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Abstract of the Thesis
Model Checking the Kaminsky DNS Cache-Poisoning Attack Using PRISM
by
Tushar Suhas Deshpande
Master of Science
in
Computer Science

Stony Brook University
2010

We use the probabilistic model checker PRISM to formally model and analyze the highly
publicized Kaminsky DNS cache-poisoning attack. DNS (Domain Name System) is an
internet-wide, hierarchical naming system used to translate domain names like google.
com into physical IP addresses such as 208.77.188.166. The Kaminsky DNS attack
is a recently discovered vulnerability in DNS that allows an intruder to hijack a domain;
1.e. corrupt a DNS server so that it replies with the IP address of a malicious web server
when asked to resolve the URL of a non-malicious domain such as google.com. A
proposed fix for the attack is based on the idea of randomizing the source port a DNS
server uses when issuing a query to another server in the DNS hierarchy.

We use PRISM to introduce a Continuous Time Markov Chain representation of the
Kaminsky attack and the proposed fix, and to perform the requisite probabilistic model
checking. Our results, gleaned from more than 240 PRISM runs, formally validate the
existence of the Kaminsky cache-poisoning attack even in the presence of an intruder with
virtually no knowledge of the victim DNS server’s actions. They also serve to quantify
the effectiveness of the proposed fix, demonstrating an exponentially decreasing, long-tail
trajectory for the probability of a successful attack with an increasing range of source-port
ids, as well as an increasing attack probability with an increasing number of attempted
attacks or increasing rate at which the intruder guesses the source-port id.
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Chapter 1

Introduction

DNS (Domain Name System) is a hierarchical naming system used to identify network
hosts. DNS makes it possible to use a url (Uniform Resource Locator) to address a ma-
chine in the internet. It is implemented using DNS name servers, which convert urls into
numeric [P addresses. DNS forms the logical backbone of the world wide web, and the
service it provides is used on the order of a trillion times a day [6]. Therefore, any at-
tack targeting DNS would have a serious impact on the web’s basic operational status,
reliability, and security.

In February 2008, security researcher Dan Kaminsky discovered a DNS vulnerability
that could be exploited to corrupt normal DNS operation. The attack targets DNS’s url-
resolution mechanism so that an infected DNS server gives an incorrect IP address for a url.
An intruder can exploit this mechanism to hijack a domain. Specifically, a corrupted DNS
server will reply with the IP address of a malicious web server when asked to resolve the
url for a non-malicious domain such as google . com. This would direct a large number
of unsuspecting clients (ordinary desktop machines) to the malicious web site when they
actually wanted to visit google.com.

In March 2008, some of the world’s top DNS experts agreed upon a temporary but
effective fix against the attack: randomizing the source port, the UDP port a client uses to
issue a DNS query. Port randomization [11] means that the intruder must now correctly
guess the 16-bit source-port id in addition to the unique 16-bit query id assigned to each
DNS query. The effective transaction strength thus becomes 2'¢ - 216 = 232 ag the intruder
has to guess a 32-bit number, thereby rendering the attack computationally infeasible [6].

On August 6, 2008, 30 days after the release of the patch, Kaminsky revealed the nature
of vulnerability and how it could be exploited. Thereafter, Kaminsky’s attack has received
widespread publicity [13, 15]. Note that Kaminsky had not really discovered a new attack.
Instead, he made clever use of cache poisoning, a technique that causes a victimized DNS
server to store false information about the IP address associated with a url.

In this paper, we show how the probabilistic model checker PRISM [12] can be used
to formally model the Kaminsky DNS cache-poisoning attack, in order to analyze the
attack dynamics and the effectiveness of the proposed fix. The nature of the fix, which
is based on the idea of randomizing the source port associated with a DNS query, makes
the attack an ideal candidate for probabilistic model checking. Our approach is to create
a multi-dimensional CTMC (Continuous-Time Markov Chain) model of the basic DNS



url-resolution protocol, the Kaminsky attack, and the proposed fix. In a CTMC model, the
waiting time of a transition from state ¢ to state 7 is governed by a negative exponential
distribution, the parameter of which is transition rate g;;.

We comprehensively explore our model’s multi-dimensional parameter space by sys-
tematically varying a number of key parameters, including: the maximum port id, which
defines the range of source-port ids, and thus the strength of the proposed fix; the rate at
which the intruder launches an attack by sending a corrupted response to the victim DNS
server; and the popularity of the target url, which determines how likely the victim DNS
server is to have a live cache entry for the target url.

Collectively, our results, gleaned from more than 240 runs of the PRISM model checker,
formally validate the existence of the Kaminsky DNS cache-poisoning attack even in the
presence of an intruder with virtually no knowledge of the victim DNS server’s actions.
They also serve to quantify the effectiveness of the proposed fix, demonstrating an ex-
ponentially decreasing, long-tail trajectory for the probability of a successful attack with
an increasing range of source-port ids, as well as an increasing attack probability with an
increasing number of attempted attacks or increasing rate at which the intruder guesses
the source-port id. To the best of our knowledge, we are the first to formally model and
analyze the Kaminsky DNS attack and the proposed fix.

The rest of the paper is structured as follows. Section 2 provides a brief overview of
DNS, while Section 3 describes Kaminsky’s attack. Section 4 highlights those features
of PRISM essential to our analysis of the Kaminsky DNS attack. Section 5 presents our
PRISM model of the Kaminsky attack, while Section 6 contains our experimental results.
Section 7 considers related work, while Section 8 offers our concluding remarks and di-
rections for future work.



Chapter 2
DNS

DNS (Domain Name System) is a hierarchical naming system for the internet based on
an underlying client-server architecture, which is also hierarchical in nature. The primary
function of a DNS server is to perform url-resolution: the process of translating a url
or domain name, such as google.com, into a physical IP address, such as 208.77.
188.166. Domain names and DNS servers are organized hierarchically in terms of top-
level domains and subordinate, lower-level domains, respectively com and google in our
example.

When a DNS server receives a url-resolution query from a client, typically an ordinary
desktop machine, it first checks to see if it can answer the query authoritatively based on a
locally maintained database of resource records mapping domain names to IP addresses.
If the queried name matches a corresponding resource record in its local database, the
server gives an authoritative answer (AA), using the local resource record to resolve the
queried name. If no local information exists for the queried name, the server then checks
to see if it can resolve the name using information cached locally from previous queries.
If a match is found, the server answers with the appropriate cache entry and the query is
completed [21].

If the queried name does not find a matched answer at its preferred server—either
from its cache or local database—the query process can continue, using recursion to fully
resolve the name. Such recursive queries involve assistance from other DNS servers to
help resolve them. Most DNS servers are configured to support recursive queries, as this
is a server’s default configuration. An exception to the rule are the so-called root DNS
servers for top-level domains, which are configured to be non-recursive. Such a server will
instead provide a referral response (RR) to a DNS query: a pointer (referral) to another
DNS server that presumably has authority for a lower portion of the DNS namespace and
can assist in resolving the query.

Caching reduces traffic between DNS servers and therefore improves DNS perfor-
mance. To keep cached information from becoming stale and to lessen the demand on
authoritative name servers, a server stores DNS query results in its cache for a specific
period of time known as 7ime To Live (TTL). When a caching (recursive) name server
queries an authoritative name server for a resource record, it will cache that record for
the time (in seconds) specified by the TTL. If a client queries the caching name server
for the same record before the TTL has expired, the caching server will simply reply with



the already cached resource record rather than re-retrieve it from the authoritative name
server.



Chapter 3

The Kaminsky DNS Cache-Poisoning
Attack

To understand how Kaminsky’s DNS attack works, consider the following scenario. A
client machine of the authoritative DNS server for the domain cs. sunysb.edu asks
this server to resolve the url google.com. Meanwhile, an intruder, who is in control of
the domain badguy . com, seeks to poison the cache of this DNS server in such a way
that the IP address of badguy . com is substituted for the IP address of google.com,
the target domain of the attack. For reasons that should now be obvious, we refer to this
server as the victim of the attack and assume it is recursive and therefore caching. In the
event of a successful attack, the victim will reply to the client’s url-resolution request for
the google. com with the IP address of the malicious domain. Here are the exact steps
involved in the attack.

1.

The intruder lures a client in the victim’s domain to generate DNS lookup queries to
resolve a url in the domain controlled by the intruder (badguy . com). The intruder
can do this, for example, by claiming to have forgotten a password, prompting the
victim to respond by e-mail [15].

The victim performs a DNS lookup in order to find out where to send the e-mail.

. Upon receiving the victim’s query, the intruder’s name server extracts and saves the

port id at which the victim DNS server expects to receive the response (the victim’s
source port). The intruder’s name server also pretends that it is not authoritative for
domain badguy . com. It does this by sending the victim an RR response (it should
have sent it an AA response), referring the victim to another server, namely, that of
the target domain (google.com). Since the intruder now knows that the victim
will start a DNS lookup for that server, the intruder has an opportunity to attempt to
poison the victim’s cache.

On receiving the intruder’s response, the victim generates a query to resolve the
target domain. The victim assigns a new query id to this request.

. While the victim is waiting for the reply to its query, the intruder tries to supply a

false response before the legitimate server can supply the legitimate response. If the
intruder guesses the correct query id, the victim accepts the false response, poisoning
its own cache.



6. To increase the likelihood of a successful attack, the intruder floods the victim with
many forged packets having different query ids. The intruder needs to do this be-
cause the victim assigns a unique query id to each DNS query and only a response
packet with a matching query id will be accepted. These forged packets say that the
intruder is authoritative for the target domain. As such, upon a successful attack, the
intruder will own the entire zone of the target domain [15].

The proposed fix for this attack is to randomize the source port [11]. Rather than use
just a single UDP port, which can be easily discovered by the intruder as described above,
a much larger range of ports is allocated by a name server and then used randomly when
making out-bound queries [6, 20, 9].



Chapter 4

Probabilistic Model Checking and
PRISM

Probabilistic model checking is the problem of given a probabilistic model M and a for-
mula ¢ of a probabilistic temporal logic, determine the probability by which M satisfies
. The probabilistic model checker PRISM [8, 12] supports three types of probabilistic
models: Markov decision processes (MDPs), discrete-time Markov chains (DTMCs), and
continuous-time Markov chains (CTMCs). For the present study, we use CTMCs. Prop-
erties are specified in PRISM using Probabilistic Computation Tree Logic (PCTL) and,
for CTMCs, in an extended version called Continuous Stochastic Logic (CSL). We de-
fine properties of the form F prop, where F is the “eventually” linear temporal operator
(sometimes called “Future”) and prop is a state assertion that evaluates to true or false
for a single model state.

A model in PRISM is constructed as the parallel composition of its modules. The
behavior of each module is described by a collection of guarded commands, each of which
comprises a guard and one or more update actions:

(1] 9= A\ : u + ... + X\, : u, ;

The guard g is a predicate over model variables. Each update action u; describes a tran-
sition the module can make by giving the variables new values; in the case of CTMCs,
A; is the transition’s associated rate. If the guard is true, the updates are executed ac-
cording to their rates. In our CTMC model of the Kaminsky DNS attack, each guarded
command comprises a single update action (n = 1). We therefore subsequently use the
terms command and action interchangeably.

Commands can be labeled and this provides a mechanism for modules to interact with
each other by synchronizing on identically labeled commands. The rate of the resulting
transition is the product of the rates of the individual transitions.



Chapter 5
PRISM Model of the Kaminsky Attack

Based on the 6-step attack scenario described in Section 3, we model Kaminsky’s DNS
attack as a CTMC. Our model is minimal in the sense that it contains just enough details
(modules and actions) to reveal the basic vulnerability in DNS that makes Kaminsky’s
cache-poisoning attack possible.

In modeling the attack, we assume that the intruder has already lured a client of the vic-
tim DNS server into generating a query to resolve a url within the domain badguy . com,
and that the intruder’s DNS server has received the victim’s query and now knows the
victim’s source port id. These assumptions are valid in the sense that the steps embod-
ied in them are part of the mechanics of launching the attack, and not part of the actual
vulnerability that makes the attack possible in the first place. They also serve to sim-
plify our model: model execution can now begin with the intruder launching an attack by
having its DNS server send the victim a bogus response, referring it to the target domain
google.com.! Moreover, these assumptions obviate the need to directly model a client
of the victim DNS server.

5.1 Architecture

The architecture of our PRISM CTMC model of the Kaminsky DNS attack, and the actions
of the principals involved in the attack, are illustrated in Fig. 5.1. Our model defines the
following four modules, each of which is a DNS server.

e Client Server (CS): CS is the victim of the attack. It is recursive, maintains a
cache, and is authoritative for the domain cs.sunysb.edu. In order to resolve
a url outside of this domain, it contacts the root DNS server; i.e. it has a resource
record containing the IP address of the root DNS server. Whenever the victim sends
a request to resolve a url, it saves the query id and source-port id of the request in a
wait-for-reply queue. If the url is resolved successfully, then its IP address is stored
in the url-resolution cache until the TTL expires.

e Root Server (RS): RS is the root of the DNS hierarchy. It possesses a resource
record containing the IP address of the DNS server for google. com.

e Domain Server (DS): DS is the authoritative name server for the target domain

't makes sense for an intruder to attempt to hijack a high-traffic domain such as google . com, as this
would presumably impact the greatest number of victim’s clients.
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Figure 5.1: Architecture of PRISM model of Kaminsky DNS attack.

(google.com). It sends an AA response to all url-resolution requests seeking to
resolve a url within the target domain.

e Intruder Server (IS): IS is the authoritative DNS server for the intruder’s domain
badguy.com.

As discussed in Section 3, the proposed fix for the Kaminsky attack is to have a name
server using a random 16-bit source port each time it issues a new url-resolution request.
Now, the intruder needs to guess the victim’s port id in addition to the query id. To model
the fix, we introduce the parameter max_port_id, which defines the range of source port
ids as 1. .max_port_id. The intruder must now attempt to guess the source port id,
in addition to the query id, from this range. Choosing a value of 1 for max port_id
allows us to run the CTMC model with source-port randomization turned off, whereas
choosing a value greater than 1 for this parameter allows us to run the model with source-
port randomization turned on.

Further details about the max_port_id parameter, along with a description of other
key model parameters is now given. In describing these parameters, we use the term
fake AA response for the AA messages the intruder sends to the CS falsely claiming to
be authoritative for the target domain google.com. A correct guess (as opposed to
an incorrect guess) represents a fake AA response that correctly matches CS’s port id.
The acceptance of a correct guess by the CS means that the cache-poisoning attack has
succeeded.

We also use the term live cache entry for a cache entry having a positive TTL (Time To
Live) value (TTL > 0). If the CS has a live cache entry for the target domain, it can respond
immediately to the intruder’s bogus RR response. If the TTL is expired (TTL = 0), the
CS asks the RS to resolve the target url. The RS cannot resolve the target url but sends the



victim an RR response, referring it to the DS. The intruder now has the opportunity to send
the victim fake AA responses while the victim awaits a legitimate authoritative response
from the DS.

5.2 Parameters
The model parameters are the following:

e max port_id: Defines the range of source port ids as 1. .max port_id for the
purpose of implementing source-port randomization. This is reflected in the model
by the rate at which correct guesses arrive at the CS: 1/(max_query_id - ma-
x_port_id), where max_query_id is the constant 65,536 (2'6). As shown in
Section 6, the attack probability follows an exponentially decreasing trajectory with
increasing max _port_id values. We vary max port_id from 1 to 400, since
the probability of a successful cache-poisoning attack is found to be very low for
max_port_id > 400.

e guess: The rate at which IS sends fake AA responses to the CS. These responses
may be correct or incorrect guesses. We vary guess from 10 to 300 since the
probability of a successful cache-poisoning attack remains unchanged for guess >
300.

e popularity: The rate at which the TTL associated with the CS’s cache entry for
google.com has a positive value. The more popular the url, the more likely it
is to have a live cache entry. Popularity is characterized as low, medium, and high
according to its value: a popularity rate of 1-3 is used for less popular sites, 4-7 for
medium-popularity sites, and 8-9 for very popular sites.

o times_to_request_url: The number of times the IS sends a bogus RR response to
the CS, referring it to the DS and thereby launching a cache-poisoning attack. We
vary times_to_request_url from I to 30.

o other_legitimate requests_rate: The rate at which requests from DNS servers other
than CS arrive at the DS. Parameter other_legitimate_requests_rate is
therefore used to represent the load on the DS. Higher loads mean longer delays for
the DS in processing requests and sending back responses. We vary other_leg-
itimate_requests_rate from 1 to 300.

5.3 Actions

Each module defines certain actions, which synchronize with appropriate actions from
other modules. Since our model is a CTMC, each action (CTMC transition) has an asso-
ciated rate. Actions also have associated preconditions that need to be satisfied for their
execution to take place. We now describe some of the important actions for each module.
Unless stated otherwise, each action is executed with a rate of 1.

Actions Defined for IS

a. Refer CS to DS: In response to a CS query to resolve a url within the IS’s do-
main, the IS pretends that it is not authoritative for its own domain (badguy .
com). It does this by sending a bogus RR response to the CS referring it to the
DS. This action is executed if number of remaining trials < times_to_re-—

10



quest_url; has a constant rate of 1.0, meaning that the IS sends one RR
response to the CS per unit time; and is synchronized with action <Receive
bogus RR response from I1S> of CS.

b. Prepare to carry out attack: This action is synchronized with action <Send
url-resolution request to DS> of CS and action <Receive request from CS> of
DS. Its purpose is to notify the IS that the race between the IS and the DS has
begun.

c. Send correct guess to CS: The IS sends a fake AA response to the CS that
correctly matches the CS’s source-port id, thereby poisoning the cache. This
action synchronizes with action <Receive correct guess from IS> of CS, and
has an associated rate that depends on the parameter guess.

d. Send incorrect guess to CS: The IS sends a fake AA response to the CS
that does not match the CS’s source-port id. This action is synchronized with
action <Receive incorrect guess from IS> of CS, and has an associated rate
that depends on the parameter guess.

e. Restart attack: This action is synchronized with action <Reply to CS> of
DS and action <Receive response from DS> of CS. Its purpose is to notify
the IS that it has lost the race with the DS and it should now initiate another
cache-poisoning attack.

Actions Defined for CS

a. Receive bogus RR response from IS: This action is synchronized with action
<Refer CS to DS> of IS. With rate popularity/10, the TTL of the target
url’s cache entry gets the value 1. In this case, the requested url is cached, and
the counter of answered queries is increased by one.

b. Send url-resolution request to RS: With rate 1 — popularity/10, the TTL
is given the value 0. In this case, the requested url does not exist in the cache,
and a query is sent to the RS. This action is synchronized with action <Receive
request from CS> of RS.

c. Receive response from RS: The response from RS is a referral response. This
action is synchronized with the action <Reply to CS> of RS.

d. Send url-resolution request to DS: A url-resolution query is sent to the DS.
This action is synchronized with action <Receive request from CS> of DS and
action <Prepare to carry out attack> of IS.

e. Receive response from DS: The response from DS is an authoritative re-
sponse. A counter is incremented to indicate that a response has been received
for a pending query. In this case, the DS has won the race with the IS and
a cache-poisoning attack has been avoided. This action is synchronized with
action <Reply to CS> of DS and action <Restart attack> of 1S. Its rate is
determined by a number of factors, including the rate at which the TTL of the
target url is given the value 0.

f. Receive correct guess from IS: Correct guesses by the IS arrive at CS with
rate 1/ (query_id - max port_id). This action synchronizes with ac-
tion <Send correct guess to CS> of IS. The combined arrival rate for correct

11



guesses is obtained by multiplying the rates of the these two synchronizing
actions: (1/max_query_id - max_port_id) - guess.

g. Receive incorrect guess from IS: Incorrect guesses by the IS arrive at CS with
rate query_id - max_port_id - 1. Thisaction synchronizes with action
<Send incorrect guess to CS> of IS. The combined arrival rate for incorrect
guesses is therefore (max_query_id - max_port_id - 1) - guess.

Action Defined for RS

a. Receive request from CS: A url-resolution request is received from the CS. A
referral response directing CS to DS is prepared. This action is synchronized
with the action <Send url-resolution request to RS> of CS.

b. Reply to CS: The referral response prepared in conjunction with action <Receive
request from CS> is sent to the CS. This action is synchronized with action
<Process response received from RS> of RS.

Actions Defined for DS

a. Receive request from CS: A url-resolution request is received from the CS.
An authoritative response is prepared. This action is synchronized with actions
<Send url-resolution request to DS> of CS and <Prepare to carry out attack>
of IS.

b. Reply to CS: The authoritative response prepared in conjunction with action
<Receive request from CS> is sent to the CS. This action is synchronized with
actions <Receive response from DS> of CS and <Restart attack> of IS. The
reply rate is related to the DS’s workload and is given by 1/ (other_legi-
timate_requests_rate).

c. Receive request from other servers: The DS needs to process requests to re-
solve target-domain urls from DNS servers other than the victim (CS), thereby
increasing its workload and slowing it down. This offers more time for the
IS to carry out an attack. Its rate is given by (other_legitimate_re-
quests_rate-l)/other_legitimate_requests_rate.

5.4 CSL Property

We want to determine the attack probability, i.e. the probability the intruder carries out a
successful attack, which is indicated by the victim having a poisoned url-resolution cache.
Therefore, a successful attack arises when the entry in the victim’s cache for the target url
(google. com) contains the IP address of IS, the intruder’s DNS server. The CSL for-
mula to calculate the attack probability P is therefore: P=? [F cache_poisoned].
The state assertion cache_poisoned becomes true when the IS correctly guesses the
victim’s source-port id.

12



Chapter 6

Experimental Results

In this section, we present six sets of results (Figs. 6.1-6.6) obtained by running PRISM
on our CTMC model of the Kaminsky DNS attack. Each result set demonstrates the effect
of varying one or more of the five critical model parameters (see Section 5) on the attack
probability.
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& _ow Guess Rate
== edium Guess Rate
¥ High Guess Rate

0.400

Probability of Attack

0.300

0.200

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

times_to_request_url

Figure 6.1: Results of varying t imes_to_request_url with max_port_id=1

Our results are partitioned into two groups. For result sets 1-3, max port_id = 1,
meaning that the proposed fix for the Kaminsky cache-poisoning attack is turned off. In
this setting, we show the effects on the attack probability of varying parameters t ime—
s_to_.request._url, other_legitimate_requests_rate, and guess, respec-
tively. For result sets 4-6, the effect of source-port randomization on the attack probability
is demonstrated by varying max_port_id from 1 to 400. Within this setting, we also
vary times to_request_url, guess, and popularity, respectively, demonstrat-
ing their second-order effects on the attack probability. For all result sets, the victim’s
query_id is given the fixed value of 2'® = 65536.
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Figure 6.2: Results of varying other_legitimate_requests_rate with max_port_id=1

6.1 Result Set 1

For three different values of parameter guess (low=30, medium=60, high=130), we vary
times_to_request_url from O to 30; other_legitimate_requests_rate is
set to 35 and max_port_idis setto 1.

As Fig. 6.1 shows, the attack probability increases with increasing times_to_re—
quest_url values. This is as expected since the more url-resolution requests there are
for the target url, the more opportunities there are for the IS to carry out a cache-poisoning
attack. As a second-order effect, we also observe that increasing the gues s rate increases
the attack probability: the more opportunities the IS is given to guess the source-port id,
the greater its probability of doing so.
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Figure 6.3: Results of varying guess with max_port_id =1
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Figure 6.4: Results for different t imes_to_request_url values while varying max_port_id
values

6.2 Result Set 2

For two different values of t imes_to_request_url (2 and 6), we vary other_leg-
itimate_requests_rate from 10 to 300; the guess rate is set to 50 and max_po-—
rt_idissetto 1.

As Fig. 6.2 shows, the attack probability increases with increasing other_legi-
timate_requests_rate values. As other_legitimate_requests_rate in-
creases, so does the workload on DS, resulting in increasingly longer delays in responding
to CS queries. Moreover, recall that the IS is in a race with the DS to respond to a CS
query, and should it win the race, cache-poisoning ensues. Therefore, the longer the DS
is delayed processing other url-resolution requests, the greater the probability of cache
poisoning. Also, as explained above, the attack probability is higher for a higher value of
times_to_request_url.

6.3 Result Set 3

For two different values of times to_request_url (2 and 6), we vary rate guess
from 10 to 300; other_legitimate_requests_rate is set to 150 and max_por-—
t_idissetto 1.

Fig. 6.3 shows the positive impact of increasing the guess rate on the attack proba-
bility. With source-port randomization turned off (max_port_id =1), each guess the IS
makes is correct; to poison the cache, it only needs one of these correct guesses to reach
the CS ahead of the DS’s AA reply. Increasing rate guess increases the probability of
this happening. The second-order effects of increasing t imes_to_request_url are
also demonstrated.

6.4 Result Sets 4-6

For each of these result sets, we vary max port_id from 1 to 400. For result set 4,
we additionally consider two different values of times _to_request_url (2 and 6),
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Figure 6.5: Results for different guess rates while varying max_port_id values

while setting guess to 200 and other_legitimate requests_rate to 150. For
result set 5, we consider four different values of guess (50,100, 150, and 200), while
setting times_to_request_url to 6 and other_legitimate_requests._rate
to 150. For result set 6, we consider three different values of popularity (low=2,
medium=5, high=9), while setting guess to 200, times_to_request_url to 8, and
other_legitimate _requests_rate to 300. Result sets 4 and 5 were obtained with
apopularity value of 2 (low).

As Figs. 6.4-6.6 show, the probability of a successful attack decreases exponentially as
the value of max_port_id increases, due to the fact that the intruder now needs to guess
the correct source-port id from a much larger range. Note that each of these plots follow
the same basic trajectory, and exhibit a long-tail distribution. Collectively, these results
validate the effectiveness of source-port randomization in countering a Kaminsky-style
cache-poisoning attack.

The results of Figs. 6.4-6.6 also serve to demonstrate the second-order effects of vary-
ing parameters times_to_request_url, guess, and popularity, respectively.
The impact of parameter settings for t imes_to_request_url and guess have already
been considered above. In the case of popularity, the lower the value, the greater the
probability the requested url is not cached at the victim CS. Should this be the case, the CS
will initiate a recursive query to resolve the target url, giving the IS an opportunity to carry
out a cache-poisoning attack. This explains why a a lower popularity value results in
uniformly higher attack probabilities for all possible max_port_id values.

6.5 Validation of Results and Runtime Statistics

We used the PRISM simulator to confirm the existence of both winning and losing intruder
execution sequences. A winning execution results in the poisoning of the victim’s cache,
while a losing one implies that the target domain (google. com) is resolved correctly.
In doing so, we observed that there are two kinds of winning execution sequences for the
intruder:
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1. Response from intruder arrives at victim before referral response from RS reaches
victim.

2. Response from intruder arrives at victim before authoritative response from DS
reaches victim.

The intruder is therefore in a race with the RS as well as DS, and the attempted attack is
successful if it wins either race.

We also observed that for optimal attack settings max_query_id = 1 (least), ma—
x_port_id =1 (least), times_to_request_url =1 (least), guess = 100 (high),
other_legitimate_requests_rate = 100 (high), and popularity = 0.00001
(very low), the attack probability is 0.999, which is almost 1. This result is as expected
and further serves to validate the model.

Tables 6.1-6.3 contain various statistics for our CTMC model corresponding to the
medium-guess-rate curve of Fig. 6.1. (In the tables, column heading ttru is an ab-
breviation for times to_request_url.) More specifically, we executed our model
with guess = 60, other_legitimate_requests_rate =35, max port_id=1
and times_to_request_url ranging from 1 to 30. Table 6.1 provides basic statis-
tics for both the CTMC model and the MTBDD PRISM uses to represent the model’s
reachable state space. For the CTMC, the number of states and number of non-zero tran-
sitions are given; for the MTBDD, the total number of nodes and the amount of mem-
ory needed to store the MTBDD are given [3]. A good estimate for the size of each
node is 20 bytes. The memory usage is thus given by the formula Memory(KB) =
total number of nodes - 20/1024. For all executions, the MTBDD had a single initial
state and 8 terminal nodes (leaves).

Table 6.2 shows the times taken to construct the model, a two-step process. In the first
step, a CTMC (represented as an MTBDD) is created from the system description. In the
second step, the reachable states are computed using a BDD-based fixpoint algorithm [3].
The number of fixpoint iterations and the time required for them is given in Table 6.2.
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ttru Model MTBDD
States Transi- Nodes Memory
tions (KB)
1 10 13 352 6.88
5 1232 4272 6963 136.00
10 14992 65682 20127 393.11
15 67777 67777 37990 741.99
20 201087 996727 52314 1021.76
25 471422 2397362 | 66651 1301.78
30 950282 4917072 | 80886 1579.80

Table 6.1: General Statistics for PRISM CTMC Model

ttru No. Itera- | Model Con-
tions struction
Time (sec)
1 7 0.004
5 21 0.090
10 36 0.670
15 51 2.360
20 66 5.290
25 81 14.290
30 96 22.930

Table 6.2: General Statistics for PRISM CTMC Model

ttru | No. Itera- | Model Attack
tions Checking Probability
Time (sec)
1 6 0.010 0.025
5 30 0.040 0.118
10 60 0.370 0.222
15 90 1.620 0.314
20 120 6.160 0.395
25 150 16.190 0.467
30 180 31.710 0.530

Table 6.3: Model Checking Statistics for PRISM CTMC Model
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Table 6.3 gives the times taken to compute the attack probability using the Jacobi
Over-relaxation (JOR) method. JOR is the standard method used by PRISM’s MTBDD
engine [3]. The table gives the number of iterations performed during model checking, the
time taken for model checking, and the attack probabilities.

All results were obtained on an Intel Core 2 Duo Processor with 4 GB RAM and
dual 1.66 GHz Intel Centrino T5500 processors, each with 2 MB L2 cache. The OS
was Ubuntu 8.04. Tables 6.1-6.3 exhibit a significant increase in the size of the model
and corresponding model-construction and model-checking times with an increase in the
range of times_to_request_url.

The size of the state space explored by PRISM while executing the model depends on
the values of the parameters that are used to define pre-conditions for the various actions.
In our PRISM model of the Kaminsky DNS attack, parameter t imes_to_request_url
alone appears in pre-conditions. All other parameters are used to define rates associated
with various actions. Parameter t imes_to_request_url is central to the model in that
it defines the initial state of the model’s state space. When model execution begins, the IS
generates a request to resolve the target url. More requests result in the generation of more
url-resolution requests, which in turn cause exploration of bigger and bigger state spaces.
So, clearly, the size of the model’s state space increases with the value of t imes _to_re-
quest_url, leading to an increases in the size of the model and model-execution time.
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Chapter 7
Related Work

In related work, a number of researchers have deployed probabilistic model checking to
analyze threat levels in computer systems and security protocols [1, 2, 10, 4, 5, 14, 16, 18,
17, 19]. [17] utilizes PRISM to quantitatively analyze the probabilistic non-repudiation
protocol that guarantees fairness without resorting to a trusted third party. [10] uses
PRISM to estimate the probability for a malicious user breaking a non-repudiation pro-
tocol described in [17]. [18] uses symbolic model checking algorithms to automatically
and efficiently construct the attack graphs for a system. Analysis of these attack graphs
reveal which security vulnerabilities would be most cost-effective to guard against. The
case study from [19] demonstrates how probabilistic model checking techniques can be
used to formally analyze security properties of a peer-to-peer group communication sys-
tem based on random message routing among members. [1] uses PRISM to analyze the
anonymity provided by anonymity networks, namely Crowds, Adithia, Onion Routing,
and Tarzan. [16] presents three case studies illustrating the general methodology for apply-
ing probabilistic model checking to formal verification of probabilistic security protocols.
These case studies analyze Rabin’s probabilistic protocol for fair commitment exchange,
the probabilistic contract signing protocol of Ben-Or, Goldreich, Micali and Rivest, and
a randomized protocol for signing contracts of Even, Goldreich and Lempel. [14] uses
PRISM to formally model and analyze a payoff model for the reinforcement framework.
PRISM can be used to model check the security of Quantum Cryptography protocols such
as B92 [4] and BB84 [5].

Probably the most closely related work is that of [2], where PRISM is used to sys-
tematically quantify DoS (Denial of Service) security threats. The approach described in
[2] is validated through the analysis of the Host Identity Protocol (HIP), a cryptographic
key-exchange protocol with special features related to DoS protection.

To the best of our knowledge, we are the first to formally model and analyze the highly
publicized Kaminsky DNS attack.
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Chapter 8

Conclusions

We have used the PRISM probabilistic model checker to formally model and analyze the
highly publicized Kaminsky DNS cache-poisoning attack. The nature of the proposed
fix—randomizing a DNS server’s source port—made the Kaminsky DNS attack an ideal
candidate for probabilistic model checking. Moreover, since the Kaminsky attack is aimed
at DNS servers, it was at once both natural and beneficial to model the attack in PRISM
as a CTMC, with corresponding arrival rates for benign and malicious requests and their
responses.

The results we obtained from this CTMC model formally validate the existence of
the attack even in the presence of an intruder with virtually no knowledge of the victim
DNS server’s actions. They also serve to quantify the effectiveness of source-port ran-
domization as a counter-measure, demonstrating an exponentially decreasing, long-tail
trajectory for the probability of a successful attack with an increasing range of source port
ids. Conversely, our results demonstrate an increasing probability of successful attack with
an increasing number of attempted attacks (t imes_to_request_url), increasing load
on the target domain server (other_legitimate_requests_rate), and increasing
rate of intruder guesses (guess). Furthermore, assigning a lower popularity value to the
target url also resulted in a higher attack probability.

Port randomization is a short-term fix for the DNS vulnerability Kaminsky discovered.
The long-term fix is DNSSEC, which prevents cache-poisoning attacks by allowing Web
sites to verify their domain names and corresponding IP addresses using digital signatures
and public-key encryption [7]. As future work, we plan to extend our PRISM-based anal-
ysis to DNSSEC as well as threats that may have been overlooked by DNSSEC, including
DNS bandwidth amplification attacks [22]. We believe that probabilistic model checking
and in particular CTMC analysis, can be used to quantitatively evaluate and compare se-
curity threats, and in the process provide valuable feedback for the design of appropriate
countermeasures.

The source files for our PRISM model of the Kaminsky DNS attack, along with all
result sets and corresponding settings for model parameters and PRISM command-line
options, are available from http://www.cs.sunysb.edu/~sas/kaminsky/.
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