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Abstract of the Dissertation

Simulation-Based Sequential Bayesian Filtering with
Rao-Blackwellization applied to Nonlinear Dynamic State

Space Models

by

Mahsiul Khan

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2009

Stochastic models are used to describe many real world random processes

which necessitate the extraction of hidden (unobserved) states (signals) from

noisy observable (measured) outputs. We consider a class of nonlinear dynamic

state space models which contain conditionally linear and unknown static pa-

rameters. For tracking the a posteriori distribution of the hidden states of

this type of models, one can apply particle filtering, which is an increasingly

popular method in many fields of science and engineering. It is based on the

Bayesian methodology and approximations of the distributions of interest with

random measures composed of samples (particles) from the space of the states

and weights associated to the particles. Particle filtering performs tracking of

the desired distributions as new observations are made by modifying the ran-

dom measure, that is, the particles and the weights. We address the appli-
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cation of particle filtering with the use of the Rao-Blackwellization principle.

Rao-Blackwellization reduces the variance of estimators, and it is based on the

Rao-Blackwell theorem. In the context of particle filtering, Rao-Blackwellization

allows for integration of the conditionally linear unknowns thereby decreasing

the dimension of the sampling space of the particles. One novelty in this disser-

tation is the implementation of Rao-Blackwellization by employing the implied

integration method. Another novelty is the use of the approach on the standard

stochastic volatility model and regime-switching stochastic volatility model. The

latter model generalizes the former by allowing changes of the model parame-

ters at unknown instants of time. All the models are nonlinear and contain

conditionally linear parameters. Simulated datasets are used to compare the

performances of our algorithms with popular ones based on the Liu and West

method. Both the classical and auxiliary particle filtering algorithms are ap-

plied. We demonstrate that our particle filtering algorithms outperform the

ones based on the Liu and West method.
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Chapter 1

Introduction

1.1 Preliminaries

Understanding of many natural phenomena could only be possible with the use of

stochastic processes. The mathematical appeal of the theory of stochastic processes and

its range of applications in science and engineering has made it one of the cornerstones for

solving many difficult problems. In deterministic processes, there is no uncertainty in their

future behavior, and they are well defined by mathematical expressions such as differential

equations. On the other hand, the future of observed realizations of stochastic processes is

uncertain, which is why it is modeled by probabilistic functions. Most real-world processes

are stochastic in nature, and frequent objective in their study has been the analysis of their

statistical properties so that one can perform estimation or prediction of the processes. The

past two decades have seen an outstanding development of methods for studying stochastic

processes. Many of these methods are based on computer simulations, which is due to the

unprecedented growth of computing power in that period.

Real world processes such as natural systems, biological systems, communication sys-

tems, and economic systems generate observable outputs or data which can be characterized

as signals. The signals can be categorized as functions of time (such as communication sig-

nals) or as functions of space (such as pixels of an image). The signals can be discrete in

nature (such as binary coded bits) or continuous in nature (such as speech signals), and the
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signals can be stationary or nonstationary. Most often, the signals of interest are not ob-

served directly, and they are treated as stochastic in nature. Therefore, for their extraction,

estimation, and prediction, one employs stochastic models. One big class of such models

is known as dynamic state-space (DSS) models, which is also known as a class of Hidden

Markov Models (HMMs) (Rabiner, 1989; Rabiner and Juang, 1993).

DSS models are composed of two sets of equations, a state equation and an observation

equation. The state refers to the unobserved component that dynamically evolves over

time, whereas the observation is a random quantity that depends on the current state. In a

filtering problem, the objective is to have sequential inference of the hidden states based on

the available observations. Initially, DSS models were introduced as linear-Gaussian state-

space models (Kalman, 1960; Anderson and Moore, 1979; Harvey, 1981; West, 1997). For the

linear-Gaussian models with analytic (closed form) solutions, the Kalman filter (Kalman,

1960) provides the optimal solution. The solution is in the form of a recursive calculation

of the means and covariances of the posterior distributions of the unknowns. Most complex

systems are nonlinear and non-Gaussian in nature, and they do not have analytic solutions,

and therefore the Kalman filter is not suitable for them. For these problems, traditional

solutions have been based on extensions of the Kalman filter, such as the extended Kalman

filter (Anderson and Moore, 1979) and the Gaussian sum filter (Sorenson and Alspach, 1971;

Alspach and Sorenson, 1972). Often they have yielded poor results especially in presence

of high nonlinearities. An alternative is to apply grid-based methods with deterministic

numerical integration schemes, but they are difficult to implement when the dimension of

the unknowns is high and computationally too expensive. Yet another group of methods

relies on Monte Carlo sampling, and they can be traced back to the early 1950s (Metropolis

and Ulam, 1949) (later generalized in Hastings (1970)). Due to the advances of computing

power, and with the work presented in (Gelfand and Smith, 1990), and the rediscovery of the

contributions of Metropolis and Hastings (Metropolis-Hastings algorithm), Markov Chain

Monte Carlo (MCMC) methods have been widely applied in the mainstream statistics, and
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in almost every applied area of science. The MCMC “revolution” in the last 20 years has

allowed for penetration of Bayesian statistics to new areas because the new methods virtually

provide a universal tool for dealing with high dimensional integration and optimization

(Cappe and Robert, 2000). The MCMC, in general, is considered quite efficient for batch

data (non-sequential) processing, and the Gibbs sampler (Geman and Geman, 1984), one of

the popular schemes of MCMC sampling, is viewed as very efficient for estimating posterior

distributions.

Many real world problems can be formulated by using DSS models including problems

in signal processing, radar, communications, computer vision, and economics. In these

problems it is assumed that observations arrive sequentially in time and one requires real-

time estimation and prediction of the signals. For this kind of dynamic processes, which may

be highly nonlinear and non-Gaussian, the states are unobserved. The MCMC methods are

not well suited for sequential estimation and/or prediction of states due to their possibly

slow convergence.

In the past 15 years, for studying nonlinear and/or non-Gaussian systems, a new class of

filters has gained high popularity. It is due to their efficiency and wide range of applications.

This class of filters is known as Particle Filtering (PF) or Sequential Monte Carlo (SMC)

methods. These algorithms allow for sequential estimation of the posterior distributions

of the unknowns at each time instant. Under the Bayes’ rule, the algorithms sequentially

approximate the posterior distributions by discrete random measures generated by Monte

Carlo (MC) sampling. The PF is well suited for sequential real-time estimation/prediction

of dynamic states, where the parameters are often assumed known or evolve dynamically

as states. However, when the parameters are unknown and are static (that is, they are

constants), PF becomes a challenging problem. Jane Liu and Mike West have introduced a

PF algorithm which sequentially estimates dynamic states and constant parameters simul-

taneously (Liu and West, 2001). The algorithm has been widely used and is based on an

adaptive importance sampling technique combined with a weighted kernel density method
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for approximating the posterior distributions (West, 1992, 1993a,b).

As pointed out previously, for the PF, it is quite challenging to estimate the poste-

rior/predictive distributions of the unknowns when the unknowns contain static (constant)

parameters. Hence, there has been necessity for the development and implementation of

efficient sequential filtering algorithms for this type of models. In this dissertation, we

address the DSS models with unknown constant parameters by exploiting the concept of

Rao-Blackwellization (RB) (Casella and Robert, 1996; Liu and Chen, 1998; Doucet et al.,

2000; Storvik, 2002; Maskell, 2004). RB is a neat scheme that is based on analytically

integrating out some of the unknowns conditioned on the remaining unknowns. It is based

on Rao-Blackwell theorem, which maintains that there is a reduction of the variance of an

estimator on application of RB. Its implementation in the context of PF contributes to the

reduction of the dimension of the sampling space and therefore to an improved accuracy

of the estimation. The objective of the proposed work is to establish an efficient method

for implementing sequential filtering algorithms. In our work, we implement the RB by

invoking the implied integration method. As application examples, we have investigated a

class of stochastic volatility (SV) models with static parameters, where the reduction of

the sampling spaces contributes to significant reduction of the particle size (sample size),

and consequently the reduction in the variance of the estimates, and hence, improved over-

all performance. Recently, these models have been studied by PF, but to the best of our

knowledge, the RB method has never been applied to them.

1.2 State Space Models with Constant Parameters

In most problems with DSS models, the interest is in extracting the dynamic hidden

states of the model, and if it has any constant parameters, they are assumed known. How-

ever, there are many real-world problems where the parameters are unknown. In addition,

the observations arrive sequentially in time, and one needs real-time sequential estimation

and/or prediction of the hidden states. As already pointed out, the widely used and popular
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MCMC algorithms have been successfully applied for estimation of the hidden states and

unknown static parameters for off-line setup (Liu, 2001), and in general, they are not suit-

able for sequential real-time estimation. For these types of problems, there are not many

sequential filtering algorithms. A PF algorithm that has been popular among researchers

are based on the ideas from (Gordon et al., 1993) (West, 1992, 1993a,b), and is presented

in (Liu and West, 2001). That algorithm provides simultaneous and sequential estimates of

the hidden states and the static parameters.

The generic form of the DSS models can be presented by two probability distribution

functions (PDFs) as follows:

xt ∼ p(xt|xt−1,θ) (state distribution) (1.1)

yt ∼ p(yt|xt,θ) (observation distribution) (1.2)

where t is a discrete time index, xt ∈ R
nx is the hidden state at time instant t, yt ∈ R

ny

is the observation at time instant t, and θ ∈ R
nθ is an unknown parameter vector, which

is static and often considered as nuisance. In addition, p(xt|xt−1,θ) is the state transition

distribution, and p(yt|xt,θ) is the observation distribution, both often being non-Gaussian.

An alternative way of describing the DSS model is by using the following sets of equations:

xt = f(xt−1,ut,θ) (state equation) (1.3)

yt = g(xt,vt,θ) (observation equation) (1.4)

where t, xt, yt, and θ have the same meaning, ut ∈ R
nu and vt ∈ R

nv are the state

noise and observation noise processes, respectively, and f : R
nx × R

nu × R
nθ → R

nx and

g : R
nx ×R

nv ×R
nθ → R

ny are the state transition and observation functions, respectively.

In this dissertation, we assume that at least one of the above functions are nonlinear. Our

main objective is to obtain sequential inference of the hidden states xt from the marginal

filtering distribution p(xt|x0:t−1,y1:t),
1 in the presence of unknown static parameters θ.

1The notation x0:t−1 signifies x0:t ≡ {x0,x1, · · · ,xt}.
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The DSS models as described above have become very powerful for modeling dynamic

systems. They have been used in a wide ranging of applications including communication

and signal processing, econometrics and financial modeling, target tracking and missile

guidance, terrain navigation, computer vision, robotics, industrial process control, neural

networks, machine learning and biology.

1.3 Particle Filtering

We reiterate that if the state-space models are linear and Gaussian with analytic solu-

tion, the well known Kalman filter (Kalman, 1960) is the optimal solution for tracking the

unknown states. However, most real world dynamical systems are nonlinear and possibly

non-Gaussian. Approximating such systems with linear-Gaussian models, and the use of

Kalman filter often provide poor estimates. The various extensions of the Kalman filter,

such as the extended Kalman filter (Anderson and Moore, 1979), and the Gaussian sum

filter (Sorenson and Alspach, 1971; Alspach and Sorenson, 1972) have often been used for

studying nonlinear and non-Gaussian systems. The extended Kalman filter linearizes the

nonlinear functions by using Taylor series expansion, and then follows up with the use

of the standard Kalman filtering method, and the Gaussian sum filter approximates the

non-Gaussian distribution by the sum of Gaussian distributions. These two methods often

provide poor results if the systems are highly non-Gaussian and nonlinear. The Grid-based

methods (Kitagawa, 1987) with deterministic numerical integration can give good estimate,

but they are computationally very expensive and difficult to implement for higher dimen-

sion.

In the last two decades, there has been an explosion of scientific papers on MC-based

simulation methods that employ the Bayesian methodology. The Bayesian methods have

proved to be quite effective for recursive estimation of hidden states of DSS models.2 In

most problems of interest, prior knowledge about the unknowns of the model is available.

2The Kalman filter can also be interpreted as a Bayesian method.
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The data modify the prior knowledge through the likelihood function, and the result of the

modification is the posterior PDF of the unknowns.

Thus, all information of the unknowns is captured by the posterior PDF, and therefore,

our main objective is to get an estimate of it (Box and Tiao, 1992; Doucet et al., 2001).

The transition from the prior to the posterior PDF is given by

p(x0:t|y1:t,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y1:t|x0:t,M)

prior︷ ︸︸ ︷
p(x0:t|M)

p(y1:t|M)︸ ︷︷ ︸
evidence

(1.5)

Where the notation y1:t ≡ {y1 · · · yt} is the observation series, x0:t is the unknown hidden

state sequence and M denotes the assumed model. Often, observations arrive sequentially

in time, and it is our interest to obtain on-line (real-time) sequential inference about the

unknowns. Therefore, it is necessary to update the posterior PDF as the new observations

become available. In mathematical terms, our objective is to get an estimate of the poste-

rior PDF p(x0:t|y1:t) recursively in time, and obtain one of the important marginal PDF,

the filtering distribution p(xt|y1:t) from this posterior PDF. PF or SMC (Gordon et al.,

1993; Doucet et al., 2001; Arulampalam et al., 2002; Maskell, 2004; Djuric and Bugallo,

2009) methods are a set of MC-based simulation algorithms, which sequentially estimate

the posterior PDF. For nonlinear and/or non-Gaussian DSS models, PF has shown to out-

perform other existing methods. The central idea of the PF is to represent the posterior

PDF with a random measure, composed of a set of random samples, also called particles,

and their associated weights (Carlin et al., 1992; West, 1992; Muller, 1991). In generating

the random samples and computing their weights, one exploits the concept of importance

sampling (Rubin, 1988; Geweke, 1989).

The full posterior distribution is expressed with the random measure as follows:

p(x0:t|y1:t) ≈
N∑

i=1

wi
tδ(x0:t − x

i
0:t) (1.6)

where xi
0:t, and wi

t, i = 1, 2 · · · , N are the particle streams and their weights, respectively,

and δ(·) is the Dirac delta function. We note that the particles xi
t are generated by an
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importance function. As the number of particles tends to infinity, the random measure,

under some given conditions, tends to almost surely to the posterior PDF (Crisan and

Doucet, 2002). With a recursive importance function, one can show that the weights are

updated according to

wi
t ∝ wi

t−1

p(yt|x
i
t)p(xi

t|x
i
t−1)

q(xi
t|x

i
0:t−1,y1:t)

(1.7)

where p(·) is a generic posterior distribution and q(·) is a generic importance function.

The function q(·) is chosen such that the support of q(·) contain the support of p(·) i.e.,

supp(q) ⊃ supp(p).

1.4 Rao-Blackwellization on State Space Models

RB (Casella and Robert, 1996; Liu and Chen, 1998; Doucet et al., 2000; Storvik, 2002;

Maskell, 2004) allows for improved estimation of unknowns based on the Rao-Blackwell

theorem (Lehmann, 1991). The application of RB reduces the variance or the uncertainty

of the estimate, that is, it improves the accuracy of the estimates. For stochastic modeling,

most of the MC-based simulation methods approximate a posterior PDF of a state vector,

which may be of high dimension. Updating the posterior PDF, the necessary integrations

which cannot be carried out analytically are performed by the MC method. Clearly, if

we had analytic integrations, there would be no errors in the integration, whereas any

stochastic integration by its nature introduces errors. We consider a class of DSS models

with dynamic states and with unknown static parameters, which are conditionally linear

given the nonlinear states. In particular, we work with a model where the state equation is

linear in the static parameters given the state of the model.

Our objective is to develop a filtering algorithm for Rao-Blackwellized state space models

for sequential estimation. Since the parameters are nuisance to the models, the application

of RB integrates out the parameters, which consequently reduces the dimension of the

sampling space. With the reduction of the unknown sampling space, the approximation of

the posterior PDF improves considerably for a fixed number of particles (Evans and Swartz,
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2000). The latter implies that we would need a smaller set of particles to approximate the

posterior PDF for good accuracy, implying the reduction in computations and their cost.

Hence, RB leads to many favorable outcomes, and should be applied whenever possible.

In implementing the RB on the parameter space of the DSS models as defined in the

previous section (1.1-1.2), we need to integrate out the conditionally linear parameters θ.3

Formally, the marginalization in the state equation is carried out according to

p(xt|x0:t−1) =

∫

θ
p(xt,θ|x0:t−1)dθ

=

∫

θ
p(xt|θ,x0:t−1)p(θ|x0:t−1)dθ (1.8)

and likewise, the marginalization of the likelihood by

p(yt|x0:t) =

∫

θ
p(yt,θ|x0:t)dθ

=

∫

θ
p(yt|θ,x0:t)p(θ|x0:t)dθ. (1.9)

The implementation of the RB method requires that the integrals obtained from the

state and observation equations are analytically solvable. In our approach, we propose the

implementation RB using the implied integration method, which avoids direct integration.

This implied integration technique is also known as the candidate’s formula (Besag, 1889).

Thus, the desired marginalized filtering PDF of xt has the form

p(xt|x0:t−1,y1:t) =

∫

Θ
p(xt,θ|x0:t−1,y1:t)dθ

∝ p(yt|xt)p(xt|x0:t−1) (1.10)

The marginalization allows us to generate particles only from the space of xt, without

generating particles from the space of the parameter vector θ. This entails significant

advantage with respect to numerical computation and accuracy of the estimates.

3In the sequel, θ denotes a vector of conditionally linear parameters.
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1.5 Application to Stochastic Volatility Models

Even though there are various interpretations of volatility, it mainly represents a measure

of asset price variability over some period of time. It is the standard deviation of the asset

returns, and is denoted as σ. Another interpretation of volatility is the changes in the

logarithm of variance of the asset price over some time period. Empirical studies suggest

that volatility or variance of the financial return series is not constant, i.e., it changes over

time. The source of the volatility change is not well known. The changing phenomena

of variance over time is called heteroscedasticity, and this assumption leads to model the

volatility as a stochastic process. The standard volatility model of excess return series yt is

defined by (Taylor, 2005),

yt = σtvt (1.11)

where yt = rt − µ with rt and µ being the standard return series and expected return,

respectively, σt is the volatility, and vt is a zero mean white Gaussian noise process with

unit variance.4 The processes σt and vt are stochastically independent. The above implies

that

yt ∼ N (0, σ2
t ). (1.12)

Forecasting and understanding the volatility is the prime objective of many researchers in

statistics, finance and economics.

There are various volatility models. One of them is the ARCH (AutoRegressive Condi-

tional Heteroscedasticity) model, which was first introduced by Robert Engle (Engle, 1982),

and later developed by Bollerslev (Bollerslev, 1986) as GARCH (generalized ARCH) model.

The simple ARCH model of the excess return series is an autoregressive process of order

one, AR(1), i.e.,

p(yt|yt−1, yt−2, . . .) ∼ N (0, σ2
t ) (1.13)

σ2
t = α0 + α1y

2
t−1 (1.14)

4The standard return series rt is defined as rt = µ + σtvt.
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where α0 and α1 are constant parameters of the model and yt represents the excess return

series. The model is used for volatility forecasting, and the estimation is usually performed

by the maximum likelihood (ML) method.

An alternative hypothesis is that the volatility is a latent or hidden process, and cannot

be observed directly from the return series. Hence, the formation of the stochastic volatility

(SV) models (Clark, 1973; Taylor, 1982; Jacquier et al., 1994; Kim et al., 1998; Shephard,

2005) as a class of discrete time dynamic state-space models was considered. The continuous

time models have also been studied for pricing of financial derivatives such as options. The

SV models specify a stochastic process for modeling the volatility, where the log-volatility is

considered as a hidden process. The SV models differ from the ARCH models that specify

the volatility process modeled with return series. SV and ARCH models have similarities

with respect to describing the volatility measure. However, some researchers (Shephard,

1996) have concluded that estimation of SV models is easier than ARCH models when the

series become very large. Moreover, the properties of SV models are easier to find and

understand. They are also easier to generalize to multivariate models. There is a surge of

interests by researchers in finance and in statistics for the development of various algorithms

as a solutions to the SV models. Bayesian inference of SV models using various Markov

Chain Monte Carlo (MCMC) schemes (Jacquier et al., 1994; Kim et al., 1998) proved to

be quiet efficient. The MCMC sampling schemes are used to estimate the unobserved

log-volatility and unknown parameters.

The standard and most used form of SV model is as folllows:

xt = α + βxt−1 + σuut (state equation) (1.15)

yt = ext/2vt (observation equation) (1.16)

where, xt ∈ R is a hidden state, and represents the logarithm of variance, and ut ∈ R and

vt ∈ R are uncorrelated Gaussian noises with zero means and unit variances. The static

parameters θ = (α β σ2
u)⊤ are unknown, but nuisance. Our objective is to implement

a filtering algorithm to sequentially estimate the hidden state xt based on the available
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observations y1:t, and the model (1.15) – (1.16). The state equation is linear in the unknown

parameters α and β, and it is Gaussian, whereas the observation equation is nonlinear in

the state xt. We want to apply RB to the state equation to integrate out the unknown static

parameters θ, and then implement PF for sequential estimation of the hidden state (the

log-volatility). As a wider application example, we want to extend the standard SV model

to regime-switching stochastic volatility (RSSV) models, where switching among regimes

are based on Markov process, and again apply RB to reduce the sampling dimension and

thereby improve the estimation accuracy of the method.

1.6 Contributions

The main contributions of this dissertation are the application of RB in the context of

PF by using the implied integration technique, and the use of the procedure on the standard

SV and RSSV models. The simulation results of the proposed procedures on these models

show significant advantages over the standard PF methods that have been applied to these

models before.

1.7 Organization of the Thesis

In Chapter 2, we introduce the DSS models and the filtering, predictive and smoothing

PDFs of the state. We also review algorithms for PF including the standard PF (SPF) and

the auxiliary particle filtering (APF).

In Chapter 3, we describe DSS models with unknown static parameters and filtering

algorithms for sequential estimation of the states and the parameters. A PF algorithm

developed by Liu & West is presented in detail. It is shown how the algorithm is applied

to stochastic volatility (SV) models with simulated data, and some results are presented.

In Chapter 4, we describe the concept of RB and its application to DSS models with

unknown and static parameters. We develop a PF algorithm for the standard SV model.

We, then test its performance on simulated data. We compare the performance with that
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of the algorithm of Liu & West. As a metrics for comparison we use the root mean squared

error (RMSE), and the effect of sampling size on convergence. The performances of the

SPF and APF are also provided.

In Chapter 5, we introduce the general regime-switching state space model, where

switching occurs stochastically in time in accordance with a first-order stationary Markov

process. As an application, we extend the standard SV model to a RSSV model with two

discrete regimes. As before, we apply RB to reduce the dimensionality of the unknowns. We

present our PF algorithm in detail and show its performance on simulated data. We also

compare its performance to the performance of the APF algorithm by Carvalho & Lopes.

Finally, in Chapter 6 we provide the conclusions of our work and a list of possible

directions for extending this effort to related challenging problems.

13



Chapter 2

DSS Models and Filtering

2.1 DSS Models: An Overview

DSS models were originally developed by control engineers, and they are applied to a

wide range of dynamical systems where we have unobserved states (or signals) and observa-

tions that are functions of the states. Many problems in control theory, signal processing,

speech processing, seismology, radar, time series, economics, and biostatistics can be ex-

pressed in the form of a DSS models. In general, they are described by a state equation

and an observation equation. The state randomly evolves over time, and the observation is

a quantity that is a function of the state and is perturbed by a random noise process. The

objective is to estimate the hidden states based on the observations in a sequential manner.

A DSS model describes a dynamical systems of which measurements are available by a

set of equations that is aimed to capture the properties and behavior of the systems. The

system functions in real time, where the time is considered as an independent variable in

the equations. The system is causal, i.e., the output at time t = t0 does not depend on

the input at time t > t0. The system can be linear or non-linear, and can have discrete or

continuous time outputs, or can be discrete- or continuous-time system. Accordingly, the

system can be described either by difference or differential equations (Anderson and Moore,

1979). In this dissertation, we work with discrete-time DSS models.

The observations are noisy or stochastic in nature. The uncertainty in the system
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can arise in various ways: the inputs signals are random, and the observations contain

measurement errors or noise. The DSS models are described by two equations: a transition

or state equation and an observation or measurement equation.

State Equation: This equation describes the dynamics of the state variables over time.

The evolution equation can be linear or non-linear and usually includes a noise process that

is usually modeled as a Gaussian process.

Observation Equation: This equation provides the relationship between the observa-

tions and the state variables, and it includes another random noise process. The functional

relationship can be linear or non-linear, and the noise process can be Gaussian or non-

Gaussian.

The discrete-time DSS model is written in mathematical terms as follows:

xt = f(xt−1,ut) (state equation) (2.1)

yt = g(xt,vt) (observation equation) (2.2)

where xt ∈ R
nx is the hidden state, yt ∈ R

ny is the observation at time t, and ut ∈ R
nu and

vt ∈ R
nv are the state noise and observation noise processes respectively. The functions

f : R
nx×R

nu → R
nx and g : R

nx×R
nv → R

ny are known as state transition and observation

functions respectively.

The ut is a zero mean white noise process, and is independent of vt and the states,

xt. The vt is also another zero mean white noise process, and is independent of the states,

xt. The PDFs of ut , vt, and the initial distribution of x0 are assumed known. The

state process has the Markov property, and the observation process has the conditional

independent property. If the functions f(·) and g(·) are linear, and the noise processes ut

and vt are Gaussian, the DSS model is known as linear-Gaussian state space models. For

this type of models, when the PDF of x0 is Gaussian, the posterior PDF remains Gaussian

at all times, and its exact analytical expression can be obtained. The solution to this models

is the well known Kalman filter (Kalman, 1960), which recursively calculates the means and

covariances of the states.
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If the functions f(·) and g(·) are non-linear, and/or the noise processes are non-Gaussian,

in most cases there is no analytic or closed form (optimal) solution. For over 30 years, various

extensions of the Kalman filter have been developed (see Chapter 1). As already pointed

out, they are inadequate in many important situations. Recently, for the complex nonlinear

and non-Gaussian problems, a new class of filters has reemerged, and has become very

popular, and it is known as particle filters. We reiterate that PF approximates posterior

PDFs of interest by discrete random measures, and to that end, it employs the Bayesian

theory and MC simulations method(Gordon et al., 1993; Arulampalam et al., 2002; Doucet

et al., 2001; Maskell, 2004; Djuric and Bugallo, 2009).

2.1.1 Filtering

Filtering is a generic term, and it is being used in everyday lives for many centuries.

Since ancient times, men has tried to remove visible impurities from water by a method

called filtering. The first meaning of a noun filter by a dictionary is ” a contrivance for

freeing liquids from suspended impurities, especially by passing them through strata of sand,

charcoal, etc” . However, modern usage of filtering has more elaborate and abstract mean-

ing than just removing impurities from liquids. Filtering is a mechanism by which some

unwanted element(s) or quantity is removed by passing the object(s) or information through

a system in order to obtain the desired element(s) or quantity (Anderson and Moore, 1979).

Examples include news filtering out of war zones, filtering adult material from the Internet,

and filtering ultraviolet ray in the lens. In communications, the received signals are usually

corrupted with noise, and the objective is to recover the transmitted signals based on the

received ones. Suppose, yt is the received signal at time t, which is the noisy version of the

transmitted signal xt. Then, a model of the received signal could have the following form:

yt︸︷︷︸
observed signal

= xt︸︷︷︸
true signal

+ ǫt︸︷︷︸
noise process

. (2.3)

The filtering process is the recovery of xt from yt or the extraction of information about

xt from yt. From a probabilistic point of view, our interest is to obtain the inferences of
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posterior PDF of xt given all the available information up to time instant t, i.e., p(xt|y1:t).

This PDF contains all the information about xt given y1:t, and it is known as filtering

PDF.

2.1.2 Prediction

The objective of prediction is to estimate the value of a state at future time, for example,

(t+ k) for k > 0, given the information available up to time t, i.e., we want to predict xt+k,

based on the available information in y1:t. In general, we want to obtain the inference of

the predictive PDF p(xt+k|y1:t).

2.1.3 Smoothing

Smoothing is usually used for retrospective analysis or delayed inference about the states

xt. Suppose, the observations y1:T are available, and we want to find the estimate of xt,

t < T , i.e., we are interested in obtaining the inference of smoothing PDF p(xt|y1:T ).

2.2 The PF Methodology

PF methods are a set of MC-based simulation methods that are developed by using the

Bayesian methodology. They provide sequential estimation of posterior PDFs of nonlinear

and non-Gaussian states of DSS models. The literature suggests that the performance

of PF can be superior over the existing methods. Various filters based on PF appear

under different names in the literature including bootstrap filter, condensation algorithm,

Monte Carlo filter, interacting particle filter, and survival of the fittest filter. PF is a very

flexible methodology, easy to implement, and has wide range of applications in science and

engineering, including target tracking and missile guidance, terrain navigation, computer

vision, neural networks, population biology, financial modeling, and time series analysis

and forecasting. Before we explain the procedure of the generic PF, we briefly review the

concepts of Bayesian inference and importance sampling (IS).
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2.2.1 Bayesian Inference

Under Bayesian formulation, the inference about the unknown states is contained in the

posterior PDF p(x0:t|y1:t), where x0:t ≡ {x0,x1, · · · ,xt} and y1:t ≡ {y1,y2, · · · ,yt} are

the states and observations up to time t, respectively. The full posterior PDF is defined as

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)

p(y1:t)
(2.4)

where the normalizing constant is given by

p(y1:t) =

∫
p(y1:t|x0:t)p(x0:t)dx0:t (2.5)

This joint posterior PDF of x0:t can be expressed recursively as

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
(2.6)

The posterior PDF p(x0:t|y1:t), and its various features are the main object in Bayesian

inference (Box and Tiao, 1992; Doucet et al., 2001). In many applications, we are interested

in estimating the posterior PDF sequentially in time, and often our interest on its marginal,

the so called filtering PDF, p(xt|y1:t). The filtering PDF is defined as

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

=
p(yt|xt)p(xt|y1:t−1)∫

p(yt|xt)p(xt|y1:t−1)dxt
. (2.7)

PF methods obtain the distributions of interest by implementing Bayesian filtering

method recursively in time with MC simulations. The key idea is to represent the posterior

distributions by a random measure or a set of random samples, also known as particles

with their associated weights. These weighted particles approximate the posterior PDF

of interest p(x0:t|y1:t), by the random measure, χ0:t = {xi
0:t, w

i
t}

N
i=1, where {xi

0:t}
N
i=1 are

the set of support points with associated weights {wi
t}

N
i=1, and {xi

0:t}
N
i=1 are the possible

trajectories or realizations of the state up to time instant t. The weights are normalized to

unity, i.e.,
∑N

i=1 wi
t = 1. Mathematically, we express

p(x0:t|y1:t) ≈
N∑

i=1

wi
tδ(x0:t − x

i
0:t) (2.8)
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where δ(·) is the Dirac delta function. These weighted particles constitute the discrete

approximation of the true posterior PDF. The weights are computed by using the principle

of importance sampling (IS) (Geweke, 1989). If one is interested in sequential estimation of

the filtering PDF of xt, only xi
t needs to be stored, and the history of the states xi

0:t−1 and

the observations y0:t−1 can be discarded. With the discrete random measure, the filtering

PDF is approximated as

p(xt|y1:t) ≈
N∑

i=1

wi
tδ(xt − x

i
t). (2.9)

As the number of particles tends to infinity, the random measure, under given some

conditions, tends almost surely to the true posterior PDF (Crisan and Doucet, 2002).

2.2.2 Importance Sampling (IS)

Ideally, we would like to sample directly from the posterior distribution itself. However,

direct sampling from the posterior distributions is not feasible with the models with high di-

mensionality, and also with nonlinearity and non-Gaussianity. In that scenario, the concept

of importance sampling (IS) (Rubin, 1988; Geweke, 1989) comes in very handy. With the

importance sampling, an arbitrary and easy to sample importance function q(·) is chosen

such that the support of q(·) contain the support of p(·), i.e., supp(q) ⊃ supp(p), where p(·)

is the generic target posterior PDF . Research indicate that estimates based on importance

sampling can be super-efficient. That is, it is possible to find a distribution q(·) that can

be used for generating samples, which yield estimates with lower variance than the direct

MC-based sampling method. High sampling efficiency can be achieved by sampling from

the important regions, i.e., from the region of high probability density (HPD), and hence

the name importance sampling.

Suppose, one is interested in the expectation of an arbitrary function h(x0:t),

I(h) = Ep(x0:t|y1:t)
[h(x0:t)] =

∫
h(x0:t)p(x0:t|y1:t)dx0:t
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Based on the IS principle, we get the identity (Geweke, 1989),

I(h) =

∫
h(x0:t)w(x0:t)q(x0:t|y1:t)dx0:t∫

w(x0:t)q(x0:t|y1:t)dx0:t

where we assume that the support of the importance function q(x0:t|y1:t) = {x0:t ∈ R
nx×(t+1) :

q(x0:t|y1:t) > 0} contain the support of p(x0:t|y1:t) = {x0:t ∈ R
nx×(t+1) : p(x0:t|y1:t) > 0}

The unnormalized importance weight is defined as

w(x0:t) ∝
p(x0:t|y1:t)

q(x0:t|y1:t)

=
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
(2.10)

Hence, if one simulates i.i.d. particles {xi
0:t}

N
i=1 from q(x0:t|y1:t), an estimate of I(h) is

obtained as

ÎN (h) =
1
N

∑N
i=1 h(xi

0:t)w(xi
0:t)

1
N

∑N
i=1 w(xi

0:t)

=
N∑

i=1

h(xi
0:t)w̃

i
t (2.11)

where the normalized importance weights w̃i
t are given by,

w̃i
t =

w(xi
0:t)∑N

i=1 w(xi
0:t)

(2.12)

Under weak assumptions, as N →∞, the strong law of large numbers (SLLN) applies, that

is, ÎN (h)
a.s
−→ I(h).

2.2.3 Sequential Importance Sampling (SIS)

The above IS technique is not recursive, i.e., it does not allow for sequential estimation

in time. At each time instant, when a new observation yt arrives, one needs to recompute

the importance weights over the entire state sequence, which increases the computational

complexity as time increases. Here, we consider a sequential importance sampling (SIS)

technique which has a substantial advantage in computational complexity for sequential

estimation. The IS method can be applied to obtain sequential inferences of p(x0:t|y1:t) at

20



time t, without modifying the past trajectories {xi
0:t−1}

N
i=1 along with the weights {wi

t−1}
N
i=1

(which approximate the posterior p(x0:t−1|y1:t−1) at time t− 1). If the importance function

can be factorized as,

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)︸ ︷︷ ︸
keep existing path

q(xt|x0:t−1,y1:t)︸ ︷︷ ︸
extend path

(2.13)

then it is possible to obtain samples (trajectories) xi
0:t ∼ q(x0:t|y1:t) up to time t, by

augmenting the existing trajectories xi
0:t−1 ∼ q(x0:t−1|y1:t−1) with the current state samples

xi
t ∼ q(xt|x0:t−1,y1:t) at time t. Since the full posterior distribution at time t can be

expressed recursively as in (2.6), the factorization of the importance function in (2.13)

allows us to evaluate the importance weight recursively in time. Thus, recursive importance

function allows us to express the weight update equation as,

wi
t ∝

p(xi
0:t|y1:t)

q(xi
0:t|y1:t)

∝ wi
t−1

p(yt|x
i
t)p(xi

t|x
i
t−1)

q(xi
t|x

i
0:t−1,y1:t)

(2.14)

Furthermore, if q(xi
t|x

i
0:t−1,y1:t) = q(xi

t|x
i
t−1,yt), then the importance function depends

only on xt and yt, instead of the entire history, and it is suitable for estimating the filtering

PDF. The modified weight update equation then becomes

wi
t ∝ wi

t−1

p(yt|x
i
t)p(xi

t|x
i
t−1)

q(xi
t|x

i
t−1,yt)

(2.15)

2.2.4 Degeneracy

One of the biggest problem of PF is that after a few recursions a very few particles

will have significant weights, while the weights of the rest of the particles will be negligible.

This phenomenon is called degeneracy. The particles with negligible weights will have no

contribution to the estimation/approximation of the posterior distribution, and carrying

them forward is a mere waste of computational power. This degeneracy problem cannot be

avoided, since it can be shown that the variance of the weights increases over time (Kong
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et al., 1994; Doucet et al., 2000). A good measure of degeneracy is introduced by Liu (Liu

and Chen, 1998), and it is called the effective sample size, Neff , which is defined as

Neff =
N

1 + var(wi
t)

(2.16)

where wi
t is the “true weight” given by

wi
t =

p(xi
t|y1:t)

q(xi
t|x

i
t−1,yt)

(2.17)

Since (2.16) cannot be evaluated exactly, an estimate for practical use can be obtained by

N̂eff =
1

∑N
i=1(w̃

i
t)

2
(2.18)

where w̃i
t is the normalized weight computed according to (2.15). If Neff ≤ Ntresh , i.e.,

when Neff falls below some threshold, it is an indication of degeneracy. The degeneracy

problem cannot be eliminated, but can be reduced by: (1) a good choice of importance

function, and (2) applying resampling algorithm. In the next two subsections, we discuss

the choice of importance functions and resampling algorithms.

2.2.5 Choice of Importance Function

To reduce the degeneracy of PF, a natural choice consists of selecting a importance

function which minimizes the variance of the importance weights conditioned on the past

trajectory xi
0:t−1, and the observation up to time t, y1:t. It has been shown in (Doucet

et al., 2000) that

varq(xt|xi
0:t−1

,y
1:t)

[wi
t] = 0 (2.19)

when the importance function is chosen as,

q(xt|x
i
0:t−1,y1:t) = p(xt|x

i
t−1,yt)

=
p(yt|xt,x

i
t−1)p(xt|x

i
t−1)

p(yt|x
i
t−1)

=
p(yt|xt)p(xt|x

i
t−1)

p(yt|x
i
t−1)

(2.20)
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and substituting (2.20) into (2.15), we get

wi
t ∝ wi

t−1p(yt|x
i
t−1)

= wi
t−1

∫
p(yt|xt)p(xt|x

i
t−1)dxt (2.21)

The importance function p(xt|x
i
t−1,yt) is considered to be the optimal importance func-

tion. However, it suffers from two major setbacks, (1) its use requires to be able to sample

from p(xt|x
i
t−1,yt), and (2) evaluate p(yt|x

i
t−1) =

∫
p(yt|xt)p(xt|x

i
t−1)dxt. Besides some

limited cases, in general, this integral does not have a closed form solution.

In practice, the importance function is chosen based on the ability to draw samples from

it. The most popular importance function is the prior density and is defined as,

q(xt|x
i
0:t−1,y1:t) = p(xt|x

i
t−1) (2.22)

and the corresponding weight update equation by substituting (2.22) into (2.15) becomes,

wi
t ∝ wi

t−1p(yt|x
i
t) (2.23)

The prior importance density may cause degeneracy if the likelihood function is much

narrower than the prior, or the prior and the likelihood are well separated.

2.2.6 Resampling

Resampling also reduces degeneracy in PF algorithm. The resampling step is applied

when significant degeneracy is observed, i.e., when Neff is less than some threshold NT .

The main idea of resampling is to discard the trajectories with insignificant weights and

to replicate the trajectories with significant weights. The resampling step transforms the

random measure with unequal weights {xi
t, wt}

N
i=1 to equal weights, {xj

t ,
1
N }

N
j=1. There are

several resampling algorithms in use, such as multinomial resampling (random resampling),

residual resampling, and systematic resampling. It has been observed that there is no

significant performance difference of PF when different resampling algorithms are used.

There is, however, difference in computational cost. In our work, we used the systematic

resampling (Kitagawa, 1996) algorithm.
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The systematic resampling algorithm (Arulampalam et al., 2002) was first introduced by

Kitagawa (Kitagawa, 1996). We gave preferences to this algorithm because it is relatively

easy to implement, has complexity of the order of O(N), and introduces minimum Monte

Carlo variation.

The steps of systematic resampling algorithm are as follows:

[{xj∗
t , wj

t , i
j}Nj=1]=systematic resample [{xi

t, w
i
t}

N
i=1]

• initialize : c1 = 0

• for i = 2 : N

– ci = ci−1 + wi
t

• end

• Draw a starting point : u1 ∼ U [0, 1
N ]

• for j = 1 : N

– uj = u1 + j−1
N

– while uj > ci

∗ i = i + 1

– end

– Assign sample : xj∗
t = xi

t

– Assign weight : wj
t = 1

N

– Assign parent : ij = i

• end

Although the resampling technique reduces the degeneracy problem, it introduces other

problems. Besides, adding additional computational cost, it has two major drawbacks-

the first one is the lack of parallelizability, and the second one is lack of diversity. The first

problem is of interest typically for hardware implementation of PF. The second is always the

interest of all. The resampling algorithm statistically selects particles with higher weights

(wi
t) more times than particles with lower weights. As a result, the resampled trajectories

contain many more repeated ones, which causes loss of diversity. This phenomenon is

called sample impoverishment. The sample impoverishment is dominant for DSS models
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with small state noise variance. There have been some systematic methods to counter

the effects of sample impoverishment. One of them is the resample move algorithm (Gilks

and Berzuini, 2001), which combines the PF with MCMC sampling. There, the MCMC

sampling is used to increase the diversity after resampling. Another method that reduces

the sample impoverishment is called regularization (Musso et al., 2001).

2.3 A Generic PF Algorithm

This algorithm is based on choosing prior distribution as importance function, i.e.,

q(xt|xt−1, yt) = p(xt|xt−1) (Doucet et al., 2001), and with the use of SIS method. We refer

to it as SPF algorithm and its outline is as follows:

1. Initialization , t = 0

• for i = 1, . . . , N , sample xi
0 ∼ p(x0) and set t = 1.

2. Importance sampling step

• for i = 1, . . . , N , sample xi
t ∼ p(xt|x

i
t−1) and set xi

0:t = (x̃i
0:t−1, x

i
t).

• for i = 1, . . . , N , evaluate the importance weights, wi
t = wi

t−1p(yt|x
i
t).

• normalize the importance weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N .

3. Selection step

• resample with replacement N particles{x̃i
0:t}

N
i=1 from the set {xi

0:t}
N
i=1 with the

importance weights according to some resampling algorithm.

• If resampling takes place, set w̃t = 1/N .

• set t← t + 1 and go to step 2.

There are various PF algorithms of which three have been most popular. They are the

sampling importance resampling (SIR) filter (which is the SPF algorithm described above),

the auxiliary particle filter (APF) and the regularized particle filter (RPF).
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2.4 Auxiliary Particle Filtering (APF) Method

APF was introduced by Pitt and Shephard (Pitt and Shepard, 1999). This method

introduces an IS density with a special form. It also assumes that sampling can be performed

from the prior density p(xt|xt−1). The main idea of this algorithm is that at time t, we

choose to propagate particles which are from the regions of HPD of a predictive PDF of

the states. The method samples the pair {xj
t , i

j}Nj=1 from the joint importance function

q(xt, i|y1:t), where the index ij represent the index of the particles at time t− 1. With the

application of Bayes’ theorem, the joint posterior can be expressed as,

q(xt, i|y1:t) ∝ p(yt|xt)p(xt, i|y1:t−1)

∝ p(yt|xt)p(xt|i,y1:t−1)p(i|y1:t−1)

∝ p(yt|xt)p(xt|x
i
t−1)w

i
t−1

∝ p(yt|µ
i
t)p(xt|x

i
t−1)w

i
t−1 (2.24)

where µi
t represents some characteristic of xi

t given xi
t−1. This characteristic can be the

mode, the mean, µi
t = E[xt|x

i
t−1] or a sample, µi

t ∼ p(xt|x
i
t−1). By factoring this joint

importance function as,

q(xt, i|y1:t) = q(i|y1:t)q(xt|i,y1:t) (2.25)

and by defining,

q(xt|i,y1:t) = p(xt|x
i
t−1) (2.26)

and

q(i|y1:t) = p(yt|µ
i
t)w

i
t−1 (2.27)

the second stage weight update equation can be obtained as,

wj
t ∝ wi

t−1

p(yt|x
j
t )p(xj

t |x
ij
t−1)

q(xj
t , i

j |y1:t)

=
p(yt|x

j
t)

p(yt|µ
ij
t )

(2.28)

where the used sample pair {xj
t , i

j}Nj=1 represents the propagated state xj
t at time t, and

the index ij represents the particle trajectory at time t− 1.
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The steps of APF algorithm are as follows:

• for i = 1 : N

– Calculate µi
t

– Evaluate the first stage weights : wi
t ∝ wi

t−1p(yt|µ
i
t)

• end

• Normalize the weights: w̃i
t =

wi
t∑N

j=1
wj

t

• Sample the indices: [{−,−, ij}Nj=1] = resample[{xi
t, w̃

i
t}

N
i=1]

• Propagate and compute the second stage weights using the indices:

• for j = 1 : N

– Draw x
j
t ∼ p(xt|x

ij
t )

– Compute the second stage weights: w̃j
t =

p(yt|x
j
t )

p(yt|µ
ij

t )

• end

The advantage of the APF method may be that, it generates particles from the tra-

jectories at t − 1 which are conditioned on the current observation. Therefore, they are

more likely to be close to the true value of the state. We note that, the resampling in APF

algorithm occurs earlier than in SPF algorithm, that is, it takes place before the propa-

gation of the state (as opposed to resampling after the propagation of the state, for all

other resampling algorithms). It also uses the point estimate µi
t, which characterizes the

transition density p(xt|x
i
t−1). This approach may improve the samples at the propagation

step, and may generate particles from the high probability region of the posterior PDF.

APF has been shown to have superior performance when the state noise is small.
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Chapter 3

Particle Filtering and Static Parameters

3.1 DSS Models with Static Parameters

For the nonlinear and non-Gaussian DSS models with known static parameters θ, the

PF algorithms are quite effective for sequential estimation of the dynamic state xt. If the

parameter vector is also dynamic, the usual PF algorithm can be applied by including θt as

part of the state xt. However, when θ is constant, there is no effective PF algorithm that

can estimate simultaneously the joint posterior PDF of the state and parameter vector. The

problem is that the lack of dynamics of θ entails sample degeneracy of the random mea-

sures, which leads to poor performance of the particle filters. In statistical literature, static

parameters have been successfully estimated by MCMC algorithms (Liu, 2001). However,

the MCMC algorithms operate on batch data (off-line), and due to its slow convergence,

they may not be suitable for sequential online estimation. In many real world problems,

where observations are high frequency data which arrives sequentially in real-time, and the

real-time estimation is desired, where the MCMC algorithms are not suitable.

There are several approaches for implementing PF on DSS models with unknown static

parameters. One of them is by Gordon (Gordon et al., 1993), where the fixed parameters

have an artificial evolution. Another approach, proposed by West (West, 1992, 1993a,b),

which approximates the posterior PDF by the weighted kernel density based on the principle

of modeling with mixtures. Storvik (Storvik, 2002) introduces a method for a special class

of DSS models with static parameters, where the parameters are tractable with analytic

method based on the sufficient statistics principle.
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3.1.1 Artificial Evolution of Static Parameters

For the DSS model, Gordon (Gordon et al., 1993) suggested reduction of the sample

degeneracy of the state by adding small random disturbances to the state particles between

time steps, which is in addition to the system noise. This idea was then extended to the

static model parameters. The model parameters θ, then, are indexed by t to show the

artificial time dependence. For example, the model parameters θ are modeled to evolve as

according to a random walk, that is,

θt = θt−1 + ζt (3.1)

where ζt ∼ N (0,Σζ) with Σζ being a known covariance matrix. With this model, the state

vector is completely dynamic, and the PF algorithm can be applied in the usual way to get

joint inference of the states and the parameters simultaneously. However, this approach has

a drawback in that the approximated posterior PDF of the parameters is far more diffused

than the true posterior PDF. The main reason is that, by making the static parameters

dynamic with an artificial evolution, the “loss of information” occurred at each time instant.

Therefore, it is clear that this approach cannot be optimal.

3.1.2 Weighted Kernel Density Method

West (West, 1992, 1993a,b) introduced an adaptive importance sampling algorithm to

make a discrete approximation of the posterior distribution p(θ|y1:t) with a random measure.

In this algorithm, the posterior PDF is approximated with the weighted kernel density

based on the principle of modeling a posterior PDF with mixtures of density. The mixture

modeling technique has the flexibility to represent quite complex PDFs, where the mixture

component density usually belongs to the exponential family. Here, the multivariate normal

distributions are chosen as mixture component densities.

The approximation of the posterior PDF is carried out via the adaptive importance

sampling algorithm with the use of the shrinkage technique. This adaptive mechanism

modifies the initial crude approximation towards the true posterior distribution by dynam-
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ical refinement of the mixture approximation. It avoids the information loss that occurs in

the artificial evolution method. In low dimensional space, the algorithm seems to be quite

effective in approximating the posterior PDF. For a chosen importance sampling density

q(θt), and with the sample size N and weights wi
t, the true PDF p(θt) can be approximated

by the weighted kernel density as,

p(θt) ≈
N∑

i=1

wi
tdp(θt|θ

i
t, h

2Vt) (3.2)

where dp(θ|m,M) is a p-variate elliptically symmetric density function centered at the mode

m and is with scale matrix M . In our example, dp(·) = Np(θt|θ̄t, h
2Vt), is a multivariate

normal PDF, where θ̄t and Vt are the MC estimates of the weighted mean vector and the

weighted covariance matrix respectively, and h is a smoothing parameter. The weight is

defined as wi
t ∝

p(θ
i

t)

q(θ
i

t)
.

For a DSS model, the Bayesian sequential filtering method is carried out in two stages:

(1) prediction and (2) update. Suppose, at time t−1, we have particles {θi
t−1}

N
i=1 and their

associated weights {wi
t−1}

N
i=1, approximating the posterior PDF p(θt−1|y1:t−1), i.e.,

p(θt−1|y1:t−1) ≈
N∑

i=1

wi
t−1δ(θ − θ

i
t−1) (3.3)

Note again that, the time index t − 1 on θ indicates only the posterior at time t − 1. We

compute the following moments from the weighted samples:

mi
t−1 = cθi

t−1 + (1− c)θ̄t−1 (3.4)

Vt−1 =

N∑

i=1

wi
t−1(θ

i
t−1 − θ̄t−1)(θ

i
t−1 − θ̄t−1)

T (3.5)

θ̄t−1 =
N∑

i=1

wi
t−1θ

i
t−1 (3.6)

At time step t− 1, the predicted (prior) distribution is constructed as

p(θt|y1:t−1) ≈
N∑

i=1

wi
t−1N(θt|m

i
t−1, h

2Vt−1) (3.7)

where h2 = 1−

(
3δ − 1

2δ

)2

; c =
√

(1− h2); δ ∈ (0, 1] (3.8)
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where c is a shrinkage parameter, and h is smoothing parameter, the latter is used to

control the overdispersion of the mixture kernel density. Then, at time step t, when the

observation yt becomes available, the updating of the prior is carried out via Bayes’ rule.

3.2 Particle Filtering with Static Parameters: Liu-West Method

Liu and West (Liu and West, 2001) introduced an APF algorithm which performs si-

multaneous sequential estimation of the dynamic states and the static parameters of a DSS

model, and hence, we call it LW method. The algorithm is based on the method from the

previous subsection (3.1.2). The parameter vector is appended to the state vector, and a

joint posterior of the enlarged state vector is estimated. The algorithm has been widely

used and considered to be quite efficient. It is the Bayesian filtering algorithm and is carried

out in two stages: prediction and update. The prediction is done at time step t− 1, and the

updating is performed at time step t after receiving the observation yt.

Suppose, at time t − 1, we have combined particles of the state and parameters along

with their associated weights from the predictive (prior) density. The joint predictive PDF

at time t− 1 is given by

Prediction : p(xt,θt|y1:t−1) =

∫
p(xt,xt−1,θt−1|y1:t−1)dxt−1

=

∫
p(xt|xt−1,θt−1)p(xt−1,θt−1|y1:t−1)dxt−1 (3.9)

At time t, as the observation yt becomes available, the prior predictive distribution is

updated via Bayes as

Update : p(xt,θt|y1:t) ∝ p(yt|xt,θt)p(xt,θt|y1:t−1)

∝ p(yt|xt,θt)p(xt|θt,y1:t−1)p(θt|y1:t−1) (3.10)

Our objective is to obtain the weighted particles from the above posterior PDF for

sequential estimation of states and parameters. The following APF algorithm provides the

stepwise procedure in achieving this goal sequentially.
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3.2.1 An APF Algorithm: LW Method

• Suppose, at time t − 1, we have the particles {xi
t−1,θ

i
t−1}

N
i=1 and their associated

weights {wi
t−1}

N
i=1, which approximate the joint posterior PDF p(xt−1,θt−1|y1:t−1)

• At time t, we want to obtain the particles {xi
t,θ

i
t}

N
i=1 and their weights {wi

t}
N
i=1, that

approximate the joint posterior PDF p(xt,θt|y1:t)

1. The prior estimates of {xi
t−1,θ

i
t−1} are given by {µ̂i

t,m
i
t−1}, i = 1, . . . , N ,

where,

• µ̂i
t = E[xt|x

i
t−1,θ

i
t−1]

• mi
t−1 = cθi

t−1 + (1− c)θ̄t−1

• θ̄t−1 =
∑N

i=1 wi
t−1θ

i
t−1

• Vt−1 =
∑N

i=1 wi
t−1(θ

i
t−1 − θ̄t−1)(θ

i
t−1 − θ̄t−1)

T

2. Compute the fist-stage weights: Li
t ∝ wi

t−1p(yt|µ̂
i
t,m

i
t−1), i = 1, . . . , N

3. Normalize the weights: L̃i
t =

Li
t∑N

j=1 Lj
t

, i = 1, . . . , N

4. Resampling: sample the indexes Ji ∈ (1, . . . , N) with L̃t, Ji are auxiliary variables.

5. Propagate the parameter vector: θi
t ∼ N(θt|m

Ji

t−1, h
2Vt−1), i = 1, . . . , N

6. Propagate the state : xi
t ∼ p(xt|x

Ji

t−1,θ
i
t), i = 1, . . . , N

7. Evaluate the 2nd-stage weights: wi
t ∝

p(yt|x
i
t,θ

i

t)

p(yt|µ̂
Ji
t ,m

Ji
t )

, i = 1, . . . , N

8. Normalize the weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N

9. The posterior at time t is represented by : {xi
t,θ

i
t, w̃

i
t}

N
i=1 ∼ p(xt,θt|y1:t)
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3.3 Application to Stochastic Volatility (SV) Models

Recall the SV model described in Chapter 1 as,

xt = α + βxt−1 + σuut (state equation) (3.11)

yt = ext/2vt (observation equation) (3.12)

where, xt ∈ R is a hidden state that represents the logarithm of the volatility, and ut ∈ R and

vt ∈ R are uncorrelated Gaussian noise processes with zero means and unit variances. As a

filtering problem, we want to estimate the state xt sequentially based on the observations

y1:t. However, the static parameters (α, β, and σ2
u) of the state equation are unknown.The

observation equation does not have any unknown parameters. The state equation is linear

and Gaussian, whereas the observation equation is nonlinear and non-stationary process.

Therefore, the application of PF method is the most appropriate for sequential inferences

of the hidden state xt. Let the vector of unknown static parameters be θ = (α β σ2
u)⊤. For

the distributions related to the state and observation equations, we write

p(xt|xt−1,θ) ∼ N (α + βxt−1, σ
2
u) (3.13)

p(yt|xt) ∼ N (0, ext) (3.14)

We have applied the APF algorithm of Liu and West for the above SV model. In imple-

menting this algorithm, we transformed σ2
u as, γ = log(σ2

u) to be on the real line. Therefore,

the transformed parameter space is, θ = (α β γ)⊤, and the algorithm is carried out as in

section (3.2.1). We have tested it on simulated datasets with T = 1200 sample points.

The parameter values used for the simulated datasets in accordance with the literature on

the SV models on the S&P500 index by Jacquier et al. (1994). The simulation study was

conducted with two datasets with different state noise variances, σ2
u = 0.05 and σ2

u = 0.10.

The dataset 1 was generated with (α = −0.005, β = 0.98, σ2
u = 0.05), and the dataset 2

was generated with (α = −0.005, β = 0.98, σ2
u = 0.10). The APF algorithm was applied

on both datasets with increased particle sizes, N = 100, 500, 5000 and 10000, but we have

presented the graphs only with N = 100, 5000.
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Figure 3.1: Dataset 1 : Simulated time series yt, and the underlying log-volatility xt, with
parameters; α = −0.005, β = 0.98, σ2

u = 0.05, and T = 1200.
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Figure 3.2: Dataset 2 : Simulated time series yt, and the underlying log-volatility xt, with
parameters; α = −0.005, β = 0.98, σ2

u = 0.10, and T = 1200.
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Note that dataset 1 corresponds to smaller state noise variance, σ2
u = 0.05 than dataset

2, where σ2
u = 0.10. Both datasets used the constant level parameter α = −0.005, and

persistence parameters β = 0.98. Persistence in the variance evolves over time, is the

momentum in the conditional variance, i.e., the past volatility explains the present volatility.

The empirical study suggests that the volatility process follows the properties of persistence.

The parameter β = 0.98 corresponds to high persistence or high clustering.

The following are the simulation results estimating hidden state xt, and the parameters

with the application of LW-APF method on both datasets (dataset 1 and dataset 2). We

observe that, the accuracy of the estimate is improved with increased particle size, N . With

the particle size N = 5000 or above, the accuracy is quiet good.
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Figure 3.3: Particle size N=100; estimate of log-volatility & parameters: dataset 1
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Figure 3.4: Particle size N=5000; estimate of log-volatility & parameters: dataset 1
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Figure 3.5: Particle size N=100; estimate of log-volatility & parameters: dataset 2
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Chapter 4

Particle Filtering on Rao-Blackwellized DSS Models

4.1 Rao-Blackwellization: Reducing Uncertainty

The application of Rao-Blackwell theorem transforms an arbitrary estimator into an

improved estimator according to the mean squared error (MSE) criterion. We refer to the

application of the Rao-Blackwell theorem as Rao-Blackwellization (RB). Recall that Rao-

Blackwell theorem (Lehmann, 1991) states that, if θ̂(y) is an estimate of θ, and T (y) is a

sufficient statistic for θ, then the estimate θ̂∗(y) = E[θ̂(y)|T (y)] is at least as good as θ̂(y)

in terms of the MSE, that is,

∀θ MSE(θ̂∗) ≤MSE(θ̂) (4.1)

In essence, with the use of the estimator θ̂∗(y), we reduce the variance or uncertainty of

the unknown’s estimate. The analytic integration produces no errors, but any stochastic

approximation, by its nature cannot be done without errors. When there are no analytical

solutions to the integration problems, the application of MC sampling techniques to approx-

imate the integral problem contains numerical error. MC simulation method under Bayes’

theorem approximates a posterior PDF by the use of discrete random measures. If the

dimension of the unknown space is smaller, then it is obvious that one would need a smaller

set of particles to approximate the posterior PDF to achieve a certain accuracy. As the

dimension of the unknown space increases, the approximation of the integration becomes

worse for a fixed number of particles (Evans and Swartz, 2000). So, it pays off considerably

if one can reduce the dimension of the unknown space where integration is carried out.
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Suppose, in applying PF, we are only interested in estimating the posterior PDF of the

state p(xt|x0:t−1,y1:t), but the DSS model also has unknown static parameters θ. Hence,

we have two options. One, is to obtain the random measure by MC sampling that approx-

imates the full posterior PDF p(xt,θ|x0:t−1,y1:t), which means that we have to work in a

higher dimensional space of unknowns, R
nx+nθ , because of the inclusion of the unknown

parameter vector θ with the state. And, the other option is to integrate out θ analytically,

which would reduce the dimension of the unknowns, and would lead to direct approximation

of the marginalized posterior PDF p(xt|x0:t−1,y1:t). Clearly, the second option is prefer-

able, because it would yield better accuracy. In other words, the analytic integration of

the constant parameters reduces the dimension of the sampling space by marginalizing the

posterior distribution, and consequently, it reduces the numerical errors that arise due to

approximation of the posterior distributions with random measures. Besides, it also reduces

the computational complexity of the method. When the parameters are conditionally lin-

ear, this integration is carried out with the Kalman filter. This hybrid method of partial

integration, and the use of random measure to approximate the posterior PDFs is known as

RB of the MC simulation method (Casella and Robert, 1996; Liu and Chen, 1998; Doucet

et al., 2000; Storvik, 2002; Maskell, 2004).

4.2 Rao-Blackwellization on DSS Models: A Novel Approach

We consider a class of DSS models with unknown static parameters, where the state

equation is linear and Gaussian. The observation equation can have any form (linear or

nonlinear). We apply RB method on this class of DSS models. For convenience, we rewrite

the model as

xt ∼ p(xt|xt−1,θ) (state equation) (4.2)

yt ∼ p(yt|xt,θ) (observation equation) (4.3)

where all the symbols have already been defined. Our main interest is to sequentially esti-

mate the hidden states xt, i.e., getting inference from the filtering PDF p(xt|x0:t−1,y1:t).
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Due to the presence of unknown static parameters θ, we have to deal with the full posterior

PDF p(xt,θ|x0:t−1,y1:t), which requires MC sampling from both the state and parameter

spaces. However, if we can integrate out the nuisance parameters θ, the resultant distribu-

tion is the desired filtering PDF p(xt|x0:t−1,y1:t), and which is the reduction in sampling

space. In our work, the reduction in sampling space with the application of RB was imple-

mented with implied integration method as an alternative approach. The RB requires to

obtain the marginal distribution of the dynamic states by integrating out the parameters,

i.e.,

p(xt|x0:t−1) =

∫

θ
p(xt,θ|x0:t−1)dθ

=

∫

θ
p(xt|θ,x0:t−1)p(θ|x0:t−1)dθ (4.4)

and similarly, the marginalized likelihood by integrating out the parameters,

p(yt|xt) =

∫

θ
p(yt,θ|x0:t)dθ

=

∫

θ
p(yt|θ,x0:t)p(θ|x0:t)dθ (4.5)

where we assume that the integral corresponding to the observation equation is analytically

solvable. Thus, the implementation of the RB method requires that the integrals (4.4) and

(4.5) are analytically solvable. Avoiding direct integration is preferable, since it is difficult

to implement with higher dimension. With the use of the implied integration method, where

we express the posterior PDF of θ with Bayes theorem. Here, we assume that given x0:t, θ

is not a function of y1:t, and can be expressed as,

p(θ|x0:t) =
p(θ,x0:t)

p(x0:t)

=
p(xt|x0:t−1,θ)p(x0:t−1,θ)

p(xt|x0:t−1)p(x0:t−1)

=
p(xt|x0:t−1,θ)p(x0:t−1|θ)p(θ)

p(xt|x0:t−1)p(x0:t−1)

=
p(xt|x0:t−1,θ)p(θ|x0:t−1)

p(xt|x0:t−1)
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Hence, we can deduce that

p(xt|x0:t−1) =
p(xt|x0:t−1,θ)p(θ|x0:t−1)

p(θ|x0:t)
(4.6)

The desired expression in (4.6) is free from θ, and can be obtained after evaluation of the

right hand side of the equation. This procedure avoids direct integration if the complete

posterior PDF of θ are known, and this relationship is also known as the candidate’s formula

(Besag, 1889). The expression in (4.6) can be used as the proposal density for xt.

The Rao-Blackwellized filtering density of xt can be written as,

p(xt|x0:t−1,y1:t) =

∫

Θ
p(xt,θ|x0:t−1,y1:t)dθ

=

∫

Θ
p(xt|θ,x0:t−1,y1:t)p(θ|x0:t−1,y1:t)dθ

∝ p(yt|xt)

∫

Θ
p(xt|xt−1,θ)p(x0:t−1,θ|y1:t)dθ

= p(yt|xt)p(xt|x0:t−1) (4.7)

This results avoid sampling on the parameter space, θ ∈ R
nθ , and allows to generate

particles only on the desired state space xt ∈ R
nx . In the next section, we exploit (4.6) in

applying RB to DSS models related to SV.

4.3 Application to Stochastic Volatility (SV) Models

We rewrite the SV model as,

xt = α + βxt−1 + σuut (state equation) (4.8)

yt = ext/2vt (observation equation) (4.9)

where all the variables have already been defined. We want to apply RB by integrating out

the unknown static parameters θ = (α β σ2
u)⊤ from the state equation. The implementation

of RB method marginalizes the full posterior PDF p(xt,θ|x0:t−1, y1:t) to p(xt|x0:t−1, y1:t).

As pointed out earlier, we use the implied integration technique to implement the RB.
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With the distributional assumptions of the state and observation equations, (4.8)-(4.9)

can be expressed as,

p(xt|xt−1,θ) ∼ N (α + βxt−1, σ
2
u) (4.10)

p(yt|xt) ∼ N (0, ext) (4.11)

With the use of implied integration method, RB is carried out as follows:

p(xt|x0:t−1) =
p(xt|x0:t−1,θ)p(θ|x0:t−1)

p(θ|x0:t)

=

(1)︷ ︸︸ ︷
p(xt|x0:t−1,θ)

(2)︷ ︸︸ ︷
p(θ|x0:t−1)

p(θ|x0:t)︸ ︷︷ ︸
(3)

(4.12)

∝ tνt−1
(mt−1, rt−1) (4.13)

After evaluation of the RHS of (4.12), the p(xt|x0:t−1) ∼ tνt−1
(mt−1, rt−1), is a non-standard

t-distribution with νt−1 degrees of freedom, mt−1 and rt−1 are the mean and variance

respectively (see appendix). The mt−1 and rt−1 are estimated from x0:t−1 with Sequential

Least Squares (SLS) method, as state equation is linear.

From (4.12), we have

(1) p(xt|x0:t−1,θ) ∼ N(α + βxt−1, σ
2
u) (4.14)

with E(xt|x0:t−1,θ) = α + βxt−1

and V ar(xt|x0:t−1,θ) = σ2
u

(2) p(θ|x0:t−1) ∝ p(x0:t−1|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

= p(x0:t−1|θ)p(α β σ2
u)

= p(x0:t−1|θ)︸ ︷︷ ︸
Gaussian

p(α β)︸ ︷︷ ︸
constant

p(σ2
u)︸ ︷︷ ︸

IG(a, b)

(4.15)
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and similarly

(3) p(θ|x0:t) ∝ p(x0:t|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

= p(x0:t|θ)p(α β σ2
u)

= p(x0:t|θ)︸ ︷︷ ︸
Gaussian

p(α β)︸ ︷︷ ︸
constant

p(σ2
u)︸ ︷︷ ︸

IG(a, b)

(4.16)

where IG stands for Inverse-Gamma distribution.

For the Rao-Blackwellized filtering density of xt,

p(xt|x0:t−1, y1:t) =

∫

Θ
p(xt,θ|x0:t−1, y1:t)dθ

=

∫

Θ
p(xt|θ, x0:t−1, y1:t)p(θ|x0:t−1, y1:t)dθ

∝ p(yt|xt)

∫

Θ
p(xt|x0:t−1,θ)p(x0:t−1|θ)p(θ)dθ

∝ p(yt|xt)︸ ︷︷ ︸
N(yt|0,ext)

p(xt|x0:t−1)︸ ︷︷ ︸
tνt−1

(xt|mt−1,rt−1)

(4.17)

This results allows us to generate particles for the state xt without having to generate

particles for θ. Thus, instead of exploring a four-dimensional space with particles, we

explore only a one-dimensional state space.

Finally, if we choose an importance function q(xt|x0:t−1) = p(xt|x0:t−1), the weight

update equation becomes as,

wt ∝ wt−1
p(xt|x0:t−1, y1:t)

q(xt|x0:t−1, y1:t)

∝ wt−1
p(yt|xt)p(xt|x0:t−1)

p(xt|x0:t−1)

∝ wt−1p(yt|xt) (4.18)
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4.4 Standard PF on Rao-Blackwellized SV Models

We implemented SPF using the RB SV models, where the importance function was

q(xt|x0:t−1) = p(xt|x0:t−1). The algorithm samples only from the space of xt ∈ R, without

sampling from the space of θ ∈ R
nθ . The SPF is actually the SIS filter, and we implemented

it on simulated data with different particle sizes N . The following are the steps of the

algorithm:

1. Time step: t-1

• We have particles and their associated weights, {xi
0:t−1, w

i
t−1}

N
i=1

Each sequence of particles is also associated with a posterior PDF p(θ|xi
0:t−1)

2. Importance sampling step

• Sample x̃i
t ∼ p(xt|x

i
0:t−1) and set x̃i

0:t = (xi
0:t−1, x̃

i
t), i = 1, . . . , N

• Evaluate importance weights, wi
t = wi

t−1p(yt|x̃
i
t), i = 1, . . . , N

• Normalize importance weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N

3. Selection step

• Resample with replacement particles {xi
0:t}

N
i=1 from {x̃i

0:t}
N
i=1 according to im-

portance weights {w̃i
t}

N
i=1

• If resampling takes place, set w̃i
t = 1/N

4. Update step

• Update the parameters νi
t , mi

t and ri
t of p(xt|x0:t−1) as a non-standard t-distribution

with the available state sequences (x0:t
i)

• Increase t− 1 to t and go to step 2
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4.5 Auxiliary PF on Rao-Blackwellized SV Models

We also implemented the APF algorithm on the Rao-Blackwelized SV models. Again,

it was applied on simulated datasets with different particle sizes N . The following are the

steps of the APF algorithm:

• At time t-1, we have the particles and their weights: {xi
0:t−1, w

i
t−1}

N
i=1

• Each sequence of particles is associated with a posterior PDF p(θ|xi
0:t−1)

• At time t, we obtain the particles {xi
t}

N
i=1 and their weights {wi

t}
N
i=1

1. The prior estimate of {xi
t−1} is given by {mi

t−1}, i = 1, . . . , N

where,

• mi
t−1 = E[xt|x

i
t−1,θ

i
t−1]

2. Compute the first-stage weights: Li
t ∝ wi

t−1p(yt|m
i
t−1), i = 1, . . . , N

3. Normalize the weights: L̃i
t =

Li
t∑N

j=1
Lj

t

, i = 1, . . . , N

4. Resampling: sample the indexes Ji ∈ (1, . . . , N) with L̃t, Ji are auxiliary variable

indexes used to resample at time t− 1, before the propagation.

5. Propagate the state: xi
t ∼ p(xt|x

Ji

0:t−1), i = 1, . . . , N

6. Evaluate the 2nd-stage weights: wi
t ∝

p(yt|xi
t)

p(yt|m
Ji
t )

, i = 1, . . . , N

7. Normalize the weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N

8. Update the parameters νi
t , mi

t and ri
t of p(xt|x0:t−1) as a non-standard t-distribution,

tνt(xt|mt, rt) with the available state sequences (x0:t
i)

9. The posterior at time t is approximated by {xi
t, w̃

i
t}

N
i=1
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4.6 Simulation Results

We conducted extended simulations to compare the performance of the proposed meth-

ods, the Rao-Blackwellized SPF (RB-SPF) and the Rao-Blackwellized APF (RB-APF) al-

gorithms on data generated according to the SV model. The performances of our algorithms

were also compared to the Liu and West’s (LW) method as described in Chapter 3. We

used different criteria for performance measures including the effects of particle size on the

estimation, and the root mean squared error ( RMSE) of the state estimation (log-volatility).

We generated data with different lengths and with different state noise variances. For

comparative analysis of RB and LW method, we have conducted simulated experiments on

two types of datasets. In type-one, four datasets were simulated, where each consist of a

single realization with different data lengths (T = 1200, 2400), and with different state noise

variances, (σ2
u = 0.05, 0.10). In type-two, four different datasets were simulated, where each

set comprised of K = 100 random realizations, with different data lengths (T = 1200, 2400)

and different state noise variances, (σ2
u = 0.05, 0.10). The parameters used in the simulation

are from the literatures by Jacquier et al. (1994); Kim et al. (1998) and Stroud et al. (2004).

More specifically, the parameters used to generate datasets are as follows:

For type-one datasets (single realization),

Dataset 1a: α = −0.005, β = 0.98, σ2
u = 0.05, T = 1200,

Dataset 1: α = −0.005, β = 0.98, σ2
u = 0.05, T = 1200,

Dataset 2 : α = −0.005, β = 0.98, σ2
u = 0.10, T = 1200,

Dataset 3: α = −0.005, β = 0.98, σ2
u = 0.05, T = 2400, and

Dataset 4 : α = −0.005, β = 0.98, σ2
u = 0.10, T = 2400.

and for type-two datasets (multiple realizations),

Dataset 1R: α = −0.005, β = 0.98, σ2
u = 0.05, T = 1200,K = 100,

Dataset 2R : α = −0.005, β = 0.98, σ2
u = 0.10, T = 1200,K = 100,

Dataset 3R: α = −0.005, β = 0.98, σ2
u = 0.05, T = 2400,K = 100, and

Dataset 4R : α = −0.005, β = 0.98, σ2
u = 0.10, T = 2400,K = 100.
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The simulated results with the application of RB vs LW methods on four datasets with

the single realization are shown in Figures 4.1-4.14. We have shown in Figures 4.1-4.4 that

the RB-APF algorithm performs better than the RB-SPF, as measured in RMSEs with

the datasets 1a and 2. We compared the performances of RB-APF vs LW-APF methods

on the datasets 1-4 (with single realization), and the results are shown in Figures 4.5-4.14.

With extensive simulation study on datasets 1-4 with various particle size (N=100-10000),

we are able to show that the RB method performs better than LW method with smaller

particle size. However, as the particle size increases, the LW method shows equivalent

performance as the RB method with respect to accuracy, as presented in Figures 4.5-

4.6. In Figures 4.7-4.14, we observe that RB method consistently outperform the LW

method, as demonstrated with the log(RMSE) with respect to estimate log-volatility (xt).

To obtain statistical inferences on the performances of the RB method, we have conducted

the RMSE analysis on the datasets 1R-4R ( type-two), where each dataset consist of 100

random realizations. We apply the RB-APF vs LW-APF methods on these datasets with

increasing particle sizes (N=100-10000). The simulation results are shown in Figures 4.15-

4.30, which are statistically significant. We observe that the accuracy attained by the RB-

APF algorithm with the particle sizes of 100−500 is equivalent to the accuracy attained by

the LW algorithm with the particle size of 5000, a significant advantage. The log (RMSE)

and its CDF plots of each dataset show that the RB-APF algorithm consistently outperforms

the LW algorithm, especially with the smaller particle size.

The RMSEs for the datasets with single realization (type-one) were computed as,

RMSE =

√√√√ 1

T

T∑

t=1

(xt − x̂t)2 (4.19)

And, the RMSEs for the datasets with multiple realizations (type-two) were computed,

RMSE(t) =

√√√√ 1

K

K∑

k=1

(xk
t − x̂k

t )
2 (4.20)
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Simulation results with SPF vs APF algorithms on datasets 1a and 2

0 200 400 600 800 1000 1200
−6

−4

−2

0

2

4

6

time

y(t)=Simulated time series

y(
t)

0 200 400 600 800 1000 1200
−4

−3

−2

−1

0

1

2

3

time

x(t)= Log (volatility)

x(
t)

data 1, T=1200,  v=0.05

Figure 4.1: Dataset 1a: Simulated time series yt, and underlying log-volatility xt, with
the parameters; α = −0.005, β = 0.98, σ2

u = 0.05 and T = 1200.
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Figure 4.2: Estimate of log-volatility with log (RMSE): SPF vs APF method
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Figure 4.3: Dataset 2: Simulated time series yt, and underlying log-volatility xt, with the
parameters; α = −0.005, β = 0.98, σ2

u = 0.10 and T = 1200.
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Figure 4.4: Estimate of log-volatility with log (RMSE): SPF vs APF method
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Simulation results with LW-APF vs RB-APF algorithms on datasets 1-4

0 200 400 600 800 1000 1200
−4

−2

0

2

4
x(t)=Log−volatility (true vs estimate): LW method

x(
t)

 

 

0 200 400 600 800 1000 1200
−4

−2

0

2

4
x(t)=Log−volatility (true vs estimate): RB method

x(
t)

 

 

100 200 300 400 500 600 700 800 900 1000 1100 1200
−0.8

−0.6

−0.4

−0.2

0

Log(rmse): LW vs RB method

time

Lo
g 

(r
m

se
)

 

 

x−true
lw−est

x−true
rb−est

lw
rb

log−volatility (true)

log−volatility (estimate):LW method

log (rmse): RB method

log (rmse): LW method

N=100, T=1200, v=0.05, data1

log−volatility (true)

log−volatility (estimate): RB method

Figure 4.5: Particle size N=100; estimate of log-volatility & rmse : dataset 1
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Figure 4.7: Dataset 1: Simulated time series yt, and underlying log-volatility xt, with the
parameters; α = −0.005, β = 0.98, σ2

u = 0.05 and T = 1200.
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Figure 4.8: LW vs RB method: Plots comparing Log (RMSE) for estimating state (Log-
volatility) with the particle size from N=200 to 10000: dataset 1
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Figure 4.9: Dataset 2: Simulated time series yt, and underlying log-volatility xt, with the
parameters; α = −0.005, β = 0.98, σ2

u = 0.10 and T = 1200
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Figure 4.10: LW vs RB method : Plots comparing Log (RMSE) for estimating state (Log-
volatility) with the particle size from N=200 to 10000: dataset 2
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Figure 4.11: Dataset 3 : Simulated time series yt, and underlying log-volatility xt, with
the parameters; α = −0.005, β = 0.98, σ2
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Figure 4.12: LW vs RB method : Plots comparing Log (RMSE) for estimating state (Log-
volatility) with the particle size from N=200 to 10000: dataset 3
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Figure 4.13: Dataset 4 : Simulated time series yt, and underlying log-volatility xt, with
the parameters; α = −0.005, β = 0.98, σ2
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Figure 4.14: LW vs RB method : Plots comparing Log (RMSE) for estimating state (Log-
volatility) with the particle size from N=200 to 10000: dataset 4
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RMSE analysis on datasets with multiple realizations: LW-APF vs RB-APF
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Figure 4.15: Particle size N=100: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 1R: α =
−0.005, β = 0.98, σ2

u = 0.05, T = 1200 and K = 100.
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Figure 4.16: Particle size N=500: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 1R :
α = −0.005, β = 0.98, σ2

u = 0.05, T = 1200 and K = 100.
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Figure 4.17: Particle size N=5000: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 1R: α =
−0.005, β = 0.98, σ2

u = 0.05, T = 1200 and K = 100 .
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Figure 4.18: Particle size N=10000: RMSE analysis on log-volatility estimate, with
the data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log
(rmse) plots are used to compare the performances of RB and LW methods. Dataset 1R:
α = −0.005, β = 0.98, σ2

u = 0.05, T = 1200 and K = 100 .

56



0 200 400 600 800 1000 1200
−2

−1

0

1
Log (rmse): LW vs RB method

time

Lo
g 

(r
m

se
)

 

 
rb−apf
lw−apf

−1.5 −1 −0.5 0 0.5 1
0

50

100

150

Histogram of Log (rmse): LW Method

Log (rmse)

F
re

qu
en

cy

−1.5 −1 −0.5 0 0.5 1
0

50

100

150

Histogram of Log (rmse): RB Method

Log (rmse)

F
re

qu
en

cy

−1.5 −1 −0.5 0 0.5 1
0

0.5

1

Log (rmse)

P
ro

ba
bi

lit
y

CDF of Log (rmse): LW vs RB method

 

 
lw−cdf
rb−cdf

N=100, T=1200, v=0.10

LW
RB

LW

RB

Figure 4.19: Particle size N=100: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 2R :
α = −0.005, β = 0.98, σ2

u = 0.10, T = 1200 and K = 100 .
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Figure 4.20: Particle size N=500: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 2R: α =
−0.005, β = 0.98, σ2

u = 0.10, T = 1200 and K = 100 .
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Figure 4.21: Particle size N=5000: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 2R: α =
−0.005, β = 0.98, σ2

u = 0.10, T = 1200 and K = 100 .
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Figure 4.22: Particle size N=10000: RMSE analysis on log-volatility estimate, with
the data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log
(rmse) plots are used to compare the performances of RB and LW methods. Dataset 2R:
α = −0.005, β = 0.98, σ2

u = 0.10, T = 1200 and K = 100 .
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Figure 4.23: Particle size N=100: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 3R: α =
−0.005, β = 0.98, σ2

u = 0.05, T = 2400 and K = 100 .
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Figure 4.24: Particle size N=500: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 3R: α =
−0.005, β = 0.98, σ2

u = 0.05, T = 2400 and K = 100 .
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Figure 4.25: Particle size N=5000: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 3R: α =
−0.005, β = 0.98, σ2

u = 0.05, T = 2400 and K = 100.
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Figure 4.26: Particle size N=10000: RMSE analysis on log-volatility estimate, with
the data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log
(rmse) plots are used to compare the performances of RB and LW methods. Dataset 3R:
α = −0.005, β = 0.98, σ2

u = 0.05, T = 2400 and K = 100 .
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Figure 4.27: Particle size N=100: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 4R: α =
−0.005, β = 0.98, σ2

u = 0.10, T = 2400 and K = 100.
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Figure 4.28: Particle size N=500: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 4R: α =
−0.005, β = 0.98, σ2

u = 0.10, T = 2400 and K = 100 .
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Figure 4.29: Particle size N=5000: RMSE analysis on log-volatility estimate, with the
data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log (rmse)
plots are used to compare the performances of RB and LW methods. Dataset 4R: α =
−0.005, β = 0.98, σ2

u = 0.10, T = 2400 and K = 100.
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Figure 4.30: Particle size N=10000: RMSE analysis on log-volatility estimate, with
the data set of 100 realizations. The log (rmse) and its histograms, and the CDF of log
(rmse) plots are used to compare the performances of RB and LW methods. Dataset 4R:
α = −0.005, β = 0.98, σ2

u = 0.10, T = 2400 and K = 100.
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Chapter 5

Rao-Blackwellization on Regime-Switching DSS Models

5.1 Regime-Switching DSS Models

In the previous chapters, we considered DSS models, where the states continuously

evolve over time according to a predefined regime. However, empirical evidence suggests

that there is a class of stochastic processes where the state process in time makes abrupt

shifts, i.e, the process undergoes sudden changes. The switch in the process occurs stochas-

tically in time, and the process moves to one of several distinct regimes. When this happens,

the statistical properties of the process change. The regimes are also considered as states,

except that they are discrete. When the process enters in a given regime, it stays there for

some time. The transition between regimes is modeled by hidden Markov model (HMM)

with a set of transition probabilities. In this chapter, we consider DSS models with changes

of regimes, where the transition among the regimes follows first-order Markov process. We

refer to these models as regime-switching state space models (Quandt, 1972; Goldfeld and

Quandt, 1973; Hamilton, 1989; Chib, 1996; Kim and Nelson, 1999).

In these models, the continuous state process depends on the discrete regimes. It has

been observed economics and finance, biology and engineering systems show this type of

behavior. The volatility in the financial markets undergoes abrupt changes, such as, from

low-volatility to high-volatility and back to low-volatility. The changes from positive to neg-

ative growth rate of the real GNP suggests a recurrent economic expansion and contraction

(recession). Hence, state space models with multiple regimes provides more flexibility and

better accuracy, though it increases model complexity due to an additional hidden layer.
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5.2 Application to SV Models

We want to extend our work from the standard DSS model to regime-switching DSS

models. As an application, we choose SV models that have more than one regime. In the

context of SV models, the regimes are defined by different parameters in the state equation,

which contribute to different levels of volatility. More specifically, we consider SV models

with two distinct regimes, one with low-volatility and another with high-volatility of the

return series. This is reflected due to changes of the levels of the log-volatility (state).

The transition between the regimes follows a first order time-homogeneous Markov pro-

cess. The literature suggests that volatility undergoes occasional abrupt changes from one

discrete regime to another, and hence, it is appropriate to model the volatility with distinct

regimes. The literature on conditional heteroscedasticity and SV models suggests that there

is a substantial persistence (Chou, 1988) in the high frequency data in finance, i.e., cluster-

ing in the volatility process. The persistence in variance which evolves over time, refers to

the characteristics of momentum in the conditional variance, i.e., the past volatility explains

the current volatility. Lamoureux and Lastrapes (Lamoureux and Lastrapes, 1990) have

conducted empirical study on persistence of volatility on stock return data using GARCH

(Generalized Autoregressive Conditional Heteroscedasticity) models. Their findings reveal

that the persistence could be overstated if the structural changes/shifts in the volatility

process is not considered in the model. The degree to which the persistence is present in

the daily stock return data is an important economic research issue. Poterba and Summers

(Poterba and Summers, 1986) argue that the movements on the stock prices reflect sub-

stantially the time-varying risk premia induced by changes in the volatility. Hamilton and

Susmel (Hamilton and Susmel, 1994) proposed an ARCH model with regime switching for

volatility level, and So (So et al., 1998) introduced a methodology for regime switching SV

models.
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As a result of increased complexity due to having another hidden layer, the model

provides improved modeling of the data. Estimation of the unknowns of this model remains

a challenging problem since it has two hidden (unknown) layers. Hamilton and Susmel used

the ML method to estimate the parameters and the states, whereas So and Li used the

MCMC sampling algorithm where they sample from the exact posterior distribution of the

parameters and the states. These two methods work with batch data sets only, and therefore

they are not suitable for realtime or online inference. Carvalho and Lopes used the APF

method (Carvalho and Lopes, 2006; Pitt and Shepard, 1999) based on Liu and West’s (Liu

and West, 2001) algorithm to estimate the unknowns of the regime-switching SV (RSSV)

model. The algorithm performs sequential realtime estimation of the log-volatility and the

parameters of the regimes. We want to implement RB on the PF algorithm along the lines

described previously. As before, our algorithm avoids sampling from the parameter space,

which is now even larger due to the presence of two regimes.

5.2.1 The RSSV Models

The RSSV is a classical HMM with discrete state space for the regimes, and where

the transition between the states takes place according to transition probabilities. For our

example, we consider two discrete regimes or states, which we denote by st ∈ (1, 2). The

distribution of the log-volatility (xt) for a given regime differs only in their levels (mean).

The RSSV model is described as,

st|st−1 ∼ Markov(P, λ) (switching state process) (5.1)

xt =





α1 + βxt−1 + σuut, st = 1

α2 + βxt−1 + σuut, st = 2
(state process) (5.2)

yt = ext/2vt (observation process) (5.3)

p(s1 = j) = λj , j ∈ (1, 2) (5.4)

p(st = j|st−1 = k) = pj,k, j, k ∈ (1, 2) (5.5)
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where yt is the observation at time t, xt is the log-volatility, st is the switching regime

governed by transition probability matrix (TPM) P, and ut and vt are uncorrelated Gaus-

sian noise processes with zero mean and unit variances. The constant level parameters

α = (α1, α2) correspond to the levels of the log-volatility of the regimes. The objective

of the model is to discriminate clusters with high volatility from low volatility, which are

captured by the parameters αj . Hence, α1 belongs to regime 1, corresponds to low volatility,

and α2 belongs to regime 2 , corresponds to high volatility. The unknown states (xt, st) are

the main interest, whereas the unknown static parameters θ = (α1, α2, β, σ2
u, p11, p22)

⊤

are considered as nuisance. We adopt reparameterization for αst for the two distinct regimes

as,

αst = γ1 + γ2I2t (5.6)

where I2t = 1 if st = 2 and is zero otherwise. We also have γ1 ∈ R and γ2 > 0. Therefore,

α1 = γ1 and α2 = γ1 + γ2.

The following are the four datasets generated according to RSSV models and used

in our simulation study, where each dataset has data length of T = 1200 points. The

parameters used in the simulation are from the literatures by So et al. (1998); Carvalho

and Lopes (2006). We have applied LW-APF vs RB-APF methods on these four datasets

with the various particle sizes (N=100-3000), where the transition probability matrix P is

assumed known. However, we have presented the results only for dataset 1RS.

Dataset 1RS: α1 = −2.5, α2 = −1, β = 0.5, σ2
u = 0.05, p11 = 0.990, p22 = 0.985,

Dataset 2RS : α1 = −2.5, α2 = −1, β = 0.5, σ2
u = 0.05, p11 = 0.990, p22 = 0.985,

Dataset 3RS: α1 = −2.5, α2 = −1, β = 0.5, σ2
u = 0.10, p11 = 0.990, p22 = 0.985,

Dataset 4RS : α1 = −2.5, α2 = −1, β = 0.5, σ2
u = 0.10, p11 = 0.990, p22 = 0.985.
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state xt (log-volatility ), and regime-switching states st, where the parameters are; α1 =
−2.5, α2 = −1, β = 0.5, σ2

u = 0.05, p11 = 0.990, p22 = 0.985 and T = 1200.
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5.3 PF applied to RSSV Models: LW Method

We apply the method of Liu and West for sequential estimation of (xt, st,θ) of RSSV

models with two regimes. The static parameters of the model θ = (γ1, γ2, β, σ2
u, p11, p22)

⊤.

The sequential inference of states and the parameters proceeds as before. The random mea-

sure at time instant t− 1 is given by

{zi
t−1,θ

i, wi
t−1}

N
i=1 ≈ p(zt−1,θ|y1:t−1) (5.7)

where zt = (xt, st).

At time t− 1, the predicted (prior) distribution is defined as,

Prediction : p(zt,θ|y1:t−1) =

∫
p(zt,zt−1,θ|y1:t−1)dzt−1

=

∫
p(zt|zt−1,θ)p(zt−1,θ|y1:t−1)dzt−1 (5.8)

At time t, when the new observation yt becomes available, the prior distribution is modified

via Bayes rule to the the desired posterior distribution,

Update : p(zt,θ|y1:t) ∝ p(yt|zt,θ)︸ ︷︷ ︸
likelihood

p(zt,θ|y1:t−1)︸ ︷︷ ︸
prior

∝ p(yt|zt,θ)p(zt|θ,y1:t−1)p(θ|y1:t−1) (5.9)

Our objective is obtaining random measure{zi
t,θ

i, wi
t}

N
i=1 to approximate p(zt,θ|y1:t), i.e.,

{zi
t,θ

i, wi
t}

N
i=1 ≈ p(zt,θ|y1:t) (5.10)

We implement the APF algorithm on the RSSV model in accordance with Carvalho

and Lopes (Carvalho and Lopes, 2006). The sequential inference of zt and the param-

eter vector θ is performed based on the particles of the states, and, the parameter vec-

tor and their weights as described previously. We assume that the parameter vector

θ = (γ1, γ2, β, σ2
u, p11, p22)

⊤ follows mixture of multivariate normals (3.1.2), i.e.,

p(θ|y1:t) ≈
N∑

i=1

wi
tN(θ|mi

t, h
2Vt) (5.11)
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We transform some of the components of θ so that they are defined on the real line, R.

Therefore, with the transformation, θ̃ = {γ1, log(γ2), β, log(σ2
u), log( p11

1−p11
), log( p22

1−p22
)}⊤.

The following is a step-by-step procedures of the algorithm. Again, the notation θ̃t

indicates the posterior at time instant t, θ̃t is not time-varying.

• Suppose, at time t − 1, we have weighted samples from the posterior PDF, i.e.,

{xi
t−1, s

i
t−1, θ̃

i

t−1, w
i
t−1}

N
i=1 ≈ p(xt−1, st−1, θ̃t−1|yt−1)

1. The prior estimates of {xi
t−1, s

i
t−1, θ̃

i

t−1}
N
i=1 are given by {µ̂i

t, ŝt,m
i
t−1}, where

• ŝt
i = argmax p(st = j|st−1 = si

t−1, θ̃
i
); j ∈ (1, 2)

• µ̂i
t = αi

ŝi
t

+ βixi
t−1

• mi
t−1 = cθ̃

i

t−1 + (1− c)θ̄t−1

• θ̄t−1 =
∑N

i=1 wi
t−1θ̃

i

t−1

• Vt−1 =
∑N

i=1 wi
t−1(θ̃

i

t−1 − θ̄t−1)(θ̃
i

t−1 − θ̄t−1)
T

2. Compute the first-stage weights: Li
t ∝ wi

t−1p(yt|µ̂
i
t,m

i
t−1), i = 1, . . . , N

3. Normalize the weights: L̃i
t =

Li
t∑N

j=1 Lj
t

, i = 1, . . . , N

4. Resampling: sample the indexes Ji ∈ (1, . . . , N) with L̃t, Ji are auxiliary variables.

5. Propagate the parameter vector: θ̃
i

t ∼ N(θ̃t|m
Ji

t−1, h
2Vt−1), i = 1, . . . , N

6. Propagate the regime-switching states: si
t ∼ p(st|s

Ji

t−1, θ̃
i
)

7. Propagate the volatility state: xi
t ∼ p(xt|x

Ji

t−1, s
i
t, θ̃

i

t), i = 1, . . . , N

8. Evaluate the 2nd-stage weights: wi
t ∝

p(yt|xi
t,θ

i

t)

p(yt|µ̂
Ji
t ,m

Ji
t )

, i = 1, . . . , N

9. Normalize the weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N

10. The posterior at time t is represented by {xi
t, s

i
t, θ̃

i

t, w̃
i
t}

N
i=1 ≈ p(xt, st, θ̃t|y1:t).
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5.4 PF applied to RSSV Models: RB-based Method

In this section, we show how to implement the RB on the RSSV model. For convenience,

we reintroduce the model here again,

st|st−1 ∼ Markov(P, λ) (switching state process) (5.12)

xt =





α1 + βxt−1 + σuut, st = 1

α2 + βxt−1 + σuut, st = 2
(state process) (5.13)

yt = ext/2vt (observation process). (5.14)

For the distributions of states and observations with the parameter vector ψ = (α1, α2, β, σ2
u),

p(st = j|st−1 = i) = pi,j, i, j ∈ (1, 2) (switching state process) (5.15)

p(xt|x0:t−1, st,ψ) ∼





N (α1 + βxt−1, σ
2
u), st = 1

N (α2 + βxt−1, σ
2
u), st = 2

(state process) (5.16)

p(yt|xt) ∼ N (0, ext) (observation process). (5.17)

We can apply RB on the parameter space ψ with the implied integration method. RB

on the state equation amounts to integrating out the nuisance parameter vector ψ, i.e.,

p(xt|x0:t−1, s1:t) =

∫

ψ
p(xt,ψ|x0:t−1, s1:t)dψ

=

∫

ψ
p(xt|x0:t−1,ψ, s1:t)p(ψ|x0:t−1, s1:t)dψ (5.18)

We perform the above integration using the implied method instead of direct integration as

discussed previously. We write as,

p(ψ|x0:t, s1:t) =
p(ψ, x0:t, s1:t)

p(x0:t, s1:t)

=
p(xt|x0:t−1, s1:t,ψ, )p(x0:t−1|s1:t,ψ)p(s1:t|ψ)p(ψ)

p(xt|x0:t−1, s1:t)p(x0:t−1|s1:t)p(s1:t)

=
p(xt|x0:t−1, st,ψ, )p(x0:t−1|s1:t−1,ψ)p(s1:t|ψ)p(ψ)

p(xt|x0:t−1, st)p(x0:t−1|s1:t−1)p(s1:t)

=
p(xt|x0:t−1, st,ψ)p(ψ|x0:t−1, s1:t−1)

p(xt|x0:t−1, st)
.
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Hence,

p(xt|x0:t−1, st) =

︷ ︸︸ ︷
p(xt|x0:t−1, st,ψ, )

︷ ︸︸ ︷
p(ψ|x0:t−1, s1:t−1)

p(ψ|x0:t, s1:t)︸ ︷︷ ︸
(5.19)

A more detailed description of the expression in (5.19) as follows:

p(xt|x0:t−1, st) ∼





tν1
(xt|m1,t−1, rt−1), when st = 1

tν2
(xt|m2,t−1, rt−1), when st = 2

(5.20)

Where, m1,t−1 = α̂1 + β̂xt−1, (mean)

m2,t−1 = α̂2 + β̂xt−1, (mean)

rt−1 =
2
b + RSSt−1

2a + t− 1
, (variance)

ν1 = M − 1,

ν2 = t−M − 1,

where α̂1, α̂2 and β̂ are estimated with the sequential least squares (SLS) method from

x0:t−1. The variance rt−1 is also estimated from x0:t−1, where RSSt−1 is the Residual Sum

Squares of the linear state model. The symbol M is the number of data points that belong

to regime-1, and ν1 and ν2 are the degrees of freedom of the t−pdf of the respective regimes.

After RB on the state, the filtering posterior distribution is given by,

p(xt, st,P|x0:t−1, s1:t−1, y1:t) =

∫

ψ
p(xt, st,P,ψ|x0:t−1, s1:t−1, y1:t)dψ

=

∫

ψ
p(xt, st,P|x0:t−1, s1:t−1, y1:t,ψ)p(ψ|x0:t−1, s1:t−1, y1:t)dψ

∝ p(yt|xt)p(xt|x0:t−1, st)p(st|st−1,P)p(P|s1:t−1). (5.21)

where P is the unknown transition probability matrix (TPM) for the switching states st,

and it is given by,

P =




p11 p12

p21 p22


 . (5.22)

It is assumed that p11 and p22 are independent. Therefore, since there are only two states,

we generate samples only from p(p11|s1:t−1) and p(p22|s1:t−1).
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We choose the Beta distributions for the priors p(p11) and p(p22) :

p(p11) =
Γ(η11 + η12)

Γ(η11)Γ(η12)
pη11−1
11 (1− p11)

η12−1, η11, η12 > 0, 0 ≤ p11 ≤ 1 (5.23)

p(p22) =
Γ(η22 + η21)

Γ(η22)Γ(η21)
pη22−1
22 (1− p22)

η21−1, η22, η21 > 0, 0 ≤ p22 ≤ 1. (5.24)

The posterior distributions p(p11|s1:t−1) and p(p22|s1:t−1) are also Beta distributions. Since

p12 = 1− p11 and p21 = 1− p22, we have

p(p11|s1:t−1) ∝ p(s1:t−1|p11)p(p11)

∝

[
p(s1)

t−1∏

k=2

p(sk = j|sk−1 = i)

] [
pη11−1
11 pη12−1

12

]

∝

[
p(s1)

t−1∏

k=2

p
Ik(c11)
11 p

Ik(c12)
12

] [
pη11−1
11 pη12−1

12

]

∝ p
η11+

∑t−1

k=1
Ik(c11)−1

11 p
η12+

∑t−1

k=1
Ik(c12)−1

12

∝ Beta

(
η11 +

t−1∑

k=1

Ik(c11), η12 +
t−1∑

k=1

Ik(c12)

)
. (5.25)

Similarly, the posterior distribution of p(p22|s1:t−1) is also Beta,

p(p22|s1:t−1) ∝ p(s1:t−1|p22)p(p22)

∝ Beta

(
η22 +

t−1∑

k=1

Ik(c22), η21 +

t−1∑

k=1

Ik(c21)

)
(5.26)

where It(cjk) is the indicator variable which takes values 0 or 1, based on the transition

from (st−1 = j)→ (st = k), i.e.,

It(cjk) =





1, when (st−1 = j)→ (st = k)

0, otherwise
. (5.27)

The posterior distribution p(st|s1:t−1,P, x0:t−1, y1:t) is given by

p(st|s1:t−1,P, x0:t−1, y1:t) ∝ p(s1:t−1,P, x0:t−1, y1:t|st)p(st)

∝ p(st|st−1,P). (5.28)

The posterior state distribution p(xt|x0:t−1, st) is derived as,

p(xt|x0:t−1, st) ∼





tν1
(xt|m1,t−1, rt−1), when st = 1

tν2
(xt|m2,t−1, rt−1), when st = 2

. (5.29)

72



We generate particles for p11, p22, st and xt from (5.25,5.26,5.28,5.29), respectively, and

the weights are computed according to

wi
t ∝ wi

t−1

p(xi
t, s

i
t,P

i|xi
0:t−1, s

i
1:t−1, y1:t)

q(xi
t, s

i
t,P

i|xi
0:t−1, s

i
1:t−1, y1:t)

∝ wi
t−1p(yt|x

i
t). (5.30)

We develop RB-APF algorithms for sequential estimation for two cases, (1) when P is

assumed known, and (2) when P is unknown.

5.4.1 RB-APF Method for Known TPM

We develop an RB-APF algorithm where the transition probabilities, P, are assumed

known. We sample only si
t and xi

t from the the posterior PDF p(xt, st|x0:t−1, s1:t−1, y1:t,P),

p(xt, st|x0:t−1, s1:t−1, y1:t, P ) ∝ p(yt|xt)p(xt|x0:t−1, st)p(st|st−1,P) (5.31)

The following are the steps for the implementation of the algorithm:

• Suppose, at time t − 1, we have weighted particles from the posterior PDF, i.e.,

{xi
t−1, s

i
t−1, w

i
t−1}

N
i=1 ≈ p(xt−1, st−1|x

i
0:t−2, s

i
1:t−2, y1:t−1,P)

1. We get the prior estimates of ŝt
i and µ̂i

t = E(xt|x
i
t−1, ŝt

i, ψ̂
i

t−1)

• ŝt
i = argmax p(st = j|st−1 = si

t−1,P); j ∈ (1, 2)

• µ̂i
t = α̂i

ŝi
t

+ β̂ixi
t−1

2. Compute the first stage weights: Li
t ∝ wi

t−1p(yt|µ̂
i
t), i = 1, . . . , N

3. Normalize the weights: L̂i
t =

Li
t∑N

j=1
Lj

t

, i = 1, . . . , N

4. Resampling: sample the indexes Ji ∈ (1, . . . , N) with L̂t, Ji are auxiliary variables.

5. Propagate the regime-switching states: si
t ∼ p(st|s

Ji

t−1,P)

6. Propagate the volatility state: xi
t ∼ p(xt|x

Ji

0:t−1, s
i
t, ), i = 1, . . . , N

7. Estimate ψ̂
i
= (α̂i

1, α̂
i
2, β̂

i) from xi
0:t with the sequential least squares (SLS) method.

73



8. Evaluate the second stage weights: wi
t ∝

p(yt|xi
t,ψ̂

i

)

p(yt|µ̂
Ji
t )

, i = 1, . . . , N

9. Normalize the weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N

10. The posterior at time t is represented by

{xi
t, s

i
t, w̃

i
t}

N
i=1 ≈ p(xt, st|x

i
0:t−1, s

i
1:t−1, y1:t,P)

5.4.2 RB-APF Method for Unknown TPM

We, now present the RB-APF algorithm for the case of unknown TPM, where we sample

from the posterior PDF p(xt, st,P|x0:t−1, s1:t−1, y1:t). The algorithm are as follows:

• Suppose, at time t − 1 we have weighted particles from the posterior PDF, i.e.,

{xi
t−1, s

i
t−1, P

i, wi
t−1}

N
i=1 ≈ p(xt−1, st−1,P|x

i
0:t−2, s

i
1:t−2, y1:t−1)

1. We get the prior estimates of ŝt
i and µ̂i

t = E(xt|x
i
t−1, ŝt

i, ψ̂
i

t−1)

• ŝt
i = argmax p(st = j|st−1 = si

t−1,P
i); j ∈ (1, 2)

• µ̂i
t = α̂i

ŝi
t

+ β̂ixi
t−1

2. Compute the first stage weights: Li
t ∝ wi

t−1p(yt|µ̂
i
t), i = 1, . . . , N

3. Normalize the weights: L̂i
t =

Li
t∑N

j=1
Lj

t

, i = 1, . . . , N

4. Resampling: sample the indexes Ji ∈ (1, . . . , N) with L̂t, Ji are auxiliary variables.

5. Propagate the transition probability: pi
11 ∼ p(p11|s

Ji

1:t−1), i = 1, . . . , N

6. Propagate the transition probability: pi
22 ∼ p(p22|s

Ji

1:t−1), i = 1, . . . , N

7. Propagate the regime-switching states: si
t ∼ p(st|s

Ji

t−1, P
i)

8. Propagate the volatility state: xi
t ∼ p(xt|x

Ji

0:t−1, s
i
t, ), i = 1, . . . , N

9. Estimate ψ̂
i
= (α̂i

1, α̂
i
2, β̂

i) from xi
0:t with the SLS method

10. Evaluate the second stage weights: wi
t ∝

p(yt|xi
t,ψ̂

i

)

p(yt|µ̂
Ji
t )

, i = 1, . . . , N
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11. Normalize the weights: w̃i
t =

wi
t∑N

j=1
wj

t

, i = 1, . . . , N

12. The posterior at time t is represented by

{xi
t, s

i
t, P

i, w̃i
t}

N
i=1 ≈ p(xt, st, P |x

i
0:t−1, s

i
1:t−1, y1:t).

5.5 Simulation Results

We implement the APF algorithm developed by Liu and West (LW-APF) and compared

its performances with the RB-APF algorithm, where P is assumed known. With known

P, the dimension of θ = (γ1, γ2, β, σ2
u) is reduced to four. For performance comparison,

simulated results on dataset 1RS is presented. The dataset 1RS has less fluctuation in

the observation series, and it has a state noise variance σ2
u = 0.05 (Figures 5.1). We run

the simulation experiments with increasing particle sizes N = 100−3000 on these datasets,

and find that performance of the algorithm is consistent. We also observe that dataset with

higher fluctuations is difficult to track and estimate with good accuracy. For this type of

sequence requires large particle sizes. We are able to show that RB method has advantages

over LW method with respect to accuracy on the use of small particle size, as demonstrated

in Figures 5.3-5.10.

For the LW-APF method, where all the unknowns (st, xt,θ) were sampled and the

diffused priors are used, where the means are chosen as true values. In the RB-APF method,

sampling are performed only on st and xt, and θ are estimated from x0:t−1 with the SLS

method. We observe that the RB-APF method consistently perform better than the LW-

APF method with the smaller particle sizes (N = 100, 500). However, with the increased

particle size, N = 3000 or above, the LW method showed good performance as demonstrated

in Figures 5.11-5.18. For the parameter estimate, the RB method is consistently shown to

be better than LW method. We also observe that the RB method is less sensitive to the

prior distributions than the LW method. Finally, the LW method is shown to be highly

sensitive to the prior distribution of the noise variance (σ2
u).
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Figure 5.3: Dataset 1RS, N=100, LW method: Plots of simulated time series yt, log-
volatility xt (true vs estimate), regime-switching states st (true), with parameters values:
α1 = −2.5, α2 = −1, β = 0.5, σ2

u = 0.05, p11 = 0.990, p22 = 0.985 and T = 1200.
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Figure 5.4: Dataset 1RS, N=100, RB method: Plots of simulated time series yt, log-
volatility xt (true vs estimate), regime-switching states st (true), with parameters values:
α1 = −2.5, α2 = −1, β = 0.5, σ2

u = 0.05, p11 = 0.990, p22 = 0.985 and T = 1200.

76



100 200 300 400 500 600 700 800 900 1000 1100 1200

0

0.5

1

time
P

ro
ba

bi
lit

y

P(s(t)=2|Data):P(high volatility state): LW method

100 200 300 400 500 600 700 800 900 1000 1100 1200

1

1.5

2

time

s(t)=Switching states (est): LW method
s(

t)

100 200 300 400 500 600 700 800 900 1000 1100 1200

1

1.5

2

s(t)=Switching states (True)

time

s(
t)

state−1 (low volatility)

state−2 
(high volatility)

Figure 5.5: Dataset 1RS, N=100, LW method : Plots of estimate of p(st = 2|data),
switching states st (true vs estimate).

100 200 300 400 500 600 700 800 900 1000 1100 1200

0

0.5

1

time

P
ro

ba
bi

lit
y

P(s(t)=2|Data):P(high volatility state) :RB method

100 200 300 400 500 600 700 800 900 1000 1100 1200

1

1.5

2

time

s(t)=Switching states (est): RB method

s(
t)

100 200 300 400 500 600 700 800 900 1000 1100 1200

1

1.5

2

s(t)=Switching states (True)

time

s(
t) state−2 

(high volatility)
state−1 (low volatility)

Figure 5.6: Dataset 1RS, N=100, RB method : Plots of estimate of p(st = 2|data),
switching states st (true vs estimate).
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Figure 5.7: Dataset 1RS, N=100, LW method: Plots of parameters (true vs estimate);
level parameters α1, α2, and persistence parameter β.
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Figure 5.8: Dataset 1RS, N=100, RB method: Plots of parameters (true vs estimate);
level parameters α1, α2, and persistence parameter β.
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likelihood functions of state-1 and state-2 respectively.
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likelihood functions of state-1 and state-2 respectively.
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Figure 5.11: Dataset 1RS, N=3000, LW method: Plots of simulated time series yt,
log-volatility xt (true vs estimate), regime-switching states st (true), with the parameters
values; α1 = −2.5, α2 = −1, β = 0.5, σ2

u = 0.05, p11 = 0.990, p22 = 0.985 and T = 1200.
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Figure 5.12: Dataset 1RS, N=3000, RB method: Plots of simulated time series yt,
log-volatility xt (true vs estimate), regime-switching states st (true), with the parameters
values; α1 = −2.5, α2 = −1, β = 0.5, σ2

u = 0.05, p11 = 0.990, p22 = 0.985 and T = 1200.
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Figure 5.13: Dataset 1RS, N=3000, LW method: Plots of estimate of p(st = 2|data) ,
switching states st (true vs estimate).
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Figure 5.14: Dataset 1RS, N=3000, RB method: Plots of estimate of p(st = 2|data),
switching states st (true vs estimate).
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Figure 5.15: Dataset 1RS, N=3000, LW method: Plots of parameters (true vs esti-
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Figure 5.16: Dataset 1RS, N=3000, RB method: Plots of parameters (true vs esti-
mate); level parameters α1, α2, and persistence parameter β.
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Figure 5.17: Dataset 1RS, N=3000, LW method: Plots of state noise variance, σ2
u(

true vs estimate), histogram of time series yt, and p(yt|xt, st = 1) and p(yt|xt, st = 2) are
the likelihood functions of state-1 and state-2 respectively.
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Figure 5.18: Dataset 1RS, N=3000, RB method: Plots of state noise variance, σ2
u(

true vs estimate), histogram of time series yt, and p(yt|xt, st = 1) and p(yt|xt, st = 2) are
the likelihood functions of state-1 and state-2 respectively.

83



Chapter 6

Conclusions and Future Work

Dynamic state space (DSS) models play an important role in many scientific and en-

gineering disciplines including finance. Of special research interest are DSS models used

for dynamic systems which are highly nonlinear and non-Gaussian. The Kalman filter is

the optimal solution for linear and Gaussian models, but is not applicable for nonlinear

and/or non-Gaussian DSS models. Therefore, for studying of the latter, many alternative

approaches have been proposed. DSS models usually require sequential and/or real-time

inference. The popular MCMC algorithms are not suitable for this type of data processing.

By contrast, PF, which is also an MC-based methodology, is, and it produces estimates of

distributions as MCMC methods. PF, however, has difficulty for sequential joint inference

of states and constant parameters, and therefore a lot of effort has been dedicated to find-

ing good solutions for such scenarios. One of them is the use of RB, which is a variance

reduction technique that exploits Rao-Blackwell theorem. In this dissertation, we consider

a class of discrete-time nonlinear DSS models, where the state equation is linear and con-

tains unknown static parameters. For these models, we develop a PF algorithm where we

integrate out the unknown static and nuisance parameters. This reduces the dimension of

the unknown sampling space which leads to improvement in accuracy of the PF algorithm.

One contribution of our work is the implementation of the RB via the implied integration

method instead of direct integration.

As application examples, we chose the standard SV and RSSV models. The SV models

are DSS models with a linear state equation in the parameters, and a nonlinear observation
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equation in the state. Our main objective was to obtain sequential estimates of the posterior

of the log-volatility. We applied RB with the implied integration method to integrate out

the constant parameters. Thereby, we reduced the dimension of the unknowns, and we

only had to sample the log-volatility. The reduction in the sampling space usually leads

to significant improvements in accuracy and computational complexity. We also considered

RSSV models, where we allowed that they have two regimes, one representing low and

another, high volatility states.

We performed extensive simulations to study the proposed methods. In Chapter 4, we

compared the performances of our Rao-Blackwellized PF algorithm with the PF algorithm

developed by Liu and West. The latter method employs sampling both of the state and the

constant and nuisance parameter vector. We performed RMSE analysis of the estimates

from data records of different lengths and were able to show that our RB method consistently

outperformed the algorithm of Liu and West. We also studied the performance of RB on

the RSSV model. Again, we showed that our RB method outperformed the method of Liu

and West.

A natural extension of our work on univariate SV models is its application to the mul-

tivariate case, where one models the changing variance of multivariate asset returns. Since

financial time series exhibit heteroscedasticity, this multivariate models attempt to capture

the cross-variance patterns of the time series. A class of models for this purpose is known

as dynamic factor models. They try to capture the co-movements of the return series by a

set of dynamic hidden (unobserved) factor process. The dynamic factor models have been

one of the most powerful tools for modeling dependence and co-dependence of multivariate

time series. The factor model implies that the dependence and co-dependence structure in

the observable time series is explained by some common hidden factors. One interpretation

is that the models attempt to explain the high dimensional covariance structure in a low

dimensional space without losing much explanation power. The objective is to choose the

smallest number of factors, which explain the most dependent structure of the observations.
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Due to the computational advances, Bayesian inference on the dynamic factor models

has received keen interest by researchers and practitioners. The factor models however have

challenges in choosing the number of factors, model uncertainty, model specifications and

model fitting. ML and MCMC-based methods have been applied on static and dynamic

factor models on retrospective data. The dynamic structure of the factors with time varying

variances has been considered, and the variances of the factors have been modeled as a log-

volatility hidden process. The modeling assumption is that movements in the return series

are driven by SV process as a factors. Our approach would be the application of RB on these

models followed by PF. The application of RB will reduce the dimension of the unknown

sampling space, and consequently, will improve the accuracy of the estimate and also will

reduce the computational complexity.
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Appendix A

Appendix

A.1 Rao-Blackwellization on the SV Model

Our SV model is defined as

xt = α + βxt−1 + σuut (state equation) (A.1)

yt = ext/2vt (observation equation) (A.2)

where xt ∈ R is a hidden state and represents the log (volatility), and ut ∈ R and vt ∈ R are

uncorrelated Gaussian noises with zero means and unit variances. We define the unknown

parameter vector as θ = (α β σ2
u)⊤. Based on the assumptions, the probability distributions

obtained from the state and observation equations are,

p(xt|x0:t−1,θ) ∼ N (xt|α + βxt−1, σ
2
u) (A.3)

p(yt|xt) ∼ N (yt|0, e
xt) (A.4)

where from the state equation (A.1) we can write

E(xt|x0:t−1,θ) = α + βxt−1

V ar(xt|x0:t−1,θ) = σ2
u
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and, from the observation equation (A.2),

E(yt|xt) = E
(
e

xt
2 vt|xt

)

= e
xt
2 E(vt); E(vt) = 0

= 0

V (yt|xt) = E

[(
e

xt
2 vt

)2
|xt

]

= E
[
extv2

t |xt

]

= extE
(
v2
t

)
; E

(
v2
t

)
= 1

= ext .

Rao-Blackwellization (RB) is a technique which integrates out the nuisance parameters

from the model in order to obtain a marginal distribution free from these parameters.

The necessary condition for applying RB is that, one is able to carry out the integration

analytically. Here, we integrate out the unknown static parameters θ = (α, β, σ2
u) which

belongs to the state equation. We perform this integration using the implied integration

method (Besag, 1889).

With the application of RB in the dynamic state equation, our goal is to construct a

marginal posterior density of the state, i.e.,

p(xt|x0:t−1) =

∫

θ
p(xt,θ|x0:t−1)dθ

=

∫

θ
p(xt|θ, x0:t−1)p(θ|x0:t−1)dθ

∝

∫

θ
p(xt|x0:t−1,θ)p(x0:t−1|θ)p(θ)dθ (A.5)

where the posterior of θ is expressed as,

p(θ|x0:t−1)︸ ︷︷ ︸
posterior

∝ p(x0:t−1|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

(A.6)
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According to Bayes’ theorem,

p(θ|x0:t) =
p(θ, x0:t)

p(x0:t)

=
p(xt|x0:t−1,θ)p(x0:t−1,θ)

p(xt|x0:t−1)p(x0:t−1)

=
p(xt|x0:t−1,θ)p(x0:t−1|θ)p(θ)

p(xt|x0:t−1)p(x0:t−1)

=
p(xt|x0:t−1,θ)p(θ|x0:t−1)

p(xt|x0:t−1)
(A.7)

Hence, we deduce that

p(xt|x0:t−1) =

(1)︷ ︸︸ ︷
p(xt|x0:t−1,θ)

(2)︷ ︸︸ ︷
p(θ|x0:t−1)

p(θ|x0:t)︸ ︷︷ ︸
(3)

. (A.8)

To obtain the marginal posterior distribution of the state, p(xt|x0:t−1), we need to obtain

the respective PDF of (1), (2) and (3) of the RHS in (A.8). We derive those PDFs and

substitute them in (A.8) for evaluation. The PDFs of (1), (2), and (3) are derived as,

(1) p(xt|x0:t−1,θ) ∼ N(xt|α + βxt−1, σ
2
u) (A.9)

With Bayes’ theorem,

(2) p(θ|x0:t−1)︸ ︷︷ ︸
posterior

∝ p(x0:t−1|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

∝ p(x0:t−1|θ)︸ ︷︷ ︸
Gaussian

p(α, β)︸ ︷︷ ︸
constant

p(σ2
u)︸ ︷︷ ︸

IG

∝ p(x0|θ)
t−1∏

k=1

p(xk|x0:k−1,θ)p(σ2
u)

∝
1√

2πσ2
u

e
−

x2
0

2σ2
u

(
1√
2πσ2

u

)t−1

e
− 1

2σ2
u

∑t−1

k=1
(xk−α−βxk−1)

2 (
σ2

u

)−(a+1)
e
− 1

σ2
ub

=

(
1√

2πσ2
u

)t

e
− 1

2σ2
u
[x2

0
+
∑t−1

k=1
(xk−α−βxk−1)

2] (
σ2

u

)−(a+1)
e
− 1

σ2
ub

∝
(
σ2

u

)−(a+1+ t
2
)
e
− 1

σ2
u

(
Dt−1

2
+ 1

b

)

=
(
σ2

u

)−(ãt−1+1)
e
− 1

σ2
ub̃t−1
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where

ãt−1 = a +
t

2

b̃t−1 =
2b

2 + bDt−1

Dt−1 = (x0)
2 +

t−1∑

k=1

(xk − α− βxk−1)
2

and IG in the second line stands for Inverse-Gamma distribution.

Hence,

p(θ|x0:t−1) ∝
(
σ2

u

)−(ãt−1+1)
e
− 1

σ2
ub̃t−1 (A.10)

(3) Similarly, p(θ|x0:t−1) has analogous expression, i.e.,

p(θ|x0:t) ∝
(
σ2

u

)−(ãt+1)
e
− 1

σ2
ub̃t (A.11)

where

ãt = a +
t + 1

2

b̃t =
2b

2 + bDt

Dt = (x0)
2 +

t∑

k=1

(xk − α− βxk−1)
2

Finding the distribution of p(xt|x0:t−1) in (A.8), we need to find the normalizing constants

in (A.10) and (A.11). To obtain this normalizing constants we write the posterior of θ as,

p(θ|x0:t−1) = p(µ|σ2
u, x0:t−1)︸ ︷︷ ︸

Gaussian

p(σ2
u|x0:t−1)︸ ︷︷ ︸
IG

(A.12)

of which the first density on the right is a two-dimensional Gaussian with mean µ̂t−1 and

covariance matrix Ĉt−1, where µ = [α β]⊤, and the second density is IG,

p(µ|σ2
u, x0:t−1) =

1

2π|Ĉ t−1|
1

2

e−
1

2
[(µ−µ̂)⊤Ĉ

−1

t−1(µ−µ̂)] (A.13)

where

µ̂t−1 =
(
H⊤

t−1Ht−1

)−1
H⊤

t−1xt−1 (A.14)
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and

Ĉt−1 = σ2
u

(
H⊤

t−1H t−1

)−1
(A.15)

and where the vector xt−1 = [x0 x1 · · · xt−1]
⊤ and the matrix H t−1 is defined as,

H t−1 =




1 0

1 x0

1 x1

· ·

· ·

1 xt−2




(A.16)

The second density is an Inverse-Gamma given by

p(σ2
u|x0:t−1) =

1

Γ(at−1)b
at−1

t−1

(σ2
u)−(at−1+1)e

− 1

bt−1σ2
u (A.17)

where

at−1 = a +
t− 1

2

bt−1 =
2b

2 + bx⊤
t−1P

⊥
t−1xt−1

P⊥
t−1 = I−H t−1

(
H⊤

t−1Ht−1

)−1
H⊤

t−1 (A.18)

and I is the identity matrix.

Using the principle in (A.12), the RHS of (A.8) can be rewritten as

p(xt|x0:t−1) =

Gaussian︷ ︸︸ ︷
p(xt|x0:t−1,θ)

Gaussian︷ ︸︸ ︷
p(µ|σ2

u, x0:t−1)

IG︷ ︸︸ ︷
p(σ2

u|x0:t−1)

p(µ|σ2
u, x0:t)︸ ︷︷ ︸

Gaussian

p(σ2
u|x0:t)︸ ︷︷ ︸
IG

(A.19)

and the evaluation of the RHS in (A.19) with the respective distributions results in the

desired PDF, p(xt|x0:t−1), which is free from the parameters θ.
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Consider p(x|m,σ2) ∼ N (m,σ2) and p(σ2|a, b) ∼ IG(a, b), where the Inverse-Gamma

distribution is defined as

p(σ2
u|a, b) =

1

Γ(a)ba
(σ2)−(a+1)e−( 1

σ2b
) (A.20)

Using the Bayes’ principle, the marginal distribution p(x|m) can be written as,

p(x) =

Gaussian︷ ︸︸ ︷
p(x|m,σ2)

IG︷ ︸︸ ︷
p(σ2)

p(σ2|x,m)︸ ︷︷ ︸
IG

(A.21)

where the parameter m in p(x) is suppressed for notational convenience. The posterior

distribution p(σ2|x,m) can be shown as,

p(σ2|x,m) ∝ p(x|m,σ2)︸ ︷︷ ︸
Gaussian

p(σ2)︸ ︷︷ ︸
IG(a,b)

∝ IG(ã, b̃) (A.22)

where

ã = a +
1

2

b̃ =
2b

2 + b(x−m)2

It can be shown that (West, 1997, p. 641-42), the marginal distribution p(x) is derived as,

p(x) ∝
(
b̃
)−ã

(A.23)

= (2a + (x−m)2ab)−
2a+1

2

∝ (1 +
(x−m)2

νr
)−

ν+1

2

∝ tν(m, r) (A.24)

which is a non-standard t-distribution, with ν = 2a is degrees of freedom, m is mode and

r = 1
ab is a scale parameter.
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Similarly, from (A.19), we have

p(xt|x0:t−1,θ) ∼ N (h⊤
t µ, σ2

u) (A.25)

where h⊤
t = [1 xt−1], and the other distributions in (A.19) are,

p(µ|x0:t−1, σ
2
u) ∼ N (µ̂t−1, Ĉt−1) (A.26)

p(σ2
u|x0:t−1) ∼ IG(at−1, bt−1) (A.27)

p(µ|x0:t, σ
2
u) ∼ N (µ̂t, Ĉt) (A.28)

and

p(σ2
u|x0:t) ∼ IG(at, bt) (A.29)

where µ̂t−1 = [α̂t−1 β̂t−1], at = a + t
2 , and the other parameters are already defined.

Then, as in (West, 1997, p. 641-42), after evaluation of the RHS in (A.19) with these

respective PDFs, p(xt|x0:t−1) is a non-standard t-distribution with νt−1 degrees of freedom,

mode mt−1, and scale rt−1, i.e.,

p(xt|x0:t−1) ∼ tνt−1
(mt−1, rt−1) (A.30)

where

νt−1 = 2a + t− 1

mt−1 = h⊤
t µ̂t−1

rt−1 =
1

at−1bt−1

=
2
b + x⊤

t−1P
⊥
t−1xt−1

νt−1

=
2
b + RSSt−1

νt−1

where RSSt−1 is the Residual Sum Squares on linear state equation. The non-standard

t-pdf is defined as (Zellner, 1996, p. 366-67),

p(x|ν,m,R) =
Γ(ν+1

2 )

Γ(1
2)Γ(ν

2 )

(
1

νr

)1

2
(

1 +
(x−m)2

νr

)−( ν+1

2
)

; tν(m, r) (A.31)
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A.2 Derivation of Rao-Blackwelized Sequential Bayesian Fil-

tering Stages for SV Models

The Rao-Blackwellized sequential Bayesian filtering is performed recursively in two

stages: (1) prediction and (2) update. Suppose that at time t − 1, the required PDF

p(xt−1|x0:t−2, y1:t−1) is available. Then the propagation or prediction on the state is done

according to the following stages,

(1) p(xt|x0:t−1, y1:t−1) =

∫

θ
p(xt,θ|x0:t−1, y1:t−1)︸ ︷︷ ︸

joint posterior

dθ; θ = (α, β, σ2
u)

=

∫

θ
p(xt|θ, x0:t−1, y1:t−1)︸ ︷︷ ︸

posterior

p(θ|x0:t−1, y1:t−1)︸ ︷︷ ︸
posterior

dθ

∝

∫

θ
p(xt|x0:t−1, y1:t−1,θ) p(x0:t−1, y1:t−1|θ)︸ ︷︷ ︸

likelihood

p(θ)︸︷︷︸
prior

dθ

∝

∫

θ
p(xt|x0:t−1, y1:t−1,θ)p(y1:t−1|x0:t−1,θ)p(x0:t−1|θ)p(θ)dθ

∝

∫

θ
p(xt|x0:t−1, y1:t−1,θ)p(y1:t−1|x0:t−1)p(x0:t−1|θ)p(θ)dθ

∝

∫

θ
p(x0:t−1, y1:t−1,θ|xt)p(xt)p(x0:t−1|θ)p(θ)dθ

∝

∫

θ
p(y1:t−1|x0:t,θ)p(x0:t−1,θ|xt

)p(xt)p(x0:t−1|θ)p(θ)dθ

∝

∫

θ
p(y1:t−1|x0:t−1)p(x0:t−1,θ|xt

)p(xt)p(x0:t−1|θ)p(θ)dθ

∝

∫

θ
p(xt|x0:t−1,θ)p(x0:t−1|θ)p(θ)dθ

∝ p(xt|x0:t−1); by (A.5) (A.32)
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At time instant t, when the new observation yt becomes available, we update the prior

(prediction) via Bayes rule,

(2) p(xt|x0:t−1, y1:t) =

∫

θ
p(xt,θ|x0:t−1, y1:t)︸ ︷︷ ︸

joint posterior

dθ; θ = (α, β, σ2
u)

=

∫

θ
p(xt|θ, x0:t−1, y1:t)︸ ︷︷ ︸

posterior

p(θ|x0:t−1, y1:t)︸ ︷︷ ︸
posterior

dθ

∝

∫

θ
p(xt|x0:t−1, y1:t,θ) p(x0:t−1, y1:t|θ)︸ ︷︷ ︸

likelihood

p(θ)︸︷︷︸
prior

dθ

∝

∫

θ
p(xt|x0:t−1, y1:t,θ)p(x0:t−1|y1:t,θ)p(y1:t|θ)p(θ)dθ

∝

∫

θ
p(xt|x0:t−1, y1:t,θ)p(x0:t−1|θ)p(y1:t)p(θ)dθ; (cond. indep)

∝

∫

θ
p(yt|xt)︸ ︷︷ ︸
likelihood

p(xt|x0:t−1,θ)︸ ︷︷ ︸
prior

p(x0:t−1|θ)p(θ)dθ

∝ p(yt|xt)

∫

θ
p(xt|x0:t−1,θ)p(x0:t−1|θ)p(θ)dθ

︸ ︷︷ ︸
=p(xt|x0:t−1) by (A.5)

∝ p(yt|xt)p(xt|x0:t−1). (A.33)

Hence, the recursive weight update equation is derived as,

wi
t ∝ wi

t−1

p(yt|x
i
t)p(xi

t|x
i
0:t−1)

q(xi
t|x

i
0:t−1, y1:t)

∝ wi
t−1p(yt|x

i
t) (A.34)

where q(xi
t|x

i
0:t−1, y1:t) = p(xt|x0:t−1) is the importance sampling function.
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