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Abstract of the Thesis
Interactive Dimensional Synthesis of Spherical 6R

Closed Chains and Planar Parallel Manipulators via
Constraint Manifold Modification

by
Aditya Gupta

Master of Science
in

Mechanical Engineering
Stony Brook University

2010

In this thesis the dimensional synthesis of a spherical 6R closed chain and

a class of planar parallel manipulator is discussed.

The kinematic constraints of the planar as well as the spherical mecha-

nisms relate to the constraints that limit the position of the links of planar

and spherical closed chains in the Cartesian space. Quaternions are used to

represent planar and spherical displacements. The problem of synthesizing

smooth piecewise rational motions is converted into that of designing smooth

piecewise rational curves in the space of quaternions(image space). The kine-

matic constraints are transformed into geometric constraints for the design of

quaternion image curves.

An interactive, user friendly graphical tool is used for dimensional synthe-

sis. The graphical tool allows the user to visually contain the image curve

by simple geometric manipulation of the size, orientation, and the location of
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the constraint surfaces that is developed. The process is intuitive and lends

designers an understanding of the mechanism design methodology.
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Chapter 1

Introduction and Background

This thesis deals with the dimensional synthesis of spherical 6R and planar

parallel manipulators. This chapter gives a general overview of the existing

work in the area of dimensional synthesis of 6R closed chain and planar parallel

manipulator.

Mechanisms are usually designed for three kinds of purposes: 1. function

generation, 2. path generation or 3. motion generation. We are concerned

with the dimensional synthesis of spherical 6R mechanisms and planar paral-

lel manipulators for motion generation, that is, to guide a rigid body through

a given rational motion. Rational motions are defined by a ratio of two poly-

nomial functions and are compatible with the industry standard Non-Uniform

Rational B-splines (NURBS) based CAD/CAM systems.

The past two decades have witnessed a significant body of work emanating

from the application of well-known curve and surface design algorithms from

computer aided geometric design(CAGD) to the field of theoretical kinemat-

ics for the purpose of developing rational Bezier and B-Spline motions of rigid
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bodies. The idea behind such a synergy is that the problem of designing ratio-

nal curves in a higher dimensional projective space via a special mapping. By

choosing the quaternion representation of the displacement and orientation,

the problem is further reduced to designing curves in the space of quaternions.

Rational motions, with applications spanning across areas such as motion an-

imation in computer graphics, task specification in mechanism synthesis, and

virtual reality systems as well as Cartesian motion planning in robotics, are an

attractive proposition since they integrate well the industry standard nonuni-

form rational B-spline(NURBS) based computer aided design/computer aided

manufacturing(CAD/CAM) system. Furthermore, from a computational per-

spective they can easily exploit fast and stable algorithms from CAGD.

Theory of mechanisms synthesis is well-developed (see Sandor and Erd-

man [1], Suh and Radcliffe [2], and McCarthy [3]), and there has been a great

deal of academic research in the development of software systems for the syn-

thesis of mechanisms (KINSYN III from Rubel and Kaufamn [4], LINCAGES

from Erdman and colleagues [5, 6], Kihonge et al. [7], Spades from Larochelle [8],

Perez and McCarthy [9], Su and McCarthy [10], Synthetica from Su et al. [11]).

In the commercial domain, SyMech [12] and WATT [13] are two well-known

software systems for planar mechanisms design. For computer aided design

of spherical mechanisms, McCarthy, Larochelle, Vance, and colleagues have

devoted their efforts to the design of spherical 4R mechanisms in traditional

Human Computer Interaction (HCI) as well as virtual reality (VR) environ-

ment for the motion guidance through a given number of positions (see Sphinx
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from Larochelle et al. [14], Sphinxpc from Ruth and McCarthy [15], SphinxVR

from Furlong et al. [16], Osiris from Tse and Larochelle [17]). Ketchel and

Larochelle [18] also developed SphinxCAM to aid in automated assembly and

manufacturing of spherical 4R mechanisms designed in systems such as Sphinx

and Osiris. Kraal and Vance et al. [19] recognized the need to develop user

interfaces that were better suited to the cognitive and perceptive nature of de-

signers. Their efforts led to VEMCES, a virtual reality interface for spherical

4R mechanism design.

Spherical mechanisms constrain the motion of a moving object on the sur-

face of a sphere and all the moving surfaces are concentric spheres. They are

known to be compact and provide a wide range of transmission characteristics

(Chiang [20]).

A parallel manipulator consists of a moving platform that is connected to

the base by several legs. Another definition is given by (Merlet 2006 [21]):

a generalized parallel manipulator is a closed-loop kinematic chain mecha-

nism whose end-effector is linked to the base by several independent kinematic

chains.

The general approach of the work presented is closely related to the kine-

matic mapping approach for dimensional synthesis of planar and spherical

mechanisms pioneered by Ravani and Roth [22]. Their work was followed by

Bodduluri and McCarthy [23], Bodduluri [24], and Larochelle [25]. Their ap-

proach involved minimizing the distance error between the given positions and

the image curve of the chain. This resulted in approximate motion synthesis.
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Brunnthaler et.al. [26] used kinematic mapping to solve the problem of design-

ing a spherical four-bar mechanism that interpolates a coupler through five

given orientations. Venkataramanujam and Larochelle [27] and Larochelle [28]

used parameterized constraint manifold and employed nonlinear optimization

to give numerical methods for approximate motion synthesis of open and closed

chains.

To study the dimensional synthesis problem from the perspective of con-

strained motion interpolation. Jin and Ge [29, 30] and Purwar et al. [31, 32, 33]

have studied the problem of motion interpolation under kinematic constraints

for planar and spherical 2R, 3R open, and 6R closed chains as well as spatial

SS chains. By using quaternions or dual quaternions and kinematic mapping

approach they transformed the problem of constrained motion interpolation

into designing a rational curve constrained to satisfy geometry of the constraint

manifold. Starting with an initial unconstrained curve, they modify the curve

using an iterative numerical method until it fits inside the constraint man-

ifold. The current work investigates the inverse problem, that is, to change

the constraint manifold while keeping the given rational curve fixed for dimen-

sional synthesis of spherical 6R and planar parallel mechanisms. Jun et al. [34]

designed and developed a system for the dimensional synthesis of planar 6R

mechanisms; this work is an extension of that to the spherical mechanisms as

well as to the planar parallel manipulators.

The design method treats a spherical 6R closed chain as a mechanism as-

sembled together using two open chains connected at the ends. Whereas a
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planar parallel manipulator is treated as three open chains connected to a

moving platform. Each open chain imposes kinematic constraints that limit

the positions and orientations of the object connected to the end link. We use

the algebraic form of the constraint manifold (McCarthy [35] and Ge [36]) for

the spherical 6R closed chains and Jin [37] for the planar open chains. Thus,

the kinematic constraints are transformed into geometric constraints, and the

given rational motion is transformed into a rational curve in the image space.

This way, the problem reduces to finding the constraint manifold that accom-

modates the given rational curve. Algebraically, the kinematic constraints are

derived in the inequality form, where the limits of the inequalities are functions

of link lengths, while the constraint functions themselves incorporate parame-

ters that describe the location and orientation of fixed and moving frames. In

the end, we design open chains that simultaneously satisfy the kinematic con-

straints and the motion requirements. A visual interpretation of this approach

is that we find the smallest possible constraint manifold that will contain the

given image curve entirely.

The parallel manipulators have very advantageous as compared to serial

manipulators. As they possess excellent load to weight ratio, high stiffness and

positioning accuracy and good dynamic behavior.(Merlet 2006 [21]) In contrast

to a serial manipulator the load is often carried as a cantilever. The positioning

error of the end effector tend to average out in a parallel manipulator whereas

its cumulative in serial manipulators. All of these advantages have increased

the use of parallel manipulators as compared to serial manipulators.
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In industry and scientific facilities, parallel manipulators are widely used

for different areas such as flight simulations, high speed and high precision

machining center, pointing devices, medical applications, mining machines,

walking machines, adjustable articulated trusses and etc.

Figure 1.1: A parallel manipulator being used in manufacturing process.
Source: courtesy of Mikrolar Inc.(http://mikrolar.com/industrial.html)

Figure 1.2: 5 Axis Water-Jet Cutting System. Source: courtesy of Mikrolar
Inc.(http://mikrolar.com/waterjet.html)
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The rest of the thesis is organized as follows. Chapter 2 deals with kine-

matic constraint of planar parallel manipulator. Chapter 3 deals with kine-

matic constraint of spherical 3R open chain and spherical 6R closed chain.

Chapter 4 is a guide to use the software tool developed for dimensional syn-

thesis. The final chapter summarizes the work of this research and makes a

few salient points regarding the future development of this work.
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Chapter 2

Kinematic Constraints of Planar
Parallel Manipulator

2.1 Introduction

This chapter deals with the formulation of kinematic constraints of planar par-

allel manipulator using quaternion based representation found in McCarthy [35]

and Ge [36].

The organization of this chapter is as follows. Section 2.2 explains the

classification of planar parallel manipulators, Section 2.3 explains planar dis-

placements and planar quaternions and Section 2.4 presents the constraint

manifolds of different types of planar open chain

2.2 Classifying General Planar Three-Legged

Parallel Manipulators

A three legged parallel manipulator is a closed-loop kinematic chain whose

end-effectors are linked to a base (platform) by three independent kinematic
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chains. Each chain is connected by three independent one DOF joints, one

of which is active. Since the displacements of the platform is confined to the

plane, only Rotary(R) and Prismatic(P) pairs are used (Hayes [38]).

The possible combinations of R and P in a three-legged platform are:

RRR,RPR,RRP,RPP,PRR,PPR,PRP,PPP

The PPP chain must be excluded because this combination will give rise to

translations only with no change in orientation. Thus, there are seven possible

kinematic chains.

Figure 2.1: The seven possible leg topologies

The active joint in a leg is identified with an underscore, RPR, for example.

Since any one of the three joints in any of the seven allowable simple kinematic

chains may be actuated there are twenty-one possible leg architectures. When

the value of the actuated joint input in a leg is specified, the joint is effectively

9



Figure 2.2: Three legged planar parallel manipulator

locked and may be conceptually removed, temporarily, from the chain. What

remains is a kinematic chain connected with two passive joints. It is seen that

the resulting passive sub-chain is one of only four types: either RR, PR, RP,

or PP. For the moment we exclude PP-type legs from the enumeration since

platforms containing two or three such legs either move uncontrollably or are

not assemblable when the actuated joint variables are specified Merlet [39] and

Hayes [40] . PP type legs are considered separately. This reduces the number

of possible leg architectures presently under consideration from twenty-one to

eighteen. They are listed, according to passive sub-chain, in table below:

The platform is considered to be symmetric when all three legs are the same

type, each possessing the same type of actuated joint at the same location in

the kinematic chain. The leg is otherwise considered to be asymmetric.
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RR-type PR-type RP-type

RRR RPR RRP
RRR PRR RRP
RRR PRR RPR
PRR PPR PRP
RPR PPR RPP
RRP PRP RPP

Table 2.1: 18 of 21 possible lower pair leg architectures

This number is arrived at by first considering the 18 kinematic chains in

Table 1 to choose from for each leg. A selection of r different elements taken

from a set of n, without regard to order, is a combination of the n elements

taken r at a time. If the elements are allowed to be counted more than once

the number of possible combinations is given by

C(n, r) =
n!

r!(n− r)!
(2.1)

C(18,3) = 816

There are, in addition, three possible PP-type legs: RPP, PRP, and PPR.

However, a platform can only contain one PP-type leg. This one leg can be

combined with any of the 18 listed in Table 1. The total number of platforms

containing a single PP-type leg can therefore be counted as:

3(C(18,2)) = 459

Combining the results we get the number of all possible general planar

three-legged platforms jointed with lower pairs possessing three DOF: 1275
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2.3 Planar Displacements and Planar Quater-

nions

A planar displacement can be represented by a planar quaternion (see Bottema

and Roth [41] and McCarthy [35]). Planar quaternions have been used for

designing planar open and closed chains (Ravani and Roth [42], Larochelle [43],

Murray et al. [44], Perez and McCarthy [45]).

For a planar displacement shown in Figure 2.3, let d1, d2 denote the co-

ordinates of the origin of the moving frame M in the fixed frame F and α

denote the rotation angle of M relative to F. Then a planar displacement can

be represented by a planar quaternion, Z = Z1εi + Z2εj + Z3k + Z4, where

(i, j,k, 1) form the quaternion basis and ε is the dual unit with the property

ε2 = 0. The components of the planar quaternion, Z = (Z1, Z2, Z3, Z4), are

given by

Z1 = (d1/2) cos(α/2) + (d2/2) sin(α/2),
Z2 = −(d1/2) sin(α/2) + (d2/2) cos(α/2),
Z3 = sin(α/2),
Z4 = cos(α/2).

(2.2)

These four components can be identified as coordinates of a point in four

dimensional space. The point Z is called the image point of a planar displace-

ment. The set of image points that represent all planar displacements is called

the image space of planar displacements and is denoted as Σp. In view of (2.2),

the coordinates of an image point must satisfy the equation:

Z2
3 + Z2

4 = 1. (2.3)

The above equation may be interpreted as defining a hyper-circular cylinder
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in four dimensions.

Figure 2.3: A planar displacement.

If the point x = (x, y) in R2 is identified with x = yiε− xiε + k, then the

result of planar displacement of x is obtained by

X = ZxZ∗, (2.4)

where Z = Z4 − Z1εi− Z2εj− Z3k is the conjugate of Z.

We can use homogeneous transform matrix to represent Eq. (2.4):

[
X
1

]
= [A]

[
x
1

]
, (2.5)

where

[A] =
1

Z2
3 + Z2

4




Z2
4 − Z2

3 −2Z3Z4 2(Z1Z4 − Z2Z3)
2Z3Z4 Z2

4 − Z2
3 2(Z1Z3 + Z2Z4)

0 0 Z2
3 + Z2

4


 . (2.6)

Note that when Zi (i = 1, 2, 3, 4) is replaced by wZi, where w is a nonzero

scalar, the matrix [A] is unchanged. From this perspective, the four compo-

nents of a planar quaternion can also be considered as a set of homogeneous

coordinates for a planar displacement.
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Quaternion algebra is also used for composing two successive planar dis-

placements. Let Z0,Z1 denote two planar displacements. The composition of

two planar displacements Z1 followed by Z0 is given by the quaternion product

Z0Z1.

2.4 Kinematic Constraints of Planar Open Chain

This section reviews the formulation of kinematic constraints of planar RRR,

RRP, RPR, PRR and PRP open chains. This has been referenced from Jin

[37].

2.4.1 Planar RRR Open Chain

Figure 2.4: A planar 3R open chain.

Consider a planar RRR open chain as shown in Fig. 2.4. The length of the
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first link is a, the length of the second link is b and θ, φ, ψ are joint angles for

three revolute joints respectively. In the figure, F and M mark the fixed and

the moving frames, respectively. The fixed pivot is located at (x, y), while the

moving frame is located at a distance of h from the end pivot. The moving

frame is assumed to be tilted by angle of α from the line joining the end pivot

and the origin of the moving frame. When the fixed and moving frames are

located at A and B respectively the parameterized equation of the constraint

manifold Z(θ, φ, ψ) of a RRR robot open chain is obtained as follows:

Z(θ, φ, ψ) = Z(θ)X(a)Z(φ)X(b)Z(ψ). (2.7)

The coordinates of Z(θ, φ, ψ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 =
a

2
cos

θ − φ− ψ

2
+

b

2
cos

θ + φ− ψ

2
, (2.8)

Z2 =
a

2
sin

θ − φ− ψ

2
+

b

2
sin

θ + φ− ψ

2
,

Z3 = sin
θ + φ + ψ

2
,

Z4 = cos
θ + φ + ψ

2
.

From Eq. (2.8), it can be seen that the coordinates, Zi, satisfy the following

equations:

Z2
1 + Z2

2 = a2/4 + b2/4 + (ab/2) cos(φ). (2.9)

Z2
3 + Z2

4 = 1. (2.10)

Since the range of cos(φ) is [-1 1], Eq. (2.9) can be reduced to:

(a− b)2/4 ≤ Z2
1 + Z2

2 ≤ (a + b)2/4. (2.11)
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The variables θ and ψ can be eliminated from Eq. (2.8) to yield the follow-

ing equation:

4Z2
1 + 4Z2

2 − Z2
3(a2 + b2 + 2ab cos φ)− Z2

4(a2 + b2 + 2ab cos φ) = 0 (2.12)

a2 + b2 + 2ab cos φ is the square of the distance between the base joint and

third joint. Let it be denoted by R. Thus the equation becomes

Z2
1 + Z2

2 −
R2

4
Z2

3 −
R2

4
Z2

4 = 0 (2.13)

Let the points of R4 be denoted x=(x,y,z,w) so the above equation can be

written as:

x2 + y2 − R2

4
z2 − R2

4
w2 = 0 (2.14)

This can be written in the quadratic form as:

xT [Q]x = 0 (2.15)

with the coefficient matrix as:

Q =




1 0 0 0
0 1 0 0

0 0 −R2

4
0

0 0 0 −R2

4


 (2.16)

As shown in the Figure 2.4 a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:
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[Q′] = [C−1]T [Q][C−1] (2.17)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (
x

2
,
y

2
, 0, 1), (2.18)

[H] = (
h

2
cos

α

2
,−h

2
sin

α

2
, sin

α

2
, cos

α

2
)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) = 0 (2.19)

Simplifying the above equation we get:

which gives the following equation:

(Z2
4 − Z2

3)(σ1 + σ2) + 2Z3Z4(τ2 − τ1) + Z1Z3 cos α (2.20)

−Z1Z4sinα− Z2Z3sinα− Z2Z4cosα = 0

Simplifying Eq. (2.20)

F (Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.21)

σ1 = (y + h sin α)/2, τ1 = (x + h cos α)/2,
σ2 = (−x + h cos α)/2, τ2 = (y − h sin α)/2.

(2.22)

(a− b)2

4
≤ F (Z1, Z2, Z3, Z4) ≤ (a + b)2

4
, (2.23)
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Eq. (2.80) characterize the kinematic constraints of a planar RRR open

chain and define the constraint manifold for the chain.

Thus, the constraint manifold of the planar RRR closed chains is given

by a pair of concentric and co-oriented sheared hyperboloid and for the a

mechanism to pass through a given motion, the image curve would have to be

contained within the constraint manifold.

Using the projective property of the planar quaternion, to visualize the hy-

pergeometric shape described by Eq.(2.80), we observe its intersection with the

hyperplane Z4 = 1; in the other words, we project Eq.(2.80) onto hyperplaneZ4 =

1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4), both of which

represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) =
(z1 − σ1z3 − τ1)

2 + (z2 − σ2z3 − τ2)
2

z2
3 + 1

(2.24)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.79).

The volume field described by Eq.(2.24) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [L2
min/4, L

2
max/4], and to be standard, we also reor-

ganize Eq. (2.24) to Eq.(2.25)

(z1 − σ1z3 − τ1)
2

c
+

(z2 − σ2z3 − τ2)
2

c
− z2

3 = 1 (2.25)

This is a typical sheared a circular hyperboloid in the projective (z1, z2, z3)

space. See table 2.2. The hyperboloid centralizes at (τ1, τ2, 0). The central axis

is z1−τ1
σ1

= z2−τ2
σ2

= z3

1
, so that the hyperboloid orients along the vector(σ1, σ2, 1).

It is evident to tell that the center and the orientation are decided by the

18



Geometric Features Constraint Parameters
Center (τ1, τ2, 0)

Orientation (σ1, σ2, 1)
Intersected Circle Lmin

2
≤ r =

√
c ≤ Lmax

2

Table 2.2: Parameters for the projective sheared hyperboloid presented by
equation (2.25)

location of the fixed pivot, the length of the floating link and the relative angle

of M to the floating link. Besides, the intersection circle of the hyperboloid

with the plane z3 = 0 has a radius, r, equal to
√

c, which determines the size of

the hyperboloid; the greater is c, the larger is the size of the hyperboloid. While

the value of F (z1, z2, z3, 1) is varying from the lower boundary to the ceiling,

except that the size of the hyperbolic manifold increases correspondingly, the

center and the orientation keep stationary.

The implicit surfaces is a set of concentric and co oriented sheared pro-

jective hyperboloid. The hyperboloid set occupies the space bounded by an

interior and an exterior hyperboloid in the projective image. Eq.(2.25).

2.4.2 Planar RRP Open Chain

Consider a planar RRP open chain as shown in Fig. 2.5. The length of the

first link is a, the length of the second link is b and θ and φ are joint angles for

two revolute joints respectively. The second link is a prismatic joint and will

have a maximum and minimum travel denoted by b1 and b2. In the figure, F

and M mark the fixed and the moving frames, respectively. The fixed pivot
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Figure 2.5: A planar RRP open chain.

is located at (x, y), while the moving frame is located at a distance of h from

the end pivot. The moving frame is assumed to be tilted by angle of α from

the line joining the end pivot and the origin of the moving frame. When the

fixed and moving frames are located at A and B respectively the parameterized

equation of the constraint manifold Z(θ, φ, b) of a RRP open chain is obtained

as follows:

The planar quaternion associated with the end link is given by

Z(θ, φ, b) = Z(θ)Z(φ)X(b), (2.26)
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where Z(θ, φ, b) = (Z1, Z2, Z3, Z4) are

Z1 =
b

2
cos

θ + φ

2
+

a

2
cos

θ − φ

2
, (2.27)

Z2 =
b

2
sin

θ + φ

2
+

a

2
sin

θ − φ

2
,

Z3 = sin
θ + φ

2
,

Z4 = cos
θ + φ

2
.

It is clear from the above equation that the components of the planar

quaternion must satisfy the algebraic equation:

(Z1 − b

2
Z4)

2 + (Z2 − b

2
Z3)

2 =
a2

4
. (2.28)

Eq.(2.29) and the range of b (b1 ≤ b ≤ b2) guarantee the motion is within

workspace.

The Eq. 2.26 can be simplified as:

Z1Z3 − Z2Z4 =
a

2
sin φ (2.29)

This can be written in the quadratic form as:

xT [Q]x = 0 (2.30)

with the coefficient matrix as:

Q =




0 0 1/2 0
0 0 0 −1/2

1/2 0 0 0
0 −1/2 0 0


 (2.31)
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As shown in the Figure 2.5 a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.32)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (
x

2
,
y

2
, 0, 1), (2.33)

[H] = (
h

2
cos

α

2
,−h

2
sin

α

2
, sin

α

2
, cos

α

2
)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) = C (2.34)

where C = constant

Simplifying the above equation we get:

(Z2
4 − Z2

3)(σ1 + σ2) + 2Z3Z4(τ2 − τ1) + Z1Z3 cos α (2.35)

−Z1Z4sinα− Z2Z3sinα− Z2Z4cosα = C

where

σ1 = x sin α, τ1 = y sin α,
σ2 = y cos α, τ2 = x cos α.

Equation( 2.35) represents a hyperbolic paraboloid(Refer [46]).
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Figure 2.6: A planar RPR open chain.

2.4.3 Planar RPR Open Chain

Consider a planar RPR open chain as shown in Fig. 2.6. The length of the

first link is b and θ and φ are joint angles for two revolute joints respectively.

In the figure, F and M mark the fixed and the moving frames, respectively.

The fixed pivot is located at (x, y), while the moving frame is located at a

distance of h from the end pivot. The moving frame is assumed to be tilted

by angle of α from the line joining the end pivot and the origin of the moving

frame.When the fixed and moving frames are located at A and B respectively

the parameterized equation of the constraint manifold Z(θ, b, φ) of a RPR open

chain is obtained as follows:

Z(θ, b, φ) = Z(θ)X(b)Z(φ). (2.36)
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The coordinates of Z(θ, φ, ψ) = (Z1, Z2, Z3, Z4) can be obtained as:

Z1 =
b

2
cos

θ − φ

2
, (2.37)

Z2 =
b

2
sin

θ − φ

2
,

Z3 = sin
θ + φ

2
,

Z4 = cos
θ + φ

2
.

From Eq. (2.37), it can be seen that the coordinates, Zi, satisfy the follow-

ing equations:

Z2
1 + Z2

2 = b2/4 (2.38)

Z2
3 + Z2

4 = 1. (2.39)

Eq. (2.38) we get:

b2
1/4 ≤ Z2

1 + Z2
2 = b2/4 ≤ b2

2/4. (2.40)

This can be written in the quadratic form as:

xT [Q]x = 0 (2.41)

with the coefficient matrix as:

Q =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 (2.42)

As shown in the Figure 2.6 a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:
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[Q′] = [C−1]T [Q][C−1] (2.43)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (
x

2
,
y

2
, 0, 1), (2.44)

[H] = (
h

2
cos

α

2
,−h

2
sin

α

2
, sin

α

2
, cos

α

2
)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) = 0 (2.45)

Simplifying the above equation we get:

(Z2
4 − Z2

3)(σ1 + σ2) + 2Z3Z4(τ2 − τ1) + Z1Z3 cos α (2.46)

−Z1Z4sinα− Z2Z3sinα− Z2Z4cosα = b2/4

Simplifying Eq. (2.46)

F (Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.47)

σ1 = (y + h sin α)/2, τ1 = (x + h cos α)/2,
σ2 = (−x + h cos α)/2, τ2 = (y − h sin α)/2.

(2.48)

b2
1

4
≤ F (Z1, Z2, Z3, Z4) ≤ b2

2

4
, (2.49)

Eq. (2.49) characterize the kinematic constraints of a planar RPR open

chain and define the constraint manifold for the chain.
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Thus, the constraint manifold of the planar RPR closed chains is given

by a pair of concentric and co-oriented sheared hyperboloid and for the a

mechanism to pass through a given motion, the image curve would have to be

contained within the constraint manifold.

Using the projective property of the planar quaternion, to visualize the hy-

pergeometric shape described by Eq.(2.49), we observe its intersection with the

hyperplane Z4 = 1; in the other words, we project Eq.(2.80) onto hyperplaneZ4 =

1. Denote (z1, z2, z3, 1) as the projected point of (Z1, Z2, Z3, Z4), both of which

represent the same planar displacement. Then, it is yielded that

F (z1, z2, z3, 1) =
(z1 − σ1z3 − τ1)

2 + (z2 − σ2z3 − τ2)
2

z2
3 + 1

(2.50)

where σ1, σ2, τ1 and τ2 are the same as Eq.(2.48).

The volume field described by Eq.(2.50) creates implicit surfaces of (z1, z2, z3).

The means to develop the isosurface is to, without loss of generality, set

F (z1, z2, z3, 1) = c, c ∈ [L2
min/4, L

2
max/4], and to be standard, we also reor-

ganize Eq. (2.50);

(z1 − σ1z3 − τ1)
2

c
+

(z2 − σ2z3 − τ2)
2

c
− z2

3 = 1 (2.51)

This is a typical sheared a circular hyperboloid in the projective (z1, z2, z3)

space. See table 3.1. The hyperboloid centralizes at (τ1, τ2, 0). The central axis

is z1−τ1
σ1

= z2−τ2
σ2

= z3

1
, so that the hyperboloid orients along the vector(σ1, σ2, 1).

It is evident to tell that the center and the orientation are decided by the

location of the fixed pivot, the length of the floating link and the relative angle

of M to the floating link. Besides, the intersection circle of the hyperboloid
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Geometric Features Constraint Parameters
Center (τ1, τ2, 0)

Orientation (σ1, σ2, 1)
Intersected Circle Lmin

2
≤ r =

√
c ≤ Lmax

2

Table 2.3: Parameters for the projective sheared hyperboloid presented by
equation (2.51)

with the plane z3 = 0 has a radius, r, equal to
√

c, which determines the size of

the hyperboloid; the greater is c, the larger is the size of the hyperboloid. While

the value of F (z1, z2, z3, 1) is varying from the lower boundary to the ceiling,

except that the size of the hyperbolic manifold increases correspondingly, the

center and the orientation keep stationary.

As a matter of fact, the implicit surfaces is a set of concentric and co

oriented sheared projective hyperboloid. The hyperboloid set occupies the

space bounded by an interior and an exterior hyperboloid in the projective

image. Eq.(2.51) and Table 2.3 introduce how the the shape of the hyperboloid

set is influenced by the configuration of the open chain.

2.4.4 Planar PRR Open Chain

Consider a planar PRR open chain as shown in Fig. 2.7. The length of the

first link is b, the length of the second link is a and θ and φ are joint angles for

two revolute joints respectively. The first link is a prismatic joint and will have

a maximum and minimum travel denoted by b1 and b2. In the figure, F and M

mark the fixed and the moving frames, respectively. The fixed pivot is located
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Figure 2.7: A planar PRR open chain.

at (x, y), while the moving frame is located at a distance of h from the end

pivot. The moving frame is assumed to be tilted by angle of α from the line

joining the end pivot and the origin of the moving frame. When the fixed and

moving frames are located at A and B respectively the parameterized equation

of the constraint manifold Z(b, θ, φ) of a PRR robot open chain is obtained as

follows:

The planar quaternion for the end link is given by

Z(b, θ, φ) = X(b)Z(θ)Z(φ), (2.52)

where

Z1 =
a

2
cos

θ − φ

2
+

b

2
cos

θ + φ

2
, (2.53)

Z2 =
a

2
sin

θ − φ

2
− b

2
sin

θ + φ

2
,

Z3 = sin
θ + φ

2
,

Z4 = cos
θ + φ

2
.

28



Thus the kinematic constraint associated with the PRR chain is given by

(Z1 − b
2
)2 + (Z2 + b

2
Z3)

2 = a2

4
,

b1 ≤ b ≤ b2.
(2.54)

The Eq. 2.53 can be simplified as:

Z1Z3 − Z2Z4 =
a

2
sin θ (2.55)

This can be written in the quadratic form as:

xT [Q]x = C (2.56)

with the coefficient matrix as:

Q =




0 0 1/2 0
0 0 0 1/2

1/2 0 0 0
0 1/2 0 0


 (2.57)

As shown in the Figure 2.7 a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.58)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (
x

2
,
y

2
, 0, 1), (2.59)

[H] = (
h

2
cos

α

2
,−h1

2
sin

α

2
, sin

α

2
, cos

α

2
)
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Z′(θ, φ, b)[Q′]Z(θ, φ, b) = C (2.60)

where C = constant

Simplifying the above equation we get:

−Z2
3

2
(y + hsinα)− Z2

4

2
(y − hsinα)− Z3Z4h1cosα + Z1Z3 + Z4Z2 = C (2.61)

Equation( 2.61) represents a hyperbolic paraboloid(Refer [46]).

2.4.5 Planar PRP Open Chain

Figure 2.8: A planar PRP open chain.

Consider a planar PRP open chain as shown in Fig. 2.8. The length of the

first link is b, the length of the second link is c and θ and is the joint angles of

the revolute joint. The first link is a prismatic joint and will have a maximum

and minimum travel denoted by b1 and b2. In the figure, F and M mark the

fixed and the moving frames, respectively. The fixed pivot is located at (x, y),

while the moving frame is located at a distance of h from the end pivot. The
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moving frame is assumed to be tilted by angle of α from the line joining the

end pivot and the origin of the moving frame. When the fixed and moving

frames are located at A and B respectively the parameterized equation of the

constraint manifold Z(b, θ, c) of a PRP open chain is obtained as follows:

The planar quaternion for the end link is given by

Z(b, θ, c) = X(b)Z(θ)X(c). (2.62)

where

Z1 =
b + c

2
cos

θ

2
, (2.63)

Z2 =
c− b

2
sin

θ

2
,

Z3 = sin
θ

2
,

Z4 = cos
θ

2
.

The kinematic constraints for the chain are given by

Z1 = b+c
2

Z4,
Z2 = c−b

2
Z3,

b1 ≤ b ≤ b2,
c1 ≤ c ≤ c2.

(2.64)

The Eq. 2.63 can be simplified as:

Z1Z3 + Z2Z4 − cZ3Z4 = 0 (2.65)

This can be written in the quadratic form as:

xT [Q]x = 0 (2.66)
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with the coefficient matrix as:

Q =




0 0 1/2 0
0 0 0 1/2

1/2 0 0 −c/2
0 1/2 −c/2 0


 (2.67)

As shown in the Figure 2.7 a general choice of fixed and moving reference

planes transforms the coefficient matrix to the form below:

[Q′] = [C−1]T [Q][C−1] (2.68)

where, [C] = [G+][H−] is the matrix form of the quaternion transformation

to the new fixed and moving frames.

[G] = (
x

2
,
y

2
, 0, 1), (2.69)

[H] = (
h

2
cos

α

2
,−h

2
sin

α

2
, sin

α

2
, cos

α

2
)

Z′(θ, φ, b)[Q′]Z(θ, φ, b) = 0 (2.70)

Simplifying the above equation we get:

−Z2
3

(y + hsinα + csinα)

2
+ Z2

4

(−y + hsinα + csinα)

2
(2.71)

−Z3Z4(hcosα + ccosα) + Z3Z1 + Z4Z2 = C

where,

C = constant.

Equation( 2.71) represents a hyperbolic paraboloid(Refer [46]).
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2.5 Kinematic Constraints of Planar Parallel

Manipulator

This section reviews the formulation of the kinematic constraints of a planar

parallel manipulator.

A three legged planar parallel manipulator made up of RRR, RPR and

RRR chains is considered in this case. Thus as explained in Section 2.4 the

kinematic constraint equation of a planar parallel manipulator will be the

combination of the kinematic constraint equation of all the three types of

open chains connected.

First Open Chain (RRR)

F1(Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.72)

σ1 = (y + h sin α)/2, τ1 = (x + h cos α)/2,
σ2 = (−x + h cos α)/2, τ2 = (y − h sin α)/2.

(2.73)

(a− b)2

4
≤ F1(Z1, Z2, Z3, Z4) ≤ (a + b)2

4
, (2.74)

Second Open Chain (RPR)

F2(Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.75)

σ1 = (y + h sin α)/2, τ1 = (x + h cos α)/2,
σ2 = (−x + h cos α)/2, τ2 = (y − h sin α)/2.

(2.76)

(a− b)2

4
≤ F2(Z1, Z2, Z3, Z4) ≤ (a + b)2

4
, (2.77)
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Third Open Chain (RRR)

F3(Z1, Z2, Z3, Z4) =
(Z1 − σ1Z3 − τ1Z4)

2 + (Z2 − σ2Z3 − τ2Z4)
2

Z2
3 + Z2

4

, and (2.78)

σ1 = (y + h sin α)/2, τ1 = (x + h cos α)/2,
σ2 = (−x + h cos α)/2, τ2 = (y − h sin α)/2.

(2.79)

(a− b)2

4
≤ F3(Z1, Z2, Z3, Z4) ≤ (a + b)2

4
, (2.80)

As explained in section 2.4.1 and section 2.4.3 the kinematic constraint

equations represent a set of concentric and co-oriented sheared hyperboloid.

Thus in this case there will be three sets of hyperboloids.
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Chapter 3

Kinematic Constraints of
Spherical Mechanisms

3.1 Introduction

This chapter deals with the formulation of kinematic constraints of spherical

mechanisms using quaternion based representation found in McCarthy [35]

and Ge [36].

The organization of this chapter is as follows. Section 3.2 explains the

spherical displacements and quaternions. Section 3.3 presents the constraint

manifolds of spherical 3R open chains and Section 3.4 presents the constraint

manifolds of 6R closed chains.

3.2 Spherical Displacements and Quaternions

The rotation of a three dimensional body, M, with respect to a fixed body, F,

can be viewed as a displacement of the frame M from an initial position coin-

ciding with F to its final position. Let x and X be three dimensional vectors
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defining coordinates of a point P in M and F, then under this displacement

the point P is constrained to lie on a sphere and this displacement is termed

a spherical displacement.

Any rotation in three-dimensional space has a rotation axis and a rotation

angle about this axis. Let s = (sx, sy, sz) denote a unit vector along the axis

and θ denote the angle of rotation. They can be used to define the so-called

Euler-Rodrigues parameters:

q1 = sx sin(θ/2), q2 = sy sin(θ/2), q3 = sz sin(θ/2), q4 = cos(θ/2). (3.1)

The Euler-Rodrigues parameters and the quaternion units, 1, i, j,k can be

combined to define a quaternion of rotation:

q = q1i + q2j + q3k + q4. (3.2)

A quaternion q, at times, is also written as an ordered quadruple (q1, q2, q3, q4).

Since q2
1 + q2

2 + q2
3 + q2

4 = 1, q is also called a unit quaternion. Details on

quaternions are found in Bottema and Roth [47] and McCarthy [35].

If we consider x and X as the vector quaternions (no coefficient of 1), then

the rotation is given by the quaternion equation

X = qxq∗ (3.3)

where q∗ = q4 − q1i− q2j− q3k is the conjugate of q.

We can apply homogeneous transform matrix form to represent the Eq. (3.3):

[
X
1

]
= [A]

[
x
1

]
, (3.4)
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where

[A] =
1

S2




q2
4 + q2

1 − q2
2 − q2

3 2(q1q2 − q4q3) 2(q1q3 + q4q2) 0
2(q2q1 + q4q3) q2

4 − q2
1 + q2

2 − q2
3 2(q2q3 − q4q1) 0

2(q3q1 − q4q2) 2(q3q2 + q4q1) q2
4 − q2

1 − q2
2 + q2

3 0
0 0 0 S2


 ,

(3.5)

where S2 = q2
1 + q2

2 + q2
3 + q2

4.

Note that when qi is replaced by Qi = wqi (i = 1, 2, 3, 4), where w is a

nonzero scalar, the matrix [A] is unchanged. Thus, the quaternion components

of q can be considered as homogeneous coordinates of a rotation.

Quaternion algebra is also used for composing two successive rotations. Let

Q0,Q1 denote two rotations. The composition of two rotations Q1 followed

by Q0 is given by the quaternion product Q0Q1.

3.3 Kinematic Constraints of Spherical Open

Chain

This section reviews the formulation of kinematic constraints of spherical 3R

open chain which can be found in Jin [37]

3.3.1 Spherical 3R Open Chain

Consider a spherical 3R open chain (see Figure 3.1) with joint axes a, b, c

intersecting a fixed point O. The axes a, b make an angle α and b, c make an

angle β. We attach a fixed frame O to O and moving frames A, B, C to each

links. The joint angles are denoted as θ, φ, and ψ for the successive joints.

For details on the orientation of the moving frames, we again refer the reader
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Figure 3.1: A spherical 3R open chain.

to McCarthy [35]. The orientation of the end link is given by the following

quaternion product:

q(θ, φ, ψ) = Z(θ)X(α)Z(φ)X(β)Z(ψ), (3.6)

where,

Z(θ) = (0, 0, sin(θ/2), cos(θ/2)),
X(α) = (sin(α/2), 0, 0, cos(α/2)),
Z(φ) = (0, 0, sin(φ/2), cos(φ/2)),
X(β) = (sin(β/2), 0, 0, cos(β/2)),
Z(ψ) = (0, 0, sin(ψ/2), cos(ψ/2)).

(3.7)

By expanding the product in Eq. (3.6) we obtain q(θ, φ, ψ) = (q1, q2, q3, q4),

where

q1 = cos(φ
2
) sin(α+β

2
) cos( θ−ψ

2
) + sin(φ

2
) sin(α−β

2
) sin( θ−ψ

2
),

q2 = cos(φ
2
) sin(α+β

2
) sin( θ−ψ

2
)− sin(φ

2
) sin(α−β

2
) cos( θ−ψ

2
),

q3 = cos(φ
2
) cos(α+β

2
) sin( θ+ψ

2
) + sin(φ

2
) cos(α−β

2
) cos( θ+ψ

2
),

q4 = cos(φ
2
) cos(α+β

2
) cos( θ+ψ

2
)− sin(φ

2
) cos(α−β

2
) sin( θ+ψ

2
).

(3.8)
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Equation (3.8) further gives:

q2
1 + q2

2 = cos2(φ
2
) sin2(α+β

2
) + sin2(φ

2
) sin2(α−β

2
),

q2
3 + q2

4 = cos2(φ
2
) cos2(α+β

2
) + sin2(φ

2
) cos2(α−β

2
).

(3.9)

Since α, β satisfy the condition 0 < α, β < π, Eq. (3.9) reduces to the following

inequality:

tan2((α− β)/2) ≤ q2
1 + q2

2

q2
3 + q2

4

≤ tan2((α + β)/2). (3.10)

This inequality characterizes the kinematic constraint of a spherical 3R

open chain. The Eq. (3.10) is equivalent to:

sin2((α− β)/2) ≤ q2
1 + q2

2

q2
1 + q2

2 + q2
3 + q2

4

≤ sin2((α + β)/2), (3.11)

or

cos2((α + β)/2) ≤ q2
3 + q2

4

q2
1 + q2

2 + q2
3 + q2

4

≤ cos2((α− β)/2). (3.12)

Note once again that when qi (i = 1, 2, 3, 4) is replaced by Qi = wqi, where

w is a scalar, Eq. (3.10), (3.11) and (3.12) are unchanged.

3.4 Kinematic Constraints of Spherical Closed

Chain

This section reviews the formulation of kinematic constraints of spherical 6R

closed chains.

3.4.1 Spherical 6R Closed Chain

In this section, we review the constraint manifolds of spherical 6R closed

chains; see McCarthy [35] and Ge [36] for details on constraint manifold. The
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kinematic constraints of the spherical closed chains specify the positions and

orientations obtainable by a certain link of the chain. The interest here is in

the coupler of the chain.

Figure 3.2: A 6R Spherical closed chain

Consider a spherical 6R closed chain (see Figure 3.2), with moving pivots

attached to the coupler at c1 and c2, and fixed pivots are located at a1 and

a2. The joint axes at all the pivots intersect at a fixed point O, the center of

the design sphere. The fixed frame F(XYZ) is located on the great circular

arc joining the two fixed pivots. The angle between the fixed pivot a1 and the

fixed frame is denoted by γ1, while between a2 and the fixed frame is denoted

by γ2. The fixed frame is oriented such that its X-axis is normal to the plane

defined by O and the fixed pivots a1, a2 in the direction (a1−O)× (a2−O),

while The Z-axis points away from the center of the sphere O to the origin
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of the frame. Similarly, the moving frame M (xyz) is positioned on the great

circular arc joining the moving pivots, and is at a distance of η1 and η2 from

the moving pivots c1 and c2, respectively. Similar to the orientation of the

fixed frame, its x-axis is normal to the plane defined by the moving joints c1

and c2 in the direction (c1 − O) × (c2 − O) and the z-axis points along the

vector joining from O to the origin of the frame.

A spherical 6R closed chain can be seen as two 3R open chains joined to-

gether at the ends. The joint angles for the first and the second 3R open chain

are denoted θ1, φ1, ψ1 and θ2, φ2, ψ2, respectively, while the angular length of

the links joining the coupler are α1, β1, α2, and β2. Then, the constraint mani-

fold for the spherical 6R closed chain is the intersection of constraint manifold

of the left and the right spherical 3R open chains. If the displacement of the

moving object attached to the moving frame is represented by a quaternion

Q = (Y1, Y2, Y3, Y4), then after eliminating the joint angles from the forward

kinematics of each open chain (see McCarthy [35] or Purwar et al. [32]), the

algebraic equations for the two manifolds are given by:

Left 3R open chain:

cos2(
α1 + β1

2
) ≤ F1(Y1, Y2, Y3, Y4) ≤ cos2(

β1 − α1

2
), (3.13)

where

F1(Y1, Y2, Y3, Y4) =
(Y1 sin τ1 − Y4 cos τ1)

2 + (Y2 sin σ1 + Y3 cos σ2
)

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4

, (3.14)

and

σ1 = (γ1 + η1)/4, τ1 = (γ1 − η1)/4. (3.15)
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Right 3R open chain:

cos2(
α2 + β2

2
) ≤ F2(Y1, Y2, Y3, Y4) ≤ cos2(

β2 − α2

2
), (3.16)

where

F2(Y1, Y2, Y3, Y4) =
(Y1 sin τ2 + Y4 cos τ2)

2 + (Y2 sin σ2 − Y3 cos σ2)
2

Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4

, (3.17)

and

σ2 = (γ2 + η2)/4, τ2 = (γ2 − η2)/4. (3.18)

Equations (3.13) and (3.16) characterize the kinematic constraints of a

spherical 6R closed chain and are said to define the constraint manifold for

the spherical 6R closed chain (McCarthy [35]).

To visualize the hypergeometric shape described by Eq.(3.13) or (3.16),

we observe its projection on the hyperplane Y4 = 1. Denote (y1, y2, y3, 1)

as the projected point of (Y1, Y2, Y3, Y4), both of which represent the same

spherical displacement. Then, F1(Y1, Y2, Y3, Y4) on Y4 = 1 after some algebraic

rearrangement is given by

[y1 − sin τ1 cos τ1
sin2 τ1−c

]2

c−c2

(sin2 τ1−c)2

+
[y2 + sin σ1 cos σ1

sin2 σ1−c
y3]

2

c−c2

(sin2 σ1−c)(sin2 τ1−c)

− y2
3

sin2 σ1−c
sin2 τ1−c

= 1 (3.19)

where

σ1 =
−γ1 + η1

2
, τ1 =

−γ1 − η1

2
(3.20)

and

c ∈ [cos2 α1 + β1

2
, cos2 α1 − β1

2
]. (3.21)
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Geometric Features Constraint Parameters
Center ( sin τ1 cos τ1

sin2 τ1−c
, 0, 0)

Orientation (0,− sin σ1 cos σ1

sin2 σ1−c
, 1)

Intersected ellipse major radius = c−c2

(sin2 τ−c)2
,

minor radius = c−c2

(sin2 σ1−c)(sin2 τ1−c)

Table 3.1: Parameters for the projective sheared hyperboloid

Equation (3.19) represents an elliptic hyperboloid with the center given by

( sin τ1 cos τ1
sin2 τ1−c

, 0, 0), and the orientation of the central axis given by vector

(0,− sin σ1 cos σ1

sin2 σ1−c
, 1). It is evident that the center and the orientation are de-

pendent on the location of the fixed pivots and moving pivots, as well as the

dimensions of the links. The hyperboloid intersects plane y3 = 0 in an ellipse.

When the value of F1(y1, y2, y3, 1) varies from its minimum to maximum, the

size of the manifold increases correspondingly. However, an unintended effect

caused by the dependence of the location of the center and the orientation

on the size also forces a change in the size of the hyperboloid when either of

the center or orientation are varied. Table 3.1 summarizes the relationship

between geometric features of the hyperboloid and the mechanism parameters

for the left open 3R chains. A similar set of relationship exists for the right

open chain as well. Thus, the constraint manifold of the spherical 6R closed

chains is given by the intersection of two pairs of sheared elliptic hyperboloids,

and for a mechanism to pass through a given motion, the image curve has to

be contained within the constraint manifold.
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Chapter 4

Interactive Dimensional
Synthesis and Motion Design

4.1 Interactive Dimensional Synthesis

The design method treats a 6R closed chain as a mechanism assembled using

two independent 3R open chains and a three legged planar parallel manip-

ulator as three independent open chains. The constraint manifold of both

the chains are geometric objects in the image space, the size, shape and po-

sition of which are a function of mechanism parameters. A given rational

motion maps to an image curve that needs to be contained inside these man-

ifolds. This section, describes the procedure required to design a 6R spherical

closed chain and a planar parallel manipulator. It also describes the user in-

terface with which the designer needs to be familiar. The basic idea is that

the designers are provided with a set of controls via the graphical user inter-

face (GUI) of the tool that will allow them to interactively manipulate the

constraint manifold with the objective to contain the image curve in the man-

ifold. Upon being satisfied visually, the designer will be allowed to instruct

the program to check if there are any violations of the kinematic constraints.

44



Figure 4.1: A screenshot of the annotated panels and the window space for
spherical 6R chain

Figure 4.2: Another screenshot of the annotated panels and the window space
for spherical 6R chain
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Figure 4.3: A screenshot of the annotated panels and the window space for
planar parallel manipulator

Figure 4.4: Another screenshot of the annotated panels and the window space
for planar parallel manipulator
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A windows binary of the tool for x86 architecture can be downloaded at

http://cadcam.eng.sunysb.edu/dimsynthspherical/ for the spherical 6R

chain and http://cadcam.eng.sunysb.edu/dimsynthparallel/ for a planar

parallel manipulator.

4.1.1 User Interface Functionalities

In terms of functionalities, the GUI has four parts, as shown in Figs. 4.1 and

4.2 for spherical 6R closed chain and Figs. 4.3 and 4.4 for planar parallel

manipulator:

1. The Cartesian Space Window (CSW): This window is used to display

the given positions, the animation of the mechanism and the open chains

in the Cartesian space.

2. The Image Space Window (ISW): In this window, the constraint mani-

fold as well as the image curve projected on the hyperplane are shown.

3. Motion Design Panel (MoDP): This panel supports operations like posi-

tion insertion, deletion and modification, and comprises of functions to

animate the motion and to test for constraint violation. The constraint

violation test is done and the test results are visualized through the user

interface. This operation updates both the Cartesian Space Window and

the Image space Window.

4. Mechanism Design Panel (MeDP): There are two ways to edit the mech-

anism: 1) directly manipulate mechanism parameters in the Cartesian
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space, like the location, the link lengthes and the relative angle, and as

a consequence, constraint manifolds change in the image space, or 2)

edit the geometric parameters that change the size, position, and the

orientation of the manifolds. In case of a planar parallel manipulator

the designers may find the latter approach more intuitive. Whereas for

a spherical 6R closed chain there are more geometric parameters than

the mechanism parameters and the effect of changing some geometric

parameters has an unintended effect of influencing other parameters as

well (e.g., changing location of the manifold also changes the size of the

constraint manifold). Thus the functionality for changing geometric pa-

rameters has been disabled. The designer can still visually manipulate

the constraint manifold using mechanism parameters.

4.2 Design Procedure for Spherical 6R Closed

Chain

1. Use the Motion Design panel to input given positions, associated time

parameter and interpolate them using a NURBS motion.

The given spherical displacements can be input with the time parame-

ter t, either using quaternion coordinates (q1, q2, q3, q4), or the latitude,

longitude, and roll angles directly (θ, φ, ψ). Once all given positions are

input, a cubic C2 B-Spline motion that interpolates the given positions

is generated. Consequently, the ISW shows the image points of the pre-

scribed positions and renders a continuous NURBS curve which passes
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through all the image points; while the CSW shows the given positions

and the rational motion.

2. Switch to the Mechanism Design panel. Dimensional synthesis starts

with two default 3R open chains. The procedure for one open chain is

discussed below:

In the CSW, the mechanism parameters are initialized to zero. As soon

as the parameters are changed, in the ISW, a pair of hyperboloids appear.

At this point, it will be apparent that the image curve is not completely

contained between the inner and outer surfaces, which means that the

constraints are being violated.

3. Modify the constraint manifold visually using the spinner controls (up

and down arrows next to parameters) provided in the MeDP until the

curve seems completely contained between the two pairs of hyperboloids.

Dragging the slider in either ISW or CSW verifies if the constraints

are actually satisfied or not. Using the current value of the mechanism

parameters, the program automatically checks the constraint equations

if they are satisfied. When they are satisfied, the program outputs links

length and fixed and moving pivot locations.

4. Repeat steps 2, 3 and 4, and synthesize the other open chain.
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4.3 Design Procedure for Planar Parallel Ma-

nipulator

1. Use the Motion Design panel to input given positions, associated time

parameter, and interpolate them using a NURBS motion.

The given planar positions can be input with the time parameter t, ei-

ther using planar quaternion coordinates (Z1, Z2, Z3, Z4), or Cartesian

coordinate directly (x, y, θ). Once all given positions are input, a cubic

C2 B-Spline motion that interpolates the given positions is generated.

Consequently, the ISW shows the image points of the prescribed po-

sitions, and renders a continuous NURBS curve which passes through

all the image points; while the CSW shows the given positions and the

rational motion.

2. Switch to the Mechanism Design panel. Dimensional synthesis starts

with the choice of RRR and RPR open chains. The procedure for RRR

and RPR is the same hence only one open chain is discussed below:

In the CSW, initially, the fixed pivots are located at (x1, y1) = (0, 0); the

three links have unit length a1 = b1 = h1 = 1, and the relative angle of

M to the floating link is α1 = 0. In the ISW, a pair of concentric and

cooriented hyperboloids appear. The default hyperboloid pair is centered

at (0.5, 0, 0) and the inner boundary circle is of radius r = Lmin/2 = 0,

while the outer one has a radius r = Lmax/2 = 1. At this point, it will

be apparent that the image curve is not completely contained between
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the inner and outer surfaces, which means that the constraints are being

violated.

3. Modify the constraint manifold visually using the spinner controls (up

and down arrows next to parameters) provided in the MeDP until the

curve seems completely contained between the two pairs of hyperboloids.

Dragging the slider in either ISW or CSW verifies if the constraints are

actually satisfied or not. Using the current value of the mechanism pa-

rameters, the program automatically checks the constraint equations if

they are satisfied. When they are satisfied, the program outputs links’

length, fixed and moving pivot locations, and the orientation of the mov-

ing frame.

4. Repeat steps 2, 3 and 4, and synthesize the other two open chain.

5. Also note there can be several combinations to have a three legged planar

parallel manipulator shown in the table[ 4.1].

4.4 An Example for Spherical 6R Closed Chain

In this section, an example is shown that demonstrates the dimensional syn-

thesis of a spherical 6R closed chain using the constraint manifold modification

for a given degree six B-spline rational motion.

In this example, we use five positions as given in Table 4.2, and shown in

Fig. 4.2. The positions are given using quaternion coordinates, which specify

the displacement of the moving frame M. Also given are the time parameter
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ChainA ChainB ChainC
RRR RRR RRR
RRR RPR RRR
RRR RRR RPR
RPR RRR RRR
RPR RPR RPR
RPR RRR RPR
RPR RPR RRR
RRR RPR RPR

Table 4.1: Combinations of three legged planar parallel manipulator possible
with the present software

i q1 q2 q3 q4 ui

0 0.1661 0.3322 0.4152 0.8305 0.0
1 0.0775 0.0930 0.6201 0.7751 0.2
2 0.0778 0 0.6228 0.7785 0.4
3 0.0685 0 -0.1957 0.9786 0.7
4 0 0 -0.7071 0.7071 1.0

Table 4.2: Quaternions of five prescribed positions along with their time pa-
rameter values

values (ui) associated with each position. We note that we give the time param-

eter values to generate a B-spline image curve; as such they are not required for

the rigid body guidance problems. The given positions are interpolated using

a degree six NURBS motion. The corresponding image curve is shown in the

image space window of Fig 4.2. The image curve is visualized using Rodrigues

parameters (see Bottema and Roth [47]) given by (Y1/Y4, Y2/Y4, Y3/Y4). Here-

after, two 3R open chains called A and B, and their constraint manifolds are

initialized. However, navigating through the motion, it is found that the con-
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straints are violated – this shows up as the image curve being outside the

manifold. The designer next modifies the constraint manifolds by varying var-

ious parameters interactively until the curve is contained. Once the synthesis

of two individual open chains A and B is completed, the assembly of A and

B yields a 6R closed chain that passes through the given five positions with a

continuous motion. Table 4.3 and 4.4 list the mechanism and the constraint

manifold parameters, respectively.

γ(◦) α(◦) β(◦) η(◦)
Open Chain A 30.12 12.60 58.65 43.40
Open Chain B 45.50 14.89 49.84 40.10

Table 4.3: Synthesis parameters of the spherical 6R closed chain

inner hyperboloid outer hyperboloid
center; orientation center; orientation

Open Chain A (1.5843,0,0);(0,0.1774,1) (0.9805,0,0);(0,0.1378,1)
Open Chain B (0.6323,0,0);(0,-0.6323,1) (0.4691,0,0);(0,-0.4691,1)

Table 4.4: Synthesis parameters of the constraint manifolds

4.5 An Example for Planar Parallel Manipu-

lator

In this section, an example is shown that demonstrates the dimensional synthe-

sis of a planar parallel manipulator (RRR, RPR and RRR) using the constraint

manifold modification for a given degree six rational motion.
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i x, y, θ(◦) ui

0 0.0448 0.1940 0 0.0
1 1.2067 1.5029 30 0.3
2 2.894 1.4852 15 0.6
3 2.045 2.8478 9 1.0

Table 4.5: Cartesian coordinates of four prescribed positions along with their
time parameter values

In this example, we use four positions as given in Table 4.5, and shown

in Fig. 4.4. The positions are given in Cartesian coordinate (x, y, θ), which

specify the location of origin of moving frame M and the relative angle of

M to horizontal axis of the fixed frame. Also given are the time parame-

ter values (ui) associated with each position. First, the given positions are

converted to planar quaternion representation (Z1, Z2, Z3, Z4) and then they

are interpolated using a degree six NURBS motion. The corresponding image

curve is shown in the image space window of Fig 4.4. The image curve is

visualized using Rodrigues parameters (see Bottema and Roth [47]) given by

(Z1/Z4, Z2/Z4, Z3/Z4). Hereafter, one RRR open chains called A, one RPR

open chain called B and another RRR open chain called C and their constraint

manifolds are initialized. However, navigating through the motion, it is found

that the constraints are violated – this shows up as the image curve being

outside the manifold. The designer next modifies the constraint manifolds by

varying various geometric parameters interactively. Different parameters have

different effect on the size, position, and orientation of the manifold and the

process is intuitive. Once the synthesis of three individual open chains A,B
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and C is completed (see Figures. 4.5, 4.6 and 4.7), the assembly of A, B

and C yields a planar parallel manipulator (see Fig. 4.3) that passes through

the given four positions with a continuous motion. Table 4.6 lists the design

results.

x1 y1 a1 b1 h1 α1

Open Chain A (RRR) 3.0 0.0 4.2 3.8 4.0 0.0

x2 y2 b1 b2 h2 α2

Open Chain B (RPR) -1.5 -0.5 3.2 2.8 0.7071 2.3562

x3 y3 a3 b3 h3 α3

Open Chain C(RRR) -1.5 4.0 4.3 3.7 2.0616 -1.8158

Table 4.6: Synthesis parameters planar parallel manipulator

Figure 4.5: Constraint manifold of the RRR Open Chain A and image curve;
in this figure, the image curve is completely contained inside the manifold,
thus implying that the constraints are not violated.
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Figure 4.6: Constraint manifold of the RPR Open Chain B and image curve;
in this figure, the image curve is completely contained inside the manifold,
thus implying that the constraints are not violated.

Figure 4.7: Constraint manifold of the RRR Open Chain C and image curve;
in this figure, the image curve is completely contained inside the manifold,
thus implying that the constraints are not violated.
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Chapter 5

Conclusion and Future Work

Both 6R spherical closed chain and planar parallel manipulator have been suc-

cessfully studied and implemented. The kinematic constraints of the spherical

6R closed chain and planar parallel manipulator have been discussed. Sec-

tion[ 4] shows the implementation of both types of mechanism. The future

work lies in both the spherical 6R chain as well as the planar parallel manip-

ulator.

1. In the case of spherical 6R closed chain a search for a new hyperplane

should be conducted so as to find a simple equation which has clear

relations of the geometric and mechanism parameters. Presently, the

hyperplane Z4 = 1 is selected. If we change some geometric parameter

it has an effect on changing some other parameters too(eg. change in

location of manifold also changes the size of the constraint manifold).

2. The other case of planar parallel manipulator, the user has an option of

two open chains RRR and RPR for the design of a planar parallel ma-

nipulator. That leads to eight different combinations of planar parallel
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manipulator. The existing software can be extended to accommodate

the other five(RRP, PRR, RPP, PPR and PRP) types of open chain.

To aid for extending the software a detailed documentation explaining all the

classes, functions and variables extending to more than 30 pages has been

prepared.

I see my work as an extension to the 6R planar closed chain software.

There is a lot of scope for the expansion of this software containing all the

other types of planar mechanisms.

It is hoped that this software aids researchers, students, professors as well

as other professionals working in CAGD, Computational Kinematics, Motion

Design and other related field.
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