Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Implementing Tracecuts in the InterAspect
Program Instrumentation Framework

A Thesis Presented
by
Ketan Dixit
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Master of Science
in
Computer Science
Stony Brook University

December 2010

Stony Brook University

The Graduate School

Ketan Dixit

We, the thesis committee for the above candidatéhto
Master of Science degree, hereby recommend

acceptance of this thesis.

Professor Scott Smolka — Thesis Advisor
Department of Computer Science

Professor Erez Zadok — Chairperson of Defense
Department of Computer Science

Professor Scott Stoller
Department of Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Thesis

Implementing Tracecuts in the InterAspect
Program Instrumentation Framework

by
Ketan Dixit
Master of Science
in
Computer Science
Stony Brook University

2010

As software grows in complexity, there is a need to check the runtime bebgvior
programs for potentially hazardous runtime states, and take the appropraate @be
tracecut mechanism, which allows one to match sequences of runtime eventsaagainst

property specification given as a regular expression, provides us with thisfatityi.

In this thesis, we show how tracecut functionality can be applied to C programs by
making use of InterAspect, an aspect-oriented instrumentation framewdekAdpect is
a GCC compiler plug-in that performs runtime instrumentation at the GIMRAeE, le
GCC's intermediate representation. Our approach interprets a trggectication given
as a regular expression as a finite state machine, and generatedetineeded to

perform the state machine transitions.

The utility of our approach is illustrated by two case studies, one involving autdoe
a simple data-source iterator, and the other involving a tracecut specificdiieropen-

close behavior. The latter tracecut is applied to the bzip2 file compressityn utili

To

My Family and Teachers

Table of Contents

N [A oo [¥ Lot o] o WU TP P PP PRRO PSPPI 1
2 INTEIASPECT OVEIVIEW....uuiviiiiiiiiiiiiiieieeeiiiirreererererereeeeeeeeeteteteteeeteseseteteeeeeessrmrserertrerereeereeeteeeeeeen 3
3 Tracecut CONCEPTL AN OVEIVIEW ...ccccuuiiieeiiieeceiiieeeeitee e ettt e s eree e e sree e esbaee e s e esabaeesestaeeeeanenas 4
I = Vot Lol U LY I DT o | o RS 6
4.1 Steps in defining traceCuUt USING APISceiiii it e e e e enrree e e e e e e ennens 6
4.2 TraceCUut APl deSCriPLiONuviiiiee ettt e e e e e e s enbare e e e e eeeeeesnsraaeeaaaesennenns 7
5 TraceCUL EXAMPIES ...ueiiieiiiee ettt e e e et e e e e bae e e e et e e s eate e e e e eebteeeesataeeeentaeeennneeas 10
5.1 RErator EXAMIPIE .ot e et e e e et e e e ta e e e e ate e e e nareeas 10
5.2 Detection of write to closed file handle example........ccccoviiiiiiiicciccce e, 13
6 IMplementation DELAIlS ... e e s 14
6.1 Storing the Tracecut specification in a structure:........cccoeeeeerieciiie e, 14
6.2 Creating pointcuts according to the stored information:.........ccccooveeeiiiecciieee e, 16
6.3 Managing State tranSitiONS: s 17
T RESUIES .ttt b e e e st sane s neeaees 20
7.1 Erator EXAMIPIE: oo e e e e et e e e et e e e e ate e e e naaeeas 20
7.2 Detection of write to closed file handle example........ccooevveeiiecciiiee e, 20
8 Conclusion and FULUIE WOTKcoouiiiiiiiiiie ettt s e e s e e 22
2]][ToT 0| =T o] oY/ RSP SRSRN 23

Vi

Acknowledgements

First of all, I wish to sincerely thank Prof. Scott Smdikeahis guidance and support all through
the project. | would also like to thank Prof. Zadok, Prof. 8tplProf. Grosu and Dr. Havelund
for their guidance. | would also like to thank all the SSW project grolgagples Justin Seyster,
Xiowan Huang and Tushar Deshpande. In particular, | would like to thanBugtin Seyster for

his insightful advice and help throughout my thesis work.

Chapter 1

1 Introduction

A Tracecut is a concept which involves matching to a spetifice of events in a
program at runtime. Tracecut is also referred to as Trachnaatd more generally as
“typestate property”.

In Aspect-oriented programming, pointcut can refer to only theestiprogram
state or the current join point but the tracecut or type state pyajm¥s matching on the
trace of events in the program [1]. This concept is necessarytéctidg run-time
properties of a program and take appropriate corrective actions. Ifusfosspecifying
safety properties (safe iterator example [1]) to allow prayssr of resources. Several
implementations for detecting Tracecut exist in Java built AgpectJ framework. We
referred to paper ‘Adding Trace Matching with Free Varialdl@sAspectd’ [1] in
designing the system. This is an attempt to bring the Tradenationality to C by
building overinterAspect [2] the C-based aspect-oriented instrumentation framework.
Thus, it could be potentially used for checking run-time propestiesmplicated system
software. In our implementation of tracecut, we take regular expressigpuasa define
the pattern of events and we parse that expression to generatéorcstite machine
described by the expression.

Our tracecut implementation is implemented as API sintdathe InterAspect
design. As tracecut makes extensive use of InterAspect, Weléna special section that
explains InterAspect terminologies and APIs in brief. Then wiepnovide overview of
the tracecut architecture and the components involved. In the néxinsece give the
API design of the tracecut. In the API design we will expldia purpose of each
function and the description of the parameters it takes. We allf API design up
with two working examples one that checks for iterator sadatl/the other that protects
writes over a closed file handle. Then, we explain the design afabecut in detail. In
design we discuss how we actually interpret the regular expnessstate machine code,
how do we create state machines, how do we search on them withcfuddsgibutes etc.

Then we discuss the limitations of the approach, the desired fedtare InterAspect

1

that would be useful for tracecut and also future work. Finally welendocument with

results, conclusion and references.

Chapter 2

2 InterAspect Overview

As mentioned earlier InterAspect is an aspect-oriented instriation
framework that is implemented as a GCC plug-in. It providesfuhetionality to
instrument a program while hiding the implementation details of GE&Cdoes
instrumentation at the GIMPLE level, which provides the user withilddt type
information. InterAspect makes use of familiar vocabulary of Aspdented
programming to develop instrumentation plug-ins. We will explainghag used from
Aspect-oriented world angointcut, join point, advice andweaving briefly.

A pointcut denotes a set of well defined program points calledpiimts where
calls to advice function can be inserted by process of weaving. In simpteaqromtcut
acts as a matcher over the entire source code and each poinsaurte that is matched
by the matcher is called join point. An advice function is sactéon user wants to
execute at each join point. The InterAspect provides a novel feaftyoegn callbacks
which allows customized weaving. We have made use of this éegtumplementing
Tracecut.

InterAspect uses an API based approach to define pointcuts. The poareuts
created by callingpop_match_* functions. There are following types of pointcuts
function call, function entry, function exit, and assignment. These panératfurther
fillered by parameter types, return types (only in caseismétion call pointcut) etc. by
aop_filter_* functions. After filtering we have to specify callback function ethi
will get called for each join point. For a join point, variousilaties such as parameters
return values etc. can be captured with the helpay_capture_* functions. Finally
calls to advice functions can be inserted with the hel@ag insert_advice

function. It is possible to pass both static parameters and dynamic pasameter

Chapter 3

3 Tracecut Concept and Overview

Aspect oriented programming provides ability to call an advicetiimat a
specific point in the program. This means that it inserts insttatien based on static
information about the program at compile time. Tracecut provideditliy &0 match on
a pattern in the sequence of events that take place at runfiiazecut are also referred
to as “Tracematch” in [1] or “Stateful Aspects” in [3]. Teagatch is an implementation
of history based pointcut matching on the top of AspectJ. We havergmiled to build
tracecut over InterAspect, the Aspect-oriented instrumentation framework.

A tracecut defines a pattern of events and an advice to leel dathe current
trace matches that pattern. Each tracecut declaration hasé plaets: Declaration of
tracecut symbols, declaration of tracecut parameters, bindirgctrtaparameters to the
information available at each symbol such as parameters, returesvetic, and finally
specification of regular expression of the symbol and specditaif the advice. The
pattern of symbols is specified with the regular expressiomatth occurs when a trace
of events belongs to the regular language described by the regular expression.

Each event that occurs in a program is modeled by transitiontheostate
machine corresponding to the regular expression. Multiple stathines can exist in
program at runtime. The tracecut parameters act as attributbe state machine. At
each join point described by the tracecut symbol we might hawe alibset of these
parameters. We use this list of parameters available goithgoint to search for the
appropriate state machine to make the transition on.

The following diagram describes the Tracecut architecture. Tracesutegagned
to be built on top of InterAspect. It makes use of InterAspect #®Pachieve the
instrumentation. The tracecut specification is interpredefdrim appropriate pointcuts.
The advice weaved into for these pointcuts consists of two partsisorstatic
tracecut-helper.c and other is auto-generatedtatemachine.c . The
tracecut-helper.c contains the helper functions to do state machine operations.

The state machine is initialized at a symbol with a set of attributes. Atrence of other

symbols/events there may be all or subset of these parametdéiabla. Now these
parameters have to be used to find to which state machine tloeygb&hus the code for
all these operations is itracecut-helper.c. Also, the regular expression
specification is converted to code simulating the state machirgh Sode exists in
statemachine.c . The specification compiler thus creates weave module which

would insert calls to do state machine transitions in compilation process.

Target.c .
Tracecut - - Compiled
GCC with plugin support .
Specification <:| > PHQIN SUPP |::> Binary
Autogenerated tracecut- InterAspect Weave
Statemachine.c helper.c Framework Module

Specification
Compiler

A 4

Tracecut Architecture Diagram

Figure 1.1 Tracecut architecture

Chapter 4

4 Tracecut API Design

The Tracecut is basically a regular expression over the sexjoémvents that occur in
the program. These events are modeled by Tracecut symbols. ufragedols refer to
specific event in the program. Tracecut symbols refer th dedfined points in the
program which are described by a pointcut in InterAspect. Ndwaaecut also has
several parameters that are common to all symbols so phesmeters are modeled by
defining Tracecut parameters. These Tracecut paramegethenattributes of the state
machine they are defining with the help of regular expression. A&catwh of these
parameters is used as a key for identifying the right instafickhe state machine.
Moreover these parameter need to be mapped with function paraoretetsrn values
associated with each symbol.

We will first present the Tracecut APl design followed by therking example.
4.1 Steps in defining tracecut using APls

The Tracecut APl was designed with the goal of making it aad intuitive to the user.
The Tracecut will be written as a GCC plug-in based on theAsperct framework. But
the API is designed such as the user need not bother about the afdataidnterAspect
framework.
For understanding the use of the API, it is necessary to deskelfellowing steps in
creating a Tracecut.
e Creating a Tracecut: This step will create a pointer taélaat in which Tracecut
symbols and Tracecut parameters are stored
e Adding Tracecut symbols to Tracecut: In this step we wdlatg a Tracecut
symbol corresponding to a function call, function entry, function exit
e Adding Tracecut parameters to Tracecut: We need to specifynptas to the

Tracecut to define the attributes of the state machine we are going tibelescr

6

e Mapping Tracecut parameters to the Tracecut symbol parameiash of the
Tracecut parameter has to be mapped to at least one Tragedtal parameter
or return value.

e Specifying the advice parameter and name: User can spdayfunction to call
and what parameter can be passed to the function.

e Specifying a regular expression of symbols: A regular exjressivolving
symbol names has to be specified in the tracecut. It is basicpilt for creating

a state machine.

4.2 Tracecut API description

The create_tracecut function creates a tracecut instance which is further filled
with more information later. This structure acts as a contamatl the tracecut related
information.

struct tracecut *tc = create_tracecut();

The add_tracecut_symbol_call function tells the tracecut to catch each call of
function having namé&nc_name and generate the state transition before the call to the

function. The symbol name will be used to refer to this Tracecut symbol later.

add_tracecut_symbol_call (
struct tracecut *tc, /* Tracecut pointer */
const char *sym_name, /* Symbol name */
const char *func_name /* Function name */
AOP_BEFORE [* Advice insertion location*/);

The add_tracecut_symbol_entry function tells the tracecut to catch event of
entry in the specified function and generate the state transition at théoethmeyfunction.
The symbol name will be used to refer to this tracecut symbol later.

add_tracecut_symbol_entry (
struct tracecut *tc, /* Tracecut pointer */
const char *sym_name, /* Symbol name */
const char *func_name /* Function name */);

Similarly we have symbol for capturing function exits.

add_tracecut_symbol_exit (
struct tracecut *tc, /* Tracecut pointer */
const char *sym_name, /* Symbol name */
const char *func_name /* Function name */);

The add_tracecut_param function adds a parameter to the tracecut specifying the
tracecut parameter name and the type respectively. The typdiespaop type is

provided by the InterAspect framework.

add_tracecut_param (

struct tracecut *tc, [* Tracecut pointer */
const char *tc_param_name, /* Tracecut Param name */
struct aop_type t [* Type of the param */);

Thebind_to_param function does the mapping of tracecut parameter to the parameter

of a tracecut symbol specified by the index.

bind_to_param (
struct tracecut *tc, /* Tracecut pointer */
const char *sym_name, /* Tracecut symbol name*/
int index, [* Symbol parameter index */
const char *tc_param_name /* Tracecut parameter name?*/);

Similarly, bind_to_return function does the mapping of tracecut parameter to the
return value of a particular symbol. Note that this applies amlyracecut symbols

corresponding to function call pointcuts.

bind_to_return (
struct tracecut *tc, [* Tracecut pointer */
const char *sym_name, [* Tracecut symbol name*/
const char *tc_param_name /*Tracecut parameter name */);

The functionset_initial_symbol allows user to specify at what tracecut symbol

the state machine instance should be created.
set_initial_symbol (

struct tracecut *tc, /* Tracecut pointer */
const char *sym_name, /*Tracecut symbol name?*/);

The functionset_advice_parameter sets the tracecut parameter that needs to be

sent to the advice.

set_advice_parameter (
struct tracecut *tc, [*Tracecut pointer */
const char *tc_param_name /* Tracecut param name?*/);

Thecreate_tracecut_rule is the final step in tracecut creation. It sets the regular
expression on the symbols defined. This regular expression provideten g the

sequence of events. It also specifies the advice function to be called.

create_tracecut_rule (
struct tracecut *tc, /* Tracecut pointer */
const char *regex, [* Regular expression */
const char * advice_name /* Advice name */);

Chapter 5

5 Tracecut examples

We give the following two examples to explain the use of thhatde The first example
is referred from [1].

The first example detects a condition of invalid iterator use.sBeend example detects
write to a closed file handle and open the file handle in an advice.

5.1 Iterator Example

We will explain how the condition of using a bad iterator can dectkd by using
tracecut. Iterator provides the functionality to iterate throegbh element in the data
source. An instance of iterator is created from a datasoureewlin the datasource is
changed, the instance of iterator is invalid and thus should not be WBg using
Tracecut we can detect this situation and can call any user specified.advi

This situation could be specified as regular expression as follows
create_iter call_next* update_source+ call_next
This regular expression says that caltteate iter followed by zero or more calls

tocall_next followed by one or more calls tgpdate_source followed by call to

call_next . The state transition diagram corresponding to the above regulassrpre

is as follows.
call_next update_source
Bad Stat
create iter update_source create_iter

10

We describe a ‘safe iterator’ example where we will ddtee condition when an illegal
use of iterator happens. We use the a sample target programm nvaie® uses comma
separated integer values as a datasource and uses an iteuataresto loop over the

elements of the datasource.
The target program makes use of the following key functions.

Thecreate_source function instantiates the new datasource from a string of comma

separated values.
struct datasource * create_source (char * csv);

The update_source updates the datasource pointed to by ds with new comma

separated values.

void update_source (struct datasource *ds, char *csv);

The create_iterator function creates the iterator which points to the first element

of the list of values.

struct iterator * create_iterator (struct datasource *ds)

The call_next function returns the current value pointed to by the iterator and

advances the iterator by one element.

int call_next (struct iterator * it)

Hence we write the tracecut for the above target program as follows.

/* Initialize the Tracecut. */
struct aop_tracecut *tc = create_tracecut();

/*

This function tells the Tracecut to catch each call of
create_iterator.

The parameter AOP_AFTER tells that state transition is to
be done after the create_iterator call.

*/

11

add_tracecut_symbol_call(tc,
“create_iter","create_iterator”, AOP_AFTER);

/~k

add_tracecut_param adds paramaters iterator and
datasource of any pointer type.

*/

add_tracecut_param(tc, "iterator”, aop_t_all_pointer());

add_tracecut_param(tc, "datasource", aop_t_all_pointer());

/*

bind_to_return binds the Tracecut parameter ‘iterator’ to
the return value of the ‘create_iter’ Tracecut symbol.

*/

bind_to_return(tc, "create_iter", "iterator");

/~k

bind_to_param binds the Tracecut parameter ‘datasource’ to
the first parameter of ‘create_iter’ Tracecut symbol.

*/

bind_to_param(tc, "create_iter", O, "data_source");

/*

This function specifies that ‘create_iter’ corresponds to
the initiation of the state machine.

*/

set_initial_symbol (tc, "create_iter");

add_tracecut_symbol_call(
tc,"update_source","update_source", AOP_BEFORE);
bind_to param(tc, "update_source", O, "data_source");

add_tracecut_symbol_call(tc,"call_next","call_next",
AOP_BEFORE);
bind_to_param(tc, "call_next", 0, "data_source");

/~k

This is the final step in Tracecut creation. It specifies
the regular expression for statemachine. It calls
‘handle_bad_iterator’ advice on satisfying the regular
expression.

*/

12

create_tracecut_rule (tc, "create_iter call _next*

update_source+ call_next"," handle_bad_iterator");

5.2 Detection of write to closed file handle example.

This example detects the condition of a write to a file hantie &fhas been closed. It is
referred from [4]. It also calls the advice to reopen thesfilghat further write could be
safe. The regular expression for detecting the condition is

open write* close write

This code is captures calls to fopen, fwrite and fclose. Ihégfa parameter called fp
which corresponds to the file handle. It also binds to the file narttesi is available to

pass as parameter to advice. Following is the code snippet.

char regex[] = "open write* close write";
tc = create_tracecut();

add_tracecut_symbol_call (tc,"close","fclose”, AOP_AFTER);
add_tracecut_symbol_call (tc,"open”,"fopen”, AOP_AFTER);
add_tracecut_symbol_call (tc,"write","fwrite",AOP_BEFORE);

add_tracecut_param (tc, "fp", aop_t_all_pointer());

bind_to_return(tc, "open”, "fp");
bind_to_param(tc, "open”, 0, "name");
bind_to_param(tc, "close", 0, "fp");
bind_to_param(tc, "write", 3, "fp");

set_initial_symbol (tc, "open");
set_advice param (tc, "name");
create_tracecut_rule (tc, regex,"reopen_file_handle");

In the advice implementation we have made an assumption thaletharidle is shared
between the main code and the advice code. In this case, ideally we would have needed to
pass pointer to the file handle in order to store the new file hamdlee same address

and the following write could run successfully. But as of now Indpe&t lacks this

facility and thus an assumption had to be made.

13

Chapter 6

6 Implementation Details

The implementation of tracecut requires instrumenting stateitteansode at specific
points in the program. We use the InterAspect framework for this purpose. Asmeent
earlier the tracecut is specified as regular expression waeecut symbols. Each
Tracecut symbol corresponds to a well defined event in the progtese well defined
events are modeled by using pointcuts in InterAspect. So the blasids to insert
advice making the state transition at each join point satisfiimg@aointcut corresponding
to the symbol. Also we pass the mapped parameters or return ghthesjoin point to

the advice in order to decide on what instance of state machinetiseion should be

made. So we describe the steps in generating the tracecut as follows.

6.1 Storing the Tracecut specification in a structure:

All the Tracecut related information is stored ins#&ruct tracecut ". It contains

information of tracecut symbols, tracecut parameters.

struct tracecut

{

[* Regular expression */
char * regex;

[* List of all symbols */
struct tracecut_symbol *tc_sym_list;

/* List of all parameters*/
struct tracecut_param *tc_param_list;

8

As shown in the above snippet the Tracecut stores regular ewppressiTracecut

symbols and lists of the Tracecut symbols and Tracecut parameters.

14

As mentioned earlier th#acecut_symbol is actually implemented by creating a
corresponding pointcut. Itracecut_symbol structure we store the type of the

pointcut that corresponds to it.

struct tracecut_symbol

{

[*Tracecut symbol type */
enum tracecut_symbol_type tc_type;

/* Function name */
char *name;

[* List of parameters associated with symbol */
struct tracecut_symbol_param *tc_sym_param_list;

[* Next pointer for the list */
struct tracecut_symbol *next;

3
Moreover it stores the function name if it is associated with a function, émtigtion exit
or function call pointcut. Now each program location satisfieghdiptcut (also called
join point) of the symbol has useful information such as parame&ttsn values that
needs to be captured. In order to store what needs to be captured for a

tracecut_symbol , We use a structure calléhcecut_symbol _param and we
maintain its list in theéracecut_symbol structure.

The tracecut_symbol_param structure holds the information of a symbol
parameter.

struct tracecut_symbol_param

{

[* -1 for return value */
int param_index;

[* The tracecut_param bound to this symbol
parameter */
struct tracecut_param *tp;

struct tracecut_symbol_param *next;

15

It has aparam_index field that refers to the parameter or return value of the sytbol
be captured. Thsetruct tracecut_param refers to the tracecut parameter the
symbol parameter is mapped to. This field is set when the alerbind_to_param or
bind_to_return function. Note that we are not storing the type infaymati this
structure; it is contained in theacecut_param field instead.

To store the tracecut parameters we havdrtdeecut_param structure which stores
the name of the parameter and the type information. The dgpetype is from

InterAspect framework.

struct tracecut_param

{
/* Name to be used as identifier */
char * name;
[* Type of the parameter */
aop_type type;
struct tracecut_param *next;

h

As mentioned earlier we provide APIs to initialize the abovectiras. The name field is
used as a key to identify tracecut symbols and tracecut ptaemThis name should be
used by the user to refer to a particular tracecut pararoetgacecut symbol in the

regular expression as well as all the API functions.

6.2 Creating pointcuts according to the stored information:
Once we have all the information we can create the pointcuttedeto the Tracecut

symbols.

We make use of parameterized weaving provided by InterAspgus® thestruct
tracecut_symbol pointer tojoin_on callback function at each join or weave
location. The structure stores a list of tracecut_symbol parameter to
capture the required parameters at each join point. strucf

tracecut_symbol_parameter holds information about the index of the parameter

16

and type of the parameter). These captured parametefsevpthissed to state machine
transition functions frontracecut-helper.c . The auto generated code is written in
statemachine.c . Both these files can be compiled separately with any @G&€lon
(with or without plug-in support) to object files and these objecs tilave to be linked

with the target program in the linking process to get the advice code.

6.3 Managing state transitions:

In tracecut_symbol structure we have information about how to create the pointcut
and what parameters to capture at its join points. We need tousakef the captured
information to make the state transitions. From the function namekmnow what
transition to make and from captured parameters we need to infdnairstate machine

the transaction should take place.

For achieving this, we have to keep track of state machines atrthiene. Thus,
a structure describing the state machine is required. Tleenstathine consists of list of
name-value pairs of attributes. The state machine is initialatethe symbol which
specified as init symbol by the user. The need for name-valuegoaies from the fact it
is not possible at every Tracecut symbol location that all the parametergagiable (For
example incall_next only the iterator is available). So in that case partiachnad
has to be done and to achieve that the name should be used to applynaactiatg of
attributes (that means attribute name is compared first anditthemlue). The state
machine related data is stored in following structures.

struct state_machine

{
int state_id;
struct attribute *attrib_list;
struct state_machine *next;

3

struct attribute

{

char *name;
void *value;
struct attribute *next;

17

/* Global list of all state machine instances*/
struct state_machine sm_list = NULL,;

The state_id field in thestruct state_machine refers to the current state of

the state. Additionally the structure has list of attributes with name-palue

The file tracecut-helper.c provides the helper functions to create state machine,
to add new attribute to the state machine, to make transitions statBenachines. We

will explain the functions as follows.
void create_state _machine ()

This function creates a new state machine that is added tdothed ist. As we cannot
capture return value from one advice function to the advice imnegdfatiowing it, we
have to store the pointer to the state machine as a global varklbteas we have to add

variable number of attributes, we catld_attribute_sm successively.
void add_attribute_sm (char * name, void * value);
This function adds the attribute to the newly created state machine.
void add_attribute_to_attrib_list (char * name,

void * value);

Similar to a global state machine, a global pointer to querpuatie list is maintained.
This list is used to query the state machine lisinake_transition function. The

above function adds a new attribute to the global list.

void make_transition (int sym, int is_create_sm , const

char *advice_param);

The make_transition function does the task of finding the state machine
corresponding to the current global attribute list and making tramsth each of them.
If the state machine is newly created which is denotetsbgreate_ sm parameter is

set to 1 and the state transition is only made on the newly created state machine.

18

The function assumes presence of function get next state whichthbas

following signature.

int get_next_state (int state_id, int sym ,
int * is_final);

The state_id parameter refers to the current state of the iachine. The sym
parameter refers to the character denoting the event. Each tofhdeeut symbols is
assigned a representative single character. This chaiactised as a key in the code
generating the state machine. Also the single characteesntheget next code

simple. The third parametex final is passed by address to know whether the next

state is a final state.

This function contains the code corresponding to the state machinecotleiss
generated by parsing the regular expression and convertiogDEA (Deterministic
Finite Automata) in memory and writing the corresponding switcle ¢ar the memory.
We have used source code of regular expression to DFA converéey ldaveloped by
Russ Cox (Refer http://swtch.com/~rsc/regexp/regexpl.isinlWe have modified the
source code of the library to write the in-memory DFA asso@ce code. So with each
new regular expression the code fmt next_state function is dumped in the file

statemachine.c

19

Chapter 7

7 Results

7.1 Iterator Example:

We ran our iterator example having the following code snippet. tdatehe last
line contains the call_next done after the source is updated. Thua@eout catches this
situation and callkandle_bad _iterator.

struct iterator *it = create_iterator (ds);
while ((data = call_next(it)) >= 0)
{

printf("Data : %d\n" ,data);
}
printf ("Updating the source\n");
update_source (ds, str2);
call_next(it);

7.2 Detection of write to closed file handle example

We ran this example on bzip2 program. In this program we introdulzesk fcall
before an fwrite and detected the hazardous write and exited thamprd@therwise the
program gives a segmentation fault if it writes on a closed fiandle.) With
instrumentation on we ran the program to compress and decompress MB ®DF
document and following are the results.

Running Time:

With Instrumentation Without Instrumentation
Compress Decompress Compress Decompress
4.319 3.608 4.18 2.613
4.182 3.488 4.214 2.606
4.334 3.24 4.186 2.599
4.233 3.5 4.161 2.593
4.267 3.294 4.202 2.637
4.205 3.456 4,171 2.608
4.192 3.272 4.216 2.674
4.186 3.415 4.163 2.599
4.254 3.225 4.185 2.662
4.258 3.284 4.175 2.631
4.243 3.3782 4.1853 2.6222

20

Binary Size:

With Instrumentation

Without Instrumentation

168870

162710

Memory Usage Size (in KB):

With Instrumentation

Without Instrumentation

Virtual

Resident

Virtual

Resident

9060

7014

9060

7000

21

Chapter 8

8 Conclusion and Future Work

Thus we have presented the tracecut concept that takes a pattern on pggamfarm
of regular expression and successfully matches it on the sargdeams. However,
there are some limitations to this approach and here are satneefewe would like to
add to current implementation.

1. Support for keeping track of scope of variables. By using this wekeep track
of open file handles which are not closed when all references to gboset of
scope.

2. As a result of implementation of this project, it was realifeat some more
features are needed from InterAspect. For example, we need Itelte aapture
the address of parameter captured not just their value. Thisnaitile us to take
corrective actions more elegantly. This feature can be usefriexample of
file handle where if we could catch the file handles addressvileecould replace
that closed file handle with an opened file handle in the memoryssjdred the
program would run unharmed.

3. Taking different state transitions for the different rangethefsame parameter of
the same function. For example, setuid(0) sets effective diserG that means it
enters a privileged mode and non zero parameter means non privileded\We
want to have different state transitions for call the same function.

22

Bibliography

[1] Chris Allan , Pavel Avgustinov , Aske Simon ChristensenurieaHendren , Sascha Kuzins ,
Ondrej Lhotak , Oege de Moor , Damien Sereni , Ganesh Sittampalafian Tibble, Adding
trace matching with free variables to AspectJ, Proceedingseo20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languageapplizhtions, October 16-
20, 2005, San Diego, CA, USA

[2] Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu, Klay®ldnd, Scott A. Smolka,
Scott D. Stoller, and Erez Zadok Aspect-Oriented InstrumentatitnGCC In Proceedings of

1st International Conference on Runtime Verification 2010, St. Juliang Mal

[3] Thomas Cottenier, Aswin van den Berg , Tzilla Elrad, 8thi@spects: the case for aspect-
oriented modeling, Proceedings of the 10th international workshospectoriented modeling,
p.7-14, March 12-12, 2007, Vancouver, Canada

[4] Clara: a framework for Statically Evaluating Festate Runtime Monitors (Eric Bodden,
Patrick Lam, Laurie Hendren), In 1st International Conference Romtime Verification
(RV),pages 74-88, Volume 6418 of LNCS, Springer, 2010.

[5] Regular Expression Matching Can Be Simple And Fast by Rusx C
http://swtch.com/~rsc/regexp/regexpl.html

23

