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Many software security techniques require instrumentation of programs either to add run-
time checks or to perform dynamic analysis. Unfortunately, commercially distributed 
application binaries on the Win32 platform are often stripped of their symbol table, and 
therefore cannot be easily disassembled, let alone correctly instrumented. BIRD is an 
instrumentation tool that applies an IA-32 disassembler both statically and dynamically, 
and successfully guarantees that no instruction in an input binary can be executed without 
being examined first. Unfortunately, the first version of BIRD has several correctness and 
performance problems. This report describes our experiences of optimizing the first 
BIRD prototype to remove these problems. In particular, we develop a speculative 
disassembly technique that reaps most of the performance benefits of static disassembly 
while ensuring the same disassembly correctness as dynamic disassembly, a bitmap-
based situation check algorithm that reduces the performance overhead associated with 
situation checking to the minimum, and finally a comprehensive in-place instrumentation 
technique that relies mostly on instruction substitution and drastically cuts down the 
number of invocations to debug exceptions (int  3). Together these performance 
optimizations reduce the total instrumentation overhead of a set of Win32 programs from 
10-14% to 4-5% on average. 
To show usefulness of a tool like BEAST, we developed it further to extract a call graph 
and a system call site control flow graph (scsfg) from stripped Win32 binaries. A call 
graph gives a fair overview of dependencies between functions and tells which functions 
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are linked to each other. A control flow graph adds certain level of determinism to the 
call graph by enlisting the order in which functions are called. In this report we present 
design, implementation and evaluation of these applications. 
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Chapter 1 

1   Introduction 
 
A significant percentage of cyber attacks that take place on the Internet today exploit 
vulnerabilities in user-level applications or operating systems. A wide variety of 
techniques have been proposed to protect vulnerable programs from being exploited, such 
as address space layout randomization[16], control flow integrity verification[5], system 
call pattern check[17], etc. Most of these research efforts rely on instrumentation of the 
protected applications and thus require access to their source code. This requirement is 
unrealistic in practice, because end users rarely have access to the source code of most 
commercial applications they use. Therefore, for these protection techniques to work, 
they have to be applicable to executable binaries directly. Therefore, the key enabling 
technology for such security-enhancing transformations is correct and efficient binary 
instrumentation. 
 
To instrument a binary, one needs to be able to examine every instruction before it is 
executed. Ideally, binary instrumentation should be done statically so that its run-time 
performance overhead is reduced to the minimum. In practice, however, it is difficult to 
statically analyze and instrument executable binaries, especially for stripped Win32/X86 
binaries, i.e. those that don't come with a symbol table, because even state-of-the-art 
commercial disassemblers such as IDAPro cannot disassemble these binaries with 100% 
accuracy, which, unfortunately, is what security-enhancing instrumentation requires. 
One way to solve this problem is to first execute a binary to be instrumented in an 
emulator[9], [12] and then run the already encountered instructions in native mode. 
Another approach, as used in BIRD[14], is to disassemble as much as possible an input 
binary to be instrumented statically, and dynamically invoke the disassembler on the 
binary's areas that cannot be statically disassembled but executed dynamically. BIRD's 
approach is simpler and more efficient because it eliminates the run-time emulation 
overhead and produces more efficient instrumentation code. 
 
There are two major components of BIRD’s architecture: 

a. Static component 
b. Dynamic component 

BIRD[14] statically disassembles a binary from its entry point, recursively traversing over 
direct jumps and calls till all the reachable code is disassembled. In this scan, if BIRD 
finds any indirect control transfer instructions, it instruments those instructions with a call 
to runtime check() function which is present in BIRD’s dynamic component, a DLL.  
 
BIRD’s dynamic engine is a DLL which has init() and check() functions. Init() function 
initializes the runtime data structures using the statically gathered information. Check() 
function verifies targets of indirect control transfer instructions. If target is already in a 
known region then BIRD continues normal execution of the program. If target lies in 
completely unknown region, then BIRD starts dynamic disassembly from the target 
address and marks the region as known area. 
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This report describes the design, implementation and evaluation of an optimized binary 
instrumentation tool for stripped Win32/X86 binaries called BEAST. BEAST is built on 
top of BIRD, and solves three performance problems in BIRD. First, the static 
disassembler of BIRD relies on a pre-defined threshold to determine if a disassembled 
region in the input binary is code or not. If this threshold is set to a higher value, a 
smaller percentage of the input binary is successfully disassembled, the disassembly 
coverage is lower but the disassembly accuracy may be higher. If this threshold is set to a 
lower value, a higher percentage of the input binary is successfully disassembled, the 
disassembly coverage is higher but the disassembly accuracy may be lower. Because it is 
difficult to devise a good threshold value that can be universally applied to all Win32 
binaries, for safety BIRD has no choice but to set the threshold to a conservatively high 
value by default, and thus sacrifices the disassembly coverage and run-time performance.    
BEAST successfully overcomes this dilemma with a speculative disassembly mechanism 
that optimistically disassembles the input binary, and uses the optimistically 
disassembled results only when they are confirmed at run time.  As a result, speculative 
disassembly is able to achieve the best of both worlds: high disassembly accuracy and 
coverage and high run-time performance.  
 
The second problem with BIRD is its reliance on int 3 instructions for in-place 
instrumentation. Given an instrumentation point P and an instrument code C, BIRD 
replaces the 5-byte region starting at P with a jump instruction to C whenever possible, 
and replaces the 1-byte region starting at P with an int 3 instruction otherwise. Because 
an int 3 instruction is much more expensive than a jump instruction, the fact that BIRD 
did not employ int 3 instructions efficiently causes serious performance penalty for 
certain Win32 applications. To address this problem, BEAST performs a series of 
optimizations that explores all possible ways of using jump instructions and eventually 
successfully reduces the static and dynamic int 3 instruction counts to the minimum. 
 
The third problem with BIRD is the time it spends to perform the expensive lookups at 
runtime for finding the appropriate entry in the hash tables. BEAST performs faster 
searches as compared to BIRD by maintaining an in memory comprehensive 2bit bitmap 
of the entire code region. This bitmap acts as a O(1) hash since there are no collisions. 
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Chapter 2 

2    Related Work 
 
Accurate disassembly is the foundation for binary instrumentation. There are many 
excellent commercial disassemblers such as IDAPro[1] and OllyDbg[2] that can achieve 
high disassembly coverage and accuracy for Win32/X86 binaries. However, they cannot 
guarantee zero disassembly error and therefore cannot serve as the basis for binary 
instrumentation.  
 
Moreover, because many commercial packers embed anti-debugger and anti-
disassembler techniques inside their unpackers, none of these disassemblers can 
disassemble packed binaries without occasional crashing, let alone instruments them.   
 
In contrast to commercial disassemblers, BEAST chooses to avoid disassembling the 
unpackers embedded in packed binaries. It does this by incorporating a heuristic 
technique to precisely identify the point at which the original binary is fully unpacked, 
and then invokes the disassembler only on the unpacked original binary. This design 
decision not only greatly simplifies BEAST’s design and implementation complexity, but 
also improves its overall robustness significantly. 
 
There are several unpacker programs on the web such as PEiD[3], ASPackdie[7], etc. 
They use a signature-based approach to identify the packer behind a packed binary, and 
apply a packer-specific unpacker to unpack the binary. Because of the reliance of packer-
specific unpackers, they are typically ineffective against unknown packers or new 
variants of existing packers.    
 
In contrast, BEAST is designed to unpack packed binaries in a packer-independent way. 
Bintropy[4] computes a binary's entropy to determine whether the binary is 
packed/encrypted or not. BEAST applies a similar idea to determine if a binary is packed 
or not statically, and if the original binary has been fully unpacked at run time. 
 
There are also several Win32 binary instrumentation tools. However, none of them 
currently are capable of handling packed binaries as BEAST. 
 
Dyninst[11] applies static disassembly to Win32/X86 binary rewriting and optimization. 
It requires full debugging information to guarantee the safety of instrumentation. BEAST 
does not have this requirement. 
 
Dynamo[9] is another binary interpretation and optimization system that uses a software-
based architectural emulator to detect so-called hot traces, i.e. sequences of frequently 
executed instructions, and optimize them dynamically so that they can run faster. Despite 
the binary interpretation overhead, Dynamo is able to achieve a non-trivial speedup of 
15%-22% for some binaries when compared with their native execution time. 
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Unfortunately, the Win32/x86 version of Dynamo[10] runs much slower and incurs a 
performance overhead of between 30% to 40%. The reasons cited for this slowdown are 
lack of documentation for Win32 API and additional implementation complexities that 
do not exist on the UNIX platform.  
 
PIN[12] takes a similar dynamic binary emulation and instrumentation approach as 
Dynamo. It also performs instrumentation entirely at run time. PIN provides a very good 
Instrumentation interface. It is generic in the sense it separates architecture dependant 
complexities from the user by providing a well designed instrumentation interface. Since 
PIN allows instrumentation, it causes runtime overhead. PIN uses optimizations like 
liveness analysis on this instrumentation code so as to save runtime overhead. BEAST is 
not providing a custom instrumentation interface. 
 
PIN uses a complete dynamic instrumentation approach. It uses ptrace to capture the 
application context and attaches to it. Its complete dynamic instrumentation approach is 
somewhat costlier than BEAST's speculative approach which minimizes runtime costs, 
however, BEAST introduces considerable amount of debug exceptions (int 3s) at runtime 
owing to its approach of in-place instrumentation. PIN completely rewrites code to other 
location by caching code and then creates links to these locations. This approach is 
costlier in terms of memory usage but it obviates the need of using debug exceptions and 
thus avoids time spent on expensive user to kernel switches due to int 3. 
 
PIN creates code cache called traces. They are sequence of instructions to be executed 
serially. PIN tries to link these traces directly to avoid the transfer of control to VM for 
indirect branch resolution. For direct branch it can directly link to a single trace, however, 
for indirect branch it performs branch target prediction. It uses the lea/jecxz approach 
similar to DynamoRIO to find if the predicted branch is correct. This approach is similar 
to BEAST's approach of pushing target and looking it up in the O(1) cache. If PIN is not 
able to find the target then it does indirect target resolution by using VM. Here it creates a 
trace and start its execution. It is similar to BEAST's approach of finding if a target 
address is known/unknown; if unknown then invoke dynamic disassembler. However, 
BEAST introduces int 3s during dynamic disassembly if it discovers a short indirect 
branch. PIN does not have to do this due to code rewriting. Though the number of 
dynamic int 3s introduced are considerably less, they can prove costlier if int 3s are 
executed in a loop. 
 
PIN uses lookups in its hash table to find traces linked with an indirect branch. BEAST 
also performs such lookups, however, our 2 byte-bitmap hashing mechanism, though a 
little costlier in terms of memory is otherwise quite efficient. It performs O(1) search to 
find the data structure corresponding to an indirect branch. 
 
PIN handles function returns. To optimize returns they use code cloning, where they 
create copy of a function per calling context. BEAST does not handle return sites. It 
assumes a behavior where functions return to the caller. Since caller was already 
disassembled, we assume return site will be disassembled. However, this may not be the 
case in codes where the return addresses are changed at runtime by modifying EIP. Thus 
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we need to handle return in a similar way as we handle indirect control transfer 
instruction. 
 
PIN has used register reallocation so as to ensure that it does not modify application 
registers. BEAST simply pushes the registers on stack and pops them out when it is done 
with handling. 
 
PIN uses a spilling area where it stores the registers content when it reuses them for 
reallocation. This spilling area needs to be thread specific. BEAST does not need a 
spilling area, but at run time BEAST calculates relocated address of a target. If it finds 
that the target is relocated, it needs to redirect control to this region. This computation of 
relocated target and actual transfer to the target address needs to be done in a thread 
specific manner. We exploit the thread specific stack for this. If BEAST's check() routine 
- runtime handler function, is handling an indirect call and it realizes that the target 
address is relocated then it changes the return address of check routine to the relocated 
target address and pushes the actual return address of check routine below it. Thus after 
execution of the check function, instead of returning to the caller’s site, BEAST jumps 
directly to the callee. After callee reaches return, it returns to callers return site. 
 
HDTrans[13] is a light-weight IA32-IA32 binary translation system that combines a set 
of simple but effective translation techniques with well known trace linearization and 
code caching optimization techniques. Performance experiments from HDTrans show 
that static pre-translation is effective only when expensive instrumentation or 
optimization is required.  
 
QEMU[19] is a processor emulator that uses a dynamic translator to convert instructions 
in an emulated program into the host's instruction set. Such conversion can be considered 
as one form of binary disassembly and instrumentation. 
 
Similar to BEAST, QEMU also uses page protection to detect SMC and invalidates 
previously translated code. The slowdown of QEMU compared with native execution is 
typically a factor of 5 or more. 
 
BIRD [14] is a general binary instrumentation infrastructure that is specially designed to 
facilitate the development of software security for Windows/X86 binaries. Given a binary 
program, BIRD first statically disassembles it to uncover as many instructions as possible, 
rewrites it to allow run-time interception at all indirect jumps and calls, and then 
dynamically disassembles those areas that are explored during execution. Through a 
combination of static and dynamic disassembly, BIRD achieves both high accuracy and 
high coverage. However, for packed binaries, BIRD 's static disassembler can easily fail 
on the unpacker code. Therefore it cannot do much for packed binary instrumentation. 
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Chapter 3 

3   Overview 
 

3.1 Overview of BEAST 
 
BEAST is derived from BIRD, which has two limitations. 

First, despite a significant amount of efforts spent on fine-tuning its disassembly 
algorithm, BIRD could not guarantee the static disassembly error rate is zero in all cases 
when it uses a disassembly algorithm that is more aggressive than recursive traversal[18]. 
To do so, BIRD needs to drastically decrease the coverage of its static disassembly, and 
thus defers most of the disassembly work until run time. How to achieve 100% static 
disassembly accuracy while maintaining a high disassembly coverage for Win32/X86 
binaries remains an elusive goal for BIRD. 

Second, like most other existing binary instrumentation systems, BIRD cannot handle any 
form of self-modifying code: Once a binary's code region is disassembled, BIRD assumes 
it never changes and thus never bothers to invalidate the code region's disassembled 
result if it indeed gets updated.  

To overcome the first limitation, BEAST uses a speculative disassembly mechanism that 
logically applies a conservative and an aggressive static disassembly algorithm on the 
input binary, and produces a conservative disassembly result (high accuracy but low 
coverage) and a speculative disassembly result (low accuracy but high coverage), 
respectively. Whenever applicable, the conservative disassembly result overrides the 
speculative result. Initially BEAST's run-time component only relies on the conservative 
disassembly result to determine if a certain part of the input binary has been successfully 
disassembled. However, whenever BEAST needs to dynamically disassemble a newly 
discovered region, it first checks if it can directly leverage the speculative disassembly 
result before invoking the disassembler. Because most of the speculative disassembly 
result is correct, i.e. its disassembly error is non-zero but low, BEAST can effectively 
avoid most of the dynamic disassembly work. As a result, this speculative disassembly 
mechanism can simultaneously achieve the best of both worlds: 100% disassembly 
accuracy with high disassembly coverage.  

Assume a packed binary B contains a compressed or encrypted form of an original binary 
O. To instrument packed binaries, BEAST aims to identify the point during the execution 
of B at which O is completely recovered. After the unpacker in B completes the 
unpacking process, it transfers the program's control to the entry point of O. Therefore, 
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the transition from B's unpacker to O corresponds to a jump whose target is a page that is 
written at run time. BEAST uses a page status tracking mechanism to detect such 
transitions. 

BEAST consists of a static component, which performs static disassembling and 
instrumentation and is implemented as a stand-alone executable, and a dynamic 
component, which performs dynamic disassembling and page status tracking and is 
implemented as a DLL that is injected into an instrumented binary when it is executed.  

Given an input binary to be instrumented, the static component of BEAST first checks if 
the input binary is packed or not. If the input binary is not packed, BEAST statically 
disassembles the binary to produce a conservative and a speculative disassembly result, 
and instruments indirect branches and other instrumentation points of interest to the user. 
If the input binary is packed, BEAST will not disassemble or instrument it at all.    

In both cases, BEAST appends to the end of the input binary useful information that could 
facilitate dynamic disassembly and instrumentation such as base loading address, module 
size, code region offset, and packed/non-packed flag. 

BEAST’s dynamic component contains a page status tracking mechanism to detect the 
end of unpacking during the execution of a packed binary, and invokes a dynamic 
disassembler and instrumentor when the original binary is completely unpacked.  

 

3.2 General Architecture of BIRD/BEAST 
 
BEAST, in order to provide complete coverage, intercepts all indirect branches and 
instruments them with a call to runtime check() function. Thus, there are two major 
components of BEAST’s architecture: 

a. Static component 
b. Dynamic component 
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Figure 1 BEAST’s architecture 
 

3.2.1 Static component 
 
BEAST statically disassembles a binary from its entry point, recursively traversing over 
direct jumps and calls till all the reachable code is disassembled. In this scan, if BEAST 
finds any indirect control transfer instructions, it instruments those instructions with a call 
to runtime “check” function which is present in BEAST’s dynamic component, a DLL. 
Later, BEAST uses speculative disassembly to uncover as much of the Unknown Area. It 
marks these instructions as speculative and dumps related information at the end of the 
binary. Finally, BEAST dumps the indirect branch and unknown area related information 
at the end of the original binary. 
 
To clarify the concepts of 

1. Indirect call to a known area and 
2. Indirect call to an unknown area consider the following example. 

 
Original code segment: 
10000000 Push ebp 
10000001 Mov ebp, esp 
. 
10000005 call 0x100000F0  
. 
1000000A Mov eax, [0x100000F0] 
1000000F call eax 
. 
. 
1000001A mov eax, [0x100001F0] 
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1000001F call eax 
10000021 add ebx, 0x0A 
. 
 
Assume that BEAST reaches 0x10000000 during static disassembly. Instruction at 
0x10000005 is a direct call to 0x100000F0, thus 0x100000F0 becomes a known region. 
Therefore, indirect call at location 0x1000000F turns out to be an indirect call to known 
region. Let us assume that 0x100001F0 cannot be statically reached. In this situation the 
indirect call at 0x1000001F becomes an indirect call to an unknown region. 
 
An indirect control transfer instruction is patched with a trampoline code which transfers 
control to a stub. For example, the instruction at 0x1000001F, call eax which is a 2 byte 
instruction is patched with a 5 byte jump to a stub. The region from 0x10000021 to 
0x10000023 is the region belonging to next instruction and thus is getting overwritten by 
the 5 bytes jump. We term this region as extended region. 
 
1000001F jmp 10100010 
. 
. 
10100010 push eax 
10100011 call check 
10100017 call eax 
10100019 add ebx, 0A 
1010001C jmp 10000024 
 
Above code snippet shows how the location at 1000001F is patched with a jump to a stub 
at 10100010. This stub pushes the target address on the per thread stack, which can be 
retrieved in the check function as a parameter. Check() performs the runtime handling 
and returns back. The rest of the code in the extended region is copied as it is to ensure 
correct execution. 

3.2.2 Dynamic component 
 
BEAST’s dynamic engine is a DLL which has init() and check() functions. Init function 
reads in the dumped information and populates the corresponding data structures. Check 
function handles the targets of indirect branches. It checks if the target is already known. 
If yes then it returns. If the target lies in a speculative region and starts that speculative 
region, then check() merges the speculative information about that function and does 
runtime instrumentation of indirect branches lying in that speculative region. If the target 
lies in totally unknown region, then BEAST dynamically disassembles the region till it 
hits a known region or it is unable to disassemble further. Thus, the unknown area goes 
on reducing as BEAST uncovers more unknown regions. 
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Chapter 4 
 

4   Speculative Disassembly 
 
Because binary instrumentation tools modify input binaries, they require 100% 
disassembly accuracy to preserve the input binaries' original execution semantics. The 
experiences with BIRD suggested that zero disassembly error comes with an expensive 
cost in terms of disassembly coverage. Fortunately, for legitimate Win32/X86 binaries, 
disassembly errors occur infrequently. The key idea of BEAST's speculative disassembly 
mechanism is to leverage as much as possible static disassembly results by exploiting 
run-time information to confirm those that are guaranteed to be free of disassembly 
errors.   
 
As shown in Chapter 6, speculative disassembly significantly reduces the amount of code 
that needs to be dynamically disassembled and instrumented, thus effectively performs 
most disassembly and instrumentation statically while achieving both high disassembly 
accuracy and coverage.  

 

4.1 Static Component 

4.1.1 Baseline Disassembly Algorithm 
 
BEAST's static disassembly algorithm is derived from BIRD's static disassembly 
algorithm, which consists of two passes. In the first pass, the disassembler applies 
recursive traversal to traverse the input binary's control flow graph starting from its main 
entry point, and discovers all instructions that are reachable through direct branch 
instructions, i.e., branch instructions whose target address is known statically. All the 
other bytes in the input binary that are not reachable in the first pass are called 
unreachable bytes. In the second pass, the disassembler chooses some unreachable bytes 
as starting instructions, and then performs the same control flow graph traversal from 
these instructions. During the second-pass traversal, the disassembler accumulates a 
confidence score on the probability that each unreachable byte block correspond to an 
instruction sequence. At the end of the second pass, a byte block is considered as 
instructions if and only if its score exceeds a certain threshold and the address of its first 
byte is evidenced to be a starting instruction.  
 
BIRD uses several heuristics to select the starting instructions, such as function entry 
point identification, jump table identification, etc. None of them is 100% reliable. 
Through the confidence score mechanism, the disassembler attempts to capture the 
essential difference between data and instructions bytes: it is unlikely that data bytes can 
accumulate multiple evidences that indicate that they are instructions. 
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At the end, this disassembly algorithm partitions an input binary into a known area, 
which it knows for sure corresponds to instructions or data, and an unknown area, whose 
nature it cannot be absolutely sure of. In addition, all the indirect branch instructions in 
the known area are instrumented so that when they jump to the unknown area at run time, 
the dynamical disassembler is invoked on the targets.  
 

4.1.2 Speculative Disassembly Algorithm 
 
In order to ensure that the known area it produces statically does not contain any 
disassembly error, BEAST needs to set the threshold of the confidence score to a very 
high value. However, this turns a large portion of the input binary into the unknown area, 
which may lead to significant run-time overhead. Instead of leaving the unknown area 
completely to the dynamic disassembly, BEAST disassembles this area as much as it can 
using a speculative disassembly algorithm, and records the disassembled results and their 
corresponding instrumentations. However, BEAST does not actually apply these 
instrumentations to the unknown area. 
 
To allow BEAST's run-time component to leverage static disassembly results, the static 
disassembler organizes its results into basic units called code thunks. 
 
Operationally, BEAST builds a code thunk by traversing forward from a starting point 
using the following rules: 
 

1.  Upon a conditional branch instruction, follow both of its arms.  
2.  Upon a direct jump instruction, jump to the target address.  
3.  Upon a direct call instruction to a callee that always returns, continue with the 

next instruction following this call instruction without descending into the callee's 
function body. 

4.  Upon an indirect jump or call instruction whose target address can be determined 
by static analysis, treat this instruction as its direct counterpart and apply Rule 2 
or 3. 

5. Upon a direct call whose callee does not return, a return instruction, an indirect 
branch instruction whose target address cannot be determined statically, end the 
current code chunk.  

 
Each code thunk thus constructed corresponds to a set of instructions that are guaranteed 
to be reachable by applying recursive traversal from its starting point. 
 
To increase the coverage of the speculative disassembly, BEAST searches the entire input 
binary, including its data areas, for possible starting points for growing code thunks. 
 
From a binary's PE header, BEAST first identifies the start and end of the code sections. If 
the target of a direct call instruction falls within a code section, it is a starting point 
candidate. If a sequence of bytes looks like a function prolog, the base of this byte 
sequence is also a starting point candidate. If a data pointer points to a code section, the 



 
 

12 
 

address contained in the pointer is a starting point candidate. If a 4-byte aligned word 
contains a value that falls within the address range of a code section, this value is also 
taken as a possible starting point. For areas in the input binary that do not show any signs 
of being instructions, BEAST disassembles them anyway if there are no disassembly 
errors. Each code thunk extracted from a binary is represented as a tree, and code thunks 
are connected with each other because one code thunk transfers control to another code 
thunk through a direct call or an indirect call whose target address can be statically 
determined. If a code thunk is valid, the code thunks to which it is connected are also 
valid. Two code thunks may overlap with each other with or without conflicts. A conflict 
occurs when the two code thunks cover a common byte range and they have different 
interpretations for the common bytes. BEAST resolves a conflict between two code 
thunks removing the code thunk with a significantly lower confidence score. In case their 
confidence scores are similar, BEAST removes both code thunks. If two code thunks 
overlap without conflict, BEAST keeps both code thunks. 
 

4.2 Dynamic Component 
 
Whenever BEAST's run-time engine intercepts an indirect branch that transfers the 
control to an unknown area, it first checks whether the target address goes into any code 
thunk in the speculative disassembly result. If the target address confirms any 
speculatively disassembled code thunk, BEAST directly includes this code thunk into the 
known area and applies its pre-computed instrumentations to this code thunk.  
 
Intuitively, a target address confirms a code thunk if the code thunk also thinks the 
address starts an instruction. Because it is expensive to record the start address of every 
instruction in every speculatively disassembled code thunk, BEAST only compares the 
target address of every intercepted indirect branch with the starting point addresses of 
code thunks, and confirms a code thunk if it’s starting point address matches an indirect 
branch's target address.  
 
We can fine-tune this approach to instruction and basic block level. A target address may 
confirm a code thunk if the code thunk also thinks that this address either starts an 
instruction or starts a basic block. This level of granularity will be possibly only with 
additional storage of information, especially we need to store starting address of each and 
every instruction or starting address of a basic block respectively. Moreover, it is easy to 
merge function level information like the number of callees, addresses of indirect control 
transfers in this function etc. So we resort to the function level granularity approach. 
 
Even with this approximate confirmation approach, BEAST is able to eliminate a majority 
of dynamic disassembling as required by BIRD configured with the same confidence 
score threshold.   
 
As mentioned earlier, once BEAST’s run-time engine confirms a code thunk, it leverages 
the thunk's disassembly and instrumentation results. As a result, not only the amount of 
dynamic disassembly and instrumentation is greatly reduced, more importantly the 



 
 

13 
 

quality of instrumentation is significantly improved. In BIRD, instrumenting indirect 
branches in the dynamically disassembled results is always done through the expensive 
int 3 instruction because it cannot afford to perform advanced control flow analysis 
required to safely instrument these branches using simple jump instructions. Because the 
trampoline code for instrumentation is statically prepared, BEAST can carry out 
instrumentation with almost no overhead as it only needs to paste the trampoline code 
over the target indirect branch instruction or instrumentation. 
 
The disassembly algorithm BEAST applies to a dynamically unpacked binary is different 
from its static disassembly algorithm in the following ways. 
 
First, an unpacked binary may not have a proper PE header, which contains information 
such as the session table, the import table, etc.,  because the unpacker typically performs 
the job of the Windows loader and therefore can remove all PE header information that 
the loader needs.  
 
Second, because the disassembly time for an unpacked binary is counted towards the total 
run time, BEAST cannot afford to use advanced program analysis to improve disassembly 
accuracy and/or instrumentation efficiency. Instead, after an unpacked binary is created, 
BEAST scans it once to derive possible starting points and grow code thunks, and leaves 
whatever areas left to run-time disassembly.  
 
To improve the efficiency of instrumentations for dynamically disassembled code, 
BEAST records the target addresses of all direct and indirect branches it encounters. 
Every time it encounters an indirect branch destined to an unknown area that does not 
correspond to any pre-computed code thunk, it instruments this indirect branch by 
replacing it with a jump instruction if the indirect branch's address does not match any 
target addresses BEAST maintains. 
 
In addition, if later on the target of a newly discovered branch matches that of a jump 
instrumentation BEAST replaces that jump instrumentation with an int 3 instruction. 
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Chapter 5 
 

5   Efficient In-place Instrumentation 
 
The design of BIRD intercepts indirect branches by replacing them with an unconditional 
jump instruction that transfers control to a check() function, which performs the 
necessary processing to ensure that every instruction in a binary program be examined 
before it is executed. However, it is not always possible to replace an indirect branch 
instruction (indirect jump or indirect call) with a jump instruction because a short indirect 
branch instruction takes two bytes but an unconditional jump instruction takes 5 bytes. 
Replacing a short indirect branch instruction with an unconditional jump instruction is 
feasible if any of the three bytes following the short indirect branch instruction is not a 
target of any branch instruction in the program. When an indirect branch instruction is 
replaced by a 5-byte jump instruction, let's call the additional three bytes as the 
corresponding extended region. 

If it is infeasible to replace a short indirect branch with a jump, the only other alternative 
to instrumenting the indirect branch is to replacing it with an int 3 instruction, which is 
also 2 bytes. Because an int 3 instruction triggers an exception, it is much more expensive 
than a jump instruction.  BIRD replaces an indirect branch with an int 3 instruction if  

1. There exists in the same function a direct jump whose target falls into the 
extended region, or  

2. There exist other indirect jump instructions in the same function.  

Empirically, int 3 instructions are used rather frequently in BIRD-instrumented binaries 
and thus account for its major performance overhead. In this section, we will describe a 
series of optimizations that eventually eliminate almost all int 3 instructions during static 
instrumentation.  

 

5.1 Comprehensive Branch Target Analysis 
 
In the original design of BIRD, the extended region of each short indirect branch is 
assumed to lie in the same function as the short indirect branch. However, this is not 
necessarily always the case in practice. To address this problem, BEAST statically 
collects the target addresses of all direct calls and jumps in the known area, and 
dynamically checks if the target of any indirect call or jump or any dynamically 
discovered direct call or jump falls into any extended region. If the extended region of a 
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short indirect branch contains the target of a direct call or jump, the short indirect branch 
can only be instrumented using an int 3 instruction. If the extended region of a short 
indirect branch is found to contain the target of an indirect call or jump or a dynamically 
discovered direct call or jump at run time, the interception of this short indirect branch is 
changed from a jump instruction to an int 3 instruction at run time. 

Following code example describes how an extended region of an indirect control transfer 
instruction may contain start of some other function. 

//Function F1 
1000001A ret 
10000020 Mov eax, 0x1000001A 
10000023 Jmp eax 
//Function F2 
10000025 push ebp 
10000026 mov ebp, esp 
 
The instruction at location 10000023 has an extended region up to 10000027. However, 
the instruction at 10000025 starts function F2. Note that 10000023 belongs to function F1 
and 10000025 belongs to function F2. If we replace 10000023 with a 5 byte jump then 
we effectively relocate 10000025. Thus, a direct call to 10000025 needs to be relocated. 
Since we want to reduce this complicated analysis we patch 10000023 with a one byte int 
3 instruction. 

When an indirect jump or call instruction is intercepted at run time, its target address is 
checked against the known area list to determine if a previously unknown code region is 
discovered. In this optimization, BEAST checks this target address against the list of 
extended regions to determine if any extended region is invalid; in addition it performs 
the same check for targets of direct calls and jumps that are discovered at run time. When 
BEAST finds an extended region is invalid, it converts the interception of the 
corresponding short indirect branch to int 3. 

In summary, with this optimization, BEAST replaces an indirect branch with an int 3 
instruction if  

1. There exists in a direct jump whose target falls into the extended region, or   
2. There exists a direct call whose target falls into the extended region. 

Statically, only the targets of direct calls and jumps in the known area are known. BEAST 
takes a speculative approach to replace all short indirect branches that satisfy the above 
requirements with a 5-byte jump, but reserves the option to fall back to an int 3 
instruction at run time when the target of an indirect call/jump or a dynamically 
discovered direct call/jump is found to invalidate an extended region.   
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That is, by piggybacking extended region invalidation with run-time target address check, 
BEAST is able to remove a portion of the int 3 instructions used in BIRD-instrumented 
binaries. 

5.2 Patching Direct Jumps 
 

Even with the branch target analysis optimization described in the previous subsection, 
because the extended regions of many short indirect branches in real-world Win32 
binaries contain targets of direct jump instructions, these short indirect branches can only 
be intercepted using an int 3 instruction. BEAST eliminates these int 3 instructions by 
patching the direct jumps whose target falls into the extended region of an existing short 
indirect branch. That is, when a direct jump D renders invalid the extended region of a 
short indirect branch B, instead of patching B using an int 3 instruction, BEAST will patch 
D so that eventually D will jump to where it is supposed to go in the original binary. In 
this case, both B and D are processed in check(), as well as the control transfer between 
them. More generally, whenever an instruction I1 is to be patched and its extended region 
contains the target of a direct jump I2, BEAST chooses to patch I1 with a jump 
instruction, and proceeds recursively with I2, which itself now needs to be patched. This 
recursion continues with N steps, where N is a configurable parameter, and stops if 
further patching is required. In that case, the original short indirect branch is patched with 
an int 3 instruction.  

Following code example explains the above mentioned approach of patching direct jumps 
through N recursions: 

10000000 call eax 
10000002 add ebx, 0x0A 
. 
10000010 je 10000004 
10000012 add ecx, 0x0A 
. 
10000020 je 10000014 
10000022 add ebx, 0x 0A 
. 
10000030 je 10000014 
. 
In the above code snippet example, the instruction at 10000000 is call eax which is an 
indirect call instruction taking 2 bytes. When it is patched with a 5 bytes jump, we 
relocate 10000002 inside the stub of 10000000. Now, when the instruction at 10000010 
tries to jump at location 10000002, it may have to jump to the appropriate relocated 
address inside the stub. BIRD did not handle this situation. It would have replaced call 
eax at 10000000 with an int 3 so that the jump at 10000010 can safely jump with any 
relocation. However, BEAST patches 10000010 with a 5 bytes jump and relocates the 
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jump at 10000010 to jump at appropriate location in the stub. By doing so BEAST needs 
to take care of any instructions which jump into the extended region of this newly 
replaced region. BEAST thus finds out that instruction at location 10000020 and 
10000030 jump into the newly replaced extended region of 10000010. BEAST patches 
these instructions with a 5 byte region and applies the above procedure recursively till it 
finds a point where the currently relocated extended region does not contain target of any 
direct jump. 
 
In contrast, BIRD only patches indirect branches because they are the only ones that need 
to be intercepted. On the surface, it appears that the idea of patching conflicting direct 
jumps, i.e., those whose target falls into some extended region increases the number of 
instructions that need to be patched, and indirectly increases the number of int 3 
instructions used. In practice, this is not the case for two reasons. First, whenever BEAST 
patches a conflicting direct jump, it must already avoid one int 3 instruction. Therefore, 
patching conflicting direct jumps cannot increase the number of statically placed int 3 
instructions. Second, as BEAST shifts through the target instructions for patching, it can 
successfully avoid int 3 if the current instruction is at least 5-byte long or its extended 
region does not contain any target. Therefore, in some cases, BEAST can indeed decrease 
the number of statically placed int 3 instructions. 

With the addition of the "patching direct jump" optimization, BEAST replaces an indirect 
branch with an int 3 instruction if 

1. There exists a direct call whose target falls into the branch's extended region. 

Empirically, as shown in the Performance Evaluation section, statically placed int 3 
instructions are all but eliminated with this optimization, because the chance of a direct 
call's target falling into a short indirect branch's extended region is very slim in practice.  

To patch a direct unconditional jump, BEAST uses the following stub:  

Push target_delta 
Call check 
Jmp [location] 
 
where target_delta is the difference between the original target of the direct jump and 

the stack location holding it, and is an input parameter to check(), and location is a 

memory location that holds the actual target address as calculated by check(). 

Direct conditional jumps require additional processing because they typically depend on 
the contents of the EFLAGS register. Accordingly, BEAST simulates a direct conditional 
jump with unconditional jumps using the following stub: 

Push target_delta 
Call check 
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Je if_equal 
Jmp if_no_equal 
if_equal: 
Jmp [location]  
if_not_equal: 
Fall-through instruction 
 
where target_delta and location mean the same as the direct unconditional jump case. 

5.3 Dynamic Instrumentation Algorithm 
 

In addition to statically determining whether to patch a short indirect branch with an int 3 
instruction using the criterion described in the previous subsection, BEAST also needs to 
dynamically patch those short indirect branches that are discovered at run time. Because 
BEAST cannot afford much analysis at run time, implementation complexity is the key 
consideration: 

1. A dynamically discovered short indirect branch is always patched with an int 3 
instruction.  

2. If a dynamically discovered direct jump conflicts with the extended region of a 
patched instruction I, then find out why I needs to be patched. If I is not a short 
indirect branch, it must be because I's target conflicts with the extended region of 
another instruction. Continue tracing backwards this way until the instruction is a 
short indirect branch, and convert the patching for this branch to int 03. All the 
intermediate instructions are reverted to their original non-patched form.  

Empirically more than 60% of the patched branches were direct branches with their target 
addresses known statically. Exploiting this to fix their target addresses in the stub 
removes the need to call check() at run time. For example, the stub for patching a direct 
conditional jump becomes  

Je if_equal 
Jmp if_not_equal 
If_equal: 
Jmp actual_addr_in_stub 
If_no_equal: 
Fall-through instructions 
 

where actual_addr_in_stub is the statically computed target address of the direct branch. 
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5.4 Implementation Issues 
 

5.4.1 Multithreading 
 
Because most Win32 binaries are multi-threaded, BEAST also provides multi-threading 
support by making check() re-entrant, particularly the target address of a patched indirect 
branch in one thread should be separate from that in another thread. 

Moreover, BEAST guards the common data structures used in check(), e.g. unknown area 
list, extended region list, function entry point information, etc., with proper fine-grained 
locks so that the accesses to them are both thread-safe and efficient. 

5.4.2 Low-Overhead Exception Checking 
 

BEAST reduces the total count of statically placed int 3 instructions, however, at the 
expense of increasing the number of invocations of check() at run time. Even though an 
int 3 exception takes much longer than a simple function call, the fixed overhead in 
check() to perform target address lookups can still be quite costly and adds up quickly. 
With the "direct jump patching" optimization, the possibility of a direct jump's target hits 
an extended region increases, and the size of the extended region list also increases 
accordingly. We have tried to use a cache to capture recently appearing extended regions, 
but the cache proves to be of not much use because most accesses to it result in a miss. 
Moreover, because the target of a patched branch may potentially be relocated into a stub 
of another patched branch, BEAST has to check the target of a patched branch to ascertain 
whether the target is in the known area or is relocated or not, and incurs the associated 
expensive lookup overhead. However, most of the times, a patched branch's target is 
known and not relocated. In these common cases, ideally the look-up time should be 
constant O(1), and the expensive look-up should be avoided. 

To speed up the common-case look-up, BEAST constructs a two-bit-per-byte metadata 
map for each code module. For a given code module, say a DLL, its metadata map 
indicates whether each byte in it is known and/or relocated. At run time, given the target 
address of a patched branch, check() first consults with the corresponding metadata map 
with the target address. If the target address byte is known and not relocated, check() 
returns control to its caller immediately. If the target address byte is known and relocated, 
check() proceeds further to calculate the relocated address of the target. If the target 
address byte is unknown and not relocated, BEAST performs another lookup to search for 
the corresponding speculatively disassembled function, and performs dynamic 
disassembly starting with the target address if such a speculative function is not found. It 
is not possible for a target address to be unknown and relocated. 
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These per-module metadata maps drastically reduce the look-up performance overhead in 
check() at the expense of additional memory usage. For a 10-Mbyte binary program, the 
additional memory consumption for these metadata maps is 2.5 Mbytes, which seems to 
be modest. 

5.4.3 Relocation in DLLs 
 
As opposed to Executables, Dynamic linked libraries on Windows may not load at the 
same base address as provided in the header of the DLL. With this in mind, those entries 
which depend on absolute addresses are added to the relocation table in the DLL. 
Windows loader fixes the entries from the relocation table by adding a delta which is 
calculated by finding the difference between the actual loading address and the address 
mentioned in the header. BEAST takes care of all such instructions, whether newly added 
by BEAST’s instrumentation code or previous instructions which are relocated to a new 
stub, by adding them to the relocation table and removing the older entries as needed. 

BEAST also stores only the relative virtual address (rva) of required data and fixes them 
at runtime when init() function loads the dynamic data structures using this statically 
dumped information. 
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Chapter 6 

6   Performance Evaluation 
 

6.1 Methodology 
 
In this section we present the set of programs on which BEAST was tested. Further, we 
list various configurations of BEAST which were used to demonstrate gradual 
improvement in performance. We also specify the technical specifications of the 
environment on which BEAST was tested. Finally, we describe the testing tool set used to 
make various measurements like elapsed time, startup time, int 3 counts, and static 
disassembly coverage improvement. 
 

6.1.1 Set of programs 
 
To evaluate the effectiveness of BEAST, we test it on two major categories of programs, 
batch programs and GUI programs. Table 1 shows the set of batch programs. These 
programs are comp (comparing two 4MB files), find (finding a given character from a 
4MB ASCII file), sort (sorts a 4MB ASCII ) and ping (ping ip address with 1024 bytes 
data). Table 2 shows set of GUI applications on Windows on which BEAST was tested. 
These programs are Yahoo Messenger, Firefox, Acrobat Reader, Movie Maker and 
Safari. 
 

6.1.2 Set of configurations 
 
BEAST was built in incremental improvements over BIRD. As BEAST evolved, 5 
versions of BEAST were produced, each succeeding version an incremental improvement 
over previous one. Each of the versions significantly differs from each other with respect 
to the instrumentation principle. Version 1.0 of BEAST, already handled the speculative 
disassembly part. Version 1.1 through version 1.3 attempted to reduce the number of int 
3s by applying various instrumentation techniques for replacement of an indirect control 
transfer instruction. Version 2.0 mainly concentrated on reduction of time spent in the 
check() function performing the expensive lookups related to target address and towards 
multithreading support. 
  
Version 1.1 performs global analysis as opposed to version 1.0’s per-function analysis. 
There are various aspects of Win32 binaries which make disassembly harder. It is tough 
to decide function boundaries since a function can have multiple return sites. Also, inside 
a function segment a return statement may not necessarily lie at the end. In fact there are 
cases where a return is followed by an indirect jump. By performing global analysis 
version 1.1 finds out targets of direct calls (starting address of a function) lie in the 
extended region of some indirect branch. In such situation, the indirect branch is replaced 
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with int 3. Since version 1.0 did not perform global analysis, it was never sure if any start 
of a function lies in the extended region of any indirect branch. So it replaced all the short 
indirect jumps (jump instructions whose length is less than 5 bytes) with int 3. Also, if the 
extended region of an indirect branch consists of a target of any direct jump then it 
instruments that indirect branch with an int 3. 
 
Version 1.2 took a step further by selectively patching direct unconditional jumps whose 
target lie in the extended region of an indirect branch. Thus the indirect branch could now 
be instrumented with a 5 byte jump to the stub. However, if targets of conditional jumps 
lie in the extended region of an indirect branch then the indirect branch is replaced with 
an int 3. 
 
Version 1.3 performed patching of conditional direct jumps as well. It has to simulate a 
direct conditional jump with a series of unconditional direct jumps as explained in 
Chapter 5.3. This change brought a drastic reduction in the number of int 3s introduced 
during static time instrumentation. It was owing to the fact that most of the direct jumps 
are conditional direct jumps since most of the programming constructs like for, while, do-
while, if  are transformed into direct conditional jumps. 
 
Version 2.0 reduced the time spent at runtime on the expensive lookups performed to find 
the data structure elements corresponding to the given target address. It used the 2bit-per-
byte bitmap metadata as explained in Chapter 5.4.2. It also incorporated a better support 
for multithreading by providing fine grained locks and using per-thread stack as opposed 
to its predecessors which used a shared data structure with a big lock around. 
 

6.1.3 Environment 
 
BEAST was tested on a Pentium IV 2.8 GHz, 1 GB RAM with Windows XP, service 
pack 2. BEAST’s static component was compiled using GCC on cygwin and dynamic 
component is organized as a DLL which requires Microsoft SDK 2003 and Microsoft 
VC++ 2005 compiler. 
 

6.1.4 Testing tools 
 
Binaries instrumented with BEAST were tested for total run time, startup time, int 3 
counts and improvement in static disassembly coverage. We wrote a tool which measured 
the total elapsed time for set of batch programs. We simply exec’d the test application 
and when the control returned to our program we measured the elapsed time. For GUI 
programs, we used the Microsoft VC++ StartupIdleTime function, which returns control 
to our program when the GUI application turns idle. This measurement, though not 
accurate, gives a proportionate measure of startup time for various configurations of 
BEAST. We calculated the number of int 3s by simply using a counter. However, for 
dynamic int 3 calculation for GUI programs during startup, we used shared memory 
across our testing tool and the test application binary. The test application writes the 
number of int 3s to the shared memory. When control is returned to our testing tool, we 
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take the int 3 count from shared memory. To measure improvement in disassembly 
coverage and overhead due to speculative disassembly, we compare total elapsed time for 
the application binaries when they are patched with BEAST v1.0 against BEAST v1.0 with 
speculative disassembly disabled. 
 
 
Programs Original App. BIRD BEAST v1.0 BEAST v2.0 
comp 1.42 1.66 1.65 1.56 
find 0.73 0.92 0.87 0.74 
sort 0.63 0.95 0.91 0.77 
ping 3.12 3.18 3.16 3.16 
TABLE 1: Total Elapsed Time for batch programs patched using different version of 
BEAST and BIRD 
 

6.2 Performance Results 
 
In this section, we discuss performance of various BEAST configurations. We present 
measurements based on time, coverage and int 3 counts. Further, we tell how much of 
space overhead is incurred by BEAST in order to achieve this performance. 
 

6.2.1 Time based 
 
Programs Original App. BIRD BEAST v1.0 BEAST v1.3 BEAST v2.0 
Yahoo 
Messenger 

1.6 2.7 2.6 2.42 2.31 

Firefox 0.45 0.67 0.64 0.58 0.55 
Safari 1.2 3.1 2.55 2.34 2.11 
Movie 
Maker 

0.12 0.90 0.51 0.44 0.38 

Acrobat 
Reader 

0.87 2.1 1.61 1.42 1.33 

TABLE 2:  Startup time for batch programs patched using different versions of BEAST 
and BIRD. Startup times are considerably higher because of the overhead due to the 
initial loading of data structures from the dump. 
 
Table 1 tabulates total elapsed time for a set of batch programs and Table 2 tabulates 
startup time for a set of GUI applications. Time measurements are performed for Original 
Application and application patched by BIRD, BEAST v1.0 and BEAST v2.0. For binaries 
like Acrobat Reader, Movie Maker and Safari, startup penalty is very high due to loading 
of dumped information. BEAST v2.0  is faster than BEAST v1.3 because it reduces time 
spent on lookups at runtime. BEAST v1.3 reduces int 3 exception handling time as 
compared to BEAST  v1.0, thus reducing execution time. However, the time taken by init 
function slightly increases because more amount of information is dumped in higher 
versions of BEAST v.1.0 Int 3 count for batch programs is very low, so we did not show 
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performance of BEAST v1.3 for batch programs. BEAST v1.0 performs speculative 
disassembly thus reducing runtime disassembler invocations, so it is faster than BIRD. 
 
 

6.2.2 Int 3 based 
 
Table 3 compares BEAST v1.0 and BEAST v2.0 on the basis of total number of int 3 
dynamically encountered for a set of GUI applications. Measurements are performed for 
the startup time of GUI applications. Programs like Safari, Acrobat Reader and Yahoo 
Messenger have considerable amount of dynamic int 3s because of the increasing number 
of dynamic disassembly invocation as compared to Movie maker and Firefox. 
 
Programs BEAST v1.0 BEAST v2.0 
Yahoo Messenger 8133 642 
Firefox 338 7 
Safari 24542 6589 
Movie Maker 5378 12 
Acrobat Reader 25132 2048 
TABLE 3: Comparison between BEAST v1.0 and BEAST v2.0 on the basis of 
dynamically encountered int 3s 
 

6.2.3 Space overhead 
 
BIRD appends to the application binary a lot of information like stubs, indirect branch 
information, speculative function information and unknown areas. Further, BEAST v2.0 
dumps a map which stores 2-bits of information for ever byte in the code section. Thus, it 
increases image size by one fourth the size of code section. Thus the overall size of 
binary may become one and half times the original size. 
 

6.3 Analysis 
 
In this section, we present analysis of gradual changes in BEAST and their corresponding 
impact on performance. 
 

6.3.1 BIRD to BEAST v1.0 
 
BEAST introduces speculative disassembly over BIRD. If we observe Table 1and Table 2, 
we notice that BEAST v1.0 performs better than BIRD. BEAST uses the speculative 
disassembly results after verification of the speculative code at runtime. Thus it saves a 
certain amount of time as compared to BIRD. Startup time taken by BIRD should have 
been lesser as it is not meant to dump speculative information. However, while testing of 
BIRD we purposely dump the speculative information and load it during init. This is done 
so as to have a fair overview of time saved by speculative disassembly on a long run. 
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Table 4 shows the total number of speculative functions verified over a certain span of 
time against the total number of invocations to dynamic disassembly. Since the 
applications are GUIs we recorded these values after a span of 6 seconds. We cannot get 
an unbiased result for GUI applications because they wait for inputs from user, unlike 
batch programs. 
 
Programs Speculative hits Dynamic disassembly 

invocations 
Yahoo Messenger 1166 36 
Firefox 93 2 
Safari 1306 18 
Movie Maker 477 29 
Acrobat Reader 11686 109 
 
TABLE 4: Number of speculative function hits and dynamic disassmebler invocations 
 

6.3.2 BEAST v1.0 to BEAST v1.3 
 
In comparison with BEAST v1.0, BEAST v1.3 drastically reduced the count of int 3s 
introduced during static disassembly. Table 5 shows the drastic reduction in int 3 count, 
introduced during static disassembly and Table 3 shows reduction in actual number of int 
3s encountered at runtime. 
 
Programs BEAST v1.0 BEAST v2.0 
Yahoo Messenger 21121 47 
Firefox 126 0 
Safari 3513 23 
Movie Maker 15385 0 
Acrobat Reader 28134 44 
 
TABLE 5: Comparison between BEAST v1.0 and BEAST v2.0 on the basis of int 3s 
introduced during static disassembly 
 

6.3.3 BEAST v1.3 to BEAST v2.0 
 
BEAST v2.0 implemented a bitmap which saved unnecessary time wasted on lookups 
inside runtime check() function. Table 2 shows time saved by BEAST v2.0 over BEAST 
v1.3. 
 

6.4 Qualitative Evaluation and Some Issues 
 
BEAST was tested on some other Windows application, however, due to some issues as 
listed below we could not evaluate BEAST on these softwares. 
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1. Internet Explorer 
 BEAST works fine on IE executable, however IE extensively depends on DLLs 
from the Windows folder and these DLLs cannot be modified as Windows does 
not allow us to do so. There is a registry entry which specifies that DLLs from 
Windows/System32 folder cannot be modified. 
 
2. Integrity checks in some DLLs 
It was found that some of the DLLs had some integrity checks which did not 
allow the patched DLLs to run successfully. For example, one of the main DLLs 
of Safari performed some checks and threw exception when it discovered  
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Chapter 7 

7   Applications of BEAST 
 
This section describes design, implementation and evaluation of two applications which 
we built using BEAST. Call graph and system call site control flow graph extractor were 
built using BEAST. 
 

7.1 Call Graph 
 
A call graph is a directed graph that represents calling relationships between subroutines 
in a computer program [20]. Specifically, each node represents a procedure and each 
edge (f,g) indicates that procedure f calls procedure g. Thus, a cycle in the graph indicates 
recursive procedure calls. 

 

7.1.1 Data Structures 
 
BEAST maintains a per function data structure which it populates during disassembly. 
This data structure includes following important members: 
struct function{ 
 uint  flags:8; //SYSCALL related 
 uint  sure_mode:1; // speculative-0 
 char *  name; 
 uint  start_addr;  
 uint  end_addr; 
 varray_type  indirect_jmps; 
 varray_type  replaced_jmps; 
 varray_type  indirect_calls; 
 varray_type  short_brs; 
 varray_type  djmps; 
 varray_type  direct_calls; 
 varray_type  func_segs; 
 varray_type  bb_array;  //Basic block array for this function 
 varray_type  parents; //Callers 
 varray_type  children; //Callees 
}; 
 
Function boundaries are indicated by start and end address fields. In case of multiple 
returns end address is set to 0. Indirect/Direct jumps and calls are stored in an array. 
BB_array stores the entire control flow. Parent and children arrays store the callers and 
callees of the function. Children array holds the addresses of call sites whereas 
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callgraph_array holds the callee functions’ start addresses. Storing this construct is useful 
for runtime creation of call graphs from the unknown regions. 
 

7.1.2 Call Graph Construction 
 
A call graph is generated by traversing from the entry point of the binary. During static 
analysis, till all the reachable code region is discovered, the graph is constructed. This 
call graph is dumped at the end of the binary which is further used for runtime graph 
creation. 
 
Speculative analysis is the phase where BEAST predicts some bytes as instructions and 
performs disassembly starting from those points. This information is verified at runtime 
when control is transferred to the starting address of any of the speculatively 
disassembled function. During speculative analysis, per function call graphs are 
constructed and dumped. During runtime, if a speculative region corresponding to a 
function F is verified then the entry point of F is added to the caller function's 
callgraph_children array. 
 
During runtime when an indirect control transfer instruction is encountered, check() 
routine is invoked. This routine performs checks for the target address. If this target lies 
in a completely unknown region then dynamic disassembly takes place. During dynamic 
disassembly call graph is generated in the same way as it is during static disassembly. 
 
Inside a function F, if an instruction X is a direct call instruction then we add the callee 
function to the callgraph_children array of function F. If X is an indirect call then we 
patch it so as to handle it during runtime. At runtime, when we are handling the indirect 
call, we know the runtime target address of X and add the callee function corresponding 
to that address to the callgraph_children array. 

 

7.1.3 Evaluation 
 
Programs Total Nodes Static Nodes Speculative 

Nodes 
Average No. of 
Children 

Batch programs 533 104 429 3 
Outlook Express 28 10 18 1 
MSN Messenger 2082 28 2054 4 
Safari 11344 312 11032 6 
Movie Maker 13398 412 12986 5 
TABLE 6: Call Graph for Win32 executables: Enlisting Total Call Nodes, Nodes found 
statically, speculatively and Average Number of Children nodes 
 
Table 6 lists count of call nodes discovered during speculative and static analysis for the 
given set of Win32 binaries. It also shows the average number of children per call node. 



 
 

29 
 

Batch programs is a set of batch programs which perform search, sort, find on 4MB data 
files. 
 

7.2 System Call Site Control Flow Graph 
 
A control flow graph (CFG) in computer science is a representation, using graph 
notation, of all paths that might be traversed through a program during its execution [21]. 
A System Call Site Control Flow Graph bothers only to maintain those nodes in a control 
flow graph which lead to system call nodes and trims all other nodes. 
 

7.2.1 Design 
 
We distinguish following types of nodes in the control flow. 

- Call site node: A node corresponding to a call instruction in a binary. 
- Return site node: A node corresponding to the physically next instruction of a call 

instruction. 
- Entry node: A node corresponding to the entry point of a function. 
- Exit node: A node corresponding to the exit point of a function. 

 

7.2.1.1 Basic Block 
 
A full-fledged basic block control flow data structure is constructed by BIRD. We used 
this already existing control flow data structure to build the system call site control flow 
graph.  
 
The basic block data structure looks like this: 
struct bb_struct { 

int index; //index of BB in function->bb_array 
 uint  begin; //start address 
 uint end; // end address 
 struct edge_struct * in_edges;  
 struct edge_struct * out_edges; 
 int visited; //for BFS 
 scsfg_list     call_site; //First call site in this BB 
 scsfg_list     last_ret_site; //Last return node in this BB 
}; 
 
Each basic block of function F is added to the bb_array of function F. index gives the 
index in this array. begin and end are the start and end addresses of this basic block. 
call_site holds the first call site in this basic block and last return site holds the last return 
node in this basic block. In and out edges are of type edge_struct which is defined as 
follows: 
struct edge_struct { 
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 int  type; // 0-jmp, 1-call, 2-thru 
 struct bb_struct *src; //source basic block 
 struct bb_struct *dst; //destination basic block 
 struct edge_struct *out_next; //next out edge 
 struct edge_struct *in_next; //next in edge  
}; 
Type of edge can be jump/call/fallthrough. Src and dst are the source and destination 
basic blocks. Also multiple edges to/from a basic block are stored as a linked list. 
 
BIRD builds basic blocks while traversing the binary. Whenever a control flow transfer 
instruction like direct jump is encountered, following steps are performed: 

1. If the target address does not start a basic block, a new basic block is formed.  
2. In case the target address lies in between an already existing basic block, the basic 

block is split into two parts and the end address of the upper basic block is 
adjusted accordingly. 

 

7.2.1.2  SCSFG 
 

As mentioned above, four different types of nodes are identified, namely call, return, 
entry and exit node. Further SCSFG maintains only those nodes that are either system call 
nodes or they lead to system call nodes. This section describes creation of scsfg and 
trimming of it. 
 
The data structure to store scsfg node looks like this: 
struct scsfg_node{ 
  unsigned int     type:4; // type of the node 
  unsigned int  syscall_related:2; // whether leads to syscall 
  unsigned int      visited:2; // for traversal 
  unsigned int      sys_num; // system call number 
  unsigned int      address; // the return/function address 
  char *   name; //name if any 
  list_entry   cfg_prev; //Previous CFG entry 
  list_entry  cfg_next; //Next CFG entry 
  scsfg_list   table_next; //Next in table 
}; 
 
The sys_num field indicates a custom number assigned to uniquely identify each node. 
Address stores the return node address for call/return nodes and function's start address 
for entry/exit nodes. Cfg_prev/cfg_next holds entries to nodes immediately 
preceding/succeeding current node. These edges are maintained as linked list as there can 
be multiple prev/next edges. table_next holds the scsfg node that immediately follows 
this node in the scsfg table which is maintained globally. 
 
A global array of all the scsfg nodes is maintained. During disassembly, at the start of 
analysis of every function, an entry/exit scsfg is created for that function. Unique and 
consecutive sys_nums are assigned to these nodes and they are added to the global array 
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of scsfg nodes. If a function corresponds to the entry point of the binary then its entry 
scsfg node is marked as the entry node of the entire system. Further this node can be used 
as a starting point (head node) for traversal of the entire scsfg. When a call instruction is 
encountered, a call scsfg node is created with unique sys_num and a corresponding return 
node is created with consecutive sys_num. Call_scsfg node points to the entry scsfg node 
points back to the return node. At the end of per function analysis, the local scsfg of that 
function is condensed, inorder to fix the links between scsfgs pertaining to different basic 
blocks. After this condensing, entry scsfg node points to all the first call sites of the 
succeeding basic blocks. If the succeeding basic block has no call sites but a return site 
then we point the entry scsfg node to the exit node. If the succeeding basic block does not 
have any call site/exit nodes then a Breadth First Search is performed on all the 
successors of this succeeding basic block and their first call sites are linked to the entry 
point. Further the last return site of each basic block is linked with the succeeding basic 
blocks' first call sites. Again if no call sites are present then the last return site of the 
current basic block is linked to the first call sites of the succeeding basic blocks 
successors. The process continues till the entire local scsfg is constructed. 
 

7.2.1.3  Non System Call Nodes pruning 
 
A node is considered to be a system call node if it corresponds to any of the functions 
declared in NTDLL.h. A system call related node is a node which eventually leads to any 
of the functions declared in NTDLL.h. SCSFG is created by pruning any nodes which are 
not system call related. 
 
We find all those nodes which are system calls by looking up their name against the 
entries in NTDLL.h. If it finds that an node F is a system call then it marks all its parent 
nodes (cfg_prev) as system call related nodes and recursively carries on this marking 
process till it reaches origin (first node). For static disassembly in sure mode, origin node 
is the entry node corresponding to the entry point of the binary. For speculative 
disassembly, it can be any entry scsfg node of any function from which disassembly 
started. 
 
Once marking of all the nodes is done, we prune all those nodes which are not system call 
related. We straightaway remove all the edges that lead to non system call related nodes. 
If we prune all the nodes except for the system call leaf nodes then it becomes a highly 
trimmed scsfg which contains only the information about the calling sequence of system 
calls. 
 

7.2.2 Runtime SCSFG 
 
Statically and speculatively constructed scsfgs are dumped at the end of the binary. When 
this binary is loaded, scsfg is reconstructed from this dumped information. When an 
indirect call control transfer instruction is encountered, the target address is looked up 
against the speculative functions' start address. If target address starts at a speculative 
function's start address then we merge the scsfg associated with the speculative function 
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that corresponds to this target. If the indirect control transfer instruction is a jump 
instruction then its target is generally not the start of any other function. A jump 
instruction belonging to function F, will not jump to start address of any other function, 
however, it may jump at the start address of F which will be already disassembled by 
then. 
 
If the indirect call control transfer leads to an unknown region, then we start construction 
of scsfg at runtime. This construction is exactly identical to the static construction of 
scsfg. The entry point of the newly generated scsfg is linked with the caller's call site 
node and the exit node is linked to the return node of the caller. If the indirect control 
transfer instruction is a jump instruction then we do exactly the same steps as above 
except that at the end we link the entry node of the newly discovered scsfg with the last 
return site of the basic block containing the indirect jump instruction. 
 

7.2.3 Evaluation 
 
SCSFG extraction was tested on the set of binaries shown in Table 7. 
 
Program Entry Nodes Count Call Nodes Count System call nodes 

Count 
Batch programs 533 1473 46 
Outlook Express 28 43 18 
MSN Messenger 2082 4475 96 
Safari 11344 34567 1231 
Movie Maker 13398 38712 996 
TABLE 7: It shows the total number of entry nodes, call nodes and system call nodes in 
the scsfg of some well known Win32 binaries. 
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Figure 2: SCSFG graph for BATCH programs. 
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Chapter 8 

8   Conclusion and Future Work 
 
Binary analysis and instrumentation is an enabling technology for enhancing the security 
strength of commodity binaries through program transformation. This report describes 
the design, implementation and evaluation of a new Win32/X86 binary instrumentation 
system called BEAST, which improves over existing binary instrumentation tools with 
two new capabilities: (1) the ability to achieve zero disassembly error while minimizing 
the run-time performance overhead, and (2) the ability to instrument binaries packed by 
commercial packers by detecting the end of binary unpacking. More concretely, this work 
makes the following research contributions: 
 

- A speculative disassembly and instrumentation mechanism that achieves both 
high disassembly accuracy and disassembly coverage,  

- A low-overhead execution tracking mechanism that can detect the end of binary 
unpacking using virtual memory hardware and entropy/data-flow computation 

- A fully working BEAST prototype that has been successfully tested against a set 
of Windows console programs as well as the Acrobat Reader, Safari Browser, 
Movie Maker and Windows Live Messenger. 

Also the application of BEAST to extract call graph and system call site control flow 
graph shows how a disassembly/instrumentation tool can be used to extract complete and 
accurate call graph and scsfg. Moreover, it reaps all the benefits of BEAST thus having a 
very low runtime overhead. 
 
BEAST source code can be further improved by porting it to an object oriented language 
like C++. A well designed class hierarchy and template classes can allow BEAST to be 
extended for any underlying architecture. Providing a better interface will help user to 
develop applications using BEAST. Other than above mentioned applications BEAST can 
be further used for a variety of applications: 

1. BDBG: A full-fledged binary debugger which can perform data flow analysis and 
provide users with correct debugging decisions. BDBG can maintain a stack as 
well as jump trace. It can be further attempt to tell the exact reason for a corrupt 
instruction. One may think of developing such an application as it will greatly aid 
programmers who need to debug binaries. 

2. PAID: Program semantics aware intrusion detection can perform checks against 
the extracted scsfg to verify if the invocation to system calls are in an expected 
fashion. Any violations should be detected and prevented. 

 
There are certain DLLs which perform integrity checks and thus forbid any patches on 
them. BEAST may need to find out a way to bypass these checks. For programs like 
Internet Explorer and IIS which depend a lot on System DLLs, BEAST is not able to get a 
complete coverage because Windows forbids users from modifying the DLLs in 
Windows/System32 folder. BEAST needs to tackle this problem in order to patch all the 
DLLs in the set of Internet Explorer binaries.  



 
 

35 
 

Even though a BEAST is functional for certain packed binaries, it has been experimented 
only with custom binaries. It needs to be further tested for large binaries. One of the 
pitfalls of handling packed binaries is to perform the disassembly entirely at runtime. It 
incurs a very high runtime overhead.  
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