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Abstract of the Dissertation

Threshold Resummation in Pair Production

by

Leandro Giordano Almeida

Doctor of Philosophy

in

Physics

Stony Brook University

2010

In performing perturbative calculations in Quantum Chromody-
namics, large logarithmic corrections can arise from processes in-
volving soft and collinear quanta. These corrections can be re-
summed to all orders, allowing us to improve our control over
cross section calculations associated with exclusive and inclusive
processes. In this thesis, we show how such logarithmic corrections
can appear in perturbative calculations in Quantum Chromody-
namics. We then proceed to apply these resummation methods
at next-to-leading logarithmic accuracy to heavy quark pair pro-
duction and light hadron pair production. We show how to in-
corporate consistently cuts in rapidity and transverse momentum
of the observed particles, together with resummation. This allows
us to compare our next-to-leading logarithmic calculations directly
to experiments by placing the precise experimental cuts associated
with the measurements of these processes. We will also examine
the phenomenological features associated with the logarithmic cor-
rections. Specifically, we will look how we can apply this to the
study jet mass distributions. We will compare jet mass distribu-
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tion from jets initiated from light quarks to those initiated by top
quarks. This will then allow us to build jet shape observables that
will let us distinguish between the two.
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Chapter 1

Introduction

1.1 QCD

Quantum Chromodynamics (QCD) provides a cornucopia of ideas on which is
based our knowledge of hadronic physics. It gives a description of all hadronic
matter in a picture of fermionic fields interacting through a SU(3) gauge the-
ory.

The idea that hadrons are bound states of localized objects was first intro-
duced in an effort to explain the regularities associated with spectroscopy and
decays of hadronic states [1]. Eventually, this lead to the concept of quarks as
building blocks of hadrons, and it was christened “the quark model”. Later
this was augmented with the quantum number color [2]. The quark model gave
a distinct understanding of the quantum numbers needed to describe hadronic
matter. Hadrons were held together by the strong force, whose fundamental
field was dubbed the gluon. Quarks are not observed as free particles, however,
a property known as confinement.

A series of experiments, which scattered leptons off hadrons with large mo-
mentum transfer, were designed precisely to probe the substructure of nucle-
ons. The subsequently observed phenomena were congruent with a description
in terms of charged constituents of hadrons that behave as though essentially
free at distances below the hadronic scale (see below.) This seemed at odds
with the idea that quarks are confined.

Soon after, however, it was shown that SU(3) gauge theories interacting
with quark fields possess the property of asymptotic freedom, described below,
which accounted for this behavior and contained the important features that
describe strong interactions [3]. Though precise calculation of hadronic states
are beyond the means of analytic computational methods, simulations based
on lattice extensions of gauge theories have correctly calculated masses of the

1



light hadronic states [4]. They have also shown the correct properties of phase
transition associated with confinement [5]. This theory constitutes what we
call Quantum Chromodynamics.

Quantum Chromodynamics is summarized by the following SU(3) gauge
invariant Lagrange density,

L =

Nf∑

r

ψ̄ri (iγ
µDij

µ − δijmr)ψ
r
j −

1

4
F a
µνF

µνa, (1.1)

and where the covariant derivative Dµ and the field strength Fµν are given in
terms of the gluon fields Aaµ by

Dij
µ = δij∂µ − i gs T

a,ij
(f) A

a
µ F a

µν = ∂µA
a
ν − ∂νA

a
µ − i gs f

abc [Aµ,b, Aν,c] . (1.2)

Here we have color indices i = 1, . . . , Nc = 3 for the quarks, a = 1, . . . , N2
c − 1

for the gluons. The T(f) are generators for the gauge group in the fundamen-
tal representation, and fabc are the generators in the adjoint representation.
Thus the quarks are fermionic fields in the fundamental representation of the
gauge group. The interaction among the fields is controlled universally by the
coupling constant gs, in terms of which we also define

αs = g2s/(4 π). (1.3)

This Lagrangian has, as noted previously, an SU(3) gauge symmetry. It also
has an approximate global U(Nf )L+R symmetry which may be enlarged when
the masses go to zero. We won’t discuss flavour symmetries, which are beyond
the scope of this thesis. All processes discussed from now on will be flavour
universal, unless otherwise stated, except for dependence on the quark masses.

To develop perturbation theory, we must fix the gauge freedom. One way
to do so is by choosing a physical gauge, by adding the following term to the
Lagrange density,

Lgauge = − 1

2ξ
(n ·Aa)2 . (1.4)

Here ξ denotes the gauge parameter and n2 > 0, n2 < 0, or n2 = 0. We
often use a gauge where n2 = 0 and take the limit ξ → 0. Starting with a
path integral, one also needs to fix the measure associated with the functional
integration. This leads to the inclusion of ghosts that ensure that physical
observables are only affected by physical polarizations [6–9]. However, with
a physical gauge there are no direct couplings between the ghosts and the
physical fields, hence its name.

2



Another class of gauges, which is commonly used, is the covariant gauges.
They are defined by the following term added to the Lagrange density:

Lgauge = − 1

2ξ
(∂ · Aa)2 . (1.5)

In this case, one needs to add new fields, which interact with the gluon through
the density

Lgh = ∂µba (D
µ
ab) cb, (1.6)

where cb and ba are the ghost and anti-ghost field respectively, and Dµ
ab is the

covariant derivative defined in Eq. (1.2), in the adjoint representation.
Once we fix the gauge freedom in Eq. (1.1), with the term (1.4), or (1.5) and

(1.6), we can obtain the diagrammatic rules for the perturbative expansion of
QCD from the gauge fixed Lagrange density. The full list of such rules and how
one properly obtains them from the action with the above Lagrange density
can be found in [7].

1.2 Renormalization of Local Field Theories

The perturbative expansion of interacting quantum fields allows us to compute
n-point Green functions of the associated fields order-by-order in αs. One
quickly finds, however, that the integrals that define these Green functions
are divergent in 4-dimensional field theories. These divergences come in two
varieties, short distance and long distance. Short distance divergences are from
regions in momentum space where the momenta of virtual modes are large,
and thus are called Ultraviolet (UV) divergences. Long distance divergences
are usually associated with the low momentum regions of these virtual modes
and therefore are called Infrared (IR) divergences. Their nature and presence
will be discussed in Sec. 1.4. In this section, we will discuss UV divergences
and sketch how to accommodate them.

At the tree level, UV divergences do not occur because of momentum con-
servation. At higher orders, however, there is extra freedom in the momenta
of virtual modes. This leads individual diagrams to develop divergences that
spoil the calculation of Green functions and physical observables. Remov-
ing these divergences from the theory is a process that goes by the name of
renormalization, and can be summarized as a two step process.

First we make the diagrams finite by modifying the integrals, a procedure
called regularization. One can, for example, cut off the momenta at some high
scale, or put the theory on a lattice with a fixed spacing. Ideally, this should
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be done in a manner that preserves the symmetries of the Lagrange density
and that can be systematically applied at higher orders in αs. The most
common regularization for perturbation theory is dimensional regularization.
In dimensional regularization one defines the Lagrange density in d = 4 −
2ǫ dimensions, and the UV divergences of the theory show up as poles in
ǫ. Schematically, the results for different loops have the following UV pole
structure:

One loop: B(1)

ǫ
+ A(1),

Two loops: C(2)

ǫ2
+ B(2)

ǫ
+ A(2).

(1.7)

For a detailed discussion see References [7–9] and references therein.
After regularization, one redefines the parameters and fields of the theory

at a particular mass scale µ, to absorb these divergences. The finite terms ( the
A’s in Eq. (1.7), that are absorbed by the renormalization, and the scale, at
which scale this redefinition is performed are called the renormalization scheme
and renormalization mass, respectively. Here we will focus on dimensional
regularization. We will make use of the MS scheme [7, 8]. In this scheme,
we absorb the ǫ poles in Eq. (1.7) and a factor of ln (4π/eγE) from the finite
terms, with γE Euler’s constant.

We say a theory is renormalizable if one can continue with this procedure
order by order in αs without introducing new parameters or local operators to
the theory or inducing couplings between physical and unphysical modes, thus
preserving unitarity. QCD and the other components of the Standard Model
are renormalizable in this sense.

The new Lagrange density with the redefined parameters and fields is called
the renormalized Lagrange density, LR, while the one before renormalization
is called the Bare Lagrange density, L0. For the gauge fixed Lagrange den-
sity, we can write the renormalized Lagrange density by introducing a set of
renormalization constants, Zi, defined by:

Aaµ,0 =
√
Z3A

a
µ,R, ca0 =

√
Z3c

a
R, ψ0 =

√
Z2ψR

g0 = ZggR, ξ0 = Z3ξR, m0 = ZmmR.
(1.8)

The quantities with the subscript 0 are bare, and those with R are renormal-
ized. In the MS scheme, the renormalization constants depend only on gR
and ǫ. We will not use mass dependent schemes, a discussion of which can be
found in [8]. One can show that with this minimal set of renormalization con-
stants one can remove all divergences that appear in the gauge fixed Lagrange
density, order-by-order in αs (see [7–9] and citations therein for details of the
proof.)
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The renormalized coupling gR in Eq. (1.8) depends on the renormalization
scale, µ. We can determine this dependence or “running,” as follows. First note
that the action is dimensionless, thus the dimension of the Lagrange density
is [L] = massd. By inspection of our Lagrange density in Eq. (1.1), we find

[A] = mass, [ψ] = mass
d−1
2 and [g] = massǫ We replace the dimensionfull

coupling by a dimensionless one, via

gR → gR(µ)µ
ǫ. (1.9)

Given our definition of the renormalization constants, we have

gR = µ−ǫ g0
Zg(gR)

. (1.10)

We can now define a function that summarizes the running of the coupling,

β(gR; ǫ) ≡ dgR
d lnµ

=

(

−ǫ− d lnZg(gR)

d lnµ

)

gR

= −gR ǫ− β0
g4R

(4π)2
− β1

g6R
(4π)4

+ . . . (1.11)

The coefficients of βi can be obtained from the perturbative calculations of Zg.
The “β function” is known up to four loops [10] in QCD.

We can solve the differential equation in Eq. (1.11) with ǫ = 0 to find the
scale dependence of gR(µ), which we give to two loop level in terms of αs(µ),

αs(µ) =
αs(µ0)

(

1 + β0
2π
αs(µ0) log

(
µ
µ0

))



1 +
1

4π

β1
β0

αs(µ0)
(

1 + β0
(2π)

αs(µ0) log
(
µ
µ0

))

× log

(

1 +
β0
2π
αs(µ0) log

µ

µ0

))

+O
(
αs(µ0)

3
)
. (1.12)

The first two coefficients are given by,

β0 =

(
11

3
CA − 2

3
Nf

)

, β1 =
34

3
C2
A − 2CFNf −

10

3
CANf , (1.13)

where CA = Nc = 3, CF = (N2
c − 1)/(2Nc), and Nf represents the number of

flavours with masses below the scales µ0 and µ. Since β0 and β1 are positive
(In the Standard Model the maximum Nf = 6), we have exactly the behavior

5



we expect from an asymptotically free theory: as we increase the scale the
coupling decreases. We also learn at what scales perturbation theory is not
applicable, because it is clear that if αs(µ) is close to 1, we can not expand in
it.

1.3 Application of Perturbative QCD to Deep

Inelastic Scattering

The fact that QCD is asymptotically free allows us to make practical use of
perturbative field theory, particularly in scattering experiments where there is
a large momentum transfer. Nonetheless, we are stuck with fact that quarks
can only be found in nature within color singlet states, that is, they are con-
fined. We believe that confinement comes from the low momentum scales (i. e.
long distances), where asymptotic freedom does not help. Therefore any com-
putation of scattering that we perform in QCD has to take into account that
the observed initial and/or final states that participate in any scattering are
hadrons, color singlet bound states of quarks and gluons.

Factorization theorems provide us with a framework with which to compute
such cross sections. They allow to us to systematically separate long distance
effects from short distance physics where perturbative QCD is applicable, i. e.,
when there is a large momentum transfer. Long distance effects are associated
with the infrared regime of the theory, and thus are not perturbatively cal-
culable. These theorems separate such effects into non-perturbative functions
that describe the distribution of partons in a hadron. Deep-inelastic scattering
of leptons on hadrons is a good example to show how factorization occurs and
to allow us to compute cross sections for such processes.

Deep-inelastic scattering is illustrated by the following process,

l(k) +H(P ) → l(k′) +X(PX), (1.14)

where l is a lepton with incoming and outgoing momenta k and k′ respectively,
and H is some specific initial hadronic state with momentum P , usually a
nucleon. X represents any of a multitude of hadronic final states with a
total invariant mass of P 2

X = M2
X ≫ MH , where MH is the mass of the

initial hadrons. For charged leptons both electromagnetic (EM) and weak
interactions are possible. In the EM case, Quantum Electrodynamics at the
lowest order, O(αem), is a good approximation. The differential cross section
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for such process at αem is proportional to

2ωk
dσ

d3k′
=

α2
em

s

∑

X

∫ ∞

−∞

d4x

∫ ∞

−∞

d4y e−i(k−k
′)·ye−i(P−PX)·x

×| 〈 l±(k), H(P ) | Jem,µlep (y)Aem
µ (y)Aem

ν (x)Jem,νhad (x) | l±(k′), X(PX) 〉 |2

= − α2
em

s(q2)2

∑

X

gµν

∫ ∞

−∞

d4x

∫ ∞

−∞

d4y e−i(k−k
′)·ye−i(P−PX)·x

×| 〈 l±(k)|Jem,µlep (x)|l±(k′) 〉 | 〈H(P ) | Jem,νhad (y) |X(M2
X) 〉 |2

= − α2
em

s(q2)2
Lνµ(k, k′)Wνµ(Q,P ), (1.15)

where Aem
µ are the photon gauge fields and Jem,µlep (x) and Jem,νhad (x) are the elec-

tromagnetic currents for the leptons and for the quarks, respectively. We define
Lµβlep to be the leptonic tensor representing the matrix element for two leptonic
currents and similarly W µρ to be the hadronic tensor. The leptonic matrix el-
ements can be calculated reliably in QED. We can extract the hadronic tensor
from the above and sum over the hadronic final states, giving

W µρ(Q,P ) =
1

4π

∫

d4yeiq·y 〈H |Jem,µhad (y) Jem,ρhad (0) |H 〉 . (1.16)

The factorization theorem for this process states that for large Q2 = −q2, the
hadronic tensor can be written as

W µν =
∑

a

∫ 1

x

dξ

ξ
fa/H(ξ, µF )C

µν
a (ξ/x,Q, µ, µF , αs(µ)) +O(Q−2), (1.17)

where fa/H is the distribution of parton a in hadron H , with momenta ξP , and
where Ca describes the perturbative short-distance corrections to the electro-
magnetic current. The scale µF , represents the scale at which fa/H is defined.

Corrections to the above factorization are suppressed by powers of Q2.
Note the sum over partons a, since a hadron is constituted not only of its
valence quarks but also of quark and anti-quark pairs and of the gauge field
quanta themselves. Thus the sum includes a = {quarks, anti-quarks, gluons},
and if we reach high enough momentum transfers, then even heavy quarks,
like the charm, must be included in the initial state [11]. This is exactly the
kind of factorization of momentum scales we hope to achieve in general, and
indeed such factorization theorems have been proven and tested in a multitude
of processes [12]. We now turn to a discussion of the nature of factorization
proofs.
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1.4 Factorization

As discussed in the previous section, the statement of factorization reduces
to the assertion that we can separate long distance ( non-perturbative) from
short distance ( perturbative) physics in a manner in which they are incoherent.
Specifically one would like to prove that this factorization is possible order-
by-order in αs. Though we will not prove such factorization in detail here, we
will try to provide the necessary steps to understand how this is done.

In order to proceed, one would like to understand the role of momentum
regions in scattering processes. More specifically, we would like to understand
the nature of IR divergences, since they are closely related with the infrared
sector of momentum space, and thus non-perturbative physics. In this section
we follow closely [7, 13].

1.4.1 The Nature of Infrared Divergences

In general a Green function for external particles with momenta {pj} can be
written in the form,

G({pj}) =

loops
∏

r=1

∫

dnkr

lines∏

i=1

((
l2i −m2

i + iǫ
)2
)−1

N(kr, pj) (1.18)

where N represents the numerator momentum structure. Each line carries a
momenta li and mass mi. Applying Feynman parameterization,

N∏

i=1

A−ai
i =

(
N∏

j=1

1

Γ [aj ]

)

Γ

[
N∑

f=1

af

]
N∏

i=1

∫

dαi α
ai−1
i

×δ
(

1−
N∑

r

αr

)(
N∑

b=1

αbAb

)−
∑N

c=1 ac

, (1.19)

leads to the following form for the Green function,

G({pj}) =
lines∏

i

∫ 1

0

dαiδ(
∑

i

αi − 1)

loops
∏

r

∫

dnkr
N(kr, pj)

D(αi, pj, kr)−lines
. (1.20)
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Here the function D combines the denominator momentum structure. It is
given by

D(αk, kl, pi) =

lines∑

j

αj
[
l2j (k, p)−m2

j

]
+ iǫ, (1.21)

where lj represents the momemtum of line j.
Infrared divergences in a Feynman diagram are possible when its integrand

is singular. We therefore concern ourselves with the zeros of Eq. (1.21).
Since the integrand is, however, an analytic function of its parameters, this is
not a sufficient condition. We can simply deform the contours in Eq. (1.20)
associated with the loop momentum integration, to bypass such poles if they
are isolated in the complex momentum plane or in αi.

There are two instances in which contour deformation may not be possible:
first, when the pole coincides with the end point of the contour integration,
and second, when multiple poles coalesce and pinch the contour. We can easily
find when the momenta are pinched because Eq. (1.21) is always quadratic
in the loop momenta. The following conditions are necessary for a pinch to
occur,

D(αi, kµ, pr) = 0,
∂

∂kµ
D(αi, kµ, pr) = 0. (1.22)

These two conditions are summarized by the Landau equations :

either αj = 0 or l2j = m2
j ,

and
∑

j ǫjmαjl
µ
j (k, p) = 0,

(1.23)

where j runs over all on-shell lines within each loop, and ǫjm is either 1 or
−1 depending whether the loop momentum m is flowing with or against the
momentum of line j. The solutions that satisfy Eqs. (1.23) are characterized
by sets {α, k}. These points form surfaces in α−k space referred to as a pinch
surface.

Figure 1.1: Scalar Triangle
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As an example, we analyze the triangle diagram in a generic scalar theory,
Figure 1.1. It is summarized by the following integral,

∫
ddk

(2π)d
1

(k2 + iǫ)((k + p1)2 + iǫ)((k − p2)2 + iǫ)
. (1.24)

The Landau equations corresponding to Eqs (1.23) for this integral are:

α1k
2 + α2(k + p1)

2 + α3(k − p2)
2 + iǫ = 0,

α1k
µ + α2(k + p1)

µ + α3(k − p2)
µ = 0.

These relations have the following non-trivial solutions:

kµ = 0 α2 = α3 = 0,

k = yp2 α2 = 0 and α1 = −α3
(1−y)
y
,

k = yp1 α3 = 0 and α1 = α2
(1+y)
y
.

(1.25)

These solutions separate the pinch surfaces into three distinct regions of mo-
mentum space, the soft region, where the all components of the loop momenta
go to zero, and two collinear regions, where the loop momenta are proportional
to one of the outgoing momenta.

The pinch surfaces corresponding to eqs. (1.25) can be described by a re-
duced diagram where off-shell propagators are shrunk to points. As observed
by Coleman and Norton [16], each of these reduced diagrams describes a phys-
ical process, where the left over propagators describe the propagation of free,
physical particles. With this nice physical picture we can often write the most
general reduced diagrams for a scattering process.

The set of such diagrams is particularly simple for DIS and related processes
[14, 15]. We will generally denote a collinear or “jet” subdiagram as J and
soft subdiagrams as S. The possible pinch surfaces associated with the DIS
process are shown in Figure 1.2, where H represents the hard coefficient where
all momenta is off-shell by at least Q2. The Ji’s represent the collinear pinch
surfaces associated with final state hadrons in X and are connected to other
Ji’s and H by finite-energy on-shell particles. Finally, the region S represents
the soft gluons ,and quark loops, and can connect to the collinear regions
and possibly the hard scattering. The physical picture here presents a initial
Hadron with momentum P producing a jet collinear to it, J1. We can also
have an arbitrary number of jets Ji emerging from the scattering. The jets
can be connected by an arbitrary number of soft gluons, S.

Next we would like to bound the integrals near the pinch surfaces to see
their potency and thus find the regions of momentum that will produce leading

10



Figure 1.2: General pinch surfaces associate with the process of Eq. (1.14).

contributions in scattering amplitudes.

1.4.2 IR Power Counting

Now the above conditions above for infrared divergences are simply necessary
conditions. The potential divergence of a diagram may be much smoother
than anticipated. Therefore, it is possible after integration through the pinch
surfaces no large contributions may be found. It is always possible that the
diagrams unphysical modes lead to unphysical poles, which cancel in a gauge
invariant sum of diagrams.

Infrared power counting [14], will lead to an estimate of the degree of
divergence of a particular diagram. We will determine the behavior of the
reduced diagrams’ momentum integrals for both internal and external states
as they approach the pinch surfaces.

One way to determine this behavior is to make the integrands, associated
with the diagram, homogenous functions of variables that vanish at the pinch
surface. We refer to this variables are the “normal” variables of the pinch
surface. Let {κ} denote the normal variables to the pinch surface and {l} the
remaining “instrinsic” variables that parametrize the pinch surface. A general

11



Green function near a pinch surface γ is then given by

Gγ(Q) =

∫

γ

∏

b=1

dlb

∫

γ

Dγ∏

a=1

dκa
N(κa, lb, Q)

D(κa, lb, Q)
, (1.26)

where l represents the intrinsic variables while κ represents the normal vari-
ables. The numerator polynomials which depend on the intrinsic and normal
variables and on the general physical scale Q, is given N , similarly D is the
denominator associated with propagators of the fields present in the diagram.
The parameter Dγ represents the number of normal variables. By scaling the
normal variables by a parameter λ, such that κb = λγκ

′
b, we insert unity in the

Green function in Eq. (1.26),

∫ λ2max

0

dλ2γ
λ2γ

δ

(

1−
Dγ∑

a=1

κ
′2
a

)

= 1. (1.27)

Under this scaling, the numerator and denominators will have some dominant
terms in the limit of λ→ 0. These terms have the following powers

N(κa, lb, Q) = λnγ
[
N̄(κ′a, lb, Q) +O(λγ)

]
(1.28)

D(κa, lb, Q) = λdγ
[
D̄(κ′a, lb, Q) +O(λγ)

]
(1.29)

The power behavior of the integral at the pinch surface is then given by

Gγ =

∫ λmax

0

dλγ
1

λ
pγ
γ
∆γ(κ

′
a, lb, Q) (1.30)

where pγ ,

pγ = d+ 1−Dγ − n, (1.31)

such that for pγ = 1 the integrals J is logarithmic divergent, and ∆γ is the
rest of the integrand from Eq. (1.26) where the numerator and denominator
polynomials only have the terms with the leading dependence in λγ, i. e., the
first terms in Eqs. (1.28) and (1.29). Now we could in principle find additional
pinch surfaces in ∆γ , if these are among the original set of pinch surfaces then
we can bound it eventually on with this basis of pinch surfaces. We can then
bound the entire integral through this method.

Therefore we can build cross-sections that, though are not free of pinch
surfaces, are defined in such a way that the pinch surfaces are not strong
enough to produce IR poles.
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One can then obtain the power of the leading contribution to the physical
process, and show that in properly defined observables, the worst divergences
are logarithmic. In the next chapter we will show how these leading regions,
can lead to the resummation of logarithmic corrections.
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Chapter 2

Threshold Resummation

2.1 Resummation from Factorization

In this chapter we will discuss how resummation of many logarithmic correc-
tions is possible. We will follow closely to the discussions of Refs. [13, 18, 19].
The connection between resummation and factorization is analogous to the
renormalization group properties of physical cross sections.

For example, a general unrenormalized Green function of n fields ψ0, is
related to the renormalized Green function with n fields ψR by

G0(pi, g0) = (Z
1/2
ψ (gR(µ).ǫ))

nGren(pi, µ, gR(µ)), (2.1)

where µR is the renormalization scale. Given that L0 does not depend on
the renormalization scale, the unrenormalized Green functions should also be
independent it. This leads to following equation

d lnGren

d lnµR
= −n γψ(gR(µR)), (2.2)

where γψ are the anomalous dimensions of the fields ψ

γψ =
1

2

d lnZψ
d lnµR

. (2.3)

Since in an MS scheme

µ
d

dµ
= µ

∂

∂µ
+ β(αs)

∂

∂αs
, (2.4)
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and Zψ depends on µ only through αs(µ), we have

γψ =
1

2
β(αs)

∂ lnZψ
∂αs

. (2.5)

Combining this reasoning with the observation that a physical cross section
should be independent of the factorization scale, we can obtain a similar rela-
tion for the deep-inelastic scattering cross section.

Consider the hadronic tensor in Eq. (1.17). For simplicity we suppress
Lorentz indices and the sum over parton types. Integrating Eq. (1.17) with
the following moment, and choosing µF = µR = µ, gives

W̃ (N,Q2) =

∫ 1

0

dxxN−1W (x,Q2)

= f̃(N,αs(µ), µ)C̃(N, µ, αs(µ), Q
2). (2.6)

Since W̃ is a physical observable, it is independent of µ, and we find the
following consistency equations for C̃ and f̃ ,

(

µF
d

dµ
− γN(αs)

)

ln C̃ = 0, (2.7)

(

µF
d

dµ
+ γN(αs)

)

ln f̃ = 0. (2.8)

The anomalous dimension γN(αs) can depend only on N and gR because these
are the only variables on which C and f share in common. We will proceed to
show how such derivations, in more exclusive observables with more physical
scales, lead to the resummation of logarithmic corrections in these exclusive
cross sections.

2.2 Logarithmic Corrections

Physical cross section can be factorized into different regions of momentum
space as described in Section 1.4. This allows us to give the leading contri-
butions to the cross section by convolutions of functions associated with the
corresponding momentum regions. This factorization is well illustrated for
Drell-Yan scattering

HA(PA) +HB(PB) → γ∗(Q2) (2.9)
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where HA and HB are the two hadrons with momenta PA and PB respectively,
and γ∗ is an off-shell singlet gauge boson with an invariant mass Q2. The
factorization is given by the following convolution

dσH1H2→γ∗

dQ2
=

∑

a,b

∫

dx1 dx2 fa/H1
(x1, µF , αs(µR))

×fb/H2
(x2, µF , αs(µR))

dσ̂a b→γ∗

dQ2
(τ̂ , Q2/µ, ŝ/µαs(µR)),

=

∫ 1

τ

dτ̂

∫

dx1 dx2 fa/H1
(x1, µF , αs(µR)) fb/H2

(x2, µF , αs(µR))

× dσ̂

dQ2
(τ̂)δ(x1x2 − τ̂), (2.10)

where ŝ = x1x2S, τ = Q2/S and τ̂ = Q2/ŝ. The parton distribution functions
are “universal”, i. e., the same as in Eq. (1.17) for DIS.

The cross section dσ̂/dQ2 in Eq. (2.10) is infrared safe, but for τ̂ → 1 there
is no phase space for gluon radiation into the final state. This mis-cancellation
shows up in “plus distributions,” which occur in dσ̂/dQ2 as terms like

αks

[
lnl (1− τ̂ )

(1− τ̂ )

]

+

, (2.11)

where 0 ≤ l ≤ 2k − 1, and where [f(x)]+ is defined by,

∫ 1

0

dx[f(x)]+g(x) =

∫ 1

0

f(x)(g(x)− g(0)). (2.12)

Therefore, the logarithmic plus distribution in Eq. (2.11), though large, are
still finite when integrated with smooth functions, like the parton distribution
functions. The limit τ̂ → 1 is called partonic threshold. This threshold τ̂ = 1
is always present even when τ ≪ 1. These threshold enhanced logarithmic
contributions are the one we will be resumming.

2.3 Threshold Resummation of Drell Yan

We will proceed to give a view of resummation from the point of view of Drell-
Yan Scattering. In this process we can identify a “weight function”, which
measures the distance to partonic threshold,

w = 1− Q2

ŝ
≡ 1− τ̂ . (2.13)
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As above Q2 is the mass of the off-shell electroweak boson produced, and
ŝ = (xaPA + xbPB)

2. Thus as w → 0, we approach the threshold limit. We
note again that even when Q2 ≪ (PA + PB)

2, we always encounter parton
threshold in the factorized cross section (2.10).

Consider a specific contribution to dσ̂/dQ2 with n partons in the final
state with momenta ki. The phase space for this process has the following
delta function, which fixes the mass of the Drell-Yan pair,

δ



Q2 −
(

p1 + p2 −
∑

i

ki

)2


 . (2.14)

In the threshold limit this becomes,

δ

(

s(1− τ̂) + 2
√
s

(
n∑

i=1

k0i

)

+O
(
(1− τ̂ )2

)

)

. (2.15)

Therefore the phase space is defined completely by the energy of the partons
in the final states. The partonic cross section for this process is given by the
following re-factorization, whose leading regions are shown in Figure 2.1,

σ̂(w) = H(p1, p2, µ, µ, ξi)

∫
dwJ1
wJ1

dwJ2
wJ2

dws
ws

×J1(p1 · ξ1/µ, wJ1(Q/µ), αs(µ)) J2(p2 · ξ2/µ, wJ2(Q/µ), αs(µ))
×S(wsQ/µ, vi, ξi, αs(µ)) δ(w − wJ1 − wJ2 − ws). (2.16)

Corrections to this expression vanish as powers of w. The arbitrary vectors ξi
are used to define the matrix elements for jet functions and soft functions [20],
analogous to the factorization scale in Eq. (1.17) for DIS. The convolution in
Eq. (2.16) can be decomposed by taking its Laplace transform with respect to
the weight w, analogously to the Mellin moment for DIS, Eq. (2.6),

σ̃N =

∫ ∞

0

dwe−N w = H(p1, p2, ξi) S̃(Q/(µN), vi, ξi, αs(µ))

×J̃1(p1 · ξ1/µ,Q/(µN), αs(µ))

×J̃2(p2 · ξ2/µ,Q/(µN), αs(µ)), (2.17)

where N can be complex. The threshold behavior is now indicated by the
limit of large N (large (1− τ̂ ) corrections are highly suppressed at large N).

Each of the functions in Eq. (2.17) needs to be renormalized and as in
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Figure 2.1: Factorization for Drell-Yan Scattering
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Eq. (2.2), we have

d lnH

d lnµ
= −γH(αs),

d ln J̃i
d lnµ

= −γJi(αs), (2.18)

d ln S̃

d lnµ
= −γS(αs).

Since the physical cross section is independent of the renormalization scale,
these anomalous dimensions are related [17, 18, 20] by

γH + γS +

2∑

i=1

γJi = 0. (2.19)

The scheme we use to perform the factorization, and therefore the directions
we pick for the vectors ξi, should not affect the physical cross section. We can
then impose two extra constraints,

(

p1 · ξ1
∂

∂p1 · ξ1
H

)

J̃1J̃2S̃ + H

(

p1 · ξ1
∂

∂p1 · ξ1
J̃1

)

J̃2S̃

+HJ̃1J̃2

(

p1 · ξ1
∂

∂p1 · ξ1
S̃

)

= 0, (2.20)

and similarly for ξ2. Diving Eq. (2.20) by HJ̃1J̃2S̃, we find

p1 · ξ1
∂

∂p1 · ξ1
ln J̃1 = −p1 · ξ1

∂

∂p1 · ξ1
lnH

︸ ︷︷ ︸

G

−p1 · ξ1
∂

∂p1 · ξ1
ln S̃

︸ ︷︷ ︸

K

, (2.21)

and similarly for J2. Since the anomalous dimensions of the J ’s depend only
on αs,

d

d lnµ

(
G
(
p1 · ξ1/µ, µF , αs(µ2)

)
+K

(
Q′
a1
/N, µ, αs(µ

2)
))

=
d

d ln p1 · ξ1
γJ1(αs) = 0

(2.22)
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Separation of variables in this equation then leads to

d

d lnµ
lnK = −γK(αs), (2.23)

d

d lnµ
lnG = γK(αs).

Solving these two equation leads to the following relation for K +G:

G
(
p1 · ξ1, µ, µ, αs(µ2)

)
+K

(
Q′
a1
/N, µ, αs(µ

2)
)

= −
∫ p1·ξ1

Qa1/N

dµ′

µ′

(

γK(αs(µ
′)) + β(αs)

∂

∂αs
K(1, αs(µ

′))

)

︸ ︷︷ ︸

A(αs)

+K(1, αs(p1 · ξ1)) +G(1, αs(p1 · ξ1))
︸ ︷︷ ︸

A′(αs)

= −
∫ p1·ξ1

Qa1/N

dµ′

µ′
A(αs(µ

′2)) + A′(αs((p1 · ξ1)2)). (2.24)

Now using Eq. (2.24) to solve Eq. (2.21) together with (2.18) for the jet func-
tions,

J̃(p1 · ξ1, Q/(µN), αs(µ
2)) = J̃(1, 1, αs(Q

2/N2/a)) exp

[

−
∫ µ

Q/N

dλ

λ
γJ1(αs(λ

2))

]

.

exp

[

−
∫ p·ξ

Q/N

dλ

λ

(∫ λ

Q/N

dξ

ξ
A(αs(ξ

2))− A′(αs(λ
2))

)]

(2.25)

Putting everything together, and setting p · ξ = Q, gives the following re-
summed cross section for Drell-Yan in transform space.

σ̃N = lnH(1, 1, αs(Q)) + lnS(1, 1, αs(Q/N))

+
∑

i=1,2

ln J̃i(1, 1, αs(Q/N))−
∫ Q/N

Q

dλ

λ
γS(αs(λ

2))

−2

∫ Q

Q/N

dξ

ξ

{

ln
Q

ξ
A(αs(ξ

2))− A′(αs(ξ
2)) +

∑

j

γJj(αs(ξ
2))

}

.

(2.26)

Expanding the above form to one loop in αs, where A(αs) = αsA
(1) + . . . , we
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see that we have exponentiated the following logarithms,

ln σ̃N = · · ·+ αs
{
2B(1) lnN + A(1) ln2N + . . .

}
. (2.27)

These correspond precisely to the leading and next-to leading logarithms of
threshold resummation in the Drell-Yan cross section. The inversion back to
τ̂ space will be shown in subsequent chapters. Here we only note that the
inverses of logarithms of N are “plus distributions” of Eq. (2.11).

2.4 Resummation of QCD Hard Scattering

For processes that involve color exchange, we use a more general factorization
form for the cross section,

σ̃ =
∑

IJ

HIJ S̃IJ
∏

i

J̃i (2.28)

where the indices I and J label the color structure in a manner described be-
low. The Ji may correspond to initial and/or final collinear radiation. Thus for
process involving heavy quarks, we will only need two initial-state jet factors,
since final state heavy quark propagators do not involve collinear divergences.
The functional dependence of the above functions on the kinematics and scales
is the same as for Drell-Yan. As previously, the physical cross section is in-
dependent of the renormalization scale, and this leads to the corresponding
renormalization group equations

µ
d

dµ
lnHIJ = −(ΓH(αs))IJ ,

µ
d

dµ
lnSIJ = −(ΓS(αs))IJ , (2.29)

µ
d

dµ
ln Ji = −γJi(αs),

where now the anomalous dimensions for the soft and hard functions are de-
pendent on the color structure of the process. We can go through the same
analysis as in the previous section, leading to similar exponentiation of the log-
arithms involved, with the additional constraint of keeping the color ordering
intact. The details can be found in [20].
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2.4.1 Outline for Thesis

We will now proceed to study the effects of threshold resummation and log-
arithmic corrections in different processes and observables. This is based in
the following published work [22–25]. The rest of this thesis is organized as
follows: In Chapter 3 we will discuss the resummation for the exclusive pro-
duction of two final state light hadrons. We look at the effects of next-leading-
logarithm (NLL) resummation in more exclusive observables. This will allow
us to compare these results to specific experiments that have measured these
correlations. In Chapter 4, we will proceed to the production of heavy quarks
at pp̄ collider. Specifically, we will look at the effects of threshold resummation
at NLL on the Forward Backward asymmetry in tt̄ production. We will then
proceed to a systematic understanding of high invariant jet mass distributions
at the LHC in Chapter 5, whose main contribution comes from logarithmic
corrections. This study will allow us to develop jet observables to distinguish
light quark jets from heavy parton jets, the subject of which is discussed in
Chapter 6.
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Chapter 3

Dihadron Production

3.1 Introduction

Cross sections for hadron production in hadronic collisions play an important
role in QCD. They offer a variety of insights into strong interaction dynamics.
At sufficiently large momentum transfer in the reaction, QCD perturbation
theory can be used to derive predictions. The cross section may be factorized
at leading power in the hard scale into convolutions of long-distance factors
representing the structure of the initial hadrons and the fragmentation of the
final-state partons into the observed hadrons, and parts that are short-distance
and describe the hard interactions of the partons. If the parton distribution
functions and fragmentation functions are known from other processes, espe-
cially deeply-inelastic scattering and e+e− annihilation, hadron production in
hadronic collisions directly tests the factorized perturbative-QCD approach
and the relevance of higher orders in the perturbative expansion.

Much emphasis in both theory and experiment has been on single-inclusive
hadron production, H1H2 → hX [26–33]. Here the large momentum transfer
is provided by the high transverse momentum of the observed hadron. Of
equal importance, albeit explored to a somewhat lesser extent, is di-hadron
production, H1H2 → h1h2X , when the pair is produced with large invariant
mass M . In many ways, one may think of this process as a generalization of
the Drell-Yan process to a completely hadronic situation, with the Drell-Yan
lepton pair replaced by the hadron pair. The process is therefore particularly
interesting for studying QCD dynamics, as we shall also see throughout this
paper. Experimental data for di-hadron production as a function of pair mass
are available from various fixed-target experiments [34–36], as well as from the
ISR [37]. On the theory side, next-to-leading order (NLO) calculations for this
process are available [38–40]. They have been confronted with the available
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data sets, and it was found that overall agreement could only be achieved when
rather small renormalization and factorizations scales were chosen. The NLO
calculations in fact show very large scale dependence. If more natural scales
are chosen, NLO theory significantly underpredicts the cross section data, as
we shall also confirm below.

In the present chapter, we investigate the all-order resummation of large
logarithmic corrections to the partonic cross sections. This is of consider-
able interest for the comparison between data and the NLO calculation just
described. A related resummation for the single-inclusive hadron cross sec-
tion [30] was found to lead to significant enhancements of the predicted cross
section over NLO, in much better overall agreement with the available data in
that case.

At partonic threshold, when the initial partons have just enough energy
to produce two partons with high invariant pair mass (which subsequently
fragment into the observed hadron pair), the phase space available for gluon
bremsstrahlung vanishes, resulting in large logarithmic corrections. To be
more specific, if we consider the cross section as a function of the partonic pair
mass m̂, the partonic threshold is reached when ŝ = m̂2, that is, τ̂ ≡ m̂2/ŝ = 1,
where

√
ŝ is the partonic center-of-mass system (c.m.s.) energy. The leading

large contributions near threshold arise as αks
[
ln2k−1(1− τ̂)/(1− τ̂)

]

+
at the

kth order in perturbation theory, where αs is the strong coupling and the
“plus” distribution will be defined below. Sufficiently close to threshold, the
perturbative series will be useful only if such terms are taken into account
to all orders in αs, which is what is achieved by threshold resummation [20,
41, 42, 80]. Here we extend threshold resummation further, to cross sections
involving cuts on individual hadron pT and the rapidity of the pair.

We note that this behavior near threshold is very familiar from that in
the Drell-Yan process, if one thinks of m̂ as the invariant mass of the lepton
pair. Hadron pair production is more complex in that gluon emission will
occur not only from initial-state partons, but also from those in the final state.
Furthermore, interference between soft emissions from the various external legs
is sensitive to the color exchange in the hard scattering, which gives rise to
a special additional contribution to the resummation formula, derived in [20,
43, 44].

The larger τ̂ , the more dominant the threshold logarithms will be. Because
of this and the rapid fall-off of the parton distributions and fragmentation
functions with momentum fraction, threshold effects tend to become more and
more relevant as the hadronic scaling variable τ ≡ M2/S goes to one. This
means that the fixed-target regime is the place where threshold resummation is
expected to be particularly relevant and useful. We will indeed confirm this in
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our study. Nonetheless, because of the convolution form of the partonic cross
sections and the parton distributions and fragmentation functions (see below),
the threshold regime τ̂ → 1 plays an important role also at higher (collider)
energies. Here one may, however, also have to incorporate higher-order terms
that are subleading at partonic threshold.

In Sec. 3.2 we provide the basic formulas for the di-hadron cross section as
a function of pair mass at fixed order in perturbation theory, and display the
role of the threshold region. Section 3.3 presents details of the threshold re-
summation for the cross section. In Sec. 3.4 we give phenomenological results,
comparing the threshold resummed calculation to the available experimental
data. Finally, we summarize our results in Sec. 3.5. The Appendices provide
details of the NLO corrections to the perturbative cross section near threshold.

3.2 Perturbative Cross Section and Partonic

Threshold

We are interested in the hadronic cross section for the production of two
hadrons h1,2,

H1(P1) +H2(P2) → h1(K1) + h2(K2) +X , (3.1)

with pair invariant mass
M2 ≡ (K1 +K2)

2 . (3.2)

We will consider the cross section differential in the rapidities η1, η2 of the two
produced hadrons, treated as massless, in the c.m.s. of the initial hadrons, or
in their difference and average,

∆η =
1

2
(η1 − η2) , (3.3)

η̄ =
1

2
(η1 + η2) . (3.4)

We will later integrate over regions of rapidity corresponding to the relevant
experimental coverage.

For sufficiently large M2, the cross section for the process can be written
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in the factorized form

M4dσ
H1H2→h1h2X

dM2d∆ηdη̄
=

∑

abcd

∫ 1

0

dxadxbdzcdzd f
H1
a (xa, µF i)f

H2
b (xb, µF i)

× zcD
h1
c (zc, µFf)zdD

h2
d (zd, µFf)

× m̂4dσ̂ab→cd

dm̂2d∆ηdη̄

(

τ̂ ,∆η, η̂, αs(µR),
µR
m̂
,
µF i
m̂
,
µFf
m̂

)

, (3.5)

where η̂ is the average rapidity in the partonic c.m.s., which is related to η̄ by

η̂ = η̄ − 1

2
ln

(
xa
xb

)

. (3.6)

The quantity ∆η is a difference of rapidities and hence boost invariant. It is
important to note that the rapidities of the hadrons with light-like momenta
K1 and K2 are the same as those of their light-like parent partons. The av-
erage and relative rapidities for the hadrons and their parent partons are also
therefore the same, a feature that we will use below. Furthermore, in Eq. (3.5)

the f
H1,2

a,b are the parton distribution functions for partons a, b in hadrons H1,2

and D
h1,2
c,d the fragmentation functions for partons c, d fragmenting into the

observed hadrons h1,2. The distribution functions are evaluated at the initial-
state and final-state factorization scales µF i and µFf , respectively. µR denotes
the renormalization scale. The dσ̂ab→cd/dτ̂dη̄d∆η are the partonic differential
cross sections for the contributing partonic processes ab→ cdX ′, where X ′ de-
notes some additional unobserved partonic final state. The partonic momenta
are given in terms of the hadronic ones by pa = xaP1, pb = xbP2, pc = K1/zc,
pd = K2/zd. We introduce a set of variables, some of which have been used in
Eq. (3.5):

S = (P1 + P2)
2 , (3.7)

τ ≡ M2

S
, (3.8)

ŝ ≡ (xaP1 + xbP2)
2 = xaxbS , (3.9)

m̂2 ≡
(
K1

zc
+
K2

zd

)2

=
M2

zczd
, (3.10)

τ̂ ≡ m̂2

ŝ
=

M2

xaxbzczdS
=

τ

xaxbzczd
. (3.11)

At the level of partonic scattering in the factorized cross section, Eq. (3.5), the
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other relevant variables are the partonic c.m.s. energy
√
ŝ, and the invariant

mass m̂ of the pair of partons that fragment into the observed di-hadron pair.
We have written Eq. (3.5) in such a way that the term in square brackets
is a dimensionless function. Hence, it can be chosen to be a function of the
dimensionless ratio m̂2/ŝ = τ̂ and the ratio of m̂ to the factorization and
renormalization scales, as well as the rapidities and the strong coupling. In the
following, we will take all factorization scales to be equal to the renormalization
scale for simplicity, that is, µR = µF i = µFf ≡ µ. We then write

m̂4dσ̂ab→cd

dm̂2d∆ηdη̄

(

τ̂ ,∆η, η̂, αs(µ),
µ

m̂

)

≡ ωab→cd

(

τ̂ ,∆η, η̂, αs(µ),
µ

m̂

)

. (3.12)

The variable τ̂ is of special interest for threshold resummation, because it is
a measure of the phase space available for radiation at short distances. The
limit τ̂ → 1 corresponds to the partonic threshold, where the partonic hard
scattering uses all available energy to produce the pair. This is kinematically
similar to the Drell-Yan process, if one thinks of the hadron pair replaced by a
lepton pair. The presence of fragmentation of course complicates the analysis
somewhat, because only a fraction zczd of m̂

2 is used for the invariant mass of
the observed hadron pair. In the following it will in fact be convenient to also
use the variable

τ ′ ≡ m̂2

S
=

M2

zczdS
, (3.13)

which is the ratio of the partonic m̂2 to the overall c.m.s. invariant S and
hence may be viewed as the “τ -variable” at the level of produced partons
when fragmentation has not yet been taken into account. This variable is
close in spirit to the variable τ = Q2/S in Drell-Yan.

The partonic cross sections can be computed in QCD perturbation theory,
where they are expanded as

ωab→cd =
(αs
π

)2 [

ωLO
ab→cd +

αs
π
ωNLO
ab→cd + . . .

]

. (3.14)

Here we have separated the overall power of O(α2
s), which arises because the

leading order (LO) partonic hard-scattering processes are the ordinary 2 → 2
QCD scatterings. At LO, one has τ̂ = 1, and also the two partons are produced
back-to-back in the partonic c.m.s., so that η̂ = 0. One can therefore write
the LO term as

ωLO
ab→cd (τ̂ ,∆η, η̂) = δ (1− τ̂ ) δ (η̂) ω

(0)
ab→cd(∆η) , (3.15)
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where ω
(0)
ab→cd is a function of ∆η only. The second delta-function implies

that η̄ = 1
2
ln(xa/xb). At next-to-leading order (NLO), or overall O(α3

s), one
can have τ̂ 6= 1 and η̂ 6= 0. Near partonic threshold, τ̂ → 1, however, the
kinematics becomes “LO like”. The average rapidity of the final-state partons,
c and d (and therefore of the observed di-hadrons) is determined by the ratio
xa/xb, up to corrections that vanish when the energy available for soft radiation
is squeezed to zero. As noted in Ref. [45], in this limit the delta function that
fixes the partonic pair rapidity η̂ becomes independent of soft radiation, and
may be factored out of the phase space integral over the latter. This is true
at all orders in perturbation theory. One has:

ωab→cd (τ̂ ,∆η, η̂, αs(µ), µ/m̂) = δ (η̂) ωsing
ab→cd (τ̂ ,∆η, αs(µ), µ/m̂)

+ωreg
ab→cd (τ̂ ,∆η, η̂, αs(µ), µ/m̂) ,(3.16)

where all singular behavior near threshold is contained in the functions ωsing
ab→cd.

Threshold resummation addresses this singular part to all orders in the strong
coupling. All remaining contributions, which are subleading near threshold,
are collected in the “regular” functions ωreg

ab→cd. Specifically, for the NLO cor-
rections, one finds the following structure:

ωNLO
ab→cd (τ̂ ,∆η, η̂, µ/m̂) = δ (η̂)

[

ω
(1,0)
ab→cd(∆η, µ/m̂) δ(1− τ̂)

+ ω
(1,1)
ab→cd(∆η, µ/m̂)

(
1

1− τ̂

)

+

+ ω
(1,2)
ab→cd(∆η)

(
log(1− τ̂)

1− τ̂

)

+

]

+ωreg,NLO
ab→cd (τ̂ ,∆η, η̂, µ/m̂) , (3.17)

where the singular part near threshold is represented by the functions ω
(1,0)
ab→cd,

ω
(1,1)
ab→cd, ω

(1,2)
ab→cd, which are again functions of only ∆η, up to scale dependence.

The “plus”-distributions are defined by

∫ 1

x0

f(x) (g(x))+ dx ≡
∫ 1

x0

(f(x)− f(1)) g(x)dx− f(1)

∫ x0

0

g(x)dx . (3.18)

Appendix A describes the derivation of the coefficients ω
(1,0)
ab→cd, ω

(1,1)
ab→cd, ω

(1,2)
ab→cd

explicitly from a calculation of the NLO corrections near threshold. This will
serve as a useful check on the correctness of the resummed formula, and also
to determine certain matching coefficients.

As suggested above, the structure given in Eq. (3.17) is similar to that found
for the Drell-Yan cross section at NLO. A difference is that in the inclusive
Drell-Yan case one can integrate over all ∆η to obtain a total cross section.
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This integration is finite because the LO process in Drell-Yan is the s-channel
reaction qq̄ → ℓ+ℓ−. In the case of di-hadrons, the LO QCD processes also
have t as well as u-channel contributions, which cause the integral over ∆η to
diverge when the two hadrons are produced back-to-back with large mass, but
each parallel or anti-parallel to the initial beams. As a result, one will always
need to consider only a finite range in ∆η. This is, of course, not a problem
as this is anyway also done in experiment. It does, however, require a slightly
more elaborate analysis for threshold resummation, which we review below.

3.3 Threshold Resummation for Di-hadron Pairs

3.3.1 Hard Scales and Transforms

The resummation of the logarithmic corrections is organized in Mellin-N mo-
ment space [41]. In moment space, the partonic cross sections absorb loga-
rithmic corrections associated with the emission of soft and collinear gluons
to all orders. Employing appropriate moments, which we will identify shortly,
we will see that the convolutions among the different nonperturbative and
perturbative regions in the hadronic cross section decouple.

In terms of the dimensionless hard-scattering function introduced in Eq. (3.12)
the hadronic cross section in Eq. (3.5) becomes

M4dσ
H1H2→h1h2X

dM2d∆ηdη̄
=

∑

abcd

∫ 1

0

dxadxb dzc dzd f
H1
a (xa)f

H2
b (xb)

× zcD
h1
c (zc)zdD

h2
d (zd)ωab→cd

(

τ̂ ,∆η, η̂, αs(µ),
µ

m̂

)

, (3.19)

where for simplicity we have dropped the scale dependence of the parton
distributions and fragmentation functions. At lowest order, when the hard-
scattering function ωab→cd is given by Eq. (3.15), the cross section is found to
factorize under “double” moments [46, 47], a Mellin moment with respect to
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τ =M2/S and a Fourier moment in η̄ = η̂ + 1
2
ln(xa/xb):

∫ ∞

−∞

dη̄ eiνη̄
∫ 1

0

dτ τN−1M4dσ
H1H2→h1h2X

dM2d∆ηdη̄

∣
∣
∣
∣
∣
LO

=
∑

abcd

f̃H1
a (N + 1 + iν/2)f̃H2

b (N + 1− iν/2)D̃h1
c (N + 2)D̃h2

d (N + 2)

×
∫ ∞

−∞

dη̂ eiνη̂
∫ 1

0

dτ̂ τ̂N−1 δ (1− τ̂) δ (η̂)

(
αs(µ)

π

)2

ω
(0)
ab→cd(∆η) ,(3.20)

where the Mellin moments of the parton distributions or fragmentation func-
tions are defined in the usual way, for example

f̃Ha (N) ≡
∫ 1

0

xN−1fHa (x)dx . (3.21)

We note that instead of a combined Mellin and Fourier transform one may
equivalently use a suitable double-Mellin transform [48]. The last two integrals
in Eq. (3.20) give the combined Mellin and Fourier moment of the LO partonic
cross section. Because of the two delta-functions, they are trivial and just yield
the N and ν independent result (αs/π)

2ω
(0)
ab→cd(∆η). One might expect that

this generalizes to higher orders, so that the double moments

∫ ∞

−∞

dη̂ eiνη̂
∫ 1

0

dτ̂ τ̂N−1 ωab→cd

(

τ̂ ,∆η, η̂, αs(µ),
µ

m̂

)

(3.22)

would appear times moments of fragmentation functions. However, this is im-
peded by the presence of the renormalization/factorization scale µ which must
necessarily enter in a ratio with m̂ =M/

√
zczd. As a result of this dependence

on zc and zd, the moments D̃h1
c (N +2), D̃h2

d (N +2) of the fragmentation func-
tions will no longer be generated, and the factorized cross section does not
separate into a product under moments. Physically, this is a reflection of the
mismatch between the observed scale, the di-hadron mass M , and the unob-
served threshold scale at the hard scattering, m̂. Threshold logarithms appear
when ŝ approaches the latter scale, not the former. This implies that at fixed
M there is actually a range of hard-scattering partonic thresholds, extending
all the way from M at the lower end to

√
S at the upper. This situation is to

be contrasted to the Drell-Yan process or to di-jet production at fixed masses,
where the underlying hard scale is defined directly by the observable.

We will deal with the presence of this range of hard scales m̂ by car-
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rying out threshold resummation at fixed m̂ as well as at fixed factoriza-
tion/renormalization scale. For this purpose, we rewrite the cross section
(3.19) in a form that isolates the fragmentation functions:

M4dσ
H1H2→h1h2X

dM2d∆ηdη̄
=

∑

cd

∫ 1

0

dzc dzd zcD
h1
c (zc, µ) zdD

h2
d (zd, µ)

ΩH1H2→cd

(

τ ′,∆η, η̄, αs(µ),
µ

m̂

)

, (3.23)

where again τ ′ = m̂2/S = τ̂xaxb and ΩH1H2→cd is given by the convolution of
the parton distribution functions and ωab→cd:

ΩH1H2→cd

(

τ ′,∆η, η̄, αs(µ),
µ

m̂

)

=
∑

ab

∫ 1

0

dxa dxb f
H1
a (xa, µ) f

H2
b (xb, µ)

ωab→cd

(

τ̂ ,∆η, η̂, αs(µ),
µ

m̂

)

, (3.24)

with η̂ = η̄ − 1
2
ln(xa/xb) as before. At fixed final-state partonic mass m̂, the

function ΩH1H2→cd now has the desired factorization property under Fourier
and Mellin transforms:

∫ ∞

−∞

dη̄ eiνη̄
∫ 1

0

dτ ′ (τ ′)
N−1

ΩH1H2→cd

(

τ ′,∆η, η̄, αs(µ),
µ

m̂

)

=
∑

ab

f̃H1
a (N + 1 + iν/2, µ)f̃H2

b (N + 1− iν/2, µ)

× ω̃ab→cd

(

N, ν,∆η, αs(µ),
µ

m̂

)

, (3.25)

where

ω̃ab→cd

(

N, ν,∆η, αs(µ),
µ

m̂

)

≡
∫ ∞

−∞

dη̂ eiνη̂
∫ 1

0

dτ̂ τ̂N−1 ωab→cd

(

τ̂ ,∆η, η̂, αs(µ),
µ

m̂

)

.(3.26)

Through Eqs. (3.23)–(3.26) we have formulated the hadronic cross section in a
way that involves moment-space expressions for the partonic hard-scattering
functions, which may be resummed. Because the final-state fractions zi equal
unity at partonic threshold, the scale m̂ in the short-distance function may
be identified here with the final-state partonic invariant mass, up to correc-
tions that are suppressed by powers of N . For the singular, resummed short-
distance function we therefore do not encounter the problem with the moments
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discussed above in connection with Eq. (3.22).

3.3.2 Resummation at Next-to-Leading Logarithm

As we saw in Eq. (3.16), the singular parts of the partonic cross sections near
threshold enter with δ(η̂). This gives for the corresponding moment-space
expression

ω̃resum
ab→cd

(

N,∆η, αs(µ),
µ

m̂

)

=

∫ 1

0

dτ̂ τ̂N−1 ωsing
ab→cd

(

τ̂ ,∆η, αs(µ),
µ

m̂

)

. (3.27)

which is a function of N only, but not of the Fourier variable ν. Dependence
on the Fourier variable ν then resides entirely in the parton distributions. It
is this function, ω̃resum

ab→cd, that threshold resummation addresses, which is the
reason for the use of the label “resum” from now on.

The nature of singularities at partonic threshold is determined by the avail-
able phase space for radiation as τ̂ → 1. Denoting by kµ the combined mo-
mentum of all radiation, whether from the incoming partons a and b or the
outgoing partons c and d, one has

1− τ̂ = 1− (pc + pd)
2

(pa + pb)2
= 1− (pa + pb − k)2

(pa + pb)2
≈ 2k∗0√

s
, (3.28)

where k∗0 is the energy of the soft radiation in the c.m.s of the initial partons.
At partonic threshold, the cross section factorizes into “jet” functions as-

sociated with the two incoming and outgoing partons, in addition to an over-
all soft matrix, traced against the color matrix describing the hard scatter-
ing [20, 43]. Corrections to this factorized structure are suppressed by powers
of 1− τ̂ . The total cross section is a convolution in energy between these func-
tions, which is factorized into a product by moments in τ̂N ∼ exp[−N(1− τ̂ )],
again with corrections suppressed by powers of (1 − τ̂ ), or equivalently, pow-
ers of N . This result was demonstrated for jet cross sections in [43], and the
extension to observed hadrons in the final state was discussed in [49, 50]. The
resummed expression for the partonic hard-scattering function for the process
ab→ cd then reads [20, 43, 44, 80]:

ω̃resum
ab→cd

(

N,∆η, αs(µ),
µ

m̂

)

= ∆N+1
a

(

αs(µ),
µ

m̂

)

∆N+1
b

(

αs(µ),
µ

m̂

)

×Tr
{

HS†
NSSN

}

ab→cd

(

∆η, αs(µ),
µ

m̂

)

×∆N+2
c

(

αs(µ),
µ

m̂

)

∆N+2
d

(

αs(µ),
µ

m̂

)

.(3.29)
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Each of the functions Hab→cd, SN,ab→cd, Sab→cd in Eq. (3.29) is a matrix in a
space of color exchange operators [20, 43], and the trace is taken in this space.
Note that this part is the only one in the resummed expression Eq. (3.29)
that carries dependence on ∆η. The Hab→cd are the hard-scattering functions.
They are perturbative and have the expansion

Hab→cd

(

∆η, αs(µ),
µ

m̂

)

= H
(0)
ab→cd (∆η) +

αs(µ)

π
H

(1)
ab→cd

(

∆η,
µ

m̂

)

+O(α2
s) .

(3.30)

The LO (i.e. O(α2
s)) parts H

(0)
ab→cd are known [20, 43, 44], but the first-order

corrections have not been derived yet. We shall return to this point shortly.
The Sab→cd are soft functions. They depend on N only through the argument
of the running coupling, which is set to µ/N [20], and have the expansion

Sab→cd

(

∆η, αs,
µ

m̂

)

= S
(0)
ab→cd +

αs
π
S
(1)
ab→cd

(

∆η,
µ

Nm̂

)

+O(α2
s) . (3.31)

The N -dependence of the soft function enters the resummed cross section at
the level of next-to-next-to-leading logarithms. The LO terms S

(0)
ab→cd may also

be found in [20, 43, 44]. They are independent of ∆η.
The resummation of wide-angle soft gluons is contained in the Sab→cd, which

are exponentials and given in terms of soft anomalous dimensions, Γab→cd:

SN,ab→cd

(

∆η, αs(µ),
µ

m̂

)

= P exp

[

1

2

∫ m̂2/N̄2

m̂2

dq2

q2
Γab→cd

(
∆η, αs(q

2)
)

]

, (3.32)

where P denotes path ordering and where N̄ ≡ NeγE with γE is the Euler
constant. The soft anomalous dimension matrices start at O(αs),

Γab→cd (∆η, αs) =
αs
π

Γ
(1)
ab→cd (∆η) +O(α2

s) . (3.33)

Their first-order terms are presented in [20, 43, 44, 51].
The ∆N

i (i = a, b, c, d) represent the effects of soft-gluon radiation collinear
to an initial or final parton. Working in the MS scheme, one has [20, 41, 43,
44, 80]:

ln∆N
i

(

αs(µ),
µ

m̂

)

=

∫ 1

0

zN−1 − 1

1− z

∫ (1−z)2m̂2

m̂2

dq2

q2
Ai(αs(q

2))

+

∫ m̂2

µ2

dq2

q2

[

−Ai(αs(q2)) ln N̄ − 1

2
Bi(αs(q

2))

]

.(3.34)
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Here the functions Ai and Bi are perturbative series in αs,

Ai(αs) =
αs
π
A

(1)
i +

(αs
π

)2

A
(2)
i + . . . , (3.35)

and likewise for Bi. To NLL, one needs the coefficients [84]:

A
(1)
i = Ci , A(2)

a =
1

2
Ci

[

CA

(
67

18
− π2

6

)

− 5

9
Nf

]

,

B(1)
q = −3

2
CF , B(1)

g = −2πβ0 , (3.36)

where Nf is the number of flavors, and

Cq = CF =
N2
c − 1

2Nc

=
4

3
, Cg = CA = Nc = 3 ,

b0 =
11CA − 2Nf

12π
. (3.37)

The factors ∆N
i generate leading threshold enhancements, due to soft-collinear

radiation. We note that our expression for the ∆N
i differs by theN -independent

term proportional to B
(1)
i from that often used in studies of threshold resum-

mation (see, for example, Refs. [22, 80]). As was shown in [20, 43, 44], this
term is part of the resummed expression and exponentiates. In fact, the sec-
ond term on the right-hand-side of Eq. (3.34) contains the large-N part of the
moments of the diagonal quark and gluon splitting functions, matching the
full leading power µF -dependence of the parton distributions and fragmenta-
tion functions in Eqs. (3.23) and (3.25). We shall return to this point below.
Here, we note that the Born cross sections are recovered by computing the
following Tr{H(0)S(0)}ab→cd, which is proportional to the function ω

(0)
ab→cd(∆η)

introduced in Eq. (3.15). It is instructive to consider the expansion of the
trace part in Eq. (3.29) to first order in αs. One finds [52]:

Tr
{

HS†
NSSN

}

ab→cd
= Tr{H(0)S(0)}ab→cd

+
αs
π

Tr
{
−
[
H(0)(Γ(1))†S(0) +H(0)S(0)Γ(1)

]
ln N̄

+H(1)S(0) +H(0)S(1)
}

ab→cd
+O(α2

s) . (3.38)

When combined with the first-order expansion of the factors ∆N
i in Eq. (3.29),
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one obtains

ω̃resum
ab→cd

(

N,∆η, αs(µ),
µ

m̂

)

= Tr{H(0)S(0)}ab→cd

×
(

1 +
αs
π

∑

i=a,b,c,d

A
(1)
i

[
ln2 N̄ + ln N̄ ln(µ2/m̂2)

]

)

+
αs
π

Tr
{
−
[
H(0)(Γ(1))†S(0) +H(0)S(0)Γ(1)

]
ln N̄

+H(1)S(0) +H(0)S(1)
}

ab→cd
+O(α2

s) . (3.39)

This expression can be compared to the results of the explicit NLO calculation
near threshold given in Appendix A. This provides a cross-check on the terms
that are logarithmic in N , that is, singular at threshold. From comparison to
the part proportional to δ(1 − τ̂) in the NLO expression, one will be able to
read off the combination (H(1)S(0)+H(0)S(1)) in Eq. (3.39). This is, of course,
not sufficient to determine the full first-order matrices H(1) and S(1), which
would be needed to fully evaluate the trace part in in Eq. (3.29) to NLL. To
derive H(1) and S(1), one would need to perform the NLO calculation near
threshold in terms of a color decomposition [53], which is beyond the scope
of this work. Instead, we use here an approximation that has been made in
previous studies (see, for example, Ref. [30]),

Tr
{

HS†
NSSN

}

ab→cd
≈

(

1 +
αs
π
C

(1)
ab→cd

)

Tr
{

H(0)S†
NS

(0)SN
}

ab→cd
(3.40)

where

C
(1)
ab→cd (∆η, µ/m̂) ≡

Tr
{
H(1)S(0) +H(0)S(1)

}

ab→cd

Tr {H(0)S(0)}ab→cd

(3.41)

are referred to as “C-coefficients”. The coefficients we obtain for the various
partonic channels are given in Appendix B. The approximation we have made
becomes exact if only one color configuration contributes or if all eigenvalues
of the soft anomalous dimension matrix are equal. By construction, it is also
correct to first order in αs.

We now turn to the explicit NLL expansions of the ingredients in the
resummed partonic cross section. For the function ∆N

i in Eq. (3.34) one finds:

ln∆N
i

(

αs(µ),
µ

m̂

)

= h
(1)
i (λ) ln N̄ + h

(2)
i

(

λ, αs(µ),
µ

m̂

)

+ ln Ei
(

λ, αs(µ),
µ

m̂

)

,

(3.42)
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where λ = b0αs(µ) ln N̄ and the functions h
(1)
i , h

(2)
i , ln(Ei) are given by

h
(1)
i (λ) =

A
(1)
i

2πβ0λ
(2λ+ ln(1− 2λ)) ,

h
(2)
i

(

λ, αs(µ),
µ

m̂

)

=
2λ+ ln(1− 2λ)

2πb0

(

A
(1)
i b1
b20

− A
(2)
i

πβ0
− A

(1)
i ln

µ2

m̂2

)

+
A

(1)
i b1

4πβ03
ln2(1− 2λ) +

B
(1)
i

2πβ0
ln(1− 2λ) ,

ln Ei
(

λ, αs(µ),
µ

m̂

)

=
1

πβ0

(

−A(1)
i ln N̄ − 1

2
B

(1)
i

)

×
[

ln(1− 2λ)− β0αs(µ) ln
µ2

m̂2

]

. (3.43)

We note that we have written Eq. (3.42) in a “non-standard” form that is
actually somewhat more complex than necessary. For example, one can im-
mediately see that the terms proportional to B

(1)
i ln(1 − 2λ) cancel between

the functions h
(2)
i and ln(Ei), as they must because they were not present in

the ∆N
i in Eq. (3.34) in the first place. The term proportional to ln(µ2/m̂2)

in ln(Ei) is the expansion of the second term in Eq. (3.34). Its contribution

involving B
(1)
i does not carry logarithmic dependence on N and would nor-

mally be part of the “C-coefficients” discussed above. The term proportional
to ln(1− 2λ) in ln(Ei) has been separated off the first term in Eq. (3.34). Our
motivation to use this form of Eq. (3.42) is that the piece termed ln(Ei) may be
viewed as resulting from a large-N leading-order evolution of the correspond-
ing parton distribution or fragmentation function between scales m̂/N̄ and the
factorization scale µF (we remind the reader that we have set the factoriza-
tion and renormalization scales equal and denoted them by µ). As mentioned

earlier, the factors (−2A
(1)
i ln N̄ − B

(1)
i ) correspond to the moments of the

flavor-diagonal splitting functions, PN
ii , while the term in square brackets is a

LO approximation to

β0

∫ m̂2/N̄2

µF

dq2

q2
αs(q

2) . (3.44)

Therefore, it is natural to identify [54]

Ei
(

λ, αs(µ),
µ

m̂

)

f̃Hi (N, µ) ↔ f̃Hi (N, m̂/N̄) , (3.45)

that is, the exponential related to Ei evolves the parton distributions from
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the factorization scale to the scale m̂/N̄ , and likewise for the fragmentation
functions. At the level of diagonal evolution, it makes of course no difference
if ln(Ei) is used to evolve the parton distributions or if it is just added to the

function h
(2)
i . However, as was discussed in [54, 55], one can actually promote

the diagonal evolution expressed by Ei to the full singlet case by replacing
the term (−2A

(1)
i ln N̄ − B

(1)
i ) by the full matrix of the moments of the LO

singlet splitting functions, P
(1),N
ij , so that E itself becomes a matrix. Using

this matrix in Eq. (3.42) instead of the diagonal Ei, one takes into account
terms that are suppressed as 1/N or higher. In particular, one resums terms
of the form αks ln

2k−1 N̄/N to all orders in αs [55]. We will mostly stick to
the ordinary resummation based on a diagonal evolution operator Ei in this
paper. However, as we shall show later in one example, the subleading terms
taken into account by implementing the non-diagonal evolution in the parton
distributions and fragmentation functions can actually be quite relevant in
kinematic regimes where one is further away from threshold. Here we will
only take the LO part of evolution into account, extension to NLO is possible
and has been discussed in [54].

For a complete NLL resummation one also needs the expansion of the
integral in Eq. (4.16), which leads to

lnSN,ab→cd

(

∆η, αs(µ),
µ

m̂

)

=
ln(1− 2λ)

2πb0
Γ
(1)
ab→cd (∆η) . (3.46)

As in [22], we perform the exponentiation of the matrix on the right-hand-side
numerically, by iterating the exponential series to an adequately large order.

3.3.3 Inverse of the Mellin and Fourier Transform

As we have discussed in detail, the resummation is achieved in Mellin moment
space. In order to obtain a resummed cross section in τ space, one needs an
inverse Mellin transform, accompanied by an inverse Fourier transform that
reconstructs the dependence on η̄. The Mellin inverse requires a prescription
for dealing with the singularity in the perturbative strong coupling constant
in Eqs. (3.34),(4.16) or in the NLL expansions, Eqs. (3.42),(3.43). We will
use the Minimal Prescription developed in Ref. [87], which relies on use of the
NLL expanded forms Eqs. (3.42),(3.43), and on choosing a Mellin contour in
complex-N space that lies to the left of the poles at λ = 1/2 and λ = 1 in the
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Mellin integrand. From Eqs. (3.25) and (3.26), we find

Ωresum
H1H2→cd

(

τ ′,∆η, η̄, αs(µ),
µ

m̂

)

=
1

2π

∫ ∞

−∞

dν e−iνη̄
∫ CMP+i∞

CMP−i∞

dN

2πi
(τ ′)

−N

×
∑

ab

f̃H1
a (N + 1 + iν/2, µ)f̃H2

b (N + 1− iν/2, µ)

×ω̃resum
ab→cd

(

N, ν,∆η, αs(µ),
µ

m̂

)

, (3.47)

where the Mellin contour is chosen so that b0αs(µ
2
R) lnCMP < 1/2, but all

other poles in the integrand are as usual to the left of the contour. The re-
sult defined by the minimal prescription has the property that its perturbative
expansion is an asymptotic series that has no factorial divergence and there-
fore no “built-in” power-like ambiguities [87]. Power corrections may then be
added as phenomenologically required. For most of our discussion below, the
resummed short-distance function ω̃resum

ab→cd is specified directly by Eqs. (3.42)
and (3.43). When we refer to “full singlet evolution”, however, we make the
identification in Eq. (3.45), and evolve the parton distributions and fragmen-
tation functions to scale m̂/N̄ . In this case the exponential in ω̃resum

ab→cd is found

from the h
(1)
i and h

(2)
i terms only in Eq. (3.42).

We note that the parton distribution functions in moment space fall off with
an inverse power of the Mellin moment, typically as 1/N4 or faster. This helps
very significantly to make the inverse Mellin integral in Eq. (3.47) numerically
stable. In particular, the resulting functions Ωresum

H1H2→cd are very well-behaved at
high τ ′. This would be very different if one were to invert just the resummed
partonic cross sections ω̃resum

ab→cd and attempt to convolute the result with the
parton distributions. The good behavior of the Ωresum

H1H2→cd makes it straight-
forward numerically to insert them into Eq. (3.23), where they are convoluted
with the fragmentation functions in terms of momentum fractions z at fixed
rapidities. At this stage, it is straightforward to impose cuts in the trans-
verse momenta and rapidities of the observed particles. This gives the final
hadronic cross section M4dσH1H2→h1h2X/dM2d∆ηdη̄. We note that because of
the presence of the Landau pole and the definition of the Mellin contour in the
minimal prescription, the inverted Ωresum

H1H2→cd has support at τ ′ > 1, where it
is however decreasing exponentially with τ ′. The numerical contribution from
this region is very small (less than 1%) for all of the kinematics relevant for
phenomenology.

When performing the resummation, one of course wants to make full use
of the available fixed-order cross section, which in our case is NLO (O(α3

s)).
Therefore, a matching to this cross section is appropriate, which may be

38



achieved by expanding the resummed cross section to O(α3
s), subtracting the

expanded result from the resummed one, and adding the full NLO cross sec-
tion. Schematically:

dσmatch =

(

dσresum − dσresum
∣
∣
∣
O(α3

s)

)

+ dσNLO . (3.48)

In this way, NLO is taken into account in full, and the soft-gluon contribu-
tions beyond NLO are resummed to NLL. Any double-counting of perturbative
orders is avoided.

3.4 Phenomenological Results

We now compare our resummed calculations to experimental di-hadron pro-
duction data given as functions of the pair mass, M . These are available
from the fixed-target experiments NA24 [34] (pp scattering at beam energy
Ep = 300 GeV), E711 [35] (protons with Ep = 800 GeV on Beryllium), and
E706 [36] (pp and pBe with Ep = 500 and 800 GeV), as well as from the
ISR pp collider experiment CCOR [37] which produced data at

√
S = 44.8

and 62.4 GeV. The data sets refer to a π0π0X final state, with the excep-
tion of E711, which measured the final states h+h+X , h−h−X , h+h−X with
h summed over all possible hadron species. When presenting our results for
this data set, we will follow [39] to consider for simplicity only the summed
charged-hadron combination (h++h−)(h++h−)X . For this combination also
the information on the fragmentation functions is more reliable than for indi-
vidual charge states.

In each of the experimental data sets, kinematic cuts have been applied.
These are variously on the individual hadron transverse momenta pT,i or ra-
pidities ηi, or on variables that are defined from both hadrons, cos θ∗, Y , ppairT .
Here cos θ∗ is the mean of the cosines of the angles between the observed
hadron directions and the closest beam directions, in a frame where the pro-
duced hadrons have equal and opposite longitudinal momenta, pT,1 sinh η1 =
−pT,2 sinh η2 [34–37, 39]. This system approximately coincides with the par-
tonic c.m.s. In terms of the observed transverse momenta and rapidity differ-
ence one has:

cos θ∗ =
1

2

(
pT,1

pT,2 + pT,1 cosh(2∆η)
+

pT,2
pT,1 + pT,2 cosh(2∆η)

)

sinh(2∆η) .

(3.49)
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Furthermore, Y is the rapidity of the pion pair,

Y =
1

2
ln

(
κ0 + κ3

κ0 − κ3

)

= η̄ − 1

2
ln

(
pT,1 e

−∆η + pT,2 e
∆η

pT,1 e∆η + pT,2 e−∆η

)

, (3.50)

where κ = K1+K2 is the pair’s four-momentum and where the second equality
in terms of ∆η, η̄ and the hadron transverse momenta pT,i holds for LO kine-
matics as appropriate in the threshold regime. Finally, ppairT is the transverse
momentum of the pion pair,

ppairT = |pT,1 + pT,2| = |pT,1 − pT,2| , (3.51)

where again the second equality holds to LO. Thanks to our way of organiz-
ing the threshold resummed cross section, inclusion of cuts on any of these
variables is straightforward.

In all our calculations, we use the CTEQ6M5 set of parton distribution
functions [56], along with its associated value of the strong coupling constant.
We also use the “de Florian-Sassot-Stratmann” (DSS) fragmentation func-
tions [57]. We choose for our calculations the renormalization and factoriza-
tion scales to be equal, and we give them the values M and 2M , in order
to investigate the scale dependence of the results. One expects that a natu-
ral scale choice would be offered by the hard scale in the partonic scattering,
which is O(m̂). Because of the relation M = m̂

√
zczd, the scale M is actually

significantly lower than m̂, typically by a factor 2. Our scale choices ofM and
2M therefore roughly correspond to scales m̂/2 and m̂, and we refrain from
using a scale lower than µ = M since this would correspond to a rather low
scale at the partonic hard scattering.

Figure 3.1 shows the comparison to the NA24 [34] data for pp → π0π0X
at

√
S = 23.7 GeV. The cuts employed by NA24 are | cos θ∗| < 0.4, average

over |Y | < 0.35, and ppairT < 1 GeV. We start by comparing the full NLO cross
section to the first-order expansion of the resummed expression, that is, the
last two terms in Eq. (3.48). This will help to gauge to what extent the soft-
gluon terms constitute the dominant part of the cross section, so that their
resummation is reliable. It turns out that the two terms agree to a remarkable
degree. The dashed lines in Fig. 3.1 show the NLO cross section for scales
2M (lower) and M (upper), while the crosses give the NLO expansion of the
resummed cross section. Their difference actually never exceeds 1% for the
kinematics relevant for NA24. The solid lines in the figure present the full,
and matched, resummed results, including “C-coefficients” implemented as
described in Sec. 3.3.2 (see Eq. (3.41)). One can see that resummation leads
to a very significant enhancement of the theoretical prediction. A very good
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Figure 3.1: Comparison of the NLO (dashed) and resummed (solid) calcula-
tions to the NA24 data [34], for two different choices of the renormalization
and factorization scales, µ =M (upper lines) and µ = 2M (lower lines). The
crosses display the NLO O(αs) expansion of the resummed cross section.

Figure 3.2: Same as Fig. 3.1, but for charged-hadron production for pp scat-
tering at

√
S = 38.8 GeV and with cuts appropriate for comparison to E711.

The data are from [35].
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description of the NA24 data [34] is obtained, much better than for the NLO
calculation which falls short of the data unless rather low renormalization and
factorization scales are used. Also the scale dependence of the calculated cross
section is much reduced by resummation.

We next turn to the cross section for charged-hadron production, pBe →
h±h±X , measured by E711 [35] at

√
S = 38.8 GeV. We recall that we sum over

the charges of the produced hadrons. The cuts applied by E711 were pT,i >
2 GeV, and average over −0.4 < |Y | < 0.2. The cut on the individual hadron
transverse momenta is, in fact, irrelevant for the values of M considered here.
Furthermore, as stated in their Fig. 6 [35] for the pair mass distribution we
apply ppairT < 2 GeV, and 0.1 < | cos θ∗| < 0.25. Figure 3.2 shows the data and
our results. As before, the agreement between NLO and the NLO expansion
of the resummed calculation is excellent. Again, resummation leads to an
increase of the predicted cross section and a reduction of scale dependence.
Even though the resummed result agrees with the data much better than the
NLO one for the scale we have chosen, it tends to lie somewhat above the
data, in particular at the highest values ofM . Keeping in mind the results for
NA24, one may wonder if this might be in part related to the fragmentation
functions for summed charged hadrons, which are probably slightly less well
understood than those for pions, due to the contributions from the heavier
kaons and, in particular, baryons.

Figures 3.3 and 3.4 show the comparison of our results to the E706 data sets
for neutral pion pair production in pp and pBe scattering at

√
S = 38.8 GeV

(800 GeV beam energy), respectively. We do not take into account any nuclear
effects for the Beryllium nucleus, except for the trivial isospin one. This has a
very minor effect on the cross section, compared to pp. E706 used cuts fairly
different from those applied in the data we have discussed so far. There were
no explicit cuts on cos θ∗, ppairT or Y , but instead cuts pT,i > pcutT = 2.5 GeV and
either −1.05 < ηi < 0.55 (for the

√
S = 38.8 GeV data) or −0.8 < ηi < 0.8

(for the
√
S = 31.6 GeV data) on the transverse momenta and rapidities of

the individual pions. The cut on transverse momentum, in particular, has
a strong influence at the lower M : in a rough approximation, it leads to a
kinematic limit M ∼ 2pT,i > 5 GeV, so that the cross section has to decrease
very rapidly once one decreases M toward 5 GeV. This behavior is indeed seen
in the figures.

As in the previous cases, the NLO expansion of the resummed and the full
NLO cross section agree extremely well, typically to better than 2%. For the
two scales we have chosen, the NLO cross sections fall well short of the data. It
was noted in [39, 40] that in order for NLO to match the data, very low scales
of µ = 0.35M have to be chosen. The resummed cross section, on the other
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hand, has much reduced scale dependence and describes the data very well for
the more natural scales M and 2M , except at the lower M where the cut pcutT

on the pT,i becomes relevant. One observes that the data extend to lower M
than the theoretical cross section, which basically cuts off at M = 5 GeV as
discussed above. A new scale becomes relevant here, the difference |M−2pcutT |.
Higher order effects associated with this scale (which are different from the ones
addressed by threshold resummation) and/or non-perturbative effects such as
intrinsic transverse momenta [36] probably control the cross section here. It
is also instructive to see that the cross section is very sensitive to the actual
value of the cut on the pT,i. In Fig. 3.5 we show the resummed results for
scale µ = 2M for pT,i > 2.5 GeV (as before) and pT,i > 2.2 GeV. One can
see that with the lower cut the data are much better described. Experimental
resolution effects might therefore have a significant influence on the comparison
between data and theory here.

In order to check consistency, E706 also presented their pBe data set at√
S = 38.8 GeV when the E711 cuts were applied instead of the E706 default

ones. These data are found in [36]. Figure 3.6 shows the comparison for this
case. One can see the same trends as before. Clearly, the description of the
data by the resummed calculation is excellent. For this set of cuts, the cross
section is not forced to turn down by kinematics at the lower M , and theory
and data agree well everywhere. Figures 3.7 and 3.8 show results corresponding
to Figs. 3.3, 3.4, but for the lower beam energy, 530 GeV, employed by E706
(
√
S = 31.6 GeV).
We finally turn to the data sets available at the highest energy, which are

from the CCOR experiment at the ISR [37]. Two data set are available, at√
S = 44.8 GeV and 62.4 GeV. The cuts employed by CCOR were identical

to those of NA24, | cos θ∗| < 0.4, average over |Y | < 0.35, and ppairT < 1 GeV.
Figure 3.9 shows our results at

√
S = 44.8 GeV. The resummed calculation

again shows decreased scale dependence and describes the data much better
than the NLO one. At the lower values of M , it does show a tendency to
lie above the data. Barring any issue with the data (which appear to have a
certain unexpected “shoulder” aroundM = 10 GeV or so), this might indicate
that one gets too far from threshold for resummation to be very precise. On
the other hand, the agreement between full NLO and the NLO expansion of
the resummed cross section still remains very good, as can be seen from the
figure. The trend for resummation to give results higher than the data becomes
more pronounced at the higher energy,

√
S = 62.4 GeV, as Fig. 3.10 shows.

Although not easily seen from the figure, the NLO expansion of the resummed
cross section starts to deviate more from the full NLO cross section than at
the lower energies. At the lowerM shown, it can be higher by up to 7%, which
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Figure 3.3: Same as Fig. 3.1, but with cuts appropriate for comparison to E706
at

√
S = 38.8 GeV. The data are from [36].

Figure 3.4: Same as Fig. 3.3, but for proton-Beryllium scattering.
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Figure 3.5: Resummed cross section for scale µ = 2M and pT,i > 2.2 GeV
(dashed), compared to the one with pT,i > 2.5 GeV shown previously in Fig. 3.4
(solid).

Figure 3.6: Comparison to E706 data with a different set of cuts, corresponding
to the ones applied by E711. The data with these cuts are from [36].
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Figure 3.7: Same as Fig. 3.3, but at
√
S = 31.6 GeV.

Figure 3.8: Same as Fig. 3.4, but at
√
S = 31.6 GeV.
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is still a relatively minor deviation, but could be indicative of the reason why
the resummed result is high as well.

Clearly, any deviation between the full NLO cross section and the NLO
expansion of the resummed one is due to terms that are formally suppressed
by an inverse power of the Mellin moment N near threshold. It is therefore
interesting to explore the likely effects of such terms. This can be done by
promoting the LO anomalous dimension in the evolution part in Eq. (3.42)
from its diagonal form to the full one, as described in Sec. 3.3.2:

− 2A
(1)
i ln N̄ − B

(1)
i → P

(1),N
ij , (3.52)

which includes the subleading terms in 1/N and full singlet mixing. For sim-
plicity, we perform this modification only for the lowest order part of evolution,
as indicated in Eqs. (3.43) and (3.52). The results obtained in this way are
shown in Fig. 3.11. One can see that the resummed result obtained in this
way indeed decreases significantly with respect to the one in Fig. 3.10 which
was based on the diagonal evolution only, and is much closer to the data. At
the same time, the agreement between the NLO cross section and the O(αs)
expanded resummed result becomes as good as what we encountered in the
fixed-target case. Figure 3.12 presents the corresponding result for the case of
NA24. Comparison with Fig. 3.1 shows that the effect of the subleading terms
is much smaller here, as expected from the fact that one is closer to threshold
in the case of NA24. Nonetheless, the effects lead to a slight further improve-
ment between the resummed calculation and the data. In particular, they give
the theoretical result a somewhat flatter behavior, which follows the trend of
the data more closely overall. While the implementation of subleading terms
in this way will require further study, this appears to be a promising approach
for extending the applicability of threshold resummation into regimes where
one is relatively far away from threshold.

That said, we remind the reader that already in the part that is leading
near threshold we have made the approximation in Eq. (3.41) for our “C-
coefficients”. This, too, will need to be improved in the future, by taking into
account the full color structure of the hard scattering function beyond LO, as
we discussed in Sec. 3.3.2. To give a somewhat extreme example of the effects
generated by the C-coefficients, we have re-computed the resummed cross
section for the case of CCOR at

√
S = 62.4 GeV, but leaving out all effects of

the the coefficients beyond NLO. In other words, we leave out the C-coefficients
in the first two terms on the right-hand-side of Eq. (3.48), keeping them of
course in dσNLO. This is likely not a good approximation of the beyond-NLO
hard coefficients, because the C

(1)
ab→cd have π2 terms and logarithms in the

renormalization scale µ that are independent of the color channel and truly
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Figure 3.9: Comparison of the NLO (dashed) and resummed (solid) calcula-
tions to the CCOR data [34] at

√
S = 44.8 GeV, for two different choices of

the renormalization and factorization scales, µ =M (upper lines) and µ = 2M
(lower lines). The crosses display the NLO O(αs) expansion of the resummed
cross section.

Figure 3.10: Same as Fig. 3.9, but for
√
S = 62.4 GeV.
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Figure 3.11: Same as Fig. 3.10, but extending the diagonal evolution in the
resummed formula to included subleading terms and singlet mixing, as shown
in Eq. (3.52).

Figure 3.12: Same as Fig. 3.11, but for the case of NA24.
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enter in the form given in Eq. (3.41). Some of these are in fact even known
to exponentiate [20, 43, 44, 52, 58]. In any case, the result of this exercise is
shown in Fig. 3.13, where it is also compared to our earlier calculation that
included the C-coefficients in the way discussed in Sec. 3.3.2. One can see that
there is a sizable numerical difference, and that the scale dependence of the
resummed result without the beyond-NLO C-coefficients becomes significantly
worse.

We finally turn to the distribution in cos θ∗, defined in Eq. (3.49), for which
most of the experiments mentioned above have presented data as well. In fact,
the CCOR data [37] for this observable were instrumental in establishing the
QCD hard-scattering nature of pp interactions [59]. From the point of view
of threshold resummation, the distribution in cos θ∗ may appear somewhat
less interesting than the pair mass one, since the threshold logarithms arise in
1− τ̂ = 1− m̂2/ŝ, regardless of cos θ∗. In addition, the cos θ∗ distributions are
presented as normalized distributions of the form

dσ/d cos θ∗

dσ/d cos θ∗|cos θ∗=0

, (3.53)

so that the main enhancement generated by threshold resummation is expected
to cancel. Nonetheless, as we have seen in Sec. 3.3.2, the resummed expressions
do contain additional dependence on ∆η beyond that present in the Born
cross sections, which will affect the cos θ∗ distribution at higher orders. This
is visible from the soft part in Eq. (3.46) and also from the “C-coefficients”
in Eq. (3.41). Rather than going through an exhaustive comparison to all
the available data, we just consider one example that is representative of the
effects of threshold resummation on the cos θ∗ distribution. Figure 3.14 shows
the normalized distribution for the E711 case, where we have again summed
over all charge states of the produced hadrons. The dashed lines show the
NLO result calculated again with the code of [39], for scales µ = 2M and
µ = M . One can see that for these scales the NLO calculation is lower than
the data for higher values of cos θ∗. The dot-dashed lines in Fig. 3.14 show
the resummed results for scales µ = 2M and µ = M . These show a steeper
rise with cos θ∗ and describe the data better than NLO for the scales shown.
However, they still tend to lie below the data at higher values of cos θ∗. As
was suggested in [37, 39, 40], for the cos θ∗ distribution the hard scale in the
partonic process will itself be a function of cos θ∗, so that it is more natural
to choose a factorization/renormalization scale that reflects this feature. We
therefore present our resummed results also for scales µ = 2M∗ and µ = M∗,
whereM∗2 =M2(1−cos θ∗) which is proportional to the Mandelstam variable
t̂ in the partonic process. One observes that with these scale choices a very
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good description of the data is achieved. We note that in the NLO calculations
presented in Refs. [39, 40] the scale was chosen proportional to the (average)
transverse momenta of the produced hadrons, which for given M also depend
on cos θ∗. This resulted in a satisfactory description of the data, when scales
effectively a factor two smaller than our M∗ were used. Overall, the trend
for the resummed cos θ∗ distribution to lie higher than NLO and be in better
agreement with the data is found to be a generic feature that occurs as well
for the cases of the other experiments.

3.5 Conclusions

We have investigated the effects of next-to-leading logarithmic threshold re-
summation on the cross section for di-hadron production in hadronic collisions,
H1H2 → h1h2X , for a range of invariant masses of the produced hadron pair.
We have developed techniques to implement the resummation formalism at
fixed rapidities for the produced hadrons and for all relevant experimental
cuts. Extensions of these techniques to the level of next-to-next-lo-leading
logarithms should be relatively straightforward in light of the close relation
between the one- and two-loop soft anomalous dimension matrices [60].

For the fixed target and collider data studied here, the one-loop expansions
of our resummed expressions approximate the corresponding exact one-loop
cross sections excellently, to the level of a few percent and often less. In addi-
tion, with scales chosen to match the underlying hard scattering, the matched
resummed cross sections typically explain the available data better than do
NLO expressions at similar scales, with significantly reduced scale dependence.

An important extension of these methods will be in the production and
fragmentation of heavy quarks and in jet cross sections, where similar resum-
mation methods are applicable. Given the reduction in scale dependence, this
could provide an improved control over Standard Model tests and backgrounds
in new physics searches.

In the next chapter we study the effects of resummation in top anti-top
production. We take a special look at a particular observable, the charge
asymmetry in top anti-top production.
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Figure 3.13: Resummed results for the case of CCOR at
√
S = 62.4 GeV.

The solid lines show the results for scales M and 2M shown previously in
Fig. 3.10, while the dashed ones were obtained by neglecting the contributions
by the C

(1)
ab→cd coefficients beyond NLO.

Figure 3.14: Normalized distribution in cos θ∗ (see (3.53)) for the case of
charged-hadron production at E711. Dashed is NLO, while the dot-dashed and
solid lines show resummed results. For the latter we have also used the scales
µ =M∗ and µ = 2M∗, where M∗2 =M2(1− cos θ∗).
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Chapter 4

Charge Asymmetry in Top

Production

4.1 Introduction

Heavy quark pair production in hadronic collisions is important both for ac-
curate tests of the Standard Model and in searches for New Physics. Thanks
to the large scale set by the mass of the heavy quark, one can often use QCD
perturbation theory in obtaining predictions for heavy-flavor production, em-
ploying the factorization of the hadronic cross section into parton distribution
functions and perturbative short-distance cross sections.

Top quark production may provide an arena for testing possible exten-
sions of the Standard Model [62–65]. One particularly interesting observable
in tt̄ production that has been considered in this context [66, 67] is the charge
asymmetry (or, forward-backward asymmetry), which is obtained by compar-
ing the rate for producing a top quark at a given angle to that for producing
an anti-top at the same angle. Electro-weak processes, as well as processes in
many extensions of the Standard Model, may produce a charge asymmetry at
Born level. QCD, on the other hand, being a purely vector theory, does not
produce a charge asymmetry in the lowest-order (LO) processes qq̄ → tt̄ and
gg → tt̄. The charge asymmetry thus has the potential of probing or constrain-
ing possible tree-level axial couplings of the gluon [66, 67] at the Tevatron or
the LHC.

Starting at order α3
s, however, QCD itself contributes to the charge asym-

metry, through qq̄ annihilation qq̄ → tt̄(g) and flavor excitation, qg → q tt̄ [68].
This happens through diagrams in which two separate fermion lines (one of
them the top quark line) are connected by three gluons. This phenomenon,
which is also well-known in QED [69], enters with the combination dabcd

abc of
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the symmetric QCD structure constants. The same mechanism for light flavors
has been found to generate a strange quark s − s̄ asymmetry in the nucleon
sea [70]. The charge asymmetric part is contained in the full next-to-leading
order (NLO, O(α3

s)) calculations of the differential heavy-flavor production
cross section [71–73]. Since this is the order at which the effect arises for the
first time, we will usually refer to the charge asymmetric part arising at O(α3

s)
as LO. There have been detailed calculations and phenomenological studies of
the QCD top quark charge asymmetry at the Tevatron (or the LHC), both
for the inclusive case, pp̄ → tt̄X [67, 74], and for associated-jet final states,
pp̄ → tt̄ jetX [75, 76]. In particular, Ref. [76] provides the full NLO (O(α4

s))
corrections to pp̄→ tt̄ jetX .

Very recently, first measurements of top quark charge asymmetries have
been reported by the Tevatron collaborations [77, 78]. In the inclusive case,
asymmetries of 12± 8 (stat.)± 1(syst.)% and 23± 12 (stat.)± 6(syst.)% were
found by D0 [77] and CDF [78], respectively. Even though experimental un-
certainties are evidently still large, this is a very encouraging first step that
motivates further theoretical investigations. In the present paper we improve
the theoretical framework for the case of the inclusive charge asymmetry by
examining the effects of QCD threshold resummation. This will provide in-
sight into the important question of how robust the asymmetry is with respect
to higher order QCD corrections. Our study requires us to implement NLL
resummation in heavy quark production at fixed angle and rapidity [20, 21].
Earlier phenomenological studies of the threshold-resummed tt̄ cross section,
which however did not focus on the charge asymmetry, may be found in [79–
82].

As is well-known, when the initial partons have just enough energy to
produce a tt̄ pair, the phase space available for gluon bremsstrahlung nearly
vanishes, giving rise to large logarithmic corrections to the partonic cross sec-
tion. For example, if we consider the cross section for tt̄ production at fixed
pair invariant mass, this partonic threshold is reached when the pair invari-
ant mass equals the partonic center of mass (c.m.) energy, M2

tt̄ = s. At
the nth order of perturbation theory, the large threshold corrections arise
as α2+n

s [logm(1− τ̂)/(1− τ̂)]+ with m ≤ 2n − 1, where τ̂ = M2
tt̄/s and the

“+”-distribution will be reviewed below. The maximum value, m = 2n − 1
corresponds to the leading logarithms (LL), m = 2n − 2 to next-to-leading
logarithms (NLL), and so forth. Near threshold, the perturbative calculation
produces potentially large corrections at all orders in the strong coupling, αs.
These corrections are addressed by threshold resummation. This is particu-
larly relevant for the Tevatron case, where the hadronic c.m. energy is not
too much larger than twice the top mass, 2mt, so that τ̂ is on average rather
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close to unity. Related considerations also apply at the LHC when the pair is
produced with M2

tt̄ ≫ 4m2
t .

For heavy quark production, threshold resummation has been derived to
NLL accuracy [20, 80]. The results of [20] have been presented for arbitrary
c.m. scattering angle of the produced top quark, which makes it possible to
obtain a resummed charge asymmetry from them. Among the processes that
contribute to the charge asymmetry, only qq̄ annihilation contains threshold
logarithms, while the flavor excitation qg process is suppressed near threshold.
As we shall discuss in some detail, it turns out that the leading logarithms in
the charge asymmetric part of qq̄ annihilation cancel at O(α3

s). This is because
the charge asymmetric part is a difference of cross sections with the top or
the anti-top produced at a certain angle, and the leading logarithms enter in
association with the O(α2

s) qq̄ → tt̄ Born process, which is charge symmetric.
We shall return to this point below, and will find that beyond O(α2

s) the
charge asymmetric cross section is enhanced by the same threshold logarithms
as the symmetric one. We also note that the gg fusion process is charge
symmetric to all orders; nonetheless its resummation can be relevant also for
the charge asymmetry as it contributes to the denominator of the asymmetry
and may thus dilute it somewhat. This effect does not lead to significant
suppression, however, because of the higher-order threshold enhancements to
the asymmetric cross section, which we will exhibit below.

The remainder of this chapter is organized as follows. In Sec. 4.2 we give
the basic formulas associated with the charge asymmetry and discuss the near-
threshold behavior at O(α2

s). In Sec. 3 we present the relevant expressions for
the NLL resummed tt̄ cross section as a function of the tt̄ pair invariant mass
and the top c.m. scattering angle. Section 4 presents our phenomenological
results for Tevatron kinematics, and we summarize our findings in Sec. 5.

4.2 Perturbative Cross section, and Charge

Asymmetry

We consider inclusive tt̄ production in hadronic collisions,

HA(PA) +HB(PB) → t(pt)t̄(pt̄) +X(pX), (4.1)

where we have indicated the momenta. We introduce the invariant mass
squared of the tt̄ pair: M2

tt̄ = (pt + pt̄)
2, and the variable τ ≡ M2

tt̄/S with
S = (PA + PB)

2. The factorized cross-section for the process is written in
terms of convolutions of parton distributions fHA

a and fHB

b for partons a,b
in hadrons HA, HB, respectively, with perturbative partonic hard-scattering
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cross-sections σ̂ab:

d2σHAHB→tt̄X

dM2
tt̄ d cos θ

=
∑

ab

∫ 1

0

dxa

∫ 1

0

dxb f
HA
a (xa, µ

2)fHB

b (xb, µ
2)

×1

s

d2σ̂ab(τ̂ , cos θ, µ
2/s)

dτ̂ d cos θ
, (4.2)

where the sum runs over all partonic subprocesses that produce top quark
pairs. We have introduced the partonic variable τ̂ = M2

tt̄/s = τ/xaxb. We
define θ as the production angle of the top quark in the partonic center-of-
mass frame. We note from the outset that this is not the definition adopted
in the Tevatron experiments, where the asymmetry is considered as a function
of the rapidity difference ∆yt of the t and t̄. However, for LO kinematics, the
two definitions are directly related through [78] tanh(∆y/2) = β cos θ, with
β =

√

1− 4m2
t/s the top quark velocity. As the partonic threshold regime

is characterized by LO kinematics, we expect our resummed results below to
be very faithful representations also of the effects expected for the Tevatron
definition (see also [67]). In fact, we have found that for quantities integrated
over angle the charge asymmetries for the two definitions agree at the level of
about 2% or better. The integration limits in Eq. (4.2) are determined by the
conditions [81] s ≥M2

tt̄ ≥ 4m2
t/(1−β2 cos2 θ). Finally, the scale µ denotes the

factorization and renormalization scales, which we take to be equal throughout
this study.

We next define the charge-asymmetric and charge-averaged cross sections:

d∆σ

dM2
tt̄d cos θ

≡ 1

2

{
d2σHAHB→tt̄X

dM2
tt̄d cos θ

− d2σHAHB→t̄tX

dM2
tt̄d cos θ

}

,

dσ̄

dM2
tt̄d cos θ

≡ 1

2

{
d2σHAHB→tt̄X

dM2
tt̄d cos θ

+
d2σHAHB→t̄tX

dM2
tt̄d cos θ

}

,

and the corresponding charge asymmetry

Ac(M
2
tt̄, cos θ) ≡ d∆σ

dσ
. (4.3)

To lowest order (LO), tt̄ pairs are produced by the processes qq̄ → tt̄ and
gg → tt̄. These produce the top and the anti-top evenly at a given production
angle θ, so that the charge asymmetry vanishes. Beyond LO, however, qq̄
annihilation as well as the flavor excitation process qg → tt̄q have charge
asymmetric contributions [74], while gg scattering remains symmetric. For the
qq̄ annihilation process, the asymmetry arises from three gluons connecting the
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light-quark and the top-quark lines. In the case of inclusive tt̄ production, the
asymmetry receives contributions from real diagrams for qq̄ → tt̄g and from
virtual corrections in qq̄ → tt̄. The charge asymmetric pieces for the O(α3

s)
subprocesses have been computed in detail in [74]; they are also included of
course in the full next-to-leading order (NLO) calculations of the top quark
cross section [71–73].

As we discussed in the Introduction, large double- and single-logarithmic
corrections arise at higher orders in the partonic cross sections for qq̄ annihila-
tion and gg fusion when τ̂ becomes large, that is, whenM2

tt̄ ∼ s. The structure
of the NLO terms in the qq̄ annihilation cross section becomes, for example,

d2σ̂NLO
qq̄ (τ̂ , cos θ)

dτ̂ d cos θ
= C1(θ)δ(1− τ̂ ) + C2(θ)

(
1

1− τ̂

)

+

+C3(θ)

(
log(1− τ̂ )

1− τ̂

)

+

+ . . . , (4.4)

where the ellipses denote terms that are suppressed near threshold. We have
suppressed the dependence on the factorization/renormalization scale, as we
will often do in the following. The “+”-distribution is defined as usual by

∫ 1

x

dz [g(z)]+ f(z) =

∫ 1

x

dz g(z) (f(z)− f(1))− f(1)

∫ x

0

dz g(z) . (4.5)

The coefficients Ci may be found in Ref. [81]. It turns out that only C1

and C2 possess charge-asymmetric pieces, while the double-logarithmic part
associated with C3 is symmetric and thus cancels in the asymmetry at lowest
order. This is a result of the factorization of collinear logarithms, which do
not interfere with color flow in the hard scattering [20]. As a result, the charge
asymmetric contributions in qq̄ → tt̄g and qq̄ → tt̄ each have an infrared (but
no collinear) singularity at O(α3

s) [74], which cancels in their sum and leaves
behind a single logarithm, represented by the term proportional to 1/(1− τ̂)+
in Eq. (4.4). We will see in the next section, however, that, starting with the
next order, leading logarithms contribute to the asymmetric cross section as
an overall factor.

4.3 NLL resummation

The resummation of the soft-gluon contributions is organized in Mellin-N mo-
ment space. We take a moment of the hadronic cross section with respect to
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the variable τ :
dσN

d cos θ
≡
∫ 1

0

dττN−1 d2σ

dτd cos θ
. (4.6)

Under Mellin moments, the convolutions in the factorized cross section near
threshold become products:

dσN

d cos θ
=
∑

ab

fHA,N
a (µ2)fHB,N

b (µ2)σ̂ab(N, θ) , (4.7)

where the fHA,N
a , fHB,N

b are the Mellin moments of the parton distributions,
defined by analogy to Eq. (4.6), and where

σ̂ab(N, θ) =

∫ 1

0

dτ̂ τ̂N−1d
2σ̂ab(τ̂ , cos θ)

dτ̂ d cos θ
. (4.8)

The threshold limit (τ̂ → 1) now corresponds to N → ∞ in moment space.
Threshold resummation results in exponentiation of the soft gluon correc-

tions in moment space. Unlike color singlet cases like the Drell-Yan process,
in heavy-flavor production soft gluons emitted at large angles interfere with
the color structure of the underlying Born process. One must then take into
account all color structures and sum over them. The details of this procedure
were worked out for scattering at fixed angles in [20, 21, 83]. For a given par-
tonic channel (ab = qq̄, gg), the resumed perturbative cross section is given
by 1

σ̂
(res)
ab (N, θ) = Cab(θ)∆a(N)∆b(N)

×Tr
{

H
(0)
ab (θ) [Sab(N, θ)]

† S
(0)
ab Sab(N, θ)

}

, (4.9)

where we have suppressed for simplicity the dependence of the various func-
tions on the pair mass Mtt̄, but have kept dependence on the scattering angle
θ wherever it occurs. Even before defining the various factors in the resummed
cross section, we may note that it naturally gives rise to a charge asymme-
try. In Eq. (4.9), all dependence on the c.m. scattering angle θ resides in
the color trace part and in the coefficients Cab. Therefore, these generate the
charge-asymmetric part of the cross section near threshold:

∆σ̂
(res)
qq̄ (N, θ) = (∆q(N))2

[

Cqq̄(θ) Tr
{

H
(0)
ab (θ) [Sab(N, θ)]

† S
(0)
ab Sab(N, θ)

}

−Cqq̄(−θ) Tr
{

H
(0)
ab (θ) [Sab(N,−θ)]

† S
(0)
ab Sab(N,−θ)

}]

.(4.10)

1See, in particular, Eq. (50) of Ref. [21].

58



It is the ratio of Eq. (4.10) and its charge-averaged counterpart that defines the
asymmetry. We anticipate that, when expanding the resummed expression to
next-to-leading order, leading logarithms cancel and the C2 term in Eq. (4.4)
is reproduced.

Now let us review the elements of the resummed cross sections. The trace
in Eq. (4.9) is taken in a space of color exchange operators [20, 21]. At lowest

order, H
(0)
ab and S

(0)
ab are the hard-scattering and the zeroth-order soft functions,

respectively. The factors Sab are also matrices in color space and depend on
the basis of color tensors used to describe color exchange. Employing the s-
channel singlet-octet basis of [20], one has for the qq̄ subprocess, which we are
mostly interested in here,

H
(0)
qq̄ = α2

s





0 0

0 2
(
t2+u2

s2
+ 2

m2
t

s

)

/C2
A



 ,

S
(0)
qq̄ =

(

C2
A 0

0 (C2
A − 1)/4

)

, (4.11)

where t ≡ (pt − pa)
2 − m2

t = −s(1 − β cos θ)/2, u ≡ (pt̄ − pa)
2 − m2

t =
−s(1+β cos θ)/2, with pa the momentum of initial parton a, β =

√

1− 4m2
t/s,

and CA = 3. The corresponding expressions for the soft anomalous dimension
matrices of the gg-initiated subprocess may be found in [20]. Note that the

Born cross sections are recovered by computing Tr{H(0)
ab S

(0)
ab } and that H

(0)
ab is

symmetric under interchange of t and u and hence charge symmetric.
Each of the functions ∆a,b(N) and Sab(N, θ) is an exponential. ∆a(N)

represents the effects of soft-gluon radiation collinear to initial parton a and
in the MS scheme is given by

ln∆a(N) =

∫ 1

0

zN−1 − 1

1− z

∫ (1−z)2M2
tt̄

µ2

dq2

q2
Aa(αs(q

2)) , (4.12)

and similarly for ∆b(N). The function Aa is a perturbative series in αs,

Aa(αs) =
αs
π
A(1)
a +

(αs
π

)2

A(2)
a + . . . , (4.13)

with [84]:

A(1)
a = Ca , A(2)

a =
1

2
Ca

[

CA

(
67

18
− π2

6

)

− 5

9
Nf

]

, (4.14)
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where Nf is the number of flavors, and

Cq = CF = (N2
c − 1)/2Nc = 4/3 , Cg = CA = Nc = 3 . (4.15)

The factors ∆a,b(N) generate leading threshold enhancements, due to soft-
collinear radiation, as the same overall factors in both the charge symmetric
and antisymmetric cross sections.

The large-angle soft gluon exponentials Sab(N, θ) are dependent on the
process and mix the color structure. One has

Sab (N, θ) = P exp

[

1

2

∫ M2
tt̄
/N2

M2
tt̄

dq2

q2
ΓSab
(
αs(q

2), θ
)

]

, (4.16)

where P denotes path ordering and where ΓSab are soft anomalous dimensions,
which are also matrices in a given color basis. They are perturbative; for the
resummation at NLL one only needs the first-order term and path ordering
becomes irrelevant. For the qq̄ subprocess, the first-order anomalous dimension
matrix can be represented as

Γ
S,(1)
qq̄ =

αs
π

(
Γqq̄11 Γqq̄12
Γqq̄21 Γqq̄22

)

, (4.17)

with matrix elements [20]2

Γqq̄11 = −CF [Lβ + 1 + iπ] ,

Γqq̄21 = 2 ln

(
t

u

)

,

Γqq̄12 =
CF
CA

ln

(
t

u

)

,

Γqq̄22 = CF

[

4 ln

(
t

u

)

− Lβ − 1− iπ

]

+
CA
2

[

−3 ln

(
t

u

)

− ln

(
m2
t s

tu

)

+ Lβ + 1 + iπ

]

, (4.18)

where

Lβ =
1− 2m2

t/s

β

(

ln
1− β

1 + β
+ iπ

)

. (4.19)

Finally, the coefficients Cab(θ) contain N -independent hard contributions aris-

2Note that for our definition of the charge asymmetry we need to interchange t and u in
the results of [20].
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ing from one-loop virtual corrections. They are perturbative as well, and have
the expansion

Cab(θ) = 1 +
αs
π
C

(1)
ab (θ) +O(α2

s) . (4.20)

The coefficients C
(1)
ab may be obtained by comparison of the resummed formula

to the full NLO calculation. We note that they contain the Coulomb correc-
tions which diverge as 1/β at s ∼ 4m2

t . As indicated, the C
(1)
ab depend on the

scattering angle θ, and in fact for the qq̄ subprocess they also contain a charge-
asymmetric part. The full coefficients have been derived in Ref. [81] and are
given by very lengthy expressions. Starting from slightly corrected versions 3

of the expressions given in [81], we have been able to verify that the charge-
asymmetric part of the resulting coefficient for the qq̄ process reproduces the
corresponding result given in [74].

We now give explicit formulas for the expansions of the resummed expo-
nents to NLL accuracy following the general approach of [87]. The functions
∆a,b(N) become

ln∆a
N (αs(µ

2),M2
tt̄/µ

2) = ln N̄ h(1)a (λ) + h(2)a (λ,M2
tt̄/µ

2)

+O
(
αs(αs lnN)k

)
. (4.21)

Here λ = β0αs(µ
2) ln N̄ with N̄ = NeγE , where γE is the Euler constant. The

functions h(1,2) are given by

h(1)a (λ) =
A

(1)
a

2πβ0λ
[2λ+ (1− 2λ) ln(1− 2λ)] , (4.22)

h(2)a (λ,M2
tt̄/µ

2) =− A
(2)
a

2π2β2
0

[2λ+ ln(1− 2λ)] +
A

(1)
a

2πβ0
ln(1− 2λ) ln

M2
tt̄

µ2

+
A

(1)
a β1
2πβ3

0

[

2λ+ ln(1− 2λ) +
1

2
ln2(1− 2λ)

]

, (4.23)

where β0 = (11CA − 2Nf) /12π, and

β1 =
1

24π2

(
17C2

A − 5CANf − 3CFNf

)
. (4.24)

The function h
(1)
a above contains all LL terms in the perturbative series, while

h
(2)
a is of NLL only. For a complete NLL resummation one also needs the

3Specifically, we use Eq. (A.19) of Ref. [85] in the second and third integral in (A.20) of
Ref. [86] and in Eqs. (A.9) and (A.11) of the first paper of Ref. [81].
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expansion of the integral in Eq. (4.16), given by,

lnSab (N, θ) =
ln(1− 2λ)

2πb0
Γ
S,(1)
qq̄ (θ) . (4.25)

While the full structure of the resummed expressions is rather long and
complicated, a major simplification occurs when one expands it for small β
and ignores the coefficient Cab. One finds in this case

σ̂
(res)
qq̄ (N, θ) = σ̂

(Born)
qq̄ (θ) (∆q(N))2

{

1 +
β cos θ(8CF − 3CA) ln(1− 2λ)

πb0

}

×e
−

CA
2πb0

ln(1−2λ)
. (4.26)

Here, the factor 8CF −3CA is the typical color factor associated with the QCD
charge asymmetry [74]. One can see how the single threshold logarithm arises
at the first order in αs in the charge-asymmetric part. The charge-asymmetric
piece is suppressed by the factor β, but enhanced by the term ln(1 − 2λ).
All factors outside the curly brackets are common to the charge-asymmetric
and the charge-summed parts and are expected to largely cancel in the charge
asymmetry at hadron level. We note that in the limit β → 0 our formulas
above reproduce the moment-space expressions for the resummed total heavy-
flavor cross section derived in [80].

In our discussion below, we use the full formula (4.10) when calculating
the charge asymmetry. Since the matrices involved for the qq̄ subprocess are
two-dimensional, it is straightforward to perform the required exponentiations
and other manipulations, explicitly employing a diagonal color basis for these
2 × 2 matrices [20]. For the (charge-symmetric) gg subprocess, the matrices
are three-dimensional, and this procedure becomes more complicated. We
found it simpler here to do the matrix manipulations numerically, calculating
in particular the matrix exponentials by iterating the exponential series to
the tenth order. We emphasize again that the gg process is charge-symmetric.
Thus, it only contributes to the denominator of the charge asymmetry, diluting
the asymmetry somewhat, because the effects of threshold resummation can
be larger for gluons than for quarks.

4.4 Phenomenological results

We will now investigate the numerical size of the QCD charge asymmetry for
top quark production at the Tevatron, making use of the resummation formulas
presented above. In order to do this, we first need to specify the inverse Mellin
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transform. This requires a prescription for dealing with the singularity in the
perturbative strong coupling constant in the resummed exponent. We will use
the Minimal Prescription developed in Ref. [87], which relies on use of the
NLL expanded forms Eqs. (4.21)-(4.23), and on choosing a Mellin contour in
complex-N space that lies to the left of the poles at λ = 1/2 in the Mellin
integrand:

d2σ

dM2
tt̄ d cos θ

=

∫ CMP+i∞

CMP−i∞

dN

2πi
τ−Nσ(res)(N) , (4.27)

where b0αs(µ
2) lnCMP < 1/2, but all other poles in the integrand are as usual

to the left of the contour. The result defined by the minimal prescription
has the property that its perturbative expansion is an asymptotic series that
has no factorial divergence and therefore no “built-in” power-like ambiguities.
Power corrections may then be added, as phenomenologically required.

For our calculations we use the CTEQ6M parton distributions [88]. To
obtain these in Mellin-moment space, we follow [89] and perform a simple
fit to each parton distribution at each scale needed, using a functional form
that allows Mellin moments to be taken analytically. We note that for the
Tevatron case considered here, tt̄ pairs are largely produced in valence-valence
scattering, for which the parton distributions are rather well known. The
higher-order and resummation effects will be very similar for other sets of
parton distributions. We use mt = 170.9 GeV [90],

√
S = 1.96 TeV, and our

default choice for the factorization/renormalization scale is µ =Mtt̄.
The lower set of lines in Fig. 4.1 shows our results for the charge asymmetric

cross section d∆σ/dMtt̄ as a function of the tt̄ pair mass, while the upper set
presents the charge-averaged one, dσ̄/dMtt̄. We consider here the cross sections
integrated over 0 ≤ cos θ ≤ 1. In both cases, we show by the dotted lines the
lowest-order result, which is O(α2

s) in the charge-averaged case, and O(α3
s) in

the asymmetric part. In the former case, this result is just based on the usual
Born cross processes, qq̄ → tt̄ and gg → tt̄. For the charge asymmetric part,
we make use of the expressions given in the Appendix of [74]. This includes the
small contribution by the quark-gluon flavor excitation process qg → tt̄q. Next
in Fig. 4.1 we show the first-order expansion of the resummed cross sections
(dashed lines), which are approximations to the full NLO result. In case of the
charge-asymmetric piece, which only starts at NLO, we can check the quality
of this approximation by comparing the dotted and dashed lines. One can see
that the two results agree very well in this case, implying that the threshold
corrections addressed by resummation dominate. 4

4In principle, one may carry out the same check for the charge-symmetric cross section
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For the charge-asymmetric part, we also show (dashed-dotted lines) the
second-order expansion of the resummed cross section, which is of O(α4

s), be-
cause this contains the first non-trivial QCD correction in this case. The solid
lines finally show the full NLL-resummed result. One can see that resumma-
tion has a very significant impact on the predicted cross sections, in particular
for the charge-asymmetric part at highMtt̄. Note that for the resummed curve
for this part we have performed a matching to the full O(α3

s) result of [74] by
correcting it by the difference between the dotted and dashed lines. In this
way, the O(α3

s) is taken into account in full, and the soft-gluon contributions
beyond NLO are resummed to NLL.

Figure 4.1: Charge asymmetric and charge averaged cross sections d∆σ/dMtt̄

and dσ̄/dMtt̄ as functions of the tt̄ pair mass, integrated over 0 ≤ cos θ ≤ 1.
Dotted lines are LO, dashed lines include the first-order corrections gener-
ated by resummation, and solid lines show the full resummmed result. For
the charge-asymmetric part, we also show the second-order expansion of the
resummed cross section, which is of O(α4

s), because this contains the first
non-trivial QCD correction in this case.

In Fig. 4.2 we analyze the scale dependence of the results, for both the

at fixed Mtt̄ and θ by comparing to the full NLO calculations of [71, 72]. Such a study
is unlikely to change our results here qualitatively, and would go beyond the scope of this
work.
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charge asymmetric and averaged parts. The dash-dotted lines correspond to
a variation of Mtt̄/2 ≤ µ ≤ 2Mtt̄, with the central lines (dotted) the ones for
µ =Mtt̄ already shown in Fig. 4.1. The higher results are obtained for the lower
choice of scale. The dashed and solid lines display the same for the resummed
cross sections. One can see a very significant reduction of scale dependence,
in particular for the charge averaged cross section. This improvement in scale
dependence due to threshold resummation is in line with similar findings in the
literature for other cross sections [80–82, 91, 92]. We note that the fact that
tt̄ production at the Tevatron proceeds primarily through qq̄ valence-valence
annihilation helps here, since only the flavor-diagonal non-singlet evolution
matters, which is part of the resummation formula [80, 91].

Figure 4.2: Scale dependence of the LO (dotted and dash-dotted) and NLL
resummed (solid and dashed) cross sections, for a scale variationMtt̄/2 ≤ µ ≤
2Mtt̄.

Figure 4.3 shows the charge asymmetries Ac = d∆σ/d∆σ̄ corresponding
to the various curves in Fig. 4.1, as functions of the pair mass. As before,
the dotted line shows the LO result, the solid represents the full resummed
result, and the dashed one is the expansion of the resummed cross section.
For the latter we expand the cross section to O(α4

s) in the numerator of the
asymmetry, and toO(α3

s) in the denominator, thus taking into account the first
non-trivial QCD correction in both cases. Had we expanded both numerator
and denominator to O(α3

s), the numerator would be at LO, and an artificially
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small asymmetry would result. One can see that the various results are rather
close, implying that the net effect of resummation on the charge asymmetry
is not large. This is related to the fact that the double-logarithmic factors ∝
(∆q(N))2 in the resummation formula are the same for the charge asymmetric
and averaged parts. Towards lower Mtt̄, where the speed of the produced top
quark becomes small, all asymmetries become small on account of Eq. (4.26).
At large pair masses, the additional single threshold logarithm enhances the
asymmetry.

Figure 4.3: Charge asymmetry corresponding to the curves in Fig. 4.1.

In Fig. 4.4 we consider the asymmetry as a function of cos θ, with Mtt̄

integrated over the allowed kinematic region. Again the net effect of resum-
mation on the asymmetry is relatively moderate. This leads generally to a
smaller asymmetry, because lower pair masses, at which the asymmetry de-
creases when going from the LO to the resummed case (see Fig. 4.3), dominate
the cross section. As Figs. 4.3 and 4.4 show, the resummed asymmetries grow
substantially with both pair mass, when integrated over rapidity, and with the
relative rapidity of the pair. Interestingly, these results are consistent with
the explicit NLO results presented in Refs. [75, 76], which indicate a decrease
in the charge asymmetry, and even a reversal of its sign, for top pair plus jet
cross sections. In such final states, the NLO virtual corrections to inclusive
pair production are absent, and it is the latter corrections that determine the
sign of the asymmetry itself.

We finally turn to the total charge asymmetry Atot.
c , integrated over Mtt̄
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and 0 ≤ cos θ ≤ 1. At LO, using the scale µ = Mtt̄/2, we find Atot.
c =

6.7%. Resummation results in only a small change, Atot.
c = 6.6%. We note

that when varying the scale over the range mt ≤ µ ≤ Mtt̄, the LO charge-
symmetric part of the cross section varies by about ±20% around its central
value, which is improved by resummation to a variation of about ±3%. The
scale dependence of the asymmetric part of the cross section improves from
±28% to ±13%. The resummed asymmetry shows a variation over this range
of scales of about ±12%. Thus our results for the higher-order corrections to
Atot.
c are well consistent with the estimate of a ∼ 30% uncertainty made in

Ref. [67].

Figure 4.4: Same as Fig. 4.3, but as a function of cos θ, integrated over the tt̄
pair mass.

4.5 Conclusions and Outlook

We have presented a study of the next-to-leading logarithmic QCD threshold
resummation effects on the charge asymmetry in inclusive tt̄ production at the
Tevatron. We have found that the asymmetry is stable with respect to the
higher-order corrections generated by threshold resummation. We have also
found that resummation significantly decreases the dependence of the results
on the factorization and renormalization scales, thus making the Standard
Model prediction for the asymmetry more reliable.
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It will be interesting to extend these studies to the case of tt̄ jet produc-
tion, for which sizable negative NLO corrections have been found [76]. Also,
there will be interesting applications at the LHC in situations near partonic
threshold, i.e., when the tt̄ pair mass becomes of the order of 1 TeV or larger.
Because the initial pp state is symmetric, one needs to apply additional cuts
(for example, on the tt̄ pair rapidity) here in order to generate a non-vanishing
charge asymmetry [74].

Now we take a step back from resummation and look how logarithmic
corrections arise in the study jet production and how such jet distributions
are distinct from top jets distributions.
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Chapter 5

Top Jets at the LHC

The Large Hadron Collider (LHC) is expected to uncover some of the most
interesting mysteries of nature. We expect to probe the underlying principles
of electroweak symmetry breaking (EWSB) and what stabilizes the weak scale
against radiative corrections from unknown microscopic dynamics. Due to its
large mass, the top quark induces the most severe contributions to the Higgs
quadratic divergence. Furthermore, in almost every known natural model of
EWSB, the top sector plays a crucial role in breaking the EW symmetry.
Thus, the top sector might hold a key to a new physics (NP) discovery. Many
interesting models of EWSB predict new particles with mass ∼ TeV scale.
In several known examples, the new particles decay into highly boosted top
quark pairs (pp→ X → tt̄), or other decay chains containing a single top quark
(pp → X → t Y ). In addition, the Standard Model (SM) predicts that the
LHC will produce more than 105 top quarks with pT ≥ 1TeV, significantly
enhancing our ability to study high pT tops and resolving beyond the SM
dynamics.

Top quarks decay dominantly into hadronic final states (t → bW → bqq̄)
with a branching ratio ∼ 2/3, providing potentially enhanced statistics. In the
present work, we focus on highly boosted top quarks (decaying through the
hadronic channel), and on the dominant QCD jet background. We refer to a
top quark that decays hadronically as a hadronic top. For moderately boosted
top quarks (pT ∼ 500 GeV), conventional top quark reconstruction meth-
ods, which exploit the decay chain topology, remain adequately efficient (see
e.g. [93]). As the top quark pT approaches 1TeV, the situation significantly
changes [94–97].1 The average separation of the top quark decay products
approaches the limits of reliable jet reconstruction (cone size R ∼ 0.4), and
starts to encroach upon the detector resolution (R ∼ 0.1). As a result, the

1For earlier works in the case of boosted EW bosons see also [148].
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efficiency of conventional reconstruction methods drops quickly. The perfor-
mance of b-tagging and light jet rejection is expected to drop substantially
in this kinematic regime. At present, there is very little published data on
b-tagging at pT ∼ 1TeV [99]. We perform our analysis without accounting for
the possible benefits of b-jet identification.2

We turn our focus away from this family of “conventional” reconstruction
methods. We examine the situation where the decay products of at least
one top quark are reconstructed as a single jet, or top-jet. In semileptonic
tt̄ events, for example, the leptonic top may still be reconstructed via semi-
conventional reconstruction methods, giving up on lepton isolation cuts [94],
see also [96, 100]. These methods call for further extensive study due to
expected reducible backgrounds and uncertainties related to the ability to
measure the collimated semi-leptonic top mass (dileptonic tt̄ events are also
analyzed in [101]). Hadronic top, on the other hand, will give rise to a top-jet.
There will still be some small, but non-negligible, number of tt̄ events where
one of the top quarks reconstructs as a top-jet, but the other top quark can be
reconstructed via conventional methods (or semi-conventional methods where
one of the tops is manifested as a two-jet object). In this paper, we focus
on the top-jet itself as a means of identifying tt̄ events. The main reasoning
behind that is as follows:

(i) We find that for pT > 1TeV the majority of hadronic-tops are manifested
as top-jets, even for cone size as small as R = 0.4. Thus, it is clear that
our tools will be applicable for a wide range of top momenta.

(ii) The distributions and shapes of both background and signal can be un-
derstood via first principle calculations as shown in this study and in
Ref. [25]. It may allow for a cleaner analysis, in the sense that a more
direct contact between actual data (expected to arrive soon) and the
microscopical theory can be made.

Apart from substructure, to leading order, top jets provide four pieces
of information, namely its energy, two angles and mass (just as any QCD
jet, ignoring the possibility of b-tagging). Without a mass cut, the QCD jet
background swamps the hadronic top signal by orders of magnitude. The
most basic tagging method after giving up conventional methods is to use the
jet mass as a discriminator between the QCD background and the hadronic
top signal; the high-pT top-jet mass distribution should peak around the top
mass while the QCD jet mass distribution peaks near zero. However, using a

2The possibility of b-tagging jets, when the top quark reconstructs to 2 (or more) jets,
one of which has a mass ∼ mW and the sum of the two jets has a mass ∼ mt, is outside the
main focus of this paper.
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jet mass as a discriminator is more complicated for several reasons. Due to
radiation, QCD jets acquire a large tail in the mass distribution. The cross
section for acquiring large jet mass, for example near the top mass, increases
substantially with pT and cone size. Top-jets also broaden due to radiation,
hardening their jet mass distribution.3 Furthermore, a finite jet reconstruction
cone size will not always capture all the daughters of the top quark decay
chain, thus softening its mass distribution. The net effect is a smearing of
the expected naive, broadened, Breit-Wigner distribution for the top jet mass
distribution. Detector effects further smear the distribution, making the above
idealized description unrealistic.

Nevertheless, jet mass cuts should retain some rejection power against the
QCD background [103–105]. Our study addresses this issue in both quantita-
tive and qualitative manner, by considering the experimental and theoretical
aspects of the analysis. On the theoretical front, based on a factorization
approach, we derive a simple approximation for the shape of the QCD jet
mass spectrum. We demonstrate that there is good agreement between our
simple analytic predictions and Monte Carlo (MC) results. We are able to
compute from first principle various features related to a jet mass cut. We
evaluate its significance in the form of a semi-analytical expression for the
rejection power and show that it is independent of pseudorapidity. We pro-
vide a quantitative study of the distribution of the signal and background, via
MadGraph/MadEvent [106–108](MG/ME) and Sherpa [109]. We consider the
detector resolution by using transfer functions [110], smearing jets according
to a profile obtained from full Geant4 Atlas simulation. Transfer functions
provide a versatile mechanism to explore such effects as shifts in jet energy
scale (JES), etc.

We apply the results of our studies to analyze boosted SM top quark pair
production, an important discovery channel for NP [94–96, 100, 111–115]. To
put results into perspective, we use both 25 fb−1 and 100 fb−1 of integrated
luminosity as reference luminosities. At this time, these correspond to many
years of data taking. We show that using single- and double-tagging meth-
ods with our jet functions (defined below) to analyze jet mass distributions,
we can significantly separate the Standard Model tt̄ signal from the QCD
background. Our theoretical QCD jet mass distributions can efficiently char-
acterize the background via sideband analyses. With 25 fb−1 of data, our
approach allows us to resolve 1 TeV top-jets from the QCD background, and
about 1.5 TeV top-jets with 100 fb−1, if we exploit the kinematics of the so-
called “away” side of the event, without relying on b-tagging. The essence of
the away side mass cut is that it preferentially keeps the tt̄ signal over the

3For a detailed recent study see [102] and references therein.
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background. We analyze the mass distribution in more detailed manner, as
simple counting methods are inadequate. As described above, the tt̄ signal is
expected to exhibit pronounced structure near the top quark mass. In order
to resolve this “peak” against the QCD background, we need to understand
the shape of both the tt̄ signal and the QCD background. To characterize the
background we perform a sideband analysis to reduce contamination by the
signal. Our theory-driven ansatz for the QCD background is an admixture of
quark- and gluon-jet functions, the coefficients of which we analyze by fitting
in the sidebands (outside the top mass window). We interpolate the results
of the fit into the top mass window (140GeV ≤ mJ ≤ 210GeV). Armed with
shapes for the signal and background, we fit them into the data to obtain the
normalization constants. These normalization constants are the magnitude
of the signal and background. The errors associated with the normalization
provides a measure of the significance of the measurement.

To further improve the significance we consider jet shapes [25], which re-
solve substructure of energy flow inside cone jets. In a companion paper [25],
we explore the possibility that, requiring a large jet mass, perturbative predic-
tions for jet shapes differ between jets that originate from the decay of heavy
particles, and those which result from the showering of light quarks and gluons.
With such additional handles, we might have a chance to distinguish boosted
tt̄ signal from the QCD background even at a smaller integrated luminosities.4

We discuss jet substructure later in the text.
We turn our attention to the use of b-jets as spin analyzers for the top

quarks. For highly boosted top quarks, chirality is approximately equal to
helicity and is conserved to a good approximation. Information about the
top chirality is encoded in the angular distribution of the decay products [94,
119, 120]. Naively, one would argue that for hadronic tops this information
is inaccessible due to collimation and the absence of leptons which are known
to be good spin analysers [119, 120]. We explore the possibility of using pT of
the b-quark for measuring the top quark polarization, which is important for
exploring NP. For this, we explore the case when at least one of the boosted
top quark can be resolved into more than two jets. We also consider the
possibility of using pT of the lepton for measuring the top quark polarization
for semi-leptonically decaying tops.

This work has two main focal points, namely QCD jet mass distributions
and hadronic tt̄ signal, and is structured as follows. In the next section, we
discuss the MC generation and detector simulation. In section 5.2 we focus on
highly boosted QCD jets. The jet mass distribution is examined numerically,

4There are other approaches dealing with a similar situation in a different perspective in
recent literature [97, 116, 153, 154].
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via MC methods, and analytically, via jet functions. The salient points of the
jet functions are introduced, leaving detailed derivations for the Appendix.
Section 5.3 discusses the top-jet signal. In section 5.4, we compare high pT
hadronic tt̄ events with QCD jets. In section 5.5 we discuss jet shapes [25],
which can be used as additional discriminants against the background. Sec-
tion 5.6 discusses the hadronic top quark polarization by using the transverse
momentum of the bottom quark. We conclude in section 5.7.

5.1 Event Simulation

5.1.1 Monte Carlo Generation

The Sherpa [109] and MG/ME (version 4) [106, 108] MC generators were used
to produce tt̄ and QCD jet events, with parameters appropriate to the LHC.
To effect partonic level cuts during the generation of QCD jets
(pT (≥ 1 parton) ≥ 800 GeV), we used customized code provided by the Sherpa
authors applicable to Sherpa V1.1.0. For technical reasons, tt̄ events were gen-
erated using Sherpa version 1.0.9, whereas QCD jet events were generated with
Sherpa version 1.1.0. MG/ME interfaces to Pythia V6.4 (for parton shower
and fragmentation) [121]. For jet reconstruction, we used SISCone V1.3 [122]
for both Sherpa and MG/ME. Cross sections are calculated to leading order.
Jets are defined via the cone algorithm [123] with R = 0.4 and R = 0.7, re-
ferred to as C4 and C7, respectively. Jets have pT > 50GeV and |η| ≤ 2. At
the hard scatter level, final state partons are required to have pT ≥ 20GeV.
For MG/ME events, the final state partons have |η| ≤ 4.5.

We do not account for pile-up effects nor characterize the underlying event.
Efficiencies for triggering and reconstruction of jets at these energies are very
close to unity; the corrections are negligible and are not considered. The
strong coupling constant was allowed to run. Throughout the analysis, we
used Sherpa V1.0.9 with CTEQ6M parton distribution functions (PDF) [124].
Comparisons to MG/ME were made whenever appropriate, and also occasion-
ally to Pythia (version 8.1) [125] for 2 → 2 process without matching. In such
cases, the distinct curves are marked accordingly. The events used in the anal-
ysis were inclusive, i.e. pp → tt̄(j) and pp → jj(j), with matching (see [126]
for a detailed discussion): modified MLM [127] for MG/ME and CKKW [128]
for Sherpa.
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5.1.2 Cross Sections

In table 5.1 we present cross sections for producing final state (hadronic level)
jets with pT ≥ 1TeV for the different MC simulations. There are large uncer-
tainties in the cross sections, due to differences between the MLM and CKKW
matching, between MC generators, and between PDFs. It is outside the scope
of this paper to explore the reasons behind these differences.5 We estimate a
100% systematic uncertainty associated with the tt̄ cross section, and a 20%
systematic uncertainty in the QCD jet cross section.

Process Generator PDF Matching Cross Section
pp→ tt̄(j) SHERPA 1.0.9 CTEQ6M CKKW 135 fb
pp→ tt̄(j) SHERPA 1.1.2 CTEQ6M CKKW 149 fb
pp→ tt̄(j) MG/ME 4 CTEQ6M MLM 68 fb
pp→ tt̄(j) MG/ME 4 CTEQ6L MLM 56 fb
pp→ tt̄ Pythia 6.4 CTEQ6L - 157 fb
pp→ tt̄ Pythia 8.1 CTEQ6M - 174 fb

pp→ jj(j) SHERPA 1.1.0 CTEQ6M CKKW 10.2 pb
pp→ jj(j) MG/ME 4 CTEQ6L MLM 8.54 pb
pp→ jj(j) MG/ME 4 CTEQ6M MLM 9.93 pb
pp→ jj Pythia 6.4 CTEQ6L - 13.7 pb
pp→ jj Pythia 8.1 CTEQ6M - 13.3 pb

Table 5.1: Cross sections for producing final state R = 0.4 leading cone jets
with pT ≥ 1TeV and |η| ≤ 2. Generation level cuts were imposed as follows.
Final state partons from the hard scatter were required to have pT ≥ 20GeV.
For MG/ME, final state partons have |η| ≤ 4.5. Processes with a trailing (j)
suffix indicate that 2 → 2 and 2 → 3 processes are represented.

5.1.3 Modelling Detector Effects

A transfer function, trained with full ATLAS detector simulation on high pT
jet and high pT tt̄ samples, was used to map particle level jets (Atlas truth
jet reconstruction) onto a full simulation model [110]. Transfer functions work
by feeding back the differences between the target collection (Full Simulation)
and the source collection (Truth Jets). The differences and efficiencies are

5Sherpa data was generated with an invariant tt̄ mass cut greater than 500 GeV; Mad-
Graph was generated with a pT cut > 700 GeV. The initial-state radiation (ISR) contribu-
tions to the cross sections do not significantly affect our analysis, as such jets populate the
low mass spectrum.
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stored as distributions, in the form of histograms, and binned in pT and η. We
refer to the collection of the smearing distributions as a transfer function. It is
important to note that transfer functions are applicable on events with similar
jet multiplicity and topology. We applied the transfer function (trained on
Atlas truth jets) to SISCone truth jets, which preserve the salient character-
istics of the Atlas truth jets. We used the transfer function to effect pT and
mass smearing, but not reconstruction efficiency. At the energies considered
in this paper, reconstruction efficiency is very close to unity. In summary, the
results of the transfer function should be viewed simply as realistic detector
smearing.

In this paper, a jet is transferred as follows. The transverse momentum and
mass of truth-level jets are smeared according to the appropriate distribution.
For the purposes of modeling the effects of the JES, the means of the pT
distributions are shifted accordingly, without cross correlation to the mass
smearing. This is a subtle point. Depending on the reconstruction mechanism,
reported jet masses may depend proportionally on the JES; a JES shift results
in a jet mass shift. In our study of the effects of the JES, we do not make a
correlation between the pT and mass distributions. This effect is much smaller,
and such precision is not warranted in these studies.
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Figure 5.1: We compare the mass distribution of the leading jet
(
pT

lead ≥ 1000GeV
)
for the tt̄ signal with (the red dotted curve) and without

(the black solid curve) leading detector effects. The plot on the left corresponds
to C4 jets; the plot on the right corresponds to C7 jets.

In Fig. 5.1, we compare the tt̄ jet mass distributions for C4 and C7 jets, with
and without detector smearing, for pT

lead ≥ 1000GeV. We see, as expected,
that due to the finite cone size even the top jet mass distribution is far from
the naive Breit-Wigner shape. In cases where the outgoing b quark is outside
the cone, we expect that the top jet mass to be peaked around the W mass.
In cases where one of the quarks from the W decay is outside the cone we
expect a smooth distribution with a typical invariant mass of roughly mt/

√
2,
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etc. These effects are present even at the truth level, without detector effects.
The black curve shows a smooth distribution with a spurious peak around the
W mass. The red curve demonstrates how the detector effects further smear
the top jet mass distribution.

5.2 QCD Jet Background

If jet mass methods are to be viable, we must be able to characterize the
dominant QCD jet background [129]. One of the primary points in this work
is that we are able to understand the QCD jet background analytically as
well as through MC simulations. In this section, we present the summary
of our analytic calculations of the QCD jet mass distribution based on the
factorization formalism [155? ], which is presented in the Appendix. We
compare our theoretical prediction with simulated MC data. Note that the
final states, which induce the jet masses, simulated by MC event generators
are much more complicated (due to radiation, showering etc.) than our simple
two body final states. Yet, as we shall see, we can consistently describe the
simulated MC data.

5.2.1 Analytic Prediction

We are interested in looking at the following processes:

Ha(pa) +Hb(pb) → J1(m
2
J1
, p1,T , R) +X

Ha(pa) +Hb(pb) → J1(m
2
J1
, p1,T , R) + J2(m

2
J2
, p2,T , R) +X

where, Hi are the initial hadrons, pi being the corresponding momenta, and
the final states include jets in the direction of the outgoing partons of the
underlying process, with a fixed jet mass, mJi, “cone size” R2 = ∆η2 + ∆φ2

and tranverse momenta, pi,T .
We begin with the factorized hadronic cross section for single inclusive jet

processes,

dσHAHB→J1X(R)

dpTdmJdη
=

∑

abc

∫

dxa dxb φa(xa)φb(xb)
dσ̂ab→cX

dpTdmJdη
(xa, xb, pT , η,mJ , R) ,

(5.1)

76



which in the limit of small R, we can further factorize into (see Appendix B),

dσHAHB→J1X(R)

dpTdmJdη
=

∑

abc

∫

dxa dxb φa(xa)φb(xb)Hab→cX(xa, xb, pT , η, R)

×Jc1(mJ , pT , R). (5.2)

The factorization and renormalization scales are chosen to be pT , φi is the
PDF for the initial hadrons, Hab→cX denotes the perturbative cross section,
and Jc denotes jet functions, whose matrix elements are defined in Appendix
C (see e. g. [131] for recent reviews and references therein). Furthermore the
Jcs are, by definition, normalized as

∫

dmJ J
c = 1 . (5.3)

We have used the fact that the jet functions do not depend on η in the leading
expansion (see Appendix C). Therefore, we can write Eq. (5.2) for the hadronic
cross section as

dσ(R)

dpTdmJ
=
∑

c

Jc(mJ , pT , R)
dσ̂c(R)

dpT
, (5.4)

where c represents the flavour of the jet, and where

dσ̂c(R)

dpT
=
∑

ab

∫

dxa dxb φa φb

∫

dη

∫

dmJ
dσ̂ab→cX(R)

dpTdmJdη
. (5.5)

We employ the jet functions given in the Appendix by Eqs. (C.14) and (C.16),
for fixed jet mass and R at the next-to-leading order (NLO) with running
coupling effects. As we will see below, these results are consistent with the
MC data for sufficiently large (mJ ≥ O(100GeV)) jet masses.

At the lower end of the jet mass spectrum, where mJ ≪ pTR, the jet mass
distribution is dominated by higher order corrections and non-perturbative
physics [131], which are beyond the scope of our work, as our interest lies in
the region of high jet mass. We note this causes complications when trying to
predict the moments of the mass distributions, such as the mean and RMS,
unless we introduce a lower cutoff on the mass.

In the Appendix, we provide the full NLO2 result for the jet function in
term of θS, the angle of the softer particle with respect to the jet axis. These
exact results can be approximated by the eikonal approximation introduced

2Note that what we mean by NLO is “lowest nontrivial order”.
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in Appendix B as

J (eik),c(mJ , pT , R) = αs(pT )
4Cc
πmJ

log

(
1

z
tan

(
R

2

)√
4− z2

)

(5.6)

≃ αs(pT )
4Cc
πmJ

log

(
RpT
mJ

)

,

where αs(pT ) is the strong coupling constant at the appropriate scale, z = mJ

pT
,

c represents the flavour of the parton which initiated the jet and Cc equals
CF = 4/3 for quarks, and CA = 3 for gluons. These expressions agree with the
full NLO jet functions to the level of about 1% and 10% for quark and gluon
initiated jets in the region of the top mass window, respectively (checked for
R = 0.4 and 0.7 and pT & 1TeV).

We can interpret the jet function as a probability density functions for
a jet with a given pT to acquire a mass between mJ and mJ + δmJ . Our
rather simple treatment is valid for the higher end of the jet mass spectrum
(above mJ ∼ O(100GeV)), where NLO perturbative calculation captures the
dominant physics. In Fig. 5.2 we show the gluon jet mass distribution from
(C.16) with running (red, dashed), and fixed (blue, dotted) coupling, along
with the eikonal jet function (green, dashed-dotted) with fixed coupling. The
fixed scales are chosen to be pT . For reference we also superimpose in the Fig.
a 1/mJ curve which has the same dimension as that of our jet functions and is
roughly of the form of the soft function (cf Appendix B). It is remarkable that
our theory curves are significantly different from simple 1/mJ curve whose
normalization is chosen such that this curve overlaps with our theory curves
around the top mass. This indicates that logarithmic factor is very important
in our theory prediction. Note that at lower masses the running is much
harder than the fixed cases since the configurations associated with this mass
region have lower kT (the radiated gluon momenta), leading to a larger αs.
Also, the eikonal approximation is equivalent to a no recoil approximation,
thus resulting overall in a harder process than the result in Eq. (C.16) at fixed
scales.

For the purpose of comparing the mass distributions obtained from jet func-
tions and the MC simulations, Eq. (5.5) can be matched to (dσc(R)/dpT )MC

obtained from MC, leading to the following relation,

dσcpred(R)

dpTdmJ
= Jc (mJ , pT , R)

(
dσc (R)

dpT

)

MC

, (5.7)

for the prediction of quark and gluon jet mass distribution based on pertur-
bative calculated jet functions, Eqs. (C.14) and (C.16). Note, however, that
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Figure 5.2: Various theoretical gluon-jet mass distributions, along with a
1/mJ curve, are plotted for pT = 1TeV and R = 0.4. Plotted are the jet mass
distribution from (C.16) with running (red, dashed), and fixed (blue, dotted)
coupling, along with the eikonal jet function (green, dashed-dotted) with fixed
coupling. For the jet functions with no running the scales were chosen be pT .

this would require us to split the MC output in terms of the parton flavours
c, which for realistic simulation leads to ambiguities especially when matching
is used. Therefore, for our analysis, instead, we use the analytic result to sug-
gest bounds for the “data” distribution from the MC. There is, however, no
a posteriori way to determine the flavour which initiated the jet (as with real
data). Thus, we write

dσpred(R)

dpTdmJ upper bound

= Jg (mJ , pT , R)
∑

c

(
dσc (R)

dpT

)

MC

, (5.8)

dσpred(R)

dpTdmJ lower bound

= Jq (mJ , pT , R)
∑

c

(
dσc (R)

dpT

)

MC

, (5.9)

exploiting the fact that Jg > Jq in the region of high jet mass, as can be seen
in Eq. (5.7).

5.2.2 Jet Function, Theory vs. MC Data

In this section, we compare a set of theory-based bounds for the jet mass distri-
bution to the mass distribution obtained via MC event generators. This part
contains one of our main results, where we demonstrate that our theoretical
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Figure 5.3: The jet mass distributions for Sherpa, Pythia and MG/ME are
plotted for different pT and jet cone sizes. The quark and gluon mass distri-
butions from the jet functions are overlaid, using Eqs. (5.8) and (5.9). The
upper left plot corresponds to 950GeV ≤ pT ≤ 1050GeV and R = 0.4. The
upper right plot corresponds to 950GeV ≤ pT ≤ 1050GeV and R = 0.7. The
lower left plot corresponds to 1450GeV ≤ pT ≤ 1550GeV and R = 0.4. The
lower right plot corresponds to 1450GeV ≤ pT ≤ 1550GeV and R = 0.7.

80



predictions are in agreement with the MC data. In Fig. 5.3, we compare the
quark and gluon jet mass distributions from Eqs. (5.8) and (5.9) to the dis-
tributions from different MC generators (MG/ME, Sherpa and Pythia). We
perform this comparison at fixed pT , since we are interested in the relative
shapes of these distributions around the top mass window. Note that above
mJ ∼ O(100GeV), the shapes of three MC distributions are very similar.
Sherpa and MG/ME distributions interpolate between the quark jet function
(lower bound) and the gluon jet function (upper bound) as expected. For the
purposes of comparing shapes, Pythia and MG/ME are rescaled so that their
total cross sections agree with Sherpa. This cross section scaling does not
affect the predictive quality of the theory curves, since it affects both sides
of Eqs. (5.8) and (5.9). The scaling allows us to present the results from the
different event generators on a single plot. Note, as mentioned before, that for
mJ ≪ pTR, higher order corrections will contribute, pushing the distribution
down, with a Sudakov-like suppression, which can be seen in the lower mass
region for pT = 1.5 TeV and R = 0.7.

In a typical experimental setup, a lower cut over pT will be assumed and the
distributions will be integrated above that pminT cut. Thus we can integrate
over the appropriate region on Eq. (5.7), which leads to the analog of Eqs.
(5.8) and (5.9) for the pT -integrated jet mass cross section,

dσcpred(R)

dmJ

=

∫ ∞

pmin
T

dpT J
c (mJ , pT , R)

∑

c′

(
dσc

′

(R)

dpT

)

MC

, (5.10)

where Jc is defined as before. The MC differential cross section is obtained by
summing over the contributions from both quark and gluon jets. Therefore,
the cross section’s shape is characterized by an admixture of quark and gluon
jets and should interpolate between the two curves, c = q and g. In Fig. 5.4,
we compare leading jet mass distribution for events where the leading jet has
pT ≥ 1TeV obtained from Sherpa. The quark and gluon curves, obtained from
Eq. (5.10), with use of the jet functions in Eqs. (C.14) and (C.16), correspond
to the cases where the lead jets are all quark or gluons jets, respectively.

As before, we find the bounds for the total cross section

σ(R)upper bound =

∫ ∞

pmin
T

dpT
∑

c

(
dσc (R)

d pT

)

MC

∫ 210GeV

140GeV

Jg (mJ , pT , R) dmJ ,(5.11)

σ(R)lower bound =

∫ ∞

pmin
T

dpT
∑

c

(
dσc (R)

d pT

)

MC

∫ 210GeV

140GeV

Jq (mJ , pT , R) dmJ .(5.12)

In table 5.2, we refer to the gluon and quark jets from the results in Eqs. (5.11)

81



 (GeV)JM
100 150 200 250 300 350

A
rb

it
ra

ry
 U

n
it

s

0

0.2

0.4

0.6

0.8

1

1.2

 > 1000 GeV)
T

Jet Mass(C4 P QCD Lead Jet Mass

Gluon Hypothesis 

Quark Hypothesis 

 (GeV)JM
100 150 200 250 300 350

A
rb

it
ra

ry
 U

n
it

s

0

0.2

0.4

0.6

0.8

1

1.2

 > 1000 GeV)
T

Jet Mass(C7 P QCD Lead Jet Mass

Gluon Hypothesis 

Quark Hypothesis 

 (GeV)JM
100 150 200 250 300 350

A
rb

it
ra

ry
 U

n
it

s

0

0.02

0.04

0.06

0.08

0.1

0.12

 > 1500 GeV)
T

Jet Mass(C4 P QCD Lead Jet Mass

Gluon Hypothesis 

Quark Hypothesis 

 (GeV)JM
100 150 200 250 300 350

A
rb

it
ra

ry
 U

n
it

s

0

0.02

0.04

0.06

0.08

0.1

0.12

 > 1500 GeV)
T

Jet Mass(C7 P QCD Lead Jet Mass

Gluon Hypothesis 

Quark Hypothesis 

Figure 5.4: Comparison between the theoretical jet mass distributions and MC
leading jet mass distribution from Sherpa. The minimum pT and cone size are
indicated on the plots. A gluon (quark) hypothesis is the prediction made if
the entire contribution were from gluon (quark) jets (cf Eq. (5.10)).

82



and (5.12), respectively. The numbers in the table were calculated as follows.
From a MC sample corresponding to 100 fb−1 of data, we extracted the num-
ber of events with C4 lead jet pT ≥ 1000(1500)GeV and 140GeV < mJ <
210GeV, the top mass window. We repeated this exercise for C7 jets. The
data column contains these results.

pT
lead cut Cone Size Data Quark hypothesis Gluon hypothesis

1000 GeV C4 113749 70701 135682
1000 GeV C7 197981 131955 260045
1500 GeV C4 10985 6513 12785
1500 GeV C7 13993 11164 22469

Table 5.2: Comparison of Sherpa MC data to predictions of pure-quark and
pure-gluon hypothesis, for the number of events with leading jet with mass
between 140 GeV and 210 GeV. The data is compared to the bounds given in
Eqs. (5.11) and (5.12). The statistics reflect 100 fb−1 of integrated luminosity.

Fractional Fake Rate

With the theoretical machinery discussed in the previous section, we are able to
make a prediction of the rate at which QCD jets will fake the mass signature
of top-jets. We define the fractional fake rate as the fraction of jets with
140GeV ≤ mJ ≤ 210GeV, for given pT and R. We estimate the upper and
lower bounds of the fractional fake rate as

∫ 210 GeV

140 GeV

dmJ J
q(mJ , pT , R) ≤ Fractional fake rate ≤

∫ 210 GeV

140 GeV

dmJ J
g(mJ , pT , R) .

(5.13)

In Fig. 5.5, we plot the fractional fake rate as a function of jet transverse
momentum. To predict the number of fakes in our sample, we fold the differ-
ential cross section for QCD jet production (Fig. 5.6) with the fractional fake
rate (Fig. 5.5). Again we expect a Sudakov-like suppression when mJ ≪ pTR,
thus flatting the theoretical fractional fake rate as pT increases. This can be
seen more predominately for R = 0.7 in Fig. 5.5.

Pseudorapidity Independence of the Jet Mass Distribution

In general, we expect that NP signals will have a pseudorapidity dependence.
Therefore, the study of pseudorapidity dependence may provide a tool for NP
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searches (for an interesting discussion see [132]). In Fig. 5.7, we plot the jet
mass distributions for central and outer jets. We observe consistency with
the approximation that the distributions are to leading order, independent of
pseudorapidity.
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Figure 5.7: The R = 0.7 jet mass distribution for central jets (|η| < 1) and for
jets with 1 ≤ |η| ≤ 2.5. Jets have pT ≥ 1TeV. This plot is produced with the
Sherpa MC.

5.3 High pT Hadronic Top Quarks

In this section, we discuss the collimation of the top quark decay products at
the partonic level. In Fig. 5.8, we plot the rate of collimation3 as a function of
the top pT (for a related discussion and analysis see [96, 97, 100]). We define
collimation rate as the fraction of top quarks which reconstruct to a jet having
140GeV ≤ mJ ≤ 210GeV.

To examine the efficiency of the jet mass methods, it is instructive to look
at mass distributions for the signal and background. We examine the distribu-
tions for events where the leading jet pT exceeds 1000GeV and 1500GeV with

3Due to ISR, collimation rates for final state jets differ from naive expectation values
based on partonic-level analysis. As discussed in the text, our analysis methods include a
group mass criteria, a simple but powerful discriminant, against ISR jets. Therefore, our
results are robust against such effects. Residual contributions are absorbed as a source
of background. Refinement of methods to further reduce ISR contributions are analysis-
dependent, and outside the scope of this work.
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C4 and C7 jets. In Fig. 5.1, we plot the jet mass distribution for the tt̄ signal
for pT

lead ≥ 1000GeV. The efficiency of C7 jets for capturing the hadronic
top is greater than that for C4 jets. For C4 jets, we still observe pronounced
structure around the W -mass (MW ), which diminishes for C7 jets. We also
note that the peak for the C7 jets moves closer to the top mass, indicating
a higher efficiency for capturing the hadronic top. We expect that detector
effects will further smear the signal. Fig. 5.1 also shows the mass distributions
including leading detector effects (using transfer functions).

We note that the analysis has an inherent tension with regard to choosing
the cone size for the jet. The reconstruction cone should be sufficiently wide to
capture all the daughter products of the hadronic top. On the other hand, we
need to keep the cone appropriately small to keep out the QCD jet background
and other soft contamination [97].

We describe the gross features of the top mass distribution, without pro-
viding a detailed analytic expression for the top jet. At lowest order in QCD
and before decay, the top jet mass distribution is simply δ(mJ − mt). This
distribution is modified both by QCD radiation and electroweak decay.

We can describe QCD radiation by a top jet function, J tQCD(mQCD, R, pT ),
similar to the functions for massless QCD jets, where J tQCD is a function of
mQCD ≡ mt+δmQCD. Gluon radiation from top quarks makes the top jet mass
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harder, giving the additional mass contribution, δmQCD. Using factorization,
this process can be calculated by methods similar to the one discussed in
the Appendix, fixing the mass of the parton to mt and treating it as stable.
For our purposes, the resulting broadening is subdominant for a top mass
window of ±35 GeV. 4 The QCD radiation that determines the shape of J tQCD
at a resolution of ∼ 10 GeV is characterized by a very short time scale of
O(1/(10GeV)) in the top rest frame.

Although long compared to 1/mt, the rest frame time scale on which the
distribution in mQCD is determined is substantially shorter than the elec-
troweak time scale, which is set by Γt = O(1.5) GeV, the top quark width
in the Standard Model [133, 134]. The difference in time scales implies a
quantum mechanical incoherence between the QCD radiation, described by
J tQCD(mQCD, R, pT ), and the top quark weak decay. These two physical pro-
cesses are thus expected to factorize up to corrections that are determined
by the ratio of Γt to the size of the top quark window, and we shall assume
that this is the case. Using this assumption, we describe the effect of elec-
troweak decay by an overall factor F t

EW (δmEW , mQCD/(pTR)). This function
is responsible for producing the two peaks corresponding to the top quark and
W boson in the signal mass distribution Fig. 5.1, by acting on the underlying
QCD top jet function J tQCD, which has a single peak at mt.

We see from Fig. 5.1 that the effect of the decay on the jet mass, δmEW ,
can be sizable. The actual distribution depends on cone size that we use to
identify the jet. The main effect here is a softening of the jet mass, because
the jet cone may not capture all the particles from the top quark decay chain.
This kinematic effect depends solely on mQCD/(pTR). As we see from Fig. 5.1,
it reduces the mass of the top jet and produces a peak near the W mass. Since
the top jet mass softening is a kinematic process, it should be well described
by generators based on phase space.

In summary, we can schematically express the top jet mass squared as a
sum of three contributions. 5

mJ ∼ mt + δmQCD + δmEW , (5.14)

where the jet mass function related to Fig. 5.1 can be schematically written

4However, a treatment of the broadening is crucial if one aim to improve the top mass
measurement at the LHC. At the moment this has been studied only for the ILC [102].

5The choice of mass, as opposed to, say, mass squared for the convolution variable is a
matter of convention, to keep our notation in J t

QCD consistent with the light quark jet func-
tions. Convolutions in jet mass squared, which are familiar from event shape distributions,
can be obtained simply by changing variables and as necessary changing the normalizations
of the functions J t

QCD and FEW .
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as a convolution of three different sources

J t(mJ , R, pT ) ∼
∫

d(δmEW )dmQCD δ(mJ −mQCD − δmEW )

×J tQCD(mQCD, R, pT )FEW (δmEW , mQCD/(pTR)) .(5.15)

The top mass is large, so we are not concerned about uncertainties in the lower
jet mass spectrum. In fact, the same considerations that lead to this result
allow us to conclude that existing MC tools should well describe this part of
our studies. We will thus rely on event generators rather than Eq. (5.15) in
our numerical studies below.

5.4 tt̄ Jets vs. QCD Jets at the LHC

In this section, we combine the results of the previous discussions, and apply
them to analyze energetic SM tt̄ events vis-a-vis QCD jet production at the
LHC. The main purpose of this section is to understand how well we can dis-
criminate our signal from the overwhelming QCD background. We illustrate
an example analysis using the jet functions, and evaluate their performance on
MC data. Unfortunately, it is very difficult to outline a one-size-fits-all anal-
ysis. Therefore, we perform a broad-strokes analysis that contains sufficient
detail to provide general guidance. We do not attempt to invoke advanced,
but analysis-specific, procedures that could provide further refinement. It is
also important to bear in mind that the final evaluation of the jet functions,
as precision analysis tools, can really only be done on real data. The primary
reason is that we expect the jet functions to describe physics data. The MC
distributions are, at this point, an approximation to what we believe will be
LHC data. A precision analysis will show the strains between the jet function-
based shape predictions and the effective distribution that MC uses to generate
its mass distribution.

We examine two cases in detail, both at truth-level (no detector effects)
and accounting for detector effects. The first case, single tagging, consists of
“top-tagging” (requiring 140GeV ≤ mJ ≤ 210GeV) the leading jets satisfying
a pT cut. The second case, double tagging, consists of top-tagging the leading
and subleading jets, with a pT cut only on the leading jet.

5.4.1 Peak Resolution

In this analysis, one objective is to resolve the excess of events where the mass
of the leading jet lies in the top mass window (140GeV ≤ mJ ≤ 210GeV). It
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is important to note that we are not hunting for a peak; we already know its
location. The issue is that of resolving its magnitude and estimate the prob-
ability that the background would fluctuate to yield the observed data. To
estimate the significance of such a measurement, we perform a rudimentary
analysis for resolving peaks. We emphasize that it is misleading to estimate
the significance as S/

√
B, where the signal and background are separate MC

samples. These numbers represent an unrealizable scenario, and tend to be
optimistic. In real data, there is no way to separate the signal from back-
ground with certainty. Furthermore, at the present time, we cannot trust MC
to provide the precise shape of QCD jet mass distributions. Therefore, we
derive our approximations to the background shape directly from the “data”,
via sideband analysis (outside the top mass window). We use our previous
knowledge of the shape of the background in the sideband region, to minimize
the number of degree of freedoms involved in the sideband fit. We will discuss
this further in the next section.

After approximating the shape of the background in the sideband region,
we interpolate the shape of the background into the top mass window. The
primary challenges are that our background is large and also has large uncer-
tainties, which induce large uncertainties in the signal. We discuss this in more
detail at the conclusion of this section. For the shape of the tt̄ signal inside
the top mass window, we use MC. In principle, the shape of the top mass
distribution can be also derived semi-analytically, as discussed in section 5.3
(see also [102]). However, to leading order we expect the MC data to provide
us with a reliable shape (it should capture the radiation at the leading log
approximation, also the, phase space, population of the top decay products is
purely kinematical). For simplicity we use the simulation data for this step
in our analysis. These shapes, after normalization to unit area, are referred
to as probability density functions. Unfortunately, the standard acronym for
probability density functions conflicts with existing usage for parton distri-
bution functions in this paper. To avoid confusion, we simply refer to them
as shapes. We use the approximate shapes for the signal and background to
perform an extended maximum likelihood fit to the sample, with jet mass dis-
tribution F (mJ), thereby obtaining the background and signal normalizations.
We define a jet mass distribution F (mJ) as

F (mJ) = NB × b (mJ) +NS × s (mJ ) , (5.16)

whereNB is the predicted background, andNS is the predicted signal in the top
mass window. b (mJ) and s (mJ ) are used to denote the background and signal
shapes, respectively. Both NB and NS are allowed to float independently.
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Sideband Background Analysis

We perform a sideband analysis in order to avoid the tt̄ signal-rich region. The
basic goal is to understand the shape of the background by examining a region
where there is no signal. In the sidebands, in particular the low side, the signal
contaminates the background. In Fig. 5.1, we see that the tt̄ signal does not
vanish outside the top mass window. Although it is small compared to the
QCD background as can be seen in Fig. 5.10, this contamination substantially
impacts resolution of the peak. We attempt to purify the background in this
region, by rejecting energetic jets consistent with originating from a top quark
decay, i.e. - signal, as follows. For a candidate event where the leading jet
passes preselection criteria, all jets within a cone R = 1 are (vectorially) added
into a single combined jet. We call this a group jet, although this definition
differs slightly from that in J. Conway, et al., in [97]. If the group mass, mG,
of the combined jet falls within the top mass window, the candidate event is
rejected. This discriminant tends to reject events where the decay products of
the top quarks are not fully collimated, i.e. reconstructed as a single jet. We
must understand any biases introduced by this discriminant. Fig. 5.9 shows
the effect of themG cuts on the background and signal. The background shape
is left relatively intact, but the signal is substantially diminished.
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Figure 5.9: The jet mass distributions for the tt̄ and QCD jet samples in the
sidebands. The plot on the left depicts the shape of the QCD jet sample
before and after making a combined jet mass cut on mG, as described in
Sec. 5.4.1. Both curves are normalized to unit area, to show the similarity of
the shapes before and after the cut. The plot on the right depicts the effect
of the combined jet mass cut on the tt̄ signal. The red (dashed) curve shows
the effect of the cut relative to the original jet mass distribution (black solid
curve). Note: Unlike the left plot, these curves are not renormalized.

Advanced use of this mG discriminant is outside the scope of this analysis,
possibly leading to more sophisticated analyses (see e. g. J. Conway, et al.,
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in [97]). We simply use it to efficiently reject signal events in the sidebands,
while keeping the majority of background events.

We analyze the shape of the background in the sidebands using the jet
functions derived in section 5.2. We expect real QCD jets to be an admixture
of quark and gluon jets. Therefore, our Ansatz posits the admixture of quarks
and gluons as a fraction. We expect small corrections (deviations from a
constant admixture) to arise from different sources. For example, we do not
consider events with a leading jet of fixed pT , but rather impose a lower pT
cut. Our Ansatz for the jet mass distribution assumes the following form

b(mJ) ∝ β (mJ )×JQ
(
mJ ; p

min
T , R

)
+(1− β (mJ))×JG

(
mJ ; p

min
T , R

)
, (5.17)

where β (mJ) is a linear polynomial
(

β0 + β1
mJ

pmin
T R

)

. Note that with b(mJ )

defined above, along with Eq. (5.16), the total number of degree of freedom
involved in the sideband fit is four: β0, β1, NB and NS.

Significance

After resolving the magnitude of the signal (tt̄) peak against that of the QCD
jet background, via the methods outlined in the previous sections, we now
discuss how to interpret those results. Our analysis is based on log-likelihood
ratio method.6 A background+signal hypothesis to describe a data sample is
only meaningful if a background-only hypothesis is unlikely to describe that
sample. We estimate the statistical significance, nσ, of the peak as

nσ =
√

2 (logL − logL0), (5.18)

where L0 is the value of the maximized likelihood function obtained from
fitting the data to the background shape alone (equivalent to setting NS to
zero in Eq. (5.16)), and L is the value of the maximized likelihood function
obtained from fitting the data to the background shape and signal shape.7

The functional form of the likelihood function is given by

L =

NBINS∏

k=1

exp (−F (mk))× [F (mk)]
Nk

Nk!
, (5.19)

where we are fitting for the functional form of F (mJ ) as given by Eq. (5.16).
Here,mk andNk refer to the value of the mass at the center, and the occupancy,

6An excellent discussion may be found in the The Review of Particle Physics [135].
7Except in pathological cases, the significance is well approximated by S

∆S
, where S is

the fitted signal, and ∆S is the error on S.
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of the k-th bin, respectively.

5.4.2 Single Top-Tagging

For each of the signal (tt̄) and background (QCD jets) samples, we preselect
events with a pT cut on the leading jet. In Fig. 5.10 we plot the jet mass
distribution including detector effects for the signal and background, including
the theoretical upper and lower bound for the background. We show the
number of events with jet mass in the range 140GeV ≤ mJ ≤ 210GeV. For
reference, the number of events for the signal and background, at the truth-
level, are presented in table 5.3. It is clear that the background is roughly two
orders of magnitude larger than the signal. Once we add detector effects the
significance of the signal is further deteriorated. We conclude that a simple
counting method would not be effective here.
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Figure 5.10: The jet mass distributions for the tt̄ and QCD jet samples. The
plots on the top row correspond to a pT

lead ≥ 1000GeV. The plots on the
bottom row correspond to a pT

lead ≥ 1500GeV. The plots on the left cor-
respond to R = 0.4; the plots on the right correspond to R = 0.7. The
theoretical bounds, Eq. (5.10), are also plotted. These numbers are tabulated
in table 5.3.
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Detector Effects

Here, we repeat the truth-level procedure from above, accounting for the lead-
ing effects of detector resolution and ±5% jet energy scale. We also tabulate
the relative change in acceptance of the signal and background, due to detector
resolution and energy scale, which we define as

∆JES =
NJES −NTRUTH

NTRUTH

, (5.20)

where NJES is the number of events passing the selection criteria after detector
smearing and JES effects have been applied. These results are tabulated in
table 5.4, which shows how the signal and background are affected differently
by smearing effects. We see that the net effects of the detector smearing plus
the uncertainties in the JES lead to substantial uncertainties O (10%− 30%)
in the signal and background. As anticipated, this leads to a clear failure of
simple counting type analyses and calls for a different approach, which will be
introduced in the following in the form of sideband analyses and jet shapes.

pT
lead cut Cone Size tt̄ (S) Background (B) S/B

1000 GeV C4 6860 113749 0.060
1000 GeV C7 8725 197981 0.044
1500 GeV C4 630 10985 0.057
1500 GeV C7 689 13993 0.049

Table 5.3: Truth-level (no detector effects) results for single-tag jet mass
method, reflecting 100 fb−1 of integrated luminosity. S and B reflect the num-
ber of jets with 140 GeV < mJ < 210 GeV for the signal and background,
respectively.

Results for single tagging

We now apply the analysis described in the previous sections to resolve the
peak related to the top quark in the signal region, the top mass window.
First we perform a sideband background analysis, to resolve the shape of
the background. After applying the cuts described in Sec. 5.4.1, we fit the
background to our Ansatz. Fig. 5.11 shows an example of such background
fit to our Ansatz. The results of this fit described by Eq. (5.16) and below
are shown in Fig. 5.12, which demonstrates how the detector affects the signal
resolution.
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pT
lead cut Cone S (0% JES) +5% JES ∆5 -5% JES ∆−5

1000 GeV C4 5778 6562 -4.3% 4798 -30.1%
1000 GeV C7 7367 8543 -2.1% 6037 -30.8%
1500 GeV C4 741 934 48.3% 536 -14.9%
1500 GeV C7 789 1119 62.4% 601 -12.8%

pT
lead cut Cone B (0% JES) +5% JES ∆5 -5% JES ∆−5

1000 GeV C4 107661 122291 7.5% 90232 -20.7%
1000 GeV C7 192710 224666 13.5% 154733 -21.8%
1500 GeV C4 13615 18144 65.2% 10108 -8.0%
1500 GeV C7 18712 25361 81.2% 13407 -4.2%

Table 5.4: Acceptance of signal and background for the single tag method,
relative to truth-level analysis, accounting for the leading effects of detector
resolution and jet energy scale (JES). The tt̄ signal is represented in the top
half; the QCD jet background is represented in the bottom half. The statistics
reflect 100 fb−1 of integrated luminosity. ∆JES is the relative change in back-
ground for the indicated JES, relative to truth-level analysis in table 5.3 (cf
Eq. (5.20)).
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Figure 5.11: A typical example of fitting jet functions to the jet
mass distribution in the sideband regions (120GeV ≤ mJ ≤ 140GeV) ∪
(210GeV < mJ < 280GeV). This plot corresponds to a single-tag analysis
with C7 jets with pT ≥ 1000GeV.
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Figure 5.12: The results of fitting jet functions + signal shape to the jet
mass distribution in the top mass window. The plot on the left corresponds
to a truth-jet analysis. The plot on the right depicts the effects of detector
smearing. The statistics reflect 100 fb−1 of integrated luminosity.

Our main results have been summarized in the tables below. The results
of the fitting procedures for the different pT cuts and cone sizes are shown in
tables 5.5 and 5.6 for integrated luminosities of 100 fb−1 and 25 fb−1 respec-
tively, and subsequently in tables 5.9 and 5.10 for the double top tagging case
which is discussed in the following subsection. Our model for the background
in these analyses was already introduced in subsection 5.4.1. Apart from the
cone size and pminT , for each JES, we show the result of the fit regarding the
number of background (BFIT) and signal (SFIT) events in the mass window
and their ratio. ∆S is the error on SFIT and p-value and χ2/ndf are given to
describe the quality of the fit in each case [135]. For our analysis, the total
number of degree of freedom is 14 (18 bins − 4 fit parameters: β0, β1, NB and
NS).

Most importantly, we give the statistical significance, nσ (defined in Eq. (5.18)),
which is a measure of the probability that fluctuations of the proposed back-
ground yield in the observed data. The significance value is only as good as
the p-value which indicates the goodness of fit. We point out that for entries
in which the p-value is lower than, say 5%, the significance figure is probably
not reliable. The fitting procedure on that data sample requires further ex-
amination, for residuals and bias analyses, for example, but this falls outside
the scope of this work. We find two such instances of failed fits, both in ta-
ble 5.5. This also suggests how we are to interpret the results of the tables.
The relatively large background to signal ratio means that small errors in the
background induce relatively large errors in the signal. Furthermore, we have
not quantified correlations between the background and signal shapes. Simi-
larities in the shapes can lead to small ambiguities, which are reflected in the
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fitting parameter errors. The combination of these two difficulties gives rise
to an effect, which, strictly speaking, is a defect in the analysis. We remind
the reader that we have a large uncertainty in the tt̄ signal cross section (see
table 5.1), which we have not accounted for in the analysis. We have singled
out Sherpa MC data for use in our analyses, and the reader should bear this
in mind when interpreting the results in tables 5.5, 5.6, 5.9, 5.10. Small er-
rors in the background shape can yield good fits with high significance figures,
and still have relatively large errors in the signal. We are led to interpret the
results in the tables as the significance of the peak, relative to the indicated
background shape hypothesis (the jet functions in our case). We find that
our single tagging method allows us to resolve the tt̄ signal from the QCD
background with pminT ∼ 1 TeV and 25 fb−1 of data. This jet mass analysis
does not include any b-tagging or jet-shapes (to be discussed in the following
section).

5.4.3 Double Top-Tagging

The above analyses related to single top-tagging are useful not only for tt̄
production, but rather for general cases in which we expect to have at least
one very energetic top jet. However, for the cases where there is more than
one heavy high-pT particle, we certainly have more information which can
be used to distinguish signal from the QCD background. Clearly, tt̄ events
contain more information than what is encoded in a single top jet mass. We
augment the single-tag analysis for the tt̄ signal, by simply requiring that
the subleading jet mass be in the top mass window, without imposing a pT
cut. This cut preferentially removes more background events than the signal
events, without biasing the distributions. The sideband analysis, applied to
the leading jet, remains the same as for the single top-tagging case. As we shall
see even this simple treatment yields a sizable improvement in the significance.
Roughly half of the events have smaller pT than the minimum pT for the leading
jet as shown in Fig. 5.13. Although, by definition, a subleading jet has smaller
pT than the leading one, its pT distribution is peaked at the pT

min, and only
small portion of events are in the smaller pT tail region. The number of events
for the signal and background, at the truth-level, are presented in table 5.7. To
get an idea on how the subleading mass cut affects our signal and background
samples, one can compare the numbers given in table 5.3 with the ones in 5.7.
For example, we see that at truth level for R = 0.4 and pT

min = 1TeV the
size of the signal sample is decreased by 50% while the background sample by
roughly 12%. This is consistent with the results shown in Figs. 5.8 and 5.5 in
which the analysis is done for a fixed pT .

In principle, one could apply a sideband analysis to the subleading jet.
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pT
lead ≥ 1000GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 106571 6868 671 10.3 0.73 0.74 0.064
5% 120717 8137 715 11.4 0.01 2.01 0.067
-5% 89136 5895 615 9.6 0.95 0.46 0.066

pT
lead ≥ 1000GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 189185 10892 800 13.7 0.09 1.52 0.058
5% 219189 14020 859 16.4 0.02 1.87 0.064
-5% 151556 9214 720 12.9 0.63 0.83 0.061

pT
lead ≥ 1500GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 13562 794 224 3.6 1.00 0.26 0.059
5% 17803 1275 256 5.0 0.89 0.58 0.072
-5% 10155 489 193 2.5 0.94 0.49 0.048

pT
lead ≥ 1500GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 18456 1045 252 4.2 0.75 0.72 0.057
5% 24921 1559 284 5.4 0.96 0.45 0.063
-5% 13315 693 213 3.3 1.00 0.20 0.052

Table 5.5: Estimate of upper limit on significance of peak resolution via single
tag method, accounting for detector smearing. SFIT and BFIT are the results of
an extended maximum likelihood fit. ∆S is the error on SFIT. Significance nσ
is defined in Eq. (5.18). These results are derived with 100 fb−1 of integrated
luminosity.
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pT
lead ≥ 1000GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 26642 1712 335 5.1 1.00 0.19 0.064
5% 30206 1995 346 5.8 0.96 0.45 0.066
-5% 22371 1379 288 4.8 1.00 0.11 0.062

pT
lead ≥ 1000GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 47277 2730 399 6.8 0.98 0.38 0.058
5% 54870 3419 424 8.1 0.87 0.60 0.062
-5% 37910 2274 354 6.4 1.00 0.21 0.060

pT
lead ≥ 1500GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 3381 201 112 1.8 1.00 0.06 0.059
5% 4418 346 130 2.7 1.00 0.07 0.078
-5% 2519 136 96 1.4 1.00 0.09 0.054

pT
lead ≥ 1500GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4609 259 125 2.1 1.00 0.18 0.056
5% 6231 382 144 2.6 1.00 0.12 0.061
-5% 3320 174 99 1.6 1.00 0.06 0.052

Table 5.6: Estimate of upper limit on significance of peak resolution via single
tag method, accounting for detector smearing. SFIT and BFIT are the results
of an extended maximum likelihood fit. ∆S is the error on SFIT. Significance
nσ is defined in Eq. (5.18). These results are derived with 25 fb−1 of integrated
luminosity.

98



However, due to the fact that the pT is allowed to float, the required analysis
would necessarily be more complicated. The double-tagging method increases
the signal-to-background ratio, and the significance of the measurements in-
creases. The leading effects of detector resolution and jet energy scale on the
signal and background acceptance can be seen in Tables 5.9 and 5.10. We
find that our double tagging method yields a reach of up to pT

min ∼ 1.5TeV
with 100 fb−1, without relying on b-tagging or jet-shapes (to be discussed in
the following section).
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Figure 5.13: We compare the pT distribution of the subleading jet for the tt̄
signal with (the red dotted curve) and without (the black solid curve) lead-
ing detector effects. The plot on the left, right corresponds to C4 jets with
(
pT

lead ≥ 1000, 1500GeV
)
respectively.

pT
lead cut Cone Size tt̄ (S) Background (B) S/B

1000 GeV C4 3430 13505 0.254
1000 GeV C7 6302 36765 0.171
1500 GeV C4 403 1874 0.215
1500 GeV C7 458 2724 0.168

Table 5.7: Truth-level (no detector effects) results for double-tag jet mass
method using, reflecting 100 fb−1 of integrated luminosity.

5.5 Jet Substructure

We discussed simple single- and double-mass tagging methods, and we found
that we may need additional handles in order to resolve SM tt̄ signals for
smaller integrated luminosities or higher pT . We discuss briefly the possibility
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pT
lead cut Cone S (0% JES) +5% JES ∆5 -5% JES ∆−5

1000 GeV C4 2601 2868 -16.4% 2228 -35.0%
1000 GeV C7 4563 5351 -15.1% 3765 -40.3%
1500 GeV C4 403 489 21.3% 292 -27.5%
1500 GeV C7 487 688 50.2% 352 -23.1%
pT

lead cut Cone B (0% JES) +5% JES ∆5 -5% JES ∆−5

1000 GeV C4 13680 15187 12.5% 12054 -10.7%
1000 GeV C7 39361 45596 24.0% 32192 -12.4%
1500 GeV C4 2373 3109 65.9% 1746 -6.8%
1500 GeV C7 4195 5651 107.5% 3014 10.6%

Table 5.8: Acceptance of signal and background for the double tag method,
relative to truth-level analysis, accounting for the leading effects of detector
resolution and jet energy scale (JES). The tt̄ signal is represented in the top
half; the QCD jet background is represented in the bottom half. The statistics
reflect 100 fb−1 of integrated luminosity. ∆JES is the relative change in back-
ground for the indicated JES, relative to truth-level analysis in table 5.7 (cf
Eq. (5.20)).
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Figure 5.14: The planar flow distribution is plotted for tt̄ and QCD jets with
mass in the top mass window, 140GeV ≤ mJ ≤ 210GeV. Sherpa and MG/ME
distributions are represented.
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pT
lead ≥ 1000GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 13488 2789 237 11.8 0.99 0.33 0.207
5% 14653 3395 255 13.3 0.94 0.50 0.232
-5% 11762 2516 212 11.9 0.99 0.31 0.214

pT
lead ≥ 1000GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 38101 5813 358 16.2 0.72 0.76 0.153
5% 43993 6943 386 18.0 0.66 0.81 0.158
-5% 31290 4655 320 14.6 0.57 0.89 0.149

pT
lead ≥ 1500GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 2341 430 94 4.6 0.99 0.35 0.184
5% 2968 624 110 5.7 0.96 0.45 0.210
-5% 1593 436 79 5.5 0.82 0.66 0.274

pT
lead ≥ 1500GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 4053 625 129 5.2 1.00 0.28 0.154
5% 5532 801 128 6.3 0.93 0.50 0.145
-5% 2965 399 100 4.0 1.00 0.14 0.135

Table 5.9: Estimate of upper limit on significance of peak resolution via double
tag method, accounting for detector smearing, and jet energy scale (JES).
SFIT and BFIT are the results of an extended maximum likelihood fit. ∆S is
the error on SFIT. Significance nσ is defined in Eq. (5.18). These results are
derived with 100 fb−1 of integrated luminosity.
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pT
lead ≥ 1000GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT
0% 3367 696 119 5.9 1.00 0.08 0.207
5% 3658 848 128 6.7 1.00 0.12 0.232
-5% 2931 631 106 6.0 1.00 0.07 0.215

pT
lead ≥ 1000GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 9521 1452 181 8.1 1.00 0.19 0.152
5% 10997 1732 193 9.0 1.00 0.20 0.158
-5% 7817 1162 160 7.3 1.00 0.22 0.149

pT
lead ≥ 1500GeV Cone R = 0.4

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 577 111 47 2.4 1.00 0.08 0.192
5% 737 155 55 2.8 1.00 0.11 0.210
-5% 393 109 40 2.8 1.00 0.16 0.277

pT
lead ≥ 1500GeV Cone R = 0.7

JES BFIT SFIT ∆S nσ p-value χ2/ndf (S/B)FIT

0% 1005 159 70 2.7 1.00 0.06 0.158
5% 1376 200 64 3.1 1.00 0.12 0.145
-5% 739 96 50 1.9 1.00 0.04 0.130

Table 5.10: Estimate of upper limit on significance of peak resolution via
double tag method, accounting for detector smearing, and jet energy scale
(JES). SFIT and BFIT are the results of an extended maximum likelihood fit.
∆S is the error on SFIT. Significance nσ is defined in Eq. (5.18). These results
are derived with 25 fb−1 of integrated luminosity.
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of using substructure to further analyze energetic jets in the top mass window.
We defer the details to our recent work in [25] (see also [154]), where we derive
simple analytic expressions to approximate the jet shape variable distributions.
For developing additional tools to reslove tt̄ signals, there are approaches which
exploit information outside of hadronic calorimeter [136] such as tracker or
electromagnetic calorimeter. But we limit ourselves to the information encoded
only within the hadronic calorimeter to develop significance for resolving tt̄
signals. We do not also discuss the possibility of b-tagging for high pT top-
jet [99], which is still under speculation for the range of pT relevant for our
analysis.

Jet shapes are the extensions of well-known event shapes, used at lepton
colliders, applied to the analysis of energy flow inside single jets. The fact that
we consider only jets with high mass is crucial since it allows us to control the
shape of various distributions related to energy flow in a perturbative manner.
As an example, we examine the planar flow variable, which measures the extent
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Figure 5.15: The planar flow distribution is plotted for tt̄ and QCD jets without
fixing jet mass. MG/ME distributions are represented.

to which the energy flow inside the jet is linear or planar. Planar flow (Pf)
is defined as follows. We first define an (unnormalized) event shape tensor Iw
as8

Iklw =
∑

i

wi
pi,k
wi

pi,l
wi

, (5.21)

8The overall normalization is not important to this discussion.
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where wi is the energy of particle i in the jet, and pi,k is the k
th component of

its transverse momentum relative to the thrust axis, which typically coincides
with the jet axis. Given Iw, we define Pf as

Pf =
4det(Iw)

tr(Iw)2
=

4λ1λ2
(λ1 + λ2)2

, (5.22)

where λ1,2 are the eigenvalues of Iw. Pf approaches zero for linear shapes and
approaches unity for isotropic depositions of energy. In Fig. 5.14, we plot the
planar flow distributions for QCD jets and tt̄. As can be seen by comparing
Figs. 5.14 and 5.15, it is crucial to consider only events in the top mass window.
Without a jet mass cut, the jet shape analysis loses its rejection power.

5.6 Top Quark Polarization Measurement
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Figure 5.16: In the plot on the left, we show a comparison of the pT distribution
of b quark from tL (the solid curve) vs. tR (the dashed curve). In the plot on the
right we show the pT distribution of the charged lepton from tL (the solid curve)
vs. tR (the dashed curve). We have imposed a lower cut, pminT = 1000 GeV.

In this section, we consider how to exploit b-quarks to measure the po-
larization of highly boosted hadronic tops. Various new physics models have
particle spectra which couple preferentially to one chirality, giving rise to parity
violation. Since chirality equals helicity for ultra-relativistic fermions, highly
boosted top quarks can help us probe parity violation in the bottom/top quark
sector. As is well-known, the top quark decays before the hadronization pro-
cess occurs, and measurement of the top quark polarization from its leptonic
daughters has been studied [94, 95]. We propose using the transverse mo-
mentum of the b-quark, inferred from the b-tagged jet, to perform similar
measurements. The pT distribution for the b-quark depends on the chirality of
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the top-quark. The b-tagged jets should, therefore, also act as good spin ana-
lyzers. In Fig. 5.16, we compare the pT distributions for leptons and b-quarks,
for both left- and right-handed top quarks.

As mentioned earlier, the issue of b-tagging at high pT is quite challenging
at this time (for recent studies see [99]), and a fully quantitative study is not
yet available. The main idea is to examine the pT distribution of b-tagged
jets, in events where we believe these jets originate from t → bW . In order
to measure the pT of the b quark, we need to require at least one of the
top-jets should be resolved into more than two jets, since we cannot measure
the pT of the b quark inside a single top-jet. As shown in Fig. 5.8, even
for high pT (pT ≥ 1000GeV) top jet, with cone size R = 0.4, ∼ 30% of
top-jets can be resolved into more than two jets. By fixing the cone size for
jet reconstruction, it is important to understand any biases towards right-
handed or left-handed top quarks. Bottom quarks from tL have a harder
pT distribution than those from tR, while the opposite is true for leptons
from leptonic top quark decays. If one uses a small reconstruction cone, the
efficiencies for jet mass reconstruction between the tL and tR may differ. We
found a negligible bias using cone jets with R = 0.4.
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Figure 5.17: We compare the 〈pT 〉 distribution of the b quark, as predicted
by the Standard Model (black solid curve) and by RS1 model with SM fields
propagating in the bulk (red dashed curve).

We can develop this discussion further with an example, namely the Ran-
dall Sundrum (RS) [137] model with the SM fields propagating in the bulk.
We consider the case where the first Kaluza-Klein (KK) excitation of the gluon
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has a mass MKKG = 3 TeV. We perform this analysis at partonic level. In the
model we are considering for using b-quark 〈pT 〉, KK excitations of the gluon
couple to left-handed top quarks ∼ 5× stronger than to right-handed top
quarks. Typical cross sections for KK gluon production are relatively small.
The (background) SM top quarks are produced dominantly via parity-invariant
QCD processes, and tend to wash out the signal. In order to resolve the signa-
ture, we are compelled to correlate deviations in the b-quark 〈pT 〉 spectrum to
an excess in KK gluon production. In Fig. 5.17, we compare the mean value
of the b-quark pT spectrum, for the Standard Model and RS1 scenarios with
SM fields propagating in the bulk. When correlated to the invariant mass of
the KK gluon, we see a substantial deviation in the distribution of the b-quark
〈pT 〉. In Fig. 5.18, we compare the mean value of the lepton pT spectrum,
for the Standard Model and RS1 scenarios with SM fields propagating in the
bulk, where KK excitations of the gluon couple to right-handed top quarks
∼ 5× stronger than to left-handed top quarks.

Figure 5.18: We compare the 〈pT 〉 distributions of the lepton, as predicted by
the Standard Model (blue curve) and by RS1 model with SM fields propagating
in the bulk (red curve).

5.7 Conclusions

In this study we have mainly focused on high pT , hadronically decaying, tops
in cases where they are fully collimated. Above pT of 1 TeV the majority of
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the top daughters particles will be found inside a single cone jet even when the
cone size is as small as R = 0.4. Therefore, they are simply denoted as top-
jets. The leading background for top-jets comes from high pT QCD jets. We
provided analytic expressions for the QCD jet functions which approximate the
background and show consistency with MC data. As an example we consider
the case of SM tt̄ production, and demonstrate how these jet functions, via
side band analysis, allow us to efficiently resolve 1TeV top-jet from the QCD
background with 25 fb−1, and ∼ 1.5TeV top-jets with 100 fb−1.

A wide class of new physics models posits tt̄ production mechanisms which
would significantly contribute to the mass distributions, possibly allowing reso-
lution of excess production with less data. To further improve the significance
we consider jet shapes (recently analyzed in [25] and also in [154]), which
resolve substructure of energy flow inside cone jets. Augmentation of the
analysis, such as the use of jet substructure in combination with a jet mass
cut and b-tagging, may improve the signal resolution, allowing us to discover
NP signal through top quark channel even with lower luminosity or higher pT
cut. We provided such an example using the planar flow jet shape variable,
and a detailed analysis is presented in our recent work [25]. We also proposed
using the transverse momentum of the bottom quarks to measure top quark
polarization as a probe of parity violation.

In this paper we mostly focused on fairly extreme (but not uncommon at
the LHC) kinematical configurations where the tops are fully collimated. This
has several advantages such as having direct contact with theoretical based
calculation of the jet functions and also the ability to consider arbitrarily high
top momenta (at least in principle). However, it is clear that some fraction
of the hadronic tops will be reconstructed in 2-jet (intermediate) or ≥ 3-
jet (conventional) topologies. The fraction of events related to the different
topologies is a function of the cone size and pT . Solid reconstruction algorithms
and analyses must be flexible enough to interpolate between these different
regions. We note that our approach is complimentary to others that have
been proposed recently [97, 148, 153, 154]. In most cases, the difference is
related to the fact that the tops considered are not fully collimated and a two-
jet topology is exploited to increase the signal to background ratio. It would
be very interesting and important to derive theoretically based techniques
to control the corresponding distribution of the background relevant to the
intermediate region. It is likely that there are overlaps between the different
regions. Such issues are important to examine in detail. Mastering these
complimentary methods may help to make potential new physics observations
more robust, if verified via multiple and independent techniques.

Finally, we want to emphasize that the analysis proposed herein is also
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applicable to other processes involving, highly boosted, heavy particles such
as electroweak gauge bosons, the Higgs and other new physics particles, to
which QCD is a leading background as well.
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Chapter 6

Jet Event Shapes

At the Large Hadron Collider (LHC), events with highly-boosted massive par-
ticles, tops [144], W , Z and Higgs [145] may be the key ingredient for the
discovery of physics beyond the standard model [146–148]. In many decay
channels, these particles would be identified as high-pT jets, and any such
signal of definite mass must be disentangled from a large background of light-
parton (“QCD”) jets with a continuous distribution. This background far
exceeds such signals, and relying solely on jet mass as a way to reject QCD
background from signal would probably not suffice in most cases [25], even
using a narrow window for dijets in the search for massive particles such as
tops, produced in pairs.

In this chapter, we argue that for massive, high-pT jets, infrared (IR) safe
observables may offer an additional tool to distinguish heavy particle decays
from QCD background, perhaps even on an event-by-event basis. We will
refer to inclusive observables dependent on energy flow within individual jets
as jet shapes. A jet within a cone of radius 0.4, for example, may be identified
from the energy recorded in roughly fifty 0.1×0.1 calorimeter towers. It thus
contains a great deal of information. Perturbatively-calculable, infrared safe
jet shapes combined, of course, with IR-safe jet finding algorithms [141–143,
149], may enable us to access that information systematically, and to form a
bridge between event generator output and direct theory predictions.

Essentially, any observable that is a smooth functional of the distribution
of energy flow among the cells defines an IR-safe jet shape [150]. The jet mass
is one example, but a single jet may be analyzed according to a variety of
shapes. In particular, the jet mass distribution has large corrections when the
ratio of the jet mass to jet energy is small [151], but can be computed at fixed
order when the logarithm of that ratio has an absolute value of order unity.
Once the jet mass is fixed at a high scale, a large class of other jet shapes
becomes perturbatively calculable with nominally small corrections. Indeed,
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a jet whose mass exceeds O(100GeV) becomes, from the point of view of
perturbation theory, much like the final state in leptonic annihilation at a
similar scale. At such energies, event shapes, which in the terminology of this
paper are jet shapes extended over all particles, have been extensively studied
in perturbation theory [152]. In this study we explore the possibility that
perturbative predictions for jet shapes differ between those jets that originate
from the decay of heavy particles, and those which result from the showering
of light quarks and gluons. Very interesting related studies have recently
appeared in [147, 153, 154].

6.1 Jet Shapes and Jet Substructure

We would like to identify jet shapes for which perturbative predictions dif-
fer significantly between QCD and other high-pT jets, focusing on relatively
narrow windows in jet mass. In our companion paper [25] we have discussed
how to calculate the jet mass distribution for the QCD background. We now
extend this argument to the computation of other jet shape observables.

We emphasize that, because the observables under consideration are IR-
safe, we may calculate them as power series in αs, starting at first order for
the QCD background, and zeroth order for an electroweak decay signal.

Our approximation for the jet cross sections is based on factorization for the
relatively-collinear partons that form a jet from the remainder of the process
[151]. For a jet of cone size R, contributions that do not vanish as a power of
R are generated by a function that depends only on the flavor of the parent
parton, its transverse momentum, and the factorization scale. Denoting a jet
shape by e, we then have,

dσ

dmJ de
=
∑

c

∫ ∞

pTmin

dpT
dσ̂c(pT )

dpT

dJc(e,mJ , pT , R)

de
, (6.1)

where dσ̂/dpT includes the hard scattering and the parton distributions of the
incoming hadrons, and where the jet function for partons c in the final state
is defined formally as in Refs. [25, 155].

In Ref. [25], we have found that the distribution of QCD jet masses in
the range of hundreds of GeV is fairly well described by the jet function in
Eq. (6.1) at order αs, based on two-body final states. It thus seems natural to
anticipate that for QCD jets, energy flow inside the cone would produce a linear
deposition in the detector [147, 148, 153, 154, 156]. While this is certainly the
case for an event consisting of two sub-jets, it is a simpler condition, and
more easily quantified. Indeed, such a linear flow should also characterize jets
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from the two-body decay of a highly-boosted, massive particle. We will see
below that relatively simple jet shapes can help distinguish QCD jets from
many top-decay jets that involve three-body decay. We will also see that jet
shapes can help separate samples that contain both QCD jets and jets from
two-body decays, such as those of the W , Z or Higgs. We emphasize that a
single event may be analyzed by a variety of jet shapes, so that the resolution
associated with each one need not be dramatic, so long as they are effectively
independent.

6.2 Top decay and planar flow

The linear flow of QCD jets at leading order should be compared with a
≥ 3-body decay where the energy deposition tends to be planar , covering a
two-dimensional region of the detector. An IR-safe jet shape, which we denote
as planar flow , a two-dimensional version of the “D parameter” [157–160],
distinguishes planar from linear configurations. The utility of a closely-related
observable was emphasized in Ref. [154].

Planar flow is defined as follows. We first construct for a given jet a matrix
Iω as

Iklω =
1

mJ

∑

i

ωi
pi,k
ωi

pi,l
ωi

, (6.2)

where mJ is the jet mass, ωi is the energy of particle i in the jet, and pi,k is
the kth component of its transverse momentum relative to the axis of the jet’s
momentum. Given Iω, we define Pf for that jet as

Pf =
4det(Iω)

tr(Iω)2
=

4λ1λ2
(λ1 + λ2)2

, (6.3)

where λ1,2 are the eigenvalues of Iω. Pf vanishes for linear shapes and ap-
proaches unity for isotropic depositions of energy.

Jets with pure two-body kinematics have a differential jet function fixed
at zero planar flow,

1

J

(
dJ

dPf

)

2body

= δ(Pf) . (6.4)

This would apply to leading order for events with highly boosted weak gauge
boson, Higgs and QCD jets. On the other hand, events that are characterized
by ≥ 3-body kinematics have a smooth distribution.

Realistic QCD jets have, of course, nonzero Pf . Because Pf is an IR safe
observable, however, its average value can depend only on the hard momentum
scales of the jet, that is, mJ and pT . This suggests an average Pf of order
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Figure 6.1: The planar flow distribution for QCD and top jets obtained from
MadGraph and Sherpa. Distributions are normalized to the same area.

αs(mJ) ∼ 0.1 for high jet masses, times at most logarithms that are order
unity for these heavy jets. Correspondingly, higher order corrections should,
by analogy to two-jet event shapes [152], replace the delta function of Eq.
(6.4) with a differential distribution that peaks near the origin and then falls
off. For jets resulting from three-body decay, on the other hand, we anticipate
that corrections in αs shift the already-smooth distribution modestly, without
affecting its overall shape. Finally, for the vast majority of high-pT QCD jets,
with masses mJ ≪ pT , planar flow corrections associated with multi-gluon
emission may be expected to be large, and to shift Pf to order unity.

These considerations are confirmed in Fig. 6.1, where we show the Pf
distribution for QCD jet and hadronic tt̄ events, for R = 0.4, pT = 1000GeV
and mJ = 140− 210GeV as obtained from MadGraph [161] and Sherpa [162]
with jet reconstruction via (the IR-safe algorithm) SISCone [143]. We see that
QCD jets peak around small values of Pf , while the top jet events are more
dispersed. A planar flow cut around 0.5 would clearly remove a considerably
larger proportion of QCD jets than top jets. Figure 6.1 also shows that if we
do not impose these mass cuts, for the QCD jets planar flow becomes larger
and almost indistinguishable from that of top jets.
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6.3 Two-body decay

While planar flow can help enrich samples with characteristically three- and
higher-body kinematics, other jet shapes can also provide additional informa-
tion on events with relatively low Pf . Here, we will still wish to distinguish the
QCD background from highly boosted electroweak gauge bosons or Higgs [156]
as well as from top jets whose Pf happens to be relatively low. We begin with
jets that are linear at lowest order, and identify a set of jet shapes that have
some power to distinguish between the two. Fixing pT , R and mJ leaves only
one free parameter to characterize the shape.

The QCD jet function for two-body kinematics is defined as a matrix el-
ement in [25] and is readily expressed as an integral over θs, the angle of the
softer particle relative to the jet momentum axis. For a quark jet, for example,
the integrand is therefore the differential jet function,

dJQCD

d(cθs)
=

αsCFβzz
2

4πm2
J(1− βzcθs)(2(1− βzcθs)− z2)

×
[

(2(1 + βz)(1− βzcθs)− z2(1 + cθs))
2

z2(1 + cθs)(1− βzcθs)
+ 3(1 + βz) +

z4(1 + cθs)
2

(1− βzcθs)(2(1 + βz)(1− βzcθs)− z2(1 + cθs))

]

, (6.5)

where z ≡ mJ/pT , βz ≡
√
1− z2 and cθs ≡ cos θs . The jet mass function, for

a jet cone of size R, is found by the integral

J(R, z) =

∫ R

θm

dθs

(
dJ

dθs

)

, (6.6)

where θm = cos−1
(√

1− z2
)
is the minimum angle the softer particle can make

with the jet axis. At θs = θm, both particles have the same energy and angle
to the jet axis.

It is natural to ask how the integrated jet function, Eq. (6.6) depends of
the jet algorithm used to define the jet, and in particular how results for cone
jets compare to results when jets are identified by kt or the newer “anti-kt”
algorithms [142, 149]. For the low orders and small cones discussed here, this
relationship is straightforward.

Reference [149] introduces a class of kt algorithms, for which two particles
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are within the same jet if their distance dij is less than dB, given by

dij = min(k2pT,i, k
2p
T,j)

r2ij
R2
kt

, (6.7)

dB = min(k2pT,i, k
2p
T,j) , (6.8)

where rij =
√

∆η2 +∆φ2 is the distance between particles i and j in the
rapidity-azimuthal angle plane. The choice p = 1 defines a standard kt algo-
rithm, and p = −1 the anti-kt. For small cones, rij ≈ θij , where θij is the angle
between two particles. At lowest order, that is for two particles in the final
state, for both positive and negative values of p, these algorithms constrain
r2ij , and therefore θij , by

0 <
r2ij
R2
kt

< 1 . (6.9)

As in Eq. (6.6) the energy and angles of the massless two particles are related
at fixed jet mass and fixed transverse momentum, through

m2
J = 2kT,ikT,j(cosh∆η − cos∆φ)

≈ kT,ikT,j
(
(∆η)2 + (∆φ)2

)
, (6.10)

where again we assume small angles. Changing variables from θs to rij, or
equivalently θij , is straightforward, and the basic integral for an inclusive jet
function in Eq. (6.6) is of the same form for a cone and a kt (or anti-kt) jet
at lowest nontrivial order. At this order the difference is that in kt algorithms
the parameter Rkt directly restricts the distance between the two particles, in
contrast to a cone size R, which restricts the distance of each particle to the
jet axis. The only difference is in the upper limit of Eq. (6.6). The integral
found with a cone jet of size R corresponds to a generalized kt algorithm with
parameter Rkt(R). Their relation can be easily found from the dependence of
rij in θs,

Rkt(R) = R + sin−1

(
z2 sinR

(1 + β2
z )− 2βz cosR

)

= R +
z2

2

sinR

1− cosR
+O(z4) , (6.11)

a result that depends on z, the ratio of the jet energy to its mass. We see that
for highly boosted heavy jets, or for jets of low mass, with z ≪ 1, Rkt(R) → R,
and the two integrated jet functions are identical. The kt algorithm param-
eter, Rkt , approaches the cone jet parameter, R, from above because the kt
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algorithm is slightly more restrictive at this order. For the remainder of our
discussion, we shall assume a cone jet algorithm.

For signal events from highly-boosted massive gauge bosons, we consider
separately the cases when it is longitudinal and when it has helicity (h = ±1),

dJLong

d(cθs)
=

C

(1− βzcθs)2
, (6.12)

dJh=±1

d(cθs)
=

C

(1− βzcθs)2

(

1− (zsθs)
2

2(1− βzcθs)2

)

,

where sθs ≡ sin θs and C is a proportionality coefficient, totally determined
from the two-body decay kinematics. We can interpret the appropriately nor-
malized differential jet functions, P x(θs) = (dJx/dθs)/J

x as the probability to
find the softer particle at an angle between θs and θs + δθs. As the ratio z
decreases, the decay products become boosted and the cone shrinks. For QCD
jets from light partons, however, this shrinkage is much less pronounced. From
Fig. 6.2 we can see that the jet functions for the gauge boson distributions of
Eq. (6.12) fall off with θs faster than do QCD jets, Eq. (6.5). This observation
suggests that the signal (vector boson-jet) and background (QCD jets) have
different shapes for fixed pT , R and jet mass. This may be used to obtain an
improved rejection power against background events. We now consider a class
of jet shapes, angularities , originally introduced in Refs. [155, 163] for two-jet
events in e+e− annihilation. A natural generalization of these jet shapes to
single-cone jets of large mass mJ is

τ̃a(R, pT ) =
1

mJ

∑

i∈jet

ωi sin
a

(
πθi
2R

) [

1− cos

(
πθi
2R

)]1−a

, (6.13)

with mJ the jet mass. The arguments of the trigonometric functions vary from
zero to π/2 as θ increases from zero to R, that is, over the size of the cone.
These weights revert to the angularities as defined in for leptonic annihilation
in [155, 163] when R = π/2, so that the cone is enlarged to a hemisphere and
mJ is replaced by the center-of-mass energy in a two-jet event. For massive
jets, the angularities are clearly non-zero at lowest order, in contrast to the
lowest order planar flow, Eq. (6.4). Then, precisely because of their IR safety,
higher-order corrections to the τa distributions should be moderate.

As the parameter a varies, the angularities give more or less weight to
particles at the edge of the cone compared to those near the center. From the
differential jet distribution functions in Eqs. (6.5) and (6.12) and the definition
of τ̃a we can obtain expressions for P x(τ̃a) [as before x= sig (signal) or QCD],
the probability to find a jet with an angularity value between τ̃a and τ̃a + δτ̃a
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Figure 6.2: Normalized jet distributions for gauge bosons, in Eq. (6.12), and
QCD in Eq. (6.5).

at fixed pT , R,mJ and a. Our focus is not on the form of the individual
distributions but rather on the ratio of the signal to background

R(τ̃a) =
P sig(τ̃a)

PQCD(τ̃a)
. (6.14)

In Fig. 6.3 we show Rτ̃a for a = −2 and z = 0.05 , for the different vector boson
polarizations. In Fig. 6.4 we show the corresponding angularity distributions at
the event generator level, comparing the output of MadGraph for longitudinal
Z boson production to QCD jets in the same mass window. The pattern
suggested by the lowest-order prediction of Fig. 6.3 is confirmed by the output
of the event generator, with signal and data curves crossing in Fig. 6.3 near
τ̃−2 = 0.02, where R(τ̃−2) ∼ 1. Comparing Eqs. (6.5) and (6.12), we observe
that the QCD jet distribution is more peaked as θs → θm than the Z boson
jet, corresponding to a sharper falloff with increasing τ̃−2. In this case, θm ∼
4× 10−3, and the maximum of the lowest-order angularity distribution would
be in the lowest bin of the figure. In the event generator output, we see a slight
shift to the right for the QCD distribution, due to radiation. This, however,
does not affect the clear contrast between the QCD and Z boson cases.
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6.4 Linear three-body decay

The leading-order differential top jet function can be obtained by considering
its three-body decay kinematics. The analytic expression is similar to Eq.
(6.12) for the two-body case, although a bit more elaborate. In the following
we simply point out a few features that may help angularities to distinguish
top jets from background, even when they have relatively linear flow.

The lowest-order three-body distribution is fully characterized by three
angles. The first, θb, is the angle between the b quark and the jet axis. The
second, θWq, is the angle of the quark (from W -decay) relative to the W . The
third, φ, is the angle of the same quark relative to the plane defined by the
W and the b. For an on-shell W , the distributions peak around θb = θm
(as in two-body kinematics) and θWq = θm(W ) the minimal angle relative to
the W momenta in the W rest frame. Because it is massive, the W ’s decay
products move in somewhat different directions, even in the boosted frame,
and their relative orientation induces the φ-dependence. Clearly, planar flow
has maxima for odd multiples of φ = π/2, and vanishes at lowest order at
multiples of π. To tag top events at zero planar flow, angularities can be
of use. In Fig. 6.5 we plot τ̃−5 as a function of the azimuthal angle of the
W (qq̄) pair, φ, for a typical top jet event. We also show the corresponding
value for the two-body case (clearly φ independent). For illustration we choose
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Figure 6.4: The angularity distribution for QCD (red-dashed curve) and longi-
tudinal Z (black-solid curve) jets obtained fromMadGraph. Both distributions
are normalized to the same area.

the kinematical configuration that maximizes the corresponding differential jet
distributions. We notice that this top angularity has maxima with φ at zero
and π at values far above the most likely two-body configuration. The reason is
simply that angularities with large negative values of a tend to emphasize flow
at the edge of the cone. Other values of a weight individual jets differently in
general. We consider this simple plot, along with the forgoing examples from
event generators, as strong evidence for the potential of jet shape analysis.

In summary, planar flow, angularities, and jet shapes that are as yet to be
invented, may afford a variety of tools with which to distinguish the quantum
mechanical histories of jets, whether resulting from heavy particle decay, or
strong interactions. Our approach is complementary to others that have been
proposed recently [147, 148, 153, 154]. For the most part, these references
analyze a subclass of highly boosted tops that are not fully collimated as seen
for a specific choice of jet-finder. Efficiencies for these event may then be quite
high. Here, we take a less exclusive approach, accepting all data in a given mass
range. This enables us to readily identify analytic approximations inspired by
factorization. As demonstrated in this paper and its companion [25], our
treatment allows one to have fairly straightforward theoretical control over
the expected observed distributions. This allows us to interpret the data (only
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Figure 6.5: Angularity, τ̃−5 as a function of the azimuthal angle of the W (qq̄)
pair, φq, for a typical top jet event, compared to the typical case two-body
kinematics.

from Monte-Carlo at this point) in the light of simple predictions that are
based directly on theory.
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Appendix A: NLO Dihadron

cross-section

In this appendix we present some details for the calculation of the NLO par-
tonic cross-sections near threshold. The virtual corrections have the 2 → 2
kinematics of the Born terms and therefore fully contribute. They are propor-
tional to δ(1− τ̂). The real-emission 2 → 3 contributions require more effort.
We consider the reaction a(p1) + b(p2) → c(k1) + d(k2) + e(k3), where partons
d and e fragment into the observed pair of hadrons and have pair mass m̂2. It
is convenient to work in the c.m.s. of the observed outgoing hadrons. We can
then write the three-body phase space in 4− 2ε dimensions as

Φ3 =
s

(4π)4Γ(1− 2ε)

(
4π

s

)2ε ∫ 1

0

dτ̂ τ̂−ε(1− τ̂)1−2ε

∫ ∞

0

dρρ−ε(1 + ρ)−2+2ε

×
∫ π

0

dψ sin1−2ε ψ

∫ π

0

dθ sin−2ε θ . (A.1)

Here we define
ρ = (p1 − k2)

2/(p2 − k2)
2 = e−2∆η . (A.2)
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Near threshold, the integration variables are given in terms of the Mandelstam
variables of the process as follows:

(p1 + p2)
2 = ŝ , (k2 + k3)

2 = m̂2 = τ̂ ŝ ,

(p1 − k1)
2 = − ŝ(1− τ̂)

2
(1− cosψ) , (p2 − k1)

2 = − ŝ(1− τ̂ )

2
(1 + cosψ) ,

(p1 − k2)
2 = − ŝρ

1 + ρ
= (p2 − k3)

2 , (p2 − k2)
2 = − ŝ

1 + ρ
= (p1 − k3)

2 ,

(k1 + k2)
2 =

ŝ(1− τ̂)

2

(

1 + sinψ cos θ
2
√
ρ

1 + ρ
− cosψ

1− ρ

1 + ρ

)

,

(k1 + k3)
2 =

ŝ(1− τ̂)

2

(

1− sinψ cos θ
2
√
ρ

1 + ρ
+ cosψ

1− ρ

1 + ρ

)

. (A.3)

The phase space in Eq. (A.1) is used to integrate the squared 2 → 3 matrix
elements |Mab→cde|2. For the latter one also assumes near-threshold kinemat-
ics. Since we want the partonic cross section at fixed τ̂ and ∆η, we only need
to perform the last two integrations in Eq. (A.1). The basic integral for these
is [61]

∫ π

0

dψ

∫ π

0

dθ
sin1−2ε ψ sin−2ε θ

(1− cosψ)j(1− cosψ cosχ− sinψ cos θ sinχ)k

= 2π
Γ(1− 2ε)

Γ(1− ε)2
2−j−k B(1− ε− j, 1− ε− k)

× 2F1

(

j, k, 1− ε, cos2
χ

2

)

, (A.4)

where 2F1 is the Hypergeometric function. After integration over phase space
and addition of the virtual corrections, infrared singularities cancel and only
collinear singularities remain. These are removed by mass factorization, which
we do in the MS scheme. Notice that since we are close to threshold only the
diagonal splitting functions P

(1)
ii contribute in this procedure. Combining all

contributions, one arrives at the near-threshold structure of the partonic cross
sections given in Eq. (3.17), for each subprocess that is already present at LO.
The final step is to take Mellin moments in τ̂ of the result, as described in

134



Eq. (3.26). This gives for the partonic cross sections to NLO:

ω̃thr,LO+NLO
ab→cd (N,∆η, αs(µ), µ/m̂) = ω

(0)
ab→cd(∆η)

+
αs(µ)

π

[

ω
(1,0)
ab→cd(∆η, µ/m̂) − ln N̄ ω

(1,1)
ab→cd(∆η, µ/m̂)

+
1

2

(
ln2 N̄ + ζ(2)

)
ω
(1,2)
ab→cd(∆η)

]

, (A.5)

where terms subleading inN have been neglected. The “C-coefficients” defined
in Eq. (3.41) are obtained from this as

C
(1)
ab→cd (∆η, µ/m̂) =

ω
(1,0)
ab→cd(∆η, µ/m̂) + 1

2
ζ(2)ω

(1,2)
ab→cd(∆η)

ω
(0)
ab→cd(∆η)

. (A.6)
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Appendix B: Hard Coefficients

In this section we give the coefficients C
(1)
ab→cd for each subprocess contributing

to the production of our di-hadron final state, resulting from the calculation
outlined in Appendix A. In all expressions below, µ is the renormalization
scale. The dependence on the factorization scale is already included in the
function Ei in Eq. (3.43). As before, we define ρ ≡ e−2∆η.
qq′ → qq′:

We define:
Qqq′ ≡ 1 + (1 + ρ)2 . (B.1)

We then have:

C
(1)
qq′→qq′ (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2
+

(
5

6Qqq′
+

13

12

)

ln2 ρ

+

(
5

6
− 1

3Qqq′

)

ln2(1 + ρ) +

(

−8

3
+

14 + 9ρ

6Qqq′

)

ln ρ

+

(

−4

3
+

2

3Qqq′

)

ln(1 + ρ) ln ρ− ρ

3Qqq′
ln(1 + ρ)

+
7π2

6Qqq′
+
Nf

3
ln

ρ

1 + ρ
− 5Nf

9
+

8

3
Li2

(
ρ

1 + ρ

)

+
3

2
ln(1 + ρ) +

47π2

36
+

7

2
. (B.2)

qq̄′ → qq̄′:
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We have:

C
(1)
qq̄′→qq̄′ (∆η, µ/m̂) = C

(1)
qq′→qq′ (∆η, µ/m̂)

+
5

6

{(

1− 2

Qqq′

)[

(1 + ln ρ) ln ρ+
π2

2

]

− ρ

Qqq′
ln(1 + ρ)

+

(
3

2
− 1

Qqq′

)

ln(1 + ρ) ln
1 + ρ

ρ2
− 2Li2

(
ρ

1 + ρ

)}

. (B.3)

qq → qq:

We define:

Qqq ≡
(1− ρ+ ρ2)(3 + 5ρ+ 3ρ2)

(1 + ρ(1 + ρ))
. (B.4)

We then have:

C(1)
qq→qq (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2
+

8

Qqq

(
1− ρ2

)
Li2

(
ρ

1 + ρ

)

+

(
7

6
− 59ρ

48Qqq
+

5

4 Qqq
− ρ+ 4

16 (3 + 5ρ+ 3ρ2)

)

ln2 ρ

−(12ρ2 + 3ρ− 4)

2Qqq
ln2(1 + ρ) +

ln ρ

12Qqq

(

37ρ− 71 +
(17− 8ρ)Qqq

3 + 5ρ+ 3ρ2

)

+

(
7

3
− 7

4Qqq
(6− 5ρ)− 53ρ− 6

12 (3 + 5ρ+ 3ρ2)

)

ln(1 + ρ) ln ρ

+

(
3

2
− ρ

4Qqq
− ρ

4 (3 + 5ρ+ 3ρ2)

)

ln(1 + ρ)

+Nf

(
2− ρ

2Qqq
+

ρ

3 (3 + 5ρ+ 3ρ2)

)

ln ρ− 1

3
Nf ln(1 + ρ)− 5Nf

9

+
7

2

(

1 +
2

3
π2

)

− π2

3Qqq

(

4 +
41

16
ρ

)

− 71π2ρ

144 (3 + 5ρ+ 3ρ2)
. (B.5)

qq̄ → q′q̄′:

We define:
Qq′q̄′ ≡ 1 + ρ2 . (B.6)
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We then have:

C
(1)
qq̄→q′q̄′ (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2
+

7

4

(

1− 2

3Qq′q̄′

)

ln2 ρ

− 5

12

(

1 +
2

Qq′ q̄′

)

ln2(1 + ρ) +
7(1 + ρ)

6Qq′q̄′
ln ρ

−7

6

(

1− 2

Qq′ q̄′

)

ln(1 + ρ) ln ρ− 1

3

(

1 +
5 + 9ρ

2Qq′q̄′

)

ln(1 + ρ)

−5Nf

9
− 5

3
Li2

(
ρ

1 + ρ

)

+
1

6

(
21 + 4π2

)
. (B.7)

qq̄ → qq̄:

We define:

Q
(1)
qq̄ ≡ 3 + ρ(1 + ρ) ,

Q
(2)
qq̄ ≡ 1 + 3ρ(1 + ρ) . (B.8)
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We then have:

C
(1)
qq̄→qq̄ (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2

+Nf

(

1

6
+ (1 + 2ρ)

(

1

8Q
(1)
qq̄

+
1

8Q
(2)
qq̄

))

ln

(
ρ

1 + ρ

)

+Li2

(
ρ

1 + ρ

)(

5 + 4ρ

2Q
(1)
qq̄

+
1 + 4ρ

2Q
(2)
qq̄

− 1

3

)

+π2

(

5(9 + 14ρ)

96Q
(1)
qq̄

+
155 + 282ρ

288Q
(2)
qq̄

+
43

36

)

+

(

4ρ− 79

64Q
(1)
qq̄

+
61 + 180ρ

576Q
(2)
qq̄

+
65

36

)

ln2 ρ

+

(

13 + 124ρ

64Q
(1)
qq̄

+
361 + 972ρ

576Q
(2)
qq̄

+
29

36

)

ln2(1 + ρ)

+

(

7− ρ

16Q
(1)
qq̄

− 35 + 71ρ

48Q
(2)
qq̄

− 11

12

)

ln ρ

+

(

61− 64ρ

32Q
(1)
qq̄

− 247 + 576ρ

288Q
(2)
qq̄

− 22

9

)

ln(1 + ρ) ln ρ

+

(

8 + ρ

16Q
(1)
qq̄

+
36 + 71ρ

48Q
(2)
qq̄

+
7

12

)

ln(1 + ρ)− 5Nf

9
+

7

2
.(B.9)

qq̄ → gg:

We define:
Gqq̄ ≡ (1 + ρ2)(4− ρ+ 4ρ2) . (B.10)
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We then have:

C
(1)
qq̄→gg (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2
− 27

2Gqq̄

(
1− ρ4

)
Li2

(
ρ

1 + ρ

)

+
1

48

(

1 +
2ρ

Gqq̄
(133 + 13ρ) +

124− 311ρ

4− ρ+ 4ρ2

)

ln2 ρ

+
1

48

(

69 +
52ρ2

Gqq̄
− ρ+ 648

4− ρ+ 4ρ2

)

ln2(1 + ρ)

+
1

6

(

− ρ

Gqq̄
(3 + 89ρ) +

48 + 5ρ

4− ρ+ 4ρ2

)

ln ρ

+

(
89ρ2

3Gqq̄
− 19ρ

6 (4− ρ+ 4ρ2)
− 2

)

ln(1 + ρ)

+
1

24

(

−19− 2ρ

Gqq̄

(133 + 13ρ) +
200 + 149ρ

4− ρ+ 4ρ2

)

ln ρ ln(1 + ρ)

− 15

4Gqq̄

ρ(1− ρ)2 +
9π2(4− ρ)

16 (4− ρ+ 4ρ2)
+

191π2

144
− 14

3
. (B.11)

qg → qg:

We define:

Q(1)
qg ≡ 2(1 + ρ) + ρ2 ,

Q(2)
qg ≡ 9(1 + ρ) + 4ρ2 . (B.12)
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We then have:

C(1)
qg→qg (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2
− 14

3
+

15(1 + ρ)(2 + ρ)2

4Q
(1)
qg Q

(2)
qg

+π2

(

146 + 13ρ

24Q
(1)
qg

− 3(109 + 13ρ)

16Q
(2)
qg

+
241

144

)

+

(

(1 + ρ)

(

13

12Q
(1)
qg

− 15

16Q
(2)
qg

)

+
17

16

)

ln2 ρ

+(1 + ρ)

(

89

3Q
(1)
qg

− 231

2Q
(2)
qg

)

ln ρ+

(

31

24
+

27(ρ− 3)

8Q
(2)
qg

)

Li2

(
ρ

1 + ρ

)

+

(

13ρ− 120

24Q
(1)
qg

+
3(173 + 41ρ)

16Q
(2)
qg

− 27

16

)

ln2(1 + ρ)

+

(

−86 + 89ρ

6Q
(1)
qg

+
3(43 + 39ρ)

2Q
(2)
qg

− 2

)

ln(1 + ρ)

+

(

120− 13ρ

12Q
(1)
qg

− 3(155 + 23ρ)

8Q
(2)
qg

+
31

24

)

ln ρ ln(1 + ρ) . (B.13)

gg → qq̄:

We have:

C
(1)
gg→qq̄ (∆η, µ/m̂) = C

(1)
qq̄→gg (∆η, µ/m̂) . (B.14)

gg → gg:

We define:
Ggg ≡ 1 + ρ(1 + ρ) . (B.15)
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We then have:

C(1)
gg→gg (∆η, µ/m̂) = 2πb0 ln

µ2

m̂2

+Nf

(
5

9
+

3ρ2(1 + ρ)2

8G3
gg

+
π2ρ (1 + ρ2) (1 + ρ)2

16 G3
gg

)

−3ρ2(1 + ρ)2

8 G3
gg

(3 + π2) +
3

4

(
(1 + ρ)3

G3
gg

+ 1

)

ln2 ρ

+
Nf

16G2
gg

(1 + ρ)

(
2

Ggg

(1 + ρ)2 + ρ2 − 2(1 + ρ)

)

ln2 ρ

+
Nf

24G2
gg

(
8
(
1 + ρ2

)
+ 5ρ

)
(1 + ρ)2 ln(1 + ρ)

+
Nf

16G2
gg

(1 + ρ)2
(

2

Ggg
(1 + ρ)− 2− ρ

)

ln2(1 + ρ)

+
Nf

8G2
gg

(1 + ρ)

(

2ρ+ 1− 1

Ggg
(1 + ρ)2

)

ln ρ ln(1 + ρ)

+
1

G2
gg

(

−11

2

(
1 + ρ2

)
− 7

4
ρ

)

(1 + ρ)2 ln(1 + ρ)

+
3π2(1 + ρ)

4 G2
gg

+

(
3

2
− 3(1 + ρ)3

4G3
gg

+
3(2ρ+ 1) (1 + ρ2)

4G2
gg

)

ln ρ ln(1 + ρ)

+
1

G2
gg

(
7

4
ρ2 +

11

2
(1 + ρ)

)

(1 + ρ) ln ρ− Nf

24G2
gg

(1 + ρ)
(
5ρ2 + 8(1 + ρ)

)
ln ρ

+

(
3(1 + ρ)3

4 G3
gg

− 3(2ρ+ 1)

4G2
gg

− 3 (1 + ρ)

2Ggg

− 3

4

)

ln2(1 + ρ)

− 3

2Ggg

(
1− ρ2

)
Li2

(
ρ

1 + ρ

)

− π2(1 + ρ)

2Ggg
+

11π2

4
− 67

6
. (B.16)
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Appendix C: Jets at Fixed

Invariant Mass

Here we give details of the definitions and calculations for the jet functions
that we employ in section 3. Single inclusive Jet cross sections have been
studied intensively [129, 138–140]. Here, we are interested in computing the
QCD background to jets of measured mass. The main background to the
production of tt̄ pairs is from dijet production from hadronic collisions,

Ha(pa) +Hb(pb) → J1(m
2
J1
, p1,T , η1, R) + J2(m

2
J2
, p2,T , η2, R) +X, (C.1)

where the final states are jets in the directions of the outgoing partons, each
with a fixed jet mass m2

J , a “cone size” R2 = ∆η2 + ∆φ2, and transverse
momenta, pi,T . For simplicity we choose the cone sizes equal for the two jets,
although they can be different. For R < 1, we can isolate the leading (R0)
dependence of such cross-sections in factorized “jet” functions,

dσHAHB→J1J2

dpTdm
2
J1
dm2

J2
dη1dη2

=
∑

abcd

∫

dxa dxb φa(xa)φb(xb)

×Hab→cd (xa, xb, pT , η1, η2, αs(pT ))

×Jc1(m2
J1
, pT cosh η1, R, αs(pT )) J

d
2 (m

2
J2
, pT cosh η2, R, αs(pT )),(C.2)

with corrections that vanish as powers of R. Here the φ’s are parton distri-
bution functions for the initial hadrons, Hab→cd is a perturbative 2 → 2 QCD
hard-scattering function, equal to the dijet Born cross section at lowest or-
der, and the Ji are jet functions, which are defined below. Jet function Ji
summarizes the formation of a set of final state particles with fixed invariant

mass and momenta collinear to the ith outgoing parton. Corrections to the
cross section of order R0 can only occur through collinear enhancements which
factorize into these functions [21].
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Following Ref. [155] we define jet function for quarks at fixed jet mass by

Jqi (m
2
J , p0,Ji, R) =

(2π)3

2
√
2 (p0,Ji)

2

ξµ
Nc

×
∑

NJi

Tr
{

γµ 〈 0|q(0)Φ(q̄)†
ξ (∞, 0)|NJi 〉 〈NJi|Φ

(q̄)
ξ (∞, 0)q̄(0)|0 〉

}

×δ
(
m2
J − m̃2

J (NJi, R)
)
δ(2)(n̂− ñ(NJi))δ(p0,Ji − ω(NJc)), (C.3)

where m̃2
J(NJi , R) is the invariant mass of all particles within the cone centered

on direction n̂ in state NJi . Correspondingly, gluon jet functions are defined
by

Jgi (m
2
J , p0,Ji, R) =

(2π)3

2(p0,Ji)
3

∑

NJi

〈 0|ξσF σν(0)Φ
(g)†
ξ (0,∞) |NJi 〉

× 〈NJi|Φ
(g)
ξ (0,∞)F ρ

ν (0)ξρ|0 〉
×δ
(
m2
J − m̃2

J (NJi, R)
)
δ(2)(n̂− ñ(NJi))δ(p0,Ji − ω(NJc)). (C.4)

These functions absorb collinear enhancements to the outgoing particles that
emerge from the underlying hard perturbative process and fragment into the
observed jets. The Φ’s are path ordered exponentials (Wilson lines) defined
by

Φ
(f)
ξ (∞, 0; 0) = P

{

e−ig
∫
∞

0 dη ξ·A(f)(η ξµ)
}

, (C.5)

where P indicates ordering along the integral and where ξ is a direction with
at least one component in the direction opposite to the jet. The full hadronic
cross-section is independent of the choice for ξ. As indicated, the gauge field
A(f) is a matrix in the representation of the generators for parton f . In general
the jet function depends on ~ξ ·n̂, but for simplicity we suppress this dependence
below. Finally the jet functions in Eqs. (C.3) and (C.4) are normalized such
that at lowest order we have

J
(0)
i (m2

Ji
, p0,Ji, R) = δ(m2

Ji
). (C.6)

C.0.1 Jet Functions at Next-to-Leading Order

At next-to-leading order, contributions to the jet mass distributions for light
quark or gluon jets have only two particles in their final states. For the quark
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jet we have the following matrix element which has to be calculated to O(g2),

Jqi (m
2
J , p0,Ji, R) =

(2π)3

2(p0,Ji)
2

ξµ

Nc

√
2

∑

σ,λ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

×Tr
{

γµ 〈 0|q(0)Φ(q̄)†
ξ (∞, 0)|p, σ; k, λ 〉 〈 p, σ; k, λ|Φ(q̄)

ξ (∞, 0)q̄(0)|0 〉
}

×δ
(
m2
J − (p+ k)2

)
δ(2)(n̂− n̂~p+~k) δ(p0,Ji − p0 − k0), (C.7)

where σ and λ denote the polarizations , and p and k the momenta of the

final-state quark and gluon respectively with n̂~p+~k ≡ ~p+~k

|~p+~k|
. Similarly, for the

gluon jet we have

Jgi (m
2
J , p0,Ji, R) =

(2π)3

4(p0,Ji)
3

∑

NJi

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

×〈 0|ξσF σν(0)Φ
(g)†
ξ (0,∞) |p, σ; k, λ 〉 〈 p, σ; k, λ|Φ(g)

ξ (0,∞)Fν
ρ(0)ξρ|0 〉

×δ
(
m2
J − (p+ k)2

)
δ(2)(n̂− n̂~p+~k) δ(p0,Ji − p0 − k0), (C.8)

where p and k are the final state momenta within the cone size, R. To evaluate
these matrix elements, we need the rules for vertices shown in Fig. C.1 for
the field strengths. The double lines represent the perturbative expansion of
the Wilson lines (C.5) in the ξ-direction (see Eq. (C.11)), whose vertices and
propagators are shown in Fig. C.2. The resulting diagrammatic contributions
to the quark and gluon jet functions at next-to-leading order are shown in
Fig. C.3 and Fig. C.4 respectively.

p
p

−g fabc ( g
+  g −g +  g  )

c

i(p+  g  − p  g + )
ac

c

p

Figure C.1: Feynman rules associated with the F+ν operator at the end of a
Wilson line.

We choose a frame where the jet is in the ηJ = φJ = 0 direction and the
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k

ij −i g ta,ij

−1

Figure C.2: Feynman rules associated with eikonal lines, from the expansion
of the Wilson lines.

(a) (b) (c)

Figure C.3: Real contributions to the quark jet function at order αs.
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Figure C.4: Real non-vanishing contributions to the gluon jet function in
Feynman gauge at NLO.

vector ξ is light-like and in a direction opposite to the jet,

pJi = p0,Ji(1, βi, 0, 0) ξ =
1√
2
(1,−1, 0, 0) , (C.9)

where βi =
√

1−m2
Ji
/p20,Ji is the velocity of the jet. In this frame we parametrize

the momenta p and k above by

p = p0(1, cos θp, sin θp, 0) k = k0(1, cos θk,− sin θk, 0) , (C.10)

where θp,k represents the angle of each particle to the jet axis n̂. The path
ordered exponentials are expanded order-by-order in gs, related to the rules in
Fig. C.2 by the expansion,

Φξ(∞, 0; 0) = P
{

e−ig
∫
∞

0
dη ξ·A(η ξµ)

}

= 1− ig

∫
d4k

(2π)4
i

ξ · k + iǫ
ξ ·A(k) + . . . . (C.11)

We begin with the calculation of the quark jet function, which readily
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reduces to an integral over the energy and angle of one of the particles,

J
q(1)
i (m2

J , p0,Ji, R) =
βi

8
√
2

∫
d cos θkdk0k0
π(p0,J − k0)

|M(p, k)|2

×δ(m2
j − 2k0p0,J (1− βi cos θk))Θ(R− θk) ,(C.12)

where we choose k to represent the gluon and p the quark. For k the softer
momentum, we easily see that θk ≥ θp. Therefore, p0 = k0 fixes the minimum
angle for the softest particle, and we find cos(θS,min) = βi. The region ωp < ωk
is found by simply interchanging p and k in |M(p, k)|2 so that

J
q(1)
i (m2

J , p0,Ji, R) =
βi

16
√
2

∫ βi

cos(R)

d cos θS
(2π)2

m2
Ji
/p20,J

(

2(1− βi cos θS)−
m2

Ji

p20,J

)

× 1

p0,J(1− βi cos θS)

(
|Mqi(p, k)|2 + |Mqi(k, p)|2

)
.(C.13)

The evaluation of |Mqi(p, k)|2 is straightforward from the diagrams of Fig. C.3,
and we find

J
q(1)
i (m2

J , p0,Ji, R) =
CFβi
4m2

Ji

×
∫ βi

cos(R)

d cos θS
π

αs(k0) z
4

(2(1− βi cos θS)− z2) (1− βi cos θS)

×
{

z2
(1 + cos θS)

2

(1− βi cos θS)

1

(2(1 + βi)(1− βi cos θS)− z2(1 + cos θS))
+

3(1 + βi)

z2
+

1

z4
(2(1 + βi)(1− βi cos θS)− z2(1 + cos θS))

2

(1 + cos θS)(1− βi cos θS)

}

(C.14)

where z =
mJi

p0,Ji
, p0,Ji =

√

m2
Ji
+ p2T , and k0 =

p0,Ji
2

z2

1−βi cos θS
.

The calculation of the gluon jet function proceeds along the same lines, with
the exception that both particles in the final states are now identical, and the
presence of the field strengths, which appear at the end of each Wilson line.
The rules for these vertices, as mentioned before, are shown in Fig. C.1. Once
again, we can write the gluon jet function as an integral over the angle of the
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softer particle,

J
g(1)
i (m2

J , p0,Ji, R) =
βi

16m2
Ji

∫ βi

cos(R)

d cos θS
(2π)2p20,Ji

× z2

(2(1− βi cos θS)− z2) (1− βi cos θS)
|Mgi(p, k)|2 ,(C.15)

where |Mgi(p, k)|2 is symmetric under the interchange of p and k. We find
from the diagrams shown in Fig. C.4, the result

J
g(1)
i (m2

J , p0,Ji, R) =
CAβi
16m2

Ji

∫ βi

cos(R)

d cos θS
π

× αs(k0)

(1− β cos θS)2(1− cos2 θS)(2(1 + β)− z2)

×
(
z4(1 + cos θS)

2 + z2(1− cos2 θS)(2(1 + βi)− z2)

+(1− cos θS)
2(2(1 + βi)− z2)2

)2
. (C.16)

These one-loop expressions have been used to generate the comparisons to
event generator output given in Section 3.
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Appendix D: R-dependence

It is of interest to isolate the leading logarithmic contributions in both gluon
and quark jets, which can be found from eikonal graphs in the adjoint and
fundamental representations respectively,

J (eik),c(m2
J1 , pT , R) =

2Cc√
2pT

g2
∫

d3k

(2π)32ωk

ξ · pJ
ξ · k

ξ · pJ
2pJ · k

×δ
(
m2
J1
− (p1 + k)2

)
Θ (pT − kT ) . (D.1)

Parametrizing k as

k = kT (cosh ηk, cosφk, sinφk, sinh ηk) , (D.2)

this leads to

J (eik),c(m2
J1
, pT , R) = g2

Cc
(2π)3

∫

dkT kT dφkdηk
1

k2T (cosh
2 ηk − cos2 φk)

× δ
(
2pT kT (cosh ηk − cosφk)−m2

J1

)
Θ (pT − kT ) .

= g2
Cc

(2π)3

∫

dφkdηk
1

m2
J1

1

k2T (cosh
2 ηk − cos2 φk)

×δ
(
2pT kT r −m2

J1

)
Θ

(

cosh ηk − cosφk −
m2
J1

p2T

)

.(D.3)

In this expression we can change the variables to

ηk = r cos θ, φk = r sin θ . (D.4)
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pa

pb

k

k

pa

pb

Figure D.1: Contributions to the jet mass from the soft function.

Since we are dealing with highly collimated jets we can expand the integrand
in r and integrate over θ, finding

J (eik),c(m2
J1, pT , R) ≃ g2

2Cc
(2π)2

∫ R

mJ/pT

dr
1

m2
J1

{
1

r
+O(r3)

}

≃ αs(pT )
Cc
m2
J1
π

{

log

(
R2 p2T
m2
J

)

+O(R4)

}

, (D.5)

which shows explicitly the logarithmic behavior in R. Leading logarithmic
contributions can be exponentiated, giving us a qualitative description of lower
jet masses,

J (eik),c(m2
J1, pT , R) ≃

αs
π
Cc

1

m2
J

log

(
R2p2T
m2
J

)

exp

{

−αs
2π
Cc log

2

(
R2p2T
m2
J

)}

.

(D.6)
Without the above approximations, the eikonal jet function is given by

J (eik),c(mJ , pT , R) = αs(pT )
4Cc
πmJ

log




pT
mJ

tan

(
R

2

)
√

4−
(
mJ

pT

)2


 . (D.7)

As we have observed above, all R0 behavior in the cross section can be found
from the jet functions. We can also estimate the contribution of soft initial-
state radiation on the cone-jet masses. Here we verify that such radiation is
sub-leading in powers of R2. Contributions due to wide angle gluons come from
a “soft function” [21], which is defined in terms of an eikonal cross section,

S(m2
Ji
) ∼

∑

Ns

σ(eik)(Ns)δ(m
2
J1
− m̃2

J(Ns, R)). (D.8)

Diagrams that can contribute to the jet mass are illustrated in Fig. D.1. The
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initial state radiation shown behaves as

S ∼
∫

d4kδ(k2)
pa · pb

(pa · k)(pb · k)
δ(m2

J1
− 2p1 · k)Θ(R− R̃(ηk, φk)) , (D.9)

with pa and pb the momenta of incoming partons, neither of which is in the
direction of the observed jets. Choosing a frame where the initial momenta
are given by

pa =

√
s

2
(1, 0, 0, 1) , pb =

√
s

2
(1, 0, 0,−1) , (D.10)

and parametrizing the radiated gluon’s momentum k as in Eq. (D.2) above,
we find

S ∼
∫

dkTdφkdηk
1

kT

1

2pT (cosh ηk − cos φk)
δ

(

kT − m2
J1

2pT (cosh ηk − cosφk)

)

∼ 2π

m2
J1

∫ R

0

dr r =
πR2

m2
J1

, (D.11)

which is, as expected, power-suppresed in R compared to the logarithmic de-
pendence we get from the jet function.
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