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Abstract of the Dissertation

Ratio Method of Measuring the W Boson
Mass

by

Feng Guo

Doctor of Philosophy

in

Physics

Stony Brook University

2010

This dissertation describes an alternative method of measuring the
W boson mass in DØ experiment. Instead of extracting MW from
the fitting of W → eν fast Monte Carlo simulations to W → eν
data as in the standard method, we make the direct fit of transverse
mass between W → eν data and Z → ee data. One of the two
electrons from Z boson is treated as a neutrino in the calculation
of transverse mass. In ratio method, the best fitted scale factor
corresponds to the ratio of W and Z boson mass (MW/MZ). Given
the precisely measured Z boson mass, W mass is directly fitted
from W → eν and Z → ee data. This dissertation demonstrates
that ratio method is a plausible method of measuring the W boson
mass. With the 1 fb−1 DØ Run IIa dataset, ratio method gives
MW = 80435± 43(stat)± 26(sys) MeV.
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Chapter 1

Introduction

Particle physics is a branch of modern physics that is dedicated to the under-
standing of the smallest constituents of matter and the fundamental interaction
forces mediating between them. The scale of particle physics is in the range of
femtometer (10−15m, the size of the proton) and smaller, where the language
of Quantum Mechanics is used. Currently, Quantum Field Theory (QFT)
is the theoretical language of choice at the smallest length scales. Over the
last several decades, particle physicists have established an elegant theoretical
framework which is in excellent agreement with all the current experimental
data. This is called the Standard Model of particle physics.

1.1 Standard Model

The Standard Model is a gauge theory of the elementary particles and three of
the four known interaction forces. Apart from Gravity, which is described by
the theory of general relativity, the Standard Model describes the strong, the
electromagnetic, and the weak interaction. In the language of group theory, the
strong interaction observes the transformation symmetry of SU(3) while the
electroweak interaction observes SU(2)⊗U(1) gauge transformation symmetry.
Together, the three fundamental interactions are described by a gauge theory
with SU(3)⊗ SU(2)⊗ U(1) symmetry.

There are two types of elementary particles in the standard model, fermions
and bosons, characterized by their half-integer spin and integer spin respec-
tively. Fermions are the constituents of matter, while gauge bosons are re-
sponsible for mediating the forces between matters.

Ordinary matter is consisted of only three types of particles, namely elec-
trons, protons and neutrons. Electron is the smallest charged particle with
integer charge −e, and participates in the electroweak interaction only. In
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naturally occurring radioactive decays, neutrons and protons transmute into
each other via the weak interaction, which involves the electron and the neu-
trino. Neutrino is a neutral and near massless particle, it only interacts via
weak force. As far as we know, of these four particles only the electron and
neutrino are truly fundamental particle; proton and neutron are composites of
u and d valence quarks, with gluons which are the gauge bosons of the strong
force, binding them together. Quarks have fractional charge, for example u
quark has a +2/3e charge, while the d quark has a −1/3e charge. Proton is a
uud quark bound state, while the neutron is a udd bound state, and therefore
proton has the observed +e charge and neutron is neutral. Quarks participate
in both the strong and electroweak interactions. Particles that are immune to
strong interaction, such as the electron and neutrino, are called leptons.

The first “generation” particles consisting of neutrino, electron, u and d
quarks is not alone. Similar pattern is replicated twice more at higher masses.
In the second generation there is the muon(µ−), first discovered in cosmic rays,
200 times more massive than the electron. In the third generation, there is
an even heavier tau(τ−) lepton. There are 3 generations of neutrinos, of very
small but unknown masses.

The first generation quark doublet (u, d) is also replicated twice: the second
generation c(charm) and s(strange) quarks, and the third generation t(top),
b(bottom) quarks, for a total of six quark “flavors”. The strong and electro-
magnetic interactions are flavor-blind, while the weak interaction allows flavor
transitions. As fermions, all quarks have a spin of (1/2)~. Up, charm and
top quarks (collectively called up-type quarks) have a +2/3e electric charge,
while down, strange and bottom (down-type quarks) have a −1/3e electric
charge. The third generation top quark, was the last quark to be discovered,
at Fermilab Tevatron 15 years ago.

In standard model, the left-handed charged lepton and left-handed neu-
trino (as well as the left-handed up quark and down quark pair) are treated
as a doublet (Eq 1.1) that transforms according to the weak isospin SU(2)
symmetry. (

e−

νe

)
L

(
µ−

νµ

)
L

(
τ−

ντ

)
L

(1.1)(
e+

ν̄e

)
R

(
µ+

ν̄µ

)
R

(
τ+

ν̄τ

)
R

(1.2)

Some properties of the leptons are summarized in Table 1.1. In contrast
with the strong and electromagnetic interactions, weak force does not preserve
parity and indeed violates parity conservation maximally. As a consequence,
weak force does act differently with particles of different helicity (the spin
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component along the momentum direction), as shown in Figure 1.1. Left-
handed and right-handed fermions are identical in strong and electromagnetic
interactions, but in weak decays only left-handed fermions are involved. This
also explains the fact that the neutrinos we observe are all left-handed.

The lepton doublets in each generation are distinguished by their lepton
number. The (e−, νe)L doublet has Le = 1, the (µ−, νµ)L doublet has Lµ = 1
and the (µ−, νµ)L doublet has Lτ = 1. In all physics experiments, lepton
numbers are conserved in weak interaction. Quarks carry zero lepton number,
but all have a “baryon-number” equal to 1/3. The “strange” quark carries a
strangeness flavor quantum number S = −1, likewise other quark flavors have
an associated flavor quantum number each of their own.

All particles, leptons and quarks, have their anti-partners, anti-leptons
and anti-quarks with exactly the same masses (and spin, lifetime, etc.) but
opposite additive quantum numbers such as charge, lepton number, baryon
number, strangeness, and so on.

particle(antiparticle) symbol charge(e) spin(~) mass(MeV)
electron/positron e−/e+ −1/+ 1 1

2
0.511

muon/antimuon µ−/µ+ −1/+ 1 1
2

105.658
tau/antitau τ−/τ+ −1/+ 1 1

2
1776.84

electron neutrino/antineutrino νe/ν̄e 0 1
2

< 2.2× 10−6

muon neutrino/antineutrino νµ/ν̄µ 0 1
2

< 0.17
tau neutrino/antineutrino ντ/ν̄τ 0 1

2
< 15.5

Table 1.1: Three generation of the lepton particles.

Figure 1.1: Left-handed and right-handed helicities.

All quarks carry a three-valued strong charge, the so-called “color”-charge.
Similar to the electric charge for the electromagnetic interaction, the color
charge determines the strength of the strong interaction between colored par-
ticles. An intuitive way is to think of a quark possessing one of the three
basic colors “red(R)”, “green(G)”, or “blue(B)”. The theory of the strong in-
teraction, Quatum Chromo-Dynamics (QCD) describes the strong interaction
as the color exchange (which is mediated by colored gluons) between quarks,
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analogous to the electromagnetic interaction (Quantum Electro-Dynamics -
QED) with exchange of (uncharged) photons between charged particles. Ta-
ble 1.2 list some of the important properties of the six flavors of quarks.

name symbol charge spin I3 C S T B antiparticle
up u +2/3 1/2 +1/2 0 0 0 0 ū

down d −1/3 1/2 −1/2 0 0 0 0 d̄
charm c +2/3 1/2 0 +1 0 0 0 c̄
strange s −1/3 1/2 0 0 −1 0 0 s̄

top t +2/3 1/2 0 0 0 +1 0 t̄
bottom b −1/3 1/2 0 0 0 0 −1 b̄

Table 1.2: Flavor properties of quarks and antiquarks.

Quarks form the constituents of two classes of composite particles, baryons
and mesons. Both are hadrons, strongly bound states composed of quarks. A
baryon is a bound state of three quarks (or three antiquarks), while a me-
son is a quark-antiquark composite. Perhaps the best known baryons are
the proton (uud) and the neutron (udd). Antiproton and antineutron are of
similar constituents, except the consisting particles are antiquark instead of
quarks. The exclusiveness of the tree-quark and quark-antiquark bound states
is naturally explained from the three-valued “color” quantum number. It is
postulated that only “colorless” or white bound states may exist in nature
(more precisely: states unchanged under rotations in RGB-color space, i.e.
color singlet). Because antiquarks carry anti-colors (R̄, Ḡ. B̄), the simplest
possible colorless configurations are qRq̄′R̄, qGq̄′Ḡ, and qB q̄′B̄ for mesons, and
qRq

′
Gq
′′
B for baryons (q̄R̄q̄′Ḡq̄

′′
B̄ for antibaryons).

Strong interactions are all about the exchange of color. The mediating
particle of the strong interactions is the gluon, a vector gauge boson with
spin 1. Unlike in QED, where photon is the single carrier of the electromagnetic
force, there are 8 gluons. Gluons carry both color and anticolor, a simple
example is given in Figure 1.2. Of all 9 possible combinations of 3 colors
and 3 anticolors, one is a color singlet and thus does not participate in color
exchange.

As mentioned above, quark flavor is preserved in the electromagnetic and
strong interactions, while the weak interaction does not. Quarks can change
from one flavor to another flavor by emission or absorbtion of a the charged
weak vector boson, W±. The best known example of this kind process is the
neutron β decay, in which a valence d quark in the neutron emits a (virtual)
W− boson and changes into a u quark in the process, thereby transforming
the neutron into a proton. The virtual W− boson instantly decays into a pair
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qR

qB

gRB̄

Figure 1.2: The most simple QCD vertex, where a red color quark emit a
red-antiblue colored gluon and turns into a blue color quark.

of e− and ν̄e with allowed energies, this process is illustrated in Figure 1.3.

W−

d u

e−

ν̄e

Figure 1.3: β decay of neutron.

The probability of one quark flavor transforming into another flavor is de-
scribed by the CKM matrix [1]. Technically, the CKM matrix describes the
mixing of the eigen states of the strong (and electromagnetic) interaction,
with those of the weak interaction. Since the W boson is charged, the tran-
sitions only occur between up-type and down-type quarks. Each element of
the CKM matrix Vij represents the transition amplitude between a quark of
flavor i and of flavor j. Vij is involved in various physical processes and can
be determined experimentally. The current value of CKM matrix is shown in
Eq 1.3 [1]. It’s obvious that quarks tend to transform preferentially within the
same generation rather than between generations . Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 '
 0.974 0.226 0.004

0.226 0.973 0.041
0.009 0.041 0.999

 (1.3)

Quark mixing through the weak interaction has a direct role in the production
of the W± in Tevatron experiments. For example, the inverse of neutron β
decay is d+ ū→ W−, which is the dominant process of W− production in pp̄
collisions at the Tevatron. Here, d quark is the valence quark from proton and
ū quark is the valence quark from antiproton.
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Since this thesis is mostly concerned with the properties of the W± and Z
bosons, a more detailed discussion of the theory of weak interaction and WZ
boson production at the pp̄ collider is given in the next chapter.

1.2 W Mass, Top Mass and the Higgs Boson

The direct experimental discovery of the W and Z bosons in 1983 validated
the electroweak theory proposed by theorist. The unification of the electro-
magnetic and weak interactions in the electroweak gauge theory based on the
U(1)Y ⊗ SU(2)L symmetry broken with the Higgs mechanism (the Glashow-
Weinberg-Salam model - GWS) was the major step forward in the 1960’s.
Together with QCD which is based on the unbroken SU(3) symmetry of color,
the electroweak theory forms the bare bone of the Standard Model. The GWS
model predicted the existence of a charge neutral Z boson as the massive mix-
ture of the neutral gauge bosons of the U(1)Y symmetry of weak hypercharge
Y and of the SU(2)L of the left-handed weak interaction symmetry. Mass of
Z boson was extremely precisely measured in the LEP experiments. In con-
trast, measurement of the mass of charged W boson is much more difficult, as
explained in the overview of the direct measurement of MW in section 1.3.

The most important motivation for a very precise measurement of MW is to
confront the Standard Model predictions with experimental results. Because
the Standard Model has only on a limited set of a prioriy unknown parameters
(9 or 12 lepton and quark masses, 4 CKM mixing parameters, 3 gauge group
couplings, and 2 Higgs potential parameters), results from many experiments
must show consistency with its predictions. In particular, the bare mass of
the W boson receives so-called “radiative” corrections from loop diagrams
involving the t and b quarks, and radiative loops involving the putative Higgs
boson. A precise measurement of W boson mass acts as a examination of the
theory of Standard Model. The loop diagrams that dominate the correction
to the W boson mass in Standard Model are shown in Figure 1.4. When loops
involving SUSY particles are considered, they contribute further corrections
to the boson mass.

In the Standard Model the W boson mass can be written in terms of other
fundamental variables as Eq 1.4[8].

M2
W =

παEM√
2GF (1−M2

W/M
2
Z)(1−∆r)

. (1.4)

MZ , the mass of the Z boson, is precisely determined by the LEP experiments.
GF is the Fermi constant which is determined extremely precisely by the muon
life time. The electromagnetic coupling αEM = e2/4π is extremely well known
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Figure 1.4: The lowest order loop diagram contributing to W boson mass in
Standard Model.

and evaluated at Q2 = M2
Z . The radiative correction term ∆r groups all

radiative contributions from loops involving the top quark and the Higgs boson.
Physics beyond the Standard Model may also enter into ∆r. In the Minimal
Supersymmetric Standard Model (MSSM), corrections due to SUSY particles
can be as large as several hundred MeV[10].

The tb̄ loop tends to increase the value of MWby an amount proportional
to the square of the top mass M2

t . The contribution from Higgs loop tends to
lower the W mass in proportion to lnMH . Thus, within the framework of the
Standard Model, a precision measurement of MW and Mt can be converted
into a prediction of the mass of the yet-to-be-discovered Higgs boson. A global
fit of the parameters is done within the framework of Standard Model [2].
In Figure 1.5 all experimental data (including on MW and MZ) except the
direct top mass measurements are used to fit the Mt vs. MH at the 68%
confidence level. The direct Mtmeasurement (from the Tevatron experiments)
with the ±1σ uncertainty is also shown for comparison. Figure 1.6 uses all
experimentally measured data (now including Mt) except MW and ΓW to
do the global fit. The fitted MW vs MH contour at 68% confidence level is
compared with the direct measurement of MW .

The directly measured MW and Mt values from LEP-II/Tevatron are com-
pared with the indirectly fitted LEP-I/SLD values in Figure 1.7. Also shown
in the same figure is the theoretical MW vs. Mt value for Higgs masses in the
range 114 GeV < MH < 1000 GeV. The uncertainty in the prediction from
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the uncertainty of the running of αEM from low energy to the Z mass is in-
dicated. Figure 1.8 shows the relative χ2 of the fit (from direct or indirect
measurements) as function of the Higgs mass.

The confidence level contour of MW vs. Mt in Figure 1.7 indicates that at
present the Higgs mass prediction is limited by the precision of MW rather
than of Mt. With the high integrated luminosity data collected at the Teva-
tron experiments, CDF and DØ collaborations are working hard to measure
the W mass with smallest possible statistical and systematic uncertainties to
provide the strongest possible constraints on the Standard Model Higgs mass.
Even when the Higgs boson is discovered at the LHC, there is still a strong
consistency argument for improving the precision of W mass measurement.
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Figure 1.5: Global fit of Standard Model with all data, including MW , but
excluding direct measurements of the top quark mass Mt. The 68% confidence
contour of Mt vs. MH is compared with the directly measured top quark mass
Mt which is shown with a ±1σ band. The yellow band is the 95% CL exclusion
region for lower Higgs mass MH by direct searches. [2]
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Figure 1.6: Global fit of the Standard Model with all measured data (including
Mt) from all experimental data except the direct measuremnts of the W boson
mass MW . The 68% confidence contour of MW vs. MH is compared with the
directly measured MWwhich is shown with ±1σ band. The yellow band is 95%
exclusion region at low Higgs mass MH by direct searches. [2]
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1.3 Overview of W Mass Measurement

Since the initial discovery of W and Z bosons by the UA1 [3, 5] and UA2 [3, 5]
collaborations in 1983, the study of their properties has never been stopped.
As Z bosons can be resonantly produced at e−e+ type colliders, the four LEP
experiments measured its properties, including its mass, with high precison.
The study of W bosons turns out to be much more difficult, as the charged
W± can only be produced in a W+W− pair at LEP-II, and the most accessible
decay modes of the W have neutrinos in the final state, which are invisible to
the detectors.

Starting in 1996, the energy of LEP accelerator was increased above the
161 GeV W± pair production threshold. The mass of W boson was measured
by the four large LEP collaborations: ALEPH, DELPHI, L3, OPAL. [7]

Two methods were used to extract W mass by the LEP experiments. The
first method determines MW from the onset of the W pair production cross
section σ(e−e+ → W−W+) as function of total energy by comparison with
theoretical curves for different MW . Close to the threshold, the W± pair
production cross section is steep and very sensitive to MW .

The second method used the W± pair data collected by LEP at higher
energy, where the energy dependence of the production cross section σ(e−e+ →
W−W+) is rather flat, but where most data are taken. The final states of qq̄qq̄
and qq̄`ν̄` are used in the e−e+ center of mass frame to compute the invariant
mass of the W−W+ pair, using the constraint of the well-known overall energy
and momentum to reduce the overall uncertainties introduced by the use of
jets in the final states.

For the last decade, since the end of LEP-II in 2000, the only place produc-
ing large numbers of W bosons is Fermilab Tevatron. The study of this thesis
is based on 1 fb−1 Run IIa W and Z data collected at the DØ experiment at
the Fermilab Tevatron collider.

At Tevatron, W− and W+ bosons are produced in the collisions of glu-
ons and quarks. Both the DØ and CDF collaborations use the `ν̄` lepton
final states from the W decays for the W mass analysis. This choice is im-
posed since pp̄ collisons, as collisions of quarks and gluons, are inherently more
“dirty”because of the presence of spectator jets than e−e+ collisions. Because
the initial parton state involved with W production is poorly known, unlike
the e+e− initial state at LEP, no “beam constraint” is possible and W decays
with quark jets in the final state have very high QCD background and are
unsuitable for a precision W mass measurement.

Both CDF and DØ published their W mass measurement for Tevatron
Run IIa data. The CDF[12] result is based on 200 pb−1 data in W → eν and
W → µν channels. DØ[11] published its result based on 1 fb−1 W → eν data.
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The measuremnt method is similar in both experiments: a precisely tuned,
parameterized fast Monte Carlo model is used to produce a fine spectrum of
MW -dependent templates of the lepton pT , /ET and MT spectra. The fitted MW

is the mass used in the template that fits the data best, and the uncertainty
from the range of templates compatible with the data withing 68% CL. This
method is referred to as the “standard method” in the following.

CDF and DØ choose different fast Monte Carlo tuning methods for their
W mass analysis, and the choice is closely related to the strengths and weak-
nesses in performance of their respective detectors. The CDF detector fea-
tures a strong magnetic tracking system, enabling a precise measurement of
a charged particle’s momentum. Thus, CDF calibrates its calorimeter energy
scale energy with the tracking system, in particular with muons from abun-
dant J/ψ → µ−µ+ and Υ → µ−µ+ events. The track momentum calibration
is transferred to the electron channel and further calibrates the calorimeter
energy by fitting electron’s E/p ratio. Tracking and calorimeter calibrations
are cross checked with the Z → µ−µ+ and Z → e−e+ events. For 200 pb−1

RunII data, combining the W → eν and W → µν channels, CDF published a
W mass measurement MW = 80.413± 0.048 GeV[12].

DØ’s analysis concentrates on the electron channel only. Because the DØ
tracker is smaller in radius by 50% and has a half the magnetic field strength
of CDF, momentum resolution of W muons is not competitive with the elec-
tron calorimeter resolution. The energy of electrons is solely determined by
the DØ LAr calorimeter, and the tracker is used only to precisely determine
the electron direction. The electron energy and recoil system for W → eν
fast Monte Carlo are calibrated by electrons from Z → ee decays. Because
electrons fron the Z largely dominate in the absolute energy scale calibration
at high energies, the MW determined in the standard method is indeed rela-
tive to the global the Z boson mass value. For 1 fb−1 RunII data in W → eν
channel, the DØ W mass measurement gives MW = 80.401 ± 0.043 GeV[11],
a combination of fitting peT , /ET and MT spectra.

Figure 1.9 [14] shows the updated direct measurements of W mass from
LEP and Tevatron. The latest results from CDF [12] and DØ [11] results are
also included.

The leading uncertainties quoted in the CDF and DØ W mass analyses
are from the following sources: statistical uncertainties of the final templates
fitting due to the limited number of W events in the data and the systematic
uncertainties of electron energy scale (and tracking momentum scale). The
latter is dominated by the statistics of calibration sample (i.e. the number
of Z → e−e+ events at DØ). Consequently, when larger datasets become
available for W mass analyses, both the statistical uncertainty and the energy
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(and tracking momentum) scale systematics are expected to improve accord-
ingly. With diminishing experimental uncertainties, the uncertainties in the
modeling of the WZ production will become more significant.

This thesis describes an alternative method (“ratio method” vs. the stan-
dard method) to measure W boson mass using the 1 fb−1 DØ RunIIa data.
A detailed discussion about the differences between the standard method and
ratio method will be presented in later Chapters.

 (GeV)Wm
80 80.2 80.4 80.6

LEP2 average  0.033±80.376 

Tevatron 2009  0.031±80.420 

D0 Run II  0.043±80.402 

D0 Run I  0.083±80.478 

Tevatron 2007  0.039±80.432 

CDF Run  II  0.048±80.413 

CDF Run 0/I  0.081±80.436 

World average  0.023±80.399 

July 09 

Figure 1.9: Summary of the measurements of the W boson mass and their
average as of July 2009. The result from the Tevatron corresponds to the
values in Ref. [14]. The LEP II result is from Ref. [15]. An estimate of
the world average of the Tevatron and LEP results assuming no correlations
between the Tevatron and LEP is included.
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Chapter 2

Theory

In this chapter, we first discuss the theoretical framework of electroweak inter-
action which governs the physics processes like W → eν and Z → ee through
which W mass is measured in this thesis. Then we discuss the production and
decay of W and Z boson at Fermilab Tevatron.

2.1 Electroweak Theory

There are many good textbooks on electroweak theory. In this chapter, I
mainly follow the treatment in the book by Halzen & Martin [17]. I try to
cover the most important and relevant materials in this chapter in a coherent
way.

2.1.1 Electromagnetic Current

In the standard model, electromagnetic and weak interaction are two aspects
of one unified electroweak interaction. Electromagnetic interaction is medi-
ated by massless photon, while the mediating particles of weak interaction are
massive W± boson (charged) and Z boson (neutral).

The electroweak theory is easy to explain in term of perturbative theory.
A free electron with momentum p is described by the following wave function

ψ = u(p)e−ip·x. (2.1)

The electron wave function meets Dirac equation

(γµp
µ −m)ψ = 0. (2.2)

In an electromagnetic field described by potential Aµ, the probability Tfi for
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µ−
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µ−

Figure 2.1: Feynmann diagram of e−µ− → e−µ− scattering. A virtual photon
is exchanged between the e− and µ− current.

the electron to jump from initial eigenstate i to final eigenstate f can be cal-
culated from first order perturbation Equation 2.3. The interaction potential
V (x) is related to Aµ, therefore Tfi is related to the electromagnetic current
jfiµ ≡ −eψ̄fγµψi in Equation 2.4.

Tfi = −i
∫
ψ†f (x)V (x)ψi(x)d4x (2.3)

= −i
∫
jfiµ (x)Aµ(x)d4x (2.4)

Ignoring the space dependence, the electromagnetic current jfiµ can be written
in terms of the spinor u(p) (momentum dependent) of the wave function ψ
(Equation 2.1).

jem
µ ≡ jfiµ = −eūfγµui (2.5)

For a simple scattering process e−µ− → e−µ− shown in Figure 2.1, a virtual
photon with 4-momentum q is exchanged between e− and µ−. Aµ is related
with the electromagnetic current jµEM generated with µ−

Aµ =
1

q2
jµEM (2.6)

The invariant magnitude M is essentially the Tfi stripped of the δ function
which guarantees the energy conservation between initial and final state. Plug-
ging Equation 2.6 into Equation 2.4, we arrive at an important expression of
M of this process.

M = juEM

1

q2
jEM
u (2.7)

The above equation can be rewritten in a more familiar manner: as vertex
factor and photon propagator of Feynmann rules.
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− iM = (ieūγµu)︸ ︷︷ ︸
e−current

(
−igµν
q2

)
(ieūγνu)︸ ︷︷ ︸
µ−current

(2.8)

2.1.2 Weak Current

The invariant amplitude M for the electromagnetic interactions is expressed
in terms of the EM neutral current jµ which is associated with the exchange
of virtual photon. Weak interaction is mediated by the massive W± and Z
bosons. The charged weak currents j+

µ and j−µ associated with the W± vertices
are shown below.

j+
µ = ūνγµ

1

2
(1− γ5)ue

= ν̄LγµeL

W+

e−

νe

(2.9)

j−µ = ūeγµ
1

2
(1− γ5)uν

= ēLγµνL

W−

νe

e−

Note the weak current has γµ
1
2
(1−γ5) matrix element, different from γµ in elec-

tromagnetic current. ψ̄γµψ and ψ̄γµγ5ψ are vector and axial vector type under
the spacetime transformation. This leads to the famous V −A (Vector−Axial
Vector) structure observed in weak current.

We all know that weak interaction doesn’t observe the symmetry of parity.
The mathematical cause of this comes from the V − A structure of weak
currents described above. Notice that the spinor u of electron or neutrino can
be decomposed of the right-handed uR and left-handed uL components, which
are called chiral spinors.

u =
1

2
(1 + γ5)u+

1

2
(1− γ5)u (2.10)

= uR + uL (2.11)

By writing the weak charged current in terms of the chiral spinors, we
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notice that the charged weak current only couples the left-handed neutrinos.
As the γ terms can be written in a symmetrical form

γµ
1

2
(1− γ5) =

1

2
(1 + γ5)γµ

1

2
(1− γ5) (2.12)

ūγµ
1

2
(1− γ5)u = [ū

1

2
(1 + γ5)]γµ[

1

2
(1− γ5)u] (2.13)

Those terms in the [ ] brackets of Equation 2.13 are left-handed chiral spinors
ūL and uL. Therefore the weak current can be written as ūLγµuL. If the
neutrino mass is zero, handness is a Lorentz invariant property of neutrino.
The weak current formula (V −A) dictates that only the left-handed neutrino
(and left handed antineutrinos) can participate in weak interactions. As weak
interaction is the only process through which neutrinos are detected, the right-
handed neutrinos thus can never be detected, or simply don’t exist. Lastest
neutrino experiments prefer a very small neutrino mass ∼ 1 eV [18]. If neutri-
nos indeed have non-zero mass, there would be a tiny fraction of right-handed
neutrino, although experimental detection of them would be very difficult.

For electrons, handness is not a Lorentz invariant property, because of their
non-zero mass. Therefore a eR can be transformed into eL by Lorentz trans-
formation. An electromagnetic current can be also shown in chiral spinors,
however unlike weak current both the left-hand and right-hand spinors have
contributions. Equation 2.5 can be rewritten as Equation 2.14, as the cross
terms ūRγuL and ūLγuR vanish.

jem
µ ≡ ūγµu = −(ūR + ūL)γµ(uR + uL)

= −ūRγµuR − ūLγµuL (2.14)

2.1.3 SU(2)L ⊗ U(1)Y

Weak charged current j+ and j− in Equation 2.9 can be written in a uni-
fied manner by introducing the following weak isospin doublets for the three
generations of leptons:

χL =

(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

(2.15)

The charged weak currents in Equation 2.9 are thus written in terms of the
lepton weak isospin doublets χL and the familiar ladder operators τ± = 1

2
(τ1±

iτ2) commonly seen in the SU(2) mathematics of spin-1
2

system, where τi are
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the usual Pauli spin matrices.

j+
µ = χ̄Lγµτ+χL

j−µ = χ̄Lγµτ−χL (2.16)

It is natural to generalize the above charged weak current to write the isotriplet
weak currents jiµ as

jiu = χ̄Lγµ
1

2
τiχL with i = 1, 2, 3 (2.17)

The third component of jiµ is a neutral current j3
µ = χ̄Lγµ

1
2
τ3χL = 1

2
ν̄LγµνL −

1
2
ēLγµeL. The corresponding charges T i =

∫
ji0(x)d3x observe the SU(2)L

algebra [T i, T j] = iεijkT
k. The subscript L on SU(2) emphasizes that only

the left-handed fermions are coupled to weak currents.
A weak hypercharge current jYµ is defined as

jem
µ = j3

µ +
1

2
jYµ . (2.18)

For electron multiplets, the hypercharge current becomes

jYµ = 2jem
µ − 2j3

µ

= −2(ēRγµeR + ēLγµeL)− (ν̄LγµνL − ēLγµeL) (2.19)

= −2(ēRγµeR)− (χ̄LγµχL) (2.20)

Weak hypercharge current jYµ incorporates electromagnetic interaction and as
a result the hypercharge operator Y generates U(1) algebra. Therefore the
combined symmetry of electroweak interaction is SU(2)L ⊗ U(1)Y .

The weak isospin doublet for quarks has the same coupling to the weak cur-
rent as Equation 2.17. Unlike leptons, where the weak coupling only happens
within the same generation, quark weak isospin doublet is mixed, because
of the existence of CKM matrix (Eq 1.3). The left-handed quark doublets
participating in weak interaction are actually mixed:

χL =

(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

(2.21)

Taking the (u, d′) weak isospin doublet as an example, and utilizing the CKM
values in Eq 1.3, we can estimate that the actual percentages of each process
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in the overall process d′ → u+W−.

d→ u+W− ((0.974)2 = 94.8%)

d

u

W−

s→ u+W− ((0.226)2 = 5.1%)

s

u

W−

b→ u+W− ((0.004)2 = 1.6× 10−6)

b

u

W−

2.1.4 Electro-Weak Mixing

From Eq 2.4, the coupling between electromagnetic current jem
µ and electro-

magnetic potential Aµ is
Lint = −iejem

µ Aµ. (2.22)

In the standard model, the electroweak currents are coupled to vector boson in
a similar way. An isotriplet of vector fields W i

µ are coupled with weak current
jiµ with strength g. The hypercharge current jYµ is coupled to a singlet vector
field Bµ with strength g′/2.

LEW = −i
[
gjiµ(W µ)i +

g′

2
jYµ B

µ

]
(2.23)

The first term in the above bracket [ ] can be expanded explicitly in terms of
the isotriplt weak currents jiµ and isotriplet vector fields W i

µ.

jiµ(W µ)i = j1
µ(W µ)1 + j2

µ(W µ)2 + j3
µ(W µ)3 (2.24)

Just as j±µ ≡ (1/
√

2)(j1
µ ± ij2

µ), the combination of W 1
µ and W 2

µ gives the

charged W± boson W±
µ ≡ (1/

√
2)(W 1

µ ∓ iW 2
µ). Eq 2.24 can be further written
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as the charged current part and the neutral current part.

jiµ(W µ)i = j+
µ (W µ)+ + j−µ (W µ)− + j3

µ(W µ)3 (2.25)

The electromagnetic term Eq 2.22 must be incorporated into the neutral cur-
rent interaction part of Eq 2.23:

− i
[
gj3
µ(W µ)3 +

g′

2
jYµ B

µ

]
(2.26)

To do that, the underlying SU(2)⊗U(1) symmetry is broken. The two neutral
vector field W 3

µ and Bµ in Eq 2.26 are mixed to form a massless neutral field
Aµ (photon) and a massive neutral filed Zµ (Z boson). The linear relation is
described by the weak mixing angle θW .(

Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θ

)(
Bµ

W 3
µ

)
(2.27)

In terms of the physical field Aµ and Zµ, the electroweak current interaction
can be written as

− i
[
gj3
µ(W µ)3 +

g′

2
jYµ B

µ

]
= −i

(
g sin θW j

3
µ + g′ cos θW

jYµ
2

)
Aµ

−i

(
g cos θW j

3
µ − g′ sin θW

jYµ
2

)
Zµ(2.28)

The first term in bracket on the right hand side of Eq 2.28 should be a elec-
tromagnetic current ejem

µ ≡ e(j3
µ + 1

2
jYµ ) which is coupled to Aµ. Comparison

of the above formulae reveals the relation of coupling strengths.

g sin θW = g′ cos θW = e (2.29)

Using the electromagnetic coupling e and weak mixing angle θW , we can rewrite
the electroweak neutral current as

− i
[
gj3
µ(W µ)3 +

g′

2
jYµ B

µ

]
= −iejem

µ Aµ

− ie

sin θW cos θW

[
j3
µ − sin2 θW j

em
µ

]
Zµ(2.30)

The complete electroweak interaction LEW is thus written in terms of the
physical fields W±, Zµ, Aµ, electromagnetic coupling e and the weak mixing
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angle θW . The obvious deficiency of this unified model is that the masses of the
W± and Z vector bosons must be zero to keep the apparent gauge symmetry
of the electroweak Lagrangian. This difficult can be alleviated by spontaneous
symmetry breaking where the gauge symmetry of Lagrangian remains intact
but hidden because of the choose of direction in the weak isospin space.

2.1.5 Higgs Mechanism

The gauge invariant Lagrangian for the electron neutrino pair interacting with
W i
µ and Bµ field is

LEW = χ̄Lγ
µ

[
i∂µ − g

1

2
τiW

i
µ − g′(

YL
2

)Bµ

]
χL

+ēRγ
µ

[
i∂µ − g′(

YR
2

)Bµ

]
eR −

1

4
Wµν ·Wµν − 1

4
BµνB

µν(2.31)

In the above formula, the ordinary partial derivative ∂µ is replaced by the
covariant derivative Dµ ≡ ∂µ + ig 1

2
τiW

i
µ + ig′ 1

2
YLBµ for the left handed weak

isospin doublet χL. For the right-handed electron singlet eR, Dµ = ∂µ +
ig′ 1

2
YRBµ, as the weak current only has coupling to left-handed fermions. Note

the introduced gauge fields Wµ and Bµ in the [ ] of Eq 2.31 have exactly the
same interaction as Eq 2.23 (except in the form of chiral spinors here). The
final two terms are the kinetic energy and self-coupling of the Wµ field, the
kinetic energy of the Bµ field.

An important property of the Lagrangian LEW in Eq 2.31 is that a non
zero mass term such as MWW

+
µ W

−µ or MZZµZ
µ can’t be added to it without

breaking the gauge symmetry. In other words all the vector bosons Wµ, Bµ,
Aµ and Zµ must be massless according to Eq 2.31. In standard model, the
mass of W± and Z bosons are generated by the Higgs Mechanism.

The idea is to make the electroweak field be coupled with four real scalar
fields φi which belong to SU(2)⊗U(1) multiplets. The following SU(2)⊗U(1)
gauge invariant Lagrangian LH which describes the interaction between the
Higgs field and electroweak field is added to the Lagrangian LEW in Eq 2.31.

LH =

(
i∂µφ− g

1

2
τiW

i
µφ− g′(

YL
2

)Bµφ

)†(
i∂µφ− g1

2
τi(W

µ)iφ− g′(YL
2

)Bµφ

)
−µ2φ†φ− λ(φ†φ)2 (2.32)
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where φ is an SU(2) doublet of complex scalar fields:

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.33)

The last φ4 term indicates the existence of four-particle vertex with coupling
λ, in other words φ is a self interacting field. For µ2 > 0, the −µ2φ†φ term
indicates that the mass of φ field is µ. The interesting case is µ2 < 0 and λ > 0,
with which the Higgs potential V (φ) = µ2φ†φ+ λ(φ†φ)2 has its minimum at a
finite value of |φ|:

φ†φ = −µ
2

2λ
(2.34)

The minimum points occupy a sphere in the (φ1, φ2, φ3, φ4) space. One par-
ticular choice is

φ1 = φ2 = φ4 = 0 and φ2
3 = −µ

2

λ
≡ v2 (2.35)

The corresponding point of choice (also called the vacuum expectation value
of Higgs field) is

φ0 =
1√
2

(
0
v

)
(2.36)

Now the φ(x) field can be expanded around the above vacuum energy point
φ0. The original field φ(x) is substituted with the Higgs field h(x) as shown
in Eq 2.37. This is the idea of spontaneous symmetry breaking: after the
substitution of φ(x) with the Higgs field h(x), LH will display the mass terms
like −M2

WW
+
µ W

−µ and −1
2
M2

ZZµZ
µ. There should be no terms like −1

2
M2

AA
2
µ,

since photons are massless.

φ(x) =
1

2

(
0

v + h(x)

)
(2.37)

Put φ0 into the Lagrangian LH of Eq 2.37, the relevant terms to the mass
generation of WZ boson are:(

−g1

2
τiW

i
µφ0 − g′(

YL
2

)Bµφ0

)†(
−g1

2
τi(W

µ)iφ0 − g′(
YL
2

)Bµφ0

)
=

(
1

2
vg

)2

W+
µ W

−µ +
1

8
v2
[
gW 3

µ − g′Bµ

]2
+ 0

[
g′W 3

µ + gBµ

]2
(2.38)
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The above Lagrangian terms correspond to the following mass terms:

M2
WW

+
µ W

−µ +
1

2
M2

ZZ
2
µ +

1

2
M2

AA
2
µ (2.39)

Comparison between Eq 2.38 and Eq 2.39 gives the mass

MW =
1

2
vg (2.40)

MA = 0 with Aµ =
g′W 3

µ + gBµ√
g2 + (g′)2

(2.41)

MZ =
1

2
v
√
g2 + (g′)2 with Zµ =

gW 3
µ − g′Bµ√
g2 + (g′)2

(2.42)

The relation of coupling strength and weak mixing angle g′/g = tan θW from
Eq 2.29 makes the Aµ and Zµ expressions above reproduce the mixing in
Eq 2.27. Comparing Eq 2.40 with Eq 2.42, we have the mass ratio of W and
Z boson.

MW

MZ

= cos θW (2.43)

2.2 W and Z Boson Production

At Fermilab Tevatron, a pp̄ collider with the center of mass energy of
√
s =

1.96 GeV, the leading process of W and Z boson production is via the valence
quarks from proton and antiproton: ud̄→ W+, ūd→ W− and qq̄ → Z where
q can be either u or d. Those diagrams are shown in Figure 2.2.

The fraction of the proton momentum x carried by the valence quark of
flavor i when probed at the energy scale of Q is called the parton distribution
function (PDF) fi(x,Q

2). The production cross section of W and Z boson can
be calculated on the parton level and then convoluted with the PDF. Those
partons of the same proton or antiproton that don’t participate in the produc-
tion of W and Z boson are called spectator quarks. The resulting particles
come from the spectator quarks usually come with very forward and backward
directions and have low ET . In Monte Carlo simulation, the so called mini-
mum bias (MB) data events are used to estimate their contributions. Those
MB data events are triggered when at least one hard collision is recorded.

There are also additional pp̄ interactions in the same bunch crossing in
which W and Z bosons are produced. These interactions are called pile-ups,
as the debris of these interaction usually overlap with the signals from true
W and Z events. The so called zero bias (ZB) data events are collected to
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Figure 2.2: Lowest order diagram for W and Z boson production at Tevatron.

simulate their contributions. Those ZB events are taken during the normal
running of pp̄ collisions, without any trigger requirement. Together MB and
ZB events are called the underlying events in the fast Monte Carlo simulation.

2.2.1 Mass Distribution of W and Z Boson

W and Z boson are produced by two spin-1
2

quarks according to relativistic
Breit-Wigner resonance:

σ(m) =
m2Γ2

W/M
2
W

(m2 −M2
W )2 + (m2ΓW/MW )2

(2.44)

where MW and ΓW are the pole mass and width of mass resonance. The
observed boson mass spectrum should be the Breit-Wigner distribution in
Eq 2.44 convoluted with PDF:

σ(m) =
∑
i,j

∫
fi(xA, Q

2)fj(xB, Q
2)σ̂(ij)dxAdxB (2.45)

where the index i, j stand for the quark flavors involved in the W boson pro-
duction from proton and antiproton. σ̂(ij) is the W production cross section
on parton level. When the momentum transfer equals to the boson mass
Q2 = m, Eq 2.45 can be fitted by adding parton luminosity dependence to
Breit-Wigner distribution.

σ(m) =
e−βm

m

m2Γ2
W/M

2
W

(m2 −M2
W )2 + (m2ΓW/MW )2

(2.46)

where β is called the parton luminosity slope.

2.2.2 Boson Transverse Momentum and Rapidity

In the lowest order, the transverse momenta of the valence quarks in protons
or antiprotons are negligible compared with their longitudinal momentum.
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Figure 2.3: A typical initial state radiation of gluon (ISR) in the Drell-Yan
production of W− boson (left). Typical production of W− via valence quark
and sea quark interaction (right). The latter is a much rarer process. Both
diagrams contribute to the non zero pT of W boson.

Therefore the transverse momentum of resulting bosons would have been small
on the lowest order, as it is the only product from qq̄ interaction. However
higher order processes produce recoils against the boson and that makes W
and Z bosons have substantial transverse momentum. Among those, the dom-
inant process is the soft gluon radiation by quarks (ISR). Other processes that
also contribute to boson pT include the production of vector bosons from the
interaction of valence quarks and sea quarks, although this process is much
rare than the Drell-Yan process with ISR.

Straight calculation of boson pT that takes into account of such diagrams
as in Figure 2.3 gives reasonable result for high boson pT range (pT ∼ MW

or MZ). However for low boson pT , the calculation result is divergent. A
technique called resummation was proposed to work around this difficulty in
calculation [19, 20, 21, 22]. The differential cross section of boson production
is

d2σ

dpTdy
=
∑
i,j

∫
fi(xA, Q

2)fj(xB, Q
2)
d2σ̂(ij)

dpTdy
dxAdxB (2.47)

Parton level differential cross section d2σ̂(ij)/dpTdy can be expanded by a
series of strong coupling αs ln (Q2/p2

T ).

d2σ̂

dpTdy
∝ αs
p2
T

ln

(
Q2

p2
T

)[
v1 + v2αs ln2

(
Q2

p2
T

)
+ v3α

2
s ln4

(
Q2

p2
T

)
+ . . .

]
(2.48)

The resummation technique rearranges dominant terms of the perturbation
series in Eq 2.48 and find the sum of those terms is proportional to an expo-
nential formula. The non-perturbative physics is also taken into account for
its importance in the range of pT ' 0. The differential cross section in Eq 2.47
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is found to be [19]

d2σ

dpTdy
∝

∫
d2b

(2π)2
eib·QT

∑
j

W̃j(b∗;Q, xA, xB)

× exp

[
− ln

(
Q

2Q0

)
hQ(b)− hj/A(xA, b)− hj̄/B(xB, b)

]
+Y (QT ;Q, xA, xB) (2.49)

where b is the the impact parameter in the transverse plane. Small b value
corresponds to large pT and large b value corresponds to small pT . W̃ and
Y are derived from perturbative calculations. Q0 is an arbitrary constant.
hj/A and hj̄/B are flavor dependent function of momentum fraction xA and
xB. These two terms describe the nonperturbative behavior at large b, along
with function hQ(b). All these functions are fitted with experimental data.
Choice of the hQ(b), hj/A and hj̄/B function forms must meet the condition
that these functions will vanish with b→ 0, since non perturbative physics is
only important for small pT (large b value).

One commonly used function form for the non-perturbative physics is [19]:

hQ(b) = g2b
2 hj/A(xA, b) + hj̄/B(xB, b) = g1b[b+ g3 ln (100xAxB)], (2.50)

where g1, g2 and g3 are phenomenological constants, fitted from data.

2.2.3 W and Z decay

Because of the V -A couplings, at the lowest order W boson is fully polarized
along the beam direction. In that case W boson has no transverse momentum
and the lepton decaying angle in the W boson rest frame is given by

dσ

d cos θ∗
∝ (1− λq cos θ∗)2 (2.51)

where λ is the helicity of the W boson with respect to the proton direction.
Most W bosons are produced by the valence-valence quark interaction, in
that case λ = −1. In another extreme case where the incoming quark is from
antiproton and the antiquark is from proton, λ = +1. q = ±1 is the lepton
charge. θ∗ is the angle between lepton direction and the proton beam direction
in the rest frame of W boson.

When NLO processes are taken into account, W bosons have non zero
transverse momentum. θ∗ in Eq 2.51 is generalized to θ∗ in the Collins-Soper
(C-S) frame [24]. C-S frame is the rest frame of the W boson where the z-axis
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Figure 2.4: Collins-Soper frame. Start with lab frame, boost into the rest
frame of the W boson. In that frame the proton momentum P A is generally
not collinear with the antiproton’s momentum PB, thus z-axis is defined as
the bisector of P A and −PB. x-axis is defined as the tansverse vector in the
plane spanned by P A and PB.

is defined as the bisector of the proton momentum and the negative of the
antiproton momentum with the x-axis along the direction of pWT of lab frame.

In the next to leading order QCD calculation, electrons have the polar
angle θ∗ distribution in the Collins Soper frame as [23]

dσ

d cos θ∗
∝ (1 + α1 cos θ∗ + α2 cos2θ∗), (2.52)

where the parameters α1 and α2 depend on the transverse momentum pT and
rapidity y of W boson.

In the case of Z → ee events, if we define θ∗ as the polar angle of the
electron then we have cross section dependence as [25]

dσ

d cos θ∗
= C

4

3

πα2

s
Rf [

3

8
(1 + cos2θ∗) + AFB cos θ∗]. (2.53)

In the original Collins and Soper’s paper [24], cos θ∗ can be calculated using
variables in the proton-antiproton center of mass frame, i.e. lab frame. Let
Q(QT ) be the four-momentum (transverse momentum) of the electron and
positron pair in Z → ee, Pe− be the four-momentum of the electron and Pe+
be the four-momentum of the positron, all measured in the lab frame. Then
cos θ∗ is given by

cos θ∗ =
2√

Q2(Q2 +Q2
T )

(P+
e−P

−
e+ − P

−
e−P

+
e+), (2.54)
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where P±i = 1/
√

2(P 0
i ±P 3

i ). P 0 and P 3 represent the energy and z component
of four momentum, i stands for either electrons or positrons. In the Collins-
Soper frame, electron and posotron are back to back, if electron polar angle is
θ∗, then positron would have polar angle as (π+ θ∗), and that means positron
has opposite cos θ∗ distribution.

We can modify Eq (2.54) to make it suitable to describe cos θ∗ for electrons
in W− → e−ν̄

cos θ∗ =
2√

Q2(Q2 +Q2
T )

(P+
e−P

−
ν − P−e−P

+
ν ). (2.55)

Similarly positrons decayed from W+ have cos θ∗ as

cos θ∗ =
2√

Q2(Q2 +Q2
T )

(P+
e+P

−
ν − P−e+P

+
ν ). (2.56)

A detailed derivation of cos θ∗ Eq 2.54 is given at Appendix A.

2.2.4 Event Generator

Monte Carlo simulations are extensively used in the study of high energy
physics. An event generator produces the particles’ 4-momentum according
the physics distribution. There are two types of Monte Carlo simulations
commonly used. One is called fast Monte Carlo, which starts with the physical
4-momentum of particles, then applies energy smearing and other detector
effects in explicit function form. The smearing parameters input of fast Monte
Carlo are usually obtained from the study of data events. Fast Monte Carlo
is very useful in that it provides a parameterized model of the detector effects
and physical process, which makes the study of systematic factors much easier.

The other type of Monte Carlo is called full Monte Carlo, which is actu-
ally based on the GEANT package to simulate the interaction between particles
and detector materials. The particle physical 4-momentum are the inputs to
the customized GEANT package, each particle goes through the complicated
particle-material interaction simulation and the output is very much like the
real date events.

Two event generators are used in the study of this thesis. The event gen-
erator used in the GEANT based full Monte Carlo is PYTHIA. RESBOS is the
event generator for the simulation of data, as it uses the resummation tech-
nique described in previous section and therefore has better prediction of boson
kinematics.
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Chapter 3

Experimental Apparatus and
Data Acquisition

The data sample of this thesis is collected at the DØ detector of Fermilab
Tevatron during its Run IIa period, with integrated luminosity 1 fb−1. DØ
has published W mass measurement result using the same dataset [11]. In
this chapter, I discuss the major components of DØ detector, especially the
calorimeter and tracking subsystems that are used to collect data for the W
mass analysis. There are also discussions about the hardware and software of
data acquisition (DAQ), trigger system.

3.1 Tevatron

Tevatron is a circular particle accelerator located at Fermilab, in the west
suburban of Chicago. Protons and antiprotons are accelerated with center-of-
mass energy

√
s = 1.98 GeV in opposite direction along the 6.28 km ring and

have collisions at two locations on the ring. Two detectors (DØ and CDF) are
built at the collision locations.

A sketch of Tevatron is shown in Figure 3.1. There are several stages before
the proton and antiproton are accelerated to the energy of

√
s = 1.96 GeV.

At the first stage hydrogen gas is ionized at a 750 KeV Cockcroft-Walton pre-
accelerator and the negative ions are accelerated by positive voltage. These
ions are put into 150 meters long linear accelerator (Linac) and are further
accelerated to 400 MeV. At the end of this stage, electrons are removed by
the filtering carbon foils and the remaining charged protons are injected in to
the Booster.

Booster is a small circular accelerator, where the charged protons continue
to be accelerated up to 8 GeV. Protons are then passed to the Main Injector.
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The Main Injector serves several purposes, it can further accelerate protons
up to 150 GeV before injecting them into Tevatron. Another use of Main
Injector is to generate 120 GeV protons which are collided with Nickel target
at the antiproton source. A number of particles are produced, including the
antiprotons which are kept in the accumulator ring. Antiprotons can be passed
back to the Main Injector and then both the protons and antiprotons are
injected from Main Injector into the Tevatron ring and are finally accelerated
to 980 GeV there.

In March 2001, Tevatron finished upgrading and started Run II. There are
36 bunches of protons and antiprotons along the Tevatron beam line with each
bunch spacing of 396 ns. The instantaneous luminosity of RunII on the order
of 1032 cm−2s−1 or more.

Figure 3.1: Particles in the Fermilab Tevatron. Detailed description can be
found in the context.

3.2 DØ Detector

The DØ detector consists of three major subsystems: central tracking detec-
tors, liquid Argon/Uranium calorimeters and a muon spectrometer. There is a
significant upgrade of the DØ detector for the Tevatron RunII data taking [16].
Among those major changes, are the addition of magnetic field by solenoid for
the tracking and muon subsystems; new tracking systems consisted of the
silicon microstrip tracker (SMT) and scintillating-fiber tracker (CFT); new
preshower detector added between the tracking system and calorimeter; Muon
system updated to provide better radiation resistance and trigger capabilities.
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Within the solenoidal magnetic field, the improved tracking system can
measure the momentum of charged particles, better muon energy measurement
and (E/p) for electrons. SMT also helps in the identification of displaced
vertices for b quark tagging. The preshower detector helps to improve the
electron identification.

Figure 3.2: The diagram showing DØ detector installed in the collision hall,
viewed from inside the Tevatron ring. The central region of the detector is
shown in detail in Figure 3.3.

3.2.1 Silicon Microstrip Tracker

Excellent tracking system is essential to the study of electroweak physics. The
inner most tracking system of DØ detector is the Silicon Microstrip Tracker
(SMT), outer tracking system is the scintillating-fiber tracker (CFT), both
of which are surrounded by solenoidal magnet. The combination of SMT and
CFT allows the determination the primary interaction vertex with a resolution
of 35µm along the beam line. High precision vertex measurement is necessary
for the good measurement of lepton pT , lepton direction and transverse energy
/ET .

SMT provides nearly a full |η| coverage inside the limited space, due to
its hybrid disk/barrel placement of silicon sensors (Figure 3.4). There are 6
barrels in the central region of SMT along the z (beamline) direction, each of
them has 4 silicon readout layers. The silicon module installed on each layer
is called a “ladder”. There are 12 ladders evenly covering φ direction for each
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Figure 3.3: Side view of the central tracking system of DØ detector in the x-z
plane. Also shown are the preshower detector, central and forward calorime-
ters.

innermost first and second layer. The number of ladders increases to 24 for
the third and fourth layer.

Each barrel is capped at high |z| by a disk with 12 double sided wedge
detector, called F-Disk. In the further ends of high z, there are additional
4 H-Disks for large |η| coverage. The side view and cross sectional view of
the SMT layout are shown in Figure 3.4 and Figure 3.5. Barrel detectors
measure the r-φ positions and the disk detectors measure the z-r-φ positions.
For outgoing particles with small |η|, their tracks are mostly determined by
the SMT barrel detectors and the CFT. F-Disks and H-Disks are used in the
reconstruction for high |η| tracks.

SMT silicon sensors are read out by the 128 channel SVXIIe chip. The
chip includes preamp, analog delay, digitization and data specification. Trig-
ger information is received via the serial command link (SLC) by the sequencer
crate controller. Sequencer provided by the interface board provides timing
and control signals for SVXIIe chips. Upon a Level 1 trigger is accepted, a
double correlated sampling is performed and the analog information is con-
verted to digital signal on the SVXIIe chip. Data from the ladder and wedge
sensors are sent from sequencers to VME readout buffer (VRB) via optical
links. VRBC (VRB controller) receives SCL and use that information to con-
trol the operation of VRB. Single Board Computer (SBC) also resides in the
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Figure 3.4: The disk/barrel configurations of the SMT sensors.

Figure 3.5: Cross sectional view (along the z direction) of the SMT layout. 4
layers of barrel modules and 3 wedges of F-Disk is clearly shown.

same crate of VRB, it collects data from VRB upon the accept of Level 2
trigger and sends to Level 3 readout. The main use of Power PC is data mon-
itoring and calibration. The data flow of SMT operation is briefly described
in Figure 3.6.

3.2.2 Central Fiber Tracker

The Central Fiber Tracker (CFT) consists of scintillating fibers mounted on 8
concentric layers. The radial range of the CFT layers is from 20 cm to 52 cm
from the center of beam pipe. The inner most two layers of CFT is shorter of
1.66 m length to accommodate the outer SMT H-Disks. The outer 6 layer of
CFT are of longer 2.52 m with a coverage of |η| ≤ 1.7. Each layer is actually
consisted of three layers of finer fibers, one is oriented along the z direction, and
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Figure 3.6: Diagram showing the major components of SMT read out system.
DAQ will be discussed in section 3.4.

the other is a doublet layer with a slight stereo angle φ = +3◦ and φ = −3◦.
This kind of layout configuration gives better space resolution than the plain
all z parallel orientation.

The scintillating fibers are 835µm in diameter, 1.66 m and 2.52 m in length.
Those scintillating fibers are assembled into ribbons consisting of 256 fibers
in two layers of 128 each. They are securely fastened into precisely grooved
acetal in the supporting cylinder concentric to the beamline.

The scintillating fibers are connected with clear fiber waveguides to transfer
the signals to visible light photon counters (VLPC). VLPC is a impurity-bond
silicon avalanche photodetector that operates normally at the temperature of
9 K. Their excellent characteristics are suitable to function in an environment
with high background noise.

Overall there are about 76800 channels in VLPC read out for CFT. There
is an additional 22564 channels of VLPC readout for central and forward
preshower detector. Readouts from the doublet layer fibers of CFT are used
to form a fast Level 1 hardware trigger based on the number of tracks with
minimum pT threshold. Level 1 track candidates are used in the Level 2 trigger,
and the Level 3 trigger uses full CFT information.

3.2.3 Calorimeter

Calorimeter is the major apparatus of DØ detector to measure the energy
of electrons, photons and jets, as well as /ET which can be inferred from the
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readout of all calorimeter cells. Particles that entering the calorimeter usu-
ally initiate showers, the particle’s energy is therefore deposited, collected and
measured by the calorimeter. Depending on the way energy is measured, most
calorimeters are divided into two types: homogeneous and sampling. A ho-
mogeneous calorimeter use the same material to produce shower and collect
energy. A sampling calorimeter uses two different materials instead. Both
the DØ electromagnetic and hadronic calorimeter are of sampling type: dense
metal is used for quick shower development while liquid Argon is used to mea-
sure the deposited energy. Benefit of a sampling calorimeter is obvious: shower
development and energy deposition can take place within different materials,
each well-suited to its task. The disadvantage is that some of the shower en-
ergy can not be measured directly and thus the overall shower energy has to
be estimated.

There are three calorimeters in DØ detector: one center calorimeter cover-
ing |η| ≤ 1.0; two end calorimeters ECN (north) and ECS (south), extending
coverage to |η| ≤ 4 (Figure 3.7). Each calorimeter contains a inner electro-
magnetic (EM) section that is close to the interaction point, followed by a fine
(FH) and coarse (CH) hadronic section.

The active medium of the calorimeter is liquid Argon, divided into small
cells by absorber plates. CC and EC each are contained in its own cryostat
which keeps the low temperature at approximately 90 K. Different metals
are used as the absorber plates in calorimeters. Thin plates of pure depleted
uranium are used in the EM calorimeter. Fine hadronic calorimeter uses the
plate made of uranium-niobium alloy, coarse hadronic calorimeter uses rela-
tively thick plate of copper at CC and stainless steel at EC.

Figure 3.7: Isometric view of the central and two end calorimeters.
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Figure 3.8: Schematic view of a portion of the calorimeters showing the trans-
verse and longitudinal segmentation pattern. The shading pattern indicates
groups of cells ganged together for signal readout. The rays indicate pseudo-
rapidity intervals from the center of the detector.

There are 4 separate layers of EM calorimeters in CC and EC. Those layers
of EM calorimeters in CC have radiation length 1.4, 2.0, 6.8, 9.8X0. For EM
calorimeter in EC, the radiation length is 1.6, 2.6, 7.9 and 9.3X0. Before
entering the calorimeter, electrons and photons have interactions with other
materials (SMT, CFT, preshower and cables etc.) and lose some energy in
that process. The radiation length of those material is dependent on η of the
particle’s track. For example, η = 0 at CC have material of 4X0 radiation
length before the calorimeter. That value is 4.4X0 for η = 2 in EC.

Calorimeter readout cells layout is shown in Figure 3.8. The transverse size
of calorimeter cells is comparable to the transverse width of EM and hadron
showers: 1 ∼ 2 cm for EM calorimeter and 10 cm for hadronic calorimeter.
Towers in EM and hadronic calorimeter occupy ∆η × ∆φ = 0.1 × 0.1. The
third layer of EM calorimeter is segmented twice as fine as the other modules
in both η and φ, to give better precision of measurement at the location of
maximum shower development.

There are 55296 readout channels for the whole calorimeter, among them
47032 channels are actually connected to physical readout module in the cryo-
stat. Each readout channel corresponds to a calorimeter cell. There are three
stages for the calorimeter readout. First the signals from the detector is trans-
ported to the charge preamplifier located in the cryostat. Then the signals
are transported from preamplifier to the analog signal shaping and storage
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circuits on the base subtractor boards (BLS). Finally the analog singals from
BLS are converted to digital signals via ADC. Those signals entering into Level
3 trigger and stored into tapes.

3.2.4 Muon System

The DØ muon detector consists of a central muon system and a forward muon
system. Central muon system (|η| ≤ 1.0 coverage) includes a toroid magnet,
the proportional drift chamber (PDT), the cosmic cap and bottom scintillation
counters and the Aφ scintillation counter.

There are three layers of PDT, one of them is inside of the toroid magnet
and the other two are outside of the toroid magnet. PDT cells are 10.1 cm
across, the typical chamber is 24 cells wide with total 72 or 96 cells contained.

The cosmic cap and bottom counters are installed on top, side and bottom
of the outer layer of PDT. With the timing information of bunch crossing,
it filers the cosmic muon background and provides triggering information for
true muon events.

Aφ scintillation counter covers the inner layer PDT. It provides a fast
detector for triggering on and identifying muon for rejecting the back scatter
from the forward direction.

Forward muon system covers 1.0 < |η| < 2.0 range and consists of four
components: end toroid magnets, three layers of MDT for muon tracking
reconstruction, three layers of scintillation counter for triggering on events
with muon and shielding around the beam pipe.

3.3 Trigger

Trigger system is needed to select interesting events from the vast interaction
rate at Tevatron. There are three levels of trigger system examining fewer
events with greater details at DØ. The first stage (Level 1 or L1) is based on
hardware and the accepting rate is around 2 kHz. The second stage (Level 2
or L2) uses the hardwares and embedded microprocessors of sub-detectors and
provide information for a global processor to construct a trigger decision based
on individual objects and the correlations between them. Accepting rate for L2
trigger is down to 1 kHz. Trigger information from L1 and L2 are transported
to a farm of Lever 3 (L3) microprocessors. Sophisticated algorithms are use
in reducing the accepting rate to 50 Hz and these events are recorded in tape
for offline reconstruction. An overview of the DØ trigger and data acquisition
systems are shown in Figure 3.9. A block diagram showing L1 and L2 trigger
is in Figure 3.10.
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Figure 3.9: Overview of the DØ trigger and data acquisition system.
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Figure 3.10: Block diagram of DØ L1 and L2 trigger systems. Arrows stand
for the flow of trigger related data.
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Each event that meets the successive L1 and L2 trigger is fully digitized
and sent to a single processor in L3 farm. The buffers of L1 and L2 trigger
system reduce the detector dead time while waiting for the L3 trigger decision.

3.3.1 Level 1 Trigger

The Level 1 triggers are implemented in specialized hardware and examine ev-
ery event for interesting feature. L1Cal uses the calorimeter readout to find the
energy deposition exceeding preprogrammed threshold; L1CTT and L1Muon
find separate tracks and compare them together to find if they exceed the pre-
set threshold of transverse momentum; the Level 1 forward proton detector
trigger (L1FPD) selects diffractive-produced events by triggering protons and
antiprotons scattered at small angles.

All L1 trigger information are sent to the trigger framework (TFW). Events
are examined at TFW to decide whether a specific event is accepted or not.

For L1Cal, the inputs of trigger include the energy deposition from blocks
of calorimeter towers (∆η×∆φ = 0.2×0.2), extracted from the analog signals
in BLS circuits. Energy used in the trigger decision is the sum of ET of EM
calorimeter tower blocks and the total EM plus Hadronic tower blocks.

There are primarily three types of triggers for L1Cal:

• global variables: the sum of all calorimeter towers ET with 4 thresholds;
/ET with 4 thresholds.

• local variables: there is a preset uniform ET threshold for each of the
calorimeter towers, the number of triggered towers can be used in various
triggers.

• large tiles: this is mainly for jet triggering, any 4×8 tower in η×φ above
energy threshold are triggered.

L1CTT does hardware based track reconstruction using fast discrimina-
tor data from CFT, CPS and FPS. The output of L1CTT is used in overall
L1 trigger decision. Although the design of L1CTT is optimized for fast L1
decision, the complete data is stored for latter L2/L3 readout.

L1Muon seeks for patterns that are consistent with muon hits from data
of muon drift chamber, scintillating counters and tracks in L1CTT. L1Muon
system is divided into central, north and south regions. Data from various
front ends arrive at L1Muon asynchronously and must be synchronized before
forming a given event for triggering.
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3.3.2 Level 2 Trigger

The L2 trigger system collects data from the front-ends and the L1 trigger
system to form high quality physics objects and analyze the event-wide corre-
lation across all L2 physics objects. The final decision of L2 trigger is made
on the L2Global processor. Events that pass the L2 trigger are fully readout
and transported for L3 analysis.

Besides the global processor (L2Global) for the integration of data, there
are L2 preprocessors for the following subdetectors: tracking, calorimeter,
preshower and muon. The subsystems work in parallel and trigger decisions
are made in the L2Global stage based on physics objects reconstructed in the
preprocessors.

• L2Cal
L2Cal identifies jets, photons/electrons and calculate event /ET as input
for L2Global. Jet algorithm calculates

∑
ET of a 5 × 5 cluster around

seed towers. Seed towers are those with ET > 2 GeV. The list of jets is
then passed to L2Global which will further apply detailed jets require-
ments. Photons/electrons algorithms uses a 3 × 3 cluster around seed
towers to calculate an isolation value.

• L2Muon
L2Muon receives the output from L1Muon and front end modules of
PDT, MDT and scintillation counters. Quality of muon candidate is
further improved in L2Muon.

• L2PS
L2PS has L1CTT as the inputs, which contains the information of both
central and forward preshower detectors. Clusters in preshower detectors
are combined with the adjacent calorimeter cluster or CFT tracks to give
high efficiency electron or photon identification.

• L2CTT
L2CTT receives inputs from L1CTT or L2STT depending on its working
mode. Quality of tracks are refined in L2CTT and a final list of tracks
sorted in pT or impact parameters is passed on to L2Global.

• L2STT
L2STT is designed to take inputs from SMT and L1CTT. Starting with
the tracks in L1CTT, it utilizes the much fine spaced SMT hits to re-
construct tracks and effectively rejects spurious tracks in L1CTT. Fig-
ure 3.11 illustrates the way L2STT works. For each event, L1CTT sends
out a list of track candidates. A road is defined around the CFT track,
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any SMT hit inside the road is associated with the track. Only the barrel
SMT detectors are used in L2STT, where the r-φ position is determined.
For each successful track fitting, at least 3 of the 4 layer of barrel must
have hits; for CFT only the innermost and outermost layer are included
in the fit. The result of the fits is sent to L2Global.

Figure 3.11: Definition of road for L2STT trigger based on L1 tracks and SMT
hits.

3.3.3 Level 3 Trigger

L3 trigger is a high level, fully programmable trigger based on software. It
does limited event reconstruction, decision is made on not only the individual
physical object but also the relationship between them. Interesting variables
examined include the longitudinal and azimuthal angle between objects, or
invariant mass of them etc. Rate of L3 trigger output is 50 Hz, events passing
L3 trigger are recorded on tape for offline event reconstruction.

3.4 Data Acquisition

DØ online data acquisition is closely relate to the Level 3 trigger system.
Component data of a specific event from VME crates of various subsystems
are transported to a node in the L3 farm. Upon accepted by L3 trigger, events
are recorded to tape for offline use, hence the name L3DAQ is used. The
overall coordination and control of the triggering and acquisition is done by
COOR program running on the online host system.
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Figure 3.12 shows data flow scheme in L3DAQ. Each event consists of read-
out information from the 63 VME crates of all subdetector systems. Typical
size of the component data for one event is 1 ∼ 2 kB. A SBC in each VME
is responsible for the readout of VME and send out the data to one or more
L3 farm nodes specified by the instructions from Routing Master (RM). An
event builder (EVB) process running on the node makes a complete event out
of the event fragments. This event is for L3 trigger filter or further permanent
storage.

Figure 3.12: Schematic view of the data flow through L3DAQ system.

Communication between L3DAQ and the main DØ run control program
(COOR) is through the L3 supervisor process. What it does is to pass the run
information (COOR provided) to RM which dictates the collection of event
fragment. It also sends the trigger list to the EVB process in relevant L3 farm
nodes.

The EVB process on each farm node collates the event fragments re-
ceived from SBCs into complete events. For each event, the EVB receives
an expected-crate list from the RM in order to determine when an event is
complete.

Run control and detector configurations are handled by a central coordi-
nation program COOR. It receives user setting configurations and send com-
mands such as start and stop run to the detector and the rest of the system.

The online host system receives data from L3 farm node at a rate of
10MB/S (50 Hz with average 200 kB size of each event). Data can be assigned
to logging or monitoring streams. Final destination of data is the recoding
tape, located at remote Feynmann Computing Center.
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Chapter 4

Objects Reconstruction and
Events Selection

For the convenience of discussion, let’s define the coordinate system used in
the DØ experiment. The z-axis is along the proton direction and the y-axis is
upward in Figure 3.2, the x-axis is uniquely determined by the right-handed
rule. θ and φ are the polar and azimuthal angles. The transverse plane is
referred as the x-y plane. Pseudorapidity is defined as η = − ln (tan θ/2), with
θ = π/2 corresponding to η = 0 and θ = 0, π corresponding to η = ±∞.
Pseudorapidity equals to the true rapidity y = 1/2 ln [(E + pzc)/(E − pzc)] for
limited angles when mc2/E → 0 for a particle.

The mass of W boson is measured by its decaying particles, in the case
of DØ experiment, W → eν is the decay channel of choice. Should the 4-
momentum of the electrons and neutrinos are measured, the invariant mass of
W boson would have been explicitly calculated. For an electron, its energy and
direction can be precisely determined by the calorimeter and tracking system.
However the neutrino can only be detected by the in-balance of vector sum of
the transverse momentum /ET , and no longitudinal information of neutrino can
be measured. This make it impossible to directly measure theMW distribution.
An alternative variable MT called the transverse mass is proposed to substitute
the true invariant mass in the measurement [26]. The definition of MT can be
found in Chapter 5. Only the electron transverse momentum peT , /ET and the
azimuthal angle φ between them are used in the calculation of MT .

A typical W → eν event features a high pT electron, large /ET and a
hadronic recoil dispersedly against the W boson. Z → ee data event which
usually has two high pT electrons provides a natural calibration sample, as the
invariant Z mass shape can be fully calculated by the 4-momentum of its two
decaying electrons. The event display of typical W → eν and Z → ee events
are shown in Figure 4.1.
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Figure 4.1: The typical event signature of the Z → ee (left) and W → eν
(right) sample on the transverse plane. Z → ee event features two high pT
electrons, each with large energy deposition in calorimeter. W → eν event
has one high pT electron and large /ET . Note the hadronic recoil is against the
boson direction. Underlying event has random direction with respect to the
physical object.

In the following sections, we will discuss the reconstruction of electron,
recoil system and the final event selection of data and full Monte Carlo.

4.1 Electron Reconstruction

Calorimeter is the main apparatus for electron identification and measurement
of their energies. The electromagnetic shower of electron are contained within
a calorimeter cluster of cone radius R ≡

√
(∆η)2 + (∆φ)2 = 0.2, with the

center of cone at the shower peak (Figure 4.2). Energies from cells of EM and
FH1 layers within the cone are summed with weights according to the layer
location.

Electrons are reconstructed by the EMReco package. Depending on the
quality of EM showers, different ID numbers are assigned to the reconstructed
electrons. The following variables concerning EM shower shape are used in
the electron type identification:

• EM isolation fiso is the fraction of energy deposition in the donut region
between 0.2 < R < 0.4 compared with all of the energy within R < 0.4.

fiso =
E(R < 0.4)− E(R < 0.2)

E(R < 0.4)
(4.1)
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cluster of 13 towers

Figure 4.2: The calorimeter cluster within R ≡
√

(∆η)2 + (∆φ)2 = 0.2 for the
electron reconstruction. Each small cube in the plot stands for ∆η × ∆φ =
0.1× 0.1 in calorimeter. Center of the cluster is located at the shower peak.

• EM fraction fEM stands for the EM energy deposition fraction relative
to the total energy deposition (EM+FH1 combined).

• HMx7 and HMx8 are the χ2 variables to describe the shower shape de-
viation from the standard EM shower shape. HMx7 has better discrim-
ination for electrons in CC and HMx8 is a better variable for electrons
in EC.

To determine how close a track is matched to an EM cluster, a track is ex-
trapolated to the EM3 layer of the calorimeter. A match quality χ2 variable
is computed to stand for the distance between the extrapolated track and the
calorimeter measured shower center, both in the azimuthal direction ∆s and
z direction ∆z:

δ2
trk =

(
∆s

δs

)2

+

(
∆z

δz

)2

(4.2)

where δs and δz are the spatial resolution of the track. In EC, z is replaced
with r, the radial distance from the center of the detector.

If the electron has ET > 1.5 GeV and fEM > 0.9, it is labeled as type
ID = ±10. Depending on whether there is a spatial track associated with this
EM cluster, the electron can be further labeled as ID = ±11. The sign of ID
is determined by whether it is an electron or positron.

There are two ways of calculating the direction of electrons. If there is no
track associated with the EM cluster, the direction is solely determined by the
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central shower position at the finer EM3 layer and the primary vertex.

tanφ(e) =
ycal − yvtx

xcal − xvtx

tan θ(e) =

√
x2

cal + y2
cal −

√
x2

vtx + y2
vtx

zcal − zvtx

(4.3)

In the case where a track is associated with the EM cluster, the electron direc-
tion is adopted from the track directly, because of the better spatial resolution
of the tracking system.

φ(e) = φtrk

θ(e) = θtrk (4.4)

Ignoring the electron mass, the momentum of the electron is given by

−→pe = E(e)

 sin θ cosφ
sin θ sinφ
cos θ

 (4.5)

The energy of electron reconstructed in EMReco doesn’t take into account
of the dead materials in front of the calorimeter. This correction is done by
studying the single electron events in the full Monte Carlo simulations which
contains the right amount dead material as in the real DØ detector. Electron
samples with fixed energy from 5 GeV up to 170 GeV are generated and go
through the full Monte Carlo simulation. The electron energy obtained from
EMReco is compared with the input vale, hence the correction factor for dead
materials is determined.

The EM correction is obtained as a function of the electron physics η
(which is the direct indication of the dead material) and the incident energy.
Figure 4.3 shows two of such correction curves in different η range. EM cor-
rections obtained in the above way are incorporated into EMReco package and
applied to data.

4.2 Recoil System and /ET

The raw /Eraw
T is defined as the vector sum of all the calorimeter cell energy

except those in coarse hadronic and ICD region.

−→
/ET

raw ≡ −
∑
i

Ei sin θi

(
cosφi
sinφi

)
(4.6)
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Figure 4.3: Left: Correction factor versus the raw energy as reconstructed in
the calorimeter in eta range −0.3 < η < −0.1. Right: same in eta range
0.5 < η < 0.7 [27].

Ei is the cell energy, θi and φi are the cell direction with respect to the primary
vertex. Primary vertex obtained from event reconstruction is replaced with
tracking vertex, if the tracking vertex z is more than 2 cm away from the
reconstructed vertex. A more meaningful variable is the corrected /ET , which
has the raw energy of those cells that are belong to quality electron clusters
be replaced with object level energy.

The recoil prec
T (sometimes called uT ) against the W boson is defined as

the vector sum of all calorimeter cells (no coarse hadronic and ICD), except
for those belong to electron clusters. In Z and W data events, the relation
between recoil prec

T and /ET are thus the following,

−→
prec
T (Z) = −

−→
pe1T −

−→
pe2T −

−→
/ET (Z) (4.7)

−→
prec
T (W ) = −

−→
peT −

−→
/ET (W ) (4.8)

One thing we should be aware of in the above calculation of W and Z recoil
is that the underlying event contribution inside the electron window is not

taken into account. The more accurate formula of recoil should replace
−→
peT

with
−−−−−−−→
(peT −∆u‖) in Eq 4.7 and Eq 4.8. ∆u‖ is the energy flow of underlying

event entering the electron cluster. ∆u‖ is dependent on the instantaneous
luminosity and u‖ which is the projection of recoil pT on the direction of
election pT .

u‖ = −→uT · p̂T (4.9)

The distribution of ∆u‖ is shown in Fig 4.2 for full Monte Carlo and Fig 4.2
for data [28]. The average 〈∆u‖〉 = 130 MeV for electrons in CC.

In the standard method of W mass measurement, energy of underlying
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Figure 4.4: Left: Luminosity dependence of ∆u‖ correction. Right: u‖ depen-
dence of ∆u‖ correction for GEANT MC events. Unit of ∆u‖ is in GeV.
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Figure 4.5: Left: Luminosity dependence of ∆u‖ correction. Right: u‖ depen-
dence of ∆u‖ correction for real data.

event inside of the electron cluster window is not corrected for data and full
Monte Carlo. Instead the ∆u‖ correction is applied to fast Monte Carlo.

In data and full Monte Carlo, the measured recoil actually has three con-
tributions of different physics origins (section 2.2).

• The direct recoil against boson is from the initial state radiation (ISR)
of incoming quarks. In the fast Monte Carlo simulation, this is called
the hard recoil.

• The spectator quark interactions in the same pp̄ collision, which is called
the soft recoil. Minimum bias (MB) events are used to describe them in
the fast Monte Carlo simulations.

• The soft collision from other pp̄ in the same bunch crossing. Strictly
speaking, this is the true underlying event contribution. In fast Monte
Carlo simulations, Zero bias events are used to simulate this process.
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Combination of the above contributions in the fast Monte Carlo simula-
tion of underlying events is well calibrated by comparing the relevant physics
variables that are sensitive to recoil modelling in Z → ee fast Monte Carlo
and data events. Detailed discussions about the simulations of electrons and
the recoil system in W and Z events will be presented in Chapter 6.

4.3 Event Selections

In ratio method, the electron selection cuts are almost the same as those in
the standard method. Two slight different selection cuts in the ratio method
are

• One tight and one loose electrons are required for Z → ee events in stead
of two tight electrons in the standard method. The tight electron is in
CC, while the loose electron can be in CC and EC.

• The electron pT and /ET cuts is set at 30 GeV instead of 25 GeV in the
standard method.

The first change in the above has to do with the ratio method itself, the second
one is related with the acceptance difference on the MT of W and Z. Detailed
discussion of the choice of cuts will be presented in Chapter 6.

The loose electron selection cuts are the following:

• Electron ID must be ±10 or ±11.

• The minimum electron peT > 15 GeV.

The tight electron must be loose electron plus the following additional cuts:

• peT > 30 GeV.

• EM isolation fiso < 0.15 and EM fraction fEM > 0.90.

• Electron must be in the η and φ fiducial regions of the calorimeter.

• Electron HMx7 < 12 if in CC (|ηCC| < 1.05), or HMx8 < 20 if in EC
(1.5 < |ηCC| < 2.5).

• Electrons must have a matched track which has at least one SMT hit
and track pT > 10 GeV.

Common selection cuts for both W → eν and Z → ee events are:
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• There is at least one primary vertex for each event and |zvtx| < 60 cm
for the primary vertex.

• Recoil against W and Z boson in the transverse plane prec
T < 15 GeV.

• /ET > 30 GeV for both W and Z events ( /ET of Z is after making the
loose electron as neutrino and then scaled by (MW/MZ).)

• Electron from W is in CC only. Tight electron of Z is in CC and loose
electron is in CC or EC.
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Chapter 5

Ratio Method Analysis Strategy

The standard method of measuring the W boson mass at DØ and CDF is
described in Chapter 1.3. A detailed parameterized fast Monte Carlo sim-
ulation of the W → eν events is compared with data. Since the W boson
invariant mass can not be explicitly reconstructed, as the z component of
neutrino momentum can’t be measured, electron peT , /ET and transverse mass
MT spectrum are used in the comparison between fast Monte Carlo and data.
Spectrum templates of the above three variables are generated with different
MW and the best matched one corresponds to the MW in data.

Transverse mass MT is a variable similar to the MW , with only the trans-
verse components of 4-momentum involved in the MT calculation [26]. The
invariant mass of W boson is

M2
W = gµν(p

µ(e) + pν(ν))(pµ(e) + pν(ν))

= 2(E(e)E(ν)− px(e)px(ν)− py(e)py(ν)− pz(e)pz(ν))

= 2E(e)E(ν)(1− cos γ(e, ν)) (5.1)

where γ is the angle between electron and neutrino direction. Keeping only
the transverse components gives the transverse mass:

M2
T = 2(ET (e)ET (ν)− px(e)px(ν)− py(e)py(ν))

= 2ET (e)ET (ν)(1− cosφ(e, ν)) (5.2)

where φ(e, ν) is the azimuthal angle between electron and neutrino. This
variable has the advantage that its spectrum is insensitive to the W boson
production dynamics. Correction to MT due to boson dynamics is on the
order of (qT/MW )2 where qT is the transverse momentum of W boson. MT

is also not sensitive to selection bias that prefers certain event topologies.

MT variable contains the information of both
−→
peT and

−→
/ET , therefore it is also
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Figure 5.1: MT spectrum for W bosons with qT = 0 (solid lines), with the
correct qT distribution (•), and with detector resolutions (shaded area) [35].

sensitive to the measurement of electrons as well as the recoil system.
In the rest frame of W boson, electron and neutrino recoils back to back,

each carrying energy of 1
2
MW . The measured spectra of peT and /ET in the lab

frame depend on the boost of W boson in the transverse plane. A successful fit
of peT and /ET spectrum between fast Monte Carlo and data requires accurate
W boson pT production.

The properties of peT and MT are illustrated in Fig 5.1 and Fig 5.2, where
the effect of W boson pT and detector simulations on the these variables are
shown. W boson pT has little effect on the shape of MT , while the effect of
detector resolution is much more important. The situation is reversed for peT
spectrum, where boson pT has dominant effect.

5.1 Standard Method of W Mass Measurement

Standard method starts with the 4-momentum of electrons and neutrinos pro-
duced by the generator. All the detector effects are put into the fast Monte

54



30 35 40 45 50

pT(e) (GeV)

dN
/d

p T
(e

)

Figure 5.2: Electron peT spectrum for W bosons with qT = 0 (solid line),
with the correct qT distribution (•), and with detector resolutions (shaded
area) [35].

Carlo simulations, therefore the resulting W → eν events in fast Monte Carlo
is supposed to reproduce every aspect of the W → eν events in data. MW is
fitted for each of the peT , /ET and MT spectrum, and the three spectra provide
a cross-check with complementary systematics.

There are several ways Z → ee events can be used in the W mass measure-
ment. In the standard method [11], parameterized models are fitted with the
Z → ee sample. The fitted parameters (with fitting uncertainties) are directly
or indirectly put into the W → eν fast Monte Carlo simulations. Among
those, some of the most important uses of Z → ee sample include:

• measure the sampling term for electron resolution.

• measure of the EM energy scale and offset for fast Monte Carlo electrons.

• determine hard recoil smearing parameters.

• efficiency measurement, by requiring one tight electron as the tag and
measure the efficiency on loose electron.
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Figure 5.3: The dielectron invariant mass for Z → ee data and from the fast
Monte Carlo simulation [11].

In other words, the calibration of electron energy and recoil system is all
done by the Z → ee sample in the standard method. For example, after the
electron calibration, the invariant Z → ee mass shape are perfectly reproduced
in the fast Monte Carlo (Fig 5.3). The measured MW by fitting fast Monte
Carlo simulations and data is actually the W boson mass in scale of the Z
mass. Many of the systematic uncertainty in the W fast Monte Carlo model
come from the limited Z → ee statistics in the parameters fitting. Table 5.1
lists the systematic uncertainty from the 1 fb−1 DØ Run IIa measurement.
The dominant systematic uncertainty is the electron energy calibration, which
measures the energy scale and offset for electrons in the fast Monte Carlo
simulation by reproducing the Z → ee mass peak shape in Fig 5.3.

In standard method, fast Monte Carlo simulation is implemented in a pack-
age called wz epmcs. For the 1 fb−1 size data, the simulation of electron and
recoil system requires a fairly complicated fast Monte Carlo model that has
reasonable agreement with data. With substantial high instantaneous lumi-
nosity events recorded in the DØ RunIIa data, the simulation of the recoil
system turns out to be especially difficult [30].

For the recoil simulation in fast Monte Carlo, in stead of fitting the com-
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σ MeV
Source MT peT /ET

Electron energy calibration 34 34 34
Electron resolution model 2 2 3
Electron energy offset 4 6 7
Electron energy loss model 4 4 4
Recoil model 6 12 20
Electron efficiencies 5 6 5
Backgrounds 2 5 4
Experimental Subtotal 35 37 41
PDF 10 11 11
QED 7 7 9
Boson pT 2 5 2
Production Subtotal 12 14 14
Total 37 40 43

Table 5.1: Systematic uncertainties of the W boson mass measurement [11].

plicated parameterized model with Z → ee data, one may choose to put the
recoil of Z → data events into the fast Monte Carlo directly, thus omitting
the procedure of complex parameterization. This method is called the recoil
library method and has been adopted by the DØ Run IIa W width measure-
ment [31]. Recoil library method still uses the templates generated in fast
Monte Carlo and extracts MW and ΓW by fitting to the W → eν data.

The above “data direct” idea can be pushed even further. For the W → eν
simulation, not only the recoil part, but also the electron part is obtained
from Z → ee data directly. In other words the Z → ee data is compared with
W → eν data directly, the best matched Z → ee gives the measured MW .

The motivation behind the method of “W and Z data comparison” is to
avoid neglecting the correlations inside W → eν and Z → ee data in the artifi-
cially parameterized fast Monte Carlo model. With more W and Z data to be
fitted in the standard method, parameterized models of fast Monte Carlo sim-
ulation have to be even more complicated to have reasonable agreement with
data. High instantaneous luminosity events are likely to have more presence
in the recorded data, some correlations will become more important than in
those low statistical and low instantaneous luminosity events. In that perspec-
tive, data to data comparison will show more attractions than the comparison
between fast Monte Carlo and data.

One way to use the Z → ee data is fully transforming it into W → eν
events. In the rest frame of Z, boson mass is changed from MZ to MW (with
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MW/MZ or (MW −MZ) as the floating parameters to be fitted). The energy
of dileptons are reset from 1

2
MZ to 1

2
MW while the direction of each lepton is

still kept the same. We do know that the Z → ee and W → eν events have
different lepton decaying angles distributions cos θ∗ in the boson rest frame
as shown in both Eq 2.52, Eq 2.53 and Fig 5.5, Fig 5.6 (only polar angle is
relevant here, as the azimuthal angle distribution is flat). To really change
Z → ee into W → eν, we need to make the lepton cos θ∗ distribution in Z
boson rest frame the same as in W → eν events and that could be done by
cos θ∗ reweighting, which is discussed in Chapter 5.2.1.

In the above Z → ee to W → eν transformation, one of the two electrons
decayed from Z is discarded as the neutrino in W → eν event. Both leptons
are then boosted back into lab frame and result in a W → eν event. Since
W and Z bosons have different distributions of transverse momentum pT and
rapidity y, a reweighting of both variables is necessary to make sure a perfectly
transformed W → eν event in Z boson rest frame is still valid after being
boosted back into the lab frame. After these corrections, in lab frame, the
transformed W → eν events from Z → ee should be similar to true W → eν
events in every aspect.

In this method (called the transforming method), (MW−MZ) or (MW/MZ)
can be extracted by comparing the peT , /ET and MT spectra of the transformed
W events and the true W events. In the original paper [32], this method is
applied up to the generator level Z → ee and W → eν events with simple
Gaussian smearing of the electron and recoil system. The crucial step of how
to apply this method to data analysis is not clear.

Another method (called the ratio method) [33, 34] is based on the observa-
tion that transverse mass MT of W and Z boson scales with the boson mass.
Here the transverse mass of Z → ee events is calculated in the same way as
W → eν: one of Z’s two electrons is discarded to be treated as neutrino. If
we scale the MT spectrum of Z, the resulting MT spectrum would be very
similar to the MT of W events on the condition that the scaling factor is set
to MW/MZ . For a fixed Z sample, we can generate templates of M temp

T spec-
trum using the template mass ratio M temp

W /MZ . W mass is then extracted by
finding the best matched MT templates of Z. A fast Monte Carlo simulation
of ratio method on MT spectrum is illustrated in Figure 5.4.

Both the transforming method and the ratio method are applied to the
generator level Z → ee and W → eν events in the following sections. MT

fitting in both methods gives similar measured MW . Starting from the next
chapter of this dissertation, we only discuss ratio method and make W boson
mass from data using it. We didn’t attempt to make W mass measurement
using transformation method.
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Figure 5.4: Comparison of the MT spectrum between W → eν and Z → ee
events. MT of Z → ee events is scaled with different MW/MZ mass ratio. The
best matched MT of Z → ee events corresponds to the correct W mass (blue
points, MW = 80.4 GeV). This plot is based on the fast Monte Carlo sim-
ulations which have incorporated major physical and detector effects. 2 fb−1

W → eν and 6 fb−1 Z → ee events.

Extrapolation of the transformation method to data or full Monte Carlo
events is not as straightforward as on the generator level. One needs to figure
out how to do the physics transformation with the smeared data which are
already after acceptance and kinematic cuts. Apart from the above technique
difficulty, a more important problem is to justify transforming the Z → data
into W → data. Physically they have different properties, for data which have
undertaken all the detector effects, transforming Z → ee into W → eν is not
easier than the straightforward route of W fast Monte Carlo to W data, which
is adopted by the standard method. Transforming Z → ee to W → eν doesn’t
offer extra benefit than the standard method.

5.2 Transform Z → ee to W → eν

In this section, a Z → ee to W → eν transformation is performed on the
generator level events. As mentioned in Chapter 2.2.4, resbos is used to
produce 4-momentum of particles. The analysis procedure is similar to that

59



described at [32]. The ideas is to make corrections to the physical variables of
Z boson (m, pT , y) and its decayed electrons (cos θ∗). The final correction is
the product of all separate corrections.

5.2.1 cos θ∗

Leptons decaying from W and Z boson have different direction distributions
(Eq 2.52 and Eq 2.53). Of physics importance is the electron polar angle cos θ∗

in the Collins-Soper frame (Fig 2.4). The value of cos θ∗ can be calculated in
two ways: one is in terms of the lepton’s 4-momentum in the lab frame (Eq 2.55
for W−); the other is through the TLorentzVector::Boost() function in ROOT

and do the calculation in Collins-Soper frame, according to the definition of
cos θ∗.

The cos θ∗ distribution of W and Z are shown in Figure 5.5 and Figure 5.6,
two calculations coincide with each other. Features such as W boson charge
asymmetry and Z boson backward-forward asymmetry are obvious in those
plots.

The cos θ∗ ratio of W over Z for electrons and positrons in Fig 5.7 are
treated as event weights in the transformation of Z toW . Due to the symmetry
between the electron’s and positron’s event weight shape, we could envisage
that the cos θ∗ reweighting would be in vain, since the W sample consists of
half W+ events and half W− events, hence electrons and positrons reweighting
would cancel. This is shown in Fig 5.8, there is virtually no difference of cos θ∗

distribution in Z after applying reweighting. Therefore there is no need to do
the cos θ∗ reweighting if the W sample is inclusive (equal amount of W±) and
the possibility of electron/positron being chosen to fake neutrino in Z sample
is the same.
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Figure 5.5: Normalized electron cos θ∗ distribution in W− → e−ν and positron
distribution in W+ → e+ν. Two ways of cos θ∗ calculation mentioned in the
context are shown to be the same.
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Figure 5.6: Normalized electron and positron cos θ∗ distribution in Z → e−e+.
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Figure 5.7: cos θ∗ ratio of W events over Z events, for electrons and positrons.

5.2.2 Boson Mass Shape

The W and Z boson are supposed to follow the Breit-Wigner distribution of
mass, with corresponding pole mass MW , MZ and width ΓW , ΓZ (Eq 2.44).
Since we plan to use the mass difference of W and Z as the floating parameter
in generating templates, only the width difference of W and Z need to be
considered here. The idea is to take each Z event, scale (or shift) its mass mZ

by (MW/MZ) or (MW −MZ). The resulting W mass mW is used to calculate
an event weight which takes into account of the width difference between Z
and W .

For each Z → ee event with mass mZ and the transformed (shifted or
scaled) mW , a weight is assigned to the Z event. The event weight is calculated
as the ratio of the Breit-Wigner function:

weight =
BW (mW ,MW ,ΓW )

BW (mZ ,MZ ,ΓZ)
(5.3)

However both the resbos and PYTHIA generator have slightly different
boson mass shape with respect to the Breit-Wigner distribution (Eq 2.44) as
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Figure 5.8: cos θ∗ distribution of leptons in W and Z events. For W events,
it’s cos θ∗ of electrons in W− or positrons in W+. For Z, we randomly select
either electron or positron in each Z event. Therefore half of the leptons in Z
are electrons and positrons.

shown in Fig 5.9. To be exact, boson mass should be Breit-Wigner distribution
convoluted with the parton luminosity function (Eq 2.46).

A plausible way is to use the normalized W and Z mass shape as the input
for mass reweighting, to replace the Breit-Wigner function in Eq 5.3 that fails
to describe W and Z’s invariant mass shape. Let function fW (mW ,MW ,ΓW )
and fZ(mZ ,MZ ,ΓZ) be the normalized W and Z mass shape as in Fig 5.10.
For each Z → ee event transformed into W → eν event, the event mass is also
changed from mZ to mW , by either mass scaling (MW/MZ) or mass shifting
(MW −MZ). The mass reweighting factor is then determined as

weight =
fW (mW ,MW ,ΓW )

fZ(mZ ,MZ ,ΓZ)
. (5.4)

Transformed Z mass shape turns out to agree well with the W mass shape
after the above reweighting, as shown in Fig 5.11.

5.2.3 Boson Transverse Momentum pT and Rapidity y

Another important kinematic difference between W and Z boson production
is the boson pT and rapidity y distribution. These two variable are closely
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Figure 5.9: Generator level Z boson mass shape from resbos and PYTHIA is
compared with the Breit-Wigner distribution. The PYTHIA Z → ee sample
includes Z/γ∗ interference that causes the extra large deviation from Breit-
Wigner distribution in low mass region.

correlated as shown in Fig (5.12) and Fig (5.13). To simplify, let’s use f−W (pT , y)
and f+

W (pT , y) denote the pT v.s. y for W− and W+ boson, fZ(pT , y) for Z
boson. pT v.s. y 2−D plots are normalized at the same range of pT and y in
both W and Z events.

For each Z events transformed into W event, the rapidity of Z will be kept
the same, and the boson pT will be smaller after the transformation. This is
due to the way we do the Z → W transformation. In the Z boson’s rest frame,
the dilepton’s direction is kept the same, but the momentum is scaled down
by the ratio of MW/MZ . The pT v.s. y reweighting factor is calculated as

weight =
f±W (pWT , y)

fZ(pZT , y)
(5.5)

where f±W denotes whether the specific Z event is transformed to W− or W+.
After the two dimensional boson pT vs y reweighting, Z events are trans-

formed into W with pT and y distribution similar to that of true W bosons.
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Figure 5.10: Reweighting input W and Z boson mass shape for resbos sample.
They are both normalized in the [50 GeV, 200 GeV] range.

5.2.4 Transform Z → ee to W → eν

The procedure to do the transformation of Z → ee events to W → eν events
can be put in the following steps:

• Electrons and positrons in Z → ee events are boosted into the Z boson
rest frame.

• In the Z boson rest frame, we change the Z mass mZ to W mass mW

by either scaling or shifting the mass.

mW = mZ × (MW/MZ) (scaled),

mW = mZ + (MW −MZ) (shifted). (5.6)

• In boson rest frame, lepton has E0 equals to mW/2. With this relation
we can simply rescale the leptop’s 4-momentum according to the newly
transformed mW (scaled) or mW (shifted). In the case of mass scaling,
the coefficient C1 = MW/MZ . For mass shifting the coefficient C2 =
mW/mZ . If we define a global mass shift ∆M = MW −MZ , we could
rewrite C2 = 1 + ∆M/mZ . Leptons’ 4-momentum are updated as

pµ(scaled) = C1(E0, p1, p2, p3),

pµ(shifted) = C2(E0, p1, p2, p3). (5.7)

• Each Z event randomly fakes either W− or W+. cos θ∗ and boson y
reweighting is chosen accordingly. For example, in the case of W−, elec-
tron in Z will be kept as electron in the transformed W−, and the Z
positron will fake neutrino in the transformed W−, reweighting factor of
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Figure 5.11: Reweighted transformed W events with true W events. Lower
χ plot show that the reweighting algorithm works by the definition of closure
test.

cos θ∗ will be read from the left plot in Fig (5.7). pT and y reweight-
ing will use the left plot in Fig (5.13). As previously mentioned, cos θ∗

reweighting has no effect here as long as the W sample is inclusive.

• Both leptons are then boost back to the lab frame, the same boost vector
are used as before. Electron pT , /ET and transverse mass MT are then
calculated for the transformed W events, with event weights multiplied
from the lepton cos θ∗ reweighting, boson mass reweighting and pT vs y
reweighting.

• The above procedure is for W and Z’s default input values. To extract
W mass by template fittings, we let the (MW/MZ) or (MW −MZ) as a
floating parameter around the default vaule and generate a template of
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Figure 5.12: Z boson pT vs rapidity y.

-5 -4 -3 -2 -1 0 1 2 3 4 50

5

10

15

20

25

30

35

40

45

50

 vs W- dilepton y
T

W- dilepton p

-5 -4 -3 -2 -1 0 1 2 3 4 50

5

10

15

20

25

30

35

40

45

 vs W+ dilepton y
T

W+ dilepton p

Figure 5.13: W boson pT vs rapidity y. Note the assymmetry in the rapidity
space for W+ and W−.

electron pT , /ET and transverse mass spectra.

Resbos has the following input values to generate W → eν and Z → ee
events:

MW = 80423 MeV ΓW = 2048 MeV

MZ = 91188 MeV ΓZ = 2422 MeV (5.8)

Fig 5.15 to Fig 5.16 shows the comparison, in which Z sample is transformed
with the input MW of true W events. All three spectra have reasonable agree-
ment.

5.2.5 Templates Fitting

A series of transformed W → eν sample is produced by transforming Z → eν
events with the M temp

W templates around the default MW = 80423 MeV. To be
exact, this means using Ctemp around the input values of C1 or C2 of Eq 5.7
in the transformation. We also apply additional mass reweighting (Eq 5.4) to
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Figure 5.14: pT and y comparison of the W boson (black), Z boson (red) and
the transformed W with two dimensional reweighting (Eq 5.5) applied (blue).

the templates. The remaining cos θ∗ and boson pT v.s. y reweightings are the
same as default MW . The step size for mass templates is roughly 5 MeV. MT

histograms are binned with 250 MeV bin width.
The fitting algorithm used here is the method of least squares. A variable

called χ2 is computed for each Monte Carlo MT histogram (here is the gen-
erator level transformed W from Z) and the data MT histogram (here is the
generator level true W ).

χ2 =
∑
i

(ymc
i − ydata

i )2

σ2
i

(5.9)

where index i stand for the i bin of both histograms and yi is the corresponding
bin content. Normalization of both histograms need to be equal in the fitting
range. χ2 is plotted against the M temp

W of the Monte Carlo histogram. χ2

values in this plot usually can be well fitted with a quadratic function of M temp
W .

Measured MW corresponds to the minimum χ2 value. Statistical uncertainty
of 1σ is extrapolated to M temp

W with χ2 + 1.
For the resbos generator events, there is oneW → eν sample with 5 million

events, and two Z → ee samples, one of 10 million events and one of 0.5 million
events. Fitted MW is reasonably close to the input value MW = 80423 MeV
on the MT spectrum (Fig 5.18). Statistical fluctuation of the template χ2

distribution is more obvious for the smaller (0.5 million) Z sample. With
substantial more Z events, χ2 distribution is more smooth and the fitted MW

is closer to the input value.
One good quality ofMT spectrum is that it is not sensitive to the kinematics

difference between W and Z bosons. We would like to see how good MT can
be fitted, without any reweighting corrections applied. The only thing being
changed is the boson mass in the boson rest frame. In this case the fitted
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Figure 5.15: Electron pT comparison between true W → eν and the trans-
formed W → eν. Both the shifting and scaling transformed Z are shown here.
MW used in Z transforming is the same as the input MW of true W sample.

MW = 80410 ± 3 MeV is pretty close to the input value (fig 5.19). The best
fitted MT has χ2/D.O.F ' 200/80, much larger than the same comparison
with reweighting corrections applied (χ2/D.O.F ' 100/80 in the left plot of
Fig 5.18).

Each W and Z sample is generated with one random seed in resbos.
Fitting results from the statistical limited one sample doesn’t reflect the true
distribution of fitting. We can use different random seeds in each of the sample
in the Monte Carlo simulation, which is called a pseudo experiment. Fitted
result from a series of pseudo experiments are called the pull distribution,
which should follow a Gaussian distribution if each pseudo experiment is really
statistically independent. In the following context, ensemble test refers to
hundreds of pseudo experiments (each with different random seed) that are
used in the W mass fitting. Fig 5.20 shows the pull distribution of fitted MW

from 600 pseudo experiment, each is similar to the one in Fig 5.19 (i.e. no
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Figure 5.16: /ET (neutrino ET ) comparison.

reweighting corrections).

5.3 Ratio Method of W Mass Measurement

The same resbos generator level W → eν and Z → ee sample is analyzed
by ratio method in stead of the transforming method in the previous section.
We will show that on the generator level, both method give very close value
of measured MW by fitting on the MT spectrum.

There is no complicated transforming procedure described in Section 5.2.4.
Here for one Z → ee event, one of the two electrons is discarded to give
the right calculation of /ET , and then the transverse mass MT is calculated
accordingly. This MT is timed by the (MW/MZ) ratio, on event by event basis
and are put into the final MT histogram to compare with the MT spectrum of
true W → eν events.

The transverse mass MT of Z → ee that is scaled with the input MW/MZ
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Figure 5.17: MT comparison.

is compared with the MT of true W → eν events, reasonable agreement is
observed (Fig 5.21).

W mass fitting is performed on one Z sample of 0.5 million events (Fig 5.22)
with fitted MW = 80418±9 MeV, consistent with the input MW = 80423 MeV.
To show the true distribution of fitted MW due to statistical uncertainty, mass
fitting is made on an ensemble test of 600 pseudo experiments. The fitted MW

from ensemble test in ratio method (Fig 5.23) is so identical to that of the
transforming method (Fig 5.20), both method is equivalent for extracting W
mass using the MT spectrum on the generator level. Ratio method is more
simple and easier to extrapolate to data with realistic smearing and cuts, which
will be shown in the next few chapters.
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Figure 5.18: Templates χ2 fitting on the MT spectrum, with fitting range
70 GeV < MT < 90 GeV. Left plot is for 10 million Z → ee events (fitted
MW = 80428 ± 3 MeV) and the right plot is for 0.5 million Z → ee events
(fitted MW = 80438± 11 MeV).

5.4 Effect of Drell-Yan Process

In the studies of the ratio method with the fast Monte Carlo, pure Z → ee
events are used. In contrast, the ee data sample also contains events from the
Drell-Yan process (qq̄ → γ∗ → ee) plus, of course, the contribution of the in-
terference between Drell-Yan and pure Z → ee. Apart from the Breit-Wigner
resonance shape of the invariant ee mass distribution, Drell-Yan events have a
similar signature to pure Z → ee events. In the vicinity of Z mass, the inter-
ference between Drell-Yan and pure Z → ee process becomes more important
than the pure Drell-Yan contribution. To clarify: for the fast simulation sam-
ples we use Z → ee to denote the pure process and Z/γ∗ → ee to denote the
sum of the above three processes; for the full Monte Carl and the data, the
label Z → ee denotes both the Drell-Yan and Z → ee processes together.

It is interesting to study, with the fast simulation, how much the fitted W
mass is affected if a Z/γ∗ → ee event sample is used instead of a Z → ee
sample in the ratio method. For this we use the event generator resbos,
with three configuration files: resbos z0.in (pure Z → ee), resbos a0.in

(pure Drell-Yan) and resbos za.in (interference). Outputs from these three
processes are combined to give the inclusive Z/γ∗ sample in resbos. The di-
electron invariant masses from the pure Z and Z/γ∗ samples are compared
in Fig 5.24. About 5 fb−1 events are generated for each sample, that is 1.16
million Z → ee events and 1.36 million Z/γ∗ → ee events. Contributions from
Drell-Yan and Z/γ∗ interference result in an excess in the low and high tails
of the Z invariant mass. An identical Z mass shape is observed in the PYTHIA

sample (Fig 5.9), where inclusive Z/γ∗ events are generated by default.
The comparison of the transverse mass spectra of Z → ee and Z/γ∗ → ee
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Figure 5.19: Templates χ2 fitting on the MT spectrum, with fitting range
70 GeV < MT < 90 GeV (fitted MW = 80410 ± 3 MeV). No reweighting
corrections at all. 10 million Z → ee events.

is shown in Fig 5.25.
Both the Z → ee and Z/γ∗ samples are compared with a 2 fb−1 W → eν

sample (Fig 5.26 and Fig 5.27). Realistic smearing and final selection cuts are
applied in these fast Monte Carlo simulation events. With the fitting range
of [66 GeV, 96 GeV], the fitted W mass is MW = 80397 ± 18 MeV for pure
W → ee, and MW = 80403± 10 MeV for inclusive Z/γ∗ → ee events.

The proper method to explore a possible shift in the fitted W mass due
to the Drell-Yan process and its interference, is an ensemble test. 600 pseudo
experiments of Z → ee and Z/γ∗ → ee, each with 1 fb−1 events, are generated
with different random seeds in resbos. After realistic smearing and final
selection cuts, W mass fitting is performed for each pseudo experiment. The
distributions of the fitted MW are shown in Fig 5.28. The distributions of the
fitted W mass using Z/γ∗ → ee or Z → ee are very similar: when fitted with a
Gaussian, the central value for the inclusive Z/γ∗ → ee samples is only 4 MeV
lower than for the pure Z → ee samples. The central values in both cases
are within 1σ of the input W mass, MW = 80423 MeV. Indeed, the statistical
uncertainty is indeed a little better at 40 MeV for the Z/γ∗ → ee samples.

These results indicate that the use of pure Z → ee events in the fast Monte
Carlo study of the ratio method, instead of Z/γ∗ → ee, does not change the
results obtained earlier. For the statistical uncertainty, we will use 43 MeV
obtained with the pure Z → ee ensemble, thereby erring on the conservative
side.
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Figure 5.20: Measured MW pull distribution from the ensemble of 600 pseudo
experiments with 0.5 million Z events in each experiment. Fitting is per-
formed on the MT spectrum with range 60 GeV < MT < 110 GeV for each of
the pseudo experiment. The measured W mass distribution is fitted with a
Gaussian function, where the central MW = 80407 MeV and standard devia-
tion σ = 9 MeV. The input MW = 80423 MeV.

5.5 Discussion

Ratio method presented in this thesis is based on the Note [33] and the thesis
work [34]. MT spectra of W → eν data and Z → ee data are compared
to extract the boson mass ratio MW/MZ . About 100 pb−1 DØ Run I data
available in the previous study. Number of Z → ee events give more stringent
statistical limit as their cross section is roughly 1/10 of the W → eν. In Run
I measurement of ratio method, the direct fit of Z → ee to W → eν results
in a large statistical uncertainty. The same Z statistical limitation translates
into the electron energy scale statistical uncertainty in the standard method.
That contribution is the largest component of MW systematic uncertainties,
as the fitted MW has roughly linear dependence on the electron energy scale.
Compared with the relevant systematic uncertainty in standard method, the
statistical uncertainty in ratio method is considerably larger, that’s because
the z-component of both Z electrons are not used in the MT comparison, while
the full Z mass peak is used for the determination of electron energy scale in
the standard method.

There are about 10 times more data in DØ Run IIa than in DØ Run I.
With that many of Z → ee events, we expect the statistical uncertainty in
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Figure 5.21: MT comparison on the generator level resbos events. Input MW

of the W events are used in the scaling of Z transverse mass.

ratio method will improve significantly, and won’t be much larger than the
electron energy scale uncertainty in the standard method. In the last Chapter
of this thesis, we will have a discussion of this point.

In principle peT and /ET spectra would have been good for ratio method as
well, provided W and Z boson have the same pT distribution. In reality, that
doesn’t work in a straightforward way because of the difference between W
and Z boson pT distribution, which is especially evident with the 1 fb−1 DØ
Run IIa data.

Although in both the transformation method and ratio method, the MW

value is extracted by comparing Z → ee and W → eν events directly, the way
of Z → ee events being used is quite different. In the original ratio method,
Z → ee events are kept as they are, only the transverse mass MT is calculated
for Z → ee events and scaled down with (MW/MZ). The transformation
method attempts to fully transform Z → ee to W → eν in every aspect. One
obvious advantage of the latter is that mass fitting can be performed on all
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Figure 5.22: Ratio method. Templates χ2 fitting on the generator level MT

spectrum, with fitting range 70 GeV < MT < 90 GeV (fitted MW = 80418 ±
9 MeV). 0.5 million Z → ee events.

the three variables peT , /ET and MT , just like the standard method.
Inclusion of the discussion about transformation method in this chapter

helps to clarify some key difference in ratio method and appreciate the im-
portance of boson kinematics in peT and /ET spectrum. Starting from the next
chapter we only discuss ratio method and make our measurement of W boson
mass based on it.

75



W mass [GeV]
80.38 80.39 80.4 80.41 80.42 80.43 80.440

10

20

30

40

50

60

fitted W mass h_wmass
Entries  600

Mean    80.41

RMS    0.0086

Constant  2.90± 54.57 

Mean      0.00± 80.41 

Sigma     0.000282± 0.008341 

fitted W mass

Figure 5.23: Ensemble test of 600 pseudo experiments (generator level resbos)
in ratio method. Fitting is performed on the MT spectrum with range
60 GeV < MT < 110 GeV for each of the pseudo experiment.
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Figure 5.24: The invariant mass distribution of pure Z → ee and Z/γ∗ → ee
samples generated by resbos. Note the extra tail in both low and high mass
region in Z/γ∗ → ee sample which is consistent with the shape of Z/γ∗ events
in PYTHIA sample of Fig 5.9.
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Figure 5.25: Tranverse mass of Z → ee and Z/γ∗ → ee events in resbos.
They are fast Monte Carlo simulation with realistic smearing after final event
selections. Z → ee events are subset of the 5 fb−1 Z/γ∗ sample.
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Figure 5.26: MT comparison between 2 fb−1 W → eν events and 5 fb−1 pure
Z → ee events (scaled with input MW ). Both W and Z samples are fast
Monte Carlo with realistic smearing after final event selections. Measured
MW = 80397 ± 18 MeV with fitting range 66 GeV < MT < 96 GeV for this
particular sample.
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Figure 5.27: MT comparison between 2 fb−1 W → eν events and 5 fb−1 Z/γ∗ →
ee events (scaled with input MW ). Both W and Z samples are fast Monte
Carlo with realistic smearing after final event selections. Measured MW =
80403± 10 MeV with fitting range 66 GeV < MT < 96 GeV for this particular
sample.
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Figure 5.28: Distribution of fitted MW from 600 ensemble tests of pure Z →
ee (left) and Z/γ∗ → ee (right), with fitting range [66 GeV, 96 GeV]. Each
pseudo experiment has 1 fb−1 events, with the same smearing and selection
as Fig 5.27. Both distributions are fitted by a Gaussian function. Central
MW = 80392 MeV, and σ = 43 MeV for the pure Z → sample. Central
MW = 80388 MeV and σ = 40 MeV for the Z/γ∗ sample.
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Chapter 6

Ratio Method Validation with
Toy Fast Monte Carlo
Simulation

Ratio method of W mass measurement relies on the fact that the physics
(generator level) MT scales with the W and Z boson masses. Data W → eν
and Z → ee events already go through detector effects and selection cuts.
Among those, the smearing of electron and the recoil system; acceptance cut
on the electron; the non trivial energy scale and offset; underlying event con-
tribution etc. need to be carefully examined so that the effects of them on
the mass-MT proportionality are well understood. The transverse mass MT

straightly calculated out of W and Z data events doesn’t scale with boson.
In this dissertation, we don’t attempt to do the unfolding of MT on the

data events, that is for each MT of data event, a corresponding physics (gen-
erator) MT is obtained. The extraction of MT out of data reduces to the MT

comparison on the generator level.
Instead, we will make corrections to the calculated MT of W → eν and

Z → ee data events and compare the correctedMT of data events to extract the
MW/MZ ratio. To that end, the understanding of those effects from generator
level to data and the bias of them on the MT scaling with boson mass is crucial
for W mass measurement in data using ratio method.

The study of ratio method with fast Monte Carlo simulated events is the
most important step towards this goal. A finely tuned fast Monte Carlo simu-
lation wz epmcs used by the DØ experiment has excellent agreement with the
Run IIa W → eν and Z → ee data, and this wz epmcs simulation is essential
to the successful measurement of MW in the standard method.

For ratio method, fast Monte Carlo simulation is ideal for understanding
various effects and selection biases, as one can turn on and turn off the simula-
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tion of each effect. A simplified toy fast Monte Carlo simulation is developed
for ratio method study in a similar manner as the wz epmcs package in the
standard method. Major smearing algorithms and selection cuts are imple-
mented in this toy fast Monte Carlo simulation. Corrections that take into
account of the difference between W → eν and Z → ee events are tested on
the toy fast Monte Carlo model.

In this chapter, we only consider the simple Gaussian smearings of the elec-
trons and recoil system, as it’s simpler to illustrate the idea of extra smearing
correction for Gaussian smearing model. In the next chapter, simple Gaussian
smearings are replaced with more realistic and complicated smearing algo-
rithms (same as in the tuned wz epmcs) which give much better job of de-
scribing data. Fast Monte Carlo model in the next chapter is used to estimate
the statistical uncertainty and as a closure test of ratio method. The corre-
sponding extra smearing correction developed for the realistic smearing are
applied to the full Monte Carlo and data analysis.

We will discuss some of the most important corrections one by one in the
following sections.

6.1 Smearing Resolution

In toy fast Monte Carlo simulation, the Gaussian smearing of electrons is
performed as the followings:

• The electron energy scale α and offset β is applied to the truth level
electron energy Eraw,

E = α× Eraw + β (6.1)

In the toy fast Monte Carlo simulation, we adopt the values of α =
1.001514 and β = −87 MeV. In general, α and β values are anti-
correlated to give the same measured energy values for E = 45 GeV
electrons, as they are determined by fitting Z mass shape.

• Electron energy resolution σEM is calculated as a function of truth level
electron energy Eraw,

σEM

Eraw

=

√
C2 +

S2

Eraw

+
N2

E2
raw

(6.2)

where C, S and N are called the constant term, sampling term and noise
term. Typical values of those terms are used in this study, that is C = 0,
S = 30% GeV1/2 and N = 29% GeV.
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• The smeared energy of electron is

E(smeared) = E + Gaussian(0, 1)× σEM (6.3)

The smearing of recoil system is similar to the electron smearing. We add
the hadronic energy scale to truth level recoil and then apply the hadronic
smearing resolution.

• On the generator level, recoil prec
T is against the boson pT , with the same

magnitude in the opposite direction,

prec
T = −(pboson

T (x), pboson
T (y)) (6.4)

• The magnitude of truth recoil is scaled by the hadronic energy scale,
which is set at 1.0 in this study.

• φ direction of the recoil is smeared by its resolution σφ. In this chapter
σφ is set to 0, that is recoil φ smearing is turned off. We will discuss the
non zero σφ in the next chapter.

The above recoil smearing is only applied to true hard recoil against the
boson pT , that is the first component of recoil which is discussed at the end
of Chapter 4.2. The other two contributions of the overall recoil are from the
spectator quarks interaction and the soft interaction of other pp̄ in the same
bunch crossing, which are well modeled by MB and ZB events respectively.
The direction of overall contribution from MB and ZB events is randomly
distributed with respect to the hard recoil direction. In this chapter, we use
a fixed width σUE = 3.02 GeV Gaussian distribution to simulate both x and
y component of the combined MB and ZB events. A random number out of
the above Gaussian distribution is added to the x and y component of the
smeared hard recoil prec

T to give the final smeared recoil.
/ET is obtained by balancing the smeared electron and recoil pT . For W →

eν event, it is calculated by

−→
/ET (W ) ≡ −

−→
Ee
T −
−−→
Erec
T . (6.5)

For Z → ee event, the native /ET is calculated by

−→
/ET (Z) ≡ −(

−→
Ee1
T +
−→
Ee2
T )−

−−→
Erec
T . (6.6)

One of the two electrons decayed from Z is dropped as a neutrino to calculate
the transverse mass MT . If e2 is chosen as the neutrino, the proper /ET entering
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the MT calculation of Z is

−→
/Ee2
T ≡ −

−→
Ee1
T −
−−→
Erec
T

≡
−→
/ET (Z) +

−→
Ee2
T (6.7)

One may ask which Z electron should be treated as the neutrino in the
calculation of /ET (hence MT )? For one Z → ee event, it is possible to obtain
two MT by choosing e1 as the neutrino once and choosing e2 as the neutrino
another time. Conceptually this is the right way to do, as there is no reason
to prefer one electron over the other one. To be fair to both electrons, each
one of them has to take the role of neutrino. In reality this choice also buys
us the advantage that more statistics can be put into the MT spectrum of Z,
although the two MT from one Z event are not statistical independent. A
more detailed discussion will be presented in Chapter 6.5.

If we are to do a ratio method W mass measurement straight out of the
toy fast Monte simulation and without any cut, two effects will make the mass
fitting a failure. First, the non zero electron energy offset causes the calculated
MT no longer scale with the boson mass. Second, the resolution of electrons,
recoil systems and the underlying events doesn’t scale with boson mass. As
Fig 6.1 shows, the MT spectrum of Z sample which is properly scaled with the
input MW is under smeared, hence has a sharper Jacobian edge than the true
W sample.

It is easy to understand the resolution effect on MT by looking at the
electron system. The average electron energy in Z → ee events is higher than
that in the W → eν events due to the higher Z mass. Therefore on average the
relative resolution of electron is lower in Z event than in W event, indicated
by Eq 6.2. For smeared MT to scale with boson mass, the relative electron
resolution σ/〈E〉 must be the same in W and Z event. Resolution of the recoil
system and the underlying event also cause similar bias on the MT spectrum
of Z. A technique called extra smearing to correct this effect is discussed in
Chapter 6.3.

6.2 EM Energy Scale and Offset

To show the effect of non zero electron energy offset on the measured MT ,
let’s start at the generator level electron energy. We know the average electron
energy is proportional to the W and Z boson mass,

EW
true =

(
MW

MZ

)
EZ

true (6.8)
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Figure 6.1: The MT comparison and its χ plot, where MT of Z events is scaled
with input MW . Electron and the recoil system of both W and Z sample are
smeared by simple Gaussian form as described in the context. Notice the MT

of Z sample is less smeared (sharper shape) than W .

This relation is consistent with the MT scalability with boson mass on the
generator level: MW

T (true) = (MW/MZ)MZ
T (true). Measured electron energy

in W and Z events is related to truth level energy by the energy scale and
offset,

EW
mea = α× EW

true + β

EZ
mea = α× EZ

true + β (6.9)

Combining the above equations we can relate the measured electron energy in
W and Z events,

EW
mea =

MW

MZ

EZ
mea + β

(
1− MW

MZ

)
(6.10)
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In the case of β = 0, measured electron energy would still scale with boson
mass. For a non zero β, the measured electron energy is off by β/10 from the
boson mass scaled value. Fitted W mass based on the measured MT spectrum
will also be biased from the input MW by the order of β/10. Notice that
energy scale α has no effect on the scaling of measured electron energy, as it is
cancelled in ratio. For W and Z data, energy offset is estimated to be around
−404 MeV in the study of standard method. Without correction, fitted MW

will be off from the input value by around 40 MeV.
In order to make the measured MT scale with the boson mass, one could

substitute the electron’s energy as (Emea − β)/α in the calculation of MT for
W and Z events.

A series of different α and β values combinations are used in fast Monte
Carlo simulations. For each pair of α and β, 600 pesudo experiments (each with
different random seed) of fast Monte Carlo Z → ee sample are produced. Each
Z → ee pseudo experiment has 1 fb−1 events. Another W → eν fast Monte
Carlo sample of 1 fb−1 events is produced with input MW = 80423 MeV.

Fitted mass from the 600 pseudo experiment is put into a pull histogram,
which should have a Gaussian shape distribution if the ensemble of pseudo
experiments is truly statistical independent. Mean µ and variance σ of the
Gaussian function fitted to pull histogram give the central MW and the sta-
tistical uncertainty.

Table 6.1 shows the fitted MW out of ensemble test, with different α and
β values. The corresponding pull histograms are shown in Fig 6.2 to Fig 6.7.
Fitted MW has no dependence on the energy scale α. For β value to change
400 MeV, fitted MW value changes about 50 MeV, which is consistent with the
estimation of β/10.

Those W and Z sample in ensemble tests Fig 6.2 to Fig 6.7 are not just
applied with electron energy scale and offset. They are the final sample of
fast Monte Carlo study in this chapter: they have simple Gaussian smearing,
fully acceptance cut, lepton pT cut and boson pT cut. For Z sample, the extra
smearing correction and acceptance reweighting are also applied. These effects
will be discussed in the next few sections.

6.3 Extra Smearing Correction

Without any correction, the scaled MT of Z → events is under-smeared
(Fig 6.1). This is caused by the smaller smearing resolution (more precisely,
the relative resolution σ/E) for electrons and recoil system of Z sample, which
on average has higher electron energy and recoil pT .

To make the mass scaling work on the smeared electron peT , we force the
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α 1.001514 1.001514 1.001514 1.0 1.0045 0.9956
β[ MeV] -87 -200 200 0 -200 200
fitted MW [ MeV] 80417 80404 80452 80425 80403 80452

Table 6.1: Central value of fitted MW from the ensemble test, with different
combinations of electron energy scale α and offset β values. Input MW =
80423 MeV. Because the raw MT is used here instead of the MT calculated
with (E − β)/α, only β = 0 gives the corrected W mass.
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Figure 6.2: α = 1.001514 and β = −87 MeV. Ensemble test give fitted MW =
80417 MeV and σ(MW ) = 40 MeV.
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Figure 6.3: α = 1.001514 and β = −200 MeV. Ensemble test give fitted
MW = 80404 MeV and σ(MW ) = 40 MeV.
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Figure 6.4: α = 1.001514 and β = 200 MeV. Ensemble test give fitted MW =
80452 MeV and σ(MW ) = 40 MeV.
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Figure 6.5: α = 1.0 and β = 0. Ensemble test give fitted MW = 80425 MeV
and σ(MW ) = 40 MeV.

relative resolution σ/〈E〉 to be equal for both Z and W by adding extra
smearing to Z’s electron and recoil system.(

σ(peT )

〈peT 〉

)2

Z

+

(
σextra

〈peT 〉

)2

Z

=

(
σ(peT )

〈peT 〉

)2

W

, (6.11)

where

〈peT 〉W =
MW

MZ

〈peT 〉Z . (6.12)

86



W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

70

fitted W mass h_wmass
Entries  600
Mean     80.4
RMS    0.04232
Constant  3.85± 76.26 
Mean      0.0±  80.4 
Sigma     0.00121± 0.04102 

fitted W mass

Figure 6.6: α = 1.0045 and β = −200 MeV. Ensemble test give fitted MW =
80403 MeV and σ(MW ) = 40 MeV.
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Figure 6.7: α = 0.9956 and β = 200 MeV. Ensemble test give fitted MW =
80452 MeV and σ(MW ) = 40 MeV.

The extra smearing resolution of electron is calculated as

σ2
extra(EM) =

(
MZ

MW

)2

σ2(E)W − σ2(E)Z . (6.13)

σZ is the original resolution of electrons in Z events. σW is the hypotheti-
cal energy resolution calculated with Z electron energy scaled by MW/MZ .
For Z electron with energy E, the scaled energy is E ′ = (MW/MZ)E. The
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hypothetical resolution σW is calculated at the energy level of E ′,

σW =
√
C2 × (E ′)2 + S2 × E ′ +N2. (6.14)

For each Z electron with generator level energy E, an additional extra smearing
term (with different random seed) is added to the original smearing.

E(smeared) = E + Gaussian(0, 1)× σ + Gaussian(0, 1)× σextra (6.15)

A similar equation is derived for the extra smearing of hard recoil which
only has |prec

T | smearing, no recoil φ smearing. The extra smearing resolution
applied to hard recoil magnitude is

σ2
extra(recoil) =

(
MZ

MW

)2

σ2(prec
T )W − σ2(prec

T )Z (6.16)

where for each Z recoil of prec
T , σ(prec

T )W is calculated at the scaled energy
level of (MW/MZ)prec

T . With the presence of non zero recoil φ smearing, extra
smearing of hard recoil need to performed in x and y components. Discussion
of this will be presented in the next chapter.

The smearing of underlying events uses a fixed σUE = 3.02 GeV Gaussian
distribution for the x and y component of recoil. The same σUE is used for
both W and Z events. For each x and y component of the underlying event
contribution of the Z event, an extra smearing term is added with the following
resolution.

σUE
extra =

[(
MZ

MW

)2

− 1

] 1
2

σUE (6.17)

After applying the extra smearing for Z’s electron, hard recoil and under-
lying event, a much better agreement of smeared MT spectrum is observed
between W and Z in Fig 6.8 than the original MT comparison in Fig 6.1. The
direct comparison between W and Z may not be the most straightforward way
to show the resolution effect and the need of extra smearing for Z events after
scaling.

The most clear way to show the need of extra smearing correction is to
compare between Z event and the fake W event. Those fake W events are
indeed made from the same Z events, with the energy of both electron being
scaled by MW/MZ (it is equivalent to say that the mass of Z boson is set
to MW in its own rest frame). One of the two electrons is treated like a
neutrino and that results in a fake W sample. It is essentially a W → eν
sample with boson mass MW , but has exactly the same kinematics of Z → ee
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Figure 6.8: The MT comparison and its χ plot, where MT of Z events is scaled
with input MW . Extra smearings are applied to Z → ee events. Compared
with Fig 6.1, notice the much better agreement of smeared MT shape.

events. Smearings of the fake W events are performed at the W level while the
original Z events are smeared before the scaling of peT and /ET variables. Direct
comparison of these variable between Z and fake W events clearly reveals that
MT , peT and /ET don’t scale with boson mass after smearing (Fig 6.9). With
the extra smearings applied, smeared peT , /ET and MT of Z events perfectly
scale with boson mass (Fig 6.10).

Since the only difference between fake W events and the original Z sample
is due smearing resolution at different energy level, effect of extra smearing
correction is shown in Fig 6.9 and Fig 6.10 without any ambiguity.
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Figure 6.9: Comparison between Z and fake W events. Simple Gaussian
smearing , especially no φ smearing of electron and hard recoil. There are no
extra smearings of EM, recoil and the underlying event.

6.4 Kolmogorov-Smirnov Test

In both the standard method and ratio method, W boson mass is extracted
by fitting the MT spectra templates that are produced with different MW to
the MT spectrum of W data. MT templates in the standard method come
from fast Monte Carlo simulation, which is statistically unlimited. The main
statistical limit there is from the W data sample and it is hardly a limiting
factor, as the crossing section of W → eν events is ten times of Z → ee events
at Tevatron. To measure the W mass, a likelihood is calculated for between
data and each Monte Carlo MT template, the template with the maximum
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Figure 6.10: Similar comparison as in Fig 6.9, except that extra smearings of
EM, recoil and the underlying event are applied to Z events here.

likelihood corresponds to the measured MW .
In ratio method, the main statistical limit is from the MT templates made

from Z → sample. The cross section of Z → ee events is about 10 times
smaller than W → eν events in Tevatron. After the acceptance and pT cut,
the final number of Z → ee events that entering into MT spectrum is around
60 thousand (see Chapter 9.1) for the 1 fb−1 integrated luminosity dataset in
DØ Run IIa.

Because of the limited statistics from Z, maximum likelihood and χ2 fitting
are not suitable for ratio method. One problem for χ2 and maximum likelihood
fitting is the instability for low statistical sample. For a Z sample of 500
thousand events, χ2 for mass templates in Fig 5.22 already shows the trend
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of instability. By comparison, a similar χ2 distribution with 5 million events
has a much smoother curve in Fig 5.19. In the case of 1 fb−1 Z events in ratio
method, the instability of χ2 and likelihood curve preclude a successful MW

fitting.
This problem is even more severe in the Run I ratio method analysis [33,

34], where only about 100 pb−1 Z events are available for mass fitting. In our
analysis we use Kolmogorov-Smirnov (K-S) test to compare the template and
data MT spectrum, which is also used in the Run I ratio method analysis. The
MT template that gives the best fit to data corresponds to the measured MW .

Kolmogorov Smirnov test is used to check if a statistical sample comes out
of a smooth theoretical distribution function [36, 37]. It also can be used to test
the compatibility of two statitical sample. In the case of low statistics, χ2 test
may not be suitable and the K-S test is a good alternative here. The original
K-S test applies to the unbinned data. As long as the histogram bin width
is set small enough compared with any physical quantity we try to measure
(such as energy reslution, the step size of mass template etc), K-S test can be
used to compare such two histograms.

In the W mass measurement, K-S test compares the MT histogram from
data and Monte Carlo. Without loosing generality, both the data and Monte
Carlo histograms contain reweighted events. If the original entries are Ndata

and NMC for the unbinned data and Monte Carlo sample, let x1 6 x2 6 · · · 6
xNdata

be the entries in ascending order for the data histogram, each entry has
weight wi where i = 1 · · ·Ndata.

Similarly, we can define x′1 6 x′2 6 · · · 6 x′NMC
as the Monte Carlo entries

in ascending order. The corresponding event weight is w′j where j = 1 · · ·NMC .
The empirical cumulative distribution for data histogram is defined as

Fdata(x) =
∑

xi6x6xi+1

P (xi) (6.18)

=

k∑
i=1

wi

Ndata∑
i=1

wi

(xk 6 x 6 xk+1). (6.19)

The maximum vertical distance D between the data and Monte Carlo cumu-
lative distribution is the varible used to quantify the compatibility of the two
histograms in K-S test.

D = max
x
|Fdata(x)− FMC(x)| (6.20)
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K-S test can also calculate the probability of the compatibility between
two histograms, given the maximum distance D in the cumulative distribution.
Actually the variable entering into the probability calculation in K-S test is the
so called effective maximum distance d. If both histograms have no reweighting
(i.e. wi ≡ 1), the effective maximum distance d is defined as

d =

√
NdataNMC

Ndata +NMC

·D (6.21)

The probability to get d greater than the observed is given by

QKS(d > observed) = 2
∞∑
j=1

(−1)j−1 exp(−2j2d2). (6.22)

QKS is the K-S probability we use to in the analysis. Eq 6.22 is far too accurate
for any imaginable application. ROOT uses a simplified numerical approxima-
tion of Equation 6.22 in the calculation of TMath::KolmogorovProb(d).
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Figure 6.11: The Kolmogorov probability dependence on the effective max-
imum distance d (defined in Eq 6.21). This is the direct output from the
TMath::KolmogorovProb() function in ROOT.

In the case where the comparing histogram has non trivial weight infor-
mation (i.e. wi 6= 1), Ndata and NMC need to be replaced with the effective
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entries Ne in Eq 6.21 to give the correct d.

Ndata
e =

(

Ndata∑
i=1

wi)
2

Ndata∑
i=1

w2
i

NMC
e =

(

NMC∑
i=1

wi)
2

NMC∑
i=1

w2
i

. (6.23)

There are two important observations related to the statistics of the two
samples in the calculation of effective distance d. In the ratio method of W
mass measurement, W events are put into the data histograms and Z events
are put into the Monte Carlo histogram. Because the WZ cross section ratio
is roughly 10, which means Ndata � NMC. The constraint from the statistical
part of d is mainly due to limited Z sample, as Eq 6.24 shows.

NdataNMC

Ndata +NMC

≈ NMC (6.24)

The other important observation has to do with the event weight. Reweight-
ing is needed at some point as means to make corrections to the W and Z
events (for instance, in the acceptance corrections). However event weights
greater than 1 tend to diminish the effective entries. This can be illustrated
by Table 6.2. Overall larger event weight result in smaller effective entries
for the same sample. For the same raw maximum distance D in the cumula-
tive distribution, the effective maximum distance d is smaller for sample with
weights > 1 (Eq 6.21).

max weight events # GetEntries Integral GetEffectiveEntries

w = 100 5× 106 3.16× 106 2.16× 106 0.66× 106

w = 10 5× 106 3.16× 106 2.10× 106 1.43× 106

w = 7 5× 106 3.16× 106 2.08× 106 1.53× 106

Table 6.2: The number of effective entries with different maximum weight
allowed. The sample used in this table is based on the W ’s electron in CC
(CC edge is in η < 1.40). GetEntries() include the underflow and overflow
of the histogram. Integral() doesn’t include the underflow and overflow
but contains the weight information. GetEffectiveEntries() also doesn’t
include the underflow and overflow.

K-S test is used in ratio method to extract the best matched W mass from
the MT templates. One probability that stands for the data – Monte Carlo
compatibility is calculated for each templates. The maximum probability is
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from the matched template, and that gives the measured MW . The statistical
uncertainty is defined as such that the K-S probability drops to e−1/2 of its
maximum value. However the statistical uncertainty calculated in this way is
not valid because of the two MT calculated from one Z event is correlated to
some extent (see the next section). The correct statistical uncertainty comes
from ensemble test.

6.5 Electrons Selection Bias

Ratio method assumes one of the Z → ee electrons to fake a neutrino from
W and the MT is calculated accordingly. There is a question about how to
choose the Z’s two electrons to fake neutrino. For each Z event, we can
either randomly select one of the electrons or we can use both of the two
electrons, calculating two MT by making each of them to fake neutrino. From
the following, we use the term “1Z1W” to stand for the former and “1Z2W”
for the latter.

On the generator level, it can be shown that one W and two W s are fully
correlated. The two MT calculated from one Z event are actually the same,
since the Ee

T and /ET are symmetrical in Eq 6.25. This is illustrated in Fig 6.12,
where MT spectra calculated from this two methods are compared.

MT =
√

2Ee
T /ET (1− cosφ) (6.25)

An ensemble test with 600 pseudo experiments is used to study the true
statistical uncertainty of the fitted MW . Each pseudo experiment is generated
with distinct random seed. 1Z2W (Fig 6.13) has the same statistical uncer-
tainty of fitted MW as 1Z1W (Fig 6.14). For the MT histogram of 1Z2W ,
the error bar of each bin that calculated in the standard way is not correct,
as the number of entries is twice as large as the actual entries of independent
MT . Statistical uncertainty calculation of 1Z2W based on the raw entries of
histograms is thus not accurate. The standard deviation of the fitted MW pull
distribution from ensemble test is the correct value of statistical uncertainty.

In other words, using the same Z events to make two W s doesn’t improve
the statistical power of the ratio method. The two MT calculated from one Z
event is fully correlated on the generator level.

After the smearing of the electron and recoil system, the two MT calculated
from the same Z → ee event become only partially correlated (instead of
fully correlated as in generator level). Each electron has its own smearing
(uncorrelated) while the recoil system is commonly shared (fully correlated)
in the calculations of the two MT . Putting both MT into the histogram does
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Figure 6.12: Overlay of generator level (no cuts) MT from Z events (before
mass scaling). Each Z make one W (blue) or two W (black), from the same
Z sample. Right plot shows the χ difference between the two MT .

offer the benefit of additional statistics. Fig 6.15 and Fig 6.16 show that after
smearing without any cut, 1Z1W and 1Z2W give very similar MT spectrum.

What’s really interesting for the study of electron selection bias is to observe
what will happen after applying the additional acceptance cut. A detailed
discussion on the effect of acceptance will be presented in Chapter 6.6. There
the acceptance cut for Z is one electron e1 in CC (Central Cal) and the other
electron e2 is in either CC or EC (End Cal). If Z pass this acceptance cut, the

MT calculated with
−→
Ee1
T and

−→
/Ee2
T (Eq 6.7) will entering the histogram. The other

partially correlated MT by switching e1 and e2 will also enter the histogram if
e2 is in CC and e1 is in either CC or EC.

Acceptance cut for the 1Z1W sample requires the randomly selected elec-
tron to be in CC and the other electron (fake neutrino) in EC. With other
selection cuts and relevant corrections applied, the fitted MW distribution of
ensemble test for 1Z1W and 1Z2W is shown in Fig 6.17 and Fig 6.18. 1Z2W
does provide better statistical uncertainty, without introducing noticeable bias
of the central MW when compared with 1Z1W .

6.6 Acceptance

As shown in Fig 3.8, the DØ calorimeter provides coverage up to |η| < 1.1 by
CC and 1.5 < |η| < 4.1 by EC. There is a gap of 1.1 < |η| < 1.5 between CC
and EC η coverage. For CC, φ coverage is not complete either, there are small
gaps for the placement of data cables between the adjacent modules of the
total 32 CC modules which spans over the φ space of 2π. Electrons that hit in
the calorimeter region far away from the η or φ edge are well measured, hence
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Figure 6.13: 1Z1W . Fitted MW of the 600 ensemble tests (each of 1 fb−1

events) on the generator level, no cuts. σ(MW ) = 39 MeV is the true statistical
uncertainty.

these regions are called the fiducial area. The standard choice for W mass
measurement is that the η fiducial area covers |η| < 1.05 and the φ fiducial
area covers the central 10% to 90% region of each φ module. The EC coverage
for Z electrons is chosen as 1.5 < |η| < 2.5. There is no structure of φ modules
in EC.

Because electrons in CC are very well studied, the standard method of W
mass measurement selects only the CC fiducial electrons in their final event
selection. In ratio method, we adopt the same selection cut of CC electrons for
the W → eν sample (Chapter 4.3). There is no way to constrain the neutrino
acceptance in W → eν events, which means neutrinos have full acceptance.

In ratio method, to make the MT of Z → ee event scale with boson mass,
one would like to make Z → ee event have the similar acceptance cut as
W → eν. The tight electron of Z (which is the equivalent of W electron)
should be in CC fiducial only. The loose electron of Z in principle should have
the full acceptance, just like a neutrino, but in reality the best we can do is to
require it in either CC or EC.

There are a few problems concerning the slight difference of lepton accep-
tance in W → eν and Z → ee events.

• The upper limit of EC η coverage is |η| = 2.5, which means the very
forward and backward neutrinos are very difficult to be simulated by the
loose electron of Z.

• The CC/EC gap (1.1 < |η| < 1.5) for the loose electron of Z.
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Figure 6.14: 1Z2W . Fitted MW of the 600 ensemble tests (each of 1 fb−1

events) on the generator level, no cuts. σ(MW ) = 39 MeV.
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Figure 6.15: Comparison ofMT on the fully smear level, 1 fb−1, no cuts applied.
1Z1W .

• What’s the effect on MT spectrum by selecting the tight electron in
CC only for both W and Z events? Assume the loose electron of Z is
assumed to have the same full acceptance as neutrino.

6.6.1 Neutrinos with |η| > 2.5

The upper limit of EC acceptance |η| < 2.5 is on the detector η of electrons.
Without vertex smearing, detector η is the same as physics η. In this case, the
loose electrons of Z are not able to cover the phase space beyond |η| > 2.5.
One way to observe this bias on MT spectrum is to apply the η cut on the
generator level neutrino η. As shown by Fig 6.19, those W events with high
|η| loose electrons that fail the acceptance cut mostly reside in the lower range
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Figure 6.16: Comparison ofMT on the fully smear level, 1 fb−1, no cuts applied.
1Z2W .

of MT , roughly MT < 82 GeV.
In reality this bias is less severe than in the generator level, due to the

vertex smearing along z direction. Detector η cut at 2.5 still allows some loose
electrons with physics |η| > 2.5 to be detected in EC. The wide the vertex
smearing resolution σz is, the higher the probability is for loose electron with
large pesudo rapidity to be detected in EC. From this perspective, ratio method
prefers to have minimal vertex z cut in the event selection. Fig 6.20 gives the
bias of missing large pesudo rapidity electron on the smeared MT spectrum.
The influence is mostly in the lower range (below 75 GeV) of the MT spectrum.
The overall bias of this cut and other acceptance cuts will be discussed in the
following sections.

6.6.2 Bias of MT by Tight Electron in CC

The acceptance cut for the tight electrons of Z is the same as the W electrons:
in CC fiducial region. This cut itself actually introduces substantial bias on
the MT spectrum in ratio method. As mentioned earlier, the CC η fiducial
cut requires the electron to have detector η < 1.05 and the CC φ fiducial cut
requires the electron hit must be away from the edges of those 32 modules.
The φ fiducial bias is somewhat easy to understand. Both electrons decayed
from Z boson have high tendency of being back to back in the transverse plane
because of the boson pT is small compared with its invariant mass. If one of
the electrons hit the edge of CC φ module, the other electron also tends to be
close to the edge of the opposite module. The same event selection preference
can’t be applied to W events, as the neutrino is not directly measured by
calorimeter. However the effect on MT spectrum due to this bias is minimal
compared with the η fiducial cut.

99



W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

20

40

60

80

100

120

fitted W mass h_wmass
Entries  640

Mean     80.4

RMS    0.04752
Constant  5.4± 107.9 

Mean      0.0±  80.4 
Sigma     0.00140± 0.04633 

fitted W mass

Figure 6.17: 1Z1W . Fitted MW of the 600 ensemble tests (each of 10 fb−1

events) on the smeared level, after acceptance cuts and other cuts. σ(MW ) =
48 MeV is the true statistical uncertainty.

Toy Calorimeter Without CC/EC Gap

The bias of MT spectrum due to CC η fiducial cut is not straightforward at
first glance, as the same cut is applied to both the W and Z electrons. A toy
calorimeter model is used in the fast Monte Carlo study to preclude bias by
other cuts other than the CC η fiducial cut. In this toy calorimeter model,
Central Calorimeter covers pseudo rapidity range up to |η| < 1.2 and the End
Calorimeter covers the 1.2 < |η| < 100 range. In other words, CC and EC
have continuous η coverage with no gap between them. Also the EC η coverage
now extends to the extremely forward and backward direction.

With the same standard η acceptance selection in the ratio method (first
bullet in Chapter 4.3), the loose electron of Z now has full η acceptance, same
as the W neutrino. It’s interesting to observe the effect of the η acceptance
cut of Z’s tight electron on the MT spectrum.

To that end, the MT spectrum comparisons of W and Z events are divided
into categories according to acceptance cut of tight electron. Lepton pT cut is
also varied to show that higher cuts can alleviate the bias caused by acceptance
cut.

• No lepton pT cuts for Fig 6.21 to Fig 6.23.

• peT > 25 GeV and /ET > 25 GeV for Fig 6.24 to Fig 6.26.

• peT > 30 GeV and /ET > 30 GeV for Fig 6.27 to Fig 6.29.
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Figure 6.18: 1Z2W.Fitted MW of the 600 ensemble tests (each of 10 fb−1

events) on the smeared level, after acceptance cuts and other cuts. σ(MW ) =
34 MeV.

Each of the above category contains the MT comparison Figures based on
the acceptance cut of the tight electron.

• The tight electrons of Z and the W electrons are in CC.

• The tight electrons of Z and the W electrons are in EC.

• The tight electrons of Z and the W electrons are in either CC or EC
(full acceptance).

Guassian smearing are applied to both the W and Z events. For Z sam-
ple, the relevant extra smearing corrections are also applied. Therefore the
corrected MT spectrum of Z sample is essentially the same as that of fake
W events (Chapter 6.3). Without lepton pT cuts, good agreement of MT

spectrum is observed when the tight electron of Z and the W electron has
full acceptance (Fig 6.23), which is essentially the same plot in Fig 6.8. Sig-
nificant difference is observed when the tight electron is restricted to partial
acceptance, as shown in Fig 6.21 (CC) and Fig 6.22 (EC).

It is believed that the difference of boson pT and lepton decaying angle
cos θ∗ between W → eν and Z → ee events causes the failure of MT scaling
with W and Z boson mass. As shown in the next section, by forcing the boson
pT and cos θ∗ distribution to agree (approximately, by first order reweighting),
we could obtain the MT spectrum to scale with W and Z boson mass when
the tight electron is required to be in CC. This study is performed on the
generator level events only for illustration, which will be discussed shortly. No
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Figure 6.19: Comparison of the generator level MT of W → eν events. One
sample is with full acceptance, the other requires neutrino |η| < 2.5. Both
histograms are not normalized.
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Figure 6.20: Comparison of the smeared level MT of W → eν events. The
primary vertex of both sample are smeared with Guassian function along the
beam direction with resolution σz = 25 cm. One sample is with full acceptance,
the other requires neutrino to have detector |η| < 2.5. Both histograms are
not normalized.

such kinematic reweighting corrections are applied to smeared Monte Carlo
events or data.

The most interesting plot is Fig 6.21 (tight electron in CC), as it has the
official acceptance cut. Without any corrections, it is impossible to extract
W mass when such a large discrepancy of MT spectrum is observed. After
applying the lepton pT cut of 25 GeV (Fig 6.24) and 30 GeV (Fig 6.27), bet-
ter agreement is observed in the Jacobian edge of MT spectrum (75 GeV to
90 GeV). In the final events selection (Chapter 4.3), lepton pT cut is chosen
at 30 GeV instead of 25 GeV (which is used in the standard method), as the
agreement of MT Jacobian edge is better in the case of 30 GeV cut. When
the fitting range is careful chosen to avoid the lower MT range (Fig 6.27), it
is possible to make a successful fit of MW that is close to the input W mass.
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Bias due to acceptance cut on tight electron is among the most prominent
effects in ratio method. The cause of this bias comes from the different kine-
matic distributions of leptons in the rest frame of W and Z boson (see the
lepton cos θ∗ distributions of W and Z events Fig 5.5 and Fig 5.6). This is
further complicated by different boost of W and Z boson. It’s not totally a
surprise that a big difference of MT spectrum is observed after the same η cut
on the electrons of W and Z.

The above argument is corroborated by a test on generator events (kine-
matic reweighting) that is described in the next section. For the final W mass
fitting, we don’t apply corrections to the acceptance cut of tight electrons.
Instead, we use the range of Jacobian edge (for example, the range of 70 GeV
to 90 GeV) for the fitting, which is relatively less affected by this bias. To-
gether with other cuts, a systematic bias is obtained in the ensemble test of
fast Monte Carlo simulations. This bias is added to the MW out of data fitting
to give the final fitted value.
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Figure 6.21: MT comparison of W and Z. No lepton pT cut, tight electron in
CC, loose electron in CC or EC (full acceptance).
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Figure 6.22: MT comparison of W and Z. No lepton pT cut, tight electron in
EC, loose electron in CC or EC (full acceptance).
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Figure 6.23: MT comparison of W and Z. No lepton pT cut, tight electron in
CC or EC (full acceptance), loose electron in CC or EC (full acceptance).
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Figure 6.24: MT comparison of W and Z. peT > 25 GeV and /ET > 25GeV ,
tight electron in CC, loose electron in CC or EC (full acceptance).
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Figure 6.25: MT comparison of W and Z. peT > 25 GeV and /ET > 25GeV ,
tight electron in EC, loose electron in CC or EC (full acceptance).
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Figure 6.26: MT comparison of W and Z. peT > 25 GeV and /ET > 25GeV ,
tight electron in CC or EC (full acceptance), loose electron in CC or EC (full
acceptance).
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Figure 6.27: MT comparison of W and Z. peT > 30 GeV and /ET > 30GeV ,
tight electron in CC, loose electron in CC or EC (full acceptance).
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Figure 6.28: MT comparison of W and Z. peT > 30 GeV and /ET > 30GeV ,
tight electron in EC, loose electron in CC or EC (full acceptance).
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Figure 6.29: MT comparison of W and Z. peT > 30 GeV and /ET > 30GeV ,
tight electron in CC or EC (full acceptance), loose electron in CC or EC (full
acceptance).

Kinematics Reweighting

Similar discrepancy of MT caused by requiring tight electron in CC for the
smeared Monte Carlo events (Fig 6.21) is observed on the generator level
events. When the tight electron is required to have physics |η| < 1.05, sub-
stantial disagreement is observed in the lower range of MT spectrum (Fig 6.30).
This is caused by the different distribution of boson pT and the lepton decay-
ing angle θ∗. For instance in Fig 6.31, the physics η distribution of electrons
is different in W and Z events. Electrons decayed from Z tend to be more
forward than those from W . As expected, a fixed acceptance cut at |η| = 1.05
causes selection bias which is reflected in the comparison plot of MT spectrum.

To test this assumption, we make a series of corrections to the Z events and
make the boson and lepton kinematics to be identical to those in W events.
Then the MT spectra is compared again with the acceptance on tight electrons.

The corrections are identical to those described in Chapter 5.2. The pro-
cedure consists of reweighting lepton cos θ∗, boson pT and y distribution of
Z → ee events. In particular, to simplify, we didn’t use a two dimensional bo-
son pT versus y, but doing the iterative one dimensional reweighting of pT and
y. After the reweighting corrections, the electron η distribution of Z events
is much similar to the one in W events (right plot in Fig 6.31). Because the
reweighting corrections don’t treat the correlation of boson pT and y prop-
erly, there is still small difference remaining in the electron η distribution after
correction.

After the above reweighting corrections to Z → ee events, the updated
MT spectrum has reasonable agreement over the range of 60 GeV to 110 GeV
(Fig 6.32).
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Figure 6.30: Generator level MT comparison. Both the W electron and the
tight electron of Z are required to have physics |η| < 1.05.
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Figure 6.31: Generator level electron η distribution in W and Z sample. Left
plot is before any correction, the right one is after kinematics reweighting
corrections.
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Figure 6.32: Same MT comparison plot as in Fig 6.30, but after the reweighting
correction.

6.6.3 Reweighting Correction of Loose Electron for the
CC/EC Gap

Without the smearing of primary vertex along the z axis, CC/EC gap of
1.05 < ηdet < 1.5 makes those loose electrons of Z with physics η in the same
range of ηdet fail to pass the event selection cut. The DØ Run IIa W and Z data
in this analysis are known to have smearing of primary vertex z with resolution
σ ' 25 cm. In this case, some Z’s loose electrons with 1.05 < ηphys < 1.5 pass
the event selection cut. With known vertex smearing shape and the dimensions
of the CC/EC edge, the probability for a specific electron to enter the CC or
EC depends on the physics η of that electron.

Let fz be the distribution of the primary vertex zvtx. The probability
for electron with physics η (or equivalently θ) to reach the CC or EC is the
integral of the normalized vertex distribution between the point of z1(θ) and
z2(θ), which are the projections of CC/EC edges along angle θ of electron(s).
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Eq 6.26 is the mathematical definition of probability calculation.

p =
⋂

i=1(,2)

∑
CC,EC

∫ z2(θi)

z1(θi)

f(z)dz, (6.26)

A sketch diagram is helpful to the understand of the above procedure. In
Fig 6.33 the vertex distribution is of Gaussian shape. The shaded area of the
normalized Gaussian distribution stands for the probability for the electron to
reach CC or EC. The integral of a normalized Gaussian function

ϕµ,σ(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 , (6.27)

is actually an error function

Φµ,σ(z) =

∫ z

−∞
ϕµ,σ(t)dt

=
1

2

[
1 + erf(

z − µ√
2σ

)

]
. (6.28)

Error function can be evaluated analytically using the TMath::Erf method
in ROOT. In the case of non Gaussian form zvtx smearing in data, the integral
can be evaluated numerically. The left plot in Fig 6.34 shows the probability
for one electron to hit CC or EC as a function of its physics η, given the
σ = 25 cm Gaussian smearing of zvtx and the calorimeter CC/EC geometry.
The probability drop near physics |η| ' 1.35 is caused by the CC/EC gap while
the sharp drop after physics |η| ' 2.5 reflects the upper limit of EC detector
η coverage. The probability for two electrons to be in CC/EC is shown in the
right plot of Fig 6.34. For official acceptance cut, the probability of W and Z
events is shown in Fig 6.35.

The corrections we would like to apply is to make those Z’s loose electrons
in CC or EC have the same physics η as W ’s neutrino (full acceptance). One
way to accomplish this is to assign higher event weights to those loose electrons
that are less likely to reach CC or EC, due to the CC/EC gap. Missing
loose electrons due to no EC coverage beyond |η| > 2.5 have no big effect
in ratio method, as discussed in Chapter 6.6.1. The event weight is chosen
as the reciprocal of the probability for an electron with physics η to reach
CC/EC (Fig 6.35). For electrons with very small probability, event weights
are quite large. Without cutting on the upper limit of event weight, spikes are
observed in MT spectrum and the number of effective entries of MT spectrum
for template fitting in the K-S test are also reduced. Therefore a maximum
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Figure 6.33: With Gaussian vertex smearing and the dimension of calorimeter
acceptance shown (not in scale), the probability of an electron with incoming
polar angle θ to reach either CC or EC is the red shadow area (normalized) of
the gaussian function.[34]
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Figure 6.34: The probability for one electron to reach in the CC or EC η
fiducial region (left). The right plot is for two electrons either in CC or EC.

value of 10 is set for large event weights. Typical probability distributions for
tight and loose electrons are shown in Fig 6.36.

The original physics η distribution of Z’s loose electron that is in CC or EC
is shown in the left plot of Fig 6.37. The impact of CC/EC gap is evident on
the drop of events around physics η = ±1.3. After the acceptance reweight-
ing correction, those drops of physics η around ±1.3 are largely recovered.
The overall physics η distribution of loose electrons is more smooth, close to
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Figure 6.35: The probability of official events selection. The left plot is for the
W event, electron in CC. The right plot is for Z, the tight electron in CC and
the loose electron in either CC or EC.

(but not exactly the same as) the case where the loose electron of Z has full
acceptance.

One way to appreciate the reweighting correction is to compare the trans-
verse mass distribution before (Fig 6.38) and after (Fig 6.39) the reweighting
correction. The MT spectrum of Z events has much better agreement with
that of the W sample after the CC/EC gap effect is corrected. The other two
acceptance biases (of the three listed at page 96) are not corrected and the
MT spectrum in Fig 6.39 still has disagreement that is consistent with Fig 6.20
and Fig 6.21.

With additional lepton pT cuts at 30 GeV, the acceptance bias will be fur-
ther mitigated (similar to the change from Fig 6.21 to Fig 6.27). The fitted
MW central value from the ensemble test in the fast Monte Carlo simula-
tion that has all the major factors included should give the overall bias of
the ratio method. This will be done in the next Chapter where the simple
Gaussian smearings used in this Chapter will be replaced with more compli-
cated wz epmcs smearing. The complicated smearing algorithms developed in
wz epmcs have reasonable agreement with the 1 fb−1 DØ Run IIa data, and
that is crucial to the measurement of MW in the standard method [11].
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Figure 6.36: The event weight for W electron in CCEC (left) or in CC only
(right). The event weight is calculated as the reciprocal of the probability in
the left plots of Fig 6.34 and Fig 6.35. Very few events have high weights,
since there are not many events in the lower probability physics η range. The
maximum reweighting factor allowed is set to 10 in the correction.
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Figure 6.37: Physics η distribution of Z’s loose electrons that are in CC or EC
(the histogram title is not labelled correctly). There is not acceptance cut on
the tight electron of Z. The left plot is without the reweighting, the right plot
has the reweighting applied (reciprocal of the left plot in Figure 6.34). The
maximum reweghting factor allowed is 10.
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Figure 6.38: MT comparison with official acceptance cut, no lepton pT cut and
no reweighting correction. The W electron and Z’s tight electron is in CC,
Z’s loose electron is in either CC or EC. There are no lepton pT cuts. Large
difference here is caused by the combination of the three acceptance cuts in
page 96.
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Figure 6.39: The same MT comparison after reweighting corrections. Among
the three acceptance biases, only the CC/EC gap for loose electron acceptance
is taken care of. Biases due to CC cut on the tight electrons and the upper
limit of EC detector ηdet at 2.5 are obvious in the lower MT region.

113



Chapter 7

Fast Monte Carlo Simulation
with Realistic Smearing

In the previous chapter, we used a toy fast Monte Carlo simulation that has
simple Gaussian smearings to study various effects and corrections. In par-
ticular, the illustration of the extra smearing correction is more clear and
straightforward using the Gaussian smearing. However we can’t use it to es-
timate the bias of the measured MW in fast Monte Carlo simulation. In the
development of fast Monte Carlo model for the standard method, it is found
out that the simple Gaussian smearing model is inadequate of describing the
1 fb−1 DØ Run IIa data. Complicated smearing models (no simple Gaussian
form) are developed from the study of W and Z data and are put into the
official wz epmcs package that is used to measure MW in the standard method.

In this chapter, we first introduce the basics of non Gaussian smearing used
in the wz epmcs package. Then we put the non Gaussian smearing into our
the fast Monte Carlo simulation and discuss the extra smearing correction for
non Gaussian smearing model. In the end, we apply the major selection cuts
to the updated fast Monte Carlo simulation that is smeared by non Gaussian
models of wz epmcs and measure MW in ratio method. The difference between
measured MW (central value of ensemble test) and the input value is quoted
as the systematic bias. With the final fitting range of 66 GeV < MT < 96 GeV
used in data, this bias is found to be within the statistical uncertainty 43 MeV,
which is the width of the fitted MT distribution in ensemble test.

7.1 Non Gaussian Smearings from wz epmcs

The realistic smearings used in the wz epmcs package of standard method are
discussed briefly for the electron, recoil and the underlying events system in
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the following sections. Details about the recoil simulation in wz epmcs can be
found in [39].

7.1.1 Electron Smearing

The main change from the normal electron smearing Eq 6.2 is that the sam-
pling term SEM is no longer a constant number in wz epmcs. Instead the new
sampling term is dependent on the electron energy and its angle. The depen-
dence reflects the effect of the radiation length of calorimeter material on the
energy loss of electrons.

SEM = (S1 +
S2

E
)× eSexp sin θ

eSexp
, (7.1)

where the exponential term

Sexp = S3 − S4/E − S2
5/E

2. (7.2)

The determination of SEM form in Eq 7.1 and the associated parameters Si
where i = 1 · · · 5 are all based full Monte Carlo Z → ee events. For the
extra smearing correction of electrons, this new smearing algorithm has small
influence on the value of fitted W mass compared with the simple Gaussian
based extra smearing correction.

7.1.2 Recoil Smearing

Among the three components that contribute to the recoil system of W and
Z events (see Chapter 4.2 in page 48), the hard recoil against the boson is
modeled by a bifurcated function while the soft recoil and underlying event
contribution is picked up from a library of MB and ZB events.

Bifurcated Model of Hard Recoil

To understand the calorimeter response to the hard recoil against boson, full
Monte Carlo Z → νν events are used to find the relation between true prec

T and
the smeared prec

T . These special Z → νν events are generated by PYTHIA in
which only the hard collision parton level processes are kept, the interactions
from spectator quarks and additional pp̄ are turned off. Since the final product
of neutrinos are undetected in full Monte Carlo, the calorimeter response are
left with contribution from hard recoil only. These generator level Z → νν
events go through D0Reco package and are reconstructed in the same manner
as data events. There is no underlying event overlaying on this special W → νν
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full Monte Carlo sample, only the hard recoil component is what we want to
keep.

Two parameters that characterize the hard recoil smearing are the recoil
pT resolution R and φ angle resolution ∆φ. They are defined as

R =
uT − qT
qT

(R < 1) (7.3)

∆φ = φ(uT )− φ(qT ) (|∆φ| < π), (7.4)

where qT and uT are the true hard recoil (−pZT ) and the reconstructed hard
recoil. The Z → νν events are divided into 32 subsamples from qT = 0 up
to qT = 100 GeV. For each subsample, a two dimensional histogram is made
to show the joint distribution of smearing resolution R and ∆φ. An empirical
parameterization is fitted to each of the subsamples,

f(x, y) = p0 exp

[
−1

2

(
x− µ(y)

σx(x, y)

)2
]

exp

[
−1

2

(
y

σy(y)

)2
]
. (7.5)

In the above formula (called bifurcated function), x ≡ R, y = ∆φ, µ = p1+p2y
and

σx(x, y) =

{
p3 when x < µ(y)
p4 when x > µ(y)

σy(y) = p5 + p2y.

pi where i = 0 · · · 5 are the parameters to fit. Of these, p0 is a normalization
constant, the other 5 parameters are put into the smearing function f(qT ) in
wz epmcs. Typical two dimensional distribution (of different qT range) and the
comparison with the bifurcated function fit are shown in Fig 7.1 and Fig 7.2.

Hard recoil smearing procedure takes the true recoil qT as an input and
apply the corresponding parameterized bifurcated function to give the smeared
uT as the output. The correlation of the recoil φ smearing and recoil pT
smearing is included in the bifurcated function. This bifurcated function is
also used in the calculation of extra smearing correction in ratio method.

Spectator Quarks and Additional pp̄ Interactions

Interactions from spectator quarks in the same pp̄ collision that produces the
W and Z boson are called the soft recoil. The additional pp̄ interactions in the
same bunch crossing are the true underlying events. Usually they are modeled
by the MB (minimum bias) and zero bias (ZB) events respectively. Because
both MB and ZB events have diffusive energy deposition in calorimeter and
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Figure 7.1: Two dimensional distribution of recoil pT and φ resolution for the
truth recoil pT between 4.5 GeV and 5 GeV. Box is full Monte Carlo, contour
is fit of Eq 7.5. [39]

the vector sum of calorimeter response is randomly distributed on the trans-
verse plane, MB and ZB events usually are referred together as the underlying
events. In the toy fast Monte Carlo of previous chapter, a simple Gaussian
smearing with σ = 3.02 GeV is added to the overall recoil to represent the com-
bined contribution from MB and ZB events. In that case, the corresponding
extra smearing correction is as simple as Eq 6.17 shows.

In reality, the simple Gaussian smearing is a very coarse approximation
and doesn’t have good agreement with the 1 fb−1 DØ Run IIa data. To have
better description of data, fast Monte Carlo simulation of standard method
wz epmcs reads the MB and ZB contribution for each simulated event from
the prepared libraries that are reweighted to have the same instantaneous
luminosity and scalar ET of full Monte Carlo or data W and Z events. We
also use the corresponding MBZB libraries (two sets, one for full Monte Carlo
and one for data) in the correction of extra smearing.

7.2 Extra Smearing

The extra smearing corrections of Z → ee events need to be updated accord-
ingly from the simple Gaussian smearing model in Chapter 6 when the realis-
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Figure 7.2: Two dimensional distribution of recoil pT and φ resolution for the
truth recoil pT between 18 GeV and 20 GeV. Box is full Monte Carlo, contour
is fit of Eq 7.5. [39]

tic wz epmcs smearings are used in the fast Monte Carlo simulation. Change
of extra smearing for the electron system is minimal. EM smear resolution
(Eq 6.14) is calculated with the new sampling term (Eq 7.1) to give the extra
smearing correction.

7.2.1 Extra Smearing of Hard Recoil

Extra smearing for the hard recoil is not as simple as the electron system. Both
the recoil magnitude and φ direction of hard recoil are smeared at the same
time. It’s natural to apply extra smearing to both the x and y components
of the smeared recoil in this case. This algorithm actually works pretty well
in the test of extra smearing between Z and fake W events. However the
right amount of extra smearing is not suitable for the comparison between Z
and true W events. In the case where hard recoil is smeared by the bifurcated
function, there is substantial difference of MT spectrum between fake W events
and true W events (Fig 7.4). The same comparison shows good agreement if
hard recoil is smeared by simple Gaussian form (Fig 7.3). The exact cause of
the bias of extra smearing of hard recoil for bifurcated smearing observed in
Fig 7.4 is not clear. Correlation between φ and |pT | can be excluded, since
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Figure 7.3: Comparison between true W and fake W events. All smearings
are simple Gaussian based. No cuts. Both samples have 5.2 million events.
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Figure 7.4: Comparison between trueW and fakeW events. EM and soft recoil
smearings are simple Gaussian based, hard recoil smearing uses the wz epmcs

smearing. No cuts. Both samples have 5.2 million events.

even after φ smearing is turned off for hard recoil, identical discrepancy of MT

spectrum is still present.
Through the bifurcated smearing function f(qT , φ) Eq 7.5, a pair of input

recoil of Z event (pT (Z), φ(Z)) (true) has the corresponding smeared value
(pT (Z), φ(Z)) (smeared). The same pair of input (pT , φ) is scaled to the W
level, where prec

T (W ) = (MW/MZ)prec
T (Z) and φ(W ) = φ(Z).

The prec
T difference in the x and y component is calculated for the original

prec
T (Z) and the scaled prec

T (W ).

∆prec
x (W ) = prec

T (smear) cosφ(smear)− prec
T (true) cosφ(true)

∆prec
y (W ) = prec

T (smear) sinφ(smear)− prec
T (true) sinφ(true)

∆prec
x (Z) = prec

T (smear) cosφ(smear)− prec
T (true) cosφ(true)

∆prec
y (Z) = prec

T (smear) sinφ(smear)− prec
T (true) sinφ(true) (7.6)
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Figure 7.5: Identical comparison as in Fig 7.4, except that there is no φ smear-
ing of hard recoil.

The extra smearings for the x and y component of recoil pT are calculated as
the following,

∆prec
x (extra) =

(
MZ

MW

)
∆prec

x (W )−∆prec
x (Z)

∆prec
y (extra) =

(
MZ

MW

)
∆prec

y (W )−∆prec
y (Z) (7.7)

The above extra smearing correction for hard recoil gives reasonable agree-
ment for the MT comparison between Z and fake W events (Fig 7.6). This
indicates that Eq 7.7 is the right extra smearing correction for bifurcated
smearing of hard recoil in wz epmcs. Because of the MT difference between
fake W and true W events (Fig 7.4), it’s not a surprise that the same compar-
ison fails on the true W events (Fig 7.7). After the extra smearing of Eq 7.7,
MT of Z events seems to be slightly under-smeared compared with that of the
true W events.

To have a successful fit of W mass, we use the following ad hoc extra smear-
ing for hard recoil smeared by bifurcated function. Compared with the proper
extra smearing of Eq 7.7, the ad hoc extra smearings are added in the prec

T and
φrec terms in stead of pT (x) and pT (y) components. Assuming ∆prec

T (random)
and φrec(random) are randomly drawn from two separate histograms where
prec
T (smeared)−pT (true) and φrec(smeared)−φ(true) of bifurcated smearing in-

formation are stored, the following extra smearings are added to prec
T (smeared)
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Figure 7.6: Comparison between Z and fake W events. Simple Gaussian
smearing of EM and soft recoil. Hard recoil smearing uses the bifurcated model
(smear both pT and φ, same as in the official wz epmcs). Extra smearing of
EM and soft recoil is also of the corresponding Gaussian form. Extra smearing
of the hard recoil is applied in the x and y component as shown in the formula
of Eq 7.7.

and φrec(smeared).

∆prec
T (extra) =

(
MZ

MW

− 1

)
∆prec

T (random)

∆φrec(extra) =

(
MZ

MW

− 1

)
∆φrec(random) (7.8)

As Fig 7.8 shows, the ad hoc correction per se is not the right extra smear-
ing correction. It causes the MT spectrum of Z to be somewhat over smeared.
Considering that MT of the true W events is slightly wider than fake W events
(Fig 7.4), the ad hoc extra smearing correction is actually ideal for the com-
parison with true W events. This is confirmed by Fig 7.9, where reasonable
agreement is observed.

7.2.2 Extra Smearing of Soft Recoil and Underlying
Event

In wz epmcs simulation, soft recoil and the underlying event contribution is
randomly picked up from libraries that are made of minimum bias (MB) and
zero bias (ZB) events. The MBZB libraries are made to have the same scalar
ET and instantaneous luminosity as full Monte Carlo or data W and Z events.

Extra smearing correction of the soft recoil and underlying event is similar
to the case of simple Gaussian smearing. In this case, the extra smearing term
is no longer from Gaussian distribution but drawn from the MBZB libraries
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Figure 7.7: Identical comparison as in Fig 7.6, except that the comparison is
between Z and true W events. Notice the proper extra smearing of hard recoil
of Z events in Fig 7.6 appears to be slightly under-smeared, with respect to
the true W events.
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Figure 7.8: Identical comparison as in Fig 7.6, except that the extra smearing
correction to the hard recoil of Z is the ad hoc form in Eq 7.8. This causes
MT of Z slightly over smeared. This feature is needed to make it close to MT

of true W events.

instead. For each Z event, a pair of /ET (x) and /ET (y) is randomly drawn from
MB and ZB library events separately. Overall /ET (x) and /ET (y) are the sum
of MB and ZB contributions. The extra smearing correction on the x and y
components are the overall /ET (x, y) times a small coefficient that is the same
as in Eq 6.17.

/Eextra
T (x) =

[(
MZ

MW

)2

− 1

] 1
2

/ET (x)

/Eextra
T (y) =

[(
MZ

MW

)2

− 1

] 1
2

/ET (y) (7.9)
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Figure 7.9: Identical comparison with the true W events as Fig 7.7. ad hoc
extra smearing correction (Eq 7.8) is used on the hard recoil of Z.
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Figure 7.10: Comparison between Z and fake W events. EM and hard recoil
are smeared by simple Gaussian, and both are proper corrected. Soft recoil
and underlying event are smeared by the MBZB library. The extra smearing
correction is Eq 7.9.

Again, the above extra smearing algorithm is tested on the fake W events.
Both EM and hard recoil have simple Gaussian smearing and are properly
corrected. Extra smearing of Eq 7.9 on the soft recoil and underlying event
gives good agreement (Fig 7.10).

7.3 Fast Monte Carlo Closure Test

The toy fast Monte Carlo simulation for ratio method study resembles a full
fledged wz epmcs package. Major effects that have influences on ratio method
are simulated:

• Complicated realistic smearing algorithms that have very good agree-
ment with data are implemented for electron, recoil and underlying event.
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• Proper extra smearing corrections are obtained for all of the realistic
smearings.

• Acceptance cut for the electrons of W and Z events: W electron (Z’s
loose electron) is in CC, Z’s loose electron is in CC or EC.

• Reweighting correction for the CC/EC gap on the acceptance of Z’s loose
electron is applied.

• Lepton pT cuts: peT > 30 GeV and /ET > 30 GeV.

• Boson pT cut: pWT < 15 GeV and pZT < 15 GeV.

A closure test of MW measurement on such a toy fast Monte Carlo simula-
tion is useful to estimate the systematic bias of MW measured in ratio method.
The MT spectrum of Z events that are scaled with the input MW is compared
with that of the true W events. Good agreement is observed in the Jacobian
edge of MT spectrum (top two plots in Fig 7.11). K-S probability of MT tem-
plates is shown as the lower left plot in Fig 7.11, where 68 GeV < MT < 96 GeV
is chosen as the fitting range for this particular fitting. The distribution of
fitted MW due to statistical fluctuation is shown in the plot of ensemble test in
Fig 7.11. This distribution can be well fitted by a Gaussian function, which in-
dicates good statistical fluctuation of each pseudo experiment in the ensemble
test. For the particular fitting range of 68 GeV,MT < 96 GeV, the Gaussian
mean value of fitted MW is 80402 MeV, that’s about 21 MeV lower than the
input MW . The Gaussian standard deviation of fitted MW in ensemble test is
43 MeV. This is the true statistical uncertainty of the fitted W mass.

Table 7.2 shows the central fitted W mass and its statistical uncertainty for
different fitting ranges. The corresponding distributions are shown in Fig 7.14
and Fig 7.15. Input MW value is covered by the fitted W mass within the
statistical uncertainty for various fitting ranges.

The Jacobian edge (roughly 75 GeV < MT < 90 GeV) of the MT spectrum
is most sensitive to W boson mass and usually chosen to be included in the
fitting range. Inclusion of the range lower than 75 GeV or higher than 90 GeV
in mass fitting gives better statistical uncertainty. In ratio method, various
selection cuts and corrections have notable bias on the MT spectrum. Fitted
central values of MW in ensemble test usually have dependence on the choice
of fitting range.

Choice of the lower end of fitting range is constrained by the acceptance
cut. One needs to have the fitting range away from the lower MT region to
have a successful W mass fit. To show this effect, we make W mass fitting
on high statistical W → eν (2 fb−1) sample and Z → ee (6 fb−1) sample. MT
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comparison of such W and Z samples is shown in Fig 7.11, where the K-S
fitting probability of mass templates over a specific range 68 < MT < 96 GeV
is also shown. Fitted MW over various fitting ranges are shown in Table 7.1
and the corresponding K-S probability distributions are shown in Fig 7.12 and
Fig 7.13. In Table 7.1, a significant bias of fitted W mass is observed when
the lower limit of fitting range extends beyond 66 GeV. There is no obvious
dependence on the choice of upper limit. Considering the region of high MT

values are also affected by effects such as boson width, we choose the upper
limit of fitting range at 96 GeV.

Therefore, 66 GeV < MT < 96 GeV is chosen as the official range for W
mass fitting of full Monte Carlo and data. From Table 7.2, we can find the
statistical uncertainty is 43 MeV.

range[GeV] 60 < MT < 96 62 < MT < 96 64 < MT < 96 66 < MT < 96
fitted MW [MeV] 80346± 8 80355± 12 80374± 18 80403± 15

68 < MT < 96 70 < MT < 96
80407± 15 80407± 14

range[GeV] 66 < MT < 90 66 < MT < 92 66 < MT < 94 66 < MT < 96
fitted MW [MeV] 80394± 14 80394± 14 80400± 15 80403± 15

66 < MT < 98 66 < MT < 100
80402± 14 80404± 15

Table 7.1: Fitted W mass and statistical uncertainty for different fitting
ranges. W → eν sample has 2 fb−1 events and Z → ee sample has 6 fb−1

events. As mentioned earlier, the statistical uncertainty quoted here is not ac-
curate. Top row shows the case where the upper limit is fixed at 96 GeV and
the lower limit is scanned from 60 GeV to 70 GeV. In the lower row, the upper
limit is scanned from 90 GeV to 100 GeV with the lower limit fixed at 66 GeV.
The corresponding K-S probability distributions are shown in Fig 7.12 and
Fig 7.13. Notice the input MW is 80423 MeV.
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range[GeV] 66 < MT < 96 68 < MT < 96 70 < MT < 96 72 < MT < 96
fitted MW [MeV] 80392± 43 80402± 43 80406± 48 80417± 47

74 < MT < 96 76 < MT < 96
80380± 54 80383± 69

range[GeV] 70 < MT < 90 70 < MT < 92 70 < MT < 94 70 < MT < 96
fitted MW [MeV] 80400± 49 80400± 47 80402± 46 80406± 48

70 < MT < 98 70 < MT < 100
80411± 46 80416± 45

Table 7.2: Central value of fitted MW and its statistical uncertainty in en-
semble test for different fitting ranges. This is the official fast Monte Carlo
simulation with realistic cuts, smearing and the appropriate corrections. The
upper limit of fitting range is fixed at 96 GeV and the lower limits of fitting
range are selected from 66 GeV to 76 GeV. Similar study is done for fixed
lower limit at 70 GeV and the upper limit varies from 90 GeV to 100 GeV.
The corresponding distributions are shown in Fig 7.14 and Fig 7.15. Notice
the input MW is 80423 MeV.
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Figure 7.11: 2 fb−1 W events and 6 fb−1 Z events. MT comparison of toy fast
Monte Carlo simulation with realistic wz epmcs smearing and other major se-
lection cuts. Corrections described before are properly applied. Input MW

are used in the comparison of top two plots. Lower left shows the K-S prob-
ability distribution between the MT of W and Z templates, fitting range is
68 < MT < 96 GeV. The maximum probability corresponds to fitted W boson
mass. Red line is the input MW , blue lines stand for the statistical uncertainty
(wrong) calculated without considering the correlation of two MT from one Z
event. Fitted MW = 80407±15 MeV. Similar distributions for different fitting
ranges are shown in Fig 7.12 and Fig 7.13. The lower right plot shows the dis-
tribution of fitted MW from 600 pseudo experiments (ensemble test), each with
1 fb−1 events and fitting range is also 68 GeV < MT < 96 GeV. This distri-
bution should be well described by a Gaussian function if the two histograms
being compared are statistical independent. Mean value of the Gaussian fit-
ting function is the final measured MW = 80402 MeV. The standard deviation
σ = 43 MeV is the statistical uncertainty.
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Figure 7.12: K-S probability distribution of W mass templates. 2 fb−1 W → eν
sample and 6 fb−1 Z → eν events. Upper limit of the fitting range is fixed at
96 GeV, lower limit is chosen to be 60, 62, 64, 66, 68 and 70 GeV. Red line
stands for the input W mass, and the blue dots line stand for the (inaccurate)
statistical uncertainty. Best fitted results are shown in Fig 7.1.
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Figure 7.13: K-S probability distribution of W mass templates. 2 fb−1 W → eν
sample and 6 fb−1 Z → eν events. Lower limit of the fitting range is fixed at
66 GeV, upper limit is chosen to be 90, 92, 94, 96, 98 and 100 GeV. Red line
stands for the input W mass, and the blue dots line stand for the (inaccurate)
statistical uncertainty. Best fitted results are shown in Fig 7.1.
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Figure 7.14: Distribution of fitted MW from ensemble test of fast Monte Carlo
simulation. Upper fitting range is fixed at 96 GeV, the lower range is set at
66, 68, 70, 72, 74, 76 GeV from top left to lower right. Central value of fitted
MW and the corresponding standard deviation are shown in the upper block
of Table 7.2.

130



W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

fitted W mass h_wmass
Entries  600

Mean     80.4

RMS    0.04974
Constant  3.27± 62.65 

Mean      0.0±  80.4 
Sigma     0.00163± 0.04944 

fitted W mass

W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

70

fitted W mass h_wmass
Entries  600

Mean     80.4

RMS    0.04744
Constant  3.39± 66.34 

Mean      0.0±  80.4 
Sigma     0.00145± 0.04705 

fitted W mass

W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

70

fitted W mass h_wmass
Entries  600

Mean     80.4

RMS    0.04601
Constant  3.39± 66.33 

Mean      0.0±  80.4 
Sigma     0.00141± 0.04601 

fitted W mass

W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

70

80

fitted W mass h_wmass
Entries  600

Mean    80.41

RMS    0.04547
Constant  3.44± 64.37 

Mean      0.00± 80.41 
Sigma     0.00172± 0.04769 

fitted W mass

W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

70

fitted W mass h_wmass
Entries  600

Mean    80.41

RMS    0.04497
Constant  3.55± 68.21 

Mean      0.00± 80.41 
Sigma     0.00154± 0.04592 

fitted W mass

W mass [GeV]
80.2 80.25 80.3 80.35 80.4 80.45 80.5 80.55 80.60

10

20

30

40

50

60

70

fitted W mass h_wmass
Entries  600

Mean    80.42

RMS    0.04406
Constant  3.58± 69.63 

Mean      0.00± 80.42 
Sigma     0.00151± 0.04538 

fitted W mass

Figure 7.15: Same as Fig 7.14. Lower fitting range is fixed at 70 GeV, the upper
range is set at 90, 92, 94, 96, 98, 100 GeV from top left to lower right. Central
value of fitted MW and the corresponding standard deviation are shown in the
lower block of Table 7.2.
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Chapter 8

Full Monte Carlo Simulation

Ratio method of measuring the W mass works pretty well in the fast Monte
Carlo simulations. Before applying the ratio method to data events, we can
test the corrections developed in the fast Monte Carlo on the GEANT based full
Monte Carlo events. W → eν and Z → ee events are generated by PYTHIA

with known input W and Z boson mass. These events go through the full
GEANT simulation that has the same configurations of material and geometry
as the physical DØ detector. Output events are digitized and reconstructed in
the same way as data events. Comparison of measured W mass and the input
MW provides a valuable check for the ratio method.

Although full Monte Carlo events are very close to data, there are several
differences between data and full Monte Carlo.

There is no underlying event process on the generator level event produc-
tion from PYTHIA. Zero bias events recorded during normal data taking are
overlaid with the signal events in the digitization process. Instantaneous lumi-
nosity and scalar ET distribution of the overlaying ZB events are reweighted
to be the same as those of data W → eν and Z → ee events.

Trigger and background events are not simulated in full Monte Carlo. How-
ever trigger is hardly a problem in ratio method, with electrons peT cut set to
30 GeV in data, electrons are almost 100% triggered. Contributions of back-
ground events to MT spectrum are subtracted in data before mass fitting is
performed.

The SAM dataset definition used for the full Monte Carlo closure test is

• wzcross-wenu-fsr-nosup-05all-MC-caf

5.8 million (2 fb−1) W → eν events, generated with MW = 80.450 GeV.
This corresponds to roughly 2 fb−1 W events.

• wzcross-zee-nosup01all-MC-caf

1.8 million (6 fb−1) Z → ee events, generated with MZ = 91.188 GeV.
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This dataset is evenly divided into 6 sub samples, each contains roughly
1 fb−1 events.

Event selection of the full Monte Carlo sample is described in Chapter 4.3.
Extra smearing and the acceptance reweighting of CC/EC gap is the same as
in the realistic fast Monte Carlo simulation (Chapter 7).

One correction that is not included in the study of fast Monte Carlo simu-
lation is underlying energy inside the loose electron window. When the loose
electron of Z event is treated like a neutrino, calorimeter is left with an empty
hole at the location of loose electron. Energy flow of Underlying event should
be put back into that location. This energy flow of underlying event depends
on the instantaneous luminosity and projection of recoil on the direction of
loose electron u‖ (on transverse plane). In our ratio method, we take an av-
erage value of UUE = 130 MeV, which is measured in the study of standard
method [28].

The above consideration means that the proper
−→
/Ee2
T that entering the MT

calculation of Z events needs to be modified from Eq 6.7 to

−→
/Ee2
T ≡ −

−→
Ee1
T −
−−→
Erec
T ,

≡
−→
/ET (Z) +

−−−−−−−−→
(Ee2

T − UUE). (8.1)

First we compare the MT spectrum of Z which is scaled with the input
MW = 80450 MeV (Fig 8.1) using the inclusive samples of 2 fb−1 W events and
6 fb−1 Z events. Reasonable agreement is observed for the Z MT spectrum
scaled with input W mass. W mass is fitted in the range of 70 GeV < MT <
96 GeV and the corresponding K-S fitting probability of mass templates is
shown in the lower plot of Fig 8.1. Fitted MW gives the input W boson mass,
using this specific fitting range.

In order to observe the statistical fluctuation of mass fitting, the 2 fb−1

W → eν sample is divided into 2 sub-samples A,B, each with roughly 1 fb−1

events. The 6 fb−1 Z → ee sample is divided into 6 sub samplesA,B, C,D, E ,F ,
each with roughly 1 fb−1 events.

There are 12 statistically independent combinations out of the above sam-
ples. Various fitting ranges are used for each of the 12 sub samples and the
fitting results is shown in Table 8.1 and Table 8.2. The statistical uncertainty
of fitted MW quoted in the table is based on one specific sample, not from
ensemble test. Therefore it is not the right statistical uncertainty.

The lower fitting range and the upper fitting range are changed separately,
one of them is fixed while the other is varied. Table 8.1 shows the fitted MW

with various lower fitting range from 66 GeV to 76 GeV while the upper fitting
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Figure 8.1: Full Monte Carlo 2 fb−1 W events and 6 fb−1 Z events. MT com-
parison between W and Z scaled with input MW = 80450 MeV. With fitting
range 70 GeV < MT < 96 GeV, fitted MW = 80445 ± 13 MeV, where the
statistical uncertainty of 13 MeV is not accurate.

range is fixed at 96 GeV. Table 8.2 shows the results with various upper fitting
range from 90 GeV to 100 GeV and the lower fitting range is fixed at 70 GeV.

The value of fitted MW has a systematic dependence on the lower limit
of fitting range, which is obvious in the inclusive sample of Table 8.1. For
the various upper limits, there is no significant effect on the fitted MW . With
the final fitting range of 66 GeV < MT < 96GeV , for the 12 subsamples of
1 fb−1 W and Z events, 5 subsamples have fitted MW lower than input value
(80450 MeV) and the other 7 subsamples have fitted MW higher than the input
MW . For the combined 2 fb−1 W events and 6 fb−1 Z events, fitted MW =
80412 MeV, which is 38 MeV lower than the input value. True statistical
uncertainty for the combined sample is not clear in this case (which should be
obtained from the ensemble test). If 30 MeV is a reasonable estimation of the
statistical uncertainty, that means our fitted MW is more than 1σ away from
the input W mass.
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Z A B C D E F
W A 80358± 28 80460± 36 80340± 35 80245± NA 80475± 42 80309± 44
W B 80454± 42 80523± 42 80413± 26 80284± 28 80555± 37 80408± 40
all 80412± 13 (66 GeV < MT < 96 GeV)

Z A B C D E F
W A 80427± 59 80429± 48 80343± 46 80239± NA 80476± 39 80318± 64
W B 80497± 32 80481± 67 80405± 30 80261± NA 80556± 42 80398± 34
all 80415± 11 (68 GeV < MT < 96 GeV)

Z A B C D E F
W A 80480± 77 80395± 64 80391± 33 80265± NA 80491± 37 80391± 99
W B 80521± 36 80463± 63 80458± 35 80319± 65 80579± 34 80421± 33
all 80445± 13 (70 GeV < MT < 96 GeV)

Z A B C D E F
W A 80495± 71 80357± 62 80410± 38 80340± 76 80508± 37 80387± 84
W B 80561±53 80427± 58 80498± 30 80416± 92 80606± 32 80482± 64
all 80462± 16 (72 GeV < MT < 96 GeV)

Z A B C D E F
W A 80500± 76 80321± 64 80426± 39 80336± 71 80508± 35 80380± 70
W B 80625± NA 80448± 49 80551± 30 80426± 90 80641± 30 80512± 66
all 80491± 21 (74 GeV < MT < 96 GeV)

Z A B C D E F
WA 80498± 70 80387± 78 80487± 45 80322± 91 80487± 42 80403± 95
WB 80623± 81 80510± 70 80595± 65 80421± 90 80660± NA 80542± 98
all 80514± 19 (76 GeV < MT < 96 GeV)

Table 8.1: Fitted W mass for the 12 combinations of 1 fb−1 W → eν and Z →
ee events. The upper fitting range is fixed at 96 GeV, the lower fitting range
is set at different values from 66 GeV to 76 GeV. The statistical uncertainty is
base on one sample, therefore the correlation of two MT from Z is not taken
in to account. The fitting for all samples is performed on the combined 2 fb−1

W events and 6 fb−1 Z events.
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Z A B C D E F
W A 80480± 88 80390± 76 80363± 40 80256± NA 80487± 39 80390± 90
W B 80536± 37 80434± 58 80413± 37 80295± 68 80572± 40 80442± 53
all 80435± 16 (70 GeV < MT < 90 GeV)

Z A B C D E F
W A 80480± 85 80394± 72 80385± 35 80261± NA 80500± 37 80390± 87
W B 80530± 39 80448± 61 80443± 32 80303± 76 80575± 31 80422± 33
all 80441± 12 (70 GeV < MT < 92 GeV)

Z A B C D E F
W A 80480± 81 80393± 72 80380± 36 80267± NA 80490± 37 80391± 92
W B 80533± 32 80452± 59 80448± 38 80319± 68 80580± 30 80423± 32
all 80441± 12 (70 GeV < MT < 94 GeV)

Z A B C D E F
W A 80480± 82 80390± 76 80428± 54 80272± NA 80506± 36 80390± 75
W B 80507± 41 80435± 57 80468± 30 80320± 67 80579± 27 80425± 32
all 80444± 14 (70 GeV < MT < 98 GeV)

Z A B C D E F
W A 80433± 115 80381± 70 80428± 52 80272± NA 80498± 37 80398± 70
W B 80503± 42 80417± 54 80469± 30 80320± 66 80571± 30 80435± 30
all 80439± 13 (70 GeV < MT < 100 GeV)

Table 8.2: Fitted W mass for the 12 combinations of 1 fb−1 W → eν and Z →
ee events. The lower fitting range is fixed at 70 GeV, the upper fitting range
is set at different values from 90 GeV to 100 GeV. The statistical uncertainty
is base on one sample, therefore the correlation of two MT from Z is not taken
in to account. The fitting for all sample is performed on the combined 2 fb−1

W events and 6 fb−1 Z events.
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Chapter 9

Measure Data W Mass and
Systematic Uncertainties

9.1 Data

The same CAF package for the analysis of full Monte Carlo events is applied to
the analysis of data. Configuration file is switched to the one that is tuned by
data. Event selection cuts are the same as in the full Monte Carlo simulation
and are described in Chapter 4.3. Since the electron pT cut is set to 30 GeV,
trigger rate for EM objects is almost 100% for CC and EC electrons in W and
Z events. In the study of ratio method for data, trigger efficiency is not taken
into account.

Another major difference between full Monte Carlo and data is the back-
ground subtraction for the MT histograms of W and Z data events. By con-
struction, only the signal MT distribution scales with the W and Z boson
mass. For data MT spectrum, the background distributions need to be re-
moved before the mass fitting is performed in ratio method. There are three
major backgrounds for W → eν sample: QCD, Z → ee and W → τν → eν̄νν.
For Z → ee sample, QCD is the only major background that needs to be
considered.

A QCD event can fake a W → eν event if a high pT jet passes the electron
selection cuts and there is significant /ET measured in the event. The most
effective cut to differentiate electron from jet is whether there is a track as-
sociated with the EM cluster of electron. This track matching requirement is
included in the electron selection cuts, therefore the QCD background can be
estimated by the well established matrix method.

To measure the QCD background shape in matrix method, two variables
known as the track matching efficiency εtrk and fake rate fQCD are known
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beforehand. εtrk stands for the efficiency of real electrons to pass the track
matching cut. Fake rate fQCD stands for the fraction of true QCD events that
pass the track matching cuts, that is the probability of a jet to fake an electron.

All the other standard selection cuts are applied to W → eν events, with
and without the track match requirement. The total number of W → eν
events before and after the track matching cut can be related with the number
of signal and QCD background event as the following two equations:

N = NW +NQCD

Ntrk = εtrkNW + fQCDNQCD (9.1)

N , Ntrk are the number of events before and after tracking matching cut,
they can be read directly from histograms. εtrk and fQCD values are predeter-
mined (will be discussed below). It is easy to solve the above equations to get
the number of signal event NW and background event number NQCD. In the
MT spectrum, matrix method calculation is performed bin by bin to give the
overall signal and background MT shape.

εtrk is usually measured by the “tag and probe” method applied to Z → ee
data. The idea is that the Z → ee sample is almost solely consisted of two
high pT electrons and contains a very small fraction of background events. For
each candidate data Z → ee event, one tight electron that passes standard
cuts, especially the track matching cut is required to make sure the event
is of Z → ee type. A second probe electron with loose cuts (same as tight
cuts without track matching requirement) is used to measure the efficiency of
passing track matching cut εtrk.

QCD fake rate fQCD is estimated by applying track matching cut to the
QCD enriched data sample. Standard method determines εtrk = 0.778 and
fQCD = 0.022, those values are also used in the computation of QCD back-
ground distribution of ratio method.

In terms of event signature, W → τν → eν̄νν event is indistinguishable
from the W → eν signal event. As a result of lepton universality, W boson
has the same branching ratio of decaying through the eν and τν channels.
Compared with the signal events, electrons and neutrinos decayed from τ
has much lower transverse momentum on average, therefore it is very hard
for the W → τν background events to pass the lepton pT cut. The shape
and normalization of W → τν background are estimated by applying the
standard W → eν selection to full Monte Carlo W → τν → eν̄νν events. This
background accounts for 1.6% of the final W → eν sample.

Z → ee event could fake a W → eν signal event when one of the Z’s
electron hits the non fiducial region of the calorimeter and a substantial /ET is
observed. Its background shape and normalization are estimated by applying
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the Z → ee event selection cuts on the W → eν data events. This background
accounts for 0.6% of the final W → eν sample. MT shapes of all the above
three backgrounds are shown in Figure 9.1.

QCD event is the major background of Z → ee sample. The probability for
two jets to successfully fake electrons are quite low. In ratio method, since we
only require one tight and one loose quality electron, the background fraction is
higher than that in the standard method where both electrons are required pass
tight quality cuts. QCD background shape is estimated by running the same
Z → ee event selection cuts on data, with the H-Matrix cut inverted and the
track matching requirement being dropped. The obtained QCD background
shape of Z → ee sample is shown in Figure 9.2.

To determine the normalization of QCD background, we sum the invari-
ant mass of QCD background and fast Monte Carlo Z → ee events. The
resulting mass spectrum is compared with data Z → ee event. Fraction of
QCD background is kept as a floating parameter and determined by the best
fitted invariant mass of Z → ee sample. In ratio method, the measured QCD
background fraction is 0.6%.

After the final selection cuts, there are 379402 W → eν data events left.
For Z → ee, there are about 61116 events left after the final selection cuts.
Among them, 23843 events are eligible for 1Z2W and 37273 events are able
to make 1Z1W . The final number events entering into the MT spectrum from
Z → ee is 84959.

Decomposition of the backgrounds and signal MT distribution is shown
at fixed MW = 80400 MeV in Figure 9.3. Mass fitting is performed on the
MT spectrum after background subtraction. Final fitting range is chosen to
be 66 GeV < MT < 96 GeV, the fitting probability is shown in Figure 9.4.
Fitted MW = 80.435 GeV. The statistical uncertainty 43 MeV is quoted from
ensemble test of fast Monte Carlo.

9.2 Systematic Uncertainty

Some of the systematic uncertainties of ratio method are similar to those in
the standard method, while the others are unique to each method. Table 5.1
lists major systematic uncertainties in the standard method. The leading con-
tribution of the systematic uncertainty is from the electron energy calibration.
In standard method, the electron energy scale and offset is calibrated by fitting
the invariant mass shape of Z → ee events. Therefore the electron calibration
uncertainty is actually constrained by the statistics of Z → ee sample.

In ratio method, Z → ee events are used directly in the mass fitting. The
statistical uncertainty of standard method in final mass fitting and the leading
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Figure 9.1: Shape of W → τν background, Z → ee background and QCD
background. All three background distributions are properly normalized to W
data histogram and ready to be subtracted from the MT histogram of data
W → eν sample.

systematic uncertainty of electron calibration are replaced by the statistical
uncertainty in ratio method. The above statement is only an approximation,
as the fitting ranges, event selection cuts are slightly different in these two
methods. The lower end of MT fitting range is less extended in ratio method
to avoid the bias of acceptance cuts. The electron pT and /ET cuts are raised
from 25 GeV to 30 GeV in ratio method. As a result, there is slightly less
events in the final sample of ratio method and the statistical uncertainty is
also worse.

From the physics point of view, in ratio method the longitudinal component
of electrons momentum is discarded in the MT calculation for Z → ee events,
whereas the full 4-momentum is used in the Z invariant mass calculation. The
above two effects result in the statistical uncertainty of ratio method (43 GeV)
being larger than the combination of statistical uncertainty (21 MeV) and the
systematic uncertainty (34 GeV) of electron energy calibration in standard
method.

Many of the other systematic uncertainties in ratio method are identical to
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Figure 9.2: MT spectrum of QCD background for Z → ee events. Shown
distribution is normalized to Z data histogram.

those in standard method, for example the backgrounds, parton distribution
function. These systematic uncertainties are quoted the same as in Table 5.1.
Discussions of other parameters relevant to ratio method are presented below.
The overall systematic uncertainties of ratio method are shown in Table 9.1.
Combining those uncertainties in Table 9.1, we obtain the overall systematic
uncertainty of measure MW in ratio method: 26 MeV.

Electron Resolution

Knowledge of electron resolution is used in the calculation of extra smearing
of electrons. To estimate this effect on the fitted W mass value, we use two
different electron energy smearing algorithms in the fast Monte Carlo closure
test. One of the smearing algorithm is the usual simple Gaussian smearing, the
other algorithm uses a variable sampling term (dependent on electron energy
and direction Eq 7.1). The difference of fitted MW in ensemble tests between
these two smearing algorithms is 2 MeV. This is quoted as the systematic
uncertainty due to electron resolution model.

Electron Energy Scale and Offset

Unlike in the standard method, electron energy scale α is effectively cancelled
in the ratio of MW/MZ . On the other hand, without non zero electron energy
scale β, the fitted MW is shifted away from the input value by β/10 (Chap-
ter 6.2). The uncertainty of electron energy scale in data is measured to be
210 MeV [40]. This indicates the systematic uncertainty of MW due to electron
energy offset is 21 MeV.
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Recoil Model

Extra smearing correction of the recoil system in data depends on its smearing
model. The realistic smearing model (Non Gaussian in Chapter 7) used in our
extra smearing correction of data is known to be a good description of the
1 fb−1 DØRun IIa data. To estimate the systematic uncertainty of measured
MW due to the extra smearing model of hard recoil, we make ensembles test
with two different recoil smearing models (and the correspond extra smearing):
simple Gaussian and the realistic wz epmcs smearing. The central value differ-
ence of fitted MW in ensemble test is 5 MeV. This is quoted as the systematic
uncertainty due to hard extra smearing correction.

Underlying Event

Similar to the extra smearing correction of hard recoil system, extra smearing
correction to the underlying event in data is based on the realistic wz epmcs

model. Correction terms of the soft recoil and underlying event are randomly
picked up from a MBZB library that is tuned to W and Z data events. De-
tailed description of this correction is given in Chapter 7.2.2. To estimate
the systematic uncertainty of underlying event smearing, another simple extra
smearing model is used in the fast Monte Carlo simulation, where the cor-
rection terms are drawn from the a Gaussian distribution with σ = 2.4 GeV
(Eq 6.17) width. The difference of fitted MW from ensemble test between these
two correction is 7 MeV, which is quoted as the systematic uncertainty.

Background

Background contribution to the MT spectrum is identical to that in the stan-
dard method. In both methods, the percentage of background events normal-
ization is varied around the measured value and W mass fitting using high
statistical W and Z sample are performed at those varied pints. Difference of
fitted mass at the varied points is quoted as the systematic uncertainty. The
background shape and normalization in ratio method are not exactly the same
as in the standard method, because of the slight different event selection cuts.
Considering that the overall systematics due to background is a small value,
the 2 MeV (Table 5.1) systematic uncertainty from standard method is still a
good estimation for ratio method.

Production Model (PDF , ISR and FSR)

The generator events used in the validation of ratio method are produced by
resbos with a specific set of Parton Distribution Function (PDF), CTEQ6M.
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Parameters used in each CTEQ version comes from a global fit of results from
various experiments. The choice of parameter values in CTEQ has effects on
the shape of MT spectrum of W and Z sample. Therefore the measured W
mass also depends on the PDF parameters used in fast Monte Carlo simula-
tion. Our current knowledge of PDF parameters is limited by the available
experimental results. To estimate the systematic shift of measured W mass
due to the uncertainty of PDF parameters, one needs to vary the PDF pa-
rameters in the resbos event generations and perform the mass fitting. The
variance of fitted W mass stands for different PDF sets stands for the system-
atic uncertainty.

Study of above effect for the standard method is described in [41]. A
large number of W and Z events are generated by resbos with a central
PDF set. For each varied PDF set, the events in the central PDF sample
are reweighted accordingly to reflect the varied PDF parameter. Mass fitting
using MT spectrum are performed between the central PDF set and varied
PDF set. In this way, the difference of measured MW is free of statistical
fluctuation, and reflects the contribution from PDF only. In ratio method, for
each varied PDF set, mass fitting should be done to the PDF reweighted W
and Z sample. Difference with the fitted MW from W and Z generated by
central PDF set should be the correct systematic uncertainty. We didn’t make
such a study and quote the 10 MeV (Table 5.1) from standard method as a
reasonable estimation of the PDF uncertainty in ratio method.

The initial state radiation (ISR) of gluons by boson have direct influence
on the boson pT distribution. Events generated by resbos have reasonably
good description of the ISR processes. Compared with ISR, the final state
radiation (FSR) from the electrons of W and Z bosons is more dominant.
Photons radiated from electrons carry away energy that make the invariant
mass (or MT ) of the dilepton pair smaller than the original value. Those
radiated photons tend to be colinear with the electrons and that makes the
electron energy reconstructed by calorimeter towers be able to recover most of
the energy carried away by FSR photons. In the study of standard method,
the number of FSR photons as well as its lower energy threshold are varied in
the fast Monte Carlo simulation. Both W and Z events are affected by FSR
in a similar way, albeit in different scale, as two electrons decay from each Z
boson in contrast of only one electron from W boson. In both method, only the
relative change of W mass with respect to Z mass is meaningful. Systematic
uncertainty due to ISR and FSR is 7 MeV, quoted from the result of standard
method.
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sources systematic uncertainty σMW [ MeV]

Electron resolution 2
Electron energy offset 21

Hard recoil model 5
Underlying event 7

Backgrounds 2
PDF 10
QED 7

Combined 26

Table 9.1: List of systematic uncertainties of ratio method.

9.3 Conclusion and Discussion

The measured W boson mass in ratio method using the 1 fb−1 DØ Run IIa
data in electron channel is MW = 80435 ± 43(stat) ± 26(sys) MeV. This
result is consistent with the current world average value of W boson mass
MW = 80399± 23 MeV.

It’s interesting to compare the above result with that from the standard
method [11], as both method measure W mass on the same 1 fb−1 DØ RunIIa
data. The measured W mass in standard method is MW = 80401±21(stat)±
38(sys) MeV. Compared with the standard method, MW measured in ratio
method has larger statistical uncertainty and smaller systematic uncertainty.
That’s what we expected as a consequence of the direct MT comparison of
Z and W in the mass fitting of ratio method. Limitation of Z statistics is
reflected in the final statistical uncertainty. The same Z statistical limitation
in standard method takes the form of uncertainty of the electron energy scale
and offset parameters which is determined by the invariant mass of Z data.

Calculation of transverse mass MT only involves the transverse momentum
of electrons from Z, information of the z component of electron’s momentum
is discarded. As a result, the overall uncertainty of ratio method should be
worse than its standard method counterpart. The advantage of ratio method
relies on the direct calculation of MT from Z → ee data. By skipping the
construction of a full fledged, complicated fast Monte Carlo model (which
starts from the physical 4 momentum of particles) of W → ee and Z → ee
events, ratio method is considered to be a easy and fast alternative way of
measuring the W boson mass. Corrections needed to apply to Z → ee events
are less complicated than the full construction of fast Monte Carlo model.
Therefore the systematic uncertainty is expected to be less in the ratio method.

However this convenience doesn’t come without price. In addition to the
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inherent worse uncertainty, ratio method (used in this analysis) is only ap-
plicable to MT spectrum, unlike in the standard method where peT and /ET
spectra can be used in mass fitting as well. In this particular analysis, the
acceptance cut that requires tight electron to be in CC causes substantial bias
in the lower MT range. Lepton pT cut is raised from 25 GeV to 30 GeV and
the fitting range is chosen to be outside of the bias region in order to have
a successful mass fit. More events could have been included (hence better
statistical uncertainty) in the final fitting if the tight electrons in EC are also
included in the event selection, not just because of the added events, but also
because of the relaxed lepton pT cut and fitting range in this case (Fig 6.21
to Fig 6.23). Lack of knowledge for EC electrons prevents its inclusion in this
analysis.

Larger dataset (up to 10 fb−1) of DØ and CDF Run IIb will be used in the
future W mass measurement. Statistical uncertainty as well as the electron
calibration uncertainty will be significantly lowered. Indirect constraints on the
mass of Higgs boson will be even more stringent. The complexity of fast Monte
Carlo simulation of those high luminosity events is a big challenge for standard
method. If we could understand the smearing algorithms of electron and recoil
system for those high luminosity events, reasonable extra smearing correction
is plausible to implement accordingly and that will make ratio method a worthy
alternative way of measuring W boson mass.
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Figure 9.3: Comparison of Z → ee backgrounds and signal. The MT of QCD
background is calculated at fixed MW = 80.40 GeV.

146



[GeV]WM
80.3 80.4 80.5 80.6 80.7

K
-S

 p
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

<96[GeV]T66<M
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Appendix A

Derivation of cos θ∗ in the
Collins Soper Frame

In the lab frame, the cartesian 4-vector of the protons and antiprotons are
pµh1,h2

=
√
S/2(1, 0, 0,±1), where

√
S = 1.98TeV , h1 stands for proton and

h2 for antiproton. Because of the symmetry in the φ direction of Z boson,
without losing generality, we consider Z boson only has transverse momentum
in x-axis. The 4-momentum of Z boson is qµ = (q0, QT , 0, q

3) in the lab frame.
If we denote the lab frame as O and the Z boson rest frame is O′, then we have
relation p′µ(rest) = Λµ

ν (lab→ rest)pν(lab). Collins-Soper frame is essentially
the Z boson rest frame, with axis rotated to make z-axis bisect the angle
between proton monmentum ph1 and negative antiproton momentum −ph2 in
the Z boson rest frame.

By definition, the boost matrix from lab frame O to the Z boson rest frame
O′ is

Λµ
ν (lab→rest) =



γ −γβ1 −γβ2 −γβ3

−γβ1 1 +
(γ − 1)β2

1

β2

(γ − 1)β1β2

β2

(γ − 1)β1β3

β2

−γβ2
(γ − 1)β1β2

β2
1 +

(γ − 1)β2
2

β2

(γ − 1)β2β3

β2

−γβ3
(γ − 1)β1β3

β2

(γ − 1)β2β3

β2
1 +

(γ − 1)β2
3

β2


.

(A.1)
Boost from lab frameO to boson rest frameO′ is β = q(lab)/q0 = (QT/q

0, 0, q3/q0).
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It is easy to show

γ =
1√

1− β2
=
q0

Q
(A.2)

−γβ1 = −q
0

Q

QT

q0
= −QT

Q
(A.3)

−γβ2 = 0 (A.4)

−γβ3 = −q
0

Q

q3

q0
= −q

3

Q
(A.5)

1 +
(γ − 1)β2

1

β2
= 1 +

(γ − 1)(QT/q
0)2

[Q2
T + (q3)2]/(q0)2

= 1 +
[(q0/Q)− 1]Q2

T

Q2
T + (q3)2

= 1 +
1

Q

(q0 −Q)Q2
T

(q0 −Q)(q0 +Q)

= 1 +
1

Q

Q2
T

q0 +Q
(A.6)

(γ − 1)
β1β2

β2
= 0 (A.7)

(γ − 1)
β1β3

β2
= (γ − 1)

(QT/q
0)(q3/q0)

1− 1/γ2
=
QT q

3

(q0)2

γ2

γ + 1
=

QT q
3

Q(q0 +Q)
(A.8)

1 +
(γ − 1)β2

2

β2
= 1 (A.9)

(γ − 1)β2β3

β2
= 0 (A.10)

1 +
(γ − 1)β2

3

β2
= 1 +

(γ − 1)(q3/q0)2

1− 1/γ2
= 1 + (

q3

q0
)2 γ2

γ + 1
= 1 +

(q3)2

Q(q0 +Q)
(A.11)

With the above relations, we can rewrite Eq (A.1) as

Λµ
ν (lab→rest) =

1

Q


q0 −QT 0 −q3

−QT Q+
Q2
T

q0 +Q
0

QT q
3

q0 +Q
0 0 Q 0

−q3 QT q
3

q0 +Q
0 Q+

(q3)2

q0 +Q

 . (A.12)

Q =
√

(q0)2 −Q2
T − (q3)2 is the Z boson invariant mass and the transverse

mass is defined as MT =
√
Q2 +Q2

T . Now we can write the proton and
antiproton’s 4-momentum in the Z boson rest frame p′µh1,h2

(rest) = Λµ
ν (lab→
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rest)pνh1,h2
(lab).

p′µh1
(rest) =

√
S

2
(
q0 − q3

Q
,−QT

Q

q0 +Q− q3

q0 +Q
, 0,

(Q− q3)(q0 +Q) + (q3)2

Q(q0 +Q)
)

−p′µh2
(rest) =

√
S

2
(−q

0 + q3

Q
,
QT

Q

q0 +Q+ q3

q0 +Q
, 0,

(Q+ q3)(q0 +Q) + (q3)2

Q(q0 +Q)
)

It’s obvious that the proton and antiproton’s momentum generally would
not be collinear any more in the Z boson rest frame. We can determine the
new z-axis as the bisector of proton and antiproton’s momentum in the Z rest
frame. For simplicity, we rewrite the spatial components of Eq (A.13) and
Eq (18) by taking out proportionality.

ph1
(rest) = (−QT (q0 +Q− q3), 0, (Q− q3)(q0 +Q) + (q3)2) (A.13)

−ph2
(rest) = (−QT (q0 +Q+ q3), 0, (Q+ q3)(q0 +Q) + (q3)2) (A.14)

The length of ph1
is

|p|2h1
= Q2

T (q0 +Q− q3)2 + [(Q− q3)(q0 +Q) + (q3)2]2

= (q0)2Q2
T + 2q0QQ2

T +Q2Q2
T − 2q0q3Q2

T − 2QQ2
T q

3 +Q2
T (q3)2

+[Q2(q0)2 + 2q0Q3 +Q4 − 2Qq3(q0)2 − 4q0q3Q2 − 2q3Q3 + (q0)2(q3)2

+2q0(q3)2Q+ (q3)2Q2]

+2Qq0(q3)2 + 2(q3)2Q2 − 2q0(q3)3 − 2Q(q3)3 + (q3)4

= (q0)2M2
T + 2q0QM2

T +Q2M2
T − 2q0q3M2

T − 4Qq3(q0)2 + (q3)2M2
T − 2q0q3Q2

+(q0)2(q3)2 + 4Qq0(q3)2 + 2(q3)2Q2 − 2q0(q3)3 + (q3)4

= (q0)2[(q0)2 − 2q0q3 + (q3)2] +Q2[(q0)2 − 2q0q3 + (q3)2]

+2Q(q0)[(q0)2 − 2q0q3 + (q3)2]

= (q0 +Q)2(q0 − q3)2. (A.15)

Flipping q3 with −q3 in Eq (A.15), we can get

|p|2h2
= (q0 +Q)2(q0 + q3)2. (A.16)

Now we are ready to normalize the proton and negative antiproton vector
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ph1
and −ph2

,

p̂h1
(rest) =

(
−QT (q0 +Q− q3)

(q0 +Q)(q0 − q3)
, 0,

(Q− q3)(q0 +Q) + (q3)2

(q0 +Q)(q0 − q3)

)
,(A.17)

−p̂h2
(rest) =

(
−QT (q0 +Q+ q3)

(q0 +Q)(q0 + q3)
, 0,

(Q+ q3)(q0 +Q) + (q3)2

(q0 +Q)(q0 + q3)

)
.(A.18)

In the Z boson rest frame, we can write the z-axis of Collins-Soper frame
as bisector of p̂h1

and −p̂h2

z(CS) = p̂h1
− p̂h2

. (A.19)

It’s easy to show that

−QT (q0 +Q− q3)

(q0 +Q)(q0 − q3)
+
−QT (q0 +Q+ q3)

(q0 +Q)(q0 + q3)
= − 2QQT q

3

(q0 +Q)M2
T

,

(Q− q3)(q0 +Q) + (q3)2

(q0 +Q)(q0 − q3)
+

(Q+ q3)(q0 +Q) + (q3)2

(q0 +Q)(q0 + q3)
=

2(QM2
T +Q2q0)

(q0 +Q)M2
T

.

So the Collins-Soper z-axis would then be

z(CS) =
2Q

(q0 +Q)M2
T

(−QT q
3, 0,M2

T +Qq0). (A.20)

We can easily calculate that

(−QT q
3)2 + (M2

T +Qq0)2 = M2
T (Q+ q0)2, (A.21)

therefore the vector length of z(CS) is 2Q/MT and the unit z-axis of Collins-
Soper frame is

ẑ(CS) =
1

(q0 +Q)MT

(−QT q
3, 0,M2

T +Qq0). (A.22)

Simple geomeometrical relations of the Collins-Soper frame is shown in
Fig A.1. Half of the opening angle between proton momentum and negative
momemtum of antiproton is α/2 = arctan(QT/Q). Collins-Soper frame is
rotated by an angle ω = arctan((−QT q

3)/(M2
T +Qq0)) in the x-z plane.
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α/2
ω { ~̂ph1 } −~̂ph2

} Q/MT

}QT /MT

z(rest)

x(rest)

z(CS)

x(CS)
2Q

(q0 +Q)M2
T

(M2
T +Qq0,−QT q

3)

Figure A.1: Geometrical illustration of the Collins-Soper frame. Without
loosing generality the y-axis is suppressed in both the lab frame and the Z
boson rest frame. The Collins-Soper is just the Z boson rest frame rotated by
ω angle in the x-z plane.

Electrons in the Z boson rest frame have 4-momentum

p′µe (rest) = Λµ
ν (lab→rest)pνe =

1

Q


q0p0

e −QTp
1
e − q3p3

e

−QTp
0
e + (Q+

Q2
T

q0 +Q
)p1
e + (

QT q
3

q0 +Q
)p3
e

p2
eQ

−q3p0
e + (

QT q
3

q0 +Q
)p1
e + (Q+

(q3)2

q0 +Q
)p3
e

 .

(A.23)
We know in the Z boson rest frame, the magnitude of electron momentum

should be exactly half of Z boson mass |pe|(rest) = Q/2. The polar angle θ∗

of electron in the Collins-Soper frame is determined by

cos θ∗ =
pe(rest)

|pe|(rest)
· ẑ(CS)

=
2

Q

1

Q

1

MT (q0 +Q)
[Q2

T q
3p0
e − (Q+

Q2
T

q0 +Q
)QT q

3p1
e −

(QT q
3)2

q0 +Q
p3
e

−(M2
T +Qq0)q3p0

e + (
QT q

3

q0 +Q
)(M2

T +Qq0)p1
e + (Q+

(q3)2

q0 +Q
)(M2

T +Qq0)p3
e].

Expand all the terms with q0 +Q as denominators in the r.h.s. of the above
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equation, we can easily check the following relations hold

− Q3
T q

3p1
e

q0 +Q
+
QTM

2
T q

3p1
e

q0 +Q
+
QTQq

0q3p1
e

q0 +Q
= QQT q

3p1
e,

−Q
2
T (q3)2p3

e

q0 +Q
+

(q3)2M2
Tp

3
e

q0 +Q
+

(q3)2Qq0p3
e

q0 +Q
= Q(q3)2p3

e. (A.24)

Then we can rewrite Eq (A.24) simply as

cos θ∗ =
2

Q2MT (q0 +Q)
[−Q2q3p0

e −Qq0q3p0
e −QQT q

3p1
e +Q(q3)2p3

e

+QQT q
3p1
e +QM2

Tp
3
e +Q2q0p3

e]

=
2

Q2MT (q0 +Q)
[−Q2q3p0

e −Qq0q3p0
e +Q(q0)2p3

e +Q2q0p3
e]

=
2

QMT

(q0p3
e − q3p0

e). (A.25)

Now we substitute pµe with pµe− to make it more cleat that cos θ∗ we calcu-
lated is for electron. We also use pµe+ to stand for the 4-momentum of positron.
Since we know both the electron and positron decay from the Z boson, we have
qµ = pµe− +pµe+ . Equipped with this equation, we can further rewrite Eq (A.25)

q0p3
e− − q3p0

e− = (p0
e− + p0

e+)p3
e− − (p3

e− + p3
e+)p0

e−

=
1

2
(p3
e−p

0
e+ + p3

e−p
0
e+ − p0

e−p
3
e+ − p0

e−p
3
e+)

=
1

2
(p0
e−p

0
e+ − p0

e−p
3
e+ + p3

e−p
0
e+ − p3

e−p
3
e+

−p0
e−p

0
e+ − p0

e−p
3
e+ + p3

e−p
0
e+ + p3

e−p
3
e+)

=
1

2
[(p0

e− + p3
e−)(p0

e+ − p3
e+)− (p0

e− − p3
e−)(p0

e+ + p3
e+)]

=
1√
2

(p0
e− + p3

e−)
1√
2

(p0
e+ − p3

e+)− 1√
2

(p0
e− − p3

e−)
1√
2

(p0
e+ + p3

e+)

= P+
e−P

−
e+ − P

−
e−P

+
e+ . (A.26)

Putting Eq (A.26) into Eq (A.25), we get the exact result as Eq (2.54)

cos θ∗ =
2

QMT

(P+
e−P

−
e+ − P

−
e−P

+
e+) =

2√
Q2(Q2 +Q2

T )
(P+

e−P
−
e+ − P

−
e−P

+
e+).

(A.27)
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A.0.1 Redo the C-S frame calculation in 3 dimension

We have previously shown the analytical calculation of cos θ∗ by taking an
assumption that the W/Z boson transverse momentum is aligned along the
x-axis. Although this assumption doesn’t alter the calculation of any physical
variable, I still would like to give the complete cos θ∗ calculation in the situation
where the boson pT has both x and y component, as it proves to be useful
when I painstakingly debug the C++ code with the analytical calculation as a
crosscheck.

If the 4-momentum of Z boson in the lab frame is qµ = (q0, q1, q2, q3), the
general boost matrix is

Λµ
ν (lab→rest) =

1

Q



q0 −q1 −q2 −q3

−q1 Q+
(q1)2

q0 +Q

q1q2

q0 +Q

q1q3

q0 +Q

−q2 q1q2

q0 +Q
Q+

(q2)2

q0 +Q

q2q3

q0 +Q

−q3 q1q3

q0 +Q

q2q3

q0 +Q
Q+

(q3)2

q0 +Q


.

(A.28)
The spatial component of the proton and antiproton momentum is then

ph1
(rest) = (−q1(q0 +Q) + q1q3,−q2(q0 +Q) + q2q3, (−q3 +Q)(q0 +Q) + (q3)2),

ph2
(rest) = (−q1(q0 +Q)− q1q3,−q2(q0 +Q)− q2q3, (−q3 −Q)(q0 +Q)− (q3)2).

The length of ph1
and ph2

is

|p|2h1
= (q0 +Q)2(q0 − q3)2, (A.29)

|p|2h2
= (q0 +Q)2(q0 + q3)2. (A.30)

Now we can rewrite the normalized vector of ph1
and −ph2

as

p̂h1
=

(
−q1(q0 +Q) + q1q3

(q0 +Q)(q0 − q3)
,
−q2(q0 +Q) + q2q3

(q0 +Q)(q0 − q3)
,
(−q3 +Q)(q0 +Q) + (q3)2

(q0 +Q)(q0 − q3)

)
,

−p̂h2
=

(
q1(q0 +Q) + q1q3

(q0 +Q)(q0 + q3)
,
q2(q0 +Q) + q2q3

(q0 +Q)(q0 + q3)
,
(q3 +Q)(q0 +Q) + (q3)2

(q0 +Q)(q0 + q3)

)
.

The z-axis of Collins-Soper frame is then

z(CS) = p̂h1
− p̂h1

=
2Q

(q0 +Q)M2
T

(−q1q3,−q2q3,M2
T + q0Q). (A.31)
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Unit z-axis vector is

ẑ(CS) =
1

(q0 +Q)MT

(−q1q3,−q2q3,M2
T + q0Q). (A.32)

Electron 4-momentum in the boson rest frame is

p′µe (rest) =
1

Q



q0p0
e − q1p1

e − q2p2
e − q3p3

e

−q1p0
e + (Q+

(q1)2

q0 +Q
)p1
e +

q1q2

q0 +Q
p2
e +

q1q3

q0 +Q
p3
e

−q2p0
e +

q1q2

q0 +Q
p1
e + (Q+

(q2)2

q0 +Q
)p2
e +

q2q3

q0 +Q
p3
e

−q3p0
e +

q1q3

q0 +Q
p1
e +

q2q3

q0 +Q
p2
e + (Q+

(q3)2

q0 +Q
)p3
e


.

(A.33)
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