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Abstract of the Thesis
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Interestingness
by
Sagnik Dhar
Master of Science
in
Computer Science
Stony Brook University
2010

With the rise in popularity of digital cameras, the amount of visual data available
on the web is growing exponentially. Some of these pictures are extremely beautiful
and aesthetically pleasing. Unfortunately the vast majority are uninteresting or of
low quality. This paper demonstrates a simple, yet powerful method to automatically
select high aesthetic quality images from large image collections with performance
significantly better than the state of the art. We also show significantly better results
on predicting the interestingness of Flickr images, and on a novel problem of predicting
query specific interestingness. Our aesthetic quality estimation method explicitly
predicts some of the possible image cues that a human might use to evaluate an
image and then uses them in a discriminative approach. These cues or high level
describable image attributes fall into three broad types: 1) compositional attributes
related to image layout or configuration, 2) content attributes related to the objects or
scene types depicted, and 3) sky-illumination attributes related to the natural lighting
conditions. We demonstrate that an aesthetics classifier trained on these describable
attributes can provide a significant improvement over state of the art methods for

predicting human quality judgments.
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Chapter 1

Introduction

Automating general image understanding has proven very difficult and is a far from
solved problem. Research has progressed in the area of solving the problem of de-
scribing what objects are present in an image (including their spatial arrangements
and interactions), what general scene type is shown (e.g. a beach, office, street etc.),
or the visual qualities of an image (such as whether a picture was captured indoors,
or outside on a sunny day). None of these sub-problems solve the grand problem
of complete image understanding, but are steps towards solving it. Being able to
identify the basic scene type is an analysis of the contents of the image. Obtaining
information about the visual qualities of an image aims at being able to identify cues
(possibly weak) about the illumination context of the image. In my thesis, I have
attempted to use progress made in different aspects of image understanding to extract
the information conveyed by it as exhaustively as possible.

Very few web scale systems exist which attempt to do image understanding. This
is because of the high computational requirements to do this in an unsupervised
environment. As a result, the web primarily relies on using human annotated tags or

ratings to associate information with an image. This dependence on the ‘wisdom of



the crowd’” might not be very effective for a system which infers the aesthetic quality
of an image. To correctly ascertain the aesthetic quality of an image, a human being
would have to judge a photograph with multiple perspectives. He would have to verify
whether the golden rules of photography have been followed or not. He would have
to also carefully observe the content of the photograph. Do the subjects and their
interactions in the photograph arouse a positive or negative opinion in the mind ?
These are two completely different thought processes and it is not easy for a person
to deploy both simultaneously to judge an image. As a result, an aesthetics rating

system controlled by humans would have a high degree of ambiguity.

Sali Object rset,
Follows Rule of 3rds,
Animals Present

People Present,
Portrait

Animals Present

Salient Object Present,

Low DoF Mountain, Sunset

Figure 1.1: High Level describable attributes automatically predicted by our system.

In this thesis, we build on the progress made by previous research to develop
techniques for automatically estimating high level describable visual attributes of
images and then demonstrate the utility of these estimates for predicting perceived
aesthetic quality of images. In particular we demonstrate that useful information can

be extracted about the following attributes of images:

1. Compositional Attributes - characteristics related to the layout or configuration



of an image that indicate how closely the image follows photographic rules of

composition.

2. Content Attributes - characteristics related to the presence of specific objects

or categories of objects including faces, animals, and scene types.

3. Sky-Illumination Attributes - characteristics of the natural illumination present

in a photograph.

We use the phrase high level describable attributes to indicate that these are the
kinds of characteristics that a human might use to describe an image. Describability
is key here so that we can ask people to label images according to the presence or
absence of an attribute. In our data-centric approach, more the number of images
the algorithm could learn from, the better trained it is. One sees the possibility of
using systems similar to Amazon’s Mechanical Turk to label hundreds of images. We
could then use this labeled data to train classifiers for recognizing images displaying
the attribute. Again, because these are describable attributes, they may be useful as
additional constraints to be specified in a search query, or as features for effectively
organizing image collections.

In addition, we propose that these describable visual attributes could be used as
informative image features when training classifiers for a variety of tasks. Kumar et
al [14; 15], have shown that for face verification, describable facial attributes could
produce better performance than purely low level features. While our focus is on
attributes of images, not of faces, we pursue a similar direction to show that our high
level describable attributes can be used to produce powerful classifiers for: estimation
of aesthetic quality (Chapter 3.1), estimation of general interestingness (Chapter 3.2),
and estimation of query specific interestingness (Chapter 3.3).

We demonstrate that classifiers trained on high level attribute predictions are

more powerful than those trained on purely low level features for aesthetics and



interestingness classification, and can be made even more accurate when trained on
a combination of low level features and high level attributes (fig 2.1). This indicates
that these attributes may capture some high level information about images that
could be useful for a variety of general image related tasks. However, results of the
tasks often depend on the dataset being used.

Our main contributions include a focus on extracting high level visual attributes
of images (as opposed to objects), and novel attributes related to image layout. We
explicitly train classifiers to estimate attributes, and evaluate the accuracy of these
estimates. Much previous work contains related intuition about important high level
attributes for aesthetics, but uses this intuition to design low level features instead
of explicitly estimating the high level attributes. We also show that the estimated
high level attributes significantly improve accuracy on predicting perceived aesthetic
quality of DPChallenge photographs, as well as enabling! image based prediction of
interestingness (a measure of social interaction) of Flickr images. Our final contribu-

tion is a method for estimating query specific interestingness.

1.1 Previous Work

Our work is related to three main current areas of research: estimating visual at-
tributes, algorithms for estimating the aesthetics of photographs, and human judg-
ments of aesthetics. We briefly outline work in each area.

Attributes: Recognizing attributes of objects in images can improve object
recognition and classification as well as provide useful information for organizing
collections of images. As an example, recent work on face recognition has shown
that the output of classifiers trained to recognize attributes of faces — gender, race,

age, etc. — can improve the process of face verification [15; 14]. The system was

! This is the first time, to our knowledge.
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Figure 1.2: Top — “presence of opposing colors” attribute (left: original image, center
and right: colors in the largest 2 color bins). Center “Low DoF" attribute (left: original
image, center: wavelet transform, right: wavelet coefficients on 4x4 grid, and center
surround computation). Bottom “salient object presence” and “rule of 3rds” attributes
(left: original image, center: detected salient object region, right: centroid and conformity
to rule of 3rds in red).

further used to design an image search engine based completely on faces. One
can enter facial descriptions and the system would search over a space of 3.1 mil-
lion face entries, which have been classified on the basis of discovered attributes,
and return matching results. Other work has shown that learning to recognize at-
tributes can allow recognition of unseen categories of objects from their description
in terms of attributes, even with no training images of the new categories [16; 5;
8]. Our work is related to these methods for extracting attributes, but while they
focus on attributes used to describe objects (e.g. “blond” for a person, or “red” for a
car), we look at the problem of extracting high level describable attributes for general
image content, lighting, and composition (e.g. “presence of animals” or “containing
a salient object”).

Aesthetics: Ideas of estimating the aesthetic quality of images have been ex-

plored in a few previous papers to produce classification engines that can differentiate
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Figure 1.3: Overview of our method for estimating interestingness (estimating aesthetic
quality follows a similar path). From left to right we show our system pipeline: a) an
example input image b) low level features are estimated c) high level attributes are auto-
matically predicted by our describable attribute classifiers, d) interestingness is predicted
based on the high level attribute predictions (or optionally in combination with Ke et al
low level classification is predicted.



between images captured by a professional photographer versus an amateur [29; 12
30; 3; 28]. Previous work has utilized some nice intuition about how people judge
aesthetic quality of photographs to design low level features that might be related
to human measures. Experiments have also been carried to do attribute selection
(using techniques like Boosting) to ascertain computational methods for predicting
aesthetic measures. Datta et al select visual features based on artistic intuition and
use these to train classifiers for predicting aesthetic quality [3]. Another approach to
measure aesthetics in images is by measuring the emotional response evoked by an
image in human beings. There has been work which measures aesthetics in terms of
an image’s emotional quality [4]. Tong et al use measures related to the distortion
in photographs [30]. Ke et al select low level features such as average hue, or dis-
tribution of edges within an image, that may be related to high level attributes like
color preferences or simplicity [12]. Sun et al [28] explore methods for incorporating
a computational model of attention in quality assessment. They use face-sensitive
saliency maps and a measure known as ‘Rate of focused attention’ for this purpose.
The main difference between these approaches and ours is that we explicitly train
and evaluate classifiers to recognize useful high level describable attributes and use
these predictions as input to train a second level classifier that estimates aesthetic
quality. We also include some additional tasks: estimating general, and query spe-
cific interestingness. Research also shows other measures of image quality include
harmony [6], which the authors describe as ‘the pleasing or congruent arrangement
of parts producing internal calm’, image appeal [26], and value to the user [18].
Human Judgment of Aesthetics: The existence of preferred views of objects
has long been known by Psychologists. In their seminal work, Rosch and Palmer
found that humans agree on canonical views of objects and that recognition is faster
for these views [23]. Photographers have also proposed a set of composition rules

for improving the aesthetic quality of photos, but for the most part these rules are



Detecting the Sunset sky attribute

Figure 1.4: Top “clear sky” attribute, Center “cloudy sky" attribute, Bottom “sunset
sky" attribute. For each sky-illumination attribute we show original photo (left), geometric
context (center), and extracted sky region (right). ROYGBIV binned color histograms are
used to train classifiers for each attribute.

only a set of guidelines passed down over time without any quantitative evaluation of
their validity. More recently however, there have been some studies that expand the
idea of view preferences to more general notions of human perception and judgment
of aesthetics. These experiments include evaluating the role of color preferences [27;
21; 24] and spatial composition [9; 1] on human aesthetic judgment. Other work
in computational neuroscience has looked at developing models of visual attention
including ideas related to saliency [13; 11]. Some of our attributes are directly related
to these ideas, including predicting the presence of opposing colors in images, and
attributes related to the presence of salient objects, and arrangement of those objects

at compositionally preferred locations.
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Figure 1.5: Left: Precision-Recall curves for Composition attributes including “Salient
Object Present”, “Follows Rule of 3rds”, “Displays Opposing Colors”. Right: Precision-
Recall curves for Content attributes including “presence of animals”, “indoor-outdoor”
and a variety of “scene type" attributes.

1.2 Overview of Approach

The first phase of our work consists of developing high level attribute classifiers. We do
this by collecting positive and negative example images for each attribute, picking an
appropriate set of low level features, and training classifiers to predict the presence or
absence of the attribute in images. This process is described in Chapters 2.1, 2.2, 2.3.

Next we demonstrate that these high level attribute classifiers provide useful in-
formation for predicting rankings of images based on perceived aesthetic quality (for
DPChallenge) and “interestingness” (for Flickr images). For each application, a set
of training images is collected consisting of highly ranked images as positive examples
and low ranked images as negative examples. A ranking classifier is trained using the
output of the high level attribute classifiers we developed as features. The ranking
classifiers are then evaluated on held out data. We also show results for training the
ranking classifiers using only low level features, and using a combination of low level

features and our high level attributes. For most of our datasets, we observe that



the classifier with only low-level features perform the worst, while the classifiers with
both low-level features and high-level attributes perform the best. This aligns with
our expectations as we expect the high-level attributes will be able to encapsulate
considerably more information than the low-level features, while adding the high-
level attributes to the low-level features adds more useful information to it. Results
on aesthetics for DPChallenge are in Chapter. 3.1 and interestingness for Flickr are in
Chapter. 3.2. Finally we show results on ranking for interestingness of specific queries
in Chapter. 3.3. The specific query based classifier tests the genericness of our set of
attributes. Not all of the attributes are useful for all categories of images. However,
we show that the error percentages while using a generic set of attributes is not too

high as compared to classification using query specific classifier.
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Chapter 2

Describable attributes

We have developed high level describable attributes to measure three types of image
information: attributes related to the layout or composition of an image (Chapter 2.1),
attributes related to image content (Chapter 2.2), and attributes related to the sky-
illumination present in an image (Chapter 2.3). Some images with automatically

predicted attributes are shown in figure 1.1.

2.1 Compositional Attributes

The first kind of attribute we develop are attributes related to image composition.
Composition is the positional arrangements of objects according to the way they are
placed in the image. Composition also takes into account the color tones used in
the image. The common questions it answers are, are there many objects present
or a single salient subject? Does the image contain many different colors or mainly
display a few highly contrasting colors? These attributes also correspond to several

well known photographic rules of composition.

We design 4 describable attributes related to composition:
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e Presence of a salient object — a photo depicting a large salient object, well

separated from the background.

e Rule of Thirds — a photo where the main subject is located near one of the

dividing third-lines.

e Low Depth of Field — the region of interest is in sharp focus and the background

is blurred.
e Opposing Colors — a photo that displays color pairs of opposing hues.

Presence of a salient object: We define images containing a salient object as
those that depict some large object, well separated from its background. For this
attribute we would like to predict whether an image contains some highly distinctive
salient object. To do this we take advantage of recent developments in automatic top
down methods for predicting locations of salient objects in images [20]. In addition
to the original evaluation presented in this paper — they evaluate localization accu-
racy only on images already known to contain salient objects — we demonstrate that
the outputs of this predictor can be effectively used to classify images according to
whether they display a salient object.

For this attribute, we have implemented 3 features related to saliency: a multi-
scale contrast map, a center surround histogram map, and a center weighted color
spatial distribution map. Though for a detection task there are many possible win-
dows where a salient object could be located, the otherwise computationally intensive
center surround histogram map can be computed efficiently for all windows using in-
tegral histograms [25]. All three of these feature maps are supplied to a conditional
random field (CRF) algorithm to train a salient object detector. (an example output
saliency map is shown in figure 1.2, bottom row center image). Finally, we use the

free energy output of the CRF to predict presence or absence of a salient object in

12



images.

We evaluate classification accuracy on this task using a set of 1000 images that
have been manually labeled as to whether they contain a salient object. Precision-
recall curves for predicting the presence of a salient object are shown in figure 1.5
(left plot, red curve), showing that our salient object classifier is quite accurate at
predicting the presence of a salient object.

Rule of thirds: The rule of thirds is a common compositional rule in photog-
raphy. If you consider two vertical lines dividing the image horizontally into 3 equal
parts, and two horizontal lines dividing the image vertically into 3 equal parts, (blue
lines shown in figure 1.2, bottom row right image), then the rule of thirds suggests
that it will be more aesthetically pleasing to place the main subject of the picture on
one of these lines or on one of their intersections.

For our rule of thirds attribute, we again make use of the salient object detector.
We calculate the minimum distance between the center of mass of the predicted
saliency mask and the 4 intersections of third-lines. We also calculate the minimum
distance to any of the third-lines. We use the product of these two numbers (scaled
to the range [0,1]) to predict whether an image follows the rule of thirds and evaluate
this attribute on images manually labeled as positive examples if they conform to the
rule of thirds and as negative examples otherwise. Precision-recall curves are shown
in figure 1.5 - left plot, green curve.

Low depth of field: An image displaying a low depth of field (DoF) is one where
objects within a small range of depths in the world are captured in sharp focus, while
objects at other depths are blurred. This effect is often used in photography to
emphasize a region or object of interest in an image, and is especially common in
macro photos. For our low depth of field attribute we train a classifier to differentiate
between images displaying a low depth of field from those not showing this effect.

We utilize Daubechies wavelet based features indicative of the amount of blurring

13



present 3].

The wavelet transform is applied to the image and then we consider the third level
coefficients of the transformation in all directions. (fig 1.2, middle row center image).
If you consider a 4x4 grid over the image, we divide the sum of the coefficients in
the four center regions by the sum of coefficients over all regions. (fig 1.2, middle
row right image). This gives us a vector of 3 numbers, one for each direction of the
transformation. An image with a low DoF in its center region will produce larger
values than one not displaying a low DoF. We use these values to train an SVM
classifier for predicting whether an image has a low DoF.

A manually labeled dataset of 2000 images from Flickr and Photo.net is used to
train and test our classification algorithm — where positive examples display low DoF,
and negative examples do not. Precision-recall curves for the low DoF attribute are
shown in figure 1.5 - left plot, cyan curve. We can reliably detect whether an image
displays a low DoF.

Opposing colors: Color plays an important role in perception [27]. Some color
singles, pairs, or triples are more pleasing to the eye than others [24], giving rise to
the opposing colors rule in photography which says that images displaying contrasting
colors (those from opposite sides of the color spectrum) will be aesthetically pleasing.
For this attribute we train classifiers to recognize the presence of opposing colors
in images using an image representation based on the presence of color pairs. We
first discretize pixel values into 7 possible values corresponding to the ROYGBIV
spectrum. Figure 1.2, top row right two images shows the two largest bins for an
example image. We then build a 7x7 histogram based on the percentage of each color
pair present in an image.

We train an SVM classifier on these features to detect opposing colors. For training
and testing data we use 1000 hand-labeled images from Flickr — here positive examples

are images displaying strong opposing colors, and negative examples are images not

14
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Figure 2.1: Left shows: Precision-Recall curves for aesthetics estimation on the DPChal-
lenge dataset using low level image features with Naive Bayes classification, correspond-
ing to the previous method by Ke et al [12] (black), low level image features with SVM
classification (red), high level describable attributes with SVM classification (blue), and
a combination of low level features and high level attributes with SVM classification
(green). Right shows: Precision-Recall curves for interestingness estimation on Flickr
images (curves are averaged over 6 specific search queries, and one general set of pho-
tos. For both tasks our high level attributes (blue) produce more powerful classifiers than
the previous state of the art method (black), and can provide complimentary information
when used in combination with low level features (green).

displaying strong opposing colors. Classification accuracy is shown in figure 1.5 - left
plot, blue curve. Our classifier for this attribute is not particularly strong because
even images containing opposing colors that are obvious to the viewer may not present
with large peaks in their color pair histogram, but it still provides some useful signal

for our aesthetics and interestingness classifiers (Secs 3.1, 3.2).

2.2 Content Attributes

Ideally, given a photograph, we would like image analysis algorithms to tell us exactly
what is depicted within the picture. This might include descriptions of what objects

are present, what kind of general scene is shown, or specific descriptive qualities of
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the image. We present a set of high level content attributes that are at the forefront

of recognition technologies and that can be reliably recognized in images.

The content attributes we demonstrate are:

e Presence of people — a photo where faces are present.
e Portrait depiction — a photo where the main subject is a single large face.
e Presence of animals — whether the photo has animals.

e Indoor-Outdoor classification — whether the photo was captured in an indoor

setting,

e Scene type — 15 attributes corresponding to depiction of various general scene

types (e.g. city, or mountain).

Presence of people: The “presence of people” attribute provides a rough mea-
sure about whether people are present in a photograph. We use the OpenCV face
detector [31] to estimate whether any faces are present in an image. This detector
has been trained on a large amount of hand labeled face and non-face regions and can
reliably detect faces in novel images. For this attribute we output a binary value (1,
if faces have been detected, and 0 otherwise). This will be a rather modest estimate
for the presence of people in images since there will be many photographs containing
people but no visible faces. We label a test dataset of 2000 images from Photo.net
for the presence or absence of faces to evaluate our classifier and obtain an accuracy
of 78.9%.

Portrait depiction: Our “portrait depiction” attribute predicts whether the
main theme of a photograph is a human face. This is also estimated through face
detection, but images are only classified as portraits given the presence of a large
detection. Here we use the face detector with a search window of one fourth the

minimum size dimension of the image so that we capture only large faces. We evaluate
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this feature on 5000 images from Photo.net hand labeled as portrait or non-portrait
images and obtain an accuracy of 93.4%.

Object and scene attributes: For the attributes denoting the “presence of
animals”, “indoor-outdoor classification” and “scene type” we train 17 SVM classifiers
to recognize each individual attribute (1 classifier for “presence of animals”, 1 for
“indoor-outdoor”, and 15 classifiers to recognize various scene categories). Since
spatial pyramid matching (SPM) has been shown to produce good recognition results
for both scene classification and object category recognition [17], we utilize this image
representation using code provided by Svetlana Lazebnik [17].

The spatial pyramid representation partitions the image into a hierarchy of in-
creasingly fine windows and computes a histogram of the local features found inside
each window. This resulting spatial pyramid provides a way to quickly approximate
the all-pairs correspondence between the bags-of-features present in two images by
building the spatial matching cost into a hierarchical representation. Here match-
ing features at the global level is weighted less than matching at finer levels of the
pyramid. For our particular implementation the histograms are computed on visual
dictionaries of local shape features, specifically SIFT features [19] captured on a uni-
form grid across the image with region size 16x16 and spacing of 8 pixels. The SIFT
features for 100 random images are clustered to form a single visual dictionary which
is used for all of the content attribute types. Using the spatial pyramid representa-
tion, we then train SVM classifiers for each attribute type using an intersection kernel
(the bin-wise minimum between the spatial pyramid for each image).

For the “presence of animals” attribute we train a classifier on images from the
Animals on the Web dataset [2]. This dataset contains images collected from the web
depicting 10 animal categories from “alligators” to “dolphins” to “penguins”. Images
are hand labeled as depicting the category or not depicting the category. For our

task we select positive training images randomly from each of the categories so that
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we have up to 200 images from each category (less may be selected if the category
has fewer than 200 positive examples). For the negative training set we randomly
select 200 images labeled as negative examples for each of the animal categories. We
repeat this process for the test set. Precision-recall curves for predicting the presence
of animals are shown in figure 1.5 - right plot, green curve. Though it is well known
that recognition of specific animal categories is a very challenging problem [2], we do
quite well at predicting whether some animal is present or not in an image.

For the “indoor-outdoor classification” attribute we collect 1000 images for train-
ing and 1000 images for testing from Flickr, half showing indoor scenes, and half
showing outdoor scenes. Precision-recall curves for indoor-outdoor classification are
shown in figure 1.5 - right plot, blue curve. The indoor-outdoor classifier is quite
accurate for most images.

For the 15 “scene type” attributes we use a labeled scene category dataset, orig-
inally collected by Oliva & Torralba [22] and later expanded on by Fei-Fei and Per-
ona [7], and Lazebnik et al [17]. This dataset contains images depicting various scene
types ranging from kitchen, or living room, to mountain, or city. For each scene cate-
gory we randomly sample 100 images for the training set, and use the rest for testing.
Precision-recall curves for 5 of our scene types are shown in figure 1.5 - right plot (the
remaining scene curves are similar, but removed for clarity of presentation). Outdoor
scene types such as forest, mountain, or street tend to be more accurate than indoor

scenes such as living room, or kitchen.

2.3 Sky-lllumination Attributes

Another kind of information we might like to extract from images are attributes
related to illumination. The lighting present in a scene can greatly effect perception

of an image. In addition, images captured with interesting lighting conditions such

18



as indirect lighting can be more aesthetically pleasing. Because estimating indoor
illumination is still a very difficult open research problem, we focus on estimating

natural outdoor illumination.

We provide sky-illumination attributes of 3 broad types:
e (lear skies — photos taken in sunny clear conditions.
e Cloudy skies — photos taken in cloudy conditions.
e Sunset skies — photos taken when the sun is low in the sky.

To train our sky attribute classifiers we first extract rough sky regions from images
using Hoeim et al’s work on geometric context [10]. This work automatically divides
image regions into sky, horizontal, and vertical geometric classes using adaboost on
a variety of low level image features. On the portion of an image labeled as sky
(shown in fig 1.4) we compute 3d color histograms in HSV color space, with 10 bins
per channel. These histograms are used to train an SVM classifier to recognize each
sky attribute. Each classifier is trained and tested on 1000 hand labeled images from
Flickr, where positive examples display the attribute class, and negative examples are
sampled from the other sky-illumination attribute classes.

The accuracies of the three sky-illumination attribute classifiers are: “clear skies”
99%, “cloudy skies” 91.5%, “sunset skies” 96.7%. These classifiers produce extremely
accurate classifications because skies of these 3 types tend to look quite different,

producing a large separation between the descriptors computed for each attribute

type.
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Chapter 3

Estimating Aesthetics &

Interestingness

3.1 Aesthetics

The first task we apply our describable attributes to is the problem of estimating
the aesthetic quality of an image. Aesthetic quality could be defined as the opinion a
photograph generates in the mind of the viewer. A positive opinion is often generated
when the photograph pertains to the golden rules of photography or uses the right
combination of colors. Sometimes even the subject of the image could solely change
the aesthetic quality of the image. A negative opinion is often generated when the
image has a very poor quality. Here the task is to design a classifier to differentiate
between images of high photographic quality from images of (low) snapshot quality.
To estimate this classification we train an SVM using the outputs of our high level
describable attribute classifiers as our input image feature representation. This is a 26
dimensional feature vector where each value represents our prediction for a particular

high level describable attribute. Figure 1.3 shows our method pipeline.
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Figure 3.1: DPChallenge photos ranked by aesthetics. This figure shows the top 78 images
as ranked by our aesthetics classifier.
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Figure 3.2: DPChallenge photos ranked by aesthetics. This figure shows the bottom 36
images as ranked by our aesthetics classifier.

Experiments: In our approach, we evaluated images for training and testing this
classifier. We collect a large dataset of 16,000 images from the DPChallenge website!.
These images have been quantitatively rated by a large set of human participants
(many of whom are photographers). We label the top 10% rated photos as high
aesthetic quality, and the bottom 10% as low aesthetic quality photos. This is to
prevent the noise due to ambiguity in human consensus affecting the training process,
Half of each of these sets is used for training the classifier, while the remaining half

is used for evaluation.

thttp://www.dpchallenge.com/

22



Though the attributes we develop are general measures of visual information and
could be used for many different problems, we find that our high level attributes
produce powerful classifiers for this task (fig 2.1 left in blue).

For comparison we also re-implement the state of the art aesthetics classifier used
in Ke et al [12]. We show results of their original Naive Bayes classification method
(figure 2.1, left plot black curve) and also train an SVM on their low level features
(fig 2.1, left plot red curve). Our high level attributes produce a more accurate ranking
than the previous approach, and when used in combination with these low level
features can produce an even stronger classifier (fig 2.1 left plot, green curve). This
suggests that our high level attributes are providing a source of useful complimentary

information to purely feature based approaches.

3.2 General interestingness

We also apply our describable attributes to a related, but deceptively different prob-
lem of estimating interestingness in photos. While DPChallenge directly measures
aesthetic quality through user ratings of photos, Flickr’s “interestingness” measure?
is computed more indirectly. Here interestingness translates to a measure of whether
a photo is of interest to many different users. This value is computed through analy-
sis of social interactions with that photo (viewing patterns, popularity of the content
owner, favoring behavior, etc). Nowadays many online social networking systems
exist which involve the user into judging photographs belonging to people in their
social networks. This judgement could be a measure of the image’s aesthetic quality
or could be a decision based on the content of the photograph (I would have a high
chance of liking a group photograph of my best friends or a photograph of my fa-

vorite celebrity). Computationally predicting this value is a tougher problem as it is

http://www.flickr.com /explore/interesting/7days/
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not obvious what attributes the human mind uses to come up with such a decision.
In our system, we again train an SVM classifier to predict interestingness using our

describable attribute classifications as input (fig 1.3 shows our method pipeline).

Experiments: For our general interestingness classifier we collect a dataset from
Flickr using interestingness-enabled Flickr searches that return images ranked by
interestingness score. Using time limited querying, we obtain 40,000 Flickr images
sorted by interestingness. The top 10% of these images are used as positive examples
for our interestingness classifier, while the bottom 10% are used as negative examples.
We split this set into half for training, and testing.

We train our interestingness classifier on the high level attributes predicted by
our describable attribute classifiers, a 26 dimensional input feature vector (fig 2.1,
right plot blue curve). For comparison, we also train an interestingness classifier on
the low level features used in Ke et al [12] using their original Naive Bayes approach
(fig 2.1, right plot black curve), and using an SVM classifier (fig 2.1, right plot red
curve). Lastly, we train a combined classifier on their low level features and our high
level attribute classifications, a 32 dimension input feature vector (fig 2.1, right plot
green).

In figure 3.3 we show images ranked by automatically predicted interestingness
score. The top 5 rows show the 50 highest ranked images, and the bottom 2 rows
show the 20 lowest ranked images. Lower ranked images show lower quality than
higher ranked images.

We also evaluate our method quantitatively. Precision-recall curves are shown in
figure 2.1 - right plot. Our method performs quite well at estimating interestingness.
The high level attributes produce a powerful classifier for predicting interestingness
(fig 2.1 blue curve), and improve slightly with the addition of low level features (fig 2.1
green curve). Compared to aesthetics classification, for interestingness classification

our method shows an even larger increase in performance over the previous approach
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Figure 3.3: General Flickr photos ranked by interestingness. Top 5 rows show the first 50
images ranked by our interestingness classifier. Bottom two rows show the last 20 images
ranked by our interestingness classifier.

(fig 2.1, black vs blue curves). We posit that the larger increase for interestingness as
compared to aesthetics may be due to differences between Flickr and DPChallenge
images. The images on DPChallenge are often posted by photographers who might
apply a great deal of post-processing to their pictures to adjust color levels etc, while
those on Flickr tend to be the results of more amateur photographers taking nice
pictures. Perhaps the low level features are able to utilize these post-processing

variations for aesthetics prediction.
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3.3 Query specific interestingness

Lastly, we introduce a method to produce query specific classifiers to predict interest-
ingness. In general we expect some of our attributes to be more useful for predicting
interestingness than others. We also expect that the usefulness of an attribute might
vary according to the specific search query used to collect images — e.g. low DoF
may be more useful for predicting interestingness of images returned for the query

“insect” than for the query “beach”.

Experiments: We collect a dataset of images from Flickr using 6 different query

7, “horse”, “insect”, and “person”, retrieving 20,000

terms: “beach”, “building”, “car
images for each query ranked by interestingness. Images in the top 10% are labeled as
positive examples, and images in the bottom 10% are labeled as negative examples.
Again, half of the images are used for training and half for testing.

For each query we train an interestingness predictor on images returned for the
query. We then evaluate the accuracies of using our general interestingness classifier
and using our query specific classifiers to rank images from the held out test set.
For some queries, the query specific classifiers outperform the general interestingness
classifier (classification errors are shown in fig 3.4), indicating that the importance of
individual attributes may differ by query.

Ranked results for some of our query specific interestingness classifiers are shown
in figure 3.5. The top 3 rows for each query show the 30 most highly ranked images for
that query. The bottom row for each query shows the 10 least highly ranked images
for that query. For “beach” at the top of the ranking we observe very beautiful,
clear depictions, often with pleasant sky illuminations. At the bottom of the ranking
we see more cluttered images often displaying groups of people. These are much less
“interesting” than those at the top of the ranking. For the insect query, the top of the

ranking shows pretty images where the insect is the main subject of the photograph,
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Error for general vs class specific interestingness classifiers
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Figure 3.4: Error rates for interestingness prediction of images returned for various query
terms. Error rates for our general interestingness classifier are in blue, while error rates for
query specific interestingness classifiers are in red. For some categories, the query specific
classifier has a significantly lower error rate than the general one, indicating that attribute
importance may vary by search query.

and a low DoF is often used to emphasize the importance of the subject. The bottom
of the ranking shows depictions that are not as attractive. For car, top rankings show
much cleaner depictions than those at the bottom of the ranking.

This experiment has direct applications in ‘Image Search’ systems where the user’s
search query could be classified to fall into a particular category. Once the broader
category is known, the most appropriate interestingness classifier could be used to
re-rank the search results to bring to top the best possible results for that particular
category. This would be a better estimation of interestingness as the attributes which
are most useful in being able to differentiate between interesting and non-interesting

photos of that particular category has been used.

27



search query: beach

search query: insect

| -
©
O
| -
Q
S
(o) -
§ ..
©
Q
s

Figure 3.5: Flickr photos ranked by automatically predicted interestingness for search
terms: “beach” (top), “insect” (middle), “car” (bottom). Top three rows for each query
show the most highly ranked images by our interestingness classier. Bottom rows for each
query show the least highly ranked images by our interestingness classifier.
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Chapter 4

Classifier Analysis

In this chapter, we analyze how a Decision-tree based SVM classifier would have
performed with respect to a native Support Vector Machine(SVM). We also go on to
study aspects of the SVM kernel to be able to infer which attribute or attribute-pair(s)

play an important role in the final classification of aesthetics or interestingness.

4.1 Decision-Tree based SVMs

We have two binary features in our 26 attribute-long score vector, the ‘presence of
people’ and the ‘presence of Portraits’. Initially we treat these features as similar to
the non-binary attributes, but we could use the binary features as prior information
to the classification process. To do this, we adopt a Decision Tree based approach,
where we use the 4 possible states of the 2 binary attributes to cluster our training
set into 4 sets. These 4 sets are individually trained to get 4 models for each of the
4 possible states. Once we have 4 models, we can feed test samples to the models
according to which state they fall in. In this way, we are training our SVMs on more
specific knowledge, and in the ideal case it is expected to perform better. In our case,

the performance is almost similar to the non-Decision Tree based approach, as seen
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in Fig. 4.1. In some cases, there is a possibility of the model giving lesser accuracies.
This could happen when the information used to train the model is too specific and

the model suffers from the phenomenon called ‘Overfitting’.
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Figure 4.1: Comparative Analysis of Decision-tree based SVM and non-Decision-tree based
SVMs for classification. For the Decision-tree based approach, we consider 2 binary
attributes, ‘Presence of people’ and 'Presence of Faces/Portraits’ which lead to 4 possible
states and hence 4 possible SVMs.

4.2 Radial-Basis-Function Kernel & Polynomial Ker-
nel results

In this section, we analyze the Aesthetics classification process for the DPChal-
lenge.com dataset with various Support Vector Machine kernels and also try to infer
a comparison of the contribution of attribute or attribute-pair for the classification

task. Fig. 4.2 shows the previously presented results using a Radial Basis Function
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Kernel with the parameter Gamma equal to 1 and regularization parameter equal to

1.
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Figure 4.2: Classification using the RBF kernel, K (X, Z) = e-¥~2F Accuracy (Com-
bined features) = 80.375% (1286,/1600), Accuracy (Low Level features) = 68.5625 %
(1097/1600), Accuracy (High Level features) = 74.6875% (1195/1600)

By using the fact that the RBF function can be expanded using Taylor series, we
know there should be a polynomial kernel that can approximate this RBF kernel. In

particular for the given parameter of the RBF kernel we are using,

I U —V|*
e—lU-VI :Z<_1)k*T
k=0

We obtain an equivalent Polynomial kernel for the Radial Basis Function kernel
we are using for the task of inferring Aesthetics on a DPChallenge.com dataset. This
is done so as to obtain the weights of the coefficients of the SVM, so that we can rank
the features according to their importance in the classification problem.

As shown in Fig. 4.3 using a polynomial of degree two gives us a classifier that

performs almost as good as the one using the RBF Kernel. We are still using the
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same regularization parameter and the same training and testing sets.
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Figure 4.3: Classification using the Polynomial kernel, K(X,Z) = (1 + X Z)?, Accuracy
(Combined features) = 80.4375% (1286/1600), Accuracy (Low Level features) = 68.4375
% (1097/1600), Accuracy (High Level features) = 74.25% (1195/1600)

Fig. 4.4 shows the results of the two kernels for the high level attributes only on
the DPChallenge Dataset.

4.3 Attribute contribution for classification

The contribution of each attribute or a pair of attributes to the process of classifica-
tion can be obtained from the coefficients of the terms in the kernel function. The

polynomial kernel,

K(z,2) = (1 +a.2) = t; (f) (2.2)! =
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Figure 4.4: Comparison of classification using the Polynomial kernel, K(X,Z) = (1 +
XZ)? and the RBF Kernel, K(X, Z) = e~ X-2°
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In our particular case for our polynomial kernel the degree is 2, so d=2 and the
number of high level features is 26, so n=26. The weights per polynomial term, per

degree of the term are given by the formula below.
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Wy = Z QY Pri(Ty)
keSV's
Fig. 4.5 is a plot of the weights for every pair term (t,4) using guidelines that
separate the range of terms depending on the form of the term. The first segment
corresponds to all the linear terms, the second are all the quadratic terms and the
following terms are the multiplication of two features, so the third segment is the
first feature multiplied by every other feature, the forth term is the second feature

multiplied by every other feature except the first feature, and so on.
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Figure 4.5: Weights w(t, ) for every term (¢,4) in the polynomial transformation
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Fig. 4.6 shows a plot of the weights calculated above but in sorted order, so that

we can see how the contribution of each of the weights decreases.
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Figure 4.6: Weights w(t, i) for every term (¢,4) sorted in descending order to show the
decay behavior of the weights.

And using those weights we find the attributes that correspond to each element
(t,7) to create table Fig. 4.7, Fig. 4.8 of the terms with the highest weights for the
DPChallenge dataset, Flickr General Dataset and the query-specific Flickr datasets
insects and person.

Fig. 4.9 and Fig. 4.10 show plots of the ¢; ;(zx) values and the same values weighted

using the values calculated before and hence it is a plot of wy; * ¢y, (xy).
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DPChallenge

Flickr General

1. indoor_outdoorkitchen
indoor_outdoor*mountain
indoor_outdoor*forest
indoor_outdoortsuburb
indoor_outdoor’bedroom
sky_sunset_classifie"opp_color_classifier
indoor_outdoortallbuilding

8. tallbuilding®sky_clear_classifier

9. tallbuilding*sky_cloudy_classifier
10. tallbuilding*industrial

11. tallbuilding*street

12. tallbuilding*office

13. tallbuilding*livingroom

14. tallbuilding*suburb

15. tallbuilding*store

16. mountain*opp_color_classifier
17. tallbuilding*highway

18. tallbuilding*opencountry

19. tallbuilding*coast

20. tallbuilding®insidecity

21. opencountry®insidecity

22. opencountry*street

23. mountain*sky_sunset_classifier
24 highway*opp_color_classifier
25. opencountry*coast

26. opencountry™sky_clear_classifier
27. opencountry*store

28. indoor_outdoorstore

29. opencountry*sky_cloudy_classifier
30. opencountry*office

N LN

sky_sunset_flickr*opp_color_score
sky_cloudy_flickr*opp_color_score
insidecity*street
coast*opp_color_score
insidecity*store
coast*sky_sunset_flickr
insidecity"sky_clear_flickr
insidecity*sky_cloudy_flickr
sky_cloudy_flickr*sky_sunset_flickr
10. insidecity*sky_sunset_flickr

11. coast*sky_cloudy_flickr

12. insidecity"opp_color_score

13. coast*sky_clear_flickr

14. sky_clear_flickr'opp_color_score
15. coast*store

16. street*store

17. street*sky_clear_flickr

18. sky_clear_flickr"sky_sunset_flickr
19. street*sky_cloudy_flickr

20. coast™street

21. industnial*opp_color_score

22. coast®insidecity

23. saliency*sky_sunset_flickr

24. saliency*opp_color_score

25. sky_clear_flickr*sky_cloudy_flickr
26. people™office

27 street™sky_sunset_flickr

28. store”opp_color_score

29. store*sky_sunset_flickr

30. people*sky_cloudy_flickr

R T Ry

Accuracy = 74.25% (1188/1600)

Accuracy = 69.75% (1395/2000)

Figure 4.7: Attributes that correspond to each element (¢, %) of the terms with the highest
weights for the DPChallenge, Flickr General Dataset

Insects Person

1. ldof*street 1. insidecity*store

2. |dof*store 2. insidecity*sky_clear_flickr
3. Idof*sky_clear_flickr 3. insidecity*street

4. |dof*coast 4. insidecity*sky_cloudy_flickr
5. Idof*sky_cloudy_flickr 5. coast*opp_color_score

6. Idof*insidecity 6. mountain*opp_color_score
7. ldof*industrial 7. tallbuilding®industrial

8. Idof*livingroom 8. tallbuilding“office

9. Idof*suburb

10. Idof*highway

11. Idof*tallbuilding

12. Idof*mountain

13. Idof"kitchen

14. Idof*office

15. Idof*forest

16. Idof*opencountry

17. Idof*ruleofthirds

18. Idof*sky_sunset_flickr
19. saliency*ruleofthirds
20. Idof*animals

21. Idof*opp_color_score
22 ldof*bedroom

23 ldof*saliency

24. |dof*indoor_outdoor
235. portrait*opp_color_score
26. portrait™forest

27. portrait*mountain

28. portrait*tallbuilding
29. portrait*opencountry
30. saliency*animals

9. tallbuilding*opencountry

10. tallbuilding*suburb

11. sky_sunset_flickr*opp_color_score
12. tallbuilding*livingroom

13. tallbuilding™highway

14 tallbuilding*street

15. tallbuildinginsidecity

16. tallbuilding*coast

17 tallbuilding*store

18. tallbuilding*sky_clear_flickr
19. tallbuilding*sky_cloudy_flickr
20. insidecity*sky_sunset_flickr
21 kitchen®store

22 kitchen™sky_clear flickr

23 kitchen*industrial

24 coast"sky_sunset_flickr

25. kitchen*coast

26. kitchen™insidecity

27 kitchen*sky_cloudy_flickr
28. kitchen*strest

29. sky_cloudy_flickropp_color_score
30. kitchen*office

Accuracy =72 7% (727/1000)

Accuracy = 70 8% (708/1000)

Figure 4.8: Attributes that correspond to each element (%, ) of the terms with the highest
weights for the category Datasets insects and person.
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DPChallenge coefiicients
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Figure 4.9: Values ¢;; of the transformation function for every pair (t,7) applied to the

support vectors

Now using the weighted values obtained before, we calculate the mean for each
(t,7) term and use the highest values to create the tables with the corresponding

attributes or pair of attributes that were weighted more. Fig. 4.11 is a plot of the

mean values.
Finally Fig. 4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15 contain the attributes correspond-

ing to the highest absolute values of the means from Fig. 4.11.
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DPChallenge weighted coeffs
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Figure 4.10: Values ¢;; of the transformation function for every pair (¢,), weighted using
the weights w,; obtained before
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Figure 4.11: Mean values of the weighted transformation coefficients from the values
shown in the above figure.
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DPChaIIenge

Flickr General

1. forest*suburb

- mountain®insidecity

. mountain*suburb

. portrait*mountain
store

. suburb®insidecity

. portrait*suburb

. forest*insidecity

9. tallbuilding®insidecity
10. office

11. forest*street

12. insidecity “street

13. kitchen*mountain
14. mountain*allbuilding
13. coast®insidecity

16. coast™street

17. tallbuilding

18. office*coast

19. forest®office

20. suburb®coast

21 forest"2

22 kitchen*forest

23. suburb*office

24 tallbuilding®opencountry
25. mountain*opencountry
26. forest*tallbuilding
27. suburb

28. forest*livingroom
29. forest*highway

30. tallbuilding*suburb
31. mountain®2

32. tallbuilding*office
33. mountain*office

34. kitchen*2

33. tallbuilding™street
36. bedroom™street

37. opencountry*street
38. tallbuilding”2

39. bedroom™mountain
40. suburb*opencountry

00 =) O LN f= L R

1. tallbuilding*suburb

2. forest™street

3. forest*suburb

4. mountain*opencountry
5. mountain®suburb

6. tallbuilding®insidecity
7. mountain®insidecity
8. tallbuilding®strest

9. tallbuilding®office

10. forest*insidecity

11. forest*tallbuilding
12. tallbuilding*opencountry
13. insidecity*street

14. forest*office

15. office®coast

16. kitchen*mountain

17. coast™street

18. opencountry*street
19. tallbuilding

20. coast®insidecity

21. bedroom*tallbuilding
22. bedroom®street

23. suburb*coast

24 mountain*tallbuilding
25 tallbuilding®2

26. suburb*street

27. kitchen*suburb

28. kitchen*street

29 kitchen*tallbuilding
30. suburb®insidecity
31. kitchen*forest

32. mountain*street

33. street

34. mountain*coast

35. tallbuilding™store

36. street"2

37. forest*mountain

38. kitchen"2

39. bedroom®mountain
40. bedroom*suburb

Accuracy = 74.25% (1188/1600)

Accuracy = 69.75% (1395/2000)

Figure 4.12: Attributes corresponding to highest absolute values of the means for the

DPChallenge Dataset

39




Flickr General (mean-weighted-term, weight)

. sky_sunset_flickr*opp_color_score(-5.2112,-8.14861)
. saliency*sky_sunset_flickr(-4.135,-6.33594)

. indoor_outdoor*sky_sunset_flickr(-3.6503,-4 2337)
. sky_sunset_flickr(-3.5065,-2.5255)

. ruleofthirds*sky_sunset_flickn{-2.8819,-3.1352)

. ldof*sky_sunset flickr-2.7259,-5.2524)

. people*sky_sunset_flickr{-2.5245 -5.8982)

. saliency*ruleofthirds(-2.4569,-5.3977)

. ruleofthirds*indoor_outdoor(-2.4142 -4 2073)

10. animals*sky_sunset flickn(-2.3712,-3.9541)

11. ruleofthirds*animals(-2.1597 -5_2738)

12. saliency*opp_color_score(-1.943,-6.3194)

13. saliency*indoor_outdoor{-1.8918,-4.563)

14, =zaliency*animals(-1.5847 -5.444)

15. indoor_outdoor*opp_color_score(-1.4871,-3.6305)
16. opp_color_score(-1.4368,-2.2025)

17. ruleofthirds*opp_color_score(-1.3428 -3.1023)

18. animals*opp_color_score(-1.3413 -4 7824)

19. animals*indoor_outdoor(-1.333,-3.8984)

20. sky_cloudy_flickr*sky_sunset_flickr(-1.2532,-7.6306)
21. idof*fopp_color_score(-1.167 ,-4.7468)

22 people*opp_color_score(-1.1264 -5.792)

23. indoor_outdoor(1.0829,1.2344)

24 ldof*ruleofthirds(-0_ 96773 ,-2.7233)

25. Idof*saliency(-0.94893 -3.6702)

26 ruleofthirds(0_885875,0.94908)

27. people*ruleofthirds(-0.52061,-2.9538)

28. people*indoor_outdoor(-0.77736,-2.529)

29, store*sky_sunset_flickn(-0.7757,-5.9062)

30. portrait*sky_sunset_flickr(-0.75556,-4 4834)

31. saliency(-0.75043,-1.1282)

32. animals(0.72665,1.1911)

33. dof*indoor_outdoor(-0.69407 -2.0423)

34 portrait*indoor_outdoor{-0.65015,-4.8574)

35 portrait*rulecfthirds(-0.6319,-5.8171)

36. people*saliency(-0.62439 -3.1077)

37. sky_sunset_flickr*2{-0.62221,-0.64459)

38. sky_cloudy_flickr*opp_color_score(-0.607652,-7.8966)
39_ industrial*sky_sunset_flickr(-0.56192 -5.4905)

40. of(-0.52291 0.9887)

D00 =] O3 N e L) ) =

Accuracy = 69.75% (1395/2000)

Figure 4.13: Attributes corresponding to highest absolute values of the means for the
Flickr General Dataset
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Insects (mean-weighted-term, weight)

1. Idof*sky_sunset_flickr(6 4834 8 .0352)

2. nuleofthirds*sky_sunset_flickn{S.666,6.399)

3. ldef*rulecfthirds(4.2583,8.0353)

4 Idof*indoor_outdoor(4 2809,7.1372)

5. nuleofthirds*indoor_outdoon3.6198,5.5963)

6. animals*sky_sunset_flickn(3.5666 4 5835)

7. ldeffanimals(3.5536,7.851)

&. saliency*ruleofthirds{3.3304,7.9194)

9. Idof*opp_color_score(3.23127,7.8486)

10. animals*indoor_outdoor(3.0615,5.6177)

11. rulecofthirds*opp_color_score(3.0561,6.4552)
12. Idof*saliency(2.7945,7.324)

13. saliency*indoor_outdoor(2.7588,6.2501)

14. saliency*animals(2.419,6.8064)

15. ruleofthirds*animals(2_3766,4.7288)

16. saliency*sky_sunset_flickn{2.1266,3.4134)
17. animals*opp_color_score(1.6101,3.8796)
18. indoor_outdoor*sky_sunset_ flickr({1.3148,1.3317)
19. people*sky_sunset_flickr{1.1804,6.0253)

20. saliency*opp_color_score(1.0954 3 .3097)
21. idof*sky_cloudy_flickr{(0_87191,8.7735)

22 saliency(-0.52364 -1.2974)

23 idof*store({0.78423,5.945)

24 sky sunset_flickr*opp_color_score(-0.74086,-1.0196)
25 indoor_outdoor*2(0.71808,1.2408)

26. Kdof*industrial(0.71236,8.6781)

27 dof(-0.69877 -0.84987)

28 sky_sunset_flickr*2{0.68892,0.71429)

29 ruleofthirds*store(0_61957,5.7462)

30. ruleofthirds*sky_cloudy_flickr(D.61684 . 5.6168)
31. indoor_outdoor{0.59328,0.58998)

32. people*opp_color_score(0.58835,5.5938)
33. people*indoor_outdoor(0.56902 4 3477)

34 idof*highway{0.56026,8.4471)

35. opp_color_score®*2(0.53302,1.7426)

36 rulecfthirds*industrial(0.51609,5.7494)

37 animals*store(0_50881 4 .9004)

38_ animals*sky_cloudy_flickr(D_ 45495 4 7368)
39. dof*livingroom({0 454 65,8 6629)

40. people*ruleofthirds(0 41839 3.333)

Accuracy = 72.7% (727/1000)

Figure 4.14: Attributes corresponding to highest absolute values of the means for the
category Datasets ‘insects’.
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Person (mean-weighted-term, weight)

. indoor_outdoor*sky_sunset_flickr{-10.5204 -11.217)

. sky_sunset_flickr*opp_color_score(-10.0522,-14_.22486)
. ruleofthirds*sky _sunset_flickr{-9.5642 -10.7672)

. indoor_outdoor*opp_color_score(-5.77 -11.6488)

. animals*sky_sunset_flickr-5_7687 -10.4508)

. saliency*sky_sunset flickr-5.5538 -8.4561)

. ruleofthirds*opp_color_score(-5.0295,-10.9505)

. rulzofthirds*indoor_outdoor{-4_ 5825,-7 4269)

. animals*indoor_outdoor(-4 1633 -12.4893)

10. idof*sky_sunset_flickn{-3.6475,-6.8461)

11. saliency*indoor_outdoor({-3.5281,-T.7732)

12. saliency*ruleofthirds(-3.1408,-7 0626)

13. ruleofthirds*animals(-2 9783,-8_332)

14_ animals*opp_color_score(-2 8969 -10.0933)

15. dof*indoor_outdoor(-2.697 ,-7_1069)

16. Idof*ruleofthirds (-2 6579 -7 B251)

17 saliency*opp_color_score(-2.6154 -F.7T178)

18. sky_cloudy_flickr*sky_sunset_flickr(-2.2532,-13.6283)
19. sky_sunset_flickr*2({-2.1848,-2 2736)

20. people*sky_sunset_flickn-2.1332 -4 3074)

21. sky_sunset_flickr(-2.0185,-1.4565)

22 ldof*fopp_color_score(-1.9788,-7.0919)

23. saliency*animals(-1.8849 -7.0065)
24_dof*saliency(-1.7888 -6 66T 3)

25_ store*sky_sunset_flickr{-1.7108,-12.4204)

26. dof*fanimals(-1.4944 -7 .1803)

27_ portrait*sky_sunset flickr(-1.4574 -6.8643)

28_ indoor_outdoor{1.4471,1.5023)
29_industrial*sky_sunset_flickr(-1.2601 -12.5595)

30. indoor_outdoor*sky_cloudy_flickn{-1.2508_-10.8888)
31. sky_cloudy_flickr*opp_color_score(-1.2037 ,-13.9581)
32. people*opp_color_score(-1.1999 -4 5954

33, highway*sky_sunset_flickr(-1.1158 -12.1847)
J34_livingroom*sky_sunset_flickr{-1.0913 -12.4145)

35._ portrait*indoor_outdoor{-1.0594 -5.7091)

36. rulecfthirds*sky_cloudy_flickr(-1.0502 -9.7242)

37. indoor_outdoor*store(-1.0347_-10.5509)

38. people*ruleofthirds(-0.99087 -3.0377)

39. porrait*ruleofthirds(-0.93576,-6.6633)

40. peopletindoor_outdoor(-0.91476,-2.3821)

[l RN B I Y ST N R

Accuracy = 70.8% (708/1000)

Figure 4.15: Attributes corresponding to highest absolute values of the means for the
category Datasets ‘person’.
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Chapter 5

Conclusion

We provide a set of high level describable attributes that predict various kinds of use-
ful information about images. These attributes can be used for constraining search
results, collection organization, or browsing. We also demonstrate that our describ-
able attributes can be used to produce powerful classifiers for estimating aesthetic
quality, general interestingness, and query specific interestingness. In the future, we
plan to expand our set of attributes to extract other describable image features, and
to apply these attributes to related tasks such as image emotion estimation. We
also plan to more thoroughly explore ideas of query specific interestingness, includ-
ing methods for query specific attribute selection, and methods for interestingness
transfer.

The quality estimation method in this system predicts some of the possible image
cues that a human might use to evaluate an image and then uses them to classify the
image as ‘positive’ or ‘negative’ by measuring how much it deviates from ideal sample
of either categories. This could be instrumental in post-processing tools (like Photo-
shop) to not only improve the quality of an image but also to help a photographer
take better photos. The following applications could potentially be very useful:
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1. Classification of aesthetic quality is done using a measure of how much a test
image deviates from the ideal image. The ideal image(s) are usually generated
during the training process of the classifier. The measure of deviation of the
test image from the ideal image could be used to suggest potential changes to
the user/photographer to help improve the aesthetic quality of his photograph.
Eg: One of the attributes used, Rule of Thirds is directly measured by how
much it deviates from the thirds lines in the image. The ideal position could be

shown as an overlay to the user, as a suggested post-processing step.

2. Our algorithm also takes into account composition of the photograph while do-
ing analysis of aesthetics in the image. Compositional features include Saliency

detection, Low Depth of Field.

e Saliency improvements could be suggested as possible crops of the photo-

graph so as to make the primary object in the photograph most salient.

e Depth of field measurements could help suggest to the user, modifica-
tions in the focus level of various parts of the image. This would make
the primary object in the image highly focused while defocussing the sur-
roundings, which is the aim of photographers taking advantage of the low

depth-of-field feature or macro mode.

3. Digital media designers strive to achieve perfection when creating digital con-
tent (both images and video). During this process, our aesthetics inference
algorithm could be used to suggest possible color pairs to enhance the aesthetic
value of the image/video being created. Our algorithm results show us a high
occurrence of blue+yellow, or black+red combinations. The high number of
beach photographs and sunset photographs liked by users on the web validate

this observation. The opposing colors attribute computes color histograms of
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the test image. The shape of these histograms could be compared to ideal color
composition histograms generated during the training process. Our study of re-
search in Psychology literature of color-pair and color-triplet combinations best
perceived by the human mind also can be used to enhance the digital media

creation process.

. Digital media creators working in the area of developing animation could use
cues from our Content attributes to get an intuition of possible object combi-
nations that they could add to increase the aesthetic quality of a scene. For
instance, in outdoor scenes like a beach or a park, we observed that the presence
of a pet (like a dog) frequently increases the visual acceptance of the photograph.
The sky-illumination attributes could be used to render life-like sky color and

texture for various sky types in outdoor scene videos/photographs.
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