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Abstract of the Dissertation

Numerical modeling in turbulent mixing flows

by

Hyunkyung Lim

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2009

We are concerned with the chaotic flow fields of turbulent mixing. Chaotic

flow is found in an extreme form in multiply shocked Richtmyer-Meshkov un-

stable flows. The goal of a converged simulation for this problem is twofold:

to obtain converged solutions for macro solution features, such as the trajec-

tories of the principal shock waves, mixing zone edges, and mean densities and

velocities within each phase, and also for such micro solution features as the

joint probability distributions of the temperature and species concentration or

a chemical reaction rate. We introduce parameterized subgrid models of mass

and thermal diffusion, to define the large eddy simulation (LES) that replicate

the micro features observed in the direct numerical simulation (DNS). The

Schmidt numbers and Prandtl numbers are chosen to represent typical liquid,
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gas and plasma parameter values. Our main result is to explore the variation

of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude,

and the mesh by a factor of 8 per linear dimension (up to 3200 cells per di-

mension), to allow exploration of both DNS and LES regimes and verification

of the simulations for both macro and micro observables. We study mesh con-

vergence for key properties describing the molecular level of mixing, including

chemical reaction rates between the distinct fluid species.

Methodologically, the results are also new. In common with the shock

capturing community, we allow and maintain sharp solution gradients, and

we enhance these gradients through use of front tracking. In common with

the turbulence modeling community, we include subgrid scale models with

no adjustable parameters for LES. These two methodologies have not been

previously combined. In contrast to both of these methodologies, our use of

Front Tracking, with DNS or LES resolution of the momentum equation at or

near the Kolmogorov scale, but without resolving the Batchelor scale, allows

a feasible approach to the modeling of high Schmidt number flows.

Key Words: Turbulence, Subgrid models, Large eddy simulation, Direct

numerical simulation, Mass diffusion, Thermal diffusion, Schmidt numbers,

Prandtl numbers
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Chapter 1

Introduction

1.1 Overview and Motivation

Turbulence is a prototypical multiscale problem, with a cascade of length

scales generally too broad to be modeled effectively by explicit numerical al-

gorithms. The dimensionless Reynolds number governs this process. Tur-

bulent mixing couples turbulence to a concentration equation and introduces

the Schmidt number and the Prandtl number as dimensionless parameters.

We consider flows which are compressible and which couple the concentration

equation actively into the flow dynamics (due to a density contrast, measured

by the dimensionless Atwood number A = (ρ2 − ρ1)/(ρ2 + ρ1), with A > 0).

These two properties introduce features into the modeling not present in theo-

ries of passive scalar transport by a turbulent field [2, 43]. Acceleration driven

turbulent mixing is a classical hydrodynamical instability, in which accelera-

tion is directed across a fluid interface separating distinct fluids of different

densities [53]. Steady acceleration of a density discontinuity defines the classi-

cal Rayleigh-Taylor (RT) instability and impulsive acceleration produced by a
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shock wave passing through the fluids defines the Richtmyer-Meshkov mixing.

We are concerned with the Richtmyer-Meshkov (RM) instability.

Numerical modeling of turbulence requires removal of degrees of free-

dom, so that the ones that remain can fit into a feasible computation. There

are three numerical models in the computation such as Reynolds averaged

Navier-Stokes simulations (RANS), large eddy simulations (LES) and direct

numerical simulations (DNS). Removal of fluctuations, to study statistically

mean quantities leads to RANS equations. Removal of small length scales, to

study the large scale flow features leads to LES, while the restriction to small

scale problems allows DNS, in which all transport effects are fully resolved.

These terms have analogous meanings in the case of turbulent mixing. Both

RANS and LES call for closure models, to introduce the influence of the omit-

ted scales upon those computed. LES are formulated in terms of an averaging

procedure. When this average is replaced by the mesh block average over the

computational grid, the LES method is called implicit (ILES). The closure

models generally contain parameters which are set by comparison to a more

exact computation. In this sense LES and DNS (and physical experiments to

the extent available) are used to validate the parameters in RANS models and

DNS is used to validate those in an LES model.

Since we recognize at the outset that it is not possible to represent all

details of a turbulent mixing flow in a feasible computation, we list here the

types of observables we would hope to compute correctly. The most important

macroscopic variables are those which define the mixing zone, that is the edge

position for the mixing zone as a function of time, and the time dependent
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locations of the principal shock waves (if any) which play a role in defining

it. Additional macroscopic variables which serve to define the flow include

the dominant size of the bubbles (light fluid inclusions in the heavy fluid)

and mean fluctuations of the mixing zone edge. From the point of view of

turbulent combustion, the microscopic (atomic) properties of the mixture are

important, to specify the stochiometry needed for combustion. According to

[47], the joint probability distribution of the species concentrations and of the

temperature is a required input for LES combustion models.

1.2 Front Tracking Method

Discontinuities in the solutions of nonlinear conservation laws are a pri-

mary difficulty for numerical simulations. Commonly used numerical schemes

are convergent at higher order only for smooth solutions. At discontinuities,

the local truncation errors are first order and the solutions are not convergent

in a point-wise sense. For nonlinear discontinuities, the width of the solution

error region does not grow in time, and is generally about two mesh blocks,

but for linear discontinuities, the error region is wider, some five mesh blocks,

and is generally growing in time. The front tracking method was introduced

[17–19, 26–28] to solve the discontinuity problem, especially for the representa-

tion of linear discontinuity such as fluid layer boundaries. The front tracking

method is initiated by Richtmyer and Morton [51] and extensive work on the

front tracking method has been carried out by J. Glimm and his coworkers

[6, 15, 18, 19, 21, 26–28]. The method has been implemented and developed

in a robust and validated code called FronTier [17–20]. The front tracking
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method tracks a discontinuity interface by using analytical solutions of Rie-

mann problems across the interface, and it applies a finite difference scheme

to solve the equation on different sides of the discontinuity interface by using

the ghost cell extrapolation method [21, 26]. This ghost cell method was also

used in tracking using the level set method [12, 13]. The ghost cell method

does not preserve conservation at the cells cut by the interface and it has less

than first order accuracy at discontinuities. The algorithm is conservative for

interior regular cells, but it is not conservative at the irregular cells near the

interface. A fully conservative front tracking algorithm has been implemented

in FronTier. The algorithm is based on the previous works [22–25, 36, 37] with

dimensional generalization and algorithmic refinement. Also there are some

pioneer works on the conservative tracking algorithms by Chern and Colella

[5], Pember, Bell and Colella [44], Swartz and Wendroff [54], and the early one

by Harten and Hyman [29]. In this algorithm the front is tracked as a space

time surface (three dimensions in the four dimensional space time, for the case

of three spatial dimensions). The space time cells cut by this surface are dif-

ferenced using a finite volume approach. We will give a brief review of the

front tracking and fully conservative front tracking algorithm in the FronTier

code.

1.2.1 Front Tracking Algorithm

The front tracking method in the FronTier is performed by two main

steps. The first is to propagate and update the front dynamically. The second

is to update the interior states.
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In the interface propagation, the interface points are first propagated

normally. By computing the solution to the local Riemann problem with

initial states being those on either side of the interface point and using the

method of characteristics, a wave speed and a new position for the interface

point are determined. The interface states are then updated by a tangential

sweep, which uses a chosen interior solver with a stencil centered at the new

interface point.

After interface propagation, we get a new interface at new time level.

Any tangles in the new interface are need to be resolved. To resolve this

problem and reduce the variance in size and aspect ration of the segments

(2D) or triangles (3D) making up the interface, the new interface need to be

reconstructed. There are three types of interface reconstruction such as the

grid based (GB) interface tracking [39], the grid free (GF) interface tracking

[15, 18, 19] and the locally grid based (LGB) interface tracking. Fig. 1.1 shows

examples of these three types of interface reconstruction in 2D. A grid free

interface is independent of the underlying grid. By reconstruction, all the

points on a grid based interface lie on the cell edges. Thus, the interface

elements are constructed from vertices which are the intersections between the

interface and the grid lines. The grid free interface uses the locally grid based

(LGB) method [10] to resolve topological bifurcations. The LGB method uses

the GF interface except at a region of space and time where interface entities

intersect with each other (or with itself). When such a topological bifurcation

occurs, we first isolate the troubled region using a minimized but sufficient

box to contain the bifurcation. We then use the GB method to reconstruct
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the interface inside the box. Finally, we relink the interface segment inside

the box with the ambient grid free interface. The LGB method combines the

robustness of the grid based method with the accuracy of grid free method. It

is thus a significant improvement to both of these algorithms.

As the next step, we update all the interior states on cell centers. A

connected region in the domain separated by the interface is represented by a

component. Therefore, each grid node is associated with a specific component

in addition to the state variables. The interior states are updated by finite

difference schemes.

1.2.2 Conservative Front Tracking Algorithm

Consider a system of hyperbolic conservation laws in N spatial dimension

in differential form

∂U

∂t
+ ∇ · F (U) = 0, F = (f1, f2, ..., fN) , (1.1)

where U ∈ Rp and fj(U) = (f1j(U), ..., fpj(U))T ∈ Rp are defined in a spatial

domain Ω ⊂ RN .

Integrating (1.1) in a time-space domain V ⊂ RN+1, we obtain the inte-

gral form of (1.1), ∫

V

(
∂U

∂t
+ ∇ · F (U))dV = 0 . (1.2)

By the divergence theorem, we have

∫

∂V

(U, F (U)) · ndS = 0 . (1.3)
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Figure 1.1: A sample of three types of interface representations. Upper-left:
grid free (GF) interface; Upper-right: grid based (GB) interface; Lower: locally
grid based (LGB) interface.
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The finite difference method presented here is an explicit finite volume inte-

gration scheme based on the integral form (1.3).

Assume a space-time discretization {Vi} which conforms to the space-

time interface as U evolves in one time step from tn to tn+1. We solve (1.3)

explicitly in this region. We define each Vi as a space-time control volume, and

∂Vi = Dn
i ∪D

n+1
i ∪ Ŝi with Dn

i , D
n+1
i , and Ŝi meet at most at their boundaries,

where Dn
i and Dn+1

i are the boundary surfaces of Vi at time level n and n+ 1

respectively, and Ŝi is the complementary boundary surface of Vi. Dividing

the calculation of the integral (1.3) into three parts over Dn
i , D

n+1
i and Ŝi

respectively, we have

|Dn+1
i |U |tn+1

= |Dn
i |U |tn −

∫

Ŝi

(U, F (U)) · ndS , (1.4)

where

U |tn=
1

|Dn
i |

∫

|Dn
i
|

U(x1, ..., xN , tn)dx1...dxN

and

U |tn+1
=

1

|Dn+1
i |

∫

|Dn+1

i
|

U(x1, ..., xN , tn+1)dx1...dxN

are cell averages, |Dn
i | is the face area of Dn

i , |D
n+1
i | is the face area of Dn+1

i ,

and n is the outward normal of Ŝi. Therefore, U |tn+1
, is the solution to (1.4)

at time tn+1.

To calculate U |tn+1
, we first need to determine the space-time control

volume {Vi}. Then we calculate the fluxes defined on the surfaces of Vi, so

that we can apply (1.4).
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Eq. (1.4) degenerates into a static finite volume scheme

U |tn+1
= U |tn −

∫

Ŝi

F (U) · ndS , (1.5)

when the control volume has a constant face shape Dn+1
i = Dn

i . In such a

case, the complementary boundary surface Ŝi is parallel to the time axis.

The discontinuities of the numerical solution u form an INTERFACE

(set of POINTs for a 1D ambient dimensional space, CURVEs for 2D, and

SURFACEs for 3D), which is propagated from one time level to the next.

These interface constituents are described in a piecewise linear manner, and

made up of linear elements (simplexes), which are defined by their vertices, the

interface POINTs. The front POINTs are propagated by solving the Riemann

Problem in the normal direction and a tangential sweep to update the states

on the interface. Here and below, we use the dimension D of an interface

to refer to the ambient space in which it is embedded. Thus D may be the

dimension of space or of space time, and the elements of the D dimensional

interface have intrinsic dimension D - 1 (co-dimension 1) or lower. See [18–20]

for details.

The conservative front tracking algorithm contains the following major

steps:

1. To propagate the spatial interface at time level n to a new interface at time

level n + 1. The grid-free interface, or its LGB reconstruction in the

case of spatial tangles, is the permanent interface used within the time

step propagation loop, while the space-time GB interface is only used for
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the space-time control volume reconstruction. While the clipping of the

grid-free interface to become grid-based introduces a truncation error at

each time step, this error is not involved in the interface propagation to

subsequent time steps.

2. To construct the space-time interface by joining two spatial interfaces at

time level n and n+1. Given two piecewise linear spatial INTERFACEs

which are separated in time by a step △t, we construct (triangulate) a

space-time surface joining the two spatial INTERFACEs. To construct

the space-time interface we perform the following two major tasks for

every space-time cell: (1) Construct a grid-free space-time interface by

joining the interface at time step n and the new propagated grid free

interface at time step n + 1; (2) Reconstruct the control volume by

the convex hull method using the vertices of the grid based space-time

interface and corners of the regular space-time control volume.

3. To construct space-time control volumes by using the intersection points

of the space-time interface and the space-time cell edges. Those control

volumes with small or no top will be merged with their neighboring

volumes to satisfy the CFL condition.

4. To use a higher order Godunov type finite volume scheme as in to update

the states.

By joining the spatial interfaces at time level n and n+1, we construct a

space-time manifold which is called the space-time interface. The space-time

interface cuts the space-time grid cells into fragments when the grid cell and the

10



interface intersect. These fragments together with the regular space time grid

cells which do not meet the interface are the space-time control volumes. We

apply the finite volume scheme to them to calculate the numerical solutions.

The LGB (GF when there is no topological bifurcation) propagated inter-

face poses a difficult problem to the construction of irregular control volume.

Therefore, to simplify the procedure of constructing space-time control vol-

ume {Vi} in (1.4), we clip the GF space-time interface into a GB space-time

interface. As a result, the space-time control volumes are grid based and their

vertices are intersections of the space-time interface and regular space-time

cell edges.

1.3 Dissertation Organization

Chapter 1 first gives the overview and brief review of the front tracking

and fully conservative front tracking method.

Chapter 2 present the governing equation and the numerical development

for LES with turbulence models.

In Chapter 3 we describe the test problem setup and our goal. We explore

mesh refinement and mesh convergence and dependence on a range of Reynolds

numbers.

In Chapter 4 and 5, we present microscopic and macroscopic aspects of

mixing. Specializing to a 2D circular RM flow, we find sensitivities to numeri-

cal and physical modeling for macroscopic variables and microscopic variables.

The interface length depends sensitively on the numerical and physical mod-

eling. Consequently, interface sensitive quantities such as mass diffusion and

11



atomic level mixing have a similar dependence. We also observe that macro-

scopic variables are insensitive to variation of physical and numerical modeling

while the microscopic variables are highly sensitive.

Chapter 6 discusses the mathematical existence and uniqueness theories

and the conclusion is discussed in Chapter 7.
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Chapter 2

Developments for LES with turbulence models

The governing equation and the numerical development for LES are pre-

sented in this chapter.

2.1 The Governing Equations

We study the compressible Navier-Stokes equations with viscosity, mass

diffusion and thermal conductivity, for two miscible species initially separated

by a sharp interface. The primitive equations describe the DNS limit, in

which transport effects are resolved. A measure of this limit, as applied to the

momentum equation, is the criteria λKmesh ≥ 1 where λKmesh = λK/∆x and

λK is the Kolmogorov length scale,

λK = (ν3
k/ǫ)

1/4 , (2.1)

where

ǫ = νk|S|
2 , (2.2)
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S is the strain rate tensor

Sij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.3)

defined in terms of the velocity v and for any matrix A = Aij ,

|A|2 =
∑

2A2
ij . (2.4)

A related convergence measure, but applicable to the concentration and

energy equations is that the ratio of the turbulent transport parameters (i.e.

the coefficients of the dynamic subgrid scale models (given below)) to the

molecular ones be small.

LES start from a filter, or averaging procedure, applied to the primitive

equations of compressible flow. We adopt what is known as an implicit filter,

namely a grid block average. In this case the quantities in the defining equa-

tions are averaged over a grid block. New terms, arising from the average of

the nonlinear terms, are introduced into the equations. We use a conventional

definition of these terms, following refs.[14, 40, 42]. The subgrid models are pa-

rameterized dynamically, meaning that the model parameters are determined

completely from the resolved scales. In this sense, the models are parameter

free. For DNS, these terms have little effect.

We write the filtered continuity, momentum, energy and concentration

equations for two miscible fluid species in an inertial frame. The filtered quan-

tities are considered to be mesh block averages, and denoted with an overbar,

while mass averaged quantities are denoted with a tilde. Repeated indices are
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summed.

∂ρ

∂t
+
∂ρṽi
∂xi

= 0 , (2.5)

∂ρṽj
∂t

+
∂(ρṽiṽj + pδij)

∂xi
=
∂dij
∂xi

−
∂τij
∂xi

, (2.6)

∂E

∂t
+
∂(E + p)ṽi

∂xi
=
∂dij ṽj
∂xi

+
∂

∂xi

(
κ
∂T̃

∂xi

)
+

∂

∂xi

(
(H̃h − H̃l)ρD̃

∂ψ̃

∂xi

)

(2.7)

+

(
1

2

∂τkk ṽi
∂xi

−
∂q

(H)
i

∂xi
−
∂q

(T )
i

∂xi
−
∂q

(V )
i

∂xi

)
, (2.8)

∂ρψ̃

∂t
+
∂ρψ̃ṽi
∂xi

=
∂

∂xi

(
ρD̃

∂ψ̃

∂xi

)
−
∂q

(ψ)
i

∂xi
, (2.9)

where the subgrid scale (SGS) variables are the τij , q
(H)
i , q

(T )
i , q

(V )
i and q

(ψ)
i .

They are expressed as

τij = ρ(ṽivj − ṽiṽj) (2.10)

q
(H)
i = ρ(c̃pTvi − c̃pT̃ ṽi) (2.11)

q
(T )
i =

1

2
ρ(ṽkvkvi − ṽkṽkṽi) (2.12)

q
(V )
i = dijvj − dij ṽj (2.13)

q
(ψ)
i = ρ(ψ̃vi − ψ̃ṽi) . (2.14)

The dependent filtered variables ρ, ψ̃, ṽi, p and E denote, respectively,

the total mass density, the species mass fraction, the velocity, the pressure,
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and the total specific energy with

E = ρẽ+ ρṽk
2/2 + τkk/2 . (2.15)

Here H̃h and H̃l are the partial specific enthalpy of each species defined by

H̃h = ẽh +
p

ρ
(2.16)

H̃l = ẽl +
p

ρ
, (2.17)

where ẽh and ẽl are the specific internal energy of each species. The equation

of state for each of the species is taken to be a stiffened gamma law gas.

For simplicity, we assume that the mixture of the two fluids, at the level

of a single grid block not meeting an interface, or for a cut grid block on one

side of an interface, is mixed at a molecular level. Thus we do not consider

turbulent modeling corrections to the grid level equation of state. The equation

of state for a mixture of stiffened polytropic gases is not a stiffened polytropic

gas, when the stiffening parameters p∞ of the two species are unequal. As is

conventional, we impose pressure and temperature equilibrium for the grid cell

or cut cell mixture. The thermodynamic functions are then given as solutions

of an algebraic equation, and for the case to two fluids, as is considered here,

the algebraic equation is quadratic, and solvable in closed form.

The viscous stress tensor dij is expressed as

dij = νd

((
∂ṽi
∂xj

+
∂ṽj
∂xi

)
−

2

3

∂ṽk
∂xk

δij

)
, (2.18)
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where νd = ρνk is the filtered dynamic viscosity. For simplicity, we take νd

to be a global constant. A more fundamental theory of multifluid viscosity is

described in the book of Williams [56].

To derive the filtered energy equation (2.7), we write

(E + p)vi = ρevi +
1

2
ρvkvkvi + pvi (2.19)

= ρcvTvi + ρe∞vi + p∞vi + (γ − 1)ρcvTvi − p∞vi +
1

2
ρvkvkvi

(2.20)

= (ρc̃vT̃ ṽi + ρẽ∞ṽi + (γ̃ − 1)ρc̃vT̃ ṽi + p∞ṽi − p∞ṽi) +
1

2
ρṽkṽkṽi

(2.21)

+ ρ(γ̃cvTvi − γ̃c̃vT̃ ṽi) + ρ(ẽ∞vi − ẽ∞ṽi) +
1

2
ρ(ṽkvkvi − ṽkṽkṽi))

(2.22)

= (E + p)ṽi + (q
(H)
i + q

(T )
i ) −

1

2
τkkṽi + ρ(ẽ∞vi − ẽ∞ṽi) . (2.23)

We model the unclosed difference ρ(ẽ∞vi − ẽ∞ṽi) as zero in (2.23).

2.2 Numerical Development for LES

The parabolic Navier-Stokes equations are solved via operator splitting,

with separate solution steps for the hyperbolic and pure diffusion parts of

the equations. The hyperbolic solutions are obtained by the front tracking

FronTier algorithm [10]. The interface hyperbolic updates are split into normal

and tangential operators defined at front points. The normal update uses

a predictor-corrector algorithm, with the predictor step a Riemann solution
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using the left and right front states as input. The corrector step, based on finite

differences in characteristic coordinates, couples the normal direction front

propagation to signals coming from interior states. The interior hyperbolic

update uses a Godunov finite difference solver based on the MUSCL algorithm

[7, 57]. A sharp (tracked) interface in the hyperbolic update uses ghost cells

[27] in the interior state update to eliminate [38] transport related numerical

mass and thermal diffusion across the interface.

Physical transport for front states is introduced via finite differences in a

normal-tangential rectangular coordinate system at the front. Discretization

is outlined in Section 2.2.1, where the turbulent transport term is defined.

The parabolic update of the interior states, i.e. the inclusion of molecular

and turbulent transport terms for species diffusion, viscosity and thermal heat

conductivity, is via conventional finite differences. Irregular stencils for the

interior states, i.e. the stencils crossing the front, are treated conventionally,

without regard to the front or any ghost cell values. An explicit solver for

both the interior and the front state parabolic solvers, with possible time step

subcycling, is sufficient to allow a stable computation for most of the mesh

and transport parameter range considered.

For the highly heat diffusive plasma conditions, an implicit solver is used.

With transport terms strong enough to require an implicit solver, there is no

need for, or benefit from, tracking. Moreover, the formulation of the tracked

front states together with the interior states appears to be inconsistent with

common implicit solver algorithms. We allow selective untracking of specific

(primitive) variables within an overall tracked solution. In this algorithm, after
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the interior and front state updates, the untracked front states (the primitive

variables that are not being tracked, for example energy, in the case p) are re-

determined by one sided interpolation from neighboring interior states of the

same component. Here one sided means that the interpolating interior states

are restricted to have the same component as that of the front state in question.

In the unusual case of no nearby interior states with the required component, a

two sided interpolation is used, in which the component restriction is dropped.

As a test of this algorithm, we compared it to two sided interpolation, and

we compared it to an explicit algorithm (with tracking of the primitive energy

variable). For this case, extensive subcycling in the parabolic step for the

energy equation was needed for numerical stability. There was no notable

difference among these three algorithms. The FronTier numerical Schmidt

and Prandtl numbers are ∞, and the code allows efficient simulation of any

desired (physical) Schmidt or Prandtl number.

We develop the subgrid scale dynamic model terms used in this thesis,

following and slightly extending ideas of [40, 42].

2.2.1 A Subgrid Scale Dynamic Model for the Momen-

tum Equation

We use the trace-free Smagorinsky eddy viscosity model for the sub grid

scale (SGS) stress τij . The τij can be decomposed into an anisotropic (trace
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zero) tensor (τaij) and an isotropic tensor (τ iij), which are modeled separately:

τMij =

(
τij − τkk

δij
3

)
+ τkk

δij
3

= τaij + τ iij = −2CS∆
2ρ|S̃|S̃aij +

δij
3

2CI∆
2ρ|S̃|

2
,

(2.24)

where S̃aij = S̃ij−
δij
3
S̃kk . and | · | is defined by (2.4). The CS and CI are model

coefficients to be computed dynamically. In analogy to (2.18), we define

νkt = CS∆
2|S̃| (2.25)

as the kinematic turbulent viscosity.

The key element of the dynamic model is the utilization of the data con-

tained in the resolved field. This information is brought to bear by introducing

a test filter with a larger filter width ∆̂ than the resolved grid filter. We will

use a 2 × 2 mesh block average to define the test filter. Let a spatially test-

filtered quantity be denoted by a caret. The test filtered stress Tij is defined

as:

Tij = ρ̂vivj −
ρ̂vi ρ̂vj

ρ̂
(2.26)

and is modeled as:

TM
ij = Ta

ij + Ti
ij = −2CS∆̂

2ρ̂|
̂̃
S|
̂̃
S
a

ij +
2δij
3
CI∆̂

2ρ̂|
̂̃
S|2 . (2.27)

Using Germano’s identity [14], the Leonard stress Lij can be expressed
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as:

Lij = Tij − τ̂ij =
̂(
ρvi ρvj
ρ

)
−
ρ̂vi ρ̂vj

ρ̂
= ρ̂ṽiṽj −

ρ̂ṽiρ̂ṽj

ρ̂
. (2.28)

The right hand side is completely computable from the resolved variables. We

next introduce the ansatz that CS and CI are independent of the length scale.

In other words, the same CS and CI occur in (2.24) and (2.27). In this case,

Laij = Ta
ij − τ̂aij = 2CS∆

2 ̂
ρ|S̃|S̃aij − 2CS∆̂

2ρ̂|
̂̃
S|
̂̃
S
a

ij = CSM
a
ij , (2.29)

where

Ma
ij = 2∆2 ̂

ρ|S̃|S̃aij − 2∆̂2ρ̂|
̂̃
S|
̂̃
S
a

ij . (2.30)

We would next solve (2.29) for CS. However, this equation corresponds to five

independent relations for CS and an algebraic solution is not possible.

We introduce an averaging operation 〈· · · 〉. The specification of the aver-

age is problem dependent, as the universal definition of an ensemble average is

inconvenient to use. For the present problem, we regard this average as taken

over the symmetry variable θ, i.e., an average over circular arcs (constant ra-

dius). To assure numerical regularity, we also apply a convolution average in

the radial direction with a stencil extending ±6∆r from current radius.

Applying this average to (2.29) and using least squares in the resulting
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equations leads to the formula

CS =
〈(
∑

LaijM
a
ij)

+〉

〈(
∑
Ma

ijM
a
ij)

+〉
. (2.31)

Here the expression (· · · )+ means the positive part of the quantity in the

parenthesis. In other words, we clip negative values. This step is consistent

with methods proposed elsewhere [40]. The same method is used for the

coefficients of turbulent heat conduction and species concentration diffusion.

The turbulent viscosity determined by (2.31) and the related turbulent

transport coefficients determined below were monitored for the simulations of

the present study. The results were generally consistent with theoretical ex-

pectations. For example, the turbulent viscosity was respectively small (com-

parable, dominant) in relation to the molecular value of viscosity for the three

cases of DNS, LES near to DNS, and LES far from DNS.

To determine CI , we consider

Likk = Ti
kk − τ̂ ikk = −2CI∆

2 ̂
ρ|S̃|2 + 2CI∆̂

2ρ̂|
̂̃
S|2 = CIM

i
kk , (2.32)

where a summation convention was used for the kk repeated indices and

M i
kk = −2∆2 ̂

ρ|S̃|2 + 2∆̂2ρ̂|
̂̃
S|2 (2.33)

This equation corresponds to one relation for CI , from which we obtain

CI =
〈Likk〉

〈M i
kk〉

. (2.34)
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To discretize the elliptic operators associated with the molecular level

and subgrid scale transport terms, we use the same stencil at each front point

that was used in the front propagation. This stencil is rectilinear, and aligned

with the normal and tangential directions to the front at the front point in

question. We use three mesh points in each of the normal and the tangential

directions. Letting ∂N and ∂T denote derivatives in the normal and tangential

directions, we first write the discretization for ∂Nc∂Nf for some function f and

spatially dependent coefficient c. The function is double valued at the front,

and so we specify, as an example, a discretization of the left value, fl. The

discrete operator has the form

c+1/2(f+−f0l)−c−1/2(f0l−f−) = c+1/2f+−(c+1/2+c−1/2)f0l+c−1/2f− . (2.35)

Here f0l and f0r are front states on the left and right side of the front, while

f± and c±1/2 are evaluated along the normal to the front at distances ±∆x or

±1/2 ∆x from the front.

The normal direction discretization for the right front state is similar,

and the tangential direction discretizations differ only in that all values are

associated with either the left or the right side of the front.

The discretization of the mixed partials is complicated by the use of a 5

point stencil and a fixed order of differentiation. We write

∂Nc∂Tf = ∂T c∂Nf + (∂Nc)(∂Tf) − (∂T c)(∂Nf) . (2.36)

The normal sweep is performed in advance of the tangential sweep. Use of

23



(2.36) allows all mixed partial derivatives to be evaluated in the order of the

sweeps, first normal derivatives and then tangential derivatives. During the

normal sweep, we evaluate and store front values for ∂Nc and ∂Nf , which can

be differenced using obvious formulas during the tangential sweep to yield a

discrete expression for the LHS of (2.36).

2.2.2 A Subgrid Scale Dynamic Model for the Energy

Equation

We only consider the eddy diffusivity SGS model for the SGS heat trans-

port flux q
(H)
i with some modeling assumptions (e.g. negligible subgrid viscous

work and triple correlations). As in ref. [30], we set q
(T )
i = 0 = q

(V )
i . The SGS

heat transport flux is modeled as:

q
(H)M
i = −ρc̃p

CS∆
2|S̃|

Prt

∂T̃

∂xi
(2.37)

= −ρc̃p
νkt
Prt

∂T̃

∂xi
, (2.38)

where Prt is the SGS turbulent Prandtl number to be determined using a

dynamic model.

At the test filter level, the flux is defined as:

Q
(H)
i = ρ̂cpTvi −

ρ̂cp ρ̂T ρ̂vi

ρ̂
2 , (2.39)
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and is modeled as:

Q
(H)M
i = −ρ̂ ̂̃cp

CS∆̂
2|
̂̃
S|

Prt

∂
̂̃
T

∂xi
. (2.40)

Again, using Germano’s identity, we have

L
(H)
i = Q

(H)
i − q̂

(H)
i =

̂(
ρcp ρTρvi

ρ2

)
−
ρ̂cpρ̂T ρ̂vi

ρ̂
2 =

̂
ρc̃pT̃ ṽi −

ρ̂c̃pρ̂T̃ ρ̂ṽi

ρ̂
2 .

(2.41)

To determine Prt,

L
(H)
i = Q

(H)M
i −

̂
q
(H)M
i =

CS
Prt


∆2

̂(
ρc̃p|S̃|

∂T̃

∂xi

)
− ∆̂2ρ̂ ̂̃cp|̂̃S|

∂
̂̃
T

∂xi


 =

CS
Prt

M
(H)
i ,

(2.42)

where

M
(H)
i = ∆2

̂(
ρc̃p|S̃|

∂T̃

∂xi

)
− ∆̂2ρ̂ ̂̃cp|̂̃S|

∂
̂̃
T

∂xi
. (2.43)

This equation corresponds to three independent relations and again a least

square approach is followed to calculate the model coefficient,

Prt = CS
〈(
∑
M

(H)
i M

(H)
i )+〉

〈(
∑
L

(H)
i M

(H)
i )+〉

. (2.44)

Discretization is as in (2.35).
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2.2.3 A Subgrid Scale Dynamic Model for the Concen-

tration Equation

For SGS scalar transport, from a gradient transport modeling assump-

tion,

q
(ψ)M
i = −ρ

CS∆
2|S̃|

Sct

∂ψ̃

∂xi
= −ρ

νkt
Sct

∂ψ̃

∂xi
, (2.45)

where Sct is the SGS turbulent Schmidt number to be determined using a

dynamic model.

At the test filter level, the SGS scalar transport is defined as:

Q
(ψ)
i = ρ̂viψ −

ρ̂vi ρ̂ψ

ρ̂
, (2.46)

and is modeled as:

Q
(ψ)M
i = −ρ̂

CS∆̂
2|
̂̃
S|

Sct

∂
̂̃
ψ

∂xi
. (2.47)

Using Germano’s identity, we have

Lψi = Q
(ψ)
i − q̂

(ψ)
i =

̂(ρvi ρψ
ρ

)
−
ρ̂viρ̂ψ

ρ̂
= ρ̂ṽiψ̃ −

ρ̂ṽiρ̂ψ̃

ρ̂
. (2.48)
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To determine Sct,

Lψi = Q
(ψ)M
i −

̂
q
(ψ)M
i =

CS
Sct


∆2

̂(
ρ|S̃|

∂ψ̃

∂xi

)
− ∆̂2ρ̂|

̂̃
S|
∂
̂̃
ψ

∂xi


 =

CS
Sct

M
(ψ)
i ,

(2.49)

where

M
(ψ)
i = ∆2

̂(
ρ|S̃|

∂ψ̃

∂xi

)
− ∆̂2ρ̂|

̂̃
S|
∂
̂̃
ψ

∂xi
. (2.50)

This equation corresponds to three independent relations. Again, a least

square approach is followed to calculate the model coefficient,

Sct = CS
〈(
∑
M

(ψ)
i M

(ψ)
i )+〉

〈(
∑
L

(ψ)
i M

(ψ)
i )+〉

. (2.51)
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Chapter 3

The Flow Instability Problem

The turbulent mixing considered here is initiated by a shock wave passing

through a layer separating two fluids of distinct densities. When the layer is

perturbed (or not normal relative to the shock wave), vorticity is deposited on

the interface by the shock passage. This vorticity causes the interface to roll up

and become unstable. Upon passage of a second shock wave, the interface en-

ters an extremely chaotic regime. This is an example of a Richtmyer-Meshkov

(RM) instability.

We consider a circular geometry, with a converging circular shock at the

outer edge, and inside this, two fluids separated by a perturbed circular inter-

face. The chaotic aspects of the mixing at a molecular level following reshock

challenge some conventional ideas of computational science while supporting

others. For this reason, the problem is of fundamental scientific interest, and

may shed light on differing views for the computation of turbulent mixing

flows.
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3.1 Test Problem Setup

We consider a computational domain x, y ∈ [0, 25] × [−25, 25] (units of

cm). Time units are in micro seconds, and pressure is in Megabars. With r

denoting the radial coordinate in the x, y plane, the initial contact is perturbed

from a circle at r = 12.5. Outside this contact is a stiffened gamma law gas,

with parameters given by γ = 3.27, p∞ = 0.1495, e∞ = 1.25 × 10−18 and

cv = 2.2 × 10−6, where the stiffened gamma law gas is defined by

e+ e∞ = cvT +
p∞
ρ

(3.1)

and

p+ p∞ = (γ − 1)ρcvT. (3.2)

Here, γ is the adiabatic exponent and cv is the specific heat at constant volume

and e∞ is the energy of formation and p∞ has the dimensions of a pressure.

Inside the contact is also a stiffened gamma law gas, representing lucite, with

parameters γ = 1.85, p∞ = 0.03036, e∞ = 2.49 × 10−18 and cv = 1.46 × 10−5.

The time dependent boundary condition from the RAGE code [41] is located

at r = 24. The initial ambient pressure is p = 10−6, and the initial pressure

at the boundary is p = 0.02648, giving rise to an inward propagating shock

at t = 0. The heavy fluid density is 7.282 and the light fluid density is 1.182,

giving an Atwood number A = 0.72. Initial and late time simulation density

plots of unregularized simulations (zero transport coefficients) are shown in

Fig. 3.1.
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Figure 3.1: Initial (left) and late time (right) density plot for the Richtmy-
er-Meshkov fluid instability (unregularized, with zero physical transport coef-
ficients) under study in this paper.
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In the problem considered here, the flow is dominated by a single strong

shock wave, starting at the outer edge of the computational domain (a half

circle). The shock passes through the interface separating the two fluids, pro-

ceeds to the origin, reflects there and expands outward, recrossing the interface

region and finally exiting at the outer boundary. The interface between the

two fluids is defined as a 50% iso-concentration contour.

Due to the shock induced instability, the interface region expands into a

mixing zone, which has a very complex structure. Especially after the second

passage of the shock (the reshock or reflected shock passage), the mixing zone

becomes highly chaotic. The inner and outer edges of the mixing zone are

defined in terms of 5% and 95% volume fraction contours, after a spatial

average over the circular symmetry variable. The mixing zone is then defined

as the region between these inner and outer edges. The software which captures

the space time trajectory of these waves in the numerical solution is known

as a wave filter [11, 16, 59]. A space time plot of the shock trajectories and

mixing zone edges is shown in Fig. 3.2.

We have already observed [33] that the interface for the problem under

study is chaotic, with length proportional to ∆x−1, with respect to its mesh

(non) convergence (i.e. rate of divergence) properties. This fact is demon-

strated in Fig. 3.3, where the length / area ratio is shown in physical units

(left frame) and mesh units (right frame); transport coefficients have been set

to zero.

From Fig. 3.3, we observe that somewhat after reshock, the interface

length, in mesh units, occupies a constant ratio to the mesh area of the mixing
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Figure 3.2: Space time (r, t) contours of the primary waves, as detected by the
wave filter algorithm. These are the inward (direct) and outward (reflected)
shock waves and the inner and outer edges of the mixing zone, all detected
within a single rotational averaging window, in this case θ ∈ [−45o, 0o].

32



time

in
te

rf
ac

e
le

ng
th

/m
ix

in
g

zo
n

e
vo

lu
m

e

0 20 40 60 80 100 120
0

5

10

15

20

200 x 400
400 x 800
800 x 1600
1600 x 3200

time

gr
id

le
n

gt
h

/g
rid

ar
ea

0 20 40 60 80 100 120
0

0.2

0.4

0.6

200 x 400
400 x 800
800 x 1600
1600 x 3200

Figure 3.3: Plot of the interface length divided by the mixing zone area vs.
time. Left: Length and volume measured in physical units. Right: Length
and volume measured in mesh units ([physical length / physical area] ×∆x).
Results for four mesh levels are displayed.

zone. We call this ratio the mesh level surface fraction. Its value is approxi-

mately time independent (about 30%), after a transient period following the

second shock passage. We note here and in many later plots, some lost of

mesh level complexity in the finest grid simulations. Further mesh refinement

studies will be needed to determine the evolution of mesh level complexity un-

der continued mesh refinement. In any case, at the grid levels attained here,

the interface is mesh volume filling, cutoff by the mesh, and highly complex

or chaotic in nature.

3.2 Research Objectives

Our goal is accurate numerical solutions using feasible grids. For the

purpose, we verify the use of large eddy simulations (LES). We study mesh

refinement and mesh convergence and dependence on a range of Reynolds

numbers, including some within the regime of direct numerical simulation

33



(DNS), in which transport properties are fully resolved.

The fluid interface, at late time, is volume filling. The Reynolds number

and transport coefficients (viscosity, mass diffusion, and heat conductivity) are

given dimensionlessly as Re = UL/νk, the Schmidt number Sc = νk/D, and

the Prandtl number Pr = νk/α. Here νk is the kinematic viscosity, D the

kinematic mass diffusivity and α = κ
ρcp

the kinematic thermal diffusion rate.

κ is the heat conductivity, ρ the density and cp the specific heat at constant

pressure. U and L are characteristic velocity and length scales. Gases typically

have Schmidt and Prandtl numbers of the order of unity, while liquids typically

have Schmidt numbers in the range Sc ∼ 4× 102 to 104 and Prandtl numbers

in the range Pr ∼ 10 to 102 [1, 48]. Dense plasma transport coefficients have

been estimated as Sc ∼ 0.6 to 1.5 [52] for a range of plasma conditions relevant

to NIF experiments. Plasma Prandtl numbers are dependent on ionization

levels, nuclear charge, and temperature. A representative plasma value Pr ∼

10−4 can be inferred from the viscosity and heat conductivity values quoted by

Drake [9]. The very high level of thermal conductivity reflected in this value

results from the transport of free electrons, and a time scale sufficient for

the thermalization that allows a single temperature description of the plasma.

We make no comments on this time scale. Numerical Schmidt and Prandtl

numbers are generally not documented. If we assume a numerical shock width

of 1.5∆x and a numerical contact width of 5∆x for untracked simulations,

numerical transport coefficients in the range of 0.3 would be reasonable. On

this basis, we consider the transport cases l, g, p from Table 3.1. We allow

physical parameters (Re, Sc, Pr) to vary by three orders of magnitude, and
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Table 3.1: Transport coefficients considered in this paper, arranged in order of
increasing diffusivity. The presumed typical numerical transport parameters
are shown for reference only and are not explored here.

case Schmidt Prandtl
l (liquid) 103 50
g (gas) 1 1
n (numerical) 0.3 0.3
p (plasma) 1 10−4

explore mesh refinement up to 3200 zones per linear dimension. To keep the

computational burden manageable, we restrict the simulations to 2D and we

restrict the 2D mesh resolution to the finest resolution presently used for 3D

simulations.

The emphasis on the joint probability distribution function (pdf) of con-

centration and temperature as micro scale observables is motivated by prob-

lems in turbulent combustion [47], where these variables affect the local flame

speed and the overall flow.

The subgrid models are not original here, but their use in flow simulations

having numerically sharp gradients appears to be new. In this sense, we are

outside of the known domain of validity of the subgrid models, and the present

work serves as a verification (i.e. mesh convergence with full resolution of the

momentum equation) study.

At least for the present problem, with its somewhat modest number of

initial modes, the joint pdf for concentration and temperature are subject to

statistical fluctuations. In other words, the spatial averaging over the mixing

zone is not sufficient to obtain statistical convergence, and an ensemble of
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simulations would be needed to obtain statistically converged mixing statistics.

This can be observed from Fig. 3.1, where we see a significant variation in

the size of the coherent mixing structures, and a relatively small sample of

the larger sized ones, whose size appears to reflect the t = 0 perturbation

wave length. For this reason, we wish to introduce some degree of averaging

into our analysis of the pdfs. Looking to the various applications in which

turbulent mixing plays a role, chemical reactions stand out. We are involved in

combustion modeling for scram jet design, type Ia supernova studies, and ICF

motivated studies. Accordingly, we consider the chemical reaction rate w of a

hypothetical reaction A+B → C with a hypothetical activation temperature

TAC to assess convergence of the pdfs. The coefficient of variation of w, in its

dependence on space at fixed time within the mixing zone, is generally over

100%. Thus spatial averaging is needed.

With this definition of spatially averaged convergence, the statistical fluc-

tuations are reduced but not eliminated. We present (as error bars in plots)

the fluctuations (±2σ) associated with variation across an ensemble of spari-

ally averaged quantities. We adopt a pdf for the (single realization) reaction

rate values w, with a probability measure dP (w). Then 1 =
∫
dP (w) and the

spatial average of w is 〈w〉 =
∫
wdP (w). We introduce the notation dP x(w),

x = c, m, f for the w-pdf for the coarse, medium and fine grids. Then we

define the relative error as
∫
w|dP c(w) − dP f(w)|/〈wf〉 for the coarse to fine

error, and similarly for the medium to fine error. These continuum expres-

sions are interpreted in terms of binning the data, generally into 10 bins per

variable. We observe mesh convergence. Other definitions of convergence give
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similar results, except that when the error is well below the level of ensemble

variability (realization to realization variation), convergence may be obscured

by chance cancellations giving unrealistically small net error on coarse grids.

The error definition chosen minimizes such cancellations.

To summarize, the main goal of this paper is to introduce and verify pa-

rameterized subgrid models for turbulent mass, momentum and thermal dif-

fusion which will capture unresolved diffusive phenomena as it impacts coarse

grid scales in a LES having steep numerical gradients. In this way, we plan to

achieve LES which are converging relative to both the macro and the micro

observables mentioned above. The simulations are more efficient than those

of conventional turbulence models in the narrow width in mesh units that

they allow for sharp gradient concentration transitions. They model turbu-

lent transport with microscopic observables correctly computed, in contrast

to many capturing simulations. These subgrid models are applied here in a

new context, namely to a front tracking and shock capturing Godunov scheme

which maintains sharp gradients.

The front tracking code FronTier can achieve arbitrarily high Schmidt

and Prandtl numbers numerically without a requirement for mesh refinement

beyond that needed to resolve the momentum equation. This is not the case

for most (untracked) simulation codes. Numerical mass and thermal diffusion

arises primarily within the Eulerian hyperbolic step, due to solution averag-

ing over grid blocks associated with transport by a nonzero velocity field (i.e.

hyperbolic transport). This apparently universal feature of untracked Eule-

rian conservative capturing codes is circumvented with front tracking. Subgrid
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models can only add diffusion, and can never remove it. In this sense, a sub-

grid model for mass or thermal diffusion cannot cure the problem of excess

numerical diffusion to achieve accurate modeling of atomic scale mixing. A

conventional untracked code must be run in an “over resolved” mode, with

more resolution than the momentum equation requires, to achieve low levels

of numerical mass or thermal diffusion in the concentration and energy equa-

tions. In other words, conventional untracked codes require that the simula-

tions be resolved or convergent in terms of the continuity, species and energy

equations as well as for the momentum equation. The use of front tracking,

however, avoids or reduces numerical diffusion in the species, continuity, and

energy equations, even for coarse grids, and thus requires DNS or LES type

convergence of the momentum equation alone.

We also point to the conclusions of Chapter. 4, in which the macro vari-

ables (mixing zone edge positions, shock trajectories, etc.) are insensitive to

physical or numerical modeling issues, and thus presumably to the choice of

the subgrid model for viscosity, or to the viscosity and Reynolds number itself.

Thus our convergence studies will focus primarily on the micro variables: the

joint pdfs for species concentration and temperature and on a typical chemical

reaction rate. We will examine the degree to which these are insensitive to

Reynolds number for LES, and to mesh for a fixed Reynolds number LES.

There is a large literature concerning turbulent mixing in RM unstable

flows. Most of this literature focuses on macro observables, such as the mixing

zone edges and shock trajectories. For RM mixing, these macro observables are

insensitive, in that we find generically agreement among theory, experiment
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and numerics, cf. [31].

The micro observables (e.g. joint temperature and species PDFs) have

received relatively less attention, but we can cite a previous study [30], with

conclusions distinct from ours, for a different RM flow. Among experimental

studies of micro observables for RM instabilities, we mention two studies of

related but distinct flow problems [32, 55]. These experimental studies appear

to be qualitatively consistent with our conclusions regarding the mixing, when

compared at comparable times and Schmidt numbers. Quoting [32], “Schmidt

number plays a role in turbulent mixing of high-Reynolds flows”.

The critical dependence of molecular levels of mixing on physical trans-

port (and for under resolved capturing simulations, on numerical transport)

is illustrated in Fig. 3.4. This dependence is one of the central points of this

thesis.
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Figure 3.4: Chemical reaction rate at t = 90 for three representative values for
the transport parameters, and each for three values of the Reynolds number.
The activation temperature is chosen as 15, 000oK. The point of this plot is
the strikingly different values obtained for 〈w〉 for the nine physical regimes
considered here.

40



Chapter 4

Mesh Convergence for Macro Observables

We define a (time dependent) length scale L to be the width of the mixing

zone, and the velocity scale U to be the turbulent velocity U =
√

〈δv2〉. The

angle brackets 〈· · · 〉 denote a spatial avergae over the mixing zone. We observe

below that ensemble averages are also relevant. We define δv = v − 〈v〉. We

also define Remesh = U∆x/νk.

The objective of the present chapter is to compute the large scale solution

features accurately. This includes the trajectories of the principal waves, as

illustrated in Fig. 3.2. This objective is related to a systematic convergence

study [34, 59]. In that study, we found statistical convergence for many mean

flow variables, which define what we call the macroscopic description of the

flow. In Fig. 4.1, we plot the time integrated relative wave discrepancy de-

fined in terms of the mixing zone edge positions for a variety of mesh levels

and for transport coefficients from Table 3.1. Similar convergence properties

have been obtained for other macro variable solution errors such as the mean

densities and velocities for each phase. The error (or discrepancy) is deter-
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mined by comparison of the simulation to a fine grid (3200× 1600) simulation

having zero transport coefficients. The reported discrepancy is thus a mixture

of mesh errors and discrepancies associated with modification of the transport

coefficients from a nominal value (zero). From Fig. 4.1, and related studies

[34, 41, 59] we conclude that the macro observables are insensitive to both nu-

merical and physical parameters, except for case p with low Re (large transport

parameters).
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Figure 4.1: Time integrated relative discrepancy in the mixing zone edge loca-
tions as compared to a fine grid, zero transport simulation. The discrepancy,
for cases l and g, is mainly due to mesh errors and is partly due to modifica-
tion of physical parameters. The discrepancy decreases with mesh refinement,
uniformly as physical parameters are varied. The plasma case p shows conver-
gence, but to a Reynolds number dependent limit distinct (for small Re) from
the zero transport case.
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Figure 4.2: Left: plot of λC/∆x vs. λKmesh for a range of mesh levels and
transport parameters cases l, g, p from Table 3.1, at t = 90, r = rmid. Right:
the same data replotted as λC vs. λK .

4.1 Correlation and Diffusion Length Scales

We introduce a correlation length scale λC to characterize the microstruc-

ture of mix. The correlation length is defined in terms of the probability of

exit distance ξ from a given phase or mean distance to the complementary

phase, introduced [49, 50] for models of opacity, and studied [17, 34, 35] as a

measure of fine scale mixing length. For random points situated on a radius

r within the mixing zone, the exit probability data is collected into bins, each

holding the data for an interval of possible exit lengths. Using the probability

measure dξ, as defined by the binned data, we define λC =
∫
ξdξ. See Fig. 4.2.

We assess interface convergence in terms of the behavior of λC . The

regime of a resolved momentum equation occurs to the right side of each

frame of Fig. 4.2. In this regime, the right frame (with scales independent

of ∆x) suggests mesh convergence to a limit, with weak dependence on Sc

and Pr. In the left frame of Fig. 4.2, we scale out the mesh dependence, and
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l g p
Re D/Dt α/αt D/Dt α/αt D/Dt α/αt

≈ 300 0.031 0.051 39.2 10.4 732 4.16 × 106

≈ 6000 0.002 0.003 1.82 0.307 9.57 1.32 × 104

≈ 600K 1.54 × 10−5 3.41 × 10−5 0.015 0.002 0.040 27.1

Table 4.1: Ratios of dimensionless molecular to turbulent Schmidt and Prandtl
numbers for various cases, all with the finest grid. Ratios large relative to
unity indicate resolution of the associated transport equation. The momentum
equation has full resolution for Re ≈ 300 only.

observe that λC mesh is only weakly dependent on ∆x in the LES regime (left

part of the frame). In other words, λC ≡ λC mesh∆x, for an LES simulation,

is determined mainly by the mesh level.

We introduce the time dependent molecular diffusion length scales λD =

2(D(t− t0))
1/2, and λT = 2(α(t− t0))

1/2 (α = κ/ρcp), where t0 is the time of

reshock. The corresponding turbulent length scales are λDt
= 2(Dt(t− t0))

1/2,

and λTt
= 2(αt(t− t0))

1/2. Here Dt = νkt/Sct and αt = νkt/Prt are kinematic

turbulent transport coefficients (species and temperature). Sct and Prt are

turbulent transport coefficients and νkt is the kinematic turbulent viscosity,

all defined in Section 2.2. The ratios (λD + λDt
)/λC and (λT + λTt

)/λC are

dimensionless measures of the concentration and thermal mixing levels due to

combined effects of molecular and turbulent transport. We plot these ratios

vs. λK in Fig. 4.3 for a variety of meshes and for transport coefficients from

Table 3.1. The large λK asymptote (right side of each frame of Fig. 4.3)

represents the limit of a resolved momentum equation. This limit is converged

to a grid independent value, which depends on Sc and Pr.
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Figure 4.3: The ratios (λD + λDt
)/λC and (λT + λTt

)/λC vs. λK for several
mesh levels and for transport coefficients cases l, g, p from Table 3.1. The
values to the far right in each frame are momemtum-resolved, and appear to
be mesh converged for the finer meshes.

The ratios are also mesh convergent for higher Re (in the LES regime)

and nearly independent of Re. Fig. 4.3 shows the success of the subgrid model,

with the mesh converged LES in excellent agreement with momentum-resolved

simulations.

It is interesting to compare the ratios of molecular to turbulent length

scales. The factor t− t0 cancels and the ratio is just the ratio of the diffusion

coefficients, molecular to turbulent. In Table 4.1, we give the ratios of molec-

ular to turbulent transport properties. The ratios are mesh and Reynolds

number dependent. Turbulent transport terms are defined in terms of subgrid

velocity correlations (with concentration, velocity, or temperature) and are

thus logically independent of molecular transport. We tabulate results for the

finest mesh only. For the momentum-resolved simulations, the turbulent vis-

cosity terms are neglible, and for high Reynolds number, the turbulent terms
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are dominant. Consistent with this picture, we note the virtual identity of the

high Reynolds data in Fig. 4.3, at least for the liquid and gas cases.

46



Chapter 5

Convergence of Micro Observables

5.1 Joint PDFs

The joint pdf for the temperature and species mass concentrations of the

fluid mixture is defined as a function of time, assuming that the probabil-

ity data is collected from the spatial variation of a single realization (single

realization of the intial conditions) within the mixing zone. Mixed cells are

not averaged, but each cell fraction contributes its own concentration frac-

tion and temperature with its own probabilities (proportional to area). The

concentration fractions and temperatures are then binned, with 10 bins per

variable.

The liquid and gas joint pdfs are bimodal. Both are concentrated near a

curve in concentration-temperature space, joining the light to the heavy fluid

concentrations. The origin of this shape can be explained by shock heating,

which tends to heat the heavy fluid more strongly, according to the proper-

ties of the assumed EOS for the two fluids. This trend is reinforced by the

initial conditions; initially the heavy fluid is hotter. Then portions of the
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Figure 5.1: Case l. The joint pdf of light species concentration and temperature
at time t = 90. The data has been collected into 10 × 10 bins. The mesh is
1600 × 3200 and Re ≈ 6000.

heavy and light fluid diffuse into one another, so that the temperature pdf at

fixed concentration is determined from the temperature pdf of the pure flu-

ids before mixture through diffusion. The plasma joint pdf is bimodal in its

dependence on concentrations, while its temperature dependence is unimodal.

See Figs. 5.1, 5.2, 5.3. The data presented is from the time t = 90, which is

the beginning of the chaotic stage of interface development.

The joint pdfs for temperature-concentration with common physics at

three mesh levels are qualitatively similar, and show signs of convergence. See

Table 5.1. The mixed region displays some number of large blobs of poorly

mixed light material. The relative size of these regions is statistically variable.

The errors quoted are measured in the Kolmogorov-Smirnov metric, i.e., the

L∞ norm of the difference of the associated probability distribution functions.
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Figure 5.2: Case g. The joint pdf of light species concentration and tempera-
ture at time t = 90. The data has been collected into 10× 10 bins. The mesh
is 1600 × 3200 and Re ≈ 6000.
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Figure 5.3: Case p. The joint pdf of light species concentration and tempera-
ture at time t = 90. The data has been collected into 10× 10 bins. The mesh
is 1600 × 3200 and Re ≈ 3000.
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l g p
Re c to f m to f c to f m to f c to f m to f

≈ 300 0.24 0.13 0.08 0.06 0.57 0.31
≈ 6000 0.07 0.06 0.09 0.05 0.68 0.41
≈ 600K 0.26 0.06 0.22 0.09 0.14 0.10

Table 5.1: Mesh errors for the joint temperature-concentration pdfs to illus-
trate possibilities of mesh convergence. Comparison is coarse (c) to fine (f)
and medium (m) to fine with pdf’s compared using the Kolmogorov-Smirnov
metric. Various physical cases reported.

We compute with three distinct meshes (400×800, 800×1600 and 1600×3200)

for the cases l, g, and p. Thus there are two levels of error for each case.

The listed Reynolds numbers are approximate, and the refinements are

performed (within each series of approximately constant Reynolds number)

with identical molecular level transport coefficients. Thus the mesh refinement

occurs within identically specified physics. The observed Reynolds numbers

and the subgrid scale turbulent transport parameters are mesh dependent, and

do vary within this comparison.

5.2 Concentration Moments

Although the errors in the pdfs decrease with mesh refinement, they are

not uniformly small, and in the worst cases are as large as the pdfs themselves.

For this reason, we next consider a more highly averaged analysis of the same

simulation data.
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The mean molecular mixing fraction θ, defined [58] as

θ =
〈f1f2〉

〈f1〉 〈f2〉
, (5.1)

is a common measure of mixing. Here fk is the mass concentration fraction for

the species k. Perhaps the best way to understand θ is through its role in the

specific chemical reaction production rate w for a simple reaction A+B → C,

namely [3]

w = const. f1f2 exp(−TAC/T ) , (5.2)

where TAC is an activation temperature and w is set to zero if T < TAC .

The constant in (5.2) is dimensionless. In this formula, we note that θ occurs

naturally as a factor in the mean value 〈w〉 for w. We use moments (θ) to

analyze the variability of the concentration, but due to the strongly nonlinear

dependence of w on T , we prefer to model T using its pdf. In this way, we

analyze the pdf for w with no use of a closure model.

In order to compute the mean value of w, we need to perform the sta-

tistical average defining θ at fixed T . This means that we bin together data

points with T in a common range (bin), and in this restricted ensemble, we

compute means to define θ. Let 〈·〉T denote the expectation in the fixed T

spatial ensemble. It is defined as the sum of its argument over all sample

points in a fixed T bin divided by the number of sample points in that bin.

The result is θ(T ), as a function of temperature T , where

θ(T ) =
〈f1f2〉T

〈f1〉T 〈f2〉T
. (5.3)
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l g p
≈ 300 0.09 0.09 0.03 0.01 0.23 0.06
≈ 6000 0.07 0.05 0.14 0.08 0.36 0.15
≈ 600K 0.11 0.06 0.12 0.05 0.07 0.07

Table 5.2: Mesh errors for θ(T ), defined by the weighted L1 norm (5.4). Com-
parison is coarse (c) to fine (f) and medium (m) to fine. Various physical cases
reported.

The result is shown in the nine frames of Fig. 5.4. We note that the gas

case has values θ(T ) ≈ 0.6 − 0.8 over most of the temperature range. Aside

from a peak θ(T ) value associated with the lowest and highest T values (caused

by unmixed fluid), most of the θ(T ) range displays very little temperature

dependence. Because the θ defined conventionally by a spatial average 〈·〉

(not constrained to a fixed T value) as in (5.1) is distinct from θ(T ), we

include the θ value in each frame of Fig. 5.4. The θ values are generally

lower than those obtained in other simulations for related problems. This fact

reflects the elimination of numerical mass diffusion in our simulations and a

greater occurrence of blobs of unmixed or poorly mixed fluid than is commonly

observed numerically.

We supplement the visual convergence shown with a quantitative estimate

of the error in θ(T ). See Table 5.2. Here the error is a weighted L1 norm,

e =

∫
|θc(T ) − θf(T )|(dP c(T ) + dP f(T ))/2 ≡

9∑

i=0

wi|θ
c
i − θfi | (5.4)

where wi is the weight of the corresponding temperature bin, calculated (for
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l g p
Re c to f m to f c to f m to f c to f m to f

≈ 300 0.29 0.16 0.06 0.03 0.07 0.01
≈ 6000 0.08 0.07 0.10 0.06 0.20 0.08
≈ 600K 0.13 0.03 0.18 0.07 0.03 0.04

Table 5.3: Mesh errors for the specific chemical production w for an activation
temperature TAC = 8, 000oK. The comparison, based on the Kolmogorov-S-
mirnov matric, shows mesh convergence. The comparison is coarse mesh (c)
to fine (f) and medium (m) to fine. Various physical cases reported.

the coarse to fine comparison) as

wi =
uci + ufi

2
. (5.5)

5.3 Temperature PDF

Encouraged by the fact that the variable θ(T ) is mesh convergent, as a

factor contributing to the chemistry production term w, we next take the step

of analyzing the pdf for T . By definition, this pdf (which we denote p(T )), is

the number of sample points in a T bin per degree size for the width of the

bin in degrees Kelvin. We plot the pdf for T , in Fig. 5.5, for various physical

cases.

Again the convergence properties are visually encouraging. Pursuing

this point, we tabulate the mesh convergence errors, as measured in the

Kolmogorov-Smirnov metric, for the pure T pdf, to show grid convergence,

see Table 5.4. The errors for the T pdf are defined as in (5.4).
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Figure 5.4: Plot of θ(T ) vs. T . Cases l, g, p (rows 1 to 3), with Re increas-
ing, left to right. Error bars indicate coarse grid ensemble fluctuation (±2σ)
centered at the ensemble mean, for cases l, g only.
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Figure 5.5: Plot of T pdf. Cases l, g, p (rows 1 to 3), with Re increasing, left
to right.
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l g p
Re c to f m to f c to f m to f c to f m to f

≈ 300 0.13 0.08 0.05 0.05 0.57 0.31
≈ 6000 0.07 0.03 0.07 0.04 0.68 0.41
≈ 600K 0.27 0.06 0.23 0.07 0.13 0.09

Table 5.4: Errors for the temperature pdfs measured in the Kolmogorov-S-
mirnov metric show mesh convergence. Comparison is coarse mesh (c) to fine
(f) and medium (m) to fine. Various physical cases reported.

We note an important distinction between the case p and the cases l and

g. For the high thermally diffusive case p, the range of temperatures spatially

is very narrow. Accordingly, the convergence of the pdfs in this case is rather

like convergence of near delta functions, and as the mesh is varied, there can

even be only partial overlap in the temperature ranges observed. The Reynolds

number dependence is significant in case p but is weak in cases l and g.

5.4 Chemical Production

Finally, we combine the separate analysis of θ(T ) and T to estimate a

convergence rate for the pdf for the specific chemical production w, assuming

arbitrarily activation temperatures TAC = 8, 000o K and 15, 000o K. Here,

TAC = 8, 000o K is lower than the range of observed temperatures, while

TAC = 15, 000oK is in the middle of the observed temperatures (cases l, g

only).

We list convergence properties for the w pdf, based on the Kolmogorov-

Smirnov metric in Tables 5.3 and 5.5. The evidence is encouraging, and sug-
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l g
Re 2σ/ 〈w〉 c to f m to f 2σ/ 〈w〉 c to f m to f

≈ 300 0.24 0.04 0.03 0.29 0.03 0.02
≈ 6000 0.49 0.04 0.04 0.45 0.03 0.04
≈ 600K 0.25 0.09 0.03 0.25 0.09 0.05

Table 5.5: Relative coarse grid ensemble fluctuations (±2σ) divided by ensem-
ble mean, and mesh errors for the specific chemical production w for an activa-
tion temperature TAC = 15, 000oK. Comparison based on the Kolmogorov-S-
mirnov metric. Comparison is coarse mesh (c) to fine (f) and medium (m) to
fine. Only cases l and g are reported.

gests convergence, subject to additional mesh refinement. The random variable

w displays not only spatical variablity, but also ensemble (realization to re-

alization) variability. Because the temperature range in case p is small, and

varies (even to the point of being non-overlapping) as Re and the mesh is

varied, it does not seem realistic to choose a TAC within the range of observed

temperatures. Accordingly, we omit case p from Table 5.5.

5.5 Statistical Fluctuation vs. Mesh Convergence

Close examination of Tables 5.4 - 5.5 suggests anomalies with the conver-

gence, with a few cases showing only marginal convergence. For this reason

we examine the mesh convergence more closely. First, we looked at errors

or randomness associated with the binning process. The results did not show

significant sensitivity to the binning. Next we examined the radial dependence

of the convergence. We found a significant radial dependence on the tempera-

ture, a consequence of the fact that the heavy material is hotter than the light.
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Figure 5.6: Radial dependence for 〈w〉 for the case l, Re ≈ 6000.

So the temperature and w, considered as a function of r, is biased towards the

outer portion of the mixing zone. See Fig. 5.6. Finally, we considered the rel-

ative importance of mesh errors and statistical fluctuations. For the coarsest

grid, and for cases l and g only, we introduced a modest ensemble (6 real-

izations) defined by randomly selected initial perturbations of the interface.

We find that the mesh errors are very small, and are dominated by random

fluctuations (magnitude defined as 2σ for this small ensemble). Thus we be-

lieve that the observed error fluctuations are probably chance events, rather

than indicating convergence or its absence. The spatial variabiity of the point

values of w, as indicated by its spatial coefficient of variation, typically 100%

or more, shows the importance but not the sufficiency of spatial averages.
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Chapter 6

Mathematical Existence and Uniqueness

Theories

If it is true that numerical solutions to the Euler equations are underde-

termined, and that the convergence process produces new structures on each

length scale, what is the consequence of these facts for a mathematical exis-

tence theory for these equations? It would appear that if such a mathematical

solution were to exist, it might not be a function, but a generalized function in

the sense of compensated compactness. The compensated compactness gen-

eralized functions are pdfs depending on space and time, not dissimilar from

what is observed computationally. In the one dimensional existence theory of

compensated compactness of DiPerna [45, 46] and Ding and co-workers [4, 8],

the first and easier step is to show existence of the generalized solution. The

more difficult second step is to show that a generalized solution is a classical

(weak) one. In view of the slow rate of progress with the existence theory in

two dimensions, and in view of the possibility that this second step might not

be correct, it is worth trying to establish generalized compensated compact-
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ness solutions without the step of passing to a classical one. Typically such

proofs are based on compactness, a method of proof which yields existence but

not uniqueness for the weak solutions. We have already commented on the

possible nonuniqueness of solutions to the Euler equations. We also note that

weak solutions in the form of a space time dependent pdf for the primitive

variables are actually what is required scientifically for a combustion simula-

tion. For this reason, such pdf weak solutions couple into the requirements of

computational physics, whether they are required as a fundamental scientific

truth or not.
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Chapter 7

Conclusion

Our most important conclusion is a converging trend for the micro ob-

servables for a strongly chaotic mixing flow: reshocked Richtmyer-Meshkov

instability. The micro variable mesh convergence is partly obscured by statis-

tical fluctuations, as noted below and in the body of the paper. New compu-

tational strategies and new methods of data analysis were required to reach

this goal. We have combined (and enhanced) the resolution of sharp gradients

near discontinuities of capturing codes with the subgrid physics modeling ac-

curacy of turbulence codes. The convergence properties are basically uniform

in Schmidt and Prandtl number. As far as the authors are aware, results of

this nature have not been reported by others.

A striking feature of the results is their relative independence on the

Reynolds number, allowed to vary by a factor of 2000. Also significant is the

strong dependence of the mixing properties of the simulation on the physi-

cal regimes with their distinct Schmidt and Prandtl numbers. The impact of

diffusion within the simulations is generally lower than commonly reported
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on the basis of under resolved untracked capturing codes. Such codes substi-

tute numerical transport properties for physical ones. The actual numerical

transport values are not documented, but it is safe to guess that the effective

numerical Schmidt and Prandtl numbers are mainly less than one, and thus

more diffusive than the present gas case.

These trends in the diffusive properties of the solutions are predicted by

the trends in the (λD + λDt
)/λC and (λT + λTt

)/λC ratios. In other words,

elementary one dimensional diffusion analysis, coupled with a statistical char-

acterization of the flow geometry, is sufficient to predict the major trends

observed. We refer to the plot of these ratios in Figs. 4.3.

As new modes of data analysis, we have introduced the importance of

convergence for the microscopic variables. These are subject to statistical

fluctuations which obscure mesh convergence. Some level of averaging is de-

sirable, but we preserve important nonlinear functionals of the data, for which

simple averaging is meaningless. This leads to the ensemble labeled by concen-

tration and temperature values rather than by spatial coordinates. Using this

framework and the typical observable of a chemical reaction rate, we observe

a reduction of statistical fluctuation and an appearantly converged pdf for the

specific chemical reaction rate.
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