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Abstract of the thesis

Static Disassembly of Stripped Binaries

by

Arvind Ayyangar

Master of Science

in

Computer Science

Stony Brook University

2010

Disassembly of binaries plays an important role in computer security. Tools

for binary analysis and reverse engineering rely heavily on static disassem-

bly. Current disassemblers are not able to reliably disassemble executables

or libraries that contain data (or junk bytes) in the midst of code, or make

extensive use of indirect jumps or calls. These features can cause these tools

to fail silently, thus making them inappropriate for applications that critically

depend on correct disassembly, e.g., binary instrumentation. An incorrectly

disassembled binary can lead to incorrect instrumentation, which can in turn

cause the instrumented program to fail, or more generally, exhibit differences

in behavior from the original binary. In this thesis, we analyze existing disas-

sembly approaches, their shortcomings, and propose a technique to overcome

these shortcomings. We investigate the use of static data flow analysis and

iii



type analysis to overcome the many challenges posed by disassembly of com-

mercial off-the-shelf software binaries.
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CHAPTER 1

Introduction

With the existence of a large number of vulnerability-related bugs in current

software, there is a need for tools that can carry out analysis and transforma-

tions to identify and/or mitigate these security vulnerabilities. These tools

prevent buffer overflow attacks [12], format string vulnerabilities [23], examine

security properties of software [9], etc. Existing tools typically assume the

availability of the source code of the software, which is not always realistic.

Hence there is a need for tools that can directly analyze and/or transform

binaries.

Disassembly is the process of conversion of machine code from the binary

image into assembly format [13]. The disassembler may not provide source

code information like names of variables and functions since most of this in-

formation may not be available. Stripped binaries are binaries which lack

information regarding the locations, offsets, sizes and layout of functions as

well as objects. Typically, all this information is stored in a symbol table

which is generated by the compiler, but is removed before distribution.

Although there is no performance improvement to be had by stripping a

binary it could be done for various reasons. Commercial code is stripped to

make it difficult to reverse engineer proprietary algorithms; system libraries are

stripped to reduce the size on disk; and malware is stripped to obfuscate it and
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thus complicate analysis. The general assumption across these applications is

that the absence of symbol tables makes analysis of binaries more difficult.

An executable binary can be analyzed either statically or dynamically. Static

binary analysis involves the following processes: reading the binary from the

disk, interpreting the headers, analyzing the executable and data sections to

obtain high level information. Static binary analysis is relatively difficult due

to a number of issues as described below.

Problems with static disassembly:

There are many challenges associated with static binary analysis. The

most important ones are discussed below.

• Missing Information about function boundaries and object layouts: Func-

tions sizes, offset and layout are usually stored in the compiler generated

symbol tables. If the symbol tables are absent as in stripped binaries, it

is difficult to determine the entry and exit points of functions. Compiler

optimizations like tail-call optimization where the function exit point is

a jump to the entry point to another function make analyzing functions

even more difficult.

• Indirect Function calls: Indirect functions are functions which are

passed as arguments to other functions and stored in some data structure

so that they can be invoked when certain events occur. A very common

example is the atexit() function, which takes a pointer to a function

that is to be invoked before termination of the application. Other exam-

ples include virtual method calls in C++ and event handlers in GUIs or

event-driven applications.

Objects may be stored in the stack, data or heap segments. The ob-

jects may contain pointers to functions and hence they may need to be

analyzed to determine function entry points.

• Variable Instruction sizes: On CISC machines (e.g. x86 processors), the

size of an instruction can vary from one byte to many bytes. The task
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of disassembly would have been simpler and less error prone had the

sizes of all instructions been the same. The x86 instruction set has 219

single byte opcodes out of the possible 255 values, and hence there is

a high probability that any alignment or data byte can be successfully

disassembled as an instruction.

• Data between code and Alignment bytes: Alignment bytes are garbage

bytes placed between two functions or objects so that they are aligned

at four, eight or sixteen byte boundaries as required by the architecture.

Alignment bytes are neither data nor code. The compiler could also

generate data between the code for a number of reasons. All these bytes

poses disassembly problems since it is difficult to distinguish statically

between code, data and alignment bytes.

• Jump tables and Virtual Tables: Jump tables are usually generated as

a result of a switch statement or a n-conditional jump in the higher level

program. Jump tables are indexed jumps; the table is stored in a read-

only section of the binary and an index register decides the addresses in

the table from where the execution has to resume.

Virtual function tables are a mechanism to support run-time function

binding. Virtual tables or vtables are stored in the object (usually at

the beginning of the object) and are pointers to a table in the read-only

section of the executable. The functions in the vtable are called using

appropriate indexes as in jump tables. The difficulty with jump tables

and vtables is that it is difficult to determine the size and location of these

tables statically which results in incomplete disassembly of binaries.

• Function with side effects: Certain functions could affect the behavior of

their callee by modifying the return address or performing de-allocation

on the stack and changing the values of stack and base pointer registers

in a way that could affect the next address to be decoded in the caller

function. Thus it is necessary to analyze the behavior of functions to

determine how they can affect the overall execution of the program.
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Dynamic binary analysis, as the name suggests, analyzes the binary dy-

namically at runtime. Dynamic analysis is simpler to perform owing to the

following factors: the start of the instruction is known accurately and it is

easier to distinguish between code and data. However, dynamic analysis has

a low coverage since it only analyzes code which is being executed. Moreover,

in applications that require transformation (also called “instrumentation”) of

binaries, a dynamic approach leads to high overheads, typically slowing down

the program by an order of magnitude for many applications [22].

Static binary analysis is therefore desirable for most instrumentation ap-

plications. Such applications include binary taint tracking [22], performance

profiling [15, 17], memory error detection [19], etc. The reliability of these

applications depends entirely on the correctness of static binary analysis.

IDApro [5] is the most popular disassembler used for reverse engineering and

static analysis. IDAPro uses a depth-first call-graph traversal to determine

function start addresses. The disassembler can only identify functions that

are called directly with hundred percent accuracy. For the rest, it applies

heuristics like looking for standard function prologue patterns as explained in

Section 3.1.1. Thus, even though IDAPro has high static disassembly coverage

it cannot be used by rewriting and instrumentation tools since these tools

cannot tolerate occasional errors in disassembly output.

1.1 Disassembly Methods

1.1.1 Static Disassembly

Static disassembler disassembles the binary statically by reading the binary

from a file and interpreting the headers and section contents. Since all the

work is done statically, there are no runtime performance overheads in this

approach. The output of a static disassembler when used by tools like profilers

and binary rewriters gives better performance.
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A very common example of a static disassembler is the GNU objdump tool.

1.1.2 Dynamic Disassembly

In dynamic disassembly, the disassembler interacts with the software that is

to be disassembled. As the software executes, each instruction is disassembled

just before it is executed.

The main advantage of this approach is that data can be easily distinguished

from code since the disassembler disassembles only those instructions that are

going to be executed. Since instructions are decoded when they are being

executed, dynamic disassemblers can be used with self-modifying code.

The biggest disadvantage of dynamic disassemblers is performance. Since

control has to be transferred to the disassembler before every instruction is

executed, there is a considerable slowdown in the application runtime. Dy-

namic disassemblers also have a low coverage since only the paths which are

executed are disassembled.

Dynamic disassembly is employed in many binary analysis and instrumenta-

tion tools today, including Pin [20] and valgrind [19].

1.2 Disassembly Algorithms:

There are two basic techniques for disassembly:

• Linear Sweep: This is the most straightforward and simple approach

to disassembly. Examples of such a disassembler is the GNU disassem-

bler, objdump. Disassembly starts from the entry point which is obtained

in the header of the binary (e entry field in ELF format binaries used

on moat UNIX operating systems). Each successive instruction is disas-

sembled from the next location, which is obtained by adding the length

of the current instruction to the start address of the instruction. The
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Figure 1: Linear Disassembly

basic disadvantage of this technique is that it cannot distinguish data

from code. Any data embedded in the code is erroneously disassembled.

Figure 1 shows an example log which contains the actual disassembled

output using a runtime disassembler and the output of objdump. As

seen from the output of the runtime disassembler, there are some junk

bytes stored after the jump instruction. The jump target is 0x4 bytes

after the current instruction, which is 0x8049658. The junk bytes could

be data or simply some alignment bytes. When disassembled with a

linear disassembler, the output is as shown in Fig (b). After decoding

the two byte jump instruction at address 0x8049653, the disassembler

continues decoding at address 0x8049655 which is probably not code.

Thus, the actual target is disassembled incorrectly and the output seems

like a jump to the middle of the instruction.

• Recursive Traversal : Recursive traversal algorithm has some advan-

tages over linear sweep since it takes into consideration the control flow

in the binary. Thus it does not misinterpret data as code. When a jump

instruction is decoded, the disassembler continues disassembly from the

jump target instead of blindly disassembling the next instruction. The

key problem in this approach arises in the presence of indirect control

flow transfer. Code that is reachable only via such transfers will not be

disassembled by a vanilla recursive disassembly algorithm.
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1.2.1 Previous Implementations

The simplest and most commonly used static disassembler is objdump [7].

Other approaches based on the recursive traversal fix some of the bugs in

the linear disassembler [11]. As discussed, recursive disassembler cannot dis-

assemble instructions when the target of the control transfer is unknown, in

which speculative disassembly [14] is used which does a linear sweep to ana-

lyze unreachable code. Other speculative disassemblers like [10] make certain

assumptions to continue the disassembly process which they confirm later in

order to accept the disassembly output. Prasad et al [21] uses a hybrid ap-

proach for disassembly. They use a combination of well know techniques,

viz. recursive traversal and linear sweep and complement them with compiler-

dependent pattern matching heuristics. They assume that the prologue of

functions are rigid, and do a pattern matching for prologues to determine

function entry points. Kruegal et al [14] use a control flow based mechanism

and statistical techniques to disassemble binaries which have been shown to

be robust even in the presence of some degree of obfuscation. His tools focuses

on disassembling binaries which have been obfuscated by tools developed by

Linn and Debray [16]. More recently, Nanda et al [18] developed a robust

disassembly technique based on a quasi-static approach which is suitable for

binary re-writing. In this approach, most parts of the binary are disassem-

bled statically, while a small part which cannot be statically disassembled is

instrumented at runtime. Bird performs speculative disassembly, a confidence

score is accumulated on the possibility of an unreachable byte being an in-

struction. At the end, the instruction is considered valid if its confidence score

is above a certain threshold. QEMU [8] is a processor emulator that uses a

dynamic translator to convert instructions in an emulated program into the

host’s instruction set. Such conversion can be considered as one form of bi-

nary disassembly and instrumentation. Dyninst [2] applies static disassembly

to Win32/X86 binary rewriting and optimization. However, it requires full

debugging information to guarantee the safety of instrumentation.

Our disassembler does not make assumptions about the presence of symbol

tables. We also do not make assumptions about the patterns of prologue and
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epilogue in the binaries. However, since our disassembler is aimed at disas-

sembling COTS binaries, we assume that the binary is not obfuscated. The

assumptions made by out disassembler is detailed in Section 3.1.1.

1.2.2 Self-repairing disassembly

The problems in analyzing a binary statically lead to a number of disas-

sembly errors. One may conclude that an incorrectly decoded byte would

cause all bytes decoded following that byte to be decoded incorrectly; ulti-

mately, one is bound to encounter an invalid opcode at which point the error

would be identified. However, this is not true in practice. On the IA, the

instruction set is encoded such that the process of disassembly happens to

have the self-repairing [16] property, where-in the output of the disassembler

synchronizes to the correct disassembly after a few incorrectly disassembled

instructions. This makes it difficult to identify disassembly errors except by

comparing with correct disassembly output.

1.3 Contributions

In this thesis we make the following contributions

• Jump Table Identification

Jump tables are stored in the data or read-only data segments. They

contain a sequence of jump targets which are used using a register as an

index into the table. These targets are not called directly and hence a

vanilla recursive traversal disassembler will not detect these targets.

Jump tables are identified by keeping track of the read-only data section

and monitoring jumps through this section. Once such jumps are deter-

mined, the table is analyzed for possible jump targets and those targets

are disassembled.

• Library calls side effect analysis

Library functions often take pointers to functions as arguments, and
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these functions are called from the library. If the library functions are not

disassembled and analyzed, these function entry points will be missed.

Calls to library functions occur via the Procedure Linkage Table (PLT).

On encountering such calls, the corresponding library is determined, the

function is disassembled and analyzed for side effects.

• Abstract analysis

Indirect function calls are called using a register or memory as an argu-

ment instead of an immediate value. Abstract analysis aims to determine

static estimates of the values of registers, local memory and the param-

eters on the stack. The abstract values help identify targets of indirect

function calls and jumps.

• Type Analysis

Type Analysis aims to determine the types of registers and memory

locations. Type analysis helps determine function pointers which could

not have been determined otherwise by abstract analysis due to aliasing

effects.

1.4 Organization

The thesis is organized as follows. Chapter 1 gives an introduction to disas-

sembly and explain various problems and approaches related to disassembly.

Chapter 2 covers some background information about file formats, calling con-

ventions and static single assignment. Chapter 3 gives an overview of our de-

sign. Chapter 4 explains some implementation details and Chapter 5 presents

some evaluation results of our disassembler.
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CHAPTER 2

Background

2.1 Stack Layout

The stack on the x86 architecture is referenced using the esp register. On the

x86 machine, the convention is that stack grows in the downward direction.

Thus, the push instruction decrements the stack pointer while the pop instruc-

tion increments. The stack pointer always points to the last valid memory in

the stack segment. The pseudo code for push and pop will make things more

clear.

push %reg =

{

%esp <-- %esp - 4

(%esp) <-- %reg

}

pop %reg =

{

%reg <-- (%esp)

%esp <-- %esp + 4

}
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2.2 GCC calling conventions

There is a need to standardize the application binary interface (ABI), without

which it will be impossible for code generated by different compilers to work

with each other. Unfortunately, in the Linux world, there is often no official

standards relating to the ABI. Instead, a de facto standard is defined by the

GCC compiler developers due to the compilers predominance in the UNIX

platform.

The function making a call is called the caller and function actually called

is called the callee. The caller and the callee agree on a certain machine state

when the control is transfered to the callee. The transfer and return of the

function occurs through the call and ret instructions.

On 32-bit, x86 based Linux machines, the following ABI requirements apply:

At the function entry point, which is the first instruction executed after the

call, the states of the registers expected is

• The instruction pointer (eip) points to the first instruction of the callee

• The value at the stack pointer, i.e. (%esp) contains the return address.

• The arguments are present at %esp+4, %esp+8,....,%esp+4*n, where n

is the number of arguments.

After the execution of the ret statement, the caller expects the following

machine state

• The instruction pointer points to the next instruction in the caller to be

executed, which is the return address

• The return value of the function is stored in register eax

• The contents of registers ebp, esi, edi and ebx are the same as that at

the point of call.
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The registers are broadly classified as caller saved and callee saved registers.

Registers ebp, esi, edi and ebx are caller saved. If the callee requires the use

of these registers, it would have to save the original values and restore before

return.

2.3 The ELF File Format

ELF (Executable and Linkable Format) is the object file, executable program,

shared object and core file format for Linux and many UNIX operating systems

[3]. An ELF file contains an ELF header at the beginning of the file. The size

of the ELF header is fixed and it contains information about the program

header table and section header table. These values are zero if they are not

present.

The program header table, which is optional, tells how to create a process

image. The section header table contains an array of Elf32 Shdr structures,

which contain information about the various sections in the file. There can

be any number of sections in the executable. Some of the common sections

present in a typical binary are .bss, .data, .dynamic, .debug, .got, .fini., .hash,

.interp, .rodata and .text.
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2.4 Dynamic Linking and Procedure Linkage

Tables

Libraries are a collection of subroutines or classes which can be shared between

different applications. Shared libraries do not have a fixed load address and

hence require the dynamic loader to intervene at run-time.

The Global Offset Table (GOT) and the Procedure Linkage Table (PLT)

play a central role in dynamic linking of shared libraries. The PLT adds a

level of indirection for function calls. The PLT also permits “lazy evaluation”,

that is, not resolving procedure addresses until they’re called for the first time.

A typical PLT looks as below. Every PLT entry, except the first one which

is special, belongs to a single function. When a function in the plt is called,

the first jump instruction gets the address of the function from the GOT

table. Each PLT function has an entry in the GOT table, which has been

initialized by the dynamic linker. The initialized address contains the address

of the second instruction, which is the push instruction of the corresponding

PLT entry. The control is then transfered to the first PLT entry (at address

0x804967c in the example below) which eventually transfers control to the

dynamic linker. The dynamic linker then determines the entry point of the

function, and also stores this value in the GOT entry (the first jump location)

of the corresponding PLT entry. Thus, all future references to that function do

not go through the dynamic linker. Instead they behave like a single indirect

jump.

0804967c <abort@plt-0x10>:

804967c: ff 35 f8 3f 06 08 pushl 0x8063ff8

8049682: ff 25 fc 3f 06 08 jmp *0x8063ffc

8049688: 00 00 add %al,(%eax)

0804968c <abort@plt>:

804968c: ff 25 00 40 06 08 jmp *0x8064000
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8049692: 68 00 00 00 00 push $0x0

8049697: e9 e0 ff ff ff jmp 804967c <_init+0x30>

0804969c <__errno_location@plt>:

804969c: ff 25 04 40 06 08 jmp *0x8064004

80496a2: 68 08 00 00 00 push $0x8

80496a7: e9 d0 ff ff ff jmp 804967c <_init+0x30>

On the x86 architecture, the PLT section is read-only while the GOT is a

read-write section. This is because the PLT is not being modified, but that

GOT is being modified to store the address of the function resolved.

2.5 Static Single Assignment

Static single assignment, often abbreviated as SSA is a representation in com-

piler design where assignment to a variable can occur only once. Every as-

signment to a variable creates a new instance of the variable, which is usually

represented by the variable name followed by a subscript. If a variable is as-

signed a value represented by the φ symbol then it is just a marker to represent

that the LHS can be assigned any value from the group represented by φ.

The SSA representation for

x = 5

y = z + x

if y > 10 goto L1

x = 7

L1: z = rand()

y = x * z

is
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x0 = 5

y0 = z0 + x0

x1 = 7

z1 = rand()

x1 = 7

x2 = φ (x0, x1)

y1 = x2 * z1

SSA helps in performing a number of compiler optimizations like constant

propogation, dead code elimination, register allocation, etc..
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CHAPTER 3

Design

3.1 Overview

Our disassembler is intended to disassemble binaries whose file format is

supported by Binary File Descriptor (BFD) [1]. BFD is an object file library

which permits applications to use same routines to process object files regard-

less of their format. It uses generic structures to manage information. It then

translates data into generic form when reading files, and out of the generic

form when writing files. BFD is normally built as a part of the GNU binutils

package.

A BFD target is a file that has been loaded using libbfd, part of the GNU

binutils distribution. BFD targets have many advantages: the target architec-

ture is automatically detected and elements of the object file structure such as

sections and symbols are available. Use of BFD targets is recommended when

the target is supported by libbfd.

3.1.1 What we do not assume

• Presence of Symbol Tables: Our disassembler does not assume the

presence of symbol tables. Symbol tables are typically created by the

compiler and contain information about the location, name and sizes of

16



function and variables. The contents of the symbol table can be displayed

using the nm command.

• Function Prologue and Epilogue patterns: Function prologue is

the first few lines of assembly instructions present at the start of the

function which allocates the stack frame and initializes certain registers

(the ebp on x86). Similarly, function epilogue appears at the end of the

function which is responsible for restoring the register values as expected

by caller and also de-allocates the stack frame. The prologue and epil-

oque are fairly rigid and appear in the same form in almost all functions.

Typically, binaries compiled with a gcc compiler have their prologue as

push %ebp

mov %esp, %ebp

sub X, %esp

and epilogue as

pop %ebp

ret

Even though the prologue and epilogue are same throughout all func-

tions, different compilers can have different prologues and epilogues or

compiler options (e.g. changing the x86 prologue in gcc). Moreover,

certain optimizations (e.g. the –fomit-frame-pointer option in gcc) will

change prologues and epilogues.

• Bytes following a call instruction: The disassembler also does not

assume the bytes after a call instruction as the start of a valid instruction.

When a call instruction is encountered, as per the recursive traversal

algorithm, the called instruction is disassembled and analyzed to check

if the functions returns or the return address is being modified.
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For example, when a call to abort@plt is encountered, our analysis will

say that the function does not return and hence we do not disassemble

the instruction following the call. The application could store some data

bytes after the call to abort(), and thus disassembling those bytes would

result in interpreting data as code.

3.1.2 What we assume

• Code Obfuscation: We assume that the binary is not obfuscated.

Obfuscation can arbitrarily complicate the disassembly problem with no

general solution at all. This assumption is rarely violated for COTS

binaries.

3.2 Approach Overview

Our disassembler starts disassembly from the first byte in the executable sec-

tions and applies the recursive traversal algorithm. This disassembles the

binaries accurately by differentiating between code and non-code. Indirect

jumps and calls are resolved by performing static analysis on the control flow

graph to determine possible jump/call targets.

3.3 Function Identification

Our goal is to apply binary transformation at a function level. Sometimes it

is required to apply transformations to only certain functions. Consider the

application of a profiling tool where the rewriting tool adds binary code to the

start and end of functions to collect timing information. In such cases it is

necessary to have the notion of functions in binaries.

To recover the notion of functions, we start by identifying blocks in binary

code. A block (or a basic block) is the basic unit of rewriting. It consists of a

sequence of instructions, and has a single entry point and a single exit point.
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There are no jumps to the middle of a basic block or jumps from the middle

of a basic block to elsewhere. A function consists of a sequence of basic blocks

that can be reached by a call instruction outside the function; and one or

more exit points which either terminate in a call, jump or a return statement.

Functions can also be called using the jump instruction (tail call optimization).

Identifying functions called only via jump statements is tricky. We identify

the target of a jump statement as a function entry point only if the target of

the jump instruction is less than the address of the entry point of the current

function being disassembled. Our observation shows that in most cases this

is true. This does not affect correctness of disassembly since we disassemble

instructions correctly except that the target will not be considered as a function

entry point but will be a part of the preceding function. However, if there is

some other instruction which does a call to that location, we mark it as a

function entry point.

Functions could possible have multiple entry points. In this case, we dis-

assemble each entry point as if it is a different function. This may lead to

duplication of disassembly efforts, but does not affect correctness of disassem-

bly.

3.4 Control Flow Graph

A control flow graph (CFG) is a representation of all code paths that might

be traversed through a program during its execution. Control flow graphs are

a by-product of disassembly which are used in further analysis of the binary.

CFGs need to be constructed in order to support various analyses that we

perform on binaries. In our approach, disassembly, CFG construction and

analysis are interleaved to a certain extent.
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3.5 Disassembly of Library Functions

Libraries are binaries which contain re-usable code. Libraries can be either

static libraries or dynamic libraries. Dynamic libraries are more popular be-

cause of a number of advantage such as low memory footprint and modularity.

Calls to dynamic libraries go through a compiler generated table called the

Procedure Linkage Table (PLT), whereas calls to static libraries appear like

any other local function call, and the body of the function is added into the

binary.

Library functions often take pointers to functions in an executable as argu-

ments and the functions are executed at the callee site. Without examining

such libraries entry points to those functions are missed resulting in incom-

plete disassembly. For example, consider the call to libc start main@plt, which

is the first function called from an ELF executable in Linux systems. This

function takes the address of main() as an argument and main() is called

from libc rather than the application. Hence, ignoring the disassembly of

libc start main() will result in incomplete disassembly as we will never reach

main(), which is the entry function of the application that makes calls to all

other functions in the binary.

The dissembler reads different sections of an executable and initially applies

the disassembly algorithm only to the executable segment. On encountering

a call to the plt section, the disassembler determines the name of the function

and the library in which the function is defined. The list of libraries in which

the symbol is to be searched is determined from the DT NEEDED list in the

binary. The DT NEEDED list is the list of libraries that need to be loaded

by the loader before the program is executed. Once the library is determined

and read, the offset of the function inside the library is determined from the

symbol table and the function is disassembled recursively.

Figure 2 shows a graphical representation of how the calls to main() happen

in a typical ELF binary.
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Figure 2: Control flow in a typical ELF binary

3.6 Function pointers and functions with known

signatures

Most COTS applications make use of libraries. Many times, the source code

of these libraries is available or the signature of the function is known. In such

cases, we can analyze the parameters passed to the functions by checking its

prototype and conclude that certain parameters are function pointers.

For example, consider a call to the function atexit(). The atexit() function

registers a function to be called during normal process termination. Perform-

ing static analysis on the caller and callee does not reveal the fact that the

parameter passed to atexit() is a function pointer. However, if we assume that
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we know the signature of the library function, especially the libc functions like

atexit() and sigaction(), we can disassemble additional functions which will

never be called directly by the program.

3.7 Intra-procedural Data Flow Analysis

The recursive traversal and the above analysis cannot achieve 100% accurate

disassembly, either, because it is difficult to contruct a complete control flow

graph in the presence of indirect branch instructions such as jmp *r/call *r

or jmp *m32/call *m32, where r is a machine register and m32 is a memory

location. One solution is to perform additional data flow analysis to determine

the possible values of registers and memory locations. Once we determine the

locations to which registers and memory can point, it is possible to unveil

information about jump targets and function pointers when these registers

and memory regions are used as operands to indirect control flow instructions.

Intra-procedural analysis determines the abstract values of registers and

memory locations at the end of each function. Memory locations could be in

the form of local variables or parameters. The analysis thus reasons about

the parameters passed to functions and the values of local variables. We

recover information about the registers and memory locations by using an

abstract interpretation on an abstract domain. By modeling the value of

the stack pointer register ESP at the entry of each function as “BaseSP”

(base of activation record), we can track integer-values and stack-pointer based

addresses uniformly in instructions.

The domain for abstract interpretation is show in Figure 3. Points in the

domain are represented by X + l. X is a symbolic representation for the initial

value of a variable or register at the entry point of the function. The integer

l denotes the displacement of the value from the initial value. The value of X

is zero if it has not been initialized by the caller.
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Figure 3: Abstract domain

The information obtained from intra-procedural analysis combined with the

information obtained from type analysis (Section 3.9) can be used to identify

additional branch targets and functions. Type analysis when applied to a

function will designate certain registers and memory locations to be pointers to

functions. We can then use the abstract values obtained from intra-procedural

analysis to identify the content of these registers and memory locations, thus

yielding entry points to functions.

3.8 Generating Function Summaries

The aim of generating function summaries is to recover information about

parameters passed to functions and and its use at the callee site. The function

summary also helps decide the next instruction to be disassembled after the

call depending on modifications to the return address.
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Functions in C take a set of parameters as input and produce an output in

the form of a return value. The parameters to a function could be pointers

to other functions. These pointers could be used by the callee to call other

functions. The callee could also update the return address on the stack so

that the function returns to a different address other than the byte after the

call instruction. Functions return values to the caller in the eax register. The

returned value could be used by the caller as operands to indirect control flow

instructions.

Consider the example below.

push 0x805000

push ecx

call <foo>

jmp *0x8057200(,eax,4)

foo>:

call *0xc(ebp)

mov 0x8(ebp), eax

sub eax, 2

leave

ret

In the example above, function foo takes two arguments, a pointer to a

function and an integer. The pointer to the function is used to call the function

from the callee site, i.e from foo. The integer argument is used to compute the

return value. The return value is then used by the caller for indirect control

flow.

Typically, the function foo could be called from different locations by

different callers. The disassembler would disassemble the function only once
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Figure 4: Function summary

and generate a summary for the function. The summary would contain infor-

mation about how the function foo would affect the registers and parameters

of the caller. It also stores information about the function calls made by foo

using the parameters as operands and the updates to the return address, if

any, by the callee.

Figure 4 shows a graphical representation of the information stored in func-

tion summaries.

3.9 Type Analysis

The goal of type analysis is to discover code pointers. Note that in assembly

code, code pointers are essentially indistinguishable from integer constants.

We are using a type inference technique on binaries to type registers and
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memory contents. Any constant that is inferred to have the type of a code

pointer will be taken as the possible starting point for further disassembly.

Use of type inference implies an iterative approach for disassembly: in

the first iteration, only code reachable without the use of function pointers is

disassembled. At this point, type inference can be used to identify some code

pointers. By disassembling such code, we extend the CFG for the program, and

we apply type inference to the new CFG to discover additional code pointers,

if any. The whole process is repeated until no new code pointers are identified.

An alternative to type inference would be a dataflow analysis aimed at

identifying the values stored in registers used in indirect control-flow transfer

instructions. Traditional data flow analysis could be used for this purpose.

However, in binaries, due to extensive aliasing and the absence of information

about object boundaries and types will significantly impair the precision of

such analysis. For instance, consider an integer value is loaded into a register

X, stored into memory (say, in a field of a struct), and is then subsequently

loaded back into another register Y and used as a function pointer. Due to

intervening memory updates, the analysis will not be able to determine with

certainty that the original value loaded into X is the same as the one that

will be in register Y at the point of indirect control-flow transfer. For this

reason, we have chosen to focus on identifying possible code pointers rather

than guaranteeing that every constant identified by the analysis be a code

pointer. Focusing on possible code pointers (rather than definite code pointers)

provides the added benefit that a sound analysis can guarantee discovery of

all reachable code, thus making fully static instrumentation possible. The

downside, of course, is that we will need additional techniques to verify if the

identified code pointers are in fact code pointers. Currently, we are relying

on heuristics for this purpose, and a fully satisfactory solution is left as future

work.

The above discussion suggests that we could potentially use a reaching

definition analysis to discover function pointers. In particular, if we can keep

track of all possible constant values that flow into a register operand of an

indirect control-flow instruction, then we can uncover possible code pointers.
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Rather than posing the problem as a flow-sensitive analysis, we have chosen

to cast it as a flow-insensitive type analysis problem. We believe that the way

in which function pointers are stored and manipulated in programs is better

modeled using a type inference approach. For instance, function pointers are

often stored in certain fields of a structure, and a pointer to this structure is

passed around. Subsequently, this pointer is dereferenced at the offset corre-

sponding to the function pointer, and the result used as the target of a function

call. We can easily associate types with such structs, as well as pointers to

these structs. (Naturally, in binaries, we will not know the precise boundaries

of structs, but the pointer arithmetic used will point us to the relevant offsets

within structs.)

So far, we have defined this type inference for only the very basic case

of code that makes no function calls. This analysis is defined over an SSA

representation derived from code. An SSA representation is needed since bi-

nary code may use the same register to store different types of values. An

SSA representation treats each assignment of such a register as representing a

unique variable, thus avoiding type confusions that may result from such reuse

of registers. To describe the analysis, consider the following language:

Prog → FnBody*

FnBody → Lbl:Stmt+

Stmt → x:=c |

x:=y+c |

x:=φ(y,z) |

x:= *y |

*y:= x |

call *x

Each of these statements induces type constraints as follows. By solving

these constraints, we can assign a type to each variable and constant in the

program.

jmp *x ⇒ x ∈ fptr
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x := c ⇒ c ⊆ T(x)

x: = y+c, T(x) = ptr(z) ⇒ T(y) ⊆ ptr(x1*x2*x3*...x
c−1*z)

x:=*y ⇒ T(y)=ptr(z), z ⊆ T(x)

x:=y ⇒ T(x)=ptr(z), y ⊆ z

x:=φ(y,z) ⇒ y ⊆ x, z ⊆ x

Example. Consider the assembly program below.

foo>:

push %ebp

mov %esp, %ebp

mov 805000, %eax

call *%eax

leave

ret

The control flow graph and its SSA representation is shown in Figure 5. Ap-

plying the inference rules bottom-up to the SSA representation, we can make

the following conclusions.

jmp *pc1 ⇒ pc1 ∈ fptr

pc1 = eax0 ⇒ eax0 ⊆ T(x) ⇒ eax0 ⊆ fptr

eax0 = 0x805000 ⇒ 0x805000 ⊆ T(eax0) ⇒ 0x805000 ⊆ fptr

We thus conclude that 0x805000 is an entry point to a function and start

disassembly at that location.

We have implemented the SSA representation of the program. We are cur-

rently working on the implementation of the inference rules to determine point-

ers to functions in binaries.
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Figure 5: SSA representation of a program

3.10 Putting them together

The disassembler starts by disassembling the first byte of the section as

a function entry point and continues disassembly by applying the recursive

traversal algorithm. Control flow graph is created as and when control transfer

instructions are disassembled. Whenever a library call is encountered, the

corresponding function in the library is also disassembled. If the signature of

the function being disassembled is known, information about parameters and

register values are applied to discover additional functions.

As instructions are decoded, the abstract values of the operands (registers

and/or memory locations) and the shadow stack is updated accordingly. These

updates are used in generating function summaries, which can then be applied

to update the abstract values at the caller site. Updates to return address are

also monitored during this time.
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The control flow graph thus created is passed as input to the type analysis

system. The type analysis module converts assembly instructions to SSA

representation by doing a top-down pass on the graph. We then aim to apply

the type inference rules described in section 3.9 to discover additional code

pointers.
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CHAPTER 4

Implementation

4.1 Overview

The disassembler has been developed in C and has approximately 5KLOC of

code, which includes the testing tools and the disassembler. We use the XED

[6] library for decoding of instructions. We also use the bfd [1] utility to read

and interpret the binaries.

4.2 Control Flow Graphs

Control Flow Graphs are constructed in memory and later dumped into a

file cfg.txt to ease debugging. The data structure for storing CFG’s is shown

below. Each node in the Cfg has a list of successor’s stored in the succ field

and a list of predecessor or parent nodes stored in the pred field.

typedef struct _cfg {

Block bblock;

Successor *succ;

Predecessor *pred ;

int flag;

unsigned usedId[NUMBER_OF_REG+2];

}Cfg;
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typedef struct successor_blocks {

struct _cfg *block;

struct successor_blocks *next;

}Successor;

#define Successor Predecessor

typedef struct basic_block {

bfd_vma head;

bfd_vma tail;

}Block;

The predecessor field is required to do a bottom-up traversal of the CFG,

which is required for type-analysis, and the list of successor nodes is required

for parsing the CFG top-bottom which is required for abstract analysis.

The add edge() function is used to add an edge between two basic blocks.

This function updates the successor and the predecessor list of the basic blocks.

The split basic block() function is used to split the basic blocks into two. If

a jump instruction jumps to the middle of an existing basic block, then the

block has to be divided into two, and at the same time, the successor and

predecessor list has to be updated.

4.3 Disassembly of Library Functions

The list of dependent libraries are read from the ELF file using a shell script

get dt needed.sh which dumps the list in a temporary file /tmp/dt needed.

When a library call is encountered, the data structure for the library sym-

bol table is built. We use a lazy approach and construct the data structure

only to the point where the required library and symbol is found.

The data structure storing the library and symbol information is shown below:

typedef struct external_libs_and_symbols{
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struct external_libs_and_symbols *next;

char *lname;

asymbol **sorted_syms;

asymbol **dynsyms;

asymbol **syms;

asymbol *synthsyms;

long symcount;

long dynsymcount ;

long sorted_symcount ;

long synthcount;

bfd *abfd;

}ExtInfo;

4.4 Function Summaries

The disassembler maintains a shadow stack during disassembly of the binary.

This stack is useful in analyzing libraries and local function calls.

The shadow stack is maintained as a singly linked list. On decoding a

push, pop or a mov instruction to the stack, the linked list is updated ac-

cordingly with the source operands of these instructions. When a memory

reference to the stack is decoded as the source operand of an instruction, the

abstract values from the stack are used to update the other data structures.

The data structure used to represent the stack is shown below.

typedef struct operandList {

int flag;

union {

xed_int32_t imm;

xed_reg_enum_t reg;

};

struct operandList *next;

}pushList;
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4.5 Intra-procedural Analysis

At any point during the execution of the program, a register contain only

one value. The value, however, defers depending on the context and execution

flow. Hence, we maintain the values of register in a single dimensional array.

Static analysis and disassembly is performed hand-in-hand. Also, disas-

sembly is performed depth-first, where a control transfer instruction in the

current basic block is disassembled before that of its predecessor. Hence, at a

join node, all the possible values of the register may not be known since it may

not have been disassembled. Consider a simple assembly program as below.

100: mov eax, (10)

102: cmp eax, 0x1

104: ja 111

106: mov ebx, 200

108: jmp 113

111: mov ebx, 300

113: call *ebx

In the above example, when instruction 113 is disassembled, instruction 106

(or 111) will not be decoded, and the static analysis value of register ebx will

be 300 (or 200), and the function at that address will be decoded. Thus,

while disassembling instruction at address 113, all values of register ebx are

not known.

Later, when the basic block at 106 (or 111) is disassembled, the control

transfer to instruction 113 will not be followed since the instruction at that

address has already been disassembled, and thus the function at address 200

(or 300) will not be disassembled (unless there is another direct call to that

function). To avoid this, we perform a second pass which covers all possible

execution paths in the CFG and thus discovering more function pointers.

34



4.6 Type Analysis and SSA

The control flow graph contains information of the basic blocks in the form

of machine instructions. The machine dependent assembly instructions in the

control flow graph is then converted to a machine independent intermediate

SSA representation.

Each basic block contains a representation of the SSA form. While creating

the SSA representation from the CFG, we have to make sure that the SSA

representation of all the predecessors is computed before the successors. Hence

we maintain a flag variable in the block structure to keep track of this. Special

care has to be taken in case of cycles in the graph.

In our SSA representation, each register is denoted by a single character.

Access to memory addresses is handled in a slightly different way. The start

of the data segment is denoted using D. A write to a memory location at an

offset of 100 from the start of the data segment is denoted as:

v_1 = D + 100

*v_1 = R

where R is the register value being assigned.

Similarly, local variables is denoted by u and parameter are denoted by w.

Accessing a local variable 0x8(esp) is denoted as

u = s_1 + 8

R = *u

where R is the register to which the local variable is being assigned. Parameters

are assigned values similarly.
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CHAPTER 5

Evaluation

5.1 Preliminaries

In this section, we present the set of programs the disassembler was tested with,

the configuration parameters and the general environment setup for testing.

We also discuss how the results were validated.

5.1.1 Validation

As we have seen in the previous chapters, it is difficult to design a disassembler

because of a variety of reasons. It is also equally difficult to validate the output

of a disassembler, especially because of the self repairing property. Hence it is

necessary to devise a set of tools to perform validation of the disassembler.

The output of the disassembler cannot be compared with any other disas-

sembler since there is no static disassembler that can disassemble all binaries

accurately. Hence, to validate the output of the disassembler we can use one

of the following methods.

• Compare with compiler generated object files: The compiler converts

the source code to various intermediate stages before converting it into

machine code. The assembly output of the compiler can then be used to

be compared with the output of the disassembler.
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However, this is not practical because of a number of reasons. Firstly,

the object files or compiler generated assembly files do not have reloca-

tion and address information. Jumps and calls occur using symbols in

the string table. Thus, automation of the process is difficult and becomes

impossible while working with executables which have no symbol infor-

mation. Secondly, when multiple files are linked together to generate a

single final executable, the object files are created for each file. Thus,

the assembly output to be compared will be distributed in multiple files.

• Pass disassembled output to assembler and compare binaries: The disas-

sembler output is in the form of assembly instructions. If these assembly

instructions are given as input to an assembler to generate the final ex-

ecutable, then this newly generated binary can be compared with the

original binary. The comparison can be in the form of a diff or by

validating the outputs for a well defined input set.

• Dynamic disassembly: The dynamic disassembler is very accurate as it

disassembles each instruction before it is executed. However, the dy-

namic disassembler disassembles only those instructions that are exe-

cuted.

We validate the output of our static disassembler by comparing it with

the output of a dynamic disassembler. We have developed a tool based

on Pin [20]. Since the coverage of the dynamic disassembler is low, we

take output from multiple runs of the dynamic disassembler for testing.

5.1.2 Environment

The disassembler was tested on an Intel Core 2 Duo 2.1 GHz, 2 GB RAM with

Ubuntu 9.10, Karmic Koala. The disassembler was built with gcc-4.4.1 and

glibc 2.10.
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5.1.3 Programs used for testing

To evaluate the disassembler, we tested it on the most widely used utilities in

Linux, core-utils. Core utils [4] contain a bunch of utility tools like ls, cat, diff,

chmod etc.,which are widely used. All programs are written in C and make

use of function pointers and indirect jumps.

5.2 Performance Results

The table below shows the performance results in the disassembly of the ls

binary. The percentage gaps and disassembly at various stages is shown as

well.

Analysis %GAPS %Reachable code not
disassembled

Recursive traversal 97.26 85.25
Disassembly of libraries for side effects 25.8 13.799

Jump table analysis 12.94 0.9396
Function pointer analysis 12.0004 0

Table 1: Analysis of disassembler on “ls” binary.

As seen from the table, better disassembly was achieved by performing vari-

ous analysis and techniques. The final result still contains some code which has

not been disassembled. These are valid gaps which correspond to alignment

bytes and functions which have never been called.

To validate that the gaps are indeed valid, we used a number of techniques.

We first executed the application using the dynamic disassembler. The ap-

plication was executed with all the options so that close to hundred percent

coverage was obtained. Then, these logs were put together to get close to

100% disassembly coverage. We then compared these logs to check if there

were any hits in the areas we discovered as gaps.
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As a second step to gain more confidence, we performed a second parse

over the disassembled output to check if any of the addresses discovered as

gaps is being used as an operand in the disassembled instructions. This is

because often addresses of functions are passed on the stack using push or

mov instructions, and the called function may use these functions as pointers.

On detecting such instructions, we throw a warning to the user so that he can

manually validate the address or take any further action. We also scan the

rodata, bss and data section for references to these addresses.

Below are the disassembly results of some other binaries.

Application %GAPS %Reachable code not disassembled

chroot 14.80 0
chmod 12.70 0

cat 7.66 0
pdftops 2.84 0
dhclient 19.08 4

Table 2: Analysis of disassembler on other binaries.
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