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Abstract of the Dissertation

Dynamic Spectrum Allocation in Cellular Networks

by

Mahmoud Al-Ayyoub

Doctor of Philosophy

in

Computer Science

Stony Brook University

2010

In cellular networks, a recent trend is to make spectrum access dynamic in

the spatial and temporal dimensions, for the sake of efficient utilization of

spectrum. In such a model, the spectrum is divided into channels and is

periodically allocated to the base stations in both centralized and distributed

manners with different goals in mind for each approach.

For the centralized approach, an auction-based market mechanism is fa-

vored due to its simplicity, efficiency and high utilization of the spectrum.

The model consists of a centralized spectrum broker who owns a part of the

spectrum, divides it into channels and issues short-term dynamic spectrum

leases of these channels to competing base stations in the region it controls.

The base stations, on the other hand, bid for channels depending on their

spectrum demands. Subject to wireless interference between base stations,

the broker allocates channels to them with various objectives in mind. These

objectives include maximizing the generated revenue, optimizing social-choice

functions like the social-welfare and/or controlling the strategic behavior of the

base stations. In this dissertation, we address the above problem and show

how to optimize the solution for these different objectives.

As for the distributed approach, the focus is shifted towards more stable

allocation that can maintain certain properties with minimal cost and human

intervention even when faced by frequent network topology changes. This is

demonstrated by problems such as self-configuration of fractional frequency
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reuse (FFR) patterns for LTE/WiMAX networks. In this dissertation, we

present distributed algorithms that provide the network designer a flexible tool

to tune different objectives like efficiency, stability and near-optimal spectrum

utilization. For each possible choice made by the system designer, our tool

delivers a near-optimal spectrum utilization with specific guarantees on the

rest of the desired properties.
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Chapter 1

Introduction

Usage of wireless spectrum by radio communication devices has long been

governed by governmental regulatory authorities (e.g., FCC in USA or Ofcom

in UK) that divide the spectrum into fixed size chunks to be used strictly for

specific purposes, such as broadcast radio/TV, cellular/PCS services, wireless

LAN/PANs, public safety related communication, etc. This allocation is very

long-term and space-time invariant, and is often based on peak usage per

provider. Many recent observations have shown that such long-term static

allocation of spectrum introduces significant inefficiencies in utilization [11].

To improve spectrum utilization, there is a new policy trend [54] to make

spectrum allocation more dynamic in both spatial and temporal dimensions

and more responsive to end-user demands. The allocation process can be

performed in both centralized and distributed manners with different goals in

mind for each approach.

For the centralized approach, an auction-based market mechanism is fa-

vored due to its simplicity, efficiency and high utilization of the spectrum.

The model consists of a centralized spectrum broker who owns a part of the

spectrum, divides it into channels and issues short-term dynamic spectrum

leases of these channels to competing base stations in the region it controls.

The base stations, on the other hand, bid for channels depending on their

spectrum demands. Subject to wireless interference between base stations,

the broker allocates channels to them with various objectives in mind. These

objectives include maximizing the generated revenue, optimizing social-choice
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functions like the social-welfare and/or controlling the strategic behavior of the

base stations. In this dissertation, we address the above problem and show

how to optimize the solution for these different objectives.

As for the distributed approach, the focus is shifted towards more stable

allocation that can maintain certain properties with minimal cost and human

intervention even when faced by frequent network topology changes. This is

demonstrated by problems such as self-configuration of fractional frequency

reuse (FFR) patterns for LTE/WiMAX networks. In this dissertation, we

present distributed algorithms that provide the network designer a flexible tool

to tune different objectives like efficiency, stability and near-optimal spectrum

utilization. For each possible choice made by the system designer, our tool

delivers a near-optimal spectrum utilization with specific guarantees on the

rest of the desired properties.

1.1 Network and Interference Models

Our model of a cellular network consists of a set of geographically distributed

base stations. Each base station is associated with a region around it called its

cell ; each base stations serves its clients in its cell. To communicate, the base

station and the client must operate “interference-free” on the same channel.

In cellular networks, wireless interference at a client may arise due to multiple

near-by base stations operating on the same channel. Several interference

models have been proposed in the literature. In this dissertation, we consider

the two most widely-used models, viz., the pairwise model and the physical

model. Below, we discuss both models formally.

1.1.1 Pairwise Interference Model

In the pairwise interference model, pairs of base stations with intersecting cells

are said to interfere with each other if operating on the same channels. These

pairs of interfering base stations can be represented by simple edges over base

stations as vertices in an interference graph, as defined below.

Definition 1 (Interference Graph Gt.) The interference graph Gt � pNt, Etq
2



is an undirected graph where each vertex represents a base station and there

is an edge pi, jq P Et between i and j if the corresponding base stations “in-

terfere”.

As mentioned before, two base stations are said to interfere when their

corresponding cells intersect. Note that interfering base stations should not

be allocated a common channel. l
The Unit-Disk Model. In the unit-disk model, the coverage region of each

base station is assumed to be a disk of uniform radius d. For simplicity of

presentation, we assume distances to be normalized, i.e., d � 1. Thus, two

base stations interfere if they are within two-unit distance from each other.

The Non-Uniform Disks Model. In the non-uniform disk model, the cells

of the base stations are disks of possibly different radii. Let the maximum

and the minimum disk radii in the network be dmax and dmin respectively. For

simplicity of presentation, we assume that the distances are normalized, i.e.,

dmin � 1.

The Pseudo-Disk Model. Finally, in the pseudo-disk model model, the cells

of the base stations may have irregular shapes, but are contained within a disk

of radius d1 while containing a disk of radius d2 ¤ d1, both disks being centered

at the base station. See Figure 1. For simplicity of presentation, we assume

that d1 and d2 are the same for all base stations. We later present techniques

that can be used to extend results for this model to the case wherein d1 and/or

d2 may be different for different cells. Also, for clarity of presentation, we use

d2 � 1.

1.1.2 Physical Interference Model

In the physical interference model, a reception at a certain distance from a base

station is successful, if the “signal to noise plus interference ratio” (SINR) at

the receiver is greater than a threshold β. More formally, a reception from a

base station i is successful at a point p if and only if,

P {dα
i

N �°jPB1 P {dα
j

¥ β, (1)
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d2

d1

Figure 1: An example of the pseudo-disk model.

where P is the transmission power, B1 is the set of other base stations operating

on the same channel as i, dx is the distance of the point p from a base station

x, N is the background noise, and α is the path loss exponent based on the

terrain propagation model. Initially, we assume that each base station operates

using the same transmission power P . We later present techniques that can

be used to extend results for this model to the case wherein each base station

has its own transmission power.

Communication Radius (r). The communication radius r of a base station

i is the maximum distance from i within which we want the SINR from i to

be at least as large as β. Essentially, the above is based on the stipulation

that the coverage cell of base station i is a disk of radius r. In our context,

the value of r can be arbitrarily large (but finite), since the approximation

ratio and time complexity of our designed algorithms are independent of r.

Thus, the concept of communication radius must not be looked upon as an

assumption.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we present

our first centralized spectrum allocation algorithm. It is based on a general

4



market-based auction mechanism with provable performance bounds. The

algorithm is limited in its treatment of the base stations’ behavior. This is

the main motivation for our algorithms in Chapters 3 and 4 which deals with

different economical aspects of the auction mechanism. We address the issue

of distributed spectrum allocation in Chapter 5. Finally, Chapter 6 concludes

this dissertation.
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Chapter 2

Centralized Spectrum

Allocation: A Simplistic

Auction-Based Approach

2.1 Introduction

Usage of wireless spectrum by radio communication devices has long been

governed by governmental regulatory authorities (e.g., FCC in USA or Ofcom

in UK) that divide the spectrum into fixed size chunks to be used strictly for

specific purposes, such as broadcast radio/TV, cellular/PCS services, wireless

LAN/PANs, public safety related communication, etc. This allocation is very

long-term and space-time invariant, and is often based on peak usage per

provider. Many recent observations have shown that such long-term static

allocation of spectrum introduces significant inefficiencies in utilization [11].

To improve spectrum utilization, there is a new policy trend [54] to make

spectrum allocation more dynamic in both spatial and temporal dimensions

and more responsive to end-user demands.

There can be several different architectures for providing dynamic spec-

trum access (DSA) that can widely vary depending on the technological lim-

itation and usage models. Buddhikot et al. [11], explored the application of

a centralized architecture for dynamic spectrum access in cellular networks

6



Figure 2: Coordinated dynamic spectrum access architecture.

by introducing the coordinated dynamic spectrum access (CDSA) model. In

the CDSA model (see Figure 2), there is a centralized entity known as the

spectrum broker who owns a part of the spectrum called the coordinated access

band (CAB) and dynamically allocates them to base stations in the region

it controls. Indeed, centralized architectures [10, 22, 52] for dynamic spec-

trum access have gained a lot of interest in the research community due to

their practicality and potential impact. However, success of the CDSA model

hinges on the design of scalable and efficient spectrum brokers. We address

this issue in this chapter by designing efficient spectrum allocation algorithms

that deliver near-optimal solutions.

Problem Addressed. We consider a dynamic auction-based approach to

allocate spectrum to competing base stations. The centralized spectrum bro-

ker acts as the seller and the base stations (in the region controlled by the

broker) act as the buyers1 of the CAB. The spectrum broker divides the CAB

into channels (contiguous or non-contiguous blocks of frequency) and the base

1We use the terms buyers, bidders, base stations and nodes interchangeably.
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stations bid for these channels based on their spectrum demands. The base

stations express their bids using a bidding function that specifies the price

they are willing to pay for a given set of allocated channels. Periodically, the

spectrum broker allocates available channels to the base stations (based on

the received bids) under the “wireless interference constraint” such that the

total revenue (total price paid by the base stations)2 is maximized. The above

auction-based approach allows the base stations to bid according to the spec-

trum demands, and the spectrum broker to maximize the revenue generated

from allocation of spectrum.

The above spectrum allocation problem is known to be NP-hard and has

been addressed before [22, 52] in limited contexts; e.g., [22] assumes a unit-disk

interference model, piece-wise linear bidding functions, and homogeneous set of

non-overlapping channels, while [52] considers very primitive forms of bids and

interference models. In contrast, we consider general network graphs and in-

terference models (pairwise and physical), overlapping channels, and arbitrary

non-complementary3 bidding functions. For the above general context, we

present approximation algorithms that deliver allocations with near-optimal

revenue.

Chapter Organization: The rest of the chapter is organized as follows.

In Section 2.2, we describe the system architecture of the CDSA model and

give details of its components. In Section 2.3 and 2.4, we formally define and

present efficient approximation algorithms for the spectrum allocation problem

under pairwise and physical interference models, respectively. In Section 2.5,

we present detailed simulation results comparing performance of the proposed

algorithms. In section 2.6, we discuss related work. Section 2.7 concludes this

chapter.

2In this mechanism, bidders are charged a payment of equal amount to their bids, which
maximizes the revenue without having negative utilities for bidders. Such a payment scheme
may lead to “untruthful” bidding which we handle in later chapters.

3A bidding function is said to be non-complementary when it is defined on a set of items
that do not complement each other. For example, the bid for choosing two items together
should not be more than the sum of the bids for choosing the items individually.
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2.2 System Architecture

In this section, we describe the reference system architecture (Figure 2) of our

coordinated dynamic spectrum access model and give details of each important

component of the model. Due to its simplicity and practicality, we will continue

to use this model for all of our centralized algorithms (Chapters 3 and 4) with

minor modifications.

2.2.1 Spectrum Broker (Seller)

In the CDSA model, a centralized entity called the spectrum broker [11, 12]

owns and coordinates access to the CAB in a given region and assigns short

term spectrum leases to competing wireless service providers. Regulatory au-

thorities like FCC can conduct one-time or long-term periodic auctions to give

spectrum licenses to the broker on a regional basis. However, in contrast to

existing cellular spectrum licenses, the spectrum broker can in turn grant spec-

trum leases that are for small geographical regions (e.g., per base station) and

valid for short durations (e.g., tens of minutes) [12]. Such a spectrum lease

gives the lessee exclusive rights to use the spectrum in the designated region for

the duration of the lease without exceeding the maximum power limit. In this

chapter, we mainly address the challenge of how to assign these dynamic spec-

trum leases to various service providers and design fast and scalable spectrum

allocation algorithms.

2.2.2 Base Stations or Nodes (Buyers)

The region under the control of the spectrum broker can be as large as a

single state having a large number (up to hundreds or even thousands) of

base stations. These base stations are owned by different Radio Infrastructure

Providers (RIP). The Wireless Service Providers (WSP) (e.g., AT&T, Verizon)

are customers of the RIPs and use their infrastructure to provide wireless

services like voice, data, etc. to end-users. Each base station in the region

can be used to operate different types of networks by the WSPs. For example,

some base stations can be used to operate a GSM network, some for a CDMA

9



or WCDMA network, and some for a WiMAX network. In a more general

model, multiple types of networks can be operated on the same base station.

Interference between different base stations depends on the location of the base

stations, the frequency band used and the terrain propagation model [59]. We

assume4 that the spectrum broker is aware of all the details of each base station

in its region ranging from their exact location, and other characteristics like

frequency range of operations, power levels, number of transmitters etc. It also

knows the terrain propagation model in the region and can estimate the level

of interference between base stations given their location and transmission

power used. This knowledge forms part of essential inputs to our spectrum

allocation algorithm.

2.2.3 Coordinated Access Band (Items Sold)

The portions of the spectrum that are highly underutilized or unused in spa-

tial or temporal dimension qualify as prime candidates to be used as CAB.

At the current time, good examples are Specialized Mobile Radio (SMR)

(851-854/806-809 MHz, 861-866/816-821 MHz), Public Safety Bands (PSB)

(764-776, 794-806 MHz), and unused broadcast UHF TV channels (450-470

MHz,470-512 MHz (channels 14-20), 512-698 MHz (channels 21-51), 698-806

MHz (channels 52-69)). The CAB spectrum is to be shared between different

cellular services with macro-cellular infrastructures. Some of the current tech-

nology examples that can use the above CAB spectrum are 1xRTT/1xEV-DO

that use 1.25 MHz channels, GSM networks that use 200KHz channels, IS-136

legacy TDMA that uses 30 KHz channels, W-CDMA networks that use 5 MHz

channels, WiMAX networks that can use 1.75 MHz to 20 MHz channels. Note

that different technologies often provide different forms of services. Spectrum

sharing between different services is advantageous as they provide the bene-

fit of statistical multiplexing – the services use spectrum differently and have

4As discussed by Buddhikot et al. [11], in this brokering model, the service providers or
operators of radio access network interested in obtaining the spectrum, register with the
broker and provide information on the transmitter location, capabilities (such as frequency,
power, number of interfaces, preferred waveforms supported (as in CDMA, OFDM etc.)).
This registration happens via a spectrum-leasing protocol that must be run on the base
stations and the broker.
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Figure 3: Channels of different types (widths) in the CAB.

different load factors that vary largely on a spatio-temporal scale. It is also

reasonable to use existing cellular bands (450 Mhz, 800 MHz or the 1.9 GHz

band) as part of the CAB, giving a guaranteed access to incumbent WSPs

who already hold licenses and on-demand access to other WSPs that do not

conflict with the license holders. As can be realized from the above numbers,

the CAB spectrum might include hundreds or thousands of channels.

Since different types of networks use channels of different widths, the spec-

trum broker has to make the decision on how to divide the available spectrum

into channels of different widths and allocate them to different base stations.

In our model, we assume that the spectrum broker divides the available spec-

trum into some finite number of channels for each type of network. This

channelization can be quite general. For example, the spectrum broker may

decide to create channels of varying width as shown in Figure 3; here, if H

is the total width of CAB, then for ith network/type, H{hi non-overlapping

channels of width hi are created. Note that channels of different types that

overlap with each other, cannot be assigned to the same or interfering base

stations. Overlapping of channels makes the spectrum allocation problem very

challenging compared to only using homogeneous channels as assumed in prior

work [22, 52, 13].
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2.2.4 Spectrum Demands, Bids, and Bidding Functions

The WSPs aggregate end-user demands at each of the base stations it operates

and generate spectrum demands to the broker. Spectrum demand aggregation

at each base station can be done using a predictive model based on histor-

ical traffic measurements or from end-users’ bandwidth inputs. The above

demands are then used to generate bids for various combination of number

of channels and channel types. In general, the bids are specified using a bid-

ding function, which may be different for different base stations. Basically,

the bidding function for any base station specifies the price the base station

is willing to pay for each set of channels C.In general, the complexity of such

a bidding function can be exponential in the number of channels, since the

number of possible sets of channels is exponential. However, in simpler con-

texts, each base station may have a separate bidding function for each channel

type, and the bidding function may specify a price depending on the number

of channels of that type. In this chapter, we do not make any assumptions

about the complexity of the bidding function,5 unlike [22] where the authors

assume the bidding functions to be piece-wise linear. The time complexity of

our allocation algorithms is polynomial in the size of the bidding function.

2.2.5 Auction Setting

Our model corresponds to the First-Price Sealed-Bid Auctions, where the auc-

tioned items are the channels. At the beginning of each allocation period, the

bidders (base stations) submit their private bidding functions to the broker

who chooses the “winners” based on the submitted bids. The winners are

selected in a way that there is no interference (as defined later), and the total

revenue (sum of “winning” bids) is maximized.

5Later, we do assume the bidding function to be non-complementary, to prove the per-
formance guarantee of our designed algorithms.
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2.3 Spectrum Allocation under Pairwise In-

terference

In this section, we address the spectrum allocation problem under the pairwise

interference model. To give a formal definition of the problem, we need to de-

fine a few terms in addition to the definitions given in Section 1.1.1. Later, we

design a greedy algorithm, and prove that it delivers a near-optimal spectrum

allocation. We use the term node to refer to a base station.

Channel Graph (Gc). The overlapping nature of the channels in the CAB

is modeled using a channel graph Gc defined similarly to the base stations

interference graph (see Definition 1).

Definition 2 (Channel Graph Gc.) A channel graph Gc � pVc, Ecq is an

undirected graph over channels as vertices, and there is an edge pci, cjq between

two channels ci and cj if they overlap with each other. For example, the channel

graph corresponding to Figure 3 will have an edge between c23 and c15. An

empty (with no edges) channel graph means that the channels are mutually

non-overlapping (as in the model of [22]). l
Valid Spectrum Allocation. Informally, our spectrum allocation problem is

to allocate channels to base stations so as to maximize the total revenue (total

price paid by the base stations). However, the allocation of channels should be

done without violating the interference constraints. We formalize the above by

defining a concept of valid spectrum allocation, in terms of conflicting (base

station, channel) pairs.

Definition 3 (Conflicting (base station, channel) pairs.) Consider two (base

station, channel) pairs pi, ckq and pj, clq where i and j are base stations and

ck and cl are channels. The (base station, channel) pairs pi, ckq and pj, clq are

said to be conflicting if the following is true: (i) i � j, or pi, jq is an edge in

the interference graph, and (ii) ck � cl, or pck, clq P Ec (i.e., ck and cl overlap).l
13



Definition 4 ((Valid) Spectrum Allocation.) A spectrum allocation is a set

of (base station, channel) pairs, i.e., a spectrum allocation is a settpi, ckq|i is a base station, ck is a channelu,
where a pair pi, ckq signifies that channel ck has been allocated to the base

station i.

A spectrum allocation A is considered valid if no two (base station, chan-

nel) pairs in A are conflicting. l
Bidding Functions and Revenue. In general, a bidding function for a

base station i gives the price that i is willing to pay for a set of mutually non-

overlapping channels.For the sake of simplicity, we use an equivalent notion

of total revenue generated by a given valid spectrum allocation. Below, we

formally define both the terms bidding functions and revenue.

Definition 5 (Bidding Function.) A bidding (or valuation) function vi for a

base station i is a function vi : P pCq ÞÑ R, where P pCq is the power set of all

channels Cand R is the set of real numbers. l
Definition 6 (Revenue RpAq). Given the bidding functions of base stations,

the revenue generated by a valid spectrum allocation A is denoted by RpAq
and is defined as the sum of the bids of the base stations for the channels

allocated to them by the spectrum allocation A. More formally,

RpAq �
i̧PVt

vipCiq,
where vi is the bidding function of i, and Ci � tck|pi, ckq P Au is the set

of channels allocated to i by A. Revenue is defined only for valid spectrum

allocations. l
In the above definition, we have implicitly enforced that the base stations

are asked to pay what they bid. This could lead to “untruthful” behavior,

which is left for formal treatment in later chapters.

Spectrum Allocation Problem. Based on the above definitions of valid

spectrum allocation and revenue, the spectrum allocation problem under the

pairwise interference model can be defined as follows.

14



Definition 7 (Spectrum Allocation Problem.) Given an interference graph,

a channel graph, and the bidding functions for base stations, the spectrum

allocation problem is to find a valid spectrum allocation Athat maximizes the

total revenue RpAq. l
2.3.1 Greedy Algorithm (GA)

For the above spectrum allocation problem, we design a greedy algorithm

that constructs a valid spectrum allocation by iteratively adding the “best”

(base station, channel) pair at each stage. We will show that such a greedy

strategy results in a valid spectrum allocation with near-optimal revenue. A

more formal description of our Greedy Algorithm for the spectrum allocation

problem is as follows.

Let A be the valid spectrum allocation being constructed by the algo-

rithm. Initially, A � H. In each iteration, the algorithm picks a (base station,

channel) pair pi, ckq to add to Asuch that

• AY pi, ckq remains a valid spectrum allocation, and

• RpAYtpi, ckquq�RpAq, the “incremental revenue” is maximum (among

all choices of (base station, channel) pairs).

The algorithm terminates when Acannot be extended any further.

If N is the number of base station, M is the number of channels, and

∆t and ∆c are the maximum vertex-degree in the interference and channel

graphs respectively, then, the overall time complexity of the above algorithm

can be shown to be bounded by OpNM∆t∆c logpNMqq if we use a heap data

structure to compute the maximum at each stage.

Performance Guarantee of GA. In the following theorem, we will show

that the Greedy Algorithm returns a near-optimal valid spectrum allocation.

However, to prove the approximation bound, we need to assume a certain

“non-complementary” property of the revenue function. Given the bidding

functions, we say that the revenue satisfies the non-complementary property if

the following condition holds for any two valid spectrum allocations A1 and
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A2 such that A1 YA2 is also a valid spectrum allocation.

maxpRpA1q, RpA2qq ¤ RpA1 YA2q ¤ RpA1q �RpA2q. (2)

Recall that revenue is only defined for valid spectrum allocations. It is easy to

see that revenue is non-complementary if and only if the bidding functions are

non-complementary. The above non-complementary property is commonly

assumed in the auction literature [37], and signifies a common assumption

signifying that no two valid spectrum allocations “complement” one another.

More importantly, the above property entails that the incremental revenue

of any particular (base station, channel) pair never increases as the Greedy

Algorithm progresses (i.e., with the selection of other (base station, channel)

pairs). Such a property is indeed essential for the Greedy Algorithm to have

a bounded performance guarantee. Later in this section, we discuss scenarios

where the non-complementary property may not be satisfied, but the Greedy

Algorithm can still be modified appropriately to preserve the performance

guarantee. We now prove that the revenue generated by the Greedy Algorithm

is at least 1{pδtp∆c � 1q � 1q of the optimal revenue, for non-complementary

revenue functions.

Theorem 1 For a non-complementary revenue function, the above Greedy

Algorithm (GA) returns a pδtp∆c � 1q � 1q-approximate valid spectrum alloca-

tion. Here, δt is the size of the maximum independent set in the neighborhood

of any vertex in the interference graph, and ∆c is the maximum degree of a

vertex in the channel graph.

Proof: Let bi be the ith (base station, channel) pair selected by GA in its

ith iteration, ai be the corresponding incremental revenue of bi, and l be the

total number of iterations of GA for the given input. We use Ai to denotetb1, b2, . . . , biu; thus, ai � RpAiq�RpAi�1q. Let O be the optimal solution and

let Ol be the set of (base station, channel) pairs in O that conflict with some

pair in Al. Below, we use the notation RpA1|A2q to denote RpA1YA2q�RpA2q
where A1, A2 and A1 YA2 are all some valid spectrum allocations.

We make the following three claims.
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• For each j P Ol, let hpjq be the smallest integer such that j conflict

with bhpjq. Informally, selection of bhpjq by GA is the reason why j is not

considered by GA for selection in later iterations. Note, by the greedy

choice of bi’s we have,

Rptju|Ahpjq�1q ¤ ahpjq. (3)

• By definition of δt (the maximum size of an independent set in the neigh-

borhood of any vertex in the interference graph), it is easy to see that

the maximum number of mutually non-conflicting (base station, chan-

nel) pairs that conflict with a particular bi is δtp∆c � 1q. Here, ∆c is

the maximum degree of any vertex in the channel graph. Thus, for any

integer z, there are at most δtp∆c � 1q (base station, channel) pairs j in

Ol such that hpjq � z. Thus, we have,

j̧POl

ahpjq ¤ δtp∆c � 1q ļ

z�1

az � δtp∆c � 1qRpAlq. (4)

• Using induction on l, we will later show that:

RpOq ¤ RppO �Olq YAlq �
j̧POl

Rptju|Ahpjq�1q. (5)

Without loss of generality, assume that the Greedy and optimal solutions

are disjoint. Then, GA continues till Ol � O. For Om � O, the above

Equation 5 becomes:

RpOq ¤ RpAlq �
j̧POl

Rptju|Ahpjq�1q. (6)

Now using Equations 3 and 4 in the above Equation 6, we get

RpOq ¤ pδtp∆c � 1q � 1qRpAlq,
yielding the approximation ratio.

Proof of Equation 5. We use induction on l. For l = 0, the equation is

trivially true since A0 � tu,O0 � tu. By inductive hypothesis, let us assume

Equation 5 to be true for l � k. Thus, we have

RpOq ¤ RppO �Okq YAkq � ¸
jPOk

Rptju|Ahpjq�1q. (7)
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As before, let Ak�1 � Ak Y tbk�1u. Since, Ok�1 is defined as the set of (base

station, channel) pairs in O that conflict with some pair in Ak�1, there are

two cases:

• bk�1 does not conflict with any pair in pO�Okq. Then, Ok�1 � Ok, and

Equation 5 holds since

RppO �Okq YAkq ¤ RppO �Ok�1q YAk�1q.
• bk�1 conflicts with some (base station, channel) pairs in pO � Okq; let

O1 be the set of such conflicting pairs in pO � Okq. Thus, we have

Ok�1 � OkYO1, where O1 � pO�Okq. We prove induction for this case

in detail below.

Consider the second case above. We have,

RppO �Okq YAkq� RppO �Ok�1q YAk YO
1q� RppO �Ok�1q YAkq �RpO1|pO �Ok�1q YAkq (8)¤ RppO �Ok�1q YAkq �RpO1|Akq¤ RppO �Ok�1q YAk�1q �RpO1|Akq¤ RppO �Ok�1q YAk�1q �

j̧PO1 Rptju|Akq. (9)

Above, Equation 8 is true since RpA1YA2q � RpA1q�RpA2|A1q for any valid

allocation A1 YA2.

Now, for each j P O1, let hpjq be as defined before, i.e., the smallest

integer such that j conflicts with bhpjq. Since, elements in O1 do not conflict

with any pair in Ak, we have that:� j P O1, hpjq � k � 1.

Now, applying the above to Equation 9, we get

RppO �Okq YAkq ¤ RppO �Ok�1q YAk�1q �
j̧PO1 Rptju|Ahpjq�1q.
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Using the above in the inductive hypothesis (Equation 7) and noting that

Ok�1 � Ok YO1, we get

RpOq ¤ RppO �Ok�1q YAk�1q � ¸
jPOk�1

Rptju|Ahpjq�1q,
which proves the inductive step. Thus, Equation 5 holds.

It should be noted here that the bound of the above theorem is tight,

which can be easily seen in simple scenarios like the one mentioned in the

second remark below.

Remarks. We make the following remarks, as special cases of the above

result.

• In the case of a unit-disk model (see Section 1.1.1), then δt is at most

5 [44]. In that case, the approximation ratio becomes 5∆c � 6.

• If we consider non-overlapping channels and a unit-disk interference

graph, then the above theorem states that GA returns a 6-approximate

solution. This is a direct generalization of the result in [22], for arbitrary

revenue functions.

• For the non-uniform disks model (see Section 1.1.1), we can bound δt

by pp2dmax{dminq � 1q2, where dmax and dmin are the maximum and the

minimum disk radii respectively.

The approximation-ratio can be further improved as follows. We divide

the interference graph into subgraphs G0, . . . , Glogpdmax{dminq, where sub-

graph Gj contains any base station with radius in r2j, 2j�1q, and then

use our techniques on each subgraph separately. Using the result from

previous paragraph, the δt in each of these subgraphs is 25. Thus, the

overall approximation ratio is 25p∆c � 1q logpdmax{dminq.
Handling Complementary Bidding Functions. We have so far assumed

that the revenue function satisfies the non-complementary property (Equa-

tion 2). However, there may be scenarios where the bidding functions (and

hence, the revenue function) may not satisfy the non-complementary property.
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In many such scenarios, our Greedy Algorithm (and similarly, the algorithms

designed in next section) can be modified to ensure the approximation ratio.

For instance, consider the case where a base station may bid for “groups”

of channels, i.e., the base station is willing to pay a high price for a group of

channels C but bids zero price for any of the individual channels in C. More

specifically, a base station may pay a price of 100 units for channels 5 and

10 together, but pays nothing for either channel 5 or 10 individually. Such

a bidding function is complementary. However, we can have our Greedy Al-

gorithm handle the above case by creating super-channels corresponding to

each such group of channels; we also have the set of super-channels include

the singleton sets of individual channels. Then, the channel-interference graph

is constructed over super-channels as vertices, and allocation is done in terms

of such (base station, super-channel) pairs. The modified GA, which selects a

(base station, super-channel) pair at each stage, still yields the same approxi-

mation ratio.

In a more general scenario of “packaged bids,” a service provider (owning

multiple base stations) may bid for a channel c1 at a base station u1 only if

a base station u2 is also allocated a channel c2. In essence, a service provider

may pay certain price for a group of (base station, channel) pairs, but none

for any individual pair. For the above case, the bidding functions cannot

be defined independently for each base station, but must be defined for each

service provider (i.e., for the group of base stations owned by it). However, the

revenue function can be easily computed from such bidding functions. But, the

resulting revenue function is no longer non-complementary. Fortunately, our

Greedy Algorithm can still be appropriately modified (by having it allocated

in terms of groups of (base station, channel) pairs) to handle the above case,

while ensuring its approximation ratio.

For explicitly represented bidding functions (where a price is specified for

each super-channel or package), GA still runs in time which is polynomial in

the size of the input (including the representation of the bidding functions).
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2.4 Spectrum Allocation under Physical In-

terference

In this section, we use the physical interference model to capture interfer-

ence between base stations in the network, and present two approximation

algorithms for the spectrum allocation problem in this context. We start by

redefining the concept of valid spectrum allocation.

Valid Spectrum Allocation. In the context of physical interference model,

a spectrum allocation A is considered valid if it satisfies the following two

conditions:

• For any base station i, the set tck|pi, ckq P Au of channels allocated to i

consists of mutually non-overlapping channels.

• For a (base station, channel) pair pi, ckq in A, let Vi,k denote the set

of base stations that have been allocated in A some channel cl that

overlaps with ck. More formally, let Vi,k � tj|pj, clq P A and cl � ck orpck, clq P Ecu. Now, for A to be valid, for every pi, ckq in A and every

point p within a distance of r from i, SINR at p due to i should be

greater than β; i.e., the following should hold:

P {dα
i

N �°jPVi,k
P {dα

j

¥ β,

where dx is the distance of base station x from the point p.

Spectrum Allocation Problem. The spectrum allocation problem under

the physical interference model is as follows. Given a set of base stations, the

channel graph, and the bidding functions, the spectrum allocation problem is

to select a valid spectrum allocation A that maximizes RpAq, the total revenue

generated by A.

Distance-2 Neighbor Channels. For clarity of presentation of the algo-

rithm description and their approximation proofs, we define the following con-

cept.
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Definition 8 (Distance-2 Neighbor Channels.) Two channels are distance-2

neighbors if they are at most two hops away from each other in the channel-

interference graph. l
In the following paragraphs, we describe two greedy algorithms, viz.

GAHT and GACP, for the spectrum allocation problem under physical in-

terference model. For both algorithms, we present worst-case guarantees on

their performance depending on the interference model parameters (α and β).

Our simulations results (presented in Section 2.5) show that, in general, GACP

generates higher revenue than GAHT for most values of α and β.

Greedy Algorithm Based on Hexagonal Tiling (GAHT). The basic

idea of GAHT is as follows. We start with partitioning the entire region into

hexagons of certain length (see Figure 4), and color them using three col-

ors6 such that no two adjacent hexagons have the same color. See Figure 5.

Then, we construct three valid spectrum allocations, one for each color. For

a particular color c, we consider only c-colored hexagons and pick (base sta-

tion, channel) pairs iteratively (as in GA). However, we impose the condition

that within each hexagon, no two allocated channels are distance-2 neighbors;

this condition ensures the validity of the spectrum allocation (as shown in

Lemma 1). Finally, we pick the best of the three spectrum allocations (one for

each color) thus constructed. We will prove that the above algorithm yields a

near-optimal spectrum allocation (Theorem 2).

Formal Description of GAHT. GAHT consists of the following steps.

• Partition the entire region into hexagons of side µr each, where r is the

communication radius and µ is defined as:

µ � 4 α

d
2βp3α� 5q

3pα� 1qpα � 2q . (10)

• Next, color the hexagons using three colors, such that adjacent hexagons

are colored differently. See Figure 5.

6The coloring here is just to partition the base stations into easier-to-handle groups; it
has nothing to do with channels.
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Figure 4: To ensure validity of our algorithms, the hexagons we use are open
from side and closed from the other. For simplicity, we will use closed hexagons
in the remaining figures.

• For each color c, consider only the c-colored subregions and construct

spectrum allocation Ac as below.

– Initially Ac � H.

– Pick a (base station, channel) pair pi, kq to add to Ac such that

the revenue of AcYtpi, kqu is maximized, and AcYtpi, kqu satisfies

the following condition.7 In Ac Y tpi, kqu, there should be no two

elements pj, lq and pj1, l1q in the same hexagon such that l and l1 are

distance-2 neighbors.

– Terminate when Ac cannot be extended any further.

• From the three spectrum allocations A1, A2, and A3 thus constructed,

pick the one that has the highest revenue and return it as the solution.

Validity of GAHT. We now prove that each of the three spectrum allocations

7For sake of clarity of presentation, we have chosen this conservative condition. However,
the correctness and approximation proof of GAHT is preserved even if we use the following
less conservative condition: for every (base station, channel) pair pj, lq in AcYtpi, kqu, there
exist at most one pair pj1, l1q P Ac Y tpi, kqu in each hexagonal subregion (including the one
containing j) such that l overlaps with l1. Here, j may be equal to j1, and l may be equal
to l1.
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Figure 5: Hexagons colored using three colors such that adjacent hexagons
have different colors. The red-colored hexagons around the hexagons contain-
ing base station u have been partitioned into hierarchical levels; the numbers
denote the hierarchical level. At lth level, there are 6l red-colored hexagons.

constructed by GAHT, the above algorithm, are valid. Intuitively, the spec-

trum allocations are valid because the total interference at any point p due

to “far away” (in non-adjacent hexagons) interferers is less than the signal

received due to a base station i in the hexagon of p.

Lemma 1 GAHT returns a valid spectrum allocation.

Proof: Consider a base station u in a hexagon H of color c. As shown in Fig-

ure 5, partition all c-colored hexagons surrounding H into hierarchical levels.

The first level contains 6 hexagons and each such hexagon H 1 is at a distance

of µr from H ; here, by distance between two hexagons, we mean that the dis-

tance between any point in H 1 and any point in H is at least µr. Similarly, the

second level contains 12 hexagons at a distance of at least 2
?

3µr from H . In

general, the lth level contains 6l hexagons at a distance of at least
?

3
2
p3l�2qµr

from H .
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Now consider a point p within a distance of r from u. Let u be operating

on a channel k. Since GAHT does not allow two elements pj, lq, pj1, l1q of

Ac in the same hexagon such that l and l1 are distance-2 neighbors, there

will be at most one (base station, channel) pair in each c-colored hexagon

that “interferes” with pu, kq in each c-colored hexagon. Thus, the total signal

received at p due to all base stations possibly operating in k or an overlapping

channel in the c-colored hexagons other than H is at most:8̧
i�1

6i
Ppp?3

2
p3i� 2qµ� 1qrqα   2P p3α� 5q

3pα� 1qpα � 2qp1
4
µrqα .

Thus, ignoring the noise (we relax this assumption later), the SINR of channel

k at p due to u is at least:

P
rα

2P p3α�5q
3pα�1qpα�2qp 1

4
µrqα � β.

The above follows from the value of µ in Equation 10.

Approximation Ratio of GAHT. We now prove the approximation ratio of

GAHT. First, we show in Lemma 2 that a valid spectrum allocation (in par-

ticular, the optimal) cannot have more than a certain number (q, as defined

in Equation 11 below) of base stations within a hexagon allocated the same

channel. The approximation ratio then follows using similar techniques as in

Theorem 1.

Lemma 2 No particular channel can be assigned to more than q base stations

in any hexagon, by a valid spectrum allocation, where q is:

q � minpq1, q2q, with (11)

q1 � 3
?

3p4µ2 � 4µp α
?

β � 1q � p α
?

β � 1q2q
2πp α

?
β � 1q2 , and (12)

q2 � p2µ� 1qα
β

. (13)
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Proof: The number of base stations that can be assigned the same channel in

any hexagon, by a valid spectrum allocation is limited by two factors: (i) the

size of this hexagon, and (ii) the base stations’ mutual interference.

To show the effect of the first factor (captured by q1), we use a simple

packing argument. First, we note that the minimum distance between any

two base stations in a valid spectrum allocation is p α
?

β � 1qr. This is directly

implied by the SINR equation (Equation 1). Now, the maximum number of

non-overlapping circles of radius p α
?

β�1qr{2 whose centers lie inside a hexagon

of side µr is given by Equation 12.

Now, to show the effect of the second factor (captured by q2), we assume

its contrary, i.e., a valid spectrum allocation assigns a particular channel to

q2 � 1 base stations in same hexagon. Now consider a point p at a distance of

r from one of these base stations u. Then, the SINR at p due to u is at most:

P
rα

q2Ppp2µ�1qrqα   β.

The above lemma can be used to show that GAHT returns a constant-

factor approximate solution.

Theorem 2 GAHT returns a valid spectrum allocation whose revenue is at

least 1{p3pqp∆2
c�∆c�1q�1qq of the optimal revenue, where ∆c is the maximum

degree of a vertex in the channel graph and q is as defined above in Equation 11.

Proof: The proof of this theorem is similar to that of Theorem 1. For sake

of clarity of presentation, we define two (base station, channel) pairs pi, kq
and pi1, k1q to be conflicting if they are in the same hexagon and k and k1 are

distance-2 neighbors. Now, among the three different colored hexagons, let

us consider the hexagons colored with one color at a time. Using the same

notation as in Theorem 1’s proof, we make the following two claims.

• For each j P Ol, let hpjq be the smallest integer such that j conflicts

with bhpjq. Informally, selection of bhpjq by GAHT is the reason why j is
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not considered by GAHT for selection in later iterations. Note, by the

greedy choice of bi’s we have,

Rptju|Ahpjq�1q ¤ ahpjq. (14)

• Lemma 2 shows that there cannot be more than q base stations within

each hexagon that can be assigned the same channel by any optimal

algorithm. Based on the above, it is easy to see that the maximum

number of (base station, channel) pairs in the optimal set that conflict

with bi is at most qp∆2
c�∆c�1q. Here, ∆c is the maximum degree of any

vertex in the channel graph. Thus for any integer z, there are at most

qp∆2
c �∆c � 1q (base station, channel) pairs j in Ol such that hpjq � z.

Thus we have,

j̧POl

ahpjq ¤ qp∆2
c �∆c � 1q m̧

z�1

az� qp∆2
c �∆c � 1qRpAlq. (15)

Using similar proof technique as the one used to prove Equation 5, we

can show that

RpOq ¤ RppO �Olq YAlq �
j̧POl

Rptju|Ahpjq�1q. (16)

Without loss of generality, assume that the Greedy and optimal solutions

are disjoint for the considered color. Then, GAHT continues till Ol � O. For

Ol � O, the above Equation 16 becomes:

RpOq ¤ RpAlq �
j̧POl

Rptju|Ahpjq�1q. (17)

Now using Equations 14 and 15 in the above Equation 17, we get

RpOq ¤ pqp∆2
c �∆c � 1q � 1qRpAlq

for the color being considered.

Now let us denote the set of (base station, channel) pairs chosen by the

greedy algorithm and optimal algorithm for the base stations lying in the three
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different colored hexagons as Ac and Oc respectively where c � 1, 2, and 3.

Let OPT � O1 YO2 YO3. Now we have,

RpOPT q � 3̧

c�1

RpOcq (18)¤ pqp∆2
c �∆c � 1q � 1q 3̧

c�1

RpAcq (19)¤ pqp∆2
c �∆c � 1q � 1q3r max

c�1,2,3
pRpAcqqs. (20)

It should be noted here that the bound of the above theorem is not tight,

due to many simplifying assumptions made throughout the analysis.

Time Complexity of GAHT. GAHT can be implemented in a way similar to

GA, where the partitioning into hexagons and coloring steps are used to create

a “virtual” interference graph. Then, the overall time complexity of GAHT

can be shown to be bounded by OpNMNH∆2
c logpNMqq if we use a heap data

structure to compute the maximum at each stage, where N is the number of

base stations, M is the number of channels, NH is the maximum number of

base stations inside any hexagon, and ∆c is the maximum vertex-degree in the

channel graph.

Greedy Algorithm Based on Circular Packing (GACP). We now

present another algorithm (GACP) whose approximation proof is based on

a circular packing argument.8

Formal Description of GACP. In short, GACP works by first constructing a

“virtual” interference graph over the (base station, channel) pairs where two

(base station, channel) pairs pi, kq and pi1, k1q are connected by a simple edge

if k and k1 are distance-2 neighbors and the distance between i and i1 is less

than µ1r, where r is the communication radius and µ1 is as defined below.

µ1 � 2 α

d
8p3α� 4qβpα � 1qpα� 2q . (21)

8Concurrently, [25] has used similar ideas to solve the problem of local broadcasting in
the physical interference model.
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Then, GACP works exactly as the GA for the pairwise interference model,

except that GACP uses the above constructed virtual interference graph as

the pairwise interference graph. It can be shown that the resulting spectrum

allocation is valid in the context of physical interference model, and its revenue

is at least 1{pq1p∆2
c � ∆c � 1q � 1q of the optimal revenue possible, where ∆c

is the maximum degree of a vertex in the channel graph and q1 is as defined

below.

q1 � minpq11, q12q, with (22)

q11 � 4µ12 � 4µ1p α
?

β � 1q � p α
?

β � 1q2p α
?

β � 1q2 , and (23)

q12 � p2µ1 � 1qα
β

. (24)

Theorem 3 GACP returns a valid spectrum allocation under physical inter-

ference model whose revenue is at least 1{pq1p∆2
c �∆c � 1q � 1q of the optimal

revenue, where ∆c is the maximum degree of a vertex in the channel graph and

q1 is as defined above in Equation 22.

Proof: The proof of the above theorem is similar to that of Theorem 1. Con-

sider an arbitrary base station u whose receivers within the communication

radius r should have an SINR value at least β. We divide the area around the

base station into circular annuluses of width µ1r as shown in Figure 6. The lth

annulus lies between circles of radii l � µ1r and pl � 1q � µ1r. Note that GACP

ensures that the minimum distance between any two base stations is more

than µ1r for assigning same or overlapping channels. Thus, using a packing

argument, the number of base stations in the lth annulus which are at least at

a distance of µ1r apart for each other is at mostppl � 1qµ1r � µ1r
2
q2π � plµ1r � µ1r

2
q2πpµ1r

2
q2π � 8p2l � 1q.

The maximum interference I (due to other active base stations operating at the

same channel as u) at any point p within a distance of r (the communication

radius) from u can now be bounded as:

I ¤ 8̧
l�1

8p2l � 1q � Ppplµ1 � 1qrqα ¤ 2α�3P p3α� 4q
µ1αrαpα � 1qpα� 2q .
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Figure 6: Circular annuluses of width µ1r around a base station. In each annu-
lus we pack circles of radius µ1r

2
to find the number of interfering base stations

that can potentially cause interference at a receiver within the communication
radius of the sender base station.

Thus, ignoring the noise, the SINR at p is at least:

P
rα

I
¥ pα � 1qpα� 2q

2α�3p3α� 4q � µ1α � β.

This shows that the GACP algorithm returns a valid spectrum allocation in

the context of physical interference model.

Using a proof similar to Lemma 2’s proof, we can show that no particular

channel can be assigned to more than q1 base stations in a circle of radius

µ1r, by a valid spectrum allocation. Finally, proving the worst-case guarantees

of GACP can be completed using similar proof technique as the one used in

Theorem 2’s proof.

It should be noted here that the bound of the above theorem is not tight,

due to many simplifying assumptions made throughout the analysis.

Since GACP is similar to GA, its time complexity can be bounded in a

similar manner. If N is the number of base stations, M is the number of

channels, and ∆t1 and ∆c are the maximum vertex-degree in the “virtual”
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interference and channel graphs respectively, then the overall time complexity

of GACP can be shown to be bounded by OpNM∆t1∆2
c logpNMqq if we use a

heap data structure to compute the maximum at each stage.

Incorporating Non-Zero Noise. Non-zero noise can be incorporated using

techniques similar to [2]. To do so, we need to redefine the µ and µ1 values for

GAHT and GACP schemes as follows:

µ � 4 α

d
2p3α� 5qβ

3pα� 1qpα � 2qp1� pNβrα{P qq ,
µ1 � 2 α

d
8p3α� 4qβpα � 1qpα� 2qp1� pNβrα{P qq .

The equations defining q (Equation 11) and q1 (Equation 22) remain un-

changed. The proofs of Theorem 2 and Theorem 3 can be easily extended

for non-zero noise, using the above redefined values.

Greedy Heuristic (GH). Finally, we present a simple greedy heuristic algo-

rithm. This algorithm works exactly as the GA for the pairwise interference

model, except that it does not use an interference graph to ensure the validity

of the generated spectrum allocation. Instead, in each iteration, GH adds the

best (base station, channel) pair that does not “invalidate” the current spec-

trum allocation. The validity-check is done using the below equation at each

base station u.
P {rα

N �°iPV 1 P {pdi � rqα ¥ β. (25)

Above, V 1 is the set of base stations assigned the same channel as u, di is the

distance between i and u, and r is the communication radius. It is easy to

see that the above validity-check ensures an SINR greater than β at any point

within a distance of r from u, due to the set of interferers V 1.
Thus, the above heuristic is guaranteed to deliver a valid spectrum allo-

cation. However, there is no performance guarantee on the total revenue of

the solution delivered by GH, as shown by the example below. Despite this

shortcoming of GH, we compare its results with GACP and GAHT in Sec-

tion 2.5 and observe that it greatly outperforms both algorithms in almost all

simulated settings.
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EXAMPLE 1 Consider a single-channel network, where only one channel is

available. Thus, bids can be associated with base stations rather than (base

station, channel) pairs. Let two particular base stations i and j have bids of

2 units each, while all the remaining base stations have a bid of 1 unit each.

Also, let the distance between i and j be p α
?

β�1qr, and the distance between

any other pair of base stations be at least µ1r.
In the above example, GH will start by adding both i and j to its allocation

and stop since the addition of any other base station will cause the SINR value

at both i and j to drop below β. In contrast, GACP will add either i or j

(but not both) and all of the remaining base stations, achieving an arbitrarily

higher revenue than that of GH. l
2.5 Simulation

In this section, we present detailed simulation results comparing the perfor-

mance of the proposed algorithms. We first compare the performance of the

various algorithms (GAHT, GACP, and GH) designed for the physical inter-

ference model, under different network topologies and parameters. Next, we

examine how well a spectrum allocation returned by the greedy algorithm

(GA) under the pairwise interference model work under the physical inter-

ference model. We start by describing the simulation parameters and then

present the results.

Network Topology. In order to examine the impact of network topology,

we consider two types of networks.

• Random Networks: We consider a fixed area of 1000 � 1000 units and

randomly place base stations within this area. We vary the network

density by changing the number of base stations from 100 to 1500. We

assume a communication radius r of 25 units in this scenario.

• Real Networks: We use locations of real cellular base stations available

in FCC public GIS database [1] and choose base stations deployed in 4

different regions of increasing size and number of base stations.
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– R1 - 843 base stations in the state of MA.

– R2 - 2412 base stations in New England area (MA, ME, NH, VT,

RI, CT).

– R3 - 4467 base stations in New England and New York.

– R4 - 8618 base stations in North East USA (New England, NY, NJ,

PA).

Here, the regions are progressively supersets of the previous ones. We

assume the communication radius r to be 25 meters in this scenario.

Each experiment is repeated 20 times and the averages are reported.

CAB. We consider a CAB with a bandwidth of 50 MHzand assume that each

base station in the region can operate one or more of the following types of

networks: GSM (200 KHz), CDMA (1.25 Mhz) and W-CDMA (5 Mhz). We

assume the CAB is divided into channels of different types as described in

Figure 3 and so we have 250 GSM channels, 40 CDMA channels and 10 W-

CDMA channels in total.

Bidding Functions. We generate bidding functions for each base station

as follows. First, we randomly assign the number (between one and three)

of types of channels/networks operated at the base station. For each network

type, we generate a separate bidding function as follows. Let m be the number

of channels in the given network type. We generate m random numbers from

a predetermine range; let the generated numbers in the non-increasing order

be: tp1, p2, p3, . . . , pmu. Now, for any set of channels of size k, we assign the

bidding price to be
°i�k

i�1 pi. Such a bidding function essentially gives higher

value to channels that are allocated earlier. In terms of price ranges, for GSM

networks, we generate prices from the interval 1–20, for CDMA networks we

use the interval 1–125 and for W-CDMA networks we use the interval of 1–

500. The intervals are chosen as above so that channels that have higher width

(e.g. W-CDMA compared to GSM) are valued at a higher price by each base

station.
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(a) Random Networks, α � 2.5, β = 5 dB
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(b) Random Networks, α � 4, β = 5 dB

 0

 50000

 100000

 150000

 200000

 250000

R1 R2 R3 R4

R
e
v
e
n
u
e

GAHT

GACP

GH

(c) Real Networks, α � 2.5, β = 5 dB
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(d) Real Networks, α � 4, β = 5 dB

Figure 7: Comparison of overall revenue generated by GAHT, GACP and GH
algorithms for various network topologies.

2.5.1 Comparing GAHT, GACP, and GH (Algorithms

Designed for Physical Interference)

In our first set of experiments, we compare the performance of the two ap-

proximation algorithms (GAHT and GACP) with the heuristic GH under the

physical interference model. We observe that, in general, the revenue gener-

ated by GH is higher than the one generated by GACP which in turn is higher

than that of GAHT.

Revenue Comparison for Fixed β and Two α Values. In Figure 7, we show the

revenue generated using the three algorithms for different network sizes in both

random and real network topologies for two different values of α and a fixed
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value of β = 5 dB. For the random network case (see Figures 7(a) and 7(b)),

we see that in all algorithms, the revenue generated increases with the network

size. This is mainly due to the non-increasing nature of the bidding functions.

So with more base stations, the spectrum broker tries to allocate channels

to base stations that are willing to pay more (those base stations with less

number of channels allocated) and thereby generating higher revenue. We

also see that when the network size is small (about 100 base station), the

difference between the revenue generated by all algorithms is small. As the

network size increases, the difference between the revenue generated by GH and

the revenues generated by GAHT and GACP becomes increasingly high. We

see similar behavior in the real network scenarios (see Figures 7(c) and 7(d)).

The more conservative nature of GAHT and GACP is the reason behind their

poor performance compared to GH. On the other hand, the amount of time

consumed by GH to ensure the validity of the resulting spectrum allocation is

very large. For example, the average running time of GH on a 500-base station

network of Figure 7(b) is more than 617 seconds, while GAHT and GACP

never took more than 2 seconds.

It is interesting to note that when α � 2.5, the revenues generated by

GAHT and GACP are relatively close to each other and both are very poor

compared to the revenue generated by GH. However, increasing α to 4 lead

to varying degrees of improvements in each of the three algorithms. The most

interesting variation involves GACP and GAHT. This is mainly due to the

difference in each algorithm’s dependence on α and β values.

Comparison of Theoretical Bounds of GACP and GAHT. To understand this

behavior clearly, we show the actual values of the theoretical bounds of both

GAHT and GACP for various values of α and β in Figure 8. The figures show

that for α ¤ 4, GAHT has a better approximation ratio than GACP, while for

α ¡ 4, GACP has a better approximation ratio than GAHT. It can also be

seen that the variation of the two values due to β is relatively small compared

to the variation due to α. As α increases and β decreases, both GAHT and

GACP become closer to the optimal performance.

Revenue Comparison for Various α and β Values. We now compare the rev-

enues generated by GAHT, GACP, and GH in a 1000-base station random
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Figure 8: Approximation ratio values for different values of α and β.
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Figure 9: Comparison of overall revenue generated by GAHT, GACP and GH
algorithms for varying α and β values.
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Figure 10: Comparing performance of GA, GACP, and GH algorithms.

network and a real network (R2) with varying values of α and β in Figure 9.

Note that, in theory, increasing α means increasing the degree of deterioration

in signal strength over distance traveled, which leads to more spatial reuse,

and hence, higher revenue generated by all algorithms. Furthermore, decreas-

ing β means that the receivers are less sensitive to noise and interference and

are more capable of successfully receiving a transmission. This also allows for

more spatial reuse, and again, higher revenue generated by all algorithms. The

above patterns can be easily observed in the plots of Figure 9.

As noted earlier, we see that increasing α had varying degrees of improve-

ments in each of the three algorithms. For small values of α, GAHT and

GACP generated poor and relatively similar revenues, while GH was several

times better. As α was increased, GACP’s performance greatly improved and

became close to the performance of GH.
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2.5.2 Using GA for Physical Interference Model

In this subsection, we modify GA (originally defined for the pairwise interfer-

ence model) to work in the context of physical interference model, and then,

compare the modified-GA with GACP and GH algorithms. Recall that in the

original GA, two base stations are said to interfere if they are within a certain

distance d. To tailor GA to work in the context of physical interference model,

we increase the distance d, until we get a “valid” spectrum allocation (based

on the conservative validity-check method used in GH). In our experiments,

we vary d from 2r to 8r, where r is the communication radius. We compare

the revenue of a valid spectrum allocation returned by the above modified-

GA algorithm with the other two efficient algorithms for physical interference

model, viz., GACP and GH. We repeat this test for different values of α for a

1000-base station random network and one real network (R2). The value of β

is fixed at 5 dB in all experiments.

In Figure 10(a) and 10(b), we show the values of d{r compared to µ1
when the spectrum allocation obtained using GA is valid under the physical

interference model. In the case of random networks, d{r is smaller than µ1
by about 53% on average. In the case of real networks, we see its is smaller

by about 59% on average. Note that when d{r is same as µ1, the revenue

generated by GA and GACP should be same as both algorithms are similar.

Due to the smaller value of d{r, GA can exploit much higher spatial reuse

of spectrum and generate more revenue. The revenue generated by both the

algorithms are shown in Figures 10(c) and 10(d). The difference between

the two algorithms is higher in the case of real networks due to the larger

difference between d{r and µ1 compared to the random network case. This

clearly demonstrates that while the pairwise interference model is simplistic,

it can be used to generate efficient spectrum allocations (with an appropriate

choice of d) which are valid in the real physical interference model. But in order

to prove good theoretical properties for the spectrum allocation algorithm

under the physical interference model, we need to use the definition of µ1. We

also see from Figures 10(c) and 10(d) that for small values of α, the revenues

generated by GA and GH are similar and, in general, are much higher than

the revenue generated by GACP. For larger values of α, the difference between
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GACP and GA becomes smaller.

2.6 Related Work

Traditional auctions. Auctions have been traditionally used for efficiently

allocating scarce resources [19, 8, 6]. The auctioneer can maximize its rev-

enue by selling the goods to buyers who are willing to pay the most. At the

same time, the buyers also get benefited as auctions tend to assign items to

buyers who need them the most based on their valuation. Some examples

where auction systems have been successfully used include energy markets [8],

treasury bonds [6], and selling commercial goods online [19]. In general, the

goods on sale can either be a single item [37], bundle of multiple units of sin-

gle items [37, 20] or bundles of multiple units of multi-items [17, 7] and the

complexity of the auction mechanisms increase in this order.

The spectrum allocation problem in the CDSA model differs from tradi-

tional periodic sealed bid multi-unit auctions in the following two important

aspects. First, in a conventional multi-unit auction, every buyer competes

with every other buyer participating in the auction. In the problem consid-

ered in this chapter, there is a network of base stations, and each base station

competes only with base stations with which it interferes. This increases the

complexity of the auction problem significantly as the way in which the base

stations interfere depends on external constraints that include complexities

such as radio propagation model, frequency used and transceiver design etc.

While traditional multi-unit auctions can be solved optimally in polynomial

time, this class of auction problems are known to be NP-hard even when spe-

cific restricted class of bidding functions [22] are used. The second major

difference is the overlapping nature of channels of different types which puts

an additional constraint on assigning channels to base stations. In traditional

auctions, any item can be assigned to any buyer; this is not true here.

Spectrum allocation without revenue models. Spectrum allocation al-

gorithms, both centralized [12, 57] and distributed [66, 13] in the context of

dynamic spectrum access networks have been proposed previously without
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any revenue model. In these works, the authors propose algorithms to al-

locate spectrum to different nodes thereby optimizing one or more network

properties like network interference or network capacity. All these algorithms

only consider pairwise interference models and do not consider heterogeneous

channels of varying widths that can overlap. In context of ad hoc networks,

Yuan et al. in [65] propose centralized and distributed allocation of variable

width frequency blocks to nodes in the network in a time-slotted fashion. Our

work in this chapter differs from theirs in two main aspects. We have a general

revenue model associated with the channels and try to maximize the overall

revenue while they optimize a proportionally fair throughput metric. The sec-

ond difference is that we propose efficient algorithms using both pairwise and

physical interference models, while they use only pairwise interference model.

In [14], the authors propose a spectrum allocation algorithm intergraded with

interference-aware statistical admission control. Here also, they do not con-

sider any revenue model and use only pairwise interference model to capture

interference between access points.

Revenue maximizing spectrum allocation. Two previous works that are

directly related to our work are [52] and [22]. In [52], Sengupta et al. formulate

the spectrum allocation problem as a modification of the knapsack problem.

Here, they assume a very primitive revenue model where they consider a con-

stant price for each channel and specify spectrum demands as a fixed number

of channels. The spectrum broker should either allocate all channels demanded

or it cannot allocate any channel. This kind of spectrum demand is too re-

strictive to support efficient allocation. Also, they only consider homogeneous

type of channels. In [22], Gandhi et al. propose solutions for the revenue max-

imizing spectrum allocation problem under pairwise interference model. Here,

the authors only consider a specific class of revenue function which is piece-

wise linear in nature and use only homogeneous channels. Their algorithms

cannot be extended to work for any general class of revenue functions and het-

erogeneous types of overlapping channels as we consider here. If we consider

homogeneous channels only, our approximation is still better considering the

fact we can solve the problem for any general revenue function. In addition, we

address the spectrum allocation problem under physical interference model.
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Other Works. Inspired by traditional work in economics, recent papers

have addressed the dynamic spectrum allocation using auction-based [67, 68,

63, 33, 64] or pricing-based [31] techniques. Such papers tend to focus more

on the economic aspects of the allocation process like the strategic behavior

of the bidders, which are handled by the later chapters of this dissertation.

Moreover, they assume simple interference settings. Another paper that uses

auctions to solve a related problem is [64]. Unfortunately, their restrictive

interference model prohibits the use of their ideas in our setting. Other works

worth mentioning here include [21] where a similar problem is addressed but

with the goal of throughput maximization. Finally, a concurrent work by

Goussevskaia et al. [25] used ideas similar to the ones we use in GACP to

solve the problem of local broadcasting in the physical interference model.

2.7 Conclusion

In this chapter, we proposed efficient approximation algorithms that give near-

optimal solutions for the spectrum allocation problem in cellular network under

the coordinated dynamic spectrum access model. We addressed the spectrum

allocation problem in a very general context where (i) interference in the net-

work is modeled using pairwise and physical interference models and (ii) base

stations can bid for heterogeneous channels of different widths using generic

bidding functions. For the specific case of non-overlapping channels and a unit-

disk interference graph, our greedy algorithm GA returns a 6-approximate so-

lution which is a direct generalization of the results in [22] for arbitrary revenue

functions. Our simulations studies show that the proposed algorithms scale

very well for large network topologies. Among the two algorithms proposed for

the physical interference model, we see their performance primarily depends

on the interference model parameters and the appropriate algorithm can be

chosen based on the actual value of α and β. We also see that the simple

pairwise interference model can be used to come up with efficient spectrum al-

locations that are valid under the physical interference model by appropriately

choosing the interference region around the base stations.
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Chapter 3

Truthful Auctions With

Approximate Social-Welfare

3.1 Introduction

In the previous chapter, we presented an efficient auction-based market mech-

anism for dynamic spectrum allocation where we ignored many economic as-

pects of the mechanism design. Flawed market designs for a precious com-

modity like spectrum can lead to significant market inefficiencies and adverse

economic impacts. This happened in the restructured electricity market in

California in 2000 that made international headlines, leading to many aca-

demic studies [58, 62, 32, 5, 9].

A natural objective of auction-based mechanism is to maximize the gener-

ated revenue (the sum of the bids or payments by the buyers) [56, 22, 52, 31].

However, such an objective can encourage the spectrum buyers to lie about

their real valuations leading to an “untruthful” auction, fear of market manip-

ulation, and indirectly possibly lowered revenue. Moreover, in a competitive

environment, buyers may spent a lot of time/effort in predicting the behavior

of other buyers and planning against them. Three recent papers address the

problem of designing truthful spectrum auctions [63, 67, 33]. Our focus in

this chapter is on auction-based mechanisms that not only encourage truthful

behavior but also allocate the spectrum to the bidders who value it the most.
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The latter goal of maximizing the total valuation is justified in many settings

and is extensively studied in economics [50, 49]. Moreover, the bidders with

higher valuations are more capable of making good use of the spectrum to

build up a viable cellular phone network [16, 3]. Note that, as discussed in

Section 3.2.1, it is not possible to design truthful auction mechanisms with

optimal/approximate revenue.

Problem Addressed. In this chapter, we consider a dynamic auction-based

approach to allocate spectrum to competing base stations. Similar to the

model of Chapter 2, the centralized auctioneer acts as the seller and the base

stations act as the buyers of the available spectrum. The items being sold

are various channels corresponding to certain (contiguous or non-contiguous)

blocks of frequency. The base stations bid for these channels, based on their

valuations of these channels.

In the above context, we address the problem of designing a spectrum

auction mechanism (i.e., an allocation algorithm) with the following dual ob-

jectives, viz., (i) encourage truthful behavior from the buyers (i.e., ensure that

the buyers “benefit” the most when their bids corresponds to their true val-

uations), and (ii) at the same time, maximize the “social-welfare,” i.e., the

total valuation of the allocated channels (by allocating them to the buyers

who value them the most).

Closest Prior Works. The above problem of truthful spectrum auction design

has been recently addressed in [67] by Zhou et al. under limited interference and

bidding models. In particular, they design a spectrum auction mechanism that

is truthful, but does not have any performance guarantee on the social-welfare.

In other closely related work, Wu et al. [63] focusses on preventing collusion

attacks and better revenue (sum of payments from the bidders) in a VCG-

like spectrum auction. However, their mechanism requires solving an NP-hard

optimization problem, does not guarantee truthfulness, and is limited to simple

interference and bidding models. Finally, in a recent work, Jia et al. [33]

address the problem of designing spectrum auctions in a Bayesian setting,

wherein the broker is aware of the probability distributions of the private

valuations of the bidders. In this setting, [33] designs truthful mechanisms,

while attempting to maximize the expected revenue, for simple bidding and
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interference models.

Our Contributions. In this chapter, we design a spectrum auction mecha-

nism that yields an allocation (i) that encourages truthful behavior by buyers,

and (ii) has an approximate (within a constant-factor of optimal) total valu-

ation. We consider general (pairwise and physical) interference and bidding

models. To the best of our knowledge, ours is the first work to design a spec-

trum auction mechanism satisfying the above dual objectives.

Chapter Organization: The rest of the chapter is organized as follows. In

the next section, we present the background of our work before going into the

details of the related works. In Sections 3.3 and 3.4, we formally define and

present efficient spectrum auction mechanisms under pairwise and physical

interference models, respectively. Section 3.6 concludes the chapter.

3.2 Background, Related Work, and Our Con-

tributions

In this section, we present some background material related to our work, and

introduce basic terms and definitions from both the spectrum allocation and

the auction theory literature. We also discuss related work in more detail, and

our contributions in this chapter.

Dynamic Spectrum Access. Similar to the model of Chapter 2, a cen-

tralized entity known as the spectrum broker owns a part of the spectrum

called the coordinated access band (CAB). The spectrum broker divides the

CAB into channels (contiguous or non-contiguous blocks of frequency) and

dynamically allocates them to the competing base stations (the buyers) in

the region it controls. The base stations express their bids for the available

channels using a bidding function which specifies the price they are willing to

pay for a given set of allocated channels. Periodically, the spectrum broker

allocates available channels to the base stations (based on the received bids)

under the “wireless interference constraint” such that the total revenue (to-

tal price paid by the base stations) is maximized. The above auction-based

approach allows the base stations to bid according to the spectrum demands,
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and the spectrum broker to maximize the revenue generated from allocation

of spectrum. However, as mentioned before, this goal is far from ideal in many

settings, especially in spectrum auctions, and may cause several problems like

market manipulation. To eliminate the fear of market manipulation and allow

the bidders to have simple bidding strategies, truthful auction mechanisms are

desired.

3.2.1 Truthful Auction Mechanisms

In this subsection, we formally define the concepts of auction mechanisms and

truthful auction mechanisms. We also discuss VCG auction mechanisms, the

only general form of auction mechanism that guarantees truthfulness.

Auction Mechanism. In an auction [49], a set of rational bidders compete

over one or more items through a bidding system. An auction is described by

the following:

• A finite set O of allowed outcomes.

• Each bidder i has a privately-known real function vi : O ÞÑ R called

its valuation function, which quantifies the bidder’s benefit from each

outcome.

• Bidders are asked to declare their valuation functions in the form of

bidding functions w � pw1, . . . ,wN q. The bidders may lie about their

valuation functions; thus, wi may not be equal to vi.

• An auction mechanism chooses an outcome o based on some criteria over

the declared valuation functions.

• In addition to choosing an outcome, the auction mechanism also charges

each bidder i a certain amount of money pi.

• The utility ui of each bidder i is the difference between its true valuation

of the outcome o and its payment pi, i.e., ui � vipoq � pi. Each bidder’s

goal is to maximize its utility.
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Based on the above model and setting, we define the concepts of auction

mechanism and social-welfare.

Definition 9 (Auction Mechanism.) Let O be the set of possible outcomes

of an auction. An auction mechanism is a pair of functions px, pq such that:

• The winner determination function x accepts as input a vector w �pw1, . . . ,wNq of bidding (declared valuation) functions and returns an

output xpwq P O.

• The payment function ppwq � pp1pwq, . . . , pNpwqq returns a real vec-

tor quantifying the payment charged by the mechanism to each of the

bidders. l
Definition 10 (Social-Welfare; Revenue) Social-welfare of an outcome o is

defined as the sum of the valuations, i.e.,
°

i vipoq. Social-welfare may also be

defined over declared valuations, i.e., as
°

i wipoq.
The revenue of an auction mechanism px, pq is the sum of the payments°

i pipwq charged to the bidders for a given declared valuation vector w. l
Generally, the goal of the auction mechanisms is to maximize the to-

tal social-welfare, and not necessarily the revenue. The goal, also known as

social efficiency, is justified in many settings and is extensively studied in eco-

nomics [50, 49].

EXAMPLE 2 Let us illustrate the above concepts using the well-known

Vickrey’s Second-Price Sealed-Bid Auction [61]. Consider an auction wherein

a single item is up for sale. Each bidder has a certain valuation for the item,

and makes a bid accordingly. Here,

• The set of outcomes are o1, . . . , oN where oi is the outcome in which the

item is sold to the ith bidder.

• Valuation function vi of a bidder i defines the value the bidder assigns

to each outcome. Thus, vipoiq is equal to the value of the item for the

bidder i, and vipojq � 0 for all j � i since a bidder does not get any

benefit in an outcome where it does not get the item.
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• In the Vickrey’s auction mechanism, the item is sold to the bidder with

the highest bid, i.e., the winner determination function x chooses an

outcome o with maximum social-welfare on w,
°

i wipoq. In addition,

the payment charged to the highest-bidder is an amount equal to the

second-highest bid.

Now, consider a two-bidder scenario, where v1po1q � 5 and v2po2q � 20. Note

that v1po2q and v2po1q are zero. Let us assume that the bidders are truthful,

i.e., wi � vi for all i. Then, the Vickrey’s mechanism picks the outcome o2

(i.e., sells the item to the second bidder), and charges the payment of 5 to the

second bidder. In this case, the total revenue is 5, and the utilities of the first

and second bidders are zero and 15 respectively. l
Truthful Auction Mechanisms. In a selfish environment, bidders may not

declare their valuation functions truthfully, if it were to their advantage (result

in increase of their utility). Such a behavior may severely damage the resulting

welfare and force each bidder to have complex bidding strategies based on its

belief/knowledge about the strategies of other bidders. A truthful (also known

as incentive-compatible or strategy-proof ) mechanism enforces bidders to be-

have truthfully by offering them incentives (in the form of reduced payments)

for such a behavior, or at least, by giving them no incentive for untruthful

behavior. These incentives are based on the presumption that each bidder

is selfish, and thus, only interested in maximizing its own utility. We now

formally define the notion of truthful auction mechanism.

Definition 11 (Truthful Auction Mechanisms.) Given the valuation func-

tions, in a truthful auction mechanism, each bidder’s utility is maximized

when it truthfully declares its valuation function vi.

More formally, let the true valuation functions of the bidders be

v � pv1, . . . ,vNq. Consider two declared valuation function vec-

tors, viz., (i) w � pw1, . . . ,wi�1,vi,wi�1, . . . ,wNq, and (ii) w1 �pw1, . . . ,wi�1,wi,wi�1, . . . ,wN q (where wi � vi). A mechanism px, pq is con-

sidered truthful if vipxpwqq � pipwq ¥ vipxpw1qq � pipw1q for all i and wi.l
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It is easy to see that Vickrey’s auction mechanism (see Example 2) is

indeed truthful. Essentially, by lying about its valuation, a bidder may only

hurt its chances of winning, while at the same time, not changing its payment

if it wins (since the payment does not depend on its bidding function).

Truthfulness and Revenue Maximization. Informally speaking, an attempt to

maximize the revenue without enforcing truthfulness may backfire, since in

a non-truthful auction, bidders may bid much lower (than their actual val-

uations). For instance, in the simple case of single-item auction, a truthful

Vickrey’s auction (i.e., the second-price auction) may actually yield more rev-

enue than a revenue-maximizing non-truthful auction (if the bidders were to

bid too low, in the non-truthful case). Therefore, revenue maximization is not

a feasible objective for truthful auction mechanisms [3, 24]. Basically, even

in the case of an auction of a single copy of a single item, there is no way to

deal with an astronomical bidder [3, 24]. In this paper, our main focus is on

the design of truthful spectrum auction mechanisms, while also maximizing

the social-welfare, which is justified in many settings and is extensively stud-

ied in economics [50, 49]. Through simulations, we show that the revenue of

our designed mechanism is close to that delivered by the best-known revenue-

approximation algorithm, and is an order of magnitude better than a naive

truthful spectrum auction.

Truthful Auctions with Maximum Social-Welfare. In a truthful auction, since

the bidders’ bids are equal to their true valuations, the social-welfare (sum

of the valuations) is also equal to the sum of the bids. Thus, the maximum

possible social-welfare is an upper bound on the revenue (since, bidders are

never asked to pay more than what they bid, to ensure positive utilities).

However, in the case of a truthful auction mechanism, the winning bidders are

asked to pay less than their bids, as an “incentive” to bid truthfully, which is

the reason why the revenue yielded by a truthful auction cannot be optimal,

in general.

VCG Auction Mechanisms. The only general mechanism that guarantees

truthfulness is due to Vickrey-Clarke-Groves (VCG) [61, 15, 27], and in some

scenarios, it is known that no other method exists [49]. In restricted settings,

however, other approaches [41, 45] may exist. Informally, the celebrated VCG
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mechanism finds the outcome o with maximum social-welfare, and charges

each winner i an amount equal to the total “damage” that it causes to the

other bidders, i.e., the difference between the social welfare of the others with

and without i’s participation. The key property of such a mechanism is that it

“aligns” each bidder’s utility with the social-welfare [50]. Thus, by maximizing

its own utility, each bidder is also maximizing the social-welfare. Below, we

give a formal definition of the VCG mechanism.

Definition 12 (VCG Mechanism.) A VCG mechanism is an auction mech-

anism px, pq (see Definition 9) that satisfies the following two conditions, for

any given declared valuation functions w � pw1, . . . ,wNq.
• xpwq P arg maxo

°
i wipoq, i.e., the winner determination function x

chooses an outcome that maximizes the social-welfare according to w.

• The payment functions are determined by the VCG formula pipwq �p�°j�i wjpxpwqqq � hipw�iq, where each hipw�iq is an arbitrary func-

tion of w�i � pw1, . . . ,wi�1,wi�1, . . . ,wNq. For non-negative declared

valuations, the function hip�q is usually chosen according to the Clarke

pivot rule which suggests hipw�iq � maxoPO °j�i wjpoq, the maximum

social-welfare due to others. It can be shown that for non-negative valu-

ations, the Clarke pivot rule ensures non-negative unities and payments,

which are desirable properties [50]. l
One of the main shortcomings of VCG mechanisms is that they may result

in low (even zero) revenue in some cases. But, VCG’s payment function is key

to ensuring its truthfulness, and altering its payment scheme may destroy its

truthfulness property.

VCG Mechanisms for NP-hard problems. Unfortunately, a VCG mechanism

requires solving an optimization problem of maximizing social-welfare, which

can be NP-hard in many settings. Furthermore, Nisan and Ronen [49] showed

that choosing an allocation with even approximate social-welfare destroys the

truthfulness of the mechanism. However, to circumvent the above obstacle,
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they introduce maximal-in-range (MIR) mechanisms (formally defined in the

next subsection) where a suboptimal allocation can be used while maintaining

the truthfulness property.

3.2.2 Related Works, Our Approach and Contributions

In this section, we discuss related works, our approach to design truthful spec-

trum auction mechanisms, and the main contributions of our work.

Related Works. As discussed in Section 2.6, traditional auction mechanism

are not directly applicable to spectrum auctions due to the “multi-winner”

property of each item (due to spatial reuse of spectrum channels) and wireless

interference constraints. Moreover, the corresponding optimization problem

of maximizing social-welfare in the context of spectrum auctions is known to

be NP-hard [56], which makes VCG auction mechanisms inapplicable. Since

the truthfulness property is key to our work, below we discuss recent works on

truthful spectrum auctions in detail.

Truthful Spectrum Auctions. To the best of our knowledge, there has been

only two works till date, viz., [67, 33], that have designed truthful mecha-

nisms for spectrum auction. The truthful mechanism designed by Zhou et

al. [67] however does not address the goal of maximizing social-welfare. More-

over, their approach is limited to only simple (single-minded or range) bidding

functions and pairwise interference model. As observed in [67, 3], it is rather

straight-forward to design a truthful auction mechanism without any regard

for social-welfare. But, the authors in [67] show through simulations that

their mechanism returns better social-welfare and revenue compared to a sim-

ple truthful mechanism. Recently, this work has been extended to consider

double auctions [68].

In another recent work, Jia et al. [33] design a spectrum auction mecha-

nism under the Bayesian setting, wherein the broker is aware of the probability

distribution of the (private) valuation of each bidder. In this setting, [33] de-

signs truthful spectrum auction mechanisms, while attempting to maximize

expected revenue. In contrast, in this chapter, we consider the traditional
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auction model, wherein the bidder valuations are completely private. More-

over, [33] considers a special type of pairwise interference model, and is only

limited to single-minded bidding functions. Finally and most importantly,

the mechanisms designed by [33] either take exponential time or provide no

guarantees on the expected revenue.

In another closely related work, Wu et al. [63] design a spectrum auction

mechanism based on VCG mechanism. They focus on modifying the VCG

payment function to eliminate colluding attacks by losing bidders and to im-

prove the total revenue. However, their altered payment scheme destroys the

truthfulness property of the VCG scheme. In addition, their mechanism re-

quires solving an integer linear programming (NP-hard) problem, which makes

their approach impractical for large networks. Note that in practice cellular

networks may have thousands of base stations [55]. Finally, they assume either

a single-channel system or that each bidder is interested in only one channel

in a multi-channel system.

Other Works. Recently there have been lots of works on dynamic spectrum

allocation using auctions, but most of the works have focussed on the goal of

revenue maximization [56, 22, 52, 31] without worrying about the truthful-

ness of the auction mechanism. However, as mentioned before, an untruthful

auction mechanism can encourage the bidders to lie about their valuations,

which may lead to market manipulation and lowered revenues. In addition, in

a competitive environment, buyers may be forced to spent a lot of time/effort

in predicting the behavior of other buyers and planning against them. Fi-

nally, [53] uses budget-balanced mechanism to achieve truthfulness for the

power allocation problem in single-cell CDMA networks.

Our Approach: Truthfulness with Approximate Social-Welfare. In

this chapter, we focus on designing a spectrum auction mechanism that is

truthful and selects an outcome with approximate social-welfare, for general

interference models and bidding functions. In our approach, we make use of

the recent result by Dobzinski and Nisan [18] on the design of truthful auction

mechanisms with approximate social-welfare for multi-unit auctions (MUA)

using a maximal-in-range (MIR) mechanism. Thus, we start with formally

defining MIR mechanisms and multi-unit auctions. Then, we give an outline
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of our approach.

Maximal-In-Range Mechanisms. In [49], the authors pro-

vide a computationally-efficient way to overcome the problem of finding an

allocation with optimal social-welfare in VCG mechanisms, since finding such

an allocation may be NP-hard in some cases. In particular, they show that

an auction mechanism is truthful if it (i) chooses an outcome that optimizes

social-welfare over a fixed subset of the outcomes, and (ii) uses VCG payments

(as defined in Definition 12). Such mechanisms are termed Maximal-In-Range

(MIR) and formally defined below.

Definition 13 (Maximal-In-Range (MIR) Mechanism.) Let Vi be the set of

all possible valuation functions of bidder i, and V � ±N

i Vi be the space

of all possible valuation functions. Let O1 denote the range of the winner

determination function x at V , i.e., O1 � txpvq|v P V u. We say that x is

maximal in its range if for every v P V , xpvq maximizes the social-welfare

over O1. l
Multi-Unit Auctions (MUA). Multi-unit auctions (MUA) have been heavily

studied in economics due to their practical implications. In a MUA, a set of

M identical items are up for auction among bidders, and each bidder expresses

interest for certain quantities of the items, without any preference to any spe-

cific item. Thus, the valuation function of a bidder i can be represented1 as

vi : t1, . . . , Mu ÞÑ R, where vipqq is the value for obtaining q items. In [18],

the authors design an MIR mechanism for multi-unit auctions that is truthful

and yields an allocation with approximate social-welfare.

Our Approach. As mentioned above, traditional auction mechanisms cannot

be directly used on spectrum auctions due to the “multi-winner” property of

each auctioned item in the spectrum auctions. Our approach utilizes the ge-

ographical nature of the spectrum auction problem to re-formulate it as a set

of multi-unit auction instances. Then, we use the MIR mechanisms for multi-

unit auctions from [18] to solve each instance, i.e., independently determine

1Note that such a representation can be easily mapped to the original form wherein a
valuation function maps outcomes to real numbers.
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spectrum allocation with approximate social-welfare for each instance. We en-

sure truthfulness by using VCG payments. Finally, we combine the allocations

over these independent instances in a way that preserves truthfulness and the

approximation ratios of the social-welfare.

Our Contributions. Basically, we present a simple and general approach

to dynamically allocate spectrum to competing base stations with the goal

of maximizing the social-welfare while maintaining truthfulness. We consider

general bidding functions and interference models. For the pairwise interfer-

ence model, we consider the unit-disk, non-uniform disk, and the pseudo-disk

models. For the physical interference model, we consider uniform as well as

non-uniform power transmission models. Our contributions can be summa-

rized as follows:

• For the pairwise interference with unit-disk model and general bidding

functions, we present a truthful auction mechanism that yields an al-

location whose social-welfare is within a constant-factor of the optimal.

We extend the truthful mechanism and its approximation result to (i)

non-uniform disk and pseudo-disk pairwise interference models, (ii) k-

minded bidding function (where the bidder expresses its valuations for

at most k quantities of channels), (iii) non-orthogonal channels, and (iv)

multi-type channel auctions.

• For the physical interference model with uniform power transmissions

and general bidding functions, we present a truthful auction mechanism

that yields an allocation whose social-welfare is within a constant-factor

of the optimal. The result is extended to k-minded bidding functions,

and non-uniform power transmission model.

3.3 Spectrum Auction Under Pairwise Inter-

ference

In this section, we address our problem of designing truthful spectrum auctions

with approximate social-welfare under the pairwise interference model. In the
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first subsection, we will consider the unit-disk model, wherein the coverage

region of each base station is assumed to be a disk of uniform radius. In later

subsections, we extend our techniques to non-uniform disk and pseudo-disk

interference models (see Section 1.1.1). We start with defining our network

model, the core concepts, and formulating the problem formally.

Network Model Our model of a cellular network consists of a set of geograph-

ically distributed base stations. Spectrum is divided into orthogonal channels

of the same type, and the spectrum auction involves each base station bidding

for certain quantities of channels (as in basic multi-unit auctions). In a later

subsection, we will consider non-orthogonal channels and multi-type channel

networks.

Valid Spectrum Allocation. Informally, our spectrum auction problem

is to allocate channels to base stations so as to maximize the social-welfare

and maintain truthfulness. However, the allocation of channels should be

done without violating the interference constraints. Again, we formalize this

by using the concept of valid spectrum allocation (see Definition 4), which

essentially represent the possible outcomes of the spectrum auction.

Representation of Valuation and Bidding Functions. In a spec-

trum auction of channels of same type, a bidder i’s valuation of an out-

come/allocation o depends only on the number of channels i is getting in

o. Thus, we represent bidder i’s valuation function vi as vi : t1, . . . , Mu ÞÑ R,

where M is the total number of channels and vipqq denotes bidder i’s value

for obtaining q channels. Recall that the bidding function wi for a bidder i is

a declaration of its privately-known valuation function vi. Thus, the bidding

function wi is represented similarly as wi : t1, . . . , Mu ÞÑ R. We assume free

disposal (i.e., valuation for higher number of channels is larger than smaller

number of channels), and that valuation of zero channels is zero.

General-Minded and k-minded Bidding Functions. In the most general model,

a bidder has a valuation for any number of channels, and thus, the bidding

functions is represented by M real numbers – one for each quantity of channels.

For efficiency and practicality issues, another model is commonly assumed in
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the literature, viz., the k-minded bidding function, wherein the bidder ex-

presses its valuations for at most k quantities of channels.

TSA-MSW (Truthful Spectrum Auctions with Maximum Social-

Welfare) Problem. Given an interference graph, number of channels, and

the bidding functions for the base stations, the TSA-MSW problem is to design

a truthful auction mechanism that returns a valid spectrum allocation with

maximum social-welfare.

Thus, the TSA-MSW problem involves determining (i) a valid spectrum

allocation with optimal social-welfare, and (ii) payments by each bidder, so

that the overall mechanism is truthful. TSA-MSW problem is NP-hard even

without the truthfulness objective [56]. Thus, we focus on designing a mecha-

nism that is truthful and yields a valid spectrum allocation with approximate

social-welfare.

Input and Output Sizes. If N and M denote the number of base stations and

channels respectively, then note that the size of the input is polynomial in N

and log M (since the input only includes the number of channels). On the other

hand, the size of the output as defined in Definition 4 may be polynomial in N

and M , and thus, exponential in the input size. However, it is easy to modify

Definition 4 so that valid spectrum allocation is polynomial in N and log M ,

by associating a number of channels with each base station. We have defined

valid spectrum allocation as in Definition 4 for simplicity of presentation.

3.3.1 TSA-MSW Problem in Unit-Disk Model

As defined in Section 1.1.1, in the unit-disk model, the coverage region of each

base station is assumed to be a disk of uniform radius d. For simplicity of

presentation, we assume distances to be normalized, i.e., d � 1. Thus, two

base stations interfere if they are within two-unit distance from each other.

We start with giving an outline of our allocation algorithm (i.e., the winner

determination function) for the unit-disk model. Then, we will discuss various

parts of the algorithm in detail, and prove its truthfulness and social-welfare

approximation ratio.
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Outline of the Allocation Algorithm. Our approach utilizes the geograph-

ical nature of the spectrum auction problem to divide it into smaller and more

tractable subproblems. Then, we solve each subproblem independently and

“combine” the allocations, without sacrificing much on the overall approxima-

tion factor of the final social-welfare. At a high-level, our algorithm consists

of the follows steps.

1. Divide the entire network region into small hexagons2 of side-length one

unit each. See Figure 4. This division ensures that any pair of base

stations in the same hexagon interfere with each other (due to the unit-

disk interference model).

2. Uniformly-color the hexagons with enough colors, such that base stations

in co-colored hexagons are more than two-unit distance away and hence

do not interfere.

3. Allocate channels to base stations in each hexagon independently, treat-

ing it as a multi-unit auction (MUA) and using techniques similar to [18].

Note that the interference subgraph in each hexagon is actually a com-

plete graph.

4. For each color, combine the results from all hexagons of that color.

5. Pick the color that has the highest total social-welfare.

The above gives a p7γq-approximate solution, where γ is the approxima-

tion factor in Step (3), and 7 is the number of colors used to color the hexagons.

The value of γ is 2 for general-minded bidding, and p1� ǫq for k-minded bid-

ding functions for any ǫ ¡ 0. Furthermore, the above algorithm, and all the

generalizations discussed afterwards, run in time polynomial in the size of the

input, i.e., in N , the number of base stations, and log M , where M is the

number of channels.

Hexagonal Division, and 7-Coloring of Hexagons. Our Algorithm starts

by diving the plane into hexagons of side-length one unit each (creating a

2This hexagonal division is not to be confused with the actual cells associated with the
base stations.
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hexagonal division of the plane), and proceed to uniformly coloring these

hexagons using 7 colors. See Figure 11. In such a coloring, the following

two properties hold.

(P1) Every pair of base stations in the same hexagon interfere with each other

(i.e., are connected by an edge in the interference graph).

(P2) Base stations in different hexagons with same color do not interfere with

each other (i.e., are not connected by an edge in the interference graph).

Property (P1) follows directly from the definition of unit-disk interference,

while Property (P2) follows from the fact that the distance between base sta-

tions in different hexagons with the same color will be at least pa3p7q�2q ¡ 2.

Allocation in Each Hexagon. The above properties imply that the channels

cannot be re-used inside the same hexagon, but can be fully re-used across

different hexagons of the same color. Thus, allocation in each hexagon can

be treated as an MUA, and using techniques similar to [18], we can design

an MIR mechanism with approximate social-welfare. Below, we describe their

technique in detail for general-minded and k-minded functions.

General-Minded Bidding Function. In case of general-minded bidding model,

the available M channels are split into N2
H bundles of size

Y
M
N2

H

℄
each, where

NH is the number of base stations in hexagon H , and a single bundle of remain-

ing channels. Using dynamic programming, we can optimally allocate these

bundles to the NH bidders in time polynomial in NH . The above approach

yields an allocation whose social-welfare is at least 1/2 of the optimal possible

(see [18]).

k-minded Bidding Function. In the case of k-minded bidding function, a re-

stricted form of allocation known as the t-round allocation is used. For a given

t (where t is a PTAS parameter), a t-round allocation allocates l (l ¤ M) chan-

nels to a subset T of the bidders where |T | ¤ t; this part of the allocation is

done optimally by exhaustive search for each l and T . Also, for each l and

T , the remaining pM � lq channels are divided into equi-sized bundles and

distributed optimally to the remaining bidders using dynamic programming,
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Figure 11: Hexagons uniformly-colored using 7 colors.

as in the case of general-minded bidding model. Finally, the best allocation

among the tN t
Hkt such allocations is picked as the optimal t-round allocation.

The above allocation algorithm runs in OptN t
HktpNH � tq4q time, which is

polynomial for a fixed t, and yields a
�
1� 1

t�1

�
-approximate allocation [18].

Note that instead of the above bundling approach, we could also use the

optimal dynamic programming approach which runs in OpM4NHq time; since

the size of the input is Oplog Mq, this optimal dynamic programming algorithm

has a pseudo-polynomial time complexity. In our simulations, we observe that

this optimal algorithm does not perform any better than our above polynomial

algorithms based on creating bundles.

Combining The Results. Since base stations in different hexagons of same

color do not interfere with each other (Property (P2)), we can combine alloca-

tions of co-colored hexagons to form one single allocation. Thus, we get seven

allocations, one for each color. Among these seven allocations, we pick the

allocation with the highest social-welfare, as our final solution.
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Proof of Truthfulness and Approximability. Our overall spectrum auc-

tion mechanism consists of the above described allocation algorithm (winner

determination function) combined with VCG payments (as described in Defi-

nition 12). In the below theorem, we prove that this overall auction mechanism

is truthful and returns a valid spectrum allocation with approximate social-

welfare.

Theorem 4 For the TSA-MSW problem under the pairwise interference with

unit-disk model, the above described auction mechanism is truthful and re-

turns a valid spectrum allocation whose social-welfare is 14-approximate for

the general-minded bidding model and is 7p1�ǫq-approximate for the k-minded

bidding model for a given ǫ ¡ 0.

Proof: Truthfulness. Our allocation algorithm picks a t-round allocation

with the highest social-welfare, for a given t (for the case of general-bidding

functions, t can be considered to be zero). Thus, our allocation algorithm is

maximal in its range, where the range of allocations/outcomes is restricted

to t-round allocations. Thus, our auction mechanism is truthful since MIR

allocations with VCG payments are truthful [49].

Approximate Social-Welfare. First, note that by the properties (P1) and (P2)

of the hexagonal division, the allocation returned by our algorithm is valid.

Now, let us prove the approximation factor for the general-minded bidding

model; the proof for k-minded bidding model is similar. Consider a particular

color c, and for the set of all hexagons colored c, let Ac be the allocation

constructed by our algorithm and Oc be the allocation with optimal social-

welfare. We show that the social-welfare of Ac is within a factor of 2 of that

of Oc. Note that, for any particular hexagon cell, our algorithm constructs an

allocation whose social-welfare is within a factor of 2 of the optimal for that

hexagon. Since Ac’s (Oc’s) social-welfare is the sum of the social-welfares of

the constructed (optimal) allocations for the individual c-colored hexagons, we

get that the social-welfare of Ac is within a factor of 2 of that of Ac. Now,

since there are seven colors and we pick the best of the seven allocations, the

social-welfare of the returned allocation is within a factor of 14 of the overall

optimal social-welfare.
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3.3.2 TSA-MSW Problem in Non-Uniform Disks

Model

We now extend our techniques of previous subsection to the non-uniform disk

model, wherein cells of the base stations are disks of possibly different radii.

As before, two base stations are considered to interfere if their cells intersect.

Let the maximum and the minimum disk radii in the network be dmax and

dmin respectively. For simplicity of presentation, we assume that the distances

are normalized, i.e., dmin � 1.

For the above disk model, we divide the base stations into classes depend-

ing upon their cell’s radius, and then solve the spectrum allocation problem

for each class independently. Finally, we pick the allocation of the class that

has the highest social-welfare. Thus, our algorithm consists of the following

steps.

1) Classify the base stations into tlogpdmaxqu radius-classes, based on their

cell’s radius. In particular, class L contains base stations whose cell’s

radius di lie in the range di P r2L, 2L�1q.
2) For each radius-class L:

(a) Divide the network region into hexagons of side-length 2L each.

(b) Uniformly-color the hexagons using 12 colors as shown in Figure 12.

(c) Independently, for each hexagon H , allocate channels to base sta-

tions of radius-class L contained in H . The interference subgraph

induced by these base stations is a complete graph, and thus, we

can use the same technique as for the unit-disk model.

(d) For each color, combine the results from all hexagons of that color.

Note that base stations of class L in different co-colored hexagons

do not interfere with each other.

(e) Pick the color that has the highest total social-welfare.

3) The above gives an allocation for each radius-class. Pick the allocation

for the radius-class that has the highest social-welfare.
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Figure 12: Hexagons uniformly-colored using 12 colors.

Theorem 5 For the TSA-MSW problem under non-uniform disks interfer-

ence model, the auction mechanism based on the above allocation algorithm and

VCG payments is truthful and returns a valid spectrum allocation whose social-

welfare is 24tlogpdmaxqu-approximate for the general-minded bidding model and

is 12tlogpdmaxqup1� ǫq-approximate for the k-minded bidding model for a given

ǫ ¡ 0.

Proof: The truthfulness of the auction mechanism follows from the same ar-

guments as in the proof of Theorem 4.

Validity. Validity of the returned allocation follows from the fact that for each

radius-class L, the base stations of the radius class L satisfy the Property (P2)

of previous subsection. Note that with 12-coloring of hexagons of side-length

2L each, the distance between base stations in different co-colored hexagons

is at least pa3p12q � 2q2L � 2p2L�1q, which is not close enough to create

interference between base stations in radius-class L.

Approximate Social-Welfare. The proof of approximation follows from similar

arguments as in the proof of Theorem 4, except for the fact that we use 12
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colors here (instead of 7) and the extra tlogpdmaxqu factor comes due to the

number of radius-classes considered independently.

3.3.3 TSA-MSW Problem in Pseudo-Disk Model

We now extend our techniques to the most general case of pseudo-disk model

model, wherein cells of the base stations have irregular shapes but are con-

tained within a disk of radius d1 while containing a disk of radius d2 ¤ d1.

See Figure 1. For simplicity of presentation, we assume that d1 and d2 are the

same for all base stations. Techniques of previous subsection can be used to

extend our results below to the case wherein d1 and/or d2 may be different for

different cells. Also, for clarity of presentation, we use d2 � 1.

The allocation algorithm for the pseudo-disk model is similar to the one for

unit-disk model, except that the side-length of the hexagons and the coloring

scheme are different. To ensure the correctness of the unit-disk approach in

the context of pseudo-disk model, we need to do the division and coloring

appropriately to ensure that Properties (P1) and (P2) of Section 3.3.1 hold.

To ensure Property (P1), we divide the network region into hexagons of side-

length one unit, as in the case of unit-disk model. Below, we compute the

number of colors required to uniformly color the hexagons, in order to satisfy

Property (P2).

Required Number of Colors. To satisfy Property (P2), i.e., to ensure that

base stations in different hexagons with the same color do not interfere, we

must color the hexagons in a way that the distance between any two points

in different hexagons of the same color is greater than 2d1. To estimate the

number of colors required, we make use of the following two lemmas from [40,

55].

Lemma 3 In a hexagonal division with side-length s and uniformly-colored3

with x colors, the distance between the centers of two hexagons of the same

color is at least
?

3xs. l
3Informally, in a uniform-coloring of hexagons, the distance between the “closest”

hexagons with the same color is uniform.
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Lemma 4 A hexagonal division can be uniformly colored using c colors if and

only if c is of the form i2 � j2 � ij for some positive integers i and j. l
Now, by Lemma 3 above, to ensure a distance of 2d1 between co-colored

hexagons, the number of colors must be at least 4d2
1{3. Then, by Lemma 4

above, the minimum number of colors required would be given by:

qw � mintx|x ¥ 4d2
1{3 and x � i2 � j2 � ij where i, j P Z

�u. (26)

Approximate Social-Welfare. Using arguments similar to before, the above

hexagonal division and coloring yields an allocation algorithm with approx-

imation factor of 2qw and qwp1 � ǫq for the general-minded and k-minded

bidding models respectively.

3.3.4 Non-Orthogonal Channels; Multiple Types of

Channels

Thus far in this chapter, we have assumed that the channels in our network

model are orthogonal and of the same type. Here, we discuss relaxation of

these two assumptions.

Non-Orthogonal Channels. As discussed in Section 2.3, the non-orthogonal

(overlapping) nature of channels can be modeled using a channel graph Gc over

channels as vertices, wherein there is an edge between two channels ci and cj if

they are non-orthogonal. Let I be a maximum independent set in Gc. If we can

somehow compute I, then we can just use I as the set of channels to allocate

in each hexagon of our technique; this will maintain our approximation ratios

because of the following two facts. First, reuse of I in different hexagons

can be done without any changes to our techniques, since either they have

no interference edges between them or they are colored differently. Second,

within any hexagon, using I is sufficient, since all the channels are of the same

type and no two base stations within a hexagon can share a channel. Thus,

the computation of a maximum independent set in Gc is sufficient to use our

techniques and preserve the approximation guarantees. Now, if the channels

are contiguous blocks of spectrum, then the channel graph Gc is an “interval
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graph” wherein the maximum independent set (MIS) can be easily computed

using a simple greedy approach. For non-contiguous channels, our techniques

can still be used, but the performance guarantees do not hold.

Orthogonal Channels of Multiple Types. We have assumed till now in

this chapter that the available channels are of the same type; thus, each base

station had valuations for quantities of channels without any preference for

specific channels. Such a model allowed us to treat the allocation subproblems

in each hexagon as multi-unit auctions (MUA). However, if we have multiple

types of channels, and bidders have valuations for various sets of channels,

then the allocation subproblem in each hexagon must be instead treated as a

Combinatorial Auction (CA) problem, which is more difficult than the MUA

problem. For the CA problem, the best known result is by Holzman et al. [30]

who give a truthful MIR mechanism that achieves Op M?
log M

q of the maximum

social-welfare for general-minded bidding model, where M is the total number

of items. Thus, for spectrum auction of multi-type channels, we can use [30]’s

allocation algorithm to allocate channels in each hexagon, and combine re-

sults as before. The resulting auction mechanism will be truthful and yield a

Op M?
log M

q-approximate social-welfare, where M is the total number of chan-

nels.

3.4 TSA-MSW Problem Under Physical In-

terference

In this section, we extend our techniques from the previous section to the

case of physical interference. We start with considering the uniform-power

transmission model.

3.4.1 Uniform Transmission Powers

In this subsection, we assume that each base station operates using the same

transmission power P ; we relax this assumption in the next subsection. We

start by redefining the concept of valid spectrum allocation in this context.
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Valid Spectrum Allocation. In the context of physical interference model, a

spectrum allocation A is considered valid if it satisfies the following condition.

For each pair pi, cq in A, let Vi,c denote the set of base stations that have been

allocated the channel c in A. Now, for A to be valid, for every pi, cq in A and

every point p within a distance of r from i, SINR at p due to i and c should

be greater than β; i.e, the following should hold:

P {dα
i

N �°jPVi,c
P {dα

j

¥ β

where dx is the distance of base station x from the point p.

Allocation Algorithm. The allocation algorithm for physical interference

model is similar to the one for pairwise interference model in the previous

section, except for the chosen side-length of the hexagons and the number

of colors used for uniform-coloring of the hexagons. To ensure correctness

of our approach in the context of physical interference, we need to do the

hexagonal division and coloring in such a way that the following two properties

are satisfied.

(P’1) Every pair of base stations b1 and b2 in the same hexagon must “interfere”

with each other when operating on the same channel, even if no other

base station is active. In other words, no valid spectrum allocation must

assign the same channel to b1 and b2.

(P’2) If in each hexagon with the same color there is at most one active base

station, then the transmission from each of these base stations must be

successful within their communication radius.

To ensure Property (P’1), we can just divide the network region into

hexagons of side-length

R � p α
?

β � 1qr
2

. (27)

It is easy to see that Property (P’1) is satisfied for the above hexagonal division.

Coloring Hexagons to Satisfy Property (P’2). In the below Lemma 5, we will

show that Property (P’2) can be satisfied by ensuring that the minimum dis-

tance between hexagons with the same color is at least
a

3q1hR, where R is as
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defined above and q1h is as defined below.

q1h � � 4
?

7p3?7� 6qp α
?

β � 1q
2�
6βpα� 2q
 2

α

.

Then, using arguments similar to Section 3.3.3, the number of colors required

to satisfy Property (P’2) is given by:

qh � mintx|x ¥ q11, x ¥ 7, and x � i2 � j2 � ij where i, j P Z
�u (28)

Note that in our context we should use at least 7 colors, irrespective of the

values of α and β. We now state and prove the Lemma 5 used in the above

argument.

Lemma 5 Property (P’2) is satisfied if the minimum distance between

hexagons with the same color is at least
a

3q1hR, where R and q1h are as defined

above.

Proof: Consider a base station i in a hexagon H of color C. Partition all C-

colored hexagons surrounding H into hierarchical levels. In a uniform-coloring,

the first level will contain 6 hexagons of color C and each such hexagon H 1 is

at distance4 of at least p?3qh � 2qR from H (from Lemma 3). Similarly, the

second level contains 12 hexagons at a distance of at least p3?qh � 2qR from

H . In general, the lth level contains 6l hexagons at a distance of at leastp3
2

?
qhl � 2qR from H .

Now consider a point p within the communication radius r from the base

station i. Then, the total signal received at the point p due to all other base

stations (at most one per C-colored hexagon) active on the same channel as i

4By distance between two hexagons we mean that the distance between any point in H 1
and any point in H .
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is at most: 8̧
l�1

6l � P� p 3

2

?
qhl�2qp α

?
β�1q

2
� 1

	α

rα¤ 6P

rα

8̧
l�1

l�
l
?

qhp3?7�4qp α
?

β�1q
4
?

7
� 1

	α¤ 6P

rα

8̧
l�1

l�
l
?

qhp3?7�6qp α
?

β�1q
4
?

7

	α� 6P

α � 2
�� 4

?
7?

qhp3?7� 6qp α
?

β � 1qr�α

.

Above, the second equation follows from the following two facts: (i)
3
2

?
qhl ¥ 3

?
7{2 (since qh ¥ 7), and (ii) for x ¥ 3

?
7{2, we have px � 2q ¥

x

3
?

7{p3?7�4q . And, the third equation follows from the following facts: (i)

l
?

qhp3?7 � 4qp α
?

β � 1q{4?7 ¥ p3?7 � 4q{2, since qh ¥ 7 and α
?

β ¥ 1,

and (ii) for x ¥ p3?7� 4q{2, px� 1q ¥ xp3?7�4q{p3?7�6q .
For simplicity, we assume ambient noise to be zero; non-zero noise can

be incorporated using techniques similar to Section 2.4. Now, using the value

of qh from Equation 28, the SINR at point p due to the transmission at base

station i is at least:

P

rα
� α � 2

6P
��?qhp3?7� 6qp α

?
β � 1qr

4
?

7

�α ¥ β

Overall Allocation Algorithm. In the above paragraph, we discussed hexagonal

division and its coloring in a uniform way so as to satisfy Properties (P’1)

and (P’2). Now, note that Property (P’1) ensures that allocation in each

hexagon can be treated as a multi-unit auction, while Property (P’2) allows

us to re-use channels across different hexagons with same color. Thus, we

can use the same allocation algorithm as for the unit-disk model, with the

above hexagonal division and coloring. Use of VCG payments yields an overall

truthful auction mechanism. Thus, we have the following theorem.
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Theorem 6 For the TSA-MSW problem under the physical interference model

with uniform transmission power, the auction mechanism based on the above

described allocation algorithm and VCG payments is truthful and returns

a valid spectrum allocation whose social-welfare is 2qh-approximate for the

general-minded bidding model and is qhp1 � ǫq-approximate for the k-minded

bidding model for a given ǫ ¡ 0. Here, qh is as defined in Equation 28. l
3.4.2 Non-Uniform Transmission Power

We now consider the model wherein different base stations may operate on dif-

ferent transmission powers. Let the maximum and the minimum transmission

power levels used in the network be Pmax and Pmin respectively. For simplic-

ity of presentation, we assume that transmission powers are normalized, i.e.,

Pmin � 1. For this non-uniform transmission model, the physical interfer-

ence model and valid spectrum allocations can be appropriately defined. For

simplicity, we assume uniform communication radius; non-uniform commu-

nication radii can be handled in the similar manner as non-uniform disks in

Section 3.3.2.

Allocation by Division into Power Classes. Our technique is somewhat

a combination of the technique for the uniform-power physical interference

model and the non-uniform disk model. Basically, we divide the base stations

into power-classes depending upon their transmission power, and then, solve

the allocation problem for each class independently. Finally, we pick the power-

class that has the allocation with the highest social-welfare. The outline of

our allocation algorithm is as follows.

1) Classify the base stations into tlogpPmaxqu power-classes, based on the

associated transmission power. In particular, power-class J contains base

stations whose transmission power Pi lies in the range Pi P r2J , 2J�1q.
2) For each power-class J ,

(a) Divide the network region into hexagons of side-length R � p α
?

β �
1qr{2 each.
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(b) Uniformly-color the hexagons using qg colors, where qg is as defined

in Equation 29 later.

(c) Independently, for each hexagon H , allocate channels to base sta-

tions of power-class J contained in H . These set of base stations

satisfy Property (P’1), and hence, this allocation subproblem is

a multi-unit auction and we can use techniques described in Sec-

tion 3.3.1.

(d) For each color, combine the results from all hexagons of that color,

since it can be shown that base stations of class J in different co-

colored hexagons satisfy Property (P’2).

(e) Pick the color that has the highest total social-welfare.

3) The above gives an allocation for each power-class. Pick the allocation

for the power-class that has the highest social-welfare.

We need to define qg as:

qg � mintx|x ¥ q1g, x ¥ 7, and x � i2 � j2 � ij where i, j P Z
�u, (29)

where q1g is

q1g � � 4
?

7p3?7� 6qp α
?

β � 1q
2�
12βpα � 2q
 2

α

.

Now, using arguments similar to the uniform-power physical interference and

non-uniform disk model, the following result follows.

Theorem 7 For the TSA-MSW problem under the physical interference model

with non-uniform transmission power, the auction mechanism based on the

above described allocation algorithm and VCG payments is truthful and re-

turns a valid spectrum allocation whose social-welfare is 2qg-approximate for

the general-minded bidding model and is qgp1�ǫq-approximate for the k-minded

bidding model for a given ǫ ¡ 0. Here, qg is as defined in Equation 29. l
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Figure 13: Performance comparison of various auction mechanisms. The
first six plots (in the first two rows) are for random networks with varying
number of nodes (with 500 channels) and varying number of channels (with
500 nodes). The last three plots are for the cellular network in Massachusetts
with 843 base stations and varying number of channels. Recall that Ours-poly
and Ours-pseudo-poly refer to the polynomial-time and the optimal pseudo-
polynomial time versions of our auction mechanism.

3.5 Simulation

In this section, we present our simulation results. The main purpose of our

simulations is to demonstrate the efficiency of our designed auction mecha-

nism in terms of multiple performance metrics. We start by describing our

simulations set-up.

Network Topology and Model. In our simulations, we consider only unit-

disk pairwise interference model because for physical interference model, there
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is no simple truthful auction mechanism known that we could use for compar-

ison. We consider two types of networks, as described below.

• Random Networks: We randomly place base stations within a fixed area

of 1000�1000 square units. We vary the network density by varying the

number of base stations from 50 to 1000 (with the default being 500).

We use cells of uniform radius of 50 units.

• Real Networks: We use locations of real cellular base stations available in

FCC public GIS database [1] and choose the 843 base stations deployed

in the state of Massachusetts. Here, we choose a realistic cell radius of

10 kilometers.

In both networks, we set up an auction of up to 1000 orthogonal single-type

channels with the default being 500 channels; this is a reasonable range based

on the past FCC auctions [16, 3].

Bidding Functions. We generate general-minded bidding functions for each

base station i as follows. First, we randomly choose a non-zero demand for

i, which is the maximum number of channels i is interested in. Then, we

randomly generate i’s bid for the first channel and “marginal” bids for each

additional channel until the demand is satisfied. Beyond the demand, marginal

bids for each additional channel is assigned zero (to satisfy the free-disposal

property). Each marginal bid is chosen from the range r0, 100s. The above

scheme results in valid general-minded bidding functions.

Auction Mechanisms Compared. We compare our auction mechanism

with two auction mechanisms, viz., (i) Greedy, the best known (non-truthful)

approximation spectrum allocation algorithm for maximizing social-welfare

and/or revenue, and (ii) Naive, a simple truthful spectrum auction mechanism.

Note that the only work on truthful spectrum auction mechanism is by Zhou et

al. [67] which is restricted to simple single-minded or range bidding functions.

In addition, we also consider two versions of our auction mechanisms, viz.,

one based on a polynomial-time allocation algorithm in each hexagon, and the

other based on the optimal pseudo-polynomial time algorithm. We refer to

these two versions as ours-poly and ours-pseudo-poly respectively in the

plots.
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Greedy Auction Mechanism. Greedy (presented in Section 2.3.1) is a non-

truthful auction mechanism whose social-welfare as well as revenue is within

a factor of 6 of the respective optimals, for the unit-disk model and non-

complementary bidding function – thus, it is the best and most general approx-

imation algorithm known. Greedy’s winner determination function allocates

channels iteratively to the highest available bid without violating the interfer-

ence constraint; this allocation results in a 6-approximate social-welfare [56].

If we charge each bidder a payment equal to its bid (declared valuation) for the

allocated number of channels, then Greedy’s revenue is also within a factor of

6 of the optimal revenue possible.5 Note that Greedy’s social-welfare is equal

to its revenue.

Naive Auction Mechanism. We now describe a simple auction mechanism

(called Naive) that is truthful, but has no performance guarantee on the

social-welfare and revenue. The Naive auction mechanism is loosely based

upon the Naive auction mechanism suggested by Zhou et al. [67] and used as

a comparison-benchmark in their work. Naive’s allocation algorithm divides

the entire network region into square grid of unit side-length.6 Next, the al-

gorithm uniformly colors the resulting square cells using 4 colors, and assigns

each color p1{4qth of the available channels. This means that all square cells of

the same color will use the same channels. Now, for each square cell H , Naive

allocates all the channels usable in H to the bidder with the maximum bid for

that many channels, and charges it a payment equal to the second highest bid

in H . This is a simple generalization of Vickrey’s auction [61] (see Section 3.2)

in each square cell. Finally, we note here that Greedy is a pseudo-polynomial

algorithm since its running time is polynomial in M , the number of channels,

while our algorithm and Naive are polynomial in logpMq.
Simulation Results. In our simulation, we compare Greedy, Naive, and

Our (based on hexagonal division and coloring) auction mechanisms for the

following three performance metrics: (i) social-welfare, (ii) revenue, and (iii)

5For computing the optimal revenue, we assume that bidder’s payment in an outcome
must not be more than its declared valuation for the outcome.

6To ensure validity of the resulting allocation, the square cells are open from one side
and closed from the other (similar to Figure 4).
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spectrum utilization. The spectrum utilization [67] is defined as the total num-

ber of allocation pairs in the spectrum allocation (see Definition 4). Spectrum

utilization gives a measure of the spatial reuse of a spectrum allocation.

In Figure 13, we plot results for the above three metrics. For the random

network, we vary the number of base stations (nodes) as well as the number of

available channels, while for the fixed real network we only vary the number

of available channels. We observe that Greedy performs the best in all three

performance metrics, but is only within a factor of 2 to 3 of that of our auction

mechanism. Note that both Greedy and ours deliver an approximate social-

welfare, and Greedy also delivers an approximate revenue, but is untruthful.

Secondly, our auction mechanism outperforms the Naive mechanism by an

order of magnitude, in all three performance metrics. Finally, we note that

the difference in performance of the polynomial-time and pseudo-polynomial

time algorithms is negligible.

Thus, apart from the key properties of truthfulness and provably approxi-

mate social-welfare, our auction mechanism also delivers near-optimal revenue

in practice. The simulation results also show that a Naive truthful auction

mechanism can perform very badly.

3.6 Conclusion

The recent trend of dynamic spectrum access in cellular networks creates a

setting for auctioning of pieces of wireless spectrum to competing base sta-

tions. To mitigate market manipulation, a truthful spectrum auction is highly

desired, so that bidders can simply bid their true valuations. For economic

efficiency, we also want to allocate channels to bidders that value them the

most. Thus, in this chapter, we have designed a truthful spectrum auction

that delivers an allocation with approximate social-welfare, for general inter-

ference and bidding models. Through simulations, we show that the revenue

generated by our auction mechanism is also within a factor of 2-3 of the best-

known approximation algorithm. In general, our mechanism performs an order

of magnitude better than a Naive truthful spectrum auction mechanism.
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Chapter 4

Truthful Auctions With

Approximate Revenue

4.1 Introduction

A natural objective of auction-based mechanism is to maximize the generated

revenue (the sum of the payments by the buyers) [56, 22, 52, 31]. However, as

discussed in Chapter 3, such an objective alone can encourage the spectrum

buyers to lie about their real valuations leading to an untruthful auction, fear

of market manipulation, and indirectly possibly lowered revenue. Moreover, in

a competitive environment, buyers may spent a lot of time/effort in predicting

the behavior of other buyers and planning against them. In this chapter, our

focus is on design a spectrum auction mechanism that not only encourages

truthful behavior but also provides some form of guarantee on the revenue.

Since it is not possible (see Section 3.2.1) for a truthful auction mechanism

to give any guarantees on revenue, when the bidder valuations are completely

private, we consider the relaxed Bayesian setting wherein the bidder valuations

are independently drawn from publicly known probability distributions.

Problem Addressed. As in Chapters 2 and 3, we consider a dynamic

auction-based approach to allocate spectrum to competing base stations. The

centralized auctioneer acts as the seller and the base stations act as the buyers
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of the available spectrum. The items being sold are various channels cor-

responding to certain blocks of frequency. The base stations bid for these

channels, based on their valuations of these channels. In the Bayesian set-

ting [50], the valuations are assumed to be independently drawn from known

distributions.

In the above context, we address the problem of designing an efficient

(polynomial-time) spectrum auction mechanism in the Bayesian setting with

the following dual objectives, viz., (i) encourage truthful behavior from the

buyers (see Section 3.1), and (ii) maximize the expected revenue. The auc-

tion mechanism designed in this chapter is truthful and yields an allocation

with Op1q-approximate expected revenue. We consider general (pairwise and

physical) interference and bidding models.

Chapter Organization: The rest of the chapter is organized as follows.

In the next section, we present the background of our work before going

into the details of the related works. In Section 4.3, we formally define and

present computationally efficient spectrum auction mechanisms under simple

settings/assumptions. We discuss various extensions in Section 4.4 before con-

cluding the chapter with Section 3.6.

4.2 Background and Related Works

In Section 3.2, we introduce basic terms and definitions from both the spectrum

allocation and the auction theory literature. Here, we add more background

material with more relevance to this chapter. Specifically, we discuss the

Bayesian Setting and the classical works related to it. We start with basic

definitions.

Single-parameter Auctions. In a single-parameter auction, each bidder i

has a publicly-known set of outcomes Oi � O known as its winning alternatives

and a private value vi such that vpoq � vi for every o P Oi and vpoq � 0 for

every o R Oi.

(Valid) Allocation Vector. Also, in a single-parameter auction, each out-

come can be represented by an allocation vector of n binary variables x �
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px1, . . . , xnq, where xi is 1 if the bidder i wins and zero otherwise. However,

not all 0-1 vectors of length n may correspond to an outcome of the mechanism.

The 0-1 vectors that correspond to an outcome are referred to as valid allo-

cation vectors. For instance, in a single-item auction with 4 bidders, wherein

the item is given to one of the 4 bidders, (0,0,0,1) is a valid allocation vector

while (0,1,1,0) is not a valid allocation vector.

Bayesian Setting. In traditional auction setting, the bidders’ valuations are

privately-known information which makes it impossible for truthful auctions to

make any guarantees on the generated revenue [3, 24]. To circumvent this, re-

searchers have considered the Bayesian setting wherein each bidder’s valuation

vi is drawn from a known probability distribution Fi [50].

Myerson’s Optimal Mechanism. In a seminal work [46], Myerson presents

a truthful optimal mechanism for a single-item auction under the Bayesian set-

ting. Here, we briefly present the key points of Myerson’s mechanism applied

to the more general single-parameter auctions (based on Chapter 13 of [50]).

Given, for each bidder i, the winning alternatives Oi, declared valuation value

wi for outcomes in Oi, and the distribution Fi of the private valuation value

vi, the mechanism finds an allocation vector and payments such that truthful-

ness is maintained and the expected revenue is optimal where the expectation

is taken over the randomness in bidders’ valuations [50]. Myerson’s mech-

anism is based on the following characterization of truthful mechanisms for

single-parameter auctions.

Theorem 8 ([50, Theorem 13.6]) Consider an auction with single-minded

bidders, wherein the losers pay nothing (i.e., xi � 0 Ñ pi � 0). Under the

Bayesian setting, a mechanism is truthful if and only if, for any bidder i and

any fixed choice of bids by the other bidders,

(i) xi is monotone nondecreasing with the increase in wi.

(ii) The payment pi for any winning bidder i is set to the critical value ti,

which is the minimum amount i needs to bid in order to win. Note that,

in general, ti depends upon the bids of the other bidders.
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Given the above theorem, to specify a truthful mechanism, we need to only

specify a winner determination function that satisfies the monotone allocation

rule (the first condition of the theorem), and the payments can be derived

from the second condition. In [46], Myerson specifies the winner-determination

function based on “virtual bids,” and shows that it leads to optimal expected

revenue, if the payments are determined as described above.

Virtual Bids and Virtual Surplus. Myerson’s mechanism [50] starts by replac-

ing each bid wi with a virtual bid φipwiq as follows.

φipwiq � wi � 1� Fipwiq
fipwiq , (30)

where fi is the probability density function for Fi, i.e., fipxq � d
dx

Fipxq.
For a given outcome o � px1, x2, . . . , xnq, the virtual surplus is defined as

the sum of winning virtual bids, i.e.,
°

i xiφipwiq. The following theorem is

key to the design of an optimal truthful mechanism.

Theorem 9 ([50, Theorem 13.10]) The expected revenue of any truthful

mechanism under the Bayesian setting is equal to its expected virtual surplus.

Here, the expectations are taken over the distributions of the valuations.

Myerson’s Mechanism for Single-Item, and its Extensions. Based on the The-

orems 8 and 9, Myerson’s mechanism essentially involves determining an out-

come that maximizes the virtual surplus, and determines payments based on

condition (ii) of Theorem 8. By the virtue of the above two theorems, such

a mechanism will be truthful and optimal if and only if the virtual bids are

monotonically nondecreasing [50].

Myerson’s technique can be easily extended to more general single-

parameter auctions [43, 38, 23]. Some other works have also extended My-

erson’s technique to simple multi-parameter settings [4, 39, 47, 28]. We refer

the reader to Chapter 13 of [50] for a complete coverage of Myerson’s work

and its extensions.

Applying Myerson’s Mechanism To Spectrum Auctions. In a re-

cent work, Jia et al. [33] present a simple extension of Myerson’s mecha-

nism to the context of spectrum auctions. However, the extension results
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in an exponential-time mechanism, since the corresponding virtual-surplus

maximizing problem is NP-hard. Realizing the seriousness of this shortcom-

ing, [33] present a polynomial-time mechanism based on the greedy mechanism

of Lehmann et al. [41]. However, the expected revenue delivered by such a

mechanism can be arbitrarily bad, as shown later in Section 4.3.

Our Contribution. In this chapter, we present a polynomial-time truthful spec-

trum auction mechanism whose expected revenue is a constant factor of the

optimal expected revenue. Our mechanism is based on the above described

Myerson’s technique, and involves computing an allocation with approximate

virtual surplus in polynomial-time. We also show in Section 4.4.2 how to

extend the above to a more general setting.

4.3 Truthful Spectrum Auction with Approx-

imate Expected Revenue

In this section, we define and address the problem of designing truthful spec-

trum auctions with approximate expected revenue. For simplicity of presenta-

tion, we make two simplifying assumptions, viz., single-mindedness of bidders

and single-type channels; we relax these assumptions in the next section. Ex-

tensions of our techniques to more general pairwise interference models (like

non-uniform disk and pseudo-disk models) as well as the physical interference

model can be achieved similarly to Sections 3.3 and 3.4. We start with defin-

ing the set-up of spectrum auction, certain core concepts, and then, giving a

formal definition of the problem.

Spectrum Auction Model. Our model of a cellular network consists of a set

of geographically distributed base stations. Spectrum is divided into orthog-

onal channels of the same type (we consider multi-type channels later), and

the spectrum auction involves each base station bidding for a certain number

of channels. In our simple setting of single-minded bidders, each bidder i bids

for Di number of channels; i.e., the winning alternatives for i are the outcomes

wherein i gets at least Di channels. Each bidder reports to the mechanism its

bid wi, the declared valuation for the winning alternatives. In addition, the
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probability distribution Fi from which vi (the private valuation for the winning

alternatives) is drawn, is publicly known. Note that and the losing outcomes

(wherein i’s demand is not satisfied) are valued at zero by i.

Valid Spectrum Allocation. Given an interference graph over the base

stations (bidders) and the demands Di, the spectrum allocation must be done

in such a way that no pair of interfering base stations are allocated a common

channel. This interference constraint is incorporated in the following definition

of a valid spectrum allocation.

Definition 14 (Valid Spectrum Allocation.) Let Vt and Vc be the set of base

stations and available channels, respectively and let P pVcq denote the power

set of Vc. A binary allocation vector px1, . . . , xNq, where N is the number of

nodes, is considered valid if and only if there is an assignment a : Vt ÞÑ P pVcq
from the set of nodes to the power set of the set of channels such that (i)|apiq| � Di, for all i P V where xi � 1, and (ii) apiq X apjq � H, if pi, jq is an

edge in the interference graph. l
It can be shown it is NP-complete to test whether a given allocation vec-

tor is valid, through a reduction from the problem of partitioning a graph into

minimum number of independent sets. Thus, it is desirable for the auction

mechanism to output the assignment function a in addition to the alloca-

tion vector. The auction mechanism designed in this article does output the

assignment function a, in addition to the spectrum allocation vector.

TSA-MER (Truthful Spectrum Auctions with Maximum Expected

Revenue) Problem. Given an interference graph, the number of channels,

and the bid-demand pair of each base station along with the distribution from

which the valuation was drawn, the TSA-MER problem is to design a truthful

auction mechanism that returns a valid spectrum allocation with maximum

expected revenue.

Thus, the TSA-MER problem involves determining (i) a valid spectrum

allocation, and (ii) payments by each bidder, so that the overall mechanism

is truthful and the expected revenue is optimal. The TSA-MER problem can

be shown to be NP-hard, by a reduction from the maximum independent
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set problem, since maximizing expected revenue is equivalent to maximizing

virtual surplus (sum of virtual bids).

Recent Work on TSA-MER. In a recent work, Jia et al. [33] extended Myer-

son’s mechanism for the TSA-MER problem. However, since maximization

of virtual surplus is NP-hard, due to the interference constraint, Myerson’s

technique only yields an exponential-time mechanism. Thus, [33] designed a

Greedy-heuristic mechanism for the TSA-MER problem as follows. First, the

Greedy algorithm sorts the bidders in decreasing order of their virtual-bid per

channel (i.e., φipwiq{Di). Then, the algorithm considers each bidder in the

sorted order, and adds it to the allocation vector if the interference constraint

is not violated. Note that to check the violation of interference constraint

efficiently, we need to maintain the channels-to-node assignment function. Fi-

nally, the payments by the winners are determined as suggested in Theorem 8.

By Theorem 8, it is easy to show that such a mechanism is truthful. However,

the revenue yielded by such a Greedy mechanism can be arbitrarily bad. (see

Figure 14).

Below, we design a polynomial-time mechanism that is truthful and yields

a valid spectrum allocation with approximate expected revenue.

Outline of the Truthful Mechanism with Approximate Expected

Revenue. Based on Theorems 8 and 9 of Subsection 4.2, our method for

designing a truthful spectrum auction mechanism with approximate expected

revenue is outlined in the following two steps:

1) Determine a valid spectrum allocation with approximate virtual surplus.

2) Determine payments based on condition (ii) of Theorem 8.

We discuss the above two steps in the following two paragraphs.

Valid Allocation with Approximate Virtual Surplus. Given a network

with base stations, the unit-disk interference graph, the bids and the probabil-

ity distributions of the valuations of the bidders (base stations), we determine

a valid allocation with approximate virtual surplus as follows. Similarly to the

technique of Chapter 3, we divide the entire networks into small hexagonal re-

gions, solve the simpler optimization problem in each hexagon independently,
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Figure 14: Counter example for the greedy algorithm. The figure shows the
interference graph of n bidders. The (demand, bid) pair for the inner nodes ispm, mq, while for the outer nodes is p1, 1q. The bids are constant, and hence,
virtual-bid of each node is equal to its bid. Since all the nodes have the same
rank (= virtual-bid/demand), the greedy mechanism may pick all the outer
nodes and yield a total revenue of m{2, while the optimal revenue is m2{4.

and then, “combine” the solutions. At a high-level, our algorithm consists of

the follows steps.

1) Replace each bid wi with a virtual bid φipwiq as defined by Equation 30.

2) Divide the entire network region into small hexagonsof unit side-length.

3) Uniformly-color the hexagons with seven colors.

4) Allocate channels to base stations in each hexagon independently, treat-

ing it as a Knapsack problem where the virtual bids are the “val-

ues” of items to be placed in the knapsack and the demands are their

“weights.” The well-known fully polynomial-time approximation scheme

(FPTAS) [36] can be used to get a p1 � ǫq-approximate virtual surplus

of each hexagon for any ǫ ¡ 0. Note that the interference subgraph in

each hexagon is actually a complete graph.

5) For each color, combine the results from all hexagons of that color.
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6) Pick the color that has the highest total virtual surplus and allocate the

channels to the winners accordingly.

7) Perform a post-processing step to greedily satisfy the demands of more

base stations.

The resulting allocation is guaranteed to have at least a 1{7p1� ǫq-factor

of the optimal virtual surplus for any ǫ ¡ 0. Moreover, its running time is

polynomial in 1{ǫ and the size of the input, i.e., in N and log M , where N is the

number of nodes and M is the number of channels. Similarly to Chapter 3,

the above hexagonal division and coloring guarantees that Properties (P1)

and (P2) hold.

Allocation in Each Hexagon. Properties (P1) and (P2) imply that the channels

cannot be re-used inside the same hexagon, but can be fully re-used across

different hexagons of the same color. Thus, allocation in each hexagon can

be treated as a Knapsack problem where the virtual bids are the “values”

of items to be placed in the knapsack and the demands are their “weights.”

The well-known FPTAS [36] can be used to get a p1� ǫq-approximate virtual

surplus of each hexagon for any ǫ ¡ 0.

Combining The Results. Since base stations in different hexagons of same color

do not interfere with each other (Property (P2)), we can combine allocations

of co-colored hexagons to form one single allocation. Thus, we get seven

allocations, one for each color. Among these seven allocations, we pick the

allocation with the highest virtual surplus. If needed, the derived allocation

can be easily converted into a channels-to-node assignment function, since

allocation in each hexagon is independent of each other and is over a complete

graph.

Post-Processing Step. Our above described allocation algorithm returns an al-

location with approximate virtual surplus, and with appropriate payments (as

discussed below), can be turned into a truthful auction mechanism with ap-

proximate expected revenue. Incidentally, we can further improve the above

allocation algorithm, by allocating more bidders in a greedy manner as in the

Greedy mechanism described before. In particular, we sort the remaining bid-

ders by their virtual-bids per demand (i.e., φipwiq{Di), and consider them for
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allocation in that order without violating the interference constraint. As noted

before, we would need to maintain the channels-to-nodes assignment function,

to efficiently implement this greedy post-processing part. Also, we note that

the above greedy post-processing step does not however improve the worst-case

approximation bound of our allocation algorithm. In Theorem 10, we show

that our overall allocation algorithm (with the above post-processing step)

does satisfy the monotonicity of xi’s (i.e., the first condition of Theorem 8).

Determining Payments. The payments are determined according to Theo-

rem 8 as follows. For each winner i, we use a binary search to find its critical

value ti (for the given fixed bids of other bidders) such that i wins if wi ¥ ti

and loses otherwise. Note that such a value ti is guaranteed to exist, since our

allocation algorithm results in monotonically increasing xi’s (i.e., satisfies the

first condition of Theorem 8). Then, for each such winning bidder, we set its

payment pi as ti. The payments of losing bidders are set to zero.

The critical values for bidders who win in the post-processing step can be

determined using ideas based on the “critical neighbor” technique of [33]. The

critical value for a bidder i who wins in the first step (involving coloring of

hexagon cells) can be computed using at most log wmax runs of the allocation

within its hexagon cell1 followed by the above “critical neighbor” technique.

The latter part may be needed to determine the critical value for i’s win due

to the post-processing step; note that even if lowering the bid of i makes

its hexagon color a loser in the first step, bidder i can still win due to the

post-processing step.

Proof of Truthfulness and Approximability. In the below theorem, we

show that the auction mechanism, based on the above described allocation

algorithm and payment determination, is truthful and returns a valid spectrum

allocation with approximate expected revenue.

Theorem 10 For the TSA-MER problem under the Bayesian setting and the

pairwise interference with unit-disk model, the above described auction mecha-

nism is truthful and returns a valid spectrum allocation whose expected revenue

1Note that the allocation within other hexagon cells does not change with the variation
in i’s bid.
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is at least 1
7p1�ǫq of the optimal expected revenue, for a given ǫ ¡ 0.

Proof: Truthfulness. By Theorem 8, we need to only show that our allocation

algorithm results in monotonically nondecreasing xi’s. We start by showing

the monotonicity of the FPTAS algorithm used in each hexagon which follows

immediately from the facts that the FPTAS algorithm is an optimal algorithm

on scaled-down values and that the optimal algorithm is certainly monotonic.

To show that our algorithm is monotonic overall, we need to consider two

cases, viz., (i) when a bidder i is selected as a winner in the first step, and (ii)

when a bidder i is selected as a winner in the post-processing step. In the first

case, if the bids of all other bidders remain fixed, then an increase in the bid

of i would not change (a) the presence of i in the FPTAS knapsack-solution

(due to its monotonicity), and (b) the winning of the color of i’s hexagon. In

the second case, increasing the bid of i can cause the color of i’s hexagon to

become the winning color. However, in such a case, i must remain a winner

in its hexagon (else, its color should not have become a winning color). If

increasing the bid of i does not cause the color of i’s hexagon to become a

winning color, then i must remain a winner due to the greedy method of the

post-processing step.

Approximate Expected Revenue. By Theorem 9, we only need to show that

the virtual surplus of our delivered allocation is within a 7p1 � ǫq-factor of

the optimal virtual surplus. Since the post-processing step only improves the

total virtual surplus without violating the interference constraint, we can show

that the allocation before the post-processing step is valid and has a 7p1� ǫq-
approximate virtual surplus using an argument similar to that of Theorem 4’s

proof.

4.4 Extensions

In the previous section, we made two simplifying assumptions, viz., single-

mindedness of bidders and single-type channels. We now show how to relax

these assumptions.
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4.4.1 Multi-type Channels

Till now, we have assumed that all available channels are of the same type and

bidders bid for a certain number of channels. However, our techniques can also

be generalized to multi-type channels, as long as the bidders are single-minded

as follows.

Single Channel of Each Type. We start by considering the case when there

are m channels, each of a different type, and each bidder i bids for a set si

of channels. In such a case, a valid spectrum allocation allocates disjoint set

of channels to the winners. A truthful auction mechanism with approximate

expected revenue can be devised similar to the one for the single-type chan-

nels, except that within each hexagon we would need to solve the Weighted

Maximum Set Packing (WMSP) problem [29] (instead of the Knapsack prob-

lem). Unfortunately, the general WMSP problem is as hard to approximate

as the maximum clique problem (and thus, is only approximable within a fac-

tor of Op?mq), but if the demand sets tsiu are each bounded in size by a

constant k, then the WMSP problem can be approximated within a factor of

2pk�1q{3 [29], yielding a mechanism with a 14{3pk�1q-approximate expected

revenue. Finally, in order to prove truthfulness, we only need to show that the

MWSP approximation algorithm of [29] is indeed monotonic. The following

lemma states and proves this.

Lemma 6 The approximation algorithm of [29] for the MWSP problem is

monotonic.

Proof: We start by giving a brief sketch of the algorithm from which the

monotonicity will be fairly obvious. The algorithm starts by creating a vertex-

weighted graph where every bidder i is represented by a vertex whose weight is

φipwiq, and two vertices are connected by an edge if their demands contain at

least one common channel. The problem is thus reduced to find the Maximum

Weighted Independent Set (MWIS) in this special graph, where an indepen-

dent set is one which does not contain neighboring vertices. The algorithm

starts with a greedy solution and iteratively looks for the best possible “local

improvement.” A local improvement on a set I is achieved by removing one
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vertex i P I, adding an independent set S from the direct neighbors of v, and

removing any vertex from I with an edge to a vertex in S. To be called an

improvement, this substitution must produce a solution with higher weight.

Thus, if a bidder i was chosen as a winner, then it must be the case that it

has no local improvement. It is easy to see that by raising i’s bid, this fact

cannot change.

Multiple Channel of Each Type. In a more general setting, consider the sce-

nario where there are mj channels of type j and there are t different channel

types. In such a case, a single-minded bidder’s demand would be a t-dimension

vector pDi,1, . . . , Di,tq, where Di,j is i’s demand of the jth channel type. Here,

the number of channel types t is a constant. Our designed mechanism for the

single-type channels can easily be extended to this general scenario, by using

the PTAS for the Multi-Dimensional Knapsack Problem (MDKP) [36] within

each hexagon, yielding a 7p1�ǫq-approximate expected revenue. However, the

time-complexity of the mechanism is now exponential in 1{ǫ, since there is no

FPTAS known for MDKP. Similar to the above, in order to prove truthfulness,

we only need to show that the PTAS algorithm of [36] for the MDKP problem

is monotonic, which is stated by the following lemma.

Lemma 7 The PTAS algorithm of [36] for the MDKP problem is monotonic.

Proof: Note first that the MDKP problem can be formulated as an Integer

Linear Programming (ILP) problem for which the Linear Programming (LP)

relaxation can be easily found. Before discussing it monotonicity, we give an

informal sketch of the algorithm. The algorithm constructs many possible so-

lutions by considering all subsets L of size at most l (which depends on ǫ).

For each subset L of size exactly l, the algorithm “pads” the solution with

additional winners as follows. It computes the LP solution for the problem in-

stance consisting of the bidders whose virtual bids do not exceed the minimum

virtual bid in L. Each LP returns three sets (J1, JF and J0) of bidders who

are assigned their entire demands, a fraction of the their demands or nothing,

respectively. Then, the algorithm either chooses all bidders in J1 or one of the

bidders in JF depending on which choice has higher total virtual bids. Finally,

among the set of constructed solutions, the algorithm picks the solution with
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maximum total virtual bids. Now, if the optimal solution contains less than l

bidders, then the algorithm would find it and the monotonicity trivially holds.

Otherwise, consider a bidder i who was picked as a winner when bidding wi and

we show that it will remain winner if it bids w1
i ¡ wi assuming the remaining

bids are fixed. Note first, that between the two settings, the set of constructed

solutions have the same subsets L and only differ in the LP solutions and the

greedy choice made thereafter. Thus, raising wi to w1
i only affects the set of

solutions in which i is either (i) in L or (ii) in the LP solution. Now, in case

(i), i will end-up in the final set of winners, and in case (ii), the solution can

only increase by at most φipw1
iq�φipwiq. But, any solution in which i remains

a winner would be increased by φipw1
iq � φipwiq and we already know that

previous maximum solution is among these solutions. Thus, no new solution

which excludes i can be better.

4.4.2 Beyond Single-Minded Bidding

We now extend our technique beyond single-minded bidding by handling frac-

tional demands, wherein each bidder i is willing to buy any number of channels

from a certain range t|Di, . . . ,xDiu, and the valuation for winning alternatives

is expressed in terms of per-channel valuation. We assume single-type chan-

nels here. More formally, a bidder i’s declared demand-bid is of the formp|Di,xDi, wiq, signifying that the bidder would accept any number of channels

between |Di and xDi at a price of at most wi per channel. For simplicity, we

first assume that |Di � 0 for every bidder i; we relax this assumption later.

For the above setting, the mechanism’s output is an allocation vectorpx1, . . . , xnq wherein xi P r0, 1s represents the fraction of demand satisfied, i.e.,

for a given xi, the number of channels allocated is xi
xDi. Also, for a given

allocation vector, the virtual surplus is defined as
°

i φipwiqxDixi. For this

setting of fractional demands, Theorems 8 and 9 can be generalized (based

on [50]) as follows. Below, we use the notation xipwiq to denote xi for a given

wi and fixed bids of other bidders.

Theorem 11 A mechanism (wherein losing bidders pay zero, i.e., xi � 0

implies pi � 0) is truthful iff for any bidder i and any fixed choice of bids by
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other bidders,

• xipwiq is monotonically nondecreasing in wi.

• The payment is set as follows

pipwiq � wi
xDixipwiq � » wi

0

xDixiptqdt. (31)

Proof: For simplicity, we drop the subscript i. To show truthfulness, we only

need to show that the utility of truthful bidding v is no smaller than bidding

any other value w. I.e.,

v pDxpvq � ppvq ¥ v pDxpwq � ppwq» v

0

pDxptqdt ¥ v pDxpwq � w pDxpwq � » w

0

pDxptqdt.

For w ¡ v, the above is true since pw � vqp pDxpwqq ¥ ³w
v
pDxptqdt follows

from the monotonicity of x, while for w   v, the above is true since pv �
wqp pDxpwqq ¤ ³v

w
pDxptqdt also follows from the monotonicity of x.

Now to show the other direction, we take the truthfulness constraints at v,

v pDxpvq� ppvq ¥ v pDxpwq� ppwq, and at w, w pDxpvq� ppvq ¤ w pDxpwq� ppwq.
Rearranging these inequalities gives

v pDpxpwq � xpvqq ¤ ppwq � ppvq ¤ w pDpxpwq � xpvqq. (32)

From this, we get pw� vqpxpwq� xpvqq ¥ 0 which implies the monotonicity of

x.

We now derive Equation 31. Let w � v� ǫ, then, by dividing Equation 32

by ǫ and taking the limit, we get

v pD dx

dv
¤ dp

dv
¤ v pD dx

dv
.

Now, since ppwq � 0 for any w smaller than the critical value, we get

ppwq � » w

0

t pDx1ptqdt.

Integrating the above equation by parts gives Equation 31.
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Figure 15: Comparing the generated revenue of our enhanced spectrum auc-
tion mechanism with the Greedy mechanism. The plots of first row are for
random networks whereas the remaining plots are for real networks. For both
topologies, the default number of channels is 1000. For random networks,
the default number of nodes is 1000 and the default uniform radius of the
coverage-cells is 50 units, whereas for real networks, the default region is R2
and the default uniform radius of the coverage-cells is 5 Km.

Theorem 12 Under the Bayesian setting with fractional demands, the ex-

pected revenue of any truthful mechanism is equal to its expected virtual sur-

plus, where the virtual surplus is as defined above. l
Overall Mechanism. On the basis of the above two theorems, our mech-

anism from the previous section can be extended to the case of fractional

demands, by solving the appropriate allocation problem within each hexagon.

In fact the resulting allocation problem within each hexagon can now be solved

optimally in polynomial-time using a greedy approach, yielding a truthful auc-

tion mechanism with a 7-approximate expected revenue.

Non-zero Minimum Demands. We handle non-zero minimum demandst|Diu by defining a new allocation vector py1, . . . , ynq wherein yi is equal to xi

if xi ¥ |Di{xDi and zero otherwise. The arguments of this subsection straight-

forwardly apply to the this new allocation vector.
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Figure 16: Comparing the spectrum utilization of our enhanced spectrum
auction mechanism with the Greedy mechanism. The plots of first row are for
random networks whereas the remaining plots are for real networks. For both
topologies, the default number of channels is 1000. For random networks,
the default number of nodes is 1000 and the default uniform radius of the
coverage-cells is 50 units whereas for real networks, the default region is R2
and the default uniform radius of the coverage-cells is 5 Km.
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Figure 17: Ratio of the performance of our enhanced mechanism to the
Greedy mechanism, for the special case of “lop-sided” demands. The lop-
sided demands are randomly chosen, for each base station, from the setr1, Ims Y rm � Im, ms where I is the interval length (varied on the x-axis
above). The considered networks are randomly generated with 1500 nodes,
1000 channels and a 50 unit uniform radius of the coverage-cells.

4.5 Simulation

In this section, we present our simulation results. The main purpose of our

simulations is to compare the performance of our designed auction mechanism
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with the greedy mechanism of [33] under several settings and performance

metrics. We start by describing our simulations set-up.

Network Topology and Model. In our simulations, we consider two types

of networks, as described below.

• Random Networks: We randomly place base stations within a fixed area

of 1000�1000 square units. We vary the network density by varying the

number of base stations from 100 to 1500 (with the default being 1000).

To generate the interference graph, we use coverage-cells of uniform ra-

dius, which is varied from 20 to 100 (with the default being 50).

• Real Networks: We use locations of real cellular base stations available

in FCC public GIS database [1] and choose base stations deployed in 4

different regions of increasing size and number of base stations.

– R1 - 843 base stations in the state of MA.

– R2 - 2412 base stations in New England area (MA, ME, NH, VT,

RI, CT).

– R3 - 4467 base stations in New England and NY.

– R4 - 8618 base stations in North East USA (New England, NY, NJ,

PA).

Here, the default region is R2 and we choose a realistic coverage-cell

radius of 5 kilometers.

In both networks, we set up an auction of up to 1500 orthogonal single-

type channels with the default being 1000 channels; this is a reasonable range

based on the past FCC auctions [16, 3].

Demands and Bids. For simplicity, we based all our experiments on

uniformly-distributed valuations. We generate single-minded bids for each

base station i as follows. First, we randomly choose a non-zero demand for i,

then, we randomly choose i’s per-channel bid from the range p0, 1s.
Auction Mechanisms Compared. We compare an enhanced version of our

auction mechanism with the greedy mechanism of [33], the only mechanism in
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the literature for the problem considered here. Below, we discuss the heuristic

enhancement we introduce to our mechanism.

Our Enhanced Mechanism. In order to improve the performance of our mech-

anism in practice, we have modified the way we combine the results of the

independent solutions of each hexagon to obtain the overall allocation. In-

stead of using the conservative approach of simply combining the hexagons

of the same color together, we use a greedy approach to construct the set

of hexagons as follows. First, we rank the hexagons according to their total

virtual surplus, and “pick” the hexagon H with the highest rank. Next, we

remove H and any “conflicting” hexagons from further consideration; here,

two hexagons H and H 1 are said to conflict if they contain a pair of interfering

base stations. Then, we “pick” the hexagon with the highest rank from the

remaining hexagons, and repeat. The overall allocation is the set of all picked

hexagons (with the independent allocations within each of them, based on the

FPTAS for Knapsack) in the above process. To see that this allocation rule

does not affect the monotonicity (and hence, the truthfulness) of our mech-

anism, consider a winning bidder i. Increasing wi while fixing the remaining

bids would not change (a) the presence of i in the FPTAS knapsack-solution

(due to its monotonicity), and (b) the winning status of i’s hexagon (due to

the monotonicity of the greedy choice of winning hexagons).

Simulation Results. In our simulations, we compare our enhanced auc-

tion mechanisms with Greedy [33] in terms of the generated revenue, and the

spectrum utilization. The spectrum utilization is defined as the total num-

ber of allocation pairs in the spectrum allocation. Spectrum utilization gives

a measure of the spatial reuse of a spectrum allocation. To show the effect

of different system parameters on the performance of the two algorithms, we

vary: (i) the number of nodes, (ii) the number of available channels and (iii)

the uniform radius of the coverage-cells.

In Figure 15, we plot the generated revenue for different network topolo-

gies and parameters. We observe that our mechanism outperforms Greedy in

all settings, by an average factor of 47%. Moreover, it is apparent that with the

increase in the numbers of nodes and channels, the gap between our mechanism

and Greedy is becoming larger, crossing the level of 50% improvement in each
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plot. As for the case of varying the uniform radius of the coverage-cells, the

performance of both algorithms suffer from the increase of the uniform radius

of the coverage-cells which affects the sparsity of the network and hence the

spatial-reuse. Figure 16 captures the issues related to spatial-reuse by plotting

the spectrum utilization for for different network topologies and parameters.

The trends observed for the generated revenue are similar to those for the

spectrum utilization, and this shows that our mechanism not only generates

more revenue than the Greedy mechanism,, but also increases the spectrum

utilization, making it more appealing to practical use.

Experiments With “Lop-Sided” Demands. In the above experiments

with randomly generated demands and bids, our mechanism outperforms the

Greedy mechanism by about 50-60%. However, as noted in Figure 14, Greedy

mechanism can perform arbitrary bad compared to our mechanism. We now

try to generate quasi-random instances, wherein the advance of our mecha-

nism compared to the Greedy mechanism can be much higher. In particular,

we consider randomly generated networks as before, but assign “lop-sided”

demands and almost-equal bids to nodes as follows. For each base station i,

we randomly choose Di from r1, Ims Y rm � Im, ms, where I is some value

between 1{m and 1. Then, we give the nodes with low demands an advantage

when generating the bids as follows. If Di ¤ m{2, then the per-channel bid

is chosen from [0.95,1]. Otherwise, it is chosen from [0.9,0.95]. Note that, in

practice, there is no reason why the bids and demands should have a random

distribution. The above specialized setting may reflect a scenario where small

start-up concerns compete with large service providers.

In Figure 17, we show the performance ratio of our mechanism to the

Greedy mechanism, in random networks with 1500 nodes and coverage cells of

uniform radius 50 units in an area of 1000�1000 units. We use 1000 channels.

In Figure 17, we see that the performance ratio is as high as 2.5, for low values

of I, and the ratio decreases with increase of I.
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4.6 Conclusion

The recent trend of dynamic spectrum access in cellular networks creates a set-

ting for auctioning pieces of wireless spectrum to competing base stations. To

mitigate market manipulation, a truthful spectrum auction is highly desired,

so that bidders can simply bid their true valuations. In this article, we designed

a truthful spectrum auction that delivers an allocation with near-optimal ex-

pected revenue, in the Bayesian setting, for single-minded bidders. We have

considered a simple pairwise interference model, but our techniques can be

extended to more general interference models. We have shown the superiority

of our mechanism over the only known mechanism in the literature for our

problem using both theoretical and empirical analysis. As a future direction,

we plan to extend our mechanism to simple multi-parameter settings.
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Chapter 5

Distributed Spectrum

Allocation

5.1 Introduction

Till now, we have focused on centralized approaches for spectrum allocation.

The general goals were to maximize some social-choice function like social-

welfare or revenue while controlling the strategic behavior of the base stations.

When it comes to a distributed approach, the focus is shifted towards more

stable allocation that can maintain certain properties with minimal cost and

human intervention even when faced by frequent network topology changes.

This is demonstrated by problems such as self-configuration of fractional fre-

quency reuse (FFR) patterns for LTE/WiMAX networks. We start by giving

the different (more practical) perspective associated with spectrum allocation

in such a setting.

In recent years, Self-management (Self-X) technologies that fully auto-

mate the tasks of managing (i.e. configuring, monitoring, and optimizing) a

cellular network are emerging as an important tool in reducing service provider

OPEX and CAPEX and will be a distinguishing feature of LTE networks. Ex-

amples include the SOCRATES project [60] and the E3 project [42]. In this

chapter, we focus on one such Self-X technology, namely, self-configuration of

fractional frequency reuse (FFR) patterns for LTE/WiMAX.
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We contend that any solution to this problem must meet the following

often-conflicting objectives:

1) Computational efficiency: The self-assignment procedure should be effi-

cient and use only local neighborhood information for computation.

2) Controlled cascading and stability: in the event of cell addition or dele-

tion, the impact of recomputing the FFR should be restricted to a well-

defined local neighborhood of the base station and should not cascade

over the entire network.

3) Optimality of solution: The spectrum utilization resulting from FFR

computed should be closest to optimal as possible.

Practical considerations requires that the following additional objectives must

be met:

1) Contiguity: each base station is assigned a contiguous chunk of the spec-

trum.

2) Minimum Demand Satisfaction: each base station is assigned a minimal

part of the spectrum necessary to carry out its basic functionality.

Unfortunately, satisfying all of the above objectives/properties at the

same time is hard. In fact, a subset of them can be proven to be NP-hard

even under simplistic assumptions (see previous chapters). Another difficulty

comes from the fact that some of these objectives conflict with each other and

satisfying one comes at the expense of the other. Our aim in this chapter is

to address this kind of trade-offs. We design a flexible tool that can be tuned

to achieve some of these objectives (fully of partially) without sacrificing the

others. Basically, for each possible choice of parameter values made by the

network designer, our tool delivers a near-optimal spectrum utilization with

specific guarantees on the rest of the objectives.

The following two definitions will help us discuss the problem in more

details.
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• A distributed algorithm is k-local (or has a locality value of k) if each base

station uses only information regarding its k-neighbors (base stations

within k units of distance).

• An algorithm is k-cascade (or has a cascade value of k) if a dynamic

change in the network (e.g., addition or deletion of a base station or

changes in utility functions) only affects a limited part of the network,

specifically the k-neighbors of the event.

Problem Formulation. As assumed in previous chapters, the spectrum is

divided into a set of orthogonal channels K. Given a set of N base stations,

their interference relationships and the set K of available channels, the problem

considered here is to efficiently find an “interference-free” channel assignment

to the base stations that maximizes the “spectrum utilization” while satisfying

the rest of the objectives discussed above. This should be done in a distributed

fashion with bounded local and cascading values.

A maximized spectrum utility reflects assigning channels to the base sta-

tions which will make the best use of them. For the purposes of this discussion,

we break away from the auction setting we used in previous chapters, and re-

define the utility functions to simply be non-increasing functions showing the

“incremental” utility of each base stations if more channels were assigned to it.

I.e., for a base station i, uipkq is i’s utility for getting its kth channel (assuming

i has already been assigned k � 1 channels). From practical considerations, a

base station will always have positive incremental utility for each additional

channel although after obtaining a large number of channel, these increments

will be minimal.

Related Works. Due to the practical considerations, the objective of the

above problem is rather complicated. Previous works have only considered

subsets of the objectives discussed above under simplistic assumptions. One

example is to ignore the dynamicity and contiguity aspects of the solution

and consider very simple utility functions. Then, the problem becomes similar

to graph multi-coloring with the addition of interference constraints. One

example of such formulations is the work of Peng et al. [51].
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The closest to our work is the recent work of Karla [35]. The main dif-

ferences between our work and [35]’s are three folds. Firstly, they consider a

very simple objective of assigning exactly one channel to each base station.

Secondly, the assume a simple distribution of base stations where every base

station lie on a hexagonal grid. Finally, the proposed solution is a heuristic

with no bounded guarantees on cascading effects and it cannot be extended

to give any guarantees on spectrum utility maximization.

As discussed above, we present a flexible distributed algorithm that not

only guarantees near-optimal spectrum utilization, but also imposes tight

bounds on local and cascading values.

Chapter Organization. In Section 5.2, we present the Hexagonal Divi-

sion approach, a simple efficient, yet static, solution for this problem. In

Section 5.3, we show how to improve the solution via the use of Clustering.

We present simulations evaluating the performance of the two approaches in

Section 5.4 before concluding in Section 5.5.

5.2 Hexagonal Division Approach

In this section, we present our underlaying basic approach which we extend

in the next section to make it more flexible to the system designer’s demands.

The “centralized static” basic approach is similar to the one used in Chapter 3

except for the following important distinctions which we discuss in greater

details later.

• Due to practical considerations, the concept of a “coverage cell” is mod-

ified.

• Here, we divide the available channels between colors (i.e., we divide the

available channels into 7 equi-sized groups and associate each group with

one of the colors used to color the hexagons).

• Spectrum allocation in each hexagon is different.
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• We also need to worry about the details related to the objectives men-

tioned in the previous section like dynamicity and distributed implemen-

tation.

For simplicity, we restrict our discussion here to the pairwise interference with

unit-disk model. Extension to other models of interference is easy along the

lines of our arguments in Chapter 3.

Coverage Cells. Each base station is associated with a region around it

called its coverage cell ; each base stations serves its clients in its cell. The

cell is divided into two regions, inner and edge regions. In the inner region,

the base station uses any channel to serve it clients without worrying about

the wireless interference generated by multiple near-by base stations operating

on the same channel. In the edge region, on the other hand, this interference

might disrupt the communication between the base station and its clients.

Ideally, the base station and the client should operate “interference-free” on the

same channel, but in case this is not possible, interference must be minimized.

When the physical interference model is used, we will not explicitly account

for transmissions carried out between a base station and the clients in the

close-in region of its cell, since the transmission power for that purpose is low

and its effect on clients of the edge region can be built into the SINR equation

(Equation 1).

Allocation in Each Hexagon. Informally, we use a simple greedy algorithm

that assigns each available channel to the base station with the highest utility

for that channel. The nature of the utility function suggests that this approach

is optimal for the allocation problem in each hexagon. Since we only use a

subset (specifically, p1{7qth) of the given channels for each hexagon, we get a

7-approximation of the optimal total utility. Finally, note that this algorithm

runs in time polynomial in the size of the input, i.e., in N , the number of base

stations, and |K|, where |K| is the number of channels.

Minimum Demand Satisfaction and Contiguity. Now, we need to take

care of two more issues with this approach, viz., the minimum demand satis-

faction and the contiguity of the assignment. For the first issue, it is enough to

add a preprocessing step in which every base station is assigned its minimum
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channel demand, and run the greedy approach on the remaining channels.

This does not affect the quality of the solution since this is the best an op-

timal algorithm can do. As for the issue of contiguity, it is not hard to see

that the resulting non-contiguous assignment can be manipulated (through

a simple swapping technique) to convert it into a contiguous one since each

channel can be assigned to exactly one base station. The greedy algorithm can

be thought of as running in “simulation mode” just to figure out the number

of channels to be assigned to each base station, whereas another algorithm

can simply do the actual assignment by sequentially going through all base

stations assigning each one a number of contiguous channels equal to the one

computed by the greedy part.

Distributed Dynamic Version. As mentioned above, the above algorithm

is a centralized static one. This is purely for the sake of simplicity of presenta-

tion. The distributed version of this algorithm is rather simple since each base

station knows its location and can run the hexagonal division and coloring

parts independently. The greedy channel assignment algorithm discussed in

the above paragraph can be either handled by a central base station in each

hexagon, or each base station can run the same algorithm and get the same

result independently (provided that each run of the algorithm consider the

base stations in the same order, say based on their unique IDs or locations).

Here, only information of the 2-neighborhood is needed to figure out the chan-

nel distribution. Thus, this is a 2-local algorithm. The dynamic version of

this algorithm is also simple. When a base station i is added or deleted or

when a utility function ui changes, then, only the base stations inside the same

hexagon as i are affected. Thus, this is a 2-cascade algorithm.1

The following theorem states the properties of our algorithm. The proof of

this theorem directly follow from the more complex proofs of the next section

and of Chapter 3.

Theorem 13 For the unit-disk model, the above algorithm returns an

interference-free 7-approximate assignment in time polynomial in the size of

1For the physical interference model, since we use hexagons of side-length R (defined by
Equation 27, the resulting algorithm would be p2Rq-local p2Rq-cascade.)
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the input (i.e., in N , the number of base stations, and |K|, the number of chan-

nels). Furthermore, it meets the other objectives of contiguity and minimum

demand satisfaction while being 2-local 2-cascade. l
5.3 Improvements via Clustering

In this section, we show how to improve the hexagonal division approach

and make it more practical and flexible towards the designer requirements

(thus, allowing the designer to tune the trade-off properties as discussed in the

introduction).

To motivate this in an intuitive manner, consider the many practical sce-

narios in which it is obvious that the static hexagonal division approach under-

utilizes the spectrum. For example, in the unit-disk model, consider the case

when one hexagon is heavily congested while a neighboring hexagon is empty.

Then, p1{7qth of the available spectrum is wasted. Inspired by earlier works

in the literature [34, 48], “clustering” of hexagons is a promising approach to

handle this issue. For simplicity of presentation, we discuss this idea under

the most general pairwise interference model, namely the pseudo-disk model

(see Section 1.1.1). As it happens, the pseudo-disk model is where the merits

of this idea are emphasized. Further extension to the physical interference

follows.

5.3.1 Pairwise Models

The basic idea here is to focus on clusters of hexagons rather than single

hexagons. Consider for example a cluster of 7 hexagons (similar to the clusters

of Figure 18(b)). If a simple unit-disk model is assumed, then 3-coloring

the clusters with an assignment algorithm similar to the ones of the previous

section would give a valid assignment. Furthermore, if the assignment inside

the cluster is handled properly, then the overall solution is likely to be an

improvement over the hexagonal division algorithm since now each base station

has access to p1{3qrd of the channels whereas previously it had access to onlyp1{7qth. Nonetheless, the situation is trickier here since base stations of the
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(a) 12-coloring of hexagons.
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Figure 18: Flexible Clustering.

same cluster might not have mutual interference, and hence, a channel may

be reuseable among them. In fact, an interference-free set of 7 base stations

may exist in a cluster of 7 hexagons. Thus, an inefficient assignment inside

each cluster may diminish any benefit of this clustering idea.

As a more concrete example of this idea, consider the non-uniform disks

model, where base stations (of the same radius-class) in co-colored hexagons

must be at least 4a away, where a is the side length of the hexagon (for class

L, a � 2L), to ensure that assigning common channels to such base stations

would not cause interference. As previously discussed, this can be achieved

by 12-coloring the hexagons. Another solution is to use clusters of 7 hexagons

and 4-color them (see Figure 18). The reduction in number of colors is likely

to improve the quality of the returned solution.

As the above example shows, one can achieve the same validity guarantees

using different clustering/coloring schemes. The choice of which scheme to use

depends highly on the designer. The trade-off here is as follow. Increasing the

size of the cluster yields higher spectrum utilization, but with longer running

time and higher locality and cascade values.

Our aim here is to provide the designer with enough information to make
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an informed decision as follows. For any cluster size C, we present an algorithm

to find a near-optimal assignment of channels in polynomial time. Not only

we present guarantees on the improvement in the utilization over the hexagon

division algorithm, we also bound the effect on both the local and cascade

values in terms of C.

Outline of the Clustering Approach. Again, the basic idea is to handle

clusters of hexagons rather than single hexagons. Given a designer’s choice of

cluster size C and an appropriate number of colors qW (we will later show how

to compute this number), the steps of the algorithm are as follows.

1) Divide the network region into hexagons of side-length one unit each.

2) Group the hexagons into clusters of C hexagons.

3) Uniformly-color the hexagons using qW colors.

4) Divide the available channels into qW equi-sized groups and associate

each group with one of the colors used in the previous step.

5) Assign channels to base stations in each hexagon independently using

only the group of channels associated with the color of the hexagon.

Required Number of Colors. As discussed in Section 3.3.3, the correctness

of the algorithm can be established by finding a number of colors that satisfies

Property (P2), i.e., it ensures that base stations in different clusters with the

same color do not interfere. Thus, we must color the clusters in a way that

the distance between any two points in different clusters of the same color is

greater than 2d1. This is achieved using

qW � mintx|x ¥ pd�2
a

HpCqq2{3C, x ¥ 3, and x � i2�j2�ij where i, j P Z
�u

(33)

colors, where

Hpxq � minty|y ¥ x and y � 3i2 � 3i� 1 where i P Z
�u.

For C � 1, 3 and 4 the term
a

HpCq in Equation 28 is replaced by 1, 2 and 2.5

respectively.
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We show the satisfaction of Property (P1) using arguments similar to

Section 3.3.3 as follows. Given a clustering/coloring scheme with a cluster

size of C ¥ 7 hexagons and qW colors, it can be shown that (i) the distance

between the centers of two clusters2 of the same color is at least
?

3CqW and (ii)

the maximum distance between any pair of points inside a cluster is at most

2
a

HpCqa.3 This means that the minimum distance between any two points

in two different co-colored clusters is p?3CqW �2
a

HpCqqa and Property (P2)

follows. A concrete example is given below.

EXAMPLE 3 Consider the pseudo-disk model with d1 � 3. Then, to ensure

validity, the minimum distance between any two base stations with common

channels must be 4d2
1{3 � 12. Using the above equation gives the required

number of colors for different cluster sizes as follows.

Cluster size 1 3 4 7 9 12 13 16

Number of colors 67 31 25 16 16 12 12 9 l
Clustering the Hexagons. The process of grouping the hexagons into uni-

form clusters is simple. We start with an origin (or central) hexagon. We then

find central hexagons of the 6 neighboring clusters. Using an iterative trial-

an-error technique, the hexagons are distributed among the 7 clusters used in

this construction process. The resulting clustering is uniform in the sense that

the distance between the centers of neighboring clusters is uniform,4 where the

center of a cluster is actually the center of its central hexagon.5 For example,

in Figure 18(a), consider the 12 hexagons of 12 different colors to be a cluster,

2For ease of presentation, we choose a designated hexagon for each cluster size to be the
central hexagon of the cluster and define its center to be the center of the cluster.

3To optimize the solutions, small clusters are treated differently. For clusters constituting
of 1, 3 and 4 hexagons, the maximum distance between any pair of points inside a cluster
is 1, 2 and 2.5 respectively (see Figure 19).

4Thus, it is not hard to see that uniform clusters can be viewed as forming an additional
overlay of hexagonal grid themselves and that the techniques used on regular hexagons can
be extended to work on them with minor modifications as later discussion shows.

5To optimize the solutions, small clusters are treated differently. See Figure 19.
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(a) Center of a 3-hexagon cluster. (b) Center of a 4-hexagon cluster.

Figure 19: Centers of small clusters.

then, hexagon #8 would be the central hexagon. Finally, it should be noted

that in order to get a uniform clustering, the cluster size must be from the settx|x � i2 � j2 � ij where i, j P Z
�u.

Assignment in Each Cluster. The last step of the algorithm abstracts

away a lot of details about how to assign a set of channels K 1 to the NC base

stations of a certain cluster C of size C. Below, we discuss these details while

giving proof sketches to the claims leading to the Theorem 14.

The first step is to ensure minimum demand satisfaction. This is the

weighted One-Shot Scheduling problem [26] and intuitively speaking, it is

equivalent to properly coloring the base stations of C using the minimum

number of colors. Although this is an NP-hard problem in general, it can be

done here in OpNC

Cq time due to the special geometric structure of the inter-

ference subgraph induced by NC , for which any “independent” set has at most

one base station from each hexagon of the cluster. Let the number of channels

used here be χC (this is the chromatic number of the interference subgraph

induced by NC). This will introduce a multiplicative factor of|K 1||K 1| � χC
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to the approximation ratio due to the following two facts:

• Considering the same setting, the utility of an optimal allocation that

does not ensure that each base station has at least one channel cannot

be smaller than the utility of an optimal allocation that does ensure this.

• Since the incremental utilities are non-increasing functions, the following

holds. Considering the same setting, the utility of an optimal allocation

that uses k channels cannot be greater than k{pk � k1q times the utility

of an optimal allocation that uses k1   k channels.

Nonetheless, this difficult problem can be avoided (and thus, greatly improving

the performance) by using a δC-approximation for χC , where δC is the network

interference degree [2] of the interference subgraph induced by NC (i.e., it is

the maximum size of an interference-free set in the neighborhood of a single

base station in C). This approach is even more favorable when considering the

more complicated physical interference model as discussed in Section 5.3.2.

The remaining |K 1|�χC are distributed among NC using the same greedy

approach of the hexagonal division, but here it is allowed to assign a channel

to more than one base station whenever possible. This part is a special case

of the Greedy Algorithm of Chapter 2 and the same approximation ratio of

mintC, δmaxu � 1 can be shown here, where δmax is the maximum interference

degree in any cluster.

The above results in a non-contiguous assignment. To ensure contiguity,

the assignment is scaled-down by a factor of mintC, qwu (note that the qw used

here is defined in Equation 26).To see that a scaling-down factor of C is enough,

consider the following remarks.

• Scaling-down the assignment of each base station is equivalent (in terms

of feasibility) to scaling-up the total number of available channels by the

same factor.

• The interference graph inside every single one of the C hexagons forming

the cluster is a clique, and thus, the following holds about it.
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– The total number of assigned channels by a non-contiguous assign-

ment cannot exceed the number of available channels.6

– Any non-contiguous assignment can be easily converted into a con-

tiguous one as discussed in the previous section.

Informally speaking, given a non-contiguous assignment of k channels to base

stations inside a cluster of size C, it is easy to convert it to a contiguous

assignment using Ck channels. The same argument holds for the qw scaling

factor with the exception that if hexagons of the cluster are re-colored using

qw colors, then co-colored hexagons can use the same set of channels. Now,

since the incremental utilities are non-increasing functions, scaling-down the

assignments means that the approximation ratio is scaled-down by the same

factor.

Finally, a greedy maximal packing technique is used to distribute the re-

maining channels without violating the interference constraints. This is useful

because the scaling down factor is rather conservative and will probably leave

some “gaps” (in the form of unassigned channels) in the assignment. The

packing technique simply keeps track of these channels and greedily assigns

them to the base stations with the highest utility. The below theorem follows

from this discussion.

Theorem 14 For the pseudo-disk model, the clustering algorithm returns an

interference-free pqW pmintC, qwu�1q|K|{p|K|�χmaxqq-approximate assignment

in time polynomial in the size of the input, where qW and qw are as defined

in Equations 33 and 26 and χmax is the maximum number of channels needed

to optimally satisfy the demands of base stations in any cluster. Furthermore,

it meets the other objectives of contiguity and minimum demand satisfaction

while being 2HpCq-local 2HpCq-cascade. l
The above bounds on the cascading effects of the clustering technique is

mainly of theoretical importance. In practice, there is no real need to force all

base stations of a certain cluster to be involved in the re-assignment process.

6In contrast to cases where the interference graph is not complete, and thus, allows for
channel reuse.
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Instead, smarter heuristics can be designed. One example in the case of base

station addition is to run the above algorithm in “simulation mode” to figure

out how many channels to assign to the new base station followed by a search

trying to do the assignment in a “minimally invasive” way, thus, reducing the

number of actually affected base stations. It is worth mentioning that such

heuristics will not improve the above bounds.

5.3.2 Physical Model

As for the physical interference model, the same techniques apply here but with

more complicated analysis. Here, we assume that each base station operates

using the same transmission power. Techniques of Section 3.3.2 can be used

to extend our results below to the case wherein this assumption is relaxed.

For simplicity, we assume ambient noise to be zero; non-zero noise can be

incorporated using techniques similar to Section 2.4.

For a cluster of size C ¥ 7, the number of colors has to be at least

qH � mintx|x ¥ q1H , x ¥ 7, and x � i2 � j2 � ij where i, j P Z
�u, (34)

where q1H � 7

Cp α
?

β � 1q2 �6βC� 4

α� 2

�
1?

7p9?7� 2
?

19q � 3


α�� 6

3
?

21� 2
?

19


α
� 2

α

For smaller cluster sizes, more optimization is needed since the centers of such

clusters are chosen differently. For C � 3, the number of colors has to be at

least

q3 � mintx|x ¥ q13, x ¥ 3, and x � i2 � j2 � ij where i, j P Z
�u, where

q13 � 3p α
?

β � 1q2 �18β

�
22�α

α � 2
� � 2

3
?

3� 5


α
� 2

α

,

while for C � 4, the number of colors has to be at least

q4 � mintx|x ¥ q14, x ¥ 4, and x � i2 � j2 � ij where i, j P Z
�u, where

q14 � 4p α
?

β � 1q2 �24β

�
4

3αpα� 2q � � 1

2
?

3� 3


α
� 2

α

.
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Finally, using C � 1 means using the basic hexagonal division technique of the

previous section.

Note that using the clustering algorithm requires finding the chromatic

number of a given cluster, which in turn uses the notion of independence.

Remember that a set of base stations, V �, is considered independent if and

only if for every base station u P V �, the SINR value at any point in the

coverage region of u is at least as large as β even if all base stations are

concurrently transmitting on the same channel. A simple conservative way to

check this condition at each base station u P V � would be to take the maximum

level of interference caused by any other base station v P V �, v � u, at any

point in the coverage region of u. This means that if the following equation is

satisfied for every u P V �, then the set V � is independent.

P
rα°

vPV �,v�u
Ppdv�rqα ¥ β, (35)

where P is the power and dv is the distance between base stations u and v.

Obviously, the above constraint is too conservative and it is easy to come up

with examples where independent sets fail to satisfy it. To get exact and

reliable results, one must use the point pu � pxpu
, ypu

q inside the coverage

region of u where the interference from other base stations is maximized. The

xy-coordinates of this point is the solution of the following non-linear program.

Min
ppxpu

� xuq2 � pypu
� yuq2q�α{2¸

vPV �,v�u

ppxpu
� xvq2 � pypu

� yvq2q�α{2 s.t. (36)pxpu
� xuq2 � pypu

� yuq2 ¤ r2,

where the pair pxu, yuq denote the xy-coordinates of base station u. Now, we

can use pu � pxpu
, ypu

q in the SINR equation (Equation 1). If this condition is

satisfied at every base station u P V �, then the set V � is indeed independent.

Now, the methods of Chapter 2 can be used to approximate the chromatic

number of base stations in any given cluster to a factor of

q� � minpq1, q2, q
1
1, q

1
2q, (37)

where q1, q2, q11 and q12 are as defined in Equations 12, 13, 23 and 24.
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Finally, performing the greedy maximal packing part of the above al-

gorithm requires using a method to check the independence of sets of base

stations but it need not be exact. Thus, the conservative constraint of Equa-

tion 35 is preferred due to its simplicity and efficiency.

The following theorem states the properties of the clustering algorithm

for the physical interference model. The proof is given in the appendix.

Theorem 15 For the physical interference model, the clustering algorithm re-

turns an interference-free pqHpmintC, qhu�1q|K|{p|K|� q�χmaxqq-approximate

assignment in time polynomial in the size of the input, where qH , qh and q�
are as defined in Equations 34, 28 and 37 respectively and χmax is the maxi-

mum number of channels needed to optimally satisfy the demands of he base

stations in any cluster. Furthermore, it meets the other objectives of contiguity

and minimum demand satisfaction while being 2HpCq-local 2HpCq-cascade.
Proof: The proof is similar to that of Theorem 14 with the exception of the

validity part. To prove that the resulting assignment is valid, it is sufficient to

show that the conservative SINR equation (Equation 35) is satisfied. We will

only show this for the case where C ¥ 7; remaining cases can be proven using

the same technique.

Consider a base station i in a cluster C. Note that each cluster of size C

can have at most C base stations active at the same time. Nonetheless, the

greedy algorithm for channel assignment inside each cluster ensures that no

other base station j in C interferes with i’s transmission.7 Let the color of C

be b. Partition all b-colored hexagons surrounding C into hierarchical levels.

In a uniform-coloring, the first level will contain 6C clusters of color b and

each such hexagon C 1 is at distance8 of at least p?3CqH � 2
a

HpCqqR from

C. Similarly, the second level contains 12C hexagons at a distance of at least

7This greedy algorithm is of conservative nature. It ensures that the set of base stations
assigned a common channel are independent regardless of clusters. Thus, if the greedy
algorithm allows two base stations of the same cluster to be transmitting on the same
channel, then we need not worry about the interference caused by base stations in other
co-colored clusters.

8By distance between two clusters we mean that the distance between any point in C 1
and any point in C.
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p3?CqH � 2
a

HpCqqR from C. In general, the lth level contains 6lC hexagons

at a distance of at least p3
2

?
CqH l � 2

a
HpCqqR from C.

Now consider a point p within the communication radius r from the base

station i. Then, the total signal received at the point p due to all other base

stations (at most one per b-colored hexagon) active on the same channel as i

is at most:

I � I1 � I2¥,

where I1 and I2¥ are the interference caused by the first and second and above

levels of the hierarchy respectively, and are bounded as follows.

I1 ¤ 6CP�p?3CqW � 2
3

?
19Cqp α

?
β � 1qr{2�α¤ 6CP�?

3qW p3?21�2
?

19q
3
?

21

?
Cp α
?

β � 1qr{2	α� 6CP

�
6
?

7?
qWCp α

?
β � 1qp3?21� 2

?
19qr
α

.

The first equation follows from the definition of R and the fact that HpCq ¤
19C{9 for C ¥ 7 while the second equation follows from the following two

facts: (i)
?

3qW ¥ ?
21, and (ii) for x ¥ ?

21, we have x�2
?

19{3 ¥ xp3?21�
2
?

19q{3?21.

I2¥ ¤ 8̧
l�2

6ClP��
3
4

?
qW l � ?

19
3

	?
Cp α
?

β � 1q � 1
	α

rα¤ 6CP

rα

8̧
l�2

l��
3
?

qW l

4
� 2p 9

2

?
7�?19q

9
?

7

	?
Cp α
?

β � 1q � 1
	α¤ 6CP

rα

8̧
l�2

l� p 9

2

?
7�?19q?qW Cp α

?
β�1qlp2?7p 9

2

?
7�?19q�3q

2
?

7p 9

2

?
7�?19q 	α� 24CP

α � 2

� ?
7p2?7p9

2

?
7�?

19q � 3q?qWCp α
?

β � 1qr�α

.

The second equation follows from the following two facts: (i) 3
?

qW l{4 ¥
3
?

7{2, and (ii) for x ¥ ?
19{3, we have x � ?

19{3 ¥ xp9
2

?
7 � ?

19q{9
2

?
7.
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Similarly, the third equation follows from the following two facts: (i) p9
2

?
7 �?

19q?qWCp α
?

β � 1ql{6?7 ¥ p9
2

?
7 � ?

19q2?7{3, and (ii) for x ¥ p9
2

?
7 �?

19q2?7{3, we have x � 1 ¥ xp2?7p9
2

?
7 � ?

19q � 3q{2?7p9
2

?
7 � ?

19q.
Then,

I ¤ 6CP

� ?
7?

qWCp α
?

β � 1qr
α ���
6

3
?

21� 2
?

19


α � 4

α � 2

�
1

2
?

7p9
2

?
7�?

19q � 3

�α�
.

Substituting in the SINR equation gives P {prα � Iq ¥ β.

5.4 Simulation

In this section, we present simulation results depicting some trends in the

performance of our algorithms. The main comparison here is between the

hexagonal division technique of Section 5.2 and the clustering technique of

Section 5.3 for various choices of cluster sizes. We start by showing one of

the main trade-offs of our algorithms, namely the spectrum utilization vs.

cascading effect. Next we examine how well our algorithms perform with

increasing network density. We start by describing the simulation parameters

and then present the results.

Network Model. The following lists the settings we use in our experiment:

• In order to examine the impact of network topology, we consider two

types of networks.

– Random Networks: We consider a fixed area of 50000� 50000 units

and randomly place base stations within this area. We vary the

network density by changing the number of base stations from 250

to 1500 with the default being 1000 base stations.

– Real Networks: We use locations of real cellular base stations avail-

able in FCC public GIS database [1] and choose base stations de-

ployed in 4 different regions of increasing size and number of base

stations.
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∗ R1 - 256 base stations in the state of MA

∗ R2 - 917 base stations in New England area (MA, ME, NH,

VT, RI, CT)

∗ R3 - 1727 base stations in New England and New York

∗ R4 - 3052 base stations in North East USA (New England, NY,

NJ, PA)

Here the regions are progressively supersets of the previous ones.

The default is R3.

• The interference model we choose to demonstrate our work is the unit-

disk model, where each base station has a randomly-chosen communica-

tion radius r ranging between 500 and 2500 units.

• For each base station, we randomly choose a number of sectors between

1 and 6 to sectorize its coverage region and occasionally “drop” some

sectors to model base stations whose coverage regions are not complete

disks. Each sector is treated as a separate “base station” and sectors

of the same base station may compete with each other over available

spectrum.

• The available spectrum we consider here is divided into 500 channels.

• We generate utility functions for each base station as follows. For base

station i, we randomly choose a value for the first channel, uip1q from

the range [1,1000]. For every subsequent number of channels, k ¡ 1,

we choose uipkq from the range r1, uipk � 1qs. Sectors of the same base

station use the same utility function.

Each experiment is repeated 5 times and the averages are reported.

Spectrum Utilization vs. Cascading Effect. Our first set of experiments

addresses the trade-off our algorithms faces between the spectrum utilization

and the cascading effect. For a random network of 1500 base stations (sector-

ized into a total of more than 5000 sectors), Figure 20(a) shows how increasing
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(b) Cascading effect for random networks
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(c) Spectrum utilization for real networks
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(d) Cascading effect for real networks

Figure 20: Spectrum utilization vs. cascading effect.

the cluster size yield an immediate increase in spectrum utilization.9 On the

other hand, the cascading effect (Figure 20(b)) remained limited even for large

cluster sizes. We see similar trends for real networks (Figures 20(c) and 20(d))

as well. The fluctuation in the cascading effects plots (Figures 20(b) and 20(d))

is of minimal importance since the numbers are very small. For example, in

random networks, every added sector affects less than 3 other sectors (in the

worst case) out of more than 5000 sectors.

Increasing Network Density. In this experiment, we examine how well

our algorithms perform with increasing network density. We show this for

the hexagonal division technique as well as the clustering technique with four

9Figures 20(a) and 20(c) use per-sector utility for the y-axis. This is due to the random
nature of the sectorization process. I.e., for each one of the 5 runs, a different number of
sectors is generated, and thus, the total utility cannot be used.
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(b) Increasing network density for real net-
works

Figure 21: Increasing network density.

choices of cluster sizes. As mentioned above, we vary the number of base

stations from 250 to 1500 base stations for random networks and from 256 to

3052 for real networks. This corresponds to a variation in the number of sectors

from 867 to 5243 sectors for random networks and from 890 to 10545 for real

networks. Figure 21 shows that with the increase in network density, the total

spectrum utility increases for both random and real networks. Furthermore,

using larger cluster sizes resulted in a higher increase rate in spectrum utility

making our clustering technique even more appealing when the network is

scaled up.

5.5 Conclusion

For a distributed spectrum allocation approach, the goal is to generally pro-

duce more stable allocation that can maintain certain properties with minimal

cost and human intervention even when faced by frequent network topology

changes. This is demonstrated by problems such as self-configuration of frac-

tional frequency reuse (FFR) patterns for LTE/WiMAX networks. The often-

conflicting objectives of this problem (like spectrum utilization, cascading ef-

fects, etc.) force the system designer to deal with many trade-offs. We present

a flexible tool for this purpose specifically. I.e., our tool gives the designer a
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choice of parameter values and for every choice, certain bounds are guaran-

teed on all aspects of the trade-offs. Through simulations, we show how these

choices affect the final result in practical scenarios.
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Chapter 6

Conclusion

To increase spectrum utilization, recent studies suggest using a dynamic spec-

trum access model in both spatial and temporal dimensions. For such a model,

the spectrum is divided into channels and is periodically allocated to the base

stations in both centralized and distributed manners with different goals in

mind for each approach.

For the centralized approach, we present auction-based algorithms that

are simple, efficient and produce high utilization of the spectrum. We start

with a simplistic revenue-maximizing algorithm that disregards economical

aspects of the allocation process. Next, we present more involved auctions

with the goal of maximize some social-choice function like social-welfare or

revenue while controlling the strategic behavior of the base stations.

We also presented a distributed approach, wherein the focus is shifted

towards more stable allocation that can maintain certain properties with min-

imal cost and human intervention even when faced by frequent network topol-

ogy changes. This is demonstrated by problems such as self-configuration of

fractional frequency reuse (FFR) patterns for LTE/WiMAX networks. Our

distributed algorithms provide the network designer a flexible tool to tune

different objectives like efficiency, stability and near-optimal spectrum utiliza-

tion. For each possible choice made by the system designer, our tool delivers

a near-optimal spectrum utilization with specific guarantees on the rest of the

desired properties.
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