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Abstract of the Dissertation

Charge Fluctuations in Lattice QCD with
Domain-Wall Fermions

by

Prasad S. Hegde

Doctor of Philosophy

in

Physics

Stony Brook University

2010

In this work, we undertook an exploratory study of QCD ther-
modynamics with domain-wall fermions. This had been studied
before but with much smaller lattices and a heavier pion. In this
new study, we report on results obtained on much larger volumes
and discuss what needs to be done to go even closer to the chiral
limit. A second new aspect of our study was the introduction of a
chemical potential for the first time in the domain-wall formalism.
We measured the lowest-order quark number susceptibilities and
found a well-defined, smooth transition in some of these suscepti-
bilities.

We also carried out several analytic calculations in the free-field
case. One motivation was to understand how these fermions worked,
especially with respect to thermodynamic simulations. However
another motivation was to understand cutoff effects, which had
not been studied before for these fermions.

We found that these effects were significant for the free operator.
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We therefore implemented and tested an improved version of the
operator with much smaller discretization errors. In this work, we
also present some preliminary results of simulations that show that
observables measured using this operator show much smaller cutoff
errors.
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Chapter 1

Synopsis

A combination of increased computing power and algorithmic breakthroughs
has made dynamical domain-wall (DW) simulations feasible in the last few
years. Domain-wall fermions are interesting because they are invariant under
a modified form of chiral symmetry, known as the Ginsparg-Wilson equation.
The Ginsparg-Wilson equation reduces to the statement of chiral symmetry,
{γ5, D} = 0, as the lattice spacing is sent to zero. Its advantage lies in the
fact that it protects operators from additive renormalization on the lattice in
much the same way as chiral symmetry protects operators in the continuum.
The presence of a symmetry also prevents certain classes of operators from
mixing and this simplifies the analysis of results.

Domain-wall fermions also do not suffer from the doubling problem that af-
flicts staggered fermions. This makes their continuum limit non-controversial.
Furthermore the absence of doublers means that their spectrum resembles the
QCD spectrum. In thermodynamic studies too, these fermions belong to the
same universality class as continuum QCD. The downside is that domain-
wall fermions are much more time-consuming than either staggered or Wilson
fermions, the two most widely used fermion actions. That is why domain-wall
simulations have become practical only in the last few years.

The nature of the phase diagram governing the chiral phase transition is one
of the important questions in finite-temperature QCD. As is well-known, the
QCD ground state breaks chiral symmetry so that instead of hadron multiplets
one has light mesons with the quantum numbers of the broken symmetries.
However it is known, from lattice simulations for example, that chiral symme-
try is restored at high temperatures. Depending on the number of light flavors
Nf and their masses, this transition can be first-order, second-order or merely
a crossover. Thus for instance, for Nf = 2 the transition is second-order be-
longing to the O(4) universality class while for Nf = 3 one has a first-order
transition that terminates on a critical line belonging to the Z(2) universality
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class [1].

Scope of this Work

The Columbia group had studied the thermodynamics of domain-wall fermions
earlier [2]. Those studies were on coarse lattices and the pion too was rather
heavy (∼ 400 MeV). Due to the computational and algorithmic advances since
then, we were able to revisit this question using finer lattices, larger volumes
and somewhat lighter pions. In this thesis we shall present our results of those
simulations.

We also expanded the scope of our work to include observables related to
the chemical potential µ. Since this was the first time that a chemical potential
had been introduced in domain-wall simulations, we studied the behavior of
the free action analytically. The chemical potential was introduced as the
imaginary part of the gauge links in the time direction viz. U4(x) → eaµU4(x),
U †4(x) → e−aµU †4(x) [3, 4]. We found that this approach reproduced the correct
expression for the pressure in the continuum case.

Lattice actions replace the QCD action with a discrete analog. This dis-
cretization leads to errors, known as cutoff effects, that vanish as the lattice
spacing is sent to zero. We calculated these errors for the pressure as a Taylor
series in the lattice spacing a. We found that the naive discretization pro-
duced errors of O(a2). In numerical terms, this implied a 20% error at a
lattice spacing a = 1/8T (Nτ = 8). Although naive fermions are never used in
simulations, understanding their cutoff effects is still important because their
dispersion relation is identical to that of domain-wall and overlap fermions.
For p ≈ 0, all three formulations show identical cutoff effects1.

“Improvement” refers to the reduction of cutoff errors by adding extra
terms to the action. Improvement increases the cost of simulating an action;
on the other hand it is generally acknowledged to be necessary for reducing
cutoff effects in practical simulations to negligible levels. Measurements using
improved actions have been able to reproduce experimental quantities for the
first time to within the accuracy of their errors [5].

For staggered fermions, the two most popular improvement schemes are
the Naik and p4 schemes. If the quark mass is small, the primary source of
discretization errors comes from the derivative term of the Dirac action. In
both schemes, this error is reduced by replacing the usual one-link difference
by a combination of one-link and three-link terms.

1Nevertheless, chiral actions are undoubled because their dispersion relation is subject
to a constraint that is not satisfied at large momenta. This excludes the far corners of the
Brillouin zone from contributing to the dispersion relation.
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Thus without improvement one would expect a 20% deviation from the
continuum limit for these fermions at Nτ = 8. Studies with staggered fermions
have shown that the deviation is somewhat smaller in actual simulations, say
about 10%. In improved formulations on the other hand, the error on lattices
with the same spacing is less than 5% even in the free case.

Outline of the Thesis

In this thesis, we shall present preliminary results for an improved version of
the domain-wall operator. The improvement scheme is similar to the Naik
action in that it employs three-link terms. However, since we are improv-
ing the Wilson action, we add three-link terms to both the first and second
derivatives. Such an action was studied first by G. Hamber and H. Wu [6]
about three decades ago; accordingly it is known as the Hamber-Wu action.
Both numerical and free-field calculations with this operator confirm that the
corresponding domain-wall operator produces O(a2)-improved observables.

This thesis is organized as follows: In chapter 2, we present the the La-
grangian of Quantum Chromodynamics (QCD) and discuss its symmetries. At
finite temperature, these symmetries influence the nature of the QCD phase
diagram. We are especially interested in the phase diagram in the (ml,ms)-
plane, where ml and ms are the masses of the up/down (assumed degenerate)
and strange quarks respectively. Our current knowledge of this diagram comes
from a combination of renormalization group arguments and lattice simula-
tions, and we briefly present what is known.

In chapter 3, we introduce the formalism of lattice QCD. We stress that the
lattice is a regulator whose advantage lies in the fact that it preserves gauge-
invariance. At the same time, it renders the QCD action in a form suitable
for numerical simulations.

Nevertheless the lattice is not a perfect regulator. It is well-known that
no regulator can preserve gauge- and chiral-invariance simultaneously [7]. The
lattice however seems to do just that for the simplest lattice Dirac action anti-
commutes with the matrix γ5. This ambiguity is resolved when we realize that
the lattice Dirac action actually describes sixteen degenerate Dirac fermions in
the continuum limit. This is the famous fermion doubling problem. Of these
sixteen species (called “tastes”), eight have positive chirality and eight have
negative chirality. The net chiral charge is zero and this cancels the anomaly.
As we have already mentioned, the incompatibility of the lattice with chiral
symmetry was resolved via the Ginsparg-Wilson relation. This brings us to
domain-wall and overlap fermions, two formulations that satisfy this relation.

Chapters 4, 5 and 6 describe original work. In chapter 4, we determine
the size of cutoff errors in thermodynamic observables for various actions. We
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present a general formalism for calculating these errors. Next we turn to the
two improved variants of the staggered action viz. the Naik and the p4 actions.
We show how a O(an) rotation-invariant propagator leads to O(an)-improved
observables. After computing the size of these errors for staggered and Wilson
fermions, we turn to the chiral fermions. Here we find that cutoff errors are
of the same order as for naive fermions. We trace this back to the fact that
domain-wall fermions have the same dispersion relation as naive fermions.
Lastly, we also introduce a chemical potential in these formalisms and check
that this leads to the expected value for the pressure in the continuum limit.
We also show that fermions that are improved to a certain order stay that way
in the presence of a chemical potential.

In chapter 5, we present results of actual simulations. Our focus will be
on the results rather than the simulation details. We present our results for
various observables, both at zero and finite temperature. Since this was an
exploratory study, zero-temperature ensembles were generated only at one β-
value close to the critical coupling. By measuring meson masses and the string
tension, we were able to determine the value of the lattice spacing a at that
coupling.

The observable relevant to the chiral phase transition is the disconnected
chiral susceptibility, which shows a peak at the transition. Indeed, our mea-
surements showed just such a peak from which we obtained βc ' 2.04 as the
transition coupling. We also measured the Polyakov loop susceptibility, which
shows a peak at the point where nuclear matter becomes deconfined. Unfor-
tunately our measurements failed to resolve any peak-like structure for this
quantity.

The Polyakov loop is actually a good order parameter only in the absence
of quarks. When there are dynamical quarks in the system however, quark
number susceptibilities can be used as order parameters. Second-order sus-
ceptibilities measure the fluctuation in conserved charges. They are therefore
small in the confined phase, in which the charges are carried by hadrons, and
large in the deconfined phase, when the charges are carried by quarks. There-
fore as the temperature is varied, they can be expected to transit from a small
value to a large one. Similarly, the fourth-order susceptibilities can be expected
to show a peak at the deconfinement temperature.

We measured the lowest-order diagonal and off-diagonal light and strange
susceptibilities viz. χl,s

2 and χl,s
11. Using these, we also determined the charge,

baryon number and isospin susceptibilities. Many of these quantities could not
be measured to sufficient precision within our limited statistics, but in two of
the susceptibilities viz. isospin and charge, our measurements were sufficiently
clean so as to allow us to extract a value for the deconfinement coupling βd.
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We obtained a value βd ' 2.03 from fits to both susceptibilities.
The chiral symmetry of domain-wall fermions is broken if the fifth dimen-

sion is finite in extent. This breaking takes the form of an additive mass
renormalization mres to the quark mass. mres is called the residual mass
and our simulations revealed that it increased quite sharply as one moved
toward stronger coupling. In fact, mres was larger than the light quark mass
ml = 0.003 for some β-values. This variation distorted the chiral susceptibility
and was the most important source of systematic error in our determination of
βc. This was because the disconnected chiral susceptibility diverges as 1/mα

for some α near the transition point, and m was not constant in this region.
On the other hand, quark number susceptibilities are not very sensitive to
the quark mass. By correcting for this effect, we found that the βc moved
slightly to the left to 2.03, bringing it into agreement with the deconfinement
coupling. Finally, we estimated the error from cutoff effects and the fact that
the pion was heavy, as also the fact that our scale had been determined at
a coupling which was different from the critical coupling. Based on all this,
we were able to determine a value Tc = 171(17)(10) MeV for the transition
temperature, where the first error was due to the variation of mres, while the
second combined continuum and chiral extrapolation errors.

In chapter 6, we present the improved domain-wall operator, based on the
Hamber-Wu kernel. We present a derivation of the operator and present results
for the free case which show that the pressure obtained with this operator
shows negligible cutoff error. After that, we present results from simulations on
high-temperature ensembles. We measure quark number susceptibilities using
both the unimproved and improved domain-wall operator. The unimproved
measurements exceed the Stefan-Boltzmann limit by about 10% while the
improved measurements correctly attain the Stefan-Boltzmann limit. Finally
in chapter 7, we summarize our work and present an outlook for the future.
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Chapter 2

Chiral Symmetry and the QCD
Phase Diagram

Quantum Chromodynamics (QCD) is acknowledged as providing us with a
correct description of the strong force [8]. The strong force is experienced
by particles that carry a quantum number called color, so named because it
can take one of three values. It is the QCD analog of the familiar charge in
electrodynamics.

At a fundamental level, colored matter is made of spin-1/2 fermions called
quarks. Just as in Quantum Electrodynamics (QED), fermions interact through
the exchange of massless, spin-1 particles called gluons. In sharp contrast to
QED however, gluons also carry color and can interact among themselves by
exchanging other gluons. This difference stems from the fact that the equa-
tions of motion of the gauge fields in QCD are nonlinear, as opposed to the
Maxwell equations which are linear.

The QCD Lagrangian is given by

LQCD =

Nf∑

f=1

ψf (x) (iγµ∂µ −mf )ψf (x)− 1

4

(
F a

µν(x)
)2

+

Nf∑

f=1

[
ψf (x)γ

µtaψf (x)
]
· gAa

µ(x).

= Ldirac + LYM + Lint.

(2.1)

It is no accident that this Lagrangian is similar to the QED Lagrangian.
In fact the Lagrangian (2.1) was obtained by generalizing the gauge symmetry
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of the Maxwell equations: If we transform the fermion fields as

ψ(x) → exp (iαa(x)ta)ψ(x), ψ(x) → ψ(x) exp (−iαa(x)ta) , (2.2)

and simultaneously make a gauge transformation

Aa
µ(x) → Aa

µ(x) +
1

g
∂µα

a(x) + fabcAb
µ(x)αc(x), (2.3)

then the action is unchanged. The spinor ψ is actually a triplet (ψr, ψg, ψb)
T

where r, g and b stand for red, green and blue respectively i.e. the three values
that the color can take.

The transformations eqs. (2.2) and (2.3) are local i.e. they depend on the
spacetime coordinate x. The fermion transformation is also a unitary trans-
formation i.e. the matrices ta belong to the algebra of SU(3) viz.1

[
ta, tb

]
= tatb − tbta = ifabctc, (2.4)

The requirement of gauge-invariance dictates (or constrains) what type of in-
teractions are allowed. If we demand invariance under parity and charge con-
jugation, then the above Lagrangian is the only one that can be written down
using operators of dimension less than or equal to four. Apart from this, gauge
invariance is also necessary to ensure that the theory is renormalizable. This
is necessary for the theory to make sensible predictions.

2.1 The Global Symmetries of QCD

Eq. (2.1) actually describes Nf species (flavors) of quarks. The interactions
of QCD do not distinguish among different flavors, nor have we introduced
additional flavor-mixing terms. Thus, unlike the weak force, QCD does not
transform quarks of one flavor to another.

Nevertheless, if the quarks all have the same mass m, the Dirac structure
of the theory still gives rise to a symmetry among the flavors. To see what it
is, let us collect the Nf flavors into one big spinor Ψ = (ψ1, . . . , ψNf

)T . Then
the QCD Lagrangian takes the form (M ≡ m · INf×Nf

)

LQCD = Ψ(x) (iγµ∂µ −M) Ψ(x)

+ gAa
µ(x) ·Ψ(x)γµtaΨ(x)− 1

4

(
F a

µν(x)
)2
.

(2.5)

1The fabc are known as the structure constants of the group and are antisymmetric in
the indices a, b and c.
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We immediately see that eq. (2.5) is invariant under

Ψ(x) → UΨ(x), Ψ(x) → Ψ(x)U †, (2.6)

where U ∈ U(Nf ) is a unitary matrix. Unlike the gauge transformations, these
rotations are global i.e. spacetime-independent.

If m = 0, the symmetry space is enlarged even further. This is because the
Dirac spinor is composed of left- and right-handed spinors, defined by

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5), (2.7a)

ΨL = PLΨ, ΨR = PRΨ, (2.7b)

ΨL = ΨPL, ΨR = ΨPR. (2.7c)

Note that the hermitian conjugate of a left-handed particle is a right-handed
antiparticle and conversely: ΨL = Ψ†γ0PL = Ψ†PRγ

0 = (PRΨ)†γ0 = (ΨR).
Among the terms of eq. (2.5), only the mass term mixes left- and right-handed
components viz. (Aµ = Aa

µt
a, /V = γµVµ for any vector V )

Ψ(x) /AΨ(x) = ΨL(x) /AΨL(x) + ΨR(x) /AΨR(x), (2.8a)

Ψ(x)/∂Ψ(x) = ΨL(x)/∂ΨL(x) + ΨR(x)/∂ΨR(x), (2.8b)

mΨΨ = m
(
ΨLΨR + ΨRΨL

)
. (2.8c)

The two components thus decouple for m = 0, allowing us to perform separate
U(Nf ) transformations

ΨL → ULΨL, ΨL → ΨLU
†
L, (2.9a)

ΨR → URΨR, ΨR → ΨRU
†
R. (2.9b)

The symmetry group is thus enlarged to UL(Nf ) × UR(Nf ). Since U(Nf ) is
isomorphic to U(1)×SU(Nf ), the complete group of symmetries for m = 0 is
given by U(1)L × U(1)R × SU(Nf )L × SU(Nf )R.

By Nöther’s theorem, these symmetries give rise to 2N2
f conserved currents.

These currents are

U(1)L : ΨLγ
µΨL, (2.10a)

U(1)R : ΨRγ
µΨR, (2.10b)

SU(Nf )L : ΨLγ
µT iΨL, i = 1, . . . , N2

f − 1, (2.10c)

SU(Nf )R : ΨRγ
µT iΨR, i = 1, . . . , N2

f − 1. (2.10d)
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The matrices T i are the generators of SU(Nf ). However these are not the true
conserved currents of QCD. Apart from these continuous symmetries, QCD
is also invariant under parity P and charge conjugation C. Under parity, the
space components of a vector reverse sign while the time component remains
unchanged. However, if the vector in question is an axial vector i.e. it has
an intrinsic “handedness”, then it does not change sign under the operation.
Similarly, the operation of charge conjugation reverses the sign of all four
components of a vector but leaves the components of an axial four-vector
invariant.

Thus, under either C or P , ΨLγ
µΨL ↔ −ΨRγ

µΨR, The true conserved
currents therefore are actually given by

U(1)V : ΨγµΨ = ΨLγ
µΨL + ΨRγ

µΨR, (2.11a)

U(1)A : Ψγµγ5Ψ = ΨLγ
µΨL −ΨRγ

µΨR, (2.11b)

SU(Nf )V : ΨγµT iΨ, i = 1, . . . , N2
f − 1 (2.11c)

= ΨLγ
µT iΨL + ΨRγ

µT iΨR,

SU(Nf )A : Ψγµγ5T iΨ, i = 1, . . . , N2
f − 1 (2.11d)

= ΨLγ
µT iΨL −ΨRγ

µT iΨR.

The subscripts V and A stand for “vector” and “axial vector” respectively.
The complete symmetry group of the strong interactions is thus given by
U(1)V × U(1)A × SU(Nf )V × SU(Nf )A.

Corresponding to each of these currents is a conserved charge. These
charges have the same algebra as their symmetry group. The physical states
transform according to irreducible representations of the algebra. Thus each
state is labelled by a number, called the quantum number, which denotes the
irreducible representation to which the state belongs.

The quantum number corresponding to U(1)V is the baryon number i.e. the
number of quarks minus antiquarks irrespective of their flavor. All indications
so far are that baryon number is exactly conserved by the Standard Model [9].

To understand what the SU(Nf )V symmetry is, let us specialize to Nf = 2.
If we denote the two flavors by u and d (for up and down), then we find that
the conserved charges are

Qi =

∫
d3xΨ†(x)σiΨ(x), i = 1, 2, 3. (2.12)

The σi are the Pauli spin matrices i.e. the generators of SU(2). The charge
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Q3 in particular is given by

Q3 =

∫
d3x

[
u†(x)u(x)− d†(x)d(x)

]
. (2.13)

The up and down quarks have equal but opposite charges. This tells us that the
symmetry in question is isospin. It is well-known that the strong interactions
do not distinguish between the proton and the neutron. The conservation of
the charge (2.13) is a restatement of that fact in the quark language.

2.1.1 Spontaneously Broken Chiral Symmetry

The situation with respect to the other two symmetries is a little more intri-
cate. Let us first take the case of U(1)A. This symmetry is broken when one
tries to quantize the theory. As is well-known, quantum field theories contain
divergences because of which a regulator must be introduced. It turns out that
it is not possible to regulate the theory in such a way that both gauge- and
chiral-invariance are preserved. We take gauge-invariance to be fundamental
and require that the regulator preserve gauge symmetry. The price we pay for
it is the anomalous non-conservation of the U(1)A current viz. [7]

∂µj
µ5(x) = Nf

g2

32π2
εµνρσF a

µνF
a
ρσ. (2.14)

Lastly, let us discuss the case of SU(Nf )A. The known hadrons do not
group into multiplets that transform according to irreducible representations
of SU(Nf )A. Today we know that this is because the interactions of QCD
dynamically break this symmetry. The scale at which this occurs is a charac-
teristic length scale of QCD. It is denoted by ΛQCD and its value is about 200
MeV. Note how quantum effects give rise to a scale that was not present in the
classical theory. This breaking gives rise to N2

f − 1 Goldstone bosons. Since
quarks are actually neither massless nor even degenerate, these bosons acquire
masses. Nevertheless, they are still much lighter than the lightest baryon viz.
the proton.

We classify quarks as light or heavy, depending on whether their masses
are smaller or greater than ΛQCD. In the real world, the up and down quarks
(masses ≈ 2 and 5 MeV respectively) are very light, while the strange quark
(≈ 100 MeV) may also be included with some reservations. The hypothesis
of spontaneously broken SU(2)A and SU(3)A has proved to be very useful in
modeling the interactions of QCD at low energy. The three pions viz. π± and
π0 are actually the Goldstone bosons of broken SU(2)A. Note that they are
degenerate upto a small mass splitting due to electromagnetic effects. This
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shows the extent to which spontaneously broken SU(2)A is a good picture. If
we include the kaons and the eta, we can form a set of eight mesons which
we take to correspond to the generators of broken SU(3)A. Note that the
degeneracy is less pronounced; all eight however are much lighter than the
lightest baryon viz. the proton.

Although we cannot yet prove from first principles that SU(3)A is dynam-
ically broken, a wealth of evidence exists that this is indeed the case. On the
one hand, there is numerical evidence from lattice simulations. On the other
hand, the assumption of a spontaneously broken SU(3)A explains many prop-
erties of the low-energy dynamics of QCD. Indeed, calculations that start from
this assumption have by now been formalized into a theory known as chiral
perturbation theory (χPT) [10]. χPT has been very successful in accounting
for the splitting of meson masses, pion scattering lengths, baryon form factors,
etc. It is also used to extrapolate the results of lattice simulations down to
very light or zero quark masses. χPT succeeds in the very regime that per-
turbative QCD breaks down. Thus our low-energy picture of QCD is not one
of quarks interacting via gluon exchange but rather one of Goldstone bosons
interacting among themselves and with baryons.

The other three quarks have masses of O(1− 100 GeV). It does not make
sense to talk of an SU(6)A,V symmetry. The global symmetries that we have
discussed in this section are very badly broken by these three flavors. On the
other hand, low-energy nuclear physics is mostly governed by the dynamics of
the three light quarks alone. We shall specialize to the case Nf = 3 from now
on.

2.2 Chiral Symmetry Restoration

The picture we have sketched out above is valid at zero temperature. Now
the coupling constant of QCD αs evolves with energy; however in contrast to
QED it gets smaller at higher energies. This means that unlike QED or φ4

theory, QCD evolves toward, rather than away from, the Gaussian fixed point
(free field theory) as the energy is increased. This property of QCD is known
as asymptotic freedom.

The average energy of a system may also be raised by increasing the tem-
perature of a system. Due to asymptotic freedom, we may expect that at
high temperatures the interactions will be sufficiently weak so that the ground
state is actually better described by the perturbative picture rather than the
non-perturbative one. The prospect that nuclear matter could look very dif-
ferent at high temperatures gave rise to the field of finite-temperature QCD.
It is now known that the above expectations were correct. At a temperature
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T ∼ ΛQCD, nuclear matter undergoes a transition to a new state, known as
the quark-gluon plasma, that is chirally symmetric and in which quarks and
gluons are not confined within hadrons2.

Although the basic picture has been confirmed, several questions remain:
Is the transition a genuine thermodynamic transition (first- or second-order),
or is it merely a crossover? On a more theoretical level, how does the nature
of this transition depend on the number of light flavors Nf and their masses?
Of course, we cannot tune the masses of quarks in experiments; however by
studying the problem in some special limits (for e.g. three massless flavors),
we may gain more insight into the nature of the transition.

Figure 2.1: The QCD phase diagram in the (ml,ms)-plane (Fig. borrowed from
S. Mukherjee, SEWM 2010).

Fig. 2.1 summarizes our current knowledge about the chiral phase transi-
tion. It is conventional to treat the up and down quarks as having the same
mass ml. Depending upon the values of ml and ms, the transition may be
either first-order, second-order or a crossover, and this is what fig. 2.1 shows.
Let us quickly summarize this figure: The quark masses ml and ms run from
0 to ∞ as one moves away from the origin (bottom left) to any of the far
corners of the diagram. In the limit of infinite quark mass, the corresponding
flavor(s) simply drops out i.e. the top right corner corresponds to pure gauge

2The transition from a hadronic phase to one consisting of quarks and gluons is called
deconfinement.

12



(“quenched”) QCD, for example.
Renormalization Group-based arguments [1] tell us that for two light fla-

vors, the transition is expected to be second-order, belonging to the O(4)
universality class. This is the red line along the y-axis. For three massless fla-
vors, the transition is first-order. As the masses are increased, the first-order
region comes to an end along a critical line. This second-order transition be-
longs to the Z(2) universality class. The critical line extends all the way to
the y-axis, where it meets the O(2) line at a point called the tricritical point
(0,mtc

s ). The exact location of this point is still unknown.
For the case of quenched or pure gauge QCD on the other hand, the transi-

tion is again first-order. As the theory is “unquenched” i.e. the quark masses
are introduced, this transition too ends on a critical line belonging to the Z(2)
universality class.

No analytical method exists for the general case of arbitrary quark masses.
This question must be studied numerically. Numerical studies have shown
that when the light and strange quark mass values are close to the real-world
ones (mphy = (mphy

l ,mphy
s )), the transition is just a crossover i.e. it lies beyond

each of the second-order lines. The question mark next to the physical point
is because its exact location relative to the phase transition regions is still
unknown. For example, imagine keeping the strange mass fixed at its physical
value and decreasing ml. If mphy

s is sufficiently small then the Z(2) transition
will be encountered first. On the other hand, if mphy

s is large, then we will see
a crossover transition all the way upto ml = 0, at which point we encounter
the O(4) second-order transition. As yet, we cannot rule out either scenario
though the evidence seems to point toward the latter one [11, 12].

We mentioned that the general case must be studied numerically. That
numerical method is Lattice QCD. Lattice QCD is the only method we have for
extracting the values of observables related to the non-perturbative properties
of QCD by starting from the fundamental Lagrangian (2.1). The lattice has
provided us with evidence that the picture we sketched out in this chapter viz.
spontaneously broken chiral symmetry and confined matter, is correct. It has
also confirmed that a transition occurs at higher temperatures. Lattice QCD
is necessary because perturbation theory converges poorly at low energies, but
also because phenomena such as chiral symmetry breaking are inherently non-
perturbative i.e. they do not show up at any order in perturbation theory.
The lattice is defined in Euclidean time. Therefore it can only compute time-
independent phenomena. On the other hand, that is just how the partition
function is defined in the path-integral approach. This makes the lattice an
ideal tool for the study of QCD thermodynamics. In the next chapter, we shall
introduce the formalism of Lattice QCD.
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Chapter 3

Quantum Chromodynamics on
a Lattice

In a quantum field theory, the value of an observableO is given by the following
viz.

〈O〉 =

∫ D[ψ, ψ,A]O(ψ, ψ,A) exp
(
iS[ψ, ψ,A]

)
∫ D[ψ, ψ,A] exp

(
iS[ψ, ψ,A]

) (3.1)

The integral is a functional integral over the space of all field configurations
(ψ, ψ,A). The contribution to the integral from a particular configuration
is weighted by a phase factor eiS where S is the action functional i.e. the
spacetime integral of the Lagrangian for the configuration in question. Note
that all paths are equally probable; the only difference is in their relative
phases. The denominator, which is simply the sum of the phase factors for all
the configurations, is called the generating functional.

Often, the action can be written as S = S0 + gSI , where the coupling
constant g is small and eq. (3.1) can be evaluated exactly for g = 0. In that
case, 〈O〉 can be calculated approximately by expanding the weight factor viz.

eS = eS0

(
1 + gSI +

g2

2!
S2

I + . . .

)
, (3.2)

and evaluating eq. (3.1) upto some order gn by evaluating 〈O〉0, 〈OSI〉0,
〈OS2

I 〉0, etc. The subscript ‘0’ is because each term is evaluated at g = 0.
This forms the starting point for perturbation theory.

For several time-independent quantities (such as the spectrum of the the-
ory), a useful trick is to Wick-rotate the action to Euclidean space x4 = ix0.
This converts the oscillatory factor eiS into a decaying exponential e−SE (SE

is the Euclidean action). The rate of decay is controlled by the smallest eigen-
value of SE. This approach is often used to isolate the ground state of a
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theory.
The Wick-rotated quantity looks a lot like the thermal expectation value

of O in the grand canonical ensemble viz.

〈O〉 =

∫ D[ψ, ψ,A]O(ψ, ψ,A) exp
(−SE[ψ, ψ,A]

)
∫ D[ψ, ψ,A] exp

(−SE[ψ, ψ,A]
) (3.3)

Note that in the Wick-rotated counterpart, eq. (3.3), all configurations do
not contribute with the same probability. Rather, the greatest contribution
comes from the configuration with the least action i.e. the classical (in Eu-
clidean space) configuration, etc.1 From the viewpoint of the thermal analogy,
the Wick-rotated path-integral is just the expectation value of the observable
in the grand canonical ensemble. It is well-known that in this ensemble, the
probability that O shall take the value Oi is proportional to exp(−SEi

). If we
choose a set of N configurations from this ensemble, then 〈O〉 is given by

〈O〉 = lim
N→∞

1

N

N∑
i=1

Oi, (3.4)

where the Oi are the values that O takes on each of the configurations. As
N →∞, most of the configurations in eq. (3.3) have values Oi ≈ 〈O〉.

Eq. (3.4) is the fundamental equation governing the Monte Carlo approach
to Quantum Field Theory [13]. In this approach, one generates a set of config-
urations that approximates the grand canonical ensemble i.e. the probability
of occurrence of a particular configuration is proportional to e−SE , where SE

is the action of the configuration. Once we have a sufficiently large number of
configurations, any observable can be measured directly by using eq. (3.4).

Thus the main task in the Monte Carlo approach is to generate such an
ensemble. This is something that needs to be done numerically i.e. using a
computer. We shall not go into the details of how this is done, but Monte Carlo
methods have a long history in relation to statistical mechanics and several
algorithms have been developed for this purpose. Many of these algorithms
have been borrowed and adapted to suit the peculiar needs of QCD. A detailed
discussion can be found in [14–16] for e.g.

1The Wick-rotated action is often the same as the Hamiltonian of the original theory.
Thus, the minimum value of the action is actually the energy of the ground state.
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3.1 The Lattice as a Regulator

Before that, there is one problem that needs to be dealt with. Numerical
methods can only handle a finite number of degrees of freedom. On the other
hand, the path-integral in eqs. (3.1) and (3.3) refer to an infinite set of paths,
each path itself being continuous. To adapt these equations to a numerical
setting, it is necessary to discretize them somehow.

The simplest possible discretization is to replace spacetime by a lattice.
A lattice (generally hypercubic) is a grid of evenly-spaced points on which
the fields are defined. The lattice spacing (usually denoted by a) acts as
an ultraviolet cutoff on the degrees of freedom. This renders the degrees of
freedom countable. In numerical work, the lattice is also not infinite in extent
but finite with periodic or antiperiodic boundary conditions. Thus one also
has an infrared cutoff and together the two ensure that the number of degrees
of freedom is finite.

In fact, it is well-known that quantum field theory has infinities that arise
from the infinite degrees of freedom. Even in perturbation theory as one goes
beyond lowest order, one encounters divergences due to the fact that the loop
integrals run all the way from zero to infinity. These divergences are dealt
with by introducing a cutoff that renders all quantities finite. From this point
of view, the lattice is a regulator that cuts off the infinite degrees of freedom.

It is very important that the regulator respects the symmetries of the

theory. Thus for example, a naive cutoff viz.
Λ∫
0

dp, is never used because

this violates gauge-invariance which leads to problems with renormalizability.
Similarly, in lattice QCD one cannot simply discretize ψ(x) → ψn, Aa

µ(x) →
Aa

µn, etc. The great advantage of lattice QCD is that it was shown by Kenneth
Wilson how to discretize eq. (3.3) in a gauge-invariant manner [17].

In the following section, we shall retrace Wilson’s construction. We shall
see that unlike in the continuum, the gauge degrees of freedom are not the
gauge potentials Aµ drawn from the algebra of the group SU(3), but rather
the group matrices themselves. Since the group SU(3) is compact unlike its
algebra, its volume is finite and no gauge-fixing is required. We shall also
see that the discretizing the fermion action is non-trivial; this is the famous
fermion doubling problem. This problem is closely related to the question of
putting chiral symmetry on the lattice: It turns out that one cannot have
chiral symmetry and avoid the doubling problem at the same time.
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3.2 The Wilson Line

Let us recall how QCD is made gauge-invariant: Since the quark fields at
different spacetime points transform independently (V (x), V (y) ∈ SU(3))

ψ(x) → V (x)ψ(x), ψ(y) → V (y)ψ(y), (3.5)

to define a meaningful derivative we must introduce an object U(x, y) (called
the comparator) which transforms as [19]

U(x, y) → V (x)U(x, y)V †(y) (3.6)

and use it to define the covariant derivative viz.

nµDµψ(x) = lim
ε→0

ψ(x+ εn)− U(x+ εn, x)ψ(x)

ε
. (3.7)

Here, n is an arbitrary unit vector. For infinitesimally separated points we
have

U(x+ εn, x) = 1 + igεnµAa
µ(x)ta +O(ε2), (3.8)

where the ta are the generators of SU(3) and the coefficients Aaµ(x) multiply-
ing them are the gauge potentials. Thus, Dµ = ∂µ − igAa

µt
a.

Conversely, if we know the gauge potentials Aa
µ(x), we can construct the

comparator from them viz.

U(x, y; C) = PC exp
(
ig

y∫

x

dzµAa
µ(z)ta

)
. (3.9)

The symbol PC stands for “path-ordering” along the curve C joining y to x2.
U(x, y; C) is called the Wilson line [17]3. Eq. (3.9) tells us that the Wilson

line measures the net phase picked up by the fermion field as it is transported
parallel to itself along the curve C from y to x. This phase depends on the
path C, as can be seen by noting that it does not vanish if C is a closed curve.
Rather

U(x, x; C) = PC exp
(
ig

∮
dzµAa

µ(z)ta
)
. (3.10)

2Since the Aa
µt

a are matrices, they do not commute in general and an ordering pre-
scription is needed to define matrix products. The above prescription puts matrices further
along the curve as one moves from y to x to the right.

3The Wilson line construction also occurs in the early works of Schwinger, and most
notably in the Aharanov-Bohm effect. F. Wegner was also led to such a construction as a
result of generalizing the Z(2) symmetry of the Ising model to a local symmetry [18].
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Now consider the following product of links viz.

Uµν(x) = U(x, x+ εµ̂)U(x+ εµ̂, x+ εµ̂+ εν̂)

× U(x+ εµ̂+ εν̂, x+ εν̂)U(x+ εν̂, x),

= 1 + igε2F a
µν(x)t

a +O(ε4).

(3.11)

In the last line, we have introduced the field strength tensor F a
µν , defined

by F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . This product is an approximation to a

Wilson loop around a small square of side a in the µν-plane. We may write

Uµν(x) ≈ exp
(
iga2F a

µν(x)t
a
)
, (3.12)

= 1 + iga2F a
µν(x)t

a − g2a4

2

(
F a

µν(x)t
a
) (
F b

µν(x)t
b
)

+ . . .

Since the ta are traceless

Tr
(
1− Uµν(x)

)
≈ g2a4

2
F a

µν(x)F
b
µν(x)Tr(tatb)

=
g2a4

4

(
F a

µν(x)
)2

+O(a6)

(3.13)

The special case of the Wilson line, when the curve C is closed, is known as
the Wilson loop. It transforms under gauge transformations as U(x, x; C) →
V (x)U(x, x; C)V †(x). Thus the trace of the Wilson loop is gauge-invariant.

We are ready to motivate the action of Lattice QCD. Before doing so, let
us switch to Euclidean spacetime via x4 = ix0, A4(x) = iA0(x). This has the
advantage that the action becomes positive-definite, something that will be
very important to the sequel.

Lattice QCD approximates Euclidean spacetime by a four-dimensional lat-
tice of spacing a. The fermion fields live on the sites n ≡ (n1, n2, n3, n4) of
this lattice viz. ψ(x) → ψn, ψ(x) → ψn, with xµ = anµ. The gauge fields are
not discretized; rather one puts the comparator U(an, an+ µ̂) ≡ Uµ(n) on the
link between n and n+ µ̂.

The covariant derivative is replaced by the following difference viz.

Dµψ(x) → U(n, n+ µ̂)ψn+µ̂ − ψn

a
, (3.14)

=
Uµ(n)ψn+µ̂ − ψn

a
.

The RHS equals the LHS upto terms of O(a); importantly however, the RHS
is gauge-covariant even for a 6= 0. Similarly, rather than simply discretize the
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Euclidean gauge action we replace it by

SG =
∑

n

a4
[ 1

g2

∑
µ,ν

ReTr
(
1− Uµν(x)

)]
(3.15)

=
∑

n

a4
[2Nc

g2

∑
ν<µ

(
1− 1

Nc

ReTrUµν(n)
)]
,

→
∫

d4x
∑
µ,ν

1

4

(
F a

µν(x)
)2

as a→ 0. (eq.(3.13))

where Uµν(n) is given by eq. (3.11) i.e. it is the product of links around the
elementary square (plaquette) of the lattice situated at x. A pictorial repre-
sentation of links and plaquettes is shown in fig. 3.1.

N

N

aτ τ

ass
Uµ (x)

(x+ µ)Uν

(x+ )νUµ

Uν (x)

χ(x+µ)χ(x)

χ(x+ν) χ(x+µ+ν)

Figure 3.1: Graphical representation of the fundamental fields of lattice QCD.
Quark fields (denoted by χ(x)) sit at the sites of the lattice while gauge fields are
replaced by unitary SU(3) matrices (denoted by Uµ(x) and represented by arrows)
that sit on the links. The gauge action is given by the product of links around the
smallest possible closed curve i.e. the plaquette (Figure borrowed from S. Mukher-
jee).
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The lattice approximation to the generating functional is given by

Z =

∫ ∏
n,µ

dψndψndUµ(n)e−(SF +SG), (3.16a)

SF =
∑

n

a4

[
1

2a

4∑
µ=1

γµ

(
Uµ(n)ψn+µ̂ − U †µ(n)ψn−µ̂

)
]

+
∑

n

a4mψnψn, (3.16b)

SG =
∑

n

a4
[2Nc

g2

∑
ν<µ

(
1− 1

Nc

ReTrUµν(n)
)]

(3.16c)

Often, the fermion fields are integrated out before simulating. This gives rise
to a determinant viz.

Z =

∫ ∏
n

dUµ(n) detD[U ]e−SG[U ]. (3.17)

The way to include fermions is to generate an ensemble with a probability dis-
tribution detDe−SG rather than just e−SG . Evaluating a determinant is expen-
sive; moreover this must be done for each gauge field. This makes dynamical
fermion simulations much more expensive than pure gauge simulations.

To retain the probabilistic interpretation, we must have detD > 0. We
shall see how this is achieved for various fermion actions later.

3.3 The Fermion Doubling Problem

Fermions present a problem for lattice QCD. To see what that is, let us write
down the action of a free Dirac particle on the lattice. A straightforward
discretization yields (for m = 0)

S =
∑

x

a4

4∑
µ=1

ψ(x)γµ

(
ψx+µ̂ − ψx−µ̂

2a

)
. (3.18)

We’ve approximated the derivative by a symmetric difference, so that the Dirac
operator is hermitian. To find the propagator, we go over to momentum space
and invert

D−1(pa) = −i

∑
µ γµ sin(pµa)∑
µ sin2(pµa)

. (3.19)
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For a→ 0 and near the origin of the Brillouin zone, this reduces to

D−1(p) ≈ −i

∑
µ γµpµ∑

µ p
2
µ

, (3.20)

which is just the continuum propagator.
Unfortunately, the periodicity of sin(pµa) means that similar results are

obtained at the other corners of the Brillouin zone. Thus for instance, for
p̃µ = (2π − p1, p2, p3, p4) we have

sin(p̃1a) = − sin(p1a), sin(p̃ka) = sin(pka) (k = 2, 3, 4).

Define a new set of γ-matrices viz. γ̃1 = γ1 and γ̃k = −γk for k = 2, 3, 4.
These are related to the original ones by a similarity transformation4. The
new propagator is given by

D−1(p̃a) = −(−i)

∑
µ γ̃µ sin(p̃µa)∑
µ sin2(p̃µa)

, (3.21)

which is the same as the old propagator except for an overall sign. Similar
results are obtained at all corners of the Brillouin zone. Thus the latticized
version of the Dirac equation actually describes 16 degenerate species (called
tastes) in the continuum. This is the famous fermion doubling problem.

Doubling arises because the Dirac propagator vanishes at all the corners
of the Brillouin zone. This is related to the fact that the Dirac equation is a
first-order equation. Such a situation does not arise for a bosonic field such
as the Klein-Gordon field because the relevant equation is a second-order one
viz.

∂2φ(x) ≈
∑

µ

φx+µ̂ + φx−µ̂ − 2φx; (3.22a)

→ φ̃p

[
2

4∑
µ=1

(
cos(pµa)− 1

)
]
, (momentum space)

D−1(ap) =
1

4

1∑
µ sin2

(pµa

2

) . (3.22b)

This also reduces to the continuum Klein-Gordon propagator as a→ 0. How-
ever the presence of pµ/2 instead of pµ means that the propagator has a period
equal to twice the Brillouin zone. Since it does not vanish at the far corners,

4Let S = γ1. Then S−1γ1S = γ1 while S−1γkS = −γk for k = 2, 3, 4.
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there are no doublers.
Thus the latticized Dirac equation is actually a theory of 2d species (called

tastes) of fermions in the continuum. In the next two sections, we shall look at
the two most popular approaches to circumvent this doubling problem. The
first viz. staggered fermions employs an ingenious trick due to Susskind [21] to
reduce the number of tastes from sixteen to four. An alternative approach, due
to Kenneth Wilson [20], adds an irrelevant term (i.e. a term that vanishes in
the continuum limit) that lifts the degeneracy of the tastes, making fifteen of
them heavy while leaving the relevant taste light. Unfortunately, the additional
term breaks chiral symmetry.

3.3.1 Staggered Fermions

It is possible to diagonalize the naive action, eq. (3.18) in spin space as follows
viz.

ψn → Tnψn, ψn → ψnT
†
n, T †n = T−1

n . (3.23)

The matrix Tn is given by Tn = γn1
1 γn2

2 γn3
3 γn4

4 . Denoting the transformed fields
by χn, χn, we find that the action becomes

Sstag =
1

2

∑
n

4∑
µ=1

ηµ(n)χn (χn+µ̂ − χn−µ̂) +m
∑

n

χnχn. (3.24)

The factor ηµ(n) = (−1)
P

ν<µ nν is the only remnant of the original γ-matrix
structure. More importantly, since the action is now identical for each spin
component, we may discard all but one them and work with the resulting
one-component theory. This is the great advantage of staggered fermions over
other formulations – they are a factor four less expensive in simulations than
the next cheapest viz. Wilson fermions.

Another advantage of staggered fermions is that they preserve a U(1) sym-
metry that is the remnant of the original chiral symmetry viz.

χn → eiθΓ5χn, χn → χneiθΓ5 , Γ5 = (−1)
P

µ nµ . (3.25)

Of course, we need to show that this reduced theory goes over to the Dirac
theory in the continuum limit. This is somewhat involved and we shall not go
into the details [14, 15]. What is done is to combine the fields at the corners of
the elementary hypercube into (one or more) Dirac spinors. In 2d dimensions,
this hypercube has 22d corners; accordingly the reconstruction gives rise to
22d−2 spinors. Susskind’s trick thus gets rid of doublers in 1 + 1 dimensions
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but only reduces them from 16 to 4 in 3+1 dimensions. The fermions are called
“staggered” fermions because they are reconstructed from different, adjacent
vertices.

The staggered operator Ds is antihermitian and also Γ5-hermitian viz.
Γ5DsΓ5 = D†

s. The antihermiticity implies that its eigenvalues are imagi-
nary, while Γ5-hermiticity implies that they come in complex conjugate pairs.
Together, they imply that detDs is real and non-negative.

3.3.2 Wilson Fermions

A very different approach to the doubling problem was taken by Kenneth
Wilson in 1983 [20]. It consisted of adding a second derivative term to the
usual Dirac action. Just as for the bosonic action, this operator does not
vanish at the far corners of the Brillouin zone, and it lifts the degeneracy in
the propagator that was responsible for the doubling by giving the fermions
at the far corners masses of O(1/a).

The Wilson action is given by

SW =
1

2

∑
x

ψ̄x

(
4∑

µ=1

γµ(ψx+µ̂−ψx−µ̂)−r
4∑

µ=1

(ψx+µ̂+ψx−µ̂−2ψx)

)
+

∑
x

mψ̄xψx.

(3.26)
The new term is the one proportional to r. It approximates a second

derivative and when expanded in powers of the lattice spacing, turns out to
be proportional to a

∑
µ ∂

2
µψx i.e. it vanishes in the continuum limit. The

propagator is given by (m = 0)

D−1
W (ap) =

2r
∑

µ sin2(pµa/2)− i
∑

µ γµ sin(pµa)

∑
µ sin2(pµa) + r2

(
2
∑

µ sin2(pµa/2)
)2 . (3.27)

The r-term acts like a mass term, albeit a momentum-dependent one. The
degeneracy is lifted because the fermions at the far corners of the Brillouin
zone get masses of O(1/a). Thus there are no doublers.

The elimination of doublers is unfortunately achieved at the cost of chiral
symmetry. The Wilson term acts like a mass term and therefore {DW , γ5} 6= 0
where DW is the Wilson operator. On the other hand, the naive and staggered
actions are chiral-invariant but they contain doublers.

Before moving on, let us mention two things in connection with the Wilson
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action. First, the Wilson action is often written as

S =
1

2

∑
x

ψx

4∑
µ=1

[
(r − γµ)Uµ(x)ψx+µ̂ + (r + γµ)U †µ(x)ψx−µ̂

]

+ (4 +m)
∑

x

ψxψx.

(3.28)

One almost always chooses r = 1, and rescales the fields ψ → (2m+ 8r)−1/2ψ,
ψ → (2m+8r)−1/2ψ so that the Wilson operator takes the form DW = 1−κ /D
where

/D =
4∑

µ=1

(r − γµ)Uµ(x)δx′,x+µ̂ + (r + γµ)U †µ(x)δx′,x−µ̂, (3.29a)

κ =
1

2m+ 8r
. (3.29b)

Second, the Wilson operator is neither hermitian nor antihermitian but
instead satisfies a property called Γ5-hermiticity viz. Γ5DW Γ5 = D†

W . Γ5-
hermiticity implies that HW = Γ5DW has real eigenvalues. Just as for the
staggered operator, the eigenvalues of the HW can be either positive or neg-
ative. However unlike the staggered case, these eigenvalues need not come in
opposite-sign pairs. This means that detHW is not necessarily non-negative.
As we have seen, this is necessary for detHW to have a probabilistic interpre-
tation.

The way out is to simulate two flavors of Wilson quarks, detH2
W = detD†

WDW ,
and take the square root of the determinant to obtain a single flavor. Unlike in
the staggered formulation, taking the square root in this case is uncontrover-
sial because the Wilson operator is a local operator. Furthermore, there is a
gap in the spectrum of HW , for non-zero quark mass and at sufficiently small
lattice spacing, that prevents eigenvalues from crossing the origin. Thus, at
least on sufficiently fine lattices, the rooting procedure is uncontroversial for
Wilson fermions.

Continuum QCD with quarks has three important symmetries viz. Lorentz-
invariance, gauge-invariance and, in the limit of massless quarks, chiral-invariance5.
We have already seen that the lattice breaks Lorentz-invariance at finite a but
strictly preserves gauge-invariance. The situation with chiral symmetry is
much more intricate, as we shall see.

5Massless QCD is also scale-invariant, but this is spoilt by the conformal anomaly. We
shall not discuss scale-invariance in this thesis.
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3.4 Chiral Symmetry and the Lattice

From the above discussion, it would seem that it is not possible to maintain
strict chiral-invariance, {γ5, D} = 0 of the Dirac action whilst simultaneously
getting rid of the doublers. This is indeed true. The relation between chiral
symmetry, doubling and the anomaly was clarified by Karsten and Smit [24]6.
An anomaly is a symmetry of a classical field theory that is broken by quantum
corrections. Quantum Field Theories contain divergences because of which
a regulator (such as the lattice) must be introduced. In continuum QCD,
the U(1)A symmetry is broken because it is impossible to find a regulator
that preserves gauge- and U(1)A-invariance simultaneously. We take gauge-
invariance to be fundamental and give up conservation of the U(1)A current.
This anomalous non-conservation is responsible, for instance, for π0 → γγ
decay.

If a symmetry is to be anomalous in the continuum limit, then any regulator
must break it explicitly. If we however insist that the regulator (i.e. the lattice)
preserve the symmetry exactly, then it cannot be anomalous in the continuum.
This is where the doublers come in. One always has an even number of doublers
with equal and opposite chiral charges and the theory is anomaly-free in the
continuum because the net chiral charge is zero. Shortly afterward, Nielsen
and Ninomiya proved a theorem that stated the impossibility of having a
doubler-free, analytic and chiral fermion operator on the lattice [25].

3.4.1 Chiral Fermions

Today we know that there is a loophole in the argument: It is possible to have
a fermion operator that is invariant under an exact symmetry which in turn
reduces to chiral symmetry in the continuum. That symmetry stems from a
relation that Paul Ginsparg and Kenneth Wilson proposed should be obeyed
by the fixed point of a chiral action under “blocking” [29] viz.

{γ5, D} = aDγ5D (Ginsparg-Wilson) (3.30)

Here, D is the Dirac operator SE = −∑
x,x′ ψxDx,x′ψx′ and a is the lattice

spacing. We see that D is chiral-invariant in the continuum. However, the
Ginsparg-Wilson relation implies that D has an exact symmetry even at a 6= 0,
as first pointed out by M. Lüscher viz. [30]

ψ → γ5

(
1 +

a

2
D

)
ψ, ψ → ψ

(
1− a

2
D

)
γ5. (3.31)

6The material in this section and the next is from the lectures by D. Kaplan [22].
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Again, in the continuum limit this reduces to the usual chiral transformation.
In the continuum, the anomaly arises because the path-integral measure is

not invariant under chiral transformations. Similarly, the path-integral mea-
sure on the lattice is not invariant under eq. (3.31). As a result, one has an
anomaly and an index theorem viz.

Tr (γ5D) = (n− − n+) = 2Nfν, (3.32)

where n± is the number of positive(negative)-chirality zero modes, Nf is the
number of flavors and the topological index ν of a lattice configuration is
defined by eq.(3.32) above.

The existence of an exact symmetry implies that operators computed on
the lattice are protected from additive renormalization just as in the contin-
uum. We may also expect a realistic spectrum of hadrons. In thermodynamic
simulations too, phase transitions may be expected to belong to the same uni-
versality class as continuum QCD. Thus it would be advantageous to find such
an operator.

3.5 Domain-Wall Fermions

Historically, Domain-Wall Fermions (DWF) were discovered first and their
relation to the Ginsparg-Wilson equation later. The DWF formalism is of
Dirac fermions in five dimensions (x, y, z, t, s) with a mass term M5(s) that
is s-dependent. This mass term is arbitrary except that it should satisfy
M5(−∞) < 0, M5(∞) > 0 (In simulations, one generally takes M5(s) =
±M5 ε(s)).

When the spectrum of this theory is computed, one finds massive eigen-
modes with masses of O(M5). Intriguingly however, one also finds a massless
mode Ψ(x, s) (we use the shorthand x = (x, y, z, t)) attached to the four-
dimensional hyperplane s = 0, the plane where M5 switches sign. The corre-
sponding eigenfunction is localized to that hyperplane, its support decaying
exponentially with |s|.

The massless mode is chiral, γ5Ψ(x, s) = ±Ψ(x, s), and its chirality de-
pends only on our choice of sign in ±M5 ε(s). Furthermore, if we turn on a
four-dimensional background gauge field at s = 0, one has a current that flows
in or out of s = 0 from or into the bulk. From the four-dimensional point of
view, this appears as an anomalous non-conservation of chiral charge.

Thus in the domain-wall formalism, (i) one obtains a four-dimensional
chiral fermion whose mass is zero due to topology (M5(±∞) = ±M5) and not
due to fine-tuning, (ii) the low-energy theory consequently has chiral symmetry
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even though the five-dimensional theory does not, and (iii) the only effect of
the lack of chiral-invariance on the low-energy theory is the anomaly! This
shows that domain-wall fermions are indeed chiral lattice fermions.

3.5.1 Domain-Wall Fermions on the Lattice

The lattice formulation of domain-wall fermions is the discrete analog of a
model considered by Lüscher [31]. This model has M5(s < 0) = ∞, M5(s >
0) = −M5 where M5 is a constant. The spectrum of the theory contains a
massless, left-handed fermion localized at s = 0. Lüscher showed that its
propagation in the four-dimensional hyperplane had an amplitude D−1(x− y)
where

D =
[
1 + γ5ε(H)

]
, H = γ5

(
/∂4 −M5

)
, ε(H) =

H√
H†H

=
H√
H2

. (3.33)

In fact, the operator D is the overlap operator [26–28]. It is the only known
solution to the Ginsparg-Wilson equation, eq.(3.30). Thus we see that domain-
wall fermions have an exact chiral symmetry.

Unfortunately, this is true only if the fifth dimension is infinite in extent,
something that can never be achieved in a lattice simulation. On the lattice,
one must have M5(s < 0) = M5(s > Ls) = ∞, M5(0 6 s 6 Ls) = −M5 for
some Ls. One then finds that there are two massless modes in the theory, of
opposite chiralities and localized at s = 0 and Ls. The overlap between these
modes (which are after all only a finite distance away from each other) alters
the low-energy spectrum so that one instead has a single, massive fermion
whose mass (called the residual mass mres) depends upon the overlap. How-
ever, at least for smooth gauge fields and at weak coupling, mres vanishes
exponentially with increasing Ls. mres must be determined in every domain-
wall simulation as it quantifies the residual chiral symmetry breaking. We
shall return to this question when we look at the results of such simulations
later.

The lattice version of the above model is given by [32]

S5 =
∑

(x,s),(x′,s′)

ψx,s

(
D
‖
x,x′δs,s′ +D⊥

s,s′δx,x′

)
ψx′,s′ ,

D
‖
x,x′ =

1

2

4∑
µ=1

[
(1− γµ)δx′,x+µ̂ + (1 + γµ)δx′,x−µ̂

]
− (4−M5)δx,x′ ,

D⊥
s,s′ =

1

2

[
(1− γµ)δx′,x+µ̂ + (1 + γµ)δx′,x−µ̂ − 2δs,s′

]
. (3.34)
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We recognize D
‖
x,x′ as the Wilson operator, albeit with a large, negative mass

−M5. In fact, the full operator is just the Wilson operator in five dimensions.
The presence of the Wilson term insures that the spectrum is free of doublers.

We can also give the fermion a mass m by introducing a coupling between
the s = 0 and s = Ls hyperplanes viz.

D⊥
s,s′ → D⊥

s,s′ −
m

2

[
(1 + γ5)δs,1δs′,Ls + (1− γ5)δs,Lsδs′,0

]
. (3.35)

While we impose (anti)periodic boundary conditions along the spatial(temporal)
direction(s), the only boundary conditions along the fifth direction are the ones
provided by the mass term itself. For m = 0, there is no coupling between
the two end walls. For m = 1, the mass terms look like antiperiodic boundary
conditions. In this case, there are no light modes at the walls. This latter ob-
servation was picked up by Furman and Shamir [32], and later by Vranas [33]
to introduce the concept of Pauli-Villars fermions: Add to the fermionic ac-
tion a set of scalar fields φ, φ† with the same action but with m = 1. When the
fermion and scalar fields are integrated out in the path integral, the resulting
determinant is

Z(β,m) =

∫
DU detD(m)

detD(1)
e−βSG[U ]. (3.36)

The heavy fields cancel the contributions of the bulk modes while leaving the
low-energy physics unaffected. The addition is reminiscent of the Pauli-Villars
regulator in QED and for this reason, domain-wall fermions are often referred
to as “doubly-regularized fermions.”

3.6 Overlap Fermions

It might seem that perfect chiral symmetry is not possible since one can never
set Ls = ∞ in a simulation. However, Neuberger and Narayanan were able to
find a closed-form analytic expression for the operator. This operator is the
overlap operator, and it is given by [26, 27]

Dov(−M5) =
[
1 + γ5ε(H)

]
, ε(H) =

H√
H†H

=
H√
H2

H = γ5DW (−M5).

(3.37)

Note the similarity between eqs. (3.37) and (3.33); the latter is just the lattice
analog of the former. Whereas in the definition of H in eq. (3.33), what
appeared was the continuum Dirac operator, in eq. (3.37), one has the Wilson
operator DW (−M5), again for a large, negative mass −M5, instead.
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Remember that DW is γ5-hermitian, γ5DWγ5 = D†
W . This implies that

the matrix H defined above is hermitian. Now ε(H) is the sign function of a
hermitian matrix and is defined as follows: If UHU−1 = Λ where Λ is diagonal,
then

ε(H) = U−1ε(Λ)U, ε(Λ) = diag (ε(Λ11), . . . , ε(Λnn)) . (3.38)

For a real number, ε(x) = x/|x| and is defined for all x 6= 0. Since the
eigenvalues of a hermitian matrix are real, ε(Λii) is unambiguous unless Λii is
zero.

It is easily seen that the overlap operator satisfies the Ginsparg-Wilson
equation, eq. (3.30) viz.

{
γ5, (1 + γ5ε)

}
= ε+ 2γ5 + γ5εγ5,

(1 + γ5ε) γ5 (1 + γ5ε) = ε+ γ5(1 + ε2) + γ5εγ5,
(3.39)

and equality follows because ε2 = 1.
This concludes our introductory survey of lattice QCD. In the next few

chapters, we shall describe our work. We shall present the results of our sim-
ulations in chapter 5 but before we do that, we take up one important aspect
of lattice simulations: Remember that the lattice is a theory with a cutoff
whereas before extracting values for observables one must actually remove the
cutoff i.e. send a→ 0. In a numerical simulation, this formal procedure is not
possible. At best, one can repeat the simulations for more than one value of
the cutoff and extrapolate. However, lattice simulations are expensive and it
is often not possible to repeat them in this fashion. What we need is a method
to estimate deviations due to non-zero a i.e. cutoff errors, and this is what we
shall turn to next.

In the next chapter, we will calculate cutoff errors in thermodynamic ob-
servables for different lattice actions. We shall do this by calculating the
pressure on the lattice and expanding it in a Taylor series in the lattice spac-
ing. We will be especially interested in the leading-order correction. For the
canonical staggered, Wilson and chiral actions, this begins at O(a2) — a rather
large error at current lattice spacings. This motivates us to reduce these errors
by including extra terms in the action. In the staggered case this procedure
leads to the Naik and p4 actions. In a later chapter, we shall use a similar
procedure to improve the domain-wall action. Lastly, we shall also introduce a
chemical potential in the domain-wall and overlap formalisms and verify that
this leads to the correct expression for the pressure in the continuum limit.
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Chapter 4

Cutoff Effects in Fermionic
Observables

4.1 The Need for Improvement

Lattice simulations begin by placing matter(gauge) fields on the sites(links)
of a discrete lattice. The lattice spacing1 acts as a cutoff and thus regulates
divergences which must then be subtracted before sending the spacing to zero.
The cutoff also affects finite quantities (observables) and therefore the limit
a→ 0 must be taken to obtain their correct (i.e. continuum) values.

This is not a straightforward task because the lattice is a dimensionless
formulation and the value of a is never explicitly specified. What taking the
continuum limit really means is that one increases the number of sites in each
direction while keeping the physical length along that direction i.e. the volume
V or temperature T fixed.

This procedure has some practical limitations. The number of degrees of
freedom grows with the number of sites and this increases the cost of sim-
ulations. In addition, the strength of the signal (observable) relative to the
statistical noise decreases with increasing spacing.2 As a result, one needs
much more statistics at smaller lattice spacings. This problem is especially
severe in thermodynamic simulations where typical observables such as the
pressure (P ), energy density (ε), etc. have a mass dimension of four. As a
result, one is constrained to work with rather coarse lattices.

1Henceforth denoted by a.
2This may be understood as follows: Lattice simulations do not return the physical

value O of an observable but rather its dimensionless analog Oad where d is the dimension
of O. This vanishes as ad as a → 0. On the other hand, a divergence D ∝ a−d′ falls off
more slowly, as ad−d′ .
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The dependence of an observable O on the lattice spacing a has the generic
form3

O(a) = Oad
(
1 + c1a+ c2a

2 + . . .
)
. (4.1)

The leading ad behavior is physical, while the rest of the terms quantify the
cutoff error. The values of the coefficients cn depend upon our choice of dis-
cretization. In most cases, a straightforward discretization (nearest-neighbor
differences and plaquette terms) leads to O(a) or O(a2) errors. By systemati-
cally adding terms to the action (such as next-nearest neighbor differences or
rectangle terms) one can eliminate these errors so that the cutoff error begins
at O(a4) or higher [34]. While these additional terms do increase the cost of
simulation, they also obviate the need for going to larger lattices. Reducing
cutoff errors in this fashion is referred to as improvement.

4.1.1 QCD at High Temperatures

At high temperatures, strongly-interacting matter undergoes a crossover tran-
sition from hadronic matter to a Quark-Gluon Plasma in which quarks and
gluons are no longer confined within hadrons. This is a consequence of the
asymptotic freedom of QCD due to which the coupling constant grows weaker
at higher energies.

The existence of such a transition was predicted by early lattice studies.
It has also been confirmed experimentally in the heavy-ion collision experi-
ments currently underway at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven. However it is clear, both from lattice studies as well as from
experiment, that quarks continue to interact strongly even in the liberated
state. Consequently, one needs a non-perturbative method such as the lattice
to compute quantities such as the equation of state (P versus ε) or the speed of
sound cs (= dP/dε), which are useful in the phenomenology of these collisions.

However cutoff errors can strongly distort the measured values of these
quantities. We see an example of this in fig. 4.1, which also demonstrates the
importance of improvement. A calculation using the standard Wilson action
and on a coarse lattice seems to indicate that P/T 4 exceeds its ideal gas value
of 8π2/45 ≈ 1.755. This however is only a lattice artifact. Measurements at
several values of the spacing converge to a value that is about 10% less at the
highest temperatures. On the other hand, P/T 4 as measured using improved
gauge actions on the same coarse lattice never exceeds the Stefan-Boltzmann
limit4 and in fact is quite close to the continuum value.

3Sometimes, a non-analytic an ln a behavior is also seen.
4The limit of ideal, massless particles (fermions or bosons); henceforth denoted SB.
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Figure 4.1: (i) The pressure in the pure gauge theory calculated with an unimproved
(1 × 1) versus different improved actions. Note that the unimproved pressure ex-
ceeds the ideal gas value shown by the arrow. (ii) A continuum extrapolation of
measurements with the unimproved action shows that the pressure actually misses
the ideal gas value by ∼10% even at the largest temperatures. (iii) This behavior is
reproduced fairly well by improved actions even at Nτ = 4 (Figure taken from [35]).

4.1.2 Cutoff Effects in the Fermion Sector

Cutoff effects in the gauge sector of QCD have been reduced to a large ex-
tent through the use of improved gauge actions. The introduction of fermions
however introduces new kinds of cutoff errors. These may be best understood
by studying an ideal gas of fermions on the lattice. This is because simula-
tions have shown that fermionic observables actually attain the SB limit quite
quickly above the transition temperature.

In the ideal gas limit, one has exact expressions (upto integrals that can
be done numerically) for thermodynamic quantities. We may also expand
the integrands in a Taylor series in a and evaluate each Taylor coefficient by
integration. This approach leads to a series of the type eq. (4.1). While the
zeroth-order term shall always give the continuum result, we are especially
interested in the leading correction. We shall see that it is of O(a2) for naive
and Wilson fermions. Since this implies quite a large error (∼20% at Nτ = 8)
in observables, we are motivated to improve these actions by adding extra
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terms to them. Two different ways of doing this shall lead us to the Naik and
p4 actions. By explicit calculation, we shall verify that the error for these
actions begins at O(a4).

The Naik and p4 actions have actually been implemented in QCD simu-
lations where they have shown good scaling behavior. Our interest in them
however was from the viewpoint of understanding improvement. What we are
really interested in is fermions with chiral symmetry. In particular, we are
interested in how these actions fare with respect to thermodynamics. We shall
see that bulk observables computed with them show O(a2) errors similar to
unimproved fermions. This behavior can be traced to the fact that near the
origin of the Brillouin zone, both overlap and domain-wall fermions have the
same dispersion relation as naive fermions. We conjecture how this behavior
can be improved though we do not prove this explicitly. This will be done in
a later chapter. Of the two chiral actions viz. domain-wall and overlap, we
shall place greater emphasis on the former as our simulations have been per-
formed using them. However overlap fermions are simpler from the viewpoint
of analytical calculations. Moreover they can be thought of as a (important)
limiting case of domain-wall fermions. Thus we shall work with the overlap
formalism as well whenever convenient.

The introduction of fermions also broadens the scope of the QCD phase
diagram. While quenched QCD has no free parameters save for the gauge
coupling, 2 + 1-flavor QCD has two more viz. the light and strange quark
masses ml and ms. However QCD also conserves flavor i.e. the number of
quarks minus antiquarks of each flavor. Accordingly, we may introduce chem-
ical potentials (µl, µs) corresponding to each quark flavor and study the phase
diagram in say, the T − µl,s plane5. We shall have more to say about lattice
QCD at finite chemical potential in section 4.7.

We would also like to introduce a chemical potential µ in the lattice action.
For staggered and Wilson fermions, the usual way to do so is as an imaginary
part to the gauge field component A4(x) viz. U4(x) → eµU4(x), U

†
4(x) →

e−µU †4(x), where the U4’s are the gauge links in the time direction. This
prescription has been shown to eliminate µ2/a2-divergences in staggered- and
Wilson-type fermions [3]. We shall also use this prescription to introduce µ in
the overlap and domain-wall formalisms. We shall justify this by showing that
the continuum pressure is correctly reproduced and that µ2/a2-divergences do
not arise [36, 37]. We will also give explicit results for the µ-dependence of
cut-off effects in leading and next-to-leading order in a large-Nτ expansion
of bulk thermodynamics. Just as for staggered- and Wilson-type fermions, a

5QCD also conserves the net charge, baryon number and isospin; thus we may also
introduce µQ, µB and µI . However, these are just simple linear combinations of µl and µs.
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non-vanishing chemical potential only modifies the expansion coefficients but
does not change the structure of the expansion, i.e. actions that are improved
to O(an) at µ = 0 remain improved to that order also for µ > 0.

4.2 Quantifying Cutoff Effects in Thermody-

namic Observables

We shall illustrate the procedure outlined above in the case of the simplest
possible discretization viz. the naive action. For simplicity we shall work with
a single flavor and color of fermion. Now the partition function at temperature
T and non-vanishing chemical potential µ for free fermions defined on a lattice
of size N3

σ ×Nτ is given by6

Z(V, T, µ,m) =

∫ ∏
x

dψ̄xdψxe
−SF , (4.2a)

SF =
1

2

∑
x

(
3∑

k=1

(ψ̄xγkψx+k̂ − ψ̄xγkψx−k̂)

+ eµψ̄xγ4ψx+4̂ − e−µψ̄xγ4ψx−4̂

)
+

∑
x

mψ̄xψx. (4.2b)

We note that the transformation

ψ(x, x4) → e−µx4ψ(x, x4), ψ(x, x4) → eµx4ψ(x, x4), (4.3)

leaves the path integral invariant while shifting the entire µ-dependence to
the last time slice. The Euclidean action thus depends on µ only through the
combination µ/T .

In momentum space the action becomes

SF =
∑

p

( 3∑

k=1

iγk sin pk + iγ4 sin(p4 − iµ) +m
)
, (4.4)

and hence the path-integral evaluates to

Z(V, T, µ,m) =
∏

p

( 3∑

k=1

sin2 pk + sin2(p4 − iµ) +m2
)2

. (4.5)

6a = 1 from now on unless explicitly stated otherwise.
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Since lnZ = PV/T in the infinite-volume limit,

P

T 4
= 2

(
Nτ

Nσ

)3 ∑

(p,p4)

ln
( 3∑

k=1

sin2 pk + sin2(p4 − iµ) +m2
)
. (4.6)

The sums over the space components become integrals in the infinite-volume
limit. The sum over p4 however remains a sum even in the limit Nτ → ∞
because the temporal extent Nτa defines the inverse temperature T−1 of the
system, which is finite for T 6= 0.

We shall evaluate this sum by replacing it by a contour integral. Since this
is something that we will do all the time, we shall describe the procedure in
detail below. Let us denote

∑3
k=1 sin2 pk + m2 ≡ ω2. We want a closed-form

expression for S =
∑

p4
ln(ω2 + sin2(p4 − iµ)). Now,

dS
dω2

=
Nτ∑

k=1

1

ω2 + sin2 (p4 − iµ)
,

=
Nτ∑

k=1

1

ω2 + sin2
(

2π
Nτ

(k + 1
2
)− iµ

) .
(4.7)

In the second line, we have replaced p4 by its value on a discrete lattice. The
factor of 1/2 arises because we have imposed antiperiodic boundary conditions
in the time direction (as we should for a fermionic system). Now consider the
function

H(z) =
1

z (zNτ + eµNτ )

1

ω2 − 1
4

(
z − 1

z

)2 . (4.8)

The first fraction has simple poles at zk ≡ exp [(2k + 1)π/Nτ − iµ], k =
1, . . . , Nτ .

7 Its residues at these poles are

lim
z→zk

(z − zk)H(z) = −e−µNτ

Nτ

1

ω2 + sin2
(

2π
Nτ

(k + 1
2
)− iµ

) , (4.9)

i.e. its residues are the terms of the sum in eq.(4.7). It also has poles at

ω2 =
1

4

(
z − 1

z

)2

,

z = ±ω ±
√

1 + ω2 ≡ ω1...4, (4.10)

7The function is regular at z = 0.
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Figure 4.2: The contour of integration for Nτ = 6. The dotted line is a circle
of radius eµ/T . “D.R.” stands for dispersion relation. These are the poles of the
propagator.

with residues

lim
z→ωi

(z − ωi)H(z) =
−4ωi

ωNτ
i + eµNτ

∏

j 6=i

(ωi − ωj)
−1. (4.11)

To simplify the above expression, let us denote ω2 ≡ sinh2E. Then we imme-
diately see that the four poles are related to each other as ±eE, ±e−E. The
corresponding residues are given by

z = eE : − 1

eENτ + eµNτ

1

2 coshE sinhE
, (4.12a)

z = −eE : − 1

(−)Nτ eENτ + eµNτ

1

2 coshE sinhE
, (4.12b)

z = e−E :
1

e−ENτ + eµNτ

1

2 coshE sinhE
, (4.12c)

z = −e−E :
1

(−)Nτ e−ENτ + eµNτ

1

2 coshE sinhE
. (4.12d)

From now on, we shall assume that Nτ is even. Consider the contour shown
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in fig. 4.2. For Nτ > 1, H(z) → 0 faster than 1/z2 and the integral vanishes as
the contour goes to infinity. By the residue theorem, the sum over its residues
is also equal to zero. This gives

e−µNτ

Nτ

dS
dω2

=
e−µNτ

Nτ

Nτ∑

k=1

1

ω2 + sin2
(

2π
Nτ

(k + 1
2
)− iµ

) ,

=
−e−µNτ

sinhE coshE

(
1

e(E−µ)Nτ + 1
− 1

e(−E−µ)Nτ + 1

)
. (4.13)

Now let us use
dS
dω2

=
dS
dE

dE

dω2
=

dS
dE

· 2 sinhE coshE,

to obtain
dS
dE

= −2Nτ

(
1

e(E−µ)Nτ + 1
− 1

e(−E−µ)Nτ + 1

)
, (4.14)

which upon integrating yields

S = 2

(
ln

(
1 + e−(E−µ)Nτ

)
+ ln

(
1 + e(E+µ)Nτ

) )
.

The factor of 2 is the spin degeneracy. The first term too is familiar as the
partition function for spin-1/2 fermions. The second term is divergent because
it contains the zero-point contribution, which we subtract as follows viz.8

ln
(
1 + e(E+µ)Nτ

)
= ln

(
1 + e−(E+µ)Nτ

)
+Nτ (E + µ) → ln

(
1 + e−(E+µ)Nτ

)
.

After this zero-point redefinition, our theory describes fermions and antifermions.
The expression for the pressure eq.(4.6) becomes

P

T 4
= 2

(
Nτ

Nσ

)3 ∑
p

{
ln

(
1 + e−(E−µ)Nτ

)
+ ln

(
1 + e−(E+µ)Nτ

) }
,

= 2

(
Nτ

Nσ

)3 ∑
p

{
ln

(
1 + e−(E−µ)/aT

)
+ ln

(
1 + e−(E+µ)/aT

) }
. (4.15)

This is starting to look like the continuum expression, but we must remember

8Such a subtraction must be performed in numerical work as well as in actual sim-
ulations. In both cases, this is done by evaluating the pressure on a T = 0 lattice and
subtracting it from the finite-temperature value.
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that E is not equal to
√
|p|2 +m2. In fact,

E(ap, am)

a
=

√
|p|2 +m2

− a2

6

(√
(|p|2 +m2)3 +

1

2

∑3
k=1 p

4
k√

|p|2 +m2

)
+O(a4).

(4.16)

The variable E/a (we divide by the lattice spacing to obtain the dimensionful
analog), viewed as a function of |p| and m, defines the dispersion relation of
the lattice action. Given a Taylor expansion such as above, one may proceed
in two ways: If the bare mass of the quark which we wish to simulate is
small, then the cutoff error is dominated by p and setting m = 0 provides a
reasonable estimate for it. On the other hand, if the bare mass is large, then
it dominates the error and we set p = 0 instead. Since we are interested in
2 + 1-flavor QCD rather than charm quark simulations, we shall adopt the
former approach. Substituting eq.(4.16) into eq.(4.15), we get

P

T 4
= 2

(
Nτ

Nσ

)3 ∑
p

{
ln

(
1 + e−(|p|−µ)/T

)

+
(aT )2

3

1

1 + e(|p|−µ)/T

|p|4 −∑3
k=1 p

4
k

|p|T 3
+O(a4)

}
+ (µ→ −µ). (4.17)

We were careful to substitute Nτ = 1/aT in eq.(4.15) so that we could keep
track of quantities that stayed constant as the spacing was sent to zero. Now
we see that we have a Taylor series in aT = 1/Nτ . The last step is to convert
the sum over p into an integral by using dpk = 2π/Nσ. Since the Taylor
coefficients are homogeneous functions of pk/T , we shall actually use dqk =
dpk/T = 2πNτ/Nσ as our integration measure. Thus we arrive at our final
expression viz. (z ≡ expµ/T )

P

T 4
= 2

∫
d3q

(2π)3
ln

(
1 + ze−q

)
(4.18)

+
2

3N2
τ

∫
d3q

(2π)3

1

1 + z−1eq

2q4 −∑
k q

4
k

q
+O

(
1

N4
τ

)

+
(
µ→ −µ)

.

Each integral in this series can be evaluated exactly, even for finite µ. The µ-
dependence of the series is non-trivial; we will discuss it in section 4.7. Setting
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Figure 4.3: P/PSB for naive fermions. The green line is the series from eq. (4.19).

µ = 0 for now, we obtain the following series for the pressure viz.

P

T 4
=

7π2

180

{
1 +

248

147

(
π

Nτ

)2

+
635

147

(
π

Nτ

)4

+
3796

189

(
π

Nτ

)6
}

+O
(

1

N8
τ

)
.

(4.19)

4.3 Improved Staggered Fermions

Eq.(4.19) tells us that cutoff errors with the naive action begin at O(a2). In
fig. 4.3, we calculate P/T 4 numerically for different values of Nτ and compare
these to the continuum result. We see that the deviation is ∼ 40% even at
Nτ = 8. This is an unacceptably large value and we are motivated to improve
the action so that the error may be brought down to reasonable levels.

For m = 0, the Dirac operator only consists of the derivative term. This
term is generally approximated by the symmetric difference viz.

∂µψ(x) ≈ ψ(x+ aµ̂)− ψ(x− aµ̂)

2a
. (4.20)

A Taylor expansion reveals that the RHS is equal to the LHS upto terms that
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start at O(a2). However we may also approximate

∂µψ(x) ≈ c10
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a
+ c30

ψ(x+ 3aµ̂)− ψ(x− 3aµ̂)

6a
. (4.21)

Choosing c10 = 9/8, c30 = −1/8 sets the O(a2) error to zero. Deviations from
the continuum are now of O(a4) and hence much smaller9. In fact, we have
just described the construction of the Naik action.

In more than one dimension, we can form other differences viz.

∂µψ(x) ≈ c10
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a

+ c12

∑

ν 6=µ

{
ψ(x+ aµ̂+ 2aν̂)− ψ(x− aµ̂+ 2aν̂)

2a

}

+ c12

∑

ν 6=µ

{
ψ(x+ aµ̂− 2aν̂)− ψ(x− aµ̂− 2aν̂)

2a

}
. (4.22)

In momentum space, this becomes

ipµψ(p) =

[
c10 + 2c12

∑

ν 6=µ

cos(2pνa)

]
i

a
sin(pµa)ψ(p),

=

[
c10 + 2c12

∑

ν 6=µ

(
1− (2pνa)

2

2

)]
i

a

(
pµa− a3

6
p3

µ

)
ψ(p) +O(a4),

=

[
(c10 + 6c12)

(
pµ − a2

6
p3

µ

)
− 4pµc12

∑

ν 6=µ

a2p2
ν

]
iψ(p) +O(a4),

=

[
(c10 + 6c12)− a2

(
c10 + 6c12

6
p2

µ + 4c12

∑

ν 6=µ

p2
ν

)]
ipµψ(p) +O(a4).

(4.23)

The first condition on these coefficients is obviously c10 + 6c12 = 1. There
are two different sources of O(a2) errors with different coefficients, so it is not
possible to eliminate these. Let us instead make the action rotation-invariant
at O(a2) by choosing c10 + 6c12 = 24c12. Then we have c10 = 3/4, c12 = 1/24
and the derivative term becomes ipµ(1− a2p2/6) +O(a4) where p2 =

∑
µ p

2
µ.

9Since we have approximated the derivative by symmetric differences, there are no odd
powers of a in the Taylor expansion.
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4.3.1 Rotation-Invariance of the Action

It is possible to proceed further and carry out the program to the one-loop level.
This has been done for both the Naik as well as p4 actions [38, 39]. However
let us stop here and ask instead, “What is the advantage of making the Dirac
operator rotation-invariant upto a certain order?” The lattice propagator is
given by

∑
µ γµDµ/

∑
µD

2
µ, where Dµ is our approximation to ∂µ. Now the

poles of the propagator define the dispersion relation of the system. These are
the solutions to D2 ≡ ∑

µD
2
µ = 0. In the continuum, the dispersion relation

is simply p2 = 0. Rotation-invariance implies that D2 is a function of p2 upto
some order n, namely

D2(apµ) = (ap)2 + b4(ap)
4 + . . . b2n(ap)2n + F

(
(apµ)2n+2

)
. (4.24)

Next we ask,“How well does the lattice dispersion relation approximate
the continuum one?” If we put p2 = 0 above, we see that D2 = 0 upto
terms of O(a2n+2). This means that the dispersion relation is O(an)-improved:
E = |p|+O(a2n+2).

The significance of this becomes evident if we look back at eqs.(4.15) and
(4.16). In the course of summing over the Matsubara modes, we were led to
define a variable E viz. sinh2E =

∑3
i=1 sin2 pi (for m = 0). Remembering

that p4 = iE, we see that the equation was actually
∑4

µ=1 sin2 pµ = 0 i.e. E
was the solution to the dispersion relation.

In fact, the net effect of summing over the Matsubara modes is always to
cast the expression for the pressure into the form given by eq.(4.15) viz.

P

T 4
= 2

(
Nτ

Nσ

)3 ∑
p

{
ln

(
1 + e−(E−µ)/aT

)
+ ln

(
1 + e−(E+µ)/aT

) }
.

What changes from one action to another is simply the definition of E. Thus,
improving E upto a certain order improves the pressure upto the same order.
This is the importance of rotation-invariance.

One may ask why one cannot simply eliminate corrections to the propaga-
tor (as in the Naik action) instead of just making them rotation-invariant. For
the simple cases described above, both choices work equally well. However,
it is an empirical fact that rotation-invariant actions perform better than im-
proved actions with respect to thermodynamics. For example, if we compute
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Figure 4.4: The performance of the Naik and p4 actions as compared with the
naive action. The solid lines are the series, eqs. (4.19) and (4.25). The p4 points
are displaced slightly relative to the Naik ones for clarity.

the series expansion for both the Naik and p4 actions, we get

Naik :
7π2

180

{
1− 1143

980

(
π

Nτ

)4

− 365

77

(
π

Nτ

)6
}

+O
(

1

N8
τ

)
,

p4 :
7π2

180

{
1− 1143

980

(
π

Nτ

)4

+
73

2079

(
π

Nτ

)6
}

+O
(

1

N8
τ

)
. (4.25)

Both actions are O(a2)-improved and their O(a4)-corrections are the same.
However, p4 fermions have smaller sub-leading errors.

Similarly, by numerically integrating the following expression viz.

P

T 4
= 2N3

τ

Nτ∑

k=1

∫
d3p

(2π)3
ln

[
D2

(
p,

2π

Nτ

(
k +

1

2

))]
, (4.26)

we obtain figure 4.4. Here again we see that the p4 action has smaller errors
on coarser lattices than the Naik action.

Another reason for preferring rotation-invariance over improvement is that
it might not be possible to eliminate the error term in some cases. We shall see
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an example of this when we improve the domain-wall operator later. In that
case, the need to maintain a property called the projection property forces us
to leave the action unimproved but rotation-invariant at O(a2). The resulting
pressure is nevertheless O(a2)-improved.

It must be mentioned that the above improvement is only achieved for m =
0. For nonzero m, one has O((am)2)-errors. This is because the dispersion
relation is now p2 + m2 = 0. Thus, analogous to eq.(4.24), we would like to
have

D′2(ap, am) = a2(p2 +m2) (4.27)

+ b4a
4(p2 +m2)2 + . . . b2n(p2 +m2)na2n

+ F
(
(apµ)2n+2, (am)2n+2

)
.

whereas what we actually have is

D2(ap, am) = (ap)2 + (am)2 (4.28)

+ b4(ap)
4 + . . . b2n(ap)2n

+ F
(
(apµ)2n+2

)
.

Setting p2 = −m2 yields D2 = b4(am)4 + . . . i.e. (E2 − |p|2)/m2 = 1 +
O((am)2). For the light quarks, this error isn’t very large. For the charm
quark on the other hand, additional tuning is required.

Lastly, we mention that rotation-invariance is also the reason why thermo-
dynamics with Wilson fermions shows O(a2) errors (as we shall see) despite
the Wilson term being an O(a)-term.

4.4 Thermodynamics with Wilson Fermions

We have already come across the Wilson action in sec. 3.3.2. In the following,
we shall set r = 1 as it is the natural choice for many simulations and it also
simplifies our calculations.

The Wilson pressure is given by

P

T 4
= 2

(
Nτ

Nσ

)3 ∑
p

(
4∑

µ=1

sin2 pµ +
(
2

4∑
µ=1

sin2 pµ

2

)2
)
.

The dispersion relation is now a quadratic in sin2(p4/2) (sin2 p4 = 2 sin2(p4/2)−
2 sin4(p4/2)). It will have four solutions of which only one, say ω2, reduces to
the correct dispersion relation as a → 0. The sum over Matsubara modes is
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carried out as before by contour integration. However the presence of half-
angles means that the function H(z) (eq. (4.8)) must now be

H(z) =
1

z (z2Nτ + 1)

1

ω2 − 1
4

(
z − 1

z

)2 . (4.29)

with poles at zk = exp iπ(k + 1/2). The net result is simply the following
expression for the pressure viz.

P

T 4
= 2

(
Nτ

Nσ

)3 ∑
p

{
ln

(
1 + e−(E−µ)/aT

)
+ ln

(
1 + e−(E+µ)/aT

) }
. (4.30)

A Taylor series expansion of this equation shows yields

P

T 4
=

7π2

180

{
1 +

248

147

(
π

Nτ

)2

+
635

147

(
π

Nτ

)4

+
133, 517

8316

(
π

Nτ

)6
}

+O
(

1

N8
τ

)
.

(4.31)
We see that cutoff errors begin at O(a2). This, as we have already mentioned,
is due to the fact that the Wilson dispersion is rotation-invariant up to O(a2).
Fig. 4.5 plots the Wilson pressure for three different values of r.

Understanding the cutoff effects of the Wilson operator is important to us
because it forms the core (or “kernel”) of chiral-invariant fermion formlations
such as hypercube, domain-wall or overlap fermions. We are especially inter-
ested in domain-wall fermions because we carried out simulations with them.
Accordingly, we turn to these fermions next.

4.5 Thermodynamics with Domain-Wall Fermions

For a discussion of cutoff effects, rather than start from eq. (3.34), it is more
convenient to work with an equivalent four-dimensional operator, first obtained
by R. Edwards and U. Heller [40] by integrating out the fields in the fifth
dimension. We shall not derive this operator but start by stating it directly
viz.

D(m)

D(1)
=

1 +m

2
+

1−m

2
γ5
T−Ls − 1

T−Ls + 1
. (4.32)

We will mostly consider the case m = 0 as well as Ls = ∞ (Relaxing these
conditions is easy but the formulae become a little more cumbersome). In
appendix B, we explain the symbols that appear above and also invert the
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Figure 4.5: P/PSB for Wilson fermions as a function the inverse lattice spacing and
for three different values of r. The green and blue points are displaced by Nτ = ±0.5
for clarity. The curve “series” refers to eq. (4.31).

operator to obtain the propagator. We obtain

D−1(p) = 1 +
i
∑

µ γµ sin pµ

S2 +W 2 − 1 +
√

(1 + S2 +W 2)2 − 4W 2
, (4.33)

where W = 1 −M5 +
∑

µ(1 − cos pµ) and S2 =
∑

µ sin2 pµ. This propagator
has a pole at

(1− S2 −W 2)2 = (1 + S2 +W 2)2 − 4W 2,

⇒ S2 = 0, 1− S2 −W 2 > 0,

⇒ S2 = 0, −1 < W < 1,

i .e.
4∑

µ=1

sin2 pµ = 0, −1 < 1−M5 +
∑

µ

(1− cos pµ) < 1. (4.34)

We see that domain-wall fermions have the same dispersion relation as naive
fermions viz.

∑
µ sin2 pµ = 0. This has solutions near all the corners of the

Brillouin zone. It is the constraint |W | < 1 that makes all the difference [41].
Note that M5 is as yet a free parameter. It can be chosen so that the constraint
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is satisfied at any one of the corners. Of course, we would like the massless
mode to “live” at the origin of the Brillouin zone. Setting pµ = 0 above, we
get

− 1 < 1−M5 < 1, i .e. 0 < M5 < 2. (4.35)

A convenient choice in free-field calculations is M5 = 1. In simulations, M5

is often different from its free-field value and other considerations apply to
its choice. Note that for 2 < M5 < 4, 4 < M5 < 6, . . . , 8 < M5 < 10, we
have fermions at the other corners (π, 0, 0, 0), (π, π, 0, 0), . . . , (π, π, π, π) of the
Brillouin zone. Thus, depending on the choice of M5, one may have {1,4,6,4,1}
flavors of light fermions (the Pascal numbers).

Next, we turn to the pressure. It is given by

P

T 4
= 2

(
Nτ

Nσ

)3

ln detD,

= 2

(
Nτ

Nσ

)3 ∑

(p,p4)

ln

[
1 +

S2 +W 2 − 1√
(1 + S2 +W 2)2 − 4W 2

]
. (4.36)
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Figure 4.6: The DWF pressure as a function of Nτ . The overlap and naive fermion
pressures have also been included for comparison purposes. These are displaced by
Nτ = ±0.5 relative to the DWF pressure for clarity. Note the agreement of the
naive values with the DWF/overlap ones in the scaling regime.
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As a first step, we may numerically integrate this expression and obtain
the ideal gas pressure as a function of Nτ , the inverse cutoff. Our results
are shown in fig. 4.6. We see, not surprisingly, that the overlap and DWF
values agree for larger Nτ (but not for smaller ones). We have also plotted
the pressure of naive fermions for the same values of Nτ and these too agree
with the DWF/overlap values in the scaling regime. This is understandable
because after all the dispersion relations are the same in all three cases.

4.6 The Relation between the DWF and Over-

lap Formalisms

Let us rewrite the argument of the logarithm in eq.(4.36) as follows viz.

S2 +W 2 − 1√
(1 + S2 +W 2)2 − 4W 2

=
W − 1

2W

√
S2 + (W + 1)2

S2 + (W − 1)2
+
W + 1

2W

√
S2 + (W − 1)2

S2 + (W + 1)2
.

(4.37)
Near the continuum limit, S2 → 0, W → 1 and the second term vanishes while
the first term reduces to

W − 1

2W

√
S2 + (W + 1)2

S2 + (W − 1)2
→ W − 1√

S2 + (W − 1)2
,

ln

(
1 +

S2 +W 2 − 1√
(1 + S2 +W 2)2 − 4W 2

)
→ ln

(
1 +

W − 1√
S2 + (W − 1)2

)
. (4.38)

The RHS of the second line leads to the overlap pressure (eq. (C.5b) with
W − 1 ≡ A). Eq. (4.38) tells us that overlap fermions are not just the Ls →
∞ limit of domain-wall fermions. Rather, one must take the double limit
Ls → ∞, a → 0 in that order. This is the reason why the overlap and DWF
pressures disagree in fig. 4.6 for small values of Nτ .

Since the two expressions agree in the scaling regime, we may compute
the series expansion from the (simpler) overlap expression. The procedure is
the same as before, but now the function H(z) (ch. 4) has branch cuts in the
z-plane and we must show that their contribution vanishes in the large-Nτ

limit [37]. However, the final result may be anticipated: Overlap fermions
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have the same series expansion as naive fermions viz.

P

T 4
=

7π2

180

{
1 +

248

147

(
π

Nτ

)2

+
635

147

(
π

Nτ

)4

+
3796

189

(
π

Nτ

)6
}

+O
(

1

N8
τ

)
.

(4.39)

4.7 Lattice QCD at Finite Chemical Potential

Lastly, we would like to discuss the important question of QCD simulations at
finite chemical potential µ (µ = µl or µs). On the lattice, it can be introduced
as follows viz.

U4(x) → eµU4(x), U †4(x) → e−µU †4(x), (4.40)

where U4(x), U
†
4(x) are the gauge links along the temperature direction. When

done this way, µ appears as an imaginary, constant background gauge field
A′4 = A4 − iµ. This generalized gauge invariance is responsible for the can-
cellation of quadratic divergences in the continuum. On the lattice too, this
prescription removes divergences that would otherwise go as µ2/a2 [3].

However this prescription renders the Dirac operator non-hermitian and
the action S complex. This is a problem for lattice QCD which relies on the
probabilistic interpretation of e−S. Since e−S becomes complex, importance-
sampling methods break down. This is the famous sign problem of Lattice
QCD.

To date, there is no ab initio method for simulating QCD at arbitrary µ.
However it is at least possible to obtain information at small µ by means of
measurements at µ = 0. One way is by expanding the partition function in a
Taylor series in µ/T about µ = 0 viz. [42]

P (µl, µs)

T 4
=
P (0, 0)

T 4
(4.41)

+ χl
2

(µl

T

)2

+ χs
2

(µs

T

)2

+ χls
11

(µl

T

)(µs

T

)

+ χl
4

(µl

T

)4

+ χs
4

(µs

T

)4

+ χls
22

(µl

T

)2 (µs

T

)2

+ . . . ,

and measuring the Taylor coefficients via simulations at µ = 0. These Taylor
coefficients are called Quark Number Susceptibilities (QNS).

Just like the pressure, these quantities can suffer from cutoff effects if the
lattice is too coarse. We compute these errors for the generic case of an
O(an)-improved action in appendix A. Fortunately we find that actions that
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Figure 4.7: P/T 4 for free fermions, both improved and unimproved, at zero and
nonzero µ and m. A slight µ-dependence is seen; however improvement still holds
at finite µ.

χ2 χ4

Nτ = 4 Nτ = 8 Nτ = 4 Nτ = 8
Unimproved 79.2% 19.8% 113% 28.3%
Improved 5.1% 0.3% 8.0% 0.5%

Table 4.1: Cutoff error in the first two QNS induced by the chemical potential for
unimproved and improved fermions. The first column gives the value for Nτ = 4
while the latter gives the value for Nτ = 8.

are improved upto a certain order at µ = 0 stay that way at µ 6= 0 and no
further improvement is necessary. This is best seen from fig. 4.7 where the
free pressure is plotted, both for zero and nonzero µ, as a function of Nτ for
the naive as well as improved actions.
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Of course, a slight µ-dependence is introduced and this is also seen when
the Taylor series expansion, eq. (4.18), is computed. The Taylor coefficients
become µ-dependent and this leads to corrections in the susceptibilities. Cutoff
errors for the first two non-trivial susceptibilities for both naive and improved
staggered fermions for two values of the cutoff are presented in table 4.1.

4.7.1 Overlap and DWF at Finite-µ

We would like to introduce the chemical potential in the same way as for stag-
gered and Wilson fermions. In the overlap formalism however, we encounter a
problem: The Wilson operator DW is not γ5-hermitian at µ 6= 0. Rather one
has γ5DW (µ)γ5 = D†(−µ). This implies that H ≡ γ5DW is not hermitian. To
deal with this situation, Bloch and Wettig [4] proposed the following analytic
continuation the sign function viz. ε(x + iy) = ε(x). With this definition,
ε2 = 1 just like at µ = 0.

This is important because the overlap satisfies the Ginsparg-Wilson rela-
tion, eq.(3.30) viz.

{
γ5, (1 + γ5ε)

}
= ε+ 2γ5 + γ5εγ5,

(1 + γ5ε) γ5 (1 + γ5ε) = ε+ γ5(1 + ε2) + γ5εγ5, (4.42)

and equality follows because of ε2 = 1. Thus we see that if the sign function is
defined as above, the overlap operator satisfies the Ginsparg-Wilson relation
even at µ 6= 0. The other “natural” definition viz. ε(H) = H/

√
H†H fails in

this respect.
Bloch and Wettig also showed [4] that the above extension of the overlap

is equivalent to what would be obtained by introducing a chemical potential
in the DWF formalism in the usual way i.e. U4(x) → eµU4(x), U

†
4(x) →

e−µU †4(x) and taking the double limit lima→0 limLs→∞. Everything thus falls
into place and we have a solid theoretical foundation for proceeding to simulate
QCD thermodynamics with domain-wall fermions. Accordingly, we stop our
theoretical discussion here and in the next chapter take a look at the results
of such a simulation.
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Chapter 5

DWF Thermodynamics at
Nτ = 8

Chiral symmetry plays a very important role in the Standard Model. The
SU(3) part of chiral symmetry, while spontaneously broken, still protects op-
erators from additive renormalization. Chiral symmetry breaking is responsi-
ble for determining the low-energy spectrum of QCD viz. light mesons that
do not form parity multiplets. The U(1) part is anomalously broken and this
mechanism is responsible for the π0 → γγ decay.

Similarly, a central question in QCD thermodynamics is the nature of
the phase transition in which chiral symmetry is restored. Here again, the
spectrum plays an important role in determining the characteristics of the
transition, as can be seen from models of the Hadron Resonance Gas (HRG)
type [43, 44]. For QCD with two massless flavors, this transition is a second-
order phase transition belonging to the O(4) universality class (since O(4) is
isomorphic to SU(2)×SU(2)) while for three massless flavors, it is a first-order
transition.

The location and nature of the chiral phase transition have been extensively
studied using lattice techniques with several different fermion actions [45–47,
51–53]. Recently, the most detailed studies of the transition temperature have
been performed with different variants of the staggered fermion action [45–
47, 51]. Although staggered fermions are computationally inexpensive, they
have the disadvantage that they do not preserve the full SU(2)×SU(2) chiral
symmetry of continuum QCD, but only a U(1) subgroup. This lack of chiral
symmetry is immediately apparent in the pion spectrum for staggered quarks
in which there is only a single pseudo-Goldstone pion, the other pions acquiring
additional mass from O(a2) flavor-mixing terms in the action. As we have
already discussed, it is important to realize the spectrum accurately for an
accurate determination of the transition.
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It is therefore important to study the QCD phase transition using a dif-
ferent fermion discretization scheme. The obvious alternative is the Wilson
fermion formulation. As is well-known however, Wilson fermions break chi-
ral symmetry completely at finite lattice spacing and it is restored only in the
continuum limit, the same limit in which the breaking of SU(2)×SU(2) chiral
symmetry in the staggered fermion formulation disappears.

Domain-Wall Fermions (DWF) have an exact chiral symmetry, the Ginsparg-
Wilson condition, even at finite lattice spacing a. The DWF formulation is
of Wilson fermions in five-dimensions with a large, negative mass −M5 (the
domain-wall height) and non-trivial boundary conditions in the fifth (s-) direc-
tion. The spectrum of this theory consists of massless modes that are localized
at the four-dimensional hyperplanes at the two ends of the fifth dimension viz.
s = 0 and s = Ls. These modes have opposite chiralities. In any simulation,
the fifth dimension is of finite extent and consequently the two chiral modes
“mix.” This mixing results in an effective mass, called the residual mass mres,
of the massless mode. For weak gauge fields this mixing vanishes exponen-
tially as Ls is increased; that is why domain-wall fermions are regarded as
chiral fermions just like overlap or hypercube fermions.

Since DW fermions preserve all the symmetries of the continuum, their
phase transitions should belong to the same universality class as QCD. It is
thus natural to explore the QCD phase diagram with domain-wall fermions.
Around ten years ago, the Riken-Brookhaven-Columbia (RBC) collaboration
conducted exploratory studies with domain-wall fermions at Nτ = 4 and 6 [52].
These early results were quite encouraging, showing a clear signal for a physi-
cal, finite temperature transition. However, these were two-flavor calculations
on quite coarse lattices with quarks whose masses were of the order of the
strange quark. Besides, mres too was found to be quite large on these coarse
lattices.

Given the substantial increase in computer capability and the deeper un-
derstanding of domain wall fermions that has been achieved over the past
decade, it is natural to return to this approach. Now significantly smaller
quark masses and much finer lattices with Nτ = 8 can be studied and im-
portant aspects of residual chiral symmetry breaking can be recognized and
explored.

In this chapter, we shall describe such a study of the QCD finite-temperature
transition region using DW fermions at Nτ = 8. We start by presenting our
results in sections 5.1 and 5.2. In the former we discuss our determination of
the lattice spacing a, while in the latter we discuss various finite-temperature
observables such as the chiral condensate and the disconnected chiral suscepti-
bility, the Polyakov loop and its susceptibility as well as various quark number
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susceptibilities are discussed. The chiral symmetry restoration coupling is de-
fined to be the peak of the disconnected chiral susceptibility χdisc. Similarly,
we define the deconfinement crossover to occur at the inflection point βd of
the isospin (χI) or charge (χQ) susceptibilities. We extract these values from
our data.

Of concern in any DWF simulation is the magnitude of the residual mass
mres. In section 5.3, we present our results for this important quantity. Un-
fortunately, mres changes drastically as the coupling is varied, becoming larger
than the light quark mass around the transition coupling. This results in a
distortion of the curve for χdisc, introducing a systematic error in the determi-
nation of βc. We determine this systematic error.

Finally, in section 5.4 we convert our value for βc to a temperature Tc.
This was not straightforward because we had not generated zero-temperature
ensembles in this exploratory study. Thus, we had to make a careful extrapo-
lation and also estimate the error introduced by doing so. Lastly, we present
our conclusions and outlook for the future.

5.1 Zero-Temperature Observables

Measurements at zero temperature are essential for two reasons:

• They are necessary to determine the lattice spacing. This is generally
done by measuring either (i) the string tension T between a quark-
antiquark pair, or (ii) some hadron mass for eg. the pion, rho or nucleon
mass (mπ, mρ or mN), or (iii) both. Of course, one really determines
their dimensionless counterparts a2T , amπ, etc. but since the physical
values of these quantities are very well-known, the lattice spacing a can
be determined as well. Note that finite-temperature ensembles cannot
be used for this purpose as hadrons dissociate at these temperatures.

• Observables in Quantum Field Theory contain divergences which must
be subtracted. It is well-known that the introduction of the temperature
leads to no new divergences. Since in finite-temperature studies we are
often interested only in the temperature-dependent part of quantities,
we may remove divergences by calculating something both at T 6= 0 and
T = 0 and subtracting the latter from the former.

Unfortunately, zero-temperature ensembles are expensive to generate. In-
deed, in more detailed simulations the bulk of computer time is taken up in
their generation. This is partly because of the larger size of these lattices
— one approximates T = 0 by taking Nτ to be much larger than its finite-
temperature value — but also partly because the presence of light hadrons and
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chiral symmetry breaking means that the Dirac operator has small eigenvalues
due to the Goldstone modes. This leads to a larger condition number i.e. the
ratio of the largest to the smallest eigenvalue. Matrices with large condition
numbers take longer to invert.

Since this was an exploratory study, and since even finite-temperature
DWF ensembles are expensive to generate, we did not generate zero-temperature
ensembles except at one β-value, to get a rough estimate of the lattice spacing.
The value chosen was β = 2.025 because it is, as we shall see later, quite close
to the transition temperature.

5.1.1 The Static Quark Potential

To determine the lattice scale, we measured the static quark-anti-quark corre-
lation function, W (r, t), on 148 configurations (every 5 MD trajectories from
300-1035) on these zero temperature configurations. The quantity W (r, t)
is the product of two spatially separated sequences of temporal gauge links
connecting spatial hyperplanes, each containing links that have been fixed to
Coulomb gauge [48, 49]:

w(r, t) = U4(r, 0)U4(r, 1) . . . U4(r, t− 1), (5.1a)

W (r, t) =
1

Npairs(r)

∑

|r1−r2|=r

Tr
[
w(r1, t) · w(r2, t)

]
. (5.1b)

where Npairs(r) is the number of pairs of lattice points with a given spatial
separation r. In our calculation the results obtained from orienting the “time”
axis along each of the four possible directions are also averaged together. The
time dependence of W (r, t) was then fit to an exponential form viz.

W (r, t) = c(r) exp [−V (r) t] , (5.2)

in order to extract the static quark potential V (r). V (r) in turn was fit to the
Cornell form

V (r) = −α
r

+ σr + V0,

(
r2dV (r)

dr

)

r=r0

= 1.65, (5.3)

from which the Sommer parameter r0 was determined. Table 5.1 gives the
details of the fit which determines the parameters α and σ of Eq. 5.3 and
results in a value of r0/a = 3.08(9). For the physical value of r0, we use the
current standard result r0 = 0.469(7) fm [50]. This gives a lattice spacing
a ≈ 0.15 fm, or a−1 ≈ 1.3 GeV. It should be emphasized that this value for
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β r0/a a−1 (GeV) t fit range r fit range χ2/dof.

2.025 3.08(9) 1.30(4) (4, 9) (
√

3, 6) 1.03

Table 5.1: Results for r0. The errors are calculated by the jackknife method, with
data binned into blocks, each containing 10 molecular dynamics time units.

r0 has been determined for a single light quark mass and no extrapolation to
the physical value of the light quark mass has been performed. This failure to
extrapolate to a physical value for the light quark mass is likely to result in
an overestimate of the lattice spacing a by about 3%.

5.1.2 Meson mass spectrum

In addition to the static quark potential, we also calculated the meson spec-
trum on the same zero temperature ensemble at β = 2.025. The meson spec-
trum was determined using 55 configurations, separated by 10 MD time units,
from 500 and 1040. Table 5.2 gives the results for mρ and mπ for three differ-
ent valence mass combinations, as well as their values in the chiral limit from
linear extrapolation. Equating the physical value of mρ = 776 MeV with the
chirally extrapolated lattice value gives a lattice scale of a−1 = 1.26(11) GeV,
which is consistent with the scale determined from r0. Examining the data for
the light pseudoscalar meson, we find mπ ≈ 308 MeV, somewhat larger than
twice the mass of the physical pion. For the kaon, we have mK ≈ 496 MeV,
very close to the physical kaon mass.

mval
x mval

y mavg fit range mρa χ2/dof mπa χ2/dof

0.003 0.003 0.0030 8-16 0.646(63) 0.3(4) 0.2373(20) 2.4(11)
0.003 0.037 0.0200 8-16 0.716(23) 0.8(7) 0.3815(15) 2.0(10)
0.037 0.037 0.0370 8-16 0.776(10) 2.2(11) 0.4846(11) 1.2(8)

−mres 0.617(56) 0.073(6)

Table 5.2: The calculated masses mρ and mπ for various combinations of
valence quark mass. The last line represents extrapolation of the light quark
mass to mavg = (mx +my)/2 = −mres.
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5.2 Finite-Temperature Observables

5.2.1 Chiral condensate

For QCD with massless quarks, there is a true phase transition from a low-
temperature phase with spontaneous chiral symmetry breaking to a high-
temperature phase where chiral symmetry is restored. If the quarks have a
finite, common mass mf that explicitly breaks chiral symmetry, the existence
of a chiral phase transition persists for masses up to a critical quark mass,
mf < mcrit

f , above which the theory undergoes a smooth crossover rather than
a singular phase transition as the temperature is varied. The value of mcrit

f is
poorly known and depends sensitively on the number of light quark flavors.
For a transition region dominated by two light quark flavors mcrit

f is expected
to vanish and the transition to be second order only for massless quarks. For
three or more light flavors, a first order region 0 6 mf < mcrit

f should be
present.

0

10

20

30

40

50

1.96 2.00 2.04 2.08 2.12

β

<ψψ>l/T
3

<ψψ>s/T
3

Figure 5.1: The light and strange quark condensates.

The order parameter that best describes the chiral phase transition is the
chiral condensate, 〈ψψ〉, which vanishes in the symmetric phase but attains
a non-zero expectation value in the chirally broken phase. For quark masses
above mcrit

f , the chiral condensate will show only analytic behavior, but both

the light and strange quark chiral condensates, 〈ψlψl〉, 〈ψsψs〉, and the dis-
connected part of their chiral susceptibilities, χl, χs, still contain information
about the chiral properties of the theory in the vicinity of the crossover tran-
sition. The chiral condensate and the disconnected chiral susceptibility for a
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single quark flavor are defined as:

〈ψψ〉 =
T

V

∂ lnZ

∂m
=

1

N3
σNτ

〈TrD−1〉, (5.4)

χdisc =
T

V
〈(TrD−1

)2〉 − 〈TrD−1〉2 =
1

V T 2

[
〈(ψψ)2〉 − 〈ψψ〉2

]
. (5.5)

where m is the mass of the quark being examined, T is the temperature, V the
spatial volume and Nτ and Nσ are the number of lattice sites in the temporal
and spatial directions respectively.
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Figure 5.2: The light and strange quark susceptibilities.

On our finite-temperature ensembles, we calculated both the light (ml =
0.003) and strange (ms = 0.037) chiral condensates using 5 stochastic sources
to estimate 〈ψqψq〉 on every fifth trajectory. Using multiple stochastic sources
on a given configuration allows us to extract an unbiased estimate of the
fluctuations in ψqψq and to calculate the disconnected chiral susceptibility.
The Polyakov loop is calculated after every trajectory.

Figures 5.1 and 5.2 show the chiral condensate and the disconnected part
of the chiral susceptibility. Examining the light and strange quark chiral con-
densates, it is difficult to precisely determine an inflection point. Such an
inflection point could be used to locate the mid-point of a thermal crossover.
We can also study the disconnected chiral susceptibility. This is computed
from the fluctuations in the chiral condensate and will show a peak near the
location of the inflection point of the chiral condensate. We shall identify this
peak with the location of the chiral crossover. The light chiral susceptibility
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shown in fig. (5.2), has a clear peak near β = 2.0375.
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Figure 5.3: Removing the leading divergence by defining ∆ls = 〈ψlψl〉 −
(ml/ms)〈ψsψs〉.

From fig.(5.1), we see that neither the strange nor the light condensate goes
to zero as β is increased. This is partly because chiral symmetry is explicitly
broken by the quark mass, but also because of the presence of divergences.
Like most QFT observables, the quark condensate contains divergences that
need to be subtracted. One way of doing this is by computing the chiral
condensate at the same coupling and at zero-temperature and subtracting it
from the finite-temperature condensate. For this however, we need to generate
zero-temperature ensembles at each β-value. Since these ensembles are much
more expensive to generate, and since this was an exploratory study, we did
not do so.

If the fermion action has a chiral symmetry, it is known (from continuum
calculations as well as from staggered simulations) that the leading divergence
is of the form mf/a

2, where mf is the mass of the fermion. This is a divergence
which vanishes in the chiral limit, mf → 0. On the other hand, in the case
of fermions without chiral symmetry (Wilson, or domain-wall at finite Ls), a
1/a3 divergence also exists. In the domain-wall case however, this divergence
vanishes exponentially with Ls. As we shall see, it can be neglected at Ls = 32.
This implies that the leading divergence in the chiral condensate is of the form
mf/a

2.
This leads us to define the subtracted chiral condensate, which is free of the
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above divergence viz.

∆ls = 〈ψlψl〉 − ml

ms

〈ψsψs〉.

This effectively removes the ml/a
2 term from 〈ψlψl〉 while having no effect on

the finite-temperature part or the contribution from vacuum chiral symmetry
breaking. The result for such a subtracted light chiral condensate is shown in
fig. 5.3[54].

5.2.2 Polyakov loop

Quarks and gluons do not appear as free particles in nature. The strongly-
interacting particles that we observe are hadrons which are bound states of
quarks or quarks and antiquarks. This feature of the strong force is called
confinement.

Since QCD is believed to describe the strong force, QCD must exhibit
confinement. However, confinement is a non-perturbative phenomenon and it
does not show up in perturbation theory. As of today, no rigorous proof exists
that QCD is confining.

However, lattice simulations have demonstrated that at least in the quenched
case (i.e. when the quarks are infinitely heavy), QCD is confining. What one
actually demonstrates is that the energy of a quark-antiquark pair grows lin-
early with the separation. It would thus cost an infinite amount of energy to
dissociate the pair. Now the energy of a qq̄-pair can be shown to be related to
the logarithm of the Wilson loop viz.

Vqq̄(R) = σR = lim
T→∞

[
− 1

T
lnW (R, T )

]
. (5.6)

The Wilson loop is a rectangle whose sides are of lengths R and T . R is the
separation between the qq̄ pair while T is the time (which must be very large).
The quantity σ is called the string tension; its value is estimated to be around
(250 GeV)2.

Similar to the chiral phase transition, one also has a phase transition in
which matter goes from a confined, hadronic state to a deconfined state in
which the basic degrees of freedom are quarks and gluons. The order parameter
in this case is derived from an observable known as the Polyakov loop. The
Polyakov loop is a Wilson loop that wraps around the temperature direction. It
is related to the free energy FQ of an isolated, static quark: L ∼ exp(−FQ/T ).
In the confined phase, producing an isolated quark requires infinite energy
and the Polyakov loop vanishes. However at sufficiently high temperatures,
the system becomes deconfined and the Polyakov loop acquires a non-vanishing
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Figure 5.4: The Polyakov loop expectation value (top) and its susceptibility (bot-
tom). Unlike the disconnected chiral susceptibility, no clear peak is seen in this
susceptibility.

expectation value in a sufficiently large volume.
The Polyakov loop can be used to define an order parameter only in the

absence of quarks. If one has dynamical quarks, new quark-antiquark pairs
can be created out of the vacuum. No quark is truly isolated and a different
order parameter is needed. We shall see in the next section that quark number
susceptibilities can serve as order parameters for deconfinement when there are
dynamical quarks in the system.

We have not yet defined the order parameter. It is the spacetime average
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β 〈ψlψl〉/T 3 χl/T
2 〈ψsψs〉/T 3 χs/T

2 〈L〉 (10−3) χL

1.95 22.8(2) 6.4(17) 40.9(1) 3.5(8) 4.40(62) 0.47(4)
1.975 17.9(2) 8.2(14) 36.8(1) 4.1(7) 5.44(42) 0.58(4)
2.00 13.5(2) 9.4(27) 33.2(1) 2.7(7) 6.52(47) 0.54(5)
2.0125 11.6(2) 16.4(20) 31.6 5.7(7) 9.02(53) 0.60(2)
2.025 9.9(2) 17.8(26) 30.2(1) 4.7(6) 10.18(61) 0.59(3)
2.0375 8.2(2) 28.2(25) 28.9(1) 5.3(5) 13.61(55) 0.59(2)
2.05 6.0(2) 20.5(18) 27.4(1) 4.5(8) 16.77(71) 0.64(3)
2.0625 5.1(2) 20.7(27) 26.6(1) 4.2(5) 18.22(86) 0.70(4)
2.08 3.5(2) 11.4(20) 25.2(1) 3.0(6) 25.91(129) 0.73(5)
2.11 2.37(7) 3.7(30) 23.51(5) 0.9(2) 34.74(99) 0.57(2)
2.14 2.03(2) 0.15(2) 22.59(7) 0.6(3) 45.6(20) 0.73(4)

Table 5.3: Results obtained for the light and strange quark chiral condensates and
disconnected chiral susceptibilities as well as the Polyakov loop and its susceptibility.

of all possible Polyakov loops L viz.

L =
1

3N3
σ

∑
r

Tr

(
Nτ−1∏
τ=0

U4(r, t)

)
(5.7)

χL = N3
σ

{〈L2〉 − 〈L〉2} . (5.8)

The quantity χL is the related susceptibility. As an order parameter, L is
expected to be zero in the confined phase and nonzero in the deconfined one.
Depending on the nature of the transition, it should either change sharply or
smoothly. In either case, the loop susceptibility should show a peak (which
may or may not be infinite in the thermodynamic limit); the position of this
peak can be used to assign a value for the deconfinement temperature Td.

Figure 5.4 shows the Polyakov loop and its susceptibility. As in the case of
the chiral condensate, it is difficult to precisely locate an inflection point in the
β dependence of the Polyakov loop although the region where the Polyakov
loop begins to increase more rapidly is roughly coincident with the peak in chi-
ral susceptibility. There is no well-resolved peak in the data for the Polyakov
loop susceptibility, so we are unable to use this observable to locate the decon-
finement transition coupling. We list our results for these finite temperature
quantities in Table 5.3.
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5.2.3 Quark Number Susceptibilities

Quark number susceptibilities have already been defined in eq. (4.41), which
we reproduce here viz.

P (µl, µs)

T 4
=
P (0, 0)

T 4

+ χl
2

(µl

T

)2

+ χs
2

(µs

T

)2

+ χls
11

(µl

T

)(µs

T

)

+ χl
4

(µl

T

)4

+ χs
4

(µs

T

)4

+ χls
22

(µl

T

)2 (µs

T

)2

+ . . . ,

It can be shown that the effect of taking two derivatives w.r.t. the chemical
potential is equivalent to taking a single derivative w.r.t. the temperature [55].
Thus, we may expectχl,s

2 to behave like the energy density i.e. smoothly transit
from a low value to a high one as the temperature is increased. Similarly, χl,s

4

can be expected to show a peak-like structure.
Apart from these basic quark number susceptibilities, one also has the

derived susceptibilities χI
2, χ

Q
2 , etc. These are susceptibilities related to the

charges conserved by QCD, such as isospin (I), strangeness (S), electric charge
(Q) and baryon number (B). These are simple linear combinations of the above
susceptibilities viz.

χS
2 = χs

2, (5.9a)

χI
2 =

1

2

(
χu

2 − χud
11

)
, (5.9b)

χB
2 =

1

9

(
2χu

2 + χs
2 + 2χud

11 + χus
11

)
, (5.9c)

χQ
2 =

1

9

(
5χu

2 + χs
2 − 4χud

11 − 2χus
11

)
. (5.9d)

As second derivatives of the partition function, these susceptibilities mea-
sure fluctuations in the quark number, charge, isospin, etc. This provides us
with a qualitative understanding of their behavior: Charge fluctuations are
small at low temperatures as charges are carried by rather heavy hadrons and
they are large at high temperature because they are carried by almost massless
quarks. Fluctuations of conserved charges thus reflect the deconfining aspects
of the QCD transition.

The measurement of these susceptibilities on the lattice takes the form
of determining operator traces. This is because the µ-derivatives act on the
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fermion determinant viz.

∂

∂µf

lnZ =

∫
DU d

dµf

detD(mf , µf )e
−SG , (5.10a)

=

〈
Tr

(
D−1

f

dDf

dµf

)〉
,

∂2

∂µf∂µg

lnZ =

〈
Tr

(
D−1

f

dDf

dµf

)
· Tr

(
D−1

g

dDg

dµg

)〉
(5.10b)

−
〈

Tr

(
D−1

f

dDf

dµf

)〉〈
Tr

(
D−1

g

dDg

dµg

) 〉

∂2

∂µ2
f

lnZ =

〈
Tr

(
D−1

f

d2Df

dµ2
f

)〉
−

〈
Tr

(
D−1

f

dDf

dµf

)2 〉
(5.10c)

+

〈
Tr2

(
D−1

f

dDf

dµf

)〉
−

〈
Tr

(
D−1

f

dDf

dµf

)〉2

.

The angular brackets are a shorthand for 1
Z

∫ DU detDf detDg e−SG .

5.2.4 The Chemical Potential in the DWF formalism

We have already seen (Ch. 4) that introducing a chemical potential in the
Domain-Wall formalism as U4(x) → eµU4(x), U

†
4(x) → e−µU †4(x) leads to the

correct value for the pressure in the continuum in the sense that spurious
divergences that go as O(µ2/a2) are eliminated. It must be stressed that when
introduced this way, µ couples to the links on all s-slices and not just the
ones on the boundary where the light fermion lives. Now each s-slice may also
be thought of as an additional fermion flavor. The other (s 6= 0) flavors are
heavy with masses of O(1/a). The contribution of these flavors is removed by
introducing fictitious, pseudofermionic fields called Pauli-Villars fields. These
fermions are heavy, with mPV = 1. Thus the DW determinant is actually a
ratio of two determinants, one for each flavor viz. (f = u, d, s)

∏

f=u,d,s

detMf (m = mf , µf )

detMPV(m = 1, µf )
,

To cancel out the effects of the heavy flavors, it is necessary to also couple
the Pauli-Villars fields to the same chemical potential. In fact, this is the
procedure that was shown to reproduce the correct continuum pressure in the
DWF case [4]. In practice, the effect of dividing by detMPV is that each trace
in eq.(5.10) receives an appropriate subtraction, Tr(D−1

f D′
f ) → Tr(D−1

f D′
f −
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β meas sep #r.v. χu
2 χs

2 χI
2 χQ

2

1.95 73 10 200 0.16(22) 0.02(10) 0.092(16) 0.120(20)
1.975 61 10 200 0.06(20) 0.06(14) 0.140(16) 0.170(20)
2.0125 125 10 150 0.44(12) 0.32(4) 0.238(14) 0.296(20)
2.025 71 20 150 0.60(10) 0.38(6) 0.282(12) 0.352(16)
2.0375 96 20 150 0.60(12) 0.32(4) 0.320(12) 0.410(16)
2.05 81 25 150 0.76(10) 0.50(8) 0.382(18) 0.486(22)
2.0625 111 10 150 0.64(12) 0.48(8) 0.400(18) 0.504(20)
2.11 35 10 100 1.02(12) 0.88(10) 0.466(22) 0.606(28)
2.14 40 10 100 1.02(6) 0.86(4) 0.512(8) 0.666(10)

Table 5.4: Details of the calculation of quark number susceptibilities. The column
labeled “meas” gives the number of measurements that were performed, that labeled
“sep” gives the number of time units between those measurements while the “#r.v.”
column gives the number of random vectors used in each measurement.

D−1
fPVD

′
fPV), etc.

The computation of the inverse of a matrix is an extremely expensive pro-
cess. However, we really only need its trace. This is computed stochastically
as follows: If η(m), n = 1, 2, . . . are independent random vectors satisfying

η†i ηj = lim
n→∞

1

n

n∑
m=1

η
(m)†
i η

(m)
j = δij, (5.11)

then

TrO = η†iOijηj = lim
n→∞

1

n

n∑
m=1

η
(m)†
i Oijη

(m)
j . (5.12)

Here, the overline denotes an average over the random vectors. This is faster
than computing the full inverse of the matrix. In our simulations, we used
100-200 random vectors to determine the traces. Our measurements are sum-
marized in Table 5.4.

In fig. (5.5), we show our results for the diagonal light and strange quark
number susceptibilities χu

2 and χs
2, respectively. We see that these suscepti-

bilities do transit from a low value to a high one as β increases. However, it
is difficult to assign any definite value of β around which the transition takes
place within the current statistical accuracy of our calculation. To a large
extent this is because of the traces on the second line of eq.(5.10). These
terms are the same as the ones in the off-diagonal susceptibility provided we
set f = g. In fact, with our current limited statistics these susceptibilities

64



-0.40

0.00

0.40

0.80

1.95 2.00 2.05 2.10 2.15

SB

β

χ2
u

 
χ2

s

-0.70

-0.50

-0.30

-0.10

0.10

0.30

1.95 2.00 2.05 2.10 2.15

SB

β

χ11
ud

 
χ11

us

Figure 5.5: The diagonal (top) and off-diagonal susceptibilities (bottom).

vanish within errors and therefore only contribute noise.
However when we consider some of the conserved charge susceptibilities,

specifically χI
2 and χQ

2 , the diagonal and off-diagonal susceptibilities combine
in such a way as to completely or partially cancel the noisy terms. Indeed, as
fig.(5.6) shows, the signals are cleaner in this case and even show a smooth
transition from a low to a high value.

We can even use this behavior to determine a transition temperature. We
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tried to fit the data to two Ansätze viz.

f(β) = A tanh(B(β − βd)) + C, (5.13a)

g(β) = aβ3 + bβ2 + cβ + d, (5.13b)

βd = −b/3a. (5.13c)
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Figure 5.6: The signals are cleaner for χI
2(top) and χQ

2 (bottom), allowing us to
specify the transition coupling βc as the inflection point of a fit.

In the absence of further information, the cubic equation is the most natural
fitting choice. On the other hand, we know that the curve must reach a plateau
around the Stefan-Boltzmann limit. This makes the choice of the hyperbolic
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tangent function a particularly tempting one. As can be seen from fig.(5.6),
the best fit depends strongly on the choice of function. However, the inflection
point determined in both cases is the same, although the errors are much
larger for the cubic fit. This inflection point can serve as an estimate of the
transition, although the slope of these observables also receives contributions
from the regular part of the free energy.

χI
2 χQ

2

best fit error % error best fit error % error
A 0.123683 0.006582 5.321 0.338025 0.01983 5.867
B 13.6692 1.338 9.79 12.3695 1.177 9.512
x0 2.02584 0.002439 0.1204 2.02711 0.002976 0.1468
C 0.141598 0.00357 2.521 0.365072 0.01036 2.836

χ2/ndf = 0.094, βd = 2.026. χ2/ndf = 0.089, βd = 2.027.

Table 5.5: Best fit values to the tanh function for χI
2 (left) and χQ

2 (right).

χI
2 χQ

2

best fit error % error best fit error % error
a -47.5507 11.57 24.33 -113.438 24.57 21.66
b 289.412 70.83 24.48 690.827 150.6 21.81
c -585.583 144.5 24.67 -1398.37 307.7 22.01
d 394.026 98.19 24.92 941.18 209.4 22.25

χ2/ndf = 0.186, βd = 2.089. χ2/ndf = 0.089, βd = 2.027.

Table 5.6: Best fit values to the cubic function for χI
2 (left) and χQ

2 (right).

To estimate systematic errors in the fits we performed fits for the entire
data set as well as in limited ranges by leaving out one or two data points at
the lower as well as upper edge of the β-range covered by our data sample.
From this we find inflection points in the range 2.024 6 β0 6 2.037 for χI

2 and
2.024 6 β0 6 2.034 for χQ

2 . Summarizing this analysis we therefore conclude
that the inflection points in the electric charge and isospin susceptibilities
coincide within statistical errors and are given by β0 = 2.030(7). This is in
good agreement with the determination of a pseudo-critical coupling obtained
from the location of peak in the chiral susceptibility, β = 2.0375, found in
Section 5.2.1.
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5.3 The Residual Mass

The residual mass is a measure of the degree to which exact chiral symmetry
is broken by the finite extent of the fifth dimension. On the lattice, starting
from a conserved, five-dimensional vector current

J a
µ (x, s) =

1

2

[
ψ(x+ µ̂, s)(1 + γµ)U †µ(x)taψ(x, s)

ψ(x, s)(1− γµ)Uµ(x)taψ(x+ µ̂, s)
]
.

(5.14)

one can construct a four-dimensional axial current that is partially conserved
viz. [58]

A5a
µ (x) =

Ls−1∑
s=0

ε

(
s− Ls − 1

2

)
J a

µ (x, s), (5.15a)

∆µAa
5µ(x) = 2mJa

5 (x) + 2Ja
5q(x). (5.15b)

The function ε(x) is just the sign function, ε(x) = x/|x|, x 6= 0 and ∆µ is
just the forward difference. The current A5a

µ (x) is the four-dimensional axial
current. In eq. (5.15b), the first term is just the pseudoscalar density viz.

Ja
5 (x) = −1

2

[
ψ(x, Ls − 1)(1− γ5)t

aψ(x, 0)

− ψ(x, 0)(1 + γ5)t
aψ(x, Ls − 1)

]
.

(5.16)

The second term is new, and only seen at finite Ls viz.

Ja
5q(x) = −1

2

[
ψ(x, Ls/2− 1)(1− γ5)t

aψ(x, Ls/2)

− ψ(x, Ls/2)(1 + γ5)t
aψ(x, Ls/2− 1)

]
.

(5.17)

This term is often called the “midpoint term.”
The residual mass is defined as the ratio of the correlators of the midpoint

term and the pseudoscalar density viz.

mres = lim
t→∞

R(t) = lim
t→∞

∑
x,y〈Ja

5 (x, t)Ja
5 (y, 0)〉∑

x,y〈Ja
5q(x, t)J

a
5q(y, 0)〉 (5.18)

The ratio, plotted as a function of t should plateau above a value t > tmin.
The height of the plateau is mres.
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What made domain-wall fermions attractive was the fact that this breaking
could be easily reduced by increasing Ls. Furthermore, mres was expected
to vanish exponentially fast as Ls was increased. Thus for e.g. a one-loop
calculation[56] showed the following dependence1

amres ∼ A

Ls

e−λLs , (perturbative)

where A was a constant.
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0.035
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aml

amres

Figure 5.7: mres as a function of the valence Ls at β = 2.00.

A different picture emerges at stronger coupling: A study by the Columbia
group found that a slower 1/Ls falloff also existed in addition to the exponential
falloff (fig. 5.7) viz. [58]

amres = am(pert)
res + am(npert)

res

=
A

Ls

e−λLs +
B

Ls

. (full) (5.19)

The origin of this non-perturbative contribution was traced to the appear-
ance or disappearance of zero-modes of the domain-wall operator [58]. By the
Banks-Casher relation, these modes are also responsible for spontaneous chiral
symmetry breaking. Thus, one ought to see a 1/Ls-dependence of the chiral-
condensate as well. However, note that the chiral condensate also contains a
divergent contribution ∼ 1/a3. This comes from the eigenvalues at the other

1We reinstate the lattice spacing a in this section.
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end of the spectrum, λ ∼ O(1/a). These eigenvalues are also far more numer-
ous i.e. their density equals the phase space density. It is the contribution of
these modes that is seen in perturbation theory. Thus, the divergence takes
the form

〈ψψ〉div = C
e−λLs/Ls

a3
+D

mf

a2
,

∼ D

{
m

(pert)
res +mf

a2

}
. (5.20)

The second term vanishes in the chiral limit. The first term arises because,
unlike staggered fermions, domain-wall fermions do not have an exact chiral
symmetry at finite Ls (Such a term is seen in Wilson fermion simulations as
well). Nonetheless, it vanishes exponentially with Ls.

0

10

20

30

40

50

0 10 20 30 40 50 60 70
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<ψψ>s / T
3

Figure 5.8: The chiral condensate does not change beyond Ls ' 20, though the
residual mass is still changing in this region.

Since the mf/a
2 term dominates over the finite part and is independent of

Ls, we should expect the unsubtracted condensate to show no Ls-dependence.
Indeed the condensate does not change beyond Ls ' 20, as fig. 5.8 shows.

On the other hand, the disconnected chiral susceptibility χdisc is a finite
quantity that is furthermore sensitive to the mass of the quark. As fig. 5.9
shows, if Ls is increased from 32 to 64, the light quark susceptibility increases as
expected. However, if Ls and mf are varied simultaneously so that mf +mres

remains constant (Ls = 96 curve), the curve does not change at all. This
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Figure 5.9: Chiral condensate (top) and the disconnected chiral susceptibility (bott-
tom) as a function of β and for Ls = 32, 64, 96. If Ls is increased while keeping
mf constant, χdisc increases. However, for Ls = 96 and mf varied so as to keep
mf +mres constant, no shift in the peak is observed.

again proves that the relevant quark mass in the DWF formalism is not mf

but mf +mres.
Lastly, we see that changing Ls has no effect on the strange quark suscep-

tibility. For that matter, there is no peak in χs
disc either. This is because the

ams is much greater than either aml or amres.

71



5.3.1 The Challenge of Reducing the Residual Mass

The appearance or disappearance of zero-modes of the domain-wall operator
could be related, via the index theorem, to the change in the gauge field
topology. On the lattice, topology change proceeds via the occurrence of
localized “defects.” By using an improved action, one could generate smoother
gauge fields which in turn could lead to a reduction in mres.

However, as one moves toward stronger coupling, the lattice gets coarser
and it becomes harder to suppress defects. One may expect that, even with
improved gauge fields, one sees a rise in mres with decreasing β. This is indeed
what our study showed, as fig. 5.10 shows.

0.00
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1.95 2.00 2.05 2.10 2.15

β

aml

amres

Figure 5.10: mres grows sharply as we move toward stronger coupling.

A gauge field independent way of suppressing zero-modes was proposed
in [68–71]. A zero eigenvalue of the Wilson kernel gave rise to a zero eigenvalue
of the DWF operator, although the eigenvectors for the two operators were
different. Therefore, one way to suppress zero-modes would be by “weighting”
the DWF determinant with the Wilson determinant. Since the latter would
go to zero in the presence of a zero-mode, such configurations would have zero
weight and would not be generated. This operator has been tested and is
currently being used to generate ensembles.
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5.4 Locating Tc

We will now attempt to combine our finite and zero temperature results to
determine the pseudo-critical temperature, Tc. As discussed in sec. 5.2.1 and
shown in fig. 5.2, the chiral susceptibility shows a clear peak whose location
gives a value for βc. The result for βc is consistent with the region of rapid in-
crease in the Polyakov loop and quark number susceptibilities seen in Figs. 5.4
and 5.6. Even though βc is fairly well resolved, there are still significant un-
certainties in extracting a physical value of Tc from our calculation. The most
important issues are:

• The distortion in the dependence of the chiral susceptibility on β induced
by the variation of mres with β.

• The uncertainty in determining the lattice scale at the peak location
near βc = 2.0375 from our calculation of r0/a at β = 2.025, performed
with light quarks considerably more massive than that those found in
nature.

• The absence of chiral and continuum extrapolations.

We address each of these sources of uncertainty in turn.

5.4.1 Correcting for mres(β)

In Section 5.2.1, we observed that the chiral susceptibility has a peak near
β = 2.0375, which we can identify as the center of the transition region.
However, the total light quark mass mq = ml +mres is different for each value
of β because of the changing residual mass mres(β). This changing quark
mass distorts the shape of the chiral susceptibility curve, shifting the location
of its peak from what would be seen were we to have held the quark mass
mq = ml +mres fixed as β was varied.

In order to correct for this effect, we must account for the quark mass
dependence of the chiral susceptibility. Our valence measurements at Ls =
64 and Ls = 96 indicate that the chiral susceptibility is inversely related
to the quark mass and depends only on the combination mq = ml + mres.
Figure 5.11 shows the resulting chiral susceptibility, when one corrects for
the known β dependence of mres(β) by assuming a power-law dependence of
χl ∝ 1/mα

q on the quark mass for various choices of the power α ranging
between α = 0 and α = 3/2. While for T ≤ Tc and in the limit of small quark
mass the chiral susceptibility is expected to behave as ∝ 1/

√
mq [12, 59–62]

corresponding to α = 1/2, our data from the Ls = 64 valence measurements
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Gaussian Lorentz
α βc χ2/dof βc χ2/dof
0 2.041(2) 1.7 2.041(2) 2.3

1/2 2.036(3) 1.7 2.035(3) 1.7
1 2.030(3) 1.7 2.030(3) 1.8

3/2 2.024(5) 1.8 2.026(3) 2.0

Table 5.7: The corrected peak location (βc) in the light chiral susceptibility de-
termined from fits to Lorentzian and Gaussian peak shapes resulting from different
assumptions for the light quark mass dependence of χl: χl/T

2 ∼ 1/(ml +mres)α).
All fits include the 7 data points nearest the peak location, i.e. β ∈ [2.00, 2.08].
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Figure 5.11: The chiral susceptibility corrected for varying mres by assuming χl ∝
1/mα

q for different choices of α.

suggest α ∼ 1.2 − 1.8, albeit with rather large uncertainty. While α > 0.5
is inconsistent with the expected chiral behavior, we conservatively include
such larger exponents as a possible behavior over our limited range of non-
zero quark mass. Adjusting the chiral susceptibility curve in this manner
enhances the chiral susceptibility at stronger coupling, as mres(β) is larger on
the coarser lattices. This causes a systematic shift in the peak location to
stronger coupling when this correction is made.

While a cursory examination of Fig. 5.11 suggests that this correction does
not change the peak structure, more careful study reveals that for the extreme
α = 1.5 case the peak may have disappeared if the two lowest β values with
large errors are taken seriously. We view this possibility as unlikely but not
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absolutely ruled out.
Table 5.7 gives the results of fitting the peak region to Lorentzian and

Gaussian peak shapes for various α. If we make no adjustment to the raw
data (α = 0), we obtain βc = 2.041(2). However, with α = 3/2, we have
βc = 2.024(5) with the Gaussian fit. While α = 3/2 seems to be favored by
our valence measurements, we would like to emphasize that the quark mass
dependence of the chiral susceptibility has large uncertainties. In particular,
since we performed valence measurements at only three values of β, it is unclear
if this α ≈ 3/2 behavior holds over a broader range in β. Also, we do not
know whether the same mass dependence will persist if both the valence and
dynamical quark masses are varied.

It should be recognized that if χl ∝ 1/mα
q behavior for T 6 Tc persists

in the limit of vanishing mq the peak structure suggested by Fig. 5.11 may
take on the appearance of a shoulder as the χl grows for T < Tc. Such a
singular behavior at small quark mass, for example the α = 1/2 case suggested
by chiral symmetry, would make χl a poor observable to locate the finite
temperature transition [63]. Although our data shows an easily identified
peak, unclouded by a large 1/

√
mq term for T ≤ Tc, it is possible that such

behavior may substantially distort the chiral susceptibility as the light quark
mass is decreased from that studied here to its physical value.

With these caveats in mind, we estimate the pseudo-critical coupling to be
βc = 2.03(1). The central value corresponds to the peak location if we assume
a quark mass dependence of χl ∼ 1/(mq + mres). The quoted error reflects
the uncertainty in the mass dependence of χl, and is chosen to encompass the
range of values for βc shown in Table 5.7.

5.4.2 Extracting the lattice scale at βc

This value of βc differs from that of our zero-temperature ensemble (β = 2.025)
where we have measured the Sommer parameter, r0/a. Thus, in order to
determine the lattice scale at βc, we need to know the dependence of r0/a on
β. Fortunately, in addition to our measurements at β = 2.025, r0/a has been
extensively measured at β = 2.13 [49].

At β = 2.13, the value of r0/a at the quark mass corresponding most
closely to the current calculation is r0/a = 3.997(22). Extrapolation to the
chiral limit gives r0/a = 4.113(31) for β = 2.13, an approximately 3% increase.
A study of finite volume effects in Ref. [49] suggests that, in addition, the value
computed on a 163 × 32 lattice is too low by approximately 1− 2%.

To obtain r0/a at βc, we use an exponential interpolation in β, giving
r0/a = 3.12(13), which includes the statistical errors for r0/a and the uncer-
tainty in βc = 2.03(1). To account for chiral extrapolation and finite volume
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effects, we add 4% to this central value and also add a 4% error in quadrature,
resulting in r0/a = 3.25(18). This corresponds to Tcr0 = 0.406(23).

5.4.3 Chiral and Continuum Extrapolations

In the end, we wish to obtain a value for the pseudo-critical temperature Tc

corresponding to physical quark masses and in the continuum (a → 0) limit.
However, our current calculation is performed with a single value for the light
quark masses, (ml/ms ≈ 0.25), and a single value for the temporal extent
(Nt = 8). Thus, we are not at present able to perform a direct chiral or
continuum extrapolation.

We can make an estimate of the shift in Tc that might be expected when
the light quark mass is reduced to its physical value by examining the depen-
dence of Tc on the light quark mass found in the Nt = 6, staggered fermion
calculations in Ref. [46]. The quark mass dependence of Tc found in Table
IV of that paper, suggests a 3% decrease in Tc when one goes to the limit of
physical quark masses.

The effects of finite lattice spacing on our result can be estimated from the
scaling errors that have been found in recent zero temperature DWF calcu-
lations [64, 65]. Here hadronic masses and decay constants were studied on
a physical volume of side roughly 3 fm using two different lattice spacings:
1/a = 1.73 and 2.32 GeV. The approximate 1-2% differences seen between
physically equivalent ratios in this work suggests fractional lattice spacing er-
rors given by (aΛ)2 where Λ ≈ 260−370 MeV. If this description applies as well
for the a−1 ≈ 1.3 GeV lattice spacing being used here, we expect deviations
from the continuum limit of 4-7%.

Thus,to account for the systematic uncertainty in failing to perform chiral
and continuum extrapolations, we add a 10% systematic uncertainty to our
final value for the pseudo-critical temperature, giving Tcr0 = 0.406(23)(41).
Using r0/a = 0.469(7) fm, this corresponds to Tc = 171(10)(17) MeV. Here
the first error represents the combined statistical and systematic error in de-
termining Tcr0 for our a−1 ≈ 1.3 GeV lattice spacing and light quark mass of
≈ 0.22 times the strange mass. The second error is an estimate of the sys-
tematic error associated with this finite lattice spacing and unphysically large
light quark mass.

5.5 Status of DWF Thermodynamics

We have carried out a first study of the QCD phase transition using chiral,
domain wall quarks on a finite temperature lattice with temporal extent Nt =
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8. This work represents a advance over earlier domain wall calculations [52, 66]
with Nτ = 4 and 6, having significantly smaller residual chiral symmetry
breaking and including important tests of the physical interpretation of the
resulting residual mass. Most significant is the comparison of the residual mass
computed at fixed β = 2.025 for both zero and finite temperature yielding
mres = 0.0069(5) and 0.006647(84) respectively. The equality of these two
results suggests that mres can indeed be interpreted as a short-distance effect
which acts as a small additive mass shift over the range of temperatures which
we study.

We found that the chiral susceptibility shows a clear peak around βc =
2.03(1) and suggests a critical region between 155 and 185 MeV. The peak loca-
tion can be used to estimate a pseudo-critical temperature Tcr0 = 0.406(23)(41)
or Tc = 171(10)(17) MeV. The first error represents the statistical and sys-
tematic uncertainties in determining βc and the corresponding physical scale
at our larger than physical quark mass (mπ = 308 MeV) and non-zero lattice
spacing, a−1 ≈ 1.3 GeV. The second error is our estimate of the shift that
might be expected in Tc as the quark mass is lowered to its physical value and
the continuum limit is taken.

The transition region identified from the peak in the chiral susceptibility
χl shown in fig. 5.1 agrees nicely with the region of rapid rise of the Polyakov
line L shown in Fig. 5.4 and the charge and isospin susceptibilities, cQ2 and
cI2, shown in Fig. 5.6. This coincidence of the transition region indicated
by observables related to vacuum chiral symmetry breaking (χl) and those
sensitive to the effects of deconfinement (L, cQ2 and cI2) suggests that these two
phenomena are the result of a single crossover transition.

It is of considerable interest to compare this result with those obtained in
two recent large-scale studies using staggered fermions [46, 67]. Unfortunately,
because of our large uncertainties, our result is consistent with both of these
conflicting determinations of Tc.

To improve on these measurements, the following two chief sources of sys-
tematic error must be brought under control: First and most importantly
the size of residual chiral symmetry breaking must be substantially reduced.
This could be achieved directly for the calculation described here by simply
increasing the size of the fifth dimension. Of course, such an increase in Ls

incurs significant computational cost. Never-the-less, a study similar to that
reported here is presently being carried out by the HotQCD collaboration us-
ing Ls = 96. This will provide an improved result for the chiral susceptibility
as a function of temperature, giving a new version of Fig. 5.2 in which the
total quark mass, mf +mres, remains constant across the transition region.

More promising for large-volume domain wall fermion calculations is the

77



use of a modified gauge action, carefully constructed to partially suppress the
topological tunneling which induces the dominant 1/Ls term in Eq. 5.19 [68–
71]. This is accomplished by adding the ratio of 4-dimension Wilson determi-
nants for irrelevant, negative mass fermion degrees of freedom to the action.
Preliminary results [71] indicate that without increasing Ls beyond 32, this
improved gauge action can reduce the residual mass in the Nt = 8 critical
region by perhaps a factor of 5 below its current value while maintaining an
adequate rate of topological tunneling. This improvement, when combined
with the next generation of computers should permit a thorough study of the
QCD phase transition at a variety of quark masses, approaching the physical
value and on larger physical spatial volumes.

The second important source of errors comes from cutoff effects. As we have
already seen, these can be unacceptably large: ∼ 20% at Nτ = 8. If we wish
to obtain more than just a qualitative understanding of the phase diagram,
it is necessary to minimize these errors by improving this action. In the next
chapter, we shall describe how we can improve the domain-wall operator and
present some preliminary results of simulations with the operator.
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Chapter 6

The Improved Domain-Wall
Operator

We have already seen that improvement is necessary to minimize lattice ar-
tifacts on relatively small lattices. In the usual formulation of domain-wall
(DW) fermions, the fermion dispersion relation is identical to that for naive
fermions. This implies that discretization errors are sizeable even at Nτ = 8.
Since DW fermions are quite expensive to simulate, it is a good idea to try
and improve the action before going to larger lattices.

In fact, the derivation of the dispersion relation also suggests a way of
improving it. Recall that the domain-wall kernel (4-d part) was just the usual
unimproved Wilson action. This suggests that if we improve the kernel, we
would obtain an improved dispersion relation as well.

6.1 Improvement – A Recap

Let us recall that improving an action consists of two parts: First, additional
terms are added to an action. These terms vanish in the continuum limit.
Next, a criterion is adopted that insures elimination of cutoff errors upto some
order and the coupling constants multiplying these terms are tuned so that
the criterion is satisfied. What criterion is chosen depends on what sort of
simulations one wants to perform with the action.

For example, if one wishes to do spectroscopy, a reasonable criterion is that
the lattice propagator be equal to the continuum one upto O(an) for some n
and add an appropriate number of terms to the fermion action1. In the in-
teracting case, one may even ask that this holds upto O(αm

s ) for some m.

1The number of terms to be added grows with n. Typically, n = 4 is achievable.
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Then one adds additional terms to the gauge action too and tunes the coeffi-
cients of both gauge and fermion actions. Such tuning is called perturbative
improvement as one often calculates these coefficients in perturbation theory.

On the other hand, one may also demand that the low-energy spectrum
of the lattice theory ought to resemble the continuum spectrum upto O(an)
differences. This is especially important in rooted staggered simulations, where
the degeneracy between different tastes is violated by O(αsa

2) errors. In this
case, one typically “smears” the gauge links to reduce these errors[5]. This is
an example of non-perturbative improvement.

In thermodynamics on the other hand, one wishes to calculate quantities
such as the pressure, the energy density or various quark number susceptibil-
ities, for example. As we have already seen (sec. 4.3.1), in this case a simple
criterion has proved to be very useful. The contribution to these quantities
comes from the poles E(p) of the lattice propagator. Thus it is sufficient to
ensure that E(p) is O(an)-improved. This can be achieved if the propagator is
simply rotation-invariant upto that order. This is an important result; it tells
us for example why the pressure in the Wilson formulation is O(a)-improved
even though the Wilson term is of O(a). In what follows, we too shall exploit
this property: For technical reasons, we shall leave the propagator unimproved
but ensure that it is rotation-invariant at O(a2).

6.2 The (Modified) Hamber-Wu Action

Our starting point is an action first introduced by H. Hamber and C. M.
Wu [6] about three decades ago. By adding linear two-link terms to the first
and second derivatives and adjusting their coefficients, the authors were able
to remove the leading and subleading (O(a2) and O(a3)) corrections to the
continuum Dirac operator, aDHW (m) = a (γµ∂µ +m) +O(a4)2.

However, the addition of a two-link term is problematic in numerical ap-
plications, for e.g. from the point of view of preconditioning [73, 74]. Re-
call that the usual Wilson operator takes the form 1 − κDx,x′ , where Dx,x′

is non-zero only between sites of different parities (more specifically, between
nearest-neighbor sites). This form of the operator makes it easier to invert:
First, we separate the components of the field on the even and odd sites viz.
φ = (φo, φe)

T . The Wilson matrix M can be written as

M =

(
1 −κDoe

−κDeo 1

)
= I − L− U , (6.1)

2The Hamber-Wu operator has also been used in [72] to improve the overlap operator.
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where U and L are is the following upper- and lower-triangular matrices re-
spectively viz.

U =

(
0 κDoe

0 0

)
, L =

(
0 0

κDeo 0

)
. (6.2)

Note that the diagonal part of 1− κD is trivial. The matrices (I − U)−1 and
(I − L)−1 are easily found to be

(I − U)−1 =

(
1 κDoe

0 1

)
, (I − L)−1 =

(
1 0

κDeo 1

)
, (6.3)

i.e. they can be constructed out of the original Wilson operator itself. Now
consider the matrix M̄ given by

M̄ = (I − L)−1 M (I − U)−1 =

(
1 0
0 1− κ2DeoDoe

)
. (6.4)

The odd sites decouple completely, therefore the size of the matrix to be in-
verted is reduced by half. The inverse of this matrix is not the same as the
earlier one, M−1 = (I−U)M̄−1(I−L), and one has to pre- and post-multiply
by (I − U)−1 and (I − L)−1 respectively. However, these are already known
and furthermore, multiplication with these is cheap because they are upper-
and lower-triangular matrices. The net result is thus a factor-two speedup in
inversion.

The above simple preconditioning worked because the diagonal part of the
operator was trivial. Had we introduced a two-link term, this would no longer
be true. Since domain-wall fermions are quite expensive, it is not a good idea
to lose preconditioning. We therefore decided to introduce a three-link term
instead of a two-link one.

It is straightforward to implement the program of Hamber and Wu for a
three-link term; only the coefficients and the Wilson κ term turn out to be
different. Below, we outline the steps leading to the final form of the operator.
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6.2.1 The O(a2)-Improved Wilson Operator

We start by adding the three-link analogs of the first and second derivative to
the usual one-link Wilson Dslash term viz.

Dx,x′ =
4∑

µ=1

γµ

2

{
(δx′,x+µ̂ − δx′,x−µ̂) + α (δx′,x+3µ̂ − δx′,x−3µ̂)

}

−
4∑

µ=1

r

2

{
(δx′,x+µ̂ + δx′,x−µ̂ − 2δx,x′) + β (δx′,x+3µ̂ + δx′,x−3µ̂ − 2δx,x′)

}
.

(6.5)

Next, we have to choose a criterion. The criterion adopted by Hamber and
Wu was that the Dirac operator be O(a2)-improved at tree-level. To see how
this fixes the values of α and β, we first write eq. (6.5) in momentum space
viz.

Dp =
4∑

µ=1

γµ

{
i sin pµ + iα sin 3pµ

}
− r

4∑
µ=1

{
(cos pµ − 1) + β(cos 3pµ − 1)

}
,

→
∑

µ

iγµ

{
pµ(1 + 3α)− p3

µ

3!
(1 + 27α)

}
− rp2

2!
(1 + 9β) +O(p4

µ).

(6.6)

We have denoted
∑

µ p
2
µ by p2 to emphasize that the term is rotation-invariant.

Now we see that we can eliminate O(a2) and O(a3) contributions simply by
choosing α = −1/27, β = −1/9 viz.

Dx,x′ =
4∑

µ=1

γµ

2

{
(δx′,x+µ̂ − δx′,x−µ̂)− 1

27
(δx′,x+3µ̂ − δx′,x−3µ̂)

}

−
4∑

µ=1

r

2

{
(δx′,x+µ̂ + δx′,x−µ̂ − 2δx,x′)− 1

9
(δx′,x+3µ̂ + δx′,x−3µ̂ − 2δx,x′)

}
.

(6.7)

6.2.2 The Projection Property

The operator derived above is problematic in one respect. To see what that
is, let us rewrite eq. (6.5) as follows: Setting r = 1 and collecting the one-link
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and three-link terms separately, we get

Dx,x′ =− 1

2

4∑
µ=1

[
(1− γµ)δx′,x+µ̂ + (1 + γµ)δx′,x−µ̂ − 2δx,x′

]

− 1

2

4∑
µ=1

[
(β − αγµ) δx′,x+3µ̂ + (β + αγµ) δx′,x−3µ̂ − 2βδx,x′

]
.

(6.8)

There is an advantage to having a 1 ± γµ structure (which the one-link term
has but which a priori the three-link term doesn’t). For example, if we write
out the matrices 1 + γµ explicitly viz.

1 + γ1 =




1 0 0 +i
0 1 +i 0
0 −i 1 0
−i 0 0 1


 , 1 + γ2 =




1 0 0 −1
0 1 +1 0
0 +1 1 0
−1 0 0 1


 , (6.9a)

1 + γ3 =




1 0 +i 0
0 1 0 −i
−i 0 1 0
0 +i 0 1


 , 1 + γ4 =




1 0 +1 0
0 1 0 +1

+1 0 1 0
0 +1 0 1


 , (6.9b)

we see that it is sufficient to know two rows(columns) of the matrices; the
other two are obtained by simple multiplication of ±1 or ±i (Which two rows
need to be stored depends on µ)3. This property of the matrices carries over to
any spinor that they multiply: Given two entries of the spinor, we can obtain
the other two by simple multiplication of ±1, ±i. A similar property also holds
for the matrices 1− γµ.

The advantage of this property becomes apparent during the operation of
parallel transport i.e. the matrix multiplication of a source field by a gauge link
Uµ(x). For example, the Conjugate Gradient (CG) method for inverting the
Dirac operator D proceeds by the repeated application of D to a trial solution
ψ. As is well-known, to be gauge-invariant D cannot contain ordinary deriva-
tives but rather must contain covariant derivatives: δx′,x+µ̂ → Uµ(x)δx′,x+µ̂,
δx′,x−µ̂ → U †µ(x)δx′,x−µ̂. The link matrices act on the color indices only; a
separate multiplication is required for each spin component. The problem is
more acute in the three-link case, where three such matrix multiplications are
required in each direction. This O(N) operation (where N is the order of D)
is the most time-consuming part of the CG algorithm. Projection speeds this
up by a factor of two because we need multiply only half the spinor entries.

3In the language of linear algebra, the matrices 1± γµ are rank-two matrices.
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The remaining two entries can be determined, after all such multiplications
have been done, simply by using eqs. (6.9).

We thus demand that the three-link term preserve the projection property
as well. This is possible if we choose α = β in eq. (6.8) viz.

Dx,x′ =− 1

2

4∑
µ=1

[
(1− γµ)δx′,x+µ̂ + (1 + γµ)δx′,x−µ̂ − 2δx,x′

]

− α

2

4∑
µ=1

[
(1− γµ)δx′,x+3µ̂ + (1 + γµ)δx′,x−3µ̂ − 2δx,x′

]
.

(6.10)

A Taylor expansion in momentum space now yields

DHW (p) =
∑

µ

iγµ

{
pµ(1 + 3α)− p3

µ

3!
(1 + 27α)

}
− p2

2!
(1 + 9α) +O(p4

µ). (6.11)

We have a choice between eliminating the O(a2) or the O(a3) terms. It might
seem that one ought to eliminate the O(a2) term; however note that that term
is rotation-invariant. We have already seen that rotation-invariant corrections
do not correct the dispersion relation. Let us therefore choose α = −1/27.
With this choice, the dispersion relation shall receive corrections at O(a4).
In fact, we shall see that with this choice of coefficients, the action actually
converges faster and more smoothly to the continuum limit. This choice of
coefficients also improves the thermodynamics of the domain-wall or overlap
operator that uses this kernel, as we shall see.

Determining κHW

So far, we have focused our attention on the kinetic, or “Dslash” part. The
full Hamber-Wu operator is actually given by

MHW (x, x′) = DHW (x, x′) + (1 + 3α)mδx,x′ , (6.12)

with DHW given by eq.(6.5) above. The reason for the (1 + 3α) factor is clear
from eq.(6.6): It is the coefficient of the

∑
µ γµpµ term in the Taylor expansion

which is the only term that survives the continuum limit. Since the continuum
Dirac operator is

∑
µ iγµpµ +m, the mass term must have the same coefficient

as the kinetic one.
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Putting everything together, we get

Dx,x′ =− 1

2

4∑
µ=1

[
(1− γµ)δx′,x+µ̂ + (1 + γµ)δx′,x−µ̂ − 2rδx,x′

]

+
α

2

4∑
µ=1

[
(γµ − 1) δx′,x+3µ̂ + (γµ + 1) δx′,x−3µ̂ − 2δx,x′

]

+(1 + 3α)mδx,x′

(6.13)

Generally, one rescales the field variables so that the coefficient of δx,x′ is unity
viz.

Mx,x′ =1− κHW

[
4∑

µ=1

{
(1− γµ)δx′,x+µ̂ + (1 + γµ)δx′,x−µ̂

}
(6.14a)

−α
4∑

µ=1

{
(1− γµ)δx′,x+3µ̂ + (1 + γµ)δx′,x−3µ̂

}]
,

κHW =
0.5

4 (1 + α) + (1 + 3α)m
. (6.14b)

To see how the operator performs, we compute the pressure for massless
Hamber-Wu fermions. Fig. 6.1 shows the results. The values are normalized to
the continuum value of PSB = 7π2/180. It is seen that the rotation-invariant
case actually performs better than the improved case. This is reminiscent of
the behavior of p4 versus Naik fermions: p4 fermions perform better on coarser
lattices even though their Dirac operator has O(a2) errors.

From the figure, we also see that the approach to the continuum limit is
non-monotonic for the choice α = −1/27, β = −1/9. This makes the choice
unreliable for continuum extrapolations in full-fledged simulations.

6.3 DWF Thermodynamics with the Hamber-

Wu kernel

Next let us consider the domain-wall operator whose 4-d part consists of the
Hamber-Wu operator. The formulae that were derived in appendix B for the

85



0.86

0.90

0.94

0.98

1.02

1.06

 8  12  16  20  24

P
/P

S
B

SB

Nτ

α=-1/27, β=-1/27
 

α=-1/27, β=-1/9

Figure 6.1: The (normalized) pressure of massless Hamber-Wu fermions as a func-
tion of Nτ for two choices of the parameters. The blue points are displaced slightly
relative to the red ones for clarity.

propagator and the pressure still hold viz.

D−1(p) = 1 +
i
∑

µ γµ sin pµ

S2 +W 2 − 1 +
√

(1 + S2 +W 2)2 − 4W 2
, (6.15a)

P

T 4
= 2

(
Nτ

Nσ

)3 ∑
p,p4

ln

(
1− 1− S2 −W 2

√
(1 + S2 +W 2)2 − 4W 2

)
, (6.15b)

except that W and S2 are now given by

W = 1− (1 + 3α)M5 +
∑

µ

{
(1− cos pµ) + α(1− cos 3pµ)

}
, (6.16a)

S2 =
∑

µ

{
sin pµ + α sin 3pµ

}2

. (6.16b)

As before, the dispersion relation is given by S2 = 0 subject to the constraint
|W | < 1. The constraint is satisfied near the origin of the Brillouin zone
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provided

−1 < 1− (1 + 3α)M5 < 1 or (6.17)

0 < M5 < 9/4 for α = −1/27.

The allowed range of M5 is increased vis-á-vis the unimproved case. Next, let
us try to solve the dispersion relation for E = −ip4. If we denote

∑3
i=1(sin pi +

α sin 3pi)
2 by ω2, then (eq. (6.16b))

0 = (sin p4 + α sin 3p4)
2 + ω2, (6.18)

= sin2 p4 + α2
(
3 sin p4 − 4 sin3 p4

)2

+ 2α sin p4

(
3 sin p4 − 4 sin3 p4

)
+ ω2,

= 16α2 sin6 p4 − 8α(1 + 3α) sin4 p4 − (1 + 3α)2 sin2 p4 + ω2,

∴ 0 = sin6 p4 − 2

(
1 + 3α

2α

)
sin4 p4 −

(
1 + 3α

2α

)2

sin2 p4 +
( ω

4α

)2

.

This is a simple cubic equation in sin2 p4 which can be solved for −i sinhE =
sin p4 (This is in contrast to the Wilson dispersion relation which is a gen-
eral, sixth-order cubic equation in sin(p4/2) and therefore does not admit of
a closed-form solution). Here we see yet another advantage to removing the
O(a3) errors instead of the O(a2) one back in eq.(6.11). The O(a2) correction
comes from the Wilson term which does not show up in the domain-wall dis-
persion relation. The O(a3) correction is in fact the leading correction here
and it is eliminated by our choice of α.

Once we’ve solved the above equation, we can use the variable E(p) to
obtain a series expansion in the lattice spacing a ≡ 1/Nτ for the pressure viz.

P

PSB

= 1− 1143

980

(
π

Nτ

)4

− 365

77

(
π

Nτ

)6

+O(a8). (6.19)

This is the same series as for the Naik equation, but that was to be expected:
Unimproved DWF fermions had the same dispersion relation, and thus the
same series, as unimproved naive fermions. The addition of a three-link term
would make the dispersion relation identical to the Naik one. If we had added
bent terms instead of a three-link term, we would have obtained the p4 disper-
sion relation instead. Fig. 6.2 plots the unimproved and improved pressures
as functions of Nτ .
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Figure 6.2: P/PSB for improved and unimproved domain-wall fermions (Ls = ∞
and M5 = 1.0). The curves plot the corresponding series.

6.4 Simulating with the Hamber-Wu Opera-

tor

6.4.1 Implementation

The next step was to test whether the improvement carried over to the inter-
acting case as well. This involved implementing the Hamber-Wu kernel for the
domain-wall operator. Briefly this meant that, given an arbitrary field ψ(x):

• The four-component field was projected, by multiplying by 1 ± γµ, to
eight two-component fields, one for each direction.

• The projected fields were parallel-transported: (1− γµ)ψ(x) −→ Uµ(x−
µ̂)ψ(x), etc. Note that the parallel-transported field actually belongs to
the site x − µ̂. In effect this moves the lattice by one step, leaving the
fields in their original position. The one-link and three-link terms were
transported separately.

• The one-and three-link terms for a given direction were combined, with
the appropriate coefficients c10 and c30 included.

• These fields were expanded back to their four-component analogs.
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• The fields along the eight different directions were added together.

The above procedure was implemented twice, since we separated the fields on
odd and even sites and transported them separately. Also, along with the
kinetic term we needed its derivative with respect to the chemical potential as
well. Since the latter only coupled to the fields in the 4̂-direction, we needed
to project/parallel-transport/expand only along two directions. Depending on
the order n of the derivative, the backward hop picked up a sign (−1)n, which
had to be kept track of.

We tested this operator extensively before employing it in simulations.
By placing a unit source at random on a lattice, and using the trivial gauge
configuration i.e. one in which all links were the unit matrix, we could check
that each of the above steps did what was expected of it. We also used a
non-trivial gauge configuration to check that the parallel-transporter correctly
matched Uµ(x) with ψ(x + µ̂), etc. (For the unit configuration, all the Uµ(x)
would be identical). We also made sure that the (anti)periodic boundary
conditions for the (time)space directions were implemented correctly.

For the more general case of non-trivial source and field, one could only
check quantities averaged over the whole lattice. One non-trivial check was
to set the coefficient of the three-link term to zero and compare it with the
results obtained with the unimproved operator (which we already had). Yet
another check was to gauge-transform an arbitrary configuration and check for
the invariance of physical observables, such as 〈ψψ〉, with respect to it. Lastly,
we made some “quick-and-dirty” measurements of quantities such as χ2 in the
free case and checked that the results were within reasonable agreement with
the ideal gas values (upto cutoff and finite-volume effects).

6.4.2 Partial Quenching

A first test of improvement would be to compute an observable such as χ2 well
above the transition temperature Tc with both the unimproved and improved
operators. At temperatures T & 2Tc, χ2 attains its ideal gas value of unity.
However if cutoff effects are present, these measurements can actually exceed
this value by about 10%4.

The domain-wall ensembles that we had used for our earlier measurements
were generated for studying the region around Tc, and were consequently at
much lower temperatures. We therefore decided to test our operator on the
p4 ensembles that had been generated by the RBC-Bielefeld collaboration for
its Equation of State studies.

4See fig. 4.1 for an example of this artifact in the pressure.
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When the action used to measure observables is different from the action
used to generate the ensembles, the resulting measurements are referred to as
“partially quenched.” Partial quenching may be thought of as an intermediate
step between totally “quenched” measurements in which fermionic observables
are measured on pure gauge ensembles, and “fully dynamical” ensembles in
which the valence and sea quarks are identical (“valence” and “sea” refer to
the quarks used in making measurements and in generating the ensembles
respectively. The latter only show up in virtual quark-antiquark loops, hence
the name “sea”.).

The use of different actions in the sea and valence sectors implies that the
partially quenched theory violates unitarity. Importantly however, unlike the
fully quenched case, this violation vanishes in the continuum limit. This may
be understood as follows: In the quenched case, the lack of dynamical fermions
means that there are no quark-antiquark loops in the theory, irrespective of the
spacing. Formally the quenched theory is a theory of infinitely heavy fermions,
which explains why they do not propagate — it would cost an infinite amount
of energy to create a qq̄ pair out of the vacuum. In such a theory, the valence
quarks merely act as “test charges.” By contrast, in the partially quenched
theory one merely has a different fermion action in the sea sector. Since all
fermion actions go over to the Dirac action in the continuum, it is reasonable
to expect that unitarity-violating effects shall vanish in the continuum.

Of course, this expectation must be verified as rigorously as possible. This
has been done within the context of chiral perturbation theory in [75, 77]. A
point stressed by these and other authors is that it is not possible to tune
the valence and sea quark masses at finite lattice spacing so as to remove
all unitarity-violating artifacts [75, 76]. On the other hand, these violations
become smaller with smaller spacing and vanish altogether in the continuum
limit. Furthermore the chiral and continuum limits commute, so that one may
extrapolate in either direction depending on the need. Lastly, the ambiguity
in the definition of a quark mass at a 6= 0 implies that one is free to use a
value appropriate to the task at hand [77, 78].

6.5 Measurements

6.5.1 The Connected Susceptibility

Our measurements of the susceptibility χ2 are preliminary, partly because the
simulations are still in their early stages, but also because the large size of the
p4 lattices viz. 323×8, coupled with our choice of Ls = 32, slowed down these
measurements. Thus these lattices were eight times larger than the ones we
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used for our results in the previous chapter. Lattices of this size have never
been employed before in DWF thermodynamics and even with the unimproved
action, it took about ten hours to measure χ2 to sufficient precision at the
lowest β-value.

Another bottleneck obviously was the memory requirement. Since each
fermion field consists of 4 spin components times 3 colors = 12 complex,
double-precision numbers, we needed 48× 16 = 768 bytes = 0.75 kB of mem-
ory per site. Eight such copies are needed (one for each direction) and for the
improved operator one needs eight more copies for the three-link terms.

On scalar machines, the improved operator was about four times as slow
as the unimproved one. However the latter operator has been optimized over
the years for performance on the BlueGene/L machine on which we ran our
simulations. On that machine, the improved operator was found to be around
ten-fifteen times slower. Clearly, further work is needed so as to bring the
operator to its optimum performance level.

Since we were only testing the operator, we used a trial value of am = 0.01.
Provided the quark mass is small enough that the pion is not too heavy, χ2

shows no quark mass dependence and should, in principle, attain the Stefan-
Boltzmann value of unity. Ideally, one would have liked to make measurements
at more than one value of the quark mass and perform an extrapolation of some
sort. The fact that these measurements took so long however constrained us
to work at one mass value for the time being and defer detailed extrapolations
for later.

We have already defined the quark number susceptibilities and listed the
traces involved in the lowest-order susceptibilities in eqs. (5.10). Of the three
traces that enter in the measurement of χ2, measuring the square is the hardest.
The ensemble average of this quantity is numerically equal to the off-diagonal
correlation χud

11 . This quantity, which only receives contributions from discon-
nected loops, fluctuates a lot from configuration to configuration. Moreover it
goes to zero at high temperatures.

β Unimproved Improved
4.00 0.550(7) 0.483(8)
3.82 0.544(4) 0.486(7)
3.76 0.536(8)

Table 6.1: The connected susceptibilities for the improved and unimproved DWF
operators. The unimproved ones exceed the SB value of 0.5 by about 10%.

If we drop this quantity, the remaining part is called the connected sus-
ceptibility. This quantity is much easier to evaluate and furthermore, this
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is the part that attains the Stefan-Boltzmann value as T → ∞. Table 6.1
tabulates the quantity c2 = 0.5χ2 for the improved and unimproved fermions
respectively.

6.5.2 The Residual Mass
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Figure 6.3: The residual mass is seen to decrease by a factor of two in going from
the unimproved to the improved case. The above plot is for β = 3.82.

β Unimproved Improved
4.00 2.42(12)× 10−5 1.30(9)× 10−5

3.82 4.00(8)× 10−4 1.85(6)× 10−4

Table 6.2: Values for mres obtained using the unimproved and improved actions on
the same (p4) ensembles.

Fig. 6.3 plots the quantity R(t) defined in eq. (5.18) as a function of t. We
see that it attains a plateau around t ' 2; the level of the plateau is the residual
mass. While the value of the residual mass is small in both cases, it is smaller
in the improved case by about a factor of two relative to the unimproved
one. Table 6.2 lists the values of mres obtained with the two actions for the
different β-values. In both cases, mres is smaller in the improved case than in
the unimproved one. On the other hand, the tendency of mres to increase with
the coupling is still present in both cases. It remains to be seen whether the
observed reduction inmres persists all the way toward much stronger couplings.
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6.5.3 Screening Masses

It is characteristic of any plasma that any test charge that is introduced in
it is shielded so that its influence falls off exponentially with distance. This
falloff is characterized by a length called the screening length, whose inverse
defines the screening mass.

Depending on the type of charge introduced, one may define more than
one screening mass. Typically in the case of QCD the test charge is a meson
ψΓψ, where Γ is one of the sixteen typical combinations of the Dirac matrices.
The quantity that is measured is the hadronic correlator viz.

CΓ(z) =
∑
x,y,t

〈
ψ(x, t)Γψ(x, t) ψ(0, 0)Γψ(0, 0)

〉
. (6.20)

The source meson is introduced at the origin, and its influence is measured a
distance z away along a spatial axis (in this case, the z-axis). C(z) falls off
exponentially with z. The screening mass for the channel Γ is defined as

mΓ = lim
z→∞

CΓ(z)

CΓ(z + 1)
. (6.21)

On a finite lattice, one typically has reflection symmetry with respect to the
midplane. Lattice correlators fall off at first as the spacing is increased, then
increase again as one nears the opposite end. Thus, the behavior of correlators
on the lattice is given by

C(z) = A
(
e−mΓz + e−mΓ(Nz−z)

)
,

= Ae−
mΓNz

2 cosh

(
Nz

2
− z

)
.

(6.22)

The Stefan-Boltzmann limit for screening masses is given by mSB
Γ = 2πT

(where T is the temperature), irrespective of the channel [79]. On our Nτ = 8
lattices therefore, we should expect that amSB

Γ → 2π/8 = 0.7853 . . . at high
temperatures.

The correlator for the pseudoscalar channel was measured during our resid-
ual mass calculations; fig. 6.4 presents the correlator for β = 4.00. The fitting
function eq. (6.22) was employed, with Nz = 32. Only the points from z = 10
to z = 22 were used for fitting. The error is the total of both the statistical
error as well as the systematic error obtained by varying the endpoints of the
fit. Similarly, in fig. 6.5, we present our results for the vector correlator at
β = 4.00. Table 6.3 summarizes our results for the pseudoscalar and vector
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Figure 6.4: The pseudoscalar correlator, measured with both improved and unim-
proved fermions, at β = 4.00.
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Figure 6.5: The vector correlator measured using both the improved and unim-
proved operators, at β = 4.00.

screening masses obtained with the two operators.
From the table, we see that the vector channel attains the Stefan-Boltzmann

limit, while the scalar channel lies below it. Actually, a similar behavior has
been observed with staggered fermions as well [80]. In figs. 6.6, we superim-
pose our data on top of results obtained with the p4 action for Nτ = 4, 6 and
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β T (MeV) MPS MV MPS/MV

Unimproved
4.00 475 0.721(5) 0.79(1) 0.92(1)
3.82 351 0.70(2) 0.78(3) 0.90(4)

Improved
4.00 475 0.727(5) 0.79(2) 0.92(2)
3.82 351 0.71(3) 0.76(1) 0.93(4)

Table 6.3: Pseudoscalar and vector screening masses for Nτ = 8.

8.
From the figure, we see that cutoff effects are not very pronounced in going

from Nτ = 4 to Nτ = 8, which may explain why we observe no difference in our
results with the unimproved and improved operators. It is also encouraging
to see that the domain-wall results are in agreement with results obtained
using a completely different action (i.e. the p4 action). Of course, the p4
quark masses have been tuned to their physical values while our choice of
quark mass is arbitrary; nevertheless these results show that it is worthwhile
to proceed and do a more systematic study of these quantities with domain-
wall fermions. Also, we expect that the better chiral symmetry of domain-wall
fermions really makes its presence felt close to the transition temperature. At
lower temperatures therefore, we may see differences in the two actions. This
is something that can be explored in the future.
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Figure 6.6: p4 screening masses with the DWF results superimposed, for the pseu-
doscalar and vector channels respectively.
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Chapter 7

Conclusion

The discovery of chiral fermions gave lattice theorists a handle on chiral sym-
metry for the first time. Until then, one had to choose between either staggered
fermions, which preserved a subgroup of the complete symmetry and also pro-
duced doublers, or Wilson fermions which broke chiral symmetry completely
at finite lattice spacing. Chiral symmetry is very important as it determines
the spectrum of the strong interactions. In thermodynamics too, this symme-
try determines the universality class of QCD with respect to its symmetry-
restoration transition. The great promise of chiral fermions was that it would
be possible to study these questions without messy extrapolations, renormal-
ization or theoretical ambiguities regarding taking the continuum limit.

Unfortunately this advance came at a cost. Even the simplest chiral
fermions viz. domain-wall fermions, were about an order of magnitude costlier
than staggered fermions. However, through a combination of increased com-
puting power and improved algorithms, the cost barrier is being slowly over-
come and we now have several results with chiral fermions (specifically domain-
wall fermions) that are in good agreement with staggered or Wilson results.

Of the three known chiral formulations viz. overlap, hypercube and domain-
wall, it is the latter that have been studied most extensively and also put to
the greatest use. This is because they are the cheapest of the three and also
the simplest from the theoretical and implementation points of view. The
Riken-Brookhaven-Columbia (RBC) group has been one of the groups to pio-
neer simulations with these fermions. Our simulations for this thesis were also
carried out with these fermions, with the particular implementation used by
the RBC group.

In this work we studied the domain-wall operator with an eye on its appli-
cations to QCD thermodynamics. As a first step, we calculated the free quark
pressure in this formalism analytically. Apart from learning how domain-wall
fermions worked, we also got an idea of the discretization errors in the for-
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malism. Since these were rather large, we realized that it was necessary to
improve the canonical action to avoid these errors on typical lattices used in
simulations. A related question involved introducing a chemical potential in
this formalism; we verified that the usual way of introducing it produced no
divergences and led to the correct pressure in the continuum limit.

Our simulations with the domain-wall operator produced clear evidence of
a transition, though our limited statistics prevented us from pinpointing the
transition temperature/coupling to sufficient accuracy. However our errors
were not merely statistical. The chiral symmetry of domain-wall fermions is
only approximate at finite lattice spacing; we found that this breaking wors-
ened very quickly as we moved toward stronger coupling i.e. toward coarser
lattices. This breaking produces a distortion in quantities sensitive to the
quark mass, such as the (disconnected) chiral susceptibility. Since it is this
very quantity that is used to determine the transition temperature, to produce
an acceptable result we must insure that this breaking remains under control.
This is certainly a direction for future work, and in fact the Columbia group
has begun preliminary runs with an operator that keeps this breaking down
to reasonable levels in simulations.

The other source of errors is of course the discretization errors alluded to
earlier. We outlined the steps toward improving this operator and checked
that it worked in free-field calculations. We also implemented this operator
for numerical work. The ensembles we used for testing were staggered (p4)
ensembles with the quark masses very close to their physical values. The use
of different actions in the sea and valence sectors is a tricky topic and in this
exploratory study we did not study all possible issues. However our results,
though preliminary, were very encouraging. In particular, we saw that the
improved operator reproduced the correct Stefan-Boltzmann limit for the con-
nected quark susceptibility at high temperatures. Particularly interesting were
some preliminary results that suggested that mres (the mass renormalization
that parameterizes the chiral symmetry breaking) is smaller in the improved
case at the same coupling. Of course, this decrease does not halt the exponen-
tial growth of mres with the coupling, but if this suppression holds at stronger
coupling it should still be possible to simulate over a larger range of β than
with the unimproved operator.

Our final results involved screening masses. We measured several correla-
tors using both domain-wall operators. Again, it was encouraging to see that
the domain-wall operator reproduced the staggered results. These are possibly
the first-ever results for these quantities with the domain-wall operator, and
this is certainly something that can be pursued in the future. In particular,
various theoretical issues related to the use of two different actions (partial
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quenching) need to be settled. It is also necessary to simulate in the region
of stronger coupling. These are all possible directions for extending the work
described here. We hope that by following these directions we may acquire
a better understanding of the chiral phase transition and of the QCD phase
diagram in general.
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Appendix A

Cutoff Effects at Finite µ

Our starting point is eq. (4.18). Let us denote the fugacity eµ/T by z. If we
switch to radial coordinates and do the angular integrals, we are left with
radial ones of the form

c2n(z) ∝
∫ ∞

0

dq q2 q2n+1

z−1eq + 1
+

(
z −→ 1

z

)
. (A.1)

The integral above is well-known; its value is

∫ ∞

0

dq
qn

z−1eq + 1
= −Γ(n+ 1)Lin+1(−z),

Γ(n) =

∫ ∞

0

dt e−t tn−1,

Lin(z) =
∞∑

k=1

zk

kn
. (A.2)

The function Lin(z) is called the polylogarithm function. We see that the
O(a2) corrections are proportional to Li6(z), O(a4)-corrections to Li8(z), etc.
The O(a2n)-corrections have the generic structure

c2n(z) =
c2n(0)

2Li2n+4(−1)

[
Li2n+4(−z) + Li2n+4

(
−1

z

)]
. (A.3)

Note that this is independent of the action; only c2n(0) differs from one action
to another. This universality is understandable if we recall that µ actually
modifies the gauge part of the action. Since we have not modified the gauge
action, we should not be surprised that to find the same µ-dependence for all
actions.
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Next, we make use of the following remarkable relation between the poly-
logarithm and the Bernoulli polynomials viz.

− n!

(2πi)n

[
Lin(z) + (−1)nLin

(
1

z

)]
= Bn

(
ln z

2πi

)
, (A.4)

where the Bernoulli polynomials Bn(x) are defined by

tetx

et − 1
=

∞∑
n=0

tn

n!
Bn(x). (A.5)

In our case, z = eµ/T and we define ln(−z) = ln z + iπ. Substituting eq.(A.4)
into eq.(A.3), we get

c2n

(µ
T

)
= − c2n(0)

2Li2n+4(−1)

(2πi)2n+4

(2n+ 4)!
B2n+4

(
µ

2πiT
+

1

2

)
. (A.6)

Equation (A.6) can be used to estimate the corrections for both real and
imaginary µ. Our goal is to calculate the Taylor coefficients of an expansion
of P/T 4 about µ/T = 0. These coefficients are known as Quark Number
Susceptibilities (QNS) χk(T ). We can use eq.(A.6) to estimate the error in the
nth coefficient1. Our results are summarized in table 4.1 in chapter 4.

Lastly, let us show that the above method also yields the correct continuum
pressure at Nτ = ∞ viz.

P

T 4
=

2 · 4π
8π3

∫ ∞

0

dq q2 ln
(
1 + ze−q

)
+

(
z −→ 1

z

)
,

d

dz

P

T 4
=

1

π2

∫ ∞

0

dq

z

q2

z−1eq + 1
+

(
z −→ 1

z

)
,

= − 2

π2

1

z
Li3(−z) +

(
z −→ 1

z

)
. (A.7)

Now use the relation
d

dz
Lin+1(z) =

1

z
Lin(z), (A.8)

to get
P

T 4
= − 2

π2

[
Li4(−z) + Li4

(
−1

z

)]
. (A.9)

1We must remember that the nth coefficient is multiplied by N−n
τ .
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Again, by using eq.(A.4), we arrive at

P

T 4
=

2

π2
· (2πi)4

4!
B4

(
µ

2πiT
+

1

2

)
,

=
7π2

180
+

1

6

(µ
T

)2

+
1

12π2

(µ
T

)4

. (A.10)

which is just the familiar expression for the pressure.
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Appendix B

The Pressure of Domain-Wall
Fermions

Our starting point is the four-dimensional operator derived by Edwards and
Heller [40]. The dependence of the fields on the fifth dimension can be inte-
grated out to yield an effective, four-dimensional theory S = −∑

x,x′ ψ̄xDx,x′ψx′ ,
with D given by

D(m) =
1 +m

2
+

1−m

2
γ5
T−Ls − 1

T−Ls + 1
. (B.1)

Here m, as always, is the mass of the fermion. The matrix T is the trans-
fer matrix along the fifth (s-) direction. Its construction is described in the
reference cited above; we merely summarize viz.

T−1 = −Q−1
− Q+, (B.2a)

Q± = a5H(−M5)P± ± 1, (B.2b)

P± =
1± γ5

2
, (B.2c)

H(−M5) = γ5DW (−M5), (B.2d)

and DW (−M5) is usually the Wilson operator, but it can be any non-chiral,
local, undoubled, four-dimensional lattice operator.

The pressure of this system is given by

P

T 4
=
N3

τ

N3
σ

ln detD(m). (B.3)

We need to find the determinant of D(m). We proceed as follows: Since D(m)
is diagonal in momentum space, let us switch to a 2×2 block-matrix notation.
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Our γ-matrices are given by (with σµ = (σσσ, I2×2))

γµ =

(
0 σµ

σ†µ 0

)
, γ5 =

(
1 0
0 −1

)
. (B.4)

Then the matrices DW (−M5) and H(−M5) become

DW (−M5) =

(
B −M5 C
−C† B −M5

)
, H(−M5) =

(
B −M5 C
C† −(B −M5)

)
,

(B.5)
with

B =
4∑

µ=1

(1− cos pµ), C = i
4∑

µ=1

σµ sin pµ. (B.6)

This is the same notation as in [40]1. The matrices Q± are

Q+ =

(
B −M5 + 1 0

−C† 1

)
, Q− =

(−1 C
0 −(B −M5 + 1)

)
. (B.7)

We need to determine T−1 = −Q−1
− Q+. A straightforward calculation yields

T−1 =
1

W

(
S2 +W 2 C

C† 1

)
. (B.8)

Here, W = 1−M5 +
∑

µ(1− cos pµ), while S2 =
∑

µ sin2 pµ. The matrix T−1

being hermitian, its eigenvalues must be real. Indeed, they are given by

λ+ =
(1 + S2 +W 2) +

√
(1 + S2 +W 2)2 − 4W 2

2W
, (B.9a)

λ− =
(1 + S2 +W 2)−

√
(1 + S2 +W 2)2 − 4W 2

2W
, (B.9b)

λ+ =
1

λ−
, (B.9c)

while their reality can be seen from

(1 + S2 +W 2)2 − 4W 2 = (1 + S2 +W 2 − 2W )(1 + S2 +W 2 + 2W ),

= (S2 + (W − 1)2)(S2 + (W + 1)2),

> 0. (B.10)

1We shall suppress the M5-dependence from now on.
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The eigenvalues are doubly degenerate. This is because of the following sym-
metry of T−1 viz.

γ5T
−1(p)γ5 = T−1(−p). (B.11)

This “parity transformation” has the following consequence: If up is an eigen-
vector of T−1 with eigenvalue λp, then so is γ5u−p. The eigenvectors of the
transfer matrix thus occur in pairs.

More important is the case of the zero-modes Ψ(x, s). The commutator
[T−1, γ5] = 0 in the subspace of zero-modes; consequently, the zero-modes of
T−1 must be chiral, γ5Ψ(x, s) = ±Ψ(x, s). In fact, they satisfy the lattice
Dirac equation for naive fermions viz.

[
γ5, T

−1
]

=
2

W

(
0 C
C† 0

)
=

2

W

4∑
µ=1

iγµ sin pµ, (B.12)

and hence [ 4∑
µ=1

iγµ sin pµ

]
Ψ =

W

2

[
γ5, T

−1
]
Ψ = 0. (B.13)

A unitary matrix that diagonalizes T−1 is the following viz.2

U =
1√

Γ2 + S2

(
Γ C
−C† Γ

)
, (B.14a)

Γ = −1

2

[
(S2 +W 2 − 1) +

√
(1 + S2 +W 2)2 − 4W 2

]
. (B.14b)

Let us now assemble the pieces: If U †T−1U = Λ, Λ = diag (λ+, λ−), then

detD(m) = det

[
1 +m

2
+

1−m

2
γ5U

Λ−Ls − 1

Λ−Ls + 1
U †

]
,

−−−−→
Ls→∞

det

[
1 +m

2
+

1−m

2
γ5Uγ5U

†
]
,

=
∏

(p,p4)

1

(Γ2 + S2)4

[(
Γ2 +mS2

)2
+ (m− 1)2Γ2S2

]2

. (B.15)

2The following derivation was provided to me by Zhongjie Jasper Lin.
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For m = 0, this can be further simplified to

detD(0) =
∏

(p,p4)

1

4

[
1 +

S2 +W 2 − 1√
(1 + S2 +W 2)2 − 4W 2

]2

, (B.16a)

P

T 4
= 2

(
Nτ

Nσ

)3 ∑

(p,p4)

ln

[
1 +

S2 +W 2 − 1√
(1 + S2 +W 2)2 − 4W 2

]
. (B.16b)
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Appendix C

The Pressure of Overlap
Fermions

The overlap operator [26, 27] for massless fermions is given by

Dov(0) = M5

(
1 + γ5

H√
H2

)
= M5 (1 + γ5 ε(H)) . (C.1)

H = γ5DW (−M5) is the same as for domain-wall fermions. The second equal-
ity defines the sign function of a hermitian matrix (Note that H is hermitian
at µ = 0).

The steps are mostly the same as before: Let us define A = W−1 = −M5+∑
µ(1 − cos pµ). The eigenvalues of H(−M5) are given by λ±p = ±√A2 + S2.

A matrix that diagonalizes H is

∆ = A+
√
A2 + S2, (C.2a)

U =
1√

S2 + ∆2

(
∆ C
C† −∆

)
= U † = U−1. (C.2b)

By going through the same steps as before, we end up with

Dov(0) = 2M5

[
∆

∆2 + S2

(
∆ −C
C† ∆

) ]
, (C.3)
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and hence

D−1
ov (0) =

1

2∆M5

(
∆ C
−C† ∆

)
,

=
1

2M5

[
1− i

∑
µ γµ sin pµ

A+
√
A2 + S2

]
. (C.4)

while the determinant is given by

detDov(0) = (2M5)
4

∏

(p,p4)

(
1 +

A√
A2 + S2

)2

, (C.5a)

P

T 4
= 2

(
Nτ

Nσ

)3 ∑

(p,p4)

ln

(
1 +

A√
A2 + S2

)
. (C.5b)
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