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Abstract of the Dissertation
Extending the Quandt-Ramsey Modeling to Survival Analysis
by
Paichuan Chen

Doctor of Philosophy

in
Applied Mathematics and Statistics
Stony Brook University

2010

The mixture of two regression regimes has been extensively studied in
economics. A switching regression is often used to model a system that changes
depending on some variables. The test of a mixture of regimes in hazard modeling
would be seen to have fundamental importance in biostatistical research but has not
been studied. A two-regime parametric mixture is proposed to model the effect of a
single covariate on the event time. Typically, the Cox proportional hazards model is
applied to estimate a single regime survival regression function. The mixture of two
regimes model contains five parameters to be estimated; namely, two parameters to
describe each regime, and one to describe the mixing proportion. A software program
developed for this research finds the maximum likelihood estimates of the parameters
and the likelihood ratio test of the null hypothesis of a single regime against the
alternative of a mixture of two regimes. A simulation study finds an approximation to

the null distribution of the test and its approximate power.
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Chapter 1 Introduction

The mixture of two regression regimes has been extensively studied in
economics. The problem was first introduced by Quandt [1] as the switching
regression (or switching regimes) problem. A switching regression is often used to
model a system that changes depending on some variables. Quandt and Ramsey [2]
considered the problem of estimating mixtures of normal distributions.

y ~ N(g,,07) with probability =
y ~ N(u,,02) with probability 1-7

The problem was to estimate the five parameters (u,, u,,0;,05,7) from a
sample on y, and to put into a regression setting by allowing the means y, and g,
to be linear functions of explanatory variables i.e. x, = i x+¢, and u, = f,Xx+¢,.
This problem is referred to as a "switching regressions" problem.

Survival models are used to analyze time to event data in biostatistics. Mixture
models are used increasingly in these analyses. Yamaguchi [3] considered an
accelerated failure-time regression model with an additional regression model for long

term survivors (LTS) patients. Let T be the random variable representing time to event.



Let f(y) be the conditional pdf of Y, given that the subject was not a LTS, and let
g(y) be the unconditional pdf of Y. When the LTS fraction was p, then

a(y)=@A-p)f(y) WMny<w

g(y)=p y=o0
Then the survival function corresponding to g(y), S,(y), can be expressed
using S, (Y), the survival function corresponding to f(y) as
Sg(Y)=QA-p)Si(y)+p
An important task in survival analysis is to investigate how differences in the
survival distribution between two treatment groups depend on covariates. Greenhouse
[4] discussed an application of the long term survivors (LTS) model to the analysis of

clinical trails data. He introduced covariates into the LTS model by allowing

functions of parameters p and & to depend on the covariates of interest.
Specifically, he used a linear logistic model for p, the cured fraction, and a log-linear
model for @. His survival function was:
PT>t]p,0)=S(t|p.0)=p+1-p)S,(t]9),
where p was the cured fraction (that is, those surviving at infinity), and S, (t| &)
was the surviving distribution for the fraction of the population who were not LTS.
In general, a survival function that satisfies the proportional hazards assumption

is given by S(t|x) =[S, (t)]exp(B x), where t is the survival time of an individual



with covariate vector x and S, (t) is the baseline survival function (Perperoglu et al.
[5]).

Halabi et al. [6] considered failure time with proportional hazards and baseline
exponential survival distribution with exponential and uniform censoring distributions.
They generated failure time T with survival function: Sf(t)zexp{—(/lft}eﬂ‘},
B :Iog(%) with A4, =A4,, where A, was the hazard in the first group, and
censoring times C were generated with common survival function S_(t) = exp{-4.t},
A, was the common hazard for the censored observations. They also generated
censoring times C by the uniform distribution on (0,6,)

Hu et al. [7] considered Cox proportional hazards with covariates that were
measured with error A(t|x) = 4,(t)exp(#'x) . They generated a censoring
distribution C that followed an exponential distribution with mean equal to 1.

Buzas [8] considered the model with two covariates. Failure time was related to
covariates (X,2) through the hazard function:
Alt] X,Z) =Y ()4, () exp(B, X + B, Z), where Y(t) was an indicator function with 1
when T >t, and O otherwise. The failure time was generated exponentially with
hazard exp{g,x}. Uniformly distributed censoring times were generated such that

the expected proportion of censored observations is 0.5.



Kong et al. [9] considered the basic Cox proportional hazards model:
A(t; z(t)) = A, (t) exp{s'z(t)}. For each fixed Z, a failure time Y was generated from a
proportional hazards model with A,(t) =1 and a relative risk of exp(8'Z). Type-II
censoring was designed so that all individuals after the m"™ failure were censored.
Because of the specific censoring mechanism Kong et al. chose, the baseline hazard
after the last failure time cannot be estimated. Hence they chose the time points before
the last failure time.

In the models described above, the authors considered two groups, LTS and
non-LTS, with covariates in the survival function and for the variable indicating
group membership. The model | consider contained two groups, those who had fast
conditional response rate and those who had slow conditional response rate. | allowed
covariates for the survival function. That is, considered a mixture setting where we
assumed X, was a vector of covariates observed with a response T,. The goal of
mixtures of regressions was to describe the conditional survival distribution.

My research problem was to develop the LRT statistics that test whether there
was an indication of a mixture of mechanisms with a covariate that affects the
survival time.

My dissertation contains 5 chapters. Chapter 1 contains the introduction and the

statement of the research. Chapter 2 of this dissertation presents the methods that |



used to find the log-likelihood functions and maximum likelihood estimators.
Numerical algorithms were programmed in R (version 2.8.0) and Microsoft Visual
C++ for Windows 2000/XP. They also can be run in the UNIX operating system. This
software is available upon request from me.

Chapter 3 of this dissertation gives the simulation results for the maximum
likelihood estimators of single regime model, the null distribution and transformation
of the LRT, and the critical values.

Chapter 4 of this dissertation presents the simulation results for the maximum
likelihood estimators of mixture of two regimes model, the alternative distribution of
the LRT and the power study.

Chapter 5 of this dissertation contains the conclusions and the directions for

future study.



Chapter 2 Methods

2.1 Hazard Function

Let T be an exponentially distributed random variable with conditional
mean/leiﬁX and conditional survival function given by S(t|x)=P(T >t|x). This
was the survival function for an uncensored subject with covariate x. Let the hazard
function of T for an individual given the covariate vector x be given by
A(t]x) = A, (t)e”™, where A,(t) was the baseline hazard for an individual with x=0,
and B was 1xp vector of regression coefficients common to all individuals. The
proportional hazards assumption was often used to describe the effect of x on the
distribution of the failure time distribution of uncensored subjects (Peng, [10]). This
assumption was that the hazard function of a patient with the covariate x at time t
was of the form h(t|x) = h,(t)exp(Sx). For an exponentially distributed survival

time, the survival function was S(t|x)=P(T >t]|x)=exp[-Atexp(px)], which

satisfied the proportional hazard assumption .

2.2 Definition of the Independent Censoring Variables
With censored data, the survival time t’, i=1,....,n, was observed only if it did

not exceed the censoring time u,; otherwise, we observed u,. The absence of



censoring indicator ¢, took the value 1 if t, was a survival time (i.e. t, =t;) and 0
if t, was a censoring time (i.e. t; =u,). That is, the observed time was defined by
t, =min(t;,u;), 1<i<n. The absence of censoring indicator ¢, =1 when t; <u;;

otherwise, ¢, =0. (Maller and Zhou, [11])

2.3 Single Regime Model with Covariate

Let S(t]#,x) be the conditional survival function which was exponential with
mean %Lxﬁ,where f=(1,p),with 0<A<ow and —wo< ff<oo, t was the time
to event (t>0), x was the covariate affecting t in S(t|x), the survival function
given covariate x. The survival function of this model with covariate was given

by S(t | X) = exp(—Ate”) .

2.3.1 Log Likelihood Function of Single Regime Model

n
The likelihood functionwas [ | f(t; %)% S(t; %)™ (Maller and Zhou

i=1

[11]), where

dF(t]x) _ d[1-S(t]x)]

f(t|x)=
(t1x) dt dt

= 1e* exp(-ite*)
Then, the likelihood function was

L,(t.c;.5,4) = f{[ﬁexiﬂ exp(—At,e*” )] [exp(—At,e*” )] ©=



The log-likelihood function was

I, =log(L,) = Zn:{ci[log(,l) + X B — Ate 1+ [(L-c,)(=Ate")]}

= Zn:{ci [log(A) + x, f]+ (—At,e™*)}

2.3.2 Maximum likelihood estimators (MLE) of Single Regime Model

Since A was bounded, there may be boundary complications when solving
for the MLE. To avoid this, A was transformed so that the transformed value was
unbounded. My transformation was A =e*, —oo< <o

The log-likelihood function after the transformation was

= D % f - e T I 6 ) (e )}

=D Gt CX B e
= i1 =

The first derivative of log-likelihood function with respectto x was

aIn \ n X B+
=Y ¢ - te"
i1 i1

ou

LN

Then e =—=—
t_exiﬁ



n

2.

The MLE of 1=e” in this model was A = —=. .

n

> e’
i=1

The first derivative of the log-likelihood function with respectto g was

ol
op

n n
=D Cx — D xte
i=1l i=1l

There was no closed form solution for the MLE of 8, . Therefore, a computational
algorithm was needed. | used Nelder-Mead (NM) [12] method to find /. The details

are in the section 2.10.

2.4 Mixture of Two Regimes Model with Covariate
Let S,(t]8,x), i=12 be two conditional survival functions which were

exponentially distributed with mean

T i=1, 2, respectively, where
e’

0=, A4,0,06,) , with 0<A <o , 0<A, <o , —-w<f <o , and
- < f, <oo, t wasthe timetoevent (t>0), x were the covariates affecting t in

S,(t]x), the survival function for regime i given a covariate x. The parameter =

was the mixing proportion from the first exponential distribution with conditional

mean equal to W, The conditional survival function of this mixture model with
e 1

covariates was given by S(t | X) = 7S, (t | 8,x) + (1—-7)S, (| 6,X) .



2.4.1 Log Likelihood Function of Mixture of Two Regimes Model

Suppose we had data (t;,c; x;), i=12,....,n, where nwas the number of

subjects. The likelihood function for this data was
. 1

L, (tl""’tn’a7ﬁl’ﬂ2’ﬂ‘l’ﬂ“2) :H f(ti | Xil)Ci S(ti | Xi) a , Where
i-1

dF(t] x) _ d[1-S(t|x)]

f(t|x)=
(t1%) dt dt

= 4™ exp(-Ate”) + (1- 1) 1,7 exp(~A,te/?)

That is,

x[rexp(-=A,t.e™) + (1- 7) exp(-A,t,e”?)]"°
The log-likelihood function was
I, =log(L,) = Zn:ci log{zzA,e” exp[-At; exp(B,x, )]+ (L - 7),e”* exp[-A.t; exp(B, %, )]}
=
+ g (A—c;) log{mexp[-At; exp(f,X; )]+ 1 — ) exp[-A,t; exp(L5, X, )}

As before, | transformed the parameters that had a restricted range to
parameters that range from —o to +o00 to remove numerical problems due to
restrictions in range. That is, let 4, =€, 1, =", —oo<y, <0, —0< 1, <.

l, = ici log[ze*:e”* exp(—e*t,e”) + (1— r)e* e/ exp(—e*st,e” )]

i=1

+ Zn: (1-c,)log[zexp(—e*t,e”) + (1- z) exp(—e*t,e”)]

i=1

10



This reduced to

I = c log[zexp(u, + B,X; —te" ™)+ (1—rz)exp(u, + B,X. —t.e“* )]
n i /ul 17 i luz 27 i

i=1

+ zn: (1-c,) log[zexp(~t,e” ) + (L ) exp(-t,e*="")]

i=1

2.4.2 Maximum Likelihood Estimators (MLE) of Mixture of Two Regimes Model

There were no closed forms for the MLEs of A,4,,5,8, and n. A

computation algorithm was needed, which | reported as one of my dissertation results.

2.5 Censoring Parameter Calculation

| considered an exponential censoring pattern in this simulation study (Peng et
al. [13]). Let U be the censoring time with probability density function g(u), and let T
be the failure time with probability density function f(t), where U and T were
independent. Letc, 0<c <, be the end point of study and r be the censoring rate.
The censoring rate r was defined to be:

PU<T|min(T,U)<c)=1-r.
Since U <T, this reduced to
PU<T|U<c)=1-r.

From the definition of conditional probability,

LC.[:O f(t)g(u)dtdu = (1~r)-P(min(T,U) <c).

11



This equation can then be expressed as:
joj‘” f (t)g(u)dtdu = (L—r) -[L- P(min(T,U) > )],
joj‘” f (t)g(u)dtdu = L—r)-[1— P(T >¢c,U >c)] 1)
Equation (1) was the starting point in my calculation of censoring parameters.
I used the exponential censoring distribution with 10%, 20% and 30%
censoring rates in my simulation study of the null distribution. For my simulations, |

set the study length to infinity.

2.5.1 Mean of Censoring Distribution of Single Regime Model
Here the random variable T had the exponential distribution with mean /1%.
e
Here also the censoring time random variable U had an exponential distribution with

mean l Ghitany et al. [14] considered the failure time T distribution with covariate

X. The pdf of the failure time T was
1 —t
f(t|x)=——e*",
(t]x) o

and the pdf of the censoring time Y was
o) ="e*
7]
I conditioned on the values of the covariates and let A(x) = Ae”™. Equation (1) for

this specification (which had the expected value of the censoring distribution which

was possibly a function of the covariates) was

12



—t

([ e Lo amumgon-forrocvsof @

The left hand side of equation (2) was

-y ~u (1,1,
f ern Lo g A ] [u A(x)] .
0 H A(X) +

The right hand side of equation (2) was

t u 1 1

(- r)-{l—fﬁe“” dit f%e_ﬂ du} (-1) -{1—e(f‘*>}}
Then,
= ﬁ A(X) = ﬁzeﬂx 3)
Because of the covariate x in (3), the mean of censoring distribution would change as
x changed, which was not a realistic model.

Sy et al. [15] considered a long term survivors  model:
S(t)=(@1-p)+ pS(t|C =1), where C was the indicator variable that was 1 if the
individual experienced the event and O otherwise. Failure time data were generated
from a logistic-exponential mixture model, where p(z)=1/[1+exp{-(b, +Db,z)}],
St|C=Lz)=exp(-A(2)t) and A(z)=exp(pf, + pfz) . Censoring times U were
generated from an exponential distribution with censoring rate A, either 0.1 or 0.4,
representing mild or heavy censoring, respectively.

Peng et al. [13] considered a long term survivors model:

S(t;0,7)=1-7+7S,(t;6). They considered three distributions as the failure time

13



distribution of uncured patients in the mixture model: gamma distribution, Weibull
distribution and log-normal distribution. The censoring distributions considered in
their paper were uniform and exponential distributions. The values of parameter in the
censoring distributions were determined so that the resulting censoring rates were
10%, 20% and 30% for each censoring distribution.

Following Peng et al. [10], | considered an approach that specified a single
censoring distribution that had expected censoring rate close to the target value. My
procedure was to use the form of equation (3) with the argument x set to a scalar
multiple of the expected value of the covariate. Let the covariate value X of the failure
time distribution be U(0, 5). In the covariate coefficient setting 4 =1, g =1 with
exponential censoring rate at 10%, | used 1.3x E[x] as the value of the argument x in
equation (3). With an appropriate multiple kx E[x], the observed censoring rates on
average were approximately equal to the target censoring rates. When 1=143=0,
the equation (3) was = éﬂ. That is, the covariate x did not affect the mean of
the censoring distribution. Tables 2.1 and 2.2 contain the target censoring rate, mean
of censoring distribution, and consequent observed censoring rate for A =1,4=0

and A=1 4 =1 respectively, based on 100 replications each with 500 subjects.
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2.5.2 Mean of Censoring Distribution of Mixture of Two Regimes Model

The random variable T was a mixture of two exponential random variables with

one mean equal to with proportion 7 and the other mean equal to

ﬂleﬂlx Y eﬂzx

2

with proportion 1— 7 so that the pdf of the failure time T given covariates x was

~t ~t

1 p1x l Pax
ft|x) =r——e* +(1-7)———e™*
th) =775 -m)

The censoring random variable U had the exponential distribution with mean 1 and
U

pdf

-u

o) =—e”
U
| conditioned on the values of the covariates and let A(x)=4e” and

B(x) = 4,e”%*. Equation (1), which defined the censoring rate r, was then

Ef(”ﬁe“” +(1—ﬂ)$ew]-%e_: dtdu=(1-r)-{l-P(T >c,U >c)}.

The left hand side was

jc{ﬂe’“x) + (1—7z)eB(X)] ie7 du
0 u

_1[7,A<x>u+(1_ﬁ) B0 AW s B Tt

ul o AX)+u BX)+u  A(X)+u B(X) + u
M) gy B AK) e(A(lX)+‘l‘jc—(l—7z)—B(X) ol
A(X) + u B(X) + u A(X) + 1 B(X) + u

15



The right hand side was

e
A(X) B(x)

=1~ r)-{l—(ﬂe’*_&) + (1—7z)eB_‘CX)Je”C}

Then u was aroot of

o 1 A;tx) 1 B?x) © 1 >
1-r)- 1-] {r——e" +(1-7)—— }dt-j ~e* du
c X ¢ u

1 1 1

P Ao B A el B0 e
A(X) + u B(X)+u AX)+u B(X)+ u

=(1- r)-{l—(ne“c” + (1—7r)eB‘Z)Je_”C}

Again | followed Peng et al. [11]. That is, | found a value for the mean of the

censoring distributions so that the resulting censoring rate was approximately equal to
the expected censoring rate. Table 2.3 contains the target censoring rate, mean of
censoring distribution and observed censoring rate for 4, =1,4, =1, 5, =15, 3, =0.5,
7 =0.5 at each censoring rate. | reported the observed censoring rate as well as the

expected censoring rate.

2.6 Censoring Rate Distribution

The observed fraction of censored observations R followed approximately

normal distribution with mean close to the expected censoring rate and standard
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deviation 0.0186; that is, when the expected censoring rate was 10%, the observed

censoring rate ranged from 0.064 to 0.134 (see Table 2.4).

2.7 Data Generation

| generated null data for six cases with 4=13 and S =013 at expected
exponential censoring rates of 10%, 20% and 30%. | generated 500 replications at
each setting. | considered sample sizes n of 500, 1000 and 2000 subjects.

The failure time t; had the exponential survival distribution with mean equal to

————, Where the covariates x; were from an uniform distribution U(0, 5), and
Aexp(fx;)

u, be the censoring time. The survival time t, =min(t,",u;), (L<i<n). The t
sample was from a single exponential distribution with 2 =1, 3 and covariate
coefficient =013 respectively.

For example, to create a sample of size 500 from an exponential distribution with
A=1 and g =1 and exponential censoring pattern with expected censoring rate
10%, | generated one value, t;, from an exponential distribution with mean equal to
ix as the failure time, where the covariate x was generated from an uniform
distribution U(0,5). | then generated one value, u,, from another independent
exponential distribution with mean equal to 1.563965 (Table 2.2) as the censoring

time. | then compared these two values and reported the minimum. If the value was
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u,, the observation was censored, and | set the absence of censoring indicator off, i.e.
c; =0. I repeated this process independently 500 times.

The alternative hypothesis was that the survival time follows a mixture of two
regimes model. Let t be the survival time. With probability =, | selected an
observation from the first exponential distribution with mean equal to ——
A1 exp(B.%;)
and with probability 1- 7, | selected an observation from the second exponential

. . 1 .
distribution with mean equal to —————, where the covariate x was from an
ﬂ’Z exp(ﬂz Xi)

uniform distribution U(0,5). Let u, be the censoring time. The observed time
t. =min(t,,u,), (1<i<n). The sample sizes considered here were 500, 1000 and
2000 with an exponential censoring pattern at expected censoring rates of 10%, 20%
and 30%. I generated alternative data for 4, =1,1, =1, 5, =05 with g, =0.75, 1,
1.25 and 1.5 and mixing proportion 7 =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 at
each censoring rate.

For example, to create a sample of size 500 from two exponential distributions
with 4, =14, =1, =15,,=05 and 7 =0.5 and exponential censoring pattern
with censoring rate 10%, | generated one value for regime one from an exponential

1 . )
—=. » and one value for regime two from exponential

distribution with mean equal to —;
ot

distribution with mean equal to where the covariate x was generated from an

eO.5x !

uniform distribution U(0,5). The failure time value t; was selected with probability

18



50% from the first regime and with probability 50% from the second regime. | then
generated a value u; from an independent exponential distribution with mean equal
to 1.948705 (Table 2.3) as a censoring time. | then compared t; and u, values and
selected the minimum as the reported value. If the value was u,, the observation was

censored, and | set the absence of censoring indicator off, i.e. ¢, =0. I repeated this

process independently 500 times.

2.8 Random Starting Points
In order to specify the number of random starting points (RSPs), | generated
20 replications each with 500 subjects at exponential censoring rate 30%. The t;
sample was from a single exponential with 1 =5 and covariate coefficient f=1.
The covariate sample x was from a uniform distribution U(0,5). Table 2.5 and 2.6
contain the maximum log-likelihood of single regime model and mixture of two
regimes model at specified number of RSPs.
The number and the choice of RSPs were important to assure that the
log-likelihood function was reasonably close to its maximum value (Caudill et al.
[16]). For each set of initial starting points, we will get maximum log likelihood and

maximum likelihood estimators. To avoid getting a local maximum, | compared all
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the values generated from each set of initial points and chose the largest of maximum
log likelihood value and report the associated set of MLEs.

In Table 2.5 (null model), the difference of maximized log-likelihood function
number generated from 16 RSPs and generated from 25 RSPs was less than 1le—7.
Hence, | chose 16 RSPs as the number of the RSPs for the null model. To determine
the greatest value of the log-likelihood function in the null model, 4 random starting
values for each 4 and S were generated, as well. Let 4 and g, (i, =1,..,4), be
generated from an uniform random variable U(0,1). Then combination of the 44
values and 4 § values generated 16 sets of starting values for (4,£). In Table 2.6
(alternative model), the difference of maximized log likelihood function number
generated from 48 RSPs and generated from 243 RSPs was less thanle — 7. Hence, |
chose 48 RSPs as the number of RSPs for the alternative model. To determine the
greatest value of the log-likelihood function in the alternative model, 2 random
starting values for each A4,4,,4,,5, and 3 random starting values 7z were
generated. Each of A,;,4,;, By, Boq: 7, (1, ], 1, 9=1,2, w=1,2,3) were generated from
an uniform random variables U(0,1). The combination of the 24,,24,,24,,24, and

3z values generated 48 sets of starting values for (4,,4,,8,,5,,7) .
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2.9 The Likelihood Ratio Test (LRT)

The null hypothesis was a single regime model, in which the survival time

e . 1 .
followed an exponential distribution with mean equal to ——————. The alternative

A exp(/x)

hypothesis was that the observed survival data was a mixture of two exponential

regimes. One regime occurred with probability =~ and had mean equal to

;. The other occurred with probability 1-7 and had mean equal to
A, exp(f;X)

1 .
————— . The LRT statistic was equal to —2(logL,,—logL,,). where logL
7 exp(x) q (logL,, gLyy) gLy

was the log-likelihood function maximized under the alternative hypothesis and
logL,, was the log-likelihood function maximized under the null hypothesis. The
MLEs for the LRT were calculated by using The Nelder-Mead (NM) algorithm with
16 random starting values for the null model and 48 random starting values for the

alternative model.

2.10 Nelder-Mead (NM) algorithm

The Nelder Mead (NM) algorithm [10] is used to minimize a function of n
variables. It evaluates the function at the vertices of a (n+1) simplex and then
iteratively uses reflection, contraction and expansion of the simplex as better points
are found. A vertex is replaced by points with a better value of the function until the

minimal function value is obtained. The NM algorithm uses only function values and
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is robust but relatively slow. It works reasonably well for non-differentiable functions.

[R version 2.8.0].

2.11 Software programs

| wrote programs in R and Microsoft Visual C++ that calculated the MLE and

log-likelihood for both models. The default method was an implementation of that of

Nelder and Mead (1965). | also used the NM algorithm as given in GNU Scientific

Library (GSL) in Microsoft Visual C++. | set the convergence rate to be 1le—5 and

the maximum number of iteration to 1000.

The R program codes of calculating the mean of censoring distribution for single

regime and mixture of two regimes are provided in the appendix. The Microsoft

Visual C++ program code of the simulation study is provided in the appendix as well.
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Chapter 3 Simulation Results for Single Regime Model

3.1 Simulation Results of Maximum Likelihood Estimators of Null Model

To check my simulation procedure, |1 examined the MLEs of 4 and g for the

single regime model. Table 3.1 presents summary statistics for the MLEs with

exponential censoring. As expected, for each sample size and expected censoring rate,

the MLE of A was close to 3, the parameter used to generate the data. The MLE of

S was also close to 1, the parameter used to generate the data. The mean MLEs for

other settings were reported in Tables 3.2, 3.3 and 3.4.

3.2 Null Distribution Results

The null hypothesis was that the survival time followed a single exponential

regime. The simulation results for the LRT were calculated by using NM algorithm

with 16 (441x4,) random starting values (see section 2.8) for 500 replications at

each setting used (sample size of 500, 1000 and 2000, exponential censoring rate

10%, 20% and 30%, and six parameter settings).

Tables 3.2 (for expected censoring rate 10%), 3.3 (for expected censoring rate

20%) and 3.4 (for expected censoring rate 30%) contain the mean of the covariate X,
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the mean and standard deviation of the survival time t, the average observed censoring
rate, the MLE of A, the MLE of £, the mean of LRT, and standard deviation of
LRT as well as selected percentiles of the distribution of the LRT statistic at each
parameter setting and censoring rate. Finally it contains the fraction of LRT values
less than 0.001. For each setting and parameter, the mean MLE was close to the

parameter setting.

3.3 Modeling Null Distribution of LRT

A linear regression was run to determine which, if any, settings affected the null
distribution of the LRT. The dependent variable was the mean of the LRT statistic for
each sample size and each expected censoring rate (6 observations for each of nine
settings of sample size and expected censoring rate). For expected censoring rate 10%,
20% and 30%, the factors A and S were not significant for any sample size and
censoring rate (data not shown).

Figure 3.1 is the scatter plot for the six (1=13,4=0.13) 95" percentiles at
sample size 2000 and expected censoring rate 10%. The values of the 95" percentile
seemed to lie on a horizontal plane. That is, the settingsof A and g apparently had
minimal effect. Table 3.5 contains the regression results for the 95" percentile at

sample size 2000 and expected censoring rate 10%. The parameters A and S were
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not significant factors in the regression model with p values 0.41 and 0.55
respectively. Similar results held for the other settings (data not shown). Consequently,
for each sample size and expected censoring rate, | averaged the 95" and the 99"
percentiles of the null distribution of the LRT for the six A,/ settings. The values
are reported in Table 3.6.

The study was a 3* factorial experiment with n, the sample size and cr, the
expected censoring rate as factors. One pair of dependent variables was the mean of
the observed 95" percentiles and 99™ percentiles of the null distribution of the LRT,
reported in Table 3.6. Tables 3.7 and 3.8 contain the linear regression results for the
mean 95" and 99" percentiles respectively. The mean percentiles were insensitive to

sample size, censoring rate and their interaction.

3.4 Fraction of zero LRT
Self and Liang [17] found the asymptotic null distribution of the LRT for the
mixtures. They showed that for some distributions, there was a non-zero probability
of a LRT value exactly equal to 0 (i.e. XZ). Consequently, | modeled the pdf
f(t; ncr, #) of the null distribution of the LRT as
f(t| n, cr, )= z(@(n,cr,B))+[L-z(6(n,cr,B))]xg(t|n,cr,pb),

where z(8(n,cr,)) was the fraction of zero LRT value and g(t|n,cr, ) was the
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PDF of the non-zero values of the LRT. | used the fraction of LRT<0.001, called
LRT, , (reported in the rightmost column of Tables 3.2, 3.3 and 3.4) as an estimate
of z(8(n,cr,f)). That is, this was the dependent variable in a regression analysis.
The independent variables were
1. n=Sample size (500, 1000 and 2000).
2. A =Parameter A(1and3)
3. p =Parameter £(0,1and3)
4. cr = Expected censoring rate (10%, 20% and 30%).
| also included all two factor interactions of these variables. Table 3.9 contains
the regression results. The interactions of sample size with parameter S and the
interaction of parameter £ with expected censoring rate were significant with p
values 0.036 and 0.004 respectively. Other interactions were not significant with p
values ranging from 0.15 to 0.953. None of main effects were significant with p
values ranging from 0.31 to 0.888. Based on the hierarchical principle (Wu and
Hamada [18]), | added sample size, parameter £ and censoring rate to the
significant interactions for my final model. The fitted model was:
Fraction of LRT, = 0.28-0.000006x n+ 0.003x £ +0.122xcr

+0.00001xn- 4 —-0.0001xn-cr—-0.16x g -cr

with R? equal to 0.432.
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Figure 3.2 is the graph for fraction of LRT, at each sample size. From the
figure, we can see the fraction of LRT, generally decreases as the censoring rate
increases. This is consistent with Peng et al. [13] who reported that the null

distribution is dependent on censoring rate.

3.5 Transformation of LRT

One observes from Tables 3.2, 3.3 and 3.4, that the log(standard deviation of
LRT) was associated with log(mean of LRT), I next calculated the mean and standard
deviation of LRT,, . The slope of log(standard deviation of LRT,, ) vs. log (mean of
LRT,, ) was 0.633(see Table 3.10). The 95% confidence interval for slope is 0.588 to
0.678. Tukey [19] suggested using the transformation LRT* %% =LRT**" and
LRT ®** since the cube root was consistent with the confidence interval of the slope.

The linear regression results of log(SD LRT***") vs. log(mean LRT®**") and
log(SD %/LRT ) vs. log(mean %/LRT ) are shown in Tables 3.11 and 3.12
respectively. The t values were 1.49 and 0.55 for LRT°*"and /LRT respectively,
showing that each transformation removed the association between standard deviation

and mean. | chose /LRT to analyze the null distribution as it had smaller absolute t

value and was a “simple” value.
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3.6 Distribution of ¥/LRT

I examined the histogram of the m for each setting and found the
distribution to be approximately normal. Figure 3.3 is the normal Q-Q plot for
A=1/4=0,cr =10%,n =2000. The points approximately lay on the line y=x,
indicated that the distribution was similar to normal distribution. Similar results held

for the other settings (data not shown). | approximated the PDF of /LRT as a

mixture of zero values with probability z(6(n,cr, )) and a normal distribution with

mean  u(@(n,cr,B)) and variance o° . The PDF of 3/LRT was
_ _ N SR (7 (X))
f; (t) =z(8(n,cr, ) +[L—z(6(n,cr, B))] ﬂgexp{ = 1, where

éd(n,cr,3) was a function of sample size, censoring rate and covariate £. The
variance was set to the pooled variance estimate of the m , which was 0.498°.

Table 3.13 contains the linear regression results of mean m . Only the
parameter S was significant with p value 0.031. The fitted model was:

s(n,cr, f) =1.07-0.028x 8

with R? equal to 0.398.

Tables 3.14 (for expected censoring rate 10%), 3.15 (for expected censoring rate
20%) and 3.16 (for expected censoring rate 30%) present the summary statistics from

the simulation for 3/LRT and the fitted values of 7, the fraction of zero values and

4, mean of 3/LRT,, .

28



3.7 Critical Values for ¥/LRT

| averaged the 95™ percentile of /LRT at each sample size and censoring rate
as the critical values at rejection rate 0.05 and averaged the 99" percentile of YLRT
as the critical values at rejection rate 0.01. These values were reported in Table 3.17.
For each « and sample size n, there were three percentile values for expected
censoring rate 10%, 20% and 30% respectively. | interpolated using these three values.
For example, with & =0.05 and n =1000, when the observed censoring rate < 10%,
| used 1.727 as the critical value. For observed censoring rate >30%, | used 1.817 as
the critical value. For intermediate censoring rates, | used the critical value based on
linear interpolation.

For a fixed sample size, the 95" and 99" percentiles of IYLRT were relatively
insensitive to expected censoring rate. For example, with sample size 2000, the 99"
percentiles were 2.122, 2.104, and 2.117 respectively. | used the average of these three
values, 2.114 as the critical value for this sample size. Table 3.18 contains the critical

values | used in my power study.
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Chapter 4 Distribution of LRT under the Alternative

The alternative hypothesis was that the survival time follows a mixture of two
exponential regimes. The LRT was calculated by using the Nelder-Mead algorithm
with 48 (24,,24,,2/3,,2,,37) random starting points (see section 2.8). | considered
mixtures of two regimes with the regimes having equal A values but different g
values. | set 4, =1,=1, £,=0.5 and generated 500 replications for g, =0.75
and S, =15, and 100 replications for g, =1 and g, =1.25 (sample size of 500,
1000 and 2000, exponential censoring rate 10%, 20% and 30%, and 9 mixing

proportions, 7 =0.1~0.9).

4.1 Simulation Results of Maximum Likelihood Estimators of Alternative Model
To check the simulation, | examined the mean MLEs of A,,4,,4,,4, and 7

in the mixture of two regimes model. Table 4.1 presents the estimated MLEs for

exponential censoring when A4, =14, =14, =154, =057 =0.6, based on 500

replications. | chose this setting because its power was near 1. As expected, for each

sample size and expected censoring rate, the MLE of A,4,,4,,5, and 7 were

close to 1, 1, 1.5, 0.5 and 0.6 respectively. We expected that the standard deviation of

the MLEs would increase as the censoring rate increased, and that the standard
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deviation of the MLEs would decrease as sample size increased. Table 4.2 presents
the minimum and the maximum of the MLEs at sample size 1000. At the expected
censoring rate 20%, there were about 3% to 6% of the 500 /fl ,/fz , ,él , ﬂAz and 7z
values outside the range of minimum and maximum MLEs for censoring rates 10%
and 30% (data not shown). These outliers caused the standard deviation of the MLEs
at sample size 1000 to depart from the expected pattern.

Table 4.3 contains the means and standard deviations of survival time and the
mean of the covariate x of the first and second regimes when
A=L4,=1p4,=05r=06 with g =0.75,1, 1.25 and 1.5 at censoring rate 0%.
| generated a data of sample size 1000 for each case to document each of the two
regimes. When 4, =14, =1, 5, =0.75,, =0.5,7 = 0.6, there were 595 subjects in
the first regime (4, =1, 5, = 0.75). The average and standard deviation of the survival
time were 0.258 and 0.432 respectively. The average of the covariate x was 2.591.
There were 405 subjects in the second regime (4, =1, 5, =0.5). The average and
standard deviation of the survival time were 0.368 and 0.523 respectively. The
average of the covariate x was 2.527. The difference between means of survival time
was 0.11, which is about 23% of the average standard deviation. The differences
between means of survival time were about 28%, 46% and 55% of the average

standard deviation for g, =1, g, =1.25and p, =1.5 respectively.
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4.2 Alternative Distribution of LRT
This study can be seen as a 3°x9%x4 factorial experiment. The variables
were:
1. n =Sample size (500, 1000 and 2000).
2. & = Mixing proportion to first regime (10%, 20%, 30%, 40%, 50%,
60%, 70%, 80% and 90%)
3. z? = Mixing proportion square
4. d = Distance between g, and g, (0.25,0.5,0.75and 1)
5. cr = Expected censoring rate (10%, 20% and 30%).

I also included SiX two factor interactions; namely,
(n-z,n-d,n-cr,z-d,z-cr,d-cr). | reported the distribution of JYLRT in Tables
4.4 and 4.5. The standard deviations ranged from 0.244 to 0.723. These values were
relatively close to 0.498, the average standard deviation of the null simulations. This
suggested that the variance stabilizing property held for the alternative.

The table also reports the 1% percentile. None of these values were equal to zero.
That is, the fraction of zero values observed under the alternatives was negligible. The
dependent variable of this study was the mean of the LRT under the alternative. Table
4.6 contains the regression results. The main effects of sample size, mixing proportion

square and the distance between g, and g, were significant with p values <0.000.
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The main effect of censoring rate was significant as well with p value 0.014. The
interaction of sample size and mixing proportion, the interaction of sample size and
the distance between g, and f,, and the interaction of mixing proportion with the
distance between g, and g, were significant with p values <0.000. The interaction
of mixing proportion with censoring rate was significant as well with p value 0.02.
The main effect of the mixing proportion was not significant (p value=0.155). Based
on the hierarchical principle, | added the mixing proportion to the final model. The
fitted model was:

LRT =423.31-0.518x n — 265.445x 77 —805.282x 7° —951.905x d + 225.67 x cr

+0.538xn-7+0.815xn-d +1956.614x 7 -d —899.382x - cr
with R® equal to 0.893. Consequently, one could model the power directly for

censoring rates less than 30%.

4.3 Power Study

Table 4.4 also contains the report of the simulated power of %/LRT when

A =L4,=1p. =0.757,,=0.5 based on 500 replications, which was a setting in
which the two regimes means were close. When the expected censoring rate was 10%,
a sample size of 2000 was needed to have power 99% at level « =0.01 with mixing

proportion 0.5, 0.6 or 0.7. For expected censoring rate was 20%, a sample size of
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2000 was needed to have power 99% at level « =0.01 with mixing proportion 0.5,
0.6 or 0.7.When the expected censoring rate was 30%, the power was 95% or more at
level 0.01 with mixing proportion 0.5, 0.6 or 0.7.

Table 4.5 is the report of simulation results of YLRT  when
A =11,=1p=14,=05 based on 100 replications. These two regimes were
more separated than the first pair of regimes. When the expected censoring rate was
10%, a sample size of 500 had power 99% at level « =0.01 with mixing proportion
0.3 or greater. A sample size of 1000 was needed to have power 99% with mixing
proportion 0.2. When the expected censoring rate was 20%, a sample size of 500 was
needed to have power 99% at level « =0.01 with mixing proportion 0.4, or sample
size of 1000 with mixing proportion 0.2. When the expected censoring rate was 30%,
a sample size of 500 was needed to have power 99% at level « =0.01 with mixing
proportion 0.3, or sample size of 1000 with mixing proportion 0.2.

We expected that the power would decrease as the censoring rate increased and
that the power would increase as the difference between regimes increased. From
Tables 4.4 and 4.5, the power was greater when the distance between the two regimes
was larger. For settings A=11,=1p4=1257,,=05 and
A =L1,=1p =15 p4,=05, most of power values were equal to 1 and the results

of regression analysis were of minimal value (data not shown).
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4.4 Logit(power) Linear Regression Results
For the settings A =11,=1p4=0757p,=05 and
A =14,=1p=1p,=05, the dependent variable was the logit(power). There
were five independent variables.
6. n = Sample size (500, 1000 and 2000).
7. 7 = Mixing proportion to first regime (10%, 20%, 30%, 40%, 50%,
60%, 70%, 80% and 90%)
8. z* =Mixing proportion square
9. d=Distance between g, and g, (0.25and 0.5)
10. cr = Expected censoring rate (10%, 20% and 30%).
| also included SiX two factor interactions; namely,
(n-z,n-d,n-cr,z-d,-cr,d-cr). Because the power curve was a concave function
to the mixing proportion, I included 7° as an independent variable as well.
Table 4.6 is the linear regression results with two way interactions. The main
effects of sample size, mixing proportion, mixing proportion square and the distance
between g, and £, were significant with p values <0.000. The interaction of

sample size with distance between g, and g, was significant with p value <0.000.
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The fitted model was:
logit(power) = —15.069 + 0.003 x n + 25.665 x 7 — 21.196 x 72 + 27.693 x d
—0.005%n-d
with R? equal to 0.914.

Figures 4.1, 4.2 and 4.3 are the graphs of power curves at « =0.01 with respect
to censoring rate at each sample sizes. From the figures, we can see the power
decreased as censoring rate increased in most of mixing proportion, as expected.

Figures 4.4 4.5 and 4.6 are the graphs of power curves with respect to mixing
proportion at « =0.01. The maximum power occurred near 60-40 mixture or 70-30
mixture. The power increased as mixing proportion increased to 60-40 or 70-30
mixture and then the power decreased afterward. From the logit(power) fitted model,

" 25.665

the maximum power appeared to occur at 7, = =0.606.

2x21.196

To examine why the power was not symmetric with respect to mixture
proportion, | generated two data of sample size 500 with same A,,4,,5,, 5, with 7
and 1- . Figures 4.7 and 4.8 are the scatter plots of first and second regime data for
A =11,=1p=0757p,=057x7=06 with overall expected censoring rate 10%
for a sample of 500 observations. The averages of time were 0.2481 and 0.5043 for

first and second regime respectively. The difference in average times was

0.5043-0.2481=0.2562. The power for this parameter setting was 0.53. Figures 4.9
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and 4.10 are the scatter plots of first and second regime data for
A =L4,=1p =075/p,=05xz=04 with overall expected censoring rate 10%
for a sample of 500 observations. The averages of time were 0.3481 and 0.3176 for
first and second regime respectively. The difference in average times was
0.3481-0.3176=0.0305. The power for this parameter setting was 0.35. That is, when
7 =0.6, the average of the difference between the two regimes was greater than the
distance when 7 =0.4. Therefore, the power was greater when 7 =0.6. That is, the

models were not symmetricin 7 =0.5.
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Chapter 5 Discussion and Conclusion

The software program that | developed found the maximum likelihood estimates
of the parameters and the likelihood ratio test of the null hypothesis of a single regime
against the alternative of a mixture of two regimes. The properties of the LRT for
mixture of two regimes were determined by a simulation study.

The single regime model was distributed as an exponential function with
conditional mean Aeiﬁx . The mean of null LRT was insensitive to the parameters A
and £ at sample size 500, 1000 and 2000, and censoring rate 10%, 20% and 30%.
The simulation results showed the null distribution of LRT was approximated by
r(@(n,cr,B)) +[1—=(6(n,cr,B))]x g(t| n cr, ), where z(d(n,cr,f)) was the
fraction of zero LRT values (LRT, ) and g(t| n cr, #) was the PDF of non-zero LRT
values (LRT,, ). The fraction of LRT, values was positively associated with the
censoring rate and negatively associated with the sample size. Because of the
log(standard deviation of LRT) was associated with log(mean of LRT), I studied the
3LRT transformation. The mean of the non-zero ¥/LRT values (M) was

associated with the parameter S, the coefficient of the covariate affecting the

survival time. Then, the pdf of &LRT was approximated by a mixture of LRT,,
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and a normal distribution with mean of 3/LRT,, and variance 0.498. The null

distribution of the ¥/LRT , was dependent on the sample size and censoring rate and

parameter f.

The alternative model was a mixture of two regimes with the mixing proportion

7z from the first regime with the conditional mean equal to and 1-z from

e Xpy

the second regime with conditional mean equal to The mean of alternative

R
LRT was sensitive to sample size, censoring rate, mixing proportion, the distance
between g, and fg,, and the censoring rate. When the distance between g, and
S, was 0.25, a sample size of 2000 was needed to have power 99% at level
a =0.01 for the expected censoring rates 10% and 20%, and to have power 95% for
the expected censoring rate was 30% with mixing proportion 0.5, 0.6 or 0.7. When the
distance between g, and f, increased to 0.5, a sample size of 500 was needed to
have power 99% at level « =0.01 with mixing proportion greater than 0.3. When
the distance between g, and g, increased to 0.75 or greater, the powers were near
1 in almost all cases (3 censoring rates, 9 mixing proportions and 3 sample sizes).

The standard deviations of 3/LRT under the alternative ranged from 0.24 to 0.72.
These values were relatively close to 0.5, the average standard deviation of the null
simulations. This suggested that the variance stabilizing property held for the

alternative. The power was relatively insensitive to the censoring rate. The power
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increased as the sample size increased and the distance between two regimes
increased. From the power curves (figures 4.1, 4.2 and 4.3) and the logit(power) fitted
regression model, the maximum power occurred for an approximate 60-40 mixture.
An extension of this dissertation would be to consider the uniform censoring
pattern with censoring rates 10%, 20% and 30%, and compare the results with the
exponential censoring pattern. Additionally, we may introduce other covariates that
affect the group membership. That is, we might consider the mixing proportion
e” . .
ﬁ(z):m, —wo<a<ow, Where z is the covariate that affects the group

membership. Finally, we can extend the mixture mechanism to a mixture of three or

more regimes with covariates, and finite study length.
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Figure 3.1 Scatter plot of the 95" percentile of the LRT for n=2000 at expected
censoring rate 10%
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Figure 3.3 Normal Q-Q plot of 3/LRT,, when 4 =14 =0,cr =10%,n = 2000
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Figure 4.1, Power curves when A, =1, 4, =1, =0.75, 5, =0.5 with respect to
censoring rate, sample size 500 at « =0.01
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Figure 4.2, Power curves when A, =1, 4, =1, 3, =0.75, 5, = 0.5 with respect to
censoring rate, sample size 1000 at « =0.01
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Figure 4.3, Power curves when A, =14, =1, =0.75, 5, =0.5 with respect to
censoring rate, sample size 2000 at « =0.01
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Figure 4.4, Power curves when A, =14, =1, 3, =0.75, 5, =0.5 with respect to
mixing proportion, sample size 500 at « =0.01
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Figure 4.5, Power curves when A, =14, =1, =0.75, 4, =0.5 with respect to
mixing proportion, sample size 1000 at « =0.01
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Figure 4.6, Power curves when A, =14, =1, 3, =0.75, 5, = 0.5 with respect to
mixing proportion, sample size 2000 at « =0.01
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Survival time
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Figure 4.7 Scatter plot for first regime data when

A =LA,=1p.=07574,=057r=0.6 at10% censoring rate

lambdal=1, lambda2= 1, betal=0.75, beta2=0.5, mix=0.6, 10%, n=500
regime 1, n=312, censored=40

nts
AAQ:A& A “—QA

i & 2 o
“° e Oﬁ g ye %ﬁ%@m@mwm

T T T T T T
0 1 2 3 4 5
Covariate. x

Figure 4.8 Scatter plot for second regime data when
A =14,=1p =075 p,=057=0.6 at 10% censoring rate
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Survival.time
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Figure 4.9 Scatter plot for first regime data when
A, =1 4,=0.754,=057r=0.4 at 10% censoring rate

lambdal=1, lambda2= 1, betal=0.75, beta2=0.5, mix=0.4, 10%, n=500
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Figure 4.10 Scatter plot for Second regime data when
A, =1 p,=0.75 4, =05 7=0.4 at 10% censoring rate

n=500

regime 2, n=311, censored=40

& Uncensored

o Censored

a
o 2 AA Lap
G P &
Fay ~ N
o s =) §AA s a
i Py
PN o g o SN I
R Y N e A
CL T ag ~ o AT A - &
oodg A?@ R &% Aaﬁ Mﬁgaﬁ &A%Dﬁﬁi %
5 aa & 5 o ﬁaa@ s & O & 6 &% M’)@A@‘A&‘
I I I I T I
0 1 2 3 4 5
Covariate.x

47



Table 2.1 Means of exponential censoring distribution of single regime model
when 1=1/4=0

) ] 95% confidence
Target censoring | Mean of censoring |  Average observed interval
rate distribution censoring rate
Lower Upper

10% 9.0000 10.13%* 9.87% 10.39%
20% 4.0000 19.89% 19.47% | 20.31%
30% 2.3333 30.21% 29.83% | 30.58%
40% 1.5000 40.03% 39.64% | 40.41%
50% 1.0000 50.43% 49.99% | 50.87%
60% 0.6667 59.88% 59.48% | 60.29%
70% 0.4286 70.04% 69.62% | 70.46%
80% 0.2500 79.93% 79.55% | 80.31%
90% 0.1111 90.10% 89.83% | 90.37%

Base on 100 replications, 500 subjects
Note*: 10.13% is the average of 100 censoring rates that ranging from 6.4% to 13.4%.

Table 2.2 Means of exponential censoring distribution of single regime model
when 1=1/4=1

Average | 95% confidence

Target Mean of censoring .

) x value o observed interval
censoring rate distribution )

censoring rate | Lower | Upper
10% 0.7x E[x] 1.563965 9.76% 9.49% |10.02%
20% 0.77x E[X] 0.583503 19.82% 19.49% |20.15%
30% 0.85x E[x] 0.278677 30.00% 29.65% (30.35%
40% 0.92x E[X] 0.150388 39.61% 39.09% 140.12%
50% 1.00x E[X] 0.082085 50.04% 49.67% (50.41%
60% 1.07x E[X] 0.045938 59.65% 59.22% (60.07%
70% 1.14x E[X] 0.02479 69.49% 69.05% (69.92%
80% 1.22x E[X] 0.01184 79.73% 79.36% (80.09%
90% 1.28x E[X] 0.004529 89.68% 89.38% (89.97%

Base on 100 replications, 500 subjects

x~U(0,5)
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Table 2.3 Means of exponential censoring distribution of mixture of two regimes
model when 4, =11, =1,4,=15,4,=057=05

95% confidence
Target censoring | Mean of censoring | Average observed interval

rate distribution censoring rate

Lower | Lower
10% 1.948705 10.11% 9.83% | 10.38%
20% 0.7858606 20.18% 19.86% | 20.49%
30% 0.3890864 30.07% 29.69% | 30.44%
40% 0.2118107 39.99% 39.56% | 40.41%
50% 0.1153447 49.45% 49.00% | 49.89%
60% 0.05648397 60.36% 59.94% | 60.77%
70% 0.02473104 69.83% 69.42% | 70.23%
80% 0.00759614 80.50% 80.17% | 80.82%
90% 0.00189027 89.78% 89.51% | 90.04%

Base on 100 replications, 500 subjects

Table 2.4 Range of observed censoring rate

Excepted censoring rate | Range of observed censoring rate
10% 6.4%-13.4%
20% 16.6~24.8%
30% 25%~34.2%
40% 34.6%~45%
50% 45.2~55.4%
60% 55.2%~65.4%
70% 65.6%~75.8%
80% 75.2%~86%
90% 86.6%~92.4%

Base on 500 replications, 500 subjects
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Table 2.5 Maximum sum of log-likelihood of single regime model for selected numbers of random starting points (RSPs)

maxsum_log H

difference between maxsum_log H difference between maxsum_log H,

difference between

replication
RSPs 9 RSPs 9RSPsand4RSPs 16 RSPs 16RSPsand9RSPs 25 RSPs 25 RSPs and 16 RSPs
1 598.4370921  598.4370921 0.0000000 598.4370926 0.0000005 598.4370926 0.0000000
2 575.0743335 575.0743339 0.0000004 575.0743339 0.0000000 575.0743339 0.0000000
3 613.3633173  613.3633177 0.0000004 613.3633180 0.0000002 613.3633180 0.0000000
4 668.0320371  668.0320371 0.0000000 668.0320372 0.0000002 668.0320373 0.0000000
5 665.8972986  665.8972994 0.0000008 665.8972998 0.0000004 665.8972998 0.0000000
6 756.8317544  756.8317553 0.0000008 756.8317556 0.0000003 756.8317556 0.0000000
7 638.8000922  638.8000922 0.0000000 638.8000923 0.0000001 638.8000923 0.0000000
8 628.0533392  628.0533394 0.0000001 628.0533395 0.0000001 628.0533395 0.0000000
9 658.2649248  658.2649252 0.0000003 658.2649252 0.0000000 658.2649252 0.0000000
10 543.0309485  543.0309485 0.0000000 543.0309487 0.0000002 543.0309487 0.0000000
11 651.9480187  651.9480187 0.0000000 651.9480187 0.0000000 651.9480187 0.0000000
12 637.9529252  637.9529252 0.0000000 637.9529252 0.0000000 637.9529252 0.0000000
13 684.4505419  684.4505426 0.0000007 684.4505426 0.0000000 684.4505426 0.0000000
14 529.4179365 529.4179368 0.0000003 529.4179370 0.0000003 529.4179370 0.0000000
15 607.6943776  607.6943781 0.0000004 607.6943783 0.0000002 607.6943783 0.0000000
16 696.5356968 696.5356968 0.0000000 696.5356968 0.0000000 696.5356968 0.0000000
17 659.7506218  659.7506222 0.0000005 659.7506226 0.0000004 659.7506227 0.0000000
18 688.3480868  688.3480875 0.0000007 688.3480875 0.0000000 688.3480875 0.0000000
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Table 2.5 Maximum sum of log-likelihood of single regime model for selected numbers of random starting points (RSPs) (continued)

replication maxsum_log H, difference between maxsum_log H, difference between maxsum_logH, difference between
RSPs 9 RSPs 9RSPsand4RSPs 16 RSPs 16 RSPs and 9 RSPs 25 RSPs 25 RSPs and 16 RSPs
19 604.6785784  604.6785784 0.0000000 604.6785784 0.0000000 604.6785784 0.0000000
20 614.5405300 614.5405300 0.0000000 614.5405300 0.0000000 614.5405300 0.0000000
Ave. 0.0000003 0.0000001 0.0000000

Note: Based on 500 subjects in each replication
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Table 2.6 Maximum sum of log-likelihood of mixture of two regimes model for selected numbers of random starting points (RSPs)

maxsum_log H,

difference between maxsum_log H,

difference between

maxsum_log H,

difference between

replication RSP 32 RSPs 32RSPsand1RSP 48 RSPs 48 RSPs and 32 RSPs 243 RSPs 243 RSPs and 32 RSPs
1 598.4370921  598.4370921 0.0000000 598.4370926 0.0000005 598.4370926 0.0000000
2 575.0743335  575.0743339 0.0000004 575.0743339 0.0000000 575.0743339 0.0000000
3 613.3633173  613.3633177 0.0000004 613.3633180 0.0000002 613.3633180 0.0000000
4 668.0320371  668.0320371 0.0000000 668.0320372 0.0000002 668.0320373 0.0000000
5 665.8972986  665.8972994 0.0000008 665.8972998 0.0000004 665.8972998 0.0000000
6 756.8317544  756.8317553 0.0000008 756.8317556 0.0000003 756.8317556 0.0000000
7 638.8000922  638.8000922 0.0000000 638.8000923 0.0000001 638.8000923 0.0000000
8 628.0533392  628.0533394 0.0000001 628.0533395 0.0000001 628.0533395 0.0000000
9 658.2649248  658.2649252 0.0000003 658.2649252 0.0000000 658.2649252 0.0000000
10 543.0309485  543.0309485 0.0000000 543.0309487 0.0000002 543.0309487 0.0000000
11 651.9480187  651.9480187 0.0000000 651.9480187 0.0000000 651.9480187 0.0000000
12 637.9529252  637.9529252 0.0000000 637.9529252 0.0000000 637.9529252 0.0000000
13 684.4505419  684.4505426 0.0000007 684.4505426 0.0000000 684.4505426 0.0000000
14 529.4179365 529.4179368 0.0000003 529.4179370 0.0000003 529.4179370 0.0000000
15 607.6943776  607.6943781 0.0000004 607.6943783 0.0000002 607.6943783 0.0000000
16 696.5356968 696.5356968 0.0000000 696.5356968 0.0000000 696.5356968 0.0000000
17 659.7506218  659.7506222 0.0000005 659.7506226 0.0000004 659.7506227 0.0000000
18 688.3480868  688.3480875 0.0000007 688.3480875 0.0000000 688.3480875 0.0000000
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Table 2.6 Maximum sum of log-likelihood of mixture of two regimes model for selected numbers of random starting points (RSPs) (continued)

replication maxsum_log H, difference between maxsum_logH,  difference between maxsum_log H,  difference between
RSP 32 RSPs 32RSPsand1RSP 48 RSPs 48 RSPsand 32 RSPs 243 RSPs 243 RSPs and 32 RSPs
19 606.7065635  606.7729594 0.0663958 606.7730034 0.0000441  606.7730034 0.0000000
20 615.3679828  615.3863405 0.0183577 615.3871822 0.0008417  615.3871822 0.0000000
Ave. 0.0042379 0.0000444 0.0000000

Note: Based on 500 subjects in each replication
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Table 3.1 Summary statistics for simulated MLE when A =3, =1 insingle regime

model
Percentile of MLE
Average_observed Parameters Average MLE  SD
censoring rate 2506 50% 75%
A 2.995 0.303 2.758 2984 3.185
10.18%
B 1.001 0.033 0.980 1.001 1.024
A 3.033 0.340 2.819 3.009 3.230
500 20.00%
B 1.000 0.037 0.978 0.999 1.026
A 3.004 0.430 2.724 3.006 3.266
29.88%
B 1.003 0.044 0972 1003 1.033
A 3.008 0.213 2.862 3.003 3.143
10.20%
B 1.000 0.023 0.984 1.000 1.015
A 3.004 0.250 2.843 2988 3.161
1000 20.09%
B 1.002 0.026 0.984 1.001 1.020
A 3.001 0.275 2.809 2989 3.180
30.11%
yéj 1.001 0.029 0.981 0.999 1.018
A 3.012 0.156 2.906 3.009 3.110
10.19%
B 1.000 0.017 0.989 1.000 1.011
A 3.004 0.173 2.888 3.001 3.115
2000 20.07%
B 1.000 0.018 0.988 1.001 1.013
A 3.010 0.199 2876 3.002 3.123
29.96%
B 1.000 0.020 0.987 1.000 1.013

Based on 500 replications in each setting.
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Table 3.2 Summary statistics of simulation results of LRT when sampling from single regime at exponential censoring rate 10% (Null
distribution)

N B Mean Mean SDof  Observed 5 ﬁ Mean  SD of Percentiles of LRT Fraction of
X t t censoring rate LRT LRT 50 75 95 99 LRT<0.001

0 250 0.90 0.90 10.04% 1.00 0.00 154 218 0.62 244 567 10.80 24.0%

1 1 250 0.15 0.27 10.03% 1.01 1.00 144 236 042 189 6.32 10.38 32.8%

500 3 250 0.03 0.08 10.07% 0.98 3.00 1.44 200 059 203 576 8.85 28.4%
0 250 0.30 0.30 9.97% 3.03 0.00 1.25 1.84 043 187 495 7.94 30.0%

3 1 250 0.05 0.09 10.18% 3.00 1.00 144 205 052 221 570 9.58 30.4%

3 250 0.01 0.03 10.12% 3.04 3.00 152 235 037 233 6.58 10.89 32.2%

0 250 0.90 0.90 9.95% 1.00 0.00 151 215 0.61 238 552 9.89 30.6%

1 1 250 015 0.28 10.12% 1.01 1.00 159 232 060 235 587 9.59 26.4%

1000 3 250 0.03 0.08 10.01% 0.99 3.00 114 174 034 159 496 7.59 28.8%
0 250 0.30 0.30 9.93% 3.01 0.00 158 230 0.65 229 6.38 1159 25.0%

3 1 250 0.05 0.09 10.21% 3.01 1.00 1.23 1.88 042 1.79 4.67 8.67 27.8%

3 250 0.01 0.03 10.07% 3.00 3.00 1.11 1.73 047 147 3.78 8.0 15.2%

0 250 0.90 0.90 10.01% 1.00 0.00 1.39 192 057 206 550 9.32 24.2%

1 1 250 015 0.28 10.08% 1.00 1.00 1.45 208 057 203 578 9.75 25.2%

2000 3 250 0.03 0.08 10.04% 1.00 3.00 1.21 1.87 038 173 491 8.32 25.2%
0 250 0.30 0.30 10.00% 3.00 0.00 151 222 055 218 636 9.94 27.2%

3 1 250 0.05 0.09 10.19% 3.01 1.00 1.43 220 044 2.08 558 1047 23.0%

3 250 0.01 0.03 10.00% 3.01 3.00 1.09 196 0.05 125 537 9.60 42.6%

Based on 500 replications in each setting.
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Table 3.3 Summary statistics of simulation results of LRT when sampling from single regime at exponential censoring rate 20% (Null
distribution)

noA B Mean Mean SD of  Observed A A Mean SD of Percentiles of LRT Fraction of
X t t  censoring rate A B LRT LRT 50 75 95 99 LRT< 0.001
0 250 0.80 0.80 19.96% 1.01 0.00 160 233 044 229 657 9.26 28.0%
1 1 250 0.11 0.19 20.00% 1.01 1.00 149 215 055 214 583 9.76 26.4%
500 3 250 0.01 0.03 20.23% 1.01 3.00 140 217 046 183 6.02 9.38 21.6%
0 249 0.27 0.27 20.11% 3.02 0.00 147 212 054 214 6.11 9.39 27.6%
3 1 250 0.04 0.06 20.00% 3.03 1.00 160 228 057 233 6.71 9.96 30.6%
3 250 0.00 0.01 20.08% 3.02 3.00 177 252 070 263 6.71 1091 21.2%
0 250 0.80 0.80 19.97% 1.00 0.00 161 228 0.66 237 598 10.73 24.6%
1 1 250 0.11 0.19 20.12% 1.01 1.00 157 221 064 223 640 9.50 25.2%
1000 3 250 0.01 0.03 20.08% 1.00 3.00 118 174 043 165 490 7.49 18.8%
0 250 0.27 0.27 20.02% 3.00 0.00 121 178 040 187 444 834 29.0%
3 1 250 0.04 0.06 20.09% 3.00 1.00 149 206 053 221 575 9.40 25.2%
3 250 0.00 0.01 20.08% 3.02 3.00 151 197 066 235 591 873 19.0%
0 250 0.80 0.80 19.93% 1.00 0.00 165 220 074 255 6.37 9.39 23.0%
1 1 250 0.11 0.19 20.09% 1.00 1.00 131 190 050 1.83 553 9.34 26.0%
2000 3 250 0.01 0.03 20.09% 1.00 3.00 119 187 037 170 529 7.83 23.8%
0 250 0.27 0.27 19.95% 3.02 -0.01 143 217 041 212 569 10.11 29.2%
3 1 250 0.04 0.06 20.07% 3.00 1.00 113 175 033 168 462 7.86 28.2%

3 250 0.00 0.01 20.06% 3.01 3.00 165 254 053 241 745 11.71 30.0%
Based on 500 replications in each setting.
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Table 3.4 Summary statistics of simulation results of LRT when sampling from single regime at exponential censoring rate 30% (Null
distribution)

noa B Mean Mean SDof  Observed A A Mean SD of Percentiles of LRT Fraction of
X t t  censoring rate A B LRT LRT 50 75 95 99 LRT< 0.001
0 250 0.70 0.70 30.03% 1.00 0.00 1.38 207 039 198 528 10.25 29.2%
1 1 249 0.08 0.13 30.15% 1.00 1.00 138 236 041 199 530 11.22 31.6%
500 3 250 0.00 0.01 29.94% 1.03 3.00 156 208 0.75 228 598 8.96 15.6%
0 250 0.23 0.23 30.06% 3.02 0.00 150 209 059 209 584 9.16 26.4%
3 1 251 0.03 0.04 29.88% 3.00 1.00 134 196 049 179 569 871 26.6%
3 250 0.00 0.00 29.80% 3.03 3.00 116 195 0.33 1.27 537 10.08 25.2%
0 250 0.70 0.70 30.01% 1.00 0.00 174 230 072 277 6.75 10.33 25.8%
1 1 250 0.08 0.13 30.03% 1.01 1.00 141 208 055 195 6.06 8.83 25.2%
1000 3 250 0.00 0.01 29.99% 1.00 3.00 134 208 051 172 6.02 9.92 16.8%
0 250 0.23 0.23 29.80% 3.03 0.00 166 224 062 276 6.32 9.47 27.0%
3 1 250 0.03 0.04 30.11% 3.00 1.00 142 203 0.62 198 565 8.43 23.6%
3 241 0.00 0.00 30.04% 298 3.00 137 197 056 197 524 8.85 18.0%
0 250 0.70 0.70 29.98% 1.00 0.00 148 216 0.65 2.02 6.23 10.20 21.0%
1 1 250 0.08 0.13 29.94% 1.01 1.00 170 225 0.86 255 6.54 11.68 21.2%
2000 3 250 0.00 0.01 29.92% 1.00 3.00 146 200 060 212 554 831 17.2%
0 250 0.23 0.23 30.03% 3.00 0.00 124 181 046 198 498 821 27.0%
3 1 250 0.03 0.04 29.97% 3.01 1.00 154 203 0.75 241 557 837 20.2%

3 250 0.00 0.00 29.94% 3.00 3.00 145 211 066 2.06 546 10.52 18.8%
Based on 500 replications in each setting.
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Table 3.5 Linear regression analysis results for the 95" percentile at n=2000 and
expected censoring rate 10%

Coefficients?

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 5.471 .501 10.915 .008
lambda .233 .224 .529 1.037 .408
beta -.199 .275 -.563 -.723 .545
interaction -.033 123 -.235 -.272 .811

a. Dependent Variable: 95th percentile

b. R square: 0.758

Table 3.6 Mean values of selected percentiles of null distribution of LRT
averaged over 18(4, ) settings

cerlmzs);ﬁ?r?;e?ate Percentile n Mean SD LOV\&?S% Upg IS%
500 5829 0571 5230  6.428
95" 1000 5.196 0.926 4.225  6.167
o1 2000 5583 0482 5077 6.089
500 9.740 1.176 8506  10.975
99" 1000 9.304 1.387 7.848  10.760
2000 9565 0721 8.808  10.321
500 6.324 0.385 5920 @ 6.727
95" 1000 5563 0.741 4784  6.341
02 2000 5.826 0977 4.800  6.852
500 9.777 0.616 9.131  10.423
99" 1000 9.031 1115 7.860  10.201
2000 9.372 1.463 7.838  10.908
500 5577 0.302 5260  5.893
95" 1000 6.008 0.525 5.457 6.558
03 2000 5718 0568 5.122 6.314
500 9.730 0.955 8727  10.732
99" 1000 9.304 0.729 8540  10.068
2000 9548 1.458 8017  11.078

Based on 500 replications for each setting.
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Table 3.7 Linear regression analysis results for nine means of the 95" percentile of
null distribution of LRT

Coefficients?

Standardized
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 5.764 .692 8.329 .000
expected censoring 433 3.203 .118 135 .898
rate CR
sample size N .000 .001 -.463 -.425 .689
N*CR .001 .002 .343 .257 .807

Dependent Variable: 95" percentile

R square: 0.152

Table 3.8 Linear regression analysis results for nine means of the 99" percentile of
null distribution of LRT

Coefficients?®

Standardized
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 9.610 571 16.817 .000
expected censoring -.008 2.645 -.003 -.003 .998
rate CR
sample size N -9.843E-5 .000 -.259 -.228 .829
N*CR -3.214E-5 .002 -.022 -.016 .988

Dependent Variable: 99" percentile

R square: 0.076
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Table 3.9 Linear regression analysis results with two way interaction for fraction of

LRT,
Coefficients®
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .303 .051 5.939 .000
Sample Size N -3.082E-5 .000 -.392 -1.027 .310
Lambda L -.011 .018 -.234 -.626 .535
Beta B -.002 .016 -.059 -.142 .888
Censoring rate CR 114 .204 .190 .560 .578
N*L 1.262E-5 .000 468 1.465 .150
N*B 1.497E-5 .000 .564 2.168 .036
N*CR -.0001 .000 -.400 -1.126 .266
L*B .002 .004 .156 .575 .568
L*CR .004 .066 .021 .059 .953
B*CR -.160 .053 -.946 -3.029 .004
a. Dependent Variable: Fraction of LRT,

a.

R square: 0.485
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Table 3.10 Linear regression analysis results log(SD LRT,, ) vs. log(mean LRT,;, )

Coefficients?

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .165 .016 10.286( .000
log(mean LRT,;) 633 056 845| 11401 .000

a. Dependent Variable: log(SD LRT,)

Table 3.11 Linear regression analysis results log(SD LRT °**") vs. log(mean LRT %)

Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 557 .065 8.516( .000
log(mean LRT %%’ 122 082 202| 1489 .142
a. Dependent Variable: log(SD LRT %*¢7y

Table 3.12 Linear regression analysis results log(SD¥/LRT ) vs. log(mean/LRT )

Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .583 .064 9.087] .000
log(mean %/ﬁ ) .045 .082 .076 .550| .585

a. Dependent Variable: log(SD 3/LRT )

61



Table 3.13 Linear regression analysis results of mean 3/LRT,, with two way

interactions

Coefficients?

Unstandardized Coefficients

Standardized

Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 1.158 .058 20.050 .000
Sample Size N -4.495E-5 .000 -.510 -1.322 193
Lambda L -.020 .021 -.358 -.948 .348
Beta B -.041 .019 -.939 -2.226 .031
Censoring rate CR -.261 .231 -.388 -1.127 .266
N*L -4.714E-7 .000 -.016 -.048 .962
N*B 1.393E-6 .000 .047 178 .860
N*CR .000 .000 479 1.333 .189
L*B .007 .005 404 1.471 .148
L*CR .049 .075 .240 .652 .518
B*CR -.012 .060 -.064 -.202 .841

b. Dependent Variable: mean

c. Rsquare: 0.472

3LRT,,
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Table 3.14 Summary statistics of ¥/LRT and the fitted values of r and x at exponential censoring rate 10% (500 replications)
Observed Observed fraction Fitted fraction Observed mean  Fitted mean  Observed SD percentiles of 3/LRT

nip censoring fraction LRT, LRT, (7) 3/LRT,, 3/LRT,, (4) 3/LRTy, 90 95 99
0 0.100 0.240 0.273 1.054 1.070 0.504 1.637 1.784 2.210

11 0.100 0.328 0.276 1.080 1.042 0.506 1.634 1849 2.182

500 3 0.101 0.284 0.295 1.079 0.986 0.471 1593 1.792 2.069
0 0.100 0.300 0.269 1.021 1.070 0.476 1.558 1.704 1.995

31 0.102 0.304 0.277 1.081 1.042 0.490 1.609 1.786 2.124

3 0.101 0.322 0.292 1.049 0.986 0.562 1.629 1874 2.216

0 0.100 0.306 0.251 1.107 1.070 0.489 1.611 1.767 2.146

11 0.101 0.264 0.269 1.081 1.042 0.510 1.665 1.804 2.124
1000 3 0.100 0.288 0.292 0.938 0.986 0.503 1.555 1.706 1.965
0 0.099 0.250 0.257 1.086 1.070 0.498 1.644 1.855 2.263

31 0.102 0.278 0.267 0.998 1.042 0.474 1528 1.671 2.055

3 0.101 0.152 0.308 0.889 0.986 0.451 1.418 1558 2.041

0 0.100 0.242 0.228 1.042 1.070 0.467 1597 1.765 2.104

11 0.101 0.252 0.249 1.050 1.042 0.488 1.601 1.795 2.136
2000 3 0.100 0.252 0.295 0.958 0.986 0.490 1.522 1.699 2.026
0 0.100 0.272 0.221 1.075 1.070 0.499 1.662 1.853 2.150

31 0.102 0.230 0.254 1.010 1.042 0.510 1.618 1.773 2.187

3 0.100 0.426 0.257 0.965 0.986 0.554 1.540 1.751 2.125

Note: 7 = 0.28 — 0.000006 x n + 0.003 x ,&+ 0.122 x cr + 0.00001x n - ,2)’— 0.0001xn-cr —0.16 x & cr

A

1 =1.07-0.028x 3
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Table 3.15 Summary statistics of ¥/LRT and the fitted values of r and x at exponential censoring rate 20% (500 replications)
Observed Observed fraction Fitted fraction Observed mean  Fitted mean  Observed SD percentiles of 3/LRT

nip censoring fraction LRT, LRT, (r) 3/LRT,, 3/LRT,, (4) 3/LRTy, 90 95 99
0 0.1996 0.28 0.278 1.069 1.070 0.544 1.737 1.873 2.100

11 0.2 0.264 0.288 1.042 1.042 0.522 1.622 1800 2.137

500 3 0.2023 0.216 0.308 0.984 0.986 0.511 1.618 1.819 2.109
0 0.2011 0.276 0.279 1.059 1.070 0.505 1.653 1.828 2.110

31 0.2 0.306 0.284 1.124 1.042 0.505 1.699 1886 2.152

3 0.2008 0.212 0.308 1.050 0.986 0.556 1.722 1.886 2.218

0 0.1997 0.246 0.266 1.071 1.070 0.519 1.669 1.815 2.206

11 0.2012 0.252 0.278 1.069 1.042 0.509 1.661 1.857 2.118

3 0.2008 0.188 0.313 0.917 0.986 0.481 1.505 1.698 1.956

1000 0 0.2002 0.29 0.260 1.017 1.070 0.454 1539 1.643 2.028
31 0.2009 0.252 0.278 1.066 1.042 0.490 1.641 1.791 2.110

3 0.2008 0.19 0.312 0.999 0.986 0.524 1.643 1.808 2.059

0 0.1993 0.23 0.239 1.088 1.070 0.505 1.696 1.854 2.110

11 0.2009 0.26 0.255 1.023 1.042 0.467 1563 1.769 2.106
2000 3 0.2009 0.238 0.306 0.936 0.986 0.492 1.517 1.743 1.985
0 0.1995 0.292 0.224 1.053 1.070 0.513 1.653 1.786 2.162

31 0.2007 0.282 0.250 0.961 1.042 0.478 1.499 1.665 1.988

3 0.2006 0.3 0.292 1.078 0.986 0.559 1.675 1953 2.271

Note: 7 = 0.28 — 0.000006 x n + 0.003 x ,&+ 0.122 x cr + 0.00001x n - ,2)’— 0.0001xn-cr —0.16 x & cr

A

1 =1.07-0.028x 3
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Table 3.16Summary statistics of ¥ LRT and the fitted values of r and x at exponential censoring rate 30% (500 replications)

Observed Observed fraction Fitted fraction Observed mean  Fitted mean  Observed SD percentiles of 3/LRT

nip censoring fraction LRT, LRT, (r) 3/LRT,, 3/LRT,, (4) 3/LRTy, 90 95 99
0 0.3003 0.292 0.285 1.043 1.070 0.505 1.602 1.741 2.172

11 0.3015 0.316 0.291 1.064 1.042 0.494 1566 1.743 2.239

500 3 0.2994 0.156 0.322 0.986 0.986 0.519 1.634 1815 2.077
0 0.3006 0.264 0.288 1.074 1.070 0.492 1.668 1.801 2.092

31 0.2988 0.266 0.295 1.033 1.042 0.473 1.588 1.785 2.058

3 0.298 0.252 0.313 0.943 0.986 0.481 1.521 1.752 2.160

0 0.3001 0.258 0.272 1.117 1.070 0.522 1.732 1890 2.178

11 0.3003 0.252 0.286 1.034 1.042 0.486 1.632 1.823 2.067
1000 3 0.2999 0.168 0.325 0.939 0.986 0.503 1.578 1.819 2.148
0 0.298 0.27 0.270 1.121 1.070 0.503 1.699 1849 2.115

31 0.3011 0.236 0.289 1.043 1.042 0.471 1595 1.781 2.035

3 0.3004 0.18 0.323 0.974 0.986 0.492 1.582 1.737 2.069

0 0.2998 0.21 0.253 1.033 1.070 0.491 1578 1.840 2.169

11 0.2994 0.212 0.275 1.107 1.042 0.487 1.647 1870 2.269
2000 3 0.2992 0.172 0.331 0.991 0.986 0.501 1.616 1.769 2.025
0 0.3003 0.27 0.238 1.006 1.070 0.465 1,531 1.708 2.018

31 0.2997 0.202 0.277 1.060 1.042 0.479 1.607 1.772 2.030

3 0.2994 0.188 0.327 1.019 0.986 0.473 1.569 1.760 2.191

Note: 7 = 0.28 — 0.000006 x n + 0.003 x ,&+ 0.122 x cr + 0.00001x n - ,2)’— 0.0001xn-cr —0.16 x & cr

A

1 =1.07-0.028x 3
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Table 3.17 Mean values of selected percentiles of 3/LRT averaged over (4, )

settings
cerlmzs):)e?r?;e?ate Percentile n Mean SD Low95% Cl Up 95% ClI

500 1.798 0.024 1.736 1.860

95" 1000 1.727 0.043 1.616 1.838

10% 2000 1.773 0.021 1.719 1.826
500 2.133 0.036 2.040 2.225

99" 1000 2.099  0.042 1.991 2.207

2000 2.122 0.022 2.065 2.179

500 1.849 0.015 1.809 1.888

95" 1000 1.769  0.033 1.684 1.854

20% 2000 1.795 0.040 1.691 1.898
500 2.138 0.018 2.091 2.184

99" 1000 2.079  0.035 1.990 2.169

2000 2.104 0.044 1.990 2.218

500 1.773 0.013 1.739 1.806

95" 1000 1.817 0.022 1.761 1.872

230% 2000 1.787 0.024 1.726 1.849
500 2.133 0.028 2.060 2.205

99" 1000 2.102  0.022 2.045 2.159

2000 2117 0.044 2.005 2.230

Based on 500 replications for each setting.

Table 3.18 Critical values of ¥/LRT

Sample size
500 1000 2000
a=0.05 1.807 1.771 1.785
a=0.01 2.135 2.093 2.114
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Table 4.1 Summary statistics for simulated MLE when
A =L1,=1, =15 p,=057z=0.6 (mixture of two regimes model)

Observed

Percentile of MLE

censoring rate Parameters Mean MLE SD MLE =0 -

A 1.002 0.205 0.851 0.976 1.116

A, 1.068 0.272  0.878 1.032 1.183

10.02% By 1.505 0.076  1.463 1.508 1.55
B, 0.495 0.086  0.446 0.498 0.54

V4 0.6 0.033 0578 0.601 0.623

A 1.006 0.223  0.834 0.992 1.138

A, 1.054 0.303 0.831 0.996 1.231

500 19.99% By 1.505 0.064 146 1502 1.55
B, 0.498 0.082  0.443 0.499 0.555

V4 0.599 0.032 0576 0.601 0.622

4 1.007 0.248  0.837 0.983 1.155

A, 1.055 0.445 0.792 0.991 1.243

30.34% By 1.505 0.073  1.457 1.507 1.548
B, 0.502 0.1 0.436 0.499 0.566

V4 0.603 0.035 0.578 0.604 0.628

4 1.018 0.135 0.919 1.001 1.112

A, 1.02 0.167  0.907 1 1.118

10.14% yon 1.498 0.04 1.47 1.499 1.527
B, 0.496 0.048 0466 05 0.526

V4 0.599 0.023 0585 0.6 0.615

A 1.066 0377 0.915 1.014 1.118

A, 1.129 0.558 0.893 1.018 1.195

1000 19.88% yon 1.456 0.206  1.463 1.496 1.529
B, 0.522 0.144  0.456 0.497 0.547

V4 0.595 0.032 0579 0.597 0.615

A 1.015 0.167 0.898 1.007 1.123

A, 1.035 0.261 0.85 1.012 1.187

30.26% yon 1.5 0.048 1467 1.497 1534
B, 0.499 0.069 0.451 0.501 0.541

V4 0.6 0.023 0.585 0.601 0.615

A 1.003 0.098 0.934 0.999 1.073

A, 1.006 0.109  0.925 1 1.075

2000 10.16% yon 1.501 0.03 148 15 1521
B, 0.5 0.033  0.477 0.502 0.523

V4 0.6 0.017 0.588 0.601 0.612

Based on 500 replications for each setting.
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Table 4.1 Summary statistics for simulated MLE when
A =L2,=1p=15p0,=057=0.6 (mixture of two regimes model) (continued)

Cer?s%i?;‘éegte Parameters Mean MLE SD MLE :grcentllseOOfMl;E
A 0.994 0.098 093 0.994 1.061

A, 1.006 0.143 0904 0.996 1.091

19.93% B, 1.503 003 1481 1501 1523
B, 0.502 0.041 0475 05 0.531

2000 7 0.6 0.016 0589 06 0.611
A 0.995 0.133 0904 0.994 1.068

A, 1.037 02 0897 1019 1.166

30.25% B, 1.504 0.038 148 1502 1529
B, 0.495 0.053 0457 0.496 0.528

7 0.6 0.017 0588 06 0.611

Based on 500 replications for each setting.

Table 4.2 The minimum and maximum of MLEs when
A =L2,=1p =15 4,=057=0.6, sample size 1000

A A A A

/11 ﬂz ﬂl ﬂz T
Min. Max. | Min. Max. | Min. Max. | Min. Max. | Min. Max.

Expected | 10%|0.707 1.4280.657 1.852|1.403 1.602|0.321 0.658 0521 0.663
censoring [20% | 0.591 4.499 |0.291 4.658|0.328 1.662|0.152 1.431|0.500 0.710

rate  13006|0.602 1.664 |0.448 2.094|1.359 1.656|0.292 0.724|0.531 0.666
Based on 500 replications for each setting.

Table 4.3 Mean and standard deviation of survival time and covariate x of first and
second regimes at 0% censoring rate

First regime | Second regime
mean SD mean SD

A =1L4,=,6=075/p,=057=06|t| 0258 0432 | 0.368 0.523
n= 595 vs. 405 X | 2591 2.527

A=14,=L8=13,=057r=06 |t| 0222 0431 | 0.346 0.459
n= 606 vs. 394 X | 2.508 2.586

A=L4,=14=125p,=05~r=06|t]| 0159 0.346 | 0.346 0.470
n=611 vs. 389 X | 2510 2.540

A4 =14,=16=15/,,=057=06 |t| 0129 0.290 | 0.358 0.540
n= 612 vs. 388 X | 2.460 2.432

Based on sample size: 1000
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Table 4.4 Simulation results of 3/LRT with summary statistics when 4 =14, =1, 3, =0.75,3,=05 and ~=0.1~0.9

-+ n Mean mean . . observed A A A A ~ Mean  SD Percentile of 3/LRT power  power
X t censoringrate A4 A B 5 7 3/IRT ¥LRT 1 5 10 50 @=001 =005

2512 0.288 0.397 10.5% 2278 1.029 0584 0512 0215 1.267 0481 0125 0435 0.604 1285 0.026 0.114

500 2.497 0.245 0.319 20.0% 1970 0973 0521 0530 0176 1232 0516 0109 0305 0.489 1279 0.040  0.230
2509 0.200 0.250 29.9% 1706 1.060 0702 0507 0231 1251 0536 0126 0315 0524 1291 0.036  0.156

2501 0.290 0.402 10.3% 1630 1006 0545 0516 0242 1349 0518 0.071 0.338 0.633 1400 0.058  0.216

0.1 1000 2506 0.240 0.321 20.3% 2029 1018 0781 0511 0.165 1325 0499 0.160 0438 0.660 1.335 0.052  0.200
2505 0.199 0.251 29.9% 2395 1.026 0547 0513 0239 1312 0521 0191 0.389 0579 1.346 0.060  0.192

2.496 0.289 0.400 10.3% 1270 1009 0708 0514 0131 1449 0513 0131 0533 0730 1523 0.088  0.278

2000 2.496 0.244 0.321 20.2% 0947 1.060 0773 0493 0191 1560 0483 0222 0.635 0.884 1621 0.106  0.358
2.494 0199 0.252 29.9% 1114 1055 0700 0.497 0220 1420 0530 0.205 0.481 0.699 1469 0.088  0.262

2.492 0265 0.385 10.3% 1588 1007 0633 0528 0232 1509 0506 0.257 0.640 0.794 1543 0.092  0.300

500 2.499 0.220 0.308 19.9% 1661 1059 0664 0525 0224 1518 0522 0103 0528 0799 1568 0.100  0.302
2510 0.172 0.234 29.9% 2001 1.046 0659 0530 0241 1486 0511 0181 0574 0786 1538 0.072  0.274

2.496 0.269 0.391 10.0% 2023 1.021 0649 0519 0233 1739 0526 0.340 0798 1.043 1791 0.222  0.514

0.2 1000 2503 0.220 0.307 19.8% 1676 1033 0686 0517 0233 1751 0484 0403 0909 1.174 1760 0.254  0.496
2502 0.173 0.234 29.8% 2254 1.038 0704 0520 0211 1.699 0519 0.249 0.766 0.994 1.737 0.220  0.470

2501 0.266 0.391 10.1% 1443 1023 0543 0535 0259 1907 0503 0419 1.028 1.268 1954 0.358  0.630

2000 2.500 0.219 0.306 20.0% 1266 1028 0759 0508 0217 2050 0454 0746 1.213 1.487 2.080 0.468  0.762
2499 0.173 0.234 29.9% 1.820 1005 0254 0550 0168 1.698 0543 0.202 0.667 0.989 1.738 0.248  0.466

2.497 0236 0.369 10.5% 1728 1042 0678 0546 0247 1714 0533 0.223 0748 1.004 1.760 0.226  0.462

0.3 500 2508 0.193 0.290 20.2% 1428 1059 0729 0541 0249 1719 0497 0472 0757 1.032 1759 0.200  0.470
2.489 0.158 0.220 30.2% 1672 1052 0695 0551 0272 1717 0498 0522 0829 1.018 1744 0.192  0.450
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Table 4.4 Simulation results of 3/LRT with summary statistics when 4 =14, =1, 3, =0.75,3,=05 and ~=0.1~0.9 (continued)

-+ n Mean mean . . observed A A A A ~ Mean  SD Percentile of 3/LRT power  power
X t censoringrate 4 4L B b 7 3RT ¥LRT 1 5 10 50 a=001 «=0.05

2.498 0.243 0.379 10.5% 1248 1041 0705 0536 0285 2053 0465 0735 1.241 1.447 2082 0.494  0.736

1000 2.497 0.198 0.291 20.4% 1236 1032 0730 0534 0267 2048 0515 0762 1.037 1.273 2.089 0.498  0.742
2501 0.157 0.222 30.1% 1277 1040 0705 0540 0279 1978 0508 0502 1.005 1.277 2.043 0.454  0.708

03 2503 0.244 0.375 10.4% 1.002 1047 0734 0515 0302 2582 0442 1460 1.793 2.003 2.602 0.854  0.952
2000 2.499 0.196 0.292 20.3% 1078 1018 0736 0524 0290 2475 0432 1435 1.756 1.904 2483 0.812  0.942
2500 0.156 0.221 30.2% 1175 1009 0661 0547 0309 2330 0487 0947 1.447 1.702 2378 0.706  0.870

2495 0211 0.351 10.2% 1358 1037 0662 0575 0300 1931 0519 0582 1.046 1.245 1.965 0.350  0.622

500 2510 0.169 0.272 20.0% 1339 1031 0672 0573 0285 1.887 0478 0525 0994 1.284 1922 0.302  0.624
2.492 0132 0.203 30.0% 1593 1.089 0749 0570 0271 1.838 0511 0.281 0960 1.181 1.888 0.288  0.560

2.499 0217 0.359 9.9% 1196 1032 0701 0560 0322 2330 0469 1168 1.498 1.742 2361 0.704  0.888

0.4 1000 2493 0.172 0273 20.1% 1154 1034 0702 0570 0319 2332 0439 1130 1.611 1773 2.348 0.720  0.902
2500 0.133 0.203 30.1% 1170 1061 0676 0570 0302 2221 0482 0.878 1.346 1.575 2258 0.646  0.830

2502 0215 0.358 10.0% 1.010 1042 0665 0559 0362 2890 0444 1.824 2.111 2328 2.889 0.950  0.992

2000 2.499 0.173 0.274 20.0% 0998 1.040 0708 0552 0350 2850 0401 1759 2.188 2.358 2.866 0.960  0.990
2.499 0132 0.203 30.0% 1173 1044 0707 0558 0.342 2747 0424 1581 2005 2.192 2.769 0.924  0.984

2501 0.192 0.348 9.8% 0996 1.354 0668 0589 0586 2092 0480 0.686 1.234 1.457 2117 0.490  0.760

500 2.499 0.150 0.254 19.9% 1.068 1295 0623 0661 0648 1945 0546 0341 0904 1217 2.011 0.392  0.642
2.498 0.109 0.182 30.1% 0871 1.839 0698 0486 0688 1.949 0536 0496 0.949 1.259 1991 0.394  0.660

05 2506 0.188 0.339 10.0% 1.001 1242 0603 0644 0585 2535 0463 1487 1.803 1.935 2542 0.822  0.956
1000 2.498 0.146 0.252 20.0% 1.008 1256 0586 0673 0615 2455 0454 1467 1.688 1.842 2475 0788  0.932
2.496 0.109 0.184 30.0% 0913 1414 0751 0495 0580 2401 0476 1134 1523 1.730 2421 0.770  0.884
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Table 4.4 Simulation results of 3/LRT with summary statistics when 4 =14, =1, 3, =0.75,3,=05 and ~=0.1~0.9 (continued)

-+ n Mean mean . . observed A A A A ~ Mean  SD Percentile of 3/LRT power  power
X t censoringrate 4 A& B B 7 3RT ¥YLRT 1 5 10 50 @=001 @=005

2499 0.191 0.344 9.9% 0994 1.059 0730 0521 0508 3212 0395 2144 2540 2710 3.230 0.994  0.998

0.5 2000 2.497 0.145 0.251 19.9% 0978 1128 0632 0617 0556 3.109 0412 2.085 2.443 2580 3.096 0.990  1.000
2498 0111 0.185 30.0% 0899 1.375 0744 0470 0584 2939 0446 1642 2115 2337 2978 0952  0.982

2509 0.163 0.318 10.1% 1013 1369 0675 0559 0688 2168 0496 1.034 1.314 1520 2.169 0.528  0.772

500 2500 0.123 0.232 19.6% 1.029 1565 0658 0617 0703 2089 0496 0739 1.196 1.422 2084 0.474  0.734
2504 0.090 0.162 29.8% 0995 1.398 0672 0563 0714 1995 0533 0525 0991 1326 2045 0.436  0.662

2500 0.170 0.326 10.3% 1.009 1144 0685 0567 0656 2711 0448 1579 1.951 2158 2726 0.910  0.980

0.6 1000 2.491 0.124 0.235 19.6% 1025 1.132 0677 0587 0.666 2586 0441 1560 1.860 2.020 2.613 0.864  0.956
2.494 0090 0.164 30.2% 1.025 1.164 0673 0591 0.669 2477 0478 1149 1580 1.880 2475 0.816  0.924

2503 0.167 0.322 10.2% 1.001 1065 0694 0556 0637 3366 0460 2149 2575 2731 3.382 0.992  1.000

2000 2.498 0.122 0.233 19.7% 0996 1150 0.699 0549 0645 3245 0429 2060 2511 2681 3.267 0.990  1.000
2.497 0090 0.164 30.0% 0998 1.086 0692 0571 0639 3070 0440 1900 2.349 2533 3.081 0.974  0.996

2500 0.148 0.305 10.1% 1.030 1414 0695 0556 0721 2170 0534 0739 1.256 1.489 2.161 0.526  0.764

500 2.507 0.100 0.212 20.0% 0994 1475 0698 0582 0733 2070 0509 0815 1.174 1397 2102 0478 0.716
2509 0.074 0.148 30.6% 0998 1.358 0706 0602 0725 2004 0526 0.615 1.118 1.315 2019 0.392  0.644

2.497 0149 0.307 10.2% 0992 1220 0722 0519 0701 2656 0482 1458 1.771 2.039 2.662 0.894  0.950

0.7 1000 2.496 0.104 0.212 20.0% 0994 1209 0725 0515 0727 2619 0477 1323 1.848 2.039 2610 0.882  0.964
2,508 0.074 0.148 30.2% 0999 1214 0717 0574 0718 2474 0495 1291 1597 1.794 2494 0.890  0.912

2,505 0.146 0.307 10.0% 0991 1101 0741 0508 0686 3.384 0402 2487 2774 2872 3371 0.998  1.000

2000 2.498 0.105 0.215 20.0% 0984 1119 0741 0512 0691 3252 0425 2178 2524 2675 3.247 0.994  1.000
2.495 0.075 0.149 30.1% 0994 1.166 0726 0533 0705 3.036 0451 1.835 2.323 2465 3.039 0.984  0.994
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Table 4.4 Simulation results of 3/LRT with summary statistics when 4 =14, =1, 3, =0.75,3,=05 and ~=0.1~0.9 (continued)

-+ n Mean mean . . observed A A A A ~ Mean  SD Percentile of 3/LRT power  power
X t censoringrate 4 4L B b 7 31RT ¥LRT 1 5 10 50 =001 «=0.05

2508 0.122 0.283 10.1% 0993 1544 0739 0486 0773 2053 0578 0.380 0.870 1.296 2.112 0.482  0.722

500 2.494 0.087 0.195 20.4% 0986 1573 0738 0491 0761 1.971 0557 0598 0.953 1.224 2.005 0.412  0.622
2.494 0056 0.128 30.1% 1014 1613 0728 0505 0769 1.846 0568 0.257 0.825 1.062 1.874 0.300  0.560

2499 0121 0.281 10.2% 0992 1.286 0741 0517 0760 2530 0568 0.861 1582 1.816 2561 0.792  0.918

0.8 1000 2.490 0.088 0.194 20.5% 0.977 1436 0743 0494 0775 2442 0541 0921 1506 1.712 2507 0.740  0.888
2506 0.056 0.127 30.3% 0969 1.476 0744 0483 0776 2285 0530 0.896 1.365 1591 2285 0.666  0.838

2500 0.121 0.281 10.2% 0987 1.184 0752 0490 0769 3.187 0.467 1.834 2365 2578 3.197 0.980  0.996

2000 2.498 0.088 0.197 20.3% 0982 1.196 0749 0508 0769 2970 0500 1.845 2141 2.328 2.988 0.952  0.992
2.499 0.055 0.127 30.4% 0997 1.177 0748 0515 0758 2.814 0489 1598 1.903 2.166 2.843 0.916  0.982

2490 0102 0.262 10.1% 1.000 1547 0742 0526 0834 1762 0597 0.174 0.698 0993 1766 0.282  0.472

500 2501 0.064 0.166 19.8% 0982 1546 0750 0540 0814 1646 0637 0.104 0559 0.810 1.647 0.222  0.406
2.495 0.040 0.106 30.3% 1010 1278 0739 0691 0810 1571 059 0.177 0.610 0.809 1599 0.180  0.360

2502 0.099 0.259 10.2% 0981 1340 0746 0569 0810 1.999 0649 0215 0762 1.125 2060 0.478  0.654

0.9 1000 2502 0.065 0.169 19.9% 0993 1.284 0748 0531 0826 2026 0578 0379 1072 1338 2015 0.444 0.674
2.499 0.039 0.109 30.3% 0978 1.264 0754 0557 0824 1.830 0.630 0.267 0.672 1017 1.854 0.352  0.564

2500 0.099 0.260 10.1% 0992 1251 0750 0528 0815 2564 0613 1.015 1.491 1772 2621 0.774  0.898

2000 2.505 0.066 0.171 20.2% 0980 1.350 0.755 0.487 0.842 2457 0.606 0.867 1.384 1670 2481 0.728  0.866
2,503 0.040 0.109 29.8% 0986 1.248 0755 0521 0840 2324 0588 0782 1.238 1.557 2.362 0.658  0.832

Note: Based on 500 replications for each setting.

The level of significance 0.01, the critical values were used 2.135 for n=500, 2.093 for n=1000 and 2.114 for n=2000 respectively.
The level of significance 0.05, the critical values were used 1.807 for n=500, 1.771 for n=1000 and 1.785 for n=2000 respectively.
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Table 4.5 Simulation results of /LRT

with summary statisticswhen 4 =14, =14, =1 4,=05 and z=0.1~0.9

- n Mean mean . . observed A A A A A Mean  SD Percentile of 3/LRT power  power
x ot censoring rate H B B 7w ¥IRT YLRT 1 5 10 50 @=001 a=005

2,503 0.297 0.402 10.4% 7871 1.035 0907 049 0170 1.896 0529 0.010 0.994 1346 1928 0350  0.600

500 2501 0.249 0.322 20.0% 3006 1.036 0871 0503 0181 1711 0525 0.010 0662 1.022 1790 0210  0.470
2506 0.204 0.253 29.9% 2399 1.058 0.894 0494 01177 1828 0.647 0.009 0.653 0.995 1.894 0270  0.580

2,505 0.296 0.402 10.3% 1308 1.044 1051 0494 0152 2084 0571 0014 1.053 1.358 2134 0560  0.770

0.1 1000 2494 0.251 0.325 20.3% 1567 1051 0923 0494 0152 2136 0537 0005 1.171 1456 2212 0610 0810
2500 0.206 0.254 29.9% 5023 1.042 1121 0492 0143 2207 0486 0430 1.306 1.617 2269 0.650  0.860

2,502 0.297 0.403 10.3% 1109 1024 1013 0492 0112 2655 0484 0013 1.939 2157 2720 0920  0.960

2000 2505 0.248 0.321 20.2% 1114 1024 0975 0496 0131 2650 0536 0011 1.594 2.081 2.688 0.880  0.950
2.497 0.207 0.256 29.9% 1372 1033 1045 0490 0119 2650 0454 0018 2126 2169 2.650 0960  0.990

2.498 0.281 0.391 10.3% 1129 1075 1017 0483 0225 2604 0441 1462 1.713 1857 2635 0860  0.920

500 2502 0.235 0.310 19.9% 1737 1047 0995 0501 0214 2522 0462 1294 1678 1939 2522 0.800  0.940
2.499 0.194 0.244 29.9% 1327 1045 1004 0500 0229 2510 0461 0984 1658 1949 2499 0.800  0.950

2501 0.281 0.396 10.0% 1275 1033 0992 0489 0212 3268 0378 2308 2.601 2.831 3276 1000  1.000

0.2 1000 2509 0.233 0.310 19.8% 1237 1028 1032 0498 0194 3159 0348 2305 2.634 2726 3158 1.000  1.000
2511 0191 0.241 29.8% 1.087 1.048 1042 0490 0214 3117 0394 2105 2561 2645 3.077 1.000  1.000

2502 0.281 0.396 10.1% 1116 1.010 0990 0497 0202 3987 0379 3.015 3.356 3.457 4006 1.000  1.000

2000 2.500 0.233 0.311 20.0% 0947 1051 1036 0487 0211 4024 0319 2909 3525 3.635 4.022 1.000  1.000
2.498 0.192 0.244 29.9% 1.034 1036 1022 0492 0205 3918 0296 3.154 3.351 3522 3912 1.000  1.000

2.499 0.265 0.382 10.5% 1191 1040 0991 0506 0299 3216 0404 2315 2469 2571 3270 1000  1.000

0.3 500 2493 0219 0.297 20.2% 1.028 1.096 1028 0489 0302 3132 0412 2079 2531 2613 3.109 0980  1.000
2507 0.174 0.227 30.2% 1642 1.091 1034 049 0311 3101 0381 1.752 2516 2632 3.085 0990  0.990
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Table 4.5 Simulation results of ¥/LRT with summary statisticswhen 4 =14, =18 =1,=05 and 7 =0.1~0.9 (continued)

r n Mean . o, Observed A A A A A Mean  SD Percentile of 3/LRT power  power
censoringrate 4 A& A B x ¥RT ¥YLRT 1 5 10 50 @=001 «=0.05

2490 0.266 0.386  10.5% 1050 1.023 0997 0497 0302 3941 0336 3.160 3.415 3.516 3.926 1.000 1.000

1000 2506 0218 0.297  20.4% 1.020 1036 1028 0494 0295 3931 0346 3.103 3.369 3.475 3.961 1.000 1.000
2511 0175 0226  30.1% 1.091 1.020 1004 0500 0.306 3.817 0349 3.000 3279 3.391 3.773 1.000 1.000

03 2500 0.263 0379  10.4% 0981 1.032 1014 0490 0310 5088 0297 4300 4.456 4.654 5106 1.000 1.000
2000 2499 0218 0299  20.3% 1.028 1022 1004 0498 0298 4868 0279 4230 4442 4520 4.862 1.000 1.000
2501 0.175 0226  30.2% 1.082 1.011 0988 0499 0300 4786 0331 3928 4258 4.315 4.796 1.000 1.000

2500 0.249 0372  10.2% 1178 1040 0937 0548 0396 3.674 0374 2441 2955 3.168 3.641 1.000 1.000

500 2500 0.205 0285  20.0% 0958 1.101 0983 0539 0384 3.600 0.376 2547 2941 3.080 3.635 1.000 1.000
2496 0.162 0214  30.0% 0985 1.156 0991 0523 0393 3460 0355 2420 2716 2942 3535 1.000 1.000

2500 0.249 0.373 9.9% 1050 1010 0980 0521 0.396 4603 0327 3.380 4.042 4208 4.613 1.000 1.000

0.4 1000 2502 0.203 0.289  20.1% 1.025 1027 0987 0520 0400 4528 0292 3.804 4070 4100 4515 1.000 1.000
2499 0.162 0216  30.1% 0941 1.086 0999 0515 0401 4451 0340 3.446 3.918 4.069 4.401 1.000 1.000

2495 0.248 0370  10.0% 1.037 1017 0994 0497 0401 5785 0305 5011 5198 5355 5816 1.000 1.000

2000 2498 0.204 0287  20.0% 1013 1018 0999 0505 0396 5652 0304 4938 5171 5234 5644 1.000 1.000
2499 0.163 0219  30.0% 1.049 0989 0988 0509 0403 5550 0316 4.761 4.974 5175 5553 1.000 1.000

2.495 0.235 0.358 9.8% 1.060 1063 0885 0599 0517 4032 0383 2872 3.420 3.519 4.033 1.000 1.000

500 2510 0.187 0270  19.9% 1111 0995 0561 0954 0502 3.923 0347 3.108 3.240 3455 3.922 1.000 1.000
2502 0.147 0200  30.1% 1.030 1133 0987 0516 0511 3.872 0320 3221 3.406 3.453 3.860 1.000 1.000

05 2493 0235 0361  10.0% 1.044 1001 0938 0568 0493 5068 0327 4418 4534 4614 5097 1.000 1.000
1000 2507 0.187 0273  20.0% 1.044 1.020 0537 0969 0503 5047 0331 4154 4424 4597 5054 1.000 1.000
2502 0.148 0203  30.0% 1011 1036 0.863 0.646 0514 4825 0290 4.114 4277 4416 4.834 1.000 1.000
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Table 4.5 Simulation results of ¥/LRT with summary statisticswhen 4 =14, =18 =1,=05 and 7 =0.1~0.9 (continued)

£ n meanx meant Spt OPserved ﬂ/\l j; [/;7 [; A Mean  SD Percentile of ¥/LRT power  power
censoring rate 1 2 7 3/LRT ¥LRT 1 5 10 50 =001 «=0.05

2496 0.233 0.360 9.9% 1.017 1.004 0974 0530 0501 6434 0278 5653 5875 6.085 6.429  1.000  1.000

0.5 2000 2501 0.188 0272  19.9% 1.003 1016 1005 0499 0496 6.269 0.244 5604 5861 5948 6.268  1.000  1.000
2500 0.148 0.202  30.0% 1.007 1023 1005 0496 0503 6.150 0291 5285 5701 5781 6.171  1.000  1.000

2501 0217 0344  10.1% 0944 1153 0975 0511 0620 4340 0334 3629 3.737 3.899 4303 1000  1.000

500 2503 0.172 0259  19.6% 1.034 1133 0968 0532 0.609 4171 0339 3.340 3.573 3.805 4.146 1000  1.000
2507 0.133 0.186  29.8% 1.033 1158 0962 0537 0607 4.128 0326 3.247 3560 3.688 4.141  1.000  1.000

2499 0216 0344  10.3% 0997 1.038 0994 0507 0603 5434 0360 4555 4.821 4920 5420 1000  1.000

0.6 1000 2492 0175 0261  19.6% 0971 1.087 0989 0514 0594 5269 0351 4346 4609 4789 5291 1000  1.000
2499 0.134 0187  30.2% 0985 1.040 0995 0509 0604 5109 0.344 4377 4511 4647 5126  1.000  1.000

2501 0216 0.343  10.2% 0998 1.026 0997 0497 0603 6920 0288 6269 6458 6523 6963 1000  1.000

2000 2502 0175 0262  19.7% 0999 0999 1000 0510 0600 6732 0292 50963 6217 6335 6750 1000  1.000
2500 0.133 0.186  30.0% 1.004 1039 0995 0502 0.604 6449 0323 5737 5858 6.010 6.460  1.000  1.000

2503 0200 0.330  10.1% 0968 1283 1023 0479 0683 4459 0357 3577 3919 3999 4473 1000  1.000

500 2500 0.158 0241  20.0% 0999 1167 1004 0498 0692 4376 0385 2935 3772 3929 4396 1000  1.000
2496 0120 0.169  30.6% 0961 1.289 1023 0488 0680 4107 0410 3182 3377 3516 4100 1000  1.000

2506 0.200 0.329  10.2% 1.015 1.008 1002 0511 0.690 5596  0.350 4.849 5.055 5170 5543  1.000  1.000

0.7 1000 2500 0.157 0240  20.0% 1.006 1.085 1004 0495 0.698 5461 0375 4.133 4.852 5057 5430  1.000  1.000
2502 0120 0171  30.2% 0981 1146 1009 0479 0698 5297 0380 4509 4651 4807 5310 1000  1.000

2497 0201 0330  10.0% 0999 1.040 1003 0491 0701 7.167 0324 6.354 6654 6743 7.147 1000  1.000

2000 2505 0.157 0.240  20.0% 1.020 1003 0999 0508 0.699 6927 0319 6.149 6.397 6523 6.907  1.000  1.000
2504 0121 0172  30.1% 0989 1.047 1007 0502 0697 6640 0311 5813 5987 6131 6703 1000  1.000
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Table 4.5 Simulation results of ¥/LRT with summary statisticswhen 4 =14, =18 =1,=05 and 7 =0.1~0.9 (continued)

s n meanxmeant SDt | observed /i ﬂ; [/;7 ,BA ~ Mean  SD Percentile of ¥/LRT power  power
censoring rate 1 2 7 3/LRT ¥/LRT 1 5 10 50 «=001 «=0.05

2499 0.184 0.309 10.1% 1.003 1.293 1.007 0.465 0.787 4.481 0413 3506 3.740 3.800 4511  1.000  1.000

500 2493 0.142 0.224 20.4% 0984 1473 1012 0462 0788 4212 0452 3119 3427 3609 4220 1000 1.000
2499 0.107 0.154 30.1% 0984 1.648 1.014 0523 0795 3.931 0501 2408 3.051 3.347 3.891 1000  1.000

2499 0.185 0.315 10.2% 0996 1.107 1.002 0489 0.800 5595 0399 4368 4942 5128 5596 1000 1.000

0.8 1000 2500 0.142 0.223 20.5% 0980 1.252 1.010 0477 0794 5373 0446 4195 4412 4772 5406 1000 1.000
2502 0.107 0.155 30.3% 0.976 1.826 1.010 0.456 0.800 5.166  0.450 4.210 4358 4596 5151 1000  1.000

2499 0.184 0311 10.2% 0983 1.062 1.008 0494 0797 7.057 0359 6206 6412 6555 7.078 1000 1.000

2000 2499 0.143 0.224 20.3% 1.004 1.011 0999 0515 0.797 6730 0399 5871 6.029 6253 6.690  1.000  1.000
2500 0.107 0.156 30.4% 0986 1.111 1.006 0.499 0.799 6.427 0363 5534 5798 5960 6404 1000  1.000

2491 0.167 0.291 10.1% 1.007 2549 1006 0.459 0.874 3.869 0670 2015 2632 2941 3871 0990  1.000

500 2506 0.128 0.206 19.8% 0972 4.036 1.021 0443 0875 3729 0723 2203 2483 2685 3827 1000 1.000
2501 0.094 0.142 30.3% 0.968 12.640 1.013 0.467 0.880 3.449 0641 1701 2317 2651 3452 0980  0.990

2498 0.169 0.297 10.2% 0985 1.604 1.008 0492 0.895 4989 0541 3340 3.997 4244 5010 1000 1.000

0.9 1000 2503 0.128 0.206 19.9% 1.000 1.420 1.004 0.480 0.890 4.684 0555 3497 3854 3969 4.676  1.000  1.000
2490 0.096 0.142 30.3% 0973 1.674 1.013 0517 0.890 4352 0575 2810 3392 3506 4417 1000 1.000

2495 0.169 0.298 10.1% 0996 1.228 1.003 0486 0.897 6303 0479 4268 5568 5772 6278 1000 1.000

2000 2500 0.128 0.206 20.2% 1.004 1.188 0.999 0500 0.897 5972 0487 4548 5097 5299 6.052  1.000  1.000
2506 0.095 0.142 29.8% 1.004 1.268 1.000 0.495 0.899 5657 0543 4294 4760 5018 5624  1.000  1.000

Note: Based on 500 replications for each setting.

The level of significance 0.01, the critical values were used 2.135 for n=500, 2.093 for n=1000 and 2.114 for n=2000 respectively.
The level of significance 0.05, the critical values were used 1.807 for n=500, 1.771 for n=1000 and 1.785 for n=2000 respectively.
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Table 4.6 Linear regression analysis results for mean of alternative LRT with two way

interactions

Coefficients?

Standardized
Unstandardized Coefficients | Coefficients
Model B Std. Error Beta t Sig.

1 (Constant) 288.681 100.136 2.883| .004
sample size N -.467 .052 -.657] -9.032 .000
mixing proportion -265.445 186.081 -.155| -1.427| .155
mixing proportion square z’ -805.282 138.864 -481] -5.799( .000
distance between betas D -831.853 109.712 -525| -7.582( .000
censoring rate CR 898.817 362.157 .166 2.482| .014
N* 7z .538 .050 .561| 10.654( .000
N*D .815 .047 .988| 17.489( .000
N*CR -.255 .160 -.095| -1.601| .110
7T *D 1956.614 112.563 .995| 17.382( .000
T*CR -899.382 385.332 -.140( -2.334| .020
D*CR -600.261 355.954 -.107| -1.686( .093

Dependent Variable: mean LRT
R square 0.895
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Table 4.7 Logit(power) linear regression analysis results of power at « =0.01

Coefficients?®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -14.113 1.182 -11.937( .000
sample size N .004 .001 .672 6.485| .000
mixing proportion T 25.560 1.978 1.881| 12.924| .000
mixing proportion -21.196 1.398 -1.599| -15.161| .000
square z°
censoring rate CR -3.044 4.160 -.071 -.732| .465
distance between 23.987 2.470 .854 9.711] .000
betas D
N* 7T .000 .001 -.071 -1.055| .293
N*CR .000 .002 -.029 -.388| .699
N*D -.005 .001 -416 -4.861| .000
7T *CR -2.951 3.880 -.058 -.761| .448
7T*D 3.521 2.534 120 1.389| .167
CR*D 9.730 8.014 113 1.214| .227

a. Dependent Variable: logit(power)
b. R square: 0.919
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Appendix

Calculating the mean of censoring distribution for single regime model in R

n <- 500; # number of subjects

rep <-100; # number of replications

x<-matrix(0,rep,n); # covariate x

t<-matrix(0,rep,n); # survival time

c<-matrix(0,rep,n); # absence of censoring indicator c=1 uncensored, c=0 censored.
u<-matrix(0,rep,n); # censoring time

tt<-matrix(0,rep,n); # failure time

lambda0 <- 3; # initial parameter setting
betaO<-1; # initial parameter setting
cr<-0.20; # expected censoring rate
coe<- 0.78; # adjusted coefficient of E[X]

for (k in1:rep)
{
X[k,]<- runif(n, min=0, max=>5); # x~Uniform(0,5)
ufk,]<-rexp( n,rate=lambdaO*exp(coe*2.5*beta0)*(cr/(1-cr))); #censoring distn.
for (iin 1:n)
{
tt[k,i]<-rexp( 1,rate=lambda0*exp(x[k,i]*beta0)); #failure time distn.
t[k,i]<-min(tt[k,i],u[k,i]);
if (tt[k,i] <= u[k,i]) c[k,i] <- 1 else c[k,i] <- O;
}

1-sum(c)/(n*rep); # average of observed censoring rate
(1/(lambda0*exp(coe*2.5*beta0)*(cr/(1-cr)))); # mean of censoring distribution
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Calculating the mean of censoring distribution for mixture of two regimes model
inR

n <- 500; # number of subjects

rep <-100; # number of replicates

x<-matrix(0,rep,n); # covariate x

select<-matrix(0,rep,n); # criterion of mixing proportion

t<-matrix(0,rep,n); # survival time

c<-matrix(0,rep,n); # absence of censoring indicator c=1 uncensored, c=0 otherwise.

u<-matrix(0,rep,n); # censoring time

left<-matrix(0,rep,n); # first regime

right<-matrix(0,rep,n); # second regime

u<-matrix(0,rep,n); # censoring time

tt<-matrix(0,rep,n); # failure time

lam1 <- 1; # initial parameter setting

lam2 <- 1; # initial parameter setting

bel <- 1.5; # initial parameter setting

be2 <- 0.5; # initial parameter setting

m <- 0.5; # initial parameter setting, mixing proportion
cr<- 0.3; # expected censoring rate

coe<- 0.85; # adjusted coefficient of E[X]

for (k in1:rep)
{
select[k,] <- runif (n, 0, 1);
X[Kk,]<-runif(n, min=0, max=>5);
ufk,]<-rexp(n, rate= (m*(lam1*exp(bel*coe*2.5))+
(1-m)*(lam2*exp(be2*coe*2.5)))*cr/(1-cr)); #censoring distn.

for (iin 1:n)
{
left[k,i] <- rexp(1, rate=lam1*exp(x[k,i]*bel)); #failure time of first regime
right[k,i] <- rexp(1, rate=lam2*exp(x[k,i]*be2)); #failure time of second

regime
if (select[k,i] <= m) tt[k,i] <- left[k,i] else tt[Kk,i] <- right[k,i];
}
for (i in 1:n)
{
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[k, i]<-min(tt[k,il,ufk,i]);
if (tt[k,i] <= u[k,i]) c[k,i] <- 1 else c[k,i] <- 0;
}

1-(sum(c)/(n*rep)); # average of observed censoring rate
1/((m*(lam1*exp(bel*coe*2.5))+(1-m)*(lam2*exp(be2*coe*2.5)))*cr/(1-cr)); #
mean of censoring distribution
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Microsoft Visual C++ code for the simulation study
const int num_sub = 500; // number of subjects

const int num_rep = 500; // number of replicates

// initial parameters values
// null parameters setting
const double lambda_hO = 3;
const double beta_hO = 1;

const double mean_censor_dist_h0 = 0.1896988;

/%

/] alternative parameters setting
const double lambdal_hl =1;
const double lambda2_hl = 1;
const double betal_hl = 0.75;

const double beta2_hl = 0.5;

const double mix_hl = 0.6;

const double mean_censor_dist_hl = 0.5580538;
*/

// number of random starting points
const int num_of_init_mu=4;

const int num_of_init_be=4;

const int num_of_init_mul=2;
const int num_of_init_mu2=2;
const int num_of_init_bel=2;
const int num_of_init_be2=2;

const int num_of_init_alp=3;

/* range of covariate x */
const double uniform_min = 0;

const double uniform_max = 5;

/] single regime model function
double my_fO(const gsl_vector *v, void *params)

{

power_data *my_pwr_data;
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my_pwr_data = (power_data*)params;

double sumlog0=0;

gsl_vector® covar_t = my_pwr_data->covar_t_st;
gsl_vector* covar_c = my_pwr_data->covar_c_st;
gsl _vector® covar_x = my_pwr_data->covar_x_st;

int n = my_pwr_data->size;

double mu = gsl_vector_get(v, 0);
double beta = gsl_vector_get(v, 1);
double lambda, logitemO;

lambda=exp(mu) ;

for (int 1 = 0; i <n; i++)
{
logitem0 = gsl_vector_get(covar_c,1)*(log(lambda)+beta*
gsl _vector_get(covar_x,1))-lambda* gsl_vector_get(covar_t,i)* exp(beta*
gsl_vector_get(covar_x,1));

sumlog0 = sumlog0 + logitem0;

return -sumlog0;

//mixture of two regimes model function
double my_fl(const gsl_vector *v, void *params)
{

power_data *my_pwr_data;

my_pwr_data = (power_data*)params;

double sumlogl=0;

gsl_vector® covar_t = my_pwr_data->covar_t_st;

gsl _vector® covar_c = my_pwr_data->covar_c_st;

gsl_vector® covar_x = my_pwr_data->covar_x_st;

int n = my_pwr_data->size;

double mul = gsl_vector_get(v, 0);
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double mu2 = gsl_vector_get(v, 1);

double betal = gsl_vector_get(v, 2);

double beta2 = gsl_vector_get(v, 3);

double alpha = gsl_vector_get(v, 4);

double lambdal, lambda2, mix, x1, x2, logiteml;
lambdal=exp(mul);

lambda2=exp(mu2);

mix= exp(alpha)/(l+exp(alpha));

for (int 1 =0; 1 <n; 1+4)

{

x1= mix*exp(-lambdal*gsl_vector_get(covar_t,1)*exp(betal*gsl_vector_get(covar_x,1)));
X2=

(1-mix)*exp(-lambda2*gsl_vector_get(covar_t,1)*exp(beta2*gs]l_vector_get(covar_x,1)));

logiteml=gs]l_vector_get(covar_c,1)*log(x1*lambdal*exp(betal*gs]l _vector_get(covar_x,1))
+x2*lambda2*exp(beta2*gsl_vector_get(covar_x,1)))+(1-gsl_vector_get(covar_c,1i))*log(xl+x2) ;

sumlogl = sumlogl+logiteml;

return -sumlogl;

//random number generator
const gsl_rng type * T;
gsl_rng * r;
gsl_rng_env_setup();

T = gsl_rng_default;

r = gsl_rng_alloc (T);

gsl_rng_set (r, (unsigned)time(0));

//data generation
//null data generation
for (int row = 0; row < num_rep; IOwW++)
{
for (int col = 0; col < num_sub; col++)
{
gsl matrix_set(covar_x,row,col,gsl_ran_flat (r, uniform_min, uniform max));

gsl matrix_set(failure_dist,row,col, gsl_ran_exponential(r,
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1/(lambda_hO*exp(gsl_matrix_get(covar_x,row,col)*beta_h0))));
}

for (int row = 0; row < num_rep; IOw++)
{
for (int col = 0; col < num_sub; col++)
{
gsl_matrix_set (censor_dist,row,col, gsl_ran_exponential(r, mean_censor_dist_h0));
gsl_matrix_set(covar_t,row,col, min( gsl_matrix_get(failure_dist, row, col),

gsl matrix_get(censor_dist, row, col)));

if (gsl_matrix_get(failure_dist,row,col) <

gsl_matrix_get(censor_dist,row,col))

{

gsl_matrix_set(covar_c,row,col,l);
}
else
{

gsl matrix_set(covar_c,row,col,0);
}

/>1<
//alternative data generation

gsl matrix* select = gsl matrix_calloc(num_rep,num_sub);

for (int row = 0; row < num_rep; row++)
{
for (int col = 0; col < num_sub; col++)
{
gsl_matrix_set(select,row,col,gsl_ran_flat (r, 0, 1))
gsl_matrix_set(covar_x,row,col,gsl_ran_flat (r, uniform_min, uniform max));
gsl matrix_set(first,row,col,gsl_ran_exponential(r,
1/(lambdal_hl*exp(gsl_matrix_get(covar_x,row,col)*betal_hl))));
gsl_matrix_set(second, row,col,gsl_ran_exponential(r,

1/(lambda2_hl*exp(gsl_matrix_get(covar_x,row,col)*beta2_hl))));
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if (gsl_matrix_get(select,row,col) < mix_hl)
{
gsl matrix_set(failure_dist,row,col, gsl_matrix_get(first, row, col));
}
else
{

gsl matrix_set(failure_dist,row,col, gsl_matrix_get(second, row, col));

}

for (int row = 0; row < num_rep; row++)
{
for (int col = 0; col < num_sub; col++)

{

gsl matrix_set (censor_dist,row,col, gsl_ran_exponential(r, mean_censor_dist_hl));

gsl_matrix_set(covar_t,row,col, min( gsl_matrix_get(failure_dist, row, col),

gsl matrix_get(censor_dist, row, col)));

if (gsl_matrix_get(failure_dist,row,col) <

gsl_matrix_get(censor_dist,row,col))

{

gsl_matrix_set(covar_c,row,col,l);
}
else
{

gsl _matrix_set(covar_c,row,col,0);
}

*/
// RSPs initial values ~Uni(0,1)

for (int p = 0; p < num_of_init_mu; p++)
{

gsl_vector_set(mus,p,gsl_ran_flat (r, 0, 1));
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for (int p = 0; p < num_of_init_be; p++)
{

gsl_vector_set(betas,p,gsl_ran_flat (r, 0, 1));

for (int p = 0; p < num_of_init_mul; p++)
{

gsl_vector_set(muls,p,gsl_ran_flat (r, 0, 1));

for (int p = 0; p < num_of_init_mu2; p++)
{

gsl_vector_set(mu2s,p,gsl_ran_flat (r, 0, 1));

for (int p = 0; p < num_of_init_bel; p++)
{

gsl_vector_set(betals,p,gsl_ran_flat (r, 0, 1));

for (int p = 0; p < num_of_init_be2; p++)
{
gsl_vector_set(beta2s,p,gsl_ran_flat (r, 0, 1));

for (int p = 0; p < num_of_init_alp; p+t+)

{

gsl_vector_set(alphas,p,gsl_ran_flat (r, 0, 1));

// simulations Nelder-Mead algorithm

for(int w=0 ; W < num_rep; w++)

{

power_data my_pwr_data;

gsl matrix_get_row(covar_t_st,covar_t,w);
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gsl matrix_get_row(covar_c_st,covar_c,w);

gsl matrix_get_row(covar_x_st,covar_x,w);

my_pwr_data.covar_t_st
my_pwr_data.covar_c_st

my_pwr_data.covar_x_st

covar_t_st;
covar_c_st;

covar_x_st;

my_pwr_data.size = num_sub;

for (int 11 = 0; 11 < num_of_init_mu; 11++)

{

for (int mm = 0; mm < num_of_init_be; mm++)

{

gsl_vector_set(xx, 0, gsl_vector_get(mus,11));

gsl_vector_set(xx, 1, gsl_vector_get(betas,mm));

minex_func.f = &my_f0;
minex_func.n=np;
minex_func.params = (void *)&my_pwr_data;

gsl_multimin_fminimizer_set(s, &minex_func, xx, ss);

iter = 0;
int status;

double size;

do
{
iter++;
status = gsl_multimin_fminimizer_iterate(s);
if(status)
break;
size = gsl multimin_fminimizer_size (S);
status = gsl_multimin_test_size (size, le-5);
}

while (status == GSL_CONTINUE && iter < 1000);
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gsl_vector_set(LO_result,w,-s->fval);

gsl_vector_set(lambda_result,w,exp(gsl_vector_get(s->x,0)));

gsl _vector_set(beta_result,w,gsl_vector_get(s->x,1));

for (int 11 = 0; 11 < num_of_init_mul; 114++)
{
for (int mm = 0; mm < num_of_init_mu2; mm++)
{
for (int nn = 0; nn < num_of_init_bel; nn++)
{
for (int pp = 0; pp < num_of_init_be2; pp++)
{
for (int qq = 0; qq < num_of_init_alp; qg++)
{

gsl_vector_set(xx2, 0, gsl_vector_get(muls,11));
gsl_vector_set(xx2, 1, gsl_vector_get(mu2s,mm));
gsl _vector_set(xx2, 2, gsl_vector_get(betals,nn));
gsl_vector_set(xx2, 3, gsl_vector_get(beta2s,pp));

gsl vector_set(xx2, 4, gsl_vector_get(alphas,qq));

minex_func.f = &my_f1;
minex_func.n=np2;
minex_func.params = (void *)&my_pwr_data;

gs]l multimin_fminimizer_set(s2, &minex_func, xx2, ss2);

iter2 = 0;

int status;

double size2;

do

1ter2++;

status = gsl multimin_fminimizer_iterate(s2);
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if(status)

break;

size2 = gsl_multimin_fminimizer_size (s2);

status = gsl_multimin_test_size (size2, le-5);

}
while (status == GSL_CONTINUE && iter2 < 1000);

gsl _vector_set(Ll_result,w,-s2->fval);
gsl_vector_set(lambdal_result,w,exp(gsl_vector_get(s2->x,0)));
gsl_vector_set(lambda2_result,w,exp(gsl_vector_get(s2->x,1)));
gsl_vector_set(betal_result,w,gsl_vector_get(s2->x,2));
gsl _vector_set(beta2_result,w,gsl_vector_get(s2->x,3));

gsl_vector_set(mix_result,w,exp(gsl_vector_get(s2->x,4))/(l+exp(gsl_vector_get(s2->x,4))));

for(int 1=0;i<num_rep;i++)

{
gsl_vector_set(maxf0,1,gsl_vector_get(LO_result,i));
gsl_vector_set(maxl,1,gsl_vector_get(lambda_result,i));

gsl_vector_set(max2,i,gsl_vector_get(beta_result,i));

gsl_vector_set(maxfl,i,gsl_vector_get(Ll_result,i));
gsl_vector_set(max3,1,gsl_vector_get(lambdal_result,i));
gsl_vector_set(max4,1,gsl_vector_get(lambda2_result,1));
gsl_vector_set(max5,1i,gsl_vector_get(betal_result,i));
gsl_vector_set(max6,1,gsl_vector_get(beta2_result,1));

gsl_vector_set(max7,1,gsl_vector_get(mix_result,i));

/* output format

if (gsl_vector_get(max7,i) < 0.5)
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gsl_vector_set(real_max3,i, gsl_vector_get(max3, 1));
gsl _vector_set(real_max4,1, gsl_vector_get(max4, 1));
gsl_vector_set(real_max5,i, gsl_vector_get(max5, 1));
gsl_vector_set(real_max6,1, gsl_vector_get(max6, 1));

gsl_vector_set(real_max7,1, gsl_vector_get(max7, 1));

}
else
{
gsl_vector_set(real_max3,i, gsl_vector_get(max4, 1));
gsl _vector_set(real_max4,1, gsl_vector_get(max3, 1));
gsl_vector_set(real_max5,1, gsl_vector_get(max6, 1));
gsl_vector_set(real_max6,1, gsl_vector_get(max5, 1));
gsl_vector_set(real_max7,1, l-gsl_vector_get(max7, 1));
}
*/
}

double covar_t_tmp[num_sub];
double covar_c_tmp[num_sub];

double covar_x_tmp[num_sub];

for(int i=0;i<num_sub ; i++)

{
covar_t_tmp[i]=gsl _matrix_get(covar_t,w,1);
covar_c_tmp[i]=gsl_matrix_get(covar_c,w,i);
covar_x_tmp[1i]=gsl_matrix_get(covar_x,w,1i);
}

gsl_vector_set(mean_covar_t,w, gsl_stats_mean(covar_t_tmp,l,num_sub));
gsl_vector_set(mean_covar_x,w, gsl_stats_mean(covar_x_tmp,l,num_sub));
gsl_vector_set(mean_covar_c,w, gsl_stats_mean(covar_c_tmp,l,num_sub));

gsl_vector_set(sd_covar_t,w, gsl_stats_sd(covar_t_tmp,1,num_sub));

Y w
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FILE *ofp;

ofp=fopen("result", "w");

"

fprintf(ofp, " mean_x\t mean_t\t sd_t\t observed_censoring_farction\t sumlogO\t lambdahat\t

betahat\t sumlogl\t lambdalhat\t lambda2hat\t betalhat\t betaZhat\t mixhat\t LRT\n");

for (int f = 0; f < num_rep; f++)
{

/lfprintf(ofp, "%\t %\t BE\t BENt DNt BENt %ENt DENE BENE BNt BENt DENt BfNE %f\n",
gsl_vector_get(mean_covar_x,f), gsl_vector_get(mean_covar_t,f), gsl_vector_get(sd_covar_t,f),
1-gsl_vector_get(mean_covar_c,f), gsl_vector_get(maxf0,f), gsl_vector_get(maxl,f),
gsl_vector_get(max2,f), gsl_vector_get(maxfl,f), gsl_vector_get(real_max3,f),
gsl_vector_get(real_max4,f), gsl_vector_get(real_max5,f), gsl_vector_get(real_max6,f),
gsl_vector_get(real_max7,f), ((-2) * gsl_vector_get(maxf0,f) - (-2) *

gsl vector_get(maxfl,f)));

fprintf(ofp, "B\t B\t B\t BENE BENE BENE DENE DENE BENE BENE BENt BENE B\t %f\n",
gsl _vector_get(mean_covar_x,f), gsl_vector_get(mean_covar_t,f), gsl_vector_get(sd_covar_t,f)
1-gsl_vector_get(mean_covar_c,f), gsl_vector_get(maxf0,f), gsl_vector_get(maxl,f),
gsl_vector_get(max2,f), gsl_vector_get(maxfl,f), gsl_vector_get(max3,f),
gsl_vector_get(max4,f), gsl_vector_get(max5,f), gsl_vector_get(max6,f),

gsl_vector_get(max7,f), ((-2) * gsl_vector_get(maxf0,f) - (-2) * gsl_vector_get(maxfl,f)));

fclose(ofp);

return 1;
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