

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Light-weight proactive approach for safe
execution of untrusted code

A Thesis Presented
by

Anupama Chandwani

to
The Graduate School

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Computer Science

Stony Brook University

May 2010

Stony Brook University

The Graduate School

Anupama Chandwani

We, the thesis committee for the above candidate for
the degree of Master of Science,

hereby recommend acceptance of this thesis.

Professor R. Sekar, (Advisor)
Computer Science Department, Stony Brook University

Professor Scott Stoller, (Chairman)
Computer Science Department, Stony Brook University

Professor Robert Johnson, (Committee Member)
Computer Science Department, Stony Brook University

This thesis is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the thesis

Light-weight proactive approach for safe execution

of untrusted code

by

Anupama Chandwani

Master of Science

in

Computer Science

Stony Brook University

2010

Today’s malware attacks are cleverly crafted and cause huge loss of

resources. Existing proactive defense mechanisms against malware in-

clude isolation, sandboxing, information flow tracking, etc. These mech-

anisms completely block information flow on the system. But some-

times we do need the functionality provided by software from untrusted

or unknown sources that are not malicious. The problem that we try

to solve here is of executing this untrusted code on a real system so

that it can coexist with other applications in the same environment,

iii

thus allowing safe information flow. At the same time we want to pro-

tect the system so that it does not get compromised due to untrusted

information. Available approaches for information flow tracking are

intrusive and require significant kernel changes, thus making them dif-

ficult to port and maintain across different operating systems or even

newer version of the same OS. We propose a light-weight approach,

based on userid, for proactive integrity protection and safe execution

of untrusted code. We mediate all information flow in the system in

order to provide protection from sophisticated malware and attacks.

iv

To my Family,

Teachers

and Friends.

Contents

Acknowledgments viii

1 Introduction 1

1.1 Problem . 1

1.2 Existing defense mechanisms 2

1.3 Our approach . 4

1.4 Summarizing our approach as an end-to-end mechanism . 5

2 Design 7

2.1 Policy enforcement . 8

2.1.1 No privilege escalation 8

2.1.2 Enforcing regulated privilege downgrade 11

2.1.3 Limited downgrade support due to userid 13

2.2 End-to-end trust mechanism 16

2.2.1 Integrity of downloaded files 17

2.2.2 Integrity of installed packages 17

2.3 Granular trust for applications 19

3 Implementation 24

3.1 Creating integrity lattice 24

3.2 System call Interception 25

3.2.1 Enforce no exec down 26

vi

3.2.2 Enforce no read down 27

3.3 Granular trust for invulnerable applications 27

3.3.1 Application functions 28

3.3.2 Flags to system call 29

3.3.3 Inferring from user behavior 30

3.4 Modification to existing utilities 32

3.5 Secure Installer . 32

3.5.1 Policies for a secure installer 33

3.5.2 Daemon for privileged installer operations 34

3.5.3 Running installer with package userid 37

3.5.4 Validating changes to high integrity files 40

3.5.5 Recovery Mechanism 41

4 Evaluation 42

4.1 Evaluation of Secure Installer 42

4.2 Evaluation of Information flow model 43

5 Related Work 46

6 Conclusion 49

Bibliography 51

vii

Acknowledgments

I take this opportunity to express my deepest gratitude to my advisor,

Prof. R. Sekar, for his constant support, encouragement and guidance.

I am greatly influenced by his dedication and high standards of research.

I also wish to extend my sincere thanks to Prof. Scott Stoller and Prof.

Rob Johnson for consenting to be on my defense committee and offering

valuable suggestions.

I would like to thank Weiqing Sun, my mentor at Secure Systems

Lab, for his patience and guidance during my initial phases of learn-

ing. I appreciate the continuous and ever increasing support by Arvind

Ayyangar during my entire thesis. I thank Alok Tongaonkar, for his

advice and encouragement.

I truly had a great time while closely working with Srivani Narra,

Arvind Ayyangar, Bhuvan Mital, Prachi Deshmukh, Abhiraj Bhutala

and Sumati Priya. I also thank Ashish Mishra, Alireza Saberi, Tung

Tran, Riccardo Pellizi and Praveen Kumar for always keeping a lively

work atmosphere in Seclab. In addition, I would like to extend my grat-

itude to Saatyaki Rajamani, Ravi Sarawadi and Anuradha Chandwani

for their invaluable suggestions on the thesis report.

Finally, I would like to thank my parents and Darshan, without whose

support this work would not have been possible. This research is sup-

ported by ONR grant N000140710928 and AFOSR FA9550-09-1-0539.

CHAPTER 1

Introduction

1.1 Problem

Malware is a serious problem on today’s operating systems. Stealthy

malware can cause huge loss of money and disrupt functionality. Mal-

ware can also misuse user confidential data. Today’s malware largely

targets end user desktops and is getting progressively sophisticated and

adaptive to existing defense mechanisms.

Malware often takes the form of an executable. However, it may

also enter a victim system in the form of malicious data. Such data

can compromise benign applications on the system, and use their priv-

ileges to embed itself deeply in the victim. In this case, non-malicious

applications are not intentionally helping malware, but they can have

vulnerabilities in their code. Malicious input is designed to exploit

these vulnerabilities.

1

1.2 Existing defense mechanisms

Defense mechanisms for protecting a system against malware can

be broadly classified as reactive and proactive. Reactive approaches

such as signature-based scanning and behavior monitoring are not suf-

ficient for sophisticated malware. Moreover, they cannot handle Zero-

day threats [1], which pose a significant threat to computer security

today.

Proactive approaches for malware defense, on the other hand, rely

on more systematic approach to solve this problem. Unlike reactive

approaches, they do not reply on knowledge of existing malware code

or their behaviors, and hence can protect against unknown malware.

We will briefly discuss some of the existing proactive mechanisms with

their problems and how our approach addresses them.

• Policy based confinement of untrusted applications: The

aim here is to confine untrusted applications1 to regulate access to

system resources [3, 10, 8, 21]. The problems with this approach

are,

1. Confinement policies are complicated and difficult to define.

2. Confining untrusted applications alone cannot be a complete

defense mechanism. Since the effects of confined execution

are visible on the system, a non-malicious applications can

accidentally use it.

For example, Acrobat reader used to view a malicious pdf

file can compromise it.

1Untrusted applications are those that come from untrusted sources and can be
potentially malicious

2

It is therefore necessary to regulate the execution of all applica-

tions on the system. Using mechanisms like sandboxing [3, 10, 8,

21] to do so will further complicate policy specification.

• One-way isolation: Isolating the execution of untrusted appli-

cations is another approach for confining their execution [25, 26,

14, 24, 12]. An isolated environment allows restricted access to an

untrusted application by providing a copy of the system resources

that it can/need to access. Interaction of other applications on

the system with untrusted code/data is prevented by not allowing

the effects of execution inside isolated environment to be visible

on the rest of the system, where benign applications execute.

The limitation of this approach is that the results produced in-

side the isolated environment cannot be used outside it. Based on

the configuration of different untrusted applications, there might

be a need to have multiple isolated environments. As each of

these environments is isolated from one another, the whole sys-

tem becomes difficult to use.

• Information flow tracking: Information flow tracking through

label propagation can be an effective approach for malware de-

fense [22, 4, 7]. Integrity of the system is ensured by preventing

any influence from untrusted code/data to rest on the system.

This approach has two parts,

1. Each file carries its integrity label.

2. Policy enforcement is based on subject and file label.

3

Unlike isolation, this approach allows the execution of untrusted

code on the same environment, making the results usable. How-

ever, information flow based approaches are uncommon. The

available implementations [22, 4] are very OS-specific. Moreover,

they require significant changes to the OS kernel, thus making it

difficult to port even among versions of the same OS.

1.3 Our approach

Our goal is to provide light-weight proactive integrity protection. We

aim at using existing mechanisms for file labeling and policy enforce-

ment. Our approach requires no kernel changes or extensive changes at

the user level. This makes it easier to port the system across different

flavors of UNIX, or at the least, avoid significant work each time the

kernel is updated.

Our proposal is to use userids as a mechanism for confinement and

information flow tracking. Userids serve two purposes:

1. They serve as “file labels2”.

2. They serve as a basis for policy enforcement.

The concept of discretionary access control (DAC) with userid is com-

monly used in all modern operating systems. Hence, our approach is

generic and relatively easy to port.

In addition to the use of userids, our approach adds additional func-

tionality to standard system libraries, specifically glibc on GNU/Linux.

We know that such libraries can be bypassed by malicious code. This

2In this context, we can map each integrity level into a (owner, group) pair,
creating new groups if needed, to capture different integrity levels.

4

mechanism is therefore used only in contexts where there is no incentive

for an application to attempt such bypass. In particular, we use library

modifications to ensure that a high integrity subject downgrades itself

before reading low integrity data.

We realize that strict information policy enforcement can impact

usability of the system. We develop carefully controlled mechanism for

permitting integrity aware applications to override strict information

flow policies in certain context.

1.4 Summarizing our approach as an end-

to-end mechanism

Trust level of new applications and its files is based on its source.

This requires a mechanism to label all new files on the system during

installation with appropriate trust level. Modern operating systems use

an installer to download and install packages. For example, Ubuntu

uses Aptitude, Red Hat Linux uses RPM, etc. Moreover, the installer

executes application specific scripts while installing and uninstalling it.

Therefore, it is required that the installation happens at the integrity

level of the application. We develop a secure installer based on an

approach by Weiqing Sun et al. [23]. This is used to achieve the

objectives of labeling new files and executing installation scripts at

application integrity level. Other mechanisms that files use to enter

the system also need to propagate their trust level. For example, ssh,

file sharing, etc.

Our approach confines all application on the system. We use DAC to

enforce policies that prevent subjects at a certain level from corrupting

files at a higher integrity levels. For all the files on the system, we

5

encode the value of its integrity in the (owner, group) pair. Since it is

possible to modify owner/group and permissions on files, it is necessary

to make sure that our encoding exists across all such modifications.

We also need to prevent subjects at a certain level from randomly

lowering their integrity level. This can happen when the subject reads

from files which have an integrity levels lower than itself. We use system

call interception, implemented in a modified system library, to achieve

this objective.

The rest of the thesis is organized as follows. Chapter 2 presents the

design of our approach. Chapter 3 presents the implementation and

issues. Chapter 4 provides the mechanism we plan to use for evaluating

our system. Related work on this problem is discussed in Chapter 5.

Finally Chapter 6 concludes this report.

6

CHAPTER 2

Design

Our design for proactive integrity protection achieves the following

goals:

• Using portable mechanisms. We use the existing mechanism of

userid for tracking information flow. Additional policies are im-

plemented using system call interception at the shared library1

level. Both these mechanisms are generic and common in all fla-

vors of UNIX, thus making our approach portable. We avoid any

changes to the kernel and work with minimal changes at the user

level. This largely reduces effort of maintaining code across newer

versions.

• End-to-end trust handling. An application’s trust can be deter-

mined by the trust of its code/executable provider. Installers like

aptitude, rpm, use predefined repositories to obtain packages. We

add functionality to an existing installer and assign trust to each

such provider. Our approach associates package trust to an in-

tegrity level on the system. This gives a complete end-to-end

trust handling mechanism.

1We use binary interception on libraries of glibc and pthread.

7

• Address entire life cycle of an application. An application entering

the system is assigned a userid corresponding to its trust level.

This userid is made the owner of all files in the application. We

have mechanisms to ensure that all phases of the application’s

life cycle, installation, execution and uninstallation, happen in

the context of this userid.

Having spoken about these goals, let us discuss in detail the design

of our approach to achieve these goals.

2.1 Policy enforcement

Our approach involves confining all applications on the system. Un-

trusted applications are confined to preserve the integrity of trusted

files. Whereas non-malicious applications are confined to protect them-

selves from being compromised when exposed to lower integrity input.

The policy enforcement has two parts:

1. No privilege escalation: Subjects at certain level should not be

allowed to corrupt higher integrity objects or subjects.

2. Enforcing regulated privilege downgrade: Subjects should be pre-

vented from performing operations that will lower its integrity.

2.1.1 No privilege escalation

Subjects at a certain level should not be able to write to objects

at higher levels. This is accomplished by ensuring that a subject will

always run at its own integrity level. Moreover, we set the file (owner,

group) and permissions in such a way that it can be modified only by

subjects running at its own or higher integrity levels.

8

Figure 1: Integrity lattice

This is achieved by creating a trust lattice with userids as nodes. A

userid in the lattice represents a unique trust level2. A group is used to

define the set of users (levels) that can safely access the file at a certain

level. Thus, a group gl is created for each level l, which includes userids

of all subjects that are intended to run at level ≥ l. Group permissions

are set to specify type of access by these subjects. No permissions are

granted to users outside the group.

In figure 1, we have a lattice with six different userids across four

integrity levels. Here, Integrity level 3 > level 2 > level 1 > level 0.

Normal user is the user used to login. Untrusted user is created for

normal user to downgrade while accessing untrusted data. Untrusted

package-1 to Untrusted package-n is created for each untrusted package

provider.

2There can be multiple userids in the same integrity level.

9

The user group for files with untrusted package-1 as owner is shown

by the darkened portion. Subjects running with any of the userids in

this group have access to objects owned by untrusted package-1. The

type of access is specified by group permissions on those files.

2.1.1.1 Enforcing no write up

Files are assigned (owner, group) pairs based on its integrity. A group

gl is assigned, when its owner is at level l. With ownership of (l, gl),

the file is made accessible only to subjects with userids at a level > l.

DAC policy enforcement is used to realize this policy.

Permissions on some existing files on the system need to be changed

for enforcing this policy on them.

• world writable files: Typically, these files are readable/writable

by the world. In other words, group information is unused. We

can define a group gl consisting of all users whose subjects can

safely modify files of this level l. We then change world permis-

sions to group permissions.

• group writable files: In this case, group name is already used.

This is practically not an issue. A userid is put in a group when

it needs specific access to that file. It is unlikely that the sys-

tem would work if those permissions were taken away. In other

words, we do not need to do anything since file access is already

restricted.

• owner writable files: Again, the system has specified restricted

write permissions. Users from arbitrary levels cannot modify this

file. When we change its owner userid, the “no write up” policy

is automatically enforced.

10

A file’s integrity level is a function of its (owner, group) and write

permissions. Its integrity is logically equal to the lowest integrity level

of user that could modify it.

2.1.1.2 Enforcing no exec up

A subject belonging to an integrity level, should be allowed to execute

only at its own level or at levels under it in the integrity lattice. This is

achieved by setting the userid of subjects corresponding to their trust

level. Linux does not support an exec with arbitrary userid.

• Running setuid executables

A setuid executable can violate our policy of “no exec up”. We

need a mechanism to ensure that a subject at a certain level does

not have execute permissions on setuid files that execute at a

higher level. To accomplish this, we assign group3 executable

permissions to the setuid subject. However, this approach is not

applicable for setuid files that are originally group-writable and

world-executable. Since modifiable4 setuid executables are them-

selves rare, such a scenario would be much rare.

2.1.2 Enforcing regulated privilege downgrade

Information flow from lower level files to higher level subjects is in-

evitable. For example, Acrobat reader, Music player, etc. have to

accept files of all integrity levels as input. An approach that prevents

non-malicious applications to read untrusted input largely obstruct us-

ability. However, such applications can be exploited by untrusted input

3The group is a set of all userids that can execute this file safely.
4Such as scripts, that use same file for modifying and executing. Binary setuid

executables would not have write permissions.

11

and get compromised. This in turn compromises the system by letting

untrusted input use its privileges.

It is therefore required to execute the instance of a higher level subject

at the level of untrusted input. This can be achieved by a mechanism to

downgrade a process when exposed to lower integrity input. Due to our

design of integrity lattice and the concept of group, gl, file permissions

cannot be used to prevent access to a lower level file by a subject from

higher level. So we need another mechanism to enforce these policies.

We enforce the policies of downgrading at system call level and achieve

this by using library interception.

This mechanism is used by subjects to lower its privileges. An ap-

plication does not get any extra abilities by bypassing this mechanism.

This mechanism is used to protect itself from lower integrity input. If

application intents to corrupt files at its own level, it can do so without

depending on reading lower integrity files. It is thus safe to assume

that applications will not bypass this mechanism.

2.1.2.1 Enforcing no read down

This policy allows a high integrity subject to open low integrity files,

only after lowering its integrity level to that of the file. A subject can

specify up to what level it can be downgraded. Any attempt to open

files lower than that level should be denied5.

2.1.2.2 Regulated exec down

When a subject at higher level exec’s an application at lower level,

our policy is to run the lower level application in its own trust level.

5Need special assistance with programs that handle files of different levels at the
same time - For example, tar, cp.

12

This ensures that lower level executables cannot compromise parent ap-

plication and misuse its privileges. An enhancement to exec6 is made

at library interception, which allows executing a process with arbi-

trary userid. Based on different combinations of parent’s level, lp, exe-

cutable’s integrity level, le and lowest level to which the parent process

can downgrade level ld, there are following choices for exec:

• When lp > le, execute at level le. This can be achieved by using

the enhanced exec call.

• When lp < le but ld > le, execute at level lp. All applications are

executed at the level that can influence its execution.

• When lp < le and ld < le, block execution. Return error.

To ensure that a lower level subject cannot use the enhanced exec

wrapper to exec files at arbitrary levels, we need multiple wrappers for

each integrity level with their execute permissions set appropriately.

So a wrapper for a certain level will be allowed to execute at userids

strictly less than its own integrity level.

2.1.3 Limited downgrade support due to userid

Our policy enforcement needs a mechanism to lower a subject’s integrity

level from its existing level. This is needed when there is information

flow from a file with lower integrity level to a subject with higher in-

tegrity level. In general, information flow occurs when a subject exe-

cutes another subject or opens a file for reading. Depending on these

two possibilities, we need a mechanism to downgrade a subject when it

starts execution (exec-time) and when it opens a file (run-time).

6A setuid executable is provided, which changes the userid to required level and
then invokes the intended exec with original arguments.

13

There can be only one integrity level that is associated with userid 0.

This is because operations that are currently done with root privilege

will need to be done with root privileges even in our system, or else

accesses (such as file writes) will fail. So we do not prevent a subject

with userid 0 from accessing a file or other operations that should be

permitted only for high integrity processes. This limits our integrity

protection mechanism and we do not help improve security of root login

sessions.

However, we do provide an invulnerable7 execution mode. Subject

executing in this mode can continue to execute at high level even after

being exposed to low integrity data. This mode should be used only by

integrity aware applications. More about it will be discussed in section

2.3.

2.1.3.1 Downgrading at exec-time

• Linux allows root owned processes to change its userid to any ar-

bitrary value. Downgrading is implemented by using the setuid()

call. The userid of the subject is changed to that of the executable

file. This is enforced in the intercepted library.

• Ability to change the userid of non-root processes, to arbitrary

values, is not supported in Linux. We achieve this by implement-

ing a function exec from level (userid, executable, args).

This function is a setuid program and will always execute with

root privileges. It is invoked from the intercepted library, when

an execve system call is made. The executable and args are pa-

rameters of original exec call. From the intercepted library, this

7We do not give unregulated access in this mode. Processes are still subject to
downgrade if it receives untrusted input on channels that expect only high integrity
data.

14

program is invoked by changing the parameters to original execve

system call. This program eventually makes the same execve sys-

tem call with original parameters, but with the userid assigned

by our policy.

2.1.3.2 Downgrading at run-time

It is not right to change a process userid to an arbitrary value while it

is executing. The process does not expect this change and hence might

not be able to handle it gracefully. Our approach of using userid as file

label has imposed this limitation. However, a file carries an effective

userid, real userid and saved userid [9] during execution. These values

are interchangeable during the execution of process. Therefore a process

can handle userid change within the limited options.

• For root owned processes, the same mechanism for downgrading

(using setuid()) can be used even at run-time.

• For non-root processes, setresuid8 is used. This allows inter-

changing the values of the process userids. Effective userid is used

for all permission checks, we use real userid and saved userid to

encode userids of each level at which the process can downgrade.

However, this approach has these following limitations:

1. A process can execute at only 3 integrity levels during its

execution. Also these levels (userids) have to be pre-encoded

when the process executes.

2. Supplementary groupids cannot be surrendered using this

downgrading mechanism. We can overcome this by starting

downgrade-able subjects with empty supplementary groupid

8setresuid (ruid, euid, suid) can be used to interchange the userids of a process.

15

list or with groups that the subject can legitimately have

even after downgrade.

However, if a user before downgrading, wants to use the

permissions provided by these supplementary groups, we can

provide a command, sgdo just like sudo, that will add the

required groups to the user’s supplementary group list. It is

a change in user behavior but we expect users will get used

to it just like using sudo.

As mentioned, the execve system call can be intercepted to

assign the downgrade-able userid of a subject. However, a more

complete approach would be to set default values for each process

which can be overwritten in exec. This is achieved by modifying

the login utility to propagate default downgrade-able integrity

levels.

As our run-time downgrade mechanism is based on setresuid, a sub-

ject can be downgraded to only one (or maybe two) other levels. This

level will be used for accessing all low integrity data and hence needs

to be shared across all untrusted applications.

2.2 End-to-end trust mechanism

The integrity of a file entering the system is determined by trust level

of its source. We need a mechanism to correlate trust of file source and

its integrity level in the lattice on our system.

16

2.2.1 Integrity of downloaded files

Files downloaded using a web-browser should inherit the trust of web

site from where it was downloaded. This can be achieved by assign-

ing trust to each web site and associating it to an integrity level in

our lattice. By running the browser with the userid9 corresponding to

the trust level of web site, we ensure that files downloaded from this

instance of browser will inherit web site’s integrity level. We use our

mechanism of “exec-down” to downgrade an instance of browser to the

integrity level of the web site.

Currently, this mechanism of running browser with web site trust is

not automated. User needs to open different instances for accessing

web sites of different trust levels. By combining this mechanism with

a method to infer web site trust, user intervention can be completely

removed.

2.2.2 Integrity of installed packages

For packages installed using an installer, the trust of the package

provider is propagated to the package. In our design, we define repos-

itory as a basic unit of trust. Each repository is associated with an

integrity level in the lattice. Let us see how trust is associated from the

repository to its packages.

When we trust a package from a repository, we trust the package

provider and the repository for having rightly received the package from

9Firefox allows running multiple instances as independent processes by specifying
−no − remote option.

17

Figure 2: Repository files for Apt

its provider and checked it. If the same package10 from another reposi-

tory is not trusted, it means that we trust the package provider but not

the channel of communication between the provider and repository, or

the checking mechanism of the repository. Therefore, this repository

cannot be trusted for any package it provides.

Now consider another package provided by the repository we trust.

If we do not trust this package, it means we do not trust its provider.

Irrespectively of the repository providing this package, we do not trust

it.

All packages from a repository, inheriting the same trust level, will

correspond to a single level in the integrity lattice. Moreover, packages

from a repository will have the same (owner, group) pair. This gives a

complete end-to-end mechanism, where a package trust is determined

based on its provider. On entering the system, files and executables

10When we say the packages are same, it does not translate into packages of same
functionality, rather means downloaded package files have same checksum.

18

from this package are confined to a trust level corresponding to its

provider.

In figure 2, an overview of database files in apt is provided. Each

repository in apt is signed for its contents, which in turn contains in-

formation about packages provided by it. So inherently, apt is based

on trusting packages based on its repository. The < repositoryname >

.P ackages file provides information about each package and its check-

sum. This information is used by apt for determining the integrity of

downloaded package. Depending on the installer, we can migrate our

unit of trust from repository to per package.

2.3 Granular trust for applications

So far we divide the set of applications on the system as untrusted

(which can be malicious) and non-malicious. The non-malicious appli-

cations are vulnerable to malicious input. Therefore, we have a policy

that will lower a subject’s level to the integrity level of the object it

reads. This is coarse grain trust. Certain well written applications can

handle low integrity data without a threat of compromising itself or the

system. Examples of such applications are tar, grep, ssh, etc.

These applications need to handle data with multiple trust levels in

a single instance. If they are downgraded, as our policy states, it will

not be possible to execute them any further. So we need a mechanism

to indicate that a given subject is invulnerable and can safely handle

lower integrity data.

Therefore, invulnerable applications need a mechanism to override

the downgrade policy. However, these applications cannot be expected

19

to handle malicious input in any context. For example, tar or grep

cannot protect itself from a malicious glibc. Similarly ssh reading from

malicious configuration file will get compromised. Hence, the mech-

anism for overriding downgrading policy should not provide blanket

trust to these applications.

A mechanism that allows specifying the integrity level at which the

file needs to be accessed is required. We can provide this functionality

at various levels. Lets us see each of them.

• Specified by modifiable application

An integrity-aware application can explicitly provide the integrity

level it needs to execute at while accessing a file. We provide

special functions that allow an application to achieve this. This

function takes filename and execution level as input.

• Specified using modified library

The above approach requires changes in the application code.

Applications can use variants of default system calls to indicate

the same behavior. In general, open and exec system call need

to be provided this information. Additional flags can be used to

indicate the intent of user and hence downgrading can be over-

ridden. Similarly, environment variables can be used to indicate

filenames, which when appear as a parameter, different policy at

library interception can be applied.

20

The environment variable approach11 enables a knowledgeable

user to set up the files that can be trusted (primarily because the

user knows that a trusted process is going to use it in a safe way,

but also may be used as a mechanism to “endorse” a file with a

low label).

• Inferred by user behavior

The mechanisms mentioned above require changes in the system,

also user needs to explicitly convey this information in some way.

For users who do not want the burden of having to set up the

environment variables, we propose a mechanism of inferring this

information. We track all possible methods of user specifying

a file to an application, i.e., files explicitly mentioned by user.

We infer that all explicit file accesses to invulnerable applications

should happen without downgrading the application level.

The logic for inferring this is that, since the user specified the

file manually, the file access is intentional. We assume the user

will not intentionally give a low integrity file to an application

in a context that the application can be compromised. Our en-

forcement policies take care that any unintentional access in this

context is blocked/downgraded. File names appearing in the fol-

lowing cases should be considered intentional,

1. Filenames appearing in environment variables or command

line arguments.

11This approach fails to distinguish between contexts, e.g. a file may be safe to
open as input without downgrading a process but not if it is used as configuration
file. However, this is a problem only if someone is trying to fool the application by
supplying the same file as input and configuration. But this is not the case here:
since we are dealing with invulnerable process its parameters (or environment) could
not have been influenced by attackers.

21

2. Filenames obtained using standard file dialog boxes.

3. Filenames appearing in high integrity files, like configuration

files.

However, this mechanism of inferring intent based on filenames

might not be sufficient in certain special cases. For example,

– Filenames specified using relative path. We handle this case

by resolving filenames to their absolute path from its current

working directory. However, in certain cases the application

might resolve the relative path of a file after changing its

working directory. This behavior is rare for a well written

application, since it expects the user to know about changes

in environment before accessing the file it specified.

– Application adding suffix to filenames. An application usu-

ally appends a pre-encoded suffix to user specified file while

creating new/temporary files. For example, creating new

log files after a certain size is reached. Creating a tempo-

rary copy of existing file. Since these files are newly created,

they do not pose the threat of low integrity information flow.

Temporary copy of a file will propagate original file label.

However, when a user ends a filename in “*”, we consider

all filenames starting with this string as explicit.

For the examples mentioned above, the default policy of downgrading

the subject will hold when it implicitly reads low integrity files like

malicious library or configuration file. But when files are specified by

either of the above mentioned mechanism, subject continues to execute

with its own privileges. This extra granularity in trust, for a class

22

of invulnerable applications, helps achieve usability while realizing the

original goal of preserving integrity.

23

CHAPTER 3

Implementation

We use Ubuntu 8.04, Linux kernel version 2.6.24-27, for our prototype.

Glibc version 2.7 is intercepted using an in-house binary interceptor.

Secure installation is implemented on apt 0.7.9ubuntu17.2 for i386 and

dpkg 1.14.16.6ubuntu1 (i386). Note that there was no code change

in any of the above mentioned packages. We add our functionality

as a wrapper to the existing binaries. Assumptions are made on the

interface provided by the package, which is likely to remain consistent.

This makes our prototype easy to port and maintain. We successfully

ported it to Ubuntu 8.10 without any changes in code. This section

describes details of each of the module used in our prototype.

3.1 Creating integrity lattice

For encoding integrity information in the (user, group) pair for a file,

new users and groups need to be added. Each new user defines a level

in our lattice. The existing users on a system are associated with an

integrity level.

24

The concept of group gl, corresponding to each user at level l, is

added to define a safe “world” for files. The world permissions of files

are assigned to this new group, making the file inaccessible to lower

integrity subjects. This enforces the “no write up” policy.

The group gl for each user at level l contains userids of all users above

its own integrity level and of its corresponding owner. Users at the same

level are not related. This helps in ensuring that an application at a

level is not allowed to corrupt files of other owners.

Some applications like apache, gnome-games, etc. create their own

userid and expect to execute in its context. This is allowed by associ-

ating the new userid to an existing level in the integrity lattice. This

ensures that all policies applicable to its integrity level are enforced on

the package.

3.2 System call Interception

System call interception is achieved at the shared library level. Li-

braries like glibc and pthread, that are used by applications to make

system calls, are intercepted. The binary interceptor used for this is

developed as an in-house project in Secure Systems Lab, Stony Brook

University. The interceptor provides the following functionalities:

• Control on syscall enter

The intercepted code in the library invokes a handler just before a

system call is made. System call number and all its parameters are

made available in this handler. It is possible to read and change

these parameters before returning to the system call site. This

makes it possible to implement our enforcement policies at the

25

system call entry level. If a policy is being violated, the handler

supports aborting the original system call.

• Control on syscall exit

The interceptor also provides control on system call exit. After

a system call returns to the library, another handler is invoked.

This handler gives access to return values of the system call.

• Making other system calls

It is possible to invoke system calls from within the handler in-

voked by the intercepted code. This allows us to implement poli-

cies in the system call handler. The handler avoids recursion by

bypassing interception for the system calls made from the han-

dler.

Interception should be applied to almost all executables. This is be-

cause any process that does not have intercepted library has the poten-

tial to compromise itself, thus threatening the integrity of the system.

If the application bypasses the library interception, it is because its en-

vironment is influenced by information flow from low integrity. In this

case, the application should already be running at low integrity. A non-

malicious application cannot be influenced to bypass this mechanism

while executing at high integrity.

The system call interceptor is used for implementing policies for pre-

venting a subject from randomly downgrading. Let us see how the

policy determines if a downgrade should be allowed.

3.2.1 Enforce no exec down

This is enforced at the entry of execve system call. The parame-

ters are checked for determining the desired action. If a downgrade is

26

needed, the parameters to exec are right shifted and exec from level

is invoked instead. This function takes original parameters to exec and

userid with which it should execute.

The wrapper, exec from level needs to be careful to ensure that

userid changes are permanent, group changes are permanent, supple-

mentary groups are reset properly and environment and command line

arguments are checked. The execute permissions of this wrapper allow

execution only by users with higher integrity level.

3.2.2 Enforce no read down

This is similar to enforcing no exec down. The policy is implemented

at the entry of open system call. Here, we can downgrade the subject

to only a set of pre-encoded integrity level, as described earlier. Note

that we downgrade process to the level of the file being opened, but we

do not ensure that the userid be file owner.

3.3 Granular trust for invulnerable appli-

cations

We provide a mechanism to specify granularity in application trust.

A small subset of non-malicious applications is defined as invulnerable.

Such integrity aware applications can use our mechanism to use lower

integrity input without lowering its privileges. We implement support

for this mechanism in the intercepted library, where downgrading poli-

cies are implemented. Hence, it needs to be communicated to the li-

brary that the system call is being made by an invulnerable application

and in a context where it can handle lower integrity data.

27

Along with communicating invulnerability information to the library,

we provide functions that can control the integrity levels at which an

application executes.

3.3.1 Application functions

Integrity aware applications call these functions from its code to indi-

cate the context of information flow.

1. open downgrade (..., level) - Allow opening the file if the file level

lf ≥ level. The process may downgrade as needed. This func-

tion indicates that the subject cannot handle input lower than

specified, in this context.

2. open trust (..., level) - Allow opening the file if the file level lf ≥

level. The process may not downgrade even if the file’s integrity

is lower than its own. This function indicates that the subject

can handle input up to the specified level, in an invulnerable

manner. However, any information flow from a level l < level

can compromise it.

3. downgrade (level) - Downgrade the userid of the calling subject

to the specified level. This can be used by an application, when

it realizes that it may be a potential threat to system security, at

the level it is currently executing.

4. exec at level(..., level) - Execute the specified file at a given level.

This in turn uses the exec from level() function. An application

is allowed to execute the file at any level lower than its own.

An application is not forced to use these functions for using our pol-

icy enforcement. This is an added mechanism for an integrity aware

28

application to have fine grain policy enforcement. This mechanism how-

ever requires modification to application code. Though it is acceptable

to assume an application to make changes based on its intentions and

security requirements. We provide added mechanisms to achieve this

functionality for existing application.

3.3.2 Flags to system call

We provide variants of open, creat and exec system call to take added

flags as parameters. These flags achieve the needed flexibility as follows:

1. min level - Opening a file with level lf < min level should be

denied.

2. invul level - Opening a file with level lf ≥ min level should not

cause any downgrading in the subject’s execution level.

3. obj min level -This is the default level for newly created objects.

The functionality of this flag will be limited based on the permis-

sions of subject using it. On Linux, non-root processes do not

have permissions to create arbitrary userid files.

4. exec level - This is the highest default level at which subjects will

be exec-ed. Files with level lf < exec level will execute at lf

level.

This mechanism requires changes in shared library where system calls

are made. For a completely transparent approach, the application can

specify filenames and integrity levels by setting appropriate environ-

ment variables. We created an environment variable, TRUSTED FILES,

to specify filenames that can be opened by an invulnerable application

without downgrading.

29

The functionality provided by these functions and flags, is used for

finer granularity in policy enforcement. The functions are implemented

in a way that it will not be able to specify random integrity levels

of operation. These functions can be used only to specify variations

binding to the existing policies.

3.3.3 Inferring from user behavior

For users who do not want the burden of setting up environment vari-

ables or using modified libraries, we infer these values in the following

way:

1. min level - This flag is calculated using the information of in-

tegrity levels of all the files opened by the process. When a file of

level lf > min level is opened, min level is made equal to lf . On

a file close, the min level is recomputed based on the integrity of

all open files at that moment. However, the value of min level is

always maintained greater than the process downgrade-able level,

ld ≥ min level.

2. invul level - As defined in the design section, we term all explicit

file access as invulnerable. The mechanism developed for identi-

fying explicit file access is as follows:

• File names appearing in environment variables and com-

mand line arguments are considered as explicit access. This

is achieved by getting the return value from read system call

of stdout. Also environment variables are scanned to locate

filenames. A list is maintained for all explicit file names.

• File selected by GUI is considered explicit. The gnome li-

brary provides a finite set of widgets that can be used to

specify file names. Application uses these inbuilt gnome

30

widgets. We retrieve the file name from these widgets by

modifying their code in glib.

• In case of a configuration file, specified by user, filenames ap-

pearing in it should also be considered as explicitly specified

by user. This is a configurable option and can be disabled

completely. It is achieved using an information flow track-

ing mechanism, based on content. The idea is to associate

trust to data based on its origin. On a read system call,

the contents read are saved in a hash table along with the

integrity of its origin (file it was read from). On the write

system call, the integrity of data is determined by finding its

match in the hash table. This mechanism is also developed

in Secure Systems Lab, Stony Brook. We use it to identify

if a filename was read from a high integrity file. All such

filenames are to be considered explicit and added to the list.

Once this list of filenames is populated, the open system call

checks the file name against this list of explicit file accesses. If

a match is found, we consider the file access as intentional and

allow to open it without downgrading the subject. Note that the

invul level makes sense only for invulnerable applications. All file

accesses, explicit or implicit for all other applications will abide

to the downgrading policy.

3. obj min level - Unless explicitly specified, the default value of this

flag is same as the process’s downgrade-able level, ld.

4. exec level - This value is interpreted to be the minimum out of

executable file’s level, lf and parent process’s level, lp.

31

3.4 Modification to existing utilities

• chmod - Changes in permission to file owner is unregulated. If

the file group is as defined by the lattice, i.e., all users in the

group have level l ≥ gl, any permission changes are allowed. For

any group other than gl, only read permission can be assigned.

Similarly, we allow only read permissions to others. This is done

for “no write up” policy to be enforced across chmod.

• chown - A change in file owner to another user from its own in-

tegrity level or userids under it in the lattice is allowed. Changing

the file owner to a user with higher integrity is not allowed.

• chgrp - The group owner of a file can be changed to any other

group. However, we remove all permissions on the file before

allowing this change. Only read permissions, if initially did exist

are retained.

• login - For propagating default downgrade-able levels for a sub-

ject, we change the login utility. When a new user is logged in,

we assign its real userid to be its downgraded userid. In addition,

saved userid can be used for flexibility in downgrade-able levels.

This value is then inherited by all the child processes of login.

3.5 Secure Installer

A package installer is used for systematic package installation. Util-

ities like APT (Advanced Packaging Tool) and YUM (Yellowdog Up-

dater, Modified) maintain a database to help underlying installers like

dpkg and rpm in resolving package dependencies, downloading pack-

ages, etc. The installer installs a downloaded package and executes

32

installation scripts specific to the package. For our discussion, we will

consider these utilities as part of the installer.

Packages that modify system directories by placing or removing their

files, expect the installer to have superuser privileges. Moreover, the

installer needs to update its database files on each package installation

or uninstallation. These files are root-owned, making it essential for

installer to always execute with superuser privileges.

However, there is a huge security hole here, since the actions of an

installer can be influenced by the package it is installing [23]. This is

possible when package specific installation scripts are executed. These

scripts also execute with superuser privileges, like the installer. There-

fore, the installer needs to be confined. But behavior of the installer

varies according to the package it is installing, thus making policy spec-

ification relatively difficult.

3.5.1 Policies for a secure installer

The secure installer we developed is implemented for apt. We aim

to secure the installation and uninstallation phases of the package by

confining the installer using following higher level policies:

1. Installer will always execute at the integrity level of the package.

This policy ensures that application scripts do not exploit the

installer privileges and that files created and copied on the system

will inherit application integrity level.

2. Regulated update to higher integrity files using state-based policies.

Since the installer needs to modify certain high integrity files, we

cannot blindly enforce policy 1. State-based policies consider the

intent of an operation by allowing changes to a copy of the original

33

file and then checking if updated file and system are in a security

consistent state. Such state-based policies are more powerful than

policy enforcement using runtime monitoring [19], where decisions

regarding permissibility of an operation are made strictly based

on each operation independently.

We use a daemon process to help implement these state-based poli-

cies. This daemon is a root owned process and executes all legitimate

superuser operations on behalf of the installer.

3.5.2 Daemon for privileged installer operations

A daemon process which will make superuser operations on behalf

of installer is created. This daemon manages redirection for files. The

shared library used by installer to make system calls is intercepted

for this purpose. Handlers in the intercepted library on system call

entry and exit communicate with the daemon process to achieve its

functionality. Let us discuss in detail how each system call is handled:

• Intercept on syscall exit

When a system call fails with EPERM , EACCES or ENOENT

error, the handler in the intercepted library communicates with

the daemon and passes information about system call that failed

along with it parameters. The daemon determines the reason for

failure and handles it in one of the following ways:

– Failed due to permission denial - The daemon checks if sys-

tem call would succeed with root privileges. This is done by

checking if all other parameters to it are valid. If this is true,

depending on the semantics, the system call is either done

by the daemon on behalf of the installer or it is redirected.

34

Redirection is done by creating a copy of the original re-

source, that needs root privileges. Permissions on the copy

are set such that installer has required access to it. The

parameter of system call that indicated the resource path

is replaced with the redirected path and sent back to the

intercepted library. The library then makes the system call

with new parameters.

We describe in detail how each system call is handled.

∗ access, utime, and stat - If any of these system calls or

its variants fails due to permission denial, the daemon

does the system call with original parameters. The re-

turn value is passed to the library and in turn used by

the installer. Since these system calls query informa-

tion about resources and do not make any changes, it is

alright to execute them.

∗ chmod, unlink, mkdir, rmdir, chdir, and chown - These

system calls and their variants change system resources.

Hence, the file/directory on which it needs to be per-

formed is redirected. Any future reference to this file/directory

will use the redirected copy.

– Failed because original file was redirected - If the system call

did not fail due to permission denial and its parameters were

not valid, the system call might have failed due to our redi-

rection. This case is handled by checking the resource name

in the table of all redirections, maintained by the daemon. If

an entry was found, the parameter holding resource name is

replaced with the redirected resource name and sent to the

library. Intercepted code now makes the system call again

with new parameters.

35

Figure 3: Interaction between installer and daemon process

If the failure is not due to any of the mentioned cases above, it

is not handled and returned to the library.

In figure 3, we explain how write to a high integrity file is handled

by the daemon.

• Intercept on syscall entry

The system call interception is also used to propagate the integrity

level of package to all its files. This is implemented in the entry

hook of system call interception. We monitor the creation of new

files on the system to override its (owner, group) information and

file permissions. Following system calls are identified to create

files on the system, open, creat, rename and link. The parame-

ter to these system calls, containing filename is replaced with a

redirected location. Redirection of all new files is done so that

36

if installation fails, all traces of the package can be completely

removed.

3.5.3 Running installer with package userid

With a mechanism to handle privileged operations, we can now ex-

ecute the installer with a userid corresponding to the integrity level of

a package. The level of a package is determined by it’s source repos-

itory, which in turn depends on the repository’s source. Since there

are limited trusted sources for a repository, the listing can be manually

updated. For our prototype, we trust only default Ubuntu repositories.

There can be any number of repositories in a placed a group at each

trust level. Repositories in the same group indicate same trust level

and hence packages downloaded from them will be assigned to the same

integrity level in our lattice.

3.5.3.1 Determining integrity level of a package

The apt utility takes package name to be installed as a parameter.

It resolves package dependencies and adds all uninstalled packages, re-

quired by this package, to the installation list. After the dependency

information is complete, apt downloads all packages. The order of

searching repositories for a package is as follows:

1. It first checks for repositories with higher priority. This informa-

tion can be provided by pinning repositories [2]. It is present in

/etc/apt/preferences.

2. Among repositories with equal priorities, they are checked based

on the order specified in /etc/apt/sources.list.

37

We reorder repository listing in /etc/apt/sources.list and sort them in

order of their trust. This helps ensuring that if a package is provided

by more than one repository, it is picked up from higher trusted source.

We need a mechanism to associate a Debian file with the repository

it was downloaded from. This can be done by querying the reposi-

tory information. Each repository contains a < repository name >

Packages file, which contains information about all the packages it

provides. Moreover, this file contains the name of Debian file that

would be downloaded, along with its checksum information. We check

repositories, in the same order as checked by apt, to determine source

of given package. The package is then assigned an integrity level cor-

responding to the repository trust, and assigned a userid.

3.5.3.2 Installation phase

The secure installer has a wrapper for dpkg, where the integrity of

each Debian file is calculated using the above method. If the files given

to dpkg are of mixed integrity levels, the execution of dpkg is serialized.

The dpkg-wrapper does the following for each package to be installed.

1. Change the userid and execute dpkg with default options, and

single Debian file.

2. dpkg is made to use intercepted library for making system calls.

3. Daemon running with root privileges is used for making privileged

operations and redirection for dpkg.

4. After dpkg –unpack and dpkg –configure, we validate changes to

redirected installer database files. If the validation scripts pass,

original database files are replaced with these redirection files.

38

5. All newly created files are copied on the expected location on the

system.

6. However, if the validation of a high integrity file fails, the re-

covery mechanism, as described in section 3.5.5 is used to abort

installation and get the system in a consistent state.

7. After completion of the installation, the next Debian file is taken

and executed as elaborated above.

Installation of packages with userid 0 will bypass our mechanisms

of library interception. This is because the intercepted library is used

when system calls fail due to permission denial, which will not be the

case when executing with userid 0. This is not a problem because we

assume only high integrity packages to have userid 0.

3.5.3.3 Uninstallation phase

Similar to the installation phase, the uninstallation of a package also

needs to execute at its own integrity level. The same dpkg-wrapper

is used for this purpose. However, at this stage, dpkg take only pack-

age name as parameter. We need to determine the integrity of pack-

age being uninstalled from its name. This information is present in

/var/lib/dpkg/status, which is a database file for dpkg.

From the package name, we find files and libraries that belong to this

package. The owner of these files on the system is used to determine

package integrity1. The execution to dpkg is again serialized based

on integrity of the package being uninstalled. Steps and mechanisms

similar to installation phase are applied.

1Our execution time mechanisms ensure that userid of files is not changed to any
arbitrary value. In addition to this, we have wrapper to chown to monitor changes.

39

3.5.4 Validating changes to high integrity files

We use state-based policies for regulating access to high integrity

files. This is achieved by redirecting changes to these files and later

validating if the changes left the file and system in a consistent state.

3.5.4.1 Installer database files

For validating changes to installer database files, the high level policy

is to make sure that a package updates information belonging only to

itself. We wrote scripts for validating changes to following high integrity

files. Changes to sections belonging to other packages was considered

as a violation. Each file needs a separate validation script, because the

script will depend on the file format.

• /var/lib/dpkg/status

• /var/lib/dpkg/diversions

• /var/lib/dpkg/available

• /var/lib/dpkg/statoverride

• /var/lib/apt/extended states

• /usr/share/applications/mimeinfo.cache

On an average, the script contains 50 lines. perl is used as a scripting

language.

3.5.4.2 Other files

There are other files that are redirected by the daemon during instal-

lation. These are files that need to be copied in root owned directories,

that modify existing files or are created during installation. The high

level policy is to allow following actions,

40

1. To overwrite files with same or lower integrity userid.

2. To create new files in system directories.

Any file modification that does not fall in one of the categories

stated above is rejected.

3.5.5 Recovery Mechanism

If at any stage of installation or uninstallation, a policy does not

allow the installation to proceed, or validation to a high integrity file

fails, a recovery mechanism is implemented to ensure that the system

and the installer are always left in a consistent state.

The design of our secure installer is such that it does not interfere

with the behavior of installer in an unpredictable way. Policies are

enforced at well defined interfaces. This makes it possible to use existing

mechanisms of apt of reverting installation. The existing mechanism of

apt is to invoke a particular uninstallation script based on the stage at

which installation fails. These scripts are provided by the package.

For a trusted package, these reverting scripts can be trusted, but

for untrusted packages, early failure is preferred instead of leaving the

system in an inconsistent state. Redirecting modifications to all newly

created files on the system and high integrity files is one of the mecha-

nisms to preserve system consistency.

41

CHAPTER 4

Evaluation

4.1 Evaluation of Secure Installer

We implemented the Secure Installer for APT and dpkg on Ubuntu

8.10 Linux. The code for policy enforcement using syscall interceptor

was around 4.5K lines of C code. The validation scripts for installer

database files were written in perl.

We tested the installer policies by installing three untrusted pack-

ages. These packages updated the installer database files, copied their

files in system directories and executed their installation scripts. The

performance numbers of the installation with and without our library

interception is as follows:

Package Installed Original Installer Secure Installer Overhead

webcam 6.568 8.296 26.29%
totem 6.552 8.704 32.82%
fruit 6.632 7.932 19.60%

Table 1: Performance overhead of Secure Installer. All numbers are in
seconds.

42

Figure 4: Evaluation of Secure Installer

The overhead seen is due to redirection of files. System call in-

terception does not incur accountable overhead. Therefore, installa-

tion of packages from trusted repositories will not show this overhead.

Since, redirection is done only on system call failure, and packages from

trusted repositories will be installed with high integrity userid.

4.2 Evaluation of Information flow model

For evaluating the information flow model in the execution phase,

we assume that the existing system is non-malicious, so all files on the

system belong to the same integrity level. All files are assigned to a

43

single userid. New packages entering the system will be assigned new

userid based on its trust level.

Testing Policy enforcement

• Untrusted subject trying to modify higher integrity files

We wrote sample test cases that check for “no write up” policy.

However, it needs to be tested with real malware. We need to

install malicious code that tries to modify system files.

• Untrusted subject executing file at higher integrity level

The world executable permissions of all setuid programs on a

system is changed to group permissions. No untrusted userid was

added to this group, hence this policy was successfully enforced.

• Non-malicious applications given malicious input

Packages like acroread1 and amarok2 were executed with un-

trusted input. The resultant instance of these applications ran

with untrusted userid. However, we need to find malicious input

that can successfully craft an attack.

• Malicious subject executed by non-malicious applications

Sample test cases for checking this policy are created. We ran a

subject at high integrity and executed a low integrity executable

from it. The resultant execution was downgraded and “regulated

exec down” policy was enforced. However, to check this on a

real application, the application should execute a malicious file.

This can be done by replacing a system utility by a low-integrity

executable or changing configuration file of the non-malicious ap-

plication to pick up malicious executables.

1Acrobat reader
2Music player - Amarok

44

• Lower integrity input given to invulnerable applications

Applications like ssh, cp and tar are categorized as invulnerable.

A set of files with mixed integrity levels was given as input to

each of these. The output was generated and applications ran

successfully. In the absence of finer granularity in trust, these

applications would have failed due to downgrading.

We have not done a complete system-wide testing of the informa-

tion flow model. There are few implementation issues that need to be

resolved for it to be applied to the entire system.

45

CHAPTER 5

Related Work

The Biba model [4] introduces the concept of information flow by

policies like no read down and no write up. However, these policies are

very strict and break most of the applications. The low-water mark

model [6] addresses this problem by relaxing these policies by allowing

subjects to execute at the integrity level of input they are exposed to.

LOMAC [6], a prototype implementation of low-water mark model on

Linux, addresses the “self-revocation” problem for IPC but not files.

SLIM (Simple Linux Integrity Model) [18] is developed as a part of the

IBM research trusted client project, and is also based on the LOMAC

model.

UMIP [17] and PPI [22] are information flow techniques for ensuring

system integrity. The file labeling mechanism used by these approaches

make their implementation very specific to a given version of the kernel.

Also due to significant changes in the kernel code, porting these systems

becomes very difficult. As opposed to this, we use existing mechanisms

to label files and hence our approach is generic. Also we implement

policy enforcement at user level, hence avoiding any changes to the

existing kernel.

46

IX [15] uses dynamic labels on processes and files to ensure privacy

and integrity via information flow. However, we do not address the

problem of preserving confidentiality of data. But we improve usability

by allowing applications to downgrade based on the context of low-

integrity input.

Windows Vista enforces only the “no write up” policy of information

flow. The “no read down” is not enforced as it breaks usability. How-

ever, this approach is not complete and attacks can be crafted based

on this policy. On the other hand, Back to the Future system [5] en-

forces only the “no read down” policy. It thus identifies any attempt

of malicious input being consumed by benign applications. However,

the rollback mechanism is not straight forward and needs user inter-

vention. Also the mechanism for recovering critical files, after they are

overwritten by malware, is time-consuming.

While information flow techniques like SLIM [18], LOMAC [6] and

PPI [22] protect host integrity during the execution phase of an ap-

plication, they cannot be applied to the installation and uninstallation

phases. SSI [23] tries to fill this missing gap by enforcing information

flow policies on the installation phase and passing file integrity infor-

mation to the execution phase of applications. We refer the higher

level policies discussed in SSI as the basis of our secure installer design.

However, due to different file labeling mechanisms, the implementation

and issues of secure installer varies from SSI.

SoftwarePot [11] proposes a secure software circulation and deploy-

ment model. The notion of code provider is carried to the end user

by encapsulating the execution of the application within a file system

47

corresponding the code provider. This is similar to our concept of asso-

ciating package provider identity during package execution. However,

unlike our secure installer, it cannot be applied to existing installers

or by using existing sandboxing techniques. More importantly, pol-

icy development of SoftwarePot is not automated and requires effort

to support new applications. Secure Installer on the other hand uses

state-based policies for preserving system integrity. A set of standard

policies is applied to all untrusted applications, thus automating the

policy development mechanism.

The concept of userid is used by Google to confine applications in

Android [20, 13]. It ensures that each application is executed in its own

userid environment. However, the concept of userid is used to create

a sandbox for the application. With confinement based on userid, An-

droid aims to ensure data confidentiality. The problem of preserving

data integrity is completely avoided by isolating the executions within

a given environment and not allowing to copy files outside its directory

structure. Any request files and resources belonging to another appli-

cation is made via an application manager, which checks if the request

is legitimate before making it. This mechanism however, is possible on

a mobile platform. But on a desktop we need to allow information flow

and hence the problem to be solved is different.

iPhone security model [16], is also based on executing applications

in a sandbox. However, Apple uses TrustedBSD MAC hooks similar to

LSM to enforce sandboxing policies.

48

CHAPTER 6

Conclusion

We developed an approach to preserve system integrity while allow-

ing safe execution of untrusted code. Our approach achieves following

objectives of usability while preserving integrity.

• Untrusted applications need to be confined, i.e., they should not

be able to overwrite data or code belonging to (or used by) benign

applications that need to run with high integrity in order to carry

out their functionality. This is achieved by using userid to encode

file integrity information and enforcing “no write-up” and “no

exec-up” policies using DAC mechanism.

• Most of the applications need the ability to be execute with lower

privileges at some point during runtime, usually when they read

untrusted input. Applications that can handle untrusted data

may need downgrading as well, e.g., when they are exposed to un-

trusted input on channels where they expect high integrity input.

We achieve this objective by enforcing a subject to downgrade its

integrity level when it is exposed to lower integrity data.

• Some applications can be trusted to handle untrusted input, but

49

only in certain context. For instance, even the best written ap-

plication cannot be expected to protect itself from a malicious

library or configuration file. We achieve this by assigning granu-

lar trust to invulnerable applications.

• Policy development should be largely automated. This is not an

issue with our system, since our policies depend on file ownership.

We take care that the integrity level of files entering the system

is propagated from its source.

• User should not be prompted for input on security decisions.

However, a sophisticated user should be able to override default

policies in a carefully controlled way and applications should be

able to go beyond default mechanisms if they are aware of the

underlying mechanisms. This is achieved by the various meth-

ods provided for specifying and inferring user intention during

file access.

• The mechanism to determine integrity of an application should

be automated. This mechanism needs to translate the trust of an

application from its source to its integrity on the system. A user

cannot be expected to provide this information. We achieve this

end-to-end trust handling by associating trust levels to reposito-

ries used for downloading applications. Also the repository trust

level is translated to an integrity level in the system lattice.

• An application should not be able to violate the system security

policies at any phase of its life cycle. This is achieved by im-

plementing a secure installer, which ensures that installation and

uninstallation happen at application integrity level.

50

Bibliography

[1] Hack of google, adobe conducted through zero-day ie flaw.

[2] Manual page for apt preferences. Technical report, 2003.

[3] A. Acharya and M. Raje. Mapbox: Using parameterized behavior classes to

confine applications. In Proceedings of the 9th USENIX Security Symposium,

1999.

[4] K. J. Biba. Integrity considerations for secure computer systems. Technical

Report MTR-3153, Mitre Corporation, ploits on commodity software. In Pro-

ceedings of 12th Annual Network and Distributed System Security Symposium,

2004.

[5] T. R. Francis Hsu and H. Chen. Back to the future: A framework for au-

tomatic malware removal and system repair. In Annual Computer Security

Applications Conference (ACSAC), 2006.

[6] T. Fraser. Lomac: Low water-mark integrity protection for cots environments.

2001.

[7] S. D. G. Edward Suh, Jaewook Lee. Secure program execution via dynamic

information flow tracking. ACM SIGARCH, 2004.

[8] F. M. T. B. Guido van t Noordende, Rutger Hofman and A. S. Tanenbaum.

A secure jailing system for confining untrusted applications.

[9] D. W. Hao Chen and D. Dean. Setuid demystified. In 11th USENIX Security

Symposium, 2002.

[10] R. T. I. Goldberg, D. Wagner and E. A. Brewer. A secure environment for

untrusted helper applications: confining the wily hacker. In Proceedings of the

6th conference on USENIX Security Symposium, Focusing on Applications of

Cryptography - Volume 6, 1996.

51

[11] K. Kato and Y. Oyama. Softwarepot: An encapsulated transferable file system

for secure software circulation. In ISSS, pages 112132, 2002.

[12] B. L. Kevin Borders, Eric Vander Weele and A. Prakash. Protecting confiden-

tial data on personal computers with storage capsules. In Proceedings of the

18th USENIX Security Symposium, 2009.

[13] W. E. Machigar Ongtang, Stephen McLaughlin and P. McDaniel. Semantically

rich application-centric security in android. Proceedings of the 25th Annual

Computer Security Applications Conference (ACSAC), Honololo, HI, 2009.

[14] S. E. Madnlck and J. d. Donovan. Application and analysis of the virtual

machine approach to information system security and isolation. In Proceedings

of the 9th conference on USENIX Security Symposium - Volume 9, 2000.

[15] M. D. McIlroy and J. A. Reeds. Multilevel security in the unix tradition. 1992.

[16] T. Moyer and D. Octeau. iphone security model. Technical report, 2009.

[17] Z. M. Ninghui Li and H. Chen. Usable mandatory integrity protection for

operating systems. In IEEE Symposium on Security and Privacy, 2007.

[18] D. Safford and M. Zohar. Trusted linux client. ACSAC, Tucson, AZ, 2004.

[19] F. B. Schneider. Enforceable security policies. In ACM Transactions on In-

formation and System Security, 3(1):3050, 2000.

[20] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. Google

android: A comprehensive security assessment. IEEE Security and Privacy,

Vol. 8, No. 2. (2010), pp. 35-44., 2010.

[21] D. A. Wagner. Janus: an approach for confinement of untrusted applications.

In Technical Report: CSD-99-1056, 1999.

[22] G. P. Weiqing Sun, R. Sekar and T. Karandikar. Practical proactive integrity

preservation: A basis for malware defense. in IEEE Symposium on Security

and Privacy, Oakland, CA, 2008.

[23] Z. L. Weiqing Sun, R. Sekar and V. Venkatakrishnan. Expanding malware

defense by securing software installations. In Detection of Intrusions, Malware

and Vulnerability Analysis (DIMVA), Paris, France, 2008.

[24] Y. Wen and H. Wang. A secure virtual execution environment for un-

trusted code. In Information Security and Cryptology - ICISC 2007. Volume

4817/2007, 2007.

52

[25] V. V. Zhenkai Liang and R. Sekar. Isolated program execution: An appli-

cation transparent approach for executing untrusted programs. 19th Annual

Computer Security Applications Conference (ACSAC), Las Vegas, NV, 2003.

[26] V. V. Zhenkai Liang, Weiqing Sun and R. Sekar. Alcatraz: An isolated en-

vironment for experimenting with untrusted software. ACM Transactions on

Information and System Security (TISSEC), Volume 12, Issue 3, 2009.

53

	Acknowledgments
	Introduction
	Problem
	Existing defense mechanisms
	Our approach
	Summarizing our approach as an end-to-end mechanism

	Design
	Policy enforcement
	No privilege escalation
	Enforcing regulated privilege downgrade
	Limited downgrade support due to userid

	End-to-end trust mechanism
	Integrity of downloaded files
	Integrity of installed packages

	Granular trust for applications

	Implementation
	Creating integrity lattice
	System call Interception
	Enforce no exec down
	Enforce no read down

	Granular trust for invulnerable applications
	Application functions
	Flags to system call
	Inferring from user behavior

	Modification to existing utilities
	Secure Installer
	Policies for a secure installer
	Daemon for privileged installer operations
	Running installer with package userid
	Validating changes to high integrity files
	Recovery Mechanism

	Evaluation
	Evaluation of Secure Installer
	Evaluation of Information flow model

	Related Work
	Conclusion
	Bibliography

