

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

BEAST - an Instrumentation Tool for

Stripped Win32 Binaries and Its applications

A Thesis Presented

by

SANTOSH SONAWANE

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

STONY BROOK UNIVERSITY

DECEMBER 2009

ii

Stony Brook University

The Graduate School

Santosh Sonawane

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Professor Tzi-cker Chiueh - Thesis Advisor
Department of Computer Science

Professor Scott Stoller – Chairperson of Defense

Department of Computer Science

Professor Radu Sion
Department of Computer Science

This thesis is accepted by the Graduate School

 Lawrence Martin

Dean of the Graduate School

iii

Abstract of the Thesis

BEAST - an Instrumentation Tool for Stripped

Win32 Binaries and Its applications

by

Santosh Sonawane

Master of Science

in

COMPUTER SCIENCE
STONY BROOK UNIVERSITY

2009

Many software security techniques require instrumentation of programs either to add run-
time checks or to perform dynamic analysis. Unfortunately, commercially distributed
application binaries on the Win32 platform are often stripped of their symbol table, and
therefore cannot be easily disassembled, let alone correctly instrumented. BIRD is an
instrumentation tool that applies an IA-32 disassembler both statically and dynamically,
and successfully guarantees that no instruction in an input binary can be executed without
being examined first. Unfortunately, the first version of BIRD has several correctness and
performance problems. This report describes our experiences of optimizing the first
BIRD prototype to remove these problems. In particular, we develop a speculative
disassembly technique that reaps most of the performance benefits of static disassembly
while ensuring the same disassembly correctness as dynamic disassembly, a bitmap-
based situation check algorithm that reduces the performance overhead associated with
situation checking to the minimum, and finally a comprehensive in-place instrumentation
technique that relies mostly on instruction substitution and drastically cuts down the
number of invocations to debug exceptions (int 3). Together these performance
optimizations reduce the total instrumentation overhead of a set of Win32 programs from
10-14% to 4-5% on average.
To show usefulness of a tool like BEAST, we developed it further to extract a call graph
and a system call site control flow graph (scsfg) from stripped Win32 binaries. A call
graph gives a fair overview of dependencies between functions and tells which functions

iv

are linked to each other. A control flow graph adds certain level of determinism to the
call graph by enlisting the order in which functions are called. In this report we present
design, implementation and evaluation of these applications.

v

Table of Contents

List of Tables .. vii

List of Figures .. viii

1 Introduction .. 1

2 Related Work .. 3

3 Overview ... 6

3.1 Overview of BEAST ... 6

3.2 General Architecture of BIRD/BEAST ... 7

3.2.1 Static component ... 8

3.2.2 Dynamic component .. 9

4 Speculative Disassembly ... 10

4.1 Static Component .. 10

4.1.1 Baseline Disassembly Algorithm .. 10

4.1.2 Speculative Disassembly Algorithm ... 11

4.2 Dynamic Component ... 12

5 Efficient In‐place Instrumentation .. 14

5.1 Comprehensive Branch Target Analysis ... 14

5.2 Patching Direct Jumps .. 16

5.3 Dynamic Instrumentation Algorithm ... 18

5.4 Implementation Issues ... 19

5.4.1 Multithreading ... 19

5.4.2 Low‐Overhead Exception Checking ... 19

5.4.3 Relocation in DLLs .. 20

6 Performance Evaluation .. 21

6.1 Methodology .. 21

6.1.1 Set of programs .. 21

6.1.2 Set of configurations .. 21

6.1.3 Environment ... 22

6.1.4 Testing tools ... 22

vi

6.2 Performance Results .. 23

6.2.1 Time based ... 23

6.2.2 Int 3 based .. 24

6.2.3 Space overhead .. 24

6.3 Analysis .. 24

6.3.1 BIRD to BEAST v1.0 ... 24

6.3.2 BEAST v1.0 to BEAST v1.3 .. 25

6.3.3 BEAST v1.3 to BEAST v2.0 .. 25

6.4 Qualitative Evaluation and Some Issues .. 25

7 Applications of BEAST ... 27

7.1 Call Graph ... 27

7.1.1 Data Structures .. 27

7.1.2 Call Graph Construction ... 28

7.1.3 Evaluation .. 28

7.2 System Call Site Control Flow Graph .. 29

7.2.1 Design ... 29

7.2.2 Runtime SCSFG ... 31

7.2.3 Evaluation .. 32

8 Conclusion and Future Work ... 34

Bibliography ... 36

vii

List of Tables

Table 1: Total Elapsed Time for batch programs patched using BEAST .. 23

Table 2: Startup time for GUI programs patched using BEAST .. 23

Table 3: Comparison between BEAST versions w.r.t dynamic int 3 count 24

Table 4: Speculative function hit vs Dynamic disassembler invocation .. 25

Table 5: Comparison between BEAST versions w.r.t static int 3 count ... 25

Table 6: Count of various Call Graph nodes for Win32 binaries .. 28

Table 7: Count of various SCSFG nodes for Win32 binaries .. 32

viii

List of Figures

Figure 1: BEAST’s Architecture ... 8

Figure 2: SCSFG graph for BATCH Programs .. 33

Acknowledgements

First of all, I wish to sincerely thank Prof. Tzi-cker Chiueh for his guidance
and support all through the project. I would also like to thank all the present
and past colleagues at Rether Networks Inc (RNI). In particular, Dr. Lap-
chung Lam for his insightful advice and help throughout my thesis work and
Sheng-I Doong, President of Rether Networks, for her kind support.

1

Chapter 1

1 Introduction

A significant percentage of cyber attacks that take place on the Internet today exploit
vulnerabilities in user-level applications or operating systems. A wide variety of
techniques have been proposed to protect vulnerable programs from being exploited, such
as address space layout randomization[16], control flow integrity verification[5], system
call pattern check[17], etc. Most of these research efforts rely on instrumentation of the
protected applications and thus require access to their source code. This requirement is
unrealistic in practice, because end users rarely have access to the source code of most
commercial applications they use. Therefore, for these protection techniques to work,
they have to be applicable to executable binaries directly. Therefore, the key enabling
technology for such security-enhancing transformations is correct and efficient binary
instrumentation.

To instrument a binary, one needs to be able to examine every instruction before it is
executed. Ideally, binary instrumentation should be done statically so that its run-time
performance overhead is reduced to the minimum. In practice, however, it is difficult to
statically analyze and instrument executable binaries, especially for stripped Win32/X86
binaries, i.e. those that don't come with a symbol table, because even state-of-the-art
commercial disassemblers such as IDAPro cannot disassemble these binaries with 100%
accuracy, which, unfortunately, is what security-enhancing instrumentation requires.
One way to solve this problem is to first execute a binary to be instrumented in an
emulator[9], [12] and then run the already encountered instructions in native mode.
Another approach, as used in BIRD[14], is to disassemble as much as possible an input
binary to be instrumented statically, and dynamically invoke the disassembler on the
binary's areas that cannot be statically disassembled but executed dynamically. BIRD's
approach is simpler and more efficient because it eliminates the run-time emulation
overhead and produces more efficient instrumentation code.

There are two major components of BIRD’s architecture:

a. Static component
b. Dynamic component

BIRD[14] statically disassembles a binary from its entry point, recursively traversing over
direct jumps and calls till all the reachable code is disassembled. In this scan, if BIRD
finds any indirect control transfer instructions, it instruments those instructions with a call
to runtime check() function which is present in BIRD’s dynamic component, a DLL.

BIRD’s dynamic engine is a DLL which has init() and check() functions. Init() function
initializes the runtime data structures using the statically gathered information. Check()
function verifies targets of indirect control transfer instructions. If target is already in a
known region then BIRD continues normal execution of the program. If target lies in
completely unknown region, then BIRD starts dynamic disassembly from the target
address and marks the region as known area.

2

This report describes the design, implementation and evaluation of an optimized binary
instrumentation tool for stripped Win32/X86 binaries called BEAST. BEAST is built on
top of BIRD, and solves three performance problems in BIRD. First, the static
disassembler of BIRD relies on a pre-defined threshold to determine if a disassembled
region in the input binary is code or not. If this threshold is set to a higher value, a
smaller percentage of the input binary is successfully disassembled, the disassembly
coverage is lower but the disassembly accuracy may be higher. If this threshold is set to a
lower value, a higher percentage of the input binary is successfully disassembled, the
disassembly coverage is higher but the disassembly accuracy may be lower. Because it is
difficult to devise a good threshold value that can be universally applied to all Win32
binaries, for safety BIRD has no choice but to set the threshold to a conservatively high
value by default, and thus sacrifices the disassembly coverage and run-time performance.
BEAST successfully overcomes this dilemma with a speculative disassembly mechanism
that optimistically disassembles the input binary, and uses the optimistically
disassembled results only when they are confirmed at run time. As a result, speculative
disassembly is able to achieve the best of both worlds: high disassembly accuracy and
coverage and high run-time performance.

The second problem with BIRD is its reliance on int 3 instructions for in-place
instrumentation. Given an instrumentation point P and an instrument code C, BIRD
replaces the 5-byte region starting at P with a jump instruction to C whenever possible,
and replaces the 1-byte region starting at P with an int 3 instruction otherwise. Because
an int 3 instruction is much more expensive than a jump instruction, the fact that BIRD
did not employ int 3 instructions efficiently causes serious performance penalty for
certain Win32 applications. To address this problem, BEAST performs a series of
optimizations that explores all possible ways of using jump instructions and eventually
successfully reduces the static and dynamic int 3 instruction counts to the minimum.

The third problem with BIRD is the time it spends to perform the expensive lookups at
runtime for finding the appropriate entry in the hash tables. BEAST performs faster
searches as compared to BIRD by maintaining an in memory comprehensive 2bit bitmap
of the entire code region. This bitmap acts as a O(1) hash since there are no collisions.

3

Chapter 2

2 Related Work

Accurate disassembly is the foundation for binary instrumentation. There are many
excellent commercial disassemblers such as IDAPro[1] and OllyDbg[2] that can achieve
high disassembly coverage and accuracy for Win32/X86 binaries. However, they cannot
guarantee zero disassembly error and therefore cannot serve as the basis for binary
instrumentation.

Moreover, because many commercial packers embed anti-debugger and anti-
disassembler techniques inside their unpackers, none of these disassemblers can
disassemble packed binaries without occasional crashing, let alone instruments them.

In contrast to commercial disassemblers, BEAST chooses to avoid disassembling the
unpackers embedded in packed binaries. It does this by incorporating a heuristic
technique to precisely identify the point at which the original binary is fully unpacked,
and then invokes the disassembler only on the unpacked original binary. This design
decision not only greatly simplifies BEAST’s design and implementation complexity, but
also improves its overall robustness significantly.

There are several unpacker programs on the web such as PEiD[3], ASPackdie[7], etc.
They use a signature-based approach to identify the packer behind a packed binary, and
apply a packer-specific unpacker to unpack the binary. Because of the reliance of packer-
specific unpackers, they are typically ineffective against unknown packers or new
variants of existing packers.

In contrast, BEAST is designed to unpack packed binaries in a packer-independent way.
Bintropy[4] computes a binary's entropy to determine whether the binary is
packed/encrypted or not. BEAST applies a similar idea to determine if a binary is packed
or not statically, and if the original binary has been fully unpacked at run time.

There are also several Win32 binary instrumentation tools. However, none of them
currently are capable of handling packed binaries as BEAST.

Dyninst[11] applies static disassembly to Win32/X86 binary rewriting and optimization.
It requires full debugging information to guarantee the safety of instrumentation. BEAST
does not have this requirement.

Dynamo[9] is another binary interpretation and optimization system that uses a software-
based architectural emulator to detect so-called hot traces, i.e. sequences of frequently
executed instructions, and optimize them dynamically so that they can run faster. Despite
the binary interpretation overhead, Dynamo is able to achieve a non-trivial speedup of
15%-22% for some binaries when compared with their native execution time.

4

Unfortunately, the Win32/x86 version of Dynamo[10] runs much slower and incurs a
performance overhead of between 30% to 40%. The reasons cited for this slowdown are
lack of documentation for Win32 API and additional implementation complexities that
do not exist on the UNIX platform.

PIN[12] takes a similar dynamic binary emulation and instrumentation approach as
Dynamo. It also performs instrumentation entirely at run time. PIN provides a very good
Instrumentation interface. It is generic in the sense it separates architecture dependant
complexities from the user by providing a well designed instrumentation interface. Since
PIN allows instrumentation, it causes runtime overhead. PIN uses optimizations like
liveness analysis on this instrumentation code so as to save runtime overhead. BEAST is
not providing a custom instrumentation interface.

PIN uses a complete dynamic instrumentation approach. It uses ptrace to capture the
application context and attaches to it. Its complete dynamic instrumentation approach is
somewhat costlier than BEAST's speculative approach which minimizes runtime costs,
however, BEAST introduces considerable amount of debug exceptions (int 3s) at runtime
owing to its approach of in-place instrumentation. PIN completely rewrites code to other
location by caching code and then creates links to these locations. This approach is
costlier in terms of memory usage but it obviates the need of using debug exceptions and
thus avoids time spent on expensive user to kernel switches due to int 3.

PIN creates code cache called traces. They are sequence of instructions to be executed
serially. PIN tries to link these traces directly to avoid the transfer of control to VM for
indirect branch resolution. For direct branch it can directly link to a single trace, however,
for indirect branch it performs branch target prediction. It uses the lea/jecxz approach
similar to DynamoRIO to find if the predicted branch is correct. This approach is similar
to BEAST's approach of pushing target and looking it up in the O(1) cache. If PIN is not
able to find the target then it does indirect target resolution by using VM. Here it creates a
trace and start its execution. It is similar to BEAST's approach of finding if a target
address is known/unknown; if unknown then invoke dynamic disassembler. However,
BEAST introduces int 3s during dynamic disassembly if it discovers a short indirect
branch. PIN does not have to do this due to code rewriting. Though the number of
dynamic int 3s introduced are considerably less, they can prove costlier if int 3s are
executed in a loop.

PIN uses lookups in its hash table to find traces linked with an indirect branch. BEAST
also performs such lookups, however, our 2 byte-bitmap hashing mechanism, though a
little costlier in terms of memory is otherwise quite efficient. It performs O(1) search to
find the data structure corresponding to an indirect branch.

PIN handles function returns. To optimize returns they use code cloning, where they
create copy of a function per calling context. BEAST does not handle return sites. It
assumes a behavior where functions return to the caller. Since caller was already
disassembled, we assume return site will be disassembled. However, this may not be the
case in codes where the return addresses are changed at runtime by modifying EIP. Thus

5

we need to handle return in a similar way as we handle indirect control transfer
instruction.

PIN has used register reallocation so as to ensure that it does not modify application
registers. BEAST simply pushes the registers on stack and pops them out when it is done
with handling.

PIN uses a spilling area where it stores the registers content when it reuses them for
reallocation. This spilling area needs to be thread specific. BEAST does not need a
spilling area, but at run time BEAST calculates relocated address of a target. If it finds
that the target is relocated, it needs to redirect control to this region. This computation of
relocated target and actual transfer to the target address needs to be done in a thread
specific manner. We exploit the thread specific stack for this. If BEAST's check() routine
- runtime handler function, is handling an indirect call and it realizes that the target
address is relocated then it changes the return address of check routine to the relocated
target address and pushes the actual return address of check routine below it. Thus after
execution of the check function, instead of returning to the caller’s site, BEAST jumps
directly to the callee. After callee reaches return, it returns to callers return site.

HDTrans[13] is a light-weight IA32-IA32 binary translation system that combines a set
of simple but effective translation techniques with well known trace linearization and
code caching optimization techniques. Performance experiments from HDTrans show
that static pre-translation is effective only when expensive instrumentation or
optimization is required.

QEMU[19] is a processor emulator that uses a dynamic translator to convert instructions
in an emulated program into the host's instruction set. Such conversion can be considered
as one form of binary disassembly and instrumentation.

Similar to BEAST, QEMU also uses page protection to detect SMC and invalidates
previously translated code. The slowdown of QEMU compared with native execution is
typically a factor of 5 or more.

BIRD [14] is a general binary instrumentation infrastructure that is specially designed to
facilitate the development of software security for Windows/X86 binaries. Given a binary
program, BIRD first statically disassembles it to uncover as many instructions as possible,
rewrites it to allow run-time interception at all indirect jumps and calls, and then
dynamically disassembles those areas that are explored during execution. Through a
combination of static and dynamic disassembly, BIRD achieves both high accuracy and
high coverage. However, for packed binaries, BIRD 's static disassembler can easily fail
on the unpacker code. Therefore it cannot do much for packed binary instrumentation.

6

Chapter 3

3 Overview

3.1 Overview of BEAST

BEAST is derived from BIRD, which has two limitations.

First, despite a significant amount of efforts spent on fine-tuning its disassembly
algorithm, BIRD could not guarantee the static disassembly error rate is zero in all cases
when it uses a disassembly algorithm that is more aggressive than recursive traversal[18].
To do so, BIRD needs to drastically decrease the coverage of its static disassembly, and
thus defers most of the disassembly work until run time. How to achieve 100% static
disassembly accuracy while maintaining a high disassembly coverage for Win32/X86
binaries remains an elusive goal for BIRD.

Second, like most other existing binary instrumentation systems, BIRD cannot handle any
form of self-modifying code: Once a binary's code region is disassembled, BIRD assumes
it never changes and thus never bothers to invalidate the code region's disassembled
result if it indeed gets updated.

To overcome the first limitation, BEAST uses a speculative disassembly mechanism that
logically applies a conservative and an aggressive static disassembly algorithm on the
input binary, and produces a conservative disassembly result (high accuracy but low
coverage) and a speculative disassembly result (low accuracy but high coverage),
respectively. Whenever applicable, the conservative disassembly result overrides the
speculative result. Initially BEAST's run-time component only relies on the conservative
disassembly result to determine if a certain part of the input binary has been successfully
disassembled. However, whenever BEAST needs to dynamically disassemble a newly
discovered region, it first checks if it can directly leverage the speculative disassembly
result before invoking the disassembler. Because most of the speculative disassembly
result is correct, i.e. its disassembly error is non-zero but low, BEAST can effectively
avoid most of the dynamic disassembly work. As a result, this speculative disassembly
mechanism can simultaneously achieve the best of both worlds: 100% disassembly
accuracy with high disassembly coverage.

Assume a packed binary B contains a compressed or encrypted form of an original binary
O. To instrument packed binaries, BEAST aims to identify the point during the execution
of B at which O is completely recovered. After the unpacker in B completes the
unpacking process, it transfers the program's control to the entry point of O. Therefore,

7

the transition from B's unpacker to O corresponds to a jump whose target is a page that is
written at run time. BEAST uses a page status tracking mechanism to detect such
transitions.

BEAST consists of a static component, which performs static disassembling and
instrumentation and is implemented as a stand-alone executable, and a dynamic
component, which performs dynamic disassembling and page status tracking and is
implemented as a DLL that is injected into an instrumented binary when it is executed.

Given an input binary to be instrumented, the static component of BEAST first checks if
the input binary is packed or not. If the input binary is not packed, BEAST statically
disassembles the binary to produce a conservative and a speculative disassembly result,
and instruments indirect branches and other instrumentation points of interest to the user.
If the input binary is packed, BEAST will not disassemble or instrument it at all.

In both cases, BEAST appends to the end of the input binary useful information that could
facilitate dynamic disassembly and instrumentation such as base loading address, module
size, code region offset, and packed/non-packed flag.

BEAST’s dynamic component contains a page status tracking mechanism to detect the
end of unpacking during the execution of a packed binary, and invokes a dynamic
disassembler and instrumentor when the original binary is completely unpacked.

3.2 General Architecture of BIRD/BEAST

BEAST, in order to provide complete coverage, intercepts all indirect branches and
instruments them with a call to runtime check() function. Thus, there are two major
components of BEAST’s architecture:

a. Static component
b. Dynamic component

8

Figure 1 BEAST’s architecture

3.2.1 Static component

BEAST statically disassembles a binary from its entry point, recursively traversing over
direct jumps and calls till all the reachable code is disassembled. In this scan, if BEAST
finds any indirect control transfer instructions, it instruments those instructions with a call
to runtime “check” function which is present in BEAST’s dynamic component, a DLL.
Later, BEAST uses speculative disassembly to uncover as much of the Unknown Area. It
marks these instructions as speculative and dumps related information at the end of the
binary. Finally, BEAST dumps the indirect branch and unknown area related information
at the end of the original binary.

To clarify the concepts of

1. Indirect call to a known area and
2. Indirect call to an unknown area consider the following example.

Original code segment:
10000000 Push ebp
10000001 Mov ebp, esp
.
10000005 call 0x100000F0
.
1000000A Mov eax, [0x100000F0]
1000000F call eax
.
.
1000001A mov eax, [0x100001F0]

9

1000001F call eax
10000021 add ebx, 0x0A
.

Assume that BEAST reaches 0x10000000 during static disassembly. Instruction at
0x10000005 is a direct call to 0x100000F0, thus 0x100000F0 becomes a known region.
Therefore, indirect call at location 0x1000000F turns out to be an indirect call to known
region. Let us assume that 0x100001F0 cannot be statically reached. In this situation the
indirect call at 0x1000001F becomes an indirect call to an unknown region.

An indirect control transfer instruction is patched with a trampoline code which transfers
control to a stub. For example, the instruction at 0x1000001F, call eax which is a 2 byte
instruction is patched with a 5 byte jump to a stub. The region from 0x10000021 to
0x10000023 is the region belonging to next instruction and thus is getting overwritten by
the 5 bytes jump. We term this region as extended region.

1000001F jmp 10100010
.
.
10100010 push eax
10100011 call check
10100017 call eax
10100019 add ebx, 0A
1010001C jmp 10000024

Above code snippet shows how the location at 1000001F is patched with a jump to a stub
at 10100010. This stub pushes the target address on the per thread stack, which can be
retrieved in the check function as a parameter. Check() performs the runtime handling
and returns back. The rest of the code in the extended region is copied as it is to ensure
correct execution.

3.2.2 Dynamic component

BEAST’s dynamic engine is a DLL which has init() and check() functions. Init function
reads in the dumped information and populates the corresponding data structures. Check
function handles the targets of indirect branches. It checks if the target is already known.
If yes then it returns. If the target lies in a speculative region and starts that speculative
region, then check() merges the speculative information about that function and does
runtime instrumentation of indirect branches lying in that speculative region. If the target
lies in totally unknown region, then BEAST dynamically disassembles the region till it
hits a known region or it is unable to disassemble further. Thus, the unknown area goes
on reducing as BEAST uncovers more unknown regions.

10

Chapter 4

4 Speculative Disassembly

Because binary instrumentation tools modify input binaries, they require 100%
disassembly accuracy to preserve the input binaries' original execution semantics. The
experiences with BIRD suggested that zero disassembly error comes with an expensive
cost in terms of disassembly coverage. Fortunately, for legitimate Win32/X86 binaries,
disassembly errors occur infrequently. The key idea of BEAST's speculative disassembly
mechanism is to leverage as much as possible static disassembly results by exploiting
run-time information to confirm those that are guaranteed to be free of disassembly
errors.

As shown in Chapter 6, speculative disassembly significantly reduces the amount of code
that needs to be dynamically disassembled and instrumented, thus effectively performs
most disassembly and instrumentation statically while achieving both high disassembly
accuracy and coverage.

4.1 Static Component

4.1.1 Baseline Disassembly Algorithm

BEAST's static disassembly algorithm is derived from BIRD's static disassembly
algorithm, which consists of two passes. In the first pass, the disassembler applies
recursive traversal to traverse the input binary's control flow graph starting from its main
entry point, and discovers all instructions that are reachable through direct branch
instructions, i.e., branch instructions whose target address is known statically. All the
other bytes in the input binary that are not reachable in the first pass are called
unreachable bytes. In the second pass, the disassembler chooses some unreachable bytes
as starting instructions, and then performs the same control flow graph traversal from
these instructions. During the second-pass traversal, the disassembler accumulates a
confidence score on the probability that each unreachable byte block correspond to an
instruction sequence. At the end of the second pass, a byte block is considered as
instructions if and only if its score exceeds a certain threshold and the address of its first
byte is evidenced to be a starting instruction.

BIRD uses several heuristics to select the starting instructions, such as function entry
point identification, jump table identification, etc. None of them is 100% reliable.
Through the confidence score mechanism, the disassembler attempts to capture the
essential difference between data and instructions bytes: it is unlikely that data bytes can
accumulate multiple evidences that indicate that they are instructions.

11

At the end, this disassembly algorithm partitions an input binary into a known area,
which it knows for sure corresponds to instructions or data, and an unknown area, whose
nature it cannot be absolutely sure of. In addition, all the indirect branch instructions in
the known area are instrumented so that when they jump to the unknown area at run time,
the dynamical disassembler is invoked on the targets.

4.1.2 Speculative Disassembly Algorithm

In order to ensure that the known area it produces statically does not contain any
disassembly error, BEAST needs to set the threshold of the confidence score to a very
high value. However, this turns a large portion of the input binary into the unknown area,
which may lead to significant run-time overhead. Instead of leaving the unknown area
completely to the dynamic disassembly, BEAST disassembles this area as much as it can
using a speculative disassembly algorithm, and records the disassembled results and their
corresponding instrumentations. However, BEAST does not actually apply these
instrumentations to the unknown area.

To allow BEAST's run-time component to leverage static disassembly results, the static
disassembler organizes its results into basic units called code thunks.

Operationally, BEAST builds a code thunk by traversing forward from a starting point
using the following rules:

1. Upon a conditional branch instruction, follow both of its arms.
2. Upon a direct jump instruction, jump to the target address.
3. Upon a direct call instruction to a callee that always returns, continue with the

next instruction following this call instruction without descending into the callee's
function body.

4. Upon an indirect jump or call instruction whose target address can be determined
by static analysis, treat this instruction as its direct counterpart and apply Rule 2
or 3.

5. Upon a direct call whose callee does not return, a return instruction, an indirect
branch instruction whose target address cannot be determined statically, end the
current code chunk.

Each code thunk thus constructed corresponds to a set of instructions that are guaranteed
to be reachable by applying recursive traversal from its starting point.

To increase the coverage of the speculative disassembly, BEAST searches the entire input
binary, including its data areas, for possible starting points for growing code thunks.

From a binary's PE header, BEAST first identifies the start and end of the code sections. If
the target of a direct call instruction falls within a code section, it is a starting point
candidate. If a sequence of bytes looks like a function prolog, the base of this byte
sequence is also a starting point candidate. If a data pointer points to a code section, the

12

address contained in the pointer is a starting point candidate. If a 4-byte aligned word
contains a value that falls within the address range of a code section, this value is also
taken as a possible starting point. For areas in the input binary that do not show any signs
of being instructions, BEAST disassembles them anyway if there are no disassembly
errors. Each code thunk extracted from a binary is represented as a tree, and code thunks
are connected with each other because one code thunk transfers control to another code
thunk through a direct call or an indirect call whose target address can be statically
determined. If a code thunk is valid, the code thunks to which it is connected are also
valid. Two code thunks may overlap with each other with or without conflicts. A conflict
occurs when the two code thunks cover a common byte range and they have different
interpretations for the common bytes. BEAST resolves a conflict between two code
thunks removing the code thunk with a significantly lower confidence score. In case their
confidence scores are similar, BEAST removes both code thunks. If two code thunks
overlap without conflict, BEAST keeps both code thunks.

4.2 Dynamic Component

Whenever BEAST's run-time engine intercepts an indirect branch that transfers the
control to an unknown area, it first checks whether the target address goes into any code
thunk in the speculative disassembly result. If the target address confirms any
speculatively disassembled code thunk, BEAST directly includes this code thunk into the
known area and applies its pre-computed instrumentations to this code thunk.

Intuitively, a target address confirms a code thunk if the code thunk also thinks the
address starts an instruction. Because it is expensive to record the start address of every
instruction in every speculatively disassembled code thunk, BEAST only compares the
target address of every intercepted indirect branch with the starting point addresses of
code thunks, and confirms a code thunk if it’s starting point address matches an indirect
branch's target address.

We can fine-tune this approach to instruction and basic block level. A target address may
confirm a code thunk if the code thunk also thinks that this address either starts an
instruction or starts a basic block. This level of granularity will be possibly only with
additional storage of information, especially we need to store starting address of each and
every instruction or starting address of a basic block respectively. Moreover, it is easy to
merge function level information like the number of callees, addresses of indirect control
transfers in this function etc. So we resort to the function level granularity approach.

Even with this approximate confirmation approach, BEAST is able to eliminate a majority
of dynamic disassembling as required by BIRD configured with the same confidence
score threshold.

As mentioned earlier, once BEAST’s run-time engine confirms a code thunk, it leverages
the thunk's disassembly and instrumentation results. As a result, not only the amount of
dynamic disassembly and instrumentation is greatly reduced, more importantly the

13

quality of instrumentation is significantly improved. In BIRD, instrumenting indirect
branches in the dynamically disassembled results is always done through the expensive
int 3 instruction because it cannot afford to perform advanced control flow analysis
required to safely instrument these branches using simple jump instructions. Because the
trampoline code for instrumentation is statically prepared, BEAST can carry out
instrumentation with almost no overhead as it only needs to paste the trampoline code
over the target indirect branch instruction or instrumentation.

The disassembly algorithm BEAST applies to a dynamically unpacked binary is different
from its static disassembly algorithm in the following ways.

First, an unpacked binary may not have a proper PE header, which contains information
such as the session table, the import table, etc., because the unpacker typically performs
the job of the Windows loader and therefore can remove all PE header information that
the loader needs.

Second, because the disassembly time for an unpacked binary is counted towards the total
run time, BEAST cannot afford to use advanced program analysis to improve disassembly
accuracy and/or instrumentation efficiency. Instead, after an unpacked binary is created,
BEAST scans it once to derive possible starting points and grow code thunks, and leaves
whatever areas left to run-time disassembly.

To improve the efficiency of instrumentations for dynamically disassembled code,
BEAST records the target addresses of all direct and indirect branches it encounters.
Every time it encounters an indirect branch destined to an unknown area that does not
correspond to any pre-computed code thunk, it instruments this indirect branch by
replacing it with a jump instruction if the indirect branch's address does not match any
target addresses BEAST maintains.

In addition, if later on the target of a newly discovered branch matches that of a jump
instrumentation BEAST replaces that jump instrumentation with an int 3 instruction.

14

Chapter 5

5 Efficient In-place Instrumentation

The design of BIRD intercepts indirect branches by replacing them with an unconditional
jump instruction that transfers control to a check() function, which performs the
necessary processing to ensure that every instruction in a binary program be examined
before it is executed. However, it is not always possible to replace an indirect branch
instruction (indirect jump or indirect call) with a jump instruction because a short indirect
branch instruction takes two bytes but an unconditional jump instruction takes 5 bytes.
Replacing a short indirect branch instruction with an unconditional jump instruction is
feasible if any of the three bytes following the short indirect branch instruction is not a
target of any branch instruction in the program. When an indirect branch instruction is
replaced by a 5-byte jump instruction, let's call the additional three bytes as the
corresponding extended region.

If it is infeasible to replace a short indirect branch with a jump, the only other alternative
to instrumenting the indirect branch is to replacing it with an int 3 instruction, which is
also 2 bytes. Because an int 3 instruction triggers an exception, it is much more expensive
than a jump instruction. BIRD replaces an indirect branch with an int 3 instruction if

1. There exists in the same function a direct jump whose target falls into the
extended region, or

2. There exist other indirect jump instructions in the same function.

Empirically, int 3 instructions are used rather frequently in BIRD-instrumented binaries
and thus account for its major performance overhead. In this section, we will describe a
series of optimizations that eventually eliminate almost all int 3 instructions during static
instrumentation.

5.1 Comprehensive Branch Target Analysis

In the original design of BIRD, the extended region of each short indirect branch is
assumed to lie in the same function as the short indirect branch. However, this is not
necessarily always the case in practice. To address this problem, BEAST statically
collects the target addresses of all direct calls and jumps in the known area, and
dynamically checks if the target of any indirect call or jump or any dynamically
discovered direct call or jump falls into any extended region. If the extended region of a

15

short indirect branch contains the target of a direct call or jump, the short indirect branch
can only be instrumented using an int 3 instruction. If the extended region of a short
indirect branch is found to contain the target of an indirect call or jump or a dynamically
discovered direct call or jump at run time, the interception of this short indirect branch is
changed from a jump instruction to an int 3 instruction at run time.

Following code example describes how an extended region of an indirect control transfer
instruction may contain start of some other function.

//Function F1
1000001A ret
10000020 Mov eax, 0x1000001A
10000023 Jmp eax
//Function F2
10000025 push ebp
10000026 mov ebp, esp

The instruction at location 10000023 has an extended region up to 10000027. However,
the instruction at 10000025 starts function F2. Note that 10000023 belongs to function F1
and 10000025 belongs to function F2. If we replace 10000023 with a 5 byte jump then
we effectively relocate 10000025. Thus, a direct call to 10000025 needs to be relocated.
Since we want to reduce this complicated analysis we patch 10000023 with a one byte int
3 instruction.

When an indirect jump or call instruction is intercepted at run time, its target address is
checked against the known area list to determine if a previously unknown code region is
discovered. In this optimization, BEAST checks this target address against the list of
extended regions to determine if any extended region is invalid; in addition it performs
the same check for targets of direct calls and jumps that are discovered at run time. When
BEAST finds an extended region is invalid, it converts the interception of the
corresponding short indirect branch to int 3.

In summary, with this optimization, BEAST replaces an indirect branch with an int 3
instruction if

1. There exists in a direct jump whose target falls into the extended region, or
2. There exists a direct call whose target falls into the extended region.

Statically, only the targets of direct calls and jumps in the known area are known. BEAST
takes a speculative approach to replace all short indirect branches that satisfy the above
requirements with a 5-byte jump, but reserves the option to fall back to an int 3
instruction at run time when the target of an indirect call/jump or a dynamically
discovered direct call/jump is found to invalidate an extended region.

16

That is, by piggybacking extended region invalidation with run-time target address check,
BEAST is able to remove a portion of the int 3 instructions used in BIRD-instrumented
binaries.

5.2 Patching Direct Jumps

Even with the branch target analysis optimization described in the previous subsection,
because the extended regions of many short indirect branches in real-world Win32
binaries contain targets of direct jump instructions, these short indirect branches can only
be intercepted using an int 3 instruction. BEAST eliminates these int 3 instructions by
patching the direct jumps whose target falls into the extended region of an existing short
indirect branch. That is, when a direct jump D renders invalid the extended region of a
short indirect branch B, instead of patching B using an int 3 instruction, BEAST will patch
D so that eventually D will jump to where it is supposed to go in the original binary. In
this case, both B and D are processed in check(), as well as the control transfer between
them. More generally, whenever an instruction I1 is to be patched and its extended region
contains the target of a direct jump I2, BEAST chooses to patch I1 with a jump
instruction, and proceeds recursively with I2, which itself now needs to be patched. This
recursion continues with N steps, where N is a configurable parameter, and stops if
further patching is required. In that case, the original short indirect branch is patched with
an int 3 instruction.

Following code example explains the above mentioned approach of patching direct jumps
through N recursions:

10000000 call eax
10000002 add ebx, 0x0A
.
10000010 je 10000004
10000012 add ecx, 0x0A
.
10000020 je 10000014
10000022 add ebx, 0x 0A
.
10000030 je 10000014
.
In the above code snippet example, the instruction at 10000000 is call eax which is an
indirect call instruction taking 2 bytes. When it is patched with a 5 bytes jump, we
relocate 10000002 inside the stub of 10000000. Now, when the instruction at 10000010
tries to jump at location 10000002, it may have to jump to the appropriate relocated
address inside the stub. BIRD did not handle this situation. It would have replaced call
eax at 10000000 with an int 3 so that the jump at 10000010 can safely jump with any
relocation. However, BEAST patches 10000010 with a 5 bytes jump and relocates the

17

jump at 10000010 to jump at appropriate location in the stub. By doing so BEAST needs
to take care of any instructions which jump into the extended region of this newly
replaced region. BEAST thus finds out that instruction at location 10000020 and
10000030 jump into the newly replaced extended region of 10000010. BEAST patches
these instructions with a 5 byte region and applies the above procedure recursively till it
finds a point where the currently relocated extended region does not contain target of any
direct jump.

In contrast, BIRD only patches indirect branches because they are the only ones that need
to be intercepted. On the surface, it appears that the idea of patching conflicting direct
jumps, i.e., those whose target falls into some extended region increases the number of
instructions that need to be patched, and indirectly increases the number of int 3
instructions used. In practice, this is not the case for two reasons. First, whenever BEAST
patches a conflicting direct jump, it must already avoid one int 3 instruction. Therefore,
patching conflicting direct jumps cannot increase the number of statically placed int 3
instructions. Second, as BEAST shifts through the target instructions for patching, it can
successfully avoid int 3 if the current instruction is at least 5-byte long or its extended
region does not contain any target. Therefore, in some cases, BEAST can indeed decrease
the number of statically placed int 3 instructions.

With the addition of the "patching direct jump" optimization, BEAST replaces an indirect
branch with an int 3 instruction if

1. There exists a direct call whose target falls into the branch's extended region.

Empirically, as shown in the Performance Evaluation section, statically placed int 3
instructions are all but eliminated with this optimization, because the chance of a direct
call's target falling into a short indirect branch's extended region is very slim in practice.

To patch a direct unconditional jump, BEAST uses the following stub:

Push target_delta
Call check
Jmp [location]

where target_delta is the difference between the original target of the direct jump and

the stack location holding it, and is an input parameter to check(), and location is a

memory location that holds the actual target address as calculated by check().

Direct conditional jumps require additional processing because they typically depend on
the contents of the EFLAGS register. Accordingly, BEAST simulates a direct conditional
jump with unconditional jumps using the following stub:

Push target_delta
Call check

18

Je if_equal
Jmp if_no_equal
if_equal:
Jmp [location]
if_not_equal:
Fall-through instruction

where target_delta and location mean the same as the direct unconditional jump case.

5.3 Dynamic Instrumentation Algorithm

In addition to statically determining whether to patch a short indirect branch with an int 3
instruction using the criterion described in the previous subsection, BEAST also needs to
dynamically patch those short indirect branches that are discovered at run time. Because
BEAST cannot afford much analysis at run time, implementation complexity is the key
consideration:

1. A dynamically discovered short indirect branch is always patched with an int 3
instruction.

2. If a dynamically discovered direct jump conflicts with the extended region of a
patched instruction I, then find out why I needs to be patched. If I is not a short
indirect branch, it must be because I's target conflicts with the extended region of
another instruction. Continue tracing backwards this way until the instruction is a
short indirect branch, and convert the patching for this branch to int 03. All the
intermediate instructions are reverted to their original non-patched form.

Empirically more than 60% of the patched branches were direct branches with their target
addresses known statically. Exploiting this to fix their target addresses in the stub
removes the need to call check() at run time. For example, the stub for patching a direct
conditional jump becomes

Je if_equal
Jmp if_not_equal
If_equal:
Jmp actual_addr_in_stub
If_no_equal:
Fall-through instructions

where actual_addr_in_stub is the statically computed target address of the direct branch.

19

5.4 Implementation Issues

5.4.1 Multithreading

Because most Win32 binaries are multi-threaded, BEAST also provides multi-threading
support by making check() re-entrant, particularly the target address of a patched indirect
branch in one thread should be separate from that in another thread.

Moreover, BEAST guards the common data structures used in check(), e.g. unknown area
list, extended region list, function entry point information, etc., with proper fine-grained
locks so that the accesses to them are both thread-safe and efficient.

5.4.2 Low-Overhead Exception Checking

BEAST reduces the total count of statically placed int 3 instructions, however, at the
expense of increasing the number of invocations of check() at run time. Even though an
int 3 exception takes much longer than a simple function call, the fixed overhead in
check() to perform target address lookups can still be quite costly and adds up quickly.
With the "direct jump patching" optimization, the possibility of a direct jump's target hits
an extended region increases, and the size of the extended region list also increases
accordingly. We have tried to use a cache to capture recently appearing extended regions,
but the cache proves to be of not much use because most accesses to it result in a miss.
Moreover, because the target of a patched branch may potentially be relocated into a stub
of another patched branch, BEAST has to check the target of a patched branch to ascertain
whether the target is in the known area or is relocated or not, and incurs the associated
expensive lookup overhead. However, most of the times, a patched branch's target is
known and not relocated. In these common cases, ideally the look-up time should be
constant O(1), and the expensive look-up should be avoided.

To speed up the common-case look-up, BEAST constructs a two-bit-per-byte metadata
map for each code module. For a given code module, say a DLL, its metadata map
indicates whether each byte in it is known and/or relocated. At run time, given the target
address of a patched branch, check() first consults with the corresponding metadata map
with the target address. If the target address byte is known and not relocated, check()
returns control to its caller immediately. If the target address byte is known and relocated,
check() proceeds further to calculate the relocated address of the target. If the target
address byte is unknown and not relocated, BEAST performs another lookup to search for
the corresponding speculatively disassembled function, and performs dynamic
disassembly starting with the target address if such a speculative function is not found. It
is not possible for a target address to be unknown and relocated.

20

These per-module metadata maps drastically reduce the look-up performance overhead in
check() at the expense of additional memory usage. For a 10-Mbyte binary program, the
additional memory consumption for these metadata maps is 2.5 Mbytes, which seems to
be modest.

5.4.3 Relocation in DLLs

As opposed to Executables, Dynamic linked libraries on Windows may not load at the
same base address as provided in the header of the DLL. With this in mind, those entries
which depend on absolute addresses are added to the relocation table in the DLL.
Windows loader fixes the entries from the relocation table by adding a delta which is
calculated by finding the difference between the actual loading address and the address
mentioned in the header. BEAST takes care of all such instructions, whether newly added
by BEAST’s instrumentation code or previous instructions which are relocated to a new
stub, by adding them to the relocation table and removing the older entries as needed.

BEAST also stores only the relative virtual address (rva) of required data and fixes them
at runtime when init() function loads the dynamic data structures using this statically
dumped information.

21

Chapter 6

6 Performance Evaluation

6.1 Methodology

In this section we present the set of programs on which BEAST was tested. Further, we
list various configurations of BEAST which were used to demonstrate gradual
improvement in performance. We also specify the technical specifications of the
environment on which BEAST was tested. Finally, we describe the testing tool set used to
make various measurements like elapsed time, startup time, int 3 counts, and static
disassembly coverage improvement.

6.1.1 Set of programs

To evaluate the effectiveness of BEAST, we test it on two major categories of programs,
batch programs and GUI programs. Table 1 shows the set of batch programs. These
programs are comp (comparing two 4MB files), find (finding a given character from a
4MB ASCII file), sort (sorts a 4MB ASCII) and ping (ping ip address with 1024 bytes
data). Table 2 shows set of GUI applications on Windows on which BEAST was tested.
These programs are Yahoo Messenger, Firefox, Acrobat Reader, Movie Maker and
Safari.

6.1.2 Set of configurations

BEAST was built in incremental improvements over BIRD. As BEAST evolved, 5
versions of BEAST were produced, each succeeding version an incremental improvement
over previous one. Each of the versions significantly differs from each other with respect
to the instrumentation principle. Version 1.0 of BEAST, already handled the speculative
disassembly part. Version 1.1 through version 1.3 attempted to reduce the number of int
3s by applying various instrumentation techniques for replacement of an indirect control
transfer instruction. Version 2.0 mainly concentrated on reduction of time spent in the
check() function performing the expensive lookups related to target address and towards
multithreading support.

Version 1.1 performs global analysis as opposed to version 1.0’s per-function analysis.
There are various aspects of Win32 binaries which make disassembly harder. It is tough
to decide function boundaries since a function can have multiple return sites. Also, inside
a function segment a return statement may not necessarily lie at the end. In fact there are
cases where a return is followed by an indirect jump. By performing global analysis
version 1.1 finds out targets of direct calls (starting address of a function) lie in the
extended region of some indirect branch. In such situation, the indirect branch is replaced

22

with int 3. Since version 1.0 did not perform global analysis, it was never sure if any start
of a function lies in the extended region of any indirect branch. So it replaced all the short
indirect jumps (jump instructions whose length is less than 5 bytes) with int 3. Also, if the
extended region of an indirect branch consists of a target of any direct jump then it
instruments that indirect branch with an int 3.

Version 1.2 took a step further by selectively patching direct unconditional jumps whose
target lie in the extended region of an indirect branch. Thus the indirect branch could now
be instrumented with a 5 byte jump to the stub. However, if targets of conditional jumps
lie in the extended region of an indirect branch then the indirect branch is replaced with
an int 3.

Version 1.3 performed patching of conditional direct jumps as well. It has to simulate a
direct conditional jump with a series of unconditional direct jumps as explained in
Chapter 5.3. This change brought a drastic reduction in the number of int 3s introduced
during static time instrumentation. It was owing to the fact that most of the direct jumps
are conditional direct jumps since most of the programming constructs like for, while, do-
while, if are transformed into direct conditional jumps.

Version 2.0 reduced the time spent at runtime on the expensive lookups performed to find
the data structure elements corresponding to the given target address. It used the 2bit-per-
byte bitmap metadata as explained in Chapter 5.4.2. It also incorporated a better support
for multithreading by providing fine grained locks and using per-thread stack as opposed
to its predecessors which used a shared data structure with a big lock around.

6.1.3 Environment

BEAST was tested on a Pentium IV 2.8 GHz, 1 GB RAM with Windows XP, service
pack 2. BEAST’s static component was compiled using GCC on cygwin and dynamic
component is organized as a DLL which requires Microsoft SDK 2003 and Microsoft
VC++ 2005 compiler.

6.1.4 Testing tools

Binaries instrumented with BEAST were tested for total run time, startup time, int 3
counts and improvement in static disassembly coverage. We wrote a tool which measured
the total elapsed time for set of batch programs. We simply exec’d the test application
and when the control returned to our program we measured the elapsed time. For GUI
programs, we used the Microsoft VC++ StartupIdleTime function, which returns control
to our program when the GUI application turns idle. This measurement, though not
accurate, gives a proportionate measure of startup time for various configurations of
BEAST. We calculated the number of int 3s by simply using a counter. However, for
dynamic int 3 calculation for GUI programs during startup, we used shared memory
across our testing tool and the test application binary. The test application writes the
number of int 3s to the shared memory. When control is returned to our testing tool, we

23

take the int 3 count from shared memory. To measure improvement in disassembly
coverage and overhead due to speculative disassembly, we compare total elapsed time for
the application binaries when they are patched with BEAST v1.0 against BEAST v1.0 with
speculative disassembly disabled.

Programs Original App. BIRD BEAST v1.0 BEAST v2.0
comp 1.42 1.66 1.65 1.56
find 0.73 0.92 0.87 0.74
sort 0.63 0.95 0.91 0.77
ping 3.12 3.18 3.16 3.16
TABLE 1: Total Elapsed Time for batch programs patched using different version of
BEAST and BIRD

6.2 Performance Results

In this section, we discuss performance of various BEAST configurations. We present
measurements based on time, coverage and int 3 counts. Further, we tell how much of
space overhead is incurred by BEAST in order to achieve this performance.

6.2.1 Time based

Programs Original App. BIRD BEAST v1.0 BEAST v1.3 BEAST v2.0
Yahoo
Messenger

1.6 2.7 2.6 2.42 2.31

Firefox 0.45 0.67 0.64 0.58 0.55
Safari 1.2 3.1 2.55 2.34 2.11
Movie
Maker

0.12 0.90 0.51 0.44 0.38

Acrobat
Reader

0.87 2.1 1.61 1.42 1.33

TABLE 2: Startup time for batch programs patched using different versions of BEAST
and BIRD. Startup times are considerably higher because of the overhead due to the
initial loading of data structures from the dump.

Table 1 tabulates total elapsed time for a set of batch programs and Table 2 tabulates
startup time for a set of GUI applications. Time measurements are performed for Original
Application and application patched by BIRD, BEAST v1.0 and BEAST v2.0. For binaries
like Acrobat Reader, Movie Maker and Safari, startup penalty is very high due to loading
of dumped information. BEAST v2.0 is faster than BEAST v1.3 because it reduces time
spent on lookups at runtime. BEAST v1.3 reduces int 3 exception handling time as
compared to BEAST v1.0, thus reducing execution time. However, the time taken by init
function slightly increases because more amount of information is dumped in higher
versions of BEAST v.1.0 Int 3 count for batch programs is very low, so we did not show

24

performance of BEAST v1.3 for batch programs. BEAST v1.0 performs speculative
disassembly thus reducing runtime disassembler invocations, so it is faster than BIRD.

6.2.2 Int 3 based

Table 3 compares BEAST v1.0 and BEAST v2.0 on the basis of total number of int 3
dynamically encountered for a set of GUI applications. Measurements are performed for
the startup time of GUI applications. Programs like Safari, Acrobat Reader and Yahoo
Messenger have considerable amount of dynamic int 3s because of the increasing number
of dynamic disassembly invocation as compared to Movie maker and Firefox.

Programs BEAST v1.0 BEAST v2.0
Yahoo Messenger 8133 642
Firefox 338 7
Safari 24542 6589
Movie Maker 5378 12
Acrobat Reader 25132 2048
TABLE 3: Comparison between BEAST v1.0 and BEAST v2.0 on the basis of
dynamically encountered int 3s

6.2.3 Space overhead

BIRD appends to the application binary a lot of information like stubs, indirect branch
information, speculative function information and unknown areas. Further, BEAST v2.0
dumps a map which stores 2-bits of information for ever byte in the code section. Thus, it
increases image size by one fourth the size of code section. Thus the overall size of
binary may become one and half times the original size.

6.3 Analysis

In this section, we present analysis of gradual changes in BEAST and their corresponding
impact on performance.

6.3.1 BIRD to BEAST v1.0

BEAST introduces speculative disassembly over BIRD. If we observe Table 1and Table 2,
we notice that BEAST v1.0 performs better than BIRD. BEAST uses the speculative
disassembly results after verification of the speculative code at runtime. Thus it saves a
certain amount of time as compared to BIRD. Startup time taken by BIRD should have
been lesser as it is not meant to dump speculative information. However, while testing of
BIRD we purposely dump the speculative information and load it during init. This is done
so as to have a fair overview of time saved by speculative disassembly on a long run.

25

Table 4 shows the total number of speculative functions verified over a certain span of
time against the total number of invocations to dynamic disassembly. Since the
applications are GUIs we recorded these values after a span of 6 seconds. We cannot get
an unbiased result for GUI applications because they wait for inputs from user, unlike
batch programs.

Programs Speculative hits Dynamic disassembly

invocations
Yahoo Messenger 1166 36
Firefox 93 2
Safari 1306 18
Movie Maker 477 29
Acrobat Reader 11686 109

TABLE 4: Number of speculative function hits and dynamic disassmebler invocations

6.3.2 BEAST v1.0 to BEAST v1.3

In comparison with BEAST v1.0, BEAST v1.3 drastically reduced the count of int 3s
introduced during static disassembly. Table 5 shows the drastic reduction in int 3 count,
introduced during static disassembly and Table 3 shows reduction in actual number of int
3s encountered at runtime.

Programs BEAST v1.0 BEAST v2.0
Yahoo Messenger 21121 47
Firefox 126 0
Safari 3513 23
Movie Maker 15385 0
Acrobat Reader 28134 44

TABLE 5: Comparison between BEAST v1.0 and BEAST v2.0 on the basis of int 3s
introduced during static disassembly

6.3.3 BEAST v1.3 to BEAST v2.0

BEAST v2.0 implemented a bitmap which saved unnecessary time wasted on lookups
inside runtime check() function. Table 2 shows time saved by BEAST v2.0 over BEAST
v1.3.

6.4 Qualitative Evaluation and Some Issues

BEAST was tested on some other Windows application, however, due to some issues as
listed below we could not evaluate BEAST on these softwares.

26

1. Internet Explorer
 BEAST works fine on IE executable, however IE extensively depends on DLLs
from the Windows folder and these DLLs cannot be modified as Windows does
not allow us to do so. There is a registry entry which specifies that DLLs from
Windows/System32 folder cannot be modified.

2. Integrity checks in some DLLs
It was found that some of the DLLs had some integrity checks which did not
allow the patched DLLs to run successfully. For example, one of the main DLLs
of Safari performed some checks and threw exception when it discovered

27

Chapter 7

7 Applications of BEAST

This section describes design, implementation and evaluation of two applications which
we built using BEAST. Call graph and system call site control flow graph extractor were
built using BEAST.

7.1 Call Graph

A call graph is a directed graph that represents calling relationships between subroutines
in a computer program [20]. Specifically, each node represents a procedure and each
edge (f,g) indicates that procedure f calls procedure g. Thus, a cycle in the graph indicates
recursive procedure calls.

7.1.1 Data Structures

BEAST maintains a per function data structure which it populates during disassembly.
This data structure includes following important members:
struct function{
 uint flags:8; //SYSCALL related
 uint sure_mode:1; // speculative-0
 char * name;
 uint start_addr;
 uint end_addr;
 varray_type indirect_jmps;
 varray_type replaced_jmps;
 varray_type indirect_calls;
 varray_type short_brs;
 varray_type djmps;
 varray_type direct_calls;
 varray_type func_segs;
 varray_type bb_array; //Basic block array for this function
 varray_type parents; //Callers
 varray_type children; //Callees
};

Function boundaries are indicated by start and end address fields. In case of multiple
returns end address is set to 0. Indirect/Direct jumps and calls are stored in an array.
BB_array stores the entire control flow. Parent and children arrays store the callers and
callees of the function. Children array holds the addresses of call sites whereas

28

callgraph_array holds the callee functions’ start addresses. Storing this construct is useful
for runtime creation of call graphs from the unknown regions.

7.1.2 Call Graph Construction

A call graph is generated by traversing from the entry point of the binary. During static
analysis, till all the reachable code region is discovered, the graph is constructed. This
call graph is dumped at the end of the binary which is further used for runtime graph
creation.

Speculative analysis is the phase where BEAST predicts some bytes as instructions and
performs disassembly starting from those points. This information is verified at runtime
when control is transferred to the starting address of any of the speculatively
disassembled function. During speculative analysis, per function call graphs are
constructed and dumped. During runtime, if a speculative region corresponding to a
function F is verified then the entry point of F is added to the caller function's
callgraph_children array.

During runtime when an indirect control transfer instruction is encountered, check()
routine is invoked. This routine performs checks for the target address. If this target lies
in a completely unknown region then dynamic disassembly takes place. During dynamic
disassembly call graph is generated in the same way as it is during static disassembly.

Inside a function F, if an instruction X is a direct call instruction then we add the callee
function to the callgraph_children array of function F. If X is an indirect call then we
patch it so as to handle it during runtime. At runtime, when we are handling the indirect
call, we know the runtime target address of X and add the callee function corresponding
to that address to the callgraph_children array.

7.1.3 Evaluation

Programs Total Nodes Static Nodes Speculative

Nodes
Average No. of
Children

Batch programs 533 104 429 3
Outlook Express 28 10 18 1
MSN Messenger 2082 28 2054 4
Safari 11344 312 11032 6
Movie Maker 13398 412 12986 5
TABLE 6: Call Graph for Win32 executables: Enlisting Total Call Nodes, Nodes found
statically, speculatively and Average Number of Children nodes

Table 6 lists count of call nodes discovered during speculative and static analysis for the
given set of Win32 binaries. It also shows the average number of children per call node.

29

Batch programs is a set of batch programs which perform search, sort, find on 4MB data
files.

7.2 System Call Site Control Flow Graph

A control flow graph (CFG) in computer science is a representation, using graph
notation, of all paths that might be traversed through a program during its execution [21].
A System Call Site Control Flow Graph bothers only to maintain those nodes in a control
flow graph which lead to system call nodes and trims all other nodes.

7.2.1 Design

We distinguish following types of nodes in the control flow.

- Call site node: A node corresponding to a call instruction in a binary.
- Return site node: A node corresponding to the physically next instruction of a call

instruction.
- Entry node: A node corresponding to the entry point of a function.
- Exit node: A node corresponding to the exit point of a function.

7.2.1.1 Basic Block

A full-fledged basic block control flow data structure is constructed by BIRD. We used
this already existing control flow data structure to build the system call site control flow
graph.

The basic block data structure looks like this:
struct bb_struct {

int index; //index of BB in function->bb_array
 uint begin; //start address
 uint end; // end address
 struct edge_struct * in_edges;
 struct edge_struct * out_edges;
 int visited; //for BFS
 scsfg_list call_site; //First call site in this BB
 scsfg_list last_ret_site; //Last return node in this BB
};

Each basic block of function F is added to the bb_array of function F. index gives the
index in this array. begin and end are the start and end addresses of this basic block.
call_site holds the first call site in this basic block and last return site holds the last return
node in this basic block. In and out edges are of type edge_struct which is defined as
follows:
struct edge_struct {

30

 int type; // 0-jmp, 1-call, 2-thru
 struct bb_struct *src; //source basic block
 struct bb_struct *dst; //destination basic block
 struct edge_struct *out_next; //next out edge
 struct edge_struct *in_next; //next in edge
};
Type of edge can be jump/call/fallthrough. Src and dst are the source and destination
basic blocks. Also multiple edges to/from a basic block are stored as a linked list.

BIRD builds basic blocks while traversing the binary. Whenever a control flow transfer
instruction like direct jump is encountered, following steps are performed:

1. If the target address does not start a basic block, a new basic block is formed.
2. In case the target address lies in between an already existing basic block, the basic

block is split into two parts and the end address of the upper basic block is
adjusted accordingly.

7.2.1.2 SCSFG

As mentioned above, four different types of nodes are identified, namely call, return,
entry and exit node. Further SCSFG maintains only those nodes that are either system call
nodes or they lead to system call nodes. This section describes creation of scsfg and
trimming of it.

The data structure to store scsfg node looks like this:
struct scsfg_node{
 unsigned int type:4; // type of the node
 unsigned int syscall_related:2; // whether leads to syscall
 unsigned int visited:2; // for traversal
 unsigned int sys_num; // system call number
 unsigned int address; // the return/function address
 char * name; //name if any
 list_entry cfg_prev; //Previous CFG entry
 list_entry cfg_next; //Next CFG entry
 scsfg_list table_next; //Next in table
};

The sys_num field indicates a custom number assigned to uniquely identify each node.
Address stores the return node address for call/return nodes and function's start address
for entry/exit nodes. Cfg_prev/cfg_next holds entries to nodes immediately
preceding/succeeding current node. These edges are maintained as linked list as there can
be multiple prev/next edges. table_next holds the scsfg node that immediately follows
this node in the scsfg table which is maintained globally.

A global array of all the scsfg nodes is maintained. During disassembly, at the start of
analysis of every function, an entry/exit scsfg is created for that function. Unique and
consecutive sys_nums are assigned to these nodes and they are added to the global array

31

of scsfg nodes. If a function corresponds to the entry point of the binary then its entry
scsfg node is marked as the entry node of the entire system. Further this node can be used
as a starting point (head node) for traversal of the entire scsfg. When a call instruction is
encountered, a call scsfg node is created with unique sys_num and a corresponding return
node is created with consecutive sys_num. Call_scsfg node points to the entry scsfg node
points back to the return node. At the end of per function analysis, the local scsfg of that
function is condensed, inorder to fix the links between scsfgs pertaining to different basic
blocks. After this condensing, entry scsfg node points to all the first call sites of the
succeeding basic blocks. If the succeeding basic block has no call sites but a return site
then we point the entry scsfg node to the exit node. If the succeeding basic block does not
have any call site/exit nodes then a Breadth First Search is performed on all the
successors of this succeeding basic block and their first call sites are linked to the entry
point. Further the last return site of each basic block is linked with the succeeding basic
blocks' first call sites. Again if no call sites are present then the last return site of the
current basic block is linked to the first call sites of the succeeding basic blocks
successors. The process continues till the entire local scsfg is constructed.

7.2.1.3 Non System Call Nodes pruning

A node is considered to be a system call node if it corresponds to any of the functions
declared in NTDLL.h. A system call related node is a node which eventually leads to any
of the functions declared in NTDLL.h. SCSFG is created by pruning any nodes which are
not system call related.

We find all those nodes which are system calls by looking up their name against the
entries in NTDLL.h. If it finds that an node F is a system call then it marks all its parent
nodes (cfg_prev) as system call related nodes and recursively carries on this marking
process till it reaches origin (first node). For static disassembly in sure mode, origin node
is the entry node corresponding to the entry point of the binary. For speculative
disassembly, it can be any entry scsfg node of any function from which disassembly
started.

Once marking of all the nodes is done, we prune all those nodes which are not system call
related. We straightaway remove all the edges that lead to non system call related nodes.
If we prune all the nodes except for the system call leaf nodes then it becomes a highly
trimmed scsfg which contains only the information about the calling sequence of system
calls.

7.2.2 Runtime SCSFG

Statically and speculatively constructed scsfgs are dumped at the end of the binary. When
this binary is loaded, scsfg is reconstructed from this dumped information. When an
indirect call control transfer instruction is encountered, the target address is looked up
against the speculative functions' start address. If target address starts at a speculative
function's start address then we merge the scsfg associated with the speculative function

32

that corresponds to this target. If the indirect control transfer instruction is a jump
instruction then its target is generally not the start of any other function. A jump
instruction belonging to function F, will not jump to start address of any other function,
however, it may jump at the start address of F which will be already disassembled by
then.

If the indirect call control transfer leads to an unknown region, then we start construction
of scsfg at runtime. This construction is exactly identical to the static construction of
scsfg. The entry point of the newly generated scsfg is linked with the caller's call site
node and the exit node is linked to the return node of the caller. If the indirect control
transfer instruction is a jump instruction then we do exactly the same steps as above
except that at the end we link the entry node of the newly discovered scsfg with the last
return site of the basic block containing the indirect jump instruction.

7.2.3 Evaluation

SCSFG extraction was tested on the set of binaries shown in Table 7.

Program Entry Nodes Count Call Nodes Count System call nodes

Count
Batch programs 533 1473 46
Outlook Express 28 43 18
MSN Messenger 2082 4475 96
Safari 11344 34567 1231
Movie Maker 13398 38712 996
TABLE 7: It shows the total number of entry nodes, call nodes and system call nodes in
the scsfg of some well known Win32 binaries.

33

Figure 2: SCSFG graph for BATCH programs.

34

Chapter 8

8 Conclusion and Future Work

Binary analysis and instrumentation is an enabling technology for enhancing the security
strength of commodity binaries through program transformation. This report describes
the design, implementation and evaluation of a new Win32/X86 binary instrumentation
system called BEAST, which improves over existing binary instrumentation tools with
two new capabilities: (1) the ability to achieve zero disassembly error while minimizing
the run-time performance overhead, and (2) the ability to instrument binaries packed by
commercial packers by detecting the end of binary unpacking. More concretely, this work
makes the following research contributions:

- A speculative disassembly and instrumentation mechanism that achieves both
high disassembly accuracy and disassembly coverage,

- A low-overhead execution tracking mechanism that can detect the end of binary
unpacking using virtual memory hardware and entropy/data-flow computation

- A fully working BEAST prototype that has been successfully tested against a set
of Windows console programs as well as the Acrobat Reader, Safari Browser,
Movie Maker and Windows Live Messenger.

Also the application of BEAST to extract call graph and system call site control flow
graph shows how a disassembly/instrumentation tool can be used to extract complete and
accurate call graph and scsfg. Moreover, it reaps all the benefits of BEAST thus having a
very low runtime overhead.

BEAST source code can be further improved by porting it to an object oriented language
like C++. A well designed class hierarchy and template classes can allow BEAST to be
extended for any underlying architecture. Providing a better interface will help user to
develop applications using BEAST. Other than above mentioned applications BEAST can
be further used for a variety of applications:

1. BDBG: A full-fledged binary debugger which can perform data flow analysis and
provide users with correct debugging decisions. BDBG can maintain a stack as
well as jump trace. It can be further attempt to tell the exact reason for a corrupt
instruction. One may think of developing such an application as it will greatly aid
programmers who need to debug binaries.

2. PAID: Program semantics aware intrusion detection can perform checks against
the extracted scsfg to verify if the invocation to system calls are in an expected
fashion. Any violations should be detected and prevented.

There are certain DLLs which perform integrity checks and thus forbid any patches on
them. BEAST may need to find out a way to bypass these checks. For programs like
Internet Explorer and IIS which depend a lot on System DLLs, BEAST is not able to get a
complete coverage because Windows forbids users from modifying the DLLs in
Windows/System32 folder. BEAST needs to tackle this problem in order to patch all the
DLLs in the set of Internet Explorer binaries.

35

Even though a BEAST is functional for certain packed binaries, it has been experimented
only with custom binaries. It needs to be further tested for large binaries. One of the
pitfalls of handling packed binaries is to perform the disassembly entirely at runtime. It
incurs a very high runtime overhead.

36

Bibliography

[1] IDAPro. IDA Pro Disassembler.
 http://www.datarescue.com/.

[2] OllyDbg.
 Oleh Yuschuk.
 http://www.ollydbg.de/.

[3] PEiD.
 JIBZ, QWERTON, SNAKER, AND XINEOHP.
 PEiD. http://peid.has.it/.

[4] Robert Lyda, James Hamrock.
 Using Entropy Analysis to Find Encrypted and Packed Malware
 IEEE Security and Privacy, vol.5, no.2, pp.40-45, Mar/Apr, 2007.

[5] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti.
 Control-flow integrity.
 Proceedings of the 12th ACM conference on Computer and communications security,
 Alexandria, VA, USA. Pages 340-353, 2005.

[6] UPX. the ultimate packer for executables.
 http://upx.sourceforge.net/.

[7] ASPack. the advanced Win32 executable file compressor.
 http://www.aspack.com/.

[8] PECompact. PE packer.
 http://www.bitsum.com/pec2.asp.

[9] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
 Dynamo: a transparent dynamic optimization system.

ACM SIG-PLAN Notices, 35(5):1--12, 2000.

[10] D. Bruening, E. Duesterwald, and S. Amarasinghe.
 Design and implementation of a dynamic optimization framework for windows.

In 4th ACM Workshop on Feedback-Directed and Dynamic Optimization FDDO-4,
December 2000.

[11] Dyninst.
 An application program interface (api) for runtime code generation.
 http://www.dyninst.org/.

37

[12] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.

 Pin: building customized program analysis tools with dynamic instrumentation.
 In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference on Programming

language design and implementation, pages 190--200, New York, NY, USA, 2005.
ACM Press.

[13] Swaroop Sridhar, Jonathan S. Shapiro and Prashanth P. Bungale.
 HDTrans: A Low-Overhead Dynamic Translator.
 In Proc 2005 Workshop on Binary Instrumentation and Applications, 2005.

[14] Susanta Nanda, Wei Li, Lap-Chung Lam, and Tzi cker Chiueh.
 Bird: Binary interpretation using runtime disassembly.
 In Proc of Code Generation and Optimization(CGO) 2006, pages 358--370, 2006.

[15] DEP.
 Data Execution Prevention in Wikipedia.
 http://en.wikipedia.org/wiki/Data_Execution_Prevention

[16] Mark Russinovich.
 Inside the Windows Vista Kernel: Part 3.
 http://www.microsoft.com/technet/technetmag/issues/2007/04/VistaKernel/

[17] Lap Chung Lam and Tzi cker Chiueh.
 Automatic extraction of accurate application-specific sandboxing policy.
 In 7th International Symposium on Recent Advances in Intrusion Detection, Sophia

Antipolis, France, September 2004.

[18] B. Schwarz, S. K. Debray, and G. R. Andrews.
 Disassembly of executable code revisited,
 IEEE Ninth Working Conference on Reverse Engineering, Richmond, October 2002.

[19] Fabrice Bellard.
 QEMU, a Fast and Portable Dynamic Translator.
 In Proc of USENIX 2005 Annual Technical Conference, FREENIX Track, pp 41-46,

2005.

[20] Call Graph
 http://en.wikipedia.org/wiki/Call_graph

[21] Control Flow Graph
 http://en.wikipedia.org/wiki/Control_flow_graph

