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Abstract of the Dissertation
Dynamic Hedge Fund Asset Allocation Under Multiple Regimes

by
David Cru

Doctor of Philosophy
in

Applied Mathematics and Statistics
Stony Brook University

2010

Portfolio Selection as introduced by Harry Markowitz laid the foundation
for Modern Portfolio Theory. However, the assumption that underlying as-
set returns follow a Normal Distribution and that investors are indifferent to
skew and kurtosis is not practically suited for the Hedge Fund environment.
Additionally, the Lockup and Notice provisions built into Hedge Fund con-
tracts make portfolio rebalancing difficult and justify the need for dynamic
allocation strategies. Market conditions are dynamic, therefore, rebalancing
constraints in the face of changing market environments can have a severe
impact on return generation. There is a need for sophisticated yet tractable
solutions to the multi-period problem of Hedge Fund portfolio construction
and rebalancing. In this thesis we Generalize the Hedge Fund asset return
distribution to a Multivariate K-mean Gaussian Mixture Distribution; model
the multi-period Hedge Fund allocation problem as a Markov Decision Pro-
cess (MDP); and propose practical rebalancing strategies that represent a
convergence of literature on Hedge Fund investing, Regime Switching, and
Dynamic Portfolio Optimization.
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Chapter 1

Introduction

Portfolio Selection as introduced by Harry Markowitz [39] laid the founda-

tion for Modern Portfolio Theory. However, the assumption that underlying

asset returns follow a normal distribution and that investors are indifferent to

skew and kurtosis are not practically suited for the Hedge Fund environment.

Clearly, the non-normal distributions that drive Hedge Fund returns are a

well documented phenomenon ([18],[2]), but they are not the only factor that

makes Hedge Fund portfolio management difficult. The lockup and notice

provisions built into Hedge Fund contracts ([4]) make portfolio rebalancing

difficult and justify the need for dynamic strategies.

Neither can the investors ignore the lessons of 2008 nor assume that returns

are completely independent. Even prior to the recent systemic breakdown,

Hedge Fund performance literature documented significant autocorrelation

in Hedge Fund returns attributable to increasing liquidity risk in the un-

derlying holdings ([11],[44],[4]). If the current liquidity crisis can teach us
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anything it is that market conditions are dynamic; approaches that cannot

account for a changing market environment can leave an investor or portfo-

lio manager overexposed. A growing body of literature documents the need

for approaches that account for multiple market regimes particularly in the

Hedge Fund space ([24],[45],[55]).

There is a need for sophisticated yet tractable solutions to the problem of

Hedge Fund portfolio construction and rebalancing. What we propose is a

practical rebalancing strategy that represents a convergence of literature on

Hedge Fund investing, Regime Switching, and Dynamic Portfolio Optimiza-

tion.

1.1 Research Problem

We use the exposition from Bertsekas ([7]) as a suitable starting point. We

have an investor that makes a decision in each successive time period with the

objective of maximizing his terminal wealth XT . Let X0 denote the initial

wealth of the investor. Xt is defined to be the wealth of the investor at the

beginning of time period t. At each period the investor is given the option

of investing in N risky assets with corresponding rates of return r1, ..., rN in

excess of a Risk Free asset with constant return rf . wj,t is defined as the

weight allocated to the jth risky asset at time t. The wealth at end of the tth

time period is given by:

2



Xt+1 = (1 + rf )Xt +
N∑

j=1

(rj,t − rf )wj,tXt (1.1)

The objective is to maximize over w1,1, ..., wj,t, ..., wN,T

JN(X0) = E[U(XT )|X0 = x0] (1.2)

Where U(.) is a risk sensitive utility function.

We generalize the above problem under the existence of K regimes (states),

S = {1, ..., K}; the regimes are macro states, such that, each of the N risky

assets is in the same regime at any given time t. St represents the regime

observed at time t. It(i) is an indicator function which is defined as follows:

It(i) =

 1 if St = i

0 otherwise

Matrix Q is defined as the transition matrix such that qi,i′ corresponds to

the one step transition probability from state i to i′.

P (St+1 = i′|St = i) = qi,i′

the wealth dynamics (1.1) becomes as follows:

3



Xt+1 = (1 + rf )Xt +
K∑

i=1

N∑
j=1

(ri,j,t − rf )wj,tIt+1(i)Xt (1.3)

where ri,j,t is the return of asset j in state i at time t. Please note, that at

time t, It+1(i) is not known with certainty.

1.2 Research Objectives

The dissertation objectives are as follows: 1) develop an asset allocation

model for Hedge Fund Returns that follow a Multivariate Gaussian Mix-

ture Distribution; 2) find optimal policies for the multi-period case under

a no liquidity restriction assumption; 3) generalize the previous case to ac-

count for heterogeneous lockup (no trade regions) and homogeneous notice

periods (lookahead windows); 4) provide multiple approximation and simula-

tion approaches to the problem of Portfolio Optimization with heterogeneous

lockups; 5) Apply these approaches to the problem of Multi-Period Hedge

Fund Asset Allocation.

1.3 Structure of the Thesis

The rest of this thesis is structured as follows: chapter 2 provides background

research on the problem with a focus on hedge funds; chapter 3 contains

the Asset Allocation Model and a generalization to the Hedge Fund Portfo-

lio Model; chapter 4 contains approaches to solving the Multi-Period Asset

Allocation Problem and a number of approximation techniques; chapter 5

4



contains an out of sample back-test on the model and chapter 6 concludes

the discussion.
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Chapter 2

Background

2.1 Hedge Funds

Hedge Funds are pooled investment vehicles that can take long and short

positions, trade derivatives, use leverage, and invest in almost any opportu-

nity in any market where they anticipate impressive gains at reduced risk

([16],[55]). Hedge Funds as an asset class have seen extraordinary growth.

Hedge Funds and Funds of Hedge Funds (FoFs) have seen approximately

20% growth per year over the 15 year period from 1990 to 2005. As of the

end of 2005, there were approximately 8,100 funds and 2000 FoFs reporting

to one of the 12 major global databases.( [52]).
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2.1.1 Investors

High Net Worth investors and Family Offices were the first to actively invest

in Hedge Funds and FoFs. However, in the last decade, the investor base

has shifted away from High Net Worth individuals to Institutional Investors

([52],[9]).

The largest beneficiary of the growth of Institutional Investor allocation to

Hedge Funds have been FoFs. The reason is that most institutions do not

have the staff necessary to source, select, perform single manager due dili-

gence, and ultimately monitor the funds post selection ([52]). Institutional

Investors have come to rely upon FoFs as extensions of their own management

teams for their professional Manager Selection and Due Diligence capabilities

([52]).

2.1.2 Risks

Key structural risks or drawbacks unique to Hedge Fund investing are as

follows ([9],[52]):

• Transparency: Investors are not given information about the under-

lying portfolio assets.

• Complexity: Managers are able to use diverse asset classes and com-

plex derivative products to produce returns which may not be readily

understood by the investor.

• Fees: Hedge Fund Fees, comprised of Management and Incentive Fees

7



are generally significant ([10], [26]).

• Leverage: Debt which is invested with the aim of achieving a greater

rate of return can affect risk adjusted performance ([6]).

• Liquidity: There are two levels of liquidity risk, Lockup Restrictions

and illiquidity in the underlying portfolio. Many Hedge Funds have

Lockup Provisions. These are two-fold: Lockup Periods which restrict

investor divestment and Notice Periods which delay transaction execu-

tion (see below). The presence of stale asset prices due to illiquidity

can artificially lower estimates of volatility and correlation to tradi-

tional indices ([11]).

• Idiosyncratic: There have been a number of catastrophic Hedge Fund

failures: Long Term Capital Management (1998), Amaranth (2006) and

Madoff (2008).

In our research, we focus specifically on the impact of Liquidity Provisions

on Portfolio Allocation and Optimization. Fee effect is mitigated by using

net as opposed to gross returns. We do not specifically focus on transparency,

complexity or leverage in this analysis.

Lockups

Lockup Provisions are classified into ”Hard” and ”Soft” locks. A ”Hard

Lock” requires that all initial monies allocated to the fund may not be with-

drawn before the end of a pre-specified duration, or, Lockup Period. A ”Soft

Lock” generally imposes a fee penalty for early redemption. The redemption

8



Notice Period is the amount of time the investor is required to provide notice

before redeeming their share ([4]).

There is a significant body of work documenting the effect of liquidity on

Hedge Fund returns. There is evidence that funds with longer lockup peri-

ods tend to out-perform those with shorter or no lockups ([35]). This result

is verified by Aragon ([4]) who documents a positive concave relationship be-

tween a fund’s excess return and its redemption Notice Period and minimum

investment size. Aragon ([4]) shows that the difference between excess re-

turns on lock versus non-lock funds (lockup premium) are about 4% annually;

He further concludes that Hedge Fund out-performance is entirely consistent

with the compensation for bearing liquidity risk. The Lockup Premium is

consistent with existing literature ([38],[51]) that documents the existence of

a Liquidity Premium for Liquidity Risk in illiquid securities.

Illiquidity in Hedge Fund portfolios can have a significant impact on returns.

The degree of autocorrelation in a Fund’s returns can serve as a proxy for

the fund’s liquidity exposure ([44]). Chan, Getmansky, Haas and Lo find

significant autocorrelation in the following six categories ([44]): Convertible

Arbitrage (31.4 %), Fund of Funds (19.6%), Event Driven (18.4%), Emerg-

ing Markets (16.5 %), Fixed Income Arbitrage (16.2 %) and Multi-Strategy

(14.7%). Getmansky, Lo and Makarov ([41]) further argue that serial corre-

lation is attributable to illiquidity and ”performance smoothing” 1. There-

1For securities that are traded infrequently techniques such as linear extrapolation
are used to determine the present price from the most recent transaction price; returns
computed in such a manner tend to be smoother, exhibiting lower volatility and higher

9



fore, due to the relationship between illiquidity and serial correlation, Hedge

Fund portfolio illiquidity invalidates the assumption of independent monthly

returns.

Much of the research in this area has been on measuring Liquidity Pre-

mium2. Longstaff ([38]) provides a mathematical calculation for the liquidity

premium that is based on the additional return required for utility loss due to

liquidity. Browne et al. ([51]) defines liquidity premium as the amount added

to an illiquid product to produce the same level of utility as the unrestricted

product without the liquidity premium. Derman, Park and Whitt ([14]) pro-

pose Discrete Time Markov Chain (DTMC) and Continuous Time Markov

Chain (CTMC) models for Hedge Fund Lockup Premiums as a function of

the length of the extended lockup periods.

2.1.3 Performance

Liang ([35]) demonstrates that, in a mean-variance context, Hedge Funds

typically outperform mutual funds. Agarwal, Mendelson and Naik ([56]) fur-

ther state that in the 1992 to 1996 period Hedge Funds achieved a monthly

return of 1.10% versus 0.85% achieved by Mutual Funds ([56]). In the same

period Hedge Funds achieved a monthly standard deviation of 2.40% versus

1.91% for mutual funds. Using a risk adjusted performance measure such

as Sharpe Ratio, Liang ([35]) demonstrates that Hedge Funds outperform

Mutual Funds on a risk adjusted basis (0.44 vs. 0.26 respectively). These

serial correlation than true economic returns ([44])
2We define Liquidity Premium as the premium demanded by investors for the increased

risk in investing in an illiquid security
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results justify invesment in Hedge Funds as an asset class.

Agarwal and Naik ([2]) expanding on previous work by Fung and Hsieh ([18])

demonstrate that Hedge Fund returns exhibit nonlinear option-like payoffs

3. Funds exhibit significant left tail risk that is typically underestimated in

the standard mean-variance framework ([2]). Although this claim is sup-

ported in the Cremer’s Kritzman and Page paper, ”Optimal Hedge Fund

Allocations: Do Higher Moments Matter?,” they find that under log utility

mean-variance optimization performs extremely well, even when the distri-

butions of the component Hedge Fund returns are significantly non-normal

([28]).

Persistence

A critical assumption embedded in a Multi-Period Asset Management frame-

work is that Hedge Funds exhibit persistence in returns. Return persistence

implies differential manager skill, a necessary prerequisite in allocating to dif-

ferent Hedge Funds within the same strategy group. Studies on Hedge Funds

have revealed conflicting, but generally favorable, evidence of persistence.

Brown, Goetzmann and Ibbotson ([54]) use a relative (against the median)

annual performance two state (win-win,l ose-lose) method to identify dif-

ferential performance persistence but do not find evidence of persistence.

3Standard performance evaluation models involve regressing a fund’s historical return
on certain economic benchmarks; funds with option like payoffs cannot be adequately rep-
resented this way. Typical approaches include adding nonlinear functions of the benchmark
returns as regressors ([18])
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However, others find evidence of persistence over shorter periods. Agarwal

and Naik ([1]) find a considerable amount of persistence at the quarterly

horizon which reduces at the yearly window. Recent work by Jagannathan,

Malakhov, and Novikov ([50]) finds that more than 25% of the abnormal

performance during a three year interval will spill over into the following

three year interval. Derman and Park ([14]) find performance persistence in

the following strategies: (i) Convertible Arbitrage, (ii) Dedicated Short Bias,

(iii) Fixed Income, (iv) Fund of Funds, and (v) Others.

Biases

Any discussion of Hedge Fund performance requires an overview of listing

biases. Literature on this topic addresses four specific biases:

• Self Selection: Selection bias occurs because Hedge Funds in a database

are not representative of the universe of Hedge Funds ([17]); inclusion

of a Hedge Fund in a database is done on a voluntary basis. Aragon

([4]) argues that, though high quality funds have a greater incentive to

reveal performance, raising capital is likely the only incentive to report.

The impact of self selection bias is mitigated by that disparity.

• Survivorship: Survivorship bias occurs if Hedge Fund databases do

not contain data on defunct funds. When comparing the HFR and

TASS databases Liang ([36]) finds that survivorship bias exceeds 2%

per year, 0.6% for the HFR. This is greater than the 3.0% bias found by

Fung and Hsieh ([17]). After 1994, both the HFR and TASS database

have started maintaining data on dissolved funds.

12



• De-listing: De-listing bias is similar to survivorship. De-listing bias

exists if the database does not perfectly observe final return observa-

tions of a de-listing fund ([4]). Aragon ([4]) observes that de-listing

bias is more severe for funds with share restrictions.

• Backfilling: Backfilling bias may arise because databases permit newly-

added funds to backfill their performance data. Funds have an incentive

to raise capital following above average returns so estimates of perfor-

mance using backfilled data may be biased upwards ([4]). Using the

TASS database, Fung and Hsieh ([17]) estimate the backfilling bias for

Hedge Funds at 1.4% per year over the 1994-1998 period. Posthuma

and van der Sluis ([46]) estimate backfilling bias at 4% per year. Aragon

([4]) confirms Posthuma and van der Sluis’ results finding excess returns

are 3-4% lower after controlling for backfilled data.

To mitigate the effect of these biases, in our analysis we compare the

results on a cross-sectional basis using HFR index data. In the pilot study

in section 5.1, we compare allocations to HFR Indices to the HFR Fund of

Fund Composite index; index data limits the affect that any one fund can

have on the results. Besides Hedge Funds, the only other asset class in the

model is the Risk Free Asset. Lower Hedge Fund returns potentially increase

the optimal allocation to the Risk Free asset, however, with the Risk Free

Rate at historic lows that effect is diminished.
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2.2 Regime Switching Models

Hamilton ([23],[24]) introduces the Regime Switching model with his devel-

opment of the Autoregressive Regime Switching Process. Since then, sim-

ilar approaches have been applied to equity return distributions ([25],[22]).

Hardy ([25]) uses a Regime Switching Log-Normal Process (RSLN) which

implements a Markov process to select among K discrete Log-Normal Distri-

butions; this application is similar in scope to the Regime Switching Model

employed here.

Billio, Getmansky and Pelizzon ([42]); Chan, Getmansky, Haas and Lo ([45]);

and Tashman and Frey ([55]) address further applications of Regime Switch-

ing Models to Hedge Fund returns. Billio, Getmansky and Pelizzon employed

a Regime Switching Beta Model; changes in regime correspond to changes in

broad market exposure. Chan et. al. ([45]) use a two state model (’Normal’

and ’Distressed’ regimes) to fit Hedge Fund index returns. Tashman and Frey

([55]) use a Hierarchical Mixture of Experts (HME) model to fit arbitrage

Hedge Fund returns; the model features a Multi-Factor Gating Distribution

that selects between two Multi-Factor Models.

For the preliminary analysis we fit a Two-State Nodel (as seen in Chan

et. al. [45]) for ”Normal” and ”Distressed” states to Hedge Fund index re-

turns. The purpose of which is to develop an optimal policy for Hedge Fund

Allocation in the presence of multiple regimes.
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2.3 Portfolio Optimization

We begin our discussion of Portfolio Optimization with Merton ([40]) and

Samuelson ([53]) who examined the problem of Multi-Period Portfolio Opti-

mization in the continuous and discrete-time cases respectively. They exam-

ined the problem of Optimal Portfolio Selection under a utility function that

satisfies Pratt’s ([47]) measure of Constant Relative Risk Aversion (CRRA).

Merton specifically addresses Portfolio Selection under a utility function of

the form:

U(C) =
Cγ

γ

The CRRA utility function used by Merton has certain benefits with

regards to multi moment optimization and will be discussed further in section

3.2. In the Jondeau and Rockinger paper, ”Optimal Portfolio Allocation

Under Higher Moments,” a Taylor Series expansion is used to approximate

the expected utility as a function of the higher moments ([29]). This approach

facillitates efficient computation of the optimal portfolio. We use a similar

approach in section 3.2.

In absence of forecasts for the returns of the risky assets in a Single Regime

Model (see eq. 1.1) the Myopic Policy 4 is optimal ([7]). If the forecast for

a period i becomes available during the investment process then a Partially

Myopic Policy 5 is optimal. Multi-Period Solutions become necessary in the

4A Myopic Policy assumes that at any point in time the investment opportunity will
remain constant thereafter [33]

5A Partially Myopic Policy is similar to a Limited Lookahead Policy. The assumption
is that after the Lookahead Window the investment opportunity will remain constant
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presence of Transaction Costs ([32],[57]) or Liquidity Restrictions ([27],[9]).

Sun, Fan, Chen, Schouwenaars and Albota ([57]) use Certainty Equiva-

lents to develop an Optimal Allocation Policy in the presence of Transaction

Costs. Using Certainty Equivalents, they quantify the Risk Neutral Cost

of sub-optimality; when this cost exceeds the Transaction Cost of rebal-

ancing, partial or full rebalancing occurs. This approach provides superior

results over conventional approaches of periodic and tolerance band rebalanc-

ing ([13],[57]). When rebalancing on a periodic basis, the Portfolio Manager

adjusts allocations at a predetermined time interval; this approach has the

drawback of ignoring market behavior or trading when the portfolio is nearly

optimal ([57]). For Tolerance Band rebalancing occurs when an allocation

deviates beyond some target limit; exceedences are followed by full rebalanc-

ing to the target portfolio. This method reacts to market behavior however

the threshold is fixed and any action results in full rebalancing ([57]). Leland

([32]) demonstrates the existence of a ”No-Trade Region” around the Opti-

mal Portfolio weights; in the event that the weights exceed the boundaries of

the ”No-Trade Region” it is optimal to bring them back to the nearest edge

of that region. Mulvey and Simsek ([43]) model the problem of rebalancing

under Transaction Costs and Market Impact as a generalized network with

side conditions.

Some papers deal more specifically with the problem of Hedge Fund Alloca-

tion ([27],[9]). Cvitanic et. al. ([27]) develop a model in which a Non-Myopic

Investor with incomplete information allocates wealth between a Risk Free

Security, a Passive Portfolio and an Actively Managed Portfolio. They find
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that that low beta Hedge Funds may serve as natural substitutes for a signifi-

cant portion of an investor Risk Free Asset holdings; Boyle and Liew support

this result ([9]).

There is a growing body of literature that deals specifically with the issue

of Portfolio Allocation under Regime Switching. Ang and Bakaert’s paper,

”International Asset Allocation with Regime Shifts,” model the Dynamic

Asset Allocation Problem in the presence of regime switches for investors

with CRRA preferences ([3]). They examine the effects of assymetric cor-

relation on the benefit of International Asset Diversification by modeling a

US investor with CRRA preference maximizing end of period wealth and dy-

namically rebalancing in response to regime switches. In the paper, ”Optimal

Portfolio Choice under Regime Switching, Skew and Kurtosis Preferences,”

([21]) Guidolin and Timmerman model a ”Buy and Hold” investor’s choice

of a Simple Stock Portfolio and Risk Free asset over a finite time horizon

under a Markov Switching Vector Autoregressive Process and CRRA utility.

In, ”Asset Allocation under Multivariate Regime Switching,” Guidolin and

Timmerman expand on their previous work to explore the Asset Allocation

in the presence of regimes in the joint distribution of stock and bond returns

([20]). They found that Optimal Asset Allocation varies significantly across

regimes and length of the investment horizon.

These papers provide a theoretical basis for our work, however, in Hedge

Fund Portfolio Allocation, Transaction Costs are negligible in comparison

to the more difficult to quantify Liquidity Restrictions. This project will
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supplement existing research in Multi-Period Regime-Based Optimization by

providing an allocation and rebalancing approach to Hedge Fund investments

with heterogeneous Liquidity Restrictions.

18



Chapter 3

Hedge Fund Portfolio Model

We aim to provide an Optimal Policy for the problem defined in section 1.1

under the following assumptions:

1. There are K regimes

2. Hedge Fund returns are Normally Distributed in each regime

3. Allocation decisions are made on a periodic (monthly) basis

4. There are no Transaction Costs

5. There is a constant Risk Free Rate of investment

6. The Return Generating Distributions and the Gating Distribution are

independent

7. Each fund has a lockup length Lj = 0, 1, ..., T

8. Funds can have a homogenous Notice Period ∆

9. Allocations to fund j cannot be changed during a Lockup
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10. Once a fund has exited a Lockup it can no longer reenter a Lockup

3.1 Portfolio Return Distribution

Recall from 1.1 equation 1.3 as follows:

Xt+1 = (1 + rf )Xt +
K∑

i=1

N∑
j=1

(ri,j,t − rf )wj,tIt+1(i)Xt (3.1)

At t, It+1(i) is not known with certainty, but rather follows a Multinomial

Distribution which selects regime i′ from regime i with probability qi,i′ . A

key assumption used here is that the Return Generating Distributions are

independent of the Switching Mechanism. If the returns of the N risky as-

sets follow a Normal Distribution (N(µi, Σi)) where µi is a vector and Σi is a

matrix in regime i then the return (rP
t ) of a portfolio of N risky assets with

allocations w = (w1, ..., wN) at time t follows a Gaussian Mixture Distribu-

tion with parameters

ΘG = (π1, π2, ..., πK , µT
1 w, µT

2 w, ..., µT
Kw,wT Σ1w, wT Σ2w, ..., wT ΣKw) (3.2)

Let µP
i = µT

i w and σP
i =

√
wT Σiw and π1 = qi,1, π2 = qi,2, ..., πK = qi,K

respectively then using the Moment Generating Function (MP
r (t)) about rP

t :

M (P )
r (t) =

K∑
i=1

πie
µ

(P )
i t+ 1

2
σ

2(P )
i t2 (3.3)

We can solve for the moments and centralized moments of the return

distribution rP
t (see appendix C).
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Recall again equation 3.1; we can condition the change in wealth (returns)

on the state i at time t:

St = i⇒ Xt+1

Xt

= 1 + rf +
K∑

i′=1

N∑
j=1

(ri′,j − rf )Ii,t+1wj,t (3.4)

The 1 + rf term is a constant as defined above. So let:

Gt(It) =
K∑

i′=1

N∑
j=1

(ri′,j − rf )It+1(i)wj,t

Gt(It) represents the excess returns of the portfolio over the Risk Free

Rate rf given weights wt at time t. Then Gt(It) follows a Gaussian Mixture

Distribution as follows:

Gt(It) ∼ G(π1, π2, ..., πK , wT
t (µ1−rf ), w

T
t (µ2−rf ), ..., w

T
t (µK−rf ), w

T
t Σ1wt, w

T
t Σ2wt, ..., w

T
t ΣKwt)

(3.5)

Rewriting equation 3.4 using Gt(It) we end up with the following return

representation:

Xt+1

Xt

= 1 + rf + Gt(It) (3.6)

where St = i
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3.2 Utility Return Function

The objective of this Multi-Period Asset Allocation Problem is to maximize

the expected utility (U(.)) of the terminal wealth U(XT ). For the purpose

of this analysis we use the CRRA Utility similar to Merton ([40]), Ang and

Bakaert ([3]), Guidolin and Timerman ([21],[20]), and Sang and Liew ([9]) .

If Gt(It) follows a Gaussian Mixture Distribution as described above then

we can use a Taylor series approximation (Chen et al. [57], Jondeau and

Rockinger [29]) around the mean µGt of the excess returns as follows:

U(Gt(It)) = U(µGt) + U ′(µGt)(Gt(It)− µGt) +
U (′′)(µGt)

2!
(Gt(It)− µGt)

2+

+
U ′′′(µGt)

3!
(Gt(It)− µAt)

3 +
U iv(µGt)

4!
(Gt(It)− µGt)

4 + o(h)

(3.7)

The higher order terms are truncated in the equation above; this fa-

cilitates a convenient representation for U(Gt(It)) in terms of its first four

centralized moments as follows:

E[U(Gt(It))] ≈ U(µGt) +
U ′′(µGt)

2
σ2

Gt
+

U ′′′(µGt)

6
(µ3Gt

) +
U iv(µGt)

24
(µ4Gt

)

(3.8)

µ3 and µ4 represent the third and fourth centralized moments (see ap-

pendix C).
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The Taylor Series Approximation of the expected utility provides increased

computational efficiency; this justification is similar to that of Jondeau and

Rockinger ([29]). As we show in section 4 the number of optimizations we

need to run can be quite large O[(T + 1)N ], therefore we need an objective

function that balances computational efficiency and higher moment optimiza-

tion. Loistl ([37]) finds one important caveat, the interval of convergence of

the CRRA Utility is:

0 < X < 2E(X)

This condition is generally non-binding for traditional asset classes, and even

in cases where returns may lie outside the interval of convergence the ap-

proximation is sufficient for most practical applications ([29],[31]). For ap-

plications that deviate significantly outside the interval of convergence the

Constant Absolute Risk Aversion (CARA) Utility may be used as in Jondeau

and Rockinger ([29]) which converges absolutely for all values of X. Further-

more in section 4.5 we provide an Adaptive Simulation Based Approach that

explicitly takes the utility of the terminal wealth at each iteration of the

algorithm thereby circumventing the need for the Taylor Approximation.

CRRA Utility

Let the CRRA utility be defined as:

U(X) =
Xα

α
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We are tasked with maximizing the utility of the terminal wealth XT :

XT = (
T−1∏
t=0

(1 + rf + Gt(It)))X0 (3.9)

subject to the initial wealth X0. Therefore, the terminal utility is equivalent

to the following:

U(XT |X0 = x0) = U((
T−1∏
t=0

(1 + rf + Gt(It)))X0)

E[U(XT |X0 = x0)] = E[(
T−1∏
t=0

(1 + rf + Gt(It))
α)U(X0)]

max
~wt

E[U(XT )|X0 = x0] = max
~wt

(U(X0)
T−1∏
t=0

E[(1 + rf + Gt(It))
α])

max
~wt

E[U(XT )|X0 = x0] = U(X0) min
~wt

(
T−1∏
t=0

E[(1 + rf + Gt(It))
α])

max
~wt

ln E[U(XT )|X0 = x0] = ln U(X0) + min
~wt

T−1∑
t=0

ln E[(1 + rf + Gt(It))
α]

(3.10)

Expanding (1 + rf + Gt(It))
α about the µGt term yields:
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(1 + rf + Gt(It))
α = (1 + rf + µGt)

α + α(1 + rf + µGt)
α−1(Gt(It)− µGt)+

+
α(α− 1)(1 + rf + µGt)

α−2

2
(Gt(It)− µGt)

2+

+
α(α− 1)(α− 2)(1 + rf + µGt)

α−3

6
(Gt(It)− µGt)

3+

+
α(α− 1)(α− 2)(α− 3)(1 + rf + µGt)

α−4

24
(Gt(It)− µGt)

4

(3.11)

Taking the expectation:

E[(1 + rf + Gt(It))
α] = (1 + rf + µGt)

α+

+
α(α− 1)(1 + rf + µGt)

α−2

2
σ2

Gt
+

+
α(α− 1)(α− 2)(1 + rf + µGt)

α−3

6
µ3Gt

+

+
α(α− 1)(α− 2)(α− 3)(1 + rf + µGt)

α−4

24
µ4Gt

(3.12)

This provides a convenient closed form representation for the expected

utility of the return at each time step in terms of the first four portfolio

moments. This is a better representation for Hedge Fund Portfolios than

Quadratic Utility because of the non-normality of the returns.
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3.3 No Liquidity Restriction Model

As before, let S be a set of K distinct macro environmental regimes such

that:

S = {1, 2, ..., K}

St represents the state of the environment at time t such that:

P (St = i′|St−1 = i) = qi,i′

In addition, F is the set of available risky assets. The magnitude of set F

is N allowing a choice of allocation to a combination of any of the available

N assets. let fj be a fund in set F such that:

fj = ( ~µj, ~σj)

In the tuple above ~µj is a column vector of size K, denoting the expected

return of fund j in each of the K regimes and ~σj is a column vector of size

K representing the standard deviation of fund j each of the K states.

Under the No Lockup Condition the set of actions available at time t, At

is the following:

At = ~wt

where ~wt is a vector of magnitude N with each entry:
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wj,t ∈ [0, 1]

Examining equation 1.3 it is apparent that the choice of weights ~wt does

not impact the system dynamics of the model. The dynamics are driven by

the static transition probability matrix Q. Therefore, the choice of action at

time t only effects the future wealth. In absence of Transaction Costs, when

the Liquidity Restrictions are relaxed, the choice of action depends only on

the current state at the beginning of time period t.

3.3.1 No Lockup MDP Formulation

Using the Certainty Equivalent approach we start with a special case of a

Markov Decision Process (MDP) ([5],[7]) where the regime transition dynam-

ics are independent of the choice of control:

DNL = {S, A,Q, R}

Where S is a set of macro regimes as defined in section 3.3:

S = {1, 2, ..., K}

A is the set of actions and a is an action in A. The available actions at each

state i are given by the weights to the component risky assets which are as

follows:
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A = { ~w1, ~w2, ..., ~wi, ..., ~wK}

Such that:

wi,j ∈ [0, 1]

N∑
j=1

wi,j ≤ 1
(3.13)

q(i, i′) is the transition probability of a transition from state i to i′ as follows:

q(i, i′) = P (St+1 = i′|St = i)

and Rt(i, i
′, a) is the immediate reward for transitioning from state i to i′

under action a ∈ A:

Rt(i, i
′, a) = (1 + rf +

N∑
j=1

ri′,jwi,j)
α

The value function is shown below

V (i) = min
a

T−1∑
t=0

ln E[Rt(St, St+1, a)|S0 = i] (3.14)

3.3.2 No Lockup POMDP Formulation

The state i is not directly observable ([20]) so we generalize this model to a

Partially Observable Markov Decision Process (POMDP) ([34]). A POMDP

is a tuple ˜DNL = (S, A, Z, Q̃, Ω, R̃), where S and A are defined in the same

way as in the MDP model. Ω is defined as a finite set of observations of the

28



process and Z is an Observation Function ([34]) which gives for state at time

t a probability distribution over possible observations ([34]). A ”belief state”

is introduced, where Zt is a probability distribution over S at time t. The

Prior and Predictive Distributions of are given below:

Prior Distribution:

P ( ~rt−1|St = i) = φ( ~rt−1|~µi, Σi) (3.15)

We can update this distribution as a function of St−1 as follows:

P ( ~rt−1|St−1 = i) =
K∑
i′

P ( ~rt−1|St = i′)P (St = i′|St−1 = i)

=
K∑

i′=1

qi,i′φ( ~rt−1| ~µi′ , Σi′)

(3.16)

Which gives us a Prediction Distribution Function as follows:

P ( ~rt−1| ~rt−2) =
K∑

i′=1

P ( ~rt−1|St = i′)P (St = i′| ~rt−2)

=
K∑

i′=1

K∑
i=1

P ( ~rt−1|St = i′)P (St = i′|St−1 = i)P (St−1 = i| ~rt−2)

=
K∑

i=1

K∑
i′=1

Zt−1(i)qi,i′φ( ~rt−1| ~µi′ , Σi′)

(3.17)
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Posterior Distribution

Zt(i
′) = P (St = i′| ~rt−1)

=
P ( ~rt−1|St = i′)P (St = i′| ~rt−2)

P ( ~rt−1| ~rt−2)

=
P ( ~rt−1|St = i′)

∑K
i=1 P (St = i′|St−1 = i)P (St−1 = i| ~rt−2)∑K

i=1

∑K
i′=1 Zt−1(i)qi,i′φ( ~rt−1| ~µi′ , Σi′)

=
P ( ~rt−1|St = i′)

∑K
i=1 qi,i′Zt−1(i)∑K

i=1

∑K
i′=1 Zt−1(i)qi,i′φ( ~rt−1| ~µi′ , Σi′)

(3.18)

Given the Observation Function Z above, we need to update the State

Transition and Reward Functions to account for the uncertainty in the states.

This gives us new representations for Q and R. We have a new state tran-

sition function Q̃(rt−1, rt) and reward function R̃(rt, a). The state transition

function is defined as follows:

Q̃( ~rt−1, ~rt) = P ( ~rt−1| ~rt−2) (3.19)

The updated reward function R̃( ~rt−1, a) is given by

R̃(rt−1, a) =
K∑

i=1

Zt(i)Rt(i, a)

=
K∑

i=1

Zt(i)E[(1 + rf +
K∑

i′=1

N∑
j=1

(rj,t(i, i
′)− rf )wj,tIt+1(i, i

′))]

= 1 + rf +
K∑

i=1

K∑
i′=1

Zt(i)(
N∑

j=1

(rj,t(i, i
′)− rf )wj,tIt+1(i, i

′))

(3.20)

30



3.4 Lockup Model

Unfortunately many Hedge Funds have Lockup Restrictions that make re-

balancing difficult and restrict the set of available actions. For the purpose

of this work we introduce three new parameters to the fund specification: a

Lockup Length vector (Lj), a Minimum Allocation parameter (Mj) and a

Notice Period constant (∆). We define the Lockup as a ”No-Trade” region

following an initial allocation to a fund and the Notice Period as the length

of time required before an action can effect the system. In the model, once

a fund has exited a Lockup it can no longer re-enter the Lockup. Further-

more, we define the Minimum Allocation as the minimum amount required

to initiate an investment in a fund. We generalize our definition of each risky

asset fj as follows:

fj = (Lj, Mj, ∆, ~µj, ~σj) (3.21)

The scalar integer quantity Lj represents the lockup duration in periods

for fund j. The addition of a Lockup Parameter expands the scope and

complexity of the Multi-Period Asset Allocation Problem and requires State-

Space Augmentation techniques to be modeled effectively. For the purpose

of the model we make the assumption that Notice Periods are homogeneous

across all of the funds which offers a convenient transformation from the K-

Regime model to the Aggregate Time Representation, we suspend further

discussion to section 4.1.3.
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3.4.1 Augmented State Space

Recall, as before each state in S is in one of K regimes at each time t ≤ T as

follows: St ∈ {1, ..., K}, in addition we add three parameters. The first ~lt a

column vector of size N that represents the Lockup Time remaining in fund

at time t, each ~lt is in the set Λ of possible lockup combinations. Each row

j of ~lt is defined as follows:

lj,t ∈ {0, 1, ..., Lj}

The second parameter is the aggregate wealth at time t, Xt. Finally, we add

the weights ~wt. The new state variable SL at time t is given by:

SL
t =



~lt

St

~wt

Xt


(3.22)

For the purpose of end period liquidity at time T we enforce the condition

that lj,T ∈ {0, Lj}; an lj,T value of 0 indicates that fund has successfully exited

the lockup period prior to time T , similarly, a value of Lj indicates that the

fund received no allocation prior to time T . In addition to providing sound

economic justification, the condition limits the number of plausible paths

thereby limiting the size of the State Space. The choice of Admissible State

pair (SL
t , SL

t+1) constrains the weights ~wt at time t.
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3.4.2 Lockup Dynamics

The System Dynamics are modified by the addition of the Lockup vector into

the State Space specification. Unlike the Regime Transition mechanics the

choice of action At effects the Lockup State Transitions ~lt. If the Lockup entry

corresponding to fund j at time t−1 is equal to Lj and there is no allocation

to fund j, then the jth entry of the Lockup vector at time t remains equal

to Lj. If there is an allocation that meets the Minimum Balance Constraint

at time t then the process will move sequentially from Lj to 0 from t to

t + Lj; during this period the Admissible Action Set is constrained so that

no adjustment can be made to fund j. Once the fund passes through the

Lockup Process then the allocations can be modified freely.

lj,t =



Lj if lj,t−1 = Lj, wj,t−1 = 0

Lj − 1 if lj,t−1 = Lj, Mj < wj,t−1Xt−1

lj,t−1 − 1 if 0 < lj,t−1 < Lj, 0 < wj,t−1

0 if lj,t−1 = 0

(3.23)

During the Lockup Period for fund j no action can be taken that direct

changes the allocation to fund j, however, the allocation can be changed

indirectly due to the Wealth Dynamics of the system. If the fund is in Lockup

then the allocation to fund j at time t + 1 will be equal to the proportion of

its total wealth allocation at time t + 1 as follows:

wj,t+1 =
(1 + rf + rj,t)wj,tXt

Xt+1

if 0 < lj,t < Lj (3.24)
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As we see the relationship above forces a constraint on the action set. In order

to accommodate this constraint and model this problem as a standard MDP

we can separate the weights into Actionable and Inactionable components.

3.4.3 Splitting the Weights

We split the weights into two components. The first component ( ~wl
t) is the

Inactionable Component that represents the drift in allocations given that

no action is taken. The second component ( ~wa
t ) represents the Actionable

Component that can be directly manipulated.

~wt = [ ~wl
t, ~wa

t ] (3.25)

In order to determine the action At at time t, we need a method to select

between the components of ~wt. To facilitate this purpose, we introduce a

new parameter (laj,t) that takes a value of 1 if fund j is in its Lock Period

and 0 otherwise. Adding this parameter to the wealth dynamics allows us to

switch between the Actionable and Inactionable weights as follows:

wj,t = laj,tw
l
j,t + (1− laj,t)w

a
j,t

laj,t =

 1 if 0 < lj,t < Lj

0 otherwise

(3.26)

We combine each of these components to form the new problem formulation.
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3.4.4 Lockup Formulation

We extend the POMDP model in section 3.3.1, the new model is D̃L =

(SL, AL, Z, Q̃L, Ω, R̃). Where the new state set SL is defined:

SL =



~l : ~l ∈ Λ, lj = {0, 1, ..., Lj}

S : S ∈ {1, 2, ..., K}
~wl : wj ∈ [0, 1]

X : X ∈ <

(3.27)

AL is the new action set such that AL = { ~wa
0 , ~wa

1 , ..., ~wa
T−1}. Z is defined

similarly to ˜DNL, Zt(i) = P (St = i| ~rt−1). Ω, likewise is defined as a finite

set of observations of the process.Q̃L = (Q̃, λ, $, χ) corresponds to the new

system dynamics, where Q is defined as in section 3.3.1, namely:

P (St = i′|St−1 = i) = qi,i′

and Q̃ is given as in section 3.3.2 by

Q̃ = P (rt|rt−1)

λ defines the Lockup State ~lt transitions such that:
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~lt := λ(St−1, At−1)

λ(St−1)j =



Lj if lj,t−1 = Lj, wj,t−1 = 0

Lj − 1 if lj,t−1 = Lj, Mj < wj,t−1Xt−1

lj,t−1 − 1 if 0 < lj,t−1 < Lj, 0 < wj,t−1

0 if lj,t−1 = 0

(3.28)

χ controls the change in wealth Xt:

Xt := χ(SL
t , SL

t−1, At−1)

χ(SL
t , SL

t−1) = (1 + rf +
N∑

j=1

rj,t−1wj,t−1)Xt−1

(3.29)

$ effects the dynamics of the current weight vector ~wt as follows:

~wt := $(SL
t , SL

t−1, At)

$(SL
t , SL

t−1, At)j = laj,tw
l
j,t + (1− laj,t)w

a
j,t

wl
j,t =

(1 + rf + rj,t−1)wj,t−1Xt−1

Xt

laj,t =

 1 if 0 < lj,t < Lj

0 otherwise

(3.30)

The expected reward function is defined as in section 3.3.2 as

R̃(rt−1, a) =
K∑

i=1

Zt(i)Rt(i, a)
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3.4.5 System Dynamics

We provide here a synopsis of the system in time order to help clarify state

- action precedence in the system:

1. At the beginning of time t we have, (SL
t−1, At−1, Xt, ~rt−1) the compo-

nents of SL
t

2. from ~rt−1 we calculate Zt

3. from ~lt we calculate ~lat

4. from rt and St we determine At = ~wa
t

5. we calculate ~wt := $(SL
t , SL

t−1, At)

6. we observe ~rt

7. from ~rt, ~wt we calculate rP
t

8. rP
t and Xt gives Xt+1

9. At the end of time t we have, (SL
t , At, Xt+1, ~rt, w

l
t+1) the components of

SL
t+1

10. increment t

37



Figure 3.1: System Dynamics of the Lockup POMDP
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Chapter 4

Algorithm

We begin with the following quantities:

1. Ω: A TΩ ×N matrix of historical fund returns

2. ~L: A Lockup Length vector of size N

3. ~M : An Initial Allocation vector of size N

4. rf : Risk Free Rate

5. X0: Initial wealth scalar quantity

6. α: Risk Aversion Constant

7. T : Max length of the finite time algorithm in discrete time periods.

4.1 Model Fitting

There are two distinct components in modeling the State Space. The first

is the Regime Dynamics and the second is the Lockup Dynamics. The two
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components can be modeled independently of one another because the choice

of action At has no effect on the regime transitions.

4.1.1 Regime Dynamics

We fit a K-means Gaussian Mixture distribution using the Expectation Max-

imization (EM) algorithm (see appendix D) to the historical matrix Ω of re-

turns in excess of the Risk Free Rate rf . Assuming the number of historical

datapoints is TΩ, the size of Ω is N × TΩ. The output of the EM Algorithm

is a parameter vector:

ΘG = (π1, π2, ..., πK , µ1, µ2, ..., µK , Σ1, Σ2, ..., ΣK)

Where πi represents the probability of being in fund i at any given tΩ. We

also obtain a K×TΩ matrix Y where Yi,tΩ = P (StΩ = i|ΘG) which represents

the probability that the return at time tΩ came from regime i. We use the

approach outlined in section 3.3.1 for the calculation of Zt(i) to calculate

Yi,tΩ , i.e Y (i, tΩ) = P (StΩ = i| ~rtΩ , ~YtΩ−1, ΘG)

We can use the proportions data from Y to obtain the transition matrix

Q where qi,i′ represents the one step probability of transitioning from state

i to i′ ([30]) in a Time Homogeneous Markov Chain. Given the matrix Y

we can minimize the squared errors under the assumption that for two given

periods tΩ and tΩ + 1 the probability of being in state i′ at time tΩ + 1 is

equal to the probability of being in state i at time tΩ and transitioning to

state i′. We can formalize this as follows:
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min
Q

TΩ∑
tΩ=0

( ~YtΩ − ~YtΩ−1

T
Q)T ( ~YtΩ − ~YtΩ−1

T
Q)

K∑
i=1

qi,i′ = 1 ∀ i

(4.1)

We end up with a parameter set ΘG and a Transition Matrix Q. We can use

the values above to initialize the Baum-Welch (Forward Backward) algorithm

as described in appendix D. Additionally, we can use a penalized likelihood

function as in the Bayesian Information Criterion (BIC) to rank different

multi-regime models as in McLachlan ([19]) and Frey ([15]).

4.1.2 Lockup Dynamics

The most significant issue in modeling this problem is the size of the Lockup

Component in the State Space. the number of possible states ~lj is:

∏
{j∈~L|0<Lj<T}

(Lj + 1) ≤ (T + 1)N

Fortunately, as shown above, we benefit from the fact that only funds with a

lockup increase the size of the lockup components in the state space. We can

add any number of non-lock funds to the model without increasing the size of

this component in the model. In most practical applications of this problem

we are concerned with a relatively small number of funds. In a larger scale

model we can perform this optimization at the asset allocation level.

Let P be the set of all admissible paths for N funds from time 0 to T ,

and p ∈ P be one admissible path in the set such that p = {~l0, ~l1, ..., ~lT}. We
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can create a Multinomial Decision Tree or Multinomial Path Tree (MPT)

(see appendix E) and a matrix PM which enumerates each of the admissible

path sequences. The number of possible paths is:

P̄ =
∏

{j∈~L|0<Lj<T}

(T − Lj + 2) ≤ (T + 1)N

The size of matrix PM is:

∏
{j∈~L|0<Lj<T}

(T − Lj + 2)(T + 1) ≤ (T + 1)N+1

We see that PM is a P̄×(T +1) matrix where each cell represents an index to

a Lockup State ~lj. This representation allows us to approximate the solution

by conditioning on a given path.

4.1.3 Notice Periods and Time Aggregation

In the previous section we see that the Lockup State Model increases expo-

nentially in the length of time T and number of funds N . We set a hard

upper bound on the number of paths (T + 1)N however for large enough

values of T and N the problem becomes intractable. If we reduce the rebal-

ancing frequency we can significantly reduce the number of paths and make

the problem more manageable; this transformation is similar to modeling

the problem with a Notice Period ∆. The transformation is accomplished by

aggregating ∆ number of time periods together thereby reducing the upper

bound on the number of paths:
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P̄∆ =
∏

{j∈~L|0<
Lj
∆

< T
∆
}

(
T

∆
− dLj

∆
e+ 2) ≤ (bT

∆
c+ 1)N

The transformation is accomplished by enumerating all possible regime se-

quences that can occur in the ∆ time periods and expanding the K-Mean

Gaussian Mixture Distribution to a κ Distribution where κ = K∆. Let

S∆
τ = {St, St+1, ..., St+∆}

represents the new regime state S∆ at time τ = ∆t. We can expand the

Augmented State Space to accommodate the new formulation as follows:

SL
τ =


~lτ

S∆
τ

Xτ

 (4.2)

The Updated Return Distribution

The Return Distribution ~r∆
τ can be modeled by a Multivariate Gaussian

Mixture of Mixtures as follows:

f( ~r∆
τ ) =

κ∑
ι=1

P (S∆
τ = ι)[

∆τ+∆−1∑
t=∆τ

f( ~r∆
τ |S∆

τ = ι)] (4.3)

where the component probability P (S∆
τ = ι) is given by:
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P (S∆
τ = ι) =

∑
{i1,i2,...,i∆−1}

P (St = i1, St+1 = i2, ..., St+∆−1 = i∆−1)I
∆
ι,τ (i1, i2, ...i∆−1) =

=
∑

{i1,i2,...,i∆−1}

P (St = i1)P (St+1 = i2|St = i1)...

...P (St+∆−1 = i∆−1|St+∆−2 = i∆−2)I
∆
ι,τ (i1, i2, ...i∆−1) =

=
∑

{i1,i2,...,i∆−1}

πi1qi1,i2 ....qi∆−2
i∆−1I

∆
ι,τ (i1, i2, ...i∆−1)

(4.4)

and the component densities
∑∆τ+∆−1

t=∆τ f(~rt|S∆
τ = ι) are given by:

∆τ+∆−1∑
t=∆τ

f(~rt|S∆
t = ι) =

∆τ+∆−1∑
t=∆τ

∑
i∈{i1,i2,...,i∆−1}

f(~rt|St = i)I∆
ι,τ (i1, i2, ...i∆−1)

(4.5)

where I∆
ι,τ (i1, i2, ...i∆−1) is an indicator function as follows:

I∆
ι,τ (i1, i2, ...i∆−1) =

1 if St = i1, St+1 = i2, ...., St+∆−1 = i∆−1

0 otherwise

 (4.6)

Transformation from t to τ

After reducing the total time T∆ = b T
∆
c and individual lockup L∆

j = dLj

∆
e we

can apply the same techniques as in the original (non aggregate) case. In the

case that we consider ∆ to be the result of a Notice Period Restriction on the
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problem then we need one minor adjustment. A Notice Period Restriction

lags the action at time τ of the model; the decision determining At∆ is made

at time τ − 1. Thus, we can only use the returns up to time t − ∆ in the

original model to determine appropriate action at τ .

Reducing the rebalancing frequency penalizes the optimality by further re-

stricting the action space such that Aτ ⊆ At therefore Z∆ ≥ Z∗.

Transformation from τ to t

The transformation indicated above has the effect of removing admissible

paths in the neighborhood of path p = (∆ ~l∆0 , ∆ ~l∆1 , ..., ∆ ~l∆T∆
). Let ε∆ be

defined as follows:

ε∆ = max
j

(dLj

∆
e − Lj

∆
) (4.7)

We need to search over all feasible paths in the neighborhood of path p.

Let lpj,t be a lj,t ∈ p, a path would only contain lockup states that have the

following property:

blpj,t −∆(1− ε∆)c < lj,t < dlpj,t + ∆(1 + ε∆)e (4.8)

4.2 No Lockup Lower Bound

The Lockup Formulation is a generalization of the No Lockup case. It is thus

possible to provide a lower bound (denoted by ZL) on the optimal solution
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denoted Z∗ by solving the No Lockup Problem (see 3.3.1). We can use this

result to assess the quality of our approximations in the following sections.

ZL := min
w

T−1∑
t=0

ln E[(1 + rf + µAt)
α]

s.t.

0 ≤ wj,t ∀ j, t

N∑
j=1

wj,t ≤ 1 ∀ j, t

(4.9)

The effect of the Lockups in the model restrict the action space A. For

any optimal solution to Z∗, w∗ would be feasible to the No Lockup case

because A∗ ⊆ A therefore:

Z∗ ≥ ZL

4.3 Path Enumeration Approximation

For a given MPT or PM matrix it is possible to iterate over all admissible

paths in the set and establish an approximation to the Optimal Policy, we

call this the Path Enumeration Approximation (PEA) and it is identitical to

the Certainty Equivalent approach. For a given path p ∈ P the Lockup State

transitions from 0 to T are deterministic and therefore ~lt and ~lat are constants

over each p. Additionally, we can define an K×T matrix IA where its j, t-th

component is given by:
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IAj,t =

1 if an initial allocation to fund j was made prior or at time t

0 otherwise


(4.10)

We can expand on the problem specified in section 3 in order to account for

the constraints imposed by the fund Lockup Parameters as follows:

ZA(p) := min
w

T−1∑
t=0

ln E[(1 + rf + µAt)
α]

s.t.

E[Xt+1] = 1 + rf +
K∑

i=1

K∑
i′=1

N∑
j=1

(Yi,0Q
t+1
i,i′ µj,i′wj,t)E[Xt]

laj,twj,t+1 =
wj,t(1 + rf + µAj,t

)

E[Xt]
laj,t ∀ j, t < T

wj,t ≤ IAj,t ∀ j, t < T

wj,t(IAj,t − IAj,t−1)E[Xt] ≥Mj(IAj,t − IAj,t−1) ∀ j, 1 ≤ t < T

wj,tIAj,tE[Xt] ≥MjIAj,t ∀ j, t = 0

0 ≤ wj,t ∀ j, t

N∑
j=1

wj,t ≤ 1 ∀ t

(4.11)

Let ZA(p) be the solution to the above problem for all p ∈ P , the best

approximation to Z∗ is given by:

47



ZA := min
p∈P

ZA(p)

The disadvantage to this approach is that we solve the stochastic problem as

if it were deterministic by forcing the selection of p at time 0 and not allowing

the information that becomes available at time t to determine choice of the

next ~lt+1. The limitation is that information about the current state St for

t > 0 becomes available at the end of t−1. Therefore the best approximation

for ~Yt is given by:

~̂Yt ≈ ~Y0

T
Qt ≈ lim

t→∞
Qt = π

We see that the estimate ~̂Yt converges to the Steady State Mixing Probabil-

ities for that Gaussian Mixture Distribution as time horizon approaches ∞.

For example, if the Regime Transition Dynamics would favor another path

at time t > 0 then the choice of ~w0 may not leave enough cash available in

the Risk Free Rate to take advantage of that opportunity. Therefore we now

have that:

ZA ≥ Z∗ ≥ ZL

Where ZL represents a global lower bound on the lockup problem which is

infeasible to the lockup case. ZA represents the optimal expected utility if

we restrict our choice of feasible path to time 0. We are able to refine that

bound further.
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4.4 Bounded Approximation

In the previous case the expectation operator gives us a forecast of the regimes

probabilities Y given an initial forecast on ~Y0. We can, however, refine our

lower bound on Z∗ by including Y in the objective function for each given p

in the example above as follows:

ZB(p) = min
w,Y

T−1∑
t=0

ln E[(1 + rf + µAt)
α]

s.t.

E[Xt+1] = 1 + rf +
K∑

i=1

N∑
j=1

(Yi,tµj,iwj,t)E[Xt]

laj,twj,t+1 =
wj,t(1 + rf + µAj,t

)

E[Xt]
laj,t ∀ j, t < T

wj,t ≤ IAj,t ∀ j, t < T

wj,t(IAj,t − IAj,t−1)E[Xt] ≥Mj(IAj,t − IAj,t−1) ∀ j, 1 ≤ t < T

wj,tIAj,tE[Xt] ≥MjIAj,t ∀ j, t = 0

0 ≤ wj,t ∀ j, t

N∑
j=1

wj,t ≤ 1 ∀ t

K∑
i=1

Yi,t = 1 ∀t

(4.12)

Solving the above problem creates the ”best case” combination of regime

transitions and actions for a given path. In effect this transfers control of

the Regime Switching Process to the set of admissable actions removing the
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randomness in the regime transitions. For any given path p the expected

case ZA(p) regime transition sequence will always yield a higher expected

utility than the ”best case” ZB(p) transition sequence. We can update the

approximation as shown below:

ZA ≥ Z∗ ≥ ZB := min
p

ZB(p)

We can use this approximation to create a candidate set P ∗ ⊆ P of

magnitude P̄ ∗ potential paths.

4.4.1 Path Elimination

We can use the results from the Bounded Path Approximation to filter P .

Under ZA we make the decision at time 0 about which path we are going

to choose and do not deviate from that choice regardless of the informa-

tion available at time t. Under ZB we assume that all information about

{S0, S1, ..., ST} is available at time 0 such that:

min
p∈P

ZA(p) ≥ Z∗

min
p∈P

ZB(p) ≤ Z∗
(4.13)

The second inequality implies that the solution to ZB is infeasible, this is

because ZB requires that the regime transition {S0, S1, ..., ST} be fully spec-

ified at time 0.

For any two paths {p1, p2} ∈ P , if ZA(1) ≤ ZB(2) then U(p1) ≤ U(p2).

We can generalize this as follows:
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P ∗ = { ∀ p | ZB(p) ≤ ZA}

We can use the candidate set P ∗ and adaptive decision making to arrive at

an Optimal Discretized Policy for Z∗

4.5 Adaptive Simulation

We can use simulation and an Adaptive Learning Algorithm called the Pur-

suit Algorithm [49] to arrive at an Optimal Policy for the problem. We

assume the reader is familiar with the algorithm however, for more informa-

tion on the Pursuit Algorithm see Appendix F. The automaton is defined by

(A, Q, R, T ) [49] and the environment is defined by (A, R, D), these quanti-

ties are specified in Appendix F. In order to cast the problem in a format for

the learning automaton we need a finite discrete representation of the action

space.

4.5.1 Discretizing the Action Space

A fund can be in one of three distinct states with respect to its lockup:

• Unallocated: Prior to an initial allocation the weight with respect to

that fund wj,t must be equal to 0.

• Locked: After the initial allocation is made the weight can only change

with respect to the wealth dynamics no direct intervention is possible.
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• Unlocked: After the end of the Lockup Period all changes made to the

weight of that fund are admissible subject to wj,t ∈ [0, 1].

Given that the action space is unrestricted with respect to fund j in the un-

locked fund state and that this state is persistent with regards to the lockup

dynamics then any decision made during this state does not need to made

prior to entering this state. Therefore, the key questions are: when to enter

fund j and what the initial allocation to fund j should be. We see that if

we allocated all of the wealth at time 0 then a situation can arise at time t

where an allocation to a new fund may have greater utility, if we have not

left enough fluid capital then we would be unable to take advantage of that

opportunity at that time. However, leaving to much in the Risk Free Asset

may yield a lower utility so the choice of initial allocation time and amount

is very important.

We can create an Initial Weight vector as follows:

wIA
j ∈ [0, 1] ∀ j

The combination of ( ~wIA, p) at time 0 allows us to select a weight vector ~w0

and lockup vector ~l1. Though there are a finite number of paths p ∈ P ∗, the

weight vector ~wIA is continuous so in order to represent the action space in a

finite, discrete way in which the space is uniformly discretized into Ā distinct

actions such that each row can take on Ā
N

distinct actions. We can create an

Ā by P̄ ∗ matrix of actions Aφ.
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4.5.2 Sampling the Discrete Action Space

The first step of the Pursuit Algorithm is to seed the probability vector:

pφ( ~wIA, p) =
1

r̂
∀ i ∈ Aφ

where r̂ is the finite number of admissible actions and vector d̂φ containing

the estimates of feedback from the system. We can use a modification to the

(PEA) technique (4.3) which we will call the Simulated Path Enumeration

Algorithm (SPEA) with respect to all ( ~wIA, p) for each p ∈ P ∗ by solving

the non-linear optimization below:

d̂φ( ~wIA, p) := min
w

T−1∑
t=0

ln E[(1 + rf + µAt)
α]

s.t.

laj,twj,t+1 =
wj,t(1 + µAj,t

)

w′
t(1 + µAt)

laj,t ∀ j, t < T

wj,t ≤ Iaj,t ∀ j, t < T

wj,t(IAj,t − IAj,t−1)E[Xt] ≥Mj(IAj,t − IAj,t−1) ∀ j, t

wj,t(IAj,t − IAj,t−1) = wIA
j ∀ j, t

0 ≤ wj,t ∀ j, t

N∑
j=1

wj,t ≤ 1 ∀ t

(4.14)

Certain combinations of ~wIA and p will be infeasible; in these cases we

use the heuristic that the estimate corresponding to these values is equal to

0. We can then use the estimates of d̂φ to create a more robust probability
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matrix pφ as follows:

pφ

ĵ,p̂
=

|d̂φ

ĵ,p̂
|∑Ā

m=1

∑P̄ ∗

n=1 |d̂
φ
m,n|

Ā∑
ĵ=1

P̄ ∗∑
p̂=1

pφ

ĵ,p̂
= 1

(4.15)

It is apparent that the second equality follows logically from the first.

We can now sample the probability matrix by selecting each action ĵ, p̂ with

probability pφ

ĵ,p̂
.

4.5.3 Simulating the System Reaction

The Pursuit Algorithm works through sampling the actions and getting feed-

back from the system. We can use a similar approach to simulate a N × T

multivariate time series matrix rG from a Gaussian Mixture Model using pa-

rameters ΘG and the Transition Matrix Q. We introduce two new quantities

• ΘG(πG): The parameter vector of the Gaussian Mixture with the Steady

State Proportions π replaced by a product of the current Y G
t vector and

the one step transition probilities.

• Y G: a K × T matrix of probabilities that the return at time t came

from regime i
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Algorithm 4.5.1: SimulateMixtureTimeSeries(ΘG, ~Y0, Q, T, N)

local rG, Y G, πGfor t← 1 to T

do{
~Y G
t ← [ ~Y G

t−1]
′ ∗Q

for t← 0 to T − 1

do
πG ← [ ~yG

t ]′ ∗Q

~rG
t ← SimulateMultivariateMixtureReturns(πG, ΘG)

~Y G
t+1 ← CalculateRegimeProbabilities( ~rG

t , ΘG)

return (rG, Y G)

In the pseudocode above SimulateMultivariateMixtureReturns draws an

vector of returns of size N from a the Mixture Distributions using the pa-

rameter vector ΘG(πG) and a function CalculateRegimeProbabilities which

returns a vector of size K where:

Yi,t = P (St = i| ~rG
t , ΘG(πG

t ))

Once we have the proportion Y G and return rG matrices we can use them

in conjunction with the action AIA and initial wealth X0 to produce an N×T

matrix of weights wG, wealth vector XG of size T + 1 and utility value ZG

as follows:
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Algorithm 4.5.2: GetSimulatedWeights(Y G, rG, ~wIA, p, X0, Q, ΘG, ~M, rf , T, α, pIA, AIA, MPT )

local wG, wSPEA, XG, IA, la, pSPEA, Y SPEA, presampleXG
0 ← X0

for t← 0 to T − 1

do

pSPEA ← {pt, pt+1, ..., pT}

Y SPEA ← {~Yt, ~Yt+1, ..., ~YT}

(IA, la, ~wIA, ~M)← GetPathVariables(pSPEA)

while not PathIsFeasible(pSPEA, ~M, ~wIA, IA, la, X)

do
p← SampleActionSpace(pIA, AIA, p, t, MPT )

pSPEA ← {pt, pt+1, ..., pT}

(IA, la, ~wIA, ~M)← GetPathVariables(pSPEA)

wSPEA ← SPEA(Y SPEA, ΘG, XG, IA, la, vecwIA, ~M, T − t)

~wG
t ← ~wSPEA

0

XG
t+1 ← XG

t ∗ (1 + rf + ~wG
t

′
∗ ~rG

t )

ZG ← (XG
T )α

α

return (wG, XG, ZG)

In the algorithm above we introduce three new functions:

• GetPathVariables: this function updates the IA, la matrices and intial

allocation vector ~wIA function of the lockup states remaining in path

p. We assume that funds allocated to prior to time t are now initially

allocated to at time T−t and adjust the minimum vector M and initial

allocation vector wIA accordingly.
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• IsPathFeasible: this function checks to see whether the allocation made

at time t is still feasible. If so it returns true, otherwise it returns false.

• SampleActionSpace: this function resamples the potential paths re-

maining at time t given that choices of lockup state transitions from 0

to t− 1.

Once these adjustments are made, we can implement the Pursuit Algo-

rithm ([49]) to give an ε-optimal choice of action AIA to implement at time

0. At times t > 0 we can reimplement the algorithm assuming the choice

of allocations and lockup states prior to time t, wealth at time t, regime

probability ~Yt and distribution parameters ΘG, Q.
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Chapter 5

Out-of-Sample Back-Test

Results

We run two tests on the model: the first is a small example that consists

of two Hedge Fund strategy indices and a broad market index (N = 3); the

second is a larger scale model consisting of multiple Hedge Fund strategy

indices (N = 6) and the S&P 500 Broad Market Index. In the first example

we fit a (K = 3) Gaussian Mixture Distribution and examine the results

over the following four time periods (T = 4). In the second example we fit

a (K = 2) mixture and examine the results over the following two years of

monthly periodic data (T = 24). We test the results against a number of

Fund of Hedge Fund and Broad Market Indices as well as two Markowitz

optimizations. The Markowitz optimizations proxy two strategies, one Risk

Seeking and the other Risk Adverse. We assume the following:

• We have one million dollars to initially invest X0 = 1000000
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Table 5.1: HFRX Index Statistics (Jan 98 - Dec 07), ESA
Index Mean Std Skew Kurtosis JB Stat P-Value
EH 0.0093 0.0222 0.5837 5.3593 34.6451 < 0.001
EMN 0.0022 0.0107 -0.1468 3.2321 0.500 0.7003
SP 0.0038 0.0429 -0.5056 3.6575 7.2737 0.0299

• Each fund requires 250K minimum investment Mj = 250000

• The risk free rate is 1% annualized rf = 0.0842%

5.1 Equity Strategy Allocation (ESA)

In order to demonstrate the approach we use a three regime model, labeling

one ’Regime 1’, the second ’Regime 2’ and the last ’Regime 3’. A multivari-

ate Gaussian Mixture Model is fit using the Expectation Maximization (see

appendix D) to the monthly excess returns of two Investible Hedge Fund

Research (HFRX) Strategy Indices (see appendix B): HFRX Equity Hedge

Index (EH), HFRX Equity Market Neutral Index (EMN) and the S&P 500

Index (SP). The returns are fit from HFRX index inception to the end of

2007 (Jan 1998 - Dec 2007).
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Table 5.2: Estimated ESA Correlation Matrix
Index EH EMN SP
EH 1.0000 0.1837 0.0018
EMN 0.1837 1.0000 0.0318
SP 0.0018 0.0318 1.0000

Table 5.3: Mixture Distribution Parameters

Regime 1, π̂1 = 0.3670 Regime 2, π̂2 = 0.2025 Regime 3, π̂3 = 0.4305

Index ~̂µ1 ~̂σ1 ~̂µ2 ~̂σ2 ~̂µ3 ~̂σ3

EH 0.0063 0.0244 0.0109 0.0209 0.0098 0.0216
EMN 0.0000 0.0117 0.0033 0.0099 0.0026 0.0104
SP 0.0142 0.0348 -0.0145 0.0500 0.0117 0.0356

5.1.1 Fitting the Multivariate Gaussian Mixture

A Jarque-Bera Test ([12]) run on the returns of the HFRX Indices indicates

that the index returns deviate significantly from normal (see table above).

Jarque-Bera Test is a a two-sided goodness of fit test.

A Gaussian Mixture Distribution of (K = 3) components is fit to the re-

turns using the Expectation Maximization (EM) algorithm (see appendix

D). The distribution parameters are as follows:

Given the Fitted Parameters ΘG = (π1, π2, π3, µ1, µ2, µ3, Σ1, Σ2, Σ3) and

the regime probability matrix Y , P (StΩ = i|ΘG, ~rtΩ) we can use it to produce

the following transition matrix Q:
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Table 5.4: Estimated ESA Transition Probabilities
Regime 1 Regime 2 Regime 3

Regime 1 0.4045 0.1556 0.4399
Regime 2 0.2967 0.3515 0.3518
Regime 3 0.1058 0.4027 0.4914

We can verify that (limt→∞ Qt)i,i′ = πi′

5.1.2 Lockup State Modeling

The next step is to model the Lockup State Space given the vector ~L and

build the PM matrix and MPT. We see that given the Lockup vector ~L we

are able to model 12 distinct paths each corresponding to a different sequence

of Lockup State transitions ~lt. The Figure 5.1 below depicts MPT for the

three fund, four period model with L1 equal to three periods, L2 equal to

two periods and L3 equal to 0.

5.1.3 Single Period Mixture Portfolio Modeling

We run Single Period Optimizations (shown below), the CRRA utility results

have a parameter α that adjusts the Risk Aversion level; the more negative

the α parameter the larger the degree of Risk Aversion [9]. We can fix the

regime i and run the Single Period Optimization over different values of al-

pha to examine the sensitivity to alpha and the mixing component π:

For small magnitude α the results are largely risk seeking however, the
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Figure 5.1: Decision Tree for ESA Model
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Table 5.5: Optimal ESA CRRA Utility Portfolio Parameters

Regime α EH EMN SP rf Mean Std Skew Kurtosis

Regime 1

-1 0.5213 0.0000 0.4787 0.0000 0.0086 0.0219 -0.1552 3.29567
-10 0.7337 0.0000 0.2663 0.0000 0.0086 0.0194 -0.0290 3.0311
-20 0.7271 0.0000 0.2512 0.0217 0.0084 0.0190 -0.0256 3.0256
-50 0.2992 0.0000 0.1032 0.5976 0.0039 0.0078 -0.0255 3.0255

Regime 2

-1 1.0000 0.0000 0.0000 0.0000 0.0091 0.0223 -0.0352 3.0588
-10 1.0000 0.0000 0.0000 0.0000 0.0091 0.0223 -0.0352 3.0588
-20 0.7755 0.1579 0.0666 0.0000 0.0076 0.0179 -0.0228 3.0471
-50 0.3203 0.0718 0.0280 0.5799 0.0036 0.0095 -0.0232 3.0481

Regime 3

-1 1.0000 0.0000 0.0000 0.0000 0.0099 0.0217 -0.0186 3.0334
-10 1.0000 0.0000 0.0000 0.0000 0.0099 0.0217 -0.0186 3.0334
-20 0.8274 0.1726 0.0000 0.0000 0.0086 0.0184 -0.0253 3.0486
-50 0.3629 0.2013 0.0001 0.4357 0.0084 0.0094 -0.0363 3.0756

model is sensitive to larger magnitude α values which have the effect of

diversifying the portfolio across multiple assets in different regimes. For the

remainder of the discussion we will use an α = −20 heuristic approach to

run the Multi-Period Optimizations.

5.1.4 Multiperiod No Lockup Optimization

We fit the model to index returns from Jan 1996 to Dec 2007 and use the

2008-2009 index returns to test the strategy against two Markowitz Opti-

mized portfolios. We use the assumption that the previous month’s returns

are available immediately at the start of each month. The transition proba-

bilities at each time step are calculated based on the prior month returns and

transition matrix Q such that P (St+1| ~rt−1, ΘG) = P (St| ~rt−1, ΘG)T Q. CRRA

Utility (α = −20) Optimal Portfolios are constructed at each step through
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Table 5.6: ESA (No Lockup) Results 2008 - 2009
EH EMN SP ESA MRS MRA

-0.1566 -0.0666 -0.2210 -0.1398 -0.1573 -0.1465

Myopic Single Period Methods and the portfolio returns are computed 1.

We see that the back tested results are superior to most of the compo-

nent indices, specifically the HFRX Equity Hedge Index and the S&P 500

Broad Market Index. It also is superior to the two Markowitz optimizations

targeting the expected return of the Risk Seeking α = −1 and Risk Adverse

α = −20 portfolios. we also are able to extract the No-Lockup lower bound

on Z∗, ZL = −0.5125 that we can use to analyze the results of the path based

approximation techniques.

5.1.5 Multiperiod Lockup Optimization

We run the (PEA) and (BPEA) Algorithms across the 12 paths and calculate

the expected utility ZA(p) and upper bound utility ZB(p) for each path p.

In all cases we see that:

ZA(p) ≥ ZB(p) ≥ ZL

1Source: Hedge Fund Research, Inc., 2010, http:\\www.hedgefundresearch.com
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Figure 5.2: Backtested Returns of the ESA Model

Using the results above we are able to create an upper bound ZU on Z∗

as follows:

ZU = min
p∈P

ZA(p) = −0.3164

Using the results above we see that the optimal Z∗ ∈ [−0.5126,−0.3164].

The path based results are shown below:

We are further able to use ZL and ZU to filter the path set P and create

a candidate path set P ∗ by including any path p for which:

ZB(p) ≤ ZU

The results (shown below) demonstrate that the eligible paths in P ∗ are
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Table 5.7: ESA (BPEA) Results
Path (p) ZL ZA ZB ZU

1 -0.3164 -0.3156 -0.4833 -0.5125
2 -0.3164 -0.3132 -0.4701 -0.5125
3 -0.3164 -0.3140 -0.4829 -0.5125
4 -0.3164 -0.3164 -0.4893 -0.5125
5 -0.3164 -0.2528 -0.3980 -0.5125
6 -0.3164 -0.0929 -0.2021 -0.5125
7 -0.3164 -0.2475 -0.3960 -0.5125
8 -0.3164 -0.2482 -0.3846 -0.5125
9 -0.3164 -0.2495 -0.4094 -0.5125
10 -0.3164 -0.0860 -0.2294 -0.5125
11 -0.3164 -0.0834 -0.2695 -0.5125
12 -0.3164 -0.0741 -0.2921 -0.5125

Table 5.8: ESA Selected Path Lockup State Transitions
Index l0 l1 l2 l3 l4
EH 3 2 1 0 0
EMN 2 2 2 2 2
SP 0 0 0 0 0

{p1, p2, p3, p4, p5, p7, p8, p9} which results in a 33.33% reduction in the number

of paths. We use the new candidate path set P ∗ as an input to the (SPEA)

algorithm.

We can also see that the approximation algorithm yields p4 as the highest

magnitude path in terms of its utility ZA(p4), path p4 is equivalent to the

following Lockup State transitions:

We see that the choice of path p4 implies an allocation to the Equity

Hedge index (EH) at time 0 and no allocation to Equity Market Neutral
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Figure 5.3: (BPEA) Results for the ESA Model

(EMN) for the duration of the model.

5.1.6 (SPEA) Results

The first step is to discretize the initial allocation vector. Given that we have

three funds and eight eligible paths if we use a Discretization Factor δ = 20

we get a new Discrete Action Space Āφ = 203 by P̄ ∗ = 8 number of distinct

actions:

ĀφP̄ ∗ = 64000

However, not all initial allocation, path combinations are admissible. In

many cases the initial allocation do not satisfy the constraints imposed by the

path. If we filter the initial allocation, path combination and impose a proba-

bility 0 of selection of an inadmissible action we reduce the size of the Pursuit
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Table 5.9: (SPEA) Algorithm ESA Path Breakdown Evolution

Iteration p1 p2 p3 p4 p5 p7 p8 p9

1 0.1511 0.1462 0.1454 0.0714 0.1384 0.1431 0.1375 0.0670
50 0.0603 0.0000 0.0000 0.0313 0.9090 0.0000* 0.0000 0.0000
100 0.0670 0.0000 0.0000 0.0340 0.9061 0.0005 0.0000 0.0000
500 0.0532 0.0000 0.0000 0.0345 0.9013 0.0063 0.0000 0.0000
1000 0.0454 0.0000 0.0000 0.0910 0.8636 0.0000 0.0000 0.0000
5000 0.0000 0.0000 0.0000 0.3069 0.6931 0.0000 0.0000 0.0000
10000 0.0000 0.0000 0.0000 0.4633 0.5367 0.0000 0.0000 0.0000
25000 0.0000 0.0000 0.0000 0.7537 0.2463 0.0000 0.0000 0.0000
40792 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

algorithm action set. We can do this by eliminating combinations that with

probability 1 don’t satisfy Minimum Allocation Requirements, Lockup State

Constraints or that would yield inadmissible weight vectors (
∑N

j=1 wj,t > 1

0 ≤ t < T ).

Filtering by admissible action combinations yields 1939 different initial al-

location, path combinations that we can use to run the algorithm. This

decreases the number of iterations required for convergence. We see that

though initially the algorithm favors path p5 the algorithm converges on

path p4 at iteration 40792 which has a higher ZA(p4).

* value less than 0.0001

The corresponding initial allocation choice ( ~wIA) is shown in the table

below:
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Figure 5.4: SPEA Path Breakdown Evolution
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Table 5.10: ESA Intial Allocation
EH SP EMN

~wIA 0.85 0 0.05

(SPEA) Additional Passes

We can increase the precision of the initial allocation vector by rerunning

the (SPEA) Algorithm over allocation points in the neighborhood of wIA for

path p4. This is accomplished by searching in the feasible region of wIA
j ± δ.

The benefit here is that the algorithm will need to sample fewer points than

if we had operated at that precision from the start, however we may miss

global optimum if it is in the neighborhood of another (aφ, p) combination.

5.2 Hedge Fund Strategy Allocation (HFSA)

We perform a larger scale Strategy Based Optimization on a two regime

model, labeling one ’Regime 1’, the second ’Regime 2’ by expanding the

(ESA) model to include three additional Hedge Fund indices: the HFRX

Convertible Arbitrage Index (CV); the HFRX Merger Arbitrage Index (MA)

and an actively traded Global Macro portfolio proxied by the HFRX Macro

Index (M). We call this the Hedge Fund Strategy Allocation (HFSA) prob-

lem. We use a two regime model as in Chan et. al. ([45]), labeling one

’Regime 1’ and the other ’Regime 2’ and fit the excess returns from index
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Table 5.11: HFSA HFRX Index Stats (Jan 98 - Dec 07)
Index Mean Std Skew Kurtosis JB Stat P-Value
EH 0.0093 0.0222 0.5837 5.3593 34.6451 < 0.001
SP 0.0038 0.0429 -0.5056 3.6575 7.2737 0.0299
EMN 0.0022 0.0107 -0.1468 3.2321 0.500 0.7003
MA 0.0055 0.0111 -1.2937 6.8038 105.8160 < 0.001
M 0.0085 0.0266 0.0466 3.7549 2.8928 0.1630
CV 0.0049 0.0121 -0.8424 4.1471 20.7734 0.0029

Table 5.12: HFSA Mixture Distribution Parameters
Regime 1, π̂1 = 0.7573 Regime 2, π̂2 = 0.2427

Index ~̂µ1 ~̂σ1 ~̂µ2 ~̂σ2

EH 0.0077 0.0220 0.0144 0.0218
SP 0.0020 0.0436 0.0094 0.0392
EMN 0.0025 0.0104 0.0011 0.0113
MA 0.0045 0.0119 0.0088 0.0071
M 0.0072 0.0260 0.0129 0.0275
CV 0.0042 0.0124 0.0074 0.0104

inception to the end of 2007 (Jan 1998 - Dec 2007).

5.2.1 (HFSA) Mixture Distribution

A Jarque-Bera Test ([12]) run on the returns of the HFRX Indices indicates

that the index returns deviate significantly from normal (see table above).

The distribution parameters are as follows:

We see that in the first regime the Macro strategy outperforms and the
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Table 5.13: HFSA Estimated Transition Probabilities
Regime 1 Regime 2

Regime 1 0.8343 0.1657
Regime 2 0.5199 0.4801

Table 5.14: HFSA Lockup Lengths
EH SP EMN MA M CV

Lockup 6 0 6 12 0 12

Equity Benchmark index (SP) significantly underperforms. In Regime 2 the

Equity Benchmark outperforms the hedge fund indices in the model. This

yields the following Transition Matrix Q:

5.2.2 Lockup State Modeling

We model the lockup space using a sample lockup vector ~L (shown below) by

dividing the strategies into: Liquid (SP,M), Moderately Liquid (EH,EMN)

and Illiquid (MA,CV). We use the assumption here that Liquid strategies

have (Lj = 0) period liquidity, Moderately Liquid strategies have semi-annual

liquidity (Lj = 6) and Illiquid strategies have annual liquidity (Lj = 12). We

assume that there are available S&P and Macro investible indices that we

can allocate to on a monthly basis.

We wish to analyze the portfolios produced over the following two years
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Table 5.15: Optimal HFSA No Lockup Weights
Regime EH SP EMN MA M CV rf

Regime 1 0.3473 0.0280 0.0000 0.4177 0.1607 0.0463 0.0000
Regime 2 0.4453 0.0306 0.0000 0.4088 0.1152 0.0000 0.0000
Long Run 0.3714 0.0289 0.0000 0.4402 0.1548 0.0047 0.0000

(2008 - 2009) so we use T = 24 time periods. However, given the lockup

vector ~L and time T we obtain P̄ = 78400 distinct admissible paths. Given

the state space reduction technique discussed in section 4.1.3 we can use

∆ = 3 quarterly data and remodel the problem with P̄∆ = 2304 by increasing

the number of regimes K = 2 to κ = 8.

5.2.3 HFSA Single Period Results

As in the (ESA) model we can run a Single Period Optimization to examine

the portfolios produced. Here we see that the model tends to prefer the Eq-

uity Hedge and Merger Arbitrage strategies, though it consistently allocates

to macro and the S&P. In all portfolios the Equity Market Neutral and Con-

vertible Arbitrage strategies receive no allocation.

As expected in ’Regime 2’ we see superior equity returns and position

ourselves more aggressively in the Equity Hedge and S&P assets. Although

Macro performs better in ’Regime 2’ the transient nature of that regime fa-

vors assets that perform relatively well in either regime.

73



Table 5.16: Optimal HFSA No Lockup Portfolio Parameters
Regime Z Mean Std Skewness Kurtosis
Regime 1 -0.1146 0.0068 0.0136 -0.0259 2.9987
Regime 2 -0.1511 0.0089 0.0142 -0.0564 3.0221
Long Run -0.1233 0.0074 0.0138 -0.0362 3.0023

We can use the target returns for Risk Seeking α = −1 and Risk Adverse

α = −20 to build run Markowitz Optimizations and analyze the multi-period

results produced by the algorithm with respect to the optimization and target

Fund of Hedge Fund Benchmarks.

5.2.4 Multiperiod No Lockup Results

We fit the model to index returns from Jan 1996 to Dec 2007 and use the

2008-2009 index returns to perform an out of sample backt-est against a num-

ber of Hedge Fund Benchmarks: the HFRX Absolute Return Index (AR);

the HFRX Global Hedge Fund Index (GHF); the HFRX Equal Weighted

Strategy Index (EWS); the Market Directional Index (MD) and the two

Markowitz Portfolios. As before, we use the assumption that the previous

month’s returns are available immediately at the start of each month 2.

We see the the HFSA algorithm outperformed all of the benchmark in-

dices and the two Markowitz portfolios. It was however inferior to the HFRX

2Source: Hedge Fund Research, Inc., 2010, http:\\www.hedgefundresearch.com
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Table 5.17: Multi-Period Strategy Allocation (No Lockup) Results 2008 -
2009

EH SP EMN MA M CV ESA HFSA
-0.1566 -0.2210 -0.0667 0.1216 -0.0365 -0.4070 -0.1398 -0.0299

AR GHF EWS MD MRS MRA ESA HFSAL

-0.1697 -0.12971 -0.12963 -0.09073 -0.1430 -0.710 -0.1398 -0.0216

Merger Arbitrage index which was the only index that produced a positive

rate of return over that period. It was able to avoid allocating to Convertible

Arbitrage and the S&P Index which were the two worst performing indices

over the period. It was also superior to the ESA portfolio because of its

ability to incorporate arbitrage strategies.

Figure 5.5: Backtested Returns of the HFSA Model

As before we are able to extract the No-Lockup lower bound on Z∗,
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Table 5.18: HFSA Aggregate Lockup Lengths
EH SP EMN MA M CV

Lockup 2 0 2 4 0 4

ZL = −5.2193 that we can use to analyze the results of the path based ap-

proximation techniques.

5.2.5 HFSA Aggregate Time (BPEA)

As mentioned in section 5.2.2 we can use Time Aggregation to reduce the

number of admissible paths. This is done by reducing the rebalancing fre-

quency but incuring a penalty to optimality. In the HFSA model we can

reduce the allocation frequency from monthly to quarterly data by setting

∆ = 3 and T = 8 and the number of regimes to κ = K∆ = 8. This trans-

forms the lockup vector ~L as shown below:

For each path p∆ there is a corresponding path p such that:

ZA(p∆) ≥ ZA(p) ≥ ZL

ZB(p∆) ≥ ZB(p)

(5.1)

This is due to the fact that the strategy described by p∆ can be produced

in the Non Aggregate Model by only admitting actions on a ∆ period basis.

Running the (BPEA) Algorithm over P∆ = 2304 paths produces the results

shown in figure 5.6. We can also obtain a lower bound Z∆
L = −3.0242 on
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the Aggregate State Model using a similar approach to the one outlined in

section 5.2.4 run on quarterly time intervals.

Figure 5.6: HFSA Aggregate Path (BPEA) Results

Searching over the aggregate paths P∆ we see that the path with the best

(PEA) utility is p∆
78 which has a utility Z∆

A (78) = −3.0241. The Aggregate

Lockup State transitions corresponding to p∆
78 are shown in table 5.19. We

see that the model allocates to the Equity Hedge Index (EH) and the Merger

Arbitrage Index (MA) at time t∆0 .
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Table 5.19: HFSA Selected Path Lockup State Transitions
Index l∆0 l∆1 l∆2 l∆3 l∆4 l∆5 l∆6 l∆7 l∆8
EH 2 1 0 0 0 0 0 0 0
SP 0 0 0 0 0 0 0 0 0
EMN 2 2 2 2 2 2 2 2 2
MA 4 3 2 1 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0
CV 4 4 4 4 4 4 4 4 4

5.2.6 HFSA (BPEA) State Translation

Performing Lockup State Aggregation on the HFSA Model yields an aggre-

gate path p∆, however the time aggregation eliminates admissible paths in

P with initial allocation wIA within ∆ periods of p∆. In order to find a solu-

tion to the (PEA) approximation for P we need to search over all admissible

paths in the neighborhood of p∆. The path p∆
78 initially allocates to the Eq-

uity Hedge (EH) and Merger Arbitrage (MA) indices at time 0 and does not

allocate to Equity Market Neutral (EMN) or Convertible Arbitrage (CV).

The paths in the neighborhood of p∆ are paths that allocate to EH or MA

between time t0 and t∆ exclusive. We see that there are only 9 paths that fit

the criteria for eligibility in P ∗; the (BPEA) utility of these paths are shown

in figure 5.7.

Searching over P ∗ yields path p462 as the best (PEA) utility path. We

see that this path initially allocates to EH and MA at time t0. The Lockup

State transitions are shown in table 5.20 below.
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Figure 5.7: HFSA Translated Path (BPEA) Results

Running the algorithm against the 2008-2009 Returns yields a return of

-0.0216 which is in line with the results produced in the No-Lockup model.
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Table 5.20: HFSA Selected Path Lockup State Transitions

Index ~l0 ~l1 ~l2 ~l3 ~l4 ~l5 ~l6 ~l7 ~l8 ~l9 ~l10 ~l11 ~l12
EH 6 5 4 3 2 1 0 0 0 0 0 0 0
SP 0 0 0 0 0 0 0 0 0 0 0 0 0
EMN 6 6 6 6 6 6 6 6 6 6 6 6 6
MA 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0
CV 12 12 12 12 12 12 12 12 12 12 12 12 12

Index ~l13
~l14

~l15
~l16

~l17 ~l18 ~l19 ~l20 ~l21 ~l22 ~l23 ~l24
EH 0 0 0 0 0 0 0 0 0 0 0 0
SP 0 0 0 0 0 0 0 0 0 0 0 0
EMN 6 6 6 6 6 6 6 6 6 6 6 6
MA 0 0 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0
CV 12 12 12 12 12 12 12 12 12 12 12 12
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Chapter 6

Conclusion

Clearly the Hedge Fund Portfolio Allocation problem is non-trivial. Many

of the assumptions that underlie Mean-Variance Optimization are violated

by the Non-Normal Return Distributions and Portfolio Rebalancing Con-

straints. The Lockup Constraints transform the Quadratic Optimization

Problem into a Combinatorial Problem with ”curse of dimensionality” issues

when it comes to the time horizon T and number of assets N in the problem.

Additionally, the dynamic nature of financial markets motivates the need for

approaches that can effectively address Lockup Constraints in both favorable

and unfavorable market regimes.

We proposed a model for the Asset Return Dynamics under multiple regimes

and a risk-averse utility function that is sensitive to higher moment distri-

butions. Using the Taylor Approximation, we were able to approximate the

CRRA utility function and maintain the property of additivity over the dis-

crete time periods in the model. We then cast the Hedge Fund Portfolio
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Problem as a Markov Decision Process (MDP) and a Partially Observable

Markov Decision Process (POMDP) by modeling the separate Lockup and

Regime Dynamics. We decomposed the allocation vector to contain both Ac-

tionable and Inactionable Components, the latter which was then modeled

into the State Space.

We developed a Single Period Optimization Problem to find a solution to the

Hedge Fund Portfolio Allocation problem under the No-Lockup Condition;

generalizing this model to the multi-period case we were able to find a lower

bound ZL on the Optimal Solution. By further generalizing the model to

account for Lockups, we developed multiple approaches to approximate the

Optimal Policy for various sizes of the State Space. Initially, we developed

the Path Enumeration Approximation (PEA) algorithm which enumerates

over eligible paths in the model and approximates the optimal utility Z∗ by

solving a Non-Linear Constrained Non-Linear Optimization Problem. By

moving the State Transition Dynamics into the action set; we were able to

create a path dependent bounded approximation technique (BPEA) that fa-

cilitated a finer approximation on Z∗. Using (PEA) and (BPEA) results we

were able to filter the path set P to create a Candidate Path Set P ∗.

For smaller scale models, we discretized the action space A to form Aφ and

combined this with the candidate paths P ∗ under the Discretization Factor δ.

We developed a version of the Adaptive Learning Pursuit algorithm (SPEA)

to find the optimal action choice aφ at time t. For larger scale problems,

we developed an approximation technique that aggregates the time period
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increments ∆ and a technique to translate the results back to the original

problem; this was similar to a proposed technique for handling homogeneous

notice periods.

We performed out of sample tests on a small (ESA) and large scale (HFSA)

problem over the 2008-2009 Hedge Fund Market. We compared the results

against the HFRX Hedge Fund Indices and two Markowitz Portfoios, one

Risk Seeking (MRS) and one Risk Adverse (MRA). We saw that over the

2008-2009 period, the ESA and HFSA algorithms compared favorably against

their peers significantly limiting downside risk on the portfolios during these

turbulent markets.

Our main contribution is that we developed an approach to address the prob-

lem of Hedge Fund Asset allocation for a finite time investment horizon. We

addressed Minimum Allocation Constraints, Lockups and homogeneous No-

tice Period issues against an environment that transitioned through multiple

economic regimes. Finally casting the problem as a Markov Decision Process

(MDP), we developed and combined multiple techniques to approximate the

Optimal Policy for different scales of the problem.

6.1 Further Work

Key areas of further research in the Hedge Fund Portfolio Asset Allocation

problem we identify in this thesis are in the modeling and algorithmic effi-

ciency aspects of the problem. We make certain assumptions on the model
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that can be further generalized. The first assumption made is that asset

returns follow a K-Means Gaussian Mixture Distribution with respect to the

multiple regimes in the model. We also assume that the Risk Free Asset pro-

duces a constant rate of growth rf and we ignore Hedge Fund fee structures.

Other assumptions are made in the Lockup Dynamics. Firstly we assume

hard rather than soft Lockups and that once a fund exits a Lockup there

are no further Minimum Allocation Requirements to the fund. We also as-

sume that complete asset redemption doesn’t reset the Lockup. We assume

homogeneous Notice Periods, however, in practice Hedge Funds can exhibit

Notice Period restrictions of various size.

The algorithm performance is influenced significantly by the number of as-

sets and the length of the time horizon. While Path Enumeration is fairly

effective in handling problems of this scale, it is impractical for very large

scale models. Moreover, discretization of the initial allocation vector further

exacerbates this issue. In the fitting of the distribution, we are limited by

the amount of data typically available with Hedge Funds. Mixture Modeling

requires the fitting of a large number of parameters. It is possible that using

Hierarchical Factor Based Modeling can increase the Maximum Likelihood

Fit of the Asset Return Distribution.
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Appendix A

Notation Reference

A.1 Problem Space

A.1.1 Fund Notation

• F : Set of admissible funds

• A: Set of admissible actions

• at: Admissible action set at time t

• fj: Individual fund in set F

• Lj: Lockup Length of fund j

• Mj: Minimum Allocation to fund j

• ∆: Notice Period length

• rf : Risk Free Rate
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• N : Number of assets in the model

• L∆
j : Aggregate regime lockup for fund j

A.1.2 State Space

• T : Termination period

• Xt: wealth at time t

• St: Regime State at time t

• ~lt: lockup state at time t

• SL
t : Augmented lockup State at time t

• τ : aggregate time point ∆t

• S∆
τ : aggregate regime state at time τ

• κ: total number of aggregate states

• SL
τ : Augmented State at time τ

• ι: Aggregate regime indicator

• T∆: Aggregate regime termination period

A.2 System Dynamics

A.2.1 Return Distribution

• S: Set of regimes
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• K: Number of regimes in set S

• πi: Mixing Component for regime i

• ~µi: Mean vector for regime i

• Σi: Covariance matrix for regime i

• ΘG: Distribution parameter vector

• Q: Regime transition matrix

• qi,i′ : one step transition probability from i to i′

• ~rt: Return of the N assets at time t

• ~r∆
τ : Aggregate regime return of the N assets at time τ

• rP
t : Portfolio return at time t

A.2.2 Wealth Dynamics

• α: Risk Aversion Coefficient

• ri,j,t: Return of fund j in regime i at time t

• at: Action taken at time t

• wj,t: Weight to fund j at time t

• wa
j,t: actionable weight to fund j at time t

• wl
j,t: Inactionable weight to fund j at time t
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A.2.3 Lockup Dynamics

• laj,t: Lockup indicator at time t for fund j

• IAj,t: Initial allocation indicator at time t for fund j

A.2.4 MDP and POMDP Notation

• DNL: No Lock MDP Model

• R: Reward Function

• ˜DNL: No Lock POMDP Model

• Q̃: POMDP Regime Transition Function

• R̃: POMDP Reward Function

• Ω: POMDP Observations

• Z: Observation Regime Probability Distribution

• D̃L: Lockup POMDP Model

• SL: Lockup POMDP State Set

• AL: Lockup POMDP Action Set

• Q̃L: Lockup POMDP System Dynamics

• λ: Lockup POMDP Lockup State Transition Dynamics

• $: Lockup POMDP Weight Dynamics

• χ: Lockup POMDP wealth Dynamics
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A.3 Algorithm Notations

A.3.1 Algorithms

• (PEA): Path Enumeration Approximation

• (BPEA): Bounded Path Enumeration Approximation

• (SPEA): Simulated Path Enumeration Algorithm

A.3.2 Path Parameters

• P : Admissible path set

• p: Individual path in set P

• P̄ : Number of paths in P

• P∆: Aggregate admissible path set

• p∆: Individual path in P∆

• P̄∆: Magnitude of the set P∆

A.3.3 Utility Values

• Z∗: Expected utility of the Optimal Policy

• ZA: Minimum utility of (PEA)

• ZA(p): Utility of (PEA) for path p

• ZB: Minimum utility of (BPEA)

96



• ZB(p): Utility of (BPEA) for path p

• ZU : Upper bound on Z∗

• ZL: Lower bound on Z∗

A.3.4 Model Fitting

• Ω: Matrix of historical fund returns

• Yi,t: Probability that the return at time t came from regime i

• TΩ: Number of historical datapoints

• tΩ: Current evaluated historical datapoint

A.3.5 Pursuit Parameters

• Aφ: Discretized action space

• Āφ: Magnitude of the discretized action space

• d̂φ: Utility estimation matrix

• pφ: Sampling matrix

• r̂: Number of admissible actions

• δ: Discretization Factor

• ~wIA: Initial Allocation Vector
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Appendix B

HFRX Data

1 The HFRX Indices (”HFRX”) are a series of benchmarks of hedge fund

industry performance which are engineered to achieve representative perfor-

mance of a larger universe of hedge fund strategies. Hedge Fund Research,

Inc. (”HFR, Inc.”) employs the HFRX Methodology (UCITSIII compli-

ant), a proprietary and highly quantitative process by which hedge funds

are selected as constituents for the HFRX Indices. This methodology in-

cludes robust classification, cluster analysis, correlation analysis, advanced

optimization and Monte Carlo simulations. More specifically, the HFRX

Methodology defines certain qualitative characteristics, such as: whether the

fund is open to transparent fund investment and the satisfaction of the index

manager’s due diligence requirements. Production of the HFRX Methodol-

ogy results in a model output which selects funds that, when aggregated and

weighted, have the highest statistical likelihood of producing a return series

that is most representative of the reference universe of strategies.

1Source: Hedge Fund Research, Inc., 2010, http:\\www.hedgefundresearch.com
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Constituents of HFRX Indices are selected and weighted by the complex

and robust process described above. The model output constitutes a sub-

set of strategies which are representative of a larger universe of hedge fund

strategies, geographic constituencies or groupings of funds maintaining cer-

tain specific characteristics.

In order to be considered for inclusion in the HFRX Indices, a hedge fund

must be currently open to new transparent investment, maintain a mini-

mum asset size (typically $50 Million) and meet the duration requirement

(generally, a 24 month track record). These criteria may vary slightly by

index.

B.1 Strategy Definitions

B.1.1 HFRX Absolute Return Index

The HFRX Absolute Return Index is designed to be representative of the

overall composition of the hedge fund universe. It is comprised of all eligible

hedge fund strategies; including but not limited to convertible arbitrage, dis-

tressed securities, equity hedge, equity market neutral, event driven, macro,

merger arbitrage, and relative value arbitrage. As a component of the opti-

mization process, the index selects constituents which characteristically ex-

hibit lower volatilities and lower correlations to standard directional bench-

marks of equity market and hedge fund industry performance.
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B.1.2 HFRX Convertible Arbitrage Index

Convertible Arbitrage includes strategies in which the investment thesis is

predicated on realization of a spread between related instruments in which

one or multiple components of the spread is a convertible fixed income instru-

ment. Strategies employ an investment process designed to isolate attractive

opportunities between the price of a convertible security and the price of a

non-convertible security, typically of the same issuer. Convertible arbitrage

positions maintain characteristic sensitivities to credit quality the issuer, im-

plied and realized volatility of the underlying instruments, levels of interest

rates and the valuation of the issuers equity, among other more general mar-

ket and idiosyncratic sensitivities.

B.1.3 HFRX Equal Weighted Strategies Index

The HFRX Equal Weighted Strategies Index is designed to be representative

of the overall composition of the hedge fund universe. It is comprised of

all eligible hedge fund strategies; including but not limited to convertible

arbitrage, distressed securities, equity hedge, equity market neutral, event

driven, macro, merger arbitrage, and relative value arbitrage. The HFRX

Equal Weighted Strategies Index applies an equal weight to all constituent

strategy indices.

B.1.4 HFRX Equity Hedge Index

Equity Hedge strategies maintain positions both long and short in primarily

equity and equity derivative securities. A wide variety of investment pro-
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cesses can be employed to arrive at an investment decision, including both

quantitative and fundamental techniques; strategies can be broadly diversi-

fied or narrowly focused on specific sectors and can range broadly in terms

of levels of net exposure, leverage employed, holding period, concentrations

of market capitalizations and valuation ranges of typical portfolios. Equity

Hedgemanagers would typically maintain at least 50%, and may in some

cases be substantially entirely invested in equities, both long and short.

B.1.5 HFRX Equity Hedge Index

Equity Market Neutral strategies employ sophisticated quantitative tech-

niques of analyzing price data to ascertain information about future price

movement and relationships between securities, select securities for pur-

chase and sale. These can include both Factor-based and Statistical Arbi-

trage/Trading strategies. Factor-based investment strategies include strate-

gies in which the investment thesis is predicated on the systematic analysis of

common relationships between securities. In many but not all cases, portfo-

lios are constructed to be neutral to one or multiple variables, such as broader

equity markets in dollar or beta terms, and leverage is frequently employed

to enhance the return profile of the positions identified. Statistical Arbi-

trage/Trading strategies consist of strategies in which the investment thesis

is predicated on exploiting pricing anomalies which may occur as a function

of expected mean reversion inherent in security prices; high frequency tech-

niques may be employed and trading strategies may also be employed on the

basis on technical analysis or opportunistically to exploit new information
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the investment manager believes has not been fully, completely or accurately

discounted into current security prices. Equity Market Neutral Strategies

typically maintain characteristic net equity market exposure no greater than

10% long or short.

B.1.6 HFRX Global Hedge Fund Index

The HFRX Global Hedge Fund Index is designed to be representative of

the overall composition of the hedge fund universe. It is comprised of all

eligible hedge fund strategies; including but not limited to convertible arbi-

trage, distressed securities, equity hedge, equity market neutral, event driven,

macro, merger arbitrage, and relative value arbitrage. The strategies are as-

set weighted based on the distribution of assets in the hedge fund industry.

B.1.7 HFRX Macro Index

Macro strategy managers which trade a broad range of strategies in which the

investment process is predicated on movements in underlying economic vari-

ables and the impact these have on equity, fixed income, hard currency and

commodity markets. Managers employ a variety of techniques, both discre-

tionary and systematic analysis, combinations of top down and bottom up

theses, quantitative and fundamental approaches and long and short term

holding periods. Although some strategies employ RV techniques, Macro

strategies are distinct from RV strategies in that the primary investment

thesis is predicated on predicted or future movements in the underlying in-

struments, rather than realization of a valuation discrepancy between secu-
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rities. In a similar way, while both Macro and equity hedge managers may

hold equity securities, the overriding investment thesis is predicated on the

impact movements in underlying macroeconomic variables may have on se-

curity prices, as opposes to EH, in which the fundamental characteristics on

the company are the most significant and integral to investment thesis.

B.1.8 HFRX Market Directional Index

The HFRX Market Directional Index is designed to be representative of

the overall composition of the hedge fund universe. It is comprised of all

eligible hedge fund strategies; including but not limited to convertible arbi-

trage, distressed securities, equity hedge, equity market neutral, event driven,

macro, merger arbitrage, and relative value arbitrage. As a component of

the optimization process, the index selects constituents which characteristi-

cally exhibit higher volatilities and higher correlations to standard directional

benchmarks of equity market and hedge fund industry performance.

B.1.9 HFRX Merger Arbitrage Index

Merger Arbitrage strategies which employ an investment process primarily fo-

cused on opportunities in equity and equity related instruments of companies

which are currently engaged in a corporate transaction. Merger Arbitrage

involves primarily announced transactions, typically with limited or no ex-

posure to situations which pre-, post-date or situations in which no formal

announcement is expected to occur. Opportunities are frequently presented

in cross border, collared and international transactions which incorporate
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multiple geographic regulatory institutions, with typically involve minimal

exposure to corporate credits. Merger Arbitrage strategies typically have

over 75% of positions in announced transactions over a given market cycle.
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Appendix C

Portfolio Moments

M (P )
x (t) =

K∑
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πie
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C.1.1 Portfolio Mean

µp =
K∑
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C.2 Second Moment
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C.2.1 Portfolio Variance
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C.3 Third Moment
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[3πiµ
(P )
i σ2(P )

i + πiµ
3(P )

i ]

(C.9)

C.3.1 Portfolio Skew

µ3(X) = E[(X − µ)3] = E[X3 − 3X2µ + 3Xµ2 − µ3] =

= E[X3]− 3E[X2]µ + 3µ3 − µ3 = E[X3]− 3E[X2]µ + 2µ3

(C.10)

µ3p =
K∑

i=1

[3πiµ
(P )
i σ2(P )

i + πiµ
3(P )

i ]−

− 3(
K∑

i=1

[πiσ
2(P )

i + πiµ
2(P )

i ])(
K∑

i=1

πiµ
(P )
i )+

+ 2(
K∑

i=1

πiµ
(P )
i )3

(C.11)

skewp =
µ3p

σ3
p

(C.12)
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C.4 Fourth Moment

M (P )′′′′
x (t) =

K∑
i=1

[3πi(σ
2(P )

i )2eAi+

+ 3πiσ
2(P )

i (µ
(P )
i + σ2(P )

i t)2eAi+

+ 3πiσ
2(P )

i (µ
(P )
i + σ2(P )

i t)2eAi+

+ πi(µ
(P )
i + σ2(P )

i t)4eAi ] =

=
K∑

i=1

[3πiσ
4(P )

i eAi+

+ 6πiσ
2(P )

i (µ
(P )
i + σ2(P )

i )2eAi+

+ πi(µ
(P )
i + σ2(P )

i t)4eAi ]

(C.13)

M (P )′′′′
x (0) =

K∑
i=1

[3πiσ
4(P )

i +

+ 6πiσ
2(P )

i µ2(P )

i +

+ πiµ
4(P )

i ]

(C.14)

C.4.1 Portfolio Kurtosis

µ4(X) = E[(X − µ)4] = E[X4]− 4E[X3]µ + 6E[X2]µ2 − 4E[X]µ3 + µ4 =

= E[X4]− 4E[X3]µ + 6E[X2]µ2 − 3µ4

(C.15)
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µ4p =
K∑

i=1

[3πiσ
4(P )

i + 6πiσ
2(P )

i µ2(P )

i + πiµ
4(P )

i ]−

− 4(
K∑

i=1

[3πiµ
(P )
i σ2(P )

i + πiµ
3(P )

i ])(
K∑

i=1

πiµ
(P )
i )+

+ 6(
K∑

i=1

[πiσ
2(P )

i + πiµ
2(P )

i ])(
K∑

i=1

πiµ
(P )
i )2−

− 3(
K∑

i=1

πiµ
(P )
i )4

(C.16)

kurtp =
µ4p

σ4
p

(C.17)
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Appendix D

EM Algorithm

The Expectation Maximization Algorithm ([19],[8]) is a method for finding

the Maximum Likelihood Estimate of parameters of an underlying distribu-

tion from a given data set when the data is incomplete or has missing values

([8]).

D.1 Mixture Distribution EM Algorithm

In the context of Multivariate Gaussian Mixture modeling the missing vari-

able y is an assignment variable that assigns each return xi to one of K

regimes. There are two steps, an expectation (E) step and a maximization

(M) step.

E-Step The algorithm begins with an estimate for the underlying distri-

bution parameters Θ
(i−1)
G . The first step is to find the expected value of

the complete-data log-likelihood with respect to the unknown y given the
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observed x and the current parameter estimates Θ
(i−1)
G ([8]).

Q(ΘG, Θ
(i−1)
G ) = E[log p(x, y|ΘG)|x, Θ

(i−1)
G ] (D.1)

M-step The (M) step maximizes the expectation computed in the (E)

step as follows:

Θi
G = arg max

ΘG

Q(ΘG, Θ
(i−1)
G ) (D.2)

Given N total returns x and a current parameter estimate ΘG new pa-

rameters are estimated as follows ([8]):

α =
1

N

N∑
i=1

p(y|xi, ΘG) (D.3)

µnew =

∑N
i=1 xip(y|xi, ΘG)∑N
i=1 p(y|xi, ΘG)

(D.4)

Σnew =

∑N
i=1 p(y|xi, ΘG)(xi − µnew)(xi − µnew)∑N

i=1 p(y|xi, ΘG)
(D.5)

D.2 Baum-Welch Algorithm

The Baum-Welch or Forward Backward Algorithm is a version of the Expec-

tation Maximization Algorithm that is used to fit Hidden Markov Models

or Partially Observable Markov Decision Processes ([48], [15]). An HMM is

characterized by the following:
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• N : The number of states in the model, with an individual state S =

{S1, S2, ..., SN}

• Q: Observation state Q = {q1, ..., qt, ..., qT}

• O: Observation vector with components O = {x0, x1, ..., xK−1}

• B: Observation Density:

bj(O) =
N∑

m=1

cj,mφ(O|µj,m, Σj,m)

• π: The initial state distribution π = {πi} where:

πi = P (q1 = Si)

• A: The state transition probability distribution A = {ai,j} where:

ai,j = P (qt+1 = Sj|qt = Si)

We simplify the notation for an HMM as follows:

λ = (A, B, π)

and we will use the symbol θ to refer to the collection of parameters in the

system:

θ = {π, a, µ, Σ}

112



D.2.1 Forward Recursion

Let bt(i) be defined as follows:

bt(i) = P (xt|qt = si, θ)

Then α follows:

αt(i) = P (x1, ..., xt, qt = si|θ)

= P (xt|qt = si)
N∑

k=1

P (x1, ..., xt−1, qt−1 = s(k)|θ)P (qt = i|qt−1 = sk)

= bt(i)
N∑

k=1

αt−1(k)a(k, i)

α1(i) = πib1(i)

(D.6)

D.2.2 Backward Recursion

Let β be defined as follows:

βt(i) = P (xt+1, ..., xT |qt = si, θ)

=
N∑

k=1

P (qt+1 = sk|qt = si)P (xt+1|qt+1 = sk, θ)P (xt+2, ..., xT |qt+1 = sk, θ)

=
M∑

k=1

a(i, k)bt+1(k)βt+1(k)

βT (i) = 1

(D.7)
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D.2.3 Transition Expectation

Let γ be defined as follows:

γt(i) = P (qt = Si|O, θ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)
(D.8)

and ε be defined as:

εt(i, j) =
αt(i)a(i, j)bt+1(j)βt+1(j)∑N

k=1

∑N
l=1 αt(k)a(k, l), βt+1(l)

(D.9)

D.2.4 Parameter Updating

We update the parameters as follows:

πi = γ1(i)

a(i, j) =

∑T−1
t=1 εt(i, j)∑T−1
t=1 γt(i)

µi =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

Σi =

∑T
t=1 γt(i)[(xt − µi)

′(xt − µi)]∑T
t=1 γt(i)

(D.10)
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Appendix E

Multinomial Decision Tree

Pseudocode

We present the psuedocode for building the Multinomial Decision Tree or

Multinomial Path Tree (MPT) that models the lockup dynamics and admis-

sible paths.

E.1 Structure

A node in the tree contains the following properties:

t: A scalar quantity representing the current time period

l: An N X 1 vector representing the current state

index: A scalar quantity representing an index to the most recent calculated

state

Next: A vector list containing the next admissible states
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E.2 Functions

E.2.1 IsNodeAdmissible

Algorithm E.2.1: IsNodeAdmissible(Node : PN, N, L, T )

for j ← 1 to N

do

if not ((PN.l[j] = L[j]) or (PN.l[j] = 0))

then

if (PN.l[j] > T − PN.t)

thenreturn (FALSE)

exit

return (TRUE)
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E.2.2 GetNextNode

Algorithm E.2.2: GetNextNode(Node : PN)

local CNindex← PN.Counter

bindex← ConvertToBinaryArray(index)

sindex← ConvertToIntegerArray(PN.l)

CN.l← sindex− bindex

CN.t← PN.t + 1

CN.index← 0

CN.Next← NewList()

return (CN)

E.2.3 InsertNextNode

Algorithm E.2.3: InsertNextNode(Node : PN, N, L, T )

for index← 1 to 2N

do

PN.index = index

CN ← GetNextNode(PN)

if IsNodeAdmissible(CN, N, L, T )

then{
PN.Next← InsertNextNode(CN,N, L, T )

return (PN)
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E.3 Build Path Tree Algorithm

Algorithm E.3.1: BuildPathTree(N, L, T )

main

root.l← L

root.index← 0

root.t← 0

root.Next← GetNextNode(root,N, L, T )
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Appendix F

Pursuit Algorithm

The Pursuit Algorithm 1 is a special type of estimator algorithm [49]. It is

simple and it converges rapidly in simulations.

F.1 Learning Automata Problem Formulation

A learning automata is a stochastic automaton in a feedback connection with

a random environment. The output of the automaton (called the action) is

input to the environment and the output of the environment (called the re-

action) is input to the automaton [49].

Automaton is defined by (A,Q,R,T) and the environment by (A,R,D) where

[49]:

• A = {α1, α2, ..., αr} set of actions to the automaton. A(k) action of the

automaton at instant k. A is the set of outputs of the automaton and

1This section is taken from K. Rajarman and P.S. Sastry’s paper ”Finite Time Analysis
of the Pursuit Algorithm for Learning Automata”
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inputs to the environment.

• R is the set of reactions from the environment. β(k) is the reaction

received by the automaton at instant k. It is assumed that β(k) ∈

[0, M ]

• D = {d1, d2, ..., dr} is the set of average reward values where

di(k) = E[β(k)|α(k) = αi]

• Q is the state of the automaton defined by

Q(k) = (p(k), d̂(k))

where

p(k) = [p1(k), ..., pr(k), 0 ≤ pi ≤ 1

r∑
i=1

pi(k) = 1, ∀ k
(F.1)

and

d̂(k) = [d̂1(k), ..., d̂r(k)]

is the vector of estimates of the average reward values at the k-th

instant

• T is the learning algorithm that is used by the automaton to update
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its state we have:

Q(k + 1) = T (Q(k), α(k), β(k))

F.2 Pursuit Algorithm Pseudocode: Discrete

Case

We introduce the following objects:

• ei r dimensional vector with the ith component unity and all others 0

• I{A} Indicator function of event A,

I{A} =

1 if the event A occurs

0 otherwise

 (F.2)

• Xi(k) Total reward obtained for the i-th action till the k-th instant:

Xi(k) =
k−1∑
j=1

β(j)I{α(j) = αi}

• Yi(k) Number of times the i-th action is chosen till the k-th instant:

Yi(k) =
k−1∑
j=1

I{α(j) = αi}
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• M(k) The index of the average reward value estimate defined as:

d̂M(k)(k) = max
j
{d̂j(k)}

Algorithm F.2.1: DiscretePursuitAlgorithm(τ, r, maxiter, A)

main

local X, Y, d̂,M, p, k, α, β, ifor i← 1 to r

do p[i] = 1
r

d̂← Initialize(d̂)

k ← 0

M ← {i|d̂[i] = max{1≤i≤r} d̂}

while ((p[M ] ≤ 1− τ) and (k ≤ maxiter))

{α, i, β} ← SampleAction(p, A)

X[i]← X[i] + β

Y [i]← Y [i] + 1

X[j]← X[j]∀j 6= i

Y [j]← Y [j]∀j 6= i

d̂[i]← X[i]
Y [i]
∀i

M ← {i|d̂[i] = max{1≤i≤r} d̂}

p[j]← max{p[j]− τ, 0},∀j 6= M

p[M ]← 1−
∑

j 6=M p[j]

k ← k + 1

return (d̂)
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Appendix G

Utility Charts

G.1 ESA Model
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G.2 HFSA Model
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