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Abstract of the Dissertation 

Extending the Quandt-Ramsey Modeling to Survival Analysis 

by 

Paichuan Chen 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2010 

 

The mixture of two regression regimes has been extensively studied in 

economics. A switching regression is often used to model a system that changes 

depending on some variables. The test of a mixture of regimes in hazard modeling 

would be seen to have fundamental importance in biostatistical research but has not 

been studied. A two-regime parametric mixture is proposed to model the effect of a 

single covariate on the event time. Typically, the Cox proportional hazards model is 

applied to estimate a single regime survival regression function. The mixture of two 

regimes model contains five parameters to be estimated; namely, two parameters to 

describe each regime, and one to describe the mixing proportion. A software program 

developed for this research finds the maximum likelihood estimates of the parameters 

and the likelihood ratio test of the null hypothesis of a single regime against the 

alternative of a mixture of two regimes. A simulation study finds an approximation to 

the null distribution of the test and its approximate power. 
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Chapter 1 Introduction 

 

 

 

 

 

The mixture of two regression regimes has been extensively studied in 

economics. The problem was first introduced by Quandt [1] as the switching 

regression (or switching regimes) problem. A switching regression is often used to 

model a system that changes depending on some variables. Quandt and Ramsey [2] 

considered the problem of estimating mixtures of normal distributions.  

),(~ 2
11 Ny  with probability   

),(~ 2
22 Ny  with probability 1  

The problem was to estimate the five parameters (  ,,,, 2
2

2
121 ) from a 

sample on y, and to put into a regression setting by allowing the means 1  and 2  

to be linear functions of explanatory variables i.e. 111   x  and 222   x . 

This problem is referred to as a "switching regressions" problem. 

Survival models are used to analyze time to event data in biostatistics. Mixture 

models are used increasingly in these analyses. Yamaguchi [3] considered an 

accelerated failure-time regression model with an additional regression model for long 

term survivors (LTS) patients. Let T be the random variable representing time to event. 
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Let )(yf  be the conditional pdf of Y, given that the subject was not a LTS, and let 

)(yg  be the unconditional pdf of Y. When the LTS fraction was p, then  

pyg

yfpyg




)(

)()1()(
       when 




y

y
 

Then the survival function corresponding to )(yg , )(ySg , can be expressed 

using )(yS f , the survival function corresponding to )(yf  as 

pySpyS fg  )()1()(  

An important task in survival analysis is to investigate how differences in the 

survival distribution between two treatment groups depend on covariates. Greenhouse 

[4] discussed an application of the long term survivors (LTS) model to the analysis of 

clinical trails data. He introduced covariates into the LTS model by allowing 

functions of parameters p  and   to depend on the covariates of interest. 

Specifically, he used a linear logistic model for p , the cured fraction, and a log-linear 

model for  . His survival function was: 

)|()1(),|(),|( 0  tSppptSptTP  , 

where p  was the cured fraction (that is, those surviving at infinity), and )|(0 tS  

was the surviving distribution for the fraction of the population who were not LTS.  

In general, a survival function that satisfies the proportional hazards assumption 

is given by )exp()]([)|( '
0 xtSxtS  , where t is the survival time of an individual 
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with covariate vector x and )(0 tS is the baseline survival function (Perperoglu et al. 

[5]).  

Halabi et al. [6] considered failure time with proportional hazards and baseline 

exponential survival distribution with exponential and uniform censoring distributions. 

They generated failure time T with survival function: }}(exp{)( jettS ff
 , 

)log(
1


 j

j   with f 1 , where f  was the hazard in the first group, and 

censoring times C were generated with common survival function }exp{)( ttS cc  , 

c  was the common hazard for the censored observations. They also generated 

censoring times C by the uniform distribution on ),0( c  

Hu et al. [7] considered Cox proportional hazards with covariates that were 

measured with error )'exp()()|( 0 xtxt   . They generated a censoring 

distribution C that followed an exponential distribution with mean equal to 1. 

Buzas [8] considered the model with two covariates. Failure time was related to 

covariates ),( ZX  through the hazard function: 

)exp()()(),|( 0 ZXttYZXt T
z

T
x   , where Y(t) was an indicator function with 1 

when tT  , and 0 otherwise. The failure time was generated exponentially with 

hazard }exp{ xx . Uniformly distributed censoring times were generated such that 

the expected proportion of censored observations is 0.5.  
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Kong et al. [9] considered the basic Cox proportional hazards model: 

)}('exp{)())(;( 0 tzttzt   . For each fixed Z, a failure time Y was generated from a 

proportional hazards model with 1)(0 t  and a relative risk of )'exp( Z . Type-II 

censoring was designed so that all individuals after the thm  failure were censored. 

Because of the specific censoring mechanism Kong et al. chose, the baseline hazard 

after the last failure time cannot be estimated. Hence they chose the time points before 

the last failure time. 

In the models described above, the authors considered two groups, LTS and 

non-LTS, with covariates in the survival function and for the variable indicating 

group membership. The model I consider contained two groups, those who had fast 

conditional response rate and those who had slow conditional response rate. I allowed 

covariates for the survival function. That is, considered a mixture setting where we 

assumed iX  was a vector of covariates observed with a response iT . The goal of 

mixtures of regressions was to describe the conditional survival distribution. 

My research problem was to develop the LRT statistics that test whether there 

was an indication of a mixture of mechanisms with a covariate that affects the 

survival time.  

My dissertation contains 5 chapters. Chapter 1 contains the introduction and the 

statement of the research. Chapter 2 of this dissertation presents the methods that I 
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used to find the log-likelihood functions and maximum likelihood estimators. 

Numerical algorithms were programmed in R (version 2.8.0) and Microsoft Visual 

C++ for Windows 2000/XP. They also can be run in the UNIX operating system. This 

software is available upon request from me. 

Chapter 3 of this dissertation gives the simulation results for the maximum 

likelihood estimators of single regime model, the null distribution and transformation 

of the LRT, and the critical values. 

Chapter 4 of this dissertation presents the simulation results for the maximum 

likelihood estimators of mixture of two regimes model, the alternative distribution of 

the LRT and the power study.  

Chapter 5 of this dissertation contains the conclusions and the directions for 

future study. 
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Chapter 2 Methods 

 

 

 

 

 

2.1 Hazard Function 

Let T be an exponentially distributed random variable with conditional 

mean
xe

1
 and conditional survival function given by )|()|( xtTPxtS  . This 

was the survival function for an uncensored subject with covariate x. Let the hazard 

function of T for an individual given the covariate vector x be given by 

xetxt '
1 )()|(   , where )(1 t  was the baseline hazard for an individual with x=0, 

and   was p1  vector of regression coefficients common to all individuals. The 

proportional hazards assumption was often used to describe the effect of x on the 

distribution of the failure time distribution of uncensored subjects (Peng, [10]). This 

assumption was that the hazard function of a patient with the covariate x  at time t  

was of the form )exp()()|( 0 xthxth  . For an exponentially distributed survival 

time, the survival function was )]exp(exp[)|()|( xtxtTPxtS  , which 

satisfied the proportional hazard assumption . 

 

2.2 Definition of the Independent Censoring Variables 

With censored data, the survival time *
it , i=1,….,n, was observed only if it did 

not exceed the censoring time iu ; otherwise, we observed iu . The absence of 
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censoring indicator ic  took the value 1 if it  was a survival time (i.e. *
ii tt  ) and 0 

if it  was a censoring time (i.e. ii ut  ). That is, the observed time was defined by 

),min( *
iii utt  , ni 1 . The absence of censoring indicator 1ic  when ii ut * ; 

otherwise, 0ic . (Maller and Zhou, [11]) 

 

2.3 Single Regime Model with Covariate 

Let ),|( xtS  be the conditional survival function which was exponential with 

mean  xe

1
, where ),(   , with  0  and   , t  was the time 

to event )0( t , x  was the covariate affecting t in )|( xtS , the survival function 

given covariate x. The survival function of this model with covariate was given 

by )exp()|( xtextS  . 

 

2.3.1 Log Likelihood Function of Single Regime Model  

The likelihood function was 



n

i

c
ii

c
ii

ii xtSxtf
1

1)|()|(  (Maller and Zhou 

[11]), where  

)exp(
)]|(1[)|(

)|(   xx tee
dt

xtSd

dt

xtdF
xtf 


  

Then, the likelihood function was 

)1(

1
)][exp()]exp([),,,( iiiii cx

i
cx

i
x

n

i
iin etetectL 


    
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The log-likelihood function was 

)]})(1[(])[log({)log(
1

  ii x
ii

x
ii

n

i
inn etcetxcLl  


 

)}(])[log({
1

 ix
ii

n

i
i etxc 


 

 

2.3.2 Maximum likelihood estimators (MLE) of Single Regime Model 

Since   was bounded, there may be boundary complications when solving 

for the MLE. To avoid this,   was transformed so that the transformed value was 

unbounded. My transformation was  e ,    

The log-likelihood function after the transformation was  

)]})(1[(][{
1

 



  ii x
ii

x
ii

n

i
in etcetxcl  









n

i

x
i

n

i
ii

n

i
i

ietxcc
111

  

The first derivative of log-likelihood function with respect to   was 










 n

i

x
i

n

i
i

n ietc
l

11




 

Then 










n

i

x
i

n

i
i

iet

c
e

1

1



  
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The MLE of 





 e  in this model was 











n

i

x
i

n

i
i

iet

c

1

1


 .  

The first derivative of the log-likelihood function with respect to   was 










 n

i

x
iii

n

i
i

n ietxxc
l

11




 

There was no closed form solution for the MLE of , 


. Therefore, a computational 

algorithm was needed. I used Nelder-Mead (NM) [12] method to find 


. The details 

are in the section 2.10. 

 

2.4 Mixture of Two Regimes Model with Covariate 

Let ),|( xtSi  , 2,1i  be two conditional survival functions which were 

exponentially distributed with mean 
ix

ie


1
, i=1, 2,  respectively, where 

),,,( 2121   , with  10  ,  20  ,  1 , and 

 2 , t  was the time to event )0( t , x  were the covariates affecting t in 

)|( xtSi , the survival function for regime i given a covariate x. The parameter   

was the mixing proportion from the first exponential distribution with conditional 

mean equal to 
1

1

1
 xe

, The conditional survival function of this mixture model with 

covariates was given by ),|()1(),|()|( 21 xtSxtSxtS   .             
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2.4.1 Log Likelihood Function of Mixture of Two Regimes Model 

Suppose we had data ),( , iii xct , ,,......,2,1 ni   where n was the number of 

subjects. The likelihood function for this data was 





n

i

c
ii

c
iinn

ii xtSxtfttL
1

1
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The log-likelihood function was 
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As before, I transformed the parameters that had a restricted range to 

parameters that range from   to   to remove numerical problems due to 

restrictions in range. That is, let 1
1

 e , 2
2

 e .  1 ,  2 . 
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This reduced to 

)]exp()1()exp([log 2211
2211

1
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x
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n

i
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 )]exp()1()exp(log[)1(
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 
n

i

x
i

x
ii

ii etetc    

 

2.4.2 Maximum Likelihood Estimators (MLE) of Mixture of Two Regimes Model 

 There were no closed forms for the MLEs of 2121 ,,,   and  . A 

computation algorithm was needed, which I reported as one of my dissertation results. 

 

2.5 Censoring Parameter Calculation 

I considered an exponential censoring pattern in this simulation study (Peng et 

al. [13]). Let U be the censoring time with probability density function g(u), and let T 

be the failure time with probability density function f(t), where U and T were 

independent. Let c,  c0 , be the end point of study and r be the censoring rate. 

The censoring rate r was defined to be: 

rcUTTUP  1)),min(|( . 

Since TU  , this reduced to 

rcUTUP  1)|( . 

From the definition of conditional probability, 

 



c

u
cUTPrdtduugtf

0
)),(min()1()()( . 
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This equation can then be expressed as: 

 



c

u
cUTPrdtduugtf

0
)]),(min(1[)1()()( , 

 



c

u
cUcTPrdtduugtf

0
)],(1[)1()()(               (1) 

Equation (1) was the starting point in my calculation of censoring parameters. 

I used the exponential censoring distribution with 10%, 20% and 30% 

censoring rates in my simulation study of the null distribution. For my simulations, I 

set the study length to infinity. 

 

2.5.1 Mean of Censoring Distribution of Single Regime Model  

Here the random variable T had the exponential distribution with mean 
xe

1
. 

Here also the censoring time random variable U had an exponential distribution with 

mean 

1

. Ghitany et al. [14] considered the failure time T distribution with covariate 

X. The pdf of the failure time T was  

xe

t

x
e

e
xtf







1

)|( , 

and the pdf of the censoring time Y was 





u

eug



1

)( . 

I conditioned on the values of the covariates and let xexA )( . Equation (1) for 

this specification (which had the expected value of the censoring distribution which 

was possibly a function of the covariates) was 
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The left hand side of equation (2) was 
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The right hand side of equation (2) was 
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Then, 

xe
r

r
xA

r

r 






1

)(
1

                     (3) 

Because of the covariate x in (3), the mean of censoring distribution would change as 

x changed, which was not a realistic model.  

Sy et al. [15] considered a long term survivors model: 

)1|()1()(  CtpSptS , where C was the indicator variable that was 1 if the 

individual experienced the event and 0 otherwise. Failure time data were generated 

from a logistic-exponential mixture model, where )}](exp{1/[1)( 10 zbbzp  , 

))(exp();1|( tzzCtS   and )exp()( 0 zz   . Censoring times U were 

generated from an exponential distribution with censoring rate c  either 0.1 or 0.4, 

representing mild or heavy censoring, respectively.  

Peng et al. [13] considered a long term survivors model: 

);(1),;(  tStS u . They considered three distributions as the failure time 
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distribution of uncured patients in the mixture model: gamma distribution, Weibull 

distribution and log-normal distribution. The censoring distributions considered in 

their paper were uniform and exponential distributions. The values of parameter in the 

censoring distributions were determined so that the resulting censoring rates were 

10%, 20% and 30% for each censoring distribution.  

Following Peng et al. [10], I considered an approach that specified a single 

censoring distribution that had expected censoring rate close to the target value. My 

procedure was to use the form of equation (3) with the argument x set to a scalar 

multiple of the expected value of the covariate. Let the covariate value X of the failure 

time distribution be U(0, 5). In the covariate coefficient setting 1 , 1  with 

exponential censoring rate at 10%, I used 1.3 ][xE  as the value of the argument x in 

equation (3). With an appropriate multiple k ][xE , the observed censoring rates on 

average were approximately equal to the target censoring rates. When 0,1   , 

the equation (3) was 
r

r




1
. That is, the covariate x did not affect the mean of 

the censoring distribution. Tables 2.1 and 2.2 contain the target censoring rate, mean 

of censoring distribution, and consequent observed censoring rate for 0,1    

and 1,1    respectively, based on 100 replications each with 500 subjects. 
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2.5.2 Mean of Censoring Distribution of Mixture of Two Regimes Model  

The random variable T was a mixture of two exponential random variables with 

one mean equal to 
xe 1

1

1


 with proportion   and the other mean equal to 
xe 2

2

1


 

with proportion 1  so that the pdf of the failure time T given covariates x was 
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The censoring random variable U had the exponential distribution with mean 
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The right hand side was 
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Again I followed Peng et al. [11]. That is, I found a value for the mean of the 

censoring distributions so that the resulting censoring rate was approximately equal to 

the expected censoring rate. Table 2.3 contains the target censoring rate, mean of 

censoring distribution and observed censoring rate for ,5.0,5.1,1,1 2121    

5.0  at each censoring rate. I reported the observed censoring rate as well as the 

expected censoring rate. 

 

2.6 Censoring Rate Distribution  

The observed fraction of censored observations R followed approximately 

normal distribution with mean close to the expected censoring rate and standard 
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deviation 0.0186; that is, when the expected censoring rate was 10%, the observed 

censoring rate ranged from 0.064 to 0.134 (see Table 2.4). 

 

2.7 Data Generation 

I generated null data for six cases with 3,1  and 3,1,0  at expected 

exponential censoring rates of 10%, 20% and 30%. I generated 500 replications at 

each setting. I considered sample sizes n of 500, 1000 and 2000 subjects.   

The failure time *
it  had the exponential survival distribution with mean equal to 

)exp(

1

ix
, where the covariates ix  were from an uniform distribution U(0, 5), and 

iu  be the censoring time. The survival time ),min( *
iii utt  , )1( ni  . The *

it  

sample was from a single exponential distribution with  =1, 3 and covariate 

coefficient 3,1,0  respectively. 

For example, to create a sample of size 500 from an exponential distribution with 

1  and 1  and exponential censoring pattern with expected censoring rate 

10%, I generated one value, *
it , from an exponential distribution with mean equal to 

xe

1
 as the failure time, where the covariate x was generated from an uniform 

distribution U(0,5). I then generated one value, iu , from another independent 

exponential distribution with mean equal to 1.563965 (Table 2.2) as the censoring 

time. I then compared these two values and reported the minimum. If the value was 
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iu , the observation was censored, and I set the absence of censoring indicator off, i.e. 

0ic . I repeated this process independently 500 times. 

The alternative hypothesis was that the survival time follows a mixture of two 

regimes model. Let *
it  be the survival time. With probability  , I selected an 

observation from the first exponential distribution with mean equal to 
)exp(

1

11 ix
 , 

and with probability 1 , I selected an observation from the second exponential 

distribution with mean equal to 
)exp(

1

22 ix
, where the covariate x was from an 

uniform distribution U(0,5). Let iu  be the censoring time. The observed time 

),,min( *
iii utt   )1( ni  . The sample sizes considered here were 500, 1000 and 

2000 with an exponential censoring pattern at expected censoring rates of 10%, 20% 

and 30%. I generated alternative data for 5.0,1,1 221    with ,75.01   1, 

1.25 and 1.5 and mixing proportion  0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 at 

each censoring rate.  

For example, to create a sample of size 500 from two exponential distributions 

with 5.0,5.1,1,1 2121    and 5.0  and exponential censoring pattern 

with censoring rate 10%, I generated one value for regime one from an exponential 

distribution with mean equal to 
xe 5.1

1
, and one value for regime two from exponential 

distribution with mean equal to 
xe 5.0

1
, where the covariate x was generated from an 

uniform distribution U(0,5). The failure time value *
it  was selected with probability 
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50% from the first regime and with probability 50% from the second regime. I then 

generated a value iu  from an independent exponential distribution with mean equal 

to 1.948705 (Table 2.3) as a censoring time. I then compared *
it and iu  values and 

selected the minimum as the reported value. If the value was iu , the observation was 

censored, and I set the absence of censoring indicator off, i.e. 0ic . I repeated this 

process independently 500 times. 

 

2.8 Random Starting Points 

In order to specify the number of random starting points (RSPs), I generated 

20 replications each with 500 subjects at exponential censoring rate 30%. The *
it  

sample was from a single exponential with  =5 and covariate coefficient 1 . 

The covariate sample x was from a uniform distribution U(0,5). Table 2.5 and 2.6 

contain the maximum log-likelihood of single regime model and mixture of two 

regimes model at specified number of RSPs.   

The number and the choice of RSPs were important to assure that the 

log-likelihood function was reasonably close to its maximum value (Caudill et al. 

[16]). For each set of initial starting points, we will get maximum log likelihood and 

maximum likelihood estimators. To avoid getting a local maximum, I compared all 
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the values generated from each set of initial points and chose the largest of maximum 

log likelihood value and report the associated set of MLEs. 

 In Table 2.5 (null model), the difference of maximized log-likelihood function 

number generated from 16 RSPs and generated from 25 RSPs was less than 71 e . 

Hence, I chose 16 RSPs as the number of the RSPs for the null model. To determine 

the greatest value of the log-likelihood function in the null model, 4 random starting 

values for each   and   were generated, as well. Let i  and j , (i, j =1,..,4), be 

generated from an uniform random variable U(0,1). Then combination of the 4  

values and 4  values generated 16 sets of starting values for ),(  . In Table 2.6 

(alternative model), the difference of maximized log likelihood function number 

generated from 48 RSPs and generated from 243 RSPs was less than 71 e . Hence, I 

chose 48 RSPs as the number of RSPs for the alternative model. To determine the 

greatest value of the log-likelihood function in the alternative model, 2 random 

starting values for each 2121 ,,,   and 3 random starting values   were 

generated. Each of wqljj  ,,,, 2121 ( i, j, l, q=1,2, w=1,2,3) were generated from 

an uniform random variables U(0,1). The combination of the 2121 2,2,2,2   and 

3  values generated 48 sets of starting values for ),,,,( 2121  .  
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2.9 The Likelihood Ratio Test (LRT) 

The null hypothesis was a single regime model, in which the survival time 

followed an exponential distribution with mean equal to 
)exp(

1

x
. The alternative 

hypothesis was that the observed survival data was a mixture of two exponential 

regimes. One regime occurred with probability   and had mean equal to 

)exp(

1

11 x
. The other occurred with probability 1  and had mean equal to 

)exp(

1

22 x
. The LRT statistic was equal to )log(log2 10 HH LL  . where 1log HL  

was the log-likelihood function maximized under the alternative hypothesis and 

0log HL  was the log-likelihood function maximized under the null hypothesis. The 

MLEs for the LRT were calculated by using The Nelder-Mead (NM) algorithm with 

16 random starting values for the null model and 48 random starting values for the 

alternative model. 

 

2.10 Nelder-Mead (NM) algorithm 

The Nelder Mead (NM) algorithm [10] is used to minimize a function of n 

variables. It evaluates the function at the vertices of a ( 1n ) simplex and then 

iteratively uses reflection, contraction and expansion of the simplex as better points 

are found. A vertex is replaced by points with a better value of the function until the 

minimal function value is obtained. The NM algorithm uses only function values and 
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is robust but relatively slow. It works reasonably well for non-differentiable functions. 

[R version 2.8.0]. 

 

2.11 Software programs 

I wrote programs in R and Microsoft Visual C++ that calculated the MLE and 

log-likelihood for both models. The default method was an implementation of that of 

Nelder and Mead (1965). I also used the NM algorithm as given in GNU Scientific 

Library (GSL) in Microsoft Visual C++. I set the convergence rate to be 51 e  and 

the maximum number of iteration to 1000.  

The R program codes of calculating the mean of censoring distribution for single 

regime and mixture of two regimes are provided in the appendix. The Microsoft 

Visual C++ program code of the simulation study is provided in the appendix as well.  
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Chapter 3 Simulation Results for Single Regime Model 

 

 

 

 

 

3.1 Simulation Results of Maximum Likelihood Estimators of Null Model 

To check my simulation procedure, I examined the MLEs of   and   for the 

single regime model. Table 3.1 presents summary statistics for the MLEs with 

exponential censoring. As expected, for each sample size and expected censoring rate, 

the MLE of   was close to 3, the parameter used to generate the data. The MLE of 

  was also close to 1, the parameter used to generate the data. The mean MLEs for 

other settings were reported in Tables 3.2, 3.3 and 3.4. 

 

3.2 Null Distribution Results 

The null hypothesis was that the survival time followed a single exponential 

regime. The simulation results for the LRT were calculated by using NM algorithm 

with 16 )44(    random starting values (see section 2.8) for 500 replications at 

each setting used (sample size of 500, 1000 and 2000, exponential censoring rate 

10%, 20% and 30%, and six parameter settings).  

Tables 3.2 (for expected censoring rate 10%), 3.3 (for expected censoring rate 

20%) and 3.4 (for expected censoring rate 30%) contain the mean of the covariate x, 
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the mean and standard deviation of the survival time t, the average observed censoring 

rate, the MLE of  , the MLE of  , the mean of LRT, and standard deviation of 

LRT as well as selected percentiles of the distribution of the LRT statistic at each 

parameter setting and censoring rate. Finally it contains the fraction of LRT values 

less than 0.001. For each setting and parameter, the mean MLE was close to the 

parameter setting. 

 

3.3 Modeling Null Distribution of LRT 

A linear regression was run to determine which, if any, settings affected the null 

distribution of the LRT. The dependent variable was the mean of the LRT statistic for 

each sample size and each expected censoring rate (6 observations for each of nine 

settings of sample size and expected censoring rate). For expected censoring rate 10%, 

20% and 30%, the factors   and   were not significant for any sample size and 

censoring rate (data not shown).  

Figure 3.1 is the scatter plot for the six 3,1(  , )3,1.0  95th percentiles at 

sample size 2000 and expected censoring rate 10%. The values of the 95th percentile 

seemed to lie on a horizontal plane. That is, the settings of   and   apparently had 

minimal effect. Table 3.5 contains the regression results for the 95th percentile at 

sample size 2000 and expected censoring rate 10%. The parameters   and   were 
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not significant factors in the regression model with p values 0.41 and 0.55 

respectively. Similar results held for the other settings (data not shown). Consequently, 

for each sample size and expected censoring rate, I averaged the 95th and the 99th 

percentiles of the null distribution of the LRT for the six ,  settings. The values 

are reported in Table 3.6.  

The study was a 23  factorial experiment with n, the sample size and cr, the 

expected censoring rate as factors. One pair of dependent variables was the mean of 

the observed 95th percentiles and 99th percentiles of the null distribution of the LRT, 

reported in Table 3.6. Tables 3.7 and 3.8 contain the linear regression results for the 

mean 95th and 99th percentiles respectively. The mean percentiles were insensitive to 

sample size, censoring rate and their interaction.  

 

3.4 Fraction of zero LRT  

Self and Liang [17] found the asymptotic null distribution of the LRT for the 

mixtures. They showed that for some distributions, there was a non-zero probability 

of a LRT value exactly equal to 0 (i.e. 2
0X ). Consequently, I modeled the pdf   

f(t; n cr,  ) of the null distribution of the LRT as  

f(t| n, cr,  )= ),,|())],,((1[)),,((  crntgcrncrn  , 

 where )),,((  crn  was the fraction of zero LRT value and ),,|( crntg  was the 
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PDF of the non-zero values of the LRT. I used the fraction of LRT<0.001, called 

ZLRT , (reported in the rightmost column of Tables 3.2, 3.3 and 3.4) as an estimate 

of )),,((  crn . That is, this was the dependent variable in a regression analysis. 

The independent variables were 

1. n = Sample size (500, 1000 and 2000). 

2.   = Parameter  (1 and 3) 

3.   = Parameter  (0, 1 and 3) 

4. cr = Expected censoring rate (10%, 20% and 30%). 

I also included all two factor interactions of these variables. Table 3.9 contains 

the regression results. The interactions of sample size with parameter   and the 

interaction of parameter   with expected censoring rate were significant with p 

values 0.036 and 0.004 respectively. Other interactions were not significant with p 

values ranging from 0.15 to 0.953. None of main effects were significant with p 

values ranging from 0.31 to 0.888. Based on the hierarchical principle (Wu and 

Hamada [18]), I added sample size, parameter   and censoring rate to the 

significant interactions for my final model. The fitted model was: 

Fraction of ZLRT = crn  122.0003.0000006.028.0   

crcrnn   16.00001.000001.0  

with 2R  equal to 0.432. 
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Figure 3.2 is the graph for fraction of ZLRT  at each sample size. From the 

figure, we can see the fraction of ZLRT  generally decreases as the censoring rate 

increases. This is consistent with Peng et al. [13] who reported that the null 

distribution is dependent on censoring rate.  

 

3.5 Transformation of LRT 

One observes from Tables 3.2, 3.3 and 3.4, that the log(standard deviation of 

LRT) was associated with log(mean of LRT), I next calculated the mean and standard 

deviation of NZLRT . The slope of log(standard deviation of NZLRT ) vs. log (mean of 

NZLRT ) was 0.633(see Table 3.10). The 95% confidence interval for slope is 0.588 to 

0.678. Tukey [19] suggested using the transformation 367.0633.01 LRTLRT   and 

333.0LRT , since the cube root was consistent with the confidence interval of the slope.  

The linear regression results of log(SD 367.0LRT ) vs. log(mean 367.0LRT ) and 

log(SD 3 LRT ) vs. log(mean 3 LRT ) are shown in Tables 3.11 and 3.12 

respectively. The t values were 1.49 and 0.55 for 367.0LRT and 3 LRT  respectively, 

showing that each transformation removed the association between standard deviation 

and mean. I chose 3 LRT  to analyze the null distribution as it had smaller absolute t 

value and was a “simple” value.  
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3.6 Distribution of 3 LRT  

I examined the histogram of the 3
NZLRT  for each setting and found the 

distribution to be approximately normal. Figure 3.3 is the normal Q-Q plot for 

2000%,10,0,1  ncr . The points approximately lay on the line xy  , 

indicated that the distribution was similar to normal distribution. Similar results held 

for the other settings (data not shown). I approximated the PDF of 3 LRT as a 

mixture of zero values with probability )),,((  crn  and a normal distribution with 

mean )),,((  crn  and variance 2 . The PDF of 3 LRT  was 

}
2

))],,(([
exp{

2

1
))],,((1[)),,(()(

2

2





 crnt

crncrntfT


 , where 

),,(  crn  was a function of sample size, censoring rate and covariate  . The 

variance was set to the pooled variance estimate of the 3
NZLRT , which was 2498.0 .  

Table 3.13 contains the linear regression results of mean 3
NZLRT . Only the 

parameter   was significant with p value 0.031. The fitted model was:  

 


028.007.1),,( crn  

with 2R  equal to 0.398. 

 Tables 3.14 (for expected censoring rate 10%), 3.15 (for expected censoring rate 

20%) and 3.16 (for expected censoring rate 30%) present the summary statistics from 

the simulation for 3 LRT and the fitted values of  , the fraction of zero values and 

 , mean of 3
NZLRT . 
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3.7 Critical Values for 3 LRT  

I averaged the 95th percentile of 3 LRT  at each sample size and censoring rate 

as the critical values at rejection rate 0.05 and averaged the 99th percentile of 3 LRT  

as the critical values at rejection rate 0.01. These values were reported in Table 3.17. 

For each   and sample size n, there were three percentile values for expected 

censoring rate 10%, 20% and 30% respectively. I interpolated using these three values. 

For example, with 05.0  and 1000n , when the observed censoring rate < 10%, 

I used 1.727 as the critical value. For observed censoring rate >30%, I used 1.817 as 

the critical value. For intermediate censoring rates, I used the critical value based on 

linear interpolation.  

 For a fixed sample size, the 95th and 99th percentiles of 3 LRT  were relatively 

insensitive to expected censoring rate. For example, with sample size 2000, the 99th 

percentiles were 2.122, 2.104, and 2.117 respectively. I used the average of these three 

values, 2.114 as the critical value for this sample size. Table 3.18 contains the critical 

values I used in my power study. 
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Chapter 4 Distribution of LRT under the Alternative 

 

 

 

 

 

The alternative hypothesis was that the survival time follows a mixture of two 

exponential regimes. The LRT was calculated by using the Nelder-Mead algorithm 

with 48 (  3,2,2,2,2 2121 ) random starting points (see section 2.8). I considered 

mixtures of two regimes with the regimes having equal   values but different   

values. I set 121   , 5.02   and generated 500 replications for 75.01   

and 5.11  , and 100 replications for 11   and 25.11   (sample size of 500, 

1000 and 2000, exponential censoring rate 10%, 20% and 30%, and 9 mixing 

proportions,  =0.1~0.9).  

 

4.1 Simulation Results of Maximum Likelihood Estimators of Alternative Model  

To check the simulation, I examined the mean MLEs of 2121 ,,,   and   

in the mixture of two regimes model. Table 4.1 presents the estimated MLEs for 

exponential censoring when 6.0,5.0,5.1,1,1 2121   , based on 500 

replications. I chose this setting because its power was near 1. As expected, for each 

sample size and expected censoring rate, the MLE of 2121 ,,,   and   were 

close to 1, 1, 1.5, 0.5 and 0.6 respectively. We expected that the standard deviation of 

the MLEs would increase as the censoring rate increased, and that the standard 
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deviation of the MLEs would decrease as sample size increased. Table 4.2 presents 

the minimum and the maximum of the MLEs at sample size 1000. At the expected 

censoring rate 20%, there were about 3% to 6% of the 500 


1 ,


2 ,


1 ,


2 and 


  

values outside the range of minimum and maximum MLEs for censoring rates 10% 

and 30% (data not shown). These outliers caused the standard deviation of the MLEs 

at sample size 1000 to depart from the expected pattern. 

 Table 4.3 contains the means and standard deviations of survival time and the 

mean of the covariate x of the first and second regimes when 

6.0,5.0,1,1 221    with 1 0.75, 1, 1.25 and 1.5 at censoring rate 0%. 

I generated a data of sample size 1000 for each case to document each of the two 

regimes. When 6.0,5.0,75.0,1,1 2121   , there were 595 subjects in 

the first regime ( 75.0,1 11   ). The average and standard deviation of the survival 

time were 0.258 and 0.432 respectively. The average of the covariate x was 2.591. 

There were 405 subjects in the second regime ( 5.0,1 22   ). The average and 

standard deviation of the survival time were 0.368 and 0.523 respectively. The 

average of the covariate x was 2.527. The difference between means of survival time 

was 0.11, which is about 23% of the average standard deviation. The differences 

between means of survival time were about 28%, 46% and 55% of the average 

standard deviation for 1 1, 1 1.25 and 1 1.5 respectively.  
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4.2 Alternative Distribution of LRT 

This study can be seen as a 493 22   factorial experiment. The variables 

were: 

1. n  = Sample size (500, 1000 and 2000). 

2.   = Mixing proportion to first regime (10%, 20%, 30%, 40%, 50%, 

60%, 70%, 80% and 90%)  

3. 2  = Mixing proportion square 

4. d = Distance between 1  and 2  (0.25, 0.5, 0.75 and 1) 

5. cr  = Expected censoring rate (10%, 20% and 30%). 

I also included six two factor interactions; namely, 

),,,,,( crdcrdcrndnn   . I reported the distribution of 3 LRT  in Tables 

4.4 and 4.5. The standard deviations ranged from 0.244 to 0.723. These values were 

relatively close to 0.498, the average standard deviation of the null simulations. This 

suggested that the variance stabilizing property held for the alternative. 

The table also reports the 1st percentile. None of these values were equal to zero. 

That is, the fraction of zero values observed under the alternatives was negligible. The 

dependent variable of this study was the mean of the LRT under the alternative. Table 

4.6 contains the regression results. The main effects of sample size, mixing proportion 

square and the distance between 1  and 2  were significant with p values <0.000. 
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The main effect of censoring rate was significant as well with p value 0.014. The 

interaction of sample size and mixing proportion, the interaction of sample size and 

the distance between 1  and 2 , and the interaction of mixing proportion with the 

distance between 1  and 2  were significant with p values <0.000. The interaction 

of mixing proportion with censoring rate was significant as well with p value 0.02. 

The main effect of the mixing proportion was not significant (p value=0.155). Based 

on the hierarchical principle, I added the mixing proportion to the final model. The 

fitted model was: 

LRT = crdn  67.225905.951282.805445.265518.031.423 2  

crddnn   382.899614.1956815.0538.0  

with 2R  equal to 0.893. Consequently, one could model the power directly for 

censoring rates less than 30%.  

 

4.3 Power Study 

Table 4.4 also contains the report of the simulated power of 3 LRT when  

5.0,75.0,1,1 2121    based on 500 replications, which was a setting in 

which the two regimes means were close. When the expected censoring rate was 10%, 

a sample size of 2000 was needed to have power 99% at level 01.0  with mixing 

proportion 0.5, 0.6 or 0.7. For expected censoring rate was 20%, a sample size of 
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2000 was needed to have power 99% at level 01.0  with mixing proportion 0.5, 

0.6 or 0.7.When the expected censoring rate was 30%, the power was 95% or more at 

level 0.01 with mixing proportion 0.5, 0.6 or 0.7.  

Table 4.5 is the report of simulation results of 3 LRT when 

5.0,1,1,1 2121    based on 100 replications. These two regimes were 

more separated than the first pair of regimes. When the expected censoring rate was 

10%, a sample size of 500 had power 99% at level 01.0  with mixing proportion 

0.3 or greater. A sample size of 1000 was needed to have power 99% with mixing 

proportion 0.2. When the expected censoring rate was 20%, a sample size of 500 was 

needed to have power 99% at level 01.0  with mixing proportion 0.4, or sample 

size of 1000 with mixing proportion 0.2. When the expected censoring rate was 30%, 

a sample size of 500 was needed to have power 99% at level 01.0  with mixing 

proportion 0.3, or sample size of 1000 with mixing proportion 0.2.   

We expected that the power would decrease as the censoring rate increased and 

that the power would increase as the difference between regimes increased. From 

Tables 4.4 and 4.5, the power was greater when the distance between the two regimes 

was larger. For settings 5.0,25.1,1,1 2121    and 

5.0,5.1,1,1 2121   , most of power values were equal to 1 and the results 

of regression analysis were of minimal value (data not shown).  
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4.4 Logit(power) Linear Regression Results 

For the settings 5.0,75.0,1,1 2121    and 

5.0,1,1,1 2121   , the dependent variable was the logit(power). There 

were five independent variables. 

6. n  = Sample size (500, 1000 and 2000). 

7.   = Mixing proportion to first regime (10%, 20%, 30%, 40%, 50%, 

60%, 70%, 80% and 90%)  

8. 2  = Mixing proportion square 

9. d = Distance between 1  and 2  (0.25 and 0.5) 

10. cr  = Expected censoring rate (10%, 20% and 30%). 

I also included six two factor interactions; namely, 

),,,,,( crdcrdcrndnn   . Because the power curve was a concave function 

to the mixing proportion, I included 2  as an independent variable as well.  

Table 4.6 is the linear regression results with two way interactions. The main 

effects of sample size, mixing proportion, mixing proportion square and the distance 

between 1  and 2  were significant with p values <0.000. The interaction of 

sample size with distance between 1  and 2  was significant with p value <0.000.  
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The fitted model was:   

logit(power) dn  693.27196.21665.25003.0069.15 2  

    dn  005.0                                                   

with 2R  equal to 0.914. 

Figures 4.1, 4.2 and 4.3 are the graphs of power curves at 01.0  with respect 

to censoring rate at each sample sizes. From the figures, we can see the power 

decreased as censoring rate increased in most of mixing proportion, as expected. 

Figures 4.4 4.5 and 4.6 are the graphs of power curves with respect to mixing 

proportion at 01.0 . The maximum power occurred near 60-40 mixture or 70-30 

mixture. The power increased as mixing proportion increased to 60-40 or 70-30 

mixture and then the power decreased afterward. From the logit(power) fitted model, 

the maximum power appeared to occur at 606.0
196.212

665.25







Max . 

To examine why the power was not symmetric with respect to mixture 

proportion, I generated two data of sample size 500 with same 2121 ,,,   with   

and 1 . Figures 4.7 and 4.8 are the scatter plots of first and second regime data for 

6.0,5.0,75.0,1,1 2121    with overall expected censoring rate 10% 

for a sample of 500 observations. The averages of time were 0.2481 and 0.5043 for 

first and second regime respectively. The difference in average times was 

0.5043-0.2481=0.2562. The power for this parameter setting was 0.53. Figures 4.9 
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and 4.10 are the scatter plots of first and second regime data for 

4.0,5.0,75.0,1,1 2121    with overall expected censoring rate 10% 

for a sample of 500 observations. The averages of time were 0.3481 and 0.3176 for 

first and second regime respectively. The difference in average times was 

0.3481-0.3176=0.0305. The power for this parameter setting was 0.35. That is, when 

6.0 , the average of the difference between the two regimes was greater than the 

distance when 4.0 . Therefore, the power was greater when 6.0 . That is, the 

models were not symmetric in 5.0 . 
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Chapter 5 Discussion and Conclusion 

 

 

 

 

 

 The software program that I developed found the maximum likelihood estimates 

of the parameters and the likelihood ratio test of the null hypothesis of a single regime 

against the alternative of a mixture of two regimes. The properties of the LRT for 

mixture of two regimes were determined by a simulation study.  

The single regime model was distributed as an exponential function with 

conditional mean 
xe

1
. The mean of null LRT was insensitive to the parameters   

and   at sample size 500, 1000 and 2000, and censoring rate 10%, 20% and 30%. 

The simulation results showed the null distribution of LRT was approximated by 

 ))],,((1[)),,((  crncrn g(t| n cr,  ), where )),,((  crn  was the 

fraction of zero LRT values ( ZLRT ) and g(t| n cr,  ) was the PDF of non-zero LRT 

values ( NZLRT ). The fraction of ZLRT  values was positively associated with the 

censoring rate and negatively associated with the sample size. Because of the 

log(standard deviation of LRT) was associated with log(mean of LRT), I studied the 

3 LRT  transformation. The mean of the non-zero 3 LRT  values ( 3
NZLRT ) was 

associated with the parameter  , the coefficient of the covariate affecting the 

survival time. Then, the pdf of 3 LRT  was approximated by a mixture of NZLRT  
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and a normal distribution with mean of 3
NZLRT  and variance 2498.0 . The null 

distribution of the 3 LRT , was dependent on the sample size and censoring rate and 

parameter  . 

The alternative model was a mixture of two regimes with the mixing proportion 

  from the first regime with the conditional mean equal to 
1

1

1
 xe

 and 1-  from 

the second regime with conditional mean equal to 
2

2

1
 xe

. The mean of alternative 

LRT was sensitive to sample size, censoring rate, mixing proportion, the distance 

between 1  and 2 , and the censoring rate. When the distance between 1  and 

2  was 0.25, a sample size of 2000 was needed to have power 99% at level 

01.0  for the expected censoring rates 10% and 20%, and to have power 95% for 

the expected censoring rate was 30% with mixing proportion 0.5, 0.6 or 0.7. When the 

distance between 1  and 2  increased to 0.5, a sample size of 500 was needed to 

have power 99% at level 01.0  with mixing proportion greater than 0.3. When 

the distance between 1  and 2  increased to 0.75 or greater, the powers were near 

1 in almost all cases (3 censoring rates, 9 mixing proportions and 3 sample sizes). 

The standard deviations of 3 LRT under the alternative ranged from 0.24 to 0.72. 

These values were relatively close to 0.5, the average standard deviation of the null 

simulations. This suggested that the variance stabilizing property held for the 

alternative. The power was relatively insensitive to the censoring rate. The power 
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increased as the sample size increased and the distance between two regimes 

increased. From the power curves (figures 4.1, 4.2 and 4.3) and the logit(power) fitted 

regression model, the maximum power occurred for an approximate 60-40 mixture. 

An extension of this dissertation would be to consider the uniform censoring 

pattern with censoring rates 10%, 20% and 30%, and compare the results with the 

exponential censoring pattern. Additionally, we may introduce other covariates that 

affect the group membership. That is, we might consider the mixing proportion 

z

z

e

e
z 







1

)( ,   , where z is the covariate that affects the group 

membership. Finally, we can extend the mixture mechanism to a mixture of three or 

more regimes with covariates, and finite study length. 



 41

Figure 3.1 Scatter plot of the 95th percentile of the LRT for n=2000 at expected 

censoring rate 10% 

 

 

 

 

Figure 3.2 Fraction of ZLRT  
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Figure 3.3 Normal Q-Q plot of 3
NZLRT  when 2000%,10,0,1  ncr  

 

Note: 500 observations 
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Figure 4.1, Power curves when 5.0,75.0,1,1 2121    with respect to 

censoring rate, sample size 500 at 01.0  

 

Figure 4.2, Power curves when 5.0,75.0,1,1 2121    with respect to 

censoring rate, sample size 1000 at 01.0  
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Figure 4.3, Power curves when 5.0,75.0,1,1 2121    with respect to 

censoring rate, sample size 2000 at 01.0  

 
Figure 4.4, Power curves when 5.0,75.0,1,1 2121    with respect to 

mixing proportion, sample size 500 at 01.0  
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Figure 4.5, Power curves when 5.0,75.0,1,1 2121    with respect to 

mixing proportion, sample size 1000 at 01.0  

 

Figure 4.6, Power curves when 5.0,75.0,1,1 2121    with respect to 

mixing proportion, sample size 2000 at 01.0  
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Figure 4.7 Scatter plot for first regime data when 

6.0,5.0,75.0,1,1 2121    at 10% censoring rate 

 

Figure 4.8 Scatter plot for second regime data when 

6.0,5.0,75.0,1,1 2121    at 10% censoring rate 
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Figure 4.9 Scatter plot for first regime data when 

4.0,5.0,75.0,1,1 2121    at 10% censoring rate 

 

Figure 4.10 Scatter plot for Second regime data when 

4.0,5.0,75.0,1,1 2121    at 10% censoring rate 
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Table 2.1 Means of exponential censoring distribution of single regime model 

when 0,1    

Target censoring 

rate 

Mean of censoring 

distribution 

Average observed 

censoring rate 

95% confidence 

interval 

Lower Upper 

10% 9.0000  10.13%* 9.87% 10.39% 

20% 4.0000  19.89% 19.47% 20.31% 

30% 2.3333  30.21% 29.83% 30.58% 

40% 1.5000  40.03% 39.64% 40.41% 

50% 1.0000  50.43% 49.99% 50.87% 

60% 0.6667  59.88% 59.48% 60.29% 

70% 0.4286  70.04% 69.62% 70.46% 

80% 0.2500  79.93% 79.55% 80.31% 

90% 0.1111  90.10% 89.83% 90.37% 

  Base on 100 replications, 500 subjects 

Note*: 10.13% is the average of 100 censoring rates that ranging from 6.4% to 13.4%.  

   

 

 

Table 2.2 Means of exponential censoring distribution of single regime model 

when 1,1    

Target 

censoring rate 
x value 

Mean of censoring 

distribution 

Average 

observed 

censoring rate

95% confidence 

interval  

Lower Upper

10% 0.7 ][xE  1.563965 9.76% 9.49% 10.02%

20% 0.77 ][xE  0.583503 19.82% 19.49% 20.15%

30% 0.85 ][xE  0.278677 30.00% 29.65% 30.35%

40% 0.92 ][xE  0.150388 39.61% 39.09% 40.12%

50% 1.00 ][xE  0.082085 50.04% 49.67% 50.41%

60% 1.07 ][xE  0.045938 59.65% 59.22% 60.07%

70% 1.14 ][xE  0.02479 69.49% 69.05% 69.92%

80% 1.22 ][xE  0.01184 79.73% 79.36% 80.09%

90% 1.28 ][xE  0.004529 89.68% 89.38% 89.97%

 Base on 100 replications, 500 subjects 

 x~U(0,5) 
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Table 2.3 Means of exponential censoring distribution of mixture of two regimes 

model when 5.0,5.0,5.1,1,1 2121    

Target censoring 

rate 

Mean of censoring 

distribution 

Average observed 

censoring rate 

95% confidence 

interval  

Lower Lower 

10% 1.948705 10.11% 9.83% 10.38% 

20% 0.7858606 20.18% 19.86% 20.49% 

30% 0.3890864 30.07% 29.69% 30.44% 

40% 0.2118107 39.99% 39.56% 40.41% 

50% 0.1153447 49.45% 49.00% 49.89% 

60% 0.05648397 60.36% 59.94% 60.77% 

70% 0.02473104 69.83% 69.42% 70.23% 

80% 0.00759614 80.50% 80.17% 80.82% 

90% 0.00189027 89.78% 89.51% 90.04% 

  Base on 100 replications, 500 subjects 

 

Table 2.4 Range of observed censoring rate 

Excepted censoring rate Range of observed censoring rate 

10% 6.4%-13.4% 

20% 16.6~24.8% 

30% 25%~34.2% 

40% 34.6%~45% 

50% 45.2~55.4% 

60% 55.2%~65.4% 

70% 65.6%~75.8% 

80% 75.2%~86% 

90% 86.6%~92.4% 

  Base on 500 replications, 500 subjects 
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Table 2.5 Maximum sum of log-likelihood of single regime model for selected numbers of random starting points (RSPs) 

replication 
maxsum_log 0H  difference between 

9 RSPs and 4 RSPs

maxsum_log 0H difference between 

16 RSPs and 9 RSPs

maxsum_log 0H difference between  

25 RSPs and 16 RSPs 4  RSPs 9  RSPs 16  RSPs 25  RSPs 

1 598.4370921 598.4370921 0.0000000 598.4370926 0.0000005 598.4370926 0.0000000 

2 575.0743335 575.0743339 0.0000004 575.0743339 0.0000000 575.0743339 0.0000000 

3 613.3633173 613.3633177 0.0000004 613.3633180 0.0000002 613.3633180 0.0000000 

4 668.0320371 668.0320371 0.0000000 668.0320372 0.0000002 668.0320373 0.0000000 

5 665.8972986 665.8972994 0.0000008 665.8972998 0.0000004 665.8972998 0.0000000 

6 756.8317544 756.8317553 0.0000008 756.8317556 0.0000003 756.8317556 0.0000000 

7 638.8000922 638.8000922 0.0000000 638.8000923 0.0000001 638.8000923 0.0000000 

8 628.0533392 628.0533394 0.0000001 628.0533395 0.0000001 628.0533395 0.0000000 

9 658.2649248 658.2649252 0.0000003 658.2649252 0.0000000 658.2649252 0.0000000 

10 543.0309485 543.0309485 0.0000000 543.0309487 0.0000002 543.0309487 0.0000000 

11 651.9480187 651.9480187 0.0000000 651.9480187 0.0000000 651.9480187 0.0000000 

12 637.9529252 637.9529252 0.0000000 637.9529252 0.0000000 637.9529252 0.0000000 

13 684.4505419 684.4505426 0.0000007 684.4505426 0.0000000 684.4505426 0.0000000 

14 529.4179365 529.4179368 0.0000003 529.4179370 0.0000003 529.4179370 0.0000000 

15 607.6943776 607.6943781 0.0000004 607.6943783 0.0000002 607.6943783 0.0000000 

16 696.5356968 696.5356968 0.0000000 696.5356968 0.0000000 696.5356968 0.0000000 

17 659.7506218 659.7506222 0.0000005 659.7506226 0.0000004 659.7506227 0.0000000 

18 688.3480868 688.3480875 0.0000007 688.3480875 0.0000000 688.3480875 0.0000000 
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Table 2.5 Maximum sum of log-likelihood of single regime model for selected numbers of random starting points (RSPs) (continued) 

replication 
maxsum_log 0H  difference between 

9 RSPs and 4 RSPs

maxsum_log 0H difference between 

16 RSPs and 9 RSPs

maxsum_log 0H difference between  

25 RSPs and 16 RSPs 4  RSPs 9  RSPs 16  RSPs 25  RSPs 

19 604.6785784 604.6785784 0.0000000 604.6785784 0.0000000 604.6785784 0.0000000 

20 614.5405300 614.5405300 0.0000000 614.5405300 0.0000000 614.5405300 0.0000000 

Ave.   0.0000003  0.0000001  0.0000000 

Note: Based on 500 subjects in each replication 
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Table 2.6 Maximum sum of log-likelihood of mixture of two regimes model for selected numbers of random starting points (RSPs) 

replication 
maxsum_log 1H  difference between 

32 RSPs and 1 RSP

maxsum_log 1H difference between  

48 RSPs and 32 RSPs 

maxsum_log 1H difference between  

243 RSPs and 32 RSPs1  RSP 32  RSPs 48  RSPs 243  RSPs 

1 598.4370921 598.4370921 0.0000000 598.4370926 0.0000005 598.4370926 0.0000000 

2 575.0743335 575.0743339 0.0000004 575.0743339 0.0000000 575.0743339 0.0000000 

3 613.3633173 613.3633177 0.0000004 613.3633180 0.0000002 613.3633180 0.0000000 

4 668.0320371 668.0320371 0.0000000 668.0320372 0.0000002 668.0320373 0.0000000 

5 665.8972986 665.8972994 0.0000008 665.8972998 0.0000004 665.8972998 0.0000000 

6 756.8317544 756.8317553 0.0000008 756.8317556 0.0000003 756.8317556 0.0000000 

7 638.8000922 638.8000922 0.0000000 638.8000923 0.0000001 638.8000923 0.0000000 

8 628.0533392 628.0533394 0.0000001 628.0533395 0.0000001 628.0533395 0.0000000 

9 658.2649248 658.2649252 0.0000003 658.2649252 0.0000000 658.2649252 0.0000000 

10 543.0309485 543.0309485 0.0000000 543.0309487 0.0000002 543.0309487 0.0000000 

11 651.9480187 651.9480187 0.0000000 651.9480187 0.0000000 651.9480187 0.0000000 

12 637.9529252 637.9529252 0.0000000 637.9529252 0.0000000 637.9529252 0.0000000 

13 684.4505419 684.4505426 0.0000007 684.4505426 0.0000000 684.4505426 0.0000000 

14 529.4179365 529.4179368 0.0000003 529.4179370 0.0000003 529.4179370 0.0000000 

15 607.6943776 607.6943781 0.0000004 607.6943783 0.0000002 607.6943783 0.0000000 

16 696.5356968 696.5356968 0.0000000 696.5356968 0.0000000 696.5356968 0.0000000 

17 659.7506218 659.7506222 0.0000005 659.7506226 0.0000004 659.7506227 0.0000000 

18 688.3480868 688.3480875 0.0000007 688.3480875 0.0000000 688.3480875 0.0000000 
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Table 2.6 Maximum sum of log-likelihood of mixture of two regimes model for selected numbers of random starting points (RSPs) (continued) 

replication 
maxsum_log 1H  difference between 

32 RSPs and 1 RSP

maxsum_log 1H difference between  

48 RSPs and 32 RSPs 

maxsum_log 1H difference between  

243 RSPs and 32 RSPs1  RSP 32  RSPs 48  RSPs 243  RSPs 

19 606.7065635 606.7729594 0.0663958 606.7730034 0.0000441 606.7730034 0.0000000 

20 615.3679828 615.3863405 0.0183577 615.3871822 0.0008417 615.3871822 0.0000000 

Ave.   0.0042379 0.0000444 0.0000000 

Note: Based on 500 subjects in each replication 

 



 54

Table 3.1 Summary statistics for simulated MLE when 1,3    in single regime 
model 

n  Average observed 
censoring rate 

Parameters Average MLE SD 
Percentile of MLE 

25% 50% 75% 

500 

10.18% 
  2.995  0.303 2.758  2.984  3.185 

  1.001  0.033 0.980  1.001  1.024 

20.00% 
  3.033  0.340 2.819  3.009  3.230 

  1.000  0.037 0.978  0.999  1.026 

29.88% 
  3.004  0.430 2.724  3.006  3.266 

  1.003  0.044 0.972  1.003  1.033 

1000 

10.20% 
  3.008  0.213 2.862  3.003  3.143 

  1.000  0.023 0.984  1.000  1.015 

20.09% 
  3.004  0.250 2.843  2.988  3.161 

  1.002  0.026 0.984  1.001  1.020 

30.11% 
  3.001  0.275 2.809  2.989  3.180 

  1.001  0.029 0.981  0.999  1.018 

2000 

10.19% 
  3.012  0.156 2.906  3.009  3.110 

  1.000  0.017 0.989  1.000  1.011 

20.07% 
  3.004  0.173 2.888  3.001  3.115 

  1.000  0.018 0.988  1.001  1.013 

29.96% 
  3.010  0.199 2.876  3.002  3.123 

  1.000  0.020 0.987  1.000  1.013 

Based on 500 replications in each setting. 
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Table 3.2 Summary statistics of simulation results of LRT when sampling from single regime at exponential censoring rate 10% (Null 
distribution) 

 n      Mean 
x 

Mean 
t 

SD of 
t 

Observed 
censoring rate  



   


  
Mean 
LRT 

SD of 
LRT 

Percentiles of LRT Fraction of 
LRT< 0.001 50 75 95 99 

500 

1 

0 2.50 0.90 0.90 10.04% 1.00 0.00 1.54 2.18 0.62 2.44 5.67 10.80 24.0% 

1 2.50 0.15 0.27 10.03% 1.01 1.00 1.44 2.36 0.42 1.89 6.32 10.38 32.8% 

3 2.50 0.03 0.08 10.07% 0.98 3.00 1.44 2.00 0.59 2.03 5.76 8.85 28.4% 

3 

0 2.50 0.30 0.30 9.97% 3.03 0.00 1.25 1.84 0.43 1.87 4.95 7.94 30.0% 

1 2.50 0.05 0.09 10.18% 3.00 1.00 1.44 2.05 0.52 2.21 5.70 9.58 30.4% 

3 2.50 0.01 0.03 10.12% 3.04 3.00 1.52 2.35 0.37 2.33 6.58 10.89 32.2% 

1000 

1 

0 2.50 0.90 0.90 9.95% 1.00 0.00 1.51 2.15 0.61 2.38 5.52 9.89 30.6% 

1 2.50 0.15 0.28 10.12% 1.01 1.00 1.59 2.32 0.60 2.35 5.87 9.59 26.4% 

3 2.50 0.03 0.08 10.01% 0.99 3.00 1.14 1.74 0.34 1.59 4.96 7.59 28.8% 

3 
0 2.50 0.30 0.30 9.93% 3.01 0.00 1.58 2.30 0.65 2.29 6.38 11.59 25.0% 
1 2.50 0.05 0.09 10.21% 3.01 1.00 1.23 1.88 0.42 1.79 4.67 8.67 27.8% 
3 2.50 0.01 0.03 10.07% 3.00 3.00 1.11 1.73 0.47 1.47 3.78 8.50 15.2% 

2000 

1 

0 2.50 0.90 0.90 10.01% 1.00 0.00 1.39 1.92 0.57 2.06 5.50 9.32 24.2% 

1 2.50 0.15 0.28 10.08% 1.00 1.00 1.45 2.08 0.57 2.03 5.78 9.75 25.2% 

3 2.50 0.03 0.08 10.04% 1.00 3.00 1.21 1.87 0.38 1.73 4.91 8.32 25.2% 

3 

0 2.50 0.30 0.30 10.00% 3.00 0.00 1.51 2.22 0.55 2.18 6.36 9.94 27.2% 

1 2.50 0.05 0.09 10.19% 3.01 1.00 1.43 2.20 0.44 2.08 5.58 10.47 23.0% 

3 2.50 0.01 0.03 10.00% 3.01 3.00 1.09 1.96 0.05 1.25 5.37 9.60 42.6% 
Based on 500 replications in each setting. 
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Table 3.3 Summary statistics of simulation results of LRT when sampling from single regime at exponential censoring rate 20% (Null 
distribution) 

 n      Mean 
x 

Mean 
t 

SD of 
t 

Observed 
censoring rate  



   


  
Mean 
LRT 

SD of 
LRT 

Percentiles of LRT Fraction of 
LRT< 0.001 50 75 95 99 

500 

1 

0 2.50 0.80 0.80 19.96% 1.01 0.00 1.60 2.33 0.44 2.29 6.57 9.26 28.0% 

1 2.50 0.11 0.19 20.00% 1.01 1.00 1.49 2.15 0.55 2.14 5.83 9.76 26.4% 

3 2.50 0.01 0.03 20.23% 1.01 3.00 1.40 2.17 0.46 1.83 6.02 9.38 21.6% 

3 
0 2.49 0.27 0.27 20.11% 3.02 0.00 1.47 2.12 0.54 2.14 6.11 9.39 27.6% 
1 2.50 0.04 0.06 20.00% 3.03 1.00 1.60 2.28 0.57 2.33 6.71 9.96 30.6% 
3 2.50 0.00 0.01 20.08% 3.02 3.00 1.77 2.52 0.70 2.63 6.71 10.91 21.2% 

1000 

1 

0 2.50 0.80 0.80 19.97% 1.00 0.00 1.61 2.28 0.66 2.37 5.98 10.73 24.6% 

1 2.50 0.11 0.19 20.12% 1.01 1.00 1.57 2.21 0.64 2.23 6.40 9.50 25.2% 

3 2.50 0.01 0.03 20.08% 1.00 3.00 1.18 1.74 0.43 1.65 4.90 7.49 18.8% 

3 

0 2.50 0.27 0.27 20.02% 3.00 0.00 1.21 1.78 0.40 1.87 4.44 8.34 29.0% 

1 2.50 0.04 0.06 20.09% 3.00 1.00 1.49 2.06 0.53 2.21 5.75 9.40 25.2% 

3 2.50 0.00 0.01 20.08% 3.02 3.00 1.51 1.97 0.66 2.35 5.91 8.73 19.0% 

2000 

1 

0 2.50 0.80 0.80 19.93% 1.00 0.00 1.65 2.20 0.74 2.55 6.37 9.39 23.0% 

1 2.50 0.11 0.19 20.09% 1.00 1.00 1.31 1.90 0.50 1.83 5.53 9.34 26.0% 

3 2.50 0.01 0.03 20.09% 1.00 3.00 1.19 1.87 0.37 1.70 5.29 7.83 23.8% 

3 

0 2.50 0.27 0.27 19.95% 3.02 -0.01 1.43 2.17 0.41 2.12 5.69 10.11 29.2% 

1 2.50 0.04 0.06 20.07% 3.00 1.00 1.13 1.75 0.33 1.68 4.62 7.86 28.2% 

3 2.50 0.00 0.01 20.06% 3.01 3.00 1.65 2.54 0.53 2.41 7.45 11.71 30.0% 
Based on 500 replications in each setting. 
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Table 3.4 Summary statistics of simulation results of LRT when sampling from single regime at exponential censoring rate 30% (Null 
distribution) 

 n      Mean 
x 

Mean 
t 

SD of 
t 

Observed 
censoring rate  



   


  
Mean 
LRT 

SD of 
LRT 

Percentiles of LRT Fraction of 
LRT< 0.001 50 75 95 99 

500 

1 

0 2.50 0.70 0.70 30.03% 1.00 0.00 1.38 2.07 0.39 1.98 5.28 10.25 29.2% 

1 2.49 0.08 0.13 30.15% 1.00 1.00 1.38 2.36 0.41 1.99 5.30 11.22 31.6% 

3 2.50 0.00 0.01 29.94% 1.03 3.00 1.56 2.08 0.75 2.28 5.98 8.96 15.6% 

3 
0 2.50 0.23 0.23 30.06% 3.02 0.00 1.50 2.09 0.59 2.09 5.84 9.16 26.4% 
1 2.51 0.03 0.04 29.88% 3.00 1.00 1.34 1.96 0.49 1.79 5.69 8.71 26.6% 
3 2.50 0.00 0.00 29.80% 3.03 3.00 1.16 1.95 0.33 1.27 5.37 10.08 25.2% 

1000 

1 

0 2.50 0.70 0.70 30.01% 1.00 0.00 1.74 2.30 0.72 2.77 6.75 10.33 25.8% 

1 2.50 0.08 0.13 30.03% 1.01 1.00 1.41 2.08 0.55 1.95 6.06 8.83 25.2% 

3 2.50 0.00 0.01 29.99% 1.00 3.00 1.34 2.08 0.51 1.72 6.02 9.92 16.8% 

3 

0 2.50 0.23 0.23 29.80% 3.03 0.00 1.66 2.24 0.62 2.76 6.32 9.47 27.0% 

1 2.50 0.03 0.04 30.11% 3.00 1.00 1.42 2.03 0.62 1.98 5.65 8.43 23.6% 

3 2.41 0.00 0.00 30.04% 2.98 3.00 1.37 1.97 0.56 1.97 5.24 8.85 18.0% 

2000 

1 

0 2.50 0.70 0.70 29.98% 1.00 0.00 1.48 2.16 0.65 2.02 6.23 10.20 21.0% 

1 2.50 0.08 0.13 29.94% 1.01 1.00 1.70 2.25 0.86 2.55 6.54 11.68 21.2% 

3 2.50 0.00 0.01 29.92% 1.00 3.00 1.46 2.00 0.60 2.12 5.54 8.31 17.2% 

3 

0 2.50 0.23 0.23 30.03% 3.00 0.00 1.24 1.81 0.46 1.98 4.98 8.21 27.0% 

1 2.50 0.03 0.04 29.97% 3.01 1.00 1.54 2.03 0.75 2.41 5.57 8.37 20.2% 

3 2.50 0.00 0.00 29.94% 3.00 3.00 1.45 2.11 0.66 2.06 5.46 10.52 18.8% 
Based on 500 replications in each setting. 
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Table 3.5 Linear regression analysis results for the 95th percentile at n=2000 and 
expected censoring rate 10% 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.471 .501  10.915 .008

lambda .233 .224 .529 1.037 .408

beta -.199 .275 -.563 -.723 .545

interaction -.033 .123 -.235 -.272 .811

a. Dependent Variable: 95th percentile 

b. R square: 0.758 

 

 

 
Table 3.6 Mean values of selected percentiles of null distribution of LRT 

averaged over 18 ),(   settings 

Expected 
censoring rate 

Percentile n Mean SD 
Low 95% 

CI 
Up 95% 

CI 

0.1 

95th  

500 5.829 0.571 5.230 6.428 

1000 5.196 0.926 4.225 6.167 

2000 5.583 0.482 5.077 6.089 

99th  

500 9.740 1.176 8.506 10.975 

1000 9.304 1.387 7.848 10.760 

2000 9.565 0.721 8.808 10.321 

0.2 

95th  

500 6.324 0.385 5.920 6.727 

1000 5.563 0.741 4.784 6.341 

2000 5.826 0.977 4.800 6.852 

99th  

500 9.777 0.616 9.131 10.423 

1000 9.031 1.115 7.860 10.201 

2000 9.372 1.463 7.838 10.908 

0.3 

95th  

500 5.577 0.302 5.260 5.893 

1000 6.008 0.525 5.457 6.558 

2000 5.718 0.568 5.122 6.314 

99th  

500 9.730 0.955 8.727 10.732 

1000 9.304 0.729 8.540 10.068 

2000 9.548 1.458 8.017 11.078 
Based on 500 replications for each setting. 
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Table 3.7 Linear regression analysis results for nine means of the 95th percentile of 
null distribution of LRT 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 5.764 .692  8.329 .000

expected censoring 

rate CR 

.433 3.203 .118 .135 .898

sample size N .000 .001 -.463 -.425 .689

N*CR .001 .002 .343 .257 .807

a. Dependent Variable: 95th percentile 

b. R square: 0.152 

 
 
 
 

Table 3.8 Linear regression analysis results for nine means of the 99th percentile of 
null distribution of LRT 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 9.610 .571  16.817 .000

expected censoring 

rate CR 

-.008 2.645 -.003 -.003 .998

sample size N -9.843E-5 .000 -.259 -.228 .829

N*CR -3.214E-5 .002 -.022 -.016 .988

a. Dependent Variable: 99th percentile 

b. R square: 0.076 
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Table 3.9 Linear regression analysis results with two way interaction for fraction of 

ZLRT  

Coefficientsa

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .303 .051  5.939 .000

Sample Size N -3.082E-5 .000 -.392 -1.027 .310

Lambda L -.011 .018 -.234 -.626 .535

Beta B -.002 .016 -.059 -.142 .888

Censoring rate CR .114 .204 .190 .560 .578

N*L 1.262E-5 .000 .468 1.465 .150

N*B 1.497E-5 .000 .564 2.168 .036

N*CR -.0001 .000 -.400 -1.126 .266

L*B .002 .004 .156 .575 .568

L*CR .004 .066 .021 .059 .953

B*CR -.160 .053 -.946 -3.029 .004

a. Dependent Variable: Fraction of ZLRT  

a. R square: 0.485 
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Table 3.10 Linear regression analysis results log(SD NZLRT ) vs. log(mean NZLRT ) 

Coefficientsa

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .165 .016  10.286 .000 

log(mean NZLRT ) .633 .056 .845 11.401 .000 

a. Dependent Variable: log(SD NZLRT ) 

 
 
 
 
 
 

Table 3.11 Linear regression analysis results log(SD 367.0LRT ) vs. log(mean 367.0LRT ) 

Coefficientsa

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .557 .065  8.516 .000 

log(mean 
367.0LRT  .122 .082 .202 1.489 .142 

a. Dependent Variable: log(SD 
367.0LRT ) 

 
 
 
 
 

Table 3.12 Linear regression analysis results log(SD 3 LRT ) vs. log(mean 3 LRT ) 

Coefficientsa

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .583 .064  9.087 .000

log(mean 3 LRT ) .045 .082 .076 .550 .585

a. Dependent Variable: log(SD 3 LRT ) 
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Table 3.13 Linear regression analysis results of mean 3
NZLRT with two way 

interactions 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 1.158 .058  20.050 .000

Sample Size N -4.495E-5 .000 -.510 -1.322 .193

Lambda L -.020 .021 -.358 -.948 .348

Beta B -.041 .019 -.939 -2.226 .031

Censoring rate CR -.261 .231 -.388 -1.127 .266

N*L -4.714E-7 .000 -.016 -.048 .962

N*B 1.393E-6 .000 .047 .178 .860

N*CR .000 .000 .479 1.333 .189

L*B .007 .005 .404 1.471 .148

L*CR .049 .075 .240 .652 .518

B*CR -.012 .060 -.064 -.202 .841

b. Dependent Variable: mean 3
NZLRT   

c. R square: 0.472 
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Table 3.14 Summary statistics of 3 LRT  and the fitted values of   and   at exponential censoring rate 10% (500 replications) 

 n      Observed 
censoring fraction 

Observed fraction 

ZLRT  
Fitted fraction 

ZLRT  ( ) 
Observed mean 

3
NZLRT  

Fitted mean 
3

NZLRT ( )
Observed SD 

3
NZLRT  

Percentiles of 3 LRT
90 95 99 

500 

1 

0 0.100  0.240  0.273  1.054  1.070  0.504  1.637 1.784 2.210 

1 0.100  0.328  0.276  1.080  1.042  0.506  1.634 1.849 2.182 

3 0.101  0.284  0.295  1.079  0.986  0.471  1.593 1.792 2.069 

3 

0 0.100  0.300  0.269  1.021  1.070  0.476  1.558 1.704 1.995 

1 0.102  0.304  0.277  1.081  1.042  0.490  1.609 1.786 2.124 

3 0.101  0.322  0.292  1.049  0.986  0.562  1.629 1.874 2.216 

1000 

1 

0 0.100  0.306  0.251  1.107  1.070  0.489  1.611 1.767 2.146 

1 0.101  0.264  0.269  1.081  1.042  0.510  1.665 1.804 2.124 

3 0.100  0.288  0.292  0.938  0.986  0.503  1.555 1.706 1.965 

3 

0 0.099  0.250  0.257  1.086  1.070  0.498  1.644 1.855 2.263 

1 0.102  0.278  0.267  0.998  1.042  0.474  1.528 1.671 2.055 

3 0.101  0.152  0.308  0.889  0.986  0.451  1.418 1.558 2.041 

2000 

1 

0 0.100  0.242  0.228  1.042  1.070  0.467  1.597 1.765 2.104 

1 0.101  0.252  0.249  1.050  1.042  0.488  1.601 1.795 2.136 

3 0.100  0.252  0.295  0.958  0.986  0.490  1.522 1.699 2.026 

3 

0 0.100  0.272  0.221  1.075  1.070  0.499  1.662 1.853 2.150 

1 0.102  0.230  0.254  1.010  1.042  0.510  1.618 1.773 2.187 

3 0.100  0.426  0.257  0.965  0.986  0.554  1.540 1.751 2.125 

Note: crcrnncrn 


 16.00001.000001.0122.0003.0000006.028.0  


  028.007.1  
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Table 3.15 Summary statistics of 3 LRT  and the fitted values of   and   at exponential censoring rate 20% (500 replications) 

 n      Observed 
censoring fraction 

Observed fraction 

ZLRT  
Fitted fraction 

ZLRT  ( ) 
Observed mean 

3
NZLRT  

Fitted mean 
3

NZLRT ( )
Observed SD 

3
NZLRT  

Percentiles of 3 LRT
90 95 99 

500 

1 

0 0.1996 0.28 0.278  1.069  1.070  0.544  1.737 1.873 2.100 

1 0.2 0.264 0.288  1.042  1.042  0.522  1.622 1.800 2.137 

3 0.2023 0.216 0.308  0.984  0.986  0.511  1.618 1.819 2.109 

3 

0 0.2011 0.276 0.279  1.059  1.070  0.505  1.653 1.828 2.110 

1 0.2 0.306 0.284  1.124  1.042  0.505  1.699 1.886 2.152 

3 0.2008 0.212 0.308  1.050  0.986  0.556  1.722 1.886 2.218 

1000 

1 

0 0.1997 0.246 0.266  1.071  1.070  0.519  1.669 1.815 2.206 

1 0.2012 0.252 0.278  1.069  1.042  0.509  1.661 1.857 2.118 

3 0.2008 0.188 0.313  0.917  0.986  0.481  1.505 1.698 1.956 

3 

0 0.2002 0.29 0.260  1.017  1.070  0.454  1.539 1.643 2.028 

1 0.2009 0.252 0.278  1.066  1.042  0.490  1.641 1.791 2.110 

3 0.2008 0.19 0.312  0.999  0.986  0.524  1.643 1.808 2.059 

2000 

1 

0 0.1993 0.23 0.239  1.088  1.070  0.505  1.696 1.854 2.110 

1 0.2009 0.26 0.255  1.023  1.042  0.467  1.563 1.769 2.106 

3 0.2009 0.238 0.306  0.936  0.986  0.492  1.517 1.743 1.985 

3 

0 0.1995 0.292 0.224  1.053  1.070  0.513  1.653 1.786 2.162 

1 0.2007 0.282 0.250  0.961  1.042  0.478  1.499 1.665 1.988 

3 0.2006 0.3 0.292  1.078  0.986  0.559  1.675 1.953 2.271 

Note: crcrnncrn 


 16.00001.000001.0122.0003.0000006.028.0  


  028.007.1  
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Table 3.16Summary statistics of 3 LRT  and the fitted values of   and   at exponential censoring rate 30% (500 replications) 

 n      Observed 
censoring fraction 

Observed fraction 

ZLRT  
Fitted fraction 

ZLRT  ( ) 
Observed mean 

3
NZLRT  

Fitted mean 
3

NZLRT ( )
Observed SD 

3
NZLRT  

Percentiles of 3 LRT
90 95 99 

500 

1 

0 0.3003 0.292 0.285  1.043  1.070  0.505  1.602 1.741 2.172 

1 0.3015 0.316 0.291  1.064  1.042  0.494  1.566 1.743 2.239 

3 0.2994 0.156 0.322  0.986  0.986  0.519  1.634 1.815 2.077 

3 

0 0.3006 0.264 0.288  1.074  1.070  0.492  1.668 1.801 2.092 

1 0.2988 0.266 0.295  1.033  1.042  0.473  1.588 1.785 2.058 

3 0.298 0.252 0.313  0.943  0.986  0.481  1.521 1.752 2.160 

1000 

1 

0 0.3001 0.258 0.272  1.117  1.070  0.522  1.732 1.890 2.178 

1 0.3003 0.252 0.286  1.034  1.042  0.486  1.632 1.823 2.067 

3 0.2999 0.168 0.325  0.939  0.986  0.503  1.578 1.819 2.148 

3 

0 0.298 0.27 0.270  1.121  1.070  0.503  1.699 1.849 2.115 

1 0.3011 0.236 0.289  1.043  1.042  0.471  1.595 1.781 2.035 

3 0.3004 0.18 0.323  0.974  0.986  0.492  1.582 1.737 2.069 

2000 

1 

0 0.2998 0.21 0.253  1.033  1.070  0.491  1.578 1.840 2.169 

1 0.2994 0.212 0.275  1.107  1.042  0.487  1.647 1.870 2.269 

3 0.2992 0.172 0.331  0.991  0.986  0.501  1.616 1.769 2.025 

3 

0 0.3003 0.27 0.238  1.006  1.070  0.465  1.531 1.708 2.018 

1 0.2997 0.202 0.277  1.060  1.042  0.479  1.607 1.772 2.030 

3 0.2994 0.188 0.327  1.019  0.986  0.473  1.569 1.760 2.191 

Note: crcrnncrn 


 16.00001.000001.0122.0003.0000006.028.0  


  028.007.1  
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Table 3.17 Mean values of selected percentiles of 3 LRT averaged over ),(   
settings 

Expected 
censoring rate 

Percentile n Mean SD Low 95% CI Up 95% CI 

10% 

95th  

500 1.798 0.024 1.736  1.860  

1000 1.727 0.043 1.616  1.838  

2000 1.773 0.021 1.719  1.826  

99th  

500 2.133 0.036 2.040  2.225  

1000 2.099 0.042 1.991  2.207  

2000 2.122 0.022 2.065  2.179  

20% 

95th  

500 1.849 0.015 1.809  1.888  

1000 1.769 0.033 1.684  1.854  

2000 1.795 0.040 1.691  1.898  

99th  

500 2.138 0.018 2.091  2.184  

1000 2.079 0.035 1.990  2.169  

2000 2.104 0.044 1.990  2.218  

30% 

95th  

500 1.773 0.013 1.739  1.806  

1000 1.817 0.022 1.761  1.872  

2000 1.787 0.024 1.726  1.849  

99th  

500 2.133 0.028 2.060  2.205  

1000 2.102 0.022 2.045  2.159  

2000 2.117 0.044 2.005  2.230  

Based on 500 replications for each setting. 

 
 

Table 3.18 Critical values of 3 LRT  
 Sample size 

 500 1000 2000 

05.0 1.807  1.771  1.785  

01.0 2.135  2.093  2.114  
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Table 4.1 Summary statistics for simulated MLE when 
6.0,5.0,5.1,1,1 2121    (mixture of two regimes model) 

n 
Observed 

censoring rate 
Parameters Mean MLE SD MLE 

Percentile of MLE 

25 50 75 

500 

10.02% 

1  1.002 0.205 0.851 0.976 1.116

2  1.068 0.272 0.878 1.032 1.183

1  1.505 0.076 1.463 1.508 1.55 

2  0.495 0.086 0.446 0.498 0.54 

  0.6 0.033 0.578 0.601 0.623

19.99% 

1  1.006 0.223 0.834 0.992 1.138

2  1.054 0.303 0.831 0.996 1.231

1  1.505 0.064 1.46 1.502 1.55 

2  0.498 0.082 0.443 0.499 0.555

  0.599 0.032 0.576 0.601 0.622

30.34% 

1  1.007 0.248 0.837 0.983 1.155

2  1.055 0.445 0.792 0.991 1.243

1  1.505 0.073 1.457 1.507 1.548

2  0.502 0.1 0.436 0.499 0.566

  0.603 0.035 0.578 0.604 0.628

1000 

10.14% 

1  1.018 0.135 0.919 1.001 1.112

2  1.02 0.167 0.907 1 1.118

1  1.498 0.04 1.47 1.499 1.527

2  0.496 0.048 0.466 0.5 0.526

  0.599 0.023 0.585 0.6 0.615

19.88% 

1  1.066 0.377 0.915 1.014 1.118

2  1.129 0.558 0.893 1.018 1.195

1  1.456 0.206 1.463 1.496 1.529

2  0.522 0.144 0.456 0.497 0.547

  0.595 0.032 0.579 0.597 0.615

30.26% 

1  1.015 0.167 0.898 1.007 1.123

2  1.035 0.261 0.85 1.012 1.187

1  1.5 0.048 1.467 1.497 1.534

2  0.499 0.069 0.451 0.501 0.541

  0.6 0.023 0.585 0.601 0.615

2000 10.16% 

1  1.003 0.098 0.934 0.999 1.073

2  1.006 0.109 0.925 1 1.075

1  1.501 0.03 1.48 1.5 1.521

2  0.5 0.033 0.477 0.502 0.523

  0.6 0.017 0.588 0.601 0.612

Based on 500 replications for each setting. 
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Table 4.1 Summary statistics for simulated MLE when  
6.0,5.0,5.1,1,1 2121    (mixture of two regimes model) (continued) 

n 
Observed 

censoring rate 
Parameters Mean MLE SD  MLE

Percentile of MLE 

25 50 75 

2000 

19.93% 

1  0.994 0.098 0.93 0.994 1.061

2  1.006 0.143 0.904 0.996 1.091

1  1.503 0.03 1.481 1.501 1.523

2  0.502 0.041 0.475 0.5 0.531

  0.6 0.016 0.589 0.6 0.611

30.25% 

1  0.995 0.133 0.904 0.994 1.068

2  1.037 0.2 0.897 1.019 1.166

1  1.504 0.038 1.48 1.502 1.529

2  0.495 0.053 0.457 0.496 0.528

  0.6 0.017 0.588 0.6 0.611

Based on 500 replications for each setting. 

 
 

Table 4.2 The minimum and maximum of MLEs when 
6.0,5.0,5.1,1,1 2121   , sample size 1000 

  


1  


2  


1  


2  


  

  Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Expected 
censoring 

rate 

10% 0.707 1.428 0.657 1.852 1.403 1.602 0.321 0.658 0.521 0.663 

20% 0.591 4.499 0.291 4.658 0.328 1.662 0.152 1.431 0.500 0.710 

30% 0.602 1.664 0.448 2.094 1.359 1.656 0.292 0.724 0.531 0.666 

Based on 500 replications for each setting. 

 
 

Table 4.3 Mean and standard deviation of survival time and covariate x of first and 
second regimes at 0% censoring rate 
  First regime Second regime

  mean SD mean SD 
6.0,5.0,75.0,1,1 2121   t 0.258 0.432 0.368  0.523 

n= 595 vs. 405 x 2.591  2.527    

6.0,5.0,1,1,1 2121    t 0.222 0.431 0.346  0.459 

n= 606 vs. 394 x 2.508   2.586    

6.0,5.0,25.1,1,1 2121   t 0.159 0.346 0.346  0.470 

n= 611 vs. 389 x 2.510  2.540    

6.0,5.0,5.1,1,1 2121   t 0.129 0.290 0.358  0.540 

n= 612 vs. 388 x 2.460   2.432    

Based on sample size: 1000 
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Table 4.4 Simulation results of 3 LRT  with summary statistics when 5.0,75.0,1,1 2121    and 9.0~1.0  

  n  
mean 

x 
mean 

t 
SD t 

observed 
censoring rate



1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.1 

500 

2.512  0.288  0.397  10.5% 2.278 1.029 0.584 0.512 0.215 1.267  0.481 0.125 0.435 0.604 1.285 0.026 0.114 

2.497  0.245  0.319  20.0% 1.970 0.973 0.521 0.530 0.176 1.232  0.516 0.109 0.305 0.489 1.279 0.040 0.230 

2.509  0.200  0.250  29.9% 1.706 1.060 0.702 0.507 0.231 1.251  0.536 0.126 0.315 0.524 1.291 0.036 0.156 

1000 

2.501  0.290  0.402  10.3% 1.630 1.006 0.545 0.516 0.242 1.349  0.518 0.071 0.338 0.633 1.400 0.058 0.216 

2.506  0.240  0.321  20.3% 2.029 1.018 0.781 0.511 0.165 1.325  0.499 0.160 0.438 0.660 1.335 0.052 0.200 

2.505  0.199  0.251  29.9% 2.395 1.026 0.547 0.513 0.239 1.312  0.521 0.191 0.389 0.579 1.346 0.060 0.192 

2000 

2.496  0.289  0.400  10.3% 1.270 1.009 0.708 0.514 0.131 1.449  0.513 0.131 0.533 0.730 1.523 0.088 0.278 

2.496  0.244  0.321  20.2% 0.947 1.060 0.773 0.493 0.191 1.560  0.483 0.222 0.635 0.884 1.621 0.106 0.358 

2.494  0.199  0.252  29.9% 1.114 1.055 0.700 0.497 0.220 1.420  0.530 0.205 0.481 0.699 1.469 0.088 0.262 

0.2 

500 

2.492  0.265  0.385  10.3% 1.588 1.007 0.633 0.528 0.232 1.509  0.506 0.257 0.640 0.794 1.543 0.092 0.300 

2.499  0.220  0.308  19.9% 1.661 1.059 0.664 0.525 0.224 1.518  0.522 0.103 0.528 0.799 1.568 0.100 0.302 

2.510  0.172  0.234  29.9% 2.001 1.046 0.659 0.530 0.241 1.486  0.511 0.181 0.574 0.786 1.538 0.072 0.274 

1000 

2.496  0.269  0.391  10.0% 2.023 1.021 0.649 0.519 0.233 1.739  0.526 0.340 0.798 1.043 1.791 0.222 0.514 

2.503  0.220  0.307  19.8% 1.676 1.033 0.686 0.517 0.233 1.751  0.484 0.403 0.909 1.174 1.760 0.254 0.496 

2.502  0.173  0.234  29.8% 2.254 1.038 0.704 0.520 0.211 1.699  0.519 0.249 0.766 0.994 1.737 0.220 0.470 

2000 

2.501  0.266  0.391  10.1% 1.443 1.023 0.543 0.535 0.259 1.907  0.503 0.419 1.028 1.268 1.954 0.358 0.630 

2.500  0.219  0.306  20.0% 1.266 1.028 0.759 0.508 0.217 2.050  0.454 0.746 1.213 1.487 2.080 0.468 0.762 

2.499  0.173  0.234  29.9% 1.820 1.005 0.254 0.550 0.168 1.698  0.543 0.202 0.667 0.989 1.738 0.248 0.466 

0.3 500 

2.497  0.236  0.369  10.5% 1.728 1.042 0.678 0.546 0.247 1.714  0.533 0.223 0.748 1.004 1.760 0.226 0.462 

2.508  0.193  0.290  20.2% 1.428 1.059 0.729 0.541 0.249 1.719  0.497 0.472 0.757 1.032 1.759 0.200 0.470 

2.489  0.158  0.220  30.2% 1.672 1.052 0.695 0.551 0.272 1.717  0.498 0.522 0.829 1.018 1.744 0.192 0.450 
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Table 4.4 Simulation results of 3 LRT  with summary statistics when 5.0,75.0,1,1 2121    and 9.0~1.0  (continued) 

  n  
mean 

x 
mean 

t 
SD t 

observed 
censoring rate



1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.3 

1000 

2.498  0.243  0.379  10.5% 1.248 1.041 0.705 0.536 0.285 2.053  0.465 0.735 1.241 1.447 2.082 0.494 0.736 

2.497  0.198  0.291  20.4% 1.236 1.032 0.730 0.534 0.267 2.048  0.515 0.762 1.037 1.273 2.089 0.498 0.742 

2.501  0.157  0.222  30.1% 1.277 1.040 0.705 0.540 0.279 1.978  0.508 0.502 1.005 1.277 2.043 0.454 0.708 

2000 

2.503  0.244  0.375  10.4% 1.002 1.047 0.734 0.515 0.302 2.582  0.442 1.460 1.793 2.003 2.602 0.854 0.952 

2.499  0.196  0.292  20.3% 1.078 1.018 0.736 0.524 0.290 2.475  0.432 1.435 1.756 1.904 2.483 0.812 0.942 

2.500  0.156  0.221  30.2% 1.175 1.009 0.661 0.547 0.309 2.330  0.487 0.947 1.447 1.702 2.378 0.706 0.870 

0.4 

500 

2.495  0.211  0.351  10.2% 1.358 1.037 0.662 0.575 0.300 1.931  0.519 0.582 1.046 1.245 1.965 0.350 0.622 

2.510  0.169  0.272  20.0% 1.339 1.031 0.672 0.573 0.285 1.887  0.478 0.525 0.994 1.284 1.922 0.302 0.624 

2.492  0.132  0.203  30.0% 1.593 1.089 0.749 0.570 0.271 1.838  0.511 0.281 0.960 1.181 1.888 0.288 0.560 

1000 

2.499  0.217  0.359  9.9% 1.196 1.032 0.701 0.560 0.322 2.330  0.469 1.168 1.498 1.742 2.361 0.704 0.888 

2.493  0.172  0.273  20.1% 1.154 1.034 0.702 0.570 0.319 2.332  0.439 1.130 1.611 1.773 2.348 0.720 0.902 

2.500  0.133  0.203  30.1% 1.170 1.061 0.676 0.570 0.302 2.221  0.482 0.878 1.346 1.575 2.258 0.646 0.830 

2000 

2.502  0.215  0.358  10.0% 1.010 1.042 0.665 0.559 0.362 2.890  0.444 1.824 2.111 2.328 2.889 0.950 0.992 

2.499  0.173  0.274  20.0% 0.998 1.040 0.708 0.552 0.350 2.850  0.401 1.759 2.188 2.358 2.866 0.960 0.990 

2.499  0.132  0.203  30.0% 1.173 1.044 0.707 0.558 0.342 2.747  0.424 1.581 2.005 2.192 2.769 0.924 0.984 

0.5 

500 

2.501  0.192  0.348  9.8% 0.996 1.354 0.668 0.589 0.586 2.092  0.480 0.686 1.234 1.457 2.117 0.490 0.760 

2.499  0.150  0.254  19.9% 1.068 1.295 0.623 0.661 0.648 1.945  0.546 0.341 0.904 1.217 2.011 0.392 0.642 

2.498  0.109  0.182  30.1% 0.871 1.839 0.698 0.486 0.688 1.949  0.536 0.496 0.949 1.259 1.991 0.394 0.660 

1000 

2.506  0.188  0.339  10.0% 1.001 1.242 0.603 0.644 0.585 2.535  0.463 1.487 1.803 1.935 2.542 0.822 0.956 

2.498  0.146  0.252  20.0% 1.008 1.256 0.586 0.673 0.615 2.455  0.454 1.467 1.688 1.842 2.475 0.788 0.932 

2.496  0.109  0.184  30.0% 0.913 1.414 0.751 0.495 0.580 2.401  0.476 1.134 1.523 1.730 2.421 0.770 0.884 
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Table 4.4 Simulation results of 3 LRT  with summary statistics when 5.0,75.0,1,1 2121    and 9.0~1.0  (continued) 

  n  
mean 

x 
mean 

t 
SD t 

observed 
censoring rate



1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.5 2000 

2.499  0.191  0.344  9.9% 0.994 1.059 0.730 0.521 0.508 3.212  0.395 2.144 2.540 2.710 3.230 0.994 0.998 

2.497  0.145  0.251  19.9% 0.978 1.128 0.632 0.617 0.556 3.109  0.412 2.085 2.443 2.580 3.096 0.990 1.000 

2.498  0.111  0.185  30.0% 0.899 1.375 0.744 0.470 0.584 2.939  0.446 1.642 2.115 2.337 2.978 0.952 0.982 

0.6 

500 

2.509  0.163  0.318  10.1% 1.013 1.369 0.675 0.559 0.688 2.168  0.496 1.034 1.314 1.520 2.169 0.528 0.772 

2.500  0.123  0.232  19.6% 1.029 1.565 0.658 0.617 0.703 2.089  0.496 0.739 1.196 1.422 2.084 0.474 0.734 

2.504  0.090  0.162  29.8% 0.995 1.398 0.672 0.563 0.714 1.995  0.533 0.525 0.991 1.326 2.045 0.436 0.662 

1000 

2.500  0.170  0.326  10.3% 1.009 1.144 0.685 0.567 0.656 2.711  0.448 1.579 1.951 2.158 2.726 0.910 0.980 

2.491  0.124  0.235  19.6% 1.025 1.132 0.677 0.587 0.666 2.586  0.441 1.560 1.860 2.020 2.613 0.864 0.956 

2.494  0.090  0.164  30.2% 1.025 1.164 0.673 0.591 0.669 2.477  0.478 1.149 1.580 1.880 2.475 0.816 0.924 

2000 

2.503  0.167  0.322  10.2% 1.001 1.065 0.694 0.556 0.637 3.366  0.460 2.149 2.575 2.731 3.382 0.992 1.000 

2.498  0.122  0.233  19.7% 0.996 1.150 0.699 0.549 0.645 3.245  0.429 2.060 2.511 2.681 3.267 0.990 1.000 

2.497  0.090  0.164  30.0% 0.998 1.086 0.692 0.571 0.639 3.070  0.440 1.900 2.349 2.533 3.081 0.974 0.996 

0.7 

500 

2.500  0.148  0.305  10.1% 1.030 1.414 0.695 0.556 0.721 2.170  0.534 0.739 1.256 1.489 2.161 0.526 0.764 

2.507  0.100  0.212  20.0% 0.994 1.475 0.698 0.582 0.733 2.070  0.509 0.815 1.174 1.397 2.102 0.478 0.716 

2.509  0.074  0.148  30.6% 0.998 1.358 0.706 0.602 0.725 2.004  0.526 0.615 1.118 1.315 2.019 0.392 0.644 

1000 

2.497  0.149  0.307  10.2% 0.992 1.220 0.722 0.519 0.701 2.656  0.482 1.458 1.771 2.039 2.662 0.894 0.950 

2.496  0.104  0.212  20.0% 0.994 1.209 0.725 0.515 0.727 2.619  0.477 1.323 1.848 2.039 2.610 0.882 0.964 

2.508  0.074  0.148  30.2% 0.999 1.214 0.717 0.574 0.718 2.474  0.495 1.291 1.597 1.794 2.494 0.890 0.912 

2000 

2.505  0.146  0.307  10.0% 0.991 1.101 0.741 0.508 0.686 3.384  0.402 2.487 2.774 2.872 3.371 0.998 1.000 

2.498  0.105  0.215  20.0% 0.984 1.119 0.741 0.512 0.691 3.252  0.425 2.178 2.524 2.675 3.247 0.994 1.000 

2.495  0.075  0.149  30.1% 0.994 1.166 0.726 0.533 0.705 3.036  0.451 1.835 2.323 2.465 3.039 0.984 0.994 
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Table 4.4 Simulation results of 3 LRT  with summary statistics when 5.0,75.0,1,1 2121    and 9.0~1.0  (continued) 

  n  
mean 

x 
mean 

t 
SD t 

observed 
censoring rate



1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.8 

500 

2.508  0.122  0.283  10.1% 0.993 1.544 0.739 0.486 0.773 2.053  0.578 0.380 0.870 1.296 2.112 0.482 0.722 

2.494  0.087  0.195  20.4% 0.986 1.573 0.738 0.491 0.761 1.971  0.557 0.598 0.953 1.224 2.005 0.412 0.622 

2.494  0.056  0.128  30.1% 1.014 1.613 0.728 0.505 0.769 1.846  0.568 0.257 0.825 1.062 1.874 0.300 0.560 

1000 

2.499  0.121  0.281  10.2% 0.992 1.286 0.741 0.517 0.760 2.530  0.568 0.861 1.582 1.816 2.561 0.792 0.918 

2.490  0.088  0.194  20.5% 0.977 1.436 0.743 0.494 0.775 2.442  0.541 0.921 1.506 1.712 2.507 0.740 0.888 

2.506  0.056  0.127  30.3% 0.969 1.476 0.744 0.483 0.776 2.285  0.530 0.896 1.365 1.591 2.285 0.666 0.838 

2000 

2.500  0.121  0.281  10.2% 0.987 1.184 0.752 0.490 0.769 3.187  0.467 1.834 2.365 2.578 3.197 0.980 0.996 

2.498  0.088  0.197  20.3% 0.982 1.196 0.749 0.508 0.769 2.970  0.500 1.845 2.141 2.328 2.988 0.952 0.992 

2.499  0.055  0.127  30.4% 0.997 1.177 0.748 0.515 0.758 2.814  0.489 1.598 1.903 2.166 2.843 0.916 0.982 

0.9 

500 

2.490  0.102  0.262  10.1% 1.000 1.547 0.742 0.526 0.834 1.762  0.597 0.174 0.698 0.993 1.766 0.282 0.472 

2.501  0.064  0.166  19.8% 0.982 1.546 0.750 0.540 0.814 1.646  0.637 0.104 0.559 0.810 1.647 0.222 0.406 

2.495  0.040  0.106  30.3% 1.010 1.278 0.739 0.691 0.810 1.571  0.596 0.177 0.610 0.809 1.599 0.180 0.360 

1000 

2.502  0.099  0.259  10.2% 0.981 1.340 0.746 0.569 0.810 1.999  0.649 0.215 0.762 1.125 2.060 0.478 0.654 

2.502  0.065  0.169  19.9% 0.993 1.284 0.748 0.531 0.826 2.026  0.578 0.379 1.072 1.338 2.015 0.444 0.674 

2.499  0.039  0.109  30.3% 0.978 1.264 0.754 0.557 0.824 1.830  0.630 0.267 0.672 1.017 1.854 0.352 0.564 

2000 

2.500  0.099  0.260  10.1% 0.992 1.251 0.750 0.528 0.815 2.564  0.613 1.015 1.491 1.772 2.621 0.774 0.898 

2.505  0.066  0.171  20.2% 0.980 1.350 0.755 0.487 0.842 2.457  0.606 0.867 1.384 1.670 2.481 0.728 0.866 

2.503  0.040  0.109  29.8% 0.986 1.248 0.755 0.521 0.840 2.324  0.588 0.782 1.238 1.557 2.362 0.658 0.832 

Note: Based on 500 replications for each setting. 

The level of significance 0.01, the critical values were used 2.135 for n=500, 2.093 for n=1000 and 2.114 for n=2000 respectively. 
The level of significance 0.05, the critical values were used 1.807 for n=500, 1.771 for n=1000 and 1.785 for n=2000 respectively. 
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Table 4.5 Simulation results of 3 LRT  with summary statistics when 5.0,1,1,1 2121    and 9.0~1.0  

  n  
mean 

x 
mean 

t 
SD t 

observed 
censoring rate



1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.1 

500 

2.503  0.297 0.402  10.4% 7.871 1.035 0.907 0.496 0.170 1.896  0.529 0.010 0.994 1.346 1.928 0.350  0.600  

2.501  0.249 0.322  20.0% 3.006 1.036 0.871 0.503 0.181 1.711  0.525 0.010 0.662 1.022 1.790 0.210  0.470  

2.506  0.204 0.253  29.9% 2.399 1.058 0.894 0.494 0.1177 1.828  0.647 0.009 0.653 0.995 1.894 0.270  0.580  

1000 

2.505  0.296 0.402  10.3% 1.308 1.044 1.051 0.494 0.152 2.084  0.571 0.014 1.053 1.358 2.134 0.560  0.770  

2.494  0.251 0.325  20.3% 1.567 1.051 0.923 0.494 0.152 2.136  0.537 0.005 1.171 1.456 2.212 0.610  0.810  

2.500  0.206 0.254  29.9% 5.023 1.042 1.121 0.492 0.143 2.207  0.486 0.430 1.306 1.617 2.269 0.650  0.860  

2000 

2.502  0.297 0.403  10.3% 1.109 1.024 1.013 0.492 0.112 2.655  0.484 0.013 1.939 2.157 2.720 0.920  0.960  

2.505  0.248 0.321  20.2% 1.114 1.024 0.975 0.496 0.131 2.650  0.536 0.011 1.594 2.081 2.688 0.880  0.950  

2.497  0.207 0.256  29.9% 1.372 1.033 1.045 0.490 0.119 2.650  0.454 0.018 2.126 2.169 2.650 0.960  0.990  

0.2 

500 

2.498  0.281 0.391  10.3% 1.129 1.075 1.017 0.483 0.225 2.604  0.441 1.462 1.713 1.857 2.635 0.860  0.920  

2.502  0.235 0.310  19.9% 1.737 1.047 0.995 0.501 0.214 2.522  0.462 1.294 1.678 1.939 2.522 0.800  0.940  

2.499  0.194 0.244  29.9% 1.327 1.045 1.004 0.500 0.229 2.510  0.461 0.984 1.658 1.949 2.499 0.800  0.950  

1000 

2.501  0.281 0.396  10.0% 1.275 1.033 0.992 0.489 0.212 3.268  0.378 2.308 2.601 2.831 3.276 1.000  1.000  

2.509  0.233 0.310  19.8% 1.237 1.028 1.032 0.498 0.194 3.159  0.348 2.305 2.634 2.726 3.158 1.000  1.000  

2.511  0.191 0.241  29.8% 1.087 1.048 1.042 0.490 0.214 3.117  0.394 2.105 2.561 2.645 3.077 1.000  1.000  

2000 

2.502  0.281 0.396  10.1% 1.116 1.010 0.990 0.497 0.202 3.987  0.379 3.015 3.356 3.457 4.006 1.000  1.000  

2.500  0.233 0.311  20.0% 0.947 1.051 1.036 0.487 0.211 4.024  0.319 2.909 3.525 3.635 4.022 1.000  1.000  

2.498  0.192 0.244  29.9% 1.034 1.036 1.022 0.492 0.205 3.918  0.296 3.154 3.351 3.522 3.912 1.000  1.000  

0.3 500 

2.499  0.265 0.382  10.5% 1.191 1.040 0.991 0.506 0.299 3.216  0.404 2.315 2.469 2.571 3.270 1.000  1.000  

2.493  0.219 0.297  20.2% 1.028 1.096 1.028 0.489 0.302 3.132  0.412 2.079 2.531 2.613 3.109 0.980  1.000  

2.507  0.174 0.227  30.2% 1.642 1.091 1.034 0.496 0.311 3.101  0.381 1.752 2.516 2.632 3.085 0.990  0.990  
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Table 4.5 Simulation results of 3 LRT  with summary statistics when 5.0,1,1,1 2121    and 9.0~1.0  (continued) 

  n  
mean 

x 
mean t SD t 

observed 
censoring rate



1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.3 

1000 

2.490  0.266  0.386 10.5% 1.050 1.023 0.997 0.497 0.302 3.941  0.336 3.160 3.415 3.516 3.926 1.000  1.000  

2.506  0.218  0.297 20.4% 1.020 1.036 1.028 0.494 0.295 3.931  0.346 3.103 3.369 3.475 3.961 1.000  1.000  

2.511  0.175  0.226 30.1% 1.091 1.020 1.004 0.500 0.306 3.817  0.349 3.000 3.279 3.391 3.773 1.000  1.000  

2000 

2.500  0.263  0.379 10.4% 0.981 1.032 1.014 0.490 0.310 5.088  0.297 4.300 4.456 4.654 5.106 1.000  1.000  

2.499  0.218  0.299 20.3% 1.028 1.022 1.004 0.498 0.298 4.868  0.279 4.230 4.442 4.520 4.862 1.000  1.000  

2.501  0.175  0.226 30.2% 1.082 1.011 0.988 0.499 0.300 4.786  0.331 3.928 4.258 4.315 4.796 1.000  1.000  

0.4 

500 

2.500  0.249  0.372 10.2% 1.178 1.040 0.937 0.548 0.396 3.674  0.374 2.441 2.955 3.168 3.641 1.000  1.000  

2.500  0.205  0.285 20.0% 0.958 1.101 0.983 0.539 0.384 3.600  0.376 2.547 2.941 3.080 3.635 1.000  1.000  

2.496  0.162  0.214 30.0% 0.985 1.156 0.991 0.523 0.393 3.460  0.355 2.420 2.716 2.942 3.535 1.000  1.000  

1000 

2.500  0.249  0.373 9.9% 1.050 1.010 0.980 0.521 0.396 4.603  0.327 3.380 4.042 4.208 4.613 1.000  1.000  

2.502  0.203  0.289 20.1% 1.025 1.027 0.987 0.520 0.400 4.528  0.292 3.804 4.070 4.100 4.515 1.000  1.000  

2.499  0.162  0.216 30.1% 0.941 1.086 0.999 0.515 0.401 4.451  0.340 3.446 3.918 4.069 4.401 1.000  1.000  

2000 

2.495  0.248  0.370 10.0% 1.037 1.017 0.994 0.497 0.401 5.785  0.305 5.011 5.198 5.355 5.816 1.000  1.000  

2.498  0.204  0.287 20.0% 1.013 1.018 0.999 0.505 0.396 5.652  0.304 4.938 5.171 5.234 5.644 1.000  1.000  

2.499  0.163  0.219 30.0% 1.049 0.989 0.988 0.509 0.403 5.550  0.316 4.761 4.974 5.175 5.553 1.000  1.000  

0.5 

500 

2.495  0.235  0.358 9.8% 1.060 1.063 0.885 0.599 0.517 4.032  0.383 2.872 3.420 3.519 4.033 1.000  1.000  

2.510  0.187  0.270 19.9% 1.111 0.995 0.561 0.954 0.502 3.923  0.347 3.108 3.240 3.455 3.922 1.000  1.000  

2.502  0.147  0.200 30.1% 1.030 1.133 0.987 0.516 0.511 3.872  0.320 3.221 3.406 3.453 3.860 1.000  1.000  

1000 

2.493  0.235  0.361 10.0% 1.044 1.001 0.938 0.568 0.493 5.068  0.327 4.418 4.534 4.614 5.097 1.000  1.000  

2.507  0.187  0.273 20.0% 1.044 1.020 0.537 0.969 0.503 5.047  0.331 4.154 4.424 4.597 5.054 1.000  1.000  

2.502  0.148  0.203 30.0% 1.011 1.036 0.863 0.646 0.514 4.825  0.290 4.114 4.277 4.416 4.834 1.000  1.000  
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Table 4.5 Simulation results of 3 LRT  with summary statistics when 5.0,1,1,1 2121    and 9.0~1.0  (continued) 

  n  mean x mean t SD t 
observed 

censoring rate


1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 = 0.051 5 10 50 

0.5 2000 

2.496  0.233  0.360 9.9% 1.017 1.004 0.974 0.530 0.501 6.434  0.278 5.653 5.875 6.085 6.429 1.000  1.000  

2.501  0.188  0.272 19.9% 1.003 1.016 1.005 0.499 0.496 6.269  0.244 5.604 5.861 5.948 6.268 1.000  1.000  

2.500  0.148  0.202 30.0% 1.007 1.023 1.005 0.496 0.503 6.150  0.291 5.285 5.701 5.781 6.171 1.000  1.000  

0.6 

500 

2.501  0.217  0.344 10.1% 0.944 1.153 0.975 0.511 0.620 4.340  0.334 3.629 3.737 3.899 4.303 1.000  1.000  

2.503  0.172  0.259 19.6% 1.034 1.133 0.968 0.532 0.609 4.171  0.339 3.340 3.573 3.805 4.146 1.000  1.000  

2.507  0.133  0.186 29.8% 1.033 1.158 0.962 0.537 0.607 4.128  0.326 3.247 3.560 3.688 4.141 1.000  1.000  

1000 

2.499  0.216  0.344 10.3% 0.997 1.038 0.994 0.507 0.603 5.434  0.360 4.555 4.821 4.920 5.420 1.000  1.000  

2.492  0.175  0.261 19.6% 0.971 1.087 0.989 0.514 0.594 5.269  0.351 4.346 4.609 4.789 5.291 1.000  1.000  

2.499  0.134  0.187 30.2% 0.985 1.040 0.995 0.509 0.604 5.109  0.344 4.377 4.511 4.647 5.126 1.000  1.000  

2000 

2.501  0.216  0.343 10.2% 0.998 1.026 0.997 0.497 0.603 6.920  0.288 6.269 6.458 6.523 6.963 1.000  1.000  

2.502  0.175  0.262 19.7% 0.999 0.999 1.000 0.510 0.600 6.732  0.292 5.963 6.217 6.335 6.750 1.000  1.000  

2.500  0.133  0.186 30.0% 1.004 1.039 0.995 0.502 0.604 6.449  0.323 5.737 5.858 6.010 6.460 1.000  1.000  

0.7 

500 

2.503  0.200  0.330 10.1% 0.968 1.283 1.023 0.479 0.683 4.459  0.357 3.577 3.919 3.999 4.473 1.000  1.000  

2.500  0.158  0.241 20.0% 0.999 1.167 1.004 0.498 0.692 4.376  0.385 2.935 3.772 3.929 4.396 1.000  1.000  

2.496  0.120  0.169 30.6% 0.961 1.289 1.023 0.488 0.680 4.107  0.410 3.182 3.377 3.516 4.100 1.000  1.000  

1000 

2.506  0.200  0.329 10.2% 1.015 1.008 1.002 0.511 0.690 5.596  0.350 4.849 5.055 5.170 5.543 1.000  1.000  

2.500  0.157  0.240 20.0% 1.006 1.085 1.004 0.495 0.698 5.461  0.375 4.133 4.852 5.057 5.430 1.000  1.000  

2.502  0.120  0.171 30.2% 0.981 1.146 1.009 0.479 0.698 5.297  0.380 4.509 4.651 4.807 5.310 1.000  1.000  

2000 

2.497  0.201  0.330 10.0% 0.999 1.040 1.003 0.491 0.701 7.167  0.324 6.354 6.654 6.743 7.147 1.000  1.000  

2.505  0.157  0.240 20.0% 1.020 1.003 0.999 0.508 0.699 6.927  0.319 6.149 6.397 6.523 6.907 1.000  1.000  

2.504  0.121  0.172 30.1% 0.989 1.047 1.007 0.502 0.697 6.640  0.311 5.813 5.987 6.131 6.703 1.000  1.000  
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Table 4.5 Simulation results of 3 LRT  with summary statistics when 5.0,1,1,1 2121    and 9.0~1.0  (continued) 

  n  mean x mean t SD t 
observed 

censoring rate


1  


2  


1  


2  


  
Mean 

3 LRT  

SD 
3 LRT

Percentile of 3 LRT  power 
 =001

power 
 =0.051 5 10 50 

0.8 

500 

2.499  0.184  0.309  10.1% 1.003 1.293 1.007 0.465 0.787 4.481  0.413  3.506 3.740 3.800 4.511  1.000 1.000 

2.493  0.142  0.224  20.4% 0.984 1.473 1.012 0.462 0.788 4.212  0.452  3.119 3.427 3.609 4.220  1.000 1.000 

2.499  0.107  0.154  30.1% 0.984 1.648 1.014 0.523 0.795 3.931  0.501  2.408 3.051 3.347 3.891  1.000 1.000 

1000 

2.499  0.185  0.315  10.2% 0.996 1.107 1.002 0.489 0.800 5.595  0.399  4.368 4.942 5.128 5.596  1.000 1.000 

2.500  0.142  0.223  20.5% 0.980 1.252 1.010 0.477 0.794 5.373  0.446  4.195 4.412 4.772 5.406  1.000 1.000 

2.502  0.107  0.155  30.3% 0.976 1.826 1.010 0.456 0.800 5.166  0.450  4.210 4.358 4.596 5.151  1.000 1.000 

2000 

2.499  0.184  0.311  10.2% 0.983 1.062 1.008 0.494 0.797 7.057  0.359  6.206 6.412 6.555 7.078  1.000 1.000 

2.499  0.143  0.224  20.3% 1.004 1.011 0.999 0.515 0.797 6.730  0.399  5.871 6.029 6.253 6.690  1.000 1.000 

2.500  0.107  0.156  30.4% 0.986 1.111 1.006 0.499 0.799 6.427  0.363  5.534 5.798 5.960 6.404  1.000 1.000 

0.9 

500 

2.491  0.167  0.291  10.1% 1.007 2.549 1.006 0.459 0.874 3.869  0.670  2.015 2.632 2.941 3.871  0.990 1.000 

2.506  0.128  0.206  19.8% 0.972 4.036 1.021 0.443 0.875 3.729  0.723  2.203 2.483 2.685 3.827  1.000 1.000 

2.501  0.094  0.142  30.3% 0.968 12.640 1.013 0.467 0.880 3.449  0.641  1.701 2.317 2.651 3.452  0.980 0.990 

1000 

2.498  0.169  0.297  10.2% 0.985 1.604 1.008 0.492 0.895 4.989  0.541  3.340 3.997 4.244 5.010  1.000 1.000 

2.503  0.128  0.206  19.9% 1.000 1.420 1.004 0.480 0.890 4.684  0.555  3.497 3.854 3.969 4.676  1.000 1.000 

2.490  0.096  0.142  30.3% 0.973 1.674 1.013 0.517 0.890 4.352  0.575  2.810 3.392 3.506 4.417  1.000 1.000 

2000 

2.495  0.169  0.298  10.1% 0.996 1.228 1.003 0.486 0.897 6.303  0.479  4.268 5.568 5.772 6.278  1.000 1.000 

2.500  0.128  0.206  20.2% 1.004 1.188 0.999 0.500 0.897 5.972  0.487  4.548 5.097 5.299 6.052  1.000 1.000 

2.506  0.095  0.142  29.8% 1.004 1.268 1.000 0.495 0.899 5.657  0.543  4.294 4.760 5.018 5.624  1.000 1.000 

Note: Based on 500 replications for each setting. 

The level of significance 0.01, the critical values were used 2.135 for n=500, 2.093 for n=1000 and 2.114 for n=2000 respectively. 
The level of significance 0.05, the critical values were used 1.807 for n=500, 1.771 for n=1000 and 1.785 for n=2000 respectively. 
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Table 4.6 Linear regression analysis results for mean of alternative LRT with two way 
interactions 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 288.681 100.136  2.883 .004

sample size N -.467 .052 -.657 -9.032 .000

mixing proportion   -265.445 186.081 -.155 -1.427 .155

mixing proportion square 
2  -805.282 138.864 -.481 -5.799 .000

distance between betas D -831.853 109.712 -.525 -7.582 .000

censoring rate CR 898.817 362.157 .166 2.482 .014

N*  .538 .050 .561 10.654 .000

N*D .815 .047 .988 17.489 .000

N*CR -.255 .160 -.095 -1.601 .110

 *D 1956.614 112.563 .995 17.382 .000

 *CR -899.382 385.332 -.140 -2.334 .020

D*CR -600.261 355.954 -.107 -1.686 .093

a. Dependent Variable: mean LRT 

b. R square 0.895 
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Table 4.7 Logit(power) linear regression analysis results of power at 01.0  

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -14.113 1.182  -11.937 .000

sample size N .004 .001 .672 6.485 .000

mixing proportion   25.560 1.978 1.881 12.924 .000

mixing proportion 

square 
2  

-21.196 1.398 -1.599 -15.161 .000

censoring rate CR -3.044 4.160 -.071 -.732 .465

distance between 

betas D 

23.987 2.470 .854 9.711 .000

N*  .000 .001 -.071 -1.055 .293

N*CR .000 .002 -.029 -.388 .699

N*D -.005 .001 -.416 -4.861 .000

 *CR -2.951 3.880 -.058 -.761 .448

 *D 3.521 2.534 .120 1.389 .167

CR*D 9.730 8.014 .113 1.214 .227

a. Dependent Variable: logit(power) 

b. R square: 0.919 
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Appendix 

 

Calculating the mean of censoring distribution for single regime model in R 

 

n <- 500; # number of subjects 

rep <-100; # number of replications 

x<-matrix(0,rep,n); # covariate x 

t<-matrix(0,rep,n); # survival time 

c<-matrix(0,rep,n); # absence of censoring indicator c=1 uncensored, c=0 censored. 

u<-matrix(0,rep,n); # censoring time 

tt<-matrix(0,rep,n); # failure time 

 

lambda0 <- 3; # initial parameter setting 

beta0<-1; # initial parameter setting 

cr<-0.20; # expected censoring rate 

coe<- 0.78; # adjusted coefficient of E[x] 

 

for ( k  in 1: rep) 

 { 

 x[k,]<- runif(n, min=0, max=5); # x~Uniform(0,5) 

 u[k,]<-rexp( n,rate=lambda0*exp(coe*2.5*beta0)*(cr/(1-cr))); #censoring distn. 

 for (i in 1:n) 

  { 

  tt[k,i]<-rexp( 1,rate=lambda0*exp(x[k,i]*beta0)); #failure time distn. 

  t[k,i]<-min(tt[k,i],u[k,i]);  

   if (tt[k,i] <= u[k,i]) c[k,i] <- 1 else c[k,i] <- 0; 

  } 

 } 

 

1-sum(c)/(n*rep); # average of observed censoring rate 

(1/(lambda0*exp(coe*2.5*beta0)*(cr/(1-cr)))); # mean of censoring distribution 
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Calculating the mean of censoring distribution for mixture of two regimes model 

in R 

n <- 500; # number of subjects 

rep <-100; # number of replicates 

x<-matrix(0,rep,n); # covariate x 

select<-matrix(0,rep,n); # criterion of mixing proportion 

t<-matrix(0,rep,n); # survival time 

c<-matrix(0,rep,n); # absence of censoring indicator c=1 uncensored, c=0 otherwise. 

u<-matrix(0,rep,n); # censoring time 

left<-matrix(0,rep,n); # first regime 

right<-matrix(0,rep,n); # second regime 

u<-matrix(0,rep,n); # censoring time 

tt<-matrix(0,rep,n); # failure time 

 

lam1 <- 1; # initial parameter setting  

lam2 <- 1; # initial parameter setting  

be1 <- 1.5; # initial parameter setting  

be2 <- 0.5; # initial parameter setting  

m <- 0.5; # initial parameter setting, mixing proportion 

cr<- 0.3; # expected censoring rate 

coe<- 0.85; # adjusted coefficient of E[x] 

 

for ( k  in 1: rep) 

 { 

 select[k,] <- runif (n, 0, 1);  

 x[k,]<-runif(n, min=0, max=5); 

 u[k,]<-rexp(n, rate= (m*(lam1*exp(be1*coe*2.5))+  

(1-m)*(lam2*exp(be2*coe*2.5)))*cr/(1-cr)); #censoring distn. 

 

for (i in 1:n) 

  { 

  left[k,i] <- rexp(1, rate=lam1*exp(x[k,i]*be1)); #failure time of first regime 

  right[k,i] <- rexp(1, rate=lam2*exp(x[k,i]*be2)); #failure time of second  

regime 

  if (select[k,i] <= m) tt[k,i] <- left[k,i] else tt[k,i] <- right[k,i]; 

  } 

 for (i in 1:n) 

  { 
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  t[k,i]<-min(tt[k,i],u[k,i]); 

  if (tt[k,i] <= u[k,i]) c[k,i] <- 1 else c[k,i] <- 0; 

  } 

} 

 

1-(sum(c)/(n*rep));  # average of observed censoring rate 

1/((m*(lam1*exp(be1*coe*2.5))+(1-m)*(lam2*exp(be2*coe*2.5)))*cr/(1-cr)); # 

mean of censoring distribution 
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Microsoft Visual C++ code for the simulation study 
const int num_sub = 500;         // number of subjects 

const int num_rep = 500;       // number of replicates 

 

// initial parameters values 

// null parameters setting 

const double lambda_h0 = 3; 

const double beta_h0 = 1; 

const double mean_censor_dist_h0 = 0.1896988; 

 

/* 

// alternative parameters setting 

const double lambda1_h1 = 1; 

const double lambda2_h1 = 1; 

const double beta1_h1 = 0.75; 

const double beta2_h1 = 0.5; 

const double mix_h1 = 0.6; 

const double mean_censor_dist_h1 = 0.5580538; 

*/ 

 

// number of random starting points 

const int num_of_init_mu=4; 

const int num_of_init_be=4; 

 

const int num_of_init_mu1=2; 

const int num_of_init_mu2=2; 

const int num_of_init_be1=2; 

const int num_of_init_be2=2; 

const int num_of_init_alp=3; 

 

/* range of covariate x */ 

const double uniform_min = 0; 

const double uniform_max = 5; 

 

// single regime model function 

double my_f0(const gsl_vector *v, void *params) 

{ 

 power_data *my_pwr_data; 
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 my_pwr_data = (power_data*)params; 

 double sumlog0=0; 

  

 gsl_vector* covar_t = my_pwr_data->covar_t_st; 

 gsl_vector* covar_c = my_pwr_data->covar_c_st; 

 gsl_vector* covar_x = my_pwr_data->covar_x_st; 

 int n = my_pwr_data->size; 

  

 double mu = gsl_vector_get(v, 0);  

 double beta = gsl_vector_get(v, 1);  

     double lambda, logitem0; 

 lambda=exp(mu); 

 

for (int i = 0; i < n; i++) 

 { 

  logitem0 = gsl_vector_get(covar_c,i)*(log(lambda)+beta* 

gsl_vector_get(covar_x,i))-lambda* gsl_vector_get(covar_t,i)* exp(beta* 

gsl_vector_get(covar_x,i)); 

  sumlog0 = sumlog0 + logitem0; 

 } 

 

 return -sumlog0; 

} 

 

//mixture of two regimes model function 

double my_f1(const gsl_vector *v, void *params) 

{ 

 power_data *my_pwr_data; 

 my_pwr_data = (power_data*)params; 

 double sumlog1=0; 

  

 gsl_vector* covar_t = my_pwr_data->covar_t_st; 

 gsl_vector* covar_c = my_pwr_data->covar_c_st; 

 gsl_vector* covar_x = my_pwr_data->covar_x_st; 

 

 int n = my_pwr_data->size; 

 

 double mu1 = gsl_vector_get(v, 0);  
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 double mu2 = gsl_vector_get(v, 1); 

 double beta1 = gsl_vector_get(v, 2);  

 double beta2 = gsl_vector_get(v, 3); 

   double alpha = gsl_vector_get(v, 4); 

 double lambda1, lambda2, mix, x1, x2, logitem1; 

 lambda1=exp(mu1); 

 lambda2=exp(mu2); 

 mix= exp(alpha)/(1+exp(alpha)); 

 for (int i = 0; i < n; i++) 

 {   

 x1= mix*exp(-lambda1*gsl_vector_get(covar_t,i)*exp(beta1*gsl_vector_get(covar_x,i))); 

 x2= 

(1-mix)*exp(-lambda2*gsl_vector_get(covar_t,i)*exp(beta2*gsl_vector_get(covar_x,i))); 

 

 logitem1=gsl_vector_get(covar_c,i)*log(x1*lambda1*exp(beta1*gsl_vector_get(covar_x,i))

+x2*lambda2*exp(beta2*gsl_vector_get(covar_x,i)))+(1-gsl_vector_get(covar_c,i))*log(x1+x2) ; 

  sumlog1 = sumlog1+logitem1; 

 } 

 

 return -sumlog1; 

} 

 

 //random number generator 

 const gsl_rng_type * T; 

 gsl_rng * r; 

 gsl_rng_env_setup(); 

 T = gsl_rng_default; 

 r = gsl_rng_alloc (T); 

 gsl_rng_set (r, (unsigned)time(0)); 

 

 //data generation 

 //null data generation 

 for (int row = 0; row < num_rep; row++) 

 { 

  for (int col = 0; col < num_sub; col++) 

  { 

   gsl_matrix_set(covar_x,row,col,gsl_ran_flat (r, uniform_min, uniform_max)); 

   gsl_matrix_set(failure_dist,row,col, gsl_ran_exponential(r, 
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1/(lambda_h0*exp(gsl_matrix_get(covar_x,row,col)*beta_h0)))); 

  } 

 } 

 

 for (int row = 0; row < num_rep; row++) 

 { 

  for (int col = 0; col < num_sub; col++) 

  { 

  gsl_matrix_set (censor_dist,row,col, gsl_ran_exponential(r, mean_censor_dist_h0)); 

  gsl_matrix_set(covar_t,row,col, min( gsl_matrix_get(failure_dist, row, col), 

gsl_matrix_get(censor_dist, row, col))); 

 

   if (gsl_matrix_get(failure_dist,row,col) < 

gsl_matrix_get(censor_dist,row,col)) 

   { 

    gsl_matrix_set(covar_c,row,col,1); 

   } 

   else 

   { 

    gsl_matrix_set(covar_c,row,col,0); 

   } 

  } 

 } 

 

/* 

 //alternative data generation 

 gsl_matrix* select = gsl_matrix_calloc(num_rep,num_sub); 

  

 for (int row = 0; row < num_rep; row++) 

 { 

  for (int col = 0; col < num_sub; col++) 

  { 

   gsl_matrix_set(select,row,col,gsl_ran_flat (r, 0, 1)); 

   gsl_matrix_set(covar_x,row,col,gsl_ran_flat (r, uniform_min, uniform_max)); 

   gsl_matrix_set(first,row,col,gsl_ran_exponential(r, 

1/(lambda1_h1*exp(gsl_matrix_get(covar_x,row,col)*beta1_h1)))); 

   gsl_matrix_set(second,row,col,gsl_ran_exponential(r, 

1/(lambda2_h1*exp(gsl_matrix_get(covar_x,row,col)*beta2_h1)))); 
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   if (gsl_matrix_get(select,row,col) < mix_h1) 

    { 

    gsl_matrix_set(failure_dist,row,col, gsl_matrix_get(first, row, col)); 

    } 

   else 

    { 

    gsl_matrix_set(failure_dist,row,col, gsl_matrix_get(second, row, col)); 

    } 

  } 

 } 

   

 for (int row = 0; row < num_rep; row++) 

 { 

  for (int col = 0; col < num_sub; col++) 

  { 

  gsl_matrix_set (censor_dist,row,col, gsl_ran_exponential(r, mean_censor_dist_h1)); 

 

  gsl_matrix_set(covar_t,row,col, min( gsl_matrix_get(failure_dist, row, col), 

gsl_matrix_get(censor_dist, row, col))); 

 

   if (gsl_matrix_get(failure_dist,row,col) < 

gsl_matrix_get(censor_dist,row,col)) 

   { 

    gsl_matrix_set(covar_c,row,col,1); 

   } 

   else 

   { 

    gsl_matrix_set(covar_c,row,col,0); 

   } 

  } 

 } 

*/ 

 // RSPs initial values ~Uni(0,1) 

  for (int p = 0; p < num_of_init_mu; p++) 

  { 

   gsl_vector_set(mus,p,gsl_ran_flat (r, 0, 1)); 

  } 
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  for (int p = 0; p < num_of_init_be; p++) 

  { 

   gsl_vector_set(betas,p,gsl_ran_flat (r, 0, 1)); 

  } 

   

  for (int p = 0; p < num_of_init_mu1; p++) 

  { 

   gsl_vector_set(mu1s,p,gsl_ran_flat (r, 0, 1)); 

  } 

   

  for (int p = 0; p < num_of_init_mu2; p++) 

  { 

   gsl_vector_set(mu2s,p,gsl_ran_flat (r, 0, 1)); 

  } 

   

  for (int p = 0; p < num_of_init_be1; p++) 

  { 

   gsl_vector_set(beta1s,p,gsl_ran_flat (r, 0, 1)); 

  } 

   

  for (int p = 0; p < num_of_init_be2; p++) 

  { 

   gsl_vector_set(beta2s,p,gsl_ran_flat (r, 0, 1)); 

  } 

   

  for (int p = 0; p < num_of_init_alp; p++) 

  { 

   gsl_vector_set(alphas,p,gsl_ran_flat (r, 0, 1)); 

  } 

 

// simulations Nelder-Mead algorithm 

 

 for(int w=0 ; w < num_rep; w++) 

 { 

  power_data my_pwr_data; 

   

  gsl_matrix_get_row(covar_t_st,covar_t,w); 
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  gsl_matrix_get_row(covar_c_st,covar_c,w); 

  gsl_matrix_get_row(covar_x_st,covar_x,w); 

 

  my_pwr_data.covar_t_st = covar_t_st; 

  my_pwr_data.covar_c_st = covar_c_st; 

  my_pwr_data.covar_x_st = covar_x_st; 

  my_pwr_data.size = num_sub; 

 

  for (int ll = 0; ll < num_of_init_mu; ll++) 

  { 

   for (int mm = 0; mm < num_of_init_be; mm++) 

   { 

       gsl_vector_set(xx, 0, gsl_vector_get(mus,ll)); 

       gsl_vector_set(xx, 1, gsl_vector_get(betas,mm)); 

 

       minex_func.f = &my_f0; 

       minex_func.n=np; 

       minex_func.params = (void *)&my_pwr_data; 

       gsl_multimin_fminimizer_set(s, &minex_func, xx, ss); 

               

       iter = 0; 

       int status; 

       double size; 

 

       do 

       { 

        iter++; 

        status = gsl_multimin_fminimizer_iterate(s); 

            

        if(status) 

        break; 

             

        size = gsl_multimin_fminimizer_size (s); 

        status = gsl_multimin_test_size (size, 1e-5); 

 

       } 

       while (status == GSL_CONTINUE && iter < 1000); 
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       gsl_vector_set(L0_result,w,-s->fval); 

      

 gsl_vector_set(lambda_result,w,exp(gsl_vector_get(s->x,0))); 

       gsl_vector_set(beta_result,w,gsl_vector_get(s->x,1)); 

     

      } 

     } 

 

  for (int ll = 0; ll < num_of_init_mu1; ll++) 

  { 

   for (int mm = 0; mm < num_of_init_mu2; mm++) 

   { 

    for (int nn = 0; nn < num_of_init_be1; nn++) 

    { 

     for (int pp = 0; pp < num_of_init_be2; pp++) 

     { 

      for (int qq = 0; qq < num_of_init_alp; qq++) 

      { 

        

       gsl_vector_set(xx2, 0, gsl_vector_get(mu1s,ll)); 

       gsl_vector_set(xx2, 1, gsl_vector_get(mu2s,mm)); 

       gsl_vector_set(xx2, 2, gsl_vector_get(beta1s,nn)); 

       gsl_vector_set(xx2, 3, gsl_vector_get(beta2s,pp)); 

       gsl_vector_set(xx2, 4, gsl_vector_get(alphas,qq)); 

 

       minex_func.f = &my_f1; 

       minex_func.n=np2; 

       minex_func.params = (void *)&my_pwr_data; 

       gsl_multimin_fminimizer_set(s2, &minex_func, xx2, ss2); 

        

       iter2 = 0; 

       int status; 

       double size2; 

 

       do 

       { 

        iter2++; 

        status = gsl_multimin_fminimizer_iterate(s2); 
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        if(status) 

        break; 

             

        size2 = gsl_multimin_fminimizer_size (s2); 

        status = gsl_multimin_test_size (size2, 1e-5); 

 

       } 

       while (status == GSL_CONTINUE && iter2 < 1000); 

        

       gsl_vector_set(L1_result,w,-s2->fval); 

     gsl_vector_set(lambda1_result,w,exp(gsl_vector_get(s2->x,0))); 

     gsl_vector_set(lambda2_result,w,exp(gsl_vector_get(s2->x,1))); 

     gsl_vector_set(beta1_result,w,gsl_vector_get(s2->x,2));  

     gsl_vector_set(beta2_result,w,gsl_vector_get(s2->x,3)); 

gsl_vector_set(mix_result,w,exp(gsl_vector_get(s2->x,4))/(1+exp(gsl_vector_get(s2->x,4)))); 

       

      } 

     } 

    } 

   } 

  } 

  

for(int i=0;i<num_rep;i++) 

{ 

 gsl_vector_set(maxf0,i,gsl_vector_get(L0_result,i)); 

 gsl_vector_set(max1,i,gsl_vector_get(lambda_result,i)); 

 gsl_vector_set(max2,i,gsl_vector_get(beta_result,i)); 

  

 gsl_vector_set(maxf1,i,gsl_vector_get(L1_result,i)); 

 gsl_vector_set(max3,i,gsl_vector_get(lambda1_result,i)); 

 gsl_vector_set(max4,i,gsl_vector_get(lambda2_result,i)); 

 gsl_vector_set(max5,i,gsl_vector_get(beta1_result,i)); 

 gsl_vector_set(max6,i,gsl_vector_get(beta2_result,i)); 

 gsl_vector_set(max7,i,gsl_vector_get(mix_result,i)); 

 

/* output format 

if (gsl_vector_get(max7,i) < 0.5) 
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   { 

     

    gsl_vector_set(real_max3,i, gsl_vector_get(max3, i)); 

    gsl_vector_set(real_max4,i, gsl_vector_get(max4, i)); 

    gsl_vector_set(real_max5,i, gsl_vector_get(max5, i)); 

    gsl_vector_set(real_max6,i, gsl_vector_get(max6, i)); 

    gsl_vector_set(real_max7,i, gsl_vector_get(max7, i)); 

 

   } 

   else 

   { 

    gsl_vector_set(real_max3,i, gsl_vector_get(max4, i)); 

    gsl_vector_set(real_max4,i, gsl_vector_get(max3, i)); 

    gsl_vector_set(real_max5,i, gsl_vector_get(max6, i)); 

    gsl_vector_set(real_max6,i, gsl_vector_get(max5, i)); 

    gsl_vector_set(real_max7,i, 1-gsl_vector_get(max7, i)); 

   } 

*/ 

} 

 

double covar_t_tmp[num_sub]; 

double covar_c_tmp[num_sub]; 

double covar_x_tmp[num_sub]; 

 

for(int i=0;i<num_sub ; i++) 

{ 

 covar_t_tmp[i]=gsl_matrix_get(covar_t,w,i); 

 covar_c_tmp[i]=gsl_matrix_get(covar_c,w,i); 

 covar_x_tmp[i]=gsl_matrix_get(covar_x,w,i); 

} 

 

gsl_vector_set(mean_covar_t,w, gsl_stats_mean(covar_t_tmp,1,num_sub)); 

gsl_vector_set(mean_covar_x,w, gsl_stats_mean(covar_x_tmp,1,num_sub)); 

gsl_vector_set(mean_covar_c,w, gsl_stats_mean(covar_c_tmp,1,num_sub)); 

gsl_vector_set(sd_covar_t,w, gsl_stats_sd(covar_t_tmp,1,num_sub)); 

 

 

}//w 
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FILE *ofp; 

 

ofp=fopen("result", "w"); 

 

fprintf(ofp, " mean_x\t mean_t\t sd_t\t observed_censoring_farction\t sumlog0\t lambdahat\t 

betahat\t  sumlog1\t lambda1hat\t lambda2hat\t beta1hat\t beta2hat\t mixhat\t LRT\n"); 

  

for (int f = 0; f < num_rep; f++) 

{ 

  //fprintf(ofp, "%f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\n", 

gsl_vector_get(mean_covar_x,f), gsl_vector_get(mean_covar_t,f), gsl_vector_get(sd_covar_t,f), 

1-gsl_vector_get(mean_covar_c,f), gsl_vector_get(maxf0,f), gsl_vector_get(max1,f), 

gsl_vector_get(max2,f), gsl_vector_get(maxf1,f), gsl_vector_get(real_max3,f), 

gsl_vector_get(real_max4,f), gsl_vector_get(real_max5,f), gsl_vector_get(real_max6,f), 

gsl_vector_get(real_max7,f), ((-2) * gsl_vector_get(maxf0,f) - (-2) * 

gsl_vector_get(maxf1,f))); 

 

  fprintf(ofp, "%f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\n", 

gsl_vector_get(mean_covar_x,f), gsl_vector_get(mean_covar_t,f), gsl_vector_get(sd_covar_t,f), 

1-gsl_vector_get(mean_covar_c,f), gsl_vector_get(maxf0,f), gsl_vector_get(max1,f), 

gsl_vector_get(max2,f), gsl_vector_get(maxf1,f), gsl_vector_get(max3,f), 

gsl_vector_get(max4,f), gsl_vector_get(max5,f), gsl_vector_get(max6,f), 

gsl_vector_get(max7,f), ((-2) * gsl_vector_get(maxf0,f) - (-2) * gsl_vector_get(maxf1,f))); 

 

 }  

 

 fclose(ofp); 

  return 1; 

} 
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