
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

 

 
Implementing Tracecuts in the InterAspect 

Program Instrumentation Framework 
 
 

A Thesis Presented 
 

by 
 

Ketan Dixit 
 

to 
 

The Graduate School 
 

in Partial Fulfillment of the 
 

Requirements 
 

for the Degree of 
 

Master of Science 
 

in 
 

Computer Science 
 

Stony Brook University 
 

December 2010 

 
 
 



 

 

ii 

 

Stony Brook University 
 

The Graduate School 
 
 
 

Ketan Dixit 
 

We, the thesis committee for the above candidate for the 
 

Master of Science degree, hereby recommend 
 

acceptance of this thesis. 

 
 
 

Professor Scott Smolka – Thesis Advisor 
Department of Computer Science 

 
 

Professor Erez Zadok – Chairperson of Defense 
Department of Computer Science 

 
 

Professor Scott Stoller 
Department of Computer Science 

 
This thesis is accepted by the Graduate School 

 
 
 

Lawrence Martin 
Dean of the Graduate School 

 
 
 



 

 

iii 

 

Abstract of the Thesis 

 
Implementing Tracecuts in the InterAspect 

Program Instrumentation Framework 
 
 

by 
 

Ketan Dixit 
 

Master of Science 
 

in 
 

Computer Science 
 

Stony Brook University 
 

2010 
 
As software grows in complexity, there is a need to check the runtime behavior of 

programs for potentially hazardous runtime states, and take the appropriate action.  The 

tracecut mechanism, which allows one to match sequences of runtime events against a 

property specification given as a regular expression, provides us with this functionality. 

 

In this thesis, we show how tracecut functionality can be applied to C programs by 

making use of InterAspect, an aspect-oriented instrumentation framework.  InterAspect is 

a GCC compiler plug-in that performs runtime instrumentation at the GIMPLE level, 

GCC's intermediate representation.  Our approach interprets a tracecut specification given 

as a regular expression as a finite state machine, and generates the code needed to 



 

 

iv 

 

perform the state machine transitions. 

 

The utility of our approach is illustrated by two case studies, one involving a tracecut for 

a simple data-source iterator, and the other involving a tracecut specification of file open-

close behavior.  The latter tracecut is applied to the bzip2 file compression utility. 

 



 

 

 
 
 

 
 
 

To 
 

My Family and Teachers 

 



 

 

vi 

 

 

Table of Contents 
1 Introduction .............................................................................................................................. 1 

2   InterAspect Overview .............................................................................................................. 3 

3   Tracecut Concept and Overview ............................................................................................. 4 

4 Tracecut API Design ................................................................................................................. 6 

4.1 Steps in defining tracecut using APIs ..................................................................................... 6 

4.2 Tracecut API description ........................................................................................................ 7 

5   Tracecut examples ................................................................................................................ 10 

5.1 Iterator Example .................................................................................................................. 10 

5.2 Detection of write to closed file handle example. ............................................................... 13 

6 Implementation Details .......................................................................................................... 14 

6.1 Storing the Tracecut specification in a structure: ................................................................ 14 

6.2 Creating pointcuts according to the stored information: .................................................... 16 

6.3 Managing state transitions: ................................................................................................. 17 

7 Results ..................................................................................................................................... 20 

7.1 Iterator Example: ................................................................................................................. 20 

7.2 Detection of write to closed file handle example ................................................................ 20 

8 Conclusion and Future Work .................................................................................................. 22 

Bibliography .................................................................................................................................. 23 

 



 

 

Acknowledgements 
 
First of all, I wish to sincerely thank Prof. Scott Smolka for his guidance and support all through 

the project. I would also like to thank Prof. Zadok, Prof. Stoller, Prof. Grosu and Dr. Havelund 

for their guidance.  I would also like to thank all the SSW project group colleagues Justin Seyster, 

Xiowan Huang and Tushar Deshpande. In particular, I would like to thank Mr. Justin Seyster for 

his insightful advice and help throughout my thesis work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

 

1 

 

Chapter 1 
 
1 Introduction 
 

A Tracecut is a concept which involves matching to a specific trace of events in a 

program at runtime. Tracecut is also referred to as Tracematch and more generally as 

“typestate property”.  

In Aspect-oriented programming, pointcut can refer to only the current program 

state or the current join point but the tracecut or type state property does matching on the 

trace of events in the program [1]. This concept is necessary in detecting run-time 

properties of a program and take appropriate corrective actions.  It is useful for specifying 

safety properties (safe iterator example [1]) to allow proper use of resources. Several 

implementations for detecting Tracecut exist in Java built over AspectJ framework. We 

referred to paper ‘Adding Trace Matching with Free Variables to AspectJ’ [1] in 

designing the system. This is an attempt to bring the Tracecut functionality to C by 

building over InterAspect [2] the C-based aspect-oriented instrumentation framework.  

Thus, it could be potentially used for checking run-time properties of complicated system 

software.  In our implementation of tracecut, we take regular expression as input to define 

the pattern of events and we parse that expression to generate code for state machine 

described by the expression. 

 Our tracecut implementation is implemented as API similar to the InterAspect 

design. As tracecut makes extensive use of InterAspect, we include a special section that 

explains InterAspect terminologies and APIs in brief. Then we will provide overview of 

the tracecut architecture and the components involved. In the next section, we give the 

API design of the tracecut. In the API design we will explain the purpose of each 

function and the description of the parameters it takes.  We will follow API design up 

with two working examples one that checks for iterator safety and the other that protects 

writes over a closed file handle. Then, we explain the design of the tracecut in detail. In 

design we discuss how we actually interpret the regular expression to state machine code, 

how do we create state machines, how do we search on them with subset of attributes etc. 

Then we discuss the limitations of the approach, the desired features from InterAspect 



 

 

2 

 

that would be useful for tracecut and also future work. Finally we end the document with 

results, conclusion and references.  

  



 

 

3 

 

Chapter 2 
 
2   InterAspect Overview 
 

 As mentioned earlier InterAspect is an aspect-oriented instrumentation 

framework that is implemented as a GCC plug-in.  It provides the functionality to 

instrument a program while hiding the implementation details of GCC. It does 

instrumentation at the GIMPLE level, which provides the user with detailed type 

information. InterAspect makes use of familiar vocabulary of Aspect-oriented 

programming to develop instrumentation plug-ins.  We will explain the terms used from 

Aspect-oriented world are pointcut, join point, advice and weaving briefly.  

A pointcut denotes a set of well defined program points called join points where 

calls to advice function can be inserted by process of weaving.  In simple terms a pointcut 

acts as a matcher over the entire source code and each point in the source that is matched 

by the matcher is called join point.  An advice function is some action user wants to 

execute at each join point. The InterAspect provides a novel feature of join callbacks 

which allows customized weaving. We have made use of this feature in implementing 

Tracecut.  

InterAspect uses an API based approach to define pointcuts. The pointcuts are 

created by calling aop_match_*  functions. There are following types of pointcuts 

function call, function entry, function exit, and assignment. These pointcuts are further 

filtered by parameter types, return types (only in case of function call pointcut) etc. by 

aop_filter_* functions. After filtering we have to specify callback function which 

will get called for each join point. For a join point, various attributes such as parameters 

return values etc. can be captured with the help of  aop_capture_* functions. Finally 

calls to advice functions can be inserted with the help of aop_insert_advice  

function.  It is possible to pass both static parameters and dynamic parameters.  

  



 

 

4 

 

Chapter 3 
 
3   Tracecut Concept and Overview 
 
 Aspect oriented programming provides ability to call an advice function at a 

specific point in the program. This means that it inserts instrumentation based on static 

information about the program at compile time. Tracecut provides the ability to match on 

a pattern in the sequence of events that take place at run-time. Tracecut are also referred 

to as “Tracematch” in [1] or “Stateful Aspects” in [3]. Tracematch is an implementation 

of history based pointcut matching on the top of AspectJ. We have similarly tried to build 

tracecut over InterAspect, the Aspect-oriented instrumentation framework.   

 A tracecut defines a pattern of events and an advice to be called if the current 

trace matches that pattern. Each tracecut declaration has the 4 parts: Declaration of 

tracecut symbols, declaration of tracecut parameters, binding tracecut parameters to the 

information available at each symbol such as parameters, return values etc, and finally 

specification of regular expression of the symbol and specification of the advice. The 

pattern of symbols is specified with the regular expression.  A match occurs when a trace 

of events belongs to the regular language described by the regular expression.  

 Each event that occurs in a program is modeled by transitions on the state 

machine corresponding to the regular expression.  Multiple state machines can exist in 

program at runtime. The tracecut parameters act as attributes of the state machine. At 

each join point described by the tracecut symbol we might have all or subset of these 

parameters. We use this list of parameters available at the join point to search for the 

appropriate state machine to make the transition on.  

The following diagram describes the Tracecut architecture. Tracecut was designed 

to be built on top of InterAspect. It makes use of InterAspect API to achieve the 

instrumentation.   The tracecut specification is interpreted to form appropriate pointcuts.  

The advice weaved into for these pointcuts consists of two parts one is static 

tracecut-helper.c  and other is auto-generated statemachine.c . The 

tracecut-helper.c  contains the helper functions to do state machine operations. 

The state machine is initialized at a symbol with a set of attributes. At occurrence of other 



 

 

5 

 

symbols/events there may be all or subset of these parameters available. Now these 

parameters have to be used to find to which state machine they belong. Thus the code for 

all these operations is in tracecut-helper.c. Also, the regular expression 

specification is converted to code simulating the state machine. Such code exists in 

statemachine.c .  The specification compiler thus creates weave module which 

would insert calls to do state machine transitions in compilation process.  

 

 

 

 
 

 Figure 1.1 Tracecut architecture 
  

Target.c 
Tracecut 
Specification 

tracecut-
helper.c 

Specification 
Compiler 

GCC with plugin support 

InterAspect 
Framework 

Weave 
Module 

 

Compiled 
Binary 

Tracecut Architecture Diagram 

Autogenerated 
Statemachine.c 



 

 

6 

 

Chapter 4 
 
4 Tracecut API Design 

 
The Tracecut is basically a regular expression over the sequence of events that occur in 

the program. These events are modeled by Tracecut symbols. Tracecut symbols refer to 

specific event in the program. Tracecut symbols refer to well defined points in the 

program which are described by a pointcut in InterAspect.  Now a Tracecut also has 

several parameters that are common to all symbols so these parameters are modeled by 

defining Tracecut parameters.  These Tracecut parameters are the attributes of the state 

machine they are defining with the help of regular expression. A collection of these 

parameters is used as a key for identifying the right instance of the state machine. 

Moreover these parameter need to be mapped with function parameters or return values 

associated with each symbol. 

We will first present the Tracecut API design followed by the working example. 

 

4.1 Steps in defining tracecut using APIs  

 

The Tracecut API was designed with the goal of making it easy and intuitive to the user. 

The Tracecut will be written as a GCC plug-in based on the InterAspect framework.  But 

the API is designed such as the user need not bother about the details of the InterAspect 

framework.   

For understanding the use of the API, it is necessary to describe the following steps in 

creating a Tracecut. 

• Creating a Tracecut: This step will create a pointer to Tracecut in which Tracecut 

symbols and Tracecut parameters are stored. 

• Adding Tracecut symbols to Tracecut:  In this step we will create a Tracecut 

symbol corresponding to a function call, function entry, function exit. 

• Adding Tracecut parameters to Tracecut: We need to specify parameters to the 

Tracecut to define the attributes of the state machine we are going to describe.  



 

 

7 

 

• Mapping Tracecut parameters to the Tracecut symbol parameters:  Each of the 

Tracecut parameter has to be mapped to at least one Tracecut symbol parameter 

or return value. 

• Specifying the advice parameter and name: User can specify what function to call 

and what parameter can be passed to the function. 

• Specifying a regular expression of symbols: A regular expression involving 

symbol names has to be specified in the tracecut. It is basically input for creating 

a state machine. 

 

4.2 Tracecut API description 

 

The create_tracecut  function creates a tracecut instance which is further filled 

with more information later. This structure acts as a container to all the tracecut related 

information.  

struct tracecut *tc = create_tracecut(); 
 

The add_tracecut_symbol_call  function tells the tracecut to catch each call of 

function having name func_name  and generate the state transition before the call to the 

function. The symbol name will be used to refer to this Tracecut symbol later. 

add_tracecut_symbol_call (  
struct tracecut *tc,  /* Tracecut pointer */ 
const char *sym_name, /* Symbol name */ 
const char *func_name /* Function name */ 
AOP_BEFORE            /* Advice insertion location*/); 

 

The add_tracecut_symbol_entry  function tells the tracecut to catch event of 

entry in the specified function and generate the state transition at the entry to the function. 

The symbol name will be used to refer to this tracecut symbol later. 

 
 
 
 



 

 

8 

 

add_tracecut_symbol_entry ( 
struct tracecut *tc,  /* Tracecut pointer */ 

 const char *sym_name, /* Symbol name */  
 const char *func_name /* Function name */ ); 
 

Similarly we have symbol for capturing function exits. 

add_tracecut_symbol_exit ( 
struct tracecut *tc,   /* Tracecut pointer */ 
const char *sym_name,  /* Symbol name */  
const char *func_name  /* Function name */ ); 

 

The add_tracecut_param  function adds a parameter to the tracecut specifying the 

tracecut parameter name and the type respectively. The type specifier aop_type  is 

provided by the InterAspect framework. 

add_tracecut_param ( 
struct tracecut *tc,         /* Tracecut pointer */ 

 const char *tc_param_name,   /* Tracecut Param name */ 
 struct aop_type t           /* Type of the param */ ); 
        

The bind_to_param  function does the mapping of tracecut parameter to the parameter 

of a tracecut symbol specified by the index. 

bind_to_param (      
struct  tracecut *tc,     /* Tracecut pointer */ 
const char *sym_name,     /* Tracecut symbol name*/ 
int index,                /* Symbol parameter index */ 
const char *tc_param_name /* Tracecut parameter name*/); 

 

Similarly, bind_to_return  function does the mapping of tracecut parameter to the 

return value of a particular symbol. Note that this applies only to Tracecut symbols 

corresponding to function call pointcuts. 

bind_to_return (  
struct  tracecut *tc,       /* Tracecut pointer */ 
const char *sym_name,       /* Tracecut symbol name*/ 
const char *tc_param_name /*Tracecut parameter name */); 



 

 

9 

 

    

  The function set_initial_symbol  allows user to specify at what tracecut symbol 

the   state machine instance should be created. 

  set_initial_symbol (  

struct tracecut *tc,    /* Tracecut pointer */ 
const char *sym_name,   /*Tracecut symbol name*/); 

 

The function set_advice_parameter  sets the tracecut parameter that needs to be 

sent to the advice. 

set_advice_parameter (  
struct tracecut *tc,       /*Tracecut pointer */ 
const char *tc_param_name  /* Tracecut param name*/); 

 

The create_tracecut_rule  is the final step in tracecut creation. It sets the regular 

expression on the symbols defined. This regular expression provides a pattern on the 

sequence of events.  It also specifies the advice function to be called.  

create_tracecut_rule (   
struct tracecut *tc,     /* Tracecut pointer */ 
const char *regex,       /* Regular expression */ 
const char * advice_name /* Advice name */); 

  



 

 

10 

 

Chapter 5 
 
5   Tracecut examples  
 

We give the following two examples to explain the use of the iterator. The first example 

is referred from [1]. 

The first example detects a condition of invalid iterator use. The second example detects 

write to a closed file handle and open the file handle in an advice.  

 

5.1 Iterator Example  

 

We will explain how the condition of using a bad iterator can be detected by using 

tracecut. Iterator provides the functionality to iterate through each element in the data 

source. An instance of iterator is created from a datasource.  But when the datasource is 

changed, the instance of iterator is invalid and thus should not be used.  By using 

Tracecut we can detect this situation and can call any user specified advice. 

This situation could be specified as regular expression as follows  

 

create_iter call_next* update_source+ call_next 

 

This regular expression says that call to create_iter  followed by zero or more calls 

to call_next  followed by one or more calls to update_source  followed by call to 

call_next . The state transition diagram corresponding to the above regular expression 

is as follows. 

 

 create_iter create_iter  

call_next  update_source  

update_source  

Bad State 



 

 

11 

 

 
We describe a ‘safe iterator’ example where we will detect the condition when an illegal 

use of iterator happens. We use the a sample target program which make uses comma 

separated integer values as a datasource and uses an iterator structure to loop over the 

elements of the datasource. 

The target program makes use of the following key functions. 

The create_source  function instantiates the new datasource from a string of comma 

separated values. 

struct datasource * create_source (char * csv); 
 

The update_source  updates the datasource pointed to by ds with new comma 

separated values.  

void update_source (struct datasource *ds, char *csv); 
 

The create_iterator  function creates the iterator which points to the first element 

of the list of values. 

struct iterator * create_iterator (struct datasource *ds) 
 

The call_next  function returns the current value pointed to by the iterator and 

advances the iterator by one element. 

int call_next ( struct iterator * it) 
 

Hence we write the tracecut for the above target program as follows. 

/*   Initialize the Tracecut. */ 
struct aop_tracecut *tc = create_tracecut(); 
 
/*  
This function tells the Tracecut to catch each call of 
create_iterator.  
The parameter AOP_AFTER tells that state transition is to 
be done after the create_iterator call. 
*/ 



 

 

12 

 

 

add_tracecut_symbol_call(tc, 
“create_iter","create_iterator”, AOP_AFTER); 
 
/* 
 add_tracecut_param adds paramaters iterator and   
datasource of any pointer type. 
*/ 
add_tracecut_param(tc, "iterator",  aop_t_all_pointer()); 
        
add_tracecut_param( tc, "datasource", aop_t_all_pointer()); 
 
/* 
bind_to_return binds the Tracecut parameter ‘iterator’ to 
the return value of the ‘create_iter’ Tracecut symbol. 
*/ 
bind_to_return( tc, "create_iter", "iterator"); 
    
/* 
bind_to_param binds the Tracecut parameter ‘datasource’ to 
the first parameter of ‘create_iter’ Tracecut symbol. 
*/ 
bind_to_param(tc, "create_iter", 0, "data_source"); 
 
/*  
This function specifies that ‘create_iter’ corresponds to 
the initiation of the state machine.   
*/ 
set_initial_symbol (tc, "create_iter"); 
 
add_tracecut_symbol_call( 
tc,"update_source","update_source", AOP_BEFORE); 
bind_to_param(tc, "update_source", 0, "data_source"); 
 
add_tracecut_symbol_call( tc,"call_next","call_next", 
AOP_BEFORE); 
bind_to_param(tc, "call_next", 0, "data_source"); 
 
 
 
/* 
 This is the final step in Tracecut creation. It specifies 
the regular expression for statemachine. It calls 
‘handle_bad_iterator’ advice on satisfying the regular 
expression. 
*/ 



 

 

13 

 

create_tracecut_rule (tc, "create_iter call_next* 
update_source+ call_next"," handle_bad_iterator"); 

 
 
5.2 Detection of write to closed file handle example. 

 
This example detects the condition of a write to a file handle after it has been closed. It is 

referred from [4]. It also calls the advice to reopen the file so that further write could be 

safe.  The regular expression for detecting the condition is  

   open write* close write  
 

This code is captures calls to fopen, fwrite and fclose.  It defines a parameter called fp 

which corresponds to the file handle. It also binds to the file name so that it is available to 

pass as parameter to advice. Following is the code snippet. 

 

char regex[] = "open write* close write"; 
 
tc = create_tracecut(); 
 
add_tracecut_symbol_call (tc,"close","fclose", AOP_AFTER); 
add_tracecut_symbol_call ( tc,"open","fopen", AOP_AFTER); 
add_tracecut_symbol_call ( tc,"write","fwrite",AOP_BEFORE); 
  
add_tracecut_param (tc, "fp", aop_t_all_pointer()); 
  
bind_to_return(tc, "open", "fp"); 
bind_to_param(tc, "open", 0, "name"); 
bind_to_param(tc, "close", 0, "fp"); 
bind_to_param(tc, "write", 3, "fp"); 
  
set_initial_symbol (tc, "open"); 
set_advice_param (tc, "name"); 
create_tracecut_rule ( tc, regex,"reopen_file_handle"); 
 

In the advice implementation we have made an assumption that the file handle is shared 

between the main code and the advice code. In this case, ideally we would have needed to 

pass pointer to the file handle in order to store the new file handle in the same address 

and the following write could run successfully. But as of now InterAspect lacks this 

facility and thus an assumption had to be made.  



 

 

14 

 

Chapter 6 
 
6 Implementation Details 
 

The implementation of tracecut requires instrumenting state transition code at specific 

points in the program.  We use the InterAspect framework for this purpose. As mentioned 

earlier the tracecut is specified as regular expression over tracecut symbols. Each 

Tracecut symbol corresponds to a well defined event in the program. These well defined 

events are modeled by using pointcuts in InterAspect.  So the basic idea is to insert 

advice making the state transition at each join point satisfying the pointcut corresponding 

to the symbol.  Also we pass the mapped parameters or return values of the join point to 

the advice in order to decide on what instance of state machine the transition should be 

made. So we describe the steps in generating the tracecut as follows.  

6.1 Storing the Tracecut specification in a structure:  
 

All the Tracecut related information is stored in a ‘struct tracecut ’. It contains 

information of tracecut symbols, tracecut parameters.  

struct tracecut  
{ 
 /* Regular expression */  
 char * regex; 
 

/* List of all symbols */ 
 struct tracecut_symbol *tc_sym_list; 
 
 /* List of all parameters*/ 
 struct tracecut_param *tc_param_list; 
}; 
 

As shown in the above snippet the Tracecut stores regular expression of Tracecut 

symbols and lists of the Tracecut symbols and Tracecut parameters.  



 

 

15 

 

As mentioned earlier the tracecut_symbol  is actually implemented by creating a 

corresponding pointcut. In tracecut_symbol  structure we store the type of the 

pointcut that corresponds to it. 

 

struct tracecut_symbol   
{ 

  /*Tracecut symbol type */ 
  enum tracecut_symbol_type tc_type; 

 
  /* Function name */ 
  char *name; 

 
/* List of parameters associated with symbol */ 

      struct tracecut_symbol_param *tc_sym_param_list; 
  

  /* Next pointer for the list */ 
  struct tracecut_symbol *next; 

}; 
 

Moreover it stores the function name if it is associated with a function entry, function exit 

or function call pointcut.  Now each program location satisfied by pointcut (also called 

join point) of the symbol has useful information such as parameters, return values that 

needs to be captured. In order to store what needs to be captured for a 

tracecut_symbol , we use a structure called tracecut_symbol_param  and we 

maintain its list in the tracecut_symbol  structure.  

The tracecut_symbol_param  structure holds the information of a symbol 

parameter.  

 

struct tracecut_symbol_param 
{ 
 /* -1 for return value */ 
 int param_index;  
 
 /* The tracecut_param bound to this symbol  

parameter */ 
struct tracecut_param *tp; 
 

 struct tracecut_symbol_param *next; 
}; 

 



 

 

16 

 

It has a param_index  field that refers to the parameter or return value of the symbol to 

be captured.  The struct tracecut_param  refers to the tracecut parameter the 

symbol parameter is mapped to. This field is set when the user calls bind_to_param or 

bind_to_return function.  Note that we are not storing the type information in this 

structure; it is contained in the tracecut_param  field instead. 

To store the tracecut parameters we have the tracecut_param  structure which stores 

the name of the parameter and the type information. The type aop_type  is from 

InterAspect framework. 

 
struct tracecut_param 
{ 
 /* Name to be used as identifier */ 
 char * name; 
 
 /* Type of the parameter */ 
 aop_type type; 
 
 struct tracecut_param *next; 
}; 

 

 

As mentioned earlier we provide APIs to initialize the above structures. The name field is 

used as a key to identify tracecut symbols and tracecut parameters. This name should be 

used by the user to refer to a particular tracecut parameter or tracecut symbol in the 

regular expression as well as all the API functions.    

 

6.2 Creating pointcuts according to the stored information:  
Once we have all the information we can create the pointcuts related to the Tracecut 

symbols.  

We make use of parameterized weaving provided by InterAspect to pass the struct 

tracecut_symbol  pointer to join_on  callback function at each join or weave 

location. The structure stores a list of          tracecut_symbol_parameter  to 

capture the required parameters at each join point.  (struct  

tracecut_symbol_parameter  holds information about the index of the parameter 



 

 

17 

 

and type of the parameter).   These captured parameters will be passed to state machine 

transition functions from tracecut-helper.c .  The auto generated code is written in 

statemachine.c . Both these files can be compiled separately with any GCC version 

(with or without plug-in support) to object files and these object files have to be linked 

with the target program in the linking process to get the advice code.  

  

6.3 Managing state transitions: 
 

In tracecut_symbol  structure we have information about how to create the pointcut 

and what parameters to capture at its join points. We need to make use of the captured 

information to make the state transitions. From the function name we know what 

transition to make and from captured parameters we need to infer on what state machine 

the transaction should take place. 

 For achieving this, we have to keep track of state machines at the run time. Thus, 

a structure describing the state machine is required.  The state machine consists of list of 

name-value pairs of attributes. The state machine is initialized at the symbol which 

specified as init symbol by the user. The need for name-value pairs arises from the fact it 

is not possible at every Tracecut symbol location that all the parameters are available (For 

example in call_next  only the iterator is available). So in that case partial matching 

has to be done and to achieve that the name should be used to apply partial matching of 

attributes (that means attribute name is compared first and then its value). The state 

machine related data is stored in following structures. 

struct state_machine 
{ 
 int state_id; 
 struct attribute *attrib_list; 
 struct state_machine *next; 
}; 
 
struct attribute 
{ 
 char *name; 
 void *value; 
 struct attribute *next; 
}; 



 

 

18 

 

 
/* Global list of all state machine instances*/  
struct state_machine sm_list = NULL; 

 

The state_id  field in the struct state_machine  refers to the current state of 

the state. Additionally the structure has list of attributes with name-value pairs.  

The file tracecut-helper.c  provides the helper functions to create state machine, 

to add new attribute to the state machine, to make transitions on the state machines. We 

will explain the functions as follows.  

void create_state_machine () 

This function creates a new state machine that is added to the global list. As we cannot 

capture return value from one advice function to the advice immediately following it, we 

have to store the pointer to the state machine as a global variable.  Also as we have to add 

variable number of attributes, we call add_attribute_sm  successively. 

void add_attribute_sm (char * name, void * value); 

This function adds the attribute to the newly created state machine.  

void add_attribute_to_attrib_list (char * name,  

void * value); 

Similar to a global state machine, a global pointer to query attribute list is maintained. 

This list is used to query the state machine list in make_transition  function.  The 

above function adds a new attribute to the global list.  

void make_transition (int sym, int is_create_sm , const 

char *advice_param); 

The make_transition  function does the task of finding the state machine 

corresponding to the current global attribute list and making transition on each of them.  

If the state machine is newly created which is denoted by  is_create_sm  parameter is 

set to 1 and the state transition is only made on the newly created state machine. 



 

 

19 

 

The function assumes presence of function get_next_state which has the 

following signature.  

 

int get_next_state (int state_id, int sym ,  

int * is_final); 

The state_id parameter refers to the current state of the state machine.  The sym 

parameter refers to the character denoting the event. Each of the tracecut symbols is 

assigned a representative single character. This character is used as a key in the code 

generating the state machine.  Also the single character makes the get_next_code  

simple.  The third parameter is_final is passed by address to know whether the next 

state is a final state.  

This function contains the code corresponding to the state machine. This code is 

generated by parsing the regular expression and converting it to DFA (Deterministic 

Finite Automata) in memory and writing the corresponding switch case for the memory.  

We have used source code of regular expression to DFA converter library developed by 

Russ Cox (Refer http://swtch.com/~rsc/regexp/regexp1.html [5]). We have modified the 

source code of the library to write the in-memory DFA as a C source code. So with each 

new regular expression the code for get_next_state  function is dumped in the file 

statemachine.c . 

  



 

 

20 

 

Chapter 7 
 

7 Results 

7.1 Iterator Example:  
We ran our iterator example having the following code snippet. Note that the last 

line contains the call_next done after the source is updated. Thus our tracecut catches this 
situation and calls handle_bad_iterator.   

struct iterator *it = create_iterator (ds);  
 while  ((data = call_next(it)) >= 0) 
 { 
  printf( "Data : %d\n" ,data); 
 }  
 printf ( "Updating the source .....\n" );  
 update_source (ds, str2);  
 call_next(it);  

7.2 Detection of write to closed file handle example 
We ran this example on bzip2 program. In this program we introduced fclose call 

before an fwrite and detected the hazardous write and exited the program. (Otherwise the 
program gives a segmentation fault if it writes on a closed file handle.) With 
instrumentation on we ran the program to compress and decompress an 8.1 MB PDF 
document and following are the results. 

Running Time: 

With Instrumentation Without Instrumentation 
Compress Decompress Compress Decompress 

4.319 3.608 4.18 2.613 
4.182 3.488 4.214 2.606 
4.334 3.24 4.186 2.599 
4.233 3.5 4.161 2.593 
4.267 3.294 4.202 2.637 
4.205 3.456 4.171 2.608 
4.192 3.272 4.216 2.674 
4.186 3.415 4.163 2.599 
4.254 3.225 4.185 2.662 
4.258 3.284 4.175 2.631 
4.243 3.3782 4.1853 2.6222 

 

 



 

 

21 

 

 

Binary Size: 

  

With Instrumentation Without Instrumentation 
168870 162710 

 

Memory Usage Size (in KB): 

 

With Instrumentation Without Instrumentation 

Virtual Resident Virtual Resident 

9060 7014 9060 7000 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

22 

 

Chapter 8 
 
8 Conclusion and Future Work 
 

Thus we have presented the tracecut concept that takes a pattern on program trace in form 

of regular expression and successfully matches it on the sample programs. However, 

there are some limitations to this approach and here are some features we would like to 

add to current implementation. 

1. Support for keeping track of scope of variables. By using this we can keep track 

of open file handles which are not closed when all references to those go out of 

scope. 

2. As a result of implementation of this project, it was realized that some more 

features are needed from InterAspect. For example, we need to be able to capture 

the address of parameter captured not just their value. This will enable us to take 

corrective actions more elegantly. This feature can be useful in our example of 

file handle where if we could catch the file handles address then we could replace 

that closed file handle with an opened file handle in the memory address; and the 

program would run unharmed.  

3. Taking different state transitions for the different ranges of the same parameter of 
the same function. For example, setuid(0) sets effective user id to 0 that means it 
enters a privileged mode and non zero parameter means non privileged mode. We 
want to have different state transitions for call the same function. 

  



 

 

23 

 

Bibliography  
 

[1] Chris Allan , Pavel Avgustinov , Aske Simon Christensen , Laurie Hendren , Sascha Kuzins , 

Ondřej Lhoták , Oege de Moor , Damien Sereni , Ganesh Sittampalam , Julian Tibble, Adding 

trace matching with free variables to AspectJ, Proceedings of the 20th annual ACM SIGPLAN 

conference on Object oriented programming, systems, languages, and applications, October 16-

20, 2005, San Diego, CA, USA 

[2] Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu, Klaus Havelund, Scott A. Smolka, 

Scott D. Stoller, and Erez Zadok Aspect-Oriented Instrumentation with GCC In Proceedings of 

1st International Conference on Runtime Verification 2010, St. Julians, Malta 

[3] Thomas Cottenier, Aswin van den Berg , Tzilla Elrad, Stateful aspects: the case for aspect-

oriented modeling, Proceedings of the 10th international workshop on Aspect-oriented modeling, 

p.7-14, March 12-12, 2007, Vancouver, Canada 

[4] Clara: a framework for Statically Evaluating Finite-state Runtime Monitors (Eric Bodden, 

Patrick Lam, Laurie Hendren), In 1st International Conference on Runtime Verification 

(RV),pages 74–88, Volume 6418 of LNCS, Springer, 2010.  

[5] Regular Expression Matching Can Be Simple And Fast by Russ Cox 

 http://swtch.com/~rsc/regexp/regexp1.html 


