious pro-
cesses in a VM in order to provide an accurate selective commit on the VM’s state,
it is necessary to log and analyze system calls made by processes running in a VM.

Log analysis has been widely used in intrusion and anomaly detection, auto-
mated intrusion recovery and dynamic malware analysis. Typically, anomaly de-
tection systems [55, 56, 57] based on system call sequences collect normal behav-
iors of the monitored program by logging system calls it makes at run time. The
system call traces are further separated into multiple sequences with certain length,
thus composing a normal behavior dictionary of the program. With the normal dic-
tionary available, the detection system compares the program’s system call traces
with elements of the dictionary, and flags an anomaly when the number of unknown
system call sequences exceeds a threshold.

The repairable file service [45] is a post-intrusion recovery technology that can
quickly repair compromised network file servers. It logs all file update requests
sent to the network file servers, as well as file-related system calls on each NFS
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client. After an intrusion is detected, it performs contamination analysis that cor-
rectly identifies other processes that may be contaminated, and undoes their file up-
date operations. The Taser intrusion recovery system [46] uses similar approaches
to recover legitimate file system data after an attack occurs. It audits system calls
related to process management, file system and socket, identifies all the tainted file
system objects due to an attack, and finally redoes legitimate operations from a
good file system snapshot.

A few dynamic malware analysis tools execute suspicious code in a safe envi-
ronment, log system calls or API calls, and analyze the call sequences to identify
malicious behaviors. The Norman Sandbox [58] simulates multiple versions of
Windows OS and Win32 libraries to create a faked Windows environment to test
malware. It detects high-level behaviors of malware by analyzing Win32 API call
logs. Similarly, CWSandbox [59] intercepts Win32 API calls of malware samples
executed in a virtual environment to collect the log data such as function call param-
eters, and analyzes the data to generate a detailed behavior report. TTAnalyze [60]
uses Qemu PC emulator to execute untrusted programs because a PC emulator is
more difficult to be detected by malware than virtual machines such as VMware. It
intercepts both Win32 and native NT API calls by a callback routine invoked at the
start of each translation block, which can be the first instruction of an API function.
Differently, SysAnalyzer [61] uses a snapshot-based approach rather than log anal-
ysis to report a binary program’s behavior. It takes snapshot of active processes,
opening ports and sensitive registry entries before and after the execution of a bi-
nary program, and reports the difference between the two snapshots. However, this
approach may not record all the dynamic malware behaviors. The system call log-
ging and analysis modules in FVM can also be used to perform a thorough dynamic
analysis to untrusted programs.

The system call logging and analysis modules in the FVM are designed to de-
rive high-level process behaviors from low-level system call sequences. By com-
paring these high-level behaviors with typical malware behaviors, we can conclude
whether any processes in a VM are potentially malicious. Therefore, when users
run certain network applications, such as web browsers or email clients, inside a
VM, they can accurately identify benign processes and their permanent changes to
the VM. These state changes are definitely legitimate and thus can be committed
to the host environment. Other state changes are kept inside the VM and may be
deleted. We will describe the design and implementation in the following sections.
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3.6.2 Design Overview
Typical malware behaviors include copying itself to startup folders or system

directories, injecting itself to legitimate processes, terminating security-related pro-
cesses, adding an entry to auto-start extensibility points in the registry to execute
itself automatically, collecting email addresses for mass mailing, and etc. These
operations must be performed by calling Win32 APIs or NT native APIs, which
in turn invoke NT system calls to complete the tasks. Therefore, we can log these
API calls or NT system calls made by processes running in a VM. There are a
number of existing logging tools on Windows, such as Strace for NT [62] that logs
system calls, API monitor [63] that logs API calls, and the VTrace tool [64] that
logs both. Both the API call logging and the system call logging have their ad-
vantages and disadvantages in supporting the log analyzer to recognize high-level
behaviors. Logging system calls only needs to intercept a small number of system
call functions, because the set of Windows API calls is much larger than the set of
underlying NT system calls. A single operation such as creating a process can be
accomplished by various API calls, all of which are built on a single system call.
In addition, logging system calls is more reliable because malicious programs can
directly invoke system calls without going through any API call interface. On the
other hand, logging API calls often makes the log analyzer easier to recognize op-
erations on certain OS components implemented by the Win32 subsystem, such as
the Win32 services and remote registries. One API call on these components is of-
ten accomplished by a sequence of system calls whose high-level behaviors are not
easy to be extracted. In the current FVM prototype, we implement logging within
the FVM virtualization layer, which is mainly at the OS system call interface.

The log data generated by the FVM layer consists of API call or system call logs
of multiple processes running in a VM. It may also come from different sources,
such as the system call log and the network event log. Such log data is processed
by the log analyzer in the following four steps, as shown in Figure 3.3.

1. Preprocessor. The preprocessor decomposes the log data of a VM into a set
of sub-logs, each of which is associated with a process running in the VM. If
the log data comes from existing logging tools, it rewrites each log entry to a
common format. If the log data comes from multiple log files, it still needs
to correlate log entries in all the log files. The output of this step is a set of
formatted per-process log files, each of which is composed of function calls
with key input/output arguments.

2. Dependency analyzer. The dependency analyzer walks through each log and
decomposes it into a set of function call sequences. A function call is related
to other function calls in a sequence through data dependency between their



52

input/output arguments. An example of the data dependency is a ReadFile
API followed by a WriteFile API, where the latter API’s input buffer address
and the number of bytes to write match the former API’s output buffer and
the number of bytes that have been read. Under this condition, the two API
calls are related together in a sequence, which may indicate the file copying
behavior. However, sometimes it is not obvious that the output argument of
a function call is used as an input argument in another function call, because
the output has been transformed (e.g. copied to another buffer and then en-
crypted) before being passed to another function call as an input. In this case,
additional taint analysis procedures are required to relate these two function
calls. This problem is not addressed in our current prototype.

3. Function normalizer. The function normalizer converts each function call in
the sequence into a normalized function call, according to a mapping stored
in a configuration file. Because sometimes there are more than one API calls
that can perform the same operation, without this step, the behavior analyzer
has to understand all these API combinations just to identify one behavior.
The function normalizer also removes unimportant function calls in a se-
quence, such as the file open or close function calls. This step simplifies the
task of behavior analyzer when comparing the function call sequences with
behavior templates, especially when the logged function calls are high-level
API calls.

4. Behavior analyzer. The behavior analyzer parses the normalized call se-
quences of each process, and compares the sequences and root input argu-
ments with behavior templates stored in a configuration file. Definitions of
the behavior templates are mainly empirical based on the behaviors of known
malware [65]. Whenever a match is found, the behavior analyzer outputs the
corresponding behavior to the analysis report.

When a process being analyzed exhibits a number of suspicious behaviors, FVM
will classify this process as a malicious process. All the file and registry updates by
the process are treated as malicious. Moreover, we can also perform a contamina-
tion analysis [45] based on the inter-process dependencies in the original function
call logs to recognize other processes contaminated by the process, and prevent
their state changes from being committed to the host environment.

3.6.3 System Call Logger in FVM
As described in Section 3.4.1, the FVM virtualization layer consists of a kernel-

mode component and a user-mode component. The kernel-mode component logs
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Figure 3.3: The FVM log analyzer consists of four components: preprocessor,
dependency analyzer, function normalizer and behavior analyzer. The four compo-
nents process log data sequentially and output high-level behaviors of tested mal-
ware.



54

Category Additional Logged System Calls and Win32 APIs by FVM
File NtReadFile, NtWriteFile
Memory-mapped File NtMapViewOfSection
Registry NtSetValueKey, NtQueryValueKey, NtDeleteValueKey
Address Space NtWriteVirtualMemory
Socket send, recv

Table 3.4: Additional system calls and Win32 APIs intercepted by FVM. These
function calls are intercepted to provide log data only. Functions whose name starts
with “Nt” are NT system calls.

selected NT system calls and their arguments, and the user-mode component logs
a few network API calls and their arguments with a layered service provider DLL.
The current system call logger in FVM logs 19 NT system calls and 3 Win32 API
calls, which include a subset of function calls shown in Table 3.3, and a few newly-
intercepted function calls, as shown in Table 3.4.

We decide which function calls to log by observing malware’s typical behavior.
For example, malicious code often attempts to copy itself to other executables. The
file copy operation is usually implemented by opening the source file, creating the
destination file, reading the source file into a buffer and then writing the same buffer
to the destination file. Alternatively, the file copy operation can also be implemented
using memory-mapped file I/O, which maps the file into the process address space
and duplicates the file content directly to the destination file. To correctly recognize
such behaviors, we need to intercept NtReadFile and NtWriteFile for the explicit
file I/O interface, and to intercept NtMapViewOfSection for the memory-mapped
file I/O interface.

The logged data for each function call includes a time stamp represented by
a high-resolution performance counter, the process id, the thread id, the function
call id, the return value, and the input/output arguments. A system call or API
call can have a number of input and output arguments, and only certain arguments
are necessary to be logged for behavior recognition. We classify the function call
arguments to be logged into the following two types:

1. Identity arguments, which are the target of a function call or a function call
sequence, such as a file name, a registry key name, a process id, etc. These ar-
guments are logged to allow the analyzer to recognize a process’s operations
on sensitive targets.

2. Dependency arguments, which are certain abstraction of the target of a func-
tion call, such as a file handle, a registry key handle, a process handle, an
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I/O buffer (address and size), etc. These arguments are logged to allow the
analyzer to correlate function calls into a function call sequence representing
a high-level behavior.

Logging only the identity arguments and the dependency arguments separate
the dependency analyzer component from detailed function call semantics.

Once we have collected all the necessary information in a function call to be
logged, we append an log entry to a log queue in the memory. For performance
reason, we cannot write the log entry directly into a log file inside an intercepted
function call. Instead, we rely on a worker thread to periodically examine the log
queue and to move available log entries into the log file. In the kernel-mode compo-
nent of the current FVM layer, we use one kernel thread to write all the system call
log entries into a log file shared by all the processes. In the user-mode component of
the FVM layer, we use a separate user thread in each process to write the process’s
network log entries into a per-process log file. Because of the asynchronous writing
to log files, the system call logger introduces negligible performance overhead (1%
to 3%) to the original FVM framework. The log files are explicitly stored in the
host environment and thus are protected from being tampered by malware inside a
VM.

3.6.4 Log Analyzer
As shown in Figure 3.3, the log analyzer processes log data in four steps: pre-

processing, dependency analysis, function normalization and behavior analysis.
The preprocessor operates on the system call log file and the per-process network
log file, merges them according to the high-resolution time stamp of each function
call, and outputs a function call log per process. Each log entry represents one func-
tion call with its input/output arguments and occupies one line in the log file. The
field of input/output arguments in each log entry has the following format:

IN:[argument] [argument] ... OUT:[argument] [argument] ..., where each ar-
gument is represented as: [type]:[field]?[field]... Currently we consider three types
of arguments: a name (N), an identifier (I) and a buffer (B). Table 3.5 shows a few
examples of logged arguments in the log file.

With the formatted per-process log file, the dependency analyzer exploits the
data dependency between the input and output arguments of function calls to dis-
compose the log into function call sequences. There are mainly three types of data
dependencies: (1) handle-based dependency, (2) buffer-based dependency and (3)
content-based dependency. Suppose there are two function calls A and B, then A
depends on B if one of A’s input arguments is a handle that is one of the output
arguments of B, or one of A’s input arguments is a buffer that is within the output
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Function calls Logged arguments Descriptions
NtCreateFile IN:N:c:\abc.txt OUT:I:32 Create a file “c:\abc.txt” and re-

turn its handle 32
NtReadFile IN:I:32 OUT:B:17c3b8?1024 Read 1024 bytes from a file with

handle 32 into a buffer starting at
17c3b8

send IN:I:44 B:17c3b8?1024 OUT: Send 1024 bytes starting at
17c3b8 through a socket 44

NtWriteFile IN:I:48 B:17c3b8?512 OUT: Write 512 bytes starting at
17c3b8 into a file with handle 48

NtOpenProcess IN:I:868 OUT:I:120 Open a process whose ID is 868
and return its handle 120

Table 3.5: Examples of the logged arguments format of five function calls. The I/O
buffer (B) arguments are logged with both the address and number of bytes read or
to write.

buffer argument of B, or the memory content of A’s input buffer is part of the mem-
ory content of one of B’s output buffer. Handle-based dependency can be used to
correlate function calls that operate on the same target (e.g. a file or a registry key)
in one task. Buffer-based and content-based dependency can be used to correlate
function calls that work on some common data (e.g. content of a file being copied).
Buffer-based dependency allows us to recognize two related function calls as long
as they are working on the same buffer, even if the content in the buffer has been
transformed between two function calls, or the second function call works on the
buffer partially. In contrast, content-based dependency allows us to correlate func-
tion calls which work on different buffers with the same content. Therefore, if the
content is copied from the original buffer to a new buffer which is passed to the
second function call, we still can correlate the two calls. Our current system call
logger does not log content in an input or output buffer, and thus we only analyze
the handle-based dependency and buffer-based dependency in our log analyzer.

A log entry contains the information of one function call and its input/output
arguments, and is a string occupying a full line in the log file. The output of the
dependency analyzer is a new log file consisting of function call sequences, each
of which is separated from one another by an empty line in the new file. The
dependency analyzer parses the original log file twice to generate the new log file.
In this first time, the analyzer constructs a linked list of sequence nodes, each of
which points to a set of output arguments of all the function calls belonging to
the same sequence, and a list of file pointers of each function call’s log entry in
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Figure 3.4: An example of function call log entries and the sequence node data
structure used by the dependency analyzer.

the original log file. Once the list of sequence nodes for all the function calls are
generated, the dependency analyzer walks through the list of sequence nodes, reads
appropriate log entries belonging to each function call sequence by moving the
file pointer in the original log file, and then writes the log entries into a new log
file to form separated function call sequences. Figure 3.4 gives an example of the
sequence node data structures used by the dependency analyzer.

The dependency analyzer generates the list of sequence nodes in the following
ways: given a function call’s log entry in the original log file, we obtain its input
and output arguments, and search its input arguments in the output arguments list of
each existing sequence node. If we find a match between one of the function call’s
input arguments and one output argument associated with a particular sequence, we
associate the function call with this sequence by inserting its log entry’s file pointer
in the original log file into the sequence node’s file pointer list. Moreover, if the
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function call’s input arguments find matched output arguments in more than one
sequence node, we consolidate all the sequence nodes into one sequence node. If
the function call has its own output argument, this argument is also added into the
output arguments list of the container sequence. Expanding the output arguments
list allows us to identify more function calls related to this sequence. If none of
the function call’s input arguments match the output arguments list of any existing
sequences, this function call is treated as the start of a new function call sequence.
We create a new sequence node, initialize its output arguments list and file pointer
list, and then move on to process the next function call’s log entry.

An output argument of a function call sequence should be removed from the
sequence node’s output arguments list when it becomes invalid or has been reused.
For the handle-based dependency, this means an output handle is closed by a func-
tion call. For the buffer-based dependency, this mean an output buffer is reused as
an output argument in a function call. When we meet such function calls during
the analysis, we remove the corresponding output arguments from the output argu-
ments list of the existing sequence. This operation not only reduces the argument
matching overhead, but also avoids the mistake of associating disjunct function call
sequences into one sequence.

After the dependency analysis is completed, a new log file is generated contain-
ing a set of function call sequences. As an optimization, the function normalizer
reduces the number of function calls in each function call sequence by eliminat-
ing log entries of repeated function calls, and replacing dependency arguments of
certain function calls with identity arguments. In general, any function calls un-
necessary for behavior recognition should be removed in the output log file of the
function normalizer. Most Win32 API call or NT system calls operate on certain
handles and rely on the process handle table for name lookup. These handles must
be created through certain Open calls, and destroyed through certain Close calls.
Such Open calls and Close calls do not indicate meaningful application behaviors
and thus can be removed. For example, an OpenFile call followed by multiple
ReadFile calls operating on a file handle can be replaced by one ReadFile call op-
erating on the file name, and a CloseFile call can be simply ignored in the output
file.

The function normalizer also converts different function calls performing sim-
ilar operations to one generic function call, according to a configuration file. This
is especially useful when the log data is composed of Win32 API calls, many of
which can perform similar operations. For example, the Win32 calls ReadFile,
ReadFileEx and LZRead all read file content into a buffer. Therefore, we can use
a generic function name File Read to replace all the occurrences of these function
calls in the log file. In addition, it is possible to normalize function calls that use
different mechanism to perform the same operation, e.g. to normalize function calls
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Figure 3.5: The log analyzer processes the input log file step by step and identifies
one type of copying itself behavior of the analyzed process.
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ReadFile (%ProcImage%, %p, %u)

Behavior template configuration file

WriteFile (%s, %p, %u)

Copy self to %s

[Sequence]

................

[Behavior]

................

Figure 3.6: An example of the behavior template used by the behavior analyzer to
recognize the copying itself behavior.

used for explicit file I/O and memory-mapped I/O to a generic call File Read.
The last step in the log analyzer is to extract the process’s high-level behavior

according to behavior templates in a configuration file, which provides a mapping
from generic function call sequences to the behaviors. For each matched behav-
ior and matched input arguments such as an ASEP registry key, the corresponding
high-level behaviors are output to the analysis report. Certain behaviors correspond
to one function call such as registry modification, while other behaviors correspond
to a sequence of function calls such as file copying. Our current prototype has suc-
cessfully detected a few suspicious behaviors, including copying itself to other ex-
ecutable, modifying the hostfile to redirect network traffic, modifying 9 ASEP reg-
istry locations, accessing the Windows address book, reading a file and sending it to
a remote site, and etc. These behaviors are often exhibited in recently-found mal-
ware, such as Trojan.Qhosts.E, W32.Minera.A, W32.Stemclover [65]. Figure 3.5
shows the changes made by the log analyzer on initial log entries to recognize one
type of copying itself behavior. Figure 3.6 shows part of the related behavior tem-
plate file used by the behavior analyzer. Extending the basic log analyzer framework
to recognize more high-level behaviors of a process is one of our future work.

3.7 Limitations of FVM

3.7.1 Architectural Limitations
Under the FVM architecture, all the VMs share the same operating system ker-

nel with the virtualization layer at the OS system call interface. Therefore, FVM
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must restrict access to the OS kernel from untrusted processes in a VM. Without
this restriction, a process in a VM can subvert the FVM layer to break the VM’s
isolation, or compromise other kernel components to corrupt other VMs and the
host environment. There are mainly two approaches for a process to make changes
to kernel memory: (1) loading or unloading a kernel driver; (2) writing to physical
memory by accessing \Device\PhysicalMemory. To protect the FVM layer and to
ensure a VM’s isolation, FVM denies the request of loading or unloading kernel
drivers or mapping physical memory from a process in a VM. This restriction may
conflict with the desired behavior of certain applications running under FVM if they
require kernel memory access.

Similarly, since device drivers and some system daemons are shared by all the
VMs, device access and inter-process communication with these system daemons
are also restricted. This is necessary to guarantee that a VM’s state is isolated from
other VMs or the host environment. Since there are many legitimate reasons for a
process to access device, such as connecting to the network or setting up a volume
mount point, FVM allows users to specify a list of devices that are allowed to ac-
cess. Other devices that are not in the list are denied to access. Although FVM has
virtualized daemon process management to start certain daemon processes in every
VM, some daemon processes still need to be shared by multiple VMs. These dae-
mons are inappropriate or difficult to be started in each VM, either because they are
a critical component of system booting, or because they have close dependencies
on some kernel drivers. Therefore, a VM’s IPC to these daemons should be enabled
sometimes to allow processes in the VM to execute properly. Ideally, FVM should
have a virtualization component at the interface of every device and every system
daemon. Each of the components is able to redirect access requests originated from
a VM to that VM’s workspace. However, this model requires understanding each
underlying protocol in detail and therefore is not a generic solution. Essentially, the
communication confinement problem is an inherent limitation of the OS-level virtu-
alization methodology. To reduce resource requirement and to improve scalability,
OS-level virtualization allows as many OS components to be shared as possible.
Unfortunately, there is no generic way to construct a virtualization layer that covers
all types of interfaces, especially the customized device/IPC interfaces. For inter-
faces that has no virtualization available, access requests to these interfaces should
be confined with a tradeoff between the VM’s isolation and the application’s func-
tionality.

One application of FVM is to isolate the execution of untrusted or vulnerable
programs from the host environment. With the copy-on-write approach, processes
in a VM have read access to the host environment, but their write access is confined
in the VM’s workspace with resource constraint policies. As a result, the VM en-
vironment prevents data corruption and service denial, but does not prevent data
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theft. However, we can configure a VM’s initial environment as a subset of the
host environment, and make certain directories containing confidential information
invisible in the VM. In this way, processes running in the VM are not able to ac-
cess confidential information on the host environment, thus preventing data theft as
well.

3.7.2 Implementation Limitations
The FVM virtualization layer intercepts system calls, checks the system call ar-

gument, renames the argument if necessary, and finally invokes the original system
call. As explained in Section 3.5.9, the renamed argument is stored in a buffer allo-
cated from the calling process’s address space. Therefore, the possibility exists that
the renamed argument is modified again by other threads of the same process be-
fore the original system call accesses the buffer. For example, a malicious process
may launches multiple threads to scan its own address space. If one thread detects a
buffer with a path name that somehow contains a VM identifier, it can infer that this
path name is likely to be a renamed one by the FVM layer, and then quickly rename
it back to the original path name before the original system call accesses the buffer.
In this way, it is possible for a malicious process to break the VM’s isolation and to
modify the state outside of the VM. To prevent such attacks, the FVM layer sets the
page protection to read-only on the buffer immediately after the renamed argument
is written to the buffer. Moreover, FVM intercepts the system call to change page
protection (NtProtectVirtualMemory) and prevents a process in a VM from modi-
fying the page protection of these buffers. The buffers holding the renamed system
call argument are freed after the original system call returns to the FVM layer.

The ability to detect a VM environment by a user process is another concern.
Under the current renaming approach in FVM, a process can detect if it is running
in a VM by keeping creating next-level directories from any directory. The NTFS
file system supports up to around 32,000 characters for a full file or directory path.
If the path length of a file to be created exceeds the limit, the file creation system call
fails. When a process in a VM attempts to create files, the files are actually created
under the VM’s root directory, which is a sub-directory of the host root directory.
In a VM environment, the file creation fails if the path length of a file to be created
plus the path length of the VM’s root directory exceeds the character limit. As a
result, a process can keep creating next-level directories to approach near 32,000
characters in the file path, and then check the file creation result to decide whether
it is running on a host environment or in a VM. It can alternatively using similar
methods on registry key or kernel object directories to detect a VM environment.
If the process detecting a VM environment is malicious, it can temporarily hold off
its malicious operations when running in a VM. Therefore, users may incorrectly
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commit such a downloaded malicious program to the host environment. To resolve
this vulnerability, the FVM layer checks the path length of a file, directory, registry
key or kennel object before passing the renamed path to the original system call. If
the sum of the path length and the VM’s root path length exceeds the limit, FVM
renames the path in a different way and creates the file or other objects in a separate
directory immediately under the VM’s root directory, ensuring that the renamed
path length does not exceed the limit. FVM also needs to maintain a mapping
between the original path and the new path with a configuration file.

Finally, part of the current FVM layer is still at the user-level by intercepting
Win32 APIs. User-level interception can be bypassed by user processes. Although
the FVM layer can verify the integrity of certain structures in a process address
space, such as the IAT of the process, the code section of the FVM DLL and the
code sections of other system libraries, a program can use assembly code to di-
rectly make a system call, without going through any Win32 APIs. Consequently,
intercepting the corresponding kernel-level system call interface should be a more
secure solution.



Chapter 4

Evaluation of FVM

A key design goal of FVM is efficient resource sharing among VMs so as to
minimize VM start-up/shut-down cost and scale to a larger number of concurrent
VM instances. However, the resource sharing design should not compromise isola-
tions among VMs. In this chapter, we evaluate the strength of isolations FVM can
achieve, and measure the FVM’s performance overhead and scalability.

4.1 Isolation Testing
To verify that the FVM layer can indeed isolate processes in a VM from the

host environment, we start a VM and run a set of programs in the VM. Then we
stop and delete the VM. Ideally, after the VM is deleted, all the file and registry
modification by processes in the VM should be discarded, and there should be no
state changes on the host environment. We use a snapshot tool to detect any state
changes between when the VM is started and when the VM is deleted.

Because most malware comes to a user’s desktop through web browsers, such
as the Internet Explorer (IE), we choose to run IE in a VM to automatically browse
a number of web sites, especially untrusted web sites. All the downloaded contents,
such as images, Java script files, ActiveX controls and registry settings should be
confined within the VM’s workspace and discarded as the VM is deleted. In this
way, even if malware has infiltrated the VM through browser vulnerabilities, con-
figuration errors or user’s ignorance, the integrity of the host environment is still
preserved. To drive the IE to browse the Web automatically, we use a Web crawler
to scan a set of URLs. For each processed URL, the Web crawler launches IE to
render the web page. This automatic web browsing mechanism is similar to the Mi-
crosoft Strider HoneyMonkey [66], which automates the IE to mimic human web

64
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browsing in a virtual machine. The purpose of Strider HoneyMonkey is to iden-
tify and analyze malicious web sites that exploit browser vulnerabilities to install
malware.

The Web crawler we use in the isolation testing is an open-source web site
copier called WinHTTrack [67], which can scan a number of URLs recursively and
mirror the scanned sites within a local directory. We modifies the WinHTTrack to
launch the IE on every URL to be processed. The crawler waits for 10 seconds
after the IE process is created. It then terminates the IE process and goes to the
next URL without saving the page to the local machine. The crawler terminates
an IE process gracefully by sending the WM CLOSE window message to all the
windows associated with the IE process. Since the WinHTTrack is running in a
VM, all the IE instances it launches are running in the same VM. We collect URLs
of 237 untrusted web sites from McAfee’s SiteAdvisor and use them as the seeds
of crawling. The IE we are using is Internet Explorer 6.0, Service Pack 1. To
expose vulnerabilities to malicious web sites, we manually changes the IE’s security
settings in the testing VM to the lowest level, which allows ActiveX controls and
scripts to be executed automatically without a user’s consent. To compare the file
and registry snapshot before creating the VM and after deleting the VM, we use
WhatChanged for Windows [68] from Prism Microsystems, Inc. This tool takes a
snapshot by recording the full path and size of all the files, and all the registry keys
and values in a log file. It can also detect the differences between two snapshots.

After browsing the test web sites for more than five hours, we stopped the
crawler and examined the FVM’s workspace for files and registry entries. Most
of the files created under the VM’s workspace were cached images and script files
downloaded from the web sites. We also found new files and registry settings re-
sulted from installing the “MyWebSearch Toolbar”, which is a toolbar installed into
IE and is rated as spyware by a few spyware removal tools. The new registry set-
tings include new values under the Run key, which allows an executable related
to the “MyWebSearch Toolbar” to be started automatically whenever the machine
starts or a user logs in. Modifications to such registry keys and other Auto-Start
Extensibility Points are typical actions of malware. After we stopped and deleted
the VM, we ran WhatChanged for Windows to detect changes of the current file
and registry settings from the snapshot we made before creating the VM. The re-
sult shows that one file on the host environment is changed during the automatic
browsing in the VM. The file is named “Perflib Perfdata xxx.dat” and is located
under the Windows system directory. We have verified that this file is created by
the Windows performance monitor under certain circumstances, and is not related
to our isolation testing. Even if we do not browse any web sites, the file is still
changed between the moments when the two snapshots are made. Similarly, a few
registry setting changes are verified to be “noise”. Based on the testing result, we
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can conclude that operations in a VM under the FVM architecture can be isolated
from the host environment.

The testing VM is created with the policy that all the device access and IPCs
with processes outside of the VM is blocked, with only one exception: the commu-
nication between the VM and the RPC port mapping daemon process is allowed.
This is necessary for the registration/installation of OLE/ActiveX objects on Win-
dows OS. Without this communication available, users can still browse web sites
using IE, but the ActiveX control features of the web page will be missing. Enabling
this communication can potentially impair the FVM’s isolation. We have examined
the system call log of the RPC port mapping daemon (the svchost.exe process using
the rpcss DLL). Fortunately, we found that this daemon only performs communi-
cations with the port object, and never modifies file or registry settings on the host
environment. As a result, this communication may be enabled as a default policy
when creating a VM.

The approach we use in the isolation testing can be applied to identify malicious
web sites. This is similar to the HoneyMonkey approach but has a higher scanning
rate and detection speed. The scanning process consists of the following steps:

1. Create N VMs on a host machine;

2. The web crawler starts an IE process on a URL and associates the process
with one of the VMs;

3. The IE process runs for K seconds before exits, and the FVM layer monitors
system calls made by the process.

4. If FVM does not detect suspicious system calls, the web crawler assigns new
IE process to the VM; otherwise, the scanned URL and the suspicious access
are logged. The crawler then deletes the VM and create a new VM.

Existing web-based malware monitoring approach usually use VMware or Vir-
tual PC to run a number of IE processes on suspicious URLs. When malicious state
changes are detected in a VM, the same set of URLs must be re-tested one by one
in different VMs to identify which one is the malicious site. In addition, it takes at
least one minute to restart a clean VM from a saved snapshot. The maximum scan
rate of HoneyMonkey is around 8,000 URLs per day per machine [66]. In contrast,
FVM can support a large number of concurrent VMs (e.g., N = 50) on one physical
machine, and it takes seconds to rollback to a clean VM. Under the same scanning
condition that IE visits every URL for 2 minutes, the maximum scanning rate under
FVM is 36,000 per day per machine. We will discuss the FVM’s scalability in the
performance measurement section, and present an FVM-based scalable web sites
testing system in Chapter 5.
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4.2 Performance Measurement
Because the FVM virtualization layer is implemented by intercepting selected

Windows system calls, the performance overhead of FVM comes from the over-
head of executing additional instructions in every intercepted system call. The total
overhead can be divided into two aspects:

• Redirection overhead, which includes the overhead of looking up the calling
process’s VM identifier, allocating virtual memory, checking and renaming
the name argument. In other words, it is equivalent to the total performance
overhead when there are no copy-on-write operations involved.

• Copy-on-write overhead, which is introduced when a process in a VM opens
a file or registry key for write access in the first time. In some sense, this
overhead can be considered as part of the total overhead in duplicating the
entire host environment in a VM, only distributed over time.

In this section, we measure the interception overhead of individual system calls,
execution time overhead of command line programs, and startup time overhead of
GUI programs under FVM. We compare the results with the same measurements
in the native (host) environment and in a VM of VMware Workstation 5.5 run-
ning on the same host machine. We also measure a VM’s resource requirement
and scalability under the FVM architecture. The host machine we are using is a
Dell Dimension 2400 desktop, with an Intel Pentium 4 2.8GHz CPU and 768MB
RAM. The host operating system is Windows 2000 Professional, service pack 4.
The VMware VM is configured with 540MB RAM, which is the maximum rec-
ommended guest RAM on the host machine. The guest OS is also Windows 2000
Professional, service pack 4, and is installed with minimum number of applications
required for the performance measurement.

4.2.1 System Call Interception Overhead
To measure the system call interception overhead, we count the average CPU

cycles spent in each system call when browsing a few benign web sites using the
WinHTTrack crawler. We use the rdtsc instruction to read the CPU’s time-stamp
counter at the entrance and exit of each system call. The difference between the two
cycle counts is the CPU cycles spent in a system call. In the testing, we first run the
crawler for ten minutes to obtain the number of invocations and average CPU cycles
of every system call. Second, we run the crawler in a VM for approximately ten
minutes to count the average CPU cycles until the same number of invocations has
been reached. For fair comparison, we try to minimize the cost due to file copying
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NT System Calls Invocation Native FVM Overhead
Count (CPU cycles) (CPU cycles) (%)

NtCreateFile 12,093 170,869 212,758 25
NtOpenFile 10,526 153,582 207,099 35
NtQueryAttributesFile 17,006 103,097 146,031 42
NtQueryDirectoryFile 3,960 394,556 503,429 28
NtQueryInformationFile 24,818 7,296 8,161 12
NtSetInformationFile 17,992 50,002 51,502 3
NtClose 193,626 8,575 8,661 1

Table 4.1: We list seven file-related system calls, their average execution time (in
CPU cycles) in native environment and in FVM environment. The times each sys-
tem call are invoked in the testing are shown in the second column. The overhead
of system calls is shown in the last column.

and directory creation in the VM’s workspace. Therefore, before the second testing
run, we start the crawler in the same VM to browse a few webpages, then stop
the crawler and clean the file cache of the Internet Explorer. In this way, a few
directories and database files required by the IE’s execution can be initialized in
advance in the VM’s workspace before we start the measurement. As mentioned in
Section 3.5.1, we have implemented an optimization to the file virtualization in the
FVM layer by keeping all the names of a VM’s private files in kernel memory. This
optimization saves the cost of making an additional system call to check the file’s
existence in the VM’s workspace. We enable this optimization in this experiment.

Table 4.1 shows seven file-related system calls, their average CPU cycles in
our testing machine and their overhead under FVM. System calls operating on files
usually take more CPU time to complete, and thus play more important roles in
runtime performance than other types of system calls. The seven system calls in
Table 4.1 are also the most frequently invoked file-related system calls intercepted
by FVM.

As shown in Table 4.1, the NtQueryAttributesFile and NtOpenFile system calls
have larger overhead than other system calls. This is inconsistent with our original
expectation, which was that only the NtQueryDirectoryFile system call has large
overhead due to the expensive directory union operation. When looking at the ex-
periment result of NtCreateFile, NtOpenFile and NtQueryAttributesFile, we found
that all of the three system calls cost around 45,000 more CPU cycles in FVM envi-
ronment than in native environment. Further study shows that such overhead mainly
comes from the current implementation of constructing renamed system call argu-
ments, which must be stored in buffers allocated from user space. In the current
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FVM prototype, we allocate such buffers on demand inside every intercepted sys-
tem call and free it at the exit of the system call. This repeated memory allocation
using ZwAllocateVirtualMemory cost more than 20,000 CPU cycles on average in
each system call. A simple solution to this problem is to allocate a large memory
buffer, e.g., one page, for each new process. This approach allows all the system
calls made by the process to use the same buffer without frequent allocations. How-
ever, the Windows NT kernel is a preemptible kernel that uses threads as the basic
scheduling unit. Concurrent threads of the same process may have conflict when
they require access to the common buffer inside their system calls. Synchroniz-
ing the concurrent accesses decreases the responsiveness of the preemptible kernel.
Therefore, such memory allocations should be associated with individual threads
instead of processes. With this optimization in place, we can reduce most of the
system calls’ interception overhead to less than 20%.

In fact, moderate overhead of a few intercepted system calls usually do not have
significant impact on an application’s overall performance. This is because these
system calls are only a small portion of all the system calls a process invokes at the
execution time. Many system calls with high invocation frequency have neglectable
(such as NtClose) or zero (not intercepted by FVM) overhead.

4.2.2 Application Execution and Startup Overhead
To evaluate an application’s overall performance under FVM, we measure the

execution time of three command line programs, and the startup time of four GUI
programs. The execution time is the average elapsed time from when a program is
started to when it terminates, and the startup time is the average elapsed time from
when the application is started to when it finishes initialization and is waiting for
user input. We use a set of simple benchmarks for the measurement, as follows:

1. Run WinZip 8.1 to compress the Borland C++ 5.5.1 installation directory
(51MB);

2. Run XCopy to Copy the Borland C++ 5.5.1 installation directory (51MB);

3. Run Borland C++ 5.5.1 to compile its installed examples (127 C++ files,
462KB);

4. Start Microsoft Word 2000 to open a 668KB .doc file;

5. Start Adobe Acrobat Reader 8.0 to open a 5.9MB .pdf file;

6. Start Microsoft Excel 2000 to open a 214KB .xls file;
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Command Line Native FVM (Opt) FVM VMware Workstation
Program (msec) (msec) (msec) (msec)

Winzip32.exe 4,899(0%) 5,634(15%) 5,928(21%) 6,369(30%)
xCopy.exe 6,340(0%) 6,784(07%) 7,259(14%) 10,645(68%)
BCC32.exe 24,548(0%) 27,382(12%) 30,021(22%) 34,823(42%)

Table 4.2: We list the execution time of three command line testing programs in
native environment, in FVM environment, in FVM environment without optimiza-
tion and in a VMware VM. With optimized file virtualization, the overhead in FVM
environment is typically less than 15%.

7. Start Microsoft PowerPoint 2000 to open a 2.7MB .ppt file;

To measure the execution time or startup time, we use a control program to
run the above benchmarks with the CreateProcess API. This control program then
invokes the WaitforSingleObject or the WaitforInputIdle API to recognize the mo-
ment when the testing process terminates or finishes initialization. The elapsed
time since the process creation to this moment is calculated using the Windows
high-resolution performance counter, averaged by twenty consecutive testing runs
in the native (host) environment, under FVM and in a VMware Workstation VM.

Table 4.2 shows the execution time overhead of three command line program
benchmarks running in the FVM environment, and in a VMware Workstation VM.
Without optimization in file virtualization, the execution time overhead is up to
22%, as shown in the compilation benchmark. The overhead is reduced to 12%
when the optimization is in place. For other benchmarks, the execution time over-
head is typically below 15% with optimization. As a result, the optimized file vir-
tualization sometimes can greatly improve an application’s runtime performance,
especially when the application is I/O intensive. In contrast, the execution time
overhead in a VMware VM is much higher than the FVM environment. In the
xCopy benchmark, the overhead in a VMware VM is as large as 68%.

Figure 4.1 shows the startup time of four GUI program benchmarks when they
are running natively and running in the optimized FVM environment. The bench-
mark results indicate that the startup time overhead under FVM is typically below
15%. Figure 4.1 can also explain the redirection overhead and the copy-on-write
overhead in the FVM layer. We define the initial startup time as the startup time
when a GUI program runs the first time after the host machine reboots, and the av-
erage startup time as the startup time on average when the program runs since the
second time onwards. These two values have the following attributes: (1) The initial
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Startup Time of four Windows Applications
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Figure 4.1: The initial startup time and the average startup time of four GUI Win-
dows applications when they are executed natively and under FVM. The overhead
of startup time under FVM is typically below 15%.

startup time is larger than the average startup time, no matter whether the tested pro-
gram runs natively or under the FVM, because the process spends time in building
up its working set and caching file data at the first run. (2) The initial startup time
is larger when the program runs under FVM than it runs natively. The difference
comes from the total of the redirection overhead and the copy-on-write overhead.
(3) The average startup time is larger when the program runs under FVM than it
runs natively. The difference comes from the redirection overhead only. Therefore,
we can roughly estimate redirection overhead and the copy-on-write overhead for
a tested program under FVM. For example, when starting Microsoft Word to open
a 668KB .doc file for the first time, as shown in Figure 4.1, the total virtualization
overhead is 260 msec, 61 msec of which belongs to the redirection overhead, and
the rest 199 msec can be attributed to the copy-on-write overhead.

4.2.3 Resource Requirement and Scalability
A main advantage of FVM over traditional hardware-level virtualization tech-

niques is the small resource requirement in each VM. Because FVM shares files and
registries with the host environment by copy-on-write, the disk space and registry
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memory requirement in a VM can be very small. In one testing, the WinHTTrack
keeps invoking IE to browse pages on 50 web sites for more than 4 hours in a
VM context. In the end of the testing, the VM’s private files consumes a total of
76.7MB disk space, most of which are used by images, cookies, Java scripts and
other downloaded files. For Windows registry, the VM’s private registry settings
increases the size of the physical machine’s registry from 18.5MB to 21.1MB, thus
requiring only 2.6MB additional memory.

The memory usage in the FVM layer is also small. The FVM layer uses kernel
memory to store the associations between processes and VMs, and to store the
delete logs for files and registries. To optimize the file virtualization, FVM keeps
the names of files that have been copied to a VM’s workspace in the kernel memory.
In the above crawling testing, it takes about 240KB (or 60 pages) kernel memory
to maintain the process-VM association, delete log and the file name tree. The
size of the file name tree depends on the number of files and the length of the file
names under a VM’s workspace. Because these names are stored in a binary tree,
and because each node of the tree only stores a relative name in the full file path,
the memory usage for this data structure is not significant. In an extreme case,
for example, if a VM is created without disk space restriction, and a process in
the VM attempts to write every file on the C drive of the testing machine, which
contains 90,000 files and 7,500 directories that consume 12.7GB disk space, the
size of the file name tree due to all the copying is only about 3.2MB. When the size
grows beyond certain threshold (5MB for example) under unusual circumstances,
the FVM layer can use memory-mapped file to store the file name tree, or switch
the file virtualization back to its un-optimized mode without keeping a file name
tree in memory.

Given the small resource requirement, we expect high scalability of VMs un-
der the FVM architecture. The scalability of FVM is mainly affected by the kernel
memory usage. On the 32-bit Windows OS, kernel memory space normally occu-
pies the upper 2GB1 of the entire 4GB address space. Kernel memory requested
by device drivers or OS kernel components is allocated from pageable system heap
(called paged pool) or resident system heap (called nonpaged pool). The maximum
size of the two heaps are determined by the Windows OS at the boot time. The FVM
virtualization layer requests kernel memory from the paged pool. Therefore, FVM’s
scalability relies on the size of the available paged pool. However, Windows 2000
has a limitation in its registry implementation: the registry data is stored using the
paged pool after system boots, and new registry data requires allocating additional

1The user address space can occupy the lower 3GB with a boot-time option, leaving only 1GB
to kernel space.
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memory from the paged pool. Since each VM’s registry space is in fact under a sub-
key of the host registry, each created VM will increase the host registry size when
processes in a VM make write access to the original host registries, thus consum-
ing more memory from the paged pool. This limitation compromises the FVM’s
scalability. In our testing machine, the maximum paged pool is 164MB, 25MB
of which is occupied by other system components. Before creating any VM, the
available paged pool is below 139MB. If we reserve 5MB memory from the paged
pool for each VM to store its private registry and state information, and assume
no other usage to the paged pool, the FVM layer can support up to 27 concurrent
VMs. However, this estimation is too optimistic because other system components
and data structures are also consumers of the paged pool. In order to resolve the
registry bottleneck and to improve the scalability, we can implement our own reg-
istry manipulation mechanism that operates the registry data in a memory-mapped
file instead of in the paged pool. Fortunately, Windows XP and later version of
Windows already resolve this registry limitation. With the same amount of avail-
able paged pool, we expect FVM to support more than 50 concurrent VMs in most
cases on 32-bit Windows XP or Windows Server 2003.

The scalability of FVM is also limited by the number of processes running in
each VM, and by the memory usage of each process in a VM. This is because
each process has a number of data structures stored in the kernel memory using the
paged pool or nonpaged pool. When more processes are running in each VM, more
kernel memory is consumed and thus the scalability of FVM is decreased. In our
Windows 2000 test machine with around 20 Windows system processes running,
up to 60 additional IE processes can be started concurrently without thrashing. The
FVM management console verifies the availability of kernel memory and disallows
more VMs to be created when the size of available memory is below 30MB.

Overall, all the performance measurement results demonstrate that the FVM vir-
tualization layer provides feather-weight OS-level VMs with small execution time
overhead, low resource requirement and high scalability. Because of the copy-on-
write mechanism in the FVM layer, VM manipulation operations such creating,
starting, stopping and deleting a VM can be completed in seconds. As a result, the
FVM architecture can serve as an effective platform to support applications that re-
quire frequent invocation and termination of a large number of “playground” VMs.
These VMs can be used to analyze malware and malicious web sites on the inter-
net, try out untrusted mobile code, execute vulnerable networked applications, or
access confidential information that should be isolated from the host environment.
We discuss a few applications on the basic FVM framework in Chapter 5.



Chapter 5

Applications of FVM

OS-level virtual machines powered by the FVM framework make an effective
computing platform for many useful applications on Windows server and desktop
environment, such as malware sandboxing, intrusion tolerance and analysis, access
control, and others that require an isolated but realistic execution environment. In
this chapter, we present design and implementation of the following five applica-
tions on the FVM framework:

• Secure mobile code execution service to protect desktop integrity;

• Vulnerability assessment support engine for safe vulnerability scans;

• Scalable web site testing to identify malicious sites;

• Shared binary service for application deployment;

• Distributed Display-Only File Server (DOFS) for document protections.

We describe how to customize the generic FVM framework to accommodate
the needs of the five applications, and present experimental results that demonstrate
their performance and effectiveness.

5.1 Secure Mobile Code Execution Service

5.1.1 Introduction
Mobile code refers to programs that come into an end user’s computer over the

network, and start to execute with or without the user’s knowledge or consent. Ex-
amples of mobile code include JavaScript, VBScript, Java Applets, ActiveX Con-
trols, macros embedded in Office documents, etc. Because mobile code typically
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runs in the security context of the user who downloads it, it can modify system
state with the user’s privilege, and thus can compromise the system when it is ma-
licious. Malicious mobile code [69], such as viruses, worms and Trojan horses, can
cause data corrupt, data theft or service denial, and thus place a significant threat to
system security.

A traditional solution against malicious mobile code is virus signature scanning,
which scans file system and memory for bytes that match the signatures of existing
malicious code. Once the malicious code is detected, it is quarantined or removed
by the Antivirus program. This technique has been widely used for the past ten
years, but it is not sufficient by itself because it is unable to recognize zero-day
malicious code before victims report it and signatures for the code are generated.
Another approach is behavior blocking [70], which sandboxes the execution of un-
trusted applications by monitoring system calls according to pre-defined security
policy. System calls that violate the policy are denied to proceed. However, it is
difficult to set up accurate security policies that block all attacks without break-
ing legitimate applications. To derive an accurate application-specific system call
model, comprehensive program analysis on an application’s source code [71] or
binary code [72] is required.

A third approach is to separate untrusted mobile code and confine their applica-
tion logic in remote machines, which are disposable because they are not supposed
to have any sensitive or critical data or resources. The Spout project [73] trans-
parently separates incoming Java Applet into application logic component and GUI
component with a proxy Web server, and execute the untrusted application logic
component on a specific Java Application Server outside the firewall. Similarly,
the secure mobile code execution service [74] separates mobile code that comes
into an end user machine as an email attachment or a web document downloaded
through an anchor link. It uses a POP3 proxy server or a Win32 API interception
technique to separate untrusted email attachments, and execute them on a remote
Windows Terminal Server machine. The GUI of mobile code execution is displayed
remotely on the end user machine using terminal services. The advantage of these
approaches are physical isolation, which ensures that malicious mobile code can-
not compromise the end user machine once separated. However, there is no generic
approach to separate different forms of mobile code and to force their execution
inside a remote “guinea pig” machine.

WindowBox [75] presents a simple security model that enables end users to use
multiple desktops on the same physical machine. Each desktop is separated from
other desktops in that objects created in one desktop are inaccessible from other
desktops. WindowBox modifies the NT kernel to tag an object’s security descriptor
with the security identifer of the owner desktop, and to deny access to an object
if the request comes from a different desktop. This isolation idea is similar to the
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FVM idea except that WindowBox uses access checks instead of virtualization to
separate different execution environments.

Different from the above approaches, the FVM framework supports an intrusion-
tolerance solution against malicious mobile code by confining untrusted code and
its applications in a VM. Vulnerable networked applications, such as web browsers
and email clients, and untrusted content coming through these applications, are al-
ways executed in the context of one or multiple VMs. The VM environment has
small performance overhead, and is designed to be un-intrusive to most applications
running in the VM. Users can start or stop a number of VMs, and start untrusted
applications in the VMs in seconds. Any persist state changes in the VM, such as
file modification and registry update, are confined within the VM’s workspace re-
gardless of being legitimate or malicious. In addition, such confined state changes
can be selectively committed to the host environment. To hide confidential files on
the host environment from untrusted mobile code in a VM, the default file system
image visible to the VM can be configured to a subset of the file system image of
the host environment.

One advantage of running untrusted mobile code in FVM is the fast clean and
repair. When malicious or undesirable behaviors are detected in a VM, stopping the
VM and then deleting it are all that have to be done to clean the system. Another
advantage is that, the execution of mobile code in a VM is not subject to access con-
trol policies or least-privilege restrictions. Therefore, legitimate mobile code can be
executed smoothly without being disrupted from time to time. Finally, the system
call logging and analysis module in the FVM layer can detect suspicious behaviors
of processes running in a VM, and thus makes an effective platform for malware
analysis. There have been a few systems that leverage virtualization technologies to
resolve the malicious mobile code problem, such as GreenBorder [35], which uses
OS-level VMs to sandbox web browsers and email clients, and Tahoma [76], which
constructs a safe Browser Operating System (BOS) by using Xen VMs to isolate
untrusted Web applications from user’s local resources.

5.1.2 Design and Implementation
Mobile code enters a user’s desktop through networked applications in different

forms. Some mobile code is embedded in email attachments and file downloads.
Such mobile code can be separated from the email client and web browser appli-
cations. Therefore we can directly open the file containing the mobile code in a
VM. However, other mobile code, such as an ActiveX control or a Browser Helper
Object (BHO), cannot be separated from the web browser or email client process.
Instead, they are executed in the same address space of the web browser or email
client process. As a result, not only separated email attachments and downloaded
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FVM virtualization layer with system call logging and analysis
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Figure 5.1: An FVM-based secure execution environment for untrusted mobile
code coming through MS Outlook and Internet Explorer. In this example, a.doc
and b.xls are email attachments, and c.msi is an installer package downloaded from
the Internet.

files, but all the web browser and email client applications should be opened or
executed in VMs.

Implementing a secure execution environment for untrusted mobile code is
straightforward under the FVM architecture, which provides an execution environ-
ment that is isolated from the host environment. The only additional work is the
following:

• Automatically start a new VM to execute web browser or email client pro-
grams, such as Internet Explorer and MS Outlook, when users invoke such
programs on their desktops.

• Installer packages (.exe or .msi) downloaded into a VM can be installed in
the same VM, by running the installer executable or invoking the Windows
Installer Service to extract the msi package.

• When users commit executable or document files created in the VM to the
host environment, FVM marks these files as “untrusted”. When users later
on open a marked file from the host environment, a new VM is started to
execute the process that runs the file.

Figure 5.1 shows a secure execution environment for untrusted mobile code
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under the FVM architecture. The Internet Explorer (IE) and MS Outlook are as-
sociated with two VMs. The FVM virtualization layer is modified to monitor the
process creation and termination of IE and Outlook. When any of the two processes
is created, its associated VM is started; when the process is terminated, the associ-
ated VM is stopped. By default, file and registry updates within the VMs are not
committed to the host environment when the VMs are stopped. However, if users
explicitly save an email attachment or download file into a special folder in the
VM’s workspace, called commit folder, the file (e.g., a.doc or c.msi in Figure 5.1)
will be committed when the VMs are stopped. In addition, the Outlook’s personal
folder files (.pst files) are also committed because they store all the received emails,
address book and other important Outlook settings.

Once committed, a file is moved from the VM’s workspace to the host environ-
ment. However, there is no guarantee that this file is free of malicious mobile code.
Therefore, the secure execution environment tags every committed file a special
mark which indicates that the file comes from network and may contain malicious
code. For example, a.doc and c.msi are marked in Figure 5.1 after they are commit-
ted. When users open a.doc from the host environment, the FVM layer recognizes
its mark and forces it to be opened by MS Word in a new VM. Similarly, when the
installer package file c.msi is executed, the FVM layer forces the Windows Installer
Service process to start in another VM to extract the package and perform the in-
stallation. We use a named NTFS alternate stream to implement the special mark
on committed files.

When an msi program is installed inside a VM using the Windows Installer ser-
vice, it involves modifications from three processes: a client process initiated by the
user (msiexec.exe invoked with /i flag), the installer service process (msiexec.exe
invoked with the /V flag) that runs on the background as a daemon, and a process
spawned by the installer service process that runs under the context of the request-
ing user (msiexec.exe). The installer service process modifies all the system-related
resources whereas its child process is spawned to handle modifications to user-
related resources. FVM forces all the three processes to run inside the VM so it can
correctly isolate all state changes resulted from the program installation. After the
installation is completed, the hosting VM for this program is not destroyed. Instead,
it continues to serve as the execution environment for the installed program.

Although the current secure execution environment only monitors untrusted mo-
bile code coming through IE and Outlook, it can be easily extended to support other
web browsers and email clients, as well as other networked applications such as
FTP clients and Instant Messaging tools. In addition, the FVM environment logs
system calls made by untrusted process running in a VM, in a way similar to the
Strace for NT [62]. By monitoring certain Auto-Start Extensibility Points [53],
and analyzing system call sequences to derive high-level behaviors, FVM is able
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to detect potentially malicious process behaviors, and suggests users to selectively
commit only the safe transactions in the VM.

5.1.3 Evaluation
Isolating untrusted mobile code in a light-weight virtual execution environment

is our initial motivation to develop the FVM framework. Creating the secure exe-
cution environment based on FVM is straightforward, and does not introduce ad-
ditional complexity and overhead. Therefore, we can refer to Chapter 4 for the
evaluation result on FVM’s isolation strength, performance overhead, resource re-
quirement and scalability. In the section of “scalable web site testing” in Chapter
5, we also demonstrate the FVM’s ability to identify malicious behaviors due to
compromised web browsers.

5.2 Vulnerability Assessment Support Engine (VASE)
Vulnerability Assessment (VA) is the process of identifying known vulnerabil-

ities due to programming errors or configuration errors in computer systems and
networks. Different from Intrusion Prevention System (IPS) and Antivirus software,
VA allows system administrators to proactively detect security holes before they are
exploited. However, a VA scanner can be intrusive to the network applications being
scanned. Therefore, it is not completely safe to scan the production-mode network
services frequently. Because FVM can provide a virtual environment that are iden-
tical to the host environment, a VA scanner can instead scans the network services
in the virtual environment, without worrying about undesirable side effects on the
host environment. In this chapter, we present the design and implementation of a
VA supporting system based on the FVM framework.

5.2.1 Introduction
A VA scanner is a program that scans specified network server applications to

automatically identify vulnerabilities. It communicates with the network server ma-
chine being scanned by probing for open ports, checking patch levels, examining
registry settings, or simulating real attacks. After a scan is completed, the VA scan-
ner generates a vulnerability report, which suggests system administrator to patch
the applications or to change the configurations. A well-known problem with the
VA scanners is their safety. In one study that includes 11 VA scanners, all the scan-
ners caused adverse effects on the scanned network servers. One of the scanners
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crashed at least five servers during an assessment run. According to Nessus docu-
mentation [77], every existing network-based vulnerability scanner has the risk of
crashing the systems and services being scanned. To resolve this safety problem,
most VA scanners provide “safe scan” or “non-intrusive check” options to avoid
potential denial of service. However, such options sacrifices the scanning accuracy.
Even worse, it turns out that “safe scan” may not be truly safe, as reported in [78].

In fact, it is not surprising that many VA scanners are intrusive, because VA
scanning packets should behave like real attacks in order to identify any vulnerabil-
ities. For example, some protocol implementations in the scanned applications do
not handle errors well, and thus can crash the process on certain unexpected inputs.
Moreover, if the vulnerability is due to memory errors, such as the buffer overflow
vulnerability, a scanner has the chance to overflow the buffer, which leads to unpre-
dictable program execution, such as program crash or undesirable state change.

To obtain accurate VA results using VA scanners without possibly crashing the
production-mode network services or changing the system state, we can duplicate
the network service applications in a VM and scan the VM environment instead. In
this way, even if the duplicated applications are crashed or cause unexpected state
changes during the VA scanning, the original production-mode network services are
still functioning. The VM used by VA scanners should have the following attributes:

• High testing fidelity. The duplicated network applications in the VM should
be as close as possible to the original applications in the production-mode en-
vironment. New patches or configuration changes should be easily synchro-
nized to the VM environment. This ensures that running a VA scanner against
a VM can correctly identify the vulnerabilities of the production-mode envi-
ronment.

• Small overhead and resource requirement.

• Fast duplication. It is necessary to run VA scanners frequently to identify new
vulnerabilities in time. Therefore, duplicating the production-mode network
applications into a VM should be performed very fast.

The FVM virtualization layer provides OS-level VMs with the above attributes.
Therefore, we developed a VA supporting system that can perform automatic and
safe VA scanning based on the FVM framework.

5.2.2 Design and Implementation
The VA supporting system is called Vulnerability Assessment Support Engine

(VASE). Unlike Nessus and other VA scanners, VASE does not send out probe
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Figure 5.2: The architecture of VASE. It enables automatic and safe vulnerability
assessment by running VA scanners against a VM environment that is identical to
the production environment.

packets by itself to identify vulnerabilities in existing network servers. Instead,
VASE is designed to automatically drive a VA scanner to scan the duplicated net-
work service applications in a VM. The duplicated applications are identical to the
production-mode applications on the host environment in every aspect. Further-
more, the scanning process does not change states on the host environment.

The system architecture of VASE is shown in Figure 5.2. To automate the vul-
nerability scanning process, VASE needs to create a VM on the production envi-
ronment, and to start all network applications currently running on the production
environment in the new VM in exactly the same way as they were started originally.

A vulnerability scanning process under VASE includes four phases. In the first
phase, VASE enumerates all the network applications running on the production en-
vironment. VASE uses the fport tool from Foundstone to find out all the processes
listening on a network port, and to obtain the full pathname of each process’s ex-
ecutable image. These processes are usually running as daemon processes, which
are controlled by the Service Control Manager (SCM). VASE queries the SCM’s
database in the registry to decide if a server process is a daemon process. If the
process image name is found in the database, VASE treats this process as a daemon
process, and queries its configurations in the database. At the end of this enumer-
ation phase, VASE generates a complete list of names and configurations of the
network applications running on the production environment.

In the second phase, VASE creates a new VM and starts a VASE control process
in the VM. The VASE control process installs and starts all the network applications
identified in the first phase. These network applications run in the same VM con-
text. In the third phase, VASE invokes a VA scanner to scan the VM where all the
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duplicated network applications are running. The VA scanner generates a VA re-
port after the scanning is completed. The final phase is cleanup. After the scanning
process is completed, VASE stops all the processes in the VM, uninstalls daemon
configurations associated with the VM, and finally terminates the VM.

5.2.3 Evaluation
We have developed a VASE prototype and measured its performance overhead,

scanning fidelity and isolation effectiveness. We used three machines in the exper-
iments, each of which has an AMD Athlon XP 2000+ CPU with 512MB memory.
The first machine acts as a production-mode server. It runs Microsoft Windows
2000 server with service pack 4, Internet Information Service (IIS) 5.0, Microsoft
SQL server 2000, MySQL server 4.1, and Apache web server 2.0.54. The sec-
ond machine runs Redhat Linux 9.0 and Nessus 2.2.4, and serves as a VA scanner
machine. The third machine is only used for performance measurement. It runs
Redhat Linux 9.0, Apache benchmark for Apache web server, and Super Smack
1.3[79] used to benchmark MySQL server.

Performance Overhead

To evaluate the performance overhead of VASE, we collected the following four
performance measurements on three test applications.

1. The performance of the test applications when they are running on the host
environment. Under this condition, the virtualization overhead of FVM does
not exist.

2. The same performance measurement as 1. except that a duplicated test ap-
plication runs in a VM on the same physical machine. This measurement
evaluates the impact of FVM’s virtualization logic on the production-mode
network applications.

3. The same performance measurement as 2. except that the duplicated test
applications are being scanned by the Nessus scanner. This measurement
evaluates the additional performance cost to the production-mode network
applications when their duplicates in a VM are being scanned by VA scanners.

4. The performance of the duplicated applications running in a VM. This mea-
surement evaluates the FVM’s virtualization overhead.

The three test applications are Apache web server, MySQL server and Win-
RAR. We use Apache bench to benchmark the Apache web server. Apache bench
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Figure 2. The performance impact of virtual-
ization and vulnerability assessment.

Table 2. The vulnerabilities found by Nessus
during the fidelity test. Applications that do
not have vulnerabilities are not listed.

Applications Security Holes Security Warnings
IIS FTP 1 1

IIS SMTP 1 0

IIS Web 4 8

Apache Web 0 1

Telnet 0 1

KaZaA 1 0

4.2. Fidelity

To demonstrate that scanning a duplicate of a target ap-
plication running in an FVM virtual machine is as real as
scanning the application running on the host machine di-
rectly, we tested Windows’s telnet service, Microsoft SQL
server, IIS SMTP service, IIS FTP service, IIS Web service,
MySQL, Apache Web server, eDonkey 2000 and KaZaA.
We run all the network applications on the server machine
and then apply Nessus to each of them to produce a vulner-
ability report. The test result is in Table 2. Among the test
applications, IIS Web service appears to be the most vulner-
able. There are totally 7 security holes found and 4 of them
are in IIS Web service. Among the 11 security warnings,
IIS Web service accounts for 8 of them.

Then we run all the applications in an FVM virtual ma-
chine and apply Nessus to them in the same way. The vul-
nerability reports produced are the same as is shown in Ta-
ble 2. This experiments provides an initial evidence that as
far as assessing the vulnerability of a network application is
concerned, running the application in an FVM virtual ma-

chine is as good as running it on a physical machine.

4.3. Isolation

To demonstrate that Vase indeed isolates the side effects
produced by vulnerability assessment from the host ma-
chine, we record the file system and registry state before
a vulnerability test, and compare it with the file system and
registry state after the test. First we create a disk image of
the whole file system of the target server. Then we start
vulnerability assessment runs against network applications
running in an FVM virtual machine on the target server. Af-
ter the test is completed, we create a second disk image
of the target server. Finally, we use Beyond Compare,
which is a Windows tool that can recursively compare all
the subdirectories and files under the root directory, to com-
pare the two disk images.

The comparison report shows that all modifications
to the file system are indeed contained within the home
directory of the FVM virtual machine. Suppose the FVM
virtual machine has a home directory of C:\fvm0. Then
the only file system modifications due to the tests occur
under C:\fvm0. For example, IIS Web server’s log file is
changed during vulnerability assessment, and it is stored in
C:\fvm0\C\WINNT\system32\LogFiles\W3SVC1.
The corresponding file in the host machine
C:\WINNT\system32\LogFiles\W3SVC1 is
not affected.

By taking a closer look at the FVM virtual machine’s
home directory, we found vulnerability testing runs indeed
leave many side effects to the file system. Without FVM,
these side effects would have affected the host machine. For
example, IIS and Apache Web server changes their access
logs, which record all the HTTP requests from Nessus; IIS
FTP server logs records all of Nessus’s file accesses, includ-
ing “make directory” and file transfer operations; Microsoft
SQL server and MySQL changes their database access log;
eDonkey generates some .met files.

To detect changes to the registry state, we export the reg-
istry using the program regedit.exe before and after a
vulnerability testing run, and then use UltraEdit to com-
pare the two exported registry files. We found that Nessus
does not seem to result in registry state changes. Among
the test applications, the registry state changes only in the
case of KaZaA. However, we believe this change is due to
KaZaA itself rather than due to Nessus, because the key
name is kazaaNet and Seed. In any case, Vase is able to
successfully confine this registry change to the FVM virtual
machine in which KaZaA runs.

4.4. Start-up Delay

One of the major goals of Vase is to automate the vul-
nerability testing process so that one can run vulnerability
testing as frequently as virus scanning. In this subsection,
we evaluate the time Vase takes to prepare a network server

Figure 5.3: The performance overhead of virtualization and vulnerability assess-
ment under VASE architecture. The performance impact on the production-mode
network applications is less than 3%.

sets up 5 concurrent connections and sends 5,000 requests for the index.html in
the document root directory. The performance metric is the number of requests
served per second. We use Super Smack to benchmark the MySQL server. Super
Smack sets up 10 concurrent connections and 10,000 requests for select operation
(select-key.smack scripts) and update operation (update-select.smack
scripts). The performance metric is the number of select or update operations served
per second. Finally we measured WinRAR 3.42 to evaluate the performance impact
of FVM on non-network applications. The performance metric for WinRAR is the
number of seconds required to extract the Apache web server 2.0.54 package.

Figure 5.3 is the normalized performance of each test application under test case
2, 3 and 4, with respect to that under case 1. For example, 95% means that the per-
formance is 95% of that when the application runs on the host environment without
FVM. The performance result indicates that just running a duplicated application in
a VM or even performing a VA scanning against such a duplicate has little impact
on the performance of the production-mode network applications. The performance
penalty is typically less than 3%. This result demonstrates that VASE’s approach



84

of “duplicate and test” actually allows a network application to continue its service
while being scanned. As for the FVM’s virtualization overhead, it is negligible for
the MySQL server, and about 9% for Apache and WinRAR.

Scanning Fidelity

To demonstrate that scanning a duplicated network application in a VM is as real
as scanning the application running on the host environment directly, we start a few
network applications, including Windows telnet service, MySQL server, Apache
web server, eDonkey 2000 and KaZaA on the server machine, and then launch
Nessus against each of them to generate a VA report. Among the tested applications,
Nessus found a security hole in KaZaA, and a security warning in both telnet service
and Apache web server. After that we duplicate all the applications into a VM
and scan each of duplicated applications. We found the vulnerability reports from
the two experiments are identical. Consequently, scanning duplicated applications
running in a VM instead of the original production-mode applications has high
fidelity on the vulnerability assessment result.

Isolation

To verify that all the file and registry changes during the vulnerability scanning
are confined in the VM’s workspace, we use snapshot tools similar to the isolation
testing described in Chapter 4 to find out the differences before and after a vulnera-
bility scanning. The result is that all the side effects on file system and registry state
are successfully confined within the test VM’s workspace. In addition, we found
that vulnerability scanning indeed leaves a number of side effects to the file sys-
tem state. For example, during one vulnerability scanning, the Apache web server
changes its access log that records all the HTTP requests from Nessus, the MySQL
server changes its database access log, and the eDonkey generates a number of .met
files. Without VASE, these side effects, and possibly even worse side effects, may
have affected the host machine directly.

5.3 Scalable Web Site Testing

5.3.1 Introduction
Malicious web sites on the Internet can exploit a web browser’s vulnerability to

install malware on a user’s machine without user consent or knowledge, thus pos-
ing a serious threat to the web users. Some malicious sites use code obfuscation
techniques which make signature-based detection difficult. A proactive approach
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to protect users from these malicious sites is to periodically scan untrusted web
sites and test their safety by monitoring the browser’s runtime behavior. Once mali-
cious web pages are identified, proper actions can be taken to discourage users from
accessing them, such as blocking malicious URLs or shutting down their Internet
connectivity.

A web site testing system automatically drives web browsers to visit a collec-
tion of untrusted sites and monitors any suspicious state changes on the testing
machines. Because visiting malicious sites may cause permanent damage on a test-
ing machine, each testing web browser should run on a separate virtual machine to
isolate its side effects from the physical host machine. Whenever malicious state
modifications are detected, or a certain number of URLs have been tested in a VM,
the VM is terminated and a new VM is started to host the browser testing for other
URLs.

The Strider HoneyMonkeys [66] is a large-scale web site testing system de-
signed to identify malicious web sites that exploit browser vulnerabilities. It con-
sists of a pipeline of “monkey programs” running Internet Explorer browsers on
virtual machines. From a given input URL list, it drives browsers to visit each
URL and detects browser exploits by monitoring modifications to file/registry state
outside the browser sandbox. Upon detecting an exploit, the system destroys the
infected VM and restarts a clean VM to continue the test. A crawler-based study of
spyware [80] uses a similar testing system to detect spyware-infected executables
on the web. In addition, the study also analyzes drive-by downloads that mount
browser exploit attacks, and tests them with Internet Explorer as well as Firefox.
A group in Google performed another analysis of web-based malware [81] using
a similar approach. The SpyProxy [82] intercepts HTTP requests using an HTTP
proxy, fetches the target web pages into a local cache, and checks the safety of the
page before passing it to the client browser for rendering. Their malware detec-
tion procedure consists of both a static analysis of the web content and its dynamic
analysis inside a virtual machine.

Given a large number of URLs to be tested, a web site testing system should
launch a testing browser in a large number of concurrent VMs to improve scanning
efficiency. In addition, the overhead of terminating and starting a VM should be
very small because it is a frequent operation in web site testing. Existing web site
testing systems [66, 80, 81, 82] use hardware abstraction layer (HAL)-based VM
technology such as VMware and Xen, which is heavy-weight in that each VM runs
its own instance of operating system. Typically, these testing systems deploy a
cluster of physical machines each running a small number of VMs. The relatively
high overhead of terminating and starting a HAL-based VM has seriously limit the
overall web site scanning throughput. In contrast, FVM is designed to be light-
weight in that concurrent VMs share most of the system resources, including the
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Figure 5.4: System architecture of the FVM-based web site testing system.

OS and shared libraries. As a result, FVM makes it possible to terminate and start a
VM within seconds, thus significantly improving the throughput and scalability of
a web site testing system.

To test a collection of untrusted web sites, we launch a separate web browser
instance to access each such site. Each browser instance is created inside a separate
VM, which can host one or multiple browser instances. To maximize the testing
throughput, we create as many concurrent browser instances as possible on as many
VMs as is allowed on a single physical machine. By monitoring the copy-on-write
files and registry keys in a VM and the browser process’s state, we can reliably
detect all suspicious changes to a VM’s state.

5.3.2 Design and Implementation
The system architecture of our web site testing system is shown in Figure 5.4.

The input is a collection of URLs for untrusted web sites, and the output is a re-
port of malicious URLs, and their suspicious state changes. We modified the same
WinHTTrack [67] web crawler that has been used in the FVM’s isolation testing.
The crawler can scan remote sites directly, or mirror remote sites to a local machine
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first and then scan them. Instead of running the web crawler directly in a testing
VM, as in the isolation testing experiment, we now run the web crawler on the host
environment. When crawling across the given URL list, it launches a separate In-
ternet Explorer (IE) instance to visit each URL, associates the IE instance with an
available VM in the FVM pool, and starts a worker thread to monitor the execution
of the IE instance. Once the worker thread is initialized, the web crawler moves on
to visit the next URL.

Each VM in FVM can host up to N IE instances each of which processes a
separate URL. Therefore, the web crawler populates N IE instances within a VM
before starting another new VM. To maximize the web site testing throughput, we
start as many concurrent VMs as possible on a physical machine, as long as the
total number of running IE instances across all VMs is below a threshold, which is
determined by the kernel memory usage of the host machine.

To detect malicious state modification due to a visited URL, we need to know
when the monitored IE instance completes rendering of the URL’s page. We use
a Browser Helper Object (BHO) to detect the completion of page rendering. A
BHO is a DLL loaded into the address space of every IE instance as a plug-in.
The BHO captures an IE instance’s DocumentComplete event, and then signals the
monitoring worker thread outside of the VM with a named event. We have modified
the FVM driver to explicitly allow such a communication between every IE instance
running inside VMs and the worker threads in the web crawler running outside
VMs. Because malicious web content may carry a “time bomb” that triggers an
actual attack at a later time, to detect such attacks, the worker thread can be set to
wait for an additional T seconds after the page rendering is completed [66, 80].

After a downloaded page’s rendering is completed and the associated waiting
time expires, the worker thread terminates the IE instance by sending a WM CLOSE
message to all the windows owned by the IE instance. This message causes all the
receiving windows to be closed, including all the pop-up windows. If the termi-
nated IE instance is the last one running in a VM, the worker thread stops the VM,
searches the VM’s state for suspicious modifications, and finally deletes the VM.

The analysis module in our web site testing system monitors file/registry up-
dates and process states in a VM environment to detect if any visited pages compro-
mise the VM through browser exploits. For file updates, we monitor any executable
files created outside of the IE’s working directory, such as the cache and cookie
directory. For registry updates, we monitor sensitive registry locations related to
Auto-Start Extensibility Points (ASEP) [53]. ASEP is a set of OS and application
configurations that enable auto-start of application programs without explicit user
invocation. It is the common targets of infection for most malware programs. For
process states, we monitor the creation of unknown processes and unexpected crash
of IE instances. Because each IE instance is not asked to download and install any
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software, or allowed to install plug-ins automatically, the above detection rules are
able to recognize most browser exploit attacks.

Two modifications were made to the basic FVM framework to facilitate the de-
velopment of the proposed web site testing system. First, several VM manipulation
functions are made directly available to privileged user processes, including start-
ing, stopping and deleting a VM, associating a new process with a VM, etc. To
associate a new browser instance with a VM, we create the browser process in the
suspended state, set up the association between the process and the VM, and then
resume the browser process. Second, each VM is granted network access to the
tested sites, and is configured to inform a process outside the VM when a certain
event, such as when the rendering of a downloaded web page is completed, occurs.

5.3.3 Evaluation
We evaluate the effectiveness and testing throughput of our web site testing

system by crawling real-world untrusted web sites. The testing system runs on a
Dell Dimension 2400 with an Intel Pentium 4 2.8GHz CPU and 768MB RAM.
The operating system is Windows 2000 Professional with all unnecessary system
daemon processes disabled.

Effectiveness

We collect URLs of 237 untrusted web sites from McAfee’s SiteAdvisor [83] as
the input URLs to our testing system. These untrusted sites were known to contain
adware, spyware or browser exploit programs. Because most existing browse ex-
ploits target at unpatched web browsers, we use Internet Explorer 5.0 running on
unpatched Windows 2000 in the testing. The security setting of IE is not to allow
untrusted ActiveX control and other plug-ins to be installed on the system. To crawl
as many sites as possible, we set the web crawler to crawl a maximum of three links
on each scanned page in the same domain. The testing system is configured to host
one IE instance per VM. After the rendering of a downloaded page is completed,
we wait for 20 seconds before terminating the IE instance to provide more time for
malicious scripts to get activated.

In one testing, our system crawled and browsed 8988 web pages from the 237
untrusted web sites. We found 68 pages that causes malicious or suspicious state
changes through unpatched IE 5.0, counting approximately 0.8% of the total visited
web pages. Among the 68 pages, 40 pages download executables to the testing
VM, 9 pages attempt to modify registries in the testing VM, and 22 pages crash
the browser process. The file and registry modifications are outside the browser’s
working directory and registry key, and are thus considered as the malicious side
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Suspicious State Changes Responsible Web Sites
Create executables with known names under
Windows system directory (kernel32.exe, ker-
nel32.dll)

teen-biz.com; teenlovecam.com

Create executables with random names un-
der Windows system directory (csndl.exe,
cvhur.exe, cstbt.exe, psqzs.exe, dmkhb.exe,
uiqml.exe)

teen-biz.com

Create executables with random names under
Windows installation directory (3v96e1bt.exe,
xil0s9uo.exe)

realsearch.cc

Create unknown executables under administra-
tor’s profile directory (tm.exe)

yournewindustry.net

Attempt to modify Run registry key teen-biz.com
Crash browsers (Drwtsn32.exe process created) bitdesign.co.yu; winneronline.ru;

2famouslyrics.com; ...

Table 5.1: A set of suspicious system state modifications due to successful browser
exploits, and the web sites responsible for them.

effects of a successful browser exploit. Table 5.1 lists a set of suspicious system
state modifications that our system detects and the web sites responsible for them.

Our system detects suspicious state changes and writes them into the testing re-
port. After the testing is completed, all the running VMs are terminated, and all the
VM’s file and registry states are successfully removed from the host environment.
Before a VM is terminated, we can also copy all the suspicious executables created
in the VM into an isolated environment for further analysis.

Testing Throughput

To demonstrate the efficiency of the FVM-based web site testing system, we
measure the web site testing throughput when the system configuration parameters
are varied. To remove wide-area network access delay from the throughput mea-
surement, we first run the unmodified WinHTTrack web crawler to bring the test
web sites to a local machine, and then start the web site testing run against the lo-
cal web pages. Because of memory limitation, the testing machine can support a
maximum of 60 concurrent IE instances. To avoid thrashing, we launch up to 50
concurrent IE instances in our experiments. In addition, we vary two system param-
eters: number of seconds to wait for each URL visit, and number of URLs visited
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Figure 5.5: The throughput of web site testing when the number of seconds to wait
for each URL visit and number of URLs visited per VM are varied.

per VM.
Figure 5.5 shows that the web site testing throughput increases when the waiting

time for each URL visit decreases. When the system visits 10 URLs per VM with a
waiting time of zero seconds, the throughput is 7,000 URLs per hour. As the wait-
ing time is increased to 50 seconds, the throughput decreases to 3,400 URLs per
hour. When the waiting time is short, each IE instance is terminated immediately
after the rendering of a downloaded page is completed. Therefore, the IE process
concurrency threshold (50) is never reached, and the web crawler can always creates
new VMs to visit new URLs. However, as the waiting time increases, the number
of concurrent IE instances and the number of worker threads in the crawler also in-
crease. This in turn slows down the crawler’s scanning speed and thus decreases the
overall web site testing throughput. When the waiting time becomes long enough,
many IE instances are running concurrently and the concurrency threshold (50)
may be reached. Under this condition, the crawler spends most time on waiting
for available VMs, and thus the throughput is also decreased as the waiting time is
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longer.
As the number of URLs visited per VM increases, the web site testing through-

put increases because the more URL visits per VM, the less frequently new VMs
need to be started and the lower the impact of the VM start-up cost on the web site
testing throughput. In our testing machine, restarting a VM in a clean state takes an
average of 1.3 seconds under FVM. In comparison, rolling back a VM of VMware
Workstation 5.0 on the same physical machine takes 30 to 50 seconds. The small
VM start-up/shut-down cost of FVM significantly improves the throughput of our
web site testing system.

5.4 Shared Binary Service for Application Deploy-
ment

A shared binary service is an application deployment architecture under which
application binaries are centrally stored and managed, and are exported from a
server to end user machines. With centralized management, this application de-
ployment architecture greatly simplifies software patching/upgrade/repair and li-
cense control in a corporate environment without suffering performance penalty
and scalability problem of the thin client computing model. Here we present the
design and implementation of a binary server for Windows applications based on
the FVM framework.

5.4.1 Application Deployment Architecture
Modern enterprises have adopted the following application deployment archi-

tectures to manage the application binaries and configurations on their end user
machines: local installation, thin client computing, OS steaming, network boot,
application streaming and shared binary service. In the local installation architec-
ture, application program binaries are installed and executed on end user machines,
and a network-wide application installation and patching tool is needed to reduce
the application maintenance cost. In the thin client computing architecture, such
as Microsoft Windows Terminal Service [84], application program binaries are in-
stalled on a central server and also executed on the server’s CPU. An end user
machine displays the results of application execution and replays user inputs via a
special protocol such as Remote Desktop Protocol (RDP). Because of centralized
binary installation and execution, this architecture lowers the overall application
maintenance cost, but also incurs longer application latency and decreased runtime
performance.
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Network boot allows a diskless end user machine to boot from a kernel image
stored on a remote server, and run the OS and applications on the machine’s local
CPU. Citrix’s Ardence [85] supports network boot by implementing a remote vir-
tual disk system. An end user machine boots from the network through Preboot eX-
ecution Environment (PXE) and then accesses the virtual disk via a protocol called
BXP. However, because of hardware dependencies, the virtual disk of each end user
machine may be different from one another and require extensive customization. A
similar application deployment architecture is OS steaming [86, 87], which config-
ures an OS and a specific set of applications into a hardware-level virtual machine
image and stores the image on a central server. An end user machine boots from
one of such images and run it on a virtual machine monitor. Because a virtual ma-
chine image is isolated by the virtual machine monitor from the underlying machine
hardware, in theory it has less hardware dependency. In practice, the hardware de-
pendency is transferred to the virtual machine monitor, which is not necessarily the
best party to deal with hardware dependencies because of its emphasis on minimal
code base.

In the application streaming architecture [8, 23, 7], application binaries and
configurations are bundled into self-contained packages, which are stored on a cen-
tral server. An end user machine running a compatible OS can fetch these packages
from the server and run them locally without requiring an installation process. Each
such package runs in a virtual environment, and is cached on the local machine
whenever possible. This architecture offers the advantages of both centralized ap-
plication management and localized application execution on end user machines.

The shared binary service architecture is in fact similar to application streaming
except that it does not require explicit application packaging, and that it allows
resource sharing across application packages. More concretely, applications are
installed on a shared binary server, and then exported to all end user machines
through certain network interface. When the application is executed, accesses to
configuration files, registry entries and libraries are redirected to the central binary
server.

5.4.2 Overview of FVM-based Binary Server
The shared binary server architecture is widely used in the UNIX world. User

machines typically mount binary files exported by a central binary server on local
directories, and execute them directly on the local machine. In the Windows world,
most application programs are not designed to be loaded from a shared repository
and run locally. Instead, they are designed to run on the machine on which they are
installed. Consequently, whenever an application program runs, it always tries to
locate its operating environment, such as registries, configuration files and libraries
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from the local machine.
To enable a Windows client machine to execute a program physically stored

on a binary server, this program’s accesses to its operating environment must be
redirected from the local machine to the binary server. More specifically, when an
application program accesses a system resource, the access should be redirected in
the following ways: (1) when accessing application executables, libraries or config-
uration files, the access is redirected to the remote binary server; (2) when accessing
a local file containing input/output data, the access should not be redirected.

Because FVM is designed to redirect the access of a process running in a VM,
either to the host environment or to a VM’s private workspace, we can easily sup-
port the access redirections on a binary server client machine based on the FVM
framework. The basic approach is to associate a process started from an executable
on the binary server with a special VM, whose redirection logic is modified in the
way described above. To distinguish between accesses to local input/output data
and those to application-specific configuration data, one could monitor an appli-
cation’s installation process and record its configuration files, DLLs and registry
settings. The resulted application profile can then be sent to the client VM as a
redirection criteria. However this process is cumbersome and error-prone. To avoid
this profiling step, we use a simple redirection criteria. We notice that application
installation usually updates only a few directories such as the program directory
(C:\Program Files), the system directory (C:\Windows or C:\Winnt), the config-
uration directory for all users (C:\Documents and Settings\All users), and usually
modifies registry keys under ”HKLM\Software”. Users rarely store their personal
data in these locations. Therefore, the current shared binary server implementa-
tion simply redirects all accesses to these special directories and registry keys to
the binary server. Testings with a variety of Windows applications suggest that this
heuristic is reasonably reliable and effective.

5.4.3 Design and Implementation
The operating environment that a Windows application depends on includes

its binary program, configuration files, registry entries, environment variables and
COM/OLE components. When an end user machine executes a shared binary stored
on a central binary server, the FVM layer on the end user machine properly redi-
rects the shared binary’s accesses to its operating environment to the central server.
Because a VM share the same kernel of the end user machine, the current shared bi-
nary server does not support applications that require installation of kernel drivers.
Figure 5.6 shows the system architecture of the proposed shared binary server for
Windows-based end user machines.

Under the binary server architecture, users start an application by invoking the
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Figure 5.6: In the shared binary server architecture, all application programs are
installed on the binary server. The FVM layer redirects a shared binary’s accesses
to its operating environment to the central server.
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application’s executable file, which is stored on the binary server and accessible
to the client through remote file access/sharing protocol such as CIFS/SMB. We
intercept process creations on the end user machine, and creates a VM to host the
process if its executable image comes from the binary sever.

Because Windows supports remote file access through the Common Internet
File System (CIFS), redirecting file access is relatively straightforward. For exam-
ple, when a process accesses one of its libraries using a local path, say “C:\Program
Files\app.dll”, FVM redirects the access to the binary server by renaming the sys-
tem call argument to the UNC path “\\BinServ\C\Program Files\app.dll”, where
“BinServ” is the name of the binary server. In addition to application binaries,
FVM can also redirect loading of Windows system DLLs to the binary server by
intercepting system calls accessing memory-mapped DLL images. When system
DLLs are loaded from the binary server, we require the end user machines to run
the same OS kernel as the shared binary server. Additional administrative tasks
on the binary server, such as setting up account for authentication, sharing binary
server’s disk partitions with read-only access, and disabling administrative shares,
etc, are also required to implement this redirection mechanism. Discussion to these
issues are out of the scope of this dissertation.

Unlike files, remote registry access on Windows is implemented completely at
user space. Therefore, it is not possible to redirect registry accesses at the system
call interface by renaming the registry-related system call arguments. Ideally, we
should implement a registry access proxy in the FVM layer between the shared
binary VM and the binary server to redirect the registry access. The current bi-
nary server prototype uses a simple alternative: we export registry entries under the
”HKLM\Software” key on the binary server, and load these registry entries into
the VM that is set up to run shared binaries when the VM is first created. Conse-
quently, the shared binary VM has a local copy of all the registry entries associated
with applications installed on the binary server, and any registry access from the
shared binary VM is redirected to this local copy. We also periodically synchronize
a shared binary VM’s local registry entries copy with those on the central server to
reflect newly installed applications.

In addition to files and registries, applications can install environment variables
on the binary server. To allow an application running in a shared binary VM to
access its environment variables that are set up at the installation time, the shared
binary VM retrieves all the environment variables stored on the binary server and
merges them with environment variables of the local environment.

Finally, the shared binary server prototype also correctly redirects accesses
to Component Object Model (COM) components that shared binaries depend on.
There are two types of COM objects. One is called In-Process Object (In-Proc),
which is generally implemented as a DLL that an application process can load into
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its address space. Redirecting an access to an In-Proc COM object is thus the same
as redirecting accesses to DLLs. The other is called Out-Of-Process Object (Out-
of-Proc), which is implemented as a stand-alone executable that runs as a separate
process. An out-of-proc COM component allows multiple client processes to con-
nect to it. When an application process running in a shared binary VM accesses
an out-of-proc COM object, it should load the COM object from the binary server
into the application, regardless of any locally installed COM objects. To implement
this behavior, we assign a new Class Identifiers (CLSID), a globally unique identi-
fier, to each COM object accessed by applications running in a shared binary VM,
and perform the necessary mapping between the old CLSID and the newly created
CLSID during each COM object access. This mapping is maintained inside the
FVM layer which forces the system to load COM objects from the binary server
into the application process.

By redirecting file, registry and OLE/COM access to a remote binary server in
the FVM layer, the binary server VM allows users to use Windows applications
without installing them on the local machine. We have tested a few applications,
such as LeapFtp and Winamp, which cannot be started through the file sharing
interface unless running in the binary server VM. Please note that the shared binary
service does not aim at reducing software license charges by installing less copies
inside an organization. The application installed on the binary server should be
software with proper license control mechanism.

5.4.4 Performance Evaluation
Because most of the performance overhead of the shared binary server architec-

ture occurs at application start-up, we evaluate the performance of the FVM-based
shared binary server prototype by measuring the start-up time of six interactive
Windows applications in the following four different configurations:

• Local Installation and Execution (LIE): Applications are installed and exe-
cuted on an end user machine.

• Shared Binary Service with Local Data (SBSLD): Applications are installed
on a central server and executed on an end user machine with input/output
files stored locally.

• Shared Binary Service with Remote Data (SBSRD): Applications are in-
stalled on a central server and executed on an end user machine with in-
put/output files also stored on the central server.

• Thin Client Computing (TCC): Applications are installed and executed on
a central server, with execution results displayed on an end user machine
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through a Windows Terminal Service (WTS) session. Input/output files are
stored on the central server as well.

We use a test harness program to launch an application under test using the
CreateProcess() Win32 API, and monitors the application’s initialization using the
WaitforInputIdle() API. The start-up time of a test application corresponds to the
elapsed time between the moments when these two API calls return. To measure
the initialization time of a WTS session, we run a terminal service client ActiveX
control program on an end user machine. When a WTS session is successfully es-
tablished, this program receives a Connected event. The time between this event
and the time when the program first contacts the terminal server is the WTS ses-
sion’s initialization time. We use two machines in this experiment. The client
machine was an Intel Pentium-4 2.4GHz machine with 1GB memory running Win-
dows 2000 server and the shared binary server machine was an Intel Pentium-4
2.4GHz machine with 256 MB memory running Windows 2000 server.

Figure 5.7 shows the start-up time comparison among these four configurations
for the six test applications. The start-up overheads of the four configurations tested
are in the following order: SBSRD > SBSLD > TCC > LIE. In general, the amount
of file/registry access over the network determines the magnitude of the initializa-
tion overhead. For LIE and TCC, the amount of file/registry access over the network
is zero, and therefore their start-up times are smaller. Because TCC incurs an addi-
tional fixed cost (around 40 msec) of initializing a WTS session, its start-up time is
longer than LIE’s. Both SBSLD and SBSRD require access to the remote server for
configuration files, registry entries, DLLs and COM/OLE components, and there-
fore incur a substantially higher start-up overhead. In the case of SBSRD, it incurs
network access overhead even for input/output files and therefore takes longer to
start-up than SBSLD.

The overhead order among the four configurations is different for WinWord. In
this case, the start-up times of the four configurations are pretty close to each other,
LIE: 463 msec, SBSLD: 479 msec, SBSRD: 494 msec and TCC: 517 msec. The
reason that TCC exceeds SBSLD and SBSRD is because of its additional 40-msec
WTS session initialization cost.

The start-up time of WinAmp is much higher than that of other test applications
because the number of file access redirections is much higher (214) than others, as
shown in Table 5.2. In other words, WinAmp requires access to 214 executable
or configuration files, which are fetched from the binary server at the initialization
time. Therefore, the execution of WinAmp using a binary server incurs a much
larger start-up overhead than others. We believe a simple client-side caching mech-
anism may help significantly reduce this overhead. The large difference in SBSLD’s
and SBSRD’s start-up times for WinAmp arises from the large input file used in the
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Figure 5.7: The start-up time of six interactive applications, and the execution time
of three batch applications under four different test configurations.

Application Registry Redirections File Redirections
WinWord 996 62

PowerPoint 487 30
Excel 339 17

Acrobat Reader 152 55
WinAmp 397 214
Firefox 159 16

Table 5.2: The number of registry and file access redirected to the binary server
over the network during initialization for six interactive Windows applications.
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test of WinAmp, which is 5.2Mbytes in size.
In addition to interactive applications, we also measured the execution time

of three batch programs in the above four configurations. The batch program’s
execution time in the four configurations follows the same order as the start-up
time measurement for interactive applications, as shown in Figure 5.7.

5.5 Distributed DOFS
An enterprise has every incentive to protect its confidential documents from

untrusted parties. However, information theft is difficult to detect and prevent, es-
pecially for information theft by insiders who have authorized access to stolen doc-
uments. We have developed a Display-Only File Server (DOFS), which physically
isolates confidential documents from end users and redirects users to access these
documents through terminal services in a transparent way. However, this thin-client
computing design suffers from application compatibility and performance. In this
chapter, we describe how to leverage the FVM framework to support a distributed
DOFS system that distributes the computation to local CPUs.

5.5.1 Information Theft Prevention
Traditional solutions to prevent information theft are based on access controls

and content filtering. Standard access control techniques provided by the OSes are
not sufficient because they cannot prevent information theft by authorized users
who have legitimate access to the stolen information. Content filtering monitors
data transferred across an enterprise’s network boundary to detect possible confi-
dential information leakage. However, this technology is not effective with respect
to encrypted packets and is therefore mainly for accidental leakage rather than ma-
licious theft.

Digital Rights Management (DRM) [88, 89, 90] protects an enterprise intel-
lectual property by encrypting a protected document and associating fine-grained
access rights with the document. Typical rights include whether editing is allowed,
when the rights expire, how the rights are transferred, etc. DRM systems tightly
integrate encrypted documents with their access rights. When a DRMed document
is accessed, the DRM client software decrypts the document, interprets the access
rights, and authorizes proper document usage according to the specified rights. To
effectively safeguard sensitive documents from unauthorized usage, the DRM client
software still needs to integrate with tamper-resistent mechanisms to protect itself
from motivated attackers. Because the high-level access rights are beyond the OS’s
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access control mechanism, DRM client software needs to be implemented as a plug-
in for a standard document viewing application, such as WinWord, PowerPoint or
AutoCAD, and therefore requires expensive customization.

Multilevel Security (MLS) systems label protected data and the accessing pro-
cess, and ensure that no process may read data at a higher level, and that no process
may write data to a lower level (the Bell-LaPadula model [91]). MLS systems are
mainly used in military and government agencies, and are involved with more com-
plicated access control policies. However, most commodity applications are not
designed to assign or interpret security labels, and thus they have to be modified or
rewritten to run on an MLS operating system. The Purple Penelope [92] is a MLS
wrapper for Windows NT OS from the British Defense Evaluation and Research
Agency. It allows unmodified applications to label files in a private file store, and
to export files to a publicly shared file store. The label can be assigned to both files
and clipboard data. Relabeling a labeled file follows a “trusted path” that requires
the user’s explicit confirmation.

A different solution to protect confidential documents against information theft
is to prevent contents of confidential documents from physically residing outside
specific servers, while allowing authorized users to access them as if they are stored
locally. Sensitive files and clipboard data can be moved in the direction from end
user machines to the servers, but not in the reverse direction. We have developed
such a system called Display-Only File Server (DOFS) [12] using a thin client com-
puting infrastructure.

5.5.2 Display-Only File Server (DOFS)
The display-only file server architecture stores confidential documents in remote

file servers, and guarantees the following invariant: Once a document is checked
into a DOFS server, the document content can never physically leave the server.
Users authorized to access a document are granted a ticket that gives them the right
to interact with that document but not the ability to access the document’s bits.
When a user clicks on a ticket on her local machine, the DOFS client invokes a
proper application on the corresponding document in a terminal service session on
the DOFS server, which displays the application’s execution result on the user’s
desktop machine so the user can still access the document in the usual way. This
architecture is named as “display-only file server” because its file servers can only
export display but not file content to the users.

Figure5.8 is the software architecture of the DOFS system. The DOFS server
consists of a DOFS manager, a DOFS file protection driver, and a DOFS firewall.
The Server File System Driver (Server FSD) is Windows’ Common Internet File
System (CIFS) server, which allows a Windows server to share files to end users.
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Figure 5.8: In the DOFS architecture, confidential documents are stored in a central
DOFS server, and are rendered by processes running in a terminal session on the
DOFS server.

We use the DOFS file protection driver to intercept the file operation requests to the
server FSD. The DOFS file protection driver only allows client machines to copy
files to the server file system or list the files. When a client machine reads a file from
the DOFS server, the file protection driver returns a DOFS link similar to Windows
file shortcut to the client. Therefore, the file protection driver guarantees that no
real file contents from the DOFS server can leave the server. The DOFS firewall
further restricts the protected files from leaving the server through other channels
such as FTP and HTTP.

The DOFS client consists of a DOFS client agent and a DOFS screen capture
blocker. The DOFS client agent communicates with the Windows Explorer process.
Whenever the Windows Explorer process accesses a file stored on the DOFS server
or accesses a DOFS link, the DOFS client agent takes control and launches a termi-
nal service session to access the file on the DOFS server. After the terminal server
client connects to the terminal server, the DOFS client agent sends a request to the
DOFS manager to open the file through the terminal server session. The DOFS
client agent can also allow clipboard data changes to be synchronized to a DOFS
server application, thus enabling copy-and-paste from the DOFS client to the DOFS
server. The screen capture blocker prevents client machines from taking a screen
shot of the terminal service sessions used for DOFS file access.
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A major weakness with the DOFS architecture is its reliance on the thin client
computing architecture, which has both compatibility and scalability issues for cer-
tain applications. One idea is to distribute the DOFS server’s execution environ-
ment to the clients so that document viewing applications physically run on the
client machines but logically belong to the central DOFS server. More concretely,
we distribute the centralized DOFS architecture by running a DOFS-VM on each
client machine, and ensuring that each such DOFS-VM is administratively part of
the central DOFS server. Because FVM provides an execution environment that is
isolated from the rest of the host machine, we use the FVM framework to create
and control the proposed DOFS-VM.

5.5.3 Design and Implementation of D-DOFS
The distributed DOFS architecture differs from the original DOFS in that the

contents of confidential documents will physically come to the end user machine
when users access them. To prevent the protected contents from being leaked onto
the end user machine, the distributed DOFS should satisfy the following four re-
quirements:

• Contents of confidential documents are encrypted on the fly when they leave
the DOFS server, and are decrypted by the FVM layer. As a result, processes
running outside of a DOFS-VM cannot get the decrypted content. Even if an
attacker inserts a kernel module below the FVM layer, she still cannot decrypt
the encrypted content.

• Processes running in a DOFS-VM can read from the local host environment,
but any write operations to files and registry entries are redirected to the VM’s
workspace, which physically reside on the central DOFS server. In particu-
lar, file contents being written are encrypted by the FVM layer again before
passing down to the lower-level driver or the network.

• Communication channels between the DOFS-VM and the host environment
are largely blocked. The VM has no network access to other machines ex-
cept to the central DOFS server. Processes outside of the VM are not allowed
to observe the state of processes running in this VM, using approaches like
reading the process address space, accessing clipboard data filled by VM pro-
cesses, or installing global hooks in this VM.

• Processes running in a DOFS-VM, and higher-level drivers above the FVM
layer can see the decrypted content. Therefore, we must prevent attackers at
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Figure 5.9: In the distributed DOFS architecture, confidential documents are stored
in a central DOFS server, and are rendered by processes running in a special DOFS-
VM on the user’s machine, which is considered a logical extension of the DOFS
server.

the two levels from using interfaces not confined by the FVM layer, such as
a new system call, to capture the file content.

We assume that the FVM layer is not tampered by attackers on end user ma-
chines, and the key exchange and key storage are secure. Therefore, the above
D-DOFS architecture design based on the FVM framework can effectively protect
confidential document contents against information theft in an untrusted end user
environment.

The system architecture of the distributed DOFS is shown in Figure 5.9. When
an application running in a DOFS-VM reads a confidential file from a distributed
DOFS server, the server first encrypts the requested file to prevent it from being
leaked on the network. The Windows server’s File System Driver (FSD) uses the
TCP SendData API in the TCP/IP driver to send file contents back to the request-
ing client machine. We built a Transport Driver Interface (TDI) filter driver called
DOFS send encryptor to intercept this API and encrypt the outgoing file contents
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using keys created by the DOFS key generator. At the client side, after FVM re-
ceives a file, it invokes the DOFS read decryptor to decrypt the data before forward-
ing it to the application. When an application running in a DOFS-VM writes data to
a file, FVM invokes the DOFS write encryptor to encrypt the data. The server FSD
uses the TDI Event Receive API to receive data from a client machine, and invokes
the DOFS receive decryptor to decrypt the data. The encryption and decryption key
used in a file access is generated on the fly. When an application at the client side
needs to open or create a file on the DOFS server, the DOFS key generator on both
the client and the DOFS server invoke the Diffie-Hellman key exchange algorithm
[93] to generate a key for encrypting and decrypting the file.

To prevent an application running in the DOFS-VM from saving the decrypted
data to the local machine, whenever the DOFS-VM is created to host the appli-
cation accessing a confidential document on a DOFS server, the VM’s workspace
directory for files are initialized to a temporary directory on the DOFS server. This
mechanism allows an application to use local configuration files or temporary files,
but forces the application to save any file contents to the remote DOFS server in-
stead of the local machine.

The FVM layer is modified to intercept NtReadFile and NtWriteFile in order
to perform file decryption and encryption. As a result, lower-level kernel modules
below the FVM layer only see encrypted file content. However, if an attacker in-
tercepts the two system calls with a driver sitting on top of the FVM layer, she
can access all decrypted data and directly create I/O request packet to write the de-
crypted data into the local host machine. To ensure no other drivers can intercept
the two system calls after the FVM layer is loaded, each time before we perform
file encryption and decryption, we verify if the system call table entries point to
our intercepting functions inside the FVM layer. If the two system call table entries
point to functions in other drivers, FVM will not perform the file encryption and
decryption.

A malicious application running in the DOFS-VM can also save the decrypted
data locally with support of certain malicious kernel drivers. An attacker can install
a new system call with a kernel driver, or install a malicious kernel driver that
communicates with the malicious application in the DOFS-VM. Therefore, once
the malicious application gets decrypted data, it can use the new system call or
communicate with the malicious driver to save the decrypted data locally, bypassing
the sandbox of the FVM layer. There are two possible solutions to this type of
attack. The first solution is to ensure that only certified applications can run in a
DOFS-VM. Assuming the checksum of each certified binary is stored in a database,
each time when a DOFS-VM launches an application, it verifies the checksums of
all the needed binary files against the checksums stored in the database. However,
this approach is expensive in maintaining the checksum database. Currently we use
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the second approach, in which FVM intercepts the system call dispatch routine, and
rejects any system calls that are not defined in the original Windows OS. FVM also
prohibits applications from communicating with unknown kernel modules using the
NtDeviceIoControlFile system call.

5.5.4 Performance Evaluation
To evaluate the performance overhead of applications running under the dis-

tributed DOFS architecture, we measure the start-up time of six interactive Win-
dows applications in the following four different configurations:

• Local execution on remote files: applications run on the testing machine and
open protected files on a remote server.

• D-DOFS execution on plain remote file: applications run in a DOFS VM on
the testing machine and open remote protected files.

• D-DOFS execution on encrypted remote file: same as the second configura-
tion except that the remote file is encrypted at the server and decrypted at the
client.

• Execution under original DOFS. In this configuration, we install the DOFS
server program on the testing machine, and measure the application start-up
time from another machine where the DOFS client program is installed. The
measured time is the start-up time of applications running in a terminal ser-
vice session on the testing machine, plus the Terminal Server’s connection
time and the communication latency between the DOFS client and the DOFS
server. This configuration ensures that applications run on the same CPU as
the other three configurations. However, the original DOFS architecture re-
quires the protected files reside on the DOFS server, so we copy the protected
files onto the testing machine.

We use a Dell Dimension 2400 machine with an Intel Pentium-4 2.66GHz CPU
and 1GB memory as the testing machine, and a Dell PowerEdge 600SC with an
Intel Pentium-4 2.4GHz CPU and 256 MB memory as the remote server hosting
protected files. We run the same set of applications as in the evaluation of the shared
binary server application on a set of protected files. The measurement results are
shown in Figure 5.10.

The distributed DOFS architecture introduces a small additional overhead (be-
low 15%) to the applications’ start-up time, which comes from FVM’s virtualization
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Figure 5.10: The start-up time of six interactive applications that operate on pro-
tected files under four different configurations. The performance overhead under
the D-DOFS architecture is below 15%.

overhead and on-the-fly file encryption/decryption. The latter usually has an addi-
tional overhead below 8%. The start-up time under the original DOFS architecture
is typically the largest among the four configurations, because of the overhead of
communications between the DOFS client and the DOFS server. The only excep-
tion is WinAmp, where a large audio file of 10MB is used in the test. Because the
audio file is placed on the same machine as the WinAmp application in the ”original
DOFS execution” configuration, the overhead of transmitting the large file over the
network only shows up in the other three configurations and substantially increases
their start-up times.



Chapter 6

Conclusion

6.1 OS-level Virtualization on Windows
OS-level virtualization technologies place the virtualization layer at the OS level

by intercepting OS system calls, system libraries or I/O requests. User processes
running on top of the layer are partitioned into different groups, each of which rep-
resents a logical VM and is given an isolated execution environment. The main
idea to present multiple VMs on the same OS kernel is namespace virtualization,
which assigns every VM its local namespace by renaming the target of an access
request. To minimize each VM’s resource requirement and to improve the scalabil-
ity, a VM can share a base execution environment from the host machine, including
files and configurations. The VM then evolves with a copy-on-write mechanism
from the base environment. Because the VM environment provides one-way isola-
tion, untrusted processes in the VM can never compromise the integrity of the host
machine or other VMs. To achieve strong isolations in a VM, communications to
other VMs or device drivers are blocked according to a configuration policy. Re-
source constraints are also associated with every VM to prevent service denial to
the host machine or other VMs. Because OS-level VMs are running on a single OS
kernel, they usually have smaller execution latencies, smaller resource requirement
and higher scalability than most hardware-level virtual machines.

The Feather-weight Virtual Machine (FVM) is an OS-level virtualization imple-
mentation on Microsoft Windows OS. The main technical challenges in building
FVM are the following: (1) There are many different types of OS objects that should
be virtualized, such as kernel object and window management. We must identify
and virtualize most if not all of them in order to achieve a reasonably accepted
isolation. (2) There are various communication interfaces that should be confined
under the scope of a VM, such as window message, hooks and daemon process
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management. Without this step, different VMs can still communicate with each
other without being isolated. (3) The Windows system call interface is not directly
used by Win32 applications, and some system calls are even undocumented. We
have implemented the FVM prototype on Windows 2000 and XP. We expect it to
be extended to recent 32-bit Windows OS with small changes. The isolation testing
and performance measurement demonstrate that processes running in a VM can be
well isolated from other VMs and the host environment, and the performance over-
head is typically less than 15%. As a result, the FVM architecture can be used as
a flexible platform for security-related applications that require frequent invocation
and termination of a large number of “playground” VMs.

A major contribution of the FVM architecture is that the FVM layer identi-
fies and virtualizes most system components on the Windows OS, and provides a
fully workable platform that supports a large number of OS-level VMs on a single
physical machine. Each VM is effectively isolated from other VMs and the host
environment. To achieve strong isolations over a single Windows kernel, extensive
researches and investigations have been performed to recognize various commu-
nication channels on Windows. We hope the dissertation can provide researchers
and developers a clear picture of how a comprehensive OS-level VM architecture is
accomplished on the Windows platform, and promote more novel system develop-
ment on this platform. The strong isolations in FVM enables the FVM framework
to be used as a powerful foundation for many security-related applications. In ad-
dition, the interception techniques used in FVM are applicable to other systems
requiring an additional layer between the applications and the Windows OS kernel.
Because Windows is the operating system used by majority users, we believe that
applications based on FVM can create many practical solutions to address issues in
system security, privacy and reliability.

6.2 FVM’s Applications on Security and Reliability
We have applied the basic FVM framework to a few applications that aim at

improving system security and reliability for both end users and system adminis-
trators. Today’s enterprises and organizations always face the threat of malware
infection and information theft. In addition, application deployment and mainte-
nance in a distributed personal computing environment are often a costly task. To
resolve these problems, we present the design and implementation of secure mobile
code execution service, distributed Display-Only File Server and shared binary ser-
vice for application deployment. The customization of the FVM framework to fit
these applications are straightforward.
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Vulnerability assessment proactively scans network services to identify vulner-
abilities before they are exploited by the attackers. A well known problem with
vulnerability scanning is that vulnerability scanners may cause adverse side effects
to the network services being scanned. To resolve the safety concern, we developed
the VASE system to scan duplicated network services in a VM, thus confining any
side effects within disposable VMs.

Malware researchers can use crawler-based approach to scan the internet and
hunt for malicious web sites. The maliciousness of a web site is determined by
monitoring web browsers’ behaviors inside a VM. Given the large number of test
sites, the scalability and scanning throughput of a web site testing system become
significant. Therefore, we developed a scalable web site testing system with high
scanning throughput based on the FVM framework.

6.3 Future Work

6.3.1 Live Migration
One future work of the FVM framework is to study how to correctly implement

checkpoint/restart of a VM in order to support live migration. Live migration helps
to move an active VM from one physical machine to another, and to maintain the
active states of processes in the VM during the migration. There are two basic re-
quirements in migrating a set of processes in a VM: (1) certain resource names used
by processes in a VM should be virtual names, such as a process ID, a thread ID,
or an object handle. FVM is responsible for maintaining the mappings between the
virtual name and the physical name, and update the mappings on the destination
machine of the migration. (2) state of processes should be captured as much as pos-
sible, including thread context, heap, static data and kernel states. Typically, states
stored in the process address space are easy to be captured. However, every process
has certain states stored in the kernel, such as opened file objects. How to com-
pletely recover these kernel states on the destination machine remains a challenge.
One approach is to log the complete set of system calls on the source machine, and
to replay the system calls in the log on the destination machine.

When a VM is checkpointed, we stop all processes in the VM, save the virtual-
physical mappings, and capture process states. In addition, file and registry in the
VM’s workspace, and the VM’s configurations, are also saved. On another physical
machine that has an identical operating system and base environment, the VM can
be restarted by creating a VM with the same workspace and configurations, creat-
ing the same set of processes in suspended mode, resetting all the process states,
creating new virtual-physical mappings and finally starting all the processes.
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6.3.2 Portable Computing Environment
As introduced in Chapter 2, a portable computing environment allows users to

carry their applications and data in a portable storage device, and to use the included
applications and data on any PC with a virtualization layer installed. We plan to
apply the FVM framework to support such an application. In fact, the architecture
of this application is similar to the architecture of the shared binary service and the
distributed DOFS described in Chapter 5. The only difference is that the application
environment and protected personal data are located on a removable hard drive
instead of on a network drive.
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Appendix - FVM Source Code
Organization

The current FVM prototype works on Windows 2000 and Windows XP oper-
ating system, and has been tested with many popular interactive applications, such
as Microsoft Office, Adobe Acrobat and Internet Explorer, and a few applications
running as daemon processes, such as Apache web server and MySQL server. The
FVM’s source code can be divided into three main components: the FVM kernel
driver, the FVM user daemon/library, and the FVM user interface.

FVM Kernel Driver
The FVM kernel driver’s code is under the fvmDrv folder. The driver code

provides VM-related data structures and utility functions, and implements virtu-
alization to file, registry and kernel object. It is built with Driver Development
Kit (DDK) or the recent Windows Driver Kit (WDK). The generated driver binary
hooksys.sys should be copied to \SystemRoot\system32\drivers\.

FVM User Daemon/Library
The user-level component includes the following modules:

• The FVM daemon under the UserHook\fvmserv folder. It implements the
background daemon process that is responsible for loading the FVM driver
and loading the user-level interception DLLs. The generated binary is fvm-
serv.exe.

• The Win32 API interception DLL under the UserHook\fvmdll folder. It inter-
cepts Win32 API calls related to window and message to confine such IPCs
in the scope of a VM. It also implements virtualization to daemon processes.
The generated binary is fvmdll.dll.
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• The window title renaming DLL under the UserHook\fvmwin folder. This
DLL appends a VM name to the title text of a window running in a VM. The
generated binary is fvmwin.dll.

• The Layered Service Provider (LSP) DLL under the UserHook\lsp folder.
The code is based on the sample code provided by [51], and is compiled using
the nmake command. It intercepts a few Winsock APIs to isolate the network
subsystem in FVM. The generated binaries are inst lsp.exe and lsp.dll The
lsp.dll should be copied to \SystemRoot\system32\.

FVM User Interface
The FVM user interface’s code include the FVM management console under the

FVM UI\fvm folder, and the FVM shell under the FVM UI\fvmshell folder. The
management console’s code implements a management GUI to support all the VM
operations such as creating or deleting a VM, and the FVM shell’s code provides
a simple file browser in each VM, which is used to browse a VM’s file system or
launch application programs. The generated binaries are fvm.exe and fvmshell.exe,
respectively. To ensure they can be launched successfully on a test machine, a few
runtime libraries of the Visual C++ compiler should be copied to the same folder as
the two binaries.

FVM Usage
All the generated FVM binaries, unless explicitly specified, should be placed

under one folder on the physical machine. Users can start FVM in the following
three steps:

1. Run “fvmserv.exe -i” to install and start the FVM service and driver (“fvm-
serv.exe -r” to stop and remove);

2. Run “inst lsp.exe” to load the LSP DLL (run it a second time to unload);

3. Run “fvm.exe” to start the FVM management console.

After the FVM management console is started, we can perform various FVM
operations. In a started VM, we can use the FVM shell to browse the file system, to
open files, to create application shortcuts, or to launch application programs.
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