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Abstract of the Dissertation

Strong Field Control of Multilevel Quantum
Systems

by

Stephen Daniel Clow

Doctor of Philosophy

in

Physics

Stony Brook University

2010

In this thesis, we present work on coherent control of multilevel
quantum systems in the strong field limit using shaped ultrafast
laser pulses. In recent years there have been numerous multiphoton
absorption experiments in two, three, and four-level atomic/molec-
ular systems and many are performed in the limit of weak fields
where perturbation theory is valid. Here, we describe a series of
experiments aimed at exploring and understanding multiphoton
transitions when the exciting field is strong and perturbation the-
ory breaks down. Our approach to strong field control utilizes both
parameterized scans of various pulse shapes and closed-loop learn-
ing control to identify a pulse shape that is optimal for populating
a target quantum state. With this we will highlight the differ-
ence between sequential population transfer and adiabatic rapid
passage in multilevel systems with multiphoton coupling between
levels. Additionally, we examine strong field control of a four-level
atomic interferometer and show how interference in a target state
changes from resonant pathways in the frequency domain to time-
domain interference via a singe path.

iii



Further, we use shaped femtosecond pulses to demonstrate a phe-
nomenon in which a three-level atom becomes a modulator of an
ultrafast pulse. The results are based on a pump-probe scheme
that is very similar to Electromagnetically Induced Transparency
(EIT). Important dynamics associated with a time-dependent cou-
pling field are examined. Lastly, we extend previous work on two-
photon driven superfluorescence from a shaped ultrafast drive laser
and show how stimulated emission near threshold can turn mod-
est coherent control yields into essentially perfect discrimination
between systems where a control factor of about 104 is achieved
between atomic and molecular species.
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Chapter 1

Introduction

A long standing goal of atomic, molecular, and optical physics has been to
use coherent light for manipulating quantum systems. Because quantum phe-
nomena are governed by a wavefunction that is subject to constructive and
destructive interference, one needs to use the coherence property of the light
to steer the system from an initial quantum state to a desired final state. The
ability to modify spectral components of a coherent light field therefore yields
rich possibilities for controlling quantum systems via interference of ’pathways’
in quantum phase space. Here, a pathway represents a way for a system (for
example, Fig. 1.1(a) and (b)) to get from an initial state |g⟩ to to a final state
|e⟩ by groups of photons whose frequencies sum to equal the energy difference
between |g⟩ and |e⟩, divided by ~. This is the essence of quantum coherent
control - changing the relative phase and amplitude of frequency components
driving an excitation to constructively or destructively interfere in a target
quantum state.

The advent of broadband coherent light in the 1980s opened up a new
paradigm in the coherent control of matter. Broadband lasers offered many
frequency components at once, as well as high peak intensities, and became
an attractive tool for driving nonlinear light-matter interaction. With the in-
troduction of Titanium:Sapphire as a solid-state gain medium, ultrafast laser
technology advanced rapidly and by the 1990s researchers had access to pulses
on the order of several 10−15s (femtosecond) [1, 2]. In parallel, the introduction
of Chirped Pulse Amplification (CPA) [3] allowed for field strengths character-
istic of the atomic unit of field (5.14× 1011V/m) to be readily achieved in the
lab and eventually in commercially available systems. Femtosecond lasers are
now widely used in laboratories around the world for research in many different
fields of science. Because multiple frequencies in a femtosecond pulse can con-
tribute to a system’s excitation, it became desirable to control the amplitude
and phase of each frequency in an effort to control the excitation. In the early
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1990s, researchers developed technology to modify the spectral amplitude and
phase of an ultrafast pulse (and therefore its temporal shape) [4, 5] and quickly
researchers were able to produce pulses with arbitrary shape. Shaped ultra-
fast pulses have been used to probe and manipulate matter in thousands of
experiments since the field of quantum coherent control began [6–9] and even
shorter pulse durations on the scale of 10−18s (attosecond) have been achieved
from the extreme ultraviolet (XUV) to X-ray region of the electromagnetic
spectrum [10].

|e>

|m>

|g>

|e>

|m>

|g>

(a) (b)

|e>

|m>

|g>

(c)
|r>

Figure 1.1: Two and three-photon absorption. The laser bandwidth is illus-
trated at the left showing that multiple frequencies can add in a multipho-
ton transition . (a) Two-photon absorption between a ground state |g⟩ and
excited state |e⟩ through a resonant intermediate state |m⟩. (b) The same
as (a), where the intermediate state |m⟩ is far from resonance. (c) (2+1)
Three-photon absorption where there is a two-photon absorption through an
off-resonant intermediate state |m⟩ followed by a single photon absorption to
a resonant state |r⟩.

In recent years there have been numerous efforts by researchers to control
two, three, and four-level systems with shaped pulses in the weak field limit
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where a perturbation description of multiphoton absorption is valid. One of
the early multiphoton experiments [11] used phase-shaped laser pulses to co-
herently control the absorption of two photons in atomic cesium. In this case,
the electronic structure is such that the intermediate state is far outside the
laser bandwidth (i.e., far from resonance), shown in Fig. 1.1(b). Using a pulse
shaper to shape the spectral phase of the laser, Meshulah and Silberberg were
able to turn on and off two-photon absorption (TPA) by the atom. Further,
it was shown in the weak-field limit (when perturbation theory is valid) that
any antisymmetric spectral phase about the two-photon resonance frequency
maximized the TPA. Later, it was established by Dudovich et al. [12] that the
presence of a near-resonant intermediate state (see Fig. 1.1(a)) required shap-
ing of the drive pulse in order to maximize the two-photon absorption. Con-
sidering more complicated systems, experiments proceeded with shaped pulses
and atoms in which more than two photons are absorbed or more than two
intermediate states are present. In particular, researchers began to consider
atoms in which there is a non-resonant two-photon absorption, followed by a
resonant single-photon absorption - a so called 2+1 transition (Fig. 1.1(c)).
Work by Amitay el al. [13] showed that shaping could enhance three-photon
absorption in the weak field limit. More recently, Ye et al. [14] considered
the case of two resonant intermediate states in a four-level atom driven by
shaped pulses in the weak field limit. Spanning well over a decade, these ex-
periments make up an important part of the foundation for both non-resonant
and near-resonant multiphoton absorption by ultrafast laser pulses where the
atom-field interaction is appropriately described by perturbation theory. How-
ever, when the exciting fields become strong, perturbation theory breaks down
and therefore the atom-field interaction must be formally described by other
means.

Many techniques have been developed which make use of strong-field cou-
pling to atomic or molecular states via single-photon (dipole allowed) transi-
tions. These include Adiabatic Rapid Passage (ARP) and variants - Chirped
Adiabatic Rapid Passage (CARP)[15–21] and Stimulated Raman Adiabatic
Passage (STIRAP)[22]. These approaches are powerful and effective and there
is interest in extending them to multiphoton coupling between atomic and
molecular levels [7, 23–26]. The thesis work of Carlos Trallero-Herrero [27]
showed that for a non-resonant two-photon absorption (Fig. 1.1(b)) to pro-
ceed efficiently in the strong-field limit, one must appropriately shape the drive
pulse to keep its phase and the phase of the atomic coherence in lock-step to
counteract the effect of Stark shifts induced by the strong pulse.

This thesis describes a series of strong field experiments, where the elec-
tronic dynamics and control possibilities are richer, that aim to extend the
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above work and advance our understanding of strong field control of multi-
state systems with both resonant non-resonant coupling between states. Our
approach to strong field control utilizes both parameterized scans of various
pulse shapes and closed-loop learning control [28] to identify pulse shapes that
are optimal for populating a target quantum state. Combined with numeri-
cal integration of the time-dependent Schrödinger equation, we highlight the
difference between sequential population transfer and adiabatic rapid passage
in multilevel systems with multiphoton coupling between levels. Additionally,
we examine strong field control of a four-level atomic system and show how in-
terference in a target state changes from resonant and non-resonant pathways
in the frequency domain when perturbation theory is valid to time-domain
interference via a singe path in the strong field limit.

In addition to controlling single atoms, interest has developed in controlling
an ensemble and work in this area has been growing [29–32]. In particular, the
phenomenon of Superfluorescence (SF) (stimulated emission)[33, 34] driven by
ultrafast pulses has been demonstrated in sodium and rubidium [31, 35, 36].
We further develop work on control over stimulated emission from an ensemble
of atoms/molecules and demonstrate that by shaping a strong drive field it
is possible to achieve a large degree of discrimination between two emitting
atoms/molecules. Currently, there is interest in using the control of stimulated
emission to image biological system [37].

The breakdown of this thesis is as follows. Chapter 2 discusses the laser
system used to generate shaped femtosecond pulses, as well as how they are
characterized. We also discuss how the pulses are shaped in time via optical
pulse shaping. Details of the atomic and molecular experiments are then
covered where we talk about the atomic and molecular sample cells, as well as
how we measure spontaneous and stimulated emission.

Chapter 3 examines the issue of space-time coupling in an optical pulse
shaper. There, we both simulate and measure space-time coupling for a spe-
cific pulse shape parameter and develop an understanding of when this can
become significant. Lastly we discuss the effect of space-time coupling on the
experiments presented in this thesis.

Chapter 4 lays out the theoretical background of two and three-photon
absorption in the weak and strong field limits with multiphoton coupling be-
tween states. There, we first develop an understanding of single photon ab-
sorption from an electric field where the amplitude and phase are allowed to
vary. We then extend this to weak and strong field absorption of two photons
[12, 15, 38, 39] when there is a resonant intermediate state (Fig. 1.1(a)) and
a non-resonant intermediate state (Fig. 1.1(b)). Going a step further, we de-
scribe three-photon absorption with multiphoton coupling between states in
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both the weak and strong field limits [13, 40]. These results are applicable to
the experiments in chapters 5 and 6.

Chapter 5 presents work on demonstrating a population inversion in a
three-level system with multiphoton coupling between the levels. Using closed-
loop feedback to discover a pulses that are optimal at populating the exited
state, we use the optimal pulses to measure an inversion in the excited state.
The inversion is measured with a combination of spontaneous and stimulated
emission. The experimental results are then compared to theory where we
highlight the difference between sequential population transfer and Adiabatic
Rapid Passage (ARP) with nonlinear coupling between states.

Chapter 6 explores the atomic analog of an interferometer by considering
a four-level atom where two resonant intermediate states lead to the same fi-
nal excited state. Using a single shaped femtosecond pulse, we highlight how
interference between different quantum pathways changes from between res-
onant contributions (for resonant excitation only) to between resonant and
non-resonant pathways (with resonant and non-resonant excitation). Further,
we show that when the exciting field becomes strong, a time-domain descrip-
tion of the dynamics governing the interference is best.

Chapter 7 takes the dynamics governing chapters 5 and 6 and applies it
to an ultrafast analog of Electromagnetically Induced Transparency (EIT).
Although much different than conventional EIT, the pump-probe scheme is
quite similar to EIT only now the pump and the probe are produced with a
pulse shaper form a single ultrafast laser pulse. There, we show that when the
atoms are coupled to the pump pulse, they act as an ultrafast phase modulator
of the probe pulse.

Chapter 8 closes by using a single shaped pulse to control the superfluo-
rescent emission from the atoms in chapters 5 and 6, as well as two different
molecular species. Here, we use closed-loop feedback to discover a pulse that
is optimal for suppressing emission from one atom/molecule while maintaining
or enhancing the emission from the other. We then perform a systematic study
of superfluorescent emission using a single shaping parameter to understand
the underlying control mechanism.

Chapter 9 gives concluding remarks and observations, followed by an ap-
pendix for mathematical derivations and source code related to simulation
presented throughout the thesis.
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Chapter 2

Experimental Setup

2.1 Laser System

Our laser system consists of a KM Labs Kerr-lens mode-locked oscillator and
multi-pass amplifier that both employ Titanium:Sapphire as a gain medium.
The oscillator is pumped by a Coherent Verdi V5 Continuous Wave (CW)
laser and the amplifier by a Quantronix CW-pumped Q-switched Nd:YLF
laser. At its output, the laser system produces 30 femtosecond (fs) pulses at a
repetition rate of 1 kHz. The central wavelength is 780 nm and the bandwidth
(as measured by the full-width at half-maximum) is approximately 30 nm. A
typical laser pulse is shown in Fig. 2.2 When tightly focused, the amplified
pulses can produce field strengths on the order of the atomic unit of field:
5.14× 1011V/m. This system provides the core tool we use to investigate the
dynamics of atoms and molecules on their natural time scales and in the strong
field limit.

The pulses are characterized in time by Second Harmonic Generation (SHG)
Frequency Resolved Optical Gating (FROG) [41]. In SHG FROG, (simply
FROG) one splits the pulses into two arms of an interferometer and then spa-
tially and temporally recombines them in a nonlinear crystal, while measuring
the spectrally-resolved cross-correlated SHG spectrum for different delays be-
tween the two arms. In this way, the electric field amplitude and phase can
be retrieved by an appropriate algorithm and thus the electric field can be
reconstructed.

2.2 Pulse Shaper

The pulses from our laser amplifier are conveniently described in time as Gaus-
sian with a full-width-at-half-maximum of approximately 30 fs and constant
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Figure 2.1: Laser system and SHG FROG [41] set up to characterize the
pulses.
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Figure 2.2: Pulse from our laser amplifier. The pulse was characterized using
SHG FROG [41].
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phase over the pulse duration. In general (and for many experiments presented
in this thesis), this is not optimum for driving various physical processes; and
in particular, processes that are not linearly proportional to the electric field.
Therefore, it becomes necessary to be able to shape the electric field in time.
To achieve this we employ the technology of frequency domain optical pulse
shaping. At the heart of the experiments presented here is quantum control
and in a certain sense the ability to effect quantum control relies on reshaping
the electric field in time.

P AOM RF 

Grating 1 

Grating 2 

Curved Mirror 1 

Curved Mirror 2 

Fold Mirror 1 

Fold Mirror 2 

Fourier Plane

Figure 2.3: Pulse shaper layout. Our pulse shaper consist of two gratings (671
grooves/mm), two curved mirrors (750 mm focal length), two fold mirrors, and
a programable SLM at the Fourier plane called an AOM. P is the piezoelectric
transducer use to launch the acoustic wave and RF is the radio frequency
waveform used to drive it.

Developed in the early 1990s, optical pulse shaping exploits the trick of
Fourier transforming the pulse to the frequency domain [42]. There, one can
modify the phase and amplitude of each frequency component and simply in-
verse Fourier transform back to achieve a new pulse in time. We note that
shaping the pulse in the time domain directly is impossible because of its short
duration (30 fs) compared to the speed of any electrical device. Figure 2.3
shows the layout of our pulse shaper. The pulse is incident at approximately
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Littrow angle on a grating one focal length f from a curved mirror. Upon re-
flection from the curved mirror, the light is subsequently focused another focal
length f away at the Fourier plane where we now have each color in the laser
spectrally separated in space. At the Fourier plane we place a programmable
Spatial Light Modulator (SLM) called an Acousto-Optic Modulator (AOM)[4].
An AOM uses a piezoelectric transducer to launch an acoustic wave down a
crystal, from which the light is diffracted. The transducer is driven by a 150
MHz radio frequency wave from a GaGe 11G CompuGen arbitrary waveform
generator, where the amplitude and phase of the radio wave are allowed to
vary in time. Changing the amplitude and phase of the wave driving the
transducer directly changes the amplitude and phase of the acoustic wave in
the crystal. Because the light is diffracted from the acoustic wave, one is able
to change the amplitude and phase of each frequency component in the pulse.
The diffracted light is subsequently reflected from another curved mirror one
focal length f from the Fourier plane and focused onto a second grating one
focal length f from the mirror to spatially recombine the frequencies. Because
the distance between each optical element in the pulse shaper is set to the focal
length of the two curved mirrors, the pulse shaper is referred to as a 4f pulse
shaper. By launching different acoustic waves, we can generate light pulses
with different spectral phases and amplitudes and therefore different tempo-
ral characteristics for our experiments. Our pulse shaper has a resolution of
roughly 170 independent spectral components across the laser bandwidth.

2.3 Optimization Algorithm

One of the central tenets of quantum coherent control is that a desired quantum
state of a system can be achieved by modifying the Hamiltonian to actively
steer the system from an initial state to a desired final state. For systems
described in this thesis, the electric field is embedded within the Hamilto-
nian through the dipole approximation. Therefore, modifying the Hamilto-
nian amounts to modifying the electric field driving the system. However,
often times the way in which the Hamiltonian needs to be modified, or the
Hamiltonian of the system itself, is not known a priori. One successful ap-
proach to discovering the Hamiltonian, and hence electric field, in achieving
a desired quantum state is by ”trial and error”: iteratively modify the elec-
tric field and use feedback in a closed loop to discover the electric field, or
Hamiltonian, that corresponds to achieving a desired quantum state [28]. We
use a closed-loop feedback approach throughout the work presented here, and
in particular make us of a Genetic Algorithm (GA) modeled after biological
evolution. The details of our GA have been described elsewhere [43], but we
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give a brief overview of how it works.
We first start with a family of randomly selected pulse shapes. The pulses

are then used to perform the experiment (i.e., used to excite a transition), with
each pulse shape producing its own experimental yield. We then rank the dif-
ferent pulse shapes according to how much experimental yield (called Fitness)
each one produces. The pulse shapes which produce the largest experimental
yield are retained and those which produced the least are discarded. New pulse
shapes are then produced based on the ones we retain [43] and the process re-
peats. With each successive iteration (Generation), the algorithm converges
onto a pulse that is optimal for producing the maximal experimental yield
(e.g., light at a particular wavelength, fragments of a molecule, etc.). Figure
2.4 shows yield of an experimental signal as a function of generation. For many
of the experiments presented here, by approximately 160 generations, the GA
has converged and an optimal solution has been found.
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Figure 2.4: Fitness as a function of generation for the Genetic Algorithm.
Here, fitness is fluorescence yield from the 7p state of atomic Sodium after
three-photon absorption from the 3s ground state. This system is explored
further in chapter 5.
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2.4 Atomic and Molecular Cells

The work presented in this thesis involves both atoms in gas phase and molecules
in liquid phase. In the atomic experiments, we study both single and multi-
photon transitions in rubidium (Rb) and sodium (Na). For rubidium, we use
a 6 cm long glass cell which has been sealed off with rubidium inside. Because
rubidium is not a gas at room temperature, the cell must be heated. Therefore
the cell was first wrapped in heating tape and then wrapped with aluminium
foil, leaving only two openings for the beam to enter and exit, as well as an
opening at 90 degrees with respect to the beam propagation direction to cap-
ture fluorescence from the excited atoms. Typically, the cell is heated to 150
oC and inside the rubidium vapor pressure is given by [44] (T is in Kelvin),

log10 Pv = 15.882− 4529.6

T
+ 0.000586T − 2.991 log10 T. (2.1)

Figure 2.5: Heat pipe layout.

For sodium, it is difficult to achieve a high enough vapor pressure in such
a small cell at similar temperatures without coating the inside of the glass
with sodium atoms. Figure 2.6 shows the density of rubidium and sodium as
a function of temperature where it is clear that rubidium has a much larger
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density than sodium for a given temperature. Therefore, we employ a heat
pipe oven design to achieve a high enough vapor pressure for the experiments
while minimizing the likelihood of having sodium react with the glass windows.
Details of the heat pipe oven are given in [43], but we briefly describe it here.
Figure 2.5 shows the layout of the oven. The chamber has a cross-pipe design
so that fluorescence from the excited atoms can be imaged onto a photomul-
tiplier tube (PMT) at 90 degrees with respect to the beam propagation axis.
Solid sodium is heated between 200 and 400 Celsius at the center of the oven,
resulting in sodium vapor with a pressure given by [45] (T is in Kelvin),

log10 Pv = 133.429− 9302

T
+ 0.031144T − 49.367 log10 T. (2.2)

The oven is back-filled with argon (Ar) gas and has cooling jackets to prevent
sodium from coating the oven windows. As the sodium vapor expands toward
the cooling jackets, it condenses onto a stainless steel mesh grid upon exchang-
ing energy with cool argon atoms. Through capillary action, sodium reaches
the center of the pipe and the process repeats resulting in a steady state of
sodium vapor pressure.

For the molecules in liquid phase, we use two 6 cm long glass cells containing
DCM (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran) and
Ruthenium [Ru(dpb)3](PF6)2 (dpb is 4,4’-diphenyl-2,2’-dipyridine) dissolved
in Methanol. Both DCM and Ruthenium are two-photon absorbing dyes.

2.5 Imaging System and Spatial Shaping

The experiments presented here utilize a particular laser beam profile that we
achieve through an imaging system. In particular, we seek a beam with a long
Rayleigh range to minimize intensity variation in the longitudinal direction.
To achieve this, the pulses from our pulse shaper are sent through a 1 m focal
length lens. Subsequently, that focus is imaged using a 0.6 m lens to a focus
with a magnification factor of∼ 3.6. This effectively produces a Rayleigh range
of 19 cm and therefore we can can neglect longitudinal intensity variation for
most of the experiments.

In experiments involving sodium, the absorption of two photons strongly
depends on the intensity of the pulse and not the field (I ∝ E2). Therefore,
changes to the two-photon absorption as a function of intensity for a beam
with a Gaussian transverse spatial profile can be averaged out - an effect
called Volume Averaging. Thus, it becomes necessary to ensure a uniform
distribution of intensities as a function of space. To achieve this, we spatially
shape the beam by placing a 100 µm diamond pinhole (Lenox Laser HP-3/8-
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Figure 2.6: Calculated density (1/m3) vs temperature (Celsius) according to
Eqs. (2.2) and (2.1). The solid line corresponds to rubidium and the dashed
line sodium.

DISC-DIM-100) at the focus of the 1 m long lens. Then, the spatially shaped
mode is imaged into the heat pipe oven (cell), resulting in a 360 - 400 µm spot
size. An example of the kind of flat intensity profile we can achieve is given in
Fig. 2.7. Figure 2.7(a) and (c) show the 2D spatial distribution and lineout,
respectively, one can expect without spatially shaping the beam. However,
Fig. 2.7(b) and (d) show the distribution achieved with spatial shaping. By
filtering the beam, we can limit the intensity variation to less than 20%

2.6 Measurement of Spontaneous and Stimu-

lated Emission

As mentioned and shown in Fig. 2.8, spontaneous emission from the exited
atoms was imaged at 90 degrees with respect to the beam propagation axis
onto a PMT with single-photon sensitivity (RCA IP 21) using an f2 lens (focal
length is twice the diameter). Having a PMT to collect fluorescence allows us
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Figure 2.7: a) Mode without spatial filter. b) Mode with spatial filter. c) and
d) are an average of 5 line-outs of a) and b), respectively, over the transverse
coordinate Y.
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to measure the excited state population in the atoms. For experiments where
it is necessary to image a spatially shaped beam to a focus, we place an iris (∼
1 mm opening) in front of the PMT to ensure that we only collect fluorescence
from the longitudinal location (focus) where the intensity distribution is flat.
Fluorescence from various excited states of the atom can be selected by placing
a bandpass filter in front of the PMT. A list of the bandpass filters we use to
isolate spontaneous emission lines, along with their specs, are given in chapter
5.

In other experiments presented in chapters 7 and 8, we measure stimulated
emission and employ two main schemes for its detection. When sufficiently
pumped, atoms and molecules can give off stimulated emission in the form
of superfluorescence [46]. In this case, superfluorescence was measured in the
forward direction using large-aperture photodiodes (Thorlabs DET 100A), as
illustrated in Fig. 2.8 and labeled D1 and D2 for detector 1 and detector 2.
In chapter 8 we aim to simultaneously control the stimulated emission form
both sodium and rubidium, as well as two separate molecules, by appropriately
shaping the pulse. In this case, it is convenient to combine both photodiode
signals using a signal combiner and BNC cable to delay one signal with re-
spect to the other. In chapter 7, we make use of one cell alone and use two
pulses to control an ensemble of rubidium atoms in a traditional pump-probe
experiment. In this case we are interested in mapping out the spectrum of
one of the two pulses (probe) as it propagates through the atoms while the
atoms are under the influence of the other pulse (pump). To measure this,
we couple the light into an Ocean Optics HR4000 spectrometer with 0.16 nm
resolution and measure the spectrum of the probe light as a function of delay
between the pump and the probe. In this case, we swap the photodiode with
the spectrometer at, for example, D1 in Fig. 2.8.
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Figure 2.8: Our experimental setup. 30 fs pulses were shaped by an AOM
based pulse shaper and split into two arms. Each arm was focused into a cell
containing either an atomic or molecular sample.
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Chapter 3

Space Time Coupling

In this chapter we examine a technical issue related to optical pulse shaping
which has seen interest in recent years [47–49], namely coupling between the
temporal and spatial variables describing a pulse after passing through an ideal
4f (one focal length f between each optical element) optical pulse shaper -
called space-time coupling. The number of experiments employing ultrafast
optical pulse shaping has grown enormously and most implementations make
use of a programmable spatial light modulator at the Fourier plane of a zero
dispersion stretcher [50], shown in Fig. 2.3. There have been some calculations
of the inherent space-time coupling associated with this scheme [51–54] and
how it affects the spatial mode of the shaped laser pulses. In this chapter
we measure and calculate space-time coupling in our acousto-optic modulator
(AOM) based pulse shaper by measuring the spatial mode of the output as a
function of pulse shape and compare our measurements to calculations. Several
pulse shape parameterizations were studied in our measurements, but we only
show data and calculations for the case of a sinusoidal phase modulation, as
it captures the essential physics and illustrates the type of coupling one might
expect. Additionally, we examine if spatial shaping of the beam effects the
temporal structure of the pulse also as a result of space-time coupling.

3.1 Modeling the Pulse Shaper

To fully understand the effect of space-time coupling in a pulse shaper, it is
necessary to model its various optical elements. Thus, we aim to simulate
the spatial mode of a pulse shaper output and check the predicted mode with
experimental measurements. The formulae below used to describe the pulse
shaper are not specific to AOM pulse shaping, and may be used by any pulse
shaper that makes use of gratings and a spatial light modulator at the Fourier
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plane. Throughout this section the laser propagates in the Z direction and the
vertical (transverse) spatial coordinate Y is omitted because the treatment of
each element in the pulse shaper only depends on the horizontal (transverse)
spatial coordinate X. We also observe this experimentally. Following the
formalism laid out in [51], we calculate the electric field at each stage of the
pulse shaper. As input for the calculations, we use a measured spatial mode
from our laser amplifier and consider lineouts averaged over the transverse
spatial coordinate y. This roughly corresponds to a Gaussian envelope in x, 1.9
mm in width, but with minor additional features introduced by the amplifier.
Additionally, we use a Gaussian pulse envelope in time for simplicity. Using
this initial space-time profile, we propagate the field through each optical
element of the pulse shaper, finally yielding a field in space and time at the
pulse shaper output.

Consider a 4f pulse shaper (distance between each optical element is one
focal length f) consisting of two gratings, two lenses, and an AOM located at
the Fourier plane, as shown in Fig. 2.3. First, the pulses are incident on a
diffraction grating, where a grating maps frequency to angle as follows,

Eout = Ein(αx, t− βx). (3.1)

The parameters α and β characterize the diffraction gratings:

α =
cos(θi)

cos(θd)
, (3.2)

β =
2πp

Λcos(θd)ω0

, (3.3)

where p is the diffraction order, Λ gives the groove spacing, ω0 is the pulse
central frequency, and θi and θd are the incident and diffracted angles, respec-
tively. In our lab, α = 1 since the gratings are Littrow configured. Between
any two elements in the pulse shaper one can formally describe propagation
from one element to another by treating the propagation as if it were through
a dispersive medium. However, the treatment is drastically simplified by the
fact that propagation happens in air where dispersion is negligible. Propaga-
tion between any two elements in the pulse shaper is conveniently given in the
Fourier domain as

ˆ̃E(ξ, ω, z) = ˆ̃E(ξ, ω, 0)exp(ik(ω)z)exp(−i ξ2

2k(ω)
z), (3.4)

where k(ω) is the wave vector at frequency ω, and ξ is spatial frequency. Let
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us first expand k(ω)

k(ω) = k0 + k′0(ω − ω0) +
1

2
k′′0(ω − ω0)

2 + ...+, (3.5)

where k′0 =
∂k(ω)
∂ω

|ω=ω0 and k
′′
0 = ∂2k(ω)

∂ω2 |ω=ω0 . Because dispersion is negligible in
air, k′0 and k′′0 vanish and we only keep the term k0, where k0 = 2π

λ0
and λ0 is

the central wavelength of the laser. Under the paraxial wave approximation,
the action of a thin lens on a femtosecond pulse can be derived geometrically
and is given as [55],

Eout = Einexp(ik0nd)exp(
−ik0x2

2f
), (3.6)

where d is the lens thickness, f is the focal length of the lens, and n is the
refractive index of the glass. Note that in practice we use curved mirrors in
our pulse shaper, effectively allowing us to set d = 0 in Eq. (3.6) and therefore
don’t have to worry about dispersion from the lens material. Lastly, the effect
of the mask is rendered by multiplying the electric field by a complex masking
function. Since the mask is fixed for a given pulse shape, it only acts to modify
the amplitude and phase of each frequency and can be simply written as

Eout(x, ω)) =M(ω)Ein(x, ω). (3.7)

Here, M(x) is the masking function and has the form

M(ω) = A(ω)exp(iϕ(ω)). (3.8)

We choose only phase shaping so that A(ω) = 1 and ϕ(ω) = πsin(ωT ) (i.e.,
not amplitude shaping) and T is the period of the sinusoid.

Using the equations given above, we can numerically simulate the output of
a pulse shaper for an arbitrary pulse shape. For simulations described below,
we sample at a rate of 0.01 mm in space and 8.0 fs in time and start with
a space-time grid set ±30 mm by ±8485 fs in size. The output of the pulse
shaper in space and time is then achieved by implementing the appropriate
formula at each corresponding element. Finally, integrating over time gives
the spatial distribution of the pulse in the direction of the AOM as seen by
the dashed curve in Fig. 3.1.
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3.2 Measurements

As indicated in Fig. 2.3, the beam is sent through a pulse shaper consisting
of two Littrow configured gratings (671 g/mm), two curved mirrors (750 mm
focal length), two folding mirrors, and an (AOM) 35 mm in length located at
the Fourier plane. We note there is effectively no difference in the simulations
between a curved mirror and a lens. However, in practice there is because of
dispersion through a dispersive medium.

To measure spatial distortion caused by the SLM, we pointed the laser
beam output by the pulse shaper directly onto the chip of a 1024 by 1280
pixel CCD camera (Electrim) after reducing the beam intensity by a series of
neutral density filters.1 We use a waveform generator (GaGe 11G CompuGen)
to drive a piezoelectric transducer used to launch an acoustic wave across the
AOM. With it we can create arbitrary phase and amplitude profiles across the
AOM by modulating the amplitude and phase of a 150 MHz carrier signal.
The radio frequency (RF) wave from the waveform generator has the form
s(t) = A(t)sin(2πf0t+ ϕ(t)) where A(t) is the RF wave amplitude and ϕ(t) is
the phase. We note here that frequency and time used to drive the transducer
can be converted to velocity and position of the acoustic wave. For the mea-
surements here we only modulate the phase of the RF wave (and therefore the
ultrafast pulse) using a sinusoidal phase such that the RF wave takes on the
following form:

s(t) = sin(2πf0t+ πsin(2πΩt)). (3.9)

Here, f0 is 150 MHz, t is time, and Ω is the sinusoidal modulation frequency.
The choice of Eq. (3.9) as a pulse shape is motivated by the fact that a
sinusoidal phase will produce additional sub-pulses in time. The sub-pulses
are spaced in time according to 1/Ω in Eq. (3.9) and have amplitudes governed
by the amplitude of the sinusoidal phase. If va represents the acoustic velocity,
k the number of acoustic wave periods per millimeter, and x the position across
the AOM, then Eq. (3.9) can be recast to read

s(x) = sin(2πf0
x

va
+ πsin(2πkx)). (3.10)

With a length of 35 mm and an acoustic velocity of 4.2 mm/µs, we program
the AOM to sweep k from 0 to 2.77 periods/mm in steps of 0.15 while taking
snap shots of the laser mode at each step. We focus on two values of k: 0.29

1It should be noted that the alternative pulse characterization technique of
GRENOUILLE [56] is not suitable for pulses longer that approximately 250 fs, and would
therefore fail to capture interesting space-time coupling features predicted by our simula-
tions. Further, pulses stretched to 250 fs will not exhibit much space-time coupling.
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and 1.63 periods/mm.

(a) (b)

(c) (d)

Figure 3.1: Measured and calculated space-time coupling in a 4f optical pulse
shaper. a) Calculated intensity in space and time I(x,t) for k = 0.29 cycles/mm
on the AOM. b) Predicted (dashed) and measured (solid) marginal of I(x,t)
on x. c) Calculated intensity in space and time I(x,t) for k = 1.63 cycles/mm
on the AOM. d) Predicted (dashed) and measured (solid) marginal of I(x,t)
on x. The spatial variable x is taken across the beam mode, in the direction
of the AOM.

As discussed in Chapter 2, there are cases where we need to ensure a uni-
form spatial distribution of intensities. In order to achieve this, we spatially
filter the beam by focusing on to a spatial aperture, and then image the spa-
tially apertured beam to a focus. To check that the temporally shaped beam is
not affected by the aperture, we also simulate and measure the effects of both
spatially and temporally shaping the pulse together. Using the pinhole and
imaging system mentioned before, we applied a sinusoidal phase modulation to
our SLM and sent the beam through the 100 µm pinhole. Then we measured
the pulses in time via SHG FROG both with and without the pinhole and
the results can be seen in Fig. 3.2. Here, all cases agree reasonably well with
each temporal lobe displaced in time as expected. The difference inherent in
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measured pulses with the pinhole vs without likely resulted from dispersive
material in the imaging system used to get the beam through the pinhole.

3.3 Results and Discussion

Our results are summarized in Fig. 3.1 and are general to other spatial light
modulators. Panels (a) and (b) show calculated shaped pulses for the two
cases mentioned earlier: k = 0.29 and k = 1.63 periods/mm in Eq. (3.10).
The dashed curves in panels (c) and (d) show the marginal over time of (a) and
(b), respectively. The solid curves in (c) and (d) correspond to lineouts of the
measured spatial mode for each of the two cases. As shown in panels (b) and
(d), when the number phase cycles/mm across the AOM is substantial, spatial
distortion of the laser is present. However, when the number of cycles/mm is
less, spatial distortion as a result of space-time coupling is small. This can be
understood from the point of view that the mask modulates the spatial profiles
of individual frequency components and therefore cannot be perfectly recom-
bined spatially by the second grating. For an ideal 4f pulse shaper with no
mask, the first grating alters the spatial profile for each frequency component,
which is then perfectly reversed by the second grating. However, the addition
of a mask introduces an additional spatial profile for each frequency in the
bandwidth, which cannot be compensated for by the second grating. The ef-
fect of this is to create a time-dependent spatial translation, as can be seen in
panels (a) and (c) of Fig. 3.1. Because a sinusoidal phase modulation creates
a family of sub-pulses in time, this phase shaping profile nicely captures the
effect of space-time coupling when the pulse is stretched in time.

A consequence of using a spatial light modulator at the Fourier plane of
a 4f optical pulse shaper is that space-time coupling is unavoidable. However
we see in Fig. 3.1 that if k (for a sinusoidal phase profile) is small, space-time
coupling is small. More generally, when the phase change per unit of frequency
is large, distortion of the spatial mode is present. This can be seen in Fig 3.1
panels (b) and (c) when the number of phase cycles per millimeter (or per
unit of frequency) became substantially larger than panels (a) and (c). The
tilt given to the temporally shaped pulse as a function of space (panels (a)
and (b)) is ultimately governed by the ratio of Eqs. (3.2) and (3.3) [51],

α

β
=

Λcos(θi)ω0

2πp
. (3.11)

Given that α = 1, Λ = 1/671 mm groove spacing, p = 1, λ0 = 780 nm and
θi = sin−1(pλ0

2Λ
) = 0.2648 radians, we find that β−1 = 0.55 mm/ps. Thus, a
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Figure 3.2: Temporal and spatial shaping a) Measured pulses with and without
spatial shaping for a sinusoidal phase modulation b) Measured and simulated
pulses for a sinusoidal phase modulation.
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pulse stretched to 0.5 ps FWHM can expect it’s spatial mode to stretch by
0.28 mm relative to an unshaped pulse.

From here, it’s worth discussing the fact that most ultrafast coherent con-
trol experiments are performed in a focus. In a focus, each frequency compo-
nent and sub-pulse comes to the same place in space. Working in a focus not
only allows high enough field strengths to be achieved, but it removes the lat-
eral spatial translation of each temporal sub-pulse (for the case of a sinusoidal
phase modulation) while maintaining the pulse’s temporal order. Diffraction
of the laser at the Fourier plane by the AOM distorts the laser k vectors and
therefore the laser’s spatial distribution in the far field. This follows from the
fact that the far-field diffraction pattern of the pulse is given by its spatial
Fourier transform. If you then subsequently focus the far-field beam (e.g. into
an atomic/molecular sample) spatial distortion becomes k-vector distortion in
the focus where the experiment takes place. Therefore, space-time coupling
introduced by the pulse shaper is rendered minimal by working in a focus.
Further, working in a focus helps us ensure that spatially filtering the beam
doesn’t clip any temporal features present in a shaped pulse that may have
been laterally translated because of space-time coupling. This is demonstrated
in Fig. 3.2(a) where the time structure remains intact (although modified be-
cause of dispersion) after passing through a pinhole. All experiments presented
in this thesis we performed in a focused geometry.
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Chapter 4

Theory

This chapter covers the theoretical background for experiments presented in
subsequent chapters. In it, we cover single and multiphoton excitation by
weak and strong femtosecond pulses. For experiments in this thesis, we use
Alkali atoms to study electronic excitation by ultrafast laser pulses. Therefore,
the systems we study can be considered hydrogen-like, where we neglect the
motion of core electrons and the nucleus, and only consider the outer shell
S-state electron. In this case, we are only concerned with how an electron is
coupled to a laser field, where the standard treatment makes use of the dipole
approximation. A very well studied system in atomic physics is the two-level
atom coupled to an electric field. From this, the concept of a coherent exci-
tation rate is formed (Rabi frequency), as well as how it depends on detuning
and the light field intensity. This system can then provide the foundation for
what happens when the laser field becomes strong and other effects start to
play a more prominent role.

4.1 Single Photon Absorption

Consider a field-free two-level atom in an energy basis with eigenfunctions
given by

Ĥ0 |i⟩ = ~ωi |i⟩ , (4.1)

where i = g,e, g is the ground state, and e is the excited state. The wavefunc-
tion for the system can be written as,

ψ(t) = ag(t)e
−iωgt |g⟩+ ae(t)e

−iωet |e⟩ , (4.2)

where |g⟩ and |e⟩ denote the ground and excited states, respectively, ωg =
Eg/~, ωe = Ee/~, and the complex coefficients ag(t) and ae(t) must satisfy
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|ag(t)|2+ |ae(t)|2 = 1. If this system is coupled to an electric field whose carrier
frequency and envelope are allowed to vary in time, then their interaction under
the dipole approximation is written as,

ĤAF = −µ · ϵ(t). (4.3)

Here, µ̂ is the atomic dipole moment and ϵ(t) is the electric field where,

ϵ(t) =
E(t)

2
e−iω0teiϕ(t) + c.c., (4.4)

and ω0 is the central frequency of the light field, ϕ(t) is the temporal phase,
and E(t) is the pulse envelope. Then, the the interaction has matrix elements
in the field-free energy basis given by,

⟨i| ĤAF |j⟩ = −µijϵ(t), (4.5)

where for linearly polarized light, µij = ⟨i| µ̂ · ϵ̂ |j⟩ = µji. For the Alkali atoms
we study, many of the dipole matrix elements are tabulated [57]. The time
evolution of the wavefunction ψ(t) is governed by the Schrödinger equation

i~
∂

∂t
ψ(t) = Ĥ(t)ψ(t), (4.6)

where Ĥ(t) = Ĥ0 + ĤAF (t). Then, the evolution of the time-dependent coef-
ficients in the interaction representation are,

ȧg(t) =
iµgeE(t)

2~
(
ei(ω0−ωeg)t−iϕ(t) + e−i(ω0+ωeg)t+iϕ(t))

)
ae(t) (4.7)

ȧe(t) =
iµegE(t)

2~
(
ei(ω0+ωeg)t−iϕ(t) + e−i(ω0−ωeg)t+iϕ(t))

)
ag(t) (4.8)

where, ωeg = ωe − ωg. The Rabi frequency is defined as µegE(t)

~ = Ω̄(t). If
ω0 ∼ ωeg so that |ω0 − ωeg| << |ω0 + ωeg|, we can make the Rotating Wave
Approximation (RWA) where we drop terms that oscillate close to 2ω0. Then,
for a pulse where ϕ(t) = 0 the general solutions to these equations are,

ag(t) = cos(

t∫
−∞

Ω(t′)

2
dt′) (4.9)
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ae(t) = i sin(

t∫
−∞

Ω(t′)

2
dt′) (4.10)

where Ω(t′) =
√
Ω(t′)2 +∆2

eg, ∆eg = ω0 − ωeg. The excited state amplitude

at all times depends on the arguments of Eqs. (4.9) and (4.10). In the limit
that t→ ∞, it is clear (in accordance with the Pulse Area Theorem) that the
excited state population |ae(t→ ∞)|2 depends on the area of the pulse and is
independent of pulse shape.

4.2 Multiphoton Absorption in Weak Fields

We now wish to consider more than two states in the atom and in particu-
lar an electronic structure that allows the absorption of two photons from a
femtosecond pulse. Here we include an intermediate state between the ground
and final state and examine two separate cases for the intermediate state: near
resonance and far from resonance. Since both cases are studied experimen-
tally in this thesis involving Rubidium and Sodium, respectively, a theoretical
description of each system interacting with a femtosecond pulse is appropriate.

4.2.1 Near Resonant Intermediate State

Consider an atom with ground state |g⟩, intermediate states |m⟩, and excited
state |e⟩, shown in Fig. 1.1(a). If illuminated by a weak ultrafast pulse, the
excited state population ae(t) can be described by second-order perturbation
theory (after making the RWA) as

ae(t) = − 1

4~2
∑
m

µemµmg

t∫
−∞

dt′
t′∫

−∞

dt′′ϵ(t′′)ϵ(t′)ei∆emt′ei∆mgt′′ . (4.11)

Here, µem and µmg are the dipole matric elements, ∆em = ω0 − ωem, ∆mg =
ω0 − ωmg and the sum is performed over all intermediate states |m⟩. In order
to obtain the excited state population after the pulse has turned off, we must
compute |ae(t→ ∞)|2.

From here we follow [12] and note that an analytic transformation of the
excited state amplitude to the frequency domain is instructive in the weak field
limit for several reasons. First, contributions to the excited state amplitude
from frequency components exactly on resonance can be isolated from those
which are not. Further, it becomes clear in the frequency domain how one
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can constructively and destructively interfere photon pairs across the laser
bandwidth in exciting the atom from the ground state to the excited state.
Later, we will see that this picture breaks down for strong fields as the energy
levels shift in time and therefore the resonance condition becomes dynamic.
Making a change of variables, let t′ − t′′ = t̄. Then, t′′ = t′ − t̄ and, holding t′

constant, dt̄ = −dt′′. Then,

ae = − 1

4~2
∑
m

µemµmg

∞∫
−∞

dt′
∞∫
0

dt̄ϵ(t′)ϵ(t′ − t̄)ei∆t′e−i∆mg t̄ (4.12)

where we have defined the two-photon detuning to be ∆ = 2ω0 − ωeg. Ex-
pressing ϵ(t′ − t̄) by its Fourier transform, ae becomes

ae = − 1

4~2
∑
m

µemµmg

∞∫
−∞

dωE(ω)

∞∫
−∞

dt′ϵ(t′)e−i(ω−∆)t′

∞∫
0

dt̄ei(ω−∆mg)t̄. (4.13)

Using the fact that,

∞∫
0

dteiωt = πδ(ω) + iP.V.(
1

ω
) (4.14)

and
∞∫

−∞

dt′ϵ(t′)ei(∆−ω)t′ = E(∆− ω) (4.15)

we find, in agreement with [12] that

ae = − 1

4~2
∑
m

µemµmg

πE(∆em)E(∆mg) + iP.V.

∞∫
−∞

dω
E(ω)E(∆− ω)

ω −∆mg

 ,
(4.16)

where P.V. denotes the Cauchy principle value operator. The first term in Eq.
(4.16) contains the contributions to the excited state amplitude from those
frequencies exactly matching the |g⟩ → |m⟩ and |m⟩ → |e⟩ transition. The
second term contains contributions to the excited state amplitude that come
from frequency pairs that still make up the |g⟩ → |e⟩ transition even though
neither is on resonance itself. As one might expect for a harmonically driven
system, the off-resonant second term in Eq. (4.16) is π/2 out of phase with
the on-resonant term.
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4.2.2 Non-resonant Intermediate State

We now wish to consider what happens when the intermediate state is far from
resonance (Fig. 1.1(b)). In this case both ∆gm and ∆em are much larger than
the laser bandwidth ∆ω, so that E(∆gm) → 0 and E(∆em) → 0 in Eq. (4.16).
Therefore, the on-resonance contributions to the excited state amplitude in
Eq. (4.16) vanish. What remains is to examine the principle value integral
under the approximation of large detuning between the ground/excited state
and intermediate states. If we note that ∆mg >> ∆ω when the detuning
between the ground and intermediate states is large, then ω −∆mg ∼ −∆mg.
Therefore the denominator changes by little for the integral over the frequency
bandwidth of the laser (i.e., where E(ω) is nonzero) and can removed from
the integral with the value −∆mg. Then Eq. (4.16) is approximated as

ae ≈ − i

4~2
∑
m

µemµmg

−∆mg

∞∫
−∞

dωE(ω)E(∆− ω), (4.17)

in agreement with the result of [38]. If we note that E(ω) = A(ω)eiϕ(ω),
where ϕ(ω) is the spectral phase, and we let the two-photon detuning be zero
(∆ = 0), then the two-photon absorption probability |ae|2 is maximized for a
transform limited pulse (ϕ(ω) = 0).

4.2.3 (2+1)Three-photon Absorption

In this section we lay out the framework for weak (perturbative) interaction
between a femtosecond pulse and a three level system with both nonlinear and
linear coupling between states. Shown in Fig. 1.1, the ground and excited
state are coupled by two photons through an off-resonant set of intermediate
states |m⟩. Additionally, there is a single photon transition to a resonant state
|r⟩. If this system is weakly coupled to a femtosecond pulse, the amplitude for
state |r⟩ can be described by third order time-dependent perturbation theory.
Here we can use the limiting case of Eq. (4.17) to derive an expression for the
amplitude to be in the resonant state |r⟩ after the pulse has turned off. Making
use of the Fourier convolution theorem, we can express the non-resonant two-
photon absorption contributions at any time by,

ae(t) = − 1

4~2
∑
m

µemµmg

−∆mg

t∫
−∞

dt′ϵ2(t′)ei∆t′ . (4.18)
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If we now include single-photon coupling to the resonant state |r⟩, the third
order expression in the Rotating Wave Approximation becomes

ar(t) =
1

i~3
µre

∑
m

µemµmg

−∆mg

∞∫
−∞

dt′
t′∫

−∞

dt′′ϵ(t′)ϵ2(t′′)ei∆ret′ei∆t′′ , (4.19)

where ∆re = ω0−ωre. From here we can see that Eq. (4.19) has a similar form
to Eq. (4.11), with the exception that the |g⟩ → |e⟩ transition now depends
on the square of the field, as expected for a two-photon absorption. We make
the same change of variables so that t′ − t′′ = t̄. Then, t′′ = t′ − t̄ and, holding
t′ constant, dt̄ = −dt′′. We now note that,

ϵ2(t′ − t̄) =

∞∫
−∞

dω

∞∫
−∞

dω′E(ω)E(ω′)e−iω(t′−t̄)e−iω′(t′−t̄), (4.20)

and find that Eq. (4.19) takes the form,

ar ∼
∞∫

−∞

dω

∞∫
−∞

dω′E(ω)E(ω′)

∞∫
−∞

dtϵ(t′)ei(∆+∆re−[ω+ω′])t′

∞∫
0

dt̄e([ω+ω′]−∆)t̄.

(4.21)
Performing the integral over t̄ and expressing the integral over t′ by its Fourier
transform, we come to final expression for state |r⟩ [13],

ar =
1

i~3
µre

∑
m

µemµmg

−∆mg

[
Aon−res + Anear−res

]
(4.22)

Aon−res = πE(∆re)

∞∫
−∞

dωE(ω)E(∆− ω) (4.23)

Anear−res = i

∞∫
−∞

dωE(ω)P.V.

∞∫
−∞

dω′E(ω
′)E(∆re +∆+ [ω + ω′])

[ω + ω′]−∆
. (4.24)

The two terms in Eq. (4.22) can be identified in the following way. The first
term coherently sums two-photon resonant frequency pairs between |g⟩ and
|e⟩ with the single-photon resonant frequency between |e⟩ and |r⟩, indicated
by the left set of arrows in Fig. 1.1(c). The second term contains contribu-
tions to the |g⟩ → |r⟩ transition from photon triplets that are neither single
nor two-photon resonant, and is indicated by the right set of arrows in Fig.
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1.1(c). It is worth noting that Aon−res has the same form as Eq. (4.17) (i.e.,
a non-resonant two-photon absorption), but now multiplied by the frequency
component connecting |e⟩ to |r⟩.

4.3 Multiphoton Absorption in Strong Fields

In this section we discuss the absorption of two photons in the cases of near-
resonant and non-resonant intermediate states when the exciting field is strong.
Once the exciting field becomes strong, a perturbative description of the atom-
field interaction is no longer valid because the ground state population can be
largely depleted. Further, the energy levels of the atoms can shift as a function
of time. This leads to a time-dependent detuning that causes the phase of
atomic coherence to advance relative to that of the laser. Consequently, a
time domain description of two photon absorption in strong fields is more
appropriate.

4.3.1 Dynamic Stark Shifts from Adiabatic Elimination

At this point we are interested in deriving a description of what happens to
the electronic states when the exciting field becomes strong. Therefore, we
give a derivation of how the electronic structure of an atom can shift in time
as a result of a strong driving field, known as Dynamic Stark Shifts (DSS).
The example derived here is for single-photon absorption in a two-level atom
and is extendable to more than two levels.

Starting with Eq. (4.8), we can integrate this equation to get

ae(t) =

t∫
−∞

dt′
iµegE(t

′)

2~

(
ei(ωeg−ω0)t′+iϕ(t′) + ei(ωeg+ω0)t′−iϕ(t′))

)
ag(t

′). (4.25)

If the detuning between the ground and excited state is large compared
to the pulse bandwidth, then E(t) and eiϕ(t) both evolve much slower than
ei(ωeg−ω0)t and ei(ωeg+ω0)t and can therefore be removed from the integral. Cal-
culating the remaining integrals by parts, we keep the boundary terms and
ignore the remaining terms because they are small. This is known as Adia-
batic Elimination [58]. Thus ae(t) becomes

ae(t) =

(
iµegẼ(t)

2~
ei(ωeg−ω0)t

i(ωeg − ω0)
+
iµegẼ

∗(t)

2~
ei(ωeg+ω0)t

i(ωeg + ω0)

)
ag(t), (4.26)
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|m>

|g>

Figure 4.1: Electronic Levels under Adiabatic Elimination (laser bandwidth
shown at the left). Single-photon absorption between a ground state |g⟩ and
a manifold of far off-resonant excited states |m⟩

.

where Ẽ(t) = E(t)eiϕ(t). Substituting Eq. (4.26) into Eq. (4.7), we drop terms
that evolve at E(t)2e±i2ω0t because E(t) changes slowly compared to e±i2ω0t.
Then ȧg(t) becomes

ȧg(t) =
iµ2

eg|Ẽ(t)|2

(2~)2

(
2ωeg

ω2
eg − ω2

0

)
ag(t). (4.27)

We can now define the Dynamic Stark Shift (DSS) to be,

ωs
g(t) =

µ2
eg|Ẽ(t)|2

2(~)2
ωeg

ω2
eg − ω2

0

= ωs
g|Ẽ(t)|2. (4.28)

The DSS is interpreted as the time-dependent shift of an energy level due
to coupling to another level with a strong field. Further, if the ground state
is coupled to a manifold of dipole allowed states |m⟩ that are all far from
resonance (Fig. 4.1), then the expression for the DSS becomes

ω(s)
g (t) =

∑
m

µ2
mg|Ẽ(t)|2

2(~)2
ωmg

ω2
mg − ω2

0

. (4.29)

In the case of a two-photon absorption through a manifold of far off-resonant
intermediate states (see Figure 1.1(b)), adiabatic elimination of the off-resonance
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states can also be performed [59]. In this case, the DSS becomes

ω
(s)
{e,g}(t) =

∑
m

µ2
{e,g}m|Ẽ(t)|2

2(~)2
ωm{e,g}

ω2
m{e,g} − ω2

0

. (4.30)

4.3.2 Near Resonant Intermediate State

With an understanding of how the dynamic Stark shift can change energy
levels in time due to other far off-resonant states, we can now formally describe
two-photon absorbing atoms where the intermediate states are near resonance
and the exciting field is strong. First consider the ground state |g⟩ and ask
which other dipole allowed states are far from resonance. If we adiabatically
eliminate those off-resonant state in the same way for arriving at Eq. (4.29),
we can calculate the DSS for ground state ωs

g(t). Likewise, we can adiabatically
eliminate the off-resonant states for the intermediate |m⟩ and excited states
|e⟩ and also calculate the DSS ωs

m(t) and ωs
e(t) for |m⟩ and |e⟩, respectively.

Since the DSS describes the time-dependent shift of the energy levels, they end
up as diagonal entries in the Hamiltonian. The Hamiltonian in the interaction
representation then becomes (after applying the RWA)

Ĥ(t) =

 ω
(s)
g (t) χgm(t)e

i(∆gmt−ϕ(t)) 0

χ∗
gm(t)e

−i(∆gmt−ϕ(t)) ω
(s)
m (t) χme(t)e

i(∆met−ϕ(t))

0 χ∗
me(t)e

−i(∆met−ϕ(t)) ω
(s)
e (t)

 ,

(4.31)

where ω
(s)
g (t), ω

(s)
m (t), and ω

(s)
e (t) represent the Dynamic Stark Shifts of the

ground, intermediate, and excited stats of the atom, respectively, and are
calculated the same as Eq. (4.29) and as in [60]. Here ∆gm and ∆me represent
the detuning between the ground to intermediate and intermediate to excited
state transitions, respectively, χgm(t) and χme(t) represent the single photon
Rabi frequencies give by χgm(t) = E(t)µgm/~ and χme(t) = E(t)µme/~.

It is instructive to transform this Hamiltonian into a form that has only
off-diagonal elements at each instant of time. Finding the appropriate unitary
transformation matrix and carrying out the necessary matrix multiplication
and addition (see appendix A) we can express the transformed Hamiltonian
as,

Ĥ(t) =

 0 χgm(t)e
iαgm(t) 0

χ∗
gm(t)e

−iαgm(t) 0 χme(t)e
iαme(t)

0 χ∗
me(t)e

−iαme(t) 0

 , (4.32)
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where

αgm(t) =

t∫
−∞

dt′δsmg(t
′) + ∆mgt+ ϕ(t) (4.33)

and

αme(t) =

t∫
−∞

dt′δsem(t
′) + ∆emt+ ϕ(t) (4.34)

represent the relative phases between the atom and the pulse (called the atom-
field phase) for the corresponding transitions. The atom-field phase represents
the phase advance of the |g⟩ → |m⟩ and |m⟩ → |e⟩ coherence relative to the

phase of the laser field. Here, δ
(s)
ij (t) = ω

(s)
i (t) − ω

(s)
j (t) and is defined as the

differential Stark shift. The above will be used later to describe experiments
involving two-photon absorption in Rubidium where absorption from the 5S
state to 5D state is resonantly enhanced by the 5P1/2 and 5P3/2 states.

4.3.3 Non-resonant Intermediate State

As before, we are interested in two-photon transitions where the states medi-
ating the two-photon absorption are far from resonance, so that ∆ω << ∆mg.
This was studied in considerable detail as part of the thesis work of Carlos
Trallero-Herrero [27], and here we highlight the main results.

Again, referring to Fig. 1.1(b) the intermediate states |m⟩ can be removed
by Adiabatic Elimination [59]. For the case of a non-resonant two-photon
absorption in the limit of a strong field, Carlos Trallero-Herrero found that
the Hamiltonian for a strong field two-photon absorption could be written as,

Ĥ(t) =

(
ω
(s)
g (t) χ∗(t)ei(∆t−φ(t))

χ(t)e−i(∆t−φ(t)) ω
(s)
e (t)

)
, (4.35)

where here χ(t) is the effective two-photon Rabi frequency given by,

χ(t) = −
∑ µemµmg

(2~)2
ϵ2(t)

ωmg − ω0

= χ0ϵ
2(t) (4.36)

and ω
(s)
e,g(t) is given by Eq. (4.30).

Further insight was gained [27, 61] by rotating the Hamiltonian in Eq.
(4.35) to a frame that removes the diagonal elements. Performing a unitary
transformation to the rotating frame (see appendix A) we find that the Hamil-
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tonian becomes,

Ĥ(t) =

(
0 χ∗(t)eiα(t)

χ(t)e−iα(t) 0

)
, (4.37)

where

α(t) =

t∫
−∞

dt′δ(s)ω (t′) + ∆t+ ϕ(t) (4.38)

is the atom-field phase. Here, ∆ = 2ω0 − ωeg represents the two-photon de-

tuning, δ
(s)
ω (t) = ω

(s)
e (t)−ω(s)

g (t) represent the differential Stark shift, and ϕ(t)
is the time-dependent phase of the electric field. In this case, the |g⟩ → |e⟩
transition can proceed efficiently if one makes α(t) a slowly varying function
of time. In Eq. (4.37), the strong-field two-photon version of the pi pulse
condition [39]is evident,

∞∫
−∞

dtχ(t)eiα(t) =
π

2
. (4.39)

From Eq. (4.39), it is clear the integral is maximal when α(t) varies slowly in
time and therefore the population of the excited state is maximal.

4.3.4 (2+1)Three-photon Absorption

In the last section of this chapter, we formally focus on one of the main systems
emphasized in this thesis - a (2+1) three-photon absorbing atom excited by a
strong femtosecond pulse (see Figure 1.1(c)). Deriving the Hamiltonian of this
system amounts to taking the result of Eq. (4.35) and extending it to include
another a single-photon absorption to a dipole-allowed state. In doing so, we
can express the time-dependent atom-field Hamiltonian as:

Ĥ(t) =

 ω
(s)
g (t) χ∗(t)ei(∆t−ϕ(t)) 0

χ(t)e−i(∆t−ϕ(t)) ω
(s)
e (t) χ∗

er(t)e
−i[ϕ(t)/2−∆ert]

0 χer(t)e
i[ϕ(t)/2−∆ert] ω

(s)
r (t)

 .

(4.40)
Here, ϕ(t) is field phase, ∆ = 2ω0−ωeg is the two-photon |g⟩ → |e⟩ atom-field

detuning, ω
(s)
g (t), ω

(s)
e (t), and ω

(s)
r (t) represent the time-varying dynamic Stark

shift of the ground |g⟩, excited |e⟩, and resonant |r⟩ states, respectively, χ(t)
represents the two-photon Rabi frequency, µre and ∆er are the one-photon
coupling between the excited and resonant states and corresponding detuning,
ε(t) is the electric field, and χer(t) =

µre

2~ ε(t). Here, the DSS of the resonant
state |r⟩ is again calculated according to Eq. (4.29) and [59].
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Chapter 5

Strong Field Control of a Three
Level System

5.1 Introduction

In this chapter, we concentrate on strong field population transfer in a three-
level system with multiphoton coupling between states. An important aspect
of coherent control is selectively populating a particular target state with high
efficiency. Many techniques have been developed which make use of strong-
field coupling to atomic or molecular states via single photon (dipole allowed)
transitions. These include Adiabatic Rapid Passage (ARP) and variants -
Chirped Adiabatic Rapid Passage (CARP)[15, 16], Piecewise Adiabatic Rapid
Passage [17], and Stimulated Raman Adiabatic Passage (STIRAP)[22]. These
approaches are powerful and effective and there is interest in extending them to
multi-photon coupling between atomic and molecular levels [7, 23–26]. In or-
der to achieve efficient population transfer beyond the limits of single-photon
excitation, one has to take into consideration multiple interfering pathways
and dynamic Stark shifts, which make resonance conditions time-dependent
and modify the phase advance of the bare states during the atom/molecule-
field interaction. A dramatic example of this is the transition from stimulated
absorption to stimulated emission well before half a Rabi cycle is complete in
strong-field two-photon absorption [39, 60]. It is precisely these phase modu-
lations of the bare states that ARP techniques are very sensitive to [24].

For complex systems excited by strong fields, it is often difficult to design
optimal pulse shapes for control, and closed-loop experiments are carried out
to discover effective pulses. While closed-loop experiments are often capable of
finding pulses which lead to improvements in the population of a target state,
interpreting the control dynamics is often challenging. Here, we demonstrate
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Figure 5.1: Experimental diagram showing the laser system, spatial filter
(pinhole) with imaging system, heat pipe oven, photomultiplier tube (PMT)
with entrance iris, and computer used in the feedback loop.

and interpret a population inversion using three-photon absorption from a
single intense ultrafast laser pulse shaped in a closed-loop learning control
experiment. Our experiments are performed with atomic sodium, where three-
photon absorption to the 7p state from the 3s ground state is possible at 778
nm, with a two-photon resonant enhancement at 777 nm provided by the 4s
state. Figure 5.4 illustrates the relevant atomic levels. Previous work on alkali
atoms has looked at perturbative two and three-photon absorption [11, 13,
62], non-perturbative two-photon absorption [23, 39], as well as multi-photon
ionization [63]. Adiabatic elimination of the off-resonant states in the system
allows for a quantitative description in terms of a three-level Hamiltonian [64].
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5.2 The Strong Field Limit

As mentioned in Chapter 2, both fluorescence and superfluorescence (SF) were
collected from the excited atoms. Fluorescence from the center of the heat pipe
is collected at 90o with respect to the beam propagation direction with an f2
(focal length is twice the diameter) lens and imaged onto a photomultiplier
tube (PMT), as illustrated in Fig. 5.1(a). Interference filters were used to
isolate specific transitions (e.g. 3p − 3s). In order to avoid collecting fluo-
rescence from atoms exposed to different laser intensities in the focal region,
the beam is focused onto a diamond pinhole prior to the heat pipe oven. We
produce a laser focus with minimal intensity variation by imaging the spatially
filtered focus into the sample chamber. Figure 2.7 shows the measured trans-
verse spatial profile of the intensity at the image plane of the heat pipe oven
with and without the pinhole present. We avoid collecting fluorescence from
atoms exposed to different intensities along the longitudinal axis by placing a
small (≈ 1mm) aperture in front of the PMT. These adjustments allow us to
measure the dependence of fluorescence yield vs pulse shape, which otherwise
would be masked by spatial intensity averaging, an example of which is given
in [64].

5.3 Measuring the Excited State Population

Figure 5.3 shows the energy levels of sodium that contribute to the measure-
ment of the 4s and 7p populations. The dashed lines indicate the three (2+1)
photon absorption process and the solid lines show transitions that we mea-
sure with our PMT. Fluorescence decay from the 7p state is complicated by
the fact that the excited atoms undergo collisions with Argon atoms in the
oven. Here we lay out a basic description of how atoms initially excited to
the 7p state undergo inelastic l-mixing collisions with argon atoms in the heat
pipe oven. While there has been considerable theoretical work on related col-
lisional phenomena such as [65], we have not found predictions for the specific
conditions and states of our experiment. Collisional transfer effects after ex-
citation of Na D and S Rydberg states were studied experimentally [66, 67],
and transfer from the 6p state was investigated in [68], where it is reported
that l-changing collisions between nearly degenerate levels have a much larger
cross-section than p− d transfer, for which the energy mismatch is larger.

Our experimental measurements indicate that atoms initially excited to the
7p state by our laser undergo rapid collisional transfer to neighboring states,
eventually populating an array of states from the 6s to the 7p in energy (see
the upper half of Fig. 5.4) before spontaneous decay takes place. At the
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Figure 5.2: 7p fluorescence yield as a function of pulse energy for an unshaped
pulse. The transition to a non-perbative response is evident by a roll-over of
the 7p signal. In the weak field limit, one expects the fluorescence yield to
behave quadratically with pulse energy.

Na and Ar densities used in our experiments, these collisions take place in
10s to 100s of picoseconds , while spontaneous emission takes 10s to 100s of
nanoseconds based on fluorescence measurements. For states below the 6s,
the energy difference between states is sufficiently large that collisions are no
longer efficient in populating them. Thus, states below the 5p are populated
via spontaneous emission. All transition to the 3p state starting from states
above the 5p show detector-limited rise times (<4ns), which is consistent with
those states being collisionally populated. Fluorescence signals originating
below the 5p have significant risetimes greater than 10 ns, as illustrated in
Fig. 5.5(b). Figure 5.4 shows the states mainly populated by collisions with
argon atoms.

Based on this picture of collisional and fluorescence decay, we used the
measured fluorescence from the 7s− 3p, 6d− 3p, 4d− 3p, 6s− 3p, and 5s− 3p
transitions to determine the initial population in the 7p state immediately
after the shaped pulse. Comparing this fluorescence with fluorescence on the
3p− 3s line allowed us to determine the fraction of excited atoms which were
excited to the 7p state vs the 4s state (two photon resonant at 777 nm). What

39



Figure 5.3: The dashed lines indicate the three (2+1) photon absorption
process. The solid lines include transitions measured by the PMT. The dashed
box shows a region which is enlarged in Fig. 5.4 to show which states are
populated by collisions.
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Table 5.1: Table of fluorescence lines we measure in the Sodium atom. For
each line we list the transition wavelength, quantum efficiency of the PMT,
efficiency of the interference filter, filter part number, and the width of the
interference filter.

7s 6d 5d 3p 4d 5s 6s
Wavelength [nm] 475 467 498 589 569 615 515
Quantum Efficiency 0.0875 0.091 0.07 0.013 0.02 0.01 0.058
Filter Transmission 0.17 0.46 0.78 0.56 0.52 0.19 0.28
Filter Thorlabs (FB) 470-10 470-10 500-40 590-10 570-10 610-10 510-10
Filter Width [nm] 10 10 40 10 10 10 10

remains is to simply know what fraction of the atoms are excited out of the
ground state (i.e., out of the 3s state and into the 4s or 7p). Measurements
of superfluorescence (SF) on the 3p − 3s transition for a pulse that excites
the 4s state allowed us to determine the fraction of atoms excited above the
ground state (4s and 7p), since earlier work demonstrated a sharp threshold
in the 4s state population (0.66) is needed for superfluorescence to occur at
high densities [31].

Combining these two measurements allowed us to determine the population
of the 7p state after the atoms interacted with the shaped laser pulse (but
before inelastic collisions) without having to rely on knowledge of the density
of atoms in the focus, the solid angle subtended by the detector or our absolute
detection efficiency. We note that this calculation yields a lower bound for the
population in the 7p state because the superfluorescence threshold may be
higher than 0.66 for sodium vapor at 270oC. This follows from the fact that
coherent emission is based on an achieved population inversion and density
of the gain medium. If the gain medium has a smaller density (as you would
expect for a lower temperature of the Sodium vapor) the required population
inversion would be higher for the build up of coherent emission.

5.4 Control results

In order to discover an optimal pulse shape for populating the 7p state, we
used the 7s−3p and 6d−3p fluorescence lines [57] as a feedback signal for our
GA. The fluorescence for a shaped and unshaped pulse is shown in Fig. 5.5(a)
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Figure 5.4: Grotrian diagram indicating which states are populated via col-
lisions from the 7p state. This figure is an enlargement of the dashed box
region in Fig. 5.3. The dashed line separates the states primarily populated
by collisions from those populated by spontaneous emission. States we mea-
sure fluorescence from are labelled with italics.
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and illustrates the order of magnitude fluorescence enhancement achieved by
our GA. Fitness (integrated fluorescence yield) as a function of GA generation
is shown in the inset of Fig. 5.5(a). Table 5.2 summarizes our measurements of
the 7p population for an optimized laser pulse. The numbers were calculated
in the following manner. We first measured fluorescence for the 7s−3p, 6d−3p,
4d−3p, 6s−3p, and 5s−3p transitions and used the integrated fluorescence in
conjunction with branching ratios to calculate the number of atoms initially
in the 7s, 6d, 6f, 6s and 5s states (collisionally populated after the atom-
laser interaction). All the transitions could be isolated with interference filters
except the 7s−3p and 6d−3p, which were collected with a single filter and then
fitted with the known lifetimes [69] to extract independent contributions. We
explicitly looked for evidence of ionization by checking for decays from states
that would be populated by recombination. Based on our measurements, we
estimate that less than 1% of the fluorescence signal on the transitions listed
above was due to ionized atoms.

Our goal was to establish a population inversion (|Ψ7p|2 > 0.5) by an op-
timally shaped pulse and this relied on two key measurements: spontaneous
emission from various excited states of the atom and stimulated emission (su-
perfluorescence) from one of the excited-to-ground-state transitions. One im-
portant aspect of our measurements is that by always measuring the ratio of
fluorescence, we sidestep uncertainties associated with collection efficiency like
transmission through glass, solid angle subtended by the lens used to collect
fluorescence, and the number of atoms in the laser focus. The collection effi-
ciencies to worry about are quantum efficiency of the PMT, efficiency of the
interference filters used to isolate fluorescence, and radiation trapping.

The number of atoms decaying from the collisionally populated states (af-
ter the shaped pulse populated the 7p excited state) were summed to give a
lower bound for the initial number of atoms in the 7p state per unit detection
efficiency. The total number of atoms excited per unit detection efficiency was
calculated from the integrated 3p− 3s fluorescence after correcting for radia-
tion trapping (discussed below). The ratio of the two quantities (the number
of atoms excited to the 7p state per unit detection efficiency divided by the
number of atoms excited per unit detection efficiency) yielded the fraction
of excited atoms which were in the 7p state (|Ψ7p|2/(|Ψ4s|2 + |Ψ7p|2) in table
5.2). What remains is to calculate the fraction of atoms excited out of the
ground state (|Ψ4s|2 + |Ψ7p|2 in table 5.2). In order to calculate the fraction
of atoms excited out of the ground state, we measured 3p − 3s fluorescence
as a function of superfluorescence (SF) from the 3p− 3s transition. Thus, by
noting the 3p − 3s fluorescence at the SF threshold (for which earlier work
has established an initial 4s population of 0.66 [31]), we could determine the
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Figure 5.5: Fluorescence traces and Fitness. (a) The solid curve is a fluores-
cence measurement (including light from the 7s−3p and 6d−3p transitions) for
a GA optimized pulse; the dashed curve is for an unshaped pulse. The inset is
fitness (integrated fluorescence yield) as a function of generation. The dashed
line indicates the fitness of a transform-limited (unshaped) pulse. (b) The
solid curve is 6s−3p fluorescence and the dashed curve is 4d−3p fluorescence;
both curves are normalized and correspond to a GA optimized pulse.
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Table 5.2: Measured fraction of excited atoms, fraction of atoms in the 7p
state, and 7p population with corresponding standard deviation (STD). The
values represent an average of 5 different GA trials at a fixed temperature of
270oC and central wavelength of 778 nm.

|Ψ4s|2 + |Ψ7p|2 |Ψ7p|2/(|Ψ4s|2 + |Ψ7p|2) |Ψ7p|2
Value 0.69 0.89 0.61
STD 0.09 0.08 0.09

population of the 4s state for a given fluorescence signal. We note that the
oscillator strength of the 7p− 3s transition (roughly two orders of magnitude
lower than the 3p− 3s) makes stimulated emission on this transition difficult
to measure at the densities used in our experiments.

As the mode imaged from the diamond pinhole into the heat pipe is not
perfect, there is some intensity variation across the transverse spatial profile.
Therefore, the population of the 4s state is not uniformly 0.66 across the
spatial profile of the laser and we correct for this by calculating the average
population across the measured mode profile for a peak population at SF
threshold of 0.66. We calculate the population of the 4s state averaged over
the transverse spatial profile of the mode to be ≈ 0.49 when SF is observed.
Taking the ratio of an integrated PMT trace at 589 nm for a 7p optimized
pulse to an integrated PMT trace at 589 nm for an unshaped pulse at SF
threshold and multiplying by the average 4s population gives the fraction of
excited atoms. We note that this approach yields a conservative value for the
average 7p population, with the peak population at the center of the beam
being significantly higher. Finally, computing the ratio of light measured from
the collisionally populated states to light from the 3p states and multiplying
by the fraction of excited atoms (also accounting for transitions to the ground
state that don’t go through the 3p state) we arrive at the final population in
the 7p state of 0.61

5.5 Radiation trapping

Since 3p− 3s fluorescence is from a transition coupled directly to the ground
state, atoms in the laser focus that emit 3p−3s fluorescence can be reabsorbed
(radiation trapping [70]) by atoms that are not in the laser focus. Therefore,
at high enough Sodium vapor density a significant portion of the 3p− 3s flu-
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orescence will not be imaged onto our PMT. In order to correct for the light
not detected due to radiation trapping, we measured the 3p− 3s fluorescence
as a function of temperature from 270oC to 147oC, corresponding to densities
from 8.3× 1019 atoms/m3 to 1.3× 1017 atoms/m3. At low temperatures (and
densities) where radiation trapping is negligible, the integrated fluorescence is
expected to be a linear function of density. However, the relationship between
integrated fluorescence and density deviates from linearity as the density in-
creases. We derived a correction factor for the measured 3p− 3s light by first
extrapolating the linear dependence of fluorescence with density to high den-
sities and then taking the ratio of the linear extrapolation with the measured
fluorescence. The linear fit of fluorescence yield vs density gave a correction
factor of ≈ 3 for light collected at 270oC, corresponding to the temperature
of the experiment. Figure 5.6 illustrates the measurements of 3p− 3s fluores-
cence as a function of density along with our linear fit for low densities. We
note that while the atomic gas is optically dense for the 3p − 3s fluorescence
radiation, the drive laser pulse at ≈ 780 nm is not attenuated as it propagates
through the sample and measurements of the pulse shape at the heatpipe exit
are similar to those at the entrance.

5.6 Interpreting the Control

A key aspect of the experiment is understanding the dynamics underlying the
efficient population transfer driven by the shaped laser pulse. As a starting
point for the interpretation, we constructed Wigner distributions for our mea-
sured (SHG FROG) optimal pulses [71], where the Wigner distribution is given
as

w(t, ω) =
1

π

∞∫
−∞

dω′E∗(ω +
ω′

2
)E(ω +

ω′

2
)e−iω′t, (5.1)

and E(ω) is the electric field in the frequency domain [71]. The Wigner func-
tion is a quasi probability distribution (not positive definite) and shows how
the instantaneous frequency varies with time. Typical Wigner distributions for
two different optimal pulses are shown in Fig. 5.7. The optimal pulses found
by the GA showed varying temporal structure, but many in the experimental
trials showed clear indications of a negative linear chirp, such as the pulses
shown in Fig. 5.7. This motivated the experimental and numerical study of
population transfer as a function of linear chirp or quadratic spectral phase.
Therefore, we numerically integrated the Schrödinger equation and measured
the fluorescence yield as functions of pulse intensity and chirp. Working in
the rotating wave approximation and adiabatically eliminating nonresonant
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Figure 5.6: Dashed line is measured fluorescence yield vs sodium density and
the solid line is a fit in the linear region. The inset is zoomed to highlight the
region where fluorescence yield (arbitrary units) varies linearly with density.
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Figure 5.7: Wigner distributions for two pulses optimized by the GA for 7p
population transfer. The central wavelength of the pulses corresponds to λ0
= 783 nm.
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atomic levels, as discussed in chapter 4, we can express the time-dependent
atom-field Hamiltonian as:

Ĥ(t) =

 ω
(s)
g (t) χ∗(t)ei(∆t−φ(t)) 0

χ(t)e−i(∆t−φ(t)) ω
(s)
e (t) χ∗

er(t)e
−i[φ(t)/2−∆ert]

0 χer(t)e
i[φ(t)/2−∆ert] ω

(s)
r (t)

 . (5.2)

Here, φ(t) is field phase, ∆ = 2ω0 − ωeg is the two-photon 3s − 4s atom-

field detuning, ω
(s)
g (t), ω

(s)
e (t), and ω

(s)
r (t) represent the time-varying dynamic

Stark shift of the 3s, 4s, and 7p states, respectively, χ(t) represents the two-
photon Rabi frequency, µre and ∆er are the one-photon coupling between the
(4s) and (7p) states and corresponding detuning, ε(t) is the electric field, and
χer(t) =

µre

2~ ε(t).
The numerical results shown in Fig. 5.8(b) agree with the measurements

in Fig. 5.8(a). Here, U0 is the minimum pulse energy for an inversion on the
3s−4s transition, which corresponds to ≈ 12µJ with a uniform intensity profile
in our focal geometry. We note that a significant increase in population transfer
is observed for negative chirp, while positive values yield very little transfer.
The intuitive ordering of frequencies in the pulse, where first the atoms are
driven from the 3s to 4s state (two photon resonant at 777 nm and Stark
shifted to the higher frequency, lower wavelengths) with the blue frequency
components and then from the 4s to 7p state (resonant at 781 nm) with the
red components, is effective. However, the counterintuitive ordering of the
frequencies, as used in STIRAP, is not effective in this case. This is in direct
contrast to measurements of ultrafast population transfer with single-photon
mediated coupling between the levels [15]. We also used a measured optimal
pulse to numerically integrate the Schrödinger equation using the Hamiltonian
in Eq. 5.2 and a pulse energy of approximately 20µJ (∼ 1.6U0), shown in Fig.
5.9. In Fig. 5.9, the GA optimized pulse has temporal structure that is
different from the pulses used in Fig. 5.8. However, the dynamics associated
with a GA optimized pulse show that not only is the 7p population ∼ 0.6 after
the pulse turns off, but also the 4s intermediate state is populated throughout
the atom-field interaction. The fact that the intermediate state is populated
throughout the interaction becomes important in later paragraphs when we
discuss adiabatic vs. non-adiabatic passage.

Figure 5.10 shows calculated populations of the 3s, 4s and 7p states as
a function of time for pulses with a fixed energy of 3U0 and chirp rates of
-0.002 ps2 (panel c) and 0.002 ps2 (panel d). Panels a) and b) show Wigner
distributions for pulses with chirp rates of a) -0.002 ps2 and b) 0.002 ps2. The
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Figure 5.8: Calculated and measured population transfer to the 7p state
as a function of energy and chirp a) Measurement of 7s − 3p and 6d − 3p
fluorescence as a function of chirp. The data is normalized to the maximum
fluorescence measured and the white X marks the chirp rate associated with a
pulse discovered by the GA. b) Simulation of the 7p population as a function
of pulse energy and chirp. U0 is the minimum pulse energy for an inversion on
the 3s − 4s transition, which corresponds to ≈ 12µJ for a uniform intensity
profile with our focal geometry.
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Figure 5.9: Calculated 7p, 4s, and 3s populations for a for an optimal pulse.

Wigner function for a chirped Gaussian pulse is given by (see appendix A),

w(t, ω) =

√
2

πα
e−[2αω+ 1

2α
(βω−t)2] (5.3)

where α = 1/∆ω, ∆ω is the laser bandwidth, and β is the frequency domain
chirp rate. For a negative chirp, the pulse starts blue detuned relative to the
bare 3s − 4s transition frequency and is able to efficiently drive population
from the 3s to 4s state on the rising edge of the pulse since a blue detuning
can compensate for the average dynamic Stark shift on this transition [60].
Then as the frequency of the pulse sweeps to the red at high intensity, off-
resonance Rabi oscillations (coherent transients [72]) drive population between
the 3s and 4s states with decreasing amplitude. Finally, as the frequency of
the pulse sweeps through resonance for the 4s − 7p transition, population is
transferred to the 7p state resulting in a population inversion. The final 7p
population is about ≈ 0.6. However, the opposite chirp, shown in panel b),
yields a different behavior. Here, the pulse starts out closer to resonance with
the 4s − 7p transition, but far off resonance with the 3s − 4s transition. As
the intensity increases, the separation between the 3s and 4s states increases
with the DSS, keeping these states out of resonance despite the increasing
instantaneous frequency of the pulse. Once the pulse intensity reaches its
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Figure 5.10: Calculated Wigner distributions according to Eq. (A.53) for
chirp rates of a) -0.002 ps2 and b) 0.002 ps2. Panels c) and d) show the 3s
(dashed), 4s (dash-dot), and 7p (solid red) populations, as well as the intensity
envelope (solid black), corresponding to panels a) and b), respectively, for a
pulse energy of about 3U0. U0 is the minimum energy required for an inversion
on the 3s−4s transition, which corresponds to ≈ 12µJ for a uniform intensity
profile with our focal geometry.

peak and starts to decrease, with the instantaneous frequency still increasing,
the pulse can sweep through resonance on the 3s− 4s transition, transferring
population to the 4s state. Now the frequency is far detuned from the 4s− 7p
transition frequency and the intensity is sufficiently low that there is ineffective
transfer to the 7p. Rather than driving population from the 3s to the 7p state
without going through the 4s (as one might expect if STIRAP were effective
here), significant population is driven to the 4s state, and there is marginal
transfer to the 7p state (≈ 0.09).

A dressed state analysis illustrates a key problem associated with adia-
batic passage involving multiphoton coupling. Not only are the shape of the
dressed states influenced unfavorably by the DSS (the avoided crossings be-
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come smaller), but more importantly, the spacing between avoided crossings
scales differently with the intensity for single vs multiphoton coupling between
levels, making the nonadiabatic corrections large for all chirp values at our
pulse energies. Figure 5.11 shows the dressed states as a function of central
wavelength for an intensity of 1.44× 1015 W/m2.

Analytic calculations of the nonadiabatic corrections to STIRAP are com-
plicated by two features of our Hamiltonian: the detunings between the two
pairs of states are not the same, and dynamic Stark shifts are on the diagonal
entries of the Hamiltonian [73]. Therefore, we have calculated the nonadi-
abatic corrections to adiabatic passage numerically as a function of spectral
chirp rate, β. This is the most natural pulse shape parameter to vary as it
directly controls the time dependent detunings ∆(t) and ∆er(t), and can be
easily controlled at a fixed pulse energy. Our calculations compare the dif-
ference between the eigenvalues for the total effective interaction Hamiltonian
and the adiabatic Hamiltonian normalized by the eigenvalues for the adiabatic
Hamiltonian. This is a direct measure of adiabaticity [73] - when this normal-
ized difference is much smaller than 1, then the passage can be adiabatic, but
when the difference is large, then population can cross between dressed states
and adiabaticity is lost.

If U(t) is the matrix that diagonalizes HI(t) : D(t) = U(t)−1HI(t)U(t),
then the evolution of the dressed states is given by the total effective interaction
Hamiltonian: H′

I = D − iU−1U̇, where D is a diagonal matrix with the
dressed state energies as the diagonal elements. We computed the eigenvalues
of H′

I and D, and then divided their difference by the eigenvalues of D as a
function of the frequency domain chirp parameter, β. Intuitively, one might
expect the nonadiabatic corrections to decrease with increasing values of β
since for β >> 1/τ 2, |∆̇(t)| ∼ 1

β
, and the passage is more adiabatic for smaller

|∆̇(t)|. However, increasing β also decreases the peak electric field of the
pulse. As the splitting between dressed states scales nonlinearly with the
field for multiphoton coupling (χ ∼ ε2 in our case), increasing β can actually
increase the importance of the nonadiabatic corrections to the eigenvalues and
make the passage less adiabatic. The criterion for adiabatic passage with
single photon coupling, a single detuning, and a slowly varying envelope is

usually given by |∆̇(t)|
χ2(t)+∆2(t)

≪ 1 [73]. In our case, since |∆̇(t)| ∼ 1/β and

χ ∼ 1/β, it is clear by this criterion (for ∆ = 0) that increasing β makes
the passage less adiabatic despite the fact that the frequency sweep is slower.
Our numerical calculations of the nonadiabatic corrections, shown in Fig. 5.11
illustrate this point for our Hamiltonian. The structure in the graph for low
β is a result of the fact that we are showing the variation with β (as this
is the experimentally relevant parameter), while it is ∆̇(t) which determines
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Figure 5.11: Calculated dressed states using HI(t). The inset shows normal-
ized nonadiabatic corrections for one of the eigenvalues of equation H′

I(t) as a
function of β.

the frequency sweep in time and ∆(t) = ∆0 − βt
2(1/τ4+β2)

. For β >> 1/τ 2

it is clear that increasing β leads to larger nonadiabatic corrections, as one
expects from the reasoning above. Adiabatic passage for a chirped ultrafast
laser pulse would require pulse energies one to two orders of magnitude higher
than we have used in our experiments. For the optimal β value shown in
the graph (∼ 0.002), an increase in pulse energy by an order of magnitude
would still leave nonadiabatic corrections of about 30%. Increasing the pulse
energy by over an order of magnitude at this β value would lead to peak
intensities higher than for an unshaped laser pulse and ionization would no
longer be negligible. Therefore, we argue that sequential population transfer is
inherently more effective than adiabatic passage when using shaped ultrafast
lasers to drive population transfer in a multilevel system using multiphoton
coupling between levels.
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Chapter 6

A Four Level Atomic
Interferometer

6.1 Introduction

In this chapter, we extend the discussion of strong field population transfer to
more than three levels and allow for two resonant intermediate states between
a ground and excited state, where this four-level system forms the analog of an
interferometer. Interference is one of the most fundamental aspects of quantum
mechanics, and it has been exploited in a wide array of experiments with
atoms to infer the phase of a wave function or to make sensitive measurements
of energy shifts [74–76]. Interference has also been used as a way to control
the state of quantum systems by arranging for constructive interference in
a desired final state and destructive interference in all others [77–80]. With
this type of ‘coherent control’, the phase of different frequency components
of a coherent light field are adjusted in order to vary the phase of different
pathways in quantum phase space from a given initial state to the desired
target state. When the applied electric fields are weak, and perturbation
theory applies, there is a straightforward relationship between the spectral
phase of the light field and the different pathways to the target state [11–13].
However, for strong fields, where perturbation theory breaks down, the phases
of the different frequency components in the light field are no longer directly
related to the phases of the different pathways between initial and final states
[39, 64, 81].

Here we analyze a four-state, two-path atomic interferometer, where each
path in the interferometer can be excited by pairs of frequency components
in a shaped ultrafast laser pulse, as illustrated in Fig. 6.1. Varying the phase
of one of the four resonant frequency components modulates the phase of one
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Figure 6.1: Grotrian diagram and illustration of the laser. (a) Grotrian dia-
gram showing the two-path interferometer in atomic Rubidium with the rel-
evant transition wavelengths. (b) Illustration of the electric field amplitude
|E(ω)|, the four resonant transition frequencies, and the spectral phase φ(ω).
(c) Illustration of the electric field with only the resonant frequencies and the
spectral phase.

56



arm of the interferometer relative to the other, resulting in constructive and
destructive interference in the final state [14]. We first start by analyzing the
case of excitation with weak fields (sufficiently weak that dynamic Stark shifts
and ground state depletion are negligible) with only the resonant frequency
components present, and then move to the case of a weak field but full spec-
trum (i.e. with the non-resonant frequency components included). Finally, we
consider the case of the full spectrum and strong fields, where ground state
depletion and phase advances due to dynamic Stark shifts are not negligible.
As we move from a spectrum consisting of only resonant frequencies to a full
broadband one, and increase the strength of the field, we see that the phase
of the interference modulations change substantially. In weak fields where
only the resonant frequency components are present (with all non-resonant
frequencies blocked by our pulse shaper), the interference fringes result from
interference between the two resonant pathways in the interferometer. A per-
turbative description for the final state population contains two terms whose
relative phase determines the final state population. With a broadband source,
where non-resonant frequency components are present, four terms contribute
to the perturbative description of probability of finding the atoms in the final
state after the light field is off. In this case, the modulations (as a function
of the applied spectral phase) in the final state population are dominated by
interference between resonant and non-resonant contributions associated with
a given intermediate state rather than interference between the two differ-
ent resonant pathways. Thus, if one considers the contributions (resonant and
nonresonant) of each intermediate state as a pathway in quantum phase space,
the interference switches from being between different pathways (i.e. coupling
between the ground and excited states via different intermediate states) to be-
ing between resonant and non-resonant contributions to a given pathway (via
a single intermediate state). Finally, as the intensity of the applied laser field is
increased for the case of the full laser spectrum, we find that perturbation the-
ory can no longer describe the interference and a time domain interpretation
of the dynamics is helpful.

Our experiment is carried out in atomic Rubidium, where two-photon ab-
sorption from the 5S1/2 ground state to the 5D3/2 excited state is resonantly
enhanced via the 5P1/2 and 5P3/2 states [12, 15, 82]. The four resonant tran-
sition frequencies are contained within the bandwidth of the pulse and an
ultrafast optical pulse shaper [42] is able to modify the phase of each resonant
frequency. The four level system is the atomic analog of a Mach-Zehnder inter-
ferometer [83–85]. By varying the phase of either resonant frequency in each
arm of the interferometer, we measure the interference of both 5S → 5P → 5D
transitions as a function of pulse energy. We compare our measurements to
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calculations of the dynamics which are valid in both weak and strong fields.

6.2 Experimental Apparatus

We make use of laser pulses from our amplified Titanium Sapphire laser sys-
tem, which produces 30 fs pulses centered at roughly 780 nm with ≈ 1 mJ of
energy. The bandwidth is about 30 nm FWHM, with spectral intensity from
approximately 750 nm to 810 nm. The pulses are shaped in an Acousto-Optic
Modulator (AOM) based pulse shaper [42] and directed into a 6 cm long glass
cell containing rubidium gas at 150oC. The maximum pulse energy and in-
tensity at the center of the cell for the focal geometry we use are 30µJ and
1014 W/m2, respectively. In order to measure the 5D state population, we
measured fluorescence from the excited atoms. The fluorescence was collected
from the center of the cell at 90o with respect to the beam propagation direc-
tion using a photomultiplier tube. We measured the 6P → 5S transition (as
part of the 5D → 6P → 5S decay) at 420 nm.

Using our pulse shaper, we could vary the phase of any of the four res-
onant transition frequencies (5S1/2 → 5P1/2, 5S1/2 → 5P3/2, 5P1/2 → 5D3/2,
and 5P3/2 → 5D3/2) by placing a spectral phase window around the transition
frequency (as illustrated in Fig. 6.1(a) and (b)), and block out any frequency
components from our spectrum, such as the non-resonant frequency compo-
nents in the pulse spectrum (illustrated in Fig. 6.1(c)). The phase modulation
was over a narrow window approximately 0.8 nm wide that was programmed
to vary between 0 and 2π.

Fig. 6.2 shows the 6P → 5S fluorescence (proportional to the 5D popu-
lation after the excitation pulse) as a function of spectral phase for a narrow
window around 775.94 nm. The results are shown for the case of weak field
excitation with resonant frequencies only, as illustrated in Fig. 6.1(c) (dotted
black curve), weak field excitation with resonant and non-resonant frequen-
cies present, as illustrated in Fig. 6.1(b) (solid red curve) and strong field
excitation with all frequencies present (dash-dot blue curve). Measurements
performed for varying the phase of the light at 794.67 nm, 780.02 nm, and
761.89 nm yielded similar results to the ones shown in Fig. 6.2(a). As we
only modulate one transition frequency at a time (in contrast with earlier
work [14]), the fluorescence yield goes through one modulation per 2π applied
phase.

58



0 0.5 1 1.5 2

0.4

0.6

0.8

1

Phase [π]

F
lu

o
re

sc
e

n
ce

 Y
ie

ld
 [

A
rb

. U
n

it
s]

 

 

Resonant Frequencies Only
Strong Field Full Spectrum
Weak Field Full Spectrum

Figure 6.2: 5D population as a function of spectral phase on the 775.94 nm
5P3/2 → 5D3/2 transition. The dotted black curve corresponds to the case
where only the resonant frequencies in the broadband pulse were present and
all other frequencies were blocked. The solid red curve corresponds to weak
field excitation with full spectrum and the blue dot dashed corresponds to
strong field excitation with the full spectrum.

59



6.3 Experimental Results

6.4 Discussion

As one expects from perturbation theory, the fluorescence yield varies sinu-
soidally with the applied window phase, independent of which resonant fre-
quency is phase modulated. Denoting the 5S1/2 ground state by |1⟩, the 5P1/2

by |2⟩, the 5P3/2 by |3⟩ and 5D3/2 state by |4⟩, the excited state amplitude
through both intermediate resonances is given in the perturbative limit as [12]:

P5D ∝

∣∣∣∣∣µ12µ24

E(ω21)E(ω42) + iP.V.

∞∫
−∞

dω
E(ω)E(ω41 − ω)

ω21 − ω

+

µ13µ34

E(ω31)E(ω43) + iP.V.

∞∫
−∞

dω
E(ω)E(ω41 − ω)

ω31 − ω

 ∣∣∣∣∣
2

. (6.1)

Here, µij is the transition dipole moment between states |i⟩ and |j⟩ for lin-
early polarized light, P.V. is the Cauchy principle value operator, and E(ωij)
= |E(ωij)| eiϕij . In Eq. (6.1), E(ω21)E(ω42) and E(ω31)E(ω43) can be inter-
preted as the resonant contributions for each pathway, with the principle value
integrals corresponding to the non-resonant contributions for each pathway.

The perturbative expression above has four terms which can all interfere
with each another and yields a simple and intuitive interpretation of the weak
field measurements shown in Fig. 6.2. In the simplest case of weak field
excitation with only the resonant frequencies present, only E(ω21)E(ω42) and
E(ω31)E(ω43) in Eq. (6.1) contribute to the 5D population. Varying the
phase of one of the resonant frequencies in one of the two pathways leads to
constructive and destructive interference in the 5D3/2 state (the 5D5/2 state
cannot be accessed via the 5P1/2 intermediate resonance). The 5D population
is maximum for zero applied spectral phase and minimum for π (dashed black
curved of Fig. 6.2), as one expects given that the transition dipole moments
are real and positive. The limited modulation depth is a consequence of the
fact that the two resonant pathways have different amplitudes (both the dipole
moments and the spectral density are lower for the 5P1/2 pathway) and that
while we measure florescence from both the 5D5/2 and 5D3/2 states, the 5D5/2

cannot be accessed via the 5P1/2 pathway.
For weak field excitation with the full spectrum, all four terms in Eq. (6.1)

must be taken into account, as there can be interference between resonant and
non-resonant terms. The phase of the modulation in the data for this case (a
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Figure 6.3: Measured and calculated 5D population as a function of phase
applied to 794.76 nm while blocking 780.02 nm in the case of the full laser
spectrum.

maximum at 3π/2 and a minimum at π/2) indicates that the modulation is
no longer determined by E(ω21)E(ω42) and E(ω31)E(ω43) alone, but instead is
largely occurring between resonant and non-resonant contributions associated
with a given intermediate state. These have a π/2 difference between them in
Eq. (6.1). Applying a −π/2 (equivalent to 3π/2) phase on the light at 775.94
nm compensates for intrinsic phase offset between resonant and non-resonant
contributions for the 5P3/2 pathway and allows the second and fourth terms
to interfere constructively, leading to a maximum in the 5D population.

In order to demonstrate that the interference shifts from being between
resonant pathways in the resonance only case (Fig. 6.1(c)), to being between
resonant and non-resonant terms associated with a single intermediate state
in the full spectrum case, (Fig. 6.1(b)) we blocked one of the resonant transi-
tion frequencies for the 5P1/2 pathway and monitored the 5D population while
varying the phase of the light at 775.94 nm. Fig. 6.3 shows that the modu-
lations in the 5D population as a function of applied spectral phase window
persist (with an even larger depth of modulation) when one arm of the inter-
ferometer is blocked. Both measurements and calculations (described below)
are shown, and are in excellent agreement.
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Finally, we consider the case of strong field excitation, noting that the
phase of the modulation shifts from the case of weak field excitation and the
modulation depth increases significantly, as shown in Fig. 6.2 by the dash-dot
curve. These features cannot be described by Eq. (6.1), and we therefore turn
to a time-domain calculations of the atom-field interaction. We numerically
integrate the time-dependent Schrödinger equation, considering the atom as
a 4-level system where the 5S1/2 → 5P1/2, 5S1/2 → 5P3/2 , 5P1/2 → 5D3/2

and 5S3/2 → 5D3/2 transitions are all within the bandwidth of our laser. We
can express the Hamiltonian for the atom-field interaction (after making the

Rotating Wave Approximation) as, ˆH(t) =
0 χ12(t)e

i(∆21t−ϕ(t)) χ13(t)e
i(∆31t−ϕ(t)) 0

χ∗
12(t)e

−i(∆21t−ϕ(t)) 0 0 χ24(t)e
i(∆42t−ϕ(t))

χ∗
13(t)e

−i(∆31t−ϕ(t)) 0 0 χ34(t)e
i(∆43t−ϕ(t))

0 χ∗
24(t)e

−i(∆42t−ϕ(t)) χ∗
34(t)e

−i(∆43t−ϕ(t)) 0

 .

(6.2)

Here, χij(t) =
µijE(t)

~ is the Rabi frequency, E(t) is the field envelope, ω0

is the central frequency of the laser, ωij = ωi − ωj, ∆ij = ω0 − ωij is the
detuning, and ϕ(t) is the time-dependent phase of the field. Using Eq. (6.2)
we calculated the 5D population as a function of phase modulation and pulse
energy by numerically integrating the time-dependent Schrödinger equation
using fourth order Runge Kutta. We modeled the shaped electric fields used
in the experiment by:

Eres(ω) = E(ω21)e
−(ω−ω21)2/(δω)2 +

E(ω31)e
iϕe−(ω−ω31)2/(δω)2 +

E(ω42)e
−(ω−ω42)2/(δω)2 +

E(ω43)e
−(ω−ω43)2/(δω)2 (6.3)

and

Efull(ω) = E(ω)e−(ω−ω0)2/(∆ω)2 −
Enme

−(ω−ωnm)2/(δω)2 +

Enme
iϕe−(ω−ωnm)2/(δω)2 (6.4)

for the case of the spectrum with just the resonant frequency components
present and the full spectrum, respectively. The central frequency of the laser
pulse is given by ω0, the frequencies of the four resonant transitions are given
by ωnm (Fig. 6.1), the width of the full and resonant components only spectra
are given by ∆ω and δω, respectively, and the applied phase to the window of
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(a) (b)

(c)

Figure 6.4: Wigner plots of the phase shaped pulses. (a) The Wigner plot of
a pulse with the phase window located at 775.94 nm (386.6 THz). (b) The
Wigner plot of a pulse with the phase window located at 780.02 nm (384.6
THz). (c) The electric field envelope associated with (a) and (b).

choice is given by ϕ. Our calculations are able to reproduce the experimental
measurements of the 5D population as a function of applied spectral phase
and intensity. An example of the agreement is shown in Fig. 6.3 for the
case of modulating the phase of 794.76 nm while blocking a narrow window of
frequencies around 780.02 nm.

In order to appreciate the population dynamics for the phase-window-
shaped pulses, it is helpful to look at the shaped laser pulses in a time-
frequency distribution. Figure 6.4 shows the Wigner function for pulses with
phase modulation at 775.94 nm and 780.02 nm [71]. In the time domain, the
phase window shaping results in an intense broadband short pulse, surrounded
by a low amplitude narrowband pulse whose central frequency corresponds to
the location of the phase window.

Fig. 6.5 highlights the atomic dynamics behind time-domain interference,
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when one of the interferometer arms is blocked. Panels (a) and (b) show the
5S1/2, 5P1/2 and 5D3/2 populations as a function of time for pulses shaped
with a phase window at 794.76 nm and the light at 780.02 nm blocked. Both
panels also show the electric field envelope for the phase-shaped pulses. The
calculations are for an intermediate field strength/intensity, corresponding to
the calculations and measurements shown in Fig. 6.3. Panel (a) shows the
dynamics for a pulse with a phase of 0.6π at 794.76 nm (resulting in minimal
5D population) and panel (b) shows the dynamics for a pulse with a spectral
phase of 1.6π around 794.76 nm (resulting in maximum 5D population).

Modulating the phase of the light at 794.76 nm results in a broad ps pulse
which begins to transfer population between the 5S1/2 and 5P1/2 states (reso-
nant at 794.76 nm) before the short pulse arrives. Varying the spectral phase
of the light at 794.76 nm controls both the amplitude of the long pulse as well
as the phase relative to the short one. Thus, the population transferred by the
long pulse can add destructively (panel (a)) or constructively (panel (b)) with
that transferred by the short pulse, leading to a maximum or minimum in the
5D population as a function of applied spectral phase. The shift in the phase
of the modulations with field strength (shown in Fig. 6.2) can be understood
in the time domain in terms of the strong field phase advance of the atomic
states associated with Rabi oscillations [64, 86]. Perturbation theory works
well in describing the interaction between the atoms and a laser pulse whose
Rabi frequency is much smaller than the laser frequency, or where the pulse
area is much smaller than π. However, when the pulse area approaches or ex-
ceeds π (considering any pair of levels in the system), then the phase advance
of the atomic coherence is not locked to the phase advance of the optical field
(they evolve by exactly π for a π pulse). The phase of the field for the long
pulse relative to the short pulse must therefore be adjusted from the weak field
case in order to maximize population transfer to the 5D state. This explains
the phase advance of the modulations for the strong field case as compared
with weak fields (dash-dot blue and solid red curves in Fig. 6.2). Furthermore,
as the intensity of the field changes, the contributions of the long and short
pulses to the population transfer vary, leading to the observed changes in the
depth of modulation for strong fields.
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Figure 6.5: Populations dynamics as a function of time for phase shaped pulses.
The dynamics in panel (a) correspond to the interference minimum in Fig. 6.3.
The dynamics in panel (b) correspond to the interference maximum in Fig.
6.3.
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Chapter 7

Ultrafast Atomic Phase
Modulation

7.1 Introduction

In this chapter we utilize the time-domain concepts developed in chapters 4
and 5 to carry out and interpret a simple ultrafast pump-probe experiment
in atomic Rb which demonstrates Electromagnetically Induced Transparency
(EIT) like features. EIT can render an optically-dense transition transparent
and influence its dispersion [87, 88]. The technique is based on the interac-
tion of two fields with a three-level Λ- or ladder-system. A resonant coupling
field dresses the two unpopulated states and produces an Autler Townes (AT)
splitting [89], which is measured by a probe field. If the AT splitting is larger
than the probe pulse bandwidth and the natural linewidth of the probe tran-
sition, then the probe pulse can pass through unabsorbed. EIT differs from
transparency off resonance, where the time-averaged cycling of absorption and
emission leads to transparency. Rather, in EIT the absorption associated with
two dressed states created by the coupling pulse cancel each other at all times.
EIT has been used in applications where large absorption masks other phys-
ical attributes of the system such as dispersion at the transition frequency.
Experiments have demonstrated slow light [90] and enhancement of nonlinear
processes [91, 92].

There is significant interest in developing ultrafast implementations of EIT
for applications such as ultrafast phase modulation and switching of x-rays
[93–95]. In ultrafast applications of EIT there are two important differences
to consider. First, the pulse durations can be much faster than relaxation
processes, such as spontaneous emission and collisions. Second, the time de-
pendence of the coupling Rabi frequency leads to a varying AT splitting, thus
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complicating a description of the dynamics. A strong coupling pulse drives an
atomic coherence which modifies the transmission of a probe pulse. The probe
and coupling pulses are generated by a pulse shaper from a single ultrafast
laser pulse. Here we find that a time-domain picture is useful in describing the
dynamics and interpreting the results. The changing coupling field strength
leads to changing phase differences between the probe field and dressed states
(the ’atom-field phase’ discussed below) during the interaction, which causes
an interplay of absorption and stimulated emission at different frequencies.
Our experimental measurements are compared with calculations of the atom-
field interaction in order to arrive at a detailed understanding of the dynamics.
Our measurements illustrate transparency at the quadratically Stark shifted
transition frequency 1, as well as lasing without inversion.

7.2 Experiment

The experiment was carried out in atomic Rb, where probe and coupling pulses
were resonant on the 5S1/2 → 5P3/2 transition at 780 nm and 5P3/2 → 5D3/2,5/2

transition at 776 nm, shown in Fig. 7.1. As the separation between the 5D3/2

and 5D5/2 states is less than the bandwidth of the coupling pulse, these two
states were treated as one. The coupling pulse intensity was adjusted to yield
a coupling Rabi frequency on the order of the probe pulse bandwidth and
the intensity of the probe pulse was chosen to be more than 100 times lower
than the coupling pulse to ensure minimal population transfer by the probe
pulse. Our main results consist of measurements of the probe spectrum as a
function of delay between the probe and coupling pulses. Additionally, we also
measured cross-correlations between the probe and coupling pulses before and
after the sample.

We created two pulses resonant on the coupling and probe transitions, with
spectral widths of 0.5 nm and 1.8 nm, respectively, as illustrated in Fig. 7.1.
Additionally, the pulse shaper allowed us to delay the coupling pulse with
respect to the probe pulse, up to ±20 ps, by introducing a linear spectral
phase across the coupling pulse. Light from the pulse shaper was directed into
a 6.0 cm long heated Rb cell (T ∼ 130C◦) with a combination of two lenses
used to generate a 440 µm focal spot size with a 19.5 cm Rayleigh range,
ensuring minimal longitudinal intensity variation. Working in a focus helped
to overcome the small steering of the coupling beam due to the applied phase

1Since the detuning of the coupling pulse from the probe transition is larger than either
of the two Rabi frequencies, there is a quadratic Stark shift of the 5s-5p transition directly

due to the coupling pulse: δAC = 1
2

(√
(ωc − ω12)2 + (µ12εc/~)2

)
[58] and yields a value of

δAC = (0.16± 0.06) THz.
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Figure 7.1: (a) shows the experimental setup. A 30 fs pulse was used by the
pulse shaper to create two narrow-bandwidth pulses resonant on the coupling
and probe transitions at 776 nm and 780 nm, respectively, that were delayed
with respect to one another by up to ±20 ps. They were focused into the
Rb cell and measured with a spectrometer. (b) shows the temporal cross-
correlation of probe and coupling pulses before (dashed) and after (solid) the
cell.
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in the pulse shaper [49]. A third lens after the cell imaged the interaction
region onto a 75 µm pinhole in front of a spectrometer, thus circumventing
transverse intensity volume averaging. We averaged about 1300 pulses for each
measured probe pulse spectrum.

To characterize the atom-field interaction, we measured the probe pulse
spectrum as a function of delay between the coupling and probe pulse. The
pulse shaper delayed the coupling pulse in time between +7 ps and −14 ps
with respect to the probe pulse. Second Harmonic Generation Frequency
Resolved Optical Gating [96] measurements calibrated the delay time with an
error of 5%. The spectrum of the probe pulse was measured at 30 different
equally spaced delays within the given range. The coupling pulse used in our
measurements had a duration τc = (3.5 ± 0.5) ps. The peak coupling field
strength was εc = (4.7 ± 1.0) × 107V/m, as determined from the measured
pulse energy, temporal duration, and spot size in the cell. The probe pulse
was 130 times smaller in intensity and three times shorter. Figure 7.1(b)
shows the intensity cross-correlation of the two pulses, measured by recording
the probe-coupling sum frequency generation signal in a KDP crystal before
and after the cell. The dashed line is the result from before and the solid line
from after the cell. Negative time delays refer to a retardation of the coupling
pulse in the pulse shaper. Before the cell the cross correlation is peaked at
roughly zero, whereas after the cell the cross-correlation maximum was shifted
by -5 ps, indicating that the probe pulse is delayed relative to the coupling in
passing through the sample.

7.3 Results

Figure 7.2(a) shows the probe spectrum as a function of delay between the
coupling and probe pulses. For long delay times (at the upper and lower edge
of the data) the pulses were not temporally overlapped in the cell. Thus, the
probe pulse did not experience any AT splitting on the transition and was
therefore absorbed at and near 780 nm 2. The scale is normalized to the
maximum intensity in these spectra at long delays. Around -3 ps the small
absorption feature at the center of the spectrum changes into a structure with
two absorption features at shifted frequencies, a peak at the quadratically
Stark-shifted line center, and two peaks at the edges of the spectrum as a
result of gain in the sample. The inset in Fig. 7.2(b) shows the marginal of

2For an infinitesimally weak probe pulse longer than the relaxation time of the excited
state, the absorption should be within the natural linewidth of the transition. However, for
a short pulse with a non-negligable pulse area, the probe will experience absorption across
a spectrum of frequencies determined by the Rabi frequency of the probe pulse.
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Figure 7.2: Probe spectrum vs. probe-coupling delay with wavelength
marginal. (a) shows the probe spectrum as a function of time delay between
coupling and probe pulse. Around -3 ps the regular absorption line changes
into a symmetric structure of three gain and two absorption regions. (b) shows
the projection of the data onto the delay time axis. For 0 ps and -7 ps the
probe pulse shows a reduction of 20% in integrated intensity whereas for -3 ps
there is none.

70



779 779.5 780 780.5 781 781.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
P

ro
b

e
 S

p
e

ct
ru

m
 [

a
rb

. u
n

it
s]

Wavelength [nm]

 

 

−3ps delay

6ps delay

Calculated

Figure 7.3: Measured and calculated probe spectra. The dashed-dot blue line
shows the probe spectrum with an absorption line at 780 nm at 6 ps delay
time (no interaction between the pulses). The solid red curve from delay time
-3 ps shows a symmetric structure with two absorption and three gain regions.
The dashed black curve shows the result of numerically integrating the coupled
Maxwell-Bloch equations.

the 2D data on the time delay axis (generated by integrating over the spectrum
of the probe at each time delay). The curve is normalized to the integral at
long delay times. Around 0 ps and -7 ps the probe pulse shows an absorption
of ∼ 20% relative to long probe-coupling delays.

Figure 7.3 shows lineouts of Fig. 7.2(a) at -3 ps (solid red) and at 6 ps
(dashed-dot blue) along with the result of calculations described below (dashed
black). The scale is normalized to maximum value in the spectrum at long
delays (6 ps). The spectrum at 6 ps shows absorption at 780 nm, broadened
and damped by the resolution of our spectrometer. The line at -3ps shows
gain and absorption features noted in the 2D data above.
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7.4 Discussion

There are two main features in the data which merit discussion. The first is
the fact that the probe pulse is delayed with respect to the coupling pulse and
reshaped in traversing the sample. The second is that the probe spectrum
changes significantly with probe-coupling delay, showing both stimulated ab-
sorption and emission. To understand these features, we numerically solved
the coupled Maxwell-Bloch equations (see appendix A) for a three-level Ru-
bidium ensemble interacting with two light fields over the distance of our cell
[97], using parameters measured in our experiment.

∂

∂z
Ep(z, t) =

iωpNµ12

2ϵ0c
ρ21(z, t) (7.1)

∂

∂z
Ec(z, t) =

iωcNµ23

2ϵ0c
ρ32(z, t). (7.2)

Here, 5s1/2 → 5p3/2 (|1 >→ |2 >) and 5p3/2 - 5d (|2 >→ |3 >), Ep(z, t)
and Ec(z, t) are the probe and coupling fields, respectively, ωp and ωc are
the probe and coupling central frequencies, N is the atomic density, µ12 and
µ23 are the dipole matrix elements taken from [98], and ρ21 and ρ32 are the
atomic coherences for the probe and coupling transitions, respectively. We also
performed the calculations with relaxation included in the equations above and
found no significant difference in the results within the time window of interest.

The dashed-black line in Fig. 7.3 shows that our calculations of the probe
spectrum reproduce the experimental measurement with no adjustable pa-
rameters. We thus make use of the calculations to interpret the atom-field
dynamics leading to the features observed in our measurements. Figure 7.4
shows the results of our calculations relevant to interpreting the measurements.
The red-dashed and red-solid lines show the calculated probe pulse field en-
velope before and after the cell, respectively, as well as the coupling pulse
field envelope after the cell, represented by the blue-dashed-dot line. The dot-
ted black line shows the atom-field phase plotted in units of π. The atom-field
phase is the phase advance of the probe transition coherence (with the coupling
laser dressing the 5P3/2 → 5D transition) relative to the probe field, εp(t), as
a function of time [99]. In the case of no coupling field and a resonant cw
probe, the atom-field phase advances at one half of the probe Rabi frequency,
Ωp, with the atom cycling between absorption and emission as the atom-field
phase evolves between even and odd values of π. For a strong coupling field
and a weak resonant probe (such that Ωp ≪ Ωc), the atom-field phase for the
probe field and the 5S1/2 → 5P3/2 coherence advances at half the generalized

coupling Rabi frequency (Ω̃c =
√
Ω2

c +∆2
c, where ∆c is the detuning of the
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coupling pulse) and is given by,

α(t) = ±1

2

∫ t

−∞
Ω̃c(τ)dτ. (7.3)

Our calculations indicate that the probe pulse is absorbed and emitted at later
times during the coupling pulse as it propagates through the sample - the probe
pulse creates an atomic polarization which radiates and is modulated by the
coupling pulse. The absorption of the probe pulse occurs on the leading edge
of the coupling pulse where the atom-field phase is advancing slowly and stays
less than π/2. The coupling pulse facilitates absorption over a broad range of
probe frequencies via dynamic Stark shifting of the probe transition, and hence
a changing AT splitting. As the atom-field phase evolves to be larger than π/2,
the atoms go from stimulated absorption to stimulated emission resulting in
the large emission peaks in the probe at around 2 ps in Fig. 7.4. The emission
is peaked as the atom-field phase goes through π. Note that the change from
absorption to emission does not result from a population inversion (ρ22 < ρ11)
and it is not driven by the probe pulse advancing the phase between the two
states but rather the coupling pulse. As the atom-field phase advances to
2π, the atoms switch back to stimulated absorption. However, as the probe
pulse going into the sample has turned off by this time, there is no field to
absorb and thus the atoms emit a field which is simply π out of phase with
the initial probe pulse. This highlights the fact that stimulated absorption can
be regarded as emission of a field out of phase with the applied field. As the
atom-field phase again advances by π, the sign of the emitted field changes
again. Finally, as the population of the excited state goes to zero and the
coupling pulse turns off, the atoms stop emitting. Note that the modulations
seen in the calculation of the probe pulse envelope shown in Fig. 7.4 are not
observed in the measurement shown in Fig. 7.1 because the cross correlation
with the longer coupling pulse washes them out.

The oscillations of the probe pulse field envelope due to coupling-pulse-
driven modulated atomic emission explains the reshaping of the probe pulse
spectrum that we measure and calculate. The emission peaks near the edges of
the probe pulse spectrum result from rapid oscillations in the probe transition
coherence. These oscillations are dictated by the evolution of the atom-field
phase, which is driven by the coupling pulse. In this sense, the atoms can
be regarded as an ultrafast phase modulator driven by the coupling pulse,
which can be tailored by our pulse shaper. The transparency, absorption and
gain features in Fig. 7.3 thus have a very simple explanation in terms of the
atom-field phase advance as driven by the coupling pulse. Furthermore, one
can imagine controlling or switching the probe pulse by tailoring the coupling
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pulse Rabi frequency as a function of time [100–102]. This interpretation is
well suited to ultrafast implementations of EIT, which involve time-dependent
Rabi frequencies much larger than the natural linewidth of the transitions in
question. In comparing this picture with the traditional frequency domain
approach, we note that interference between red and blue detuned dressed
states, which is a hallmark of EIT, is still present in our experiments, although
it is not playing a crucial role because the Rabi frequency of the coupling
field is much larger than the linewidth of the probe transition. This means
that the transparency at the transition frequency is mostly based upon Stark
shift driven detuning rather than interference between dressed states. The
absorption and re-emission of the probe pulse also explains the delay of the
probe relative to the coupling we observe in our measurements. It is natural
that the probe pulse is delayed relative to the coupling pulse in passing through
the sample since the atoms are all initially in the ground state and so the
probe pulse experiences the large dispersion associated with an absorption
line. Since the coupling laser couples two states which are not populated, it
does not experience any dispersion and travels close to the speed of light in
vacuum.
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Figure 7.4: Calculated probe and coupling fields and the atom-field phase
given by Eq. (7.3). The red-dashed and red-solid lines show the calculated
probe pulse envelope before and after the cell, respectively. Both curves are
normalized to their peak values. The black-dotted line is the atom-field phase,
α(t). The blue-dashed-dot line is the normalized coupling pulse.
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Chapter 8

Strong Field Control of
Stimulated Emission

8.1 Introduction

In the final chapter of this thesis, we apply the method of closed-loop feed-
back to control stimulated emission from pairs of atomic/molecular species
instead of spontaneous emission as in previous chapters. With an eye to-
wards microscopy, standoff detection and other applications, some coherent
control experiments have focused on discriminating between multiple atomic
or molecular systems [103–106]. While control over target state preparation
and discrimination between excitation of multiple samples has been demon-
strated in a wide variety of systems, the control yields are typically modest,
with control factors on the order of 10 or less. However, it has been shown
that stimulated emission can lead to significant enhancement of single atom or
molecule control yields [31] 1. In this chapter we’ll show how stimulated emis-
sion, in conjunction with coherent control over multi-photon absorption, can
lead to almost perfect discrimination between two dye molecules in solution,
whereas control over fluorescence in these same molecules yields a control fac-
tor of about 2 [103]. As liquid-phase control experiments have proven difficult
to interpret [107–109], we also present control results on selective two-photon
absorption driven superfluorescence in separate atomic vapors. In the atomic
case, the light-matter interaction is well understood [15, 64] and we demon-
strate explicitly how the large discrimination in the superfluorescence yields is
driven by the single atom dynamics.

1In using the phrase ’single atom or molecule control’ we refer to control over an ensemble
of atoms or molecules in which each atom or molecule acts independent of the others
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8.2 Experiment

The shaped laser pulses were split into two arms, with each arm focused to
separate atomic or molecular samples. For the experiments with atomic sam-
ples, one arm contained a heated glass cell with Rubidium vapor at the focus
and the other contained a Sodium heat pipe oven at the focus. Both fluores-
cence and superfluorescence (SF) were collected from the excited atoms, where
fluorescence from the center of the heat pipe / cell was collected at 90o with
respect to the beam propagation direction collected onto a photomultiplier
tube (PMT). Interference filters were used to isolate specific transitions (the
3p−3s transition in Na and the 6p−5s transition in Rb). Stimulated emission
from the atoms (in the forward direction) was collected with two separate pho-
todiodes (PD) and combined onto one cable using a signal combiner for ease
of digitization. All signals were acquired by a digital oscilloscope mounted in
a computer. The Na signal was delayed with a long cable in order to distin-
guish between the two signals on the oscilloscope. The experiments involving
dyes in liquid phase used the same focal geometry with the solutions placed in
glass cells at room temperature. We carried out closed-loop learning control
experiments in order to maximize the discrimination between the atom and
dye-molecule pairs, as well as parameterized pulse shape scans, in order to
highlight the relationship between the spontaneous and stimulated emission
yields.

8.3 Results

Earlier work has demonstrated that the forward emission from our ensemble
of Na atoms is superfluorescence (SF) [31]. This was established via measure-
ments of the pulse duration, coherence, delay relative to the drive pulse, the
absence of backward emission, and comparisons between our measurements
and numerical integration of the Maxwell-Bloch equations. In Rb, we also ob-
served an absence of backward emission and performed measurements of the
forward scattered intensity as a function of density in order to confirm that
the emission was SF. Figure 8.1, and its inset, show the stimulated emission
yield on the 6p − 5s transition as a function of density. The inset shows an
enlargement for low densities where the forward emission varies quadratically
with density (a quadratic fit is shown along with the data). Combined with
the absence of backwards emission, this suggests the light is neither Amplified
Spontaneous Emission (ASE) or parametric wave mixing in the Rb sample.

We performed two separate learning control experiments with the atomic
samples. We aimed to maximize the Rb/Na SF yield in one experiment and
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Figure 8.1: Rubidium superfluorescence. The outer figure shows Rubidium
superfluorescence (6p− 5s) yield as a function of density. The inset shows the
superfluorescence yield as a function of density for low densities (the region
in the dashed box) along with a quadratic fit. We used a pulse energy of
approximately 45 µJ for the measurement.
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maximize Na/Rb SF yield in another. The control factor (explained below) is
then the product of these two optimal ratios. The results are shown in Fig.
8.2. In Fig. 8.2, the signal (both solid and dashed curves) starting at ∼0 ns is
SF from Rb, while the signal just before 250 ns is SF from Na. Here, the solid
curve shows the signal for a pulse shape designed to maximize Na/Rb and the
dashed curve shows the signal for another pulse shape designed to maximize
Rb/Na. The inset shows the relevant atomic structure for both atoms where
we measure light from the transition corresponding to the blue line in Rb
(6p − 5s) and the orange line in Na (3p − 3s). The duration of the signals
is determined by the capacitance of the large aperture photodiodes, which we
used for the measurements in order to digitize them without sampling errors,
where the sampling rate of our PC-mounted oscilloscope is 500 MHz.

For the dye experiments, we used methanol solutions of the same two
dyes that were used in earlier control experiments which used the sponta-
neous emission yield for feedback: DCM (4-dicyanomethylene-2-methyl-6-p-
dimethylaminostyryl-4H-pyran) and Ruthenium [Ru(dpb)3](PF6)2 (dpb is 4,4’-
diphenyl-2,2’-dipyridine) [103]. The dye solutions were held in cells approx-
imately 5.5 cm long. The normalized single-photon absorption and emission
spectra for DCM and [Ru(dpb)3]

2+ are shown in Fig. 8.3. Both DCM and
[Ru(dpb)3]

2+ have overlapping absorption spectra from 400 nm to 600 nm, re-
quiring two photons to be absorbed from our laser centered at 780 nm. Figure
8.4 shows the stimulated emission spectra for DCM and [Ru(dpb)3]

2+. The
stimulated emission spectra are very similar to each other, centered at the
same wavelength as the emission spectra for the dyes and somewhat narrower
than the emission spectra shown above, as expected. We observed some ev-
idence of continuum generation in the dye samples, which we suspect seeded
the stimulated emission from the two-photon excited dye molecules. This is
consistent with previous two-photon driven lasing measurements [110].

Fig. 8.5 shows the results for selective excitation in DCM and [Ru(dpb)3]
2+.

The control goals were to maximize the DCM/[Ru(dpb)3]
2+ and [Ru(dpb)3]

2+/DCM
stimulated emission yields, respectively, where we collect the whole stimulated
emission spectrum with the photo diodes. The pump laser light was filtered
out with a short pass filter. The solid curve shows the signal for a pulse shape
designed to maximize DCM/[Ru(dpb)3]

2+ and the dashed curve shows the
signal for a pulse shape designed to maximize [Ru(dpb)3]

2+/DCM. The signal
starting close to 0 ns represents [Ru(dpb)3]

2+ and the signal just after 150 ns
represents DCM. In the case of a transform limited pulse, both dyes gave a
similar stimulated emission yield.
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Figure 8.2: Normalized control results for selectivity between Rb and Na stim-
ulated emission. The solid curve represents a pulse designed to maximize
Na/Rb and the dashed curve represents a pulse designed to maximize Rb/Na.
The signal starting at ∼ 0 ns represents Rb and that at ∼ 250 ns, Na. The
insets show the atomic level structure, where the blue line is the lasing we
measure in Rb and the orange line is the lasing we measure in Na. The pulse
energies were approximately 170 µJ for Na and 45 µJ for Rb.
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Figure 8.3: Single-photon absorption and emission spectra for [Ru(dpb)3]
2+

(panel (a)) and DCM (panel (b)). The blue curve represents absorption and
the red curve represents emission. Data courtesy of Niels Damrauer.

8.4 Discussion

Shaping the drive pulse in our experiments allows for the production of a
strong forward emission from one sample while almost completely suppressing
emission from the other. In terms of selectivity between two samples, we feel
it is useful to describe the result in terms of a control factor which accounts for
selectivity in both directions and gives a measure of the maximum discrimina-
tion possible. In both the atomic and molecular cases, the control factor we
consider (the product of the stimulated emission yield ratios for the two control
experiments - i.e., max(Na/Rb) x max(Rb/Na), or max(DCM/[Ru(dpb)3]

2+)
x max([Ru(dpb)3]

2+/DCM)) is greater than 104, even though the control fac-
tor for the same molecules when optimizing spontaneous emission ratios is ∼
2 [103]. The control ratio in either direction in both experiments was about
100:1 (limited largely by signal to noise), yielding a control factor of about
104. If we were to simply quote the control ratio possible in either direction,
then this could mask a lack of control in the other direction and it would not
convey the discrimination possible with two different pulse shapes.

The control we observe in Na vs Rb exploits the different electronic struc-
ture of the two atoms. Based on these results alone, one might ask whether an
intermediate resonance, such as the 5p state in Rb, is required to exert signif-
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Figure 8.4: Normalized superfluorescence spectra from the two-photon absorb-
ing dyes for an unshaped pulse. The solid curve represents emission from DCM
and the dashed curve represents emission from [Ru(dpb)3]

2+.
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Figure 8.5: Normalized control results for selectivity between DCM and
[Ru(dpb)3]

2+.The solid curve represents a pulse designed to maximize
DCM/[Ru(dpb)3]

2+ and the dashed curve represents a pulse designed to
maximize [Ru(dpb)3]

2+/DCM. The signal starting at ∼ 0 ns represents
[Ru(dpb)3]

2+ and that at ∼ 150 ns, DCM. The insets show the two chemi-
cal structures of the molecules.
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icant control in competition with another non-resonant two-photon absorbing
systems. The experiment with the dyes suggests that this is not the case, since
the two absorption spectra are very similar between 400 nm and 800 nm (with
no absorption at all near 780 nm), and we expect near resonant enhancements
to play a more important role than states that are far from resonance.

One might also ask whether the control we observe in the dye molecules is a
result of selective seeding of the stimulated emission via nonlinear interactions
between the pump pulse and the solvent molecules [107, 108]. Our measure-
ments of the stimulated emission spectra suggest that this is not the case, as
the two measured spectra for the forward emission (shown in Fig. 8.4 for and
unshaped pulse) overlap quite closely , making it very difficult to selectively
seed one emission while suppressing the other.

In order to demonstrate how the dramatic selectivity is based on con-
trol over single atom/molecule dynamics enhanced by stimulated emission, we
measured both the spontaneous and stimulated emission from the atomic en-
sembles as a function of pulse shape for a simple pulse shape parameterization,
with a spectral phase given by:

Φ(ω) =
π

2
sin(βω + δ). (8.1)

This periodic spectral phase was chosen because it effectively discriminates
between the two samples and has a simple interpretation for the case of sodium,
where the two-photon absorption is not resonantly enhanced. In this case,
any antisymmetric spectral phase leads to constructive interference between
competing pathways to the final state, whereas a symmetric spectral phase
leads to destructive interference and a suppression of interference [111]. The
excitation of Rb is affected by the intermediate resonances, which makes the
pulse shape dependence of the excitation more complicated [12]. (We note
here that the spectrum of our laser was not centered at 777 nm, the center
of the two-photon resonance in Na, and therefore δ = 0 does not imply the
spectral phase is antisymmetric around the two-photon resonance).

Figure 8.6 shows fluorescence and superfluorescence for both Rb and Na as
a function of energy and δ. Panels (a) and (b) show superfluorescence and flu-
orescence, respectively, from Rb; panels (c) and (d) show the superfluorescence
and fluorescence, respectively, from Na. We note that the superfluorescence
as a function of energy and δ for each atom follows the fluorescence closely -
i.e., the superfluorescence yield is driven by the single atom-field dynamics. In
addition to demonstrating that the SF yield follows the single atom excitation,
this pulse shape parameterization demonstrates how a modest single-atom dis-
crimination can lead to a dramatic discrimination in the SF yields. Fig. 8.7
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Figure 8.6: Measurements of the fluorescence and superfluorescence for both
Rb and Na as a function of energy and the phase-offset parameter δ. Panels
(a) and (b) show Rb superfluorescence and fluorescence, respectively, where
the maximum pulse energy is approximately 45 µJ. Panels (c) and (d) show
Na superfluorescence and fluorescence, respectively, where the maximum pulse
energy is approximately 170 µJ.
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Figure 8.7: Normalized lineouts of Fig. 8.6. The solid curve represents super-
fluorescence for Rb and the dashed curve for Na. The yields are normalized
and represent different energies.

shows the Rb and Na SF yield as a function of δ at a fixed energy (not the
same energy for the two different atoms). The dashed curve represents Na SF
and the solid curve Rb SF. Controlling δ yields a substantial contrast between
the superfluorescence for one atom vs another.

We measured the optimal pulses for a few of the GA results in atomic Rb
and Na, shown in Fig. 8.8. Although it is difficult to interpret the dynamics
for the optimal pulses because of volume averaging related to spatial intensity
variation [64, 112], we note a few features. Panels (a) and (b) show measured
Wigner distributions [71] for a pulse designed to maximize Na/Rb SF yield
and a pulse designed to maximize Rb/Na SF yield, respectively. Panels (c) and
(d) represent the pulse intensity and phase in time of (a) and (b). Trying to
suppress the Rb SF and keep the Na SF yielded a pulse with a double structure,
whereas trying to suppress the Na SF and keep the Rb SF yielded a pulse with
just a single peak. Both pulses are of order one hundred femtoseconds, exhibit
a smoothly varying phase, and have a relatively simple temporal structure,
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indicating that the discrimination is quite sensitive to the drive laser pulse
shape.
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Figure 8.8: Optimal Pulses. Panels (a) and (b) show measured Wigner distri-
butions for a pulse designed to maximize Na/Rb SF yield (corresponding to
the solid curve in Fig. 8.2) and a pulse designed to maximize Rb/Na SF yield
(corresponding to the dashed curve in Fig. 8.2), respectively. Panels (c) and
(d) represent the temporal intensity and phase associated with (a) and (b),
respectively.
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Chapter 9

Conclusions

In this thesis, we explored strong field control of multilevel systems using
shaped ultrafast pulses and have shown that numerous control possibilities
exist in the strong field limit. In chapter 5 we demonstrated multiphoton pop-
ulation inversion of a three-level atomic system using a single shaped laser
pulse. The optimal pulse shape was discovered inside a learning control loop,
further illustrating that optimization algorithms can be a useful tool for de-
signing optimal pulses. The optimal pulses yielded an order of magnitude gain
over the population transfer from an unshaped laser pulse, and we measured
the population inversion using a combination of fluorescence and superfluo-
rescence. The physical mechanism underlying the inversion was identified by
performing parameterized pulse shape scans based on the optimal pulses and
numerical integration of the Shrödinger equation. The pulse shape dependence
of the final state population illustrates the benefits of sequential vs STIRAP
like population transfer for a fixed pulse energy. In the case of multiphoton
population transfer with a single ultrafast laser pulse, there are no decoher-
ence mechanisms on the timescales of the atom-field interaction and thus no
disadvantage to populating intermediate states. Population transfer under
this scheme is simple (only one laser beam), flexible (the pulse shape can be
changed easily) and an effective (can be used to produce a population inver-
sion) route to population transfer when multiphoton transitions are involved.
Furhermore, we showed that scaling of the adiabaticity criterion for STIRAP
with multiphoton coupling is unfavorable and requires orders of magnitude
higher pulse energies than sequential population transfer. Thus, we propose
that sequential population transfer through intermediate states can be more
effective than STIRAP based schemes when using shaped ultrafast laser pulses
for population transfer with multiphoton coupling.

Extending chapter 5 to allow for another atomic level, chapter 6 examined
a simple four-level atomic interferometer using a single shaped ultrafast laser
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pulse to create and control different ’quantum pathways’ between an initial and
final state. There, we made and interpreted measurements in both the weak
and strong field limits. The two limits showed similar interference although
the character of the interference changed in going from resonant weak fields to
broadband strong fields. In the weak field limit where only resonant frequencies
are present, the measured interference stems from the two resonant excitation
pathways. With the full spectrum present, the measured interference changes
largely to being between resonant and non-resonant excitation pathways in a
given arm of the interferometer. Finally, for the case of broadband excitation
with strong fields (depleting substantial ground state population) the measured
interference is most easily understood in terms of interference in the time
domain.

Utilizing some of the strong field dynamics of chapters 5 and 6, we went
on in chapter 7 to show that an atom can be rendered the modulator of an
ultrafast pulse. The pump-probe scheme represented an ultrafast analogue
of Electromagnetically Induced Transparency (EIT), with probe and coupling
pulses generated from a single ultrafast laser pulse in a pulse shaper. Our
interpretation of the experimental results yielded a simple time-domain picture
of the dynamics leading to transparency and gain in the sample without a
population inversion.

Using the same systems as in chapters 5 and 6, chapter 8 explored stimu-
lated emission near threshold in these systems and demonstrated that an ap-
propriately shaped strong drive pulse can turn modest coherent control yields
from spontaneous emission into essentially perfect discrimination between sys-
tems via stimulated emission. We achieved this by selective two-photon driven
superfluorescence in atomic rubidium and sodium and selective two-photon
driven stimulated emission in solvated laser dyes with similar single-photon
absorption spectra. The shape of an ultrafast drive laser (discovered in a
learning control loop) controlled which atom/molecule the emission was from.
In both cases the control factor was greater than 104.
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Appendix A

Mathematical Derivations

A.1 Pulse Propagation through a Medium

The results of chapter 7 depend on a quantitative understanding of how the
pulse is reshaped in propagating through an atomic medium (rubidium gas
in this case). Therefore, it is crucial to develop a model of how the atomic
medium and the pulse interact with one another in a self-consistent picture.
That is, we seek to model how the pulse changes the atomic coherence of the
rubidium atoms and in turn how the atomic coherence changes the pulse as it
propagates through the atomic gas.

Formally, the probe field that couples the 5s1/2 → 5p3/2 (|1⟩ → |2⟩) tran-
sition can be written as,

Ep(t) =
1

2
εp(t)e

−iωptε̂p + c.c. (A.1)

and the equation for the coupling pulse that connects the 5p3/2 - 5d (|2⟩ → |3⟩)
transition written as,

Ec(t) =
1

2
εc(t)e

−iωctε̂c + c.c. (A.2)

The wavelengths for these two transitions are λp = 780 nm and λc = 776
nm. Our system consists of 3 levels coupled by a single photon, which allows
us to write the Hamiltonian in an interaction picture as [58],

ĤI(t) = −~
2

 −2∆P Ωp 0
Ωp 0 Ωc

0 Ωc −2∆c

 . (A.3)

where Ωp = εp(t)µ12

h
and Ωc = εc(t)µ23

h
, and ∆P and ∆c are the detunings
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between the probe and coupling transitions, respectively. In our case, the
coupling pulse and the probe pulse are both resonant with the |2⟩ → |3⟩ and
|2⟩ → |1⟩ transitions, respectively. Then ĤI(t) reduces to,

ĤI(t) = −~
2

 0 Ωp 0
Ωp 0 Ωc

0 Ωc 0

 . (A.4)

For the ensemble of atoms in our cell, we use the von Neumann Equation
to derive time evolution of the density matrix,

i~ρ̇(t) = [Ĥ, ρ] (A.5)

where,

ρ =

 ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33.

 (A.6)

Carrying out the necessary matrix multiplication we can write the equa-
tions of motion governing the states as,

ρ̇11 = − i

2
(Ωpρ12 − Ω∗

pρ12) (A.7)

ρ̇12 = − i

2
(Ωpρ22 − ρ11Ωp − ρ13Ω

∗
c) (A.8)

ρ̇13 = − i

2
(Ωpρ23 − ρ12Ωc) (A.9)

ρ̇21 = − i

2
(Ω∗

pρ11 + Ωcρ31 − ρ22Ω
∗
p) (A.10)

ρ̇22 = − i

2
(Ω∗

pρ12 + Ωcρ32 − ρ21Ωp − ρ23Ω
∗
c) (A.11)

ρ̇23 = − i

2
(Ω∗

pρ13 + Ωcρ33 − ρ22Ωc) (A.12)

ρ̇31 = − i

2
(Ω∗

cρ21 − ρ32Ω
∗
p) (A.13)

ρ̇32 = − i

2
(Ω∗

cρ22 − ρ31Ωp − ρ33Ω
∗
c) (A.14)

ρ̇33 = − i

2
(Ω∗

cρ23 − ρ32Ωc) (A.15)

(A.16)

Now let’s consider propagation of the coupling and probe pulses. Starting
with Maxwell’s equations, we can write the propagation of an electric field as
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(
∇2 − 1

c2
∂2

∂t2

)
E(r, t) = µ0

∂2

∂t2
P(r, t), (A.17)

where µ0 is the permeability of free space, E is the electric field and P is
the polarization of the medium through which the electric field propagates.
The left-hand side can be factored from a difference of squares to read,(

∇+
1

c

∂

∂t

)(
∇− 1

c

∂

∂t

)
E(r, t). (A.18)

Let us note a few properties of the fields. First, we can neglect both
transverse coordinates because we spatially filter the beams before coupling
into the spectrometer. This allows us to neglect the transverse coordinates
x and y, while keeping the z coordinate. Also, the pulse envelope does not
change significantly during an optical cycle, so it’s envelope is slowly varying.
Likewise, the field along the propagation axis is slowly changing. Formally
this implies,

∂ε(z, t)

∂t
<< ωε(z, t) (A.19)

∂ε(z, t)

∂z
<< kε(z, t) (A.20)

∂P (z, t)

∂t
<< ωP (z, t) (A.21)

∂P (z, t)

∂z
<< kP (z, t), (A.22)

(A.23)

where ω and k represent the frequency and wave vector of the pulse. Noting
that,

∂ε(z, t)

∂t
=

1

2

∂ε(z, t)

∂z
e−iωt−ıkz +

1

2
ε(z, t)e−iωt−ıkz(−iω) (A.24)

∂ε(z, t)

∂z
=

1

2

∂ε(z, t)

∂z
e−iωt−ıkz +

1

2
ε(z, t)e−iωt−ıkz(−ik) (A.25)

(A.26)

we can apply the first part of the factored operator to get,(
∇2 − 1

c2
∂2

∂t2

)
E(r, t) →

(
∂

∂z
+

1

c

∂

∂t

)
(−2ıkE(r, t)). (A.27)
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Now consider the right-hand side of the propagation equation. The polariza-
tion follows the same slowly-varying envelope approximations that the field
does. This allows us rewrite the RHS as,

(−ıω)∂P
∂t
µ0 (A.28)

which yields a reduced 1-D Maxwell propagation equation,(
∂

∂z
+

1

c

∂

∂t

)
E(z, t)) =

1

2ϵ0c

∂P(z, t)

∂t
. (A.29)

Now let us deal with the quantum mechanical interpretation of the polariza-
tion. From [113], the electronic polarization of a medium with a single atomic
species is,

PT = N < p >, (A.30)

where < p > is the dipole moment of the atom in the medium, in our case Rb,
and N is the density of the medium. Thus, we write the electric polarization
as,

PT = N < Ψ|µ̂|Ψ > (A.31)

Pp(t) = N < Ψp(t)|µ̂|Ψp(t) > eıωpt (A.32)

Pc(t) = N < Ψc(t)|µ̂|Ψc(t) > eıωct (A.33)

As previously mentioned, our system consists of 3 levels coupled by a single
photon, so let us make the following labels: 5s → |1 >, 5p → |2 >, 5d → |3 >.
Then, the wavefunctions can be written as,

|Ψp(t) >= a1(t)e
−iω1t|1 > +a2(t)e

−iω2t|2 > (A.34)

|Ψc(t) >= a2(t)e
−iω2t|2 > +a3(t)e

−iω3t|3 >, (A.35)

which allows us to compute the time-dependent polarization due to the probe
and coupling pulses as,

Pp(t) = N
(
a∗1(t)a2(t)e

−iω21tµ12 + c.c.
)
e−iωpt (A.36)

Pc(t) = N
(
a∗2(t)a3(t)e

−iω32tµ23 + c.c.
)
e−iωpt. (A.37)

Note that in Pp(t) and Pc(t), the complex conjugate terms have factors that go
like exp(iω21t) and exp(iω32t). When multiplied by exp(iωpt) and exp(iωct),
respectively, we get terms that evolve like exp(i(ω21 + ωp)t and exp(i(ω32 +
ωc)t. Since ωp and ωc are on resonance, ω21 + ωp = 2ωp and ω32 + ωc = 2ωc.
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These terms oscillate at twice the laser frequency and can therefore be dropped
(Rotating Wave Approximation). Thus, Pp(t) and Pc(t) take on the simple
form,

Pp(t) = N (a∗1(t)a2(t)µ12) (A.38)

Pc(t) = N (a∗2(t)a3(t)µ23) . (A.39)

Lastly, we will take our reduced 1-D Maxwell propagation equation and per-
form a transformation to a frame local to the pulses. Thus, make the following
change of variables: z = ζ and t′ = t − z/c. Then, E = E(z, t), t = t(t′, ζ),
and z = z(t′, ζ). Therefore,

∂ε

∂ζ
=
∂ε

∂t

∂t

∂ζ
+
∂ε

∂z

∂z

∂ζ
(A.40)

so that,

∂

∂ζ
=

∂

∂t

1

c
+

∂

∂z
. (A.41)

In a local frame, the propagation equation reduces to,

∂

∂z
E(z, t) =

1

2ϵ0c

∂P(z, t)

∂t
(A.42)

and,

∂

∂z
Ep(z, t) =

iωpNµ12

2ϵ0c
ρ21(z, t) (A.43)

∂

∂z
Ec(z, t) =

iωcNµ23

2ϵ0c
ρ32(z, t). (A.44)

Note, we made use of the fact that the local-frame variables are arbitrary, and
can just as well be replaced with z and t. These equations, along with the time
evolution of the density matrix, govern the probe and coupling fields as they
propagate through the rubidium vapor. They can be integrated via Euler’s
method as follows,

∆E = ∆z
∂E

∂z
. (A.45)

Here, the partial derivative of the field uses the coherences obtained at the
previous z position. Solving (A.43) and (A.45) iteratively yields the probe
and coupling fields after propagating through the rubidium vapor.
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A.2 Wigner Distribution of a Chirped Pulse

Here, we derive the Wigner distribution [114] of a chirped laser pulse. The
Wigner distribution of an electric field can be written as [51]

w(t, ω) =
1

π

∞∫
−∞

dω′E∗(ω +
ω′

2
)E(ω +

ω′

2
)e−iω′t, (A.46)

where E(ω) is the electric field in the frequency domain and has the interpre-
tation of a quasi-probability distribution. This representation of the electric
field illustrates how the instantaneous frequency of the pulse varies in time. We
are interested in the Wigner distribution of a chirped pulse, where a chirped
pulse corresponds to the addition of a quadratic spectral phase. Therefore,
the electric field of a chirped pulse at any given frequency within the pulse
bandwidth is given as

E(ω) = e−αω2

e−iβω2

, (A.47)

where α = 1/∆ω, ∆ω is the frequency bandwidth, and β is the frequency
domain chirp rate. Note, we have removed the carrier frequency of the pulse
for convenience. Therefore, the Wigner function becomes,

w(t, ω) =
1

π

∞∫
−∞

dω′e−α(ω+ω′/2)2+iβ(ω+ω′/2)2 × (A.48)

e−α(ω+ω′/2)2−iβ(ω−ω′/2)]2e−iω′t.

Expanding and summing the squares in the arguments of the exponentials
and including the factor exp(iω′t), we can express the total argument of the
exponentials as

arg = −2αω2 − α

2
[ω′2 − i

2

α
(βω − t)ω′]. (A.49)

By completing the square for the term in brackets, we can re-express total
argument of the exponentials, after grouping terms, as

arg = −[2αω2 +
1

2α
(βω − t)2]− α

2
[ω′ − 1

α
(βω − t)]2. (A.50)
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Then, the Wigner function becomes

w(t, ω) =
1

π

∞∫
−∞

dω′e−
α
2
(ω′− 1

α
(βω−t))2 × e−[2αω2+ 1

2α
(βω−t)2]. (A.51)

Using the identity
∞∫

−∞

dxe−αx2

=

√
π

α
, (A.52)

we can write the Wigner distribution as

w(t, ω) =

√
2

πα
e−[2αω+ 1

2α
(βω−t)2] (A.53)

A.3 Rotation of the Hamiltonian by Unitary

Transformation

Often it is desirable to transform the Hamiltonian to a form that removes the
diagonal elements and places them, in a appropriate way, in the off-diagonal
entries, and vice versa. This can be achieved by an appropriate unitary trans-
formation. Consider a time-dependent Hamiltonian H(t) and a unitary trans-
formation matrix U(t), where

U(t)−1 = U †. (A.54)

Then, defining Ψ′ = U−1Ψ, the Time-Dependent Schrodinger Equation (TDSE)
can be written as,

i~
∂U(t)Ψ′

∂t
= i~

(
U(t)

∂Ψ′

∂t
+
∂U(t)

∂t
Ψ′
)

= H(t)U(t)Ψ′. (A.55)

Rearranging terms and multiplying both sides by U(t)−1, the TDSE is recast
as

i~
∂Ψ′

∂t
= U(t)−1H(t)U(t)− i~U(t)−1 ˙U(t)Ψ′. (A.56)

Therefore, the transformed Hamiltonian is given as

H(t)′ = U(t)−1H(t)U(t)− i~U(t)−1 ˙U(t). (A.57)
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Let’s apply this to a simple 2× 2 Hamiltonian with time-dependent entries

H(t) =

(
H11(t) H12(t)
H21(t) H22(t)

)
. (A.58)

where we require [H ′(t)]ii = 0 in (A.57) for i = 1,2. We make the ansatz that
U(t) has the form,

U(t) =

(
eiδ1(t) 0
0 eiδ2(t)

)
. (A.59)

Then, carrying out the multiplication in (A.57), we find that H’(t) becomes,

H ′(t) =

(
H11(t) + ~δ̇1(t) H12(t)e

i(δ2(t)−δ1(t))

H21(t)e
−i(δ2(t)−δ1(t)) H22(t) + ~δ̇2(t)

)
. (A.60)

Therefore, if we require that H ′
ii(t) = 0, then Hii(t) = ˙−δ(t)i. Given that

U̇ii(t) = iδ̇i(t)Uii(t) for i = 1,2, then

Uii(t) = e
−i

t∫
−∞

dt′Hii(t
′)

(A.61)

with the initial condition that H(t → −∞)ii → 0. Thus, U(t) takes on the
form,

U(t) =

 e
−i

t∫
−∞

dt′H11(t′)

0

0 e
−i

t∫
−∞

dt′H22(t′)

 . (A.62)

We can extend the treatment of the 2×2 Hamiltonian to the case of a 3×3
Hamiltonian that also has time-dependent entries. In this case H(t) takes on
the form,

H(t) =

 H11(t) H12(t) H13(t)
H21(t) H22(t) H23(t)
H31(t) H32(t) H33(t)

 . (A.63)

As before, we consider a unitary transformation of the form,

U(t) =

 eiδ1(t) 0 0
0 eiδ2(t) 0
0 0 eiδ3(t)

 (A.64)

and use it to rotate the Hamiltonian to a new form. Using A.63 and A.64 in
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A.57, we find that H ′(t) takes on the form,

H ′(t) =

 H11(t) + ~δ̇1(t) H12(t)e
i(δ2(t)−δ1(t)) H13(t)e

i(δ3(t)−δ1(t))

H21(t)e
−i(δ2(t)−δ1(t)) H22(t) + ~δ̇2(t) H23(t)e

i(δ3(t)−δ2(t))

H31(t)e
−i(δ3(t)−δ1(t)) H32(t)e

−i(δ3(t)−δ2(t)) H33(t) + ~δ̇3(t)

 .

(A.65)
Requiring H ′

ii(t) = 0 as well as setting the initial condition H(t→ −∞)ii → 0,
U(t) then takes the form

U(t) =


e
−i

t∫
−∞

dt′H11(t′)

0 0

0 e
−i

t∫
−∞

dt′H22(t′)

0

0 0 e
−i

t∫
−∞

dt′H33(t′)

 . (A.66)

The form A.65 of the Hamiltonian is particularly useful when it is desirable
to have the diagonal elements equal to zero.

99



Appendix B

Codes Used for Numerical
Simulation

All of the numerical calculations presented in this thesis were performed using
MATLAB 7.1. Source code for several of the simulations are given blow.

B.1 Simulation of Space-time Coupling in a

Pulse Shaper

t i c
%Global Constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Al l l eng th s are in mm un l e s s o therw i s e s p e c i f i e d . Al l

t imes are f s , a l l f r e q f s ˆ−1
c = 3 .0∗10ˆ8 ; % speed o f l i g h t (m/ s )
a = 1/(671) ; % groove spac ing (mm)
lambda = 780e−9; % c en t r a l wavelength (m)
f0=c/lambda/1 e15 ; %c en t r a l f requency ( f s ˆ−1)
t h e t a i = as in ( lambda /(2∗ ( a /1000) ) ) ; % in c i d en t ang le

f o r l i t t r ow cond i t i on
theta d = −t h e t a i ; % d i f f r a c t e d ang le f o r l i t t r ow ,

both in rad ians

p = 1 ; % d i f f r a c t i o n order
beta = (2∗ pi ∗p) /( a∗ cos ( theta d ) ∗(2∗ pi ∗ f 0 ) ) ; % in ( f s /mm)

1 s t g ra t ing
beta pr ime =(2∗ pi ∗p) /( a∗ cos ( t h e t a i ) ∗(2∗ pi ∗ f 0 ) ) ; %

second gra t ing
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k0 = (2∗ pi /780e−6) ; %c en t r a l wave vec to r ( rad/mm)
n = 1 . 5 ; %index o f the l e n s
d = 0 ; %l en s th i c kne s s (mm)
f l = 750 ; %f o c a l l ength (mm)
z = f l ; %propagat ion d i s t anc e

% Input f i e l d −−−−−−−−−−−−−−−−−−−−−−−−−
delta X = 0 . 0 1 ; %step s i z e in x (mm)
de l ta T = 8 . 0 ; %step s i z e in t ( f s )
fwhm x = 1 . 9 ; gamma = 1 . 9 ; fwhm t = 30 . 5 ;
tau = ( fwhm t /2)∗ s q r t (2/ log (2 ) ) ;% f o r f i e l d amplitude ( f s

)
sigma = ( fwhm x/2)∗ s q r t (2/ log (2 ) ) ;% f o r f i e l d amplitude (

mm)

N X = 30 . 0 ; %s p a t i a l extent o f x (mm)
N T = 400∗30∗ s q r t (2 ) /2 ; %temporal extent o f t ( f s )

% Fie ld a f t e r f i r s t g ra t ing −−−−−−−−−−−−−−−−−−−

[X,T] = meshgrid(−N X: de lta X :N X, −N T : de l ta T :N T) ; [m
, n ] =

s i z e (T) ;

s c a l e = 0 . 0 052 ;
%x = [−624:655]∗ s c a l e ;
Ex = load ( ’V:\2006 12 18 A\mode measurements\mode out o f
amp\ExAverageMode7 ’ ) ;

E = repmat (Ex ,m, 1 ) ; c l e a r x ; c l e a r Ex ;

xx = X( 1 , : ) ; %f o r use as a p l o t t i n g ax i s
E grat ing1 = E. ∗ ( exp (−((T−beta∗X)/ tau ) . ˆ 2 ) ) ;
E grating1FT =i f f t s h i f t ( f f t 2 ( E grat ing1 ) ) ;

c l e a r X c l e a r T c l e a r E grat ing1 c l e a r E

%Propagation from gra t ing 1 to l e n s 1−−−−−−−−−−−−−−
f a c t = 2∗ pi ; % needed to have un i t s o f rad ians
[ xi , f ]=
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meshgrid ([−1/(2∗ delta X ) :1/2/N X:1/(2∗ delta X ) ] , [−1/(2∗
de l ta T ) :1/2/N T:1/(2∗ de l ta T ) ] ) ;

c l e a r f E prop1 =
i f f t 2 ( ( E grating1FT ) .∗ exp ( ( i ∗k0∗z )−(( i /2/k0 ) ∗( z ) ∗( f a c t

ˆ2∗( x i ) . ˆ 2 ) ) ) ) ;
c l e a r x i c l e a r E grating1FT

toc
% Action o f l e n s 1 −−−−−−−−−−−−−−−−−−−−−−−−−
[X,T] = meshgrid(−N X: de lta X :N X, −N T : de l ta T :N T) ;

c l e a r T
E lens1 =((E prop1 ) ) .∗ exp ( i ∗k0∗n∗d − ( ( i ∗k0 ) /2/ f l ) . ∗ (X

. ˆ 2 ) ) ; % f i e l d j u s t a f t e r l e n s 1
c l e a r E prop1 ; c l e a r X

%Propagation to the mask from l en s 1 −−−−−−−−−−−−−
[ xi , f ]=
meshgrid ([−1/(2∗ delta X ) :1/2/N X:1/(2∗ delta X ) ] , [−1/(2∗

de l ta T ) :1/2/N T:1/(2∗ de l ta T ) ] ) ;
c l e a r f
E prop2 = i f f t 2 ( ( f f t 2 ( E lens1 ) ) .∗ exp ( ( i ∗k0∗z )−(( i /2/k0 )

∗( z ) ∗( f a c t ˆ2∗( x i ) . ˆ 2 ) ) ) ) ;% f i e l d a f t e r propagat ing to
the mask

c l e a r x i ; c l e a r E lens1 ;

% Action o f the mask −−−−−−−−−−−−−−−−
[X,T] = meshgrid(−N X: de lta X :N X, −N T : de l ta T :N T) ;

c l e a r T f =
1 . 5 ;
cyclespermm = (1 . 3∗ f ) / ( 8 . 5∗ 4 . 2 ) ; %number o f c y c l e s per

mm
E mask = ( E prop2 ) .∗ exp ( i ∗( p i /2)∗ s i n (2∗ pi ∗cyclespermm∗X)

) ;% f i e l d amplitude a f t e r mask
c l e a r E prop2 c l e a r X

% Propagation a f t e r the mask to l e n s 2
−−−−−−−−−−−−−−−−−−−−

[ xi , f ]=meshgrid ([−1/(2∗ delta X ) :1/2/N X:1/(2∗ delta X )
] , [−1/(2∗ de l ta T ) :1/2/N T:1/(2∗ de l ta T ) ] ) ;

c l e a r f E prop3 =
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i f f t 2 ( ( f f t 2 ( ( E mask ) ) ) .∗ exp ( ( i ∗k0∗z )−(( i /2/k0 ) ∗( z ) ∗( f a c t
ˆ2∗( x i ) . ˆ 2 ) ) ) ) ;

c l e a r E mask ; c l e a r x i

% Action o f second l en s −−−−−−−−−−−−−−−−−−−−−−−−−
[X,T] = meshgrid(−N X: de lta X :N X, −N T : de l ta T :N T) ;

c l e a r T
E lens2 = ( ( E prop3 ) ) .∗ exp ( i ∗k0∗n∗d − ( ( i ∗k0 ) /2/ f l ) ∗(X

. ˆ 2 ) ) ; % f i e l d j u s t a f t e r l e n s 1
c l e a r E prop3 c l e a r X

% Propagation to second g ra t i ng from second l en s −−−−−−−
meshgrid ([−1/(2∗ delta X ) :1/2/N X:1/(2∗ delta X ) ] , [−1/(2∗

de l ta T ) :1/2/N T:1/(2∗ de l ta T ) ] ) ;
c l e a r f E prop4 =
i f f t 2 ( ( f f t 2 ( ( E lens2 ) ) ) .∗ exp ( ( i ∗k0∗z )−(( i /2/k0 ) ∗( z ) ∗(

f a c t ˆ2∗( x i ) . ˆ 2 ) ) ) ) ;
c l e a r E lens2 ; c l e a r x i ;

% Second Grating
[ n ,m] = s i z e ( E prop4 ) ; [X,T] = meshgrid(−N X: de lta X :N X

,
−N T : de l ta T :N T) ; c l e a r T;
f o r i i =1:m % loop over X

t s h i f t = f l o o r ( beta pr ime ∗X(1 , i i ) / de l ta T ) ; %How
much to s h i f t by

E grat ing2 ( : , i i ) = c i r c s h i f t ( E prop4 ( : , i i ) , [
t s h i f t , 0 ] ) ;

end c l e a r t s h i f t c l e a r E prop4 c l e a r X

% Mode from Pulse Shaper through a l en s −−−−−−−−−−−
f l p i n h o l e = 1000 ;
[X,T] = meshgrid(−N X: de lta X :N X, −N T : de l ta T :N T) ;
c l e a r T
E lens =(E grat ing2 ) .∗ exp ( i ∗k0∗n∗d − ( ( i ∗k0 ) /2/

f l p i n h o l e ) . ∗ (X. ˆ 2 ) ) ; % f i e l d j u s t a f t e r l e n s 1

c l e a r E grat ing2 ;
c l e a r X
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%Propagation to p inho l e from l en s −−−−−−−−−−−−−−−−−
[ xi , f ]= meshgrid ([−1/(2∗ delta X ) :1/2/N X:1/(2∗ delta X )

] , [−1/(2∗ de l ta T ) :1/2/N T:1/(2∗ de l ta T ) ] ) ;
c l e a r f
E atp inho le = i f f t 2 ( ( f f t 2 ( E lens ) ) .∗ exp ( ( i ∗k0∗z )−(( i /2/

k0 ) ∗( z ) ∗( f a c t ˆ2∗( x i ) . ˆ 2 ) ) ) ) ;% f i e l d a f t e r propagat ing
to the mask

c l e a r x i ;
c l e a r E lens ;

%Fie ld a f t e r p inho l e −−−−−−−−−−−−−−−−−−−−−−−−
[ n ,m] = s i z e ( E atp inho l e ) ;
E pinho le = [ z e r o s (n , round (m/2)−6) ones (n , 1 1 ) z e r o s (n ,

round (m/2)−6) ] . ∗ E atp inho le ;
c l e a r E atp inho l e

toc

f i g u r e
p l o t ( xx , sum( ( abs ( E grat ing2 ) . ˆ 2 ) ,1 ) /max(sum( ( abs (

E grat ing2 ) . ˆ 2 ) ,1 ) ) ) ;
hold on
p lo t (x , ( ( abs ( E input ) ) . ˆ 2 ) , ’ r ’ ) ;
hold on
p lo t (x , ( abs ( E input ) ) .ˆ2/max( ( abs ( E input ) ) . ˆ 2 ) , ’ r ’ ) ;
hold on
p lo t (x , pu l s e be fo r e mask /max( pu l s e be fo r e mask ) , ’ k ’ )
x l ab e l ( ’ x (mm) ’ )
y l ab e l ( ’ Time In t eg ra t ed Pulse ’ )

B.2 Simulation of 7p Population for a Single

Chirped Pulse

%Populat ion c a l c u l a t i o n f o r a pu l s e with a given
s p e c t r a l phase

%uses sodium eq , a r r a y f i l t e r 2
%Scans quadrat i c s p e c t r a l phase

debug=0;
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SavePop=0; % i f SavePop=1 saves populat ion in time ,
i n t e s i t y p r o f i l e and phase

% in separa t e d i r e c t o r i e s f o r each value o f De l ta I and
f l i p p o s i t i o n

g l oba l omega0Rad Io De l ta I ; g l oba l t rk g2 phi ; C=3e8 ;

omega0Values =778 :2 :780 ;
DeltaT= 0 . 0 5 ; % FWHM of trans form l im i t ed pu l s e in

p i coseconds ( f i e l d )
tau p=DeltaT /(2∗ s q r t ( l og (2 ) ) ) ; % trans form l im i t ed 1/ e

o f the F i e ld
pu l s e a r e a=2∗pi ; alpha=tau p ˆ2/4 ;
omega0Values = 778 : 1 : 7 7 8 ; % th i s i s a c t ua l l y wavelenght

t i c f o r nn=1: l ength ( omega0Values )

omega0nm=omega0Values (nn)
omega0Rad = 2∗ pi ∗3 e8 /(omega0nm∗1e−9) ; %c en t r a l f requency

in rad∗THz

%===============================================================

% Create d i r e c t o r y f o r each lambda
mkdir ( num2str (omega0nm) ) ; cd ( num2str (omega0nm) ) ;

%===============================================================

% Set parameter f o r the g r id
num steps1=100; %100 s t ep s normally
exp max=−0.002;%0.01 from c a l i b r a t i o n data in ( ps/ rad )

ˆ2 , but can be changed as you p l e a s e
exp min=0.002;% −0.01 from c a l i b r a t i o n data in ( ps/ rad )

ˆ2

DeltaIValues =1 : 1 : 3 . 0 1 ; % Values f o r the peak i n t e n s i t y
max ch i rp rate=1∗exp max/alpha ; m in ch i rp ra t e=1∗exp min

/alpha ;
F r eq ch i r p r a t e=(min ch i rp ra t e : ( ( max chirp rate−

min ch i rp ra t e ) /num steps1 ) : max ch i rp rate ) ; % Values
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f o r the cent e r o f the phase in the pu l s e
%freqPhase =1:10; % For phases that take a frequency ,

o s c i l l a t i o n s during the pu l s e

shapped=meshgrid ( Fr eq ch i rp ra t e , De l taIValues ) ;
shapped7p=meshgrid ( Fr eq ch i rp ra t e , De l taIValues ) ;

t v a l u e s=−10∗DeltaT : DeltaT /100:10∗DeltaT ; %extends to 10
t imes pu l s e durat ion ; sampled 1/100 th o f pu l s e

durat ion

F i e l d enve l ope=exp(− t v a l u e s .ˆ2/ tau p ˆ2) ;
Int TL=sum( F i e l d enve l ope )∗DeltaT /100 ; ph i t=t va l u e s ∗0 ;

ch i 2 I o =1.0234E−02; Io=sq r t ( p i ∗ l og (2 ) ) /( ch i 2 I o ∗DeltaT∗1e
−12) ;

I o t l=Io ;

%===============================================================

% Loop f o r shapped pu l s e
% Begins cy c l e f o r d i f f e r e n t phase parameters

f o r kk=1: l ength ( DeltaIValues )
De l ta I=DeltaIValues ( kk )

f o r mm=1: l ength ( F r eq ch i r p r a t e )
%Phase w=phaseDepth∗ pi ∗ cos ( ( omegasRad−omega0Rad) /(

FWHMomega∗FWHMtoe/2)−FWHMomega∗FWHMtoe∗2∗ pi ) ;
beta=alpha∗Fr eq ch i r p r a t e (mm) ; % s e t t i n g these equal

g i v e s the maximum temporal ch i rp ra t e
b=beta /(4∗ ( alphaˆ2+beta ˆ2) ) ;

c h i r p r a t e=b ;
tau=sq r t (4∗ ( alphaˆ2+beta ˆ2) /abs ( alpha ) ) ; %pu l s e durat ion

i s ad justed by the ch i rp ra t e

t v a l u e s=−10∗tau : tau /100:10∗ tau ;
F i e l d enve l ope=exp(− t v a l u e s .ˆ2/ tau ˆ2) ;
ph i t=ch i r p r a t e ∗ t v a l u e s . ˆ 2 ;
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i f debug==1
f i g u r e (101)
p lotyy ( t va lue s , F i e ld enve lope , t va lue s , ph i t ) ;
ax i s ([−1 1 0 1 ] ) ;
i f c h i r p r a t e==0

Del ta I
sum( Int TL ) /sum( F i e l d enve l ope ) /( tau /100) ;

end
end Io=I o t l ∗sum( Int TL ) /sum( F i e l d enve l ope ) /( tau /100) ;

I o s=Io ;

% RK four th order beg ins here
t i n i t=min ( t v a l u e s ) ; t f i n a l=max( t v a l u e s ) ;
dtrk = ( t f i n a l − t i n i t ) /500/2; %/2
trk = t i n i t : dtrk : t f i n a l ; stemp = ze ro s (3 , 1 ) ; s rk =
ze ro s (3 , round ( l ength ( t rk ) /2) ) ; stemp (1) =1;

g2 = in t e rp1 ( t va lue s , F i e ld enve lope , trk , ’ sp l i n e ’ ) ;
phi =

in t e rp1 ( t va lue s , ph i t , trk , ’ sp l i n e ’ ) ; s rk ( : , 1 )=stemp ;

f o r n = 2 : l ength ( t rk )−2
k1 = dtrk∗ sodium eq7pDSStest (n , stemp ) ;
k2 = dtrk∗ sodium eq7pDSStest (n + 1 , stemp + k1 /2) ;
k3 = dtrk∗ sodium eq7pDSStest (n + 1 , stemp + k2 /2) ;
k4 = dtrk∗ sodium eq7pDSStest (n+2, stemp + k3 ) ;
s rk ( : , round ( ( n+2)/2) ) = stemp + k1/6 + k2/3 + k3/3 +

k4 /6 ;
stemp = srk ( : , round ( ( n+2)/2) ) ;

end

i f debug==1
% i f c h i r p r a t e==0

f i g u r e (102)
p l o t ( abs ( srk ’ ) . ˆ 2 )
t i t l e ( [ ’ Chirp =’ num2str ( c h i r p r a t e ) ’ pop4s =’

num2str ( abs ( s rk (2 , l ength ( s rk ) ) ) . ˆ 2 ) ] )
% end
end srk=srk ’ ;
%trk2=t i n i t : dtrk ∗2 : t f i n a l ;
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shapped (kk ,mm)=abs ( s rk ( l ength ( s rk ) ,2 ) ) . ˆ 2 ;
shapped7p (kk ,mm)=abs ( s rk ( l ength ( s rk ) ,3 ) ) . ˆ 2 ; toc

%===============================================================

% Saves a l o t o f data
i f SavePop==1

t r k h a l f = t i n i t : 2∗ dtrk : t f i n a l ;
%ch i r p r a t e=omega0Rad+Freq ch i r p r a t e /omegaSteps∗

FWHMomega;
%jumpPosnm=2∗pi ∗3 e8 . / c h i r p r a t e ;
popDir=[ ’ dI ’ num2str ( De l ta I ) ’ beta ’ F r eq ch i r p r a t e

∗alpha ] ;
mkdir ( popDir ) ;
cd ( popDir ) ;
dlmwrite ( ’ pop . dat ’ , abs ( s rk ) . ˆ2 , ’\ t ’ ) ;
dlmwrite ( ’ I p r o f . dat ’ , [ t rk ; g2 ] , ’\ t ’ ) ;
dlmwrite ( ’ phase . dat ’ , [ t rk ; phi ] , ’\ t ’ )
dlmwrite ( ’ t . dat ’ , t r kha l f , ’\ t ’ )
f i d=fopen ( ’ parameters . dat ’ , ’ wt ’ ) ;
f p r i n t f ( f i d , ’ Pulse durat ion (FWHM ps ) %g \n TL Io %g

\n Shapped Io %g ’ , DeltaT , I o t l , I o s ) ;
f c l o s e ( f i d ) ;

cd . .
end
%c l e a r g2 phi s rk stemp t va l u e s F i e l d enve l ope ph i t
end end

dlmwrite ( ’ be tava lues . dat ’ , F r eq ch i rp ra t e , ’\ t ’ ) ;
dlmwrite ( ’ I v a l u e s . dat ’ , DeltaIValues , ’\ t ’ ) ; dlmwrite ( ’ 4 s

. dat ’ ,
shapped , ’\ t ’ ) ; dlmwrite ( ’ 7 p . dat ’ , shapped7p , ’\ t ’ ) ;
% dlmwrite ( ’ unshapped . dat ’ , [ unshapped ; unshapped7p ] , ’\

t ’ ) ;

f i g u r e s u r f ( F r eq ch i r p r a t e ∗alpha , DeltaIValues , shapped )
view (0 ,90 )

shading i n t e rp
%cax i s ( [ 0 1 ] ) ;
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t i t l e ( ’ 4 s f i n a l populat ion with l i n e a r sweep in
frequency ’ ) ;

y l ab e l ( ’ I ( un i t s o f Io ) ’ ) ; x l ab e l ( ’ Quadratic Phase (Rad)
’ ) ; c o l o rba r

p r i n t −dpng 4 s . png

f i g u r e s u r f ( F r eq ch i r p r a t e ∗alpha , DeltaIValues , shapped7p
) view (0 ,90 )

shading i n t e rp
%cax i s ( [ 0 1 ] ) ;
t i t l e ( ’ 7 p f i n a l populat ion with l i n e a r sweep in

frequency ’ ) ;
y l ab e l ( ’ I ( un i t s o f Io ) ’ ) ; x l ab e l ( ’ Quadratic (Rad) ’ ) ;

c o l o rba r p r i n t
−dpng 7p . png

cd . .
end

func t i on sp = sodium eq7pDSStest (n , s )
%Al l un i t s are in THz and ps
%time i s now the index , g2 i s i n t e n s i t y p r o f i l e , phi i s

phase , both are ar rays

g l oba l omega0Rad Io De l ta I ; g l oba l t rk g2 phi ;
%tau=1/(2∗ s q r t ( l og (2 ) ) ) ;

d e l t c o e f f =0;
de l t a 7p=(omega0Rad−2.41278E+15)/1e12−t rk (n)∗ d e l t c o e f f

/2 ;
ch i 2 I o =1.0234E−02; ch i0=ch i 2 I o ∗ Io /1 e12 ;

% 18 .3 and 32 .3 are the va lue s f o r the s ta rk s h i f t at 50
f s , Io =2.883 e15 , i t depends l i n e r a l y on i n t e n s i t y

% th e r e f o r e t h i s exp r e s s i on i s c o r r e c t
wgs=−32.3∗ Io /2 .883 e15 ; wes=18.3∗ Io /2 .883 e15 ; d i f f s t a r k=

wes−wgs ;
w7psIo =0.000973832;
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de l t a =(2∗omega0Rad − 4 .8519 e+015)/1e12−t rk (n)∗ d e l t c o e f f ;
chi7p =

1.32707E−30/(2∗1.05 e−34)∗ s q r t (2∗ Io /(3 e8 ∗8 .85 e−12) ) /1 e12 ;
s tark7p=w7psIo∗ Io /1 e12 ;

va lg2= g2 (n) ; va lph i=−phi (n) ; t=trk (n) ;
sp = − i ∗ [ wgs∗ valg2 ∗ s (1 ) ∗Delta I + exp(− i ∗ va lph i +
i ∗ de l t a ∗ t )∗ ch i0 ∗ valg2 ∗ s (2 ) ∗DeltaI ,

exp ( i ∗ va lph i − i ∗ de l t a ∗ t )∗ ch i0 ∗ valg2 ∗ s (1 ) ∗Delta I +
wes∗ valg2 ∗ s (2 ) ∗Delta I + chi7p ∗ s q r t ( va lg2 )∗exp(− i ∗
va lph i ∗0.5+ i ∗ de l t a 7p ∗ t )∗ s (3 ) ∗ s q r t ( De l ta I ) ,

chi7p ∗ s q r t ( va lg2 )∗exp ( i ∗ va lph i ∗0.5− i ∗ de l t a 7p ∗ t )∗ s
(2 ) ∗ s q r t ( De l ta I )+valg2 ∗ stark7p ∗Delta I ∗ s (3 ) ] ;

B.3 Two Pulse Propagation through a Three-

level Atomic Medium

%Propagation code f o r Rb EIT experiment . Written by S .
Clow 09/08

%Propagates the l a s e r f i e l d

%uses dens i ty matr ix eqRb .m, Rbdensity .m

%Set the g l oba l v a l i a b l e s here
g l oba l Delta p De l ta c ch i p c h i c ; g l oba l t rk Ept Ect

E p E c ;

lambda 12 = 780 ; % 5 s 1 /2 − 5p 3 /2 (nm)
lambda 23 = 776 ; % 5p 3 /2 − 5d 3 /2 (nm)
lambda p = 780 . 2 ; % probe f i e l d wavelength (nm)
lambda c = 776 . 0 ; % coup l ing f i e l d wavelength (nm)
eps0 = 8.854 e−12; % Cˆ2/N∗mˆ2
hbar = 1.0546 e−034; %h/2 p i
h planck = 6.63 e−34; %J∗ s
C = 3e8 ; %m/ s
omega 12 = C/( lambda 12∗1e−9) % Hz
omega 23 = C/( lambda 23∗1e−9) % Hz
omega p = C/( lambda p∗1e−9) ; % Hz
omega c = C/( lambda c∗1e−9) ; % Hz
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Delta p = 2∗ pi ∗( omega p − omega 12 ) /1 e12 ; % TRad/ s
De l ta c = 2∗ pi ∗( omega c − omega 23 ) /1 e12 ; % TRad/ s
mu 23 = 1.500 e−29; % Noordam 5p 3 /2 − 5d 3 /2 (C∗m)
mu 12 = 4.976 e−29; % coulomb meter 5 s 1 /2 − 5p 3 /2

(C∗m) From Noordam

FWHM c = 3 . 5 ; % coup l ing pu l s e durat ion ( ps )
FWHMp = 1 . 2 5 ; % probe pu l s e durat ion ( ps )
tau p = sq r t (2 ) ∗ (FWHMp/(2∗ s q r t ( l og (2 ) ) ) ) ; % ( ps

)
tau c = sq r t (2 ) ∗ (FWHM c/(2∗ s q r t ( l og (2 ) ) ) ) ; % ( ps

)
E pi p = hbar∗ s q r t ( p i ) /(mu 12∗ tau p ∗1e−12) ; % Fie ld

stength f o r a p i pu l s e on 5 s 1 /2 − 5p 3 /2 t r a n s i t i o n
GIVEN mu 12 (V/m)

E p i c = hbar∗ s q r t ( p i ) /(mu 23∗ tau c ∗1e−12) ; % Fie ld
stength f o r a p i pu l s e on 5p 3 /2 − 5d 3 /2 t r a n s i t i o n
GIVEN mu 23 (V/m)

de lays = 3 . 9 : 0 . 1 : 3 . 9

f o r dd = 1 : l ength ( de lays ) g l oba l t rk Ept Ect E p E c ;

probe de lay = de lays (dd) ; % probe de lay ( ps )

===============================================================

%Create d i r e c t o r y f o r each de lay
mkdir ( [ num2str ( de lays (dd) ) , ’ ps probe delay ’ ] ) ;
cd ( [ num2str ( de lays (dd) ) , ’ ps probe delay ’ ] ) ;

==============================================================

Ec st rength = [ 4 . 7 ] ; % r e l a t i v e to a p i pu l s e on the 5
p 3 /2 − 5d 3 /2 t r a n s i t i o n

Ec st rength = 3 . 8 : 0 . 1 : 3 . 8 ;

f o r i i = 1 : l ength ( Ec st rength ) g l oba l t rk Ept Ect E p
E c ;
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E c = E pi c ; %130 s e t by the pu l s e shaper in
the experiment

E p = E pi p ;
E c = Ec st rength ( i i ) ∗1 e7 ; %V/m Measured
E p = E c /(130) ; %Set by the pu l s e shaper

ch i p = E p∗mu 12/ h planck /1 e12 ; %peak probe pu l s e
Rabi f requency (THz)

c h i c = E c∗mu 23/ h planck /1 e12 ; %peak coup l ing
pu l s e Rabi f requency (THz)

Zto ta l = 0 . 0 1 ; % Total f i e l d propagat ion l ength (m)
dz = 60e−6; % Propagation step (m)
zva lue s = 0 : dz : dz ; %Z va lue s in m
zva lue s = 0 : dz : Z to ta l ; %Z va lues in m

T = 130 : 5 0 : 1 3 0 ; %C

[ rho ,P] = Rbdensity (T) ; % Returns dens i ty o f vapor
p r e s su r e in l i q u i d phase in atoms/mˆ3

N = rho ;

I n i t 5 s = 1 . 0 0 ; In i t 5p = 0 . 0 0 ; In i t 5d =
0 . 0 0 ;

Set va lue s f o r RK

t i n i t = −40; % i n i t i a l time ( ps )
t f i n a l = 40 ; % f i n a l time ( ps )
i n td t = 0 . 0 4 0 ; % Time i n t e g r a t i o n step ( ps )
i n td t = 0 . 0 4 0 ; % Time i n t e g r a t i o n step ( ps )
dtrk = in td t ;

t rk = t i n i t : dtrk : t f i n a l ; %time ax i s f o r RK
in t e g r a t i o n

t rk reduced = trk ( 2 : l ength ( t rk )−1) ;
t r k h a l f = t i n i t : dtrk ∗2 : t f i n a l ;
f r e q = [−1/2/ dtrk :1/2/ t f i n a l :1/2/ dtrk ] ;
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%Since we use Runge Kutta 4 th order we need to
i n t e r p o l a t e to

%e l im ina t e to get the r i g h t number o f samples
%(RK 4th order samples twice more po in t s )

f o r TT = 1 : l ength (T)

T(TT) t i c

Ec envelope = exp(−( t rk ) . ˆ2/ ( tau c ) ˆ2) ; % I n i t i a l
c ou l i ng f i e l d enve lope ( ps )

Ep envelope = exp(−( t rk + probe de lay ) . ˆ2/ ( tau p ) ˆ2) ; %
I n i t a l probe f i e l d enve lope ( ps )

Epztemp=ze ro s ( l ength ( zva lue s )−1,round ( l ength ( t rk ) ) ) ; %
de f i n e an array f o r the f i e l d s in t and z

Ecztemp=ze ro s ( l ength ( zva lue s )−1,round ( l ength ( t rk ) ) ) ;

Epzt = ve r t c a t (E p∗Ep envelope , Epztemp) ; %merge with
the i n i t i a l f i e l d s

Eczt = ve r t c a t (0∗E c∗Ec envelope , Ecztemp ) ;

===============================================================

%Create d i r e c t o r y f o r coup l ing s t r ength
mkdir ( [ num2str ( Ec st rength ( i i ) ) , ’ Coupling ’ ] ) ;
cd ( [ num2str ( Ec st rength ( i i ) ) , ’ Coupling ’ ] ) ;

==============================================================

Set i n i t i a l c ond i t i on s f o r the ampl itudes

qtemp = ze ro s (3 , 3 ) ;% make a temporary
qtemp (1 , 1 ) = I n i t 5 s ; % i n i t i a l 5 s populat ion
qtemp (2 , 2 ) = In i t 5p ; % i n i t i a l 5p populat ion
qtemp (3 , 3 ) = In i t 5d ; % i n i t i a l 5d populat ion

q ( : , : , 1 ) = qtemp ; % Zeros everywhere e l s e

Sta r t 4 th order Runge Kutta i n t e g r a t i o n
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t i c
e t a c = i ∗mu 23∗omega c∗N(TT) /(2∗C∗ eps0 ) ; %p r e f a c t o r to

dens i ty matrix element in prop eqns .
e ta p = i ∗mu 12∗omega p∗N(TT) /(2∗C∗ eps0 ) ;

f o r zz=2: l ength ( zva lue s )

% Propagate f i e l d to z+dz
% Propagation equat ions

Epzt ( zz , : ) = Epzt ( zz −1 , :) + dz∗ eta p ∗
t ranspose ( squeeze (q ( 2 , 1 , : ) ) ) .∗ exp ( i ∗
Delta p ∗ t rk ) ;

Eczt ( zz , : ) = Eczt ( zz −1 , :) + dz∗ e t a c ∗
t ranspose ( squeeze (q ( 3 , 2 , : ) ) ) .∗ exp ( i ∗
Del ta c ∗ t rk ) ;

%Ca lcu la t e the Spectrum of the Probe
Epzomega ( zz , : ) = f f t s h i f t ( f f t ( f f t s h i f t ( Epzt (

zz , : ) ) ) ) ;

Ept = Epzt ( zz , : ) ; %used in the RK in t e g r a t i o n
Ect = Eczt ( zz , : ) ;

f o r n = 2 : l ength ( t rk )−2
k1 = dtrk∗dens i ty matr ix eqRb (n , qtemp) ;
k2 = dtrk∗dens i ty matr ix eqRb (n + 1 , qtemp +

k1 /2) ;
k3 = dtrk∗dens i ty matr ix eqRb (n + 1 , qtemp +

k2 /2) ;
k4 = dtrk∗dens i ty matr ix eqRb (n+2, qtemp +

k3 ) ;
q ( : , : , n ) = qtemp + k1/6 + k2/3 + k3/3 + k4

/6 ;
qtemp = q ( : , : , n ) ;

end
q ( : , : , n+1) = q ( : , : , n ) ;
q ( : , : , n+2) = q ( : , : , n+1) ;

f u l l q 1 1 ( zz , : ) = transpose ( squeeze (q ( 1 , 1 , : ) ) ) ;
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f u l l q 1 2 ( zz , : ) = transpose ( squeeze (q ( 1 , 2 , : ) ) ) ;
f u l l q 1 3 ( zz , : ) = transpose ( squeeze (q ( 1 , 3 , : ) ) ) ;
f u l l q 2 1 ( zz , : ) = transpose ( squeeze (q ( 2 , 1 , : ) ) ) ;
f u l l q 2 2 ( zz , : ) = transpose ( squeeze (q ( 2 , 2 , : ) ) ) ;
f u l l q 2 3 ( zz , : ) = transpose ( squeeze (q ( 2 , 3 , : ) ) ) ;
f u l l q 3 1 ( zz , : ) = transpose ( squeeze (q ( 3 , 1 , : ) ) ) ;
f u l l q 3 2 ( zz , : ) = transpose ( squeeze (q ( 3 , 2 , : ) ) ) ;
f u l l q 3 3 ( zz , : ) = transpose ( squeeze (q ( 3 , 3 , : ) ) ) ;

%Reset the dens i ty matrix e lements f o r ”new”
atoms encountered

qtemp = ze ro s (3 , 3 ) ;% make a temporary
qtemp (1 , 1 ) = I n i t 5 s ; % i n i t i a l 5 s populat ion
qtemp (2 , 2 ) = In i t 5p ; % i n i t i a l 5p populat ion
qtemp (3 , 3 ) = In i t 5d ; % i n i t i a l 5d populat ion

%Calcu la te the energy in the pu l s e as a func t i on
o f p o s i t i o n in the

%c e l l
Energy ( zz ) = sum( eps0∗C∗abs ( Epzt ( zz , : ) ) .ˆ2∗ i n td t

∗1e−12) ;
d i f f I ( zz ) = sum( eps0∗C∗abs ( Epzt ( zz , : ) ) .ˆ2∗ i n td t

∗1e−12) − sum(0 . 5∗ eps0∗C∗abs ( Epzt ( zz −1 , :) )
.ˆ2∗ i n td t ∗1e−12) ;

Eatoms ( zz ) = hbar∗omega 12∗N∗dz∗ f u l l q 2 2 ( zz ,
l ength ( t rk ) ) ;

%
%Let us know where we ’ re at
zz / l ength ( zva lue s )

end toc

dlmwrite ( ’ f r equency . dat ’ , f r eq , ’\ t ’ ) ;
dlmwrite ( ’ time . dat ’ , trk , ’\ t ’ ) ;
dlmwrite ( ’ z . dat ’ , zva lues , ’\ t ’ ) ;
dlmwrite ( ’ Epzt . dat ’ , Epzt , ’\ t ’ ) ;
dlmwrite ( ’ Eczt . dat ’ , Eczt , ’\ t ’ ) ;
dlmwrite ( ’ Epzomega . dat ’ , Epzomega , ’\ t ’ ) ;

convfunc = exp(−( f r e q /0 . 1 ) . ˆ 2 ) ; convolved1 =
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conv ( convfunc , abs (Epzomega ( s i z e (Epzomega , 1 ) , : ) ) . ˆ 2 ) ;
convolved1 =

convolved1 /max( convolved1 ) ; convolved2 =
conv ( convfunc , abs (Epzomega ( 2 , : ) ) . ˆ 2 ) ; convolved2 =
convolved2 /max( convolved2 ) ; k r on de l t =
[ z e r o s (1 , round ( l ength ( f r e q ) /2)−1) 1
z e ro s (1 , round ( l ength ( f r e q ) /2)−1) ] ; c onv f r eq = conv ( f req

, k r on de l t ) ;
conv amp1 = max( abs (Epzomega ( s i z e (Epzomega , 1 ) , : ) ) . ˆ 2 ) ;

conv amp2 =
max( abs (Epzomega ( 2 , : ) ) . ˆ 2 ) ;

lambda = load ( ’U:\ papers \group papers\EIT\Data\ lambda ’ )
; t r i p l e t =

load ( ’U:\ papers \group papers\EIT\Data\ t r i p l e t s t r u c tu r e
probe ’ ) ;

probe long = load ( ’U:\ papers \group papers\EIT\Data\probe
at long

delay ’ ) ; nu = 3 .0 e8 . / ( lambda∗1e−9) ; nu = (nu −
3.8447 e14 ) /1 e12 ; lambda2 = 3 .0 e8 . / ( conv f r eq ∗1 e12

+3.8447 e14 ) /1e−9;

f i g u r e hold on s e taxe s
p l o t ( lambda2 ,max( t r i p l e t )∗ convolved1 /max( convolved1 ) , ’

LineWidth ’ , 3 , ’ Color ’ , ’ b ’ ) ;
p l o t ( lambda , t r i p l e t , ’ LineWidth ’ , 3 , ’ Color ’ , ’ r ’ ) ;
p l o t ( lambda , probe long , ’ LineWidth ’ , 3 , ’ Color ’ , ’ r ’ ) t i t l e

( [ ’ Ca lcu lated
and Measured Probe Spectrum , ’ , num2str ( i i ) ] ) ; y l ab e l ( ’

Probe
Spectrum ’ ) ; x l ab e l ( ’ Frequency (THz) ’ ) ; box on s e t axe s

ax i s ( [ 7 7 8 . 7 5
781 .85 0 1 . 8 ] ) p r i n t ( ’−dpng ’ , [ [ ’ Output Probe Spectrum ’
, num2str ( i i ) ] ’ . png ’ ] ) c l o s e

f i g u r e Ep plot =
r e a l ( Epzt ( s i z e (Epzomega , 1 ) , : ) /max(Epzt ( s i z e (Epzomega , 1 )

, : ) ) ) ;
Ec p lot =
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r e a l ( Eczt ( s i z e (Epzomega , 1 ) , : ) /max( Eczt ( s i z e (Epzomega , 1 )
, : ) ) ) ; AFP

= cumsum( dtrk∗mu 23∗Eczt ( s i z e (Epzomega , 1 ) , : ) / h planck /1
e12 ) ; hold on

s e taxe s
[AX,H1 ,H2 ] = plotyy ( trk , Ep plot , trk ,AFP) ; % , ’LineWidth

’ , 3 , ’ Color ’ , ’ r ’ ) ;
s e t (AX(1) , ’XLim’ , [ −10 , 10 ] ) , s e t (H1 , ’ LineWidth ’ , 3 ) ,
s e t (H1 , ’ Color ’ , ’ r ’ ) s e t (AX(2) , ’XLim’ , [ −10 , 10 ] ) ,
s e t (H2 , ’ LineWidth ’ , 3 ) , s e t (H2 , ’ Color ’ , ’ k ’ )
s e t ( get (AX(2) , ’ Ylabel ’ ) , ’ Str ing ’ , ’Atom− f i e l d Phase [\ pi

] ’ )
p l o t ( trk , Ec plot , ’ LineWidth ’ , 3 , ’ Color ’ , ’ b ’ ) ; t i t l e ( [ ’

Coupling and
Probe Pulses , ’ , num2str ( i i ) ] ) ; y l ab e l ( ’ Real (E p , E c ) ’ ) ;
x l ab e l ( ’ Time ( ps ) ’ ) ; box on max Ep =
max( r e a l ( Epzt ( s i z e (Epzomega , 1 ) , : ) /max( Epzt ( s i z e (Epzomega

, 1 ) , : ) ) ) )
min Ep =
min ( r e a l ( Epzt ( s i z e (Epzomega , 1 ) , : ) /max(Epzt ( s i z e (Epzomega

, 1 ) , : ) ) ) )
ax i s ([−10 10 min Ep max Ep ] ) s e t axe s f o rma t yy f i gu r e

p r i n t ( ’−dpng ’ ,
[ [ ’ Coupling and Probe Pulses with Atom− f i e l d Phase ’ ,

num2str ( i i ) ]
’ . png ’ ] ) c l o s e

f i g u r e s e t axe s s u r f ( trk , zva lues , ( abs ( Epzt ) ) . ˆ 2 ) , shading
interp ,

view (0 ,90 ) t i t l e ( [ ’ Epzt , ’ , num2str ( i i ) ] ) ; y l ab e l ( ’Z (m)
’ ) ;

x l ab e l ( ’ Time ( ps ) ’ ) ; c o l o rba r s e t axe s box on g r id o f f
ax i s ([−10 10

min ( zva lue s ) max( zva lue s ) ] ) fname1 = [ ’ Epzt ’ , num2str (
E p ) ]

p r i n t ( ’−dpng ’ , [ fname1 ’ . png ’ ] ) c l o s e

f i g u r e s e t axe s s u r f ( trk , zva lues , ( abs ( Eczt ) ) . ˆ 2 ) , shading
interp ,
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view (0 ,90 ) t i t l e ( [ ’ Eczt , ’ , num2str ( i i ) ] ) ; y l ab e l ( ’Z (m)
’ ) ;

x l ab e l ( ’ Time ( ps ) ’ ) ; c o l o rba r s e t axe s box on g r id o f f
ax i s ([−10 10

min ( zva lue s ) max( zva lue s ) ] ) fname2 = [ ’ Eczt ’ , num2str (
i i ) ]

p r i n t ( ’−dpng ’ , [ fname2 ’ . png ’ ] ) c l o s e

f i g u r e s e t axe s
p l o t ( zva lue s ( 2 : l ength ( zva lue s ) ) , Energy ( 2 : l ength ( Energy ) )

, ’ LineWidth ’ , 3 , ’ Color ’ , ’ k ’ ) ;
t i t l e ( [ ’ Pulse Energy v . Z Pos i t ion , ’ , num2str ( i i ) ] ) ;
y l ab e l ( ’ Energy ’ ) ; x l ab e l ( ’Z Pos i t i on (m) ’ ) ; box on

s e t axe s
p r i n t ( ’−dpng ’ , [ [ ’ Pulse Energy v . Z Pos i t i on ’ , num2str (

i i ) ]
’ . png ’ ] ) c l o s e

f i g u r e s e t axe s hold on
p lo t ( trk , abs ( Epzt ( s i z e (Epzt , 1 ) , : ) ) /max( abs ( Epzt ( s i z e (

Epzt , 1 ) , : ) ) ) , ’ LineWidth ’ , 3 , ’ Color ’ , ’ b ’ )
p l o t ( trk , abs ( Eczt ( s i z e ( Eczt , 1 ) , : ) ) /max( abs ( Eczt ( s i z e (

Eczt , 1 ) , : ) ) ) , ’ LineWidth ’ , 3 , ’ Color ’ , ’ r ’ )
t i t l e ( [ ’Pump and Probe at Output , ’ , num2str ( i i ) ] ) ;

x l ab e l ( ’ time
( ps ) ’ ) ; box on s e taxe s p r i n t ( ’−dpng ’ , [ [ ’ Pump and Probe

at Output ’
, num2str ( i i ) ] ’ . png ’ ] ) c l o s e

f i g u r e s e t axe s s u r f ( f r eq , zva lues , abs (Epzomega ) . ˆ 2 ) ,
shading interp ,

view (0 ,90 ) t i t l e ( [ ’ Epzomega , ’ , num2str ( i i ) ] ) ; y l ab e l ( ’Z
(m) ’ ) ;

x l ab e l ( ’ Frequency (THz) ’ ) ; c o l o rba r s e t axe s box on g r id
o f f ax i s ([−1

1 min ( zva lue s ) max( zva lue s ) ] ) fname3 = [ ’ Epzomega ’ ,
num2str ( i i ) ]

p r i n t ( ’−dpng ’ , [ fname3 ’ . png ’ ] ) c l o s e

c l e a r Epzt Eczt Ept Ect Epzomega
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c l e a r qtemp f u l l q 1 1 f u l l q 1 2 f u l l q 1 3 f u l l q 2 1 f u l l q 2 2
f u l l q 2 3 f u l l q 3 1 f u l l q 3 2 f u l l q 3 3

c l e a r q e t a c eta p k1 k2 k3 k4
c l e a r E c E p ch i c ch i p

end
cd . .
end
cd . .
end
cd . .

f unc t i on qp = dens i ty matr ix eqRb (n , q )
% Equations f o r forward l i g h t propagat ion . So lve s f o r

each z po s i t i o n in
% time .
%Al l un i t s are in THz and ps
%time i s now the index , g2 i s i n t e n s i t y p r o f i l e , phi i s

phase , both are ar rays
% q (1) = Q11 , q (2 )=Q22 , q (3 )=Q21 , , conj ( q (3 ) )=Q12 , q (4 )

=Q33 , q (5 )=Q31 , Q(6)=Q32

g l oba l t rk Ept Ect ch i p c h i c Delta p De l ta c ;

h planck = 6.63 e−34; %J∗ s
hbar = 1.05457168 e−34; % in J∗ s / rad

mu 23 = 1.500 e−29; % Noordam 5p 3 /2 − 5d 3 /2 (C∗m)
mu 12 = 4.976 e−29; % coulomb meter 5 s 1 /2 − 5p 3 /2 (C∗m)

From Noordam

valE p = Ept (n) ; % probe f i e l d value at time n
valE c = Ect (n) ; % coup l ing f i e l d va lue at time n

Omega p = mu 12∗valE p/hbar /1 e12 ; % TRad/ s ( i n t e g r a t i o n
s t ep s are in ps )

Omega c = mu 23∗ valE c /hbar /1 e12 ;

gamma11 = 0 ;
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gamma22 = 2∗ pi ∗ (1/25 .7 e−9/1e12 ) ; %r ad i a t i v e l i f e t im e o f
25 .7 ns

gamma12 = 2∗ pi ∗0 .01 + 2∗ pi ∗0 .01 + gamma11/2 + gamma22/2 ;
% Co l l i s i o n s

gamma23 = gamma12 ; gamma13 = 0 ; gamma31 = 0 ;
gamma33 = 2∗ pi ∗(1/240 e−9/1e12 ) ; %r ad i a t i v e l i f e t im e o f

240 ns

% Equations o f motion
D = −1∗[gamma11∗q (1 , 1 ) gamma12∗q (1 , 2 ) gamma13 ; gamma12∗q

(2 , 1 )
gamma22∗q (2 , 2 ) gamma23∗q (2 , 3 ) ; gamma31 gamma23∗q (2 , 3 )
gamma33∗q (3 , 3 ) ] ; Ham = −1/2∗[−2∗Delta p Omega p 0 ; conj (

Omega p) 0
Omega c ; 0 conj (Omega c ) 2∗Del ta c ] ; qp = − i ∗(Ham∗q − q∗

Ham) + D;
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