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Abstract of the Thesis

Experimental Verification of Nonlinear System
Model Parameter Identification Based On

Trajectory Pattern Method

by

Xiao Chen

Master of Science

in

Mechanical Engineering

Stony Brook University

2010

The purpose of this thesis was to verify the Trajectory Pattern

Method (TPM) based nonlinear system model parameter identifi-

cation method for a two degrees of freedom closed loop planar

robotic manipulator. The systematic procedure and the mathe-

matical proof of convergence of the method were introduced first.

A model based feedforward control system was constructed for the

control of the planar manipulator. The software of the control

system was implemented. Experiments were performed to demon-

strate the effectiveness of the TPM based parameter identification
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method.

The experimental results, which can be extended to a large

class of nonlinear mechanical systems whose models are linear with

respect to their model parameters, showed that the estimated pa-

rameters were getting closer to their nominal values during the

parameter updating process. As the kinematics and dynamics pa-

rameters of the system approached their nominal values, the model

based feedforward control system would control the system better.

The integral of the squared errors of the outputs were calculated to

show that the overall control performance was improved after each

parameter updating step. The principle conclusion drawn from

the experiment revealed that the developed parameter identifica-

tion method was very effective on the highly nonlinear dynamic

system.
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Chapter 1

Introduction

1.1 Nonlinear System Model Parameter Iden-

tification

Most mechanical systems such as robot manipulators have nonlinear dy-

namics. Although sometimes it may be possible to describe such systems

linearly over a restricted range around a certain working point, in general non-

linear systems can only be adequately characterized by a nonlinear dynamics

model. Since a mathematical description of a process is the prerequisite to the

analysis and design of its control system, the study of system identification

and model parameter estimation has become an established branch of control

theory.

Identification of system kinematics and dynamics parameters is very im-

portant for accurate description of the system dynamics for design and con-

trol purposes, especially when model based controllers are involved. Some
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researchers have studied the techniques for nonlinear system structure identi-

fication while others have developed new approaches of estimating unknown

parameters of a known nonlinear system. Gray et. al. (1998) used Genetic

Programming for nonlinear model structure identification. This is an opti-

mization method which automatically selects model structure elements from

a database. Abdelazim and Malik (2005) used Takagi-Sugeno fuzzy logic grey

box modeling for identification of nonlinear systems. Li et al. (2006) devel-

oped a two-stage algorithm for identification of nonlinear dynamics systems.

In this algorithm an initial model is built from a large pool of basis func-

tions or model terms, then the significance of each term is evaluated and all

insignificant terms are replaced in the second step.

One the other hand, the research on nonlinear system parameter estima-

tion is growing recently due to the need of having a more precise model for

advanced control. For example, some very sophisticated control laws used on

high speed and high accuracy machinery require the parameters to be as close

to the nominal values as possible. Guo et al. (1989) used an adaptive control

for linearized model of robotic manipulator in which a recursive least square

identification scheme is employed to perform the on-line parameter estimation

for feedback gains of controllers. Ha et al. (1989) developed a method for the

estimation of the model parameters with which the system does not need a

predetermined trajectory to follow. Lin (1994) presented an approach to iden-

tify the minimal linear combination of manipulator parameters by least square

method. Lee et al. (1997) proposed to incorporate dynamics into fuzzy logic

system so the resulting fuzzy logic system posses universal approximation ca-

pability and tested the theory on a flexible single link manipulator with highly
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nonlinear joint friction. Dolanc et al. (2005) applied a special excitation signal

for parameter estimation of nonlinear systems using a piecewise-linear Ham-

merstein model. Spottswood et al. (2006) introduced a novel reduced order

nonlinear identification method. Kenne et al (2006) used radial basis function

networks scheme for on-line state and parameter estimation of a reasonably

large class of nonlinear systems.

A review of the published literature shows the following points. Firstly that

there is no systematic method that can be applied to a large class of mechanical

systems while at the same time the convergence of the parameter estimation

method is guaranteed over a large range of working space. In other words some

of the methods rely on the response from around a local working point rather

than the entire working space in which the nonlinearity gets fully exhibited.

Secondly, some of the excitation signals used for identification include a large

range of frequencies and might put the nonlinear system out of control. This

issue becomes more important when industrial processes are concerned.

In this thesis, a systematic approach is introduced for model parameter

estimation of a large class of fully controlled deterministic nonlinear mechanical

systems based on Trajectory Pattern Method (TPM), Rastegar, et al. The

mathematical proof for convergence and other details of this TPM based model

parameter estimation method can be reffered to Rastegar and Feng [1]. A

digital signal processor (DSP) based DC motor control system is built to carry

out the experimantal verifacation of the TPM nonlinear system parameter

estimation method. Both hardware and software of the control system are

presented. This method is tested on a highly nonlinear dynamic system which

is a two degree of freedom closed loop planar robot manipulator. The results
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from the experiments verified that the method is very effective and can be

extended to a large class of nonlinear system.

1.2 Trajectory Pattern Method Based Model

Parameter Identification

Trajectory Pattern Method uses a number of appropriate basic time func-

tions containing several fixed parameters to synthesize a predetermined tra-

jectory so that the resulting trajectory can transform the dynamic model of

nonlinear system from differential equations into algebraic equations. We are

considering those kinds of nonlinear systems that can be written in the form

of linear equations with respect to their parameters or combinations of pa-

rameters. we assume that a mathematic model that precisely describes the

dynamic behavior of the nonlinear system is provided. The model parameters

are constants but the values of them are unknown. Since the majority of the

mechanical systems can be modeled by second order differential equations, we

only consider those ones here. But this dose not mean that the method is

only valid for second order systems, we can easily extend to those high order

nonlinear systems. These models can be expressed or approximated by Tay-

lor Series expansion as polynomials with parameters being coefficients of each

term. A nonlinear system with these considerations can be modeled as

mẍ+D(x, ẋ, k1, k2, . . . , kn) = u (1.1)

4



where x is the output, u is the input andm, k1, k2, ..., kn are system parameters

to be identified. The function D is a generic nonlinear polynomial function

expressed as

D(x, ẋ, k1, k2, . . . , kn) =
n∑

j=1

kjx
pj ẋqj (1.2)

where kj is the coefficient and pj, qj are the exponents of the variables x

and ẋ in the jth term. Generally differential equations are very difficult to

solve, especially when we have a multiple inputs multiple outputs high order

nonlinear system. However, the Trajectory Pattern Method transform the

inverse dynamic of the system into a simple algebraic equation. The trajectory

pattern is determined in such a way that the desired motion is realized. By

using some optimality criterion such as minimum time or minimum energy to

systhesize different motions, we get different trajectory patterns with different

trajectory parameters. The trajectory patterns that have been employed to

date and appear to be most advantageous are those constructed using a number

of basic sinusoidal time functions and their harmonics. On the other hand,

the selected pattern must start from initial conditions of zero velocity, zero

acceleration, zero jerk and end with zero velocity, zero acceleration and zero

jerk in order to be repeatable. In addition, it is desired for a selected trajectory

to have minimum number of harmonics for parameter estimatin purpose. It

has been proved that the following pattern satisfies all the aforementioned

conditions with a minimum number of harmonics([2],[3]).

xr(t) = λ0 + λ1[cosωt−
1

9
cos 3ωt] (1.3)
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where ω is the fundamental frequency of the trajectory and λ0 and λ1 are the

trajectory parameters. This point to point motion begins at time ts = 0 and

ends at time te =
π
ω
.

Figure (1.1) shows the block diagram representation of this method. The

derivations provided in the remainder of this chapter is from Rastegar and

Feng [1]. In order to make the actual output xa follow the predetermined

trajectory xr as closely as possible, a model based feedforward control scheme

is employed. The feedforward input ff is constructed based on the inverse

dynamics model with the estimated parameters and used to compensate for

the nonlinearity.

ff = m′ẍr +D(xr, ẋr, k
′
1, k

′
2, . . . , k

′
n) (1.4)

The feedback controller is then applied to compensate for errors in the esti-

mated system parameters and errors due to input disturbances. The error is

e = xa − xr. A PD controller is chosen, so the feedback can be expressed as

C(e) = G1e+G2ė. From the control block diagram, we can get the following

equation:

mẍa +D(xa, ẋa, k1, k2, . . . , kn) = ff + C(e) (1.5)

Because D is a polynomial function, the second term of the above equation
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can be rearranged as the following

D(xr + e, ẋr + ė, k1, k2, . . . , kn) = D(xr, ẋr, k1, k2, . . . , kn)

+D(e, ėr, k1, k2, . . . , kn) +D′(xr, e, ẋr, ė, k1, k2, . . . , kn)

(1.6)

where D′ is another polynomial function that has the same order withD and it

is a function of the productions by xr, e, ẋr and ė. A very important equation

can be deduced from the above three equations.

−(G1e+G2ė) +më+
n∑

i=1

kie
pi ėqi +

n∑
i=1

ki

i∑
j,l=1

cijle
j(ė)pi−j−1xl

r(ẋr)
qi−l−1

= ∆mẍr +
n∑

i=1

∆kix
pi
r ẋ

qi
r

(1.7)

where ∆m = m′−m, ∆ki = k′
i−ki are the errors in the estimated values of the

system parameters. In feedforward control theory, it is shown that if we have

a good estimation of the system parameters, the system will track the input

command with a good accuracy. In other words, if ∆m and ∆kis are small

enough, the error e, ė and ë will be very small. Comparing C(e) = (G1e+G2ė)

with the rest of the term on the left hand side of equation (1.7), we can see that

if the feedback gains G1 and G2 are large enough we can ignore all the terms

on the left hand side except for C(e), especially when the trajectory is small

(xr and ẋr in those terms are bounded functions and the maximum values are
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small if the trajectory is small). So we can simplify the above equation to be

−(G1e+G2ė) = ∆mẍr +
n∑

i=1

∆kix
pi
r ẋ

qi
r (1.8)

However, even if the estimated parameters used in the feedforwad are far from

the nominal values, as long as the trajectories are small enough, we can still

get the above equation. This is proved in Rasteger and Feng [1].

Thus by selecting small enough trajectory parameters and large enough

feedback control gains, the differential equation describing the error e becomes

linear. By substituting the trajectory pattern equation (1.3) into equation

(1.8) and after certain amount of algebraic manipulations we get:

−(G1e+G2ė) = a0 + a1 sin(ωt) + a2 cos(ωt) + a3 sin(2ωt) + a4 cos(2ωt)

+a5 sin(3ωt) + a6 cos(3ωt) + a7 sin(4ωt) + a8 cos(4ωt) + . . .

(1.9)

where ais are function of errors in the estimated values of the system param-

eters ∆m, ∆kis and the trajectory parameters λ0, λ1 and ω

ai = ai(λ0, λ1, ω,∆m,∆k1,∆k2, . . . ,∆kn) (1.10)

Thus, by measuring errors e and ė during point to point motions with trajec-

tory pattern in equation (1.3) (initially with trajectory patterns with relatively

small lengths and low fundamental frequency ω) and then transforming the

measured errors into a Fourier Series with the fundamental frequency ω, then

the difference between the obtained harmonic coefficients and the ai in equa-

tion (1.10) will be due to the errors in the values of the estimated system
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parameters, i.e., ∆m,∆k1,∆k2, . . . ,∆kn. It is, however, shown that the latter

relationship is readily derived analytically. Thus, using such a relationship,

the required corrections in the values of the estimated system parameters can

be calculated from the aforementioned measured error signals. By repeating

the selected point to point motions and properly increasing the length of the

trajectory path and its fundamental frequency ω (i.e., speed) as the calcu-

lated corrections become small enough, the present model parameter estima-

tion procedure should allow convergence to the nominal values of the system

parameter.
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Figure 1.1: Control block diagram
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Chapter 2

DSP based control system for

parameter identification

experiments

2.1 Hardware of the Control System

In this chapter, a DSP control system is introduced which was used in

the experiments to implement the TPM based model parameter estimation

theory and determine its effectiveness on a highly nonlinear dynamics system.

The hardware and software of the system are presented. A M6713 DSP PCI

plus-in board from Innovative Integration is used. M6713 DSP can be used

for embedded data acquisition, servo control, stimulus-response and signal

processing tasks. In comparison with a PC based control system, the biggest

advantage of the DSP based control system is its capability to perform real-

time tasks.
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One of the biggest issues in using the PC for data collection, control and

communication applications is the relatively poor real-time performance as-

sociated with the system. Despite the high computational power of the PC,

it cannot reliably respond to real-time events at rates much faster than a

few hundred hertz. The PC is really best at processing data, not collecting

and/or transmitting it from/to external devices. In fact, most modern oper-

ating systems like Windows are simply not focused on real-time performance,

but rather on ease of use and convenience. The solution to this problem is to

provide specialized hardware assistance responsible solely for real-time tasks.

Much the same as a dedicated video subsystem is required for adequate display

performance, dedicated hardware for real-time data collection and transmis-

sion and signal processing is needed. This is precisely the focus of the M6713

baseboard – a high performance, dedicated digital signal processor coupled

with real-time data I/O capable of flowing data via the PCI bus.

The details of the control scheme are shown in Figure (2.1). The M6713

DSP PCI-plug in baseboard resides in a host PC which downloads the pa-

rameters and programs into and communicates with the DSP board as well as

receives the data from the DSP board for analysis. The M6713 is built around

the powerful and C-friendly floating point TMS320C6713 DSP. To complement

this core, one or two modular Omnibus I/O modules may installed into the

onboard I/O sites. In this case, an A4D4 module is chosen for servo control

purpose.

The M6713 receives the trajectory parameters, estimated model parameters

and PD control gains from the host computer and then calculates the PD

feedback and feedforward control commands and uses the A4D4 analog I/O
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card to output the control signal. The feedback signal in this case is the angular

displacement generated by an optical encoder. The calculated control signal

is the output from the A4D4 and input to the motor power amplifiers. The

A4D4 module provides the target card processor with four channels of high

speed 200 kHz, 16-bit resolution analog input to digital output conversion

(A/D) per module slot. In addition, four channels of high speed 200kHz, 16-

bit resolution digital input to analog output conversion (D/A) are provided.

The A4D4 has analog I/O that is tightly coupled with the DSP, making it

well suited for controls purpose. The analog output function of the A4D4 is

used in our application to output analog signal to the motor power amplifiers.

Digital data is written to the D/As for output via a set of memory mapped

locations. The D/A output is triggered and updated via the hardware timer

and the analog trigger selection matrix on the A4D4. In this case, a host

timer is programmed to run at the required sample conversion rate and the

trigger selection matrix is programmed to direct the timer output to the D/A

converter as a conversion strobe signal. Finally the analog output is filtered

with high speed and low offset op amps.

The analog output control signals from the M6713 have to be amplified in

order to drive the DC motors. We use the BD25A20AC Series PWM servo

amplifiers for the system. These brushless servo amplifiers are designed to

drive brushless DC motors at a high switching frequency. They are fully

protected against over-voltage, over-current, over-heating and short-circuiting.

The amplifiers work in current mode and the output currents is proportional

to the input voltages sent from the DSP controller. So the torque generated

by the DC motor becomes proportional to the DSP control signal.
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The TPM based model parameter estimation algorithm was tested on a

planar closed loop manipulator. The angular displacements of the arms are

feedback to the digital I/O ports of the M6713 by the optical encoders. The

M6713 includes 32-bits of software programmable digital I/O for acquiring

digital inputs. The Digital I/O Port is a set of simple input and output

latches. Outputs are enabled on a byte basis as programmed by the DIO

control register. The input latch may be enabled to capture the pins whenever

it is not being read, or whenever an external signal (EXT DIG CLK) is low, as

enabled by the Digital I/O control register. When used in the internal enabled

mode, the value read is the state of the pins immediately before the DSP reads

them.

Reading the feedback correctly is a very critical problem in such a control

system. The optical encoders chosen for the control system are “US digital

E2 1024” and “US digital E3 2048”. They are incremental rotary optical

digital encoder. By counting two bits (channels), the pluses from encoder can

be converted to relative angular position measurement. The signals from A

and B channels can be decoded to yield the direction of rotation as shown in

Figure (2.2). If the motor is rotating in clockwise (CW) direction, the phase of

channel A is ahead of channel B by 90 degree. On the other hand, the phase of

A falls behind channel B by 90 degree, i.e., when the motor is rotating in the

counterclockwise (CCW) direction. So we can use the state of one channel as

the gate, detect the changes of the state in the other channel to get the angular

displacement increments. For example, taking the high state of channel B as

the gate, if there is a falling edge of channel A, we know that the motor is

turning a certain amount in the CW direction. If the rising edge of A appears,
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we know that the motor is turning in the CCW direction.

2.2 Software and Programming of the Control

System

The M6713 is designed for real time signal processing while the PC is

good for data analysis. The programming of the system has two parts. Here

we are using cross-platform graphic user interfaced (GUI) toolkits Qt4 of the

Innovative Integration-authored Malibu library to design a GUI host program

that runs on the host computer. The other task is to build a DSP project

program for servo control.

2.2.1 Graphic User Interfaced Host Program

The host program takes the advantage of the Innovative Integration-authored

Malibu library and uses the cross-platform GUI toolkits Qt4 to build the GUI.

Malibu is a powerful, feature-rich software library designed to meet the

challenges of developing software capable of high speed data flow and real-

time signal processing on the host PC. Malibu adds high performance data

acquisition and data processing capabilities to C++ with a complete set of

functions that solve data movement, analysis, viewing and logging and fully

takes advantage of the object oriented nature of C++. Harnessing the power

of the Microsoft Visual C++ and other IDE environments, Malibu offers the

most powerful and flexible tools to rapidly integrate high-end data processing

in applications. This class of library offers the means to the user to synchronize
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the host side data movement and processing with hardware driven data that is

transferred to or from DSP. Rapid application development is achieved using

C++ reusable principle. Malibu is the library that allows the users to create

their own real time applications running under Windows or Linux.

Qt is a cross-platform application development framework. The codes

which are written on one platform (e.g. Window) can be compiled easily

on another platform (e.g. Linux). Qt is actually a C++ library. The most

famous applications using Qt are KDE, Google Earth and so on. Qt is dual

licensed. It can be used for creating open source applications as well as propri-

etary ones. Qt is well established in the open source community and thousands

of open source developers use Qt all over the world.

The host program communicates with DSP, sends parameters to, receives

and recorded data from the DSP. Functions of the host program include:

1. Download the servo control program from PC to DSP;

2. Display the status and information of the DSP;

3. Send estimated model parameters to DSP;

4. Send trajectory parameters;

5. Send PD control gains;

6. Receive and analyze the recorded data;

The interface of the GUI host program is shown in Figure (2.3). The “open”

button at the left upper corner opens the DSP project and use “COFF loading”

from innovative Malibu to download the DSP codes into M6713. The progress

bar at the button updates the percentage of the downloading process. Once

the DSP codes are loaded, the dsp status indicator changes the “HALTED”

to “RUNNING”. This means the DSP control program has started and is
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ready to take the parameters and update the control signal. The “parameter

setting” box is divided into three parts. They are “trajectory parameters”,

“PD control parameters” and “model parameters”, respectively, from top to

bottom. After these parameters are set and updated, the user can click the

“download parameters” button to send these parameters to M6713 DSP and

click “display parameters” button for verification. The dialog box on the right

hand side is used to display information that includes: the response and status

of the DSP, the alert information, the downloaded parameters, the size of log

file used to store the bulk data from M6713 DSP and so on. The “run” button

is disabled as default and enabled by clicking the “download parameters” but-

ton. Once the updated parameters are received by the DSP, we can click the

“run” button to execute the planned manipulators trajectory. All the afore-

mentioned functions require the communication between the host PC and the

DSP board. The M6713 has a bi-directional data channel configured such that

it could be used for communication. The protocol on this channel supports

sending special data blocks consisting of a small header plus an arbitrarily

large data packet. The header contains two words of information designated

the PeripheralId and the PacketSize. The PeripheralId is an arbitrarily large

tag value stored into the header by the sender intended to allow the receiver

to uniquely identify the purpose and content of the packet. The PacketSize

field is automatically updated by the driver to accurately reflect the size of

the data portion of the packet.
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2.2.2 Target DSP Servo Control Program

The target DSP project is developed using the Innovative Integration Pismo

Toolset. The CCstudio integrated development environment (IDE) suite con-

sists of the TI Optimizing C++ Compiler, Assembler and Linker, the Code

Composer debugger and code authoring environment. With the help of these

tools it is very convenient to develop user’s own target applications.

The TI DSP/BIOS operating system provides a multitasking working en-

vironment. The codes are provided in the Appendix A. The DSP program

is divided in three parts. The program starts from a main thread. Figure

(2.4) shows the flow chart of the main thread. Once the program is loaded

from the host, the main thread begins to receive the messages from the host

and by examining its head information, the DSP decides what kind of task

is needed to be performed. If the “download parameters” button is clicked,

the “ccDownload” message will be sent to the DSP so that the DSP program

would update the values of the parameters. If the “run” button is clicked, the

“ccRun” message is received and the control thread is then activated. Once the

control thread is activated, it will start another thread called “servo control”.

The Pismo library supports the servo by defining a class called “servoBase”

to perform the basics of a servo operation. The servo operation acquires the

digital inputs from the optical encoders, performs the algorithm to produce

an output data event, which is then sent to D/A convertors as control signal.

The basic servo class handles the details of attaching the interrupt, setting

up the hardware, reading the data from the hardware and delivering it to the

user defined function for processing. After this event, it would then write the

18



modified data to the analog outputs. Figure (2.5) is the flow chart of the

control thread. In order to use the servo base provided by Pismo, some ini-

tialization needs to be done. The first task is to choose the timer and setup

the clock rate. The analog is setup by the servo base to drive an interrupt

according the clock rate of the timer. Every time an interrupt occurs, the

user defined internal function in the servo thread is executed. Second task is

to enable the analog output channels and setup the DAC (digital to analog

conversion) delay. After these two steps, the program initializes the variables

and applies enters the data into the memory. Once the initialization task is

performed, the servo thread is started and the user defined function is exe-

cuted every time that the interrupt occurs. In the user defined function, the

current displacement information is read from the digital inputs sent by the

feedback sensor components which are optical encoders. The velocity is then

calculated by taking the derivative of the displacement. The displacement and

velocity errors, which are the inputs to the PD control law, are calculated and

recorded. The feedback and feed-forward control signal are then added up

and written to the DAC memory to update the control signal. As soon as the

endpoint is reached, the servo thread is ended and the program goes back to

control thread. The recorded error information is then sent to the host PC for

analysis.

2.2.3 Read Feedback From Optical Encoder

Reading the digital inputs from the encoders is critically important because

the control signal is updated according to the generated information. There
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are two ways to decode the signals from the two channels of an incremental

optical encoder. One is to use the hardware. Xilinx Spartan3 FPGA (field

programmable gate array) is one of the many features of M6713. A counter

can be constructed by FPGA to keep track of the displacement and used

as the interrupt source for the user defined control signal updating function.

The other method is to write a piece of code to decode the feedback signal.

This method is slow compared with the first one. However, as the frequency

of interrupt in our application is not extremely high, it serves our goal very

well. The only problem with this method is that we have to be careful since

if the speed of the dynamic system is too high, then we might lose one or

two impulses from two channels of the encoder. For example, consider the

situation in which the encoder is feeding back the angular displacement of a

rotating shaft. The angular speed of the shaft is n = 60rpm. The resolution

of the encoder is CPR = 1024. So the frequency of the pulse in the signal

from channel A (Figure (2.2)) is f1 = n
60

· CPR = 1024Hz. So the period

is T1 = 1
1024

≈ 1ms. This means that the maximum time period between

two consecutive DI readings (name it T2) cannot be greater than 1ms. If we

are using codes to decode signal we have to make sure those codes are called

within 1ms from the time that they were called. There are some factors that

will affect T2. First one is the rotational speed. If the speed is high then the T2

has to be small. Secondly, as the program is multi-threaded, if another thread

with higher priority becomes active, the thread which contains the codes to

read DI is then block, then the period T2 become uncertain. In our case the

speed is low and the codes need to be executed between two DI reads are

small, therefore the time T2 will not be too small.
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Figure 2.1: Block diagram of the control system scheme.
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Figure 2.2: Output waveform of two channels of optical encoders.

 

 

 

 

 

 

Figure 2.3: GUI host program interface.
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Figure 2.4: Main thread flowchart.
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Figure 2.5: Control thread flowchart.
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Chapter 3

Experimental Verification on a

Two Degrees of Freedom Closed

Loop Planar Robot Manipulator

3.1 Introduction

In this chapter the TPM Based Parameter Identification method is verified

on a two degrees of freedom closed loop planar robot manipulator. This robot

manipulator is a highly nonlinear dynamic system. The dynamic model of

the system is derived. The point-to-point motion trajectories are synthesized

and put into the inverse dynamics to get the FeedForward signal. Following

the parameter identification procedure introduced in the first chapter, the

estimated parameters are updated. The TPM based method is proved to be

very effective on the nonlinear system.
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3.2 Dynamic Model of the Two DOF Closed

Loop Planar Robot Manipulator

In this section, the dynamic model of the robot manipulator is derived from

Lagrange method. The manipulator is shown in Figure (3.1). In this figure, θ1

and θ2 are the angular displacements of joint 1 and joint 2 respectively. The

actuating torques τ1 and τ2 are applied at the two joints. It is a fully controlled

system. The dimensions of the closed loop are known. Therefore, the angles

θ3 and θ4 can be expressed as functions of θ2. The model parameters ms, Is,

rs and ls represent masses, moments of inertia, distances from each joint to

their mass centers and lengths of the links.

Angular displacements θ1 and θ2 are chosen as the generalized coordinates

of the 2DOF system. Torques applied at joint 1 and joint 2 are the generalized

forces. As it is a planar manipulator and the links are rigid, there is no

potential energy in the system. The kinetic energy of the manipulator can be

expressed as

T = T12 + T3 + T4 + T56 (3.1)

where:

T12 =
1

2
m12(r1θ̇1)

2 +
1

2
I12θ̇

2
1

T3 =
1

2
m3v

2
3 +

1

2
I3(θ̇1 + θ̇4)

2

T4 =
1

2
m4v

2
4 +

1

2
I4(θ̇1 + θ̇2)

2

26



T56 =
1

2
m56v

2
56 +

1

2
I56(θ̇1 + θ̇3)

2

v23 = (l1 + l2)
2θ̇21 + r23(θ̇1 + θ̇4)

2 + 2(l1 + l2)r3 cos θ4θ̇1(θ̇1 + θ̇4)

v24 = l21θ̇
2
1 + r24(θ̇1 + θ̇2)

2 + 2l1r4 cos θ2θ̇1(θ̇1 + θ̇2)

v256 = l21θ̇
2
1 + l24(θ̇1 + θ̇2)

2 + r25(θ̇1 + θ̇3)
2 + 2l1l4 cos θ2θ̇1(θ̇1 + θ̇2)

+ 2l1r5 cos θ3θ̇1(θ̇1 + θ̇3) + 2l4r5 cos (θ2 − θ3)(θ̇1 + θ̇2)(θ̇1 + θ̇3)

The angles θ3 and θ4 are functions of θ2

θ3 = arctan (
−l4 sin θ2

l2 − l4 cos θ2
) + arccos (

l24 + l22 − l23 + l25 − 2l2l4 cos θ2

2l5
√

l24 + l22 − 2l2l4 cos θ2
)

θ4 = arctan (
−l4 sin θ2

l2 − l4 cos θ2
) + arccos (

l24 + l22 + l23 − l25 − 2l2l4 cos θ2

−2l3
√

l24 + l22 − 2l2l4 cos θ2
)

θ̇3 =
l4 sin (θ4 − θ2)

l5 sin (θ3 − θ4)
θ̇2

θ̇4 =
l4 sin (θ3 − θ2)

l3 sin (θ3 − θ4)
θ̇2

The total kinetic energy can be simplified as

T = f1(θ2)θ̇
2
1 + f2(θ2)θ̇

2
2 + f3(θ2)θ̇1θ̇2 (3.2)

where:

f1(θ2) =
A1

2
+ A2 cos θ2 + A3 cos θ3 + A4 cos θ4 + A5 cos (θ2 − θ3)
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f2(θ2) =
A6

2
+

A7

2
[β
sin (θ4 − θ2)

sin (θ3 − θ4)
]2 +

A8

2
[α

sin (θ3 − θ2)

sin (θ3 − θ4)
]2

+ A5β cos (θ2 − θ3)
sin (θ4 − θ2)

sin (θ3 − θ4)

f3(θ2) = A6 + A2 cos θ2 + A5 cos (θ2 − θ3)

+ [A7 + A3 cos θ3 + A5 cos (θ2 − θ3)]β
sin (θ4 − θ2)

sin (θ3 − θ4)

+ (A8 + A4 cos θ4)α
sin (θ3 − θ2)

sin (θ3 − θ4)

where:

A1 = m12r
2
1 + I12 +m3(l1 + l2)

2 +m3r
2
3

+ I3 +m4(l
2
1 + r24) + I4 +m56(l

2
1 + l24 + r25) + I56

A2 = m4l1r4 +m56l1l4

A3 = m56l1r5

A4 = m3(l1 + l2)r3

A5 = m56l4r5

A6 = m4r
2
4 + I4 +m56l

2
4

A7 = m56r
2
5 + I56

A8 = m3r
2
3 + I3

and

α =
l4
l3
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β =
l4
l5

Apply the Lagrange equations

d

dt
(
∂T

∂θ̇1
)− ∂T

∂θ1
= τ1

d

dt
(
∂T

∂θ̇2
)− ∂T

∂θ2
= τ2

We get the dynamic equations as

2f1(θ2)θ̈1 + f3(θ2)θ̈2 + 2
df1(θ2)

dθ2
θ̇1θ̇2 +

df3(θ2)

dθ2
θ̇22 = τ1 (3.3)

f3(θ2)θ̈1 + 2f2(θ2)θ̈2 −
df1(θ2)

dθ2
θ̇21 +

df2(θ2)

dθ2
θ̇22 = τ2 (3.4)

From the above equations we can see that this 2DOF planar closed loop

manipulator is a highly nonlinear mechanical system. The closed loop kine-

matics chain increases the nonlinearity greatly. The point-to-point trajectories

introduced in chapter 1 (equation (1.3)) are put into the equations to get the

inverse dynamic model. The frequencies of the fundamental harmonics of the

joint trajectories may be different from joint 1 to joint 2. However, without

loss of generality and to keep the number of harmonic components in the ac-

tuating toruqes low, we use the same fundamental frequency for both joint

trajectory.
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3.3 Approximating the Inverse Dynamic Model

If we apply the excitation forces to the above manipulator’s dynamic equa-

tions, it is very difficult to get the analytical solution of the angular displace-

ments of θ1 and θ2. It is pointed out in the introduction chapter that the

TPM can transform the problem into algebraic form which is relatively easy

to solve. Synthesize the point-to-point trajectories to be

θr1 = λ1[cos(ωt)−
cos(3ωt)

9
− 8

9
] (3.5)

θr2 = k0 + λ2[cos(ωt)−
cos(3ωt)

9
] (3.6)

The motion starts at time t = 0 and ends at t = π
ω
. Put the trajectories

(equation (3.5) and equation (3.6)) into equations (3.3) and (3.4) to get the

inverse dynamic model. The inverse dynamic forces contain very high order

harmonic components of the input trajectories. Therefore, the FeedForward

signal is very hard to generated directly from the above equations. We use

n + 1 Taylor Series terms to approximate the f1(θ2), f2(θ2), f3(θ2),
df1(θ2)
dθ2

,

df2(θ2)
dθ2

and df3(θ2)
dθ2

. The resulting actuating forces contain (3n + 5)th order of

harmonics and can be expressed as

τ1 =
3n+6∑
i=0

a1,i cos(iωt) (3.7)
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τ2 =
3n+6∑
j=0

a2,j cos(jωt) (3.8)

where a1,i and a2,j are the corresponding harmonic amplitudes and are func-

tions of the dynamic, kinematic parameters of the robot manipulator as well

as the trajectory parameters.

The number of Taylor Series terms n + 1 used to accurately describe the

FeedForward torques depends on the trajectories as well as the estimated pa-

rameters. For example, let us consider the following trajectories

θr1 = 0.23[cos(0.5t)− cos(1.5t)

9
− 8

9
]

θr2 = −0.06 + 0.12[cos(0.5t)− cos(1.5t)

9
]

The unknown model parameters are estimated to make all the Ais in equation

(3.7) and equation (3.8) to be 1. Figure (3.2) shows the accurate torques with

the above trajectory parameters at joint 1 and joint 2. Figure (3.3) presents the

approximated torques and errors at joint 1 with n = 2 and n = 3 respectively.

Figure (3.4) contains the approximated torques and errors at joint 2. From

these figures we can see that if we want the error of approximated torque

to be within 10% of the accurate value, the approximated τ1 calculated from

equation (3.7) with n = 2 is good enough. However, we have to set n = 3

in equation (3.8) to approximate τ2. In short, if we choose small trajectories

and the values of the estimated parameters are not too big, 3 terms of Taylor

series expansion may be good enough to approximate the torques. However, if
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the estimated parameters and the trajectories are not small enough, we may

need more terms to approximate the actuating torques.

3.4 Model Parameter Identification Process

Once we calculate the FeedForward model, following the control scheme

introduced in Chapter 2 (Figure (2.1)), we can build the control system. The

feedback commands applied at joint 1 and joint 2 are expressed as

C1(e1, ė1) = kp1e1 + kd1ė1 (3.9)

C2(e2, ė2) = kp2e2 + kd2ė2 (3.10)

From the TPM based model parameter estimation method(Rastegar and Feng)

introduced in chapter 1, we know that if the errors in actual displacements and

velocities are small enough, we can ignore those high order terms of e1, ė1, e2

and ė2. We get the following equations

−C1(e1, ė1) =
3n+6∑
i=0

a1,i(∆P1,∆P2,∆P3 · · · ) cos(iωt) (3.11)

−C2(e2, ė2) =
3n+6∑
j=0

a2,j(∆P1,∆P2,∆P3 · · · ) cos(jωt) (3.12)
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where ∆Pis are the deviation in the estimated parameters.

The TPM based model parameter identification method is proved to be

valid for updating those parameters with respect to which the system is lin-

ear. In other words, in order to maintain the linear relationship between

the deviation of the estimated parameters ∆Pis and the amplitudes of har-

monic components of the feedback signals in the above equations (3.11) and

(3.12), we have to choose the estimated parameters that appear in the inverse

dynamic equations as coefficient of terms. For example, we cannot use the

parameter identification method to update the parameter r5 directly. How-

ever, since m5r5 and m5r
2
5 appear as the coefficient of nonlinear terms in the

inverse dynamics, we can use the parameter identification method to get these

two “combined parameters” and then calculate m5 and r5. In this chapter we

choose the coefficients in the inverse dynamic model which are functions of the

dynamic, kinematic paramter of the manipulator as the unknown parameters.

Later on these parameters will be referred to as “combined parameters”. We

use the TPM based parameter identification method to update the values of

the combined parameter and then calculate the manipulator’s parameters.

Since the amplitudes of harmonic components of the feedback signals main-

tain a linear relationship with the deviation of estimated parameter ∆Pis. We

can write equations (3.11) and (3.12) into a matrix form

E = M × P (3.13)

where E = [E1, E2, · · · , Em] are the amplitudes of harmonic components of the

feedbacks and can be obtained from the experiments using Fourier integration;
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P = [∆P1,∆P2, · · · ,∆Pn] are the deviations of the estimated parameters. The

matrixMm×n, which is a function of trajectory parameters and can be obtained

analytically, needs not to be squared. In fact, the size of the matrixM is chosen

to keep those harmonic terms with large amplitudes. We name the two terms

respectively from the Fourier expansion of C1(e1, ė1) and C2(e2, ė2) with the

largest amplitudes as the dominant terms. Any other term from C1 or C2 with

the amplitude less than 1% of the dominant terms can be ignored. Even if we

ignore those small harmonics, the number of the equations is still larger than

the number of the unknown parameters. A least-squares method is adopted to

solve this problem. We use the optimization method to minimize the following

object function.

F =

nh∑
i=1

(
n∑

j=1

mij∆Pj − Ei)
2 (3.14)

Here nh is the number of harmonics with large amplitudes we kept for analysis

and mij are the elements in mapping matrix M .

The difficulty of solving this kind of least-squares problem lies in the system

itself. If the mapping matrix Mm×n is ill-conditioned or singular, it is very

difficult to solve. And the M is determined by the very nature of the system.

In our case, the rank of M is no larger than 6. This means there are only 6

estimated parameters that are linearly independent of each other. If there are

more than 6 parameters needed to be updated, we may have to include more

information about these parameters, such as the regularity properties and the

relationship between some of the parameters. Otherwise the problem will not
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be solved satisfactorily. We choose the following 6 combined parameters.

P1 = m12r
2
1 + I12

P2 = I3

P3 = I4

P4 = m56

P5 = m56r5

P6 = m56r
2
5 + I56

Therefore, these 6 model parameters in figure (3.1): I ′12 = m12r
2
1+I12 (moment

of inertia of link 1 about joint 1), I3 (moment of inertia of link 3 about its

mass center), I4 (moment of inertia of link 4 about its mass center), m56

(mass of link 56), r5 ( distance from mass center of link 56 to the joint) and

I56 (moment of inertia of link 56) can be calculated from the above combined

parameter Pis. In the experiment, the parameters are updated by adding

the resulting corrections ∆Pis to their current values after each step. The

entire updating process is repeated until the estimated parameters reach the

satisfactory accuracy.

3.5 Experimental Results and Analysis

Table (3.1) contains the experimental results. The initial estimated values

of the combined parameters are selected to be [P ]0 = [1.000, 1.000, 1.000, 1.000,
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Step No. trajectory P1 P2 P3 P4 P5 P6

0 1.000 1.000 1.000 1.000 1.000 1.000

1

λ0 = 0.2
k0 = 0

λ1 = 0.196
ω = 0.5

0.2418 0.1534 0.1509 0.6651 0.2724 0.1866

2

λ0 = 0.295
k0 = −0.262
λ1 = 0.295

ω = 1

0.1187 0.006023 0.01119 0.6106 0.1546 0.05058

3

λ0 = 0.3
k0 = −0.262
λ1 = 0.295

ω = 2

0.1080 0.005422 0.01029 0.6059 0.1442 0.04350

Table 3.1: Updated combined parameters after each step

1.000, 1.000]. After three steps the parameters are updated to be [P ]3 =

[0.1080, 0.005422, 0.01029, 0.6059, 0.1442, 0.04350], and the model parameters

are calculated to be I ′12 = 1.080 × 10−1kg·m2, I3 = 5.422 × 10−3kg·m2, I4 =

1.029−2kg·m2, m56 = 6.059× 10−1kg, r5 = 2.380× 10−1m and I56 = 9.179×

10−3kg·m2.

From table (3.1) we can see that the same trajectory can only update the

parameters once. In order to update the estimated parameters further, we

have to enlarge the trajectory after each step. Ideally each trajectory can

be used several times to update the parameters. However, with the physical

limitation of the system and other reasons that will be discussed in the next

section, we use each trajectory once and end the update process after the third

step. The biggest improvement of all the parameters in the last step is within

14% of its previous value.

Initially, the estimated parameters are far from their nominated values, so
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we have to choose small trajectories to keep the errors small. However, it is

found in the experiment that it is very difficult to reduce the velocity errors

when the joints move very slowly. As a result, we cannot select too small

trajectories. The feedback control gains are turned after several trial and error

runs. With the relative large feedback gains, the system can be stabilized and

keep the output errors very small even if the estimated parameters are far

from their nominal values. After we update the parameters the error will be

reduced and become too small to detect, so we have to enlarge the trajectories

in the following steps.

From Figure (3.5) to (3.8), the trajectories in step 1 are used. Figure (3.5)

and (3.6) represent the angular displacements, velocities of the two joints and

the harmonic contents of the feedback C1, C2 applied at both joints with the

initial estimated parameters shown in Table (3.1). Figure (3.7) and (3.8) shows

the motions of joint 1 and 2 with the updated parameter values after step 1. It

is shown that using the updated parameters, the errors are reduced. However,

the output response in Figure (3.7) and (3.8) could not further update the

parameters. From Figure (3.9) to (3.12), the trajectories in step 2 are used.

Figure (3.9) and (3.10) showns the outputs before the improvement; Figure

(3.11) and (3.12) showns the outputs after the improvement. From Figure

(3.13) to (3.16), the trajectories in step 3 are used. The outputs before and

after parameter improvements in step 3 are shown.
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3.6 Results Evaluation

In order to show that the estimated parameters are getting closer to their

nominal values after each updating step, we check the errors in the system

output and calculate the integral performance indices. As the parameters

approach the nominal values, the model based feedforward controller plus the

feedback controller control the manipulator system better and the errors will

be reduced.

Two of the most common indices used to measure the overall performance

of a control system are the integral of error and integral of squared error. Since

the sign of the error changes, we use the integral of squared error.

I =

∫ π
ω

0

e2(t)dt (3.15)

The integral of squared displacement error in joint 1 (Id1) and joint 2 (Id2)

as well as the integral of squared velocity error in both joints (Iv1 and Iv2)

are all calculated. In each updating step, for the same set of trajectories, we

use the estimated parameters before and after this step and then compare the

two outputs (see Figure (3.5) to Figure (3.16)). By showing in Table 3.2 that

using updated parameter values, the error integrals are smaller than before,

we know that the parameters are better estimated.

3.7 Discussion and Conclusions

In this chapter, the TPM based nonlinear system model parameter estima-

tion is verified on a two degrees of freedom closed loop planar robot manipula-
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trajectory used in step 1 used in step 2 used in step 3
paras

estimated before after before after before after
paras updated updated updated updated updated updated
Id1 7.34× 10−4 1.89× 10−4 2.58× 10−4 7.73× 10−5 4.94× 10−4 2.14× 10−4

Iv1 1.99× 10−3 1.81× 10−3 7.98× 10−3 6.76× 10−3 4.25× 10−2 2.54× 10−2

Id2 2.53× 10−3 2.08× 10−4 6.40× 10−4 1.04× 10−4 4.01× 10−4 1.99× 10−4

Iv2 4.18× 10−3 1.17× 10−3 1.06× 10−2 7.05× 10−3 2.32× 10−2 1.66× 10−2

Table 3.2: Squared error integrals

tor. The results presented in the chapter shows that the developed method is

very effective on a highly nonlinear system. It only takes three steps to reach

a very good estimation. In this case when the improvements are within 14% of

the previous values, the updating procedure ends. However, if the application

requires a higher speed and precision, one can keep the estimate iterations

until the desired accuracy or some other requirements are attained.

If we want to further improve the accuracy, there are other factors that

need to be taken into consideration. First, there is model inaccuracy. For

example, we assume this is a planar manipulator. However, it is found out

in the experiment that the desk where the manipulator is mounted is a little

tilted. A more accurate model should take some gravitational forces into

consideration. Second, the optical encoders have limited resolutions. As the

accuracy of the estimated parameters reaches certain extent, errors related to

the instruments will affect our analysis. Third, in order to further improve

the parameters, we need to enlarge the trajectories. Larger trajectory means

larger torques applied at the joint. The limit of the output torque of the big

motor is set to 2Nm and the small motor is set to 1Nm in order to keep a

linear relationship between the control signals and the motor torques. If we

need to further increase the trajectory, we may exceed the limitation of the
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motors.

It is proved that this method makes use of slow and small trajectories to

provide the system stability when the estimated parameters are not accurately

known and faster and larger motions are synthesized to better estimate the

parameters. This method is shown to be convergent and very effective.
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Figure 3.1: Two DOF closed loop planar manipulator
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Figure 3.2: Accurate torques at joint 1 and 2 from the example in section 3.3
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Figure 3.3: Approximated torques and errors at joint 1 from the example in
section 3.3 with n = 2 and n = 3 respectively
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Figure 3.4: Approximated torques and errors at joint 2 from the example in
section 3.3 with n = 2 and n = 3 respectively

44



0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

time(s)

di
sp

la
ce

m
en

t(
ra

di
an

)

 

 
prescribed displacement
actual displacement

0 1 2 3 4 5 6 7
−0.2

−0.15

−0.1

−0.05

0

0.05

time(s)

ve
lo

ci
ty

(r
ad

ia
n/

s)

 

 

prescribed velocity
actual velocity

1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

harmonic content(ω)

Figure 3.5: Joint motion θ1 in step 1 with the initially estimated parameters
and the harmonic content of feedback applied at joint 1
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Figure 3.6: Joint motion θ2 in step 1 with the initially estimated parameters
and the harmonic content of feedback applied at joint 2
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Figure 3.7: Joint motion of θ1 in step 1 with the updated parameters obtained
after step 1
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Figure 3.8: Joint motion of θ2 in step 1 with the updated parameters obtained
after step 1
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Figure 3.9: Joint motion θ1 in step 2 with the updated parameters obtained
after step 1 and the harmonic content of feedback applied at joint 1
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Figure 3.10: Joint motion θ2 in step 2 with the updated parameters obtained
after step 1 and the harmonic content of feedback applied at joint 2
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Figure 3.11: Joint motion of θ1 in step 2 with the updated parameters obtained
after step 2
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Figure 3.12: Joint motion of θ2 in step 2 with the updated parameters obtained
after step 2
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Figure 3.13: Joint motion θ1 in step 3 with the updated parameters obtained
after step 2 and the harmonic content of feedback applied at joint 1
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Figure 3.14: Joint motion θ2 in step 3 with the updated parameters obtained
after step 2 and the harmonic content of feedback applied at joint 2
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Figure 3.15: Joint motion of θ1 in step 3 with the updated parameters obtained
after step 3
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Figure 3.16: Joint motion of θ2 in step 3 with the updated parameters obtained
after step 3
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Appendix A

The Code for Target DSP
Control Program

// DSP/BIOS header f i l e s
#include ”Pismo . h”
#include ”Commands . h”
#include ” . . \OmniBusModules . h”
#include ”A4D4 . h”
#include <cmath>

#define MaxPayload 0x14000
#define Pi 3.14159265
#define Sca l e 3276 .8
#define NumOfPeriod 0x1
#define K 1 0.114 // b i g motor c o e f f i c i e n t
#define K 2 0.0832 // sma l l motor c o e f f i c i e n t

using namespace I I ;

D i g i t a l I o Io ;
const int numOfParas=28;
f loat paras [ numOfParas ] ;

// f i l t e r c o e f f i c i e n t s ( second order IIR f i l t e r , t h e s e
numbers can be changed f o r d i f f e r e n t f i l t e r s )

f loat f i l t e rCoA [3 ]={0 .00094469 ,0 .0018894 ,0 .00094469} ;
f loat f i l t e rCoB [3 ]={1 , −1 .9112 ,0 .91498} ;
f loat f i l t e rCoA v [3 ]={0 .00024136 ,0 .00048272 ,0 .00024136} ;
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f loat f i l t e rCoB v [3]={1 ,−1.9556 , 0 . 95654} ;

//message d i s pa t ch func t i on
void DispatchPacket ( In tBu f f e r & Buf ) ;

// servo c l a s s
class TPMServo : public ServoBase
{
public :

TPMServo(Omnibus : : ModuleSite s i t e ) : ServoBase ( s i t e ,
fa l se ){ }

bool Halt ;
unsigned int ADCcounts ;
unsigned int DACcounts ;
F loa tBu f f e r RecordChannel1 ;
F loa tBu f f e r RecordChannel2 ;
int Cursor [ 2 ] ;

//memory used f o r f i l t e r s
f loat ud1 [ 2 ] ;
f loat ud2 [ 2 ] ;
f loat uv1 [ 2 ] ;
f loat uv2 [ 2 ] ;
f loat uc1 [ 2 ] ;
f loat uc2 [ 2 ] ;

void ServoSetup ( f loat sampleRate )
{

Io . Conf ig (0xFF) ; // read d i g i t a l input s e t t i n g
for ( int i =0; i <2; i++)
{

CurrentAngle [ i ] = 0 ;
PrevAngle [ i ] = 0 ;
F i l t edAngle [ i ] = 0 ;
Ve loc i ty [ i ] = 0 ;
PrevVeloc i ty [ i ] = 0 ;
CurrentData [ i ] = 0 ;
Or ig ina lData [ i ] = 0 ;
Index = 0 ;
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Error [ i ] = 0 ;
FeedBack [ i ] = 0 ;
Cursor [ i ] =0;
ud1 [ i ] = 0 ;
ud2 [ i ] = 0 ;
uv1 [ i ] = 0 ;
uv2 [ i ] = 0 ;
uc1 [ i ] = 0 ;
uc2 [ i ] = 0 ;

}
CurrentData [ 1 ] = CurrentData [ 0 ] = Io . Data ( ) ; //

i n i t i a l va lue as s i gned to f i r s t Orig ina lData
MaxIndex [ 0 ] = sampleRate ∗ Pi / paras [ 2 ] + 0 . 5 ;
MaxIndex [ 1 ] = sampleRate ∗ Pi / paras [ 5 ] + 0 . 5 ;
Halt = fa l se ;
Ts = 1 . / sampleRate ;
ActualSampleRate = sampleRate ;

RecordChannel1 . Bytes ( s izeof ( f loat ) ∗ 2 ∗ 40000) ;
RecordChannel1 . Clean ( ) ;
RecordChannel2 . Bytes ( s izeof ( f loat ) ∗ 2 ∗ 40000) ;
RecordChannel2 . Clean ( ) ;

// as s i gn downloaded parameters
k1=paras [ 1 ] ;
k0 =paras [ 3 ] ;
k1 =paras [ 4 ] ;
omega1=paras [ 2 ] ;
omega2=paras [ 5 ] ;
kp1=paras [ 6 ] ;
kd1=paras [ 7 ] ;
kp2=paras [ 8 ] ;
kd2=paras [ 9 ] ;
f 1=paras [ 1 0 ] ;
df1=paras [ 1 1 ] ;
s econdf1=paras [ 1 2 ] ;
t h i r d f 1=paras [ 1 3 ] ;
f ou r th f 1=paras [ 1 4 ] ;
f i f t h f 1=paras [ 1 5 ] ;
f 2=paras [ 1 6 ] ;
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df2=paras [ 1 7 ] ;
s econdf2=paras [ 1 8 ] ;
t h i r d f 2=paras [ 1 9 ] ;
f ou r th f 2=paras [ 2 0 ] ;
f i f t h f 2=paras [ 2 1 ] ;
f 3=paras [ 2 2 ] ;
df3=paras [ 2 3 ] ;
s econdf3=paras [ 2 4 ] ;
t h i r d f 3=paras [ 2 5 ] ;
f ou r th f 3=paras [ 2 6 ] ;
f i f t h f 3=paras [ 2 7 ] ;

}

// Overr ides
#pragma CODE SECTION(” . hwi” ) ;
virtual void Execute ( volat i le short ∗ event , int

inputs , int outputs )
{

for ( int i =0; i<inputs ; ++i )
{

event [ i ] += ADCcounts ;
}

for ( int i =0; i<outputs ; ++i )
{

event [ i ] += DACcounts ;
i f ( i <2)
{

// read angu lar d i sp lacement
Orig ina lData [ i ] = CurrentData [ i ] ;
CurrentData [ i ] = Io . Data ( ) ;
angularDisplayDecoding ( Orig ina lData [ i ] ,

CurrentData [ i ] , i ) ;
i f ( i==0)

Fi l t edAng le [ 0 ] = f i l t e r ( ( f loat ) CurrentAngle [ 0 ]
/ 1024 . ∗ 2 ∗ Pi , ud1 , 0 ) ;

i f ( i==1)
Fi l t edAng le [ 1 ] = f i l t e r ( ( f loat ) CurrentAngle [ 1 ]

/ 2048 . ∗ 2 ∗ Pi , ud2 , 0 ) ;
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// c a l c u l a t e v e l o c i t y
Ve loc i ty [ i ] = v e l o c i t yCa l c u l a t i o n ( F i l t edAngle [ i

] , PrevAngle [ i ] , Index , 100 , i ) ;
i f ( i==0)

Ve loc i ty [ i ] = f i l t e r ( Ve loc i ty [ i ] , uv1 , 1 ) ;
i f ( i==1)

Ve loc i ty [ i ] = f i l t e r ( Ve loc i ty [ i ] , uv2 , 1 ) ;

// c a l c u l a t e d p r e s c r i b e d angu lar p o s i t i o n s and
t h e i r d e r i v a t i v e s

stat ic f loat theta1 , dTheta1 , ddTheta1 , theta2 ,
dTheta2 , ddTheta2 ;

p r eCa l cu l a t i on ( Index , MaxIndex [ i ] , theta1 ,
dTheta1 , ddTheta1 , theta2 , dTheta2 , ddTheta2 )
;

// f eed forward c a l c u l a t i o n
f eedForwardCalcu lat ion ( Index , i , theta1 , dTheta1

, ddTheta1 , theta2 , dTheta2 , ddTheta2 ) ;

// f eed back c a l c u l a t i o n
f e edBackCalcu lat ion ( Index , i , theta1 , dTheta1 ,

theta2 , dTheta2 ) ;

// record the up load ing in format in f o r ana l y s i s
i f ( ( Cursor [ i ] < RecordChannel2 . Elements ( ) ) )
{

FloatBu f f e r temp(0 x6 ) ;
temp [ 0 ] = Index ;
temp [ 1 ] = CurrentAngle [ i ] ;
temp [ 2 ] = Fi l t edAngle [ i ] ;
temp [ 3 ] = Ve loc i ty [ i ] ;
i f ( i==0)
{

temp [ 4 ] = Tra jec tory [ i ] ∗ K 1 / Sca l e ;
temp [ 5 ] = FeedBack [ i ] ∗ K 1 / Sca l e ;
RecordChannel1 . Copy( temp , Cursor [ i ] , 6 ) ;

}
else
{
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temp [ 4 ] = Tra jec tory [ i ] ∗ K 2 / Sca l e ;
temp [ 5 ] = FeedBack [ i ] ∗ K 2 / Sca l e ;
RecordChannel2 . Copy( temp , Cursor [ i ] , 6 ) ;

}
Cursor [ i ] += 6 ;

}

f loat c on t r o l S i g na l = Tra jec tory [ i ] + FeedBack [ i
] ;

i f ( CurrentAngle [ 0 ] >= 512 | | − CurrentAngle [ 0 ]
>= 512 | | CurrentAngle [ 1 ] >= 800 | | −
CurrentAngle [ 1 ] >= 800 )
Halt=true ;

i f ( ! Halt )
event [ i ] += con t r o l S i gna l ;

}
}
Index++;

}

// decode angu lar p o s i t i o n from o p t i c a l encoders
void angularDisplayDecoding ( int or i g ina lDate , int

currentDate , int motorChannel )
{

int movebit =1;
// b i g motor d i sp laycement f eedback input to d i g i t a l

Io b i t s 0 1 ;
i f (motorChannel==0)
{

o r i g i na lDa t e = or i g i na lDa t e & 3 ;
currentDate = currentDate & 3 ;
i f ( ( o r i g i na lDa t e − currentDate ) != 0)
{

movebit=1;
movebit<<=1;
i f ( ( ( movebit & currentDate ) != 0) && ( ( movebit

& or i g i na lDa t e ) != 0) )
{

movebit>>=1;
i f ( ( ( movebit & o r i g i na lDa t e )==0) && ( ( movebit
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& currentDate ) !=0) )
CurrentAngle [0]++;

else i f ( ( ( movebit & o r i g i na lDa t e ) !=0) && ( (
movebit & currentDate )==0))
CurrentAngle [0]−−;

}
}

}
// sma l l motor d i sp laycement f eedback input to

d i g i t a l Io b i t s 2 3 ;
i f (motorChannel==1)
{

o r i g i na lDa t e = or i g i na lDa t e & 12 ;
currentDate = currentDate & 12 ;
i f ( ( o r i g i na lDa t e − currentDate ) != 0)
{

movebit=1;
movebit<<=3;
i f ( ( ( movebit & currentDate ) != 0) && ( ( movebit

& or i g i na lDa t e ) != 0) )
{

movebit>>=1;
i f ( ( ( movebit & o r i g i na lDa t e )==0) && ( ( movebit

& currentDate ) !=0) )
CurrentAngle [1]−−;

else i f ( ( ( movebit & o r i g i na lDa t e ) !=0) && ( (
movebit & currentDate )==0))
CurrentAngle [1]++;

}
}

}

}

// v e l o c i t y c a l c u l a t i o n func t i on
f loat v e l o c i t yCa l c u l a t i o n ( f loat currentDisp lay , f loat

prevDisplay , int index , int f reqAdjust , int channel
)

{
f loat v e l o c i t y =0;
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i f ( index % freqAdjus t == 0)
{

v e l o c i t y = ( cur rentDi sp lay − prevDisp lay ) ∗
ActualSampleRate / f r eqAdjus t ;

i f ( channel == 0)
{

PrevVeloc i ty [ 0 ] = v e l o c i t y ;
PrevAngle [ 0 ] = cur rentDi sp lay ;

}
i f ( channel == 1)
{

PrevVeloc i ty [ 1 ] = v e l o c i t y ;
PrevAngle [ 1 ] = cur rentDi sp lay ;

}
}
else
{

i f ( channel == 0)
v e l o c i t y = PrevVeloc i ty [ 0 ] ;

i f ( channel == 1)
v e l o c i t y = PrevVeloc i ty [ 1 ] ;

}
return v e l o c i t y ;

}

// IIR second order f i l t e r
f loat f i l t e r ( f loat inputValue , f loat u [ ] , int DorV)
{

f loat Fi l tedValue=0;
f loat un=0;

i f (DorV==0)
{

un = inputValue − f i l t e rCoB [ 1 ] ∗ u [ 0 ] − f i l t e rCoB
[ 2 ] ∗ u [ 1 ] ;

F i l t edValue = f i l t e rCoA [ 0 ] ∗ un + f i l t e rCoA [ 1 ] ∗ u
[ 0 ] + f i l t e rCoA [ 2 ] ∗ u [ 1 ] ;

}
i f (DorV==1)
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{
un = inputValue − f i l t e rCoB v [ 1 ] ∗ u [ 0 ] −

f i l t e rCoB v [ 2 ] ∗ u [ 1 ] ;
F i l t edValue = f i l t e rCoA v [ 0 ] ∗ un + f i l t e rCoA v [ 1 ]

∗ u [ 0 ] + f i l t e rCoA v [ 2 ] ∗ u [ 1 ] ;
}
u [ 1 ] = u [ 0 ] ;
u [ 0 ] = un ;
return Fi l tedValue ;

}

// c a l c u l a t e important va l u e s f o r f eed forward to rque s
void preCa l cu l a t i on ( int index , int maxIndex , f loat &

theta1 , f loat & dTheta1 , f loat & ddTheta1 , f loat &
theta2 , f loat & dTheta2 , f loat & ddTheta2 )

{
stat ic f loat c , c , c3 , c3 , s , s , s3 , s 3 ;
i f ( index <= NumOfPeriod ∗ maxIndex )
{

c = std : : cos ( Pi ∗ ( ( ( f loat ) index ) / MaxIndex [ 0 ] ) ) ;
c3 = std : : cos (3 ∗ Pi ∗ ( ( ( f loat ) index ) / MaxIndex

[ 0 ] ) ) ;
s = std : : s i n ( Pi ∗ ( ( ( f loat ) index ) / MaxIndex [ 0 ] ) ) ;
s3 = std : : s i n (3 ∗ Pi ∗ ( ( ( f loat ) index ) / MaxIndex

[ 0 ] ) ) ;
c = std : : cos ( Pi ∗ ( ( ( f loat ) index ) / MaxIndex [ 1 ] ) )

;
c3 = std : : cos (3 ∗ Pi ∗ ( ( ( f loat ) index ) / MaxIndex

[ 1 ] ) ) ;
s = std : : s i n ( Pi ∗ ( ( ( f loat ) index ) / MaxIndex [ 1 ] ) )

;
s 3 = std : : s i n (3 ∗ Pi ∗ ( ( ( f loat ) index ) / MaxIndex

[ 1 ] ) ) ;

theta1 = k1 ∗ ( c − c3 / 9 − 8 . / 9) ;
theta2 = k0 + k1 ∗ ( c − c3 / 9) ;
dTheta1 = k1 ∗ omega1 ∗ ( s3 / 3 − s ) ;
ddTheta1 = k1 ∗ omega1 ∗ omega1 ∗ ( c3 − c ) ;
dTheta2 = k1 ∗ omega2 ∗ ( s 3 / 3 − s ) ;
ddTheta2 = k1 ∗ omega2 ∗ omega2 ∗ ( c3 − c ) ;
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}
else
{

c = std : : cos ( Pi ∗ NumOfPeriod ) ;
c3 = std : : cos (3 ∗ Pi ∗ NumOfPeriod ) ;
s = std : : s i n ( Pi ∗ NumOfPeriod ) ;
s3 = std : : s i n (3 ∗ Pi ∗ NumOfPeriod ) ;
c = std : : cos ( Pi ∗ NumOfPeriod ) ;
c3 = std : : cos (3 ∗ Pi ∗ NumOfPeriod ) ;
s = std : : s i n ( Pi ∗ NumOfPeriod ) ;
s 3 = std : : s i n (3 ∗ Pi ∗ NumOfPeriod ) ;

theta1 = paras [ 1 ] ∗ ( c − c3 / 9 − 8 . / 9) ;
theta2 = paras [ 3 ] + paras [ 4 ] ∗ ( c − c3 / 9) ;
dTheta1 = paras [ 1 ] ∗ paras [ 2 ] ∗ ( s3 / 3 − s ) ;
ddTheta1 = paras [ 1 ] ∗ paras [ 2 ] ∗ paras [ 2 ] ∗ ( c3 −

c ) ;
dTheta2 = paras [ 4 ] ∗ paras [ 5 ] ∗ ( s 3 / 3 − s ) ;
ddTheta2 = paras [ 4 ] ∗ paras [ 5 ] ∗ paras [ 5 ] ∗ ( c3 −

c ) ;
}

}

// feed forward c o n t r o l l e r
void f eedForwardCalcu lat ion ( int index , int channel ,

f loat theta1 , f loat dTheta1 , f loat ddTheta1 , f loat
theta2 , f loat dTheta2 , f loat ddTheta2 )

{
f loat temp , temp1 , temp2 , temp3 , temp4 ;
temp = theta2 − k0 ;
i f ( channel==0)
{

i f ( index <= NumOfPeriod ∗ MaxIndex [ 0 ] )
{

temp1 = f1 + df1 ∗ temp + 0 .5 ∗ secondf1 ∗ temp
∗ temp + 1 .0 / 6 ∗ t h i r d f 1 ∗ temp ∗ temp ∗
temp + 1.0 / 24 ∗ f o u r th f 1 ∗ temp ∗ temp ∗
temp ∗ temp ;

temp2 = f3 + df3 ∗ temp + 0 .5 ∗ secondf3 ∗ temp
∗ temp + 1 .0 / 6 ∗ t h i r d f 3 ∗ temp ∗ temp ∗
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temp + 1.0 / 24 ∗ f o u r th f 3 ∗ temp ∗ temp ∗
temp ∗ temp ;

temp3 = df1 + secondf1 ∗ temp + 0 .5 ∗ t h i r d f 1 ∗
temp ∗ temp + 1 .0 / 6 ∗ f o u r th f 1 ∗ temp ∗
temp ∗ temp + 1 .0 / 24 ∗ f i f t h f 1 ∗ temp ∗
temp ∗ temp ∗ temp ;

temp4 = df3 + secondf3 ∗ temp + 0 .5 ∗ t h i r d f 3 ∗
temp ∗ temp + 1 .0 / 6 ∗ f o u r th f 3 ∗ temp ∗
temp ∗ temp + 1 .0 / 24 ∗ f i f t h f 3 ∗ temp ∗
temp ∗ temp ∗ temp ;

Tra j ec tory [ 0 ] = 2 ∗ temp1 ∗ ddTheta1 + temp2 ∗
ddTheta2 + 2 ∗ temp3 ∗ dTheta1 ∗ dTheta2 +
temp4 ∗ dTheta2 ∗ dTheta2 ;

Tra j ec tory [ 0 ] = Tra jec tory [ 0 ] / K 1 ∗ Sca l e ;
Tra j ec tory [ 0 ] = Tra jec tory [ 0 ] ;

}
else

Tra jec tory [ 0 ] = 0 ;
}
i f ( channel==1)
{

i f ( index <= NumOfPeriod ∗ MaxIndex [ 1 ] )
{

temp1 = f3 + df3 ∗ temp + 0 .5 ∗ secondf3 ∗ temp
∗ temp + 1 .0 / 6 ∗ t h i r d f 3 ∗ temp ∗ temp ∗
temp + 1.0 / 24 ∗ f o u r th f 3 ∗ temp ∗ temp ∗
temp ∗ temp ;

temp2 = f2 + df2 ∗ temp + 0 .5 ∗ secondf2 ∗ temp
∗ temp + 1 .0 / 6 ∗ t h i r d f 2 ∗ temp ∗ temp ∗
temp + 1.0 / 24 ∗ f o u r th f 2 ∗ temp ∗ temp ∗
temp ∗ temp ;

temp3 = df1 + secondf1 ∗ temp + 0 .5 ∗ t h i r d f 1 ∗
temp ∗ temp + 1 .0 / 6 ∗ f o u r th f 1 ∗ temp ∗
temp ∗ temp + 1 .0 / 24 ∗ f i f t h f 1 ∗ temp ∗
temp ∗ temp ∗ temp ;

temp4 = df2 + secondf2 ∗ temp + 0 .5 ∗ t h i r d f 2 ∗
temp ∗ temp + 1 .0 / 6 ∗ f o u r th f 2 ∗ temp ∗
temp ∗ temp + 1 .0 / 24 ∗ f i f t h f 2 ∗ temp ∗
temp ∗ temp ∗ temp ;

Tra j ec tory [ 1 ] = temp1 ∗ ddTheta1 + 2 ∗ temp2 ∗
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ddTheta2 − temp3 ∗ dTheta1 ∗ dTheta1 + temp4
∗ dTheta2 ∗ dTheta2 ;

Tra j ec tory [ 1 ] = − Tra jec tory [ 1 ] / K 2 ∗ Sca l e ;
Tra j ec tory [ 1 ] = Tra jec tory [ 1 ] ;

}
else

Tra jec tory [ 1 ] = 0 ;
}

}

// f eed back c o n t r o l l e r
void f eedBackCalcu lat ion ( int index , int channel , f loat

theta1 , f loat dTheta1 , f loat theta2 , f loat dTheta2
)

{
i f ( channel == 0)
{

Error [ 0 ] = 0 ;
i f ( index <= NumOfPeriod ∗ MaxIndex [ 0 ] )

Error [ 0 ] = theta1 − Fi l tedAngle [ 0 ] ;
else

{
i f ( ( NumOfPeriod % 2) == 0)

Error [ 0 ] = 0 − Fi l tedAngle [ 0 ] ;
else

Error [ 0 ] = 0 − paras [ 1 ] ∗ 16 / 9 −
Fi l tedAngle [ 0 ] ;

}
FeedBack [ 0 ] = Error [ 0 ] ∗ paras [ 6 ] + ( dTheta1 −

Ve loc i ty [ 0 ] ) ∗ paras [ 7 ] ;
FeedBack [ 0 ] = FeedBack [ 0 ] / K 1 ∗ Sca l e ;

}
i f ( channel == 1)
{

Error [ 1 ] = 0 ;
i f ( Index <= NumOfPeriod ∗ MaxIndex [ 1 ] )

Error [ 1 ] = theta2 − ( paras [3 ]+ paras [ 4 ] ∗ 8 . /
9) − Fi l tedAngle [ 1 ] ;

else
{
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i f ( ( NumOfPeriod % 2) == 0)
Error [ 1 ] = 0 − Fi l tedAngle [ 1 ] ;

else
Error [ 1 ] = 0 − paras [ 4 ] ∗ 16 . / 9 −

Fi l tedAngle [ 1 ] ;
}

FeedBack [ 1 ] = Error [ 1 ] ∗ paras [ 8 ] + ( dTheta2 −
Ve loc i ty [ 1 ] ) ∗ paras [ 9 ] ;

FeedBack [ 1 ] = 0 − FeedBack [ 1 ] / K 2 ∗ Sca l e ;
}

}

protected :
int CurrentAngle [ 2 ] ; // d i sp laycements
f loat Fi l tedAngle [ 2 ] ;
f loat PrevAngle [ 2 ] ;

f loat Ve loc i ty [ 2 ] ; // v e l o c i t i e s
f loat PrevVeloc i ty [ 2 ] ;

int CurrentData [ 2 ] ; // d i g i t a l input from encoders
int Orig ina lData [ 2 ] ;

int Index ;
int MaxIndex [ 2 ] ;
f loat Tra jec tory [ 2 ] ;

f loat Error [ 2 ] ; // d i sp laycement and v e l o c i t y
e r ro r s

f loat FeedBack [ 2 ] ;

f loat Ts ; // sample per iod
f loat ActualSampleRate ; // sample ra t e

//downloaded parameters
f loat k1 ; // i n d i c a t e range o f t h e t a 1
f loat omega1 ;
f loat k0 ; //midpoint o f t h e t a 2
f loat k1 ; // i n d i c a t e range o f t h e t a 2
f loat omega2 ;
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f loat kp1 ; //pd con t r o l p f o r l i n k 1
f loat kd1 ; //pd con t r o l d f o r l i n k 1
f loat kp2 ; //pd con t r o l p f o r l i n k 2
f loat kd2 ; //pd con t r o l d f o r l i n k 2

// va l u e s c a l c u l a t e d from es t imated model paras
f loat f 1 ;
f loat df1 ;
f loat secondf1 ;
f loat t h i r d f 1 ;
f loat f o u r th f 1 ;
f loat f i f t h f 1 ;
f loat f 2 ;
f loat df2 ;
f loat secondf2 ;
f loat t h i r d f 2 ;
f loat f o u r th f 2 ;
f loat f i f t h f 2 ;
f loat f 3 ;
f loat df3 ;
f loat secondf3 ;
f loat t h i r d f 3 ;
f loat f o u r th f 3 ;
f loat f i f t h f 3 ;

} ;

// servo con t r o l thread
class DriveThread : public Thread
{
public :

DriveThread ( I I P r i o r i t y p r i o r i t y )
: Thread ( p r i o r i t y ) , Xfr1 (new Trans fe r ) , Once ( fa l se )

{}
˜DriveThread ( )
{

delete Xfr1 ;
}

void Acquire ( )
{
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Star t . Re lease ( ) ;
Ava i l ab l e . Acquire ( ) ;

}

void WriteBuf fer ( F loa tBu f f e r & Buffer , int index , int
s )

{
int Elements = index ;
int Cursor = 0 ;
while ( Cursor < Elements )

{
int Res idual = Elements − Cursor ;
int Chunk = std : : min ( Residual , MaxPayload ) ;
I n tBu f f e r Num(0 x4 ) ;
Num[ 0 ] = Chunk ;
Num[ 1 ] = s ;
Xfr1−>Send ( ccNumOfAcqusition , Num) ;
// Copy b u f f e r to pay load
FloatBu f f e r Dst (Chunk) ;
Dst . Copy( Buffer , Cursor , Chunk) ;

Xfr1−>Send ( ccAcqus i t ion , Dst ) ;
Cursor += Chunk ;
}

I n tBu f f e r Cmd(0 x4 ) ;
Xfr1−>Send ( ccDataReceiveComplete , Cmd) ;

}

void Contro le r1 ( )
{

int DacDelay ;

TPMServo ServoIo (Omnibus : : mSite0 ) ;

i f ( ! Once )
{

LoadModule (Omnibus : : mSite0 , Omnibus : : mtA4D4) ;
Once = true ;

}

ServoIo . Open ( ) ;
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// Locate event b u f f e r onchip
ServoIo . SegId (1 ) ;

ClockRateUI ∗ Clock = ClockRateUIPtr ( ServoIo . Clock ( )
) ;

Clock−>Rate (1000) ;
f loat actualSampleRate = Clock−>RateActual ( ) ;

// Enable a l l ana log input and output channe l s
ServoIo . InputChannels ( ) . EnableChannels (2 ) ;
ServoIo . OutputChannels ( ) . EnableChannels (2 ) ;

// . . . Conf igure de lay o f DAC c l o c k
DacDelay = 5 . e3 ;
ServoIo . Delay (DacDelay ) ;

ServoIo . ADCcounts = ServoIo . Module ( )−>In f o ( ) . Adc ( ) .
Of fsetCounts ( ) ;

ServoIo . DACcounts = ServoIo . Module ( )−>In f o ( ) . Dac ( ) .
Of fsetCounts ( ) ;

ServoIo . ServoSetup ( actualSampleRate ) ;

S leep (5000) ;
// S ta r t p roce s s ing
ServoIo . S ta r t ( ) ;

f loat Period = (NumOfPeriod ∗ Pi / paras [ 2 ] + 0 . 1 ) ∗
1000 ;

S leep ( Period ) ;

ServoIo . Halt = true ;
S l eep (100) ;

// Stop proce s s ing
ServoIo . Stop ( ) ;

F loa tBu f f e r Dst1 ( ServoIo . RecordChannel1 . I n t s ( ) ) ;
F loa tBu f f e r Dst2 ( ServoIo . RecordChannel2 . I n t s ( ) ) ;
Dst1 . Copy( ServoIo . RecordChannel1 ) ;
Dst2 . Copy( ServoIo . RecordChannel2 ) ;
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int index1 = ServoIo . Cursor [ 0 ] ;
int index2 = ServoIo . Cursor [ 1 ] ;

// Close d r i v e r
ServoIo . Close ( ) ;

// send ang l e record data to hos t
WriteBuf fer (Dst1 , index1 , 1 ) ;
WriteBuf fer (Dst2 , index2 , 2 ) ;

}

protected :
Semaphore Ava i l ab l e ;
Semaphore Sta r t ;
Trans fe r ∗ Xfr1 ;
bool Once ;

//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Methods
//

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void Execute ( )
{

for ( int i = 0 ; i < 1 ; ++i )
{

I n tBu f f e r Cmd(0 x4 ) ;
Cmd[ 0 ] = i ;
Cmd[ 1 ] = 100 ; Cmd[ 2 ] = 101 ; Cmd[ 3 ] = 102 ;
Xfr1−>Send ( ccContro ler , Cmd) ;

}
while ( ! Terminated ( ) )

{
Star t . Acquire ( ) ;
Contro le r1 ( ) ;
Ava i l ab l e . Re lease ( ) ;

}
}

76



} ;
DriveThread Contro l e r ( tpNormal ) ;

//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Main Program
//

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void IIMain ( )
{

Contro l e r . Resume ( ) ;
Trans fe r Xfr ;
I n tBu f f e r C;
In tBu f f e r Cmd(0 x4 ) ;
Cmd[ 0 ] = 0 ;
Cmd[ 1 ] = 0 ;
Cmd[ 2 ] = 0 ;
Cmd[ 3 ] = 0 ;
Xfr . Send ( ccLogin , Cmd) ;

// wai t f o r message to a r r i v e from hos t
for ( ; ; )
{

Xfr . Recv (C) ;
DispatchPacket (C) ;

}
}

//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// DispatchPacket ( ) −− Dispatch a Host command
//

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void DispatchPacket ( In tBu f f e r & Buf )
{

// Conf igure Header
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Trans ferBuf fe rHeader TBH(Buf . Header ( ) ) ;

// Use the Per iphera l ID to separa t e packe t t ype s
switch (TBH. Pe r iphe ra l Id ( ) )
{
// r e c e i v e downloaded parameters
case ccDownloadParas :
{

f loat paraNum=0;
memcpy(&paraNum , Buf . Addr ( ) , s izeof ( f loat ) ) ;
for ( int i =0; i<( int )paraNum ; i++)

memcpy( paras+i , Buf . Addr ( )+i +1, s izeof ( f loat ) ) ;
F loa tBu f f e r Cmd(0 x30 ) ;
Cmd[ 0 ] = ( int )paraNum ;
for ( int j =0; j<numOfParas ; j++)
Cmd[ j +1] = paras [ j ] ;

Trans fe r Xfr1 ;
Xfr1 . Send ( ccDownloadParas , Cmd) ; // f o r t e s t

}
break ;

// execu te servo con t r o l
case ccRun :

Contro l e r . Acquire ( ) ;
break ;

case c c I n i t :
break ;

default :
break ;

}
}
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